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Abstract

In many practical applications in machine learning, computer vision, data

mining and information retrieval one is confronted with datasets whose intrin-

sic dimension is much smaller than the dimension of the ambient space. This

has given rise to the challenge of effectively learning multiple low-dimensional

subspaces from such data. Multi-subspace learning methods based on sparse

representation, such as sparse representation based classification (SRC) and

sparse subspace clustering (SSC) have become very popular due to their con-

ceptual simplicity and empirical success. However, there have been very lim-

ited theoretical explanations for the correctness of such approaches in the liter-

ature. Moreover, the applicability of existing algorithms to real world datasets

is limited due to their high computational and memory complexity, sensitivity

to data corruptions as well as sensitivity to imbalanced data distributions.

This thesis attempts to advance our theoretical understanding of sparse

representation based multi-subspace learning methods, as well as develop new

algorithms for handling large-scale, corrupted and imbalanced data. The first

ii



ABSTRACT

contribution of this thesis is a theoretical analysis of the correctness of such

methods. In our geometric and randomized analysis, we answer important

theoretical questions such as the effect of subspace arrangement, data distri-

bution, subspace dimension, data sampling density, and so on.

The second contribution of this thesis is the development of practical sub-

space clustering algorithms that are able to deal with large-scale, corrupted

and imbalanced datasets. To deal with large-scale data, we study different ap-

proaches based on active support and divide-and-conquer ideas, and show that

these approaches offer a good tradeoff between high accuracy and low running

time. To deal with corrupted data, we construct a Markov chain whose station-

ary distribution can be used to separate between inliers and outliers. Finally,

we propose an efficient exemplar selection and subspace clustering method that

outperforms traditional methods on imbalanced data.

Primary Reader and Advisor: René Vidal

Secondary Reader: Daniel P. Robinson
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Chapter 1

Introduction

The significant increase in the ability to collect and store diverse informa-

tion in the past decades has led to an exceptional growth in the availability of

data. In the field of computer vision, for instance, portable and affordable digi-

tal cameras and smartphones interconnected with high-speed mobile networks

have produced image and video datasets of unprecedented scale, which are be-

ing collected by giant Internet companies such as Google and Amazon through

services they provide to billions of customers. The proliferation in dataset size

and complexity is accompanied by the challenge of successfully analyzing the

data to discover patterns of interest. Aside from being large-scale, modern

datasets very often possess significant amounts of corruptions in various forms

such as noise, corrupted entries, outliers and missing entries. All these fea-

tures pose stark challenges to the development of techniques for modern data

1
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analysis.

1.1 Multi-subspace data

One of the most important observations in data analysis and machine learn-

ing is that datasets usually have low-dimensional structures. That is, while

modern datasets usually contain thousands or even millions of measurements,

the intrinsic degrees of freedom in those measurements are invariably very

small. In computer vision, for example, images of a particular face exhibit low-

dimensional structures as their variations can be described by a few factors

such as the pose of the head, the expression and the lighting conditions. Ma-

chine learning methods based on the low-dimensionality of data have found

wide applications in various fields that involve data visualization, classifica-

tion, detection and clustering tasks.

A classic techniques for learning low-dimensional structures from data is

principal component analysis (PCA), which assumes that the dataset contain

a single low-dimensional affine subspace. While PCA has been extremely pop-

ular in many applications, it has the fundamental limitation that it models a

single subspace and cannot deal with datasets that have multiple subspaces.

On the other hand, modern datasets that are mixed with multiple classes

are very common, e.g., a face dataset usually contain images from multiple

2
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faces/subjects. In such cases, it is more appropriate to model data as lying in

multiple affine subspaces where each subspace corresponds to one class (see

Figure 1.1) [18]. Besides face images, a multi-subspace structure appears in

many real world datasets such as the feature point trajectories correspond-

ing to multiple rigid moving objects in a video [145], images of handwritten

digits [78], gene expression data corresponding to a collection of cancer sub-

types [116], and so on.

Figure 1.1: An illustration of multi-subspace structure in a face dataset. Im-
ages corresponding to the same face lie approximately in a low-dimensional
linear subspace, and a face dataset containing images of multiple subjects lie
approximately in a union of subspaces where each subspace corresponds to a
particular face.

1.2 Multi-subspace learning

In this thesis, we address the problem of learning multi-subspace structure

from either labeled or unlabeled data. In the former case, we assume that each

3
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data point in the training set is associated with a label that corresponds to the

subspace it comes from, and study the problem of classifying new data points

according to their membership to one of the subspaces. In the latter case, we

address the more challenging problem of clustering the data into multiple sub-

spaces without knowing the subspaces or the membership of each data point.

This gives rise to the subspace classification and subspace clustering problems,

which we describe next.

1.2.1 Subspace classification

Classification is one of the most basic topics in machine learning. Given a

set of training data points each associated with a groundtruth label, the goal

of classification is to assign labels to data points in a test set which is typically

drawn from the same distribution as the training set. In particular, the data

points in the test set are typically not the same as those in the training set,

therefore classification requires the ability to “generalize” from the labels of

training data points to the labels of test data points. This can be achieved if

certain prior knowledge about the structure of the data in each of the classes

is known or provided. In particular, if we know that the dataset has a multi-

subspace structure, i.e., that data points from each class are drawn from a

low-dimensional subspace of the ambient space, then a testing data point can

be classified to the subspace it belongs to. In such cases, the problem is known

4
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as subspace classification.

As a practical application of subspace classification, face recognition is the

task of recognizing the face in a image when provided with a training set of

face images for multiple human subjects. Since images of the same face under

varying illumination conditions lie approximately in the same low-dimensional

subspace, the face recognition task may be casted as a subspace classification

problem (see Figure 1.2 for an illustration).

Figure 1.2: An illustration of the subspace classification problem with face
recognition as an example. The training set contains face images corresponding
to three different faces. The test image correspond to the face of one of the
faces in the training set. The goal is to classify the test image according to the
subspace it belongs to.

1.2.2 Subspace clustering

Clustering refers to the problem of separating a set of unlabeled data into

multiple groups. When each group corresponds to a linear or affine subspace,

5
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the clustering problem is referred to as subspace clustering, a problem that has

drawn a lot of attention in recent years [164] (see Figure 1.3 for an illustra-

tion). Subspace clustering is an important topic particularly in an era of big

data, since most of the collected data nowadays are unlabeled, and it takes

tremendous human efforts to manually label a huge amount of data. It has

found many applications in image representation and compression [82], mo-

tion segmentation [135] and temporal video segmentation [163] in computer

vision; hybrid system identification in control [14]; community clustering in

social networks [83]; and genes expression profiles clustering in bioinformat-

ics [116].

Figure 1.3: An illustration of the subspace clustering problem using face clus-
tering as an example. The input is a set of unlabeled face images corresponding
to several different faces. The goal is to segment the input data into several
groups where each group corresponds to one particular face. In subspace clus-
tering, this is achieved via separating the data into their respective subspaces.

Subspace clustering is much more challenging than subspace classification

because there is no labeled training data at all, which means that there is
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no prior knowledge about the number of subspaces, the subspace dimensions,

their relative arrangement, and so on. All of these need to be estimated auto-

matically from the data.

1.3 Sparse methods for multi-subspace

learning

Sparse methods refers to a general class of methods in which the signal of

interest is expressed as a sparse linear combination of other signals that are

drawn from a large dictionary. This simple class of methods arises in a surpris-

ingly large number of applications. In the area of signal processing and com-

pressed sensing, in particular, sparse methods have been extensively studied

for the purpose of recovering a sparse signal from a few linear measurements.

As we will see in Chapter 2, such studies have established the theoretical cor-

rectness of several important numerical algorithms for finding sparse solutions

to a system of underdetermined linear equations. It has been shown that hav-

ing a dictionary that is “incoherent” or “isometric” is fundamental for sparse

methods to be successful.

The groundbreaking work of Wright et al. [177] and Elhamifar et al. [59] on

using sparse methods to solve the subspace classification and subspace cluster-

ing problems, respectively, has led to a rapid development of the field of multi-

7
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subspace learning in the past decade. These methods are based on a simple

observation that, if a set of data points {x1, · · · ,xN} ⊆ RD lies in a union of

low-dimensional subspaces, then a data point x ∈ RD in one of the subspaces

can always be expressed as a linear combination of other points from the same

subspace. This property is illustrated in Figure 1.4 (left). Mathematically, this

could be written as

x = Xc, (1.1)

where X = [x1, · · · ,xN ] is a matrix containing data points as its columns, and

c ∈ RN is the vector of representation coefficients whose nonzero entries corre-

spond to columns in X that are from the same subspace as x. See Figure 1.4

(right) for an illustration. In addition, notice that the number of nonzero coef-

ficients in the representation vector c is equal to the dimension of the subspace

that x lies in, therefore is sparse if such dimension is small. This motivates us

to find such representations via sparse methods.

In general, a representation vector c for which the nonzero entries corre-

spond to points in the data matrix X that are from the same subspace as x

(which are not necessarily sparse) are called subspace-preserving, a key con-

cept for the study of multi-subspace learning. If subspace-preserving repre-

sentations can be computed, then one can correctly identify the subspace that

any data point lies in as the one that corresponds to the nonzero entries of

such representations. Subspace classification and subspace clustering meth-

8
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Figure 1.4: An illustration of subspace-preserving representation for multi-
subspace data. Left: the data point x in subspace S3 can be expressed as a
linear combination of the two points (shown as the points connected to x via
dashed lines) from S3. Right: x could be expressed as a matrix-vector multipli-
cation that operates on the data matrix X and a coefficient vector c, where the
nonzero entries of c correspond to the points that are used in the data repre-
sentation.

ods based on subspace-preserving representations [59, 177] have been shown

to have superior performance and are the state-of-the-art methods.

1.4 Thesis contributions

In this thesis, we develop both theory and algorithms for multi-subspace

learning methods that are based on sparse representation. Although theoret-

ical justifications of sparse methods have previously been established in the

area of signal processing, data models in that area are inappropriate in the

context of multi-subspace learning. In particular, the previously established

“incoherent” and “isometric” assumptions on the dictionary are often violated

9



CHAPTER 1. INTRODUCTION

when data is drawn from a union of subspaces. This calls for the development

of novel theoretical analysis that explains the huge success of sparse methods

for multi-subspace learning.

In terms of algorithms, previous subspace clustering methods are designed

for data sets that are small scale, clean and balanced across different classes,

which are unrealistic assumptions for real world applications. We will see that

existing methods are limited to datasets that contain 10,000 data points, and

cannot handle larger datasets due to the high memory and computational com-

plexity. We will also see that the performance of existing methods drops by a

significant amount as soon as there are more than 1% percent outliers in the

dataset. Finally, imbalanced data distribution can also significantly compro-

mise the performance of existing clustering methods. All of these challenges

call for the development of scalable and robust algorithms that can effectively

deal with data in real applications.

1.4.1 Geometric and probabilistic analysis of multi-

subspace learning methods

The notion of subspace-preserving property introduced above plays a central

role in the theoretical study of multi-subspace learning. In particular, the study

of conditions for subspace-preserving recovery is an essential step in proving

10
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the correctness of the associated multi-subspace learning algorithm. In Chap-

ter 3 we present a systematic study of the theories of subspace-preserving re-

covery. Our contribution is comprised of the following four parts.

Geometric conditions [195]. Our analysis identifies key geometric quan-

tities associated with data in multiple subspaces that affect the correctness of

the sparse methods for learning from such data. Intuitively, if the multiple sub-

spaces are well separated and have large angle between each other, then the

multi-subspace learning task is easier. This idea is illustrated in Figure 1.5,

in which the three subspaces in Figure 1.5a are more separated than the three

subspaces in Figure 1.5b.

(a) Case 1 (b) Case 2

Figure 1.5: The effect of subspace separation on multi-subspace learning. (a)
Subspaces are well separated. (b) Subspaces are not well separated.

Besides subspace separation, another factor that affects multi-subspace learn-

ing is the distribution of points in the subspaces. Figure 1.6 shows two possible

11
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cases of point distribution in one of the subspaces in a multi-subspace struc-

ture. In the case shown in Figure 1.6a, the data points are well distributed in

all directions in this subspace. In the case shown in Figure 1.6b, the distribu-

tion of data points is skewed towards a specific direction in this subspace. It

could be expected that multi-subspace learning with data distribution in the

latter case is more difficult than that in the former case.

(a) Case 1 (b) Case 2

Figure 1.6: The effect of point distribution in each of the subspaces on multi-
subspace learning. (a) Points from the subspace S3 are well distributed in the
subspace. (b) Points from S3 are not well distributed in the subspace.

Based on these geometric intuitions, we derive geometric conditions that

guarantee subspace-preserving recovery, which require the subspaces to be

sufficiently well separated and the data in each subspace to be sufficiently

well distributed. Our analysis addresses both the problem of instance recov-

ery, where the goal is to study subspace-preserving recovery for a particular

point in the subspace, as well as the problem of universal recovery, where the

goal is to find subspace-preserving recovery for all data points in the subspace.

Probabilistic conditions [192]. We further explore the regimes in which the

12
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geometric conditions can be satisfied by considering models where data points

are generated according to a probabilistic model. Our analysis reveals that

sparse methods for multi-subspace learning work better when the dimension

of the subspaces are low relative to the ambient dimension, a phenomenon

that has been observed in practice. In addition, our result also reveals how

the density of samples in the subspaces affects the correctness of the multi-

subspace learning methods.

Conditions for subspace classification [192]. Using these tools developed

in the study of subspace-preserving recovery, we provide justification for the

correctness of sparsity based subspace classification method. Specifically, we

provide conditions under which the subspace classification method in [177] is

guaranteed to correctly classify any test data point given a certain training

dataset. To the best of our knowledge, this provides the first correctness guar-

antee of this method for the multi-subspace model.

Conditions for subspace clustering [191,193]. We also provide correctness

conditions for the sparse representation based subspace clustering method in

[59]. Unlike the case of subspace classification in which subspace-preserving

recovery automatically implies the correctness of classification by sparse meth-

ods, the subspace clustering task could suffer from the issue of over-segmentation

of clusters due to lack of connectivity in the sparse representations. We will

address this challenge by using elastic net regularization in lieu of sole sparse

13
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regularization to incur denser solutions. In particular, we provide geometric

explanations to rigorously justify that the elastic net has the effect of balanc-

ing between connectedness and subspace-preserving properties.

1.4.2 Algorithms for handling large-scale data

Existing subspace clustering methods based on sparse representation can-

not effectively deal with large scale data since finding such sparse representa-

tions is computationally difficult. In Figure 1.7, we report the running time of a

baseline algorithm which is a subspace clustering algorithm based on comput-

ing sparse representation with the alternating direction method of multipliers

(see Chapter 4 for details). The figure shows that even when dealing with a

medium scale dataset that has around 10,000 data points, the running time

already goes up to ∼ 10,000 seconds or around 3 hours. In addition, the base-

line method cannot handle datasets of size much larger than 10,000 data points

on a typical machine with, say, 16 Gigabytes memory as the algorithm has

quadratic memory complexity. In Chapter 4 we will present two approaches

that are not only significantly faster than the baseline method but also able to

handle datasets of much larger scale.

Active support method [191]. Our first approach for handling large-scale

data is a novel active support algorithm for solving the sparse recovery prob-

lems more efficiently. By exploits the geometry of the solution to the sparse
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Figure 1.7: Challenge and contribution for subspace clustering on large-scale
data. We generate datasets where 5 subspaces of dimension 6 are sampled
independently and uniformly at random from an ambient space of dimension
9, and N/5 data points are sampled independently and uniformly at random
from each of these subspaces, where N is the total number of data points in the
dataset and is varied in the x-axis. We then apply a baseline subspace cluster-
ing method (i.e., SSC-BP with sparse recovery solved by ADMM, see Chapter 2)
and our method (i.e., SSC-BP with sparse recovery solved by the active support
method, see Chapter 4) for clustering the points in these datasets.

recovery problem, we use an iterative procedure to update an active support

set, which is guaranteed to converge to the support set of the optimal solution

in a finite number of iterations. Our algorithm achieves its efficiency as it de-

composes the large-scale sparse recovery problem into a sequence of problems

of much smaller size, each of which can be solved much more efficiently. The

performance of this method is illustrate in Figure 1.7, where it can be seen that

the active support method handles 10,000 in only ∼ 10 seconds, a ∼ 1,000 times

speedup over the baseline. Moreover, it is able to handle as many as ∼ 350,000

data points in a few hours.
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Divide-and-Conquer method [189]. To handle even larger scale data, we

also present a novel divide-and-conquer framework for large-scale subspace

clustering. In this method, the data is first divided into chunks and subspace

clustering is applied to each chunk. After removing potential outliers from

each cluster, a new cross-representation measure for the similarity between

subspaces is used to merge clusters from different chunks that correspond to

the same subspace. A self-representation method is then used to assign outliers

to clusters.

1.4.3 Algorithms for handling corrupted data

Existing subspace clustering methods are also susceptible to the presence of

outliers which are points that do not lie in the union of subspaces. To illustrate

the effect of outliers on subspace clustering, we perform experiments on syn-

thetic datasets where the inliers are drawn from a union of low-dimensional

subspaces, while the outliers are points that are randomly sampled from the

ambient space. The performance of existing subspace clustering methods is

shown as the “baseline” in Figure 1.8. We can see that the baseline perfor-

mance drops to below 80% accuracy with as few as 5% outliers. This shows

that it is essential to detect and reject the outliers before subsequent subspace

clustering is performed.

In Chapter 5 we present a novel outlier detection method that can effec-
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Figure 1.8: Challenge and contribution for subspace clustering on corrupted
data. We generate datasets that each is composed of an inlier set and an outlier
set. For each inlier set, 4 subspaces of dimension 3 are sampled independently
and uniformly at random from an ambient space of dimension 12, then 20, 40, 80
and 110 data points are sampled independently and uniformly at random from
the four subspaces, respectively. For each outlier set, a certain number of points
are sampled independently and uniformly at random from the ambient space.
We vary the number of outliers to show the performance on datasets with dif-
ferent percentage of outliers. Baseline: apply existing subspace clustering on
the entire dataset. Our method: apply outlier detection in Chapter 5 and run
existing subspace clustering on the detected set of inliers. In both cases, the
clustering performance is evaluated on the set of inliers.

tively detect outliers from a union of subspaces [194]. Our method is based

on utilizing random walks on a graph. The observation is that while inliers

(i.e., points in the union of subspaces) can be expressed as linear combinations

of a few other inliers, outliers express themselves as a linear combination of

both inliers and outliers. By exploiting this property, we compute a weighted

directed graph from the sparse representation. By defining a suitable Markov

Chain from this graph, we establish a connection between inliers/outliers and
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essential/inessential states of the Markov chain, which allows us to detect out-

liers by using random walks. Empirically, by applying this method to detect

and remove outliers prior to applying subspace clustering, it is possible to clus-

ter datasets that are corrupted by more than 90% outliers (see Figure 1.8). We

will provide a theoretical analysis that justifies the correctness of our method

under geometric and connectivity assumptions.

1.4.4 Algorithms for handling imbalanced data

Another regime where existing subspace clustering methods does not work

well is imbalanced data distributions, where different classes in a dataset con-

tain dramatically different number of data points. To illustrate the effect of

imbalanced data, we perform subspace clustering on dataset that is composed

of two classes with varying proportion of points from one of the classes. The

clustering performance is shown in Figure 1.9. We can see that while the base-

line method (SSC-BP with sparse recovery solved by active support method,

see Chapter 4) gives near 100% clustering accuracy when the dataset is bal-

anced, its performance drops to below 80% when the dominant class contains

> 90% data points of the dataset.

In Chapter 6, we present an exemplar based subspace clustering method to

tackle the problem of imbalanced data [190]. Our method is based on search-

ing for a subset of the data that best represents all data points as measured by
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Figure 1.9: Challenge and contribution for subspace clustering on imbalanced
data. x and 100 − x points (x is varied in the x-axis) are drawn uniformly at
random from 2 subspaces of dimension 3 drawn uniformly at random in an
ambient space of dimension 5. Baseline: subspace clustering method SSC-BP
with sparse recovery solved by active support method, see Chapter 4. Our
method: exemplar subspace clustering, see Chapter 6.

the �1 norm of the sparse representation coefficients. Geometrically, we show

that the solution to our model is a subset that best covers all data points as

measured by the Minkowski functional of the subset. We introduce a farthest

first search algorithm for approximately solving our model, which iteratively

selects the least well-represented point as an exemplar. When data comes from

a union of subspaces, we prove that the computed subset contains enough ex-

emplars from each subspace for expressing all data points even if the data is

imbalanced. The performance of our exemplar based subspace clustering is il-

lustrated in Figure 1.9, in which one can see that our method has much higher

clustering accuracy than the baseline method when the dataset is imbalanced.
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1.4.5 Evaluation of subspace clustering on real

data

In the past decade, a large number of methods have been developed for sub-

space clustering and significant improvement in clustering performance has

been reported in a series of papers. However, the difference in the databases

that are used in these papers makes it impossible to directly compare the per-

formance of different methods. Even though there are a few commonly used

databases such as the Extended Yale B face database [71], different parts of

these databases are used in the experiments from different papers and differ-

ent data preprocessing procedures are applied. Therefore, a direct comparison

of results from these experiments will be inconsistent.

In this thesis, we address this issue by carrying out a thorough experimen-

tal evaluation of many representative subspace clustering methods on several

real databases. In particular, we use 6 datasets to evaluate different aspects of

the performance of the methods. The Extended Yale B face database [71] and

the Coil-100 image database [125] are medium scale databases that have been

commonly used in previous subspace clustering experiments. The CIFAR-10

dataset [88] and the MNIST dataset [92] are large scale image databases that

contain 60,000 and 70,000 images, respectively. We use these two datasets to

evaluate the scalability of different subspace clustering methods. Finally, the
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Table 1.1: Evaluation of subspace clustering methods on real data: a summary.
“-”: method is not tested on this dataset. “M”: method exceeds 20GB memory
limit. “T”: method exceeds 24 hours running time limit.

EYaleB Coil-100 Cifar-10 MNIST GTSRB EMNIST
k-means ch. 4 ch. 4 ch. 4 ch. 4 ch. 6 ch. 6
Spectral ch. 4 ch. 4 ch. 4 ch. 4 ch. 6 ch. 6

LRR ch. 4 ch. 4 M M - -
LRSC ch. 4 ch. 4 M M - -
LRSC ch. 4 ch. 4 M M - -

O-LRSC ch. 4 ch. 4 ch. 4 ch. 4 ch. 6 ch. 6
LSR ch. 4 ch. 4 M M - -

SSC-ADMM ch. 4 ch. 4 M M - -
ℓ0-SSC ch. 4 ch. 4 T T T T
NSN ch. 4 ch. 4 T T - -
SBC - - - - ch. 6 ch. 6

SSC-OMP ch. 4 ch. 4 ch. 4 ch. 4 ch. 6 ch. 6
SSC-BP ch. 4 ch. 4 ch. 4 ch. 4 ch. 6 ch. 6
EnSC ch. 4 ch. 4 ch. 4 ch. 4 - -

ESC-FFS - - - - ch. 6 ch. 6

GTSRB database [141] and the Extended MNIST (EMNIST) database [44] are

two databases that are imbalanced across different classes. Using these two

databases, we demonstrate the performance of subspace clustering methods on

imbalanced data.

We compare with a wide range of clustering methods including k-means and

Spectral, as well as subspace clustering methods such as LRR, LRSC and and

so on. A detailed description of these methods can be found in Chapter 4 and

Chapter 6. A summary of the methods as well as the datasets that the methods

are tested on is given in Table 1.1.
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Chapter 2

Background

2.1 Notation

Throughout this thesis, we use R to denote the set of real numbers, and RD

to denote the D-dimensional linear space.

We use lowercase letters denote scalars, such as x ∈ R, lowercase boldface

letters denote vectors, such as x ∈ RD, and uppercase boldface letters denote

matrices, such as X ∈ RD×N . The transpose of the matrix X ∈ RD×N is denoted

as X⊤ ∈ RN×D. The uppercase calligraphic letters denote sets, such as X ⊆ RD.

For any vector x = [x1, · · · , xD] ∈ RD and p ≥ 1, the ℓp-norm is defined

as ∥x∥p =
(∑D

i=1 |xi|p
)1/p. As p approaches infinity, we have the infinity norm

∥x∥∞ = maxDi=1 |xi|. Another particularly interesting case for this thesis is when

p = 0, for which we define ∥x∥0 as the number of nonzero entries in x.
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2.2 Sparse signal recovery

In this section, we provide a brief review of sparse methods, including both

sparse recovery algorithms and sparse recovery theory. For more detailed in-

vestigations of results in this area, we refer the reader to [16,27,33,68].

Sparse signal recovery addresses the problem of recovering a sparse signal

c0 ∈ RN from a limited number D ≪ N of linear observations

bk = ⟨c0,a(k)⟩, k = 1, · · · , D or equivalently, b = Ac0, (2.1)

where A = [a(1), · · · ,a(D)]⊤ ∈ RD×N is a full row-rank matrix. Since there

are less measurements than the number of unknowns, the system of linear

equations in (2.1) is under-determined, i.e., there are infinitely many c that

satisfy b = Ac. Therefore, at a first glance, it seems impossible to recover the

true signal c0. However, if c0 is sparse enough, meaning that among all the N

entries in c0, only very few of them are not zero, then the recovery of c0 may be

possible. In particular, one can achieve this if c0 is the sparsest one among all

possible solutions to the equations b = Ac, in which case c0 can be recovered

by solving the following optimization problem:

min
c
∥c∥0 s.t. b = Ac. (2.2)
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How can we guarantee that c0 is the sparsest solution to b = Ac so that

it can be recovered through solving (2.2)? It turns out that the answer to this

question depends on whether the measurement matrix A satisfies certain prop-

erties. In particular, a key property is the spark of the matrix A [53], also

known as the Kruskal rank. Its definition is as follows.

Definition 1 (Spark). The spark of a matrix A, denoted as spark(A), is the

smallest number of columns from A that are linearly dependent.

Theorem 1 (Uniqueness of the solution to the ℓ0-problem [53]). If b = Ac0 and

∥c0∥0 < spark(A)/2, then c0 is the unique solution to (2.2).

It follows from this theorem that large values of the spark are helpful for

recovering sparse signals. From its definition, the largest possible value of

spark(A) is D + 1 as any D + 1 columns from A must be linearly dependent.

In fact, this upper bound can be attained. For example, if the entries of A are

drawn from independent and identically distributed Gaussian random vari-

ables, then spark(A) = D + 1 with probability 1. In this case, correct sparse

recovery can be achieved for any a0 that has fewer than (D + 1)/2 nonzero

entries.
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2.2.1 Sparse recovery algorithms

The result from the previous section is promising since it shows that the

recovery of a vector c0 with s0 := ∥c0∥0 nonzero entries can be achieved using

only D + 1 > 2 · s0 measurements, regardless of the length N of the signal c.

In practice, however, the challenge lies in that even if c0 is the unique solution

to (2.2), solving this optimization problem can be very difficult. Consider, for

example, a naive way of solving (2.2) by an exhaustive search procedure. That

is, take every possible support set J ⊆ {1, · · · , N} of size s with s increasing

from 1 until termination, compute the span of those columns of A that are

indexed by J , and terminate once b lies in such span. This procedure requires∑s0
s=1

(
N
s

)
number of trials, which is exponential in N and is prohibitively large

as N and s0 increase. Unfortunately, no significantly better algorithm is known

for solving (2.2) in general. It is now known that the problem (2.2) is NP-hard.

Theorem 2 (Hardness of ℓ0-problem [124]). The problem (2.2) is NP-hard.

Even though (2.2) is NP-hard, it does not imply that all instances of the

problem are difficult. As it turns out, many sparse recovery problems in prac-

tical scenarios can be solved using much more efficient algorithms. Here, we

present two of the most popular such methods, one by means of convex relax-

ation and the other one by a greedy procedure, which are also mostly related

to our study of multi-subspace learning in the later chapters of this thesis.
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2.2.1.1 Basis Pursuit (BP)

The difficulty in solving the sparse recovery problem (2.2) has its roots in

the discrete and discontinuous nature of the ℓ0 regularization. To address this

issue, one idea is to “relax” the ℓ0 minimization problem by replacing the ℓ0

regularization with the ℓ1 norm, which is in some sense the convex surrogate

for the ℓ0 regularization. Consequently, we solve the following optimization

problem, which is commonly known as the basis pursuit (BP) problem [40]

min
c
∥c∥1 s.t. b = Ac, (2.3)

where ∥c∥1 =
∑N

j=1 |cj|. The benefit of (2.3) is that it is a convex optimization

problem, therefore it can be solved much more efficiently. There are generic

“off the shelf” convex optimization solvers as well as specifically designed tech-

niques which can solve (2.3) in polynomial time. Meanwhile, a remarkable fact

about the optimization problem in (2.3) is that, under certain conditions, it has

the same solution as that of the optimization problem in (2.2). We will review

some of the fundamental results in Section 2.2.2. But before doing that, let us

first review another computational strategy for attacking the NP-hard sparse

recovery problem in (2.2).
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2.2.1.2 Orthogonal Matching Pursuit (OMP)

The orthogonal matching pursuit (OMP) algorithm [131] is a greedy method

for finding sparse representations. Consider the following alternative formula-

tion of the sparse recovery problem

min
c
∥b−Ac∥2 s.t. ∥c∥0 ≤ kmax, (2.4)

where kmax is the target sparsity level. OMP aims to solve (2.4) by sequentially

choosing one column (referred to as an atom) of A in a locally optimal manner,

and abandoning the global exhaustive search in a naı̈ve algorithm. It keeps

track of a residual v(k) at iteration k (initialized as the input signal b) and of

a support set W (k) that contains the atoms already chosen (initialized as the

empty set). At each step, W (k) is updated to W (k+1) by adding the column of

A that has the maximum absolute inner product with v(k) (ties are broken

arbitrarily), i.e.,

W (k+1) =W (k)
⋃
{j∗}, where j∗ = argmax

j=1,...,N
|a⊤

j v
(k)|, (2.5)
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where aj is the j-th columns of A. It then computes an approximation of b

using atoms inW (k+1), i.e.,

c(k+1) = argmin
c:supp(c)⊆W(k+1)

∥b−Ac∥2. (2.6)

Next, the residual is updated to v(k+1) = b−Ac(k+1), which is the component of

b that is orthogonal to the space spanned by the atoms indexed inW (k+1). The

process is typically terminated when the norm of the residual ∥v(k)∥2 is smaller

than a threshold value ϵ ≥ 0 or when the iteration k reaches a maximum al-

lowed value kmax. In the theoretical analysis of OMP in Section 2.2.2 and in

Chapter 3 we always take the termination condition to be ϵ = 0 and kmax = ∞.

The overall algorithm is summarized in Algorithm 1. This greedy procedure

can be much more efficient than the exhaustive search as the computational

complexity is on the order of kmaxDN in general (assuming N ≫ D).

2.2.2 Sparse recovery theory

We have seen that the convex relaxation based approach BP and the greedy

based approach OMP are expected to solve the sparse recovery problem (2.2).

Are there any formal guarantees for their success? Clearly, there will be no

such guarantees for all cases since the problem is NP-hard in general while

both BP and OMP are polynomial time algorithms. However, if the true sparse
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Algorithm 1 : Orthogonal Matching Pursuit (OMP)
Input: A = [a1, . . . ,aN ] ∈ RD×N , b ∈ RD, kmax, ϵ.

1: Initialize k = 0, residual v0 = b, support setW (0) = ∅.

2: while k < kmax and ∥v(k)∥2 > ϵ do

3: W (k+1) =W (k)
⋃
{j∗}, where j∗ = argmax

j=1,...,N
|a⊤

j v
(k)|.

4: v(k+1) = (I −PW(k+1))b, where PW(k+1) is the projection onto the span of the

vectors {aj, j ∈ W (k+1)}.

5: k ← k + 1.

6: end while

Output: c∗ = argminc:Supp(c)⊆W(k) ∥b−Ac∥2.

signal c0 is “sufficiently sparse” and the measurement matrix A is “sufficiently

isometric”, then the success of these algorithms can be guaranteed. We now

make this statement precise by presenting some of the most important results

in the study of the sparse signal recovery problem.

Mutual coherence condition. A simple observation that motivates the the-

oretical study of sparse recovery is that if the columns of the measurement

matrix A are linearly independent, then any signal c0 can be recovered as the

solution to the system of linear equations b = Ac. In particular, if the columns

of A are orthogonal, then c can be easily solved as c = A⊤b. In interesting ap-

plication scenarios of sparse recovery, however, we typically have N ≫ D, and

therefore the columns of A cannot be linearly independent or orthogonal. A
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fundamental result in compressed sensing is that if the columns of A are “ap-

proximately” orthogonal, then correct sparse recovery can be achieved. This is

characterized by the mutual coherence of A, which is defined as follows.

Definition 2 (Mutual coherence). The mutual coherence of matrix A =

[a1, · · · ,aN ], denoted as µ(A), is defined as the largest absolute normalized

inner product between every pair of columns from A. That is,

µ(A) = max
1≤i<j≤N

|⟨ai,aj⟩|
∥ai∥2∥aj∥2

. (2.7)

Clearly, if the columns of A are orthogonal then we have µ(A) = 0. For

matrices with more columns than rows, that is N > D, the mutual coherence is

necessarily strictly positive. Intuitively, mutual coherence captures how close

the matrix A is to being orthogonal. If µ(A) is small enough we can achieve

guaranteed recovery by BP and OMP as stated in the next theorem.

Theorem 3 (Correctness of BP and OMP for sparse recovery via mutual coher-

ence [53,148]). For a system of linear equations b = Ac0, if

∥c0∥0 <
1

2

(
1 +

1

µ(A)

)
, (2.8)

then the solution found by BP and OMP is equal to c0.
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The condition in (2.8) can be satisfied if ∥c0∥0 and µ(A) are small enough.

That is, sparse recovery can be achieved by BP and OMP if the true signal is

sparse enough and the measurement matrix is incoherent.

Restricted isometry condition. The restricted isometry property is a more

refined measure of how close the measurement matrix is to be an isometry than

the mutual coherence property. It is defined as follows.

Definition 3 (Restricted isometry property (RIP)). A matrix A is said to

satisfy the RIP of order s if there exists a constant δ ∈ (0, 1) such that

(1− δ)∥c∥22 ≤ ∥Ac∥22 ≤ (1 + δ)∥c∥22 (2.9)

holds for any c such that ∥c∥0 ≤ s. The order-s restricted isometry constant

δs(A) is the smallest number δ such that the above inequality holds.

Intuitively, the restricted isometry constant is small if any s columns of A

are close to being an isometry, i.e., being a mapping that preserves the norm of

every vector.

The theoretical results for guaranteed sparse recovery in terms of RIP are

much richer than those for the mutual coherent condition, see e.g., [30, 31, 35,

38,50,119,120,174]. Here, we only present results from two most recent papers

[30] and [174] which developed sharp bounds for BP and OMP, respectively.
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The readers are referred to the references therein for a more complete list of

results.

Theorem 4 (Correctness of BP for sparse recovery via RIP [30]). For a system

of linear equations b = Ac0 where ∥c0∥0 ≤ s, if

δs <
1

3
, (2.10)

then BP is guaranteed to find c0.

Theorem 5 (Correctness of OMP for sparse recovery via RIP [174]). For a

system of linear equations b = Ac0 where ∥c0∥0 ≤ s, if

δs+1 <
1√
s+ 1

, (2.11)

then OMP is guaranteed to find c0.

The RIP is particularly useful for studying sparse recovery with random

matrices. A well-known result is the following theorem which states that ma-

trices with entries drawn from a Gaussian distribution satisfy the RIP with

high probability.

Theorem 6 (RIP of Gaussian matrices [17]). There exists a numerical constant

C > 0 such that if A ∈ RD×N is a matrix whose entries are drawn from indepen-

dent standard Gaussian distributions, then the restricted isometry constant of
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the matrix A√
D

satisfies δs ≤ δ with probability at least 1− 2 exp(− δ2D
2C

), provided

that

D ≥ 2Cs log(eN/s)/δ2. (2.12)

Combining this result with Theorem 4, we see that with high probability,

sparse recovery of any ∥c0∥0 ≤ s can be achieved by BP with Gaussian random

matrix, provided that

D ≥ O(s log(eN/s)). (2.13)

This result suggests that to recover signals with s nonzero entries, the required

number of measurements D is (roughly) linear in s. Similarly, from Theorem 5

we see that sparse recovery by OMP with Gaussian random matrix can be

achieved when

D ≥ O(s2 log(eN/s)). (2.14)

2.3 Sparse representation classification

(SRC)

We start by formally defining the problem of subspace classification.
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Definition 4 (Subspace classification). Let X = [x1, · · · ,xN ] ∈ RD×N be

a matrix whose columns lie in a union of n subspace ∪n
ℓ=1Sℓ. Let y =

[y1, · · · , yN ] ∈ {1, · · · , n}N be a vector where yj ∈ {1, · · · , n} is the member-

ship of xj to the subspace it belongs to, i.e., xj ∈ Syj . The goal of subspace

classification is that for any test data x ∈ RD we find the label y ∈ {1, · · · , n}

such that x ∈ Sy.

A traditional method for addressing the subspace classification problem is

the Nearest Subspace method [81], where each test data x is assigned to the

closest subspace spanned by all training samples from each class. While being

conceptually simple and elegant, the nearest subspace method is not very reli-

able in real data applications since data usually contains large amount of noise

and corruptions, making it difficult to have a good estimate of the subspaces.

Recently, sparse representation ideas have been introduced to the areas of

machine learning for addressing the challenges of learning from high-dimensional

data. A key observation is that, for any test data x in the union of subspaces,

there always exists sparse solutions to x = Xc, where the nonzero entries of

c correspond to data points in X that lie in the same subspace as x. That is,

cj ̸= 0 only if xj is from the same subspace as x. Such a representation c is

called subspace-preserving (a formal and more general definition of subspace-

preserving representation is given in Chapter 3). Once a subspace-preserving
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representation c is recovered, the label of x is given by the labels of the train-

ing data points corresponding to the nonzero entries of c. In practice, noise

and modeling errors may lead to small nonzero entries associated with data

points from other classes. Therefore, x is assigned to the class ℓ which gives

the smallest reconstruction error ∥x −Xℓcℓ∥2, where Xℓ (resp., cℓ) denotes the

submatrix (resp., subvector) containing columns (resp., entries) corresponding

to class ℓ. This method is referred to as the sparse representation based classi-

fication (SRC) [177]. The overall algorithm is outlined in Algorithm 2.

One of the earliest demonstrations of the effectiveness of SRC is through

the example of face recognition [177]. For each person, training images are

collected under various illuminations. Each image is represented as a column

vector that contains all its pixel intensity values and all training images are

put into columns of a dictionary matrix X. Since the images of a single face

under various illumination conditions lie approximately in a low-dimensional

linear subspace [18], the columns of the dictionary X lie approximately in a

union of subspaces with each subspace corresponding to one face. Following

the steps of SRC, a test image x is expressed as a sparse linear combination

of the training images, and the membership of x is determined from the repre-

sentation coefficients.

Note that in principle one can use any sparse recovery algorithm for com-

puting the sparse solution c in step 1 of SRC. In this thesis we will be consider-
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ing using either BP or OMP for such purposes, and will refer to the correspond-

ing versions of SRC as SRC-BP and SRC-OMP, respectively.

Algorithm 2 : Sparse representation based classification (SRC)
Input: Training data X = [x1, . . . ,xN ] ∈ RD×N and corresponding labels y =

[y1, · · · , yN ] ∈ {1, · · · , n}N , test data x ∈ RD (as in Definition 4).

1: Compute the sparse solution c to the linear system x = Xc via BP or OMP.

2: Compute rℓ(x) = ∥x−Xℓcℓ∥2 for each class ℓ ∈ {1, · · · , n}.

3: Assign x to the group ℓ ∈ {1, · · · , n} that maximizes rℓ(x).

Output: Label of x.

Compared to the previous subspace classification methods such as the Near-

est Subspaces, a significant advantage of SRC is that it does not require an

estimation of the subspaces from training data X, making it more robust in

practical applications [177]. However, there has been little justification for why

and when SRC works. On the one hand, theoretical analysis for sparse signal

recovery have been established in compressed sensing, where spark (Defini-

tion 1), mutual coherence (Definition 2) and RIP (Definition 3) are identified as

key conditions for guaranteeing the correctness of sparse recovery. From this

perspective, it is rather surprising that SRC works, since the data matrix X

which is drawn from a union of subspaces do not necessarily satisfy the spark,

incoherence, and RIP conditions. For example, the training set can contain

face images that are very similar (e.g. images of the same face under similar
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illumination conditions) so that the dictionary violates the incoherence condi-

tion. The gap between the known theory for sparse recovery and the empirical

success of SRC calls for novel analyses for its correctness.

Finally, we mention that there are several existing theoretical studies [178,

187] for establishing the correctness of SRC. However, these works do not

model data as coming from a union of subspaces. In fact, the analysis in

[178, 187] is based upon sparse signal recovery theories, and therefore their

results are not applicable to coherent dictionary. Another related work [173]

studies the decision boundary and margin of the SRC classifier. However, the

decision boundary is complicated due to the nonlinear mapping induced by

sparse coding. Therefore, such analysis does not provide clear geometric inter-

pretations.

2.4 Sparse subspace clustering (SSC)

Subspace clustering is the problem of learning a union of subspaces from

data but without knowing which points belong to which subspaces. More for-

mally, the subspace clustering problem is defined as follows.

Definition 5 (Subspace clustering). Let X ∈ RD×N be a matrix whose

columns lie in a union of n subspace ∪n
ℓ=1Sℓ. Assume that the membership

of each column of X to the subspace it belongs to is unknown. The goal of
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subspace clustering is to segment the data points X to their respective sub-

spaces.

Compared to subspace classification, the task of subspace clustering is more

challenging as there is no training data for which labels are given thus no ex-

plicit information regarding the subspaces that the data points lie in. Clas-

sic subspace clustering methods [23, 157, 198] are based on estimating both

the position of the subspaces (in terms of a basis for the subspaces) and the

membership of each data point in a joint optimization problem. Formulating

such an optimization framework requires a good estimation of the dimension

of the subspaces and the number of subspaces, which are usually not provided

in practical applications. Moreover, algorithms for solving such optimization

problems are typically iterative and the convergence to global minimum is not

guaranteed [79, 105]. Tremendous efforts have been dedicated to exploring al-

ternative subspace clustering techniques, leading to a vast literature in the

study of algebraic-geometry methods [21, 113, 151, 155, 163], statistical meth-

ods [8,77,112,185], spectral methods [11,39,61,73,80,184,199], and so on. For

an extensive account of these methods the reader is referred to [161,164].

An important breakthrough in the area of subspace clustering is the work

of [59], which proposes a method that combines sparse recovery with spectral

clustering techniques. The idea of this method, which is referred to as sparse
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subspace clustering (SSC), is similar to that of SRC for subspace classification

purposes. That is, each data point xj in the data matrix X can be expressed as

a sparse linear combination of other data points in X that are from the same

subspace as xj. Mathematically, this can be written as xj = Xcj, cjj = 0 where

cj = [c1j, · · · , cNj]
⊤ is the vector of representation coefficients with the property

that cij ̸= 0 only if xj and xi are from the same subspace, and cjj = 0 is used

to exclude xj itself from the representation. Such a representation vector cj

is referred to as being subspace-preserving. Based on this idea, the first step

of SSC is to compute a representation matrix denoted by C = [c1, · · · , cN ] us-

ing either BP or OMP (see Algorithm 3). To capture the subspace-preserving

property of the representation vectors in the columns of C, we use a similarity

graph G = (V , E ,W) with vertices V = {xj}Nj=1 corresponding to data points in

X, and with the edges E given by the weight matrix W := |C| + |C|⊤ ∈ RN×N .

Here, the absolute value |C| is taken element-wise for the matrix C, therefore

the weight of the edge that connects xi and xj is give by wij = |cij| + |cji|. Note

that the weight matrix W is symmetric and two data points xi and xj are con-

nected if and only if either cij ̸= 0 or cji ̸= 0, or equivalently, either xj is used

in the representation of xi or vise versa. In particular, if all representation

vectors in the columns of C are subspace-preserving, then the graph G has the

property that every edge with nonzero weight connects two vertices that corre-

spond to data points from the same subspace. Consequently, the set of vertices
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V can be partitioned into multiple connected components and all vertices in

each connected component correspond to data points that are from the same

subspace. If we assume that there are exactly n connected components in G,

then each connected component must correspond to data points from one of

the n subspaces. Therefore, clustering of data points in X can be achieved by

finding all connected components of G. (It is also possible that there are two

or multiple distinct connected components that correspond to data points from

the same subspace, in which case there are altogether more than n connected

components in G. Such a phenomenon is discussed in Section 2.5.) In practice,

noise and modeling errors may lead to representations that are not exactly

subspace-preserving. As a consequence, G may not have n connected compo-

nents corresponding to different subspaces, as there may be a small number

of edges of G that connect points from different subspaces. Therefore, spectral

clustering techniques [166] are used to obtain a segmentation of data points

from the graph G. The overall algorithm is summarized in Algorithm 3. Simi-

lar to the case of SRC, the sparse solutions in step 1 can be computed by either

BP or OMP, and we refer to the corresponding two versions of SSC as SSC-BP

and SSC-OMP.

The success of SSC has led to many relevant works that exploit sparse rep-

resentation for subspace clustering [55, 100, 101, 129, 140, 156, 182, 188]. Just

as sparse recovery theories do not apply to the analysis of SRC due to the fact
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Algorithm 3 : Sparse subspace clustering (SSC)
Input: Data matrix X = [x1, . . . ,xN ] ∈ RD×N (as in Definition 5).

1: Compute the sparse solution to cj to the linear system xj = Xcj, cjj = 0 via

BP or OMP. Set C = [c1, · · · , cN ].

2: Compute the similarity matrix as W = |C|+ |C|⊤.

3: Compute segmentation from W by spectral clustering.

Output: Label of each data point in X.

that the data matrix X does not necessarily satisfy the spark, mutual coher-

ence and RIP assumptions, the analysis of SSC and related methods also re-

quires the development of new analytical approaches that are suited for multi-

subspace data. In the current literature, there has been a few works in this

direction which provide theoretical guarantees for the correctness of SSC. For

example, in [59] it is shown that SSC with sparse recovery solved by BP pro-

duces subspace-preserving representation vectors when the subspaces are in-

dependent (see Definition 19). In [139] the correctness is further extended to

the more general case where the subspaces could have nontrivial intersections.

When the sparse recovery in SSC is solved by OMP in lieu of BP, then the

subspace-preserving property of the representation vectors can be guaranteed

under an intricate relationship between intra-class properties and inter-class

properties [55]. We will provide a more detailed review of these results in

Chapter 3.

41



CHAPTER 2. BACKGROUND

2.5 Graph connectivity and elastic-net

subspace clustering (EnSC)

Even though theoretical conditions can be established for BP and OMP to

give subspace-preserving solutions, they are not sufficient for SSC to produce

correct clustering. This is because the data points from the same subspace may

not form a single connected component in the affinity graph G. In such cases,

the spectral clustering step of SSC will over-segment points from such a sub-

space into multiple groups. This is known as the graph connectivity problem

of SSC [123, 169]. Intuitively, SSC is prone to suffering from the graph con-

nectivity issue since the representation vectors are sparse, therefore there are

very few number of edges in the graph G constructed from such representation

vectors. Theoretically, one could indeed show that there exist examples where

over-segmentation happens if the dimension of subspaces is greater than or

equal to 4 [123].

