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Abstract 

A method to simulate photoelectron spectra using quadratic local quasi-diabatic 

Hamiltonians (H
d
) is generalized and augmented to enable high accuracy dynamics 

simulations of nonadiabatic processes that involve large amplitude motions, including 

dissociation.  The improvement is achieved by using a flexible symmetry adapted 

analytical expansion to approximate the representation of electronic Hamiltonian operator 

in a quasi-diabatic basis, the diabaticity of which is achieved by minimization of residual 

coupling between quasi-diabatic states.   

Although previous theoretical treatments have been used to treat adiabatic 

dissociation and rearrangement processes with success, difficulties have been 

encountered in systems complicated by seams of conical intersections.  Existing methods 

are either too expensive to be applied, or could not provide sufficient accuracy.   Even for 

nonadiabatic reactions of very small systems, such as photodissociation of NH3, all 

previous theoretical treatments have been unable to accurately reproduce experimental 

measurements. 

In this work, inspired by the success of bound-state H
d
 approach, a rigorous and 

flexible framework is established to create a more robust method for accurate and 

efficient nonadiabatic dynamics simulations, through the construction of quasi-diabatic 

Hamiltonians(H
d
) that correctly describes reactions.  This new method requires no 

assumption on the properties of individual systems. The application of local intersection 

adapted representations and partially diagonalized representations enabled entire seams 

of conical intersections as well as the nearby regions to be accurately described.  No ad 

hoc approximation is made in the diabatization procedure, and the residual coupling of 
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the underlying quasi-diabatic representation is minimized in a least squares sense and can 

be exactly quantified.  Polynomials of arbitrary functions of internal coordinates are used 

to construct an extremely flexible basis for H
d
, and generic symmetry treatment allows 

incorporation of arbitrary point group or Complete Nuclear Permutation Inversion 

(CNPI) group symmetry
1
.   

With the H
d
                                         ←   photodissociation 

process of NH3 was simulated.  New results, obtained using H
d
 constructed with the 

method described in this work, accurately reproduce experimental measurements, 

illustrating its promising potential.   

The method is then further enhanced to allow application to much larger systems, 

with the coupled potential energy surfaces of the 1,2,3
1
A states for the photodissociation 

of phenol used as an example.  A partially diagonalized representation approach is 

developed to accurately treat near degenerate points, and a null-space analysis procedure 

is added to guide the selection of monomial basis and to remove linear dependencies in 

the fitting procedure.  Coupled potential energy surfaces that fully incorporate all 33 

degrees of freedom, many different large amplitude motions, and multiple seams of 

conical intersections, are successfully constructed from ab initio data.    

Thesis Advisor: 

Professor David R. Yarkony, Johns Hopkins University 

Additional Readers: 

Professor Paul J. Dagdigian, Johns Hopkins University 

Professor Harris J Silverstone, Johns Hopkins University 

                                                 
1 P. R. Bunker, Molecular Symmetry and Spectroscopy. (Academic Press, New York, 1979) 
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Chapter 1 Introduction 

1.1 Chemistry beyond the Born-Oppenheimer Approximation 

 It has been long established that almost all the desired knowledge about a 

chemical process rests in the wave function of the chemical system, obtained by solving 

quantum mechanical equations, in the case of a non-relativistic molecular system, the 

Schrödinger equation.  However, solving such equations for even a moderately sized 

molecule is a formidable, if not impossible, task. 

 The Born-Oppenheimer(BO) Approximation, also referred to as the adiabatic 

approximation, significantly alleviates such difficulties by allowing separation of nuclear 

and electronic motions in molecular systems.  This converts the impractical task of the 

solution of the molecular Schrödinger equation into two more practical steps: generation 

of potential energy surface(PES) by solving electronic Schrödinger equation at various 

geometries, and nuclear dynamics on the PES.   The BO Approximation is extremely 

powerful and often also accurate enough for most chemical processes.   As a result, it is 

almost ubiquitously applied throughout chemistry. 

 Despite its utility in quantum mechanical calculations, this indispensible 

approximation is not always valid.  When a reaction takes place at high energy, usually 

through high temperature or by photoexcitation, or when electronic degeneracy is present 

at low energy, multiple electronic states can become involved, making the process non-

adiabatic. The family of non-adiabatic processes encompasses many important reactions. 

In reactions in extreme temperature or pressure, including many processes involved in 

ignition, combustion and explosion, are non-adiabatic because of the large amount of 
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available energy.  BO Approximation is also violated in photochemical processes, where 

absorption of a photon causes the system to be electronically excited, including vital 

biochemical processes such as vision, photosynthesis, and the UV resistency of DNA; 

valuable industrial processes such as the photovoltaic effect and solar energy conversion; 

as well as many astronomical and atomospheric reactions; and many more.    

 To facilitate calculations of non-adiabatic processes, the total wave function has 

to be expanded with more than one adiabatic state.   Instead of a single PES, a set of 

coupled PESs and interstate couplings have to be provided.  Alternatively, the simulation 

can be performed in a diabatic representation where interstate couplings are ignorable, 

but the electronic Hamiltonian is not diagonal. 

 In the recent years, much progress has been made to allow very high accuracy 

dynamics simulations for adiabatic processes.  Adiabatic PES can be built with 

permutationally invariant polynomials
1,2

, Shepard interpolation
3
 or moving least squares 

technique
4
. However, nonadiabatic processes are more challenging to describe.  

Experimental observations are usually indirect and can be difficult to interpret.  

Discrepancies between theoretical predictions and experimental results are common.  Fit 

diabatic potential enegy surfaces
5-7

 usually cannot achieve sufficient accuracy and 

employ tricks to construct diabatic states that are difficult to verify.  Direct dynamics 

methods
8-10

 on the other hand are extremely expensive, often requiring less expensive but 

also less accurate wave functions and limiting dynamics simulation to a very small 

number of trajectories.  New theoretical methods that can achieve high accuracy at 

acceptable cost are therefore highly desired. 
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1.2 Eliminating the Computational Bottleneck with Analytical Approximation 

Accurate non-adiabatic calculations often require very expensive multireference 

electronic structure calculations, which can take hours or even days even when executed 

in parallel.  The nuclear dynamics step also requires the PESs and derivative couplings to 

be evaluated over large number of points, sometimes several million.  As a result, the 

electronic structure step becomes the computational bottleneck and makes high precision 

simulation extremely difficult. 

Direct non-adiabatic simulations with highly accurate wave functions that can 

achieve chemical accuracy are still impractical for most molecules and will remain so in 

the near future.  Approximate methods are therefore desired to accelerate the data 

generation procedure by making a (hopefully) small compromise in their precision.  

In this work, the approximation is accomplished by constructing analytical 

functions, which can reliably generate high precision energy and derivative coupling data 

with significantly reduced cost.  Because of the smoothness of potential energy surfaces, 

the number of data point needed to construct an analytical approximation for the relevant 

region is many magnitudes smaller than the number of points needed in the simulation 

procedure, resulting in significant acceleration of the overall process.  For example, 

dynamics with quasi-classical surface hopping trajectories usually require millions of 

evaluations of the PESs, which can be built from only a few thousand data points.   A 

quasi-diabatic representation is used because the smoothness and absence of singularity 

in such representations is crucial for a correct description of the vicinity of conical 

intersection seams.    
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1.3 Inadequacies of Existing Methods 

In the past few years, many successful dynamics simulations were reported for 

adiabatic processes by fitting ab initio data to analytical functions
1,2

.  However, at the 

vicinity of conical intersections, potential energies become discontinuous and the 

derivative couplings approach infinity, complicating the fitting procedure.  On the other 

hand, nonadiabatic interactions are most prominent near such singularities, making their 

description a crucial task for nonadiabatic dynamic simulations.  Therefore, special 

treatment is necessary for the seam of conical intersections. 

This usually means working in diabatic representations, the definition of which 

varies a   g        .  “Di b  iz  i   by      z”       
11,12

  fits adiabatic energy data to 

a diabatic Hamiltonian and assume that a smooth fit that reproduce these energies should 

be diabatic.  Various methods also exist to construct diabatic states by referencing the 

continuity of electronic wave functions, such as orbital overlap based method
13

 or 

approaches based on four-fold-way
14

.   Numerous other methods also use molecular 

properties to construct diabatic representation.   

However, constructing diabatic states with these methods can cause potential 

problems in the ensuing simulations.  When solving nuclear dynamics in a diabatic 

representation the residual couplings, the derivative couplings between diabatic states, are 

ignored.  Above-mentioned methods define diabatic states with other perceived 

properties and the residual couplings are not necessarily small.    

It is therefore necessary to work in a method where residual couplings are 

quantified.  The quasi-diabatic Hamiltonian(H
d
) approach previously developed in our 

group
15-17

 achieves this by utilizing derivative coupling data for the adiabatic states.   
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Al    g     iv        “ i b  iz  i  -by-     z”               x li i   i        iv  iv  

couplings allows the fitting program to actively search for representations where residual 

couplings are small, rather than relying on the smoothness of fitting functions to do so.   

The advantages of the H
d
 method were evident in my previous project on the 

photoelectron spectroscopy of pyrrolide anion
16,17

, where the spectrum was strongly 

perturbed by a conical intersection.   Residual couplings completely vanish at the 

minimum energy crossing point and were kept minimal throughout the relevant region.  

Quantitative agreement with experimental measurements was observed.   

However, that method is limited to bound-state problems that are confined around 

a fixed origin point.  The ansatz does not possess the flexibility to describe more complex 

features of the potential energy surfaces, and the point group symmetry treatments break 

down when large amplitude motions take place.   Large amplitude motions also make 

large portions of the seam of conical intersections accessible to nuclear wave functions.   

However, the method in its present form is not capable of describing large portions of the 

seam that contain regions with qualitatively different characters. 

1.4 The Non-local Quasi-diabatic Hamiltonian (H
d
) Approach 

It has been made clear that enhancement and generalization of the previous H
d
 

approach is desired so that the new method can be applied to more complex nonadiabatic 

processes such as photodissociation, while retaining the excellent treatment of conical 

intersections.   

To expand the domain of applicability of local expansions, one either must 

change the form of the expansion to allow the description of regions further away, or 

interpolations have to be made between multiple centers.  For the interpolation methods, 
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Shepard interpolation methods and modified Shepard interpolation methods
18-20

 have 

been developed for the construction of both adiabatic and diabatic surfaces.   However, 

locally constructed diabatic representations are subject to one arbitrary constant rotation, 

no matter which type of diabatization technique is used.   Such constant rotation cannot 

be determined unless the center of the expansion point possesses symmetry and the off-

diagonal block carry nonsymmetric representation.   The derivative couplings between 

the interpolation centers are affected by the choice of this arbitrary rotation, making it 

unreliable for strongly nonadiabatic regions. 

In Chapter 2, the local quadratic H
d
 method is generalized so that it is applicable 

to dissociative systems without the need of interpolations.  Globally well-behaved 

functions are used as coordinates to obtain the correct behavior upon dissociation. 

Polynomials of these coordinates are used as a flexible basis, and Lagrange multiplers in 

combination with intersection adapted coordinates are used to treat arbitrary number of 

points of conical intersections.  A projection operator technique is also developed to 

handle CNPI instead of point group symmetry.  1,2
1
A states of NH3 is used as an 

example. 

In Chapter 3, the theory is reformulated in more general terms, starting slightly 

differently by searching for the most diabatic representation in a least-squares sense and 

at the same time trying to reproduce energies and energy gradients.  Method to quatify 

residual coupling between quasi-diabatic states is also established.  The notion of origin, 

which was a relic of the local method, is abolished, resulting in a very flexible method 

that can describe multiple regions accurately on an equal footing.  The exact formula of 

the gradient of the Lagrangian is also derived, and a modified Gauss-Newton procedure is 
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used to facilitate better convergence.  A trajectory-guided point sampling approach is also 

adopted to saturate data in dynamically relevant regions.   The algorithm is applied to 

NH3 system, and is able to describe significantly larger region of the nuclear 

configuration space with drastically improved accuracy.  Residual couplings between 

quasi-diabatic states are also quatitatively calculated, verifying the diabaticity of the 

constructed representation.  

In Chapter 4, the H
d
 for 1,2

1
A states of NH3 is put to test in the simulation of the 

photodissociation absorption spectra of NH3 and ND3.  Experimental measurement is 

very precisely reproduced, and significant improvement over the previous treatments is 

achieved.   In other work not present in this dissertation
21

, H
d
 is also used to simulate 

branching ratios and kinetic energy release profile of the same reaction, which provide 

more dynamical information, both with very good agreement with experimental 

measurements.  These simulations evince the high quality of the representation, both in 

terms of reproduction of potential energy surfaces, and in the correct treatment of non-

adiabatic interactions. 

 In Chapter 5, the method is further enhanced with new features to enable 

description of much larger systems.  A partially diagonalized representation approach 

enables the correct treatment of conical intersection or near degeneracy points without the 

need to exactly reproduce ab initio data, enabling the description of a seam space with 

much larger dimensionality.   A null-space analysis procedure is adopted to help 

determine the most efficient polynomial basis, as well as to remove linear dependencies 

from the fitting equations.  The fitting procedure is also improved to run faster and use 

fewer resources, so that larger system can be handled.  The 1,2,3
1
A coupled potential 
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energy surfaces are constructed for the photodissociation process of phenol as an 

example.  All 33 degrees of freedom are fully corporated, which describes many different 

large amplitude motions.  The fit can also correctly reproduce multiple seams of conical 

intersections. 
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Chapter 2 Toward Highly Efficient Nonadiabatic Dynamics on the Fly:  

An Algorithm to Fit Non-local Quasi-Diabatic, Coupled Electronic State 

Hamiltonians based on ab initio Electronic Structure Data  

2.1 Abstract 

 An algorithm for constructing a quasi-diabatic, coupled electronic state 

Hamiltonian, in a localized region of nuclear coordinate space, suitable for determining 

bound state spectra, is generalized to determine a non-local Hamiltonian capable of 

describing, for example, multichannel nonadiabatic photodissociation.  For N
state

 coupled 

electronic states, the Hamiltonian, H
d
, is a symmetric N

state 
x N

state
 matrix whose elements 

are polynomials involving: decaying exponentials exp(-ari,j
n
) n = 1,2 where ri, j = R

i - R
j

,  ri, j = ri, j
, R

j
 locates the j

th
 nucleus; and scaled dot-cross product coordinates, 

proportional to 
likiji ,,,

rrr  .  The constructed Hamiltonian is constrained to reproduce, 

exactly, the ab initio data, energies, gradients and derivative coupling at selected points, 

or nodes, in nuclear coordinate space.  The remainder of the ab initio data is 

approximated in a least squares sense using a normal equations approach.  The fitting 

procedure includes a damping term that precludes oscillations due to the nodal constraints 

or local excesses of parameters.  To illustrate the potential of the fitting procedure an H
d
 

is constructed, with the full nuclear permutation-inversion symmetry, which describes 

portions of the 1,2
1
A potential energy surfaces of NH3, including the minimum energy 

point on the 1,2
1
A seam of conical intersection and the NH2+H asymptote.  Ab initio data 

at 239 nuclear configurations was used in the construction, which was tested at forty-

eight additional nuclear configurations.  While the energy range on the ground and 

excited potential energy surface are each individually ~ 45,000 cm
-1

, the root mean 

square error for the energies at all points is only 93.6 cm
-1

.  The location and local conical 

topography of the minimum energy conical intersection is exactly reproduced. The 

derivative couplings are shown to be well reproduced, justifying the attribute quasi-

diabatic. 
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2.2 Introduction 

 The representation of PESs and their interstate interactions has long been a goal 

of computational quantum chemistry.
1-2

 Recently several approaches to fitting coupled 

state potential energy surfaces have been reported, including a generally applicable 

approach based on Shepard interpolation,
3-5

 an approach specifically oriented toward 

triatomics with some point group symmetry,
6
 an approach based on the "diabatization by 

ansatz" technique
2
 and an approach based on the four-fold way.

7
  In each of these 

approaches the coupled adiabatic potential energy surfaces are obtained from a quasi-

diabatic Hamiltonian, H
d
, an N

state 
x N

state
 matrix whose matrix elements are polynomials 

in a set of nuclear coordinates. In this work we introduce a new method for obtaining this 

H
d
.  In our approach H

d
 is based on, ab initio derivative couplings, 

 as well as adiabatic energies, EI(Q), I = 1 – N
state

, and 

energy gradients 



E
I
(Q) , obtained over a wide range of nuclear configurations.  Here 

  

YI

a (q;Q)  is a high level, multireference configuration interaction (MRCI), adiabatic 

electronic state wave function with energy EI(Q), Q is a set of at least, (since we will be 

using over complete bases) N
int

 = 3N
at
 - 6 internal coordinates for the N

at
 nuclei and q are 

the coordinates of the N
el
 electrons.  In this work we will refer to an H

d
, determined using 

data over a wide range of nuclear configurations including dissociated configurations, as 

non-locally defined.  Advantages of the proposed approach, attributable in part to the use 

of derivative coupling data and in part to algorithmic innovation, include the following. 

(a) No a priori knowledge of the locus of conical intersection seams is required and yet 

the local topography of a conical intersection is reproduced exactly. (b) No preliminary 

diabatization of the ab initio data is required and since derivative coupling data is used in 
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constructing the fit, the residual derivative coupling is minimized in a least squares sense. 

(c) High level MRCI wave functions is used from which derivative coupling and energy 

gradient data are readily determine,
8
 but does not require second derivatives which are 

quite costly to obtain.  With regard to point (b), we note that it is not possible to remove 

all the residual derivative coupling since it has been shown by Baer, Mead and others that 

in general rigorous diabatic electronic states do not exist.
9,10,11

 

Section 2.3 describes the algorithm used to construct H
d
, a generalization of our 

pseudo normal equations method for determining H
d 

(Ref. 
12,13

) for bound electronic 

states which uses natural internal coordinates.
14

  Four key aspects of our algorithm will 

be discussed, constraints, nuclear coordinates, damping and symmetry.  Constraints are 

imposed, through the use of Lagrange multipliers, at points in nuclear coordinate space 

called "nodes".  At nodes, some or all of the electronic structure data, energy, energy 

gradients and derivative couplings are reproduced exactly by H
d
.  The second issue is the 

choice of internal coordinates.  We cannot use bond distances as we did in determining 

the bound H
d
 since bond distances go to   as the molecule dissociates, which is an 

anathema to our polynomial form of H
d
.  In addition, local internal coordinates for one 

geometrical isomer are in general ill-suited for use at a distinct geometrical isomer.  

Instead we use a generalization of the approach developed by Braams, Bowman and co-

workers
15

 who used functions of the form 

  

exp(-a | Ri - R
j |), where R

j = Rx

j, Ry

j, Rz

j( )  

locates the j
th 

nucleus, to successfully fit ground state global adiabatic potential energy 

surfaces, for molecules including protonated water dimer
16

 and hydroxycarbene.
17

  The 

third issue, referred to as damping, represents the fact that for higher order polynomials, 

with many parameters, although the defining equations are technically over determined, 
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data from locally poorly defined regions may lead to parametrizations which interpolate 

poorly, or even oscillate, between data points.  To avoid this situation a damping or 

smoothing term is introduced into the fitting procedure which eliminates this deficiency.  

Finally for truly global representations, extensions of the non-local representations 

emphasized in this work, there is the issue of the non-rigid molecule
18

 or CNPI 

symmetry,
19

 the symmetry induced by interchange of identical nuclei and inversion of the 

entire molecule, nuclei and electrons. We explain how, in the case considered here, 

projection operators are used to incorporate this symmetry.  See also Refs. 
15,5

. 

Section 2.4addresses the computational issues involved in the fitting procedure. 

We seek to establish that algorithm reported in section 2.3 is a viable tool for fitting 

coupled potential energy surfaces, exhibiting conical intersections, for dissociative 

systems, over a wide range of nuclear configurations.  The 1,2
1
A states of NH3 are used 

as an example.  This system, whose photodissociation has been the subject of 

considerable experimental
20-22

 and theoretical
7, 23-25

 interest, was chosen because it 

exhibits the key challenge encountered in constructing a non-local H
d
, a conical 

intersection well removed from the origin of the coordinate system, which leads to a 

dissociation channel.  We demonstrate the accuracy of the fit and the use of the damping 

or smoothing function to eliminate inter data point oscillations.   We show that as a 

consequence of the use of nodes not only does H
d
 have the correct topographical features, 

minima, saddle points, conical intersections and dissociation asymptotes but it has them 

in precisely the same location in nuclear coordinate space and at the same energy as the 

ab initio data from which it is derived. We demonstrate how use of nodes also enables us 

to precisely reproduce the conical topography obtained from ab initio data at a point of 
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conical intersection.  We further demonstrate how over complete bases can be used to 

systematically improve the accuracy of the fit.  Finally we show that the ab initio 

derivative couplings are well reproduced by H
d
 justifying the attribute quasi-diabatic.  

Section 2.5 summarizes the research in this chapter. 

2.3 The Quasi-diabatic Hamiltonian and its Determination 

 The quasi-diabatic representation, H
d
, is intended to approximate the ab initio 

energies EI(Q), the energy gradients , and the derivative couplings f
IJ

(Q) for 

N
state

 adiabatic electronic states, over a wide range of Q.  Here Q is a set of, N
rc

, internal 

coordinates that may be overcomplete. 

2.3.1 The Quasi-Diabatic Hamiltonian 

H
d
 is a symmetric N

state
xN

state
 matrix whose elements are polynomials in the 

internal coordinates: 

  

Ha,b

d (Q) º Ya

d (q;Q) H e (q;Q) Yb

d (q;Q)
q
 

mlk

N

mlk

lklk

N

lk

lkk

N

k

k
QQQVQQVQVE

rcrcrc





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,),2(

,

1

,),1(

,

0
3/12/1)(




Q  ( 2-1 ) 

Here H
e
 is the electronic Hamiltonian in the Coulomb approximation and 

  

Ya

d (q;Q), 

   

a = 

1 – N
state 

are the quasi-diabatic electronic states.  The eigenvectors of H
d
 satisfy the 

electronic Schrödinger equation:  

  

  

H
d (Q) - IEI

(d )(Q)[ ]dI (Q) = 0
 

( 2-2 ) 

2.3.2 Equations defining H
d 

The equations defining H
d
 are obtained by differentiating eq. ( 2-2 ) and using the 

derivative of eq. ( 2-1 ).  However, because of the over completeness of Q, care must be 
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exercised when taking the requisite partial derivatives.  For example while 

 
mk QQm

d
QH




 ,

 

makes mathematical sense in terms of eq.( 2-1 ), it makes no sense in 

nuclear coordinate space since it is not be possible to change Qm while holding all 

remaining Qk constant.  On the other hand  
m

s

m

s RR

m

s

d
RH


 

 
,




is not a problem.  In what 

follows we will use 




R
 (



R
x

1
,


R
y

1
,


R
z

1
,


R
x

2
, ...)  and when the superscript on 



  is 

suppressed, 




R
 is assumed.  Thus, from eqs. ( 2-2 ) and ( 2-1 ) and their derivatives with 

respect to 

   

Rs

n we obtain: 

†
 ( 2-3 ) 

and   

Id

I

d

J

dJId

I

d

J
EEEE df )()(

)()()(,,)()(


† †
 ( 2-4 ) 

Given the form of eq. ( 2-1 ), the gradient  is readily evaluated as 
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


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Inserting Eq. ( 2-5 ) into eqs. ( 2-3 ), ( 2-4 ) yields 

 
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while inserting eq. ( 2-1 ) into eq. ( 2-2 ) gives: 

 
k

kk

IIdII
VQddM
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,)(,,

0
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
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






 ( 2-7 ) 

 

and 

  

M0

I ,I ,(d )(Q) = EI

(d )(Q) - EI

(d )(Q0) ( 2-8 ) 
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Below we will see that the Qk
 
are known analytically so that  is readily determined in 

closed form.  It is possible to determine the 

   

Vk

(1),a,b  using analytic gradient techniques
8
 

provided the origin Q
0
 is conveniently located but we do not use that observation in this 

work.  If the M
I,J,(d)

 are replaced by the corresponding ab initio determined values, M
I,J

, 

eq. ( 2-6 ) for I= J [for  I ≠ J ] asserts that an H
d
 determined energy gradient [derivative 

coupling times an energy difference] is equal to the corresponding ab initio quantity  

Similarly eq. ( 2-7 ) asserts the equality of an H
d
 determined and an ab  initio determined 

energy.  In this manner, eqs. ( 2-6 ) and ( 2-7 ) relate the unknown coefficients 

  

Vk, ....

( j ),a,b
to 

ab initio energies, energy gradients and interstate coupling gradients, the later being 

defined as the derivative coupling multiplied by the energy difference.  

2.3.3 Constrained Pseudo Normal Equations 

We now choose Q = Q(m)     1 ≤ m ≤ N
point.

.  Then, with the left hand side of eqs. 

( 2-6 ) and ( 2-7 ), 

  

Mn,s

I ,J (Q(m))  viewed as a vector M of length N
eq,t

 = 

[(N
state

(N
state

+1)/2)(3N
at

)+ N
state

]N
point

 and indexing the N
uniq

 unique elements of 

  

Vk, ....

( j ),a,b
as 

a vector V,  eqs. ( 2-6 ) and ( 2-7 ) can be rewritten as   

  

WV =M ( 2-9 ) 

where W is a matrix of dimension N
eq,t

×N
uniq

, constructed from the factors in the square 

brackets on the right hand side of eqs. ( 2-6 ) and ( 2-7 ).   

 Several points concerning eq. ( 2-9 ) are germane.  Note that at each Q(m) only 

(N
state

(N
state

+1)/2)N
int

 + N
state

 of the (N
state

(N
state

+1)/2)(3N
at

) + N
state

 equations are linearly 

independent since H
d
 is expressed in internal coordinates.  Therefore ignoring 

"accidental" linear dependencies, the total number of linearly independent equations is 
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N
eq

 = [(N
state

(N
state

+1)/2)N
int

+ N
state

]N
point

.  As was done in Ref. 
12

, it is straightforward to 

include only the nonzero by symmetry combinations of coefficients in 

  

Vk,m,...

(i),a,b
.  This will 

enable us to include CNPI symmetry into eq. ( 2-9 ) using projection operators.  Finally, 

note that N
uniq 

≠ N
eq, so that eq. ( 2-9 ) is not solvable as written.  N

point
 is chosen so that 

N
eq

 > N
uniq

, that is, eq. ( 2-9 ) is over determined.  Consequently we partition eq. ( 2-9 ) 

into two sets of equations. The first N
lsq

 equations, which are to be solved in a least 

squares sense, will be denoted below by the superscript lsq.  The remaining N
eq

 – N
lsq

 = 

N
nodes

 equations, which are to be solved exactly, are the equations for the nodes, and will 

be denoted below by the superscript node.  Then the desired solution of the equations that 

comprise eq. ( 2-9 ) is obtained by minimizing the Lagangian: 

 ( 2-10 ) 

with respect to both the parameters
 
Vj, and the Lagrange multipliers 




j
which gives 

 ( 2-11 ) 

Here the user chosen t is a positive definite diagonal matrix with tj,j small, usually < 10
-5

. 

The V
†
tV term is the damping or smoothing term noted in the Introduction.  It serves to 

preclude inadequately defined parameters from becoming large, producing modest 

improvements in the root mean square error, but producing fits that do not interpolate 

well, (i.e. produce inter point oscillations).  This point is discussed from a numerical 

perspective in Section 2.4.  Since they cannot be described by a Hamiltonian based 

exclusively on internal coordinates, derivative couplings due to translations and rotations 

are  removed from the ab initio  data prior to fitting. 
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Equation ( 2-11 ) and its defining equations, eqs. ( 2-6 ) and ( 2-7 ) and ( 2-8 ), are 

the key results of this section.  In the absence of the Lagrange multipliers and damping 

term, the (1,1) block of eq. ( 2-11 ) represents a system of normal equations
26

 for the V.  

The system of constrained normal equations that constitute eq. ( 2-11 ) is not truly linear 

since the correct d
I
 are not known until the V are determined.  This issue is resolved by 

determining the V and the d
I
 self-consistently.  As a consequence eq. ( 2-11 ) is referred 

to as a system of pseudo constrained normal equations.   

2.3.4 Advantages of the Pseudo Constrained Normal Equations Approach  

 The use of gradient and derivative coupling information reduces the number of 

points, nuclear configurations, at which ab initio data is required to determine the 

unknown coefficients compared to energy based determinations.  Further energy 

gradients and derivative couplings are obtained at limited additional cost from MRCI 

wave functions once the energies have been determined.
8, 27

  However these are not the 

principal advantages of present combined energy and gradient based approach.  Using the 

energy and energy gradient constraints we can require that an H
d
 determined potential 

energy surface have an extremum at precisely the same point and energy as the ab initio 

results.  Using the energy gradient, interstate coupling gradient and energy constraints it 

is possible to require the H
d
 determined potential energy surfaces to exhibit a conical 

intersection at the same point as in the ab initio treatment and with the same local conical 

topography.  This is possible since the local topography of a conical intersection is 

defined by three gradient vectors, the average energy gradient, s =

  

(MI ,I + M
J ,J ) /2, the 

energy difference gradient, g = 

  

(MI ,I - M
J ,J ) /2, and the interstate coupling gradient, h = 
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M
I,J

 vectors.
28

.  In section 2.4, we show how an H
d
 with the above noted properties can 

be obtained for the lowest two electronic states of NH3. 

2.3.5 Nuclear Coordinates. 

Natural internal coordinates, which are appropriate for a single equilibrium or 

reference structure, are not well-suited for a non-local H
d
.  In addition, since H

d
 is a 

polynomial in the coordinates, it is desirable that the Qj are in the range -1 < Qj ≤ 1.   

Internuclear distance coordinates, ri,j = |R
i
 - R

j
|, 1 ≤ i < j ≤ N

at
 avoid the limitations of a 

single set of natural internal coordinates, in that they can describe any requisite reference 

structure.  However nuclear distance coordinates may approach infinity as the molecule 

dissociates.   As a result, any polynomial defined in such a coordinate system will also 

approach infinity, which is an anathema for the molecular Hamiltonian.  Following 

Braams and Bowman,
15-16

 to describe molecular fragmentation in a general manner, 

exponential transformations are used to compress the ri,j into the interval [-1, 1] during 

fragmentation.   

(i) Exponential Functions of interatomic distances 

In this work two exponential transformations are employed.  The first set of 

transformed coordinates, follows closely those of Braams and Bowman.  To succinctly 

define these coordinates we introduce the single index notation 
kk jik

rr
,

  where k = 1 – 

N
at

(N
at

-1)/2    1 ≤  i < j ≤ N
at
, and 

  

rk =|Rik - R
jk |.  The exponentials  

  

Q k /Sk = (1- e-akrk ) ( 2-12 ) 

are contained in the interval [0,1].  Then we define the first set of bounded internal 

coordinates,  
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 ( 2-13 ) 

where,  , and 

   

rk

(0) is
 
evaluated at Q

0
, the origin of the coordinates. Sk is an 

arbitrary parameter that defines the scaling of the terms of the polynomial with respect to 

their order.  When t=0 in equation ( 2-10 ), this parameter does not have any effect.  Here, 

we let 
)0(

kk r

k eS


 , so that 1
)1(


k
Q  when  kr .  For  N

at
 > 4, the N

at
(N

at
 -1)/2 

dimensional set Q
(1)

 is over complete, that is N
at

(N
at

 -1)/2 > N
int

.  Despite the over 

completeness of the 

   

Qk

(1), we found the size of the polynomial basis required to reproduce 

the ab initio data can be reduced considerably by adding a second set of exponential 

coordinates defined as  

  

Qk

(2) /Sk '= Qk

(2)(rk ) /Sk '= (1- exp[-bk(rk - rk

(0))2]) ( 2-14 ) 

where 1' kS , so that 1
)2(


k
Q  when  kr .  The only requirement on 

k
 , 

   

bk
is that 

they be invariant under the CNPI group discussed below.  Note that the second order 

terms of 

   

Qk

(1), 

   

Qk

(1)2, have the form of a Morse potential, which gives the qualitatively 

correct dissociation behavior.   

(ii) Inversion symmetry and "dot-cross product" functions
5
 

 The electronic Hamiltonian is invariant under the operation, inversion of the 

nuclei and the electrons through the origin (a subgroup of order 2 of the CNPI group).  

Nuclear distances, rk, are invariant under this inversion operation.  As a consequence, the 

transformed functions of these coordinates are necessarily symmetric with respect to this 

inversion operation.   Therefore, when an internal coordinate that is antisymmetric with 

respect to inversion is required internuclear separation coordinates alone are inadequate.  

