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Abstract 

Modern drug development is marked by high failure rates in translation to the clinic. Further, 

many drugs that succeed in clinical trials work for only a fraction of patients. Systems pharmacology 

attempts to address these challenges by improving our understanding of the disease-therapy system, 

integrating detailed molecular interactions, cellular signaling, tissue architecture, and whole body 

physiology. I built cutting-edge, molecularly-detailed, multi-scale computational models to study the 

effects of immobilization of growth factors on signaling in angiogenesis, focusing in particular on the 

binding of vascular endothelial growth factor (VEGF) family members to the ECM. While most studies of 

VEGF signaling use only VEGF presented in solution, there is evidence that a large potion of VEGF may 

be ECM-bound in vivo, and relative expression of isoforms binding to ECM vs. found only in solution 

varies by tissue and changes in disease, motivating further study of this question. Starting at the in vitro 

level, we showed that differential signaling of VEGF-receptor 2 (VEGFR2) in response to soluble vs. 

immobilized VEGF can be explained by reduced internalization of ECM-VEGF-VEGFR2 complexes. 

Moving in vivo, we predicted differences in both growth factor distribution and receptor activation by 

VEGF family ligands, as a function of their ECM-binding properties. These predictions are consistent with 

observed vascular phenotypes in mice expressing single VEGF isoforms. Next, we explored how VEGF 

splicing changes in peripheral artery disease lead to impaired angiogenic responses to ischemia. Our model 

showed that the VEGF165b isoform, which does not bind to ECM or to the coreceptor NRP1, is a weak 

activator of VEGFR2 in vivo, and competes for binding to VEGF-receptor 1, but not VEGF-receptor 2. 

Finally, we used this model to screen potential therapeutic strategies designed to promote VEGF-mediated 

revascularization in ischemic disease and tissue engineering applications. Within a single system, we 

compared failed and promising biomaterial-based VEGF delivery systems, antibody-based therapeutics, 

and gene therapy strategies to identify key rules for design, optimization, and translation of these pro-

angiogenic therapies. 
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Additional Committee Members: Kalina Hristova, PhD & Brian Annex, MD (University of Virginia) 



 iii 

Acknowledgments 

It simply isn’t possible to make it through a 6-year PhD journey without having far more people to 

thank than can be acknowledged in a brief note tucked into the front matter of a thesis. That said, I would 

be incredibly amiss if I didn’t do my best to briefly yet sincerely thank all of those that have a claim in this 

accomplishment, whether they are passionate about VEGF or not! 

 I have to start with most heartfelt thanks to my advisor, Feilim, who has seen every up and down 

along the way, and provided so much thoughtful, meaningful, and constructive guidance during my time at 

Johns Hopkins. I would not have had near as productive or enjoyable a time with any other advisor, and I 

would not have grown near as much as a scientist, a communicator, and a person (and a maker of 

aesthetically pleasing plots, and a frequent user of semi-colons…) without him. Feilim provided so much 

support and guidance, but also let me undertake many more far-fetched side-schemes (and teaching!) along 

the way than any normal advisor would have. He gave me the resources and connected me with the people 

I needed to work past roadblocks, and let me explore wherever the science ended up taking me, even if that 

wasn’t quite the direction I meant to go when I set out… So, many, many sincere thanks. I assure you that 

this won’t be the last you see of me! 

 The friendly, supportive, and Christmas-decorating culture of the Mac Gabhann lab has made this 

a great home for the last six years. Thank you to all of those who have helped to make it such a wonderful 

environment, and for all the questions on one topic or another you’ve helped with over the years- Liz, Yas, 

Iraj, Laura, and Joe. To the current lab members (Sarvenaz, Inez, Christy), thanks for listening to my VEGF 

spiel so many times, and for happily continuing to make the lab a wonderful place − I have no doubts that 

the lab community and science will only keep getting better! A special thanks to Sarvenaz (and Feilim), 

who spent many hours showing a computational modeler how to navigate a wet lab. Thanks also to several 

undergrads and high schools students who have left their marks on this project over the years: Luis Milburn 

did some of the earliest work on finding useful ways to visualize complicated model outputs, Amanda 

Bertsch worked on a mouse version of this giant model, and Seleste Villalon was a great sport about 

running my wet lab experiments while I disappeared off to Gaithersburg for the summer. 

 Many thanks as well to my wonderful committee members: Brian Annex, Hai-Quan Mao, and 

Kalina Hristova, for their unique and valuable expertise, which has helped to make this work more accurate 



 iv 

and more useful than it would have been if left solely in the hands of a computational modeler. Brian 

Annex in particular has been invaluable in helping me to understand what the model was telling me, and 

making sure I communicate results in a way that is accessible to biologists and clinicians . Thanks also to 

the many other scientists who have provided me with opportunities, data, or feedback and guidance on my 

project (or on not-so-scientific questions), both at Hopkins and elsewhere, including Sasha Popel, Jeff 

Hubbell, Shayn Peirce-Cottler, Vicki Bautch, and Vijay Ganta. It is also important for me to note all of 

those (too many to name!) upon whose scientific contributions this work is based; without building upon 

previous modeling work, and leveraging fantastic and careful measured experimental results from many 

groups around the world, none of this work would have been possible. 

 Thank you to those that have made navigating the requirements of graduate school easier: Alecia, 

Tifphany, Chris, Joanne, Sabrina, Stephanie, and the whole ICM community, Hong for her one-of-a-kind 

support in the BME department, and the many, many friends that have made grad school so much fun, and 

been there to help when I struggle. Special thanks to Lulu Chu; she wasn’t technically a lab-mate, but she 

was an office-mate, is a good friend, helped me so much along the way, and even put me in the way of my 

internship with AstraZeneca. Thanks so much for letting me pick your brain and leverage all your hard 

work networking; I still owe you macaroons! 

 I also owe a real debt to the many people at Purdue University who played a part in getting me to 

Hopkins. Even though I spent more years at Hopkins, I will always be a Boilermaker at heart (even if 

cheering for Purdue sports requires a bit of fortitude). Above all, sincere thanks to Ann Rundell. She was a 

fantastic mentor, role model, and computational modeling and controls enthusiast who taught me so much 

about science, but also about how to love being a scientist and educator. 

 Thanks to the whole Quantitative Clinical Pharmacology crew at AstraZeneca, but especially 

Dave Boulton and Don Stanski for giving me a chance and a lot of new experiences as a summer intern, 

and providing me a great place to continue indulging my love of modeling as I finish my PhD. 

 I’ve saved my family for last, but of course they are not least in deserving my thanks. My parents 

Tom & Karen have been incredibly supportive over the years, and made sure that I always had great 

opportunities to learn and grow! My little brother Andy has had to deal with lots of big sister advice and 

nicknames over the years, and yet somehow still supports me. My big sister Jackie has always been there 



 v 

for me, both scientifically and as a sister, even if she does make fun of my limited wet lab skills! The whole 

Clegg clan is a wonderful cheering section as well, so thank you. 

 And Brian…. words cannot describe how thankful I am for his support over the years. He never 

would have ended up in Baltimore if not for me, much less have a crazy dog to chase after! My husband 

Brian now knows far, far more about blood vessels and proteins than he ever hoped to, but he has 

nonetheless been a stalwart supporter, keeping me grounded through thick and thin. I can safely say that he 

is as excited as I am (or maybe more?) for me to finally finish school! 

 For those mentioned here and those not included by name − thank you. You are all so much a part 

of who I am, as a scientist and as a person. 

  

  



 vi 

Table of Contents 

Abstract .............................................................................................................................. ii 

Acknowledgments ............................................................................................................ iii 

List of Tables ..................................................................................................................... x 

List of Figures .................................................................................................................. xii 

Section I: Background & Motivation .............................................................................. 1 

Chapter 1. Introduction ................................................................................................... 2 

1.1 A Note on Published Work ............................................................................................... 4 

1.2 References ......................................................................................................................... 6 

Chapter 2: Systems Biology of the Microvasculature ................................................. 10 

2.0 Summary ......................................................................................................................... 10 

2.1 Introduction ..................................................................................................................... 11 

2.2 Microvascular Systems Physiology and Pharmacology .................................................. 16 

2.3 Microvascular Systems Pharmacology ........................................................................... 29 

2.4 Challenges and Future Directions ................................................................................... 38 

2.5 References ....................................................................................................................... 40 

Chapter 3. Therapeutic Angiogenesis: The Role of Growth Factors and 

Extracellular Matrix ....................................................................................................... 56 

3.0 Summary ......................................................................................................................... 56 

3.1 Introduction ..................................................................................................................... 57 

3.2 Clinical Significance ....................................................................................................... 58 

3.3 The Physiological ECM as a Material in Angiogenesis .................................................. 60 

3.4 ECM-Inspired Design Rules for Pro-Angiogenic Biomaterials ...................................... 73 



 vii 

3.5 Conclusion and Outlook .................................................................................................. 77 

3.6 References ....................................................................................................................... 79 

Chapter 4. Computational Modeling in Therapy Design and Translation ............... 90 

4.0 Summary ......................................................................................................................... 90 

4.1 Current Strategies for Drug Development....................................................................... 92 

4.2 Case Study 1: Drug Discrimination for Cardiac Arrhythmia .......................................... 99 

4.3 Case Study 2: Drug Target Identification for Cancer .................................................... 101 

4.4 Case Study 3: Better Therapeutic Approaches for Ischemic Disease ........................... 102 

4.5 Mechanistic Computational Models: A Way Forward for Drug Development ............ 104 

4.6 References ..................................................................................................................... 106 

Section II: Multi-scale Computational Models of Angiogenesis ............................... 112 

Chapter 5. Modeling Molecular Mechanism: Signaling by Soluble vs. Immobilized 

VEGF in vitro................................................................................................................. 113 

5.0 Summary ....................................................................................................................... 113 

5.1 Introduction ................................................................................................................... 115 

5.2 Materials and Methods .................................................................................................. 120 

5.3 Results ........................................................................................................................... 135 

5.4 Discussion ..................................................................................................................... 158 

5.5 References ..................................................................................................................... 166 

5.6 Supplemental Figures .................................................................................................... 175 

5.7 Supplemental Tables ..................................................................................................... 185 

Chapter 6. VEGF Isoform Distribution and Signaling in Healthy Humans ........... 192 

6.0 Summary ....................................................................................................................... 192 

6.1 Introduction ................................................................................................................... 195 



 viii 

6.2 Methods ......................................................................................................................... 199 

6.3 Results ........................................................................................................................... 213 

6.4 Discussion ..................................................................................................................... 234 

6.5 References ..................................................................................................................... 241 

6.6 Supplemental Results .................................................................................................... 255 

6.7 Supplemental Figures .................................................................................................... 258 

6.8 Supplemental Tables ..................................................................................................... 262 

Chapter 7. The Role of VEGF Splicing in Human Peripheral Artery Disease ....... 278 

7.0 Summary ....................................................................................................................... 278 

7.1 Introduction ................................................................................................................... 280 

7.2 Results ........................................................................................................................... 284 

7.3 Discussion ..................................................................................................................... 300 

7.4 Methods ......................................................................................................................... 305 

7.5 References ..................................................................................................................... 312 

7.6 Supplemental Model Fitting .......................................................................................... 321 

7.7 Supplemental Figures .................................................................................................... 324 

7.8 Supplemental Tables ..................................................................................................... 334 

Chapter 8. A Computational Analysis of Pro-angiogenic Therapies ....................... 350 

8.0 Summary ....................................................................................................................... 350 

8.1 Introduction ................................................................................................................... 352 

8.2 Results ........................................................................................................................... 355 

8.3 Discussion ..................................................................................................................... 373 

8.4 Methods ......................................................................................................................... 381 

8.5 References ..................................................................................................................... 389 

8.6 Supplemental Figures .................................................................................................... 396 



 ix 

Chapter 9. A Generalized Analysis of Antibody Shuttling for Soluble Endogenous 

Paracrine Proteins ........................................................................................................ 413 

9.0 Summary ....................................................................................................................... 413 

9.1 Introduction ................................................................................................................... 413 

9.2 Methods ......................................................................................................................... 415 

9.3 Results ........................................................................................................................... 419 

9.4 Conclusions ................................................................................................................... 428 

9.5 References ..................................................................................................................... 429 

Chapter 10. Discussion & Future Directions .............................................................. 430 

10.0 Summary ..................................................................................................................... 430 

10.1 Bridging Scales: in vitro to Human Disease ............................................................... 431 

10.2 Future Directions ......................................................................................................... 434 

10.3 References ................................................................................................................... 438 

Appendix. Model Equations ......................................................................................... 441 

A.1 Equations for Cell-level Model (Chapter 5) ................................................................. 441 

A.2 Equations for Healthy Human Compartment Model (Chapter 6) ................................ 445 

A.3 Equations for Human PAD Compartment Model (Chapter 7) ..................................... 473 

Curriculum Vitae .......................................................................................................... 505 

 

  



 x 

List of Tables 

Table 3-1. Open questions about microenvironmental regulation of angiogenesis.  

Table 5-1. Model Parameters for Biochemical Reactions 

Table 5-2. Model Parameters for Trafficking  

Table 5-3. Model Parameters for VEGFR2 Phosphorylation 

Table 5-4. Initial Conditions and Parameters that vary by Study  

Table 5-S1. Molecules included in the model and simulations. 

Table 5-S2. Cell Geometry Parameters 

Table 5-S3. Representative Fits to Experimental Trafficking Data 

Table 5-S4. Summary of Distribution of Accepted Parameter Sets 

Table 5-S5. Summary of Phosphatases Acting on VEGFR2 

Table 6-1. Binding/Unbinding Reactions: KD. 

Table 6-2. Binding/Unbinding Reactions: kon 

Table 6-3. Binding/Unbinding Reactions: koff 

Table 6-4. Targets & Secretion/Production Rates at Steady-State 

Table 6-S1. Binding/Unbinding Reactions: KD in the main body mass. 

Table 6-S2. Binding/Unbinding Reactions: KD in healthy calf muscle. 

Table 6-S3. Binding/Unbinding Reactions: KD in plasma. 

Table 6-S4. Binding/Unbinding Reactions: kon in the main body mass. 

Table 6-S5. Binding/Unbinding Reactions: kon in healthy calf muscle. 

Table 6-S6. Binding/Unbinding Reactions: kon in plasma. 

Table 6-S7. Geometric Parameterization. 

Table 6-S8. Trafficking Parameters 

Table 6-S9. Phosphorylation Parameters 

Table 6-S10. Transport Parameters  

Table 6-S11. Available Matrix Site Densities 

Table 6-S12. Production and secretion rates for “MLR” cases 

Table 6-S13. Production and secretion rates for Single VEGF Isoform cases 



 xi 

Table 7-1. Key Model Predictions  

Table 7-2. Target Surface Receptor and Plasma Ligand Levels at Steady-State 

Table 7-SM1. Receptor Production and Ligand Secretion Rates  

Table 7-SM2. Achieved Steady-state Plasma Ligand and Tissue Surface Receptor Levels 

Table 7-S1. Binding/Unbinding Reactions: KD 

Table 7-S2. Binding/Unbinding Reactions: KD in Main Body Mass 

Table 7-S3. Binding/Unbinding Reactions: KD in PAD Calf Muscle 

Table 7-S4. Binding/Unbinding Reactions: KD in Plasma 

Table 7-S5. Binding/Unbinding Reactions: kon 

Table 7-S6. Binding/Unbinding Reactions: kon in Main Body Mass 

Table 7-S7. Binding/Unbinding Reactions: kon in PAD Calf Muscle 

Table 7-S8. Binding/Unbinding Reactions: kon in Plasma 

Table 7-S9. Binding/Unbinding Reactions: koff 

Table 7-S10. Trafficking Parameters  

Table 7-S11. Phosphorylation Parameters 

Table 7-S12. Geometric Parameterization  

Table 7-S13. Transport Parameters  

Table 7-S14. Available Matrix Site Densities  

Table 7-S15. Comparison of Model Predictions with Previous Model 

Table 8-1. Summary of analyzed pro-angiogenic therapies. 

Table 8-2. Summary of parameters for biomaterial-based VEGF delivery. 

Table 8-3. Summary of parameters for gene therapy. 

Table 8-4. Summary of parameters for intravenous antibody infusion. 

Table 9-1. System Parameterization 

Table 9-2. Antibody-Binding Parameters 

 

  



 xii 

List of Figures 

Figure 2-1. Vascular development and remodeling processes. 

Figure 2-2. Vascular remodeling is a system-wide response to various perturbations at different scales. 

Figure 2-3. An example of vascular homeostasis and regulation by VEGF. 

Figure 2-4. Multi-scale models of microvascular physiology and pathology in vivo. A, Three-dimensional 

multi-scale model of vascular regulation in skeletal muscle in vivo.   

Figure 3-1. Clinical overview of cardiovascular diseases and pro-angiogenic factor-based therapies. 

Figure 3-2. Multiscale microenvironmental regulation of angiogenesis. 

Figure 3-3. Molecular changes directly regulate spatial cues within tissue. 

Figure 3-4. Perturbation of ECM-mediated regulation of angiogenesis in disease. 

Figure 3-5. Design rules for the development of pro-angiogenic materials. 

Figure 3-6. Delivery systems for angiogenic factors. 

Box 3-1. Summary of design rules for therapeutic angiogenesis 

Figure 4-G1. Graphical Abstract 

Box 4-1. What is a mechanistic computational model? 

Figure 4-1. Mechanistic computational models bridge gaps in translation. 

Box 4-2. Capabilities of mechanistic computational models. 

Figure 5-1. Model Schematics. 

Figure 5-2. VEGF presentation and trafficking control the distribution of ligated VEGFR2. 

Figure 5-3. Prediction of VEGFR2 binding and phosphorylation parameters. 

Figure 5-4. Validation of complete model with trafficking and phosphorylation parameters. 

Figure 5-5. VEGF presentation mode affects VEGFR2 phosphorylation more than VEGFR2 ligation.   

Figure 5-6.  Increased total VEGFR2 activation with immobilized VEGF is driven by the change in surface 

VEGFR2.   

Figure 5-7. Neuropilin-1 and phosphatases modulate site-specific VEGFR2 phosphorylation. 

Figure 5-8. Relative activation pY1175 and pY1214 varies as a function of VEGF immobilization and 

concentration. 



 xiii 

Figure 5-9. Differences in molecular interactions of VEGF isoforms are predicted to account for changes in 

observed vascular phenotype. 

Figure 5-S1. Free and ligated VEGFR2 are not uniformly distributed between cell compartments. 

Figure 5-S2. Distribution of Phosphorylation Parameters.   

Figure 5-S3. Altered trafficking of VEGFR2 regulates site-specific phosphorylation of VEGFR2. 

Figure 5-S4.  Independent receptor dephosphorylation rates in multiple internal compartments result in 

decreased pY1175-VEGFR2.   

Figure 5-S5.  Only a fraction of ligated VEGFR2 is phosphorylated.   

Figure 5-S6.  Trends in ligated and phosphorylated VEGFR2 are consistent across VEGF concentrations.   

Figure 5-S7.  Loss of NRP1 increases levels of free VEGFR2 on the cell surface and in Rab4/5 endosomes. 

Figure 5-S8.  The majority of ligated VEGFR2 is complexed with NRP1. 

Figure 5-S9. Sensitivity of model outputs varies with VEGF concentration. 

Figure 6-G1. Graphical Abstract 

Figure 6-1: Schematics of molecular detail and structure of multi-scale computational model. 

Figure 6-2: Nonlinearity of ligand & sR1 secretion and EC receptor production rates in the model. 

Figure 6-3: Pharmacokinetics of VEGF, PlGF, and sR1 at steady-state. 

Figure 6-4: Pharmacodynamics of ligand binding to VEGFR1 and VEGFR2. 

Figure 6-5: VEGF isoform-specific trafficking and site-specific phosphorylation of VEGFR2 in vivo. 

Figure 6-6: Complex regulation of VEGF family signaling by PlGF, EBM binding sites, and sR1. 

Figure 6-7: Immobilized ligand binding to sR1 alters tissue distribution, while immobilized ligand binding 

to EC receptors alters activation state. 

Figure 6-8: Predicted signaling changes in the human body with expression of single VEGF isoforms 

mirror experimentally observed murine phenotypes. 

Figure 6-9: Summary of key model predictions. 

Figure 6-S1. Super-sensitivity of steady-state VEGF and VEGFR2 levels, compared to previous model set-

up. 

Figure 6-S2. Additional pharmacokinetic/pharmacodynamic predictions of the model. 

Figure 6-S3. Sensitivity of transport parameters and new or unconfirmed reactions. 



 xiv 

Figure 7-1. Overview of model structure and VEGF165b properties. 

Figure 7-2. VEGF165b is predicted to be over-represented in tissue and blood compared to VEGF165a. 

Figure 7-3. VEGF165b is predicted to dominate endothelial receptor binding. 

Figure 7-4. Implications of weak VEGFR2 phosphorylation by VEGF165b in vitro and in vivo. 

Figure 7-5. In vivo VEGFR activation varies with VEGF165b levels in simulated human PAD. 

Figure 7-6. Non-switch-like changes in VEGF165b expression affect VEGFR1 activation more than 

VEGFR2 activation. 

Figure 7-S1. Detailed schematic of molecular interactions and whole body compartment model structure. 

Figure 7-S2. Pharmacokinetics of VEGF165a and VEGF165b in PAD. 

Figure 7-S3. VEGFR occupancy in PAD Calf Muscle. 

Figure 7-S4. In vitro simulations of VEGFR2 phosphorylation by VEGF165b. 

Figure 7-S5. In vivo VEGFR activation varies with VEGF165b levels in simulated human PAD. 

Figure 7-S6. Model-predicted changes in VEGF distribution and signaling in response to VEGF165b over-

expression. 

Figure 7-S7. Contributions of non-VEGF165b changes to reduced pR2 in PAD. 

Figure 7-S8. Impact of excluding VEGF165b binding to NRP1-VEGFR1 complexes. 

Figure 8-1. Overview of model structure and therapy implementation. 

Figure 8-2. ECM-binding affinity and dosing are key design considerations for effective biomaterial-based 

VEGF delivery. 

Figure 8-3. Distinct patterns of VEGF distribution and receptor activation predicted following different 

gene therapy approaches. 

Figure 8-4. Model captures experimental response to anti-VEGF165b in mice and predicts signaling in vivo. 

Figure 8-5. Mechanism of action of VEGF-targeting antibodies in PAD. 

Figure 8-6. Effect of VEGF-targeting antibodies on endothelial VEGFR signaling in vivo. 

Figure 8-7. Anti-VEGF induces different VEGF distribution and endothelial VEGFR activation than 

biomaterial-based protein delivery or VEGF gene therapy. 

Fig 8-8. Comparisons of therapy profiles. 



 xv 

Figure 8-S1. Detailed response to biomaterial-based delivery of engineered VEGF constructs to the PAD 

Calf Muscle. 

Figure 8-S2. Detailed response to varying doses of “Covalent VEGF w/ Proteolysis” construct to the PAD 

Calf Muscle. 

Figure 8-S3. Additional metrics of response to gene therapy at Day 6 following treatment. 

Figure 8-S4. Detailed time-course response to gene therapy strategies. 

Figure 8-S5. Analysis of predicted VEGF165a and VEGF165b distribution in human body following VEGF-

targeted antibody therapy. 

Figure 8-S6. Effect of VEGF-targeting antibodies on systemic free VEGF distribution. 

Figure 8-S7. Additional effects of VEGF-targeting antibodies on endothelial VEGFR signaling in vivo. 

Fig 8-S8. Effects of VEGF-targeting antibodies on endothelial total VEGFR2 ligation in vivo. 

Fig 8-S9. Effects of VEGF-targeting antibodies on endothelial cell surface VEGFR2 ligation in vivo. 

Figure 8-S10. Effects of VEGF-targeting antibodies on endothelial cell surface VEGFR1 ligation in vivo. 

Figure 8-S11. Relative antibody binding to VEGF165a and VEGF165b in the Main Body Mass and PAD Calf 

Muscle. 

Figure 8-S12. Comparison of VEGFR2 activation following biomaterial-based protein delivery, gene 

therapy, or anti-VEGF treatment. 

Figure 9-1. Antibody shuttling effect leads to an increase in main compartment when target protein is 

produced at high levels in a smaller compartment (e.g. tumor). 

Figure 9-2. Antibody can ‘swap’ different target proteins between compartments, reducing concentration 

differences. 

Figure 9-3. Effect of compartment volume on antibody-mediated ‘swapping’ effect. 

Figure 9-4. Antibody swapping effect is not highly sensitive to compartment volumes. 

Figure 9-5. Antibody swapping effect magnitude is determined by relative secretion of Red and Blue in 

each compartment. 

Figure 10-1. Overview of multi-scale modeling approach. 

 

 



 1 

Section I: Background & Motivation 

  



 2 

Chapter 1. Introduction 

Modern drug development is marked by high failure rates in translation to the clinic [1, 2]. 

Further, many approved drugs work for only a fraction of patients. Using systems pharmacology, we aim to 

incorporate decades of hard-won prior knowledge of molecular interactions, cellular signaling, and cellular 

behavior into the context of human physiology and pharmacology to improve understanding of human 

ischemic disease and facilitate design, optimization, and translation of growth factor-based therapies in 

regenerative medicine applications.  

Angiogenesis, the growth of new blood vessels from the existing vasculature, is critical for 

maintenance of health and response to injury. In ischemic disease, this process is impaired, but therapies 

targeting vascular endothelial growth factor (VEGF) have failed to translate clinically [3], despite success 

in animal models. This failure highlights the need for more mechanistic understanding to design a next 

generation of more effective therapies [4, 5]. Engineering of thick (>1-2mm) tissues also requires growth of 

a functional, hierarchical vascular network, a challenge that has not yet been effectively addressed [6].  

Angiogenesis is regulated by expression of the splice isoforms of VEGF, which have different 

affinities for the extracellular matrix (ECM) and the co-receptor Neuropilin-1 (NRP1). These differences 

lead to distinct vascular phenotypes in mice expressing a single VEGF isoform; non-ECM-binding 

isoforms lead to signaling that promotes cell proliferation, while strong ECM-binding promotes migration 

and branching [7]. In vitro, VEGF immobilization (e.g. to ECM proteins) alters VEGF receptor-2 

(VEGFR2) signaling, increasing phosphorylation on tyrosine 1214 more than on Y1175 [8, 9], but the 

connection between this signaling change and the phenotypes observed in vivo had not been elucidated. 

Understanding this signaling is key to identify the role of VEGF splicing changes in diseases such as 

peripheral artery disease (PAD), and to design biomaterials with tunable VEGF delivery that induce 

formation of functional, perfused vascular networks in native tissue and engineering tissue constructs. 

PAD is characterized by insufficient angiogenesis in response to ischemia in the limbs [10]. 

Intriguingly, VEGF levels are normal or elevated in PAD patients [11, 12], and multiple clinical trials 

targeting VEGF delivery for PAD have failed [3]. However, VEGF splicing changes in PAD; VEGF165a 

protein is reduced, while expression of VEGF165b is increased [11, 13]. Unlike VEGF165a, VEGF165b does 

not bind to the ECM or NRP1, and is a weak inducer of VEGFR2 phosphorylation and angiogenesis [14-
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16], motivating study of VEGF165b as a potential therapeutic target. The prevailing hypothesis is that 

VEGF165b competes with VEGF165a for binding to VEGFR2, reducing VEGFR2 phosphorylation [11]. This 

hypothesis is supported by in vitro observations [14-16], but is challenging to test in vivo. Here, we 

leverage our modeling framework to overcome this barrier, bridging from in vitro observations to in vivo 

signaling to provide insight into these difficult-to-measure quantities in diseased human tissue. 

In this thesis, I describe the first computational model to capture differences in signaling by 

VEGFR2 bound to ECM-binding and non-ECM binding VEGF isoforms in vitro and in vivo, accounting 

for VEGF-ECM binding, regulation of VEGFR2 trafficking by NRP1, and changes in proliferative vs. 

migratory signaling of VEGFR2 as a function of receptor trafficking and ligand immobilization. By 

understanding the underlying biological complexity across multiple scales, we can overcome the challenge 

of translating pro-angiogenic therapies for ischemic disease, as well as biomaterials and engineered tissues, 

into the clinic. Specifically, incorporation of this mechanistic detail enabled the model to capture VEGF 

isoform-specific changes in signaling in vivo, elucidate splicing-induced changes in VEGF signaling in 

peripheral artery disease, and provide novel quantitative insight into design of both biomaterial- and 

antibody-based pro-angiogenic therapies targeting the VEGF system. 

My overall research objective was to build multi-scale mechanistic computational models of 

growth factor-ECM interactions; these models are firmly grounded on and validated against experimental 

data. I used two differential equation-based modeling approaches to bridge from molecular mechanism to 

therapy design:  

(1) cell-level models of molecular interactions and signaling built on and validated against 

multiple types of in vitro data (Chapter 5); and 

(2) whole body pharmacological models that examine growth factor distribution in the human 

body, incorporate detailed signaling based on (1), and serve as a platform to study the impact of 

patient variability on therapy response (Chapters 6-8).  

First, in Chapters 2-4, I will discuss blood vessel physiology and pathology, therapeutic angiogenesis, and 

the role of computational models in drug development, to place this work in context. Then, in Chapters 5-9 

I will discuss the development and application of these computational models.  
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1.1 A Note on Published Work 

 

Content from the following chapters has been peer-reviewed and published, and is included with 

permission: 

 

Chapter 2: Systems Biology of the Microvasculature, as L. E. Clegg & F. Mac Gabhann, “Systems 

Biology of the Microvasculature,” Integrative Biology, vol. 7, pp. 498-512, Mar. 2015.  DOI: 

10.1039/C4IB00296B. 

Chapter 3. Therapeutic Angiogenesis: The Role of Growth Factors and Extracellular Matrix, as P. S. 

Briquez*, L. E. Clegg*, M. M. Martino*, F. Mac Gabhann, & J. A. Hubbell, “Design principles for 

therapeutic angiogenic materials,” Nature Reviews Materials, vol. 1, January 2016. DOI: 

10.1038/natrevmats.2015.6. http://palgrave.nature.com/articles/natrevmats20156 

Chapter 4. Computational Modeling in Therapy Design and Translation, as L. E. Clegg & F. Mac 

Gabhann, “Molecular mechanism matters: Benefits of mechanistic computational models for drug 

development,” Pharmacological Research, vol. 99, pp. 149-154, June 2015. DOI: 

10.1016/j.phrs.2015.06.002. 

Chapter 5. Modeling Molecular Mechanism: Signaling by Soluble vs. Immobilized VEGF in vitro, as 

L. W. Clegg & F. Mac Gabhann, “Site-specific phosphorylation of VEGFR2 is mediated by receptor 

trafficking: insights from a computational model,” PLoS Computational Biology, vol. 11, no 6, pp. 

e1004158, June 2015. DOI: 10.1371/journal.pcbi.1004158. PMCID: PMC4466579. 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004158  
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Content from the following chapters will be submitted for publication: 

 

Chapter 7. The Role of VEGF Splicing in Human Peripheral Artery Disease, as L. E. Clegg, V. C. 

Ganta, B. H. Annex, & F. Mac Gabhann, “Systems pharmacology of VEGF165b in peripheral artery 

disease.” 

Chapter 8. A Computational Analysis of Pro-angiogenic Therapies, as L. E. Clegg & F. Mac Gabhann, 

“A computational analysis of pro-angiogenic therapies for peripheral artery disease.” 
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Chapter 2: Systems Biology of the Microvasculature 

Content from this chapter has been peer-reviewed and published as follows, and is included with 

permission: 

L. E. Clegg & F. Mac Gabhann, “Systems Biology of the Microvasculature,” Integrative Biology, vol. 7, 

pp. 498-512, Mar. 2015.  DOI: 10.1039/C4IB00296B. 

 

2.0 Summary 

 
The vascular network carries blood throughout the body, delivering oxygen to tissues and 

providing a pathway for communication between distant organs. The network is hierarchical and structured, 

but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response 

to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli 

from the microenvironment. These local changes occur as a result of physiological processes such as 

growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and 

pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, 

drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been 

approved to promote therapeutic vascular remodeling. This highlights the challenges involved in 

identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology 

approaches provide a means to bridge current understanding of the vascular system, from detailed signaling 

dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture 

of vascular regulation in vivo. This will translate to an improved ability to identify multi-component 

biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as 

better drug targets for specific disease states. In this review, we summarize systems biology approaches that 

have advanced our understanding of vascular function and dysfunction in vivo, with a focus on 

computational modeling. 
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2.1 Introduction 
 

2.1.1 Motivation for a Systems Approach to the Vasculature 

Systems biology is an integrative approach that synthesizes our current understanding of 

molecular, physiological and pathological mechanisms to reconcile experimental data from multiple 

perturbations with the predictions of detailed computational models. By integrating detailed experimental 

data (e.g. from hi-throughput experiments) with mechanistic information (e.g. from multi-scale 

computational models and bioinformatics), we can formulate a more complete understanding of a system 

across multiple scales and at higher spatial and temporal resolution than would otherwise be possible.  In 

addition, modeling the interconnectedness of the system from gene to protein to pathway, and from cell to 

tissue to organism, allows systems biology simulations to predict the system-wide response to perturbation, 

for example the change in blood supply to a tumor following delivery of drugs. 

Systems biology is well-suited to studying vascular function and dysfunction because the 

vasculature and its regulation are highly complex. The insides of all blood vessels – from the smallest to the 

largest; arteries, veins, capillaries; newly sprouting or mature – are lined with endothelial cells (ECs). This 

cell type must therefore be sufficiently flexible to survive and thrive in diverse environments, and to 

perform different specialized functions in many tissues 
1
. In particular, moving from in vitro systems in 

which perturbations to endothelial cues can be controlled to in vivo vascularized tissues necessitates a 

quantitative understanding of these complex systems. Whether following exercise 
2
 or in a growing tumor 

3
, 

there can be changes to the expression of many or all of the ligands and receptors regulating endothelial 

cell behavior, and not all in the same direction. The outcome of all of these changes would be impossible to 

calculate without a detailed quantitative model of the system.  

Because of the number of potential levers and drivers of vascular changes, there are many possible 

quantitative metrics to measure, including potentially informative quantities that are difficult to measure in 

vivo. By incorporating detailed in vitro measurements, computational models can be validated and used to 

identify which in vivo measurements would be most informative – as diagnostics, prognostics, or as 

indicators of therapy effectiveness either before or after treatment. 
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2.1.2 Vascular Development and Remodeling 

The vasculature supplies oxygen to tissues. Maintenance of homeostasis requires the vascular 

system to adapt in response to local stimuli (e.g. oxygen tension) sensed by endothelial and other cells. The 

smallest vessels, directly involved in delivery and transport of oxygen to tissues, develop new branches, 

expand in diameter, or are pruned as a result of these dynamic molecular, cellular, and tissue 

microenvironmental cues (Fig.2-1).. Vascular network development, maintenance, and remodeling can 

occur through multiple distinct morphogenic processes. Each requires complex molecular and multicellular 

regulation, though the regulatory details are not completely understood for any of these forms of vascular 

remodeling.  

Early in development, blood islands coalesce and lacunae form, resulting in a network of 

interconnected endothelial cords 
4
. This process, by which whole networks can be formed simultaneously, 

is known as vasculogenesis. The tendency of ECs to coalesce and form cords in this way has been 

leveraged for in vitro assays 
5
, and studied using computational models of early vascular network formation 

by the Glazier group 
4,6

.  

Following vasculogenesis, the blood vessel networks in developing organs must be refined and 

expanded as tissues grow and differentiate. The process of angiogenesis increases vascular density by 

sprouting new vascular branches or splitting existing vessels in two. Sprouting angiogenesis takes two 

forms: first, expansion of vascular networks into currently avascular tissue – for example, the perinatal 

expansion of the retinal vasculature 
7,8

, or the investment of new vessels into small tumors; second, the 

dynamic sprouting and pruning/regression of vessels within an existing network 
9
, for example due to 

exercise or within a growing organ. In both forms of sprouting angiogenesis, endothelial cells become 

activated by stimuli secreted from distant cells and undergo phenotypic differentiation to migratory, vessel-

sprout-leading ‘tip’ cells. These cells degrade local extracellular matrix and lead proliferative stalk ECs to 

form sprouts that may ultimately anastamose and become part of the blood flow circuit. Intussusceptive 

angiogenesis is different to sprouting:  existing endothelial tubes form internal pillars that lead to splitting 

of one vessel into two. This form of vascular expansion can result from changes to shear stress 
10,11

. 

Vasculogenesis and angiogenesis are both typically processes of microvessel development. To obtain 

hierarchical vascular networks, growth (diameter expansion) is required. Arteriogenesis is the process of 



 13 

expansion of existing arterioles into larger vessels 
12

, permitting the vessel to carry more blood flow. 

Capillary arterialization 
13

, also known as arteriolargenesis 
14

, is the process by which capillaries can, under 

specific circumstances, expand beyond typical capillary dimensions and acquire the characteristics of 

arterioles. Diameter expansion is typically accompanied by the acquisition of arterial/venous phenotype, 

including the investment of perivascular smooth muscle cells (SMCs) 
14

. 

Incorporating current understanding of the different vascular remodeling processes (Fig.2-1) into 

systems biology approaches is important for identifying proper strategies to promote or prevent 

vascularization in disease applications with distinct vascular network morphologies. The main drivers of 

these processes vary, including different local mechanical and chemical cues sensed by ECs. This suggests 

that multiple types of therapeutic targets may be combined to selectively activate or inhibit one or more of 

these remodeling processes. In this review, we focus primarily on non-developmental vascular remodeling, 

specifically discussing sprouting and intussusceptive angiogenesis. To date, arteriogenesis and capillary 

arterialization have not been the subjects of significant systems biology efforts; these provide opportunities 

for future work. Section 2.2 will provide more detail on the types of models used to study different vascular 

remodeling processes, and the components included in these models. Section 2.3 will discuss the use of 

systems biology to identify effective therapeutic approaches to stimulating or inhibiting the vasculature.  

Section 2.4 will highlight challenges and bottlenecks that must be addressed to translate advances in 

microvascular systems biology into improved clinical outcomes. 
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Figure 2-1. Vascular development and remodeling processes. The six distinct types of in vivo blood 

vessel formation or remodeling, described in the text, are prevalent in different tissues and situations. Both 

the emergence and the dynamic adaptation of a functional hierarchical vascular system depend on the 

coordinated regulation of all these processes. Vasculogenesis results in de novo vessel formation, which is 

critical for development, while angiogenesis involves expansion of the existing network via sprouting or 

vessel splitting, and is required for network expansion. Arteriogenesis and capillary arterialization allow for 

remodeling of the vascular network in response to stressors such as ischemia, to alter blood flow within 

existing tissues. Examples of in vivo situations in which each process is particularly relevant are given. 
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Figure 2-1 
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2.2 Microvascular Systems Physiology and Pharmacology  
 

Vascular development and remodeling in vivo comprises several multicellular, multi-scale 

morphogenic processes. A systems approach is required to understand these processes and the effect of 

physiological and pathological changes to the system. In this section, we will describe the multiple scales 

of integrated regulation involved in vascular remodeling (Fig. 2-2). While the goal is to improve clinical 

outcomes in disease, our ability to measure systems changes in vivo is often limited. As such, 

computational studies of molecular and cellular regulation rely heavily on in vitro experimental studies for 

validation. These results must then be interpreted or translated to an in vivo context to be used for 

biomarker development and prediction of therapeutic responses. Appropriate computational models can 

provide this bridge between in vitro and in vivo measurements. For a detailed review of the mathematics 

underlying many of the modeling techniques presented here, see 
15

.  
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Figure 2-2. Vascular remodeling is a system-wide response to various perturbations at different 

scales. Vascular homeostasis can be perturbed by disease, therapy, exercise, injury, or aging (left column). 

While some of the perturbations introduced by disease are relatively well-characterized (cancer, 

cardiovascular disease & hypoxia), others represent opportunities for future systems biology research 

(diabetes, age-related changes). These perturbations directly alter one or more of the scales regulating the 

vascular system (center box, discussed in Sections 2.2.1-2.2.4 as indicated), and propagate due to the 

connectedness of the system, inducing indirect changes at the other levels of regulation as well. As the 

vascular system adapts to the perturbation via remodeling (See Fig. 2-1), a new homeostasis is established 

(right column). This new homeostatic state may have different blood flow and gene expression than the 

pre-perturbation system, depending on the effectiveness of the physiological or therapy-induced 

remodeling. While perturbation/dysfunction can occur at any of the levels, most therapies target molecular 

regulation mechanisms (Section 2.2.2). 
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2.2.1 Blood flow and oxygen distribution: a system of delivery and consumption 

The vasculature comprises a hierarchical network of interconnected endothelium-lined tubes. The 

flow of blood distributes oxygen to tissues, with local blood flow matching metabolic demand 
16

. 

Mismatches in blood flow and tissue oxygen consumption can arise from normal processes such as growth 

and exercise, as well as pathological conditions including stroke, diabetes, respiratory disease, and 

myocardial infarction 
17

. Mathematical models of blood flow fall into two categories: (a) three-dimensional 

models of blood flow, particularly potentially turbulent flow at sites of atherosclerosis in large vessels 
18,19

; 

(b) network models of blood flow in systems of smaller vessels, in which laminar flow permits the use of 

Poiseuille-based algebraic models.  One example of the first category of models is work by the Diamond 

group, which integrates hemodynamics with signaling cascades in platelets 
20

 and stochastic models of 

coagulation initiation 
21

 to study the effect of hemodynamics on blood components, including red blood 

cells and platelets. These models allow for prediction of clot formation and drug sensitivity under varying 

platelet signaling and flow conditions 
22

. The network models in the second category can incorporate 

experimental measurements of heterogeneous and dynamic microvessel diameters, pressure, flow rates, 

shear stress, and oxygen exchange 
23

. Shear stress and local oxygen availability in particular are key stimuli 

for angiogenesis and remodeling of the vessel wall, for which predictive models have been developed by 

the Secomb and Pries groups 
24,25

. Combined experimental-computational systems studies such as these can 

produce interesting predictions with implications for in vivo physiology and pathology, such as that the 

vascular wall must be capable of sensing oxygen levels in order match experimental observations after 

changes in blood flow and oxygen distribution 
26

.  

The biomechanics of blood flow are important for intussusceptive angiogenesis. While this form 

of angiogenesis has not been studied as extensively as sprouting angiogenesis 
11

, intussusception is thought 

to be the primary form of vascular remodeling in animal models with VEGF overexpression 
27

, chronic 

shear stress 
28

, or colitis 
29

. Computational models have demonstrated that hemodynamics and shear stress 

30-32
, along with oxygen consumption 

33
 contribute to vessel splitting and pillar formation, which are 

requirements for intussusceptive angiogenesis. Szczerba et al. generated the first model incorporating the 

combined effects of hemodynamics, chemical agents, and vessel wall stiffness on intussusceptive 

angiogenesis 
10

.  In this model framework, increasing vessel wall stiffness during development (a result of 
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pericyte investment and/or basement membrane deposition) was required to produce realistic predictions of 

vessel splitting 
10

. Interestingly, another computational model (of skeletal muscle) predicted that 

intussusceptive angiogenesis can more effectively maintain oxygen levels than sprouting angiogenesis 

when oxygen consumption is high 
33

. Tumor vessels have also been shown to undergo intussusceptive 

angiogenesis after treatment with angiogenesis inhibitors, but a model of these processes has not yet been 

developed 
34

.  

Other computational models focus on oxygen distribution in tissues, which is regulated by blood 

flow, oxygen consumption, and by chemical signal molecules such as nitric oxide.  By integrating a blood 

flow model with an oxygen diffusion/consumption model, the Popel group created a multi-scale model of 

oxygen transport in skeletal muscle, demonstrating the influence of muscle fiber type on oxygen 

distribution 
35

. The simulations predicted that the distribution of muscle fiber sizes has a larger impact on 

O2 distribution than O2 consumption, myoglobin concentration or oxygen diffusivity 
35

. Regulation of 

oxygen by nitric oxide, which stimulates vascodilation and is required for normal endothelial function, has 

been simulated 
36

, but this has not been modeled in the context of angiogenesis. The effect of tissue 

oxygenation on wound healing has also been modeled 
37

. More detail on the modeling of oxygen 

distribution in the microvascular circulation can be found in 
38

 and 
39

.  

In a later section, we will discuss the importance of blood as a communication route for key 

proteins and drugs regulating vascular remodeling, as well as the centrality of blood measurements as 

clinically-relevant, reproducible biomarkers. 

 

2.2.2 Molecular regulators of endothelial cell behavior and vascular remodeling 

In the adult, mismatch of oxygen supply and demand can result in changes to the vascular network 

(Fig. 2-3), typically through the transcription factor hypoxia inducible factor (HIF) and the vascular 

endothelial growth factor (VEGF) family of extracellular ligands 
40

, though other transcription factors and 

ligands are known to regulate vascular remodeling 
41,42

. Cancer, ischemia, diabetes, and other diseases alter 

gene regulation, protein expression, and signaling pathway function in angiogenesis, but these changes and 

their effects on vascular homeostasis are not yet completely understood 
3,43

. As examples, expression of cell 

surface receptors becomes heterogeneous in many solid tumors due to non-uniform oxygen pressure 
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(resulting from structural abnormalities in tumor vessels) 
44

; and changes in shear stress (e.g. due to 

elevated blood pressure) can alter endothelial gene expression 
11

. 

Normal oxygen levels (normoxia) enable the hydroxylation of the transcription factor HIF1α by 

prolyl hydroxylases, resulting in HIF degradation 
40

. Low oxygen (hypoxia) stabilizes HIF1α, which moves 

to the nucleus and activates transcription after binding HIF1β/ARNT 
45,46

. There are hundreds of 

downstream targets of HIF, notably members of the VEGF ligand and VEGF receptor families 
46

. Multiple 

microenvironment-dependent HIF-1α signaling profiles (switch-like or gradual) have been demonstrated 

using computational models of HIF-1α regulation 
40,47

. Such divergent system behaviors are difficult to 

couch in a single framework without the use of computational methods. Models of HIF-1 have also been 

used to: determine the mechanisms through which HIF-1α senses oxygen 
40,48

; study the regulation of HIF-

1α 
49,50

; and examine differences in HIF-1α regulation in cancer and ischemia 
51

 with the goal of identifing 

promising therapeutic targets for different disease states. 

While a wide variety of growth factors, adhesion molecules, and cell-cell communication proteins 

are involved in angiogenesis, including integrins, cadherins, Delta-Notch and semaphorins, we focus here 

on VEGF and fibroblast growth factor (FGF); as diffusible proteins that can be measured in the blood, they 

hold promise for validating predictive models of their transport and impact on vascular behavior. 

The VEGF family of growth factors are critical regulators of both physiological and pathological 

angiogenesis, promoting endothelial cell survival, proliferation, and migration. There are five ligand genes, 

each with splice isoforms. These ligand genes and splice isoforms have varying affinity for the three VEGF 

receptors (which can hetero- or homo-dimerize upon ligand binding), two main VEGF coreceptors (the 

neuropilins), and the extracellular matrix (ECM) 
52

. The VEGF receptors (VEGFRs) also exist as soluble 

and membrane-bound isoforms 
53

. Recent work has demonstrated that post-translational modification 

(glycosylation, acetylation, methylation) can also modulate the activity of VEGFR2 
54,55

. The multiplicative 

complexity of these ligands and receptors make understanding the spatial and temporal dynamics of the 

system and predicting reponse to VEGF-based therapies extremely difficult, as is highlighted by the lack of 

of success to date in VEGF-based pro-angiogenesis clinical trials 
56

.  

VEGF family members are secreted by parenchymal cells experiencing hypoxia, including: 

skeletal myocytes in exercise; neural and glial cells in retinal development; bone marrow-derived dendridic 
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cells in wound repair; and hypoxic tumor cells 
57

. VEGF isoforms diffuse through the extracellular matrix 

to bind VEGF receptors on endothelial cells. ECM-binding isoforms also become sequestered in tissues, 

where they can still activate VEGF receptors 
52,58

. The simulation of VEGF-VEGFR interactions and 

VEGFR-VEGFR coupling has been developed using biophysically-detailed ordinary differential equation 

models that are first vaildated against in vitro experimental data and then applied to in vivo scenarios. This 

allows for much more detailed understanding than would be possible using only in vivo data, which 

typically consists of plasma protein concentrations, plus some genetic and gene expression data. The 

scenarios examined to date include competition between ligands for binding to multiple receptors 
59

; 

coupling and enhancement of VEGF binding by Neuropilin co-receptors 
60-62

; dimerization of VEGF 

receptors 
63

; downstream signaling of the Akt and ERK pathways 
64,65

; matrix-immobilized growth factors 

and VEGFR trafficking and phosphorylation 
66,67

. In addition to these detailed models of VEGF dynamics, 

models have been developed to directly predict VEGF production in skeletal muscle based on oxygen 

levels, both after exercise and in peripheral artery disease 
33,68-70

. These models allow comparison of 

disparate therapeutic strategies including exercise and VEGF delivery. Here, exercise was predicted to 

improve VEGFR ligation and VEGF gradients in ischemic tissue better than therapeutic delivery of VEGF; 

we will discuss the models of VEGF and exercise as therapies more in Section 3. More detail on the 

systems biology of VEGF can be found in 
52,71

. 

The fibroblast growth factor (FGF) family has also been implicated in control of angiogenesis. 

FGFR signaling is complicated by the existence of multiple FGF ligands and the requirement for cell 

surface heparin sulfate proteoglycans (HSPGs) to stabilize FGF ligand-receptor complexes.  A variety of 

computational models have been developed to study FGF ligand-receptor binding and regulation by HSPGs 

in vitro 
72-74

, showing that HSPGs able to form active FGF2-HSPG-FGFR signaling complexes are required 

for effective downstream signaling 
75

. FGF binding to EC receptors and to the vascular basement 

membrane under physiological flow conditions has also been simulated, both in vivo 
76,77

 and in the context 

of a bioreactor 
78,79

.  These models have quantified variation in FGF-receptor binding as a function of flow 

conditions, FGF delivery method (bolus or continuous flow), HSPG and FGF receptor density, and binding 

affinities 
76,78,79

. In particular, Filion et. al. showed that after intracoronary administration, myocardial 

deposition and retention of FGF2 is limited by the time required for FGF to bind cell surface receptors, and 
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not by diffusion 
77

. Additionally, they showed that the production and internalization rates of FGF receptors 

are important in regulating FGF distribution. These results have implications for the therapeutic delivery of 

FGF, and can be used to predict clinically relevant measurements that are difficult to obtain in vivo. 

While the majority of systems biology techniques leverage computational methods, the use of systems 

biology principles in experimental data collection is increasing, and greatly enhances our understanding of 

the regulation of complex systems. In one example of such work, the lab of George Davis performs high-

throughput experimental assays on endothelial cells cultured in the absence of serum 
80-82

. This allows for 

the comparison of many experimental conditions in a well-controlled system, without the variability and 

background signaling generated by serum typical of most in vitro experiments. The angiogenesis and 

vasculogenesis assays performed by this group 
5
 have clearly identified the minimal factors required for 

endothelial tube formation, identifying the key nodes in these complex regulatory networks. Such assays 

can be compared directly to computational models of in vitro sprouting angiogenesis and vasculogenesis, 

and then scaled to an in vivo context. 

 

2.2.3 Vascular remodeling is a multicellular process  

 In translating extensive experimental results from ECs studied in vitro to understanding how 

endothelial cells behave in vivo, we must recognize the different environment that cells have in tissues – a 

multicellular environment where heterotypic neighbor interactions are key. Vascular remodeling requires 

the coordinated action of many endothelial cells and their neighbors. In sprouting angiogenesis, VEGF 

stimulation upregulates tip cell expression of Delta-like ligand 4 (Dll4) 
83

. This results in activation of 

Notch in trailing stalk cells, reducing the sensitivity of these cells to VEGF by altering VEGF receptor 

expression 
84

, and producing a non-uniform population of endothelial cells. This Delta-Notch system can be 

dysregulated in cancer 
85

. Cell-cell adhesions (mediated by VE-Cadherin) can reduce VEGF-mediated EC 

migration 
86

. Shear stress resulting from blood flow also regulates sprouting angiogenesis when blood flow 

is present 
23

. Additionally, pericytes control angiogenesis and vessel stabilization by regulating EC 

proliferation and migration, along with contributing to formation of the vessel basement membrane 
87,88

. 

Pericytes express angiopoietin-1 (Ang1) and Ang2, which bind to Tie2 on endothelial cells 
87

. Ang1 

promotes vessel stabilization, while Ang2 destabilizes vessels. Endothelial cell-pericyte association is 
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disrupted in many cancers, contributing to the formation of structurally and functionally abnormal vascular 

networks 
44

. 

Due to the critical coordination of cells during sprouting angiogenesis, agent-based models 

(ABMs) are commonly used to study the evolution of sprouting in space and time. ABMs represent each 

cell individually, with specific logic rules dictating cell behavior, which may be time- or location-

dependent 
89,90

. Rule-based ABMs can also be coupled with ODE- or PDE- based models, for instance of 

VEGF distribution in tissues 
91,92

. Such models can recapitulate directional sprouting in response to VEGF 

gradients, and capture emergent differences in sprout morphology under varying conditions 
91

.  Cellular 

Potts Models (CPM), also known as Glazier-Graner-Hogeweg (GGH) models, are lattice-based ABMs in 

which each cell can evolve in shape, size, and interactions with other cells. As such, CPMs are used to 

study adhesion, cell elongation, and cell-cell signaling that alters EC behavior in angiogenesis and 

vasculogenesis 
4,6,93,94

.   

ABM cell behavior rules can be relatively simple, such as growth and movement based directly on 

experimental observations of dynamic cell behavior data in zebrafish 
95

. ABM rules can also be more 

complex, basing cell behavior on detailed ligand-receptor dynamics and signaling, e.g. filopodia extension, 

migration, and proliferation, leading to tip and stalk cell behaviors, based on the Dll4, Notch, and VEGFR2 

network by Bentley and colleagues 
96,97

. This model predicted that ECs in a nascent sprout can 

continuously compete for tip position, resulting in dynamic changes in tip and stalk cell specification, 

which has been experimentally validated 
97

. This and other models and experimental data indicate that the 

Notch system may be an interesting potential therapeutic target 
97-99

. In another study, the Glazier group has 

shown using CPMs that contact inhibition of cell proliferation or migration in response to extracellular 

stimuli can regulate vascular patterning 
4
. Other ABMs have studied sprouting in response to combinations 

of VEGF and brain-derived neurotropic factor 
100

, and examined clean behavioral changes or knock-outs 

(e.g. tip and stalk cell proliferation and migration) that are not possible in vivo or even in vitro 
101,102

, which 

is a key advantage of computational modeling as a tool to enhance drug design. Taking an alternate 

approach, a Boolean model links activation of combinations of VEGF receptors, integrins, and cadherins to 

cell behaviors such as migration and proliferation 
103

. Together, these models improve our understanding of 
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how combinations of extracellular cues regulate vascular remodeling, allowing for identification of new 

ways to modulate these processes in vivo. 

 As angiogenesis progresses, sprouts form lumens and anastomose onto existing vessels, 

facilitating blood flow and introducing these ECs to shear stress.  Anastomosis requires the tip cell to 

become quiescent, a transition that has been studied by Bentley and colleagues using a Spring-Agent 

model, a type of ABM where each agent is a collection of smaller entities connected by spring-like tensions 

104
. This allows for cell shape and cell-cell contacts to change, altering Notch signaling between cells. A 

multi-scale model of exercise response in skeletal muscle from the Popel group includes sprout formation, 

branching, and anastomosis in a single framework integrating blood flow, oxygen distribution, and VEGF 

transport (continuous processes) with cell behavior (discrete ABM) 
105

. In this model, anastomoses occur 

when tip cells come within close proximity to other vessels, but molecular detail of anastomoses is not 

included. Simulations of tumor angiogenesis and blood flow incorporating shear stress-induced vessel 

branching 
106

, varying vessel morphology 
107

, and vessel pruning in response to therapy 
108

 suggest that 

vascular network morphology strongly influences delivery of both nutrients and chemotherapy drugs to 

tumors. 

Some multi-scale models of vascular remodeling include other cell types, such as pericytes 
109-112

. 

Pericytes must dissociate from vessels to permit sprouting, and their recruitment is required for vessel 

stabilization following remodeling. An ABM including pericyte recruitment in response to gradients of EC-

secreted platelet-derived growth factor B (PDGF-B) and differentiation of interstitial cells into pericytes as 

a function of contact with endothelial sprouts can predict the portion of capillary coverage by smooth 

muscle α-actin-positive pericytes 
110

. A separate computational model captured vessel stabilization and 

destabilization in response to VEGF, PDGF, Ang1, and Ang2 by integrating modules for tumor growth, 

endothelial angiogenesis, and vessel stabilization (by pericytes) 
111

. Vessel stabilization was predicted to 

result in slower tumor growth. This growth model predicted that anti-VEGF therapy is more effective when 

the portion of immature vessels is high, and that co-application of anti-VEGF and anti-Ang1 resulted in 

prolonged inhibition of tumor growth 
111

, in line with another model of metastatic ovarian cancer in vivo 
112

.  

While many of these agent-based models consider only a small number of cells, understanding the 

initiation, extension, and anastomosis of angiogenic sprouts is essential to predicting structural and 
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functional characteristics of developing vascular networks in vivo. Even on this small scale, differences can 

be observed between the behaviors of sprouts forming due to physiological and pathological angiogenesis. 

The ABMs presented here describe angiogenesis in healthy tissue 
105

, tumors 
91,93,106-109,111

, the cornea 

102,112
, and in vitro or developmental scenarios 

4,6,97,100
, as well as studying sprouting in a generalized 

context 
94,96,101,103,104,110

. Some incorporate expression levels of cell surface receptors or protein 

concentrations 
96,97,105

, in order to understand how changes to these quantities alter sprout morphology in 

disease. Others integrate discrete models of angiogenesis with blood flow simulations 
105,107

, increasing our 

understanding of the crosstalk between these differing regulatory mechanisms. 

 

2.2.4 Microenvironment of the microvasculature: high-resolution molecular biology 

 Not only do ECs receive guidance cues from soluble factors and neighboring cells, but also from 

mechanical and chemical interactions with their microenvironment 
113

. Spatial and temporal patterning of 

these cues is required for formation of functional vascular networks that effectively oxygenate the 

surrounding tissue 
113

. The extracellular matrix provides a scaffold for tissues; changes in its stiffness are 

sensed by endothelial and other cells. Additionally, EC signaling is altered by integrin adhesion to ECM 

proteins 
113

. ECs alter their microenvironment by secreting ECM proteins and proteases that degrade ECM 

components, clearing a path for vessel growth and remodeling. One family of proteases implicated in 

angiogenesis are the matrix metalloproteinases (MMPs), inhibitors of which are also expressed by ECs 
114

. 

In addition to degrading ECM, proteases can also cleave VEGF, releasing previously immobilized VEGF 

into the interstitial fluid 
113

. The microenvironment in solid tumors is much different than in normal tissue, 

with perturbed ECM organization and high vascular permeability 
44,115

, while in peripheral artery disease 

the endothelial basement membranes are much thicker than in normoxic skeletal muscle 
116

. Certain aspects 

of molecular regulation and cell-cell interactions can be studied in vitro, where detailed measurements are 

possible, but it is not feasible to exactly replicate the complete tissue microenvironment in which vascular 

remodeling occurs. Thus, multi-scale computational models are necessary to integrate the cues endothelial 

cells receive from their microenvironment and translate this information into predicted cellular behaviors. 

A variety of modeling techniques have been used to study the influence of the microenvironment 

on vascular remodeling at higher spatial and temporal resolution than is feasible experimentally. For 
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example, a CPM (Cellular Potts Model, discussed in the previous section) of tumor angiogenesis can 

predict vascular branching and anastomosis of adjacent sprouts using rules based on molecular, cellular, 

and local tissue environment dynamics (VEGF gradients, proliferation rates, ECM composition) instead of 

observed cellular behavior 
91

. In this model by the Jiang group, inhomogeneities in the extracellular 

environment were required to obtain realistic predictions. Additional study with this model demonstrated 

regulation by ECM fiber density and orientation of sprout extension and branching, suggesting that the 

ECM itself is a therapeutic target 
94

. Other computational models, ranging from ABMs to multi-phase 

models, have demonstrated regulation of vascularization by pore size in porous scaffolds 
117

, collagen fiber 

orientation 
118

, and a combination of expression of soluble and matrix-bound growth factors, EC 

proliferation rate, and MMP activity 
119

.  

In addition to the composition of the microenvironment, the local geometry surrounding an 

angiogenic sprout can significantly alter the availability of diffusible proteins to cell surface receptors. As 

such, the effect of distance between adjacent angiogeneic sprouts was studied in a 2D reaction-diffusion 

model by the Mac Gabhann group 
120

. The model showed that decreased distance between two sprouts 

increased the probability that the sprouts would diverge. This study also demonstated that the VEGF-

sequesting soluble VEGFR1 isoform, which is secreted by endothelial cells increases the gradient of 

VEGF-VEGFR2 along the length of sprouts 
120

. These behaviors hold in extending the model to three-

dimensional sprouts in tissues, and these models can provide molecular explanations for the observed 

behaviors of perturbed systems such as VEGFR1-knockouts 
121

. These models are developed using high-

resolution imaging of developing sprouts, enabling true image-based simulations that are specific to the 

different anatomical outcomes of the molecular perturbations.  

Other computational models have focused on modification of the ECM due to endothelial 

secretion of proteases. Detailed models of the production, activation, and inhibition of several MMPs in the 

context of angiogenesis have been developed by the Popel group 
122-124

. These models have been 

incorporated into larger 2D and 3D reaction-diffusion models of VEGF ligand-receptor binding and 

transport, and consider the release of HSPG-bound VEGF from the ECM via cleavage by proteases 
125,126

. 

It was shown that endothelial cells alone do not produce enough proteases to release a significant amount of 

VEGF, suggesting involvement of other neighboring cell types 
125

. Additionally, simulation of the tissue 
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distribution and gradient formation of HSPG-binding and non-HSPG-binding VEGF isoforms showed that 

isoform-specific degradation is necessary to match experimental measurements of VEGF localization, and 

is involved in vascular patterning 
126

. These results are of particular relevance to tissue engineering, where 

the properties of the microenvironment can be tuned to promote proper vascular network formation. In 

addition to computatational modeling, high-throughput experiments and proteomic analysis have been used 

to understand the activity of MMPs and identify promising therapeutic targets 
127-129

. The data generated by 

such studies can improve computational models of MMP activity in vascular remodeling and cancer 

126,130,131
. 

 

2.2.5 Homeostasis requires coordination of multiple scales of regulation 

While we have presented distinct levels of vascular regulation in this section, it is vital for 

understanding in vivo physiology to recall that all of these levels are interconnected. Diseases can alter any 

of these regulatory mechanisms, while drugs typically target gene expression and/or protein signaling 

networks within cells. Systems biology can aid in identifying the regulatory levels perturbed in specific 

disease states, which are not fully established for many diseases. After any perturbation (Fig. 2-2), the 

system can adapt using the outlined regulatory mechanisms, resulting in vascular remodeling and reaching 

a new homeostatic state. A specific example of a homeostatic cycle relevant to altered blood 

flow/oxygenation is shown in Fig. 2-3, along with the types of computational models that are used to study 

each process in the system. An example of multiscale modeling applied to skeletal muscle to simulate this 

entire homeostatic cycle will be discussed in Section 2.3.3. Other tissue-specific multiscale models with 

multiple cell types are emerging, including a study of oxygen and growth factors in healing bone defects 

132-134
. While it is not computationally feasible to unite all of these modeling techniques in a detailed 3D 

model of the complete human body, we use a subset of these tools (application-dependent), the insights 

resulting from other models, and quantities that are experimentally measureable (in vivo and in vitro) to 

understand regulation of vascular remodeling at multiple scales, and how perturbations at any of these 

levels alters both local and system-wide behavior. This is turn will lead to improved ability to identify 

biomarkers and potential therapeutic targets. 
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Figure 2-3. An example of vascular homeostasis and regulation by VEGF. The many different 

computational model types employed to simulate the flow of information through the integrated multi-scale 

physiological models is indicated in italics. In general, in vivo models often incorporate key elements of 

tissue physiology: vascular network geometry, blood flow, and/or oxygen distribution. Detailed models of 

molecular and cellular regulation, for example of the VEGF family, are often constructed and validated 

with in vitro experimental data, and then integrated into in vivo models and coupled to the other scales of 

regulation (Fig. 2-2) to predict the vascular remodeling and other physiological changes resulting from 

molecular perturbations (such as therapeutics). In diseases such as cancer, the homeostatic regulatory 

mechanisms can become non-functional or function in altered ways, leading to different vessel morphology 

than observed under physiological conditions. 
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2.3 Microvascular Systems Pharmacology 

 
Vascular remodeling plays key roles, beneficial or detrimental, in many diseases 

9
. Angiogenesis 

is a hallmark of cancer 
135,136

, and ectopic vascularization drives retinopathies and other leading causes of 

blindness. In contrast, for diseases characterized by hypovascularization and/or ischemia, such as 

atherosclerosis, pre-eclampsia, Crohn's disease or hypertension, amelioration by the induction of 

angiogenesis or arteriogenesis continues to be an active area of therapeutic research. We focus here on 

cancer and peripheral artery disease as canonical diseases requiring anti-angiogenesis and pro-angiogenesis 

treatment, respectively. 

Drugs, gene vectors, exercise, and other vascular-targeted therapeutic approaches can be studied 

using systems approaches. For example, the repeated lack of success in human clinical trials of proteins and 

genes encoding vascular-targeting growth factors suggests that scaling from mice and other pre-clinical 

models to humans is not trivial. The variability from person to person in responses to all drugs further 

complicates matters. Understanding the pharmacokinetics and pharmacodynamics of vascular-targeting 

agents is particularly difficult since the target cells for many of these – endothelial cells – have two active 

surfaces: one facing the blood stream where many of the drugs are delivered, and one facing the interstitial 

space of the tissue 
137

. These two surfaces are not the same, and the effects of drugs at each surface are not 

the same.  

Systems Pharmacology is crucial to improving the extremely low success rate in clinical trials 

generally. Clinical trials are very expensive, and using them we cannot try every target, drug combination, 

dose, or schedule. Systems Pharmacology enables us to virtually explore the therapeutic space. Thus, we 

call on computational models to test and compare multiple drugs, drug combinations, doses, schedules and 

routes of administration. We can also go further than drugs to include non-drug therapeutics, including 

mechanical and electrical stimulation, exercise, or the implantation of engineered or transplanted cells and 

tissues. In this way we can efficiently eliminate therapies unlikely to be successful and focus on optimizing 

approaches predicted to show success for at least a subset of the patient population.  

Clinical data – gene and protein expression, but also height, weight and other measurements – can 

be incorporated into well-designed models to build individualized simulations and populations of predictive 

patient models. On the other side, predictive models need to make clinically testable and measureable 
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predictions, for example the dynamics of change to concentrations of key molecules in the blood. Only by 

validating such pharmacological models can we hope to make them useful in the clinic. These models can 

also help in prospective design of clinical trials by identifying key biomarkers, including complex or 

nonlinear biomarkers that would not be obvious from a linear analysis of the data.  

 

2.3.1 Whole-body compartment models: pharmacokinetics and pharmacodynamics 

As a consistent framework for the analysis of therapies – not just small molecule drugs and 

biologics, but also gene therapies, physiological changes, and tissue transplants – we must integrate the 

molecular and cellular understanding outlined in Section 2.2 into a whole-body model that simulates the 

transport of key vascular regulatory proteins such as VEGF as well as their cellular targets. Clearly this 

cannot currently be done at the whole-body scale with the same level of three-dimensional anatomical 

detail and spatial resolution described in the models of Section 2.2.4; however, much of the anatomical 

specificity can be retained – for example, the multicellular nature of tissues; the heterogeneity of gene and 

protein expression between cell types; the volumes and surface areas associated with different cell types; 

the complex molecular interaction networks; and the dynamic nature of cells in responding to extracellular 

stimulus. By assuming each tissue compartment is well mixed, we can trade partial differential equations 

for ordinary differential equations 
71,138

, significantly speeding up computation without losing much of the 

key biology regulating vascular remodeling. 

In Section 2.2, we discussed the importance of blood in delivering oxygen to tissues and the 

importance of computational models in building a quantitative understanding of tissue physiology and 

pathology. The blood compartment also plays a central role in any systems biology perspective of disease 

and treatment, because blood-based measurements are the most common type of in vivo data available for 

validation of computational models. Accessibility, reproducibility, low invasiveness and the ability to do 

sequential measurements make blood biomarkers highly sought after. Simple one-component blood-based 

biomarkers can have clear population-level changes in pathology, but not be informative for an individual 

139
, suggesting that more complex biomarkers based on understanding of molecular mechanisms may be 

more informative. For example, a ratio of VEGF and sFlt1 protein levels in blood may be an important 

predictor of pre-eclampsia 
140

, better than either metric alone. Going beyond detection and diagnosis, 
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prediction of blood-based biomarkers for disease progression and therapeutic response is an area of high 

interest that opens the door to predictive, responsive and adaptive personalized medicine. Thus, 

understanding the relation between blood-based measurements (e.g. of soluble proteins) and disease state is 

an important goal that can be addressed using systems biology techniques. 

 

2.3.2 Targeting angiogenesis in cancer: virtual clinical trials 

Tumors can cause a perturbation to vascular homeostasis (Fig.2-2). At first, without vascular 

ingrowth, the tumor is oxygen limited. However, acquisition of pro-angiogenesis characteristics, such as 

the constitutive activation of HIF by oncogenic kRAS, can result in perfusion by new vessels. Because of 

the broken homeostatic cycle, hypervascularization and atypical vessels result – tortuous, inefficient and 

leaky. Tumor vascularization permits growth beyond the oxygen diffusion limit, and provides tumor cells a 

route for metastasis. Drugs developed to inhibit angiogenesis in cancer have targeted the key receptor 

tyrosine kinase pathways in vascular remodeling, including the VEGF receptors, EGF receptors 

(ErbB/HER) and FGF receptors on endothelial cells. These drugs include antibodies to ligands (e.g. 

bevacizumab) or to receptors (e.g. DC101) and tyrosine kinase inhibitors (e.g. sunitinib).  

By building pharmacokinetic-pharmacodynamic (PK/PD) models of these growth factor-RTK 

systems, direct testing of multiple RTK-targeting drugs has been possible. These models can incorporate 

specific current drugs with known interactions and kinetics, but can also be used as a drug design tool by 

introducing molecules with different interactions. These models can give insight into whole classes of 

drugs and functions; for example, inhibiting receptor-receptor interactions has emerged from simulation of 

the VEGF/VEGFR system 
61,141-144

 as a strategy potentially superior to ligand targeting 
61

. This is being 

borne out in recent experimental results for drugs targeting receptor dimerization 
145

. More recently, the 

tendency of tumors to favor the expression of specific VEGF isoforms was identified using computational 

simulation to be a critical vulnerability and improve the predicted efficacy of anti-tumor VEGF-targeting 

143
. The predicted impact of isoform-specific anti-VEGF agents are not as might be expected based on our 

understanding of physiological angiogenesis, in part because the regulation of isoforms is very different in 

tumors 
146

.  
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An alternate model of VEGFR pharmacodynamics goes beyond the ligand-receptor interactions by 

incorporating VEGFR2’s downstream signaling pathways 
147

. By doing this, the Birtwistle and Gallo 

groups were able to run sensitivity analyses of dosing for multiple drugs targeting VEGF, VEGF receptors 

and downstream signal molecules such as PLCγ. They then used optimization algorithms to define potential 

multidrug regimens with different dosing and scheduling 
147

. 

Validation of pharmacological models is crucial to developing helpful predictive simulations. For 

models of human pharmacology, the detail and complexity of the models results in many outputs that are 

not easily measurable, e.g. cell-type-specific activation of multiple receptor families, but also several that 

are. In particular, the models can predict the effect of multiple perturbations in different cells in different 

tissues on key proteins in the blood. For example, a multi-compartment PK/PD model of VEGF in humans 

was used to investigate dynamic changes in the tumor and in the blood following treatment with systemic 

infusion bevacizumab (anti-VEGF antibody). Counterintuitively, and without any fitting of data, the model 

predicted that the concentration of VEGF in blood would increase following anti-VEGF treatment 
144

; this 

surprising effect has indeed been clinically observed 
148-150

. Because of the highly detailed and mechanistic 

nature of the model, we could go further and determine that this emergent property resulted from a 

shuttling mechanism of the VEGF-antibody complex 
144

. Such mechanistic hypothesis testing can result in 

strong and actionable therapeutic predictions. 

Another key requirement of models – to be populated with high-quality, detailed experimental 

data – becomes a benefit of taking an integrated (experimental and computational) systems approach. 

Models can help us to identify which experimental measurements (target, type, location, spatial resolution 

and temporal resolution) are the most important or informative. For example, pharmacological models have 

identified that cell-specific receptor expression plays an important role in the response to therapy – many 

RTKs are expressed on multiple cell types and not just on the target cell type 
151

 and the potential for 

synergistic or antagonistic side effects is clear. Model-based quantification of these multi-cellular (and 

multi-tissue) effects is clearly important to prediction of therapeutic outcome. Based on simulations, 

delivery of a VEGF-neutralizing agent can result in available VEGF in the tumor going either up or down 

depending on the variability in both ligand and receptor expression 
141,143

; even the difference between the 
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apical and basolateral expression of VEGF receptors was predicted to play a major role in 

pharmacodynamics 
152

 and this prediction of a systems biology model is now being borne out 
137

.  

 

2.3.3 Promoting vascularization in peripheral artery disease: from rodent to human 

While therapies targeting hypervascularity in cancer and age-related macular degeneration have 

come to market, no pro-angiogenesis therapeutic agents have been approved. Indeed, multiple trials have 

failed 
56,153,154

, including proteins or gene therapy targeting VEGF, HIF-1 or FGF. These failures occurred 

despite successes in pre-clinical animal models of ischemic disease. Thus, there is an urgent need for 

systems biology techniques to help predict which treatments would be successful, providing a better bridge 

from pre-clinical to human clinical trials.  

To study the in vivo pharmacodynamics of angiogenesis-targeting treatments, we have developed 

two types of multi-scale models. First, a fully three-dimensional model, that uses image-based anatomical 

information to simulate a portion of tissue at micron resolution – for example, skeletal muscle (Fig.2-4A). 

While simulations using this model are confined to a particular volume of tissue, the pharmacodynamics of 

key treatments can still be tested – for example: local effects of gene delivery, which will alter the cell-

specific expression rates in the model; or cell-based therapy, in which augmented stem cells can 

differentiate and integrate into the tissue; or exercise, which will impact gene expression but also blood 

flow and oxygen demand 
68,69,155,156

. These three-dimensional simulations identified key drivers of the 

VEGF concentration in the tissue as well as of VEGFR activation. Even at rest, without disease or external 

perturbation, there is heterogeneity in oxygen, VEGF expression, and VEGF and VEGFR concentration 

gradients. This was further studied using a more detailed anatomical model that included realistic muscle 

fiber type distributions 
35

. The expression of VEGF receptors, and thus the location of the blood vessels, 

was identified as the key driver of VEGF gradients (which are thought to provide chemotactic guidance to 

nascent sprouts). We noted that exercise, which is encouraged therapeutically for PAD patients but is often 

difficult especially in more severe disease, results in up-regulation of both VEGF ligands and VEGF 

receptors. We were then able to identify using our models that therapeutics delivering only ligands are less 

effective at increasing the concentration gradients in tissues, and can induce these increases for a shorter 

time, than receptor expression changes. This, then, provides a possible path forward in developing the next 
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generation of PAD therapeutics. Based on these models, we added an agent-based model of cell behavior to 

‘complete the circle’ (Fig.2-3) and enable the simulation of chronic disease and treatment, or repeated 

bouts of exercise training 
92

.  

Building a whole-body three-dimensional model with the resolution needed to deal with the 

molecular gradients described above is not currently feasible. Instead, a second kind of model is needed – a 

compartmental PK/PD model 
157

, similar to that described in the previous section for cancer, but now with 

a target ‘disease’ tissue of the ischemic calf muscle (Fig.2-4B). Although concentration gradients cannot 

now be simulated at this scale, we can test systemic organism-wide perturbations, such as sleep/wake and 

exercise cycles, which impact lymphatic flow as well as molecular expression 
70,158

 (Fig.2-4B), the impact 

of therapeutics on non-target not-diseased normal tissues, and the intravascular delivery of therapeutic 

molecules.  
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Figure 2-4. Multi-scale models of microvascular physiology and pathology in vivo. A, Three-

dimensional multi-scale model of vascular regulation in skeletal muscle in vivo.  By integrating 

multiple model types (Fig.2-3), we can simulate the links from three-dimensional tissue anatomy and 

heterogeneity to blood flow, to oxygen distribution, to hypoxia-dependent VEGF secretion by parenchymal 

cells, to VEGF diffusion, to ligation of VEGF receptors on endothelial cells. The output is heterogeneous 

VEGF receptor activation across the vasculature, which can then be coupled to cell behavior models such 

as ABMs 
92,105

 to complete the homeostatic cycle and remodel the vascular network. This integrated model 

has been used to study peripheral ischemia disease and to test potential treatments. Simulation results 

figures adapted from 
156

. B, Multi-compartment PK/PD model of the VEGF family. This model has 

multiple compartments, including calf muscle to enable studying the effects of PAD which results in 

significant pathological changes to that muscle. The model predicts the distribution of VEGF and soluble 

VEGFR1 and VEGF receptor activation throughout the body, including the blood concentrations of the 

diffusible proteins. The compartments of the PK/PD model can communicate via physiological processes 

such as vessel wall permeability and lymphatic drainage. An example application of the PK/PD model is 

also shown, a simulation of the dynamic effects of diurnal changes in lymphatic drainage (as a result of 

changes in posture and activity) on plasma soluble VEGFR1 and VEGF levels in a healthy patient.  Purple 

background represents bed rest days, yellow represents active days, and aqua shows calf rest days.  Models 

of this form allow for prediction of tissue VEGF concentrations, and net flows of VEGF between multiple 

tissues and the blood, and are also druggable – small molecule, protein and gene therapies can be added, as 

can therapeutic alterations to exercise scheduling. Schematic and simulation results figure adapted from 
158

. 
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These two model types – 3D high-resolution models of tissue and the compartmental PK/PD 

models – can be directly compared because the interstitial concentrations in the compartments will be the 

same as the average concentrations adjacent to the interstitial surface of VEGFR-expressing ECs; the 

average VEGFR activation in the 3D model will be the same as the compartment-level VEGFR activation 

in endothelial cells. 

