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Abstract 

Cold-formed steel (CFS) structural members are commonly manufactured with holes 

to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of 

buildings. Current design methods available to engineers for predicting the strength of 

CFS members with holes are prescriptive and limited to specific perforation locations, 

spacings, and sizes. The Direct Strength Method (DSM), a relatively new design method 

for CFS members validated for members without holes, predicts the ultimate strength of 

a general CFS column or beam with the elastic buckling properties of the member cross-

section (e.g., plate buckling) and the Euler buckling load (e.g., flexural buckling). This 

research project, sponsored by the American Iron and Steel Institute, extends the 

appealing generality of DSM to cold-formed steel beams and columns with perforations. 

The elastic buckling properties of rectangular plates and cold-formed steel beams 

and columns, including the presence of holes, are studied with thin shell finite element 

eigenbuckling analysis. Buckled mode shapes unique to members with holes are 

categorized. Parameter studies demonstrate that critical elastic buckling loads either 

decrease or increase with the presence of holes, depending on the member geometry and 

hole size, spacing, and location. Simplified alternatives to FE elastic buckling analysis 

for members with holes are developed with classical plate stability equations and freely 

available finite strip analysis software. 
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Experiments on cold-formed steel columns with holes are conducted to observe the 

interaction between elastic buckling, load-deformation response, and ultimate strength. 

The experimental results are used to validate an ABAQUS nonlinear finite element 

protocol, which is implemented to simulate loading to collapse of several hundred cold-

formed steel beams and columns with holes. The results from these simulations, 

supplemented with existing beam and column data, guide the development of design 

equations relating elastic buckling and ultimate strength for cold-formed steel members 

with holes. These equations and the simplified elastic buckling prediction methods are 

presented as a proposed design procedure for an upcoming revision to the American 

Iron and Steel Institute's North American Specification for the Design of Cold-Formed 

Steel Structural Members. 

Advisor: Dr. Benjamin William Schafer 
Readers: Dr. Takeru Igusa 
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Chapter 1 Introduction 

The goal of this research work is to develop a general design method for cold-

formed steel structural members with holes. Cold-formed steel beams and columns are 

typically manufactured with perforations. For example, in low and midrise 

construction, holes are prepunched in structural studs to accommodate the passage of 

utilities in the walls and ceilings of buildings as shown in Figure 1.1. In cold-formed 

steel storage rack columns, perforation patterns are provided to allow for variable shelf 

configurations as shown in Figure 1.2. (Members with discrete holes, for example C-

sections with punched holes as shown in Figure 1.1, are the research focus in this thesis, 

although many of the tools and methods developed here can be extended to perforation 

patterns in storage racks with additional research effort.) Existing design procedures for 

cold-formed steel members with holes are limited to certain hole sizes, shapes, and 

configurations. These limitations can hamper an engineer's design flexibility and 

decrease the reliability of cold-formed steel components where holes exceed these 

prescriptive limits. 
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Figure 1.2 Hole patterns in storage rack columns 

The basic framework of the design procedure developed in this thesis is the Direct 

Strength Method (DSM) (AISI-S100 2007, Appendix 1). DSM is relatively new and 

represents a major advancement in cold-formed steel design because it provides 

engineers and cold-formed steel manufacturers with the tools to predict the strength of a 

member with any general cross-section. Cold-formed steel members are manufactured 

from thin sheet steel, and therefore member resistance is influenced by cross-section 

instabilities (e.g., plate buckling and distortion of open cross-sections) in addition to the 

global buckling influence considered in thicker hot-rolled steel sections. DSM explicitly 

defines the relationship between elastic buckling and load-deformation response with 

empirical equations to predict ultimate strength. 
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To calculate the capacity of a cold-formed steel member with DSM, the elastic 

buckling properties of a general cold-formed steel cross-section are obtained from an 

elastic buckling curve. The curve can be generated with software employing the finite 

strip method to perform a series of eigenbuckling analyses over a range of buckled half-

wavelengths. In this research work the freely available program CUFSM is utilized 

(Schafer and Adany 2006). An example of an elastic buckling curve is provided in 

Figure 1.3 for a cold-formed steel C-section column and highlights the three categories of 

elastic buckling considered in DSM - local buckling, distortional buckling, and global 

buckling. Local buckling occurs as plate buckling of individual slender elements in a 

cross-section. Distortional buckling exists only for open cross-sections such as a C-

section, where the compressed flanges buckle inward or outward along the length of a 

member. Global buckling, also known as Euler buckling, defines buckling of the full 

member at long half-wavelengths including both flexural and flexural-torsional effects 

(and lateral-torsional effects in beams). 

The critical elastic buckling loads associated with local, distortional, and global 

buckling - P„/, Pc,d, and Pm for columns (Ma-/, M„d, and Mm for beams), can be obtained 

directly from the elastic buckling curve. The critical elastic buckling loads are then used 

to predict the ultimate strength with three empirical design curves presented in Figure 

1.4 to Figure 1.6 for cold-formed steel columns. (The current DSM column design 

equations for members without holes are also provided in these figures.) The local, 

distortional, and global slenderness of a member (kt, "kit Xc) are calculated from the 

critical elastic buckling loads, defining a member's sensitivity to each type of buckling at 
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failure (high slenderness corresponds to high sensitivity, low slenderness to low 

sensitivity). The nominal resistances (P„/, P„d, and P„e) are obtained by inserting the 

slenderness magnitudes into the DSM design equations. The minimum of the local, 

distortional, and global nominal strengths is taken as the strength of the member. 
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Figure 1.4 DSM global buckling failure design curve and equations 
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This research aims to extend the appealing generality of DSM to cold-formed steel 

members with perforations. The primary research goals are to study and quantify the 

influence of holes on the elastic buckling of cold-formed steel beams and columns and 

then to develop modifications to the existing DSM design equations which relate elastic 

buckling to ultimate strength. The research plan is implemented in three phases: 

Phase I (Chapters 2-4) 

1. Study the influence of holes on the elastic buckling of thin plates, and then on cold-
formed steel beams and columns. 

2. Evaluate the viability of DSM for members with holes by comparing existing 
experiments on members with holes to the current DSM specification. 

Phase II ( Chapters 5-7) 

1. Conduct experiments on cold-formed steel columns to observe the influence of holes 
on ultimate strength and post-buckling response. 

2. Define and validate a nonlinear finite element modeling protocol through parameter 
studies on thin plates and comparison to experimental results. 

Phase III (Chapters 7-8) 

1. Formalize the relationship between elastic buckling and ultimate strength for 
members with holes using nonlinear finite element simulations and existing data. 

2. Modify the current DSM specification to account for members with holes 

Phase I research is primarily focused on elastic buckling. Chapter 2 describes 

preliminary thin shell finite element eigenbuckling studies which are used to evaluate 

the accuracy of different shell element types in ABAQUS and to define finite element 

meshing guidelines. Chapter 3 extends this elastic buckling research with eigenbuckling 

analyses of typical cross-sectional elements considered in cold-formed steel design. For 
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example, a stiffened element is a simply-supported plate used to model the web of a 

cold-formed steel C-section and an unstiffened element is a plate simply-supported on 

three edges and free on the fourth edge to simulate the behavior of the free leg of a cold-

formed steel hat section. Chapter 4 examines the elastic buckling of full cold-formed 

steel beams and columns with holes and develops useful simplified methods to predict 

elastic buckling, including the influence of holes, without finite element analysis. The 

elastic buckling properties of existing beam and column experiments are also calculated 

and merged with the tested strengths into a database. This database is employed near 

the end of the project to validate the proposed modifications to the DSM design 

equations for members with holes. 

Phase II marks a shift from elastic buckling to the study of the influence of holes on 

load-deformation response and ultimate strength. Chapter 5 describes an experimental 

program on short and intermediate length cold-formed steel columns with holes. 

Chapter 6 initiates the development of a nonlinear finite element protocol with a 

significant effort to define the residual stresses and initial plastic strains from the 

manufacturing process. The capabilities of the commercial program ABAQUS 

(ABAQUS 2007a) are explored at the beginning of Chapter 7 with preliminary nonlinear 

finite element simulation studies on rectangular plates with holes. The experimental 

results from Chapter 5 are then employed in Phase III to fully develop and verify the 

modeling protocol. The research culminates in Chapter 8 with the development of a 

database of simulated tests which are used in combination with existing experimental 

data to validate the DSM design method for cold-formed steel members with holes. 
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Chapter 2 

Thin-shell finite element modeling 
in ABAQUS 

A set of ABAQUS modeling guidelines is formalized in this chapter to provide a 

consistent methodology for the finite element studies conducted in this thesis research. 

Finite element eigenbuckling analysis is a valuable tool for studying the elastic buckling 

properties of thin-walled structures. The accuracy of an analysis is influenced by 

decisions made while implementing the finite element model, including the choice of 

finite element type and the meshing geometry and density. Studies are presented here 

which compare finite element eigenbuckling predictions of plate buckling problems to 

known theoretical solutions. The eigenbuckling analyses are performed with the 

commercial finite element program ABAQUS (ABAQUS 2007a). The accuracy of 

ABAQUS thin shell elements are evaluated, and finite element convergence studies are 

presented to identify limits on element aspect ratio. Rules for modeling rounded corners 

and meshing around holes are also provided with supporting elastic buckling studies. 
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2.1 Comparison of ABAQUS thin-shell elements 

Three ABAQUS finite elements commonly employed in the elastic buckling analysis 

of thin-walled structures are the S9R5, S4, and S4R elements as shown in Figure 2.1. The 

S4 and the S4R finite elements are four node general purpose shell elements valid for 

both thick and thin shell problems (ABAQUS 2007a). Both elements employ linear 

shape functions to interpolate deformation between nodes. The S9R5 element is a 

doubly-curved thin shell element with nine nodes derived with shear flexible Mindlin 

strain definitions and Kirchoff constraints (classical plate theory with no transverse 

shear deformation) enforced as penalty functions (Schafer 1997). This element employs 

quadratic shape functions (resulting from the increase in the number of nodes from 4 to 

9) which provide two important benefits when modeling thin-walled structures: (1) the 

ability to define initially curved geometries and (2) the ability to approximate a half sine 

wave with just one element. The "5" in S9R5 denotes that each element node has 5 

degrees of freedom (three translational, two rotational) instead of 6 (three translational, 

three rotational). The rotation of a node about the axis normal to the element mid-

surface is removed from the element formulation to improve computational efficiency. 

The "R" in the S9R5 (and S4R) designation denotes that the calculation of the element 

stiffness is not exact; the number of Gaussian integration points is reduced to improve 

computational efficiency and to avoid shear locking. This "reduced integration" 

approach underestimates element stiffness and sometimes results in artificial element 

deformation modes with zero strain across the element, commonly referred to as 

"hourglass" modes (Schafer 1997). The accuracy of eigenbuckling finite element models 
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are compared here for each of these ABAQUS element types against the exact solutions 

for two common plate buckling problems. 

S4/S4R 

P^ 
Figure 2.1 ABAQUS S4\S4R shell element with four nodes and a linear shape function, ABAQUS S9R5 shell 

element with nine nodes and a quadratic shape function 

2.1.1 Modeling accuracy for a stiffened element 

Elastic buckling analyses of a stiffened element were performed in ABAQUS to 

compare the accuracy of the ABAQUS S9R5, S4, and S4R elements against a known 

solution. A stiffened element is a common term used in thin-walled structures to 

describe a cross-sectional element restrained on both edges (see Figure 3.1) which is 

approximated as a thin simply-supported plate (with sides free to wave) and loaded 

uniaxially as shown in Figure 2.2. 

Figure 2.2 Buckled shape of a stiffened plate 
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The theoretical buckling stress for a stiffened element is: 

(2.1) f"= ki^T7] 
t 

where h is the width of the plate, £ is the modulus of elasticity of the plate material, v is 

the Poisson's ratio, and t is the thickness of the plate. 

The buckling coefficient k is: 

k = 
mh n L 
— + 

y L mh j 

(2.2) 

where L is the length of the plate and m and n are the number of half-wavelengths in the 

longitudinal and transverse directions, respectively (Chajes 1974). In Figure 2.2, m=4 

and n=l. 

Plate buckling coefficients (k) are approximated in ABAQUS by performing 

eigenbuckling analyses of stiffened elements with ABAQUS S4, S4R, and S9R5 elements. 

The element aspect ratio is set at 8:1 for the S9R5 element and 4:1 for the S4R and S4 

elements to ensure a consistent comparison between finite element models (i.e., similar 

numbers of nodes and computational demand). These particular element aspect ratios 

were also chosen because they are expected to be towards the upper limit of what is 

required to discretize the geometry of cold-formed steel members (especially at rounded 

corners where the element aspect ratio can be quite high). The plate thickness is set to 

t=0.0346 in. £=29500 ksi and v=0.30 for all finite element models. The ABAQUS 

boundary and loading conditions are implemented as shown in Figure 3.1. 
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Figure 2.3 compares the theoretical k from Eq. (2.1) to the ABAQUS buckling 

coefficients for varying plate aspect ratios (L/h). The S9R5 element performs accurately 

over the range of element aspect ratios considered, with a maximum error of 1.3 percent. 

The S4 and S4R elements are not as accurate, with maximum errors of 11.4 percent and 

9.7 percent, respectively. The accuracy of the plate models with S4 and S4R elements 

increase with increasing plate aspect ratio, which indirectly implies that solution 

accuracy increases as the number of elements per half-wave increase (in the loaded 

direction). This hypothesis is consistent with the element formulations, since the S9R5 

element uses a quadratic shape function to estimate displacements (and can therefore 

capture the half-sine wave of a buckled plate with as little as one element) and the S4 

and S4R elements use linear shape functions (requiring at least three elements to 

coarsely estimate the shape of a half sine wave). The S4R element is observed to be 

slightly less stiff than the S4 element in Figure 2.3, which is hypothesized to occur as a 

result of the reduced integration stiffness approximation. 

Comparing the number of elements required to model a buckled half-wave is a 

more useful indicator of mesh density and model accuracy than just the element aspect 

ratio alone. Figure 2.4 verifies this supposition by demonstrating the improvement in 

modeling accuracy for a stiffened element as the number of finite elements per square 

half-wave increase. The S4 element experiences membrane locking when the number of 

elements per half wave is less than 2, resulting in exceedingly unconservative values for 

k. The S4R avoids this membrane locking with a reduced integration scheme that 

assumes the membrane stiffness is constant in the element (ABAQUS 2007a). 
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Regardless, the accuracy of the S4R element degrades when less than 5 elements per 

half-wavelength are used and neither four node element (i.e., the S4 or the S4R) is able to 

capture the sinusoidal shape of the buckled half-wave with less than three elements per 

buckled half-wave. The S9R5 accurately predicts the shape of the buckled half-wave 

and the buckling coefficient k with just one element, k is within 2.1 percent of the 

theoretical value for one element per half-wave and reduces to 0.1 percent for two 

elements per half-wave. 

5.5^ 

I 5 

4.5 
XI 

I 

3.5 
0 0.5 1 1.5 2 2.5 

plate aspect ratio, L/h 
3.5 

Figure 2.3 Accuracy of ABAQUS S9R5, S4, and S4R elements for a stiffened element with varying aspect 
ratios, 8:1 finite element aspect ratio for the S9R5 element, 4:1 element aspect ratio for the S4 and S4R 

elements 

13 



•5 
8 

7 

6.5 

6 

5.5 

5 

4.5 

4 

3.5 

3 

- *— S4 
~e—S4R 
O S9R5 

4 6 8 10 12 14 16 
number of elements per buckled half-wave 

18 20 

Figure 2.4 Accuracy of S4, S4R, and S9R5 elements as a function of the number of elements provided per 
buckled half-wavelength, stiffened element, square waves (ft=4) 

2.1.2 Modeling accuracy for an unstiffened element 

An unstiffened element is another common cross-section component considered in 

the elastic buckling of thin-walled cross-sections (see Figure 3.1), the behavior of which 

is conservatively approximated as a plate simply-supported on three sides and free on 

the fourth side parallel to the direction of a uniaxially applied stress. The buckled shape 

of an unstiffened element is depicted in Figure 2.5. 
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Figure 2.5 Buckled shape of an unstiffened element, m=l shown 

The theoretical buckling coefficient k of an unstiffened element can be calculated with 

the numerical solution of the following equations (Timoshenko 1961): 

A 
V 

2 2\ 
, m n 

a -v—— 
L1 j 

tanh(a/i) = a / ? 2 + v — -
L J 

tanh(/%), (2.3) 

a = 

(m27T2 mir2 \^2 

+ ——kv , and/? = 
\ 

Lh 

/ 2 2 2 \/2 

m n mn )/2 

; V U Lh J 
(2.4) 

Figure 2.6 compares the theoretical to predicted k versus the number of S9R5 

elements provided along the length L of an unstiffened element. The plate dimensions 

are held constant at L/h= 4, while the element aspect ratio is varied from 1:1 to 64:1. The 

S9R5 element produces an error of 4.3 percent with an element aspect ratio of 16:1 and 

an error of 1.0 percent with an element aspect ratio of 8:1. 
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Figure 2.6 Accuracy of S9R5 elements as the number of finite elements provided along an unstiffened 
element varies, L//J=4 
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2.2 Modeling holes in ABAQUS 

The ability to incorporate holes into the geometry of an ABAQUS finite element 

model is a key prerequisite to studying the influence of holes on the structural behavior 

of cold-formed steel structural members. To clear this hurdle, custom Matlab code was 

written by the author which generates a finite element mesh of a plate containing a hole 

(Mathworks 2007). The code discretizes the geometry around a hole by creating layers 

of S9R5 elements as shown in Figure 2.7 for a slotted hole, a circular hole, and a square 

hole. (See Appendix A for a description of the custom mesh generation program. 

Additional Matlab tools were developed to integrate the hole mesh geometry into an 

existing finite element model.) The discretization results in S9R5 elements with 

opposite edges which are not initially parallel. The initial geometry of 9 node 

quadrilateral elements without parallel edges can be defined without loss of accuracy as 

long as the midline nodes remain centered between the corner nodes (Cook 1989), which 

is an advantage over the S4 and S4R elements. ABAQUS recommends that the angle 

between isoparametric lines (i.e., corner angles of an element) should not be less than 45 

degrees or greater than 135 degrees to ensure accurate numerical integration of the 

element stiffness matrix (ABAQUS 2007a). This limit coincides with the minimum and 

maximum S9R5 corner angles for the elements at the bisection of the 90 degree plate 

corners as shown in Figure 2.8. 

This study establishes ABAQUS S9R5 finite element mesh guidelines for plates with 

holes by studying the convergence of the elastic stability solution as element aspect ratio 
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varies. Figure 2.7 provides the typical mesh layout and summarizes the plate 

dimensions considered in this study. The plate is modeled as a stiffened element in 

ABAQUS, simply supported on four sides and loaded uniaxially in compression (see 

Figure 3.5 for the ABAQUS implementation of the boundary and loading conditions). 

The plate thickness £=0.0346 in., £=29500 ksi, and v=0.30 for all finite element models. 

L=6.0 in. 

hMe=1.5in 

L=3.4 in. 

.)''. \-:,-M-
.NKWVv 

h=3.4 in. 

Figure 2.7. Finite element mesh and plate dimensions: slotted, rectangular, and circular holes 

The convergence of the elastic buckling solution for the plates with holes is studied 

by varying the S9R5 element aspect ratio (a:b) at the bisection of the plate corners as 

shown in Figure 2.8, where a and b are defined as 

a = 
" "hole fo _ ''•hole 

Invert » N. 
(2.5) 

The aspect ratio is varied by increasing the number of finite element layers around the 

hole (Niters) while the maintaining the number of edge elements (NeiOT,) constant (i.e., the 

mesh density increases but the element corner angles remain constant). 

N„,„m=10 

Element aspect ratio is a:b 

W,awr, number of element layers around hole 

Ngl0m number of edge elements 
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Figure 2.8 Hole discretization using S9R5 elements 

Figure 2.9 demonstrates that the critical elastic buckling stress for the lowest 

buckling mode (a half sine wave in this case) for all hole types converges to a constant 

magnitude when a:b is between 0.5 and 2. This result is employed as a modeling 

guideline for the research work in this thesis with the expressions for a and b in Eq. (2.5): 

n c / elem 

layers * V "'hole J 
<2. (2.6) 
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Figure 2.9 The critical elastic buckling stress converges to a constant magnitude when the S9R5 element 
aspect ratio alb is between 0.5 and 2 and element corner angles are skewed 

2.3 Modeling Rounded Corners in ABAQUS 

The S9R5 element can be defined with an initial curved geometry in ABAQUS which 

makes it convenient for modeling rounded corners of a cold-formed steel cross-section. 

ABAQUS recommends that the initial element curvature should be less than 10 degrees, 
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where curvature of an S9R5 element is defined as the angle subtended by the nodal 

normal and the average element normal as shown in Figure 2.10. The derivation in 

Figure 2.10 demonstrates that this curvature recommendation is met when five or more 

S9R5 elements form the 90 degree corner. This limit is unfavorable from a modeling 

perspective because the element aspect ratio increases as the number of elements around 

the corner increase, another potential source of accuracy degradation. Also, for a finite 

element model with four 90 degree corners (e.g., a cold-formed steel lipped C-section), 

increasing the number of elements at a corner can result in a considerable increase in 

computational demand if the corner elements comprise a large proportion of the total 

number of elements in a cross-section. 

Average S9R5 _ ~ >• S = ra, CC< — 
element no rma l^sJVy \ 18 

Node normal (typ. 

s / / > > 0 . S<— S = — 
"18' 90 2 

*->Qi ?V" >_2Q_ • A[ > 4 5 
ABAQUS recommends a 510 degrees elem ~ 2S ' " e,em ~ ' 
to limit initial S9R5 element curvature 

Figure 2.10 ABAQUS S9R5 initial curvature limit requires at least five elements to model corner 

A parameter study was conducted to evaluate the influence of the number of S9R5 

elements making up a 90 degree corner on the critical elastic buckling loads for local 

buckling (Per?), distortional buckling (PtT(i), and global buckling (Pc„) of an SSMA 600S162-

68 C-section column. The number of corner elements were varied from 1 to 5, with the 

associated S9R5 aspect ratio a:b varying from 5 to 22. The column length was held 

constant at L=48 inches for all models to accommodate multiple local and distortional 

half-waves. The columns were loaded uniaxially and modeled with warping-free ends 
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(CUFSM-style boundary conditions) as shown in Figure 4.2. £=29500 ksi and v=0.30 for 

all finite element models. Py is the squash load of the column calculated with the steel 

yield stress Fy=50 ksi. 

Figure 2.11 provides the typical mesh geometry of the column and compares a C-

section corner modeled as a smooth surface with one S9R5 element and with three S9R5 

elements. Figure 2.12 demonstrates that the number of S9R5 corner elements has a 

minimal influence on the elastic buckling behavior of the column, with a slight 

decreasing trend (less than 1%) in critical elastic buckling load with increasing element 

quantity. Mesh refinement at the corners does not influence solution accuracy because 

elastic buckling deformation occurs primarily within the more flexible cross-sectional 

elements. If the simulation of sharp folding of the corners is required, such as in the case 

of nonlinear finite element modeling to collapse, additional corner elements may be 

warranted to accurately capture localized deformation gradients. 

Figure 2.11 SSMA 600S162-68 C-section corner modeled with a) one S9R5 element, b) three S9R5 elements 
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Figure 2.12 The number of S9R5 corner elements has a minimal influence on the critical elastic buckling 
loads of an SSMA 600162-68 C-section column with L=48 in. 

2.4 Summary of modeling guidelines 

The S9R5 element will be implemented in this research work based on its versatility 

and demonstrated accuracy. The results of the ABAQUS studies in this chapter form the 

basis of the ABAQUS modeling guidelines below which will be implemented for both 

eigenbuckling and nonlinear finite element studies in this thesis: 

• A minimum of two S9R5 elements per half-wavelength shall be provided in 
stiffened elements in the direction normal to the applied load (e.g., flanges and 
web of a lipped C-section) 

• The S9R5 element aspect ratio shall be less than or equal to 8:1 in unstiffened 
elements (e.g., flange lip in a C-section) 

• The S9R5 element aspect ratio shall be between 0.5 and 2.0 when modeling holes 
with the discretization scheme described in Section 2.2 (where the element sides 
are not perpendicular) 

• For both stiffened and unstiffened elements, at least two S9R5 elements shall be 
provided in the direction perpendicular to the application of load 

• Rounded corners shall be modeled with at least two S9R5 elements, and the 
element aspect ratio of these elements shall be less than or equal to 16:1. 
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Chapter 3 

Elastic buckling of cold-formed steel 
cross-sectional elements with holes 

A simplified method for determining the elastic buckling properties of a thin-walled 

cross-section is to evaluate the contribution of each element in the cross-section 

separately. This element-by-element evaluation is the basis of the effective width design 

method for cold-formed steel beams and columns and can also be employed as a 

conservative predictor of the local critical elastic buckling load (Pcr<) when designing 

cold-formed steel members with the Direct Strength Method (AISI-S100 2007, Appendix 

1). The two common cross-section element types in an open thin-walled cross section 

are stiffened and unstiffened elements, examples of which are provided in Figure 3.1. 

The boundary conditions of a stiffened element are conservatively approximated as a 

simply-supported plate. The unstiffened element is treated as a plate simply-supported 

on three sides and free on the fourth edge parallel to the application of load. 
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Figure 3.1 Stiffened and unstiffened elements in a lipped C-section 

The influence of holes on the elastic buckling behavior of stiffened and unstiffened 

elements is evaluated in this chapter using thin shell finite element eigenbuckling 

analysis. The presence of holes can modify the buckled mode shape of an element and 

either increase or decrease its critical elastic buckling stress. Hole spacing and hole size 

relative to element size are studied for both stiffened and unstiffened elements, and 

approximate methods for predicting element critical elastic buckling stress are 

developed and presented for use in design. The research results presented here will be 

used as a framework for the elastic buckling studies of full cold-formed steel structural 

members with holes in Chapter 4. 

3.1 Plate and hole dimensions 

Plate and hole dimension nomenclature used throughout this chapter is summarized 

in Figure 3.2. The strips of plate between a hole and the plate edges will be referred to as 

unstiffened strip "A" and unstiffened strip "B", where the widths of these unstiffened 

strips are hA and hB respectively as shown in Figure 3.3. For stiffened elements in 

bending, the neutral axis location is defined as Y in Figure 3.4 and is measured from the 

compressed edge of the plate. 

23 



S/2 
H • * -

-Detail A 

i 
Plate with holes T 

C_Hole 

i 
T 

,+5h, 

. / . 

C_ Plate 

( _ ^ ^ ) 

Slotted hole 

Detail A 

Figure 3.2 Element and hole dimension definitions 
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Figure 3.3 Definition of unstiffened strip "A" and "B" for a plate with holes. 
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Figure 3.4 Definition of neutral axis location for stiffened elements in bending. 
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3.2 Finite element modeling assumptions 

The elastic buckling behavior of stiffened and unstiffened elements with holes are 

obtained with eigenbuckling analyses of plates in ABAQUS (ABAQUS 2007a). All 

members are modeled with ABAQUS S9R5 reduced integration nine-node thin shell 

elements. The typical finite element aspect ratio is 1:1 and the maximum aspect ratio is 

limited to 8:1 (refer to Chapter 2 for a discussion on ABAQUS thin shell finite element 

types and finite element aspect ratio limits). Element meshing was performed with a 

Matlab (Mathworks 2007) program written by the author (refer to Appendix A for a 

description of the program). The plate models are loaded from each end with stress 

distributions applied as consistent nodal loads in ABAQUS. Converting a stress 

distribution to consistent nodal loads for the S9R5 element requires a different 

procedure than that followed for a 4-node finite element (Schafer 1997). Cold-formed 

steel material properties are assumed as £=29500 ksi and v=0.3 in all finite element 

models. 

3.3 Stiffened element in uniaxial compression 

3.3.1 Boundary and loading conditions 

The stiffened element is modeled with simply-supported boundary conditions and 

loaded uniaxially with a uniform compressive stress as shown in Figure 3.5. 
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Figure 3.5 ABAQUS boundary conditions and loading conditions for a stiffened element in uniaxial 
compression 

3.3.2 Influence of a single slotted hole 

This study explores the influence of a single slotted hole on the elastic buckling 

stress of a stiffened element. The plate length L is varied from three to twenty-four 

times the slotted hole length, LhoUl and the width of the plates are chosen to equal the flat 

web widths of four common Steel Stud Manufacturers Association (SSMA) structural 

studs listed in Table 3.1 (SSMA 2001). The slotted hole has dimensions of ^=1.5 in., 

LMe=4: inv and rto,e=0.75 in. Holes are always centered transversely between the unloaded 

edges of the plate in this study. The plate thickness, t, is 0.0346 in. 

Table 3.1 Plate widths corresponding to SSMA structural stud designations 
SSMA 

Designation 

250S162-33 

362S162-33 

600S162-33 

800S162-33 

h 

(in) 

2.28 

3.40 

5.78 

7.78 

hhole/h 

0.66 

0.44 

0.26 

0.19 

The results of this study are presented in Figure 3.6 and demonstrate that as the 

length of a stiffened element increases relative to the length of the hole, the critical 

elastic buckling stress, /„, converges to a constant magnitude which is either equal to or 

lower than the buckling stress of a plate without a hole. The convergence occurs as L/LMe 
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exceeds 5, suggesting that the influence of the hole is independent of the plate end 

conditions beyond this length. 
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Figure 3.6 Influence of a slotted hole on the elastic buckling stress of a simply supported rectangular plate 
with varying length 

When the hole is wide relative to the width of the plate (hhoJh-0.66) and LILMe is 

small (see Figure 3.6), the elastic buckling stress of the plate with the hole is as much as 7 

percent higher than for a plate without a hole. This increase in stress is explained by the 

buckled mode shapes in Figure 3.7. The plate with the hole in Figure 3.7a has a higher 

elastic buckling stress than the plate without the hole in Figure 3.7b because the natural 

pattern of buckled waves is modified by the hole. The buckled cells adjacent to the hole 

are shorter and therefore stiffer. The thin strips at the hole dampen buckling in this case 

because they have an axial stiffness higher than the buckled cells away from the hole. 
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Figure 3.7 Comparison of buckled shape and displacement contours for a rectangular plate with hiu,iJh=Q.66 
and L/Lhou =3, (a) with slotted hole and (b) without hole. Notice the change in length and quantity of buckled 

cells with the addition of a slotted hole. 

As the plate length increases pas t L/LMe=5 for the smallest plate w id th 

(/itote/fr=0.66), the buckling stress converges to that of a plate without a hole. Figure 3.8 

demonstrates that for these long, slender stiffened elements the slotted hole dampens 

buckling near the hole but does not appreciably change the natural half-wavelength of 

the buckled cells as was observed for the shorter plates in Figure 3.7. 

Figure 3.8 Buckled shape of a simply supported plate (a) with a slotted hole and (b) without a hole. 
L=15Lt,„i(., hue/h=0.66. The slotted hole dampens buckling but does not significantly change the natural half-

wavelength of the plate. 

For plates with hMJh less than 0.66, the slotted hole causes a decrease in the 

elastic buckling stress which converges to a constant magnitude as the plate length 

exceeds L/Lhoie=5. Figure 3.9a demonstrates that local buckling near the hole controls the 
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elastic buckling stress of these wider plates. The deformation at the hole results from the 

localized reduction in transverse plate bending stiffness. 

As plate length decreases below L/Lh0le<5 and hMJh=0.19, the influence of the hole 

on the critical elastic buckling stress fluctuates as shown in Figure 3.6. When the lowest 

elastic buckling mode shape results in an odd number of half-waves, the hole falls 

within the central half-wave and the critical elastic buckling stress decreases. For an 

even number of half-waves, the hole is located at the transition between two half sine-

waves (because the hole is centered at the midlength of the plate), forcing the buckled 

cells to shorten and increasing the critical elastic buckling stress. 

(a) (b) 

Figure 3.9 (a) Slotted hole causes local buckling (hMe/h=0.26), compared to (b) buckled cells at the natural 
half-wavelength of the plate 

3.3.3 Influence of slotted hole spacing 

The previous study demonstrated that the elastic buckling behavior of a stiffened 

element with a single hole is sensitive to the size of the hole relative to the size of the 

plate. The focus now shifts to the influence of multiple slotted holes on the elastic 

buckling stress of a long fixed length stiffened element. In this study, slotted holes are 

added one by one to a stiffened element (where L=24 Lhok) such that the center-to-center 

spacing S varies as shown in Figure 3.10. 
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Figure 3.10 Definition of center-to-center dimension for the slotted holes 

As hole spacing decreases, the elastic buckling stress in Figure 3.11 either increases 

or decreases depending on the ratio of hole width to plate width. When there are many 

large holes (hMJh-Q.b6, SI LMc < 4), buckling is dampened at the holes and the buckled 

cells shorten their lengths to form between adjacent holes (see Figure 3.12 for buckled 

shape). The decrease in buckled half-wavelength causes an increase in elastic buckling 

stress of the plate. 
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Figure 3.11 Influence of slotted hole spacing on the elastic buckling load of a long simply supported 
rectangular plate 
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When the holes are smaller relative to the plate width (hhoiJhO.M) and are spaced 

closely together (S/ Ltote < 4), the local buckling influence of adjacent holes combine to 

sharply decrease the elastic buckling stress. The inset of Figure 3.11 highlights this 

reduction in elastic buckling stress for hMe/h=0A9 and hMe/h=0.26, and Figure 3.12 

provides a summary of the associated buckled shapes. When hole spacing increases 

beyond S/Ltofc=5, the elastic buckling stresses approach constant magnitudes for all plate 

widths considered, which is consistent with the trends presented in Figure 3.6. This 

observation is important from a design perspective because it serves as a rational basis 

for setting hole spacing limits in cold-formed steel members. 

hhole/h=0.66, S/Lhol =4 

Buckling Is dampened at the holes, half-
waves form between holes 

Buckling of the unstiffened strips adjacent to 
the hole is dominant here 

Buckled half-waves form along the length of 
the plate 

hh„,„/h=0.26, S/Lh„, =4 

Figure 3.12 Comparison of buckled shapes for a long stiffened element (L=24 Lhoic ) with a slotted hole 
spacing of S/Lj,0|C=4 and hMefh=0.66, 0.44, and 0.26. 

Figure 3.12 highlights the two types of buckling modes that can occur in stiffened 

elements, plate buckling and unstiffened strip buckling. The influence of these buckling 
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modes on f„ is reflected in Figure 3.13. The maximum decrease in fcr occurs for a 

relatively small hole when compared to the plate width {hhoJh=0.30) and lies at the 

transition between plate buckling, where axial stiffness of the buckled cells is reduced 

with the presence of holes, and unstiffened strip buckling. Unstiffened strip buckling 

occurs between hk„tJh=03Q and hhotJh=0.55 resulting in a relative increase in/cr as the strips 

adjacent to the holes increase the axial stiffness of the plate. As hh0Jh increases past 

hMe/h=0.55 the unstiffened strip adjacent to the hole becomes narrow and stiff, resulting 

in plate buckling away from the holes and an/„ similar to a plate without a hole. (An 

increase in critical elastic buckling stress for large holes does not necessarily correspond 

to an increase in ultimate strength because the strength of the plate will be limited by the 

strength of the net cross-section.) This is another important observation that will be 

used when developing an elastic buckling prediction method for stiffened elements with 

holes in Section 3.3.4. 
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Figure 3.13 Variation mf„ with increasing hhaiefh for a stiffened element correspond to buckling mode shapes 
(see Figure 3.12 for examples of plate buckling and unstiffened strip buckling mode shapes) 

3.3.4 Approximate prediction method for use in design 

Approximations for the critical elastic buckling stress of stiffened elements (e.g. 

column web or flange of a lipped C-section) with holes under uniaxial compression are 

developed in this section considering two elastic buckling states, buckling of the plate 

without hole influence and buckling of the unstiffened strips adjacent to the hole. The 

proposed prediction method is validated with thin shell finite element eigenbuckling 

analyses for a variety of hole shapes, sizes, and spacings. Mandatory dimensional 

tolerances on the prediction method are explicitly defined, and optional dimensional 

limits, marked with an asterisk (*), are provided to avoid excessive conservatism. 
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3.3.4.1 Definitions and assumptions 

Figure 3.2 defines the plate and hole dimension notation used in the element 

prediction method, including the hole spacing S, plate width h, and hole length and hole 

width, Ltofc and hhoie. <5w is the offset distance of a hole measured from the centerline of 

the plate. The elastic buckling prediction method for a stiffened element is developed 

assuming a long plate loaded uniaxially and simply-supported on all four sides with 

evenly spaced holes. A summary of all prediction method equations is provided in 

Appendix D. 

3.3.4.2 Prediction Equations 

The elastic buckling stress of a stiffened element with holes is approximated as 

fcre=mm[fcr,fcrh]. (3.1) 

The critical elastic buckling stress for plate buckling (without hole influence) is 

f'-kw4j)- <3-2) 

where k is commonly taken equal to 4 when considering long rectangular plates (L/h>4). 

When elastic buckling of the stiffened element is governed by the buckling of an 

unstiffened strip adjacent to the hole, the critical elastic buckling stress of the governing 

unstiffened strip is: 

,net 

= min[fcrA,fcrB] (3.3) 
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n2E f . \ 2 

fa,~k'\2Hp?){h, 
and i = A or B (3.4) 

\J 

The plate buckling coefficient k for unstiffened strips A and B are approximated by (Yu 

and Schafer 2007): 

fo r I'M./h,*!, k: -0.425 + 
0.2 

(hJhr-0.6' 
(3.5) 

{™ Lholelhi<\> k, = 0.925, and i = A or B. (3.6) 

Eq. (3.5) accounts for the length of the unstiffened strip. As hole length shortens relative 

to the unstiffened strip width, fc, increases. This is an improvement over AISI-S100 which 

conservatively assumes the lowerbound fc=0.425 regardless of hole length. When hMJh is 

less than 1, k may be conservatively assumed equal to 0.925 via Eq. (3.6) or calculated 

directly by solving the classical stability equations for an unstiffened element 

(Timoshenko 1961). 

4 « = ( A - 0 < 

P* + P, = P„=Lt,«A.l 

crh.net , 
Brunei is t h e critical elastic buckling 
stress of the wider unstiffened strip 

P = f A 
cr J crh g 

f = f net — f 
J crh J crh,net A J crh,net 

' 1 hole 

Figure 3.14 Unstiffened strip elastic buckling stress conversion from the net to the gross section 
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To compare the buckling stress from the unstiffened strip (fah,mi) to that of the entire plate 

(fa) equilibrium between the net and gross section must be considered, as shown in 

Figure 3.14 and provided in the following: 

Jcrh = Jcrh.net V ~ "hole I") • W - ' ) 

3.3.4.3 Verification and equation limits 

3.3.4.3.1 Holes centered transversely in plate 

Thin shell finite element eigenbuckling analysis in ABAQUS, as described in Section 

3.2, is employed here to verify the accuracy of the approximate prediction method in 

Section 3.3.4.2. The boundary and loading conditions assumed for the stiffened element 

are described in Figure 3.5. The length of the slotted hole, L/,0/e, width of the plate h, the 

shape of hole (slotted, circular, square), the hole spacing S, length of the plate L, and 

plate thickness t are varied in the analyses. The plate and hole dimensions as well as the 

ABAQUS critical elastic buckling stress, /cr/, for the 145 models considered, are provided 

in Appendix B(the eigenbuckling results from the studies in Section 3.3.2 and Section 

3.3.3 are included in the 145 models). The parametric ranges in this study are 

summarized for each hole type in Table 3.2. 

Table 3.2 Parameter ranges in stiffened element verification study. 
Hole type 

Slotted 

Circular 

Square 

Min 
Max 
Min 
Max 
Min 
Max 

hhole/h 
0.10 
0.70 
0.10 
0.70 
0.10 
0.70 

S/Lht,ie 

1.7 
24.0 
13.3 
13.3 
13.3 
13.3 

S/h 
1.2 

42.2 
1.3 
9.3 
1.3 
9.3 

h/t 
21 

434 
62 

434 
62 

434 

# of models 

131 

7 

7 
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The results of the ABAQUS eigenbuckling analyses are compared to the stiffened 

element prediction method in Figure 3.15 and Figure 3.16. Figure 3.15 demonstrates that 

as hole spacing S becomes small relative to the plate width h, the prediction method is 

not always accurate. As hole spacing decreases, holes begin to coincide with the local 

buckling half-wavelengths (which have a length of h) and the influence of the individual 

holes act cumulatively to decrease the axial stiffness of the plate. A similar loss in 

stiffness is observed in Figure 3.16 as hole spacing decreases relative to hole length. 

From these observations, the following limits are imposed on the prediction method: 

T>1.5 , (3.8) 
h 

S > 2 . (3.9) 
^hole 

If the parameter limit in Eq. (3.9) is substituted into Eq. (3.8), a third dimensional limit is 

automatically imposed: 

- ^ - < 0.75 (3.10) 

h 

Eq. (3.10) prevents the hole length from being too long relative to the half-wavelength of 

the plate. The mean and standard deviation of the ABAQUS to predicted ratio for the 
stiffened elements within the limits of Eq. (3.8) and Eq. (3.9) are 1.02 and 0.04 

respectively, demonstrating that the prediction method is viable. 
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Figure 3.15 Accuracy of stiffened element prediction method as a function of hole spacing S to plate width h 

(a) without and (b) with the dimensional limits in Eq. (3.8) and Eq.(3.9) 
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Figure 3.16 Accuracy of stiffened element prediction method as a function of hole spacing S to length of 

hole Lhok (a) without and (b) with the dimensional limits in Eq. (3.8) and Eq.(3.9) 

\, 

rfi i g 

o Plate buckling controls 

'J Unstiffened strip controls 

0 0.2 0.4 0.6 0.8 1 

? 
1 1 

X" 

° Plate buckling controls 

o Unstiffened strip controls 

-fr-Kr-o—tJ-§—»-*8-

0.2 0.4 0.6 0.8 

Figure 3.17 Accuracy of the stiffened element prediction method as a function of hole width hhaie to plate 

width h (a) without and (b) with the dimensional limits in Eq. (3.8) and Eq.(3.9) 
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As hole width increases relative to plate width in Figure 3.17, the controlling buckled 

state transitions from buckling of the unstiffened strip adjacent to plate buckling. The 

strips of web material adjacent to the holes have a higher axial stiffness than the sections 

of the plate without holes, causing plate buckling to occur between the holes as shown 

in Figure 3.18. 

-*^"*^ 
^ > ~ . 

^ * ^ ' " ' ^ > i 

\ Strips of plate adjacent to the 
hole are stiffer than plate 
between holes 

Figure 3.18 For plates where the unstiffened strip is narrow compared to the plate width, plate buckling 
occurs between the holes. 

As the hole width becomes small relative to plate width, the unstiffened strip 

buckled state is predicted by the simplified method for slotted holes, although the actual 

behavior is a combination of plate buckling and local buckling at the holes, as shown in 

Figure 3.19. The assumption of unstiffened strip buckling when the slotted hole width is 

small relative to plate width is conservative, with a maximum ABAQUS to predicted 

ratio of 1.16 when hh0Jh is in the range of 0.30. Figure 3.19 also demonstrates that plate 

buckling dominates over unstiffened strip buckling for stiffened elements with square 

and circular holes. The prediction method identifies this elastic buckling behavior and 

accurately predicts /„/ as shown in Figure 3.20, where stiffened element results 

containing just square or just circular holes are plotted. 
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Plate buckling dominates over 
unstiffened strip buckling for 
square (and circular holes) 

" " ^ C l j i i ^ 
Plate buckling and 
unstiffened strip buckling 
are both present when 
0.20shhole/hs0.60 * * < * * • " 

Figure 3.19 Plate buckling and unstiffened strip buckling may both exist for a plate with holes. These 
modes are predicted conservatively as unstiffened strip buckling. 

1.5 

U 1 

a 

0.5 

o Plate buckling controls 

0.2 0.4 0.6 0.8 
hhole / h 

Figure 3.20 Accuracy of prediction method for stiffened elements with square or circular holes as a function 
of hole width hh„k to plate width h. 

3.3.4.3.2 Offset holes 

43 additional ABAQUS eigenbuckling analyses were performed to evaluate the 

accuracy of the simplified prediction method in Section 3.3.4.2, but now with 

transversely offset holes. For these models, the hole offset from the centerline of the 
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plate, <5u, and the plate width, h, were varied. All plate models in this study have 

regularly spaced slotted holes (S=20 in.) and constant plate length, L, of 100 in. The 

boundary and loading conditions assumed for the stiffened element are described in 

Figure 3.5. The model dimensions and critical elastic buckling stress, Li, for the 43 

models considered, are summarized in Appendix B. hstrip is the widest unstiffened strip, 

either hA and hB. The parametric ranges for this study are summarized in Table 3.3. 

Hole type 

Slotted 

Table 3.3 Parameter range for stiffened element verification study with offset holes. 

hhote/h S/Lht>|8 S/h h/t 8hoto/h # of models 

Min 0.10 5.0 1.3 62 0.000 
Max 0.70 5.0 9.3 434 0.375 
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Figure 3.21 Accuracy of the stiffened element elastic buckling prediction method as a function of 
unstiffened strip width hstrip versus plate width h for offset holes (a) without and (b) with the dimensional 

limits in Eq. (3.8) and Eq.(3.9) 

The ABAQUS critical elastic buckling stress results are compared to the prediction 

method in Figure 3.21, and demonstrate that the prediction method is conservative and 

that the accuracy of the method improves as hsrr,> decreases relative to the plate width h 

and hole length Lh0k. The unstiffened strip buckled state is predicted to control for most 

of the plate models, primarily because the shift in hole location results in a wider 
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unstiffened strip with less axial stiffness than that provided by the plate material 

between holes. When the plate is relatively wide compared to the width of the hole and 

the hole is shifted near the edge of the plate as shown in Figure 3.22, the predictions can 

be very conservative. The wide unstiffened strip is not a good approximation of the 

actual behavior of the plate in this case. Prediction accuracy varies with hole offset, 5^, 

as shown in Figure 3.23a, and is most conservative as the hole offset becomes large 

relative to the plate width h. To avoid overly conservative results, the following limit on 

hole offset <5w is proposed for stiffened elements: 

- ^ < 0 . 1 5 * (3.11) 
h 

The mean and standard deviation of the ABAQUS to predicted ratio for the data within 

the dimensional limits of Eq. (3.8), Eq. (3.9), and Eq. (3.11) are 1.14 and 0.15 respectively 

(also see Figure 3.23b). 

•jUtej*, 
The prediction method conservatively assumes 
unstiffened strip buckling of the wider strip adjacent to the 
hole, although plate buckling is observed. 

Figure 3.22 Holes at the edge of a wide stiffened plate reduce the axial stiffness (and critical elastic buckling 
stress) but do not change the buckled shape. 
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Figure 3.23 Accuracy of the stiffened element elastic buckling prediction method as a function of hole offset 

SHOU versus plate width h for offset holes (a) without and (b) with the dimensional limits in Eq. (3.8), Eq.(3.9), 
and Eq. (3.11) 

3.4 Stiffened element in bending 

3.4.1 Boundary and loading conditions 

The stiffened element is modeled with simply-supported boundary conditions and 

loaded with a bending compressive stress distribution as shown in Figure 3.24. The 

location of the neutral axis about which bending occurs, Y, is measured from the 

compressed edge of the plate. 

Neutral axis 

Restrain point in 3 
(w=0) 

Restrain transverse 
midline in 1,(u=0) __ Restrain plate 

perimeter in 2 (v=0) 

Restrain point in 3 
(w=0) 

• • ^ • ' i a y r c & i 

Figure 3.24 Boundary and loading conditions for a stiffened element in bending 
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3.4.2 Influence of transversely-centered slotted holes 

Shell finite element eigenbuckling models of stiffened elements with regularly 

spaced slotted holes are evaluated in this study. The bending stress distribution is 

symmetric about the transverse centerline of the plate (Y=0.50h) for all models. The 

slotted holes are centered transversely in the plate (<5u;=0). The plate and hole 

dimensions and the critical elastic buckling stress, fat, for the 28 models considered, are 

summarized in Appendix B. The parametric ranges for this study are summarized in 

Table 3.4. 

Table 3.4 Parameter ranges considered for stiffened elements in bending with holes. 
Hole type I W h S/Lhole S/h h/t Y/h # of models 

Min 0.10 1.67 1.33 61.93 0.50 
Slotted 28 

Max 0J0 5J30 9.33 433.53 0.50 

Figure 3.25 highlights the influence of hole width to plate width on stiffened 

elements in bending. As hMJh increases, the buckling mode transitions from plate 

buckling (similar to a plate without a hole) to buckling of the compressed unstiffened 

strip adjacent to the hole. The buckled half-wavelength of a plate in bending is between 

0.25ft to 0.50ft, which results in a shortened half-wavelength of the unstiffened strip 

(often less than the length of the hole) when compared to the equivalent unstiffened 

strip buckling mode for stiffened elements in uniaxial compression (See Section 3.3). 
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• 

Unstiffened strip buckling becomes more 
predominant as the hole size increases 
relative to plate width. 

Figure 3.25 Stiffened plates loaded with a linear bending stress gradient exhibit buckling of the unstiffened 
strip adjacent to the hole in the compression region of the plate. 

The maximum reduction in critical elastic buckling stress occurs in the range of 

hhoijh=0.30 as shown in Figure 3.26a. This result is consistent with the elastic buckling 

results for stiffened plates under axial compression (See Figure 3.13). The elastic 

buckling behavior of stiffened elements in bending are different than in pure 

compression though as hMJh exceeds 0.50. Unstiffened strip buckling continues to 

dominate for plate bending (with an associated reduction in f„) while plate buckling 

away from the hole controls for uniaxially compressed plates (with minimal influence 

on/cr even for very large holes). This distinction between compression (columns) and 

bending (beams) elastic buckling behavior of stiffened elements is important when 

considering how to approximate elastic buckling behavior. /„ decreases as hole spacing 

becomes small relative to hole length as shown in Figure 3.26b, identifying S/LMe as 

another important parameter when predicting elastic buckling of stiffened elements in 

bending (as it is for stiffened elements in compression, See Section 3.3). 
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Figure 3.26 Influence of slotted holes on critical elastic buckling stress fa of stiffened elements in bending as 

a function of (a) hole size relative to plate width and (b) hole spacing as a function of hole length. 

3.4.3 Influence of offset slotted holes 

3.4.3.1 Neutral axis location at Y=0.50fr 

Shell finite element eigenbuckling models of stiffened elements with regularly 

spaced offset slotted holes are evaluated in this study. The bending stress distribution is 

symmetric about the transverse centerline of the plate (Y=0.50h) for all models. The hole 

offset, <5u, ranges from -0.375/z to +0.375h, where a positive shift moves the holes into the 

compression region of the plate. The plate and hole dimensions and the critical elastic 

buckling stress, /„, for the 92 models considered, are summarized in Appendix B. The 

parameter range considered in this study is provided in Table 3.5. 

Table 3.5 Study parameter limits for stiffened element in bending (Y/7t=0.50) with offset holes 
Hole type I W h S/Lhote S/h h/t Y/h 8hote/h # of models 

„, ,. . Min 0.10 5.00 1.33 61.93 0.50 -0.375 
Slotted 92 

Max 070 5XK) 9JS3 433.53 O50^ 0.375 

The presence of holes in the compression region of a stiffened element in bending 

(Y=h/2) decreases the critical elastic buckling stress when compared to a plate without 

holes as shown in Figure 3.27. Depending upon the width of the unstiffened strip "A" 
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in the compressed region of the plate and the unstiffened strip "B" in the tensile region 

of the plate (see Figure 3.3 for definitions) relative to hole depth h, unstiffened strip 

buckling may occur above the hole, below the hole, or above and below the hole. /„ 

varies with the transverse position of the holes in the plate (characterized as the width of 

unstiffened strip "A", hA) in Figure 3.27. The trends in /„• can be related to the elastic 

buckling modes in Figure 3.28. If the holes are located in the tensile region of the 

stiffened element, the buckled mode shape (and f„) are unchanged when compared to a 

stiffened element without holes. The relationship between these buckled mode shapes 

and trends in /„ will be used in Section 3.4.4 when developing an approximate elastic 

buckling prediction method for stiffened elements in bending. 
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Figure 3.27 Hole location influence on critical elastic buckling stress f„ for a stiffened plate in bending 

(Y=Q.50h) (Buckled mode shapes corresponding to A, B, C, and D are provided in Figure 3.28.) 
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.. ) Plate buckling (no hole *w, A fll "»W 
>) ' influence) - J * J | y 

Unstiffened strip 
buckling (above hole) 0 

Figure 3.28 The buckled mode shape changes as slotted holes move from the compression region to the 
tension region of a stiffened element in bending (hiwie/h=0.20). 

3.4.3.2 Neutral axis location at Y=0.75h 

The neutral axis in the shell finite element eigenbuckling models from Section 3.4.3.2 

is now modified to Y=0.75h. The trends infcr in Figure 3.29 are similar to those observed 

in Figure 3.27 (Y-0.50h). Elastic buckling of the unstiffened strip below the holes occurs 

when the hole is close to the compressed edge. The mode shape transitions to 

unstiffened strip buckling above the holes as the hole offset increases toward the tensile 

region of the plate. The plate and hole dimensions and the critical elastic buckling 

stress,/„, for the 92 models considered here, are summarized in Appendix B. 
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Figure 3.29 Hole location influence on critical elastic buckling stressfa for a stiffened plate in bending 
(Y=0.75h) 

3.4.4 Approximate prediction method for use in design 

In the previous section unique elastic buckling modes were identified for a stiffened 

element in bending with holes. Buckling of the unstiffened strip between the hole and 

the compressed edge of the plate (unstiffened strip "A") or between the hole and the 

tension edge of the plate (unstiffened strip "B") may occur depending upon the 

transverse location of the hole in the plate, the width of the hole (hhoie) relative to the 

depth of the plate (h), and the location of the plate neutral axis (Y). If the hole is 

completely contained within the tension region of the plate then the hole has a minimal 

influence on elastic buckling and the critical elastic buckling stress, /„, remains 

unchanged. These observations can be used to define an approximation for the critical 

elastic buckling stress of a stiffened element with holes in bending: 
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fcrt=m™lfcrJcrh]- ( 3 ' 1 2 ) 

The critical elastic buckling stress for a stiffened element in bending (without the 

influence of holes),/„, may be determined with Eq. (3.2) where the buckling coefficient k 

is calculated with AISI-S100-07 Eq. B2.3-2 (AISI-S100 2007): 

k = 4 + 2(1 + ^) 3 +2(1 + 1/) (3.13) 

and 0 s the absolute value of the ratio of tensile stress to compressive stress applied to 

the stiffened element, i.e.: 

¥ = \f2lf\ = {h-Y)jY. (3.14) 

When elastic buckling of the stiffened element is governed by the buckling of an 

unstiffened strip adjacent to a hole, the critical elastic buckling stress is: 

fcrh.net = mi4fcrA JcrB] P " 1 5 ) 

Consideration of unstiffened strip "A" is required only if hA<Y, i.e., at least a portion of 

the hole must lie in the compression region of the stiffened element. If that condition is 

met the elastic buckling stress for strip "A" is: 

*2E ( < V 

fcrA~kAuf^) \Kj 
(3.16) 

The plate buckling coefficient for the unstiffened strip "A" is approximated as 

0.578 2 .70-1 .76^ , Y-hA / o i r 7 , 
k. = + Y- —, and wA = 4- (3.17) 

^ ,+0 .34 0 .024^+ 0.035 + {LhoJh J Y 

Eq. (3.17) is a modification of AISI-S100-07 Eq. B3.3-2 (AISI-S100 2007) This expression 

accounts for the gradient of the compressive stress distribution and the aspect ratio of 
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the unstiffened strip (see Appendix C for derivation). The equation for y/A is derived in 

Figure 3.30. 

Neutral Axis 

Triangles 

Figure 3.30 Derivation of stress ratio \|/A for unstiffened strip "A". 

Consideration of unstiffened strip "B" is required only if hA
+hhoic<Yr i.e., only when 

the entire hole lies within the compressed region of the plate. For this case the buckling 

stress of the unstiffened strip, converted to a stress at the compressed edge, is found as: 

JcrB ~ ^B 
nlE ( , A 

\2(\-vl)\K \HB) 

Y 
Y-hA~KoleJ 

(3.18) 

where the final term in Eq. (3.18) converts the buckling stress from the edge of 

unstiffened strip "B" to the edge of unstiffened strip "A" as shown in Figure 3.31 so that 

the two stresses (f„A and/crB) may be compared in Eq. (3.15) to determine the minimum. 

The plate buckling coefficient for the unstiffened strip "B" is approximated as: 

for Lh0k/hB>2 

kB=0340y/2
B +0.10(yB +0.573, (3.19) 

for LMe/hB<2 
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1.8 
0 .38^ °+1.6 

kB —-

K + 0.49 

0.3 
( u ^ 0 • 1 

(3.20) 

-0.2(tyV° + 
V^Ao/e 7 

+ 0.14 

and the ratio of tension to compressive stresses (derived in Figure 3.31) is: 

h-Y 
¥B 

Y~hA-hhole 
, 0 < ^ f i < 1 0 . (3.21) 

The plate buckling coefficient kB is applicable over a larger range of y/B than AISI-Sl 00-07 

Eq. B3.2-5 (AISI-S100 2007) and accounts for the increase in kB as the unstiffened strip 

aspect ratio tends to zero (i.e., a wide, short strip resulting from a small hole). Refer to 

Appendix C for the derivation of kB. 

Y-hA-hhole 

Similar 
Triangles 

Solve for L, 

/ c crB _ 

f\ Y-hA-hhok 

Y 
JcrhB ~ 

Y-hA-Kole 
/i 

Neutral Axis 

Figure 3.31 Derivation \J/B and conversion of the compressive stress at the edge of unstiffened strip "B" to 
the stress/as at the edge of the plate 

Conversion to the gross section for the comparison of stresses in Eq. (3.12) requires 

that: 

for hA+Kte > Y, Jcrh — Jcrh,net V + VA ) y > (3.22) 
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f o r llA+hhele < Y, f - f 
J crh J crh,n 

1-
lhole 

2¥A-
'hole (3.23) 

The conversion from/crft,„e, at the net section of the plate to/crt on the gross cross-section is 

obtained with a similar method to that described in Figure 3.14 for stiffened elements in 

uniaxial compression; the total compressive force at the net and gross cross-sections are 

assumed in equilibrium as shown in Figure 3.32 and Figure 3.33. A summary of all 

prediction method equations is provided in Appendix D. 

'crh.net I r-Y 

Neutral 
Axis \ VAW* J J 

Free Body Diagram 

Force Equilibrium p = J crh,net T AJcrhju ht=^Ljt 

Solve for f„, J crh ~ J crh,net V + ¥ A ) y 

Figure 3.32 Derivation of/„/, for the case when b.A+h„oiriY (when the hole is located partially in the 
compressed region and partially in the tension region of the plate) 
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'hole r-Y 

Neutral 
Axis 
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'crh.net 

1 " • rw.f. ^ ^ MVcrh.net ]? 

Free Body Diagram 

Force Equilibrium P^^fcnJ-
I VAJcrh.net + J3 

rhoJ ~ ~ Jcrh™ 

Define f3 using similar 
triangles f 

Ji J »,< flhole _ hhok 

Y A Y 

Substitute f. and solve f ,= f . , ^ 
3 J crh J crh.net -,r V 

W A Jcrh.net + V/f „ l/cr«,«« 

Simplify 
V cr/i 7 c cr/i Jcrh.net 

1 "tofe I I... "hole 

Y V¥A Y 

Figure 3.33 Derivation of/„/, for the case when hA+hhoie<Y (hole lies completely in the compressed region of 
the plate). 

3.4.5 Verification and parameter limits 

The elastic buckling prediction method for stiffened elements in bending is now 

evaluated with the ABAQUS eigenbuckling results presented in Section 3.4.2 and 

Section 3.4.3. The viability of the method is examined for evenly spaced slotted holes 

centered transversely or offset in a plate. Parameter limits on the prediction method, 

required when formalizing the method for use in design, are also identified. 

ABAQUS results are compared to predictions in Figure 3.34a and Figure 3.38a. 

Figure 3.34a demonstrates that the simplified method underpredicts the elastic buckling 

stress as aspect ratio of the unstiffened strip "A" increases. A dimensional tolerance is 

imposed to avoid unconservative predictions: 
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^ < 1 0 . (3.24) 

K 

Eq. (3.24) also serves as a practical limit on the slenderness of an unstiffened strip, and 

therefore is also is imposed on the unstiffened strip "B": 

''hole 

hB 
<10. (3.25) 

The prediction method becomes increasingly conservative as hAIY approaches unity as 

shown in Figure 3.35a. When only a small portion of the hole exists in the compressed 

region of the plate, the observed buckling mode is more consistent with plate buckling 

than unstiffened strip buckling as predicted by the simplified method (See Figure 3.28, 

picture D). A dimensional limit is suggested to prevent excessive conservatism in this 

case: 

^ - < 0 . 6 * (3.26) 

Y 

The hole spacing limits defined in Section 3.3.4.3 for stiffened elements in uniaxial 

compression are also considered here for a stiffened element in bending. The prediction 

accuracy degrades when hole spacing S approaches the plate width h as shown in Figure 

3.36a. Predictions can also be unconservative when S is 2 to 3 times the length LMe as 

shown in Figure 3.37a. With the limits from Eq. (3.8), Eq. (3.9), Eq. (3.24), Eq. (3.25), and 

Eq. (3.26) imposed, the method is observed to be viable predictor over a wide range of 

hkoulh as shown in Figure 3.38b. The mean and standard deviation of the ABAQUS to 

predicted ratio within the imposed dimensional limits are 1.22 and 0.11 respectively. 
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Figure 3.34 Influence of LkoiJyA on the accuracy of the prediction method for stiffened elements in bending 

(a) without and (b) with the dimensional limits defined in Eq. (3.9), Eq. (3.24), Eq. (3.25), and Eq. (3.26). 
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Figure 3.35 Influence of 1WY on the accuracy of the prediction method for stiffened elements in bending (a) 

without and (b) with the dimensional limits defined in Eq. (3.9), Eq. (3.24), Eq. (3.25), and Eq. (3.26). 
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Figure 3.36 Influence of S/h on the accuracy of the prediction method for stiffened elements in bending (a) 

without and (b) with the dimensional limits defined in Eq. (3.9), Eq. (3.24), Eq. (3.25), and Eq. (3.26). 
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Figure 3.38 Influence of h/h^u on the accuracy of the prediction method for stiffened elements in bending (a) 

without and (b) with the dimensional limits defined in Eq. (3.9), Eq. (3.24), Eq. (3.25), and Eq. (3.26). 

3.5 Unstiffened element in uniaxial compression 

3.5.1 Boundary and loading conditions 

The unstiffened element is modeled with simply-supported boundary conditions 

on three sides and unsupported on the fourth side parallel to the application of a 

uniform compressive stress as shown in Figure 3.39. 

Restrain transverse 

midline in 1 (u=0) 

Restrain plate 

perimeter in 2 (v=0) 

Restrain longitudinal 

midline in 3 (w=0) 

Figure 3.39 ABAQUS boundary and loading conditions for unstiffened plate loaded uniaxially. 
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3.5.2 Influence of regularly-spaced holes 

Eigenbuckling analyses in ABAQUS are performed to evaluate the influence of 

evenly-spaced holes on the elastic buckling behavior of an unstiffened element. The 

model loading and boundary conditions are summarized in Figure 3.39 and the material 

properties and meshing procedures are the same as those described in Section 3.2. The 

plate width h, hole length LMe, and hole type (slotted, circular, rectangular) are varied in 

this study. The hole width remains constant at ^=1.5 in. The plate and hole 

dimensions as well as the critical elastic buckling stress, /„/, for the 91 models considered, 

are provided in Appendix B. The parametric ranges considered in this study for each 

hole type are summarized in Table 3.6. 

Table 3.6 Parameter 

Hole Type 

Slotted 

Circular 

Square 

Min 
Max 
Min 
Max 
Min 
Max 

range ; for study of 

hhole/h 

0.10 
0.70 

0.10 
0.70 
0.10 
0.70 

regularly-spaced holes on unstiffened elements. 
S/Lh0,e 

1.7 
24.0 

13.3 
13.3 
13.3 
13.3 

S/h 
1.0 

42.2 

1.3 
9.3 
1.3 
9.3 

h/t 
21 

434 

62 
434 
62 

434 

# of models 

77 

7 

7 

A comparison of the ABAQUS results from the 91 models to the theoretical elastic 

buckling stress for a long unstiffened element (/c=0.425) in Figure 3.40 demonstrates that 

the critical elastic buckling stress /„ decreases as hole width hMe increases relative to plate 

width h. Holes always reduce the critical elastic buckling stress of unstiffened elements 

in the cases studied. Buckling of the unstiffened strip "A" between the hole and the 

simply supported edge is not observed in the simulations because L/h is always greater 

than Lhok/hA, although buckling of the unsupported strip "B" at the free edge occurs as the 

strip becomes slender (similar to Euler buckling) as shown in Figure 3.41. These 
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important observations are employed in Section 3.5.4 to develop an approximate 

prediction method for the critical elastic buckling stress of an unstiffened element with 

holes. 

1.4 

1.2 

1 
Si o 
o 0.8 

| 0.6 

*.° 
0.41-

0.2 

0.2 0.4 0.6 
h h o , e / h 
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Figure 3.40 The presence of holes causes a decrease in critical elastic buckling load for unstiffened plates in 
uniaxial compression. 

Holes do not influence the buckled shape of unstiffened plates until 
the hole width becomes large relative to plate width. 

hhole/h=0.10 

Buckling of the strip at the free edge of the plate changes the shape 
of the local buckling mode. 

Figure 3.41 Buckled shapes of unstiffened plates with holes. 
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3.5.3 Influence of offset slotted holes 

ABAQUS eigenbuckling analyses were performed to evaluate the influence of 

transversely offset slotted holes on the elastic buckling of an unstiffened element. The 

ratio of transverse offset, 4*, to plate width h was varied from -0.375 to 0.375, where a 

negative offset shifts the holes toward the simply supported edge and a positive offset 

shifts towards the free plate edge (refer to Figure 3.2 for a definition of <5U). The model 

loading and boundary conditions are summarized in Figure 3.39 and the material 

properties and meshing procedures are the same as those described in Section 3.2. The 

plate and hole dimensions as well as the critical elastic buckling stress, /„/, for the 92 

models considered, are summarized in Appendix B. The parametric ranges considered 

here are provided in Table 3.7. 

Table 3.7 Parameter range considered for unstiffened element study with offset holes 
hh0ie/h S/Lh0ie S/h h/t 8h0ie/h # of models 

Min 0.10 5.00 1.33 62 -0.375 
Slotted 92 

Max 0J0 5J00 033 434 0.375 

The axial stiffness of an unstiffened element is higher near the simply supported 

edge and lower near the free edge. It is hypothesized that holes shifted towards the 

simply-supported edge will reduce the critical elastic buckling stress more than hole 

material removed from near the free edge. This hypothesis is confirmed in Figure 3.43 

where fa decreases more when holes are shifted towards the simply-supported edge. 

The dimension of the plate strip between the hole and the simply-supported edge, hA 

(see Figure 3.3), is identified as a useful parameter when predicting f„. f„ forms a trend 

line when plotted against Ltoie relative to yA as demonstrated in Figure 3.43a for offset 
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holes. The same plot is produced using the data from Section 3.5.2 for centered holes in 

Figure 3.43b with similar results. This important conclusion, that yA and LMe are key 

parameters influencing /„, is used in the next section to develop an approximate elastic 

buckling prediction method for unstiffened elements with holes. 
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Figure 3.42 The critical elastic buckling stress of a stiffened plate decreases as holes are shifted toward the 

simply supported edge (+8hoie) 
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Figure 3.43 The critical elastic buckling stress for stiffened elements with (a) transversely offset holes and 
(b) centered holes (from Section 3.5.2) decreases as a function of hole length Lhoie to h/\ 
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3.5.4 Approximate prediction method for use in design 

An approximate elastic buckling prediction method for an unstiffened element with 

holes is presented here. The method is based on the observations in Section 3.3.2 and 

Section 3.3.3 for long unstiffened elements with evenly spaced holes. The width of the 

strip between the hole and the simply supported edge, hA, and the length of the hole LMe 

are utilized as predictors of the critical elastic buckling stress. A summary of the 

prediction method equations are provided in Appendix D. 

3.5.4.1 Derivation of empirical buckling coefficient 

An empirical plate buckling coefficient is determined using a linear regression 

analysis of the data in Figure 3.43a and Figure 3.43b for both centered and offset slotted 

holes, which was then adjusted to have a slightly conservative bias. The regression 

minimizes the error between the ABAQUS results and the classical stability solution of 

an unstiffened element (k=0.425) for the plate models within the following parametric 

limits: 

(3.27) 

(3.28) 

(3.29) 
n 

Eq. (3.27) is imposed as a practical limit on the slenderness of the strip adjacent to the 

hole at the simply-supported plate edge. Eq. (3.28) prevents Euler buckling of 

'-'hole 

K 

'-'hole 

hB 

"•hole . 

-<10 

-<10 

<0.50 
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unstiffened strip "B" as shown in Figure 3.41. Eq. (3.29) is imposed because of the 

increased rate of degradation in/„ observed in Figure 3.40 as holes become large relative 

to plate width. The empirical plate buckling coefficient is set as: 

k = 0.425 1 - 0 . 0 6 2 - ^ 
h 

(3.30) 
A J 

where the strip of plate between the hole and the simply supported edge, hA, is 

calculated as 

h = h hhole - 8 
hole' (3.31) 

A positive 5hoie (hole offset from the centerline of the plate, See Figure 3.2) shifts the hole 

towards the simply supported edge. The empirical buckling coefficient in Eq. (3.30) is 

shown in Figure 3.44a to be a slightly conservative but accurate representation of 

ABAQUS predicted buckling coefficients. The mean and standard deviation of the 

ABAQUS to empirical prediction ratio are 1.06 and 0.09 respectively. 

0.5 

0.45 

0.4 

0.35 

0.3 

, 0.25 

0.2 

0.15 

0.1 

0.05 

0 

% 0.8 

^f^eWgt&e,: 

0 1 2 3 4 5 7 8 9 10 0 1 2 3 4 5 7 8 8 10 

LtaJ»« 

Figure 3.44 (a) Comparison of ABAQUS and empirical plate buckling coefficients for an unstiffened element 
with holes and (b) ABAQUS to predicted elastic buckling stress for an unstiffened element 
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3.5.4.2 Prediction equations 

The elastic buckling stress of an unstiffened element in compression with holes is 

thus approximated as: 

fcr(=min[fcr,fcrh]. (3.32) 

The critical elastic buckling stress prediction for plate buckling of the unstiffened 

element without holes (f„) is calculated with Eq. (3.2), where /c=0.425 when considering 

long rectangular plates (L/fo>4). The minimum critical elastic buckling stress of the 

unstiffened element with holes, /„/., coincides with either buckling of the entire 

unstiffened element with holes or buckling of the unstiffened strip "A" adjacent to the 

hole and the simply supported edge, or: 

/Cr/,=rnin 
n2E (t\2 „ (. h ^ 

k^V) J, crA 1- hole 

V " J h 
(3.33) 

where k is an empirical plate buckling coefficient derived from finite element 

eigenbuckling studies in Eq. (3.30). fcrA is calculated with Eq. (3.4) and modified by the 

factor (1- hhoiJh) to convert the stress on the unstiffened strip "A" to the stress at the end 

of the plate so that it can be compared to the buckling stress of the unstiffened element. 

fcrii will always be predicted as less than or equal to/a with this method. 
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Chapter 4 

Elastic buckling of cold-formed steel 
members with holes 

The elastic buckling properties of cold-formed steel lipped C-section beams and 

columns with holes are evaluated in this chapter using thin-shell finite element 

eigenbuckling analyses in ABAQUS. The elastic buckling studies are used to assess the 

influence of holes on the local, distortional, and global critical elastic buckling loads P„/, 

?aA, Pcre. The studies also identify elastic buckling modes unique to cold-formed steel 

members with holes. Elastic buckling properties of existing experiments on cold-formed 

steel columns and beams with holes are summarized and formal buckling modes are 

defined in preparation for the presentation of the Direct Strength Method for structural 

members with holes in Chapter 8. 
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4.1 Finite element modeling assumptions 

The elastic buckling behavior of the cold-formed steel structural members with holes 

are obtained with eigenbuckling analyses in ABAQUS (ABAQUS 2007a). All members 

are modeled with ABAQUS S9R5 reduced integration nine-node thin shell elements. 

The typical finite element aspect ratio is 1:1 and the maximum aspect ratio is limited to 

8:1 (refer to Chapter 2 for a discussion on ABAQUS thin shell finite element types and 

finite element aspect ratio limits). Element meshing is performed with a Matlab 

(Mathworks 2007) program written by the author (refer to Appendix A for a description 

of the program). Cold-formed steel material properties are assumed as £=29500 ksi and 

v=0.3 in the finite element models unless noted otherwise. Py, the squash load of the 

column, is calculated by multiplying an assumed yield stress of 50 ksi by the gross cross-

sectional area of the column. 

4.2 Elastic buckling of columns with holes 

4.2.1 Member and hole dimensions 

Member and hole dimension notation used throughout this chapter is summarized 

in Figure 4.1. Uppercase dimensions (H, D, B) are out-to-out and lowercase dimensions 

(b, h) are flat lengths between points of curvature. 
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Figure 4.1 C-section and hole dimension notation 

4.2.2 Loading and boundary conditions 

The cold-formed steel column boundary conditions are modeled as warping free at 

the member ends and warping fixed at the midlength of the member as shown in Figure 

4.2, which mimics the semi-analytical finite strip method (Schafer and Adany 2006). The 

columns are loaded at each end with stress distributions applied as consistent nodal 

loads in ABAQUS (see Section 3.2 for details on the loading implementation). 
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Figure 4.2 Columns are modeled with pinned warping-free boundary conditions and compressed from 
both ends 

4.2.3 Elastic buckling comparison of short C-section 

columns versus isolated stiffened elements 

This study builds on the results and observations in Chapter 3 for cross-sectional 

elements with holes and marks a transition in research focus from elements to full cold-

formed steel members. The influence of one slotted hole on the elastic buckling 

behavior of a range of rectangular plates and SSMA cold-formed steel structural stud 

sections is compared, the goal being to quantify the relative influence of a web hole on 

one element in a cross-section (in this case a stiffened element, see Figure 3.1 for 

definition and Figure 3.5 for ABAQUS boundary conditions) versus a full C-section. The 

slotted hole has dimensions of hMe=\.5 in., Lhoie=4 in., and rMe=0.75 in. The plate widths 

are chosen to correspond with the flat web widths of standard SSMA structural studs 

(SSMA 2001). Plate aspect ratios are held constant at 4:1. From each plate, a full 

structural stud finite element model is developed for comparison. The SSMA member 
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designations and cross section dimensions considered in this study are listed in Table 

4.1. 