As an alternative to SSC, the least squares regression (LSR) methods [84,

111] computes representation vectors cj under least squares regularizations,

i.e., it solves

min
cj
∥cj∥22 s.t. xj = Xcj, cjj = 0. (2.15)

The benefit of LSR is that its optimal solution is dense, and therefore it gives
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a densely connected similarity graph. However, the representation of LSR is

known to be subspace-preserving only when the subspaces are independent,

which significantly limits its applicability (see Figure 2.1 for an illustration).
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(a) Similarity matrix of SSC-BP
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Figure 2.1: Trade-off between subspace-preserving and connectedness proper-
ties in SSC-BP and LSR. 50 points are sampled independently and uniformly at
random from 3 subspaces of dimension 5 that are sampled independently and
uniformly at random from ambient space of dimension 12. (a) and (b) show the
representation matrix C computed by SSC-BP and LSR, respectively. Note that
the representation matrix of SSC-BP does not have inter-class connections, but
it has very few intra-class connections. In contrast, the representation matrix
of LSR has many inter-class connections which may lead to a wrong clustering
result, but it also has much denser intra-class connections which may alleviate
the connectivity issue in SSC-BP.

To bridge the gap between the subspace-preserving and connectedness prop-

erties, [63,128] propose to use a mixed ℓ1 and ℓ2 norm given by λ∥ · ∥1+ 1−λ
2
∥ · ∥22,

and to solve the following optimization problem

min
cj

λ∥ · ∥1 +
1− λ

2
∥ · ∥22 s.t. xj = Xcj, cjj = 0. (2.16)
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where λ ∈ [0, 1] controls the trade-off between the two regularizers. In the

statistics literature, the optimization program using this regularization is called

Elastic Net and is used for variable selection in regression problems [202].

Thus we refer to this method as the Elastic Net Subspace Clustering (EnSC).

Although EnSC has been shown to perform better than alternative methods

in [63,128], these works do not provide a theoretical justification for the bene-

fits of the method.

Subspace clustering based on other regularizers. There has been a lot

of other works on utilizing alternative regularization on the representation

coefficients instead of the sparse regularization in SSC, the least squares reg-

ularization in LSR and the elastic net regularization in EnSC. For example,

low-rank representation [106–109] and low-rank subspace clustering [85, 162]

methods use nuclear norm to regularize the representation matrix C. Such

low-rankness based methods produce dense solutions in general [172], but suf-

fer from the same drawback as in LSR that they are guaranteed to produce

subspace-preserving solutions only if the subspaces are independent. Similar

to the idea of EnSC, [172] proposes the low rank sparse subspace clustering

(LRSSC) method, which uses a mixed ℓ1 and nuclear norm regularizer on C

to balance between the subspace-preserving and connectedness properties. It

has been shown that LRSSC gives a subspace-preserving representation under

conditions which are similar to those of SSC. However, the justification for the
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improvements in connectivity given by LRSSC over SSC is merely experimen-

tal. Other subspace clustering regularizers studied in [110] and [91] use the

trace lasso [74] and the k-support norm [9], respectively for achieving a bal-

ance between subspace-preserving and connectedness properties. However, no

theoretical justification is provided in [91,110] for the benefit of their methods.

2.6 Open challenges

Despite recent advances in the development of sparse recovery based ap-

proaches to subspace classification and subspace clustering, there are many

open challenges associated with both the theoretical understanding of the meth-

ods and their application to real world data. In particular, we identify the fol-

lowing challenges which will be studied extensively in the rest of this thesis.

2.6.1 Subspace-preserving recovery theory

The key ingredient that leads to the correctness of SRC and SSC is that

the sparse representation coefficients are expected to be subspace-preserving.

That is, the sparse vector c computed in step 1 of Algorithm 2 is expected

to have nonzero entries corresponding to points in X that are from the same

subspace as x. Likewise, the sparse vector cj computed in step 1 of Algorithm 3

is expected to have nonzero entries corresponding to points in X that are from
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the same subspace as xj. To establish the correctness of SRC and SSC for

subspace classification and subspace clustering tasks, it is essential to identify

the factors that affect subspace-preserving recovery. For example, one would

expect that to achieve subspace-preserving recovery, the data points in each of

the subspaces need to be well-behaved so that they can easily represent each

data point in the subspace in terms of a sparse linear combination. In addition,

data points from different subspaces need to be well-separated so that sparse

representations will pick data points from the same subspace. In terms of the

dimension of the subspaces, one would expect that SRC and SSC work the best

for small subspace dimensions, as in such cases the sparse representations

have fewer number of nonzero entries.

Part of these intuitions have already been validated in a few existing stud-

ies for SSC [55, 60, 139]. Particularly, the prominent work [139] has shown

that if the points in each subspace are well-distributed in terms of inradius,

and points from different subspaces are well-separated in terms of subspace

coherence, then SSC with the sparse recovery problem solved by BP (i.e., SSC-

BP) is guaranteed to have subspace-preserving solutions. Moreover, by using a

probabilistic model to generate the subspaces and the data, [139] also studies

the effect of subspace dimension on the correctness of SSC-BP and shows that

the subspace dimensions need to be sufficiently small relative to the ambient

dimension in order to guarantee that the subspace preserving property holds
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with high probability. As for SSC-OMP, theoretical analysis for its correctness

has also appeared in the literature, see e.g. [55]. Nonetheless, previous re-

sults are far from being systematic and complete. For example, the studies

in [139] and [55], which studied SSC-BP and SSC-OMP respectively, use differ-

ent quantities to characterize the separation of different subspaces, making it

difficult to compare the conditions for subspace-preserving recovery. Moreover,

there has been no prior result regarding the effect of subspace dimension for

SSC-OMP. Furthermore, it is also surprising that none of previous works has

studied conditions for subspace-preserving recovery in the case of SRC. As we

will see in Chapter 3, all these challenges are interrelated and they together

call for a unified theoretical study of subspace-preserving recovery.

Graph connectivity in subspace clustering. As we have discussed in Sec-

tion 2.5, the connectivity issue in SSC refers to the problem that even if the

sparse solution cj is always subspace-preserving, there is no guarantee that all

points in the same subspace form a connected component of the affinity graph.

As a consequence, the final clustering assignment (i.e., the output of spectral

clustering) may over-segment points from the same cluster into multiple clus-

ters. To address the connectivity issue, [169] proposes a post-processing proce-

dure and proved its correctness. However, such an approach is not reliable in

practice as it is very sensitive to erroneous connections in the data affinity.

The fundamental challenge regarding graph connectivity is that there is
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a trade-off between the subspace-preserving property and the density of the

representation coefficient vector. On the one hand, SSC is guaranteed to pro-

duce subspace-preserving solutions under broad conditions (as we will see in

Chapter 3), but the solution is induced to be sparse. On the other hand,

least squares and nuclear norm regularization based subspace clustering meth-

ods [64, 107, 111, 162] produce representations that are dense in general, but

such representations are known to be subspace-preserving only under the re-

stricted condition that the subspaces are independent. To some extent, achiev-

ing the subspace-preserving property and dense representations are conflict-

ing goals: if the connections are few, it is more likely that the solution is

subspace-preserving, but the similarity graph of each cluster is not well con-

nected. Conversely, as one builds more connections, it becomes more likely that

some of them will be incorrect, but the connectivity is improved. To bridge the

gap between the subspace preserving and connectedness properties, several

works [63, 91, 128, 172] propose to use a weighted sparse and dense inducing

regularization. However, no theoretical justification is provided for the benefit

of these methods.

2.6.2 Subspace clustering with large-scale data

A practical issue in the application of SSC is that it is limited to small or

medium scale datasets and cannot handle real datasets with millions of data
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points. The original paper [60] that proposes SSC-BP uses the alternating di-

rection method of multiplier (ADMM) for solving the sparse recovery problem,

which requires quadratic memory and has cubic computation complexity in

terms of the number of data points. This implies that subspace clustering on

a medium scale dataset that contains, say 30,000 data points will require on

the order of 10 gigabytes of memory, and our experiments demonstrate that it

takes several hours on a standard PC. Therefore, the development of alterna-

tive numerical algorithms for solving BP that are more efficient than ADMM

is very important for scaling up SSC-BP. On the other hand, SSC-OMP [55]

solves the sparse recovery problem by a greedy procedure and is speculated to

be more efficient. However, the behavior of SSC-OMP for large-scale problems

has not been evaluated in detail. Moreover, the computational complexity of

SSC-OMP is still quadratic in the number of data points, therefore it cannot

effectively handle datasets containing 1 million points or more.

The majority of prior methods for scaling up SSC are based on subsam-

pling [2, 132] and sketching [147]. Such methods use a small-sized dictionary

generated from the given data and expresses each data point as a sparse lin-

ear combination of points in this dictionary. In [132], for example, a random

sampled subset of the dataset is used as the dictionary. The drawback of such

approaches is that there are no theoretical guarantees on the quality of the dic-

tionary for the purpose of subspace clustering. Indeed, the clustering accuracy

49



CHAPTER 2. BACKGROUND

is reduced for many cases in the empirical evaluations.

2.6.3 Subspace clustering with outliers

Another issue with existing subspace clustering techniques when applied

to real world problems is that practical datasets are often contaminated by

points that do not lie in the subspaces, i.e. outliers. In such situations, it is

often essential to detect and reject these outliers before any subsequent pro-

cessing/analysis is performed. SSC in particular can be adversarially affected

by outliers. Recall that SSC is based on the idea that each data point in a

union of low-dimensional subspaces (i.e., inliers) can be expressed as a linear

combination of points from its own subspace, and therefore it is possible to

construct a similarity graph in which only points from the same subspace are

connected. Outliers in a dataset, on the other hand, are located in the ambient

space rather than any low-dimensional subspace, therefore they may generally

express themselves as a linear combination of both inliers and outliers. In such

cases, inliers from each subspace may be connected to outliers and hence they

may no longer form connected components (see Figure 2.2 for an illustration).

As a consequence, the spectral clustering step in SSC may no longer identify

groups of points from each subspace.

Outlier detection is an important area of machine learning for which a lot

of methods have been developed in the past. Traditional methods such as
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Figure 2.2: Representation matrix of SSC-BP in the presence of outliers. We
generate data matrix X = [X(1),X(2),X(3),Xo] where each X(ℓ), ℓ = 1, 2, 3 con-
tains 50 points sampled independently and uniformly at random from a sub-
space Sℓ of dimension 6 that is sampled uniformly at random from ambient
space of dimension 18, and Xo contains 50 points sampled independently and
uniformly at random from the ambient space. The picture shows a visualiza-
tion of |C| where C = [c1, · · · , cN ] is the representation matrix computed from
applying SSC-BP to the data X and the absolute value is taken entry-wise on
the matrix C. We can see that the representation of a point in X(ℓ), ℓ = 1, 2, 3
uses points from its own subspace, while the representation of a point in Xo

uses points both from X(ℓ), ℓ = 1, 2, 3 and Xo.

RANSAC [67] and R1-PCA [52] are based on robust statistics. Such meth-

ods usually use nonconvex optimization techniques and a good initialization is

extremely important for finding the optimal solution. Recently, low-rank and

sparse methods that are based on convex optimization techniques are becoming

very popular due to their efficient algorithm and provable guarantees. How-

ever, many of these methods, such as outlier pursuit [183], REAPER [96] and

DPCP [152, 154] model a unique inlier subspace, therefore there performance
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for data that has multiple inlier subspaces is unclear. In contrast, very few

works have considered the problem of outlier detection in a union of subspaces.

2.6.4 Subspace clustering with imbalanced data

Another challenge in the application of subspace clustering is that practical

datasets are often class-imbalanced. For example, a dataset of street signs

collected from street view images will contain far more examples of “stop” signs

than “unpaved road” signs.

Imbalanced data can significantly compromise the performance of SSC, as

one can expect that sparse representation for a data point in an under-represented

class is more likely to have nonzero entries corresponding to data points in

over-represented classes, leading to false connections in data similarity graph

(see Figure 2.3 for an illustration).

The dominant type of approaches for dealing with imbalanced data in ma-

chine learning is data sampling. In general, such approaches seek to create

a class-balanced dataset from the original dataset by means of oversampling

the minority classes, under-sampling the majority classes and so on. However,

such approaches are applied to each of the classes in the dataset, and there-

fore cannot deal with unlabeled data because we do not known which points

are from the same class a priori. On the other hand, there are plenty of sub-

set selection methods for generating a representative subset from an unlabeled
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Figure 2.3: Representation matrix of SSC-BP for imbalanced dataset. We
generate data matrix X = [X(1),X(2)] where X(1) and X(2) respectively contain
10 and 90 points sampled independently and uniformly at random from two
subspaces of dimension 4 that are sampled uniformly at random from ambient
space of dimension 6. The data X is imbalanced as the number of data points in
X(2) is 9 times more than that of X(1). The picture shows a visualization of |C|
where C = [c1, · · · , cN ] is the representation matrix computed from applying
SSC-BP to the data X and the absolute value is taken entry-wise on the matrix
C. We can see that the representation of a point in X(1) not only uses points
from its own subspace, but also uses a few points from the other subspace.

dataset, such as Rank Revealing QR [37], Column subset selection [7, 22], and

separable Nonnegative Matrix Factorization [12, 90]. However, these methods

do not model data as coming from a union of subspaces and there is no evidence

that they can select good representatives from such data.
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Subspace-Preserving Recovery

Theory

3.1 Problem formulation

Suppose we are given a finite dictionary A = {aj ∈ RD} that is composed

of a subset of points A0 ⊆ A that span a d0-dimensional subspace S0, with the

remaining points A− := A\A0 being arbitrary points outside the subspace S0.

Let N0 and N− be, respectively, the number of data points in A0 and A−. We

will use A to denote the matrix that contains all points from A as its columns,

and likewise for A0 and A−. We assume throughout this chapter that all atoms

in A are normalized to have unit ℓ2 norm.

For any b in subspace S0, we introduce the concept of subspace-preserving
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representation which plays a central role in this chapter.

Definition 6 (Subspace-preserving representation). Given a dictionary A

and a vector b as above, a vector c that gives b = Ac is called subspace-

preserving if cj ̸= 0 implies aj ∈ A0.

As we have seen in Chapter 2, a subspace-preserving representation is an

important concept in SRC and SSC since it identifies the subspace that the

vector b belongs to and consequently guarantees the correctness of these two

methods. Specifically, in the subspace classification problem, we can think of

A0 as the set of training data belonging to a particular subspace S0, and A−

as the set of training data from all other subspaces. Then, the membership

of a point b in the subspace S0 can be recovered if one can find a subspace-

preserving representation of b. Likewise, in the subspace clustering problem,

we can think of b as a particular data point of the given dataset, A0 as all other

data points in the same subspace as b, and A− as the set of all data points from

all other subspaces. Then, a subspace-preserving representation of b will build

connections between b and data points in A that are from the same subspace

as b only.

An important observation for recovering a subspace-preserving representa-

tion is that there always exist such representations with at most d0 nonzero

entries. Indeed, one can always find d0 linearly independent data points from
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A0 which can linearly represent all points b ∈ S0. When d0 is small, such rep-

resentations are sparse. This suggests that, among all representation vectors

c that satisfy b = Ac, the sparsest ones are subspace-preserving.

In this chapter, we aim at providing a theoretical justification for such ideas.

A fundamental theoretical question is the following.

Question 1. Is the sparsest solution c that satisfies b = Ac subspace-preserving?

In practical algorithms, the problem of finding the sparsest solution is NP-

hard in general (see Theorem 2). Therefore, our analysis focuses on approxi-

mate sparse representation algorithms such as BP and OMP, which were in-

troduced in Chapter 2. We are interested in the following theoretical question:

Question 2. Under what conditions on the dictionaryA can we find a subspace-

preserving representation for an arbitrary point b ∈ S0 by BP and OMP?

We further consider the following question, which is answered under a gen-

erative probabilistic model for the data:

Question 3. How do the dimension of the subspace d0 and the number of points

inside and outside of the subspace S0 affect subspace-preserving recovery by BP

and OMP?

Intuitively, the dimension d0 of the subspace needs to be small relative to D

so that the subspace-preserving representation is sparse enough. Moreover, the
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number of points should be large enough to sufficiently cover the intersection

of the subspace with the surface of the unit ball.

In answering the above questions, we distinguish two different but related

cases motivated by different application scenarios. In the first case, we con-

sider subspace-preserving recovery of a particular data point b in the subspace,

which we refer to as the instance recovery problem. The recovery conditions in

this case will depend both on the properties of the dictionary A and the posi-

tion of the data point b. In the second case, we consider subspace-preserving

recovery for all possible data point b ∈ S0, which we refer to as the universal

recovery problem. The recovery conditions in this case depends only on the

properties of the dictionary A.

3.2 Geometric analysis

3.2.1 Geometric characterization of the dictio-

nary

Our subspace-preserving recovery conditions rely on geometric properties

of the dictionary A that characterize the distribution of points A0 in subspace

S0. Let K(±A0) := conv(±A0) where conv(·) denotes the convex hull. K(±A0) is

a symmetric convex body according to the following definition.
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Definition 7 (Symmetric convex body). A convex set P that satisfies P = −P

is called symmetric. A compact convex set with nonempty interior is called

a convex body.

The polar set is defined as follows.

Definition 8 (Polar set). The (relative) polar of a set P is defined as Po :=

{v ∈ span(P) : |⟨v,a⟩| ≤ 1, ∀a ∈ P}.

By this definition, the polar set of K(±A0) is given by

Ko(±A0) := {v ∈ S0 : |⟨v,a⟩| ≤ 1, ∀a ∈ K(±A0)} (3.1)

In particular, Ko(±A0) is a symmetric convex body, as the polar of a convex

body is also a convex body [24].

The polar set Ko(±A0) can be written in the following equivalent form:

Ko(±A0) = {v ∈ S0 : |⟨v,a⟩| ≤ 1, ∀a ∈ ±A0}. (3.2)

This equivalency can be seen from the following lemma.

Lemma 1. For an arbitrary set A0 ⊆ S0 ⊆ RD, we have

{v ∈ S0 : |⟨v,a⟩| ≤ 1, ∀a ∈ K(±A0)} = {v ∈ S0 : |⟨v,a⟩| ≤ 1, ∀a ∈ ±A0}. (3.3)
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Proof. It is clear that {v ∈ S0 : |⟨v,a⟩| ≤ 1, ∀a ∈ K(±A0)} ⊆ {v ∈ S0 : |⟨v,a⟩| ≤

1, ∀a ∈ ±A0}. To see the other direction, we take any v̄ ∈ S0 that satisfies

|⟨v̄,a⟩| ≤ 1, ∀a ∈ ±A0, and show that v̄ ∈ {v ∈ S0 : |⟨v,a⟩| ≤ 1, ∀a ∈ K(±A0)}.

Take an arbitrary ā ∈ K(±A0). We only need to show that |⟨v̄, ā⟩| ≤ 1. Re-

call that K(±A0) is the convex hull of points from ±A0. Therefore, there ex-

ist {c+j ≥ 0}j:aj∈A0 and {c−j ≥ 0}j:aj∈A0 such that
∑

j:aj∈A0
(c+j + c−j ) = 1 and

ā =
∑

j:aj∈A0
(c+j aj − c−j aj). Using this fact, we have

|⟨v̄, ā⟩| = |⟨v̄,
∑

j:aj∈A0

(c+j aj − c−j aj)⟩| =
∑

j:aj∈A0

|c+j − c−j | · |⟨v̄,aj⟩|

≤
∑

j:aj∈A0

|c+j − c−j | ≤
∑

j:aj∈A0

(|c+j |+ |c−j |) =
∑

j:aj∈A0

(c+j + c−j )

= 1.

(3.4)

This finishes the proof.

We now introduce three concepts for characterizing the distribution of points

A0. The first concept is the inradius of a convex body.

Definition 9 (Inradius). The (relative) inradius of a convex body P, denoted

by r(P), is defined as the radius of the largest Euclidean ball in the space

span(P) inscribed in P.

To formulate our results, we will be using the inradius r(K(±A0)). Intu-

itively, r(K(±A0)) characterizes how well data points A0 are distributed in S0:
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if all atoms in A0 are well distributed across all directions in subspace S0 then

the inradius is large, while if the atoms are skewed towards certain directions

the inradius is small.

The second concept is covering radius, which is equivalent to inradius (see

Theorem 9) and in some occasions has better geometric interpretations and is

easier to work with. Let SD−1 := {v ∈ RD : ∥v∥2 = 1} be the set of unit vectors

in RD. Let θ(v,w) := cos−1⟨ v
∥v∥2 ,

w
∥w∥2 ⟩ be the spherical distance (acute angle) be-

tween points {v,w} ⊂ RD \ {0}. It is known that θ(·, ·) defines a metric on SD−1

[29]. With an abuse of notation, we define θ(V ,W) := infw∈W\{0},v∈V\{0} θ(v,w),

where V andW are subsets of RD. The covering radius is defined as follows.

Definition 10 (Covering radius). The (relative) covering radius of a set of

points V is defined as

γ(V) := max{θ(V ,w) : w ∈ span(V) ∩ SD−1}.

We will be working with the covering radius γ(±A0). By Definition 10, the

covering radius is computed by finding a point w on the unit sphere of S0 that

is furthest away from all the points in ±A0 (see Figure 3.1). It can also be in-

terpreted as the smallest radius such that closed spherical balls of that radius

centered at the points of ±A0 cover all points in SD−1 ∩ S0. Thus, the cover-

ing radius characterizes how well the points in ±A0 are distributed, without
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leaving a large patch of empty region unfilled by any point from ±A0.

S0

O

a1

−a1

a2

−a2

a3

−a3

a4

−a4

a5

−a5

K(±A0)
Ko(±A0)

w∗γ(±A0)

r(K(±A0))

Figure 3.1: Illustration of the geometric characterization of the dictionary.
The atoms A0 := {aj}5j=1 lie on the unit circle of a two-dimensional subspace
S0. The set K(±A0) is illustrated as the blue polygon, and the polar set Ko(±A0)
is illustrated as the red polygon. In the definition of the inradius r(K(±A0)),
the inscribing ball of K(±A0) is shown as the light blue dashed circle, and
r(K(±A0)) is the radius of this circle. In the definition of the covering radius
γ(±A0), the maximizer of θ(±A0,w) : w ∈ S0 ∩ SD−1, denoted as w∗, is shown
as the light blue point on the rightmost of the figure, and γ(±A0) is the angle
between w∗ and its closest neighbor (which are a1 and −a5 in this case).

The third characterization of the distribution of A0 is in terms of the cir-

cumradius of the polar set Ko(±A0).

Definition 11 (Circumradius). The circumradius R(P) of a convex body P is

defined as the radius of the smallest ball containing P.
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The inradius r(K(±A0)), covering radius γ(±A0), and circumradius R(Ko(±A0))

are illustrated in Figure 3.1.

The following result gives a relationship between the inradius of a set and

the circumradius of its polar set.

Theorem 7 (Relation between inradius and circumradius [139]). Let P be a

symmetric convex body and let Po be its polar. Then we have r(P)R(Po) = 1.

Applying this result to K(±A0) we get

r(K(±A0)) ·R(Ko(±A0)) = 1. (3.5)

The following result shows that the circumradius is also related to covering

radius.

Theorem 8 (Relation between circumradius and covering radius). Given any

A0, we have

R(Ko(±A0)) = 1/ cos γ(±A0). (3.6)

Proof. From the definition of Ko(±A0) in (3.1) we have

R(Ko(±A0)) = max
∥A⊤

0 v∥∞≤1
v∈S0

∥v∥2. (3.7)
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On the other hand, from the definition of γ0 we have

γ(±A0) = max
w∈S0∩SD−1

θ(±A0,w) = max
w∈S0∩SD−1

inf
v∈±A0

θ(v,w). (3.8)

By taking the cosine of both sides of (3.8) we have

cos(γ0) = min
w∈S0∩SD−1

sup
v∈±A0

cos(θ(v,w)) = min
w∈S0∩SD−1

∥A⊤
0 w∥∞. (3.9)

To complete the proof, it remains to show that the right hand side of the previ-

ous equality and the right hand side of (3.7) are reciprocals of each other, i.e.,

to show that

max
∥A⊤

0 v∥∞≤1
v∈S0

∥v∥2 = 1/ min
w∈S0∩SD−1

∥A⊤
0 w∥∞. (3.10)

To see this, let v∗ and w∗ be, respectively, solutions to the left hand side and

right hand side of (3.10). We only need to show that ∥v∗∥2 = 1/∥A⊤
0 w

∗∥∞.

For a proof by contradiction, first suppose that ∥v∗∥2 < 1/∥A⊤
0 w

∗∥∞. Let v̄ =

w∗

∥A⊤
0 w∗∥∞

. Note that v̄ satisfies the constraints on the left hand side of (3.10),

i.e., ∥A⊤
0 v̄∥∞ ≤ 1 and v̄ ∈ S0. Moreover, we have

∥v̄∥2 =
∥w∗∥2
∥A⊤

0 w
∗∥∞

=
1

∥A⊤
0 w

∗∥∞
> ∥v∗∥2, (3.11)

which contradicts the optimality of v∗. Therefore, we have proved that ∥v∗∥2 ≥

1/∥A⊤
0 w

∗∥∞. For the other direction, suppose for the purpose of arriving at a
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contradiction that ∥v∗∥2 > 1/∥A⊤
0 w

∗∥∞. Let w̄ = v∗

∥v∗∥2 . Then w̄ satisfies the

constraint on the right hand side of (3.10). Moreover, we have

∥A⊤
0 w̄∥∞ =

∥A⊤
0 v

∗∥∞
∥v∗∥2

≤ 1

∥v∗∥2
< ∥A⊤

0 w
∗∥∞, (3.12)

which contradicts the optimality of w∗. Therefore, we have proved that ∥v∗∥2 ≤

1/∥A⊤
0 w

∗∥∞.

Combining the above two parts, we have proved that ∥v∗∥2 = 1/∥A⊤
0 w

∗∥∞,

or equivalently, that (3.10) is true. This finishes the proof.

By combining the relations in (3.6) and in (3.6), we have the following result

on the equivalency of inradius and covering radius.

Theorem 9 (Relationship between inradius and covering radius). Given any

A0 ⊆ S0, we have

r(K(±A0)) = cos γ(±A0). (3.13)

3.2.2 Instance recovery conditions

We start by considering the problem of subspace-preserving recovery for an

arbitrary but fixed b.
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3.2.2.1 Instance recovery by BP

Given a dictionary A = A0 ∪ A− where A0 ⊆ S0 and a signal b ∈ S0, BP

searches for a subspace-preserving recovery by solving the following optimiza-

tion problem

min
c
∥c∥1 s.t. Ac = b. (3.14)

We will denote the set of all optimal solutions to (3.14) by BP(A, b). Note that

BP(A, b) may contain more than one element as the solution to (3.14) is not

necessarily unique. Note also that under our problem formulation, there al-

ways exist a subspace-preserving representation c such that Ac = b, therefore

the set BP(A, b) is always non-empty. We will also denote the optimal objective

value of (3.14) by p(A, b), i.e. p(A, b) = ∥c∥1, where c ∈ BP(A, b).

The Lagrangian function of the optimization problem in (3.14) is given by

L(c,v) := ∥c∥1 − ⟨v,Ac− b⟩, (3.15)

where v is the dual variable. By the optimality condition, if c∗ ∈ BP(A, b) is

an optimal solution to the (primal) optimization problem in (3.14), then there

exists a v∗ such that

A⊤v∗ ∈ ∂∥c∗∥1, (3.16)

where ∂∥c∗∥1 = {w : ∥w∥∞ ≤ 1 and wj = sgn(c∗j) for cj ̸= 0} is the subgradient

65



CHAPTER 3. SUBSPACE-PRESERVING RECOVERY THEORY

of the function ∥c∥1 evaluated at c∗, and v∗ is an optimal solution to the dual of

the optimization problem (3.14) which is the following

max
v
⟨v, b⟩ s.t. ∥A⊤v∥∞ ≤ 1, (3.17)

Now, from the optimality condition in (3.16) one can see that if |⟨aj,v
∗⟩| < 1

for all aj ∈ A− then the vector c∗ must be subspace-preserving. This suggests

that the condition for BP(A, b) to be subspace-preserving must depend on the

dot product between the data points and the solution to the dual optimization

problem. This motivates the following lemma.

Lemma 2. Given a dictionary A = A0 ∪ A− where A0 ⊆ S0 and a signal b ∈ S0,

all elements in BP(A, b) are subspace-preserving representation if

∃v ∈ BPDual(A0, b), max
a∈A−

|v⊤a| < 1, (3.18)

where BPDual(A0, b) is the set of all solutions to the following optimization prob-

lem

argmax
v
⟨v, b⟩ s.t. ∥A⊤

0 v∥∞ ≤ 1. (3.19)

Proof. Let v∗ ∈ BPDual(A0, b) be any point that satisfies the condition

max
a∈A−

|v∗⊤a| < 1. (3.20)
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Consider the following optimization problem

min
c0
∥c0∥1 s.t. b = A0c0. (3.21)

The solution set of (3.21) is non-empty since b ∈ S0 = span(A0). Let c∗0 be any

of its optimal solution. Note that the dual problem of (3.21) is given by (3.19).

Therefore, by strong duality we have ∥c∗∥1 = ⟨v∗, b⟩.

We now consider the optimization problem in (3.14) and show that all el-

ements in its solution set BP(A, b) are subspace-preserving. Without the loss

of generality, we assume A = [A0,A−]. First, note that a feasible solution to

(3.14) is the vector c̃ = [(c∗0)
⊤,0⊤]⊤ where 0 is a vector of all zeros of appropri-

ate size. To prove by contradiction, assume that there is an optimal solution

c̄ = [c̄⊤0 , c̄
⊤
−]

⊤ where c̄− ̸= 0, i.e. c̄ is not subspace-preserving. Note that Ac̄ = b.

We have

∥c̃∥1 = ∥c∗0∥1 = ⟨v∗, b⟩ = ⟨v∗,Ac̄⟩ = ⟨v∗,A0c̄0⟩+ ⟨v∗,A−c̄−⟩ (3.22)

= ⟨A⊤
0 v

∗, c̄0⟩+ ⟨A⊤
−v

∗, c̄−⟩ ≤ ∥A⊤
0 v

∗∥∞ · ∥c̄0∥1 + ∥A⊤
−v

∗∥∞ · ∥c̄−∥1. (3.23)

Note that ∥A⊤
0 v

∗∥∞ ≤ 1 from the definition of v∗. Note also that ∥A⊤
−v

∗∥∞ < 1

from (3.20). Hence, we have ∥c̃∥1 < ∥c̄0∥1 + ∥c̄−∥1 = ∥c̄∥1, which is a contradic-

tion of the fact that c̄ ∈ BP(A, b).
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Lemma 2 shows that BP produces subspace-preserving solutions if there

exists a dual optimal solution in BPDual(A0, b) such that the absolute value of

the dot product between the dual solution and all points in A− is smaller than

one. Such a condition, however, is not very insightful from the perspective of

subspace learning as it does not directly rely on the geometry of the problem.

In order to derive conditions for subspace-preserving recovery that capture the

relative configuration of the subspace relative to the points in A− or the distri-

bution of data points in A0, we first rewrite the condition in (3.18) as follows:

∃v ∈ BPDual(A0, b), max
a∈A−

|⟨ v

∥v∥2
,a⟩| < 1

∥v∥2
. (3.24)

Here, the point v
∥v∥2 and all points in a ∈ A− have unit ℓ2 norm (recall we

assume that all points in A have unit ℓ2 norm). Therefore, the left hand side

of (3.24) captures the similarity (in angle) between the dual solution v and all

points in A−. However, the geometric interpretation of this similarity is still

unclear as it is unknown where the point v is. Moreover, it is also unclear what

the norm ∥v∥2 on the right hand side of the condition (3.24) entails.

In order to derive an upper bound on ∥v∥2 or equivalently a lower bound

on the right hand side of (3.24), we observe from the definition of BPDual(A0, b)

that

∀v ∈ BPDual(A0, b), v + S⊥
0 ⊆ BPDual(A0, b), (3.25)
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where S⊥
0 denotes the orthogonal complement of S0. This implies that the set

BPDual(A0, b) is composed of a collection of affine subspaces of dimension D− d0

that are perpendicular to the subspace S0. On the one hand, this result shows

that the set BPDual(A0, b) is unbounded, therefore it is impossible to provide an

upper bound on ∥v∥2 in general. On the other hand, this result also shows that

among all points in BPDual(A0, b), the ones that lie in the subspace S0 have the

smallest ℓ2 norm. This observation motivates us to restrict our attention to the

solutions in BPDual(A0, b) that lie in S0. As we will see, this allows us to derive

an upper bound on ∥v∥2 in terms of the inradius of the set K(±A0).

We first formally introduce the concept of dual points.

Definition 12 (Dual points). Given any A0 ⊆ S0 and any b ∈ S0, the set of

dual points, denoted as D(A0, b), is defined as the set of all solutions to the

following optimization problem:

argmax
v
⟨v, b⟩ s.t. ∥A⊤

0 v∥∞ ≤ 1,v ∈ S0. (3.26)

Note that the only difference between the optimization problems (3.19) and

(3.26) is that (3.26) has the additional constraint v ∈ S0. Therefore, we have

D(A0, b) = BPDual(A0, b) ∩ S0, (3.27)
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i.e., D(A0, b) is the subset of BPDual(A0, b) that lies in the subspace S0. To fur-

ther understand the structure of the set D(A0, b), we use the fact that the opti-

mization problem in (3.26) is a linear program where the constraint set is the

polar set Ko(±A0) (see Eq. (3.2)). Since Ko(±A0) is non-empty and is bounded

in the space of S0, it is known in linear program that the solution set D(A0, b)

is a face of the convex polyhedron Ko(±A0) (see e.g. [197]). Therefore, the set

of dual points D(A0, b) may contain only one point when the optimal face is 0-

dimensional (i.e. an extreme point of Ko(±A0)), and more than one point when

the optimal face is 1-dimensional (i.e. an edge of Ko(±A0)) or higher.

We also comment on the fact that this definition of dual points is different

from the definition in [139]. In [139], dual point is defined as the solution to

(3.26) that has the minimum ℓ2 norm. Therefore, when the solution to (3.26) is

not unique, there is a unique dual point in the definition of [139] while there

are multiple dual points in our definition.

We can now provide an upper bound on the ℓ2 norm of any dual point v

in D(A0, b). By the definition of dual points, we know v ∈ Ko(±A0), therefore

from the definition of circumradius (i.e., Definition 11) and the result in (3.5)

we have

∥v∥2 ≤ R(Ko(±A0)) = 1/r(K(±A0)). (3.28)

By combining this result with (3.24) we can readily derive the following theo-

rem, which is the major result for instance recovery for BP.
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Theorem 10 (Instance recovery by BP). Given a dictionary A = A0 ∪ A− with

A0 ⊆ S0 and a signal b ∈ S0, all elements in BP (A, b) are subspace-preserving

if there exists a dual point v ∈ D(A0, b) such that

r(K(±A0)) > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−. (3.29)

This result is more general than the result stated in [139]. Specifically, [139]

requires that the condition (3.29) be satisfied for the specific v in D(A0, b) that

has the minimum ℓ2 norm, therefore is more restrictive.

Proof. Let v ∈ D(A0, b) be a dual point that satisfies the relation in (3.29). By

combining (3.29) with (3.28), we get

1

∥v∥2
> |⟨ v

∥v∥2
,a⟩|, ∀a ∈ A−, (3.30)

which can be written equivalently as

max
a∈A−

|v⊤a| < 1. (3.31)

Now, from (3.27) we know D(A0, b) ⊆ BPDual(A0, b), therefore we have v ∈

BPDual(A0, b). Thus, the conclusion of the theorem follows from applying Lemma 2.
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3.2.2.2 Instance recovery by OMP

Recall from Chapter 2 that given dictionary A and signal b, OMP computes

a sparse representation by a greedy procedure presented in Algorithm 1. In

this work, we take termination conditions as ϵ = 0, which will always be

reached under the problem formulation of this chapter. That is, at the ter-

mination iteration k we will have that the residual vk+1 = b − Ack+1 is zero;

we then take ck+1 as the solution returned by OMP. Note that depending on

how ties are broken when the support set is updated in each iteration, OMP

may return different solutions. We will denote the set of all such solutions by

OMP(A, b).

Now, it is easy to see that a sufficient condition for OMP(A, b) to be subspace

preserving is that for each k in step 3 of Algorithm 1, the point that maximizes

the dot product lies in the same subspace as b. Since v0 = b and v1 is equal to b

minus the projection of b onto the subspace spanned by the selected point, say

â, it follows that if b, â ∈ S0 then v1 ∈ S0. By a simple induction argument, it

follows that if all the selected points are in S0, then so are the residuals {vk}.

This suggests that the condition for OMP(A, b) to be subspace-preserving must

depend on the dot products between the data points and the set of residuals.

This motivates the following definition and lemma.
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Definition 13 (Residual points). Given any A0 ⊆ S0 and any b ∈ S0, the set

of residual points, denoted as R(A0, b), is defined as the set of all nonzero

residual vectors computed in step 4 of OMP(A0, b).

Lemma 3. Given a dictionary A = A0 ∪ A− and a signal b, all elements in

OMP(A, b) are subspace-preserving representations if

∀v ∈ R(A0, b), max
a∈A−

|v⊤a| < max
a∈A0

|v⊤a|. (3.32)

The proof of this lemma follows straight forwardly by comparing inductively

the steps of the procedure OMP(A, b) and the procedure of the fictitious prob-

lem OMP(A0, b). The idea is that these two procedures follow the same “path”

if the condition of the lemma is satisfied.

Proof. Let k∗ be the number of iterations computed by the procedure OMP(A, b)

so that the residual vector vk∗ = 0. We prove that the solution to OMP(A, b) is

subspace-preserving by showing thatWk∗ only contains indexes of points from

S0. This is shown by induction, in the way that Wk contains points from the

i-th subspace for every 0 ≤ k ≤ k∗.

The set of residual points R(A0, b) introduced in Definition 13 plays an es-

sential role in this proof. For notational clarity, we denote v̂k to be the residual

vector generated at iteration k of the algorithm OMP(A0, b) (note that this is
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the fictitious problem). The residual vectors of OMP(A, b) are denoted by vk. In

the induction, we also show that OMP(A0, b) does not terminate at any k < k∗,

and that vk = v̂k whenever k ≤ k∗.

First, in the case of k = 0, the argument that W0 only contains indexes of

points that are from S0 is trivially satisfied since W0 is empty. Also, v0 = v̂0 is

satisfied because they are both set to be b in line 1 of Algorithm 1.

Now, given that vk = v̂k for some k < k∗ and that Wk contains points only

from subspace S0, we show that vk+1 = v̂k+1 and thatWk+1 contains indexes of

points from subspace S0. This could be shown by noticing that the added entry

in step 3 of Algorithm 1 is given by argmax
j=1,...,N

|aT
j vk|. Here, since vk = v̂k, we have

that vk is in the set R(A0, b). Then, by using condition (3.32), we know that the

argmax will give an index that corresponds to a point in S0. This guarantees

thatWk+1 only contains points from subspace S0. Moreover, the picked point is

evidently the same as the point picked at iteration k of the OMP(A0, b). It then

follows from step 4 of Algorithm 1 that the resultant residuals, vk+1 and v̂k+1,

are also equal. In the case of k+ 1 < k∗, this means that vk+1 = v̂k+1 ̸= 0, so the

fictitious problem OMP(A0, b) does not terminate at this step. This finishes the

mathematical induction.

The fact that OMP terminates in at most d0 iterations follows from the fol-

lowing facts: (i) we have established that OMP(A, b) produces the same compu-

tations as does OMP(A0, b); (ii) the collection of vectors selected by OMP(A0, b)
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are linearly independent and contained in subspace S0; and (iii) the dimension

of S0 is equal to d0.

Intuitively, Lemma 3 tells us that if the dot product between the residual

points and the data points in A− is smaller than the dot product between the

residual points and all points in A0, then OMP gives a subspace-preserving

representation. While such a condition is very intuitive from the perspective

of OMP, it is not as intuitive from the perspective of subspace learning as it

does not rely on the geometry of the problem. Specifically, it does not directly

depend on the relative configuration of the subspace or the distribution of the

data in the subspaces. In what follows, we present conditions on the subspace

and the data that guarantee that the condition in 3 holds.

Theorem 11 (Instance recovery by OMP). Given a dictionary A = A0∪A− and

a signal b, all elements in OMP (A, b) are subspace-preserving if for all points

v ∈ R(A0, b) we have

r(K(±A0)) > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−. (3.33)

Proof. Recall from the definition of covering radius that γ(±A0) = max{θ(±A0,w) :

w ∈ S0 ∩SD−1}. Therefore, for any w ∈ S0 ∩SD−1 it has γ(±A0) ≥ θ(±A0,w). By
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taking cos on both sides we have

r(K(±A0)) = cos γ(±A0) ≤ cos θ(±A0,w) = max
a∈A0

|⟨ w

∥w|2
,a⟩|, (3.34)

where we have used the relation between inradius and covering radius in

(3.13).

Now, take any v ∈ R(A0, b). We know v
∥v∥2 ∈ S0 ∩ SD−1. By applying the

result in (3.34) and using the condition (3.33) we get

max
a∈A0

|⟨ v

∥v|2
,a⟩| ≥ r(K(±A0)) > max

a∈A−
|⟨ v

∥v∥2
,a⟩|. (3.35)

Then, the conclusion of the theorem follows from Lemma 3.

3.2.2.3 Comparison of recovery conditions

Comparing the instance recovery conditions for BP in (3.29) and for OMP

in (3.33), we can see that they have the same structure. That is, the left hand

sides are both the inradius of the symmetrized convex hull of the data points

A0, while the right hand sides are both the maximum inner product (in abso-

lute value) betweenA− and a certain subset of S0. The only different is that the

condition in (3.29) and in (3.33) use the set of dual points D(A0, b) and the set

of residual points R(A0, b), respectively, in the calculation of the inner product
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on their right hand sides. These two sets are not directly related, therefore

the conditions (3.29) and (3.33) are not directly comparable. Nonetheless, no-

tice that the number of dual points is 1 in general (i.e., when the solution to

BP(A0, b) is unique), while the number of residual points is equal to the num-

ber of nonzero entries of OMP(A0, b) in general (i.e., when the maximizer in

step 3 of OMP(A0, b) is unique). Therefore, if we assume that the points in

D(A0, b) and R(A0, b) are distributed uniformly at random on the unit sphere

of S0, then the condition in (3.29) is expected to be more likely to be satisfied.

We will show that this is indeed the case in Section 3.3.

3.2.3 Universal recovery conditions

We now consider the problem of subspace-preserving recovery for all possi-

ble b in subspace S0.

As we have already established instance recovery conditions in Theorem 10

and Theorem 11, a naive approach to establish universal recovery condition is

to apply instance recovery conditions for all b ∈ S0. For example, to establish

a universal recovery condition for BP, we can require the condition in (3.29) to

be satisfied for all b ∈ S0. This can be achieved by requiring that

r(K(±A0)) > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−, ∀v ∈ ∪b∈S0D(A0, b). (3.36)
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However, this result is not very interpretable since it is unclear what the set

∪b∈S0D(A0, b) contains. Nonetheless, we do know that for any b ∈ S0, we have

D(A0, b) ⊆ S0. Therefore, the condition in (3.36) is implied by the following

condition

r(K(±A0)) > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−, ∀v ∈ S0 − {0}. (3.37)

This condition shows that if the inradius r(K(±A0)) is large enough, and the

coherence (i.e. cosine of acute angle) between any two points a and v each

taken from A− and the subspace S0, then BP gives subspace-preserving solu-

tion for all points b ∈ S0. One can apply a similar argument to the condition in

(3.33), and arrive at the conclusion that the condition in (3.37) also guarantees

subspace-preserving recovery for all points b ∈ S0 by OMP. In summary, we can

establish the following result for universal recovery condition.

Theorem 12 (Principal recovery condition). Given a dictionary A = A0 ∪ A−

where A0 ⊆ S0, all elements in both BP(A, b) and OMP(A, b) are subspace-

preserving for any b ∈ S0 if the following principal recovery condition (PRC)

holds

r(K(±A0)) > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−, ∀v ∈ S0 − {0}. (3.38)

Next, we show that PRC can be improved by replacing the S0 on the right

hand side of (3.38) by a finite subset of S0. Specifically, we define the set of dual

points as follows.
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Definition 14 (Dual points). The set of dual points of the set A0, denoted as

D(A0), is defined as the extreme points of Ko(±A0).

Geometrically, the dual points D(A0) are the vertices of the polyhedron

Ko(±A0). In Figure 3.1, the dual points are illustrated as the red dots.

We note that the concept of dual points in Definition 14 needs to be dis-

tinguished from the concept of dual points in Definition 12. In Definition 12,

the set of dual points is denoted as D(A0, b) and depends on both A0 and b.

In Definition 14, the set of dual points is denoted as D(A0) and is a function

of A0 only. These two definitions of dual points are also closely related. Since

any continuous convex function attains its maximum over a compact set at

an extreme point of the convex set, we know that for any b ∈ S0, there ex-

ists a solution to (3.26) that is an extreme point of its constraint set, which is

Ko(±A0). This implies that for any b ∈ S0, there exists a v ∈ D(A0, b) such that

v ∈ D(A0). In particular, if the solution to (3.26) is unique for some b, then

we have D(A0, b) ⊆ D(A0). On the other hand, if the solution to (3.26) is not

unique, then the solution set D(A0, b) is a face of Ko(±A0). In such cases, we no

longer have D(A0, b) ⊆ D(A0).

A core result for universal recovery of subspace-preserving representation

is the following.

Theorem 13 (Dual recovery condition). Given a dictionary A = A0 ∪A− where
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A0 ⊆ S0, all elements in both BP(A, b) and OMP(A, b) are subspace-preserving

for any b ∈ S0 if the following dual recovery condition (DRC) holds

r(K(±A0)) > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−, ∀v ∈ D(A0). (3.39)

The set of dual points D(A0) in (3.39) is a finite subset of S0 (see Lemma 4

below). Therefore, the DRC is implied by the PRC, which makes Theorem 13

a stronger result than Theorem 12. Intuitively, the PRC requires points in A−

to be sufficiently far away from the entire subspace S0, while the DRC only

requires that A− be sufficiently far away from a finite subset of S0.

Lemma 4. The set D(A0) is finite. Specifically,

card(D(A0)) ≤ 2d0
(
N0

d0

)
. (3.40)

Proof. Consider a linear program with variable v, constraint v ∈ Ko(±A0),

and arbitrary objective function. Since the dual points D(A0) are precisely the

extreme points of Ko(±A0), they are the same as the basic feasible solutions of

the linear program [126]. Since each basic feasible solution is determined by d0

linearly independent constraints from among the 2N0 constraints of ∥A⊤
0 v∥∞ ≤

1, there are at most 2d0
(
N0

d0

)
ways to choose such a set of constraints (here we

haver used the fact that at most one of the two constraints −1 ≤ (A⊤
0 v)i ≤ 1

can be chosen for each i ∈ {1, 2, . . . , N0}).
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The bound in Lemma 4 is not tight in general since not every set of con-

straints in the 2d0
(
N0

d0

)
number of combinations produces a basic feasible so-

lution. For example, in Figure 3.1 the combination of constraints ⟨a1,v⟩ ≤ 1

and ⟨a2,v⟩ ≤ 1 produces a basic feasible solution, while the combination of

constraints ⟨a1,v⟩ ≤ 1 and ⟨a3,v⟩ ≤ 1 does not. Nonetheless, this bound is

sufficient for the study in this thesis1.