Lastly, we note that a key issue in the treatment of peripheral artery disease is the failure in 

humans of treatments that work in rodents. This is a common problem and one for which systems biology 

is well suited. The parallel development of mouse-specific and human-specific computational models, with 

a common framework and species-specific parameters, will enable the translation of findings in one to 

predictions of successful approaches in the other.  
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2.4 Challenges and Future Directions 

 
A wide variety of computational and experimental techniques have been harnessed to expand our 

knowledge of microvascular function in health and disease. Computational models are invaluable in their 

ability to integrate multiple experimental results into a single, often mechanistically-based framework. 

Progress has been made in integrating across multiple model types, biological regulation mechanisms, and 

geometric scales to provide a systems-level, dynamic view of the microvasculature and of its remodeling 

processes. And yet much remains to be done to meet the challenge of making these models, and our 

resultant understanding of this complex dynamic system, capable of bridging insights from the lab to the 

clinic.  

Areas of potential growth include the development of species-specific and personalized models. 

Mouse-specific and human-specific models, parameterized with species-specific experimental data, can be 

used side-by-side to assist in successful translation from pre-clinical to clinical trials. Patient-specific 

models can incorporate not only individualized pharmacokinetic parameters but also the high variability in 

gene and protein expression that greatly affect pharmacodynamics. Such models can advance identification 

of biomarkers for specific subpopulations, and identify specific therapeutic strategies as being effective (or 

ineffective) for each group 
159

.  

It is crucial, as increasingly complex computational models are developed, to validate model 

outputs against quantities that are measurable in vivo, while leveraging non-measurable model outputs to 

predict changes in cellular signaling and behavior that may be important for disease prognosis and response 

to therapy. In parallel with continued model development, systematic collection of quantitative 

experimental measurements to characterize vascular growth and remodeling in healthy and diseased tissue, 

both before and after treatment, is critical to develop a sufficient mechanistic understanding of 

microvascular dynamics to provide meaningful clinical decision support. And as these models and 

experimental data are produced, it is essential to perform failure analysis –  to probe the molecular 

mechanisms behind the failure of unsuccessful pro-angiogenic drugs. There is so much to learn from 

previous preclinical and clinical trials that can inform future therapeutic design.  

There is also a need for further study of the less well-understood forms of vascular remodeling, 

such as arteriogenesis and capillary arterialization. In addition, more must be done to understand the 
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layered and complex effects on vascular remodeling and therapeutics of key co-morbidities such as 

diabetes and hypertension. In the clinic, patient presentation is rarely single-factor, and a systems approach 

to multi-disease interactions could greatly improve outcomes.  

While there remain many challenges to be met in microvascular systems biology, the progress of 

recent years highlights the value of systems computational and experimental approaches, and promises 

advances in clinical outcomes in the years to come. 
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Chapter 3. Therapeutic Angiogenesis: The Role of Growth 

Factors and Extracellular Matrix 

Content from this chapter has been peer-reviewed and forms part of a published paper. It is included with 

permission: 

P. S. Briquez*, L. E. Clegg*, M. M. Martino*, F. Mac Gabhann, & J. A. Hubbell, “Design principles for 

therapeutic angiogenic materials,” Nature Reviews Materials, vol. 1, January 2016. DOI: 

10.1038/natrevmats.2015.6. http://palgrave.nature.com/articles/natrevmats20156 

 

3.0 Summary 

 
Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and 

therapeutic angiogenesis, which has the potential in the treatment of various cardiovascular diseases, 

remains a major challenge. Physiologically, angiogenesis—the process of blood-vessel growth from 

existing vasculature—is regulated by a complex interplay of biophysical and biochemical cues from the 

extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the 

natural three-dimensional material regulating angiogenesis. Here, we leverage knowledge of ECM 

properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic 

materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between 

growth factors and the ECM.  

  

http://palgrave.nature.com/articles/natrevmats20156
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3.1 Introduction 

 
Angiogenesis is a multicellular morphogenetic process in which new blood vessels sprout from 

existing ones, penetrating a three-dimensional milieu—the extracellular matrix (ECM)—and generating a 

new vascular network to support a local metabolic demand for oxygen
1-3

. This process is controlled by an 

intricate interplay of biomolecular and biophysical signals
4
. The expression of angiogenic factors is 

triggered by hypoxia under the influence of hypoxia-sensitive transcription factors
5-7

. Angiogenic growth 

factors interact with the ECM through complex binding interactions, which depend on the particular 

sequence and structure of the growth factor that is expressed
8-11

. Receptors on endothelial cell (EC) 

surfaces bind growth factors in concert with binding of adhesion proteins in the ECM by integrins, leading 

to synergistic signaling as ECs integrate both adhesion signals and growth factor signals from the milieu
12-

17
. Other cells (pericytes and smooth muscle cells (SMCs)) in the angiogenic microenvironment also signal 

to the endothelium to stabilise the angiogenic vessels and yield a mature, functional vascular network
7, 18-20

. 

Moreover, the ECM
8, 21

 provides biomechanical signaling and is proteolytically remodeled to accommodate 

the nascent vascular network
22-24

.  

Here, we seek to describe the morphogenetic process of angiogenesis from two perspectives: (i) 

understanding angiogenesis and (ii) harnessing this understanding to engineer therapeutic angiogenesis. In 

the first case, we consider the ECM as a dynamic material system, providing the biomolecular context in 

which angiogenesis takes place, as well as controlling and regulating multiple aspects of angiogenesis. We 

then translate this insight into design rules for therapeutic angiogenesis. Recently developed biological and 

completely synthetic matrices have exemplified at least some of these design rules, engineering adhesion 

ligands, growth-factor-binding domains and protease-sensitive domains into the matrix, allowing for 

growth factor release and matrix remodeling, all within the context of controllable biomechanics
16, 25-30

. 

These design rules also include approaches for modifying the growth factors themselves, for use either in 

engineered ECMs or using endogenous ECM, to induce more effective therapeutic angiogenesis
27, 31, 32

. 

Thus, we highlight that the physiological material system provides design rules that can guide mimicry by 

biomaterials scientists.  
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3.2 Clinical Significance  

 
Cardiovascular diseases are the leading cause of mortality worldwide

33
. Coronary artery disease 

(CAD), peripheral arterial disease (PAD) and cerebrovascular disease result from insufficient blood supply, 

and lead to major deficiencies of the heart, limb and brain, respectively. Therapeutic angiogenesis, or 

generation of new blood vessels from the existing vasculature, is an appealing strategy to treat these 

diseases, as well as chronic wounds and diabetic ulcers
34

 (Fig. 3-1A). In spite of major efforts to develop 

angiogenic drug-based therapies in recent decades
37

, there is only one approved pro-angiogenic drug
38

. The 

lack of approved therapeutics indicates the slow pace of clinical translation in this field and highlights an 

unmet clinical need. This slow pace is not due to a lack of potential drug targets (Fig. 3-1B); many 

promising results have been observed in animal models. However, these results have failed to translate 

clinically
34, 39, 40

, leading to over 70 clinical trials of pro-angiogenic therapies
41

 (Fig. 3-1C), including 

delivery of recombinant growth factor, or the associated genes
40, 41

, without a single new approval since 

2007, or even a positive outcome in a late-phase clinical trial
40, 41

. 

 These trials likely result in part from poor delivery and/or poor retention at the target site, limiting 

effectiveness and duration, increasing dose (and cost), and leading to potential safety-related issues with 

subsequent high dosing
39

. Studies suggest than slow, sustained release of growth factors may lead to more 

successful outcomes
42

. It may also be important to consider the complex interplay of multiple cues involved 

in physiological healing and regeneration, as opposed to focusing on delivery of a single cue
39

. Our limited 

understanding of physiological angiogenesis has limited our ability to effectively mimic this process 

therapeutically. To improve angiogenic factor-based therapies, we must leverage all we do know about the 

physiological ECM to design new materials that will efficiently control the effectiveness of angiogenic 

factors.  

  



 59 

Figure 3-1. Clinical overview of cardiovascular diseases and pro-angiogenic factor-based therapies. 

A| Common cardiovascular diseases. B| Number of hits on PubMed database (National Center for 

Biotechnology Information, U.S. National Library of Medicine, USA) for publications on cardiovascular 

diseases, and on pro-angiogenic factors per year, between 2004 and 2014. C| Estimated number of clinical 

trials on pro-angiogenic growth factors registered in the International Clinical Trials Registry Platform 

(ICTRP, World Health Organization) for the treatment of cardiovascular diseases, displayed by year 

between 2004 and 2014, and by angiogenic factor families. CSF: colony-stimulating factor; IGF: insulin 

growth factor, HIF: hypoxia-induced factor. 
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3.3 The Physiological ECM as a Material in Angiogenesis 

 
During angiogenesis, cells interact dynamically with the ECM and are regulated in turn by local 

microenvironmental cues (Fig. 3-2A–C). The ECM serves as a mechanical scaffold and provides survival 

and growth signals to cells. The ECM is also a platform for intricate spatiotemporal coordination of the 

biochemical and biophysical cues presented to cells during angiogenesis
17

. In this section, we detail the 

molecular mechanisms that drive the material characteristics and biological actions of the ECM in 

physiological and pathological angiogenesis. 
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Figure 3-2. Multiscale microenvironmental regulation of angiogenesis. A| Tissue-scale regulation: 

response to hypoxia. When blood flow is compromised owing to disease or injury (arrows), hypoxia 

induces release of growth factors, which form gradients within the tissue. B| Multicellular-scale: angiogenic 

sprout. Growth factors bind to receptors, resulting in angiogenic sprouting towards the source of growth 

factor production (hypoxic cells; shown in (A)). Cell–cell communication is critical for proper sprout 

formation and outgrowth. To clear a path for invasion into the ECM, the sprout and surrounding cells 

release proteases and express other proteases on the cell surface. C| Protein-scale: ECM proteins promote 

complex formation between the growth factor, its receptor and integrins at the cell surface, inducing 

synergistic signalling and resulting in gene expression changes. ECM-bound growth factor can bind to and 

activate its receptor, but the receptor cannot internalise without either the ECM-growth factor bond or the 

growth factor-receptor bond breaking, resulting in altered RTK trafficking and downstream signaling. 

Integrins also transduce mechanical cues to the cell cytoskeleton. 
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Figure 3-2  
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3.3.1 ECM is a dynamic biomolecular scaffold for cells.  

ECM composition dictates the biomechanical properties of the cell microenvironment, including 

stiffness and viscoelasticity. Quiescent blood vessels are surrounded by a dense basement membrane (BM) 

mainly composed of type IV collagen and the adhesive protein laminin-1. During angiogenesis, cell-

secreted proteases degrade the BM, exposing sprouting ECs to an interstitial ECM rich in type collagen I 

and elastin
21, 43, 44

. This environment promotes cell migration and proliferation
21

. Adhesive glycoproteins 

found in the interstitial ECM, such as fibronectin and vitronectin, connect type I collagen to cell surface 

integrins, and are essential for vascular development
45

. The interstitial ECM and vascular BM are also rich 

in proteoglycans and glycosaminoglycans (GAGs), including heparan sulphate proteoglycans (HSPGs) and 

hyaluronan, which are composed of very hydrophilic polysaccharide chains that allow high water retention 

in the matrix.  

Changes in ECM structure and composition alter cell behaviour and angiogenesis through cell 

surface integrins (Fig. 3-2C)
17

, as studied using both experimental techniques and computational models
3, 

46
. Integrins transduce mechanical forces from the ECM to the actin cytoskeleton via multiple adaptor 

proteins, leading to changes in cellular signaling
17

, protein splicing
47

, and regulation of other integrins
48

. 

Integrin cytoplasmic tails also interact directly with signaling molecules, including focal adhesion kinase 

(FAK) and Src, which are considered to be critical points of crosstalk between integrin and growth factor 

receptor signaling
21, 49

. Integrins are usually expressed at only low levels in quiescent ECs, and are present 

in their inactive conformation. The profile of expressed integrins shifts and activation increases with the 

loss of pericyte investment and the onset of angiogenesis
50

. Of the integrins expressed on ECs, α5β1 binds to 

fibronectin and αvβ5 preferentially binds vitronectin, whereas α1β1 and α2β1 bind collagen, α3β1, α6β1 and 

α6β4 bind laminin, and αvβ3 binds to multiple ECM substrates including vitronectin
13, 51

. This allows ECs to 

sense multiple changes in the local ECM and alter their behaviour accordingly
21

.  

   

3.3.2 ECM regulates angiogenic factors.  

Secreted growth factors and cell–cell communication proteins are key contributors to new vessel 

formation. Although many growth factors involved in angiogenesis (e.g. epidermal growth factor (EGF), 

hepatocyte growth factor (HGF), transforming growth factor (TGF)-β) can be sequestered by ECM 
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components and released according to precise spatiotemporal kinetics, we focus here on a few important 

families, highlighting the impact of immobilisation in the matrix on their biological functions. 

VEGFs are critical regulators of angiogenesis
52, 53

. VEGF levels in healthy humans are low (e.g. 

1–3 pM in plasma and tissue interstitial fluid), with production increasing in response to hypoxia (1–2-fold 

in diseased tissue
54

, 5–10-fold in exercising skeletal muscle
54, 55

 and 10-fold in wounds
56

). VEGF diffuses 

through the interstitial space, binding to the ECM and cell surface receptors, producing VEGF gradients
57

, 

and attracting endothelial sprouts towards hypoxic regions. The five VEGF ligand genes can be spliced into 

multiple isoforms. The three VEGF receptor tyrosine kinases (RTKs) dimerise and activate upon ligand 

binding, and two main co-receptors (the neuropilins) alter ligand–receptor affinity and receptor 

trafficking
58, 59

. Alternative soluble splice isoforms of the RTKs can bind and sequester growth factors 

extracellularly. Most studies have focussed on VEGF-A binding to the RTK VEGFR2 on ECs. Longer 

VEGF-A splice isoforms (VEGF-A165 and VEGF-A189) contain heparin-binding domains, allowing for 

ECM binding, and domains for binding to the co-receptor neuropilin-1 (NRP1)
58

. In contrast, the shorter 

isoform VEGF-A121 does not bind to the ECM. VEGF-A165 and VEGF-A189 form steep gradients within the 

extracellular space, remaining in close proximity to the site of production (e.g. VEGF189 accumulation in 

the BM)
60

, whereas VEGF-A121 forms shallow gradients
57

, as illustrated in Fig. 3-3. This spatial 

organisation has physiological impact: mice and tumours expressing only shorter, non-ECM binding 

VEGF-A isoforms produce small numbers of leaky, wide-diameter blood vessels
22, 61, 62

, whereas mice and 

tumors expressing only longer, ECM-binding isoforms exhibit large numbers of thin, highly branched 

vessels
60, 63

. The mechanisms by which changes in the relative expression of these ECM-binding and non-

ECM-binding splice isoforms, which varies with tissue type
11

 and ECM stiffness
47

, alters VEGFR2 

signaling and vascular morphology, and are not completely understood.  
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Figure 3-3. Molecular changes directly regulate spatial cues within tissue. Changes in expression of 

VEGF splice isoforms with varying affinity for the ECM alters growth factor gradients within tissues and 

the resulting vascular morphology. VEGF121 does not bind to the ECM, creating shallow VEGF gradients 

in tissue and resulting in formation of wide diameter vessels with low branching density. Conversely, 

VEGF189 binds strongly to the ECM, resulting in short, steep VEGF gradients and formation of networks of 

thick, highly branched vessels. 
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FGF family growth factors are also potent inducers of angiogenesis. FGF-1 and FGF-2 are 

expressed by endothelial and other cells
64

 and bind to the receptor FGFR1. FGF is present in the body at 

similar concentrations to VEGF (0.6 pM in healthy blood and up to 6 pM in disease
65

) and FGF-2 is 

upregulated in response to hypoxia
66, 67

. FGFs regulate many steps of angiogenesis, from BM degradation 

and integrin expression to EC proliferation and migration, vessel maturation and reformation of the BM
68

. 

FGF-2 binds to the ECM and vascular BM
64

 and to cell-surface HSPGs. Maximal signaling by FGF-FGFR 

complexes requires stabilisation of the ligand–receptor complex by cell-surface HSPGs
69-71

. Signaling and 

gene expression crosstalk has been observed between the FGF and VEGF systems
68

.  

The heparin-binding ligand PDGF-BB and RTK PDGFR-β are also implicated in vascular 

remodeling
72

. PDGF-BB is produced by vascular ECs following cues including hypoxia and other growth 

factors, binds to PDGFR-β expressed on vascular SMCs (vSMCs) and pericytes
72

, and is found in the body 

at similar levels to VEGF and FGF
73

. Capture of EC-secreted PDGF-BB in the vascular BM is thought to 

aid in pericyte recruitment to maturing vessels
74, 75

. Indeed, mice with the heparin-binding domain from 

PDGF-B deleted or with reduced heparin sulphate N-sulphation showed pericyte detachment from 

microvessels
76, 77

. 

 Cell–cell communication is also critical for angiogenesis (Fig. 3-2B); in particular, EC–EC, EC–

vSMC and EC–pericyte interactions maintain or interrupt the stability of mature vessels. Angiopoietin1 

(Ang1) is produced by pericytes, vSMC and stalk ECs of an angiogenic sprout. Ang1 promotes vessel 

quiescence and pericyte recruitment (along with PDGF-BB). Ang1 has a critical role in cell–cell junction 

stabilisation and cell–matrix adhesion; ECs tend to dissociate from one another and from the BM in Ang1 

conditional knockout mice
78

. In the extracellular space, Ang1 interacts with matrix proteins, notably 

vitronectin, as well as with cell-surface integrin α5β1 and Ang1’s receptor Tie2
78

. Ang1 and Tie2 

interactions with integrin α5β1 modulate the sensitivity of Tie2 to Ang1
78, 79

. Interestingly, Tie2 activates the 

Notch signaling pathway
80

, which is involved in EC–EC communication, specifying tip and stalk cells by 

regulating expression of the VEGF receptors
81

. In contrast to Ang1, its antagonist Ang2 is expressed 

primarily by tip ECs and promotes vessel destabilisation
82

 upon binding to Tie2 at the onset of 

angiogenesis. EphrinB2 and EphB4 are critical for assembly of mature vessel walls
83

. This bi-directional 
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signaling also controls cell–cell attraction and repulsion between ECs and neighboring vSMCs or ECs in 

small vessels, and regulates VEGFR2 internalisation
84

 and α5β1 clustering
85

. 

 The total amount of ECM-immobilised growth factor in vivo and its physiological impact are 

difficult to measure. Computational models estimate 30 to 100 times more VEGF-A is electrostatically 

bound to the ECM than is free in skeletal muscle
86

. Another model predicts that 98% of interstitial FGF-2 is 

bound to ECM and BM HSPGs after intracoronary FGF-2 administration
87

. The large number of available 

growth factor binding sites within the ECM and on soluble molecules
68

 can buffer local free growth-factor 

concentrations. ECM–growth-factor binding sites also affect cell-surface reactions; extracellular HSPGs 

compete effectively with cell-surface HSPGs for binding to FGF-2 and VEGF-A
70, 88

. Buffering may 

maintain growth-factor concentrations within tightly regulated physiological bounds, a requirement 

highlighted by VEGF-A’s lethal haploinsufficiency
89, 90

 and the fact that even in disease or after injury, 

VEGF and FGF levels generally stay within an order of magnitude of baseline levels
56

. Computational 

models predict that in tissues, VEGF receptor binding is ligand-limited rather than receptor-limited
91

, again 

suggesting an important role for ECM-mediated regulation of local VEGF-A concentration in VEGF 

receptor signaling. 

 VEGF-A165 immobilised to a surface or hydrogel can bind to and activate VEGFR2
92, 93

 in vitro, 

inducing VEGFR2 phosphorylation of similar magnitude to equivalent amounts of soluble VEGF-A. 

However, the pattern of tyrosine site-specific phosphorylation, and the resulting EC behaviour, is altered. 

In one study, VEGF-A immobilisation increased phosphorylation of tyrosine Y1214 on VEGFR2, upstream 

of p38 and cell migration, whereas phosphorylation of Y1175, upstream of ERK1/2 and cell proliferation
92

 

was not increased compared with soluble VEGF-A. This parallels the vascular phenotypes mentioned 

above: thin, highly branched vessel networks in response to matrix-binding isoforms via cell migration 

signaling pathways; and sparsely branched, high-diameter vessels in response to soluble isoforms primarily 

via cell proliferation. Thus, ECM-bound VEGF has direct effects on vascular physiology and remodeling; 

however, the mechanism underlying this differential signaling was unclear. To address this, a 

computational model of VEGF-A binding to ECM proteins, NRP1, and VEGFR2, as well as VEGFR2 

trafficking and site-specific phosphorylation was built
94

. This model showed that reduced internalisation of 

ECM-VEGF-A-VEGFR2 complexes (owing to VEGF immobilization via multiple protocols) was 
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sufficient to explain all relevant experimental data to date. Immobilised VEGF-A alters VEGFR2 

trafficking and therefore its exposure to phosphatases, resulting in different downstream signaling. FGF2 

and PDGF-BB are also biologically active when immobilised on a surface and exposed to 3T3 cells
95

, 

suggesting that this is a common feature of heparin-binding growth factors. The large quantities of ECM-

bound growth factors, which owing to ECM heterogeneity are not uniformly distributed in vivo, suggest 

that ECM-bound VEGF-A may have an important role in angiogenesis, perhaps aiding in tip-cell selection 

and migration. However, ECM–growth-factor affinity, mode of presentation (e.g. ECM vs nanoparticle), 

and region of the growth factor bound to the substrate may be different in vivo than in vitro. This, combined 

with the difficulty of experimentally determining the relative contributions of direct RTK ligation by 

immobilised growth factors and ECM-mediated spatiotemporal regulation of growth factor availability
31

 to 

observed improvements in angiogenic responses, highlight the need for further study of ECM-bound VEGF 

in the body. 

 

3.3.3 ECM coordinates microenvironmental signaling.  

Growth factors and their receptors (soluble and cell-surface) do not regulate angiogenesis in 

isolation. They regulate, are regulated by, and/or signal synergistically with ECM proteins, proteases, cell-

surface integrins and cell-surface HSPGs. 

In addition to altering ECM protein properties
21, 50

, cell-derived proteases regulate local growth 

factor availability by cleaving ECM components to which growth factors are bound, or by cleaving matrix-

binding growth factors and releasing shorter isoforms that do not bind to the ECM. For example, FGF is 

released via cleavage of HSPGs by heparinase
96

 or plasmin
97

. VEGF-A can also be released by matrix 

metalloproteinases (MMPs)
11, 23

. Cleavage of VEGF itself, particularly by plasmin and the MMPs, can have 

pro- or anti-angiogenic effects
11, 98

. For example, cleavage of VEGF-A165 reduces its bioactivity, removing 

the domains required for ECM- and NRP1-binding, whereas VEGF-A189 binds to VEGFR2 poorly in some 

cell lines until being cleaved by urokinase-type plasminogen activator (uPA) or plasmin
11

. Computational 

models predict that ECs cannot produce enough protease to account for all VEGF-A cleavage, suggesting 

contributions by other local cells
99

. PDGF-BB is also cleaved, by thrombin
75

, releasing it from the 

endothelial BM
74

. Protease expression is also regulated by growth factors; FGF upregulates multiple MMPs 
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and uPA
68

, aiding in the initiation of angiogenesis. When present at high levels (e.g. in a chronic wound), 

proteases can alter not only the local growth factor concentrations and ECM structure over short times (e.g. 

at the tip of an angiogenic sprout), but also tissue-level properties.  

Growth-factor–receptor and integrin–substrate interactions must be considered as a system. 

Growth-factor ligation of RTKs promotes integrin activation, increasing integrin affinity for ECM 

substrates and enhancing cell signaling. Similarly, integrin ligation is necessary for maximal and extended 

signaling by VEGFR2, FGFR1 and PDGFR-β
93, 100

. These interactions require clustering of RTKs and 

integrins, which is facilitated by the multivalency of integrin- and heparin-binding sites on crosslinked 

ECM proteins. Simultaneous activation of RTKs and integrins leads to Src-mediated synergistic signaling 

in their overlapping pathways
12

. For example, the integrin αvβ3, which is strongly upregulated in ECs 

during angiogenesis
101

, binds promiscuously to ECM proteins, and interacts with both VEGFR2 and 

FGFR1. Notably, αvβ3 is required for VEGFR2-dependent activation of p38 and FAK
102

. Although 

VEGFR2 and αvβ3 interact via the β3 extracellular domain, perturbations of β3 have not produced consistent 

results, suggesting that αvβ3 may be pro- or anti-angiogenic depending on the context
103, 104

. In contrast, the 

fibronectin-binding integrin α5β1 is critical during vascular development
105

 and is consistently pro-

angiogenic. The fibronectin-mediated presentation of VEGF-A or PDGF-BB to VEGFR2 or PDGFRβ, 

respectively, co-activates the integrin α5β1, resulting in a synergistic increase in and prolongation of 

growth-factor-receptor phosphorylation and downstream ERK1/2 signaling
15, 16

.  

RTKs and integrins mutually regulate their expression. For example, culture of microvascular ECs 

on vitronectin, a ligand for αvβ3 and αvβ5, increases expression of FGF and VEGF receptors
106

. 

Additionally, stimulation of microvascular EC with FGF-2 upregulates α2, α5, β1, and β3 integrins
107, 108

, 

while stimulation of cells with VEGF-A results in activation of αvβ3, αvβ5, α5β1, and α2β1
109

. Adding another 

layer of complexity, the VEGF co-receptor NRP1 interacts with α5β1
110

, and αvβ3 prevents NRP1–VEGF–

VEGFR2 interactions
111

. Teasing out the contributions of this mutual regulation to RTK–integrin 

interactions (Fig. 2C) is often difficult. 
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3.3.4 ECM is dynamically regulated in health and disease.  

Extracellular biochemical and biomechanical cues, along with cell–cell communication, form a 

complex, interwoven regulatory network. Each component must be activated to the correct extent, in the 

correct place, and at the correct time, to promote appropriate vascular growth. First, ECs must sense a pro-

angiogenic cue. Then, proteases must degrade the BM, and EC interactions with support cells must be 

broken. As an endothelial sprout grows through interstitial space, it senses complex and dynamic gradients 

of soluble and immobilised growth factors, ECM proteins and cytokines. These sprouts must anastomose 

with existing vessels, lumenise to provide blood flow, and mature into stabilised vessels with BMs, 

invested support cells and appropriate permeability. In each step, microenvironmental regulation is critical 

and is mediated by the ECM. 

Understanding the molecular drivers of this complex system, and how each feature that is 

perturbed in a given disease fits into the larger regulatory picture, will make appropriate therapeutic 

strategies easier to identify. For example, in properly healing wounds (Fig. 3-4A) the provisional matrix is 

rich in cytokines, growth factors, fibronectin and fibrin, whereas, an ulcer or chronic wound (Fig. 3-4B) is 

characterised by a perturbed ECM and high protease levels
49

. In PAD (Fig. 3-4C), BMs thicken
112

, 

capillary density decreases, endothelial FGF-2 expression increases
112

, and the production of matrix-

binding and non-matrix-binding VEGF-A splice isoforms changes
113

. Inflammation and atherosclerosis 

lead to changes in ECM degradation
8
 and increased PDGFR-β expression, whereas altered VEGF-A splice 

isoform expression is observed in obese patients
114

. Although each of these diseases involves or may lead 

to ischemia, the proper treatment depends on the specific molecular changes in the material environment of 

the ECM, as well as the time-course of disease. There are still many important, complex open questions 

about spatial and temporal extracellular regulation of angiogenesis (Table 3-1). Answering these questions 

requires use of multiple tools and platforms, including traditional cell culture experiments leveraging novel 

perturbations and measurement techniques, in vitro systems providing a 3D context for angiogenesis, in 

vivo systems and computational models. These efforts will continue to advance our understanding of and 

ability to emulate or circumvent regulation of angiogenesis by the material properties of the ECM.  
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Table 3-1. Open questions about microenvironmental regulation of angiogenesis.  
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Figure 3-4. Perturbation of ECM-mediated regulation of angiogenesis in disease. Disease-specific 

changes in the ECM likely contribute to vascular dysfunction. A| The provisional fibrin clot acts as a 

reservoir of growth factors and cytokines in healthy wounds. B| Chronic wounds are highly proteolytic 

environments, which impairs the ECM integrity in the wound. C| Basement membrane thickness increases 

and the capillary density decreases in peripheral artery disease.  
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3.4 ECM-Inspired Design Rules for Pro-Angiogenic Biomaterials 

 
A detailed discussion of engineered constructs that leverage the biological insights outlined in the 

previous section can be found in Ref. 
121

. Briefly, these systems have evolved along with our understanding 

of the biology underlying wound healing and ischemic disease, as well as technological advancements in 

protein synthesis and production of tunable hydrogels. Some approaches leverage processed natural 

materials, to provide the complexity of native extracellular matrix, but with concerns about 

immunogenicity
115, 116

. Others develop simpler, highly controlled synthetic materials
118

, which do not 

recapitulate this natural complexity
119

, but are more defined and well-characterized
120

. Overall, three main 

rules for effective angiogenic rules were proposed (Fig. 3-5): 

 

Rule 1: The material should be biomimetic.  

Rule 2: The material should deliver angiogenic factors (see Fig. 3-6 for a summary of strategies).  

Rule 3: The material should leverage synergy between the matrix or gel, growth factors and cells.  
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Figure 3-5. Design rules for the development of pro-angiogenic materials. Pro-angiogenic materials can 

be engineered (A) to be cell-compatible and (B) to control the spatio-temporal delivery of single or 

multiple essential angiogenic factors. The material design can also consider (C) collaborative interactions 

between its different components to leverage its angiogenic properties. 
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Figure 3-6. Delivery systems for angiogenic factors. A| Delivery of angiogenic factors based on 

biophysical and biochemical interactions with exogenous materials. B| Materials engineered with heparin 

and heparin-like moieties for the retention of heparin-binding angiogenic factors. Delivery of angiogenic 

factors with high-affinity GAGs to prolonged receptor signaling. C| Material engineered with ECM protein 

domains displaying affinity for angiogenic factors, or recombinant fusion domains for co-binding to 

integrins and angiogenic factors to induce synergistic signaling. Materials engineered with angiogenic 

factor high-affinity domain isolated from its receptor. D| Material and/or angiogenic factor modified for 

chemical or enzymatic covalent immobilization. Angiogenic factor engineered for protease sensitivity and 

release upon cell-demand. E| Angiogenic factors engineered for high-affinity toward endogenous matrix 

components, such as glycosaminoglycans and collagens, or for promiscuous affinity toward various 

endogenous ECM glycoproteins.  
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3.5 Conclusion and Outlook 

 
Therapeutic angiogenesis remains a major clinical challenge. Given the lack of success following 

non-physiological delivery of angiogenic factors, future effects should emphasize the rules outlines here to 

better mimic physiological angiogenic conditions (Box 3-1). Angiogenesis takes place in a highly dynamic 

3D milieu that provides the instructive biomechanical and biomolecular microenvironment in which 

morphogenesis proceeds. The ECM regulates the sprouting of new blood vessels and the formation of 

vessel lumens and vessel stabilisation, to ultimately restore functional blood circulation into ischemic 

tissues. We detailed the molecular mechanisms involved in the reciprocal crosstalk between cells and the 

ECM during angiogenesis, highlighting the essential role of the ECM in controlling the spatiotemporal 

presentation and release of angiogenic growth factors. These molecular mechanisms can be used to identify 

key design rules for biomimetic angiogenic materials: biocompatibility, physiological delivery of 

angiogenic factors, and leveraging synergy between chemical and mechanical cues. These rules will help 

the next generation of biomaterials to become more effective in induction of stable angiogenic responses. 
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Box 3-1. Summary of design rules for therapeutic angiogenesis 

 

  

 

  

Translation of angiogenic factors into clinical therapeutics has been strongly limited by 

both efficacy- and safety-related issues; the delivery of supra-physiological doses of 

angiogenic factors in a non-physiological context has failed to restore proper tissue 

vascularisation and may increase the risk of cancer in patients. 

 

The extracellular matrix is the physiological material system in which angiogenesis 

naturally takes place; it displays key biophysical and biomolecular signals that can be 

mimicked or incorporated into angiogenic materials. 

 

Angiogenic biomatrices should contain cell-adhesion and cell-degradable sites to allow 

cell migration and matrix remodeling, both central mechanisms in angiogenesis. 

 

Angiogenic materials should incorporate essential angiogenic growth factors and 

control their spatio-temporal delivery to achieve sustained therapeutic angiogenesis. 

 

Angiogenic materials should leverage cooperative interactions between the 

materials components, such as synergistic receptor signaling, to reduce the dose of 

angiogenic factors to be delivered. 

 

It is critical to reduce the complexity of angiogenic materials to facilitate the regulatory 

process and make them suitable for clinical applications. 
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Chapter 4. Computational Modeling in Therapy Design and 

Translation 

Content from this chapter has been peer-reviewed and published as follows, and is included with 

permission: 

L. E. Clegg & F. Mac Gabhann, “Molecular mechanism matters: Benefits of mechanistic computational 

models for drug development,” Pharmacological Research, vol. 99, pp. 149-154, June 2015. DOI: 

10.1016/j.phrs.2015.06.002. 

 

4.0 Summary 

 
Making drug development a more efficient and cost-effective process will have a transformative 

effect on human health. A key, yet underutilized, tool to aid in this transformation is mechanistic 

computational modeling. By incorporating decades of hard-won prior knowledge of molecular interactions, 

cellular signaling, and cellular behavior, mechanistic models can achieve a level of predictiveness that is 

not feasible using solely empirical characterization of drug pharmacodynamics. These models can integrate 

diverse types of data from cell culture and animal experiments, including high-throughput systems biology 

experiments, and translate the results into the context of human disease. This provides a framework for 

identification of new drug targets, measurable biomarkers for drug action in target tissues, and patient 

populations for which a drug is likely to be effective or ineffective. Additionally, mechanistic models are 

valuable in virtual screening of new therapeutic strategies, such as gene or cell therapy and tissue 

regeneration, identifying the key requirements for these approaches to succeed in a heterogeneous patient 

population. These capabilities, which are distinct from and complementary to those of existing drug 

development strategies, demonstrate the opportunity to improve success rates in the drug development 

pipeline through the use of mechanistic computational models.  
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Fig. 4-G1. Graphical Abstract 
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4.1 Current Strategies for Drug Development  

 
It is well established that traditional drug development is a long and increasingly costly process, 

due in large part to high attrition of drugs throughout the development pipeline [1, 2]. As of 2010, the 

estimated cost to develop a single new molecular entity (novel active ingredient) was $1.8 billion dollars 

[3].  In addition, only about 5-6 mechanistically innovative (first-in-class) drugs are approved in the US per 

year [3, 4]. The most common reasons for drug failure, particularly in Phase 2 trials, are lack of efficacy 

and toxicity due to off-target drug effects, which were not apparent in cellular and animal systems [5-7]. A 

better understanding of potential drug targets and mechanisms of action promises to aid in earlier 

identification of ineffective drugs, or drugs with unsafe off-target effects, as well as to inform the necessary 

properties (e.g. precise targets and binding affinities) for more effective compounds.  

Traditionally, drug efficacy and safety are assayed by characterizing the pharmacokinetics (PK) 

and pharmacodynamics (PD) of the drug. PK describes what the body does to a drug (e.g. drug absorption, 

clearance, and distribution throughout the body), while PD characterizes what a drug does to the body (i.e. 

drug action in target tissue). Drug PK and PD are typically estimated using a combination of cell culture 

and animal models, along with human data for similar, previously-developed drugs. This empirical PK and 

PD characterization allows drug developers to estimate drug half-life in the body and uptake within tissues. 

Computational models incorporating both PK and PD (PK/PD models) are used to simulate drug 

distribution in the body, predicting the time delay from administration to drug action in the target tissue, 

and potential issues such as drug accumulation leading to toxicity. As such, these simulations have the 

potential to aid in establishing safety margins [8]. While PK/PD work is a critical component of drug 

development, traditional PK/PD studies do not identify the most effective targets for new drugs, or account 

for complex biological compensation mechanisms. This lack of predictiveness is a result of the data-driven 

nature of these studies, which makes extrapolation to other dosing ranges or to related drugs, as well as 

prediction of patient-specific responses, difficult. The missing piece is a detailed understanding of the 

molecular mechanisms of action underlying pharmacodynamic responses. Mechanistic models (Box 4-1) 

can incorporate this understanding into PK/PD models. 
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Box 4-1. What is a mechanistic computational model? 

 

 

  

A mechanistic computational model simulates interactions between the key molecular entities (e.g. 

proteins, ATP, RNA), and the processes they undergo (e.g. expression, subcellular trafficking, 

degradation, phosphorylation, deactivation), explicitly by solving a set of mathematical equations that 

represent the underlying chemical reactions (e.g. ). The key distinguishing 

feature of a mechanistic model is incorporation of detail based on prior knowledge of the regulatory 

network, as opposed to inferring interactions using a data-driven approach. 
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The sequencing of the human genome brought hope that newly identified genetic components of 

health and disease would clearly guide advances in therapies for a wide variety of conditions. While 

bioinformatics approaches have identified new therapeutic targets for some diseases, in many cases there is 

no clear disease-associated genetic signature that is consistent across patients. Even when a disease-related 

molecule is identified, it does not necessarily represent an effective drug target; thus far, target-based 

screening has not been more effective than traditional phenotypic drug screening [9]. As such, many 

researchers interested in drug development have turned to systems biology, which combines high-

throughput experiments and mechanistic computational modeling to better understand the interactions of 

the molecules that regulate cell behavior.  

Systems biology approaches have deepened our understanding of the pathways involved in 

cellular survival & behavior, and how cellular signaling changes in disease [10]. One particularly valuable 

benefit of mechanistic computational models is their ability to incorporate the specifics of different 

experimental protocols (e.g. drug/ligand concentration, measurement time, cell line), allowing for 

reconciliation of apparent discrepancies in experimental results from different groups, protocols, or cell 

types. Along with deriving more insight from experimental results, these models can be used to design the 

next sets of experiments, in order to answer key unsolved questions. A second key strength of mechanistic 

computational models is the ability to examine the sensitivity of individual signaling pathway components 

to perturbation (e.g. change in receptor expression or ligand concentration). Proteins to which the model is 

highly sensitive likely represent key nodes and promising drug targets. Despite these advantages, 

translation of systems biology into the context of the human body for use in the drug development pipeline 

has been limited [5, 11], due in part to the prevalence of empirical PK/PD modeling in industry, while 

mechanistic computational modeling occurs primarily in academic research laboratories (with some notable 

exceptions). 

The emerging field of systems pharmacology aims to bridge systems biology and PK/PD 

modeling, translating the mechanistic insight emerging from systems biology into a therapeutically relevant 

context [12, 13]. To do this, mechanistic models (Box 4-1) are used to describe the pharmacodynamics in 

quantitative detail, and are integrated with drug pharmacokinetics in a PK/PD model. Several excellent 

examples of systems pharmacology models incorporating mechanistic intracellular signaling detail have 
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been published in recent years [12, 14, 15]. However, such models remain the minority; it is more common 

for drug pharmacodynamics to be represented by empirical drug-tissue binding curves (e.g. Hill equation) 

[16, 17]. While useful, such data-driven binding curves have limited ability to reliably extrapolate to other 

species, to humans with different genetics and body mass, to related drugs, to combination therapies, or 

even to different dosing schedules and administration routes for the same drug [11]. One reason for a semi-

mechanistic representation of PD in many models to date is a lack of sufficient mechanistic information 

available from experiments. While this is a challenge, the amount of useful information increases quickly, 

e.g. due to high-throughput experiments using new molecular imaging and gene expression measurement 

techniques [18-20]. Additionally, because computational models can integrate diverse data types into a 

single framework, data from experiments designed for very different purposes, or obtained from different 

groups using different protocols, can be leveraged [21]. For example, in our PK/PD models, the geometric 

parameters for the PK component are obtained from histological studies, while the PD are based on a 

combination of binding assays, receptor trafficking studies, and measurements of receptor phosphorylation 

under different conditions, from experiments performed in multiple cells lines by different research groups 

[22, 23]. 

One of the areas where systems pharmacology holds the most promise is in accounting for 

changes in PK and PD between animal models and humans, both due to geometric differences, and to 

species-specific genes and gene expression patterns (Fig. 4-1) [13]. Detailed systems pharmacology models 

can be built and validated using in vitro data and pharmacokinetic studies in animals, and then converted 

into human- and disease-specific models [10, 24]. In order for these models to make clinically-relevant 

predictions, they must then be validated against human data to the maximum extent possible. While human 

data is limited, levels of drug and other biomarkers in plasma can be measured with relative ease. 

Mechanistically-detailed systems pharmacology models can then connect predictions of important but 

difficult-to-measure quantities, such as drug concentration, occupancy of receptors with drug versus native 

ligand, and cellular signaling at the target site, to measureable biomarkers [10]. By providing a window into 

the site of disease, these models have great promise to improve our understanding of both disease and 

therapy in the human body.  
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Figure 4-1. Mechanistic computational models bridge gaps in translation. Due to the difficulty and 

invasiveness of obtaining direct human measurements of disease and drug action, we often rely on data 

from other systems. However, translating experimental results from cell culture and animal models into 

useful predictions in human patients is difficult (dashed boxes). Experimental conditions in cell culture 

(top) do not match the in vivo site of drug action. Similarly, there is mismatch between animal models 

(bottom) and human patients. Mechanistic computational models can explicitly account for these 

differences, integrating data from diverse sources into a single framework, and providing mechanistic 

insight into drug action. Human disease-specific computational models (PK/PD of the whole body or 3D 

models or particular tissues) can then be used to predict the effects of drugs in human patients, 

incorporating patient-specific information (e.g. genetic mutations and gene expression changes). 
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In light of the capabilities of mechanistic computational models (Box 4-2), we propose that 

inclusion of detailed mechanistic information into pharmacodynamic models is critical to understand drug 

PD in an insightful and predictive way. We present three brief examples where inclusion of mechanistic 

detail was necessary to: (1) meaningfully discriminate between effective and ineffective drugs, (2) identify 

promising new drug targets, or (3) understand why existing therapeutic approaches have been ineffective. 

We chose case studies that focus on mechanistic modeling of receptors and channels, as they are subject to 

complex regulation, but provide targets more specific than downstream signaling pathways, which are 

common to many cellular processes. These examples involve different biological systems, highlight 

different advantages of mechanistic models, and use different techniques to translate the mechanistic 

insight into the human body. All, however, demonstrate the promise of mechanistic computational models 

to aid in drug development for a wide range of diseases (Box 4-2).  
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Box 4-2. Capabilities of mechanistic computational models. 

 

 

  

New Drug Design 

 Integrate data from diverse sources 

 Identify key, highly sensitive nodes in a signaling network 

 Inform optimal properties of new drugs (e.g. binding affinity) 

 

Drug Discrimination 

 Predict effective vs. ineffective therapeutic strategies based on mechanism & properties that 

emerge in humans but not in experimental systems 

 Predict off-target drug effects that may lead to toxicity or drug failure 

 Predict optimal dosing, scheduling, route of administration, & drug combinations 

 Design experiments to better discriminate between drug candidates or existing & repurposed 

drugs 

 

Translation to Diverse Human Population 

 Develop better understanding of human disease states 

 Translate results from experimental & animal systems into a human patient- and disease-

specific context 

 Improve extrapolation between similar drugs, between experimental systems, and between 

patients, due to predictive, mechanism-based framework 

 Identify biomarkers for subpopulation inclusion or exclusion from clinical trials, e.g. based 

on patient-specific gene expression 

 Link measurable blood biomarkers to disease state at drug site-of-action 

 

Establish Requirements for Success of Emerging Therapeutic Approaches 

 Gene Therapy (e.g. transfection efficiency) 

 Cell Therapy (e.g. cell type & delivery method) 

 Organ Transplant (e.g. drug regimens, predictive markers of rejection) 

 Engineered Tissue Constructs (e.g. requirements for functional vascularization) 
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4.2 Case Study 1: Drug Discrimination for Cardiac Arrhythmia 

 
A promising application for mechanistic computational models is to perform virtual drug 

screening, eliminating candidate drugs that appear to work in single-cell systems, but have emergent 

properties in the context of human physiology that may result in adverse effects. The multi-scale 

mechanistic computational models built by Colleen Clancy and collaborators to compare anti-arrhythmia 

drugs, both in the context of a single cell and within tissues, provide an elegant example. Cardiac 

arrhythmia is a complex condition involving the (dis)coordinated electrical excitation of a large number of 

cells in the heart, which can cause sudden death. Based on single-cell experiments, blocking Na
+
 channels 

in cardiac myocytes was identified as a promising therapeutic strategy. However, clinical trials have 

demonstrated that, instead of suppressing arrhythmia, some of these drugs actually increase the incidence 

of sudden cardiac death by 2-3 fold in patients with a history of myocardial infarction [25]. Specifically, the 

class 1B anti-arrhythmia drug lidocaine, which has fast association-dissociation kinetics, has no known 

safety issues, but the class 1C anti-arrhythmia drug flecainide, with slow drug-channel association & 

dissociation, is known to cause conduction block at high physiological doses. As the pharmacokinetics of 

these drugs are well-characterized [26, 27], this study focused specifically on modeling drug 

pharmacodynamics within cardiac tissue.  

The Clancy group model, which integrates decades of experimental study on the mechanisms of 

action of ion channels, represents the active and inactive states of the cardiac Na
+
 channel using a Markov 

model [28, 29]. To incorporate Na
+
-channel-blocking drugs, they used experimental data to estimate the 

affinity of both charged and neutral fractions of multiple drugs for each of the possible Na
+
 channel 

conformations [29]. The resulting model captured the ability of both drugs to slow conduction in single 

cardiac cells. To translate these observations to a clinically-relevant framework, the Clancy group and their 

collaborators simulated the actions of the same drugs in groups of coupled cells. The computational model 

— applied to both simulated 2D tissue sheets and 3D models of the human ventricle — was able to 

replicate the clinically-observed conduction block and increased sensitivity to early or late heart beats 

(which can lead to sudden cardiac death) after treatment with a high clinical dose of flecainide at fast 

pacing rates (160 bpm), but not with lidocaine [29]. This prediction, which emerged in organized tissues as 

a result of molecular-level differences in drug properties, was then validated in an animal model. In 
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addition to discriminating between effective and ineffective drugs, this model allows for identification of 

safe dosing ranges and physiological counter-indications (tachycardia) for use. The Clancy group is now 

expanding this work to other drugs and personalized medicine applications [30, 31], including a study of 

sex-driven differences in susceptibility to arrhythmia as a result of sex-specific gene expression and sex 

hormones [32]. 
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4.3 Case Study 2: Drug Target Identification for Cancer 

 
Sensitivity analysis of mechanistic computational models allows for identification of key nodes in 

signaling pathways, which can be promising drug targets, as well as predicting changes in signaling 

resulting from the tuning of drug properties. This is of particular interest in fields where existing drugs have 

limited efficacy or are susceptible to resistance, as mechanistic models can also predict which patients will 

benefit from a particular drug. An excellent application of mechanistic computational models for cancer 

drug development is the work of Birgit Schoeberl and colleagues at Merrimack Pharmaceuticals. This 

group built detailed models of ligand-binding, receptor dimerization, and downstream signaling in the ErbB 

family, the receptors of which are commonly overexpressed or constitutively active in cancer [33, 34]. To 

build these models, they performed extensive screening of ErbB family receptor phosphorylation and Akt 

activation in diverse cancer cell lines. They then fit kinetic parameters in the model using this experimental 

data. They found that Akt signaling resulting from treatment with betacellulin or heregulin1-β was more 

sensitive to perturbation of ErbB3/HER3, a kinase-dead receptor tyrosine kinase, than the more commonly 

targeted ErbB1/EGFR or ErbB2/HER2 [34]. Without such modeling efforts, ErbB3 was unlikely to be 

identified as a promising drug target, due to its lack of an active kinase domain.  

As a result of this work, Merrimack Pharmaceuticals designed an antibody (MM-121) specifically 

to inhibit phosphorylation of ErbB3, with an affinity for ErbB3 informed by the mechanistic computational 

modeling effort [34, 35]. In addition to drug design, the team was able to identify potential molecular 

biomarkers for response to MM-121. This has had a direct impact on the development process: high 

heregulin expression, predicted to be indicative of a positive response to MM-121 treatment, is an inclusion 

criteria for a current phase II clinical trial for MM-121 in combination with chemotherapy for non-small 

cell lung cancer [36]. Similar work has led to additional candidate antibodies currently in development. 

This example demonstrates the value of detailed computational models in not only discriminating between 

previously-developed and characterized drugs, but also in optimizing the targets and properties of future 

drugs. 
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4.4 Case Study 3: Better Therapeutic Approaches for Ischemic Disease 

 
Mechanistic computational models are valuable both for screening potential drug targets in stand-

alone pharmacodynamic models, and in the context of systems pharmacology-style PK/PD models, where 

diverse therapeutic delivery routes can be compared. We apply these strategies to study angiogenesis, the 

growth of new blood vessels from the existing vasculature. A promising approach to treat ischemic disease 

is to promote angiogenesis by targeting one of its key regulators, vascular endothelial growth factor 

(VEGF). However, despite multiple clinical trials, no VEGF-based pro-angiogenic therapies have yet been 

approved [10, 37, 38], and success in promoting vascularization of engineered tissue constructs has also 

been limited [39]. This suggests that our current understanding of the underlying processes is insufficient to 

effectively promote vascular growth or remodeling. 

To address this barrier, we build detailed mechanistic computational models of VEGF binding to 

its receptors, coreceptors, and the extracellular matrix (ECM), as well as the dimerization, intracellular 

trafficking and phosphorylation of the primary signaling VEGF receptor, VEGFR2. Such models can be 

used to study how changes in VEGF presentation (i.e. in solution or bound to the ECM) and the distribution 

of splice isoforms (which changes in disease), can alter endothelial cell signaling and the resulting vascular 

morphology [22]. As such, regulation of these properties is important to ensure proper perfusion and to 

control the permeability of developing vessels [40]. In addition to increasing our understanding of the 

pharmacodynamics of VEGF action in tissues, these biophysically-detailed models allow for comparison of 

many potential therapies, such as antibodies that target VEGF or block coreceptor binding, or gene therapy 

approaches [41-43]. We build these models upon detailed measurements of VEGF-induced signaling in 

cultured endothelial cells following various perturbations. However, the conditions for cell culture 

experiments are quite different than those in the human body (Fig. 4-1). 

One of the strategies we use to translate this mechanistic insight into the context of the human 

body is by seeding these detailed endothelial cell signaling reactions (PD) into a PK model to form a 

mechanistically-detailed systems pharmacology model [23]. Our PK framework includes blood, healthy 

tissue, and diseased tissue (e.g. mouse or human calf muscle with peripheral artery disease), parameterized 

using histological and physiological data. These models allow us to predict how VEGF-mediated signaling 

changes in diseased tissue (compared to healthy tissue), which is very difficult to measure in patients. 
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Additionally, we can predict how therapeutically-relevant quantities, such as the phosphorylation of 

VEGFR2, relate to measurable biomarkers, for example plasma levels of different VEGF isoforms [44], as 

we have previously done in cancer [43]. These whole-body models allow for screening of different delivery 

methods for therapies, such as intravenous or intramuscular antibody delivery, as well as gene, protein, or 

cell-based therapies and exercise [45]. While it is expected that these different therapy delivery methods 

(e.g. protein versus gene therapy) will result in different magnitudes & durations of effect in the target 

tissue, it is unclear without simulation which approaches may be most or least effective. Additionally, by 

incorporating mouse- and human-specific geometry and molecular (e.g. gene expression) changes, we can 

predict differences in therapy effectiveness between animal and human models [6]. This powerful 

framework provides great promise both to understand why previous therapeutic strategies have failed, and 

to identify promising future drug targets and delivery strategies.  
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4.5 Mechanistic Computational Models: A Way Forward for Drug Development 

 
The body’s response to a drug is often an emergent property of the complex system. As such, drug 

design is not simply a problem of maximizing binding of a single drug to a single target. The case studies 

presented here demonstrate the unique ability of computational models including receptor- or channel-level 

mechanistic detail to improve selection of the right drug targets, properties, dosing & delivery route, and 

patient populations. The most effective way to implement mechanistic computational models of drug 

pharmacodynamics depends on the disease application. By linking predictions of important but difficult-to-

measure markers of disease state to measureable plasma biomarkers, mechanistic models coupled to PK/PD 

frameworks (parameterized for specific disease applications) can give clinicians and drug designers a 

window into disease-driven changes on a patient-specific basis (Box 4-2). In other cases, where spatial 

patterning and cell-cell communication are known to play an important role, 3D tissue-scale computational 

models have a critical ability to capture emergent behaviors in healthy and diseased tissues. To incorporate 

pharmacokinetics into these 3D models, PK/PD model predictions can provide the local drug concentration 

(due to delivery and average consumption by the target tissue) and help parameterize the 3D 

pharmacodynamic model. Regardless of approach, the mechanistic detail is what makes these models 

predictive, conferring the ability to identify critical drug design requirements and patient counter-

indications. 

As highlighted by the diverse applications in the case studies, mechanistic computational models 

can be applied to any disease state, be it acute or chronic, and regardless of whether the disease stems from 

infection, genetic factors, and/or environmental or behavior factors. The only requirement is sufficient 

experimental information to build a mechanistic model of the underlying molecular changes. 

Computational models can also be used to test the feasibility of promising, but not yet widely successful, 

therapeutic strategies (Box 4-2). For example, models can predict the transfection efficiency required for 

gene and cell therapy to be effective across a heterogeneous patient population [46, 47]. In addition to drug 

design, mechanistic computational models, paired with traditional drug development tools, can be used to 

identify better biomarkers for disease progression and therapy response [48], better predict differences in 

response in animal models and human patients [49, 50], and to perform failure analysis on ineffective drugs 

[3, 29], informing the next generation of therapeutics. Personalized medicine approaches can also benefit 
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from the use of mechanistic models, for example in predicting dosing regimes and drug combinations based 

on the molecular markers of individual patients or disease sub-types [12, 14]. Because mechanistic 

computational models can address some of the key shortcomings of the drug development process, they 

hold promise, used hand-in-hand with experimental approaches, to reduce clinical trial failure, reduce the 

average per-drug time and cost investment for development, and ultimately, improve patient outcomes. 
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Chapter 5. Modeling Molecular Mechanism: Signaling by 

Soluble vs. Immobilized VEGF in vitro 

Content from this chapter has been peer-reviewed and published as follows, and is included with 

permission: 

L. W. Clegg & F. Mac Gabhann, “Site-specific phosphorylation of VEGFR2 is mediated by receptor 

trafficking: insights from a computational model,” PLoS Computational Biology, vol. 11, no 6, pp. 

e1004158, June 2015. DOI: 10.1371/journal.pcbi.1004158. PMCID: PMC4466579. 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004158  

 

5.0 Summary 

 

Matrix-binding isoforms and non-matrix-binding isoforms of vascular endothelial growth factor 

(VEGF) are both capable of stimulating vascular remodeling, but the resulting blood vessel networks are 

structurally and functionally different. Here, we develop and validate a computational model of the binding 

of soluble and immobilized ligands to VEGF receptor 2 (VEGFR2), the endosomal trafficking of VEGFR2, 

and site-specific VEGFR2 tyrosine phosphorylation to study differences in induced signaling between these 

VEGF isoforms.  In capturing essential features of VEGFR2 signaling and trafficking, our model suggests 

that VEGFR2 trafficking parameters are largely consistent across multiple endothelial cell lines.  

Simulations demonstrate distinct localization of VEGFR2 phosphorylated on Y1175 and Y1214.  This is 

the first model to clearly show that differences in site-specific VEGFR2 activation when stimulated with 

immobilized VEGF compared to soluble VEGF can be accounted for by altered trafficking of VEGFR2 

without an intrinsic difference in receptor activation.  The model predicts that Neuropilin-1 can induce 

differences in the surface-to-internal distribution of VEGFR2.  Simulations also show that ligated VEGFR2 

and phosphorylated VEGFR2 levels diverge over time following stimulation.  Using this model, we 

identify multiple key levers that alter how VEGF binding to VEGFR2 results in different coordinated 

patterns of multiple downstream signaling pathways. Specifically, simulations predict that VEGF 

immobilization, interactions with Neuropilin-1, perturbations of VEGFR2 trafficking, and changes in 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004158
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expression or activity of phosphatases acting on VEGFR2 all affect the magnitude, duration, and relative 

strength of VEGFR2 phosphorylation on tyrosines 1175 and 1214, and they do so predictably within our 

single consistent model framework. 
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5.1 Introduction 

 
Members of the vascular endothelial growth factor (VEGF) family are critical regulators of 

angiogenesis and are implicated as cause or as potential therapy in over 70 diseases, including ischemic 

diseases of the heart and brain and many cancers.  To date, only limited success has been achieved in 

promoting development of functional vascular networks for tissue engineering [1-3], regeneration [4], and 

wound healing [5-7].  To harness the VEGF family for tissue vascularization, we must improve our 

understanding of the mechanisms by which the mode of presentation of VEGF to endothelial cells alters 

endothelial cell response.   

Some VEGF isoforms can bind to proteins and proteoglycans in the extracellular matrix as well as 

to their cognate cell surface receptors.  This matrix-bound VEGF was previously thought to represent a 

relatively inert pool of sequestered VEGF held in reserve until proteolytic release.  Recent work has 

demonstrated that matrix-bound VEGF can directly ligate and activate VEGF receptors [8-10], and that 

VEGF and platelet-derived growth factor (PDGF) engineered to have increased affinity for the extracellular 

matrix promote wound healing and angiogenesis better than the wild-type growth factors [11].  

Computational models of VEGF transport predict that the amount of matrix-bound VEGF in normal human 

tissue (e.g. skeletal muscle) is 30 to 100-fold higher than the amount of free (soluble, unbound) VEGF 

[12,13].   However, almost all in vitro studies of VEGF receptor signaling have examined only soluble 

presentation of VEGF.  Better mechanistic understanding of how VEGF immobilization alters VEGF 

receptor 2 (VEGFR2) signaling (and the resulting cellular behavior) will greatly improve our ability to 

design VEGF-based therapies and to pattern cues for vascular networks in tissue engineering applications.   

Multiple isoforms of VEGFA (herein referred to as VEGF) exist, the most common in humans 

being VEGF121, VEGF165, and VEGF189  (VEGF120, VEGF164, and VEGF188 in mice) [14].  VEGF165 and 

VEGF189 include basic heparin-binding domains through which they can bind to extracellular matrix 

(ECM) proteins such as fibronectin and collagen, and also heparin [15-19].  Tissues express distinct ratios 

of VEGF isoforms, possibly inducing tissue-specific vascular architecture [20].  Mouse tumors expressing 

only VEGF188 or modified protease-resistant VEGF isoforms exhibit dense, highly branched networks of 

small diameter blood vessels [21,22].  In contrast, tissues or tumors secreting primarily VEGF120/121 (purely 

soluble) exhibit wide, tortuous vessels with low branching density and high permeability [22,23].   
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 There are 3 receptor tyrosine kinases (RTKs) for the VEGF ligands.  We focus here on VEGFR2, 

the RTK most strongly associated with VEGF-induced angiogenesis.  VEGF, a constitutive dimer, binds 

and dimerizes two VEGFR2 monomers, resulting in receptor autophosphorylation of multiple intracellular 

tyrosines.  Each phosphotyrosine recruits distinct sets of adaptor proteins, leading to distinct downstream 

signaling [24,25] (Fig.1D).  Generally, phosphorylation on tyrosine 951 (Y951) promotes Akt activation 

(via PI3K) and cell survival [1,26].  Phosphorylation of Y1175 leads to activation of ERK1/2 (via PLCγ) 

and proliferation, as well as activation of Akt [27,28], while phosphorylation of Y1214 leads to activation 

of p38 MAPK and migration [1,29,30].   

The isoform-specific coreceptor Neuropilin-1 (NRP1) does not bind directly to VEGFR2; NRP1-

binding VEGF isoforms bridge VEGFR2 and NRP1 to form a ternary complex [31].  NRP1 increases the 

effective affinity of VEGF for VEGFR2 [32], as well as influencing VEGFR2 trafficking [33,34].  NRP1 

may have other VEGF-induced, VEGFR2-independent signaling capabilities [35,36], but these effects are 

excluded from this analysis.   

While many aspects of trafficking are conserved across RTK systems [24,25,37] [38,39], there are 

significant differences between the well-studied EGF system and the VEGF system [40,41]. Similar to 

other RTKs, VEGFR2 is constantly being produced, internalized, recycled, and degraded in endothelial 

cells, resulting in continuous turn-over of the receptor population even in the absence of VEGF [42] (Fig. 

5-1B).  Upon internalization, VEGFR2 is initially found in early endosomes, identified by the marker Rab5.  

From the early endosome, VEGFR2 can be recycled directly via Rab4-positive endosomes, degraded via 

Rab7-positive late endosomes, or transferred to Rab11-positive recycling endosomes [40,43,44]. 

Constitutive recycling of VEGFR2 in endothelial cells occurs primarily through the Rab4 pathway [40,41], 

while NRP1 promotes routing of VEGF-VEGFR2 complexes through the Rab11–positive recycling 

pathway [40,45].An increasing body of evidence suggests that trafficking of VEGFR2 regulates receptor 

phosphorylation, downstream signaling, and the resulting cell behavior [24,30,46,47].  VEGFR2 signaling 

can be attenuated by receptor degradation or by tyrosine phosphatase-mediated dephosphorylation of 

intracellular residues [9,48,49].  Significant gaps exist in current understanding of phosphatases acting on 

VEGFR2, but the subcellular localization and tyrosine residue specificity of some phosphatases is known. 
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Vascularization is critical for the viability of thick tissue-engineered constructs.  As such, there is 

significant interest in immobilizing VEGF in tissue scaffolds or on surfaces.  Though a variety of different 

techniques for immobilization of VEGF have been explored, a clear understanding of the mechanism 

through which immobilized VEGF results in different cellular signaling and vascular phenotypes than 

soluble VEGF has not yet emerged.  We and others have previously developed models to study the 

trafficking of VEGFR2 [8,24,25] and other growth factor receptors (most notably EGF receptors [50-52]), 

as well as the impact of growth factor sequestration in the extracellular matrix on distribution and 

availability to cells [53-55].  However, these models have only considered matrix-bound VEGF, VEGFR2 

trafficking, and receptor phosphorylation events in a limited way, if at all.   

The purpose of this study is to quantitatively connect trafficking and localization of VEGFR2 to 

tyrosine site-specific VEGFR2 phosphorylation patterns, which have been implicated in regulating 

signaling downstream of VEGFR2.  Specifically, this model was developed to test the hypothesis that 

control of site-specific VEGFR2 dephosphorylation by receptor trafficking is sufficient to explain 

experimental observations following stimulation of endothelial cells with soluble or immobilized VEGF.  

We also study the effect of NRP1 expression on VEGFR2 trafficking and phosphorylation. 
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Figure 5-1. Model Schematics. A. Biochemical Reactions.  Interactions between VEGF, VEGFR2, NRP1, 

and an extracellular matrix proteoglycan (M) are summarized.  VEGF can bind VEGFR2, NRP1, and M.  

NRP1 and M cannot be present in the same complex (as they bind to the same surface of VEGF), and 

VEGFR2 and NRP1 cannot form a complex without VEGF.  B. Trafficking Pathways.  Surface molecular 

complexes can be internalized with rate constant kintn.  Rab4/5-resident molecular complexes can be 

degraded (rate constant kdegr), recycled (rate constant krec4), or transferred to the Rab11 compartment (rate 

constant k4to11).  Rab11 endosome-resident complexes are recycled with rate constant krec11.  New surface 

receptors are produced at rate s. C. Phosphorylation Reactions.  Intracellular tyrosine residues Y951, 

Y1175, and Y1214 are phosphorylated and dephosphorylated independently.  D. Overview of signaling 

pathways and cellular behaviors downstream of tyrosine residues Y951, Y1175, and Y1214 on VEGFR2. 



 119 

 

Figure 5-1 
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5.2 Materials and Methods  

 
5.2.1 Computational Model Overview 

We developed a model to simulate in vitro experiments in which monolayers of endothelial cells 

are exposed to exogenous soluble or immobilized VEGF.  The model uses a large set of coupled, nonlinear, 

deterministic, ordinary differential equations to simulate key biochemical reactions (Fig. 5-1A), trafficking 

processes (Fig. 5-1B), and phosphorylation reactions (Fig. 5-1C).  The model uses experimentally-derived 

kinetics (Tables 5-1, 5-2, & 5-3) and incorporates geometry and initial concentrations specific to the 

experimental protocols being simulated (Table 5-4).  In the model, we assume that VEGF and VEGFR2 

are pre-dimerized, though we have examined the implications of including dimerization reactions in the 

past [56].  Both soluble VEGF (V) and ECM-bound or immobilized VEGF (V∙M) can bind to VEGFR2 

(R2).  V∙M can dissociate and reassociate.  NRP1 (N1) can bind to V or V∙R2, but not to M∙V∙R2, as N1 

and M bind to the same heparin-binding domain on VEGF.  We exclude for now the possibility of one 

NRP1 and one M binding to opposite sides of the same VEGF dimer simultaneously, though this 

assumption was tested.  These reactions occur in every model compartment (described below) in which the 

corresponding species are present.   
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Table 5-1. Model Parameters for Biochemical Reactions 
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 All rates for internal reactions were assumed to be the same as on the cell surface.  Unit conversion was 

required (not shown) for kon and KD in internal compartments (from M
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-1
 for kon and from 

M to #/cm
2
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Table 5-2. Model Parameters for Trafficking  

Parameter Species Value (s
-1

) Reference 

kint R2 2.6 x 10
-3 

[24,25] 
 V·R2 3.12 x 10

-2 
[24,25] 

 M∙V∙R2 0 Assumed 

 V 0 Assumed 

 N1 2.6 x 10
-3

 Assumed same as R2 

 V·N1 2.6 x 10
-3

 Assumed same as N1 

 V·N1·R2 3.12 x 10
-2

 Assumed same as V·R2 

krec4 R2rab45 3.8 x 10
-3 Fit 

 V·R2rab45 3.8 x 10
-3 

Held equal to krec4 for R2 rab45 during fitting 

 Vrab45 0 Assumed 

 N1rab45 3.8 x 10
-5

 Held equal to 1/100 * krec4 for R2 rab45 during 

fitting 
 V·N1rab45 3.8 x 10

-5
 Held equal to krec4 for N1 rab45 during fitting 

 V·N1·R2rab45 3.8 x 10
-5

 Held equal to krec4 for N1 rab45 during fitting 

krec11 R2rab11 1.4 x 10
-4

 Held equal to 1/100 * krec11 for N1rab11 during 

fitting 
 V·R2rab11 1.4 x 10

-4 
Held equal to 1/100 * krec11 for N1rab11 during 

fitting 
 Vrab11 0

 
Assumed 

 N1rab11 1.4 x 10
-2

 Fit 

 V·N1rab11 1.4 x 10
-2

 Held equal to krec4 for N1rab11 during fitting 

 V·N1·R2rab11 1.4 x 10
-2

 Held equal to krec4 for N1rab11 during fitting 

k4to11 R2rab45 1.0 x 10
-5

 Assumed 

 V·R2rab45 1.0 x 10
-5

 Assumed 

 Vrab45 0
 

Assumed 

 N1rab45 1.9 x 10
-2 Fit 

 V·N1rab45 1.9 x 10
-2

 Held equal to k4to11 for N1rab45 during fitting 

 V·N1·R2rab45 1.9 x 10
-2

 Held equal to k4to11 for N1rab45 during fitting 

kdegr R2rab45 3.6 x 10
-6

 Held equal to 1/10 * kdegr for V·R2rab45 during 

fitting 
 V·R2rab45 3.6 x 10

-5
 Fit 

 Vrab45 1.2 x 10
-2 

Assumed 

 N1rab45 1.6 x 10
-4 Fit 

 V·N1rab45 1.6 x 10
-4 

Held equal to kdegr for N1rab45 during fitting 

 V·N1·R2rab45 6.8 x 10
-4

 Fit 

s R2 Calculated  Calculated (Units: #/(cm
2
s)) 

 N1 Calculated Calculated (Units: #/(cm
2
s)) 

Bold: Value fit directly in this study 
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Table 5-3. Model Parameters for VEGFR2 Phosphorylation 

Species kp
 
(All 

Residues)  

kdp,Y951 (s
-1

) kdp,Y1175 (s
-1

) kdp,Y1214 (s
-1

) 

R2 0 30 30 30 
R2rab45 0 30 30 30 

R2rab11 0 30 30 30 

V·R2 1 0.043 4.98 1.06 

V·R2rab45 1 75.0 0.00972 0.0307 

V·R2rab11 1 30 30 30 

V· N1·R2 1 6 5 1 

V· 

N1·R2rab45 

1 15 0.01 6 

V· 

N1·R2rab11 

1 30 30 30 

All units s
-1

: Bold = fit.  References: See Methods. 
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Table 5-4. Initial Conditions and Parameters that vary by Study  

Parameter Trafficking 

Study[40] 
2011 Presentation 

Study[8] 
2010 Presentation 

Study[29] 
Other 

Simulations 

Cell Type PAEC HUVEC HUVEC HUVEC 

Initial Conditions 

 [V] 50 ng/mL 2 ng/mL 200 ng/mL Varies 

 [M] - 1500 ng/mL 3 mg/mL 3 mg/mL 

 [R2]surf 37,400/108,000 per 

cell 

6,000 per cell 6,000 per cell 6,000 per cell 

 [N1]surf 0/113,000 per cell 35,000 per cell 35,000 per cell 35,000 per cell 

Geometry 

Total Surface 

Area 

1 cm
2 

3 cm
2 b

 1 cm
2
 1 cm

2
 

Solution/Matrix 

Depth
a
 

0.5 cm 0.05 cm (Vb)/ 

0.5 cm (Vs) 

0.5 cm 0.5 cm 

Trafficking Parameters (factor change from values in Table 2) 

kint(V·R2) -
 

- /6 -
c
 

kdegr - x 2.4 x 2.4 x 2.4 

V·M Binding Parameters 

koff,V·M - 3.3 x 10
-3

 s
-1

 (Ve) / 

1.1 x 10
-3

 s
-1

 (Vc) 

1.0 x 10
-2

 s
-1

 1.0 x 10
-2

 s
-1

 

kon,V·M  - 4.2 x 10
5
 M

-1
s

-1 
4.0 x 10

3
  M

-1
s

-1
 4.0 x 10

3
  M

-1
s

-

1
 

KD,V·M  - 7.9 x 10
-9

 M (Ve)
d
 

/ 2.6 x 10
-9

 M (Vc) 

2.5 x 10
-6

 M 2.5 x 10
-6

 M 

a 
Calculated from information in [8] on surface densities and VEGF concentration, and used to calculate  

[M]. 

b 
Tuned so total surface Vs·R2 + internal VEGF matches data in [8]. 

c
 The original kint value was used for  [V] < 50 ng/mL (trafficking study [40], 2011 presentation study [8], 

Anderson et al. 2011 Validation study [58], Mellberg et al. [61]), as well as for all model predictions. kint/6 

was used for  [V] > 50 ng/mL (2010 presentation study [29], Martino et al. Validation study [59], and 

Mattila et al. [60]). In cases where [V] = 50 ng/mL, the value that resulted in better fits was used. 

d 
References:  [12,63]    
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5.2.2 Trafficking Processes 

The model includes five compartments: extracellular (media and matrix); cell surface; early 

endosomes (combining Rab4- and Rab5-positive endosomes); recycling endosomes (Rab11-positive); and 

degraded (late/Rab7-positive endosomes and lysosomes).  The concentration of soluble or immobilized 

VEGF in the extracellular compartment is assumed to be uniform, but not constant.  Newly synthesized 

VEGFR2 and NRP1 are inserted into the cell surface compartment at a constant rate, resulting in constant 

surface VEGFR2 and NRP1 populations in the absence of VEGF.  The initial quantity of VEGFR2 and 

NRP1 in each endosomal compartment was set based on the trafficking parameters to obtain a steady 

distribution in the absence of VEGF.  R2, V·R2, N1, V·N1, and V·N1·R2 are internalized from the surface 

to the early endosome compartment.  M·V·R2 is not internalized in our model; we assume it is anchored to 

the gel or surface to which VEGF is immobilized.  All receptor complexes in the Rab4/5 compartment can 

be recycled directly, degraded, or trafficked to the Rab11 compartment for recycling.  We assume that free 

(non-receptor-bound) VEGF in Rab4/5 endosomes does not recycle or travel to Rab11 endosomes; 

quantitative analysis showed that these processes were negligible compared to degradation of free VEGF.  

We assumed that no degradation occurs from the Rab11 compartment, as Rab11 endosomes have an 

outward-directed motor (for recycling).  The trafficking processes are summarized in Fig. 5-1B.  Examples 

of the equations describing the biochemical reactions and trafficking of each species are given below.  The 

complete set of biochemical and trafficking reactions (not including all phosphorylation states of VEGFR2) 

can be found in the Supplemental Information. 
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Cell Surface Molecular Complexes: 
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Rab4/5 Molecular Complexes: 
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5.2.3 Phosphorylation Reactions 

Phosphorylation and dephosphorylation of ligated VEGFR2 (V·R2) and free VEGFR2 (R2) take 

place on the cell surface and in the endosomes.  We assume that the intrinsic phosphorylation and 

dephosphorylation rates for V·R2 are the same whether VEGF is immobilized or soluble.  We also assume 

that NRP1 does not affect the intrinsic phosphorylation rates of VEGFR2, though it does increase the 

affinity of VEGF for VEGFR2.  While some information about the subcellular locations and tyrosine 

specificities of phosphatases targeting VEGFR2 is available, there is insufficient information to develop 

detailed explicit phosphatase models. Thus, we assume first order phosphorylation and dephosphorylation 

kinetics, effectively assuming that the relevant phosphatases are present in excess.  The phosphorylation 

and dephosphorylation rates for each tyrosine residue examined (Y951, Y1175, and Y1214) can be 

independent in the model, and vary with the ligation status and subcellular localization of VEGFR2.  Thus, 

we do not assume that VEGFR2 is automatically phosphorylated upon binding of VEGF or 

dephosphorylated upon unbinding of VEGF; these are still first-order reactions.  We assume that the 

trafficking rates in the model are controlled by the ligation status of VEGFR2, not by its phosphorylation 
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state. VEGFR2 internalization has been shown to be regulated by phosphorylation of Y1054/Y1059 [57]. 

However, as these are considered activation tyrosine residues, we assume that VEGFR2 ligation is a 

surrogate for pY1054/59, as done in previous models [24,25].  We assume that phosphorylation of all 

tyrosine sites on VEGFR2 is lost upon degradation, but that phosphorylation and ligation patterns are not 

directly changed by other trafficking processes. 

Given the three tyrosine sites being considered, there are eight possible phosphorylation patterns 

for VEGFR2: R2 (no phosphorylation), R2pY951, R2pY1175, R2pY1214, R2pY951-pY1175, R2pY951-pY1214, R2pY1175-

pY1214, and R2pY951-pY1175-pY1214.  The same patterns are possible for V·R2, M·V·R2, V·N1·R2, R2rab45, 

V·R2rab45, V·N1·R2rab45, R2rab11, V·R2rab11, and V·N1·R2rab11.  We assume that all newly produced 

VEGFR2 is completely unphosphorylated.  These reactions are shown schematically for V·R2 on the cell 

surface in Fig.1C.  A sample equation describing the complete set of biochemical reactions, trafficking 

processes, and phosphorylation events that affect the population of surface R2pY1175 is given below:  
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5.2.4 Model Outputs 

The outputs of this model are the concentrations of each molecule or molecular complex 

(summarized in Table 5-S1) over time.  The concentrations of certain complexes were combined into 

lumped quantities of interest, which could be directly compared to experimental data.  For example, the 

model allows prediction of pY951 VEGFR2 (pY951), pY1175, and pY1214 quantities over time under 

different simulation conditions.  These quantities are obtained by summing the concentrations of all 

VEGFR2 (ligated and free) that are phosphorylated on the given site.  These quantities are examined in 

total, and also partitioned into surface, Rab4/5, and Rab11 components.  We assume that the total VEGFR2 
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phosphorylated on at least one of Y951, Y1175, and Y1214 in the model is a reasonable correlate to total 

phosphorylated VEGFR2 (pR2) experimental data.  As we do not include all tyrosine residues on VEGFR2 

in our model, this is expected to underestimate the total percentage of VEGFR2 phosphorylated, but the 

shape of the resulting curve is expected to be correct. Model outputs were normalized for parameter 

estimation in the same way as the experimental data to which they were compared.  For model predictions, 

outputs are shown relative to the total VEGFR2 in the system in the absence of VEGF (100%) (See Fig. 5-

2C).  Note that, due to degradation, the total amount of VEGFR2 in the system after VEGF stimulation is 

less than 100%.   