Table 4.1 SSMA structural stud and plate dimensions 
SSMA 

Designation 
250S162-33 
350S162-33 
362S162-33 
400S162-33 
550S162-33 
600S162-33 
800S162-33 

H 
in. 

2.50 
3.50 
3.62 
4.00 
5.50 
6.00 
8.00 

B 
in. 

1.63 

t 

D 
in. 

0.50 

y 

r t 
in. in. 

0.0764 0.0346 

i r T 

h 
in. 

2.28 
3.28 
3.40 
3.78 
5.28 
5.78 
7.78 

1 3 hhole/h 

in. 
1.40 0.66 

0.46 
0.44 
0.40 
0.28 
0.26 

" 0.19 

L=4h 
in. 
9.1 
13.1 
13.6 
15.1 
21.1 
23.1 
31.1 

Before examining the elastic buckling load, consider the observed changes in the first 

mode shape caused by the addition of a hole as given in Figure 4.3. For the buckled 

shape of the SSMA 250S162-33 in Figure 4.3a, the number of buckled half-waves changes 

from four to three for the isolated plate and from five to two for the full member, when 

the hole is added. The strips of plate adjacent to the hole are stiffened by the connected 

flange in the full member, causing buckled half-waves to form in the web away from the 

hole. Also, the length of the hole, LMe, is approximately half of the length of the member 

L in the SSMA 250S162-33 member which also prevents local buckling in the web. In 

Figure 4.3b, the hole decreases the number of buckled half-waves from four to three in 

the SSMA 440S162-33 isolated plate but does not change the number of half-waves in the 

full member. The cross-section connectivity of the full member limits deformation at the 

hole and encourages buckling half-waves to form along the entire member. Also, there 

is more web material to accommodate local buckling along the length (Ltofc/L=0.26) when 

compared to the SSMA 250S162-33 member. 
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# of Local Buckling 
Half-Waves (Typ.) 

(a) (b) ^ W 
SSMA 250S162-33 SSMA400S162-33 

hhole/h=0.66 > W h = 0 - 4 0 

Figure 4.3(a) SSMA 250S162-33 web plate and structural stud, and (b) SSMA 400S162-33 web plate and 
structural stud 

Figure 4.4 presents the influence of a slotted hole on the critical elastic buckling 

stress /„ of the isolated web plates and full members with holes from Table 4.1. These 

results are compared to the elastic buckling prediction for a stiffened element with holes 

developed and presented in Section 3.3.4. The influence of the hole is minimal for small 

hole width to plate width ratios, but increases to a maximum at hhoJh=0.30 for the 

ABAQUS plate results (consistent with the stiffened element prediction). f„ increases 

with increasing hMJh for full members, demonstrating that the cross-section connectivity 

decreases a member's sensitivity to a hole (especially in the range of hi,0Jh=0.3Q). The 

web is stiffened through beneficial web-flange interaction created by the relatively stable 

edge-stiffened flange. 

As normalized hole width increases, the elastic buckling load exceeds that of a plate 

without a hole. This increase in buckling load is attributed to the increased axial stiffness 

from the strips adjacent to the hole, which causes local buckling to occur away from the 

holes (this "unstiffened strip" effect is discussed in Section 3.3). The length of hole 

relative to the length of the member also contributes to the increase in/cr. Lhole/L increases 
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with increasing hh0Jh in this study since L=4h. As demonstrated in Figure 4.3a, the 

removal of web material restricts the formation of local buckling in the web of the 

member, resulting in shortened half-waves away from the hole with increased axial 

stiffness. The stiffened element prediction in Figure 4.4 is conservative here when 

compared to the plate results because it was developed for evenly spaced holes in long 

plates and does not account for the LhoiJL boost in/„. 

1.6 

1.4 

1.2 

£ 
O 

Js" 0.8 
o 
.c 

»_« 0.6 

0.4 

0.2 
0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

hhol6
/h 

Figure 4.4. Effect of a slotted hole on the elastic buckling load of simply supported plates and structural 
studs 

4.2.4 Influence of slotted hole location on elastic buckling 

of an intermediate length structural stud 

This study investigates the elastic buckling behavior of an intermediate length cold-

formed steel column with one slotted hole. The primary goal here is to identify and 

formally define the elastic buckling modes that will be used as predictors of ultimate 

strength within the Direct Strength Method. The elastic buckling behavior is compared 
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as the location of a slotted hole is varied along the length of the column. The typical 

compression member in this study has a length L of 48 inches and is modeled with an 

SSMA 362162-33 structural channel cross section. A single slotted hole is centered 

transversely in the web. The slotted hole has dimensions of frhoie=1.5 in., Lh0ie=4 in., and 

rMe=0.75 in. Table 4.1 summarizes the dimensions of the SSMA 362162-33 cross section. 

The ABAQUS column boundary conditions are consistent with Figure 4.2. 

Figure 4.5 compares the local buckling (L) mode shapes of the column with and 

without a slotted hole. The lowest buckling mode is local buckling (L) and exists for 

both the column with and without the hole. The location of the hole does not influence 

Pa- for this mode as observed in Figure 4.8. Plate buckling of the web away from the hole 

dominates for this mode, regardless of hole location. 

Two unique local buckling modes to the column with a hole, LH and LH2, are 

also identified in the eigenbuckling analyses. These modes, shown in Figure 4.5, exhibit 

buckling of the unstiffened strip adjacent to the hole similar to that observed in the 

cross-sectional element studies with holes in Chapter 3. The LH mode occurs when both 

unstiffened strips buckle in the same direction normal to the web plane, which increases 

the distortional tendencies of the flange in the vicinity of the hole. This localized 

distortional buckling is observed in Figure 4.6, which compares the LH modes as the 

location of the hole varies along the column length. The LH mode is consistent with the 

elastic buckling mode shapes of stiffened elements, where the presence of a hole is 

observed to reduce the transverse bending stiffness causing localized deformation at the 

hole (see Figure 3.9a). 
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The LH2 mode occurs when the unstiffened strips buckle in opposite directions 

relative to the web plate, resulting in antisymmetric distortional deformation at the hole. 

Figure 4.8 demonstrates that P„ for these two modes is similar and that both modes are 

minimally affected by the longitudinal location of the hole in the column. 

4 t 

I 
i 

J. 

L L 

H 
•v 4 

1-4 

'i 
LH 

s 
'ft 

LH2 

Figure 4.5 The presence of a hole creates unique local buckling modes where unstiffened strip buckling 
adjacent to the hole occurs symmetrically (LH) or asymmetrically (LH2) increase the distortional tendency 

of the flanges 
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Figure 4.6 SSMA slotted hole location and local buckling LH mode, L=48 in., x/L=0.06,0.125,0.25,0.375,0.50. 
Note the distortional tendencies of the flanges at the hole. 
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The pure distortional buckling mode for the column, D, is compared for a column 

with and without a hole in Figure 4.7a. Note that distortional half-wavelength is 

unchanged with the presence of the hole, although local buckling with half-wavelengths 

shorter than the fundamental L half-wavelength (see Figure 4.5) mix with the D mode 

for the member with the hole. Figure 4.8 demonstrates that the presence of the hole has 

a minimal influence on ?ai regardless of longitudinal location. 

The lowest global buckling mode is flexural-torsional buckling (GFT) as shown in 

Figure 4.7b. The presence of a hole results in a slight decrease in Pm as the hole moves 

towards the end of the column as shown in Figure 4.8. As the hole shifts close to the 

loaded end of the column (x/L=0.06), local buckling at the hole combines with the GFT 

mode to reduce Pcre. 

If 
if 
s?1 

si 

C -

1.4 . #j 
W. "* • — I 

t T 

I 
I 

GFT 

Figure 4.7 Influence of a slotted hole on the (a) distortional (D) and (b) global flexural-torsional (GFT) modes 
of a cold-formed steel column 
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D, no hole 
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Figure 4.8 Influence of SSMA slotted hole location on P„ for a 362S162-33 C-section (refer to Figure 4.5, 

Figure 4.6, and Figure 4.7 for buckled shape summaries) 

4.2.5 Flange hole study 

The research focus up until now has been on the elastic buckling modes of 

isolated web plates and cold-formed steel compression members with web holes. Holes 

are also commonly present in the flanges of C-section columns. A standard connection 

detail requiring a flange hole is shown in Figure 4.9, where gypsum sheathing is 

connected to steel studs with a bolted or screw attachment (Western States Clay 

Products Association 2004). 
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Figure 4.9 Connection detail for structural stud to exterior wall requires a screw or bolt hole placed in the 
stud flange (Western States Clay Products Association 2004) 

This study evaluates the influence of circular flange holes on the elastic buckling 

behavior of an intermediate length SSMA 362S162-33 structural stud. A single hole is 

placed at the midlength of both the top and bottom flanges and centered between the 

web and lip stiffeners. Five hole diameters consistent with standard bolt holes are 

considered: hole lb =0.178, 0.356, 0.534, 0.713, and 0.892 <y*",W,W, 1", W holes in a 1%" 

flange) where the flat flange width fr=1.40 in. The length L is 48 in. for all members, 

corresponding to a common unbraced length of a SSMA structural stud. 

Figure 4.10 presents the variation in elastic buckling loads for local, distortional, 

and global modes as the diameter of the flange holes increase. The local (L) buckling 

load, Fat, is not influenced by small holes, but decreases as faoJb exceeds 0.70. Figure 

4.11 demonstrates that for large flange holes local buckling is dominated by web and 

flange deformation near the holes. The large flange holes adversely affect the beneficial 

web-flange interaction inherent in structural studs (Figure 4.4 highlights this beneficial 

interaction for C-sections with web holes). The interruption of the web-flange 

interaction by the holes is also reflected in the pure distortional mode (D), as Pad 
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decreases slightly as flange hole size increases relative to flange width. The flanges 

holes have a minimal effect on the global flexural-torsional mode (GFT) because their 

diameter is small relative to the column length. 

QL 
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0.7 

0.6 

0.5 

0.4 

0.3 
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0.1 
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D, no hole 

••'•-iOm-^r-

7 GFT, no hole 

L, no hole 

- B - L 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
bhole /b 

Figure 4.10 Influence of flange hole diameter on the local (L), distortional (D), and global (GFT) elastic 
buckling loads of an SSMA 362S162-33 structural stud 

m ail 

Figure 4.11 Local (L) buckling is dominated by flange and web deformation near the holes as faote/b exceeds 

0.70 
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4.2.6 Analysis of existing experiments on columns 

The Direct Strength Method employs the elastic buckling properties of a cold-formed 

steel member to predict its ultimate strength. To assist in the extension of DSM to 

columns with holes, a database is developed in this section which summarizes the elastic 

buckling properties and tested strengths of cold-formed steel columns experiments with 

holes from the past 30 years. This database is used Chapter 8 when developing and 

verifying DSM for columns with holes. Table 4.2 summarizes the experimental 

programs comprising the database. 

Table 4.2 Summary of column experimental data 

Author 
Ortiz-Colberg 
Ortiz-Colberg 
Miller and Pekoz 
Sivakumaran 
Abdel-Rahman 
Pu et al. 
Moen and Schafer 
Moen and Schafer 

Publication Date 
1981 
1981 
1994 
1987 
1997 
1999 
2008 
2008 

Types of Specimens 
Stub Column 
Long Column 
Stub Column 
Stub Column 
Stub Column 
Stub Column 
Short Column 

Intermediate Column 

Cross Section 
Lipped Cee Channel 

• ' 

End Conditions 
Fixed-Fixed 

Weak axis pinned 
Fixed-Fixed 
Fixed-Fixed 
Fixed-Fixed 
Fixed-Fixed 
Fixed-Fixed 
Fixed-Fixed 

# of Specimens 
8 
15 
12 
14 
8 
9 
6 
6 

4.2.6.1 Elastic buckling database for column experiments 

ABAQUS eigenbuckling analyses were conducted for each specimen in the database. 

Member boundary conditions and loading conditions were modeled to be consistent 

with the actual experimental conditions. The ABAQUS implementations of the 

boundary conditions for each experimental program are described in Figure 4.12. Local 

(L, LH, LH2 - see Figure 4.5), distortional (D), and global (G) buckling modes were 

manually identified from the buckled modes in ABAQUS using the modal definitions 

described in 4.2.4. 
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Nodes bearing on lop platen 
constrained in 1,2 and 3 

Boundary conditions valid for: 

Ortlz-Colberg 1861 (stub columns) 
Sivakumaran 1887 
Pueta l . 1999 
Moen and Schafer 2008 

Specimens bear directly on the 
platens, ends are not welded 

ABAQUS "pinned" riflW body 
reference node constrained In 2 to 6 
directions, ensures that all nodes on 
loaded surface translate together in 1 
direction but can rotate freely at the 
platen (no welding) 

(a) 

Nodes bearing on top platen 
constrained in 1 to 6 
(contact edge it welded) 

Boundary conditions valid for; 

Specimens are welded to loading 
platens, cross-section edge rotation is 
restrained at contact location 

ABAQUS "tied" rigid body reference 
node constrained In 2 to 6 directions, 
ensures that all nodes on loaded 
surface translate together In 1 direction 
and cannot rotate at the platen (cross-
section contact edge Is welded) 

(b) 

ABAQUS "tied" rigid body reference 
node constrained In 1.3 to 6 directions, 
ensures that all nodes on contact 
surface translate together In 1 direction 
and cannot rotate at the platen (cross-
section contact edge Is welded). The 
entire platen can rotate in the 2 
direction. 

Boundary conditions valid for: 

Ortlz-Colberg 1961 (long column) 

Specimens are welded to loading 
platens, which are attached to pins that 
allow weak axis rotation of the platens 

ABAQUS "tied" rigid body reference node 
constrained In 3 to 8 directions, ensures that 
all nodes on loaded surface translate 
together In 1 direction and cannot rotate at 
the platen (cross-section contact edge Is 
welded). The entire platen can also rotate In 
the S direction. 

(c) 

Figure 4.12 Experimental program boundary conditions as implemented in ABAQUS 

Table 4.3 summarizes the fixed-fixed column specimen dimensions and material 

properties, including cross section and hole dimensions, tested ultimate load Ptes„ tested 

specimen yield stress Fy, specimen yield force Pu (calculated with the gross cross-

sectional area), and Py,nei (calculated with the net cross-sectional area). Table 4.4 

summarizes the fixed-fixed column specimen elastic buckling loads. ABAQUS 

eigenbuckling results are presented for two different types of boundary conditions, the 

experiment boundary conditions and CUFSM boundary conditions (warping-free at the 

ends, warping-fixed at the midlength of the column) except for the Moen and Schafer 

specimens which were only modeled with experiment boundary conditions. CUFSM 

elastic buckling results are also provided, including the distortional half-wavelength Lcrd. 

The same experiment and elastic buckling information is summarized for the weak-axis 

pinned columns in Table 4.5 and Table 4.6 and together with Table 4.3 and Table 4.4 

comprise the data set used to evaluate the DSM equations for cold-formed steel columns 

with holes Chapter 8. 
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Table 4.7 summarizes cross section and material property parameter ranges for the 

fixed-fixed specimens and weak-axis pinned specimens. Most of the weak-axis pinned 

specimens are long columns, while the majority of the fixed-fixed specimens are stub 

columns (the exception being the short and intermediate length fixed-fixed columns 

tested by Moen and Schafer). All column specimens in the database are common 

industry shapes and meet the DSM prequalification standards (for members without 

holes) summarized in Table 4.8 (AISI-S100 2007). 

81 



T
ab

le
 4

.3
 F

ix
ed

-f
ix

ed
 c

ol
um

n 
ex

pe
ri

m
en

t 
di

m
en

si
on

s 
an

d 
m

at
er

ia
l 

pr
op

er
ti

es
 

M
em

be
r 

S
tu

dy
 a

nd
 S

pe
ci

m
en

 N
am

e 
_ 

,..
 

L 
C

on
di

tio
ns

 

O
rti

z-
C

ol
be

rg
 1

98
1 

O
rti

z-
C

ol
be

rg
 1

98
1 

O
rti

z-
C

ol
be

rg
 1

98
1 

O
rti

z-
C

ol
be

rg
 1

98
1 

O
rti

z-
C

ol
be

rg
 1

98
1 

O
rti

z-
C

oi
be

rg
 1

98
1 

O
rti

z-
C

ol
be

rg
 1

98
1 

O
rti

z-
C

ol
be

rg
 1

98
1 

A
bd

el
-R

ah
m

an
 1

99
7 

A
bd

el
-R

ah
m

an
 1

99
7 

A
bd

el
-R

ah
m

an
 1

99
7 

A
bd

el
-R

ah
m

an
 1

99
7 

A
bd

el
-R

ah
m

an
 1

99
7 

A
bd

el
-R

ah
m

an
 1

99
7 

A
bd

el
-R

ah
m

an
 1

99
7 

A
bd

el
-R

ah
m

an
 1

99
7 

P
u

e
ta

l. 
19

99
 

P
u

e
ta

l 
P

u 
et

 a
l 

P
u 

et
 a

l 
P

u
e

ta
l 

P
u

e
ta

l 
P

u
e

ta
l 

P
u 

et
 a

l 
P

u
e

ta
 

19
99

 
1S

99
 

19
99

 
19

99
 

19
99

 
19

99
 

19
99

 
19

99
 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

M
ille

r 
&

P
ek

oz
 1

99
4 

M
ille

r 
&

P
ek

oz
 1

99
4 

M
ille

r &
P

e
ko

z 
19

94
 

M
ille

r 
&

P
ek

oz
 1

99
4 

M
ille

r 
S

P
ek

oz
 1

99
4 

M
ille

r 
&

P
ek

oz
 1

99
4 

M
ille

r 
S

P
ek

oz
 1

99
4 

M
ille

r &
P

ek
oz

 1
99

4 
M

ille
r 

&
P

ek
oz

 1
99

4 
M

ille
r 

S
P

ek
oz

 1
99

4 
M

ille
r 

&
 P

ek
oz

 1
99

4 
M

ille
r 

S
P

ek
oz

 1
99

4 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 

in
. 

S
4 

Fi
xe

d-
fix

ed
 

12
.0

0 
S

7 
S

6 
S

8 
S

5 
S

3 
S

1
4 

S
1

5 
A

-C
 

A
-S

 
A

-O
 

A
-R

 

B
-C

 
B

-S
 

B
-O

 
B

-R
 

C
-2

.0
-1

-3
0-

1 
C

-2
.0

-1
-3

0-
2 

C
-2

.0
-1

-3
0-

3 
C

-1
.2

-1
-3

0-
1 

C
-1

.2
-1

-3
0-

2 
C

-1
.2

-1
-3

0-
3 

C
-0

.8
-1

-3
0-

1 
C

-Q
.8

-1
-3

0-
2 

C
-0

.8
-1

-3
0-

3 
A

2 
A

3 
A

4 
A

5 
A

6 
A

7 
A

8 
B

2 
B

3 
B

4 
B

5 
B

6 
B

7 
B

S
 

1-
12

 
1-

13
 

1-
17

 
1-

19
 

2-
11

 
2-

12
 

2-
14

 
2-

15
 

2-
16

 
2-

24
 

2-
25

 
2-

26
 

36
2-

1 
-2

4-
H

 
36

2-
2-

24
-H

 
36

2-
3-

24
-H

 
36

2-
1-

48
-H

 
36

2-
2-

48
-H

 
36

2-
3-

48
-H

 
60

0-
1 

-2
4-

H
 

60
0-

2-
24

-H
 

60
0-

3-
24

-H
 

60
0-

1 
-4

8-
H

 
60

0-
2-

48
-f

l 
60

0-
3-

48
-H

 

12
.0

0 
12

.0
0 

12
.0

0 

t in
. 

0.
04

92
 

0.
04

93
 

0.
04

96
 

0 
04

96
 

12
.0

0 
0.

04
98

 
12

.0
0 

12
.0

0 
12

.0
0 

16
.7

3 
16

.7
3 

18
.7

0 
18

.7
0 

9 
84

 
9.

84
 

11
.8

1 
11

.8
1 

14
.5

7 
14

.5
7 

14
.5

7 
14

.1
7 

14
.1

7 
14

.1
7 

14
.1

7 
14

.1
7 

14
.1

7 
7.

87
 

7.
87

 
7.

87
 

7.
87

 
7.

87
 

7.
87

 
8.

78
 

10
.4

3 
10

.4
3 

10
.4

3 
10

.4
3 

10
.4

3 
10

.4
3 

10
.4

3 
10

.8
7 

10
.8

7 
17

.9
5 

17
.9

5 
10

.8
7 

10
.8

7 
17

.9
5 

17
.9

5 
17

.9
5 

17
.9

5 
17

.9
5 

17
.9

5 
24

.1
 

24
.1

 
24

.1
 

48
.2

2 

0.
04

99
 

0.
07

60
 

0.
07

60
 

0.
07

40
 

0.
07

40
 

0.
07

40
 

0.
07

40
 

Q
.0

50
0 

0.
05

00
 

0.
05

00
 

0.
05

00
 

0.
07

87
 

0.
07

87
 

0.
07

87
 

0.
04

72
 

0.
04

72
 

0.
04

72
 

0.
O

31
5 

0.
03

15
 

0.
03

15
 

0.
06

30
 

0.
06

30
 

0.
06

30
 

0.
06

30
 

0.
06

30
 

0.
06

30
 

0.
06

30
 

0.
05

08
 

0.
05

08
 

0.
05

08
 

0.
06

08
 

0.
05

08
 

0.
05

08
 

0.
05

08
 

0.
07

56
 

0.
07

52
 

0.
03

46
 

0.
03

46
 

0.
07

52
 

0.
07

52
 

0.
03

50
 

0.
03

46
 

0.
03

50
 

0.
03

54
 

0.
03

54
 

0.
03

50
 

0.
03

91
 

0.
03

83
 

0.
03

94
 

0.
03

93
 

48
.2

3 
0.

03
91

 
48

.2
 

24
.1

 
24

.1
 

24
 1

 
48

.0
9 

48
.2

5 
48

.0
6 

0.
03

99
 

0.
04

21
 

0.
04

12
 

0.
04

3 
0.

04
28

 
0.

04
29

 
0.

04
31

 

M
at

er
ia

l 

B
 

ks
i 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

71
0 

29
71

0 
29

71
0 

29
71

0 
29

71
0 

29
71

0 
29

71
0 

30
43

5 
30

43
5 

30
43

5 
30

43
5 

30
43

5 
30

43
5 

30
43

5 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

42
0 

29
42

0 
29

50
0 

29
50

0 
29

50
0 

29
50

0 
29

50
0 

29
50

0 
29

50
0 

29
50

0 
29

50
0 

29
50

0 
29

50
0 

29
50

0 

nu
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

,3
 

0
.3

 

H
ol

e 
D

im
en

si
on

s 

H
ol

e 
T

yp
e 

C
irc

ul
ar

 
C

irc
ul

ar
 

C
irc

ul
ar

 
C

irc
ul

ar
 

C
irc

ul
ar

 
C

irc
ul

ar
 

C
irc

ul
ar

 
C

irc
ul

ar
 

C
irc

ul
ar

 
S

qu
ar

e 
O

va
l 

R
ec

ta
ng

le
 

C
irc

ul
ar

 
S

qu
ar

e 
O

va
l 

R
ec

ta
ng

le
 

S
qu

ar
e 

S
qu

ar
e 

S
qu

ar
e 

S
qu

ar
e 

S
qu

ar
e 

S
qu

ar
e 

S
qu

ar
e 

S
qu

ar
e 

S
qu

ar
e 

C
irc

ul
ar

 
S

qu
ar

e 
C

irc
ul

ar
 

S
qu

ar
e 

C
irc

ul
ar

 
S

qu
ar

e 
O

va
l 

C
irc

ul
ar

 
S

qu
ar

e 
C

irc
ul

ar
 

S
qu

ar
e 

C
irc

ul
ar

 
S

qu
ar

e 
O

va
l 

R
ec

ta
ng

ul
ar

 
R

ec
ta

ng
ul

ar
 

R
ec

ta
ng

ul
ar

 
R

ec
ta

ng
ul

ar
 

R
ec

ta
ng

ul
ar

 
R

ec
ta

ng
ul

ar
 

R
ec

ta
ng

ul
ar

 
R

ec
ta

ng
ul

ar
 

R
ec

ta
ng

ul
ar

 
R

ec
ta

ng
ul

ar
 

R
ec

ta
ng

ul
ar

 
R

ec
ta

ng
ul

ar
 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

S
lo

tte
d 

i-
w

* 
in

. 
0.

75
 

1.
50

 
1.

25
 

1.
75

 
1.

04
 

0.
50

 
1.

04
 

1.
50

 
2.

50
 

2.
50

 
4.

50
 

4.
50

 
1.

50
 

1.
50

 
4.

00
 

4.
00

 
1.

06
 

1.
05

 
1.

05
 

1.
04

 
1.

04
 

1.
04

 
1.

04
 

1.
04

 
1.

04
 

0.
65

 
0.

65
 

1.
30

 
1.

30
 

1.
95

 
1.

95
 

4.
02

 
1.

14
 

1.
14

 
2.

28
 

2.
28

 
3.

43
 

3.
43

 
4.

02
 

2.
76

 
2.

76
 

2.
24

 
2.

24
 

2.
56

 
2.

56
 

2.
24

 
2.

24
 

2.
24

 
2.

24
 

2.
24

 
2.

24
 

4.
00

 
4.

00
 

4.
01

 
4.

00
 

4.
00

 
4.

00
 

4
0

0 
4.

00
 

4.
00

 
4.

00
 

4.
00

 
4.

00
 

hu
d*

 
In

. 
0.

75
 

1.
50

 
1.

25
 

1.
75

 
1.

04
 

0.
50

 
1.

04
 

1.
50

 
2.

50
 

2.
50

 
2.

50
 

2.
50

 
1.

50
 

1.
50

 
1.

50
 

1.
50

 
1.

06
 

1.
05

 
1.

05
 

1.
04

 
1.

04
 

1.
04

 
1.

04
 

1.
04

 
1.

04
 

0.
65

 
0.

65
 

1.
30

 
1.

30
 

1.
95

 
1.

95
 

1.
50

 
1.

14
 

1.
14

 
2.

28
 

2.
28

 
3.

43
 

3.
43

 
1.

50
 

1.
61

 
1.

61
 

1.
57

 
1.

57
 

1.
50

 
1.

50
 

1.
57

 
1.

57
 

1.
57

 
1.

57
 

1.
57

 
1.

57
 

1.
49

 
1.

50
 

1.
49

 
1.

50
 

1.
50

 
1.

49
 

1.
50

 
1.

49
 

1.
49

 
1.

49
 

1.
50

 
1.

50
 

r*
to

 

in
. 

0.
38

 
0.

75
 

0.
63

 
0.

88
 

0.
52

 
0.

25
 

0.
52

 
0.

75
 

1.
25

 

_ 1.25
 

_ 0.7
5 —

 
0.

75
 

—
 

—
 

_ —
 

_ —
 

_ _ _ _ 0.3
2 —

 
0.

65
 

_ 0.9
7 _ 0.7
5 

0.
57

 

_ 1.14
 

_ 1.71
 

_ 0.7
5 —

 
—

 
—

 
_ —

 
—

 
—

 
_ _ _ —

 
_ 0.7

5 
0.

75
 

0.
75

 
0.

75
 

0.
75

 
0.

75
 

0.
75

 
0.

75
 

0.
75

 
0.

75
 

0.
75

 
0.

75
 

H
 

in
. 

3.
50

 
3

5
1 

3.
51

 
3.

51
 

3
5

0 
3.

50
 

3.
52

 
3.

52
 

7.
99

 
7.

99
 

7.
99

 
7.

99
 

4.
00

 
4.

00
 

4.
00

 
4.

00
 

3.
94

 
3 

94
 

3.
94

 
3 

87
 

3.
87

 
3.

87
 

3.
84

 
3.

84
 

3.
84

 
3.

63
 

3.
63

 
3.

63
 

3.
63

 
3.

63
 

3.
63

 
3

6
3 

6.
00

 
6.

00
 

6.
00

 
6.

00
 

6.
00

 
6.

00
 

6.
00

 
3.

62
 

3.
62

 
5.

98
 

5
9

8 
3.

62
 

3.
62

 
5.

98
 

5.
98

 
5.

98
 

5.
98

 
5.

98
 

5.
98

 
3.

58
 

3.
64

 
3.

67
 

3.
62

 
3.

62
 

3.
63

 
6.

04
 

6.
01

 
6.

03
 

6.
01

 
6.

02
 

6.
06

 C
ro

ss
 S

ec
tio

n 
D

im
en

si
on

s 

s
, 

in
. 

1.
62

 
1.

63
 

1.
61

 
1.

62
 

1.
62

 
1.

61
 

1.
67

 
1.

67
 

1.
64

 
1.

64
 

1.
64

 
1.

64
 

1.
64

 
1.

64
 

1.
64

 
1.

64
 

2.
05

 
2.

05
 

2.
05

 
2.

05
 

2.
05

 
2.

05
 

2.
05

 
2.

05
 

2.
05

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

46
 

1.
46

 
1.

34
 

1.
34

 
1.

46
 

1.
46

 
1.

38
 

1.
38

 
1.

38
 

1.
38

 
1.

38
 

1.
38

 
1.

65
 

1.
63

 
1.

67
 

1.
60

 
1.

59
 

1.
60

 
1.

59
 

1.
61

 
1.

61
 

1.
60

 
1.

59
 

1.
63

 

B
2 in
. 

1.
49

 
1.

49
 

1.
48

 
1.

48
 

1.
48

 
1.

48
 

1.
49

 
1.

49
 

1.
64

 
1.

64
 

1.
64

 
1.

64
 

1.
64

 
1.

64
 

1.
64

 
1.

64
 

2.
05

 
2.

05
 

2.
05

 
2.

05
 

2.
05

 
2.

05
 

2.
05

 
2.

05
 

2.
05

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

63
 

1.
63

 
1.

46
 

1.
46

 
1.

34
 

1.
34

 
1.

46
 

1.
46

 
1.

38
 

1.
38

 
1.

38
 

1.
38

 
1.

38
 

1.
38

 
1.

60
 

1.
59

 
1,

70
 

1.
60

 
1.

61
 

1.
61

 
1.

61
 

1.
60

 
1.

58
 

1.
63

 
1.

61
 

1.
59

 

D
, in
. 

0.
49

 
0.

50
 

0.
49

 
0.

49
 

0.
49

 
0.

48
 

0.
51

 
0.

51
 

0.
51

 
0.

51
 

0.
51

 
0.

51
 

0
5

1 
0.

51
 

0.
51

 
0.

51
 

0.
63

 
0.

63
 

0.
63

 
0.

63
 

0.
63

 
0.

63
 

0.
63

 
0.

63
 

0.
63

 
0.

50
 

0.
50

 
0.

50
 

0
5

0 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

o.
so

 
0.

47
 

0.
47

 
0.

31
 

0.
31

 
0.

47
 

0.
47

 
0.

31
 

0.
31

 
0.

31
 

0.
31

 
0.

31
 

0.
31

 
0.

43
 

0.
44

 
0.

42
 

0.
42

 
0.

42
 

0.
40

 
0.

48
 

0.
37

 
0.

36
 

0.
48

 
0.

48
 

0.
37

 

D
3 in
. 

0.
50

 
0.

51
 

0.
51

 
0.

50
 

0.
50

 
0.

50
 

0.
51

 
0.

51
 

0.
51

 
0.

51
 

0.
51

 
0.

51
 

0.
51

 
0.

51
 

0.
51

 
0.

51
 

0.
63

 
0.

63
 

0.
63

 
0.

63
 

0.
63

 
0.

63
 

0.
63

 
0.

63
 

0.
63

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

50
 

0.
50

 
0.

47
 

0.
47

 
0.

31
 

0.
31

 
0.

47
 

0.
47

 
0.

31
 

0.
31

 
0.

31
 

0.
31

 
0.

31
 

0.
31

 
0.

44
 

0.
39

 
0.

43
 

0.
41

 
0.

40
 

0.
43

 
0.

36
 

0.
50

 
0.

48
 

0.
39

 
0.

36
 

0.
48

 

r in
. 

0.
10

 
0.

10
 

0.
10

 
0.

10
 

0.
10

 
0.

10
 

0.
10

 
0.

10
 

0.
15

 
0.

15
 

0.
15

 
0.

16
 

0.
10

 
0.

10
 

0.
10

 
0.

10
 

0.
16

 
0.

16
 

0.
16

 
0.

11
 

0.
11

 
0.

11
 

0.
08

 
0.

08
 

0.
08

 
0.

13
 

0.
13

 
0.

13
 

0.
13

 
0.

13
 

0.
13

 
0.

13
 

0.
10

 
0.

10
 

0.
10

 
0.

10
 

0.
10

 
0.

10
 

0.
10

 
0.

09
 

0.
09

 
0.

09
 

0.
09

 
0.

09
 

0.
09

 
0.

09
 

0.
09

 
0.

09
 

0.
09

 
0.

09
 

0.
09

 
0.

20
 

0.
20

 
0.

19
 

0.
19

 
0.

19
 

0.
18

 
0.

16
 

0.
15

 
0.

16
 

0.
16

 
0.

16
 

0.
16

 

Y
ie

ld
 S

tre
ss

 a
nd

 F
or

ce
 

F
y 

ks
i 

47
.1

 
48

.5
 

51
.5

 
51

.5
 

49
.6

 
49

.6
 

47
.4

 
47

.6
 

55
.8

 
55

.8
 

55
.8

 
55

.8
 

46
.2

 
46

.2
 

46
.2

 
46

.2
 

44
.4

 
33

.6
 

34
.4

 
28

.0
 

28
.0

 
28

.0
 

24
.8

 
24

.8
 

24
.8

 
49

.4
 

49
.4

 
49

.4
 

49
.4

 
49

.4
 

49
.4

 
49

.4
 

38
.1

 
38

.1
 

38
.1

 
38

.1
 

38
.1

 
38

.1
 

38
.1

 
51

.9
 

51
.9

 
44

.8
 

44
.8

 
53

.0
 

53
.0

 
43

.8
 

43
.8

 
43

.8
 

43
.8

 
43

.8
 

43
.8

 
57

.9
 

57
.1

 
56

.0
 

58
.6

 
59

.7
 

58
.3

 
61

.9
 

58
.4

 
60

.1
 

61
.4

 
62

.0
 

61
.6

 

P
y-

9 

ki
ps

 
16

.7
 

17
.3

 
18

.4
 

18
.4

 
17

.7
 

17
.7

 
25

.8
 

25
.9

 
48

.3
 

48
.3

 
48

.3
 

48
.3

 
18

.2
 

18
.2

 
18

.2
 

18
.2

 
30

.2
 

22
.8

 
2

3
4 

11
.6

 
11

.6
 

11
.6

 
7

.0
 

7
.0

 
7

.0
 

22
.9

 
22

.9
 

22
.9

 
22

.9
 

22
.9

 
22

.9
 

22
.9

 
19

.0
 

19
.0

 
19

.0
 

19
.0

 
19

 0
 

19
.0

 
19

.0
 

27
.3

 
27

.1
 

13
.9

 
13

.9
 

27
.8

 
27

.8
 

13
.9

 
13

.7
 

13
.9

 
14

.0
 

14
.0

 
13

.9
 

16
.4

 
15

.7
 

16
.4

 
16

.6
 

16
.8

 
16

.8
 

25
.0

 
23

.1
 

24
.7

 
25

.2
 

25
.5

 
25

.6
 

P
yJ

* 
ki

ps
 

14
.9

 
13

.7
 

15
.2

 
13

.9
 

15
.2

 
16

.5
 

22
.0

 
20

.4
 

37
,9

 
37

.9
 

37
.9

 
37

.9
 

14
,8

 
14

.8
 

14
.8

 
14

.8
 

26
.5

 
20

.1
 

20
.6

 
10

.3
 

10
.3

 
10

.3
 

6
.2

 
6

.2
 

6
.2

 
20

.9
 

20
.9

 
18

.8
 

18
.8

 
16

.8
 

16
.8

 
18

.2
 

16
.8

 
16

.8
 

14
,6

 
14

.6
 

12
.4

 
12

.4
 

16
.1

 
20

.9
 

20
.8

 
11

.5
 

11
.5

 
21

.8
 

21
.8

 
11

.5
 

11
.3

 
11

.5
 

11
.6

 
11

.6
 

11
.5

 
13

.0
 

12
.4

 
13

.1
 

13
.1

 
13

.3
 

13
.4

 
21

.1
 

19
.5

 
20

.9
 

21
 3

 
21

.5
 

21
.6

 

Te
st

 

P
»

* 

ki
ps

 
14

.2
 

12
.7

 
13

.8
 

13
.6

 
14

.1
 

14
.5

 
24

.6
 

24
.0

 
26

.5
" 

26
.8

* 
26

.6
" 

25
.8

* 
12

.7
-

12
.7

' 
12

.6
* 

12
.8

" 
23

.6
 

18
.3

 
18

.3
 

9
.4

 
9

.4
 

9
.4

 
4

.6
 

4
.5

 
4

.6
 

19
.3

 
19

.0
 

18
.4

 
18

.3
 

17
.6

 
17

.4
 

16
.3

 
12

.1
 

12
.0

 
12

.0
 

11
.5

 
10

 6
 

10
.6

 
11

.6
 

25
.8

 
23

.6
 

5
.5

 
5

.9
 

22
.2

 
22

.1
 

6
.0

 
5

.8
 

5
.8

 
6

.1
 

6
.1

 
6

.2
 

10
.0

 
10

.4
 

9
.9

 
9

.0
 

9
.2

 
9

.4
 

1
2

1 
11

.6
 

1
1

8 
11

.2
 

11
.7

 
11

.2
 

* 
av

er
ag

e 
of

 tw
o 

te
st

s 

82
 



T
ab

le
 4

.4
 F

ix
ed

-f
ix

ed
 c

ol
um

n 
ex

pe
ri

m
en

t 
A

B
A

Q
U

S
 e

la
st

ic
 b

ud
di

ng
 w

ith
 h

ol
e.

 
el

as
ti

c 
bu

ck
li

ng
 p

ro
pe

rt
ie

s 
A

B
A

Q
U

S
 e

la
st

ic
 b

uc
kl

in
g 

w
ith

 n
ot

e,
 

„,
 ,

„
„ 

, 
.. 

. 
~

 
C

U
F

S
M

bo
ur

cl
ai

y 
co

nd
iti

on
s 

C
U

F
S

M
 *

«
te

 b
u

ct
tn

g
. 

• 

P>
>

 
P

« 
P,

 
S

tu
dy

 a
nd

 S
pe

ci
m

en
 N

am
e 

B
ou

nd
ar

y 
C

on
di

tio
ns

 

ex
pe

rim
en

t 
bo

un
da

ry
 c

on
di

tio
ns

 

P
c/

 
*V

.L
H 

P
c

/u
c 

P
en

 
P

«
, 

ki
ps

 
ki

ps
 

ki
ps

 
ki

ps
 

ki
ps

 
ki

ps
 

ki
ps

 
ki

ps
 

P
*<

 

ki
ps

 
L

*.
 

ki
ps

 
O

rt
iz

-C
ol

be
rg

 1
98

1 
O

rt
iz

-C
ol

be
rg

 1
98

1 
O

rt
iz

-C
ol

be
rg

 1
98

1 
O

rt
iz

-C
ol

be
rg

 1
98

1 
O

rt
iz

-C
ol

be
rg

 1
98

1 
O

rt
iz

-C
oi

be
rg

19
81

 
O

rt
iz

-C
ol

be
rg

 1
98

1 
O

rt
iz

-C
ol

be
rg

 1
98

1 
A

bd
el

-R
ah

m
an

 1
99

7 
A

bd
el

-R
ah

m
an

 1
99

7 
A

bd
el

-R
ah

m
an

 1
99

7 
A

bd
el

-R
ah

m
an

 1
99

7 
A

bd
el

-R
ah

m
an

 1
99

7 
A

bd
el

-R
ah

m
an

 1
99

7 
A

bd
el

-R
ah

m
an

 1
99

7 
A

bd
el

-R
ah

m
an

 1
99

7 
P

u
e

ta
l. 

19
99

 
P

u
e

ta
l.

 1
99

9 
P

u
e

ta
l. 

19
99

 
P

u
e

ta
l. 

19
99

 
P

u 
et

 a
l. 

19
99

 
P

u
e

ta
l. 

19
99

 
P

u
e

ta
l. 

19
99

 
P

u
e

ta
l. 

19
99

 
P

u
e

ta
l. 

19
99

 
S

iv
ak

um
ar

an
19

87
 

S
iv

ak
um

ar
an

 1
98

7 
S

rv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
rv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
rv

ak
um

ar
an

 1
98

7 
S

iv
ak

um
ar

an
 1

98
7 

S
iv

ak
um

ar
an

 1
98

7 
S

rv
ak

um
ar

an
 1

96
7 

S
iv

ak
um

ar
an

 1
98

7 
M

ill
er

 &
 P

ek
oz

 1
99

4 
M

ill
er

 &
 P

ek
oz

 1
99

4 
M

ill
er

 &
P

e
ko

z 
19

94
 

M
ill

er
 &

 P
ek

oz
 1

99
4 

M
ill

er
 S

P
e

ko
z 

19
94

 
M

ill
er

 &
 P

ek
oz

 1
99

4 
M

ilt
er

 &
 P

ek
oz

 1
99

4 
M

ill
er

 &
 P

ek
oz

 1
99

4 
M

ill
er

 &
 P

ek
oz

 1
99

4 
M

ilt
er

 &
 P

ek
oz

 1
99

4 
M

ill
er

 &
 P

ek
oz

 1
99

4 
M

ilt
er

 &
 P

ek
oz

 1
99

4 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 
M

oe
n 

an
d 

S
ch

af
er

 2
00

8 

S
4 

F
ix

ed
-

S
7 

S
6 

S
8 

S
5 

S
3 

S
1

4 
S

1
5 

A
-C

 

A
-S

 
A

-O
 

A
-R

 

B
-C

 

8
-S

 
B

-O
 

B
-R

 

C
-2

.0
-1

-3
0-

1 
C

-2
.0

-1
-3

0-
2 

C
-2

.0
-1

-3
0-

3 
C

-1
.2

-1
-3

0-
1 

C
-1

.2
-1

-3
0-

2 
C

-1
.2

-1
-3

0-
3 

C
-0

.8
-1

-3
0-

1 
C

-0
.8

-1
-3

0-
2 

C
-0

.8
-1

-3
0-

3 
A

2 
A

3 
A

4 

A
5 

A
6 

A
7 

A
8 

B
2 

B
3 

B
4 

B
5 

B
6 

B
7 

B
8 

1-
12

 
1-

13
 

1-
17

 
1-

19
 

2-
11

 
2-

12
 

2-
14

 
2-

15
 

2-
16

 
2-

24
 

2-
25

 
2-

26
 

36
2-

1 
-2

4-
H

 
36

2-
2-

24
-H

 
36

2-
3-

24
-H

 
36

2-
1 

-4
8-

H
 

36
2-

2-
48

-H
 

36
2-

3-
48

-H
 

60
0-

1-
24

-H
 

60
0-

2-
24

-H
 

60
0-

3-
24

-H
 

60
0-

1-
48

-H
 

60
0-

2-
48

-H
 

60
0-

3-
48

-H
 

fix
ed

 
10

.7
 

11
.9

 
11

.6
 

12
.5

 
11

.4
 

11
.2

 
40

.5
 

43
.5

 
16

.2
 

13
.7

 
12

.3
 

12
.9

 
11

.2
 

12
.1

 
11

.8
 

12
.3

 
42

.6
 

42
.5

 
42

.6
 

9
.5

 

9
.5

 

9
.5

 
2

.8
 

2
.8

 

2
.8

 
21

.3
 

21
.5

 
23

.5
 

24
.8

 
30

.5
 

33
.4

 
30

.2
 

6
.0

 

6
.1

 
7

.0
 

7
.6

 
10

.3
 

12
.4

 
6

.6
 

43
.2

 
42

.5
 

1
.7

 
1

.7
 

41
.3

 
41

.3
 

1
.8

 
1.

7 

1.
8 

1
.9

 

1
.9

 
1

.8
 

5
.9

 

5
.4

 

5
.7

 

5
.3

 

5
5 

5
.7

 

3
.3

 

3
.2

 

3
5 

3
.4

 

3
.4

 

3
.4

 

3
1

5 

25
.6

 
25

.5
 

34
.6

 
33

.0
 

—
 

45
.5

 
50

.1
 

12
.8

 
22

.4
 

16
.4

 
15

.8
 

39
.5

 
42

.0
 

23
.0

 
22

.7
 

53
.0

 
52

.9
 

52
.9

 

—
 

—
 

—
 

—
 

—
 

—
 

—
 

—
 

—
 

—
 

—
 

—
 

30
.8

 

—
 

—
 

11
.2

 

—
 

20
.2

 
19

.9
 

11
.7

 
51

.1
 

50
.3

 
2

.4
 

2
.4

 

41
.7

 
41

.7
 

2
.5

 
2

.4
 

2
.5

 
2

.6
 

2
.6

 
2

.5
 

6
.4

 

5
.7

 

6
.6

 

5
.7

 

5
.8

 

6
.2

 
3

.1
 

2
.9

 

3
.3

 

3
.2

 

3
.2

 

3
.2

 

—
 

41
.9

 
33

.0
 

—
 

41
.1

 

—
 

66
.9

 

—
 

21
.6

 
22

.5
 

19
.5

 
19

.0
 

42
.4

 

—
 

—
 

29
.9

 
85

 5
 

85
.5

 
85

.5
 

48
.5

 
48

.5
 

48
.5

 
17

.4
 

17
.4

 
17

.4
 

—
 

—
 

_.
 

—
 

—
 

_ 32.
2 

10
.4

 
10

.6
 

16
.5

 
18

.6
 

—
 

—
 

16
.4

 
51

.6
 

50
.9

 
2

.9
 

2
.9

 

47
.2

 
47

.2
 

3
.0

 

2
.9

 
3

.0
 

3
.1

 
3

.1
 

3
.0

 —
 

—
 

—
 

—
 

—
 

—
 

—
 

—
 

_ —
 

—
 

_ 

40
.0

 
43

.3
 

41
.8

 
42

.8
 

44
.5

 
41

.1
 

86
.5

 
70

.3
 

24
.0

 
24

.7
 

23
.7

 
24

.1
 

45
.3

 
45

.9
 

30
.6

 
30

.5
 

10
9.

0 
10

9.
0 

10
9.

0 
50

.6
 

50
.6

 
50

.6
 

17
.7

 
17

.7
 

17
.7

 
57

.0
 

58
.0

 
50

.7
 

50
.9

 
8

1
5 

81
.2

 
8

1
5 

12
.0

 
12

.3
 

1
9

5 
19

.3
 

21
.1

 
2

1
5 

18
.4

 
76

.4
 

75
.3

 
3

.3
 

3
.3

 
74

.4
 

74
.4

 
3

.4
 

3
.3

 
3

.4
 

3
.5

 

3
.5

 
3

.4
 

9
5 

10
.3

 
9

.5
 

9
.1

 

9
.0

 

9
.0

 
7

.0
 

6
.7

 

7
.3

 

5
.1

 
5

.0
 

5
.0

 

64
0.

0 
64

0.
0 

64
0.

0 
64

0.
0 

64
0.

0 
64

0.
0 

96
4.

0 
96

4.
0 

10
14

.2
 

10
14

5 
81

1.
8 

81
1.

8 
12

71
.6

 
12

71
.6

 
88

3.
3 

88
3.

3 
11

82
.8

 
11

82
.8

 
11

82
.8

 
77

7.
4 

77
7.

4 
77

7.
4 

52
8.

3 
52

8.
3 

52
8.

3 
20

45
.6

 
20

45
.6

 
20

45
.6

 
20

45
.6

 
20

45
.6

 
20

45
.6

 
16

31
.1

 
17

42
.4

 
17

42
.4

 
17

42
.4

 
17

42
.4

 
17

42
.4

 
17

42
.4

 
17

42
.4

 
10

89
.0

 
10

84
.1

 
21

2.
7 

21
2.

7 
10

84
.1

 
10

84
.1

 
23

1.
1 

23
1.

1 
23

1.
1 

23
1.

1 
23

1.
1 

23
1.

1 
11

9.
3 

11
2.

8 
13

0.
6 

30
.0

 
29

.7
 

36
.2

 
23

9.
3 

23
8.

4 
24

2.
6 

56
.3

 
53

.0
 

55
.8

 

10
.5

 
11

.1
 

11
.0

 
11

.4
 

10
.9

 
11

.0
 

40
.1

 
40

.6
 

11
.4

 
11

.7
 

11
.1

 
11

.5
 

9
.6

 

9
.8

 
9

.9
 

10
.0

 
41

.1
 

41
.1

 
41

.1
 

9
.2

 

92
 

92
 

2
.7

 
2

.7
 

2
.7

 
20

.8
 

20
.8

 
21

.8
 

22
.6

 
25

.2
 

26
.1

 
25

.9
 

5
.8

 

5
.9

 
6

.3
 

6
.7

 

8
.1

 

9
.1

 
5

.9
 

37
.4

 
36

.8
 

1.
7 

1
.7

 

36
.5

 
36

.5
 

1.
7 

1.
7 

1.
7 

1.
8 

1.
8 

1.
7 —

 
—

 
—

 
—

 
—

 
—

 
—

 
_ __

 
—

 
—

 
_ 

17
.3

 
17

.6
 

17
.7

 
17

.9
 

17
.8

 
18

.0
 

38
.8

 
40

.0
 

14
.0

 
14

.5
 

13
.1

 
13

.1
 

22
.3

 
23

.3
 

20
.8

 
20

.4
 

52
.3

 
52

.3
 

52
.3

 
19

.0
 

19
.0

 
19

.0
 

11
.3

 
11

.3
 

11
.3

 
3

5
5 

35
.4

 
38

.3
 

39
.5

 
35

.1
 

3
6

5 

33
.3

 
10

.5
 

10
.6

 
12

.5
 

13
.4

 
16

.3
 

15
.8

 
16

.5
 

35
.5

 
35

.0
 

2
.3

 
2

.3
 

35
.1

 
35

.1
 

2
.4

 

2
.3

 
2

.4
 

2
.4

 

2
.4

 
2

.4
 

„ _ __
 

—
 

—
 

__
 

_ —
 

_ —
 

_ _ 

10
-8

 
10

.9
 

11
.1

 
11

.1
 

1
1

5 
11

.3
 

39
.8

 
39

.8
 

11
.7

 
11

.7
 

11
.7

 
11

.7
 

42
.5

 
42

.5
 

42
.5

 

22
.0

 
22

.0
 

22
.0

 
22

.0
 

22
.0

 
22

.0
 

22
.0

 
5.

7 
5.

7 
5.

7 

5.
7 

36
.0

 
35

.5
 

1.
7 

1.
7 

35
.5

 
35

.5
 

1.
7 

1
7

7 
18

.0
 

18
.0

 
18

.0
 

18
.1

 
18

.1
 

45
.5

 
45

.4
 

13
.8

 
13

.8
 

13
.8

 
13

.8
 

16
.9

 
16

.9
 

1
6

9 
16

.9
 

49
.9

 
49

.9
 

49
.9

 
17

.2
 

17
.2

 
17

.2
 

7.
5 

29
.4

 
29

.4
 

29
.4

 
29

.4
 

29
.4

 
29

.4
 

29
.4

 

9.
8 

9.
8 

42
.1

 

41
.6

 
41

.6
 

13
.8

 
13

.8
 

13
.8

 
13

.8
 

13
.8

 
13

.7
 

11
.3

 
11

.3
 

15
.3

 
15

.3
 

15
.3

 
15

.3
 

15
.9

 
15

.9
 

15
.9

 
15

.9
 

14
.9

 
14

.9
 

14
.9

 
22

.2
 

22
2 

22
.2

 
27

.3
 

27
.3

 
27

.3
 

13
.9

 
13

.9
 

13
.9

 
13

.9
 

13
.9

 
13

.9
 

13
.9

 
16

.8
 

16
.8

 
16

.8
 

16
.8

 
16

.8
 

16
.8

 
16

.8
 

8.
3 

8.
3 

15
.7

 
15

.7
 

15
.7

 
15

.7
 

15
.7

 
15

.7
 

14
.8

 
14

.8
 

14
.8

 
14

.8
 

14
.8

 
14

.8
 

83
 



T
ab

le
 4

.5
 W

ea
k-

ax
is

 p
in

n
ed

 c
ol

um
n 

ex
pe

ri
m

en
t 

di
m

en
si

on
s 

an
d 

m
at

er
ia

l 
pr

op
er

ti
es

 

S
tu

d
y 

a
n

d 
S

p
e

ci
m

e
n 

N
a

m
e 

O
rt

iz
-C

o
lb

e
rg

 
1

9
8

1 
O

rt
iz

-C
o

lb
e

rg
 

1
9

8
1 

O
rt

iz
-C

o
lb

e
rg

 
1

9
8

1 
O

rt
iz

-C
o

lb
e

rg
 

1
9

8
1 

O
rt

iz
-C

o
lb

e
rg

 
1

9
8

1 
O

rt
iz

-C
o

lb
e

rg
 

1
9

8
1 

O
rt

iz
-C

o
lb

e
rg

 
1

9
8

1 
O

rt
iz

-C
o

lb
e

rg
 

1
9

8
1 

O
rt

iz
-C

o
lb

e
rg

 
1

9
8

1 
O

rt
iz

-C
o

lb
e

rg
 

1
9

8
1 

O
rt

iz
-C

o
lb

e
rg

 
1

9
8

1 
O

rt
iz

-C
o

lb
e

rg
 

1
9

8
1 

O
rt

iz
-C

o
lb

e
rg

 1
9

8
1 

O
rt

iz
-C

o
lb

e
rg

 
1

9
8

1 
O

rt
iz

-C
o

lb
e

rq
 1

9
8

1 

L2
 

L3
 

L6
 

L7
 

L9
 

L
1

0 
L

1
4 

L
1

6 
L

1
7 

L
1

9 
L

2
2 

L
2

6 
L

2
7 

L
2

8 
L3

2 

B
o

u
n

d
a

ry
 

W
e

a
k

-a
x

is
 

p
in

n
e

d 

M
e

m
b

e
r 

L in
. 

6
3

.0
 

2
7

.0
 

6
3

.0
 

6
3

.0
 

3
9

.0
 

3
8

.9
 

3
9

.1
 

5
1

.0
 

5
1

.1
 

2
7

.0
 

4
5

.0
 

4
5

.0
 

2
7

.0
 

2
7

.0
 

6
3

.0
 

f in
. 

0
.0

4
9

0 
0

.0
4

9
0 

0
.0

4
9

0 
0

.0
4

9
0 

0
.0

4
9

0 
0

.0
4

9
0 

0
.0

4
9

0 
0

.0
7

6
0 

0
.0

7
6

0 
0

.0
7

6
0 

0
.0

7
6

0 
0

.0
7

6
0 

0
.0

7
6

0 
0

.0
7

6
0 

0
.0

7
6

0 

M
a

te
ri

a
l 

E
 

ks
i 

2
9

4
2

0 
2

9
4

2
0 

2
9

4
2

0 
2

9
4

2
0 

2
9

4
2

0 
2

9
4

2
0 

2
9

4
2

0 
2

9
4

2
0 

2
9

4
2

0 
2

9
4

2
0 

2
9

4
2

0 
2

9
4

2
0 

2
9

4
2

0 
2

9
4

2
0 

2
9

4
2

0 

nu
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 
0

.3
 

0
.3

 

H
o

le
 

D
im

e
n

si
o

n
s 

H
ol

e 
T

yp
e 

C
ir

cu
la

r 
C

ir
cu

la
r 

C
ir

cu
la

r 
C

ir
cu

la
r 

C
ir

cu
la

r 
C

ir
cu

la
r 

C
ir

cu
la

r 
C

ir
cu

la
r 

C
ir

cu
la

r 
C

ir
cu

la
r 

C
ir

cu
la

r 
C

ir
cu

la
r 

C
ir

cu
la

r 
C

ir
cu

la
r 

C
ir

cu
la

r 

'-
fi

o
te

 

in
. 

0
.5

0 
1.

00
 

1.
00

 
1.

50
 

1.
00

 
1.

50
 

0
.5

0 
1.

00
 

1.
50

 
1.

50
 

1
.5

0 
1.

00
 

1.
00

 
1.

00
 

1.
00

 

hh
cl

e 

in
. 

0
.5

0 
1.

00
 

1.
00

 
1.

50
 

1.
00

 
1.

50
 

0
.5

0 
1.

00
 

1.
50

 
1.

50
 

1.
50

 
1.

00
 

1.
00

 
1.

00
 

1.
00

 

rho
fe

 

in
. 

0
.2

5 
0

.5
0 

0
.5

0 
0

.7
5 

0
.5

0 
0

.7
5 

0
.2

5 
0

.5
0 

0
.7

5 
0

.7
5 

0
.7

5 
0

.5
0 

0
.5

0 
0

.5
0 

0
.5

0 

H
 

in
. 

3
.5

1 
3

.5
1 

3
.5

1 
3

.5
1 

3
.5

1 
3

.5
1 

3
.5

1 
3

.5
1 

3
.5

1 
3

.5
1 

3
.5

1 
3

.5
1 

3
.5

1 
3

.5
1 

3
.5

1 

C
ro

s
s 

S
e

ct
io

n 
D

im
e

n
si

o
n

s 

s
, 

in
. 

1.
62

 
1.

62
 

1.
62

 
1.

62
 

1.
62

 
1.

62
 

1.
62

 
1

.6
2 

1.
62

 
1

.6
2 

1.
62

 
1

.6
2 

1
.6

2 
1.

62
 

1.
62

 

B
2 in
. 

1.
48

 
1.

48
 

1.
48

 
1.

48
 

1.
48

 
1.

48
 

1.
48

 
1.

48
 

1.
48

 
1.

48
 

1.
48

 
1.

48
 

1.
48

 
1.

48
 

1.
48

 

D
, 

in
. 

0
.5

0 
0

.5
0 

0
.5

0 
0

.5
0 

0
.5

0 
0

.5
0 

0
.5

0 
0

.5
0 

0
.5

0 
0

.5
0 

0
.5

0 
0

.5
0 

0
.5

0 
0

.5
0 

0
.5

0 

D
2 

in
. 

0
.5

1 
0

.5
1 

0
.5

1 
0

.5
1 

0
.5

1 
0

.5
1 

0
.5

1 
0

.5
1 

0
.5

1 
0

.5
1 

0
.5

1 
0

.5
1 

0
.5

1 
0

.5
1 

0
.5

1 

r in
. 

0
.1

0 
0

.1
0 

0
.1

0 
0

.1
0 

0
.1

0 
0

.1
0 

0
.1

0 
0

.1
0 

0
.1

0 
0

.1
0 

0
.1

0 
0

.1
0 

0
.1

0 
0

.1
0 

0
.1

0 

Y
ie

ld
 S

tr
e

ss
 a

n
d 

F
o

rc
e 

F
y ks

i 
4

5
.7

 
4

2
.9

 
4

6
.1

 
4

5
.5

 
4

3
.8

 
4

2
.3

 
4

2
.9

 
4

8
.1

 
4

8
.1

 
5

1
.5

 
4

6
.7

 
4

5
.8

 
4

8
.3

 
4

2
.3

 
4

7
.9

 

p ki
p

s 
1

6
.2

 
1

5
.2

 
1

6
.3

 
1

6
.1

 
1

5
.5

 
1

5
.0

 
1

5
.2

 
2

5
.9

 
2

5
.9

 
2

7
.7

 
2

5
.1

 
2

4
.7

 
2

6
.0

 
2

2
.8

 
2

5
.8

 

' 
y,

ne
t 

ki
p

s 
1

5
.0

 
1

3
.1

 
1

4
.0

 
1

2
.7

 
1

3
.3

 
1

1
.8

 
1

4
.1

 
2

2
.2

 
2

0
.4

 
2

1
.9

 
1

9
.8

 
2

1
.2

 
2

2
.3

 
1

9
.6

 
2

2
.1

 

T
e

s
t 

'te
st

 

k
ip

s 
8

.5
 

1
1

.4
 

8
.5

 
8

.5
 

9
.4

 
1

0
.1

 
9

.6
 

1
7

.2
 

1
5

.0
 

2
1

.2
 

2
0

.0
 

1
9

.1
 

2
1

.9
 

2
2

.4
 

1
3

.3
 

T
ab

le
 4

.6
 W

ea
k-

ax
is

 p
in

n
ed

 c
ol

um
n 

ex
pe

ri
m

en
t 

el
as

ti
c 

bu
ck

li
ng

 p
ro

pe
rt

ie
s 

S
tu

dy
 a

n
d 

S
p

e
ci

m
e

n 
N

a
m

e 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rg
 1

98
1 

O
rt

iz
-C

ol
be

rq
 1

98
1 

L
2 L3

 
L6

 
L7

 
L9

 
L1

0 
L1

4 
L1

6 
L1

7 
L1

9 
L

2
2 

L2
6 

L2
7 

L2
8 

L3
2 

B
ou

nd
ar

y 

W
e

a
k-

a
xi

s 
pi

nn
ed

 

A
B

A
Q

U
S

 e
la

st
ic

 b
uc

kl
in

g 
w

it
h 

ho
le

, 
e

xp
e

ri
m

e
n

t 
bo

un
da

ry
 c

on
di

tio
ns

 

P
o

/ 

ki
ps

 
10

.5
 

10
.5

 
10

.5
 

10
.6

 
10

.5
 

10
.7

 
10

.5
 

39
.6

 
4

0
.0

 
41

.0
 

4
0

.1
 

39
.7

 
3

9
.9

 
39

.9
 

39
.6

 

P
o

'.
L

H
 

ki
ps

 
16

.2
 

13
.3

 
12

.3
 

12
.5

 
14

.2
 

12
.9

 
16

.5
 

39
.6

 
41

.5
 

41
.4

 
4

2
.1

 
39

.7
 

39
.9

 
43

.1
 

39
.6

 

P
er

'. 
LH

2 

ki
ps

 

—
 

—
 

—
 

—
 

—
 

16
.8

 
16

.5
 

—
 

4
3

.9
 

—
 

—
 

—
 

—
 

4
5

.8
 

—
 

P
cr

d 

ki
ps

 
18

.7
 

1
8

.7
 

18
.3

 
19

.0
 

18
.6

 
18

.6
 

18
.5

 
4

6
.0

 
4

6
.1

 
4

9
.8

 
4

5
.0

 
4

5
.1

 
4

9
.9

 
4

8
.8

 
4

4
.5

 

P
«

. 

ki
ps

 
8.

6 
3

0
.0

 
8.

6 
8.

5 
19

.9
 

18
.6

 
19

.9
 

18
.5

 
18

.2
 

5
0

.1
 

2
3

.1
 

23
.5

 
52

.3
 

56
.5

 
12

.3
 

A
B

A
Q

U
S

 e
la

st
ic

 b
uc

kl
in

g 
w

ith
 h

o
le

. 
C

U
F

S
M

 b
ou

nd
ar

y 
co

nd
iti

on
s 

P
=r

<
 

ki
ps

 
10

.5
 

10
.5

 
10

.5
 

10
.5

 
10

.5
 

10
.5

 
10

.5
 

38
.9

 
3

8
.9

 
3

9
.0

 
3

8
.9

 
38

.9
 

3
9

.0
 

3
9

.0
 

3
8

.9
 

P
cr

d 

ki
ps

 
17

.9
 

18
.9

 
17

.9
 

17
.9

 
17

.7
 

17
.2

 
17

.7
 

4
4

.6
 

4
4

.6
 

46
.6

 
46

.1
 

4
6

.3
 

4
7

.5
 

47
.5

 
4

4
.5

 

P
e

r.
 

ki
ps

 
6.

5 
31

.6
 

6.
5 

6.
5 

15
.5

 
14

.9
 

15
.5

 
15

.4
 

15
.3

 
45

.5
 

18
.9

 
18

.9
 

45
.8

 
45

.8
 

10
.9

 

C
U

F
S

M
 e

la
st

ic
 b

u
ck

lin
g

. 

P
er

<
 

ki
ps

 
10

.7
 

10
.7

 
10

.7
 

10
.7

 
10

.7
 

10
.7

 
10

.7
 

39
.6

 
39

.6
 

39
.6

 
39

.6
 

39
.6

 
39

.6
 

39
.6

 
39

.6
 

P
cr

d 

ki
p

s 
17

.7
 

17
.7

 
17

.7
 

17
.7

 
17

.7
 

17
.7

 
17

.7
 

4
5

.5
 

4
5

.5
 

4
5

.5
 

4
5

.5
 

4
5

.5
 

4
5

.5
 

4
5

.5
 

4
5

.5
 

n
o 

h
o

le
 

U
rd

 

in
. 

13
.8

 
13

.8
 

13
.8

 
13

.8
 

13
.8

 
13

.8
 

13
.8

 
11

.3
 

11
.3

 
11

.3
 

11
.3

 
11

.3
 

11
.3

 
11

.3
 

11
.3

 

84
 



Table 4.7 Parameter ranges for fixed-fixed and weak-axis pinned i 
Specimen type D/t 

fixed-fixed columns n 

max 20.0 
weak-axis pinned min 6.6 
columns max 10.3 

H/t B/t 
46.3 19.3 
172.7 65.0 
46.2 20.4 
71.6 31.7 

H/B 
1.9 
4.9 
2.3 
2.3 

D/B UH 
0.23 1.7 
0.32 13.3 
0.33 7.7 
0.30 17.9 

column specimens with holes 
"hole"1 Lhole /L-

0.16 0.04 
0.60 0.46 
0.16 0.01 
0.47 0.06 

hy (ksi) 
24.8 
62.0 
42.3 
51.5 

Table 4.8 DSM prequalification limits for C-sections 
_ , t DSM 
Column parameter ..,. .. .. .. 

prequalification limit Web slenderness 

Flange slenderness 

Lip slenderness 

Web / flange 

Lip / flange 
Yield stress 

H/t<472 

B/t<159 

4<D/t<33 

0.7<H/B<5.0 

0.05<D/B<0.41 
Fy<86 ksi. 

4.2.6.2 Boundary condition influence on elastic buckling 

The ABAQUS results in the column elastic buckling database, in addition to serving 

as a resource for extending DSM to columns with holes, can also be used to study the 

influence of column boundary conditions on elastic buckling. Consider the fixed-fixed 

columns in the database with L/H<4 (most are considered stub columns). Figure 4.13 

and Figure 4.14 and compare the influence of the experiment fixed-fixed boundary 

conditions for these columns relative to warping free boundary conditions (i.e. CUFSM 

style boundary conditions in Figure 4.2) on ?ai (distortional buckling) and ?at (local 

buckling). The experiment boundary conditions are shown to increase Pcr(i for all of the 

column specimens considered while Pcr/ remains relatively unchanged, primarily 

because warping deformations are intimately tied to distortional buckling and not plate 

buckling (Schafer and Adany 2006). For stub columns, the length of the fundamental 

distortional half-wave is often shorter than the length of the column, which results in an 
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increase in PaA. The restrained warping at the column ends also contributes to the 

shortening of the half-wave and an increase in Pcrd. The magnitude of this boost in P„A 

decreases as L/L„d increases as shown in Figure 4.13a because the wavelength shortening 

required to accommodate distortional buckling in the column can be distributed over 

multiple half-waves as column length increases. Figure 4.13b confirms this observation 

by demonstrating that P„A increases with increasing L/H. H is inversely proportional to 

Led for a constant flange width B (i.e., a wider column will have a shorter distortional 

half-wavelength) and therefore as L/H increases, the distortional half-wavelength 

increases relative to the column length causing an increase in P„d. 

P„t increases slightly with increasing hole size relative to column size (both for hhodh 

and LhoJL) as shown in Figure 4.14 due to the fixed-fixed boundary conditions. For large 

holes relative to member size the local buckling half-waves form away from the hole 

near the column ends (see Section 3.3). These half-wavelengths are shortened relative to 

their fundamental half-wavelengths by the loaded column edges which are also 

restrained from rotating (from welding), resulting in a higher P„/ when compared to 

warping-free end conditions with loaded edges free to rotate. 
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Figure 4.13 Influence of fixed-fixed boundary conditions versus warping free boundary conditions on P„d 
for column experiments(L/H<4 ) as a function of (a) column length to fundamental distortional half-

wavelength calculated with CUFSM and (b) column length to member length. 
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Figure 4.14 Influence of fixed-fixed boundary conditions versus warping free boundary conditions on Pa( 
for column experiments ( L/H<4) as a function of (a) hole width relative to column width and (b) hole length 

relative to column length 

The weak-axis pinned boundary conditions have a minimal influence on Pcr/ and Pcrd 

in Figure 4.15 when compared to the warping-free boundary conditions. These columns 

are still warping-fixed even though they are pinned (a plate is welded to the end of the 

member preventing warping deformation), but because the columns are all relatively 

long compared to the stub columns and hole size is small relative to column size, the 

wavelength shortening boost in Pcr/and P„d is not pronounced. 
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Figure 4.15 Influence of weak-axis pinned boundary conditions versus warping free boundary conditions on 
(a) Per/as a function of hole length to column length and (b) V„& as a function of column length to member 

length. 

4.2.7 Approximate prediction methods for use in design 

The ability to approximate local, distortional, and global critical elastic buckling 

loads is central to the extension of the Direct Strength Method (DSM) for cold-formed 

steel structural members with holes. To facilitate the use of DSM for members with 

holes, approximate (and conservative) methods for calculating elastic buckling are 

developed here which can be used in lieu of a full finite element eigenbuckling analysis. 

Elastic buckling approximations using the finite strip method (e.g. CUFSM) are derived 

for local and distortional buckling, and modifications to the classical column stability 

equations are proposed for global buckling. The simplified methods are intended to be 

general enough to accommodate the range of hole shapes, sizes, and spacings common 

in industry. 
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4.2.7.1 Local buckling 

An approximate method for predicting the local elastic buckling behavior of cold-

formed steel members with holes is presented in this section. This method extends the 

assumption in the "element-based" methods in Chapter 3 that local buckling occurs as 

either plate buckling of the entire cross-section or unstiffened strip buckling at the 

location of the hole. In this finite strip approximate method, local buckling is assumed 

to occurs as the minimum of Pcr? occurring from local buckling on the gross cross-section 

(as calculated in the Direct Strength Method) and local buckling of the unstiffened strip 

adjacent to the hole. The use of the finite strip method allows for a more realistic 

prediction of Fcrt for unstiffened strip buckling by including the interaction of the cross-

section on the unstiffened strip (i.e., the LH mode for the C-section in Figure 4.5). The 

method is presented through three examples considering industry standard cross-

sections with holes which are then verified with ABAQUS thin shell finite element 

eigenbuckling results. The prediction method is also validated using the column elastic 

buckling database developed in Section 4.2.6.1. 

4.2.7.1.1 Prediction method 

The local critical elastic buckling load Pcr/ is calculated for a cold-formed steel 

member with holes as 

Pcrt=mm{Pcr,Pcrh). (4.1) 

The calculation of the local critical elastic buckling load on the gross cross-section, PCT, is 

performed using standard procedures defined in Appendix 1 of the AISI-S100 (AISI-
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S100 2007). P„h is calculated in CUFSM using the net cross-section, which is restrained to 

isolate local buckling from distortional buckling by fixing the column cross-section 

corners as shown in Figure 4.16. It is important to avoid fully restraining a cross-section 

element (i.e., flange or web), since this prevents Poisson-type deformations and 

artificially stiffens the cross-section. For example, Figure 4.16a restrains the corners in 

the z-direction only to prevent distortional buckling while still accommodating 

transverse deformation of the flanges. The only time a corner should be fixed in both 

the x and z directions is when two isolated elements intersect (i.e., C-section with a 

flange hole, see Figure 4.16a). Finally, when a hole isolates a strip of the net cross-

section as shown in Figure 4.16b (e.g., a hat section with flange holes), the isolated 

portion of the cross-section should be deleted since it is assumed to no longer 

contributes to the stiffness of the cross-section over the length of the hole. If the isolated 

elements are not removed then the critical elastic buckling load calculated in CUFSM 

will correspond to Euler buckling of this isolated portion of the cross-section. 
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t 
^ — ^ 

\ n ^ Roller (typ.) Pinned (typ.) 

Web hole Flange hole 

^ 

Web hole 

xJ 
J Remove isolated' 

elements 
Flange hole 

Figure 4.16 Rules for modeling a column net cross-section in CUFSM 

Once the net-cross section is restrained, an eigenbuckling analysis is performed, and an 

elastic buckling curve similar to Figure 4.17 is generated. L„h is identified on the curve as 

the half-wavelength corresponding to the minimum buckling load. When Lhole<Lcrh as 

shown in Figure 4.17a, Pcrh is equal to the buckling load at the length of the hole. If 

LM^>Lcrh as shown in Figure 4.17b, Pcrh is the minimum on the buckling curve. When no 

local minimum exists, then P„h is equal to the elastic buckling load corresponding to LMc. 

Determining elastic buckling loads at specific half-wavelengths is a new and 

fundamentally different use of the finite strip method when compared to its primary 

application within DSM, which is calculating the lowest fundamental elastic buckling 

modes of cold-formed steel members. 
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Figure 4.17 Local elastic buckling curve of net cross-section when (a) hole length is less than L„h and (b) 
when hole length is greater than LC,H 

4.2.7.1.2 Method examples 

Three examples are presented here that approximate the local critical elastic buckling 

load P„/ for cold-formed steel columns with holes using CUFSM. For all examples, the 

length of the column L=100 inches and five slotted holes are spaced at S=20 inches. The 

typical length of the hole Lj,<,ie=4 inches. All ABAQUS eigenbuckling analyses are 

modeled with CUFSM-style boundary and loading conditions identical to those shown 

in Figure 4.2. The modulus of elasticity, E, is assumed as 29500 ksi and Poisson's ratio, 

v, as 0.3 in all finite strip and finite element models. P„/ is normalized when plotted by 

Pyg, the squash load of the column calculated with the gross cross-sectional area and a 

yield stress, F„, of 50ksi. 