To interpret these results geometrically, note from the relationship between

inradius and covering radius in (3.13) that the PRC is equivalent to the follow-

ing condition:

γ(±A0) < θ(A−,S0), (3.41)

Therefore, the PRC is satisfied if the angle between any data point in A− and

the subspace S0 is larger than the covering radius γ(±A0). Similarly, the DRC

in (3.39) can be rewritten as

γ(±A0) < θ(A−,D(A0)). (3.42)

Therefore, the DRC is satisfied if the angle between any data point in A−

and any dual point in D(A0) is larger than γ(±A0). Figure 3.2 gives a geometric

illustration of the PRC and the DRC using an example of a two dimensional
1A tighter bound is possible, see, [69,127].
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S0

γ0

Figure 3.2: Illustration of the geometry associated with subspace-preserving
representations. The atoms A0 := {aj}5j=1 (drawn in blue) lie on the unit circle
of a two-dimensional subspace S0. The atoms A− (not drawn) lie on the unit
sphere in the ambient space R3. The region enclosed by the two solid green
circles corresponds to the set {a ∈ R3 : γ(±A0) < θ(a,S0)}. The region colored
in yellow correspond to the set {a ∈ R3 : γ(±A0) < θ(a,D(A0))}. The PRC
(resp., the DRC) is satisfied if no point from A− lies in the former (resp, latter)
region.

subspace S0 in R3. The dictionary A0 and the dual points D(A0) are illustrated

in blue and red, respectively. Also, see Figure 3.1 for an illustration in the 2D

plane of the subspace S0. The two solid green circles have latitude ±γ(±A0) on

the unit sphere, they illustrate that the PRC holds if and only if the atoms A−

are such that they do not lie in the region enclosed by these two circles (i.e.,

they all have latitude larger than γ(±A0) or smaller than −γ(±A0)). The DRC

is illustrated by the yellow region which is composed of a union of the yellow

circles in the space S2. Each circle is centered at a normalized dual point (note

the red dots illustrate the unnormalized dual points) with radius γ(±A0). The
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∀b ∈ S0, any c ∈ OMP(A, b) is subspace-preserving

Recovery condition for OMP: ∀b ∈ S0 \ {0}, θ(A0, {±b}) < θ(A−, {±b})

PRC: γ0 < θ(A−,S0) DRC: γ0 < θ(A−,D0) ∥A⊤
−v∥∞ < 1, ∀v ∈ D0

Recovery condition for BP: ∀b ∈ S0 \ {0}, p(A0, b) < p(A−, b)

∀b ∈ S0, any c ∈ BP(A, b) is subspace-preserving

Figure 3.3: Summary of the results of universal recovery conditions with dic-
tionary A = A0 ∪ A−. Each box contains a proposition, and arrows denote
implications. The topmost (resp., bottommost) box is the property of subspace-
preserving recovery by BP (resp., OMP). Two major conditions for subspace-
preserving recovery are the PRC and the DRC.

DRC holds if and only if no point from A− lies in the yellow region.

In the following, we provide a detailed analysis of the subspace-preserving

representation property of BP and OMP in the deterministic model setting,

and formally prove the PRC and the DRC in Theorems 12 and 13, respectively.

Our analyses also give several related results. A diagram that summarizes the

relation between these results is given in Figure 3.3. To avoid cluttered nota-

tions, we will use K0 := K(±A0), Ko
0 := Ko(±A0), D0 := D(A0), r0 := r(K(±A0)),

R0 = R(Ko(±A0)), and γ0 := γ(±A0). The topmost and bottommost boxes of

Figure 3.3 are, respectively, the subspace-preserving recovery properties for

BP and OMP that we are pursuing. Note that both of them are implied by the

PRC and the DRC.
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3.2.3.1 Universal recovery by BP

We first establish an equivalent condition for subspace-preserving recovery

for BP, and then show that this condition is implied by PRC and DRC. See the

upper half of Figure 3.3 for an illustration.

A recovery condition for BP. The work of [60] has established a condi-

tion that is necessary and sufficient for when BP(A, b) is subspace-preserving.

Here, we rephrase the result for our problem as well as provide a proof for

completeness. We first introduce some definitions. Consider the following two

optimization problems:

argmin
c0

∥c0∥1 s.t. b = A0c0, (3.43)

argmin
c−

∥c−∥1 s.t. b = A−c−. (3.44)

Let BP(A0, b) and BP(A−, b) be the set of all solutions to (3.43) and (3.44), re-

spectively. Since b lies in the span of the set A0, which is the subspace S0,

we know that the optimization problem (3.43) is always feasible, i.e., the set

BP(A0, b) is nonempty. On the other hand, b may not lie in the span of A−,

in which case the set BP(A−, b) is empty. We denote the objective values that

correspond to BP(A0, b) and BP(A−, b) by p(A0, b) and p(A−, b), respectively. In

particular, if BP(A−, b) is empty then we define p(A−, b) =∞.
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Theorem 14 (A recovery condition for BP). [60] Any c ∈ BP(A, b) is subspace-

preserving for all b ∈ S0 if and only if p(A0, b) < p(A−, b) for all b ∈ S0 \ {0}.

Proof. Throughout this proof we assume without loss of generality that A =

[A0,A−].

For the “only if” direction, take any b ∈ S0\{0}. We prove p(A0, b) < p(A−, b)

by showing that p(A0, b) ≤ p(A, b) and that p(A, b) < p(A−, b).

We first show p(A0, b) ≤ p(A, b). Take any ĉ = [(ĉ0)
⊤, (ĉ−)

⊤]⊤ ∈ BP(A, b). By

our current assumption, ĉ is subspace-preserving, hence ĉ− = 0. Therefore, we

have b = Aĉ = A0ĉ0 +A−ĉ− = A0ĉ0. This implies that ĉ0 is a feasible solution

to (3.43), hence p(A0, b) ≤ ∥ĉ0∥1. From ĉ− = 0 we also have ∥ĉ0∥1 = ∥ĉ∥1.

Combining these results we see that p(A0, b) ≤ ∥ĉ0∥1 = ∥ĉ∥1 = p(A, b).

We now prove p(A, b) < p(A−, b) by using contradiction. Assume that p(A, b) ≥

p(A−, b). Under this assumption, the set BP(A−, b) is nonempty since p(A−, b) ≤

p(A, b) < ∞. Let c̄− be any vector in BP(A−, b), and let c̄ = [0⊤
N0
, (c̄−)

⊤]⊤ where

0N0 is a vector of length N0. We can see that Ac̄ = A−c̄− = b, which implies that

c̄ is a feasible solution to (3.14). Furthermore, from the fact that all optimal so-

lutions to (3.14) are subspace-preserving and that c̄ is not subspace-preserving,

we know that c̄ is not an optimal solution to (3.14). Therefore, it must have

p(A, b) < ∥c̄∥1. We can now see that p(A, b) < ∥c̄∥1 = ∥c̄−∥1 = p(A−, b), which

contradicts the assumption that p(A, b) ≥ p(A−, b).
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For the “if” direction, suppose (for the purpose of reaching a contradiction)

that there exists some b ∈ S0 and some ĉ = [(ĉ0)
⊤, (ĉ−)

⊤]⊤ ∈ BP(A, b) such that

ĉ is not subspace-preserving. From the constraint in (3.14), we have A0ĉ0 +

A−ĉ− = b. Let

b̃ := b−A0ĉ0 = A−ĉ−. (3.45)

Note that b̃ ∈ S0 since it is a linear combination of b and all columns of A0, all

of which lie in S0. Moreover, we can also see that b̃ ̸= 0 from the following proof

by contradiction. Suppose b̃ = 0, in which case we have A0ĉ0 = b. Let us take

c̄ = [(ĉ0)
⊤,0⊤

N−
]⊤. We have Ac̄ = A0ĉ0 = b, which implies that c̄ is a feasible

solution to (3.14). Moreover, we have ∥c̄∥1 = ∥ĉ0∥1 < ∥ĉ0∥1 + ∥ĉ−∥1 = ∥ĉ∥1,

where we have used the fact that ĉ is not subspace-preserving hence ĉ− ̸= 0.

This contradicts the fact that ĉ is an optimal solution to (3.14). Therefore, we

have established that b̃ ̸= 0.

Take any c̃0 from the set BP(A0, b̃) (which is nonempty since b̃ ∈ S0 =

span(A0)). We have ∥c̃0∥1 = p(A0, b̃) and b̃ = A0c̃0. We now consider the vec-

tor [(ĉ0 + c̃0)
⊤,0]⊤. This vector is a feasible solution to the problem BP(A, b)

since A0(ĉ0 + c̃0) = A0ĉ0 + b̃ = b (by recalling (3.45)). Moreover, this feasi-

ble solution has smaller objective value than the solution ĉ = [(ĉ0)
⊤, (ĉ−)

⊤]⊤

since ∥ĉ0 + c̃0∥1 ≤ ∥ĉ0∥1 + ∥c̃0∥1 < ∥ĉ0∥1 + ∥ĉ−∥1. To get the last inequality, we

have used our current assumption that p(A0, b̃) < p(A−, b̃) (since b̃ ∈ S0\{0})

which implies ∥c̃0∥1 < p(A−, b̃), and the fact that ĉ− is a feasible solution to the
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optimization problem

argmin
c−
∥c−∥1 s.t. b̃ = A−c−, (3.46)

which implies p(A−, b̃) ≤ ∥ĉ−∥1. This provides a contradiction to the assump-

tion that ĉ is an optimal solution.

While this result provides a necessary and sufficient condition, it relies on

solving the optimization problem and does not reveal explicit properties re-

quired of the dictionary A. The PRC and DRC have the advantages that they

rely only on the properties of the dictionary and they have good geometric in-

terpretation. They do, however, come with the disadvantage that they are only

sufficient conditions.

The PRC result. We proceed to the proof of PRC. As we have seen in the

discussion prior to Theorem 12, the PRC result can be proved from the results

for instance recovery in Theorem 10 and Theorem 11. However, we believe

that a direct proof that PRC implies the equivalent condition established in

Theorem 14 offers a clearer understanding of PRC.

In the condition in Theorem 14, the LHS p(A0, b) depends purely on the

properties of A0, while RHS p(A−, b) depends on a relation between the atoms

A− and the subspace S0. This enlightens us to upper bound the former by

characterizing S0, and to lower bound the latter by using some relationship
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between S0 and A−.

Theorem 15 (Correctness of BP for subspace-preserving recovery via PRC). If

the PRC γ0 < θ(A−,S0) holds then ∀b ∈ S0 \ {0}, p(A0, b) < p(A−, b).

Proof. We start by providing an upper bound on p(A0, b) in terms of γ0. Let v∗

be any optimal solution to the dual optimization problem of (3.43), i.e.,

v∗ ∈ argmax
v
⟨v, b⟩ s.t. ∥A⊤

0 v∥∞ ≤ 1. (3.47)

Note that p(A0, b) = ⟨v∗, b⟩ by strong duality. We decompose v∗ into two orthog-

onal components v∗ = v⊥+v∥ in which v∥ ∈ S0. From the fact that both b and all

columns of A0 lie in S0, we have ⟨v∗, b⟩ = ⟨v∥, b⟩ and ∥A⊤
0 v

∥∥2 = ∥A⊤
0 v

∗∥2 ≤ 1.

Furthermore, from the definition of the polar set in (3.1), we have v∥ ∈ Ko
0.

Therefore, we can apply Lemma 8 and get

p(A0, b) = ⟨v∥, b⟩ ≤ ∥b∥2 · ∥v∥∥2 ≤ ∥b∥2/ cos γ0. (3.48)

We now turn to providing a lower bound on p(A−, b). If BP(A−, b) is empty,

then we have p(A−, b) = ∞. Otherwise, take any c∗ from BP(A−, b), we have

b = A−c
∗. Left multiply by b⊤ and manipulate the right hand side we have the
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following:

∥b∥22 = b⊤A−c
∗ ≤ ∥A⊤

−b∥∞∥c∗∥1

= ∥A⊤
−

b

∥b∥2
∥∞∥b∥2 · p(A−, b)

≤ cos θ(A−,S0) · ∥b∥2 · p(A−, b),

(3.49)

where we have used the fact that ∥c∗∥1 = p(A−, b) in the second equality and

that b ∈ S0 in the second inequality. We have now established that

p(A−, b) ≥ ∥b∥2/ cos θ(A−,S0). (3.50)

The conclusion thus follows by combining (3.48) and (3.50) and the condition

of PRC.

In the proof of Theorem 15, the LHS and RHS of the equivalent condition

p(A0, b) < p(A−, b) are bounded separately, without using the fact that the b on

both sides of the equivalent condition are the same. In other words, this proof

shows that the following result is true, which is a stronger result than that

stated in Theorem 15: if PRC holds then ∀b, b′ ∈ S0 \ {0} with ∥b∥2 = ∥b′∥2, we

have p(A0, b) < p(A−, b
′). Next, we prove that DRC is a sufficient condition for

the recovery condition in (14).

The DRC result. We start by showing that the condition in the rightmost box

in Figure 3.3 is less restrictive than the DRC.
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Lemma 5. If the DRC γ0 < θ(A−,D0) holds then it has ∥A⊤
−v∥∞ < 1, ∀v ∈ D0.

Proof. Take any v ∈ D0. Since D0 is the set of extreme points of Ko
0, we know

that v ∈ Ko
0. Thus, we can apply Lemma 8 which gives us ∥v∥2 ≤ 1/ cos γ0.

Consequently, we have

∥A⊤
−v∥∞ = ∥A⊤

−
v

∥v∥2
∥∞∥v∥2 ≤

cos θ(A−,D0)

cos γ0
< 1. (3.51)

We now prove the result for the DRC.

Theorem 16 (Correctness of BP for subspace-preserving recovery via DRC). If

∥A⊤
−v∥∞ < 1, ∀v ∈ D0 holds then ∀b ∈ S0 \ {0}, p(A0, b) < p(A−, b).

Proof. Consider the following dual problem to (3.43):

max
v
⟨v, b⟩ s.t. ∥A⊤

0 v∥∞ ≤ 1. (3.52)

We first show that there always exists a solution to (3.52) that is from the set

of dual points D0. To do this, we consider the following optimization problem

max
w
⟨v, b⟩ s.t. ∥A⊤

0 v∥∞ ≤ 1,v ∈ S0. (3.53)

Note that this program differs from (3.52) only in the feasible region. Specifi-
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cally, the feasible region of (3.53) is Ko
0, and it is bounded. Since any continuous

convex function attains its maximum over a compact set at an extreme point

of the convex set, there must have a solution v∗ to (3.53) that is from the set of

extreme points of Ko
0, i.e, v∗ ∈ D0. Moreover, such v∗ is also an optimal solution

to (3.52). To see this, assume for the purpose of reaching at a contradiction

that there is a solution v̄ to (3.52) such that ⟨v̄, b⟩ > ⟨v∗, b⟩. We decompose v̄

into two parts as v̄ = v̄∥ + v̄⊥, where v̄∥ lies in S0 and v̄⊥ is perpendicular to S0.

Then, it is easy to check that v̄∥ is a feasible solution to (3.53). Moreover, we

have

⟨v̄∥, b⟩ = ⟨v̄, b⟩ > ⟨v∗, b⟩, (3.54)

which contradicts the fact that v∗ is an optimal solution to (3.53).

We have shown that v∗ is an optimal solution to (3.52) that is in D0. Now,

let us consider two cases. First, if p(A−, b) = +∞, then the conclusion follows

since p(A0, b) is always finite. Otherwise, take any c∗ ∈ BP(A−, b). We have

∥c∗∥1 = p(A−, b) and b = A−c
∗. Note that (3.52) is the dual problem to (3.43),

we have

p(A0, b) = d(A0, b) = ⟨v∗, b⟩ = ⟨v∗,A−c
∗⟩

≤ ∥A⊤
−v

∗∥∞ · ∥c∗∥1 < p(A−, b),

(3.55)

in which we have used ∥A⊤
−v

∗∥∞ < 1 from assumption.
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Finally, we note that the converse of the statement in Theorem 16 is not

true in general. To see this, we provide the following counter-example. Take

A0 to be any finite subset of S0 that spans S0. From Lemma 8, there exist

some v̄ ∈ D0 such that ∥v̄∥2 = 1/ cos γ0 > 1 (since it is obvious that γ0 ̸= 0).

Now, take A− to be a singleton set containing a data point ā /∈ S0 that satisfies

|⟨ā, v̄⟩| ≥ 1. In this example, we can see that the premise of Theorem 16 does

not hold, i.e., ∥A⊤
−v̄∥∞ = |⟨ā, v̄⟩| ≥ 1, but the conclusion of Theorem 16 is still

true, i.e. p(A0, b) <∞ = p(A−, b).

3.2.3.2 Universal recovery by OMP

The lower half of Figure 3.3 summarizes the results for subspace-preserving

recovery by OMP. It may be surprising that it is roughly symmetric to that of

subspace-preserving recovery by BP. We first identify a sufficient condition for

OMP to give subspace-preserving solutions, which is captured by the spherical

angle between an arbitrary b ∈ S0 and A0 and A−. We then provide proofs for

the PRC and the DRC results.

A recovery condition. Our recovery condition is that for any point b ∈ S0 \

{0}, the closest point (in terms of spherical distance θ(·, ·)) to either b or −b in

the entire dictionary A must be one of those in A0.

Theorem 17 (A recovery condition for OMP). OMP(A, b) is subspace-preserving

for all b ∈ S0 if θ(A0, {±b}) < θ(A−, {±b}) for all b ∈ S0 \ {0}.
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Proof. Note that OMP(A, b) is subspace-preserving if each iteration of OMP

picks a point in A0. This can be seen in an inductive way: for any given

b ∈ S0, the first step of OMP(A, b) chooses an atom from A0 by the condition

that θ(A0, {±b}) < θ(A−, {±b}). This gives a residual v0 = b − Ac0 with c0

defined in (2.6), and v0 is still in S0 since it is a linear combination of points

in S0. If v0 = 0, then OMP is terminated; otherwise, by the condition we

will have θ(A0, {±v0}) < θ(A−, {±v0}), which then guarantees that the next

step of OMP(A, b) also chooses an entry from A0. This procedure will finally

be terminated when an exact recovery of b is achieved, and the solution is

subspace-preserving as the support of representation coefficients is a subset of

the selected entries.

We note that this sufficient condition in Theorem 17 is also “almost” neces-

sary, in the sense that it is necessary for guaranteeing that OMP never selects

a point in A− to the working set throughout the iterations. Indeed, if the suf-

ficient condition in Theorem 17 is not satisfied for some b ∈ S0\{0}, i.e. if

θ(A0, {±b}) ≥ θ(A−, {±b}), then for this specific b, the OMP procedure will

pick a point from A− in the first iteration. Meanwhile, there does exist cases

in which subspace-preserving recovery is achieved even when the OMP proce-

dure picks points not in subspace S0 at some iterations prior to termination:

this happens when in the final iteration the coefficients to those points are set

to zero (i.e., by equation (2.6)). One such example is that the span of points in
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A− has trivial intersection with the subspace S0. In this case, any solution in

the set OMP(A, b) is subspace-preserving for all b ∈ S0 (see Theorem 29) even

when the working set of OMP at termination contains points not in A0.

The PRC result. Similar to the discussion for BP, the term θ(A0, {±b}) on

the LHS of the recovery condition in Theorem 17 depends on A0 and can be

bounded from above by the characterization γ0, while the term θ(A−, {±b}) de-

pends on relation between S0 andA− and can be bounded from below. Following

this idea, we can prove the following theorem which establishes the PRC as a

sufficient condition for subspace-preserving representation by OMP.

Theorem 18 (Correctness of OMP for subspace-preserving recovery via PRC).

If the PRC γ0 < θ(A−,S0) holds then ∀b ∈ S0 \ {0}, θ(A0, {±b}) < θ(A−, {±b}).

Proof. We prove this by bounding each side of the objective inequality sepa-

rately.

For the left hand side, notice γ0 := γ(±A0), then by definition of covering

radius, γ0 ≥ θ(A0, {±b}).

For the right hand side, we have θ(A−, {±b}) ≥ θ(A−,S0) by definition of the

notation θ(·, ·).

The conclusion thus follows by concatenating the bounds for both sides

above with the PRC.

The DRC result. Finally, we prove the result for the DRC. Following the
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discussion for BP, we do this by showing that the condition in the rightmost

box of Figure 3.3 guarantees the sufficient condition in Theorem 17.

Theorem 19 (Correctness of OMP for subspace-preserving recovery via DRC).

If ∥A⊤
−v∥∞ < 1, ∀v ∈ D0 holds then ∀b ∈ S0 \ {0}, θ(A0, {±b}) < θ(A−, {±b}).

To prove this theorem, we use the result that the polar set Ko
0 is a symmetric

convex body and it induces a norm on the space S0, by means of the so-called

Minkowski functional. The relevant definitions and results are stated as fol-

lows.

Definition 15 (Minkowski functional). The Minkowski functional of the set

K is defined on span(K) as

∥v∥K = inf{t > 0 :
v

t
∈ K}. (3.56)

Lemma 6. [160] If K is a symmetric convex body, then ∥ · ∥K is a norm on

span(K) with K being the unit ball.

Thus, ∥ · ∥Ko
0

is a norm on S0 with Ko
0 being the unit ball.

Proof of Theorem 19. It suffices to prove the result for every b ∈ S0 \ {0} that

has a unit norm, by using any norm defined on S0. Here we use the norm of

Minkowski functional ∥·∥Ko
0
, and we need to prove that θ(A0, {±b}) < θ(A−, {±b})

for all b ∈ S0 such that ∥b∥Ko
0
= 1.
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Recall that the set of dual pointsD0 is the set of extreme points ofKo
0. There-

fore, the convex hull of the dual points is Ko
0 (i.e. the convex hull of the set of the

extreme points of a convex body is this convex body itself, see e.g. [24]). Since

∥b∥Ko
0
= 1, it has b ∈ Ko

0. Therefore, b can be expressed as a convex combination

of the dual points, i.e. one can write b =
∑

i xi · vi in which vi ∈ D0, xi ∈ [0, 1] for

all i and
∑

i xi = 1. Thus,

∥A⊤
−b∥∞ = ∥A⊤

−

∑
i

vi · xi∥∞ ≤
∑
i

∥A⊤
−vi · xi∥∞ <

∑
i

xi = 1 = ∥A⊤
0 b∥∞, (3.57)

in which the last equality follows from ∥b∥Ko
0
= 1. The proof is completed by

dividing both sides of (3.57) by ∥b∥2 and then taking arccos.

Finally, we note that the converse of the statement in Theorem 19 is also

true:

Theorem 20. If ∀b ∈ S0\{0}, θ(A0, {±b}) < θ(A−, {±b}) then ∀v ∈ D0, ∥A⊤
−v∥∞ <

1 .

Proof. Take any v ∈ D0. By definition of dual points, we have v ∈ S0\{0}, thus

θ(A0, {±v}) < θ(A−, {±v}). This gives us

∥v∥2 cos θ(A0, {±v}) > ∥v∥2 cos θ(A−, {±v})

=⇒ ∥A⊤
0 v∥∞ > ∥A⊤

−v∥∞.

(3.58)
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Note that ∥A⊤
0 v∥∞ ≤ 1 since v ∈ D0 ⊆ Ko

0, the conclusion of the theorem follows.

3.3 A random analysis

In order to better understand the regime where BP and OMP succeed in

recovering subspace-preserving solutions, we will consider a probabilistic data

generating model and study the effect of subspace dimension d0, the ambient

space dimension D, the number of data points in the subspace N0 and outside

of the subspace N−.

Our random data model is defined as follows.

Definition 16 (Random data model). Given any quadruple (D, d0, N0, N−),

our random data model is defined as generating a dictionary A = A0 ∪A− in

which A0 contains N0 points drawn independently and uniformly at random

on the unit sphere of a randomly generated subspace S0 ⊆ RD of dimen-

sion d0, and A− contains N− points drawn independently and uniformly at

random on the unit sphere SD−1.

To state our results, we will use c(N0/d0) (see [139]) to denote a positive

numerical value which takes value c(N0/d0) =
1√
8

when N0/d0 is greater than a

certain constant.
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3.3.1 Instance recovery conditions

Our first result for instance recovery under the random data model in Defi-

nition 16 is as follows.

Theorem 21 (Instance recovery condition for BP and OMP in random model).

Given any quadruple (D, d0, N0, N−), draw a dictionary A = A0 ∪ A− where

A0 ⊂ S0 according to the random data model. Draw a vector b ∈ S0 that is

independent of A. Assume that N−/N0 < α for some α > 0 and d0 < N0 < d0e
d0/2.

Under the condition that

D

d0
>

12 logN0 + 4 logα

c2(N0/d0) log(N0/d0)
, (3.59)

the probability that all elements in BP(A, b) are subspace-preserving is at least

1− 2
N2

0
−e−

√
N0·d0, and the probability that all elements in OMP(A, b) are subspace-

preserving is at least 1− 2d0
N2

0
− e−

√
N0·d0.

The proof of this result is provide in Section 3.3.3. Theorem 21 shows that

both BP and OMP succeed in subspace-preserving recovery under the same

conditions on the parameters D, d0, N0, N−, but with different probabilities.

Specifically, when d0 > 1, the probability that OMP succeeds is lower than

that of BP. However, it is easy to see that the difference in probability goes to

zero as the number of sample points N0 goes to infinity. This means that the

performance difference vanishes as the scale of the problem increases.
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One interpretation of the condition in (3.59) is that the dimension d0 of the

subspace should be small relative to the ambient space dimension D. This is

well-expected since BP and OMP are expected to work better if the desired solu-

tions are sparser, and there always exist subspace-preserving representations

that have at most d0 nonzero entries. In terms of the number of data points in

the subspace (i.e., N0), if we consider the regime where N0/d0 is large enough

so that c(N0/d0) = 1√
8
, the right hand side of (3.59) is a monotone decreasing

function of N0. This suggests that the condition in (3.59) is more likely to be

satisfied if the number of sample points increases. In terms of N−, Theorem 21

is derived for N− that grows proportionally with N0, and the ratio α = N−/N0

affects condition (3.59) only through the term 4 logα.

A particularly interesting regime where Theorem 21 applies is where the

ratio d0/D converges to a parameter λ (i.e., D grows linearly with d0), and the

ratio logN0/ log d0 converges to a parameter δ (i.e., N0 grows polynomially with

d0). More formally, we have the following asymptotic result.

Corollary 1. Given any infinite sequence of quadruples {(D(k), d
(k)
0 , N

(k)
0 , N

(k)
− )}∞k=1,

draw a sequence of dictionaries A(k) = A(k)
0 ∪ A

(k)
− where A(k)

0 ⊆ S
(k)
0 according to

the random data model. Then, draw a sequence of vectors b(k) ∈ S(k)
0 such that

each b(k) is independent of A(k). Assume that limk→∞ N
(k)
0 = ∞ and that there

exists α > 0 such that N
(k)
− /N

(k)
0 < α for all sufficiently large k. If there exist
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λ ∈ (0, 1/96) and δ ∈ R such that

lim
k→∞

(
d
(k)
0 /D(k)

)
= λ, (3.60)

lim
k→∞

(
(logN

(k)
0 )/(log d

(k)
0 )

)
= δ, and (3.61)

1

1− 96λ
< δ, (3.62)

then the probability that all elements in BP(A(k), b(k)) and OMP(A(k), b(k)) are

subspace-preserving tends to 1 as k →∞.

Corollary 1 is derived directly from Theorem 21 by taking the limit on (3.59)

for k →∞. The proof of this result is provide in Section 3.3.3. It clearly shows

how the relative dimension λ and the relative number of samples δ together

affect subspace-preserving recovery. Specifically, note that the left hand side of

(3.62) is an increasing function of λ in the range λ ∈ (0, 1/96). This suggests

that it is easier to achieve subspace-preserving recovery when λ is smaller, or

equivalently when the subspace dimension d
(k)
0 is smaller relative to the ambi-

ent dimension D(k). The right hand side of (3.62) increases when N
(k)
0 becomes

larger relative to d
(k)
0 . This suggests that subspace-preserving recovery can be

improved with more number of data points.
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3.3.2 Universal recovery conditions

The universal recovery condition under the random model is stated as fol-

lows.

Theorem 22 (Universal recovery condition in random model). Given any quadru-

ple (D, d0, N0, N−), draw a dictionary A = A0 ∪ A− where A0 ⊆ S0 accord-

ing to the random data model. Assume that N−/N0 < α for some α > 0 and

d0 < N0 < d0e
d0/2. Under the condition that

D

d0
> 1 +

8 logN0 + 4 logα + 2d0 log(e
D
d0
)

c2(N0/d0) log(N0/d0)
, (3.63)

the probability that all elements in BP(A, b) and OMP(A, b) are subspace-preserving

for all b ∈ S0 is at least 1− 1
N0
− e−

√
N0·d0.

Theorem 22 shows that both BP and OMP are guaranteed to succeed in

subspace-preserving recovery under the same condition and with the same

probability. For arbitrarily fixed N0 and d0, the condition (3.63) is satisfied if D

is large enough. This is consistent with the message from the instance recov-

ery condition in Theorem 21 that BP and OMP can work when the dimension

of the subspace is low relative to the ambient dimension.

One of the major differences between the universal recovery condition in

(3.63) and the instance recovery condition in (3.59) is that the condition in

(3.63) has an additional term 2d0 log(e
D
d0
). Because of this term, the universal
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recovery condition is more difficult to be satisfied than that of the instance

recovery, which is to be expected as universal recovery also guarantees instance

recovery (but not vise versa). In addition, in the derivation of an asymptotic

result for universal subspace-preserving recovery we need the parameter N0 to

be exponentially large in d0. This is in contrast with the asymptotic result for

instance subspace-preserving recovery in Corollary 1, which only requires N0

to be polynomially large in d0. Formally, we have the following result.

Corollary 2. Given any infinite sequence of quadruples {(D(k), d
(k)
0 , N

(k)
0 , N

(k)
− )}∞k=1,

draw a sequence of dictionaries A(k) = A(k)
0 ∪ A

(k)
− where A(k)

0 ⊆ S(k)
0 according

to the random data model. Assume that limk→∞ N
(k)
0 = ∞ and that there ex-

ists α > 0 such that N
(k)
− /N

(k)
0 < α for all sufficiently large k. If there exist

λ ∈ (0, 1/65), δ ∈ (0, 1/2) such that

lim
k→∞

(
d
(k)
0 /D(k)

)
= λ, (3.64)

lim
k→∞

(
(logN

(k)
0 )/d

(k)
0

)
= δ, and (3.65)

16 · λ(1− log λ)

1− 65λ
< δ, (3.66)

then the probability that all elements in BP(A(k), b) and OMP(A(k), b) are subspace-

preserving for all b ∈ S(k)
0 tends to 1 as k →∞.

Corollary 2 is derived directly from Theorem 22 by taking the limit on (3.63)

for k → ∞. Its interpretation is similar to that of the Corollary 1. Specifically,
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the left hand side of (3.66) is an increasing function of λ in the range λ ∈

(0, 1/65). Therefore, it is easier to achieve subspace-preserving recovery when λ

is smaller, or equivalently when the subspace dimension d
(k)
0 is smaller relative

to the ambient dimension D(k). This benefit of a high dimensional ambient

space can be understood from the geometric interpretation of the PRC and the

DRC: points in A− become more separated from a fixed subspace S0 as the

ambient dimension increases [34]. Thus, the PRC and the DRC become easier

to be satisfied as the ambient dimension increases.

The right hand side of (3.66) increases when N
(k)
0 becomes larger relative to

d
(k)
0 . In particular, (3.65) suggests that N (k)

0 is exponentially large in the dimen-

sion d
(k)
0 . When compared with the polynomial number of samples in the case

of instance recovery, the exponential number of samples for universal recovery

may be necessary as the latter task is more difficult than the former task. The

exponential complexity may also be explained by the “curse of dimensional-

ity”, i.e., the number of points needed to cover well-enough the subspace grows

exponentially with the dimension of the subspace.

By using another proof technique (see Section 3.3.3), we can derive the fol-

lowing result which shows that the ranges of λ < 1/65 and δ ≤ 1/2 to which

Corollary 2 applies can be extended.

Theorem 23 (Universal recovery condition in random model - asymptotic re-

sult). Given any infinite sequence of quadruples {(D(k), d
(k)
0 , N

(k)
0 , N

(k)
− )}∞k=1, draw
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a sequence of dictionariesA(k) = A(k)
0 ∪A

(k)
− according to the random data model.

Assume that limk→∞ N
(k)
0 =∞ and that there exists α > 0 such that N (k)

− /N
(k)
0 < α

for all sufficiently large k. Then, the following two results hold.

(i) If D = D(k) and d0 = d
(k)
0 for all k, and

D ≥ 2d0, (3.67)

then the probability that all elements in BP(A(k), b) and OMP(A(k), b) are

subspace-preserving for all b ∈ S(k)
0 tends to 1 as k →∞.

(ii) If there exist λ ∈ (0, 0.5), δ ∈ R such that

lim
k→∞

(
d
(k)
0 /D(k)

)
= λ, (3.68)

lim
k→∞

(
(logN

(k)
0 )/d

(k)
0

)
= δ, and (3.69)

log 2

2
+

log 2

1− 2λ
< δ, (3.70)

then the probability that all elements in BP(A(k), b) and OMP(A(k), b) are

subspace-preserving for all b ∈ S(k)
0 tends to 1 as k →∞.

Condition (3.67) states that if the number of sample points in the subspace

tends to infinity, then subspace-preserving recovery can be achieved as long as

d0/D ≤ 0.5. Furthermore, if the parameters D and d0 also tend to infinity, then

subspace-preserving recovery can be guaranteed as long as the parameters λ
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Figure 3.4: A comparison of the condition in (3.66) and the condition in (3.70).

and δ defined in (3.68) and (3.69) satisfy the condition in (3.70). In particular,

the valid range of λ in (3.67) is extended from (0, 1/65) as in Corollary 2 to

(0, 1/2). This significantly increases the range of problems where subspace-

preserving recovery is applicable. On the other hand, the condition in (3.66) is

tighter than the condition in (3.70) for values of λ that are close to zero, making

it more suitable in that range. This can be seen from Figure 3.4 which gives

a pictorial comparison of the conditions (3.66) and (3.70). In particular, as λ

decreases to zero, the left hand side of (3.66) tends to zero while the left hand

side of (3.70) tends to 1.5 log 2 ≈ 0.45.

3.3.3 Proofs

In this section, we prove the results presented in the random analysis above.

Our proof for instance recovery conditions in Theorem 21 and Corollary 1 are
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based on deriving probabilistic bounds on the geometric conditions for instance

recovery by BP (i.e., (3.29)) and by OMP (i.e., (3.33)). Our proof for univer-

sal recovery conditions in Theorem 22, Corollary 2 and Theorem 23 are based

on deriving probabilistic bounds on the PRC condition in (3.38), that is, the

geometric conditions for universal recovery by BP and OMP. In all the three

geometric conditions (3.29), (3.33) and (3.38), the left hand side is the inradius

of the set K(±A0), while the right hand side is the maximum inner product (in

absolute value) between a subset of S0 (i.e., a point in D(A0, b) for the case of

(3.29), all points inR(A0, b) for the case of (3.29) and all points in S0 for the case

of (3.38)) and all points in A−. Therefore, we need to derive probabilistic bound

on the inradius of K(±A0), the inner product between pairs of data points (for

(3.29) and (3.33)) as well as inner product between data points and all points

in a subspace (for (3.38)).

3.3.3.1 Volume of high-dimensional balls

We start with some background. Let Bp(r) := {v ∈ Rp : ∥v∥2 ≤ r} be a ball

of radius r in space Rp. It is well known that its volume is computed in closed

form, i.e.,

vol(Bp(r)) = vp · rp, in which vp = π
p
2 /Γ(

p

2
+ 1). (3.71)
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In above, Γ(·) is the Gamma function, i.e.,

Γ(x) =

∫ ∞

0

e−ttx−1dt, x > 0. (3.72)

We list the following properties of the Gamma function which will be used

in our proof.

Lemma 7 ( [68, Proposition 8.1]).

p√
p+ 1

≤
√
2
Γ(p+1

2
)

Γ(p
2
)
≤ √p. (3.73)

Lemma 8 ( [75]).

Γ(x)Γ(y)

Γ(x+ y)
≥ xx−1yy−1

(x+ y)x+y−1
, ∀x, y > 0. (3.74)

3.3.3.2 A bound on the area of spherical caps

Given any w ∈ Sp−1 and β ∈ [0, π], a spherical cap is defined to be

Sp−1
β (w) := {v ∈ Sp−1, θ(w,v) ≤ β}, (3.75)

that is, it is the set of points on Sp−1 whose spherical distance to w is no more

than β.

The following result gives upper and lower bounds for the area of a spherical

cap.
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Lemma 9. For any β ∈ [0, π/2] and any p ≥ 2,

vp−1

pvp
sinp−1 β ≤

σp−1(Sp−1
β (w))

σp−1(Sp−1)
≤ vp−1

vp
sinp−1 β, (3.76)

in which vp is defined in (3.71), and σp−1 is the uniform area measure on Sp−1.

Proof. We prove by using geometry. We are motivated by the proof of a similar

result in [144].

We first prove the upper bound. In Figure 3.5 we show a projection of Rp

onto any two-dimensional space that contains the origin and w. The ratio of the

area of the spherical cap Sp−1
β (w) to the area of the entire unit sphere Sp−1, is the

same as the ratio of the volume of the red solid cone (i.e. cone(Sp−1
β (w)) where

cone(·) is the conic hull of a set) intersecting with Bp(1) to the volume of Bp(1).

Also note that the part of the red solid cone in the Bp(1) lie completely in the

green dotted cylinder, i.e., the set {v ∈ RD : 0 ≤ ⟨w,v⟩ ≤ 1, ∥P⊥
w(v)∥2 ≤ sin β},

where P⊥
w(·) is the operator of projecting the point onto the hyperplane whose

normal vector is w. Therefore,

σp−1(Sp−1
β (w))

σp−1(Sp−1)
=

vol(cone(Sp−1
β (w)) ∩ Bp(1))

vol(Bp(1))
(3.77)

≤ vol({v ∈ RD : 0 ≤ ⟨w,v⟩ ≤ 1, ∥P⊥
w(v)∥2 ≤ sin β})

vol(Bp(1))
(3.78)

=
sinp−1 β · vp−1 · 1

1p · vp
= sinp−1 β

vp−1

vp
, (3.79)
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in which we have used (3.71). This gives the upper bound.

To prove the lower bound, consider again the part of the red solid cone in

the Bp(r). Its volume is bounded below by the intersection of the red solid cone

and the cylean dashed cone. It is known that the volume of a p-dimensional

cone (i.e. a cone with a p − 1 dimensional base) is the product of the p − 1

dimensional area of its base and its height divided by p. Therefore, the volume

of the intersection of these two cones is vp−1 sin
p−1 β · 1/p. This gives the lower

bound in (3.76).

There are other existing closed formulas and other lower and upper bounds

for the area of spherical caps, see, e.g. [15, 93, 94]. Among them, we will also

use the following well-known upper bound.

Lemma 10 ( [15]). For any β ∈ [0, π/2] and any p ≥ 2,

σp−1(Sp−1
β (w))

σp−1(Sp−1)
≤ exp (−p cos2 β

2
). (3.80)

3.3.3.3 A bound on the area near the subspace

Lemma 11 below provides an upper bound on the area of the region {w ∈

SD−1 : θ(w,S0) ≤ β}. Geometrically, this region contains points on the unit

sphere SD−1 that lie close to the subspace S0 (see Figure 3.2).
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O w
β

Figure 3.5: Illustration for proving bounds for area of spherical cap.

Lemma 11. For any D > d0 > 0 and any θ̄ ∈ [0, π/2],

σD−1({w ∈ SD−1 : θ(w,S0) ≤ θ̄})
σD−1(SD−1)

≤ min(
√
2
D
,

√
e
D

d0

d0

) sinD−d0 θ̄, (3.81)

in which σD−1 is the uniform area measure on SD−1.

Proof. Our proof technique is similar to that of Lemma 9 for bounding the area

of spherical caps. Consider the set

R := {w ∈ RD : ∥PS0(w)∥2 ≤ 1, ∥P⊥
S0
(w)∥2 ≤ sin θ̄}, (3.82)

where PS0(·) is the operator of projecting the point onto the subspace S0 and
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P⊥
S0
(·) is the orthogonal complement. By geometry, it can be seen that

σD−1({w ∈ SD−1 : θ(w,S0) ≤ θ̄})
σD−1(SD−1)

=
vol(cone({w ∈ SD−1 : θ(w,S0) ≤ θ̄}) ∩ BD(1))

vol(BD(1))
≤ vol(R)

vol(BD(1))
. (3.83)

We can calculate the volume of R as

vol(R) = (vd0 · 1d0) · (vD−d0 · sinD−d0 θ̄). (3.84)

Therefore, we get

vol(R)
vol(BD(1))

=
vd0vD−d0

vD
· sinD−d0 θ̄. (3.85)

It remains to prove that vd0vD−d0

vD
≤ min(

√
2
D
,
√

eD
d0

d0

). By using (3.71) and (3.74)

we have

vd0vD−d0

vD
=

Γ(D
2
+ 1)

Γ(d0
2
+ 1)Γ(D−d0

2
+ 1)

=
D
2
· Γ(D

2
)

d0
2

D−d0
2
· Γ(d0

2
) · Γ(D−d0

2
)

≤
(
D
2

)D
2(

d0
2

) d0
2
(
D−d0

2

)D−d0
2

=

√
DD

dd00 (D − d0)D−d0
.

(3.86)

We now give two upper bounds for the last term in (3.86). First, note that the

term dd00 (D − d0)
D−d0 in the denominator is a decreasing function of d0 when

d0 < D/2 and is an increasing function when d0 > D/2. Thus we have dd00 (D −
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d0)
D−d0 ≥

(
D
2

)D, which further implies that

√
DD

dd00 (D − d0)D−d0
≤

√
DD(
D
2

)D =
√
2
D
. (3.87)

We now derive the second bound. Let Λ = D/d0. We have

√
DD

dd00 (D − d0)D−d0
=

√
(d0Λ)d0Λ

dd00 · (d0(Λ− 1))d0(Λ−1)

=

√
(d0Λ)d0Λ

(d0(Λ− 1))d0Λ
· (d0(Λ− 1))d0

dd00

=

√
1

(1− 1
Λ
)d0Λ
· (Λ− 1)d0

=

√
Λ(1− 1

Λ
)1−Λ

d0

≤
√
Λe

d0
.

(3.88)

The inequality in the last line follows from the fact that (1 − 1
Λ
)1−Λ < e, which

we prove in the rest of this proof.

We first show that (1 − 1
Λ
)1−Λ is monotonically increasing in the range Λ ∈

(1,∞). This is equivalent to showing that the function f(Λ) := (1−Λ) log(1− 1
Λ
)

is increasing. By taking the first and second order derivatives of f(Λ) we get

df

dΛ
= − log(1− 1

Λ
) + (1− Λ)

1
Λ2

1− 1
Λ

= − log(1− 1

Λ
)− 1

Λ
,

d2f

dΛ2
=

1
Λ2

1
Λ
− 1

+
1

Λ2
=

1

Λ(1− Λ)
+

1

Λ2
=

1

Λ2(1− Λ)
.

(3.89)

Note that d2f
dΛ2 < 0 for all Λ ∈ (1,∞), therefore df

dΛ
is monotonically decreasing.
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In addition, we can check that limΛ0→∞
df
dΛ

⏐⏐⏐
Λ=Λ0

= limΛ0→∞
(
− log(1− 1

Λ0
)− 1

Λ0

)
=

0. Therefore, we have df
dΛ

> 0 for all Λ ∈ (1,∞), which implies that f(Λ) is

monotonically increasing.

We now proceed to compute the limit of (1 − 1
Λ
)1−Λ as Λ tends to infinity.

Take x = −1/Λ. We have

lim
Λ→∞

(1− 1

Λ
)1−Λ = lim

x→0−
(1 + x)1+

1
x

= lim
x→0−

(1 + x) · lim
x→0−

(1 + x)
1
x = 1 · e = e.

(3.90)

Combine this fact with the monotonicity of (1− 1
Λ
)1−Λ, we get that (1− 1

Λ
)1−Λ < e

for all Λ ∈ (1,∞). This finishes the proof.

3.3.3.4 A bound on covering radius

The covering radius measures the property of dictionary atoms A0. Specif-

ically, given N0 points independently and uniformly sampled from the unit

sphere Sd0−1 of the subspace S0, we want to measure how well-spread out they

are in terms of having small covering radius. Intuitively, as N0 increases, the

unit sphere is expected to be better covered by A0 and the covering radius is

expected to be smaller.

We start by introducing a previous result which is formulated in [139] and

has been used extensively in the study of subspace clustering [153,171,172].
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Theorem 24 ( [6, 139]). Let P ⊆ Sd0−1 be a set of N0 points that are drawn

independently and uniformly at random on Sd0−1. If N0 < d0e
d0/2, then

P
(
cos γ0 < c(N0/d0)

√
logN0/d0

2d0

)
≤ e−

√
N0d0 . (3.91)

This result will be used to prove our result in Theorem 21 and in Theo-

rem 22. On the other hand, this result imposes the assumption that N0 is

bounded from above, i.e., N0 < d0e
d0/2. To prove our asymptotic results, we

need a novel bound on the covering radius that allows us to send N0 to infinity

while fixing d0. We will prove the following result.

Theorem 25. Let P ⊆ Sd0−1 be a set of N0 points that are drawn independently

and uniformly at random on Sd0−1.

• If d0 = 1 and N0 > 0, then it has γ(±P) = 0 surely.

• If d0 ≥ 2, then for any γ̄ ≤ π/2, it has γ(±P) < γ̄ with probability at least

1−
√
2πd0 · 4d0−1

sind0−1 γ̄
· exp

(
− 2N0√

2πd0

sind0−1 γ̄

2d0−1

)
(3.92)

In Theorem 25, the result for the case d0 = 1 can be see directly from the

definition of covering radius. In the following, we provide a proof for the case
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d0 ≥ 2. The idea of the proof is taken from [80]. Assume that there is a set of

spherical caps of radius ϵ on Sd0−1 that can cover the entire unit sphere (i.e., an

ϵ-covering as in Definition 17). If the N0 sample points are distributed on Sd0−1

in a way that every spherical cap contains at least one sample point, then the

covering radius of this set of N0 sample points is upper-bounded by 2 × ϵ. In

the following, we first give an upper bound on the cardinality of an ϵ-covering

of a sphere Sd0−1, then a lower bound on the probability that each spherical cap

contains at least one point if N0 points are are drawn at random on Sd0−1.

A bound on the ϵ-covering of spheres. We first formally present the concept

of ϵ-covering.

Definition 17 (ϵ-covering). A set V ⊆ Sd0−1 is called an ϵ-covering of Sd0−1 if

the covering radius of V is no more than ϵ.

As part of the proof to Theorem 25, we need an estimation on the cardinality

of an ϵ-covering of sphere. While one can always take infinitely many points

for an ϵ-covering, we want to find a small ϵ-covering. The concept of covering

number captures the smallest ϵ-covering.

Definition 18 (Covering number). Given ϵ > 0, the covering number of Sd0−1
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is defined as

C(Sd0−1, ϵ) := min{card(V) : V is an ϵ-covering of Sd0−1}, (3.93)

i.e., the cardinality of the smallest ϵ-covering of Sd0−1.

We have the following upper bound on the covering number.