To handle this, a third type of internal coordinate is introduced, the scaled dot-cross 

product coordinate
5
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  ( 2-15 ) 

where 

   

g  is determined as part of the fitting procedure.  This coordinate is either 

symmetric or anti-symmetric with respect to any permutation of the four vertices. It is 

readily seen that under the inversion operation where , for all k, 

.  It will be shown in section 2.4, that 

   

Qi, j,k,l

(3) are required for 

   

H1,2

d
 block of 

ammonia. 

2.3.6 Global Symmetry of H
d
 

Because H
d
 must be valid around many different conformations having distinct 

point group symmetry, point groups do not to describe the full symmetry of a global 

Hamiltonian.  To address the global symmetry of H
d
, non-rigid group symmetry,

18
 also 

known as complete nuclear permutation inversion (CNPI) group symmetry,
19

 is 

employed.  This analysis is not essential to our non-local fitting algorithm but is certainly 

quite useful.  The theory is a consequence of the invariance of the electronic Hamiltonian 

under a subset of the non-rigid group operations given by Longuet-Higgins.
18

  Because 

we are working with a non-relativistic Born-Oppenheimer Hamiltonian expanded in 

internal coordinate space, only two types of non-rigid group operations are relevant: (i) 

any permutation of same type nuclei (isotopes are considered identical); and (ii) the 

simultaneous inversion of all particles, electrons and nuclei, through the origin, as noted 

above. 

At geometries where the electronic states are non-degenerate, the adiabatic states 

always carry one-dimensional irreducible representations of the CNPI group.  In the 

current approach the adiabatic states are expanded in terms of quasi-diabatic states, 

   

Ya
d, 
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chosen to agree with the adiabatic states at the origin.
12, 29

  Thus these quasi-diabatic 

states carry the same irreducible representations as the adiabatic states.  Hence near the 

origin and in the absence of crossings with additional quasi-diabatic states the individual 

blocks of H
d
 carry the irreducible representation corresponding to irred(

   

Ya
d) irred(

   

(Yb

d )

where irred denotes "the irreducible representation carried by".  To enforce the global 

symmetry, for each block of H
d
, we use the corresponding CNPI group projection 

operators on each of the terms of the polynomial of a particular order.  This projection 

procedure requires some of the 

  

Vk, ...

(m ),a,b
 to have a fixed relation to others of the same 

order.  Operationally this is equivalent to the procedure for constraining symmetry related 

coefficients for non-abelian point groups used in our algorithm to construct bound H
d 

(Ref. 
12

) and our implementation reflects this. Further discussion of this issue is presented 

in section 2.4. 

2.4 H
d
 for the 1,2

1
A Electronic States of NH3 

 In this section the computational issues associated with the construction of a non-

local H
d
 using eq. ( 2-11 ) are addressed, using portions of the 1,2

1
A coupled potential 

energy surfaces of NH3, which are relevant to the photodissociation reaction,  

NH3(1
1
A)+hv  NH3(2

1
A)NH2(X,A) + H ( 2-16 ) 

as an example.  This system was chosen since it embodies, as described below, key 

challenges encountered in dealing with strongly coupled dissociative potential energy 

surfaces.  The following regions are explicitly considered: (i) the equilibrium geometry of 

the 1
1
A1 state of NH3 which has C3v symmetry, denoted min1C3v; (ii) the equilibrium 

geometry of the 2
1
A state which has D3h symmetry, denoted min2D3h; (iii) the minimum 

energy 1
1
A – 2

1
A conical intersection which has C2v symmetry, denoted mexC2v; (iv) the 
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saddle point separating min2D3h and mexC2v, denoted sad2C2v; (v) the ground state 

inversion saddle point, denoted sad1C2v; and (vi) the ground and excited states in the 

dissociation channel NH3 –> NH2+ H(
2
S).  The origin of the internal coordinate system is 

taken as min2D3h and the zero of energy is E1 at that point. 

2.4.1 Electronic Structure description of NH3. 

 The molecular orbitals were obtained from a state averaged multiconfiguration 

self consistent field treatment that averaged two states with equal weights and used wave 

functions obtained from a 8 electron in 9 orbital, complete active space expansion.  The 

atomic orbital basis consisted    D   i g’    g-cc-pVTZ basis plus an extra Rydberg s-

function on nitrogen and Dunning's aug-cc-pVTZ basis on the hydrogens.  Dynamic 

correlation was incorporated at the second order configuration interaction level, with the 

interacting space restrictions.  The resulting MRCI expansion consisted of 33.9 million 

configuration state functions (CSFs).  All electronic structure calculations reported in this 

work employed the COLUMBUS suite of electronic structure codes.
30,8

 It is important to 

emphasize that these are not low-level calculations of convenience. 

2.4.2 Symmetry-adapted internal coordinates 

 The coordinates are comprised of twelve compressed internuclear distance 

coordinates, six Q
(1)

 from eq. ( 2-13 ),  and six Q
(2) 

from eq. ( 2-14 ) and a thirteenth 

coordinate 

   

QNHHH

(3)  = 

  

Q
N ,H 1 ,H 2 ,H 3

(3)
, from eq. ( 2-15 ), is also included.  It will also be 

convenient, when specifying geometries, to use the out of plane angle 

   

f, defined as: 

]
|)()|

)()(
[

1312

13121

,,,,

,,,,,

HNHNHNHN

HNHNHNHNHN
ArcSin

eee(e

eeeee




  ( 2-17 ) 
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where 

  

e
N ,H j = r

N ,H j /r
N ,H j , although it must be emphasized that this coordinate is not used 

in the construction of H
d
.   

The first 12 coordinates would be adequate for 



H
1,1

d
 and d

H
2,2
, but not for 



H
1,2

d
.  To 

address this issue and the global symmetry of the molecule, the CNPI group of ammonia 

is used.  This group is generated by the permutation of the hydrogen nuclei and inversion 

of electrons and nuclei.  It is isomorphic to the point group D3h and will be denoted 

D3h(CNPI).  A brief discussion of this group and its character table are found in Appendix 

2.6.1.  In Appendix 2.6.2 it is shown that 

   

QNHHH

(3)   transforms as the 

   

¢ ¢ A 2  representation of 

the CNPI group of ammonia, denoted 

   

A2

''(CNPI).  In Appendix 2.6.3 the symmetry of the 

electronic states is addressed.  It is shown that, on the basis of the discussion in section 

2.3.6, functions that transform as 

   

¢ ¢ A 2  (CNPI) are required for 



H
1,2

d

 while for the 



H
1,1

d
 and 

d
H

2,2
 
blocks functions that transform as 

   

¢ A 1 (CNPI) are required.  

Thus to impose CNPI symmetry on the polynomials appearing in H
d
 two sets of 

polynomials are required, one transforming as

   

¢ A 1(CNPI) and one transforming as

   

¢ ¢ A 2

(CNPI).  These polynomials are constructed by applying the projection operators to each 

and everyone of the monomials of a particular order and then retaining only the unique 

non-zero functions, which as noted in section 2.3 are fixed linear combinations of the 

monomials in eq ( 2-1 ).  We note that these polynomials are all symmetric sums over 

hydrogen permutations.  The 

   

¢ A 1 projector selects terms which are even order in 

   

QNHHH

(3) , 

while 
2

A   projector selects terms which are odd order in 

   

QNHHH

(3) . 

The term definitions of monomials, (from which the symmetry adapted 

polynomials are constructed) available to construct the matrix elements of H
d
, are 
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expressed in terms of ordered triples (l,n,m)
k
.  The ordered triple (l,n,m)

k
 includes Q

(1)
 

through order l, Q
(2)

 through order n, and Q
(3)

 through order m, with total order not 

exceeding k.  Only polynomials of even (odd) order in Q
(3)

 contribute to the diagonal (off 

diagonal) blocks of H
d
.   

2.4.3 Construction of H
d
 

Nine points were chosen as nodes.  These points include min1C3v, sad1D3h, 

min2D3h, sad2C2v, mexC2v, two points in the NH2 + H exit channel corresponding to 

optimized ground and excited state geometries with the thrid rNH restricted to be 3.5Å, 

denoted asym1C2v, asym2C2v, and two points optimized on the same two electronic states 

with the molecule almost completely dissociated, denoted dis1C2v, dis2C2v.  Table 2-1 

reports the coordinates of these points.  For all the nodes energies and energy gradients 

are fit exactly.  Interstate coupling gradients at C2v geometries are also fit exactly.  At the 

other nodes the interstate coupling gradients are included in the least squares block to 

allow relaxation of eigenvectors d
I  

throughout the iterative procedure.   

Table 2-1. Location of Critical Points.  

   

f =0 except at min1C3v
 
where 

   

f =22.44 

Node NH
1
 NH

2
 NH

3
 21NHH  

31NHH  

min2D3h 1.0485 1.0485 1.0485 60.00 60.00 

min1C3v 1.0154 1.0154 1.0154 73.65 73.65 

sad1D3h 0.9979 0.9979 0.9979 60.00 60.00 

sad2C2v 1.3054 1.0408 1.0408 56.23 56.23 

mexC2v 1.9689 1.0222 1.0222 54.60 54.60 

asym1C2v 3.5099 1.0283 1.0283 51.39 51.39 

asym2C2v 11.4476 1.0283 1.0283 51.39 51.39 

dis1C2v 3.5099 0.9986 0.9986 72.61 72.61 

dis2C2v 6.1558 0.9986 0.9986 72.61 72.61 
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The exception is a conical intersection, here mexC2v.  There, regardless of 

symmetry, the energies, energy gradients and interstate coupling gradients are 

constrained to reproduce the ab initio data, so that the structure of the conical intersection 

is preserved.  To accomplish this the orthogonalized
31

 form of the g (energy difference 

gradient) and h (interstate coupling gradient) vectors
28

 are used.  At mexC2v g is largely 

an N-H stretch, an approximate reaction coordinate for reaction ( 2-16 ), and h is 

proportional to 

   

QNHHH

(3) .  The smoothing factor ti,i was chosen as ti,i = t = 3x10
-6

.  This was 

the lowest value that makes the number of remaining linear dependencies equal to the 

theoretical number of linear dependencies caused by translation and rotation components 

of gradients and couplings that are included in the Lagrange multiplier block.  The scale 

factors were chosen as 75.0k  and 5.0k  after some trial and error optimization. 

2.4.4 Accuracy of H
d
 

 Here we demonstrate five key properties of the fit: (i) it reproduces the energies, 

energy gradients and derivative couplings at the nodes exactly, and provides a good 

overall fit to the remaining data; (ii) it interpolates reliably, avoiding inter point 

oscillations; (iii) it correctly locates and describes conical intersections; (iv) it describes 

molecular dissociation; and (v) it reproduces the derivative couplings, particularly the 

larger couplings, over the entire region considered, quite well, justifying the attribute 

quasi-diabatic.   

a.  Data Used 

 Ab initio electronic structure data was obtained at 287 nuclear configurations, 

which were partitioned into two sets.  The first data set, comprised of 239 points, includes 

groups of points near each of the nodes; points along a linear synchronous transit path 
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between nodes, which resembles a reaction path; and a grid of points on the g-h
28

 or 

branching
32

 plane of mexC2v which spans as large an area as the ab initio method permits 

(that is, in some high energy regions the two quasi-diabatic state approximation breaks 

down).  On this grid, the NH distance in approximately the g direction, ranges from 

0.74Å to ~10Å, thereby spanning from the inner potential wall to the asymptote.  The 

displacement along 

   

f, which coincides with h  i    i       g        0˚    40˚.  B y    

40˚      2-state ab initio description starts to deteriorate as the molecule approaches a 

seam of intersection between the second and third states.  This set of points is referred to 

as the fit points. Energy, energy gradient and interstate coupling gradient information 

obtained from these points results in N
eq

 = 4582.  These equations are used to fit 

approximately 2160 unknown coefficients. 

 Ab initio calculations are also performed at 48 geometries referred to as 

interpolation points.  The resulting ab initio data were excluded from all but one of the 

fitting sets.  For reasons discussed below, we will construct one fit in which all the 

available data is included in the fitting procedure.  These points will enable us to examine 

the quality/smoothness of a fit at geometries not directly included in the fitting procedure.  

Except for a 7 point loop in the g-h plane of mexC2v, the interpolation points are defined 

in terms of linear synchronous transit paths connecting nodes or paths originating at 

nodes.  All these paths either include or pass near the conical intersection, mexC2v, the 

most challenging region of nuclear coordinate space to describe.  One set of interpolation 

points, that connecting nodes min1C3v and mexC2v, does not pass near any of the fit 

points, other than its endpoints.  Along this path the angle 

   

f i              0˚
 
    22.44˚  

whereas in the remaining cases 

   

f  = 0, reflecting the importance of planar nuclear 
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configurations on the 2
1
A potential energy surface.  To put these points in context, Figure 

2-1 reports the projections of all points considered onto the g-h plane of mexC2v.  

Energies and geometries of the data points are provided in Table 2-6 and Table 

2-7 in appendices 2.6.4. Table 2-6 provides a comparison of the final fit FIT2(see section 

2.4.4-b) and ab initio (MRCI) energies at all 287 nuclear configurations which includes 9 

nodes and 230 other points that are used to construct the final fit, and 48 additional 

interpolation points.  Table Table 2-7 gives the internal coordinates of each of these 

points. 

 
Figure 2-1. Projection of Data Point Geometries on g-h Plane 

 

b.  Importance of Q
(2) 

Terms and Damping Factor 

Four different fits, denoted FITk, k = 1-4, were obtained, providing insights into 

the choice of term definitions and the use of the damping function. FITk, k =1 – 3, are 

based on ab initio data at the (239) fit points, while FIT4 is based on data at all the data 

points.  These fits are summarized in Table 2-2 which reports the term definitions, 

number of coefficients, N
coef

, size of a term t, and root mean square error for the energies 

(RMSEE).  The RMSEE depend on the data included in the sum and Table 2-2 provides 
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three partitionings.  Below when no qualifier is expressed the all data RMSEE is assumed.  

Fit1 has no Q
(2) 

terms, while FITk, k=2,3 include Q
(2)

 through first order.  Comparing 

FIT1 and FIT2 in Table 2-2 clearly evinces the importance of Q
(2)

 terms.  The RMSEE 

for FIT2 is 94 cm
-1

 while that for FIT1 is 303 cm
-1

, with both fits having similar N
coef

. 

Comparing the RMSEE for FIT2 and FIT3 illustrates the role of the damping 

term.  FIT3 has exactly the same polynomial expansion as FIT2.  FIT2 has a damping 

term t = 3x10
-5

  whereas in FIT3 t = 0.  FIT3 is found to have a very large number of 

local minima, solutions to eq. ( 2-11 ) with distinct V and the final converged fit depends 

strongly on which points are included in the fit data set.  Further, for FIT3, in some 

regions the fit is oscillatory.  Shown in Table 2-2 are the RMSEE for the FIT3 (a local 

minimum) obtained using the converged FIT2 as the starting guess.  The RMSEE for 

FIT3 is slightly smaller than for FIT2, as expected, but FIT3 has much larger V in all 

orders, implying that FIT3 is more oscillatory.  As a result of including the damping term, 

FIT2 has no singularities from the least square block, as determined by singular valued 

decomposition.  On the other hand, FIT3 has 1680 singularities removed from least 

square block by singular value decomposition.   Therefore, except when noted otherwise, 

for the remainder of this section we restrict our attention to FIT2. 

 

Table 2-2. Quality of Fits.  FIT1-FIT3 constructed from the 239 point fit data set with 48 

interpolation (Inter) points.  FIT4 includes all 287 points in fit set.  FIT3 uses  t = 0. 

 Term Def N
Coef

 
RMSEE 

Fit Pts Inter Pts All Pts 
 

FIT1 (8,0,8)8 2169 329.08 102.60 302.76 

FIT2 (6,1,6)6 2163 100.42 47.14 93.64 

FIT3 (6,1,6)6 2163 99.76 45.61 92.92 

FIT4 (6,1,6)6 2163 101.70 46.55 94.74 
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Table 2-3. Comparison of FIT2 and ab initio results for interpolation points along paths 

described in text.   Nodes are in bold face.  Energies in cm
-1

.  Ej = Ej(H
d
)- Ej(ab initio).  

(a)  Semicircle with radius 0.015 au in g-h plane around mexC2v.  

   

q is the angle relative 

to g in degrees. 

   

q 

   

r
NH 1     initio abE1

 
1E   initio abE 2

 
2E  

0 3.7109 0.00 38919.47 -0.01 39116.84 0.05 

30 3.7122 0.05 38935.04 -0.01 39116.77 0.03 

60 3.7158 0.10 38974.28 0.00 39119.91 0.00 

90 3.7206 0.11 39014.19 0.00 39137.86 0.00 

120 3.7255 0.10 39032.42 0.01 39177.46 0.00 

150 3.7291 0.05 39035.94 0.03 39216.28 -0.01 

180 3.7304 0.00 39036.07 0.05 39231.64 -0.01 

 (b) min2D3h→sad2C2v→mexC2v 

 

   

r
NH 1     initio abE1

 
1E   initio abE 2

 
2E  

min2D3h 1.9814 0.00 0.00 0.00 43884.72 0.00 

 2.0819 0.00 1230.57 1.04 44163.19 -27.67 

 2.1321 0.00 2090.11 1.87 44450.09 -44.62 

 2.1823 0.00 3078.45 2.50 44783.94 -52.43 

 2.2325 0.00 4174.36 2.71 45128.41 -48.68 

 2.2828 0.00 5359.47 2.41 45449.71 -35.91 

 2.3497 0.00 7051.31 1.40 45792.16 -15.05 

 2.4167 0.00 8842.12 0.32 45992.65 -2.13 

sad2C2v 2.4669 0.00 10234.18 0.00 46037.70 0.01 

 2.5966 0.00 13754.30 1.39 45801.46 -7.66 

 2.7695 0.00 18442.80 -8.40 44917.94 -9.02 

 2.9424 0.00 22955.01 -21.65 43692.31 -4.41 

 3.1154 0.00 27186.55 -23.80 42435.64 19.72 

 3.2883 0.00 31071.39 -16.79 41286.07 30.91 

 3.4612 0.00 34572.72 -7.19 40287.08 19.32 

 3.6342 0.00 37674.92 -0.86 39443.05 2.86 

mexC2v 3.7206 0.00 39075.99 0.00 39075.99 0.00 
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Table 2-3. Comparison of FIT2 and ab initio results for interpolation points along paths 

described in text.   Nodes are in bold face.  Energies in cm
-1

.  Ej = Ej(H
d
)- Ej(ab initio).. 

(Continued) 

 (c) sad2C2v→asym1C2v 

 

   

r
NH 1     initio abE1

 
1E   initio abE 2

 
2E  

sad2C2v 1.3054
 

0.00 10234.18 0.00 46037.70 0.01 

 1.5504 0.00 22740.91 -20.02 43814.37 -15.32 

 1.7953 0.00 33388.62 -9.38 40717.27 17.26 

 2.0403 0.00 38614.22 9.97 41213.67 -2.30 

 2.2852 0.00 37352.76 112.26 46310.35 -28.68 

 2.5301 0.00 36637.38 167.06 49310.12 -43.59 

 2.7751 0.00 36251.23 114.81 50992.24 -31.58 

 3.0200 0.00 36053.66 44.29 51966.40 -12.95 

 3.2650 0.00 35960.79 7.87 52597.20 -2.46 

asym1C2v 3.5099
 

0.00 35926.06 -0.02 53072.27 0.00 

 

 

(d) NH Displacements from mexC2v 

Point Type 

   

r
NH 1     initio abE1

 
1E   initio abE 2

 
2E  

 0.9459 0.00 -6.74 0.01 46280.23 -10.00 

 1.1046 0.00 1389.43 8.65 44827.84 -242.76 

 1.4750 0.00 19044.85 -11.30 44756.55 56.60 

 1.6338 0.00 26671.79 -25.16 42563.94 65.12 

 1.7925 0.00 33236.50 -11.31 40653.25 38.74 

mexC2v 1.9689
a 

0.00 39075.99 0.00 39075.99 0.00 

 2.1630 0.00 37903.36 57.48 43756.07 -13.11 

 2.6921 0.00 36491.39 143.86 49616.67 -39.80 

 5.3380 0.00 36141.06 18.17 51254.41 -3.52 

 10.6298 0.00 36146.37 12.55 51258.56 -2.03 
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Table 2-3. (Continued) 

(e) mexC2v→min1C3v 

Point Type 

   

r
NH 1     initio abE1

 
1E   initio abE 2

 
2E  

mexC2v 1.9689 0 39075.99 0.00 39075.99 0.00 

 1.8822 1.87 36094.58 1.31 40127.85 6.94 

 1.7955 3.75 32678.53 11.36 41374.19 12.63 

 1.7088 5.65 28840.34 34.03 42812.96 -2.46 

 1.6222 7.57 24611.82 61.98 44417.10 -34.41 

 1.5355 9.54 20049.96 76.90 46104.93 -44.45 

 1.4488 11.54 15244.29 58.52 47669.96 -10.70 

 1.3621 13.60 10322.29 -6.78 48760.76 9.05 

 1.2754 15.71 5532.85 -63.78 49136.07 1.51 

 1.1888 17.88 1252.02 -59.61 48777.90 -107.47 

 1.1021 20.12 -1977.99 -19.63 48533.29 -83.94 

min1C3v 1.0154 22.44 -3314.10 0.00 49682.59 0.00 

 

 
Figure 2-2. Comparison of H

(d)
 and ab initio at interpolated points along a semicircle with 

radius 0.015 au on g-h plane near mexC2v.  Right hand ordinate refers to dashed curves. 



 33 

 

 
 

Figure 2-3. Linear Synchronous Transit Path min2D3h→sad2C2v→mexC2v . Right hand 

ordinate refers to dashed curves. Left:  E1 panel; Right:  E2 panel  

 

 

 

 

 
 

Figure 2-4. Linear Synchronous Transit Path sad2C2v→asym1C2v (bypassing mexC2v). 

Right hand ordinate refers to dashed curves. Left: E1 panel ;  Right: E2 panel 
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Figure 2-5. NH Bond Length Displacements from mexC2v. Right hand ordinate refers to 

dashed curves. Left: E1 panel; Right: E2 panel 

 

 

 

 

  
 

Figure 2-6. Linear Synchronous Transit Path mexC2v→min1C3v. Right hand ordinate 

refers to dashed curves. Left: E1 panel; Right: E2 panel  
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c.  Fit at and near the nodes. 

As can be seen form Table 2-6 and Table 2-3(b–e), (discussed in detail in the 

following section) at the nodes the H
d
 determined energies agree with the ab initio results 

to within 0.02 cm
-1

, except for the ground state energies at asym2C2v and dis2C2v, which 

have an error of 0.10 cm
-1

.  This is expected but reassuring. The node at mexC2v requires 

additional discussion.  Since it is a conical intersection, the description of its local 

topography is a key issue for the constructed H
d
.  In this regard the algorithm performs 

flawlessly as is demonstrated in Figure 2-2 and Table 2-3a, which compare the ab initio 

and H
d
 determined energies evaluated at 7 interpolation points along a semicircle on the 

g-h plane with radius 0.015 au centered at mexC2v.  Note that a larger loop of points with 

a radius of 0.3 au in the g-h plane is included in the fit to ensure the correct description of 

higher order effects near the intersection.  The RMSEE was found to be 0.024 cm
-1

 for 

the small loop and 19 cm
-1

 for the large loop.  Again the small error for the small loop, is 

not unexpected since the H
d
 determined g and h vectors are constrained to agree with the 

ab initio results.  The small error on the large loop, which has an energetic range of 

~4000 cm
-1

, is quite encouraging. 

d. Energy Interpolation 

Table 2-3(b-e) and the associated figures, Figure 2-3 to Figure 2-6, denoted FTb – 

FTe below, consider the ability of FIT2 to interpolate energies, that is predict energies of 

points not in the data set. In a subsequent section the ability to interpolate energy 

gradients and derivative couplings is considered.  The figures and tables report two 

quantities Ei(ab initio) the ab initio determined energy of the i
th

 state, and the 

interpolations errors, , for i=1, 2, where Ei(H
d
) is the H

d
 



 36 

determined energy of the i
th

 state.  In addition, the figures report Ei(H
d
). Ei(ab initio) and 

 are reported at 41 interpolation points, in addition to the 7 points reported in Table 

2-3(a) and discussed above. In these figures, the energy scales for E1
 
are, in general, quite 

large spanning 30,000 – 40,000 cm
-1

.  The scales for E2 are much smaller spanning 7,000 

– 13,000 cm
-1

.   scales are tiny by comparison, ranging from ±60 cm
-1

, to ±200 cm
-1

. 

Comparing the Ei(ab initio) and Ei(H
d
) in Figure 2-3 to Figure 2-6 demonstrates 

the general agreement of the shapes of the ab initio and H
d
 determined energy curves, 

with deviations of the ab initio  and H
d
 determined energies, evident at only very few 

points.  A comparison based on the much finer  scale follows.  The FTb (14 

interpolation points) describes a path connecting minD3h to mexC2v to via sad2C2v.  On 

this path the  must be considered very small, never exceeding 52.43 cm
-1

 along a path 

on which the energy changes by tens of thousands of wave numbers.  FTc (8 interpolation 

points) represents a path connecting sad2C2v to asym1C2v passing near but not through 

mexC2v.  Although the maximum  gets somewhat larger here, 167 cm
-1

, the point to 

point change the  is, in general, less than 10% of the corresponding change in the 

Ei(ab initio), so that the shape of the curves are very well reproduced.  The situation for 

FTe, which describes a path connecting mexC2v to min1C3v using 10 interpolation points, 

is similar to that for FTc, except going from the 8
th

 to the 9
th

 interpolation point, where 

increases by -109 cm
-1

 compared to a change in E2(ab initio) of -359 cm
-1

.  Still, as 

Figure 2-6 indicates, the shape of the E2
 
potential is well reproduced.  Recall that along 

this path there are no fit points in the immediate vicinity of the interpolation points. See 

Figure 2-1.  Finally FTd reports energetics, at 10 interpolation points, based on changes 

in the NH bond distance of the unique hydrogen, centered at mexC2v.  Here the 
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preponderance of the interpolations exhibit modest errors, < 65 cm
-1

, with the exception 

of the point with = -242.76 cm
-1

.  Note that in this region the ab initio energies for 

the second state exhibit a dramatic dependence on the NH bond distance indicating the 

need more ab initio data in this region.
  
Still viewed on the scale of E2 for the first three 

points in FTd, the described error is quite modest. 

Further analysis of FTb-e shows that the errors reflect more than anything else the 

proximity to the nodes. The error is pushed down toward zero near any node, and remains 

very small in the region close to it.  Further away from nodes, the worse the fit gets.  

However it must be emphasized that even when the molecule went through very large 

displacements from a node, where the energy has changed on the scale of ~10,000cm
-1

, 

the surface still interpolates quite well, producing an error not to exceeding 242 cm
-1

.  It 

is possible to improve the quality of the fit at a certain region by making one point near 

the region a node or simply including more data near the region.  Indeed the simple 

expedient of including the interpolation points in the fit data set, producing FIT4, 

improves the quality of the fit at those points, with the RMSEE of these points decreased 

from 47.14 cm
-1

 to 46.55 cm-1, and the largest error decreased from -242.76cm
-1

 to -

180.40cm
-1

.  For FIT4, the RMSEE of the fit data increased from 100.42cm
-1

 to 

101.70cm
-1

, and RMSEE of all points increased from 93.64cm
-1

 to 94.74cm
-1

.  Thus in 

this case, with the addition of new data into the fit set, the RMSEE of the interpolations, 

the fit data set and total data set remained largely unchanged.  This is an indicator that the 

original data set is adequate for the representation of the region where the interpolations 

are made.  It is also clear that including a point with large error into the fit set will 

significantly improve the fit of that point, whereas adding a point that is already well fit 
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will most likely have an insignificant effect.   Methods to use quasi-classical trajectories 

to guide the selection of data points will be introduced in the next chapter. 

e. Harmonic Frequencies, Energy Gradients and Derivative Couplings 

In the present approach while the locus of single surface extrema are constrained 

to agree with ab initio results, the local curvature is not.  Instead the energy gradients 

(and interstate coupling gradients) are computed near each extrema and included in the 

least squares fit.  The harmonic frequencies are a measure of the accuracy with which 

these energy gradients are reproduced. Table 2-4 compares the H
d 

and ab initio 

determined frequencies at three extrema min1C3v, min2D3h  and sad2C2v.  The agreement 

is seen to be good.  The root mean square relative error of these frequencies is 8%. 

 

 

Table 2-4 Comparison of FIT2 and ab initio harmonic frequencies ( in cm
-1

). 

Min1C3v Min2D3h Sad2C2v 

ab initio H
d
 ab initio H

d
 ab initio H

d
 

3584.10 3441.79 2957.67 2910.71 3334.14 3235.47 

3584.10 3441.79 2957.67 2910.71 3244.70 2985.71 

3456.26 3423.32 2800.76 2773.89 1434.95 1276.66 

1674.48 1647.70 1333.65 1481.83 961.53 894.42 

1674.48 1647.70 1333.65 1481.83 475.34 531.63 

1066.24 978.90 762.18 702.66 -2005.01 -1890.08 
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Figure 2-7 and Figure 2-8 consider the accuracy of the derivative couplings (not 

the coupling gradients) for FIT1 and FIT2 at the fit and interpolation points respectively.  

Figure 2-9 and Figure 2-10 do the same for the energy gradients.  In each of these figures, 

for each datum, the H
d
 determined value is plotted on the ordinate against the ab initio 

determined value on the abscissa.  For both plots a logarithmic scale was used.  If 

agreement for a particular datum is exact the point falls on the diagonal.  We focus 

initially on the data included in the fit and then turn to the interpolation points. From 

these figures it is clearly shown that for regions where gradients or derivative couplings 

are significant, ab initio values are very well reproduced by both FIT1 and FIT2.  For 

smaller values of the gradients or derivative couplings, both fits deteriorate somewhat.  

This deterioration is a result the least square fitting procedure which minimizes the total 

error, leaving smaller data with larger relative errors, but still small absolute errors.  It is 

clear from these figures that FIT2 is far better than FIT1 for small gradients and 

derivative couplings. The number of outliers for the derivative couplings near the origin 

are reduced for FIT2 compared to FIT1 while for the energy gradients a general reduction 

of the scatter (size of error) is evident. These comparisons demonstrate once again the 

value of the Q
(2)

 terms.  In terms of the absolute errors, generally speaking, FIT2 reliably 

reproduces the energy gradients with magnitudes >10
-3 

and derivative couplings with 

magnitudes > 10
-2

.  This good reproduction of the derivative coupling justifies the 

attribute quasi-diabatic.  It should also be noted that almost all the points that have largest 

relative errors are from the border of the grid where data points are relatively sparse, 

which is to be expected.  
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Figure 2-7. Comparison of ab initio and H

d
 determined derivative couplings for data 

points included in the fit.  x-axis is the ab initio value, y-axis is the H
d
 determined value 

of a component of a nonzero valued of the derivative coupling. Left: FIT1; Right: FIT2. 

 

 

 

 

 

 

 
Figure 2-8. Comparison of ab initio and H

d
 determined derivative couplings for 

interpolated points.  x-axis is the ab initio value, y-axis is the H
d
 determined value of a 

component of a nonzero valued of the derivative coupling.  Left: FIT1; Right: FIT2. 
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Figure 2-9 Comparison of ab initio and H

d
 determined energy gradients for points 

included in the fit. x-axis is the ab initio value, y-axis is the H
d
 determined value of a 

component of a nonzero value of an energy gradient.  Left: FIT1; Right: FIT2 

 

 

 

 

 
Figure 2-10 Comparison of ab initio and H

d
 determined energy gradients for interpolated 

points. x-axis is the ab initio value, y-axis is the H
d
 determined value of a component of a 

nonzero value of an energy gradient.  Left: FIT1;Right: FIT2. 
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The data for the interpolation points recapitulate the trends observed for the points 

included in the fit with the additional observation that the errors for the interpolated 

points are less significant than for the fit data results.  This observation, which was also 

found for the energies, see Table 2-2, reflects the choice of interpolation points.  The 

interpolation points were chosen in the energetically important regions where the 

concentration of data points is larger.  Hence we find that H
d
 performs better than 

average in these regions. 

Figure 2-11 summarizes the fit, and emphasizes its smoothness, providing a three 

dimensional plot of the the H
d
 determined adiabatic energies.  Key nodes are identified.  