The first example is an SSMA 362S162-33 cross section with a slotted web hole. 

Figure 4.18 compares the finite strip and ABAQUS mode shapes for hUe/hc=0.14 where hc 

is the C-section web depth measured from the centerline flange to centerline flange. The 

CUFSM approximate method predictions are plotted for a range of h^/hc in Figure 4.19, 
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and compared with ABAQUS eigenbuckling predictions to demonstrate the viability of 

the prediction method. For this example, smaller hole widths lead to reductions in P„/ 

when compared to a member without a hole or members with larger holes. This 

counterintuitive result occurs because for small holes the unstiffened strip controls the 

local buckling behavior (i.e., the LH mode) and for large holes, local plate buckling 

occurs between the holes (i.e., the L mode), which is consistent with the elastic buckling 

observations for plates (see Chapter 3). (One must keep in mind that for strength the net 

section in yielding, as well as the elastic buckling load, ultimately determine the 

capacity, not just P„/.) 

"hole _ _ _ _ _ _ _ h, 

I L r 
CUFSM Approximation ABAQUS 
.(SSMA362S162-33) 

Figure 4.18 Comparison of CUFSM and ABAQUS predictions of unstiffened strip buckling. 
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Figure 4.19 ABAQUS results verify CUFSM local buckling predictions for an SSMA 362S162-33 column 
with evenly spaced web holes. 

The next example evaluates the influence of a slotted flange hole on P„f for an SSMA 

362S162-33 cross section. The unstiffened strip buckled mode shape for this cross-

section from both finite strip and finite element predictions are compared in Figure 4.20. 

It is observed that for both CUFSM and ABAQUS mode shapes, buckling occurs 

primarily in the web and flange strip, and that the flange strip - lip portion of the cross-

section remains stable at Pcrh. The CUFSM prediction method results are plotted for 

varying flange hole width bW(. relative to centerline flange width be and compared to 

ABAQUS eigenbuckling predictions in Figure 4.21. Pah decreases with increasing flange 

hole width for both CUFSM and ABAQUS results. The decreasing trend in the critical 

elastic buckling load demonstrates the importance of the flange in web local buckling 

dominated cross-sections. 
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Assume Lcr(!=Lholein CUFSM 

CUFSM Approximation ABAQUS 
(362S162-33) 

Figure 4.20 CUFSM and ABAQUS local buckling mode shapes are consistent when considering a slotted 
flange hole. 
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Figure 4.21 ABAQUS results verify CUFSM predictions for an SSMA 362S162-33 cross section with evenly 
spaced flange holes. 

The third example is an SSMA 1200S162-68 cross section with a slotted hole centered 

in the web. Figure 4.22 provides the CUFSM and ABAQUS buckled shapes when 

hMe/hc=0.16. The assumption in the CUFSM prediction method that Laf is equal to LMe=4 

in. produces a Pcrf7 higher than P„ without the hole (because Lcr/ is shorter than the local 
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buckling half-wavelength of the column) and therefore Pcr controls in the prediction 

method as shown in Figure 4.23. The approximate method correctly predicts that 

unstiffened strip buckling does not occur as observed in the ABAQUS buckled shape, 

and that the actual local buckling half-wavelength L„f is similar to that of a column 

without holes. The prediction for P„., is unconservative here though (ABAQUS results 

are 10% lower than PCT), because the hole causes a mixed local-distortional mode that is 

not captured by the CUFSM net-section model (with pinned corners) or the CUFSM 

gross cross-section model (without the influence of the web hole). For sections such as 

this where local and distortional buckling have similar half-wavelengths and critical 

elastic buckling loads, a full finite element eigenbuckling analysis may be warranted to 

evaluate the presence of holes. 

CUFSM Approximation ABAQUS 
{SSMA1200S162-68) 

Figure 4.22 ABAQUS predicts local plate buckling with distortional buckling interaction which is not 
detected in CUFSM. 
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Figure 4.23 ABAQUS results are slightly lower than CUFSM predictions, CUFSM predicts correctly that 
plate local buckling controls over unstiffened strip buckling. 

4.2.7.1.3 Method validation using elastic buckling database 

The elastic buckling database developed in Section 4.2.6.1 is utilized here to evaluate 

the CUFSM approximate method for predicting Pa,. Custom Matlab code was written to 

calculate Pcrt for all 78 specimens in the database (Mathworks 2007). The code performed 

a CUFSM analysis of the net cross-section (cross-section containing a hole) with pinned 

corners (x- and z-directions). The predicted Paf of each column specimen is the 

minimum of P„h (unstiffened strip buckling at the net section) and P„ (Table 4.4 and 

Table 4.6, CUFSM elastic buckling results, no hole). 

Figure 4.24 compares Pae reflecting the experimental boundary conditions in 

ABAQUS (from Table 4.4 and Table 4.6) relative to P„ and Pah. For all specimens, Pa (no 

hole, gross cross-section) is lower than Pcrh (hole, net cross-section) because the strips of 

web adjacent to the hole are stiffer than the cross-section away from the holes (similar to 
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the SSMA362S162-33 cross-section with hhJh>0.20, see Figure 4.19). Even for those 

column specimens with small holes relative web width, the holes are often circular or 

square and therefore P„* is predicted higher than Pcr since the buckling half-wavelength 

of the unstiffened strip is assumed equal to the diameter of the hole. This prediction 

result is consistent with the actual buckled behavior of stiffened elements with circular 

and square circular holes shown in Figure 3.19. 

Figure 4.25 compares the ABAQUS experiment P„t to the predicted Pcr< and 

demonstrates the approximate method is accurate for smaller holes relative to column 

size and becomes increasing conservative as hole size increases relative to column size 

(hh0Jh and IWL). The prediction becomes conservative because it does not take into 

account the wavelength stiffening effects (discussed in Section 3.3.2) which boost P^ as 

the hole becomes large relative to the column. The mean and standard deviation of the 

ABAQUS to predicted ratio are 1.11 and 0.18 respectively, demonstrating the viability of 

the method for the specimens considered. 

. *& 1 

• Pcrh (CUFSM net section) 

P (CUFSM gross section) 

KCL-JL 

0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1 

Q Pcrh (CUFSM net section) 

P (CUFSM gross section) 
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Figure 4.24 Predicted Pcr/> (CUFSM, buckling of the net cross-section) and P„ (CUFSM, buckling of the gross 
cross section, no hole) are compared relative to the ABAQUS PCT/with experiment boundary conditions as a 

function of (a) hole width to flat web width and (b) hole length to column length 
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Figure 4.25 Predicted Pcr/ (CUFSM approximate method) is compared relative to the ABAQUS Pcr/with 
experiment boundary conditions as a function of (a) hole width to flat web width and (b) hole length to 

column length 

4.2.7.2 Distortional buckling 

An approximate method utilizing the finite strip method is developed here for 

predicting the distortional critical elastic buckling load Pcrd of cold-formed steel columns 

with holes. The method simulates the loss in bending stiffness of a cross-section within 

a distortional buckling half-wave by modifying the cross-section thickness in CUFSM. 

Two different approaches to simulating this loss in stiffness are evaluated. The first 

approach reduces the member thickness in the regions of the cross-section with holes 

based on the ratio of hole length to distortional half-wavelength. The second approach 

is developed for C-sections with web holes and is mechanics-based, where the thickness 

of the entire web is reduced based on an assumed relationship between web bending 

stiffness (derived with observations from ABAQUS thin shell elastic FE analyses) and 

the bending stiffness matrix terms of a finite strip element. The steps for implementing 

these methods in CUFSM are described, and an example is provided where the 

prediction method for Pcrd is compared to ABAQUS eigenbuckling results for an industry 
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standard SSMA 250S162-68 cross-section with evenly spaced web holes along the length 

of a column. An empirical equation is derived to account for the increase in ?„« from 

warping fixed end conditions and then the viability of the approximate method is 

evaluated against Pcr<< from the column experiment database in Section 4.2.6.1. 

4.2.7.2.1 Prediction method 

The prediction method presented here for Pcrd assumes that the change in cross-

sectional stiffness within a distortional half-wave caused by the presence of a hole (or 

holes) can be simulated by assuming a reduced thickness of the cross-section. The 

distortional half-wavelength of the cross-section, Lai, without holes is determined first. 

The elastic buckling curve is calculated using the gross section of the column in CUFSM 

and Lai is read off of the curve at the location of the distortional local minimum as 

shown in Figure 4.26 (this elastic buckling curve corresponds to an SSMA 250S162-68 

cross section, where 1^=12 in.). The prediction method assumes that Lad does not change 

with the presence of holes. The cross-section is then modified to approximate the 

presence of holes within a distortional half-wavelength. Two approaches for this 

modification step are presented next in Section 4.2.7.2.1.1 and Section 4.2.7.2.1.2. Once 

the cross section is modified to account for the presence of a hole in CUFSM, another 

elastic buckling curve is generated and Pcrd (including the presence of the hole) is 

determined as the elastic buckling load occurring at LCT1, as shown in Figure 4.26. 
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Figure 4.26 CUFSM approximate method for calculating Pcn) for a column with holes. 

4.2.7.2.1.1 "Weighted average" approach for predicting hole influence 

The hole influence on distortional buckling of an open thin-walled cross section can 

be approximated by modifying the cross-section thickness in CUFSM at the location of a 

hole with the following equation: 

hole ~ 

r L ^ 
1 hole 

V Arrf J 
t. (4.2) 

The implementation of the reduced thickness in a C-section with a single web hole is 

provided in Figure 4.27. This approach is an intuitive first cut at approximating the 

reduction in bending stiffness of the cross section. A more refined mechanics-based 

approach is presented next. 
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Figure 4.27 Modified cross section to be used in CUFSM to predict P„d for a column with holes. 

4.2.7.2.1.2 "Mechanics-based" approach for predicting hole influence 

A plate model is developed in ABAQUS to study the influence of a hole on the 

bending stiffness of a SSMA 250S162-68 column experiencing distortional buckling. The 

stiffness reduction observed in ABAQUS is quantified and then equated to finite strip 

bending stiffness matrix terms to derive a reduced web thickness expression based on 

finite strip mechanics. The plate dimensions in ABAQUS are chosen to correspond to 

the web of the 250S162-68 section over one distortional half-wave. The plate width h is 

2.4 in., the plate length L=12 inches (consistent with Lcrd=12 in.), and t=0.0713 in. One 

slotted hole with LMe=4 in. is centered in the plate. The width of the hole is varied, 

hMe=0.5 in., 0.96 in., 1.20 in., 1.5 in., and 1.75 in. (and subsequently rMe varies). The 

modulus of elasticity, E, is assumed as 29500 ksi and Poisson's ratio, v, as 0.3 for all finite 

element models considered here. The ABAQUS boundary conditions and applied 

loading are described in Figure 4.28. The plate is simply-supported and loaded with 

imposed rotations at the long edges of the plate with magnitudes varying as a half-sine 

wave to simulate distortional deformation over one half-wavelength. 
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Figure 4.28 ABAQUS boundary conditions and imposed rotations for web plate 

The deformed shape of the plate when hhoJh=05Q is provided in Figure 4.29. At each 

node where an imposed rotation is applied, the associated moment is obtained from 

ABAQUS and plotted in Figure 4.30 as a transverse bending stiffness per unit length. 

(Note that near x=0 in. and x=12 in., the deformed shape in ABAQUS results in a small 

negative bending stiffness which is not plotted in Figure 4.30 and does not affect the 

overall results here. The negative stiffness is not predicted in the finite strip formulation 

because the longitudinal shape function is enforced as a half-sine wave). The hole 

causes a sharp reduction in bending stiffness at the location of the hole, but has a 

minimal influence on bending stiffness away from the hole. The stiffness reduction is 

shown to be relatively insensitive to the ratio of hole width to plate width except for 

peaks in stiffness that increase with hhou/h at the rounded edges of the slotted hole. The 

results in Figure 4.30 confirm the intuitive assumption employed to develop Eq. (4.2); 

the ratio of the length of the hole to the length of the distortional half-wave is an 

important parameter when predicting the loss in bending stiffness. 
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Figure 4.29 Plate deformation from imposed edge rotations, hhoie/h=0.50 
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Figure 4.30 Transverse rotational stiffness of the plate is significantly reduced in the vicinity of the slotted 
hole 

If K represents the cumulative transverse bending stiffness for the plate without a 

hole (area under the curve in Figure 4.30), then the reduced K including the presence of 

the hole can be approximated as: 

K-hote ~ 

( L A 

V Ard J 
K. (4.3) 
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The global bending stiffness K for a simply-supported finite strip element is derived by 

applying a unit rotation at the strip edges: 

Kb[dwffJ 

ku 

kn 

«31 

_k4l 

K2 
k22 

^32 

^42 

ft, 3 

k2i 

^33 

kA3 

k\A 

^24 

ft34 

«44_ 

' 0 ' 
1 

< 

0 
-1 

. = . 

V 
K 

V 

K 

(4.4) 

where the keb is the bending stiffness matrix and rfW0=[wj 9, w2 Oz] (Schafer and Adany 

2006). Solving Eq. (4.4) for K: 

K — /C22 ^24 • (4.5) 

Since k22 and k2i are both functions of the web thickness (t„eb)
3, K and Khoie can be equated 

directly as: 

K hole 

K 
X web,hole / 

V web ) 

(4.6) 

Substituting Eq. (4.6) and rearranging in terms of tweb,hoie, the reduced web thickness 

corresponding to the reduced transverse bending stiffness from the hole is: 

t web,hole 

f L ^ 
i hole 

V L c r d j 

1/3 

web ' (4.7) 

Eq. (4.7) is an improvement over Eq. (4.2) because it reflects the underlying plate 

bending mechanics involved in distortional buckling and is actually simpler to 

implement in CUFSM since the entire web thickness of a C-section is reduced to tmMBle 

instead of changing the sheet thickness just at the location of the hole as shown in Figure 

4.27. A similar modification to t has been proposed for web-slotted thermal structural 

studs (Kesri 2000). 
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4.2.7.2.2 Method example 

The distortional critical elastic buckling load Pcrd is calculated here with the CUFSM 

prediction method for a long column (L=100 in.) with an SSMA 250S162-68 cross-section 

and five evenly spaced slotted web holes (S=20 in., Ltote=4 in.). The width of the hole is 

varied relative to the web width, and ABAQUS eigenbuckling results are used to 

evaluate the viability of the method. All ABAQUS finite element models have CUFSM 

style boundary and loading conditions as shown in Figure 4.2. The modulus of 

elasticity, E, is assumed as 29500 ksi and Poisson's ratio, v, as 0.3 in all finite strip and 

finite element models. P„i is normalized by PM when plotted. Pu is the squash load of 

the column calculated with the gross cross-sectional area and assuming Fy=50 ksi. 

A comparison of the CUFSM prediction method (employing the "weighted average" 

thickness approximation) and ABAQUS distortional buckling mode shapes are provided 

in Figure 4.31 when hMe/h=0.63. Nine distortional half-waves form along the member in 

ABAQUS, with every other half-wave containing one slotted hole. The CUFSM 

prediction method employing both the "weighted average" and "mechanics-based" 

thickness modifications to the cross-section are compared over a range of hMe/h to 

ABAQUS eigenbuckling results in Figure 4.32. Pcrit for the pure ABAQUS distortional 

(D) buckling mode is plotted to demonstrate that prediction method is viable for this 

cross-section and hole spacing. The CUFSM prediction for Pad with the "weighted 

average" thickness reduction at the hole decreases with increasing hole width since the 

web provides less bending stiffness to the flanges as more hole material is removed. The 

CUFSM prediction employing the "mechanics-based" reduction in web thickness is not 
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a function of hMe/h and is shown to be a more realistic predictor of Vai than the "weighted 

average" approach. These approximate methods are evaluated against ABAQUS 

distortional buckling predictions from the column database in Section 4.2.7.2.4. 

CUFSM Approximation 
(250S162-68) 

ABAQUS 

Figure 4.31 Comparison of CUFSM and ABAQUS distortional buckling mode shapes. 
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Figure 4.32 CUFSM distortional buckling prediction method is conservative when considering an SSMA 
262S162-68 column with uniformly spaced holes. 
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4.2.7.2.3 Warping-fixed distortional amplification factor 

Longitudinal warping deformations occur as a result of distortional buckling in cold-

formed steel columns. When this warping deformation is restrained, the distortional 

buckling half-wavelength is shortened relative to the fundamental distortional half-

wavelength of the column cross-section, Lai. This change in half-wavelength results in 

an amplification of the distortional critical elastic buckling load of the column, P^ (see 

Figure 4.13a for boost in ?„* for stub columns). The elastic buckling database developed 

in Section 4.2.6.1 (Table 4.4 and Table 4.6) provides an opportunity to derive an 

empirical amplification factor since for all columns in the database, PCT(i for both warping-

fixed (ABAQUS) and warping free (CUFSM) boundary conditions are known and the 

fundamental distortional half-wavelength, L„i, has been calculated in CUFSM. 

The warping-fixed boundary condition effect on Vai is plotted for the 78 specimens in 

the column database in Figure 4.33. The boost in P„d is highest when the column is short 

relative to Lcrd because the wavelength shortening must be accommodated over just one 

half-wave. An empirical equation (also plotted in Figure 4.33) is fit to the data trend: 

^bOOSt ~ ry 

\(L V Jcrd (4.8) 
V L , 

This amplification factor can be used with the CUFSM prediction method developed in 

Section 4.2.7.2.1 when the column being considered has warping-fixed boundary 

conditions. Eq. (4.8) is consistent with the distortional buckling boost factor provided in 

the DSM Design Guide (AISI2006) as shown in Figure 4.33. 
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Figure 4.33 Warping-fixed boundary condition amplification of PCTCj 

4.2.7.2.4 Verification of CUFSM approximate method with column database 

The CUFSM approximate method for distortional buckling is now evaluated using 

the elastic buckling properties of the 78 column specimens from the experiment database 

developed in 4.2.6.1. The ABAQUS distortional critical elastic buckling load V„Al 

determined with the experiment boundary conditions, is plotted against the 

approximate method predictions in Figure 4.34. The predictions including the 

distortional amplification factor from Eq. (4.8). The approximate method employing the 

"weighted average" reduced web thickness at the hole from Eq. (4.2) and the 

"mechanics-based" reduced web thickness approach from Eq. (4.7) are both presented. 

The accuracy of the prediction method improves as the column length increases relative 

to the fundamental distortional half-wavelength Lcrd. The prediction accuracy is highly 
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variable when L/L^<1, primarily because of the variation in the boundary condition 

influence described in Section 4.2.7.2.3 for stocky columns. As expected, the 

"mechanics-based" thickness approach (with ABAQUS to predicted ratio mean and 

standard deviation of 1.19 and 0.29) is more accurate over the 78 columns than the 

"weighted average" approach (mean of 1.24 and standard deviation of 0.29). 
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Figure 4.34 Accuracy of the CUFSM approximate method for predicting Pcrd improves as column length 
increases relative to the fundamental distortional half-wavelength for warping-fixed columns 

4.2.7.3 Global buckling 

Two different approximate methods for calculating the critical elastic buckling load 

of a column, Pmi are evaluated in this section. Both methods employ weighted averages 

of the member section properties in the classical column stability equation to account for 

the influence of holes, one using a weighted cross-sectional thickness at the locations of 

the hole and the other using the weighted average of the gross and net cross sections. The 
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approximate methods are compared to ABAQUS eigenbuckling results for a long cold-

formed steel column (SSMA 1200S162-68 cross section) with uniformly spaced circular 

holes. The average torsional constants, / and Cm are calculated directly using ABAQUS 

for this column and then compared to their associated weighted average estimates. 

Based on these studies, recommendations are made regarding the approximate method 

most suitable for predicting Pcn for columns with holes. 

4.2.7.3.1 Description of methods 

4.2.7.3.1.1 Weighted Properties Method 

The equation for predicting the global (flexural only) critical elastic buckling load Pcre 

of a column with holes along its length can be solved using energy methods, and is 

derived for a column with two holes located symmetrically about the longitudinal 

midline of the column in Appendix E. The equation that evolves from the Raleigh-Ritz 

derivation for this case is: 

P. 
n E[ IgLm +Inei^H 

ere T 2 
g"NH ' ~net 

V 
(4.9) 

where ls is the moment of inertia of the gross cross-section, Ind is the moment of inertia of 

the net cross-section, LNH is the length of column without holes and LH is the length of 

column with holes (note that LNH + LH= L). The average moment of inertia of the column 

with holes is shown in Eq. (4.9) to be equivalent to the weighted average of the gross 

and net cross sections along the column length. An approximate method for calculating 

Pcre is proposed here which extends this "weighted properties" methodology in Eq. (4.9) 
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to all of the cross-section properties of the column required to solve the classical cubic 

buckling equation for columns (Chajes 1974): 

Q 2 2 D *̂ 2 

[Pcre,y - P\pcre, - P \ P „ , -P)- (Pcre,y - P)-^- -(Pcre,x - P)-^- = 0 (4.10) 
Y Y 

o ' o 

including the cross-sectional area A, moment of inertia Ix and Jy, St. Venant torsional 

constant /, and shear center location. The computer program CUTWP solves Eq. (4.10) 

for any general cross-section and is freely available (Sarawit 2006). The net section 

properties can be calculated in CUFSM (or CUTWP) by reducing the sheet strip 

thickness to zero at the location of the hole. This approximation is referred to as the 

"weighted properties" method. A general form of Eq. (4.9) is also derived in Appendix 

E which can be used with the "weighted properties" method for the case of a column 

with a single hole or multiple arbitrarily-spaced holes. 

4.2.7.3.1.2 Weighted Thickness Method 

This approximate method approaches the calculation of the average column section 

properties in a different way, by using a weighted member thickness at the location of 

the holes in the cross-section to calculate the average cross sectional properties: 

An example of a C-section with a reduced thickness at the location of a web hole is 

provided in Figure 4.35. This "weighted thickness" method is more convenient to 

implement than the "weighted properties" method presented in the previous section 
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because the modified cross-section (with reduced thickness) can be input directly into a 

computer program such as CUTWP. 

u 

Figure 4.35 A "weighted thickness" cross section can be input directly into a program that solves the 
classical cubic stability equation for columns (e.g. CUTWP). 

4.2.7.3.2 Example and verification 

ABAQUS global eigenbuckling results are compared in this section to the "weighted 

properties" and "weighted thickness" prediction methods for an industry standard 

SSMA 1200S162-68 long column (SSMA 2001) with evenly spaced circular holes. The 

length of the column L=100 in., the hole spacing S=20 in., and the diameter of the circular 

hole is varied from JitaJH=0.10 to hMJH=0.90 where H is the out-to-out depth of the cross-

section (see Figure 4.1 for cross-section dimension notation). All ABAQUS finite 

element models are loaded in compression at the member ends and have warping free 

boundary conditions as shown in Figure 4.2. The modulus of elasticity, E, is assumed as 

29500 ksi and Poisson's ratio, v, as 0.3 in all CUTWP and finite element models. 

The three global buckling modes of this SSMA 1200S162-68 long column without 

holes are calculated in CUTWP: (1) weak axis flexural buckling occurs at Pa=7.9\ kips, 

(2) flexural-torsional buckling occurs at Pcr=13.39 kips, and (3) strong-axis flexural 
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buckling occurs at Pa=604.17 kips. The first two buckling modes are the focus of this 

study since the strong-axis buckling mode is much higher than the squash load of the 

column (PM= 56.30 kips assuming Fy=50 ksi) and will not influence the design of the 

column. Figure 4.36 provides an example of the weak-axis flexural and flexural-

torsional buckling modes when hh<,iJH=0.50. Note that shell FE predicts local buckling 

mixing with the weak-axis flexural mode when /WH>0.50 because Pm is reduced by the 

presence of holes to a magnitude similar to the local critical elastic buckling load 

(P„/=6.69kips). Local buckling is not observed to mix with global buckling in the 

flexural-torsional (column) or lateral-torsional (beam) buckling in this study. 

Web local buckling ^ ^ 
mixes with global mode ^ ^ M . 

Weak Axis Flexural ' a » l l l l ^ Flexural-Torsional 
P„=e.9B kips * * * J ^ ^ P =10.64 kips 

Global column buckling modes 

(SSMA 1200S162-68, hhoto/h=0.50) 

Figure 4.36 Weak-axis flexural and flexural-torsional global buckling modes for an SSMA 1200S162-68 
column with evenly spaced circular holes. 

4.2.7.3.2.1 Section property calculations at the net section 

To draw meaningful conclusions regarding the "weighted properties" and 

"weighted thickness" prediction methods it is first helpful to understand how circular 

hole diameter influences the column's section properties. Figure 4.37 compares the net 

section to the gross cross-sectional area A, the strong and weak axis moment of inertia L 

and ly, the St. Venant torsional constant /, and the warping torsional constant C„ of the 
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column as they vary with hhoJH. All net section properties in this figure are determined 

with the CUFSM section property calculator by reducing the sheet thickness to zero at 

the location of the hole. A and J decrease linearly with hole diameter while Ix and Iy 

decrease nonlinearly. ly is most sensitive to the presence of the hole because the hole is 

located in the channel web for this case, which provides much of the contribution to the 

weak axis moment of inertia. Cm calculated here assuming zero thickness but continuity 

through the hole, varies nonlinearly with hMe/H. It is unclear if the net section C 

calculated in this way produces the best approximation of the column's actual physical 

behavior in torsional buckling. The magnitude of Cw is influenced heavily by cross-

section continuity since a line integral around the cross-section is used to solve for the 

warping function. Further investigation of / and C,„ for columns with holes is presented 

in Section 4.2.7.3.2.3. 

Cw 
Ix (strong) 

— e ly(weak) 

i i i i i i i i i i 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
hho,e/H 

Figure 4.37 Variation in net section properties as circular hole diameter increases. 

I .O 

8 1 

V) 

8 

o 

~ 0.5 

115 



4.2.7.3.2.2 Average section property calculations for the column - A, I„ and Iy 

The average section properties of the 1200S162-68 column with circular holes 

calculated using the "weighted thickness" and "weighted properties" methods are 

compared in Figure 4.38 through Figure 4.40. For this example problem there are 

minimal differences between the methods for A and Ix, although I, calculated with the 

"weighted properties" method decreases in stiffness relative to the "weighted thickness" 

method as hole diameter increases relative to column width. 

1.5 

< 

0.5 

weighted thickness 
weighted properties 

"-(•-. 

'*-. 

_i I i i_ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 4.38 Comparison of "weighted thickness" and "weighted properties" cross-sectional area. 
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Figure 4.39 Comparison of "weighted thickness" and "weighted properties" strong axis moment of inertia. 
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Figure 4.40 Comparison of "weighted thickness" and "weighted properties" weak axis moment of inertia. 

4.2.7.3.2.3 Average section property calculations for the column - J and Cw 

The average / and C of the 1200S162-68 column with circular holes is determined 

directly using ABAQUS and then compared to the "weighted properties" and 
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"weighted thickness" predictions in this section. The differential equation for torsion is 

defined as (Timoshenko 1961): 

dx w dx* 
T = GJ-^--ECw-^-, (4.12) 

where 0 is the angle of twist of the cross section and G is the shear modulus of steel 

(G=11346 ksi in this case). Eq. (4.12) is used in conjunction with static ABAQUS analyses 

(not eigenbuckling!) to solve for Jmg and Cw,ms of the column as hhoiJH varies from 0.10 to 

0.90. J,^ is calculated by applying a unit twist at the end of the column about the gross 

cross-section shear center while keeping the opposite column end fixed against twist as 

shown in Figure 4.41. If both ends of the column are free to warp, the variation in twist 

along the column is constant as shown in Figure 4.42 and warping resistance does not 

contribute to the resulting torsion (d3j3/dx3=0). The variation in twist was not sensitive to 

increasing hole diameter in this case, and therefore the line shown in Figure 4.42 is the 

same regardless of hole diameter. The twist J3 along the column is measured in 

ABAQUS as the relative rotation of the flange-web corners. The twist magnitude along 

the column length remains unchanged with increasing hhoJH. Jm! for the warping free 

column is calculated by rearranging Eq. (4.12): 

T I 
J =^— (4.13) 

ave f-, 0 v ' 

& Po 
avg 

po, G, and L are known and TQ is the torque resulting from the unit rotation po, which is 

read directly from ABAQUS. 
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1(x) 

, Cross-section kinematically restrained to shear 
center reference node in 2, 3 (warping free) 

~i 

shear center reference^ 
node (determined with / 
gross cross section) / 

Cross-section dof 
fixed in 2 and 3 
(warping free) 

Node at centerline 
of web fixed in 1 to 
prevent rigid body 
motion 

SECTION A-A 

Po 

Figure 4.41 ABAQUS boundary conditions for warping free and applied unit twist at x=0 in. and warping 
free but rotation restrained at x=100 in. 
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Figure 4.42 Angle of twist decreases linearly in the SSMA 1200S162-68 column with warping free end 
conditions. 

The resulting }mi from ABAQUS is compared against the "weighted properties" and 

"weighted thickness" calculations of ]mi. (Note that the "weighted properties" ]m is 

calculated with ]„e, from Figure 4.37 using the CUFSM section property calculator and 
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assuming the thickness is zero at the hole). It is clear from Figure 4.43 that the 

"weighted properties" calculation of ]mg is most consistent with } m derived from 

ABAQUS. 

1.5 

0.5 

—•— weighted thickness 
e weighted properties 

- B — ABAQUS 

_J L_ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

note 

Figure 4.43 The "weighted properties" approximation for Javg matches closely with the ABAQUS prediction 

for the SSMA 12S00162-68 column with holes 

The ABAQUS boundary conditions are now modified such that warping is 

restrained at the fixed column end as shown in Figure 4.44. A unit twist, /3„, is again 

applied at the free end, and the resulting angle of twist P along the length of the column 

is measured in ABAQUS. Because of the warping-fixed end condition, /?is nonlinear 

along the length of the column and warping resistance contributes to the torsional 

stiffness of the column. Since the distribution of /? along the column is not influenced by 

hMJH as observed in ABAQUS, an indirect solution of Cw,mg as a function of Cw,s can be 

derived: 
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c, T-GJ, 
w.avg 

avg 

c„ 

d£ 
dx 

(* = 0) 

^ - ^ - ( - o ) 
(4.14) 

where for each ABAQUS model (hholJH=0.lO to 0.90), the torque T„ associated with the 

unit twist po is read directly from ABAQUS and d/3ldx{x=Q) is calculated from Figure 4.45. 

As was the case for the warping free case in Figure 4.42, the variation in twist was not 

sensitive to increasing hole diameter and therefore the line shown in Figure 4.45 is the 

same regardless of hole diameter. The influence of holes on the variation in twist is 

expected to be more pronounced as column length decreases relative to hole length. 

Future research is planned to evaluate the influence of member length on the torsional 

properties of columns with holes. 

A s Cross-section kinematically restrained to shear 
center reference node in 2, 3 (warping free) 

1(x) 

shear center reference 
node (determined with 
gross cross section) 

Cross-section dof 
fixed in 1,2, and 3 
(warping fixed) 

SECTION A-A 

Figure 4.44 ABAQUS boundary conditions for warping free and applied unit twist at x=0 in. and warping 
fixed and rotation restrained at x=100 in. 
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Figure 4.45 Angle of twist is nonlinear along the SSMA 1200S162-68 column with warping fixed end 
conditions at x=100 in. 

Figure 4.46 demonstrates that the "weighted properties" and "weighted thickness" 

approximations both overestimate Cw,ms when compared to the ABAQUS derived Cmms 

demonstrating that neither is an accurate predictor of Cv,,m. A modified version of the 

"weighted properties" approximation is also plotted, where Cm,„el is taken equal to zero 

instead of C«,,„e, taken from the results in Figure 4.37. This assumption for Cw,ml is 

motivated by the idea that the hole separates the cross section into two pieces, where 

each piece on its own contributes minimally to warping resistance. This modified 

"weighted properties" approximation results in a conservative lower bound on Cw,mg 

which is useful from a design perspective until more accurate approximations are 

developed. 
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Figure 4.46 Comparison of "weighted thickness" and "weighted properties" approximations to the 
ABAQUS derived warping torsion constant Cw,avg. 

4.2.7.3.2.4 Comparison of prediction accuracy between methods 

Figure 4.47 compares the weak-axis flexural critical elastic buckling load of the 

1200S162-68 column calculated with the "weighted thickness" and "weighted 

properties" prediction methods to ABAQUS eigenbuckling results. The ABAQUS 

calculation of Pcre is systematically 10% lower than the prediction method (even for a 

column without holes), which results from the assumption of a rigid cross-section in the 

classical stability equations. The column cross-section as modeled in ABAQUS is 

allowed to change shape along the length, resulting in a lower axial stiffness of the 

column. (The reduction in Pcre was also confirmed in CUFSM, which like ABAQUS, 

accounts for plate-type deformations in elastic buckling calculations.) Beyond this 

systematic difference, both approximate methods are accurate predictors of Pm for 
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hhoiJh<0.60 and the "weighted properties" method remains accurate for even larger holes. 

The prediction of weak-axis flexure PCK using the net section properties from Figure 4.37 

is also plotted in Figure 4.47, demonstrating a conservative alternative to the "weighted 

properties" and "weighted thickness" methods. 

1.5 

•S 

a. 

Q 

S" 0.5 

- * — weighted thickness 
© weighted properties 

net section 

Difference is caused by classical rigid 
cross-section assumption which 
increases axial column stiffness 
when compared to ABAQUS 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
WH 

Figure 4.47 Comparison of "weighted thickness" and "weighted properties" prediction methods for the 
SSMA 1200S162-68 weak-axis flexural buckling mode. Predictions using net section properties are also 

plotted as a conservative benchmark. 

Figure 4.48 compares the "weighted thickness" and "weighted properties" methods 

to ABAQUS results for the second global mode, flexural-torsional column buckling. The 

accuracy of the prediction methods decrease with increase hMJH for both methods, 

confirming what was observed in Figure 4.46, that the weighted approximations for Cw 

are not accurate representations of the average warping torsion stiffness, especially as 

hhJH becomes large. Warping torsion dominates over St. Venant torsion in this mode 

since both weighted average methods predict similar variations in Pm, even though / 

varies between the two methods (see Figure 4.43). The "weighted properties" method 
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with Cwm replaced with Cw,m predicted in ABAQUS (see Figure 4.46) accurately predicts 

P„e until hhoJH exceeds 0.80, although this method may not be practical from a design 

perspective since it requires thin shell FE analysis. The modified "weight properties" 

approach, calculated assuming C„,,„e,=0, is shown to be more accurate than using just the 

net section properties and is a conservative method for predicting Pcn of flexural-

torsional buckling modes. Future research is planned to develop a mechanics-based 

approximation for the average C of a column including the influence of holes. 
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Figure 4.48 Comparison of "weighted thickness" and "weighted properties" prediction methods for the 
SSMA 1200S162-68 flexural-torsional column buckling mode. Predictions using net section properties are 

also plotted as a conservative benchmark. 
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4.3 Elastic buckling of beams with holes 

4.3.1 Analysis of existing tests on beams 

A column experiments database was assembled in Section 4.2.6.1 to serve as a 

resource in the development and validation of the Direct Strength Method for columns 

with holes. In this section, a similar database is developed that summarizes the elastic 

buckling properties and tested strengths of cold-formed steel beam experiments with 

holes. This database is used in Chapter 8 when developing and verifying DSM for 

beams with holes. 

The beam experiments considered in this study were conducted by Shan, 

LaBoube, Schuster, and Batson in the early 1990's and consist of three separate test 

sequences (Batson 1992; Schuster 1992; Shan and LaBoube 1994). Test Sequences 1 and 2 

were performed at the University of Missouri-Rolla (UMR) and Test Sequence 3 was 

executed at the University of Waterloo. Each specimen is made up of two C-sections 

oriented toe-to-toe as depicted in Figure 4.49. 3/4"x3/4"xl/8" aluminum angles connect 

the top and bottom flanges of the two channels with one self-drilling screw per flange. 

The angles provide a closed beam section that prevents lateral-torsional buckling of the 

individual channels. 

4.3.1.1 Member and hole dimension notation 

Beam cross-section and hole dimension notation is presented in Figure 4.50. The 

C-section inside corner radii are assumed to equal twice the measured thickness of the 

specimen. Two hole shapes were considered in the experiments, an industry standard 
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slotted hole and a tri-slotted hole with the curved hole ends replaced by triangular tips. 

The holes are centered in the web and are mechanically punched at 24 inches on center 

longitudinally with a hole at the center of the span. 

/ 

3/4"x3/4"x1/8" angle(top and bottom) 

• Cee channel (typ.) 

±=t*> 

self-drilling screw (typ.) 

Figure 4.49 Cross section of beam specimen showing aluminum strap angles connected to C- flanges 

H — ^ H 

H, 

| Channel 1 1 — t ^—'channe l 2 j 

"hole J 

5 iJi 

( 

< 

•"hole 

J 
Slotted hole 

H 5 
Tri-slotted hple 

Figure 4.50 C-section and hole dimension notation 

4.3.1.2 Tested boundary conditions and loading 

All beam specimens are tested as simply supported in four-point bending to 

create a region of constant moment between the load points at the center of the beam. 
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The point loads are applied through stub channels attached to the beam webs with self-

drilling screws. The stub channels prevent web crippling by distributing the 

concentrated load and by restraining the web. Lateral bracing is provided in the vicinity 

of the constant moment region by struts connecting the top flange aluminum angles to a 

reaction frame. The ends of the beam specimens are laterally braced by vertical rollers. 

A summary of the beam test setup is provided in Figure 4.51. 
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4.3.1.3 Finite Element Modeling 

The elastic buckling properties of the 72 beam specimens are obtained with 

eigenbuckling analyses in ABAQUS (ABAQUS 2004). All beams are modeled with S9R5 

reduced integration nine-node thin shell elements. Refer to Section 2.1 for a detailed 

discussion of the S9R5 element. Cold-formed steel material properties are assumed as 

£=29500 ksi and v=0.3. 

Special care is taken to simulate the experimental boundary conditions when 

modeling in ABAQUS. The simple supports with vertical roller restraints, the 

aluminum angle straps connecting the top and bottom channel flanges, the lateral 

bracing of the top flange in the constant moment region, and the application of load 

through the webs and are all considered. Figure 4.52 summarizes the ABAQUS 

boundary condition assumptions. 

Beam end restrained in 2 
and 3 (v, w=0) 

Restrain node at midline of 
top flange in 3 (w=0) (Typ.) 

Bottom flange restrained in 
1 at support (u=0) 

Rigid body connection 
between top (and bottom) 
flange midline nodes (Typ.) ' - - . _ " ^ ^ B e a m e n d r e s t r a i n e d |n 2 

yand 3 (v, w=0) 

Figure 4.52 Finite element model boundary conditions for beam eigenbuckling analyses 

To simulate the simply supported conditions with vertical rollers, the ends of the 

beams are modeled as warping free except for the bottom flange at one end which is 
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restrained to prevent longitudinal rigid body movement. The channel cross-sections are 

restrained from vertical and lateral translation at both beam ends. 

A rigid body restraint is used to model the connectivity between the top and 

bottom C-section flanges provided by the aluminum angle straps connected with self-

drilling screws. Figure 4.53 demonstrates how each angle is modeled as a rigid body 

made up of one midline flange node from each channel. The rigid body definition 

requires that the motion (both translational and rotational) of the two nodes is governed 

by a single reference node, in this case the midline flange node of Channel 1. The 

formulation allows for rigid body motion but requires that the relative position of the 

two nodes remains constant. A disadvantage of this rigid body restraint is that flange 

movements are only restrained at the midline node and do not simulate contact between 

the channel flange and aluminum angle, which sometimes results in distortional 

buckling modes that would not be physically possible. 

Rigid body connection 
between top (and bottom) 
flange midline nodes 

Figure 4.53 Channel and hole meshing details and modeling of aluminum angle straps 

Element meshing is performed with a custom-built Matlab program written by the 

author (See Appendix A). Figure 4.53 provides an example of a typical FE mesh, where 
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the holes are defined with a series of element lines radiating from the opening. Figure 

4.54 provides a close-up view of the rounded corner meshing of the channels. Two 

elements model the rounded corners here because S9R5 elements have quadratic shape 

functions which allow the initial curved geometry. Refer to Section 2.2 for more 

information on modeling rounded corners with S9R5 elements. 

/

2-ABAQUS S9R5 finite elements used for rounded comers 

of channels (max element aspect ratio of 16 to 1) 

\ • • • ' ^ V 

Figure 4.54 ABAQUS meshing details for C-section rounded corners 

Concentrated loads are applied to the beam specimens through vertical stub 

channels connected to the beam webs with self-drilling screws. To simulate the 

distribution of the load into a channel web, the concentrated load is applied as a group 

of web point loads in ABAQUS. Figure 4.55 demonstrates how the concentrated loads 

are applied to the beam webs in the finite element models. The web local buckling 

restraint (essentially doubling up of the web at the loading point) provided by the stub 

channels is not modeled in ABAQUS because it was observed to have a negligible 

influence on the elastic buckling behavior in the relatively long constant moment regions 

of the beams. 
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The transfer of load from the stub channels through the 
self-drilling screws is simulated as a series of web point 
loads in ABAQUS 

Figure 4.55 Modeling of the beam concentrated loads in ABAQUS 

4.3.1.4 Elastic buckling results and mode definitions 

The beam specimen elastic buckling modes were reviewed in ABAQUS by the 

author to identify the pure local (L) and distortional (D) buckling modes as well as any 

mixed elastic modes created by the addition of web holes. Lateral-torsional buckling is 

restrained by the top flange lateral bracing and aluminum angle straps (see Figure 4.51), 

although other possible global (G) buckling modes are possible as discussed in Section 

4.3.1.4.3. 

The mode identification process for beams with holes is guided by the 

experiences obtained in Section 4.2.4 for cold-formed steel compression members with 

holes. C-section columns with web holes exhibited unique mixed buckling modes 

where distortion of the flanges near the hole mixes with local buckling (LH mode). In 
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this beam study mixed local-distortional modes are again observed, as well as local web 

hole modes initiated by the compression component of the stress gradient from bending. 

4.3.1.4.1 Local Buckling 

Slotted holes in the beam specimen webs initiate unique local buckling modes 

and reduce the critical elastic local buckling moment M„/ in most cases. The shallow 

beam specimen without holes (nominal depth of 2.5 inches) in Figure 4.56 exhibits local 

buckling in both the top flange and web. The addition of slotted web holes creates a 

new local buckling mode, the LH2 mode. The LH2 mode occurs when the strip of web 

above the hole buckles in two half-waves. This mode occurs because the fundamental 

local buckling half-wavelength of the cross-section, Lae, is less than the length of the 

hole. The critical elastic buckling moment for the LH2 mode is 8 percent less than that of 

the pure L mode, suggesting that this local hole mode may influence the load-

deformation response of the beam. 

Figure 4.57 compares the elastic buckling behavior of a slightly deeper beam 

(nominal depth of 3.625 inches) with and without holes. The addition of slotted web 

holes again creates the LH2 mode with a critical elastic buckling moment that is 17 

percent less than the pure L mode. Figure 4.58, Figure 4.59, and Figure 4.60 summarize 

the influence of slotted holes on the local buckling behavior of deeper beams with 

nominal heights of 6 inches, 8 inches, and 12 inches respectively. The LH mode is 

identified in these deeper beam depths as the buckling of the strip of web above the hole 

into a single half-wave. The LH2 mode is observed in the 6 in. and 8 in. deep beams but 
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with a higher critical elastic buckling moment that the LH mode. The LH2 mode is not 

observed for the 12 in. deep specimen since L„t for this specimen exceeds the length of 

the hole. 

Figure 4.56 Local buckling modes for specimen 2B,20,1&2(H) with and without holes 

Figure 4.57 Local buckling modes for specimen 3B,14,1&2(H) with and without holes 
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Mcr,/Myg=0.75 

Mcr/Myg=0.87 

Mcr/Myg=1.07 

Figure 4.58 Local buckling modes for specimen 6B,18,1&2(H) with and without holes 

L 
Mcr/Myg=0.78 

M..JM =0.79 

Figure 4.59 Local buckling modes for specimen BP-40(H) with and without holes 
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4.3.1.4.2 Distortional Buckling 

Figure 4.61 compares the influence of slotted web holes on the distortional 

buckling of a shallow beam specimen (nominal height of 2.5 inches). For the specimen 

with holes, a unique DH+L mode is observed with a critical elastic buckling moment 20 

percent less that the pure D mode. This mode has similar characteristics to the LH mode 

in beams (see Section 4.3.1.4.1), especially the buckling of the strip above the hole into 

one half-wave. The DH+L mode is expressed more as a distortional mode though 

because the compression flange is wide relative to the unstiffened strip. The D mode 

without holes becomes a mixed distortional-local mode (D+L) when holes are added, 

although the critical elastic buckling moment is not significantly affected in this case. 

This specimen is sensitive to mixing of local and distortional modes because of the 
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relatively thin steel sheet thickness t of 0.0346 inches. It is also noted that the hole has 

only a small influence on the pure D mode half-wavelength for this specimen. 

The DH distortional buckling mode at the hole is also observed for a slightly 

deeper beam specimen (nominal height of 3.625 inches) in Figure 4.62. The sheet 

thickness for these channels is roughly double that of the previously discussed specimen 

(t=0,71 inches) and the hole depth is unchanged. M„/ is higher than Mad because of the 

increased thickness, resulting in DH and D modes without local buckling interaction 

when the slotted holes are present. The critical elastic buckling moment of the DH mode 

is 13 percent less than that of the pure D mode. 

Figure 4.61 Distortional buckling modes for specimen 2B,20,1&2(H) with and without holes 
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Figure 4.62 Distortional buckling modes for specimen 36,14,1 &2(H) with and without holes 

Figure 4.63 and Figure 4.64 compare the influence of slotted web holes on beams 

with nominal heights of six inches and eight inches respectively, both having a steel 

sheet thickness of r=0.047 inches. For these specimens the unstiffened strip buckling 

mode above the hole is identified as LH buckling (see Figure 4.58, Figure 4.59) instead of 

DH buckling because the majority of the buckling deformation occurs in the web. The 

similarities between the LH and DH modes can make them difficult to classify in some 

cases. Research on a mechanics-based modal identification method is underway. 

Figure 4.63 Distortional buckling modes for specimen 6B,18,1&2(H) with and without holes 
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Figure 4.64 Distortional buckling modes for specimen BP5-40(H) with and without holes 

Figure 4.65 Distortional buckling modes for specimen 12B,16,1&2(H) vvith and without holes 

The distortional buckling modes of the deepest beam specimen considered in this 

study (nominal depth of 12 inches) are provided in Figure 4.65. Identifying the 

distortional buckling modes for the channels making up this beam are inherently 

challenging because even for a member without holes, there is not a clear distinction 

between the L and D modes. The critical elastic buckling moments for a single C-section 

from the beam cross section are provided at various half-wavelengths from a finite strip 

analysis (CUFSM) in Figure 4.66 (including the modal participation factors calculated 

with the constrained finite strip method). Only one minimum exists, suggesting that the 

modes at or near the minimum buckling load are a mixture of L and D modes. The most 

suitable mode identified by the author (for the specimen without a hole) in Figure 4.65 

alternates between larger distortional half-waves and shorter local buckling half-waves 

in the constant moment region of the channels. For the specimen with the web holes in 
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Figure 4.65, the local half-waves are not present and the mode resembles more of a 

"pure" D mode. The DH mode is not observed for this specimen, which is consistent 

with the buckling behavior of stiffened elements in bending (see Figure 3.25). 

Unstiffened strip buckling (the plate mode that is hypothesized to initiate the DH mode 

in beams) does not occur when hh0ijh is small. 

half-wavelength 

Figure 4.66 Elastic buckling curve for 12" deep specimen with modal participation summarized, note that 
selected L and D are mixed local-distortional modes 

4.3.1.4.3 Global buckling 

Lateral-torsional buckling is a common global (G) elastic buckling mode in 

beams, although this mode is eliminated for the specimens considered here by 

connecting the two C-sections toe-to-toe with aluminum angles and by providing lateral 

bracing at the compression flange in the constant moment region of the beams (see 

Figure 4.51). Twisting of an individual channel about its longitudinal axis is still 

possible though, even with the top flange restrained. Figure 4.67 depicts the potential 

twisting mode. CUFSM is used to conservatively quantify the elastic buckling moment 

for this mode, and it is determined that Mm is more than ten times the yield moment My 
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for the specimens in this study. Since the Mm does not influence the DSM prediction as 

long as Mm > 2.78 My, the global twisting mode is not summarized in the database. 

\ / Lateral braoing of top flange 

XI r 
Figure 4.67 Possible global buckling mode occurs about the compression flange lateral brace point 

4.3.1.5 Elastic buckling database for beams with holes 

Table 4.11 summarizes the dimensions and material properties of each channel 

making up the beam (Channel 1 and Channel 2), including cross section and hole 

dimensions, tested ultimate point load P,es, (for each channel) and ultimate moment M,es, 

(for each channel), tested specimen yield stress Fy, specimen yield moment My,s 

(calculated with the gross cross-section), and My,„c, (calculated with the net cross-

section). Fy varies from 22.0 ksi to 93.3 ksi with a mean of 48.6 ksi and standard 

deviation of 14 ksi. This large variation in yield stress was somewhat unexpected. 

ABAQUS eigenbuckling results are summarized in Table 4.12 for each channel 

considering the experiment boundary conditions both with and without holes. These 

results are used in Section 4.3.1.6 to evaluate the influence of holes on Mcr/ and Mcrd- The 

CUFSM elastic buckling results are also provided, including the fundamental 

distortional half-wavelength Lail which are used in Section 4.3.1.7 to evaluate the 

influence of experiment boundary conditions on M^ and McnJ and the distortional half-

wavelength. 
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Table 4.10 presents the cross-section parameter ranges of the beam C-sections 

contained in the experiment database. All of the beam specimens have cross-section 

dimensions that meet the DSM prequalification standards for ultimate strength 

prediction summarized in Table 4.9 (AISI-S100 2007). Four of the beam specimens 

exceed the yield stress prequalification limit of Fy<70 ksi. 

Table 4.9 DSM prequalification limits for beam C-sections 

Beam parameter ,?S*J 
prequalification limit 

Web slendemess H/t<321 

Flange slendemess B/t<75 

Lip slendemess 0<D/t<34 

Web/flange 1.5<H/B<17 

Lip / flange 0<D/B<0.70 
Yield stress Fy<70 ksi 

min 
max 

Table 4.10 Parameter ranges for beam specimens with holes 
D/t H/t B/t H/B D/B hhole/h 
5.5 40.5 16.3 1.5 0.18 0.13 

22.1 257.1 58.3 7.7 0.42 0.67 

Fy (ksi) 
22.0 
93.3 
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Table 4.11 Beam experiment cross-section dimensions / material properties, and tested strengths 

Study and Specimen Name 

Teat 
Sequence 

Member Length, Load 
Location and Thickness 

span 

Material 
Properties 

Cross Section Dimensions 
Yield Stress and Moment of Inertia 

Channel Channel 

Shan and LaBoubs 1694 

' Schuster 1992 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

2.16.142(H) 
2.20.142(H) 
2.20.3.4(H) 
3.14.142(H) 
3.14.344(H) 
3.18.142(H) 
3.18.384(H) 
3.20.142(H) 
3.20.344(H) 
12.14.142(H) 
12.14544(H) 
12.16.142(H) 
12.16.344(H) 
2B.16.142(H) 
2B.16,344(H) 
2B,20,1&2(H) 
2B20,344(H) 
3B.14,142(H) 
3B, 14.344(H) 
36.18.142(H) 
3B. 18.344(H) 
3B 20.142(H) 
3B,20,344(H) 
3B.20,516(H) 
3B.20.142(T) 
3B20.344(T) 
6B.18,142(H) 
68.18,3&4(H) 
6C.18,142(H) 
6C.1ST3&4(H) 
6D. 18,142(H) 
6D,1S,344(H) 
6B .20,142(H) 
8A. 14,142(H) 
8A. 14.344(H) 
8A, 14.546(H) 

SA 14.748(H) 
8A,14,9410(H) 
8B.14,142(T) 
8B,14.344(T) 
8B.14,546(T) 
SB.14,748(T) 
8D.14.142(T) 
BD.14,344(T) 
8B.18,142(H) 
80.18.142(H) 
8D.18.344(H) 
8A20.142(H) 
8/UO .344(H) 
8B.20.142(T) 

8B20.344{T} 
SB.20.546(T) 
8B,20,74S(T) 
8D.20,142(T) 
8D.20,344(T) 
8D,20.546(T) 
12B,1S. 142(H) 
12B.16.344(H) 
12B.18.546(H) 
126.16.748(H) 
BP4—40(H) 
BP5—40(H) 
BP6—40(H) 
BP7—65(H) 
BPS-65(H) 
BP9—65(H) 
CP4—40(T) 
CP5—40(T) 
CP6—40(T) 
CP7—65(T) 
CP8—65{T) 
CP9—85(1) 

in. 
150.0 
1500 
150.0 
150.0 
150.0 
150.0 
150.0 
150 0 
150.0 
192.0 
192.0 
192.0 
192.0 
150.0 
150.0 
150.0 
150.0 
150.0 
150.O 
150.0 
150.0 
150.0 
150.0 
150.O 
150 0 
150.0 
1S2.0 
192.0 
192.0 
192.0 
192.0 
192.0 
1S2.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
1920 
1920 
192.0 
192-0 
102.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192.0 
192 0 
192.0 
192.0 
188.0 
168.0 
168.0 
168.0 
168.0 
168.0 
168.0 
168.0 
168.0 
168.0 
168.0 
168.0 

hi. 
39 0 
39.0 
39.0 
39.0 
39.0 
39.0 
39.0 
39.0 
39.0 
60.0 
60.0 
60.0 
60.0 
39.0 
39.0 
38.0 
39.0 
39.0 
39.0 
39.0 
39.0 
39.0 
39.0 
39.0 
39.0 
390 
60.0 
6 0 0 
60.0 
600 
60.0 
600 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
6 0 0 
60.0 
6 0 0 
60.0 
6 0 0 
60.0 
60.0 
6 0 0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
48.0 
48.0 
48.0 
48.0 
4 8 0 
48.0 
48.0 
48.0 
48.0 
48.0 
48.0 
48.0 

in. 
0.062 
0.039 
0.039 
0.077 
0.077 
0.044 
0.044 
0.044 
0.044 
0.098 
0.098 
0055 
0.055 
0050 
0.059 
0.033 
0.033 
0.071 
0.071 
0.044 
0044 
0.036 
0.038 
0.036 
0.029 
0.029 
0.046 
0.046 
O.048 
0.048 
0.046 
0.046 
0.033 
O.074 
O.074 
0.074 
0.065 
0.065 
0.067 
0.067 
0.065 
0.065 
0.065 
0.065 
0.045 
0.046 
0.046 
0.031 
0.031 
0031 
0.031 
0.031 
0.031 
0.043 
0.043 
0.043 
0.O60 
0.060 
0.060 
0.060 
0.047 
0.047 
0.047 
0.047 
0047 
0.047 
0048 
0.O48 
0.048 
0.O48 
0.048 
0.O4S 

kst 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
2S500 
29500 
29500 
29500 
29500 
29500 
29500 
29SO0 
29500 
29500 
29500 
295O0 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 
29500 

0.3 Slotted 
0 3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0.3 Slotted 
0 3 Tri-slotted 
0.3 Trt-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 
0.3 Tri-slotted 

*\. 2.000 
2.000 
2-000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4000 
4.000 
4.000 
4.000 
4000 
4.000 
4.000 
4.000 
4.000 
4.500 
4500 
4000 
4.000 
4.000 
4.000 
4.000 
4000 
4.000 
4000 
4.000 
4.000 
4.000 
4000 
4.500 
4.500 
4500 
4.500 
4.500 
4.500 
4.000 
4.000 
4.000 
4000 
4.000 
4.500 
4.500 
4.500 
4.500 
4500 
4.500 
4500 
4.000 
4.000 
4.000 
4.000 

4.02 
4.02 
4 0 2 
4.53 
4.53 
4.53 
465 
4.65 
4.65 
4.61 
4 61 
4.61 

in 
0750 
0.750 
0750 
1.500 
1500 
1.500 
1.500 
1.500 
1500 
1.500 
1.500 
1500 
1.500 
1.500 
1500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1 500 
1.500 
1.500 
1500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1 500 
1.500 

1.5 
1.5 
1.5 

2.48 
2.48 
248 
1.69 
169 
1.69 
252 
2.52 
2.52 

«. 0.375 
0375 
0375 
0.750 
0.750 
0.750 
0.750 
0.750 
0750 
0.750 
0.750 
0.750 
0750 
0.750 
0.750 
0.750 
0.750 
0.750 
0.750 
0.750 
0.750 
0.750 
0.750 
0.750 

— — 0 750 
0 750 
0.75O 
0.750 
0 750 
0 750 
0.750 
0.750 
0.750 
0 750 
0.750 
0 750 

— — — _ — — 0750 
0750 
0.750 
0.750 
0.750 

— _. — — — — _ 0.750 
0.750 
0 750 
0.750 
0.750 
0.750 
0750 
0.750 
0.750 
0.750 
„ 

— — — — — 

in. 
2.510 
2.500 
2.510 
3680 
3.690 
3 750 
3.650 
3.650 
3.670 

12.080 
12.050 
11.960 
12.070 
2.460 
2.470 
2.420 
2.420 
3.650 
3.640 
3.610 
3.620 
3610 
3.610 
3600 
3.560 
3.560 
6060 
6050 
5.960 
5.950 
6020 
6.020 
5920 
8.060 
8070 
8070 
8.030 
8.040 
8050 
8050 
8020 
8.030 
7950 
7950 
7950 
8.000 
6.000 
7.930 
7.930 
7970 
7960 
7.960 
7.950 
7.940 
7 940 
7950 

11.950 
11980 
11.960 
11970 

799 
7.99 
799 
7.99 
7.99 
7.99 
7.99 
7.99 
8.03 
799 
8.03 
7.99 

in. 
2.510 
2480 
2520 
3.680 
3.690 
3.650 
3.640 
3.710 
3690 

12 070 
12.000 
11.970 
11.960 
2.460 
2460 
2.420 
2.430 
3.620 
3.630 
3.630 
3.630 
3.600 
3.610 
3.600 
3.570 
3.560 
6.050 
6.020 
5.960 
5.980 
6.020 
6020 
5.920 
8.060 
8.070 
8070 
8.030 
8040 
8.050 
8.040 
8.020 
8.030 
7960 
7950 
7940 
8.000 
8.000 
7.930 
7.920 
7.970 
7960 
7.950 
7950 
7.940 
7.940 
7.950 

11.950 
12.020 
11970 
11.960 

7.99 
7.99 
7.99 
799 
7.99 
7.99 
7.99 
7.99 
803 
7.99 
799 
7.99 

in. 
1.610 
1600 
1.590 
1.650 
1.630 
1.560 
1.560 
1.560 
1-560 
1.640 
1.640 
1.570 
1.560 
1.620 
1-630 
1.630 
1.630 
1.620 
1.630 
1.610 
1.620 
1.630 
1.640 
1.630 
1.620 
1.620 
1.620 
1.620 
1-980 
1.970 
2.420 
2.430 
1.630 
1.380 
1.380 
1.370 
1.390 
1.390 
1.640 
1.640 
1.630 
1.630 
2.480 
2.470 
1.590 
2420 
2.420 
1.380 
1.370 
1.630 
1.630 
1.630 
1.630 
2.490 
2.460 
2490 
1.630 
1630 
1.630 
1.630 

1.61 
1.61 
1.61 
1.58 
1.61 
1.61 
1.58 
1.58 
1.61 
1.61 
1.58 
1.61 

in. 
1.610 
1600 
1.620 
1.640 
1.620 
1.560 
1.580 
1.640 
1.590 
1.630 
1.600 
1.570 
1.570 
1.630 
1.620 
1.640 
1.640 
1.660 
1.620 
1.650 
1.660 
1.620 
1.630 
1.630 
1.650 
1.680 
1.620 
1.620 
1.990 
1.980 
2.430 
2.430 
1.620 
1 380 
1.380 
1.380 
1.390 
1.380 
1.630 
1.640 
1.640 
1.630 
2.500 
2490 
1.580 
2.450 
2.450 
1.390 
1.380 
1.640 
1630 
1.630 
1630 
2.450 
2.460 
2.460 
1.630 
1630 
1.630 
1.630 
1.61 
1.61 
1.61 
1.58 
1.58 
1.58 
1.58 
1.61 
1.61 
1.61 
1.61 
1.61 

in. 
1.630 
1600 
1.580 
1.630 
1.640 
1.570 
1.560 
1.550 
1.550 
1.690 
1.670 
1.570 
1.570 
1.620 
1.620 
1.630 
1.630 
1.630 
1620 
1.650 
1.650 
1.630 
1.640 
1.620 
1.680 
1.690 
1.550 
1.550 
1.980 
1.990 
2.430 
2.430 
1.520 
1.380 
1.380 
1.380 
1.390 
1.380 
1.640 
1.640 
1.640 
1.630 
2.470 
2.470 
1.580 
2440 
2.450 
1.380 
1.390 
1.630 
1.620 
1.630 
1.640 
2.450 
2.440 
2450 
1.630 
1620 
1.630 
1.620 
1.61 
1.61 
1.61 
1.58 
1.61 
1.58 
1.58 
1.58 
1.58 
1.61 
1.58 
1.63 

in. 
1.610 
1.600 
1.600 
1.630 

in. in. in. in. 
0.400 0.450 0.420 0.430 
0.420 0.410 
0.360 0.420 
0.570 0.550 

0.420 0410 
0.470 0.410 
0.560 0.520 

1.630 0.530 0.530 0.620 0.550 
1.580 
1.570 
1.590 
1.610 
1.630 
1.710 
1.560 
1.580 
1.610 
1.630 
1.620 
1.620 
1.630 
1.630 
1.620 
1.640 
1.620 
1.630 
1.630 
1.600 
1.610 
1.550 
1.550 
1.990 
1.980 
2.430 
2.430 
1.530 
1.380 
1.380 
1.370 
1.400 
1.380 
1.640 
1.640 
1.630 
1.630 
2.490 
2.480 
1.580 
2.430 
2.430 
1.380 
1.370 
1.620 
1.630 
1.630 
1.630 
2.490 
2.480 
2.480 
1.630 
1.630 
1.630 
1.630 

1.61 
1.61 
1.61 
1.58 
1.58 
1.58 
1.58 
1.58 
1.58 
1.61 
1.61 
1.61 

0.580 
0.560 
0.520 

0.560 
0.570 
0.560 

0.600 0.560 
0.690 
0.650 
0.500 
0.420 
0.470 
0.470 
0.420 
0.420 
0.540 
0.540 
O.S10 
0.500 
0.460 
0.460 
0.460 

0.600 
0.640 
0.610 
0.530 
0.460 

0.580 0 540 
0.540 0.540 
0.550 0.560 
0.520 0-590 
0.600 0.620 
0.650 0.640 
0.520 0.430 
0.580 0.530 
0.510 0.510 

0.520 0.520 0.460 
0.420 
0.410 
0.550 
0.470 
0.520 
0.500 
0.470 
0.470 
0.460 

0500 0.500 
0.500 0.500 
0.490 0.500 
0,490 0.540 
0.500 0.500 
0.520 0.520 
0.460 0.470 
0.470 0 470 
0.460 0.470 

0.590 0640 0.620 0.610 
0.580 
0.470 
0.470 
0.640 
0.600 
0.700 
0.700 
0.440 
0.490 
0.500 
0.410 
0.430 
0.460 
0.630 
0.640 
0.640 
0.660 
0.640 
0.660 
0.470 
0.610 
0.600 
0.410 
0.450 
0.610 
0.620 
0.610 
0.610 
0.640 
0.640 
0.620 
0.530 
0.470 
0.510 
0.480 
0.47 
0.47 
0.47 
0.47 
0.47 
0.47 
0.51 
0.51 
0.53 
0.51 
0.51 
0.53 

0.630 0.620 0.570 
0.470 
0.480 
0.590 
0.650 
0.620 
0700 
0.470 
0.480 
0.410 
0.500 

0.500 0.500 
0.500 0.510 
0.590 0.640 
0.640 0.630 
0.620 0.700 
0 610 0.620 

in. 
0.124 
0078 
0.078 
0.154 
0154 
0.088 
0088 
0.088 
0088 
0.196 
0.106 
0.110 
0.110 
0.118 
0.118 
0.066 
0.066 
0.142 
0 142 
0.088 
0.088 
0.072 
0 072 
0.072 
0.058 
0.058 
0.092 
0.092 
0.096 
0.096 
0.092 
0.092 

0.440 0 420 0.066 
0.410 0.430 
0.410 0 500 
0490 0.410 

0.148 
014B 
0.148 

0.480 0 480 0.450 0.130 
0.440 
0.640 
0.640 
0.630 
0.610 
0.480 
0.480 
0.470 
0.690 
0.700 
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4.3.1.6 Influence of holes on beam local and distortional critical 
elastic buckling loads 

4.3.1.6.1 Local buckling 

The ABAQUS local buckling eigenbuckling results for each beam specimen C-section 

(Channel 1 and Channel 2) with holes is compared to the same beam specimen but 

without holes in Figure 4.68. The variation in MCT for the LH, LH2, and L modes (see 

Section 4.3.1.4.1 for definition) with hole size to flat web depth is highlighted in Figure 

4.68a. The LH mode (buckling of the compressed unstiffened strip above a hole) is 

observed only when 0.20<hhok/h<0A0, and is always the lowest buckling mode when it 

exists. As htojh exceeds 0.40 the lowest mode switches to the LH2 mode. This trend 

occurs because as h decreases, the local buckling half-wavelength decreases causing 

multiple half-waves to form in the unstiffened strip at the hole. When hMJh<0.20 the 

unstiffened strip above the hole is relatively stiff (i.e., deep relative to hole length) and 

plate buckling controls as the lowest local buckling mode. The minimum M„ for the LH, 

LH2, and L is plotted in Figure 4.68b exhibits a similar trend to that observed for 

stiffened elements in bending (see Figure 3.26a), where the maximum hole influence 

occurs when hhoie/h is between 0.30 and 0.40. Unstiffened strip buckling (LH and LH2) of 

full members controls for hMJh exceeding 0.50 which is also consistent with the behavior 

of a stiffened element in bending (and different from a column with holes, where web 

local buckling occurs away from the hole for large hh0,Jh). The presence of the C-section 

flanges reduces the magnitude of the hole influence in a full member when compared to 
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a stiffened element, which is consistent with similar observations for compression 

members (see Figure 4.4). 
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Figure 4.68 Influence of holes on beam specimen Mcr/(Channel 1 and Channel 2 plotted) considering (a) all 
local buckling modes and (b) the lowest local buckling mode 

4.3.1.6.2 Distortional buckling 

The ABAQUS distortional buckling eigenbuckling results for each beam specimen C-

section (Channel 1 and Channel 2) with holes is compared to the same beam specimen 

but without holes in Figure 4.69. The variation in M„ for the DH and D modes (see 

Section 4.3.1.4.2 for definition) with hole size to flat web depth is highlighted in Figure 

4.69a. The DH mode is often the lowest distortional mode in Figure 4.69b, especially 

when hhok/h is between 0.20 and 0.40. This mode is initiated by unstiffened strip buckling 

and is related to the LH mode, and therefore its maximum influence in this region is 

expected. 

The ratio of web depth to flange width is an important parameter to consider when 

differentiating between the LH and DH modes for beams with holes. The DH mode is 

most prevalent in the range 2<H/B<6 as shown in Figure 4.70. As the beam depth 

increases relative to flange width (H/B>6) the distortional tendency associated with 
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unstiffened strip buckling decreases and the DH mode transitions to the LH (or LH2) 

mode. 
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Figure 4.69 Influence of holes on beam specimen Mcrd (Channel 1 and Channel 2 plotted) as a function of 
hole depth to flat web depth considering (a) all distortional buckling modes and (b) the lowest distortional 

buckling mode 
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Figure 4.70 Influence of holes on beam specimen Mc,d (Channel 1 and Channel 2 plotted) as a function of 
web depth to flange width considering (a) all distortional buckling modes and (b) the lowest distortional 

buckling mode 

4.3.1.7 Influence of experiment boundary conditions on beam local 
and distortional critical elastic buckling loads 

4.3.1.7.1 Local buckling 

The influence of experiment boundary conditions on the elastic buckling 

behavior is evaluated by comparing the ABAQUS critical elastic buckling moment 
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Mcrf (without holes) of each C-section making up the beam specimens to the local 

buckling moment determined with the finite strip software CUFSM. Since the finite 

strip method considers elastic buckling of each channel individually under a constant 

moment, the comparison of ABAQUS and CUFSM results isolate the influence of the 

aluminum angle straps at the top and bottom flanges, as well as the lateral bracing and 

the application of the constant moment as a series of point loads in the experiments. The 

experiment loading and boundary conditions have a minimal influence on Mcr/ for the 

specimens considered in this study as shown in Figure 4.71. This result is consistent 

with the local buckling mode shapes in Section 4.3.1.4.1, where it was observed that the 

formation of local buckling half-waves in the constant moment region were unimpeded 

by the angle straps. 
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Figure 4.71 Influence of test boundary conditions on M„/ 
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4.3.1.7.2 Distortional buckling 

The influence of the experiment boundary conditions on the distortional 

buckling behavior is evaluated by comparing the critical elastic buckling moment Mcri 

(without holes) from the ABAQUS eigenbuckling analyses to the buckling moment of 

each channel individually determined with the finite strip software CUFSM. The 

comparison of ABAQUS and CUFSM results isolates the influence of the aluminum 

angle straps, lateral bracing and the load application method on the critical elastic 

moment results. The experiment test conditions provide a significant boost to M^ as 

shown in Figure 4.72b, which is hypothesized to be related to the restrained distortional 

buckling caused by the aluminum angle straps. This hypothesis is supported by existing 

research on unrestrained elastic distortional beam buckling (no compression flange 

connections), which observed similar CUFSM and ABAQUS eigenbuckling results (Yu 

and Schafer 2006). The pure D distortional half-wavelengths approximated from 

ABAQUS (for specimens without holes) in Figure 4.72b are often shorter relative to the 

predicted half-wavelengths from a finite strip analysis. This trend is a direct result of 

the angle spacing (12" on center for Test Sequences 1 and 3, 6" for Test Sequence 2), 

which is less than the fundamental LcrU for many of the C-sections. The change in half-

wavelength away from the natural half-wavelength of the distortional mode increases 

the critical elastic buckling moment. This boost in JVL* decreases with increasing H/B as 

shown in Figure 4.72a, since the fundamental L„i also decreases as beam web depth 

increases relative to flange width. 

150 



1.4 

! " 

: 

J . , 
0 2 

8 

6 

• 

• 

o ef 

0 

f 

1 
o 

1 
&& 1 

o 

% 

$ 
„ 

» 

<§° 
««fc 

o 

& L . 

* 0 

o 

%) 
030 

%"> 
« » • 

-0; 
m 

© 

<nv 

o 

Figure 4.72 Influence of test boundary conditions on (a) Mcra and (b) on the distortional half-wavelength 

The boost in Mai from the restraint of the beam compression flanges exhibits a 

linear trend when plotted against the ratio of Lcri (from CUFSM) versus the restraint 

spacing S/,raa in Figure 4.73. A linear equation is fit to this trend, resulting in a useful 

approximation of the restraint boost: 

A«,=o.i5 
V " brace J 

+ 0.85, ''crd >1 
' brace 
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Figure 4.73 Boost in M^ from the angle restraints increases as the fundamental distortional half-wavelength 
increases relative to the restraint spacing Sf,rac(. 
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The DSM Design Guide's suggested modification to Mc,d when L<=L„d is also plotted in 

Figure 4.73 (AISI2006, Section 4.2): 

Mcrd \L> < LcrdcUFSM ) = M crd {Lj Lcrd£UFSM ) cr' , (4.16) 

where M*ai is the minimum distortional critical elastic buckling moment read from 

CUFSM. L is assumed equal to St,m when plotted in Figure 4.73, i.e. the distortional half-

wave is assumed to form between the flange braces. The DSM Design Guide prediction 

for Mc„< is higher than that proposed by Eq. (4.16) because for many of the beams in the 

ABAQUS-generated elastic buckling database, Lcnl was shortened but not completely 

restrained between braces. On the other hand, the ABAQUS eigenbuckling analyses did 

not simulate contact between the angles and the flanges (only the bending and shear 

stiffness of the angles), and therefore the actual Mcrt most likely lies between the two 

predictions. 

4.3.2 Approximate prediction methods for use in design 

4.3.2.1 Local buckling 

4.3.2.1.1 Prediction method 

The approximate method for predicting the local elastic buckling behavior of cold-

formed steel beams is similar to the method for columns presented in Section 4.2.7.1.1 

Local buckling is assumed to occur as the minimum of MCT of the gross cross-section (as 

calculated in the Direct Strength Method) and local buckling of the compressed 

unstiffened strip adjacent to the hole, M„h. The method captures the lowest unstiffened 
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strip buckling mode, either the LH or LH2 mode, with the procedure described in Figure 

4.17. When the hole length is longer than the fundamental half-wavelength of the net 

cross-section Lcrt, then the LH2 mode governs. When the hole length is less than !„*, the 

LH mode governs. 

To predict Mcrh from the net cross-section in CUFSM, the cross-section is restrained to 

isolate local buckling from distorrional buckling as shown in Figure 4.74. Compressed 

corners should be restrain in the direction normal to the neutral axis about which 

bending occurs (corners experiencing tension need not be restrained). It is important to 

avoid fully restraining a cross-section element, since this prevents Poisson-type 

deformations and artificially stiffens the cross-section. The only time both the x and z 

directions of a corner should be restrained is if a hole isolates two compressed 

intersecting elements (as in the case of a flange hole in a C-section, see Figure 4.74a). 