 

5.2.5 Parameter Fitting Overview 

Parameters in this model were taken from literature, calculated, assumed, or fit to data from one 

study of VEGFR2 and NRP1 trafficking [40] (hereafter referred to as the “trafficking study”) and two 

studies of immobilized VEGF [8,29] (hereafter referred to as the “2010 presentation study” and the “2011 

presentation study,” together the “VEGF presentation studies”).  The provenance of each parameter is 

shown in Tables 5-1, 5-2, & 5-3.  The experimental trafficking study provides the most detailed and 

complete quantitative data on VEGFR2 and NRP1 trafficking from a single study to date [40].  The VEGF 

presentation studies provide data on site-specific phosphorylation of VEGFR2 upon exposure to soluble 

and immobilized VEGF [8,29], allowing us to study site- and location-specific phosphorylation patterns.  

These studies have experimental outputs that can be directly compared to model outputs for parameter 

estimation and validation.  We simulated the experimental protocols from these studies by altering the 

initial conditions and geometry in the model to fit the protocol used in each study, as summarized in Table 

5-4. 

 The general protocol used to assemble a completely parameterized model was as follows.  All 

biochemical reaction rates, excepting V·M reaction parameters, were taken from literature or previous 

experimentally-validated models of VEGF165, VEGFR2, and NRP1, as summarized in Table 5-1.  The 

trafficking parameters were fit to data in the trafficking study [40] (soluble VEGF only).  The assumptions 

used to reduce the number of parameters fit are detailed in Table 5-2 and in section 5.2.6 below.  Next, we 

fixed the dephosphorylation rates for all species in Rab11 endosomes at a sufficiently high value to 
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minimize phosphorylation in this compartment, as pY1175 and pY1212 (mouse equivalent of human 

Y1214) did not co-localize with Rab11 in the trafficking study.  We then took the model, to this point 

parameterized solely with soluble VEGF data, and applied it to the VEGF presentation studies [8,29].  The 

M·V reaction parameters were fit to data in each study.  We then fit phosphorylation parameters for the cell 

surface and Rab4/5 endosomes to data from both of the VEGF presentation studies simultaneously.  We 

fixed the phosphorylation rates and fit the dephosphorylation rates in each compartment, as 

phosphorylation is assumed to be fast upon ligand binding.  We then validated the complete model against 

data from four independent studies and additional data from the trafficking study [40,58-61].  This modular 

approach to parameter fitting was chosen to reduce the number of parameters being fit at each step, and 

because distinct types of data (cell lines and experimental set-ups) were used for each step.  It does not 

reduce the utility of our model in determining whether trafficking-controlled dephosphorylation of 

VEGFR2 is sufficient to account for observed trends in experimental data. 

 

5.2.6 Trafficking Parameters 

We fixed the internalization rates in the model using values for free and ligated VEGFR2 

estimated for previous models of VEGFR2 internalization, recycling, and degradation [24,25].  Our goal 

was to obtain a validated parameter set that gives correct VEGFR2 distributions, rather than validated, 

identifiable values for each individual parameter.  Receptor distribution is controlled by internalization, 

recycling, and degradation (production rates for receptors are determined using these values).  As such, 

fitting the recycling and degradation rates should be adequate to capture the trafficking dynamics in this 

system.  We assumed relationships between some of the trafficking parameter values for different 

molecular species (based upon prior knowledge) to reduce the number of parameters to be fit, given the 

limited and noisy data available (Table 5-2).  This set was sufficient to capture the trafficking processes of 

interest in this analysis.  Each assumption was relaxed during parameter fitting, to verify that it was 

reasonable.  The listed set of assumptions resulted in the parameter set that best described the data in the 

trafficking study. The trafficking study examined colocalization of NRP1 and VEGFR2 with over-

expressed, fluorescently-tagged Rab4, Rab5, Rab7, and Rab11 in porcine aortic endothelial cells (PAECs) 

transfected with VEGFR2, NRP1, or both, and exposed to soluble VEGF [40].  Data was also given on 
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total VEGFR2 and NRP1 over time, and total cell-surface NRP1 over time [40].  We included an additional 

term in the optimization cost function to constrain the percent of total VEGFR2 on the cell surface to 

approximately 60% in the absence of VEGF, ensuring a biologically reasonably VEGFR2 distribution [41].  

For this study, we assumed PAECs transfected with VEGFR2 had 37,400 surface VEGFR2/cell, and cells 

transfected with VEGFR2 and NRP1 had 108,000 cell surface VEGFR2/cell and 113,000 cell surface 

NRP1/cell, as previously reported [62]. 

 The experimental data from the trafficking study [40] that was used to fit the trafficking 

parameters, the weights used on each piece of data in the cost function, and the corresponding simulated 

values for a representative set of parameters are shown in Table 5-S4.  Data in that study is given for both 

Rab4- and Rab5-positive endosomes [40].  The maximum of these values was used to fit the data for the 

Rab4/5 compartment in the model.  We fit parameter sets using the relative values of each molecular 

species in Rab4/5, Rab11, and Rab7 endosomes, normalized so that these three values summed to 100% of 

the internal population of that receptor.  We also tried using the ratio of each quantity in Rab4/5 endosomes 

to Rab11 endosomes (Number in Rab4/5 endosomes / Number in Rab11 endosomes) to fit the trafficking 

parameters.  This second strategy was considered because we compared Rab7 measures to internal 

degraded quantities in the model.  While species routed for degradation in real cells pass through Rab7 

endosomes, degraded species in our model are not removed from the system, and so these quantities 

increase over time.  The resulting parameter sets were similar, and the first approach was pursued. 

 We fit the trafficking parameters using the Levenberg-Marquardt algorithm, a non-linear least 

squares optimization routine.  Values of all fit parameters were constrained to the range [10
-5

, 1] s
-1

 to 

ensure physiologically reasonable parameter estimates.  Initial parameter values were pulled randomly from 

a distribution that is uniform on a log10 scale constrained to the range [10
-4

, 10
-2

] s
-1

.  This initial range 

resulted in approximately ½ of optimal parameter sets found being accepted, where a parameter set was 

accepted if the total cost for the set was within 15% of the value for the lowest cost set. From the resulting 

23 acceptable parameter sets, a representative parameter set was selected for use in the remainder of this 

study (shown in Table 5-2). 

The VEGF presentation studies were performed in human umbilical vein endothelial cells 

(HUVECs) [8,29].  For all studies using HUVECs, we assumed surface populations of 6,000 VEGFR2/cell 
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and 35,000 NRP1/cell [62].  Due to the differences in receptor numbers between PAECs and HUVECs, and 

the use of constitutively active, overexpressed Rab proteins in the trafficking study [40], some difference in 

trafficking parameters between the trafficking and VEGF presentation studies was anticipated.  To adjust, 

the degradation rates for all molecular species were increased by a constant factor (2.4, Table 5-4), which 

was determined by minimizing the least square error between model simulations and experimental data in 

the 2010 presentation study for total VEGFR2 over the time range 0-60 minutes [29].   

 

5.2.7 Matrix-Binding Parameters 

With trafficking parameters set, we next manually fit the VEGF-matrix reaction parameters.  The 

2011 presentation study immobilized VEGF to a gold-coated slide using a modified heparin linker, using 

two different protocols to create either an electrostatic or covalent bond between the heparin surface and 

VEGF [8].  Here, we fixed KD for the electrostatic case to be consistent with literature data on VEGF-

heparin affinity [63], and fit koff,V·M. For the covalent case, koff,V·M was tuned, also altering KD,V·M.  After 

examination of the protocols used, we determined that the measurements of internalized VEGF presented in 

this study [8] (used to fit koff,V·M) likely also contain surface-bound quantities of VEGF.  Thus, we 

compared these measurements to the total internal and soluble surface-bound VEGF quantity in our model.  

The 2010 presentation study immobilized VEGF in a collagen and fibrinogen gel [29].  VEGF in the 

collagen gel was assumed to be immobilized primarily through heparin, and the value of koff,V·M was 

assumed to be 10
-2

 s
-1

.  KD,V·M was then tuned to give acceptable fits for phosphorylation data in this study. 

 

5.2.8 Phosphorylation Parameters 

Since phosphorylation is assumed to be a fast process that quickly reaches quasi-static equilibrium 

upon ligation of VEGFR2, we assumed a constant value of kp for V·R2 for all residues in all compartments, 

and tuned the dephosphorylation rates.  We assume kp is zero for free VEGFR2; thus, free VEGFR2 can 

transiently maintain its phosphorylation status if VEGF unbinds, but it cannot become phosphorylated 

without a preceding ligation event.  Additionally, we assume a constant high value for kdp for free VEGFR2 

in all compartments.  Sensitivity studies were performed to confirm that the chosen value was sufficiently 

high to result in efficient dephosphorylation of VEGFR2 following dissociation of ligand; thus the model 
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predictions were relatively insensitive to this parameter. We also assume that the same constant high kdp 

value holds for all complexes in Rab11 endosomes, based on qualitative observations in the trafficking 

study that neither pY1175 nor pY1214 VEGFR2 colocalizes with Rab11 [40].  The remaining kdp values, 

for Y951, Y1175, and Y1214 on the cell surface and in Rab4/5 endosomes, were fit using the Levenberg-

Marquardt algorithm.  The dephosphorylation rate constants were fit directly to a portion of the 

experimental data from the VEGF presentation studies, including Vb/Vs ratios (Fig. 5-3B-C,H).  The fits 

were then checked against the remaining data from the VEGF presentation studies for reasonableness of fit 

(Fig. 5-3D-G,I-K) [8,29].  When fitting, we excluded early time-points, as our phosphorylation dynamics 

(controlled by receptor ligation and trafficking) cannot capture these early peaks, similar to models of 

EGFR [64], rendering optimization ineffective. A model that captures the full complexity of 

phosphorylation at very early times (<5 min) remains a task for future targeted studies; here we focus on 

the later time-points, which our model can achieve.  Initial values for all parameters were pulled from a 

wide range [10
-3

, 100], using a log-uniform distribution, and updated parameters were constrained to the 

same range.  Parameter sets were accepted if the final cost was within 165% of the lowest cost set. Sets 

were excluded if the predicted number of phosphoVEGFR2 were too low to be realistic (<10 per cell at 

peak activation); this eliminates unrealistic scenarios and is necessary because the data used to fit is 

normalized, and so the total phosphorylation levels are not well-constrained.  The lowest cost set found was 

selected as a representative parameter set, and used throughout the remained of this study (shown in Table 

5-3) 

 

5.2.9 Model Size 

The complete model contains 97 molecular species, including all of the considered 

phosphorylation states for VEGFR2 and all of the locations each protein can exist in the model (surface, 

Rab4/5 endosomes, Rab11 endosomes, degraded).  All biochemical reactions and trafficking processes are 

assumed to be independent of the phosphorylation state of VEGFR2 in this model. This results in a total of 

15 reversible binding reactions that occur across all model compartments, all but one of which were 

parameterized using data from literature (Table 5-1).  The model has 31 trafficking reactions, with 13 

unique trafficking parameters. Two of these were taken from literature, 6 were fit directly, and 5 were 
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assumed or related to other parameter values (Table 5-2).  There are 120 reversible phosphorylation 

reactions in the model, with 9 unique phosphorylation parameters.  Three of these parameters were 

assumed, and the other 6 were fit directly (Table 5-3).  Including all phosphorylation states of VEGFR2 

considered, the model contains a total of 277 reactions, with 52 unique parameters, 13 of which were fit 

directly, 31 taken from literature, and 8 of which were assumed or calculated based on relationships to 

other values. Additionally, there are 8 geometric parameters in the model (Tables 5-S2 and 5-4), two of 

which are specific to the experimental set-up of each study (Table 5-4), and initial concentrations and 

numbers of receptors per cell for each molecular species (Table 5-4).  While this model is large in size, 

previous work and simplifying assumptions (discussed in sections 5.2.5-5.2.8) reduce it to a tractable size. 

 

5.2.10 Validation and Additional Model Simulations 

The complete, parameterized model was validated against additional data in the trafficking study 

and against four independent studies [58,59].  The additional data in the trafficking study compared 

colocalization of VEGFR2 with Rab proteins following stimulation with the isoform VEGF165b (V165b), 

which may account for a substantial portion of VEGF165 present in vivo [65] but lacks the capability to bind 

NRP1 [66], and VEGF165a (V), which does bind NRP1. The next two validation studies included both 

soluble and immobilized VEGF.  Outputs for the first of these validation studies are pY1175 and pY1214 

[58].  The same koff,V·M values were used here as for 2011 presentation study [8].  An assumption that the 

concentration of immobilized VEGF was lower (by a factor of 3) than that reported for this particular study 

was necessary to match experimental observations, in particular that pY1175 was lower with immobilized 

VEGF than with soluble VEGF, and the magnitude of increase in pY1214 with immobilized compared to 

soluble VEGF.  We hypothesize that this reduction in apparent matrix-bound VEGF concentration is due to 

reduced spatial availability/accessibility of this particular form of VEGF (immobilized on nanoparticles) to 

endothelial cells. Such a correction was unnecessary for the VEGF presentation studies because the 2011 

presentation study presented VEGF in a monolayer and the 2010 presentation study used a high VEGF 

concentration, so depletion was negligible within the analyzed time-frame (not shown).  For the second of 

these validation studies, the output is total phosphorylated VEGFR2 (pR2) [59].  Here, M·V binding 

parameters were taken from literature [18].  The initial conditions and geometry were tuned to the 
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experimental set-up, assuming that VEGF and fibronectin (FN) or FN fragments were pre-mixed and 

allowed to equilibrate before presentation to endothelial cells.  We did not change any other model 

parameters.  The third and fourth validation studies examined perturbations to VEGFR2 dephosphorylation 

[60,61] using only soluble VEGF.  To mimic the experimental perturbations, we altered the relevant 

dephosphorylation parameters.  See Table 5-4 for a summary of parameters used in additional simulations 

to probe trafficking and phosphorylation. 

 

5.2.11 Sensitivity Analysis 

We performed a local sensitivity analysis to identify parameters that most strongly affect model 

outputs.  Selected parameters were increased and decreased (one at a time) by a factor of 2, and the 

absolute value of the percent change in each output was calculated.  The values resulting from upward and 

downward perturbations were averaged. These values were then averaged across a selected set of model 

outputs.  We selected the following model outputs for our sensitivity analysis: pY1175 VEGFR2, pY1214 

VEGFR2, and the ratio pY1214/pY1175, at 5, 15, and 30 minutes, for soluble and matrix-bound VEGF at 

concentrations of 2 ng/mL and 200 ng/mL. 

 

5.2.12 Model Solution 

The set of coupled ordinary differential equations that comprise this model were solved using a 5
th

 

order accurate Runge-Kutta scheme with an adaptive step-size.  The algorithm was implemented in Fortran 

on a desktop PC.  Simulation run-time was short for all cases.    
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5.3 Results 

 

5.3.1 Trafficking parameter estimates appear consistent across cell lines and studies  

Our primary goal was to quantify how changes in trafficking of VEGFR2 lead to altered patterns 

of site-specific phosphorylation.  We first optimized the model trafficking parameters against data on 

VEGFR2 and NRP1 trafficking in PAECs [40] (Table 5-S3).  The biochemical reaction parameters used 

are summarized in Table 5-1, and the initial conditions and geometry used are summarized in the first 

column of Table 5-4.  The distributions of accepted parameter values (based on many parallel fits) are 

summarized in Fig. 5-2A and Table 5-S4.  A representative parameter set was selected for use in the model 

(Fig. 5-2A, red dots).  These values are shown in Table 5-2, along with assumptions made to reduce the 

number of parameters being fit.  Based upon our analysis, we found that assuming a ratio of 1/100 for the 

relative recycling rates from Rab4/5 and Rab11 endosomes for several molecular species (as indicated in 

Table 2) produced optimal results.  In general, the model captured the relative proportions of a molecule 

distributed between Rab4/5 and Rab11 endosomes well.  The proportion of a species in Rab7 endosomes 

was typically lower in the experimental data than the degraded quantity in the model, but this was 

anticipated, as the model does not explicitly represent Rab7 endosomes separately from the degraded 

compartment.  The relative agreement between simulated and experimental values (Table 5-S3) for this 

parameter set indicate that the model likely reproduces key elements of the underlying trafficking 

processes.   

Using the obtained trafficking parameters, the model predicts that in the absence of NRP1, 

internalized V·R2 will be preferentially recycled via the Rab4 pathway or degraded (krec4 > kdegr > k4to11).  

Conversely, in the presence of NRP1, internalized V·R2 will be preferentially routed via the Rab11 

pathway for recycling (k4to11 & krec11 > kdegr > krec4).  Interestingly, the degradation rate for V·N1·R2 was 

predicted to be an order of magnitude larger than the degradation rate for V·R2 (Table 5-2, Fig. 5-2A), 

suggesting a potential role for NRP1 in regulating VEGFR2 degradation.  Our parameter set is also 

consistent with the Rab11 pathway being the “faster” recycling pathway, accessible only after stimulation 

with VEGF.   
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Figure 5-2. VEGF presentation and trafficking control the distribution of ligated VEGFR2. A. 

Visualization of fit trafficking parameters.  Red dots indicate a representative coherent set of parameters 

used throughout the rest of this study. (See Methods) B. Tuning of kdegr values to match data in 2010 

presentation study.  Dotted lines: fits using kdegr values fit in PAECs; solid lines: fits after kdegr values are 

increased by a factor of 2.4 to minimize the least squared error between simulations and this experimental 

data.  Soluble VEGF (Vs), blue lines; bound VEGF (Vb), green lines.  C. Summary of the distribution of 

VEGF-bound (V·R2) and unbound VEGFR2 (Free R2) over time, shown for Vb.  Y-axis is shown in terms 

of the percentage of the steady-state (no VEGF) total VEGFR2 population.  Note that, due to degradation, 

the total amount of VEGFR2 decreases after addition of VEGF.  [V] = 20 ng/mL.  D. Decrease in total 

VEGFR2 upon stimulation with VEGF.  Solid line, [V] = 2 ng/mL; dashed line, [V] = 20 ng/mL; dotted 

line, [V] = 200 ng/mL.  E-M. Distribution of V·R2 on the cell surface (E-G), in Rab4/5 endosomes (H-J), 

and in Rab11 endosomes (K-M) following stimulation with Vs (left column) or Vb (middle column).  The 

right column shows the ratio of the first two columns.  
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Figure 5-2 
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We next compared predictions using these trafficking parameters to data on VEGF presentation in 

a different endothelial cell type (HUVECs) [8,29].  The study-specific parameters for these VEGF 

presentation studies are shown in Table 5-4.  The degradation rates for all species were increased by a 

constant factor (2.4) to match experimental measurements of total VEGFR2 loss from the 2010 

presentation study [29] (Fig. 5-2B).  In addition, the internalization rate for V·R2 was decreased slightly for 

the 2010 presentation study [29].  We hypothesize that this difference in internalization rates is due to the 

100-fold difference in VEGF concentration between the experiments, as increasing the numbers of 

occupied receptors has been shown to decrease the measured internalization rate, likely due to saturation of 

endocytic pathways [50,67].  These modifications are summarized in Table 5-4.   

Because obtaining good agreement between the simulated and experimental data in HUVECs did 

not require many changes in the parameters fit for PAECs, we propose that trafficking may be more 

consistent across endothelial cell lines than previously thought.  Observed differences between cell lines 

may be the result of changes in absolute and relative receptor densities, along with the difference in 

degradation rates mentioned above.  The obtained trafficking parameter values were also in reasonable 

agreement with previous estimates [8,24,25].  Our estimated degradation rates were lower than previous 

values, likely because this is the first model to consider dephosphorylation explicitly, allowing for 

decreases in phosphorylated VEGFR2 without receptor degradation or release of ligand. 

 The distribution of free and ligated VEGFR2 is predicted to vary as a function of both VEGF 

concentration and mode of VEGF presentation (Fig.5-2 E-M, Fig. 5-S1).  Prior to stimulation with VEGF, 

the model predicts that most intracellular VEGFR2 is located in Rab4/5 endosomes (Fig. 5-2C), consistent 

with experimental observations [41].  Upon stimulation with VEGF, the proportion of VEGFR2 in Rab11 

endosomes increases, while total and surface VEGFR2 decrease (Fig. 5-2C).  Immobilized VEGF (Vb) 

results in increased magnitude and duration of V·R2 on the cell surface, and delayed peaks of decreased 

magnitude for V·R2 in both endosomal compartments compared to soluble VEGF (Vs) (Fig. 5-2E-M).  

The magnitude and width of the V·R2 peak was highly dependent upon VEGF concentration in all 

compartments (Fig. 5-2E-M).  At 30 minutes, the majority of remaining VEGFR2 is predicted to be ligated 

at VEGF concentrations of 20 ng/mL and higher (Fig. 5-2C, Fig. 5-S1). 
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5.3.2 Parameterization of VEGF release from the matrix 

We next estimated the VEGF-matrix reaction parameters for the VEGF presentation studies.  For 

the 2011 presentation study using a modified heparin linker [8], the equilibrium dissociation constant (KD) 

for VEGF and matrix in this study was taken from literature [12,63].  The off-rate constant, koff,V·M, was 

estimated to be 3.3 x 10
-3

 s
-1

 in the electrostatic case (Ve), which is within the range reported literature for 

VEGF and heparin [12,63] (Fig. 5-3A).  For the covalent case (Vc), this value was decreased until a 

reasonable fit was obtained (Table 5-4).  For the 2010 presentation study, we found that a surprisingly low 

value of koff,V·M was necessary to fit the experimental release data.  This value was too low to allow for 

sufficient internalization of V·R2 after stimulation with immobilized VEGF to be consistent with 

experimentally observed data (not shown).  We believe therefore that koff,V·M is being underestimated using 

this release data, as VEGF must both release and diffuse out of the gel to be measured in that assay.  

Instead, we assumed that VEGF was immobilized in the collagen gel in a heparin-mediated manner, and we 

used a koff,V·M of 10
-2

 s
-1

.  This allowed us to estimate a KD,V·M value for this study (Table 5-4). 
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Figure 5-3. Prediction of VEGFR2 binding and phosphorylation parameters. A. Total surface Vs·R2 + 

internal VEGF, used to fit koff,M·V for the 2011 presentation study [8].  Lines indicate simulation results, 

dots indicate experiments. Soluble VEGF (Vs), blue; electrostatic bound VEGF (Ve), green; covalent 

bound VEGF (Vc), red.  B-C. pY1175 and pY1214 data for 2011 presentation study [8], which was used to 

fit dephosphorylation rate constants, along with H.  D-F. Phosphorylation data from the 2010 presentation 

study [29], which was used to confirm dephosphorylation rate fits. D-E. Western blot data.  F. ELISA data. 

Soluble VEGF, blue; bound VEGF, green.  G-J. Additional phosphorylated VEGFR2 (by residue) 

experimental data from 2010 presentation study with model predictions.  K. Ratio of pR2 for Vb and Vs at 

various times, from 2010 presentation study.  
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5.3.3 Parameterization of Phosphorylation Reactions 

The final set of parameters we estimated were the dephosphorylation rate constants for Y951, 

Y1175, and Y1214 on the cell surface and in Rab4/5 endosomes.  All other phosphorylation parameters 

(see Table 5-3) were fixed as described in the Methods.  We fit the dephosphorylation rates to data from 

the two VEGF presentation studies simultaneously [8,29], with no study-specific changes in these values.  

The distribution of accepted parameters values from many fit sets are shown in Fig. 5-S2A and summarized 

in Table 5-S4. A representative parameter set (Fig. 5-S2A, red dots; Table 5-3) is used in the rest of this 

study. While a wide range of dephosphorylation parameter values resulted in acceptable fits of the data, the 

ratios of the surface and Rab4/5 dephosphorylation rate constants for Y1175 and Y1214 were more 

consistent (Fig. 5-S2B).  The dephosphorylation rates for 1175 and 1214 were higher on the surface than in 

Rab4/5 endosomes, while the surface/Rab4/5 ratio was higher for Y1175 than Y1214 in 46 of the 47 

accepted parameter sets (Fig. 5-S2B). Slightly better fits could be obtained if the parameters were permitted 

to be study-dependent, or if additional experimental set-up or cell line-specific changes were made; 

however, we used a consistent parameter set to keep the model as general as possible across multiple 

experimental set-ups (see Table 5-3).  The fits for these studies are shown in Fig. 5-3A-K and Fig. 5-S2C-

D.  In general, important trends in dynamics and relative activation by soluble or matrix-bound VEGF were 

captured by the model, as were the original experimental values 10 minutes or more after stimulation with 

VEGF.  Additionally, our estimated phosphorylation and dephosphorylation rate constants are consistent 

with those previously estimated for EGFR [64]. As the estimated dephosphorylation rate constants for 

Y951 were not well-constrained, and only one set of data was available for pY951, we have limited 

confidence in the Y951 dephosphorylation rate constants.  We therefore focus on VEGFR2 phosphorylated 

on at least one of Y951, Y1175 and Y1214 (pR2), and VEGFR2 phosphorylated specifically on Y1175 

(pY1175) or Y1214 (pY1214).   

 

5.3.4 Validation of Complete Model 

To validate our trafficking parameters, we used additional data from the trafficking study.  Here, 

PAECS transfected with NRP1 and VEGFR2 were stimulated with the VEGF isoform V165b [40], which 

does not bind NRP1 [68].  We used our model to predict whether the differences in VEGFR2 distribution 
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upon stimulation with V165a (V) and V165b can be accounted for solely by the inability of V165b to bind 

NRP1 (Fig. 5-4A-B) by comparing to simulations lacking NRP1.  The ratio of VEGFR2 in Rab4/5 

endosomes to VEGFR2 in Rab11 endosomes matched data for V165b well (Fig. 5-4A).  Thus, the model 

predicts that the impact of V165b on VEGFR2 localization in early and recycling endosomes (compared to 

V165a) can be accounted for solely by its inability to bind NRP1, and suggesting that our model framework 

can capture differences in trafficking between VEGF isoforms. The model overestimates routing of 

VEGFR2 for degradation (compared to Rab7 populations in the experimental data) for V165a and 

underestimates it for V165b (Fig. 5-4A).  This may indicate some error in the relative values of our 

degradation rate constants for V·R2 and V·N1·R2, due to the limited and normalized data available to fit 

these rate constants, but it does not affect model predictions when NRP1 is present.  
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Figure 5-4. Validation of complete model with trafficking and phosphorylation parameters. A. 

Validation of trafficking parameters by comparing model predictions for VEGFR2 in the absence of NRP1 

in PAECs compared to Ballmer-Hofer data for V165b (Vb), which does not bind NRP1.  Data is compared to 

the normal case including NRP1 in the model and data for V165a (Va), which does bind NRP1, at 30 min in 

the trafficking study.  The percent of internal VEGFR2 in Rab4/5 and Rab11 endosomes (left) and the ratio  

of total VEGFR2 in Rab4/5 endosomes to total VEGFR2 in Rab11 endosomes (right) is shown. Grey: 

model simulations; black, experimental data.  B-D. Validation of complete model including trafficking and 

phosphorylation parameters.  B) Data taken from Martino et. al. 2011 [59].  [V] = 50 ng/mL.  Assumed 

VEGF and FN are pre-mixed.  Soluble VEGF, blue; VEGF bound to wild type fibronectin, green; VEGF 

bound to rFNIII9-10/12-14 fragments, red (koff,M·V values from Wijelath et. al. 2006 [18]).  C-D. Data taken 

from an additional Anderson et. al. 2011 study [58].  E-F. Validation of phosphorylation parameters by 

comparing model predictions to data in cells with perturbations to specific phosphatases. E. Impact of 

siRNA against VEPTP on pY951, pY1175, and pY1214.  Experimental data (black) taken from Mellberg 

et. al. 2006 [61].  TIME cells, [V] = 50 ng/mL, measurements taken at t = 5 min.  In the model, the 

experimentally observed decrease in VEPTP expression to 20% of control values with VEPTP siRNA was 

simulated by decreasing the dephosphorylation rate for Y951 and Y1175 by a factor of 5 on the cell 

surface.  HUVEC receptor numbers were used in model. F. Impact of exposing HEK 293 cells transfected 

with VEGFR2 to a constitutively active form of TCPTP on pR2, pY1175, and pY1214.  Data taken from 

Mattila et. al. 2008 [60].  In the model, we simulated the constitutively active TCPTP by increasing the 

dephosphorylation rate for Y951 and Y1214 to match the rate for unligated R2 (30 s
-1

) in all compartments.  

HUVEC receptor numbers were used in model.   
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Figure 5-4 
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Next, we validated the complete model including biochemical reactions, trafficking processes, and 

phosphorylation reactions using two additional studies of soluble and immobilized VEGF (See Methods) 

[58,59] (Fig. 5-4B-D).  We also validated our phosphorylation parameters by comparing model predictions 

to experimental measurements of VEGFR2 phosphorylation after perturbation of the expression or activity 

of phosphatases that are known to regulate VEGFR2. As we did not explicitly include these phosphatases 

in our model, we altered the dephosphorylation rate constants specifically for the tyrosine residues on 

which the specified phosphatase is known to act, and in the subcellular locations where the phosphatase is 

typically located.  We examined two phosphatases known to act on VEGFR2, but that are not yet 

completely understood.  VEPTP, which is found on the plasma membrane, dephosphorylates Y951 and 

Y1175, but not Y1214 [61].  TCPTP, which is found both at the plasma membrane and in the cytosol, 

dephosphorylates Y1214 and likely also Y951, but not Y1175 [60].  Fig. 5-4E shows model predictions 

and experimental data for change in pY951, pY1175, and pY1214 when TIME cells are treated with siRNA 

to VEPTP.  Application of VEPTP siRNA was modeled as a decrease in the dephosphorylation rate 

constants for Y951 and Y1175 on the cell surface by a factor of 5, to match the experimental observation 

that VEPTP siRNA results in reduction of VEPTP expression to 20% of expression in the control.  Fig. 5-

4F shows model predictions of VEGFR2 phosphorylation in HEK 293 cells exposed to a constitutively 

active form of TCPTP, which was modeled by increasing the dephosphorylation rate constants for Y951 

and Y1214 to the values for unligated VEGFR2 (30 s
-1

) in all compartments.  The model predicts that 

VEPTP siRNA only partially abrogates dephosphorylation of VEGFR2, while addition of constitutively 

active TCPTP results in strong dephosphorylation of Y1214.  The consistency of model predictions and 

experimental data in these studies provides further validation for our model framework. 

 

5.3.5 Trafficking-mediated regulation of site-specific phosphorylation is sufficient to capture experimental 

trends in VEGFR2 activation 

In order to understand the influence of trafficking on phosphorylation of VEGFR2, we compared 

the relative amounts of pR2, pY1175, and pY1214 in each subcellular location and in total after stimulation 

with soluble and immobilized VEGF (Fig. 50-5, Fig.5-S3).  While pY1175 and pY1214 are both split 

between the cell surface and Rab4/5 endosomes, Rab4/5 endosomes contain more pY1175 (Fig. 5-S3H-I, 
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Fig. 5-6B-C) and the cell surface has more pY1214 (Fig. 5-S3E-F, Fig. 5-6F-G).  The peak magnitude of 

total pY1214 (Fig.5-5K) is predicted to be more than twice the peak magnitude of pY1175 after stimulation 

with immobilized VEGF (Fig.5-5H, due to the increased surface population of VEGF·VEGFR2), but the 

peak magnitudes are more similar when stimulated with soluble VEGF (Fig.5-5G,J).  Immobilization of 

VEGF also leads to increased pR2 peak magnitude on the cell surface (Fig. 5-S3D), decreased pR2 peak 

magnitude in Rab4/5 endosomes (Fig.5- S3G), and increased duration of total pR2 (Fig. 5-5D-F, Fig.5-

S3A).  To test the hypothesis that multiple endosomal compartments with distinct properties are necessary 

to capture experimentally observed trends in pY1175 and pY1214, we examined a case where the 

dephosphorylation rate constants in Rab11 endosomes were assumed to be the same as those in Rab4/5 

endosomes (Fig.5-S4).  In this case, peak pY1214 remains essentially unchanged, but the duration 

increases (Fig.5-S4C), while the peak magnitude and duration of pY1175 increases significantly (Fig.5-

S4B).  The observed increase in duration is inconsistent with experimental data, emphasizing the need for 

multiple internal compartments with independent dephosphorylation rates to reflect the cellular localization 

of phosphatases.   
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Figure 5-5. VEGF presentation mode affects VEGFR2 phosphorylation more than VEGFR2 ligation.  

The time-dependent response to soluble VEGF (Vs, blue, left column) and bound VEGF (Vb, green, 

middle column) of: VEGF-ligated VEGFR2 (V·R2, A-C); all phosphorylated VEGFR2 (pR2, D-F); and 

site-specific phosphorylated VEGFR2, pY1175 (G-I) and pY1214 (J-L).  The ratios of responses to bound 

and soluble VEGF are shown at the right.  Time-scale ends at 30 minutes, but pR2 curves are relatively flat 

after this time.  Solid line, [V] = 2 ng/mL; dashed line, [V] = 20 ng/mL; dotted line, [V] = 200 ng/mL. 
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The model clearly predicts that ligated VEGFR2 (V·R2) is not an accurate representation of 

VEGFR2 phosphorylated on at least one of the considered residues (pR2) at all times; while V·R2 and pR2 

are both elevated at early times, the durations are quite dissimilar (Fig. 5-5A-F).  We found that only 33% 

of ligated VEGFR2 is phosphorylated on at least of one Y951, Y1175, and Y1214 at 5 minutes after 

stimulation with 20 ng/mL of immobilized VEGF (Fig 5-.S5B).  By 30 minutes, only 7% of ligated 

VEGFR2 is phosphorylated on one of these residues (Fig. 5-S5B), though a significant amount of VEGFR2 

is predicted to remain ligated (Fig. 5-2E-M, Fig. 5-5A-B). This model prediction is consistent with 

experimental observations that, while detectable pR2 is low by 30 minutes in most cases, total VEGF and 

VEGFR2 populations are still significant [29,58]. To test the robustness of this prediction, we increased our 

assumed phosphorylation rate constant.  This did not substantially increase the percentage of VEGF-

VEGFR2 phosphorylated at 30 minutes (not shown).  The short duration of phosphorylation on ligated 

VEGFR2 results from recycling through Rab11 endosomes, where dephosphorylation rates are high.     

To quantify the total amount of VEGFR2 activation in the first 60 minutes after stimulation with 

soluble or immobilized VEGF, we calculated the area under the pR2 vs. time curves (curves shown in Fig. 

5-S3).  The increase in total VEGFR2 activation observed after stimulation with Vb compared to Vs results 

primarily from increased pR2 on the surface (Fig. 5-6A-C, Fig.5-S6C-E).  Note that the relative proportion 

of total surface VEGFR2 activation on Y1175 and Y1214 is similar for Vs and Vb (Fig. 5-6D); the 

difference in total signaling (Fig. 5-6L) arises from the relative sizes of the surface and internal populations 

(Fig. 5-2E-M).  The simulations also predicted that the size of the increases in the pY1214/pY1175 ratio 

due to immobilized VEGF is higher at lower VEGF concentrations (Fig. 5-S6R), which is where the 

physiological range of VEGF concentrations lies [13].   
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Figure 5-6.  Increased total VEGFR2 activation with immobilized VEGF is driven by the change in 

surface VEGFR2.  All panels show area under the curve (AUC), a measure of total VEGFR2 activation, 

for the first 60 minutes after stimulation with soluble (Vs- blue) or immobilized (Vb- green) VEGF at a 

concentration of 2 ng/mL.  AUCs are shown for surface VEGFR2 (A-D), Rab4/5 VEGFR2 (E-H), and total 

VEGFR2 (I-L).  Activation on any considered tyrosine residue (pR2, 1
st
 column), Y1175 (2

nd
 column), and 

Y1214 (3
rd

 column) are compared.  The last column shows the AUC for the curve pY1214/pY1175 (total 

pY1214/pY1175 curves shown in Fig. 8F-G) for surface VEGFR2 (D), Rab4/5 VEGFR2 (H), and total 

VEGFR2 (L).  Note that the difference in total pY1214/pY1175 for Vs and Vb emerges from the altered 

VEGFR2 distribution, not altered pY1214/pY1175 in each subcellular location.
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5.3.6 Neuropilin-1 modulates site-specific VEGFR2 phosphorylation due to altered recycling and 

degradation of VEGF-bound VEGFR2  

In most endothelial cell types, NRP1 is present at cell surface densities higher than those of 

VEGFR2 [62].  Based on the strong receptor-receptor coupling effect, it is expected that the majority of cell 

surface V·R2 will be bound to NRP1 [12,32].  To probe the impact of NRP1 on VEGFR2 trafficking and 

phosphorylation, we simulated stimulation of HUVECs with VEGF in the presence or absence of NRP1 

(Fig.5-7A-G).  In the absence of NRP1 (e.g. through siRNA knockdown), the model predicts less total 

degradation of VEGFR2 (Fig. 5-7G) and an increase in the duration of VEGFR2 phosphorylation (Fig. 5-

7D-F, due to decreased degradation and decreased localization to Rab11 endosomes, where efficient 

dephosphorylation occurs).  NRP1 absence also results in a larger difference in VEGFR2 ligation after 

stimulation with soluble or immobilized VEGF (Fig. 5-7A-C).  In the absence of NRP1, V·R2 (Fig. 5-7A-

C) and unligated VEGFR2 (Fig. 5-S7) are predicted to accumulate in the Rab4/5 compartment (Fig. 5-7B, 

Fig. 5-S7B), as the “fast” Rab11 recycling pathway is not accessible (k4to11 and krec11 >> krec4).  Thus, our 

model supports the hypothesis that NRP1 is necessary for the enhancement of VEGFR2 recycling observed 

upon stimulation with VEGF (by rerouting the ligated receptor through the Rab11 recycling pathway) [40].  

This is also consistent with experimental observations that Rab11-dependent recycling of VEGFR2 leads to 

increased activation of p38 after stimulation with soluble VEGF, presumably due to the return of more 

VEGFR2 to the plasma membrane and subsequent reactivation [40,69].  Upon stimulation with 

immobilized VEGF in the absence of NRP1, surface VEGF-VEGFR2 is increased, as the matrix (M) does 

not have to compete with NRP1 for binding to VEGF (Fig. 5-7A).  These changes have the potential to 

alter the balance of downstream signaling (Fig. 5-7E-F) differently than VEGF immobilization or NRP1 

loss alone.  By routing V·R2 through the Rab11 compartment to be dephosphorylated and recycled, NRP1 

may be a strong regulator of pR2, and thus of interest as a therapeutic target.   

As we assume that M and NRP1 cannot bind to VEGF simultaneously, we examined whether, for 

immobilized VEGF presentation, VEGF-bound VEGFR2 internalized following detachment from the 

matrix would be predicted to remain unbound to NRP1, potentially altering its recycling and degradation 

compared to soluble VEGF.  The model predicts that almost all internal V·R2 complexes (Rab4/5 and 

Rab11) contain NRP1 after stimulation with either form of VEGF (Fig. 5-S8).  Thus, it is predicted that 
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NRP1 joins the V·R2 complex shortly after dissociation of VEGF from M, so VEGF immobilization does 

not alter V·R2 recycling and degradation after dissociation from the matrix and internalization.  
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Figure 5-7. Neuropilin-1 and phosphatases modulate site-specific VEGFR2 phosphorylation. A-C. 

Distribution of VEGF-bound VEGFR2 (sum of V·R2, V·N1·R2, and M·V·R2) in HUVECs.  Solid lines: 

Baseline case with NRP1 present; dotted lines: no NRP1 present.  Soluble VEGF (Vs), blue lines; bound 

VEGF (Vb), green lines.  For all lines, [V] = 20 ng/mL, HUVEC receptor numbers.  D-G. Total VEGFR2 

phosphorylated on at least one of Y951, Y1175, and Y1214 (pR2, D), pY1175 (E), pY1214 (F), and total 

VEGFR2 (G) with NRP1 (solid lines) and without NRP1 (dotted lines).  H-I. Model predictions for site-

specific VEGFR2 phosphorylation under perturbation of phosphatase activity. H. Model predictions for the 

experiment in Fig. 4F (siRNA to VEPTP), with the addition of a constitutively active TCPTP (as described 

in Fig. 4G).  I. Model predictions for exposure of HUVECs to a cell-surface phosphatase that 

dephosphorylates Y951, Y1175, and Y1214, similar to DEP-1.  The impact of increasing phosphatase 

expression by a factor of 2, 5, or 10 is shown. 
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Figure 5-7 
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5.3.7 Integrated model can predict the impact of novel phosphatase perturbations on VEGFR2 

phosphorylation 

We also used the model to predict the impact of novel scenarios involving phosphatases.  First, we 

predicted the impact of exposing HUVECs to VEGF after treatment with a combination of siRNA to 

VEPTP and a constitutively active form of TCPTP (Fig. 5-7H).  The simulations show that pY1175 would 

be elevated, due to the VEPTP siRNA, while pY1214 would be decreased, due to the constitutively active 

TCPTP.  This produces a situation where the balance of pY1175 and pY1214 is strongly shifted, while total 

phosphorylated VEGFR2 (pR2) remains close to baseline levels.  We also explored the impact of a cell 

surface-localized phosphatase that dephosphorylated Y951, Y1175, and Y1214 (Fig. 5-7I).  This 

phosphatase is similar to DEP-1, except that DEP-1 is also implicated in inhibition of VEGFR2 

internalization [46], which our theoretical phosphatase does not do.  We examined the impact of this 

phosphatase by increasing the rate constant for cell surface dephosphorylation of all three residues in this 

model, in order to mimic increased expression of this phosphatase (Fig. 5-7I).  We found that pY1214 was 

decreased most by the phosphatase, while pY1175 was affected less because this phosphatase cannot access 

VEGFR2 in Rab4/5 endosomes.  These model predictions are examples of specific mechanistic hypotheses 

that could be tested experimentally. 

 

5.3.8 VEGF immobilization alters surface vs. internal distribution of VEGFR2 and balance of pY1175 and 

pY1214 

There is significant interest in how specific immobilization techniques will alter activation of 

VEGFR2.  As a first step, we examined the influence of varying the rate constant for VEGF release from 

the matrix, koff,V·M (Fig. 5-8A-E).  Assuming all immobilized VEGF is spatially available to bind VEGFR2, 

a significant portion of cell surface V·R2 is bound to the matrix (M) (Fig. 5-8E).  Total peak pY1175 

magnitude and distribution across subcellular locations (Fig. 5-8A-B), is significantly altered by increasing 

koff,V·M.  pY1214 remains primarily surface-localized for all cases with immobilized VEGF (Fig. 5-8C), but 

the magnitude decreases with increasing koff,V·M,  altering the relative magnitudes of pY1175 and pY1214 

(Fig. 5-8D).  While total ligated VEGFR2 is not dramatically different after stimulation with soluble or 

immobilized VEGF (Fig.  5-5A-C), the ratio pY1214/pY1175 is greater than two at early times after 
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stimulation with immobilized VEGF, favoring p38 activation and migration (Fig. 5-8G), while the ratio is 

closer to one for soluble VEGF, favoring ERK activation and proliferation (Fig. 5-8F).  Increasing koff,V·M 

decreases the difference in pR2 after stimulation with soluble or immobilized VEGF (Fig. 5-8A) by 

allowing for more internalization of VEGF·VEGFR2 complexes in the Vb case. 
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Figure 5-8. Relative activation pY1175 and pY1214 varies as a function of VEGF immobilization and 

concentration. A-C. Total VEGFR2 phosphorylated on at least one of Y951, Y1175, and Y1214 (pR2, A) 

and site-specific phosphorylation (pY1175, B and pY1214, C) at 5 min with varying koff,V·M. Note 

quantities of VEGFR2 phosphorylated on any residues in Rab11 endosomes are negligible.  D. Ratio of 

pY1214 to pY1175 at 5 minutes with varying koff,V·M.  E. Percent of surface V·R2 complexes that are 

bound to the matrix at t = 5 minutes.  F-H. The ratio of pY1214-VEGFR2 to pY1175-VEGFR2 for Vs (F) 

and Vb (G).  The ratio of this quantity for bound VEGF and soluble VEGF (Vb/Vs) is shown in (H).  Solid 

line, [V] = 2 ng/mL; dashed line, [V] = 20 ng/mL; dotted line, [V] = 200 ng/mL. Soluble VEGF (Vs), blue 

lines; bound VEGF (Vb), green lines.  For all lines, HUVEC receptor numbers were used.
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5.3.9 pY1175 and pY1214 are predicted to be more sensitive to trafficking parameters than to 

phosphorylation parameters 

We performed a local sensitivity analysis to investigate which initial conditions and rate constants 

impact model outputs the most (Fig. 5-S9).  The outputs considered were pY1175, pY1214, and the ratio 

pY1214/pY1175 after stimulation with soluble or immobilized VEGF at 5, 15, or 30 minutes.  We found 

that sensitivities are notably different at low (2 ng/mL, Fig. 5-S9A) and high (200 ng/mL, Fig. 5-S9B) 

VEGF concentrations.  Specifically, at low VEGF concentrations, outputs are more sensitive to initial 

conditions ([V] and receptor numbers) and to dephosphorylation parameters (Fig. 5-S9A); while at high 

VEGF concentrations, outputs are more sensitive to trafficking parameters (Fig. 5-S9B).  Almost all 

outputs are quite sensitive to VEGFR2 and NRP1 levels.  In general, model outputs (pY1175, pY1214, 

pY1214/pY1175) are less sensitive to the phosphorylation parameters than the trafficking parameters, 

reinforcing that, in our model, trafficking is an strong regulator of phosphorylation patterns.  Stimulation 

with immobilized VEGF decreased the sensitivity of the model to trafficking parameters compared to 

soluble VEGF.    
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5.4 Discussion 

 

5.4.1 Computational model of VEGFR2 ligation, trafficking, and phosphorylation 

In this study we developed a computational model that quantitatively relates VEGF-VEGFR2 

binding and trafficking of VEGFR2 to patterns of site-specific phosphorylation.  Our model was 

parameterized using data from three separate studies [8,29,40], and validated against data from four 

additional independent studies [58-61].  We identified trafficking parameters that describe experimental 

data in multiple endothelial cell lines, suggesting that trafficking processes may be more conserved than 

previously thought.  Our simulations predict that the relative surface and endosomal populations of ligated 

VEGFR2 (V·R2) are affected by the coreceptor NRP1.  By routing V·R2 through Rab11 endosomes to be 

dephosphorylated and recycled, NRP1 may be a strong regulator of VEGFR2 phosphorylation.  Our model 

further indicates that immobilization of VEGF leads to decreased internalization, but does not affect 

recycling or degradation of internalized receptors because ligated VEGFR2 (V·R2) is predicted to bind 

NRP1 quickly after unbinding from the matrix.  The model predicts that the durations of ligated VEGFR2 

(V·R2) and phosphorylated VEGFR2 (pR2) curves are quite dissimilar, providing a good rationale for 

simulating phosphorylation and dephosphorylation separately from receptor ligation.  Additionally, the pR2 

pool represents only a fraction of ligated VEGFR2 (<35% by 5 minutes after VEGF stimulation), and is 

altered by perturbations to dephosphorylation of specific residues.   

In enabling us for the first time to predict VEGFR2 phosphorylation patterns in response to 

receptor ligation and trafficking, without assuming that phosphorylation of VEGFR2 is synonymous with 

ligation and dimerization, this study represents an advance over existing models. In our previous models of 

VEGF-NRP1-VEGFR2 interactions [12,32,84], we had not included the effect of NRP1 on VEGFR2 

trafficking. The observed differences in duration of ligated (V·R2) and phosphorylated VEGFR2 (pR2) 

captured by our model cannot be replicated by a model with a single endosomal compartment. An early 

compartment where significant amounts of phosphorylated VEGFR2 can accumulate is necessary, while a 

second, later compartment is required where ligated VEGFR2 is dephosphorylated before recycling to the 

cell surface. This model is also the first to include site-specific activation of VEGFR2 by immobilized 

VEGF.  Importantly, our model accurately captures relative trends in phosphorylation of Y1175 and Y1214 

between soluble and immobilized VEGF (Fig. 5-S2C-D) at multiple VEGF concentrations (2-200 ng/mL) 
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and under a variety of experimental conditions.  A computational model developed by the authors of the 

2011 presentation study captured trends in VEGF internalization between soluble and immobilized VEGF, 

but does not contain the level of detail in trafficking and phosphorylation included in our model, and cannot 

replicate trends in pY1175 and pY1214 (Fig. 5-3B-C) [8].  Most of the phosphorylation data used to fit our 

model was normalized and semi-quantitative; as such, we cannot validate model predictions of the total 

percentage of VEGFR2 phosphorylated, but we can make and validate predictions about the relative 

phosphorylation of VEGFR2 on Y1175 and Y1214, and how these curves change under various conditions.  

The detail in our model allows us to demonstrate that trafficking (and immobilization), coreceptor 

expression, and phosphatase activity all affect the balance of VEGFR2 phosphorylation on tyrosines 1175 

and 1214.  This in turn alters the recruitment of signaling complexes, and regulates downstream signaling 

and resultant cellular behavior.  As such, changes to any combination of these could have therapeutic value, 

and all need to be considered in an integrated fashion when designing tissue constructs to promote 

development of a functional vascular network.   

 

5.4.2 Does trafficking regulate phosphorylation, or does phosphorylation regulate trafficking? 

Our simulations show how one ligand, VEGF, can elicit different cellular responses simply via 

changes in its mode of presentation.  Differences in trafficking resulting from immobilization of VEGF are 

sufficient to account for differences in activation of VEGFR2 by soluble and matrix-bound VEGF.  It is not 

necessary that there be a different activating VEGFR2 conformational change following soluble versus 

immobilized ligation.  The link between immobilized/soluble ligands, receptor trafficking, and site-specific 

receptor tyrosine phosphorylation could be due to: (a) control of site-specific phosphorylation of VEGFR2 

by receptor trafficking (e.g. via localization of site-specific phosphatases); or (b) conformational changes in 

VEGFR2 in response to ligation by matrix-bound ligands that result in altered site-specific phosphorylation 

of VEGFR2 compared to soluble ligands, which in turn alters trafficking of the receptor; or a combination 

of these mechanisms.  Because phosphorylation is a fast process compared to trafficking, in line with 

previous estimates for EGFR [64] (See kinetics in Tables 2 and 3), receptor location and site-specific 

phosphorylation are highly correlated.  This makes distinguishing between mechanisms (a) and (b) 

difficult.  There are experimental results to date that support both (a) [8,29,40,43] and (b) [46,57,70,71].  
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Our model simulation results show that mechanism (a) is sufficient to explain all current experimental 

phosphorylation and trafficking data after stimulation with VEGF165a.  This does not exclude (b), but 

suggests that it is not necessary.  Alteration of the conformation of VEGFR2 in response to ligation with 

immobilized VEGF would be difficult to prove or disprove with current experimental techniques.  

However, the observation that immobilized VEGF effectively activates VEGFR2 whether it is coupled to 

different matrix molecules or even directly to a surface strongly suggests that the immobilized ligand is not 

specifically altered in conformation and that the receptor is not binding to an epitope that includes both the 

ligand and the matrix/surface.  This reduces the likelihood of a ‘matrix-specific’ altered VEGFR2 

conformation. An additional possibility is that immobilization of VEGF may interfere sterically with 

VEGFR2 coupling to regulatory molecules (e.g. integrins, VE-Cadherin and DEP-1), which may alter the 

phosphorylation pattern and/or trafficking of VEGFR2.  Although internalization is known to be 

phosphorylation-dependent [57], complex control of trafficking by site-specific phosphorylation seems 

unlikely because it would require active sorting of VEGFR2 into vesicles by multi-tyrosine site 

phosphorylation pattern and specific internalization mechanics for each phospho-form of the receptor.  

Mechanism (a), on the other hand, relies only on passive sorting because matrix-binding VEGF retains 

VEGFR2 at the surface.   

We propose an experiment that could, with the aid of our computational model, distinguish 

between (a) and (b) for specific trafficking steps and tyrosine residues on VEGFR2.  The subcellular 

distribution of wild type VEGFR2 and VEGFR2 tyrosine mutants (e.g. Y1214F) could be compared in a 

manner similar to that in the trafficking study [40].  Differences in the localization of wild type (WT) and 

mutant VEGFR2 would suggest that phosphorylation on the mutated residue is required for the trafficking 

step where a change is observed.  Computational modeling could predict whether additional changes are 

occurring downstream of the primary observed trafficking change.  It would be important to verify that 

these mutants have equivalent ligand-binding and NRP1-coupling behaviors as WT VEGFR2.  This 

proposed experiment would help to determine in more detail which mechanisms control each step of 

trafficking and phosphorylation, and to further refine our model.   

The role of NRP1 is a confounding factor; it has been shown that treatment with a tyrosine kinase 

inhibitor (TKI) reduces VEGFR2-NRP1 complex formation in the presence of VEGF165 [72], which would 
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in turn affect trafficking (and possibly also phosphorylation directly).  This could imply that 

phosphorylation of VEGFR2 is required for complex formation with NRP1, or that TKIs interfere with 

interactions between the cytoplasmic domains of VEGFR2 and NRP1.  The NRP1 cytoplasmic domain is 

required for binding of synectin and myosin VI,  which are required for movement into EEA1-positive 

early endosomes and Rab4-to-Rab11 transfer, and thus NRP1-mediated control of VEGFR2 trafficking 

[33].  It is also possible that NRP1-binding could affect the phosphorylation pattern of VEGFR2 directly, 

which could then induce the trafficking changes mediated by NRP1.  This is supported by evidence that 

VEGF165b, which does not bind Neuropilin-1, results in differential site-specific phosphorylation of 

VEGFR2 [68].  We suggest that additional experiments should be performed to clarify whether NRP1 

directly alters phosphorylation of VEGFR2, and whether specific tyrosine residues are necessary for 

VEGFR2-NRP1 coupling.  

 

5.4.3 Model insights for in vivo therapeutic applications 

The majority of VEGF in normal tissues is sequestered in the ECM, so elucidating how 

immobilization alters site-specific phosphorylation of VEGFR2 is key to understanding VEGF behavior in 

tissues [12].  While the in vitro experimental studies examined here used equivalent concentrations of 

soluble and immobilized VEGF, the differences in concentrations and spatial availability of soluble and 

immobilized VEGF in vivo may result in a different balance of signaling in the body.  VEGF165 is the most 

highly expressed isoform in normal tissue (though a significant portion of this may be VEGF165b [65]), but 

VEGF188/189, which binds even more strongly to ECM species, represents a significant portion of the local 

VEGF in the mouse lung, heart, and liver, and in certain human tumors [20,21].  The results of this study 

suggest that many of the differences in cell behavior and vascular morphology resulting from stimulation 

with different splice isoforms of VEGF may be direct effects of differences in interactions with Neuropilin-

1 and the extracellular matrix (Fig. 5-9).  VEGF121 (Fig. 5-9A) does not bind to NRP1 and VEGFR2 

simultaneously, or to the matrix (M), resulting in slower ligand-receptor binding and faster internalization.  

We predict VEGF121-ligated VEGFR2 will localize to Rab4/5 endosomes, leading to increased Y1175 

phosphorylation, ERK activation, and proliferation. The result would be a network of vessels with large 

diameters and little branching, as is seen in V121 isoform-specific mice [22,23] .  VEGF165 (Fig. 5-9B), 
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examined in this study, binds to both NRP1 and the matrix, resulting in fast VEGFR2 ligation and slower 

internalization compared to VEGF121.  VEGF165 leads to a more even balance of surface and Rab4/5-

located VEGF·VEGFR2, depending upon the strength of VEGF immobilization.  This leads to a balance of 

pY1175 and pY1214, mixed ERK and p38 signaling, and a mix of cell proliferation and migration. 

VEGF189 (Fig. 5-9C) binds strongly to the matrix and to NRP1.  Competition between NRP1 and the 

matrix for VEGF slows VEGFR2 ligation and internalization.  This increases pY1214 relative to pY1175, 

increasing p38 signaling and cell migration, and creating a highly branched vascular network, as is 

observed in VEGF189-specific mice [21,22]. 
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Figure 5-9. Differences in molecular interactions of VEGF isoforms are predicted to account for 

changes in observed vascular phenotype. A. VEGF121 does not bind NPR1 or extracellular matrix 

proteins (M), leading to slow VEGFR2 ligation (due to lack of NRP1-mediated VEGF-VEGFR2 binding), 

fast internalization (no immobilization of VEGF121), and a lack of recycling via the Rab11 pathway.  B. 

VEGF165 binds both NRP1 and extracellular matrix species, leading to faster VEGFR2 ligation, but slower 

internalization of VEGFR2 compared to stimulation with VEGF121. The Rab11 recycling pathway is 

accessible to VEGF165-NRP1-VEGFR2 complexes.  C. VEGF189 binds to extracellular matrix species and 

NRP1 more strongly than VEGF165.  This results in moderate VEGFR2 ligation speed (NRP1 must compete 

with matrix species (M) for VEGF) and slow VEGFR2 internalization.

 

 

  



 164 

VEGF has potential utility in tissue engineering applications, where vascularization is necessary 

for the viability of thick tissue constructs.  The ability to spatially organize the impetus to endothelial cells 

to proliferate and migrate could be used to effectively induce hierarchical networks with diverse diameters 

and branching properties.  Current platforms for VEGF immobilization include tunable heparin-

functionalized gold surfaces [8] , collagen and PLGA hydrogels functionalized with VEGF [8,29,58], fibrin 

gels with active and passive growth factor release mechanisms,  and presentation of VEGF with fibronectin 

fragments, VEGF binding peptides, and ECM proteins [11,59,73].  Cell lines, VEGF concentrations, 

quantities measured, time-points, and immobilization techniques vary across these studies. In aggregate, 

these experiments have demonstrated that immobilized VEGF promotes increased and extended 

phosphorylation of VEGFR2 [18,29,59,74], specifically on Y1214 [8,29,58], activation of p38 [29,58] and 

ERK [16,18,59,75], and increased migration and proliferation [16,18,59,74].  Results are less consistent 

regarding the impact of VEGF immobilization on phosphorylation of VEGFR2 on Y1175 [8,29,58] and 

activation of Akt [29,75].  These conflicting results, combined with the limited success in producing 

functional vascular networks to date, make it clear that a better understanding of how VEGF 

immobilization alters cellular response to VEGF is essential to design effective scaffolds for regenerative 

application requiring vascularization. In addition to reducing internalization, VEGF immobilization alters 

VEGFR2 cell surface interactions with co-receptors (NRP1, integrins, etc.).  We begin to describe the 

impact of NRP1 on VEGFR2 trafficking, but more work remains to develop a quantitative understanding of 

VEGFR2-integrin interactions [77,78], and how these interactions are altered by immobilization of VEGF.  

In the future, we can also examine the impact of ephrin B2 [79], epsins [80], dynamin2 [81], synectin and 

myosin VI [82], and NRP1 presentation in trans [83] on VEGFR2 activation by simulating their effects on 

VEGFR2 trafficking and phosphorylation.  

Tyrosine phosphatases represent a pool of potential therapeutic targets that are not yet well-

understood [49].  Targeting phosphatases to selectively control dephosphorylation of specific VEGFR2 

tyrosine residues is appealing for anti-angiogenic therapies, which are currently focused mostly on 

antagonists to VEGF or to the receptor tyrosine kinases, but also for the control of therapeutic 

vascularization.  Our model accurately captures the impact of perturbations to TCPTP and VEPTP on site-

specific VEGFR2 phosphorylation (Fig. 5-4E-F).  While many other phosphatases are implicated in 



 165 

regulation of VEGFR2 phosphorylation (Table 5-S5), these two examples support our model’s structure of 

site- and location-specific dephosphorylation, and its ability to make therapeutically-relevant predictions.   

Using this experimentally-validated model, we identified multiple key levers that can be 

manipulated to produce the desired multi-pathway signaling profile in endothelial and other cells. We 

identify VEGF presentation, trafficking, co-receptors (including NRP1), and regulatory molecules (such as 

phosphatases) as important levers that together control site-specific phosphorylation of VEGFR2 in a 

predictable way.  While all of these facets are interconnected, we create a framework to study how 

perturbations to one or more of these levers alters VEGFR2 signaling. Future work is needed to tie changes 

in site-specific phosphorylation of Y951, Y1175, and Y1214 to activation of downstream signaling 

molecules.  This work will continue to move us towards a more complete view of the VEGF system, 

improving our ability to design and predict the outcomes of novel vascular therapies.  
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5.6 Supplemental Figures 

 
Figure 5-S1. Free and ligated VEGFR2 are not uniformly distributed between cell compartments. 

These panels expand on the results shown in Figure 5-2.  Plots show the distribution of VEGF- bound 

VEGFR2 (V·R2, top row) and unbound VEGFR2 (Free R2, bottom row) on the cell surface (A,D), in 

Rab4/5 endosomes (B,E), and in Rab11 endosomes (C,F).  In each case, the Y axis depicts the percentage 

of the VEGFR2 distributed to each compartment relative to the total VEGFR2 present at steady state 

(100%).  After VEGF stimulation, percentages add up to less than 100, as a portion of the VEGFR2 has 

been degraded.  Note that while peak levels of VEGFR2 ligation increase monotonically with VEGF 

concentration (solid line, [V] = 2 ng/mL; dashed line, [V] = 20 ng/mL; dotted line, [V] = 200 ng/mL), the 

temporal response is delayed at lower concentrations.  Soluble VEGF (Vs), blue lines; bound VEGF (Vb), 

green lines. 
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Figure 5-S2. Distribution of Phosphorylation Parameters.  These panels expand on the results shown in 

Figure 5-3.  A. Dephosphorylation parameters fit to experimental data.  47 sets of parameters were accepted 

as achieving good fit.  Red dots indicate a representative coherent set of parameters used throughout the 

rest of this study. See Methods.  B. Ratios of surface-to-internal dephosphorylation rates (panel A) for 

Y951, Y1175, and Y1214.  The ratio of these ratios for Y1175 and Y1214 is also shown.  The surface-to-

internal dephosphorylation ratio is consistently higher for Y1175 than for Y1214. 
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Figure 5-S3. Altered trafficking of VEGFR2 regulates site-specific phosphorylation of VEGFR2. 

These panels expand on the results show in Figure 5-5. Distribution of VEGFR2 phosphorylated on at least 

one of Y951, Y1175, and Y1214 (pR2, left), pY1175 (middle), or pY1214 (right) in total (top row), on the 

cell surface only (2
nd

 row), in Rab4/5 endosomes (3
rd

 row), and in Rab11 endosomes (4
th

 row) in HUVECs.  

Inset figures are included where the larger scale prevents clear distinction between lines.  Time-scale ends 

at 30 minutes, but pR2 curves are relatively flat after this time.  Soluble VEGF (Vs), blue line; bound 

VEGF (Vb), green line. Solid line, [V] = 2 ng/mL; dashed line, [V] = 20 ng/mL; dotted line, [V] = 200 

ng/mL. 
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Figure 5-S4.  Independent receptor dephosphorylation rates in multiple internal compartments 

result in decreased pY1175-VEGFR2.  These panels expand on the results shown in Figure 5-5.  Impact 

on total phosphorylated VEGFR2 (pR2, A), pY1175-VEGFR2 (B), and pY1214-VEGFR2 (C) if kdp in 

Rab11 endosomes is the same as in Rab4/5 endosomes.  Solid Lines: Baseline case with dephosphorylation 

rates in each compartment as specified in Table 3 of the main manuscript; dotted lines: dephosphorylation 

rates in Rab11 endosomes set to the same values as for Rab4/5 endosomes.  Soluble VEGF (Vs), blue lines; 

bound VEGF (Vb), green lines.  For all lines, [V] = 20 ng/mL, HUVEC receptor numbers. 
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Figure 5-S5.  Only a fraction of ligated VEGFR2 is phosphorylated.  These panels expand on the results 

shown in Figure 5-5.  Percentage of ligated VEGFR2 is that is phosphorylated on at least one tyrosine 

residue for soluble VEGF (Vs, A) and matrix-bound VEGF (Vb, B).  Quantities are broken down into cell 

surface, Rab4/5 endosome, and Rab11 endosome components.  Quantities of phosphorylated VEGFR2 are 

negligible in Rab11 endosomes.  For all lines, [V] = 20 ng/mL, HUVEC receptor numbers. 
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Figure 5-S6.  Trends in ligated and phosphorylated VEGFR2 are consistent across VEGF 

concentrations.  These panels expand on the results show in Figure 5-6.  All panels show area under the 

curve (AUC), for the first 60 minutes after stimulation with soluble (Vs- blue) or immobilized (Vb- green) 

VEGF at concentrations of 2, 20, and 200 ng/mL.  AUCs are shown for cell surface quantities (A-F), 

Rab4/5 quantities (G-L), and total quantities (M-R).  AUCs are shown for total VEGFR2 (1
st
 column), 

ligated VEGFR2 (2
nd

 column), VEGFR2 phosphorylation on any considered tyrosine residue (pR2, 3
rd

 

column), pY1175 (4
th

 column), and pY1214 (5
th

 column).  The last column shows the AUC for the curve 

pY1214/pY1175 (not the ratio AUC for pY1175 / AUC for pY1214) for surface VEGFR2 (F), Rab4/5 

VEGFR2 (L), and total VEGFR2 (R). 
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Figure 5-S6 

  



 182 

Figure 5-S7.  Loss of NRP1 increases levels of free VEGFR2 on the cell surface and in Rab4/5 

endosomes. These panels expand on the results shown in Figure 5-7.  Distribution of unligated VEGFR2.  

Solid lines: Baseline case with NRP1 present; dotted lines: no NRP1 present.  Soluble VEGF (Vs), blue 

lines; bound VEGF (Vb), green lines.  For all lines, [V] = 20 ng/mL, HUVEC receptor numbers. 
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Figure 5-S8.  The majority of ligated VEGFR2 is complexed with NRP1. These panels expand on the 

results shown in Figure 5-7.  Percentages of VEGFR2 that are ligated and immobilized (M·V·R2, green), 

bound to NRP1 (V·N1·R2, blue), or bound to neither M nor NRP1 (V·R2, red), upon stimulation with 

soluble VEGF (Vs, left) or immobilized VEGF (Vb, right) at 5 minutes (top) and 15 minutes (bottom).  

Values shown are percentages of the total steady-state VEGFR2 population in the specified compartment 

and at the given times.  Note that even upon stimulation with matrix-bound VEGF, essentially all internal 

ligated VEGFR2 is complexed with NRP1, due to the excess of NRP1.  [V] = 20 ng/mL, HUVEC receptor 

numbers. 
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Figure 5-S9. Sensitivity of model outputs varies with VEGF concentration. Sensitivity of outputs to 

small changes in parameters and initial conditions.  Values are average fold change in selected outputs for a 

1-fold change in the specified parameter.  A.  [V] = 2 ng/mL.  Scale: Black = 0, Bright red (maximum) = 

0.77 B. [V] = 200 ng/mL.  Scale: Black = 0, Bright red = 1.03 (maximum).
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5.7 Supplemental Tables 

 
Table 5-S1. Molecules included in the model and simulations. 

Species Description Units 

[V] Free VEGF in extracellular compartment M 

[M] ECM or VEGF-binding sites in extracellular compartment M 

[V·M] Immobilized VEGF (bound to the ECM or surface) M 

[R2] Free VEGFR2 on the cell surface mol/cm
2 

[V·R2] Soluble VEGF bound to VEGFR2 on the cell surface mol/cm
2
 

[M∙V∙R2] Matrix-bound VEGF bound to VEGFR2 on the cell surface mol/cm
2
 

[N1] Free NRP1 on the cell surface mol/cm
2
 

[V·N1] NRP1-bound VEGF on the cell surface mol/cm
2
 

[V∙N1∙R2] VEGF-NRP1-VEGFR2 complex on the cell surface mol/cm
2
 

[Vrab45] Free VEGF in Rab 4/5 endosomes mol/cm
2
 

[R2rab45] VEGFR2 in Rab 4/5 endosomes mol/cm
2
 

[V·R2rab45] V∙R2 complex in Rab 4/5 endosomes mol/cm
2
 

[N1rab45] Free NRP1 in Rab 4/5 endosomes mol/cm
2
 

[V·N1rab45]  NRP1-bound VEGF in Rab 4/5 endosomes mol/cm
2
 

[V·N1·R2rab45] VEGF-NRP1-VEGFR2 complex in Rab 4/5 endosomes mol/cm
2
 

[Vrab11] Free VEGF in Rab 11 endosomes mol/cm
2
 

[R2rab11] VEGFR2 in Rab 11 endosomes mol/cm
2
 

[V·R2rab11] V∙R2  complex in Rab 11 endosomes mol/cm
2
 

[N1rab11] NRP1 in Rab 11 endosomes mol/cm
2
 

[V·N1rab11]  NRP1-bound VEGF in Rab 11 endosomes mol/cm
2
 

[V·N1·R2rab11] VEGF-NRP1-VEGFR2 complex in Rab 11 endosomes mol/cm
2
 

[Vdeg] Degraded VEGF mol/cm
2
 

[R2deg] Degraded VEGFR2 mol/cm
2
 

[V·R2deg] Degraded V∙R2 mol/cm
2
 

[N1deg] Degraded free NRP1 mol/cm
2
 

[V·N1deg]  Degraded NRP1-bound VEGF mol/cm
2
 

[V·N1·R2deg] Degraded VEGF-NRP1-VEGFR2 complex mol/cm
2
 

Note: For all reactions, units on surface and internal species are converted to M as needed.  Surface species 

units are mol/cm
2
 of well plate surface area (not cell surface area).  Internal species are also in mol/cm

2
 of 

well plate surface area. 
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Table 5-S2. Cell Geometry Parameters 

Dimension Value Units Reference 

Cell Surface Area (top only) 1000 μm
2 

Jaffe 1987 [1] 

Cell Volume 1000 μm
3
 Jaffe 1987 [1] 

Total Rab 4/5 Surface Area per 

Cell 

100 μm
2 

Steinman 1976 [2] (assume ½ 

endosomal surface area) 

Total Rab 4/5 Volume per Cell 2.5 μm
3
 Griffiths 1989 [3] (assume ½ 

endosomal volume) 

Total Rab 11 Surface Area per 

Cell 

100 μm
2 

Steinman 1976 [2] (assume ½ 

endosomal surface area) 

Total Rab 11 Volume per Cell 2.5 μm
3
 Griffiths 1989 [3] (assume ½ 

endosomal volume) 

 

1. Jaffe EA (1987) Cell Biology of Endothelial Cells. Human Pathology 18. 

2. Steinman RM, Brodie SE, Cohn ZA (1976) Membrane flow during pinocytosis- stereologic analysis. 

Journal of Cell Biology 68: 665-687. 

3. Griffiths G, Back R, Marsh M (1989) A quantitative analysis of the endocytic pathway in baby hamster 

kidney cells. Journal of Cell Biology 109: 2703-2720. 
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Table 5-S3. Representative Fits to Experimental Trafficking Data 

Species 

Measured 

Location Time 

(min) 

Transfected 

Receptors  

 

[VEGF] 

(ng/mL) 

Simulation 

Value 

Data 

Value 

Weight 

R2 Rab 4/5 - R2 0 93 81 1 

R2 Rab 11 - R2 0 6.6 2.7 1 

N1 Rab 4/5 - N1 0 37 48 1 

N1 Rab 11 - N1 0 51 46 1 

V·N1·R2 Rab 4/5 30 R2 + N1 50 27 47 1 

V·N1·R2 Rab 11 30 R2 + N1 50 37 45 1 

V·N1·R2 Rab 4/5 180 R2 + N1 50 4.6 47 1 

V·N1·R2 Rab 11 180 R2 + N1 50 6.2 46 1 

R2 Rab 4/5 30 R2 50 91 79 1 

R2 Rab 11 30 R2 50 3.7 4.5 1 

R2 Rab 4/5 180 R2 50 66 78 1 

R2 Rab 11 180 R2 50 4.8 2.6 1 

N1 Surface 30 R2 + N1 50 22 21 1 

N1 Surface 180 R2 + N1 50 7.1 90 1 

R2 Total 10 R2 + N1 50 38 64 3 

R2 Total  30 R2 + N1 50 32 44 3 

R2 Total  180 R2 + N1 50 11 33 3 

N1 Total 10 R2 + N1 50 91 74 3 

N1 Total 30 R2 + N1 50 72 66 3 

N1 Total 180 R2 + N1 50 18 45 3 

% R2 on Surface - R2 + N1 0 58 60 5 

Note: Simulated values and experimental data in Rab4/5 and Rab11 endosomes are expressed as a 

percentage of the internalized molecule of interest in the indicated compartment.  Rab7 data (not shown) is 

compared to the degraded compartment in the model.  Rab7 was not used for parameter fitting, as 

percentages in the Rab7 compartment are fully specified if the percentages in Rab4/5 and Rab11 

endosomes are known.  Total values are given as a percentage of the value in unstimulated cells.  Receptors 

included in the count can be free or bound to VEGF. 

 

1. Ballmer-Hofer K, Andersson AE, Ratcliffe LE, Berger P (2011) Neuropilin-1 promotes VEGFR-2 

trafficking through Rab11 vesicles thereby specifying signal output. Blood 118. 
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Table 5-S4. Summary of Distribution of Accepted Parameter Sets 

Parameter Mean (s
-1

) Median (s
-1

) σ (s
-1

) CV 

Trafficking     

kdegr(V·N1·R2) 9.26 x 10
-4 

6.90 x 10
-4 

9.06 x 10
-4 

0.98 

kdegr(V·R2) 2.72 x 10
-5

 2.80 x 10
-5

 7.58 x 10
-6

 0.28 

kdegr(N1) 1.55 x 10
-4

 4.00 x 10
-5

 1.92 x 10
-4

 1.24 

krec4(R2) 3.73 x 10
-3

 3.70 x 10
-3

 2.93 x 10
-4

 0.08 

krec11(N1) 1.19 x 10
-2

 1.30 x 10
-2

 2.60 x 10
-3

 0.22 

k4to11(N1) 1.65 x 10
-2

 1.60 x 10
-2

 4.18 x 10
-3

 0.25 

     

Phosphorylation     

kdp, Y951, surface 4.986 0.0027 11.9 2.39 

kdp, Y1175, surface 7.267 3.97 8.94 1.23 

kdp, Y1214, surface 0.580 0.0118 1.35 2.33 

kdp, Y951, rab45 9.523 0.0413 25.8 2.71 

kdp, Y1175, rab45 0.051 0.00172 0.184 3.61 

kdp, Y1214, rab45 0.041 0.00119 0.133 3.24 

     

Surface/Internal Ratios: kdp 

Y951 266 0.719 989 3.72 

Y1175 3440 940 7750 2.25 

Y1214 64.9 6.84 190 2.93 

     

Y1175/Y1214 2760 252 8810 3.19 

σ: Standard Deviation; CV: coefficient of variation. 
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Table 5-S5. Summary of Phosphatases Acting on VEGFR2 

Name Location(s) Interactions Residues 

Dephosphorylated 

Residues Not 

Dephosphorylated 

Refs

. 

TCPTP 

(PTPN2) 

PM (focal 

adhesions), N, 

C 

VEGFR2, 

α1 integrins 

Y996, Y1054, 

Y1059, Y1214 

Y1175 [1] 

VEPTP 

(PTPRB) 

PM (cell 

junctions) 

VEGFR2, Tie2, 

VE-Cadherin 

Y951, Y1175 Y1214 [2,3] 

DEP-1 

(CD148, 

PTPRJ) 

PM (cell 

junctions) 

VEGFR2,  

VE-Cadherin 

Y801, Y951, Y996, 

Y1054, Y1059, 

Y1175, Y1214 

 [4-6] 

SHP-1 

(PTPN6) 

PM VEGFR2, Src, 

eNOS 

Y996, Y1059, 

Y1175 

Y951 [7,8] 

SHP-2 

(PTPN11) 

PM VEGFR2, Tie2, 

collagen I, D2DR 

Y951, Y996, 

Y1059 

Y1175 [9-

11] 

PTP1B 

(PTPN1) 

PM/EE, ER VEGFR2,  

VE-cadherin 

Y1175   [12-

14] 

PTP-

MEG2 

(PTPN9) 

PM, C (peri-

nuclear & 

vesicular) 

VEGFR2 Y1175   [15] 

HCPTPA  C  VEGFR2     [16] 

PM: Plasma Membrane; N: Nucleus; C: Cytosol; EE: Early Endosomes; ER: endoplasmic reticulum 

1. Mattila E, Auvinen K, Salmi M, Ivaska J (2008) The protein tyrosine phosphatase TCPTP controls 

VEGFR2 signalling. Journal of Cell Science 121: 3570-3580. 

2. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, et al. (2009) Transcriptional profiling reveals 

a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial 

cell morphogenesis. Faseb Journal 23. 

3. Hayashi M, Majumdar A, Li X, Adler J, Sun Z, et al. (2013) VE-PTP regulates VEGFR2 activity in stalk 

cells to establish endothelial cell polarity and lumen formation. Nature Communications 4. 

4. Chabot C, Spring K, Gratton JP, Elchebly M, Royal I (2009) New Role for the Protein Tyrosine 

Phosphatase DEP-1 in Akt Activation and Endothelial Cell Survival. Molecular and Cellular 

Biology 29: 241-253. 

5. Lampugnani MG, Zanetti A, Corada M, Takahashi T, Balconi G, et al. (2003) Contact inhibition of 

VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the 

phosphatase DEP-1/CD148. Journal of Cell Biology 161. 
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6. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E (2006) Vascular endothelial cadherin 

controls VEGFR-2 internalization and signaling from intracellular compartments. Journal of Cell 

Biology 174: 593-604. 