 

Figure 2-11.  3D Plot of H
(d)

 Determined Adiabatic Energies on g-h Plane 

 

 

  

asymptote 

sad2C2

v 

min1C3

v 

sad1D3

h 

mexC2v 
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f.  Improving the fit and outliers 

Note that most of the energy errors discussed above are considerably less than the 

RMSEE errors in Table 2-2.  Thus it is not surprising that in Table 2-6, there are 8 points, 

(points numbered 166-172, 178 in that table) with larger errors, errors in E2, in the range 

400  cm
-1

 – 531  cm
-1

.  The 531 cm
-1

 error is the maximum error in the data set.  The 

energy range for E2 is over 45,000 cm
-1

.  Here E2 = ~57,000 cm
-1

, well above the energy 

needed to describe reaction ( 2-16 ). The maximum error for E1 is 323 cm
-1

, at point 179 

in Table 2-6, where E1 =  ~ 36,000 cm
-1

. For these points, the relative energetics are quite 

reasonable, which we attribute to the inclusion of energy gradient data.  In the vicinity of 

these outliers the energy gradients are large so that the errors represent relatively modest 

overshooting.  The previous discussion concerning FTe is an example of this situation.  In 

general, we find that even for the outlier points the fit is good.   

Although the fit described here is quite good, there are factors that can lead to 

problems in constructing an H
d
 in a particular region of nuclear coordinate space, 

including: (i) intruder states where the N
state

 approximation becomes inadequate, and (ii) 

the functional form becomes inadequate, and/or there is insufficient ab initio data or it is 

improperly used.  There is little one can do about the failure of the N
state 

approximation, 

except avoid that region if feasible or increase N
state 

if the region in question is important.  

For (ii) the use of over complete bases allows us to include additional, localized, 

functions to improve the fit in the problematic region, and it is straightforward to 

introduce more electronic structure data or additional nodes, in that region to define the 

new parameters. 
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2.5 Summary and Conclusions 

 An approach is introduced for constructing a non-locally defined quasi-diabatic, 

coupled electronic state Hamiltonian, H
d
, which can supply electronic structure data to 

diabatic or adiabatic state based, dynamics on the fly algorithms.
33-34

  H
d
 is constructed 

from high level MRCI wave functions from which derivative coupling and energy 

gradient data are readily obtained.
8
  Advantages of the proposed approach are attributable 

in part to the use of derivative coupling data and in part to algorithmic innovation.  Using 

the concept of nodes, the algorithm reproduces the local topography of a conical 

intersection exactly.  The location and energies of selected single surface extrema are also 

reproduced exactly.  Since derivative coupling data is used in constructing the 

Hamiltonian, it is maximally quasi-diabatic in a least squares sense.  The coordinate 

system includes exponentially decaying functions of the internuclear distances, following 

Braams and Bowman,
15-16

 and dot-cross product functions of Collins and coworkers.
5, 35

  

The algorithm takes advantage of the flexibility offered by an over complete set of 

nuclear coordinates and incorporates a damping function to effectively mitigate fitting 

problems associated with the use of such coordinate systems. 

 The potential of this approach was illustrated by constructing an H
d
 with the full 

permutational symmetry for portions of the ground and first excited state potential energy 

surfaces of NH3, relevant to its photodissociation to NH2 + H.  The analysis presented 

here is very encouraging.  Although the energy range on each potential energy surface is 

~45,000 cm
-1

 the RMS energy error is less than 100 cm
-1

.  Also gratifying is the excellent 

reproduction of the derivative coupling, particularly in, but not limited to, the vicinity of 

the conical intersection. justifying the attribute quasi-diabatic for H
d
.   
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In this report we have focused on the ability of H
d
 to reproduce the ab initio data 

regardless of its quality, although high quality ab initio data were used.  Later in this 

dissertation, a detailed analysis of the accuracy of an H
d
, designed to describe the 

photodissociation process, NH3(X) + hv NH3(A)  NH2(X,A)+H, in the context of the 

available experimentally measured
20-21

 and computationally determined results
24-25

 will 

be provided. 

2.6 Appendices 

2.6.1 Complete Nuclear Permutation Inversion Group of NH3
 

The CNPI symmetry group for NH3, denoted D3h(CNPI) is generated by the 

permutations of hydrogen nuclei and the inversion of all particles.  Since inversion of all 

particles commutes with all permutations, the D3h(CNPI) group is the direct product of S3 

and 

   

CE*
, where S3 is the permutation group of the three identical nuclei, the hydrogen 

atoms and 

   

CE*
 is the inversion group of order 2.  Here we have denoted the inversion 

operation as E
*
 so as not to confuse it with the point group inversion, i.  A permutation, p, 

of three objects will be denoted by 














)3()2()1(

321

ppp
 and abbreviated (p(1), p(2), 

p(3)).  Then using standard group theoretical techniques for constructing classes, S3
 
is 

found to have three classes, (1,2,3); (2,3,1), (3,1,2); and (1,3,2) ,(3,2,1), (2, 1,3) and is 

isomorphic to the point group C3v.  The character table for S3 is given in Table 2-5 and is 

seen to be the character table for C3v with the identifications  

1,2,3( )«E  A 2-1 

2,3,1( ), 3,1,2( )«C3,C3

2
 A 2-2 
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1,3,2( ), 3, 2,1( ), 2,1,3( )«s v
¢,s v

¢¢,s v
¢¢¢ A 2-3 

It is important to observe that the isomorphism is group theoretical, the actual operations 

are unrelated except at specific geometries as discussed below.  The full D3h(CNPI) 

character table is just the direct product of the S3 and CE* character tables.  In the text, the 

superscripts ' and '' are introduced to the irreducible representation labels to denote the 

symmetric and antisymmetric representation of CE* respectively. 

Table 2-5.  Character Table of  S3 

     E (231),  (312) (213), (321), (132) 

A1 1 1 1 

A2 1 1 -1 

E 2 -1 0 

 

2.6.2 Transformation Properties of Dot-Cross-Product Function 

 We are concerned with the transformation properties of )3()3(

,,,
321 NHHHHHHN

QQ 
 
(see 

eq. ( 2-15 ) ) under the operations of D3h(CNPI).  It is sufficient to determine the 

transformation properties of the generators of this group, E*, (2,3,1) and (2,1,3).  We find 

 


)(

)()()(

323121321

321

,,,,,,

)1,3,2(

)3(

)1,3,2(

HHHHHHHNHNHN

HNHNHN

NHHH
rrrrrr

PQP
RRRRRR 



 

)3(

,,,,,,
)(

)()()(

131232132

132

NHHH

HHHHHHHNHNHN

HNHNHN

Q
rrrrrr







RRRRRR
 A 2-4 

)3(

,,,,,,

)3(

)3,1,2(
)(

)()()(

313212312

312

NHHH

HHHHHHHNHNHN

HNHNHN

NHHH
Q

rrrrrr
QP 






RRRRRR
 A 2-5 
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

)(

)()()(

323121321

321

**

,,,,,,

)3(

HHHHHHHNHNHN

HNHNHN

ENHHHE
rrrrrr

PQP
RRRRRR 



 

= 
)3(

,,,,,,
)(

)()()(

323121321

321

NHHH

HHHHHHHNHNHN

HNHNHN

Q
rrrrrr






RRRRRR
 A 2-6 

Here we have used the identities baccba   and abba  .  From the 

character table, Table 2-5, it is seen that 

   

QNHHH

(3)  carries the A2
'' 
irreducible representation 

of D3h(CNPI). 

2.6.3 CNPI Irreducible Representations of Electronic States 

 Non-rigid group symmetry and point group symmetry of electronic states have 

fundamentally different physically meanings.
19

 However, at geometries that are invariant 

under non-rigid group operations, the CNPI characters of electronic wave functions can 

be determined from their point group symmetry.  In this molecule, theD3h equilibrium 

geometry of the 

   

1A2

'' excited state is invariant under any non-rigid group operations and 

thus it is chosen to calculate the character.  In order to determine the CNPI characters 

from the point group characters the correspondence of the CNPI and point  group 

operations is required.  It is readily seen that the group theoretical isomorphism in eqs. (A 

2-1,A 2-2,A 2-3) plus the mapping i <––> E
* 

 is the appropriate identification.  Thus the 

point group labels for the electronic states at the D3h reference geometry are the same as 

the D3h(CNPI) designations.  The ground electronic state is a totally symmetric 

   

1A1

' state 

and therefore carries the

   

1A1

' irreducible representation of the .  The first excited state of 

ammonia is a 

   

1A2

''  state
36

 and hence has that symmetry in the CNPI group. 
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2.6.4 Ab Initio and H
d
 Predicted Energies of All Data Points 

Table 2-6. Ab inito and H
d 

Predicted Energies using FIT2 for All Data Points. Energies in 

cm
-1

, numbering of nodes refers to Table 2-1. 

GEOM E1(ab initio) E1(FIT2) Δ 1 E2(ab initio) E2(FIT2) Δ 2 

Nodes 

1 0.00 0.00 0.00 43884.72 43884.72 0.00 

2 -3314.10 -3314.10 0.00 49682.59 49682.59 0.00 

3 -1356.88 -1356.87 0.00 44925.87 44925.86 0.01 

4 10234.18 10234.18 0.00 46037.70 46037.70 0.01 

5 39075.99 39075.99 0.00 39075.99 39075.99 0.00 

6 35926.06 35926.08 -0.02 53072.27 53072.27 0.00 

7 35937.98 35937.95 0.02 53218.25 53218.25 0.00 

8 42718.16 42718.25 -0.09 46960.33 46960.32 0.01 

9 42715.48 42715.39 0.10 47119.22 47119.23 0.00 

Fit Points 

10 325.90 325.89 0.02 43897.70 43897.69 0.01 

11 15.97 15.95 0.01 43897.58 43898.62 -1.04 

12 16.12 16.11 0.01 43897.77 43898.87 -1.10 

13 -0.53 -0.51 -0.02 43885.06 43885.08 -0.02 

14 4.29 4.19 0.09 43888.31 43889.58 -1.27 

15 4.30 4.22 0.09 43888.33 43889.57 -1.25 

16 -1129.16 -1129.21 0.05 44241.48 44241.42 0.06 

17 404.64 404.25 0.38 44212.12 44238.89 -26.77 

18 385.59 384.94 0.65 44187.12 44207.54 -20.41 

19 107.60 105.29 2.31 43974.77 44005.75 -30.98 

20 105.62 102.50 3.12 43972.83 44006.55 -33.72 

21 -13.27 -12.71 -0.56 43893.28 43893.68 -0.40 

22 1920.45 1919.70 0.75 44183.56 44182.93 0.64 

23 423.69 423.57 0.12 44237.13 44270.25 -33.12 

24 -323.05 -311.42 -11.63 44110.03 44118.37 -8.34 

25 -702.28 -681.46 -20.83 44424.16 44439.62 -15.46 

26 -1187.29 -1160.40 -26.90 44923.45 44945.54 -22.09 

27 -3309.04 -3308.99 -0.05 49582.21 49582.48 -0.27 

28 -3308.76 -3308.71 -0.04 49685.08 49685.38 -0.29 

29 -3308.69 -3308.65 -0.04 49686.35 49686.65 -0.30 

30 -3312.71 -3312.65 -0.06 49732.93 49733.43 -0.51 

31 -3312.78 -3312.72 -0.06 49655.90 49656.38 -0.48 

32 -3313.25 -3313.24 -0.01 49828.92 49828.97 -0.05 

33 -3294.88 -3294.70 -0.18 49511.29 49512.27 -0.98 

34 -3294.32 -3294.21 -0.12 49700.29 49701.26 -0.97 

35 -3294.14 -3294.03 -0.11 49700.50 49701.47 -0.97 
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Table 2-6. Ab inito and H
d 

Predicted Energies using FIT2 for All Data Points. Energies in 

cm
-1

, numbering of nodes refers to Table 2-1. (Continued) 

GEOM E1(ab initio) E1(FIT2) Δ 1 E2(ab initio) E2(FIT2) Δ 2 

36 -3307.27 -3306.94 -0.33 49692.11 49694.76 -2.65 

37 -3306.55 -3306.21 -0.34 49819.24 49821.73 -2.49 

38 -3310.68 -3310.64 -0.04 49978.42 49978.61 -0.18 

39 -3083.85 -3083.07 -0.78 52271.19 52287.87 -16.68 

40 -2357.96 -2362.09 4.13 55399.93 55460.87 -60.94 

53 -1357.18 -1357.17 -0.01 44926.13 44926.14 0.00 

54 1569.78 1568.43 1.35 44274.01 44308.49 -34.48 

55 3980.43 3977.77 2.66 45070.68 45119.31 -48.64 

56 6937.33 6935.88 1.45 45774.04 45789.64 -15.60 

57 10499.08 10499.04 0.04 46038.26 46038.53 -0.27 

58 10238.12 10238.09 0.03 46041.06 46041.17 -0.11 

59 10238.65 10238.64 0.00 46041.82 46041.94 -0.12 

60 10275.91 10275.90 0.00 46038.34 46038.25 0.10 

61 10211.50 10211.51 -0.01 46038.03 46038.04 -0.01 

62 10233.53 10233.52 0.01 46038.25 46038.27 -0.03 

63 11586.77 11586.38 0.40 46001.75 46005.17 -3.42 

64 11185.00 11183.82 1.18 46147.86 46144.27 3.59 

65 10340.86 10341.03 -0.18 46136.15 46143.11 -6.96 

66 10255.40 10255.80 -0.40 46042.17 46044.03 -1.86 

67 9982.13 9981.83 0.30 46067.41 46062.23 5.18 

68 10228.54 10228.45 0.09 46041.63 46041.86 -0.23 

69 19020.05 19019.65 0.39 46099.38 46017.75 81.62 

70 12148.80 12140.98 7.82 47539.01 47578.18 -39.17 

71 12970.11 12971.22 -1.11 48558.33 48630.68 -72.35 

72 10764.98 10771.67 -6.69 46150.70 46201.15 -50.46 

73 9680.42 9677.49 2.93 46861.26 46741.82 119.44 

74 10093.98 10091.89 2.09 46136.20 46141.48 -5.28 

75 7461.26 7459.39 1.87 45967.81 45992.24 -24.43 

76 10601.50 10600.61 0.89 46348.89 46362.26 -13.37 

77 10576.85 10577.63 -0.78 46072.62 46074.13 -1.51 

78 9780.44 9774.76 5.68 46437.61 46455.15 -17.53 

79 9243.46 9239.71 3.75 46956.33 46982.95 -26.62 

80 8548.79 8559.12 -10.32 47718.79 47742.38 -23.59 

81 9766.24 9766.21 0.04 46032.69 46032.85 -0.17 

82 9302.10 9301.96 0.14 46017.72 46018.55 -0.82 

83 8842.12 8841.80 0.32 45992.65 45994.78 -2.13 

84 8386.65 8386.11 0.54 45957.40 45961.60 -4.20 

85 11398.60 11398.32 0.29 46009.41 46011.62 -2.20 

86 12573.78 12572.83 0.95 45928.39 45934.29 -5.91 

87 13754.30 13752.92 1.39 45801.46 45809.11 -7.66 
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Table 2-6. Ab inito and H
d 

Predicted Energies using FIT2 for All Data Points. Energies in 

cm
-1

, numbering of nodes refers to Table 2-1. (Continued) 

GEOM E1(ab initio) E1(FIT2) Δ 1 E2(ab initio) E2(FIT2) Δ 2 

88 14935.12 14934.34 0.78 45633.32 45640.49 -7.17 

89 18731.05 18740.45 -9.41 44847.31 44856.78 -9.47 

90 26675.17 26699.31 -24.14 42588.58 42571.83 16.75 

91 33520.75 33530.81 -10.07 40582.48 40557.88 24.59 

92 38964.76 38964.76 0.00 39107.84 39107.78 0.06 

93 38997.23 38997.19 0.04 39097.19 39097.30 -0.11 

94 39062.63 39062.63 0.00 39083.83 39083.78 0.05 

95 39063.10 39063.09 0.00 39083.94 39083.94 0.00 

96 39027.52 39027.46 0.06 39089.37 39089.42 -0.05 

97 38985.96 38985.97 -0.01 39155.40 39155.39 0.01 

98 34008.29 34017.33 -9.03 40733.20 40694.61 38.59 

99 34564.99 34568.06 -3.08 40638.90 40613.94 24.96 

100 35923.53 35920.37 3.17 40552.06 40549.70 2.36 

101 37249.86 37253.73 -3.87 40965.00 40963.99 1.01 

102 37917.07 37910.05 7.03 42019.17 42019.70 -0.53 

103 38175.90 38144.01 31.89 43001.82 43009.54 -7.72 

104 38252.52 38210.24 42.28 43375.22 43384.71 -9.49 

105 39824.48 39826.52 -2.04 43399.59 43450.06 -50.47 

106 39724.90 39727.93 -3.04 43335.99 43388.44 -52.45 

107 38284.80 38278.38 6.43 40425.78 40425.60 0.18 

108 35637.92 35633.69 4.22 40338.57 40362.53 -23.96 

109 38952.33 38952.34 -0.01 39199.68 39199.68 -0.01 

110 38828.70 38828.73 -0.03 39323.40 39323.42 -0.02 

111 38705.09 38705.16 -0.07 39447.16 39447.20 -0.04 

112 38581.51 38581.65 -0.14 39570.95 39571.02 -0.07 

113 38457.95 38458.18 -0.23 39694.78 39694.87 -0.09 

114 38457.95 38458.18 -0.23 39694.78 39694.87 -0.09 

115 37840.45 37841.66 -1.21 40314.59 40314.67 -0.08 

116 37223.37 37226.67 -3.30 40935.73 40935.24 0.49 

117 36606.71 36613.54 -6.83 41558.51 41556.45 2.06 

118 35990.60 36002.66 -12.06 42183.23 42178.19 5.04 

119 32936.83 33003.83 -67.00 45342.17 45290.43 51.74 

120 27672.95 27811.07 -138.12 51680.94 51535.13 145.81 

121 29083.82 29177.02 -93.20 60055.87 60031.28 24.59 

122 37095.54 36949.28 146.26 47133.52 47169.44 -35.92 

123 36309.42 36181.22 128.20 50507.26 50543.18 -35.92 

124 36030.33 36005.89 24.44 51843.03 51851.59 -8.57 

125 35941.32 35940.08 1.23 52505.40 52505.82 -0.42 

126 38017.68 37919.81 97.87 43858.16 43873.95 -15.79 

127 37871.44 37687.96 183.47 46119.49 46151.92 -32.43 
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Table 2-6. Ab inito and H
d 

Predicted Energies using FIT2 for All Data Points. Energies in 

cm
-1

, numbering of nodes refers to Table 2-1. (Continued) 

GEOM E1(ab initio) E1(FIT2) Δ 1 E2(ab initio) E2(FIT2) Δ 2 

128 38371.00 38227.45 143.55 46897.93 46919.77 -21.85 

129 39373.56 39304.60 68.97 47012.74 47016.41 -3.66 

130 40822.02 40803.13 18.88 46946.70 46944.36 2.33 

131 35931.19 35931.07 0.12 52872.10 52872.15 -0.06 

132 35926.39 35926.40 -0.02 53072.58 53072.58 0.00 

133 35930.62 35930.51 0.11 53077.00 53076.97 0.03 

134 35926.06 35926.07 -0.01 53072.27 53072.25 0.03 

135 35927.27 35927.18 0.09 52915.41 52915.44 -0.03 

136 35926.05 35926.05 0.00 53072.27 53072.29 -0.02 

137 35918.88 35911.42 7.46 53180.51 53182.72 -2.21 

138 35925.92 35917.30 8.62 53205.32 53208.05 -2.73 

139 35931.14 35925.67 5.47 53212.57 53214.60 -2.03 

140 35934.10 35931.39 2.71 53215.28 53216.67 -1.39 

141 43066.72 43066.58 0.14 46968.40 46967.84 0.56 

142 42715.89 42715.98 -0.09 46958.04 46958.03 0.01 

143 42723.75 42723.67 0.08 46966.03 46966.02 0.00 

144 42718.15 42718.25 -0.10 46960.33 46960.32 0.01 

145 42959.77 42959.51 0.26 46962.35 46962.24 0.11 

146 42718.15 42718.20 -0.05 46960.34 46960.37 -0.03 

147 42701.05 42690.80 10.25 47078.17 47078.82 -0.64 

148 42705.88 42694.21 11.67 47106.72 47107.03 -0.32 

149 42710.74 42703.95 6.78 47114.93 47115.05 -0.12 

150 42713.83 42711.20 2.63 47117.94 47117.95 -0.01 

151 24910.81 25032.22 -121.40 52023.06 51850.64 172.41 

152 21515.31 21619.07 -103.76 52513.40 52344.86 168.54 

153 17483.20 17578.27 -95.06 53123.32 52963.36 159.96 

154 12880.30 12966.55 -86.25 53609.31 53454.78 154.53 

155 7854.37 7946.12 -91.76 53423.12 53333.83 89.29 

156 2836.96 2902.51 -65.55 52182.45 52163.13 19.32 

157 -1381.04 -1361.55 -19.49 50238.78 50292.94 -54.16 

158 8258.99 8259.55 -0.56 62956.02 62920.15 35.87 

159 -1047.03 -1040.67 -6.36 52879.58 52940.45 -60.87 

160 -1844.90 -1829.73 -15.17 49910.31 49963.08 -52.78 

161 1518.43 1573.50 -55.06 51423.99 51447.88 -23.90 

162 14468.16 14547.30 -79.14 53040.03 52868.07 171.96 

163 29534.97 29699.27 -164.30 51213.44 51039.21 174.23 

164 35678.92 35806.50 -127.58 51912.90 51783.60 129.30 

165 36032.28 36044.40 -12.11 52027.20 52032.65 -5.45 

166 10242.32 10242.67 -0.34 57234.81 57765.93 -531.12 

167 10171.48 10173.72 -2.25 57320.97 57852.08 -531.12 
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Table 2-6. Ab inito and H
d 

Predicted Energies using FIT2 for All Data Points. Energies in 

cm
-1

, numbering of nodes refers to Table 2-1. (Continued) 

GEOM E1(ab initio) E1(FIT2) Δ 1 E2(ab initio) E2(FIT2) Δ 2 

168 9984.70 9990.77 -6.08 57597.01 58123.09 -526.08 

169 9753.67 9762.64 -8.97 58110.33 58616.44 -506.11 

170 9610.11 9618.94 -8.83 60119.50 60541.54 -422.04 

171 9969.18 9975.77 -6.59 61754.10 62154.70 -400.60 

172 11432.08 11437.34 -5.25 65129.72 65557.74 -428.01 

173 35931.69 35926.70 5.00 53213.13 53215.06 -1.93 

174 35931.88 35861.10 70.78 53212.79 53287.20 -74.42 

175 35932.33 35938.63 -6.31 53212.30 53242.64 -30.34 

176 35932.62 35746.63 185.99 53212.32 53419.10 -206.78 

177 35932.46 36097.61 -165.15 53212.47 52872.48 339.99 

178 35932.08 35959.13 -27.05 53212.16 52747.77 464.39 

179 35931.88 35609.25 322.62 53211.88 52991.68 220.20 

180 1523.12 1534.41 -11.29 49578.68 49876.66 -297.98 

181 -771.13 -755.89 -15.24 46704.73 46845.67 -140.95 

182 -1531.79 -1511.18 -20.61 45304.37 45347.90 -43.54 

183 5993.68 6025.06 -31.39 47344.60 47301.13 43.47 

184 20602.76 20539.07 63.69 46988.64 47138.97 -150.34 

185 34858.15 34893.62 -35.48 45844.93 45820.49 24.45 

186 37003.67 36990.56 13.11 49800.85 49756.23 44.63 

187 37068.10 37025.19 42.92 50099.42 50109.87 -10.45 

188 22616.28 22624.66 -8.38 72710.42 72963.44 -253.02 

189 22214.77 22238.86 -24.09 76128.57 76086.18 42.39 

190 24351.29 24325.35 25.94 83824.09 83499.47 324.62 

191 1043.11 1053.04 -9.92 49437.22 49507.20 -69.98 

192 134.43 154.87 -20.44 52706.58 52806.22 -99.64 

193 1546.63 1559.88 -13.25 60160.37 60476.75 -316.37 

194 8156.75 8293.48 -136.73 73655.73 73632.00 23.73 

195 -750.51 -726.50 -24.01 45389.82 45585.33 -195.51 

196 -2246.53 -2218.31 -28.22 48591.68 48728.37 -136.68 

197 -1624.63 -1599.98 -24.65 55774.12 55827.94 -53.82 

198 3936.12 3968.57 -32.45 68639.08 68283.42 355.66 

199 15018.55 14960.15 58.39 47222.72 47224.10 -1.38 

200 12018.45 12058.59 -40.14 52286.14 52168.70 117.43 

201 10987.00 11123.41 -136.41 60199.68 60012.52 187.17 

202 14394.62 14447.09 -52.47 71757.22 72006.74 -249.53 

203 33778.62 33838.64 -60.02 44913.42 44870.01 43.41 

204 29800.17 29977.77 -177.60 51305.27 51131.57 173.69 

205 28336.53 28467.25 -130.73 58890.97 58775.12 115.85 

206 30558.13 30632.13 -74.00 68528.82 68486.81 42.00 

207 22352.76 22266.89 85.87 45815.99 45866.59 -50.60 
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Table 2-6. Ab inito and H
d 

Predicted Energies using FIT2 for All Data Points. Energies in 

cm
-1

, numbering of nodes refers to Table 2-1. (Continued) 

GEOM E1(ab initio) E1(FIT2) Δ 1 E2(ab initio) E2(FIT2) Δ 2 

208 28406.93 28361.36 45.58 44707.39 44742.83 -35.44 

209 35292.43 35292.34 0.09 46185.74 46167.37 18.38 

210 36038.21 35786.03 252.18 50423.34 50578.55 -155.21 

211 35990.28 35925.24 65.04 51612.60 51652.60 -40.00 

212 36004.41 35943.81 60.60 51905.49 51938.37 -32.88 

213 36017.49 35955.57 61.92 51924.51 51983.49 -58.98 

214 36022.97 35976.40 46.57 51929.23 51979.14 -49.90 

215 18720.46 18732.23 -11.78 51864.31 51794.38 69.92 

216 24289.17 24365.45 -76.29 51297.93 51241.34 56.60 

217 32089.16 32199.06 -109.90 51740.28 51571.99 168.29 

218 35238.10 35137.50 100.59 53447.81 53504.58 -56.77 

219 35813.19 36004.15 -190.96 54004.41 53782.03 222.38 

220 35977.93 36054.19 -76.26 54150.14 54023.28 126.87 

221 35995.71 35983.08 12.63 54165.47 54207.13 -41.66 

222 36000.99 35928.55 72.43 54170.84 54274.44 -103.61 

223 17254.22 17373.62 -119.41 60261.35 59990.85 270.50 

224 22614.77 22750.80 -136.03 59542.63 59463.41 79.22 

225 31011.05 31118.51 -107.46 58697.09 58483.88 213.21 

226 38389.94 38576.90 -186.96 66249.47 66185.26 64.20 

227 36630.81 36900.12 -269.31 58568.19 58250.58 317.61 

228 36932.30 36908.86 23.45 58570.23 58429.45 140.78 

229 36954.56 36852.54 102.01 58581.13 58708.81 -127.68 

230 36959.75 36906.93 52.82 58586.96 58680.20 -93.24 

231 20040.30 20112.97 -72.66 71316.45 71307.70 8.75 

232 25026.16 25144.74 -118.58 70040.22 69957.42 82.80 

233 33274.96 33344.29 -69.33 67811.02 67756.55 54.47 

234 38270.93 38490.72 -219.79 66478.32 66387.82 90.50 

235 39584.20 39447.82 136.37 66092.15 66246.30 -154.15 

236 39960.54 39809.67 150.88 65998.62 65815.29 183.34 

237 39986.11 39766.52 219.59 66006.41 66266.34 -259.93 

238 39991.67 40021.02 -29.36 66012.55 66109.85 -97.29 

239 13513.36 13509.09 4.27 61758.48 62071.00 -312.52 

Interpolation Points 

240 38919.47 38919.48 -0.01 39116.84 39116.79 0.05 

241 38935.04 38935.05 -0.01 39116.77 39116.74 0.03 

242 38974.28 38974.28 0.00 39119.91 39119.90 0.00 

243 39014.19 39014.19 0.00 39137.86 39137.86 0.00 

244 39032.42 39032.42 0.01 39177.46 39177.46 0.00 

245 39035.94 39035.90 0.03 39216.28 39216.29 -0.01 

246 39036.07 39036.02 0.05 39231.64 39231.66 -0.01 
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Table 2-6 (Continued) 

GEOM E1(ab initio) E1(FIT2) Δ 1 E2(ab initio) E2(FIT2) Δ 2 

247 8842.12 8841.80 0.32 45992.65 45994.78 -2.13 

248 7051.31 7049.91 1.40 45792.16 45807.21 -15.05 

249 5359.47 5357.05 2.41 45449.71 45485.62 -35.91 

250 4174.36 4171.64 2.71 45128.41 45177.09 -48.68 

251 3078.45 3075.95 2.50 44783.94 44836.38 -52.43 

252 2090.11 2088.24 1.87 44450.09 44494.71 -44.62 

253 1230.57 1229.53 1.04 44163.19 44190.86 -27.67 

254 13754.30 13752.92 1.39 45801.46 45809.11 -7.66 

255 18442.80 18451.20 -8.40 44917.94 44926.96 -9.02 

256 22955.01 22976.65 -21.65 43692.31 43696.72 -4.41 

257 27186.55 27210.35 -23.80 42435.64 42415.92 19.72 

258 31071.39 31088.18 -16.79 41286.07 41255.16 30.91 

259 34572.72 34579.91 -7.19 40287.08 40267.76 19.32 

260 37674.92 37675.79 -0.86 39443.05 39440.20 2.86 

261 22740.91 22760.93 -20.02 43814.37 43829.69 -15.32 

262 33388.62 33398.01 -9.38 40717.27 40700.02 17.26 

263 38614.22 38604.25 9.97 41213.67 41215.97 -2.30 

264 37352.76 37240.50 112.26 46310.35 46339.04 -28.68 

265 36637.38 36470.33 167.06 49310.12 49353.71 -43.59 

266 36251.23 36136.43 114.81 50992.24 51023.82 -31.58 

267 36053.66 36009.38 44.29 51966.40 51979.35 -12.95 

268 35960.79 35952.92 7.87 52597.20 52599.66 -2.46 

269 -6.74 -6.75 0.01 46280.23 46290.23 -10.00 

270 1389.43 1380.77 8.65 44827.84 45070.60 -242.76 

271 19044.85 19056.15 -11.30 44756.55 44699.95 56.60 

272 26671.79 26696.94 -25.16 42563.94 42498.82 65.12 

273 33236.50 33247.81 -11.31 40653.25 40614.51 38.74 

274 37903.36 37845.89 57.48 43756.07 43769.18 -13.11 

275 36491.39 36347.53 143.86 49616.67 49656.47 -39.80 

276 36141.06 36122.89 18.17 51254.41 51257.93 -3.52 

277 36146.37 36133.82 12.55 51258.56 51260.59 -2.03 

278 36094.58 36093.27 1.31 40127.85 40120.91 6.94 

279 32678.53 32667.17 11.36 41374.19 41361.56 12.63 

280 28840.34 28806.31 34.03 42812.96 42815.42 -2.46 

281 24611.82 24549.84 61.98 44417.10 44451.51 -34.41 

282 20049.96 19973.06 76.90 46104.93 46149.38 -44.45 

283 15244.29 15185.77 58.52 47669.96 47680.66 -10.70 

284 10322.29 10329.08 -6.78 48760.76 48751.71 9.05 

285 5532.85 5596.63 -63.78 49136.07 49134.56 1.51 

286 1252.02 1311.64 -59.61 48777.90 48885.37 -107.47 

287 -1977.99 -1958.36 -19.63 48533.29 48617.23 -83.94 
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2.6.5 Geometries of All Data Points 

Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.  Bond 

lengths are presented in Å, angles in degrees. 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