Finally, when holes isolate two compressed elements of a cross-section (similar to the 

flange hole in the column hat section, see Figure 4.16b), the isolated element should be 

removed from the cross-section. This prediction method is validated in the next section 

using the beam elastic buckling database developed in Section 4.3.1.5. 
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Figure 4.74 Guidelines for restraining beam net cross-sections in the CUFSM local buckling approximate 
method 

4.3.2.1.2 Method verification using elastic buckling database 

The finite strip prediction method is used to predict Mar for the 144 C-sections 

described in Table 4.11. These predictions are compared to the ABAQUS eigenbuckling 

results from Table 4.12 (the minimum of L, LH, and LH2 modes), and demonstrates that 

the finite strip approximate method is viable and conservative over a wide range of hole 

widths and beam depths. A clear transition from L and LH2 buckling to LH buckling 

occurs as the C-sections increases in depth as shown in Figure 4.75a. This observation is 

consistent with finite element eigenbuckling observations (see Figure 4.56 to Figure 

4.60), where as beam depth increases the half-wavelength of the net-section increases 

beyond the length of the hole, resulting in a switch from unstiffened strip buckling in 

two half-waves (LH2) to one half-wave (LH). The mean and standard deviation of the 

ABAQUS to predicted ratio for MCT/are 1.14 and 0.16 respectively. 
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Figure 4.75 Comparison of ABAQUS to predicted Matiox C-sections with holes in the beam database as a 
function of (a) web depth and (b) hole width relative to flat web depth 

4.3.2.2 Distortional buckling 

4.3.2.2.1 Prediction method 

The "weighted average" and "mechanics-based" finite strip methods for predicting 

M„d of columns with holes introduced in Section 4.2.7.2.1 are employed here to predict 

the distortional critical elastic buckling load of cold-formed steel beams with holes. 

These approximate methods are evaluated against the ABAQUS Mc,d (the minimum of 

the DH and D modes) from the beam experiment database in Table 4.12. 

4.3.2.2.2 Method verification using elastic buckling database 

Figure 4.76 plots Mail determined with ABAQUS versus the predictions using the 

"weighted-average" and "mechanics-based" approximate methods. The ABAQUS Maa 

(with holes) is multiplied by the ratio of Mcrd from CUFSM to Mcrd from ABAQUS without 

holes to eliminate the influence of the boundary conditions and to allow for a consistent 

comparison between the ABAQUS results (with only the hole influence) and the 

prediction method. The ABAQUS to "mechanics-based" prediction ratio is more 
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accurate (ABAQUS to predicted mean of 1.04 and standard deviation of 0.02) than the 

"weighted-average" prediction (ABAQUS to predicted mean of 1.10 and standard 

deviation of 0.06), which is consistent with the verification study for columns with holes 

in Section 4.2.7.2.1. 
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Figure 4.76 Comparison of "mechanics-based" and "weighted-average" prediction methods to ABAQUS 
results for the distortional buckling load hft.„d of C-sections with holes in the elastic buckling database 

4.3.2.3 Global buckling 

The "weighted thickness" and "weighted properties" approximate methods 

presented in Section 4.2.7.3.1 are now implemented to predict Mm for a beam with 

uniformly spaced holes loaded with a constant moment. 
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4.3.2.3.1 Description of Prediction Method 

The "weighted thickness" and "weighted properties" approximates for ly, J, and Cw 

are employed with the classical lateral-torsional stability equation to predict Mm of a 

beam with holes (Chajes 1974): 

M. EL GJ + ECW^ (4.17) 

4.3.2.3.2 Example and Verification 

The long SSMA 1200S162-68 member evaluated in Section 4.2.7.3.2 as a column is 

now evaluated as a beam with a uniform moment along the member to compare 

prediction methods to ABAQUS results. The ABAQUS boundary conditions and 

applied loading are described in Figure 4.77. The beam ends are modeled as warping-

free and the cross-section at the longitudinal midline is warping-fixed. Warping at the 

member ends is visible in Figure 4.77 for this lateral-torsional buckling mode. 

!•!• 
Cross-section dof fixed in 2 
and 3 (warping free) 

Cross-section dof fixed in 1 
and 1 at longitudinal 
midline (warping fixed) 

Warping free end detail 

Cross-section dof fixed in 2 
and 3 (warping free) 

Moment applied as 
consistent nodal loads on 
cross section (typ.) 

Figure 4.77 ABAQUS boundary conditions and applied loading for an 
SSMA 1200S162-68 beam with holes (/Wfc=0.50 shown) 
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Figure 4.78 demonstrates that both the "weighted stiffness" and "weighted 

properties" models are accurate predictors of Mm for hhoiJh<0.50 in this particular case. 

For hMJh>0.50, the reduction in prediction accuracy occurs because the weighted average 

approximations for Cw are not consistent with the actual physical behavior (J was shown 

to be consistent with the "weight properties" method for calculating section properties 

in Section ). If a designer does not know Cw,m%l then using the net section properties 

(calculated with CUFSM, see Figure 4.37) or the "weighted properties" prediction with 

C, „e,=0 are both viable options for conservatively predicting Mm. 

1.5 

1 1 

2 

i 
S 0.5 

4§«=#==g: B— 

- * — weighted thickness 
-<-v weighted properties 

net section 
- g — weighted properties, ABAQUS C 

A weighted properties, C .=0 
w.avg 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
hhole/h 

Figure 4.78 Comparison of "weighted thickness" and "weighted properties" prediction methods for the 
SSMA 1200S162-68 lateral-torsional beam buckling mode. Predictions using net section properties are also 

plotted as a conservative benchmark. 
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Chapter 5 

Experiments on cold-formed steel 
columns with holes 

The elastic buckling modes discussed in Chapter 4 and their influence on the load-

deformation response of cold-formed steel columns can be readily observed and 

quantified with experiments. In this study, 24 cold-formed steel lipped C-section 

columns with and without slotted web holes are tested to failure. The column lengths 

and cross-section dimensions are specifically chosen to explore the connection between 

local, distortional, and global elastic buckling modes, ultimate strength, and the 

resulting failure mechanisms. The elastic buckling behavior is evaluated for each 

specimen with a finite element eigenbuckling analysis, taking care to accurately simulate 

the tested boundary conditions and measured specimen dimensions. These elastic 

buckling results are used to provide a means of understanding the varied deformation 

response under load. The columns are tested with friction-bearing boundary conditions 

where the ends of each specimen are milled flat and parallel, and bear directly against 
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steel platens. Recommendations are made to advise other researchers on the viability of 

the friction-bearing boundary conditions when testing short and intermediate length 

columns. 

5.1 Acknowledgements 

The cold-formed steel column tests described in this chapter were completed with a 

team effort from the individuals below: 

Eric Harden Latrobe Hall Machine Shop 
Walter Krug Maryland Hall Machine Shop 
Michael Franckowiak Maryland Hall Machine Shop 

Dr. Rachel Sangree Johns Hopkins Postdoctoral Researcher 
Jack Spangler Senior Mechanical Engineer - Structures Lab 
Nickolay Logvinosky Structures Lab Technician 
Mario Fasano Johns Hopkins Senior 
Rebecca Pierce Johns Hopkins Freshman 
Dawneshia Sanders Baltimore Polytechnic Institute Senior 
Alexander Pei High School Intern 

Clark Western Building Systems in Dundalk, MD graciously donated the structural 

studs. 

5.2 Testing Program 

Twenty-four cold-formed steel lipped C-section columns with and without pre

punched slotted web holes were tested to failure. The primary experimental parameters 

are column cross-section, column length, and the presence or absence of slotted web 

holes. The specimen naming convention, as it relates to the testing parameters, is 

defined in Figure 5.1. 
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SSMA362S162-33 

r i 
SSMA600S162-33 

r i 

No Holes 
362-1 -24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 

Holes 
362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1 -48-H 
362-2-48-H 
362-3-48-H 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-H 
600-2-48-H 
600-3-48-H 

Short Column 

Intermediate 
Column 

Short Column 

Intermediate 
Column 

Cross 

. 
/ 
/ 

section type 

362-1-24-NH ,, 
" t \ \ 

I N 
Specimen 
number within 
common group 
(1.2,3) 

\ 

- Specimen with holes 
(H) or without holes 
(NH) 

Nominal specimen 
length, 24 in or 48 in. 

Figure 5.1 Column testing parameters and naming convention 

5.2.1 Rationale for selecting specimen dimensions 

5.2.1.1 Cross-section types 

Two industry standard cross-sections from the Steel Stud Manufacturers Association 

(SSMA 2001), 362S162-33 and 600S162-33, were evaluated in this study. The 362S162-33 

cross-section has a nominal web width of 3.62 in., while the 600S162-33 web is wider at 

6.00 in. Both sections have a 1.62 in. flange and nominal sheet thickness of 0.0346 in. 

Specific measured dimensions are provided in Section 5.2.4. 

The buckling half-wavelengths that form along the length of the specimens are cross-

section dependent, and can be calculated with the semi-analytical finite strip method 

(FSM) (Schafer and Adany 2006). FSM assumes simply supported boundary conditions, 

and therefore the local and distortional half-wavelengths for the cross-sections studied 

here, as provided in Table 5.1, are only a guide as to the expected half-wavelength in the 

fixed-fixed tests. The FSM half-wavelengths are still a useful reference when deciding on 

specimen lengths (see Section 5.2.1.2) and identifying buckling modes (see Section 5.3.2), 

especially as specimen length increases and local and distortional buckling half-
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wavelengths converge to the fundamental (simply supported) half-wavelengths 

reported in Table 5.1. 

Table 5.1 FSM local and distortional buckling half-wavelengths for nominal 362S162-33 and 600S162-33 
cross-sections 

Elastic buckling half-wavelength 
Cross-section Local (L) Distortional (D) 

iru irv 
362 2.8 15.4 
600 4 J _ 12.2 

5.2.1.2 Column lengths 

More than 80% of the tested specimens with holes available in the literature are stub 

columns, as depicted in the specimen length histogram of tested specimens provided in 

Figure 5.2. (The histogram is constructed with the specimens from the elastic buckling 

database in Section 4.2.6.) Stub columns accommodate local buckling half-waves, but 

due to their short length, distortional buckling is typically restrained from forming at 

relevant stress levels. The specimen lengths selected in this study, a 24 in. short column 

and a 48 in. intermediate length column, ensure that at least one distortional half-wave 

and multiple local half-waves can form along the length of the column (see Table 5.1). 

Further, at least for North American practice, the selected lengths are more typical of the 

unbraced length of actual cold-formed steel columns in an "all-steel" design with 

bridging in place to brace the studs. 
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Stub column tests 

Specimens with 

holes in this study 

/ \ 

L o! 
20 30 40 50 60 70 

column specimen length (in.) 
0 2 4 6 B 10 12 14 16 18 20 

L/H 

Figure 5.2 Tested lengths of cold-formed steel columns with holes as a function of (a) column length L and 
and (b) L versus out-to-out column width H 

5.2.1.3 Hole type and location 

One slotted web hole is located at the mid-height of the short column to evaluate its 

influence at the mid-length of one distortional buckling half-wave. Two slotted web 

holes are oriented in the intermediate length columns with an industry standard spacing 

of 24 in. (SSMA 2001). The holes also coincide with the locations where distortional 

buckling half-waves are expected to have their maximum displacement under load. A 

typical short column and intermediate length column specimen with slotted holes is 

provided in Figure 5.3. 
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Oj 
i 

Short column Intermediate length column 

Figure 5.3 Typical column specimens with slotted holes 

5.2.2 Column test setup 

The column tests were performed with the 100 kip capacity two-post MTS 

machine shown in Figure 5.4. The upper crosshead and lower actuator are fitted with 12 

in. x 12 in. x 1 in. thick chrome-moly 4140 steel platens ground flat and parallel. The 

column specimens bear directly on the steel platens as they are compressed. Friction 

between the column ends and the steel platens are the only lateral forces that restrain the 

column cross-section under load. An MTS load cell (model number 661-23A-02) 

measured the applied compressive force on each specimen, and an internal MTS length-

voltage displacement transducer (LVDT) reported actuator displacement. 

24 in. 
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All column specimens were loaded in displacement control at a constant rate of 

0.004 inches per minute. This rate was selected to ensure that the 3 ksi axial stress per 

minute upper limit in the Specification for stub column testing would not be exceeded 

(AISI-TS-2-02 2001). An MTS 407 controller was used to operate the hydraulic actuator 

during the compression tests. 

Fixed 
Crosshead 

Load Cell 

Position 
transducers 
(with 
magnet tips) 

Friction-bearing 
boundary conditions 
(specimen bears 
directly on steel 
platen) 

Figure 5.4 Column test setup and instrumentation 

Two Novotechnik T Series position transducers fitted with ball-jointed magnet 

tips measured the east-west displacements of the specimen flange-lip intersections at 

column mid-height. Each transducer has a stroke of six inches and is powered by one 9-

volt battery. The battery strengths were checked periodically to ensure that a drop in 

battery charge did not influence the transducer readings. The load cell and transducer 

readings are transmitted as voltage to a PC fitted with a National Instruments data 

acquisition card. The voltages are then converted to forces and displacements with the 

conversion factors summarized in Table 5.2. All displacement conversion factors were 
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determined by the author with a voltmeter and digital calipers. The data is plotted to 

the PC screen and recorded in a text file with a custom Lab VIEW program (Labview 

2005). 

Figure 5.5 Novotechnik position transducer with ball-jointed magnetic tip 

Table 5,2 Voltage conversion factors for column test instrumentation 
Measurement 

Tensile Force 
Actuator Displacement 
West Flange Displacement 
East Flange Displacement 

Source 
MTS Load Cell 
MTS Internal LVDT 
Novotechnik Position Transducer 
Novotechnik Position Transducer 

Conversion 
1 Volt = 1000 Ibf 
1 Volt = 0.300 in. 
1 Volt = 0.678 in. 
1 Volt = 0.678 in. 

5.2.3 Column specimen preparation 

All column specimens were cut from 8 ft. structural studs using the Central 

Machinery 4 Vi inch metal cutting band saw shown in Figure 5.15. For short columns 

without holes, the whole series of specimens (for example 362-1-24-NH, 362-2-24-NH, 

and 362-2-24-NH) was cut from a single 8 ft. structural stud. For all other specimen 

types, each specimen was cut from its own individual stud. Tensile coupons for 

materials testing were obtained from the leftover stud lengths. 
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Figure 5.6 Central Machinery metal band saw used to rough cut column specimens 

The specimen ends were milled to ensure flat and parallel bearing surfaces for 

testing. The flatness tolerance across the specimen end is recommended as ±0.001 inches 

for stub columns and was adopted as the goal for this study (Galambos 1998a). The 

short columns were side-milled with a Fadel computer numerically-controlled (CNC) 

vertical milling machine. The intermediate length columns were too long for the CNC 

machine, and were instead side-milled with a Bridgeport manual milling machine. 

During initial trials the milling process caused troublesome vibrations of the specimen. 

The large clamping forces required to dampen the vibration also tended to modify the 

shape of the C-section during the milling process. Unsatisfactory flatness results were 

obtained in these trials, with flatness variations of up to ±0.010 inches. 

The milling procedure was improved by encasing the specimen ends in bismuth 

diaphragms before milling as demonstrated in Figure 5.7. The diaphragms preserved 

the undeformed shape of the specimens, dampened vibration during the milling 
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process, and reduced the clamping force required to hold the specimens in place. 

Bismuth is a chemical element that is relatively soft compared to steel at room 

temperature and melts at 158 degrees Fahrenheit. 

Figure 5.7 362S162-33 short column specimen with bismuth end diaphragms 

Liquid bismuth was poured into custom wood forms at the specimen ends. Once 

the bismuth was set, the specimen (with bismuth end diaphragms) was positioned in the 

milling machine (Figure 5.8 through Figure 5.11). Several passes were made until the 

steel cross-section and bismuth diaphragm were flush. Both column ends were milled 

without removing the specimen from the milling table to reduce the chances of 

unparallel bearing ends. The bismuth diaphragms were removed from the specimen 

with a few taps of a wooden mallet and then melted down for use with the next 

specimen. The flatness tolerance of ±0.001 inches was achieved for all but four 

specimens (see Section 5.2.4.4, the maximum out-of-flatness was +0.003 in.). 
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Figure 5.8 600S162-33 short column specimen oriented in CNC machine 

Figure 5.9 An end mill is used to prepare the column specimens 
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Figure 5.10 The intermediate length specimens were end-milled in a manual milling machine 

Figure 5.11 The specimens are clamped at the webs only to avoid distortion of the cross-section 
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5.2.4 Column specimen measurements and dimensions 

5.2.4.1 Specimen reference system and dimension notation 

All column dimensions are measured with reference to the orientation of the 

specimen in the testing machine. The assumed reference system and specimen 

dimension notation are provided in Figure 5.15. 

5.2.4.2 Cross-section measurements 

The out-to-out dimensions of the web, flanges, and lip stiffeners were measured 

with digital calipers and aluminum reference plates at the midlength of the specimens. 

The measurement procedure for a typical cross-section is summarized in Figure 5.12 

(specimen setup) and Figure 5.13 (cross section dimensions). The outside corner radii 

were measured using a set of radius gauges with 1/32 in. increments. The cross-section 

dimensions, based on the average of three independent measurements, are provided for 

each specimen in Table 5.3. 
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Check levelness of measuring platform with 
the angle indicator. The slope 
perpendicular to the length of the specimen 
should be as close to zero as possible. 

Find and mark the longitudinal midline of 
the specimen. 

Clamp the specimen to the measuring 
platform. 

Figure 5.12 Setup procedure for measuring specimen cross section dimensions 
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Clamp a beveled aluminum plate to the 
flange. Use the veneer caliper to measure 
the distance between the edge of the lip and 
the outside face of the beveled plate. The 
true dimension (D, or D2) is then found by 
subtracting the thickness of the beveled 
plate from the veneer caliper reading. 

Clamp beveled alumninum plates to the lip 
and web, ofsetting them longituinally by 
about 1/2 inch. Make sure that the beveled 
faces are oriented so that they are touching 
the channel. 

Use the extension on the veneer caliper to 
measure the distance between the outside face 
of the lip plate and the inside face of the web 
plate. Make sure that the extension is flush with 
the flange surface. The true dimension (B, or 
B2) is found by subtracting the the thickness of 
the beveled plate from the veneer caliper 
reading. 

Clamp beveled alumninum plates to each flange, ofsetting them 
longituinally by about 1/2 inch. Make sure that the beveled faces are 
oriented so that they are touching the channel. 

Use the extension on the veneer caliper to measure the distance 
between the outside face of one flange plate and the inside face of the 
other flange plate. Make sure that the extension is flush with the web 
surface. The true dimension H is found by subtracting the the 
thickness of the beveled plate from the veneer caliper reading. 

Figure 5.13 Procedure for measuring specimen cross-section dimensions 
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Clamp beveled aluminum plate to flange. 

Measure the flange angle with the angle 
indicator {F, and F2). 

Clamp the beveled aluminum plate to the 
stiffener lip. Measure the flange angle 
using the angle indicator {S^ and S2). 

Figure 5.14 Procedure for measuring flange-lip and flange-web angles 

The four corner angles of each C-section are measured with a digital angle 

indicator as demonstrated in Figure 5.14. The angle indicator has a precision of 0.1 

degrees. The flange-lip angles Si and Sz are measured at the midlength of the specimens; 

the web-flange angles F, and F2 are measured at multiple points along the specimen as 

denoted in Table 5.4. The C-section corner angle magnitudes, based on the average of 

two independent measurements, are provided for each specimen in Table 5.4. 
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Table 5.3 Summary of measured cross section dimensions 

North 

a 
1 
b 
1 

Specimen 

362-1 -24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 

362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 

600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 

600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

H 

in. 

3.654 
3.712 
3.623 
3.583 
3.645 

3.672 
3.624 
3.624 
3.614 
3.622 
3.623 
3.633 
6.037 
6.070 
6.030 
6.040 
6.011 
6.032 

6.018 
6.017 
6.026 
6.010 
6.017 
6.062 

B, 

in. 

1.550 
1.586 
1.677 
1.650 
1.627 

1.674 
1.611 
1.609 
1.604 
1.602 
1.594 
1.604 
1.599 
1.582 
1.601 
1.594 
1.608 
1.606 

1.621 
1.596 
1.585 
1.598 

1.589 
1.632 

B2 

in. 

1.621 
1.585 
1.679 
1.595 
1.593 

1.698 
1.605 
1.585 
1.599 
1.595 
1.610 
1.610 
1.631 
1.614 
1.591 

1.606 
1.602 
1.577 
1.609 
1.601 
1.627 
1.625 
1.607 
1.588 

in. 
0.411 
0.416 
0.425 
0.430 
0.440 

0.418 
0.413 
0.407 
0.425 
0.420 
0.425 
0.395 
0.488 
0.472 
0.369 
0.484 
0.369 
0.360 

0.486 
0.482 
0.489 
0.480 

0.476 
0.366 

D2 

in. 

0.431 
0.422 
0.399 
0.437 
0.391 
0.426 
0.426 
0.421 
0.401 
0.412 
0.403 
0.432 
0.365 
0.380 
0.483 
0.359 
0.500 
0.478 
0.374 
0.357 
0.338 
0.388 
0.356 
0.480 

RT, 

in. 

0.188 
0.172 
0.188 
0.188 
0.188 
0.188 
0.172 
0.188 
0.188 
0.172 
0.172 
0.172 
0.172 
0.203 
0.156 
0.172 
0.172 
0.172 
0.172 
0.172 
0.172 
0.188 
0.172 
0.172 

RT2 

in. 

0.188 
0.203 
0.172 
0.203 
0.188 
0.188 
0.172 
0.172 
0.188 
0.172 
0.172 
0.172 

0.156 
0.203 
0.172 
0.172 
0.172 
0.172 
0.172 
0.172 
0.172 
0.156 
0.172 
0.172 

RB, 

in. 

0.172 
0.266 
0.281 
0.281 
0.281 
0.266 
0.281 
0.297 
0.266 
0.281 
0.281 
0.281 

0.250 
0.266 
0.266 
0.250 
0.203 
0.250 
0.234 
0.234 
0.266 
0.250 
0.234 
0.219 

RB2 

in. 

0.188 
0.281 
0.281 
0.281 
0.281 
0.266 
0.281 
0.281 
0.266 
0.281 
0.281 
0.250 

0.203 
0.266 
0.219 
0.219 
0.234 
0.203 
0.219 
0.234 
0.219 
0.219 
0.234 
0.250 

West 

b 

i 
.... 

East 

Section a-a L 
rhnln=hhola'2 

>r 
Hole detail 

South 

Front View 

W, W2 

Section b-b 
Figure 5.15 Specimen measurement nomenclature 
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5.2.4.3 Specimen thickness 

All structural studs were delivered by the manufacturer with a zinc outer coating 

applied for galvanic corrosion protection. The total zinc thickness (i.e., summation of 

the zinc coating thicknesses applied to each side of the steel sheet) and the base metal 

thickness (sheet thickness with total zinc coating removed) defined in Figure 5.16 were 

measured for each specimen. The total zinc thickness was used to calculate the 

centerline cross-section dimensions from the out-to-out measurements (see Section 

5.2.4.2), which were then input along with the base metal thickness into the nonlinear 

finite element models discussed in Chapter 7. The base metal thickness was also used to 

calculate the steel yield stress provided in Section 5.2.5. 

, zinc (typ.) 

base metal 

Figure 5.16 Base metal and zinc thickness definitions 

Total zinc thickness and base metal thickness were measured for each specimen 

from tensile coupons cut from the west flange, east flange, and web of an untested 

section of structural stud. The thickness measurements were made to a precision of 

0.0001 inches with a digital micrometer fitted with a thimble friction clutch. The 

thickness was determined by averaging five measurements taken within the gauge 
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length of the tensile coupon (see Figure 5.27 for the definition of gauge length). The 

base sheet metal thicknesses h^.w (web), Um,n (west flange), Umfl (east flange) and 

corresponding total zinc coating thicknesses t2i„c, izincfl, and tzi„c,p are summarized for each 

specimen in Table 5.5. 

Table 5.5 Specimen bare steel and 

Specimen 

362-1 -24-NH 
362-2-24-NH 
362-3-24-NH 
362-1 -24-H 
362-2-24-H 
362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

Web 

*bare,w 

in. 

0.0368 

0.0390 
0.0368 
0.0394 
0.0392 
0.0393 
0.0389 
0.0391 
0.0390 
0.0401 

0.0438 

0.0414 
0.0427 
0.0429 
0.0434 
0.0435 
0.0436 
0.0429 
0.0429 
0.0430 

*zinc,w 

in. 

N/M 

0.0030 
0.0057 
0.0027 
0.0025 
0.0025 
0.0013 
0.0019 

N/M 
0.0000 

N/M 

0.0042 
0.0039 
0.0031 
0.0026 
0.0017 
0.0015 
0.0022 

N/M 
N/M 

sine coating 
West Flange 

We,f1 
in. 

0.0415 

0.0391 
0.0390 
0.0394 
0.0393 
0.0394 
0.0391 
0.0393 
0.0391 
0.0400 

0.0432 

0.0422 
0.0384 
0.0431 
0.0436 
0.0430 
0.0432 
0.0426 
0.0428 
0.0434 

tzincfl 

in. 

N/M 

0.0034 
0.0023 
0.0018 
0.0020 
0.0022 
0.0009 
0.0017 

N/M 
0.0000 

N/M 

0.0044 
0.0084 
0.0026 
0.0024 
0.0024 
0.0021 
0.0023 

N/M 
N/M 

thicknesses 
East Flange 

*bare,f2 

In. 

0.0372 

0.0391 
0.0391 
0.0394 
0.0392 
0.0393 
0.0390 
0.0394 
0.0391 
0.0397 

0.0438 

0.0428 
0.0424 
0.0430 
0.0434 
0.0430 
0.0433 
0.0429 
0.0431 
0.0430 

*zlnc,f2 

in. 

N/M 

0.0028 
0.0034 
0.0026 
0.0020 
0.0026 
0.0017 
0.0017 

N/M 
0.0010 

N/M 

0.0030 
0.0042 
0.0036 
0.0028 
0.0023 
0.0020 
0.0021 

N/M 
N/M 

NOTE: N/M Not measured 

The zinc coating was removed by immersing the tensile coupons in a ferric 

chloride bath for 100 minutes. The immersion time was determined with a study of 

coupon thickness variation over time for the 362-2-24-H web and the 600-2-24-H west 

flange tensile coupons. The coupons were removed from the ferric chloride bath every 

10 minutes, cleaned, and then measured. Figure 5.17 demonstrates that the coupon 

thickness converges to a constant value, the base metal thickness, at approximately 100 

minutes. 
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The average zinc coating thickness (i.e., average of tzim, t^fi, and tzincfl) for all 

specimens was 0.0026 inches using the ferric chloride method described above. 

Specimen coating thickness measurements were also made with a Positest DFT digital 

thickness gauge (www.defelsko.com) which produced an average coating thickness for 

all specimens of 0.0016 in. At the microscopic level, the bonding of the zinc to the steel 

substrate results in a gradient from pure zinc to a mixture of steel and zinc (Porter 1991). 

This gradient complicates the identification of the non-structural thickness of the 

galvanic coating. The base thickness and coating thickness determined with the ferric 

chloride method (as reported in Table 5.5) are used throughout this thesis. Accurate 

identification of the non-structural and structural contributions of the galvanic coating is 

warranted as a topic of future research, especially since the load-deformation response 

and ultimate strength are sensitive to base metal thickness. 

1.4 

1.2 
V) 

'£ 
c 
O I 

(0 

5 0.8 

"to 

S3 
1 0.6 
o 

JC 

8 0.4 
Q. 
3 
O 
O 

0.2 

* - 362-2-24-H Web Coupon 
-©— 600-2-24-H West Flange Coupon 

After 100 minutes, zinc coating ( t ^ t , * ^ ) has 
been removed with ferric chloride solution 

20 40 60 80 
time (minutes) 

100 120 

Figure 5.17 Removal of tensile coupon zinc coating as a function of time 
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5.2.4.4 Specimen end flatness and length 

After each specimen was saw cut and milled flat, the vertical height gauge (with 

a precision of 0.001 inches) shown in Figure 5.18 was used to measure the specimen 

length and flatness. For each specimen, two independent length measurements were 

taken at each rounded corner location described in Figure 5.19. The height gauge and 

specimen are placed on the same steel table to ensure that all measurements are made in 

the same reference plane. The steel table was checked for flatness with a dial gauge and 

precision stand before measurements proceeded. Lengths LRTh LRT2, LRBi, and LRB2 as 

well as the average length L are provided for each specimen in Table 5.6. The specimen 

flatness, defined as the difference between LRTi, LRT2, LRBi, and LRB2 and the average 

length L, is reported in Table 5.7. All but four specimens met the flatness tolerance of 

±0.001 inches, with intermediate length column 362-2-48-H having the maximum 

deviation of +0.003 inches at LRT2. 

Figure 5.18 A height gauge is used to measure specimen length 
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LRT, 

West 

LRT, 

East 

LRB, LRB, 

Figure 5.19 Lengths are measured at the four corners of the C-section column 

Table 5.6 Measured column specimen length 
Specimen LRT1 LRT2 LRB1 LRB2 L (avg.) 

in. 
362-1 -24-NH 
362-2-24-NH 
362-3-24-NH 
362-1 -24-H 
362-2-24-H 
362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1 -48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

24.100 
24.097 
24.097 
24.100 
24.097 
24.099 
48.214 
48.303 
48.192 
48.217 
48.232 
48.196 
24.100 
24.102 
24.100 
24.102 
24.098 
24.101 
48.255 
48.250 
48.295 
48.089 
48.253 
48.061 

24.100 
24.098 
24.098 
24.099 
24.099 
24.099 
48.214 
48.300 
48.19 
48.216 
48.232 
48.200 
24.101 
24.104 
24.098 
24.100 
24.099 
24.101 
48.255 
48.250 
48.294 
48.088 
48.251 
48.061 

24.098 
24.099 
24.098 
24.098 
24.099 
24.099 
48.214 
48.301 
48.191 
48.216 
48.231 
48.195 
24.099 
24.102 
24.099 
24.100 
24.100 
24.101 
48.255 
48.250 
48.295 
48.089 
48.253 
48.059 

24.099 
24.099 
24.099 
24.100 
24.100 
24.100 
48.214 
48.298 
48.189 
48.216 
48.231 
48.198 
24.099 
24.103 
24.099 
24.101 
24.100 
24.100 
48.255 
48.251 
48.294 
48.088 
48.253 
48.059 

24.099 
24.098 
24.098 
24.099 
24.099 
24.099 
48.214 
48.301 
48.191 
48.216 
48.232 
48.197 
24.100 
24.103 
24.099 
24.101 
24.099 
24.101 
48.255 
48.250 
48.295 
48.089 
48.253 
48.060 
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Table 5,7 Specimen end flatness 
Flatness (Deviation from Average Length) 

Specimen 

362-1-24-NH 
362-2-24-NH 
362-3-24-NH 
362-1 -24-H 
362-2-24-H 
362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

LRT1 
in. 

0.001 
-0.001 
-0.001 
0.001 
-0.002 
0.000 
0.000 
0.002 
0.002 
0.001 
0.001 
-0.001 
0.000 
-0.001 
0.001 
0.001 
-0.001 
0.000 
0.000 
0.000 
0.001 
0.001 
0.001 
0.001 

LRT2 
in. 

0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
-0.001 
-0.001 
0.000 
0.001 
0.003 
0.001 
0.001 
-0.001 
-0.001 
0.000 
0.000 
0.000 
0.000 
-0.001 
0.000 
-0.001 
0.001 

LRB1 
in. 

-0.001 
0.001 
0.000 
-0.001 
0.000 
0.000 
0.000 
0.001 
0.001 
0.000 
0.000 
-0.002 
-0.001 
-0.001 
0.000 
-0.001 
0.001 
0.000 
0.000 
0.000 
0.001 
0.001 
0.001 
-0.001 

LRB2 
in. 

0.000 
0.001 
0.001 
0.001 
0.001 
0.001 
0.000 
-0.002 
-0.002 
0.000 
0.000 
0.001 
-0.001 
0.000 
0.000 
0.000 
0.001 
-0.001 
0.000 
0.001 
-0.001 
0.000 
0.001 
-0.001 

5.2.4.5 Location and dimensions of slotted holes 

The length and width of the slotted holes, LMe and hhote, were measured to a 

precision of 0.001 inches with digital calipers. The east-west locations of the holes, W, 

and W2, were measured by clamping aluminum plates to the outside surface of the 

flanges and then using the caliper extension to measure the distance from the edge of the 

hole to the aluminum plate. (This process is similar to the cross-section measurement 

procedures described in Figure 5.13.) The hole size and web location dimensions, based 

on the average of three independent measurements, are provided for each specimen in 

Table 5.8. 
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Table 5.8 Measured slotted hole dimensions and locations 

Specimen 

362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1 -48-H 
362-2-48-H 
362-3-48-H 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-H 
600-2-48-H 
600-3-48-H 

X 
in. 
L/2 
L/2 
L/2 

(L-24)/2 
(L-24)/2 
(L-24)/2 

L/2 
L/2 
L/2 

(L-24)/2 
(L-24)/2 
(L-24V2 

W, 
In. 

0.946 
1.146 
0.935 
1.252 
1.126 
0.982 
2.147 
2.365 
2.347 
2.161 
2.166 
2.371 

W2 

in. 
1.141 
0.967 
1.114 
0.974 
1.016 
1.112 
2.361 
2.155 
2.166 
2.375 
2.351 
2.162 

L hole 

in. 
4.003 
4.000 
4.005 
3.999 
4.001 
4.000 
4.002 
4.001 
4.001 
4.002 
4.001 
3.999 

h hole 

in. 
1.492 

X 
in. 

1 . 5 0 2 B ^ n 

1.493HHI 
1.500 (L+24)/2 
1.496 
1.493 

(L+24)/2 
L+24)/2 

1498 HHH 1.491 H B H 
1.493HHI 
1.494 
1.499 
1.497 

(L+24)/2 
(L+24)/2 
(L+24)/2 

in. 

1.198 
1.171 
0.967 

2.162 
2.176 
2.365 

W2 

in. 

0.952 
0.973 
1.133 

2.383 
2.360 
2.156 

L hole 

in. 

4.001 
4.003 
4.003 

3.998 
4.002 
4.003 

h bole 

in. 

1.494 
1.494 
1.491 

1.497 
1.498 
1.494 

5.2.4.6 Web imperfections 

Variations in the specimen webs were measured to provide a basis for the local 

buckling initial imperfection magnitudes in the specimen nonlinear finite element 

models constructed in Section 7.2. The measurement setup shown in Figure 5.20 uses a 

dial gauge with a precision of 0.001 inches mounted to a laboratory stand in contact with 

a flat steel table. The specimen was supported horizontally at both ends by a matching 

pair of steel bars that were ground flat and parallel. The bars were also in contact with 

the steel table, ensuring that the specimen and the dial gauge were in the same 

horizontal reference plane. Each specimen web was marked with a grid of measurement 

points shown in Figure 5.21. The stand and dial gauge were shifted from grid point to 

grid point and elevation measurements were recorded. The variations from the average 

elevation of the specimen web, based on an average of two measurements per grid 

point, are provided for each specimen in Table 5.9. 
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Figure 5.20 A dial gauge and precision stand are used to measure initial web imperfections 

1.2 inches (362 specimens) 
2.3 inches (600 specimens) 

+ variation 

West Center East 

Section a-a 

6 in. (typ.) 

CL Web (typ.) 

-*• North 

r! 

u, 
Plan view 

(short and intermediate length web grid layouts) 

Figure 5.21 Web imperfection measurement grid and coordinate system 
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Table 5.9 Initial web imperfections (deviations from the average elevation of the web) 
Local Variations in Web 

Specimen X Distance 
West 

362-1-24-NH Center 
East 
West 

362-2-24-NH Center 
East 
West 

362-3-24-NH Center 

362-1-24-H 

362-2-24-H 

362-3-24-H 

East 
West 
Center 
East 
West 
Center 
East 
West 
Center 
East 

In. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 

0 

0.013 
0.022 
0.013 
0.019 
0.015 
0.015 
0.016 
0.017 
0.016 
0.006 
0.016 
0.009 
0.007 
0.014 
0.025 
0.016 
0.021 
0.017 

6 
-0.007 
-0.005 
-0.007 
-0.006 
-0.014 
-0.009 
-0.004 
-0.015 
-0.010 
-0.008 
-0.010 
-0.008 
-0.009 
-0.014 
-0.001 
-0.009 
-0.009 
-0.002 

12 
-0.011 
-0.022 
-0.013 
-0.010 
-0.020 
-0.015 
-0.010 
-0.023 
-0.016 
-0.014 
Hole 

-0.013 
-0.020 
Hole 

-0.017 
-0.020 
Hole 

-0.015 

18 
-0.004 
-0.013 
-0.004 
-0.006 
-0.007 
-0.008 
-0.003 
-0.003 
-0.008 
-0.001 
-0.009 
-0.001 
-0.003 
-0.007 
-0.009 
-0.010 
-0.015 
-0.002 

24 
0.015 
0.015 
0.014 
0.015 
0.024 
0.014 
0.015 
0.025 
0.014 
0.016 
0.009 
0.015 
0.014 
0.010 
0.014 
0.016 
0.015 
0.015 

West 
-1-48-NH Center 

East 

in. 
in. 
in. 

0.003 
0.009 
0.015 

-0.010 
0.004 
0.019 

-0.014 
-0.006 
0.010 

-0.011 
-0.006 
0.005 

-0.009 
-0.005 
0.004 

-0.005 
-0.007 
-0.001 

-0.005 
-0.005 
-0.002 

-0.002 
-0.008 
-0.005 

0.018 
0.013 
0.004 

West 
362-2-48-NH Center 

East 
West 

362-3-48-NH Center 

362-1-48-H 

362-2-48-H 

East 
West 
Center 
East 
West 
Center 
East 

in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 

-0.008 
-0.004 
-0.005 
0.006 
-0.001 
0.010 
-0.006 
-0.015 
0.009 
0.013 
0.011 
0.010 

-0.023 
-0.016 
-0.008 
-0.002 
-0.003 
0.007 
-0.003 
0.003 
0.021 
-0.007 
-0.011 
-0.002 

-0.021 
-0.021 
-0.011 
0.003 
0.002 
0.006 
-0.003 
Hole 

0.016 
-0.003 
Hole 

-0.004 

-0.013 
-0.015 
-0.009 
0.005 
0.001 
0.003 
0.002 
0.001 
0.010 
-0.001 
-0.006 
-0.001 

-0.002 
0.000 
0.004 
0.003 
-0.002 
-0.001 
0.007 
0.006 
0.007 
0.000 
-0.003 
-0.003 

0.006 
0.006 
0.010 
0.002 
-0.004 
-0.007 
0.007 
-0.002 
-0.004 
-0.004 
-0.010 
-0.004 

0.015 
0.011 
0.013 
0.000 
-0.011 
-0.013 
0.007 
Hole 

-0.016 
-0.009 
Hole 

-0.012 

0.021 
0.012 
0.016 
0.011 
-0.001 
-0.011 
0.010 
-0.009 
-0.022 
-0.002 
-0.004 
-0.006 

0.023 
-0.002 
0.012 
0.007 
0.004 
-0.001 
0.000 
-0.009 
-0.015 
0.016 
0.022 
0.012 

West 
362-3-48-H Center 

East 

in. 
in. 
in. 

0.013 
0.019 
0.014 

-0.007 
-0.005 
-0.002 

-0.012 
Hole 

-0.010 

-0.006 
-0.010 
-0.006 

-0.003 
-0.002 
0.001 

0.003 
-0.003 
0.001 

-0.003 
Hole 

-0.007 

-0.004 
-0.008 
-0.002 

0.017 
0.015 
0.012 

West 
600-1-24-NH Center 

East 
West 

600-2-24-NH Center 
East 
West 

600-3-24-NH Center 

600-1-24-H 

600-2-24-H 

600-3-24-H 

East 
West 
Center 
East 
West 
Center 
East 
West 
Center 
East 

in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 

0.016 
0.055 
0.016 
0.013 
0.061 
0.021 
0.007 
0.034 
0.017 
0.005 
0.052 
0.020 
0.009 
0.020 
0.014 
0.006 
0.007 
0.007 

-0.012 
0.005 
-0.003 
-0.019 
0.004 
0.002 
-0.016 
-0.023 
-0.021 
-0.015 
0.003 
-0.003 
-0.014 
-0.018 
-0.015 
-0.001 
-0.009 
-0.014 

-0.029 
-0.027 
-0.014 
-0.033 
-0.030 
-0.010 
-0.018 
-0.029 
-0.028 
-0.031 
Hole 

-0.018 
-0.024 
Hole 

-0.027 
-0.003 
Hole 

-0.022 

-0.024 
-O.023 
-0.014 
-0.027 
-0.024 
-0.011 
-0.003 
0.006 
-0.012 
-0.019 
-0.017 
-0.012 
-0.011 
-0.001 
-0.013 
-0.006 
-0.002 
-0.016 

0.013 
0.027 
0.009 
0.009 
0.031 
0.014 
0.010 
0.057 
0.018 
0.011 
0.021 
0.006 
0.012 
0.051 
0.016 
0.014 
0.040 
0.004 

West 
600-1-48-NH Center 

East 

in. 
in. 
in. 

0.023 
0.060 
0.024 

-0.003 
0.016 
0.006 

-0.018 
-0.010 
-0.002 

-0.026 
-0.018 
-0.008 

-0.026 
-0.010 
-0.001 

-0.020 
-0.006 
0.003 

-0.019 
-0.009 
0.004 

-0.014 
-0.005 
0.001 

0.016 
0.030 
0.011 

West 
600-2-48-NH Center 

East 
West 

600-3-48-NH Center 

600-1-48-H 

600-2-48-H 

East 
West 
Center 
East 
West 
Center 
East 

in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 
in. 

0.019 
0.060 
0.014 
0.026 
0.055 
0.013 
0.014 
0.059 
0.009 
0.032 
-0.033 
0.011 

-0.004 
0.012 
-0.001 
-0.003 
0.013 
-0.003 
-0.004 
0.012 
0.003 
0.002 
0.023 
0.008 

-0.016 
-0.005 
0.002 
-0.021 
-0.012 
-0.010 
-0.026 
Hole 
0.000 
-0.020 
Hole 
0.004 

-0.016 
-0.004 
0.005 
-0.021 
-0.011 
-0.010 
-0.026 
-0.007 
0.002 
-0.028 
-0.001 
0.004 

-0.020 
-0.007 
0.000 
-0.014 
0.003 
0.002 
-0.026 
0.002 
0.004 
-0.022 
0.006 
0.004 

-0.025 
-0.009 
-0.004 
-0.011 
0.003 
0.008 
-0.024 
-0.009 
0.002 
-0.012 
0.005 
0.007 

-0.024 
-0.009 
0.003 
-0.015 
-0.008 
-0.002 
-0.025 
Hole 

0.001 
-0.019 
Hole 
0.000 

-0.014 
-0.006 
0.002 
-0.015 
-0.006 
-0.002 
-0.007 
-0.002 
0.004 
-0.022 
0.002 
-0.004 

0.011 
0.023 
0.008 
0.013 
0.031 
0.008 
0.009 
0.024 
0.002 
0.013 
0.025 
0.004 

West 
600-3-48-H Center 

East 

in. 
in. 
in. 

0.017 
0.028 
0.018 

0.012 
0.003 
-0.010 

0.012 
Hole 

-0.023 

0.010 
-0.004 
-0.032 

0.000 
-0.022 
-0.048 

0.007 
-0.014 
-0.040 

0.009 
Hole 

-0.045 

0.011 
0.018 
0.002 

0.020 
0.046 
0.021 



5.2.4.7 Specimen orientation in the testing machine 

When placing the specimen in the testing machine, the southern end of the 

specimen was oriented at the bottom platen such that the center of the compressive force 

was applied through the gross centroid of the C-section. The centerline of the web is 

positioned in line with the centerline of the bottom platen and offset towards the back of 

the testing machine as described in Figure 5.22. The centroid locations were calculated 

using the centerline dimensions of a nominal SSMA 362S162-33 and 600S162-33 cross 

section. 

— CL Platen and Column Web 

Location of interior—| 
web edge j _ 

CL Platen J 
Column specimen 

I 
Center of platen, center 
of load, centroid of Cee 
channel 

r 0.380 in. (600S162-33) 
0.502 in. (362S162-33) 

FRONT OF MTS MACHINE 

Plan View 
(Bottom Platen) 

Figure 5.22 Column specimen alignment schematic 
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The actual cross section and thickness measurements produced centroid offsets 

slightly different from the nominal offsets considered in the column tests. The 

difference between the nominal and measured offsets, defined here as ACG, are 

provided in Table 5.10. ACG produces end moments in the specimens that are several 

orders of magnitude smaller than the applied loads in this study. For example, the end 

moments created by a ACG of 0.059 inches for specimen 600-3-24-NH are calculated as 

2.0 x 106 kip-inches at peak load (Pte,=12.24 kips) using the structural analysis program 

MASTAN (Ziemian and McGuire 2005). The assumed MASTAN structural system in 

Figure 5.23 demonstrates that relatively stiff compression platens and fixed-fixed end 

conditions effectively eliminate end moments from small load eccentricities. 

Table 5.10 Specimen gross centroid and offset from applied load during tests 

Specimen 

362-1-24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1 -48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

Measurements 
xcg 

in. 
0.482 
0.471 
0.504 
0.511 
0.490 
0.524 
0.475 
0.468 
0.475 
0.470 
0.470 
0.486 
0.354 
0.347 
0.344 
0.363 
0.368 
0.361 
0.362 
0.355 
0.353 
0.362 
0.352 
0.356 

k 
in. 

0.038 
0.038 
0.038 
0.042 
0.042 
0.042 
0.041 
0.042 
0.040 
0.041 
0.042 
0.040 
0.047 
0.047 
0.047 
0.046 
0.047 
0.046 
0.046 
0.045 
0.045 
0.045 
0.046 
0.046 

Centroid Shift 
xcg - h 

in. 
0.463 
0.452 
0.485 
0.489 
0.469 
0.503 
0.454 
0.447 
0.455 
0.449 
0.449 
0.466 
0.330 
0.323 
0.321 
0.340 
0.344 
0.338 
0.339 
0.333 
0.330 
0.340 
0.329 
0.333 

used in tests 
in. 

0.502 
0.502 
0.502 
0.502 
0.502 
0.502 
0.502 
0.502 
0.502 
0.502 
0.502 
0.502 
0.380 
0.380 
0.380 
0.380 
0.380 
0.380 
0.380 
0.380 
0.380 
0.380 
0.380 
0.380 

ACS 

in. 
0.039 
0.050 
0.017 
0.013 
0.033 

-0.001 
0.048 
0.055 
0.047 
0.053 
0.053 
0.036 
0.050 
0.057 
0.059 
0.040 
0.036 
0.042 
0.041 
0.047 
0.050 
0.040 
0.051 
0.047 

tz sheet thickness with zinc coating 
ACS difference measured and as tested centroid offsets 
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ACG 

Column specimen 

(Centroid shown) 

All translation 
and rotational 
DOF restrained 

No moment in 
column for stiff 
platen even 
with load offset" 

El flexural rigidity 

1000EI 0.1EI 

El 

CL Applied 
Load 

7 
Platen 
(typ.) 

Horizontal 
translation and 
rotational DOF 
restrained 

Actuator load 

El 

l4 
)EI 1000EI 

Stiff platen 

Structural System 

0.1EI 

Flexible platen 

Moment Diagrams 

Figure 5.23 Influence of platen bending stiffness on end moments for a fixed-fixed eccentric column 

Once the specimen is aligned on the bottom platen, 500 lbs of compressive force 

was applied to the column and weak-axis out of straightness measurements were taken. 

The distance from the front of the top and bottom platens to the interior web edge is 

denoted as Slop and Si„„om in Figure 5.24. S(op and Sbollom are obtained as the average of three 

independent measurements with digital calipers as shown in Figure 5.25 and then 

corrected for a systematic platen offset (see Figure 5.24) and the initial web 

imperfections in Table 5.9. The initial out-of-straightness AS provided in Table 5.11 is 
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calculated from Stap and Sbottom and implemented as an initial geometric imperfection into 

the nonlinear finite element models in 7.2. 

L 

Front of MTS 
Machine 

Column Specimen 
(orientation exaggerated) 

Platen Offset=0.084 inr 

• CL Load 

a 

J i* CL Platen 

Section a-a 

AS (negative magnitude shown) 

CL Platen 

Side View 
(Looking west) 

Figure 5.24 Column specimen weak axis out-of-straightness schematic 
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5.2.5 Materials testing 

Tensile coupon tests were performed to obtain the steel stress-strain curve and 

yield stress for the web, west flange, and east flange of each specimen in this study. The 

tests were conducted in accordance with ASTM specification E 8M-04, "Standard Test 

Methods for Tension Testing of Metallic Materials (Metric)" (ASTM 2004). 

5.2.5.1 Tensile coupon preparation 

Tensile coupons were always obtained from the same 8 ft. structural stud which 

produced the column specimen. Flat portions of the web and flanges were first rough 

cut with a metal band saw as shown in Figure 5.26, and then finished to the dimensions 

in Figure 5.27 with a CNC milling machine. The special jig in Figure 5.27 allowed for 

three tensile coupons to be produced at once. The tensile coupons were stripped of their 

zinc coating (see Section 5.2.4.3 for procedure) and then measured within the gauge 

length for bare metal thickness, t, and minimum width, wm!„. The minimum width is 

determined by taking the minimum of five independent measurements within the gauge 

length of the specimen with digital calipers. 
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Figure 5.26 Tensile coupons are first rough cut with a metal ban saw 

1.97 in. 

0.79 in. 

0.38 in. 

R=0.55 in. 

0.38 in. 
4 

3.18 in. 

. 
0.492 in. * 
. 

p 
1.97 in. 

gauge length 

1.97 in. 

*nominal, actual dimension will vary slightly 

Figure 5.27 Tensile coupon dimensions as entered in the CNC milling machine computer 
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Figure 5.28 A custom jig allows three tensile coupons to be milled at once in the CNC machine 

5.2.5.2 Tensile test setup 

A screw-driven ATS 900 testing machine with a maximum capacity of 10 kips 

was used to apply the tensile load. Tensile coupons were positioned in the machine 

with friction grips as shown in Figure 5.29. A bubble level with a short, straight edge 

was used to ensure that each specimen was aligned vertically between the grips. An 

MTS 634.11D-54 extensometer measured engineering strain and an MTS load cell 

measured force on the specimen. The extensometer was placed at the vertical midlength 

of the specimen, centered within the gauge length. The raw voltage data from the 

extensometer and load cell were sent to a PC containing a National Instruments data 

acquisition card. The voltage data was converted to tensile force and engineering strain 

using the conversion factors provided in Table 5.12. The data was plotted on the screen 

and recorded to a file with a custom Lab VIEW program (Lab view 2005). 
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Figure 5.29 ATS machine used to test tensile coupons 

Table 5.12 Voltage conversion factors for tensile coupon testing 
Tensile Coupon Testing 

Measurement Source Conversion 

Tensile Force MTS Load Cell 1 Volt = 1000 Ibf 

Engineering Strain MTS Extensometer 1 Volt = 3,96x10"5 strain (in./in.) 

5.2.5.3 Tensile test results 

Two distinct steel stress-strain curves were observed in this study. Tensile 

coupons from the 362S162-33 structural studs demonstrate gradual yielding behavior, 

while the tensile coupons from the 600S162-33 studs demonstrated a sharp yielding 

plateau. The yield stress, Fy, for the gradually yielding specimens was determined with 

the 0.2% strain offset method. The stress-strain curve for specimen 362-3-48-NH (East 

Flange) demonstrates the offset method in Figure 5.30. The yield stress for the sharply 

yielding specimens was determined by averaging the stresses in the yield plateau. 

ASTM does not provide specific guidelines on how to average the plateau stresses. For 

this autographic method, the averaging range is determined by using two strain offset 

lines, one at 0.4% strain offset and the other at 0.8% offset as shown for specimen 600-24-
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NH (West Flange) in Figure 5.31. The steel modulus of elasticity, E, was assumed as 

29500 ksi for all specimens when determining the yield stress. The tensile coupon yield 

stresses and cross section dimensions are summarized in Table 5.13. The mean and 

standard deviation for all 362S162-33 and 600S162-33 tensile coupons tested are 

provided in Table 5.14. 

0.2% strain offset line (slope=29500 ksi) 

YIELD STRESS (0.2% offset)=60.1 ksi 

0.05 0.1 0.15 0.2 
Engineering Strain,(in./in.) 

0.25 

Figure 5.30 Gradually yielding stress-strain curve with 0.2% strain offset method 

0.4% strain offset line (slope=29500 ksi) 

0.8% strain offset line (slope=29500 ksi) 

YIELD STRESS (Autographic Method)=59.7 ksi 

0.05 0.1 0.15 0.2 0.25 
Engineering Strain (in./in.) 

Figure 5.31 Sharp-yielding stress strain curve using an autographic method for determining Fv 

Table 5.13 Summary of column specimen steel yield stress 
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Specimen 

362-1 -24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1 -48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

W e b 

tbase.w W m|n Fy 

in. in. ksi 

0.0368 0.4985 53.3 

0.0390 0.4945 55.9 
0.0368 0.4886 52.9 
0.0394 0.4945 55.6 
0.0392 0.4985 59.4 
0.0393 0.4990 59.2 
0.0389 0.4930 58.0 
0.0391 0.4998 59.5 
0.0390 0.4992 58.8 
0.0401 0.4990 57.8 

0.0438 0.4950 60.6 

0.0414 0.4899 61.9 
0.0427 0.4964 57.8 
0.0429 0.4966 59.7 
0.0434 0.4985 58.7 
0.0435 0.4985 N/C 
0.0436 0.4995 60.4 
0.0429 0.4970 60.3 
0.0429 0.4994 61.8 
0.0430 0.4992 60.7 

West Flange 

tbase.n W mi„ Fy 

in. in. ksi 

0.0415 0.4975 54.7 

0.0391 0.4963 59.3 
0.0390 0.4950 58.8 
0.0394 0.4927 N/C 
0.0393 0.4965 59.7 
0.0394 0.4975 59.3 
0.0391 0.5000 58.9 
0.0393 0.4985 58.2 
0.0391 0.4961 60.6 
0.0400 0.4957 58.0 

0.0432 0.4950 59.7 

0.0422 0.4940 63.6 
0.0384 0.4874 55.6 
0.0431 0.4954 58.0 
0.0436 0.4955 62.3 
0.0430 0.4970 63.4 
0.0432 0.4955 N/C 
0.0426 0.4980 63.0 
0.0428 0.4962 62.1 
0.0434 0.4961 59.7 

East Flange 
tbass.Q W m|„ F, 

in. in. ksi 

0.0372 0.4955 57.4 

0.0391 0.4968 58.5 
0.0391 0.4945 59.5 
0.0394 0.4947 56.4 
0.0392 0.4975 59.9 
0.0393 0.4970 59.2 
0.0390 0.4930 60.1 
0.0394 0.4991 58.1 
0.0391 0.4975 59.8 
0.0397 0.4978 59.1 

0.0438 0.5000 55.9 

0.0428 0.4964 60.3 
0.0424 0.4938 61.8 
0.0430 0.4960 62.6 
0.0434 0.4965 59.3 
0.0430 0.4970 63.3 
0.0433 0.4965 61.9 
0.0429 0.4970 60.8 
0.0431 0.4977 62.2 
0.0430 0.4977 64.0 

NOTE: N/C Tests results were not obtained 

Table 5.14 Column specimen steel yield stress statistics 
yield stress, Fy 

Stud Type mean STDV 
ksi ksi 

362S162-33 58.1 2.0 
600S162-33 61.0 2.0 

5.3 Elastic buckling calculations 

Elastic buckling provides a means to categorize and potentially better understand 

the load-deformation response and ultimate strength of the thin-walled columns in this 

study. The local, distortional, and global elastic buckling modes and their associated 

critical elastic buckling loads (P„(l Pai, Pm) are presented here for each specimen. 

Calculations are performed with a shell finite element eigenbuckling analysis as 

opposed to an analysis using FSM (Schafer and Adany 2006) to capture the influence of 

the slotted web holes and the tested (fixed-fixed) boundary conditions. 
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5.3.1 Finite element modeling assumptions 

Eigenbuckling analysis in ABAQUS is performed for the 24 column specimens 

(ABAQUS 2007a). All columns are modeled with S9R5 reduced integration nine-node 

thin shell elements. Cold-formed steel material properties are assumed as £=29500 ksi 

and v=0.30. The centerline C-section dimensions input into ABAQUS are calculated 

using the out-to-out dimensions and flange and lip angles at the mid-height of each 

column specimen as provided in Table 5.3 and Table 5.4. Each column specimen is 

loaded with a set of consistent nodal loads in ABAQUS to simulate a constant pressure 

across the bearing edge of the specimen. The nodes on the loaded column face are 

coupled together in the direction of loading with an ABAQUS "pinned" rigid body 

constraint (see Figure 4.12). 

5.3.2 Elastic buckling results 

5.3.2.1 Buckled shapes / eigenmodes 

The first (lowest buckling load) local (L) and distortional (D) buckled shapes for 

specimens with and without slotted holes are compared in Figure 5.32 and Figure 5.33. 

The L and D modes for each specimen were identified visually by manually searching 

through the elastic buckling modes produced in the eigenbucking analysis. The nominal 

cross-section half-wavelengths in Table 5.1 were compared to the half-wavelengths in 

the finite element model to assist in the categorization. The local and distortional modes 

that most resembled the FSM results for L and D modes were selected. This method of 

modal identification is neither exact nor ideal, especially when both local and 
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distortional buckling are present in the same eigenmode. Formal modal identification 

has recently been developed in the context of the finite strip method (Schafer and Adany 

2006) and future work is ongoing to extend this method to finite element analyses and to 

problems such as the ones encountered here. 
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Figure 5.32 (a) Local and distortional elastic buckled mode shapes for (a) short (L=48 in.) 362S162-33 
specimens and (b) intermediate length (L=48 in.) 362S162-33 specimens. 

(a) (b) 

Local Buckling (L) Distortional Buckling (D) 

I, U 

B 
I 

Local Buckling 

•-Holes 
change 
number of 
half-wavas 
from 8 (NH) 
to 12(H) 

m 

r%\ Holes cause mixed 
distortional-local 
mode 

Distortional Buckling 

Figure 5.33 Local and distortional elastic buckled mode shapes for (a) short (L=48 in.) 600S162-33 specimens 
and (b) intermediate length (L=48 in.) 600S162-33 specimens. 

5.3.2.2 Buckling loads / eigenvalues 

The primary goal of this research program is to extend the Direct Strength Method to 

cold-formed steel structural members with holes. The Direct Strength Method (DSM), a 

design method for cold-formed steel structural members, predicts column ultimate 

strength by predicting the column failure mode and ultimate strength through 

198 



knowledge of the local (L), distortional (D), or global (G) elastic buckling modes. This 

connection is made using the critical elastic buckling load, Per, and the slenderness, 

defined with the ratio of column squash load Pys to P„ for the L, D, and G modes. Table 

5.15 summarizes Pcr and Pyg for the specimens evaluated in this study. The squash load 

Pn is calculated with the gross cross-sectional area, and P„ includes the effects of the 

holes and the tested (fixed-fixed) boundary conditions. (Note, the implications of using 

Py% as opposed to Pymt at the net section are discussed in Chapter 8.) 

The influence of holes on Pcr is of interest in the context of DSM because elastic 

buckling loads and slenderness are used to predict ultimate strength. To isolate the 

influence of holes on PCT, additional eigenbuckling analyses of the specimens with holes 

(specimens labeled with an H) were performed, but with the holes removed (the 

boundary and loading conditions were not modified and the mesh used in the models 

was identical except for the removed elements at the hole location). The comparison of 

Per for specimens with holes (H) and then with holes removed (noH) is also summarized 

in Table 5.15. 
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Table 5.15 Critical elastic buckling loads, influence of holes on elastic buckling 

Specimen 
Name 

362-1-24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 
362-3-24-H 

362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 

600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 

600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1 -48-H 
600-2-48-H 
600-3-48-H 

Pyj 

kips 

15.5 
15.6 
15.7 
16.4 
15.7 
16.4 
16.9 
16.7 
16.6 
16.6 
16.8 
16.8 
24.7 
24.5 
24.5 
25.0 
23.1 
24.7 
25.1 
26.2 
25.4 
25.2 
25.5 
25.6 

ELASTIC BUCKLING 

Pore 

tops 

109.4 
112.5 
112.2 
119.3 
112.8 
130.6 
30.5 
29.5 
29.6 
30.0 
29.7 
36.2 
244.5 
234.9 
218.4 
239.3 
238.4 
242.6 
61.8 
59.6 
60.2 
56.3 
53.0 
55.8 

Per' 

tops 

4.9 
4.8 
5.0 
5.9 
5.4 
5.7 
5.2 
5.2 
5.1 
5.3 
5.2 
5.7 
3.4 
3.4 
3.4 
3.3 
3.2 
3.5 
3.5 
3.4 
3.4 
3.4 
3.4 
3.4 

Pcrd 

tops 

10.6 
10.2 
10.7 
13.5 
12.4 
12.9 
9.7 
9.6 
9.5 
9.4 
9.3 
9.6 
6.8 
6.7 
6.6 
7.0 
6.7 
7.3 
5.2 
5.7 
5.7 
5.1 
5.0 
5.0 

HOLE INFLUENCE* 

r, , D noH p , / p ,™>H 0 

0.98 
0.98 
0.99 

0.94 
0.94 
0.95 

1.01 
1.01 
1.02 

0.87 
0.87 
0.86 

N/A 

1.03 
1.02 
1.02 

N/A 

1.03 
1.03 
1.03 

N/A 

1.02 
1.01 
1.01 

N/A 

1.02 
1.02 
1.02 

crd'Fcrd 

1.12 
1.13 
1.12 

0.98 
0.98 
0.98 

1.09 
1.08 
1.08 

1.02 
1.02 
1.02 

* For specimens with holes (H), the holes are removed and elastic buckling calculated (noH). 
The hole (H) and no hole (noH) finite element models are otherwise identical, isolating the influence of the holes. 

5.3.2.3 Modal interaction at ultimate strength 

An additional reason for the selection of these specimen cross-sections, at these 

lengths, beyond the reasons discussed in Section 5.2.1, is that the specimens provide 

much needed experimental data on cross-sections with potential modal interaction at 

ultimate strength both with and without holes. Typically modal interaction is 

understood to be a concern when the elastic buckling loads of multiple modes are at or 

near the same value, and the ratio of any two elastic bucking loads (e.g., PcJPcrd) is 

considered a useful parameter for study. However, for modes with different post-

buckling strength and where material yielding is considered, a more pressing concern 

may be the situation when both failure modes predict similar capacities. Which mode 

does the column fail in if the predicted capacity in local (P„/) and distortional (P„d) are at 

or near the same level? What impact does a hole have on the failure mode that is 
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triggered? In the specimens selected here, the ratio of PaJPcrd varies from a min of 0.44 to 

a max of 0.68, but is never near 1.0. Therefore, by this traditional measure no meaningful 

interaction would be anticipated. However, if the DSM methodology is used to predict 

the capacities, as illustrated in Figure 5.34, the predictions for the ratio of the two limit 

states PJ P„d ranges from a min of 0.86 to a max of 0.90 in the 362S162-33 short columns 

and from a min of 1.0 to a max of 1.05 in the 600S162-33 short columns (the ratios are 

similar for the long column specimens). Thus, these cross-sections provide a means to 

examine the potential for local-distortional modal interaction at ultimate strength, and 

offer valuable data for determining any necessary modification to the DSM 

methodology when holes are present. 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
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• Distortional DSM 

362S162-33 short columns 

600S162-33 short 
columns 
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Local(L)-Distortional(D) interaction is 
expected since predicted strengths (P„) 
are of similar magnitudes 
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Figure 5.34 Local (L) and distortional (D) DSM strength predictions are similar in magnitude for both 
362S162-33 and 600S162-33 cross-sections, indicating that L-D modal interaction will occur during the tested 

response of the columns. 
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5.3.3 Discussion of elastic buckling results 

5.3.3.1 Local buckling 

Boundary conditions have little influence on the local buckling mode shapes 

(compared with FSM L modes), but the presence of the slotted web holes can change the 

shape, half-wavelength, and buckling load of the first (lowest) local buckling mode 

observed. In the 362S162-33 specimens the web holes terminate local buckling in the 

vicinity of the holes, see Figure 5.32. In the 600S162-33 specimens the web holes cause 

an increased number of half-waves along the length to occur in the lowest local mode, 

see Figure 5.33. The presence of holes causes a slight increase in P^ (see Table 5.15) 

which is consistent with the increased number of observed local buckling half-waves. 

The more extensive elastic buckling studies Chapter 3 and Chapter 4 demonstrate that a 

hole can increase or decrease the number of buckled half-waves (and the critical elastic 

buckling load) of rectangular plates and cold-formed steel structural studs. 

5.3.3.2 Distortional buckling 

Boundary conditions and the presence of holes have an influence on the observed 

distortional buckling mode shapes (compared with FSM D modes) and buckling loads. 

The boundary conditions (fixed-fixed) allow a smaller number of half-waves to form 

than predicted using the simply supported FSM D modes of Table 5.1. For example, 

observe the restrained shape of the buckled distortional half-wave near the member 

ends in Figure 5.32a. In longer specimens (see Figure 5.32b and Figure 5.33b), the 

influence of the boundary conditions lessens and the half-wavelength of distortional 
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buckling at mid-height approaches that of the FSM D mode of Table 5.1. (Section 4.2.6.2 

explores the influence of fixed-fixed boundary conditions on Pcr(j using the column 

experiment database.) The presence of the web holes complicates the predicted D 

modes, see Figure 5.32 and Figure 5.33. Local buckling now appears within the D mode 

itself. The half-wavelength of these interacting L modes is significantly shorter than the 

lowest L modes observed. Further, and rather unintuitively, the buckling load, P„d, 

actually increases with the presence of holes in the short column specimens (as much as 

13%). However, this increase is lost at the longer specimen length where the maximum 

change in the buckling load is +/- 2%. This result suggests that in the shorter specimens 

the removal of the material most susceptible to out-of-plane bending, at the mid-depth 

of the web, actually serves to stiffen the column (a localized increase in the transverse 

bending stiffness of plates with holes has been observed, see Figure 4.30). This influence 

does not persist in the longer specimens suggesting that the increased stiffness is only 

relevant when the D mode is at a restrained half-wavelength. Thus, if the D mode is free 

to form (over a long enough unbraced length) the holes do not increase the elastic 

buckling load. 

5.3.3.3 Global buckling 

The global (Euler) buckled shapes for the intermediate 362S162-33 and 600S162-33 

columns in Figure 5.35 occur as flexural-torsional buckling, although local and 

distortional deformation are both present in the mode shape for specimens with and 

without holes, which is an unexpected result. The interaction between the global, local, 
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and distortional modes makes the identification of the global mode difficult. The Euler 

buckling load and mode shape predicted with classical methods (in CUTWP), which do 

not allow cross-section distortion and ignore holes, were used to determine the range of 

buckling loads (eigenvalues) to be visually searched. The reported modes in Figure 5.35 

are the ones closest to the expected buckling load exhibiting significant global 

deformations. Additional eigenbuckling analyses of the 362S162-33 and 600S162-33 

cross-sections were performed at a longer column length (8 ft.) and these analyses show 

no local or distortional interaction with the global modes. Therefore, the observed 

interaction is length dependent and not a fundamental feature of global buckling in 

these cross-sections. An alternative hypothesis for the "unusual" mode shapes in Figure 

5.35 is that several buckling mode shapes exist near the global critical elastic buckling 

load, which causes the eigensolver to misreport the global mode as a linear combination 

of buckled shapes. 

As for the global buckling loads, the slotted holes have a small influence on the 

global buckling load for the intermediate length 362S162-33 specimens, reducing Pm by a 

maximum of 6%. However, Pm for the intermediate length 600S162-33 columns 

decreases by a maximum of 14% with the presence of the two slotted holes, which is an 

unexpected result attributed to the local and distortional modes mixing with global 

buckling (i.e., Figure 5.35). Additional research work is ongoing to determine under 

what conditions holes influence the global critical elastic buckling load. 
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Global (Euler) Buckling 

Finite element eigenbuckling 
analyses predict global 
buckling interacting with local 
and distortional buckling 

600-1-48-NH 

600-1-48-H 

CUTWP predictions using 
•* classical stability theory * 

Figure 5.35 Comparison of global mode shapes for intermediate length 362S162-33 and 600S162-33 
specimens. 

5.4 Experiment results 

5.4.1 Ultimate strength 

The peak tested compressive load for all column specimens and an average peak 

load for each test group are provided in Table 5.16. The slotted holes are shown to have 

only a small influence on compressive strength in this study, with the largest reduction 

being 2.7% for the 362S162-33 short columns. 
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Table 5.16 Specimen ultimate strength results 

Specimen Ptesl M e a n S t d ' D e v ' 
kips kips kips 

362-1-24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

10.48 
10.51 
10.15 
10.00 
10.38 
9.94 
9.09 
9.49 
9.48 
8.95 
9.18 
9.37 
11.93 
11.95 
12.24 
12.14 
11.62 
11.79 
11.15 
11.44 
11.29 
11.16 
11.70 
11.16 

10.4 

10.1 

9.4 

9.2 

12.0 

11.9 

11.3 

11.3 

0.2 

0.2 

0.2 

0.2 

0.2 

0.3 

0.1 

0.3 

5.4.2 Failure modes and post-peak ductility 

5.4.2.1 Short columns 

The loading progression for the 362162S-33 short columns is depicted in Figure 5.36 

(without a hole) and Figure 5.37 (with a hole). Both columns exhibit local buckling of the 

web near the supports combined with one distortional half-wave along the length. This 

distortional buckling pattern is consistent with that predicted by the elastic buckling 

mode shapes of Figure 5.32a. For the column with the hole, localized hole deformation 

(Figure 5.37, rightmost picture) initiates at a load of approximately 0.4Pto, and increases 

in magnitude as the test progresses. This observed deformation behavior is visually 

consistent with the "unstiffened strip" approach discussed in Error! Reference source 
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not found., where the strip of web on either side of the hole is assumed to behave as an 

unstiffened element. 

The inward flange deformation concentrates at the hole after peak load in the short 

362S162-33 specimens with holes. It is hypothesized that the slotted hole reduces the 

post-peak resistance of the web, causing the flanges and lips to carry more of the column 

load. This reduction in post peak resistance is quantified by observing the reduction in 

area under the load-displacement curve for the column with the slotted hole, as shown 

in Figure 5.38. 

Distortional buckling 
in one half-wave at 
peak load 

(a) P=0kips (b) P=7.0kips (c) P=10.5kips (d) P=7.5 kips 
(peak load) 

Figure 5.36 Load-displacement progression for short column specimen 362-2-24-NH 
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(a) P=Okips (b) P=10.4kips 
(peak load) 

(c) P=7.0kips 

Local buckling at hole 
(unstiffened strip) 

Figure 5.37 Load-displacement progression for short column specimen 362-2-24-H 
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Figure 5.38 Load-displacement curve for a 362S162-33 short column with, without a slotted hole 
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Position transducers placed at the mid-height of the short column specimens capture 

the rate of lateral flange displacement associated with distortional buckling, do, as shown 

in Figure 5.39. Figure 5.39 demonstrates that the initiation of web local buckling does 

not influence the axial stiffness of specimen 362-2-24-NH, but rather that a softening of 

the load-axial deformation curve coincides with the increased rate of lateral flange 

movement (distortional buckling). This observation suggests that the loss in axial 

stiffness associated with distortional buckling plays a larger role than web local buckling 

in the peak load response of the 362S162-33 short columns. The influence of the slotted 

hole on lateral flange displacement is provided in Figure 5.40, where the post-peak 

flange displacement rates are significantly higher for the 362S162-33 short column with 

holes. The results of Figure 5.40 indicate that holes potentially have a significant impact 

on the collapse mechanisms triggered from distortional buckling. Lateral flange 

displacement plots are provided for all specimens in Appendix F. 
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Figure 5.39 Comparison of load-deformation response and lateral flange displacements for specimen 362-2-
24-NH 
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Figure 5.40 Influence of a slotted hole on 362S162-33 short column lateral flange displacement 

210 



Figure 5.41 and Figure 5.42 depict the deformation response of the 600S162-33 short 

columns with and without a slotted hole. In both cases, local buckling at the loaded 

ends combines with one distortional half-wave along the column length. The 

distortional buckling pattern for these specimens is not wholly consistent with the elastic 

buckling predictions of Figure 5.33a, which shows two distortional half-waves; however, 

specimens 600-2-24-H and 600-3-24-H did buckle in two half-waves, see Appendix F for 

pictures. These results suggest that geometric imperfections also have a role to play in 

the details of the buckling mode initiated in the loaded response. The deformation 

response of the member with and without the hole is similar through the test 

progression, suggesting that the hole has a small influence on compressive strength and 

post-peak ductility for the hole width to web width ratios considered here. Figure 5.43 

confirms that the slotted hole has a minimal effect on the post-peak load response of the 

column. 
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Figure 5.41 Load-displacement progression for short column specimen 600-1-24-NH 
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Figure 5.42 Load-displacement progression for short column specimen 600-1-24-H 
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Figure 5.43 Comparison of load-displacement response for short 600S162-33 column specimens with and 
without holes 

5.4.2.2 Intermediate length columns 

Figure 5.44 and Figure 5.45 summarize the deformation response of the 362S162-33 

intermediate length columns with and without holes. In both cases, local web buckling 

is first observed at approximately 0.45Ptes( which is lower than, but the same order of 

magnitude as, the calculated local critical elastic buckling load Pa/. Note in Figure 5.45 

that the local buckling half-waves are dampened in the vicinity of the holes, similar to 

the elastic buckling prediction of Figure 5.32b. Further, the observed local buckling 

waves are at half-wavelengths consistent with the local buckling mode in Figure 5.32b, 

not those shown interacting with distortional buckling. (This observation supports the 

idea that the fundamental elastic buckling modes L, D, and G are representative of the 

physical behavior of the column and that the mixed modes observed in an eigenbuckling 

analysis only exist numerically.) Three distortional buckling half-waves become well-

213 



formed at approximately 0.70Pto,, overcoming the local half-waves in the web except at 

the mid-height of the column. This distortional buckling pattern is consistent with the 

elastic buckling prediction in Figure 5.32b. Figure 5.46 demonstrates that the presence of 

slotted holes has only a minimal influence on load-axial displacement response. 