Lemma 12. The covering number of Sd0−1, d0 ≥ 2 is bounded by

C(Sd0−1, ϵ) ≤ d0
vd0−1

vd0
sind0−1 ϵ

2

, ∀ϵ ≤ π

2
. (3.94)

Proof. The proof follows from the standard volume packing argument, e.g. [142,

158]. We can construct a specific ϵ-covering V iteratively. Initially, V is set to

be empty. In the first step, an arbitrary point in Sd0−1 is added into V. In the

following steps, we will find any point w in Sd0−1 which satisfies θ(w,V) > ϵ

and then add this w into V. This procedure is terminated when no such point

exists.

It is easy to see that this procedure must terminate in finite number of

iterations. In fact, we will provide an upper bound on the number of iterations.

Before that, we first point out that V constructed in this way is an ϵ-covering

of Sd0−1, or equivalently, γ(V) ≤ ϵ. Otherwise, there would be a w such that

θ(w,V) > ϵ, and by the procedure above, this b should be added to V. Thus,

116



CHAPTER 3. SUBSPACE-PRESERVING RECOVERY THEORY

we can bound the covering number C(Sd0−1, ϵ) by the cardinality of V that we

constructed above.

We now give an upper bound on card(V). Imagine that centered at each

point in V we draw a spherical cap (i.e. a ball in the space Sd0−1 with distance

metric θ(·, ·))) with radius ϵ/2. By the construction of V, any two points in V are

at least ϵ away, so the balls do not intersect with each other. Therefore, the sum

of the area of these balls is strictly less than the area of the entire unit sphere.

By using (3.76), we can bound the area of these balls, i.e., for any w ∈ V ,

σd0−1(Sd0−1
ϵ/2 (w))

σd0−1(Sd0−1)
≥ vd0−1

d0vd0
sind0−1 ϵ

2
.

Therefore, the cardinality of V is bounded by

card(V) ≤ σd0−1(Sd0−1)

σd0−1(Sd0−1
ϵ/2 (w))

≤ d0
vd0−1

vd0
sind0−1 ϵ

2

.

As we have constructed a specific ϵ-covering, the covering number is bounded

by the cardinality of V. This finishes the proof.

Proof of Theorem 25. Given the bound on the covering number in the previ-

ous part, we further provide a lower bound on the probability that every circle

in the ϵ-covering contains at least one sample point. This will give a bound on

covering radius as stated in Theorem 25.
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Proof. Let ϵ = γ̄/2, and let V be any ϵ-covering of Sd0−1 such that card(V) =

C(Sd0−1, ϵ). Centered at each point of V we draw a spherical ball of radius ϵ,

then the union of these balls covers the entire sphere. The idea of the proof is

that if each of the balls contain at least one point from the set ±P , then the

covering radius γ(±P) is bounded by 2ϵ. This is because that for any w ∈ Sd0−1,

it lies in at least one of the balls, and when this ball contains at least one point

in ±P , then the distance θ(w,±P) is bounded above by 2ϵ. Concretely, denote

M := card(V) and let B0, · · · , BM be the balls illustrated above, then

P (γ(±P) > 2ϵ) ≤ P (∃i ∈ {1, · · · ,M} s.t. Bi ∩ ±P = ∅)

≤
M∑
i=1

P (Bi ∩ ±P = ∅)

=
M∑
i=1

(1− 2
σd0−1(Bi)

σd0−1(Sd0−1)
)N0 ,

where the factor of 2 appears in the last line because we are considering cover-

ing radius of symmetrized points ±P . Notice that each Bi is a spherical cap of

radius ϵ, we can apply (3.76) and get

P (γ(±P) > 2ϵ) ≤
M∑
i=1

(1− 2vd0−1

d0vd0
sind0−1 ϵ)N0 ≤M exp(−N0

2vd0−1

d0vd0
sind0−1 ϵ). (3.95)
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We can further bound M by (3.94), so

P (γ(±P) > 2ϵ) ≤ d0
vd0−1

vd0
sind0−1 ϵ

2

exp(−N0
2vd0−1

d0vd0
sind0−1 ϵ). (3.96)

By using the result (3.73), we get

P (γ(±P) > 2ϵ) ≤
√
2πd0

sind0−1 ϵ
2

exp(− 2N0√
2πd0

sind0−1 ϵ). (3.97)

By replacing ϵ with γ̄/2 and using the fact that sin(x) ≤ 2 sin(x/2) for any x ∈

[0, π] we get (3.92).

3.3.3.5 Proof of Theorem 21 and Corollary 1

The proof follows by providing probabilistic bounds on each side of the de-

terministic conditions for BP in (3.29) and for OMP in (3.33).

We start with the proof for BP. Let v be any point in D(A0, b). From Theo-

rem 10, BP achieves subspace-preserving recovery if

cos γ0 > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−. (3.98)

A lower bound on the left hand side of (3.98) is given by Theorem 24, i.e., we

have

P
(
cos γ0 ≥ c(N0/d0)

√
logN0/d0

2d0

)
≥ 1− e−

√
N0d0 , (3.99)
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To obtain an upper bound on the right hand side of (3.98), note that the vector v

is independent with any vector a ∈ A−, and that any vector a ∈ A− is uniformly

distributed on the unit sphere of the ambient space. Therefore, the distribution

of the inner product ⟨ v
∥v∥2 ,a⟩ is as if one is fixed, and the other is uniformly

distributed on SD−1. We can then obtain an upper bound on the inner product

⟨ v
∥v∥2 ,a⟩ from the upper bound on the area of spherical cap in Lemma 10:

P (|⟨ v

∥v∥2
,a⟩| ≤ cos β) ≥ 1− 2 · exp (−D cos2 β

2
). (3.100)

By taking cos β =
√

6 logN0+2 logα
D

in (3.100), we get

P
(
|⟨ v

∥v∥2
,a⟩| ≤

√
6 logN0 + 2 logα

D

)
≥ 1− 2

αN3
0

. (3.101)

By applying a union bound to at most αN0 points in A−, we get

P
(
|⟨ v

∥v∥2
,a⟩| ≤

√
6 logN0 + 2 logα

D
for all a ∈ A−

)
≥ 1− 2

N2
0

. (3.102)

The statement in Theorem 21 for BP follows by applying union bound on

(3.99) and (3.102).

We now provide the proof for OMP. From Theorem 11, OMP achieves subspace-
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preserving recovery if

cos γ0 > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−, (3.103)

for all v ∈ R(A0, b). From Definition 13, the set R(A0, b) contains all the

residual points obtained in the procedure of OMP applied to A0 and b. Since

b ∈ S0 = span(A0), the residual vector in step 4 (see Algorithm 1) will be a zero

vector after d0 iterations (i.e., when the working setW contains d0 data points).

Therefore, the OMP procedure will terminate after at most d0 iterations. This

implies that the set R(A0, b) contains at most d0 number of data points. From

this fact, we have

P (|⟨ v

∥v∥2
,a⟩| <

√
6 logN0 + 2 logα

D
for all v ∈ R(A0, b)) ≥ 1− 2d0

αN3
0

. (3.104)

By applying a union bound to at most αN0 points in A−, we get

P
(
|⟨ v

∥v∥2
,a⟩| ≤

√
6 logN0 + 2 logα

D
for all a ∈ A− and v ∈ R(A0, b)

)
≥ 1− 2d0

N2
0

.

(3.105)

The statement in Theorem 21 for OMP follows by applying union bound on

(3.99) and (3.105).

We now proceed to the proof of Corollary 1. The proof is based on show-

ing that for all k large enough, the quadruple (D(k), d
(k)
0 , N

(k)
0 , N

(k)
− ) satisfies the
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conditions in Theorem 21 under the assumptions (3.60), (3.61) and (3.62).

We first show that d(k) < N
(k)
0 < d

(k)
0 ed

(k)
0 /2 for all k large enough. Since

limk→∞
logN

(k)
0

log d
(k)
0

= δ (which follows from (3.61)) and δ > 1 (which follows from

(3.62)), we have log d(k) < logN
(k)
0 for all k large enough, which further implies

that d(k) < N
(k)
0 for all k large enough. Moreover, we have

lim
k→∞

logN
(k)
0

log(d
(k)
0 ed

(k)
0 /2)

= lim
k→∞

logN
(k)
0

(log d
(k)
0 ) + d

(k)
0 /2

= lim
k→∞

logN
(k)
0

log d
(k)
0

· lim
k→∞

log d
(k)
0

(log d
(k)
0 ) + d

(k)
0 /2

= δ · 0 = 0, (3.106)

which implies that N (k)
0 < d

(k)
0 ed

(k)
0 /2 for all k large enough.

We now show that the condition in (3.59) is satisfied for all k large enough.

This can be seen by taking the limit on the right hand side of (3.59), which

gives us

lim
k→∞

12 logN
(k)
0 + 4 logα

c2(N
(k)
0 /d

(k)
0 ) log(N

(k)
0 /d

(k)
0 )

=
limk→∞

(
12

logN
(k)
0

log d
(k)
0

+ 4 logα

log d
(k)
0

)
limk→∞

(
c2(N

(k)
0 /d

(k)
0 ) · logN

(k)
0 −log d

(k)
0

log d
(k)
0

)
=

12δ + 0
1
8
· (δ − 1)

=
96

1− 1
δ

<
1

λ
= lim

k→∞

D(k)

d(k)
, (3.107)

where we have used the fact that c2(N
(k)
0 /d

(k)
0 ) = 1

8
if N (k)

0 /d
(k)
0 is larger than a

certain threshold. Therefore, we have 12 logN
(k)
0 +4 logα

c2(N
(k)
0 /d

(k)
0 ) log(N

(k)
0 /d

(k)
0 )

< D(k)

d(k)
for all k large

enough.
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Finally, it is easy to see that the probability of success in Theorem 21 goes

to 1 as k →∞. This establishes our claim that subspace-preserving recovery is

achieved with the probability that tends to 1.

3.3.3.6 Proof of Theorem 22 and Corollary 2

We prove this theorem by deriving probabilistic bounds on each side of the

PRC condition in Theorem 12, which can be rewritten as follows:

cos γ0 > |⟨
v

∥v∥2
,a⟩|, ∀a ∈ A−, ∀v ∈ S0 − {0}. (3.108)

Note that on the right hand side of (3.108), each vector a ∈ A− is uniformly

distributed on the unit sphere SD−1. Therefore, we can apply Lemma 11 and

get

P (|⟨ v

∥v∥2
,a⟩| ≤ cos β for all v ∈ S0 − {0}) ≥ 1−

√
e
D

d0

d0

sinD−d0 β

≥ 1−
√

e
D

d0

d0

exp(−D − d0
2

cos2 β). (3.109)

Applying a union bound to all a ∈ A−, we get

P (|⟨ v

∥v∥2
,a⟩| ≤ cos β for all v ∈ S0 − {0} and for all a ∈ A−)

≥ 1−N− ·
√

e
D

d0

d0

exp(−D − d0
2

cos2 β). (3.110)
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By taking cos β = min
(
1,

√
4 logN0+2 logα+d0 log(e

D
d0

)

D−d0

)
, we further get

P (|⟨ v

∥v∥2
,a⟩| ≤

√
4 logN0 + 2 logα + d0 log(e

D
d0
)

D − d0
for all v ∈ S0 − {0}

and all a ∈ A−) ≥ 1− 1

N0

. (3.111)

Applying union bound to (3.111) and (3.99) we get

P (cos γ0 > |⟨
v

∥v∥2
,a⟩| for all v ∈ S0 − {0} and all a ∈ A−)

≥ 1− exp(−
√
N0d0)−

1

N0

, (3.112)

provided that the following condition holds:

√
4 logN0 + 2 logα + d0 log(e

D
d0
)

D − d0
< c(N0/d0)

√
logN0/d0

2d0
. (3.113)

By taking squares on both sides of (3.113) and rearranging the terms, we can

get the condition in (3.63).

We proceed to present the proof of Corollary 2. The proof is based on show-

ing that the condition (3.63) in Theorem 22 is satisfied for all k large enough
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under the conditions (3.64), (3.65) and (3.66). Concretely, we have

lim
k→∞

1 +
8 logN

(k)
0 + 4 logα + 2d

(k)
0 log(eD(k)

d
(k)
0

)

c2(N
(k)
0 /d

(k)
0 ) log(N

(k)
0 /d

(k)
0 )

= 1 +
limk→∞

(8 logN
(k)
0

d
(k)
0

+ 4 logα

d
(k)
0

+ 2 log(eD(k)

d
(k)
0

)
)

limk→∞
(
c2(N

(k)
0 /d

(k)
0 ) · log(N

(k)
0 )−log(d

(k)
0 )

d
(k)
0

)
= 1 +

8δ + 0 + 2(1− log λ)
1
8
· (δ − 0)

= 65 + 16 · 1− log λ

δ
< 65 + 16 · 1− log λ

16 · λ(1−log λ)
1−65λ

=
1

λ
= lim

k→∞

d
(k)
0

D
(k)
0

,

(3.114)

where in going from line 2 to line 3 we have used the assumptions that logN (k)
0 /d

(k)
0 →

δ, d
(k)
0 /D(k) → λ, and the fact that c2(N

(k)
0 /d

(k)
0 ) = 1

8
when N

(k)
0 /d

(k)
0 is large

enough (as stated in [139]); in line 4 we have used the assumption in (3.66).

This shows that the condition (3.63) in Theorem 22 is satisfied for all k large

enough. Meanwhile, it is easy to see that the probability of success in Theo-

rem 22 goes to 1 as k →∞. This establishes our claim that subspace-preserving

recovery is achieved with the probability that tends to 1.

We now proceed to the proof of Corollary 2. The proof is based on show-

ing that for all k large enough, the quadruple (D(k), d
(k)
0 , N

(k)
0 , N

(k)
− ) satisfies the

conditions in Theorem 22 under the assumptions (3.64), (3.65) and (3.66).
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We first show that d(k) < N
(k)
0 < d

(k)
0 ed

(k)
0 /2 for all k large enough. Note that

lim
k→∞

N
(k)
0

d
(k)
0

= lim
k→∞

N
(k)
0

logN
(k)
0

· lim
k→∞

logN
(k)
0

d
(k)
0

=∞ · δ =∞, (3.115)

where we have used the fact that limk→∞
N

(k)
0

(d
(k)
0 )δ

= 1 which follows from (3.61).

This implies that d(k) < N
(k)
0 for all k large enough. Moreover, we ahve

lim
k→∞

logN
(k)
0

log(d
(k)
0 ed

(k)
0 /2)

= lim
k→∞

logN
(k)
0

(log d
(k)
0 ) + d

(k)
0 /2

= lim
k→∞

logN
(k)
0

d
(k)
0

· lim
k→∞

d
(k)
0

log(d
(k)
0 + d

(k)
0 /2)

= δ · 2 < 1, (3.116)

where we have used the assumption that δ < 1/2. This implies that N
(k)
0 <

d
(k)
0 ed

(k)
0 /2 for all k large enough.

We now show that the condition in (3.63) is satisfied for all k large enough.

This can be seen by taking the limit on the right hand side of (3.63), which
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gives us

lim
k→∞

1 +
8 logN

(k)
0 + 4 logα + 2d

(k)
0 log(eD(k)

d
(k)
0

)

c2(N
(k)
0 /d

(k)
0 ) log(N

(k)
0 /d

(k)
0 )

= 1 +
limk→∞

(8 logN
(k)
0

d
(k)
0

+ 4 logα

d
(k)
0

+ 2 log(eD(k)

d
(k)
0

)
)

limk→∞
(
c2(N

(k)
0 /d

(k)
0 ) · log(N

(k)
0 )−log(d

(k)
0 )

d
(k)
0

)
= 1 +

8δ + 0 + 2(1− log λ)
1
8
· (δ − 0)

= 65 + 16 · 1− log λ

δ
< 65 + 16 · 1− log λ

16 · λ(1−log λ)
1−65λ

=
1

λ
= lim

k→∞

d
(k)
0

D
(k)
0

,

(3.117)

where we have used the fact that c2(N
(k)
0 /d

(k)
0 ) = 1

8
when N

(k)
0 /d

(k)
0 is large

enough. This shows that the condition (3.63) in Theorem 22 is satisfied for

all k large enough. Finally, it is easy to see that the probability of success in

Theorem 22 goes to 1 as k →∞. This finishes the proof.

3.3.3.7 Proof of Theorem 23

The theorem is derived from providing probabilistic bounds on each side of

the PRC condition in Theorem 12, which could be rewritten as

γ(±A0) < θ(S0,A−). (3.118)
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We will use the upper bound on the left hand side of (3.118) derived in Theo-

rem 25. We can also derive the following lower bound on the right hand side of

(3.118) from Lemma 11:

P (θ(A−,S0) > θ̄) ≥ 1−N− min(
√
2
D
,

√
e
D

d0

d0

) · sinD−d0 θ̄. (3.119)

We first prove the result stated in Theorem 23 (i) where D, d0 are fixed and

both N
(k)
0 , N

(k)
− →∞. Let γ(k)

0 := γ(±A(k)
0 ).

Consider the case where d0 = 1. From Theorem 25, we have P (γ
(k)
0 = 0) = 1

as long as N
(k)
0 > 0. Moreover, if condition (3.67) is satisfied, i.e., if D ≥ 2d0

then it has P (θ(A(k)
− ,S(k)

0 ) > 0) = 1 from (3.119). Therefore, we have P (γ
(k)
0 <

θ(A(k)
− ,S(k)

0 )) = 1 for all k large enough (i.e., for all k such that N
(k)
0 > 0). We

therefore conclude that limk→∞ P (γ
(k)
0 < θ(A(k)

− ,S(k)
0 ))→ 1.

We now consider the general case where d0 > 1. For each k, we set both γ̄ in

(3.92) and θ̄ in (3.119) to be such that

sin γ̄(k) = sin θ̄(k) = N
(k)
0

− D−d0+1
d0(D−d0) . (3.120)

128



CHAPTER 3. SUBSPACE-PRESERVING RECOVERY THEORY

Plugging it into (3.92) and (3.119) we get

P (γ
(k)
0 < γ̄(k)) ≥ 1−

√
2πd0 · 4d0−1N

(k)
0

(D−d0+1)(d0−1)
d0(D−d0) ·

exp(− 2√
2πd02d0−1

N
(k)
0

D−2d0+1
d(D−d0) ), (3.121)

P (θ(A(k)
− ,S(k)

0 ) > θ̄(k)) ≥ 1− α ·
√
2
D
·N (k)

0

−D−2d0+1
d0 , (3.122)

in which we have used the assumption that N (k)
− < αN

(k)
0 for all k large enough.

Note that when condition (3.67) is satisfied, i.e., when D ≥ 2d0, the probabilities

of γ(k)
0 < γ̄(k) and θ(A(k)

− ,S(k)
0 ) > θ̄(k) all converge to one as N (k)

0 →∞. By applying

a union bound, we get

P (γ
(k)
0 < θ(A(k)

− ,S(k)
0 ))→ 1 as k →∞. (3.123)

Now we turn to proving Theorem 23 (ii) in which all elements in the quadru-

ple (D(k), d
(k)
0 , N

(k)
0 , N

(k)
− ) goes to infinity as k → ∞. Set δ′ = δ

log 2
, and let

ϵ = 1
2
(δ′ − 1

2
− 1

1−2λ
)(1− 2λ). Note that ϵ is positive when the condition in (3.70)

is satisfied. Then we set

sin θ̄ = 2−
1
2+(δ′+ϵ)λ

1−λ , sin γ̄ = 21−δ′+ϵ. (3.124)
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Notice that

sin θ̄ ≥ sin γ̄

⇔ −
1
2
+ (δ′ + ϵ)λ

1− λ
≥ 1− δ′ + ϵ

⇔ −1

2
− (δ′ + ϵ)λ ≥ (1− δ′ + ϵ)(1− λ)

⇔ (1− 2λ)δ′ ≥ 3

2
+ ϵ− λ

⇔ δ′ ≥
3
2
+ ϵ− λ

1− 2λ

⇔ δ′ − 1

2
− 1

1− 2λ
≥ ϵ

1− 2λ

⇔ 2ϵ ≥ ϵ,

(3.125)

in which we have plugged in the definition of ϵ in the last step. This shows that

θ̄ ≥ γ̄. By substituting sin θ̄ and sin γ̄ into (3.119) and (3.92), respectively, we get

P (γ
(k)
0 < γ̄) ≥ 1−

√
2πd

(k)
0 · 2(d

(k)
0 −1)(1+δ′−ϵ) · exp

(
− 2N

(k)
0√

2πd
(k)
0

2(ϵ−δ′)(d
(k)
0 −1)

)
, (3.126)

and

P (θ(A(k)
− ,S(k)

0 ) > θ̄) ≥ 1− αN
(k)
0 · 2

D(k)

2
−

1
2+(δ′+ϵ)λ

1−λ
(D(k)−d

(k)
0 )

= 1− αN
(k)
0 · 2

(
− λ

1−λ
( 1
2
+δ′+ϵ)D(k)+

1
2+(δ′+ϵ)λ

1−λ
d
(k)
0

)
.

(3.127)

Now, from the assumption that logN
(k)
0

d
(k)
0

→ δ, we have log2 N
(k)
0

d
(k)
0

→ δ′. Therefore,
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N
(k)
0 > 2d

(k)
0 (δ′−ϵ/2) for all k large enough. Plugging this bound on N

(k)
0 into (3.126)

we get

P (γ
(k)
0 < γ̄) ≥ 1−

√
2πd

(k)
0 · 2(d

(k)
0 −1)(1+δ′−ϵ) · exp

(
− 2 · 2d

(k)
0 ϵ/2√

2πd
(k)
0

2δ
′−ϵ

)
. (3.128)

By taking k →∞, we have

lim
k→∞

P (γ
(k)
0 < γ̄) = 1. (3.129)

Furthermore, take any ϵλ ∈
(
0, λϵ(1−λ)

1
2
+ϵλ

)
and any ϵδ ∈

(
0, ϵλ

(1−λ)(λ+ϵλ)
δ′
)
. Since

log2 N
(k)
0

d
(k)
0

→ δ′ and d
(k)
0

D(k) → λ, we have D(k) >
d
(k)
0

λ+ϵλ
and N

(k)
0 < 2d

(k)
0 (δ′+ϵδ) for k large

enough. Plugging these bounds on D(k) and N
(k)
0 into (3.127) we can get

P (θ(A(k)
− ,S(k)

0 ) > θ̄)

≥ 1− α · 2d
(k)
0 (δ′+ϵδ) · 2

(
− λ

1−λ
( 1
2
+δ′+ϵ)

d
(k)
0

λ+ϵλ
+

1
2+(δ′+ϵ)λ

1−λ
d
(k)
0

)
=1− α · 2d

(k)
0 ·C(δ′,ϵδ ,λ,ϵλ,ϵ),

(3.130)
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where

C(δ′, ϵδ, λ, ϵλ, ϵ)

= δ′ + ϵδ −
λ

1− λ

1
2
+ δ′ + ϵ

λ+ ϵλ
+

1
2
+ (δ′ + ϵ)λ

1− λ

=
(
δ′ + ϵδ −

λ

1− λ

1

λ+ ϵλ
δ′ +

λ

1− λ
δ′
)

+
(
− λ

1− λ

ϵ+ 1
2

λ+ ϵλ
+

1
2
+ ϵλ

1− λ

)
=
(
ϵδ − δ′

ϵλ
(1− λ)(λ+ ϵλ)

)
+
( 1

2
+ ϵλ

(1− λ)(λ+ ϵλ)
(ϵλ −

ϵλ(1− λ)
1
2
+ ϵλ

)
)
< 0.

(3.131)

Therefore, we can see that

lim
k→∞

P (θ(A(k)
− ,S(k)

0 ) > θ̄) = 1. (3.132)

By applying union bound on (3.132) and (3.129), we get

P (γ
(k)
0 < θ(A(k)

− ,S(k)
0 ))→ 1 as k →∞. (3.133)

3.4 Relation with sparse recovery

Sparse recovery is the problem of recovering a sparse signal c from linear

measurements b = Ac. As we have seen in Chapter 2, sparse recovery can be

achieved by BP and OMP if the dictionary A satisfies the incoherence condition
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or has the restricted isometry properties.

The problem of sparse recovery can be considered as a particular case of the

problem of subspace-preserving recovery. Let us take A = A0 ∪ A− in which

A0 contains the columns of A corresponding to the nonzero entries of c, and

A− correspond to the rest of the columns of A. If the atoms in A0 are linearly

independent, then there is only one subspace-preserving solution, which is the

sparse signal c. In this case, c can be recovered if subspace-preserving recovery

can be achieved. From this observation, we can formulate the following result

which can be derived by directly applying the PRC in Theorem 12 and the DRC

in Theorem 13.

Theorem 26 (Guaranteed sparse recovery via PRC and DRC). Given a dictio-

nary A, any s0-sparse vector c can be recovered from the observation b = Ac

by BP and OMP if for any s0 atoms in A, denoted by A0, it has 1) atoms in

A0 are linearly independent, and 2) the PRC (respectively, the DRC) holds for

A = A0 ∪ A−.

This result gives new conditions for guaranteeing correct recovery of sparse

signals which does not use the incoherence or restricted isometry properties.

Note that the requirement that any s0 columns are linearly independent is

necessary for the uniqueness of s0 sparse solutions. The requirement that the

PRC/DRC is satisfied has the same geometric interpretation as that of the PRC

and the DRC for the subspace-preserving recovery, i.e., any s0 atoms of the
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dictionary should be well separated and all other atoms should be sufficiently

away from the span of these s0 atoms (by the PRC) or from a subset of the span

of them (by the DRC).

For practical purposes, Theorem 26 also has the benefit that the conditions

can be checked, as explained below. First, the set of dual points D0 can be

written out explicitly when A0 contains linearly independent point.

Lemma 13. Assume that A0 contains s0 linearly independent atoms. The set

of dual points, D0, contains exactly 2s0 points specified by {A0(A
⊤
0 A0)

−1 · u,u ∈

Us0}, where Us0 := {[u1, · · · , us0 ], ui = ±1, i = 1, · · · , s0}.

Proof. From Lemma 4, there are possibly at most 2s0 dual points in the case

where A0 is of full column rank. So in order to prove the result, it is enough

to show that the set {A0(A
⊤
0 A0)

−1 · u,u ∈ Us0} contains 2s0 points, and each of

them is a dual point.

To show that there are 2s0 different points, notice that Us0 has 2s0 points, so

we are left to show that for any u1,u2 ∈ Us0 with u1 ̸= u2, it has A0(A
⊤
0 A0)

−1u1 ̸=

A0(A
⊤
0 A0)

−1u2. This can be easily established by noticing that rank(A0(A
⊤
0 A0)

−1) =

rank(A0) = s0, i.e., A0(A
⊤
0 A0)

−1 is also of full column rank, so its null space con-

tains only the origin. Consequently, if A0(A
⊤
0 A0)

−1u1 = A0(A
⊤
0 A0)

−1u2, then

u1 = u2, which is a contradiction.

Now we show that A0(A
⊤
0 A0)

−1u0 is a dual point for any u0 ∈ Us0. Denote

v0 = A0(A
⊤
0 A0)

−1u0. By definition, we need to show that v0 is an extreme
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point of the set Ko
0 = {v ∈ S0 : ∥A⊤

0 v∥∞ ≤ 1}. First, v0 is in Ko
0 because

∥A⊤
0 v0∥∞ = ∥u0∥∞ = 1. Second, suppose there are two points, v1,v2 ∈ Ko

0, such

that

v0 = (1− λ)v1 + λv2 (3.134)

for some λ ∈ (0, 1), we need to show that it must be the case that v1 = v2. Notice

that the columns of A0(A
⊤
0 A0)

−1 span the space S0 and that v1,v2 ∈ Ko
0 ⊆ S0,

there exist c1, c2 such that vi = A0(A
⊤
0 A0)

−1ci, i = 1, 2. Then by using (3.134),

it has

A0(A
⊤
0 A0)

−1u0 = (1− λ)A0(A
⊤
0 A0)

−1c1 + λA0(A
⊤
0 A0)

−1c2, (3.135)

and by left multiplying A⊤
0 , we have

u0 = (1− λ)c1 + λc2. (3.136)

Now, consider equation (3.136) for each entry separately, i.e., [u0]i = (1−λ)[c1]i+

λ[c2]i, where i indexes an entry in the vector. The left hand side, being ±1,

is a extreme point of the set [−1, 1], while the right hand side is the convex

combination of two points in [−1, 1], so it necessarily has that [c1]i = [c2]i. This

is true for all entries i, so c1 = c2, thus v1 = v2, which shows that v0 is indeed

an extreme point.
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Given the dual points, one can then compute θ(A−,D0) on the RHS of the

DRC. Moreover, the covering radius γ0 can be computed by the relation in

Lemma 8, i.e.

cos γ0 = 1/max{∥v∥2 : v ∈ Ko
0} = 1/max{∥v∥2 : v ∈ D0}, (3.137)

where the last equality follows from the fact that D0 is the set of extreme points

of Ko
0. Thus, all terms in the PRC/DRC can be computed and the conditions in

Theorem 26 can be checked.

To finish the discussion of Theorem 26, we compare it with canonical results

for sparse signal recovery. Specifically, from Theorem 3 we see that µ(A) < 1
2s0−1

is a sufficient condition for BP and OMP to recover any s0-sparse signals. The

next theorem states that this is a stronger requirement than that of Theorem

26.

Theorem 27. If a dictionary A satisfies µ(A) < 1
2s0−1

, then for any partition of

A into A0 and A− where card(A0) = s0, it has that the atoms in A0 are linearly

independent and that both PRC and DRC hold.

Proof. Suppose µ(A) < 1/(2s0 − 1). It is well-known in the study of sparse

recovery (e.g. [53]) that the columns of A0 are linearly independent. In the

following, we only need to show that the PRC is true, as the DRC is implied by

the PRC.
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We start by giving an upper bound on 1/ cos γ0. From Lemma 13, given any

v ∈ Ko
0 where v ̸= 0, it can be written as v = A0(A

⊤
0 A0)

−1u for some u ̸= 0 with

∥u∥∞ ≤ 1. Thus,

∥v∥22 = v⊤v = u⊤(A⊤
0 A0)

−1u ≤ s0 ·
u⊤(A⊤

0 A0)
−1u

u⊤u
.

Denote λmax(·), λmin(·) to be the maximum and minimum eigenvalue of a sym-

metric matrix, respectively. We get

∥v∥22 ≤ s0 ·max
u̸=0

u⊤(A⊤
0 A0)

−1u

u⊤u

= s0 · λmax(A
⊤
0 A0)

−1 =
s0

λmin(A⊤
0 A0)

.

Notice that A⊤
0 A0 is close to an identity matrix, i.e., its diagonals are 1 and

the magnitude of each off-diagonal entry is bounded above by µ(A). By using

Gersgorin’s disc theorem, λmin(A
⊤
0 A0) ≥ 1− (s0 − 1)µ(A), so

∥v∥22 ≤
s0

1− (s0 − 1)µ(A)
.

As a consequence, 1/ cos γ0 ≤
√

s0
1−(s0−1)µ(A)

by Lemma 8.

We now give an upper bound for the right hand side of the PRC. By defini-

tion,

cos θ(A−,S0) = max
v∈S0,
∥v∥2=1

∥A⊤
−v∥∞.
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We thus need to bound ∥A⊤
−v∥∞ for any v ∈ S0 with ∥v∥2 = 1. Consider the

optimization program

c∗ = argmin
c
∥c∥1 s.t. v = A0c.

and its dual program

max
ω
⟨ω,v⟩ s.t. ∥A⊤

0 ω∥∞ ≤ 1.

The strong duality holds since the primal problem is feasible, and the objective

of the dual is bounded by ∥ω∥2∥v∥2 ≤ 1/ cos γ0. Consequently, it has ∥c∗∥1 ≤

1/ cos γ0. This leads to

∥A⊤
−v∥∞ = ∥A⊤

−A0c
∗∥∞ ≤ ∥A⊤

−A0∥∞∥c∗∥1 ≤ µ(A)/ cos γ0, (3.138)

in which ∥ · ∥∞ for matrix treats the matrix as a vector.

Now we combine the results from the above two parts.

cos θ(A−,S0) ≤ µ(A)/ cos γ0 = cos γ0 · (µ(A)/ cos γ2
0) ≤ cos γ0

s0µ(A)
1− (s0 − 1)µ(A)

,

(3.139)

in which

s0µ(A)
1− (s0 − 1)µ(A)

= 1 +
µ(A)(2s0 − 1)− 1

1− (s0 − 1)µ
< 1,
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thus cos θ(A−,S0) < cos γ0, which is the PRC.

This result shows that the PRC/DRC conditions in Theorem 26 are implied

by the condition of mutual coherence. While the mutual coherence condition

requires all atoms of A to be incoherent from each other, the PRC and the DRC

provide more detailed requirements, in terms of the distribution of points A0

as well as the relation of A0 and A−.

3.5 Applications to multi-subspace learn-

ing

In this section, we derive conditions for subspace-preserving recovery in

the sparse representation based classification (SRC) and the sparse subspace

clustering (SSC) methods. We will start our analysis with the case where the

subspaces are independent.

Definition 19 (Independent subspaces). A collection of subspaces {Sℓ}nℓ=1 is

called independent if dim
(∑

ℓ Sℓ
)
=

∑
ℓ dim(Sℓ), where

∑
ℓ Sℓ is defined as the

subspace {
∑

ℓ xℓ : xℓ ∈ Sℓ}.

Notice that two subspaces are independent if and only if they are disjoint,

i.e., if they intersect only at the origin. However, pairwise disjoint subspaces
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need not be independent, e.g., three lines in R2 are disjoint but not indepen-

dent. Notice also that any subset of a set of independent subspaces is also

independent. Therefore, any two subspaces in a set of independent subspaces

are independent and hence disjoint. In particular, this implies that if {Sℓ}nℓ=1

are independent, then Sℓ and S(−ℓ) :=
∑

κ̸=ℓ Sκ are independent.

Under the independent subspace model, we will show that both the SRC

and the SSC provably produce subspace-preserving representations regardless

of how the data points are arranged on the subspaces (other than the require-

ment that there are enough data points from each subspace). Furthermore, by

considering both the arrangement of the subspaces as well as the arrangement

of data points on the subspaces, we extend the analysis to the case where the

subspaces need not be independent and subspace-preserving recovery can still

be guaranteed. Finally, we will show that such conditions on the arrangement

of subspaces and data points can be satisfied with high probability if both the

subspaces and the data points are drawn according to a probabilistic model.

3.5.1 Theoretical analysis of SRC

In the subspace classification problem (see Definition 4), we are given a

training data set X := {xj}Nj=1 that contains data from a union of n subspaces.

That is, there exists a partition of X into X 1, · · · ,X n, such that X ℓ contains

points from a low dimensional subspace Sℓ. Te goal is to classify any test data
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x, which is known to lie in the union of subspaces ∪n
ℓ=1Sℓ, to the subspace it

belongs to. The SRC solves the classification problem by finding a sparse rep-

resentation vector c such that x = Xc by using BP or OMP. It is then expected

that the representation vector c is subspace-preserving, i.e., the nonzero en-

tries of c correspond to columns of X that are in the same subspace of x.

Therefore, x can be correctly classified by assigning it to the class to which

points in the training data X corresponding to nonzero entries of c belongs (see

Algorithm 2).

Independent subspace model. We first consider the case where the collec-

tion of subspaces ∪n
ℓ=1Sℓ is independent. If the sparse recovery in SRC is solved

by BP, then subspace-preserving recovery can be achieved for any test point in

the union of subspaces. More specifically, we have the following result which is

reformulated from [60].

Theorem 28 (Subspace-preserving recovery for SRC-BP: independent sub-

space model). Consider training data X = ∪n
ℓ=1X ℓ that lie in a union of in-

dependent subspaces {Sℓ}nℓ=1. Assume that span(X ℓ) = Sℓ for each ℓ = 1, · · · , n.

Then, all elements in BP(X ,x) are subspace-preserving for any point x ∈ ∪n
ℓ=1Sℓ.

We refer the reader to [60] for a proof of Theorem 28. In the following,

we proceed to the analysis of SRC-OMP. Note that when computing sparse

representation of a test data x using the training data X , the goal is to select
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points in the same subspace as x. The process for selecting these points occurs

in step 3 of Algorithm 1, where the dot products between all points xj and the

current residual v(k) are computed and the point with the highest product (in

absolute value) is chosen. Since in the first iteration the residual is v(0) = x, we

could immediately choose a point xj in the wrong subspace whenever the dot

product of xj with a point in a wrong subspace is larger than the dot product

of xj with points in the subspace it lies in. What the following theorem shows

is that, even though OMP may select points in the wrong subspaces as the

iterations proceed, the coefficients associated to points in other subspaces will

be zero at the end. Therefore, OMP is guaranteed to find a subspace-preserving

representation.

Theorem 29 (Subspace-preserving recovery for SRC-OMP: independent sub-

space model). Consider training data X = ∪n
ℓ=1X ℓ that lie in a union of indepen-

dent subspaces {Sℓ}nℓ=1. Assume that span(X ℓ) = Sℓ for each ℓ = 1, · · · , n. Then,

all elements in OMP(X ,x) are subspace-preserving for any point x ∈ ∪n
ℓ=1Sℓ.

Proof. Without the loss of generality we take a test point x ∈ Sℓ. We need to

show that the output of OMP is subspace-preserving. As an assumption, the

termination parameters in OMP are set to be ϵ = 0 and kmax = N (i.e., the

total number of points in the dictionary X ). This means, in particular, that

OMP always terminates with some iteration k∗ ≤ N with v(k∗) = 0, which

can be seen to hold as follows. If the OMP algorithm computes v(k) = 0 for
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some k ≤ N − 1, then there is nothing to prove. Thus, to complete the proof,

we suppose that v(k) ̸= 0 for all 0 ≤ k ≤ N − 1, and proceed to prove that

v(N) = 0. In the OMP algorithm, the data points in X that are indexed by

W (k) for any k are always linearly independent. This is evident from step 4

of Algorithm 1, as the residual vector v(k) is orthogonal to every data points

in X that are indexed by W (k), thus when choosing a new entry to be added

to W (k) in step 3 of Algorithm 1, points that are linearly dependent with the

points indexed by W (k) would have zero inner product with v(k), so would not

be picked. Since all of the data points in X have been added by iteration N , we

know that data points in X are linearly independent and must contain at least

dℓ linearly independent vectors from Sℓ. We conclude that v(k∗) = v(N) = 0 with

k∗ = N , as claimed. In light of this result and denoting W∗ := W (k∗), it follows

from v(k∗) = 0 that PW∗ ·x = x by step 4 of Algorithm 1, so that x is in the span

of {xj ∈ X : j ∈ W∗}.

As a consequence of the previous paragraph, the final output of OMP, given

by

c∗ = argmin
c:Supp(c)⊆W∗

∥x−Xc∥2,

will satisfy x = X · c∗. We rewrite it as

x−
∑

j:xj∈Sℓ

j∈W(k∗)

xj · c∗j =
∑

j:xj /∈Sℓ

j∈W(k∗)

xj · c∗j . (3.140)
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Observe that the left hand side of (3.140) is in subspace Sℓ while the right

hand side is in subspace S−ℓ. By the assumption that the set of all subspaces is

independent, we know Sℓ and S−ℓ are also independent, so they intersect only

at the origin. As a consequence, we have

0 =
∑

j:xj /∈Sℓ

j∈W(k∗)

xj · c∗j =
∑

j:xj /∈Sℓ

xj · c∗j , (3.141)

where we also used the fact that c∗j = 0 for all j /∈ W (k∗). Combining (3.141)

with the early fact that the points xj : j ∈ W (k) are linearly independent for all

k (this includes k = k∗), we know that

c∗j = 0 if xj /∈ Sℓ and j ∈ W (k∗). (3.142)

Finally, we use this to prove that c∗ is subspace-preserving. To this end, sup-

pose that c∗j ̸= 0, which from the definition of c∗ means that j ∈ W (k∗). Using

this fact, c∗j ̸= 0, and (3.142) allows us to conclude that c∗j ∈ Sℓ. Thus the

solution c∗ is subspace-preserving.

Arbitrary subspace model. We now proceed to the analysis where the sub-

spaces are not necessarily independent. Assume that all the points in X are

normalized to have unit ℓ2 norm. By applying the universal recovery condition

in Theorem 13 to each of the subspaces, we can get the following result which
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establishes the correctness of SRC.

Theorem 30 (Subspace-preserving recovery for SRC). Given training dataX =

∪n
ℓ=1X ℓ that lie in a union of subspaces {Sℓ}nℓ=1, Then, all elements in BP(X ,x)

and OMP(X ,x) are subspace-preserving for any point x ∈ ∪n
ℓ=1Sℓ if

rℓ > max
v∈Dℓ

max
x∈X−ℓ

|⟨ v

∥v∥2
,x⟩|, ∀ℓ = 1, · · · , n, (3.143)

where rℓ is the inradius of the convex hull of ±X ℓ, Dℓ is the set of dual points of

X ℓ, and X−ℓ := X − X ℓ is the set of all points not in Sℓ.

This theorem asserts that SRC is correct if the DRC is satisfied for each

of the subspaces, i.e., if the training data in each of the subspaces are well-

distributed, and for each subspace the dual points Dℓ are sufficiently separated

from training data in all other subspaces.

By extending Theorem 22, we have the following randomized result which

reveals the effect of subspace dimension and number of subspaces on the cor-

rectness of SRC. For simplicity, we consider the case where all subspaces {Sℓ}nℓ=1

have the same dimension d and all X ℓ contain the same number of points ρ · d

(ρ > 1 is the “density” of points in each subspace).

Theorem 31 (Subspace-preserving recovery for SRC in random model). Given

the training data X = ∪n
ℓ=1X ℓ in which each X ℓ contains ρ · d points drawn in-

dependently and uniformly at random on the unit sphere of a randomly gen-
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erated subspace Sℓ ⊆ RD of dimension d. Assume that 1 < ρ < ed/2. Let

N(ρ, d, n) = ρ · d · n be the total number of data points in X . Then, under the

condition that

D

d
> 1 +

8 logN(ρ, d, n) + 2d log D
d

c2(ρ) log(ρ)
, (3.144)

the probability that all elements in BP(X ,x) and OMP(X ,x) are subspace-

preserving for all x ∈ ∪n
ℓ=1Sℓ is at least 1− 1

ρ·d − n · e−
√
ρ·d.

Proof. Fix any ℓ ∈ {1, · · · , n}. We can apply Theorem 24 which gives us

P
(
cos γℓ ≥ c(ρ)

√
log ρ

2d

)
≥ 1− e−

√
ρd. (3.145)

On the other hand, from Lemma 11 we get

P (max
v∈Sℓ

|⟨ v

∥v∥2
,x⟩| ≤ cos β) ≥ 1−

√
e
D

d0

d0

exp(−D − d0
2

cos2 β), (3.146)

for any fixed x ∈ X−ℓ. Applying a union bound we get

P (max
v∈Sℓ

max
x∈X−ℓ

|⟨ v

∥v∥2
,x⟩| ≤ cos β) ≥ 1− (n− 1)ρd ·

√
e
D

d0

d0

exp(−D − d0
2

cos2 β).

(3.147)
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By taking cos β = min
(
1,

√
4 logN(ρ,d,n)+d0 log(e

D
d0

)

D−d0

)
, we further get

P (max
v∈Sℓ

max
x∈X−ℓ

|⟨ v

∥v∥2
,x⟩| ≤

√
4 logN(ρ, d, n) + d0 log(e

D
d0
)

D − d0
) ≥ 1− (n− 1)ρd

N(ρ, d, n)2

≥ 1− 1

N(ρ, d, n)
(3.148)

Applying union bound to (3.148) and (3.145) we get

P (cos γℓ > max
v∈Sℓ

max
x∈X−ℓ

|⟨ v

∥v∥2
,x⟩|) ≥ 1− exp(−√ρd)− 1

N(ρ, d, n)
, (3.149)

provided that the following condition holds:

√
4 logN(ρ, d, n) + d log(eD

d
)

D − d
< c(ρ)

√
log ρ

2d
. (3.150)

One can check that this condition is equivalent to the condition in (3.144). By

applying a union bound, we get

P (cos γℓ > max
v∈Sℓ

max
x∈X−ℓ

|⟨ v

∥v∥2
,x⟩| for all ℓ ∈ {1, · · · , n})

≥ 1− n exp(−√ρd)− n

N(ρ, d, n)
= 1− n exp(−√ρd)− 1

ρ · d
, (3.151)

provided that (3.144) is satisfied. Therefore, the conclusion of the theorem

follows from Theorem 30.
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Theorem 31 shows that SRC is correct if the subspace dimension d is low

enough relative to the ambient dimension D. In addition, it reflects the fact

that as the number of subspaces n increases, subspace-preserving recovery be-

comes more difficult as the right hand side of condition (3.144) is increasing

in n, making the condition harder to be satisfied. Moreover, the probability of

success decreases with n.

3.5.2 Theoretical analysis of SSC

Let X = {x1, · · · ,xN} be a set of points drawn from a union of unknown sub-

spaces {Sℓ}nℓ=1. Subspace clustering addresses the problem of clustering these

points into their respective subspaces, without knowing their membership a

priori (see Definition 5).

The SSC solves the subspace clustering task by expressing each data point

as a sparse linear combination of all other data points. Specifically, for each

xj ∈ X we let X−j = X \ {xj} be the set of all other data points in the dataset.

Assume that xj lies in the subspace Sℓ. Then, the set X−j can be decomposed

into two disjoint sets X−j := X ℓ
−j ∪ X−ℓ, where X ℓ

−j contains all data points in

Sℓ except xj itself, and X−ℓ contains all data points in all subspaces except Sℓ.

If the elements in BP(xj,X−j) and OMP(xj,X−j) are subspace-preserving, then

the nonzero entries of such sparse solutions correspond to data points in X ℓ
−j,

which are also in the subspace Sℓ. One can compute such sparse solutions for

148



CHAPTER 3. SUBSPACE-PRESERVING RECOVERY THEORY

all points xj ∈ X , and clusters can be obtained by extracting the connected

components from the similarity graph constructed from such sparse represen-

tations (see Algorithm 3).

Independent subspace model. If the collection of subspaces ∪n
ℓ=1Sℓ is inde-

pendent, then both SSC-BP and SSC-OMP produce subspace-preserving rep-

resentations. More specifically, we have the following result.

Theorem 32 (Subspace-preserving recovery for SSC: independent subspace

model). Consider data points X = ∪n
ℓ=1X ℓ that lie in a union of independent

subspaces {Sℓ}nℓ=1. Assume that span(X ℓ
−j) = Sℓ for each j : xj ∈ Sℓ and each

ℓ = 1, · · · , n. Then, all elements in BP(X−j,xj) and OMP(X−j,xj) are subspace-

preserving for all points xj ∈ X .

The proof of this theorem follows directly from the results in Theorem 28

and Theorem 29.

Arbitrary subspace model. Assume that all the points in X are normalized

to have unit ℓ2 norm. We can apply Theorem 10 with A0, A− and b set to be

X ℓ
−j, X−ℓ, and xj, respectively. Then, the condition in (3.29) guarantees the

subspace-preserving recovery of xj by BP. We can rephrase this result in terms

of the properties of the subspaces to make it more interpretable. For each Sℓ,

we denote the minimum leave-one-out inradius of sample points in Sℓ as

rℓ := min
j:xj∈Sℓ

r(K(±X ℓ
−j)). (3.152)
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Theorem 33 (Subspace-preserving recovery for SSC-BP). Given data X =

{x1, · · · ,xN} that lie in a union of subspaces {Sℓ}nℓ=1, all elements in BP(X−j,xj)

are subspace-preserving for all points xj ∈ X if

rℓ > max
v∈Dℓ

max
x∈X−ℓ

|⟨ v

∥v∥2
,x⟩|, ∀ℓ = 1, · · · , n, (3.153)

where rℓ is defined in (3.152). Dℓ is any set such that for all j : xj ∈ Sℓ, it has

Dℓ ∩D(X ℓ
−j,xj) ̸= ∅, i.e., it contains at least one point from each of D(X ℓ

−j,xj) for

all xj in Sℓ.