Nodes 

1 1.0485 1.0485 1.0485 60.00 60.00 0.00 

2 1.0154 1.0154 1.0154 73.65 73.65 22.44 

3 0.9979 0.9979 0.9979 60.00 60.00 0.00 

4 1.3054 1.0408 1.0408 56.23 56.23 0.00 

5 1.9689 1.0222 1.0222 54.60 54.60 0.00 

6 3.5099 1.0283 1.0283 51.39 51.39 0.00 

7 11.4476 1.0283 1.0283 51.39 51.39 0.00 

8 3.5099 0.9986 0.9986 72.61 72.61 0.00 

9 6.1558 0.9986 0.9986 72.61 72.61 0.00 

Fit Points 

10 1.0547 1.0547 1.0547 60.00 60.00 0.00 

11 1.0442 1.0572 1.0442 60.00 60.00 0.00 

12 1.0411 1.0485 1.0560 60.00 60.00 0.00 

13 1.0485 1.0485 1.0485 60.00 60.00 0.22 

14 1.0485 1.0485 1.0485 60.47 60.47 0.00 

15 1.0485 1.0485 1.0485 60.81 59.19 0.00 

16 1.0180 1.0180 1.0180 60.00 60.00 0.00 

17 1.0111 1.0860 1.0485 60.00 60.00 0.00 

18 1.0269 1.0269 1.0917 60.00 60.00 0.00 

19 1.0485 1.0485 1.0485 60.00 64.05 0.00 

20 1.0485 1.0485 1.0485 55.32 62.34 0.00 

21 1.0485 1.0485 1.0485 60.04 60.04 -1.10 

22 1.0791 1.0791 1.0791 60.00 60.00 0.00 

23 1.0701 1.0701 1.0053 60.00 60.00 0.00 

24 1.0485 1.0485 1.0485 60.92 60.92 -5.55 

25 1.0485 1.0485 1.0485 62.09 62.09 -8.38 

26 1.0485 1.0485 1.0485 63.74 63.74 -11.30 

27 1.0199 1.0173 1.0173 73.68 73.68 22.41 

28 1.0177 1.0107 1.0147 73.56 73.86 22.38 

29 1.0168 1.0168 1.0105 73.93 73.45 22.40 

30 1.0154 1.0154 1.0154 73.74 73.39 22.52 

31 1.0154 1.0154 1.0154 74.01 73.40 22.39 

32 1.0154 1.0154 1.0154 73.91 73.91 22.68 

33 1.0215 1.0215 1.0215 73.65 73.65 22.44 

34 1.0154 1.0079 1.0229 73.65 73.65 22.44 
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 Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.(Continued) 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

35 1.0068 1.0197 1.0197 73.65 73.65 22.44 

36 1.0154 1.0154 1.0154 74.47 72.85 22.44 

37 1.0154 1.0154 1.0154 73.42 73.42 22.65 

38 1.0154 1.0154 1.0154 74.18 74.18 22.92 

39 1.0133 1.0133 1.0133 77.88 77.88 26.08 

40 1.0154 1.0154 1.0154 82.47 82.47 29.73 

41 1.0132 1.0132 1.0132 69.46 69.46 19.27 

42 1.0110 1.0110 1.0110 66.03 66.03 16.25 

43 1.0088 1.0088 1.0088 63.32 63.32 13.35 

44 1.0066 1.0066 1.0066 61.33 61.33 10.55 

45 1.0045 1.0045 1.0045 60.01 60.01 7.84 

46 1.0023 1.0023 1.0023 59.36 59.36 5.19 

47 1.0001 1.0001 1.0001 59.36 59.36 2.59 

48 1.0009 1.0009 1.0009 60.00 60.00 0.00 

49 1.0016 0.9941 0.9979 60.00 60.37 0.00 

50 1.0000 1.0000 0.9936 60.43 59.79 0.00 

51 0.9979 0.9979 0.9979 60.00 59.57 0.00 

52 0.9979 0.9979 0.9979 60.50 59.75 0.00 

53 0.9979 0.9979 0.9979 60.00 60.00 0.19 

54 1.1128 1.0466 1.0466 59.06 59.06 0.00 

55 1.1770 1.0447 1.0447 58.12 58.12 0.00 

56 1.2412 1.0428 1.0428 57.18 57.18 0.00 

57 1.3101 1.0426 1.0426 56.33 56.33 0.00 

58 1.3075 1.0360 1.0401 56.19 56.56 0.00 

59 1.3067 1.0422 1.0359 56.60 56.04 0.00 

60 1.3054 1.0408 1.0408 56.24 55.85 0.00 

61 1.3054 1.0408 1.0408 56.68 56.00 0.00 

62 1.3054 1.0408 1.0408 56.24 56.24 0.20 

63 1.3319 1.0408 1.0408 56.23 56.23 0.00 

64 1.3054 1.0596 1.0596 54.75 54.75 0.00 

65 1.3054 1.0596 1.0221 56.23 56.23 0.00 

66 1.3054 1.0408 1.0408 54.21 58.26 0.00 

67 1.3054 1.0408 1.0408 57.57 57.57 0.00 

68 1.3054 1.0408 1.0408 56.25 56.25 0.55 

69 1.4179 1.0900 1.0900 52.54 52.54 0.00 

70 1.2359 1.1204 1.1204 50.56 50.56 0.00 

71 1.3054 1.1344 0.9473 56.08 56.08 0.00 
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Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.(Continued) 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

72 1.3054 1.0408 1.0408 46.11 66.36 0.00 

73 1.3054 1.0408 1.0408 63.49 63.49 0.00 

74 1.3054 1.0408 1.0408 56.58 56.58 2.75 

75 1.2558 1.0278 1.0278 56.23 56.23 0.00 

76 1.2949 1.0303 1.0916 56.23 56.23 0.00 

77 1.3054 1.0408 1.0408 51.56 58.57 0.00 

78 1.3054 1.0408 1.0408 57.16 57.16 -5.53 

79 1.3054 1.0408 1.0408 58.33 58.33 -8.37 

80 1.3054 1.0408 1.0408 60.00 60.00 -11.28 

81 1.2966 1.0411 1.0411 56.36 56.36 0.00 

82 1.2877 1.0414 1.0414 56.48 56.48 0.00 

83 1.2788 1.0416 1.0416 56.61 56.61 0.00 

84 1.2700 1.0419 1.0419 56.73 56.73 0.00 

85 1.3283 1.0402 1.0402 56.18 56.18 0.00 

86 1.3512 1.0396 1.0396 56.12 56.12 0.00 

87 1.3741 1.0389 1.0389 56.06 56.06 0.00 

88 1.3969 1.0383 1.0383 56.01 56.01 0.00 

89 1.4713 1.0362 1.0362 55.83 55.83 0.00 

90 1.6371 1.0315 1.0315 55.42 55.42 0.00 

91 1.8030 1.0269 1.0269 55.01 55.01 0.00 

92 1.9651 1.0196 1.0196 54.55 54.55 0.00 

93 1.9689 1.0222 1.0222 54.60 54.95 0.00 

94 1.9693 1.0180 1.0206 54.58 54.61 0.00 

95 1.9683 1.0223 1.0177 54.81 54.29 0.00 

96 1.9670 1.0209 1.0209 54.86 54.25 0.00 

97 1.9670 1.0209 1.0209 54.57 54.40 0.15 

98 1.8143 0.9966 0.9966 54.60 54.60 0.00 

99 1.8350 1.0000 1.0000 54.68 54.68 -1.65 

100 1.8916 1.0094 1.0094 54.85 54.85 -2.86 

101 1.9689 1.0222 1.0222 54.93 54.93 -3.30 

102 2.0461 1.0351 1.0351 54.85 54.85 -2.86 

103 2.1027 1.0445 1.0445 54.68 54.68 -1.65 

104 2.1234 1.0479 1.0479 54.60 54.60 0.00 

105 1.9119 0.8997 0.9967 54.68 54.68 -1.65 

106 1.9073 1.0251 0.8994 54.68 54.68 -1.65 

107 1.8916 1.0094 1.0094 54.68 46.09 -1.63 

108 1.8916 1.0094 1.0094 64.61 49.72 -1.64 
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Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.(Continued) 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

109 1.9689 1.0222 1.0222 54.60 54.60 -0.22 

110 1.9689 1.0222 1.0222 54.61 54.61 -0.44 

111 1.9689 1.0222 1.0222 54.62 54.62 -0.66 

112 1.9689 1.0222 1.0222 54.63 54.63 -0.88 

113 1.9689 1.0222 1.0222 54.65 54.65 -1.10 

114 1.9689 1.0222 1.0222 54.65 54.65 -1.10 

115 1.9689 1.0222 1.0222 54.82 54.82 -2.20 

116 1.9689 1.0222 1.0222 55.10 55.10 -3.30 

117 1.9689 1.0222 1.0222 55.49 55.49 -4.41 

118 1.9689 1.0222 1.0222 55.99 55.99 -5.53 

119 1.9689 1.0222 1.0222 60.24 60.24 -11.28 

120 1.9689 1.0222 1.0222 78.23 78.23 -24.25 

121 1.9794 1.1075 1.1075 103.20 103.20 -38.69 

122 2.3541 1.0233 1.0233 54.00 54.00 0.00 

123 2.7394 1.0244 1.0244 53.40 53.40 0.00 

124 3.1247 1.0255 1.0255 52.82 52.82 0.00 

125 3.5099 1.0266 1.0266 52.25 52.25 0.00 

126 2.2257 1.0183 1.0183 56.91 56.91 0.00 

127 2.4826 1.0144 1.0144 59.41 59.41 0.00 

128 2.7394 1.0104 1.0104 62.12 62.12 0.00 

129 2.9962 1.0065 1.0065 65.12 65.12 0.00 

130 3.2531 1.0026 1.0026 68.54 68.54 0.00 

131 3.5098 1.0246 1.0246 51.66 51.66 0.00 

132 3.5046 1.0284 1.0284 51.39 51.39 0.00 

133 3.5099 1.0321 1.0246 51.39 51.39 0.00 

134 3.5099 1.0283 1.0283 50.99 51.80 0.00 

135 3.5099 1.0283 1.0283 51.63 51.63 0.00 

136 3.5099 1.0283 1.0283 51.39 51.39 0.11 

137 4.0391 1.0283 1.0283 51.39 51.39 0.00 

138 4.5683 1.0283 1.0283 51.39 51.39 0.00 

139 5.0974 1.0283 1.0283 51.39 51.39 0.00 

140 5.6266 1.0283 1.0283 51.39 51.39 0.00 

141 3.5099 0.9949 0.9949 73.31 73.31 0.00 

142 3.5046 0.9987 0.9987 72.61 72.61 0.00 

143 3.5099 1.0024 0.9949 72.61 72.61 0.00 

144 3.5099 0.9986 0.9986 72.21 73.02 0.00 

145 3.5099 0.9986 0.9986 73.13 73.13 0.00 
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Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.(Continued) 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

146 3.5099 0.9986 0.9986 72.61 72.61 0.10 

147 4.0391 0.9986 0.9986 72.61 72.61 0.00 

148 4.5683 0.9986 0.9986 72.61 72.61 0.00 

149 5.0974 0.9986 0.9986 72.61 72.61 0.00 

150 5.6266 0.9986 0.9986 72.61 72.61 0.00 

151 1.8497 1.0214 1.0214 77.62 77.62 -24.01 

152 1.7305 1.0205 1.0205 77.02 77.02 -23.78 

153 1.6113 1.0197 1.0197 76.44 76.44 -23.55 

154 1.4921 1.0188 1.0188 75.86 75.86 -23.32 

155 1.3729 1.0180 1.0180 75.30 75.30 -23.10 

156 1.2538 1.0171 1.0171 74.74 74.74 -22.88 

157 1.1346 1.0163 1.0163 74.19 74.19 -22.65 

158 0.8123 1.0154 1.0154 73.65 73.65 22.44 

159 0.9139 1.0154 1.0154 73.65 73.65 22.44 

160 1.1169 1.0154 1.0154 73.65 73.65 22.44 

161 1.2185 1.0154 1.0154 73.65 73.65 22.44 

162 1.5231 1.0154 1.0154 73.65 73.65 22.44 

163 2.0308 1.0154 1.0154 73.65 73.65 22.44 

164 3.0462 1.0154 1.0154 73.65 73.65 22.44 

165 5.0770 1.0154 1.0154 73.65 73.65 22.44 

166 0.8104 1.0485 1.0485 60.00 60.00 0.00 

167 0.8104 1.0485 1.0485 60.50 60.50 3.33 

168 0.8104 1.0485 1.0485 61.98 61.98 6.64 

169 0.8104 1.0485 1.0485 64.34 64.34 9.90 

170 0.8104 1.0485 1.0485 71.25 71.25 16.16 

171 0.8104 1.0485 1.0485 75.52 75.52 19.11 

172 0.8104 1.0485 1.0485 82.56 82.56 23.15 

173 5.1752 1.0283 1.0283 51.39 51.39 0.00 

174 5.1911 1.0283 1.0283 57.53 57.53 -11.69 

175 5.2344 1.0283 1.0283 72.45 72.45 -22.77 

176 5.2931 1.0283 1.0283 90.79 90.79 -32.31 

177 5.3510 1.0283 1.0283 108.79 108.79 -38.25 

178 5.3931 1.0283 1.0283 122.94 122.94 -33.86 

179 5.4084 1.0283 1.0283 128.61 128.61 0.00 

180 0.8913 1.0485 1.0485 63.74 63.74 -11.30 

181 0.9437 1.0485 1.0485 63.74 63.74 -11.30 

182 0.9961 1.0485 1.0485 63.74 63.74 -11.30 
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Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.(Continued) 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

183 1.2582 1.0485 1.0485 63.74 63.74 -11.30 

184 1.5728 1.0485 1.0485 63.74 63.74 -11.30 

185 2.0971 1.0485 1.0485 63.74 63.74 -11.30 

186 3.1456 1.0485 1.0485 63.74 63.74 -11.30 

187 5.2427 1.0485 1.0485 63.74 63.74 -11.30 

188 0.7408 1.0222 1.0222 57.88 57.88 10.00 

189 0.7408 1.0222 1.0222 66.76 66.76 20.00 

190 0.7408 1.0222 1.0222 79.37 79.37 30.00 

191 0.8996 1.0222 1.0222 57.88 57.88 10.00 

192 0.8996 1.0222 1.0222 66.76 66.76 20.00 

193 0.8996 1.0222 1.0222 79.37 79.37 30.00 

194 0.8996 1.0222 1.0222 94.20 94.20 40.00 

195 1.0584 1.0222 1.0222 57.88 57.88 10.00 

196 1.0584 1.0222 1.0222 66.76 66.76 20.00 

197 1.0584 1.0222 1.0222 79.37 79.37 30.00 

198 1.0584 1.0222 1.0222 94.20 94.20 40.00 

199 1.4288 1.0222 1.0222 57.88 57.88 10.00 

200 1.4288 1.0222 1.0222 66.76 66.76 20.00 

201 1.4288 1.0222 1.0222 79.37 79.37 30.00 

202 1.4288 1.0222 1.0222 94.20 94.20 40.00 

203 1.9689 1.0222 1.0222 57.88 57.88 10.00 

204 1.9689 1.0222 1.0222 66.76 66.76 20.00 

205 1.9689 1.0222 1.0222 79.37 79.37 30.00 

206 1.9689 1.0222 1.0222 94.20 94.20 40.00 

207 1.5875 1.0222 1.0222 57.88 57.88 10.00 

208 1.7463 1.0222 1.0222 57.88 57.88 10.00 

209 2.1167 1.0222 1.0222 57.88 57.88 10.00 

210 2.6459 1.0222 1.0222 57.88 57.88 10.00 

211 3.1751 1.0222 1.0222 57.88 57.88 10.00 

212 4.2334 1.0222 1.0222 57.88 57.88 10.00 

213 5.2918 1.0222 1.0222 57.88 57.88 10.00 

214 10.5835 1.0222 1.0222 57.88 57.88 10.00 

215 1.5875 1.0222 1.0222 66.76 66.76 20.00 

216 1.7463 1.0222 1.0222 66.76 66.76 20.00 

217 2.1167 1.0222 1.0222 66.76 66.76 20.00 

218 2.6459 1.0222 1.0222 66.76 66.76 20.00 

219 3.1751 1.0222 1.0222 66.76 66.76 20.00 
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Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.(Continued) 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

220 4.2334 1.0222 1.0222 66.76 66.76 20.00 

221 5.2918 1.0222 1.0222 66.76 66.76 20.00 

222 10.5835 1.0222 1.0222 66.76 66.76 20.00 

223 1.5875 1.0222 1.0222 79.37 79.37 30.00 

224 1.7463 1.0222 1.0222 79.37 79.37 30.00 

225 2.1167 1.0222 1.0222 79.37 79.37 30.00 

226 2.6459 1.0222 1.0222 86.39 86.39 36.22 

227 3.1751 1.0222 1.0222 79.37 79.37 30.00 

228 4.2334 1.0222 1.0222 79.37 79.37 30.00 

229 5.2918 1.0222 1.0222 79.37 79.37 30.00 

230 10.5835 1.0222 1.0222 79.37 79.37 30.00 

231 1.5875 1.0222 1.0222 94.20 94.20 40.00 

232 1.7463 1.0222 1.0222 94.20 94.20 40.00 

233 2.1167 1.0222 1.0222 94.20 94.20 40.00 

234 2.6459 1.0222 1.0222 94.20 94.20 40.00 

235 3.1751 1.0222 1.0222 94.20 94.20 40.00 

236 4.2334 1.0222 1.0222 94.20 94.20 40.00 

237 5.2918 1.0222 1.0222 94.20 94.20 40.00 

238 10.5835 1.0222 1.0222 94.20 94.20 40.00 

239 0.7871 1.0222 1.0222 54.60 54.60 0.00 

Interpolation Points 

240 1.9637 1.0214 1.0214 54.60 54.60 0.00 

241 1.9644 1.0215 1.0215 54.60 54.60 0.05 

242 1.9663 1.0218 1.0218 54.60 54.60 0.10 

243 1.9689 1.0222 1.0222 54.60 54.60 0.11 

244 1.9714 1.0227 1.0227 54.60 54.60 0.10 

245 1.9733 1.0230 1.0230 54.60 54.60 0.05 

246 1.9740 1.0231 1.0231 54.60 54.60 0.00 

247 1.2788 1.0416 1.0416 56.61 56.61 0.00 

248 1.2434 1.0427 1.0427 57.11 57.11 0.00 

249 1.2080 1.0438 1.0438 57.62 57.62 0.00 

250 1.1814 1.0446 1.0446 58.01 58.01 0.00 

251 1.1548 1.0454 1.0454 58.40 58.40 0.00 

252 1.1283 1.0462 1.0462 58.79 58.79 0.00 

253 1.1017 1.0469 1.0469 59.19 59.19 0.00 

254 1.3741 1.0389 1.0389 56.06 56.06 0.00 

255 1.4656 1.0364 1.0364 55.84 55.84 0.00 
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Table 2-7. Internal Geometry of All Nodes, Fit and Interpolation Points.(Continued) 

GEOM NH
1
 NH

2
 NH

3
 21

NHH  
31

NHH  ϕ 

256 1.5571 1.0338 1.0338 55.61 55.61 0.00 

257 1.6486 1.0312 1.0312 55.39 55.39 0.00 

258 1.7401 1.0287 1.0287 55.16 55.16 0.00 

259 1.8316 1.0261 1.0261 54.94 54.94 0.00 

260 1.9231 1.0235 1.0235 54.71 54.71 0.00 

261 1.5504 1.0395 1.0395 55.67 55.67 0.00 

262 1.7953 1.0381 1.0381 55.12 55.12 0.00 

263 2.0403 1.0367 1.0367 54.57 54.57 0.00 

264 2.2852 1.0353 1.0353 54.03 54.03 0.00 

265 2.5301 1.0339 1.0339 53.49 53.49 0.00 

266 2.7751 1.0325 1.0325 52.96 52.96 0.00 

267 3.0200 1.0311 1.0311 52.43 52.43 0.00 

268 3.2650 1.0297 1.0297 51.91 51.91 0.00 

269 0.9459 1.0222 1.0222 54.60 54.60 0.00 

270 1.1046 1.0222 1.0222 54.60 54.60 0.00 

271 1.4750 1.0222 1.0222 54.60 54.60 0.00 

272 1.6338 1.0222 1.0222 54.60 54.60 0.00 

273 1.7925 1.0222 1.0222 54.60 54.60 0.00 

274 2.1630 1.0222 1.0222 54.60 54.60 0.00 

275 2.6921 1.0222 1.0222 54.60 54.60 0.00 

276 5.3380 1.0222 1.0222 54.60 54.60 0.00 

277 10.6298 1.0222 1.0222 54.60 54.60 0.00 

278 1.8822 1.0216 1.0216 54.63 54.63 1.87 

279 1.7955 1.0210 1.0210 54.98 54.98 3.75 

280 1.7088 1.0204 1.0204 55.66 55.66 5.65 

281 1.6222 1.0198 1.0198 56.68 56.68 7.57 

282 1.5355 1.0191 1.0191 58.03 58.03 9.54 

283 1.4488 1.0185 1.0185 59.73 59.73 11.54 

284 1.3621 1.0179 1.0179 61.77 61.77 13.60 

285 1.2754 1.0173 1.0173 64.18 64.18 15.71 

286 1.1888 1.0166 1.0166 66.95 66.95 17.88 

287 1.1021 1.0160 1.0160 70.10 70.10 20.12 
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Chapter 3 Quasi-Diabatic Representations of Adiabatic Potential 

Energy Surfaces Coupled by Conical Intersections including Bond 

Breaking:  A More General Construction Procedure and an Analysis of 

the Diabatic Representation 

3.1 Abstract 

The analytic representation of adiabatic potential energy surfaces and their nonadiabatic 

interactions is a key component of accurate, fully quantum mechanical descriptions of 

nonadiabatic dynamics.  In this work we describe extensions of a promising method for 

representing the nuclear coordinate dependence of the energies, energy gradients and 

derivative couplings of N
state

 adiabatic electronic states coupled by conical intersections.  

The description is based on a vibronic coupling model and can describe multichannel 

dissociation.  An important feature of this approach is that it incorporates information 

about the geometry dependent interstate derivative couplings into the fitting procedure so 

that the resulting representation is quantifiably quasi diabatic and quasi diabatic in a least 

squares sense.  The reported extensions improve both the rate of convergence and the 

converged results and will permit the optimization of nonlinear parameters including 

those parameters that govern the placement of the functions used to describe 

multichannel dissociation.  Numerical results for a coupled quasi-diabatic state 

representation of the photodissociation process NH3 +hv  NH2+H illustrate the 

potential of the improved algorithm.  A second focus in this numerical example is the 

quasi-diabatic character of the representation which is described  and analyzed.  Special 

attention is paid to the immediate vicinity of the conical intersection seam. 



 69 

3.2 Introduction 

 For the foreseeable future, accurate fully quantum mechanical simulations of 

electronically nonadiabatic processes involving conical intersections will require analytic 

representations of the requisite electronic structure data,
1
  energies, energy gradients and 

derivative couplings in the adiabatic representation, or the Hamiltonian matrix elements 

in the diabatic representation.  The need to accurately sample initial distributions means 

that even more approximate dynamical approaches such as trajectory surface hopping,
2
 

which can be used with electronic structure data determined 'on the fly' or 'directly' as 

needed,
3-4

 can also benefit from analytic representations of electronic structure data.  A 

principal advantage of analytic representations is that they can employ much more 

accurate wave functions than are currently practical in direct dynamics.  Unfortunately 

the representation of adiabatic potential energy surfaces coupled by conical intersections 

obtained by ab initio methods is a challenging problem.  The challenge is particularly 

daunting when chemical bonds are broken and the molecule dissociates.   

The existence of conical intersections, with their singular derivative couplings in 

the adiabatic basis motivates the use of a quasi-diabatic state representation of the 

adiabatic states.  The advantages of a diabatic representation are two fold.  A rigorous 

diabatic representation solves the problem of the singular derivative couplings by 

requiring that the derivative coupling in the diabatic representation vanish globally (see 

section 3.4).  The vanishing of the derivative coupling also simplifies the form the 

nuclear Schrödinger equation.
5
  Unfortunately the attribute quasi used above, which we 

shall omit below except as needed for emphasis, indicates that for polyatomic molecules 

rigorous diabatic bases do not exist.
5-7
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The determination of a quasi-diabatic representation of coupled adiabatic states 

data has long been a problem of considerable interest in computational nonadiabatic 

chemistry.  For a synopsis of much of this work prior to 2008, see Ref. 
8
.  The 

determination of a diabatic representation combines a method for constructing the 

diabatic state data from the adiabatic state data with a method for fitting or representing 

the diabatic state data.  The type of ab initio data used to define the diabatic basis, some 

combination of energies, energy gradients and derivative couplings data, is also an issue.  

Approaches to this problem include (i) the fourfold way diabatization,
9-11

 accompanied 

by fitting the resulting diabatic matrix elements;
12

 (ii) diabatization by ansatz which fits 

the adiabatic energies using a matrix of smoothly varying functions;
11, 13-14

  (iii) Shepard 

interpolation of a diabatic representation based on energy gradients, derivative couplings 

and their derivatives;
15-17

 (iv) diabatizations based on the regularized representation
18-19

 

followed by fitting the diabatic energies; (v) double many body expansions;
20-23

  (vi) the 

generalized adiabatic angle method;
8
 (vii) methods based on polyspherical coordinates 

and dynamical symmetry groups,
1, 24

 and (viii) methods based on molecular properties.
25-

26
   

 Recently we have introduced an approach based on a vibronic coupling model
27

 

that uses ab initio energies, energy gradients and derivative couplings to determine the 

diabatic representation.
28-30

 This approach has several features to its merit.  It uses 

overcomplete sets of coordinates (see also Ref. 
23

) and is therefore not tied to a specific 

coordinate representation. Although most of the ab initio data is described in a least 

squares sense, the ability to designate some points as nodes, points where the ab initio 

data is exactly reproduced, allows for a flexible combination of least squares fitting and 
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interpolation.  The use of functions localized in distinct regions of nuclear coordinate 

space, facilitates the description of multichannel processes.
23

 The incorporation of 

interstate derivative coupling information into the fitting procedure results in a 

representation that is quantifiably diabatic and diabatic in a least-squares sense.  The use 

of derivative coupling data and intersection adapted coordinates
31

 enables a continuous 

and accurate description of a seam of conical intersection and its local topography.  The 

numerical example used in this work
30

 accurately describes twenty-four points of conical 

intersection on a two state seam.  

In this work, we introduce an enhanced algorithmwhich improves both 

convergence and the converged result of the fitting procedure and will enable 

optimization of nonlinear parameters. In light of our earlier comments concerning 

diabatic representations, we will also investigate, from a computational perspective, the 

diabatic representation produced by this procedure, demonstrating in particular, its ability 

to accurately describe the immediate vicinity of a conical intersection. 

The nonadiabatic photodissociation of ammonia,  

NH3( ,v)  NH3( ,v’)  NH2( ,  ) + H ( 3-1 ) 

(see Figure 3-1) is a problem that has received considerable attention for nearly three 

decades.
12, 32-56

 Despite this long history, important questions about the nonadiabatic 

dynamics, arising from vibrationally mediated photodissociation experiments,
36, 57-58

 

remain unresolved.
55

  Recently, using our original algorithm,
30

 we obtained a diabatic 

representation of the 1,2
1
A states of ammonia that showed considerable promise in being 

able to address these fundamental questions.   The root mean square error for the energy 

data on over 2500 points was ~ 77 cm
-1

 for energies as high 50,000 cm
-1

.  Twenty-four 

X A X A
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points on the seam of conical intersection were included in the representation and their 

locus, energy dfferences and branching plane parameters
59

 are exactly reproduced.  Using 

this representation a full six dimensional quantum scattering simulation of the v2 

progression in the absorption spectrum of ground state ammonia was carried out
60

 and 

found to be in good agreement with the available experimental data, line positions, 

intensities and lifetimes, and a considerable improvement over a simulation
54

 using the 

same quantum scattering techniques but based on an alternative diabatic representation of 

ab initio data.
12

  In this work the potential of the new algorithm is illustrated by 

improving our previous description of these  coupled  PESs. 

  Section 3.3 describes the enhanced algorithm.  Section 3.4 illustrates its potential  

revisiting the 1,2
1
A coupled PESs of NH3.   In this section the properties of the diabatic 

representation are analyzed.  Section 3.5 summarizes and concludes. 

 
Figure 3-1. Plot of 1,2

1
A adiabatic potential energy surfaces of NH3 as a function of R(N-

H) and out of plane angle(degree).  The out of plane angle f , (0< f  < 90˚)   i  i   
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3.3 The Algorithm 

3.3.1 General Definitions 

The ab initio adiabatic electronic states  are expanded in a CSF basis, 

ya (q;R), as   

YJ

a,ab(q;R)= 



 );()( RqR

J
c  ( 3-2 ) 

and have energies (R).  Here R are the 3N
at
 Cartesian nuclear coordinates and q 

are the 3N
el
 electronic coordinates.  The (R) are determined from the electronic 

Schrödinger equation 

  ( 3-3 ) 

where H
CSF

(R) is the fixed nuclei electronic Hamiltonian, H
e
(q;R), in the CSF basis.  

N
state

 eigenstates of H
CSF

 are represented by an N
state

xN
state

 diabatic state 

Hamiltonian,  H
d
  in terms of which the electronic Schrödinger equation, eq. ( 3-3 ), 

becomes 

  0RdRIRH  )()()(
)(,, JmJad

E   ( 3-4 ) 

Here the superscript (m) indicates that the results come from the model Hamiltonian H
d
, 

rather than the ab initio wave functions. The diabatic states, formally the basis for H
d
, are 

constructed from adiabatic states, 







statestate
N

J

u

J

aba

J

N

J

J

u

aba

J

d

u
d

1

)(,

1

1)(,
)();()())(;();( RdRqRRqRq   ( 3-5 ) 

As discussed in Ref. 
30

, H
d
 is expanded in terms of basis matrices, B

u,v
, as : 

  ( 3-6 ) 

YJ

a,ab(q;R)

Ea,J,(ab)

Ea,J,(ab)

[HCSF (R)- IEa,J,(ab)(R)]cJ (R) = 0
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where B
u,v

 is an N
state 

x
 
N

state 
symmetric matrix with a 1 in the (u,v) and (v,u) elements and 

the remaining elements 0.   For example, for N
state

 = 2 there are three basis matrices  

  B
1,1

 = 














00

01
    B

1,2
 = 















01

10
  and  B

2,2 
 = 















10

00
             . 

The N
c
 unknown coefficients of combination, the Vn, 1 ≤ n ≤ N

c
, are denoted the linear 

parameters. The advantage of H
d
 in the form of eq. ( 3-6 ), is that makes the linear 

dependence of H
d
 on the Vj explicit and easy to work with.  The geometry dependence of 

H
d
 is contained in the polynomials p

(n)
(R), symmetry adapted linear combinations of 

basic monomials, gl(R).  The gl(R) currently in use are described in Appendix 3.6.1.  As 

explained in Ref
30

.  p(n)(R) = Pu(n)gl(n) (R), where P
u(n) 

 is the appropriate group 

theoretical projection operator.   The nonlinear parameters are contained in the p
(n) 

and 

are denoted collectively as   1 ≤ i ≤ N
nl

.  The nonlinear parameters are described in 

Appendix 3.6.1.   

3.3.2 Defining equations 

We now turn to the equations defining the linear and nonlinear parameters.  The Vj
 
 

and  are chosen so that the differences between the H
d 

determined, and ab initio 

determined, energies, energy gradients and derivative couplings (actually the interstate 

coupling vector which is approximately the derivative coupling times the energy 

difference)  are minimized on a set of nuclear configurations, Rn  1 ≤ n ≤ N
point 

, in a 

prescribed manner.   The following definitions will allow us to succinctly express the 

conditions:   

 
)()(

,,)(,,

0 n

xIa

n

xJI
EL RR   ( 3-7 ) 

g i

g i
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 ( 3-8 ) 

L j

I ,J,(x)(Rn ) = hj

a,I ,J,(x)(Rn ) ( 3-9 ) 

where hj

a,I ,J,(x ) is a component of the interstate coupling vector h
a,I,J,(x)

 defined by 

h
a,I,J,(m)

(R)
 
= dII (R)†ÑHd (R)dJ (R) ( 3-10 ) 

and 

ha,I,J,(ab)(R) = cI (R)†ÑHCSF (R)cJ (R) » f a,I,J,(ab)(R)[Ea,J,(ab)(R)-Ea,J,(ab)(R)] 

  

( 3-11 ) 

where f a,I,J,(ab)
 is the ab initio derivative coupling vector.  From eq. ( 3-4 ) and its 

derivative and eq. ( 3-6 ),  eqs. ( 3-7 ), ( 3-8 ) and ( 3-9 ) become,  for x = m  

= 


N

l

ljJInl
WV

1

;,,,
(WV)k =  ( 3-12 ) 

where 

  ( 3-13 ) 

and  means do nothing.  In eq. ( 3-12 ) and below is convenient to re-index the four 

indices (n,I,J,j) by k so that , is replaced by , and  by       1 ≤ k 

≤ N
eq

.  In eq. ( 3-13 ) at each Rn, the  denote the derivatives with respect to a local, 

nonredundant coordinate system.  The choice of local coordinates is arbitrary and 

different coordinates can be used for different points.  This flexibility is a key aspect of 

the algorithm.  It is also important to emphasize that eq. ( 3-12 ) is exact even though the 

d
J
 depend on R.  