7. Bhattacharya R, Kwon J, Wang E, Mukherjee P, Mukhopadhyay D (2008) Src homology 2 (SH2) 

domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 

and attenuates endothelial DNA synthesis, but not migration*. Journal of molecular signaling 3: 8-

8. 

8. Cai J, Jiang WG, Ahmed A, Boulton M (2006) Vascular endothelial growth factor-induced endothelial 

cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. 

Microvascular Research 71. 

9. Sinha S, Vohra PK, Bhattacharya R, Dutta S, Sinha S, et al. (2009) Dopamine regulates phosphorylation 

of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 

2. Journal of Cell Science 122: 3385-3392. 

10. Mitola S, Brenchio B, Piccinini M, Tertoolen L, Zammataro L, et al. (2006) Type I collagen limits 

VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1. Circulation 

Research 98: 45-54. 

11. Huang LW, Turck CW, Rao P, Peters KG (1995) Grb2 and SH-PTP2- Potentially important endothelial 

signaling molecules downstream of the TEK/Tie2 receptor tyrosine kinase. Oncogene 11: 2097-

2103. 

12. Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, et al. (2013) The Neuropilin 1 

Cytoplasmic Domain Is Required for VEGF-A-Dependent Arteriogenesis. Developmental Cell 25: 

156-168. 

13. Lanahan AA, Hermans K, Claes F, Kerley-Hamilton JS, Zhuang ZW, et al. (2010) VEGF Receptor 2 

Endocytic Trafficking Regulates Arterial Morphogenesis. Developmental Cell 18. 

14. Nakamura Y, Patrushev N, Inomata H, Mehta D, Urao N, et al. (2008) Role of protein tyrosine 

phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in 

endothelial cells. Circulation Research 102. 
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15. Hao Q, Samten B, Ji H-L, Zhao ZJ, Tang H (2012) Tyrosine phosphatase PTP-MEG2 negatively 

regulates vascular endothelial growth factor receptor signaling and function in endothelial cells. 

American Journal of Physiology-Cell Physiology 303. 

16. Huang LW, Sankar S, Lin C, Kontos CD, Schroff AD, et al. (1999) HCPTPA, a protein tyrosine 

phosphatase that regulates vascular endothelial growth factor receptor-mediated signal 

transduction and biological activity. Journal of Biological Chemistry 274: 38183-38188. 
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Chapter 6. VEGF Isoform Distribution and Signaling in 

Healthy Humans 

Content from this chapter has been peer-reviewed and published as follows, and is included with 

permission: 

L. Clegg & F. Mac Gabhann, “A Computational Analysis of in vivo VEGFR Activation by Multiple Co-

Expressed Ligands,” PLoS Computational Biology, vol. 13, no 3, pp. e1005445, March 2017. DOI: 

10.1371/journal.pcbi.1005445. https://doi.org/10.1371/journal.pcbi.1005445.  

 

6.0 Summary 

 
The splice isoforms of vascular endothelial growth A (VEGF) each have different affinities for the 

extracellular matrix (ECM) and the coreceptor NRP1, which leads to distinct vascular phenotypes in model 

systems expressing only a single VEGF isoform. ECM-immobilized VEGF can bind to and activate VEGF 

receptor 2 (VEGFR2) directly, with a different pattern of site-specific phosphorylation than diffusible 

VEGF. To date, the way in which ECM binding alters the distribution of isoforms of VEGF and of the 

related placental growth factor (PlGF) in the body and resulting angiogenic signaling is not well-

understood. Here, we extend our previous validated cell-level computational model of VEGFR2 ligation, 

intracellular trafficking, and site-specific phosphorylation, which captured differences in signaling by 

soluble and immobilized VEGF, to a multi-scale whole-body framework. This computational systems 

pharmacology model captures the ability of the ECM to regulate isoform-specific growth factor distribution 

distinctly for VEGF and PlGF, and to buffer free VEGF and PlGF levels in tissue. We show that binding of 

immobilized growth factor to VEGF receptors, both on endothelial cells and soluble VEGFR1, is likely 

important to signaling in vivo. Additionally, our model predicts that VEGF isoform-specific properties lead 

to distinct profiles of VEGFR1 and VEGFR2 binding and VEGFR2 site-specific phosphorylation in vivo, 

mediated by Neuropilin-1. These predicted signaling changes mirror those observed in murine systems 

expressing single VEGF isoforms. Simulations predict that, contrary to the ‘ligand-shifting hypothesis,’ 

VEGF and PlGF do not compete for receptor binding at physiological concentrations, though PlGF is 

https://doi.org/10.1371/journal.pcbi.1005445
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predicted to slightly increase VEGFR2 phosphorylation when over-expressed by 10-fold. These results are 

critical to design of appropriate therapeutic strategies to control VEGF availability and signaling in 

regenerative medicine applications.  
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Figure 6-G1. Graphical Abstract 
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6.1 Introduction 

 
Angiogenesis, the growth of new capillaries from the existing vasculature, is critical for 

maintenance of health and response to injury, as well as being a component of many diseases. However, 

regulation of angiogenesis is highly complex [1], and not fully understood. This complexity is a key reason 

for the lack of approved, effective therapies to promote angiogenesis for tissue engineering applications [2-

4], for wound healing [5], or for ischemic diseases such as peripheral artery disease (PAD) [6], despite 

much research and multiple clinical trials [7]. Thus, a more complete, mechanistic understanding of the 

regulation of angiogenesis is crucial to designing more effective pro-angiogenic therapies. 

Key to angiogenesis is the vascular endothelial growth factor (VEGF) family, including VEGF-A, 

VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). VEGF-A (hereafter referred to as 

VEGF), considered the primary pro-angiogenesis VEGF ligand, has multiple splice isoforms, the most 

prevalent in humans being VEGF121, VEGF165, and VEGF189. Constitutive dimers of these splice isoforms 

bind to VEGF-receptor 1 (VEGFR1) and VEGF-receptor 2 (VEGFR2). Upon ligand binding, VEGF 

receptors dimerize, transphosphorylate, and initiate downstream signaling [8-10].  

The longer two prevalent human VEGF isoforms (VEGF165 and VEGF189) contain heparin-binding 

domains, allowing for binding to heparan sulfate proteoglycans (HSPGs) in the extracellular matrix (ECM). 

These isoforms also have binding sites for the coreceptor Neuropilin-1 (NRP1), which regulates VEGF 

affinity for VEGFR2 and influences VEGFR2 trafficking, though the less-common heparin-binding 

VEGF145 does not bind to NRP1 [11, 12]. These isoform-specific properties have physiological 

significance; upon secretion into the extracellular space, VEGF121, which does not bind to the ECM or to 

NRP1, forms shallow gradients and diffuses away from the source of production, while VEGF189, which 

binds strongly to the ECM and also binds NRP1, forms steep interstitial gradients and remains close to the 

site of production [13].  

In addition, mice and tumors expressing single VEGF isoforms have distinct phenotypes. 

Expression of only VEGF121 leads to formation of high diameter vessels with low branching density, while 

expression of only VEGF189 results in highly branched networks of very thin vessels. By contrast, 

expression of VEGF165 alone results in a phenotypically normal vasculature, with balanced branching and 

diameters [14-17]. In addition to regulating VEGF distribution, it has recently been shown that the 



 196 

immobilization of VEGF to ECM proteins or to a surface alters the site-specific phosphorylation profile of 

VEGFR2 in vitro. While phosphorylation of tyrosine Y1175, which leads to ERK1/2 activation and cell 

proliferation, is similar whether VEGF is immobilized or presented in solution, phosphorylation of Y1214, 

which leads to phosphorylation of p38 and cell migration, increases when VEGF is immobilized [18, 19]. 

This shift in signaling, which parallels the phenotypes seen with single VEGF isoform expression, can be 

explained by reduced internalization of VEGFR2 bound to immobilized VEGF, altering the exposure of 

VEGFR2 to specific phosphatases, as we recently demonstrated via a computational model of VEGFR2 

signaling in vitro [20]. 

PlGF is not as well-studied as VEGF-A, in part because it is not required for normal murine 

development and homeostasis [21], and in part because PlGF binds only to VEGFR1, and not to VEGFR2, 

which is often considered to be the primary signaling receptor [22]. Like VEGF, PlGF has multiple splice 

isoforms, namely PlGF1 and PlGF2, with only the longer isoform (PlGF2) binding to ECM proteins 

strongly, and also to NRP1 [23, 24]. Despite being dispensable for murine development, PlGF expression is 

different in humans than mice [25], and increasing evidence implicates PlGF in disease [26]. Structural 

similarity also allows VEGF and PlGF to form heterodimers when produced in the same cells [27, 28]. 

There is high inter-study and intra-study variability in measurements of PlGF in human plasma and serum 

[29-41], many of which are from pregnant women, but levels of PlGF in healthy subjects are generally 

higher than those of VEGF-A (in 6 of 8 studies reviewed in [42] where both VEGF and PlGF in plasma or 

serum were measured [29-36]), and lower than those of soluble VEGFR1 (in 4 of 5 studies reviewed in [42] 

measuring both PlGF and sR1 in human plasma or serum [32, 34-37]). 

VEGFR1 is also understudied compared to VEGFR2. VEGFR1 kinase activity appears to be 

weaker than that of VEGFR2, but VEGFR1 binds to VEGF more strongly than VEGFR2 [10]. While 

VEGFR1 kinase activity is not required for normal murine development [43], it appears to be important in 

the adult vasculature [44-46]. Like the VEGF ligands, VEGF receptors have alternative splice forms. 

Specifically, soluble VEGFR1 (sR1) is a naturally-occurring splice isoform lacking the transmembrane and 

intracellular domains but maintaining the ligand-, NRP1-, and HSPG-binding sites of VEGFR1. sR1 is 

secreted by endothelial cells into the extracellular space [47, 48]. There, sR1 can bind to the ECM [49] 

and/or bind to VEGF and PlGF, potentially preventing these growth factors from binding to cell surface 
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receptors. Additionally, sR1 may heterodimerize with cell surface receptor monomers, forming non-

signaling complexes [50]. While VEGF binding to VEGFR1 is thought by some to be anti-angiogenic, 

PlGF-induced VEGFR1 activation is generally considered to be pro-angiogenic [2]; the tyrosine 

phosphorylation patterns on VEGFR1 induced by VEGF and PlGF are different [44], and PlGF-VEGFR1 

signaling is pro-angiogenic in zebrafish [51]. It has been hypothesized, based on in vitro data and 

overexpression studies, that PlGF and VEGFB binding to VEGFR1 induces pro-angiogenic effects by 

occupying VEGFR1, shifting VEGF from VEGFR1 to VEGFR2 [44, 52-54].  

Though the contributions of VEGF, PlGF, growth factor immobilization, sR1, NRP1, VEGFR1, 

and VEGFR2 to VEGF-mediated signaling have all been studied in vitro (and to a limited extent in vivo), 

the combined regulation of these cues in the context of the human body is not well-understood. Compared 

to in vitro studies, physiological ligand concentrations are very low, many different growth factors are 

constantly being produced, consumed, and transported throughout the body, and the time-scales of interest 

are far longer [55]. Computational models provide a key tool to study the combined effects of many forms 

of regulation within a single framework, and to scale between model systems and human patients. 

 

6.1.1 Objectives 

 

The primary objectives of this study were: (1) to predict the distribution of VEGF and PlGF within 

the body, (2) to understand the effect of VEGF and PlGF on the balance of VEGFR1 and VEGFR2 ligation 

and VEGFR2 phosphorylation, (3) to quantify the effect of matrix-bound VEGF & PlGF binding to 

endothelial and soluble receptors on VEGFR signaling, and (4) to study the impact of changes in VEGF & 

PlGF isoform expression on absolute and relative VEGFR1 & VEGFR2 activation and site-specific 

phosphorylation of VEGFR2, as a result of isoform-specific matrix- and NRP1-binding properties, all 

within the context of a healthy human body.  

The computational systems pharmacology model developed in this study is based on previously-

developed computational models of VEGF distribution and receptor binding in vivo. These models have 

included VEGF165, VEGF121, VEGFR1, VEGFR2, soluble VEGFR1 (sR1), NRP1, and sites in the 

interstitial matrix to which some growth factors and sR1 can bind [56-58]. The distribution of these 

proteins and their complexes has been examined in tissues of therapeutic interest (healthy or PAD calf [58], 
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or tumor [59, 60]), the blood, and non-diseased tissue (main body mass) [56, 57], in humans or mice [61, 

62], incorporating transport between these compartments via vascular permeability and lymphatic drainage 

of tissues, and clearance of proteins from the plasma. By including multiple tissue compartments, we can 

compare quantities in a tissue of interest to those in the bulk of body tissue. 

In the present study, we greatly expand upon previous models to further capture the complexity of 

VEGF distribution and VEGF receptor activation in the body. For the first time, we include two isoforms of 

placental growth factor (PlGF1 & PlGF2), and the VEGF isoform VEGF189. Additionally, we account for 

binding of matrix-immobilized ligands in the endothelial basement membrane (EBM) to cell-surface 

receptors (VEGFR1 & VEGFR2), binding of immobilized ligands throughout the interstitial space to 

soluble sR1, and the ability of sR1, when sequestered in the interstitial matrix, to bind some VEGF 

isoforms. To capture these effects, we simulate receptor trafficking and VEGFR2 tyrosine site-specific 

phosphorylation following ligand binding or unbinding explicitly, implementing the reactions in a 

previously-developed in vitro computational model that captures differences in VEGFR2 phosphorylation 

following stimulation with soluble or matrix-bound VEGF165 [20]. Finally, we leverage recent 

measurements to update endothelial cell surface receptor densities [63].   
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6.2 Methods 

 
6.2.1 Compartmental Model Formulation 

 

To capture the pharmacokinetics of VEGF, PlGF, and sR1 distribution in the human body, we 

divide the body into three compartments: a healthy calf muscle (gastrocnemius + soleus muscles), blood, 

and the main body mass (the rest of the tissues), approximated with the properties of skeletal muscle (Fig 

6-1A). Transport between compartments occurs via bi-directional vascular permeability and lymphatic 

drainage of tissues (into the blood), while growth factors and sR1 are cleared from the blood (via the liver 

and kidneys), using rates previously determined (Table 6-S10). Each tissue compartment includes 

physiological proportions of interstitial space, extracellular matrix (ECM), endothelium, other parenchymal 

cells, and basement membranes for both the endothelium and parenchyma (endothelial- EBM, and 

parenchymal- PBM).  
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Figure 6-1: Schematics of molecular detail and structure of multi-scale computational model. (A) 

Whole-body compartmental model structure and mass flow. VEGF and PlGF are secreted from 

parenchymal cells, and sR1 is secreted by endothelial cells into the tissue interstitial space. Ligands and 

sR1 can then bind to EC receptors (leading to internalization and degradation), and can be transported 

between the tissue and blood via bi-directional vascular permeability or lymphatic draining of tissues into 

the circulation. Soluble species in the blood can be directly cleared from the blood. (B) Molecular 

interactions in tissue interstitial space between VEGF121, VEGF165, VEGF189, PlGF1, PlGF2, NRP1, sR1, 

and extracellular HSPGs/GAGs (M). It is assumed that, similar to NRP1-VEGFR1 complexes, VEGF121 

and PlGF1 can bind to sR1-M. ECM-bound VEGF165, VEGF189, and PlGF2 can also bind to sR1. (C) 

Trafficking processes simulated in endothelial cells. (D) Site-specific phosphorylation and 

dephosphorylation of VEGFR2. (E) Abluminal (tissue-side) endothelial cell-surface molecular 

interactions between VEGF121, VEGF165, VEGF189, PlGF1, PlGF2, VEGFR1, VEGFR2, NRP1, sR1, and 

extracellular HSPGs/GAGs in the endothelial basement membrane (EBM).   
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Figure 6-1  
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Within each tissue, we incorporate molecularly-detailed pharmacodynamics, including secretion 

into the interstitial space of VEGF and PlGF by parenchymal cells and sR1 by endothelial cells. In the 

interstitium, these diffusible proteins can then bind to heparan sulfate proteoglycans (HSPGs) in the ECM 

and basement membranes (see Fig 6-1B, Table 6-S11), bind to receptors on endothelial cells (ECs), or be 

removed from the compartment via physiological transport processes (Fig 6-1A). VEGF and PlGF 

isoforms have different affinities for matrix sites and for the coreceptor NRP1, which are included (Table 

6-1), to account for isoform-specific ligand distribution and receptor activation. On the surface of and 

within endothelial cells, we simulate binding of sR1 to NRP1, binding of PlGF to VEGFR1 and/or NRP1, 

and binding of VEGF to VEGFR1, VEGFR2, and/or NRP1, based on the binding properties of each protein 

(summarized in Tables 6-1, 6-2, & 6-3 and Fig 6-1E).  
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Table 6-1. Binding/Unbinding Reactions: KD. 
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 Notes:  

1. L: ligand, column-specific 

2. Ordering shows where the bond is. For example: in M-(L-sR1): M binding to L for VEGF165, VEGF189, 

& PlGF2. Whereas, in (L-sR1)-M, M binding to sR1 for VEGF121, PlGF1. 

3. All rates are the same inside endosomes as on cell surface. Unit conversions (see [20]) were required to 

convert all kon (and thus KD) into context-specific units, as in previous compartment models. KD in 

moles/cm
2
 = KD in moles/L * (1 L/ 1000 cm

3
) * (1/ESAV) where ESAV is the endothelial surface area to 

volume ratio, given in S7 Table. 

Bold: new parameters (to compartment model) 
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Table 6-2. Binding/Unbinding Reactions: kon 

kon VEGF165 VEGF121 VEGF189 PlGF1 PlGF2 Units 

L-R1 3.0 x 10
7 

3.0 x 10
7
 3.0 x 10

7
 1.5 x 10

6
 1.5 x 10

6
 M

-1
 s

-1
 

L-R2 1.0 x 10
7
 1.0 x 10

7
 1.0 x 10

7
 - - M

-1
 s

-1
 

L-N1 5.0 x 10
5
 - 1.4 x 10

6
 - 1.0 x 10

4
 M

-1
 s

-1
 

L-sR1 3.0 x 10
7
 3.0 x 10

7
 3.0 x 10

7
 1.5 x 10

6
 1.5 x 10

6
 M

-1
 s

-1
 

L-M 1.6 x 10
5
 - 1.6 x 10

5
 - 2.2 x 10

5
 M

-1
 s

-1
 

(M-L)-R1 3.0 x 10
7
 - 3.0 x 10

7
 - 1.5 x 10

6
 M

-1
 s

-1
 

(M-L)-R2 1.0 x 10
7
 - 1.0 x 10

7
 - - M

-1
 s

-1
 

(M-L)-sR1 3.0 x 10
7
 - 3.0 x 10

7
 - 1.5 x 10

6
 M

-1
 s

-1
 

M-(L-R1) 1.6 x 10
5
 - 1.6 x 10

5
 - 2.2 x 10

5
 M

-1
 s

-1
 

M-(L-R2) 1.6 x 10
5
 - 1.6 x 10

5
 - - M

-1
 s

-1
 

M-(L-sR1) 1.6 x 10
5
 - 1.6 x 10

5
 - 2.2 x 10

5
 M

-1
 s

-1
 

(L-sR1)-M - 4.2 x 10
5
 - 4.2 x 10

5
 - M

-1
 s

-1
 

(M-sR1)-L - 3.0 x 10
7
 - 1.5 x 10

6
 - M

-1
 s

-1
 

(N1-L)-R2 1.0 x 10
14

 - 1.0 x 10
14

 - - (moles/cm
2
)

-1
 s

-1
 

N1-(L-R2) 3.1 x 10
13

 - 3.1 x 10
13

 - - (moles/cm
2
)

-1
 s

-1
 

(L-R1)-N1 - 1.0 x 10
14

 - 1.0 x 10
14

 - (moles/cm
2
)

-1
 s

-1
 

(L-sR1)-N1 - 1.0 x 10
14

 - 1.0 x 10
14

 - M
-1

 s
-1

 

(N1-R1)-L - 3.0 x 10
7
 - 1.5 x 10

6
 - M

-1
 s

-1
 

(N1-sR1)-L - 3.0 x 10
7
 - 1.5 x 10

6
 - M

-1
 s

-1
 

       

Other N1-R1 1.0 x 10
14

 (moles/cm
2
)

-1
 s

-1
   

 sR1-N1 5.6 x 10
6
 M

-1
 s

-1
   

 sR1-M 4.2 x 10
5
 M

-1
 s

-1
   

Bold: new parameters (to compartment model) 
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Table 6-3. Binding/Unbinding Reactions: koff 

koff VEGF165 VEGF121 VEGF189 PlGF1 PlGF2 Units 

L-R1 1.0 x 10
-3 

1.0 x 10
-3

 1.0 x 10
-3

 3.5 x 10
-4

 3.5 x 10
-4

 s
-1 

L-R2 1.0 x 10
-3

 1.0 x 10
-3

 1.0 x 10
-3

 - - s
-1

 

L-N1 6.0 x 10
-4

 - 1.7 x 10
-4

 - 1.0 x 10
-3

 s
-1

 

L-sR1 1.0 x 10
-3

 1.0 x 10
-3

 1.0 x 10
-3

 3.5 x 10
-4

 3.5 x 10
-4

 s
-1

 

L-M 1.0 x 10
-2

 - 1.0 x 10
-3

 - 1.0 x 10
-3

 s
-1

 

(M-L)-R1 1.0 x 10
-3

 - 1.0 x 10
-3

 - 3.5 x 10
-4

 s
-1

 

(M-L)-R2 1.0 x 10
-3

 - 1.0 x 10
-3

 - - s
-1

 

(M-L)-sR1 1.0 x 10
-3

 - 1.0 x 10
-3

 - 3.5 x 10
-4

 s
-1

 

M-(L-R1) 1.0 x 10
-2

 - 1.0 x 10
-3

 - 1.0 x 10
-3

 s
-1

 

M-(L-R2) 1.0 x 10
-2

 - 1.0 x 10
-3

 - - s
-1

 

M-(L-sR1) 1.0 x 10
-2

 - 1.0 x 10
-3

 - 1.0 x 10
-3

 s
-1

 

(L-sR1)-M - 1.0 x 10
-2

 - 1.0 x 10
-2

 - s
-1

 

(M-sR1)-L - 1.0 x 10
-3

 - 3.5 x 10
-4

 - s
-1

 

(N1-L)-R2 1.0 x 10
-3

 - 1.0 x 10
-3

 - - s
-1

 

N1-(L-R2) 1.0 x 10
-3

 - 1.0 x 10
-3

 - - s
-1

 

(L-R1)-N1 - 1.0 x 10
-2

 - 1.0 x 10
-3

 - s
-1

 

(L-sR1)-N1 - 1.0 x 10
-2

 - 1.0 x 10
-3

 - s
-1

 

(N1-R1)-L - 1.0 x 10
-3

 - 3.5 x 10
-4

 - s
-1

 

(N1-sR1)-L - 1.0 x 10
-3

 - 3.5 x 10
-4

 - s
-1

 

       

Other N1-R1 1.0 x 10
-2

 s
-1

    

 sR1-N1 1.0 x 10
-2

 s
-1

    

 sR1-M 1.0 x 10
-2

 s
-1

    

Bold: new parameters (to compartment model) 
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Endothelial cell surface receptors are continually produced, internalized, recycled, and degraded, 

with trafficking rates that depend on ligation status and complex formation with NRP1 (Fig 6-1C). We 

include detailed VEGFR2 trafficking based on a previous in vitro computational model (Table 6-S8). 

Surface receptor production rates were tuned to match experimental measurements of cell surface receptor 

levels in human umbilical vein endothelial cells (Table 6-4). We also explicitly include phosphorylation 

and site-specific dephosphorylation of VEGFR2 (Fig 6-1D), which is dependent on receptor trafficking, 

with higher net activation at Y1214 than Y1175 on the cell surface, and higher Y1175 phosphorylation in 

early (Rab4/5) endosomes (Table 6-S9), as a result of differential dephosphorylation of Y1175 and Y1214 

on the cell surface and in early endosomes [20]. This allows us to study phosphorylation explicitly, instead 

of using receptor occupancy as a surrogate, and to look at relative activation of downstream signaling 

pathways leading to proliferation (pY1175 via ERK1/2) and migration (pY1214 via p38). 
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Table 6-4. Targets & Secretion/Production Rates at Steady-State 

Species Target 

Location 

Target 

Value 

Target Units Fit Production/ 

Secretion Rates 

Production 

Units 

Ref 

VEGFR1 Main Body 

Mass 

1800 Surface 

receptors/EC 
1.162 Change from 

No VEGF SS 

[67] 

 Calf 1800 Surface 

receptors/EC 
1.32 Change from 

No VEGF SS 

[67] 

VEGFR2 Main Body 

Mass 

5800 Surface 

receptors/EC 
32.09 Change from 

No VEGF SS 

[67] 

 Calf 5800 Surface 

receptors/EC 
53.95 Change from 

No VEGF SS 

[67] 

NRP1 Main Body 

Mass 

70,000 Surface 

receptors/EC 
1.295 Change from 

No VEGF SS 

[63] 

 Calf 70,000 Surface 

receptors/EC 
1.502 Change from 

No VEGF SS 

[63] 

sR1 Plasma 100 pM 0.0893 molec/EC/s [57] 

PlGF Plasma 10 pM 0.0146 molec/MD/s [42] 

  PlGF1      15% % of Prod [68] 

  PlGF2      85% % of Prod [68] 

VEGF Plasma 1.5 pM 0.2830 molec/MD/s [57] 

 VEGF165      77% % of Prod [69] 

 VEGF121        8% % of Prod [69] 

 VEGF189      15% % of Prod [69] 

Bold: new parameters (to compartment model) 

SS: steady-state 

MD: myonuclear domain (portion of a skeletal muscle myocyte associated with a single nucleus) 
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Due to the spatially-averaged nature of this model, gradients and heterogeneity in growth factor, 

soluble receptor, and cell surface receptor patterning are neglected. Instead, we examine the tissue-

averaged behavior within the context of the human body. We neglect secretion of sR1 directly into the 

bloodstream, receptors present on the luminal side of ECs, and degradation of growth factors by proteases. 

All parameters are based on or fit to experimental data, either newly here or previously for other 

computational models. By building on previous modeling efforts, we have built more molecular detail into 

our models, while adding only a modest number of new parameters (indicated in bold in Tables 6-1, 6-2, 6-

4 & 6-4 and Table 6-S7).  

To simulate the time-course of each molecular species in each tissue and the blood, this model 

includes 635 nonlinear ordinary differential equations that are solved simultaneously. The model equations 

can be found in the Supplemental Equations. The full set of differential equations was solved in Fortran 

using the Livermore Solver for Ordinary Differential Equations with Automatic method switching for stiff 

and nonstiff problems (LSODA), on a laptop PC, with a relative error tolerance of 10
-6

.   

 

6.2.2 Model Parameterization  

 

Geometry. The geometric parameterization is taken, without modification, from a previous 3-compartment 

model of a healthy 70 kg human [57], and is detailed in S7 Table. Briefly, histological cross-sections of 

human gastrocnemius muscle and vastus lateralis muscle were used to parameterize the “calf muscle” and 

“main body mass” compartments, respectively. These cross-sections and other measurements were used to 

estimate the relative fractions of muscle volume occupied by myocytes, capillaries (separated into vascular 

space and endothelium), and interstitial space. Estimates of endothelial and myocyte basement membrane 

thickness, cell surface areas and volumes, and the volume fractions of ECM protein and fluid in interstitial 

space were also used to parameterize the tissue compartments. For full details, see [57]. The blood is taken 

to be 5L, with 60% of that volume being plasma. 

 Binding and Coupling Kinetics. In this model, we include five growth factor ligands (L), each with 

different receptor-binding, matrix-binding, and NRP1-binding properties (Fig 6-1B and 6-1E). Our goal is 

to understand how these isoform-specific properties lead to differential ligation and activation of VEGFR1 

and VEGFR2. We assume all ligands and receptors are pre-dimerized, neglecting the formation of ligand or 
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receptor heterodimers, and assume the same binding properties for sR1 as endothelial VEGFR1 [70]. NRP1 

can bind directly to VEGFR1 (and we assume sR1) [71], while VEGF is required to bridge NRP1 and 

VEGFR2. While VEGF binds to both VEGFR1 and VEGFR2, PlGF binds to only VEGFR1. The shorter 

PlGF1 does not bind to NRP1 or to the matrix (M), but we assume that PlGF1, like VEGF121, does bind to 

VEGFR1 and NRP1 simultaneously. VEGF121 does not bind to the matrix, and its ability to bind NRP1 [72] 

alone is neglected, as it has previously been shown to have very little effect on VEGFR signaling in vivo 

[57]. For both PlGF and VEGF, the longer isoforms (VEGF165, VEGF189, and PlGF2) bind to the matrix, 

PlGF2 more strongly than VEGF165 [66]. These longer isoforms also bind NRP1, but not NRP1-VEGFR1 

complexes (though this remains unproven for PlGF2). Reflecting our previous in vitro computational 

model, we account for binding of matrix-bound ligands to VEGFR2 (previously demonstrated [18, 19]) and 

VEGFR1 (assumed to occur). We assume that endothelial basement membrane-bound growth factor within 

25nm of the cell surface is accessible to cell surface receptors, based on the length of the extracellular 

domain of the related RTKs ErbB2 and ErbB3 (11.3-16.4nm) [73-75], and assuming some flexibility in cell 

position and shape. We calculated the resulting fraction of EBM accessible to cell surface receptors (S7 

Table), and scaled the corresponding reaction on-rates (Table 6-2, see Supplemental Equations). 

Similarly, we allow matrix-immobilized VEGF165, VEGF189, or PlGF2 to bind to sR1, creating matrix-

ligand-sR1 (M-L-sR1) complexes, which cannot bind cell surface receptors, and are therefore effectively 

sequestered. As VEGFR1 can bind to NRP1 without ligand, and the NRP1- and heparin-binding domains 

of VEGFR1 overlap, we also examine the impact of allowing matrix-bound sR1 to bind VEGF121 and 

PlGF1 in the interstitial space, allowing these non-matrix-binding ligands to be sequestered. In all cases, in 

the absence of evidence to the contrary, we assume that matrix-immobilization does not affect the affinity 

of any interactions. 

The binding and unbinding rates for VEGF and PlGF to VEGFR1, VEGFR2, and sR1 are kept the 

same as in previous models [45, 57], as summarized in Tables 6-1, 6-2, & 6-3 (new parameters in bold). 

Though we have not previously included PlGF in a compartment model, PlGF binding to VEGFR1 has 

been modeled in vitro [45], and the parameter values are matched to this study. The affinity of PlGF2 for 

NRP1 is based on experimental measurements of PlGF2 binding to the NRP1 extracellular domain [65]. 

Slightly different affinities are used for VEGF binding to matrix sites and to NRP1 than in previous 
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compartment models, in order to use measurements from a single source for both VEGF165 and VEGF189 

(NRP1-binding) [64], or for VEGF and PlGF (matrix-binding) [66]. Since VEGF189 is known to bind the 

ECM more strongly than VEGF165, but an affinity is not available, we assume 10x stronger binding, similar 

to the difference in VEGF165 and VEGF189 affinity for NRP1 [64]. As in previous models [57], lacking a 

measured affinity for sR1 binding to matrix, we assume a value similar to that for VEGF, as both 

interactions occur via heparin-binding domains.  

Receptor Trafficking and VEGFR2 Phosphorylation.  We added receptor trafficking and VEGFR2 

phosphorylation to the model, in order to track site-specific phosphorylation of VEGFR2 explicitly, rather 

than simply receptor occupancy. This is more accurate, as in vitro VEGFR2 phosphorylation decreases 

faster than can be accounted for by ligand depletion or receptor degradation [20]. We implemented these 

reactions as previously described in an in vitro model [20] for VEGFR2, accounting for ligand-induced 

changes in internalization, recycling, and degradation, as well as preferential recycling of VEGFR2 

complexes containing NRP1 via a Rab11-dependent pathway. The trafficking rate constants are given in 

Table 6-S8. Though VEGFR1 trafficking is known to be distinct from that of VEGFR2 [76, 77], we lack 

sufficient data to build or validate a model of VEGFR1 trafficking. As such, a structure for VEGFR1 

trafficking was incorporated for future use, but results are presented only for cell surface VEGFR1.  

Site-specific phosphorylation of VEGFR2 on three tyrosine sites is included: Y951, Y1175, and Y1214. 

We approximate phosphorylation and dephosphorylation as first order processes, and assume that these 

processes occurred independently on each tyrosine. The phosphorylation rate is assumed to be zero for 

unoccupied VEGFR2, and fast (1 s
-1

) for ligated VEGFR2. The dephosphorylation rates do not depend 

directly on the VEGF isoform, but vary by tyrosine site and subcellular location (Table 6-S9), as 

previously fit and validated [20] using experimental observations of increased pY1214 following 

stimulation with immobilized VEGF compared to free VEGF in solution [18], and enabling site-specific 

phosphorylation patterns to depend on the mixture of matrix- binding and non-matrix-binding isoforms 

available to VEGFR2. Given limited data available for phosphorylation of Y951 upon which to fit the 

model, this analysis focuses on VEGFR2 activation on Y1175 and Y1214. 

Transport. Inter-compartmental transport parameters are taken from a previous model [57] (see Table 6-

S10). Vascular permeability was estimated based on the Stokes-Einstein radii for each protein. Here, we 
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assume the same permeability for PlGF as VEGF, as they have similar molecular weights and are 

structurally related. Lymphatic drainage transports proteins from tissue compartments to the blood in a 

tissue-mass-dependent and a protein-size-independent fashion. We use the estimated lymphatic flow rates 

for a supine, awake 70 kg human [57]. 

Protein Expression Levels. We assume the same densities of interstitial matrix sites available to bind 

VEGF, PlGF, and sR1 in the ECM and basement membranes as used in previous models [57] (see S11 

Table). Briefly, ECM binding-site density is based on measured FGF binding sites [78, 79], while basement 

membrane binding site densities are estimated based on Engelbreth-Holm-Swarm sarcomas in diabetic 

mice [80]. Endothelial cell surface VEGFR1, VEGFR2, and NRP1 target levels were chosen to match 

median experimental (FACS) measurements in human umbilical vein endothelial cells [63, 67], which 

represented our best information to date on receptor levels in humans; these values are summarized in 

Table 6-4. Total receptor levels are not directly controlled, but remain within a reasonable range. The 

VEGF and PlGF secretion rates by myocytes and endothelial secretion of sR1 into the interstitial space 

were adjusted to match experimentally measured plasma protein levels (Table 6-4). Plasma levels are used 

as targets because no interstitial measurements of sR1 or PlGF levels are available, and plasma VEGF 

levels are better characterized than tissue interstitial levels. Target levels of plasma VEGF and sR1 are 

unchanged from previous models [57], and a plasma PlGF target concentration of 10pM was selected. The 

secretion of different VEGF isoforms and PlGF isoforms are maintained at fixed ratios, based on 

experimental measurements in mice (VEGF) and humans (PlGF) [68, 69]. Production rates for VEGFR1, 

VEGFR2, and NRP1 were adjusted independently in the calf muscle and the main body mass to meet target 

values in each tissue while also meeting plasma ligand targets. As VEGF, PlGF, and sR1 secretion are fit 

only to plasma measurements, we assume the same secretion rates per cell in both tissue compartments.  .  
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6.3 Results 

 
6.3.1 Ligand secretion and receptor production rates for baseline typical healthy human 

 

The ligand secretion and receptor production rates necessary to hit baseline (healthy) targets had to 

be fit simultaneously, due to the highly non-linear nature of the system. At our baseline steady-state, the 

VEGF production rate is 0.2830 molecules/myonuclear domain/s, the PlGF production rate is 0.0146 

molecules/myonuclear domain/s, and the sR1 production rate is 0.0893 molecules/EC/s (see Table 6-4). 

The VEGF and sR1 production rates here are higher than previous estimates. This is unsurprising, given the 

changes in receptor levels, trafficking, and growth factor isoforms. Surprisingly, the PlGF production rate 

is lower than that for VEGF, despite a higher target plasma level (see Flux Analysis section for the 

mechanism by which this occurs). 

To illustrate the nonlinearity of our model, we perturbed each ligand secretion and receptor 

production rate slightly (2%), and examined changes in plasma ligand and tissue receptor levels. As shown 

in Fig 6-2A, plasma VEGF and tissue VEGFR2 are highly sensitive to changes in either VEGF secretion or 

VEGFR2 production in the main body mass, with changes of 11-25% per percent change in input. As 

VEGF levels increase, more VEGFR2 becomes occupied, internalized, and degraded, reducing VEGFR2 

levels and decreasing VEGF consumption (Fig 6-2B and Fig 6-S1). Similarly, as VEGFR2 production 

increases, more VEGF is bound to VEGFR2, internalized, and degraded, reducing VEGF levels and thus 

increasing EC surface VEGFR2. This super-sensitivity was not present in previous models, where surface 

VEGFR2 levels were fixed (see Fig 6-S1). This new, emergent result suggests that, lacking upregulation of 

VEGFR2 in response to VEGF, VEGFR2 levels would be highly sensitive to even small fluctuations in 

local VEGF concentration (Fig 6-2), highlighting the importance of dynamic adjustments to ligand and 

receptor expression in vivo. In the calf muscle, perturbing VEGFR2 production has a large impact on EC 

surface VEGFR2, but little effect on plasma VEGF, due to the smaller size of the compartment. Changes in 

receptor production in one tissue compartment have little effect on receptor levels in the other tissue 

compartment.  
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Figure 6-2: Nonlinearity of ligand & sR1 secretion and EC receptor production rates in the model. 

(A) One at a time, each baseline ligand secretion or receptor production rate (inputs- listed across the top), 

was increased by 2%, then decreased by 2%. For each perturbation, the change in plasma ligand and EC 

surface receptor levels (outputs- listed on the left) in in both the main body mass (“Body”) and calf muscle 

(“Calf”) were obtained. The average change in output from baseline levels was calculated, and divided by 

the change in input (+/-2%) to give the relative change in output per % change in input. (B) Schematic of 

positive feedback in VEGF gene and protein levels in the model. An increase in VEGF expression 

increases local VEGF protein, increasing VEGF binding to VEGFR2, and subsequent internalization and 

degradation. This decreases total VEGFR2 protein levels, leading to reduced VEGF-VEGFR2 complex 

formation, which reduces net endothelial consumption of VEGF protein. To accommodate, in the model, 

VEGFR2 expression was increased until target baseline levels were achieved for all ligands and receptors. 

A similar positive feedback loop exists for changes in VEGFR2 expression.
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In this model, we assume the same rates for ligand production in both the healthy calf muscle and 

the main body mass. As such, perturbing the VEGF secretion rate (in both compartments) alters the 

receptor levels in both tissues (Fig 6-2). Due to differences in the geometric parameterizations of the calf 

and other tissues (Table 6-S7), using the same ligand secretion rates results in different interstitial VEGF, 

sR1, and PlGF levels (Fig 6-3D). We focus primarily on quantities measured in the “Main Body Mass” 

compartment, which, due to its larger size, represents the primary determinant of plasma VEGF, sR1, and 

PlGF levels.  

 

6.3.2 Pharmacokinetics: Where are VEGF, PlGF, and sR1 in the body? 

 

After establishing the secretion and production rates required to achieve basal targets, we next 

examined the steady-state distribution of VEGF, PlGF, and sR1. 

Plasma: differential isoform representation compared to relative expression levels. In the plasma, free 

VEGF protein is predicted to be 84% VEGF165, 7% VEGF121, and 9% VEGF189; thus VEGF189 (the 

strongest ECM-binding isoform) is underrepresented compared to the production fractions of 77%, 8%, and 

15%, respectively (Fig 3A and 3E). Conversely, the ECM-binding PlGF2 isoform is overrepresented in 

plasma (98% of free plasma PlGF), compared to its production (85% of PlGF production), reflecting its 

overrepresentation in the tissue extracellular space (see Fig 3). In agreement with previous models, 77% of 

plasma VEGF and 39% of PlGF are bound to sR1. A total of 10% of plasma sR1 is bound to ligand, with 

44% of this bound to VEGF and 56% bound to PlGF, suggesting that PlGF interacts with sR1 to a 

comparable extent as VEGF. 
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Figure 6-3: Pharmacokinetics of VEGF, PlGF, and sR1 at steady-state. (A) Predicted free and sR1-

bound ligands, and free and ligand-bound sR1 in plasma. (B) Predicted VEGF, PlGF, and sR1 distribution 

in healthy tissue in “Main Body Mass” compartment, shown in pM of tissue. (C) Extracellular (not bound 

to or inside ECs) VEGF, PlGF, and sR1 in “Main Body Mass” compartment, in pM of tissue. (D) Steady-

state net flow profiles for VEGF, PlGF, sR1, and sR1-ligand complexes between the calf muscle, blood, 

and main body mass. All VEGF isoforms are aggregated, as are both PlGF isoforms. Green arrows 

represent production, red arrows EC consumption, black arrows bi-directional vascular permeability, gray 

arrows lymphatic drainage, and pink arrows with red outlines direct clearance from blood. The white 

arrows show the net association or dissociation of VEGF-sR1 and PlGF-sR1 complexes in each 

compartment. Displayed concentrations are free ligand, sR1, or complex in interstitial fluid or plasma. The 

numbers under each compartment are the respective compartment volumes. Flows are given in pmoles/day. 

(E) Comparison of VEGF and PlGF isoform distribution with relative isoform production rates 

demonstrates locations and complexes where each isoform is under- or over-represented relative to the 

fraction of total VEGF or PlGF production. (F) Matrix site occupancy in the EBM, ECM, and PBM. 
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Tissue (Main Body Mass): ECM-binding drives distinct VEGF & PlGF isoform distribution. The 

model predicts that the total and relative levels of matrix-bound and free growth factor are dictated by ECM 

binding properties (Fig 6-3C). While the model predicts that the majority of VEGF121, VEGF165, and 

PlGF1 are bound to endothelial cells (96%, 62%, and 58%, respectively- see Fig 6-3B) in the main body 

mass, large portions of the heparin-binding isoforms, VEGF165, VEGF189, and PlGF2, are bound to the 

ECM and basement membranes (36%, 74%, and 99.6% of total in tissue, respectively), alone or in complex 

with sR1 (Fig 6-3B). Most of the immobilized growth factor is in the ECM and parenchymal BM (Fig 6-

3C), inaccessible to EC receptors, but available for proteolytic release. Total extracellular (non-EC-bound) 

VEGF is 48% VEGF165, only 2% VEGF121, and 50% VEGF189, while extracellular PlGF is 99.97% 

PlGF2 (Fig 6-3E). As these percentages suggest, most extracellular heparin-binding growth factor is matrix 

bound (alone or in complex with sR1): 96% of VEGF165, 99.6% of VEGF189, and 99.7% of PlGF2. 

However, 93% of VEGF121 and 80% of PlGF1 are also sequestered (via immobilized sR1) in our 

simulations. The total amount of sequestered VEGF121 and PlGF1 is small (Fig 6-3C), but still significant 

compared to the corresponding free growth factor concentrations in solution. Indeed, only 7.8% of tissue 

PlGF1 and <1% of every other isoform is predicted to be “free” in solution. This is consistent with previous 

results [57] in suggesting that, unlike cell culture experiments, ligand-receptor binding is limited by ligand 

availability in the body. The model predicts that 90% of sR1 in tissue is matrix-bound (Fig 6-3B), while 

only 0.45% is free (bound to neither matrix nor ligand), and 0.32% bound to ligand alone, implicating the 

ECM in regulation of sR1 distribution as well.  

While a large fraction of growth factor is immobilized, predicted matrix site occupancy is low 

(2.4%- see Fig 6-3F). This is higher than in previous models, as a result of the inclusion of PlGF and 

immobilized complexes containing both growth factor and sR1. In the endothelial BM, most (93%) 

occupied sites contain PlGF; 16% contain sR1, and 2.3% VEGF. While only 1.1% of occupied EBM sites 

include ligand bound to cell surface receptors, the large number of binding sites in the endothelial BM 

makes even this small fraction physiologically relevant (see Fig 6-4).  

Flux analysis: differential transport of VEGF & PlGF. By calculating the net transport, consumption, 

and clearance of each protein or complex (Fig 6-3D), we can examine the contributions of each dynamic 

process to the steady-state distribution. At steady-state, the model predicts a concentration of 11pM VEGF 
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in the available interstitial fluid of the main body mass, similar to previous models. The levels in the calf 

muscle are higher (20pM), due to a higher myocyte volume fraction and resulting higher production per 

unit tissue volume. While other quantities also varied between the two compartments, all trends and net 

flux directions were the same. In agreement with previous model predictions, free sR1 levels are higher in 

plasma than in tissue, while PlGF levels, like VEGF levels, are higher in tissue. These concentration 

differences lead to predicted transendothelial intravasation (net transfer from tissue to blood) of VEGF and 

PlGF, while free sR1 is predicted to extravasate (net transfer from blood to tissue). The fraction of sR1 

bound to ligand is similar in plasma and tissue interstitial fluid (42% in the main body mass, 51% in calf 

muscle), with substantial contributions by both VEGF and PlGF. The large majority of VEGF and sR1 

produced are consumed locally by endothelial cells (99% of VEGF and 98% of sR1 in the “Main Body 

Mass”), accounting for the high sensitivity of interstitial VEGF to VEGFR2 production (see Fig 6-2). 

Conversely, the model predicts that only 25% of PlGF is consumed by ECs, due to much lower total 

binding to EC receptors than VEGF. This accounts for the low PlGF production rate required to match 

target plasma levels, and suggests that PlGF may be primarily cleared via transendothelial transport and 

lymphatic drainage into plasma, followed by clearance from the blood, or by cell types not included in this 

model (e.g. monocytes & macrophages).  

 

6.3.3 Pharmacodynamics: What controls VEGFR1 and VEGFR2 activation? 

 

Having examined the distribution of VEGF, PlGF, and sR1, we next zoomed in to examine the 

effect of these proteins and their distributions on the binding and activation of endothelial VEGFR1 and 

VEGFR2 within healthy tissue. 

Growth factors levels are limiting for in vivo EC receptor activation. At steady state, cell surface 

ligation of VEGFR2 is predicted to be close to an order of magnitude higher than cell surface ligation of 

VEGFR1 (Fig 6-4D), due in part to higher levels of EC surface VEGFR2 (5800 VEGFR2/cell vs. 1800 

VEGFR1/cell). As a result, the majority of EC consumption of VEGF occurs via VEGFR2, explaining why 

VEGF levels are more sensitive to changes in production of VEGFR2 than VEGFR1 (Fig 6-2). Overall, the 

model predicts low cell surface receptor occupancies of 3.4% for VEGFR1 and 8.7% for VEGFR2 (4.5% 

VEGFR1 and 14% VEGFR2 in calf muscle), and somewhat higher but still low total (surface + endosomal) 
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VEGFR2 occupancy (20%), suggesting that ligands do not compete for receptor binding (Fig 6-4C). This 

prediction is conservative; model VEGF levels are in fact higher than estimates of free interstitial VEGF 

via microdialysis, and plasma target levels for VEGF and PlGF assume that no sR1-bound ligand was 

detected. While sR1 is known to interfere with VEGF ELISA measurements, likely at least a portion of this 

bound VEGF is in fact detected, thus placing our calibrated model at the top of the possible VEGF range. 
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Figure 6-4: Pharmacodynamics of ligand binding to VEGFR1 and VEGFR2. (A) Total soluble growth 

factor (in available interstitial fluid) and immobilized growth factor (in innermost 25nm of EBM) 

accessible to ECs. Growth factor bound to EC receptors is not included in this plot. (B) Break-down of EC 

surface-bound ligand, by isoform. Note the difference in quantities of total ligated VEGFR2, VEGFR1, and 

NRP1 (panel C). (C) Occupancy of VEGFR2, VEGFR1, and NRP1 on ECs, broken down by ligand and 

NRP1-binding. VEGFR2 occupancy is shown on the cell surface, in early signaling endosomes (Rab4/5), 

and in recycling endosomes (Rab11), while VEGFR1 and NRP1 are shown only on the cell surface. 

Quantities are given in pM of total tissue in the “Main Body Mass” compartment. (D) VEGFR2, VEGFR1, 

and NRP1 ligation on ECs, excluding receptor not bound to ligand. Complexes not listed in the legend are 

present at levels too low to be seen in the figure. (E) Break-down of percentage of EC surface VEGFR1 

and VEGFR2 ligation comprised by each isoform, compared to the relative production of each isoform. 

Production fractions are calculated separately for VEGF and PlGF, while for receptor binding the combined 

distribution is shown. 



 222 

 

Figure 6-4 
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NRP1- & ECM-binding drive VEGF & PlGF isoform binding to VEGFR1 and VEGFR2. The 

majority of non-ligand-bound VEGFR1 is predicted to be in complex with NRP1 (99.1%). NRP1 remains 

mostly free (95.3%) (Fig 6-4C), with some binding to sR1 and PlGF2 to form non-signaling complexes 

(Fig 6-4D). The isoform-specific NRP1 binding properties of VEGF and PlGF make NRP1 a strong 

regulator of ligand-binding to VEGFR1 and VEGFR2. The model predicts that VEGF165 and VEGF189, 

which bind to VEGFR2 and NRP1 simultaneously, bind almost exclusively to VEGFR2 (Fig 6-4D). 

Conversely, VEGF121, which binds to NRP1-VEGFR1 complexes, comprise 70% of ligand bound to 

VEGFR1 (Fig 6-4D), while PlGF makes up only 29% of the ligand bound to VEGFR1 at steady-state (Fig 

6-4E). This result explains the lower predicted occupancy of VEGFR1 than VEGFR2; VEGF121 and 

PlGF1, the only ligands to bind VEGFR1 and NRP1 simultaneously, represent a small fraction of total 

ligand (Fig 6-4A). The dominance of VEGF121 binding to endothelial VEGFR1 is in contrast to the 

relatively even binding of VEGF and PlGF to sR1 (Fig 6-2), and occurs because most tissue PlGF is 

PlGF2, which cannot bind to NRP1-VEGFR1 complexes on endothelial cells.  

While all soluble growth factors are accessible to EC receptors in this model (assuming a well 

mixed compartment, i.e. nonlimiting fast diffusion), cell surface receptors are only allowed to bind to 

immobilized ligands in the innermost 25nm of endothelial BM. A substantial fraction of both soluble and 

endothelial BM-bound growth factor is bound to sR1, and thus inaccessible to EC receptors (Fig 6-4A). Of 

the remaining growth factor, the model predicts that the amount of available free growth factor exceeds the 

amount of available immobilized growth factor for all VEGF isoforms, but not for PlGF2 (Fig 6-4A) 

However, within the 25nm space adjacent to endothelial cells, the concentration of available immobilized 

growth factor far exceeds the predicted concentration of free growth factor for all matrix-binding isoforms 

(Fig 6-S2A).  

Of the 0.03% of basement membrane sites bound to ligand-cell surface receptor complexes, 23% 

are immobilized PlGF2 bound to VEGFR1, 20% are VEGF165-R2 complexes, and 56% are VEGF189-R2 

complexes. While more of these complexes are bound to VEGFR2, VEGFR1 has a higher fraction of 

ligand-receptor complexes bound to immobilized ligands (18% versus 6.9%- see Fig 6-4D). This is due the 

lower total number of ligand-VEGFR1 complexes, combined with higher tissue levels and stronger matrix 

binding by PlGF2 compared to VEGF. If we assumed all endothelial BM-bound growth factors were 
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accessible to receptors (as opposed to the closest 25nm), 50% of ligated VEGFR1 would be bound to 

immobilized PlGF, and 17% of ligated VEGFR2 would be bound to immobilized VEGF165 or VEGF189.  

NRP1 regulates isoform-specific trafficking and phosphorylation of VEGFR2. In addition to guiding 

receptor ligation, NRP1 also regulates VEGFR2 trafficking [11], speeding up recycling of ligated 

VEGFR2. This leads to predicted accumulation of VEGF121-VEGFR2 complexes in early signaling 

(Rab4/5) endosomes, while VEGF165-VEGFR2 and VEGF189-VEGFR2 are recycled back to the cell 

surface, leading to a more even distribution between the cell surface and early endosomes (Fig 6-4D). As 

such, changes in relative levels of VEGF isoforms are predicted to alter not only the tissue distribution of 

ligand and the balance of VEGFR1 and VEGFR2 activation, but also the subcellular localization of 

VEGFR2.  

We previously showed that changes in site-specific phosphorylation of VEGFR2 as a function of 

VEGF165 immobilization to a surface or in a gel could be explained by prolonged retention of immobilized 

VEGF-VEGFR2 complexes at the cell surface [20], increasing net phosphorylation on Y1214 and 

promoting pro-migratory signaling. Here, we examined whether this translated to VEGF isoform-specific 

trends in site-specific phosphorylation of VEGFR2 in a physiological context. Indeed, we see that the faster 

dephosphorylation of tyrosine Y1175 than Y1214 on the cell surface, and vice versa in early (Rab4/5) 

signaling endosomes (Fig 6-5B), leads to different relative levels of VEGFR2 activation on Y1175 and 

Y1214 as a function of the bound ligand; the heparin-binding VEGF isoforms (VEGF165 and VEGF189) lead 

to higher net activation on Y1214, while VEGF121 shifts relative activation towards Y1175 (Fig 6-5C).  
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Figure 6-5: VEGF isoform-specific trafficking and site-specific phosphorylation of VEGFR2 in vivo. 

(A) VEGF isoform-specific NRP1-binding properties result in isoform-specific trafficking of VEGFR2. (B) 

Subcellular location-specific dephosphorylation rates for Y1175 and Y1214 (Table 6-S9) lead to 

preferential activation of tyrosine 1214 on the EC surface, compared to signaling in endosomes. (C) 

Isoform-specific trafficking and location-specific dephosphorylation combine to result in isoform-specific 

trends in relative activation of VEGFR2 on tyrosine 1175 and tyrosine 1214. (D) Total VEGFR2 

phosphorylation, on at least one tyrosine (pR2) and specifically on Y1175 or Y1214, across all subcellular 

locations. (E-F) Distribution of pY1175 (E) and pY1214 (F), by VEGF isoform and location. 

  

 

  



 226 

6.3.4 Complex, coordinated regulation of VEGFR1 and VEGFR2 signaling. 

 

It is clear that the different proteins – ligands, soluble receptors, and co-receptors – regulating 

VEGFR1 and VEGFR2 activation do not act in isolation. Changes to any single feature affect the total 

multi-factor system in a way that is difficult to predict without the use of a computational model. Here, we 

perturb several interactions that are of interest therapeutically, and/or are included in this model for the first 

time. 

PlGF does not displace VEGF from VEGFR1 to increase VEGFR2 signaling in vivo. To test the 

‘ligand-shifting hypothesis,’ i.e. that PlGF induces pro-angiogenic effects in vivo by shifting VEGF binding 

from VEGFR1 to VEGFR2, we altered the amount of PlGF production in tissue, and quantified the 

resulting changes in cell surface VEGFR1 ligation and total VEGFR2 phosphorylation. To control for 

changes in cell surface VEGFR1 and total VEGFR2, we normalized these quantities by the relevant 

receptor population. We found, across a wide range of PlGF production (from zero to 10x baseline levels), 

that despite large changes in free PlGF levels in tissue (Fig 6-6A), only modest changes in VEGFR2 

ligation and phosphorylation (pR2/R2) were observed (Fig 6-6B). Conversely, VEGFR1 ligation changes 

much more (varying from 69% to 389% of baseline VEGFR1 ligation) with PlGF levels. The shift in 

VEGFR1 ligation is almost entirely due to PlGF; VEGFR1 ligation by VEGF remains approximately 

constant (Fig 6C). These results suggest that, while at supraphysiologic concentrations (>10x baseline), 

PlGF may increase VEGFR2 phosphorylation, PlGF and VEGF do not compete for VEGFR1 binding in 

physiological conditions. This is consistent with the low predicted receptor occupancies, and our previous 

in vitro simulations [45, 46], but is demonstrated here for the first time for in vivo scenarios. 
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Figure 6-6: Complex regulation of VEGF family signaling by PlGF, EBM binding sites, and sR1. (A-

C) Changes in free ligand levels in tissue interstitial fluid (A), EC surface VEGFR1 ligation and VEGFR2 

phosphorylation (B), and the breakdown of VEGF and PlGF bound to EC surface VEGFR1 (C), in 

response to varying PlGF production. Quantities shown are normalized to baseline cases. (D-F) Effect of 

endothelial basement membrane (EBM) binding site density on EBM site occupancy (D), fraction of 

occupied EBM sites bound to different ligands and receptors (E), and VEGFR1 and VEGFR2 ligation by 

immobilized VEGF or PlGF (F). (G-I) Total activation of VEGFR1 and VEGFR2 (F), and break-down of 

relative ligation by each VEGF and PlGF isoform (G-H) with varying sR1 production.  
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VEGFR1 ligation is more sensitive than VEGFR2 ligation to matrix site density. While the model 

predicts that less than 20% of ligated endothelial cell surface receptors are bound to immobilized ligand, 

the total number of accessible binding site in the endothelial BM is not well-characterized, nor is the 

fraction of the basement membrane accessible to EC surface receptors. Thus, we examined whether, if 

growth factor binding sites in the endothelial BM are present at higher or lower density than estimated, a 

difference in cell surface receptor ligation would be predicted. As we increased the density of accessible 

sites from baseline levels by factors of 10 and 100, the fraction of cell surface ligated VEGFR2 bound to 

immobilized VEGF increased, reaching 48% (compared to 6.9% at baseline) with a 100-fold increase in 

binding site density (Fig 6-6F). Interestingly, the fraction of ligated cell surface VEGFR1 bound to 

immobilized ligand (largely PlGF2) increases more quickly with endothelial BM site density, reaching 76% 

with 10x, and 97% with 100x, compared to 17% at baseline. These results suggest that immobilized ligand-

receptor complexes may be important in vivo (Fig 6-6F). 

sR1 alters the magnitude of receptor activation more than the profile of receptor-bound ligands. 

Since plasma sR1 levels are known to change in disease, we examined the extent to which sR1 can act in an 

anti-angiogenic manner to modulate endothelial VEGFR1 and VEGFR2 activation. To do this, we 

simulated knockdown or overexpression of sR1. As expected, free tissue VEGF and PlGF and ligation of 

both VEGFR1 and VEGFR2 increases (1.9- and 1.5-fold increases in ligation, respectively) with complete 

sR1 knockout (Fig 6-6G). Similarly, overexpression of sR1 reduces EC receptor ligation substantially, but 

does not completely block binding. Interestingly, the effect is more pronounced on VEGFR1 than 

VEGFR2, shifting the overall balance of signaling by VEGFR1 vs. VEGFR2 (Fig 6-6G). We examined 

whether sR1 perturbation would affect the profiles of ligands bound to VEGFR1 and VEGFR2 (Fig 6-6H-

I). We observed little change in the ligand bound to VEGFR2. Changes to VEGFR1 ligation are larger, 

with relative PlGF binding increasing and relative VEGF121 binding decreasing with increasing sR1 

production.  

Immobilized ligand binding to sR1 regulates ligand distribution, binding to EC receptors regulates 

EC signaling.  Next, we examined the relative contribution of immobilized complexes containing sR1 

versus EC receptors to our observed results. We compared four cases: (1) the baseline case where 3-

element complexes of matrix, VEGF or PlGF, and either sR1 or EC VEGFR1 and VEGFR2 were allowed 
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to form, (2) a case excluding all such reactions (No MLR), (3) a case allowing these reactions on sR1 but 

not EC receptors (sR1 Only), and (4) a case allowing these reactions on EC receptors but not sR1 (Cell 

Only). For each case, we re-fit the secretion and production rates to hit our plasma and cell surface receptor 

targets (Table 6-S12). We found that sR1 binding to immobilized ligands has a large impact on the 

amounts of free and total growth factor in tissue (Fig 6-7). Conversely, EC receptor binding to immobilized 

ligand increases receptor ligation and phosphorylation. Combined, these effects produce the observed 

differences between the baseline and No MLR cases. 
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Figure 6-7: Immobilized ligand binding to sR1 alters tissue distribution, while immobilized ligand 

binding to EC receptors alters activation state. Panels show percent change from baseline. Thus, the 

smallest bars indicate little impact of the removed reactions on a given output, while large bars indicate 

large change when the reactions are removed. Cell Only: Immobilized ligand allowed to bind to EC 

receptors, but not sR1. Binding of ligand to immobilized sR1 is also not allowed. sR1 Only: Immobilized 

ligand allowed to bind to sR1, and ligand to immobilized sR1, but binding of immobilized ligand to EC 

receptors is not included. No MLR: No matrix-ligand-receptor or matrix-ligand-sR1 complexes are 

allowed to form. Top: Changes in fit ligand secretion and receptor production rates to match plasma ligand 

and sR1 targets and tissue EC surface receptor targets. Middle: Distribution of free, total, and matrix-

bound VEGF and PlGF. Bottom: EC receptor activation.
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6.3.5 Model predictions of signaling in human body with expression of only single VEGF isoforms are 

consistent with observed murine vascular phenotypes  

The most convincing evidence to date of differential signaling by VEGF isoforms is the distinct 

vascular phenotypes of mice or human tumors (implanted in mice) expressing only single isoforms of 

VEGF, with VEGF121-only tissues producing high diameter, sparsely branched networks, VEGF165-only 

tissue a relatively normal phenotype, and VEGF189-only tissues networks of thin, highly branched vessels. 

Endothelial cells isolated from these single isoform-expressing mice also display distinct signaling and 

behavior in cell culture [81]. It is assumed that similar regulation occurs in humans. To better understand 

VEGF isoform-specific signaling in the context of the human, as well as to qualitatively validate our 

model, we simulated expression of a single VEGF isoform in the human body. While no significant 

changes in VEGFR1 or VEGFR2 mRNA were observed in the muscle of mice expressing only VEGF120 

[82] (equivalent to human VEGF121), we re-fit our model for each case, in order to maintain target ligand 

and receptor levels (Table 6-S13). The need for these changes in receptor production and ligand secretion 

rates may be a result of differences between humans and mice, or underlying compensation mechanisms 

and physiological changes in the engineered mice [82] not included in this model. Consistent with 

observations in mice, ligand distribution and VEGFR2 activation are more similar to wild type (baseline) in 

the VEGF165-only than the VEGF121-only or VEGF189-only cases (Fig 6-8A-B). Similar to the baseline case 

(Fig 6-5), where all three isoforms are expressed, with single VEGF isoform expression the ratio of 

migratory to proliferative signaling downstream of VEGFR2 (pY1214/pY1175) is predicted to increase 

with isoform length, paralleling the observed phenotypes (Fig 6-8C). The model’s ability to capture this 

trend provides qualitative validation of our isoform-specific signaling predictions in vivo. Interestingly, the 

model also predicts other changes, in free VEGF levels in tissue interstitium (Fig 6-8A) and in relative 

activation of VEGFR1 and VEGFR2 (Fig 6-8B,D, Supplemental Results).  
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Figure 6-8: Predicted signaling changes in the human body with expression of single VEGF isoforms 

mirror experimentally observed murine phenotypes. (A) Levels of free VEGF, PlGF, and sR1 in tissue 

interstitial fluid, normalized to baseline, when all VEGF production is VEGF121, VEGF165, or VEGF189. (B) 

Endothelial cell surface ligation of VEGFR1 and phosphorylation of VEGFR2. Changes in pR2 and ligated 

VEGFR2 were very similar. (C) Ratio of total VEGFR2 phosphorylation on tyrosine Y1214 to 

phosphorylation of tyrosine Y1175. (D) Percent of ligated EC surface VEGFR1 and VEGFR2 bound to 

EBM-immobilized ligand.  
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6.4 Discussion 

 
We constructed this computational systems pharmacology model to probe the complexity of 

VEGF family distribution and signaling in the body, for the first time accounting for the impact of PlGF 

and of receptor binding by basement membrane-immobilized ligands. In demonstrating the contribution of 

multiple specific mechanisms to regulation of VEGF family signaling, this model explores the sometimes 

non-intuitive effects these complex interactions have on VEGFR1 and VEGFR2 activation. This model is 

based on previously-developed compartment models, leveraging the same structure and geometric 

parameterization. Despite this commonality, adding to and improving the molecular-level detail resulted in 

changes to some model predictions, as well as the ability to predict VEGFR2 signaling in more detail than 

was previously possible (see Fig 6-9A). 
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Figure 6-9: Summary of key model predictions. (A) Overview of key predictions. (B) Due to differences 

in NRP1- and ECM-binding, VEGF isoform-VEGFR2 complexes are trafficked differently, leading to 

distinct downstream signaling, cellular behavior, and vascular network architecture. (C) Summary of 

predicted ligand binding to VEGFR1 and VEGFR2. All ligands in the respective boxes can bind to 

VEGFR1 or VEGFR2. The size of the ligands represents the predicted contribution to receptor binding in 

vivo. The model suggests that, for each receptor, a subset of the ligands dominate. 
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6.4.1 Model provides novel insight into PlGF transport and potential for VEGFR1-dependent PlGF 

signaling 

Our model predicts that, based on their binding properties and in vivo concentrations, PlGF and 

VEGF have distinct distributions within the body. PlGF2, binding to the ECM more strongly than VEGF, is 

bound to interstitial matrix sites at very high levels (~1 nM in tissue: soluble + ECM-bound + EC-bound 

predicted, Fig 6-3C), forming a large reservoir available for proteolytic release. Despite high tissue PlGF 

levels, our simulations predict that only about 30% of ligated EC surface VEGFR1 is bound to PlGF. As a 

result, while most VEGF removal from tissue is predicted to occur via binding to endothelial receptors, 

only 25% of PlGF was predicted to bind to and be subsequently degraded by endothelial cells. PlGF also 

binds VEGFR1 on other cells, e.g. monocytes and macrophages, that are implicated in arteriogenesis [26, 

83]. We found that removing PlGF or increasing PlGF secretion has only a modest effect on predicted 

VEGFR2 phosphorylation, while substantially altering VEGFR1 activation (Fig 6-6A). This result suggests 

that observed physiological PlGF-dependent pro-angiogenic effects are likely mediated directly by 

VEGFR1, either on ECs or other cells, and not via changes in VEGFR2 signaling, contrary to the ‘ligand-

shifting hypothesis’. This result implicates VEGFR1 in the impaired angiogenic responses to ischemia, 

wound healing, and cancer [21] observed in mice lacking PlGF. It also implicates VEGFR1 in diseases 

where PlGF levels are known to change or to be predictive of prognosis, e.g. pre-eclampsia [42] and breast 

cancer [84]. The pro-angiogenic effects of PlGF likely also rely on its ability to up-regulate other growth 

factors, including VEGF, FGF2, and PDGF [85, 86].  

This result is not inconsistent with recent work by the Alitalo group showing that therapeutic over-

expression of VEGFB (which like PlGF binds only VEGFR1) in mice improves metabolic health even 

following endothelial Flt1 gene deletion, and inhibits doxorubicin-induced cardiotoxicity [54, 87]. 

Competition between ligands is concentration-dependent, and in these studies, VEGFB protein levels were 

elevated 20-fold or more in serum, heart, liver, and white adipose tissue. Our model predicts that 

competition is not a driver of PlGF signaling in physiological conditions, but does not preclude the 

existence of competition following supraphysiologic therapy. Indeed, at 10-fold PlGF over-expression, 

outside of the concentration range likely to be observed in untreated healthy or diseased tissue [42], the 

model does begin to predict an effect on VEGFR2 signaling. 
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6.4.2 Growth factor immobilization and binding to soluble VEGFR1 predicted to be important for VEGF 

family signaling in vivo 

 

Both the ECM and sR1 regulate tissue levels of free interstitial VEGF and PlGF, the amount of 

growth factor available to bind ECs, and the steady-state distribution of ligand throughout the body (Fig 6-

3). The model predicts that sR1 modulates the magnitude of EC receptor ligation, potentially also altering 

the balance of signaling via VEGFR1 vs. VEGFR2 (Fig 6-6G). This is of therapeutic interest because ratios 

of VEGF or PlGF to sR1 levels in plasma are increasingly of interest as a biomarker (e.g. in pre-eclampsia) 

[70], and sR1 levels increase in diabetic mice following hindlimb ischemia [88]. Including binding of 

immobilized ligands to sR1, and binding of immobilized sR1 to VEGF121 and PlGF1, increases total 

extracellular VEGF and PlGF stored in tissue (Fig 6-7). While there is not yet evidence to prove the 

existence of such complexes, the heparin- and ligand-binding sites on sR1 are distinct, as are the heparin- 

and receptor-binding domains on VEGF and PlGF, and therefore these complexes are likely.  

Unlike matrix-ligand-sR1 complexes, VEGF immobilized to both surfaces and ECM proteins has 

been shown to bind and activate VEGFR2 in vitro, preferentially increasing VEGFR2 activation of tyrosine 

Y1214, upstream of p38 phosphorylation and migratory cell behavior, demonstrating an important role for 

physical immobilization of VEGF in signal regulation in vitro [18, 19, 89]. However, whether VEGFR2 

ligation by immobilized VEGF would occur to any notable extent in vivo, and what the physiological 

impact on EC receptor signaling would be, have been unknown. Here, we saw that including these 

reactions increased EC receptor ligation and altered VEGFR2 signaling (Fig 6-7). While the number of 

available sites in the EBM is not well-established, our model suggests that these M-L-R complexes may 

make up a small but significant portion of ligated EC receptors (Fig 6-4D). To improve our estimates of the 

extent of EC receptor ligand by EBM-bound growth factor, it is necessary to obtain better estimates of 

heparin-binding sites in basement membranes. Interestingly, the fraction of ligated VEGFR1 bound to 

immobilized ligand was predicted to be higher than that for VEGFR2, owing largely to the strong M-PlGF2 

affinity (Fig 6-6F). To date, the impact of VEGFR1 ligation by immobilized ligand has not been studied. 

However, as these are largely PlGF2-VEGFR1 complexes (Fig 6-6F), EBM binding site density may shift 

relative ligation of VEGFR1 by VEGF versus PlGF, which is known to alter VEGFR1-mediated signaling 

[44]. Spatial patterning of receptor ligation by soluble and immobilized ligand is also likely to be 
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important, but cannot be examined with this model. Additionally, the potential roles for HSPGs and NRP1 

expressed on other cells engaging with VEGFR2 in trans [90, 91] are of interest for future study. 

 

6.4.3 Model predicts VEGF isoform-specific activation of VEGFR1 and VEGFR2 

 

We were interested in differences in signaling between VEGF isoforms upon binding to VEGFR1 

and VEGFR2. Explicitly simulating VEGFR2 trafficking and site-specific phosphorylation, placed in the 

context of physiological geometry and transport processes, allowed us to predict isoform-specific VEGFR2 

signaling in vivo (Fig 6-5). Immobilization in the matrix alters VEGF distribution and the resulting 

signaling, while NRP1 alters VEGF-receptor binding and trafficking. By including these isoform-specific 

properties, the model predicts that VEGF121 induces a shift in VEGFR2 distribution towards early signaling 

endosomes, decreasing the signaling ratio pY1214/pY1175, and shifting the net cellular signaling towards 

proliferation. Conversely, a larger portion of VEGFR2 bound to VEGF189 was localized on the EC surface 

at steady-state, increasing pY1214/pY1175, and shifting the balance towards pro-migratory signaling (Fig 

6-5C). This isoform-specific patterning in VEGFR2 signaling was seen in both the baseline case (Fig 5C), 

with all three VEGF isoforms present, and in cases where only single isoforms of VEGF were expressed 

(Fig 6-8C). This is key validation, as our simulated signaling predictions in humans match the observed 

vascular phenotypes in mice or tumors expressing single VEGF isoforms (Fig 6-9B). Interestingly, in the 

single isoform cases, change in relative activation of VEGFR1 and VEGFR2 were also predicted (Fig 6-

8B), which may contribute to these phenotypes [92, 93].  

This is in line with another interesting model prediction; while all VEGF isoforms can bind to 

both VEGFR1 and VEGFR2, physiologically it appears that VEGF165 and VEGF189 bind almost exclusively 

to VEGFR2, while VEGF121 comprises a large portion of the ligand on VEGFR1, and also binds VEGFR2 

to an extent  (Fig 6-4D). This segregation of ligands suggests that, while ligand levels are limiting for 

receptor binding, VEGFR1 and VEGFR2 don’t directly compete for VEGF in vivo, instead binding to 

largely distinct subsets of ligands dictated primarily by isoform-specific NRP1-binding properties (Fig 6-

9C). The relative levels of VEGF isoforms are not yet extensively-characterized, but they are known to 

vary by tissue and to change in disease [69, 82, 94, 95]. As such, this model can be used to understand 

splicing-induced tissue- and disease-specific changes in VEGF receptor signaling. 
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6.4.4 Considerations for interpretation of model predictions 

 

Our model is built upon experimental data and a validated model of VEGFR2 signaling in vitro, 

and provides new insight into distribution of and signaling by VEGF and PlGF isoforms in vivo. However, 

when interpreting the results, it is important to acknowledge mismatch between model predictions and 

experimental measurements, which may result from limitations of our modeling approach, uncertainly in 

interpretation of experimental measures, and/or missing understanding of underlying biological 

mechanism. Similar to previous models, our predicted interstitial VEGF concentrations when fitting the 

model to measured plasma VEGF levels are higher than those measured in tissues using microdialysis. This 

discrepancy could be due to: difficulty in obtaining accurate measurements for high molecular weight 

proteins using microdialysis; production of VEGF by blood sources (e.g. PBMCs, platelets) or specific 

organs (e.g. highly fenestrated tissue), reducing the requisite VEGF production by skeletal muscle; or 

degradation of VEGF by tissue-resident proteases and/or other cell types expressing VEGF receptors 

(modeled in [96, 97]). Inclusion of proteases in the model would reduce immobilized growth factor stores 

at steady state. Additionally, as in previous models, the predicted fraction of plasma sR1 bound to ligand 

was higher than the experimentally-measured fraction. There are other soluble receptors that may be 

important to consider and are not included here. There may also be limitations with the experimental 

method that make these in vivo measurements inaccurate. To quantify the importance of some difficult-to-

measure parameters, as well as reactions included in this model for the first time (some of which have not 

been explicitly demonstrated experimentally), we analyzed the sensitivity of many new or poorly 

characterized parameters (see Fig 6-S3 and Supplemental Results). 

In order to achieve simulation at the whole body scale, compartment models neglect spatial 

effects, instead predicting only average values for tissue. The interstitial space of the tissue, the cell surface 

of endothelial cells and the cell surface of myocytes are still independent entities in this case and each is 

treated as well-mixed. Detailed study of gradients in interstitial space and along cell surfaces, which are 

difficult to measure in vivo but are likely key to angiogenic signaling, requires development of detailed 2- 

and 3-dimensional models of tissue and experimental set-ups, calibrated to match predicted average 

concentrations from compartment models [98-101] such as the one presented here. Much work remains to 
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fully understand the role of spatial gradients of VEGF distribution and receptor activation in health, 

disease, and response to therapy. 

 

6.4.5 Conclusions 

 

This model integrates detailed regulation of VEGF and PlGF distribution and binding to EC 

VEGFR1 and VEGFR2 by sR1, the ECM, and NRP1 into a multi-scale pharmacokinetic/pharmacodynamic 

(PK/PD) framework. The resulting model predicts that all of these features interact, and contribute to 

regulation of tissue-level VEGF family signaling. While many model predictions are difficult to validate in 

vivo, the mechanisms included were first modeled using detailed in vitro measurements, and validated in 

many cases on the cellular level, before being put in a physiological context using an existing PK/PD 

framework. By progressively adding complexity, we can study the impact of each contribution, and 

compare simulation results to quantities that are measurable and to observable phenotypes, such as the 

vascular morphologies in mice expressing single isoforms of VEGF. By the same turn, this model provides 

a window into details of growth factor distribution and signaling that are essentially impossible to measure 

(especially on the protein level), though in many cases implicated in disease-related impairment in 

angiogenic response, or targeted by potential therapies. The lack of approved pro-angiogenic therapies to 

date makes it clear that a better understanding of the molecular mechanisms driving disease is critical to 

identify more effective drug targets, optimize drug properties (e.g. affinity), and avoid off-target effects 

leading to toxicity and drug failure [55]. This work can be extended to disease applications with changes in 

VEGF splicing, and to compare results in humans versus mice, to aid in translation of therapeutics targeting 

the VEGF system and to further validate the model against data obtained in mice.   
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6.6 Supplemental Results 

 
6.6.1 Pharmacokinetics & Pharmacodynamics 

 

High immobilized growth factor concentrations in endothelial basement membrane. When the 

concentration of endothelial basement membrane immobilized growth factor is calculated using the volume 

of the basement membrane (instead of the total available interstitial space, as the concentration of free 

ligand is calculated), the concentration of BME-bound ligand is higher than the concentration of free ligand 

“seen” by endothelial cells for all growth factors (Figure 6-S2A). While VEGF121 and PlGF1 are only 

bound to the EBM in complex with sR1, the local “available” (non-sR1-bound) VEGF165, VEGF189, and 

PlGF2 concentrations bound to the EBM are in the nanomolar range, far above the picomolar-range 

concentrations of free VEGF and PlGF in interstitial space. While spatial effects are not taken into account 

in this compartment model, this may have important implications for relative receptor ligation by free and 

immobilized growth factor, as well as spatial patterning due to ECM and basement membrane 

heterogeneity in vivo. 