All of the 362S162-33 intermediate length columns failed soon after the peak load 

with a sudden loss in load-carrying capacity caused by global flexural-torsional 

buckling. Yielding of the column flanges reduces the torsional stiffness of the section, 

and the friction end conditions could not restrain the twisting of the column. The 

twisting of specimen 362-3-48-NH is quantified in Figure 5.47 as the difference between 

the west and east mid-height flange displacements, &, captured by the position 

transducers. The lateral displacement of the flange tips due to distortional buckling (&), 

also shown in Figure 5.47, is separated from the twisting effect by averaging the west 

and east mid-height flange displacements. Figure 5.47 shows that the cross-section is 

both 'opening' and 'twisting', but it is the abrupt increase in & occurring well past peak 

load that leads to the collapse of the member in the test. 
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Figure 5.44 Load-displacement progression, intermediate length column specimen 362-3-48-NH 
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Figure 5.45 Load-displacement progression for intermediate length column specimen 362-3-48-H 
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Figure 5.46 Load-displacement curve, 362S162-33 intermediate column with and without a hole 
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Figure 5.47 362S162-33 long column mid-height flange displacements show the global torsional failure 
mode 
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The load-displacement response for the intermediate length 600S162-33 columns 

with and without slotted holes is depicted in Figure 5.48 and Figure 5.49. Local 

buckling is observed at approximately 0.45Ptes, for both sections. The holes do not restrict 

the local buckling half-waves as was the case in the 362S162-33 intermediate length 

columns. This local buckling behavior is consistent with that observed in the elastic 

buckling analysis, see Figure 5.33b. Three distortional half-waves form as the columns 

(all 3 of the 600S162-33 intermediate length specimens) approach peak load. Two loud 

sounds resonate from the columns near peak load as the local web buckling half-waves 

at the two column ends abruptly snap into one distortional half-wave per end. The 

change from local-dominated to distortional-dominated web buckling is reflected as two 

drops in the load-displacement response near peak load for the 600S162-33 column 

without holes, as shown in Figure 5.50. The 600S162-33 column with slotted holes is not 

affected by this abrupt mode switching, as it maintains web local buckling well beyond 

peak load. The observations suggest that in this case the holes are beneficial because 

they maintain the local buckling half-waves through peak load, allowing the column to 

rely more on the post-peak strength provided by the buckled web. This mode switching 

is a difficult challenge for numerical models and these results, repeated in 3 tests, 

provides an important and challenging experimental benchmark for the numerical 

modeling of these members Section 7.2. 
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Figure 5.48 Load-displacement progression, intermediate length column specimen 600-1-48-NH 
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Figure 5.49 Load-displacement progression, intermediate length column specimen 600-1-48-NH 
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Figure 5.50 Load-displacement comparison of intermediate length 600S162-33 specimens with and without 
holes 

5.4.3 Discussion of hole influence on elastic buckling and 
tested response 

Both local and distortional elastic buckling were observed in the tested response of 

the specimens and contributed in different ways to the failure modes of the columns. 

Local buckling initiated plastic folding in the web at peak load, and distortional 

buckling was reflected as either opening (-&) or closing (+&) of the cross-section and 

yielding of the flanges and lip stiffeners. All three of the short 362S162-33 columns with 

holes exhibited a 'closed' distortional buckling failure (+&), where the presence of the 

slotted hole concentrated the plastic deformation in the flanges and lips adjacent to the 

hole. This result was different from the short 362S162-33 columns without holes where 

mixed local-distortional failures were observed. The slotted holes also changed the 
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buckling influence at peak load in the intermediate length 600S162-33 specimens, where 

the holes prevented local web buckling from switching to distortional buckling in all 

three specimen tests. The deformation at peak load for the intermediate length 362S162-

33 and short 600S162-33 specimens was less sensitive to the presence of slotted holes, 

exhibiting mixed local-distortional failure modes consistent with DSM predictions (L 

and D of similar magnitudes) as discussed in Section 5.3.2.3. 

The visual observations in this study highlight the complex relationship between 

elastic buckling and column failure and the sensitivity of their interaction to the choice 

of cross-section and column length. In the cases of the short 362S162-33 and 

intermediate length 600S162-33 specimens, it is clearly demonstrated that holes can 

influence column deformation and ductility by changing how elastic buckling modes, 

local and distortional in this case, affect the axial stiffness and plastic deformation of the 

column under load. This data is important in the context of the Direct Strength Method, 

especially for this current effort to extend DSM to members with holes, since elastic 

buckling is used to predict the failure mode (local, distortional, or global) and ultimate 

strength. 

5.4.4 Discussion of friction-bearing boundary conditions 

The friction-bearing end conditions used in this testing are advantageous because 

specimen alignment and preparation can be performed without welding or the use of 

grout or hydrostone. The specimens were aligned by hand in the testing machine 

without special equipment. However, preparing the specimen ends with a milling 
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machine can be time consuming. Further, small deviations in flatness may significantly 

impact the tested results and failure modes; real care must be taken in the specimen end 

preparation. Finally, lack of a positive connection between specimen and platen makes 

it difficult to exactly know the boundary conditions. 

In this study, friction between the column ends and the platens prevented a change 

in shape of the cross-section up to peak load in all specimens, but slipping of the cross-

section was observed after peak load. This slipping was signaled by loud metal-on-

metal "popping" sounds associated with observable changes in the cross-section (-So of 

the flanges, see Figure 5.47 for definition) at the column ends. Also, uplift warping 

deformations like those shown in Figure 5.51 occurred in the post-peak range for the 

short 600S162-33 columns experiencing distortional type failures. Distortional buckling 

modes are anticipated to be sensitive to this uplift since they are highly sensitive to 

warping deformations. The intermediate length 362S162-33 columns experienced a 

sudden global flexural-torsional failure shortly after reaching peak load as the twisting 

of the columns overcame the friction between the column ends and the platens. The 

friction-bearing end conditions did not allow a detailed study of the global flexural-

torsional post-peak response for the intermediate length 362S162-33 columns and likely 

decreased their ultimate strengths. 

Overall, for short and intermediate length column testing focused on local and 

distortional buckling modes, the advantages of the simple friction-bearing boundary 

conditions outweighed the disadvantages. Proper care must be taken to insure the ends 

are milled flat and the platens are level and parallel. For longer column tests, where 
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large torsional rotations must be restrained, the bearing conditions employed here are 

not recommended for use. 

Flange-lip corner lifts off platen 
when large deformations exist 
past peak load 

Figure 5.51 Short 600S162-33 column flange-lip corner lifts off platen during post-peak portion of test 
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Chapter 6 

Predicting residual stresses and plastic 
strains in cold-formed steel members 

Thin cold-formed steel members begin as thick, molten, hot steel slabs. Each slab is 

typically hot-rolled, cold-reduced, and annealed before coiling and shipping the thin 

steel sheet to roll-forming producers (US Steel 1985). Once at a plant, the sheet is 

unwound through a production line and plastically folded to form the final shape of a 

structural member, as shown in Figure 6.1. This manufacturing process imparts residual 

stresses and plastic strains through the sheet thickness. These residual stresses and 

strains influence the load-displacement response and ultimate strength of cold-formed 

steel members. 

In previous work a statistical approach was employed to draw conclusions on the 

magnitude and distribution of longitudinal residual stresses using a data set of surface 

strain measurements collected by researchers between 1975 and 1997 (Schafer and Pekoz 

1998). The measured surface strains are converted to residual stresses using Hooke's 
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Law and then distributed through the thickness as membrane (constant) and bending 

(linear variation) components. These residual stress distributions are a convenient way 

to express the measured residual surface strains, and are convenient as well for use in 

nonlinear finite element analyses, but they are not necessarily consistent with the 

underlying mechanics. 

Figure 6.1 Cold-formed steel roll-forming: (left) Sheet coil enters roll-forming line, (right) steel sheet is cold-
formed into C-shape cross-section (photos courtesy of Bradbury Group). 

Plastic bending, followed by elastic springback, creates a nonlinear through-

thickness residual stress distribution, in the direction of bending, as shown in Figure 6.2 

(Shanley 1957). The presence of nonlinear residual stress distributions in cold-formed 

steel members has been confirmed in experiments (Key and Hancock 1993) and in 

nonlinear finite element modeling of press-braking steel sheets (Quach et al. 2006 ). A 

closed-form analytical prediction method for residual stresses and equivalent plastic 

strains from coiling, uncoiling, and mechanical flattening of sheet steel has also been 

proposed (Quach et al. 2004 ). The same plastic bending that creates these residual 

stresses also initiates the cold-work of forming effect, where plastic strains increase the 

apparent yield stress in the steel sheet (and ultimate strength in some cases) (Yu 2000). 
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Together, these residual stresses and plastic strains comprise the initial material state of 

a cold-formed steel member. 

Elastic springback 

Plastic bending Elastic springback 

•* • 

4 
7 

Elastic springback Nonlinear residual 
stress distribution 

Figure 6.2 Forming a bend: plastic bending and elastic springback of thin sheets results in a nonlinear 
through-thickness residual stress distribution. 

A general method for predicting the manufacturing residual stresses and plastic 

strains in cold-formed steel members is proposed here. The procedure is founded on 

common industry manufacturing practices and basic physical assumptions. The 

primary motivation for the development of this method is to define the initial state of a 

cold-formed steel member for use in a subsequent nonlinear finite element analysis. The 

derivation of the prediction method is provided for each manufacturing step, and the 

predictions are evaluated with measured residual strains from existing experiments. 

The end result of the method is intended to be accessible to a wide audience including 

manufacturers, design engineers, and the academic community. This method also has 

the potential to compliment and improve Chapter A7.1.2 of the existing Specification 

(AISI-S100 2007), which currently allows for an increase in member strength from the 
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cold-work of forming effect at cross-section corners, but does not directly account for the 

influence of the nonlinear through-thickness corner residual stresses or the influence of 

plastic strains and residual stresses from coiling, uncoiling, and flattening of the sheet 

steel. 

6.1 Stress-strain coordinate system and notation 

The stress-strain coordinate system and geometric notation used in the forthcoming 

derivations are defined in Figure 6.3. The x-axis is referred to as the transverse direction 

and the z-axis as the longitudinal direction of a structural member. Cross-section 

elements are referred to as either "corners" or "flats". The sign convention for stress and 

strain is positive for tension and negative for compression. 

sheet steel coil 

roller dies 

Elevation View 

A 

Section A-A 

Figure 6.3 Stress-strain coordinate system as related to the coiling and cold-forming processes. 
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6.2 Prediction method assumptions 

The following assumptions are employed to develop this prediction method: 

a. Plane sections remain plane before and after cold-forming of the sheet steel. This 

assumption permits the use of beam mechanics to derive prediction equations. 

b. The sheet thickness t remains constant before and after cold-forming of the sheet 

steel. A constant sheet thickness is expected after cold-bending if the bending is 

performed without applied tension (Hill 1950). Cross-section measurements 

demonstrate modest sheet thinning at the corners, where t in the corners is typically five 

percent less than in the flange and web (Dat 1980). This thinning is ignored here to 

simplify the derivations, although a reduced thickness based on the plastic strain 

calculations in Section 6.4 could be used if a higher level of accuracy is required. 

c. The sheet neutral axis remains constant before and after cross-section cold-forming. 

Theoretical models used in metal forming theory do predict a small shift in the through-

thickness neutral axis towards the inside of the corner as the sheet plastifies (Hill 1950). 

This shift is calculated as six percent of the sheet thickness, t, when assuming a 

centerline corner radius, rz, of 2.5t. A neutral axis shift of similar magnitude has been 

observed in the nonlinear finite element model results for thin press-braked steel sheets 

(Quach et al. 2006 ). This small shift is ignored here to simplify the derivations. 
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d. The steel stress-strain curve is assumed as elastic-perfectly plastic when calculating 

residual stresses. More detailed stress-strain models that include hardening are 

obviously possible, but a basic model is chosen to simplify the derivations. The 

implication of this assumption is that the residual stresses may be underestimated, 

especially in corner regions where the sheet has yielded completely through the 

thickness. 

e. Plane strain behavior is assumed to exist during coiling, uncoiling, and flattening 

(e*=0) and during cross-section cold-forming (ez=0). 

f. The steel sheet is fed from the top of the coil into the roll-forming bed as shown in 

Figure 6.4a. This assumption is consistent with measured bending residual stress data 

(see Section 6.6) and manufacturing setups suggested by roll-forming equipment 

suppliers (Figure 6.1). The author did observe the alternative setup in Figure 6.4b (sheet 

steel unrolling from the bottom of the coil) at a roll-forming plant, suggesting that the 

direction of uncoiling is a source of variability in measured residual stress data. 
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Roll-forming bed 
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Sheet has residual 
CONCAVE curvature 
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Sheet has residual 
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(b) 

Figure 6.4 Roll-forming setup with sheet coil fed from the (a) top of the coil and (b) bottom of coil. The 
orientation of the coil with reference to the roll-forming bed influences the direction of the coiling residual 

stresses. 

g. Membrane residual stresses are zero. Membrane residual stresses have been 

measured by several researchers (Ingvarsson 1975; Dat 1980; Weng and Pekoz 1990; De 

Batista and Rodrigues 1992; Kwon 1992; Bernard 1993; Key and Hancock 1993), although 

the magnitudes are small relative to bending residual stresses (see Table 6.1). Membrane 

residual stresses are experimentally determined by averaging the measured surface 

strains on the two faces of a thin steel sheet. Given the variability inherent in these 

measurements it is difficult to know if the resulting membrane stresses (strains) are real 

or simply unavoidable experimental error. 
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6.3 Derivation of the residual stress prediction 
method 

The prediction method proposed here assumes that two manufacturing processes 

contribute to the through-thickness residual stresses in cold-formed steel members: (1) 

sheet coiling, uncoiling, and flattening, and (2) cross-section roll-forming. Algebraic 

equations for predicting the through-thickness residual stress and effective plastic 

strains in corners and flats are derived here and then summarized in flowcharts in 

Figure 6.13 and Figure 6.17. 

6.3.1 Residual stresses from sheet coiling, uncoiling, and 
flattening 

Coiling the sheet steel after annealing and galvanizing, but prior to shipment, may 

yield the steel if the virgin yield strain, t^m, is exceeded. If plastic deformation does 

occur, a residual curvature will exist in the sheet as it is uncoiled. This residual 

curvature is locked into a structural member resulting in longitudinal residual stresses 

as the sheet is flattened by the roll-formers. This process of coiling, uncoiling with 

residual curvature, and flattening is described in Figure 6.5. 
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DETAIL A C o i , i n a 
Uncoiled with residual 
curvature 

Flattened as sheet enters 
the roll-formers 

Change In curvature locks in 
bending residual stresses in 
final member 

DETAIL A 

Figure 6.5 Coiling of the steel sheet may result in residual curvature which results in bending residual 
stresses as the sheet is flattened. 

6.3.1.1 Coiling 

The through-thickness strain induced from coiling is related to the radial location of 

the sheet in the coil r„ with the well known relationship from beam mechanics: 

y rx 
(6.1) 

ez is the engineering strain through the thickness y in the coiling (longitudinal) direction 

z. y varies from -ill to ill, where i is the sheet thickness. The radius associated with the 

elastic-plastic threshold initiating through-thickness yielding from coiling, r^, is derived 

by substituting e^e^u and y=tll (outer fiber strain) into Eq. (6.1): 

ep Is 
(6.2) 

yield 

When the coil radius rx is greater than r^ the sheet steel experiences only elastic 

deformation on the coil. For sheet steel rolled to a coil radius r* less than rw through-

thickness yielding will occur as shown in Figure 6.6. 
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Figure 6.6 Longitudinal residual stress distribution from coiling. 

When rx < repi the depth of the elastic core c is defined as: 

c = 2r 8 .,, <t, 
x yield — 

(6.3) 

6.3.1.2 Uncoiling 

As the yielded sheet is uncoiled in preparation for the roll-forming line, the sheet 

steel springs back elastically resulting in a change in the through-thickness stress. This 

stress distribution is determined by first calculating the plastic coiling moment 

M!0" = a yield 

O^2 

\^J 
~ Vx£yield ) 
3 

(6.4) 

and then applying an opposing moment elastically to simulate the removal of the 

imposed radial displacement 

-YlMfy uncoil 

f 
(6.5) 

6.3.1.3 Flattening 

After the sheet has been unrolled, a permanent radius of curvature will still exist if rx 

was less than r^on the coil. This permanent radius is 
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r. = 
1_ 

1 M coil (6.6) 

EI 

Steel sheet with permanent curvature from coiling is pressed flat as the sheet enters the 

roll-forming line. The longitudinal stresses resulting from flattening the sheet are 

simply 

. flatten 
= -E- y 

. uncoil 
(6.7) 

6.3.1.4 Residual stress distribution 

The total through-thickness longitudinal residual stress distribution due to coiling, 

uncoiling, and flattening is presented in Figure 6.7. 

+cr, yield 

""yield 

Coil Uncoil Flatten 

^ 

ff, P * ^ 

Residual Stress 

Figure 6.7 Predicted longitudinal residual stress distribution from coiling, uncoiling, and flattening of a 
steel sheet. 

The resulting residual stress, oz, is self-equilibrating for axial force through the thickness 

but causes a residual longitudinal moment. Section 6.6 compares the stresses caused by 

this moment with surface strains (stresses) measured in experiments. 

The longitudinal residual stresses also will create transverse stresses across the 

width of the coil, assuming plane strain conditions for an infinitely wide sheet. 
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Supporting the plane strain assumption is the observation that while the actual width of 

the sheet is finite, it remains several orders of magnitude greater than the sheet 

thickness. Under this assumption, and further assuming only elastic stresses, the 

transverse stresses are: 

a =v(ac°" +o-mco" +<jJlMen). (6.8) 

Poisson's ratio, v, is assumed here as 0.30 for steel deformed elastically. The through-

thickness deformation from the uncoiling and flattening components will occur 

elastically, and the coiling component will be at least partially elastic through the 

thickness for the range of sheet thicknesses common in industry. 

6.3.2 Residual stresses from cross-section roll-forming 

A set of algebraic equations is derived here to predict the transverse and 

longitudinal residual stresses created by roll-forming a cross-section. Roll-forming 

residual stresses are cumulative with the coiling residual stresses derived in Section 6.3.1 

and provide a complete prediction of the initial stress state of the member cross-section. 

The roll-forming residual stresses are assumed to exist only at the location of the formed 

corners, between the roller die reactions, as shown in Figure 6.8. Some yielding is 

expected to occur outside of the roller reactions as the stress distribution transitions 

from fully plastic to fully elastic; however, this transition area is not considered here to 

simplify the derivation. 
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between roller dies 
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Figure 6.8 Cold-forming of a steel sheet. 

The engineering strain in the steel sheet, ex, and the bend radius, rz/ are related for 

both small and large deformations with the strain-curvature relationship 

- = — . (6.9) 
rz y 

This geometric relationship is valid for elastic and plastic bending of the steel sheet. For 

the small bend radii common in the cold-formed steel industry (rz =2t to 8t), the steel 

sheet yields through its thickness during the cold-forming process. The steel sheet will 

reach the fully plastic stress state shown in Figure 6.9 as the corner approaches its final 

manufactured radius. 

"ayield 

y 

t 

Figure 6.9 Fully plastic transverse stress state from cold-forming. 
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After the sheet becomes fully plastic through its thickness, the engineering strain 

continues to increase as the radius decreases. When the final bend radius is reached and 

the imposed radial displacement is removed, an elastic springback occurs that elastically 

unloads the corner (see Figure 6.2). The change in stress through the thickness from this 

elastic rebound is derived with the plastic moment force couple shown in Figure 6.10. 

t/2 FP 

4 
* 

y 

+0yleld 

* 
I 
* 

X 

J yield 

Figure 6.10 Force couple {Fp-Vit) applied to simulate the elastic springback of the steel sheet after the 
imposed radial deformation is removed. 

The plastic moment is calculated with the equation 

yr bend _ 77 l_ _ °yield ' * ' l £_ 
P2 2 2 

OyieJ 
(6.10) 

which is then applied elastically through the thickness to simulate the stress distribution 

from elastic rebound of the sheet steel: 

A°w2^ 
a 

rebound M°enay 

I 

y 
^ y i e ^ 

12 

(6.11) 

•ht3 

The final transverse stress state is the summation of the fully plastic stress 

distribution through the thickness and the unloading stress from the elastic springback 

of the corner as shown in Figure 6.11, where ax is the transverse residual stress through 
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the thickness from the cold-forming of the corner. This stress is nonlinear through the 

thickness and is self-equilibrating, meaning that axial and bending sectional forces are 

absent in the x-direction after forming. 

J"ayield 

k. 

+ayield 

Plastic Bending 

+1-5o y i e l d i 

Elastic Springback 
rebound 

'-'yield 

-0.5a, yield 

+0.5ayie ld 

y +0, yield 

Transverse Residual Stress 

a. 

Figure 6.11 Cold-forming of a steel sheet occurs as plastic bending and elastic springback, resulting in a self-
equilibrating transverse residual stress. 

The transverse residual stresses will create stress in the longitudinal direction due to the 

assumed plane strain conditions (see Section 6.2): 

°,=v°x- (6.12) 

The Poisson's ratio, v, is assumed as 0.30 for steel deformed elastically and 0.50 for fully 

plastic deformation. The longitudinal residual stresses through the thickness, oz, are 

determined based on these assumptions as shown in Figure 6.12. Longitudinal residual 

stress, az, is self-equilibrating for axial force through the thickness but causes a residual 

longitudinal moment. This moment is hypothesized to contribute to the observed 

longitudinal residual strains measured in experiments (refer to Section 6.6 for a 

comparison of this prediction to actual measurements). 
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Figure 6.12 Plastic bending and elastic springback from cold-forming in the transverse direction result in 
longitudinal residual stresses because of the plane strain conditions. 

A flowchart summarizing the proposed prediction method for residual stresses in 

roll-formed members is provided in Figure 6.13. Figure 6.13 explicitly demonstrates 

how coiling, uncoiling, flattening, and roll-forming contribute to the residual stresses 

locked into the cross-section during manufacturing. 
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Figure 6.13 Flowchart summarizing the prediction method for residual stresses in roll-formed members. 
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6.4 Derivation of effective plastic strain prediction 
method 

In the method proposed here, plastic strains occur from sheet coiling and cold-

forming, and together with residual stresses describe the initial material state of the 

member. The general state of plastic strain at a point can be quantified by using the von 

Mises yield criterion extended to plastic deformations (Chen and Han 1988): 

where ep is the effective plastic strain, and et, e2,and e3 are the principal strains. All of the 

strains are "true" strains, which may be calculated from the engineering strains via: 

ff, =111(1 + 5,) ,ff2=ln(l + ^ ) , £ 3 = ln( l + f z ) , (6.14) 

where Ex, Sy, ft are in the Cartesian coordinate system (Figure 6.3) and x,y,z is coincident 

with the principal directions. True strains are employed instead of engineering strains to 

accommodate the large deformations from plastic bending. Also, from a practical 

standpoint, nonlinear FE codes such as ABAQUS (ABAQUS 2007a) require the engineer 

to provide true stress, true strain information (as large deformation theory is employed). 

The steel sheet is assumed to remain incompressible while experiencing plastic 

deformations, therefore when calculating ep 

£-, +e2 +£3 =0 . (6.15) 
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6.4.1 Effective plastic strain from sheet coiling 

Engineering plastic strains, as shown in Figure 6.14, accumulate during the coiling of 

sheet steel if the coiling radius rx is less than the elastic-plastic threshold v 

Figure 6.14 Plastic strain distribution from sheet coiling with a radius less than elastic-plastic threshold r^. 

The engineering plastic strain distribution from coiling is: 

V C 
pp — Z, P v > —• 
Cz ~ Cyield' J ~ r, r 2 

£P = 
y 

'yield '""'I 
(6.16) 

s[ =0 otherwise, 

where the elastic core, c, is defined in Eq. (6.3). Plane strain conditions result in £i=0, and 

£2=-£3 via the incompressibility assumption of Eq. (6.15). Further, the Cartesian 

coordinate system is coincident with the principal axes, resulting in the following true 

principal plastic strains: 

^ = 0 , ^ = - l n ( l + <) ,^ 3 =ln( l + ^ ) . (6.17) 

Substituting the principal strains into Eq. (6.13) and simplifying leads to the through-

thickness effective plastic strain from coiling 
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s^= JL1 n(l + | 8P
Z) (6.18) 

This plastic strain distribution, depicted in Figure 6.15, will exist at all locations in the 

cross-section (corners and flats) when rx is less than the elastic-plastic threshold r^. 

Figure 6.15 Effective plastic strain in a cold-formed steel member from sheet coiling when the radius rx is 
less than the elastic-plastic threshold r^. 

The plastic strain from coiling, £r
coiUn%, will generally be much smaller in magnitude than 

the plastic strain from cross-section cold-forming, Ev
benA, as discussed in following section. 

6.4.2 Effective plastic strain from cross-section cold-
forming 

Large transverse plastic strains occur through the thickness of a thin steel sheet when 

the sheet is permanently bent. The engineering plastic strain distribution from cold-

forming is described via 

s>=-2- (6.19) 

which assumes that the elastic core at the center of the sheet is infinitesimally small. 

This assumption is consistent with the small bend radii common in industry (see 6.3.2). 
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Plane strain conditions and Eq. (6.15) result in £3=0, £2=-£i. Physically these conditions 

imply that the sheet will experience some thinning at the location of cold-forming (see 

Section 6.2), but the tendency to plastically shorten longitudinally will be resisted by the 

adjacent undeformed portion of the cross-section. As before, the Cartesian coordinate 

system is coincident with the principal axes, resulting in the following plastic principal 

strains: 

^=ln(l + ̂ ) , * 2 =- ln ( l + O , £ 3 = 0 . (6.20) 

Substituting for the principal strains and simplifying, the effective plastic strain at a 

cold-formed corner is: 

<"=^in(i+kl) (6.21) 

This effective plastic strain distribution is shown in Figure 6.16. The distribution exists 

only at the cold-bent locations in a cross-section and should be added to the coiling 

plastic strain distribution in Figure 6.15. 

Figure 6.16 Effective von Mises true plastic strain at the location of cold-forming of a steel sheet. 

A flowchart summarizing the prediction method for effective plastic strains in roll-

formed members is provided in Figure 6.17. 

243 



• • . ' ! » • • • 

No 

No equivalent 
plastic strains I 

Flat 

Sheet Coiling 

Corner 

" 2fi„. 

" 2c 

Yes. yields on coil 

No, remains elastic1 

V3 v ' 

^ ,y * 

r i -
c = 2r£j, 

2 

otherwise 

<-=-£in(n>:| - —S v S — 
2 ' 2 

< " 1 fielding on the Coll? _ > — 

Yes 

Sheet Coiling 

Corner Bending 

;End 

Figure 6.17 Flowchart summarizing the prediction method for effective plastic strains in roll-formed 
members 

6.5 Employing the prediction method in practice: 
quantifying the coil radius influence 

The residual stress and plastic strain distributions derived for cross-section cold-

forming (Sections 6.3.2 and 6.4.2) are straight-forward to calculate if the yield stress, ayieid, 

and thickness, t, of the sheet steel are known. The coiling residual stresses and plastic 

strains are more difficult to calculate because the coil radius coinciding with the as-

formed member, i.e., the radial location of the sheet, rxi is almost always unknown in 
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practice. However, rx can be derived in an average sense though, since the range of inner 

and outer coil radii are known and the probability that a structural member will be 

manufactured from a certain rx can be quantified. 

The relationship between coil radius, rx, and corresponding linear location S of the 

sheet within the coil can be described using Archimedes spiral (CRC 2003) 

S = j(rx
2-rinj). (6.22) 

The spiral maintains a constant pitch with varying radii, where the pitch is the thickness 

of the steel sheet, t, as shown in Figure 6.18, L is the total length of sheet in the coil, and 

rimer and rmter are the inside and outside coil radius, respectively. As-shipped outer coil 

radii range from 24 in. to 36 in. and inner coil radii range from 10 in. to 12 in. These 

ranges were determined by the author during a visit to a local roll-forming plant. 

Figure 6.18 Coil coordinate system and notation. 

Archimedes spiral is used to describe the probability that the steel sheet will come 

from a certain range of radial locations in the coil. The cumulative distribution function 
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(CDF), FR(rx) = probability that the radius is less than r„ is obtained by normalizing S by 

T=FM = rl rT • (6-23) 
outer inner 

The probability density function (PDF) of rx is calculated by taking the derivative of FR(rJ 

/.w=^=A-' (6-24) 
CLY Y — Y x outer inner 

The mean value of the radial location for a given inner and outer coil radii is 

rx = l fR(rx)rxdrx=-
( \ r. r 

r A- r inner outer 
inner ' outer 

Y + Y \ inner outer J 

(6.25) 

The variance of the radial location is 

4 = lm"rfn(rx)(rx -Yx)
2dY = UY^ + 4YmlerYinner + ^ J ^ J W l . (6.26) 

V outer inner J 

These statistics for rx can then be used with the prediction method for coiling, uncoiling, 

and flattening residual stresses and plastic strains described in Sections 6.3.1 and 6.4.1. 

Figure 6.19 summarizes the influence of sheet thickness and virgin yield stress on the 

longitudinal residual stress distributions in flats and corners. (The method proposed in 

this chapter provides residual stresses and strains for the entire member, only the 

longitudinal residual stresses are shown in Figure 6.19.) The solid lines in Figure 6.19 

are calculated using the mean value, Tx =18.7 in, from Eq. (6.25) assuming rinner=12 in. and 

r0uter=24 in. The distributions with the dashed lines are calculated with 7X±SR, where 

sR=3.4 in. is calculated with Eq. (6.26). The residual stresses are nonlinear through the 

thickness and have different shapes for flats and corners. The stress magnitudes at the 
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outer fibers increase for thicker sheets and lower yield stresses. The accuracy of the 

linear bending residual stress model commonly employed in finite element analyses is 

perhaps sufficient when yield stress is low and thickness is high (relatively), but for 

typical thicknesses (0.0346 in. to 0.0713 in.) and yield stress (50 ksi) the assumption of a 

linear longitudinal stress distribution is not consistent with the mechanics-based 

predictions in Figure 6.19. 

Longitudinal Residual Stresses 

0 ^ = 3 0 ksi Oyieid=50 ksi cryield=80 ksi 

t=0.0346 in. 

t=0.0713 in. 

t=0.1017 

Positive stress is tension, negative stress is compression 

Figure 6.19 Influence of sheet thickness and yield stress on through-thickness longitudinal residual stresses 
(z-direction, solid lines are predictions for mean coil radius, dashed lines for mean radius +/- one standard 

deviation). 
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6.6 Comparison of prediction method to measured 
residual stresses 

The flat and corner residual surface strain measurements from 18 roll-formed 

specimens are used to evaluate the proposed residual stress prediction method. The 

prediction method provides the complete through-thickness longitudinal strain (stress) 

distribution if the radial location in the coil from which the specimen originated in the 

coil, rx, is known. Since the radial coil location of the 18 specimens is unknown, xx is 

statistically estimated for each specimen using the coil radius that best fits the predicted 

surface strains to the measured surface strains from a specimen cross-section (for both 

corners and flats). Once the best fit radial locations have been calculated, they are 

examined to determine if their magnitude is rational when compared to typical inner 

and outer dimensions of a sheet coil. Although this comparison only provides a partial 

evaluation of the prediction method, it is as far as one can go with the available data. 

Qualitatively the prediction method is consistent with the more detailed through 

thickness findings (Key and Hancock 1993; Quach et al. 2006 ). 

6.6.1 Measurement statistics 

The mean and standard deviation of the residual stresses for the 18 roll-formed 

specimens used in this comparison are provided in Table 6.1. Positive membrane 

stresses are tensile stresses and positive bending stresses cause tension at y=-t/2 (see 

Figure 6.3 for coordinate system). The statistics demonstrate that both membrane and 

bending residual stress measurements are highly variable and that the membrane 
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stresses are small relative to the steel yield stresses. Details on the residual stress 

measurements for each of the 18 specimens are described in a previous research 

progress report (Moen and Schafer 2007b). 

Table 6.1 Statistics of the residual stresses in roll-formed members 

Element 

Corners 
Flats 

Residual stress as %Oyieid 

Membrane 
Mean STDEV 

5.7 
1.8 

10.1 
10.7 

Bending 
Mean STDEV 
32.0 
25.2 

23.8 
20.7 

No. of 
Samples 

23 
120 

6.6.2 Mean-squared error (MSE) estimate of radial location 

To explore the validity of the prediction method, the flat and corner residual stress 

measurements from the 18 specimens are used to estimate the radial location rx from 

which each specimen originated. These estimated radial locations are then used to 

calculate the difference between the predicted and measured longitudinal residual 

stresses. 

6.6.2.1 MSE minimization 

The location of the specimen in the coil, rx/ is estimated by minimizing the sum of the 

mean-squared errors (MSE) for the p=l,2,...n, measurements taken around the cross-

section of the q=l,2,.. .,18 specimens 

r^=argmin£ 
( measured predicted \ 

P<i 
-<J 

PI 

p = l V yield, pq 

(6.27) 

Both corner and flat measurements are included in the minimization. 
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6.6.2.2 Bending component of longitudinal residual stress 
distribution 

The bending component of the predicted residual stress distribution must be isolated 

to compare with the measured values. The total predicted longitudinal residual stress 

distribution in the flats and corners of each cross-section is integrated to calculate the 

sectional moment through the thickness 

t_ 

M * = \ \ G * y d y • <6-28) 

2 

Mx is then converted into a predicted outer fiber bending residual stress which can then 

be directly compared to the measurements 

M, 
' ^ 

v^y predicted = ^ _ ^ 

6.6.2.3 Estimated coil radii using MSE 

Figure 6.20 demonstrates the mean-squared error results for de M. Batista and 

Rodrigues Specimen CP1 (De Batista and Rodrigues 1992). The radial location that 

minimizes the prediction error is 1.60r,„„„ in this case, and is summarized in Table 6.2 for 

all 18 roll-formed specimens considered. The estimated radial locations fall within the 

range of inner and outer coil radii assumed in the prediction (rinn„ to 2.40r,„„er) except for 

Dat RFC13 which is slightly outside the range at 2.45r,„„Jr. The MSE radial location 

cannot be determined in the three Bernard specimens (Bernard 1993) since the bending 

residual stresses in the flats are predicted to be zero. These three specimens are cold-
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formed steel decking with a thin sheet thickness t ranging from 0.022 in. 0.0400 in. and a 

relatively high yield stress oyiM ranging from 87 ksi to 94 ksi. In this case, the coiling and 

uncoiling of the steel sheet will occur elastically as demonstrated in Figure 6.19. 

Measured bending residual stress magnitudes in the flats of the Bernard specimens are 

on average 0.03(7^ which is consistent with the prediction method. 

x inner 

Figure 6.20 The mean-squared error of the predicted and measured bending residual stresses for de M. 
Batista and Rodrigues (De Batista and Rodrigues 1992), Specimen CP1 is minimized when ^=1.60r,„„Cr. 
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Table 6.2 Radial location in the coil that minimizes the sum of the mean square prediction error for roll-
formed members 

Researcher 

de M. Batista and Rodrigues (1992) 
de M. Batista and Rodrigues (1992) 

Weng and Pekoz (1990) 
Weng and Pekoz (1990) 
Weng and Pekoz (1990) 
Weng and Pekoz (1990) 
Weng and Pekoz (1990) 
Weng and Pekoz (1990) 
Weng and Pekoz (1990) 
Weng and Pekoz (1990) 

Dat(1980) 
Dat(1980) 

Bernard (1993) 
Bernard (1993) 
Bernard (1993) 

Abdel-Rahman and Siva (1997) 
Abdel-Rahman and Siva (1997) 
Abdel-Rahman and Siva (1997) 

Specimen 

CP2 
CP1 

RFC13 
RFC14 

R13 
R14 

P3300 
P4100 
DC-12 
DC-14 
RFC14 
RFC13 

Bondek 1 
Bondek 2 

Condeck HP 
Type A - Spec 1 
Type A - Spec 2 
Type B - Spec 1 

rx estimate 

in. 
12.0 
16.0 
18.0 
11.0 
14.5 
13.0 
19.5 
15.0 
23.0 
16.0 
20.0 
24.5 
N/A 
N/A 
N/A 
16 
16 
13 

rinner=10 in., router=24 in. 

N/A coiling residual stresses are predicted as zero 

6.6.3 Statistical variations between measurements and 
predictions 

The predicted radial locations in Table 6.2 are now used to calculate the statistical 

variations between the experiments and predictions. The bending residual stresses in 

the 18 roll-formed members are calculated using the MSE-predicted radial location rx 

with the residual stress prediction method summarized in Figure 6.13. The bending 

component of the residual stress prediction is then obtained with Eq. (6.29). The 

difference between the predicted and measured residual bending stresses, epq, for the 

p=l,2,...,n measurements taken around the cross-section of the q=l,2,...,18 specimens is 

calculated as 

measured _ predicted 
°Pq -Vpq 

epa = " • (6.30) 
yield, pq 
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The error histogram for the flat cross-sectional elements in Figure 6.21a demonstrates 

that the mean difference fie is near zero with a standard deviation sc=0.15ay,d<i. The 

scattergram in Figure 6.21b demonstrates the strength of the correlation between the 

measurements and predictions in the flats; the solid regression line passes nearly 

through zero (i/-intercept=0.05c!>w) and has nearly a unit slope (m=0.92). Also, the 

majority of the data lies within ± one standard deviation of the estimate, denoted as the 

dashed lines in the figure. It is concluded that the prediction method is consistent with 

the measured data in the flats. 

The corner element error histogram in Figure 6.22a shows a negative bias of \ie=-

0.16Of,iM meaning that the predicted residual stresses are generally higher than the 

measured values. The standard deviation of the error is large (se=0.19ffy,cw) but is less 

than the standard deviation of the corner residual stress measurements in Table 6.1 

(sm=O.2&0yiM). This demonstrates a greater match between the measurements and 

predictions, although more corner residual stress measurements are needed to improve 

the strength of this comparison. The scattergram in Figure 6.22b highlights the 

variability in the measured corner data, especially in the region corresponding to 

Oprciiae^OAOyiM, where bending residual stresses (strains) vary from 0 to 0.7ay,dd. 
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Figure 6.21 (a) Histogram and (b) scattergram of bending residual stress prediction error (flat cross-
sectional elements) for 18 roll-formed specimens. 
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Figure 6.22 (a) Histogram and (b) scattergram of bending residual stress prediction error (corner cross-
sectional elements) for 18 roll-formed specimens. 

6.7 Discussion 

The residual stresses and strains predicted with this method (Section 6.3 for stress, 

Section 6.4 for strain) form the initial material state in the cross-section. In design, this 

initial material state is sometimes considered through the so-called cold-work of forming 

effect, where the yield stress of the material is increased above the virgin yield stress, 
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o-yieii, to account for the 'working of the corners'. For one-dimensional stress-strain this 

concept is expressed as shown in Figure 6.23, where 'working the corners' results in a 

residual plastic strain, ^, such that when the section is re-loaded the stress at which 

yielding re-initiates, 0 ,̂ is greater than the virgin yield stress, <jyiM. If no residual stresses 

existed the apparent increase in the yield stress from aym to o^ can be significant. 

However, as Figure 6.19 illustrates, 'working the corners' also contributes to residual 

stresses, ae
rs, and these residual stresses may decrease the apparent yield stress. 

The prediction method presented herein provides a more nuanced understanding of 

the cold-work of forming effects. The residual plastic strains may increase the apparent 

yield stress, but those strains vary through the thickness and have contributions from 

both transverse and longitudinal strains. Further, residual stresses follow their own 

relatively complicated distribution through the thickness. In a multi-axial stress state 

using the von Mises yield criterion, Figure 6.23 is enforced for the effective stress -

effective strain pair for every point in the cross-section. As a result, the apparent yield 

stress upon loading varies through the thickness and is influenced by both the residual 

stresses and strains. Even under simple loading conditions (e.g., compression) a cold-

formed member undergoes plate bending well in advance of collapse, so the strains 

demanded of the material also vary through the thickness and around the cross-section. 

While it is indeed possible to model such effects in a finite element analysis, assuming 

these effects can be collapsed into a generic increase in the yield stress for the entire 

section as is currently done in design would seem to be an oversimplification. 
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Figure 6.23 Definition of apparent yield stress, effective residual stress, and effective plastic strain as related 
to a uniaxial tensile coupon test. 

Implementation of the residual stresses and initial plastic strains into a commercial 

finite element program such as ABAQUS, where the member is modeled using shell 

elements, is relatively straightforward. The number of through-thickness section 

(integration) points must be increased to resolve the nonlinear through-thickness 

residual stress and strain distributions. The residual stresses and strains predicted herein 

can be relatively large. Further, conventional loading (e.g., compression, major-axis 

bending) may cause loading or unloading of these initial stresses at a given point in the 

cross-section. As a result, the hardening rule: isotropic, kinematic, or mixed can have 

practical differences in the observed response even when the applied loads themselves 

are not reversing. 

For this situation, kinematic hardening, which approximates the Bauschinger effect, 

provides a more conservative model of the anticipated material behavior than isotropic 

hardening. However, to model kinematic hardening the location of the center of the 

yield surface in stress space (also known as the backstress) must be determined for each 
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point in the cross-section at the end of the manufacturing process. This location is a 

function of the extent of yielding, in the example of Figure 6.23, the backstress would be 

the Ao], ACJI, A<T3 triad that results in the effective stress increasing from q,,eW to oiy. 

Unfortunately, the elastic-perfectly plastic assumption used to predict residual stresses 

herein does not directly allow for the calculation of the backstress. However, the 

effective plastic strain may be used to approximate the backstress as provided in 

Appendix G. Further examination of the predicted residual stress and strains and their 

impact on the peak strength and collapse response of cold-formed steel members in 

nonlinear finite element analysis is currently underway, including the work presented in 

Section 7.2. 
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Chapter 7 

Nonlinear finite element modeling of 
cold-formed steel structural members 

Commercial finite element programs provide a means for realistic collapse 

simulation of cold-formed steel structural members. Thin shell finite element 

formulations provided in ABAQUS (e.g., the S9R5 element discussed in Chapter 2) are 

designed to capture the sharp folds and through-thickness yielding characteristic of 

cold-formed steel beams and columns at their ultimate limit state. Robust solution 

algorithms are available to predict unstable, geometrically nonlinear collapse. The 

ability to define the initial state of a member, including geometric imperfections and the 

effects of residual stresses and initial plastic strains from the manufacturing process, is 

also feasible. Care must be taken though with computational results since they are often 

sensitive to modeling inputs and assumptions. It is prudent to study these sensitivities 

and validate a specific modeling protocol with known experiment results before trusting 

the protocol to consistently produce physically realistic results. 
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This chapter begins with preliminary nonlinear finite element studies of stiffened 

elements (i.e., a simply supported plate, see Figure 3.1 for definition) with and without 

holes, which are designed to gain experience with available ABAQUS nonlinear finite 

element solution methods. The influence of imperfections on stiffened elements is also 

evaluated, and the through-thickness yielding patterns of a stiffened element (i.e., 

"effective width") with and without a hole are compared. The conclusions reached from 

this preliminary work are used to guide the development and validation of a nonlinear 

finite element modeling protocol which is needed in Chapter 8 to explore the Direct 

Strength Method for members with holes. 

7.1 Preliminary nonlinear FE studies 

Exploratory nonlinear finite element studies are conducted in this section to gain 

experience with ABAQUS input parameters and solution controls. All studies are 

focused on the simulation of a stiffened element loaded unixaxially to collapse, and 

specific attention is paid to the modeling of a stiffened element with a hole. Experience 

gained from solving this highly nonlinear problem will be valuable when implementing 

the larger simulation studies on full cold-formed steel members with holes in Section 

7.2. 

7.1.1 Finite element modeling definitions 

The stiffened element is modeled with ABAQUS S9R5 thin shell finite elements, 

where the plate dimensions are h=3A in. and L=27.2 in. (see Figure 3.2 for plate 

dimension definitions) and the plate thickness t is 0.0346 in. (These dimensions are 

259 



specifically chosen to be consistent with the flat web width and thickness of an SSMA 

362S162-33 structural stud.) Cold-formed steel material properties are assumed as 

£=29500 ksi and v=0.30. Material nonlinearity is simulated in ABAQUS with classical 

metal plasticity theory, including the assumption of a von Mises yield surface and 

isotropic hardening behavior. The nonlinear plastic portion of the true stress-strain 

curve shown in Figure 7.1 was obtained from a tensile coupon test (Yu 2005) and input 

into ABAQUS to define the limits of the von Mises yield surface as a function of plastic 

strain. 
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Figure 7.1 True stress-strain curve derived from a tensile coupon test (Yu 2005) 

The boundary conditions of the stiffened element are summarized in Figure 7.2. 

The plate is simply-supported around the perimeter with sides free to wave. The nodes 

at the loaded edges of the plate are coupled to displace together longitudinally (in the 1 

True stress 
ksi 

33 
34.31 
42.14 
51.35 
60.86 
65.5 

True strain 

0.0000 
0.0016 
0.0259 
0.0700 
0.1407 
0.1988 
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direction), which prevents local failure modes of the plate at the loaded edges. The 

nodal coupling is provided with an equation constraint in ABAQUS. 

Loaded edge coupled to move 
together in 1 using equation Transverse midline 
constraint (all u are equal) restrained in 3 (w=0) 

^gs i f lgKsSf rw Perimeter restrained in 2 (v=0), 
^^qglggsz^^**^ y/ unloaded edges free to wave 

Longitudinal midline — ~ s > ^ i ^ S ^ s C 
restrained in 1 (u=0) ^ ^ ^ ^ s J ^ ^ s ^ 

1 Loaded edge coupled to move 
I together in 1 using equation 

> ^ v constraint (all u are equal) 

3 1 

Figure 7.2 Simply supported boundary conditions with equation constraint coupling at loaded edges 

Two types of loading conditions, uniform load and uniform displacement, are 

considered as shown in Figure 7.3. The uniform compressive load is applied as 

consistent nodal loads on the plate edge. The magnitude of the uniform load is 

represented by the parameter A, which is an accumulation of load steps AA automatically 

determined by ABAQUS. AA is large when the Newton-Raphson algorithm converges 

quickly (along the linear branch of the load-displacement curve) and adjusts to smaller 

increments as equilibrium becomes more difficult to achieve (near the peak of the load-

displacement curve). For the uniform displacement case, the total displacement 5 of the 

plate edges is applied over 100 steps, where the maximum displacement increment at 

each step is set to A§=0.0145f. 
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(a) (b) 
A Load scaling factor 
P Unit force 
h Loaded width of the plate 
d Displacement of plate edge 

Figure 7.3 Application of (a) uniform load and (b) uniform displacement to a stiffened element 

Initial geometric imperfections are imposed based on the fundamental elastic 

buckling mode of the stiffened element (see buckled shape in Figure 7.3). The 

magnitude of the imperfections is chosen based on a probabilistic treatment developed 

for cold-formed steel members (Schafer and Pekoz 1998). Since the stiffened element 

considered here is chosen to be consistent with the web of a structural stud, a Type 1 

(local buckling) imperfection is assumed as shown in Figure 7.4. The maximum 

magnitude of the imperfection field is selected such that there is a 50 percent chance that 

a randomly occurring imperfection in the plate, A, will have a magnitude less than d1r 

i.e., P(A<di)=0.50. For this probability of occurrence, the initial imperfection field of the 

stiffened element is scaled to dj/f=0.34. 
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geometric imperfections 

\ 

Figure 7.4 Type 1 imperfection (Schafer and Pekoz 1998) 

7.1.2 ABAQUS nonlinear solution methods 

Two nonlinear solution methods, the modified Riks method and a Newton-Raphson 

technique with artificial damping, are available in ABAQUS to solve difficult nonlinear 

problems. The modified Riks Method (i.e., *STATIC, RIKS in ABAQUS), was developed 

in the early 1980's and enforces an arc length constraint on the Newton-Raphson 

incremental solution to assist in the identification of the equilibrium path at highly 

nonlinear points along the load-deflection curve. This method is discussed extensively 

in several publications (Crisfield 1981; Powell and Simons 1981; Ramm 1981; Schafer 

1997; ABAQUS 2007a). Another solution option is a Newton-Raphson technique (i.e., 

""STATIC, STABILIZE in ABAQUS) which adds artificial mass proportional damping as 

local instabilities develop (that is, when changes in nodal displacements increase rapidly 

over a solution increment) to maintain equilibrium (Yu 2005; ABAQUS 2007a). Local 

instabilities near peak load are common in cold-formed steel members, such as when a 

thin plate develops at a fold line prior to collapse. 
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In this study, the stiffened element described in Section 7.1.1 is loaded to collapse 

in ABAQUS employing the modified Riks method with uniform loads applied 

uniaxially (see Figure 7.3a) and then with the artificial damping solution method 

employing uniform displacements (see Figure 7.3b). (Either method is capable of 

solving problems with applied loads or applied displacements.) The goal of this 

preliminary study is to gain experience with the solution controls for each method. 

Additional background information pertaining to the ABAQUS implementation of the 

artificial damping method is also discussed to provide specific guidance (and raise 

future research questions) on its proper use. 

7.1.2.1 Modified Riks solution 

The load-displacement curves and deformed shapes (at peak load) of the 

stiffened element solved with the modified Riks method are provided in Figure 7.5. 

Different post-peak equilibrium paths were obtained by varying AAm«, the maximum 

load increment limit for the ABAQUS automatic step selection algorithm. The existence 

of multiple solutions is consistent with a plate containing periodic geometric 

imperfections, since each half-wavelength has an equal chance of deforming locally into 

a plastic failure zone. 

Although there were several different post-peak paths observed depending upon 

the choice of bXmx, the primary failure mechanism for the plate was a sharp yield-line 

fold occurring transversely across the plate. Figure 7.6 demonstrates that this folding 

occurs at the crest of the buckled half-wave of the initial geometric imperfection field; in 
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this case the failure mechanism of the plate is linked to the initial imperfection shape. 

The quantity and location of the plastic folds influenced the overall ductility of the 

stiffened element (i.e., the area under the load-displacement curve). As the number of 

folds increase, the post-peak strength and ductility of the plate increase. The peak 

compressive load of the stiffened element was not sensitive to changes in AA™,. 

Q. 

Failure modes and 
associated Riks step sizes 

^ P A/L,=0.70 

^ ^ ^ - M™ =0.10,0.20,0.25, 
0.30,0.40,0.60 

fe>, A^=0.50 

A4„, =0.35 

I P " A ^ =0.05,0.15 

1.25 1.5 1.75 

Figure 7.5 Modified Riks method load-displacement solutions and failure modes 

ultimate limit state 

fold line (typ.) 

initial state with 
assumed 

imperfections 

(imperfection and deformation magnitudes not to scale) 

Figure 7.6 Correlation between initial imperfection shape and fold line locations at failure 
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7.1.2.2 Artificial damping solution 

7.1.2.2.1 Background on artificial damping solution method 

Artificial mass proportional damping is employed in ABAQUS to alleviate local 

instabilities in the ""STATIC, STABILIZE solution method. The global equilibrium 

equations at each displacement step can be written as: 

P-F-D = 0 (7.1) 

where P is the vector of applied external forces, F is the vector of calculated internal 

forces, and D is the vector of viscous damping forces. The damping force vector D is 

calculated at each step based on the following relationship: 

D = (cM)v (7.2) 

where c is the damping ratio, M is an artificial mass matrix calculated with a unit 

material density, and v represents the change in nodal displacements divided by the size 

of the "time" step selected by ABAQUS. v is called the "nodal velocity" in ABAQUS 

since the dimensions are length/"time", which makes v sensitive to the definition of 

"time". In this study, the total "time" is selected as one unit and the maximum "time" 

step allowed is 0.01 units. If the total "time" is chosen as 100 units and the maximum 

"time" step as 1 unit, it seems that the magnitude of the damping forces D would 

change. Following the same argument, the magnitude of v is impacted by the choice of 

units for the problem (feet, inches, meters, mm) since v has dimensions of length/"time" 

units. Future work is needed to evaluate the influence of "time" and length units on the 

calculation of the "nodal velocity" v. The evaluation of the artificial damping solution 

266 



sensitivity to the magnitude and distribution of mass in a member is also another future 

research topic. 

When the solution is stable, changes in nodal displacements are small and 

viscous damping is negligible. When large changes in displacements occur between two 

consecutive load steps (as in the case of a local instability), damping forces are applied to 

help make up the difference between P and F. v may only be high for certain locations 

in the member, and therefore damping will only be applied there. ABAQUS provides 

both automatic and manual options for selection the damping factor c; if c is chosen 

manually, ABAQUS recommends that it should be chosen as a small number since large 

damping forces can add too much artificial stiffness to the system, producing an 

unreasonable solution. When the automatic option is selected, ABAQUS finds c such 

that the dissipated energy to total strain energy ratio after the first load step is equal to 

2.0x10-4. 

7.1.2.3 Artificial damping results 

The artificial damping solutions for the stiffened element are presented in Figure 

7.7. Load-deformation results pertaining to both manually and ABAQUS-selected 

damping factors are plotted, demonstrating that the magnitude of the damping 

parameter c influences the post-peak response and causes the prediction of several 

different load paths (in a similar way to how AJL« affected the modified Riks solutions). 

Peak load is not sensitive to the quantity of damping in this case, and is consistent with 

the magnitude predicted with the modified Riks method. 
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Figure 7.7 Artificial damping load-displacement solutions and failure modes 

7.1.3 ABAQUS nonlinear solution controls 

Section 7.1.2 summarizes the preliminary experiences gained using ABAQUS 

nonlinear solution methods to determine the ultimate strength of stiffened elements. 

Equilibrium paths and failure modes can be sensitive to solution controls, although the 

peak resisting load of the plate was consistently predicted. The nonlinear solution of a 

stiffened element with a slotted hole is attempted with the modified Riks method 

(*STATIC, RIKS), the default Newton-Raphson solution algorithm (*STATIC), and 

Newton-Raphson with artificial damping (*STATIC, STABILIZE) solution methods 

available in ABAQUS. The goal of the study is to determine a set of solutions controls 
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(load step size, damping factor, convergence limits) that is capable of capturing the post-

peak load-displacement response of a stiffened element with a hole. 

7.1.3.1 Problem description 

The stiffened element described in Section 7.1.1 is considered in this study. A 

single slotted hole is placed at the midlength of the plate and centered between the 

unloaded edges. The slotted hole has dimensions of htote=1.5 in., Ltale=4 in., and rtok=0.75 in. 

(see Figure 3.2 for hole dimension definitions). 

The boundary conditions of the stiffened element were initially assumed to be 

simply-supported with both transverse and longitudinal plate midlines restrained and 

the loaded edge nodes coupled with constraint equations as described in Figure 7.2. It 

was often observed that the constraints used to enforce uniform displacements in 1 (u) at 

the loaded edges and the transverse midline restraint in 2 (w=0) were contributing to 

solution convergence problems, and therefore an alternative set of boundary conditions 

was developed as shown in Figure 7.8. 

Restraint at center of 
loaded edge in 3 (w=0) 

Loaded edge coupled to move 
together in 1 using rigid body 
formulation in ABAQUS 
(all u are equal) 

Perimeter restrained in 2 (v=0), 
unloaded edges free to wave 

Longitudinal midline 
restrained in 1 (u=0) "* •—-

Restraint at center of 
loaded edge in 3 (w=0) 

Loaded edge coupled to move 
together In 1 using rigid body 
formulation in ABAQUS 
(all u are equal) 

Figure 7.8 Stiffened element boundary conditions with rigid body coupling at loaded edges 
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A comparison of the geometric imperfections assumed for the stiffened element 

with and without the hole is provided in Figure 7.9. d,/t=0.34 is used to scale the initial 

imperfection field of the plate. This magnitude corresponds to a probability of 

occurrence of P(A<d2)=0.50 (see Section 7.1.1 for details). The peak load of the stiffened 

element is sensitive to initial geometric imperfections, and therefore it is important to 

consider the same imperfection shape when comparing the load-displacement responses 

of the stiffened element with and without a hole. The imperfection shape is imposed on 

the stiffened element with the slotted hole by mapping the buckled mode shape to nodal 

coordinates using custom MATLAB code (Mathworks 2006). 

mode mapped to plate 
with slotted hole 

Figure 7.9 Initial geometric imperfection field used for the stiffened element with and without a hole 

Eight exploratory ABAQUS models are evaluated in this study, each solving the 

same nonlinear problem of a stiffened element with a slotted hole compressed uniaxially 

until failure as shown in Figure 7.10. Each model employs a different combination of 

ABAQUS solution controls and boundary conditions as summarized in Table 7.1. 
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7.1.3.2 Modified Riks method solution controls 

The RIKS1 and RIKS2 finite element models are loaded with a uniformly 

distributed load at both ends as shown in Figure 7.3(a), where equation constraints 

couple the loaded edge nodes (see Figure 7.2). The initial and maximum load step 

magnitudes are defined for RIKS1 based on experience gained from the study in Section 

7.1.2.1. The RIKS2 model allows ABAQUS to select all load stepping parameters 

automatically. 

Figure 7.11 Load-displacement curve for the RIKS1 and RIKS2 models showing direction reversal along 
load path 

The load-displacement responses from the RIKS1 and RIKS2 models are 

compared in Figure 7.11. For both models, ABAQUS does not capture the peak load 

and reverts back along the equilibrium path until the plate is loaded to failure in tension! 

The ABAQUS Theory Manual states that this type of direction switch is possible when 
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the equilibrium path exhibits very high curvature (ABAQUS 2007a). The ABAQUS 

message files (.msg) for these models report that the moment residuals are too high at 

the loaded edge nodes and at nodes along the transverse midline of the plate, suggesting 

that these boundary conditions are contributing to the convergence difficulties for the 

solution. 

The RIKS3 model is loaded with imposed displacements at both ends as shown 

in Figure 7.3 (b), where the midline constraint is removed and the loaded edge nodes are 

coupled with a rigid body constraint instead of an equation constraint in ABAQUS (see 

Figure 7.8). According the ABAQUS Analysis User's Manual, only the reference node 

governing the motion of the rigid body is involved in element level calculations. This 

improves computational efficiency and releases the solution algorithm from the force 

and moment residual minimization constraints for all nodes in the rigid body except the 

reference node. 

The solution results from the stiffened elements loaded with consistent nodal 

loads (RIKS1, RIKS2) and imposed displacements (RIKS3) are compared in Figure 7.12. 

Before yielding occurs, the three models produce nearly identical load-displacement 

results. As yielding initiates, the RIKS3 model predicts a peak load and post-peak 

response for the stiffened element. This comparison demonstrates that imposed 

displacements and rigid body constraints (in contrast to applied loads and equation 

constraints) improve the chances for convergence in this case. 
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Figure 7.12 RIKS1 and RIKS2 models experience convergence problems and return along the loading path, 
the RIKS3 model successfully predicts a peak load and finds a post-peak load path 

7.1.3.3 Newton-Raphson method 

The STATIC1 and STATIC2 models employ the Newton-Raphson algorithm with 

uniform displacements at the loaded edges imposed with equation constraints (see 

Figure 7.2). The stepping parameters are chosen to ensure at least 100 increments are 

achieved before completion of the simulation. The number of convergence criteria 

iterations is also modified by doubling the ABAQUS parameters l0, l„ and L from their 

default values (see Table 7.1). I„ represents the number of equilibrium iterations before a 

check is performed to ensure that the magnitudes of the moment and force residual 

vectors are decreasing. After I0 iterations, if the residuals are not decreasing between 

two consecutive equilibrium iterations then the length of the increment step is reduced 

and the equilibrium search is restarted. I, represents the number of equilibrium 
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iterations after which the logarithmic rate of convergence check begins. Ic represents the 

maximum number of equilibrium iterations within a time increment step. A line search 

algorithm is also employed in the STATIC2 model to improve the convergence of the 

Newton-Raphson algorithm when nodal force and moment residuals are large. This 

algorithm finds the solution correction vector which minimizes the out-of-balance forces 

in the structural system (ABAQUS 2007a). 

STATIC1 
- STATIC2 

STATIC2 (with line search algorithm) 
finds post-peak equilibrium path 
before terminating 

1.75 

Figure 7.13 STATIC1 and STATIC2 load-displacement curves demonstrate convergence difficulties near the 
peak load. 

Figure 7.13 compares the STATIC1 and STATIC2 load-displacement curves. The 

STATIC1 model finds the peak load but then terminates due to moment residual 

convergence issues as it attempts to predict the first step of the post-peak response. The 

ABAQUS message (.msg) file for this model states that the moment residuals at nodes 

along the loaded edges, along the transverse midline of the plate, and at some nodes 
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near the hole are increasing and convergence is judged unlikely. The solution is 

terminated after the automatic time stepping procedure requires a smaller time step 

than the minimum set in this model (lxlCr20). The STATIC2 model with the line search 

algorithm also finds the peak load of the stiffened element and is able to track onto a 

post-peak equilibrium path before terminating from the same convergence problems 

experienced by the STATIC1 model. The success of the line search algorithm in 

identifying a post-peak equilibrium path highlights its potential for solving nonlinear 

problems, although a significant increase in computational effort (almost twice the 

wallclock time) was also noted. 

7.1.3.4 Newton-Raphson with artificial damping 

The STAB1 and STAB2 models solve the stiffened element problem using a 

displacement control Newton Raphson algorithm coupled with the automatic artificial 

damping discussed in Section 7.1.2.2. The boundary conditions are modified to those 

summarized in Figure 7.8 because of the convergence issues observed with the 

constraint equations and transverse midline restraints. As in the case of STATIC1 and 

STATIC2, the convergence iteration limits I„, Iri and Ic are doubled from their default 

values. In an attempt to alleviate the moment residual convergence issues from 

previous runs, the Newton Raphson parameter R"„ is modified to relax the residual 

requirements when the solution approaches the peak load. Ra„ is the allowable limit on 

the ratio of the largest residual force or moment at a node (r"m„) to the largest change in 

force or moment at a node averaged over each time step increment that has been 
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completed {cf). The a superscript indicates that R"„ can be defined for either a 

displacement field u or a rotation field <P. The convergence limit can be written 

mathematically as: 

a <R<*q<* 
max n ? 

(7.3) 

The default for Ra„ of 0.005 is used in STAB1 for both u and 0 fields, whereas in STAB2 

R\ =0.005 and R „ =0.100. 

• STAB1 
STAB2 

Highly nonlinear post-peak 
equilibrium path found with 
STAB1 and STAB2 

1.75 

Figure 7.14 STAB1 and STAB2 load-displacement curves demonstrate a highly nonlinear post-peak 
equilibrium path 

The ABAQUS solutions from models STAB1 and STAB2 in Figure 7.14 

demonstrate a highly nonlinear post-peak equilibrium path. Both models are able to 

successfully predict the peak load and then move to a secondary load path. The solution 

terminates because the maximum number of Newton-Raphson iterations is reached. 

The modification of the moment residual limit R „ from 0.005 to 0.100 did not influence 

the solution results. 
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The STAB3 finite element model employs a uniform loading with the Newton-

Raphson algorithm and artificial damping to determine the nonlinear response of the 

stiffened element with a slotted hole. The STAB3 boundary conditions are the same as 

those for the STAB1 and STAB2 models, where the plate edges are constrained to move 

to together as rigid bodies (see Figure 7.8). Figure 7.15 compares the STAB1 and STAB2 

(displacement control) to the STAB3 (load control) results and shows that, prior to 

yielding, the three models predict the same response. Differences in the load paths are 

observed after yielding though, especially in the STAB3 model, which reaches peak load 

and then carries this load with zero stiffness over a large deformation range. This 

unstable post-peak behavior results from a complete loss of stiffness as the hole 

collapses under load control. The peak loads predicted for the stiffened element by the 

displacement control STAB3 model is seven percent higher than the STAB1 and STAB2 

load control solutions, demonstrating that the peak load is sensitive to the loading 

method (uniform load or uniform displacements) in this case. 
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Figure 7.15 The STAB1 and STAB2 models (artificial damping, displacement control) exhibit a sharp drop in 
load as folding of the plate initiates near the hole. The STAB3 model (artificial damping, load control) finds 

the compressive load at which a complete loss of stiffness occurs. 

7.1.4 Influence of a slotted hole on the ultimate strength of 
a stiffened element (without geometric imperfections) 

The solution controls from the previous section resulting in successful 

simulations are now implemented to evaluate the influence of a slotted hole on the 

ultimate strength and failure mode of a stiffened element. The loading and boundary 

conditions, dimensions, material properties, and solution controls are the same as those 

used for the STAB2 model described in Section 7.1.3.4 and Table 7.1. Initial geometric 

imperfections are not considered. 
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Figure 7.16 Comparison of ultimate limit state and elastic buckling plate behavior, initial imperfections are 
not considered in these results 

Figure 7.16 demonstrates that the slotted hole reduces the strength of the stiffened 

element from 1.0 PM to 0.58 PMI where Py,e is the resultant compressive force on the 

stiffened element to cause yielding calculated with the gross cross-sectional area of 

the plate. The predicted peak load of the stiffened element with the hole is 

consistent with the load at yielding of the net section, Py,m,==0.56 PM. This observation, 

that the strength of the stiffened element with the hole is limited to Pv,„e(, highlights 

an important consideration in the development of the Direct Strength Method in 

Chapter 8. The hole also reduces the axial stiffness of the stiffened element in this 

case, as demonstrated by the change in slope of the linear portion of the load-

displacement curve in Figure 7.16. 

280 



7.1.5 Influence of geometric imperfection magnitudes on 
the ultimate strength of a stiffened element with and 
without a slotted hole 

The ultimate strength of cold-formed steel members is sensitive to initial 

geometric imperfections. In this study the influence of imperfection magnitude on the 

ultimate strength of stiffened elements with and without a slotted hole is evaluated. The 

loading and boundary conditions, dimensions, material properties, and solution controls 

are the same as those used for the STAB2 model discussed in Section 7.1.3.4 and 

summarized in Table 7.1. The imperfection field is assumed as the fundamental elastic 

buckling mode pictured in Figure 7.9. Local buckling (Type 1) imperfection magnitudes 

corresponding to P(A<di)=0.25, 0.50, 0.75, 0.95, and 0.99 from the CDF in Figure 7.32 are 

considered. 

Figure 7.17 and Figure 7.18 present the load-displacement results for the stiffened 

element without and with the hole and demonstrate that increasing imperfection 

magnitudes reduces peak load and change post-peak response. The elastic stiffness is 

also softened, which can be observed by comparing the imperfection results to the linear 

slope of the load-displacement curve without imperfections. This softening results from 

the initial out-of-plane deformations which engage more of the bending stiffness of the 

plate and less of the axial stiffness as the plate is compressed. Out-of-plane 

deformations (such as initial imperfections) increase the magnitude of the geometric 

stiffness matrix which negates the initial elastic stiffness of the undeformed system. 

Imperfections are observed to decrease strength but increase ductility of the stiffened 
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element with and without a hole. The load-displacement results also highlight that the 

hole reduces the ductility of the stiffened element, which is consistent with the column 

experiment results in Chapter 5. 
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Figure 7.17 Load-displacement sensitivity to imperfection magnitude for a plate without a hole 

1 

0.9 

0.8 

0.7 

0.6 

a.* 0.5 
—«. 
a. 

0.4 

0.3 

0.2 

0.1 
0 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 

8/t 

Figure 7.18 Load-displacement sensitivity to imperfection magnitude for a plate with a slotted hole 
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7.1.6 Determination of unstiffened element "effective 
width" using nonlinear finite element modeling 

The "effective width" method provides an approximation to the complex non

uniform stress distribution in a thin buckled plate under compression. Initially 

presented in the 1930's by von Karman and extended to cold-formed steel members by 

Winter in the 1940's, the method accounts for the reduction in load-carrying capacity of 

a stiffened element (von Karman et al. 1932; Winter 1947). The inability of the center of 

the plate to carry compressive load is caused by out-of-plane deformations in the shape 

of the fundamental elastic buckling mode. These deformations reduce the axial stiffness, 

concentrating the compressive force at the edges of a plate. The ultimate load is reached 

when these edge stresses, carried by the "effective width", exceed the yield stress of the 

plate material. The "effective width" concept is the basis of most cold-formed steel 

design codes around the world today. 

In this study, a nonlinear finite element model is employed to calculate the 

longitudinal stress distribution at failure for a stiffened element with and without a 

slotted hole. The distribution of stresses for both cases is compared, and the variation in 

effective width along the length of the stiffened element is determined. The stiffened 

element is modeled with the same loading and boundary conditions, dimensions, 

material properties, and solution controls as those used for the STAB2 model discussed 

in Section 7.1.3.4 and described in Table 7.1. The initial imperfection geometry 

corresponds to the fundamental elastic buckling mode of the plate without the hole as 

described in Figure 7.9. djt=034 is used to scale the initial imperfection field of the 
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plate, which corresponds to a probability of occurrence of P(A<d,)=0.50 as discussed in 

Section 7.1.1. The effective width is calculated by first integrating the longitudinal (Sll) 

membrane stresses at cross-sections along the length of the stiffened element and then 

dividing the resulting areas by the yield stress of the steel as shown in Figure 7.19. The 

membrane stresses are the longitudinal (Sll) stresses that occur at the midplane of the 

stiffened element as defined in Figure 7.20. 

he/2 

calculate area under 
stress curve (A) 

membrane stress (S11) 
ru/2 

distribute area (A) to 
edges of plate 

yield stress 

Figure 7.19 Calculation of "effective width" at a cross-section along a stiffened element 
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Figure 7.20 Definition of longitudinal (Sll) membrane stress 
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Figure 7.21(a) highlights the variation in membrane longitudinal stress (Sll) 

occurring at the failure load of the stiffened element. The highest stresses accumulate 

along the edges of the plate and decrease toward the center of the plate. The largest 

edge stresses occur at the crests of the half-waves where the grey stress contours indicate 

yielding of the plate. The corresponding effective width is presented in Figure 7.21(b). 

The maximum effective width of 0.51 hjh occurs at the inflection point between half-

waves, while the minimum effective width of 0.48 hjh occurs at the wave crests. The 

predicted effective width for this plate using Section B2.1 of the AISI specification is 0.50 

hjh (AISI-S100 2007). 

Plan view of element 

effective width 
average 

standard deviation 
max 
mm 

hjh 
0.51 
0.02 
0.55 
0.48 

(a) membrane stress in 1 direction (S11) 

hJ2 

(b) variation in effective width along plate 

Figure 7.21 (a) longitudinal membrane stresses and (b) effective width of a stiffened element at failure 

The failure mode of the stiffened element with the slotted hole is fundamentally 

different than without the hole. The stresses in Figure 7.22(a) demonstrate that yielding 

occurs only at the location of the hole when the peak load is reached. Compressive 

stresses are highest at the edge of the plate and then transition to tensile stresses at the 
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face of the hole. The effective width of the yielded portion of the plate in Figure 7.22(b) 

is less than that for the plate without the hole, even with the beneficial tensile stresses at 

the face. The average effective width is 0.38 hjh, which is 25 percent less than that of the 

stiffened element without the hole. The predicted effective width using Section B2.2 of 

the AISI Specification is 0.30 hjh. The effective widths of the stiffened element with and 

without a slotted hole are compared together in Figure 7.23. 

Plan view of element 

Elevation 

effective width 
average 

standard deviation 
max 
min 

hjh 
0.38 
0.03 
0.41 
0.34 

(a) membrane stress in 1 direction (S11) 

CZJ 
h„/2 

(b) variation in effective width along plate 

Figure 7.22 (a) longitudinal membrane stresses and (b) effective width of a stiffened element with a slotted 
hole at failure 

r~j ± 
ha/2 (plate without a hole) h0/2 (plate with hole) 

Figure 7.23 Effective width comparison for a plate with and without a slotted hole 

The longitudinal stresses (Sll) in the top and bottom fibers of the stiffened 

element at failure are different from the membrane stresses at the midplane, suggesting 
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that the effective width of a stiffened element actually varies through its thickness. 

Figure 7.24 and Figure 7.25 provide a comparison of this variation for a stiffened 

element with and without a slotted hole. It is observed that a plate is more effective on 

the surface where the out-of-plane deformation causes compression. The effective width 

is reduced when tensile and compressive stresses negate each other, as shown in the 2D 

plot of extreme fiber and membrane stresses at a representative cross-section in Figure 

7.26. 

Effective width calculated with 
longitudinal stresses (SH)attop, 
midplane, and bottom of the plate 

Top of plate 

Midplane of plat* 

Bottom of plate 

Figure 7.24 Through the thickness variation of effective width of a plate without a hole 
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longitudinal stresses (S11) at top, 
midplane, and bottom of the plate 
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Figure 7.25 Through the thickness variation of effective width of a plate with a slotted hole 
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SECTION A-A 

Figure 7.26 Through thickness variation in longitudinal (Sll) stresses in a plate at failure 

7.2 Nonlinear finite element modeling of columns 
with holes 

A more extensive study of ABAQUS nonlinear finite element capabilities of cold-

formed steel columns with holes is now presented. Simulation to collapse of the 24 

column experiments described in Chapter 5 is performed, considering solution 

sensitivity to specific modeling parameters including initial imperfections, residual 

stresses and the cold-work of forming, nonlinear material modeling, and column 

boundary conditions. A modeling protocol is developed which produces results 

consistent with column experiments. This modeling tool is employed to explore the 
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validity of proposed Direct Strength Method equations for cold-formed steel members 

with holes presented in Chapter 8. 

7.2.1 Modeling protocol development 

7.2.1.1 Model dimensions and finite element meshing 

The collapse behavior of the 24 column specimens is simulated with the general 

purpose finite element program ABAQUS (ABAQUS 2007a). All columns are modeled 

with S9R5 reduced integration nine-node thin shell elements (see Section 2.1 for details 

on the S9R5 element). The finite element mesh for each specimen is created with custom 

Matlab code developed by the author (see Appendix A); the mesh is consistent with 

S9R5 meshing guidelines summarized in Section 2.4. The centerline C-section 

dimensions input into ABAQUS are calculated using the out-to-out dimensions of each 

column specimen provided in Table 5.3. The cross-section corner angles are assumed as 

right angles (even though they were measured to be off of 90 degrees, see Table 5.4) 

since the distortional imperfection magnitudes obtained in Section 7.2.1.5 are derived 

based on a nominal cross-section with 90 degree corners*. The average base metal 

thickness for each specimen (i.e., the average of U„em U^p, and U„e,p from Table 5.5) and 

column length L from Table 5.6 are used to construct the ABAQUS models, as are the 

location of the slotted web holes relative to the centerline of the web provided in Table 

5.8. 