We would like to require  =  for all k, but that is not possible since N
eq 

>> 

(N
c
 + N

nl
).   Instead we require      1 ≤ j ≤ N

lsq
  be solved in a least squares 

sense and the remaining N
ex

 = N
eq 

- N
lsq

, equations, that is  for  N
lsq

 < j ≤ N
eq

, be 

  

L j

I,J ,(m)(Rn )

L j

I ,J ,(x)(Rn ) Wn,I,J, j;l
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solved exactly. Nuclear configurations whose ab initio data fall into the second category 

will be referred to as nodes. The desired solution is obtained with the help of the 

Lagrangian 

=  




lsq
N

j

ab

j

m

j
LL

1

2)()(

2

1
 +  






eq

lsq

lsq

N

Nj

ab

j

m

jNj
LL

1

)()(
 +

t

2
V

†
V  ( 3-14 ) 

where the l j
 are the Lagrange multipliers.   The final term in eq. ( 3-14 ), a damping 

term, as explained previously.   Requiring  0





i

V

i

V
G       1 ≤ i ≤ N

c
 ;  0






i

i
G



 , 

for  1 ≤ i ≤ N
ex

; and
 

0





j

j
G



      1 ≤ j≤ N
nl

,   gives through second order in 

displacements, the standard Newton-Raphson equations 
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 ( 3-15 ) 

Here 
ji

VV

ji

VV 




2

,

,
, 

ji

V

ji

V 








2

,

,
, and  etc. ;   V  = V

0
 + dV,   = 

0
 + , and 




 ;  and the superscript 0, which we will suppress when no confusion will 

result, indicates that the quantities are evaluated at the current, as opposed to the 

 i  l      ‘  i  ’.  T   g   i         giv   by 
















G

G
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= 

 















0

G
V

 ( 3-16 ) 

and 

G j

g = +  ( 3-17 ) 

where    
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 ( 3-18 ) 

In eqs. ( 3-16 ), ( 3-17 ) and ( 3-18 ), we have partitioned the exact and least squares 

equations, writing  

      and   ( 3-19 ) 

where L
(ab),lsq

 (W
lsq

) is a vector (matrix) of length (size) N
lsq

 (N
lsq

xN
c
) and L

(ab),ex
 (W

ex
) is 

a vector (matrix) of length (size) N
ex

 (N
ex

xN
c
).   Note that W has an explicit g -

dependence through the p
(n)

 and an implicit g -dependence through the d
J 
, that is:    

¶Wn,I ,J, j;l

¶gk

= d
I† (Rn )Bu(l ),v(l )

d
J (Rn )[

¶

¶gk

Ñ j p
(l )(Rn )]+ 

[
¶d

I† (Rn )

¶gk

B
u(l ),v(l )

d
J (Rn )+ d

I† (Rn )Bu(l ),v(l ) ¶d
J (Rn )

¶gk

][Ñ j p
(l )(Rn )] ( 3-20 ) 

whereas, from eqs. ( 3-12 ) ( 3-13 ), W, has only an implicit V-dependence through the d
J 

, that is 

¶Wn,I ,J, j;l

¶Vk

= [
¶d

I† (Rn )

¶Vk

B
u(l ),v(l )

d
J (Rn )+ d

I† (Rn )Bu(l ),v(l ) ¶d
J (Rn )

¶Vk

][Ñ j p
(l )(Rn )] ( 3-21 ) 

Here and below we suppress the superscripts ex and lsq when no confusion will result.   

The evaluation of 
ji

zz 
2  is discussed in Appendix 3.6.2.  The appearance of terms 

like 
kn

I
V )(

†

Rd , might appear to preclude accurate description of the immediate 

vicinity of a conical intersection.  However we show in Appendix 3.6.3, where the 

evaluation of  
kn

I
 )(

†

Rd  and 
kn

I
V )(

†

Rd  is discussed, that this is emphatically 

not the case, although it is by no means a trivial matter.  Finally , note that G
V  contains 

only terms that arise from the implicit V-dependence of W. 
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3.3.3 Original Algorithm 

There are several ways to use these results to obtain a viable H
d
.  Our previous 

work
30, 61

 has been restricted to the determination of the linear parameters, the Vi, with the 

g j
fixed, using  

 ( 3-22 ) 

which is obtained from eq. ( 3-16 ), by neglecting G
V , which as we note in Appendix 

3.6.2 is expected to be small when an approximate solution has been achieved.  While an 

approximation to the more complete Newton-Raphson result in eq. ( 3-15 ), eq. ( 3-22 ) is 

comparatively straightforward to formulate and solve.  The V obtained from this system 

of linear equations reproduce well, the ab initio data.
30, 61-62

  These equations must be 

solved iteratively since the d
J
(Rn) are required to determine the Vi and conversely.  

3.3.4 Newton Raphson equations 

   We now turn to the use of the Newton Raphson equations. Given the occurrence 

of 
k

n

I

V

 )(
†

Rd
 and the importance of conical intersections the full Newton-Raphson 

equations must be used with some care.   Appendices 3.6.2, 3.6.3and 3.6.4 address many 

technical issues in this regard. 

(i)  Linear terms, V 

In general, eq. ( 3-22 ) converges rapidly to a unique solution as long as N
c
 is 

relatively small.  However for more elaborate representations, larger N
c
, the V 

determined from this equation provide a minimum in the root mean square energy error, 
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with a modest residual gradient.
60

  In this work, to go beyond eq. ( 3-22 ), we introduce 

an economical approximation to the full second order procedure for the linear terms 

 ( 3-23 ) 

where 

 ( 3-24 ) 

The approximate Hessian is discussed in Appendices 3.6.2 and 3.6.3.  The solution to eq. 

( 3-23 ) is discussed in Appendix 3.6.4. 

(ii) Nonlinear terms,  

Finally we turn to the issue of optimizing the nonlinear parameters, parameters 

whose principal purpose, see Appendix 3.6.1, is to distribute the basic monomials, gl(R), 

throughout coordinate space.  This is accomplished using the full Newton-Raphson 

equations, eqs. ( 3-15 ). Again the approximate Hessian is described in Appendices 3.6.2  

and 3.6.3.  Here it is only important to emphasize the need to have good starting values 

for the linear parameters before the nonlinear terms are optimized.   

3.4 Computational Results 

 The coupled adiabatic potential energy surfaces considered in this study describe 

the 1,2
1
A states of NH3.  The subspace of the full 6-dimensional nuclear coordinate space 

described by H
d
 is relevant to the well studied photodissociation reaction given in ( 3-1 ).   

This reflects the fact that the preponderance of the Rn used to define H
d
 were obtained 

from nonadiabatic surface hopping trajectories with initial conditions appropriate for 

reaction ( 3-1 ).  A three dimensional plot of the adiabatic potential energy surfaces for 
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the 1,2
1
A states evincing the ground state minimum, the minimum and saddle point on 

the 2
1
A potential energy surface and the minimum energy point of conical intersection, is 

provided in Figure 3-1.  Although at first glance this might appear to be a relatively 

straightforward computational problem, that turns out not to be the case. The H
d
 must 

accurately describe: (i) an extended 4 dimensional seam of conical intersection, for which 

points well removed from the minimum energy crossing point are accessible and likely to 

be relevant to the nonadiabatic photodissociation; (ii) a highly anharmonic minimum for 

the  state with a low barrier separating the region of the minimum from that of the 

seam of conical intersections;  and (iii) a ground state potential energy surface that must 

be well described over an energy range of ~ 6 eV while insuring that the representation is 

sufficiently diabatic to be suitable for quantum dynamics. 

 Previously we have constructed, using eq. ( 3-22 ), an H
d
 intended for use in 

describing reaction ( 3-1 ).
30

  The electronic structure description of the 1,2
1
A states of 

NH3,  multireference configuration interaction wave functions comprised of over 30x10
6
 

CSFs and  the form of  H
d
, which consisted of over 9000 linear terms defined by a total 

of over 27,000 energies, energy gradients and derivative couplings, is presented in Ref. 

30
.  This H

d
 was shown to provide and excellent representation of the ab inito data from 

which it was constructed.
30

  The utility of H
d
 for describing reaction ( 3-1 ) was tested by 

a fully quantum mechanical, 6 dimensional simulation of the v2 progression in the 

XA
~~

  absorption spectrum of NH3, including the line positions, intensities and line 

widths.  Although this spectrum had proven difficult to simulate previously,
54

 excellent 

agreement with the experimental results was found.
60

 

A
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 In this work our goals are two-fold, (i) to establish the utility of the Newton-

Raphson approach in eq. ( 3-23 ) in systems with conical intersections, and determine the 

potential benefits compared to the use of eq. ( 3-22 ) and (ii) to assess and illustrate the 

diabaticity of the derived diabatic  representation. 

3.4.1 Derivative Couplings 

 As noted previously the goal of the transformation to diabatic states is to 

minimize the derivative coupling in the diabatic representation, Ya

d (q;R) |ÑkYb

d (q;R)
q

, which is evaluated in terms of the residual derivative coupling as follows.  Using the 

definition the adiabatic derivative coupling  

fk

a,I ,J,(ab)(R)º Y I

a,(ab)(q;R) |ÑkYJ

a,(ab)(q;R)
q
 ( 3-25 ) 

from eqs. ( 3-4 ), ( 3-5 ) and their derivatives, we obtain 

fk

a,I ,J ,(ab)(R) = da

I (R)Ñkda

J (R)
a=1

N state

å  

+ da

I (R)
a,b=1

N state

å Ya

d (q;R) |ÑkYb

d (q;R)
q

db

J (R) ( 3-26 ) 

» da

I (R)Ñkda

J (R)
a=1

N state

å =
d

I (R)†(ÑkH
d )dJ (R)

Ea,J,(m)(R)-Ea,I ,(m)(R)
º fk

a,I,J,(m)(R) ( 3-27 ) 

The approximate equality in eq. ( 3-27 ) comes from neglecting the second term 

in eq. ( 3-26 ), the derivative coupling due to the quasi-diabatic states 

   

Yu

d .  The use of eq. 

( 3-5 ) to define the quasi-diabatic states guarantees that, in principle, the diabatic states 

can reproduce the adiabatic energies.  The question is how diabatic is the transformation.  

This is determined from eqs. ( 3-26 ) and ( 3-27 )         i        1 ≤ I < J ≤ N
state

,  the 

residual derivative coupling, )(
,,

R
JIa

k
f  fk

a,I ,J,(ab)(R) - fk

a,I ,J,(m)(R)  is related to the 
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quasi-diabatic state coupling, by the following system of linear 

equations 

d fk

a,I ,J (R) = da

I (R)
a,b=1

N state

å Ya

d (q;R) |ÑkYb

d (q;R)
q

db

J (R) 

= [da

I (R)
1£a<b£N state

å db

J (R)-db

I (R)da

J (R)] Ya

d (q;R) |ÑkYb

d (q;R)
q
 ( 3-28 ) 

For the N
state

 = 2 case considered here eq. ( 3-28 ) reduces to a simple appealing result: 

d fk

a,1,2(R)= Y1

d (q;R) |ÑkY2

d (q;R)
q
 ( 3-29 ) 

For a general case where N
state

 is arbitrary, we can rewrite the first equality in eq. ( 3-28 ) 

in a matrix form: 

DFk = DFk

d( )
D

† , ( 3-30 ) 

where 

DFk( )
I ,J

= d fk

a,I,J
R( ), Fk

d( )( )
a,b

º Ya

d (q;R) |ÑkYb

d (q;R)
q
, DI ,J = dJ

I
R( ) 

Since the diabatic-to-adiabatic transformation is an orthogonal transformation, the 

Frobenius norm of each component of the quasi-diabatic state coupling matrix is 

unchanged by the two transformations on its left and right side in eq. ( 3-30 ), giving  

DFk F
= Fk

d( )

F
 

d fk

a,I ,J (R)é
ë

ù
û

2

I ,J

N states

å = Y I

d (q;R) |ÑkY J

d (q;R)
q

2

I,J

N states

å  ( 3-31 ) 

That is, for any given point and a given component, the total amount of couplings 

between quasi-diabatic states is the same as the total amount of residual couplings. Thus, 

in any scenario, the magnitude ||df a,I ,J (R)|| is a direct measure of the quality of the quasi-
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diabatic representation.  For a rigorous diabatic basis, df a,I ,J (R), would vanish globally.  

As noted above this is not possible here. 

 Two comments concerning the derivative coupling are in order.  The ab initio 

determined derivative couplings cannot be described exactly in the current approach 

since the nonremovable part of the derivative coupling, cannot be described by a square 

truncated representation such as the one we use.
6
  This contribution becomes part of the 

residual coupling.  As we will see below, this contribution is small compared to the 

removable part, where the energy separation of the adiabatic states is small.   When the 

energy separation is large, although the residual coupling is an appreciable fraction of the 

actual coupling, neither is significant.  In dissociation channels where the total derivative 

coupling can become small, as noted below, care must be taken to avoid including the 

nonremovable part.
30

  The second point concerns the fact that the derivative couplings 

determined from H
d 

are necessarily due to internal coordinates only.  However the ab 

initio determined derivative couplings include contributions from overall rotations and 

translations.  These contributions, are not a problem, in principle, since they can be 

represented as electronic matrix elements of the form , where O
el
 is 

the total electronic gradient or total orbital angular momentum operator.
63

  One must only 

be careful to remove these contributions from f
a.I.J,(ab)

(R) prior to the fitting.   

3.4.2 Newton-Raphson equations 

 In this section we consider using eq. ( 3-23 ) to improve the result obtained from 

eq. ( 3-22 ).  Table 3-1 reports the RMS errors in the energies, energy gradients and 

derivative couplings obtained using eq. ( 3-22 ) and eq. ( 3-23 ).   Also tabulated are the 

Y I

a,(ab) Oel YJ

a,(ab)
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initial and final values of the norm of the gradient of L.  From Table 3-1 it is seen that 

use of eq. ( 3-23 ) reduces the root mean square (RMS) energy (energy gradient 

percentage error) from 77 cm
-1

(2.3%) to 33 cm
-1

(1.1%) while the magnitude of  the 

gradient, the right hand side of eq. ( 3-23 ), is reduced by a factor of 8, with, we 

emphasize, no change in the functional form.  A reduction of the RMS energy error of 

this size by increasing the number of terms in the expansion is a not a simple matter.  

Here the percent error is defined as the magnitude of the error divided by magnitude of 

the ab initio quantity.  As seen in Table 3-1 similar improvements are found for the 

derivative couplings whose magnitudes are within the range 1-10.  The absence of 

improvement for the derivative couplings with magnitudes > 10 reflects the fact that the 

corresponding nuclear configurations are nodes, so that these derivative couplings are 

already fit 'exactly'.  Derivative couplings with magnitudes < 1, as we illustrate below, 

occur in regions where the energy separation of the adiabatic states is large and therefore 

are of no dynamical consequence. 

  A more careful analysis of the improvement is provided in Figure 3-2 which plots 

the magnitude of the relative error for the norm of the energy gradient for each state 

against the norm of that quantity at each of the  ~2500 nuclear configurations.  Figure 3-3 

reports similar results for the derivative couplings.  In these figures, the red (black) dots 

show the results for  eq. ( 3-23 ) (eq. ( 3-22 )).  For clarity the data is presented twice, 

once with the red dots over the black dots and conversely.  Despite the fact that a log 

scale is required to represent the range of data, the significant improvement for gradients 

on the order of 10
-3 

and elimination of outliers is evident. 
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Table 3-1. RMS errors for H
d
 determined from eqs. ( 3-22 ) and ( 3-23 ). 

 Eq. ( 3-22 ) Eq. ( 3-23 ) 

Energy (cm
-1

) 77.0 33.2 

Energy Gradients (%) 2.33 1.14 

Derivative Couplings(%)   

||f|| >10 (192 points) 0.594 0.570 

||f|| >1   (612 points) 7.43 4.71 

Norm  of Lagrangian Gradient  4.29x10
-2

 6.04x10
-3

 

 

 

 

 
 

Figure 3-2. Plot comparing the accuracy of  H
d
 constructed from eq. ( 3-22 ), black dot 

and  eq. ( 3-23 ), red dots.  Magnitude of residual energy gradient plotted against the 

magnitude of the energy gradient.  These two figure are ploted from the same data. Left: 

Red on top;  Right: Black on top. 
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Figure 3-3.  Plot comparing the accuracy of  H

d
 constructed from eq. ( 3-22 ), black dot 

and  eq. ( 3-23 ), red dots.  Magnitude of residual derivative coupling plotted against the 

magnitude of the derivative coupling. 

 

 Table 3-2 considers how the reduction of residual gradient in eq. ( 3-23 )  is 

reflected in the key stationary points on the 1,2
1
A potential energy surfaces.  These 

stationary points are taken as nodes so that the locations and vanishing of the gradients 

are not an issue.  We are only concerned here with the harmonic frequencies.  Table 3-2 

addresses this issue, comparing the frequencies obtained from the H
d
 determined from 
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eq. ( 3-22 ) and from eq. ( 3-23 ) with the ab initio results and reporting the 

corresponding unsigned error.  From Table 3-2 it is seen that although some frequencies 

actually deteriorate slightly using eq. ( 3-23 ), the preponderance of the errors, which are 

generally not large to begin with, are reduced by factors of 2, 3 or more, with some of the 

large unsigned errors for NH2 showing dramatic improvement. 

 

Table 3-2 H
d
 and ab initio determined frequencies and their unsigned errors (Uerror) at 

extrema. |Err| is the magnitude of the difference between the H
d 

and ab initio determined 

quantity. All quantities in cm
-1

. 

Extremum Mode Ab initio Eq. ( 3-22 ) |Err| Eq. ( 3-23 ) |Err| 

NH3(   min) 1 3456.26 3447.08 9.18 3450.70 5.56 

 2 1066.24 1093.12 26.88 1077.63 11.39 

 3 3584.10 3581.40 2.70 3578.64 5.46 

 4 1674.48 1655.33 19.15 1659.96 14.52 

NH3(   ts) 1 3620.10 3610.00 10.10 3609.06 11.04 

 2 870.00i 847.10i 22.90i 858.13i 11.87i 

 3 3830.50 3825.20 5.30 3826.79 3.71 

 4 1584.00 1575.50 8.50 1589.97 5.97 

NH3(  min) 1 2793.70 2838.70 45.00 2787.11 6.59 

 2 754.10 780.70 26.60 782.55 28.45 

 3 2955.80 2949.70 6.10 2953.72 2.08 

 4 1334.30 1377.70 43.40 1334.47 0.17 

NH3(   ts) 1 2003.32i -2000.10i 3.22i -2001.21i 2.11i 

 2 475.29 508.05 32.76 463.68 11.61 

 3 962.68 981.30 18.62 979.28 16.60 

 4 1435.37 1419.51 15.86 1428.94 6.43 

 5 3027.80 2995.81 31.99 3011.68 16.12 

 6 3244.42 3231.10 13.32 3239.08 5.34 

NH2(   min) 1 3350.23 2934.62 415.61 3415.15 64.92 

 2 1539.57 1556.79 17.22 1563.71 24.14 

 3 3443.40 3427.33 16.07 3498.00 54.60 

NH2(  min) 1 3612.56 3796.34 183.78 3683.38 70.82 

 2 978.14 935.75 42.39 992.28 14.14 

 3 3924.56 4154.31 229.75 3971.20 46.64 
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3.4.3 The Diabatic Character of the Representation 

 One of the principal advantages of the present approach is that it directly 

addresses the quality of the diabatic representation by quantifying the residual coupling.  

In this section, we juxtapose the residual derivative coupling with the adiabatic energies 

to illustrate the quality of the constructed diabatic representation.  Particular attention is 

paid to the quality of the diabatization near conical intersections. 

 The quality of the diabatic representation obtained by the method used in this 

work is addressed in Figure 3-4 to Figure 3-7, which report the ab initio determined 

adiabatic energies Ea,I ,(ab)
, Ea,J,(ab)

, solid lines, and H
d
 determined adiabatic energies 

Ea,I ,(m)
, Ea,J,(m)

, dashed lines, together with || f
a,I,J, ab( )(R)|| , ||  || along several 

paths or in regions.  In these figures the points denoted by filled (open) circles were 

included (not included) in the Rn used to  construct H
d
.  Below we will refer to the 

included Rn
 
as members of the fit data set and the Rn not included as interpolated points.  

Note that except for Figure 3-7, where differences are observed at high energies, the ab 

initio and H
d
 determined adiabatic energies are indistinguishable on the scale of the plots. 

df a,I ,J (R)
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(a)  Global dissociation path 

 

 

(b) Path from the A  state  minimum to the A  state saddle point 

Figure 3-4.  Plot of energies  Ea,I ,(ab)
, Ea,J,(ab)

 (black, solid lines) Ea,I ,(m)
, Ea,J,(m)

 (black 

dashed lines) derivative couplings  || || ( dark blue, solid lines) and residual 

coupling || df
a,I ,J  ||  (light blue, dashed lines) as a function of R(N-H) along a dissociative 

path which  is the union of points connecting the A  state minimum to the A  state saddle 

point;  the A  state saddle point to the minimum energy crossing (MEX) point; and the 

MEX point toward the asymptote.  Plate (a) reports the global path.  Plates (b) and (c) 

report restrictions of that path to: (b)  a path from the A  state  minimum to the A  state 

saddle point and (c) a path near the MEX.  Filled (open) circles points included ( not 

included ) in the fit data set.   

f a,I,J,(ab)
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(c) Path near the Minimum Energy Crossing (MEX) 

Figure 3-4. Energies, derivative couplings and residual couplings along paths.(Continued) 

 
Figure 3-5. Plot of energies Ea,I ,(ab)

, Ea,J,(ab)
 (black, solid lines) Ea,I ,(m)

, Ea,J,(m)
 (black 

dashed lines), derivative couplings  || || (dark blue, solid line ) and residual 

coupling || df
a,I ,J  ||  (light blue, dashed line) along a path centered at the minimum energy 

conical intersection as a function  as a function of the out of plane angle.   Filled (open) 

circles are points included ( not included ) in the fit data set.   

f a,I,J,(ab)
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Figure 3-6. Plot of energies Ea,I ,(ab)

, Ea,J,(ab)
 (black solid lines), Ea,I ,(m)

, Ea,J,(m)
 (black 

dashed lines), derivative couplings  || || (dark blue solid line) and residual 

coupling || df
a,I ,J  ||  (light blue, dashed lines) as a function of  the out of plane angle from 

the planar saddle point on the 1
1
A potential energy surface to the ground state minimum.  

Filled circles points included  in the fit data set. 

 

Figure 3-7.  Plot of energies  Ea,I ,(ab)
, Ea,J,(ab)

 (black, solid lines) Ea,I ,(m)
, Ea,J,(m)

 (black 

dashed lines), derivative couplings  || || (dark blue, solid line) and residual 

coupling || df
a,I ,J  ||  (light blue dashed lines) along a path starting from the MEX to a 

distinct local minimum energy conical intersection, MEX-L with a significantly different 

molecular structure.  Filled (open) circles points included (not included) in the fit data set.   

The path is predominately along the out-of-plane angle, along which direction the 

diabatic states are coupled.  Note that by moving along the mirror image of this path one 

can achieve a full rotation and return to the MEX .  

f a,I,J,(ab)

f a,I,J,(ab)
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Panels of Figure 3-4 present a path connecting the minimum energy point on the 2
1
A 

potential energy surface to the saddle point on that surface; the saddle point to the 

minimum energy point on the 1,2
1
A state conical intersection seam; and the seam point to 

the product channel.  This path is essential for the description of the nonadiabatic 

photodissociation process, given by reaction ( 3-1 ).  Note that the percentage error in the 

   iv  iv      li g “  ”       i         i  l i        i   i   i y  i    ||  || / ||

f
a,I,J, ab( )(R) ||~ 10

-7
!   Equally significant, the residual coupling remains small in the 

vicinity of the conical intersection.  See Figure 3-4 panel (c).  This is particularly 

gratifying since these points are interpolated points.   Thus, the diabatic representation of 

the vicinity of the conical intersection is excellent.  This is not unexpected since the 

points of conical intersection are treated as nodes, but the results evinced in this figure are 

reassuring.  Focusing on the region in panel (b), the region of A  state minimum and 

saddle point, the derivative coupling and the residual couplings, are seen to be small.  As 

R(N-H) becomes large, a small increase in ||  || is observed which is most likely 

due to the nonremovable
6
 part of f I,J,ab(R) .  f I,J,(m)(R)  vanishes asymptotically as 

required.  However the nonremovable component of f I,J,ab(R) persists and could lead to 

spurious long range coupling if it were not removed.  In our surface hopping trajectories 

used to determine the Rn no evidence of spurious exit channel hops was detected.
30

  

Figure 3-5 continues our study of the vicinity of the minimum energy conical 

intersection, this time as a function of the out of plane angle, starting from the  (planar) 

minimum energy conical intersection.  As in Figure 3-4, this plot indicates how 

accurately the conical intersection is described.  Also evident in that figure is how 

quickly the ab initio derivative coupling decays as a function of the out of plane angle 

df a,I ,J (R)

df a,I ,J (R)



 93 

and how well H
d
 describes that change, again using interpolated points.  Figure 3-6 

examines another region in which nonadiabatic effects are expected to be negligible.  

Shown in that figure is a path connecting the C3v
 
minimum energy geometry on the 

ground state potential energy surface to the D3h saddle point for inversion.  Both the 

derivative coupling and the residual coupling are small as expected.  Figure 3-7 presents 

a path, as function of the out of plane angle, connecting two points on the seam of conical 

intersections in distinctly different regions of nuclear coordinate space.  The small 

residual couplings, obtained with interpolated points, in the vicinity of two distinct 

conical intersections is quite gratifying.  These results illustrate the fact that the behavior 

of the derivative couplings near the minimum energy conical intersection considered in 

Figure 3-4 and Figure 3-5 is typical of points on the seam of conical intersection defined 

by H
d
.  Taken together the results in these figures strongly support the quasi- diabatic 

character of H
d
. 

Figure 3-8 presents a more global picture of the quasi diabatic representation plotting 

H1,1

d , H2,2

d  and H1,2

d .  It is interesting to observe how the region of the saddle point on the 

2
1
A state, a strongly avoided intersection of the 2

1
A  and 3

1
A  states,  is reproduced by a 

single diabatic state. This region is illustrated in the figure with an arrow. Although the 

scale is necessarily large for H1,1

d   and H2,2

d  their smoothness is evident. 
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Figure 3-8. Diabatic representation as a function of R(N-H) and out-of-plane angle. Top: 

H1,1

d  and H2,2

d  ; Bottom: H1,2

d  

3.5 Summary and Conclusions  

 In this work an approximate Newton Raphson procedure is introduced which 

leads to a more precise quasi-diabatic representation of adiabatic potential energy 

surfaces coupled by conical intersections.  The quasi diabatic representation uses 

polynomials with flexible origins to improve the description locally.  The Newton-

Rapshon procedure will enable optimization of these origins.  The properties of the 

derived quasi-diabatic representation are studied.   

3.6 Appendices 

3.6.1 Form of Singule Coordinate Functions Used to Construct H
d
 

 As discussed in previous work
28, 30

 the g
l 
are constructed from four basic functions 

of the internal coordinates, wi: 



 95 

 Exponential64       a

jijiji
rrsrw

,,1,1
exp   

 Gaussian       2

,,2,2
exp

b

jijiji
rrsrw   

 Reciprocal64          d

jiji

c

jijiji
rrrrsrw

,,,,1,3
exp   

 Dot-Cross product15 


lkljkjlikijilikiji

lkji
rrrrrrw

,,,,,,,,,

,,,

4
rrr   

( 3-32 ) 

Gaussian functions are centered on specific origins and their values can be made to 

vanish quickly when stepping away from those origins.  They are local basis functions 

that serve to describe the region near their origin.  The origins, consequently, are key  

nonlinear parameters.    

 The gl(R) are constructed as products of the w and have the following monomial 

form: 

    
 

  
 

 

 
 



mkji

mkji

m Nji

jiml

l

mkji
l

jim
wrwg

,,,

,,,

4

3

1 1

,

,,,,,




R  ( 3-33 ) 

    1 ≤ l ≤ N
g
, where N

g
 is the size of polynomial basis. Note in eq. ( 3-33 ), (l) is a label, 

not an exponent, but  and  are exponents.  Here  (i,j,k,m), again a label not an 

exponent, denotes the allowed combinations of four atoms. The order of the monomial gl, 

o(l), is given by 

     






jim

l

mkji

jim

l

jim
lo

,

,,,

,

,,
  ( 3-34 ) 

The choice of and , which are introduced in eq. ( 3-32 ), is in principle 

arbitrary.  Increases in and  are used to reduce the error in the representation of 

the adiabatic data, at the expense of a larger N
g
. 

 
In previous work the nonlinear 

parameters sj,  ,  and , were determined by trial and error in 

   

am,i, j

(l )

   

bi, j,k,m

(l )

   

am,i, j

(l )

   

bi, j,k,m

(l )

   

am,i, j

(n)

   

bi, j,k,l

(n)

   

a

  

ri, j

a(i, j)( ),ri, j

b(i, j )( ) ,ri, j

c(i, j)( )

   

ri, j

d (i, j)( )
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the range sj >0, >0     α >1/2 .  T            i                ill b        i         

work, to determine optimal values of these quantities. 

3.6.2 Second derivatives of Unknown Coefficients 

 Through straightforward but tedious algebra the first and second derivatives with 

respect to Vj, l j
 and g j

 can be determined by differentiating eq. ( 3-14 ). For the 

gradients we find 

+ + +
x

t


V
V

†  ( 3-35 ) 

and then for the second derivatives 

 

  

  

      ( 3-36 ) 

where differentiating the second equality in eq. ( 3-12 ), gives,  

  ( 3-37 ) 

 ( 3-38 ) 

Here x,y Î (Vi,l j,gk ).  Using the results in eq. ( 3-36 ), ( 3-37 ), ( 3-38 ) and the fact  that  

   

ri, j

xi , j( )
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 ( 3-39 ) 

we obtain the following hessian matrix elements 

0

2






ji


 ( 3-40 ) 

 ( 3-41 ) 

 ( 3-42 ) 

 ( 3-43 ) 

 ( 3-44 ) 

 ( 3-45 ) 

where the intermediate quantities are evaluated using 

 ( 3-46 ) 

 ( 3-47 ) 

Our working approximation is that we can ignore 
 

yx

L
m

k




2

 terms because they are 

multiplied by     λ    i          ll q    i i   i       i  i  q  li   iv ly 
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correct.  Thus, the working approximation for the hessian is given by equations ( 3-40 ),  

( 3-41 ), ( 3-42 ) and the following approximations to eqs. ( 3-43 ), ( 3-44 ), ( 3-45 )  

 ( 3-48 ) 

 ( 3-49 ) 

 ( 3-50 ) 

3.6.3 Evaluation of 
k

n

I

z

 )(Rd
 

 Since W is given by 
 
its derivative 

with respect to the parameter  zk requires 
k

n

I

z

 )(Rd
.  This is obtained from the derivative 

of eq. ( 3-4 ) as follows: 

     )()()(
†)(,,)(,,†

RddRdRHd
J
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ImIamJaJd

k

I

z
EE

z 
















 ( 3-51 ) 

so  

 
 


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
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( 3-52 ) 

or 

 )()(

)()()(
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)(

)(,,)(,,

†
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
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
 

( 3-53 ) 
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This is valid provided we are not near a conical intersection where 

Ea,I ,(m)(R) = Ea,K,(m)(R).   

 At a conical intersection of states I  and J,  it might appear that 
k

I

z


†

)(Rd
d

J
(R) is 

not well defined but this is not the case. The desired derivative is obtained from the 

derivative of the orthogonality constraint
65

, which requires that at a conical intersection d
I 

are chosen so that the g and h vectors are orthogonal,  that is, 0hg  ,  where 

)(,,)(,,
2

mJJ

k

mII

kk
LLg    and 

)(,, mJI

kk
Lh    ( 3-54 ) 

The  derivative of 0hg   is obtained  as follows 
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   ( 3-55 ) 

Similarly 
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       +
1

2
(d I )†

¶(ÑHd )

¶zk

(d I )- (dJ )†
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é

ë
ê

ù

û
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Using eqs. ( 3-55 ) and ( 3-56 ) we construct 

0








 ghhg

kk
zz

 ( 3-57 ) 

which gives the desired  equation for  
k

J

I

z

d
d

†
)( : 

 

 ( 3-58 ) 

Note that when N
state 

is greater than 2, eq. ( 3-58 ) includes terms 
k

K

I

z

d
d

†
)( which 

are obtained from eq. ( 3-53 ).  For clarity we note that in eq. ( 3-58 ) the dot products, h  

and g  refer to the coordinates components, that is the gradient components of  ÑH
d  or 

the vector components of LK,J,(m)
, which come from ÑH

d  via eq. ( 3-13 ). 