Fractional activation of ligated VEGFR2 is predicted to be VEGF isoform-specific. Our model 

predicts that the dephosphorylation rates are higher on the cell surface than in early endosomes, and very 

high in the NRP1-dependent Rab11 recycling pathway, altering the total amount of phosphorylated 

VEGFR2 in an isoform-specific manner (89.6% of total VEGF121-R2, 58.0% of total VEGF165-R2, 61.4% 

of total VEGF189-R2) (Figure 6-S2B). This novel prediction, suggesting varying “potency” of different 

VEGF isoforms, is a direct consequence of isoform-specific NRP1- and matrix-binding leading to isoform-

specific trafficking. The relative contributions of NRP1-binding and matrix-binding to isoform-specific 

signaling could be validated experimentally using VEGF isoforms engineered to bind ECM but not NRP1 

(e.g.[1]) Note that, while a large quantity of ligated VEGFR2 is present in Rab11 recycling endosomes at 

steady-state, very little of this VEGFR2 pool is phosphorylated (Figures 6-4 & 6-5). 

 

6.6.2 Single VEGF Isoform Expression 

 

Interestingly, the model predicts changes in ligand distribution and receptor activation in our 

single isoform simulations, compared to the baseline case. Specifically, after fitting to maintain the same 

plasma VEGF levels as baseline, expression of only VEGF121 is predicted to lead to higher tissue levels of 
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free VEGF (Figure 6-8A) than expression of only heparin-binding VEGF isoforms (Figure 6-8B). This 

leads to increased receptor ligation in the VEGF121 only case, while VEGF189 binds strongly to the ECM, 

increasing the proportion of surface M-V-R2 complexes substantially (27.1%, compared to 6.9% in 

baseline case) (Figure 6-8D), and retaining VEGFR2 at the cell surface longer. As a result, expression of 

only VEGF189 leads to higher predicted cell surface pR2/R2 than VEGF121 alone, while VEGF165 alone 

leads to slightly lower-than-baseline pR2/R2 (Figure 6-8B). This is consistent with our baseline 

observations; when normalized by the fraction of VEGF production for each isoform, VEGF121 is over-

represented in VEGFR1 ligation, and both VEGF121 and VEGF189 are over-represented in VEGFR2 ligation 

(see Figure 6-3E).  In summary, our model predicts that, compared to baseline, expression of only VEGF-

189 increases both pY1214/pY1175 and the relative activation of VEGFR2 compared to VEGFR1, while 

expression of VEGF121 alone decreases these quantities. VEGFR1 loss or blockade results in a 

hyperproliferative vascular phenotype [2, 3], suggesting that the balance of VEGFR1 and VEGFR2 

activation may contribute to the observed VEGF isoform-specific phenotypes.  

 

6.6.3 Sensitivity of transport parameters and new reactions included in the model 

 

We analyzed the sensitivity of our model to a few additional parameters whose values are not 

well-established, as well as a few reactions that have not been clearly demonstrated to occur. We started 

with NRP1 production, as NRP1 is clearly an important regulator of VEGF-family signaling, as well as the 

rates for bidirectional vascular permeability, lymphatic drainage, and clearance of growth factors and sR1 

from the blood (Figure 6-S3A). We increased, then decreased, each rate by a factor of two, and averaged 

the change from baseline. As anticipated, both ligand distribution and receptor activation were quite 

sensitive to NRP1 production. The system was less sensitive to changes in transport parameters; 

perturbations of vascular permeability (kp) and lymphatic drainage (kL) resulted in similar changes in ligand 

distribution and VEGFR1 ligation. Clearance from the blood (kCL) led to large changes only in plasma 

protein levels. 

Next, we examined the effect of removing reactions that have not been proven to occur from the 

model (Figure 6-S3B). We calculated the fold changes in outputs from baseline when a given reaction was 

removed. Removing binding of sR1 to EC surface NRP1 (to form non-signaling complexes) had a large 
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effect on ligand distribution, as this is a key route of sR1 clearance, and (as a result) also affected receptor 

activation. Disallowing ligand-binding to sR1-NRP1 complexes had a smaller effect. As the binding 

properties of PlGF are less well-studied than those of VEGF, we assumed, similar to VEGF, that the shorter 

PlGF1 can bind to NRP1-VEGFR1 complexes, while PlGF2 cannot. If we remove binding of PlGF1 to 

NRP1-VEGFR1 complexes, we saw little change aside from the amount of PlGF1 binding to VEGFR1. 

While immobilized ligand has been shown to bind and activate VEGFR2, the same has not been proven for 

VEGFR1, or sR1. As such, we examined the effect of allowing these complexes to form with VEGFR2, but 

not with VEGFR1 or sR1. As expected, we saw large changes in VEGFR1 ligation. While all matrix-

ligand-sR1 complexes were lost, there was relatively little change in the amount of ligand bound to matrix 

alone. As we found earlier that formation of immobilized ligand-sR1 complexes regulates ligand 

distribution, we looked to see if any of the particular paths to form these complexes were especially 

sensitive. The sensitivity for removal of any single path was relatively low; the maximum change to the 

concentration of matrix-ligand-sR1 complexes was 17%. This suggests that the combination of these 

routes, not a single path, contributes to formation of immobilized ligand-sR1 complexes and regulation of 

ligand distribution. Note the log scale in Figure 6-S3B when comparing these results to Figure 6-7.  
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6.7 Supplemental Figures 

 
Figure 6-S1. Super-sensitivity of steady-state VEGF and VEGFR2 levels, compared to previous 

model set-up. These panels expands upon the results shown in Fig 2 of the main manuscript. (A) In 

previous models, surface VEGFR2 levels were fixed (same internalization rate for free and VEGF-bound 

VEGFR2, no recycling), so increasing VEGF levels would lead to more VEGF-VEGFR2 binding and 

subsequent degradation of VEGF, keeping the net change in VEGF levels relatively small. (B) In this 

model, trafficking rates are different for free and ligand-bound VEGFR2, so endothelial cell surface 

VEGFR2 levels are not constant when VEGF levels change. If VEGF levels increase, more VEGFR2 

becomes occupied, internalized, and degraded, reducing steady-state VEGFR2 levels and decreasing VEGF 

consumption via VEGFR2 (purple). Similarly, if VEGFR2 production increases, more VEGF is bound to 

VEGFR2, internalized, and degraded, reducing steady-state VEGF levels and as a result further increasing 

surface VEGFR2 (green). 
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Figure 6-S2. Additional pharmacokinetic/pharmacodynamic predictions of the model. (A) This panel, 

which shows “local” concentrations of growth factor accessible to endothelial cell receptors, is related to 

Fig 4A of the main manuscript. EBM-bound growth factor concentrations are calculated using the EBM 

volume, while free levels are calculated using the total available interstitial space. (B) This panel expands 

upon the results shown in Fig 5 of the main manuscript. For each isoform, total phosphorylated VEGFR2 

(pR2) bound to the given ligand is divided by total VEGFR2 bound to the respective ligand.
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Figure 6-S3. Sensitivity of transport parameters and new or unconfirmed reactions. (A) Sensitivity of 

ligand distribution and receptor activation to changes in, from left to right: NRP1 production rate (sN1), 

vascular permeability (kp), lymphatic drainage rate (kL), and rate of clearance from the blood (kCL). All 

tissue quantities are taken from the “Main Body Mass” compartment. Values shown are the average 

magnitude of change in a given quantity when the specified parameter is increased or decreased by a factor 

of 10 (baseline = 0). Note the different scale on the NRP1 production rate than on the other panels. (B) 

Changes to ligand distribution and receptor activation when kon for different reactions is set to zero, 

prohibiting the selected reactions from occurring. Values shown are fold change from baseline (baseline = 

1). Examined reactions are, from left to right: binding of sR1 to EC NRP1 (with or without ligand), binding 

of ligand to sR1-N1 complexes, binding of PlGF1 to NRP1-VEGFR1 and NRP1-sR1 complexes, formation 

of immobilized ligand-VEGFR1 and immobilized ligand-sR1 complexes (in any form), binding of 

VEGF121 or PlGF1 to immobilized sR1, binding of free sR1 to matrix proteins (no ligand), binding of 

immobilized ligands to sR1 (only), and binding of matrix proteins to VEGF165, VEGF189, or PlGF2 bound 

to sR1. All tissue quantities taken from “Main Body Mass” compartment. Note the different scale on the 

sR1-N1 and P1-(N1-R1) panels than on the other panels. 
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Figure 6-S3 
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6.8 Supplemental Tables 

 
Table 6-S1. Binding/Unbinding Reactions: KD in the main body mass. 

 

1. Wu FTH, Stefanini MO, Gabhann FM, Popel AS. A Compartment Model of VEGF Distribution in 

Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap. Plos One. 2009;4(4). doi: 

10.1371/journal.pone.0005108. PubMed PMID: WOS:000265505700013. 

2. Mac Gabhann F, Popel AS. Model of competitive binding of vascular endothelial growth factor 

and placental growth factor to VEGF receptors on endothelial cells. American Journal of Physiology-Heart 
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KD VEGF165 VEGF121 VEGF189 PlGF1 PlGF2 Units Ref 

L-R1 1.0 x 10
-15 

1.0 x 10
-15

 1.0 x 10
-15

 6.9 x 10
-15

 6.9 x 10
-15

 moles/cm
3
 tissue [1, 

2] 

L-R2 3.0 x 10
-15

 3.0 x 10
-15

 3.0 x 10
-15

 - - moles/cm
3
 tissue [1, 

2] 

L-N1 3.6 x 10
-14

 - 3.6 x 10
-15

 - 1.0 x 10
-7

 moles/cm
3
 tissue [3, 

4] 

L-sR1 1.0 x 10
-15

 1.0 x 10
-15

 1.0 x 10
-15

 6.9 x 10
-15

 6.9 x 10
-15

 moles/cm
3
 tissue [1] 

L-M 1.8 x 10
-12

 - 1.8 x 10
-13

 - 1.4 x 10
-13

 moles/cm
3
 tissue [5] 

(M-L)-R1 1.0 x 10
-15

 - 1.0 x 10
-15

 - 6.9 x 10
-15

 moles/cm
3
 tissue  

(M-L)-R2 3.0 x 10
-15

 - 3.0 x 10
-15

 - - moles/cm
3
 tissue  

(M-L)-sR1 1.0 x 10
-15

 - 1.0 x 10
-15

 - 6.9 x 10
-15

 moles/cm
3
 tissue  

M-(L-R1) 1.8 x 10
-12

 - 1.8 x 10
-13

 - 1.4 x 10
-13

 moles/cm
3
 tissue  

M-(L-R2) 1.8 x 10
-12

 - 1.8 x 10
-13

 - - moles/cm
3
 tissue  

M-(L-sR1) 1.8 x 10
-12

 - 1.8 x 10
-13

 - 1.4 x 10
-13

 moles/cm
3
 tissue  

(L-sR1)-M - 7.2 x 10
-13

 - 7.2 x 10
-13

 - moles/cm
3
 tissue  

(M-sR1)-L - 6.9 x 10
-15

 - 6.9 x 10
-15

 - moles/cm
3
 tissue  

(N1-L)-R2 7.3 x 10
-16

 - 7.3 x 10
-16

 - - moles/cm
3
 tissue  

N1-(L-R2) 2.3 x 10
-15

 - 2.3 x 10
-15

 - - moles/cm
3
 tissue  

(L-R1)-N1 - 7.3 x 10
-15

 - 7.3 x 10
-15

 - moles/cm
3
 tissue  

(L-sR1)-

N1 

- 5.4 x 10
-14

 - 5.4 x 10
-14

 - moles/cm
3
 tissue  

(N1-R1)-L - 1.0 x 10
-15

 - 1.0 x 10
-15

 - moles/cm
3
 tissue  

(N1-sR1)-

L 

- 1.0 x 10
-15

 - 1.0 x 10
-15

 - moles/cm
3
 tissue  

        

Other N1-R1 7.3 x 10
-15

 moles/cm
3
 tissue   [1] 

 sR1-N1 5.4 x 10
-14

 moles/cm
3
 tissue   [3, 

4] 

 sR1-M 7.2 x 10
-13

 moles/cm
3
 tissue    
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Table 6-S2. Binding/Unbinding Reactions: KD in healthy calf muscle. 

 

1. Wu FTH, Stefanini MO, Gabhann FM, Popel AS. A Compartment Model of VEGF Distribution in 

Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap. Plos One. 2009;4(4). doi: 

10.1371/journal.pone.0005108. PubMed PMID: WOS:000265505700013. 

2. Mac Gabhann F, Popel AS. Model of competitive binding of vascular endothelial growth factor 

and placental growth factor to VEGF receptors on endothelial cells. American Journal of Physiology-Heart 

	
K

D
 

V
E

G
F

1
6

5
 

V
E

G
F

1
2

1
 

V
E

G
F

1
8

9
 

P
lG

F
1

 
P

lG
F

2
 

U
n

it
s 

R
R

e
fe

g
sc

R
ef

 

L
-R

1
 

3
.7

 x
 1

0
-1

5
 

3
.7

 x
 1

0
-1

5
 

3
.7

 x
 1

0
-1

5
 

2
.5

 x
 1

0
-1

4
 

3
.7

 x
 1

0
-1

5
 

m
o
le

s/
cm

3
 t

is
su

e 
[1

, 
2
] 

L
-R

2
 

1
.1

 x
 1

0
-1

4
 

1
.1

 x
 1

0
-1

4
 

1
.1

 x
 1

0
-1

4
 

- 
- 

m
o
le

s/
cm

3
 t

is
su

e 
[1

, 
2
] 

L
-N

1
 

1
.3

 x
 1

0
-1

3
 

- 
1
.3

 x
 1

0
-1

4
 

- 
1
.1

 x
 1

0
-1

1
 

m
o
le

s/
cm

3
 t

is
su

e 
[3

, 
4
] 

L
-s

R
1

 
3
.7

 x
 1

0
-1

5
 

3
.7

 x
 1

0
-1

5
 

3
.7

 x
 1

0
-1

5
 

2
.5

 x
 1

0
-1

4
 

2
.5

 x
 1

0
-1

4
 

m
o
le

s/
cm

3
 t

is
su

e 
[1

] 

L
-M

 
6
.7

 x
 1

0
-1

2
 

- 
6
.7

 x
 1

0
-1

3
 

- 
5
.1

 x
 1

0
-1

3
 

m
o
le

s/
cm

3
 t

is
su

e 
[5

] 
(M

-L
)-

R
1

 
3
.7

 x
 1

0
-1

5
 

- 
3
.7

 x
 1

0
-1

5
 

- 
3
.7

 x
 1

0
-1

5
 

m
o
le

s/
cm

3
 t

is
su

e 
 

(M
-L

)-
R

2
 

1
.1

 x
 1

0
-1

4
 

- 
1
.1

 x
 1

0
-1

4
 

- 
- 

m
o
le

s/
cm

3
 t

is
su

e 
 

(M
-L

)-
sR

1
 

3
.7

 x
 1

0
-1

5
 

- 
3
.7

 x
 1

0
-1

5
 

- 
3
.7

 x
 1

0
-1

5
 

m
o
le

s/
cm

3
 t

is
su

e 
 

M
-(

L
-R

1
) 

6
.7

 x
 1

0
-1

2
 

- 
6
.7

 x
 1

0
-1

3
 

- 
5
.1

 x
 1

0
-1

3
 

m
o
le

s/
cm

3
 t

is
su

e 
 

M
-(

L
-R

2
) 

6
.7

 x
 1

0
-1

2
 

- 
6
.7

 x
 1

0
-1

3
 

- 
- 

m
o
le

s/
cm

3
 t

is
su

e 
 

M
-(

L
-s

R
1
) 

6
.7

 x
 1

0
-1

2
 

- 
6
.7

 x
 1

0
-1

3
 

- 
5
.1

 x
 1

0
-1

3
 

m
o
le

s/
cm

3
 t

is
su

e 
 

(L
-s

R
1
)-

M
 

- 
2
.6

 x
 1

0
-1

2
 

- 
2
.6

 x
 1

0
-1

2
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(M
-s

R
1
)-

L
 

- 
3
.7

 x
 1

0
-1

5
 

- 
2
.5

 x
 1

0
-1

4
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1

-L
)-

R
2

 
4
.4

 x
 1

0
-1

6
 

- 
4
.4

 x
 1

0
-1

6
 

- 
- 

m
o
le

s/
cm

3
 t

is
su

e 
 

N
1

-(
L

-R
2
) 

1
.4

 x
 1

0
-1

5
 

- 
1
.4

 x
 1

0
-1

5
 

- 
- 

m
o
le

s/
cm

3
 t

is
su

e 
 

(L
-R

1
)-

N
1

 
- 

4
.4

 x
 1

0
-1

5
 

- 
4
.4

 x
 1

0
-1

5
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(L
-s

R
1
)-

N
1

 
- 

2
.0

 x
 1

0
-1

3
 

- 
2
.0

 x
 1

0
-1

3
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1

-R
1
)-

L
 

- 
3
.6

 x
 1

0
-1

5
 

- 
3
.6

 x
 1

0
-1

5
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1

-s
R

1
)-

L
 

- 
3
.6

 x
 1

0
-1

5
 

- 
3
.6

 x
 1

0
-1

5
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

 
 

 
 

 
 

 
 

O
th

er
 

N
1

-R
1

 
4
.4

 x
 1

0
-1

5
 

m
o
le

s/
cm

3
 t

is
su

e 
 

 
[1

] 
 

sR
1

-N
1

 
2
.0

 x
 1

0
-1

3
 

m
o
le

s/
cm

3
 t

is
su

e 
 

 
[3

, 
4
] 

 
sR

1
-M

 
2
.6

 x
 1

0
-1

2
 

m
o
le

s/
cm

3
 t

is
su

e 
 

 
 



 265 

and Circulatory Physiology. 2004;286(1). doi: 10.1152/ajpheart.00254.2003. PubMed PMID: 

WOS:000187350500021. 

3. Vintonenko N, Pelaez-Garavito I, Buteau-Lozano H, Toullec A, Lidereau R, Perret GY, et al. 

Overexpression of VEGF189 in breast cancer cells induces apoptosis via NRP1 under stress conditions. 

Cell Adhesion & Migration. 2011;5(4):332-43. doi: 10.4161/cam.5.4.17287. PubMed PMID: 

WOS:000300713300008. 

4. Hoffmann DC, Willenborg S, Koch M, Zwolanek D, Mueller S, Becker A-KA, et al. Proteolytic 

Processing Regulates Placental Growth Factor Activities. Journal of Biological Chemistry. 

2013;288(25):17976-89. doi: 10.1074/jbc.M113.451831. PubMed PMID: WOS:000320721900005. 

5. Martino MM, Briquez PS, Güç E, Tortelli F, Kilarski WW, Metzger S, et al. Growth Factors 

Engineered for Super-Affinity to the Extracellular Matrix Enhance Tissue Healing. Science. 

2014;343(6173):885-8. doi: 10.1126/science.1247663. 

 

  



 266 

Table 6-S3. Binding/Unbinding Reactions: KD in plasma. 

 

1. Wu FTH, Stefanini MO, Gabhann FM, Popel AS. A Compartment Model of VEGF Distribution in 

Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap. Plos One. 2009;4(4). doi: 

10.1371/journal.pone.0005108. PubMed PMID: WOS:000265505700013. 

 

  

KD VEGF165 VEGF121 VEGF189 PlGF1 PlGF2 Units RRefegs  Ref 

L-sR1 2.0 x 10
-14

 2.0 x 10
-14

 2.0 x 10
-14

 1.4 x 10
-13

 1.4 x 10
-13

 moles/cm
3
 

plasma 

[1] 
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Table 6-S4. Binding/Unbinding Reactions: kon in the main body mass. 

kon VEGF165 VEGF121 VEGF189 PlGF1 PlGF2 Units 

L-R1 1.0 x 10
12 

1.0 x 10
12

 1.0 x 10
12

 5.0 x 10
10

 5.0 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

L-R2 3.3 x 10
11

 3.3 x 10
11

 3.3 x 10
11

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

L-N1 1.7 x 10
10

 - 4.7 x 10
10

 - 3.3 x 10
8
 (moles/cm

3
 tissue)

-1
 s

-1
 

L-sR1 1.0 x 10
12

 1.0 x 10
12

 1.0 x 10
12

 5.0 x 10
10

 5.0 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

L-M 5.3 x 10
9
 - 5.3 x 10

9
 - 7.3 x 10

10
 (moles/cm

3
 tissue)

-1
 s

-1
 

(M-L)-R1 1.0 x 10
12

 - 1.0 x 10
12

 - 5.0 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

(M-L)-R2 3.3 x 10
11

 - 3.3 x 10
11

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

(M-L)-sR1 1.0 x 10
12

 - 1.0 x 10
12

 - 5.0 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

M-(L-R1) 5.3 x 10
9
 - 5.3 x 10

9
 - 7.3 x 10

9
 (moles/cm

3
 tissue)

-1
 s

-1
 

M-(L-R2) 5.3 x 10
9
 - 5.3 x 10

9
 - - (moles/cm

3
 tissue)

-1
 s

-1
 

M-(L-sR1) 5.3 x 10
9
 - 5.3 x 10

9
 - 7.3 x 10

9
 (moles/cm

3
 tissue)

-1
 s

-1
 

(L-sR1)-M - 1.4 x 10
10

 - 1.4 x 10
10

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(M-sR1)-L - 1.0 x 10
12

 - 1.0 x 10
12

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(N1-L)-R2 1.4 x 10
12

 - 1.4 x 10
12

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

N1-(L-R2) 4.2 x 10
11

 - 4.2 x 10
11

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

(L-R1)-N1 - 1.4 x 10
12

 - 1.4 x 10
12

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(L-sR1)-N1 - 1.9 x 10
11

 - 1.9 x 10
11

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(N1-R1)-L - 1.0 x 10
12

 - 5.0 x 10
10

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(N1-sR1)-L - 1.0 x 10
12

 - 5.0 x 10
10 

- (moles/cm
3
 tissue)

-1
 s

-1
 

       

Other N1-R1 1.4 x 10
12

 (moles/cm
3
 tissue)

-1
 s

-1
   

 sR1-N1 1.9 x 10
11

 (moles/cm
3
 tissue)

-1
 s

-1
   

 sR1-M 1.4 x 10
11

 (moles/cm
3
 tissue)

-1
 s

-1
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Table 6-S5. Binding/Unbinding Reactions: kon in healthy calf muscle. 

kon VEGF165 VEGF121 VEGF189 PlGF1 PlGF2 Units 

L-R1 2.7 x 10
11 

2.7 x 10
11

 2.7 x 10
11

 1.4 x 10
10

 1.4 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

L-R2 9.1 x 10
10

 9.1 x 10
10

 9.1 x 10
10

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

L-N1 4.5 x 10
9
 - 1.3 x 10

10
 - 9.1 x 10

7
 (moles/cm

3
 tissue)

-1
 s

-1
 

L-sR1 2.7 x 10
11

 2.7 x 10
11

 2.7 x 10
11

 1.4 x 10
10

 1.4 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

L-M 1.5 x 10
9
 - 1.5 x 10

9
 - 2.0 x 10

9
 (moles/cm

3
 tissue)

-1
 s

-1
 

(M-L)-R1 2.7 x 10
11

 - 2.7 x 10
11

 - 1.4 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

(M-L)-R2 9.1 x 10
10

 - 9.1 x 10
10

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

(M-L)-sR1 2.7 x 10
11

 - 2.7 x 10
11

 - 1.4 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
 

M-(L-R1) 1.5 x 10
9
 - 1.5 x 10

9
 - 2.0 x 10

9
 (moles/cm

3
 tissue)

-1
 s

-1
 

M-(L-R2) 1.5 x 10
9
 - 1.5 x 10

9
 - - (moles/cm

3
 tissue)

-1
 s

-1
 

M-(L-sR1) 1.5 x 10
9
 - 1.5 x 10

9
 - 2.0 x 10

9
 (moles/cm

3
 tissue)

-1
 s

-1
 

(L-sR1)-M - 3.8 x 10
9
 - 3.8 x 10

9
 - (moles/cm

3
 tissue)

-1
 s

-1
 

(M-sR1)-L - 2.7 x 10
11

 - 1.4 x 10
10

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(N1-L)-R2 2.3 x 10
12

 - 2.3 x 10
12

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

N1-(L-R2) 7.0 x 10
11

 - 7.0 x 10
11

 - - (moles/cm
3
 tissue)

-1
 s

-1
 

(L-R1)-N1 - 2.3 x 10
12

 - 2.3 x 10
12

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(L-sR1)-N1 - 5.1 x 10
10

 - 5.1 x 10
10

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(N1-R1)-L - 2.7 x 10
11

 - 1.4 x 10
10

 - (moles/cm
3
 tissue)

-1
 s

-1
 

(N1-sR1)-L - 2.7 x 10
11

 - 1.4 x 10
10

 - (moles/cm
3
 tissue)

-1
 s

-1
 

       

Other N1-R1 2.3 x 10
12

 (moles/cm
3
 tissue)

-1
 s

-1
   

 sR1-N1 5.1 x 10
10

 (moles/cm
3
 tissue)

-1
 s

-1
   

 sR1-M 3.8 x 10
9
 (moles/cm

3
 tissue)

-1
 s

-1
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Table 6-S6. Binding/Unbinding Reactions: kon in plasma. 

kon VEGF165 VEGF121 VEGF189 PlGF1 PlGF2 Units 

L-sR1 3.3 x 10
10

 3.3 x 10
10

 3.3 x 10
10

 2.5 x 10
9
 2.5 x 10

9
 (moles/cm

3
 tissue)

-1
 s

-1
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Table 6-S7. Geometric Parameterization. 

 Main Body 

Mass Value 

Calf Muscle 

Value 

Units 

Compartment Volume 60,453 868 cm
3 

Individual Muscle Fiber    

  Diameter 71 73 μm 

  Perimeter correction factor 1.14 1.14  

  Perimeter 253 261 μm 

  FCSA 3904 4173 μm
2 

  Myonuclear density 120 150 mm
-1 

  MDSA 2104 1740 μm
2
/MD 

Muscle Fiber Space    

  Muscle fiber density 242 199 fibers/mm
2 
 tissue 

  FSAV 611 520 cm
2
/cm

3
 tissue 

  Muscle fiber space volume fraction 94.4% 83.1% cm
3
/cm

3
 tissue 

Individual Capillary    

  Luminal diameter 4.86 3.97 μm 

  Endothelium thickness 0.77 0.78 μm 

  Abluminal diameter 6.39 5.53 μm 

  Perimeter correction factor 1.1 1.1  

  Abluminal perimeter 22.1 19.1 μm 

  CCSA 32.1 24.0 μm
2
 

     Lumen CSA 18.6 12.4 μm
2
 

     Endothelium CSA 13.5 11.6 μm
2
 

  ECSA (abluminal) 1000 1000 μm
2
/EC 

Capillary Space    

  Capillary:fiber ratio 1.36 1.16  

  Capillary density 329 231 capillaries/mm
2
 

tissue 

  ESAV (abluminal) 73 44 cm
2
/cm

3
 tissue 

  Capillary space volume fraction 1.1% 0.6% cm
3
/cm

3
 tissue 

     Endothelium space 0.4% 0.3% cm
3
/cm

3
 tissue 

     Vascular space 0.6% 0.3% cm
3
/cm

3
 tissue 

Interstitial Space    

  IS volume fraction 4.5% 16.3% cm
3
/cm

3
 tissue 

  IF volume fraction 3.7% 13.7% cm
3
/cm

3
 tissue 

  Available IF volume fraction 3% 11% cm
3
/cm

3
 tissue 

  Extracellular Matrix (ECM)    

     ECM volume 3.9% 14.9% cm
3
/cm

3
 tissue 

 86.72% 91.24% cm
3
/cm

3
 IS 

     Solid fraction 13.40% 13.40% cm
3
/cm

3
 ECM 

     Fluid volume in ECM 3.38% 12.92% cm
3
/cm

3
 tissue 

 91.13% 94.25% cm
3
/cm

3
 IF 

     Available fluid volume in ECM 2.87% 10.98% cm
3
/cm

3
 tissue 

  Endothelial Basement Membrane (EBM)    

     Thickness 87.5 254 nm 

     EBM volume 0.06% 0.11% cm
3
/cm

3
 tissue 

 1.41% 0.69% cm
3
/cm

3
 IS 

     Solid fraction 45% 45% cm
3
/cm

3
 BME 

     Fluid volume in EBM 0.03% 0.06% cm
3
/cm

3
 tissue 

 0.94% 0.45% cm
3
/cm

3
 IF 

     Available fluid volume in EBM 0.01% 0.02% cm
3
/cm

3
 tissue 

     EBM Thickness accessible to EC 

receptors* 
25 25 nm 
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     Fraction EBM accessible to EC receptors 28.6% 9.84% cm
3
/cm

3
 BME 

  Parenchymal Basement Membrane 

(PBM) 

   

     Thickness 87.5 254 nm 

     PBM volume 0.53% 1.32% cm
3
/cm

3
 tissue 

 11.87% 8.07% cm
3
/cm

3
 IS 

     Solid fraction 45% 45% cm
3
/cm

3
 BMP 

     Fluid volume in PBM 0.29% 0.73% cm
3
/cm

3
 tissue 

 7.92% 5.30% cm
3
/cm

3
 IF 

     Available fluid volume in PBM 0.10% 0.24% cm
3
/cm

3
 tissue 

Blood Compartment    

  Total Volume 5  L 

  Plasma Fraction 60%  cm
3
/cm

3
 blood 

*Based on length of ErbB2 and ErbB3 extracellular domains (11.3-16.4nm [2-4]), assuming some 

flexibility in cell shape and position. 

Bold: new parameters 
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Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap. Plos One. 2009;4(4). doi: 

10.1371/journal.pone.0005108. PubMed PMID: WOS:000265505700013. 

2. Hu S, Sun Y, Meng Y, Wang X, Yang W, Fu W, et al. Molecular architecture of the ErbB2 

extracellular domain homodimer. Oncotarget. 2015;6(3):1695-706. PubMed PMID: 

WOS:000352689800031. 

3. Cho HS, Leahy DJ. Structure of the extracellular region of HER3 reveals an interdomain tether. 

Science. 2002;297(5585):1330-3. doi: 10.1126/science.1074611. PubMed PMID: WOS:000177573900042. 

4. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, et al. Structure of the 

extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756-60. 

doi: 10.1038/nature01392. PubMed PMID: WOS:000180938000047. 
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Table 6-S8. Trafficking Parameters (from [1]). 

Species 

Units: s
-1 

kint  

(from surface) 

krec4  

(from 

Rab4/5) 

krec11  

(from 

Rab11) 

k4to11  

(from 

Rab4/5) 

kdegr  

(from 

Rab4/5) 

R2 2.6 x 10
-3

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-6

 

V·R2 3.12 x 10
-2

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-5

 

M∙V∙R2 0 - - - - 

L 0 0 0 0 1.2 x 10
-2

 

N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

V·N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

V·N1·R2 3.12 x 10
-2

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 6.8 x 10
-4

 

R1 2.6 x 10
-3

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-5

 

N1·R1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

L·R1 3.12 x 10
-2

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-5

 

L·N1·R1 3.12 x 10
-2

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

M∙V∙R1 0 - - - - 

L·sR1 0 0 0 0 1.2 x 10
-2

 

sR1·N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

L·sR1·N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

L: ligand- all trafficking parameters independent of ligand identify. Free sR1 trafficked with same rates as 

L·sR1. 

 

1. Clegg LW, Mac Gabhann F. Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor 

Trafficking: Insights from a Computational Model. PLoS Comput Biol. 2015;11(6):e1004158. doi: 

10.1371/journal.pcbi.1004158. 
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Table 6-S9. Phosphorylation Parameters (from [1]). 

 Free R2 V-R2 (not affected by N1 or M) 

 Cell 

Surface 

Rab4/5 

Endosomes 

Rab11 

Endosomes 

Cell 

Surface 

Rab4/5 

Endosomes 

Rab11 

Endosomes 

kp (s
-1

) 0 0 0 1 1 1 

kdp,Y951 (s
-1

) 30 30 30 0.043 75 30 

kdp,Y1775 (s
-1

) 30 30 30 4.98 0.00972 30 

kdp,Y1214 (s
-1

) 30 30 30 1.06 0.0307 30 

Notes: 

kp: phosphorylation rate constant for all tyrosine sites 

kdp: site-specific dephosphorylation rate constant 

 

1. Clegg LW, Mac Gabhann F. Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor 

Trafficking: Insights from a Computational Model. PLoS Comput Biol. 2015;11(6):e1004158. doi: 

10.1371/journal.pcbi.1004158. 
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Table 6-S10. Transport Parameters  

 Permeability  

(bi-directional) 

Lymphatic Drainage  

(main body mass to blood) 

Lymphatic Drainage 

(calf muscle to blood) 

Clearance 

from Blood 

VEGF 4.39 x 10
-8

 cm/s 0.1418 cm
3
/s 0.0026 cm

3
/s 1.08 x 10

-3
 s

-1 

PlGF 4.39 x 10
-8

 cm/s 0.1418 cm
3
/s 0.0026 cm

3
/s 1.08 x 10

-3
 s

-1
 

sFlt1 1.86 x 10
-8

 cm/s 0.1418 cm
3
/s 0.0026 cm

3
/s 5.0 x 10

-6
 s

-1
 

VEGF-

sFlt1 

1.86 x 10
-8

 cm/s 0.1418 cm
3
/s 0.0026 cm

3
/s 5.0 x 10

-6
 s

-1
 

PlGF-sFlt1 1.86 x 10
-8

 cm/s 0.1418 cm
3
/s 0.0026 cm

3
/s 5.0 x 10

-6
 s

-1
 

Note: Permeability rates apply to both calf muscle & main body mass. Geometric unit conversions applied 

[1]. 

1. Clegg LW, Mac Gabhann F. Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor 

Trafficking: Insights from a Computational Model. PLoS Comput Biol. 2015;11(6):e1004158. doi: 

10.1371/journal.pcbi.1004158. 
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Table 6-S11. Available Matrix Site Densities 

 ECM EBM PBM 

Value (μM) 0.75  20 20  

Main Body Mass (moles/cm
3
 tissue) 2.15 x 10

-11
  2.0 x 10

-12
 2.0 x 10

-11
 

Calf  Muscle (moles/cm
3
 tissue) 8.24 x 10

-11
 4.0 x 10

-12
 4.8 x 10

-11
 

Note: Unit conversions described in [1, 2]. 

 

1. Wu FTH, Stefanini MO, Gabhann FM, Popel AS. A Compartment Model of VEGF Distribution in 

Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap. Plos One. 2009;4(4). doi: 

10.1371/journal.pone.0005108. PubMed PMID: WOS:000265505700013. 

2. Wu FT, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS. VEGF and soluble 

VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. Am J Physiol Heart 

Circ Physiol. 2010;298(6):H2174-91. Epub 2010/04/13. doi: ajpheart.00365.2009 [pii] 

10.1152/ajpheart.00365.2009. PubMed PMID: 20382861; PubMed Central PMCID: PMC2886617. 
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Table 6-S12. Production and secretion rates for “MLR” cases (Figure 6-7). 

Species Target 

Location 

Baseline Cell Only sR1 Only No MLR Production Units 

VEGFR1 Main Body 

Mass 

1.162 1.20 1.14 1.175 Change from No 

VEGF SS 

 Calf 1.32 1.42 1.42 1.38 Change from No 

VEGF SS 

VEGFR2 Main Body 

Mass 

32.09 31.10 29.12 28.763 Change from No 

VEGF SS 

 Calf 53.96 52.27 48.9 48.295 Change from No 

VEGF SS 

NRP1 Main Body 

Mass 

1.295 1.285 1.267 1.262 Change from No 

VEGF SS 

 Calf 1.502 1.482 1.455 1.445 Change from No 

VEGF SS 

sR1 Plasma 0.0893 0.0838 0.0856 0.0813 molec/EC/s 

PlGF Plasma 0.0146 0.0144 0.0142 0.0142 molec/MD/s 

VEGF Plasma 0.2830 0.2733 0.2560 0.2522 molec/MD/s 

*Note: Both M-L-sR1 and L-sR1-M complexes are included/excluded in “sR1” reactions. 

SS: steady-state 
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Table 6-S13. Production and secretion rates for Single VEGF Isoform cases (Figure 6-8) 

Species Target 

Location 

Baseline VEGF121 VEGF165 VEGF189 Production 

Units 

VEGFR1 Main Body 

Mass 

1.162 3.40 0.93 0.93 Change from No 

VEGF SS 

 Calf 1.32 5.51 0.932 0.935 Change from No 

VEGF SS 

VEGFR2 Main Body 

Mass 

32.09 14.3 31.465 52.91 Change from No 

VEGF SS 

 Calf 53.96 30.2 52.81 89.42 Change from No 

VEGF SS 

NRP1 Main Body 

Mass 

1.295 1.195 1.285 1.485 Change from No 

VEGF SS 

 Calf 1.502 1.27 1.482 1.823 Change from No 

VEGF SS 

sR1 Plasma 0.0893 0.5564 0.0588 0.0588 molec/EC/s 

PlGF Plasma 0.0146 0.0144 0.0146 0.0146 molec/MD/s 

VEGF Plasma 0.2830 0.3080 0.2637 0.4485 molec/MD/s 

SS: steady-state 
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Chapter 7. The Role of VEGF Splicing in Human Peripheral 

Artery Disease 

Content from this chapter will be submitted for publication as: 

L. E. Clegg, V.C. Ganta, B.H. Annex, & F. Mac Gabhann, “Systems pharmacology of VEGF165b in 

peripheral artery disease.” 

 

7.0 Summary 

 
The role of the VEGF165b splice isoform in peripheral artery disease (PAD) has garnered recent 

interest, but remains poorly understood. VEGF165b lacks the ability to bind to Neuropilin-1 and HSPGs, and 

activates VEGF receptor 2 (VEGFR2) only weakly in vitro. Here, we use a computational systems 

pharmacology model that explicitly accounts for VEGF isoform ECM- and NRP1-binding, as well as 

VEGFR2 ligation and site-specific phosphorylation, to bridge from these experimental measurements to 

insight about VEGF165b distribution and VEGF receptor activation in human PAD. We use both published 

and previously unpublished experimental data, in vitro and in mouse and human skeletal muscle, to build 

and validate our model. The resulting computational model, which captures all known information about 

VEGF165b properties and distribution in the human body, provides several novel and non-intuitive insights 

into VEGF165b mechanism of action. First, the model suggests that blood levels of VEGF165b are not 

predictive of signaling in tissue. Consistent with in vitro observations, the model predicts that VEGF165b is a 

weak activator of VEGFR2 in vivo. Conversely, while the model agrees with experimental evidence of 

competition between VEGF165a and VEGF165b in vitro, simulations shows that these isoforms do not 

compete for VEGFR2 at much lower physiological concentrations. Instead, the model suggests that reduced 

VEGF165a expression, concomitant with increasing VEGF165b, may drive impaired VEGFR2 signaling in 

PAD. Interestingly, the model predicts that VEGF165b does compete with other VEGF and PlGF isoforms 

for binding to VEGFR1, supporting the recently proposed role for VEGFR1 in the pro-angiogenic response 

to anti-VEGF165b treatment in murine hindlimb ischemia. All together, the model predicts a key role for 

VEGF165b in PAD, but in a different way than previously hypothesized. This mechanistic insight, which 
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could not have been obtained via experiment alone, is key to identifying effective pro-angiogenic strategies 

for PAD treatment.   
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7.1 Introduction 

 
Peripheral artery disease (PAD) is a manifestation of chronic atherosclerotic disease in which 

occlusion of small arteries in the legs results in skeletal muscle ischemia, pain and limited mobility
1
. PAD 

leads to muscle atrophy, capillary rarefaction
2,3

, and other anatomical changes to the tissue (e.g. endothelial 

basement membrane thickening
4
), and eventual below knee or higher amputation in many patients (25-40% 

6-month risk with critical limb ischemia
5,6

). Despite this ischemia, sufficient angiogenesis (growth of new 

capillaries from the existing vascular network) to restore normal perfusion does not appear to occur in 

PAD. Interestingly, levels of vascular endothelial growth factor (VEGF), considered central to promoting 

angiogenesis in response to ischemia, are elevated three-fold in plasma
7-10

 and are unchanged at rest in 

muscle biopsies
11

 and interstitial fluid of PAD-afflicted muscle
12

. The primary treatments for PAD are: 

exercise, which can promote VEGF secretion
13

 but is often difficult and painful for patients; and surgical 

revascularization, for which many patients are not suited and which is not always successful
1,5,14

. Following 

arterial occlusion, remaining blood flow to the foot occurs via new or remodeled collateral vessels; indeed, 

capillary density is a better predictor of functional performance than arterial-brachial index
2
, and 

angiogenesis is known to precede increases in muscle oxygen uptake in PAD patients
15

. As such, 

promoting angiogenesis and vascular remodeling to improve muscle perfusion is considered a promising 

therapeutic avenue. Despite many clinical trials, there are no approved growth factor-based therapies 

(protein or gene-based delivery of VEGF or fibroblast growth factor-2, or upregulation of these through 

transcription factors), due to lack of efficacy and some side-effects of excessive vascular permeability
1,16

. 

While this failure can be partially attributed to poor, spatially inhomogeneous delivery of short duration
17-

20
, it is also clear that a lack of understanding of the mechanism behind the signaling impairment in PAD 

limits selection of appropriate therapeutic targets and strategies
21,22

. Computational models provide a 

unique potential to examine this signaling complexity, bridging observations in cell culture experiments, 

imperfect animal models of disease, and human PAD patients
23

. 

The VEGF family is complex, consisting of five ligand genes, including VEGFA and PlGF, three 

receptors (VEGFR1-3), and multiple coreceptors, including Neuropilin-1 (NRP1)
24

. The VEGF receptors 

can be alternatively spliced, producing soluble isoforms (e.g. soluble VEGFR1 (sR1)) that can be secreted 

into the interstitial space, binding to VEGF, PlGF, and heparin sulfate proteoglycans (HSPGs). sR1 levels 
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are increased in mice following hindlimb ischemia, but not in human PAD
25,26

. VEGFA (hereafter referred 

to as VEGF), considered the primary pro-angiogenic protein, can be spliced into numerous isoforms, each 

with different ability to bind to NRP1 and to HSPGs on the cell surface and in the extracellular matrix 

(ECM). The most prevalent in the human body are: VEGF121, which binds to neither ECM nor NRP1; 

VEGF165, which binds to both ECM and NRP1; and VEGF189, which binds to ECM more strongly than 

VEGF165
27,28

. These isoform-specific properties have physiological relevance; in murine systems and in 

human tumors implanted in mice, expression of VEGF121 alone leads to formation of vascular networks 

consisting of small numbers of wide-diameter vessels; expression of VEGF165 alone produces a relatively 

normal phenotype; and expression of VEGF189 alone results in a highly branched network of thin vessels
29-

35
.  

Recently, altered expression of additional splice isoforms – the “VEGFxxxb” isoforms, with 

different C-terminal six amino acids (exon 8) 
36,37

 – has been measured in several disease conditions, 

including PAD
38,39

, cancer
36,40-42

, systemic sclerosis
43

, and pre-eclampsia
44

. Changes in VEGF splicing can 

be induced by specific growth factors
45,46

, by exercise
47,48

, and by ECM stiffness
49

, though the mechanisms 

involved in disease-induced splicing, and even tissue-specific splicing
50,51

, are not well-established. Despite 

only a small change in sequence, VEGF165b, the counterpart of VEGF165a, does not bind to NRP1, and did 

not bind to heparin or HSPGs in three independent in vitro studies
52-54

. Additionally, despite binding to 

VEGFR2 with the same affinity as VEGF165a
53,54

 (Fig. 7-1B), VEGF165b phosphorylates VEGFR2 only 

weakly, a property hypothesized to result from its lack of NRP1-binding
53

. This poor activation of 

VEGFR2 suggested that VEGF165b may be anti-angiogenic, acting as a “brake” to prevent binding of “a” 

isoforms to VEGFR2 and reduce signaling
37,39

, though other studies have suggested that “b” isoforms are 

indeed weakly pro-angiogenic in vitro and in tumors
52,55

. Study of the “a” and “b” isoforms in vivo has 

been complicated by difficulties in achieving consistent measurements using current methods, detection of 

both classes of isoforms by commonly used antibodies, potential differences in splicing between mice and 

humans
50

, and the difficulty of detecting VEGFxxxb mRNA in murine systems
56,57

. As such, while VEGF165b 

has been detected in healthy humans
58

, is secreted at much higher levels by monocytes in the blood of PAD 

patients than healthy controls
39

, and is increased in the adipose tissue of obese patients undergoing bariatric 

surgery
59

, reliable quantification of the total levels of VEGF165a and VEGF165b in healthy and diseased 
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human tissues and blood remains elusive. Nonetheless, promising improvements in blood flow observed in 

diabetic mice subjected to hindlimb ischemia following treatment with an anti-VEGF165b antibody
39

 suggest 

that VEGF165b may be an important, albeit poorly understood, missing piece in the PAD puzzle. Using a 

computational model, we can screen potential ranges of relative secretion of these isoforms, to understand 

the implications of splicing changes on VEGF distribution and endothelial receptor signaling. This will 

deepen our understanding of how signaling is perturbed in disease, a critical step in the design of the next 

generation of pro-angiogenic therapies. We also hope to determine if measurable quantities (e.g. in the 

plasma) are clinically predictive of disease state, disease progression, and/or therapy effectiveness.  

 

7.1.1 Objectives 

Our objective was to develop a systems pharmacology model of endogenous VEGF165b and other 

VEGF isoforms in peripheral artery disease that can be used to better understand: (1) the distribution of 

VEGF165b in the body, as compared to VEGF165a; (2) the effects of VEGF165b on VEGFR1 and VEGFR2 

activation; and (3) resulting signaling changes in PAD (due to altered VEGF165b expression) that may be 

responsible for the observed impaired angiogenic response to ischemia. We aim to develop a platform that 

can be used to screen a diverse range of potential pro-angiogenic therapies for PAD. In achieving these 

objectives, we improve greatly on a previous PK/PD model of PAD
60

, which was unable to capture the 

VEGF distribution and signaling impairment observed in PAD, by incorporating separate simulation of 

VEGFR2 ligand-binding and site-specific phosphorylation
61,62

, and by incorporating recent discoveries 

about VEGF165b (Fig 7-1B) and its relevance to PAD
11,39,59

. By iteratively building upon and validating our 

models using both previously unpublished and published data, in vitro and in vivo, we improve the 

predictive capabilities without adding many parameters at a time. These improvements allow us to predict 

clinically-relevant quantities that are difficult or impossible to measure in vivo, such as VEGF distribution 

and VEGFR1 and VEGFR2 signaling in muscle tissue, explicitly accounting for physiological processes 

such as vascular permeability, lymphatic drainage, and protein clearance from blood (Fig 7-1A), 

maintaining physiological levels of ligands and receptors.  
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Figure 7-1. Overview of model structure and VEGF165b properties. (A) Structure of multi-scale whole-

body compartment model, incorporating PAD-specific changes in geometry and molecular expression of 

the calf muscle, and secretion of VEGF165b into the blood by monocytes. See Fig 7-S1 for details. (B) 

Comparision of the properties of VEGF165a and VEGF165b, which has been shown in vitro to lack the ability 

to bind to heparin/HSPGs and NRP1, and is a weak activator of VEGFR2.  
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7.2 Results 

 
7.2.1 Modeling the Role of VEGF165b in PAD 

To capture the role of VEGF165b in PAD, we incorporated: (1) its measured binding properties (Fig 

7-1B), (2) varying expression of VEGF165a and VEGF165b in tissue, and (3) secretion of VEGF165b into 

blood by monocytes. In the tissue compartments, we screened the possible range of relative VEGF165a and 

VEGF165b expression, maintaining constant free VEGF levels in plasma to mimic the roughly unchanged 

total VEGF protein and free VEGF in interstitial fluid in human PAD
11,12

 (Fig 7-S2D, Suppl. Model 

Fitting Section). In the bloodstream, we then increased secretion of VEGF165b (by monocytes) to capture 

the roughly 3-fold higher observed serum VEGF in PAD patients than healthy human subjects
39

. Inclusion 

of this monocyte-derived VEGF165b secretion was necessary to achieve target plasma VEGF levels without 

the unrealistic tissue VEGF concentrations observed in previous models
60

. The resulting model matches all 

known information about VEGF distribution in PAD (Fig 7-2A). 

 

7.2.2 Pharmacokinetics of VEGF165b: Predicted Over-representation in Tissue and Blood 

To understand the pharmacokinetics of VEGF165b, as compared to VEGF165a, we examined the 

predicted distributions of these isoforms in the PAD Calf Muscle and plasma at steady-state. When 

VEGF165a and VEGF165b were secreted at equal rates in tissue (fractional VEGF165b secretion = 50%), the 

model predicts that VEGF165b protein is over-represented compared to VEGF165a in tissue (Fig 7-2B), both 

in extracellular ligand (Fig 7-S2C) and endothelial cell-bound ligand (Fig 7-2B, orange). This over-

representation results from: (a) lack of ECM-binding, leading to 2.4-fold more free VEGF165b than 

VEGF165a in the PAD Calf Muscle; combined with (b) lack of NRP1-binding slowing binding to VEGFR2 

and subsequent recycling, and thus slowing turn-over of VEGF165b-VEGFR2 complexes. The model 

predicts that this over-representation of VEGF165b in total tissue VEGF and free VEGF in blood (Fig 7-2C), 

is predicted to occur at all VEGF165b levels, with a larger difference in blood than tissue due to monocyte 

secretion of VEGF165b into the bloodstream.  

To further probe the differential distribution of VEGF165a and VEGF165b, we calculated the net 

steady-state secretion, transport, consumption, and clearance of each isoform in each compartment, at 

different fractional VEGF165b secretion rates in the PAD Calf Muscle and Main Body Mass (Fig 7-2D). The 
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first thing to note here is that, consistent with our previous models
60,62,63

, most tissue-secreted VEGF is 

consumed by local endothelial cells. As such, VEGF isoform secretion in one tissue compartment has 

minimal effect on VEGF isoform concentrations in the other compartment, suggesting that local VEGF 

isoform secretion is the key driver of local tissue signaling. A small amount of intravasation of VEGF165b 

and VEGF165a from blood into tissues is predicted only when the two tissue compartments exclusively 

produce different VEGF isoforms. Over-representation of VEGF165b in free tissue VEGF is evident with 

equal secretion of the two isoforms (middle). 

We next examined the potential of plasma VEGF165b as a biomarker of VEGFR signaling in the 

PAD Calf Muscle. We found that, due to its larger size, the Main Body Mass is predicted to contribute the 

bulk of tissue-derived VEGF in the bloodstream (Fig 7-S2B); thus blood VEGF isoform levels are likely a 

poor biomarker of VEGF isoform levels in the PAD Calf Muscle. This prediction is consistent with the lack 

of correlation between serum VEGF165b and ankle-brachial index in PAD patients as measured by Kikuchi 

et. al.
39

, and highlights the need for tissue biopsy or microdialysis measurements to accurately predict 

patient-specific signaling state.  
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Figure 7-2. VEGF165b is predicted to be over-represented in tissue and blood compared to VEGF165a. 

(A) Comparison of model-predicted VEGF distribution to clinical measurements in PAD patients vs. 

healthy control subjects. (B) Predicted distribution of VEGF and PlGF isoforms and sR1 in the PAD Calf 

Muscle, with equal secretion of VEGF165a and VEGF165b by parenchymal cells. (C) Fraction of total VEGF 

in plasma and PAD Calf Muscle (Tissue) that is VEGF165a and VEGF165b, as a function of the relative 

fraction of total VEGF165 secretion (in both tissue compartments). Note that total free VEGF in plasma is 

held constant as the relative secretion ratio changes. (D) Steady-state net flow profiles for VEGF165a and 

VEGF165b between the PAD Calf Muscle, Blood, and Main Body Mass, with varying relative secretion of 

VEGF165a and VEGF165b in the PAD Calf Muscle and Main Body Mass.  
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7.2.3 VEGF165b Is Over-represented in Binding to Endothelial VEGFR1 and VEGFR2 

We next “zoomed in” on the endothelial-bound fraction of tissue VEGF and PlGF, to examine 

growth factor binding to endothelial VEGFR1 and VEGFR2. With equal secretion of VEGF165b and 

VEGF165a in the PAD Calf Muscle, VEGF165b is predicted to dominate binding to both VEGFR1 and 

VEGFR2 (Fig 7-3A), with higher (but still low) receptor occupancy than previously predicted in healthy 

tissue
62

 (Fig 7-S3A). The majority of VEGF165b-VEGFR2 is predicted to be in early signaling (Rab4/5) 

endosomes at steady-state, owing to slow recycling resulting from lack of NRP1-binding and subsequent 

NRP1-mediated recycling. This dominance of VEGFR2 binding by a non-NRP1-binding isoform (60% of 

total ligand) is in contrast to predicted domination by VEGF165a and VEGF189 in healthy tissue in the 

absence of VEGF165b
62

. In the model, we assume that, similar to VEGF121, VEGF165b can bind to NRP1-

VEGFR1 complexes, allowing VEGF165b to become the dominant VEGFR1 ligand (>80% of total ligand at 

50% fractional secretion), a prediction in line with the important role for VEGF165b binding to VEGFR1 

highlighted by Ganta et al
11

, which would not occur in the absence of VEGF165b-NRP1-VEGFR1 complex 

formation (Fig 7-S8). As fractional secretion of VEGF165b increases, the model predicts increasing 

dominance in receptor binding by VEGF165b, with equivalent binding of VEGF165a and VEGF165b to 

VEGFR2 when only 25% of secreted VEGF165 is VEGF165b, and even more dramatic increases in 

VEGF165b-VEGFR1 binding (Fig 7-3B). As VEGF165b increases, surface endothelial VEGFR1 occupancy is 

predicted to increase while surface VEGFR2 occupancy is predicted to decrease, and total VEGFR2 

occupancy remains constant (Fig 7-3C), suggesting a shift in relative signaling by VEGFR2 vs. VEGFR1. 
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Figure 7-3. VEGF165b is predicted to dominate endothelial receptor binding. (A) Break-down of ligands 

bound to endothelial VEGFR2 on the cell surface, in early (Rab4/5) endosomes, and recycling (Rab11) 

endosomes, and cell surface VEGFR1 and NRP1. Unoccupied receptor not shown. Quantities are given in 

pM of total tissue in the PAD Calf Muscle. Complexes not listed in the legend are present at levels too low 

to be seen in the figure. (B) Fraction of ligand-bound endothelial cell surface VEGFR1 and VEGFR2 

bound to VEGF165a and VEGF165b, as a function of the relative fraction of total VEGF165 secretion that is 

VEGF165b. (C) Percentage of endothelial cell surface VEGFR1 and VEGFR2 bound to any ligand, as a 

function of fractional VEGF165b secretion. 
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7.2.4 Novel Insight Gained by Testing Mechanistic Hypotheses 

What appears to be conflicting information in the literature can sometimes be resolved by using a 

computational model to directly compare experiments performed under different conditions. Here we use 

our model to resolve confusion over two key VEGF165b hypotheses.   

Hypothesis 1: VEGF165b is a weak activator of VEGFR2. By explicitly simulating VEGFR2 ligand-

binding and phosphorylation as separate processes, we can now for the first time account for weak 

phosphorylation of VEGFR2 by VEGF165b, and explore the in vivo endothelial signaling implications of 

increased VEGF165b expression in PAD. We fit the phosphorylation rate constant (kp) for VEGFR2 upon 

binding of VEGF165b (as compared to VEGF165a) to in vitro data from PAECs transfected with VEGFR2 

and NRP1 by Kawamura et. al.
52

 using our previously-published cell-level model
61

 (Fig 7-4A & Fig 7-

S4A). The required reduction in kp to fit experimental data (from 1 s
-1

 for VEGF165a to 8x10
-4

 s
-1

 for 

VEGF165b) demonstrates that lack of binding to NRP1 by VEGF165b, which is accounted for in our 

simulations, is not sufficient to explain the weak activation of VEGFR2 observed following stimulation 

with VEGF165b. Together, the experimental data and our model show that, while phosphorylation of 

VEGF165a-VEGFR2 is fast, activation of VEGF165b-VEGFR2 is slow compared to VEGF-VEGFR2 

binding. We validated this prediction against independent data from ex vivo fat pads (Fig 7-4B) 
59

; the 

optimized kp from above (red line) captured a reduction in VEGFR2 phosphorylation as VEGF165b 

increased, demonstrating the need for this adjustment to accurately predict signaling in tissues. 

To validate this mechanistic insight in vivo, we compared model predictions of VEGF and 

VEGF165b protein levels and VEGFR2 activation to measurements in human PAD and murine hindlimb 

ischemia from an extended analysis of the data presented in Ganta et al
11

. To match the roughly 3-fold 

increase in VEGF165b observed in human PAD and murine hindlimb ischemia, we compared simulation 

results for 75% fractional VEGF165b secretion to those for 25% fractional VEGF165b secretion. These 

simulations predict the effect of changing VEGF165b secretion only; we made no other changes in tissue 

anatomy or molecular expression. The model accurately captures the increase in VEGF165b without 

substantial increases in total VEGF or VEGF-R2 observed in PAD patient muscle biopsies, validating the 

model’s predictive power for human PAD (Fig 7-4C), and suggesting altered VEGF splicing is a key driver 

of the observed signaling changes. We also compared these model predictions to murine hindlimb ischemia 
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(HLI); while tissue VEGF levels increase substantially in HLI, the model accurately captures trends in 

VEGF binding to VEGFR2 and the observed lack of increase (non-significant decrease) in VEGFR2 

phosphorylation (Fig 7-4D). This suggests that, while there are many differences between human PAD and 

murine HLI, receptor-level signaling appear to be similar in this case, giving us confidence in the relevance 

of comparisons between model predictions and experimental data in mice. 

Hypothesis 2: VEGF165b does not compete with VEGF165a for binding to VEGFR2 at physiological 

concentrations. We leveraged the newly fit and validated model to test the prevailing hypothesis that 

VEGF165a and VEGF165b compete for binding to VEGFR2, leading to observed reductions in VEGFR2 

phosphorylation in some experiments. To do this, we simulated VEGFR2 phosphorylation in cultured 

endothelial cells following stimulation with VEGF165a, VEGF165b, or both (Fig 7-4E). The model captured 

experimentally-observed competition at in vitro concentrations of 1nM or higher 
53,54

. However, 

competition is concentration-dependent, and the model predicts that, due to low receptor occupancy (Fig 7-

S4B, dotted lines) at physiological concentrations (1-15pM), VEGF165a and VEGF165b do not compete for 

VEGFR2 activation in vivo. We then further examined signaling in vivo using the compartment model, with 

PAD-specific molecular expression and physiology in the calf muscle. This model predicted that the 

impaired VEGF receptor signaling with increasing VEGF165b expression observed in PAD results from 

reduced expression of other VEGF isoforms (as total VEGF levels are unchanged), rather than from 

competition between VEGF isoforms for receptor binding, as observed in vitro (Fig 7-4E & Fig 7-5D). 

This conclusion, which could not have been reached with experiments alone, has important implications for 

therapy; it suggests strategies designed to increase local VEGFxxxa secretion or delivery will have a larger 

impact on VEGFR2 phosphorylation than antibody-based therapies designed to remove VEGF165b  

Putting the above together, we can conclude that: VEGF165b is a weak activator of VEGFR2, but 

does not compete with VEGF165a for binding to VEGFR2 at physiological concentrations. 
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Figure 7-4. Implications of weak VEGFR2 phosphorylation by VEGF165b in vitro and in vivo. (A) The 

phosphorylation rate for VEGFR2 bound to VEGF165b was fit to in vitro data from Kawamura et. al.
52

, 

minimizing the least squared error between data and simulation for the ratio of pR2 when stimulated with 

VEGF165b or VEGF165a at different concentrations. Axes units: 10
-4

 s
-1

. (B) Validation of optimized kp value 

for VEGF165b against measurements of pR2 as a function of relative VEGF165b in ex vivo human fat pads as 

measured by Ngo et. al.
59

 (C-D) Validation of in vivo compartment model against human PAD and mouse 

hind-limb ischemia measurements from an extended analysis of the data set presented in Ganta et al.
11

. 

Simulations use values in the PAD calf muscle, with 75% secretion of VEGF165b, normalized by the 25% 

VEGF165b secretion case. (C) Human data are total tissue measurements from PAD muscle biopsies, 

normalized by healthy patient values. Asterisks denote significance using an unpaired, two-tailed t-test with 

p≤0.05. n=10 PAD subjects, 5 normal subjects for VEGF protein measurements, 6 normal subjects for 

VEGF-VEGFR binding. (D) Mouse measurements are from muscle 3 days after femoral artery ligation, 

and represent total tissue measurements (receptor-bound ligand and VEGF protein) or CD31+ cells 

(pR2/R2), normalized by equivalent quantities in the contralateral leg. Asterisks denote significance using 

an unpaired, two-tailed t-test with p≤0.05. n=4. (E) Dose-dependent competition between VEGF165a and 

VEGF165b. pR2 at 5 minutes after VEGF addition, normalized by VEGF165a at each concentration. 

Simulations performed using endothelial cell culture model including VEGFR2 and NRP1, but not 

VEGFR1
61

.  
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Figure 7-4 
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7.2.5 VEGF165b regulates signaling of both VEGFR2 and endothelial VEGFR1 in vivo  

We next explored model predictions of VEGFR2 phosphorylation and VEGFR1 ligand-binding in 

vivo. Despite being the dominant ligand bound to VEGFR2, VEGF165b is predicted to contribute only 

modestly to pR2, even without competing with other isoforms for VEGFR2, due to its weak ability to 

phosphorylate VEGFR2.  The fraction of ligand-bound VEGFR2 phosphorylated at steady-state decreasing 

from 62% with no VEGF165b secretion to 16% with 100% relative VEGF165b secretion (Fig 7-5A&C, Fig 7-

S5A). Due to the differences in dephosphorylation rates on the cell surface and in endosomes 
61

, very little 

VEGF165b-R2 is predicted to be phosphorylated on the cell surface, though some VEGF165b-R2 

phosphorylation in early endosomes is predicted. This leads to a dramatic predicted reduction in 

pY1214/pY1175 (and relative migratory vs. proliferative downstream signaling) when VEGFR2 is bound 

to VEGF165b compared to other VEGF isoforms (Fig 7-5B & Fig 7-S5C), an unvalidated but 

experimentally testable model prediction.  

A lack of detailed understanding of VEGFR1 phosphorylation by different ligands makes explicit 

prediction of VEGFR1 signaling difficult, though VEGF and PlGF activate different tyrosine sites
64

, and 

VEGF165b appears not to activate Y1333 on VEGFR1, upstream of STAT3 in PAD
11

. As a step towards this 

end, we examined the profile of ligands predicted to bind endothelial cell surface VEGFR1 at steady-state, 

with varying relative VEGF165b secretion (Fig 7-5E & Fig 7-S5B). With increasing VEGF165b, ligation of 

VEGFR1 by other VEGF isoforms and by PlGF is predicted to decrease. While expression of VEGF165a is 

decreasing as VEGF165b increases, PlGF expression remains constant. Thus, this reduction in PlGF-

VEGFR1 suggests that, unlike VEGFR2, and consistent with recent data from Ganta et al.
11

, competition 

between VEGF165b and other ligands does occur on VEGFR1.  This effect is likely magnified by the 

presence of VEGFR1 on other cell types that play a role in PAD (e.g. monocytes and macrophages), which 

are not included in this model. Comparing these model predictions of VEGFR1 binding to reduced 

VEGFR1 Y1333 phosphorylation in murine HLI
11

 suggests that both PlGF and non-VEGF165b VEGF 

isoforms may contribute to VEGFR1 Y1333 phosphorylation (Fig 7-5F). The lack of close match in model 

predictions of VEGF binding to VEGFR1 are likely owing to our incomplete understanding of VEGFR1 

signaling and expression on multiple cell types. This result emphasizes the need for careful quantitative 



 294 

studies to discriminate between physiological and molecular conditions under which competition does or 

does not play a role, and to further elucidate the role of VEGFR1 on endothelial and other cells in PAD.  
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Figure 7-5. In vivo VEGFR activation varies with VEGF165b levels in simulated human PAD. (A) 

VEGFR2 phosphorylation (on at least one tyrosine site) as a function of VEGF isoform and subcellular 

location in the PAD Calf Muscle, with 50% of VEGF165 secretion being VEGF165b. (B) VEGF isoform-

specific, NRP1-dependent trafficking and subcellular location-specific dephosphorylation rates for Y1175 

and Y1214 lead to isoform-specific predictions of relative activation on Y1175 and Y1214, with VEGF165b 

favoring pY1175. 50% of VEGF165 secretion is VEGF165b.  (C) Comparison of changes in VEGFR2 

ligation and phosphorylation by VEGF165b, as a function of local fractional VEGF165b secretion. (D) 

Summary of total (cell surface + endosomes) VEGFR2 activation as a function of local fractional VEGF165b 

secretion. (E) Summary of endothelial surface VEGFR1 ligation as a function of local fractional VEGF165b 

secretion. (F) Comparison of experimental VEGF-VEGFR1 and pR1 in murine hindlimb ischemia and 

model predictions of VEGFR1 ligation. Simulations use values in the PAD Calf Muscle, with 75% 

secretion of VEGF165b, normalized by the 25% VEGF165b secretion case. Mouse measurements are from 

muscle 3 days after femoral artery ligation, and represent CD31+ cells, normalized by equivalent quantities 

in the contralateral leg. Asterisks denote significance using an unpaired, two-tailed t-test with p≤0.05. n= 

10. 
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Figure 7-5 

 

 

  



 297 

7.2.6 VEGF165b over-expression experiments confirm competition for VEGFR1, but not VEGFR2  

To this point, we have focused on a switch in expression of VEGF165a and VEGF165b, with total 

VEGF remaining constant. However, this is not an accurate reflection of murine hindlimb ischemia, where 

total VEGF increases, or time-varying changes in VEGF secretion in exercising humans or during 

intermittent claudication. As such, we studied the impact of changes in VEGF165b expression, independent 

of VEGF165a secretion. We first examined experimental over-expression of VEGF165b. Using an extended 

analysis of the data presented in 
11

, and assuming changes in expression of VEGF165b only, measurements 

of total VEGFA and VEGF165b suggest that in non-ischemic Balb/c mouse muscle, VEGF165b represents 

approximately 24% of total VEGF, increasing to 64% in the VEGF165b overexpression experiment. As 

such, we used 25% fractional VEGF165b secretion as our model baseline, increasing VEGF165b secretion 3.5-

fold to match experimental observations. The model mirrors the small (~10%), non-significant increase in 

VEGFR2 phosphorylation observed experimentally, and predicts decreased PlGF-VEGFR1 binding, 

potentially consistent with the non-significant decrease in VEGFR1 phosphorylation observed, and again 

supporting the hypothesis that ligands compete for VEGFR1 but not VEGFR2. We further investigated the 

sensitivity of VEGFR1 and VEGFR2 signaling to small changes in VEGF165b expression (Fig 7-6C & Fig 

7-S6A). The model predicts that VEGFR1 is consistently more sensitive to changes in VEGF165b expression 

than VEGFR2, and that signaling changes less in response to varying VEGF165b than varying VEGF165a 

(Fig 7-6C & Fig 7-S6B). 

An open question in the field is whether VEGF165b detected in serum is found in plasma or only in 

formed elements (e.g. PBMCs, platelets). To examine the impact of freely available VEGF in the 

bloodstream, we turned off secretion of VEGF165b by monocytes into the blood. The model predicts very 

little (<1%) change in VEGF levels or signaling in the PAD Calf Muscle (Fig 7-6D), reinforcing our earlier 

conclusion that tissue secretion is the key driver of local signaling, and suggesting that whether or not high 

free VEGF165b is present in plasma is not important for angiogenic impairment in PAD. We also explored 

the possibility that some monocyte-derived VEGF165b is secreted into tissues instead of the bloodstream 

(Fig 7-S6D). 
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Figure 7-6. Non-switch-like changes in VEGF165b expression affect VEGFR1 activation more than 

VEGFR2 activation. (A-B) Validation of in vivo compartment model against mouse VEGF165b 

overexpression, from an extended analysis of the data set presented in Ganta et al.
11

. Simulations use values 

in the PAD Calf Muscle, using the 25% VEGF165b secretion case as the non-ischemic baseline, and 

increasing VEGF165b expression to mirror the experimental increase in VEGF165b protein. Mouse 

measurements are taken from non-ischemic muscle 7 days after transfection with VEGF165b plasmid or a 

control plasmid, and represent total tissue measurements (receptor-bound ligand and VEGF protein) or 

CD31+ cells (pR1/R1), normalized by equivalent quantities in the control group. (A) VEGF protein and 

endothelial VEGFR2 phosphorylation. Asterisks denote significance using an unpaired, two-tailed t-test 

with p≤0.05. n=4. (B) Experimental endothelial VEGFR1 phosphorylation, compared to simulated break-

down of VEGFR1 ligand-binding. n=4. (C) Simulation of direct increases or decreases in local VEGF165b 

secretion in the PAD Calf Muscle, at 50% fractional VEGF165b secretion in both tissue compartments, 

normalized to baseline quantities. (D) Predicted impact of removing monocyte secretion of VEGF165b into 

the bloodstream on quantities in the PAD Calf Muscle.  

 

 



 299 

7.2.7 Other potential contributions to impaired angiogenesis in PAD  

Finally, we examined other potential, non-VEGF165b-related contributions to impaired signaling in 

PAD. We compared predicted signaling in a PAD Calf Muscle, a Healthy Calf Muscle
62

, and a PAD Calf 

Muscle with healthy endothelial receptor expression, or healthy permeability levels (Fig 7-S7). We found 

that only receptor expression levels had a noticeable impact on VEGFR2 phosphorylation, suggesting 

potential value in receptor-targeted gene therapy. It, however, remains an open question whether the total 

number of phosphorylated receptors or activated fraction is key to signaling.  
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7.3 Discussion 

 
Our objective in building this model was to investigate in detail the implications of the 

experimentally-measured properties of VEGF165b – lack of ECM-binding, lack of NRP1-binding, and weak 

phosphorylation of VEGFR2 – on the role of this isoform in peripheral artery disease. We leveraged a 

previously-built and validated computational model that accounts explicitly for differences in ECM- and 

NRP1-binding by VEGF isoforms, as well as simulating binding, trafficking, and tyrosine site-specific 

phosphorylation of VEGFR2 as distinct, though related, processes
62

. This framework enabled us to directly 

implement the unique properties of VEGF165b, making predictions of disease-specific in vivo concentrations 

and signaling that are difficult, if not impossible, to quantify experimentally. In doing so, we built a model 

that is qualitatively consistent with all observed in vitro behaviors of VEGF165b and all available knowledge 

of VEGF distribution in human PAD (Fig 7-2A). This process sheds light onto the mechanism of action of 

VEGF165b in PAD (Table 7-1) more accurately and more completely than previous models have done
60,65

 

(Table 7-S15), providing insight that is critical for design of future pro-angiogenic therapies,  
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Table 7-1. Key Model Predictions  

Prediction Experimental Basis or 

Validation 

Therapeutic Implications  

VEGF165b is over-

represented in tissue. 

Elevated muscle VEGF165b in 

PAD and murine hindlimb 

ischemia
11,65

. (Fig 2) 

Understand pharmacokinetics of 

VEGF165b to better predict its role 

in disease and therapy response. 

 

VEGF165b secretion into 

the blood by monocytes 

has minimal effect on 

baseline VEGFR 

signaling. 

Unchanged total muscle VEGFA 

in PAD
11,12

. (Figs 2 & 6) 

Blood VEGF165b is neither a good 

biomarker nor a therapeutic 

target for pro-angiogenic therapy. 

 

VEGF165b is a weak 

activator of VEGFR2 in 

vivo. 

Consistent with in vitro 

observations
52-54

, ex vivo 

measurements (fat pads)
59

, and in 

vivo data
11

. (Figs 4 & 6) 

Translate in vitro observations 

into an in vivo, physiological 

context to predict changes in 

signaling in disease.  

 

Reduced VEGF165a in 

PAD contributes to 

reduced VEGFR2 

phosphorylation. 

Prediction is result of properties 

measured in vitro
52-54

 placed in a 

physiological context. (Fig 4) 

VEGF165b-VEGFR2 binding 

alone is not responsible for 

reduced angiogenic signaling in 

PAD. Affects therapy design. 

 

VEGF165b does not 

compete for binding to 

VEGFR2, but does 

compete for binding to 

VEGFR1. 

VEGR1 phosphorylation is 

increased by delivery of anti-

VEGF165b and decreased by 

overexpression of VEGF165b, but 

VEGFR2 phosphorylation is not 

substantially affected
11

. (Figs 4-6) 

Understand mechanism of action 

of VEGF165b, and how anti-

VEGF165b induces improved 

perfusion recovery in mice
39

. 

Leverage for design of pro-

angiogenic therapies. 
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7.3.1 Interpretation of model predictions 

The results presented in this paper demonstrate that VEGF165b does indeed play a role in the 

pathology of PAD, but in a different way than previously hypothesized. For example, the model predicts 

that, contrary to in vitro observations, VEGF165b does not compete with other VEGF isoforms for binding to 

VEGFR2 in vivo, due to the low VEGF concentrations and VEGFR2 occupancy predicted in physiological 

conditions. Instead, as total VEGF levels are roughly constant in PAD-afflicted tissue, the model suggests 

that reduced VEGF165a levels, concomitant with increasing VEGF165b, is the source of reduced VEGFR2 

phosphorylation observed in some studies
39,59

. As another example, consistent with experimental data
11

, the 

model predicts that modest increases in VEGF165b will indeed slightly increase pR2, not reduce it, and 

decreased VEGF165b will decrease pR2 slightly. Interestingly, and again consistent with Ganta et. al.
11

 and 

the previously unpublished data presented here, the model does predict competition between VEGF165b and 

other ligands for binding to VEGFR1, which appears to be poorly or not at all activated by VEGF165b on 

tyrosine-1333. This supports a VEGFR1-mediated pro-angiogenic response to anti-VEGF165b treatment, as 

opposed to a VEGFR2-mediated response. The model also predicts that increased secretion of VEGF165b 

into the bloodstream by monocytes does not play a major role in VEGFR signaling in tissue, with locally-

produced VEGF dominating the local signaling environment. The model does predict over-representation 

of VEGF165b protein and VEGF165b receptor binding in tissue, suggesting that microdialysis or muscle 

biopsy measurements of VEGF165b may be a good predictor of local angiogenic impairment.  

 

7.3.2 Open questions 

There are still many open questions about the role and properties of VEGF165b, which limit our 

ability to fully interpret our model predictions, but which, with new experimental data, this model can be 

leveraged to answer. These measurements would increase our ability to understand and confidently predict 

the effectiveness of potential pro-angiogenic therapies. At the in vitro scale, there is still uncertainty in 

some of the binding properties of VEGF165b (e.g. binding to NRP1-VEGFR1 complexes) and 

characterization of different length VEGFxxxb isoforms, which necessitated certain assumptions in the 

construction of this model. At the molecular level, a better understanding of how exactly VEGF165b binds 

with normal affinity to VEGFR2 but induces only weak activation would be instructive. A potential 
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hypothesis involves changes in homo- and hetero-dimerization of ligands or receptors. This study and the 

work of Ganta et. al.
11

 motivate a better understanding of VEGFR1 binding, trafficking, and differences in 

activation by VEGF165b, other VEGF isoforms, and PlGF, in order to better target this pathway in PAD and 

other human diseases. In this study we cannot make definitive statements about VEGFR1 signaling, owing 

to the incomplete mechanistic understanding of VEGFR1 upon which we can construct our model. 

Additionally, we focused here exclusively on endothelial VEGFR1. A better understanding of the role of 

VEGFR1 signaling on macrophages and monocytes, which are involved in arteriogenesis, and which 

populations of receptors may contribute to the observed competition between ligands for VEGFR1 binding, 

is also key to fully understand the role of VEGF receptors in PAD. The existence of VEGF-Ax read-though 

transcripts
66

 also deserves further investigation, to see whether they play a physiological role similar to that 

of VEGF165b.  

Finally, and perhaps most critically, we are limited by available quantitative measurements of 

absolute and relative levels of VEGF165a and VEGF165b in blood, healthy tissue, and diseased tissue. While 

measurements of difference in total protein between healthy and diseased tissue are available, quantitative 

measurements are key to pin down the distribution of these isoforms. For example, how much VEGF165b is 

present in healthy tissue remains an open question, though we know it decreases in several types of 

cancer
36,37

, and increases in PAD and white adipose tissue
11,39,59

. We used our model to explore the 

dynamic range of relative VEGF165a and VEGF165b secretion and the implications of this splicing switch for 

signaling in a way that has not been possible experimentally. However, to fully understand signaling in 

disease, we need to know where patients reside on this spectrum. In this model, we assumed high VEGF165b 

only in the blood and in a relatively small PAD calf muscle, while in real patients with extensive PAD or 

systemic cardiovascular disease and/or large quantities of adipose tissue, the relative amounts of “healthy” 

and “diseased” tissue with high VEGF165b expression may be very different, potentially altering the 

VEGF165b pharmacokinetic predictions presented here. While such reliable and quantitative measurements 

remain challenging, there is hope that the future will bring the required tools, which, with the help of 

quantitative frameworks to integrate the data, will continue to improve our understanding of PAD and 

VEGF165b, leading to more successful therapy design and clinical outcomes.  
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7.3.3 Conclusions 

This model, the first to translate in vitro observations of VEGF165b properties into the context of 

human PAD, provides novel insight into questions that have remained challenging to answer due to limited 

measurement feasibility and a lack of reliable, quantitative measurement techniques. In doing so, we were 

able to integrate existing knowledge and previously unpublished data to test prevailing hypotheses about 

VEGF165b mechanism of action in PAD, and highlight important future questions and measurements on the 

path towards more effective treatments for PAD. The model’s ability to capture key aspects of VEGF 

signaling in human PAD and murine hindlimb ischemia, as well as predict response to perturbation 

(VEGF165b over-expression) gives us confidence that the insight elucidated here is meaningful and relevant. 