Similarly, from Theorem 11 we can derive the following result which pro-

vides guarantee for subspace-preserving recovery in SSC-OMP.

Theorem 34 (Subspace-preserving recovery for SSC-OMP). Given data X =

{x1, · · · ,xN} that lie in a union of subspaces {Sℓ}nℓ=1, all elements in OMP(X−j,xj)

are subspace-preserving for all points xj ∈ X if

rℓ > max
v∈Rℓ

max
x∈X−ℓ

|⟨ v

∥v∥2
,x⟩|, ∀ℓ = 1, · · · , n, (3.154)

where rℓ is defined in (3.152), and Rℓ := ∪j:xj∈Sℓ
R(X ℓ

−j,xj) is the union of the

sets of residual points for all xj in Sℓ.

Theorem 33 and Theorem 34 assert that SSC-BP and SSC-OMP produce

subspace-preserving representations for all data points if the points in each
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of the subspaces are well-distributed so that rℓ is large. Meanwhile, the set of

dual pointsDℓ in SSC-BP and the set of residual pointsRℓ in SSC-OMP for each

subspace Sℓ should be well separated from all data points in other subspaces.

We now consider the fully random union of subspaces model in [139], where

the basis elements of each subspace are chosen uniformly at random from the

unit sphere of the ambient space and the data points from each subspace are

uniformly distributed on the unit sphere of that subspace. Theorem 35 shows

that the sufficient conditions in Theorem 33 and Theorem 34 hold true with

high probability (i.e. the probability goes to 1 as the density of points grows

to infinity) given some conditions on the subspace dimension d, the ambient

space dimension D, the number of subspaces n and the number of data points

per subspace.

Theorem 35 (Subspace-preserving recovery for SSC in random model). Given

the dataset X = ∪n
ℓ=1X ℓ in which each X ℓ contains ρ · d + 1 points drawn in-

dependently and uniformly at random on the unit sphere of a randomly gen-

erated subspace Sℓ ⊆ RD of dimension d. Assume that 1 < ρ < ed/2. Let

N(ρ, d, n) = (ρ · d + 1) · n be the total number of data points in X . Then, un-

der the condition that

D

d
>

12 logN(ρ, d, n)

c2(ρ) log(ρ)
, (3.155)

the probability that all elements in BP(X−j,xj) are subspace-preserving for all
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points xj ∈ X is at least 1− 2
N(ρ,d,n)

−N(ρ, d, n) · e−
√
ρ·d, and the probability that

all elements in OMP(X−j,xj) are subspace-preserving for all points xj ∈ X is at

least 1− 2d
N(ρ,d,n)

−N(ρ, d, n) · e−
√
ρ·d.

3.5.2.1 Comparison with other work

We now compare our analysis of SSC-BP and SSC-OMP with prior results.

In [139], it is shown that SSC-BP produces subspace-preserving represen-

tations if the condition in (3.153) holds, but with a different definition of Dℓ.

In particular, [139] defines Dℓ as ∪j:xj∈Sℓ
{vj : vj is a point in D(X ℓ

−j,xj) that

has the minimum Euclidean norm}. Note that this definition of Dℓ is a partic-

ular case of the Dℓ defined in Theorem 33. Therefore, this result in [139] is a

particular case of Theorem 33.

Finally, we compare our results with those in [55] for SSC-OMP. Define the

principal angle between two subspaces Sℓ and Sk as:

θ∗ℓ,m = min
v∈Sℓ

∥v∥2=1

min
w∈Sm
∥w∥2=1

arccos⟨v,w⟩. (3.156)

It is shown in [55] that the output of SSC-OMP is subspace-preserving if for all

ℓ = 1, . . . , n,

max
j:xj∈X ℓ

max
k:xk∈X−ℓ

|⟨xj,xk⟩| < rℓ −
2
√
1− (rℓ)2

4
√
12

max
m:m̸=ℓ

cos θ∗ℓ,m. (3.157)
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The merit of this result is that it introduces the subspace angles in the condi-

tion, and satisfies the intuition that the algorithm is more likely to work if the

subspaces are far apart from each other. However, the right hand side of the

condition shows an intricate relationship between the intra-class property rℓ

and the inter-class property θ∗ℓ,m, which greatly complicates the interpretation

of the condition. More importantly, as we show below, the condition is more

restrictive than (3.154), which makes Theorem 34 a stronger result.

Notice that the inequality in (3.157) implies that ∀m ̸= ℓ,

max
j:xj∈X ℓ

max
k:xk∈Xm

|⟨xj,xk⟩| < rℓ −
√
2− 2rℓ cos θ

∗
ℓ,m, (3.158)

see Lemma 1 in their paper. We consider the following two case.

Case 1. If rℓ ≤ 1/2, then
√
2− 2rℓ ≥ 1, thus

(3.158)⇒ max
j:xj∈X ℓ

max
k:xk∈Xm

|⟨xj,xk⟩| < rℓ − cos θ∗ℓ,m ⇒ cos θ∗ℓ,m < rℓ

⇒ max
v∈Rℓ

max
k:xk∈Xm

|⟨ v

∥v∥2
,xk⟩| < rℓ ⇔ (3.154).
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Case 2. If rℓ > 1/2, then

(3.158)⇒ max
j:xj∈X ℓ

max
k:xk∈Xm

|⟨xj,xk⟩| < rℓ −
√
2− 2rℓ max

j:xj∈X ℓ
max

k:xk∈Xm
|⟨xj,xk⟩|

⇒ max
j:xj∈X ℓ

max
k:xk∈Xm

|⟨xj,xk⟩| < rℓ/(1 +
√
2− 2rℓ)

⇒ max
j:xj∈X ℓ

max
k:xk∈Xm

|⟨xj,xk⟩| < rℓ/(1 + (2− 2rℓ))

⇒ max
j:xj∈X ℓ

max
k:xk∈Xm

|⟨xj,xk⟩| < (rℓ)
2 ⇒ (3.154),

see [193] for a proof of the last step. Therefore, we have shown that the condi-

tion in (3.157) is implied by (3.154).

3.5.3 Theoretical analysis of EnSC

From the theoretical analysis in the previous section, SSC is an appro-

priate method for the task of subspace clustering as it is guaranteed to pro-

duce subspace-preserving similarity matrices. However, the practical perfor-

mance of SSC can be limited by the connectivity issue, which states that the

data points from the same cluster may not form a connected component of

the similarity graph due to the sparseness of the representation, causing over-

segmentation in the clustering result.

In this section, we provide a theoretical analysis of elastic-net subspace

clustering (EnSC) which uses a mixture of ℓ1 and ℓ2 norms to balance the

subspace-preserving and connectedness properties of data similarity graph.
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Recall that in EnSC, the self-representation coefficients are computed from

solving the following optimization problem:

min
cj

λ∥c∥1 +
1− λ

2
∥c∥22 s.t. xj = Xcj, cjj = 0, (3.159)

where λ ∈ [0, 1] controls the trade-off between the ℓ1 and ℓ2 regularizations.

In particular, if λ = 1, then EnSC reduces to SSC-BP. Since the elastic net

problem is more general than BP, we cannot directly apply previous results on

the subspace-preserving recovery by BP. In the following, we will develop novel

concepts and results for the analysis of EnSC.

While the data points in a subspace clustering setup satisfy the self-expressive

model (i.e., xj = Xcj) in principle, practical data is often corrupted by noise.

Therefore, instead of imposing self-expressiveness as an equality constraint,

we hereafter consider the following optimization problem in which the self-

representation is imposed in a penalty form, i.e.,

min
cj

λ∥cj∥1 +
1− λ

2
∥cj∥22 +

γ

2
∥xj −Xcj∥22 s.t. cjj = 0 (3.160)

where γ > 0 is a trade-off parameter between the elastic net regularization and

the self-representation residual xj −Xcj.

We will provide theoretical conditions under which the similarity graph gen-

erated by EnSC via solving (3.160) is subspace-preserving, as well as a clear
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geometric interpretation for the balance between the subspace-preserving and

connectedness properties.

3.5.3.1 Geometry of the elastic-net solution

We first present a geometric analysis of the elastic net solution. Consider

the objective function

fEN(c; b,A) := λ∥c∥1 +
1− λ

2
∥c∥22 +

γ

2
∥b−Ac∥22, (3.161)

where b ∈ RD, A = [a1, · · · ,aN ] ∈ RD×N , γ > 0, and λ ∈ [0, 1) (the reader is

referred to the appendix of this chapter for a study of the case λ = 1). Without

loss of generality, we assume that b and {aj}Nj=1 are normalized to be of unit ℓ2

norm in our analysis. The elastic net model then computes

c∗(b,A) := argmin
c

fEN(c; b,A). (3.162)

We note that c∗(b,A) is unique since fEN(c; b,A) is a strongly convex function;

we use the notation c∗ in place of c∗(b,A) when the meaning is clear.

A fundamental result that serves as the basis for the analysis of the elastic

net solution in this section is the next lemma.

Lemma 14 ( [51,86]). The vector ĉ ∈ RN is the unique solution to (3.162) if and
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Figure 3.6: Illustration of the structure of the solution c∗ for a data matrix A
containing 100 randomly generated points in R2, which are shown as blue dots
in the x-y plane. The z direction shows the magnitude for each coefficient c∗j .
The red dot represents the oracle point δ(b,A), with its direction denoted by
the red dashed line. The value for γ is fixed at 50, but the value for λ varies as
depicted.

only if it satisfies

(1− λ)ĉ = Tλ
(
A⊤ · γ(b− Aĉ)

)
. (3.163)

Proof. We provide a sketch of the proof for completeness. Since problem (3.162)

is strongly convex, ĉ is the unique optimal solution if and only if it satisfies the

following optimality condition:

A⊤ · γ(b− Aĉ) = (1− λ)ĉ+ λz. (3.164)

for some z ∈ ∂∥ĉ∥1. Then, by taking the soft-thresholding Tλ(·) on both sides of

(3.164) we get (3.163). For a proof of the reverse implication, suppose ĉ satisfies

(3.163). For each j = 1, · · · , N , by considering the three cases ĉj > 0, ĉj = 0,

and ĉj < 0 separately, one can establish that the j-th row of (3.164) is satisfied

when the corresponding row of (3.163) holds.
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We first introduce the concept of an oracle point.

Definition 20 (Oracle Point). The oracle point associated with the optimiza-

tion problem (3.162) is defined to be

δ(b,A) := γ ·
(
b−Ac∗(b,A)

)
. (3.165)

When there is no risk of confusion, we omit the dependency of the oracle point

on b and A and write δ(b,A) as δ.

Notice that the oracle point is unique since c∗ is unique, and that the oracle

point cannot be computed until the optimal solution c∗ has been computed.

The next result gives a critical relationship involving the oracle point that

is exploited by our subsequent analysis. It follows directly from Lemma 14.

Theorem 36. The solution c∗ to problem (3.162) satisfies

(1− λ)c∗ = Tλ(A⊤δ), (3.166)

where Tλ(·) is the soft-thresholding operator (applied componentwise to A⊤δ)

defined as Tλ(v) = sgn(v)(|v| − λ) if |v| > λ and 0 otherwise.

Theorem 36 shows that if the oracle point δ is known, the solution c∗ can be

written out directly. Moreover, it follows from (3.165) and (3.166) that δ = 0 if

and only if b = 0.
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In Figure 3.6, we depict a two dimensional example of the solution to the

elastic net problem (3.162) for different values of the tradeoff parameter λ. As

expected, the solution c∗ becomes denser as λ decreases. Moreover, as predicted

by Theorem 36, the magnitude of the coefficient c∗j is a decaying function of the

angle between the corresponding dictionary atom aj and the oracle point δ

(shown in red). If aj is far enough from δ such that |⟨aj, δ⟩| ≤ λ holds true,

then the corresponding coefficient c∗j is zero. We call the region containing the

nonzero coefficients the oracle region. We can formally define the oracle region

by using the quantity µ(·, ·) to denote the coherence of two vectors, i.e.,

µ(v,w) :=
|⟨v,w⟩|
∥v∥2∥w∥2

. (3.167)

Definition 21 (Oracle Region). The oracle region associated with the opti-

mization problem (3.162) is defined as

∆(b,A) :=
{
v ∈ RD :∥v∥2 = 1, µ(v, δ) >

λ

∥δ∥2

}
. (3.168)

The oracle region is composed of an antipodal pair of spherical caps of the

unit ball of RD that are located at the symmetric locations ±δ/∥δ∥2, both with

an angular radius of θ = arccos(λ/∥δ∥2) (see Figure 3.7). From the definition

of the oracle region and Theorem 36, it follows that c∗j ̸= 0 if and only if aj ∈
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Figure 3.7: The oracle region ∆(b,A) is illustrated in red. Note that the size
of the oracle region increases as the quantity λ/∥δ∥2 decreases, and vice versa.

∆(b,A). In other words, the support of the solution c∗ are those vectors aj in

the oracle region.

The oracle region also captures the behavior of the solution when columns

from the matrix A are removed or new columns are added. This provides the

key insight into analyzing the subspace-preserving property of EnSC in the

next section.

Proposition 1. For any b ∈ RD, A ∈ RD×N and A′ ∈ RD×N ′ , if no column of A′

is contained in ∆(b,A), then c∗(b, [A,A′]) = [c∗(b,A)⊤,0⊤
N ′×1]

⊤.
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Proof. Notice that c∗(b, A) satisfies

(1− λ)c∗(b, A) = Tλ
(
A⊤γ(b− Ac∗(b, A))

)
= Tλ

⎛⎜⎜⎝A⊤γ
(
b− [A,A′]

⎡⎢⎢⎣ c∗(b, A)

0N ′×1

⎤⎥⎥⎦)⎞⎟⎟⎠ . (3.169)

Using the assumption that no column of A′ is contained in ∆(b, A), it follows

that

(1− λ)0N ′×1 = Tλ
(
A′⊤δ(b, A)

)
= Tλ

(
A′⊤γ(b− Ac∗(b, A))

)
= Tλ

⎛⎜⎜⎝A′⊤γ
(
b− [A,A′]

⎡⎢⎢⎣ c∗(b, A)

0N ′×1

⎤⎥⎥⎦)⎞⎟⎟⎠ .

We may then combine this equality with (3.169) and define the vector ĉ :=

[c∗(b, A)⊤,0⊤
N ′×1]

⊤ to obtain

(1− λ)ĉ = Tλ
(
[A,A′]⊤γ(b− [A,A′]ĉ)

)
, (3.170)

thus by Lemma 14, ĉ must equal c∗(b, [A,A′]).

The interpretation for Proposition 1 is that the solution c∗(b,A) does not

change (modulo padding with additional zeros) when new columns are added
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to the dictionary A, as long as the new columns are not inside the oracle re-

gion ∆(b,A). From another perspective, c∗(b, [A,A′]) does not change if one

removes columns from the dictionary [A,A′] that are not in the oracle region

∆(b, [A,A′]).

Proposition 2. For any b ∈ RD, A ∈ RD×N and A′ ∈ RD×N ′ , denote c∗(b, [A,A′]) =

[c⊤A, c
⊤
A′ ]⊤. If any column of A′ lies within ∆(b,A) , then c⊤A′ ̸= 0.

Proof. We prove the contrapositive; let cA′ = 0. It then follows from cA =

c∗(b, A) that c∗(b, [A,A′]) = [c∗(b, A)⊤,0⊤], and by definition of the oracle point

that δ(b, A) = δ(b, [A,A′]). Now by Theorem 36, we have

(1− λ)

⎡⎢⎢⎣ c∗(b, A)

0

⎤⎥⎥⎦ = Tλ

⎛⎜⎜⎝
⎡⎢⎢⎣ A⊤

A′⊤

⎤⎥⎥⎦ · δ(b, A)
⎞⎟⎟⎠ . (3.171)

From the second block of equations and the definition of ∆(b, A), we have that

no column of A′ lies in the oracle region ∆(b, A), which completes the contra-

positive proof.

This result means that the solution to the elastic net problem will certainly

be changed by adding new columns that lie within the oracle region to the

dictionary.
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3.5.3.2 Subspace-preserving vs. connected solutions

Although the elastic-net has been recently introduced for subspace cluster-

ing in [63, 128], these works do not provide conditions under which the affin-

ity is guaranteed to be subspace-preserving or potential improvements in con-

nectivity. In this section, we give conditions for the affinity to be subspace-

preserving and for the balance between the subspace-preserving and connect-

edness properties. To the best of our knowledge, this is the first time that such

theoretical guarantees have been established.

Let X = [x1, · · · ,xN ] ∈ RD×N be a real-valued matrix whose columns are

drawn from a union of n subspaces of RD, say
⋃n

ℓ=1 Sℓ. The goal of subspace

clustering is to segment the columns of X into their representative subspaces

(see Definition 5). In our analysis, we assume that each xj is of unit norm.

Using the same notation as for (3.162), the proposed EnSC computes c∗(xj,X−j)

for each {xj}Nj=1, i.e.,

c∗(xj,X−j) = argmin
c

fEN(c;xj,X−j), (3.172)

where X−j is X with the j-th column removed. In this section, we focus on a

given vector, say xj. We suppose that xj ∈ Sℓ for some ℓ, and use Xℓ
−j to denote

the submatrix of X with columns from Sℓ except that xj is removed. Since

our goal is to use the entries of c∗(xj,X−j) to construct an affinity graph in
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which only points in the same subspace are connected, we desire the nonzero

entries of c∗(xj,X−j) to be a subset of the columns Xℓ
−j so that no connections

are built between points from different subspaces. If this is the case, we say

that such a solution c∗(xj,X−j) is subspace-preserving. On the other hand,

we also want the nonzero entries of c∗(xj,X−j) to be as dense as possible in

Xℓ
−j so that within each cluster the affinity graph is well-connected2. To some

extent, these are conflicting goals: if the connections are few, it is more likely

that the solution is subspace-preserving, but the affinity graph of each cluster

is not well connected. Conversely, as one builds more connections, it is more

likely that some of them will be false, but the connectivity is improved. In

the following, we give a geometric interpretation of the tradeoff between the

subspace preserving and connectedness properties.

Our analysis is built upon the optimization problem minc fEN(c;xj,X
ℓ
−j).

Note that its solution is trivially subspace preserving since the dictionary Xℓ
−j

is contained in Sℓ. We then treat all points from other subspaces as newly

added columns to Xℓ
−j and apply Propositions 1 and 2. We get the following

geometric result.

Lemma 15. Suppose that xj ∈ Sℓ. Then, the vector c∗(xj,X−j) is subspace

preserving if and only if xk /∈∆(xj,X
ℓ
−j) for all xk /∈ Sℓ.

2In fact, even when each cluster is well-connected, further improving connectivity within
clusters is still beneficial since it enhances the ability of the subsequent step of spectral clus-
tering in correcting any erroneous connections in the affinity graph [164,166].
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Proof. Consider the problem

c∗(xj,X
ℓ
−j) = argmin

c
fEN(c;xj,X

ℓ
−j) (3.173)

and by our notation, let ∆(xj,X
ℓ
−j) be its oracle region.

For the “if” part, we know from Proposition 1 that adding more points that

are outside of the oracle region ∆(xj,X
ℓ
−j) to the dictionary of (3.173) does not

affect its solution. To be more specific, if it holds that xk /∈ ∆(xj,X
ℓ
−j) for all

xk /∈ Sℓ, then by Proposition 1 we have c∗(b,X−j) = P ·[c∗(xj,X
ℓ
−j)

⊤,0⊤]⊤, where

P is some permutation matrix.

For the “only if” part, if any xk /∈ Sℓ is in the oracle region ∆(xj,X
ℓ
−j), then

Proposition 2 shows that the coefficient vector of c∗(b,X−j) that corresponds to

points outside of Sℓ is nonzero. Therefore, the solution is not correct in identi-

fying the l-th subspace.

We illustrate the geometry implied by Lemma 15 in Figure 3.8, where we as-

sume Sℓ is a two dimensional subspace in R3. The dictionary Xℓ
−j is represented

by the blue dots in the plane and the oracle region ∆(xj,X
ℓ
−j) is denoted as the

two red circles. The green dots are all other points in the dictionary. Lemma

15 says that c∗(xj,X−j) is subspace preserving if and only if all green dots lie

outside of the red region.

To ensure that a solution is subspace preserving one desires a small oracle
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S�

Figure 3.8: The structure of the solution for an example in R3 associated with
a point xj (not shown) that lies in the 2-dimensional subspace S�. The blue
dots illustrate the columns of X�

−j, the union of the two red regions is the oracle
region ∆(xj,X

�
−j), and the green points are vectors from other subspaces.

region, while to ensure connectedness one desires a large oracle region. These

facts again highlight the trade-off between these two properties. Recall that

the elastic net balances �1 regularization (promotes sparse solutions) and �2

regularization (promotes dense solutions). Thus, one should expect that the or-

acle region will decrease in size as λ is increased from 0 towards 1. Theorem 37

formalizes this claim. To understand it, we comment that the size of the oracle

region ∆(xj,X
�
−j) is controlled by the quantity λ/‖δ(xj,X

�
−j)‖2 as depicted in

Figure 3.7.

Theorem 37. If xj ∈ S�, then

λ

‖δ(xj,X�
−j)‖2

≥
r2j

rj +
1−λ
λ

, (3.174)
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where rj is the inradius of the convex hull of the symmetrized points in Xℓ
−j, i.e.,

rj := r(conv{±xk : xk ∈ Sℓ and k ̸= j}). (3.175)

We define the right-hand-side of (3.174) to be zero when λ = 0.

The above theorem allows us to determine an upper bound for the size of the

oracle region. This follows since a lower bound on the size of λ/∥δ(xj,X
ℓ
−j)∥2

implies an upper bound on the size of the oracle region (see (3.168) and Fig-

ure 3.7). Also notice that the right hand side of (3.174) is in the range [0, rj)

and is monotonically increasing with λ. Thus, it provides an upper bound on

the area of the oracle region, which decreases as λ increases. This highlights

that the trade-off between the subspace-preserving and connectedness proper-

ties is controlled by λ.

Remark. It would be nice if λ/∥δ(xj,X
ℓ
−j)∥2 was increasing as a function of λ

(we already know that its lower bound given in Theorem 37 is increasing in

λ). However, one can show using the data xj = [0.22, 0.72, 0.66]⊤,

Xℓ
−j =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.55 −0.82 −0.05 0.22

0.22 0.57 0.84 0.78

−0.80 0.00 0.55 0.58

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.176)

and parameter choice γ = 10, that λ/∥δ∥ (with λ = 0.88) is larger than λ/∥δ∥
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(with λ = 0.95).

To prove Theorem 37, we first state the next lemma which can be inter-

preted as giving an equivalent definition of inradius for certain convex sets.

Lemma 16. If {aj}Nj=1 are points with unit ℓ2 norm, then

r
(
conv{±aj}Nj=1

)
= min

v ̸=0
max

j=1,··· ,N
µ(aj,v). (3.177)

The proof follows directly from Theorem 9. The interpretation of Lemma 16

is as follows: one searches for a vector v that is furthest away from all points

{±aj}Nj=1, and the inradius is the coherence of this v with the closest neighbor

in {aj}Nj=1. In other words, it characterizes the covering property of the points

{±aj}Nj=1. If inradius is large then for any point in the space there exists an aj

that is close to it.

Result Theorem 37 follows from the bound on the norm of the oracle point

given below in Lemma 17 and the relation κ ≥ r as revealed by Lemma 16.

Lemma 17. Consider problem (3.162). If we define κ = maxj µ(aj, δ) as the

coherence between the oracle point δ and its closest neighbor among the columns

of A, then

∥δ∥2 ≤
λκ+ 1− λ

κ2
. (3.178)

Proof. If c∗ = 0, then the optimality condition (3.164) shows that ∥A⊤δ∥∞ ≤ λ,
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hence κ∥δ∥2 ≤ λ. From this it is easy to see that (3.178) holds.

Next, we suppose that c∗ ̸= 0, and assume without loss of generality that

every entry in c∗ is positive. (If an entry of c∗ is zero then we can remove the

corresponding column from A without affecting the quantities δ and κ. Also, if

c∗j < 0 for some j, we can change aj to −aj so that the solution will simply have

c∗j changed to −c∗j , which is then positive.) Since all entries of c∗ are positive,

we may conclude that a⊤
j δ > λ for all j.

We now multiply both sides of the optimality condition (3.164) by c∗⊤ to

obtain

⟨c∗, A⊤δ⟩ = (1− λ)∥c∗∥22 + λ∥c∗∥1. (3.179)

Also, by the definition of the oracle point, we have

⟨Ac∗, δ⟩ = ⟨b− δ/γ, δ⟩ = ⟨b, δ⟩ − ∥δ∥22/γ. (3.180)

Notice that since the left-hand-side of (3.179) and (3.180) are the same, we can

equate the right-hand-sides to get

(1− λ)∥c∗∥22 + λ∥c∗∥1 = ⟨b, δ⟩ − ∥δ∥22/γ ≤ ∥δ∥2 − ∥δ∥22/γ.

We now prove a lower bound on the left-hand-side of (3.181) in terms of ∥δ∥2.
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From (3.166) and a⊤
j δ > λ for all j, we have

(1− λ)∥c∗∥22 + λ∥c∗∥1 ≥ (1− λ)c2j + λcj

=
Tλ(a⊤

j δ)
2

1− λ
+

λTλ(a⊤
j δ)

1− λ
=

(a⊤
j δ − λ) · a⊤

j δ

1− λ
(3.181)

for all 1 ≤ j ≤ N . If we now take j to be the index that maximizes ⟨aj, δ/∥δ∥2⟩

and use the definition of κ, then

(1− λ)∥c∗∥22 + λ∥c∗∥1 ≥
(κ∥δ∥2 − λ) · κ∥δ∥2

1− λ
. (3.182)

Combining (3.181) with (3.182), we get an inequality on ∥δ∥2:

(κ∥δ∥2 − λ) · κ∥δ∥2
1− λ

≤ ∥δ∥2 − ∥δ∥22/γ. (3.183)

This inequality gives a bound on ∥δ∥2 of

∥δ∥2 ≤
λκ+ 1− λ

κ2 + (1− λ)/γ
≤ λκ+ 1− λ

κ2
, (3.184)

which completes the proof.
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3.5.3.3 Conditions for a subspace-preserving solution

A sufficient condition for a solution to be subspace preserving is obtained by

combining the geometry in Lemma 15 with the bound on the size of the oracle

region implied by Theorem 37.

Theorem 38. Let xj ∈ Sℓ, δj = δ(xj,X
ℓ
−j) be the oracle point, and rj be the inra-

dius characterization of Xℓ
−j as given by (3.175). Then, c∗(xj,X−j) is subspace

preserving if

max
k:xk /∈Sℓ

µ(xk, δj) ≤
r2j

rj +
1−λ
λ

. (3.185)

Theorem 38 follows from Theorem 39 and the fact that κj ≥ rj as revealed

by Lemma 16. Notice that in Theorem 38 the quantity δj is determined from

Xℓ
−j and that it lies within the subspace Sℓ by definition of δ(xj,X

ℓ
−j). Thus

the left-hand-side of (3.185) characterizes the separation between the oracle

point—which is in Sℓ—and the set of points outside of Sℓ. On the right-hand-

side, rj characterizes the distribution of points in Xℓ
−j. In particular, rj is large

when points are well spread within Sℓ and not skewed toward any direction.

Finally, note that the right-hand-side of (3.185) is an increasing function of

λ, showing that the solution is more likely to be subspace preserving if more

weight is placed on the ℓ1 regularizer relative to the ℓ2 regularizer.

Theorem 38 has a close relationship to the sufficient condition for SSC to

give a subspace preserving solution (the case λ = 1) [139]. Specifically, [139]
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shows that if maxk:xk /∈Sℓ
µ(xk, δj) < rj, then SSC gives a subspace preserving

solution. We can observe that condition (3.185) approaches the condition for

SSC as λ→ 1.

The result stated in Theorem 38 is a special case of the following more gen-

eral result.

Theorem 39. Suppose xj ∈ Sℓ. Let δj = δ(xj,X
ℓ
−j) be the oracle point, and

let κj = maxk ̸=j,xk∈Sℓ
µ(xk, δj) be the coherence of δj with its nearest neighbor in

Xℓ
−j. Then, the solution c∗(xj,X−j) is subspace preserving if

max
k:xk /∈Sℓ

µ(xk, δj) ≤
κ2
j

κj +
1−λ
λ

. (3.186)

Theorem 39 can be obtained by combining Lemma 15 and Theorem 37. The

only difference between this result and that in Theorem 38 is that κj is used

instead of rj for characterizing the distribution of points in Xℓ
−j. We show in

Lemma 16 that rj ≤ κj, which makes Theorem 39 more general than Theorem

38. Geometrically, rj is large if the subspace Sℓ is well-covered by Xℓ
j, while

κj is large if the neighborhood of the oracle closest to δj is well-covered, i.e.,

there is a point in Xℓ
−j that is close to δj. Thus, while the condition in Theorem

38 requires each subspace to have global coverage by the data, the condition

in Theorem 39 allows the data to be biased, and only requires a local region

to be well-covered. In addition, condition (3.186) can be checked when the
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membership of the data points is known. This advantage allows us to check

the tightness of the condition (3.186), which is studied in more details in the

appendix. In contrast, condition (3.185) and previous work on SSC [139, 170]

use the inradius rj, which is generally NP-hard to calculate [139,172].

3.5.3.4 Discussion for the Case λ = 1

As the analyses and results of the previous sections are for λ ∈ [0, 1), in this

section we discuss the case λ = 1. It turns out that the geometric structure of

the elastic net solution for λ = 1 is slightly different. As a result, many of the

theorems and discussions do not apply for λ = 1, so that we need a separate

discussion for most of the results.

The oracle point and oracle region. We use the same definitions of the

oracle point and oracle region as before. While for λ ∈ [0, 1) the oracle point δ is

unique since c∗ is unique due to the strong convexity of the problem, the same

argument does not apply to the case λ = 1. However, we can sill establish the

uniqueness of the oracle point.

Theorem 40. The oracle point δ(b, A) is unique for each choice of λ ∈ [0, 1].

Proof. For λ < 1, the optimization problem (3.162) is strongly convex, thus c∗

is unique. Then, by (3.165), δ(b, A) is unique.
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For λ = 1, we rewrite problem (3.162) equivalently as

min
c,e
∥c∥1 +

γ

2
∥e∥22 s.t. b = Ac+ e. (3.187)

Introducing the dual vector v, the Lagragian function is

L(c, e,v) = ∥c∥1 +
γ

2
∥e∥22 + ⟨v, b− Ac− e⟩, (3.188)

and the corresponding dual problem is

max
v
⟨b,v⟩ − 1

2γ
v⊤v s.t. ∥A⊤v∥∞ ≤ 1, (3.189)

whose objective function is strongly concave with a unique solution v∗. Also,

from the optimality conditions we have v∗ = γe∗ = γ(b − Ac∗(b, A)) = δ(b, A),

so that δ(b, A) is unique.

The geometric structure of the solution. Recall that from Theorem 36 we

know that the oracle region contains points whose corresponding coefficients

are nonzero, i.e., c∗j ̸= 0 if and only if aj ∈ ∆(b, A). For the case λ = 1, this

argument no longer holds. Actually, Theorem 36 still holds for λ = 1, but the

left-hand-side of (3.163) becomes zero, and it means that no column of A is in

the oracle region ∆(b, A). To further understand the structure of the solution,

we need the following result.
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Theorem 41. The solution c∗ = c∗(b, A) to problem (3.162) with λ = 1 satisfies

that if c∗j ̸= 0, then |a⊤
j δ| = 1.

This result follows from the optimality condition. It means that a coefficient

c∗j is nonzero only if aj is on the boundary of the oracle region ∆(b, A), which

we denote as ∂∆(b, A). The opposite is generally not true: if aj ∈ ∂∆(b, A), it

does not necessarily mean that c∗j ̸= 0.

The geometric structure of the solution is thus clear: all columns of A are

outside the oracle region, but some columns of A are in ∂∆(b, A) with some of

these corresponding to nonzero coefficients.

Correctness of EnSC. Theorem 39 gives a sufficient condition for guarantee-

ing the correctness of EnSC when λ ∈ [0, 1). In extending the result to the case

λ = 1 we need a slightly stronger condition.

Theorem 42. Let xj ∈ Sℓ, and δj and κj be defined as in Theorem 39. Then, for

all λ ∈ [0, 1], the solution c∗(xj,X−j) is correct in identifying the subspace Sℓ if

max
k:xk /∈Sℓ

µ(xk, δj) <
κ2
j

κj +
1−λ
λ

. (3.190)

The difference between (3.190) and (3.186) is that the inequality is strict

in (3.190). This modification is necessary to handle the case λ = 1, for the

condition (3.186) does not exclude the case that xk /∈ Sℓ may lie on the boundary

of ∆(xj,X
ℓ
−j) and yet correspond to a nonzero coefficient.
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Finally, we discuss the implication of Theorem 42 in the context of SSC.

When λ = 1, condition (3.190) simplifies to

max
k:xk /∈Sℓ

µ(xk, δj) < κj. (3.191)

In [139] a sufficient condition for SSC is given by

max
k:xk /∈Sℓ

µ(xk, δj) < rj. (3.192)

Using the relationship rj ≤ κj, our condition in (3.191) is a weaker requirement

than that in the previous work. Specifically, condition (3.192) requires that the

entire subspace Sℓ be well-covered by the columns of Xℓ
−j so that rj is large. In

contrast, our condition in (3.191) only requires the neighborhood of the oracle

point δj to be well-covered, i.e., that there exists a column in Xℓ
−j that is close

to δj. Another advantage of our condition (3.191) is that it can be verified when

the ground truth is known. In contrast, the condition in (3.192) cannot be

verified since the computation of rj is generally NP-hard [139].
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Chapter 4

Subspace Clustering with

Large-scale Data

From the previous chapter, we have seen that under certain conditions,

sparse methods can provably produce subspace-preserving solutions in the sub-

space classification and subspace clustering applications, therefore validating

the SRC, SSC and EnSC methods for such tasks. In particular, the basis pur-

suit (BP) based methods (i.e., SRC-BP and SSC-BP) and the elastic net based

method (i.e., EnSC) compute the sparse representations as the solution set to

their corresponding convex optimization problems. From a practical perspec-

tive, it is important to develop numerical algorithms that can effectively solve

such optimization problems.

Subspace clustering is particularly demanding for very efficient algorithms
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for solving the BP and the elastic net problems, as the SSC and EnSC meth-

ods involve solving N such optimization problems where N is the number of

data points. If N is very large, say more than 10,000, then existing solvers (e.g.,

the alternating direction method of multipliers (ADMM) that is used in [60],

the accelerated proximal gradient (APG) [19] that is used in [62] and the lin-

earized alternating direction method (LADM) [104] that is used in [128]) take a

very long time (see Figure 1.7 for an illustration). Moreover, these algorithms

require computing and storing the full data Gramian matrix, therefore they

have quadratic memory complexity. All these drawbacks of previous solvers

call for the development of new algorithms that are not only efficient but also

able to handle large-scale data.

In this chapter, we propose to use an active support strategy for solving the

optimization problems in SSC and EnSC. The active support method is moti-

vated by the observation that the target solution in a sparse recovery problem

is sparse, therefore as long as we can correctly estimate the support of the

optimal solution then the problem is reduced from a large-scale optimization

problem to a small-scale optimization problem that can be solved much more

efficiently. The key challenge in the active support approach lies in how to

effectively find the optimal support set.

We start by showing that the OMP algorithm for sparse recovery is one

particular instance of the active support approach, where the optimal support
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is estimated iteratively via a greedy search procedure. As we have shown in

the previous chapter, the sparse solutions computed from OMP are guaranteed

to be subspace-preserving. Nonetheless, the update of the active support in

OMP uses a heuristics, and is not guaranteed to find optimal solutions from

the optimization perspective. This is likely to the underlying reason that SSC-

OMP has relatively inferior clustering performance relative to SSC-BP and

EnSC, as we will see in the experiments in Section 4.4.1.

Due to this drawback of OMP, we further develop an active support based al-

gorithm for solving the basis pursuit and elastic-net problems, which are used

in SSC-BP and EnSC, respectively. Our proposed algorithm exploits the fact

that the optimal support of the elastic-net solution fall into an oracle region,

which we use to define and efficiently update an active support. The proposed

update rule leads to an iterative algorithm that is shown to converge to the

optimal solution in a finite number of iterations.

Although active support methods are very efficient, they still have a com-

putational complexity of O(N2) and thus cannot deal with datasets containing

1 million points or more. Therefore, we further develop a divide-and-conquer

based algorithm that is able to cluster 1 million data points in a reasonable

amount of time. In this approach, the original data is split into chunks of

moderate size so that points in each chunk can be efficiently clustered using

SSC or EnSC. The clusters from different chunks that correspond to the same
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subspace are then merged to obtain a complete clustering of the original data.

4.1 Prior art in scalable subspace clus-

tering

Several scalable subspace clustering methods have been studied in the past

few years, including methods based on truncated SVD [104, 181], factoriza-

tion [137] and subsampling [2, 132, 147]. The works of [104] and [181] present

fast algorithms for low rank representation (LRR) [107], a subspace clustering

method that finds a subspace-preserving representation by learning a matrix

of coefficients that is of low-rank. They exploit the fact that the optimal solu-

tion is of low-rank by using a truncated SVD at each iteration, which reduces

the computational complexity from O(N3) to O(N2). However, since the repre-

sentation matrix of LRR is non-sparse and requires O(N2) memory, LRR-based

methods cannot be directly applied to a dataset of size, say, 100,000 data points,

as it would require ∼ 80GB memory. To address the memory issue, [137] ex-

ploits the fact that the representation matrix in LRR is low rank and uses a

factored form of the representation matrix to save memory. However, there

are no theoretical guarantees that the method in [137] will give the correct

clustering.

Subsampling-based methods have also been proposed to help scale existing
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methods. [132] presented the Scalable SSC method, in which SSC is applied to

a subset of the data drawn at random from the entire dataset. Once the sub-

sampled data is clustered, the remaining data points are classified to one of the

computed clusters. While this method is computationally efficient, its cluster-

ing accuracy becomes sensitive to the subsampled data, i.e., it requires the sub-

sampled data to well represent the distribution of points in all subspaces. The

work of [2] learns a small-sized dictionary and clusters the data based on the

affinity between the data points and the dictionary atoms. While the learned

dictionary would be expected to be more representative of the data than the

random subsampled data used by Scalable SSC, there are no theoretical guar-

antees on the quality of the dictionary for the purpose of clustering. Indeed,

the clustering accuracy is reduced for many cases in the empirical evaluation

in [2]. Instead of learning a dictionary through dictionary learning techniques,

a very recent work [147] uses a sketched dictionary that is simply generated

by taking random linear combination of the data points.

4.2 Active support methods

A key step in SSC-BP, SSC-OMP and EnSC is the computation of a sparse

representation, where the goal is to find a sparse vector c0 ∈ RN that satisfies

b = Ac0 for some vector b ∈ RD and dictionary matrix A ∈ RD×N . Specifi-
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cally, recall that OMP aims to solve the following optimization problem (see

Eq. (2.4)):

min
c
∥b−Ac∥2 s.t. ∥c∥0 ≤ kmax, (4.1)

where kmax is the sparsity of the target solution. BP is a convex relaxation

based sparse recovery method which aims to solve the following problem

min
c
∥c∥1 s.t. b = Ac. (4.2)

In practical applications, the data is usually corrupted by noise, therefore it

makes more sense to use a penalty term ∥Ac − b∥22 in lieu of the constraint

b = Ac and solve the following optimization problem

min
c
∥c∥1 +

γ

2
∥b−Ac∥22, (4.3)

where γ is a trade-off parameter that balances the sparse regularization ∥c∥1

and the representation residual ∥Ac − b∥22. The BP optimization problem in

(4.3) is a special case of the elastic net problem which is the following:

min
c

λ∥c∥1 +
1− λ

2
∥c∥22 +

γ

2
∥b−Ac∥22, (4.4)

where λ and γ are trade-off parameters.

Solving the optimization problems (4.1), (4.3) and (4.4) can be difficult when
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the dictionary A has a large number of columns. In this section, we introduce

an active support strategy to handle such cases. The method is based on ex-

ploiting the fact that the optimal solutions to (4.1), (4.3) and (4.4) are expected

to be sparse. This has the implication that the solution is determined by a

subset of the columns of A that corresponds to the support of the true solution,

and the size of this subset is typically much smaller than the total number of

columns in A. Motivated by this observation, we propose an iterative procedure

for finding such an optimal support, which is achieved by solving a sequence of

problems on small subsets of data. A meta-algorithm that illustrates the idea

of this algorithm is presented in Algorithm 4.

Algorithm 4 Active support meta-algorithm for sparse recovery
Input: A = [a1, . . . ,aN ] ∈ RD×N , b ∈ RD, and model parameters

1: Initialize the active supportW (0) ⊆ {1, · · · , N} and set k = 0.

2: loop

3: Compute c(k) ∈ RN as the solution to (4.1), (4.3) or (4.4) with the addi-

tional constraint that supp(c(k)) ⊆ W (k).

4: Compute the active supportW (k+1) based on the solution c(k).

5: Break if certain conditions are met; otherwise, set k ← k + 1.

6: end loop

Output: The vector c(k). Its support is a subset ofW (k).

In each iteration of Algorithm 4, step 3 involves solving the original sparse
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optimization problem (4.1), (4.3) or (4.4), but with the additional constraint

that the entries of c that are not in the current support set Wk are zero. Com-

putationally, this is equivalent to solving (4.1) or (4.4) but with the dictionary

A replaced by a sub-dictionary that contains columns of A that are indexed by

Wk. Therefore, when the size of Wk is much smaller than N , the optimization

problem is of small-scale, and can be solved efficiently by existing solvers.

The solution cW(k) from step 3 is expected to contain important information

on the optimality of the current active support W (k). Using such information,

we update the active support set in step 4, with the expectation that the itera-

tive update ultimately converges to the optimal support. Note that the active

support update step is expected to have complexity at least O(N), as we will

need to check all columns in A and determine whether each of them is included

inW (k+1) or not. Fortunately, this step typically involves only basic linear oper-

ations such as the inner product of a vector with all columns of A, which can be

carried out very efficiently even for very large-scale data A. In addition, if the

number of iterations in Algorithm 4 is small, then the entire procedure only re-

quires a limited number of visits to the entire data A. Therefore, Algorithm 4

can be significantly faster than previous optimization algorithms.

In the following, we explain in more details how the active support method

applies to solving the optimization (4.1), (4.3) and (4.4). We start by showing

that the OMP algorithm for solving (4.1) naturally fits into the framework of
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active support algorithm. However, the OMP has the drawback that it adds

only one point to the active set per iteration, therefore the number of iterations

is lower bounded by the sparsity level. Moreover, the active support in OMP is

updated in a heuristic manner, so it may not lead to optimal solutions. In light

of the drawbacks of OMP, we present an oracle based active support update

strategy based on the notion of an oracle region that we introduced in Chapter 3

for solving the BP and elastic net problems in (4.3) and (4.4), respectively. We

will see that the update rule allows for adding and removing multiple entries

in each iteration, therefore is expected to be faster than OMP. Moreover, the

update rule allows an optimal solution to the optimization problem to be found.

4.2.1 Greedy based SSC-OMP algorithm

To see that OMP described in Algorithm 1 is an active support method, we

rewrite its procedure in Algorithm 5. It is not hard to check that Algorithm 1

and Algorithm 5 are equivalent, i.e., they produce the same output.

From Algorithm 5, it is apparent that the OMP is an instance of the active

support method for solving (4.1). In particular, OMP uses a heuristic way of

updating the active support, that is, it starts with an empty active support and

iteratively adds the data point that is the most correlated (in terms of inner

product) with the residual v(k) computed from the current solution c(k). We will

see in the experiments that SSC-OMP is an efficient algorithm and is able to
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Algorithm 5 Active support algorithm for solving (4.1) (a.k.a., OMP)
Input: A = [a1, . . . ,aN ] ∈ RD×N , b ∈ RD, kmax, ϵ.

1: Initialize the active supportW (0) = ∅ and set k = 0

2: loop

3: Compute c(k) = argmin
c∈RN :supp(c)⊆W(k)

∥b−Ac∥2.

4: Compute W (k+1) = W (k)
⋃
{j∗}, where j∗ = argmax

j=1,...,N
|⟨aj,v

(k)⟩| and v(k) =

b−Ac(k).

5: Break if k = kmax or ∥v(k)∥2 ≤ ϵ; otherwise, set k ← k + 1

6: end loop

Output: The vector c(k). Its support is a subset ofW (k).

handle datasets with a million data points.

From a theoretical perspective, we have seen from Chapter 3 that SSC-

OMP is guaranteed to produce subspace-preserving affinities, making it the-

oretically justified for subspace clustering purposes. Nonetheless, the active

support update strategy in OMP is based on a heuristic and is not guaranteed

to be optimal for solving the optimization problem (4.1). This is perhaps an

underlying reason for the fact that in the correctness conditions for SSC-OMP

and SSC-BP in Theorem 35, the probability of success for SSC-OMP is smaller

than that of SSC-BP.

In the following, we will develop an active support method for solving the

BP problem in SSC-BP. We will see that a more principled active support up-
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date strategy exists in that case, which allows us to always find global optimal

solutions to BP. As BP is a particular case of the elastic net problem, we start

with considering the elastic net based subspace clustering (i.e. EnSC) method.

4.2.2 Oracle based EnSC algorithm

We consider solving the elastic net problem in (4.4) for λ in the range of

[0, 1). We will consider the case of λ = 1 (which corresponds to BP) in the next

subsection.

Our active support method is summarized in Algorithm 6. The basic prin-

ciple behind the algorithm is the fact that the support of the optimal solution

contains points that lie in the oracle region (see Definition 21). Therefore, we

propose to update the active support set from the oracle region computed on

the previous active support set. LetW (k) be the active set at iteration k. Then,

the next active setW (k+1) is selected to contain the indices of columns that are

in the oracle region ∆(b,AW(k)) (see Definition 21), where AW(k) denotes the

submatrix of A with columns indexed byW (k). We use Figure 4.1 for a concep-

tual illustration. In Figure 4.1a we show the columns of A that correspond to

the active set W (k) by labeling the corresponding columns of AW(k) in red. The

oracle region ∆(b,AW(k)) is the union of the red arcs in Figure 4.1b. Notice that

at the bottom left there is one red dot that is not in ∆(b,AW(k)) and thus should

not be included in W (k+1), and two blue dots that are not in W (k) but lie in the
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(a) Active supportW(k) (b) ∆(b,AW(k)) (c) Active supportW(k+1)

Figure 4.1: Conceptual illustration of the active support algorithm. All the
dots on the unit circle illustrate the dictionary A. (a) active set W (k) at step k,
illustrated by red dots. (b) The oracle region ∆(b,AW(k)) illustrated by red arcs.
(c) The new active setW (k+1) illustrated in green, which is the set of indices of
points that are in ∆(b,AW(k)).

oracle region ∆(b,AW(k)) and thus must be included in W (k+1). In Figure 4.1c

we illustrateW (k+1) by green dots. This iterative procedure is terminated once

W (k+1) does not contain any new points, i.e., whenW (k+1) ⊆ W (k), at which time

W (k+1) is the support of the optimal solution.