3.6.4 Formulation and solution of Eq. ( 3-23 ) 

 In this section we explain how terms included in eq. ( 3-23 ) are assembled and 

the equation subsequently solved.  From eq. ( 3-37 ) we see that, the quantity required for 
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eq. ( 3-23 ) that is not already available from eq. ( 3-22 ) is 
k

x

ljJIn

V

W




;,,,

, x = lsq or ex.  

From eq. ( 3-21 ), 
k

x

ljJIn

V

W




;,,,

 is given by (where the superscript x  is omitted as irrelevant) 
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with J

k

I

V
d

d
†

)(




  given by eq. ( 3-53 ) or ( 3-58 ) depending on  Ea,I ,(m)(R)- Ea.J.(m)(R) . 

 The approximate Hessian described in Appendix 3.6.2 when used in eq. ( 3-23 ), 

gives an extension of the standard Gauss-Newton method to problems with constraints, 

being equivalent to the Gauss-Newton method when no exact equations are present.  It is 

well known that, unlike Newton-Raphson method, Gauss-Newton method is not 

guaranteed to be locally convergent.  Even thought the convergence of Gauss-Newton 

method can approach quadratic when the approximate hessian is well conditioned, such a 

favorable situation has never been observed in the present work.   Divergence has been 

observed when during the fitting procedure H
d
 exhibits qualitative changes. 

 On the other hand, the original method (eq. ( 3-22 )) has shown a tendency to 

enter small oscillations, but behave more stably when the step sizes are large.  This is 

caused by the fact that the J

k

I

V
d

d
†

)(




 described by eq. ( 3-53 ) can take large values when 

states are energetically close but not yet degenerate enough to use intersection adapted 
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coordinates and equation ( 3-58 ).   For this reason, eq. ( 3-22 ) is used at the start of the 

fitting procedure and eq. ( 3-23 ) used when the coefficients cease to change dramatically.   

 Even in this situation, however, the fitting procedure is not guaranteed to 

converge and can be subject to the same divergence problem of the Gauss-Newton 

methods.  Two techniques, damping and line search, both routinely used for Gauss-

Newton and Newton-Raphson methods, are applied to counter such problems.   

 In damping a shift is added to the hessian, so that eq  ( 3-48 )  becomes 

 ( 3-60 ) 

t is an arbitrary nonnegative number.   When no exact equations are present, the method 

becomes equivalent to the Levenberg-Marquardt Algorithm,
66

 which is the algorithm 

used in most nonlinear least squares fitting programs.   The size of the damping 

parameter t  can be adjusted dynamically during the fitting procedure.  Note that t  

appears only on the left hand side of the equation while t appears on both sides.  As a 

result, unlike the flattening term t, t  does not affect the final converged result.  Instead, 

t  can be properly described as a damping parameter that only affects the rate of 

convergence.  This method is intermediate between a Newton type method and a gradient 

descent method, which balances the stability of gradient descent and rapid convergence 

of Newton-type methods.  The parameter is chosen in the range of 10
-3

 and 10
-7

 

depending on the stability of the convergence procedure. 

 In the line search approach the program steps along the direction pointed by the 

solution vector of eq. ( 3-23 ), and locates the point where the norm of the gradient of 

Lagrangian reaches a minimum.  This point is taken as the starting point for the next 

iteration   The line search technique ensures that the gradient of the Lagrangian will 
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always decrease and thus is immune to oscillations.   However, the line search can be 

trapped in a very shallow local minimum.  It is therefore only used when approaching 

final convergence.    

 As in Gauss-Newton method, because the hessian matrix is approximate, when 

damping term is absent convergence is not guaranteed and in general will not be reached. 

When a large enough damping term is present, the method has a guaranteed linear 

convergence.  The linear convergence can be extremely slow when the hessian is ill-

conditioned.  However, the quality of the fit will cease to change significantly when this 

situation occurs and we therefore terminate the procedure at this point.   

 Finally note that while the line search guarantees the norm of the gradient 

decreases, it does not guarantee the constraints be exactly satisfied until the final 

convergence is reached.  We therefore monitor the exact equations and will only 

terminate the procedure when that part error becomes sufficiently small. We are presently 

studying the relation between the residual norm of the gradient of the Lagrangian and the 

quality of the fit.    
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Chapter 4 Computational Determination of the      Absorption 

Spectra and Photodissociation Product Branching Ratios of NH3 and of 

ND3 using H
d
 and Full Six Dimensional Quantum Dynamics 

4.1 Abstract 

A recently developed method to represent adiabatic electronic states coupled by 

conical intersections has been used to construct a full six dimensional quasi-diabatic 

representation of the 1
1
A and 2

1
A states of NH3.  This representation is expected to be 

appropriate to simulate the photodissociation of ammonia when it is excited to the 2
1
A 

electronic state.  In this work the electronic structure aspects of this quasi-diabatic 

representation are analyzed.  This representation is then used as the basis for a simulation 

of the ←  absorption spectrum, dominated by a progression in the v2 mode, using a 

full six dimensional quantum mechanical treatment of the nuclear motion.  Then the non-

adiabatic dynamics is investigated with six-dimensional wave packet method.  Results are 

reported for both NH3 and ND3. This simulation provides the most accurate 

computational determination of this absorption spectrum and product /  

branching ratios reported to date.  These results serve to validate the quasi-diabatic 

representation and set the stage for subsequent studies of vibrationally mediated 

photodissociation of NH3. 

4.2 Introduction 

 It has been almost 80 years since Leifson first reported the  state absorption of 

ammonia beginning at 220 nm.
1
  The diffuse character of the absorption reflects strong 
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predissociation.  In the intervening decades this state has been probed using a plethora of 

experimental and theoretical techniques.  It is now clear that the photochemistry of the  

state reflects the fact that this state is quasi bound in the Franck-Condon region and that 

beyond a small barrier in the dissociation (N-H) coordinate a seam of conical 

intersections is encountered.    

 Over fifty years after its initial observation, Vaida et al.
2
 using a cold supersonic 

jet,  reported  a progression in the umbrella mode, v2, in the  band absorption of NH3.  

This progression reflects the change from a trigonal structure in the  state to a planar 

structure in the  state.
3
  The lifetimes of the individual levels of the v2 progression were 

subsequently measured by several groups.
4-7

  Interestingly, however, the anticipated 

progression in the symmetric stretch, the v1 mode, based on the greater N-H bond length 

in the  state when compared to the  state
3
 was not observed by Vaida et al.  More 

recent vibrationally mediated photodissociation experiments have provided access to 

combinations of levels in the  state not previously seen.
8-10

   

 The lifetimes of the v2 levels and the absence of an observed progression in v1 are 

related to the efficiency of intramolecular vibrational energy transfer.  The vibrational 

mediated photodissociation experiments raise further questions about intramolecular 

vibrational energy transfer but these experiments also address how the seam of conical 

intersection impacts the products of the dissociation, NH2( X 2
B1 )+H or NH2(

2
A1) +H. 

The absence of a progression in v1 has been attributed to a near 3:1 degeneracy of the v1 

and v2 modes
11

 or a sufficiently low barrier to allow direct dissociation from an excited v1 

mode.
7, 12

  This barrier to  state dissociation has been determined from ab initio 

calculations and inferred from experimental measurements.  Computed barriers include 
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the early work of McCarthy et al. 
13-14

 who reported a barrier of 3226 cm
-1

 and more 

recent work of Bach et al.
8
 and  of Li et al.

15
 who reported barriers of 2348 cm

-1
 and 1750 

cm
-1

, respectively.  These results should be compared with the experimental estimate of ~ 

2100 cm
-1

 of  Henck et. al
7
 based on microwave detected, microwave-optical double 

resonance measurements and supported by the measured lifetimes of Bach et al.
8
 

obtained from vibrationally mediated photodissociation action spectroscopy. 

 The final state resolved dynamics of ammonia photodissociation has been 

investigated experimentally by several groups.
16-26

  The production of the ground state 

NH2 fragment clearly indicates nonadiabatic coupling between the X  and A  states of 

ammonia. It is now well established that the nonadiabatic transition is facilitated by a 

seam of conical intersections encountered after the initial barrier near the Franck-Condon 

region is traversed.
13-15, 27-30

  

 The photodissociation dynamics following A  state absorption have been the 

subject of numerous computational studies as well,
31-37

 including those of Dixon who 

determined the  state lifetimes using three
31

 and higher dimensional
32

 model potential  

energy surfaces; those of Bonhommeau et al
36

, denoted BVTJ below, who simulated the 

vibrationally mediated photodissociation spectrum measured in Crim's group,
8-10, 38

 using 

trajectory surface hopping techniques;
34, 39

 and those of Lai et. al
35

, denoted LLXG below, 

who computed the lifetimes of the umbrella mode levels using full 6-dimensional 

quantum dynamics.  The results in the LLXG work were subsequently reproduced semi-

quantitatively using the same coupled potential energy surfaces by Giri et al.
40

, denoted 

GCSW below, using the multiconfiguration time-dependent Hartree (MCTDH) method,
41-

42
 The quantitative differences in both energies and widths between the results of LLXG 

A
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and those of GCSW are presumably attributable to the approximate nature of aspects of 

the MCTDH procedure. The studies of BVTJ, LLXG and GCSW are notable since they 

employed the same full six dimensional approximate diabatic representation of the 1,2
1
A 

states of NH3 based on ab initio data.
15

  The approximate or quasi-diabatic representation 

was constructed using the fourfold way method of Nakamura and Truhlar.
43-44

  The use of 

an approximate diabatic representation is a consequence of the seam of conical 

intersections coupling the 1,2
1
A adiabatic states.  The qualifiers approximate or quasi in 

front of diabatic, which we shall omit below, remind us that rigorous diabatic states do 

not exist for general polyatomic molecules.
45-47

   

 The representation of ab initio determined adiabatic state PESs coupled by 

conical intersections has long been a goal of quantum chemistry.   Efforts to find diabatic 

representations include the vibronic coupling model of Köppel, Domcke and 

Cederbaum;
48-56

 the perturbation theory based work of Mead, Truhlar and Varandas;
57-58

 

the four-fold way diabatization schemes of Truhlar,
43-44

 based on earlier work of 

Ruedenberg;
59

 the regularized diabatization procedure of Köppel;
60

 the block 

diabatization method of Pacher, Cederbaum and Köppel;
61-62

 the generalized adiabatic 

angle method of Varandas
63-64

 and the Shepard interpolation based method of Collins, 

Evenhuis and coworkers.
65-68

  Approaches based on a combination of the interpolated 

moving least squares
69-70

 and the general dynamically weighted
71

 state averaged 

multiconfiguration self consistent field methods also show promise in this regard.  In 

Chapter 2, we introduced an approach, in which a diabatic Hamiltonian, H
d
, is 

constructed with polynomial expansions of its matrix elements.  In Chapter 3, this 

approach was generalized and given a more flexible and rigorous mathematical 
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framework. H
d
 is capable of representing, ab initio energies, gradients and derivative 

couplings over a wide range of geometries including those for dissociated species and 

seams of conical intersections.  Further since derivative couplings are included in 

defining the representation it is quantifiably diabatic in a least squares sense.  However 

this method has yet to be tested in a practical calculation.   

 In the vibrationally mediated photodissociation experiments reported by Crim's 

group,
8-10, 38

  a dramatic difference in the NH2 A / X  branching fraction was found 

depending on whether the X  state is excited to  v1= 1 or to v3 = 1, prior to dissociation 

through the A  state by a second photon.  This difference in the branching fraction is 

attributed to differences in the dynamics near the 1,2
1
A conical intersection seam noted 

above.  The nonadiabatic dynamics study of BVTJ, despite a very careful analysis, was 

unable to explain the measured branching fractions.   Further the line widths of the v2 

levels computed by LLXG using a full 6 dimensional quantum treatment, systematically 

over estimate the measured line widths of this mode and the spectral intensity distribution 

was poorly approximated.  The lack of fully satisfactory agreement between these careful 

dynamics studies and the relevant experimental measurements suggests the need to 

reconsider the determination of the coupled diabatic state representation of the 1,2
1
A 

states.  

 In this work then an H
d
 developed using the methods described in Chapter 3 and 

appropriate for simulating NH3 photodissociation will be analyzed.  This diabatic 

representation will then be validated by comparing the measured line positions, 

intensities
6
 and lifetimes

4, 6-8
 of the umbrella vibrations with computed values based on 

the coupled diabatic state description of the 1,2
1
A states of NH3.  This simulation/analysis 
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of the absorption spectrum, will employ the full 6 dimensional, accurate, fully quantum 

mechanical treatment of the nuclear dynamics of LLXG.   The H
d
 produced in the 

pioneering work, of Li, Valero and Truhlar
15

 denoted LVT below, is, to our knowledge 

the only other approximate diabatic H
d
 available for this system so that comparisons to 

that work are inevitable.  

 The computed lifetimes are sensitive to the region of the minimum and the barrier 

to dissociation on the A  state.  The region of the seam of conical intersections, which is 

responsible for the branching between  X  and  states of NH2, is very carefully 

described by H
d
.
72

  However its validation using this full dimensional quantum dynamics 

approach  is quite costly and will be the subject of  future work.  

 Section 4.3 reviews the form of H
d
, its construction and the full dimensional 

quantum determination of the positions, intensities and lifetimes of the v2 levels.  Section 

4.4 describes the electronic structure aspects of the representation.  Section 4.5 presents 

and discusses the positions, intensities and lifetimes of the v2 levels of the  state. The 

consequent validation of H
d
 is also discussed.  Section 4.6 summarizes and discusses 

directions for future studies. 

4.3 Theoretical Approach 

4.3.1 Diabatic Representations 

i.   Diabatic States and the Reference Geometry 

 The details of constructing H
d
 have been described in Chapter 2 and Chapter 3.  

Here we summarize the key points so as to be able to discuss the constructed H
d
.    

A

A
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The diabatic states Yu

d
q;R( )  are chosen to agree with the adiabatic states 

Y I

a,(ab)
q;R( )  at the reference point R0.

73
 Here  is an adiabatic state, with energy 

E
a,I,(ab)

, determined from ab initio calculations, q denote the electronic coordinates and R 

the Cartesian coordinates of the N
at
, nuclei.  This choice of diabatic representation is 

permitted as the diabatic states are defined up to a single arbitrary, geometry independent, 

unitary transformation.  Since at R0,  is an adiabatic state, it carries an irreducible 

representation of the CNPI
74-76

 group.  For ammonia the CNPI group is isomorphic to 

D3h. We chose R0 to be a point with D3h point group symmetry so that the CNPI 

symmetry of the diabatic states at R0 can be determined from the D3h transformation 

properties of the adiabatic states at R0.
75

 

Using H
d
 the electronic Schrödinger equation is given by 

  0dRIRH 
JmJad

E )()(
)(,,  ( 4-1 ) 

Here the superscript (m) indicates that the results come from the model Hamiltonian H
d
, 

rather than the ab initio wave functions. The diabatic states are constructed from the 

adiabatic states, using 






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J
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J
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d

u
dd

1

)(,

1

1)(,
)();()())(;();( RRrRRrRr  ( 4-2 ) 

From eqs. ( 4-1 ) and ( 4-2 ) and their derivatives, with the derivation given in section 

3.4.1, one obtain the derivative couplings between the quasi-diabatic states as:   

   

statesstates
N

JI

d

Jk

d

I

N

JI

JIa

k
f

,

2

,

2,,
);(|);()(

q

RqRqR  , ( 4-3 ) 

where there residual coupling d fk

a,I,J (R)
 
is the difference between ab initio derivative 

couplings and the couplings generated by the adiabatic-to-diabatic transformation, which 

is given by the fit: 

Y I

a,(ab)

   

Yu

d
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)(
,,

R
JIa

k
f  )(

)(,,,
R

abJIa

k
f - fk

a,I ,J,(m)(R)  

Therefore norm of residual couplings d fk

a,I ,J (R)
 
can be used as a direct measure of the 

degree of diabaticity of the representation. 

ii. Diabatic Hamiltonian 

(a) General Form 

H
d
 is expanded in terms of basis matrices, B

u,v
, as : 

 ( 4-4 ) 

Details of the definition have been discussed in the previous chapter, in section 3.3.1. 

The polynomials p
(n)

(R)
  
are symmetry adapted according to the CNPI group.  The 

p
(n)

(R) are constructed from basic monomials  using . 
 
is 

a standard projection operator
77

 for the 
th

 irreducible representation of the CNPI group 

    xx
O

P

xG

ˆ
1

ˆ
*)(

 
  ( 4-5 ) 

Here OG is the number of group elements, x, whose corresponding operator is denoted . 

Since only 1-dimensional representations will be required here, given G(m )(x)  the 

irreducible character, and the effect of the group operations, , on the functions gl, it is 

straightforward to evaluate . 

 The projector used in eq. ( 4-5 ) depends (only) on the block of H
d
, and different 

projections are required for different blocks.  For its contribution to B
u,v

 to be 

nonvanishing, a symmetry adapted p
(n)

 
 

should transform as the direct product 

     viruirn  , where ir(u) is the irreducible representation carried by Yu

d .  This 

  

gl(n )(R)

  

ˆ P m(n )gl(n )(R) = p(n )(R)

   

ˆ P m

   

m

   

ˆ x 

   

ˆ x 

  

ˆ P m(n )gl(n )
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result, which is also used in Refs. 
30,15

, is rigorous at R0.  Its utility is demonstrated 

numerically, in Sec. 4.4. 

(b) Form of the monomials 

 As discussed in appendix 3.6.1of the previous chapter, we use a generalization of 

an idea introduced by Bowman and coworkers to describe a single adiabatic potential 

energy surface
78

 to correctly describe the bond-breaking process. Four distinct basic 

functions of the internal coordinates, wi, are used, given in eq. ( 3-32 ). 

 The gl(R) are constructed as products of the w and have the monomial form given 

by eq. ( 3-33 ). The order of the monomial gl, o(l), is given by eq. ( 3-34 ).  In this work, 

 
and , which are introduced in eq. ( 3-33 ), and the parameters sj, α, ri, j

a( )
, ri, j

b( )
,  

ri, j

c( ) and ri, j

d( ) , are chosen by trial and error in the range sj >0, ri, j

x( ) >0 and α >1/2 .  

iii.  Parametrization of H
d 

The gl from which the p
(n)

 are constructed are enumerated with the help of Table 

4-1. Parameters for gl.  Noting that there are three NH and three HH internuclear 

distances, ri,j, there are 34 functions in that table.   Denote the order of the j
th

 function in a 

given gl as nj
.
.  Then the p

(n)
  are constructed from monomials, gl, satisfying all the 

following constraints, on the nj: (i) the  total order is lower or equal to 4 ( 4

34

1


j

j
n ) ; 

(ii) the maximum total order of the NH Gaussian functions is 3; (iii) the maximum total 

order of the HH Gaussian  functions is 3; and (iv) the maximum total order of any 

reciprocal function is 1.  Also reciprocal functions with 0 shifts in the denominator only 

appear in 1st order monomials.  After projection and elimination of symmetry zeros, we 

find N
c
 = 9652 .       

   

am,i, j

(l )

   

bi, j,k,m

(l )
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Table 4-1. Parameters for gl 

(a) Exponential Coordinates:      a

jijiji
rrsrw

,,1,1
exp   

Coordinate# Atoms s1 ri, j

a( )  Max Order 

1 N-H 1.5 1.5 4 

2 H-H 0.5 1.0 4 

(b) Gaussian Coordinates:       2

,,2,2
exp

b

jijiji
rrsrw   

Coordinate# Atoms s2 ri, j

b( )  Max Order 

1 N-H 2.3 2.0 3 

2 N-H 1.5 2.5 

3 N-H 1.5 3.0 

4 H-H 0.8 2.5 3 

5 H-H 0.4 3.3 

(c) Reciprocal Coordinates:         d

jiji

c

jijiji
rrrrsrw

,,,,1,3
exp     Max order=1. 

Coordinate# Atoms s3 ri, j

c( )  ri, j

d( )  

1 N-H 1.25 1.0 1.0 

2 N-H 1.30 2.0 0.0 

3 H-H 0.5 1.0 1.0 

4 H-H 0.5 1.5 0.0 

(d) Scalar Triple-product Coordinates: 


lkljkjlikijilikiji

lkji
rrrrrrw

,,,,,,,,,

,,,

4
rrr     α =0.55 
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iv.  Determination of H
d 

The equations used to determine the V and their solution were initially reported in 

Chapter 2 and later revisited in Chapter 3. Briefly the V are determined by the 

requirement that the energies, energy gradients and the interstate coupling gradients ( = 

derivative coupling vector times the energy difference) determined from H
d 

agree with 

those determined  from the ab initio calculations.   Data at N
point

 = 2536 nuclear 

configurations, producing ~ 40000 equations, was used.  The nuclear configurations were 

largely generated using ~2000 surface hopping trajectories
39, 79

 sampled from a Wigner 

distribution by the requirement that a fixed percentage of  trajectories, here 99% (1%) 

remain within the region well defined (approximately defined)  by the nuclear 

configurations.  Since there are many more equations than Vn, the equations are 

partitioned into two groups, those solved in least squares manner and those solved exactly.  

The equations included in the exact block are not entirely arbitrary.  For example, the 

energy difference at a point of conical intersection must be exactly zero to ensure that 

proper intersection adapted coordinates
80

 can be constructed; the branching plane 

vectors,
81

 energy difference gradient and interstate coupling gradients, also need to be 

exactly reproduced, so that the residual coupling is finite at a point of intersection.  It is, 

also, desirable that energies and gradients be reproduced at critical points to ensure the 

correct topology of H
d
.  Nuclear configurations whose electronic structure data is exactly 

reproduced are called nodes.   

Note from eq ( 3-29 ) that the requirement that the H
d
 and ab initio determined 

interstate coupling gradients agree, in a least squares sense or exactly, gives H
d
 is diabatic 

character. 
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v. Quality of the Fit. 

 There are two issues concerning the H
d
 representation: (i) how reliably does the 

H
d
 describe the ab initio data and (ii) how reliably does the H

d
 representation of the NH3 

1,2
1
A potential energy surfaces and their interactions, describe experimentally measured 

observables.  The first question has been addressed in Chapter 3.  The second is the 

subject of Sec. 4.4.  Here we briefly summarize from Chapter 3 how reliably the H
d
 

describes the ab initio data.  

 Over  the energy range 0  -  60,000 cm
-1

 the H
d
 representation of the 1

1
A (2

1
A) 

potential energy surface has a mean unsigned[root mean square] error of 73[210]  

(83[284]) cm
-1

.   The representation is by construction more accurate in the range 0 – 

50,000 cm
-1 

where the H
d
 representation of the 1

1
A (2

1
A) potential energy surface has a 

mean unsigned[root mean square] error of 51[82]  (13[24]) cm
-1

.  

 Another assay of the accuracy of the H
d
 representation involves the energy 

gradients and the derivative couplings.  For the preponderance of the points the energy 

gradient are accurate to 1% error and derivative couplings are accurate to 10%.  The 

results for the large derivative couplings are particularly gratifying since data in the range 

10
1
 – 10

8
 are well reproduced, with no point in error by > 10%.  This is because the large 

derivative couplings are near points of conical intersection which are nodes in the fitting 

procedure.  For small derivative couplings, which occur in regions of  large energy 

separation, agreement decreases, which is not unexpected since H
d
 provides a removable 

approximation to the derivative coupling while the ab initio values contain a small 

nonremovable
46

 part.  Up to 50,000 cm
-1

, the average percentage error for energy 

gradients for points with magnitude of gradient higher than 10
-4

 is 2.33%. For the full 



 124 

range of data the error in the norms of energy gradients is less that 10% except for a 

limited number of outliers. The outliers are found in the region of large gradients on 

repulsive walls, with high energies and the errors are only slightly over 10% and all are 

below 30%.  Given their small number, high energies and size of their error, it is unlikely 

that they will affect the dynamics.  

4.3.2 Quantum Dynamics  

Following LLXG,
35

 the non-rotating nuclear Hamiltonian for the NH3 systems is 

defined in the (2+1) Radau-Jacobi coordinate system, 

222 2 2

0 1 2 1 22 2

0 0 0

ˆ1
( ) ( , , , , , ) ( )

2 2

i

Q i i i i

i i ii i i i

j
V r V r r r V r

r r
  

   

   
        

   
  H  ( 4-6 ) 

where 
1

r  and 
2

r  are two Radau radial coordinates, 
0

r  is Jacobi radial coordinate, 
1

 ,
2

  

and 
0

  are the corresponding reduced masses, 
1

 (
2

 ) is the included angle between r
1

( r
2

) and r
0

 and   is the relative azimuthal angle between r
1

and r
2

in body fixed system. 

1
ĵ  and 

2
ĵ are the angular momentum operators for 

1
r  and 

2
r respectively, and 

 
2

21

2

0
ˆˆˆ jjj  . V is the 6 dimensional potential energy surface, and ( )

i i
V r  are the 

reference potential for 
i

r .  

The wavefunction is discretized in a mixed representation. The three radial 

coordinates were represented by the discrete variable representation (DVR) or potential-

optimized discrete variable representation (PODVR).
82

 For the angular coordinates, finite 

basis representation (FBR) is used.  

(i) Absorption spectrum 

The parity (p) adapted wavefunction can thus be expanded on the FBR basis, 
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0 1 2 1 2

0 1 2 1 2

0 1 2 1 2
,

p p

i i i j j m

i i i j j m

i i i j j m p    ( 4-7 ) 

where 
0 1 2 1 2

p

i i i j j m
  is the wave function in the discrete representation, 

0
i , 

1
i , and 

2
i denote the 

indices of three radial coordinates, respectively. 
1 2

,j j m p are the angular FBR basis 

functions defined as parity-adapted products of the spherical harmonics, 

1/ 2

1 2 ,0 1 2 1 2
, (2 2 ) ( ), 1

m
j j m p j m j m p j m j m p


        ( 4-8 ) 

The detailed formulation for how the Hamiltonian acts on basis set can be found in our 

earlier work.
35

  

To simulate the absorption spectrum, we first calculated vibrational levels of NH3 

on its ground electronic state using the iterative Lanczos algorithm
83-84

 with the basis set 

of 5 PODVR for 
1

r  and 
2

r , 21 sine-DVR for 
0 0

(1 .2 , 4 .5)r a  and 24:0,
21
jj . For ND3, 

we have used a basis set of 5 PODVR for 
1

r  and 
2

r , 25 sine-DVR for 
0 0

(1 .2 , 4 .5)r a  and 

30:0,
21
jj . 500 steps of iterations were  sufficient to converge the low-lying  energy 

levels.  

The absorption spectrum was calculated assuming a Condon transition, in which 

the ground state vibrational eigenfunctions were placed vertically on the  state. The 

wave functions were  transformed into a new grid/basis for the excited state propagation. 

In particular, we used 21 sine-DVR points for three radial coordinates in the region of 

(1.2, 4.5) 0
a  and 25 FBR functions for angular coordinates in absorption spectrum 

calculation of NH3, 25 sine-DVR points for three radial coordinates in the same region 

and 30 FBR functions for angular coordinates in calculation of ND3. The evolution of the 

excited state wave packet was performed using the Chebyshev propagator.
85

 

   

˜ A 
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 The absorption spectrum, S(E), was obtained from the Fourier transform 

of the Chebyshev auto-correlation function 0k k
C   ,

86
  

, 0

0

1
( ) (2 ) co s( )

s in
k k

k

S E k C
H

 
 





   ( 4-9 ) 

H


 is half-width of the Hamiltonian, arccos E   is the Chebyshev angle, and k is the 

Chebyshev order. To avoid reflection at the edge of the grid, a damping function was 

used in Chebyshev propagation, and the damping starts at 
0

3 .1r a for all three radial 

coordinates. To obtain a convergent absorption spectrum, 5000 steps of Chebyshev 

propagation were carried out for both NH3 and ND3. 

        To determine accurately the positions and widths of narrow resonances, a low-

storage filter diagonalization (LSFD) method was used.
87

 

(ii) Non-adiabaic dynamics 

For non-adiabatic dynamics simulations, the total wave function, which is 

expressed as a vector: 

A

X

 
  

 

Φ  ( 4-10 ) 

has two components for the two electronic states.  They are expanded in terms of the 

parity (p) adapted basis: 

0 1 2 1 2

0 1 2 1 2

/ , / ,

0 1 2 1 2
,

A X p A X p

i i i j j m

i i i j j m

i i i j j m p   ,  
( 4-11 ) 

where 
0 1 2 1 2

/ ,A X p

i i i j j m
  are the wave functions in the discrete representation.  Here, i0 denotes the 

DVR grid index for the radial coordinate r0, while i1 and i2 label the vibrational basis 

functions for the radial directions of r1 and r2, respectively.  
1 2

,j j m p  is the angular 

FBR basis function defined as parity-adapted products of the spherical harmonics, 
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1/ 2

1 2 ,0 1 2 1 2
, (2 2 ) ( ), 1

m
j j m p j m j m p j m j m p


        .  ( 4-12 ) 

As expected, the grid needed to compute the dissociation fluxes in both the NH2( ) 

and NH2( ) channels is much larger than that needed to compute the absorption 

spectra.   To make the basis compact, we have used non-direct basis approach
88

 for the 

radial coordinates.  In particular, different numbers of vibrational basis functions for the 

two non-reactive coordinates, namely 
1

r  and 
2

r , were used in two different r0 regions.   

The photodissociation was simulated assuming a Franck-Condon model, in which 

the ground state vibrational eigenfunction was placed vertically on the excited state PES.  

The propagation of the wave packet vector, 

A

k

k X

k

 
  

 

Ψ , was performed with the 

Chebyshev propagator:
85

 

2

1 2
2 ,    2

k s k k
D D k

 
  Ψ H Ψ Ψ   ( 4-13 ) 

with  

1 0s
DΨ H Ψ   ( 4-14 ) 

and  

0
0

i
 

  
 

Ψ ,  ( 4-15 ) 

in which 
i

  in eq. ( 4-15 ) represents the ground state wave function obtained using the 

iterative Lanczos algorithm.
84, 89

  The Hamiltonian is scaled to the spectral range of (-1,1) 

via 

( ) /
s

H H
 

 H H I , ( 4-16 ) 

X 2B
1

A2 A
1
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in which the spectral medium 2/)(
minmax

HHH 
  and half width 

2/)(
minmax

HHH 
  were determined by the spectral extrema, max

H
 
and 

min
H , which 

can be readily estimated.  Finally, the wave packets are damped near the edge of the grids 

in all three radial coordinates and the damping functions (D) and parameters are listed in 

Table 4-2. 

 

Table 4-2. Numerical parameters (in a.u.) used in wave packet calculations. 

 NH3 ND3 

Grid/basis 

ranges and sizes 

0 0
(1.2,14.0), 100r N   

0 0
(1.2,14.0), 120r N   

for 
0

1 21i  , DVR 

1 2 1 2
, (1.2, 4.5), 21r r N N    

for 
0

1 23i  , DVR 

1 2 1 2
, (1.2, 4.5), 23r r N N    

for 
0

22 100i  , Basis 

1 2
5N N   

for 
0

24 120i  , Basis 

1 2
6N N   

Largest values 

of j1, j2 and m 
20 23 

Damping 

function for 
0

r
a 0.1

D
  , 

0 ,
11.1

D
r   0.1

D
  , 

0 ,
11.1

D
r   

Damping 

functions for 
1

r  

and 2
r

a 

0.1
D

  , 0.1
D

   0.1
D

  , 0.1
D

   

Flux position for 

0
r  0 ,

10.0
f

r   
0 ,

10.0
f

r   

Propagation 

steps 
15000 15000 

a
The damping function is defined as 2

exp[ ( ) ],  
D D D

D r r r r     
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Due to the excessively large grids needed to resolve the NH2 internal state 

distributions, in this work, we elected to compute only the total probabilities in the A and 

X channels using a flux method:
90

 

/

2 2

0

/ /

, 0 , 0 0 0

0 0 0

1
( )

2 ( ) s in

Im (2 ) (2 ) ( ) .

A X

ik A X ik A X

k k k f k

k k

P E
H

e e r r
r

 

 

  



 



 

 

 
     

 
 

 ( 4-17 ) 

The position of the dividing surface (
0 f

r ), as given in Table 4-2, is located in the 

dissociation asymptote beyond the conical intersection. 