* The measured flange-web and web-lip angles were not considered because of initial difficulties matching the 
experiment results to the simulations. To resolve these difficulties, a simplified model with nominal dimensions was 
implemented. (Modeling with plasticity at the proportional limit was found to be the true cause of the discrepancies, see 
Section 7.2.1.4.) Consideration of the actual cross-section dimensions, including the flared web-flange comers measured 
in the experiments, is warranted and is an important point of future study. 
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7.2.1.2 Boundary conditions and application of loading 

The specimen boundary conditions in ABAQUS are defined to simulate the 

experiment boundary conditions as shown in Figure 7.27. The nodes on the loaded 

column face are coupled together in the direction of loading (1 direction) with an 

ABAQUS "pinned" rigid body constraint. This constraint ensures that all nodes on the 

loaded face of the column translate together, while the rotational degrees of freedom 

remain independent (as in the case of platen bearing). A total imposed displacement of 

0.20 inches is applied to the reference node of the ABAQUS rigid body over a series of 

steps (see Section 7.2.1.3) to simulate the displacement control loading applied by the 

bottom platen during the experiment. Friction-contact boundary conditions were also 

evaluated in ABAQUS as described in Appendix J although their influence on the 

ultimate strength of the column specimens was determined to be minimal. 

1 

2 Jj^ 

3 ^ 6 

U 

Nodes bearing on top platen 
constrained in 1, 2 and 3 

ABAQUS "pinned" rigid 
body reference node 
constrained in 2 to 6 
directions, ensures that all 
nodes on loaded surface 
move together in 1 direction 

Apply uniform displacement in ABAQUS to 
simulate displacement control of experiments 

Figure 7.27 ABAQUS boundary conditions simulating column experiments 
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7.2.1.3 Nonlinear solution method 

The modified Riks method (*STATIC, RIKS) is employed as the solution algorithm in 

this study. The preliminary nonlinear finite element studies on stiffened elements 

demonstrated that the modified Riks method was able to capture the complete load-

deformation response when imposed displacements are used to load the member (see 

Figure 7.12). ABAQUS automatic time stepping was enabled, with the suggested initial 

step size set to 0.005, the maximum step size limited to 0.01, and the maximum number 

of increments equal to 300 all input by the user. 

7.2.1.4 Material modeling 

Steel yielding and plasticity is simulated in ABAQUS using a classical metal 

plasticity approach with isotropic hardening. A Mises yield surface is defined with the 

true stress and true plastic strain obtained from uniaxial tensile coupon tests for each 

specimen. Three stress-strain curves (west flange, east flange, and web) were obtained 

for each specimen (see Section 5.2.5). The experimentally obtained engineering stress-

strain curves are converted to true stress and strain and then averaged point-by-point to 

produce a yield stress, proportional limit, and true stress-strain curve for each specimen. 

(The true plastic strains and associated stresses are input into ABAQUS with the 

*PLASTIC command.) For Mises stresses below the yield stress, linear elastic material 

behavior is assumed where £=29500 ksi and v=0.3. 
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Preliminary nonlinear modeling efforts for this study determined that including 

plastic strains starting at the proportional limit resulted in ABAQUS simulation 

predictions that were as much as 25% lower than the column tested strengths. An 

example of the average true stress-strain curves with plasticity starting at the 

proportional limit are provided in Figure 7.28a for specimen 362-1-24-NH and Figure 

7.29a for specimen 600-1-24-NH (average true stress-strain curves are provided for all 24 

column specimens in Appendix H). Other researchers have obtained simulation results 

consistent with experiments by assuming that plastic strains initiate only after the yield 

stress (determined with the 0.2% offset method) is reached (Schafer 1997; Yu 2005; 

Schafer et al. 2006) - a material modeling approach that proved to be successful at 

predicting the column experiment peak loads for this study also. The true stress-strain 

curves in Appendix H were therefore modified to ensure that plasticity initiates in 

ABAQUS only after the yield stress is reached for the gradually yielding stress-strain 

curves (362S162-33 specimens, see Figure 7.28b) and at the initiation of the yield plateau 

for the sharp-yielding curves (600S162-33 specimens, see Figure 7.29b). Figure 7.30 

demonstrates the disparity between the experiment and FE simulation load-deformation 

response for column specimen 600-1-24-NH when plasticity initiates at the proportional 

limit. The reasons for this disparity are unclear and warrant future study. Additional 

research work is planned to study the details of metal plasticity in ABAQUS by loading 

a single finite element to failure in tension. 
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Figure 7.28 ABAQUS plastic strain curve for specimen 362-1-24-NH assuming (a) plasticity initiates at the 
proportional limit and (b) plasticity initiates at 0.2% offset yield stress 
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Figure 7.29 ABAQUS plastic strain curve for specimen 600-1-24-NH assuming (a) plasticity initiates at the 
proportional limit and (b) plasticity initiates at the beginning of the yield plateau (refer to Appendix H for 

the details on the development of this curve). 
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Figure 7.30 Influence of ABAQUS material model on the load-deformation response of specimen 600-1-24-
NH (work this figure with Figure 7.29) 

7.2.1.5 Initial geometric imperfections 

The ultimate strength and failure mechanisms of cold-formed steel columns are 

sensitive to initial geometric imperfections, as demonstrated in the preliminary studies 

on stiffened elements in Section 7.1.5. In this study, the sympathetic local (L) and 

distortional (D) elastic buckling modes are obtained with eigenbuckling analyses for 

each column specimen and imposed on the nominal geometry in each finite element 

model. (An ABAQUS .fil file is created for each eigenbuckling analysis which is then 

called from the nonlinear .inp file with the IMPERFECTION command). The boundary 

conditions at both specimen ends are assumed to be warping free when obtaining the 

imperfection shapes (see Figure 4.2 for definition) to ensure consistency with CUFSM 

boundary conditions. Specimens with and without holes are modeled with the same 

elastic buckling imperfection shapes by filling the holes with additional finite elements 
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as shown in Figure 7.31. This procedure ensures that the load-displacement behavior of 

both the hole and no hole specimens are compared on equivalent basis (both will have 

the no hole L and D imperfection shapes). Filling in the holes is necessary (instead of 

eliminating them completely) because it preserves the nodal numbering and geometry 

of the specimens with holes, making it convenient to superimpose the L and D modes 

onto the initial nodal geometry in ABAQUS. 

Hole is filled in with 
S9R5 elements to 
produce no hole local 
buckling shape 

Typel imperfection (L) Type 2 imperfection (D) 

Figure 7.31 Slotted holes are filled with S9R5 elements to obtain no hole imperfection shapes 

The magnitudes of the L and D imperfections are determined with the same 

probabilistic treatment used for the stiffened element studies in Section 7.1 (Schafer and 

Pekoz 1998). Finite element simulations with L and D imperfection magnitudes 

corresponding to the 25th and 75th percentiles of the CDF in Figure 7.32 are performed for 

each specimen to obtain a range of simulated load-displacement responses to compare 

to experiment results. FE simulations are also performed using the L and D elastic 
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buckling mode shapes and imperfection magnitudes measured directly from the column 

specimens. In this case the local imperfection magnitude for each specimen is taken as 

the maximum deviation from the average web elevation as reported in Table 5.9. The 

distortional imperfection magnitude for each specimen is determined by finding the 

largest measured angular deviation from 90 degrees along each specimen and 

calculating the associated flange-lip displacement as shown in Figure 7.33. The Type 1 

imperfection magnitudes measured in the experiments are often 2 to 3 times larger than 

the 75th percentile CDF magnitudes as shown in Table 7.2. The Type 2 imperfection 

magnitudes for the 362S162-33 specimens also are 2 to 3 times larger than the 75th 

percentile CDF magnitudes, primarily because these specimens tended to open up at the 

sawn ends (i.e., flange-web angles increased above 90 degrees) when they were saw-cut 

from full stud lengths. Other researchers have studied this observed change in cross-

section after saw-cutting (Wang et al. 2006). The 600S162-33 specimens were less 

sensitive to this saw-cutting effect, resulting in measured distortional imperfection 

magnitudes consistent with the 75th percentile of the imperfection CDF. 
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Figure 7.32 L and D imperfection magnitudes described with a CDF (Schafer and Pekoz 1998) 

Deviation from reference 
cross section (measured at 
X=6,18 in. for the the short 
specimens and X=12, 18, 30 
and 36 in. for the 48 in. long 
specimens). 

D •=• max(Z? sin(|#( I) where 1=1 or 2 

Nominal cross-section 

Figure 7.33 Method for measuring distortional imperfection magnitudes from experiments 

Table 7.2 Local and distortional imperfection magnitudes 

Specimen 

362-1 -24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

Type 11mperfection Magnitude (L) 

25% CDF 
0.005 
0.005 
0.005 
0.005 
0.005 
0.006 
0.005 
0.006 
0.005 
0.005 
0.005 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 
0.006 

75% CDF 
0.025 
0.025 
0.025 
0.026 
0.025 
0.026 
0.026 
0.026 
0.026 
0.026 
0,026 
0.026 
0.029 
0.029 
0.029 
0.028 
0.027 
0.028 
0.029 
0.028 
0.029 
0.028 
0.028 
0.028 

Measured 
0.038 
0.054 
0.036 
0.052 
0.058 
0.044 
0.071 
0.080 
0.057 
0.084 
0.066 
0.050 
0.061 
0.075 
0.096 
0.062 
0.089 
0.087 
0.071 
0.077 
0.073 
0.095 
0.049 
0.068 

Type 2 Imperfection Magnitude (D) 

25% CDF 
0.025 
0.025 
0.025 
0.025 
0.025 
0.025 
0.025 
0.025 
0.025 
0.025 
0.025 
0.026 
0.028 
0.028 
0.028 
0.027 
0.026 
0.028 
0.028 
0.028 
0.028 
0.027 
0.027 
0.028 

75% CDF 
0.060 
0.060 
0.060 
0.061 
0.059 
0.061 
0.061 
0.061 
0.060 
0.061 
0.061 
0.062 
0.068 
0.068 
0.068 
0.065 
0.064 
0.067 
0.067 
0.067 
0.067 
0.066 
0.067 
0.067 

Measured 
0.200 
0.174 
0.205 
0.195 
0.159 
0.140 
0.168 
0.163 
0.184 
0.161 
0.174 
0.156 
0.106 
0.114 
0.114 
0.064 
0.124 
0.102 
0.090 
0.077 
0.074 
0.084 
0.062 
0.099 

The initial out-of-straightness of each column specimen was measured in the MTS 

machine under a small preload before the start of each test. This global imperfection is 

also superimposed on the nodal geometry for each specimen finite element model as 
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shown in Figure 7.34. The magnitude of the global imperfection, Ag, is provided in Table 

7.3. 

Loading Line 

L J 
Aj (+ shown) 

'K 
Specimen COG (Typ.) 

Section a-a 

Figure 7.34 Definition of out-of-straightness imperfections implemented in ABAQUS 

Table 7.3 Out-of-i -st ra ightness imperfe< 

Specimen 

362-1 -24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 

in. 
-0.024 
0.004 
0.038 
-0.012 
0.034 
-0.023 
0.047 
-0.028 
0.012 
0.066 
0.013 
-0.003 
-0.063 
-0.141 
0.063 
-0.078 
0.076 
0.069 
-0.036 
-0.087 
-0.049 
-0.098 
0.072 
0.020 
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7.2.1.6 Residual stresses and equivalent plastic strains 

Chapter 6 describes a general method for predicting the through thickness residual 

stresses and strains in cold-formed steel members which can then be readily input into 

ABAQUS. The prediction method assumes that residual stresses and plastic strains 

occur over the full cross-section from coiling, uncoiling, and flattening of the sheet coil. 

The coiling residual stresses are largest when the sheet thickness t is large (>0.068 in.) 

and the yield stress is low (<40 ksi). The predicted coiling, uncoiling, and flattening 

residual stresses (and plastic strains) are zero in this study because the column 

specimens have a relatively low sheet thickness (-0.040 in.) and high yield stress (~ 60 

ksi). 

Residual stresses and plastic strains from the roll-forming of the cross-section are 

considered in this study. These stresses are applied in ABAQUS with the element local 

coordinate system shown in Figure 7.35 starting from section point 1 (SNEG). The 

transverse residual stress distribution (2-direction) is provided in Figure 7.36 and the 

longitudinal distribution (1-direction) in Figure 7.37 as a function of yield stress u^u (cry,e(d 

is listed in Table 5.13 for each specimen). Plastic strains are input into ABAQUS in von 

Mises space and therefore only plastic strain magnitudes are required, not a specific 

direction. The highest initial strains occur at the inner and outer surfaces of the corners 

as shown in Figure 7.38. Sp is approximated using the procedure outlined in Figure 6.17. 
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Figure 7.35 ABAQUS element local coordinate system for use with residual stress definitions 

+CT, yield 

SPOS 

-0.500, yield 

J yield 

+0.50a, yield 

SNEG 

Figure 7.36 Transverse residual stress distribution applied at the corners of the cross-section 

+0.50o\ yield 

1 <*- fe -0.50a, yield 

-0.05ayield 

SNEG 

Figure 7.37 Longitudinal residual stress distribution applied at the corners of the cross-section 
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SPOS 

SNEG 

Figure 7.38 Equivalent plastic strain distribution at the corners of the cross-section 

The transverse residual stress distribution has the special property that it is self-

equilibrating for both moment and axial force, i.e. the total force and moment through 

the thickness is zero. This self-equilibrating characteristic ensures that no deformation 

(or redistribution of stress) will occur in ABAQUS in the initial state. The longitudinal 

stress distribution is self-equilibrating for axial force but not for moment. The 

deformations associated with this out-of-balance bending moment are infinitesimal and 

very small redistributions in stress are observed (±0.1 ksi) in the initial state. 

The number of element section points through the thickness dictates the accuracy of 

the residual stress distribution. If only a small number of section points are used, the 

discontinuity in stress at the middle thickness cannot be modeled accurately and 

excessive transverse deformations of the cross-section will occur. Figure 7.39 

demonstrates the decrease in unbalanced through-thickness transverse moment, MUB, as 

the number of section points increase (sheet thickness is assumed as f=0.040 in. and 

c7y,C|1j=60 ksi). As the number of section points decrease, the residual stress approaches 

0.50M„, where My is the yield moment of the sheet steel per unit width defined as: 
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t 
M =—<7 ... 

y /- yield 

(7.4) 

55 section points are used in the specimen finite element models for this study as a 

compromise between model accuracy and computational cost. ABAQUS limits the 

maximum number of section points to 250 for the S9R5 element (ABAQUS 2007b). 

20 40 60 80 
# of element through-thickness section points 

Figure 7.39 Influence of section points on the unbalanced moment (accuracy) of the transverse residual 
stress distribution as implemented in ABAQUS 

7.2.2 Modeling protocol validation 

7.2.2.1 Ultimate strength and failure mechanisms 

The nonlinear finite element protocol presented in Section 7.2.1 is demonstrated to 

be a viable, conservative predictor of peak load when compared to the experiment 

results in Table 7.4. The mean of the experimental peak load Pte5, to ABAQUS peak load 
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PABAQUS ratios are 1.03 (25th percentile imperfection CDF), 1.05 (75th percentile imperfection 

CDF), and 1.11 (measured imperfections). In a few cases (and always with specimens 

with holes), ABAQUS was not able to obtain the peak load, either because the modified 

Riks solution algorithm reversed the direction of the applied load (similar to that 

observed in Figure 7.12 for stiffened elements) or because the ABAQUS could not find 

equilibrium and terminated the simulation. As imperfection magnitudes increased, the 

modified Riks solution algorithm was more successful at reaching peak load. This trend 

is hypothesized to occur because for small imperfection magnitudes a specific 

deformation pattern is not established and many equilibrium paths exist near peak load, 

whereas for larger imperfection magnitudes a dominate deformation shape and 

equilibrium path are defined early in the simulation. Nonlinear FE load-displacement 

behavior is provided for a representative sample of specimens in Figure 7.40 to Figure 

7.47, including the load-displacement curves and deformed shape at collapse (compare 

these simulated shapes to the pictures of experiments in Appendix F). FE simulation 

load-displacement curves are provided for all specimens in Appendix I. 

Table 7.4 Comparison of nonlinear FE simulation peak loads to experiments 
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Specimen 

362-1-24-NH 
362-2-24-NH 
362-3-24-NH 
362-1-24-H 
362-2-24-H 
362-3-24-H 
362-1-48-NH 
362-2-48-NH 
362-3-48-NH 
362-1-48-H 
362-2-48-H 
362-3-48-H 
600-1-24-NH 
600-2-24-NH 
600-3-24-NH 
600-1-24-H 
600-2-24-H 
600-3-24-H 
600-1-48-NH 
600-2-48-NH 
600-3-48-NH 
600-1-48-H 
600-2-48-H 
600-3-48-H 
Average 

Ptest 

kips 
10.48 
10.51 
10.15 
10.00 
10.38 
9.94 
9.09 
9.49 
9.48 
8.95 
9.18 
9.37 
11.93 
11.95 
12.24 
12.14 
11.62 
11.79 
11.15 
11.44 
11.29 
11.16 
11.70 
11.16 

Standard deviation 

25th percentile 
imperfection CDF 

PABAQU3 

WPS 
10.26 
10.13 
10.21 
9.22 
8.83 
9.19 
9.48 
9.40 
9.26 
8.97 
8.91 
8.58 
12.14 
12.10 
12.10 
DNC 
11.10 
DNC 
11.27 
11.27 
11.37 
DNC 
DNC 
DNC 

PK»SI/PABAQUS 

1.02 
1,04 
0.99 
1.09 
1.18 
1.08 
0.96 
1.01 
1.02 
1.00 
1.03 
1.09 
0.98 
0.99 
1.01 

1.05 

... 
0.99 
1.02 
0,99 

~ 
~. 

1.03 
0.05 

75th percentile 
imperfection CDF 

PABAQUS 

kips 
9.88 
9.70 
9.85 
9.08 
8.70 
9.11 
9.34 
9.27 
8.89 
8.73 
8.63 
DNC 
12.03 
12.01 
11.99 
11.63 
11.08 
11.76 
11.14 
11.39 
11.18 
10.22 
DNC 
10.35 

PIOWPABAOUS 

1.06 
1.08 
1.03 
1.10 
1.19 
1.09 
0.97 
1.02 
1.07 
1.02 
1.06 

— 
0.99 
1.00 
1,02 
1,04 
1,05 
1,00 
1.00 
1.00 
1.01 
1.09 

— 
1.078 
1.05 
0.05 

Measured imperfections 

PABAQUS 

kips 
8.72 
8.82 
8.69 
8.48 
8.27 
B.78 
7.76 
8.36 
7.44 
8.30 
8.26 
ED 

11.83 
11.74 
11.64 
11.45 
10.82 
11.49 
11.32 
11.30 
11.04 

ED 
10.17 
10.30 

PIWII/PABAQUS 

1.20 
1.19 
1.17 
1.18 
1.26 
1.13 
1.17 
1.14 
1.28 
1.08 
1.11 

--1.01 
1.02 
1.05 
1.06 
1.07 
1.03 
0.98 
1.01 
1.02 

— 1.15 
1.08 
1.11 
0.08 

DNC Did Not Complete, Abaqus terminated before finding the peak bad 

ED Excessive distortion - Abaqua error, imperfection magnitude causes element dlstortlonal 

The initial elastic slope of the 25% CDF and 75% CDF FE load-displacement curves 

are consistent with experimental results as shown in Figure 7.40 to Figure 7.47, 

demonstrating that the elastic material modeling assumptions and specimen dimensions 

are consistent with the experiments. The initial slope of the load-displacement curve is 

also sensitive to imperfection magnitudes, and therefore the similarities between 

experiment and the FE results confirm the assumption that the 25th and 75th percentile 

imperfection magnitudes in the FE simulations produce physically realistic results. This 

is contrary to the FE simulations with measured imperfections for the 362S162-33 

specimens (for example, see Figure 7.40), where the initial load-displacement slope and 

peak load are 15% to 30% less than the experimental results (see Table 7.4 and Figure 

7.40). The FE simulations for the 600S162-33 specimens are much less sensitive to 

imperfection magnitudes (for example, see Figure 7.44). The maximum difference in test 

to predicted ratio between the three imperfection levels (25% CDF, 75% CDF, and 

measured) in Table 7.4 for the 600S162-33 specimens is 3%. 
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The post-peak ductility of the column specimens is often underpredicted in the 

ABAQUS nonlinear finite element models. The collapse mechanism of a column dictates 

its ductility and in some cases its peak load. For example, outward distortional buckling 

has been shown to produce lower column strengths than inward distortional buckling 

(Silvestre and Camotim 2005). This observation could explain why the FE simulations of 

the 362S162-33 specimens with holes (which exhibit outward distortional buckling) have 

a lower peak load and ductility than the experiment results (all three specimens exhibit 

inward distortional buckling, see Appendix F). Another factor influencing column 

ductility may be the ABAQUS material modeling effect discussed in Section 7.2.1.4. 

When plasticity is considered at the proportional limit (see Figure 7.30) the peak of the 

load-displacement curve is flattened which is more consistent with experiment results. 

These hypotheses motivate important future work to better understand metal plasticity 

and material modeling in ABAQUS and also the influence of imperfection shapes on FE 

column ductility and strength predictions. 
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• Experiment 
FE, 25% Imperfection CDF 
FE, 75% imperfection CDF 

• FE, measured imperfections 
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axial displacement, in. 

Figure 7.40 Load-displacement response of specimen 362-1 -24-NH 
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Figure 7.41 Load-displacement response of specimen 362-1-24-H 
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Experiment 

FE, 25% Imperfection CDF 

FE, 75% imperfection CDF 

- FE, measured imperfections 
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Figure 7.42 Load-displacement response of specimen 362-1-48-NH 
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Figure 7,43 Load-displacement response of specimen 362-1-48-H 
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14 
Experiment 
FE, 25% Imperfection CDF 
FE, 75% imperfection CDF 

• FE, measured imperfections 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
axial displacement, in. 75% Imperfection CDF 

Figure 7.44 Load-displacement response of specimen 600-1 -24-NH 

• Experiment 
FE, 25% Imperfection CDF 
FE, 75% imperfection CDF 
FE, measured imperfections 
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Figure 7.45 Load-displacement response of specimen 600-2-24-H 
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Experiment 
FE, 25% Imperfection CDF 
FE, 75% imperfection CDF 
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
axial displacement, in. 75% Imperfection CDF 

Figure 7.46 Load-displacement response of specimen 600-1-48-NH 
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Figure 7.47 Load-displacement response of specimen 600-3-48-H 
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7.2.2.2 Influence of residual stresses and initial plastic strains 

Residual stresses (RS) and initial plastic strains (PS) from the manufacturing process 

are approximated with the prediction method in Chapter 6 and then input into 

ABAQUS as discussed in Section 7.2.1.6. Figure 7.48 highlights their effect on the load-

deformation response of specimen 600-1-24-NH. A small increase in peak load 

(approximately 2%) is observed when just initial plastic strains are considered at the 

comers, which simulates the increase in apparent yield stress from strain hardening. 

The increase in strength is minimal because the influence of the stiffened corners is offset 

by the large proportion of unformed steel (i.e., flats) in the cross-section. The transverse 

and longitudinal residual stresses created by cold-bending of the cross-section also have 

a minimal impact on the load-deformation response for this specimen, primarily because 

the plastic strains at the corners are high (s? is predicted to be large as 0.20 at the corner 

outer fibers) which increases the apparent yield stress in ABAQUS and prevents a loss in 

stiffness at the corners, even with the presence of the through-thickness residual stresses 

in the column. Similar load-displacement trends are also observed for specimen 362-1-

24-NH as shown in Figure 7.49. 

Residual stresses and plastic strains are expected to have a larger influence on the 

ultimate strength of members with cross-sections made from thicker sheet steel, since 

coiling and uncoiling of the sheet steel will impart residual stresses and plastic strains 

around the entire cross-sections (see Figure 6.19). Future research is planned to study 

the influence of through-thickness residual stresses and plastic strains on yielding 
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patterns and failure modes of cold-formed steel members. The ABAQUS metal 

plasticity model with isotropic versus kinematic hardening also needs further study to 

determine if one is better than the other when considering the influence of residual 

stresses and strains (see Section 6.7 for a more detailed discussion). 
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axial displacement, in. 

Figure 7.48 Influence of residual stresses (RS) and plastic strains (PS) on the FE load-displacement response 
of specimen 600-1 -24-NH 
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
axial displacement, in. 

Figure 7.49 Influence of residual stresses (RS) and plastic strains (PS) on the FE load-displacement response 
of specimen 362-1-24-NH. 
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Chapter 8 

The Direct Strength Method for cold-
formed steel members with holes 

The nonlinear finite element capability developed in Chapter 7 is now employed to 

evaluate proposed Direct Strength Method (DSM) formulations for cold-formed steel 

members with holes. Several hundred cold-formed steel columns and beams with 

standard SSMA structural stud cross-sections (SSMA 2001) and with varying web hole 

sizes, shapes, and spacings are simulated to collapse in ABAQUS. The elastic buckling 

properties of these members {Pcrfl Pcn), and P^ for columns and Mcr/, M„d, and Mm for 

beams), including the presence of the holes, are approximated with the CUFSM elastic 

buckling prediction methods developed in Chapter 4. The corresponding ultimate 

strengths (obtained from the ABAQUS simulations) are merged with the elastic buckling 

information into a simulated experiments database which is utilized to identify potential 

modifications to the existing DSM local, distortional, and global failure prediction 

curves. Specific DSM options are proposed from these comparisons, which are then 
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compared to the experiment elastic buckling and tested strength databases in Chapter 4 

to formalize the final proposed DSM recommendations for cold-formed steel members 

with holes. 

8.1 DSM for columns with holes 

8.1.1 Database of simulated column experiments 

Simulated experiments were conducted on 211 C-section columns with evenly-

spaced slotted or circular web holes in ABAQUS. Column lengths and cross-sections 

were specifically selected with custom Matlab code employing the existing DSM design 

curves to identify columns predisposed to local, distortional, and global buckling type 

failures. The cross-sections were chosen from a catalog of 99 industry standard C-

sections published by the Steel Stud Manufacturers Association (SSMA 2001). The 

nominal out-to-out dimensions provided in the SSMA catalog were converted to 

centerline dimensions and then constructed in ABAQUS with the meshing procedure 

described in Section 7.2.1.1. Evenly spaced circular or slotted web holes were placed in 

the columns with hole spacing S (defined in Figure 3.2) varying between 12 and 22 

inches. The holes were centered transversely in the web and their depth, hMe, was varied 

such that the ratio of the net cross-sectional area, AmU to the gross cross-sectional area, Av 

ranged between 0.60 and 1.0. 

The ABAQUS boundary conditions and application of loading, described in Figure 

8.1, are implemented to be consistent with CUFSM, i.e. pinned-pinned and free-to-warp 

with a uniform stress applied at the member ends. These boundary conditions were 
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specifically chosen to permit the use of CUFSM simplified elastic buckling methods 

when predicting the elastic buckling behavior of columns with holes. (If pinned-pinned 

warping-fixed end conditions or fixed-fixed end conditions were used the elastic 

buckling predictions would have required modifications factors, see Eq. (4.8) for an 

example). CUFSM boundary conditions represent a lower bound on member strength 

are therefore considered conservative in design. Consistent nodal loads are applied to 

simulate the uniform compressive stress at the column ends (see Section 7.2.1.2 for 

information on S9R5 consistent nodal loads). The loads (a reference load of 1 kip was 

applied at each end in ABAQUS) are distributed over the first two sets of cross-section 

nodes to avoid localized failures at the loaded edges. 

Consistent nodal loads applied 
over two sets of cross-section 
nodes to avoid edge failures 

A J 

> 

es I 

imilflT 

End cross-section nodes 
restrained in 2 and 3 

- Node centered in flange at 
longitudinal midline restrained in 1 
(to prevent rigid body motion) 

» » i ^ ^ ^ - End cross-section nodes 
T f' m restrained in 2 and 3 

Figure 8.1 ABAQUS simulated column experiments boundary conditions and application of loading 

The ABAQUS simulations were performed with the modified Riks nonlinear 

solution algorithm. Automatic time stepping was enabled with a suggested initial arc 
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length step of 0.25 (the Riks method increments in units of energy, in this case kip-in.), a 

maximum step size of 0.75, and the maximum number of solution increments set at 300. 

Metal plasticity was simulated with the material modeling procedure described in 

Section 7.2.1.4. The plastic true stress-strain curve for specimen 362-1-48-H in Appendix 

H was assumed for all column models (but modified so that plasticity starts at the yield 

stress, see Section 7.2.1.4), where the steel yield stress F„=58.6 ksi. Residual stresses and 

initial plastic strains, as discussed in Section 7.2.1.6, were not considered in the ABAQUS 

models because their implementation requires further validation and they were not 

observed to markedly influence column ultimate strength (see Figure 7.48 and Figure 

7.49). 

Imperfections were imposed on the initial column geometry in ABAQUS with 

custom Matlab code which combines the local, distortional buckling, and global cross-

section mode shapes from CUFSM along the column length. Two simulations were 

performed for each column, one model with 25% CDF local and distortional 

imperfection magnitudes and L/2000 global imperfections (where L is the length of the 

column) and the other model with 75% CDF local and distortional imperfection 

magnitudes and a global imperfection magnitude of L/1000 (see Section 7.2.1.5 for local 

and distortional imperfection definitions). 

The global imperfection magnitude assumptions are based on hot-rolled column out-

of-straightness measurements (Galambos 1998b) because no formal guidelines are 

currently available for cold-formed steel columns. The use of hot-rolled steel column 

imperfection magnitudes is consistent with the DSM approach for global buckling 
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controlled failures. DSM employs the same global design curve as that specified by the 

Structural Stability Research Council (SSRC) for hot-rolled steel (Galambos 1998b), 

thereby indirectly assuming that the influence of hot-rolled steel global imperfection 

magnitudes also apply to cold-formed steel. The global imperfection shape of the 

columns in the simulation database was either weak-axis flexural buckling or flexural-

torsional buckling, depending on the cross-section dimensions and length of the column. 

C-sections are not symmetric about their weak bending axis, and therefore the direction 

of the global imperfection influences the predicted strength when weak-axis flexural 

buckling defines the global imperfection shape (e.g., web in compression from bowing 

or flange lips in compression from bowing). Simulations with both ± L/1000 and ± 

L/2000 imperfection magnitudes were performed to capture this strength effect for 

weak-axis flexural buckling mode shapes. Global imperfections were not considered for 

columns with L/D<18 (i.e., stockier columns with a low sensitivity to global 

imperfections), where D is the out-to-out flange width of the column. 

The local (Pcr/), distortional (PcriJ), and global (Pcre) critical elastic buckling loads were 

predicted for each column with custom Matlab code based on the CUFSM prediction 

methods described in Section 4.2.7. The database of simulated column experiments, 

including cross-section type, column and hole geometry, simulated ultimate strength 

(Ptcst2s and Plcs,75) and critical elastic buckling loads for each column (including the 

presence of holes) is provided in Appendix K. 
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8.1.2 Distortional buckling study 

A group of 20 columns from the SSMA column simulation database was chosen to 

evaluate the influence of the ratio A„JAS on the tested strength of columns predicted to 

collapse with a distortional failure mode. A% is the gross cross-sectional area of a column 

and Am is the cross-sectional area at the location of a hole. In this study the column 

length, L, is held constant at 24 in. and the column widths range from 6 in. to 12 in. The 

SSMA cross-sections chosen have relatively thick sheet steel (t up to 0.1017 in.) which 

prevents a local buckling type failure. The web of each column has two circular holes 

where the hole spacing S=12 in (see Figure 3.2 for the definition of S). The hole depth 

(diameter), HMZ, is varied for each column to produce A„JAS of 1.0 (no holes), 0.9, 0.8, 0.7, 

and 0.6. Refer to Appendix K, Study Type D, for specific cross-section and hole 

geometry information for each column. Figure 8.2 provides an example of an SSMA 

600S250-97 structural stud column considered in the study. 

SSMA 800S250-97 structural stud column 
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4 
.-.:§ 

r 
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! 
: 
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1 
A^/A, 1.0 0.90 0.80 0.70 0.60 

Figure 8.2 SSMA 800S250-97 structural stud with web holes considered in the DSM distortional buckling 
study 

The simulation results for Anet/Ag =1.0, 0.9, 0.8, 0.7, and 0.6 are compared to the DSM 

distortional buckling prediction curve in Figure 8.4 to Figure 8.8. The column strengths, 

Ptes,26 and Ptestis, without holes (A„JAg =1.0) are consistent with the DSM design curve as 
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shown in Figure 8.4a, confirming the viability of the nonlinear simulation protocol. The 

mean and standard deviation of the simulated test to predicted ratio is 1.10 and 0.10 

respectively for 25% CDF local and distortional imperfections, and 1.06 and 0.13 for 75% 

CDF imperfections (global imperfections are not considered in these stocky columns). 

For the columns with holes, the simulated test strengths diverge from the DSM 

prediction curve as distortional slenderness, fa^iPJPcdf5, decreases as shown in Figure 

8.5a to Figure 8.8a (Pys is the squash load of the column calculated with the gross cross-

sectional area Ag). This divergent trend in P,es, with decreasing fa can be explained as 

follows. When fa is high (i.e. P^ is low relative to Pyg), the column strength is lower than 

Pyg because the collapse mechanism is controlled by distortional buckling deformations. 

The presence of a hole may decrease Pai (as predicted with the method in Section 

4.2.7.2), but the distortional failure mechanism still dominates in this case. When fa is 

low, Pai is much higher than Pyi and the column is not as sensitive to distortional 

deformation. Instead, the column fails by yielding of the cross-section. When a hole is 

added, the yielding of the cross-section occurs at the location of the hole (i.e., at the net 

section) resulting in the collapse of the unstiffened strips adjacent to the hole. This 

collapse is accompanied by distortional and global deformations caused by the 

reduction in stiffness at the net section. These two column failure mechanisms, a 

distortional buckling failure (when fa is high) and yielding and collapse of the net 

section (when fa is low), are compared in Figure 8.3. 

319 



rz 

Distortional buckling failure 

-\r. 

Yielding and collapse of the unstiffened strips adjacent 
to the holes accompanied by distortional and global 
(weak axis flexural) deformation 

ttf M M H 
- I- I ^ I • * 

I 
\*"S, 1.0 

P«.«^„ 0.60 

V, 1.33 

0.90 

0.59 

1.36 

0.80 

0.57 

1.39 

0.70 

0.54 

1.42 

"> 

0.60 

0.45 

1.45 

Figure 8.3 SSMA 800S250-97 structural stud failure mode transition from distortional buckling to yielding at 

the net section 

The observations from this study are used to formulate a modified DSM distortional 

curve for columns with holes which captures the failure mechanism transition from 

yielding at the net cross-section to a distortional type failure mode and limits the 

strength of the column to its squash load at the net section: 

Distortional Buckling 
The nominal axial strength, Pn d , for distortional buckling shall be calculated in accordance with the 
following: 

(cap on column strength) 

(yield control transition) 

(a) For Xd <Xdl 

1 nd = Pynet 

(b) For Xdl<Xd<>.d2 

Pnd = ?yML-
(P - P 

rynet r d2 

J 
(c) For ld > Xd2 

Pnd = 

when 
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P 
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(existing DSM distortional curve) 

•̂d _ Vpy/Pcrd 

\ H = 0 . 5 6 1 ^ / P y ) 
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Pd 2 = (l-0.25(\/Aj2\l/Ai2T?y 

Pynet = F y A ^ . o P y 
Aĵ gj = Column cross-sectional area at the location of hole(s) 
Pad = Critical elastic distortional column buckling load including hole(s) 
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The modified DSM distortional curve is added in Figure 8.5b to Figure 8.8b as AmJAg 

decreases, simulating the transition from the existing DSM curve to the capped column 

strength exhibited by the simulated test data. The linear portion of the modified 

prediction curve represents the unstiffened strip distortional collapse mechanism and 

the nonlinear portion represents a collapse mechanism driven by distortional buckling. 

This proposed modification to the DSM distortional prediction curve will be compared 

against the column experiments database developed in Section 4.2.6.1 as a part of several 

proposed DSM options considered later in this chapter. 

DSM (no hole) 
o FE 25% CDF imperfections 
a FE 75% CDF imperfections 

0.5 1 1.5 2 2.5 3 

distortional slendemess, >.d
=(Py/Pcrd)

0 

DSM (no nole| 
DSM (proposed, with holes) 

o FE 25% CDF imperfections 
• FE 75% CDF Imperfections 

0 0,5 1 1.5 2 2.5 3 3.5 4 

distortional slendemess. V,=(P./Pcrd)0 5 

Figure 8.4 Comparison of simulated column strengths (Anet/Ag=l.O) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for columns with holes 
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Figure 8.5 Comparison of simulated column strengths (A„et/As=0.90) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for columns with holes 
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Figure 8.6 Comparison of simulated column strengths (Am/Ag=0.80) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for columns with holes 
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Figure 8.7 Comparison of simulated column strengths {A„et/Af=0.7Q) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for columns with holes 
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Figure 8.8 Comparison of simulated column strengths (A„JAg=0.60) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for columns with holes 
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8.1.3 Global buckling study 

This study compares simulated strengths to DSM predictions of cold-formed steel 

columns with holes predicted to experience a global failure. A global failure is triggered 

by yielding for a stocky column and flexural or flexural-torsional buckling for slender 

columns. No modifications are proposed to the DSM global buckling design curve for 

columns with holes, as the influence of holes on short columns will be accounted for 

with the DSM local buckling design curve (see Section 8.1.4). For example, when Pm=Py$, 

P„/ will always be made less than or equal to Pync„ and therefore the nominal column 

strength, P„, will always be less than or equal to Pymt. 

A group of 18 columns predisposed to a global failure were selected from the SSMA 

column simulation database. In this study the column length, L, varied from 8 in. to 96 

in. to consider a wide range of global column slenderness, Ac=(Pyg/Pm)05. The SSMA 

cross-sections are purposely selected with low local buckling slenderness (i.e., sections 

with thicker sheet steel up to £=0.1017 in. and relatively narrow flanges and webs). DSM 

predicts that local buckling does not influence global buckling behavior when At <0.776. 

The web of each column contains evenly spaced slotted holes where the hole spacing S 

varies from 8 in. to 22 in. The hole length, LMe, is held constant at 4 in., while the hole 

depth, hhok, is varied for each column to produce A„e,/Ag of 1.0 (no holes), 0.9, and 0.8. 

(Refer to Appendix K, Study Type G, for specific column cross-section and hole 

geometry information.) The four columns with the lowest global slenderness (for 

example, Specimen ID # 137 to 140 in Appendix K) were modeled with circular holes 

instead of slotted holes because the slotted holes resulted in impractical column layouts, 
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with the hole extending over more than 50% of the column length. The global 

imperfection shape for five of the longer columns was weak-axis flexural buckling, and 

therefore four simulated strengths are determined for these columns (instead of the 

typical two): 25% CDF local and distortional imperfections with +L/2000 global 

imperfections and 75% CDF local and distortional imperfections with ±L/1000 global 

imperfections. 

Figure 8.9 to Figure 8.11 compare the simulated column strengths to the DSM global 

prediction curve as A„et/Ag decreases. The simulated strengths for columns without holes 

are consistent with the DSM global prediction curve as shown in Figure 8.9a. The mean 

and standard deviation of the simulated test to predicted ratio for columns without 

holes is 1.06 and 0.05 respectively for 25% CDF local and distortional imperfections + 

L/2000 global imperfection and 0.95 and 0.07 for 75% local and distortional 

imperfections ± L/1000 global imperfection. 

Figure 8.10a and Figure 8.11a demonstrate that for columns with holes, the predicted 

strengths are consistent with the DSM global design curve when global slenderness k is 

greater than 2. Most of the columns in this region fail by weak-axis flexural buckling. 

When Ac is between 1 and 2, all of the columns fail by flexural-torsional buckling and the 

simulated column strengths (with 25% CDF imperfections) are 20% higher than the DSM 

predictions. This conservative trend is caused by the simplified prediction method 

developed in Section 4.3.2.3, which is know to be a conservative predictor of Pm when 

torsional buckling influences the global buckling mode. When Pm is underpredicted, the 

global slenderness increases, which shifts the tested data off of the DSM design curve; 
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the shift is especially clear in Figure 8.11a. This observation further motivates the future 

work to study the influence of holes on the warping torsion constant, Ca. 

Simulated column strengths diverge below the DSM prediction curve when Xc 

decreases and AnctIAs increases as shown in Figure 8.10a and Figure 8.11a. These 

columns are short, ranging in length from 8 in. to 26 in., and exhibit a yielding failure 

mode at the net section, similar to that observed in the distortional failure study in 

Figure 8.3. This observation supports the proposed modification to the DSM 

distortional buckling curve, which accurately predicts the strengths of these columns as 

shown in Figure 8.9b and Figure 8.11b, where the diverging data points are plotted 

against the modified DSM distortional prediction curve. This observation reiterates the 

conclusion drawn in the distortional buckling study, that yielding and collapse of the 

unstiffened strips adjacent to a hole influence both distortional and global failure modes 

as slenderness decreases. 
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Figure 8.9 Comparison of simulated column strengths (y4„et/y4g=1.00) to (a) the existing DSM global buckling 
design curve and to (b) the proposed DSM distortional buckling curve for columns with holes 
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Figure 8.11 Comparison of simulated column strengths (A„et/Ag=0.80) to (a) the existing DSM global 
buckling design curve and to (b) the proposed DSM distortional buckling curve for columns with holes 

8.1.4 Local buckling study 

The distortional buckling failure study in Section 8.1.2 and the global buckling 

failure study in Section 8.1.3 demonstrated that the presence of holes decreases ultimate 

strength when cold-formed steel columns fail by yielding and collapse of the unstiffened 

strips adjacent to a hole at the net cross-section. Holes were observed to have a minimal 

influence on ultimate strength when the column failure mode was dictated by elastic 

buckling. The goal of this study is to determine if this trend is consistent for columns 

with holes experiencing local-global buckling interaction at failure. 
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Eleven columns from the simulation database in Appendix K were chosen for this 

study. The columns have SSMA cross-sections and lengths which result in a local 

buckling slenderness, h, ranging from 0.8 to 3.0. The column length, L, varies from 24 

in. to 88 in. and column widths range from 3.5 in. to 12 in. The web of each column 

contains evenly spaced circular holes where the hole spacing S varies from 12 in. to 17 

in. The hole depth (diameter), foMc, is varied for each column to produce AnJAg of 1.0 (no 

holes), 0.80, and 0.65. Refer to Appendix K, Study Type L, for specific column cross-

section and hole geometry information. 

The simulated ultimate strengths of the 11 columns without holes, Pto(, are compared 

to the DSM local buckling strength prediction, P„/, in Figure 8.12. The simulated test to 

predicted ratios are more variable than those observed in the distortional and global 

failure studies but on average are close to unity, with a trend towards increasingly 

conservative predictions with increasing At as shown in Figure 8.12a. The mean and 

standard deviation of the simulated test to prediction ratio is 1.05 and 0.14 respectively 

for 25% CDF local and distortional imperfections ± L/2000 global imperfections and 1.03 

and 0.15 for 75% local and distortional imperfections ± L/1000 global imperfections. 
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Figure 8.12 Comparison of column test-to-prediction ratios for columns (Anet/As=1.0) failing by local-global 
buckling interaction as a function of (a) local slendemess (b) global slendemess 

Figure 8.13 and Figure 8.14 compare the simulated strengths of the 11 columns to the 

predicted strength, P„t, as A„JAg decreases from 1.0 (no hole), to 0.80, to 0.65. (In Figure 

8.13 and Figure 8.14 the test strengths are those associated with P(es,25+ in Appendix K, i.e. 

the 25% CDF local and distortional imperfection magnitudes and +L/2000 global 

imperfection magnitudes.) Figure 8.13a compares the simulated strengths P,es,25+ to Pnf 

without the influence of holes. (The local-global buckling interaction complicates the 

comparison because P„f and Xi are both a function of PM. By initially assuming that P„t is 

not influenced by the hole, the effect of hole size on simulated strength is more clearly 

observed.) As local slendemess (At) decreases in Figure 8.13a (i.e., the influence of local 

buckling on member strength decreases) the tested strength becomes more sensitive to 

increasing hole size (i.e., decreasing A„e(/Ag), diverging below the prediction Pnf by as 

much as 40% when ^=0.75. 

Figure 8.14a demonstrates that the sensitivity of column strength to a decrease in A„JAg 

is related to the ratio of Pynet to P„„. When Pymt/P„e is high, the strength sensitivity to AnJAg 

imperfections 
imperfections U no holes, FE 25% CDF imperfections 

• no holes, FE 75% CDF imperfections 
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is low because global buckling initiates the column failure. As PJPvm, approaches unity, 

column failure is initiated by unstiffened strip buckling and yielding at the net cross-

section and therefore the sensitivity of column strength to A„e,/Ag increases. A column 

with the largest drop in strength with increasing hole size is the SSMA 350S162-68 

column with 1=34 in. and S=17 in. shown in Figure 8.15. In this case a large hole 

(Anet/Ag=0,65) causes the collapse of the net section resulting in an unfavorable and 

sudden weak-axis flexural failure and a 42% strength reduction when compared to the 

same column without holes. The SSMA 350S162-68 column with smaller holes 

(Am/Ag=0.80) fails in a combination of distortional and flexural-torsional buckling with a 

12% strength reduction. 

Figure 8.13b plots the same information as Figure 8.14a, except now P„c is calculated 

using Pm including the influence of holes. For 8 out of the 11 columns, the prediction 

Pne shifts from unconservative to slightly conservative, even for large holes. One 

exception is the SSMA 800S250-43 column with L=74 in. and S=12 in. shown in Figure 

8.16, where the strength prediction becomes overly conservative as AmJAt increases. Pm 

is predicted to decrease by 45% when AmJAs-=0.65, although the tested strength decreases 

by only 10%. Figure 8.16 demonstrates that the C-section web is susceptible to local 

buckling, and that the presence of holes does not adversely affect the failure mode in 

this case. The strength predictions for the SSMA 350S162-68 column (Figure 8.15) and 

the SSMA 350S162-54 column with L=24 in. and S=12 in. are viable when AJAs=0.S0, but 

are underestimated by 20% with Option 4 (5) when AmJAf=0.65 because of the 

introduction of an unstable weak-axis flexural failure mode triggered by the collapse of 
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the net section. A hinge forms at the location of the net section, and the global 

slenderness is high enough that the column becomes susceptible to a flexural buckling 

mode. These "hinge" failures are not observed in the distortional buckling study (see 

Section 8.1.2) because the global slenderness of the columns is lower (i.e. the weak axis 

flexural stiffness is higher), avoiding a global buckling failure. Option 6 accurately 

predicts the strength of the SSMA 350S162-68 column and the SSMA 350S162-54 

columns because the method assumes that the global strength, P„e, is reduced by PynJPy. 
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Figure 8.13 Comparison of column test-to-prediction ratios for columns failing by local-global buckling 
interaction with P„e calculated (a) without the influence of holes (b) and with the influence of holes 

2 

J 

Increase in point size, 
Ane/Ag=1.0,0.80,0.65 

0 0.5 1 1.5 2 2.5 3 3.6 4 4.5 5 
P»„,/P„. 

0 0.5 1 1.5 2 2.6 3 3.5 4 4.5 5 

>WP„. 
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The observations from this study are now employed to propose two options for the 

DSM local buckling design curve for columns with holes. The presence of holes 
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influenced the tested strength of the cold-formed steel columns over the full range of 

local slenderness considered. This result was different from the distortional and global 

failure studies, where holes were observed to reduce strength only from the collapse and 

yielding at the net section as slenderness decreased. The strength reduction from the 

holes was predicted in DSM for 8 out of the 11 columns, when Pnt was calculated with 

PM included the influence of holes (compare Figure 8.13a to Figure 8.13b). A transition 

similar to that proposed for the DSM distortional design curve is still justified though, 

especially when Pyml/P„e<l (see Figure 8.14b), to capture the yielding and collapse at the 

net section observed in columns with low local and global slenderness. The strength of 

two columns with large holes were underpredicted because of unstable global collapse 

initiated by yielding at the net-section, motivating the implementation of a limit on hole 

size (i.e., AmJAg) to ensure the viability of the DSM approach. Two modification options 

are proposed for the DSM local design curve based on these conclusions: 

Local Buckling (Option A) 

The nominal axial strength, Pn^, for local buckling shall be calculated in accordance with the following: 

(a) For X( i\(i 

P n ^ = P n e ^ Pynet (caP o n column strength) 

(b) For Xn<Xg<:X(2 

F"(=P^ ~ 
1 ynct l t2 (X — X ) (yield transition when Pynet/Pne <1) 

(c) For X( > \f2 
( / _ \0.4\ 

P nf 1-0.15 

where 

x a/ 

V P , 

" e r f (DSM local buckling curve, unchanged) 

h =VP„JP^ 

Xn = 0.776(PyIKt/P„e) *0.776 

•k<2 = 0.776(l.7(Py n a /Pn e)"1-6-0.7),Pyne,/Pne<l 

= 0.776, Pynet/Pne>l (no transition when Pynet/Pne >1) 

p a =(i-o.i5(i/,y°s)(iM2rpne 
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Rynet = FvAnet£0.6Py (limit reduction of the net section to 0.6Py) 

A ^ = Column cross-sectional area at the location of hole(s) 

Pcr^ = Critical elastic local column buckling load including hole(s) 

Local Buckling (Option B) 
The nominal axial strength, Pn^, for local buckling shall be calculated in accordance with the following: 

(a) For X( iX^ 

P n ^ = Pyne.(Pne/Py) 

(b) For hei<Xf£k(2 

Pn/=P, 
' ^ 

ynet 

VPy J 

"ynetV"ne/"y/ "<2 

V <2 — ^n J 

(c) For \e>\ 
a 

(•a \ 
1-0.15 

0.4 \ 

V^ne J 

/ p V1'4 

V^ne 

(cap on column strength) 

(A —A ) (yield transition when Pynet/Pne <1) 

(DSM local buckling curve, unchanged) 

V 

where 

h\ =0.776(Pynet/Py) 

hi =0.776(l.7(Pynet/Py)-'-6-0.7) 

p c =(i-o.i5(iA2r)(i/^2rp„e 

P y n e t = F A e t - ° - 6 P y 
Aj,^ = Column cross-sectional area at the location of hole(s) 

Pcr£ = Critical elastic local column buckling load including hole(s) 

(limit reduction of the net section to 0.6Py) 

Option A imposes a transition from the DSM local buckling curve to column 

strength at the net section, Pynel, when Pm< PM as shown in Figure 8.17a for the case when 

Pm^Py (i.e., stub columns) and Py„e»=0.8Pre. When Pv„fl>PTO, Option A assumes that holes 

influence only the critical elastic buckling loads (Pcr«, Pm) and otherwise do not change 

the failure mode of the column; this case is demonstrated in Figure 8.17c when Pcr, = Pys. 

Option B also imposes a transition to the net column strength from the DSM local failure 

curve, although the transition is assumed to occur for all values of Pym,IPnc. In essence, 

the Option B curve for stub columns shown in Figure 8.17a is scaled down based on the 

ratio Py„eJPy. The result is an additional reduction in predicted strength for global 

333 



column failures without local buckling interaction that is not captured by Option A. 

This difference between Option A and Option B is highlighted in Figure 8.17b, where 

Pynet^O.SPyg and Pcre = 5Pys. The validity of both options are evaluated in the following 

section against the simulation database and the experiment database assembled in 

Chapter 4. 
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Figure 8.17 Comparison of DSM local buckling design curve options when Py„e,=0.80 Pys and (a) Pcre=100Pys, 

(b) Pac=bPn, and (c) Pcrc=Pyg 

8.1.5 Presentation and evaluation of DSM options 

Six options for extending DSM to columns with holes are evaluated in this section. 

The options range from simple substitutions in the existing code to more involved 

modifications, including the incorporation of the design curve transitions discussed in 

Section 8.1.2 and Section 8.1.4 for distortional and local buckling. 
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8.1.5.1 Description of DSM options 

Option 1: Include hole(s) in Pcr determinations, ignore hole otherwise 
This method, in presentation, appears identical to currently available DSM expressions 

Flexural, Torsional, or Torslonal-Flexural Buckling 
The nominal axial strength, Pne, for flexural,... or torsional- flexural buckling is 

for^c<1.5 P n e =fo.658^V 

for lc > 1.5 Pne = 
' 0.877^ 

V ^-c J 
Py=0.877Pcre 

where \c = ^/Py/P,, 

Py = AgFy 

Pcre= Critical elastic global column buckling load ... (including hole(s)) 
A = gross area of the column 

Local Buckling 
The nominal axial strength, Pnf, for local buckling is 

for ^ < 0.776 Pnf = Pn e 

for Ke> 0.776 Pni = 1-0.15 P 
Vrne J 

0.4 ( \0'4 

VPney 

where = V P ^ erf 
PCI( = Critical elastic local column buckling load ... (including hole(s)) 
Pn e is defined above. 

Distortional Buckling 
The nominal axial strength, Pntj, for distortional buckling is 

for ^ d < 0.561 P n d = Py 

for Xd> 0.561 P n d = 1-0.25 

\0.6\ 

'crd 

V 
K?yJ 

Pcrd 

v p v ; 

0,6 

where Xd =>/Py/Pcrf 

Pc r d = Critical elastic distortional column buckling load ... (including hole(s)) 
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Option 2: Include hole(s) in Por determinations, Use Pynet everywhere 
The only change in this method is to replace Py with Pynet 

Flexural, Torsional, or Torslonal-Flexural Buckling 
The nominal axial strength, Pne, for flexural,... or torsional- flexural buckling is 

for A.enrtSl.5 Pne
=(0.658'~)Pr„ 

for KauA> 1.5 = ( 0.877" 

"'aM J 

Py~=0.SVP„ 

Where ^ = ^/Pynet/Pcre 

1 ynet = "nery 
Pcre= Critical elastic global column buckling load ... (including hole(s)) 
A ^ = net area of the column 

Local Buckling 
The nominal axial strength, Fn(, for local buckling is 

for Xe< 0.776 P n ^ P n e 

for Xp> 0.776 P n̂  -0.15 
'?. ^ 

V P n e , 

f \0A 

IV P n e J 

where 7,( = ^/P„e/Pcrf 

Pcrf = Critical elastic local column buckling load ... (including hole(s)) 

P n e is defined above 

Distortlonal Buckling 
The nominal axial strength, Pn(j, for distortional buckling is 

f o r^dnet^0 '5 6 1 Pnd = Pynet 

for W > 0.561 Pnd: 1-0.25 
Pcrd 

^ "ynet J 

( \ 0 6 

Pcrd 
p 

^ rynet J 

rynet 

where Xdnet = ^ P ^ , /Pcrd 

Pcr(j= Critical elastic distortional column buckling load ... (including hole(s)) 
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Option 3: Cap Pm and Pnd, otherwise no strength change, include hole(s) in Pcr 

This method puts bounds in place and assumes local-global interaction happens at full Pg 

Flexural, Torsional, or Torsional-Flexural Buckling 
The nominal axial strength, Pne, for flexural,... or torsional- flexural buckling is 

for Xc < 1.5 Pn e = (0.658*' V 

for Xc>1.5 Pne = 
0.877 

I2 Py=0.877Pcre 

where Xc = ^Py/Pcre 

Pcre= Critical elastic global column buckling load ... (including hole(s)) 
P = A F y g y 
A = gross area of the column 

Local Buckling 

The nominal axial strength, Pn^, for local buckling is 

for X(< 0.776 P ^ = P,* £ P ^ 

for Xe> 0.776 ?n( -0.15 
vcrt 

V °ne ) 

vatl 

VPne ; 
P < P 
1 ne - ' ynet 

where Kt = ViW^ erf 
Pcr f = Critical elastic local column buckling load ... (including hole(s)) 

P„ 

F„a is defined in Section above. 
l i e 

1 ynet ~ "neP'y 
A ^ = net area of the column 

Distortional Buckling 
The nominal axial strength, Pncj, for distortional buckling is 

for Xd< 0.561 P n d = P y <P y n e t 

for Xd> 0.561 P n d = -0.25 
Pcrd 

v p y ; 

Pcrd 

v p y y 
P < P 
1 y — l .ynet 

where Xd =>/Py/Pcrd 

Pcrcj = Critical elastic distortional column buckling load ... (including hole(s)) 
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Option 4: Cap ?M, transition Pnd, include hole(s) in Pcr determinations 
This method puts bounds and transition in place, assumes local-global interaction at full Pn 

Flexural, Torsional, or Torsional-Flexural Buckling 
The nominal axial strength, P n e , for flexural,... or torsional- flexural buckling is 

for Xc < 1.5 P n e = (0.658x< V 

forXc>1.5 P„ 
0.877 

V K j 
Py=0.877Pcre 

where Vv^c, 
'cre= Critical elastic global column buckling load ... (including hole(s)) 

Vy 
A„ = gross area of the column 

Local Buckling 
The nominal axial strength, Pn(, for local buckling is 

for Xe< 0.776 P n ^ = P n e < P y n e t 

for Xe> 0.776 Pn^ 1-0.15 
vctt 

V. "ne J 

\0,4 
rcr<? 

VPne J 

P < P 
1 ne - " ynet 

where X( = ^ J ? ^ 

Fcr( = Critical elastic local column buckling load ... (including hole(s)) 

P n e is defined in Section above. 

ynet = " n e r y 
Aĵ gj = net area of the column 

Dlstortlonal Buckling 
The nominal axial strength, Fnd, for distortional buckling shall be calculated in accordance with the 

following: 

(a) For Xd <Xdl 

^ nd _ Pynet 

(b) For Xdl<Xd<Xd2 

Pnd = P ^ 

(c) For Xd > Xdz 

1 ynet x d2 

V ^62 ~^"i\ J 

nd ' 

\ 0 . 6 > 

1-0.25 

V 

where 

p 
1 crd 

l?yj / 

Pcrd 

l P J 

^d ~ Vpy/Pcrd 

^ d i = o . s e K P ^ / p , ) 

^ d 2 =0.56l(l4(p^,/Py>*4-13) 

P d 2 = (l-0.25(l/Ad2)12Xl/^d2) l2Py 

Pynet = tyW°-«y 
A ^ j = Column cross-sectional area at the location of hole(s) 

¥crd = Critical elastic distortional column buckling load including hole(s) 
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Option 5: Transition Pw (Option A), transition Pnd, include hole(s) in Pcr determinations 
This method puts bounds and transition in place, assumes local-global interaction at full Pn 

Flexural, Torsional, or Torslonal-Flexural Buckling 
The nominal axial strength, P n e , for flexural,... or torsional- flexural buckling is 

for Xe£ 1.5 P n e = f0.658^ V 

for Xc > 1.5 Pne = 
0.877 

V * c J 

Py=0.877Pcre 

where Xc = ^Py/Pc , 

Pc r e= Critical elastic global column buckling load ... (including hole(s)) 

P y = A gF y 

A_ = gross area of the column 

Local Buckling 
The nominal axial strength, Pn(, for local buckling shall be calculated in accordance with the following: 

(a) For X( <X^ 

P n ^ P , 
(b) For X^<X^<X(2 

Pn^ = Pne^ Pynet 

P n * = P „ 
(V - P 

ryiret rCl 
A[2 — An 

W-l ~ K\ ) 

(c) For Xp > Xt a 
l n^ 

(r> \ 
1-0.15! 

where 

VPne J 

0.4 \ rr> ~\ 

\ P n e J 

(cap on column strength) 

(yield transition when Pynet/Pne <1) 

(DSM local buckling curve, unchanged) 

X( = VPne/Pcrt 

hi =0 .776(P y n a /P„ e )^0 .776 

hi = 0 .776(l .7(Py M /Pn e)-1 6 - 0 . 7 ) , Pyne,/Pne<l 

= 0.776, Pynet/Pne>l (no transition when Pynet/Pne >1) 

P a =(i-o. i5( i /^ 2)M)( i /A, 2r 8P n e 

Pynet= PyAnet^0.6Py (limit reduction of the net section to 0.6Py) 

A ^ = Column cross-sectional area at the location of hole(s) 

Pcrf = Critical elastic local column buckling load including hole(s) 

Distortional Buckling 

Same as Option 4 

339 



Option 6: Transition Pm (Option B), transition Pn(j, include hole(s) in Pcr determinations 
This method puts bounds and transition in place, assumes local-global interaction at full Pn 

Flexural, Torsional, or Torsional-Flexural Buckling 
The nominal axial strength, P n e , for flexural,... or torsional- flexural buckling is 

for Xc<\.5 P n e = f 0.658*' JPy 

where 

for Xc > 1.5 Pn, 
0.877 

v K j 
Py=0.877Pcre 

y[?y/V* 

Pc r e= Critical elastic global column buckling load ... (including hole(s)) 

P y = AgFy 

A„ = gross area of the column 

Local Buckling 
The nominal axial strength, Pn^, for local buckling shall be calculated in accordance with the following: 

(a) For Kg <X(i 

Pn( = Pynet (Pne /Py ) 

(b) For \gi<X(<,Xg2 

(cap on column strength) 

(c) For X( > X(2 

P, 

t p A , 

K^J 

"ynetV"ne/"y/ "l2 

n(-
fo ^ 

1-0.15 

0.4 \ 

V P n 6 , VPne 

{(A — /L ) (yield transition when Pynet/Pne <1) 

(DSM local buckling curve, unchanged) 

where 
Xe --fij?cr 
l n =0.776(Pyna/Py) 

•Xa =0.776(l .7(P y n a /P y)-w-0.7) 

P G =(l-0.15(lM2)M)( l /^2)MP„ e 

Pynet= FjAiet^0-6 1^ 
Aĵ gj = Column cross-sectional area at the location of hole(s) 

Pct( = Critical elastic local column buckling load including hole(s) 

(limit reduction of the net section to 0.6Py) 

Distortional Buckling 

Same as Option 4 
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8.1.6 DSM comparison to column test simulation database 

The six DSM prediction options for cold-formed steel columns with holes are 

evaluated with the simulated column experiment database developed in Section 8.1.1 

and summarized in Appendix K. (Tested strengths with and without global 

imperfections are provided in Appendix K. The simulated strengths considered in this 

study contain global imperfections, except for stocky columns with L/D<18 where D is 

the column flange width). The simulated data is compared against DSM predictions 

while evaluating data trends against member slenderness, hole size (Ane,/As), and column 

dimensions L/h, where h is the flat web width of a column. 

Figure 8.18 to Figure 8.21 compare the simulated test data to predictions for local, 

distortional, and global buckling controlled column failures. Option 1 is identical to the 

existing DSM approach for columns without holes, except the critical elastic buckling 

loads (Per/, Pcrd, and Pm) are determined with the influence of holes. Option 1 is observed 

to be an accurate predictor of strength when A,., A&, and Ac are high, but results in 

unconservative predictions (by as much as 30 % for distortional buckling controlled 

specimens, see Figure 8.20) as At, Ad, and Ac decreases below 1.5. The unconservative 

predictions occur because Option 1 does not account for the column strength limit Pynet, 

nor does it account for a transition from an elastic buckling controlled failure to a yield-

controlled failure at the net section discussed in Section 8.1.2 and Section 8.1.3. 

Option 2 is observed to be a conservative predictor in Figure 8.18 to Figure 8.21 for 

high At, Ad, and Ac and demonstrates improved accuracy over Option 1 when slenderness 

decreases and hole size increases (see Figure 8.20). Option 2 replaces Pme, everywhere 
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within the existing DSM formulation, which has the effect of increasing At, A&, and Ac and 

decreasing predicted strength. Option 3 test-to-predicted trends are similar to Option 1 

with increasingly unconservative predictions as slenderness decreases, demonstrating 

that the Pynet limit on Pnf and Pni in Option 3 are not fully effective at capturing the yield 

transition to the net section. Option 4 is identical to Option 3 except the yield transition 

on the DSM distortional curve developed in Section 8.1.2 is employed to provide a more 

accurate prediction of the net-section yielding influence. Option 4 demonstrates an 

improvement in accuracy over Option 3, although it overpredicts the strength of the two 

columns discussed in Section 8.1.4 (SSMA 350S162-68 and SSMA 350S162-54 columns), 

where large holes caused a sudden weak-axis flexural buckling failure. Option 5 

includes both local and distortional yield transitions, although the predictions are 

identical to Option 4 because the distortional transition always predicts lower strengths 

than the local transition for the columns considered. Option 6 deviates from the other 

approaches and accounts for the presence of holes by reducing P„, by the ratio PynJPy 

when At is less than 0.776; this option also always including a local buckling transition 

(Option 5 imposes a transition on the DSM local buckling design curve only when 

Pymt<Pne, see Figure 8.17). The reduction in Pn( shifts the global buckling-controlled 

specimens in Options 1 through 5 to the DSM local buckling curve in Option 6, resulting 

in conservative predictions with decreasing At. 

Table 8.1 summarizes the test-to-predicted ratio statistics for the six DSM options. 

The standard deviation (SD) is useful when comparing the methods, because it provides 

a metric for how well the trends in strength are following the prediction curves. (The 
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mean is also an important statistic but can hide unconservative prediction trends in 

some columns with overconservative predictions in other columns). A low standard 

deviation is appealing because it enables higher strength reduction factors in a design 

code. The strength reduction factor </) is also provided for each option. <j) is calculated 

with the following equation from Chapter F of the Specification (AISI-S100 2007): 

«=cXMmFmpmy^r*^c'rhr°, (8„ 

where the calibration coefficient C^=1.52 for LRFD, the mean value of the material factor 

Mm=1.10 for concentrically loaded compression members, the mean value of the 

fabrication factor Fm=1.0, the mean value of the professional factor Pm=1.0, the coefficient 

of variation (COV) of the material factor V„,=0.10, the COV of the fabrication factor 

V^O.05, the COV of the load effect V,=0.21 for LRFD, and the correction factor Q=l. The 

COV of the test results, Vv, is calculated as the ratio of the standard deviation to the 

mean of the test-to-predicted statistics in Table 8.1. 

No one option stands out above the rest when studying the table, although Option 2, 

3, and 4 (5) have the most evenly distributed statistics between local and distortional 

bucking column groups. The observations from this comparison will be combined with 

the DSM comparison to the experimental database in the next section. 

Table 8.1 DSM test-to-predicted statistics for column simulations 
Option 

1 
2 
3 
4 
5 
6 

Description 

P, everywhere 
Pyn,! everywhere 

Cap P«, P„a 

Transition P„d, Cap P„< 
Transition PM and P„< (Option A) 
Transition P„, and P„, (Option B) 

Mean 
1.06 
1.06 
1.06 
1.08 
1.08 
1.07 

Local buckling 
SD * 

0.15 0.83 

0.15 0.83 
0.15 0.83 
0.14 0.85 
0.14 0.85 

0.20 0.78 

# of tests 
93 
93 
93 
89 
89 

221 

Mean 
1.07 

1.08 
1.09 
1.04 
1.04 

1.10 

Distortional buckling 
SD * 
0.17 

0.16 
0.17 

0.19 
0.19 
0.15 

0.82 

0.83 
0.82 
0.79 
0.79 
0.85 

# of tests 
178 
176 

186 
200 
200 
164 

Mean 
1.11 
1.11 

1.13 
1.16 
1.16 

... 

Global buckling 
SD • 

0.21 0.78 
0.22 0.77 
0.21 0.79 

0.19 0.82 
0.19 0.82 

_. 

# of tests 
114 
116 
106 

96 
96 
0 
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8.1.7 DSM comparison to experimental column database 

The six DSM options are now compared to the column experiment database first 

assembled in Section 4.2.6.2. The database contains the elastic buckling properties of 

each column, including the presence of holes and the influence of boundary conditions, 

as well as the tested strengths. Figure 8.31 through Figure 8.34 compare the experiment 

strengths to DSM predictions for local, distortional, and global buckling controlled 

column failures. Option 1 is observed to be an accurate predictor of column strength 

when local, distortional, and global slenderness are high, but overpredicts the tested 

strength as slenderness decreases. This trend is consistent with the simulated 

experiment comparison in Section 8.1.6 and emphasizes the need for a limit on column 

strength when yielding at the net section controls the failure of a column with holes. 

Option 2 is even more conservative in this study when compared to the simulated 

column study because the tested specimens considered only have one hole, and 

therefore employing Pyne, produces unrealistically high column slenderness. Option 3 

shifts column specimens from the global buckling failure group to the local buckling 

failure group with the Pym limit on P„/, resulting in improved accuracy when compared 

to Option 2. Four columns in the Option 3 distortional buckling failure group are still 

overpredicted by more than 10% though as observed in Figure 8.33. Option 4 and 

Option 5 improve the accuracy of the underpredicted specimen strengths in Option 3 

with the addition of the distortional and local yield control transitions to the net section. 

Option 6 is an overly conservative predictor of columns failing by global buckling. 
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Table 8.2 summarizes the test-to-predicted ratio statistics for all columns in the 

database. Options 3, 4, and 5 are identified as the methods with the mean closest to 

unity and with the lowest standard deviations. The statistics for just the stub columns 

(/k<0.20) in Table 8.3 confirm the viability of DSM Options 3, 4, and 5, and provides 

more direct evidence that holes limit the column strength to the net section Pyml; the 

mean test-to-predicted ratio is 0.84 for global (yielding) failures of stub columns 

employing Option 1. 

Option 

1 
2 
3 

4 
5 
6 

Table 8.2 
Description 

P, everywhere 
P„,„t everywhere 

Cap P„,, Pm 

Transition P„d, Cap P„< 
Transition P„d and P„< (Option A) 
Transition Pnd and P0< (Option B) 

DSM test-to-predicted ratio statistics for column experiments 

Mean 
1.03 
1.17 
1.07 

1.07 

1.06 
1.12 

Local buckling 
SD * # of tests 

0.11 0.87 52 
0.09 0.89 47 
0.08 0.90 42 

0.08 0.90 40 

0.08 0.89 47 
0.15 0.84 56 

Distortlonal buckling 
Mean SD * # of tests 
1.09 0.16 0.83 15 
1.22 0.13 0.87 15 
1.06 0.13 0.85 29 

1.10 0.11 0.87 33 

1.13 0.10 0.89 26 
1.14 0.10 0.89 22 

Mean 
1.06 
1.17 

1.16 
1.19 

1.19 

... 

Global buckling 
SD * 

0.17 

0.15 
0.09 

0.08 
0.08 

... 

0.82 

0.85 
0.90 

0.90 

0.90 

... 

# of tests 
11 

16 
7 

5 

5 

0 

Option 

1 

2 

3 
4 
5 

6 

Table 8.3 DSM test-to-predicted ratio statistics for column experiments (stub columns only) 
Description 

Py everywhere 

Pynot everywhere 

Cap P„,, P„a 
Transition P„d, Cap Pn! 

Transition P„d and P„< (Option A) 

Transition P„j and P„, (Option B) 

Local buckling 
Mean SD * 
0.98 0.10 0.88 

1.12 0.07 0.90 

1.03 0.06 0.91 

1.04 0.06 0.91 
1.03 0.07 0.90 

1.03 0.07 0.90 

# of tests 
33 

28 
23 

21 
28 
29 

Mean 
0.83 

1.03 
1.00 

1.06 
1.11 

1.11 

Distortlonal buckling 
SD * # of tests 
0.01 0.92 3 

0.06 0.91 3 
0.12 0.86 16 

0.11 0.87 18 
0.10 0.88 11 
0.10 0.88 10 

Global buckling 
Mean SD 4> 
0.84 0.08 0.88 

1.07 0.12 0.86 

_. 
._ 
... 
_ 

# of tests 
3 

8 
0 

0 
0 

0 
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8.1.8 Recommendations - DSM for columns with holes 

Options 3, 4, and 5 are presented as viable proposals for extending DSM to columns 

with holes. This recommendation is based on the test-to-predicted statistics and data 

trends presented in Section 8.1.6 and Section 8.1.7, and also considers the effort to 

implement the modifications and their ease of use by design engineers. Option 3 

accounts for the reduction in column strength from the presence of holes by capping P„/ 

and P„d at Py„e(. This is a simple modification to implement in the Specification and 

avoids additional calculation work for a design engineer (except for that required to 

calculate the critical elastic buckling loads including the influence of the holes). Options 

4 and 5 are refinements of Option 3, where the cap on PB/ and Vni becomes a transition 

from an elastic buckling controlled failure mode to a yield controlled failure at Pynet. 

These two methods require additional effort from the designer when compared to 

Option 3, but they have an important advantage. Options 4 and 5 are more closely tied 

to the failure mechanisms influencing column strength because they capture the yield 

transition to the net section in their predictions. The transitions increase the probability 

that strength will be accurately predicted for general column and hole geometries. 

Option 5 has the additional advantage of capturing the influence of a yield transition for 

closed cross-sections that do not experience distortional buckling. This generality is 

what motivates the use of the Direct Strength Method (AISI-S100 2007, Appendix 1). 
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8.2 DSM for laterally braced beams with holes 

8.2.1 Database of simulated column experiments 

Simulated experiments were conducted on 125 C-section laterally braced beams with 

evenly-spaced circular web holes in ABAQUS. Cross-sections were specifically selected 

with custom Matlab code employing the existing DSM design curves to identify beams 

predisposed to local and distortional buckling-controlled failures. The cross-sections 

were chosen from a catalog of 99 industry standard C-sections published by the Steel 

Stud Manufacturers Association (SSMA 2001). The nominal out-to-out dimensions 

provided in the SSMA catalog were converted to centerline dimensions and then 

constructed in ABAQUS with the meshing procedure described in Section 7.2.1.1. The 

beams in the database have a constant length L=48 in. to accommodate multiple local 

and distortional buckling half-waves along the beam. Evenly spaced circular web holes 

were placed in the columns with hole spacing S (defined in Figure 3.2) of 16 inches (i.e., 

three evenly spaced holes). The holes were centered transversely in the web and their 

depth (diameter), hck, was varied such that the ratio of the net moment of inertia, I„e(, to 

the gross cross-sectional area, Ig, ranged between 0.85 and 1.0. 