To facilitate the analysis of Algorithm 6, we review several notations from

Chapter 3. Recall that we let

fEN(c; b,A) =: λ∥c∥1 +
1− λ

2
∥c∥22 +

γ

2
∥b−Ac∥22 (4.5)

and let c∗(b,A) := argminc fEN(c; b,A). Note that the vector c(k) generated in

Algorithm 6 is equal to c∗(b,AW(k)) with zeros padded to the entries correspond-

ing to columns of A that are not inW (k).

The next lemma helps explain why Algorithm 6 converges.
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Algorithm 6 Active support algorithm for solving (4.4)
Input: A = [a1, . . . ,aN ] ∈ RD×N , b ∈ RD, λ and γ.

1: Initialize the support setW (0) and set k = 0.

2: loop

3: Compute c(k) = argmin
c∈RN :supp(c)⊆W(k)

λ∥c∥1 + 1−λ
2
∥c∥22 +

γ
2
∥b − Ac∥22 using any

solver.

4: ComputeW (k+1) ← {j : |⟨aj, δ
(k)⟩| > λ}, where δ(k) = γ · (b−Ac(k))

5: Break ifW (k+1) ⊆ W (k); otherwise set k ← k + 1.

6: end loop

Output: The vector c(k). Its support is a subset ofW (k).

Lemma 18. In Algorithm 6, ifW (k+1) ̸⊆ W (k), then

fEN(c
(k+1); b,A) < fEN(c

(k); b,A). (4.6)

Proof. Let us define the sets

Q :=W (k) \W (k+1),

S :=W (k) ∩W (k+1), and

R :=W (k+1) \W (k) ̸= ∅,

where the fact that R is nonempty follows from the assumption W (k+1) ⊆ W (k)

in the statement of Lemma 18. By these definitions,W (k) = Q∪S, andW (k+1) =
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S ∪R.

By definition,W (k+1) contains all columns of A that are in ∆(b,AW(k)), thus

no column of AQ is in ∆(b,AW(k)). By Proposition 1,

c∗(b,AW(k)) = c∗(b, [AS,AQ]) =

⎡⎢⎢⎣ c∗(b,AS)

0

⎤⎥⎥⎦ , (4.7)

in which we have assumed without loss of generality that columns of AW(k) are

arranged in the order such that AW(k) = [AS,AQ]. Using (4.7), we have

fEN(c
(k); b,A) =fEN(c

∗(b,AW(k)); b,AW(k)) = fEN

⎛⎜⎜⎝
⎡⎢⎢⎣ c∗(b,AS)

0

⎤⎥⎥⎦ ; b, [AS,AR]

⎞⎟⎟⎠
≥min

c
fEN(c; b, [AS,AR]) = fEN(c

∗(b, [AS,AR]); b, [AS,AR])

=fEN(c
∗(b,AW(k+1)); b,AW(k+1)) = fEN(c

(k+1); b,A).

(4.8)

It remains to show that the inequality in (4.8) is strict. We show this by ar-

guing that [c∗(b,AS)
⊤,0⊤]⊤ that appears on the second line of (4.8) is not an

optimal solution to the optimization problem stated on the third line. Denote

the solution to this optimization problem as

c∗(b, [AS,AR]) :=

⎡⎢⎢⎣ cS

cR

⎤⎥⎥⎦ , (4.9)
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where cS and cR are of appropriate sizes. By (4.7) and the definition of the

oracle region, we have

∆(b,AS) = ∆(b,AW(k)). (4.10)

Combining this with the facts that the columns of AW(k+1) are in ∆(b,AW(k)) and

R ⊆ W (k+1), we know that the columns of AR are in ∆(b,AS). Consequently,

by Proposition 2, we must have cR ̸= 0. This shows that [c∗(b,AS)
⊤,0⊤]⊤ is

not an optimal solution to the problem on the third line of (4.8) and thus the

inequality in (4.8) is strict.

The following convergence result holds for Algorithm 6.

Theorem 43. Algorithm 6 converges to the optimal solution c∗(b,A) in a finite

number of iterations.

Proof. We first prove that Algorithm 6 terminates in a finite number of iter-

ations. Observe that the objective is strictly decreasing during each iteration

before termination occurs (see Lemma 18). Since there are only finitely many

different active sets, we must conclude that Algorithm 6 terminates after a

finite number of iterations withW (k+1) ⊆ W (k).

We now prove that when Algorithm 6 terminates, the output vector is opti-

mal. By Theorem 36, for any j ∈ Wk it holds that (1−λ) · c(k)j = Tλ(a⊤
j ·δ(k)). For

any j /∈ Wk, by the termination condition W (k+1) ⊆ W (k) we know j /∈ W (k+1).

Thus, by step 4, 0 = Tλ(a⊤
j · δ(k)). Consequently, c(k) satisfies the relation in
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(3.163) and thus is the solution, i.e., c(k) = c∗(b,A).

Algorithm 6 solves large-scale problems by solving a sequence of reduced-

size problems in step 3. If the active set W (k) is small, then step 3 is a small-

scale problem that can be efficiently solved. However, there is no procedure in

Algorithm 6 that explicitly controls the size ofW (k). To address this concern, we

propose an alternative to step 4 in which only a small number of new points—

the ones most correlated with δ—are added. Specifically,

4’ :W (k+1) ← {j ∈ W (k) : |⟨aj, δ
(k)⟩| > λ} ∪ V (k), (4.11)

where V (k) holds the indices of the largest n entries in

{|⟨aj, δ
(k)⟩| : j /∈ W (k), |⟨aj, δ

(k)⟩| > λ};

ideally, n should be chosen so that the size of W (k+1) is bounded by a predeter-

mined value Nmax that represents the maximum size subproblem that can be

handled in step 3. If Nmax is chosen large enough that the second set in the

union in (4.11) is always non-empty, then our convergence result still holds.

Initialization. We suggest the following procedure for computing the initial

active set W (0). First, compute the solution to (4.4) with λ = 0, which has a

closed form solution and can be computed efficiently if the ambient dimension
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D of the data is not too large. Then, the l largest entries (in absolute value) of

the solution for some pre-specified value l are added toW (0). Our experiments

suggest that this strategy promotes fast convergence of Algorithm 6.

4.2.3 Oracle based SSC-BP algorithm

It is clear that the BP optimization problem (4.3) is a particular case of

the elastic net optimization problem in (4.4). That is, if we set the parameter

λ = 1 in (4.4), then the elastic net problem is the same as the problem in (4.3).

Therefore, although the active support algorithm presented above is derived

for the case of λ ∈ [0, 1), it is reasonable to conjecture that (4.3) can be solved

by extending Algorithm 6 to the case where λ = 1.

Surprisingly, simply applying Algorithm 6 to the case of λ = 1 does not give

a valid algorithm, as the objective is no longer necessarily decreasing during

each iteration (i.e., Lemma 18 is no longer true). The underlying reason for this

can be seen from the geometry of the solution as we discussed in Chapter 3.

For the case of λ ∈ [0, 1), the optimal solution to the elastic net problem has the

property that the nonzero entries correspond to columns of A that lie in the

oracle region. This is exactly why in step 4 of Algorithm 6 the active support is

chosen to include all points in the oracle region ∆(b,AW(k)). On the other hand,

if λ = 1 then the geometry of the solution is different: the nonzero entries in

the optimal solution correspond to columns of A that lie on the boundary of the
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oracle region. In addition, there is no point from A that lies in the oracle region

of the optimal solution. To add even more complications, it is not necessarily

the case that all points on the boundary of the oracle region correspond to a

nonzero entry in the optimal solution (all boundary points of the oracle region

correspond to nonzero entries in the optimal solution if and only if the solution

to the SSC-BP is unique). All these intricacies in the geometry of the solution

lead to a challenging situation in the development of a provable correct active

support update for solving (4.3).

We now present our solution to such a situation. We propose to use the

following as the alternative to step 4 in Algorithm 6:

4” :W (k+1) ← {j : |⟨aj, δ
(k)⟩| > λ} ∪ {j : [c(k)]j ̸= 0}, (4.12)

i.e., W (k+1) contains the union of points in the oracle region ∆(b,AW(k)) and

points that have nonzero entries in the current solution c(k). Notice that {j :

[c(k)]j ̸= 0} ⊆ ∂∆(b,AW(k)), therefore the two operands in the union in (4.12)

are disjoint sets. With this modification, one can show that Algorithm 6 con-

verges to an optimal solution in a finite number of iterations. The proof is

essentially the same as before and omitted here. In the case when the solution

is not unique, the solution that Algorithm 6 converges to depends upon the

initializationW (0) as well as the specific solution given by the solver in step 3.
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For λ ∈ [0, 1), we have {j : [c(k)]j ̸= 0} ⊆ ∆(b,AW(k)) by the property of

the oracle region. Thus, the alternative step specified by (4.12) applies to any

λ ∈ [0, 1]. We write this as a theorem.

Theorem 44. Algorithm 6 with the alternative step 4 specified in (4.12) con-

verges to an optimal solution c∗(b,A) in a finite number of iterations for all

λ ∈ [0, 1].

4.3 Divide-and-conquer method

The active support approaches presented in the previous section are very ef-

ficient for solving sparse recovery problems and they have linear computational

complexity in the number of data points. Nonetheless, sparse and elastic net

subspace clustering methods require solving N sparse optimization problems,

which raises the overall complexity to O(N2). Consequently, their applicabil-

ity is limited to data sets that contain, say, 1 million data points. In order to

handle even larger scale data, it is necessary to consider beyond the scope of

efficient sparse optimization algorithm. In this section, we present a new algo-

rithm for subspace clustering on large scale data that is based on the idea of

divide-and-conquer. We call our approach SSC-DC.

The entire procedure of SSC-DC (see Algorithm 7) consists of four phases.

First, instead of learning a representation matrix for the entire data, SSC-DC
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randomly splits the data into smaller chunks and then independently performs

SSC (i.e., either SSC-BP or SSC-OMP) on each chunk. Second, since the result-

ing clusters may contain points from more than one subspace, SSC-DC uses an

outlier pursuit procedure to separate inliers from outliers within each clus-

ter. Third, a new similarity measure between clusters is used to merge clus-

ters of inliers that correspond to the same subspace. Finally, once the clusters

have been merged, the outliers are reclustered by assigning them to one of the

merged clusters.

4.3.1 Phase 1: split and cluster

First, SSC-DC partitions the N data points into B disjoint chunks, {X(b)}Bb=1,

where the size of each chunk N/B (we assume that B divides N ) is small

enough so that the chunks can be handled by modern SSC methods. Once

the chunks have been formed, SSC-BP or SSC-OMP is applied to each chunk

X(b) to get n clusters {X(b)
ℓ }nℓ=1, where n is the number of subspaces and is set

to be the same for all chunks.

4.3.2 Phase 2: detect outliers

If the clustering within each chunk from Phase 1 were perfect, then each

cluster would only contain points from a single subspace. In practice, some
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clusters could be corrupted by points from other subspaces, which could signif-

icantly affect the ability to merge the clusters.

To address this issue, we apply an outlier detection algorithm to each of

the clusters to identify and remove outliers. Specifically, assume that each one

of the clusters {X(b)
ℓ }

b∈{1,··· ,B}
ℓ∈{1,··· ,n} obtained in Phase 1 contains many points from

one of the subspaces as well as a few points from other subspaces. The goal of

Phase 2 is to detect and remove points from other subspaces (a.k.a. outliers),

thus generating a submatrix X̄
(b)
ℓ of the matrix X

(b)
ℓ for all ℓ ∈ {1, . . . , n} and

b ∈ {1, . . . , B} that contains only points from one of the subspaces (a.k.a. in-

liers). The outlier detection problem has been studied in the context of robust

PCA, e.g. see [98, 154, 183]. In this work, we use the Outlier Pursuit method

of [183], which aims to decompose the data matrix as X
(b)
ℓ = L + S. Here, L is

some low-rank matrix whose non-zero columns (the inliers) span the underly-

ing subspace containing X
(b)
ℓ , and S is a column-sparse matrix (i.e. there are

only a few nonzero columns) whose non-zero columns correspond to the out-

liers. To compute L and S, one solves

min
L,S
∥L∥∗ + λ∥S∥2,1 s.t. X

(b)
ℓ = L+ S, (4.13)

where λ > 0 is a trade-off parameter, ∥L∥∗ is the nuclear norm of L defined as

the sum of the singular values of L, and ∥S∥2,1 is the sum of the ℓ2-norms of the
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columns of S. Once the outliers have been detected as the non-zero columns of

S, we assign them to an outlier set to be processed in Phase 4.

4.3.3 Phase 3: merge subspaces

Given the data matrices {X̄(b)
ℓ }

b∈{1,··· ,B}
ℓ∈{1,··· ,n} , each one containing ideally data

from only one subspace, the goal of Phase 3 is to merge clusters whose data

come from the same subspace. For this purpose, we adopt a two-step procedure

in which pairwise similarities between clusters are computed and spectral clus-

tering is applied to the resulting similarity.

A classical measure of the similarity between two subspaces is their princi-

pal angle, which can be computed from the largest singular value of the matrix

U⊤V , where U and V are orthogonal bases for the two subspaces. However,

since real data typically contains noise, it can be difficult to compute a basis for

each subspace since the dimensions of the subspaces are unknown and nontriv-

ial to estimate. Given two data submatrices whose columns are from the same

subspace, either overestimation or underestimation of the subspace dimension

can result in an inaccurate estimation of the principal angle. Thus, there is a

need to design measures of subspace similarity that do not require an estimate

of the subspace dimension and are robust to noisy data.

Motivated by the fact that points in the same subspace can be used to mu-

tually express each other, we design a “cross-expressiveness” based similarity
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measure for two subspaces. The idea is that if the columns of two matrices

Y1 and Y2 are drawn from the same subspace, then it holds that Y1 = Y2 · C1

for some C1, i.e., each column of Y1 can be expressed using the columns from

Y2. On the other hand, if Y1 and Y2 are drawn from two different subspaces

(assume that one subspace does not contain the other), then such a represen-

tation C1 does not exist because the columns of Y1 cannot be expressed using

columns from Y2. Motivated by this ideal setting, and to cope with the possible

existence of noise in the data, we compute the representation C1 as:

C1 = argmin
C

∥Y1 − Y2C∥2F + λ∥C∥2F , (4.14)

for some weighting parameter λ > 0. Note that problem (4.14) has the closed

form solution C1 = (Y ⊤
2 Y2+λI)−1Y ⊤

2 Y1. Our new dissimilarity measure between

Y1 and Y2 is then defined as

d(Y1, Y2) =
1

2

(
∥Y1 − Y2C1∥F
∥Y1∥F

+
∥Y2 − Y1C2∥F
∥Y2∥F

)
, (4.15)

where C1 is computed from (4.14) and C2 is computed by swapping Y1 and Y2

in (4.14). Based on the dissimilarity measure (4.15), the similarity between Y1

and Y2 is computed as exp(−d(Y1, Y2)/(2σ
2)) for some parameter σ > 0.
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4.3.4 Phase 4: recluster outliers

After the merging procedure in Phase 3, the algorithm has generated n

clusters {X̄ℓ}ℓ=1,··· ,n, each of which will ideally contain only points from one of

the ground-truth subspaces. However, the points that were detected as outliers

in Phase 2 still need to be assigned to one of the clusters. A simple approach

for assigning outliers to clusters would be to fit a subspace to each one of the

clusters that have already been obtained and then assign each outlier to one

of those n clusters. However, this would require us to know the dimension of

the subspaces, and any errors in the estimation of the dimensions could lead to

errors in the assignments.

To address this issue, we note that since the class labels for clusters {X̄ℓ}nℓ=1

have already been generated, we can treat {X̄ℓ}nℓ=1 as training data and use

any supervised classification technique to classify each point in the outlier set.

Here, we adopt a representation based classification technique [179,196]. If we

define X̄ = [X̄1, · · · , X̄n], then a representation for any outlier point y may be

found by solving1

min
c
∥y − X̄c∥22 + λ∥c∥22 (4.16)

for some parameter λ > 0. Ideally, the nonzero entries in the representation
1Observe that this problem is potentially huge when D and N are large. However, when

D is small one can use the inversion lemma to solve for c efficiently. As we shall see in our
experiments, the time spent in Phase 4 is not significant in practice. That being said, simpler
classification methods can be tried when D and N are both large.
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Algorithm 7 SSC Divide-and-conquer
Input: The data matrix X = [x1, · · · ,xN ], the number of clusters n, and the

number of chunks B.

1: Phase 1: Split and cluster

Split the data matrix X evenly into {X(b)}b=1,··· ,B.

Apply SSC on each X(b) to get clusters {X(b)
ℓ }

b=1,··· ,B
ℓ=1,··· ,n .

2: Phase 2: Detect outliers

For each matrix in {X(b)
ℓ }

b=1,··· ,B
ℓ=1,··· ,n solve (4.13). Place points corresponding to

nonzero columns of S into the outlier set, and denote the matrix containing

the remaining points as X̄
(b)
ℓ .

3: Phase 3: Merge subspaces

Compute similarities exp(−d(X̄(b)
ℓ , X̄

(b′)
ℓ′ )/(2σ2)) using (4.15) for all pairs

(b, ℓ) ̸= (b′, ℓ′). Apply spectral clustering using this similarity matrix to

get clusters {X̄ℓ}ℓ=1,··· ,n.

4: Phase 4: Recluster outliers

Assign each y in the outlier set to one of the clusters in {X̄ℓ}ℓ=1,··· ,n by using

(4.17).

Output: A clustering of X into n clusters {X̄ℓ}ℓ=1,··· ,n.

vector c will correspond to points in X̄ that are from the same subspace as y.

In practice, nonzero entries of c may be distributed among multiple subspaces.

Following the procedure in [179], let δℓ(c) be a vector of the same size as c
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such that the entries of δℓ(c) are all zero except for those that correspond to X̄ℓ,

which are equal to the corresponding entries of c. The point y is then assigned

to the class ℓ that gives the minimum representation residual of y using δℓ(c),

i.e., to the class ℓ that solves

min
ℓ
∥y − X̄δℓ(c)∥2. (4.17)

This completes the description of our SSC-DC framework.

4.4 Experiments

4.4.1 Experiments on synthetic data

4.4.1.1 Evaluation of the active support method

We first demonstrate the computational efficiency of our active support al-

gorithms over the existing optimization algorithms. To do this, we generate

synthetic datasets that contain data lying in a union of subspaces, and apply

SSC-BP where the BP optimization problem is solved by different algorithms.

Data. We randomly generate n = 10 subspaces each of dimension d = 5 in an

ambient space of dimension D = 10. Each subspace contains Ni = ρd sample

points randomly generated on the unit sphere, where ρ is varied from 2 to 20,000
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so that the number of points varies from 100 to 1,000,000.

Methods. We compare our active support algorithm with existing sparse opti-

mization algorithms. Due to the overwhelming volume of the literature in the

area of sparse coding, we only compare with the following 5 most representative

solvers: the interior point based ℓ1 regularized least squares (L1LS) method

in [87]; the gradient projection for sparse reconstruction (GPSR) algorithm

in [66]; the proximal gradient based fast iterative soft-thresholding algorithm

(FISTA) in [19]; the alternating direction method of multipliers (this is the

method adopted in a previous paper [60] that studies SSC-BP); and the LASSO

version of the LARS algorithm [56] that is implemented in the sparse modeling

software (SPAMS) http://spams-devel.gforge.inria.fr/. For L1LS and FISTA, we

use the implementation that accompanies the review paper [186]. For GPSR

we use the implementation from the website http://www.lx.it.pt/ mtf/GPSR/.

For ADMM, we use the code from the paper [60].

The L1LS, GPSR, FISTA and ADMM methods are based on iterative proce-

dures and they do not converge to the exact solution to BP in a finite number of

iterations (in general). Therefore, there is a need to choose a termination con-

dition for them. For L1LS and FISTA, we set the number of iterations to be 20

and 150, respectively. For GPSR and ADMM, we use the default parameters in

their respective implementations. The LARS converges to the optimal solution

in a finite number of iterations.
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For our active support method, we use the LARS algorithm to solve the

subproblem in step 3 of Algorithm 6. Both of our active support method and all

comparing methods solve the same optimization problem in (4.3) with γ set to

be 100.

Metrics. We use the following metrics to evaluate the performance of different

algorithms.

– Clustering accuracy: this is the percentage of correctly labeled data points. It

is computed by matching the estimated and true labels as

max
π

100

N

∑
ij

Qest
π(i)jQ

true
ij ,

where π is a permutation of the n groups, Qest and Qtrue are the estimated and

ground-truth labeling of data, respectively, with their (i, j)th entry being equal

to one if point j belongs to cluster i and zero otherwise.

– Running time: this is the running time for each clustering task using R⃝Matlab.

The reported numbers in all the experiments are averages over 10 trials.

Results. In Figure 4.2 we report the clustering accuracy as well as the running

time of different BP method. We see that the clustering accuracy of different

methods are very close to each other, which is expected as all methods solve

the same BP optimization problem. In terms of running time, both L1LS and

GPSR are two orders of magnitude slower than our active support method,
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(a) Clustering accuracy (b) Running time

Figure 4.2: Comparison of the active support method with other algorithms
for solving the BP optimization problem.

and they can only handle around 6,000 data points with in the time limit of 24

hours. The FISTA and ADMM are more efficient than L1LS and GPSR when

the number of data point is relatively small. But still, both FISTA and ADMM

are very slow relative to the active support method, and they cannot handle

large scale data.

The LARS and the active support methods are the two most efficient al-

gorithms and both of them can handle ∼ 360,000 data points within 24 hours.

While LARS is almost as fast as the active support method in this experiment,

its running time increases dramatically as the dimension of the subspaces in-

creases. This is illustrated in the following experiment.

Effect of subspace dimension. To evaluate the effect of subspace dimension

on the performance of our active support method, we fix the number of data

points to be 200 for each subspace and vary the dimension of the subspaces.

Specifically, we set the ambient dimension to be D = 40 and vary the subspace
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dimension d in the range of [2, 20]. The running time of the active support

method as well as that of the LARS algorithm are reported in Figure 4.3. We

can clearly see that the active support method is much less affected by the

subspace dimension when compared with the LARS.

Figure 4.3: Effect of subspace dimension on the running time of the active
support method.

4.4.1.2 Comparison of SSC-BP, SSC-OMP and EnSC

Equipped with the active support algorithms for solving their respective op-

timization problems in SSC-BP, SSC-OMP and EnSC, all these three subspace

clustering techniques can be carried out very efficiently. In this subsection, we

conduct further experiments to compare these three methods in terms of their

efficiency as well as their ability in delivering subspace-preserving solutions,

connected similarity graphs, and good clustering accuracy.

Data. We generate synthetic data following the same procedure as described
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in Section 4.4.1.1.

Metrics. In addition to clustering accuracy and running time that are de-

scribed in Section 4.4.1.1, we also using the following metrics.

To evaluate the degree to which the subspace-preserving property is satis-

fied, we use two metrics where the first one is a direct measure of whether the

solution is subspace-preserving or not, and the second one measures how close

the coefficients are from being subspace-preserving.

– Percentage of subspace-preserving representations: this is the percentage of

points whose representations are subspace-preserving. The coefficients with

absolute value less than 10−5 are considered zero. For a subspace-preserving

solution, the percentage of subspace-preserving representations is 100.

– Subspace-preserving representation error [60]: for each cj in the representa-

tion matrix, we compute the fraction of its ℓ1 norm that comes from other sub-

spaces and then average over all j, i.e., 100
N

∑
j(1 −

∑
i(ωij · |cij|)/∥cj∥1), where

ωij ∈ {0, 1} is the true data similarity matrix. A subspace-preserving represen-

tation gives zero subspace-preserving representation error.

Now, the performance of subspace clustering depends not only on the subspace-

preserving property, but also the connectivity of the similarity graph, i.e., whether

the data points in each cluster form a connected component of the graph. To

evaluate the ability of different methods in delivering well-connected similarity

graphs, we use the following two metrics.
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– Number of nonzero entries: Denser graphs typically implies better connec-

tions in the similarity graph. Given the representation matrix C = [c1, · · · , cN ],

we report the averaged number of nonzero entries across different columns,

i.e.,
∑N

j=1 ∥cj∥0/N .

– Connectivity: For an undirected graph with weights W ∈ RN×N and degree

matrix D = diag(W · 1), where 1 is the vector of all ones, we use the second

smallest eigenvalue λ2 of the normalized Laplacian L = I − D−1/2WD−1/2 to

measure the connectivity of the graph; λ2 is in the range [0, n−1
n
] and is zero if

and only if the graph is not connected [43, 65]. In our case, we compute the

algebraic connectivity for each cluster, λℓ
2, and take the quantity minℓ λ

ℓ
2 as the

measure of connectivity.

The reported numbers in all the experiments are averages over 10 trials.

Algorithm parameters. Unless otherwise specified, we set ϵ in Algorithm 1

to be 10−10 and kmax to be d = 10 for SSC-OMP. For SSC-BP and EnSC, we set

γ in (4.3) and (4.4) to be 100. We use the active support algorithm for solv-

ing the BP and elastic net optimization problems in SSC-BP and EnSC, where

the subproblems in the active support algorithm are solved by the LARS algo-

rithm in the SPAMS package and the RFSS solvers [86], respectively. EnSC

has another tuning parameter λ in (4.4) which balances between the ℓ1 and ℓ2

regularizations. To understand the effect of this parameter, we report results

with varying values of λ and denote the corresponding methods as EnSCλ. Note
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that by this notation, EnSCλ is the same as SSC-BP.

Results. The subspace-preserving representation percentage and error are

plotted in Figure 4.4a and 4.4b. Observe that the probability that SSC-BP

and SSC-OMP give subspace-preserving solutions grows as the density of data

point increases. This matches our theoretical analysis of these two methods

stated in Theorem 35. When comparing SSC-BP with SSC-OMP, we can see

that SSC-OMP has higher chance of getting a subspace-preserving solution

than SSC-BP, while the subspace-preserving error of SSC-BP is lower than that

of SSC-OMP. As for EnSC, we see that the percentage of subspace-preserving

solution decreases and the subspace-preserving error increases as the param-

eter λ decreases.

From a subspace clustering perspective, we are more interested in how well

the method performs in terms of clustering accuracy, which depends not only on

the subspace-preserving property but also on the connectivity of the represen-

tation. In Figure 4.4c and Figure 4.4d, we show the number of nonzero entries

in the representation matrix as well as the connectivity measure. We observe

that while SSC-BP and SSC-OMP have similar number of nonzero entries in

their representations, the connectivity of SSC-BP is significantly higher than

that of SSC-OMP. This may explain why SSC-BP is significantly better than

SSC-OMP in terms of clustering accuracy, as we can see from Figure 4.4e. How-

ever, we observe that as the density of data points increases, the difference in
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(a) Subspace-preserving percentage (b) Subspace-preserving error

(c) Number of nonzero entries (d) Connectivity

(e) Clustering accuracy (f) Computational time

Figure 4.4: Performance of SSC-OMP, SSC-BP and EnSC on synthetic data.
The data are drawn from 10 subspaces of dimension 5 in ambient dimension 10.
Each subspace contains the same number of points and the overall number of
points is varied from 100 to 1,000,000 and is shown in log scale. Notice that the
figure that reports the running time uses log scale in the y-axis.
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clustering accuracy also decreases, and SSC-OMP seems to achieve arbitrarily

good clustering accuracy for large N . The EnSC with decreasing values of λ

gives higher number of nonzero entries and higher connectivity, showing that

it is potentially able to reduce the connectivity issue. However, in this exper-

iment the SSC-BP does not appear to suffer from the connectivity issue, and

the clustering accuracy of EnSC is not higher than that of SSC.

In terms of running time, it is evident from Figure 4.4f that SSC-OMP is

slightly faster than the SSC-BP, so it is more suitable for large scale problems.

The EnSC is slower than SSC when the number of data point is small, prob-

ably because the RFSS solver is slower than the LARS solver for small scale

problems. This difference in running time diminishes when the scale of the

problem increases.

4.4.1.3 Evaluation of SSC-DC

To test the effectiveness of SSC-DC on large-scale datasets and to study how

the number of chunks affects the running time, we design experiments using

synthetic data. First, we choose 10 subspaces each of dimension 5, indepen-

dently and uniformly at random in an ambient space of dimension 15. Second,

we generate an equal number of data points uniformly at random on each of the

subspaces. The total number of data points is varied from 10,000 to 1,000,000.

For Phase 1 of SSC-DC, the data is randomly divided into 10, 50 or 100
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chunks and SSC-BP is applied to each chunk. We use the SPAMS package

to solve the sparse representation problem used by SSC-BP. The clusters are

merged according to Phase 3 of Algorithm 7 with λ = 0.1 in (4.14) and σ = 1.

We do not perform outlier detection (i.e. Phase 2) and reclustering (i.e. Phase

4) in this experiment. The running times of different algorithms on different

number of data points are shown in Figure 4.5.

The curve for SSC is the baseline, which was obtained by applying SSC-

BP to the entire data, i.e., it uses one chunk. We see that while it only needs

one minute to handle 10,000 data points, it takes around 14 hours to cluster

∼ 360,000 data points. Since the running time for each algorithm is limited to

24 hours, SSC does not finish clustering 1,000,000 data points. If we use SSC-

DC with 10 chunks, we can observe a significant reduction on the running time

for all scales of the tested data. In particular, SSC-DC with 10 chunks uses

around one hour to cluster ∼ 360,000 in comparison to the 14 hours used by

SSC. By using the divide-and-conquer strategy, our method is able to cluster

1,000,000 data points.

When the number of chunks in SSC-DC is increased from 10 to 50, we ob-

serve that the running time increases when the data size is relatively small,

but decreases when the data size is relatively large. This illustrates the trade-

off in choosing the number of chunks in SSC-DC. Although increasing the num-

ber of chunks reduces the scale of the problems solved by SSC on each chunk,
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Figure 4.5: Performance of SSC-DC with different numbers of chunks on syn-
thetic data. We randomly generate 10 subspaces of dimension 5 in an ambient
space of dimension 15, and then randomly draw the same number of points
from each subspace. The x-axis gives the overall number of points, which is
varied from 10,000 to 1,000,000 and shown in log scale. The y-axis reports the
running time in log scale. The missing points for SSC indicate that the algo-
rithm does not finish within 24 hours.

it also increases the number of subspaces to be merged in Phase 3. Therefore,

the computational cost associated with these two effects should be balanced in

practice. As shown in Figure 4.5, SSC-DC (100 chunks) is less efficient than

SSC-DC (50 chunks), although it is likely that SSC-DC (100 chunks) will be

more efficient that SSC-DC (50 chunks) when the dataset size grows beyond

1,000,000 data points.

4.4.2 Experiments on real data

In this section, we compare the performance of SSC-BP, SSC-OMP, EnSC

and SSC-DC to several other spectral clustering based subspace clustering
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methods on several large scale image datasets.

Datasets. We use four datasets presented in Table 4.1. The extended Yale

B [71] dataset contains frontal face images of 38 individuals each under 64 dif-

ferent illumination conditions. The face images are of size 192× 168, for which

we downsample to 48×42. The major intra-class variation in the extended Yale

B is the illumination conditions, therefore the data can be well-approximated

by a union of subspaces [18]. The COIL-100 dataset [125] contains 7,200 gray-

scale images of 100 different objects. Each object has 72 images taken at pose

intervals of 5 degrees, with the images being of size 32 × 32. The CIFAR-10

dataset [88] contains 60,000 images from 10 object categories. The MNIST

dataset [92] contains 70,000 images of handwritten digits 0–9. For each im-

age in the COIL-100, CIFAR-10 and MNIST datasets, we extract a feature

vector of dimension 3,472 via the scattering convolution network [28], and then

project to dimension 500 using PCA. The scattering convolution network is able

to extract features that are translational invariant and deformation stable (i.e.

it linearizes small deformations). Therefore, these features from the COIL-

100, CIFAR-10 and MNIST datasets approximately follow a union of subspaces

model.

Methods. For SSC-BP and EnSC, we use the active support method to solve

the BP and elastic net optimization problems, respectively, where each sub-

problem is solved using the LARS and the RFSS algorithms, respectively. The
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Table 4.1: Dataset information for testing subspace clustering on real image
databases.

Image type N (#data) D (ambient dim.) n (#groups)
Extended Yale B Faces 2,432 2016 38

COIL-100 Objects 7,200 500 100
CIFAR-10 Objects 60,000 500 10

MNIST Digits 70,000 500 10

parameter γ in SSC-BP and EnSC are set as γ = αγ0 where α > 1 is a hy-

perparameter and γ0 is the smallest value of γ such that the solutions to (4.3)

and (4.4) are zero vectors, respectively. The parameter λ in EnSC is varied

to show its effect on the clustering performance. In addition to constructing

the similarity graph as described in Algorithm 3, we also explore a k-nearest

neighbor (kNN) based similarity graph for computing a final clustering result

from the representation coefficients. First, the coefficient vectors {cj} are nor-

malized, i.e., we set c̃j = cj/∥cj∥2. Then, for each c̃j we find k-nearest neighbors

with the largest positive inner product with c̃j. Finally, we compute an affin-

ity matrix from the k-nearest neighbors and apply spectral clustering to get

the segmentation. We will denote the version of SSC-BP and EnSCλ that use

this procedure for computing the segmentation by SSC-BP (k-NN) and EnSCλ

(k-NN), respectively. For SSC-OMP, we observe that this k-NN method for com-

puting the segmentation does not improve the clustering accuracy, therefore we

do not report its results.

We compare our method with several state-of-the-art subspace clustering
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Table 4.2: Performance of subspace clustering methods on large-scale data -
clustering accuracy (in percentage). The value “M” means that the memory
limit of 20GB was exceeded, and the value “T” means that the time limit of 24
hours was reached. The three highest clustering accuracy for each dataset are
shown in boldface.

Datasets EYaleB COIL-100 CIFAR-10 MNIST
k-Means 9.4 50.2 20.0 62.6
Spectral 48.5 78.6 22.8 85.4

LRR 67.6 57.3 M M
LRR (k-NN) 92.8 84.5 M M

LRSC 70.9 57.3 M M
LRSC (k-NN) 92.9 84.2 M M

O-LRSC 15.4 52.9 20.6 76.0
LSR 68.4 59.2 M M

LSR (k-NN) 95.2 83.5 M M
SSC-ADMM 65.2 78.2 M M

SSC-ADMM (k-NN) 94.1 50.5 M M
ℓ0-SSC 85.2 76.0 T T

ℓ0-SSC (k-NN) 89.5 45.5 T T
NSN 83.7 72.6 T T

SSC-OMP 80.6 65.9 10.4 95.5
SSC-BP 68.1 81.9 16.5 92.5

SSC-BP (k-NN) 87.9 44.6 27.5 98.3
EnSC0.99 67.7 86.2 16.5 92.5
EnSC0.90 67.9 79.7 16.5 94.0
EnSC0.70 59.8 73.8 20.7 82.8
EnSC0.50 63.9 72.0 22.3 83.0
EnSC0.30 65.0 69.3 22.4 82.9

EnSC0.99 (k-NN) 90.4 46.3 27.6 98.2
EnSC0.90 (k-NN) 91.8 42.0 27.3 98.2
EnSC0.70 (k-NN) 94.5 45.7 27.7 98.3
EnSC0.50 (k-NN) 88.0 54.0 T 98.3
EnSC0.30 (k-NN) 87.3 60.3 T 85.7
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Table 4.3: Performance of subspace clustering methods on large-scale data
- running time (in seconds). The value “M” means that the memory limit of
20GB was exceeded, and the value “T” means that the time limit of 24 hours
was reached. The three lowest running time for each dataset are shown in
boldface.

Method \ Dataset EYaleB COIL-100 CIFAR-10 MNIST
k-Means 65 104 104 123
Spectral 14 45 4966 1380

LRR 2629 671 M M
LRR (k-NN) 2629 671 M M

LRSC 13 62 M M
LRSC (k-NN) 13 62 M M

O-LRSC 224 1491 340 304
LSR 5 46 M M

LSR (k-NN) 5 46 M M
SSC-ADMM 591 5781 M M

SSC-ADMM (k-NN) 592 5619 M M
ℓ0-SSC 4132 16164 T T

ℓ0-SSC (k-NN) 16807 15683 T T
NSN 383 1075 T T

SSC-OMP 8 33 5460 1475
SSC-BP 46 34 957 1151

SSC-BP (k-NN) 46 26 2261 1453
EnSC0.99 46 34 1122 2056
EnSC0.90 47 38 1092 2234
EnSC0.70 60 24 1248 2228
EnSC0.50 54 22 2505 2482
EnSC0.30 67 29 9264 3263

EnSC0.99 (k-NN) 46 50 12178 3149
EnSC0.90 (k-NN) 47 48 10209 3562
EnSC0.70 (k-NN) 60 49 10771 2264
EnSC0.50 (k-NN) 54 56 T 3439
EnSC0.30 (k-NN) 67 73 T 3069
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methods that may be categorized into three groups. The first group contains

k-means clustering and spectral clustering on the k-nearest neighbors graph,

named “Spectral” in the following figures and tables. It is known [80] that

Spectral is a provably correct method for subspace clustering. The k-means and

k-d trees algorithms used to compute the k-nearest neighbor graph in Spectral

are implemented using the VLFeat toolbox [159].

The second group consists of low-rank (i.e., LRR, LRSC and O-LRSC) and

least squares (i.e., LSR) based methods. Such methods produce dense data

similarity matrices, there are are not able to handle large scale datasets due

to memory constraints. On exception is the O-LRSC [137], which is an online

version of the LRSC and is designed to handle large scale data.

The final group consists of SSC-ADMM [60] (i.e., SSC-BP with a different

solver), ℓ0-SSC [188] and NSN [129]. These algorithms build sparse similarity

matrices.

Results. To the best of our knowledge, a comparison of all these methods in

the datasets we have chosen has not been reported in prior work. Thus, we

run all experiments and tune the parameters for each method to give the best

clustering accuracy. The results are reported in Table 4.2 and Table 4.3.

We see that on the CIFAR-10 and MNIST databases, very few methods

other than SSC-OMP, SSC-BP and EnSC are able to produce a result under our

20GB memory and 24 hours running time constraints of the experiments. This
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clearly indicates that our active support method is very efficient. On MNIST,

both SSC-OMP and SSC-BP achieve > 90 percent accuracy which is signifi-

cantly higher than other baseline methods. On CIFAR-10, no method is able to

produce high clustering accuracy since the dataset is very difficult. Nonethe-

less, the SSC-BP (k-NN) achieves the best clustering performance (other than

EnSC). On both MNIST and CIFAR-10, we can see that the EnSC is able to fur-

ther improve over SSC-BP for appropriate values of λ. For example, on MNIST

one can clearly see that the EnSC0.90 produces significantly higher clustering

accuracy than SSC-BP (theoretically is the same as EnSC1.00) and EnSCλ with

other values of λ. This verifies the design idea that the EnSC with properly cho-

sen λ is able to achieve the best trade-off between subspace-preserving property

and connectivity, which leads to the best clustering performance.

The EYaleB and the COIL-100 are relatively small scale databases which

allow us to compare with all other methods that are being tested. We can see

that the EnSC with appropriate values of λ are among the best performing

methods, while the SSC-OMP and SSC-BP are slightly worse.

In Table 4.4 we report clustering accuracy and running time for SSC-DC on

the MNIST dataset. In particular, we use SSC-OMP for subspace clustering in

Phase 1. Note that the solution for S in (4.13), which is supposed to be column

sparse, contains dense noise because the dataset contains noise. Therefore, we

compute the ℓ2-norm of the columns of S, and declare those that are larger than
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a threshold as outliers; we found it difficult to determine a proper threshold for

declaring outliers. For simplicity, we sort the ℓ2-norms of the columns of S in

descending order, and declare the data that correspond to the first 10% as out-

liers. While this may produce many false outliers, it is unlikely to significantly

affect the final clustering result because the false outliers are reclustered in

Phase 4.

From Table 4.4, we see that in terms of clustering accuracy, the performance

of SSC-DC becomes worse as the number of chunks increases. This is in ac-

cordance with the empirical results for SSC-OMP as reported in Figure 4.4,

where it is shown that the clustering performance of SSC-OMP becomes bet-

ter when there are more samples in each subspace. Therefore, the clustering

on each chunk in Phase 1 becomes less accurate as the number of chunks in-

creases, which affects the final clustering accuracy. Table 4.4 also reports the

performance of SSC-OMP, which exactly corresponds to the same computation

in Phase 1 of SSC-DC (1 chunk). Note that the clustering accuracy of SSC-

OMP is considerably lower than SSC-DC (1 chunk), which demonstrates that

the outlier detection and reclassification procedures in Phase 2 and Phase 4 of

SSC-DC effectively boost clustering accuracy.

The third column of Table 4.4 reports the overall running time of SSC-DC.

It shows that the running time first decreases as the number of chunks in-

creases, and then starts increasing once the number of chunks is larger than 20.
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Table 4.4: Performance of SSC-DC on the MNIST dataset. The results are
averages over 10 independent trials.

Method Acc. (%) Time (sec.)
Total P1 P2 P3 P4

SSC-DC (1) 96.55 5254 1825 3304 30 93
SSC-DC (2) 96.10 4390 1049 3185 59 94
SSC-DC (5) 94.90 1596 436 937 134 88
SSC-DC (10) 93.04 1081 272 454 266 88
SSC-DC (20) 91.46 1081 196 274 523 87
SSC-DC (50) 89.07 1689 169 183 1243 93

SSC-DC (100) 85.46 2635 148 132 2260 94
SSC-DC (200) 78.93 5518 144 119 5161 93

SSC-OMP 93.07 1825 NA NA NA NA

This behavior can be explained by the breakdown of the running time for the

4 phases as reported in columns 4–7 of Table 4.4. In particular, notice that the

running time of Phase 1 strictly decreases as the number of chunks increases,

showing that SSC becomes more efficient when the chunks are smaller. On the

other hand, the running time of Phase 3 strictly increases as the number of

chunks increases, showing that it quickly becomes prohibitively expensive to

merge subspaces as the number of subspace increases. At last, we note that

Phase 2 (outlier detection via Outlier Pursuit) is the bottleneck in running

time when the number of chunks is small. Thus, SSC-DC has the potential to

be more efficient by using more scalable algorithms for outlier detection.
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Chapter 5

Subspace Clustering with

Outliers

When a given set of data points lies in a union of subspaces with no corrup-

tions, the sparse subspace clustering (SSC) and elastic-net subspace clustering

(EnSC) methods are able to produce data similarity with desired subspace-

preserving properties for data clustering. In practice, many computer vision

tasks involve processing data that is contaminated by outliers, which are points

that do not lie in the union of the inlier subspaces. In such cases, the perfor-

mance of SSC and EnSC for subspace clustering can be significantly compro-

mised (see Figure 1.8).

In this chapter, we address the issue of outliers in subspace clustering tasks.

The solution that we propose is a novel outlier detection method based on the
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(a) Two exemplar representation vectors (b) Representation matrix C

Figure 5.1: An illustration of a self-representation matrix C in the presence
of outliers. The first 32 columns of the data matrix X correspond to 32 im-
ages of one individual under different illuminations from the Extended Yale B
database, and the next 32 images are randomly chosen from all other individ-
uals; three examples from each category are shown near the top of 5.1a. We
also show a typical representation vector for an inlier and an outlier image in
5.1a, and the complete representation matrix C in 5.1b, where white and black
denote cij ̸= 0 and cij = 0. Notice that inliers use only other inliers in their
representation, while outliers use both inliers and outliers in their representa-
tions.

self-expressiveness property of data as in EnSC. Recall from the previous chap-

ter that if the columns of X = [x1, · · · ,xN ] lie in multiple subspaces, then EnSC

computes self-representation coefficients by solving the following optimization

problem

min
cj

λ∥cj∥1 +
1− λ

2
∥c∥22 +

γ

2
∥xj −Xcj∥22 s.t. cjj = 0 (5.1)

for some λ ∈ [0, 1] and γ > 0. Then, an undirected similarity graph is con-

structed from C = [c1, · · · , cN ] in which each vertex corresponds to a data

point, and vertices corresponding to xi and xj are connected if either cij or cji

is nonzero. Such a graph is then used to segment the data into their respective
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subspaces by applying spectral clustering to the graph’s Laplacian.

Consider now the case where X contains outliers to the subspaces. Fig-

ure 5.1 illustrates an example representation matrix C computed from (5.1)

for data drawn from a single subspace (face images from one individual) plus

outliers (other images). In this case, the representation C is such that inliers

express themselves as linear combinations of a few other inliers, while outliers

express themselves as linear combinations of both inliers and outliers. Moti-

vated by this observation, we use a directed graph to model data relations: a

directed edge from xj to xi indicates that xj uses xi in its representation (i.e.

cij ̸= 0). Then a random walk on the representation graph initialized at an

outlier will not return to the set of outliers since once the random walk reaches

an inlier it cannot return to the outliers. Therefore, we design a random walk

process and identify outliers as those whose probabilities tend to zero.

5.1 Prior art in outlier detection

In this chapter, we address the problem of outlier detection in the setting

when the inlier data are assumed to lie close to a union of unknown low-

dimensional subspaces (low relative to the dimension of the ambient space). A

traditional method for solving this problem is RANSAC [67], which is based on

randomly selecting a subset of points, fitting a subspace to them, and counting
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the number of points that are well fit by this subspace; this process is repeated

for sufficiently many trials and the best fit is chosen. RANSAC is intrinsi-

cally combinatorial and the number of trials needed to find a good estimate of

the subspace grows exponentially with the subspace dimension. Consequently,

the methods of choice have been to robustly learn the subspaces by penalizing

the sum of unsquared distances (in lieu of squared distances used in classical

methods such as PCA) of points to the closest subspace [52,95,198,199]. Such

a penalty is robust to outliers because it reduces the contributions from large

residuals arising from outliers. However, the optimization problem is usually

nonconvex and a good initialization is extremely important for finding the op-

timal solution.

The groundbreaking work of Wright et al. [176] and Candès et al. [32] on

using convex optimization techniques to solve the PCA problem with robust-

ness to corrupted entries has led to many recent methods for PCA with ro-

bustness to outliers [98,102,115,183,200]. For example, Outlier Pursuit [183]

uses the nuclear norm ∥ · ∥∗ to seek low-rank solutions by solving the problem

minL ∥X−L∥2,1+λ∥L∥∗ for some λ > 0. REAPER [98] models the subspace by the

orthoprojector Π that minimizes ∥X − ΠX∥2,1 and relaxes the orthoprojection

constraint to a convex constraint. A prominent advantage of convex optimiza-

tion techniques is that they are guaranteed to correctly identify outliers under

certain conditions. Very recently, several nonconvex outlier detection methods
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have also been developed with guaranteed correctness [41,96]. See [97] for a re-

view of more recent development. Nonetheless, these methods typically model

a unique inlier subspace, e.g., by a low rank matrix L in Outlier Pursuit, and

therefore cannot deal with multiple inlier subspaces since the union of multiple

subspaces could be high-dimensional.

Another class of methods with theoretical guarantees for correctness uti-

lizes the fact that outliers are expected to have low similarities with other

data points. In [10, 39], a multi-way similarity is introduced that is defined

from the polar curvature, which has the advantage of exploiting the subspace

structure. However, the number of combinations in multi-way similarity can

be prohibitively large. Some recent works have explored using inner products

between data points for outlier detection [80,134]. For example, the coherence

pursuit (CoP) [134] claims a point to be an outlier if the sum of its inner prod-

ucts with all other points is small. Although computationally very efficient,

these methods require the inliers to be well distributed and densely sampled

within the subspaces.