In the future, this work can be extended to examine the role of VEGF165b in other diseases (e.g. cancer, 

obesity, pre-eclampsia), and to examine the signaling effects of promising pro-angiogenic therapies. 
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7.4 Methods 

 
7.4.1 Compartmental Model Formulation 

To study the distribution of VEGF165b, as compared to other VEGF and PlGF isoforms, within the 

human body, we modified our three-compartment model
62

, including the blood, the main bulk of body 

tissue (Main Body Mass), and a calf muscle (gastrocnemius + soleus), to include PAD-specific changes in 

geometry and molecular expression in the calf compartment. In this model, VEGF, PlGF, and sR1 move 

between the compartments by way of bi-directional vascular permeability and lymphatic drainage of tissue 

mass into the blood. All complexes can also be cleared from the blood. Within the tissue compartments, the 

relative fractions of interstitial space filled with fluid, extracellular matrix, endothelial cells, other cells 

including myocytes, and basement membranes (both endothelial – “EBM” and parenchymal – “PBM”), are 

estimated based on histology and other measurements.  

We simulate detailed molecular interactions within the tissue compartments to capture the 

pharmacodynamics of VEGF, PlGF, and sR1 interactions with VEGFR1, VEGFR2, and NRP1, as well as 

interstitial HSPGs. VEGF and PlGF are secreted by parenchymal cells, and sR1 by endothelial cells (EC), 

into the interstitial space, where they can bind to EC receptors or to HSPGs in the ECM and basement 

membranes. VEGF165b production by monocytes in the bloodstream is also included
39

. VEGF, PlGF, and 

sR1 can be removed from the tissue compartments via binding to EC receptors and subsequent intracellular 

degradation, or via vascular permeability and lymphatic drainage (Fig 7-S1). Isoform-specific growth 

factor binding affinities for HSPGs and NRP1 are included to capture the resulting differences in 

distribution and signaling of each VEGF and PlGF isoform. The details of growth factor and sR1 binding to 

EC receptors are as previously described
62

 (summarized in Tables 7-S1 through 7-S9), with the addition of 

VEGF165b, which binds to VEGFR1 and VEGFR2 with the same affinity as other VEGF isoforms, but does 

not bind to NRP1, due to the change in the six amino acids of exon 8
53

. Additionally, despite including the 

VEGF heparin-binding domain, VEGF165b fails to bind to heparin or HSPGs
52-54

, presumably due to 

structural difference induced by the alternate exon 8. Thus, we assume that VEGF165b cannot bind to 

HSPGs in the ECM and basement membranes. As in our previous model, endothelial receptors are 

continually produced, internalized, recycled, and degraded, with rates that depend on ligand-binding and 

coupling with the co-receptor NRP1
61,67

. Production is tuned to maintain target surface receptor levels at 
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steady-state. Upon ligand-binding we simulate site-specific phosphorylation of VEGFR2 on tyrosines 

Y1175 (upstream of ERK1/2 and proliferation) and Y1214 (upstream of p38 MAPK and migration), with 

preferential activation of Y1214 at the cell surface and Y1175 in early signaling endosomes
61

. As VEGF165b 

has been shown to phosphorylate VEGFR2 poorly compared to other VEGF isoforms, we fitted the 

phosphorylation rate upon binding to VEGFR2 using in vitro data, and validated against ex vivo and in vivo 

data. This allows us to study VEGF isoform-specific, site-specific phosphorylation of VEGFR2. 

We assume infinitely fast diffusion, thus neglecting spatial patterning and heterogeneity in 

distribution and signaling. This is a useful trade-off for speed on computation, and allows us to focus on 

average values for healthy tissue and a PAD calf, in the context of the whole body and changes in VEGF 

splicing. We neglect direct secretion of sR1 by ECs into the bloodstream, and the expression receptors on 

the luminal (blood-facing) side of endothelial cells, focusing on “tissue-side” (abluminal) signaling, as 

angiogenesis is directed outward into tissue from the existing vasculature.  

The model, comprised of 749 equations, is simulated in Fortran using the Livermore Solver for 

Ordinary Differential Equations with Automatic method switching for stiff and nonstiff problems 

(LSODA) on a laptop PC, using a relative error tolerance of 10
-6

. 

 

7.4.2 Model Parameterization  

Geometry. The tissue geometry and compartment sizes represent a 70kg healthy human as use 

previously
62

, with the calf muscle parameters now reflecting the PAD parameterization used in 
60

 (Table 7-

S12). These geometries are based on histological cross-sections of human muscle, as well as other data. 

PAD-specific changes incorporated include atrophy of calf muscle, leading to reduced total calf volume 

and increased fractional interstitial space, and thickening of endothelial basement membranes. The blood is 

assumed to be 60% plasma. 

Binding and Coupling Kinetics. With the exception of VEGF165b, all binding reactions are parameterized 

as described previously
62

 (summarized in Figure 7-S1B&E and Tables 7-S1 though 7-S9). This includes 

binding of matrix-immobilized VEGF and PlGF to sR1, and to EC receptors (described recently in 
61,62

). By 

incorporating isoform-specific binding to matrix proteins and NRP1, we can study differences between 

VEGF165b and other VEGF isoforms. While there are no published studies on binding of VEGF165b to 
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NRP1-VEGFR1 complexes, including this reaction improves match between predictions and experimental 

observations (see Fig 7-S8) 
11

. We assume the same binding and unbinding rate constants for VEGF165b 

binding to VEGFR1 and VEGFR2 as for other VEGF isoforms. As before, we assume all ligands and 

receptors are pre-dimerized. We assume that immobilized ligand bound to the innermost 25nm of 

endothelial basement membrane is accessible to EC surface receptors
62

.  

Receptor Trafficking and VEGFR2 Phosphorylation: Fitting & validating kp for VEGF165b. We 

included receptor trafficking and site-specific phosphorylation of VEGFR2, as previously described 

(summarized in Figure 7-S1C&D and Tables 7-S10 & 7-S11). This allows us to explicitly predict 

VEGFR2 activation, and not just receptor occupancy, and is key to understanding the binding of matrix-

immobilized VEGF isoforms to VEGFRs 
61

. This is also of importance to explicitly account for weak 

phosphorylation of VEGFR2 when stimulated with VEGF165b, despite normal binding affinity
53,54

. 

VEGFR1 trafficking is included, but as sufficient data is not available to confidently parameterize these 

processes at the same resolution as VEGFR2 trafficking, free and ligand-bound VEGFR1 quantities are 

shown only on the EC surface. For all VEGF isoforms except VEGF165b, we assume the same constant 

phosphorylation rate (kp) for ligand-bound VEGFR2. For VEGF165b, we fit the phosphorylation rate using 

published in vitro data. This study, by Kawamura et. al.
52

 measured VEGFR2 phosphorylation at 5 minutes 

after exposure to varying doses of VEGF165a or VEGF165b in PAECs transfected to express VEGFR2 and 

NRP1. In our simulation, we used our in vitro model (previously described 
61

), now parameterized with the 

specific VEGFR2 and NRP1 levels for PAECs
61

. These experiments did not include ECM-binding, so the 

only differences between VEGF165a and VEGF165b in the simulation were NRP1-binding and the fit kp 

value. The kp value for VEGF165b was fitted to minimize the least squared error for the ratio of VEGFR2 

phosphorylated in response to VEGF165b / VEGFR2 phosphorylated in response to VEGF165a at each 

concentration. For all isoforms, we assumed the same site-specific and subcellular location-specific 

dephosphorylation rates as fit in our previous in vitro model
61

. After fitting the VEGF165b-specific VEGFR2 

phosphorylation rate constant, we validated it qualitatively using data from explanted human fat pads
59

. To 

do this, we ran our compartment model to steady-state at different levels of relative VEGF165a
 
and 

VEGF165b production. Then, we shut off intercompartmental transport to mimic the explant and simulated 

24 hours (culture time). Finally, we analyzed the amount of phosphorylated VEGFR2, and compared this to 
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the trend of decreasing pR2 with increasing tissue VEGF165b levels in the fat pad measurements. While this 

data comes from obese, non-PAD patients, the matching trend in VEGF165b
 
levels and pR2 between the 

experimental data and simulations, which does not occur with a higher kp value, validates our fit estimate of 

this phosphorylation rate. 

Transport. Transport parameters and PAD-specific changes in transport were taken directly from previous 

models, assuming a supine, awake 70kg human
60,63

 (Table 7-S13). 

Protein Expression. Interstitial matrix binding site densities in the ECM and basement membranes 

remained the same as in the previous PAD model
60

 (Table 7-S14). Endothelial surface receptor levels in 

healthy tissue were also the same as our previous healthy model, while changes to receptor expression in 

the PAD calf muscle were based on measured changes in EC surface receptor numbers following hindlimb 

ischemia in a murine system
68

, with VEGFR1 and NRP1 levels increasing and VEGFR2 levels decreasing 

(Table 7-2). The ratios of PlGF isoform secretion
69

 were unchanged from our previous model, and tissue 

secretion ratios of VEGF121, VEGF165, and VEGF189 were also unchanged
51

 (Table 7-2). Given the 

uncertainty in the relative production of VEGF165a and VEGF165b in healthy and ischemic tissue, and 

microdialaysis measurements showing that interstitial VEGF levels are not significantly different in resting 

PAD muscle than in healthy tissue
12

, we varied the relative splicing of VEGF165 (77% of total VEGF 

production in the model) from “all VEGF165a” (0%) to “all VEGF165b”
 
(100%), and examined the effects on 

VEGF distribution and VEGFR1 and VEGFR2 activation. Due to differences in the properties of VEGF165a 

and VEGF165b, the VEGF secretion rate and the VEGFR1, VEGFR2, and NRP1 production rates had to be 

re-tuned for each case considered (0%, 25%, 50%, 75%, and 100%, see Tables 7-SM1& 7-SM2). The 

PlGF and sR1 production rates were not altered; this resulted in only small changes in plasma 

measurements, and plasma PlGF levels are not known to change in PAD
70,71

, while plasma sR1 levels have 

been observed to either remain unchanged or decrease
7-9,71

 (in contrast to the increase in sR1 observed 

following hindlimb ischemia in murine systems
26

). Production rates for VEGFR1, VEGFR2, and NRP1 in 

the healthy Main Body Mass were not changed from the previous healthy model; only small changes in 

surface receptor levels occurred. Finally, we included for the first time production of VEGF165b in the 

bloodstream by monocytes, as demonstrated by Kikuchi et. al.
39

 As tissue VEGF levels do not increase in 

PAD, but plasma levels are generally seen to increase roughly three-fold
7-10

, after fitting tissue secretion 
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and production rates to maintain the healthy target level of 1.5pM VEGF in plasma and appropriate EC 

receptor levels, we increased blood-located monocyte production of VEGF165b until the PAD target plasma 

VEGF level of 4.5pM was achieved. This did not have a substantial effect on tissue ligand or receptor 

levels (see Suppl. Model Fitting). 
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Table 7-2. Target Surface Receptor and Plasma Ligand Levels at Steady-State 

Species Target 

Location 

PAD Target 

Value 

Healthy Target 

Value 

Units Ref 

VEGFR1 Main Body 

Mass 

1800 1800 Surface 

receptors/EC 

49,59
 

 PAD Calf 

Muscle 

3150 1800 Surface 

receptors/EC 

49,59
 

VEGFR2 Main Body 

Mass 

5800 5800 Surface 

receptors/EC 

49,59
 

 PAD Calf 

Muscle 

4750 5800 Surface 

receptors/EC 

49,59
 

NRP1 Main Body 

Mass 

70,000 70,000 Surface 

receptors/EC 

49,59
 

 PAD Calf 

Muscle 

122,500 70,000 Surface 

receptors/EC 

49,59
 

sR1 Plasma 100 100 pM 
7-

9,71
 

PlGF Plasma 10 10 pM 
70,71

 

  PlGF1  15% 15% % of tissue 

production 

69
 

  PlGF2  85% 85% % of tissue 

production 

69
 

VEGF Plasma 4.5 1.5 pM 
7-10

 

 VEGF165  0-77% 77% % of tissue 

production 

51
 

 VEGF121  8% 8% % of tissue 

production 

51
 

 VEGF189  15% 15% % of tissue 

production 

51
 

VEGF165b  0-77% 0% % of tissue 

production 

 

Notes:  

*Receptor level fold changes based on fold changes following hindlimb ischemia in mice
68

, applied to 

healthy human cell numbers. 

*Unit conversions for receptor levels to molecules/cm
3
 tissue: 

 , where NAv
 
is Avogadro’s number, 6.023x10

23
 

molecules/mole. 

 

  

		

[R]	in	
moles

cm3 	tissue
= [R]	in	

#

EC

æ

èç
ö

ø÷
×
ESAV

ECSA
×

1

N
Av
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Simulations of Human PAD and Murine Hindlimb Ischemia. To match the roughly 3-fold increase in 

VEGF165b observed in human PAD and murine hindlimb ischemia, we used 75% fractional VEGF165b 

secretion as our ”PAD” case and 25% fractional VEGF165b secretion as our “normal” case. We did not 

make any other changes in tissue anatomy or molecular expression for these simulations. Note that we used 

our human-parameterized model for comparison to both human and mouse data, despite many differences 

in anatomy and molecular expression. Delivery of VEGF165b plasmid to non-ischemic mouse muscle was 

simulated using the 25% fractional VEGF165b secretion case, increasing VEGF165b secretion 3.51-fold to 

match experimental measurements of increased muscle VEGF165b protein. 

Experimental Measurements of Human PAD and Murine Hindlimb Ischemia. The experimental data 

presented in this paper represent an extended analysis of the results presented in 
11

, and all methods are the 

same as those in 
11

. Human data are total tissue measurements from muscle biopsies in PAD patients, 

normalized by healthy patient values. Western blot measurements of VEGF and VEGF165b were used as the 

VEGF165b ELISA used by Ganta et al. also detects other VEGFxxxb isoforms. For the ischemic vs. non-

ischemic comparisons, mouse measurements are taken from muscle 3 days after femoral artery ligation, 

and represent total tissue measurements (receptor-bound ligand and VEGF protein) or CD31+ cells 

(pR2/R2, noted by (EC) in plots), normalized by equivalent quantities in the contralateral leg. In the 

VEGF165b over-expression experiments, mouse measurements were taken from non-ischemic muscle 7 days 

after transfection with VEGF165b plasmid or a control plasmid, and represent total tissue measurements 

(receptor-bound ligand and VEGF protein) or CD31+ cells (pR1/R1, noted by (EC) in plots), normalized by 

equivalent quantities in the control group. 
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7.6 Supplemental Model Fitting  
 

7.6.1 Incorporation of VEGF165b Properties and Secretion into the Computational Model 

We first adjusted our model to capture anatomical and molecular expression changes occurring in 

PAD (summarized in Tables 7-2 & 7-S12), based on measurements of endothelial receptor levels in 

ischemia [4] and previous modeling work [1] with increased endothelial surface VEGFR1 and NRP1, and 

decreased endothelial surface VEGFR2 (Table 7-2). We then tuned the model to explore the implications 

of varying expression of VEGF165b. We varied the fraction of total VEGF165 secretion (which is 77% of 

total VEGF secretion, the rest being VEGF121 and VEGF189) that is VEGF165b from 0% to 100% in both the 

PAD Calf Muscle and the Main Body Mass, mimicking decreasing tissue and serum VEGF165a concurrent 

with increasing VEGF165b [3, 5]. As we varied the VEGF165b secretion fraction, we had to re-tune the 

receptor production and ligand secretion rates (Table 7-SM1) in the model to maintain target receptor 

levels and plasma ligand concentrations (Table 7-SM2). As VEGF165b secretion increased, we had to 

increase production of VEGFR1 and decrease production of VEGFR2 and total VEGF to meet these targets 

(Fig 7-S2D). Finally, we incorporated secretion of VEGF165b into the bloodstream by monocytes to reach 

the PAD target plasma VEGF level of 4.5pM. This is in line with the correlation between peripheral blood 

mononuclear cell VEGF165b mRNA and serum VEGF165b levels measured by Kikuchi et. al.[5], suggesting 

that this monocyte-derived VEGF165b likely represents a substantial portion of blood VEGF165b.  
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Table 7-SM1. Receptor Production and Ligand Secretion Rates  

  Local Tissue Fraction of VEGF165 Production that is VEGF165b 

Species Location 0.0 0.25 0.5 0.75 1.0 Units 

VEGFR1 Main Body 

Mass 

1.162 1.75 2.1 2.315 2.48 Change from No 

VEGF SS 

 PAD Calf 

Muscle 

1.14 1.805 2.188 2.44 2.615 Change from No 

VEGF SS 

VEGFR2 Main Body 

Mass 

32.09 23.11 17.145 13.13 10.19 Change from No 

VEGF SS 

 PAD Calf 

Muscle 

51.696 35.472 24.845 17.68 13.65 Change from No 

VEGF SS 

NRP1 Main Body 

Mass 

1.295 1.203 1.142 1.1 1.07 Change from No 

VEGF SS 

 PAD Calf 

Muscle 

1.23 1.1655 1.1214 1.091 1.069 Change from No 

VEGF SS 

sR1 Main Body 

Mass 

0.0893 0.0835 0.0793 0.0762 0.0740 molecules/EC/s 

 PAD Calf 

Muscle 

0.0893 0.0835 0.0793 0.0762 0.0740  

PlGF Main Body 

Mass 

0.0146 0.0146 0.0146 0.0146 0.0146 molecules/MD/s 

 PAD Calf 

Muscle 

0.0146 0.0146 0.0146 0.0146 0.0146  

VEGF Main Body 

Mass 

0.283 0.2214 0.1790 0.1502 0.1290 molecules/MD/s 

 PAD Calf 

Muscle 

0.283 0.2214 0.1790 0.1502 0.1290  

VEGF165b Plasma 3.33 3.33 3.33 3.33 3.33 molecules/monocyt

e/s 

*SS: steady-state, MD: myonuclear domain 
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Table 7-SM2. Achieved Steady-state Plasma Ligand and Tissue Surface Receptor Levels  

 

*Note: Receptor productions rates in the Main Body Mass and all tissue ligand secretion rates were fit in 

the healthy model [13], and were not changed for the PAD model, as there is no evidence of these values 

changing outside the affected tissue in PAD. This accounts for the small deviation in the Main Body Mass 

values from target values.  
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7.7 Supplemental Figures 
 

Figure 7-S1. Detailed schematic of molecular interactions and whole body compartment model 

structure. This figure is related to Fig 7-1. (A) Structure of compartment model, which includes secretion 

of VEGF and PlGF by parenchymal cells and sR1 by endothelial cell in tissue, as well as VEGF165b in 

blood by monocytes, binding of VEGF, PlGF, and sR1 to receptors on endothelial cells and HSPGs in the 

ECM and basement membranes, clearance from the blood, and transport of VEGF, PlGF, and sR1 between 

compartments via vascular permeability or lymphatic drainage. The geometry and molecular expression 

levels in the calf compartment were modified to account for changes between healthy and PAD subjects 

[1].  (B) Interactions VEGF isoforms, PlGF isoforms, sR1, and extracellular HSPGs (M) in the interstitial 

space of tissues. (C) Summary of VEGFR2 trafficking reactions simulated in endothelial cells. (D) 

Tyrosine site-specific phosphorylation and dephosphorylation of VEGFR2. (E) Molecular interactions at 

the abluminal (tissue-facing) endothelial cell surface between VEGF isoforms, PlGF isoforms, sR1, 

VEGFR1, VEGFR2, NRP1, and HSPGs (M) in the endothelial basement membrane (EBM). 
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Figure 7-S1 
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Figure 7-S2. Pharmacokinetics of VEGF165a and VEGF165b in PAD. This figure is related to Fig 7-2. (A) 

Predicted distribution of free and sR1-bound VEGF and PlGF isoforms in plasma at steady-state with equal 

secretion of VEGF165a and VEGF165b in both tissue compartments. Approximately 1/3 of plasma VEGF is 

tissue-derived (the same as in healthy subjects), and 2/3 is monocyte-secreted directly into the bloodstream. 

(B) Fraction of free plasma VEGF that is VEGF165b, as a function of VEGF165b secretion fractions in the 

PAD Calf Muscle and the Main Body Mass. (C) Predicted distribution of VEGF isoforms, PlGF isoforms, 

and sR1 in the extracellular space (non-endothelial cell-bound) of the PAD Calf Muscle with equal 

secretion of VEGF165a and VEGF165b. (D) Changes in ligand secretion and receptor production rates 

required to maintain target plasma ligand and endothelial cell surface receptor levels in the PAD Calf 

Muscle, as a function of the relative fraction of total VEGF165 secretion that is VEGF165b. Lack of NRP1-

binding by VEGF165b slowing binding to VEGFR2 and subsequent recycling, and thus slowing turn-over of 

VEGF165b-VEGFR2 complexes. The latter also leads to lower VEGF secretion and VEGFR2 production 

rates required to maintain target levels when VEGF165b is elevated. (E) VEGF distribution in plasma and 

the PAD Calf Muscle (Tissue), as a function of the relative fraction of total VEGF165 secretion that is 

VEGF165b (versus VEGF165a). Note that total free VEGF in plasma is held constant as the relative secretion 

ratio changes. 
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Figure 7-S2 
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Figure 7-S3. VEGFR occupancy in PAD Calf Muscle. This figure is related to Fig 7-3. (A) Break-down 

free and ligand-bound VEGFR2 on the cell surface, in early (Rab4/5) endosomes, and recycling (Rab11) 

endosomes, and cell surface VEGFR1 and NRP1. Quantities are given in pM of total tissue in the PAD 

Calf Muscle. Receptor occupancy for each subcellular location is shown in parentheses. (B) Break-down of 

EC surface-bound ligand, by isoform. Note the difference in quantities of total ligated VEGFR2, VEGFR1, 

and NRP1. 
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Figure 7-S4. In vitro simulations of VEGFR2 phosphorylation by VEGF165b.This figure is related to Fig 

7-4. (A) Comparison of simulated (solid lines) and experimental measurements (dashed lines) of VEGFR2 

phosphorylation 5 minutes after stimulation with VEGF165a (red) and VEGF165b (green), using the optimized 

kp  value of 8x10
-4

 s
-1

 for VEGF165b and the normal phosphorylation rate for VEGF165a
 
(1 s

-1
). (B) Dose-

dependent competition between VEGF165a and VEGF165b. Solid lines: pR2, normalized by VEGF165a at each 

concentration (left axis). Dashed lines: VEGFR2 occupancy (right axis). Simulations performed using 

endothelial cell culture model including VEGFR2 and NRP1, but not VEGFR1 [2].  
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Figure 7-S5. In vivo VEGFR activation varies with VEGF165b levels in simulated human PAD. This 

figure is related to Fig 7-5. (A) Additional summary of VEGFR2 occupancy, ligation, and phosphorylation, 

as a function of local fractional VEGF165b secretion in the PAD Calf Muscle. (B) Summary of reduced 

endothelial surface VEGFR1 ligation by non-VEGF165b ligands with increasing VEGF165b secretion. (C) 

Further break-down of VEGFR2 phosphorylation as a function of VEGF isoform, subcellular location, and 

tyrosine site, with 50% fractional VEGF165b secretion in the PAD Calf Muscle. 
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Figure 7-S6. Model-predicted changes in VEGF distribution and signaling in response to VEGF165b 

over-expression. This figure is related to Fig 7-6. (A-B) Simulation of direct increases or decreases in 

local VEGF165b (A) or VEGF165a (B) secretion in the PAD Calf Muscle, at 100% (A) or 50% (B) fractional 

VEGF165b secretion ratios, normalized to baseline quantities. (C) Additional model predictions for 

simulated VEGF165b over-expression experiment presented in Fig 6A-B. (D) Examination of the impact of 

a portion monocyte-derived VEGF165b secretion occurring into tissue instead of the bloodstream on 

VEGFR2 activation. The the model predicts increased pR2/R2, but reduced pR2/R2 and pR2/EC due to 

reduction in receptor levels and capillary rarefaction following increased local VEGF production. 
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Figure 7-S7. Contributions of non-VEGF165b changes to reduced pR2 in PAD. (A) Comparison of total 

VEGFR2 phosphorylation, pR2/R2, and pR2/endothelial cell in the PAD Calf Muscle, a Healthy Calf 

Muscle, and three modified PAD Calf Muscle cases: no VEGF165b secretion by monocytes in the blood, 

healthy levels of VEGFR expression on endothelial cells, and healthy vascular permeability, to elucidate 

the impact on signaling of each change. 50% relative VEGF165b secretion in all cases. (B) Data from (A) 

displayed as percent change from PAD Calf Muscle baseline.  
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Figure 7-S8. Impact of excluding VEGF165b binding to NRP1-VEGFR1 complexes. (A) Changes in 

VEGF distribution, VEGFR1 ligation, and VEGFR2 activation if VEGF165b-NRP1-VEGFR1 complexes are 

not included in the model. While ligated VEGFR2 would increases, pR2 decreases, owing to increased 

VEGF165bR2 binding, and the amount of ligand bound to VEGFR1 decreases substantially, suggesting only 

a limited role of VEGF165b in VEGFR1 signaling if this were the case, contrary to the experimental results 

of Ganta et al. [3]. (B) In this case, the model had to be re-fit to maintain target endothelial surface receptor 

and plasma ligand levels. Those changes in secretion and production rates are shown here. MBM: Main 

Body Mass, PCM: PAD Calf Muscle. 
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7.8 Supplemental Tables 
 

Table 7-S1. Binding/Unbinding Reactions: KD 

Notes:  

1. L: ligand, column-specific 

2. Ordering shows where the bond is. For example: in M-(L-sR1): M binding to L for VEGF165, VEGF189, 

& PlGF2. Whereas, in (L-sR1)-M, M binding to sR1 for VEGF121, VEGF165b, & PlGF1. 

5. All rates are the same inside endosomes as on cell surface. Unit conversions (see [2, 13]) were required 

to convert all kon (and thus KD) into context-specific units, as in previous compartment models. 

	
K

D
 

V
E

G
F

1
6

5
 

V
E

G
F

1
2

1
 

V
E

G
F

1
8

9
 

V
E

G
F

1
6

5
b
 

P
lG

F
1

 
P

lG
F

2
 

U
n

it
s 

R
R

e
R

ed
 

L
-R

1
 

3
.3

 x
 1

0
-1

1
 

3
.3

 x
 1

0
-1

1
 

3
.3

 x
 1

0
-1

1
 

3
.3

 x
 1

0
-1

1
 

2
.3

 x
 1

0
-1

0
 

2
.3

 x
 1

0
-1

0
 

M
 

[1
4

-1
6
] 

L
-R

2
 

1
.0

 x
 1

0
-1

0
 

1
.0

 x
 1

0
-1

0
 

1
.0

 x
 1

0
-1

0
 

1
.0

 x
 1

0
-1

0
 

- 
- 

M
 

[1
4

-1
6
] 

L
-N

1
 

1
.2

 x
 1

0
-9

 
- 

1
.2

 x
 1

0
-1

0
 

- 
- 

1
.0

 x
 1

0
-7

 
M

 
[1

7
, 
1
8
] 

L
-s

R
1

 
3
.3

 x
 1

0
-1

1
 

3
.3

 x
 1

0
-1

1
 

3
.3

 x
 1

0
-1

1
 

3
.3

 x
 1

0
-1

1
 

2
.3

 x
 1

0
-1

0
 

2
.3

 x
 1

0
-1

0
 

M
 

[1
4
] 

L
-M

 
6
.1

 x
 1

0
-8

 
- 

6
.1

 x
 1

0
-9

 
- 

- 
4
.6

 x
 1

0
-9

 
M

 
[1

9
] 

(M
-L

)-
R

1
 

3
.3

 x
 1

0
-1

1
 

- 
3
.3

 x
 1

0
-1

1
 

- 
- 

2
.3

 x
 1

0
-1

0
 

M
 

 
(M

-L
)-

R
2

 
1
.0

 x
 1

0
-1

0
 

- 
1
.0

 x
 1

0
-1

0
 

- 
- 

- 
M

 
 

(M
-L

)-
sR

1
 

3
.3

 x
 1

0
-1

1
 

- 
3
.3

 x
 1

0
-1

1
 

- 
- 

2
.3

 x
 1

0
-1

0
 

M
 

 
M

-(
L

-R
1
) 

6
.1

 x
 1

0
-8

 
- 

6
.1

 x
 1

0
-9

 
- 

- 
4
.6

 x
 1

0
-9

 
M

 
 

M
-(

L
-R

2
) 

6
.1

 x
 1

0
-8

 
- 

6
.1

 x
 1

0
-9

 
- 

- 
- 

M
 

 
M

-(
L

-s
R

1
) 

6
.1

 x
 1

0
-8

 
- 

6
.1

 x
 1

0
-9

 
- 

- 
4
.6

 x
 1

0
-9

 
M

 
 

(L
-s

R
1
)-

M
 

- 
2
.4

 x
 1

0
-8

 
- 

2
.4

 x
 1

0
-8

 
2
.4

 x
 1

0
-8

 
- 

M
 

 
(M

-s
R

1
)-

L
 

- 
3
.3

 x
 1

0
-1

1
 

- 
3
.3

 x
 1

0
-1

1
 

2
.3

 x
 1

0
-1

1
 

- 
M

 
 

(N
1

-L
)-

R
2

 
1
.0

 x
 1

0
-1

7
 

- 
1
.0

 x
 1

0
-1

7
 

- 
- 

- 
m

o
le

s/
cm

2
 

 
N

1
-(

L
-R

2
) 

3
.2

 x
 1

0
-1

7
 

- 
3
.2

 x
 1

0
-1

7
 

- 
- 

- 
m

o
le

s/
cm

2
 

 

(L
-R

1
)-

N
1

 
- 

1
.0

 x
 1

0
-1

6
 

- 
1
.0

 x
 1

0
-1

6
 

1
.0

 x
 1

0
-1

6
 

- 
m

o
le

s/
cm

2
 

 
(L

-s
R

1
)-

N
1

 
- 

1
.8

 x
 1

0
-9

 
- 

1
.8

 x
 1

0
-9

 
1
.8

 x
 1

0
-9

 
- 

M
 

 

(N
1

-R
1
)-

L
 

- 
3
.3

 x
 1

0
-1

1
 

- 
3
.3

 x
 1

0
-1

1
 

2
.3

 x
 1

0
-1

0
 

- 
M

 
 

(N
1

-s
R

1
)-

L
 

- 
3
.3

 x
 1

0
-1

1
 

- 
3
.3

 x
 1

0
-1

1
 

2
.3

 x
 1

0
-1

1
 

- 
M

 
 

 
 

 
 

 
 

 
 

 
O

th
er

 
N

1
-R

1
 

1
.0

 x
 1

0
-1

6
 

m
o
le

s/
cm

2
 

 
 

 
 

[1
4
] 

 
sR

1
-N

1
 

1
.8

 x
 1

0
-9

 
M

 
 

 
 

 
[1

7
, 
1
8
] 

 
sR

1
-M

 
2
.4

 x
 1

0
-8

 
M

 
 

 
 

 
 



 335 

Table 7-S2. Binding/Unbinding Reactions: KD in Main Body Mass 
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- 
7
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 1
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-1

6
 

- 
- 

- 
m

o
le

s/
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3
 t

is
su

e 
 

N
1
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L
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2
) 

2
.3

 x
 1

0
-1

5
 

- 
2
.3

 x
 1

0
-1

5
 

- 
- 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(L
-R

1
)-

N
1

 
- 

7
.3

 x
 1

0
-1

5
 

- 
7
.3

 x
 1

0
-1

5
 

7
.3

 x
 1

0
-1

5
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(L
-s

R
1
)-

N
1

 
- 

5
.4

 x
 1

0
-1

4
 

- 
5
.4

 x
 1

0
-1

4
 

5
.4

 x
 1

0
-1

4
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1
-R

1
)-

L
 

- 
1
.0

 x
 1

0
-1

5
 

- 
1
.0

 x
 1

0
-1

5
 

1
.0

 x
 1

0
-1

5
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1
-s

R
1
)-

L
 

- 
1
.0

 x
 1

0
-1

5
 

- 
1
.0

 x
 1

0
-1

5
 

1
.0

 x
 1

0
-1

5
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

 
 

 
 

 
 

 
 

 

O
th

er
 

N
1

-R
1

 
7
.3

 x
 1

0
-1

5
 

m
o
le

s/
cm

3
 t

is
su

e 
 

 
[1

4
] 

 
sR

1
-N

1
 

5
.4

 x
 1

0
-1

4
 

m
o
le

s/
cm

3
 t

is
su

e 
 

 
[1

7
, 
1
8
] 

 
sR

1
-M

 
7
.2

 x
 1

0
-1

3
 

m
o
le

s/
cm

3
 t

is
su

e 
 

 
 



 336 

Table 7-S3. Binding/Unbinding Reactions: KD in PAD Calf Muscle 

 

 

  

	
K

D
 

V
E

G
F

1
6

5
 

V
E

G
F

1
2

1
 

V
E

G
F

1
8

9
 

V
E

G
F

1
6

5
b
 

P
lG

F
1

 
P

lG
F

2
 

U
n

it
s 

 
L

-R
1

 
8
.9

 x
 1

0
-1

5
 

8
.9

 x
 1

0
-1

5
 

8
.9

 x
 1

0
-1

5
 

8
.9

 x
 1

0
-1

5
 

6
.2

 x
 1

0
-1

4
 

6
.2

 x
 1

0
-1

4
 

m
o
le

s/
cm

3
 t

is
su

e 
[1

4
-1

6
] 

L
-R

2
 

2
.7

 x
 1

0
-1

4
 

2
.7

 x
 1

0
-1

4
 

2
.7

 x
 1

0
-1

4
 

2
.7

 x
 1

0
-1

4
 

- 
- 

m
o
le

s/
cm

3
 t

is
su

e 
[1

4
-1

6
] 

L
-N

1
 

3
.2

 x
 1

0
-1

3
 

- 
3
.2

 x
 1

0
-1

4
 

- 
- 

1
.1

 x
 1

0
-1

1
 

m
o
le

s/
cm

3
 t

is
su

e 
[1

7
, 
1
8
] 

L
-s

R
1

 
8
.9

 x
 1

0
-1

5
 

8
.9

 x
 1

0
-1

5
 

8
.9

 x
 1

0
-1

5
 

8
.9

 x
 1

0
-1

5
 

6
.2

 x
 1

0
-1

4
 

6
.2

 x
 1

0
-1

4
 

m
o
le

s/
cm

3
 t

is
su

e 
[1

4
] 

L
-M

 
1
.6

 x
 1

0
-1

1
 

- 
1
.6

 x
 1

0
-1

2
 

- 
- 

2
.7

 x
 1

0
-1

1
 

m
o
le

s/
cm

3
 t

is
su

e 
[1

9
] 

(M
-L

)-
R

1
 

8
.9

 x
 1

0
-1

5
 

- 
8
.9

 x
 1

0
-1

5
 

- 
- 

6
.2

 x
 1

0
-1

4
 

m
o
le

s/
cm

3
 t

is
su

e 
 

(M
-L

)-
R

2
 

2
.7

 x
 1

0
-1

4
 

- 
2
.7

 x
 1

0
-1

4
 

- 
- 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(M
-L

)-
sR

1
 

8
.9

 x
 1

0
-1

5
 

- 
8
.9

 x
 1

0
-1

5
 

- 
- 

6
.2

 x
 1

0
-1

4
 

m
o
le

s/
cm

3
 t

is
su

e 
 

M
-(

L
-R

1
) 

1
.6

 x
 1

0
-1

1
 

- 
1
.6

 x
 1

0
-1

2
 

- 
- 

2
.7

 x
 1

0
-1

1
 

m
o
le

s/
cm

3
 t

is
su

e 
 

M
-(

L
-R

2
) 

1
.6

 x
 1

0
-1

1
 

- 
1
.6

 x
 1

0
-1

2
 

- 
- 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

M
-(

L
-s

R
1
) 

1
.6

 x
 1

0
-1

1
 

- 
1
.6

 x
 1

0
-1

2
 

- 
- 

2
.7

 x
 1

0
-1

1
 

m
o
le

s/
cm

3
 t

is
su

e 
 

(L
-s

R
1
)-

M
 

- 
6
.5

 x
 1

0
-1

2
 

- 
6
.5

 x
 1

0
-1

2
 

6
.5

 x
 1

0
-1

2
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(M
-s

R
1
)-

L
 

- 
8
.9

 x
 1

0
-1

5
 

- 
8
.9

 x
 1

0
-1

5
 

6
.2

 x
 1

0
-1

4
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1

-L
)-

R
2

 
4
.9

 x
 1

0
-1

6
 

- 
4
.9

 x
 1

0
-1

6
 

- 
- 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

N
1

-(
L

-R
2
) 

1
.6

 x
 1

0
-1

5
 

- 
1
.6

 x
 1

0
-1

5
 

- 
- 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(L
-R

1
)-

N
1

 
- 

4
.9

 x
 1

0
-1

5
 

- 
4
.9

 x
 1

0
-1

5
 

4
.9

 x
 1

0
-1

5
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(L
-s

R
1
)-

N
1

 
- 

4
.9

 x
 1

0
-1

3
 

- 
4
.9

 x
 1

0
-1

3
 

4
.9

 x
 1

0
-1

3
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1

-R
1
)-

L
 

- 
8
.9

 x
 1

0
-1

5
 

- 
8
.9

 x
 1

0
-1

5
 

6
.2

 x
 1

0
-1

4
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

(N
1

-s
R

1
)-

L
 

- 
8
.9

 x
 1

0
-1

5
 

- 
8
.9

 x
 1

0
-1

5
 

6
.2

 x
 1

0
-1

4
 

- 
m

o
le

s/
cm

3
 t

is
su

e 
 

 
 

 
 

 
 

 
 

 

O
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er
 

N
1

-R
1

 
4
.9

 x
 1

0
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5
 

m
o
le

s/
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3
 t
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su

e 
 

 
[1

4
] 

 
sR

1
-N

1
 

4
.9

 x
 1

0
-1

3
 

m
o
le

s/
cm

3
 t

is
su

e 
 

 
[1

7
, 
1
8
] 

 
sR

1
-M

 
6
.5

 x
 1

0
-1

2
 

m
o
le

s/
cm

3
 t

is
su

e 
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Table 7-S4. Binding/Unbinding Reactions: KD in Plasma 

 

  

KD VEGF 

165 

VEGF 

121 

VEGF 

189 

VEGF165b PlGF1 PlGF2 Units RRefegs 

L-

sR1 

2.0 x 10
-

14
 

2.0 x 10
-

14
 

2.0 x 10
-

14
 

2.0 x 10
-14

 1.4 x 10
-

13
 

1.4 x 10
-

13
 

moles/

cm
3
 

plasma 

[14] 
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Table 7-S5. Binding/Unbinding Reactions: kon 

 

 

 

  

k
o

n
 

V
E

G
F

1
6

5
 

V
E

G
F

1
2

1
 

V
E

G
F
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8

9
 

V
E

G
F

1
6

5
b
 

P
lG

F
1

 
P

lG
F

2
 

U
n

it
s 

L
-R

1
 

3
.0

 x
 1

0
7

 
3
.0

 x
 1

0
7
 

3
.0

 x
 1

0
7
 

3
.0

 x
 1

0
7
 

1
.5

 x
 1

0
6
 

1
.5

 x
 1

0
6
 

M
-1

 s
-1

 

L
-R

2
 

1
.0

 x
 1

0
7
 

1
.0

 x
 1

0
7
 

1
.0

 x
 1

0
7
 

1
.0

 x
 1

0
7
 

- 
- 

M
-1

 s
-1

 

L
-N

1
 

5
.0

 x
 1

0
5
 

- 
1
.4

 x
 1

0
6
 

- 
- 

1
.0

 x
 1

0
4
 

M
-1

 s
-1

 
L

-s
R

1
 

3
.0

 x
 1

0
7
 

3
.0

 x
 1

0
7
 

3
.0

 x
 1

0
7
 

3
.0

 x
 1

0
7
 

1
.5

 x
 1

0
6
 

1
.5

 x
 1

0
6
 

M
-1

 s
-1

 

L
-M

 
1
.6

 x
 1

0
5
 

- 
1
.6

 x
 1

0
5
 

- 
- 

2
.2

 x
 1

0
5
 

M
-1

 s
-1

 

(M
-L

)-
R

1
 

3
.0

 x
 1

0
7
 

- 
3
.0

 x
 1

0
7
 

- 
- 

1
.5

 x
 1

0
6
 

M
-1

 s
-1

 

(M
-L

)-
R

2
 

1
.0

 x
 1

0
7
 

- 
1
.0

 x
 1

0
7
 

- 
- 

- 
M

-1
 s

-1
 

(M
-L

)-
sR

1
 

3
.0

 x
 1

0
7
 

- 
3
.0

 x
 1

0
7
 

- 
- 

1
.5

 x
 1

0
6
 

M
-1

 s
-1

 

M
-(

L
-R

1
) 

1
.6

 x
 1

0
5
 

- 
1
.6

 x
 1

0
5
 

- 
- 

2
.2

 x
 1

0
5
 

M
-1

 s
-1

 

M
-(

L
-R

2
) 

1
.6

 x
 1

0
5
 

- 
1
.6

 x
 1

0
5
 

- 
- 

- 
M

-1
 s

-1
 

M
-(

L
-s

R
1
) 

1
.6

 x
 1

0
5
 

- 
1
.6

 x
 1

0
5
 

- 
- 

2
.2

 x
 1

0
5
 

M
-1

 s
-1

 

(L
-s

R
1
)-

M
 

- 
4
.2

 x
 1

0
5
 

- 
4
.2

 x
 1

0
5
 

4
.2

 x
 1

0
5
 

- 
M

-1
 s

-1
 

(M
-s

R
1
)-

L
 

- 
3
.0

 x
 1

0
7
 

- 
3
.0

 x
 1

0
7
 

1
.5

 x
 1

0
6
 

- 
M

-1
 s

-1
 

(N
1
-L

)-
R

2
 

1
.0

 x
 1

0
1

4
 

- 
1
.0

 x
 1

0
1

4
 

- 
- 

- 
(m

o
le

s/
cm

2
)-1

 s
-1

 
N

1
-(

L
-R

2
) 

3
.1

 x
 1

0
1

3
 

- 
3
.1

 x
 1

0
1

3
 

- 
- 

- 
(m

o
le

s/
cm

2
)-1

 s
-1

 

(L
-R

1
)-

N
1

 
- 

1
.0

 x
 1

0
1

4
 

- 
1
.0

 x
 1

0
1

4
 

1
.0

 x
 1

0
1

4
 

- 
(m

o
le

s/
cm

2
)-1

 s
-1

 
(L

-s
R

1
)-

N
1

 
- 

5
.6

 x
 1

0
6
 

- 
5
.6

 x
 1

0
6
 

5
.6

 x
 1

0
6
 

- 
M

-1
 s

-1
 

(N
1
-R

1
)-

L
 

- 
3
.0

 x
 1

0
7
 

- 
3
.0

 x
 1

0
7
 

1
.5

 x
 1

0
6
 

- 
M

-1
 s

-1
 

(N
1
-s

R
1
)-

L
 

- 
3
.0

 x
 1

0
7
 

- 
3
.0

 x
 1

0
7
 

1
.5

 x
 1

0
6
 

- 
M

-1
 s

-1
 

 
 

 
 

 
 

 
 

O
th

er
 

N
1

-R
1

 
1
.0

 x
 1

0
1

4
 

(m
o
le

s/
cm

2
)-1

 s
-1

 
 

 

 
sR

1
-N

1
 

5
.6

 x
 1

0
6
 

M
-1

 s
-1

 
 

 
 

sR
1

-M
 

4
.2

 x
 1

0
5
 

M
-1

 s
-1
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Table 7-S6. Binding/Unbinding Reactions: kon in Main Body Mass 

 

  

k
o

n
 

V
E

G
F

1
6

5
 

V
E

G
F

1
2

1
 

V
E

G
F

1
8

9
 

V
E

G
F

1
6

5
b
 

P
lG

F
1

 
P

lG
F

2
 

U
n

it
s 

L
-R

1
 

1
.0

 x
 1

0
1

2
 

1
.0

 x
 1

0
1

2
 

1
.0

 x
 1

0
1

2
 

1
.0

 x
 1

0
1

2
 

5
.0

 x
 1

0
1

0
 

5
.0

 x
 1

0
1

0
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

L
-R

2
 

3
.3

 x
 1

0
1

1
 

3
.3

 x
 1

0
1

1
 

3
.3

 x
 1

0
1

1
 

3
.3

 x
 1

0
1

1
 

- 
- 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
L

-N
1

 
1
.7

 x
 1

0
1

0
 

- 
4
.7

 x
 1

0
1

0
 

- 
- 

3
.3

 x
 1

0
8
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
L

-s
R

1
 

1
.0

 x
 1

0
1

2
 

1
.0

 x
 1

0
1

2
 

1
.0

 x
 1

0
1

2
 

1
.0

 x
 1

0
1

2
 

5
.0

 x
 1

0
1

0
 

5
.0

 x
 1

0
1

0
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

L
-M

 
5
.3

 x
 1

0
9
 

- 
5
.3

 x
 1

0
9
 

- 
- 

7
.3

 x
 1

0
1

0
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
(M

-L
)-

R
1

 
1
.0

 x
 1

0
1

2
 

- 
1
.0

 x
 1

0
1

2
 

- 
- 

5
.0

 x
 1

0
1

0
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

(M
-L

)-
R

2
 

3
.3

 x
 1

0
1

1
 

- 
3
.3

 x
 1

0
1

1
 

- 
- 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
(M

-L
)-

sR
1

 
1
.0

 x
 1

0
1

2
 

- 
1
.0

 x
 1

0
1

2
 

- 
- 

5
.0

 x
 1

0
1

0
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

M
-(

L
-R

1
) 

5
.3

 x
 1

0
9
 

- 
5
.3

 x
 1

0
9
 

- 
- 

7
.3

 x
 1

0
9
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
M

-(
L

-R
2
) 

5
.3

 x
 1

0
9
 

- 
5
.3

 x
 1

0
9
 

- 
- 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

M
-(

L
-s

R
1
) 

5
.3

 x
 1

0
9
 

- 
5
.3

 x
 1

0
9
 

- 
- 

7
.3

 x
 1

0
9
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
(L

-s
R

1
)-

M
 

- 
1
.4

 x
 1

0
1

0
 

- 
1
.4

 x
 1

0
1

0
 

1
.4

 x
 1

0
1

0
 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

(M
-s

R
1
)-

L
 

- 
1
.0

 x
 1

0
1

2
 

- 
1
.0

 x
 1

0
1

2
 

5
.0

 x
 1

0
1

0
 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
(N

1
-L

)-
R

2
 

1
.4

 x
 1

0
1

2
 

- 
1
.4

 x
 1

0
1

2
 

- 
- 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

N
1

-(
L

-R
2
) 

4
.2

 x
 1

0
1

1
 

- 
4
.2

 x
 1

0
1

1
 

- 
- 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
(L

-R
1
)-

N
1

 
- 

1
.4

 x
 1

0
1

2
 

- 
1
.4

 x
 1

0
1

2
 

1
.4

 x
 1

0
1

2
 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

(L
-s

R
1
)-

N
1

 
- 

1
.9

 x
 1

0
1

1
 

- 
1
.9

 x
 1

0
1

1
 

1
.9

 x
 1

0
1

1
 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
(N

1
-R

1
)-

L
 

- 
1
.0

 x
 1

0
1

2
 

- 
1
.0

 x
 1

0
1

2
 

5
.0

 x
 1

0
1

0
 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 

(N
1

-s
R

1
)-

L
 

- 
1
.0

 x
 1

0
1

2
 

- 
1
.0

 x
 1

0
1

2
 

5
.0

 x
 1

0
1

0
 

- 
(m

o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
 

 
 

 
 

 
 

 

O
th

er
 

N
1

-R
1

 
1
.4

 x
 1

0
1

2
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
 

 
 

sR
1

-N
1

 
1
.9

 x
 1

0
1

1
 

(m
o
le

s/
cm

3
 t

is
su

e)
-1

 s
-1

 
 

 

 
sR

1
-M

 
1
.4

 x
 1

0
1

1
 

(m
o
le
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Table 7-S7. Binding/Unbinding Reactions: kon in PAD Calf Muscle 
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Table 7-S8. Binding/Unbinding Reactions: kon in Plasma 

 

 

 

 

  

kon VEGF165 VEGF121 VEGF189 VEGF165b PlGF1 PlGF2 Units 

L-sR1 3.3 x 10
10

 3.3 x 10
10

 3.3 x 10
10

 3.3 x 10
10

 2.5 x 10
9
 2.5 x 10

9
 (moles/cm

3
 tissue)

-1
 s

-1
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Table 7-S9. Binding/Unbinding Reactions: koff 

koff VEGF165 VEGF121 VEGF189 VEGF165b PlGF1 PlGF2 Units 

L-R1 1.0 x 10
-3 

1.0 x 10
-3

 1.0 x 10
-3

 1.0 x 10
-3

 3.5 x 10
-4

 3.5 x 10
-4

 s
-1 

L-R2 1.0 x 10
-3

 1.0 x 10
-3

 1.0 x 10
-3

 1.0 x 10
-3

 - - s
-1

 

L-N1 6.0 x 10
-4

 - 1.7 x 10
-4

 - - 1.0 x 10
-3

 s
-1

 

L-sR1 1.0 x 10
-3

 1.0 x 10
-3

 1.0 x 10
-3

 1.0 x 10
-3

 3.5 x 10
-4

 3.5 x 10
-4

 s
-1

 

L-M 1.0 x 10
-2

 - 1.0 x 10
-3

 - - 1.0 x 10
-3

 s
-1

 

(M-L)-R1 1.0 x 10
-3

 - 1.0 x 10
-3

 - - 3.5 x 10
-4

 s
-1

 

(M-L)-R2 1.0 x 10
-3

 - 1.0 x 10
-3

 - - - s
-1

 

(M-L)-sR1 1.0 x 10
-3

 - 1.0 x 10
-3

 - - 3.5 x 10
-4

 s
-1

 

M-(L-R1) 1.0 x 10
-2

 - 1.0 x 10
-3

 - - 1.0 x 10
-3

 s
-1

 

M-(L-R2) 1.0 x 10
-2

 - 1.0 x 10
-3

 - - - s
-1

 

M-(L-sR1) 1.0 x 10
-2

 - 1.0 x 10
-3

 - - 1.0 x 10
-3

 s
-1

 

(L-sR1)-M - 1.0 x 10
-2

 - 1.0 x 10
-2

 1.0 x 10
-2

 - s
-1

 

(M-sR1)-L - 1.0 x 10
-3

 - 1.0 x 10
-3

 3.5 x 10
-4

 - s
-1

 

(N1-L)-R2 1.0 x 10
-3

 - 1.0 x 10
-3

 - - - s
-1

 

N1-(L-R2) 1.0 x 10
-3

 - 1.0 x 10
-3

 - - - s
-1

 

(L-R1)-N1 - 1.0 x 10
-2

 - 1.0 x 10
-2

 1.0 x 10
-3

 - s
-1

 

(L-sR1)-N1 - 1.0 x 10
-2

 - 1.0 x 10
-2

 1.0 x 10
-3

 - s
-1

 

(N1-R1)-L - 1.0 x 10
-3

 - 1.0 x 10
-3

 3.5 x 10
-4

 - s
-1

 

(N1-sR1)-L - 1.0 x 10
-3

 - 1.0 x 10
-3

 3.5 x 10
-4

 - s
-1

 

        

Other N1-R1 1.0 x 10
-2

 s
-1

     

 sR1-N1 1.0 x 10
-2

 s
-1

     

 sR1-M 1.0 x 10
-2

 s
-1
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Table 7-S10. Trafficking Parameters  

Species 

Units: s
-1 

kint  

(from surface) 

krec4  

(from Rab4/5) 

krec11  

(from 

Rab11) 

k4to11  

(from Rab4/5) 

kdegr  

(from Rab4/5) 

R2 2.6 x 10
-3

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-6

 

V·R2 3.12 x 10
-2

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-5

 

M∙V∙R2 0 - - - - 

V 0 0 0 0 1.2 x 10
-2

 

N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

V·N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

V·N1·R2 3.12 x 10
-2

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 6.8 x 10
-4

 

R1 2.6 x 10
-3

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-5

 

N1·R1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

L·R1 3.12 x 10
-2

 3.8 x 10
-3

 1.4 x 10
-4

 1.0 x 10
-5

 8.6 x 10
-5

 

L·N1·R1 3.12 x 10
-2

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

M∙V∙R1 0 - - - - 

L·sR1 0 0 0 0 3.8 x 10
-4

 

sR1·N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

L·sR1·N1 2.6 x 10
-3

 3.8 x 10
-5

 1.4 x 10
-2

 1.9 x 10
-2

 3.8 x 10
-4

 

L: ligand- all trafficking parameters independent of ligand identify 
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Table 7-S11. Phosphorylation Parameters 

 Free R2 V-R2 (not affected by N1 or M) 

 Cell 

Surface 

Rab4/5 

Endosomes 

Rab11 

Endosomes 

Cell 

Surface 

Rab4/5 

Endosomes 

Rab11 

Endosomes 

kp (normal) (s
-1

) 0 0 0 1 1 1 

kp for VEGF165b 

(s
-1

) 

0 0 0 8.0 x 10
-4

 8.0 x 10
-4

 8.0 x 10
-4

 

kdp,Y951 (s
-1

) 30 30 30 0.043 75 30 

kdp,Y1775 (s
-1

) 30 30 30 4.98 0.00972 30 

kdp,Y1214 (s
-1

) 30 30 30 1.06 0.0307 30 

*The “normal” kp value applies to all VEGF isoforms other than VEGR165b. kp is the same in all locations 

for a given VEGF isoform. 
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Table 7-S12. Geometric Parameterization  

 Main Body 

Mass Value 

PAD Calf 

Muscle Value 

Units 

Compartment Volume 60,453 738 cm
3 

Individual Muscle Fiber    

  Diameter 71 66 μm 

  Perimeter correction factor 1.14 1.14  

  Perimeter 253 238 μm 

  FCSA 3904 3464 μm
2 

  Myonuclear density 120 150 mm
-1 

  MDSA 2104 1586 μm
2
/MD 

Muscle Fiber Space    

  Muscle fiber density 242 175 fibers/mm
2 
 

tissue 

  FSAV 611 417 cm
2
/cm

3
 tissue 

  Muscle fiber space volume fraction 94.4% 60.8% cm
3
/cm

3
 tissue 

Individual Capillary    

  Luminal diameter 4.86 3.17 μm 

  Endothelium thickness 0.77 0.91 μm 

  Abluminal diameter 6.39 4.98 μm 

  Perimeter correction factor 1.1 1.1  

  Abluminal perimeter 22.1 17.2 μm 

  CCSA 32.1 19.5 μm
2
 

     Lumen CSA 18.6 7.91 μm
2
 

     Endothelium CSA 13.5 11.6 μm
2
 

  ECSA (abluminal) 1000 1000 μm
2
/EC 

Capillary Space    

  Capillary:fiber ratio 1.36 1.63  

  Capillary density 329 286 capillaries/mm
2
 

tissue 

  ESAV (abluminal) 73 49 cm
2
/cm

3
 tissue 

  Capillary space volume fraction 1.1% 0.6% cm
3
/cm

3
 tissue 

     Endothelium space 0.4% 0.3% cm
3
/cm

3
 tissue 

     Vascular space 0.6% 0.2% cm
3
/cm

3
 tissue 

Interstitial Space    

  IS volume fraction 4.5% 38.7% cm
3
/cm

3
 tissue 

  IF volume fraction 3.7% 32.9% cm
3
/cm

3
 tissue 

  Available IF volume fraction 3% 27% cm
3
/cm

3
 tissue 

  Extracellular Matrix    

     ECM volume 3.9% 36.8% cm
3
/cm

3
 tissue 

 86.72% 95.1% cm
3
/cm

3
 IS 

     Solid fraction 13.40% 13.40% cm
3
/cm

3
 ECM 

     Fluid volume in ECM 3.38% 31.87% cm
3
/cm

3
 tissue 

 91.13% 96.97% cm
3
/cm

3
 IF 

     Available fluid volume in ECM 2.87% 27.09% cm
3
/cm

3
 tissue 

  Endothelial Basement Membrane (EBM)    

     Thickness 87.5 1650 nm 

     EBM volume 0.06% 0.81% cm
3
/cm

3
 tissue 

 1.41% 2.1% cm
3
/cm

3
 IS 

     Solid fraction 45% 45% cm
3
/cm

3
 BME 

     Fluid volume in EBM 0.03% 0.45% cm
3
/cm

3
 tissue 

 0.94% 1.36% cm
3
/cm

3
 IF 

     Available fluid volume in EBM 0.01% 0.15% cm
3
/cm

3
 tissue 

     EBM Thickness accessible to EC 

receptors* 

25 25 nm 
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     Fraction EBM accessible to EC receptors 28.6% 1.52% cm
3
/cm

3
 BME 

  Parenchymal Basement Membrane (PBM)    

     Thickness 87.5 254 nm 

     PBM volume 0.53% 1.06% cm
3
/cm

3
 tissue 

 11.87% 2.74% cm
3
/cm

3
 IS 

     Solid fraction 45% 45% cm
3
/cm

3
 BMP 

     Fluid volume in PBM 0.29% 0.58% cm
3
/cm

3
 tissue 

 7.92% 1.77% cm
3
/cm

3
 IF 

     Available fluid volume in PBM 0.10% 0.19% cm
3
/cm

3
 tissue 

Blood Compartment    

  Total Volume 5  L 

  Plasma Fraction 60%  cm
3
/cm

3
 blood 

  Monocyte Concentration 400  monocytes/μL 

  Total Monocytes 2 x 10
9 

 monocytes 

*Based on length of ErbB2 and ErbB3 extracellular domains: 11.3-16.4nm [20-22], assuming some 

flexibility in cell shape and position. 
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Table 7-S13. Transport Parameters  

 

Notes: Permeability rates apply to both PAD Calf Muscle & Main Body Mass. Geometric unit conversions 

applied [1]. 

Permeability rate constant is multiplied by a recruitment factor, γ (See Supplemental Equations), which is 1 

for the Main Body Mass, and 0.5 for the PAD Calf Muscle. 
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Table 7-S14. Available Matrix Site Densities  

 ECM EBM PBM 

Value (μM) 0.75  20/5 (Body/Calf) 20/5 

Main Body Mass (moles/cm
3
 tissue) 2.15 x 10

-11
  2.0 x 10

-12
 2.0 x 10

-11
 

PAD Calf Muscle (moles/cm
3
 tissue) 2.03 x 10

-10
 7.5 x 10

-10
 9.5 x 10

-12
 

Note: Unit conversions described in [1, 13, 14]. 
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Table 7-S15. Comparison of Model Predictions with Previous Model 

Topic Exp. Data Wu 2010[1] Current Change 

Plasma sR1 Decreased/ 

unchanged 

Increased Decreased Monocyte-derived 

VEGF165b secretion, so 

lower tissue VEGF 

secretion required to 

achieve plasma target 

VEGF levels 

Interstitial 

VEGF 

Unchanged 

or slightly 

increased 

Increased 24-fold Increased a 

maximum of 

11% 

Plasma sR1 

bound to 

ligand 

0.06% 13% 17% - (Not fixed) 

Plasma 

VEGF 

bound to 

sR1 

4% 91% 75% 

Angiogenic 

response 

Impaired Increased 

VEGFR2/VEGFR1 

balance 

Decreased 

pR2 + 

increased 

VEGFR1 

ligation 

• Weak phosphorylation 

of R2 by VEGF165b 

• Lower tissue VEGF 

• Receptor expression: 

VEGFR2 decreased & 

VEGFR1 increased in 

ischemia 

 

 

 

  



 350 

Chapter 8. A Computational Analysis of Pro-angiogenic 

Therapies 

Content from this chapter will be submitted for publication as: 

L. E. Clegg & F. Mac Gabhann, “A computational analysis of pro-angiogenic therapies for peripheral 

artery disease.” 

 

8.0 Summary 

 
Development of pro-angiogenic therapies for tissue engineering applications and ischemic disease 

has been the subject of extensive research and multiple clinical trials. However, effective induction of 

angiogenesis to form hierarchical, non-leaky networks of perfused vessels has remained an unmet 

challenge. Here, we use a previously-developed, multi-scale, computational systems pharmacology model 

of human peripheral artery disease, to screen a diverse array of promising pro-angiogenic strategies. This 

previously-validated model explicitly accounts for VEGF immobilization, Neuropilin-1 binding, and weak 

activation of VEGF receptor 2 (VEGFR2) by the “VEGFxxxb” isoforms. First, we compare biomaterial-

based delivery of VEGF engineered for increased affinity to the extracellular matrix, showing that these 

constructs, which show promise in mice, maintain more physiological VEGF levels and extend duration of 

VEGFR2 activation compared to VEGF165a delivery. We also demonstrate the importance of sub-saturating 

VEGF dosing to prevent angioma formation. Next, we examine the potential of ligand- or receptor-based 

gene therapy to normalize VEGF receptor signaling, if uniform and sustained expression can be achieved. 

Finally, we explore the potential for antibody-based therapy. Our model supports recent observations that 

improvement in perfusion following treatment with anti-VEGF165b in murine hindlimb ischemia is mediated 

by VEGF-receptor 1, not VEGFR2. Further, the model predicts that the approved cancer agent 

bevacizumab (anti-VEGF) may improve signaling via both VEGFR1 and VEGFR2 via a novel ‘antibody 

swapping’ effect that we demonstrate here. Altogether, this model provides insight into the mechanisms of 

action of several classes of pro-angiogenic strategies, identifying molecular signaling differences between 
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promising and ineffective approaches, and highlighting key questions and considerations for design, 

optimization, and translation of these therapeutics into humans. 
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8.1 Introduction 
 

Inducing angiogenesis, the growth of new vessels from the existing vasculature, in order to 

establish collateral blood flow has long been a therapeutic strategy of interest for ischemic disease
1,2

. 

Peripheral artery disease (PAD), the manifestation of systemic atherosclerosis in the legs, leads to pain, 

limited mobility, and elevated risk of amputation, and is characterized by skeletal muscle ischemia without 

induction of sufficient angiogenesis to restore normal perfusion
3,4

. The molecular mechanisms underlying 

this insufficient vascular remodeling have not been fully elucidated
5
. Delivery of vascular endothelial 

growth factor (VEGF), a key angiogenic factor, via gene- or cell-based therapy has been tested in multiple 

clinical trials for PAD, but no constructs have proceeded to Phase III trials or regulatory approval, due to 

lack of efficacy at improving patient outcomes as well as occurrence of edema in some patients
5,6

. This 

failure, which could be attributed in part to inefficient, spatially heterogeneous, short duration gene 

delivery
7-10

, has motivated development of newer therapeutic strategies to better induce and regulate 

angiogenesis in ischemia. Strategies to form functional vessel networks in thick engineered tissues are also 

of high interest
11

. Key to success of these strategies is a more in-depth understanding of both the underlying 

cause(s) of impaired angiogenic signaling in PAD, and the effect of these molecular mechanisms on 

therapy effectiveness. 

The VEGF family consists of five ligands, with VEGFA (hereafter VEGF) considered the primary 

pro-angiogenic isoform, three receptors (VEGFR1-3), and the Neuropilins as co-receptors
12

. Both ligands 

and receptors can be alternatively spliced, the latter resulting in production of soluble receptors, most 

notably soluble VEGFR1 (sR1)
13

, and the former VEGF isoforms with different binding affinities for 

HSPGs in the extracellular matrix (ECM) and for Neuropilin-1 (NRP1) 
14,15

. VEGF splicing varies by 

tissue
16,17

, with the most prominent isoforms in human being VEGF121, VEGF165, and VEGF189
12

. 

Expression of single VEGF isoforms in mice or tumors leads to different vascular phenotypes; non-ECM-

binding VEGF121 promotes production of wide diameter vessels with few branch points, while expression 

of ECM-binding VEGF165 alone leads to phenotypically normal vessels, and strong ECM-binding VEGF189 

induces networks of thin, highly branched vessels
18-24

. An alternate set of VEGF “b” isoforms with the 

same numbers of amino acids, but a switch in the last six amino acids (exon 8a to exon 8b) have recently 

been discovered and characterized
25,26

. Despite very similar sequences, these isoforms, the most-studied 
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being VEGF165b (as opposed to VEGF165a), do not bind to NRP1 or to HSPGs, and induce only weak 

phosphorylation of VEGFR2
26-28

, despite binding to the receptor with the same affinity as other VEGF 

isoforms. While VEGF is found at normal levels in resting PAD-afflicted skeletal muscle
29,30

, and is 

elevated in the plasma of patients with PAD
31-34

, splicing of VEGF is different in PAD
35,36

 (and other 

diseases). Specifically, expression of VEGF165b increases in tissue, likely accompanied by reduced 

expression of VEGF165a (to maintain unchanged total VEGF levels); secretion of VEGF165b in the 

bloodstream by peripheral blood mononuclear cells (e.g. monocytes) also increases substantially
36

. Despite 

these observations, quantitative measurements of absolute quantities of VEGF165a and VEGF165b in healthy 

and ischemic tissue remain very limited
37

. We previous built and published a model of the role of VEGF165b 

in PAD in the absence of pro-angiogenic therapy (Chapter 7), which showed that, contrary to the prevailing 

hypothesis in the field, VEGF165b does not compete with VEGF165a for binding to VEGFR2, but may 

compete for binding to VEGFR1. This prediction is consistent with recently published data from Ganta et. 

al.
29

 

Several different approaches to pro-angiogenic therapy for PAD, tissue engineering, and wound 

healing are currently under development, which leverage different aspects of the VEGF system. The first 

uses biomaterials for tunable, extended release of VEGF protein and other growth factors in vivo
11

. The 

groups of Jeff Hubbell and Andrea Banfi have engineered VEGF forms for increased affinity to the ECM 

or covalent binding in fibrin gels with tunable proteolytic release to deliver low VEGF and/or PDGF doses 

over the course of weeks
38,39

. With these constructs, which can be delivered in injectable fibrin gels, they 

obtained improved wound healing, reduced permeability, angiogenesis without vessel regression, and/or 

improved perfusion recovery in rodent models, compared to delivery of wild type VEGF165 protein. We are 

also learning more about how to effectively induce angiogenesis via VEGF overexpression
7,8

. In the future, 

these concepts can be combined with efforts to improve gene delivery to induce controlled expression 

levels with high efficiency, spatially homogeneous transfection, and tunable duration, targeted to specific 

cell types
40,41

. Such optimized control of gene delivery would likely address many of the failures observed 

in past clinical trials. Finally, Kikuchi et. al. recently showed that treatment with an antibody that binds 

specifically to the VEGF165b isoform improves perfusion recovery in murine hindlimb ischemia models
36

, 

an observation that was confirmed by Ganta et. al.
29

. The mechanism of action of this therapeutic was 
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predicted by Kikuchi et. al. to involve an increase in VEGFR2 phosphorylation. However, Ganta et. al. 

showed that VEGFR2 phosphorylation was unchanged following antibody treatment, while VEGFR1 

phosphorylation increased. Our previous model of PAD showed that, contrary to the prevailing hypothesis 

in the field, VEGF165b does not compete with VEGF165a for binding to VEGFR2, but may compete for 

binding to VEGFR1, a prediction that is consistent with recently published data from Ganta et. al.
29

 

 

8.1.1 Objective  

Our objective was to use a previously-developed systems pharmacology model of human 

peripheral artery disease to screen promising protein-, gene-, and antibody-based pro-angiogenic 

therapeutics. Our systems pharmacology model, which has been built using and validated against in vitro, 

ex vivo, in vivo, and clinical data, includes detailed molecular biology and physiology, allowing us to: (1) 

ask questions that are difficult or impossible to answer experimentally, (2) provide insight into the 

mechanisms of action of therapies, and (3) identify potentially non-intuitive side effects, toxicity, or 

challenges to efficacy that merit further study. Specifically, we can predict free VEGF concentrations and 

VEGFR2 phosphorylation in diseased tissue following therapy administration, accounting for differences in 

VEGFR2 signaling as a function of VEGF isoform ECM- and NRP1-binding properties by leveraging a 

computational model that was built using and validated against in vitro data
42

, then translated to consider 

these reactions in an in vivo context. By simulating failed therapies and those that show promise in mice in 

a single quantitative framework, we aim to identify potential molecular drivers of therapy success or 

failure
43

. In elucidating these key rules, we hope to identify strategies most likely to be effective in the 

context of human disease, working with, and potentially leveraging, the underlying biology. 
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8.2 Results 
 

8.2.1 Quantitative insight into design and dosing for biomaterial-based VEGF delivery in PAD 

We used our computational systems pharmacology model (Fig. 8-1) to perform in silico screening 

of VEGF protein delivery strategies, including native VEGF165a (which has failed to produce benefit in 

clinical trials), and two engineered constructs that have shown promise in mice: VEGF engineered for 

“super affinity” to the ECM 
38

, and VEGF covalently bound for proteolytic release 
39

, at multiple doses 

(Fig. 8-2B). Calibrating against experimental release data in mice (see Methods), our model gives as 

outputs the predicted local VEGF concentration and VEGFR2 phosphorylation following therapy (Fig. 8-

2B) in the context of human PAD, using allometric scaling to adjust the dose for our human model. We 

found that, unlike native VEGF165a (in red), the VEGF constructs engineered for increased ECM affinity 

(purple & green) maintain free VEGF levels within a physiological range of no more than ~5-fold baseline 

levels (Fig. 8-2B), likely reducing induction of permeability following treatment. The engineered 

constructs also elevate VEGFR2 phosphorylation for at least 2 weeks, a duration close to the range shown 

experimentally to prevent vessel regression
7,8

. Simulations also predict increased ligation of endothelial 

VEGFR1 by all three constructs, but to a smaller extent than the increase on VEGFR2 (Fig. 8-S1). For this 

analysis, we assumed that 100% of locally produced VEGF165 is VEGF165b; the action of these therapies 

was similar regardless of endogenous VEGF165b production (not shown).    
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Figure 8-1. Overview of model structure and therapy implementation. (A) Structure of multi-scale 

whole body compartment model of human PAD. Antibody delivery is simulated as a 90 minute intravenous 

infusion, while gene therapy is simulated to target either parenchymal cells (targeting ligands) or 

endothelial cells (receptors) specifically in the PAD Calf Muscle. Biomaterial-based VEGF delivery 

assumes delivery into the extracellular space (ECM) of the PAD Calf Muscle. (B) Overview of key PAD-

specific features in model: VEGF165b properties (left), and changes in VEGF splicing and secretion 

occurring in PAD (right). The binding and VEGFR2 phosphorylation properties of VEGF165b are explicitly 

included in the model, and VEGF secretion is altered from the healthy baseline model to reflect changes in 

VEGF distribution observed in PAD (see Chapter 7). 
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We next examined the important and challenging question of appropriate VEGF dosing. 

Simulations predict that VEGF doses leading to effective angiogenesis without angioma formation in mice 

correspond to sub-saturating VEGF receptor activation (Fig. 8-2C). Indeed, the lowest test dose in Ref. 
39

, 

0.01 μg/mL, which was still able to induce stable angiogenesis by 3 months after gel implantation, is 

predicted to elevate VEGFR2 phosphorylation by only about 30%. This suggests that small increases in 

signaling, if sustained for a duration of weeks, are sufficient to induce and sustain therapeutic angiogenesis. 

Interestingly, only the highest dose (100 μg/mL) was predicted to saturate endothelial surface VEGFR1 

(Fig. 8-S2). These predictions suggest that receptor saturation and VEGF-ECM binding affinity are both 

important considerations in dosing and translation of pro-angiogenic biomaterials.  
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Figure 8-2. ECM-binding affinity and dosing are key design considerations for effective VEGFR 

signaling following biomaterial-based VEGF delivery. (A) Summary of experimentally-tested VEGF 

constructs delivered in biomaterials and observed results in mice. (B) Calibrating against experimental data 

(left), we simulated the predicted magnitude and duration of increased local VEGF concentration (middle) 

and VEGFR2 phosphorylation (right) following delivery of 354μg (matched to mouse experiments, with 

allometric scaling to simulated human) of each VEGF construct delivered in a fibrin gel delivered at the 

same dose in the same system, assuming 100% local fractional VEGF165b secretion. (C) Simulation of 

delivery of the “Covalent VEGF w/ Proteolysis” construct at different doses, assuming 0% local fractional 

VEGF165b secretion.  
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8.2.2 Gene therapy effectiveness depends on target and magnitude, as well as optimized delivery 

We next examined delivery of VEGF family-related genes to the PAD Calf Muscle, assuming 

instant, 100% efficient, spatially homogeneous transfection of myocytes at a constant expression rate for 

the duration of the experiment, to examine if, with sufficient improvements in gene delivery, VEGF family 

gene therapy holds similar potential to biomaterial-based VEGF delivery to improve angiogenic signaling 

in PAD. We tested these therapies assuming high (100%) fractional production of VEGF165b. While several 

trials in humans have delivered VEGF at levels sufficient to induce increased plasma or serum VEGF
44-46

, 

based on our above results for VEGF protein delivery, we chose to examine smaller increases in VEGF 

expression, which do not induce any detectable systemic effects (Fig. 8-3A). We found that expression of 

VEGF165a at roughly 5-fold higher than endogenous VEGF165 secretion resulted in changes to free VEGF 

and VEGFR2 phosphorylation in the PAD Calf Muscle in the same range as that induced by the engineered 

VEGF constructs in Fig. 8-2, while 20-fold increased expression was sufficient to saturate VEGFR2 (Fig. 

8-S4). Interestingly, expression of the engineered super affinity VEGF construct increased predicted 

VEGFR2 phosphorylation more than VEGF165a expression (Fig. 8-3C), with a smaller increase in tissue 

free VEGF (Fig. 8-3A), suggesting that this construct would improve efficacy, delivered as either a protein 

or a gene construct.  

We also tested several other approaches, to compare the effect of targeting VEGF family ligands 

vs. receptors. First, we simulated induction of a splicing switch for VEGF165, from all VEGF165b to all 

VEGF165a in the PAD Calf Muscle only, which is currently of interest in the field
36

. This strategy increased 

pR2 slightly (Fig. 8-3), but resulted in predicted decreases in free VEGF and VEGFR1 occupancy, unlike 

direct delivery of VEGF165a gene (Fig. 8-3). Finally, we tested receptor-based therapy, over-expressing 

VEGFR2 or knocking down expression of sR1, a soluble receptor that modulates VEGFR ligation. 

Increased VEGFR2 expression is predicted to increased total pR2, but decrease the fraction of VEGFR2 

phosphorylated (pR2/R2, Fig. 8-3, bottom row), as well as VEGFR1 ligation and free VEGF in the PAD 

Calf Muscle (Fig. 8-3) to a larger extent than the splicing switch. The magnitude of this effect is limited by 

available VEGF, and effectiveness depends on specific targeting of gene therapy to endothelial cells, and 

the assumption that total pR2, as opposed to relative pR2/R2 is a key driver of signaling. Conversely, while 

blocking sR1 in mice has shown promise, in human PAD minimal effect is predicted, suggesting that this is 
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not an effective strategy. These simulation results highlight the potential of several approaches to gene 

therapy for PAD, as our clinical gene delivery toolkit gets better at targeting consistent, controlled 

expression levels in specific cell populations in vivo
40,41

. 
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Figure 8-3. Distinct patterns of VEGF distribution and receptor activation predicted following 

different gene therapy approaches. Panels show fold change from baseline following six forms of gene 

therapy (across top). Gray dashed lines are provided for references to more easily compare changes 

between the different gene therapy approaches. Top row: Changes in free VEGF (not bound to ECM, BM, 

or sR1) in the Blood, Main Body Mass, and PAD Calf Muscle) 6 days after treatment, assuming immediate 

and constant transgene over- or under-expression. Middle row: Predicted occupancy of endothelial VEGF 

receptors in the PAD Calf Muscle at day 6 following treatment. Bottom row: VEGFR2 phosphorylation in 

the PAD Calf Muscle 6 days after treatment. 
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8.2.3 Non-intuitive, systemic effects with anti-VEGF treatment for peripheral artery disease 

Model validation against murine experimental data. We then turned to a different therapeutic strategy, 

which has recently been shown to increase perfusion recovery in diabetic mice following femoral artery 

ligation (hindlimb ischemia): treatment with an antibody designed to bind only the VEGF165b isoform
36

. As 

our model predicts that VEGF165b does not compete with VEGF165a for binding to VEGFR2, we wanted to 

see whether a mechanism other than competition between ligands may be driving the observed effects in 

mice. We assumed the same intravenous dosing, antibody binding affinity, and pharmacokinetic properties 

as for bevacizumab, a non-isoform-specific VEGF antibody approved for use in several types of cancer.  