The ABAQUS boundary conditions and application of loading, described in Figure 

8.44, are implemented to be consistent with CUFSM, i.e. pinned-pinned and free-to-

warp with a uniform stress applied at the member ends. Each beam is laterally braced 

by restraining the compression flange at the midlength of the beam. (Initial modeling 

trials, where all nodes centered in the compression flange were laterally restrained, 
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resulted in simulated strengths 25% higher than DSM predictions for beams without 

holes.) Consistent nodal loads were applied to simulate the linear stress gradient at the 

beam ends (see Section 7.2.1.2 for information on S9R5 consistent nodal loads). The 

loads (a reference moment of 1 kip-in. was applied at each end in ABAQUS) were 

distributed over the first two sets of cross-section nodes to avoid localized failures at the 

loaded edges. 

r End cross-section nodes 
restrained in 2 and 3 

Node centered in compression flange at 
longitudinal midline restrained in 1 (to prevent 
rigid body motion) and 3 (for laterally bracing) 

End cross-section nodes 
restrained in 2 and 3 

Moment applied as consistent nodal loads 
over two sets of cross-section nodes to 
avoid edge failures (Typ.) 

Figure 8.44 ABAQUS simulated beam experiments boundary conditions and application of loading 

The ABAQUS simulations were performed with the modified Riks nonlinear 

solution algorithm. Automatic time stepping was enabled with a suggested initial arc 

length step of 1 (the Riks method increments in units of energy, in this case kip-in.), a 

maximum step size of 3, and the maximum number of solution increments set at 300. 

Metal plasticity was simulated with the material modeling procedure described in 

Section 7.2.1.4. The plastic true stress-strain curve for specimen 362-1-48-H in Appendix 

H was assumed for all column models (but modified such that plasticity starts at the 

yield stress, see Section 7.2.1.4), where the steel yield stress Fv=58.6 ksi. Residual stresses 
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and initial plastic strains, as discussed in Section 7.2.1.6, were not considered in the 

ABAQUS models because their implementation requires further validation and they 

were not observed to markedly influence column ultimate strength (see Figure 7.48 and 

Figure 7.49). 

Imperfections were imposed on the initial beam geometry in ABAQUS with custom 

Matlab code which combines the local and distortional buckling cross-section mode 

shapes from CUFSM along the column length. Two simulations were performed for 

each beam, one model with 25% CDF local and distortional imperfection magnitudes 

and the other model with 75% CDF local and distortional imperfection magnitudes (see 

Section 7.2.1.5 for local and distortional imperfection definitions). 

The local (M /̂) and distortional (MU) critical elastic buckling loads were predicted 

for each beam with custom Matlab code based on the CUFSM prediction methods 

described in Section 4.3. The database of simulated beam experiments, including cross-

section type, column and hole geometry, simulated ultimate strength (M,aas and Mtei75) 

and critical elastic buckling loads for each beam (including the presence of holes) is 

provided in Appendix L. 

8.2.2 Local buckling study 

Twelve beams from the simulation database in Appendix L were chosen to study 

the influence of web holes on the ultimate strength of laterally braced beams 

predisposed to a local buckling-controlled failure. The beams have SSMA cross-sections 

which result in a local buckling slenderness, Xtl ranging from 1.3 to 2.0. (The slenderness 
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range considered here is relatively narrow because only 12 of the 99 SSMA cross-

sections, when employed as laterally braced beams, are controlled by a local buckling 

failure. The majority of beam cross-sections are predicted to exhibit a distortional 

buckling-controlled failure.) The web of each beam contains three evenly spaced 

circular holes where the hole spacing S=16 in. The hole depth (diameter), /JWC, is varied 

for each beam to produce I„JIg of 1.0 (no holes), 0.95, 0.90, and 0.85. Refer to Appendix 

L, Study Type L, for specific beam cross-section and hole geometry information. 

The simulation results for J„e(/Ig =1.0, 0.95, 0.90, and 0.85, are compared to the DSM 

distortional buckling prediction curve in Figure 8.46 to Figure 8.49. The beam strengths, 

Mtcsas and M,esm, without holes (I„JIg =1.0) are consistent with the DSM design curve as 

shown in Figure 8.46a, confirming that the nonlinear simulation protocol developed for 

columns in Section 7.2 is also viable when conducting cold-formed steel beam 

simulations. The mean and standard deviation of the simulated test to predicted ratio is 

1.05 and 0.05 respectively for 25% CDF local and distortional imperfections, and 1.03 

and 0.05 for 75% CDF local and distortional imperfections. For the beams with holes, 

the simulated test strengths diverge from the DSM prediction curve as local slenderness, 

/ir=(Mys/Mcr/)05, decreases as shown in Figure 8.47a to Figure 8.49a (Myg is the yield 

moment of the column calculated with the gross cross-sectional area Is). This divergent 

trend in MKs, with decreasing X, is consistent with the column results with holes 

discussed in Section 8.1, where elastic buckling controlled the failure when slenderness 

was high and transitioned to yielding and collapse of the net section as slenderness 

decreased. Figure 8.45 shows the load-deformation response at ultimate limit state for 
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an SSMA 800S162-43 beam considered in this study, and highlights the transition from 

an elastic buckling controlled-failure to a yield controlled-failure at the net section as 

hole size increases. 

Elastic buckling controlled failure -•Yielding and collapse of net section 

l™A 1-0 
* U H , 0.72 

1.45 

Figure 8.45 SSMA 800S162-43 beam with web holes considered in the DSM local buckling study 

Two modification options are proposed for the DSM local buckling beam design 

curve: 

Local Buckling (Option A) 
The nominal flexural strength, M ^ , for local buckling shall be calculated in accordance with the following: 

(a) For Xe <Xn 

M n / = M n e S M y n e t 

(b) For K(i<\(SlK(2 

V At AAt2 ~An) 
(c) For X(> X(2 

1-0.15 
ML 

\0A\ 

V M -e7 

/ \Q.4 

v M „ e , 
M. 

(cap on beam strength) 

(nonlinear yield transition when Mynet/Mne Si) 

(DSM local buckling curve, unchanged) 

where 
X 

= V M n e / M c r < 

^ 1 = 0 . 7 7 6 ( 1 ^ , / M J *0.776 

^ 2 = 0.776(2.4(My„a/Mre)"3-5-1.4),Mynet/Mne^l 

= 0.776, Mynet/Mne>l (no transition when My„et/Mne >1) 

M(2 =(i-o.i5(v^r)(v^rM« 
Mynet = Sm e tF>0.80My (limit reduction of the net section to 0.8My) 

Sfnet = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

Mcr^ = Critical elastic local beam buckling load including hole(s) 
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Local Buckling (Option B) 
The nominal axial strength, M^, for local buckling shall be calculated in accordance with the following: 

(a) For Xp ^X^ 

Mn( = Myret (Mne /My) 

(b) For X^<X^<:Xf2 

(cap on column strength) 

H i r M V^ ' 
ynet 

v M y / 

M 
' M „

 A 

ynet 
v M y / 

-M, f hi Y h ~ hi 
h khz ~hi 

(nonlinear yield transition) 

(c) For X( > X(2 
( 

Mnr 1-0.15 
M„ 

s<>4\ 

V M n e / 

M„ 

V M n e , 

M„ (DSM local buckling curve, unchanged) 

where 
X( =VMne/Mcr( 

Xn = 0 . 7 7 6 ^ ^ ) ^ 0 . 7 7 6 

*G = 0.776(2.4(1^^/My)"35-1.4) 

Ma =(i-o.i5(iM2r)(iM2rMne 

Mynet =SfnetFyS0'80My (limit reduction of the net section to 0.8My) 

%net = Section modulus at the hole(s) referenced to the extreme fiber at first yield 
Mcrf = Critical elastic local beam buckling load including hole(s) 

The framework for Option A and Option B is based on the proposed modifications 

to the DSM local buckling column design curve presented in Section 8.1.4. Option A 

imposes a transition from the DSM local buckling curve to the net section limit, Mymt, 

when Mym,< Mm. When Mynei>M„e, Option A assumes that holes influence only the critical 

elastic buckling loads (Mcr/>, Mcre) but otherwise do not change the failure mode of the 

beam. Option B also imposes a transition to the net beam strength from the DSM local 

failure curve, although in this case the yield transition occurs for all values of MynJMne. 

The proposed transition from the elastic buckling failure regime to the yield plateau is 

nonlinear for both Options A and B as demonstrated in Figure 8.47a to Figure 8.49a, in 

contrast to the linear transition for cold-formed steel columns with holes (see Section 

8.1.4). 
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All beams considered in this study are laterally braced, i.e. global (lateral-torsional) 

buckling does not influence beam strength, and therefore Option A and B will produce 

the same strength predictions. The validity of both options for laterally braced beams is 

evaluated in the following section with the simulation database in Appendix L and the 

experiment database assembled in Chapter 4. Future work is planned to evaluate 

Option A and B for unbraced cold-formed steel beams with holes, where lateral-

torsional buckling influences beam strength. 
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o FE 25% CDF imperfections 
D FE 75% CDF imperfections j 
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1 
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0.2 
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DSM (proposed, with holes) 

o FE 25% CDF imperfections 
D FE 75% CDF Imperfections 

\ 

-—~-_ 

local slBndemess. X =(My'Mcr()°
 B 

0.5 1 1.5 2 2,5 

local slendemess, i-rWJM^f* 

Figure 8.46 Comparison of simulated beam strengths (I„e,/7g=1.0, no holes) to (a) the existing DSM local 
buckling design curve and to (b) the proposed DSM local buckling curve for beams with holes 
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Figure 8.47 Comparison of simulated beam strengths (WI^O.95) to (a) the existing DSM local buckling 
design curve and to (b) the proposed DSM local buckling curve for beams with holes 
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Figure 8.48 Comparison of simulated beam strengths (IBe(/Ig=0,90) to (a) the existing DSM local buckling 
design curve and to (b) the proposed DSM local buckling curve for beams with holes 
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Figure 8.49 Comparison of simulated beam strengths (lnet/Ig=0.85) to (a) the existing DSM local buckling 
design curve and to (b) the proposed DSM local buckling curve for beams with holes 

8.2.3 Distortional buckling study 

A group of 11 beams from the SSMA beam simulation database was chosen to 

evaluate the influence of the ratio I„e(/Ig on the tested strength of beams predicted to 

collapse with a distortional failure mode. (Is is the gross moment of inertia of a beam 

and I„e( is the moment of inertia at the location of a hole.) The beams have SSMA cross-

sections which result in a distortional buckling slendemess, Ad, ranging from 0.6 to 1.6. 

(All SSMA cross-sections, employed as beams and controlled by a distortional buckling 

failure, lie within this slendemess range.) In this study the beam depths range from 4 in. 
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to 12 in. The web of each beam has three circular holes where the hole spacing S=16 in 

(see Figure 3.2 for the definition of S). The hole depth (diameter), hok, is varied for each 

beam to produce I„e,/Is of 1.0 (no holes), 0.95, and 0.90. Refer to Appendix L, Study Type 

D, for specific cross-section and hole geometry information. 

The simulation results for lnctIIs =1.0, 0.95, and 0.90 are compared to the DSM 

distortional buckling prediction curve in Figure 8.51 to Figure 8.53. The beam strengths, 

Mtes(25 and M^s, without holes (I„et/ls =1.0) are consistent with the DSM distortional 

buckling design curve as shown in Figure 8.51a, with a trend of increasingly 

conservative predictions as distortional slenderness increases. The mean and standard 

deviation of the simulated test to predicted ratio is 1.08 and 0.08 respectively for 25% 

CDF local and distortional imperfections, and 1.02 and 0.12 for 75% CDF imperfections. 

For the beams with holes, the simulated test strengths demonstrate a slight divergence 

from the DSM prediction curve as distortional slenderness, /^(My/M^)05, decreases as 

shown in Figure 8.52a and Figure 8.53a (Mys is the yield moment of the beam calculated 

with the gross cross-sectional area ls). (Figure 8.52a and Figure 8.53a also demonstrate 

that Mcr<j, predicted with the simplified method in Section 4.3.2.2, increases distortional 

slenderness and shifts the simulated data off of the prediction curve. Future research is 

planned to improve the accuracy of this simplified method.) This divergent trend in 

M,«, was also observed in the local buckling-controlled beam study in Section 8.2.2 and 

the column studies presented in Section 8.1. As h decreases, the beam failure mode 

transitions from a distortional buckling failure to yielding and collapse of the net 

section. Figure 8.50 highlights this transition for the SSMA 550S162-54 beam considered 
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in this study by comparing the deformed shape at ultimate limit state as hole size 

increases. 

Elastic buckling controlled failure 

• * . - - T ^ " • - • • \ 

Yielding and collapse of net section 

BflBSBttfcki 

. '*^Jn - '<*.-; 

'no/'o 1.0 

M,„125/MyB 0.90 

*.„ 0.87 

' ) 

•^s^r 
0.95 
0.89 
0.92 

0.90 

0.83 

0.93 

Figure 8.50 SSMA 550S162-54 structural stud failure mode transition from distortional buckling to yielding 

at the net section 

The observations from this study are used to formulate a modified DSM distortional 

curve for beams with holes which captures the failure mechanism transition from 

yielding at the net cross-section to a distortional type failure mode and limits the 

strength of the beam to the yield moment at the net section: 

Distortional Buckling 
The nominal flexural strength, M ^ , for distortional buckling shall be calculated in accordance with the 

following: 

(a) For Xd <Xdl 

M n d = M y n c t 

(b) For \ n < \ i ^ d 2 

Mnd=M y n e t -

(c) For Xd > Xd2 

V *U2 — ^ d l J 

Mnd = 1-0.22 
M„ 

\0.5A 

V 
v M y , 

M„ 

(cap on column strength) 

(yield control transition) 

(existing DSM distortional curve) 

where 
x& = V M y / M - d 

\ U = 0.673(M^,/My) 

Xd2 =0 .673( l .7 (M y n a /M y ) - u -0 .7 ) 

Md2 = (l-0.22(l/^d2)XV^2)My 

Mynet = SfnetF.yS0.80My (limit reduction of the net section to 0.8My) 

£>fnet = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

Mcr(j = Critical elastic distortional beam buckling load including hole(s) 
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The modified DSM distortional curve is added in Figure 8.51b to Figure 8.53b as Wig 

decreases, simulating the transition from the existing DSM curve to the net section 

strength limit exhibited by the simulated test data. The linear portion of the modified 

prediction curve represents the unstiffened strip distortional collapse mechanism and 

the nonlinear portion represents a collapse mechanism driven by distortional buckling. 

This proposed modification to the DSM distortional prediction curve will be compared 

against the beam experiments database developed in Section 4.3.1 as a part of several 

proposed DSM options considered later in this chapter. 
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Figure 8.51 Comparison of simulated beam strengths (Jw(/7g=1.0) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for beams with holes 
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Figure 8.52 Comparison of simulated beam strengths (InJIg=0.95) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for beams with holes 

383 



3 
2 0.1 

-

D ^ 

^ j f e 

DSM (no hole) I 
o FE 25% CDF imperfections 
D FE 75% CDF imperfections 

8 a o 6 
DO 

J -
D ck 

X | 

• 

a 
0 

- DSM (no hole) 1 
DSM (proposed, with holes) 
FE 25% CDF imperfections 

FE 75% CDF imperfections J 

£3 

" " " " - • " - - - - ^ . 

distortional slendemess, X,,={MJM distortional slendemess, \ ,=(M /M d) 

Figure 8.53 Comparison of simulated beam strengths (WJg=0.90) to (a) the existing DSM distortional 
buckling design curve and to (b) the proposed DSM distortional buckling curve for beams with holes 

8.2.4 Presentation and evaluation of DSM options 

Six options for extending DSM to laterally braced beams with holes are evaluated in 

this section. The options range from simple substitutions in the existing code to more 

involved modifications, including the incorporation of the design curve transitions 

discussed in Section 8.2.2 and Section 8.2.3 for local and distortional buckling. 
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8.2.4.1 Description of DSM options 

Option 1: Include hole(s) in Mcr determinations, ignore hole otherwise 
This method, in presentation, appears identical to currently available DSM expressions 

Lateral-Torsional Buckling 
The nominal flexural strength, M^g, for lateral-torsional buckling shall be calculated in accordance with the 

following: 
(a) for M c r e < 0.56 My Mne = M c r e 

(b) for 2.78My £ M c r e > 0.56My M „ e = — My 1 — 
10My 

36M„ 

M n e = M y (c) for M c r e >2.78My 

where 
M c r e= Critical elastic global beam buckling load ... (including hole(s)) 

Local Buckling 
The nominal flexural strength, Mn^, for local buckling shall be calculated in accordance with the following: 

(a) For Xe £0.776 

M n ^ M n e 
(b) For X( > 0.776 

Mn« 1-0.15 
' M ^ 

0.4 \ 

V 
where 

V M n e , 

M„ 

V M n e 7 
M„ 

X( =VMne/M c r t 

Mci( = Critical elastic local beam buckling load including hole(s) 

M n e = defined in section above 

Distortional Buckling 
The nominal flexural strength, M^j , for distortional buckling shall be calculated in accordance with the 

following: 

(a) For Xd <0.673 

M n d = M y 

(b) For Xd >0.673 

Mnd = 1-0.22 
( i t > 

v M y y 

0.5 \ r A 0 5 

v M y , 
M„ 

*d = VMy/Mcrd 
Mcrcj = Critical elastic distortional beam buckling load including hole(s) 
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Option 2: Include hole(s) in Mcr determinations, Use Mynet everywhere 
The only change in this method is to replace My with Mynet 

Lateral-Torsional Buckling 
The nominal flexural strength, M ^ , for lateral-torsional buckling shall be calculated in accordance with the 

following: 
(a) for M c r e < 0.56 M ^ Mne = M c r e 

(b) for 2 . 7 8 1 ^ =>Mcre> 0 . 5 6 1 ^ M n 
10 

M„ 
10MV 

36M„ 

H u T Mynet (c ) forM c r e >2.78M y n e t 

where 
Mc r e= Critical elastic global beam buckling load ... (including hole(s)) 

M yne t= S fne t F y S a 8 0 M y 
%net = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

Local Buckling 
The nominal flexural strength, M ^ , for local buckling shall be calculated in accordance with the following; 

(a) For X( <0.776 

Mn< = M n e 
(b) For Xe > 0.776 

MnT 1-0.15 
VMneV 

0.4 \ / \0.4 

V M »eV 
M , 

where 

h =VMne/Mwf 

M c r f = Critical elastic local beam buckling load including hole(s) 

Mj^ = defined in section above 

Distortlonal Buckling 
The nominal flexural strength, M ^ , for distortional buckling shall be calculated in accordance with the 

following: 

(a)For^d n e t<0.673 
M n d = M y n e t 

(b) For Xdnet >0.673 
f 

Mnd = 1-0.22 
M„ 

so, A 

V M y n e . J V M y n e t J 

M ynet 

where 

Mcrcj = Critical elastic distortional beam buckling load including hole(s) 
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Option 3: Cap Mm and M„d, otherwise no strength change, include hole(s) in Mcr 

This method puts bounds in place and assumes local-global interaction happens at full M™ 
Lateral-Torslonal Buckling 

The nominal flexural strength, M ^ , for lateral-torsional buckling shall be calculated in accordance with the 

following: 
(a) for M c r e < 0.56 My M ^ = M c r e 

(b) for 2.78My £ M c r e £ 0.56My M l i e = — My 

9 
1
 1 Q M / 

36M„ 

ere --••^"•y Mne=My (c) forMc r e>2.78My 

where 
M c r e= Critical elastic global beam buckling load ... (including hole(s)) 

Local Buckling 
The nominal flexural strength, M ^ , for local buckling shall be calculated in accordance with the following: 

(a) For Xe <0.776 

(b) For X(> 0.776 

Mn< = 1-0.15 
M„ 

\ 0 . 4 \ 

where 
X( 

v M n e / 

= V M - / M . 

ML 

A; 
Mn 

Mcr^ = Critical elastic local beam buckling load including hole(s) 

M n e= defined in section above 

Mynet =S fnetFy>0.80My 

Sfnet = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

Distortional Buckling 
The nominal flexural strength, M^j , for distortional buckling shall be calculated in accordance with the 

following: 

(a) For Xd <0.673 

M n d = M y S M y n e t 

(b) For Xd >0.673 

M n d = 1-0.22 

V 

0.5 V \0.5 
M„, 

v M y j 
M„ 

where 

^d = VMy/Mcrd 
Mcr(j = Critical elastic distortional beam buckling load including hole(s) 
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Option 4: Cap Mw , transition Mnd, include hole(s) in Mcr determinations 
This method puts bounds and transition in place, assumes local-global interaction at full Mne 

Lateral-Torsional Buckling 
The nominal flexural strength, M ^ , for lateral-torsional buckling shall be calculated in accordance with the 

following: 
(a) for M c r e < 0.56 My M^, = M c r e 

(b) for2.78My:>Mcre;>0.56My M
 10^ 

• M , 
\ 1 0 M ^ 

36M„ 

(c) for M c r e >2.78MV Mne=My *cre '*•" ""*y 

where 
Mc r e= Critical elastic global beam buckling load ... (including hole(s)) 

Local Buckling 
The nominal flexural strength, M ^ , for local buckling shall be calculated in accordance with the following: 

(a) For Xe 50.776 

(b) For %f > 0.776 

Mn<! 1-0.15 
/ w A Y M „ ^ M, 

A; V M n e 7 
M. 

where 

H :VMne/Mo 
Mcr( = Critical elastic local beam buckling load including hole(s) 

Mn e= defined in section above 

M y n et=Sf n etFy^.80M y 

%net = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

Distortional Buckling 
The nominal flexural strength, M ^ , for distortional buckling shall be calculated in with the following: 

(a) For Xd <,\dl 

Mnd = M ^ , 

(b) For >-di<^d^d2 

M n d = M y n e t -

(c) For Kd > Xd2 

V ^ d 2 ~~ ^ d l J 

Mnd : 
fi. A 

1-0.22 

V 
v M y y 

0.5 \ f*. \0i 

M crd 

v M y j 
M„ 

where 

(cap on column strength) 

(yield control transition) 

(existing DSM distortional curve) 

^d = VMy/Mcrd 

\ l l = 0 .673(1^^ /M y ) 

Xd2 =0.673(l .7(M y n a /M y)- 1 7-0.7) 

Md2 = (l-0.22(l/Ad2)XV^d2)My 

Mynet = SfnetFy^O.SOMy (limit reduction of the net section to 0.8My) 

S^gj = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

M c r d = Critical elastic distortional beam buckling load including hole(s) 
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Option 5: Transition M^ (Option A), transition Mn(j, include hole(s) in Mcr determinations 
This method puts bounds and transition in place, assumes local-global interaction at full Mne 

Lateral-Torsional Buckling 
The nominal flexural strength, M^, for lateral-torsional buckling shall be calculated in accordance with the 
following: 

(a) for Mcre < 0.56 My M^, = Mcre 

(b) for2.78M >M c r e2 0.56IVL M = l g M (x_
 1QMy ̂  

"" 9 y 36M™ 

ere ^*-" v-"y 
Mn e=My 

(c) for Mcre >2.78My 

where 
Mcre= Critical elastic global beam buckling load ... (including hole(s)) 

Local Buckling 
The nominal flexural strength, M^, for local buckling shall be calculated in accordance with the following: 

(a) For X{, £k(i 

Mn^Mne^Mynet 
(b) For X^<X(<:X(2 

Mn^M^-fM 

(c) For X(>X a 

1-0.15 — ^ 

ynet 

M„ 

-M, C2 II f. i\ 

\ K A^n ~K\ J 

\ 
0.4 A 

( M „ 

V M n e 

M„ 

(cap on beam strength) 

(nonlinear yield transition when Mynet/Mne Si) 

(DSM local buckling curve, unchanged) 

where 

KB = VMne/Mcr, 
Ka =0.776(Mynet/M„e)S0.776 

X(2 = 0 .776(2 .4(1^ /M n e \ X S -1.4), Mynet/MneSl 

= 0.776, Mynet/Mne>l (no transition when Mynet/Mne >1) 

MG =(l-0.15(lM,2)
l)-8)(l/^2)

MM„e 

M e t = S^gjF^O.SONl, (limit reduction of the net section to 0.8My) 

Sfnet = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

Mcrf = Critical elastic local beam buckling load including hole(s) 

Dlstortlonal Buckling 
Same as Option 4 
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Option 6: Transit ion M„, (Option B), transition M„d, include hole(s) in M c r determinations 

This method puts bounds and transition in place, assumes local-global interaction at full Mn, 

Flexural, Torsional, orTorsional-Flexural Buckling 
The nominal axial strength, P n e / for flexural,... or torsional- flexural buckling is 

forX c<1.5 P n e = f 0.658^ V , 

for Xc > 1.5 Pne = 
0.877 

V ^ c j 

Py=0.877Pcre 

where 

1 ere 

= /P /P 

Critical elastic global column buckling load ... (including hole(s)) 

= A gF y 

A„ = gross area of the column 

Local Buckling 
The nominal axial strength, M ^ , for local buckling shall be calculated in accordance with the following: 

(a) For X( <X^ 

Mn( = Mynet (Mne /My) 

(b) For Xft<X(<,\(2 

(cap on column strength) 

M n ^ M„ 
' M „ ^ f 

v M y y 

M„ V^ 
v M , y 

- M , 
f o A 

\K j 

K ~ K\ (nonlinear yield transition) 

(c) For \f > X 
a 

1-0.15 
V M n e / 

0.4 \ 
ML 

v M n e y 
M„ (DSM local buckling curve, unchanged) 

where 
X 

*A =0.776(Myna/My)S0.776 

~Xl2 =0.776(2.4(Myna/My)-3-5-1.4) 

Ma = ( l - 0 . 1 5 ( l / A , 2 r ) ( l / ^ r M n e 

Mynet = 5 ^ ^ . 8 0 ! ^ 

%\et = Section modulus at the hole(s) referenced to the extreme fiber at first yield 

Mci( = Critical elastic local beam buckling load including hole(s) 

(limit reduction of the net section to 0.8My) 

Distortional Buckling 

Same as Option 4 
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8.2.5 DSM comparison to beam test simulation database 

The six DSM prediction options for cold-formed steel beams with holes are 

evaluated with the simulated laterally braced beam experiment database developed in 

Section 8.2.1 and summarized in Appendix L. The simulated data is compared against 

DSM predictions while evaluating data trends against member slenderness and hole size 

{Let/lg), and span to depth ratio (L/H). 

Figure 8.51 and Figure 8.52 compare the simulated test data to predictions for local 

and distorrional buckling-controlled beam failures. Option 1 is identical to the existing 

DSM approach for beams without holes, except the critical elastic buckling loads (M^, 

Mai, and Mcre) are determined with the influence of holes. Option 1 is observed to be a 

accurate predictor of local buckling controlled failure strengths, although distortional 

predictions are conservative when /Id is high and unconservative by as much as 20% as/la 

decreases below 1.5 (see Figure 8.52). The unconservative predictions occur because 

Option 1 does not account for the column strength limit Mw„ nor does it account for a 

transition from an elastic buckling controlled failure to a yield-controlled failure at the 

net section. 

Option 2 is observed to be a conservative predictor in Figure 8.51 and Figure 8.52 for 

high h, and /U and demonstrates improved accuracy over Option 1 when slenderness 

decreases and hole size increases (see Figure 8.52). Option 2 replaces My„e, everywhere 

within the existing DSM formulation, which has the effect of increasing At and /U and 

decreasing predicted strength. Option 3 test-to-predicted trends are similar to Option 1 

with increasingly unconservative predictions as slenderness decreases, demonstrating 
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that the My„c( limits on M„̂  and M„d in Option 3 are not fully effective at capturing the 

yield transition to the net section. Option 4 is identical to Option 3 except the yield 

transition on the DSM distortional curve is employed to provide a more accurate 

prediction of the net-section yielding influence. Option 4 demonstrates an improvement 

in distortional buckling-controlled prediction accuracy when Xa < 1, although the 

strength of 11 beams are underpredicted by up to 15% when Ad=1.3. Option 5 accurately 

predicts the strength of these 11 beams with the added transition on the local buckling 

design curve. (Option 6 is the same as Option 5 because the beams considered are 

laterally-braced). 

Table 8.1 summarizes the test-to-predicted ratio statistics and strength reduction 

factor <|> for the six DSM options (see Eq. (8.1) for a definition of <))). No one option stands 

out above the rest when studying the table, although the observations from Figure 8.51 

and Figure 8.52 support Options 3,4/ and 5(6) as the methods most closely tied to 

underlying collapse mechanisms at ultimate limit state. The observations from this 

comparison will be employed along with the DSM comparison to the beam experimental 

database in the next section to support the recommended DSM modifications. 

Table 8.4 DSM test-to-predicted statistics for laterally braced beam simulations 
Option 

1 

2 

3 

4 
5,6 

Description 

My everywhere 

M,,,,,, everywhere 

Cap Mn(, Mnd 

Transition M„d, Cap M„< 
Transition M„d and M„( (Option A, B) 

Mean 
1.07 

1.05 
1.07 

1.07 
1.01 

Local buckling 
SD <i> 
0.09 0.89 

0.10 0.88 

0.09 0.89 

0.09 0.89 
0.11 0.87 

# of tests 
44 

50 

44 

44 
72 

Mean 
1.06 
1.07 

1.06 

1.06 
1.09 

Distortional buckling 
SD 4 
0.13 0.86 

0.12 0.86 

0.13 0.86 

0.13 0.86 
0.12 0.87 

# of tests 
160 

154 

160 

160 
132 
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8.2.6 DSM comparison to experimental beam database 

The six DSM options are now compared to the laterally braced beam experiment 

database first assembled in Section 4.3.1. The database contains the elastic buckling 

properties of each beam, including the presence of holes and the influence of boundary 

conditions, as well as the tested strengths. Figure 8.62 through Figure 8.65 compare the 

experiment strengths to DSM predictions for local and distortional buckling-controlled 

beam failures. (The local and distortional slenderness is obtained with the "pure" local 

and distortional elastic buckling loads L and D in this study, not the LH and DH modes 

described in Section4.3). The tested strengths are lower than the predictions over a wide 

range of local and distortional slenderness. These trends were first observed in a 

preliminary DSM comparison (Moen and Schafer 2007a), and possible reasons for the 

difference between test and predictions were hypothesized, including experimental 

error, error in the determination of elastic buckling loads, and the influence of the angle 

straps on the calculation of the distortional critical elastic buckling load. The beams in 

the database have relatively small holes, with Imt/Is ranging from 0.96 to 0.99 as shown in 

Figure 8.64 and Figure 8.65, which suggests that the presence of holes should not have a 

significant impact on tested strength. The test-to-predicted statistics are the same for the 

six DSM options as shown in Table 8.5. It is concluded that the experimental database, 

in its current form, cannot be used to evaluate the proposed DSM modifications. Future 

work is planned to investigate the differences between the DSM predictions and tested 

strengths for this data. In addition, more recent tests on cold-formed steel beams with 
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holes will be added to the database. Experiments on beams with larger holes are also 

needed. 

Table 8,5 DSM test-to-predicted ratio statistics for column experiments 
Option 

1 

2 

3 
4 

5,6 

Description 

My everywhere 

Mv„0i everywhere 

Cap Mnft Mnd 

Transition M„d, Cap Mn< 

Transition M„d and M„, (Option A, B) 

Mean 
0.88 

0.88 
0.88 

0.88 
0.88 

Local buckling 
SD d> 
0.12 0.85 

0.12 0.85 

0.12 0.85 

0.12 0.85 
0.12 0.85 

# of tests 
55 

55 
55 

55 
55 

Mean 
0.87 

0.87 
0.87 

0.87 

0.87 

Distortional buckling 
SD d> 
0.14 0.81 

0.14 0.81 
0.14 0.81 

0.14 0.81 
0.14 0.81 

# of tests 
89 

89 
89 

89 
89 
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8.2.7 Recommendations - DSM for beams with holes 

Options 3, 4, 5, and 6 are presented as viable proposals for extending DSM to beams 

with holes. This recommendation is based on the test-to-predicted statistics and data 

trends from the simulation studies presented in Section 8.2.5, and also considers the 

effort to implement the modifications and their ease of use by design engineers. Option 

3 accounts for the reduction in beam strength from the presence of holes by limiting Mnf 

and M„d to Myne,. This is a simple modification to implement in the Specification and 

avoids additional calculation work for a design engineer (except for that required to 

calculate the critical elastic buckling loads including the influence of the holes). Options 

4 and 5 are refinements of Option 3, where the cap on M„f and M„d becomes a transition 

from an elastic buckling controlled failure mode to a yield controlled failure at Mynet. 

These two methods require additional effort from the designer when compared to 

Option 3, but they have an important advantage. Options 4, 5, and 6 are more closely 

tied to the failure mechanisms influencing column strength because they capture the 

yield transition to the net section in their predictions. The transitions increase the 

probability that strength will be accurately predicted for general beam and hole 

geometries. Option 5 has the additional advantage of capturing the influence of a yield 

transition for closed cross-sections that do not experience distortional buckling. 

Additional nonlinear finite element simulations and experiments are needed to validate 

the proposed modifications to the Direct Strength Method for beams subject to lateral-

torsional buckling at ultimate limit state. 
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Chapter 9 

Conclusions and proposed future work 

9.1 Conclusions 

Proposed Direct Strength Method design equations are now in place for cold-formed 

steel members with holes. The development of the method was initiated with thin shell 

finite element eigenbuckling studies in ABAQUS on thin plates and full cold-formed 

steel members with holes. The buckling of the unstiffened strips adjacent to a hole in a 

thin plate influenced, and sometimes controlled, the critical elastic buckling stress of 

individual cross-section elements. Unstiffened strip buckling was also closely associated 

with distortional buckling modes at the location of the holes in C-section columns and 

beams. Large holes and closely-spaced holes locally stiffened thin rectangular plates 

and the webs of C-section columns, resulting in buckling away from the holes. The 

elastic buckling studies led to useful design guidelines and tools, including hole spacing 

limits (which prevent cumulative reductions in elastic stiffness along the length of a 
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member) and simplified elastic buckling prediction methods for local, distortional, and 

global buckling developed as an alternative to finite element eigenbuckling analysis. 

The viability of the DSM framework for cold-formed steel members with holes was 

established early in this research using existing test results and the elastic buckling 

properties of cold-formed steel column and beam specimens with holes. Additional 

experimental work evaluated the influence of holes on the load-deformation response 

and failure mechanisms for short and intermediate length C-section columns. During 

the experiments, holes were observed to locally stiffen the web of the intermediate 

length C-section columns and prevented dynamic mode switching (from local buckling 

to distortional buckling) near peak load. Holes were also observed to decrease post-

peak ductility for columns when the hole size was large relative to the web width (e.g., 

the 362S162-33 specimens). 

Results from the experimental program were used to validate a nonlinear finite 

element modeling protocol. A concerted effort was made to simulate the initial state of a 

cold-formed steel member in the protocol, including imperfection magnitudes based on 

measurement statistics and residual stresses and initial plastic strains from the cold-

forming process predicted with a mechanics-based approach. The nonlinear finite 

element modeling capability was used to construct a large database of simulated column 

and beam experiments with a wide range of hole sizes, spacings, and C-section 

dimensions. Simulation results demonstrated that as cross-section distortional or local 

slenderness decreased, the failure of a cold-formed steel member with holes occurred by 

yielding and collapse of the unstiffened strips at the net cross-section. Collapse of the 
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unstiffened strips sometimes triggered unstable global failure modes in columns with 

large holes, i.e., as hole size approached Ane,=0.60Ay. (Global instabilities caused by 

yielding at peak load were not studied for beams with holes in this thesis, only laterally 

braced beams were considered.) Modifications to the local and distortional DSM curves 

were made to account for this unique net-section failure mechanism with a deliberate 

transition and cap on member strength. The final proposed DSM method for members 

with holes was validated with existing experimental data and the simulated experiments 

database. 

9.2 Future work 

Several interesting future research topics resulted from the elastic buckling studies, 

experiments, and nonlinear finite element simulations in this thesis. Future research is 

planned to follow up on many of these ideas and questions. The major points of future 

study, organized by research topic, are listed below. 

Thin-shell finite element modeling in ABAQUS (Chapter 2) 

The S9R5 meshing guidelines developed in this thesis were developed primary for 
eigenbuckling analyses. Meshing guidelines which ensure accurate results in nonlinear 
finite element simulations are also needed. Studies are ongoing to develop rules for 
determining the minimum number of through-thickness finite element integration 
points, the mesh density required for linear and quadratic finite element formulations, 
and limits on initial element distortion and curvature. 
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Elastic buckling of cold-formed steel cross-sectional elements with holes (Chapter 3) 

1. The simplified elastic buckling prediction method presented in this thesis for 
unstiffened elements loaded with uniaxial compression is empirically derived. 
A mechanics-based unstiffened element prediction method is warranted as a 
topic of future research to improve the generality of the method. 

2. An element-based elastic buckling prediction method which accounts for stress 
gradients on unstiffened elements with holes is needed to address a design case 
engineers may encounter in practice. 

3. Elastic buckling studies are planned to develop element-based simplified 
methods for hole patterns found in storage racks. 

4. The element-based elastic buckling prediction methods provide a convenient 
method to calculate Fa (the critical elastic buckling stress) for general hole 
shapes, sizes, and spacings for use in the AISI-S100-07 effective width method. 
Work is planned to evaluate introduce these simplified approaches into the 
effective width method. 

Elastic buckling of cold-formed steel members with holes (Chapter 4) 

1. Yu and Davis, Ortiz-Colberg, Rhodes and MacDonald, Rhodes and Schnieder, 
and Pu et al. performed tests on column specimens with multiple discrete holes 
or hole patterns. The elastic buckling properties and tested strengths of these 
specimens will be added to the experiment database, in addition to tests on rack 
sections. 

2. Automated elastic buckling modal identification tools are needed to identify 
local, distortional, and global buckling modes in thin-shell finite element 
eigenbuckling analysis. Research is ongoing to develop this capability with an 
implementation similar to that of the constrained finite strip method. 

3. Work continues on the development and validation of the CUFSM elastic 
buckling approximate methods developed and the extension of these methods to 
members with hole patterns (e.g., storage racks). A general procedure for 
implementing CUFSM constraints in the local buckling prediction method is 
needed. Also, the current assumption that the warping torsion constant C«r=0 at a 
hole produces conservative global elastic buckling predictions for columns and 
beams. Additional research is needed to derive a mechanics-based 
approximation for C«, at a hole. 

Experiments on cold-formed steel columns with holes (Chapter 5) 

1. A more definitive method of measuring the base metal thickness of cold-formed 
steel members with a zinc galvanic coating is needed. Current standard practice 
is to remove the zinc coating with hydrochloric acid or a ferric chloride solution. 
It is difficult to know when all of the zinc has been removed though since the 
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zinc chemically interacts with the base metal during the initial application. 
Experiments are planned to determine the influence of the zinc coating on 
ultimate strength. 

2. Research work is planned to evaluate the influence of sheet coiling on the 
measured yield stress in tensile coupons. It has been hypothesized by Professor 
Rasmussen at the University of Sydney that the same coiling curvature which 
causes residual stresses in cold-formed steel members also affects yield stress 
measurements in tensile tests. 

Residual stresses and plastic strains in cold-formed steel members (Chapter 6) 

1. Experimental work is planned to validate the prediction model presented in 
Chapter 6 relating coiling residual stresses to the coiling radius, sheet thickness, 
and yield stress. 

2. Research is ongoing to evaluate how ABAQUS metal plasticity laws use the 
residual stress and initial plastic strain information and to determine if kinematic 
hardening or a different mixed hardening rule is required to accurately simulate 
the cold-work of forming effect on load-deformation response. 

3. Nonlinear finite element studies are planned to identify the influence of through-
thickness residual stresses and plastic strains on the load-deformation response, 
ultimate strength, and failure mechanisms of cold-formed steel beams and 
columns. 

4. Hancock et al. provides a method which accounts for the cold-work of forming 
in the corners of cold-formed steel cross-sections when calculating ultimate 
strength (Hancock et al. 2001). The research in Chapter 6 provides new insight 
into the relationship between residual stresses and initial plastic strains from the 
manufacturing process. Research work is planned to revisit Hancock's cold-
work of forming method to determine if it can be supplemented with this new 
research. 

5. The current residual stress prediction method assumes an elastic-perfectly plastic 
material model. Research work is ongoing to introduce the effect of steel strain 
hardening into the prediction method. 

Nonlinear finite element modeling of cold-formed steel members (Chapter 7) 

1. The use of measured imperfection magnitudes instead of statistical distributions 
is warranted as a topic of future study, especially the use of a flared cross-
section, including flange-web angles off of 90 degrees. 

2. Initiating plasticity in ABAQUS at the material's proportional limit reduced the 
predicted strength by up to 20% when compared to experiments in Chapter 7. A 
study is planned to simulate a single finite element in tension to evaluate the 
ABAQUS implementation of metal plasticity and determine the source of the 
discrepancy. 
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The Direct Strength Method for members with holes (Chapter 8) 

1. Additional validation studies are planned to compare the proposed DSM Holes 
methodology to the AISI-S100-07 effective width design method. 

2. Nonlinear finite element studies of other DSM prequalified cross-sections (e.g., 
Z-sections and hat sections) as well as rack sections with hole patterns are also 
planned to expand the simulation database. 
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Appendix A 

ABAQUS input file generator in Matlab 

The finite element models in this thesis were generated with a custom Matlab 

program which assembles a column or beam with any general cross-section (input in 

CUFSM-style format) using nine node S9R5 thin-shell finite elements. The user has the 

ability to add holes at specific locations in the member, dictate the boundary conditions 

and application of load, specify the material properties, and impose imperfection, 

residual stresses and plastic strains to define a member's initial state. Input files for 

eigenbuckling analysis and nonlinear finite element simulations can be generated. The 

program was used throughout this research to generate groups of ABAQUS input files 

for parameter studies. The program setup used to generate the nonlinear finite element 

models of the column experiments is provided here. 
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clear all 
close all 

s o u r c e l o c = ' C: VDocuitierits and Seer i n g s i C r i sYDesktopVcirioenXCold Formed S t e e l - Holes 
Fesoar chAFall ?,007\ runbuck devel opine;-f\Rev... 6NI.A j h a b ' 

h ip l jr ( ) ) l t ' i t t ( i > u 
m i l f 1 f I ( r nl I JI i <, t > I < < t 11 II (1 \ [ 
1 u i (1 ti H i 1 riu I JI i 1 i J i i3t i [ i i (i f i r ii ' J t r n i ' i t r e e and. t h e 

c o 1 umn i 
lo»d d f i om b o t h mi l i t h x u i i to j i a fomprc s i v t r c simu x cd is 

^ c o n s i s t e n t n o d i l l o i K o i t h 1 u ^ L «o s i - t s ; n s r c t i o n nodes 
•k7 D%( Di 4) id / jr (. Dt nop r t u i u n s n ipp j cd on t h n riber gs m t r y w i t h 
%CUFSM l o c a l and d i s t o r t i o n a l b u c k l i n g mode s h a p e s , 

a d d p a t h ( [ s o u r c e l o c ' \ f u n c t i o n s \ £ i l e w r i t i n g \ ' ] ) 
a d d p a t h ( [ s o u r c e l o c ' \ f u n c t i o n s \ h o l e s \ ' ] ) 
a d d p a t h ( [ s o u r c e l o c ' \ f u n c t i o n s \ ' ] ) 
a d d p a t h ( [ s o u r c e l o c ' \ t e m p l a t e s \ ' ] ) 
a d d p a t h f [ s o u r c e l o c ' \ ' ] ) 

load -> i r ; i ' • i i i 
l o a d s i ( 
l o a d i l is " ' ' i l-crd 
l oad >i" i ' i 

%define t h e SSMA s e c t i o n s t o c r e a t e models fo r 
s e c t i o n s = [ 1 2 

86 
11 
73 
39 
95 
72 
56 
47 
75 
66 
87] 

%define t h e i m p e r f e c t i o n m a g n i t u d e s 
i m p t y p e s = [ 2 5 75] 

%clefine h o l e l e n g t h ( s l o t t e d h o l e s c o n s i d e r e d h e r e ) 
Lhole=4 
%define rough hole spacing, will be adjusted in holes section of file 
S=12 

%de£ine member lengths 
Lc=[34 

88 
24 
74 
42 
78 
66 
56 
32 
74 
40 
80] 

%define hole depth such that Anet=0.70Ag 
Anetfactor=0.7 

count=l 
for i=l:length(sections) 

section_num=sections(i) 
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for j=l:length(imptypes) 

%MEMBER LENGTH 
L=Lc(i) 

%MESH ALONG LENGTH 
nele=L*2; 

%NUMBER OF SECTION POINTS THROUGH THE THICKNESS 
sectionpoints=5 

ACROSS-SECTION DIMENSIONS 
% Z 

% A 
* X 
% D2 / I \ DI 
% R'lZ/ S2 S SI \R'i'l 

% B2 \ j / Bl 
% \ i / 
% _ F2_\ _./,.,.Fl ABAQUS Y AXIS 
% RB2 H RBI 
^Dimensions are out-to-out, angles are in degrees, t is base metal + 
%coating thickness, tbare is base .metal thickness 
% [H Bl B2 Dl D2 Fl F2 SI S2 RBI 

RB2 RT1 RT2 t tbare] 
dims=SSMAxsections (section_num, 2 :16) 

%calculate hole depth 
hhole=Ag(section_num)*(1-Anetfactor)./dims(15) 

1R] Mil ( t. 1 <• I I 
r 1 r 4 on 

I J 
n=[2 2 2 2 16 2 2 2 2], 

%CorZ=i C-sect.ion, Cor?',-2 Z-section 
CorZ=l 
[node,elem]=cztemplate(CorZ,dims,n) 
nnodes=length(node(:,1)); %Nuinbe.r of FSM cross-sectj on. nodes 
%Determi.ne FE number ot nodes and increment 
nL=2*nele+l; %Number of FE nodes along the length 
%Det.erm.ine the node numbering increment along the .length 
if nnodes<100 

FEsection_increment=100; %so along the length the numbering goes up by .1.00' s 
else 

FEsection_increment=nnodes+l; 
end 

%ADD ADDITIONAL NODES 
nodeadd=[] 

% MATE RIAL PRO P E RTIE S 
% steel 
matprops(1).name='MAT10 0'; 
matprops(l).elastic=[29500 0.3]; 
matprops(1).plastic=[58.6, 0 

64 
68 
72 
77 
82 
85 
88 
90 
92 
94 
95 
97 

.1517, 

.2188, 

.0304, 

.9752, 

.2224, 

.7249, 

.4053, 

.7405, 

.652, 

.3657, 

.8299, 

.2001, 

0. 
0. 
0 
0. 
0. 
0. 
0. 
0 

.00342827 

.00842827 

.0134283 

.0234283 

.0334283 

.0434283 

.0534283 

.0634283 
0.0734283 
0. 
0 
0 

.0834283 

.0934283 

.103428 ] ,-

420 

http://%Det.erm.ine


%IMPERFECTIONS 
%*****IMPERFECTIONS ***** 
%type-0 no imperfections 
%type = .l use mode shapes from ABAQUS results file 
%type=2 input from file 
%type 3 impose CUFSM shapes as imperfections 

imperfections.type=3; 
imperfections.filename=[]; 
imperfections.step=[]; 
imperfections.mode=[] 

t=dims(15) 
if imptypes(j)==25 

if L>24 
imperfections.magnitude=[0.14*t 0.64*t L/2000] 
imperfections.wavelength=[SSMA_wvlengths(section_num,1) 

SSMA_wvlengths(section_num,2) L] 
else 

imperfections.magnitude=[0.14*t 0.64*t] 
imperfections.wavelength=[SSMA_wvlengths(section_num,1) 

SSMA_wvlengths(section_num,2)] 
end 

elseif imptypes(j)==75 
if L>24 

imperfections.magnitude=[0.66*t 1.55*t L/1000] 
imperfections.wavelength=[SSMA_wvlengths(section_num,1) 

SSMA_wvlengths(section_num,2) L] 
else 

imperfections.magnitude=[0.66*t 1.55*t] 
imperfections.wavelength=[SSMA_wvlengths(section_num,1) 

SSMA_wvlengths(section_num,2)] 
end 

end 
imperfections.plumb=[] 
imperfections.member=[1] *1 for column, 2 for beam 

?, DEFINE HOLES 
%Add holes to your member'. 
%hole.type=l circular 
%hole . type=2 rectangui ar 
%ho.le. type-3 slotted w'radial ends 
%holc.dimension-i'width or length (ABAQUS x direction)' 'height, or diameter'] 
%hole. locations ['CUF'SM cross section node (must be odd!)' 'longitudinal location1 

'shift hole in direction of height'] 
%hole.thickness = thickness of finite elements making up hole, usually the same 

as the rest of the member 
%I've defined two slotted holes here in the web of the cross-section. 

taumber of holes 
nhole=floor(L/S) 

if nhole<l 
nhole=l 

end 

%fin.al hole spac.incj 
Sfinal=floor(L/nhole) 
spacing=Sfinal/2:Sfinal:L-Sfinal/2 
hole.type=[3*ones(nhole,1) ] ; 
%define dimensions for slotted hole 
hole.dimension=[Lhole*ones(nhole,1) hhole*ones(nhole,1)]; 
%define location of hole in cross-section 
hole.location = [(length(node)+1)/2*ones(nhole,1) spacing' zeros(nhole,1)] 
hole.thickness = [dims(1,15)*ones(length(hole.type),1)] 
hole.material=[100*ones(length(hole.type),1)]; 
hole.groups=[100000+[1:length(hole.type)]]; 
hole.fill=[zeros(length(hole.type),1)]; 
%If you don't want holes, replace above with 
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%hole=[ 

%MEMBER END LOADINGS 

%Loading notation is similar to CUFSM. Apply P for compression, M for 
%moment, or a coiribination of both. Compression at both ends of 
%coluirtn are 
%showri here. Loads are applied as consistent nodal loads in ABACUS. 

endlload.P=l; 
endlload.Mxx=0; 
endlload. Mz z=0 ; 
endlload.Mll=0; 
endlload.M22=0; 

end21oad.P=-l; 
end21oad.Mxx=0; 
end21oad.Mzz=0; 
end21oad.Mll=0; 
end21oad.M22=0; 

%CALCULATE CONSISTENT NODAL LOADS ON MEMBER ENDS**'***' 
unsymm=0 
[endlcload, end2cload, A, 

Ixx]=consist_endloads(node,elem,endlload,end21oad,unsymm, nL, FEsection_increment); 

%ABAQUS NODE SETS 
%Define these node sets to apply boundary conditions in ABAQU.'j 
% nodesetir:fo= {'nodeset name1 [xlirnl xiirr2 xi.nt, .i [yliinl. y 1 i. in 2 yfnt.j [iillm.-

•z\ irn2 zint] exclude} 
Where nodes are grouped based on x'i irrl <-"x<-xl i rn2 and ylin'l-̂  ŷ --y] im2 and 

^Instead of ranges, assign xint, yint, zint to something other than zero to group 
nodes at specific x,y,and :-: 

% d i s L. a n c e 1 n t e rv a 1 s 
% xlinl rxint :xlim2, yliml :yint :yliiri2 , yliml :yint :ylim.2 . 

%The exclude command can be used to exclude previously defined node sets from the 
current, node set. 

%exclud.e = 0 all nodes in range are included in nodeset 
%exclude = m excludes nodeset m from current nodeset 

nodesetinfo={'ENDXZERO' [0 0 0] [-1000 1000 0] [-1000 1000 0] 0; 
'ENDXL' [L L 0] [-1000 1000 0] [-1000 1000 0] 0; 
'DISPDOF' [L h 0] [0 0 0] [0 0 0] 0; 
'MID' [L/2 L/2 0] [max(node(:,3)(-0.05 max(node(:,3))+0.05 0] 

[max(node(:,2))/2-0.05 max(node(:,2))/2+0.05 0] 0}; 

%DEF1NE SPRINGS 
springs=[] 

%DF.FJ.NE CONTACT SURFACES, NODE SURFACES, KINEMATIC CONSTRAINTS 
surface.type={} 
surface.type=[] 
surface.local=[] 
surface.coord=[] 
surface.coupling={}; 
surface.interaction[] 
surface.contact=[] 
surface.areadist=[] 

%ABAQUS INP FILE NAME 
jobname{ count }= [SSMAnames{section_num) ' ' num2str(i) '.. ' num2str (imptypes (j ) ) ] ; 

%DEFINE ANALYSIS STEP 
step (1) .stepinfo={'STEP I,' 'nigeom, TNO ' [260]}; 
step(l).solutiontype='static, Riks ' ; 
step(1).solutionsteps={'0.25, ,le-10, 1'}; 
step(1).solutioncontrols={ }; 
step(1).boundarycon={'ENDXZERO'23; 
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'ENDXL' 2 3; 
'MID' 1 1} 

step(l).coupling=[] 
step(1).loads={'"Cload' 

oacl' endlcloadl 
oad' end2cload( 
oad' end2cload( 

(1) 
' *C 
' *C 

' *C. 
step(l) 

endlcload( : ,1) 1 endlcloadl: , 2) . 12; 
,1)+200 1 endlcloadl: ,2) ./2; 
,1) 1 end2cload(:,2)./2; 
,l)-200 1 end2cload<:,2)./2} 

outrequest={ ' *0utput, field, frequency- 1.0 ' 
' * E .1 eraen t Ou t. pu t. 

' 1,3,5'; 
'S.MISES'; 
'*Node Output ' ; 
' U ' ; 
' "'Node Print: 
' 01,CF1 ' }; 

NSET=DISPDOF, SUMMARY-NO'; 

this in for loops o genera' 

%WRITE ABAQUS I.NP FILE 
%this is the important function, you can 

parameter studies 
jhabnl(L, node, elem, nele, endlload, end21oad, hole, nodesetinfo, surface, 

nodeadd, step, jobname{count},matprops,imperfections,springs,sectionpoints) 
count=count+l 

end 

end 

%CREATE BEAST BATCH FILE 
%Generates a linux batch file that will submit all of the parameter study 
%.inp files to the queue manager on the beast. 
ABQbeastscript (jobname, ones (length! jobname) ,1) *4, 'cdmscripf ) 
%Run the script at the beast command line with: 
% bash cdmscript 
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Appendix B 

ABAQUS element-based elastic buckling results 

This appendix contains the finite element plate model dimensions and ABAQUS critical 

elastic buckling stress results (fCT() used in the Chapter 3 elastic buckling studies on 

stiffened and unstiffened elements. 
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Stiffened element in bending (Y=0.50h), offset holes 
Model 

number 

1 
2 
3 
4 
5 
6 
7 
B 
8 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
25 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
00 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
78 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

hole type 

slotted 
slotted 
atoned 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
stotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
stotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 

In. 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1,50 
1.50 
1,50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.60 
1.50 
1.50 
1.50 
1.60 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1,50 
1,50 
1,50 
1,50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.60 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.60 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1,50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1,50 
1.50 
1.60 
1,50 
1.50 
1.50 
1.50 
1.50 
1.50 

h 

15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
7.50 
7.50 
7.50 
7,50 
7.50 
7.50 
5.00 
5.00 
5.00 
5.00 
5.00 
3.75 
3.75 
3.75 
3.75 
3.75 
3.75 
3.75 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
2.50 
2.50 
2.60 
2.50 
2.50 
2.50 
2.50 
2.14 
2.14 
2.14 
2.14 
2.14 
2.14 
2.14 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
7.50 
7.50 
7.50 
7.50 
7.50 
7.50 
5.00 
5.00 
5.00 
5.00 
5,00 
3.75 
3.75 
3.75 
3.75 
3.75 
3.75 
3.76 
3.00 
3.00 
3.00 
3,00 
3.00 
3.00 
300 
2.50 
2.50 
2.50 
2.50 
2,50 
2.50 
2.50 
2.14 
2.14 
2.14 
2.14 
2.14 
2.14 
2.14 

in. 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.O0 
4.00 
4,00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4,00 
4.00 
4.00 
400 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 

S 
In. 

20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20,00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20,00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20,00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20,00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 

L 
In. 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100,00 
100,00 
100,00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100,00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 

t 
in. 

0.0346 
0.0348 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0348 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0348 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0,0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0,0346 
0,0346 
0,0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 

in. 
0.00 
-0.94 
-1.88 
-2.81 
-3.75 
-4.69 
-5.63 
0.00 
-0.47 
-0.94 
-1.41 
-1.68 
-2.34 
0.00 
-0.31 
-0.63 
-0.94 
-1.25 
-0.07 
-0.14 
-0.20 
-0.27 
-0.34 
-0.41 
-0.47 
-0.05 
-0.09 
-0.14 
-0.18 
-0.23 
-0.27 
-0.32 
-0.03 
-0.06 
-0.09 
-0.12 
-0.15 
-0.18 
-0.21 
-0.02 
-0.04 
-0.06 
-0.08 
-0.10 
-0.12 
-0.14 
0.00 
0.94 
1.88 
2.81 
3.75 
4 69 
5.63 
0.00 
0.47 
0.94 
1.41 
1.88 
2.34 
0.00 
0.31 
0.63 
0.94 
1.25 
0.07 
0.14 
0.20 
0.27 
0.34 
0.41 
0.47 
0.05 
0.09 
0.14 
0.18 
0.23 
0.27 
0.32 
0.03 
0.06 
009 
0.12 
0,15 
0.18 
0.21 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 

Y 
in. 

7,50 
7.50 
7.50 
7.50 
7.50 
7.50 
7.50 
3.75 
3.75 
3.75 
3.75 
3.75 
3.75 
2.50 
2.50 
2.50 
2.50 
2.50 
1.88 
1.88 
1.88 
1.88 
1.88 
1.88 
1.88 
1.50 
1.50 
1.50 
1.60 
1.50 
1.50 
1.50 
1.25 
1.26 
1.25 
1.25 
1.25 
1.25 
1.25 
1.07 
1.07 
1.07 
1.07 
1.07 
1.07 
1.07 
7.50 
7.60 
7.50 
7.50 
7.50 
7.50 
7.50 
3.75 
3.75 
3.75 
3.75 
3.75 
3.75 
2.60 
2.50 
2.50 
2.50 
2.50 
1.88 
1.88 
1.68 
1.88 
1.88 
1.88 
1.88 
1.50 
1.50 
1.50 
1.50 
1,50 
1.50 
1.50 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.25 
1.07 
1.07 
1.07 
1.07 
1.07 
1.07 
1.07 

Ksl 
3.26 
3.34 
3.38 
3.41 
3.44 
3.45 
3.44 
10.83 
12.10 
13.35 
13.60 
13.87 
13.82 
17.96 
21.25 
27.86 
31.03 
31.18 
27.74 
28.67 
30.05 
32.01 
34.74 
38.57 
43.91 
41.09 
41.45 
42.28 
43.66 
45.76 
48.87 
53.49 
63.17 
62.48 
62.30 
62.68 
63.73 
65.62 
68.69 
102.33 
99.94 
98.12 
86.82 
96.40 
86.69 
87.89 
3.26 
3.14 
3.04 
2.96 
2.01 
2.81 
2.57 
10.63 
8.72 
9.53 
10.17 
10.87 
7.36 
17.96 
16.95 
17.88 
21.78 
18.29 
26.90 
26.93 
27.25 
27.88 
28.87 
30.28 
32.22 
41.54 
42.34 
43.55 
45.23 
47.44 
50.31 
54.02 
66.02 
68.21 
70.99 
74.42 
78.63 
83.69 
8964 
108.66 
112.46 
116.44 
116.35 
112.54 
107.24 
100.68 

429 



o
 

W
 -

i 
O

 I
D 

CO
 •

 
i

U
M

-
i

O
( 

i
s

a
o

i
&

t 
J

f
f

l
9

«
S

«
«

«
S

«
«

2
S

«
!

»
2

<
r

?
}

P
!

t 

l
a

s
A

u
i

^
u 

u
-

J 
C

SO
l 

A
U

 
M

 •
 

O
 

CO
 

CO
 

--
J 

CO
 

t 
) 

IC
 •

> 
O

 <
D 

09
 

S
O

 
( 

>
o

)N
)r

v
)r

o
ro

ro
fo

ro
io

ro
to

-»
-*

-*
-*

-*
-»

-»
-i

-»
-

A
w

io
-'

O
iB

C
D

^
o

ic
n

A
w

fo
-

J 
O)

 
W

 
-b

- 
W

 f
O

 
-

) 
Ol

 
ft

 
W

 
M

 -
»l

 

->
tt

t»
H

III
||l

||t
l||

|||
tt

|t
tt

I||
|||

|t
tt

t|
tt

tl
l||

tl
l||

tl
Ill

tt
tl

lII
IIt

llt
tt

lt
tl

|lt
""

"B
I>

" 

'
i

b
i

b
i

b
i

t
n

b
i

b
i

b
b

Q
b

b
b

b
b

N
S

N
S

1 

—
 

s
S

o
o

o
o

o
o

o
i

t
n

o
i

a
i

i 
'e

n 
w

 0
1 

a
io

i 
o

iw
r 

* 
* 

o
 o

 
S

 &
 o

 o
 a

 <
 

S
o

S
o

o
o

o
o

o
o

g
g

g
g

g
g

g
f

t
j 

.^
^

s
s

s
s

g
s

il
lg

s
g

s
^ 

en
 o

i o
i w

 8
S

S
S

8 
o
o
o
o
o
o
g
g
 
g
g
g
 
g
 

!I
II

!I
II

II
II

II
II

I!
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
!I

I!
II

II
II

II
II

II
!I

II
lI

II
II

II
II

II
II

Il
Il

i 

Il
Il

lI
II

II
Il

ll
lI

II
ll

Il
Il

II
II

II
II

II
II

II
II

lI
Il

ll
II

II
II

II
Il

II
II

II
Il

II
II

II
Il

II
II

H
II

II
II

Il
Il

II
Il

sl
 

»
g

g
g

g
g

g
£

g
g

g
g

g
g

g
||

g
g

g
g

||
|g

|g
 

ll
ll

ll
ll

ll
ll

ll
ll

ll
ll

ll
ll

ll
li

 

^
2

1
1

§
g

g
g

2
2

g
g

£
£

g
g

|S
§

g
||

g
|2

S
S

||
| 

)
o

s
«

5
^

u
»

J 

!
I

O
U

I
O

U
M

M
M

I
O

U
M

»
r 

a
>

a
o

c
ia

a
)0

]C
B

0
9

0
9

0
)c

]0
ia

M
M

r 
>

a
a

O
)o

a
o

)a
io

i(
n

c 
)t

o
io

o
3

C
o

o
)o

ac
o

ff
la

i^
i-

^J
^i

^i
~ 

,
u

u
u

w
o

>
o

,
o

,
t

«
p

,
p

.
S

S
i

i
i

S
S

r
*

-
r

-
-

^
^

-
7

'
-

-
r

'
-

r
'

-
~

~
N

N
~

^
N

~
N

^
~

N
N

N
«

! 
is

«
!S

S
S

S
« 

, 
o, 

a,
 c

> 
o 

o>
 e

 

8
3

aS
?2

!3
S

^8
fe

S
6

±
S

iS
!S

g
S

!S
8

2 
.^

a
a

^
S

S
S

S
S

i 
sg

§
sa

ls
i3

l 

en
 i

n 
en

 
en

 
oi

 o
i 

ai
 

' 

n 
to

 e
n 

o
 

w
 J

 

ic
o

o
jf

fl
a

e
o

c
ti

c
o

M
N

J
L 

' 
a

 
c

o
a

o
c

a
m

c
o

c
s

a
ic

n
c

n
t 

iM
W

C
o

ai
cc

cD
o

sc
o

ai
-

;g
g

g
l^

lim
i|

ip
sl

lf
e

g
^ 

>
 c

o 
« 

ro
 

N
-

i 
^

 2
 2

 ^
5

c
 

c
o

-»
o

io
o 

ss
ss

ss
ss

ss
is

si
U 

i=
r 



Unstif f ened element in uniaxial compression, 
transversely centered holes 

Model 
number 

1 
2 
3 
4 
5 
6 
7 
8 

e 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

hole type 

ang. slotted 
ang. slotted 
ang. slotted 
ang. slotted 
ang. slotted 
ang. slotted 
ang. slotted 

slotted 
slotted 
stotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
s kitted 
s kitted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
started 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
square 
square 
square 
square 
square 
square 
square 
circular 
circular 
circular 
circular 
circular 
circular 
circular 

rthoxj 
in. 

1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1,50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.60 
1,50 
1.50 
1.50 
1.50 
1.50 

h 
in. 

15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2.14 
15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2.14 
15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2.14 
15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2.14 
15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2.14 
15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2.14 
15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2,14 
7.89 
7.89 
7.89 
7,89 
7,89 
7.89 
7.89 
5.77 
5.77 
5.77 
5.77 
5.77 
5.77 
5.77 
3.41 
3.41 
3.41 
3,41 
3.41 
3,41 
3,41 
2.27 
2,27 
2,27 
2.27 
2.27 
2.27 
2.27 
15.00 
7.50 
5,00 
3.75 
3.00 
2.50 
2.14 

15.00 
7.50 
5.00 
3.75 
3.00 
2.50 
2.14 

Uola 
in. 

4.00 
4,00 
4,00 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
6.00 
6.00 
6.00 
6.00 
6.00 
6.00 
6,00 
8,00 
8,00 
8.00 
8,00 
8,00 
8.00 
8.00 
12.00 
12,00 
12.00 
12.00 
12.00 
12,00 
12.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
4.00 
4.00 
4,00 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 
1.50 

S 
in. 

20.00 
20.00 
20,00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
96.00 
48.00 
32.00 
24.00 
16.00 
12.00 
6.00 

96,00 
48,00 
32.00 
24.00 
16.00 
12.00 
8.00 

96.00 
48.00 
32.00 
24.00 
16.00 
12.00 
8.00 

96,00 
48.00 
32.00 
24.00 
16.00 
12.00 
8.00 

20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 

L 
In. 

100 00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100,00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
96.00 
100.00 
100,00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 

t 
in. 

0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0,0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0,0346 
0,0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0,0346 
0.0346 
0.0346 
0.0346 
0.0692 
0.0692 
0.0692 
0.0692 
0.0692 
0.0692 
0.0692 
0.1038 
0.1038 
0,1038 
0.1038 
0.1038 
0.1038 
0.1038 
0.0346 
0.0346 
0,0346 
0.0346 
0,0346 
0,0346 
0,0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0,0346 
0,0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 
0.0346 

Shots 

in. 
0,00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
o.oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0,00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
o.oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

ksi 
0.06 
0.23 
0.48 
0.76 
0.98 
1.08 
1.03 
0.06 
0.23 
0.48 
0.76 
0.98 
1.08 
1.03 
0.06 
0.22 
0.45 
0.67 
0.81 
0.85 
0.77 
0.06 
021 
0.43 
0.61 
0.63 
0.58 
0.49 
0.06 
0.20 
0.31 
0,34 
0,32 
0.28 
0.23 
0.25 
0.91 
1.93 
3.04 
3,88 
4.22 
3.96 
0.55 
2.05 
4.33 
6.79 
8.59 
9.23 
8.52 
0.22 
0.22 
0.22 
0.21 
0.21 
0.20 
0.19 
0.40 
0.38 
0.38 
0.38 
0.37 
0.36 
0.34 
0.91 
0,87 
0,87 
0.87 
0.86 
0.84 
0,78 
1.16 
1.08 
1.08 
1.08 
1.08 
1.08 
1.06 
0.06 
0.24 
0.52 
0.88 
1.26 
1.57 
1.71 
0.06 
0.24 
0.52 
0.91 
1.34 
1.77 
2.11 

431 



Unstiffened element in uniaxial compression, offset holes 
Model 

number 

1 

2 
3 

4 
5 

e 
7 

8 

9 
10 

11 
12 

13 

14 
15 

16 
17 
18 

19 

20 

21 
22 

23 
24 

25 
26 
27 

28 

29 
30 

31 

32 
33 
34 
35 

36 

37 
38 
39 
40 

41 

42 

43 

44 

45 
46 
47 
48 

49 
60 

51 
52 

53 
54 

55 

56 

57 
58 

59 
60 

61 

62 
63 

64 
65 

66 
67 

68 

69 
70 
71 
72 
73 

74 

75 
76 
77 
78 
79 
80 
81 

82 
83 
84 
85 
86 

87 
88 

89 

90 
91 
92 

hole type 

slotted 

slotted 
slotted 

slotted 
slotted 
slotted 

slotted 

slotted 

slottBd 
slotted 
slotted 

slotted 

slotted 
slotted 

slotted 

slotted 
slotted 
slotted 

slotted 

slotted 
slotted 

slotted 

slotted 
slotted 

slotted 
slotted 
slotted 

slotted 

slotted 
slotted 

slotted 

slotted 
slotted 
slotted 
slotted 

slotted 

slotted 
slotted 
slotted 
slotted 

slotted 

slotted 

slotted 

slotted 
slotted 

slotted 
slotted 
slotted 

slotted 
slotted 

slotted 
slotted 

slotted 
slotted 

slotted 

slotted 

slotted 
slotted 
slotted 

slotted 

slotted 

slotted 
slotted 

slotted 
slotted 
slotted 
slotted 

slotted 
slotted 

slotted 
slotted 
slotted 
slotted 

slotted 

slotted 
slotted 
slotted 
slotted 
slotted 
slotted 
slotted 

slotted 

slotted 
slotted 
slotted 
slotted 
slotted 

slotted 

slotted 
slotted 
slotted 
slotted 

h|iote 
in 

1.50 

1.50 

1.50 
1.50 
1.50 
1.50 
1.50 

1.50 
1.50 
1.50 

1.50 
1 5 0 

1.50 

1.50 
1.50 

1.50 
1.50 
1.50 

1.50 

1.50 
1.50 

1.50 

1.50 
1.50 

1.50 
1 50 
1.50 

1.50 

1.50 

1.50 
1.50 

1.60 
1.50 
1.50 
1.50 

1.50 

1.50 
1.50 

1.50 
1.60 
1.50 

1.50 

1.50 

1.50 

1.50 
1.50 
1.50 
1.50 

1.50 
1,50 

1.60 
1.50 

1.50 

1.50 
1.50 

1.50 

1.50 
1.50 

1.50 
1.50 

1.50 

1.50 

1,50 
1.50 
1.50 

1.50 
1.50 

1.50 

1.50 
1.50 
1.50 
1.50 
1,50 

1,50 
1,50 

1,50 
1.50 
1.50 
1.50 
1.50 

1.60 

1 5 0 
1.60 
1.50 
1.50 
1.50 

1.50 
1.50 

1.50 
1.50 
1.50 
1.50 

h 

In 

15.00 

15.00 
15.00 

15.00 
15.00 
15.00 

15.00 

7.50 

7.60 
7.50 
7.50 

7,50 
7.50 

5.00 

5.00 

6.00 
6.00 
5.00 

3.76 

3.75 
3 7 5 

3.75 

3.76 

3.75 
3 7 5 
3.00 
3.00 

3.00 
3.00 

3.00 

3.00 
3.00 

2.50 
2.50 
2.50 

2.50 

2.50 
2.50 
2.50 
2.14 

2.14 

2.14 

2.14 
2.14 

2.14 

2.14 
15.00 
16.00 

15.00 
15.00 

15.00 
15.00 

15.00 
7.50 

7.50 

7.50 
7.60 

7,50 
7.50 

5.00 

5.00 

5.00 

5.00 
5.00 
3.75 
3.75 

3.76 

3.75 

3.76 
3,75 
3,75 
3.00 
3,00 

3.00 

3.00 
3.00 
3.00 
3.00 
2.50 
2 5 0 
2.50 

2.50 

2,50 
2,50 
2 5 0 
2,14 

2.14 
2.14 

2.14 
2.14 
2.14 
2 1 4 

u»» 
In. 

4.00 

4.00 

4.00 

4.00 
4.00 
4.00 

4.00 

4.00 
4 0 0 

4.00 
4.00 
4.00 

4.00 

4.00 

4.00 
4,00 

4,00 
4 0 0 
4,00 

4,00 
4 0 0 

4 0 0 

4,00 
4,00 

4 0 0 
4.00 

4.00 
4.00 

4.00 

4.00 

4.00 
4.00 

4.00 
4.00 

4.00 
4.00 

4.00 

4,00 
4,00 
4.00 

4.00 

4.00 

4.00 

4.00 
4.00 

4.00 
4.00 
4.00 

4.00 

4 0 0 

4.00 
4.00 

4.00 
4.00 

4 0 0 

4.00 
4.00 
4 0 0 

4.00 

4.00 

4.00 

4.00 
4.00 

4.00 
4.00 
4.00 
4.00 

4.00 
4.00 

4.00 
4.00 
4.00 

4,00 
4,00 

4,00 

4,00 
4.00 
4.00 
4.00 
4 0 0 
4.00 

4.00 

4.00 
4,00 
4.00 
4.00 
4.00 

4.00 
4.00 

4,00 
4,00 
4,00 

S 

in. 

20.00 

20.00 

20.00 
20,00 
20.00 
20.00 

20.00 

20.00 

20.00 
20.00 
20,00 

20.00 
20.00 

20.00 

20.00 

20.00 
20.00 

20.00 
20 00 

20 00 
20 00 

20 00 

20.00 
20.00 

20 00 
20 00 
20 00 

20.00 

20.00 

20.00 
20.00 

20.00 
20.00 
20.00 
20.00 

20.00 

20.00 
20.00 
20.00 

20.00 
20.00 

20.00 

20.00 

20.00 
20.00 

20.00 
20.00 
20.00 

20,00 
20.00 

20.00 
20.00 

20.00 
20.00 

20.00 

20.00 

20.00 
20.00 
20.00 

20.00 

20.00 

20.00 

20.00 
20.00 
20.00 
20.00 

20.00 

20.00 
20.00 

20.00 
20.00 
20.00 
20 00 

2 0 0 0 

20.00 
20.00 
20.00 
20.00 
20.00 
20.00 

20.00 
20.00 

20.00 
20.00 
20.00 
20.00 

20.00 
20.00 

20.00 
20.00 
20.00 
20.00 

L 

100.00 

100.00 
100.00 

100,00 
100.00 
100.00 

100.00 

100.00 

100.00 
100,00 
100.00 

100.00 

100.00 
100.00 

100.00 

100.00 
100,00 
100,00 

100.00 

100.00 
100 00 

100.00 

100.00 
100.00 

100.00 
100.00 
100.00 
100.00 

100.00 

100.00 

100.00 
100.00 

100.00 
100,00 
100.00 

100.00 

100.00 
100,00 
100,00 

100,00 
100.00 

100.00 

100 00 

100.00 
100.00 

100 00 
100 00 
100 00 
100.00 

10000 

100.00 
100.00 

100.00 

100.00 
100.00 

100.00 
100.00 

100.00 
100.00 

100.00 

100,00 

100,00 
100,00 

100.00 
100.00 
100.00 

100.00 

100.00 
100.00 

100.00 
100,00 
100.00 

100,00 
100,00 

100.00 

100.00 
100.00 
100.00 
100 00 
1 0 0 0 0 
100.00 

100.00 

100.00 
100.00 
100 00 
100.00 
100.00 

100.00 

100.00 
100.00 
100.00 
100 00 

t 

0.0346 
0.0346 

0.0346 

0.0346 
0.0346 
0.0346 

0.0346 

0.0346 
0.0346 

0,0346 
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Appendix C 

Derivation of elastic buckling coefficients for 
unstiffened elements 

C.l kA for an unstiff ened element in compression 

The finite strip method is employed with CUFSM (Schafer and Adany 2006) to 

calculate the plate buckling coefficient for an unstiffened strip in compression, kA, as a 

function of unstiffened strip aspect ratio (LhoJhA) and the compressive stress ratio (y/A). 