Prior work has also explored using data self-representation as a tool for out-

lier detection in a union of subspaces. Specifically, motivated by the observation

that outliers do not have sparse representations, [45,139] declare a point xj as

an outlier if ∥cj∥1 is above a threshold. However, this ℓ1-thresholding strategy

is not robust to outliers that are close to each other since their representation
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vectors may have small ℓ1-norms. The LRR [107] solves for a low-rank self-

representation matrix C in lieu of a sparse representation and penalizes the

sum of unsquared self-representation errors ∥xj −Xcj∥2, which makes it more

robust to outliers. However, LRR requires the subspaces to be independent and

the sum of the union of subspaces to be low-dimensional [108].

Finally, we talk about two categories of related outlier detection methods

that are not designed for data from low-dimensional subspaces.

Outlier detection by maximum consensus. In a diverse range of contexts

such as maximum consensus [42, 201] and robust linear regression [118, 168],

people have studied problems of the form

min
b

N∑
i=1

I(|x⊤
i b− yi| ≥ ϵ), (5.2)

in which I(·) is the indicator function. Note that if we set yi = 1 for all i, then

(5.2) can be interpreted as detecting outliers in data X where the inliers lie

close to an affine hyperplane. A problem closely related to (5.2) is

min
b

N∑
i=1

I(|x⊤
i b| ≥ ϵ) s.t. b ̸= 0, (5.3)

which appears in many applications (e.g. see [133]). In particular, (5.3) can be

used to learn a linear hyperplane from data corrupted by outliers. To detect

outliers in a general low-dimensional subspace, one can apply (5.2) and (5.3)
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recursively to find a basis for the orthogonal complement of the subspace [154].

However, such an approach is limited because there can be only one inlier sub-

space and the dimension of that subspace must be known in advance.

Outlier detection by random walk. Perhaps the most well-known random

walk based algorithm is PageRank [25]. Originally introduced to determine

the authority of website pages from web graphs, PageRank and its variants

have been used in different contexts for ranking the centrality of the vertices

in a graph. In particular, [121, 122] propose the OutRank, which ranks the

“outlierness” of points in a dataset by applying PageRank to an undirected

graph in which the weight of an edge is the cosine similarity or RBF similarity

between the two connected data points. Then, points that have low centrality

are regarded as outliers. The outliers returned by OutRank are those that have

low similarity to other data points. Therefore, OutRank does not work if points

in a subspace are not dense enough.

5.2 Outlier detection by representation

graph

In this section, we present our data self-representation based outlier detec-

tion method. We first describe the data self-representation and its associated
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properties for inliers and outliers. We then design a random walk algorithm on

the representation graph whose limiting behavior allows us to identify the sets

of inliers and outliers.

5.2.1 Self-representation of outliers

Given an unlabeled dataset X = [x1, · · · ,xN ] containing inliers and out-

liers, the first step of our algorithm is to construct the data self-representation

matrix denoted by C = [c1, · · · , cN ]. As briefly discussed above (see also Fig-

ure 5.1), a self-representation matrix C computed from (5.1) is observed to have

different properties for inliers and outliers. Specifically, inliers usually use only

other inliers for self-representation, i.e. for an inlier xj, the representation is

such that cij ̸= 0 only if xi is also an inlier, where cij is the (i, j)-th entry of

C. This property is expected to hold if the inliers lie in a union of low dimen-

sional subspaces, as evidenced from Chapter 3. As an intuitive explanation,

if the inliers lie in a low dimensional subspace, then any inlier has a sparse

representation using other points in this subspace. Thus such a representation

can be found by using sparsity-inducing regularization as seen in (5.1). In con-

trast, outliers are generally randomly distributed in the ambient space, so that

a self-representation usually contains both inliers and outliers.
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5.2.2 Representation graph and random walk

We use a directed graph G, which we call a representation graph, to capture

the behavior of inliers and outliers from the representation matrix C. The

vertices of G correspond to the data points X, and the edges are given by the

(weighted) adjacency matrix A := |C|⊤ ∈ RN×N with the absolute value taken

elementwise, i.e., the weight of the edge from xi to xj is given by aij = |cji|. In

the representation graph, we expect that vertices corresponding to inliers will

have edges that only lead to inliers, while vertices that are outliers will have

edges that lead to both inliers and outliers. In other words, we do not expect to

have any edges that lead from an inlier to an outlier.

Using the previous paragraph as motivation, we design a random walk pro-

cedure to identify the outliers. A random walk on the representation graph G

is a discrete time Markov chain, for which the transition probability from xi at

a given time to xj at the next time is given by pij := aij/di with di :=
∑

j aij. By

this definition, if the starting point of a random walk is an inlier then it will

never escape the set of inliers as there is no edge going from any inlier to any

outlier. In contrast, a random walk starting from an outlier will likely end up

in an inlier state since once it enters any inlier it will never return to an outlier

state. Thus, by using different data points to initialize random walks, outliers

can be identified by observing the final probability distribution of the state of

the random walks (see Figure 5.2).
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1 2 3

4 5 6

Figure 5.2: Illustration of random walks on a representation graph. Top:
green balls represent inliers and red balls represent outliers, and arrows rep-
resent edges among nodes. Notice that there is no edge going from inliers to
outliers. A random walk starting from any point will end up at only inlier
points. Bottom: bar plot of π̄(100) with the ith bar corresponding to the ith entry
in π̄(100). The use of thresholding on this probability distribution will correctly
distinguish outliers from inliers.

If P ∈ RN×N is the transition matrix with entries pij, then P is related to

the representation matrix C by

pij = |cji|/∥ci∥1 for all {i, j} ⊂ {1, 2, · · ·N}. (5.4)

We define π(t) = [π
(t)
1 , . . . , π

(t)
N ] to be the state probability distribution at time t,

then the state transition is given by π(t+1) = π(t)P . Thus, a t-step transition is

π(t) = π(0)Pt with π(0) the chosen initial state probability distribution.
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5.2.3 Main algorithm: Outlier detection by R-

graph

We propose to perform outlier detection by using random walks on the

representation graph G. We set the initial probability distribution as π(0) =

[1/N, · · · , 1/N ], and then compute the t-step transition π(t) = π(0)P t. This can

be interpreted as initializing a random walk from each of the N data points,

and then finding the sum of probability distributions of all random walks after

t steps. It is expected that all random walks—starting from either an inlier or

an outlier—will eventually have high probabilities for the inlier states and low

probabilities for the outlier states.

We note that the π(t) defined as above need not converge, as shown by the

2-dimensional example P = [ 0 1
1 0 ]. Instead, we choose to use the T -step Cesàro

mean, given by

π̄(T ) =
1

T

T∑
t=1

π(0)P t ≡ 1

T

T∑
t=1

π(t), (5.5)

which is the average of the first T t-step probability distributions (see Fig-

ure 5.2). The sequence {π̄(T )} has the benefit that it always converges, and its

limit is the same as that of π(t) whenever the latter exists. In the next sec-

tion, we give a more detailed discussion of this choice, its properties for outlier

detection, and its convergence behavior.

Our complete algorithm is stated as Algorithm 8.
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Algorithm 8 Outlier detection by representation graph
Input: Data X = [x1, · · ·,xN ], number of iterations T , threshold ϵ.

1: Use X to solve for C = [c1, · · · , cN ] using (5.1).

2: Compute P from C using (5.4).

3: Initialize t = 0, π = [1/N, · · · , 1/N ], and π̄ = 0.

4: for t = 1, 2, . . . T do

5: Compute π ← π · P , and then set π̄ ← π̄ + π.

6: end for

7: π̄ ← π̄/T .

Output: An indicator of outliers: xj is an outlier if π̄j ≤ ϵ.

5.3 Theoretical guarantees for correct-

ness

Let us first formally define the problem of outlier detection when data is

drawn from a union of subspaces.

Problem 1 (Outlier detection in a union of subspaces). Given data matrix X =

[x1, · · · ,xN ] ∈ RD×N whose columns contain inliers that are drawn from an

unknown number of unknown subspaces {Sℓ}nℓ=1, and outliers that are outside

of ∪n
ℓ=1Sℓ, the goal is to identify the set of outliers.

Recall that motivation for our method is that ideally there will be no edge
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going from an inlier to an outlier in the representation graph. This motivates

us to assume that a random walk starting at any inlier will eventually return

to itself, i.e. inliers are essential states of the Markov chain, while outliers

are those that have a chance of never coming back to itself, i.e. outliers are

inessential states. Formally, we work with a (time homogeneous) Markov chain

with state space Ω = {1, · · · , N}, in which each state j corresponds to data xj,

and the transition probability P is given by (5.4). Given {i, j} ⊂ Ω, we say that

j is accessible from i, denoted as i→ j, if there exists some t > 0 such that the

(i, j)-th entry of Pt is positive. Intuitively, i → j if a random walk can move

from i to j in finitely many steps.

Definition 22 (Essential and inessential state [99]). A state i ∈ Ω is essen-

tial if for all j such that i→ j it is also true that j → i. A state is inessential

if it is not essential.

Our aim in this section is to establish that if inliers connect to themselves,

i.e. they are subspace-preserving (Section 5.3.1), and the representation C sat-

isfies certain connectivity conditions (Section 5.3.2), then inliers are essential

states of the Markov chain and outliers are inessential states. Subsequently,

in Section 5.3.3 we show that the Cesàro mean (5.5) identifies essential and

inessential states, thus establishing the correctness of Algorithm 8 for outlier

detection.
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5.3.1 Subspace-preserving representation

We have seen from Chapter 3 that in the context of subspace clustering, the

solution to (5.1) has the property that the data points express themselves with

only other data points from its own subspace. Such property is called subspace-

preserving (see Definition 6). In the context of outlier detection in a union of

subspaces, we have the following result which states that the solution to (5.1)

is subspace-preserving for all inliers.

Theorem 45. Let xj ∈ Sℓ be an inlier. Define the oracle point of xj to be δj :=

γ · (xj −Xℓ
−j · cℓj), where Xℓ

−j is the matrix containing all points in Sℓ except xj

and

cℓj := argmin
c

λ∥c∥1 +
1− λ

2
∥c∥22 +

γ

2
∥xj −Xℓ

−jc∥22.

The solution cj to (5.1) is subspace-preserving if

max
k ̸=j,xk∈Sℓ

|⟨xk, δ̄j⟩| − max
k:xk /∈Sℓ

|⟨xk, δ̄j⟩| >
1− λ

λ
, (5.6)

where δ̄j := δj/∥δj∥2.

This result generalizes Theorem 39 in Chapter 3. Note that the oracle point

δj lies in Sℓ and that its definition only depends on points in Sℓ. The first

term in condition (5.6) captures the distribution of points in Sℓ near δ̄j, and is

expected to be large if the neighborhood of δ̄j is well-covered by points from Sℓ.
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The second term characterizes the similarity between the oracle point δ̄j and

all other data points, which includes the outliers and the inliers from other

subspaces. The condition requires the former to be larger than the latter by a

margin of 1−λ
λ

, which is close to zero if λ is close to 1. Overall, condition (5.6)

requires that points in Sℓ are dense around δ̄j, which is itself in Sℓ, and that

outliers and inliers from other subspaces do not lie close to δ̄j.

Even if (5.6) holds for all the inliers in the dataset, we cannot automatically

establish an equivalence between inliers/outliers and essential/inessential states

because of potential complications related to the graph’s connectivity. This is

addressed next.

5.3.2 Connectivity considerations

Recall that the sparse subspace clustering suffers from the connectivity is-

sue, which states that points in the same subspace may not be well-connected

in the representation graph, which may cause oversegmentation of the true

clusters. Thus, one has to make the assumption that each true cluster is con-

nected to guarantee correct clustering. For the outlier detection problem, it

may happen that an inlier is inessential and thus classified as an outlier when

the inliers are not well-connected; similarly, an outlier may be essential and

thus classified as an inlier if it is not connected to at least one inlier. In fact,

the situation is even more involved since the representation graph is directed
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and inliers and outliers behave differently.

Suppose, as a first example, that there exists an inlier that is never used

to express any other inliers. This is equivalent to saying that there is no edge

going into this point from any other inliers. Note that the subspace-preserving

property can still hold if this inlier expresses itself using other inliers. Yet,

since a random walk leaving this point would never return it can not be iden-

tified as an inlier. To avoid such cases, we need the following assumption.

Assumption 1. For any inlier subspace Sℓ, the vertices {xj ∈ Sℓ} of the rep-

resentation graph are strongly connected, i.e. there is a path in each direction

between each pair of vertices.

Assumption 1 requires good connectivity between points from the same in-

lier subspace. We also need good connectivity between outliers and inliers.

Consider the example when there is a subset of outliers for which all of their

outgoing edges lead only to points within that same subset. In this case, the

subset of points can not be detected as outliers since their representation pat-

tern is the same as for the inliers. The next assumption rules out this case.

Assumption 2. For each subset of outliers there exists an edge in the represen-

tation graph that goes from a point in this subset to an inlier or to an outlier

outside this subset.
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5.3.3 Main theorem: guaranteed outlier detec-

tion

We can now establish guaranteed outlier detection by our representation

graph based method stated as Algorithm 8.

Theorem 46. If the representation cj is subspace-preserving for each inlier xj

and satisfies Assumptions 1 and 2, then Algorithm 8 with T = ∞ and ϵ = 0

correctly identifies outliers.

Theorem 46 is a direct consequence of the following two facts:

Lemma 19. If the representation cj is subspace-preserving for each inlier xj

and Assumptions 1 and 2 hold, then inliers and outliers correspond to essential

and inessential states, respectively.

Proof. Recall that we work with a Markov chain with state space Ω = {1, · · · , N},

in which each state i corresponds to the point xi in the data matrix X.

First, we show that any inlier point xi corresponds to an essential state of

the Markov chain. Let xj be any point such that i → j. Since the represen-

tation matrix is subspace-preserving, we know that xi and xj lie in the same

subspace. Furthermore, by Assumption 1, all points in the same subspace are

strongly connected, which implies that j → i. Thus, i is an essential state.

Second, we show that any outlier point xi corresponds to an inessential

state of the Markov chain. Consider the set Ωi = {k : i → k}, i.e. the set of
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points that are accessible from xi. By Assumption 2, the set Ωi cannot con-

tain only outliers. Thus, there exists xj such that i → j and xj is an inlier.

However, since the representation is subspace-preserving, we know that j ̸→ i.

Therefore, i is not an essential state, i.e. it is an inessential state.

Lemma 20. For any probability transition matrix P, the averaged probability

distribution in (5.5) satisfies limT→∞ π̄(T ) = π, where π is such that πj = 0 if and

only if state j is inessential.

Proof. According to Theorem 47, the state space of the Markov chain can be

decomposed into I ∪ E1 ∪ · · · ∪ En, in which I contains the inessential states and

each Eℓ is a closed communicating class containing essential states. Assume,

without loss of generality, that the transition probability matrix has the form

of (5.8). By using (5.13), the Cesàro mean in (5.5) has the following limiting

behavior:

π := lim
T→∞

π̄(T ) = lim
T→∞

1

T

T∑
t=1

π0P
t

=

[
N1 +

∑
fI→E1

N
· πE1 , · · · ,

Nn +
∑

fI→En
N

· πEn ,0

]
, (5.7)

where Nℓ for ℓ = 1, . . . , n is the number of states in class Eℓ, each fI→Eℓ is a

vector of hitting probabilities for each state in I to class Eℓ, and µEℓ is a positive

vector of the stationary distributions of states in Eℓ. Therefore, πj is zero if and

only if j is an inessential state. This finishes the proof.
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Theorem 46 shows that Problem 1 is solved by Algorithm 8 if the data X

satisfies the geometric conditions in (5.6) and the representation graph satisfies

the required connectivity assumptions.

We note that the random walk by the Cesàro mean adopted here is differ-

ent from the popular random walk with restart as adopted by PageRank, for

example. The benefit of PageRank is that the random walk converges to the

unique stationary distribution. However, it is not clear whether this station-

ary distribution identifies the outliers. In fact, all states in the random walk of

PageRank are essential, so that outliers do not converge to zero probabilities.

In contrast, the random walk in our method does not necessarily have a unique

stationary distribution, but the Cesàro mean does converge to one of the sta-

tionary distributions, which we have shown can be used to identify outliers. A

detailed discussion is in the Appendix.

5.4 Experiments

We use several image databases (see Figure 5.3) to evaluate our outlier

detection method (Algorithm 8). For computing the representation cj in (5.1),

we use the solver in [86] with λ = 0.95 and γ = α · λ
maxi:i̸=j |x⊤

j xi|
, where α is a

parameter tuned to each dataset. In particular, the solution to (5.1) is nonzero

if and only if α > 1. The number of iterations T is set to be 1,000.
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(a) Extended Yale B

(b) Caltech-256

(c) Coil-100

Figure 5.3: Examples of data used for outlier detection. For each database, the
top row shows examples of the inlier set and the bottom row shows examples
from the outlier set.

5.4.1 Experimental setup

Databases. We construct outlier detection tasks from three publicly available

databases. The Extended Yale B [71] dataset contains frontal face images of 38

individuals each under 64 different illumination conditions. The face images

are of size 192× 168, for which we downsample to 48× 42. The Caltech-256 [76]

is a database that contains images from 256 categories that have more than 80

images each. There is also an additional “clutter” category in this database that
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contains 827 images of different varieties, which are used as outliers. The Coil-

100 dataset [125] contains 7,200 images of 100 different objects. Each object

has 72 images taken at pose intervals of 5 degrees, with the images being of

size 32 × 32. For the Extended Yale B and Coil-100 datasets we use raw pixel

intensity as the feature representation. Images in Caltech-256 are represented

by a 4,096-dimensional feature vector extracted from the last fully connected

layer of the 16-layer VGG network [138].

Baselines. We compare with 6 other representative methods that are designed

for detecting outliers in one or multiple subspaces: CoP [134], OutlierPur-

suit (OP) [183], REAPER [98], DPCP [154], LRR [107] and ℓ1-thresholding

(ℓ1-thr) [139]. We also compare with a graph based method: OutRank (OR)

[121, 122]. We implement the inexact ALM [103] for solving the optimiza-

tion in OutlierPursuit. For LRR, we use the code available online at https:

//sites.google.com/site/guangcanliu/. For DPCP, we use the code

provided by the authors. All other methods are implemented according to the

description in their respective papers.

Evaluation metric. Each outlier detection method generates a numerical

value for each data point that indicates its “outlierness”, and a threshold value

is required for determining inliers and outliers. A Receiver Operating Charac-

teristic (ROC) curve plots the true positive rate and false positive rate for all

threshold values. We use the area under the curve (AUC) as a metric of perfor-
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Table 5.1: Results on the Extended Yale B database. Inliers are taken to be
the images of either one or three randomly chosen subjects, and outliers are
randomly chosen from the other subjects (at most one from each subject). For
R-graph we set α = 5 in the definition of γ.

OR CoP REAPER OP LRR DPCP ℓ1-thr R-graph
Inliers: images from one subject Outliers: 35%, taken from other subjects
AUC 0.536 0.556 0.964 0.972 0.857 0.952 0.844 0.986
F1 0.552 0.563 0.911 0.918 0.797 0.885 0.763 0.951

Inliers: images from three subjects Outliers: 15%, taken from other subjects
AUC 0.519 0.529 0.932 0.968 0.807 0.888 0.848 0.985
F1 0.288 0.292 0.758 0.856 0.509 0.653 0.545 0.878

mance in terms of the ROC. The AUC is always between 0 and 1, with a perfect

model having an AUC of 1 and a model that guesses randomly having an AUC

of approximately 0.5.

As a second metric, we provide the F1-score, which is the harmonic mean

of precision and recall. The F1-score is dependent upon the threshold, and we

report the largest F1-score across all thresholds. An F1-score of 1 means there

exists a threshold that gives both precision and recall equal to 1, i.e. a perfect

separation of inliers and outliers.

The reported numbers for all experiments discussed in this section are the

averages over 50 trials.

5.4.2 Outliers in face images

Suppose we are given a set of images of one or more individuals but that

the data set is also corrupted by face images of a variety of other individuals.
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The task is to detect and remove those outlying face images. It is known that

images of a face under different lighting conditions lie approximately in a low

dimensional subspace. Thus, this task can be modeled as the problem of outlier

detection in one subspace or in a union of subspaces.

We use the extended Yale B database. In the first experiment, we randomly

choose a single individual from the 38 subjects and use all 64 images of this

subject as the inliers. We then choose images from the remaining 37 subjects

as outliers with at most one image from each subject. The overall data set has

25% outliers. The average AUC and F1 measures over 50 trials are reported in

Table 5.1. For a fair comparison, we fine-tuned the parameters for all methods.

Comparing to state of the art. We see that our representation graph based

method R-graph outperforms the other methods. Besides our method, the

REAPER, Outlier Pursuit and DPCP algorithms all perform well. These three

methods learn a single subspace and treat those that do not fit the subspace as

outliers, thus making them well suited for this data (the images of one individ-

ual can be well-approximated by a single low dimensional subspace).

The LRR and ℓ1-thresholding methods use data self-representation, which

is also the case for our method. However, LRR does not give good outlier detec-

tion results, probably because its algorithm for solving the LRR model is not

guaranteed to converge to a global optimum. The ℓ1-thresholding also does not

give good results, showing that the magnitude of the representation vector is
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not a robust measure for classifying outliers. By considering the connection

patterns in the representation graph, our method achieves significantly better

results.

The performance of OutRank and CoP is significantly worse than that of

the other methods. This poor performance can be explained by the use of a

coherence-based distance, which fails to capture similarity between data points

when the data lie in subspaces. For example, it can be argued that the coher-

ence between two faces with the same illumination condition can be higher

than two images of the same face under different illumination conditions.

Dealing with multiple inlier groups. In order to test the ability of the

methods to deal with multiple inlier groups, we designed a second experiment

in which inliers are taken to be images of 3 randomly chosen subjects, and

outliers are randomly drawn from other subjects as before. For all methods, we

use the same parameters as in the previous experiment to test the robustness

to parameter tuning. The results of this experiment are reported in Table 5.1.

We can see that Outlier Pursuit and our R-graph are the two best methods.

Although Outlier Pursuit only models a single low dimensional subspace, it can

still deal with this data since the union of the three subspaces corresponding to

the three subjects in the inlier set is still low dimensional and can be treated as

a single low dimensional subspace. However, we postulate that Outlier Pursuit

will eventually fail as we increase the number of inlier groups, since the union
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Table 5.2: Results on the Caltech-256 database. Inliers are taken to be images
of one, three, or five randomly chosen categories, and outliers are randomly
chosen from category 257-clutter. For R-graph we set α = 20 in the definition
of γ.

OR CoP REAPER OP LRR DPCP ℓ1-thr R-graph
Inliers: one category of images Outliers: 50%
AUC 0.897 0.905 0.816 0.837 0.907 0.783 0.772 0.948
F1 0.866 0.880 0.808 0.823 0.893 0.785 0.772 0.914

Inliers: three categories of images Outliers: 50%
AUC 0.574 0.676 0.796 0.788 0.479 0.798 0.810 0.929
F1 0.682 0.718 0.784 0.779 0.671 0.777 0.782 0.880

Inliers: five categories of images Outliers: 50%
AUC 0.407 0.487 0.657 0.629 0.337 0.676 0.774 0.913
F1 0.667 0.672 0.716 0.711 0.667 0.715 0.762 0.858

of low dimensional subspaces will no longer be low rank. Our method does not

have this limitation.

Similar to Outlier Pursuit, both REAPER and DPCP can, in principle, han-

dle multiple inlier groups by fitting a single subspace to their union. However,

REAPER and DPCP require as input the dimension of the union of the inlier

subspaces, which can be hard to estimate in practice. Indeed, in Table 5.1, we

observe that the performances of REAPER and DPCP are less competitive in

comparison to Outlier Pursuit and our R-graph for the three subspace case.

Computational time comparison. Table 5.4 reports the average running

time of the experiment on the Extended Yale B database with three inlier

groups and 15% outliers (226 images in total). From the table we observe that

the running times of OutRank and CoP are much smaller than the other meth-

ods. This comes from the fact that OutRank and CoP are based on computing
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Table 5.3: Results on the Coil-100 database. Inliers are taken to be images
of one, four, or seven randomly chosen categories, and outliers are randomly
chosen from other categories (at most one from each category). For R-graph we
set α = 10 in the definition of γ.

OR CoP REAPER OP LRR DPCP ℓ1-thr R-graph
Inliers: all images from one category Outliers: 50%
AUC 0.836 0.843 0.900 0.908 0.847 0.900 0.991 0.997
F1 0.862 0.866 0.892 0.902 0.872 0.882 0.978 0.990

Inliers: all images from four categories Outliers: 25%
AUC 0.613 0.628 0.877 0.837 0.687 0.859 0.992 0.996
F1 0.491 0.500 0.703 0.686 0.541 0.684 0.941 0.970

Inliers: all images from seven categories Outliers: 15%
AUC 0.570 0.580 0.824 0.822 0.628 0.804 0.991 0.996
F1 0.342 0.346 0.541 0.528 0.366 0.511 0.897 0.955

data pairwise inner products, which is efficient for small scale data. In con-

trast, the other methods solve optimization problems. In particular, REAPER,

OutlierPursuit and LRR require computing an eigendecomposition of a matrix

of size D × D (D is the ambient dimension) during each iteration, which is

time consuming when D is large. In our experiments we observe that REAPER

converges much faster than OutlierPursuit and LRR, thus the running time of

REAPER is typically much smaller. The ℓ1-thresholding method and R-graph

method (our algorithm) both compute the representation matrix by solving an

ℓ1 optimization problem for each of the data points with all other data points as

the dictionary. Subsequently, ℓ1-thresholding rejects outliers simply by comput-

ing the ℓ1 norms of the representations, while R-graph requires a random walk

on the graph defined from the representation. We note that the random walk

for R-graph is computationally efficient because of the sparsity of the represen-
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CHAPTER 5. SUBSPACE CLUSTERING WITH OUTLIERS

outliers while varying α in the range [1, 50]; the results are shown in Figure

5.4a. We can see that the R-graph performs well over a wide range of the pa-

rameter α. For comparison, Figure 5.4a also plots the performance of the other

methods on the same dataset.

Influence of the percentage of outliers. In this experiment, we fix the

number of inlier groups to be 3 and vary the percentage of outliers from 1% to

15%. The performances of the different methods are reported in Figure 5.4b.

Note that the parameters for all methods are fixed across the different per-

centages of outliers. We see that the performance of our method is stable with

respect to the percentage of outliers. Moreover, our method also achieves the

best performance among all methods.

Visualization of the outliers. To supplement the AUC and F1 measures

previously provided, and also to better understand the outliers returned by our

outlier detection method, we conducted additional experiments that display the

top outliers detected in each experiment. The set of inliers is taken to be the

64 images of the first subject of the Extended Yale B database, and the outlier

set is chosen as 10 images randomly chosen from the remaining 37 subjects (see

Figure 5.5). The top 10 outliers returned by different methods are reported in

Figure 5.6. Images with red boxes are outliers (i.e. true positives) and images

with green boxes are inliers (i.e. false positives).

False positives for all methods are mostly images taken under extreme il-
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lumination conditions. Such images have large shadows, which has the effect

of removing them from the underlying subspace associated with the individual

thus making them more likely to be detected as outliers. The results show that

REAPER, Outlier Pursuit, DPCP and R-graph are relatively robust. In par-

ticular, R-graph is significantly better than ℓ1-thresholding even though both

are sparse representation based methods. This shows that while the magni-

tude of the representation vector adopted by ℓ1-thresholding can be sensitive

to corruptions, the connectivity behavior explored by R-graph is more robust.

(a) Inliers: 64 images of one individual (displaying 10 out of 64).

(b) Outliers: 10 images from 10 other individuals.

Figure 5.5: An outlier detection dataset for visualizing the top 10 outliers
returned by diffferent methods.

5.4.3 Outliers in images of objects

We test the ability of the methods to identify one or several object categories

that frequently appear in a set of images amidst outliers that consist of objects

that rarely occur. For Caltech-256, images in n ∈ {1, 3, 5} randomly chosen

categories are used as inliers in three different experiments. From each cat-
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(a) Top 10 outliers by OutRank

(b) Top 10 outliers by CoP

(c) Top 10 outliers by REAPER

(d) Top 10 outliers by OutlierPursuit

(e) Top 10 outliers by LRR

(f) Top 10 outliers by DPCP

(g) Top 10 outliers by ℓ1-thresholding

(h) Top 10 outliers by R-graph (ours)

Figure 5.6: Visualizing the top 10 outliers from different methods. Image in
red box: true outlier. Image in green box: true inlier.
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egory, we use the first 150 images if the category has more than 150 images.

We then randomly pick a certain number of images from the “clutter” category

as outliers such that there are 50% outliers in each experiment. For Coil-100,

we randomly pick n ∈ {1, 4, 7} categories as inliers and pick at most one image

from each of the remaining categories as outliers.

The results are reported in Table 5.2 and Table 5.3. We see that our R-

graph method achieves the best performance. The two geometric distance

based methods, OutRank and CoP, achieve good results when there is one in-

lier category, but deteriorate when the number of inlier categories increases.

The performance of REAPER, Outlier Pursuit and DPCP are similar to each

other and worse than our method. This may be because they all try to fit a lin-

ear subspace to the data, while the data in these two databases may be better

modeled by a nonlinear manifold. The ℓ1-thresholding and the representation

graph method are all based on data self-expression, and seem to be more pow-

erful for this data.

5.5 Appendix: Background on Markov

chain theory

We present background material on Markov chain theory that will help us

understand the Cesàro mean (5.5) used for outlier detection in our method.
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The following material is organized from textbooks [70, 99, 136, 143] and the

website http://www.math.uah.edu/stat.

We consider a Markov chain (X0,X1, · · · ) on a finite state space Ω with tran-

sition probabilities pij for i, j ∈ Ω. The t-step transition probabilities are defined

to be p
(t)
ij := P{Xt = j|X0 = i}.

5.5.1 Decomposition of the state space

A Markov chain can be decomposed into more basic and manageable parts.

Definition 23. State j is accessible from state i, denoted as i→ j, if p(t)ij > 0

for some t > 0. We say that the states i and j communicate with each other,

denoted by i↔ j, if i→ j and j → i.

Since it can be shown that ↔ is an equivalence relation, it induces a parti-

tion of the state space Ω into disjoint equivalence classes known as communi-

cating classes. We are interested in each of the closed communicating classes.

Definition 24. A non-empty set C ⊆ Ω is called a closed set if pij = 0 for

i ∈ C and j /∈ C.

Note that states in a closed communicating class are essential while states

in other communicating classes are inessential [99].
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Theorem 47 ( [136]). The state space Ω has the unique decomposition Ω =

I ∪ E1 ∪ . . . En, where I is the set of inessential states, and E1, . . . , En are closed

communicating classes containing essential states.

By Theorem 47, the state space of any Markov chain is composed of the

essential states and inessential states, and the essential states can be further

decomposed into a union of communicating classes. Therefore, the probability

transition matrix P can be written in the following form (up to permutation of

the states):

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PE1→E1 0 0

. . . ...

0 PEn→En 0

PI→E1 · · · PI→En PI→I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.8)

5.5.2 Stationary distribution

A nonnegative row vector π is called a stationary distribution for the Markov

chain if it satisfies π = πP .

Theorem 48 ( [99, Proposition 1.14, Corollary 1.17]). A Markov chain consist-

ing of one closed communicating class has a unique stationary distribution.

Moreover, each entry of the stationary distribution is positive.

By Theorem 48, each component Eℓ for ℓ = 1, · · · , n in the decomposition of

the Markov chain in Theorem 47 has a unique positive stationary distribution
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πEℓ , i.e.

πEℓ = πEℓ · PEℓ→Eℓ with πEℓ > 0 and
∑
j

(πEℓ)j = 1. (5.9)

We may then define a stationary distribution for P as

[α1πE1 , . . . , αnπEn ,0] for any αℓ ≥ 0,
n∑

ℓ=1

αℓ = 1. (5.10)

Note that there is not a unique stationary distribution for P when n ≥ 2.

5.5.3 Convergence of the Cesàro mean 1
T

∑T
t=1 P

t

Let f
(t)
ij := P{Xt = j,Xt′ ̸= j for 1 ≤ t′ < t|X0 = i} be the probability that

the chain starting at i enters j for the first time at the t-th step. The hitting

probability fij = P{Xt = j for some t > 0|X0 = i} is the probability that the

random walk ever makes a transition to state j when started at i, i.e.

fij =
∞∑
t=1

f
(t)
ij . (5.11)

The mean return time µj :=
∑∞

t=1 tf
(t)
jj is the expected time for a random

walk starting from state j will return to state j. A general convergence result

is stated as follows.
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Theorem 49 ( [143, Theorem 3.3.1]). For any i, j ∈ Ω,

lim
T→∞

1

T

T∑
t=1

p
(t)
ij =

fij
µj

. (5.12)

This result can be simplified by using the decomposition in Theorem 47,

which leads to the following lemma.

Lemma 21. If i, j ∈ Ω are in the same closed communicating class, then fij =

fji = 1. Also, if i ∈ Ω is an inessential state and Eℓ ⊆ Ω is a closed communi-

cating class, then fij = fi→Eℓ for all j ∈ Eℓ, where fi→Eℓ is the hitting probability

from state i to class Eℓ.

The following result relates the mean return time with the stationary dis-

tribution.

Lemma 22. For every closed communicating class Eℓ ⊆ Ω, it holds that µEℓ =

1/πEℓ (entry-wise division), where µEℓ is the vector of mean return times of states

in Eℓ. If i ∈ Ω is an inessential state, then µi =∞.

By combining Theorem 49 with Lemma 21 and Lemma 22, the Cesàro limit
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of a probability transition matrix of the form in (5.8) can be written as

lim
T

1

T

T∑
t=1

P t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · πE1 0 0

. . . ...

0 1 · πEn 0

fI→E1 · πE1 · · · fI→E1 · πEn 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.13)

in which fI→Eℓ is a column vector of hitting probability from each state in I to

class Eℓ.

We note that while the Cesàro mean converges, the t-step transition proba-

bility Pt does not necessarily converge. Consider, for example, the probability

transition matrix P = [ 0 1
1 0 ]. In this case, p(t)12 = 1 when t is odd and p

(t)
12 = 0 when

t is even, i.e. p
(t)
12 is oscillating and never converges. In general, Pt converges

if and only if each of the closed communicating classes Eℓ for ℓ = 1, . . . , n is

aperiodic.

5.5.4 Discussion

In this section, we provide additional comments on using the Cesàro mean

π̄(T ) in (5.5) for outlier detection.

Stationary distributions. By (5.7), the vector that π̄(T ) converges to is a

stationary distribution of the Markov chain (see (5.10)). In fact, any convex
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combination of the stationary distribution of each closed communicating class

is a stationary distribution of the Markov chain, and the particular stationary

distribution that π̄(T ) converges to depends on the choice of the initial state

distribution π0.

A T -step probability distribution and PageRank. Traditionally, PageR-

ank and many other spectral ranking algorithms use the limit of the T -step

probability distribution π(T ) rather than π̄(T ) as adopted in our method. How-

ever, the sequence π(T ) converges if and only if each closed communicating class

of the Markov chain is aperiodic, which is not necessarily satisfied in many

cases. To address this, PageRank adopts a random walk with restart algo-

rithm. It can be interpreted as a random walk on a transformed Markov chain

that adds a small probability of transition from each state to the other states

on the transition probability of the original Markov chain. By doing so, the

transformed Markov chain contains a single communicating class that is ape-

riodic. Therefore, the stationary distribution necessarily becomes unique, and

the sequence π(T ) for the transformed Markov chain converges to the unique

stationary distribution regardless of the initial state distribution.

Despite the advantages of the random walk used by PageRank, all states

of the Markov Chain are essential, so that outliers do not converge to zero

probabilities. Therefore, it is less clear whether the stationary distribution

that the algorithm converges to can effectively identify outliers.
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5.6 Conclusion

In this chapter of the thesis, we presented an outlier detection method

that combines data self-representation and random walks on a representation

graph. Unlike many prior methods for robust PCA, our method is able to deal

with multiple subspaces and does not require the number of subspaces or their

dimensions to be known. Our analysis showed that the method is guaranteed

to identify outliers when certain geometric conditions are satisfied and two con-

nectivity assumptions hold. In our experiments on face image and object image

databases, our method achieves the state-of-the-art performance.
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Chapter 6

Subspace Clustering with

Imbalanced Data

Despite the great success of sparse subspace clustering (SSC) and elastic-

net subspace clustering (EnSC) in their theoretical justifications and empirical

performance, previous experimental evaluations focused primarily on existing

labeled databases which are usually balanced, i.e. there are approximately

equal number of samples from each cluster. In practice, the number of data

samples in unlabeled datasets usually varies widely for different classes, and

and the effect of such an imbalance on clustering performance has scarcely

been studied. Recall that in SSC-BP, each data point is expressed as a sparse

linear combination of other data points by solving the following optimization
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Figure 6.1: Subspace clustering on imbalanced data and large-scale data. (a)
x and 100 − x points (x is varied in the x-axis) are drawn uniformly at random
from 2 subspaces of dimension 3 drawn uniformly at random in an ambient
space of dimension 5. Note that the clustering accuracy of SSC decreases dra-
matically as the dataset becomes imbalanced. (b) 10 subspaces of dimension 5
are drawn uniformly at random in an ambient space of dimension 20. An equal
number of points is drawn uniformly at random from each subspace. Note that
the runtime of SSC increases dramatically with data size.

problem:

min
cj∈RN

∥cj∥1 +
λ

2
· ∥xj −

∑
i̸=j

cijxi∥22, (6.1)

where λ > 0 and cj = [c1j, · · · , cNj]
⊤. Theoretically, we conjecture that such

representation for data point xj in an under-represented class is more likely to

have nonzero entries corresponding to data points in over-represented classes,

which gives false connections in the graph affinity. A proof of this conjecture

will be the subject of future work. As a preliminary experiment, Figure 6.1a

shows that skewed data distribution can significantly compromise the perfor-

mance of SSC. Another issue with SSC is that it is limited to small or medium

scale datasets. Figure 6.1b illustrates the running time of SSC as a function of
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the number of data points N , which is roughly quadratic in N .

In this chapter, we present an exemplar-based subspace clustering approach

to address the issues of imbalanced and large-scale data. Given a dataset X ,

the idea is to select a subset X0, which we call exemplars, and write each data

point as a linear combination of points in X0 (rather than X as in SSC):

min
cj∈RN

∥cj∥1 +
λ

2
∥xj −

∑
i:xi∈X0

cijxi∥22. (6.2)

Observe that (6.2) is potentially more robust to imbalanced data than (6.1)

in finding subspace-preserving representations when X0 is balanced across

classes. Moreover, (6.2) can potentially be solved more efficiently than (6.1)

when X0 is small relative to the original data X . Thus, to achieve robustness

to imbalanced data and scalability to large datasets, we need an efficient algo-

rithm for selecting exemplars X0 that is more balanced across classes.

In this chapter, we present a new model for selecting a set of exemplars

X0 that is based on minimizing a maximum representation cost of the data

X . Moreover, we introduce an efficient algorithm for solving the optimiza-

tion problem that has linear time and memory complexity. Compared to SSC,

exemplar-based subspace clustering is less sensitive to imbalanced data and

more efficient for big data (see Figure 6.1). In particular, we prove that when

the data lies in a union of independent subspaces, our method is guaranteed to
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select sufficiently many data points from each subspace and construct correct

data affinities, even when the data is imbalanced.

6.1 Related work

Sparse dictionary learning (SDL). Sparse representation of a given dataset

is a well studied problem in signal processing and machine learning [3, 13].

Given a set X ⊆ RD and an integer k, SDL computes a dictionary of atoms

D ⊆ RD with |D| ≤ k that minimizes the sparse representation cost. Based on

SDL, [2] proposed a linear time subspace clustering algorithm that is guaran-

teed to be correct if the atoms in dictionaryD lie in the same union of subspaces

as the input data X . However, there is little evidence that such a condition is

satisfied in real data as the atoms of the dictionary D are not constrained to be

a subset of X . Another recent work [147], which used data-independent ran-

dom matrices as dictionaries, also suffers from this issue and lacks correctness

guarantees.

Sparse dictionary selection. Three variations of the SDL model that ex-

plicitly constrain the dictionary atoms to be taken from X are simultaneous

sparse representation [150] and dictionary selection [36,49], which use greedy

algorithms to solve their respective optimization problems, and group sparse

representative selection [45,46,58,117,149,167], which uses a convex optimiza-
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tion based approach based on group sparsity. In particular, when the data is

drawn from a union of independent subspaces, the method in [58] is shown to

select a few representatives from each of the subspaces. However, these meth-

ods have quadratic complexity in the number of points in X . Moreover, convex

optimization based methods are not flexible in selecting a desired number of

representatives since the size of the subset cannot be directly controlled by

adjusting an algorithm parameter.

Subset selection. Selecting a representative subset of the entire data has

been studied in a wide range of contexts such as Determinantal Point Processes

[20,72,89], Rank Revealing QR [37], Column subset selection [7,22], separable

Nonnegative Matrix Factorization [12, 90], and so on [57]. However, they do

not model data as coming from a union of subspaces and there is no evidence

that they can select good representatives from such data. Several recent works

[1, 4, 5], which use different subset selection methods for subspace clustering,

also lack justification that their selected exemplars are representative of the

subspaces.

k-centers and k-medoids. The k-centers problem is a data clustering problem

studied in theoretical computer science and operations research. Given a set X

and an integer k, the goal is to find a set of centers X0 ⊆ X with |X0| ≤ k that

minimizes the quantity maxx∈X d2(x,X0), where d2(x,X0) := minv∈X0 ∥x− v∥22 is

the squared distance of x to the closest point in X0. A partition of X is given
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by the closest center to which each point x ∈ X belongs. The k-medoids is

a variant of k-centers that minimizes the sum of the squared distances, i.e.,

minimizes
∑

x∈X d2(x,X0) instead of the maximum distance. However, both

k-centers and k-medoids model data as concentrating around several cluster

centers, and do not generally apply to data lying in a union of subspaces.

6.2 Exemplar-based Subspace Clustering

(ESC)

In this section, we present our ESC method for clustering a given set of data

points X = {x1, · · · ,xN}. We first formulate the model for selecting a subset

X0 of exemplars from X . Since the model is a combinatorial optimization prob-

lem, we present an efficient algorithm for solving it approximately. Finally, we

describe the procedure for generating the cluster assignments from the exem-

plars X0.

6.2.1 Exemplar selection via self-representation

cost

Without loss of generality, we assume that all data in X are normalized to

have unit ℓ2 norm. Recall that in SSC, each data point xj ∈ X is written as
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a linear combination of all other data points with coefficient vector cj. While

the nonzero entries in each cj determine a subset of X that can represent xj

with the minimum ℓ1-norm on the coefficients, the collection of all xj often

needs the whole dataset X . In ESC, the goal is to find a small subset X0 ⊆ X

that represents all data points in X . In particular, the set X0 should contain

exemplars from each subspace such that the solution cj to (6.2) for each data

point xj ∈ X is subspace-preserving, i.e. the nonzero entries of cj correspond to

points in the same subspace as xj. In the following, we define a cost function

from the optimization in (6.2) and then present our exemplar selection model.

Definition 25 (Self-representation cost function). Given X = {x1, · · · ,xN}

⊆ RD, we define the self-representation cost function Fλ : 2X → R as

Fλ(X0) := sup
xj∈X

fλ(xj,X0), where (6.3)

fλ(xj,X0) := min
cj∈RN

∥cj∥1 +
λ

2
∥xj −

∑
i:xi∈X0

cijxi∥22, (6.4)

and λ ∈ (1,∞) is a parameter. By convention, we assume fλ(xj, ∅) = λ
2

for all

xj ∈ X , where ∅ denotes empty set.

Geometrically, fλ(x,X0) measures how well data point x ∈ X is covered

by the subset X0 (see Section 6.3). The function fλ(x,X0) has the following
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properties.

Lemma 23. The function fλ(x, ·) is monotone with respect to the partial order

defined by set inclusion, i.e., fλ(x,X ′
0) ≥ fλ(x,X ′′

0 ) for any ∅ ⊆ X ′
0 ⊆ X ′′

0 ⊆ X .

Proof. Consider the optimization problem

c′ = [c′1, · · · , c′N ]⊤ ∈ argmin
c∈RN

∥c∥1 +
λ

2
∥x−

∑
i:xi∈X ′

0

cixi∥22 (6.5)

and

c′′ = [c′′1, · · · , c′′N ]⊤ ∈ argmin
c∈RN

∥c∥1 +
λ

2
∥x−

∑
i:xi∈X ′′

0

cixi∥22. (6.6)

From the optimality of c′ for the optimization problem (6.5), we know that c′i = 0

for all i ∈ {1, · · · , N} such that xi /∈ X ′
0. Therefore, by using X ′

0 ⊆ X ′′
0 we have

fλ(x,X ′
0) = ∥c′∥1 +

λ

2
∥x−

∑
i:xi∈X ′

0

c′ixi∥22 = ∥c′∥1 +
λ

2
∥x−

∑
i:xi∈X ′′

0

c′ixi∥22. (6.7)

Furthermore, note that c′ is feasible (not necessarily optimal) for the optimiza-

tion problem in (6.6), which allows us to conclude that

∥c′∥1 +
λ

2
∥x−

∑
i:xi∈X ′′

0

c′ixi∥22 ≥ ∥c′′∥1 +
λ

2
∥x−

∑
i:xi∈X ′′

0

c′′ixi∥22 = fλ(x,X ′′
0 ). (6.8)

Combining (6.7) and (6.8) shows that fλ(x,X ′
0) ≥ fλ(x,X ′′

0 ), as claimed.

Lemma 24. The value of fλ(x,X0) lies in [1− 1
2λ
, λ
2
]. The lower bound is achieved
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if and only if x ∈ X0 or −x ∈ X0, and the upper bound is achieved when X0 = ∅.

Proof. See Section 6.6.1.

Observe that if X0 contains enough exemplars from the subspace contain-

ing xj and the optimal solution cj to (6.4) is subspace-preserving, then it is

expected that cj will be sparse and that the residual xj − X0cj will be close

to zero. This suggests that we should select the subset X0 such that the value

fλ(xj,X0) is small. As the value Fλ(X0) is achieved by the data point xj that has

the largest value f(xj,X0), we propose to perform exemplar selection by search-

ing for a subset X ∗
0 ⊆ X that minimizes the self-representation cost function,

i.e.,

X ∗
0 = argmin

|X0|≤k

Fλ(X0), (6.9)

where k ∈ Z is the target number of exemplars. Note that the objective function

Fλ(·) in (6.9) is monotone according to the following result.

Lemma 25. For any ∅ ⊆ X ′
0 ⊆ X ′′

0 ⊆ X , we have Fλ(X ′
0) ≥ Fλ(X ′′

0 ).

Proof. Let x′ ∈ arg supx∈X fλ(x,X ′
0) and x′′ ∈ arg supx∈X fλ(x,X ′′

0 ). We have

Fλ(X ′
0) = fλ(x

′,X ′
0) ≥ fλ(x

′′,X ′
0) ≥ fλ(x

′′,X ′′
0 ) = Fλ(X ′′

0 ), (6.10)

where the first inequality holds because x′ is a maximizer of fλ(x,X ′
0), and the

second inequality follows from the monotonicity of fλ(x′′, ·) (see Lemma 23).
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Solving the optimization problem (6.9) is NP-hard in general as it requires

evaluating Fλ(X0) for each subset X0 of size at most k. In the next section, we

present an approximate algorithm that is computationally efficient.