First, we compared model predictions following anti-VEGF165b treatment to experimental 

measurements in murine hindlimb ischemia, in order to confirm that our model is predictive of therapeutic 

response. We found that the model is consistent with a lack of change in endothelial VEGFR2 

phosphorylation following antibody treatment, while VEGF165b bound to VEGFR1 deceases (Fig 8-4A), 

supporting a VEGFR1-driven therapeutic response, as opposed to a VEGFR2-driven response. Owing to a 

lack of mechanistic understanding in the field, our model does not directly predict VEGFR1 

phosphorylation. However, consistent with previous work, the model predicts increases in PlGF and non-

VEGF165b VEGF isoforms binding to VEGFR1 (Fig 8-4B), while VEGF165b-VEGFR1 decreases. This 

aligns with the results of Ganta et. al. 
29

, showing that VEGF165b appears to not induce phosphorylation of 

VEGFR1 on Y1333, and that VEGFR1 phosphorylation, presumably by PlGF and/or other VEGF 

isoforms, increases following antibody treatment (Fig 8-4B). This result provides confidence in our model 

predictions of signaling in response to anti-VEGF165b treatment, and supports the conclusion that improved 

perfusion following anti-VEGF165b is likely mediated by VEGFR1, not VEGFR2. Interestingly, the model 

predicts that VEGF165b secretion into the bloodstream by monocytes- included in our model thought it is not 

yet clear whether serum VEGF165b is free in plasma or confided to formed elements- would have minimal 

impact on PAD Calf Muscle response to anti-VEGF165b treatment (Fig 8-4C). This result suggests that the 

question of blood VEGF165b source is not critical to understand patient response to therapy.  
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Figure 8-4. Model captures experimental response to anti-VEGF165b in mice and predicts signaling in 

vivo. (A-B) Model-predicted response to Anti-VEGF165b treatment, compared to measurements in mouse 

hind-limb ischemia, from an extended analysis of the data set presented in Ganta et al.
11

. Total muscle 

VEGF and VEGF165b protein levels were unchanged. Simulations use values in the PAD Calf Muscle, with 

75% secretion of VEGF165b in the PAD Calf Muscle and 25% VEGF165b secretion in the Main Body Mass, 

to roughly mimic the 3-fold increase in ischemic tissue VEGFxxxb measured experimentally, as done in our 

previous analysis. Mouse measurements are taken from muscle after antibody treatment, and represent total 

tissue measurements (receptor-bound ligand and VEGF protein) or CD31+ cells (pR2/R2), normalized by 

equivalent quantities in IgG-treated controls. Asterisks denote significance using an unpaired, two-tailed t-

test with p<0.05. n= 3 for pR2/R2, n=5 for IgG group and n=7 for treatment group for VEGF binding to 

VEGFR1, and n=5 for pR1/R1. (A) Model validation. (B) Comparison of model-predicated ligand-

VEGFR1 binding to experimental VEGFR1 phosphorylation in Y1333. (C) Model predictions of changes 

in PAD Calf Muscle in response to anti-VEGF165b treatment in the absence of VEGF165b secretion into the 

bloodstream by monocytes.  
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Figure 8-4 
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Translation to humans: implications of variable tissue VEGF165b secretion. Having validated our model 

against experimental data, we next screened the possible range of fractional VEGF165b production in both 

the Main Body Mass (healthy tissue) and the PAD Calf Muscle (ischemic tissue), that maybe occur in a 

variable human population. This allows us to explore the implications of changes in these ratios on 

potential antibody action. Such an analysis cannot be done easily in in vivo systems, but is important to 

understand before the drug is tested in human patients. Since total VEGF levels are held constant, secretion 

of VEGF165a and VEGF165b are inversely related. 

Pre-treatment, our model predicts that tissue VEGF receptor signaling is driven by locally-secreted 

VEGF. In contrast, the model predicts important systemic effects following antibody administration. This 

occurs as a result of two antibody properties: (1) VEGF-antibody binding is reversible, and (2) the in vivo 

half-life of bevacizumab is 21 days, similar to that of other monoclonal antibodies. As such, the antibody 

does not simply bind to VEGF and remove it from the system, but rather continues to circulate. In tissue 

compartments with high target (VEGF165b) concentration, the antibody will tend to bind to target. However, 

upon transport to a tissue with lower target concentration, the antibody-target complex will tend to 

dissociate, facilitating movement of target between compartments, and reducing the concentration 

difference between tissues (Fig. 8-5A).  

PAD patients are expected to have high VEGF165b in the PAD Calf Muscle and low VEGF165b in 

the Main Body Mass. In simulating anti-VEGF165b treatment in this quadrant, local free VEGF in the PAD 

Calf Muscle was predicted to decrease to as low as 14% of baseline, as the antibody binds to VEGF165b 

(Fig. 8-5B, lower right corner). Levels of free VEGF165a in the PAD Calf Muscle were essentially 

unchanged (Fig. 8-S5). Conversely, free VEGF was predicted to increase in the PAD Calf Muscle with 

VEGF165b secretion low in PAD Calf Muscle and high in Main Body Mass (Fig. 8-5B). We also simulated 

treatment with a non-isoform-specific antibody (anti-VEGF), similar to bevacizumab. Because the antibody 

dose of 10mg/kg is in excess of available VEGF, the ‘antibody shuttling’ effect occurs independently for 

each VEGF isoform. As total free VEGF levels are similar in both tissue compartments, treatment with 

anti-VEGF is predicted to have a much smaller effect on total free VEGF levels in the PAD Calf Muscle; 

the antibody ‘swaps’ VEGF165a and VEGF165b between tissues (range: 65%-103% of baseline) (Fig. 8-5B). 

VEGF165b transport is predicted to be essentially identical for the two treatments, regardless of relative 
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VEGF165b secretion rates; the difference is almost entirely due to shuttling of VEGF165a (Fig. 8-S5). As 

such, anti-VEGF, a traditionally anti-angiogenic therapy, is predicted to bring additional, endogenous 

VEGF165a into the PAD Calf Muscle when VEGF165b secretion is higher in the PAD Calf Muscle than the 

Main Body Mass, the conditions we expect in PAD patients, based on mouse and human data. Due to the 

large size of the Main Body Mass, little effect on free VEGF levels is predicted for either antibody 

treatment in this compartment (Fig. 8-S6), though predicted changes in plasma VEGF levels do reflect 

fractional VEGF165b production in the Main Body Mass (Fig. 8-S6). 
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Figure 8-5. Mechanism of action of VEGF-targeting antibodies in PAD. (A) Schematic of antibody 

“shuttling” effect. When the antibody is in a compartment with high target concentration, it tends to bind to 

target. Upon moving (via vascular permeability or lymphatic drainage) to a compartment with lower target 

concentration, mass action kinetics dictate that the target-antibody complexes will tend to dissociate Thus, 

the antibody acts to reduce the concentration difference between two compartments. (B) Predicted fold 

change in free VEGF in the PAD Calf Muscle on Day 6 following treatment with Anti-VEGF165b (left) or a 

non-isoform-specific Anti-VEGF (right), as a function of the local fractional secretion of VEGF165b in the 

PAD Calf Muscle (x-axis) and the Main Body Mass (y-axis).  
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Next, we examined the effect of anti-VEGF165b or anti-VEGF treatment on endothelial VEGFR1 

and VEGFR2 ligation and activation. The model predicts that anti-VEGF165b treatment would not increase 

VEGFR2 phosphorylation in any conditions, and may even decrease pR2 when local VEGF165b secretion is 

high (Fig. 8-6). Removal of VEGF165b, a weak activator of VEGFR2, does not lead to increased VEGFR2 

ligation by other VEGF isoforms (Fig. 8-S8 & Fig. 8-S9). The model predicts much larger changes in 

endothelial VEGFR1 ligation (Fig. 8-6); when VEGF165b is high in the PAD Calf Muscle and low in the 

Main Body Mass, cell surface VEGFR1 ligation is predicted to decrease to as low as 24% of baseline, with 

increased ligation of VEGFR1 by other VEGF isoforms (to 118% of baseline) and especially by PlGF 

(160% of baseline) (Fig. 8-S10).  

Interestingly, treatment with the non-isoform-specific anti-VEGF is predicted to increase 

VEGFR2 phosphorylation in the PAD Calf Muscle (up to 366% of baseline) when VEGF165b production is 

higher in the PAD Calf Muscle than in the Main Body Mass (Fig. 8-5), owing to the increased VEGF165a 

(which is a strong activator of VEGFR2) brought into the calf by the antibody, as weak VEGFR2-activating 

VEGF165b is removed. Additionally, in these conditions, anti-VEGF is predicted to reduce VEGFR1 

ligation (as low as 44% of baseline), with increasing binding by PlGF (up to 150% of baseline) and other 

VEGF isoforms (534%), similar to anti-VEGF165b. This occurs because VEGF165a binds preferentially to 

VEGFR2 over VEGFR1, due to its NRP1-binding properties. Thus, while anti-VEGF165b is predicted to act 

via VEGFR1, anti-VEGF treatment is predicted to improve signaling via both VEGFR2 (increased 

phosphorylation) and VEGFR1 (decreased ligation) under conditions of higher VEGF165b production in the 

PAD Calf Muscle than in other tissues.  
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Figure 8-6. Effect of VEGF-targeting antibodies on endothelial VEGFR signaling in vivo. (Top) 

Predicted fold change from baseline (top row) and values of pR2/R2 in the PAD Calf Muscle on Day 6 

following treatment with Anti-VEGF165b (middle) or a non-isoform-specific Anti-VEGF (right), as a 

function of the local fractional secretion of VEGF165b in the PAD Calf Muscle (x-axis) and the Main Body 

Mass (y-axis). (Bottom) Predicted changes in total endothelial surface VEGFR1 ligation in the PAD Calf 

Muscle on Day 6 following systemic antibody treatment.  
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Figure 8-6 
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8.2.4 Antibody treatment induces qualitatively different effects than VEGF gene or protein delivery 

Finally, we leveraged our ability to simulate disparate therapeutic strategies in a single framework 

to compare the dynamics of therapy response following biomaterial-based protein therapy, gene therapy, or 

antibody therapy. We chose a promising representative therapy from each category: the “Covalent VEGF 

with Proteolysis” biomaterial construct; delivery of ‘Super Affinity’ VEGF gene at 5-fold normal VEGF 

expression levels; and the non-isoform-specific anti-VEGF. As the magnitude of change in signaling 

depends on the dose of gene or protein delivered, we were interested in the relative trends and time-courses 

of VEGF redistribution and endothelial signaling, more so than the relative magnitudes of change following 

therapy, though the antibody treatment simulations represent saturating levels of antibody, and thus the 

maximal predicted response for this strategy.  

While protein and gene therapy are predicted to increase free VEGF levels in the PAD Calf 

Muscle but have little-to-no systemic effects at low doses, anti-VEGF is predicted to reduce free VEGF 

levels in the PAD Calf Muscle, but also increase free VEGF in the blood and slightly reduce free VEGF in 

the Main Body Mass (Fig. 8-6A), very similar to the changes predicted following anti-VEGF treatment in 

cancer
47

. For all three treatments, phosphorylation of VEGFR2 is predicted to increase, and remain elevated 

from more than two weeks, though the magnitude of increase is lower with anti-VEGF than could be 

achieved via VEGF delivery. However, while delivery of matrix-binding VEGF gene or protein is also 

predicted to increase VEGFR1 ligation, anti-VEGF is predicted to reduce VEGFR1 ligation (Fig. 8-6B). 

Our currently limited understanding of VEGFR1 signaling make it difficult to predict which of these 

signaling profiles would more effectively stimulate angiogenesis in PAD. 
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Figure 8-7. Anti-VEGF induces different VEGF distribution and endothelial VEGFR activation than 

biomaterial-based protein delivery or VEGF gene therapy. Therapies compared are: biomaterial-based 

delivery of the “Covalent VEGF with Proteolysis” construct to the PAD Calf Muscle at the dose used in 

Fig. 8-2B (green); therapeutic expression of the “Super Affinity VEGF” construct at 5-fold the normal 

expression level for VEGF (all isoforms combined) in the PAD Calf Muscle (blue); and intravenous 

injection of a non-isoform specific antibody to VEGF (Anti-VEGF, red). All therapies are delivered with 

fraction VEGF165b production of 100% in the PAD Calf Muscle and 0% in the Main Body Mass. (A) 

Changes in free VEGF (not bound to ECM, BM, sR1, or antibody) in the PAD Calf Muscle (left), blood 

(middle), and Main Body Mass (right) over time following therapy administration. (B) VEGFR2 

phosphorylation (left), endothelial cell surface VEGFR2 occupancy (middle), and endothelial cell surface 

VEGFR1 occupancy (right) following treatment.  
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8.3 Discussion 

 
8.3.1 In silico screening of therapeutics in a physiological context 

In this paper, we used a systems pharmacology model of VEGF isoforms and VEGFR signaling in 

human peripheral artery disease to screen three types of promising therapies in silico: biomaterial-based 

VEGF delivery; gene therapy; and pro-angiogenic antibodies. The simulations provide insight into the 

mechanisms of action of these therapies, identifying molecular signaling differences between promising 

and ineffective approaches to predict drivers of therapy success or failure. The model also highlights key 

questions and considerations for design, optimization, and translation of these therapeutics into humans 

(Table 8-1). Along the way, we unearthed some common trends and open questions about the underlying 

biology that drives response to therapy. For example, a key unanswered question in dosing studies is: how 

much increase in pR2 is optimal? We showed that, while many past study designs have resulted in fully 

ligated VEGFR2, either throughout a tissue or in local areas, this saturation appears to be unnecessary, and 

likely detrimental to inducing stable collateral vessels. Rather, the model supports the hypothesis of the 

Banfi group that sufficient duration of VEGFR2 activation is a critical factor
7
, and one which can 

potentially be achieved using biomaterial-based protein delivery, gene therapy, or antibody treatment with 

optimized therapy design and delivery. 
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Table 8-1. Summary of analyzed pro-angiogenic therapies. 
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Fig 8-8. Comparisons of therapy profiles. 
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This model captures important trends in observed data in vitro, in vivo, and in the clinic, and 

provides valuable and informative mechanistic insight that could not have been obtained with experiments 

alone. It is important to remember that, due to differences between our model system, experimental 

systems, and real (often highly variable) patients, along with assumptions used to simplify the model or 

account for lack of complete understanding of the underlying biology, precise match between simulations 

and observed experimental and clinical outcomes is challenging and should not be expected. Computational 

models have the advantage of easily implementing theoretical treatments that can be very challenging to 

effectively design. While this analysis does not address the practical or logistical issues associated with 

therapy production or delivery, the insight provided does facilitate decision making about which strategies 

are promising enough to merit further development.  

 

8.3.2 Dosing and delivery leading to extended, sub-saturating VEGFR2 activation is key to successful 

biomaterial-based VEGF delivery  

In simulating biomaterial-based VEGF delivery approaches leveraging engineered VEGF-ECM 

interactions, our model showed that the engineered constructs maintain more physiological free VEGF 

levels, likely accounting for reduced induction of permeability, and sustain VEGFR2 phosphorylation for 

weeks, promoting vessel stabilization following angiogenesis. We also simulated different doses of VEGF, 

finding that receptor saturation may be causative for angioma formation at high VEGF doses. This could 

occur via several different mechanisms: (1) saturation prevents cells from sensing VEGF gradients, 

allowing for cell proliferation but not directed migration, (2) VEGFR2 signaling is different at saturation 

than in sub-saturating regimes, or (3) high VEGF levels lead to depletion of available endothelial receptors, 

leading to changes in signaling. This result aligns with the pathogenic C482R VEGFR2 mutant, which is 

constitutively active in the absence of ligand, and induces hemangioma formation in infants
48

, similar to the 

phenotype observed with delivery of high VEGF doses. It also provides insight into the need for tight 

natural regulation of endogenous VEGF secretion; VEGF haploinsufficiency is lethal
23,49

, as is even 2-3x 

global overexpression during development
50

.  

The appropriate VEGF dose to stimulate angiogenesis without saturating VEGFR2 will likely vary 

depending on the species and tissue, as local capillary density (number of endothelial cells), interstitial 



 377 

VEGF concentration, and expression of receptors and proteases vary. Nonetheless, quantification of these 

variables is feasible, and can be used with computational analyses such as this to inform appropriate doses 

for experiments in mice and initial trials in humans with varying disease states. It should be noted that the 

threshold between therapeutic angiogenesis and angioma formation in 
39

 varied by model system (mouse 

vs. rat, no injury vs. hindlimb ischemia vs. wound healing), from >0.5μg/mL to <25μg/mL. The threshold 

appears to occur at the lowest end of this range in our model (~0.5 μg/mL), owing to molecular, 

physiological, and geometric size differences
51

, the approximate nature of allometric scaling between 

mouse and human doses, and mis-match in the systems being compared. VEGFR1, which is predicted to 

saturate at higher doses, could also play a role. Additionally, we set up our simulations to predict signaling 

within and in close proximity to the gel, the area imaged in the experimental study. To study gradients of 

VEGF concentration father from the gel, a spatial model including diffusion would be required. While 

diffusion would alter the shape of the release curves, the general match in release rate obtained in this study 

allows the model to predict relative magnitude and duration of VEGF delivery, and downstream effects. As 

such, the trends, rough magnitude, and mechanism of action highlighted by this modeling work are 

valuable and instructive. In the future we can build models with variable capillary density and receptor 

expression to further explore this issue, as well as building parallel mouse and human models for better 

matching of doses for similar signaling between species, and the potential to predict divergent effects in 

mice and humans.  

 

8.3.3 Effective gene therapy depends on tight control of delivery and chosen target gene 

It is believed that past VEGF gene therapy trials in PAD and CAD have failed largely due to 

insufficient and/or poorly controlled VEGF expression. Here, we asked: (1) what fold increase in 

expression would be effective at inducing pR2 without saturating VEGFR2, (2) what would the resulting 

changes in free VEGF and endothelial VEGFR signaling be, and (3) would the results be different if other 

VEGF-pathway targets were selected? We showed that approximately 5-fold (vs. total endogenous 

VEGF165) over-expression of VEGF165 or a super affinity VEGF construct produced similar signaling to the 

promising engineered VEGF protein constructs simulated above. It is of note that von Degenfeld et. al.
8
 

achieved effective angiogenesis following delivery of myoblast clones expressing uniform VEGF levels 



 378 

using a myoblast clone that expresses VEGF at approximately 5-fold the expression level of control 

myocytes. While not a traditional gene therapy approach, inducing a splicing switch for VEGF165, from all 

VEGF165b to VEGF165a in the PAD Calf Muscle showed promise. The success of even low doses of 

biomaterial-based VEGF delivery in inducing angiogenesis suggest that this modest increase in pR2 (180% 

of baseline) coupled with a predicted reduction in VEGFR1 ligation by VEGF165b (and increasing binding 

by PlGF and non-VEGF165b, Fig 8-S3A) may be promising. Alternative splicing of VEGFxxxa and VEGFxxxb 

is known to be regulated by IGF1, TNFα, TGFβ
52

, as well as noncanonical Wnt5a signaling
36

. Here we 

assumed a splicing switch only in the PAD Calf Muscle; our previous work predicts that blood-produced 

VEGF contributes very little to signaling in tissue, suggesting that targeting to a specific tissue may not be 

critical. However, levels of VEGF165b are decreased in several types of cancer (renal
25

, colon
53

, metastatic 

melanoma
54

) and in diabetic retinopathy
55

, so detailed measurements of the ratio of “a” to “b” isoforms in 

healthy tissue will be necessary to determine the appropriate amount to shift splicing for optimal safety and 

efficacy.  

 

8.3.4 ‘Anti-angiogenic’ anti-VEGF treatment predicted to improve endothelial VEGFR signaling in PAD. 

Finally, we simulated treatment of PAD with VEGF-binding antibodies. Our model supports the 

results from an extended analysis of the data in Ganta et. al. that perfusion recovery in murine hindlimb 

ischemia following anti-VEGF165b is mediated by VEGFR1, not VEGFR2
29

, consistent with model 

predictions that VEGF isoforms compete for binding to VEGFR1, but not VEGFR2. This appears to be the 

case in both murine hindlimb ischemia, where VEGF is elevated, and human PAD, where VEGF levels are 

unchanged, suggesting potentially key similarities in response to anti-VEGF165b across species. This result 

motivates further study of the signaling induced by VEGFR1, to understand its role in PAD, and the 

therapeutic changes in VEGFR1 activation that would be most effective. It should be noted that this model 

considers only endothelial VEGFR1, while VEGFR1 expressed on monocytes and macrophages may also 

be relevant to PAD and contribute to ligand competition for binding to VEGFR1.  

The model predicts that, due to reversible VEGF-antibody binding and the long half-life of 

monoclonal antibodies, a non-isoform-specific VEGF antibody would ‘shuttle’ VEGF isoforms between 

tissues with varying levels of VEGF isoform expression. This surprising mechanism of action has been 



 379 

observed in cancer following bevacizumab treatment; a previous model showed that ‘antibody shuttling’ 

could explain the seemingly paradoxical increase in plasma VEGF observed following treatment
47

. This, 

combined with accurate prediction of response to anti-VEGF165b treatment by the model, give us 

confidence that such a mechanism is feasible; this prediction can be tested in mice in the future. Due to this 

‘antibody shuttling’ effect, and the relatively high VEGF165b levels in ischemic PAD tissue, the model 

predicts that treatment with ‘anti-angiogenic’ anti-VEGF would improve signaling via both VEGFR1 and 

VEGFR2, potentially providing more therapeutic benefit than anti-VEGF165b. Note that, while the largest 

predicted change in pR2 occurs with highest local VEGF165b production, the absolute quantity of pR2 is 

still highest with low local VEGF165b secretion, reinforcing the potential appeal of a therapeutic agent that 

can ‘fix’ impaired signaling in PAD by reverting splicing towards VEGF165a production. 

This counter-intuitive prediction suggests that differences in the underlying biology in cancer and 

ischemic disease may lead to opposite responses to the same therapy. While VEGF levels are substantially 

elevated in cancer, in PAD ischemic tissues display a splicing switch, leading to relative differences of 

VEGF165a and VEGF165b between healthy and ischemic tissue. Interestingly, even in cancer, anti-VEGF is 

predicted to alter VEGFR1 ligation more than VEGFR2
47

, though potential anti-VEGF-mediated 

redistribution of VEGF splice isoforms has not been investigated in cancer. Note that the efficacy and 

safety of this approach depends on a relatively small quantify of disease tissue expressing VEGF165b at 

higher levels than healthy tissue. This motivates further quantitative measurement of absolute VEGF 

isoform levels in healthy and ischemic tissue, and suggests that this approach may not be effective in 

patients with extensive ischemic disease or large quantities of white adipose tissue, which also has elevated 

VEGF165b expression
17

. Further work to establish the effect of antibody treatment on exercise-mediated 

increases in VEGF expression and signaling is also merited. 

This prediction could not have been made based on cell culture experiments or measurements in 

mice alone, but is nonetheless consistent with observed signaling data and understanding of antibody 

properties, and is therapeutically relevant and actionable. This highlights the need for complex 

pharmacological models such as this to integrate detailed molecular interactions and signaling properties 

measured in vitro, observations in animal models, and knowledge of therapy pharmacokinetics into a single 

consistent framework, in order to predict the complex and sometimes surprising actions of therapeutics in 
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human subjects. Our model can also identify potential toxicity and unexpected side-effects prior to human 

studies, propose new purposes for existing drugs, and more efficiently guide therapy design and translation. 

This study demonstrates that consideration of systemic VEGF distribution and antibody pharmacokinetics, 

along with quantitative measurements of VEGF isoform protein levels in healthy and diseased tissue, are 

essential next steps for design of an effective antibody-based therapeutic for PAD.  

 

8.3.5 Key Similarities Across Promising Therapeutic Strategies 

We used a multiscale mechanistic computational model to study potential pro-angiogenic 

therapies for PAD. The mechanisms of action uncovered by this analysis may also be relevant to other pro-

angiogenic applications, including wound healing and tissue engineering. Comparing the therapeutic 

strategies simulated here, we saw two distinct profiles of signaling following treatment with promising 

therapeutics: (1) elevated local free VEGF, pR2, and VEGFR1 ligation produced by delivery of matrix-

binding VEGF protein or gene, and (2) reduced local free VEGF, moderate increases in pR2, and reduced 

endothelial VEGFR1 ligation produced by anti-VEGF, a splicing switch from VEGF165b to VEGF165a and 

VEGFR2 gene delivery (Fig 8-8). Further experiments are necessary to fully determine whether one or 

both of these profiles results in sustained improvements in perfusion in human PAD. The common theme 

across both of these profiles is small, non-saturating improvements in VEGFR signaling that are sustained 

for weeks. We propose that this is a key criteria to drive design and dosing of these therapeutics in 

experimental systems and human subjects, taking into account the underlying physiology, molecular 

biology, and ligand and receptor expression levels in each system during dose selection. 
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8.4 Methods 

 
This whole body compartment model accounts for molecular and physiological processes, 

including growth factor secretion in tissues and blood, growth factor and soluble receptor binding to 

endothelial receptors and HSPGs in the ECM and basement membranes, trafficking and tyrosine site-

specific phosphorylation of endothelial VEGFR2, transport between compartments via vascular 

permeability and lymphatic drainage, and clearance of growth factor and sR1 in the blood (via the liver and 

kidneys). Each tissue compartment is approximated using the properties of skeletal muscle, and contains 

physiological proportions of endothelial cells, ECM, interstitial space, and basement membrane, as well as 

molecular expression levels adjusted to account for measured changes in PAD, compared to healthy 

skeletal muscle (Fig. 8-1). By incorporating VEGF and PlGF isoform-specific ECM- and NRP1-binding 

properties, the model can predict the effect of splicing changes, such as those occurring in PAD, on 

signaling. Additionally, the ability to predict the effect of VEGF-ECM binding on VEGFR2 signaling 

makes our model an excellent platform to study biomaterial-based VEGF delivery. These model 

capabilities have been validated against in vitro, ex vivo, murine, and human data from multiple groups in 

several previous studies. For detailed model formulation, please see the previous chapter. 

To simulate biomaterial-based protein, gene, or antibody therapy, we mimicked therapy delivery 

in experimental and clinical studies as closely as possible, in order to make model predictions as realistic 

and meaningful as possible.  

 

8.4.1 Implementation of Biomaterial-based VEGF Delivery 

The first therapeutic strategy we simulated was use of biomaterials to control and extend VEGF 

delivery. For these simulations, we modeled experiment constructs engineered by the groups of Jeff 

Hubbell and Andrea Banfi (Fig. 8-2A). In the Martino 2014 study, a dose of 200ng was delivered to a 5-

6mm diameter punch biopsy wound
38

. To deliver a roughly equivalent dose to the PAD Calf Muscle of our 

simulated 70kg human, we used allometric scaling, with an exponent of 0.75 to account for differences in 

metabolic rate between mice and humans, then adjusted this value to account for differences in the size of 

the wound vs. PAD Calf Muscle relative to total body size, resulting in a human dose of 354μg VEGF. This 

dose was used for all three constructs in Fig. 8-2B, to provide an equivalent comparison. We used affinity 
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measurements from 
38

 for VEGF165 and the engineered “Super Affinity” VEGF (VEGFSA) (Table 8-2). 

Then, we tuned the model by adjusting the number of ECM binding sites added along with the VEGF (i.e. 

in the fibrin gel), in order to match experimentally measured kinetics for VEGF release from the implanted 

gels in vivo (Table 8-2), matching the fraction of VEGF retained in or within 2mm of the gel when 

VEGFSA was delivered with fibrin. This adjustment helped to account for diffusion, which is not 

considered in this model. As proteases are not included in this model, we also modeled release of the 

“Covalent VEGF w/ Proteolysis” construct as a reversible VEGF-ECM bond, reducing the koff rate constant 

from Super Affinity VEGF until the release kinetics matched experimental data from 
39

.  

For the dosing study presented in Fig. 8-2C, we assumed uniform delivery of the VEGF-

containing fibrin gel to the entire PAD Calf Muscle, at the same concentrations (in total tissue volume) 

used in the experimental study, ranging from 0.01μg/mL to 100μg/mL
39

, using the same added number of 

ECM sites as for Fig 8-2B for all doses. To demonstrate similar therapy action regardless of underlying 

VEGF165b secretion, these simulations were run with no local VEGF165b production (0%).  
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Table 8-2. Summary of parameters for biomaterial-based VEGF delivery. 

Protein 

Construct 

KD(V-M) 

in nM 

kon(V-M) in 

M
-1

s
-1

 

koff(V-M) 

in s
-1

 

[ECM] added 

(*VEGF dose) 

Ref. 

VEGF165 60.9 1.64x10
5
 1.0x10

-2
 425 

38
 

Super Affinity 

VEGF 

5.9 1.69x10
5
 1.0x10

-3
 150 

38
 

Cov. VEGF  

w/ Prot. 

0.002 1.69x10
5
 3.3x10

-7
 150 Tuned to 

match 
39

 

*All constructs assumed to bind NRP1, VEGFR1, VEGFR2, & sR1 with the same affinities as VEGF165. 
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8.4.2 Implementation of Gene Therapy 

Next, we simulated gene delivery-based pro-angiogenic therapeutic strategies, including delivery 

of VEGF165 gene at moderate levels, VEGF engineered for increased affinity to the ECM (VEGFSA), 

increased VEGFR2 expression on endothelial cells, and decreased expression of sR1 (summarized in Table 

8-3). We also examined the impact of switching VEGF165 splicing from all VEGF165b to all VEGF165a, 

another therapeutic strategy of interest. We assume ideal delivery: 100% transfection efficiency, spatially 

homogeneous delivery, with expression occurring instantly, at a constant level for an infinite duration, and 

only in the target tissue (PAD Calf Muscle). 
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Table 8-3. Summary of parameters for gene therapy. 

Targeted Gene Targeted Cells Fold Change 

VEGF165 Parenchymal (e.g. skeletal muscle) 5x basal VEGF secretion 

VEGF165 Parenchymal (e.g. skeletal muscle) 20x basal VEGF secretion 

Super Affinity 

VEGF 

Parenchymal (e.g. skeletal muscle) 5x basal VEGF secretion 

VEGF165 b->a 

switch 

Parenchymal* - 

VEGFR2 Endothelial cells 5x basal VEGFR2 prod. 

sR1 Endothelial cells 0.1x basal sR1 secretion 

*Splicing switch: assuming no change to VEGF165b secretion by monocytes into the blood. This has 

minimal effect on tissue signaling anyway. 
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8.4.3 Implementation of Antibody Therapy 

We modeled intravenous infusion of anti-VEGF165b in a single bolus over 90 minutes, at a dose of 

10mg/kg (Table 8-4), using the same binding and pharmacokinetic properties as previously used for 

bevacizumab
47

. To provide a frame of reference against a similar approved antibody, we also simulated a 

non-isoform-specific antibody (anti-VEGF) using the same protocol and binding properties, assuming an 

equivalent binding affinity for all VEGF isoforms. Additionally, as done before, we assumed the antibodies 

bind only to free VEGF, not VEGF bound to HSPGs, sR1, or endothelial receptors, as well as neglecting 

multimeric binding of VEGF by antibodies. 

 

  



 387 

Table 8-4. Summary of parameters for intravenous antibody infusion. 

Parameter Description Value Units Ref. 

KD(V-AB) Binding affinity for VEGF to AB 2.2 nM 
47,56

 

kon(V-AB) on-rate constant for V-AB 9.2x10
4
 M

-1
s

-1
 

47
 

koff(V-AB) off-rate constant for V-AB 2.0x10
-4

 s
-1

 
47

 

kperm(AB) vascular permeability of AB 3x10
-8 

cm/s 
47

 

kperm(V-AB) vascular permeability of V-AB 3x10
-8

 cm/s 
47

 

klymph(AB), MBM lymphatic drainage of AB from MBM 0.1418 cm
2
/s 

57
 

klymph(V-AB), 

MBM 

lymphatic drainage of V-AB from 

MBM 

0.1418 cm
2
/s 

57
 

klymph(AB), PCM lymphatic drainage of AB from PCM 0.0022 cm
2
/s 

57
 

klymph(V-AB), 

PCM 

lymphatic drainage of V-AB from 

PCM 

0.0022 cm
2
/s 

57
 

kCL(AB) clearance of AB from blood 3.2x10
-7 

s
-1 47

 

kCL(V-AB) clearance of V-AB from blood 3.2x10
-7

 s
-1

 
47

 

Bolus size dose (70kg human subject) 10 mg/kg 
47

 

Infusion 

duration 

 90 min 
47

 

*All parameters assumed same for Anti-VEGF and Anti-VEGF165b, aside from set of VEGF isoforms 

bound by ligand.  

*MBM = main body mass, PCM = PAD calf muscle 

No therapy-induced remodeling 
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The model is simulated in Fortran using the Livermore Solver for Ordinary Differential Equations 

with Automatic method switching for stiff and nonstiff problems (LSODA) on a laptop PC, using a relative 

error tolerance of 10
-6

. 

 

8.4.4 Experimental anti-VEGF165b Treatment in Murine Hindlimb Ischemia 

The experimental data presented in this paper represent an extended analysis of the results 

presented in 
11

, and all methods are the same. For the ischemic vs. non-ischemic comparisons, mouse 

measurements are taken from muscle 3 days after antibody administration in ischemic limbs, and represent 

total tissue measurements (receptor-bound ligand and VEGF protein) or CD31+ cells (pR2/R2 & pR1/R1, 

noted by (EC) in plots), normalized by equivalent quantities in the IgG-treated control.   
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8.6 Supplemental Figures 

 
Figure 8-S1. Detailed response to biomaterial-based delivery of engineered VEGF constructs to the 

PAD Calf Muscle. This figure is related to Fig. 8-2. Free VEGF levels in compartments (A-B), details of 

VEGFR2 phosphorylation (C-F), endothelial receptor occupancy (G-I), changes in surface receptor levels 

following treatment (J-L), and the dynamic changes in receptor production required to hold total receptor 

levels constant following treatment (M-O). 
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Figure 8-S1 
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Figure 8-S2. Detailed response to varying doses of “Covalent VEGF w/ Proteolysis” 

construct to the PAD Calf Muscle. This figure is related to Fig. 2 of the main 

manuscript. Free VEGF levels in other compartments (A-B), details of VEGFR2 

phosphorylation (C-F), endothelial receptor occupancy (G-H), changes in surface 

receptor levels following treatment (I-K), and the dynamic changes in receptor 

production required to hold total receptor levels constant following treatment (L-N).  
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Figure 8-S2  
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Figure 8-S3. Additional metrics of response to gene therapy at Day 6 following treatment. This figure 

is related to Fig. 8-3. Breakdown of ligands bound to VEGFR1 and VEGFR2 on endothelial cells (top 

row), endothelial surface receptor levels (middle row), and changes in receptor production required to hold 

total receptor levels constant (bottom row) following treatment at 6 days post-treatment. 
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Figure 8-S4. Detailed time-course response to gene therapy strategies. This figure is related to Fig. 8-3. 

Free VEGF levels in other compartments (A-D), details of VEGFR2 phosphorylation (E-F,J-L), 

endothelial receptor occupancy (G-I), changes in surface receptor levels following treatment (M-O), and 

the dynamic changes in receptor production required to hold total receptor levels constant following 

treatment (P-R). 
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Figure 8-S4 
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Figure 8-S5. Analysis of predicted VEGF165a and VEGF165b distribution in human body following 

VEGF-targeted antibody therapy. This figure is related to Fig. 8-4. Concentration of free VEGF165a and 

VEGF165b, free antibody, and VEGF-antibody complexes in the Main Body Mass, Blood, and PAD Calf 

Muscle at baseline (middle) and on Day 6 following IV infusion of Anti-VEGF165b (left) or Anti-VEGF 

(right), at different fractional VEGF165b secretion rates in the Main Body Mass and PAD Calf Muscle. Gray 

arrows indicate net association of antibody and VEGF, while gray arrows denote net dissociation. Note 

that, while at baseline only local VEGF secretion is important for signaling, upon treatment with antibody, 

systemic effects become important (i.e. the concentrations of VEGF165a and VEGF165b in the other tissue 

compartment affect local VEGF levels). Changes in flow directions between compartments also occur 

following antibody treatment. Note that VEGF165b distribution is similarly impacted by both Anti-VEGF165b 

and Anti-VEGF; the difference in effect arises from the concomitant redistribution of VEGF165a by Anti-

VEGF.  
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 Figure 8-S5 
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Figure 8-S6. Effect of VEGF-targeting antibodies on systemic free VEGF distribution. This figure is 

related to Fig. 8-4. Predicted fold change from baseline of total free VEGF in the PAD Calf Muscle (left), 

blood (middle) and Main Body Mass (right) on Day 6 following treatment with Anti-VEGF165b (top row) or 

a non-isoform-specific Anti-VEGF (bottom row), as a function of the local fractional secretion of VEGF165b 

in the PAD Calf Muscle (x-axis) and the Main Body Mass (y-axis).  
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Figure 8-S7. Additional effects of VEGF-targeting antibodies on endothelial VEGFR signaling in 

vivo. This figure is related to Fig. 8-5. (Top) Predicted ratio of VEGFR2 phosphorylation on Y1214 to 

Y1175 in the PAD Calf Muscle at baseline (left), and on Day 6 following treatment with Anti-VEGF165b 

(middle) or a non-isoform-specific Anti-VEGF (right), as a function of the local fractional secretion of 

VEGF165b in the PAD Calf Muscle (x-axis) and the Main Body Mass (y-axis). (Bottom) Predicted fold 

change in VEGFR2 phosphorylation in the Main Body Mass on Day 6 following systemic antibody 

treatment. 
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Fig 8-S8. Effects of VEGF-targeting antibodies on endothelial total VEGFR2 ligation in vivo. This 

figure is related to Fig. 8-5. Predicted total binding of VEGF to VEGFR2 (top row), VEGF165b-R2 (middle 

row), and binding of other VEGF isoforms to VEGFR2 (bottom row) in the PAD Calf Muscle at baseline 

(left), and fold change from baseline on Day 6 following treatment with Anti-VEGF165b (middle) or a non-

isoform-specific Anti-VEGF (right), as a function of the local fractional secretion of VEGF165b in the PAD 

Calf Muscle (x-axis) and the Main Body Mass (y-axis).  
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Fig 8-S9. Effects of VEGF-targeting antibodies on endothelial cell surface VEGFR2 ligation in vivo. 

This figure is related to Fig. 8-5. Predicted total binding of VEGF to VEGFR2 (top row), VEGF165b-R2 

(middle row), and binding of other VEGF isoforms to VEGFR2 (bottom row) in the PAD Calf Muscle at 

baseline (left), and fold change from baseline on Day 6 following treatment with Anti-VEGF165b (middle) 

or a non-isoform-specific Anti-VEGF (right), as a function of the local fractional secretion of VEGF165b in 

the PAD Calf Muscle (x-axis) and the Main Body Mass (y-axis). 
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Figure 8-S10. Effects of VEGF-targeting antibodies on endothelial cell surface VEGFR1 ligation in 

vivo. This figure is related to Fig. 8-5. Predicted total binding of PlGF to VEGFR1 (top row), total VEGF 

to VEGFR1 (2nd row), VEGF165b-R1 (3rd row), and binding of other VEGF isoforms to VEGFR1 (bottom 

row) in the PAD Calf Muscle at baseline (left), and fold change from baseline on Day 6 following 

treatment with Anti-VEGF165b (middle) or a non-isoform-specific Anti-VEGF (right), as a function of the 

local fractional secretion of VEGF165b in the PAD Calf Muscle (x-axis) and the Main Body Mass (y-axis). 
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Figure 8-S10 

 

 

 

  



 411 

Figure 8-S11. Relative antibody binding to VEGF165a and VEGF165b in the Main Body Mass and PAD 

Calf Muscle. This figure is related to Fig. 8-4. (Top) Predicted ratio of VEGF bound to the antibody in the 

PAD Calf Muscle as compared to the Main Body Mass on Day 6 following treatment, as a function of the 

local fractional secretion of VEGF165b in the PAD Calf Muscle (x-axis) and the Main Body Mass (y-axis). 

Left: VEGF165b bound to Anti-VEGF165b, Middle: VEGF165b bound to Anti-VEGF, Right: VEGF165a bound 

to Anti-VEGF. (Bottom) Predicted ratio of VEGF165b to VEGF165a bound to Anti-VEGF in the PAD Calf 

Muscle (left), Blood (middle), and Main Body Mass (right) at Day 6 following treatment. In most cases, 

VEGF165b dominates due to its over-representation relative to its secretion fraction. 
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Figure 8-S12. Comparison of VEGFR2 activation following biomaterial-based protein delivery, gene 

therapy, or anti-VEGF treatment. This figure is related to Fig. 8-6. Fraction of total VEGFR2 

phosphorylated (A), total VEGFR2 occupancy (B), and pY1214/pY1175 over time following treatment 

induction.  
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Chapter 9. A Generalized Analysis of Antibody Shuttling for 

Soluble Endogenous Paracrine Proteins 

9.0 Summary  

Here, we examined whether the ‘antibody shuttling’ effect observed in our complex human peripheral 

artery disease model (Chapter 8) was a more general phenomenon that may occur in other applications. We 

found that this effect requires only reversible binding of an antibody with a long half-life in the human 

body to a paracrine-acting target protein with multiple isoforms, which may be expressed at different levels 

in different tissue. This simple, generalized model captures both shuttling of a single ligand, as observed in 

cancer, and swapping of multiple ligands, as predicted in Chapter 8.  

 

9.1 Introduction 

Our objective was to create a simple compartment model to demonstrate an under-appreciated action of 

monoclonal antibodies targeting soluble paracrine factors (e.g. growth factors). Often, therapeutic 

antibodies are viewed as a means to remove a target endogenous protein from the body
1
. While this does 

occur, our model shows that they can also move target protein between compartments with different 

concentrations of endogenous protein, with potentially therapeutically-relevant consequences. Thus, we 

propose the importance of accounting not only for antibody pharmacokinetics, but also for antibody-

mediated redistribution of endogenous proteins that may contribute to therapeutic response or off-target 

effects and toxicity.  

 

The model results depend only on: 

(1) the long (typically ~21 days) half-life of monoclonal antibodies 

(2) reversible binding between antibody and target protein 

(3) low transport of soluble target protein between compartments at baseline 
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The first two of these requirements hold generally for monoclonal antibodies. The third, a characteristic of 

the underlying system, holds for growth factors and other cytokines that primarily act in a paracrine 

manner; binding to receptors and being subsequently degraded in the same tissue in which they are 

produced.  
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9.2 Methods 

 
We created a simple, 2-compartment model containing two endogenous species: Red & Blue. Red & Blue 

are assumed to have identical properties; color simply enables tracking of two subsets of the endogenous 

target population (though this assumption can be relaxed). These may represent different isoforms of the 

target protein, or related proteins with which the antibody cross-reacts. The volumes of Compartment 1 and 

Compartment 2 are variable, as are the relative secretion of Red and Blue in each compartment. In this 

simple model, we assume constant clearance of Red & Blue from each compartment (e.g. via receptor-

mediated endocytosis), with relatively low transport between compartments. An antibody with 

physiologically reasonably properties is delivered to Compartment 1 in excess at time=0, reversibly binding 

to Red & Blue, and moving between compartments at the same rate as free Red & Blue. The ten equations 

in the model are given below, followed by Tables detailing model parameters. Ri represents Red in 

compartment i, Bi is Blue in compartment I, and ABi is free antibody. 
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The model was solved in R using the Livermore Solver for Ordinary Differential equations with Adaptive 

step size for stiff and non-stiff problems (LSODA), using an absolute tolerance of 10
-10

.  
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Table 9-1. System Parameterization 

Parameter Description Compartment 1 Compartment 2 Units 

qR Secretion Rate, Red 0-10 (3) 0-10 (1) nmoles/L/day 

qB Secretion Rate, Blue 0-10 (1) 0-10 (3) nmoles/L/day 

Vol Compartment Volume 0.1-10 (1) 0.1-10 (1) L 

kc,R Clearance Rate, Red 90 90 day
-1 

kc,B Clearance Rate, Blue 90 90 day
-1 

kc,AB Clearance Rate, Antibody 0.03 0.03 day
-1 

kt,R Inter-compartment 

Transport, Red 

10 10 day
-1

 

kt,B Inter-compartment 

Transport, Blue 

10 10 day
-1

 

kt,AB Inter-compartment 

Transport, Antibody 

10 10 day
-1

 

Notes: For variable parameters, default value given in parenthesis. 
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Table 9-2. Antibody-Binding Parameters 

Parameter Description Red Blue Units 

KD Antibody Binding Affinity 1.25 1.25 nmoles/L 

kon Antibody Binding on-rate 8 8 (nmoles/L/day)
-1

 

koff Antibody Unbinding Rate 10 10 day
-1

 

Note: Antibody dose: compartment 1 only, 80 nmoles/L (in excess compared to ligand) 
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9.3 Results 

 
Antibody Shuttling: Antibody facilitates movement of target protein, reducing concentration differences 

We first examined a situation such as that found in cancer: a small compartment (e.g. tumor) 

expressing high levels of target protein compared to the main (e.g. central) compartment (Fig 9-1A). We 

showed that, following antibody administration (at a saturating concentration) into the main compartment, 

free target (Red) levels in the tumor drop as expected (Fig 9-1B). However, Red concentration is predicted 

to increase in the main compartment, as the antibody tends to bind Red in the high concentration small 

compartment, and tends to drop Red upon moving into the lower concentration environment of the main 

compartment. This effect has been predicted by a compartment model and confirmed via clinical 

observation in cancer, where plasma vascular endothelial growth factor (VEGF) levels can increase 

following treatment with an anti-VEGF antibody (bevacizumab)
2
. The extent of this effect depends on the 

relative volumes of the two compartments, but predicted free target generally increases in the low-baseline-

concentration compartment, and decreases in the high-baseline-concentration compartment (Fig 9-1C-D), 

demonstrating the robustness of this ‘shuttling’ effect. The effect is not present if the compartment with 

high baseline target levels is much larger than compartment with low baseline target levels (discussed 

below). 
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Figure 9-1. Antibody shuttling effect leads to an increase in main compartment concentration when 

target protein is produced at high levels in a smaller compartment (e.g. tumor). (A) Schematic of 

model, including target protein section, clearance, and transport, as well as antibody dosing into 

compartment 1 (Main), transport, and clearance. The main compartment is 10L, with 1/10 the target 

secretion rate (per L) of the small compartment, which is 1L. (B) Following antibody administration, the 

concentration of free target protein decreases in the small compartment, but increases in the main 

compartment. (C) Analysis of fold change in free target protein in compartment 1 (low baseline) 10 days 

after antibody treatment, as a function of compartment volumes. (D) Fold change in free target protein 

concentration in compartment 2 (high baseline) 10 days after antibody treatment, as a function of 

compartment volumes. 
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Antibody-Mediated Swapping: Shuttling occurs independently for multiple target proteins 

We next examined a case where two identical target proteins, Red and Blue, are expressed at 

different levels in the two compartments (Fig 9-2A). This is representative of a case where an antibody 

binds to multiple isoforms of a target protein, which may have different signaling properties, or cross-reacts 

with related proteins. Such a scenario is quite common for antibodies targeting growth factors and other 

paracrine factors (e.g. cytokines). As the antibody is given in excess compared to target protein levels, it 

acts independently to shuttle Red and Blue between the compartments, leading to antibody-mediated 

swapping of Red and Blue, reducing the concentration differences between the two compartments (Fig 9-

2B-C). Note that, because in this simulation total Red + Blue secretion is the same in each compartment, 

the antibody induces minimal change in total target protein concentration in either compartment (Fig 9-2B-

C). Thus, while Red & Blue may have different signaling properties, if an assay is used that detects only 

total target concentration (e.g. a non-isoform-specific detection antibody), this effect will not be detected.   
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Figure 9-2. Antibody can ‘swap’ different target proteins between compartments, reducing 

concentration differences. (A) Schematic of model system, with two compartments of equal volume, with 

10x higher secretion of Red than Blue in compartment 1, and 10x higher secretion of Blue than Red in 

compartment 2. Red and Blue have identical properties. (B) Comparison of concentration of Red and Blue 

in each compartment before and 10 days after antibody administration. Concentrations of Red and Blue in 

the two compartments become more similar following antibody treatment, demonstrating the ‘swapping’ 

effect. (C) Time-course of free Red and Blue following antibody treatment. Note minimal change in total 

(Red + Blue) concentrations (dashed line). 
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Antibody-Mediated Swapping: Effect of volume and relative secretion of Red & Blue 

We next examined the robustness of this ‘swapping’ effect to changes in volume or initial 

concentration differences between compartments.  While the effect is symmetric with equal size 

compartments (Fig 9-2C), asymmetry emerges for non-equal volume compartments, with larger changes in 

the concentrations of Red and Blue in the smaller compartment (Fig 9-3A).  If the compartment with high 

baseline concentration of a target protein is sufficiently larger than the compartment with low baseline 

levels, significant ‘leakage’ of target protein from the large into the small compartment may occur, 

removing the concentration difference between compartments, and nullifying the antibody ‘swapping’ 

effect (Fig 9-3B, Red in Compartment 2). 
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Figure 9-3. Effect of compartment volume on antibody-mediated ‘swapping’ effect. (A) Time-course 

of free Red and Blue following antibody treatment when compartment 1 is twice as large as compartment 

2. Note non-symmetric response. (B) Time-course of free Red and Blue following antibody treatment when 

compartment 1 is 10x as large as compartment 2. Note that, due to the disparate volumes, the baseline 

concentration of Red in compartment 2 matches that in the larger compartment 1, due to baseline ‘leak’ of 

Red between compartments. Due to this non-negligible basal transport, no ‘swapping’ effect is seen upon 

antibody administration. 
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Examining the effect of compartment volume more broadly, we found, as for the single target 

protein case (Fig 9-1C), that following antibody administration, in each compartment the target protein that 

was high at baseline decreases, and the one was low in that compartment at baseline increases (Fig 9-4). As 

described in Fig 9-3, the effect disappears for very large volume differences.  

Finally, we examined the effect of varying the concentration difference of Red and Blue between 

two equal-sized compartments. Holding total Red + Blue secretion constant, we found that the antibody 

would have little effect on total free target concentrations in each compartment (Fig 9-5, right column). The 

extent of Red/Blue swapping is proportional to the baseline concentration difference (Fig 9-5). We have 

observed this case in our systems pharmacology models of human peripheral artery disease, where total 

VEGF levels remain unchanged, but splicing changes in disease, from a ‘strong’ activator of signaling to 

increased expression of a ‘weak’ activator, leading to clinically-relevant changes in signaling, and 

impacting appropriate design of antibodies for this application. 

We created a Shiny app that allows users to further explore these antibody-mediated ‘shuttling’ 

and ‘swapping’ effects, varying secretion of Red and Blue in each compartment, as well as compartment 

volumes. 
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Figure 9-4. Antibody swapping effect is not highly sensitive to compartment volumes. Fold change in 

free Red (left) and Blue (right) in compartment 1 (top) and compartment 2 (bottom) as a function of 

compartment volume. In all cases, upon antibody treatment, the target that was originally high in a 

compartment decreases (purple), while the target that was originally low increases (green). These 

simulations use the same model set-up as Figure 2 & 3, with ‘high’ denoting 10x higher secretion than the 

other target protein. 
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Figure 9-5. Antibody swapping effect magnitude is determined by relative secretion of Red and Blue 

in each compartment. Fold change in free Red (left), Blue (middle), and total target protein (right), in 

compartments 1 (top row) and 2 (bottom row). Total target secretion is held constant at 10 nmoles/L/day: 

as Red secretion increases, Blue secretion decreases proportionally. 
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9.4 Conclusions 

 
We have demonstrated here the generality of an un-appreciated mechanism of action of antibodies 

that bind to one or more isoforms of a soluble, paracrine-acting endogenous protein, which has been 

previously confirmed to occur in cancer
2
 and is predicted to occur in human peripheral artery disease. We 

hypothesize that this effect may contribute to some of the observed off-target effects, toxicity, and 

unexpected actions observed clinically for this class of antibodies. This work motivates consideration of 

underlying target protein concentration differences between tissue in therapy design and in evaluation of 

drug pharmacokinetics and pharmacodynamics prior to first dosing in humans. 
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Chapter 10. Discussion & Future Directions 

10.0 Summary  

 
By building multi-scale mechanistic models firmly grounded in and validated against experimental 

data, we obtained unique mechanistic insight into a common biological process (growth factor 

immobilization) that could not have been arrived at through experiments alone. These models allow us to 

translate insight between cell culture, animal models, and human disease, overcoming barriers to effective 

design and translation of pro-angiogenic therapies. Specifically, we leveraged our mechanistic model to 

show how VEGF splicing changes contribute to impaired angiogenesis in peripheral artery disease (Chapter 

8). We also provided quantitative evaluation of drivers of success or failure for biomaterial-based VEGF 

delivery, and identified a novel antibody-based therapeutic strategy using a clinically-approved drug 

(Chapter 9). This work provides a framework and motivation for study of immobilization of many other 

growth factors for tissue engineering applications [1, 2] (Chapter 3), by facilitating translation of 

experimental observations into predicted therapy effectiveness in human patients.  
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10.1 Bridging Scales: in vitro to Human Disease 

 
A key feature of computational models is their ability to bridge scales (Fig. 10-1), facilitating 

interpretation of mechanistic detail observed in vitro in the context of human physiology, and improving 

understanding of how multiple perturbations contribute to signaling impairment in disease (Chapter 4). 

Here, we started with in vitro observations of VEGFR2 signaling in response to soluble or immobilized 

VEGF (Chapter 5), building a cell-level model to test mechanistic hypotheses about how immobilization 

alters signaling. We showed that a relatively simple mechanism – extended retention of immobilized 

VEGF-VEGFR2 complexes at the cell surface – can explain all experimental data to date.  

Next, we wanted to study whether immobilized VEGF, which is predicted to be present at much 

higher levels than soluble VEGF in vivo, contributes to differential VEGF receptor signaling in the human 

body (Chapter 6). We found that the model does, in fact, predict signaling that varies as a function of 

VEGF isoform ECM-binding properties in vivo, and which aligns with the vascular morphologies observed 

in mice or tumors expressing single VEGF isoforms.  

Having a predictive model, we next probed the contribution of changes in splicing of VEGF in 

peripheral artery disease to impaired angiogenic signaling (Chapter 7). Our model demonstrated that the 

VEGF165b isoform, which is elevated in PAD, does play a role in the disease, but not in the way previously 

hypothesized. While the prevailing hypothesis that VEGF165b competes for binding to VEGFR2 was based 

on in vitro observations, our model showed that, due to differences in concentration between in vitro and in 

vivo scenarios, this competition is not likely to occur in vivo. Instead, the model highlights the importance 

of reduction in expression of other VEGF isoforms to impaired VEGFR2 signaling, and confirms the 

observations of Ganta et. al. that VEGF165b can compete for binding to and alter the signaling of VEGFR1. 

These predictions, which could not have been reached via experiment alone, demonstrate the power of 

using models to translate across scales.  

In building a model that captures all key aspects of VEGF distribution and VEGF receptor 

signaling in healthy subjects and peripheral artery disease patients, we created a framework that can be 

used to screen a broad array of different therapeutic strategies, evaluating their ability to induce more 

normal signaling in diseased tissue, and facilitating selection of appropriate doses (Chapter 8). These 

predictions are key to effective design and translation of therapies; in addition to identifying key rules for 
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biomaterial design, we predicted a new mechanism of action for antibody-based therapy, suggesting that an 

approved drug binding all VEGF isoforms may be more effective than an antibody tested in mice, which 

binds to only VEGF165b (Chapter 9). Further, we demonstrated that the newly identified mode of antibody 

action is generalizable to all antibodies designed to bind soluble paracrine-acting factors with multiple 

isoforms expressed at different levels in different tissues or in diseased vs. healthy tissue (Chapter 10). 

These predictions are novel, testable, and actionable during therapy development. 
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Figure 10-1. Overview of multi-scale modeling approach. 
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10.2 Future Directions  

 
The work described here has further application in a variety of fields, and is far from exploring the 

full potential of this avenue of research to elucidate mechanisms underlying human disease and therapy. 

 

10.2.1 Additional mechanistic detail on VEGF immobilization: integrins 

Here, I explored the effect of physical retention of VEGF-VEGFR complexes at the cell surface. 

However, the complex interplay between integrins and growth factor receptors must be considered to fully 

understand the key role of the ECM in regulating growth factor-induced signaling in the body and in 

engineering tissues [1]. Co-stimulation of VEGFR2 and integrins leads to synergistic angiogenic signaling, 

reducing the amount of growth factor required to promote regeneration. However, the molecular 

mechanism behind this synergy, which also exists for other growth factor receptors, is poorly understood, 

making it difficult to predictively leverage for therapy. The effects of integrins on angiogenic signaling 

varies by integrin: α5β1, which binds to fibronectin, is pro-angiogenic, while signaling of αvβ3, which binds 

to vitronectin and other ECM proteins, appears to be context-dependent. Building mechanistic models of 

co-regulation and signaling by VEGFR2 and integrins would allow for better predictions of effective ways 

to leverage this synergy therapeutically (Chapter 3). Incorporating this detail into multi-scale models will 

improve our ability to optimize VEGF & ECM co-presentation to predictably induce synergistic signaling 

in vivo [3].  

 

10.2.2 Detailed trafficking and signaling of VEGFR1 

While we have developed a detailed model of VEGFR2 trafficking and site-specific 

phosphorylation, sufficient mechanistic knowledge is not available to do the same for VEGFR1. Recent 

experimental data and the results presented here suggest that VEGFR1 may have an under-appreciated role 

in human disease [4-7], motivating such work. The framework here can easily be adapted and updated to 

incorporate such detailed mechanistic detail for VEGFR1, improving the model’s ability to accurately 

capture and predict VEGFR1 signaling in different conditions. 
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10.2.3 VEGF splicing and immobilization in different disease applications 

 VEGF splicing changes and ECM remodeling occur not only in PAD, but also in diabetes and 

obesity [8], conditions characterized by impaired wound healing and poor angiogenic responses to ischemia. 

A quantitative understanding of how these changes affect VEGF signaling and microvascular dysfunction 

will lead to better strategies to prevent this damage and design tissue constructs to facilitate wound healing 

in these chronic conditions. Future work to quantify both local changes in VEGF and ECM in healthy vs. 

unhealing wounds [1], and systemic changes due to disease, in both mice and humans, will be important.  

 Building upon existing human and mouse whole-body human compartment models, models of 

diabetic and obese humans, and parallel computational models of diseased mice (e.g. ob/ob, C57BL/6 diet-

induced obesity) can be created to probe key drivers of microvascular impairment in each disease. A 

chronic wound compartment can be incorporated to study the signaling underlying impaired wound healing, 

and to optimize VEGF delivery for improved regeneration, accounting for disease-specific changes in 

tissue-level physiology, VEGF splicing, and ECM protein expression and degradation by proteases, along 

with emerging research on the role of fat and glucose on microvascular dysfunction. Intruiging evidence on 

the role of VEGF splicing changes in cancer is also emerging [9-11], which could be explored using this 

model framework. 

 

10.2.4 Spatiotemporal patterning of VEGFR signaling in tissue  

Spatial and temporal patterning of cues is critical to formation of functional vascular networks; 

poor spatial control is believed to be a key cause of failure in gene- and cell-based VEGF delivery to date 

[12, 13]. A quantitative understanding of these dynamics, which are difficult to measure in vivo, is 

necessary to optimize delivery and presentation (e.g. ECM-binding) of VEGF. Building upon my thesis 

work, realistic 3D models of VEGF spatial distribution and VEGF receptor activation in vivo could be 

constructed [7, 14]. This framework could be used to simulate signaling in experimental systems of 

vascular development (e.g. embryoid body & fibrin bead assays), in which the vasculature can be imaged 

over time following a perturbation, to understand the minimal spatiotemporal requirements for vascular 

network formation. The level of molecular and physiological detail in the model allows us to extract key, 

experimentally testable readouts. These readouts include predicted microenvironmental variability in 
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VEGF concentration and VEGFR2 signaling, and spatial gradients in VEGFR2 activation at branching 

points vs. in quiescent vasculature.   

The model could also be used to simulate signaling in healthy & ischemic skeletal muscle at 

baseline and following cell, gene, protein, antibody, and exercise therapy [15]. This will help to optimize 

therapy design, dosing, and delivery to mimic micropatterning of VEGF signaling in healthy and 

developmental tissues, reducing poor responses to due insufficient VEGF delivery and angioma formation 

due to receptor saturation by excess local VEGF.  

 

10.2.5 VEGF immobilization in tissue engineering applications 

A key next step for this work will be translation of these computational predictions towards application in 

engineered tissue constructs. The key rules for biomaterial-based VEGF delivery outlined in Chapter 9 can 

be used to design and test VEGF dosing and delivery mode in experimental tissues, developmental 

applications, and animal experiments. Results from these experiments can be used to further refine the 

model in an iterative fashion. Additionally, implementation of the 3D tissue model will allow explicit 

predictions of optimal VEGF, ECM, and endothelial cell patterning in tissue constructs to generate 

therapeutically optimal gradients in VEGF distribution and receptor signaling. 3D bioprinting technology 

can be used to build and test such systems. In this way, the computational modeling work presented here 

can have concrete and immediate impact on design of growth factor-incorporating tissue constructs and 

biomaterials, allowing for more rational and systematic optimization of these systems, as well as testing of 

key mechanistic hypotheses about response to VEGF gradients and VEGF immobilization in real tissues. 

 

10.2.6 Immobilization of other growth factors: tissue engineering, stem cell differentiation 

Differential cellular behavior following stimulation with soluble or immobilized growth factor is 

not limited to the VEGF family, and VEGF is not the only growth factor regulating angiogenesis [16, 17]. 

Indeed, co-delivery of VEGF and platelet-derived growth factor (PDGF) engineered for strong ECM-

binding in fibrin gels improves growth and stability of angiogenic vascular networks [3, 18]. Therefore, it 

would be valuable, using the work presented here as a framework, to build detailed models of receptor 

activation by soluble and ECM-bound PDGF, which activates receptors on vascular smooth muscle cells 
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and pericytes to stabilize neovessels following VEGF-simulated angiogenesis [18-20]. This insight could 

be translated in vivo using our existing human body model framework. This work is key to design 

biomaterials that effectively co-deliver VEGF & PDGF in sequence to induce stable angiogenesis 

concurrent with tissue remodeling, a necessity for thick tissues.  

While the ability of growth factors to bind ECM is broadly of interest to control growth factor 

delivery for regenerative medicine applications, the impact of immobilization on signaling is poorly 

understood for the majority of these factors.  For example, BMP (osteogenesis), TGFβ (chondrogenesis and 

wound healing), GDNF (peripheral nerve regeneration), FGF and other growth factors (stem cell 

differentiation) all have isoforms that can bind to ECM proteins [2]. Therefore, similar analysis of 

immobilization of these growth factors would improve our ability to rational design delivery systems for 

growth factors in diverse applications. 
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Appendix. Model Equations 

A.1 Equations for Cell-level Model (Chapter 5) 

 
A.1.1 Extracellular Molecular Complexes:
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A.2 Equations for Healthy Human Compartment Model (Chapter 6) 

 
A.2.1 Unit Conversions 

 

Due to the multi-compartment structure of the model, unit conversions are required to account for 

differences in compartment volumes (U), as well as reactions that occur in solution or on the two-

dimensional cell surface. In the equations, concentrations are represented by [X]j, where j represents the 

tissue compartment (calf muscle or main body mass) or [X]B, where B is the blood. The units of 

concentration are moles/cm
3
 of tissue or blood, as appropriate. In many cases (e.g. for transport), the 

relevant concentration is instead the concentration of ligand in available interstitial fluid (excluding spaces 

that are inaccessible to proteins), annotated [X]IS,j or the concentration of ligand in plasma, annotated [X]pl. 

In the text and figures, the concentration being discussed is identified explicitly. Many outputs are shown in 

picomolar (pM), nanomolar (nM), or total picomoles of ligand in tissue, using simple unit conversions.  

To convert between concentrations in total tissue and in interstitial fluid, the following equations are used:  
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Similarly, the conversion between total blood and plasma concentrations is: 
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To convert between measured receptor levels of number per cell to moles/cm3 tissue: 
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#

EC

æ

èç
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×
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 , where NAv
 
is Avogadro’s number, 6.023x10

23
 

molecules/mole. 

 

A.2.2 Tissue Equations 

This section lists the 112 equations that describe all reactions (excluding different VEGFR2 

phospho-states) and transport within the tissue compartments. 

Interstitial Matrix. These 30 equations describe the HSPGs site (M) in the ECM, endothelial basement 

membrane (EBM), and parenchymal basement membrane (PBM), either free, or bound to VEGF, PlGF, 

sR1, or sR1 and VEGF or PlGF. EBM-bound VEGF in the innermost 25nm of the EBM can bind to 

endothelial cell-surface VEGFR1, VEGFR2, and NRP1. We assume that, similar to cell-surface receptors, 

matrix-binding VEGF and PlGF isoforms (VEGF165, VEGF189, and PlGF), can bind to HSPGs sites and 

sR1 simultaneously, forming M-L-sR1 complexes, where L represents the ligand (either VEGF or PlGF). 

Since VEGFR1 can bind to NRP1 and VEGF121 or PlGF1 simultaneously, and the NRP1 and matrix-

binding sites on VEGFR1 overlap, we assume that these ligands can also bind to immobilized sR1, forming 

L-sR1-M complexes. Thus, complexes including VEGF or PlGF, matrix, and sR1 can form for all ligands, 

but in different ways (see Figure 6-1B). To reflect this, the ordering of species in the complexes described 

within the equations are ordered to show the actual binding partners next to each other. [MECM]j represents 

the concentration of free HSPG sites in the ECM, [V165] the interstitial concentration of free VEGF165, [P1] 

the interstitial concentration of free PlGF1, [sR1] the interstitial concentration of free soluble VEGFR, and 

[R1] the concentration of unoccupied EC surface VEGFR1. The binding rates (kon) and unbinding rates 

(koff) are given in Tables 6-2 & 6-3, with units of M
-1

s
-1

 and s
-1

, respectively. To convert the binding rates 

(kon) into an in vivo context (moles/cm
3
 tissue/s for each compartment), the following conversions were 

applied, using geometric parameters from Table 6-S7, as previously described[1, 2]. 
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The resulting kon values are given in Tables S4-S6.  
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Abluminal Endothelial Cell Surface. These 27 equations represent molecular species present on the 

surface of endothelial cells, as summarized in Figure 6-1E. The binding rates (kon) and unbinding rates 

(koff) are given in Tables 6-2 & 6-3, with units of M
-1

s
-1

 for binding of ligands to receptors, and 

(moles/cm
2
)

-1
s

-1
 for coupling of cell surface receptors. The fraction of EBM accessible to endothelial cell 

receptors is f. The trafficking rates, which depend on receptor ligation and binding to NRP1 (Table 6-S8), 

are in units of s
-1

, where kint is the internalization rate, krec4 is the recycling rate from early endosomes 

(Rab4/5) to the cell surface, and krec11 is the recycling rate from recycling endosomes (Rab11) to the cell 

surface. [R1rab45] is the concentration of unoccupied VEGFR1 in early (Rab4/5) endosomes. s is the 

production rate for free (unoccupied) receptors delivered to the cell surface (#/cm
2
/s, converted), tuned to 

match experimental measurements of surface receptor densities at steady-state (Table 6-4). 
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Detailed VEGFR2 Phosphorylation Reactions. Here we show one example equation (unoccupied cell 

surface VEGFR2 phosphorylated only on tyrosine Y1175) demonstrating the site-specific phosphorylation 

and dephosphorylation of VEGFR2 on tyrosines 951, 1175, and 1214 (Figure 6-1D). Phosphorylation is 

assumed to be independent on each site, giving 8 possible combinations: no phosphorylation, pY951 only, 

pY1175 only, pY1214 only, pY951 and pY1175, pY951 and pY1214, pY1175 and pY1214, and all three 

sites phosphorylated. VEGFR2 can be phosphorylated in any of these patterns on the cell surface, in early 

(Rab4/5) endosomes, or in recycling (Rab11) endosomes. The phosphorylation and dephosphorylation rates 

(Table S9) vary by subcellular location and with ligation, but are assumed to be independent of NRP1 and 

HSPG binding. The phosphorylation state of VEGFR2 is assumed not to alter is binding or trafficking 

properties. We focus here on pY1175 and pY1214 because the parameters for these sites are better 

constrained than those for pY951. Total phosphorylated VEGFR2 (pR2) is approximated as the sum of all 

VEGFR2 phosphorylated on at least one site. The full set of equations for phosphorylation of VEGFR2 in 

all complexes and all locations is omitted for the sake of brevity. 
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Endothelial Endosomes. These 54 equations represent molecular species within early signaling (Rab4/5) 

or recycling (Rab11) endosomes in endothelial cells. Here, k4to11 is the trafficking rate from early (Rab45) 

to recycling (Rab11) endosomes, and kdegr is the rate of degradation of species from early Rab4/5 

endosomes. [R1rab45] is the concentration of unoccupied VEGFR1 in early (Rab4/5) endosomes.  