The unstiffened element model setup in CUFSM is provided in Figure C.l. The results 

from the CUFSM parameter study, where y/A is varied from 0 to 1, are presented in 

Figure C.2. 

Unstiffened Element Section A-A 

Figure C.l CUFSM finite strip modeling definition for an unstiffened element in compression 

The fminsearch function in Matlab (Mathworks 2007) is used to determine the variables 

a, through a5in the general equation form: 
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0.578 
y/A+0.34 • + • 

ax-a2yA 

aiy/A + a4 + L'hole 

V kA J 

The variables are chosen to minimize the sum of the squared errors between the CUFSM 

results in Figure C.2 and the fitted curve. The curve fitting results in the equation: 

0.578 
• + -

2.70-1.76^ 

0.024^+0.035 + Hole 

V kA J 

10 

9 

8 

! 

i 
I 

o 1 
_j i_ 

Lhole/hA 

9 10 

Figure C.2 The plate buckling coefficient kA for an unstiffened element in compression (the multiple curves 

represent 0< ̂ < 1 with a step of 0.1,11 curves total) 

The mean and standard deviation of the ABAQUS to predicted ratio when 

0.1<Lhoie/yA<2 is 1.14 and 0.61 respectively. As shown in Figure C.3, the accuracy of the 

prediction is often conservative within this aspect ratio range. For 2<LhoJyA<10 the mean 

and standard deviation of the ABAQUS to predicted ratio are 0.99 and 0.02 respectively. 
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Figure C.3 The fitted curve for kA is a conservative predictor when LMJyA<2 

C.2 UB for an unstiffened element with compression 
on the free edge 

The finite strip method is employed with CUFSM (Schafer and Adany 2006) to 

calculate the plate buckling coefficient for an unstiffened element with compression on 

the free edge and tension on the simply supported edge, kB, as a function of unstiffened 

strip aspect ratio (Ltote/̂ B) and the compressive stress ratio (y/B). The unstiffened element 

model setup in CUFSM is provided in Figure C.4. 
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m p l y , , Unstiffened Element 
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Section A-A 

Figure C.4 CUFSM finite strip modeling definition for an unstiffened element with compression on the free 
edge, tension on the simply-supported edge 

The results from the CUFSM parameter study, where y/B is varied from 0 to 10, are 

presented in Figure C.5C.5. As the portion of the plate that is in tension increases (i.e., 

y/B increases), the buckling mode switches from one buckled half-wave to multiple half-

waves. 

Buckles in several half-
wavelength (vB=10 shown) 

Buckles in one half-
wavelength (vB=0 shown) 

10 15 
Lhole /hB 

Figure C.5 Variation in plate buckling coefficient fe for an unstiffened element with \//B ranging from 0 to 10 

A polynomial curve is fit to the minimum kB as shown in Figure C.6: 

kB = 0340y/2
B + 0.100y/B + 0.573. 
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The mean and standard deviation of the CUFSM minima to fitted curve prediction ratio 

are 1.03 and 0.11 respectively. 
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Figure C.6 Curve fit to minimum kB for y/B ranging from 0 to 10 

10 

This approximation is accurate when LMJyB>5 but does not capture the boost in kB when 

Lfodhnis small. Since LhJhB may often be less than 1 when considering common plate and 

hole sizes, it is important to have a viable estimate of kB to avoid overly conservative 

predictions. A family of curves is fit to the CUFSM predictions for the case when 

Q25<LMJyB<1 and where y/B is varied from 0 to 10, resulting in the following equation: 

0.38j/f -1.6 
Kg — " 

K 
+ 0.49 

-0.20^B
03 + 

f r \0A 

hB 

V '"hole J 

+ 0.14 

., 0 < - ^ < 2 , 0 < ^ B < 1 0 
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The equation provides an accurate representation of kB as demonstrated in Figure C.7. 

The mean and standard deviation of the CUFSM to predicted ratio are 0.01 and 0.03 

respectively. 
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Figure C.7 Family of curves used to simulate boost in ke when L^k/he^l, y/e ranges from 0 to 10 
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Appendix D 

Elastic buckling prediction method of cross-
sectional elements with holes 

B l Critical Elastic Buckling Stress of Elements with Perforations 

B1.1 Uniformly Compressed Stiffened Element 

For uniformly compressed stiffened elements with uniformly spaced perforations 
satisfying the limits 

- > 1 . 5 a n d _ £ _ > 2 , _S_ 

Jhole 

the critical elastic buckling stress, fCT(, is 

fcr, =min[fcr>fcrJ. 

The critical elastic buckling stress, fcr, without the influence of perforations is 

;T2E r o 2 
f" = k ^ T 7 } ^ 

where k=4 for a stiffened element with L/h>4. 

The critical elastic buckling stress, fcrn, with the influence of perforations is 

fcrh = f c r h . a « ( l - h h 0 | e / h ) , 

where the critical elastic buckling stress, fcrh net/ at the location of a perforation is 

fcrh,nel = m i n [ f c r A > f c r B ] -

The critical elastic buckling stress, fcrj,of unstiffened strip i is 

f~ = k, 
/r2E 

\ \ 12(1 -v2) 

where 

Lhoie/M1 ' k, =0.425 + 

_L I and i = A or B, 

0.2 

( L h o i e / h i r - 0 . 6 

(Eq. Bl.1-1) 

(Eq. Bl.1-2) 

(Eq. Bl.1-3) 

(Eq. Bl.1-4) 

(Eq. Bl.1-5) 

(Eq. Bl.1-6) 
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LhoJhi < 1, k, = 0.925, and i = A or B. 

B1.2 Stiffened Element Under Stress Gradient 

(Eq. Bl 

For stiffened elements under a stress gradient with uniformly spaced perforations 

satisfying the limits 

!>1.5andJL>2, 
h Lhole 

the critical elastic buckling stress, fcr̂ , is 

fal =min[fcr,fcrh]. 

The critical elastic buckling stress, fcr, without the influence of perforations is 

;r2E f t 

where 

k = 4 + 2(1 + ^ ) 3 + 2(1 + ^ ) 

and 

(Hf2/f,| = (h-Y)/Y. 

The critical elastic buckling stress, fcrn, with the influence of perforations is 

forhA +hh o i e*Y, U = f c r h n a ( 1 + n ) _ A , a n d 

forhA+hho le<Y, f = f 
crh crh.net 

l _ r i ! o ! e . | 2^ A - - ^* 

where 

V A = -
Y - h , 

The critical elastic buckling stress, fcrn n e t , at the location of a perforation is 

' crh,net = m l n I* a A ' * crB J 

Consideration of unstiffened strip "A" buckling is required only if hA<Y, 

f -v * E 

CTA" A 1 2 ( l - v 2 ) vhA 

(Eq. Bl 

(Eq. Bl 

(Eq. Bl 

(Eq. Bl 

(E(j. Bl 

(Eq. Bl 

Eq. (Bl 

(Eq. Bl 

(Eg. Bl 
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where 

k A = " 
0.578 2.70-1.76^A 

yA + 0.34 0.024^A + 0.035 + (Lhole/hA )2 

Consideration of unstiffened strip "B" buckling is required only if hA+hhole<Y, 

f - k 
x2E ' P 

vhBy 12(l-v2) 

where 

for Lhole/hB>2 

kB = 0.340^ +0.10(VS +0.573 

for Lh0le/hB<2 

v Y - h A -hh 0 |C y / 

0.38y/B'°+1.6 
k B = -

and 

V '"'hole J 

+ 0.49 

-0.20^B
0 3 + 

/ \0.i 

V^hole y 
+ 0.14 

(Eg. Bl.2-10) 

(Eg. Bl.2-12) 

(Eg. Bl.2-12) 

(E(j. Bl.2-13) 

(E<j. Bl.2-14) 
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B1.3 Unstiffened Element Under Uniform Compression with Perforations 

For uniformly compressed unstiffened elements with uniformly spaced perforations 
satisfying the limits 

Lsk<iO/ hsis.<\Q, ili!2!£.<o.50'and - ^ - > 2 (E<?' Bl.3-1) 
h A h B h Lhole 

the critical elastic buckling stress, fCT(, is 

fcrf=min[fcr>fCTJ. (Eq.Bl.3-2) 

The critical elastic buckling stress, fcr, without the influence of perforations is 

a2E t 
f"= ki2F^]lhJ' 

where k=0.425 for unstiffened elements with L/h>4. 

The critical elastic buckling stress, fcrh, with the influence of perforations is 

(Eq. Bl.3-3) 

U = min ;r2E (C2 

:i2F7)ihj M 1 ' h 
(Eq. Bl.3-4) 

where 

k= 0.425 1-0.062- (Eq, Bl.3-5) 

and fcrA is calculated with Eq. Bl.1-5. 
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Appendix E 

Derivation of global critical elastic buckling load for 
a column with holes 

This derivation develops the equation for the flexural critical elastic buckling load of 

a column with two holes spaced symmetrically about the longitudinal midline of a 

column. The conclusions of this derivation are used as the foundation for the "weighted 

properties" approach for approximating Pcre for columns and beams with holes as 

described in Section 4.2.7.3.1.1. INH is the moment of inertia of the column cross section 

away from the hole and JH is the moment of inertia at the hole. 

•NH 

'NH 

' 1 
1 

t2 

' 
*3 

i 

L 

. 

. w 
V 

' 

'NH 

Figure E.l Long column with two holes spaced symmetrically about the longitudinal midline. 

A conservation of energy approach is employed in this derivation, and specifically 

the Rayleigh-Ritz Method. The derivation is founded on the fundamental principle 

relating the strain energy and potential energy of the column, U and W respectively: 
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m=s(u-w)=o 
where the column strain energy U is: 

2 J [dx2 "4H dx 

and the column potential energy is 

W -4-
2 \dx 

\2 

dx. 

Applying the Raleigh-Ritz method, we assume a shape function in the deformed 

(buckled) configuration of the column: 

/ \ .TJX 

v{x) = asm— 

The derivatives of this function are calculated: 

dv n Tix 
— = a — cos— 
dx L L 

d2v n2 . roc 
= -a-^rSin — dx' U 

and then substituted into the equations for U and W which are written along the length 

of the column as: 

FT 
TJ — NH 

, EIH i < 2 a V 
dx + — -

EI„ ^ffV 4 . 2 + —2- — ^ s i n 2 

* L4
 [ L J 2 *, 

c , EIH (-a2*4 

2 ** L* 

sm 
(7&y 

v w 

2 _ 4 
dx+EIm f,a-K 

-sin 
(nx^ 

L) 
dx 

(' ux^ 
\LJ 

dx 

and 

W 
1 Dfa27V2

 : 

= —P I — COS 
2 * L2 

f nx^ 

\Lj 
dx = 

Pa2n2 

AL 

AAA 



The derivative of U is taken with respect to the arbitrary shape function amplitude or. 

dU _ EIman 
dS t sin 

f nx^ 
\dx + Psin2 — dx+ fshV 

\L) *i \L) ** 

f 7VC^ 
\dx 

\^ J 

+ 
EIHan4 

+ sin 
1nx^ 

vw 
\dx + 14sin2 (7VC^ 

\dx 
\^J 

The definite integrals inside the derivative are then solved resulting in: 

dU _ Elman4 

1d~~ L4 — + — - — + + • 
v 2 2 2 ; An 

2TA, 2rd 
sin- •s in-

, . 2nt2 . 2 « 0 
- + sin + sm 

v L L J 

+ 
ElHan 

L4 — + 
2 An 

L ( . 2trt, . 2rd, . 2M, . 2rd^ 
-sin- • + sin - -sin- • + sin -

V 

The length terms from the integration sum to the length of column without a hole, L NH, 

and the length of column with a hole, LH. When the holes are symmetric about the 

longitudinal midline of the column, the trigonometric terms cancel as shown in Figure 

E.2 and the equation above simplifies to: 

dU _ EIman4 Lm EIman4 LH 

da L4 

0.5 

i-
-0.5 

\ 
• \ 

0 H trig term 
• NH trig term 

° °\ / 
\ / 

A 
/ \ 

-CK 

\ 

/ 

Trig terms cancel for holes symmetric 
about longitudinal midline 

\ 
) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
x/L 

Figure E.2 Trigonometric terms in energy solution cancel when holes are symmetric about longitudinal 
midline of column. 
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The solution for the potential energy of the column is not dependent upon the moment 

of inertia and therefore the derivative can be solved directly as: 

dW Pa Jt1 

da 2L 

The load P that minimizes the variation in energy is the critical elastic buckling load, P„ 

m = 8(U-W)=M--^ = Q 
da da 

Equating the variational energy terms: 

Elman Lm ElHan LH Pa n 

L4 2 L4 2 2L 

results in a solution for Pm where the moment of inertia is a weighted average of the net 

and gross cross-section of the column. 

n2E 
ere j2 

*NH^NH + * H * - ' H 

Pm for a column with the general case of i=l..n holes can be approximated as: 

nlE 
ere T2 

INH \Lm + TNH ) + IH \LH +TH) 

where 

TMH = — Y . c o s lNH In 1=1 

f ^ \ 
sin 

7dji 'holej 

v L j 
' r » = - ^ ! c o s 

v L j 

r^r \ 
sin 

7dj, 'holej 

V L j 

Ld is the distance from the end of the column to the centerline of hole i and LMe.i is the 

length of hole i. 
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Appendix F 

Column experiment results 
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Column Specimen 362-1-24-NH 
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Notes: 

Loaded N to S instead of S to N. Adjusted all geometry measurements. 
Lips rotated and not touching bottom platen after peak load. 
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Column Specimen 362-2-24-NH 

-14 

& -12 

* -10 
to 
-S -8 
<D 

"i -6 

1 -4 

8 "2 

0 
c 

362-2-24-NH 

/ P =10.51 kips 
/ test r 

) 0.05 0.1 0.15 0 
Column axial displacement (inches) 

2 

362-2-24-NH 
•£• 1-5 
0) 

£ 
o 
c 
*»̂  c 
(U 
t-
0) 

u ro Q. 

•o 
0 
TO 
r en 
U. 

I 

0.5 

I) 

-0.5 

-1 

-1.5 
0 0.05 0.1 0.15 0.2 

Column axial displacement (inches) 

449 



Column Specimen 362-3-24-NH 
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Bottom lips rotated at 7 kips post-peak and are not bearing on platen. 
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Column Specimen 362-1-24-H 
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Visible buckling of web on either side of hole at 7 kips. 
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Column Specimen 362-2-24-H 
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Column Specimen 362-3-24-H 
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Column Specimen 362-1-48-NH 
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Good end conditions - no visible gaps. 
9 kips - a metallic noise - yielding of west flange and increase in local wavelengths. 
Column failed by global-torsional collapse. 
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Column Specimen 362-2-48-NH 

_ » ^ i 
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• • • H I **•, B H 
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.<2 
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0 

-0.5 

-1 
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362-2-48-NH 

0 0.05 0.1 0.15 0.2 
Column axial displacement (inches) 

Notes: 

Tight end conditions at 1.5 kips. 
Local buckling at 6.5 kips . 
No sounds for this test. 
Column failed by global-torsional collapse. 
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Column Specimen 362-3-48-NH 

Peak Load 

362-3-48-NH 
-14 

0 0.05 0.1 0.15 0.2 
Column axial displacement (inches) 
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O) "1 
c 
ro 
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• * * - • ' " 
^ W . 

^ s . 
^^ \ \ ̂  

0 0.05 0.1 0.15 0.2 
Column axial displacement (inches) 

Notes: 

Local buckling first observed at 6.5 kips. 
Local wavelengths lengthen at 8.5 kips. 
Yielding of flange lips at 9 kips (near peak). 
Column failed by global-torsional collapse. 
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Column Specimen 362-1-48-H 
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• * j ^ ^ ^ ^ ^ ^ "T^L j i 

H f i a H 
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1 1 
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ro 
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) 0.05 0.1 0.15 0.2 
Column axial displacement (inches) 

Notes: 

No visible gaps and ends under 1 kip. 
Local buckling is visible at 7 kips. 
Local half-waves merge at 8.5 kips. 
Bulging of web at hole occurs near peak load. 
Column failed by global-torsional collapse. 
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Column Specimen 362-2-48-H 
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Column axial displacement (inches) 

Notes: 

End conditions tight at 4 kips. 
Local buckling visible at 6.5 kips. 
Distortional buckling seems to increase as load-displacement 
East LVDT reaches limit of range as column starts to twist. 
Column failed by global-torsional collapse. 

softens. 
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Column Specimen 362-3-48-H 
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Notes: 

Local buckling visible at 6.5 kips. 
Column failed by global-torsional collapse. 
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Column Specimen 600-1-24-NH 

600-1-24-NH 
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0.05 0.1 0.15 0.2 
Column axial displacement (inches) 
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—^^*^ 
______ w 
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Column axial displacement (inches) 

Notes: 

Local and distortional waves seem to stay separate. 
8 kips (post-peak) - east flange buckles. 
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Column Specimen 600-2-24-NH 

600-2-24-NH 
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/ test r - ^ * ^ 
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— — — E 
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Column axial displacement (inches) 

Notes: 

Web has large curve when placing specimen on bottom platen. 
Visible gap between platen and specimen at top west web-flange corner - 5 kips. 
10 kips (post-peak)- flanges buckle and lose contact with bottom platen. 
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Column Specimen 600-3-24-NH 
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Notes: 

Specimen failed at bottom end condition, web rolled over and was not bearing on platen. 
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Column Specimen 600-1-24-H 
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o .9 
O ^ 

0 
C 

600-1-24-H 
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Column axial displacement (inches) 

2 
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0 0.05 0.1 0.15 0.2 
Column axial displacement (inches) 

Notes: 

Slight gap at east top web-flange comer - 3 kips, gap is closed at 11 kips. 
East flange gives way at 11 kips with dip in load-disp. curve, may be related to above. 
Loud popping sound at 8 kips (post-peak) and large change in load-displ. slope. 

463 



Column Specimen 600-2-24-H 
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14 _ 

a -12 

lo
ad

 (k
 

oo
 

o
 

CO 

s -6 

1 "4 3 
o .9 

o 

/ P =11.62kip>^ '^ / test j j j jp-

^ 
0 0.05 0.1 0.15 0.2 

Column axial displacement (inches) 

600-2-24-H 

¥ 15 

€ 1 

t 
c 

-0.5 

-1 

-1.5 
0 0.05 0.1 0.15 0.2 

Column axial displacement (inches) 

Notes: 

Specimen failure mode similar to that of a no-hole specimen. 
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Column Specimen 600-3-24-H 
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Notes: 

Good contact with platens. 
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Column Specimen 600-1-48-NH 

Peak Load 

T3 
TO 
O 
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w 
E 
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Column axial displacement (inches) 

Notes: 

Local buckling first observed at 4.5 kips (11 half-waves). 
Distortional wave becomes prominent at 10 kips. 
Loud noises 1 minute apart - L waves turn to D waves at north, then south ends 
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Column Specimen 600-2-48-NH 

Peak Load 
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Column axial displacement (inches) 

Notes: 

Gap between platen and specimen at top east flange-web comer closes at 2 kips. 
Can see distortional shape developing at 4.5 kips. 
Local buckling visible at 5 kips. 
Two loud bangs (peak load, 10.5 kips post peak) - local web waves change to D waves. 
Flange distortion slows at 7 kips post-peak. 
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Column Specimen 600-3-48-NH 

Peak Load 
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Notes: 

Gap between platen and specimen at east top flange closes at 1 kip. 
Loud sound at peak load - L waves change to D waves in web. 
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Column Specimen 600-1-48-H 
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Notes: 

Local buckling and DH mode visible at 5 kips. 
Loud noise at 9.5 kips - L waves changes to D wave in web. 
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Column Specimen 600-2-48-H 
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Notes: 

Local buckling visible at 4 kips. 
D wave interrupted by large crease. 
L web waves change to D waves (9 kips post-peak, 7.5 kips post-peak) 
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Column Specimen 600-3-48-H 
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Notes: 

Good platen bearing conditions. 
Loud noise at 7.5 kips post-peak. 
Yielding in the west flange first, then east flange. 
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Appendix G 

Residual stresses- backstress for kinematic 
hardening implementation 

Implementation of a kinematic hardening rule requires that the center of the yield 

surface, in stress space, be known for any material which has been yielded prior to the 

loading of interest. The coordinates of the center of the yield surface (A<jh Aa2, Aa3), 

known as the backstress, cannot be directly calculated from the stresses derived herein 

because work hardening was ignored in the residual stress derivations. However, the 

plastic strains developed in the manufacturing process provide a means by which the 

backstress may be approximated, as provided in this appendix. 

The general equation for effective stress is defined as 

°e = jjV(0 ' i -°$ +(CT2 -o-3)2 +(0-3 -cO 2 • (G.l) 

Given that the through-thickness sheet stresses are zero (<T2=0), Eq. (G.l) reduces to 

ae = Va\2 ~ a\ ai + CT32 (G-2) 

Consider the contribution to the backstress that develops due to coiling. From Eq. 

(6.18) we know the plastic strain, ep
coms. With £pcoilin8 and knowing the material stress-

strain relation (i.e., Figure 6.23) the effective stress at that plastic strain, cr̂ co,''"« maybe 

determined. Consistent with the residual stress derivation of Eq. (6.8), we assume v=0.3 

and 
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of"6* = vafing. (G.3) 

Finally, substituting the preceding into Eq. (G,2) results in 

coiling 

ey_ 

•vV-v+1 
a™""* = - r = J L = . (G.4) 

Similarly for cold bending the corners, from Eq. (6.21) we know the plastic strain, 

EfimA. With sp
be'"1 and knowing the material stress-strain relation (i.e., Figure 6.23), we 

determine the effective stress at that plastic strain, a^mA. Consistent with the residual 

stress derivation of Eq. (6.12), we assume v=0.5 and 

_bend -..—.bend /r-, c . 

cx3 =v<Jx , (G.5) 

and thus find 

„bend 

—.oena ey ir^ c\ 
C7, = . . (G.6) 4v2 - v + 1 

The backstress is then determined as: 

A _ coiling . _bend 

G\=°\ +CT\ ~°yield 

Ao-2 = 0 (G.7) 

A _ ^coiling . bend _ 

0-3=0-3 g + o - 3 -ayield, 

where a,m is the virgin yield stress of the steel. This estimate assumes that the changes 

in material properties from coiling, uncoiling, and flattening and cold-forming do not 

influence one another. 
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Appendix H 

Experiment true stress-strain curves 

The average true plastic stress-strain curves are provided here for each of the 24 

column tests reported in Chapter 5. For each specimen, three engineering stress-strain 

curves (west flange, east flange, and web) were averaged and then transformed into true 

stresses and strains with the following equations: 

Sm« and ew are the true stress and strain and s„ and a are the engineering stress and 

strain in the above equations. The tables in this appendix provide just the plastic 

component of the true strain since this is what is required in ABAQUS: 

„ i ^yield 
S

P = £
true ~ Zyie,d>where Syield = —£~ 

The true stress-strain curves presented here were modified prior to their 

implementation in ABAQUS to ensure plasticity initiated at the yield stress and not 

the proportional limit. Refer to Section 7.2.1.4 for details on this modeling decision. 
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Specimen 362-1-24-NH, 362-2-24-NH, 362-3-24-NH 
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Specimen 362-2-24-H 
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Specimen 600-1-24-NH, 600-2-24-NH, 600-3-24-NH 
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Appendix I 

Column experiment nonlinear FE simulation results 
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A p p e n d i x J Contact simulation in ABAQUS 

The friction-bearing end conditions were chosen for the experimental program 

described in Chapter 5 because they allowed for convenient alignment and testing of the 

column specimens. These boundary conditions were expected to behave as fixed-fixed, 

although during the test slipping of the cross-section and lifting off of the specimens 

were observed for some specimens in the post-peak region of the load-displacement 

curve. A nonlinear FE study was performed in ABAQUS where the experiment friction-

bearing boundary conditions were replicated using contact modeling (Moen and Schafer 

2007a). These end conditions allowed deformation of the cross-section at the bearing 

ends under load (slipping) and lift off of the bearing ends. A master analytical rigid 

surface was defined to represent the top and bottom platen as shown in Figure J.l and 

each surface was assigned a reference node. The rigid surfaces simulate fixed-fixed 

conditions by restraining the reference node degrees of freedom, and the specimen was 

loaded by applying an imposed displacement to the bottom surface reference node. Top 

and bottom node-based slave surfaces were defined to simulate the bearing end of each 

specimen. The tributary bearing area was defined at each node in the slave surface to 

ensure that contact stresses were simulated accurately in ABAQUS. 
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Assign friction contact -
behavior in ABAQUS 
between rigid surface and 
specimen 

Restrain rigid surface 
reference node in 1 to 6 
directions 

• ABAQUS Analytical Rigid 
Surface (Typ.) 

1 

rT\ 6 

Apply imposed 
displacement of 
surface in 1 direction 

Restrain rigid surface 
reference node in 2 to 6 
directions 

Figure J.l Contact boundary condition as implemented in ABAQUS 

A Coulomb friction model was enforced in ABAQUS between the master and slave 

surfaces by defining a static and kinetic coefficient of friction, /4 and /A, for steel-on-steel 

contact. The assumed values for ^ and /4 were 0.7 and 0.6 in this study (Oden and 

Martins 1985). Slip occurs in the model once the shear stress at the contact interface 

exceeds f^jn, where/„ is the normal contact stress at the bearing surface. 

The locations of the rigid surfaces were defined to be in contact with the specimen 

ends when the first step of the analysis began. This does not guarantee perfect contact in 

a computational sense, and so the ABAQUS command ADJUST was used to zero the 

contact surface and avoid numerical instabilities during the first analysis step. The 

ADJUST command modifies the geometry of the specimen to close infinitesimal gaps, 

but does not result in internal forces or moments in the specimen. 
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To evaluate the influence of the contact boundary conditions, the load-displacement 

response of specimen 600-2-24-NH assuming contact boundary conditions was 

evaluated against an FE simulation employing the fixed-fixed boundary conditions 

described in Figure 7.27. The results of the two simulations are almost identical until 

well into the post-peak range as shown in Figure J.2, demonstrating that the fixed-fixed 

boundary conditions are a viable approximation to the actual boundary conditions in an 

FE simulation. 

Contact Surface 
Fixed-Fixed 

The failure response with friction-
bearing boundary conditions is 
similar to that with fixed-fixed 
boundary conditions 

0.05 0.1 0.15 0.2 
axial displacement, in. 

Figure J.2. A comparison of ABAQUS nonlinear solutions considering fixed-fixed and contact boundary 
conditions for specimen 600-2-24-NH 
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Appendix K 

Simulated column experiments database 

The table provided in this appendix summarizes the dimensions, elastic buckling loads, 

and tested strengths of simulated column experiments described in Section 8.1.10. The 

letters in the "Study type" column denote simulations considered in the DSM failure 

mode studies: "D" for the distortional buckling failure study in Section 8.1.2, "G" for the 

global buckling failure study in Section 8.1.3, and "L" for the local buckling failure study 

in Section 8.1.4. 

The database contains columns with slotted holes or circular holes. To identify the hole 

type in a specific column, use the following rule: columns with slotted holes always 

have Ltole=4 in, and LMe = h^ for columns with circular holes. 

The following notation is employed to denote simulated strengths: 

Ptest25 25% CDF local and distortional buckling, no global imperfections 

Piest75 75% CDF local and distortional buckling, no global imperfections 

Pteat25+ 25% CDF local and distortional buckling, +L/2000 global imperfection 

Piest75+ 75% CDF local and distortional buckling, +L/1000 global imperfection 

Ptoses- 25% CDF local and distortional buckling, -L/2000 global imperfection 

Ptost75- 75% CDF local and distortional buckling, -L/1000 global imperfection 
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0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0,80 
0.80 
0,60 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.60 
0.80 
0.80 
0.80 
0.80 
0.60 
0.80 
0.80 
0.80 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.00 
0,90 
0.90 
0.90 
0.90 
0.90 
090 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1,00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.80 

Pm 

kips 

52.3 
43.1 
34,7 
324 
27.6 
13.8 
25.5 
23.5 
10.4 
19.4 
3.7 
19.7 
8.5 
4.5 
14.7 
7,6 
2.7 
7.0 
6.7 
2.2 

52.3 
43,1 
34.7 
32.4 
27.6 
13.8 
25.5 
23.5 
10.4 
19,4 
3.7 
19,7 
8.5 
4.5 
14.7 
7.6 
2.7 
7.0 
6.7 
52.3 
43.1 
34.7 
32,4 
27.6 
13.8 
25,5 
23.5 
10,4 
19.4 
3.7 
19.7 
8.5 
4.5 
14.7 
7.6 
2.7 
6.7 
2.2 

52.3 
43.1 
34.7 
32.4 
27.8 
13.8 
25.5 
23.5 
10.4 
19,4 
3.7 
19.7 
8.5 
4.5 
14.7 
7.6 
2.7 
7.0 
6,7 
2.2 
52.3 
43.1 
34.7 
32,4 
27,6 
13.8 
25.5 
23.5 
10.4 
10.4 
3.7 
19.7 
8.5 
4.5 
14.7 
7.6 
2.7 
7,0 
6.7 
22 
17.8 

Pc™ 

kips 

54,4 
38.4 
38.2 
31.6 
22.9 
11.6 
25.5 
20.2 
10.4 
14.6 
4.6 
17.2 
0.3 
7.6 
9,9 
6.5 
3,8 
7.9 
6,0 
3.8 
56.7 
40,6 
40,0 
33.4 
24.6 
12,5 
27.0 
21.6 
11.0 
16,0 
4.0 
18.4 
0.8 
7.6 
11.1 
7.0 
4.0 
8.4 
7.3 
58.9 
42.8 
41.8 
35.1 
26.2 
13.3 
28.4 
23.0 
11.6 
17.3 
5.1 
19.8 
10.3 
8.2 
12.4 
7,4 
4.1 
7.8 
4.1 

61 2 
45.0 
43.6 
36.8 
27.8 
14.1 
29.8 
24.3 
12.2 
18.8 
5,3 
20.8 
10.8 
8.5 
13.6 
7.9 
4.3 
9.2 
8.0 
4.3 
63.0 
47.1 
45.4 
38.4 
29.4 
14.9 
31.2 
25.6 
12.8 
10,9 
5.5 
22.0 
11.3 
8,8 
14.8 
8.3 
4.4 
9,6 
6.4 
4.4 
17.3 

Per. 

kips 
179,1 

9 9 4 
227,6 
169.9 

111.7 

49.6 

246.2 
176.8 
82.1 

113.4 

33.0 
242.2 

128.5 

142.5 

108.3 

83.6 
54.0 

174,2 
124,1 

83.8 

221,4 
116,2 

204.5 
213.2 

136.4 

57.5 

338.4 
234.8 

100.9 
146.0 
38.3 

358.9 

172.0 

198.4 
146.6 
108.4 

66.8 

260.8 

178.2 
261,9 
132,5 
362.1 

256.9 

151.2 
62.4 

434.3 

294.8 

116,4 
159,0 
43.3 

483.4 

217,2 

256.8 
164.7 

122.4 

79.3 

235.8 

143.1 
299.2 

142,2 

426.6 

289.4 

153.2 
63.1 

527.9 

308.2 

118,0 
160.9 

43.8 

563.0 

231.0 
313.9 
166.7 

124.0 
80.4 

419.7 

240,7 
155,1 

332,0 

142.7 

484,1 

290.8 
153.7 

63.3 

541.3 

307,6 
118.4 
161.5 

44.0 

566,1 
232.1 
329.7 

167.2 
124.4 

80.7 
422.1 
241,8 
155.9 
267,8 

P|«tt6 

klos 

30,4 

25,6 
36.7 
31.7 

28.3 

14.9 
35.1 
33.7 

18.7 

30.1 
7.7 

36.7 

19,4 

15.3 

31,2 
17.9 
8,9 

21,9 

21.0 

10.2 

38.0 
30.3 

43.0 

37,8 
32.4 

16.9 
41.0 

37.2 

19.3 
34.4 
9.1 

38.4 

22.0 

16.3 
33.9 

18.8 

0.8 

23,4 

21.6 
43.8 
34,3 

46.0 
41.7 

34.2 
16,1 

44.9 

38.9 

20.3 
35.2 
9.5 

30.7 

22.9 

16.0 
34.5 

10,7 

10,0 

22,1 
10.5 
48,1 

36,4 

47.6 

38.8 
34.8 

18.2 
44.8 

39.3 

20,5 
35.7 

9.0 

30.8 

22,6 

16.1 
34.7 
19.9 

10.1 
22.5 

24.2 

10.5 

50.4 

38.7 

48,7 

40.8 
35,1 

18.3 

44.5 
44.3 

22.9 
35.4 

9.6 

45.7 
21,9 
16.6 

34.7 
20.0 

10.3 
21.9 
24.2 
11.1 
35 7 

Pl..176 

kips 

30.8 

25.3 
37.1 
30 

27 

14.3 
34.4 
33.8 
19.3 

29.7 
7.82 

33.8 

19.5 

15.2 

32,4 
17.7 
6.8 

19.9 

18.4 

10.2 
36 

28.1 

42.4 
37.6 

30.7 

16.1 
41.1 

35,1 

18.5 
38.4 
9.5 
34 

21.6 

15.4 
34.8 
18.8 

9.75 

23.3 

20.1 
41,4 
30,3 

39.6 

40.1 

31.6 
18.4 

41 

36.4 

19.2 
40.1 
9.96 

36.3 

22.3 
15.3 
35.2 
18.7 

10 

22.6 
11 

42.6 

31 
43.7 

40.2 

32 
16.6 
41 

36.7 
19.5 
40.6 

9.97 

36.6 

22.5 
15.4 

35.3 
16.9 
10.1 

23,6 

22.8 
11.1 

46.8 

34 

45.9 
37 

32.1 

16.6 

43.1 
42.6 

24.9 
33,7 
9.27 

40.3 
20.5 
15.7 

35.3 
19.8 

10 
24.7 
22.8 

10.9 
31.3 

P M M * 

kips 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 
NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 
NaN 
NaN 

P.W.76. 

kios 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 
NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 
NaN 
NaN 

P|M06-

kips 

NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 

NaN 
NaN 
NaN 

NaN 
NaN 

Pl..t75-

kios 
NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 

NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 
NaN 

NaN 
NaN 

NaN 

NaN 
NaN 
NaN 

NaN 

NaN 

NaN 
NaN 
NaN 
NaN 
NaN 

Sludy 

Type 

D 

0 
D 

D 

D 

D 

D 
D 

D 

D 

D 
D 

D 

D 

D 
D 
D 

D 

D 
D 
D 

D 

D 

D 
D 

D 

D 
D 

0 
D 

D 

D 

0 

D 
D 
D 

0 

D 

D 
D 
D 

D 
D 
D 

0 

D 

D 

D 
D 
D 

D 

D 

D 
D 
D 

D 

D 

D 
D 

D 

D 
D 

D 

D 

D 

D 
D 
D 

D 

D 

D 
D 
D 

D 
D 
D 

D 

D 

D 

D 
D 

D 

D 

D 

D 
D 

D 
D 

D 
D 
D 

D 

D 

D 
D 
D 

D 
D 

523 



IDff 

100 
101 
102 
103 
104 
105 
106 
107 
106 
109 
110 
111 
112 
113 
114 
115 
118 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
182 
163 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
178 
177 
178 
179 
160 
181 
182 
183 
184 
165 
188 
187 
188 
169 
190 
191 
192 
193 
194 
195 
196 
197 
198 
198 

SSMA 

section 
1200S162-54 
1200S250-68 
10003200-68 
10003162-54 
8O0S137-68 

100OS162-43 
1200S162-54 
250S137-54 
250S137-54 
4005162-66 
60OS25O-97 
350S162-54 
250S162-33 
250S137-33 
362S137-43 
362S137-68 
250S162-54 
600S137-54 
250S137-33 
800S137-87 
800S137-97 
250S137-68 
250S162-68 
250S162-68 
250S137-54 
250S137-54 
400S162-68 
6Q0S25O-97 
250S162-33 
250S137-33 
362S137-43 
362S137-68 
25 OS 162-54 

600S137-54 
250S137-33 
800S137-97 
8003137-97 
250S162-68 
250S137-68 
250S162-68 
250S162-68 
250S162-68 
250S137-68 
250S162-68 
2503162-68 
250S137-54 
250S137-54 
4003162-68 
6005250-97 

350S162-54 
250S162-33 
250S137-33 
36 2S137-43 
362S137-68 
250S162-54 
600S137-54 
250S137-33 
8003137-97 
800S137-97 
350S162-68 
1000S20Q-97 
350S162-54 
600S200-B8 
550S162-54 
S00S2QO-54 
600S250-43 
600S162-43 
600S250-43 
800S162-43 

1000S250-43 
350S162-68 

10003200-97 
350S162-54 
800S200-6S 
560S162-54 
600S200-54 
600S250-43 
6008162-43 
8005250-43 
8QQS162-43 
1000S250-43 
400S162-68 
2503137-33 
250S137-33 
3623200-43 
362S137-33 
800S137-54 
400S162-33 
600S162-43 
6003250-54 
250S137-68 
250S137-68 
2503162-68 
250S137-54 
250S162-68 
250S137-68 
362S200-68 
350S162-68 
2503137-68 

L 
In. 
24 
46 
42 
36 
32 
44 
46 
26 
32 
54 
92 
66 
58 
60 
84 
88 
98 
96 
94 
94 
96 
12 
16 
22 
26 

32 
54 
92 
58 
60 
84 
88 
96 
96 
94 
94 
96 
6 

12 
16 
22 
8 

12 
16 
22 
26 
32 
54 
92 
66 
58 
60 
84 
68 
96 
96 
94 
94 
96 
34 
68 
24 
74 
42 
66 
56 
32 
74 
40 
80 
34 
88 
24 
74 
42 
66 
56 
32 
74 
40 
60 
42 
32 
18 
20 
30 
42 
18 
26 
34 
10 
12 
16 
18 
22 
24 
40 
40 
34 

L-Mlt 
In. 

3.17 
3.54 
2.94 
2.77 
2.19 
2.78 
3.17 
4,00 
4,00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4 00 
1.09 
1.24 
1.24 
4.00 

4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4,00 
4.00 
4,00 
4.00 
4.00 
0,62 
0.55 
0.62 
0.82 
4,00 
4.00 
4.00 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
4,00 
4,00 
4.00 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
2.53 
5.07 
2.56 
4.45 
3.26 
4.49 
4.17 
3.47 
4.87 
4.17 
5,57 
1.44 
2.90 
1.47 
2.54 
1.87 
2 5 7 
2.38 
1.98 
2,78 
2.38 
3.18 
4.00 
4.00 
4,00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 

hhcW 

In. 
3.17 

3.54 
2.94 
2,77 
2.19 
278 
3.17 
1.11 
1,11 
1.54 
2,30 
1.47 
1.29 
1.14 
1.35 
1.32 
1,27 

1.81 
1.14 
215 
2.15 
1.09 
1.24 
1.24 
056 

056 
0,77 
1.15 
0 6 4 
0.57 
0.68 
0.66 
0,63 
0.91 
0.57 
1.07 
1.07 
0.62 
0.55 
0.62 
0.62 
0,00 
0.00 
0.00 
0,00 
0.00 
0,00 
0.00 
0.00 
0.00 
0.00 
0,00 
0,00 
0.00 
0.00 
0.00 
0.00 
0.00 
0,00 
2.53 
5.07 
2.56 
4.45 
3.26 
4 4 9 
4,17 
3.47 
4,87 
4.17 
5.57 
1.44 
2.90 
1.47 
2.54 
1,87 
2.57 
2 3 8 
1.98 
2,78 
2,38 
3.18 
1.54 
1,14 
1.14 
1.71 
1,36 
2.21 
1.58 
1.98 
2.77 
1.09 
1.09 
1,24 
1,11 
1.24 
1.09 
1.67 
1.44 
1.09 

S 

In. 
12 

15 
14 
12 
16 
14 
15 
13 
16 
13 
13 
13 
14 
12 
12 
12 
12 
12 
13 
13 
12 
12 
16 
22 
13 
16 
13 
13 
14 
12 
12 
12 
12 
12 
13 
13 
12 
6 
12 
16 
22 
8 
12 
16 
22 
13 
16 
13 
13 
13 
14 
12 
12 
12 
12 
12 
13 
13 
12 
17 
12 
12 
12 
14 
13 
14 
16 
12 
13 
13 
17 
12 
12 
12 
14 
13 
14 
16 
12 
13 
13 
14 
18 
18 
20 
15 
14 
18 
13 
17 
10 
12 
16 
16 
22 
12 
13 
13 
17 

#Qf 

holes 
2 
3 
3 
3 
2 
3 
3 
2 
2 
4 
7 
5 
4 
5 
7 
7 
8 
8 
7 
7 
8 
1 
1 
1 
2 
2 
4 
7 
4 
5 
7 
7 
8 
6 
7 
7 
B 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
4 
7 
5 
4 
5 
7 
7 
8 
8 
7 
7 
8 
2 
7 
2 
6 
3 
5 
4 
2 
6 
3 
6 
2 
7 
2 
6 
3 
5 
4 
2 
6 
3 
6 
3 
2 
1 
1 
2 
3 
1 
2 
2 
1 
1 
1 
1 
1 
2 
3 
3 
2 

PV9 
kips 
52.5 

74.0 
61.5 
45.9 
45.8 
36.7 
52.5 
18.5 
18.5 
32,2 
68.5 
24.3 
13,1 
11.6 
17.9 
27.5 
21.0 
30,1 
11,6 
64.0 
64.0 
22 8 
26.0 
26.0 
18.5 
18.5 
32.2 
68.5 
13,1 
11.6 
17.9 
27,5 
21.0 
30.1 
11.8 
64.0 
64.0 
26,0 
22.8 
26.0 
26.0 
26,0 
22.8 
26.0 
26.0 
18,5 
18.5 
32.2 
68.5 
24.3 
13.1 
11.6 
17.9 
27.5 
21,0 
30,1 
11,6 
64.0 

64.0 
30.1 
66.3 
24.3 
53.1 
30.9 
42.5 
31.5 
26.2 
36.7 
31,5 
4 2 0 
30.1 
86.3 
243 
53,1 
30.9 
42,5 
31.5 
26.2 
36.7 
31.5 
42.0 
32.2 
11.6 
11.6 
22.5 
13.8 
36,7 
16.1 
2 6 2 
45.9 
22.8 
22.8 
26,0 
16.5 
26.0 
22.8 
34,8 
30.1 
226 

Py.x.1 

kips 

42,0 

59.2 
49.2 
36.7 
36.7 
29.4 
42.0 
14.8 
14,8 
25.8 
54.8 
19,4 
10,5 
9.2 
14.3 

22.0 
16.8 
24.1 
9.2 

51.2 
51.2 
18.3 
20.8 
20.8 
16.6 

1 6 6 
29.0 
61.6 
11.8 
10.4 
16.1 
24,8 
18.9 
27.1 
10.4 
57.6 
57.6 
23.4 
20,5 
23.4 
23,4 
26.0 
22.8 
26.0 

26.0 
18.5 
18.5 
32.2 
68.5 

24.3 
13.1 
11.6 
17.9 
27.5 

21.0 
30.1 
11.6 
64.0 

64.0 
19.6 
56.1 
15.8 
34.5 

20.1 
27.6 
20.5 
17,0 
23.9 
20.5 
27 .3 
24.1 
69.1 

19.4 
42.5 
24,7 
34,0 

25.2 
20,9 
29,4 
25.2 
33.6 

25.8 
9.2 
9,2 
18.0 
11.1 

29.4 
12.9 
20.9 
36.7 
18,3 

18.3 
20.8 
14.8 
20.8 
18.3 
27.9 
24.1 
18.3 

Pynal/Pyg 

0.80 

0.60 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 

0.80 
0.80 

0.80 
0.80 
0.80 
0 80 

0.80 
0.80 
0.80 
0,80 
0.80 
0.80 
0.80 
0 80 
0.80 
0.90 

0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0,90 
0,90 
0.90 
0.90 
0,90 
0,90 
0.90 
0.90 
0.90 
0.90 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 
1,00 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

1.00 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 

0.65 
0.85 
0.80 
0.80 
0,80 

0.80 
0.80 
0.80 

0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.60 
0.80 
0.80 
0.80 
0,80 
0 80 
0.80 

0,80 
0.80 
0.80 
0.80 

P « 
kips 

3.1 

7.0 
8.5 
4.0 
8.8 

2.0 
3.1 

24.9 
24,9 
27.4 
52 .3 
16,7 
6.3 
5.7 
7.4 

28.8 
27,4 
7.2 
5.7 

2 2 9 
22.9 
49.5 
54.7 
54.7 
24.9 

24.9 
27,4 
52 .3 
6.3 
5.7 
7.4 

28.5 
27.4 

7.0 
5.7 

22.9 
22.9 
54,7 
49.5 
54.7 
54.7 
54,7 
49.5 
54.7 

54.7 
24.9 
24.9 
27.4 
52.3 

16.7 
6 3 
5.7 
7.4 

28.6 
27,4 
7.2 
5,7 

22.9 

22.9 
33.5 
23.5 
16.7 

11.4 
8.8 
5.5 
4.6 
4.0 
3.1 

2.7 
2.3 

33.5 
23.5 

16.7 
11,4 
B.e 
5.8 

4.6 
4,0 
3.1 
2.7 
2.3 

27.4 
5.7 
5.7 
8,9 
3.3 
4.8 
3.2 
4.0 
6.1 
49.5 
49,5 
54.7 
24.9 
54.7 
49.5 
35,3 
33.5 
40.6 

Pom 

kips 

3.0 

8.8 
10.3 
4.5 
7.9 

2.5 
3,0 
19,8 
19,8 

30.4 
55.6 
20.6 
6.8 
7.2 
9.7 

24.0 
23.5 
7.1 
7.2 

15.8 
15.8 
38.5 
43.6 
43.6 

19.8 
19.8 
30.4 
55.6 
8.8 
7.2 
9,7 

24.0 
23,5 
7.1 

7.2 
15.6 
15.8 
44,7 
39.6 
44.7 
44.7 
45,0 
40,9 
45,0 
45,0 
24,7 
24,7 
35.6 
63.0 
24,0 
9.8 
6.7 
11,6 
31,5 
27.8 
8.9 
8.7 

22.9 

22.9 
35.2 
20.9 
21.9 
15.2 
13.0 
9.6 

10.6 
6 8 

6.9 
3.9 
4,5 

37.0 
23.0 
22.9 
16.1 
13.7 
10.1 

11.0 

7.2 
7,3 
4.1 
4.8 

30.4 
7.2 
7.2 
14.7 
5.B 
4 2 
8.9 
6.7 
11.9 
31.1 
31.1 
38.2 
19.6 

38.2 
31.1 
37.6 
32.7 
31.1 

Per. 

kipa 
105.2 

96.9 
71.7 
45.1 
37.5 
24.8 
28.6 
12.8 
9.5 

11.6 
18.8 
5,3 
2.4 
1.6 
2.1 
3.9 
2,0 
3,2 
0.9 
5.5 
5.2 

89.9 
68.9 
37,4 
13.2 
9.8 
12.0 
19.5 
2.4 
1.7 
2.2 
4.0 
2.1 
3.3 
0.9 
5.5 
5.3 

280.3 
95.2 
74.5 
4 0 6 
303.2 
99.7 
77.3 
41,9 
18.5 
12.7 
16.4 
26.7 
7.5 
3.3 
2.4 
3.1 
4.1 
2,7 
3.3 
1.1 
5.6 
5.3 

25.9 
18.8 
36.6 
16.0 
21.5 
16.4 
19,1 
33.0 
13.4 
23.4 
13.8 
28.7 
22.4 
42.9 
21.3 
25.4 
21.5 
24.1 
38,6 
18,6 
28.6 
19.7 
16.9 
5.0 

15.2 
5 3 7 
9.7 

17,0 
42.7 
42.8 
90.9 
92.2 
64.8 
50.7 
24.3 
27.7 
18.0 
21.6 
15.6 
10.2 

P.«n6 

kips 

13.5 

22.6 
21.3 
12.4 
16.9 
8,3 
10.0 
11,2 
10,9 
13.7 
24.4 
7,9 
3.1 
3.2 
2.6 
3.7 
3.5 
2 9 
1.5 
5.0 
4.7 
18.9 
19.3 
18.2 
12.8 
11.7 
15.2 
25.6 
3.2 
2.4 
2.8 
3,9 
4.0 
3.0 
1.6 
5.0 
4.8 

24.0 
19.9 
23.5 
22.9 
24.7 
20,8 
23.0 
22.8 
15.1 
11.9 
16.3 
25 6 
7.5 
5.4 
2.4 

3 0 
4.0 
4.2 
3.1 
1.2 
5.1 
4,9 
13.1 
15.7 
11.2 
12.6 
10,7 
10.2 
9.6 
8.8 
8.7 
8.3 
8.2 

19.7 
17.0 
15.2 
13.9 
12.7 
11.2 
11.7 
10.1 
8.8 
8.1 
8.8 
17.5 
5.6 
5.8 
11.1 
5.6 
8,8 
6.8 
10.7 
17,9 
148 
15.1 
17,B 

11.9 
18,7 
14,3 
20.2 
16.4 
12.7 

PlWI76 
kips 

13.5 

22.4 
21 

12.5 
17,2 
8.66 
10.3 
10.2 
10.1 
12.1 
22,2 
7.14 
4.29 
2.91 
2.37 
3.37 
3.29 
2,64 
1.36 
4.6 
4.4 
15.6 
19.3 
17.8 

11.2 
10,2 
12.6 
22.8 
3.00 
2.63 
2.4 
3,47 
3.51 

2.67 
1.39 
4.84 
4.43 
21.3 
17 

21.2 
19.8 
21.5 
17.1 
21.4 
19,9 
11.7 
10.5 
13.4 
23.3 
7.65 
3.06 
2 4 1 
2.48 
3.59 
3.63 
2.76 
1.42 
4.71 
4.5 
12.9 
15.3 
11 

12.4 
10.2 
10.2 
9.81 
8.8 

8,66 
6.33 
7.74 
18 

16.1 
14.3 
13.6 
11 9 
11.2 
11.6 
10 

9.43 
8.82 
8.78 
15.7 
5.33 
5,41 
11.2 
5.6 

8.79 
7 06 
10.7 
16.7 
13.2 
13.8 
17.3 
11.1 
16.5 
13.8 
18,7 
14.7 
11 0 

P|«H26« 

kips 
NaN 

NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
10,6 
9.71 
13.2 
23.2 
6,8 

2.86 
2.16 
263 
3.75 
2,54 
3.03 
1.07 
5.09 
4.85 
NaN 
NaN 
NaN 

12.30 
10.20 
14.40 
23,20 
2.91 
2.22 
2.76 
3.85 
2,61 

3,22 
1.10 
5.18 
4.94 
NaN 
NaN 
NaN 
NaN 
24.7 
20.6 
23 

22,8 
13,4 
10.5 
14.6 
23.4 

7 
2,98 
2.27 
2.76 
3.9 

2.66 
3,25 
1.12 
5.32 
5 08 
13 

16.2 
11.2 
12.2 
10.9 
9.97 
9.51 
8.83 
8,87 
7.89 
NaN 
19.3 
17.9 
15,1 
13.5 
13 
11 

11,6 
10,2 
9.38 
8.46 
8.14 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 

P<»I7B* 

kips 
NaN 

NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
9.51 
8.51 
11.4 
20,5 
6.27 
2.5B 
2.04 
2.37 
3.2 

2,46 
2.91 
1.03 
4 8 3 
4.6 

NaN 
NaN 
NaN 
10,20 
8,66 

12.00 
20.50 
2.62 
2.07 
2.41 
3.26 
2.52 
3.07 
1.06 
4.87 
4.64 
NaN 
NaN 
NaN 
NaN 
21.5 
17.1 
21.4 
19.9 
10.7 
8.94 
128 
20.8 
6.52 
2.72 
2.15 
2.48 
3.31 
2.61 
3 0 9 
1.1 

4.94 
4.71 
12.7 
16.2 
11 

11.8 
10.6 
9.85 
0.01 
9.04 
8.0 

6.18 
8 

17.4 
17.3 
14.3 
13 

12.3 
10.7 
11.4 
10,1 
9.71 
8.68 
8.84 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 

P.«E6-

klps 
NaN 

NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
263 
3.63 
NaN 
276 
NaN 
4.83 
4.61 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
2.76 
3,83 
NaN 
2.83 
NaN 
4.90 
4 69 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
2.81 
3.99 
NaN 
2.94 
NaN 
5.01 
4,61 
13 

15.2 
11.2 
12.9 
10.4 
10,4 
9,77 
8,77 
8.58 
NaN 
8.11 
18.3 
16.3 
15.1 
14.3 
12.5 
11.5 
11.8 
9.98 
NaN 
9.14 
8,69 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 

P|Wt7B-
kips 

NaN 

NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
2.37 
3.23 
NaN 
2.53 
NaN 
4.41 
4.21 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
2.41 
3,32 
NaN 

2.55 
NaN 
4.44 
4.25 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
2.48 
3.43 
NaN 
2.62 
NaN 
4.5 
4,3 
12.7 
14.5 
11 

13.1 
9.86 
10.8 
0.93 
8.72 
8.39 
6.88 
7.46 
17.4 
15.2 
14.3 
14.3 
11.5 
11.6 
11.9 
9,69 
9.19 
9.25 
8.62 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 
NaN 

Stud 
Typ. 

G 
G 
G 
G 
G 
Q 

G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
G 
L 
L 
L 
L 
L 
L 
L 
L 
L 
I 
I 
L 
L 
I 
L 
L 
L 
L 
I 
L 
L 
L 

524 



I D * 

200 
201 

202 
203 
204 
205 
206 
206 

206 
210 
211 
212 
213 

SSMA 

section 
362S137-68 

250S162-43 
350S162-68 

1000S2 00-87 
350S162-54 
800S200-68 
5503162-54 
800S200-54 

6008250-43 
6O0S162-43 
800S250-43 
800S162-43 

1000S250-43 

I 

in, 
46 

42 
34 
66 

24 
74 
42 
66 

56 
32 
74 
40 
80 

I-hot. 

in. 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 

4.00 
4.00 
4.00 
4.00 
4.00 

hr»» 

if?. 
1.32 
1.28 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

s 
In. 
15 
14 
17 
12 
12 
12 
14 
13 
14 
16 
12 
13 
13 

#o f 

holes 
3 
3 
2 
7 
2 

e 
3 
5 
4 
2 
6 
3 
6 

P»g 

kips 
27.5 
16.8 
30.1 
66.3 
24.3 
53.1 
30. B 
42.5 
31.5 
26.2 
36.7 
31.5 
42.0 

Pynrf 
kips 

22.0 
13.5 
30.1 
66.3 
24.3 
53.1 
30.9 
42.5 
31.5 
26,2 
36.7 
31.5 
42.0 

F W P „ 

0 8 0 

0.80 
1,00 
1,00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1 0 0 
1.00 
1,00 

Pert 
hips 
28.8 

13.0 
33.5 
23.5 
16.7 
11.4 
8.8 
5.8 
4.6 
4.0 
3.1 
2.7 
2.3 

PSn. 
hips 

24.0 
14.0 
38.4 
25.6 
24.0 
17.4 
14.6 
10.8 
11.1 
7.8 
7.7 
4.4 
5,1 

Pw» 
kips 
0.9 

5.3 
31.5 
2 2 0 
40 4 
23.1 
29.0 
23,6 
20,6 
42.1 
24.0 
20.1 
24.2 

Pmtct 

kips 

11.0 
7.2 

22,6 
176 
16.0 
14.1 
13.0 
11.6 
12.2 
10.1 
0.7 
6.7 
8.9 

PlMffS 

kips 
10.8 

6.67 
10.4 
16.5 
15 

13.9 
12 

1 1 4 
12 

10.1 
9.64 
8.94 
8,69 

P|«I2*+ 

klpa 

NaN 
NaN 
2 2 3 
19.4 
169 
14 

1 3 2 
11.3 
12 

10.2 
0.84 
NaN 
8.82 

P.«.76* 
kips 

NaN 

NaN 
18.7 
16 
15 

13.2 
12.5 
11 

11.8 
10.3 
9.9 
8,74 
9.64 

Pt«es. 

kips 

NaN 
NaN 
19.3 
17 

16.9 
14.7 
12.7 
11,6 
12.3 
10 

9.62 
9.32 
8 79 

P|«,76-

kips 
NaN 

NaN 
187 
15.5 
15 

14.5 
11.6 
11.9 
12.2 
0.97 
9.4 
9.42 
8.72 

Stuc 

Typ 

L 
L 
L 
I 
L 
L 
L 
I 
L 
L 
I 
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Appendix L 

Simulated beam experiment database 

The table provided in this appendix summarizes the dimensions, elastic buckling 

moments, and tested strengths of simulated beam experiments described in Section 

8.2.1. The letters in the "Study type" column denote simulations considered in the DSM 

failure mode studies: "D" for the distortional buckling failure study in Section 8.2.3 and 

"L" for the local buckling failure study in Section 8.2.2. 
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ID# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
16 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
63 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

S S M A section 

400S162-68 
400S137-54 

550S162-54 

800S137-68 
800S162-54 
800S137-54 

1200S250-68 

1200S162-68 
1200S250-54 

1000S162-43 

1200S162-54 

400S162-68 

400S137-54 

550S162-54 

BOOS137-68 
800S162-54 

800S137-54 

1200S250-68 

1200S162-68 
1200S250-54 

1000S162-43 

1200S162-54 

400S162-68 

400S137-54 

550S162-54 

800S137-68 

800S162-54 
800S137-54 

1200S250-68 

1200S162-68 

1200S250-54 

1000S162-43 

1200S162-54 

400S162-68 

400S137-54 

550S162-54 

800S137-68 

800S162-54 
800S137-54 

1200S250-68 
1200S162-68 
1200S250-54 

1000S162-43 
1200S162-54 

400S162-68 

400S137-54 
550S162-54 

800S137-68 
800S162-54 

800S137-54 

1200S250-68 

1200S162-68 
1200S250-54 

1000S162-43 
1200S162-54 

400S162-68 

400S137-54 

550S162-54 

800S137-68 

800S162-54 
800S137-54 

1200S250-68 

1200S162-68 

1200S250-54 

1000S162-43 
1200S162-54 

400S162-68 
400S137-54 

550S162-54 

800S137-68 

800S162-54 

800S137-54 

1200S250-68 
1200S162-68 

1200S250-54 

1000S162-43 

1200S162-54 

I 
In. 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 

Uwte 

In. 
3.1 
2.8 
3.7 
4.4 
4.7 
4.4 
7.1 
6.3 
7.1 
5.6 
6.3 
2.3 
2.1 
2.8 
3.3 
3.5 
3.3 
5.3 
4.7 
5.3 
4.2 
4.7 
1.5 
1.4 
1.9 
2.2 
2.4 
2.2 
3.5 
3.1 
3.6 
2.8 
3.2 
0.8 
0.7 
0.9 
1.1 
1.2 
1.1 
1.8 
1.6 
1.8 
1.4 
1.6 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
2.8 
2.7 
3.7 
4.7 
5.0 
4.8 
7.4 
6.9 
7.5 
6.0 
6.9 
2.2 
2.2 
2.9 
3.8 
3.9 
3.8 
5.9 
5.5 
5.9 
4.7 
5.5 

hhoto 

in. 
3.1 
2.8 
3.7 
4.4 
4.7 
4.4 
7.1 
6.3 
7.1 
5.6 
6.3 
2.3 
2.1 
2.8 
3.3 
3.5 
3.3 
5.3 
4.7 
5.3 
4.2 
4.7 
1.5 
1.4 
1.9 
2.2 
2.4 
2.2 
3.5 
3.1 
3,6 
2.8 
3.2 
0.8 
0.7 
0.9 
1.1 
1.2 
1.1 
1.8 
1.6 
1.8 
1.4 
1.6 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
2.8 
2.7 
3.7 
4.7 
5.0 
4.8 
7.4 
6.9 
7.5 
6.0 
6.9 
2.2 
2.2 
2.9 
3.8 
3.9 
3.8 
5.9 
5.5 
5.9 
4.7 
5.5 

# of holes 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

S 
in. 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

F, 
ksi 
58.6 
58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 
58.6 

58.6 
58.6 

68.6 
58.6 

58.6 

68.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

58.6 

58.6 
56.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 
58.6 

58.6 
58.6 

58.6 
58.6 
58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

68.6 
58.6 

58.6 
58.6 

58.6 

58.6 
58.6 

58.6 
58.6 
58.6 

58.6 

58.6 

58.6 

58.6 
58.6 

58.6 
56.6 

58.6 

58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

58.6 

58.6 

My 
Hip-in. 
39.4 

27.9 
49.5 

92.2 

84.0 
74.8 

239.0 

190.5 

192.1 

94.0 

153.5 
39.4 

27.9 
49.5 

92.2 
84.0 

74.8 

239.0 

190.5 
192.1 

94.0 

153.5 

39.4 

27.9 

49.5 

92.2 
84.0 

74.8 

239.0 

190.5 

192.1 

94.0 

153.5 

39.4 

27.9 
49.5 

92.2 

84.0 
74.8 
239.0 

190.5 

192.1 
94.0 

153.5 
39.4 

27.9 

49.5 
92.2 

84,0 

74.8 

239.0 

190.5 

192.1 

94.0 
153.5 

39.4 

27.9 

49.5 
92.2 

84.0 
74.8 

239.0 

190.5 

192.1 

94.0 
153.5 
39.4 

27.9 

49.5 

92.2 

84.0 

74.8 

239.0 
190.6 

192.1 

94.0 
153.5 

M,„« 

kip-In. 
34.3 
24.6 

44.3 

84.9 

76.7 
66.8 

218.3 

176.1 

175.4 

86.4 

141.9 
37.2 

26.6 
47.3 

89.1 
80.9 

72.3 

230.3 

184.4 

185.1 

90.8 

148.6 

38.8 

27.5 

48.8 

91.3 

83.1 
74.0 

236.4 

188.7 

190.0 
93.1 

152.1 

39.3 

27.8 

49.4 

92.1 

83.9 
74.7 

238.7 

190.3 

191.9 
93.9 
153.4 

39.4 

27.9 

49.5 
92.2 

84.0 

74.8 

239.0 

190.5 
192.1 

94.0 

153.5 
35.5 

25.1 

44.5 

83.0 

75.6 
67.3 

215.1 

171.4 

172.9 
84.6 

138.2 
37.4 

26.5 

47.0 
87,6 

79.8 

71.1 

227.0 
181.0 

182.5 

89.3 

145.9 

M„, 
kip-In. 
156,3 
76.5 

74.6 

101.6 
62.7 

52.2 

124.9 

87.6 

63.3 

26.6 

44.6 

156.3 

69.6 

62.7 

83.0 
47.1 

42.1 

93.3 

76.9 

47.1 

21.3 

38.7 
148.4 

71.8 

68.6 

105.7 

62.7 
55.4 

124.9 

99.6 

63.3 
29.0 

51.7 

156,3 

76.5 
74.8 

105.7 

62.7 

55.4 

124.9 
99.6 

63.3 
29.0 

51,7 

156.3 

76.5 
74.8 

105.7 

62.7 

55.4 

124.9 

99.6 
63.3 

29.0 
51.7 

156.3 

76.5 

74.8 
105.7 

62.7 
55.4 
124.9 

99.6 

63.3 

29.0 
50.9 
153.4 

71.1 

65.7 

85.0 

49.9 

43.3 

99.0 
76.9 

50.1 

22.1 

38.9 

Mod 
kip-in. 
77.1 

40.8 

57.1 

68.8 

61.5 
43.0 

123.7 

72.1 

73.9 

32.7 

45.7 

79.8 

42.5 

59.3 

75.7 
64.7 

46.4 

130.3 

79.4 

77.4 

34.6 

49.2 

82.3 

44.2 

61.5 

82.3 

67.8 
49.6 

136.7 

86.5 

80.8 
36.4 

52.7 

84.7 

45.8 

63.6 

88.7 

70.9 

52.8 

143.1 
93.3 

84.2 
38.1 

56.0 
85.4 

46.6 

64.9 

94.2 

73.3 

55.6 

148.4 

99.4 

87.0 
39.7 

59.1 

78.0 

41.1 

57.2 

66.5 

60.9 
42.0 
122.4 

69.1 

73.3 
32.2 
44.3 

80.0 
42.5 

59.1 
72.8 

63.7 

45.0 

128.1 
75.9 

76.3 

33.8 

47.6 

MtMizs 

klp-ln. 
35.1 
24.4 
41.1 

73.2 

62.3 
55.9 
155 
134 
108 
58.1 

98.7 
36.7 

26.3 
44.4 

74.8 
67.4 

57.1 

159 
137 
105 
53.8 

99.9 

39.3 

26.5 

44.6 
75.6 

68.3 
57.5 

162 
136 
114 
56 
100 
39.5 

26.5 

44.9 

76 
68.7 

57.6 
163 
136 
111 
56.9 
100 
39.4 

25,4 

44.7 
76.2 

65.4 

57 
NaN 
136 
NaN 
59.8 
100 
36.5 

25.3 

41.3 
71.7 

60.8 
55.2 

158 
133 
108 
57.4 

97.6 
38.4 

26.2 
44.1 

74.3 

66.5 

56.8 

158 
136 
104 
55.2 

99.4 

M|OS,75 

klp-ln. 
30.2 

22.6 
39.2 

66.2 

61.4 
50.9 

152 
128 
107 
56.4 

96,2 

31.2 

23.3 

40.7 

67.3 

63.8 
52.1 

155 
129 
109 
57,7 

99.1 

31.3 
23.4 

41.1 

67.8 

64.5 
52.9 

157 
130 
112 
58.5 

99.7 

31.3 

23.4 

41.3 

68 
65.3 

53.2 

160 
130 
112 
58.8 

99.9 
33.1 

22.6 
41,4 

68.2 

60.5 

52.8 

159 
130 
119 
61.9 
100 
31.8 

23.3 

39.3 

65.6 

60.1 
50.6 

168 
127 
107 
51.7 

95.3 

33.8 
23.3 

40.6 

66.9 
63.4 

62.1 

154 
129 
109 
56.8 

96.5 

Study Type 

D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
• 
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ID# 

78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 

SSMA section 

550S162-33 
600S162-33 

1000S200-54 

800S162-43 

800S200-43 
600S200-33 

1200S200-54 

1000S200-43 

1000S250-43 

800S137-33 

800S162-33 

800S200-33 

550S162-33 

600S162-33 
1000S200-54 

800S162-43 

800S200-43 

600S200-33 

1200S200-54 

1000S200-43 
1000S250-43 

800S137-33 

800S162-33 
800S200-33 

550S162-33 

600S162-33 

1000S200-54 
800S162-43 
800S200-43 

600S200-33 
1200S200-54 

1000S200-43 

1000S250-43 

800S137-33 
800S162-33 

800S200-33 

550S162-33 

600S162-33 

1000S200-54 

800S162-43 

800S200-43 
600S200-33 
1200S200-54 

1000S200-43 

1000S250-43 
800S137-33 

800S162-33 
800S200-33 

L 
in. 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 
48 

Uote 

In. 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
4.2 
4.5 
7.1 
5.7 
6.0 
4.8 
8.2 
7.1 
7.4 
5.5 
5.7 
6.0 
3.7 
4.0 
6.2 
5.0 
5.2 
4.2 
7.2 
6.2 
6.5 
4.8 
5.0 
5.2 
2.9 
3.1 
4.9 
3.9 
4.1 
3.3 
5.7 
4.9 
5.1 
3.8 
4.0 
4.1 

hhola 

In. 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
4.2 
4.5 
7.1 
5.7 
6.0 
4.8 
8.2 
7.1 
7.4 
5.5 
5.7 
6.0 
3.7 
4.0 
6.2 
5.0 
5.2 
4.2 
7.2 
6.2 
6.5 
4.8 
5.0 
5.2 
2.9 
3.1 
4.9 
3.9 
4.1 
3.3 
5.7 
4.9 
5.1 
3.8 
4.0 
4.1 

# of holes 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

S 
in. 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

F> 
ksl 
58.6 
58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

58.6 
58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

58.6 

58.6 

58.6 

58.6 

58.6 
58.6 
58.6 
58.6 

58.6 
58.6 

58.6 

58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

58.6 

58.6 
58.6 
58.6 

58.6 

58.6 

58.6 
58.6 

58.6 

My 
kip-in. 
31.1 
35.0 

132.1 

67.8 

77.6 

40.5 
172.4 

106.4 

119.5 

46.8 

52.4 

60.0 

31.1 

35.0 
132.1 

67.8 
77.6 

40.5 
172.4 

106.4 

119.5 

46.8 

52.4 

60.0 

31.1 

35.0 
132.1 

67.8 
77.6 
40.5 

172.4 

106.4 

119.5 

46.8 
62.4 

60.0 

31.1 

35.0 

132.1 

67.8 

77.6 
40.5 
172.4 

106.4 

119.5 
46.8 

52.4 

60.0 

Mynrt 

kip-in. 
31.1 
35.0 

132.1 

67.8 

77.6 

40.5 

172.4 

106.4 

119.5 
46.8 

52.4 

60.0 

26.4 

29.7 

112.3 

57.7 
66.0 

34.4 

146.5 

90.5 

101.6 
39.8 

44.6 

51.0 

28.0 

31.5 

118.9 
61.1 
69.9 

36.5 

155.2 

95.8 

107.6 

42.1 
47.2 

54.0 

29.5 
33.2 

125.5 

64.4 

73.7 

38.5 

163.8 
101.1 

113.5 
44.5 

49.8 

57.0 

M„, 
kip-in. 
17.5 
16.8 

63.2 

32.2 

35.9 

18.4 

58.1 

32.3 

35.2 

13.3 
14.7 

16.3 

17.5 

16.8 
63.2 

32.2 
35.9 

18.4 

58.1 

32.3 
35.2 
13.3 

14.7 

16.3 

17.5 

16.8 

63.2 
32.2 

35.9 
18.4 

58.1 

32.3 

35.2 

13.3 

14.7 

16.3 

16.1 

15.0 

50.0 

25.6 

30.3 
17.8 
44.3 

25.6 

29.3 
10.4 

12.0 
14.2 

Mwd 

kip-In. 
23.5 
24.0 

85.9 
43.7 

53.1 
26.8 

84.2 

53.7 

54.2 

19.2 

24.9 

31.0 

20.9 

21.2 
70.5 

35.9 
46.2 

24,5 

67.3 

45.2 
46.7 
15.3 

21.1 

27.5 

21.3 

21.6 

72.6 

37.0 
47.1 

24.8 

69.5 

46.4 

47.7 

15.8 

21.6 

27.9 

21.8 
22.1 

75.5 

38.5 

48.5 
25.3 
72.7 

48.0 

49.1 
16.6 

22.4 

28.6 

MiMS 
kip-In. 
22.2 
22.9 

94.4 

48.7 

54.2 
25.7 

115 
67.6 

66.4 

26.3 

31.5 

33.8 

19 
20.2 

81.9 
41.7 
45.6 

22.2 

100 
57.7 

61 
25.5 

27.6 
29.4 

20.6 

21.6 

88.6 
43.8 

48.6 
NaN 
108 
62.2 

63.4 

27.1 

29.3 

30.1 

22.3 

22.4 

92.4 

46.2 

49.9 
23.6 

113 
64.5 

64.4 

28.2 

30.9 
31.7 

MteM7S 

klp-in. 
20.4 
23.6 

88.8 

47.5 

51.4 
25.2 

112 
65.3 
66.7 

26.7 

31.8 

32.3 

19 
20.3 
82 
40.8 
45.5 

22.2 

103 
57.7 
59.6 
25.6 

27.5 

29.2 

20.8 

20.9 

85 
42.7 
48 
NaN 
107 
62.1 

61.6 

26.9 

29.8 

30.4 

22.2 
22.5 

87.5 

43.9 

46.6 
23.3 
113 
63.4 

63 
27.8 

30.3 
31 

Study Type 

L 
L 
L 
L 
L 
I 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
I 
L 
L 
L 
L 
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Curriculum Vitae 

Cristopher Dennis Moen was born in Tucson, Arizona on October 7, 1973, the son of 
Dennis and Nancy Moen. After completing his high school degree at Lake Braddock 
Secondary School, Burke, Virginia, in 1991, he attended the University of Virginia in 
Charlottesville, Virginia where he received the degree of Bachelor of Science in Civil 
Engineering in 1995. He continued on at U.Va. and received a Masters of Science degree 
in Civil Engineering in 1997, during which he conducted high-performance concrete 
research at the Virginia Transportation Research Council. From 1997 to 2002 he was 
employed as a bridge engineer for J. Muller International in New York, New York and 
was involved in the design and construction of the first precast segmental concrete 
highway bridge constructed in New York City, connecting the Brooklyn-Queens 
Expressway over Marcy Avenue to the Williamsburg Bridge. He married Estela June 
Patron on August 10, 2002 in Richmond, Virginia and moved to Baltimore, Maryland 
shortly thereafter. He continued as a bridge engineer at Parsons Corporation from 2002 
to 2004, where he served on the design and construction engineering team for the main 
spans of the Woodrow Wilson Bridge crossing the Potomac River. He enrolled at Johns 
Hopkins University in 2004, and received the degree of Doctor of Philosophy in Civil 
Engineering in 2008, where he studied the stability of thin-walled structures, and 
specifically the behavior of cold-formed steel structural members. He was hired as an 
assistant professor in the Via Department of Civil and Environmental Engineering at 
Virginia Tech in August 2008. 

529 