6.2.2 A Farthest First Search (FFS) algorithm

for ESC

In Algorithm 9 we present an efficient algorithm for approximately solving

(6.9). The algorithm progressively grows a candidate subset X0 (initialized as

the empty set) until it reaches the desired size k. At each iteration i, step 3

of the algorithm selects the point x ∈ X that is worst represented by the cur-

rent subset X (i)
0 as measured by fλ(x,X (i)

0 ). A geometric interpretation of this

step is presented in Section 6.3. In particular, it is shown in Lemma 24 that

fλ(x,X (i)
0 ) = 1− 1

2λ
for all x ∈ X (i)

0 and fλ(x,X (i)
0 ) > 1− 1

2λ
if neither x ∈ X (i)

0 nor

−x ∈ X (i)
0 . Thus, x /∈ X (i)

0 during every iteration of Algorithm 9.

We also note that the FFS algorithm can be viewed as an extension of the

farthest first traversal algorithm (see, e.g. [175]), which is an approximation

algorithm for the k-centers problem discussed in Section 6.1.

Efficient implementation. Observe that each iteration of Algorithm 9 re-

quires evaluating fλ(x,X (i)
0 ) for every x ∈ X . Therefore, the complexity of

Algorithm 9 is linear in the total number of data points N assuming k is fixed
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Algorithm 9 Farthest first search (FFS) for exemplar selection
Input: Data X = {x1, . . . ,xN} ⊆ RD, parameters λ > 1 and k ≪ N .

1: Select x ∈ X at random and set X (1)
0 ← {x}.

2: for i = 1, · · · , k − 1 do

3: X (i+1)
0 = X (i)

0 ∪ argmaxx∈X fλ(x,X (i)
0 )

4: end for

Output: X (k)
0

and small. However, computing fλ(x,X (i)
0 ) itself is not easy as it requires solv-

ing a sparse optimization problem. In the following, we introduce an efficient

implementation in which we skip the computation of fλ(x,X (i)
0 ) for some x in

each iteration.

The idea underpinning this computational savings is the monotonicity of

fλ(x, ·) as discussed in Section 6.2.1. That is, for any ∅ ⊆ X ′
0 ⊆ X ′′

0 ⊆ X we have

fλ(xj,X ′
0) ≥ fλ(xj,X ′′

0 ). In the FFS algorithm where the set X (i)
0 is progressively

increased, this implies that fλ(xj,X (i)
0 ) is non-increasing in i. Using this result,

our efficient implementation is outlined in Algorithm 10. In step 2 we initialize

bj = fλ(xj,X (1)
0 ) for each j ∈ {1, · · · , N}, which is an upper bound for fλ(xj,X (i)

0 )

for i ≥ 1. In each iteration i, our goal is to find a point x ∈ X that maximizes

fλ(x,X (i)
0 ). To do this, we first find an ordering o1, · · · , oN of 1, · · · , N such that

bo1 ≥ · · · ≥ boN (step 4). We then compute fλ(·,X (i)
0 ) sequentially for points in the

list xo1 , · · · ,xoN (step 7) while keeping track of the highest value of fλ(·,X (i)
0 ) by
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Algorithm 10 An efficient implementation of FFS
Input: Data X = {x1, . . . ,xN} ⊆ RD, parameters λ > 1 and k.

1: Select x ∈ X at random and initialize X (1)
0 ← {x}.

2: Compute bj = fλ(xj,X (1)
0 ) for j = 1, · · · , N .

3: for i = 1, · · · , k − 1 do

4: Let o1, · · · , oN be an ordering of 1, · · · , N such that bop ≥ boq when p < q.

5: Initialize max cost = 0.

6: for j = 1, · · · , N do

7: Set boj = fλ(xoj ,X
(i)
0 ).

8: if boj > max cost then

9: Set max cost = boj , new index = oj.

10: end if

11: if j = N or max cost ≥ boj+1
then

12: break

13: end if

14: end for

15: X (i+1)
0 = X (i)

0 ∪ {xnew index}.

16: end for

Output: X (k)
0
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the variable max cost (step 9). Once the condition that max cost ≥ boj+1
is met

(step 11), we can assert that for any j′ > j the point xoj′
is not a maximizer of

fλ(x,X (i)
0 ). This can be seen from fλ(xoj′

,X (i)
0 ) ≤ boj′ ≤ boj+1

≤ max cost, where

the first inequality follows from the monotonicity of fλ(xoj′
,X (i)

0 ) as a function

of i. Therefore, we can break the loop (step 12) and avoid computing fλ(xoj ,X
(i)
0 )

for the remaining j’s.

6.2.3 Generating cluster assignments

After exemplars have been selected by Algorithm 10, we use them to com-

pute a segmentation of X . Specifically, for each xj ∈ X we compute cj as a

solution to the optimization problem (6.2). As we will see in Theorem 51, the

vector cj is expected to be subspace-preserving. As such, for any two points

{xi,xj} ⊆ X , one has ⟨ci, cj⟩ ̸= 0 only if xi and xj are from the same subspace.

Using this observation, we use a nearest neighbor approach to compute the

segmentation of X (see Algorithm 11). First, the coefficient vectors {cj} are

normalized, i.e., we set c̃j = cj/∥cj∥2. Then, for each c̃j we find t-nearest neigh-

bors with the largest positive inner product with c̃j. (Although it is natural to

use the t largest inner-products in absolute value, that approach did not per-

form as well in our numerical experiments.) Finally, we compute an affinity

matrix from the t-nearest neighbors and apply spectral clustering to get the

segmentation.
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Algorithm 11 Subspace clustering by ESC-FFS
Input: Data X = {x1, . . . ,xN} ⊆ RD, parameters λ > 1, k and t.

1: Compute X0 from Algorithm 10, and then compute {cj} from (6.2). Let

c̃j = cj/∥cj∥2.

2: Set Wij = 1 if c̃j is a t-nearest neighbor of c̃i and 0 otherwise; Set A =

W +W⊤.

3: Apply spectral clustering to A to obtain a segmentation of X .

Output: Segmentation of X .

6.3 Geometric analysis of ESC

In this section, we present a geometric interpretation of the exemplar se-

lection model from Section 6.2.1 and the FFS algorithm from Section 6.2.2,

and study their properties in the context of subspace clustering. To simplify

the analysis, we assume that the self-representation xj =
∑

i̸=j cijxi is strictly

enforced by extending (6.4) to λ =∞, i.e., we let

f∞(x,X0) = min
c∈RN

∥c∥1 s.t. x =
∑

i:xi∈X0

cijxi. (6.11)

By convention, we let f∞(x,X0) =∞ if the optimization problem is infeasible.
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6.3.1 Geometric interpretation

We first provide a geometric interpretation of the exemplars selected by

(6.9). Given any X0, we denote the convex hull of the symmetrized data points

in X0 as K0, i.e., K0 := conv(±X0) (see an example in Figure 6.2). Recall from

Chapter 3 that the Minkowski functional [160] associated with a set K0 is given

by the following.

Definition 26 (Minkowski functional). The Minkowski functional associ-

ated with the set K0 ⊆ RD is a map RD → R ∪ {+∞} given by

∥x∥K0 := inf{t > 0 : x/t ∈ K0}. (6.12)

In particular, we define ∥x∥K0 :=∞ if the set {t > 0 : x/t ∈ K0} is empty.

Our geometric interpretation is characterized by the reciprocal of ∥x∥K0. The

Minkowski functional is a norm in span(K0), the space spanned by K0, and its

unit ball is K0. Thus, for any x ∈ span(K0), the point x/∥x∥K0 is the intersection

of the ray {tx : t ≥ 0} and the boundary of K0. The green and red dots in

Figure 6.2 are examples of x and x/∥x∥K0, respectively. It follows that the

quantity 1/∥x∥K0 is the length of the ray {tx : t ≥ 0} inside the convex hull K0.
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K0x1 −x1

−x2

x2

−x3

x3

x

x
∥x∥K0

Figure 6.2: A geometric illustration of the solution to (6.9) with X0 =
{x1,x2,x3}. The shaded area is the convex hull K0.

Using Definition 26, one can show that the following holds [54,139]:

∥x∥K0 = f∞(x,X0) for all x ∈ RD. (6.13)

A combination of (6.13) and the interpretation of 1/∥x∥K0 above provides a ge-

ometric interpretation of f∞(x,X0). That is, f∞(x,X0) is large if the length of

the ray {tx : t ≥ 0} inside K0 is small. In particular, f∞(x,X0) is infinity if x is

not in the span of X0, i.e., x cannot be linearly represented by X0.

By using (6.13), the exemplar selection model in (6.9) is equivalent to com-

puting

X ∗
0 = argmax

|X0|≤k

inf
x∈X

1/∥x∥K0 . (6.14)

Therefore, the solution to (6.9) is the subset X0 of X that maximizes the inter-

section of K0 and the ray {tx : t ≥ 0} for every data x ∈ X (i.e., maximizes the
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minimum of such intersections over all x).

Furthermore, from (6.13) we can see that each iteration of Algorithm 9 se-

lects the point x ∈ X that minimizes 1/∥x∥K0. Therefore, each iteration of FFS

adds the point x that minimizes the intersection of the ray {tx : t > 0} with K0.

Relationship to the sphere covering problem. Let us now consider the

special case when the dataset X coincides with the unit sphere of RD, i.e.,

X = SD−1. In this case, we establish that (6.9) is related to finding the min-

imum covering radius. Recall from Chapter 3 that covering radius is defined

as follows.

Definition 27 (Covering radius). The covering radius of a set of points V ⊆

SD−1 is defined as

γ(V) := max
w∈SD−1

min
v∈V

cos−1(⟨v,w⟩). (6.15)

The covering radius of the set V can be interpreted as the minimum angle

such that the union of spherical caps centered at each point in V with this

radius covers the entire unit sphere SD−1. The following result establishes a

relationship between the covering radius and our cost function.

Lemma 26. For any finite X0 ⊆ X = SD−1 we have F∞(X0) = 1/ cos γ(±X0).

Proof. From the definition of F (·) in Definition 25, the relation in (6.13) and
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Definition 26 we get

F∞(X0) = sup
x∈SD−1

f∞(x,X0) = sup
x∈SD−1

∥x∥K0 = sup
x∈SD−1

inf{t > 0 : x/t ∈ K0}. (6.16)

On the other hand, recall from Chapter 3 that the inradius of a set K0,

denoted by r(K0), is defined as the largest Euclidean ball inscribed in K0. By

definition, r(K0) can be written as follows.

r(K0) = sup{r > 0 : rx ∈ K0, ∀x ∈ SD−1} = inf
x∈SD−1

sup{r > 0 : rx ∈ K0}. (6.17)

By comparing the right hand side of (6.16) and (6.17) we have

F∞(X0) = 1/r(K0). (6.18)

The conclusion then follows by combining (6.18) with (3.13).

It follows from Lemma 26 that argmin|X0|≤k F∞(X0) = argmin|X0|≤k γ(±X0)

when X = SD−1, i.e., the exemplars X0 selected by (6.9) give the solution to the

problem of finding a subset with minimum covering radius. Note that the cov-

ering radius γ(±X0) of the subset X0 with |X0| ≤ k is minimized when the points

in the symmetrized set ±X0 are as uniformly distributed on the sphere SD−1 as

possible. The problem of equally distributing points on the sphere without sym-

metrizing them, i.e. min|X0|≤k γ(X0), is known as the sphere covering problem.
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This problem was first studied by [146] and remains unsolved in geometry [47].

6.3.2 ESC on a union of subspaces

We now study the properties of our exemplar selection method when ap-

plied to data from a union of subspaces. Let X be drawn from a collection of

subspaces {Sℓ}nℓ=1 of dimensions {dℓ}nℓ=1 with each subspace Sℓ containing at

least dℓ samples that span Sℓ. We assume that the subspaces are indepen-

dent, which is commonly used in the analysis of subspace clustering meth-

ods [59,107,111,165,193].

Assumption 3. The subspaces {Sℓ}nℓ=1 are independent, i.e.,
∑n

ℓ=1 dℓ is equal to

the dimension of
∑n

ℓ=1 Sℓ.

The next result shows that the solution to (6.9) contains enough exemplars

from each subspace.

Theorem 50. Under Assumption 3, for all k ≥
∑n

ℓ=1 dℓ, the solution X ∗
0 to the

optimization problem in (6.9) contains at least dℓ linearly independent points

from each subspace Sℓ. Moreover, each point x ∈ X is expressed as a linear

combination of points in X ∗
0 that are from its own subspace.

Theorem 50 shows that when k is set to be
∑n

ℓ=1 dℓ, then dℓ points are se-

lected from subspace Sℓ regardless of the number of points in that subspace.

Therefore, when the data is class imbalanced, (6.9) is able to select a subset
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that is more balanced provided that the dimensions of the subspaces do not

differ dramatically. This discounts the effect that, when writing a data point

as a linear combination of points from X , it is more likely to choose points from

oversampled subspaces.

Theorem 50 also shows that only
∑n

ℓ=1 dℓ points are needed to correctly rep-

resent all data points in X . In other words, the required number of exemplars

for representing the dataset does not scale with the size of the dataset X .

Before presenting a proof for Theorem 50, we first state the following lemma.

Lemma 27. Suppose that x ∈ Sℓ. Under Assumption 3, any optimal solution

c∗ to the optimization problem in (6.11) (if it exists) satisfies x =
∑

i:xi∈X0∩Sℓ
c∗ixi

and
∑

m̸=ℓ

∑
i:xi∈X ∗

0 ∩Sm
|c∗i | = 0, i.e., x is expressed as a linear combination of

points in X0 that are from its own subspace.

Proof. If an optimal solution c∗ exists, it must be feasible. Therefore we have

x =
∑

i:xi∈X0

c∗ixi =
∑

i:xi∈X0∩Sℓ

c∗ixi +
∑
m̸=ℓ

∑
i:xi∈X0∩Sm

c∗ixi. (6.19)

By rearranging the terms of the equality above, we get

x−
∑

i:xi∈X0∩Sℓ

c∗ixi =
∑
m̸=ℓ

∑
i:xi∈X0∩Sm

c∗ixi. (6.20)

In this equality, the left hand side is a vector that lies in Sℓ, while the right
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hand side is a vector that lies in
∑

m̸=ℓ Sm. By Assumption 3 it holds that

Sℓ ∩
∑

m̸=ℓ Sm = {0}, which then implies that x =
∑

i:xi∈X0∩Sℓ
c∗ixi.

We can therefore construct another feasible ĉ to (6.11) where ĉi = c∗i for all

i : xi ∈ X ∗
0 ∩ Sℓ and

∑
m̸=ℓ

∑
i:xi∈X ∗

0 ∩Sm
|ĉi| = 0. By this construction, we have

∥ĉ∥1 =
∑

i:xi∈X ∗
0 ∩Sℓ

|ĉi| =
∑

i:xi∈X ∗
0 ∩Sℓ

|c∗i |

≤
∑

i:xi∈X ∗
0 ∩Sℓ

|c∗i |+
∑
m̸=ℓ

∑
i:xi∈X ∗

0 ∩Sm

|c∗i | = ∥c∗∥1. (6.21)

On the other hand, by the optimality of c∗ as a solution to (6.11) we also have

∥ĉ∥1 ≥ ∥c∗∥1. Combining this result with (6.21) we get ∥ĉ∥1 = ∥c∗∥1. This

further implies that the equality in (6.21) holds, i.e.,
∑

m̸=ℓ

∑
i:xi∈X ∗

0 ∩Sm
|c∗i | =

0.

Proof of Theorem 50. Fix any k ≥
∑n

ℓ=1 dℓ. There always exists a set X0 ⊆ X

with |X0| = k that contains dℓ linearly independent points from Sℓ for each

ℓ ∈ {1, · · · , n}. For this X0, we have f∞(x,X0) < ∞ for any x ∈ X , hence

F∞(X0) <∞. This implies that F∞(X ∗
0 ) ≤ F∞(X0) <∞, i.e., F∞(X ∗

0 ) is finite.

We now show that X ∗
0 contains at least dℓ linearly independent points from

each subspace Sℓ. For a proof by contradiction, assume that there exists a

subspace, say Sℓ, for which X ∗
0 does not contain dℓ linearly independent points

from Sℓ. This assumption implies that the dimension of span(X ∗
0 ∩Sℓ) is strictly

less than dℓ. Consequently, there is a point x̄ ∈ X ∩ Sℓ such that x̄ /∈ span(X ∗
0 ∩
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Sℓ). Now, since f∞(x̄,X ∗
0 ) ≤ F∞(X ∗

0 ) <∞, the following problem is feasible:

argmin
c
∥c∥1 s.t. x̄ =

∑
i:xi∈X ∗

0

cixi. (6.22)

Let c̄ be any of the solutions to this optimization problem. Applying Lemma 27

we get x̄ =
∑

i:xi∈X ∗
0 ∩Sℓ

c̄ixi, which contradicts the fact that x̄ /∈ span(X ∗
0 ∩ Sℓ).

Therefore, we have proved that X ∗
0 contains at least dℓ linearly independent

points from each subspace Sℓ.

Finally, the claim that each point in X is expressed as a linear combination

of points in X ∗
0 that are from its own subspace follows directly from Lemma 27.

Although the FFS algorithm in Section 6.2.2 is an approximation algorithm

and does not necessarily give the solution to (6.9), the following result shows

that it gives an approximate solution with attractive properties for subspace

clustering.

Theorem 51. The conclusion of Theorem 50 holds for X (k)
0 returned by Algo-

rithm 9 provided k ≥
∑n

ℓ=1 dℓ.

Proof. Let k̄ =
∑n

ℓ=1 dℓ. To show that the set X (k)
0 contains at least dℓ linearly

independent points from Sℓ for each ℓ and each k ≥
∑n

ℓ=1 dℓ, it suffices to show

that the set X (k̄)
0 contains dℓ linearly independent points from Sℓ for each ℓ.

For a proof by contradiction, assume that there exists some ℓ ∈ {1, · · · , n}
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such that the set X (k̄)
0 contains linearly dependent points from Sℓ. Then, there

exists a k̂ < k̄ such that the data point that is selected as an exemplar in step

k̂, denoted as x(k̂) := argmaxx∈X f∞(x,X (k̂)
0 ), lies in the range of X (k̂)

0 ∩ Sℓ. This

implies that f∞(x(k̂),X (k̂)
0 ) < ∞ since the optimization is feasible. In addition,

note that F∞(X (k̂)
0 ) = maxx∈X f∞(x,X (k̂)

0 ) = f∞(x(k̂),X (k̂)
0 ). Therefore, we have

shown that F∞(X (k̂)
0 ) <∞.

On the other hand, since k̂ < k̄, there exists a subspace Sm (where m is not

necessarily equal to ℓ) such that X (k̂)
0 contains less than dℓ points from Sm, i.e.,

X (k̂)
0 ∩Sm < dm. This implies span(X (k̂)

0 ∩Sm) ̸= Sm. Consequently, there is a point

x̄ ∈ X ∩Sm such that x̄ /∈ span(X (k̂)
0 ∩Sm). In addition, from the fact F∞(X (k̂)

0 ) <

∞ from the previous paragraph and the relation f∞(x̄,X (k̂)
0 ) ≤ F∞(X (k̂)

0 ), we get

f∞(x̄,X (k̂)
0 ) < ∞. Then, it follows from Lemma 27 that x̄ ∈ span(X (k̂)

0 ∩ Sm),

which contradicts the fact that x̄ /∈ span(X (k̂)
0 ∩ Sm). This finishes the proof by

contradiction.

Finally, the claim that each point in X is expressed as a linear combination

of points in X ∗
0 that are from its own subspace follows directly from Lemma 27.

Theorem 51 shows that our algorithm FFS is able to select enough samples

from each subspace even if the dataset is imbalanced. It also shows that for

each data point in X , the representation vector computed in step 1 of Algo-

rithm 11 is subspace-preserving. Formally, we have established the following
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result.

Theorem 52. Take any k ≥
∑n

ℓ=1 dℓ. Under Assumption 3, the representa-

tion vectors {cj}Nj=1 in step 1 of Algorithm 11 are subspace-preserving, i.e., cij is

nonzero only if xi and xj are from the same subspace.

6.4 Experiments

In this section, we demonstrate the performance of ESC for subspace clus-

tering as well as for unsupervised subset selection tasks. The sparse optimiza-

tion problem (6.4) in step 7 of Algorithm 10 and step 1 of Algorithm 11 are

solved by the LASSO version of the LARS algorithm [56] implemented in the

SPAMS package [114]. The nearest neighbors in step 2 of Algorithm 11 are

computed by the k-d tree algorithm implemented in the VLFeat toolbox [159].

6.4.1 Subspace clustering

We first demonstrate the performance of ESC for subspace clustering on

large-scale class-imbalanced databases. These databases are described next.

Databases. We use two publicly available databases. The Extended MNIST

(EMNIST) dataset [44] is an extension of the MNIST dataset that contains

gray-scale handwritten digits and letters. We take all 190,998 images corre-

sponding to 26 lower case letters, and use them as the data for a 26-class
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clustering problem. The size of each image in this dataset is 28 by 28. Fol-

lowing [193], each image is represented by a feature vector computed from

a scattering convolutional network [28], which is translational invariant and

deformation stable (i.e. it linearizes small deformations). Therefore, these fea-

tures from EMNIST approximately follow a union of subspaces model.

The German Traffic Sign Recognition Benchmark (GTSRB) [141] contains

43 categories of street sign data with over 50,000 images in total. We remove

categories associated with speed limit and triangle-shaped signs (except the

yield sign) as they are difficult to distinguish from each other, which results in

a final data set of 12,390 images in 14 categories. Each image is represented by

a 1,568-dimensional HOG feature [48] provided with the database. The major

intra-class variation in GTSRB is the illumination conditions, therefore the

data can be well-approximated by a union of subspaces [18].

For both EMNIST and GTSRB, feature vectors are mean subtracted and

projected to dimension 500 by PCA and normalized to have unit ℓ2 norm. Both

the EMNIST and GTSRB databases are imbalanced. In EMNIST, for example,

the number of images for each letter ranges from 2,213 (letter “j”) to 28,723

(letter “e”), and the number of samples for each letter is approximately equal

to their frequencies in the English language. In Figure 6.3 we show the number

of instances for each class in both of these databases.

Baselines. We compare our approach with SSC-BP to show the effectiveness
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of exemplar selection in addressing imbalanced data. To handle large scale

data, we use the efficient algorithm in [191] for solving the sparse recovery

problem in SSC. For a fair comparison with ESC, we compute an affinity graph

for SSC using the same procedure as that used for ESC, i.e., the procedure in

Algorithm 11.

We also compare our method with k-means clustering and spectral cluster-

ing on the k-nearest neighbors graph, named “Spectral” in the following figures

and tables. It is known [80] that Spectral is a provably correct method for sub-

space clustering. The k-means and k-d trees algorithms used to compute the

k-nearest neighbor graph in Spectral are implemented using the VLFeat tool-

box [159]. In addition, we compare with three other subspace clustering algo-

rithms SSC-OMP, OLRSC [137] and SBC [2] that are able to handle large-scale

data.

We compare these methods with ESC-FFS (Algorithm 11) with λ set to be

150 and 15 for EMNIST and GTSRB, respectively, and t set to be 3 for both

databases. We also report the result of ESC-Rand when the exemplars are

selected at random from X , i.e., we replace the exemplar selection via FFS in

step 1 of Algorithm 11 by selecting k atoms at random from X to form X0.

Evaluation metrics. The first metric we use is the clustering accuracy. It

measures the maximum proportion of points that are correctly labeled over all

possible permutations of the labels. Concretely, let {C1, · · · , Cn} be the ground-
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Figure 6.3: Number of points in each class of EMNIST (left) and GTSRB
(right) databases.

truth partition of the data, {G1, · · · , Gn} be a clustering result of the same data,

nij = |Ci ∩Gj| be the number of common objects in Ci and Gj, and Π be the set

of all permutations of {1, · · · , n}. Clustering accuracy is defined as

Accuracy = max
π∈Π

100

N

n∑
i=1

ni,π(i). (6.23)

In the context of classification, accuracy has been known to be biased when

the dataset is class imbalanced [26]. For example, if a dataset is composed

of 99% of samples from one particular class, then assigning all data points to

the same label yields at least 99% accuracy. To address this issue, we also use

the F-score averaged over all classes. Let pij = nij/|Gj| be the precision and

rij = nij/|Ci| be the recall. The F-score between the clustering result Gi and the

true class Cj is defined as Fij =
2pijrij
pij+rij

. We report the average F-score given by

F-score = max
π∈Π

100

n

n∑
i=1

Fi,π(i). (6.24)

Results on EMNIST. Figure 6.4 shows the results on EMNIST. From left to

right, the sub-figures show, respectively, the accuracy, the F-score and the run-
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Figure 6.4: Subspace clustering on images of 26 lower case letters from EM-
NIST database.

ning time (Y axis) as a function of the number of exemplars (X axis). We can

see that ESC-FFS significantly outperforms all methods except SSC in terms

of both accuracy and F-score when the number of exemplars is greater than 70.

Recall that in SSC each data point is expressed as a linear combination

of all other points. By selecting a subset of exemplars and expressing points

using these exemplars, ESC-FFS is able to outperform SSC when the number

of exemplars reaches 200. In contrast, ESC-Rand does not outperform SSC by

a significant amount, showing the importance of exemplar selection by FFS.

In terms of running time, we see that ESC-FFS is faster than SSC by a

large margin. Specifically, ESC-FFS is almost as efficient as ESC-Rand, which

indicates that the proposed FFS Algorithm 10 is efficient.

Results on GTSRB. Table 6.1 reports the clustering performance on the GT-

SRB database. In addition to reporting average performance, we report the

standard deviations. The variation in accuracy and F-score across trials is due
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to 1) random initializations of the k-means algorithm, which is used (trivially)

in the K-means method, and in the spectral clustering step of all other meth-

ods, and 2) random dictionary initialization in OLRSC, SBC, ESC-Rand and

ESC-FFS.

We observe that ESC-FFS outperforms all the other methods in terms of

accuracy and F-score. In particular, ESC-FFS outperforms SSC, which in turn

outperforms ESC-Rand, thus showing the importance of finding a representa-

tive set of exemplars and the effectiveness of FFS in achieving this. In ad-

dition, the standard deviation of accuracy and F-score for ESC-Rand are all

larger than for ESC-FFS. This indicates that the set of exemplars given by

FFS is more robust in giving reliable clustering results than the randomly se-

lected exemplars in ESC-Rand. In terms of running time, ESC-FFS is also

competitive.

Table 6.1: Subspace clustering on the GTSRB street sign database. The pa-
rameter k is fixed to be 160 for ESC-Rand and ESC-FFS. We report the mean
and standard deviation for accuracy, F-score and running time (in sec.) from 10
trials.

Methods Accuracy F-score Time (sec.)
K-means 63.7± 3.5 54.4± 2.8 12.2± 0.5
Spectral 89.5± 1.3 79.8± 2.5 40.3± 0.7

OMP 82.8± 0.8 67.8± 0.5 22.0± 0.2
SSC 92.4± 1.1 82.3± 2.8 52.2± 0.7

OLRSC 71.6± 4.3 66.7± 4.7 64.9± 1.6
SBC 74.9± 5.2 72.2± 8.5 41.9± 0.4

ESC-Rand 89.7± 1.6 75.5± 4.9 21.5± 0.4
ESC-FFS 93.0± 1.3 85.3± 2.5 25.2± 1.2
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(a) The 60 exemplars selected by ESC-FFS.

(b) The 60 exemplars selected by ESC-Rand.

Figure 6.5: The exemplars from the GTSRB database selected using ESC-
FFS (top) and ESC-Rand (bottom). The frequency of each category within the
entire database is illustrated via a bar plot above each subfloat.

Visualization of selected exemplars. In Figure 6.5 we show a visualization

of the selected exemplars from the GTSRB database. Due to space limitations,
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we chose k = 60 so that 60 exemplars are selected. The percentage of instances

in each category of the dataset is displayed at the top of each subfigure.

From Figure 6.5b we see that the ESC-Rand, which selects exemplars by

sampling from the entire dataset uniformly at random, is biased by the imbal-

anced distribution of the categories in the dataset. For example, the “priority

road” sign (the first from the left), the “yield” sign (the second from the left) and

the “pass on right side” sign (the third from the right) have more samples in

the set of exemplars than the other categories, which is a consequence of these

categories having the most samples in the dataset. On the other hand, the sev-

enth and eighth from the left sign types do not have any representatives in the

set of exemplars, as they have very few instances in the dataset and therefore

have a small chance of being selected by ESC-Rand.

Figure 6.5a shows that ESC-FFS is able to select a more balanced set of

exemplars. For example, only 3 instances are selected from the “yield” sign,

which is a majority class of the dataset. Moreover, the selected exemplars from

each category capture variations in the class, e.g., the 3 exemplars from the

“yield” sign category capture three different illumination conditions.

Comparison with additional methods on small scale data. To include a

comparison with the recent developed methods ℓ0-SSC [188] and DD-SSC [182]

which cannot handle large scale datasets that we used in our paper, we perform

an additional experiment on a small scale dataset that is composed of images
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from two categories of the GTSRB database. These two categories have 420

and 2070 images, respectively. For ℓ0-SSC [188] we use the code provided by

the authors. For DD-SSC [182], we use our own implementation following the

algorithm description in their paper.

The performance of different methods is reported in Table 6.2. As this

dataset is relatively easy, all methods except k-means and DD-SSC produce

good clustering results. In terms of runtime, our method is also on par with

other scalable subspace clustering methods (i.e. SSC, OLRSC, SBC and OMP),

and is orders of magnitude faster than ℓ0-SSC [188] and DD-SSC [182].

Table 6.2: Subspace clustering on a small subset of the GTSRB street sign
database.

Methods Accuracy F-score Time (sec.)
K-means 57.0 54.5 0.3
Spectral 95.7 92.3 0.8

OMP 99.2 98.6 0.7
SSC 99.9 99.9 3.4

OLRSC 99.9 99.9 1.7
SBC 97.3 94.9 4.3

ℓ0-SSC 99.6 99.2 602.0
DD-SSC 76.7 67.9 22340.9

ESC-Rand 98.8 97.7 0.5
ESC-FFS 99.9 99.9 1.1

6.4.2 Unsupervised subset selection

Given a large-scale unlabeled dataset, it is expensive to manually annotate

all data. One solution is to select a small subset of data for manual labeling,
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and then infer the labels for the remaining data by training a model on the

selected subset. In this section, we evaluate the performance of the FFS al-

gorithm as a tool for selecting a subset of representatives for a given dataset.

This subset is then subsequently exploited to classify the entire data set.

We use the Extended Yale B face database, which contains images of 38 faces

and each of them is taken under 64 different illumination conditions. For this

experiment, we create an imbalanced dataset by randomly selecting 10 classes

and sampling a subset from each class. The number of images we sample for

those 10 classes is 16 for the first 3 classes, 32 for the next 3 classes and 64

for the remaining 4 classes. We first apply FFS to select 100 images from this

dataset. Note that during this phase we assume that the ground truth labeling

is unknown. We then train three classifiers, the nearest neighbor (NN), sparse

representation based classification (SRC) [180] and linear support vector ma-

chine (SVM) on the selected images, which is then used to classify all of the

images.

We compare FFS with random sampling (Rand), k-centers, K-medoids [130],

SMRS [58] and kDPP [89]. For k-centers, we implement the farthest first

traversal algorithm (see, e.g. [175]). For K-medoids, we use the function pro-

vided by R⃝Matlab, which employs a variant of the algorithm in [130]. For

SMRS and kDPP, we use the code provided by the authors. We set λ = 100 in

FFS.
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Table 6.3: Classification from subsets on the Extended Yale B face database.
We report the mean and standard deviation for classification accuracy and run-
ning time of the subset selection from 50 trials.

Methods NN SRC SVM Time(sec.)
Rand 69.4± 3.2 84.7± 2.2 83.7± 2.5 < 1e− 3
k-centers 69.1± 3.7 84.9± 2.6 83.0± 2.8 0.26± 0.01
K-medoids 75.5± 2.8 86.0± 2.1 85.3± 2.3 1.5± 0.1
kDPP 70.5± 3.2 88.3± 2.3 87.8± 2.1 0.57± 0.06
SMRS 69.0± 3.1 83.4± 2.3 82.1± 2.3 3.1± 0.2
FFS 67.5± 4.0 91.4± 2.4 91.0± 3.0 0.70± 0.08

In Table 6.3 we report the classification accuracy averaged over 50 trials.

We can see that the NN classifier works the best with K-medoids, but the per-

formance of NN is worse than SRC and SVM. This is because images of the

same face lie approximately in a subspace, and their pairwise distances may

not be small. When SRC and SVM are used as classifiers, we can see that our

method achieves the best performance.

6.5 Conclusion

We presented a novel approach to subspace clustering for imbalanced and

large-scale data. Our method searches for a set of exemplars from the given

dataset, such that all data points can be well-represented by the exemplars in

terms of a sparse representation cost. Analytically, we showed that the set of

exemplars selected by our model has the property that its symmetrized convex

hull covers as much of the rays {tx : t ≥ 0} as possible for all data points
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x ∈ X . In the context of subspace clustering, we proved that our method selects

a set of exemplars that is small and balanced, while being able to represent

all data points. We also introduced an algorithm for approximately solving

the exemplar selection optimization problem. Empirically we demonstrated

that our method is effective for subspace clustering and unsupervised subset

selection applications.

6.6 Appendix

6.6.1 Proof for Lemma 24

Proof. We divide the proof into two parts.

Part 1. Consider an arbitrary data point xj ∈ X . In Part 1 of the proof, we

show that fλ(xj,X0) is in the range of [1 − 1
2λ
, λ
2
], and that the upper bound is

achieved, i.e. fλ(xj,X0) = λ
2

when X0 = ∅. Because the function fλ(xj, ·) is

monotone (see Lemma 23), we only need to show that fλ(xj, ∅) = λ/2 and that

fλ(xj,X ) = 1− 1
2λ

.

First, we have fλ(xj, ∅) = λ/2 directly from Definition 25.

To show fλ(xj,X ) = 1 − 1
2λ

, let c∗j = [c∗1j, · · · , c∗Nj] be any solution to the
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optimization problem

argmin
cj
∥cj∥1 +

λ

2
∥xj −

N∑
i=1

cijxi∥22.

Let e∗
j = xj −

∑N
i=1 c

∗
ijxi. We have

1 = ∥xj∥2 = ∥e∗
j +

N∑
i=1

c∗ijxi∥2 ≤ ∥e∗
j∥2 +

N∑
i=1

(|c∗ij| · ∥xi∥2) = ∥e∗
j∥2 + ∥c∗j∥1, (6.25)

where we have used the fact that all points in X have unit ℓ2 norm. From

(6.25), we can derive the following lower bound on fλ(xj,X ):

fλ(xj,X ) = ∥c∗j∥1 +
λ

2
∥e∗

j∥22 ≥ 1− ∥e∗
j∥2 +

λ

2
∥e∗

j∥22 ≥ 1− 1

2λ
. (6.26)

On the other hand, let c̄j = [c̄1j, · · · , c̄Nj] be a one-hot vector with the j-th entry,

c̄jj, being 1− 1
λ

(and all other entries being 0). One can easily verify that ∥c̄j∥1+

λ
2
∥xj −

∑N
i=1 c̄ijxi∥22 = 1 − 1

2λ
. This shows that the lower bound in (6.26) is

achieved by c̄j. Therefore, we have fλ(xj,X ) = 1− 1
2λ

.

Part 2. In Part 2 we show that the lower bound of fλ(xj,X ) is achieved, i.e.

fλ(xj,X0) = 1− 1
2λ

if and only if xj ∈ X0 or −xj ∈ X0.

For the “if” part, assume that xj ∈ X0 or xj ∈ X0. If xj ∈ X0, we take

c̄j = [c̄1j, · · · , c̄Nj] as a one-hot vector with the j-th entry being 1− 1
λ
. Otherwise,

if −xj ∈ X0, we take c̄j = [c̄1j, · · · , c̄Nj] to be a one-hot vector with the j-th
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entry being 1
λ
− 1. In either case, one can easily verify that ∥c̄j∥1 + λ

2
∥xj −∑

i:xi∈X0
c̄ijxi∥22 = 1− 1

2λ
. This implies that fλ(xj,X0) = 1− 1

2λ
.

For the “only if” part, we assume that fλ(xj,X0) = 1 − 1
2λ

. Let c∗j be any

solution to the optimization problem

argmin
cj
∥cj∥1 +

λ

2
∥xj −

∑
i:xi∈X0

cijxi∥22,

and let e∗
j = xj −

∑
i:xi∈X0

c∗ijxi. Note that from the optimality of c∗j , we know

that c∗ij = 0 for all i ∈ {1, · · · , N} such that xi /∈ X0. We have

1 = ∥xj∥2 = ∥e∗
j +

∑
i:xi∈X0

c∗ijxi∥2 ≤ ∥e∗
j∥2 + ∥

∑
i:xi∈X0

c∗ijxi∥2

≤ ∥e∗
j∥2 +

∑
i:xi∈X0

(|c∗ij| · ∥xi∥2) = ∥e∗
j∥2 + ∥c∗j∥1. (6.27)

From (6.27), we can establish the following lower bound on fλ(xj,X0):

fλ(xj,X0) = ∥c∗j∥1 +
λ

2
∥e∗

j∥22 ≥ 1− ∥e∗
j∥2 +

λ

2
∥e∗

j∥22 ≥ 1− 1

2λ
. (6.28)

Since we have fλ(xj,X0) = 1 − 1
2λ

by assumption, it follows that equality is

achieved for all inequalities in (6.28) and (6.27). In particular, by requiring

that the equality is achieved for the last inequality in (6.28) we get

∥e∗
j∥2 =

1

λ
. (6.29)
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Moreover, by requiring that equality is achieved for all inequality in (6.27), we

get

∥
∑

i:xi∈X0

c∗ixi∥2 = ∥c∗j∥1 = 1− 1

λ
. (6.30)

Now, let us define µ0 := maxi:xi∈X0 |⟨xj,xi⟩|. The goal in the rest of the proof is

to show that µ0 = 1. Note that

1

λ2
= ∥e∗

j∥22 = ∥xj −
∑

i:xi∈X0

c∗ijxi∥22 = 1− 2 · ⟨xj,
∑

i:xi∈X0

c∗ijxi⟩+ (1− 1

λ
)2, (6.31)

where we have used (6.29) in the first equality and (6.30) in the third equality.

For the second term on the right hand side of (6.31), we have

⟨xj,
∑

i:xi∈X0

c∗ijxi⟩ =
∑

i:xi∈X0

c∗ij⟨xj,xi⟩ ≤ ∥c∗j∥1 · µ0 ≤ (1 − 1

λ
) · µ0, (6.32)

where we have used (6.30) in the last inequality. Continuing with (6.31), we

have

1

λ2
≥ 1− 2µ0 · (1−

1

λ
) + (1− 1

λ
)2

=⇒ 1

λ2
≥ 1− 2µ0 · (1−

1

λ
) + 1− 2

λ
+

1

λ2

=⇒ 0 ≥ −2µ0(1−
1

λ
) + 2(1− 1

λ
)

=⇒ 0 ≥ 2 · (1− 1

λ
) · (1− µ0).

(6.33)

Note that λ takes value in the range (1,∞) (see Definition 25). Therefore, from
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(6.33) we get µ0 = maxi:xi∈X0 |⟨xj,xi⟩| ≥ 1. Since both xj and xi have unit ℓ2

norm, we can conclude that µ0 = 1. This implies that there exists xi ∈ X0 such

that either xj = xi or xj = −xi.
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Conclusions

This thesis attempted to develop theory and algorithms for sparse methods

in the applications of subspace classification and subspace clustering.

The first part of this thesis provided an extensive study of the subspace-

preserving recovery theory, which extends upon canonical sparse recovery the-

ories established in the area of compressed sensing. By identifying key geo-

metric quantities associated with data in low-dimensional subspaces, we de-

rived conditions for instance and universal subspace-preserving recovery with

clear geometric interpretations. By working with a random data modeling, we

further derived conditions for instance and universal subspace-preserving re-

covery that reveal the effect of data parameters such as subspace dimension,

ambient space dimension and number of sample points. We showed that these

theoretical analysis can be applied to provide justifications for the success of
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existing multi-subspace learning methods such as SRC, SSC and EnSC.

The second part of this thesis focused on the development of practical sub-

space clustering algorithms for real world applications. Since real datasets are

usually large-scale, corrupted with outliers, and imbalanced across classes, we

developed several algorithmic techniques that can deal with such cases. The ef-

fectiveness of our developed techniques are verified in the clustering of several

real world image databases.

300



Bibliography

[1] Maryam Abdolali, Nicolas Gillis, and Mohammad Rahmati. Scalable and

robust sparse subspace clustering using randomized clustering and mul-

tilayer graphs. arXiv preprint arXiv:1802.07648, 2018.

[2] A. Adler, M. Elad, and Y. Hel-Or. Linear-time subspace clustering via

bipartite graph modeling. IEEE Transactions on Neural Networks and

Learning Systems, 26(10):2234 – 2246, 2015.

[3] M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD: an algorithm for

designing overcomplete dictionaries for sparse representation. IEEE

Transactions on Signal Processing, 54(11):4311–4322, 2006.

[4] Akram Aldroubi, Keaton Hamm, Ahmet Bugra Koku, and Ali Sekmen.

Cur decompositions, similarity matrices, and subspace clustering. arXiv

preprint arXiv:1711.04178, 2017.

[5] Akram Aldroubi, Ali Sekmen, Ahmet Bugra Koku, and Ahmet Faruk

301



BIBLIOGRAPHY

Cakmak. Similarity matrix framework for data from union of subspaces.

Applied and Computational Harmonic Analysis, 2017.

[6] David Alonso-Gutierrez. On the isotropy constant of random convex sets.

Proceedings of the American Mathematical Society, 136(9):3293–3300,

2008.

[7] Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin

Rostamizadeh, and Morteza Zadimoghaddam. Greedy column subset se-

lection: New bounds and distributed algorithms. In International Con-

ference on Machine Learning, pages 2539–2548, 2016.

[8] C. Archambeau, N. Delannay, and M. Verleysen. Mixtures of robust prob-

abilistic principal component analyzers. Neurocomputing, 71(7–9):1274–

1282, 2008.

[9] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction

with the k-support norm. In Neural Information Processing Systems,

pages 1466–1474, 2012.

[10] E. Arias-Castro, G. Chen, and Gilad Lerman. Spectral clustering based

on local linear approximations. Electron. J. Statist., 5:1537–1587, 2011.

[11] Ery Arias-Castro, Gilad Lerman, and Teng Zhang. Spectral cluster-

302



BIBLIOGRAPHY

ing based on local pca. The Journal of Machine Learning Research,

18(1):253–309, 2017.

[12] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Com-

puting a nonnegative matrix factorization–provably. In Proceedings of

the forty-fourth annual ACM symposium on Theory of computing, pages

145–162. ACM, 2012.

[13] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with

sparsity-inducing penalties. Journal Foundations and Trends in Ma-

chine Learning, 4(1):1–106, 2012.

[14] L. Bako. Identification of switched linear systems via sparse optimiza-

tion. Automatica, 47(4):668–677, 2011.

[15] Keith Ball. An elementary introduction to modern convex geometry. In

in Flavors of Geometry, pages 1–58. Univ. Press, 1997.

[16] Richard Baraniuk. Compressive sensing. IEEE Signal Processing Mag-

azine, 24(4):118–121, 2007.

[17] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael

Wakin. A simple proof of the restricted isometry property for random

matrices. Constructive Approximation, 28(3):253–263, 2008.

[18] R. Basri and D. Jacobs. Lambertian reflection and linear subspaces.

303



BIBLIOGRAPHY

IEEE Transactions on Pattern Analysis and Machine Intelligence,

25(2):218–233, 2003.

[19] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algo-

rithm for linear inverse problems. SIAM Journal on Imaging Sciences,

2(1):183–202, 2009.

[20] Alexei Borodin. Determinantal point processes. arXiv preprint

arXiv:0911.1153, 2009.

[21] T.E. Boult and L.G. Brown. Factorization-based segmentation of motions.

In IEEE Workshop on Motion Understanding, pages 179–186, 1991.

[22] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approxima-

tion algorithm for the column subset selection problem. In Proceedings

of SODA, pages 968–977, 2009.

[23] P. S. Bradley and O. L. Mangasarian. k-plane clustering. Journal of

Global Optimization, 16(1):23–32, 2000.

[24] S. Brazitikos, A. Giannopoulos, P. Valettas, and B.H. Vritsiou. Geome-

try of Isotropic Convex Bodies:. Mathematical Surveys and Monographs.

American Mathematical Society, 2014.

[25] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

304



BIBLIOGRAPHY

search engine. Computer Networks and ISDN Systems, 30:107–117,

1998.

[26] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and

Joachim M Buhmann. The balanced accuracy and its posterior distribu-

tion. In Pattern recognition (ICPR), 2010 20th international conference

on, pages 3121–3124. IEEE, 2010.

[27] A.M. Bruckstein, D.L. Donoho, and M. Elad. From sparse solutions of

systems of equations to sparse modeling of signals and images. SIAM

Review, 51(1):34–81, 2009.

[28] Joan Bruna and Stephane Mallat. Invariant scattering convolution net-

works. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1872–1886, August

2013.

[29] D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry. Grad-

uate Studies in Mathematics, vol.33. American Mathematical Society,

Providence, 2001.

[30] T. Tony Cai and Anru Zhang. Sparse representation of a polytope and

recovery of sparse signals and low-rank matrices. IEEE Transactions on

Information Theory, 60(1):122–132, 2014.

[31] E. Candès. The restricted isometry property and its implications for com-

305



BIBLIOGRAPHY

pressed sensing. Comptes Rendus Mathematique, 346(9-10):589–592,

2008.

[32] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component

analysis. Journal of the ACM, 58, 2011.

[33] E. Candès and M. Wakin. An introduction to compressive sampling.

IEEE Signal Processing Magazine, 25(2):21–30, 2008.

[34] Emmanuel Candès. Compressive sampling. Proceedings of the Interna-

tional Congress of Mathematicians, 2006.

[35] Emmanuel Candès and Terence Tao. Decoding by linear programming.

IEEE Trans. on Information Theory, 51(12):4203–4215, 2005.

[36] Volkan Cevher and Andreas Krause. Greedy dictionary selection for

sparse representation. IEEE Journal of Selected Topics in Signal Pro-

cessing, 5(5):979–988, 2011.

[37] T.F. Chan. Rank revealing qr factorizations. Lin. Alg. and its Appl., 88-

89:67–82, 1987.

[38] Ling-Hua Chang and Jwo-Yuh Wu. An improved rip-based performance

guarantee for sparse signal recovery via orthogonal matching pursuit.

IEEE Transactions on Information Theory, 60(9):5702–5715, 2014.

306



BIBLIOGRAPHY

[39] G. Chen and G. Lerman. Spectral curvature clustering (SCC). Interna-

tional Journal of Computer Vision, 81(3):317–330, 2009.

[40] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by

basis pursuit. SIAM J. Sci. Comput., 20:33–61, 1998.

[41] Yeshwanth Cherapanamjeri, Prateek Jain, and Praneeth Netrapalli.

Thresholding based efficient outlier robust pca. arXiv preprint

arXiv:1702.05571, 2017.

[42] Tat-Jun Chin, Yang Heng Kee, Anders Eriksson, and Frank Neumann.

Guaranteed outlier removal with mixed integer linear programs. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 5858–5866, 2016.

[43] F. Chung. Spectral graph theory. In CBMS Regional Conference Series

in Mathematics, volume 92. American Mathematical Society and Confer-

ence Board of the Mathematical Sciences, 1997.

[44] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.
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