4.4 Analysis of H
d 

:  Electronic Structure  

4.4.1 Electronic Structure: ab initio treatment 

 The ab initio electronic structure data used to construct H
d
 were determined from 

a multireference configuration interaction (MRCI) expansion comprised of over 30x10
6
 

configuration state functions (CSFs), and constructed from molecular orbitals obtained 

from a two-state, state averaged multiconfigurational self-consistent field (SA-MCSCF) 

procedure based on aug-cc-pVTZ bases on N and H with an added 3s Rydberg function 

on nitrogen. All electronic structure calculations were carried out using the COLUMBUS 

electronic structure codes.
91-93

   

4.4.2 Electronic Structure:  Spectroscopic constants 

Table 4-3 reports the equilibrium structure and harmonic frequencies of the  

and  states of NH3, the excitation energy Te and the ground state dissociation energy, 

De and compares those quantities with the available experimental data and computational    

˜ X 1A1

   

˜ A 1A2

''
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results.  Table 4-4 reports the equivalent quantities for the  and  states of NH2.  

The formats of Table 4-3 and Table 4-4 follow those of Tables 4 and 5 of LVT
 
 for ease of 

comparison.  Note that since the structures reported in these tables are nodes in the fit, the 

ab initio geometries, the values of Te and De as well as barrier heights reported in these 

tables are exactly reproduced by the H
d
 representation.  The ab initio and H

d
 determined 

equilibrium and saddle point geometries of NH3( X, A) and NH2( X, A) are in very good 

accord with the tabulated ‘best values’   i       l  g            b i g 0.007 Å     1.1˚.  

The ab initio determined Te for NH3 (NH2) is in error ( = best – calculated)  by  871 (-

205)  cm
-1

 compared to best value of 48071 (10978)  cm
-1

.  The ab initio determined 

inversion (transition state) barrier on the 1
1
A (2

1
A) potential energy surface is in error by 

-173(195) cm
-1

 compared to the best value of 1784 (2348) cm
-1

.  The ab initio determined 

dissociation energy, De, of NH3 on the ground 1
1
A potential energy surface is in error by 

1258 cm
-1

 compared to a best value of 40510 cm
-1

.  The dissociation energy on the 

excited state potential energy surface is in error by 179 cm
-1

 compared to a best value of 

3416 cm
-1

.  The errors in the Te values and barriers are less than the level spacing in v2 for 

NH3 , (See section 4.5.2) while the error in ground state De is approximately the 

spacing of two such levels.  The errors in the Te for NH3
 
and ground state De for NH3 

likely reflect an underestimate of the differential correlation energy of NH3 near its 

equilibrium geometry.  This error is then expected  to decrease as the NH3 bond is 

stretched.   Consistent with this observation, the error in De for NH3 on the excited state is 

small.  In the LVT H
d
 a correction function was introduced to make the H

d
 determined 

potential energy surfaces reproduce the experimental values of De and Te values exactly.  

   

˜ X 2B1

   

˜ A 2A1
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These errors in the De and Te values in the H
d
 described here should not impact the 

spectral simulations reported in Sec. 4.5. 

 

Table 4-3. Spectroscopic constants and related data for  and  states of NH3.  

Energies in cm-1, distances in Å and angles in degrees.  Ordering of harmonic 

frequencies is that of Ref. 
94

 except for C2v saddle point on 2
1
A potential energy surface 

where energy ordering is used.  For C2v geometries H
1
, H

2 
are symmetry equivalent  

(a) 11 A  Surface 

 
H

d
 ab initio best 

Equilibrium (C3v ,   
1
A1) 

  
re(N-H) 1.0154 1.0154 1.011

a
 

HNH  106.35 106.35 106.75
a
 

Harmonic Frequencies 
  

 
3447.08 3456.26 3483.1

a
 

 
1093.12 1066.24 1052.8

a
 

 
3581.40 3584.10 3616.0

a
 

 
1655.33 1674.48 1675.7

a
 

Saddle Point  (D3h) 
  

re(N-H) 0.9979 0.9979 0.9943
a
 

Classical Barrier Height 1957.2 1957.2 1784.7
a
 

Harmonic Frequencies 
  

 
3610.0 3620.1 3640.0

a
 

 
847.1i 870.0i 837.4i

a
 

 
3825.2 3830.5 3852.7

a
 

 
1575.5 1584.0 1585.7

a
 

Asymptote 
   

De  NH3(  )→ NH2(  ) + H  39252.1 39252.1 40510
b
   

a
Ref. 

95
 

b
Ref. 

19
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Table 4-3. (Continued) 

(b) 21 A Surface 

 
H

d
 ab initio best 

Equilibrium  (D3h ,  
1
A2˝) 

 
re(N-H) 1.0485 1.0485 1.055(8)

c
 

Harmonic Frequencies 
  

 
2838.7 2793.7 2870

d
 

 
780.7 754.1 892

d
 

 
2949.7 2955.8 3020

d
 

 
1377.7 1334.3 1110

d
 

Te 47198.8 47198.8 48071
d
 

Asymptote 
   

De  NH3( )→NH2( ) + H  3237 3236 3416 

Saddle Point   (C2v) 
  

re(N-H) 1.3055 1.3054 1.298
d
 

re(N-H
1
) 1.0408 1.0408 1.040

d
 

12
NHH  112.5 112.5 112.4

d
 

1
HNH  123.8 123.8 123.8

d
 

Classical Barrier Height 2152.98 2152.98 2348
d
 

Harmonic Frequencies 
  

 
2000.10i 2003.32i 

 

 
508.05 475.29 

 

 
981.3 962.68 

 

 
1419.51 1435.37 

 

 
2995.81 3027.8 

 

 
3231.1 3244.42 

 c
Ref. 

96
 

d
Ref. 

8
 

  



 133 

Table 4-4. Spectroscopic constants and related data for   and  states of NH2.  

Energies in cm
-1

, distances in Å and angles in degrees.  Ordering of harmonic frequencies 

is that of Ref. 
94

 

 
Hd ab initio best 

11 A  Equilibrium ( ) 
  

re(N-H) 1.0283 1.0283 1.024
a
 

HNH  102.8 102.8 103.4
a
 

Harmonic Frequencies 
  

 
2934.62 3350.23 3374.2

b
 

 
1556.79 1539.57 1523.5

b
 

 
3427.33 3443.40 3481.2

b
 

21 A Equilibrium ( ) 
  

re(N-H) 0.9987 0.9986 1.004
c
 

∠HNH 145.13 145.1 144
c
 

Harmonic Frequencies 
  

 
3796.34 3612.56 3635

b
 

 
935.75 978.14 964

b
 

 
4154.31 3924.56 3953

b
 

Te 11184.01 11183.1 10977.8
d
 

a
From Ref. 

97
 as cited in LVT 

b
From  Ref. 

98
 as cited in LVT 

c 
Ref.

 94
 

d
From LVT. 

 

 

 The H
d
 determined harmonic frequencies at the minimum and saddle point on the 

ground state potential energy surface of NH3 are in good accord with the ab initio values.  

The largest error for an H
d
 determined frequency is -41 cm

-1
 compared  to a measured 

value of 1052.8 cm
-1

 which occurs at the ground state minimum.  The w4
 harmonic 

frequency at the equilibrium geometry of the A1A2

''

 state exhibits the greatest deviation 

from a measured result (1110.9 cm
-1

) being in error by over -20%.  However it should be 

   

˜ X 2B1

   

˜ A 2A1
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noted that this minimum is quite shallow, complicating the determination of harmonic 

frequencies.  For example, the -111 cm
-1

 error in w2
 is inconsistent with the magnitude of 

error, < 70 cm
-1

 in the v2 progression discussed in Sec. 4.5.   The harmonic frequencies 

for the asymptotic states of NH2 are in general satisfactorily described. 

4.4.3 Electronic Structure: Conical intersection seam 

 The seam of conical intersection is considered in Table 4-5, which reports 26 

points on the seam.  These points are nodes, with the H
d
 and ab initio determined energy 

differences, and  g and h constrained to agree.  The absolute energies are seen to be in 

very good agreement ( maximum error 65 cm
-1

) even though, with the exception of the 

minimum energy crossing, they are not so constrained  At all such nuclear configurations 

the 1
1
A and 2

1
A states are degenerate to less than 1 wave number. All points on the seam 

have at least a plane of symmetry.  This is a consequence of the fact that for planar 

geometries the 1
1
A and 2

1
A states carry 

1
A' and 

1
A'' irreducible representations so that 

the h vector (interstate coupling vector) must transform as A'' and there is only a single 

a'' coordinate.  The minimum energy conical intersection, the MEX, is approximately 

4808 (6154) cm
-1

 below the A1A2

''  minimum where the analogous result for LVT is given 

in parenthesis. As is the case for the saddle point on the 2
1
A potential energy surface, the 

MEX has a single elongated NH bond.  Its structure is in good accord with the result of 

LVT. (See Table 4-5.)  
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Table 4-5. Conical intersection seam for 1,2
1
A States of NH3.   

E1, E2 and DE = E2 -E1
 in cm

-1
 relative to X1A1

 state minimum.  For C2v structures H
1
 

and H
2
 are symmetry equivalent.  The 22 conical intersection pointss with energies < 

50,000 cm
-1

 are nodes, with energy difference, g and h fit exactly ( Two such points 

exhibit small error in ||g||,  less than 1%.)   The ab initio geometries and energies are 

exactly reproduced by H
d
.   Minimum energy crossing indicated by a *.  Eavg = (E2+E1)/2 

.  Δ i  li        i         b           H
d
 determined and the ab initio result. 

(a)  C2v Conical Intersections 

rNH
1
 rNH

3
 ∠H

1
NH

3
 ∠H

1
NH

2
 Eavg ΔEavg E2-E1 Δ(E2-E1) ||h|| ||g|| 

*1.0222 1.9689 125.40 109.20 42390 0 0.0001 -5.7E-08 0.0523 0.0728 

0.9243 1.9802 126.63 106.74 46472 -9 0.0017 4.3E-08 0.0536 0.0758 

0.9731 1.9750 126.03 107.95 43310 -3 0.0002 5.2E-08 0.0529 0.0742 

1.0691 1.9622 124.79 110.43 43071 -2 0.0001 -4.7E-08 0.0518 0.0719 

1.1626 1.9461 123.49 113.02 47433 3 0.0072 6.2E-08 0.0508 0.0707 

1.2970 1.9137 121.35 117.30 57246 -45 0.0001 -3.0E-09 0.049(6) 0.07(11) 

1.0478 1.9691 125.41 109.18 42631 -2 0.0014 3.5E-08 0.0523 0.0729 

1.4601 1.3229 156.50 46.99 71630 -14 0.0001 1.2E-07 0.07(38) 0.0(983) 

1.3344 1.5875 148.02 63.95 64028 21 0.0004 1.0E-09 0.07(73) 0.09(58) 

1.1656 1.7569 138.71 82.58 49623 -27 0.0013 1.0E-07 0.0730 0.086(4) 

1.0805 1.8627 131.76 96.49 43916 4 0.0000 4.2E-08 0.0623 0.0798 

0.9730 2.1167 118.17 123.67 43944 -22 0.0001 3.0E-08 0.0433 0.0628 

1.0218 1.9782 58.63 117.26 44599 -1 0.0022 2.6E-08 0.0673 0.0655 

(b) Cs Intersection Points 

rNH
1
 rNH

2
 rNH

3
 ∠H

1
NH

3
 ∠H

1
NH

2
 Eavg ΔEavg E2-E1 Δ(E2-E1) ||h|| ||g|| 

1.0225 1.0223 1.9681 127.42 109.14 42391 0 0.0176 1.4E-8 0.0524 0.0729 

1.0217 1.0217 1.9682 120.34 109.33 42397 2 0.0449 4.5E-8 0.0525 0.0728 

1.0201 1.0201 1.9662 115.14 109.73 42420 6 0.0000 -5.1E-8 0.0531 0.0727 

1.0137 1.0137 1.9581 104.36 111.39 42556 23 0.0004 5.3E-8 0.0553 0.0723 

0.9771 0.9760 1.9190 163.36 122.02 44824 -65 0.0001 1.9E-8 0.0625 0.069(0) 

1.0742 0.9684 1.9691 125.41 109.18 43357 -6 0.0014 2.7E-8 0.0523 0.0730 

1.1271 0.9155 1.9691 125.41 109.18 46358 -12 0.0022 4.3E-8 0.0524 0.0735 

1.1904 1.0339 2.0693 9.08 101.83 48452 2 0.7355 -1.7E-7 0.0522 0.0349 

1.0016 1.0009 2.2460 116.87 143.73 48706 -3 0.0001 -9.3E-8 0.0424 0.0388 

0.9687 0.9651 2.0668 64.13 127.32 45848 5 0.0005 3.9E-8 0.0674 0.063(6) 

0.9788 0.8059 1.9972 119.47 108.24 55786 27 0.0041 3.2E-8 0.053(9) 0.07(70) 

1.0460 0.9954 1.8319 122.92 89.35 44825 -4 0.0607 1.0E-7 0.0692 0.0848 

0.9773 0.9593 1.8520 154.96 93.72 45312 -30 0.0125 6.7E-8 0.0688 0.0831 

a
 Minimum energy crossing from LVT is R(N-H

1
)=1.990,  R(N-H

3
)=1.21 21

NHH

=110˚
 
 and 23

NHH =107.9. 
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 The electronic structure treatment in this region is not validated in the current 

spectral simulations which do not consider the NH2( X, A) branching.  This analysis will 

be the subject of a subsequent study.  Figure 4-1 provides a 2-dimension slice from the 

1,2
1
A potential energy surfaces.  Key critical points and their energies are indicated 

although  only the approximate geometries of these structures are shown. 

 
Figure 4-1. Three dimensional plot of adiabatic potential energy surfaces showing: (i) 

minima on ground state and excited states, (ii) a saddle points on the 1
1
A and  2

1
A 

potential energy surfaces and (iii) the minimum energy crossing on the 1,2
1
A seam of 

conical intersections.   

Energies in cm
-1

.  The geometry of the NH2
 
 used in this figure is also indicated.  The x 

and y  coordinates describe the motion of the third H in the bisector  plane of the NH2. 

4.5 Analysis of H
d 

:  Vibrational Spectra  

4.5.1 The X1A1
 State 

 Table 4-6 reports the low-lying vibrational levels of NH3( X ) and compares them 

with the spectroscopic data and the equivalent theoretical treatment based on the LVT H
d
.  

It should be noted that other ground state potential energy surfaces are available for NH3, 
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for which essentially exact agreement with experimental data is possible using the 

computational treatment discussed in Section 4.3.2.
95, 99

  However the agreement using 

the potential energy surface derived from the present H
d
 is quite reasonable, a significant 

improvement over that of LVT.  The improved accuracy will be an important 

consideration in future studies of vibrationally mediated photodissociation. 

4.5.2 The A1A2

''  State 

 The absorption spectrum from the ground vibrational level of the X1A1
 state is 

considered in Figure 4-2, Figure 4-3, Figure 4-4.   This spectrum consists of a progression 

in the v2 mode, in agreement with experiment.  There are three issues to be addressed 

here, the line positions, the line intensities and the line widths or lifetimes.   

 (i)  Energy Levels 
 

Figure 4-2 address the issue of the line positions. The experimental line positions

Eexp(n), shifted H
d
 determined line positions )]0()0([)()(

exp
EEnEnE

mmm

shift
  and 

the energy level error )()()(
exp

nEnEnE
m

Shift

m
  are reported.  Here the energy of a 

level with n quanta in v2 is E
m
(n) and the superscript denotes the method used to compute 

E(n) with m=PW (LVT) if E(n) is determined from the 2
1
A PES constructed using the H

d
 

in this work (in LVT) or m=exp  if experimental values for E(n) are used. Table 4-6 

reports the unaltered E
m
(n).  Figure 4-2 reports data for NH3 (ND3).  Note that the E

PW
(n) 

in Table 4-6 reflect a systematic error due principally to the error in Te for the NH3( A ) 

state noted in Sec. 4.4.2. This systematic error is eliminated in Eshift

PW
.  The present H

d
 

based results are quite reasonable with -70 cm
-1 

< dEPW (n)  < 50 cm
-1

, compared to 
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DEexp(n) = Eexp(n)-Eexp(n-1) in the 900 cm
-1

 – 1000 cm
-1

 range for NH3 and with -90 

cm
-1 

< dEPW (n)  < -10 cm
-1

, compared to DEexp(n) in the 650 cm
-1

 – 750 cm
-1

 range for 

ND3.  As is evident from |dELVT (n)| the present H
d
 significantly outperforms the LVT H

d
.   

 

Table 4-6. Low-lying vibrational levels of NH3( X ) obtained using the LVT H
d
 and the 

present work (PW).  Energies in cm
-1

 relative to corresponding zero-point energy. 

v1 v2

p

 v3

l3

 v4

l4
 Exp

a
 LVT

b
 PW 

0 0+ 00 00 0 0 0 

0 0- 00 00 0.79 0.108 0.45 

0 1+ 00 00 932.43 1093.05 974.36 

0 1- 00 00 968.12 1099.96 997.65 

0 2+ 00 00 1597.47 1966.96 1679.27 

0 0+ 00 11 1626.28 1672.23 1622.55 

0 0- 00 11 1627.37 1672.29 1623.76 

0 2- 00 00 1882.18 2092.07 1918.57 

0 3+ 00 00 2384.15 2653.50 2420.94 
a
Ref. 

100
 

b
Ref. 

35 

 
Figure 4-2. Eexp(n) , Eshift

m (n) = Em(n)-[Em(0)- Eexp(0)] and dEm(n) = Eexp(n)- Eshift

m (n)  

for m = PW  and LVT  for n quanta in v2 mode of A  state of NH3 and ND3.   

Energies in cm
-1

 ;Left: NH3; Right: ND3. 
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 (ii)  Intensities  

 Figure 4-3 report the intensities for the umbrella mode progression for NH3 and 

ND3 respectively and compare them with the measured intensities.
6
  Note that the finite 

temperature spectra obtained experimentally contain a temperature-dependent nuclear 

spin statistics
13

 and multiple J values. To simulate the finite temperatures in the jet, we 

have adopted the recommended temperatures of 16 K for NH3 and 10 K for ND3 given by 

Rosmus et al.
13

  The agreement is seen to be quite good.  Note that the origin of the 

computed spectrum has been shifted so as to agree with the measured value. The 

maximum intensity peak n = 6 (9) for NH3 (ND3) agrees with that of the measured 

spectra.   This represents a considerable improvement over the previous simulation by 

LLXG based on the LVT  H
d
, for which the maximum intensity peaks were predicted at n 

=3 or 4 (7 or 8), thus in disagreement with experiment.   

  
Figure 4-3. Intensities of transitions from the ground vibrational level of NH3 to the 2

n
 

level of the A  state, compared with measured spectra from  Ref. 
6
  Left: NH3.  Right: ND3. 
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(iii) Line widths 

 Figure 4-4 compares the measured line widths for NH3 with 0≤v2<11 with those 

computed from the present H
d
  The line widths for  0≤v2≤6 are taken from the 

compilation in Ref. 
8
 while the remainder are taken from Ref. 

6
.  For ND3 line widths for 

       g  0≤v2≤2 where the experimental data are most consistent,
4, 6-7

 are reported.
7
  The 

computed results are seen to be in very good accord with experimental results.  Table 4-7 

provides a more complete tabulation of the line widths.  The line widths based on the 

present H
d
 are seen to be in good accord with the measured results for NH3 throughout 

the range of available measurements.  The agreement with the ND3 results for v2 beyond 

the range in Fig. 3 is somewhat more qualitative, although based on the existing data the 

possibility of the experimental line widths being systematically too large for  v2≥3 cannot 

be ruled out.  Again the performance for the LVT H
d
 whose results are also reported in 

Table 4-7 are seen to be less satisfactory.  The most likely source of the difference in the 

line widths between the present H
d
 and that developed by LVT is the difference in the 

classical barrier height which is 2153 cm
-1

 in the present work and 1774 cm
-1 

in LVT. 

    
Figure 4-4. Calculated lifetimes of 2

n 
levels of NH3 and ND3 using the H

d
 by LVT and 

present work (PW) compared with the experimental NH3 values of Ref.  
7
 0 ≤ n ≤ 3  and 

Ref. 
4
  3 < n ≤ 6   based on the compilation of Ref.  

8
 and the experimental ND3 values of 

Ref.  
7
 0 ≤ n ≤ 2.   Left: NH3; Right: ND3 
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Table 4-7. Linewidth (cm
-1

) of NH3 from experiment and computations based on H
d
 

obtained in the present work (PW) and H
d
 from LVT, as reported in Ref. 

35
.  Experimental 

values taken from Ref.
6
 except for v2

 
≤ 3     NH3 and v2 ≤ 2      ND3 where values from 

Ref. 
7
, which are more consistent with the available experimental data are used.  The E(n) 

exhibit a systematic error owing to the error in Te reported in Table 4-3. 

(a) NH3 

Band E(PW) E(exp) G (PW) G (exp) G (LVT) 

0
0 45426 46222 35.3 34 103.9 

2
1
 46309 47057 23.1 29.2 58.8 

2
2
 47202 47964 36.7 44 67.4 

2
3
 48109 48869 72.0 794 121.2 

2
4
 49019 49783 139.4 132 235.1 

2
5
 49918 50730 201.3 178 394.4 

2
6
 50819 51656 238.9 228 369.7 

2
7
 51729 52543 248.3 269 367.1 

2
8
 52654 53496 238.5 253 280.8 

2
9
 53596 54454 225.9 271 213.4 

2
10

 54551 55380 222.3 263 146.1 

2
11

 55514 56342 229.0 277 108.5 

2
12

 56482 57300 243.8 279 16.9 

2
13

 57454 58285 263.4 293 24.5 

(b) ND3 

Band E(PW) E(exp) G (PW) G (exp) G (LVT) 

0
0 46025 46701 2.4 4.2 11. 

2
1
 46676 47369 1.1 1.5 5.8 

2
2
 47330 48052 16.8 15.4 33.7 

2
3
 47988 48697 29.6 61.8 97.5 

2
4
 48655 49375 32.6 52.5 93.9 

2
5
 49331 50062 31.2 56.5 79.9 

2
6
 50017 50748 29.0 59.1 69.5 

2
7
 50710 51451 27.8 60.4 62.4 

2
8
 51410 52168 28.4 60.4 60.3 

2
9
 52116 52874 34.0 69.3 64.8 

2
10

 52826 53582 44.6 73.7 73.9 

2
11

 53540 54306 61.0 79.6 82.2 

2
12

 54258 55054 83.6 101.7 81.8 

2
13

 54977 55751 113.2 103.0 71.5 
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4.6 Analysis of H
d
 : Non-adiabatic Dynamics 

Convergence tests have been performed with regard to the size of the grid, the 

propagation steps, and the position of the dividing surface. Table 4-2 lists all the 

numerical parameters used in the dynamic calculations.  In this work, the basis set size is 

about 7.5×10
7
 for NH3 and 1.5×10

8
 for ND3, which makes the propagation rather 

demanding.   

This section focuses on non-adiabatic dynamics for photodissociation from the 

ground vibrational states of ammonia, which are a near degenerate tunneling pair.  In 

Figure 4-5, the calculated percentages of the NH2( ) population produced in NH3 

photodissociation are also displayed.  It is clear that the percentages are essentially a 

monotonic function of the energy and the parity of the wavefunction has little effect on 

the branching ratio.  Similar observations have been reported in our earlier four-

dimensional quantum dynamics studies of the same process
37

 using the PESs of Li, 

Valero and Truhlar,
101

 but the branching ratios are much smaller than those reported in 

Figure 4-5.  It is currently unclear if the underestimation is due to the PESs or to the 

reduced dimensionality of the dynamic model.  From the figure, it is evident that the 

 state of NH2 cannot be accessed for the first three members of the 2
n
 progression, 

due to the energy constraint.  All dissociation occurs non-adiabatically via the conical 

intersection.  For 2
3
, the ground state NH2( ) channel still dominates, but the excited 

NH2( ) channel starts to emerge.  At even higher energies, the NH2( ) channel 

becomes increasingly important.  

  

A2 A
1

A2 A
1

X 2B
1

A2 A
1

A2 A
1
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Figure 4-5 Percentage of NH2( ) as a function of the total energy, relative to the 

X  state minimum.  The even and odd parities are represented by red and blue, 

respectively.  The opening of the NH2( ) channel is indicated in the figure by a 

arrow.  The experimental estimates
102

 are given as black circles.   

 

 

 A similar trend is observed for the deuterated ammonia (ND3), as shown in Fig. 4.  

Due to the energy constraint, the excited ND2( ) channel is closed for the first four 

member of the 2
n
 progression.  At higher energies, the  state percentage increases.  

There has not been any accurate experimental determination of the branching 

ratios.  In Ref. 
102

, the A / X  branching ratios for both NH3 and ND3 were estimated 

based on the H-atom kinetic energy spectra.  These experimental estimates are compared 

in Figs. 3 and 4 with our calculated values, and the agreement is quite good.  The only 

exception is for the 2
6
 state of ND3, where the experimental estimate of ND2( ) is 

zero, while a small percentage is observed in theoretical results. The reason for this 

discrepancy is unclear. However, the overall good agreement provides strong evidence 

for the accuracy of the PESs and their couplings. 

  

A2 A
1

A2 A
1

A2 A
1

A2 A
1

A2 A
1
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Figure 4-6. The fraction of ND2( ) as a function of the total energy, relative to the X  

state minimum.  The even and odd parities are represented by red and blue, respectively.  

The opening of the ND2( ) channel is indicated in the figure by a arrow.  The 

experimental estimates
102

 are given as black circles. 

4.7 Summary and Conclusion 

 A method for determining a coupled diabatic state representation of adiabatic 

states coupled by conical intersections has been previously introduced.  The method is 

notable for its use of derivative coupling and energy gradient information as well as 

energies to construct the diabatic representation and its combination least squares and 

interpolative techniques.  The incorporation of energy gradient and derivative coupling 

information reduces the number of points at which the electronic structure data must be 

determined.  The derivative coupling information also enables the representation to be 

quantifiably diabatic in a least squares sense. However a representation produced by this 

approach has yet to be employed in a fully quantum mechanical nuclear dynamics 

simulation, which provides a stringent test of the quality of the representation. 

Concomitantly there have been a considerable number of computational and 

experimental studies of the photodissociation of the A  state of NH3 which exhibits both 

adiabatic and nonadiabatic product channels.  Of particular relevance here was a full six 

A2 A
1

A2 A
1
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dimensional quantum mechanical study of the absorption from the ground vibrational 

level of the X state to the A state by LLXG.  These calculations were based on a 

previously reported two-state diabatic Hamiltonian.  However the agreement with 

experiment was modest at best. This shows that the non-adiabatic dynamics in this 

prototypical system is still not well understood. 

The work reported here represents the state-of-the-art theoretical characterization 

of non-adiabatic dynamics in ammonia photodissociation.  As argued above, a joint effort 

in developing accurate PESs using a high-level ab initio method and performing full 

dimensional quantum dynamic calculations using these PESs is the key to reaching an in-

depth understanding of this fascinating reaction process.  The excellent agreement with a 

wide range of experimental data, including positions, widths, and intensities of the 

predissociative resonances in both NH3 and ND3, and particularly the A / X  branching 

ratios as reported in this work, strongly suggests that the underlying PESs and their 

coupling are now well described.  
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Chapter 5 Fitting Coupled Potential Energy Surfaces for Large 

Systems: Method and Construction of a 3-State Representation for 

Phenol Photodissociation in the Full 33 Internal Degrees of Freedom  

5.1 Abstract 

A recently reported algorithm for representing adiabatic states coupled by conical 

intersections using a quasi-diabatic state Hamiltonian in four and five atom systems is 

extended so as to be able to treat nonadiabatic processes in considerably larger molecules.  

The method treats all internal degrees of freedom and uses electronic structure data from 

ab initio multireference configuration interaction wave functions with nuclear 

configuration selection based on quasi-classical surface hopping trajectories.  The method 

is shown here to be able to treat ~ 30 internal degrees of freedom including dissociative 

and large amplitude internal motion. Two procedures are introduced which are essential 

to the algorithm, a null space projector which removes basis functions from the fitting 

process until they are needed and a partial diagonalization technique which allows for 

automated, but accurate, treatment of the vicinity of extended seams of conical 

intersections of two or more states.  These procedures are described in detail.  The 

method is illustrated using the photodissociaton of phenol, C6H5 H(  
1
A')+hv  

C6H5 H( 
1
A  B 

1
A'')  C6H5 (  

2
B1  

2
B2) + H as a test case.  Ab initio electronic 

structure data for the 1,2,3
1
A states of phenol, which are coupled by conical intersections, 

are obtained from multireference first order configuration interaction wave functions.  

The design of bases to simultaneously treat large amplitude motion and dissociation is 

described as is the ability of the fitting procedure to smooth the irregularities in the 

electronic energies attributable to the orbital changes that are inherent to nonadiabatic 

processes.  
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5.2 Introduction  

 Using methods including Shepard interpolation
1-3

, the permutationally invariant 

polynomial approach,
4-5

 and the moving least squares technique,
6-7

 the construction of fit 

single state potential energy surfaces (PESs), analytic representations of ab initio 

electronic energies and energy gradients, is now well-established.  These single state 

PESs, which are essential for accurate quantum dynamics and have found wide 

application in more approximate quasi-classical treatments, have revolutionized adiabatic 

dynamics.   

 The situation for nonadiabatic processes involving dissociative and large 

amplitude motion is less sanguine.  In these cases, compared to single electronic state 

dynamics, both the electronic structure data and the representation are more challenging 

to determine.  Recently we have reported a procedure for representing adiabatic PESs 

coupled by conical intersections using a quasi diabatic representation
8-9

 in cases where 

molecular dissociation and/or large amplitude motion needs to be described.   As in the 

adiabatic case, we refer to the resulting representations as fit PESs although in the 

nonadiabatic case interstate couplings must also be represented. This method 

complements other approaches aimed specifically at nonadiabatic processes which 

include: diabatizations based on the vibronic coupling Hamiltonian;
10-14

 the multisheeted 

adiabatic state method
15

 which extends the permutationally invariant polynomial 

approach to more than one PES; the Shepard interpolation/Grow method;
3, 16-20

 the four 

fold way;
21-25

 the double sheeted double many body expansion;
26-27

 and diabatization by 

ansatz.
28-29

 Included  in the final category is a recent work
29

 which also incorporates 

complete nuclear permutation inversion (CNPI) symmetry.
30-31

 CNPI symmetry is 

discussed in Sec. 5.4.  The vibronic coupling Hamiltonian based on diabatization by 

ansatz and including CNPI symmetry is similar in spirit to the approach espoused herein 

although the present approach takes explicit account of the derivative couplings which 
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are not included in a diabatization-by-ansatz approach.  Our reported procedure is well-

suited for tetra-atomic and penta-atomic molecules.  Indeed, when applied to ammonia 

photodissociation, NH3( ) + hv  NH3( ) NH2( , ) + H, excellent agreement 

with experimental data was found.
32-33

  Here we show that by introducing new 

procedures, described  in Sec. 5.4, this approach can be extended to much larger 

molecules.   

The principal alternative to the fit PESs approach is dynamics on the fly also 

called direct dynamics.
34-38

  In this approach electronic structure data is determined as 

required by the solution of the electronic Schrödinger equation.  When compared with 

dynamics on the fly, the fit PES approach can: (i) utilize more accurate wave functions; 

(ii) provide the electronic structure information, energies, energy gradients, derivative 

couplings, diabatic energies and couplings, at a particular point in nuclear coordinate 

space in a small fraction of the time required to solve the electronic Schrödinger equation 

in on the fly dynamics, enabling longer and more accurate time propagations of quasi-

classical trajectories with better statistics; (iii) determine the dense grids of points 

required for accurate quantum mechanical studies; and finally (iv) smooth out the 

discontinuous energy gradients that frequently accompany changing orbital spaces.  The 

need for the final option, not available in direct dynamics, is not an uncommon 

occurrence in describing dissociative, multichannel, nonadiabatic processes, although 

flexible state averaging procedures can help in this regard.
29, 39-40

 

The urgent need for algorithms to construct fit PESs for nonadiabatic processes 

involving molecules larger than 4-5 atoms has been made clear in recent dynamical 

studies of radiationless decay of electronically excited nucleobases using ab initio direct 

dynamics methods.
37, 41-46

 For a review see Ref.
47

.  In these systems the use of direct 

dynamics limits the quasi-classical trajectory surface hopping
48-49

 dynamics to ~ 100 

trajectories and a reliance on complete active space (CAS) based electronic structure. 