Rab4/5 Early Signaling Endosomes 
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[N1×V

189
×R2

rab45
]

-k
4to11,N1×V 189×R2, j

[N1×V
189
×R2

rab45
]-k

degr ,N1×V 189×R2, j
[N1×V

189
×R2

rab45
]

+k
on ,R2×(V 189×N1), j

[R2
rab45

]
j
[V

189
×N1

rab45
]

j
-k

off ,R2×(N1×V 189), j
[N1×V

189
×R2

rab45
]

j

+k
on ,N1×(V 189×R2), j

[N1
rab45

]
j
[V

189
×R2

rab45
]

j
-k

off ,N1×(V 189×R2), j
[N1×V

189
×R2

rab45
]

j  

		

d[V
121
×R1×N1

rab45
]

j
/dt = k

int,V 121×R1×N1, j
[V

121
×R1×N1]

j
-k

rec4,V 121×R1×N1, j
[V

121
×R1×N1

rab45
]

-k
4to11,V 121×R1×N1, j

[V
121
×R1×N1

rab45
]-k

degr ,V 121×R1×N1, j
[V

121
×R1×N1

rab45
]

+k
on ,V 121×(R1×N1), j

[V
121,rab45

]
j
[R1×N1

rab45
]

j
-k

off ,V 121×(R1×N1), j
[V

121
×R1×N1

rab45
]

j

+k
on ,(V 121×R1)×N1, j

[V
121
×R1

rab45
]

j
[N1

rab45
]

j
-k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1

rab45
]

j

 

		

d[P1×R1×N1
rab45

]
j
/dt = k

int,P1×R1×N1, j
[P1×R1×N1]

j
-k

rec4,P1×R1×N1, j
[P1×R1×N1

rab45
]

-k
4to11,P1×R1×N1, j

[P1×R1×N1
rab45

]-k
degr ,P1×R1×N1, j

[P1×R1×N1
rab45

]

+k
on ,P1×(R1×N1), j

[P1
rab45

]
j
[R1×N1

rab45
]

j
-k

off ,P1×(R1×N1), j
[P1×R1×N1

rab45
]

j

+k
on ,(P1×R1)×N1, j

[P1×R1
rab45

]
j
[N1

rab45
]

j
-k

off ,(P1×R1)×N1, j
[P1×R1×N1

rab45
]

j

 

		

d[V
121
×sR1×N1

rab45
]

j
/dt = k

int,V 121×sR1×N1, j
[V

121
×sR1×N1]

j
-k

rec4,V 121×sR1×N1, j
[V

121
×sR1×N1

rab45
]

-k
4to11,V 121×sR1×N1, j

[V
121
×sR1×N1

rab45
]-k

degr ,V 121×sR1×N1, j
[V

121
×sR1×N1

rab45
]

+k
on ,V 121×(sR1×N1), j

[V
121,rab45

]
j
[sR1×N1

rab45
]

j
-k

off ,V 121×(sR1×N1), j
[V

121
×sR1×N1

rab45
]

j

+k
on ,(V 121×sR1)×N1, j

[V
121
×sR1

rab45
]

j
[N1

rab45
]

j
-k

off ,(V 121×sR1)×N1, j
[V

121
×sR1×N1

rab45
]

j
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d[P1×sR1×N1
rab45

]
j
/dt = k

int,P1×sR1×N1, j
[P1×sR1×N1]

j
-k

rec4,P1×sR1×N1, j
[P1×sR1×N1

rab45
]

-k
4to11,P1×sR1×N1, j

[P1×sR1×N1
rab45

]-k
degr ,P1×sR1×N1, j

[P1×sR1×N1
rab45

]

+k
on ,P1×(sR1×N1), j

[P1
rab45

]
j
[sR1×N1

rab45
]

j
-k

off ,P1×(sR1×N1), j
[P1×sR1×N1

rab45
]

j

+k
on ,(P1×sR1)×N1, j

[P1×sR1
rab45

]
j
[N1

rab45
]

j
-k

off ,(P1×sR1)×N1, j
[P1×sR1×N1

rab45
]

j
 

Rab11 Recycling Endosomes 

		

d[R1
rab11

]
j
/dt = k

4to11,R1, j
[R1

rab45
]-k

rec11,R1, j
[R1

rab11
]

-k
on ,V 165×R1, j

[V
165,rab11

]
j
[R1

rab11
]

j
+k

off ,V 165×R1, j
[V

165
×R1

rab11
]

j

-k
on ,V 189×R1, j

[V
189,rab11

]
j
[R1

rab11
]

j
+k

off ,V 189×R1, j
[V

189
×R1

rab11
]

j

-k
on ,V 121×R1, j

[V
121,rab45

]
j
[R1

rab11
]

j
+k

off ,V 121×R1, j
[V

121
×R1

rab11
]

j

-k
on ,P1×R1, j

[P1
rab11

]
j
[R1

rab11
]

j
+k

off ,P1×R1, j
[P1×R1

rab11
]

j

-k
on ,P2×R1, j

[P2
rab11

]
j
[R1

rab11
]

j
+k

off ,P2×R1, j
[P2×R1

rab11
]

j

-k
on ,N1×R1, j

[N1
rab11

]
j
[R1

rab11
]

j
+k

off ,N1×R1, j
[N1×R1

rab11
]

j

 

		

d[R2
rab11

]
j
/dt = k

4to11,R2, j
[R2

rab45
]-k

rec11,R2, j
[R2

rab11
]

-k
on ,V 165×R2, j

[V
165,rab11

]
j
[R2

rab11
]

j
+k

off ,V 165×R2, j
[V

165
×R2

rab11
]

j

-k
on ,V 189×R2, j

[V
189,rab11

]
j
[R2

rab11
]

j
+k

off ,V 189×R2, j
[V

189
×R2

rab11
]

j

-k
on ,V 121×R2, j

[V
121,rab11

]
j
[R2

rab11
]

j
+k

off ,V 121×R2, j
[V

121
×R2

rab11
]

j

-k
on ,(N1×V 165)×R2, j

[N1×V
165,rab11

]
j
[R2

rab11
]

j
+k

off ,(N1×V 165)×R2, j
[N1×V

165
×R2

rab11
]

j

-k
on ,(N1×V 189)×R2, j

[N1×V
189,rab11

]
j
[R2

rab11
]

j
+k

off ,(N1×V 189)×R2, j
[N1×V

189
×R2

rab11
]

j

 

		

d[N1
rab11

]
j
/dt = k

4to11,N1, j
[N1

rab45
]-k

rec11,N1, j
[N1

rab11
]

-k
on ,V 165×N1, j

[V
165,rab11

]
j
[N1

rab11
]

j
+k

off ,V 165×N1, j
[V

165
×N1

rab11
]

j

-k
on ,V 189×N1, j

[V
189,rab11

]
j
[N1

rab11
]

j
+k

off ,V 189×N1, j
[V

189
×N1

rab11
]

j

-k
on ,P2×N1, j

[P2
rab11

]
j
[N1

rab11
]

j
+k

off ,P2×N1, j
[P2×N1

rab11
]

j

-k
on ,N1×R1, j

[N1
rab11

]
j
[R1

rab11
]

j
+k

off ,N1×R1, j
[N1×R1

rab11
]

j

-k
on ,N1×sR1, j

[N1
rab11

]
j
[sR1

rab11
]

j
+k

off ,N1×sR1, j
[N1×sR1

rab11
]

j

-k
on ,(V 121×R1)×N1, j

[V
121
×R1

rab11
]

j
[N1

rab11
]

j
+k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1

rab11
]

j

-k
on ,(P1×R1)×N1, j

[P1×R1
rab11

]
j
[N1

rab11
]

j
+k

off ,(P1×R1)×N1, j
[P1×R1×N1

rab11
]

j

-k
on ,N1×(V 165×R2), j

[N1
rab11

]
j
[V

165
×R2

rab11
]

j
+k

off ,N1×(V 165×R2), j
[N1×V

165
×R2

rab11
]

j

-k
on ,N1×(V 189×R2), j

[N1
rab11

]
j
[V

189
×R2

rab11
]

j
+k

off ,N1×(V 189×R2), j
[N1×V

189
×R2

rab11
]

j

 



 462 

		

d[V
165
×R1

rab11
]

j
/dt = k

4to11,V 165×R1, j
[V

165
×R1

rab45
]-k

rec11,V 165×R1, j
[V

165
×R1

rab11
]

+k
on,V 165×R1, j

[V
165,rab11

]
j
[R1

rab11
]

j
-k

off ,V 165×R1, j
[V

165
×R1

rab11
]

j

 

		

d[V
189
×R1

rab11
]

j
/dt = k

4to11,V 189×R1, j
[V

189
×R1

rab45
]-k

rec11,V 189×R1, j
[V

189
×R1

rab11
]

+k
on,V 189×R1, j

[V
189,rab11

]
j
[R1

rab11
]

j
-k

off ,V 189×R1, j
[V

189
×R1

rab11
]

j

 

		

d[V
121
×R1

rab11
]

j
/dt = k

4to11,V 121×R1, j
[V

121
×R1

rab45
]-k

rec11,V 121×R1, j
[V

121
×R1

rab11
]

+k
on ,V 121×R1, j

[V
121,rab11

]
j
[R1

rab11
]

j
-k

off ,V 121×R1, j
[V

121
×R1

rab11
]

j

-k
on ,(V 121×R1)×N1, j

[V
121
×R1

rab11
]

j
[N1

rab11
]

j
+k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1

rab11
]

j

 

		

d[P1×R1
rab11

]
j
/dt = k

4to11,P1×R1, j
[P1×R1

rab45
]-k

rec11,P1×R1, j
[P1×R1

rab11
]

+k
on ,P1×R1, j

[P1
rab11

]
j
[R1

rab11
]

j
-k

off ,P1×R1, j
[P1×R1

rab11
]

j

-k
on ,(P1×R1)×N1, j

[P1×R1
rab11

]
j
[N1

rab11
]

j
+k

off ,(P1×R1)×N1, j
[P1×R1×N1

rab11
]

j

 

		

d[P2×R1
rab11

]
j
/dt = k

4to11,P2×R1, j
[P2×R1

rab45
]-k

rec11,P2×R1, j
[P2×R1

rab11
]

+k
on ,P2×R1, j

[P2
rab11

]
j
[R1

rab11
]

j
-k

off ,P2×R1, j
[P2×R1

rab11
]

j

 

		
d[V

165
×sR1

rab11
]

j
/dt = k

on,V 165×sR1, j
[V

165,rab11
]

j
[sR1

rab11
]

j
-k

off ,V 165×sR1, j
[V

165
×sR1

rab11
]

j
 

		

d[V
121
×sR1

rab11
]

j
/dt = k

on ,V 121×sR1, j
[V

121,rab11
]

j
[sR1

rab11
]

j
-k

off ,V 121×sR1, j
[V

121
×sR1

rab11
]

j

-k
on ,(V 121×sR1)×N1, j

[V
121
×sR1

rab11
]

j
[N1

rab11
]

j
+k

off ,(V 121×sR1)×N1, j
[V

121
×sR1×N1

rab11
]

j

 

		
d[V

189
×sR1

rab11
]

j
/dt = k

on,V 189×sR1, j
[V

189,rab11
]

j
[sR1

rab11
]

j
-k

off ,V 189×sR1, j
[V

189
×sR1

rab11
]

j

 

		

d[P1×sR1
rab11

]
j
/dt = k

on ,P1×sR1, j
[P1

rab11
]

j
[sR1

rab11
]

j
-k

off ,P1×sR1, j
[P1×sR1

rab11
]

j

-k
on ,(P1×sR1)×N1, j

[P1×sR1
rab11

]
j
[N1

rab11
]

j
+k

off ,(P1×sR1)×N1, j
[P1×sR1×N1

rab11
]

j

 

		
d[P2×sR1

rab11
]

j
/dt =k

on,P2×sR1, j
[P2

rab11
]

j
[sR1

rab11
]

j
-k

off ,P2×sR1, j
[P2×sR1

rab11
]

j
 

		

d[V
165
×R2

rab11
]

j
/dt = k

4to11,V 165×R2, j
[V

165
×R2

rab45
]-k

rec11,V 165×R2, j
[V

165
×R2

rab11
]

+k
on ,V 165×R2, j

[V
165,rab45

]
j
[R2

rab11
]

j
-k

off ,V 165×R2, j
[V

165
×R2

rab11
]

j

-k
on ,N1×(V 165×R2), j

[N1
rab11

]
j
[V

165
×R2

rab11
]

j
+k

off ,N1×(V 165×R2), j
[N1×V

165
×R2

rab11
]

j

 



 463 

		

d[V
189
×R2

rab11
]

j
/dt = k

4to11,V 189×R2, j
[V

189
×R2

rab45
]-k

rec11,V 189×R2, j
[V

189
×R2

rab11
]

+k
on ,V 189×R2, j

[V
189,rab11

]
j
[R2

rab11
]

j
-k

off ,V 189×R2, j
[V

189
×R2

rab11
]

j

-k
on ,N1×(V 189×R2), j

[N1
rab11

]
j
[V

189
×R2

rab11
]

j
+k

off ,N1×(V 189×R2), j
[N1×V

189
×R2

rab11
]

j

 

		

d[V
121
×R2

rab11
]

j
/dt = k

4to11,V 121×R2, j
[V

121
×R2

rab45
]-k

rec11,V 121×R2, j
[V

121
×R2

rab11
]

+k
on,V 121×R2, j

[V
121,rab11

]
j
[R2

rab11
]

j
-k

off ,V 121×R2, j
[V

121
×R2

rab11
]

j

 

		

d[V
165
×N1

rab11
]

j
/dt = k

4to11,V 165×N1, j
[V

165
×N1

rab45
]-k

rec11,V 165×N1, j
[V

165
×N1

rab11
]

+k
on ,V 165×N1, j

[V
165,rab11

]
j
[N1

rab11
]

j
-k

off ,V 165×N1, j
[V

165
×N1

rab11
]

j

-k
on ,(N1×V 165)×R2, j

[N1×V
165,rab11

]
j
[R2

rab11
]

j
+k

off ,(N1×V 165)×R2, j
[N1×V

165
×R2

rab11
]

j

 

		

d[V
189
×N1

rab11
]

j
/dt = k

4to11,V 189×N1, j
[V

189
×N1

rab11
]-k

rec11,V 189×N1, j
[V

189
×N1

rab11
]

+k
on ,V 189×N1, j

[V
189,rab11

]
j
[N1

rab11
]

j
-k

off ,V 189×N1, j
[V

189
×N1

rab11
]

j

-k
on ,(N1×V 189)×R2, j

[N1×V
189,rab11

]
j
[R2

rab11
]

j
+k

off ,(N1×V 189)×R2, j
[N1×V

189
×R2

rab11
]

j

 

		

d[P2×N1
rab11

]
j
/dt = k

4to11,P2×N1, j
[P2×N1

rab45
]-k

rec11,P2×N1, j
[P2×N1

rab11
]

+k
on ,P2×N1, j

[P2
rab11

]
j
[N1

rab11
]

j
-k

off ,P2×N1, j
[P2×N1

rab11
]

j

 

		

d[N1×R1
rab11

]
j
/dt = k

4to11,N1×R1, j
[N1×R1

rab45
]-k

rec11,N1×R1, j
[N1×R1

rab11
]

+k
on ,N1×R1, j

[N1
rab11

]
j
[R1

rab11
]

j
-k

off ,N1×R1, j
[N1×R1

rab11
]

j

-k
on ,V 121×(N1×R1), j

[V
121,rab11

]
j
[N1×R1

rab11
]

j
+k

off ,V 121×(N1×R1), j
[V

121
×R1×N1

rab11
]

j

-k
on ,P1×(N1×R1), j

[P1
rab11

]
j
[N1×R1

rab11
]

j
+k

off ,P1×(N1×R1), j
[P1×R1×N1

rab11
]

j
 

		

d[N1×sR1
rab11

]
j
/dt = k

4to11,N1×sR1, j
[N1×sR1

rab45
]-k

rec11,N1×sR1, j
[N1×sR1

rab11
]

+k
on ,N1×sR1, j

[N1
rab11

]
j
[sR1

rab11
]

j
-k

off ,N1×sR1, j
[N1×sR1

rab11
]

j

-k
on ,V 121×(N1×sR1), j

[V
121,rab11

]
j
[N1×sR1

rab11
]

j
+k

off ,V 121×(N1×sR1), j
[V

121
×sR1×N1

rab11
]

j

-k
on ,P1×(N1×sR1), j

[P1
rab11

]
j
[N1×sR1

rab11
]

j
+k

off ,P1×(N1×sR1), j
[P1×sR1×N1

rab11
]

j
 

		

d[N1×V
165
×R2

rab11
]

j
/dt = k

4to11,N1×V 165×R2, j
[N1×V

165
×R2

rab45
]-k

rec11,N1×V 165×R2, j
[N1×V

165
×R2

rab11
]

+k
on ,R2×(N1×V 165), j

[R2
rab11

]
j
[V

165
×N1

rab11
]

j
-k

off ,R2×(N1×V 165), j
[N1×V

165
×R2

rab11
]

j

+k
on ,N1×(V 165×R2), j

[N1
rab11

]
j
[V

165
×R2

rab11
]

j
-k

off ,N1×(V 165×R2), j
[N1×V

165
×R2

rab11
]

j  



 464 

		

d[N1×V
189
×R2

rab11
]

j
/dt = k

4to11,N1×V 189×R2, j
[N1×V

189
×R2

rab45
]-k

rec11,N1×V 189×R2, j
[N1×V

189
×R2

rab11
]

+k
on ,R2×(V 189×N1), j

[R2
rab11

]
j
[V

189
×N1

rab11
]

j
-k

off ,R2×(N1×V 189), j
[N1×V

189
×R2

rab11
]

j

+k
on ,N1×(V 189×R2), j

[N1
rab11

]
j
[V

189
×R2

rab11
]

j
-k

off ,N1×(V 189×R2), j
[N1×V

189
×R2

rab11
]

j

 

		

d[V
121
×R1×N1

rab11
]

j
/dt = k

4to11,V 121×R1×N1, j
[V

121
×R1×N1

rab45
]-k

rec11,V 121×R1×N1, j
[V

121
×R1×N1

rab11
]

+k
on ,V 121×(R1×N1), j

[V
121,rab11

]
j
[R1×N1

rab11
]

j
-k

off ,V 121×(R1×N1), j
[V

121
×R1×N1

rab11
]

j

+k
on ,(V 121×R1)×N1, j

[V
121
×R1

rab11
]

j
[N1

rab11
]

j
-k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1

rab11
]

j

 

		

d[P1×R1×N1
rab11

]
j
/dt = k

4to11,P1×R1×N1, j
[P1×R1×N1

rab45
]-k

rec11,P1×R1×N1, j
[P1×R1×N1
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Interstitial Fluid. These 11 equations describe the free species found in the interstitial fluid in tissues, 

including free VEGF, PlGF, and sR1, and complexes of sR1 with ligands. qX is the constant secretion of 

VEGF or PlGF isoforms from myocytes (molecules/myonuclear domain/s), or of sR1 from endothelial cells 

(molecules/EC/s), as given in Table 6-4, and converted into moles/cm
3
 tissue. All molecular species in the 

interstitial fluid can be transported into the blood via lymphatic drainage (kL in cm
3
/s), or moved between 

the blood and tissue via bi-directional vascular permeability (kp in cm/s). (See Table 6-S10 for transport 

parameter values.) Vascular permeability depends on the total abluminal EC surface area, SjB (cm
2
). The 

endothelial cell surface recruitment factor γ is always one in this study, but can be used to account for 

changes in transport as a result of altered perfusion or vasodilation. As detailed above, U represents a 

volume, while KAv is the fraction of the volume that is available. These geometric factors are included to 

account for the relevant volumes in the tissue and blood for exchange of molecular species; when one 

molecule is transported between tissue j and the blood, the concentration changes in j and the blood depend 

on the respective volumes. 

		

d[V
165

]
j
/dt = q

V 165, j
-

k
L , j

U
j

[V
165

]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,V

B® j [V
165

]
B

K
AV ,B

-k
p ,V

j®B
[V

165
]

j

K
AV , j

æ

è
ç

ö

ø
÷

-k
on ,V 165×M , j

[V
165

]
j
[M

EBM
]

j
+k

off ,V 165×M , j
[V

165
×M

EBM
]

j

-k
on ,V 165×M , j

[V
165

]
j
[M

ECM
]

j
+k

off ,V 165×M , j
[V

165
×M

ECM
]

j

-k
on ,V 165×M , j

[V
165

]
j
[M

PBM
]

j
+k

off ,V 165×M , j
[V

165
×M

PBM
]

j

-k
on ,V 165×N1, j

[V
165

]
j
[N1]

j
+k

off ,V 165×N1, j
[V

165
×N1]

j

-k
on ,V 165×R2, j

[V
165

]
j
[R2]

j
+k

off ,V 165×R2, j
[V

165
×R2]

j

-k
on ,V 165×R1, j

[V
165

]
j
[R1]

j
+k

off ,V 165×R1, j
[V

165
×R1]

j

-k
on ,V 165×sR1, j

[V
165

]
j
[sR1]

j
+k

off ,V 165×sR1, j
[V

165
×sR1]

j

 



 466 

		

d[V
189

]
j
/dt = q

V 189, j
-

k
L , j

U
j

[V
189

]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,V

B® j [V
189

]
B

K
AV ,B

-k
p ,V

j®B
[V

189
]

j

K
AV , j

æ

è
ç

ö

ø
÷

-k
on ,V 189×M , j

[V
189

]
j
[M

EBM
]

j
+k

off ,V 189×M , j
[V

189
×M

EBM
]

j

-k
on ,V 189×M , j

[V
189

]
j
[M

ECM
]

j
+k

off ,V 189×M , j
[V

189
×M

ECM
]

j

-k
on ,V 189×M , j

[V
189

]
j
[M

PBM
]

j
+k

off ,V 189×M , j
[V

189
×M

PBM
]

j

-k
on ,V 189×N1, j

[V
189

]
j
[N1]

j
+k

off ,V 189×N1, j
[V

189
×N1]

j

-k
on ,V 189×R2, j

[V
189

]
j
[R2]

j
+k

off ,V 189×R2, j
[V

189
×R2]

j

-k
on ,V 189×R1, j

[V
189

]
j
[R1]

j
+k

off ,V 189×R1, j
[V

189
×R1]

j

-k
on ,V 189×sR1, j

[V
189

]
j
[sR1]

j
+k

off ,V 189×sR1, j
[V

189
×sR1]

j

 

		

d[V
121

]
j
/dt = q

V 121, j
-

k
L , j

U
j

[V
121

]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,V

B® j [V
121

]
B

K
AV ,B

-k
p ,V

j®B
[V

121
]

j

K
AV , j

æ

è
ç

ö

ø
÷

-k
on ,V 121×R2, j

[V
121

]
j
[R2]

j
+k

off ,V 121×R2, j
[V

121
×R2]

j

-k
on ,V 121×R1, j

[V
121

]
j
[R1]

j
+k

off ,V 121×R1, j
[V

121
×R1]

j

-k
on ,V 121×(R1×N1), j

[V
121

]
j
[R1×N1]

j
+k

off ,V 121×(R1×N1), j
[V

121
×R1×N1]

j

-k
on ,V 121×sR1, j

[V
121

]
j
[sR1]

j
+k

off ,V 121×sR1, j
[V

121
×sR1]

j

-k
on ,V 121×(sR1×N1), j

[V
121

]
j
[sR1×N1]

j
+k

off ,V 121×(sR1×N1), j
[V

121
×sR1×N1]

j

-k
on ,V 121×(sR1×M ), j

[V
121

]
j
[sR1×M

EBM
]

j
+k

off ,V 121×(sR1×M ), j
[V

121
×sR1×M

EBM
]

j

-k
on ,V 121×(sR1×M ), j

[V
121

]
j
[sR1×M

ECM
]

j
+k

off ,V 121×(sR1×M ), j
[V

121
×sR1×M

ECM
]

j

-k
on ,V 121×(sR1×M ), j

[V
121

]
j
[sR1×M

PBM
]

j
+k

off ,V 121×(sR1×M ), j
[V

121
×sR1×M

PBM
]

j

 

		

d[P1]
j
/dt = q

P1, j
-

k
L , j

U
j

[P1]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,P

B® j [P1]
B

K
AV ,B

-k
p ,P

j®B
[P]

j

K
AV , j

æ

è
ç

ö

ø
÷

-k
on ,P1×R1, j

[P1]
j
[R1]

j
+k

off ,P1×R1, j
[P1×R1]

j

-k
on ,P1×(R1×N1), j

[P1]
j
[R1×N1]

j
+k

off ,P1×(R1×N1), j
[P1×R1×N1]

j

-k
on ,P1×sR1, j

[P1]
j
[sR1]

j
+k

off ,P1×sR1, j
[P1×sR1]

j

-k
on ,P1×(sR1×N1), j

[P1]
j
[sR1×N1]

j
+k

off ,P1×(sR1×N1), j
[P1×sR1×N1]

j

-k
on ,P1×(sR1×M ), j

[P1]
j
[sR1×M

EBM
]

j
+k

off ,P1×(sR1×M ), j
[P1×sR1×M

EBM
]

j

-k
on ,P1×(sR1×M ), j

[P1]
j
[sR1×M

ECM
]

j
+k

off ,P1×(sR1×M ), j
[P1×sR1×M

ECM
]

j

-k
on ,P1×(sR1×M ), j

[P1]
j
[sR1×M

PBM
]

j
+k

off ,P1×(sR1×M ), j
[P1×sR1×M

PBM
]

j

 



 467 

		

d[P2]
j
/dt = q

P2, j
-

k
L , j

U
j

[P2]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,P

B® j [P2]
B

K
AV ,B

-k
p ,P

j®B
[P2]

j

K
AV , j

æ

è
ç

ö

ø
÷

-k
on ,P2×M , j

[P2]
j
[M

EBM
]

j
+k

off ,P2×M , j
[P2×M

EBM
]

j

-k
on ,P2×M , j

[P2]
j
[M

ECM
]

j
+k

off ,P2×M , j
[P2×M

ECM
]

j

-k
on ,P2×M , j

[P2]
j
[M

PBM
]

j
+k

off ,P2×M , j
[P2×M

PBM
]

j

-k
on ,P2×N1, j

[P2]
j
[N1]

j
+k

off ,P2×N1, j
[P2×N1]

j

-k
on ,P2×R1, j

[P2]
j
[R1]

j
+k

off ,P2×R1, j
[P2×R1]

j

-k
on ,P2×sR1, j

[P2]
j
[sR1]

j
+k

off ,P2×sR1, j
[P2×sR1]

j

 

		

d[sR1]
j
/dt = q

sR1, j
-

k
L , j

U
j

[sR1]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,sR1

B® j [sR1]
B

K
AV ,B

-k
p ,sR1

j®B
[sR1]

j

K
AV , j

æ

è
ç

ö

ø
÷

-k
on ,V 165×sR1, j

[V
165

]
j
[sR1]

j
+k

off ,V 165×sR1, j
[V

165
×sR1]

j

-k
on ,V 189×sR1, j

[V
189

]
j
[sR1]

j
+k

off ,V 189×sR1, j
[V

189
×sR1]

j

-k
on ,V 121×sR1, j

[V
121

]
j
[sR1]

j
+k

off ,V 121×sR1, j
[V

121
×sR1]

j

-k
on ,P1×sR1, j

[P1]
j
[sR1]

j
+k

off ,P1×sR1, j
[P1×sR1]

j

-k
on ,P2×sR1, j

[P2]
j
[sR1]

j
+k

off ,P2×sR1, j
[P2×sR1]

j

-k
on ,sR1×M , j

[sR1]
j
[M

EBM
]

j
+k

off ,sR1×M , j
[sR1×M

EBM
]

j

-k
on ,sR1×M , j

[sR1]
j
[M

ECM
]

j
+k

off ,sR1×M , j
[sR1×M

ECM
]

j

-k
on ,sR1×M , j

[sR1]
j
[M

PBM
]

j
+k

off ,sR1×M , j
[sR1×M

PBM
]

j

-k
on ,sR1×N1, j

[sR1]
j
[N1]

j
+k

off ,sR1×N1, j
[sR1×N1]

j

-k
on ,sR1×(V 165×M ), j

[sR1]
j
[V

165
×M

EBM
]

j
+k

off ,sR1×(V 165×M ), j
[sR1×V

165
×M

EBM
]

j

-k
on ,sR1×(V 189×M ), j

[sR1]
j
[V

189
×M

EBM
]

j
+k

off ,sR1×(V 189×M ), j
[sR1×V

189
×M

EBM
]

j

-k
on ,sR1×(P2×M ), j

[sR1]
j
[P2×M

EBM
]

j
+k

off ,sR1×(P2×M ), j
[sR1×P2×M

EBM
]

j

-k
on ,sR1×(V 165×M ), j

[sR1]
j
[V

165
×M

ECM
]

j
+k

off ,sR1×(V 165×M ), j
[sR1×V

165
×M

ECM
]

j

-k
on ,sR1×(V 189×M ), j

[sR1]
j
[V

189
×M

ECM
]

j
+k

off ,sR1×(V 189×M ), j
[sR1×V

189
×M

ECM
]

j

-k
on ,sR1×(P2×M ), j

[sR1]
j
[P2×M

ECM
]

j
+k

off ,sR1×(P2×M ), j
[sR1×P2×M

ECM
]

j

-k
on ,sR1×(V 165×M ), j

[sR1]
j
[V

165
×M

PBM
]

j
+k

off ,sR1×(V 165×M ), j
[sR1×V

165
×M

PBM
]

j

-k
on ,sR1×(V 189×M ), j

[sR1]
j
[V

189
×M

PBM
]

j
+k

off ,sR1×(V 189×M ), j
[sR1×V

189
×M

PBM
]

j

-k
on ,sR1×(P2×M ), j

[sR1]
j
[P2×M

PBM
]

j
+k

off ,sR1×(P2×M ), j
[sR1×P2×M

PBM
]

j

 



 468 

		

d[V
165

×sR1]
j
/dt = -

k
L , j

U
j

[V
165

×sR1]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,sR1

B® j [V
165

×sR1]
B

K
AV ,B

-k
p ,sR1

j®B
[V

165
×sR1]

j

K
AV , j

æ

è
ç

ö

ø
÷

+k
on ,V 165×sR1, j

[V
165

]
j
[sR1]

j
-k

off ,V 165×sR1, j
[V

165
×sR1]

j

-k
on ,M×(V 165×sR1), j

[M
EBM

]
j
[V

165
×sR1]

j
+k

off ,M×(V 165×sR1), j
[M

EBM
×V

165
×sR1]

j

-k
on ,M×(V 165×sR1), j

[M
ECM

]
j
[V

165
×sR1]

j
+k

off ,M×(V 165×sR1), j
[M

ECM
×V

165
×sR1]

j

-k
on ,M×(V 165×sR1), j

[M
PBM

]
j
[V

165
×sR1]

j
+k

off ,M×(V 165×sR1), j
[M

PBM
×V

165
×sR1]

j
 

		

d[V
189

×sR1]
j
/dt = -

k
L , j

U
j

[V
189

×sR1]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,sR1

B® j [V
189

×sR1]
B

K
AV ,B

-k
p ,sR1

j®B
[V

189
×sR1]

j

K
AV , j

æ

è
ç

ö

ø
÷

+k
on ,V 189×sR1, j

[V
189

]
j
[sR1]

j
-k

off ,V 189×sR1, j
[V

189
×sR1]

j

-k
on ,M×(V 189×sR1), j

[M
EBM

]
j
[V

189
×sR1]

j
+k

off ,M×(V 189×sR1), j
[M

EBM
×V

189
×sR1]

j

-k
on ,M×(V 189×sR1), j

[M
ECM

]
j
[V

189
×sR1]

j
+k

off ,M×(V 189×sR1), j
[M

ECM
×V

189
×sR1]

j

-k
on ,M×(V 189×sR1), j

[M
PBM

]
j
[V

189
×sR1]

j
+k

off ,M×(V 189×sR1), j
[M

PBM
×V

189
×sR1]

j
 

		

d[V
121

×sR1]
j
/dt = -

k
L , j

U
j

[V
121

×sR1]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,sR1

B® j [V
121

×sR1]
B

K
AV ,B

-k
p ,sR1

j®B
[V

121
×sR1]

j

K
AV , j

æ

è
ç

ö

ø
÷

+k
on ,V 121×sR1, j

[V
121

]
j
[sR1]

j
-k

off ,V 121×sR1, j
[V

121
×sR1]

j

-k
on ,(M×sR1)×V 121, j

[M
EBM

×sR1]
j
[V

121
]

j
+k

off ,(M×sR1)×V 121, j
[M

EBM
×sR1×V

121
]

j

-k
on ,(M×sR1)×V 121, j

[M
ECM

×sR1]
j
[V

121
]

j
+k

off ,(M×sR1)×V 121, j
[M

ECM
×sR1×V

121
]

j

-k
on ,(M×sR1)×V 121, j

[M
PBM

×sR1]
j
[V

121
]

j
+k

off ,(M×sR1)×V 121, j
[M

PBM
×sR1×V

121
]

j
 

		

d[P1×sR1]
j
/dt = -

k
L , j

U
j

[P1×sR1]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,sR1

B® j [P1×sR1]
B

K
AV ,B

-k
p ,sR1

j®B
[P1×sR1]

j

K
AV , j

æ

è
ç

ö

ø
÷

+k
on ,P1×sR1, j

[P1]
j
[sR1]

j
-k

off ,P1×sR1, j
[P1×sR1]

j

-k
on ,(M×sR1)×P1, j

[M
EBM

×sR1]
j
[P1]

j
+k

off ,(M×sR1)×P1, j
[M

EBM
×sR1×P1]

j

-k
on ,(M×sR1)×P1, j

[M
ECM

×sR1]
j
[P1]

j
+k

off ,(M×sR1)×P1, j
[M

ECM
×sR1×P1]

j

-k
on ,(M×sR1)×P1, j

[M
PBM

×sR1]
j
[P1]

j
+k

off ,(M×sR1)×P1, j
[M

PBM
×sR1×P1]

j
 



 469 

		

d[P2×sR1]
j
/dt = -

k
L , j

U
j

[P2×sR1]
j

K
Av , j

+
g

j
×S

jB

U
j

× k
p ,sR1

B® j [P2×sR1]
B

K
AV ,B

-k
p ,sR1

j®B
[P2×sR1]

j

K
AV , j

æ

è
ç

ö

ø
÷

+k
on ,P2×sR1, j

[P2]
j
[sR1]

j
-k

off ,P2×sR1, j
[P2×sR1]

j

-k
on ,M×(P2×sR1), j

[M
EBM

]
j
[P2×sR1]

j
+k

off ,M×(P2×sR1), j
[M

EBM
×P2×sR1]

j

-k
on ,M×(P2×sR1), j

[M
ECM

]
j
[P2×sR1]

j
+k

off ,M×(P2×sR1), j
[M

ECM
×P2×sR1]

j

-k
on ,M×(P2×sR1), j

[M
PBM

]
j
[P2×sR1]

j
+k

off ,M×(P2×sR1), j
[M

PBM
×P2×sR1]

j

 

 

A.2.3 Blood Equations 

 

The final set of 11 equations describes the binding and unbinding of molecular species in the 

blood, as well as clearance (kCL in s
-1

, see Table 6-S10). In this model, we assume no secretion of any 

molecular species directly into the blood. 

		

d[V
165

]
B

/dt = -k
CL ,V 165

+
k

L ,N

U
B

[V
165

]
N

K
Av ,N

+
k

L ,D

U
B

[V
165

]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,V

N®B [V
165

]
N

K
AV ,N

-k
p ,V

B®N [V
165

]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,V

D®B
[V

165
]

D

K
AV ,D

-k
p ,V

B®D
[V

165
]

B

K
AV ,B

æ

è
ç

ö

ø
÷

-k
on ,V 165×sR1

[V
165

]
B
[sR1]

B
+k

off ,V 165×sR1, j
[V

165
×sR1]

B

 

		

d[V
189

]
B

/dt = -k
CL ,V 189

+
k

L ,N

U
B

[V
189

]
N

K
Av ,N

+
k

L ,D

U
B

[V
189

]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,V

N®B [V
189

]
N

K
AV ,N

-k
p ,V

B®N [V
189

]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,V

D®B
[V

189
]

D

K
AV ,D

-k
p ,V

B®D
[V

189
]

B

K
AV ,B

æ

è
ç

ö

ø
÷

-k
on ,V 189×sR1

[V
189

]
B
[sR1]

B
+k

off ,V 189×sR1, j
[V

189
×sR1]

B

 



 470 

		

d[V
121

]
B

/dt = -k
CL ,V 121

+
k

L ,N

U
B

[V
121

]
N

K
Av ,N

+
k

L ,D

U
B

[V
121

]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,V

N®B [V
121

]
N

K
AV ,N

-k
p ,V

B®N [V
121

]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,V

D®B
[V

121
]

D

K
AV ,D

-k
p ,V

B®D
[V

121
]

B

K
AV ,B

æ

è
ç

ö

ø
÷

-k
on ,V 121×sR1

[V
121

]
B
[sR1]

B
+k

off ,V 121×sR1, j
[V

121
×sR1]

B

 

		

d[P1]
B

/dt = -k
CL ,P1

+
k

L ,N

U
B

[P1]
N

K
Av ,N

+
k

L ,D

U
B

[P1]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,P

N®B [P1]
N

K
AV ,N

-k
p ,P

B®N [P1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,P

D®B
[P1]

D

K
AV ,D

-k
p ,P

B®D
[P1]

B

K
AV ,B

æ

è
ç

ö

ø
÷

-k
on ,P1×sR1

[P1]
B
[sR1]

B
+k

off ,P1×sR1, j
[P1×sR1]

B

 

		

d[P2]
B

/dt = -k
CL ,P2

+
k

L ,N

U
B

[P2]
N

K
Av ,N

+
k

L ,D

U
B

[P2]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,P

N®B [P2]
N

K
AV ,N

-k
p ,P

B®N [P2]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,P

D®B
[P2]

D

K
AV ,D

-k
p ,P

B®D
[P2]

B

K
AV ,B

æ

è
ç

ö

ø
÷

-k
on ,P2×sR1

[P2]
B
[sR1]

B
+k

off ,P2×sR1, j
[P2×sR1]

B

 



 471 

		

d[sR1]
B

/dt = -k
CL ,sR1

+
k

L ,N

U
B

[sR1]
N

K
Av ,N

+
k

L ,D

U
B

[sR1]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,sR1

N®B [sR1]
N

K
AV ,N

-k
p ,sR1

B®N [sR1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,sR1

D®B [sR1]
D

K
AV ,D

-k
p ,sR1

B®D [sR1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

-k
on ,V 165×sR1

[V
165

]
B
[sR1]

B
+k

off ,V 165×sR1, j
[V

165
×sR1]

B

-k
on ,V 189×sR1

[V
189

]
B
[sR1]

B
+k

off ,V 189×sR1, j
[V

189
×sR1]

B

-k
on ,V 121×sR1

[V
121

]
B
[sR1]

B
+k

off ,V 121×sR1, j
[V

121
×sR1]

B

-k
on ,P1×sR1

[P1]
B
[sR1]

B
+k

off ,P1×sR1, j
[P1×sR1]

B

-k
on ,P2×sR1

[P2]
B
[sR1]

B
+k

off ,P2×sR1, j
[P2×sR1]

B

 

		

d[V
165

×sR1]
B

/dt = -k
CL ,V 165×sR1

+
k

L ,N

U
B

[V
165

×sR1]
N

K
Av ,N

+
k

L ,D

U
B

[V
165

×sR1]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,sR1

N®B [V
165

×sR1]
N

K
AV ,N

-k
p ,sR1

B®N [V
165

×sR1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,sR1

D®B
[V

165
×sR1]

D

K
AV ,D

-k
p ,sR1

B®D
[V

165
×sR1]

B

K
AV ,B

æ

è
ç

ö

ø
÷

+k
on ,V 165×sR1

[V
165

]
B
[sR1]

B
-k

off ,V 165×sR1, j
[V

165
×sR1]

B

 

		

d[V
189

×sR1]
B

/dt = -k
CL ,V 189×sR1

+
k

L ,N

U
B

[V
189

×sR1]
N

K
Av ,N

+
k

L ,D

U
B

[V
189

×sR1]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,sR1

N®B [V
189

×sR1]
N

K
AV ,N

-k
p ,sR1

B®N [V
189

×sR1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,sR1

D®B
[V

189
×sR1]

D

K
AV ,D

-k
p ,sR1

B®D
[V

189
×sR1]

B

K
AV ,B

æ

è
ç

ö

ø
÷

+k
on ,V 189×sR1

[V
189

]
B
[sR1]

B
-k

off ,V 189×sR1, j
[V

189
×sR1]

B

 



 472 

		

d[V
121

×sR1]
B

/dt = -k
CL ,V 121×sR1

+
k

L ,N

U
B

[V
121

×sR1]
N

K
Av ,N

+
k

L ,D

U
B

[V
121

×sR1]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,sR1

N®B [V
121

×sR1]
N

K
AV ,N

-k
p ,sR1

B®N [V
121

×sR1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,sR1

D®B
[V

121
×sR1]

D

K
AV ,D

-k
p ,sR1

B®D
[V

121
×sR1]

B

K
AV ,B

æ

è
ç

ö

ø
÷

+k
on ,V 121×sR1

[V
121

]
B
[sR1]

B
-k

off ,V 121×sR1, j
[V

121
×sR1]

B

 

		

d[P1×sR1]
B

/dt = -k
CL ,P1×sR1

+
k

L ,N

U
B

[P1×sR1]
N

K
Av ,N

+
k

L ,D

U
B

[P1×sR1]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,sR1

N®B [P1×sR1]
N

K
AV ,N

-k
p ,sR1

B®N [P1×sR1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,sR1

D®B
[P1×sR1]

D

K
AV ,D

-k
p ,sR1

B®D
[P1×sR1]

B

K
AV ,B

æ

è
ç

ö

ø
÷

+k
on ,P1×sR1

[P1]
B
[sR1]

B
-k

off ,P1×sR1, j
[P1×sR1]

B

 

		

d[P2×sR1]
B

/dt = -k
CL ,P2×sR1

+
k

L ,N

U
B

[P2×sR1]
N

K
Av ,N

+
k

L ,D

U
B

[P2×sR1]
D

K
Av ,D

+
g

N
×S

NB

U
B

× k
p ,sR1

N®B [P2×sR1]
N

K
AV ,N

-k
p ,sR1

B®N [P2×sR1]
B

K
AV ,B

æ

è
ç

ö

ø
÷

+
g

D
×S

DB

U
B

× k
p ,sR1

D®B
[P2×sR1]

D

K
AV ,D

-k
p ,sR1

B®D
[P2×sR1]

B

K
AV ,B

æ

è
ç

ö

ø
÷

+k
on ,P2×sR1

[P2]
B
[sR1]

B
-k

off ,P2×sR1, j
[P2×sR1]

B

 

 

A.2.4 References 

1. Stefanini MO, Wu FT, Mac Gabhann F, Popel AS. A compartment model of VEGF distribution in 

blood, healthy and diseased tissues. BMC Systems Biology. 2008;2. doi: 10.1186/1752-0509-2-77. 

PubMed PMID: WOS:000259952700001. 

2. Wu FTH, Stefanini MO, Gabhann FM, Popel AS. A Compartment Model of VEGF Distribution in 

Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap. Plos One. 2009;4(4). doi: 

10.1371/journal.pone.0005108. PubMed PMID: WOS:000265505700013. 



 473 

A.3 Equations for Human PAD Compartment Model (Chapter 7) 

 
A.3.1 Unit Conversions 

To convert between concentrations in total tissue and in interstitial fluid, the following equations are used:  

 , where   

  

   

   

   

  

Similarly, the conversion between total blood and plasma concentrations is: 

 , where   

 

A.3.2 Tissue Equations 

This section lists the 152 equations (not included phospho-states) that describe all molecular 

interactions and transport within the tissue compartments. 

Interstitial Matrix– These 34 equations describe changes in HSPG site (M) density over time in the ECM, 

endothelial basement membrane (EBM), and parenchymal basement membrane (PBM), either free, or 

bound to VEGF, PlGF, sR1, or sR1 and VEGF or PlGF. EBM-bound VEGF in the innermost 25nm of the 

EBM can bind to endothelial cell-surface VEGFR1, VEGFR2, and NRP1. We assume that, similar to cell-

surface receptors, matrix-binding VEGF and PlGF isoforms (VEGF165, VEGF189, and PlGF2) can bind to 

HSPGs sites and sR1 simultaneously, forming M-L-sR1 complexes, where L represents the ligand (either 
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VEGF or PlGF). Since VEGFR1 can bind to NRP1 and VEGF121 or PlGF1 simultaneously (and we assume 

also VEGF165b) , and the NRP1 and matrix-binding sites on VEGFR1 overlap, we assume that these ligands 

can also bind to immobilized sR1, forming L-sR1-M complexes. Thus, complexes including VEGF or 

PlGF, matrix, and sR1 can form for all ligands, but in different ways (see Figure 7-S1). To reflect this, the 

species in the complexes described within the equations are ordered to show the actual binding partners 

next to each other. [MECM]j represents the concentration of free HSPG sites in the ECM, [V165] the 

interstitial concentration of free VEGF165, [P1] the interstitial concentration of free PlGF1, [sR1] the 

interstitial concentration of free soluble VEGFR, and [R1] the concentration of unoccupied EC surface 

VEGFR1 (units converted to match- see [13]). The binding rates (kon) and unbinding rates (koff) are given in 

Tables 7-S1 though 7-S9, with units of M
-1

s
-1

 and s
-1

, respectively. To convert the binding rates (kon) into 

an in vivo context (moles/cm
3
 tissue/s for each compartment), the following conversions were applied, 

using geometric parameters from Table 7-S12, as previously described [13, 14, 23]: 

  

 

The resulting kon values are given in Tables S5-S7.  
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Abluminal Endothelial Cell Surface – These 31 equations represent molecular species present on the 

surface of endothelial cells, as summarized in Figure 7-S1E. The binding rates (kon) are given in Table 7-

S5 though 7-S7, with units of M
-1

s
-1

 for binding of ligands to receptors, and (moles/cm
2
)

-1
s

-1
 for coupling 

of cell surface receptors. The fraction of EBM accessible to endothelial cell receptors is f. The trafficking 

rates, which depend on receptor ligation and binding to NRP1 (Table 7-S10), are in units of s
-1

, where kint 

is the internalization rate, krec4 is the recycling rate from early endosomes (Rab4/5) to the cell surface, and 

krec11 is the recycling rate from recycling endosomes (Rab11) to the cell surface. [R1rab45] is the 

concentration of unoccupied VEGFR1 in early (Rab4/5) endosomes. s is the production rate for free 

(unoccupied) receptors delivered to the cell surface (#/cm
2
/s, converted), tuned to match experimental 

measurements of surface receptor densities at steady-state (Table 7-2). 
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[R2]

j
+k

off ,V 165×R2, j
[V

165
×R2]

j

-k
on ,V 189×R2, j

[V
189

]
j
[R2]

j
+k

off ,V 189×R2, j
[V

189
×R2]

j

-k
on ,V 121×R2, j

[V
121

]
j
[R2]

j
+k

off ,V 121×R2, j
[V

121
×R2]

j

-k
on ,V 165b×R2, j

[V
165b

]
j
[R2]

j
+k

off ,V 165b×R2, j
[V

165b
×R2]

j

-k
on ,(M×V 165)×R2, j

[M
EBM

×V
165

]
j
[R2]

j
+k

off ,(M×V 165)×R2, j
[M

EBM
×V

165
×R2]

j

-k
on ,(M×V 189)×R2, j

[M
EBM

×V
189

]
j
[R2]

j
+k

off ,(M×V 189)×R2, j
[M

EBM
×V

189
×R2]

j

-k
on ,(N1×V 165)×R2, j

[N1×V
165

]
j
[R2]

j
+k

off ,(N1×V 165)×R2, j
[N1×V

165
×R2]

j

-k
on ,(N1×V 189)×R2, j

[N1×V
189

]
j
[R2]

j
+k

off ,(N1×V 189)×R2, j
[N1×V

189
×R2]

j
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d[P1×R1]
j
/dt = -k

int,P1×R1, j
[P1×R1]

j
+k

rec4,P1×R1, j
[P1×R1

rab45
]+k

rec11,P1×R1, j
[P1×R1

rab11
]

+k
on ,P1×R1, j

[P1]
j
[R1]

j
-k

off ,P1×R1, j
[P1×R1]

j

-k
on ,(P1×R1)×N1, j

[P1×R1]
j
[N1]

j
+k

off ,(P1×R1)×N1, j
[P1×R1×N1]

j

 

		

d[N1]
j
/dt = s

N1, j
-k

int,N1, j
[N1]

j
+k

rec4,N1, j
[N1

rab45
]+k

rec11,N1, j
[N1

rab11
]

-k
on ,V 165×N1, j

[V
165

]
j
[N1]

j
+k

off ,V 165×N1, j
[V

165
×N1]

j

-k
on ,V 189×N1, j

[V
189

]
j
[N1]

j
+k

off ,V 189×N1, j
[V

189
×N1]

j

-k
on ,P2×N1, j

[P2]
j
[N1]

j
+k

off ,P2×N1, j
[P2×N1]

j

-k
on ,N1×R1, j

[N1]
j
[R1]

j
+k

off ,N1×R1, j
[N1×R1]

j

-k
on ,N1×sR1, j

[N1]
j
[sR1]

j
+k

off ,N1×sR1, j
[N1×sR1]

j

-k
on ,(V 121×R1)×N1, j

[V
121
×R1]

j
[N1]

j
+k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1]

j

-k
on ,(V 165b×R1)×N1, j

[V
165b

×R1]
j
[N1]

j
+k

off ,(V 165b×R1)×N1, j
[V

165b
×R1×N1]

j

-k
on ,(P1×R1)×N1, j

[P1×R1]
j
[N1]

j
+k

off ,(P1×R1)×N1, j
[P1×R1×N1]

j

-k
on ,N1×(V 165×R2), j

[N1]
j
[V

165
×R2]

j
+k

off ,N1×(V 165×R2), j
[N1×V

165
×R2]

j

-k
on ,N1×(V 189×R2), j

[N1]
j
[V

189
×R2]

j
+k

off ,N1×(V 189×R2), j
[N1×V

189
×R2]

j

		

d[V
165
×R1]

j
/dt = -k

int,V 165×R1, j
[V

165
×R1]

j
+k

rec4,V 165×R1, j
[V

165
×R1

rab45
]+k

rec11,V 165×R1, j
[V

165
×R1

rab11
]

+k
on ,V 165×R1, j

[V
165

]
j
[R1]

j
-k

off ,V 165×R1, j
[V

165
×R1]

j

-k
on ,M×(V 165×R1), j

[M
EBM

]
j
[V

165
×R1]

j
+k

off ,M×(V 165×R1), j
[M

EBM
×V

165
×R1]

j

		

d[V
189
×R1]

j
/dt = -k

int,V 189×R1, j
[V

189
×R1]

j
+k

rec4,V 189×R1, j
[V

189
×R1

rab45
]+k

rec11,V 189×R1, j
[V

189
×R1

rab11
]

+k
on ,V 189×R1, j

[V
189

]
j
[R1]

j
-k

off ,V 189×R1, j
[V

189
×R1]

j

-k
on ,M×(V 189×R1), j

[M
EBM

]
j
[V

189
×R1]

j
+k

off ,M×(V 189×R1), j
[M

EBM
×V

189
×R1]

j

		

d[V
121
×R1]

j
/dt = -k

int,V 121×R1, j
[V

121
×R1]

j
+k

rec4,V 121×R1, j
[V

121
×R1

rab45
]+k

rec11,V 121×R1, j
[V

121
×R1

rab11
]

+k
on ,V 121×R1, j

[V
121

]
j
[R1]

j
-k

off ,V 121×R1, j
[V

121
×R1]

j

-k
on ,(V 121×R1)×N1, j

[V
121
×R1]

j
[N1]

j
+k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1]

j

		

d[V
165b

×R1]
j
/dt = -k

int,V 165b×R1, j
[V

165b
×R1]

j
+k

rec4,V 165b×R1, j
[V

165b
×R1

rab45
]+k

rec11,V 165b×R1, j
[V

165b
×R1

rab11
]

+k
on ,V 165b×R1, j

[V
165b

]
j
[R1]

j
-k

off ,V 165b×R1, j
[V

165b
×R1]

j

-k
on ,(V 165b×R1)×N1, j

[V
165b

×R1]
j
[N1]

j
+k

off ,(V 165b×R1)×N1, j
[V

165b
×R1×N1]

j
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d[V
121
×R2]

j
/dt = -k

int,V 121×R2, j
[V

121
×R2]

j
+k

rec4,V 121×R2, j
[V

121
×R2

rab45
]+k

rec11,V 121×R2, j
[V

121
×R2

rab11
]

+k
on ,V 121×R2, j

[V
121

]
j
[R2]

j
-k

off ,V 121×R2, j
[V

121
×R2]

j  

 

 

 

 

		

d[P2×R1]
j
/dt = -k

int,P2×R1, j
[P2×R1]

j
+k

rec4,P2×R1, j
[P2×R1

rab45
]+k

rec11,P2×R1, j
[P2×R1

rab11
]

+k
on ,P2×R1, j

[P2]
j
[R1]

j
-k

off ,P2×R1, j
[P2×R1]

j

-k
on ,M×(P2×R1), j

[M
EBM

]
j
[P2×R1]

j
+k

off ,M×(P2×R1), j
[M

EBM
×P2×R1]

j

		

d[V
165
×R2]

j
/dt = -k

int,V 165×R2, j
[V

165
×R2]

j
+k

rec4,V 165×R2, j
[V

165
×R2

rab45
]+k

rec11,V 165×R2, j
[V

165
×R2

rab11
]

+k
on ,V 165×R2, j

[V
165

]
j
[R2]

j
-k

off ,V 165×R2, j
[V

165
×R2]

j

-k
on ,M×(V 165×R2), j

[M
EBM

]
j
[V

165
×R2]

j
+k

off ,M×(V 165×R2), j
[M

EBM
×V

165
×R2]

j

-k
on ,N1×(V 165×R2), j

[N1]
j
[V

165
×R2]

j
+k

off ,N1×(V 165×R2), j
[N1×V

165
×R2]

j

		

d[V
189
×R2]

j
/dt = -k

int,V 189×R2, j
[V

189
×R2]

j
+k

rec4,V 189×R2, j
[V

189
×R2

rab45
]+k

rec11,V 189×R2, j
[V

189
×R2

rab11
]

+k
on ,V 189×R2, j

[V
189

]
j
[R2]

j
-k

off ,V 189×R2, j
[V

189
×R2]

j

-k
on ,M×(V 189×R2), j

[M
EBM

]
j
[V

189
×R2]

j
+k

off ,M×(V 189×R2), j
[M

EBM
×V

189
×R2]

j

-k
on ,N1×(V 189×R2), j

[N1]
j
[V

189
×R2]

j
+k

off ,N1×(V 189×R2), j
[N1×V

189
×R2]

j

		

d[V
165b

×R2]
j
/dt = -k

int,V 165b×R2, j
[V

165b
×R2]

j
+k

rec4,V 165b×R2, j
[V

165b
×R2

rab45
]+k

rec11,V 165b×R2, j
[V

165b
×R2

rab11
]

+k
on ,V 165b×R2, j

[V
165b

]
j
[R2]

j
-k

off ,V 165b×R2, j
[V

165b
×R2]

j

		

d[V
165
×N1]

j
/dt = -k

int,V 165×N1, j
[V

165
×N1]

j
+k

rec4,V 165×N1, j
[V

165
×N1

rab45
]+k

rec11,V 165×N1, j
[V

165
×N1

rab11
]

+k
on ,V 165×N1, j

[V
165

]
j
[N1]

j
-k

off ,V 165×N1, j
[V

165
×N1]

j

-k
on ,(N1×V 165)×R2, j

[N1×V
165

]
j
[R2]

j
+k

off ,(N1×V 165)×R2, j
[N1×V

165
×R2]

j

		

d[V
189
×N1]

j
/dt = -k

int,V 189×N1, j
[V

189
×N1]

j
+k

rec4,V 189×N1, j
[V

189
×N1

rab45
]+k

rec11,V 189×N1, j
[V

189
×N1

rab11
]

+k
on ,V 189×N1, j

[V
189

]
j
[N1]

j
-k

off ,V 189×N1, j
[V

189
×N1]

j

-k
on ,(N1×V 189)×R2, j

[N1×V
189

]
j
[R2]

j
+k

off ,(N1×V 189)×R2, j
[N1×V

189
×R2]

j

		

d[P2×N1]
j
/dt = -k

int,P2×N1, j
[P2×N1]

j
+k

rec4,P2×N1, j
[P2×N1

rab45
]+k

rec11,P2×N1, j
[P2×N1

rab11
]

+k
on ,P2×N1, j

[P2]
j
[N1]

j
-k

off ,P2×N1, j
[P2×N1]

j

-k
on ,(N1×P2)×R2, j

[N1×P2]
j
[R2]

j
+k

off ,(N1×P2)×R2, j
[N1×P2×R2]

j



 483 

 

 

 

 

 

 

		

d[N1×R1]
j
/dt = -k

int,N1×R1, j
[N1×R1]

j
+k

rec4,N1×R1, j
[N1×R1

rab45
]+k

rec11,N1×R1, j
[N1×R1

rab11
]

+k
on ,N1×R1, j

[N1]
j
[R1]

j
-k

off ,N1×R1, j
[N1×R1]

j

-k
on ,V 121×(N1×R1), j

[V
121

]
j
[N1×R1]

j
+k

off ,V 121×(N1×R1), j
[V

121
×R1×N1]

j

-k
on ,V 165b×(N1×R1), j

[V
165b

]
j
[N1×R1]

j
+k

off ,V 165b×(N1×R1), j
[V

165b
×R1×N1]

j

-k
on ,P1×(N1×R1), j

[P1]
j
[N1×R1]

j
+k

off ,P1×(N1×R1), j
[P1×R1×N1]

j

		

d[N1×sR1]
j
/dt = -k

int,N1×sR1, j
[N1×sR1]

j
+k

rec4,N1×sR1, j
[N1×sR1

rab45
]+k

rec11,N1×sR1, j
[N1×sR1

rab11
]

+k
on ,N1×sR1, j

[N1]
j
[sR1]

j
-k

off ,N1×sR1, j
[N1×sR1]

j

-k
on ,V 121×(N1×sR1), j

[V
121

]
j
[N1×sR1]

j
+k

off ,V 121×(N1×sR1), j
[V

121
×sR1×N1]

j

-k
on ,P1×(N1×sR1), j

[P1]
j
[N1×sR1]

j
+k

off ,P1×(N1×sR1), j
[P1×sR1×N1]

j

		

d[N1×V
165
×R2]

j
/dt = -k

int,N1×V 165×R2, j
[N1×V

165
×R2]

j
+k

rec4,N1×V 165×R2, j
[N1×V

165
×R2

rab45
]

+k
rec11,N1×V 165×R2, j

[N1×V
165
×R2

rab11
]

+k
on ,R2×(N1×V 165), j

[R2]
j
[V

165
×N1]

j
-k

off ,R2×(N1×V 165), j
[N1×V

165
×R2]

j

+k
on ,N1×(V 165×R2), j

[N1]
j
[V

165
×R2]

j
-k

off ,N1×(V 165×R2), j
[N1×V

165
×R2]

j

		

d[N1×V
189
×R2]

j
/dt = -k

int,N1×V 189×R2, j
[N1×V

189
×R2]

j
+k

rec4,N1×V 189×R2, j
[N1×V

189
×R2

rab45
]

+k
rec11,N1×V 189×R2, j

[N1×V
189
×R2

rab11
]

+k
on ,R2×(V 189×N1), j

[R2]
j
[V

189
×N1]

j
-k

off ,R2×(N1×V 189), j
[N1×V

189
×R2]

j

+k
on ,N1×(V 189×R2), j

[N1]
j
[V

189
×R2]

j
-k

off ,N1×(V 189×R2), j
[N1×V

189
×R2]

j

		

d[V
121
×R1×N1]

j
/dt = -k

int,V 121×R1×N1, j
[V

121
×R1×N1]

j
+k

rec4,V 121×R1×N1, j
[V

121
×R1×N1

rab45
]

+k
rec11,V 121×R1×N1, j

[V
121
×R1×N1

rab11
]

+k
on ,V 121×(R1×N1), j

[V
121

]
j
[R1×N1]

j
-k

off ,V 121×(R1×N1), j
[V

121
×R1×N1]

j

+k
on ,(V 121×R1)×N1, j

[V
121
×R1]

j
[N1]

j
-k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1]

j

		

d[V
165b

×R1×N1]
j
/dt = -k

int,V 165b×R1×N1, j
[V

165b
×R1×N1]

j
+k

rec4,V 165b×R1×N1, j
[V

165b
×R1×N1

rab45
]

+k
rec11,V 165b×R1×N1, j

[V
165b

×R1×N1
rab11

]

+k
on ,V 165b×(R1×N1), j

[V
165b

]
j
[R1×N1]

j
-k

off ,V 165b×(R1×N1), j
[V

165b
×R1×N1]

j

+k
on ,(V 165b×R1)×N1, j

[V
165b

×R1]
j
[N1]

j
-k

off ,(V 165b×R1)×N1, j
[V

165b
×R1×N1]

j
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d[P1×R1×N1]
j
/dt = -k

int,P1×R1×N1, j
[P1×R1×N1]

j
+k

rec4,P1×R1×N1, j
[P1×R1×N1

rab45
]

+k
rec11,P1×R1×N1, j

[P1×R1×N1
rab11

]

+k
on ,P1×(R1×N1), j

[P1]
j
[R1×N1]

j
-k

off ,P1×(R1×N1), j
[P1×R1×N1]

j

+k
on ,(P1×R1)×N1, j

[P1×R1]
j
[N1]

j
-k

off ,(P1×R1)×N1, j
[P1×R1×N1]

j

		

d[V
121
×sR1×N1]

j
/dt = -k

int,V 121×sR1×N1, j
[V

121
×sR1×N1]

j
+k

rec4,V 121×sR1×N1, j
[V

121
×sR1×N1

rab45
]

+k
rec11,V 121×sR1×N1, j

[V
121
×sR1×N1

rab11
]

+k
on ,V 121×(sR1×N1), j

[V
121

]
j
[sR1×N1]

j
-k

off ,V 121×(sR1×N1), j
[V

121
×sR1×N1]

j

+k
on ,(V 121×sR1)×N1, j

[V
121
×sR1]

j
[N1]

j
-k

off ,(V 121×sR1)×N1, j
[V

121
×sR1×N1]

j

		

d[V
165b

×sR1×N1]
j
/dt = -k

int,V 165b×sR1×N1, j
[V

165b
×sR1×N1]

j
+k

rec4,V 165b×sR1×N1, j
[V

165b
×sR1×N1

rab45
]

+k
rec11,V 165b×sR1×N1, j

[V
165b

×sR1×N1
rab11

]

+k
on ,V 165b×(sR1×N1), j

[V
165b

]
j
[sR1×N1]

j
-k

off ,V 165b×(sR1×N1), j
[V

165b
×sR1×N1]

j

+k
on ,(V 165b×sR1)×N1, j

[V
165b

×sR1]
j
[N1]

j
-k

off ,(V 165b×sR1)×N1, j
[V

165b
×sR1×N1]

j

		

d[P1×sR1×N1]
j
/dt = -k

int,P1×sR1×N1, j
[P1×sR1×N1]

j
+k

rec4,P1×sR1×N1, j
[P1×sR1×N1

rab45
]

+k
rec11,P1×sR1×N1, j

[P1×sR1×N1
rab11

]

+k
on ,P1×(sR1×N1), j

[P1]
j
[sR1×N1]

j
-k

off ,P1×(sR1×N1), j
[P1×sR1×N1]

j

+k
on ,(P1×sR1)×N1, j

[P1×sR1]
j
[N1]

j
-k

off ,(P1×sR1)×N1, j
[P1×sR1×N1]

j

		

d[M
EBM

×V
165
×R2]

j
/dt = k

on ,(M×V 165)×R2, j
× f ×[M

EBM
×V

165
]

j
[R2]

j
-k

off ,(M×V 165)×R2, j
[M

EBM
×V

165
×R2]

j

+k
on ,M×(V 165×R2), j

× f ×[M
EBM

]
j
[V

165
×R2]

j
-k

off ,M×(V 165×R2), j
[M

EBM
×V

165
×R2]

j

		

d[M
EBM

×V
189
×R2]

j
/dt = k

on ,(M×V 189)×R2, j
× f ×[M

EBM
×V

189
]

j
[R2]

j
-k

off ,(M×V 189)×R2, j
[M

EBM
×V

189
×R2]

j

+k
on ,M×(V 189×R2), j

× f ×[M
EBM

]
j
[V

189
×R2]

j
-k

off ,M×(V 189×R2), j
[M

EBM
×V

189
×R2]

j

		

d[M
EBM

×V
165
×R1]

j
/dt = k

on ,(M×V 165)×R1, j
× f ×[M

EBM
×V

165
]

j
[R1]

j
-k

off ,(M×V 165)×R1, j
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Detailed VEGFR2 Phosphorylation Reactions – Here we show one example equation (unoccupied cell 

surface VEGFR2 phosphorylated only on tyrosine Y1175) demonstrating the site-specific phosphorylation 

and dephosphorylation of VEGFR2 on tyrosines 951, 1175, and 1214 (Figure 7-S1D). Phosphorylation is 

assumed to be independent on each site, giving 8 possible combinations: no phosphorylation, pY951 only, 

pY1175 only, pY1214 only, pY951 and pY1175, pY951 and pY1214, pY1175 and pY1214, and all three 

sites phosphorylated. VEGFR2 can be phosphorylated in any of these patterns on the cell surface, in early 

(Rab4/5) endosomes, or in recycling (Rab11) endosomes. The phosphorylation and dephosphorylation rates 

(Table 7-S11) vary by subcellular location and with ligation, but are assumed to be independent of NRP1- 

and HSPG-binding. The phosphorylation state of VEGFR2 is assumed not to alter its binding or trafficking 

properties. We focus here on pY1175 and pY1214 because the parameters for these sites are better 

constrained than those for pY951. Total phosphorylated VEGFR2 (pR2) is approximated as the sum of all 

VEGFR2 phosphorylated on at least one site. The full set of equations for phosphorylation of VEGFR2 in 

all complexes and all locations is omitted for the sake of brevity. 

 

 

Endothelial Endosomes- These 64 equations represent molecular species within early signaling (Rab4/5) or 

recycling (Rab11) endosomes in endothelial cells. Here, k4to11 is the trafficking rate from early (Rab45) to 
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recycling (Rab11) endosomes, and kdegr is the rate of degradation of species from early Rab4/5 endosomes. 

[R1rab45] is the concentration of unoccupied VEGFR1 in early (Rab4/5) endosomes.  

 

Rab4/5 Early Signaling Endosomes 
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165,rab45

]
j
[N1

rab45
]

j
-k

off ,V 165×N1, j
[V

165
×N1

rab45
]

j

-k
on ,(N1×V 165)×R2, j

[N1×V
165,rab45

]
j
[R2

rab45
]

j
+k

off ,(N1×V 165)×R2, j
[N1×V

165
×R2

rab45
]

j

		

d[V
189
×N1

rab45
]

j
/dt = k

int,V 189×N1, j
[V

189
×N1]

j
-k

rec4,V 189×N1, j
[V

189
×N1

rab45
]

-k
4to11,V 189×N1, j

[V
189
×N1

rab45
]-k

degr ,V 189×N1, j
[V

189
×N1

rab45
]

+k
on ,V 189×N1, j

[V
189,rab45

]
j
[N1

rab45
]

j
-k

off ,V 189×N1, j
[V

189
×N1

rab45
]

j

-k
on ,(N1×V 189)×R2, j

[N1×V
189,rab45

]
j
[R2

rab45
]

j
+k

off ,(N1×V 189)×R2, j
[N1×V

189
×R2

rab45
]

j

		

d[P2×N1
rab45

]
j
/dt = k

int,P2×N1, j
[P2×N1]

j
-k

rec4,P2×N1, j
[P2×N1

rab45
]

-k
4to11,P2×N1, j

[P2×N1
rab45

]-k
degr ,P2×N1, j

[P2×N1
rab45

]

+k
on ,P2×N1, j

[P2
rab45

]
j
[N1

rab45
]

j
-k

off ,P2×N1, j
[P2×N1

rab45
]

j
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d[N1×R1
rab45

]
j
/dt = k

int,N1×R1, j
[N1×R1]

j
-k

rec4,N1×R1, j
[N1×R1

rab45
]

-k
4to11,N1×R1, j

[N1×R1
rab45

]-k
degr ,N1×R1, j

[N1×R1
rab45

]

+k
on ,N1×R1, j

[N1
rab45

]
j
[R1

rab45
]

j
-k

off ,N1×R1, j
[N1×R1

rab45
]

j

-k
on ,V 121×(N1×R1), j

[V
121,rab45

]
j
[N1×R1

rab45
]

j
+k

off ,V 121×(N1×R1), j
[V

121
×R1×N1

rab45
]

j

-k
on ,V 165b×(N1×R1), j

[V
165b ,rab45

]
j
[N1×R1

rab45
]

j
+k

off ,V 165b×(N1×R1), j
[V

165b
×R1×N1

rab45
]

j

-k
on ,P1×(N1×R1), j

[P1
rab45

]
j
[N1×R1

rab45
]

j
+k

off ,P1×(N1×R1), j
[P1×R1×N1

rab45
]

j

 

		

d[N1×sR1
rab45

]
j
/dt = k

int,N1×sR1, j
[N1×sR1]

j
-k

rec4,N1×sR1, j
[N1×sR1

rab45
]

-k
4to11,N1×sR1, j

[N1×sR1
rab45

]-k
degr ,N1×sR1, j

[N1×sR1
rab45

]

+k
on ,N1×sR1, j

[N1
rab45

]
j
[sR1

rab45
]

j
-k

off ,N1×sR1, j
[N1×sR1

rab45
]

j

-k
on ,V 121×(N1×sR1), j

[V
121,rab45

]
j
[N1×sR1

rab45
]

j
+k

off ,V 121×(N1×sR1), j
[V

121
×sR1×N1

rab45
]

j

-k
on ,V 165b×(N1×sR1), j

[V
165b ,rab45

]
j
[N1×sR1

rab45
]

j
+k

off ,V 165b×(N1×sR1), j
[V

165b
×sR1×N1

rab45
]

j

-k
on ,P1×(N1×sR1), j

[P1
rab45

]
j
[N1×sR1

rab45
]

j
+k

off ,P1×(N1×sR1), j
[P1×sR1×N1

rab45
]

j

 

 

 

		

d[V
121
×R1×N1

rab45
]

j
/dt = k

int,V 121×R1×N1, j
[V

121
×R1×N1]

j
-k

rec4,V 121×R1×N1, j
[V

121
×R1×N1

rab45
]

-k
4to11,V 121×R1×N1, j

[V
121
×R1×N1

rab45
]-k

degr ,V 121×R1×N1, j
[V

121
×R1×N1

rab45
]

+k
on ,V 121×(R1×N1), j

[V
121,rab45

]
j
[R1×N1

rab45
]

j
-k

off ,V 121×(R1×N1), j
[V

121
×R1×N1

rab45
]

j

+k
on ,(V 121×R1)×N1, j

[V
121
×R1

rab45
]

j
[N1

rab45
]

j
-k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1

rab45
]

j  

		

d[N1×V
165
×R2

rab45
]

j
/dt = k

int,N1×V 165×R2, j
[N1×V

165
×R2]

j
-k

rec4,N1×V 165×R2, j
[N1×V

165
×R2

rab45
]

+k
4to11,N1×V 165×R2, j

[N1×V
165
×R2

rab45
]-k

degr ,N1×V 165×R2, j
[N1×V

165
×R2

rab45
]

+k
on ,R2×(N1×V 165), j

[R2
rab45

]
j
[V

165
×N1

rab45
]

j
-k

off ,R2×(N1×V 165), j
[N1×V

165
×R2

rab45
]

j

+k
on ,N1×(V 165×R2), j

[N1
rab45

]
j
[V

165
×R2

rab45
]

j
-k

off ,N1×(V 165×R2), j
[N1×V

165
×R2

rab45
]

j

		

d[N1×V
189
×R2

rab45
]

j
/dt = k

int,N1×V 189×R2, j
[N1×V

189
×R2]

j
-k

rec4,N1×V 189×R2, j
[N1×V

189
×R2

rab45
]

-k
4to11,N1×V 189×R2, j

[N1×V
189
×R2

rab45
]-k

degr ,N1×V 189×R2, j
[N1×V

189
×R2

rab45
]

+k
on ,R2×(V 189×N1), j

[R2
rab45

]
j
[V

189
×N1

rab45
]

j
-k

off ,R2×(N1×V 189), j
[N1×V

189
×R2

rab45
]

j

+k
on ,N1×(V 189×R2), j

[N1
rab45

]
j
[V

189
×R2

rab45
]

j
-k

off ,N1×(V 189×R2), j
[N1×V

189
×R2

rab45
]

j
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d[V
165b

×R1×N1
rab45

]
j
/dt = k

int,V 165b×R1×N1, j
[V

165b
×R1×N1]

j
-k

rec4,V 165b×R1×N1, j
[V

165b
×R1×N1

rab45
]

-k
4to11,V 165b×R1×N1, j

[V
165b

×R1×N1
rab45

]-k
degr ,V 165b×R1×N1, j

[V
165b

×R1×N1
rab45

]

+k
on ,V 165b×(R1×N1), j

[V
165b ,rab45

]
j
[R1×N1

rab45
]

j
-k

off ,V 165b×(R1×N1), j
[V

165b
×R1×N1

rab45
]

j

+k
on ,(V 165b×R1)×N1, j

[V
165b

×R1
rab45

]
j
[N1

rab45
]

j
-k

off ,(V 165b×R1)×N1, j
[V

165b
×R1×N1

rab45
]

j

 

 

		

d[V
121
×sR1×N1

rab45
]

j
/dt = k

int,V 121×sR1×N1, j
[V

121
×sR1×N1]

j
-k

rec4,V 121×sR1×N1, j
[V

121
×sR1×N1

rab45
]

-k
4to11,V 121×sR1×N1, j

[V
121
×sR1×N1

rab45
]-k

degr ,V 121×sR1×N1, j
[V

121
×sR1×N1

rab45
]

+k
on ,V 121×(sR1×N1), j

[V
121,rab45

]
j
[sR1×N1

rab45
]

j
-k

off ,V 121×(sR1×N1), j
[V

121
×sR1×N1

rab45
]

j

+k
on ,(V 121×sR1)×N1, j

[V
121
×sR1

rab45
]

j
[N1

rab45
]

j
-k

off ,(V 121×sR1)×N1, j
[V

121
×sR1×N1

rab45
]

j

 

		

d[V
165b

×sR1×N1
rab45

]
j
/dt = k

int,V 165b×sR1×N1, j
[V

165b
×sR1×N1]

j
-k

rec4,V 165b×sR1×N1, j
[V

165b
×sR1×N1

rab45
]

-k
4to11,V 165b×sR1×N1, j

[V
165b

×sR1×N1
rab45

]-k
degr ,V 165b×sR1×N1, j

[V
165b

×sR1×N1
rab45

]

+k
on ,V 165b×(sR1×N1), j

[V
165b ,rab45

]
j
[sR1×N1

rab45
]

j
-k

off ,V 165b×(sR1×N1), j
[V

165b
×sR1×N1

rab45
]

j

+k
on ,(V 165b×sR1)×N1, j

[V
165b

×sR1
rab45

]
j
[N1

rab45
]

j
-k

off ,(V 165b×sR1)×N1, j
[V

165b
×sR1×N1

rab45
]

j

 

 

 

 

 

 

		

d[P1×R1×N1
rab45

]
j
/dt = k

int,P1×R1×N1, j
[P1×R1×N1]

j
-k

rec4,P1×R1×N1, j
[P1×R1×N1

rab45
]

-k
4to11,P1×R1×N1, j

[P1×R1×N1
rab45

]-k
degr ,P1×R1×N1, j

[P1×R1×N1
rab45

]

+k
on ,P1×(R1×N1), j

[P1
rab45

]
j
[R1×N1

rab45
]

j
-k

off ,P1×(R1×N1), j
[P1×R1×N1

rab45
]

j

+k
on ,(P1×R1)×N1, j

[P1×R1
rab45

]
j
[N1

rab45
]

j
-k

off ,(P1×R1)×N1, j
[P1×R1×N1

rab45
]

j

		

d[P1×sR1×N1
rab45

]
j
/dt = k

int,P1×sR1×N1, j
[P1×sR1×N1]

j
-k

rec4,P1×sR1×N1, j
[P1×sR1×N1

rab45
]

-k
4to11,P1×sR1×N1, j

[P1×sR1×N1
rab45

]-k
degr ,P1×sR1×N1, j

[P1×sR1×N1
rab45

]

+k
on ,P1×(sR1×N1), j

[P1
rab45

]
j
[sR1×N1

rab45
]

j
-k

off ,P1×(sR1×N1), j
[P1×sR1×N1

rab45
]

j

+k
on ,(P1×sR1)×N1, j

[P1×sR1
rab45

]
j
[N1

rab45
]

j
-k

off ,(P1×sR1)×N1, j
[P1×sR1×N1

rab45
]

j
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Rab11 Recycling Endosomes 

		

d[R1
rab11

]
j
/dt = k

4to11,R1, j
[R1

rab45
]-k

rec11,R1, j
[R1

rab11
]

-k
on ,V 165×R1, j

[V
165,rab11

]
j
[R1

rab11
]

j
+k

off ,V 165×R1, j
[V

165
×R1

rab11
]

j

-k
on ,V 189×R1, j

[V
189,rab11

]
j
[R1

rab11
]

j
+k

off ,V 189×R1, j
[V

189
×R1

rab11
]

j

-k
on ,V 121×R1, j

[V
121,rab45

]
j
[R1

rab11
]

j
+k

off ,V 121×R1, j
[V

121
×R1

rab11
]

j

-k
on ,V 165b×R1, j

[V
165b ,rab45

]
j
[R1

rab11
]

j
+k

off ,V 165b×R1, j
[V

165b
×R1

rab11
]

j

-k
on ,P1×R1, j

[P1
rab11

]
j
[R1

rab11
]

j
+k

off ,P1×R1, j
[P1×R1

rab11
]

j

-k
on ,P2×R1, j

[P2
rab11

]
j
[R1

rab11
]

j
+k

off ,P2×R1, j
[P2×R1

rab11
]

j

-k
on ,N1×R1, j

[N1
rab11

]
j
[R1

rab11
]

j
+k

off ,N1×R1, j
[N1×R1

rab11
]

j

 

		

d[R2
rab11

]
j
/dt = k

4to11,R2, j
[R2

rab45
]-k

rec11,R2, j
[R2

rab11
]

-k
on ,V 165×R2, j

[V
165,rab11

]
j
[R2

rab11
]

j
+k

off ,V 165×R2, j
[V

165
×R2

rab11
]

j

-k
on ,V 189×R2, j

[V
189,rab11

]
j
[R2

rab11
]

j
+k

off ,V 189×R2, j
[V

189
×R2

rab11
]

j

-k
on ,V 121×R2, j

[V
121,rab11

]
j
[R2

rab11
]

j
+k

off ,V 121×R2, j
[V

121
×R2

rab11
]

j

-k
on ,V 165b×R2, j

[V
165b ,rab11

]
j
[R2

rab11
]

j
+k

off ,V 165b×R2, j
[V

165b
×R2

rab11
]

j

-k
on ,(N1×V 165)×R2, j

[N1×V
165,rab11

]
j
[R2

rab11
]

j
+k

off ,(N1×V 165)×R2, j
[N1×V

165
×R2

rab11
]

j

-k
on ,(N1×V 189)×R2, j

[N1×V
189,rab11

]
j
[R2

rab11
]

j
+k

off ,(N1×V 189)×R2, j
[N1×V

189
×R2

rab11
]

j

 

		

d[N1
rab11

]
j
/dt = k

4to11,N1, j
[N1

rab45
]-k

rec11,N1, j
[N1

rab11
]

-k
on ,V 165×N1, j

[V
165,rab11

]
j
[N1

rab11
]

j
+k

off ,V 165×N1, j
[V

165
×N1

rab11
]

j

-k
on ,V 189×N1, j

[V
189,rab11

]
j
[N1

rab11
]

j
+k

off ,V 189×N1, j
[V

189
×N1

rab11
]

j

-k
on ,P2×N1, j

[P2
rab11

]
j
[N1

rab11
]

j
+k

off ,P2×N1, j
[P2×N1

rab11
]

j

-k
on ,N1×R1, j

[N1
rab11

]
j
[R1

rab11
]

j
+k

off ,N1×R1, j
[N1×R1

rab11
]

j

-k
on ,N1×sR1, j

[N1
rab11

]
j
[sR1

rab11
]

j
+k

off ,N1×sR1, j
[N1×sR1

rab11
]

j

-k
on ,(V 121×R1)×N1, j

[V
121
×R1

rab11
]

j
[N1

rab11
]

j
+k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1

rab11
]

j

-k
on ,(V 165b×R1)×N1, j

[V
165b

×R1
rab11

]
j
[N1

rab11
]

j
+k

off ,(V 165b×R1)×N1, j
[V

165b
×R1×N1

rab11
]

j

-k
on ,(P1×R1)×N1, j

[P1×R1
rab11

]
j
[N1

rab11
]

j
+k

off ,(P1×R1)×N1, j
[P1×R1×N1

rab11
]

j

-k
on ,N1×(V 165×R2), j

[N1
rab11

]
j
[V

165
×R2

rab11
]

j
+k

off ,N1×(V 165×R2), j
[N1×V

165
×R2

rab11
]

j

-k
on ,N1×(V 189×R2), j

[N1
rab11

]
j
[V

189
×R2

rab11
]

j
+k

off ,N1×(V 189×R2), j
[N1×V

189
×R2

rab11
]

j
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d[V
121
×R1

rab11
]

j
/dt = k

4to11,V 121×R1, j
[V

121
×R1

rab45
]-k

rec11,V 121×R1, j
[V

121
×R1

rab11
]

+k
on ,V 121×R1, j

[V
121,rab11

]
j
[R1

rab11
]

j
-k

off ,V 121×R1, j
[V

121
×R1

rab11
]

j

-k
on ,(V 121×R1)×N1, j

[V
121
×R1

rab11
]

j
[N1

rab11
]

j
+k

off ,(V 121×R1)×N1, j
[V

121
×R1×N1

rab11
]

j  

		

d[V
165b

×R1
rab11

]
j
/dt = k

4to11,V 165b×R1, j
[V

165b
×R1

rab45
]-k

rec11,V 165b×R1, j
[V

165b
×R1

rab11
]

+k
on ,V 165b×R1, j

[V
165b ,rab11

]
j
[R1

rab11
]

j
-k

off ,V 165b×R1, j
[V

165b
×R1

rab11
]

j

-k
on ,(V 165b×R1)×N1, j

[V
165b

×R1
rab11

]
j
[N1

rab11
]

j
+k

off ,(V 165b×R1)×N1, j
[V

165b
×R1×N1

rab11
]

j

 

 

 

 

		

d[V
121
×sR1

rab11
]

j
/dt = k

on ,V 121×sR1, j
[V

121,rab11
]

j
[sR1

rab11
]

j
-k

off ,V 121×sR1, j
[V

121
×sR1

rab11
]

j

-k
on ,(V 121×sR1)×N1, j

[V
121
×sR1

rab11
]

j
[N1

rab11
]

j
+k

off ,(V 121×sR1)×N1, j
[V

121
×sR1×N1

rab11
]

j  

		

d[V
165b

×sR1
rab11

]
j
/dt = k

on ,V 165b×sR1, j
[V

165b ,rab11
]

j
[sR1

rab11
]

j
-k

off ,V 165b×sR1, j
[V

165b
×sR1

rab11
]

j

-k
on ,(V 165b×sR1)×N1, j

[V
165b

×sR1
rab11

]
j
[N1

rab11
]

j
+k

off ,(V 165b×sR1)×N1, j
[V

165b
×sR1×N1

rab11
]

j

 

 

 

		

d[V
165
×R1

rab11
]

j
/dt = k

4to11,V 165×R1, j
[V

165
×R1

rab45
]-k

rec11,V 165×R1, j
[V

165
×R1

rab11
]

+k
on,V 165×R1, j

[V
165,rab11

]
j
[R1

rab11
]

j
-k

off ,V 165×R1, j
[V

165
×R1

rab11
]

j

		

d[V
189
×R1

rab11
]

j
/dt = k

4to11,V 189×R1, j
[V

189
×R1

rab45
]-k

rec11,V 189×R1, j
[V

189
×R1

rab11
]

+k
on,V 189×R1, j

[V
189,rab11

]
j
[R1

rab11
]

j
-k

off ,V 189×R1, j
[V

189
×R1

rab11
]

j

		

d[P1×R1
rab11

]
j
/dt = k

4to11,P1×R1, j
[P1×R1

rab45
]-k

rec11,P1×R1, j
[P1×R1

rab11
]

+k
on ,P1×R1, j

[P1
rab11

]
j
[R1

rab11
]

j
-k

off ,P1×R1, j
[P1×R1

rab11
]

j

-k
on ,(P1×R1)×N1, j

[P1×R1
rab11

]
j
[N1

rab11
]

j
+k

off ,(P1×R1)×N1, j
[P1×R1×N1

rab11
]

j
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Interstitial Fluid- These 13 equations describe the free species found in the interstitial fluid in tissues, 

including free VEGF, PlGF, and sR1, and complexes of sR1 with ligands. qX is the constant secretion of 

VEGF or PlGF isoforms from myocytes (molecules/myonuclear domain/s), or of sR1 from endothelial cells 

(molecules/EC/s), as given in Table 7-SM1, and converted into moles/cm
3
 tissue as detailed in [13]. All 

molecular species in the interstitial fluid can be transported into the blood via lymphatic drainage (kL in 

cm
3
/s), or moved between the blood and tissue via bi-directional vascular permeability (kp in cm/s). 

Vascular permeability depends on the total abluminal EC surface area, SjB (cm
2
). The endothelial cell 

surface recruitment factor γ is 1 in the Main Body Mass and 0.5 in the PAD Calf Muscle. As detailed 

above, U represents a volume, while KAv is the fraction of the volume that is available. These geometric 

factors are included to account for the relevant volumes in the tissue and blood for exchange of molecular 

species; when one molecule is transported between tissue j and the blood, the concentration changes in j 

and the blood depend on the respective volumes. 
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A.3.3 Blood Equations 

The final set of 13 equations describes the binding and unbinding of molecular species in the blood, as well 

as clearance (kCL in s
-1

). q165b,mono represents secretion of VEGF165b into the blood by monocytes. 
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