This results in mechanistic discrepancies.  For example, a recent [2011] study of cytosine 

X A A X
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nonadiabatic photochemical deactivation
37

 observes: "The different results obtained by 

several simulations are expression of the discrepancies between the potential energy 

surfaces computed at diverse levels."  This is not an isolated instance. Barbatti et al.
46

 

showed in a systematic treatment of radiationless decay of H9-adenine that different 

levels of electronic structure theory produced decidedly different nonadiabatic 

mechanisms with nonadiabatic dynamics based on density functional theory exhibiting 

significant draw backs.
46

 For these molecules it is desirable to conduct more accurate 

nuclear dynamics using fit representations. In order to construct such representations 

significant algorithmic issues have to be addressed. 

In this work we report an extension of our existing approach to one capable of 

describing radiationless decay of nucleobases and comparably sized systems.  The 

potential of this approach is established by determining a quasi-diabatic representation of 

the three adiabatic states coupled by conical intersections that are encountered in the 

radiationless decay of phenol C6H5 H(  
1
A')+hv  C6H5 H( 

1
A  B 

1
A'')  

C6H5 (  
2
B1  

2
B2) + H including all internal degrees of freedom.  While 

photodissociation of phenol is of considerable interest in it own right, as evinced by the 

large number of recent publications,
50-62

 it is chosen as a model problem here because of 

the level of complexity of its nonadiabatic dynamics which involves both dissociation 

and large amplitude internal motion and the fact that its electronic states are similar to 

those found in biomolecules, including imidazole, 9H-adenine, indole and nucleobases. 

These molecules have been the object of recent theoretical work using on the fly and 

reduced dimensionality techniques.
44, 46, 51, 63-67

  Since the goal of this work is to establish 

the feasibility of the fit surfaces approach in a system with the complexity of phenol, a 

semi-quantitative multireference first order configuration intersection (FOCI) expansion, 

approximately 3 million configuration state functions (CSFs) will be used to generate the 

ab initio data.  Based on the treatment developed here, a more accurate description using 
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second order CI wave functions (estimated to include ~ 200 million CSFs) is feasible and 

will be the subject of a subsequent study. 

In this paper we explain the computational issues associated with the extension to 

larger systems and how they can be addressed. Section 5.3 briefly reprises the original 

algorithm so as to enable a clear description of the algorithmic enhancements, which are 

the subject of section 5.4.  Section 5.5 describes and validates the constructed 

representation of the 1,2,3
1
A states of phenol.  Particular emphasis will be paid to the 

simultaneous description of dissociation and large amplitude internal motion; the 

automated treatment of conical and avoided intersections of two or more states;  and the 

smoothing of discontinuities arising from orbital switching.  Section 5.6 summarizes and 

discusses directions for further studies.  Technical and mathematical details are restricted 

to  Appendices 5.7. 

5.3 The algorithm 

5.3.1 Definitions 

 In this section, we briefly recapitulates conclusions in section Chapter 3 that will 

be used in section 5.4. The quasi diabatic (model) Hamiltonian H
d   

representing
 
N

state
 

adiabatic electronic states has the form  






c
N

l

lvlullvlu

l

d
gPV

1

)(),()()](),([
)]([)( BRRH

  ( 5-1 ) 

where B
u,v

 is an N
state 

x
 
N

state 
symmetric matrix with a 1 in the (u,v) and (v,u) elements and 

the remaining elements 0; Pk
 is a standard group theoretical projection operator; g

(l)
(R), 

1 ≤ l ≤ N
c
, are the monomial basis functions of nuclear coordinates described in detail 

below with N
c
 the total number of monomials, (including the 0

th
 order monomial g

(1)
≡1); 

and the Vl
 
 are constants determined by the fitting procedure. Accompanying H

d
 is an 
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electronic Schrödinger equation 

  0RdRIRH  )()()(
)(,, JmJad

E  ( 5-2 ) 

which determines the adiabatic energies E
a,J,(m)

(R), energy gradients Ek

a,J ,(m) (R) 

ºÑRk
Ea,J,(m)(R) and derivative couplings f a,J,K,(m)(R)  = d

J
(R)

†
d

K
(R).  The adiabatic 

to diabatic state transformation is given by d
(d)†

, where du,I

(d ) = du

I , (Ref. 
8-9

) that is 

               
 



state state
N

J

N

J

J

u

aba

JuJ

daba

J

d

u

1 1

,†

,

)(,
;;; RdRqRdRqRq  ( 5-3 ) 

Here q (R) denote the electronic (nuclear) coordinates, and the superscripts a, d, m and 

ab stand for adiabatic, diabatic, model and ab initio respectively. For ease of reference 

      i       1≤ j ≤ N
int

 = 3N
at

-6   1 ≤ n ≤ N
point

, and  (x) = (ab) , (m) 

L0

J,J,(x)(Rn )= Ea,J,(x)(Rn ) ( 5-4 ) 

L j

J,J,(x)(Rn )=Ñ jE
a,J,(x)(Rn )  ( 5-5 ) 

L j

J,K,(m)(Rn )= d
J (Rn )†Ñ jH

d
d

K (Rn )   ( 5-6 ) 

L j

J,K ,(ab)(Rn )= (Ea,K,(ab)(Rn )- Ea,J,(ab)(Rn )) f j

a,J,K,(ab)(Rn ) ( 5-7 ) 

where f a,J,K ,(ab)  is  the ab initio determined derivative coupling,   

5.3.2 Defining equations 

The residuals of the energies, energy gradients and energy difference scaled 

derivative couplings, eqs. ( 5-4 ), ( 5-5 ), ( 5-6 ), respectively 

P0

J,J (Rn )= L0

J,J,(ab)(Rn )- L0

J,J,(m)(Rn ) ( 5-8 ) 

Pj

J,J (Rn )= L j

J,J,(ab)(Rn )- L j

J,J,(m)(Rn ) ( 5-9 ) 

Pj

J,K (Rn )= L j

J,K ,(ab)(Rn ) - L j

J,K,(m)(Rn ) ( 5-10 ) 

ÑR
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will be used to determine the Vn.   From eq. ( 5-1 ) and its derivative  eqs. ( 5-4 ),  ( 5-5 ), 

( 5-6 ) become, for x = m, 1≤ I ≤ J ≤N
state

   0 ≤ j ≤ Nint   

)(
)(,, nmJI

j
L R =



c
N

l

lljJIn
VW

1

;,,, =(WV)k  
)( m

k
L  ( 5-11 ) 

where 

Wn,I,J, j;l = d
I (Rn )†Bu(l ),v(l)

d
J (Rn )M j,l

u l( ),v l( ),n  ( 5-12 ) 

M j,l

u l( ),v l( ),n
=Ñ jP

k[u(l ),v(l )]g(l )(Rn ) ( 5-13 ) 

and  means do nothing.  Note that since the d
J
 satisfy eq. ( 5-2 ), eq. ( 5-11 ) for I =J, 

is exact even though the d
J
 depend on R.  In eq. ( 5-11 ) and below is convenient to re-

index the four indices (n,I,J,j) by k so that L j

I ,J ,(x )(R
n
) , is replaced by Lk

( x) , R j

I ,J (Rn ) by 

 and  Wn,I,J, j;l
 by  Wk,l     1 ≤ k ≤ N

eq
, where N

eq
 is the number of defining equations.  

There is one defining equation for each allowed value of (n,I,J,j).   In eq. ( 5-12 ) at each 

R
n
, the  for j > 0 denote the derivatives with respect to a local, nonredundant 

coordinate system.  

Previously we have introduced three classes of R
n
.  The R

n
 for which the Pk  =0 

are solved in a least squares sense.  The nodes for which all the Pk = 0 for an R
n
 are 

solved exactly and the partial nodes for which only the energy equation at an R
n
 is solved 

exactly.
 
 T    q   i                              i    1 ≤ k ≤ N

lsq
  Pk = 0 equations are 

solved in a least squares sense and the remaining equations N
lsq

 < k ≤ N
eq

 are solved 

exactly.
8-9

  In this work neither nodes nor partial nodes are used.    

The R
n
  1 ≤ n ≤ N

point
,  are further classified according to how they are selected.  

R
n
 in the skeletal data set are selected to define the key regions of nuclear coordinate 

space.  Enough R
n
 must be in the skeletal set so as to enable surface hopping 

Rk
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trajectories
48, 68

 to be run. The quasi-classical trajectories expand the domain of 

definition, a generalized volume surrounding the final data set where the electronic 

structure data are well reproduced, to one appropriate to the problem at hand.  The 

domain of definition is considered converged when a prescribed percentage of the 

trajectories (~98 % here) propagated for fixed time (here 50 ps) remain in the domain of 

definition. Making trajectories the arbiters of the domain of definition avoids a priori 

assumptions concerning the preeminent modes.  This scheme is similar to the highly 

successful GROW algorithm.
69-70

 

The V are obtained as an extremum of the Lagrangian 

= 


lsq
N

j

j
P

1

2

2

1
+ 





eq

lsq

lsq

N

Nj

jNj
P

1

 +
t

2
V

†
V  ( 5-14 ) 

where the  are the Lagrange multipliers and t is a small damping factor.  Requiring the 

gradients to vanish, 
i

V
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V
G





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c
 ; and  

i

i
G








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ex
 = 

N
eq 

- N
lsq

;  gives through second order in displacements, the Newton-Raphson equations 
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Here  
ji

lsq

ji

VV
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WW
VV

,

†

2

,

,
 
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,
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,

,

ex

ij

ji

V

ji
W

V









 ; V = V
0 + dV and 

 are the improved values of coefficients and Lagrange multipliers;  and the 

superscript 0, which we will suppress when no confusion will result, indicates that the 

q    i i        v l                                         i  l      ‘  i  ’. T   g   i     

are given by 

l j
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From eq. ( 5-12 ) the V dependence of W noted in eq. ( 5-17 ) is implicit being contained 

in the d
J
.  The values of V and λ need to be determined iteratively using the Newton-

Raphson procedure, eq. ( 5-15 ).  In order to obtain the initial values of V and λ for the 

Newton-Raphson steps ,  is neglected, by neglecting the d
J
 dependence of W,

9
 and eq. 

( 5-15 ) is replaced by the much simpler iterative equation 

 ( 5-19 ) 

which is solved to self consistency.  Eq. ( 5-19 ) is much less likely to diverge than eq. ( 

5-15 ), even though its convergence is also not guaranteed and when it does converge the 

final values of V do not correspond to the optimal solution because of the approximation 

made to gradients.   Eq. ( 5-19 ) serves as a good method for the initial few steps of the 

optimization procedure, and once the change in V is relatively small eq. ( 5-15 ) is used 

to achieve correct convergence. 

5.4 Treating Larger Molecules 

 The methodology reviewed in Sec. 5.3 was used to construct coupled PESs for the 

photodissociation of ammonia, NH3+hvNH3( A )NH2( X , A )+H.
32-33

  The results 

were quite encouraging, describing with unprecedented accuracy the lifetime of the levels 

G
V
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in the v2 progression,
32

 and the corresponding NH2( A )/NH2( X ) branching ratio. 

However the computational effort required to handle the larger systems considered here 

increases with system size and additional techniques to reduce that effort and increase the 

generality of the approach are required.  In this section we describe techniques that 

enable the treatment of larger systems, including: a procedure to (a) reduce N
c
 and 

introduce functions as needed by analysis of the null space, (b) use redundant coordinates 

with distributed origins to reduce the rate of growth of the g
(l)

, (c) incorporate nuclear 

permutation inversion symmetry in situations where the matrix elements may not be 

permutationally invariant and (d) treat the vicinity of a seam of conical intersection using 

a partially diagonalized representation.   

5.4.1 Enhanced Methodology:  Reduction of N
c
  - Preconditioning 

(i) Motivation 

  It is difficult to anticipate how important a particular monomial g
(l)

 will be in 

describing H
d
.  As a result W

lsq†
W

lsq  
appearing  in eq. ( 5-16 ) and ( 5-19 ) can be ill-

conditioned.  To improve the conditioning and eliminate redundancies, the g
(l)

 are 

replaced with new set 

j

lj

jl
Zgg

,

)()( .  Define W = WZ, then using, W
lsq†

W
lsq 

=UwU
† 

where w is diagonal, the conditioning requirement  

W
lsq( )

†

W
lsq = I = (Wlsq

Z)†Wlsq
Z = Z

†
UwU

†
Z ( 5-20 ) 

yields  Z=Uw
-1/2

.
 
 Discarding the small eigenvalues and corresponding eigenvectors from 

w yields the desired preconditioning basis reduction.   

 However this standard scheme has several limitations that make it unsuitable. 

W
lsq

 depends on the d
J
 which change every iteration of eq. ( 5-15 ).  As a result Z, will 
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have to be recomputed every iteration or some contributing components may be 

unintentionally discarded.  Since the cost of this preconditioning is more than the cost of 

one iteration of the optimization procedure little is gained by this approach to 

preconditioning.  

(ii) A d
J 

 independent, R
n 

dependent conditioning procedure 

It is desirable to choose a set of functions g
(l)

 that is largely free of linear 

dependencies.  Removing linear dependencies improves the numerical stability of the 

nonlinear optimization procedure, reduces the cost of determining the fit H
d
 and 

improves the smoothness of the fit. To reduce the size of the basis g we introduce an 

approximate preconditioning procedure which is independent of d
J
 but changes with R

n 
.  

In eqs. ( 5-1 ) and ( 5-11 ) the sum is over l with u(l),v(l)( ) defining the block of H
d
 to 

which each term contributes.  In eqs ( 5-21 ) and ( 5-22 ) below it is convenient to reindex 

the sum so that each (u,v) block is separately indexed and only the l that contribute to the 

block are included and are denoted ¢l .  With this reindexing the original Wn,I,J, j;l
 becomes 

Wn,I,J, j; ¢l ,u,v
.  A similar reindexing of g ¢l( ) and M j, ¢l

u,v,n
 are suppressed.  In this notation, the 

right null-space of W has the form (using eq ( 5-13 )) 
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If we treat d
I
 as independent variables, then a sufficient condition for eq. ( 5-21 ) to hold 

for all values of d
I
 is ( for each (u,v) block) 
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Then for each block of H
d
,  the d

J
-independent null space is the intersection, for each n, 

of the right null spaces for M
u,v,n

 or the null spaces of  (M
u,v,n

)
†
M

u,v,n
.  This procedure has 
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the desirable properties that: it reflects the R
n
 used in the fit-initially removing large 

numbers of unneeded functions and then decreasing the number of dependent functions 

as N
point

 grows; it treats each block of H
d
 independently; and it can be used to eliminate 

functions before the fit is carried out.  Because each block is treated separately in the d
I
-

independent null-space analysis procedure, the eigenvalue decomposition(EVD) problem 

of a large matrix, required in our previous implementation owing to the absence of 

preconditioning, is reduced to a series of EVDs of smaller matrices corresponding to each  

block of H
d
.   Since the cost of EVD procedure scales as O(n

3
),  division into blocks 

drastically reduces the cost of the procedure.  As a result, this d
I
-independent null-space 

analysis procedure proves to be a very inexpensive and efficient approach to reveal the 

redundancy of a polynomial basis on a given set of data.   This enables us to find smaller 

but more efficient expansions by almost completely eliminating linear dependencies 

among the polynomial basis. 

For the NH3 H
d
,
  

this preconditioning reduced the number of independent  Vn  

from ~9800 in our previously reported  expansion
33

  to ~5000 terms, and subsequently 

based on the intuition afforded by the analysis, to ~2700 terms, in a new expansion with 

increased accuracy in the asymptotic region.  For the phenol case this null space analysis 

is essential since it allows us to start processing the skeletal data with a second order 

expansion which otherwise would be ill-conditioned, and allows us to predetermine the 

impact of adding a particular g
(l)

. 

5.4.2 Redundant coordinates  

The principal reason for using redundant coordinates is to slow the explosive 

growth of the monomial space [g
(l)

(R)] with improved accuracy that accompanies 
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nonredundant expansions.   This can be seen as follows.  For monomials of order 2 and 

33 internal coordinates, there will be  ~ [33
2
]/2  second order terms.  To increase the 

accuracy of the expansion we can either add m additional redundant variables giving 

~[(33+m)
2
]/2 monomials or increase the order of the expansion giving ~[(33)

3
]/3! terms 

at third order.  While it is possible to manipulate the details of the growth of the 

expansion, the advantage of adding redundant coordinates and maintaining the low order 

of the expansion is clear. 

The monomials in g
(l)

 are based on the interatomic vectors rk,l = Rk – Rl  and 

distances rk,l = |rk,l|        1 ≤ k <l ≤ N
at

.  To facilitate the description of bond breaking 

we use: g
(l)

(R) =  

lM

i i
l

m
w

1 )(
)(R , where w1 =exp(-ak,lrk,l ); w2 = '

,,,,
)/(


kjjikjji
rrrr  ; w3 =


)/(

,,,,,, likijilikiji
rrrrrr  and Ml  is the degree of the monomial in wj. w2 describes angles 

(actually cosine of angles), and w3 describes out of plane or dihedral angles.   The use of 

scaled, dot products and scalar triple products
1
 is preferred to angles since they approach 

zero as one bond stretches.  The use of decaying exponentials, used by Braams and 

Bowman
4
 in describing adiabatic PESs, facilitates the description of bond breaking.  

Further decaying exponentials can implicitly describe Morse-like functions 

1- exp(-ar)[ ]
2

 which permits the representation to tacitly interpolate between data 

points taking anharmonicity into account.  In addition to these general functions we use 

specially placed tanh and Gaussians, exp(-a(rk,l - c)2 ), to divide up coordinate space into 

overlapping but distinct regions which are described using distinct sets of functions.  1/rk,l 

functions are used to describe nuclear-nuclear repulsion.  Since all functions are 
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ultimately based on rj,k the g
(l)

 are readily symmetry adapted in the CNPI
30-31, 71

 group.  A 

more complete description of the g
(l)

 is given in Sec. 5.5.2. 

5.4.3 The diabatic representation and CNPI group symmetry 

(i) A local analysis 

 For molecules undergoing large amplitude motion including dissociation, the 

appropriate group of the Schrödinger equation is the CNPI group.  While the electronic 

energies are invariant under the group operations, the eigenfunctions are only guaranteed 

to carry irreducible representations of that group.
15, 19

  For the diabatic states some care is 

required. 
19

 The following perturbative analysis, which is analogous to that used in the 

vibronic coupling problem when point group symmetry is appropriate, explains our 

approach. 

 Let Q
0 

be the arbitrary reference point of the expansion at which the adiabatic and 

diabatic representations are chosen to coincide.  The electronic Hamiltonian can be 

expanded as 



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( 5-23 

) 

For Q = Q0 +dQ , with || dQ || small the adiabatic wave function Ya,K,(ab)(q,Q)  can be 

expanded in terms of the eigenstates at Q
0
 as:             
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


  ( 5-24 ) 

where, as we use in Sec. 5.5, the Ya,K,(ab)(q,Q0 ) and dQk
 carry 1-dimensional irreducible 

representations of the relevant subgroup of the CNPI group.  Then the electronic 

Schrödinger equation becomes 



 171 

  0QcQIQH  )()()(
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E  ( 5-25 ) 
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and  
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Thus HJ,K

e,i, j,...(q,Q0 ) vanishes unless 

)()()(
)(,,)(,, abKaabJa

m

m
irredirredQirred    ( 5-28 ) 

While eq. ( 5-24 ) is clearly an approximation since   1≤ K≤ N
state

  is not 

complete it is accurate near an arbitrary Q
0
 and correct through first order in nuclear 

displacements near a conical intersection.
72

  The requirement in eq, ( 5-28 ) provides an 

effective way of reducing the size of the polynomial expansion.  Its accuracy is reflected 

in the size of the residual derivative coupling, which as discussed below for phenol and 

seen previously in Ref. 
9
 for NH3 is acceptably small.  The favorable description of the 

derivative coupling is obtained provided the symmetry, but not the order, of the adiabatic 

states established at Q
0 

persists. If (avoided) crossings result in changes in the CNPI 

symmetry of the adiabatic states it may be necessary to work with a lower symmetry 

subgroup of the CNPI group.  It is not possible to eliminate the derivative coupling 

entirely, owing to its nonremovable part.
73-74

 

5.4.4 Description near Conical Intersections   

(i) Points  of Conical Intersection.  Orthogonal intersection adapted coordinates 

Ya,K,(ab)(q,Q0 )
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 Our description of the vicinity of a conical intersection seam exploits the 

simplifications obtained from orthogonal intersection adapted coordinates,
75-76

 based on 

g
I,J

 and h
I,J

 where  

2 gk

I ,J,(x)(R)= Lk

J,J,(x)(R)- Lk

I ,I ,(x)(R) ( 5-29 ) 

hk

I ,J,(x)(R)     = Lk

I ,J,(x)(R) ( 5-30 ) 

and we will suppress the (x) on the left hand side of eqs. ( 5-29 ) and ( 5-30 ) when no 

confusion will result.   The local topography of points on a conical intersection seam is 

determined by the conical parameters, sw

I ,J ,  w =  x,y and  g
I,J

, h
I,J , 

where 

2sk

I ,J (R)= Lk

J,J,(x)(R)+ Lk

I ,I ,(x)(R) ( 5-31 ) 

and 

g
I,J

=|| g
I,J

 ||  and h
I,J

=||h
I,J

|| ( 5-32 ) 

These parameters are continuous along the conical intersection seam, and therefore 

readily described by H
d
, provided 

g
I,J

(R)  h
I,J

(R) =0. ( 5-33 ) 

This requirement is satisfied by the proper choice of a one parameter rotation of the 

degenerate states.
76

  

To evaluate the gradients in eq. ( 5-17 ) the derivatives   JI

k

J

k

I
D

V

,†





dd are 

required.  Note that while Dk

I ,J  bears a formal resemblance to fk

I ,J , it is not that quantity 

since the derivative is with respect to Vj not Rj.  Away from the conical intersection seam, 

evaluation of Dk

I ,J this is straightforward, with 

 
1)(,,)(,,†, 
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However at a conical intersection eq. (19a) is singular and eq. ( 5-33 ) is used.  In that 

case , is determined by differentiating eq. ( 5-33 ), which yields:
9
  Di

I,J
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 (ii) Near but not at Conical Intersections.  Partially Diagonal Representations 

For the energies to remain unchanged and diagonal when eq. ( 5-33 ) is enforced 

the two states must be degenerate, for both the ab initio data and the fit potentials.  

Therefore, in our previous algorithm, points of conical intersection, were at least partial 

nodes.  For small systems like NH3 it was possible require all located conical 

intersections to be nodes.   

For a system the size of phenol the dimensionality of the seam space is very large, 

and exact reproduction of the seam cannot be achieved with a reasonable sized 

expansion. Further a very large number of exact equations also creates numerical 

problems.  For points that are close to an intersection seam but not exactly degenerate, 

the rotation to enforce eq. ( 5-33 ) cannot be used since H
d
 will no longer be diagonal.   

However proximity to a conical intersection means that rapid changes in the d
J
 will 

accompany small changes in Vk making it difficult to converge eq. ( 5-15 ).   In our 

previous work, the fitting of these near degeneracy points required us to first locate and 

fit a point of conical intersection in its vicinity.   This proves to be expensive and 

inefficient in a more complex system. 

With these factors in mind an alternative approach is adopted, in which we forego 

the requirement that H
d
 be diagonalized by the d

K
.  Instead we define states I, J to be 

quasi degenerate, elements of a (quasi) degeneracy group, provided | DEa,J,I ,(ab)(Rn ) |= 

| Ea,J,(ab)(Rn )- Ea,I,(ab)(Rn ) | is below some preassigned value, in the case of phenol 2000 

cm
-1

.  For a state pair in the same degeneracy group at a point R
n  

eq. ( 5-33 ) is used to 

redefine the results of eq. ( 5-2 ) while any remaining states at that R
n
  would satisfy eq. ( 



 174 

5-2 ).  In a degeneracy group in lieu of using eq. ( 5-34 ) to evaluate D
I,J

, eq. ( 5-35 ) is 

used.  Instead of simply rotating the states as in true degeneracy case, the finite energy 

difference is taken into account to ensure correct treatment.  This approach extends the 

original true degeneracy treatment to an arbitrary number of degeneracy groups, each 

composed of an arbitrary number of states.  It provides a partially diagonal representation 

for which the D
I,J 

are well behaved, facilitating convergence of eq. ( 5-15 ) and avoids the 

special treatment required when conical intersections are required to be nodes.  Note that 

while a seam of conical intersections is a set of measure zero, points with quasi-

degeneracy occupy a finite 'volume' in nuclear coordinate space surrounding the seam.  It 

will not be uncommon to have more than two states be in the degeneracy group.   The 

mathematical details of quasi degenerate spaces and the use of partially diagonalized 

Hamiltonians are presented in Appendices 5.7.1 and 5.7.2.  In section 5.5 the numerical 

description of conical intersection seams using this approach will be discussed.  

The treatment of an N state quasi-degeneracy is closely related to that of the 

corresponding N state conical intersection seam.  A discussion of this will be the subject 

of a future publication.  

5.5 1,2,3
1
A States of Phenol 

 In this section we use the 1, 2, 3 
1
A states  (also denoted the S0, S1, S2 states) of 

phenol, pictured in Figure 5-1 below, to illustrate the use of the procedures discussed in 

section 5.4.  An H
d
  is constructed that reliably represents ab initio data on a domain of 

definition appropriate for nonadiabatic photodissociation dynamics for this molecule with 

33 internal degrees of freedom.  For this initial feasibility study the electronic structure 

description represents a compromise between accuracy and ease of evaluation, although 

we emphasize that the electronic structure treatment is in no sense minimal.  In a 

subsequent study we will, using more accurate ab initio data, use the techniques 
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introduced here to construct an H
d
 suitable for an accurate treatment the nonadiabatic 

photodissociation of phenol which has been the subject of numerous experimental and 

theoretical studies.
54-56, 58-60, 77-80

 

 
Figure 5-1.  Phenol showing atom numbering used in this work 

5.5.1 Electronic Structure Description 

The electronic data was obtained using a FOCI wave function based on a 10 

electron in 10 orbital active space.  T      iv        i  l      ll 7 π   bi  l   σ  σ* 

orbitals describing the OH bond and a Rydberg 3s orbital.  There are twenty orbitals in 

the core.  A cc-pVDZ basis augmented with an ANO 3s Rydberg function constructed 

specifically for phenol and benzene
81

  was used and gives rise to 2.7 million CSFs. 

On the ground state the large amount of excess energy in the photodissociation 

causes the benzene ring of phenol to distort significantly.  However such distortion is not 

observed to cause breaking of σ bonds in the benzene ring, although new bonds may be 

formed at some intermediate structures. Therefore we use a permutation inversion 

subgroup that preserves the connectivity of chemical bonds in the phenoxyl moiety.  

Using this criterion to eliminate all unfeasible permutations, the relevant CNPI subgroup, 
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denoted G4, is generated by the inversion and a single nuclear permutation P = 

(H8,H12)(C2,C6) (C3,C5)(H9,H11), where (a,b) denotes a transposition of atoms a and 

b.  This group is isomorphic to C2v and equivalent to that group for structures with C2v  

point group symmetry.  As observed by Dixon et al.
61

 in the Franck-Condon region, the 

1,2,3
1
A electronic states have 

1
A1, 

1
B1 and 

1
B2 symmetry.   This symmetry will be used as 

described in section 5.4.3i, to reduce the number of Vj that need to be determined.   In the 

product channel, the three electronic states have  
1
B1, 

1
B2 and 

1
A2 symmetry, with the 

1
A2 

state being highly excited.  This change in symmetry requires that either we work in a 

lower (or no) symmetry CNPI subgroup, or obtain only an approximate fit to derivative 

couplings involving the 3
1
A state in the asymptotic region.  Since, as discussed below, in 

this region the 3
1
A state

 
is not germane to the nuclear  dynamics the later option is 

chosen.
 
  Although we do not get correct couplings with the 3

1
A  state near C2v structures 

in this channel, the couplings are still included in the fit and can be reproduced away 

from C2v  structures.   In the more precise treatment noted above 4 states will be included 

in the representation which will eliminate this problem entirely.  This point is discussed 

further below. 

5.5.2 Summary of the H
d
 

Key parameters describing the fit representation are summarized in Table 5-1 and 

the functions of the internal coordinates used to construct the g
(l)

 are given in Table 5-2.  

Referring to these tables the 51 overcomplete set of functions in Table 5-2, are 

constructed from 34 symmetry unique functions using the G4
  
group operations. Products 

involving the first 47 functions in Table 5-2 are restricted to second order as discussed in 

section 5.4.2. The final 4 functions in Table 5-2 have the common property, denoted 
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partitioning in that table, of being relatively flat in two or more distinct regions, and 

gradually changing over between these regions. These connecting regions are often the 

most challenging as a result to the changing electronic structures associated with the 

chemical process. For these functions higher order terms are allowed.    

Below we explain these restrictions and describe how the functions in Table 5-2 

work together to determine a reliable representation.  Reciprocal ( 1/rk,j) and exponential 

functions, routinely used in global single surface fits,  provide the foundation for the fit. 

They are flatter in the more chemically relevant regions but change significantly when 

their arguments are near 0  .  Therefore they are prone to produce oscillations near 0 at 

higher order, and their higher order terms are nearly flat in the most important regions.  

This limits the value of higher order terms of these monotonically decaying functions.  

Conversely changing the order of partitioning functions changes its rate of change 

between these flat areas and hence the character of this partitioning property.  By 

allowing different types of linear combinations and higher total order of these partitioning 

terms, the ability to describe distinct regions, as well as the quality of description in 

connection regions, is improved.   

Table 5-1. Important Parameters of Fitting Procedure 

Number of Symmetry Unique Coordinates(functions) 34 

Total Number of Coordinates(functions) 51 

Number of Symmetrized Basis Matrices 21976 

Number of Independent Basis Matrices 21894 

Number of R
n 

4649 

Number of Independent Equations  444776 

Number of Points of Conical Intersections 73 

RMS energy error  (cm
-1

) – total energy < 55000 cm
-1

 255 

Number of Skeletal  R
n
 610 
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Table 5-2. Coordinate Functions Used to Construct H
d
 

# Type Atoms
2
  Scaling Note 

1 Stretch 1,2 Exp
3
 C-C stretch 

2 Stretch 1,6 Exp  

3 Stretch 2,3 Exp  

4 Stretch 5,6 Exp  

5 Stretch 3,4 Exp  

6 Stretch 4,5 Exp  

7 Stretch 2,8 Exp C-H stretch 

8 Stretch 6,12 Exp  

9 Stretch 3,9 Exp  

10 Stretch 5,11 Exp  

11 Stretch 4,10 Exp  

12 Stretch 1,7 Exp C-O stretch 

13 Bend 1,2,3 Radius C-C-C angle 

14 Bend 1,6,5 Radius  

15 Bend 2,3,4 Radius  

16 Bend 4,5,6 Radius  

17 Bend 2,1,6 Radius  

18 Bend 3,4,9 Radius  

19 Bend 2,1,7 Radius C-C-O angle 

20 Bend 6,1,7 Radius  

21 Bend 1,2,8 Radius C-C-H angle 

22 Bend 1,6,12 Radius  

23 Bend 3,2,8 Radius  

24 Bend 5,6,12 Radius  

25 Bend 2,3,9 Radius  

26 Bend 6,5,11 Radius  

27 Bend 4,3,9 Radius  

28 Bend 4,5,11 Radius  

29 Bend 3,4,10 Radius  

30 Bend 5,4,10 Radius  

31 OOP
4
 2,3,5,6 6R

4
 C6 Ring torsion 

32 OOP 1,2,4,6 6R  

33 OOP 1,3,4,5 6R  

34 OOP
5
 1,2,6,7 4R

5
 -O Wagging  

35 OOP 2,1,3,8 4R -H Wagging 

36 OOP 6,1,5,12 4R  

37 OOP 3,2,4,9 4R  

38 OOP 5,4,6,11 4R  

39 OOP 4,3,5,10 4R  

40 Stretch 7,13 Exp O-H stretch 

41 Stretch 7,13 Reciprocal O-H stretch 

42 Stretch 1,13 Exp Dissociating H with closest C 

43 Stretch 2,13 Exp Dissociating H with ortho C 

44 Stretch 6,13 Exp  

45 2BDP
6
 2,6;7,13 4R Alignment of OH bond 

46 Stretch 8,13 Exp H-H repulsion 

47 Stretch 12,13 Exp  
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Table 5-2. Coordinate Functions Used to Construct H
d
 (Continued) 

# Type Atoms
2
  Scaling Note 

48 Stretch 2,6 Gaussian
8
 Prefulvenic bridge-partitioning

10
 

49 Bending 1,7,13 cos
7
 C-O-H bending-partitioning 

50 Stretch 7,13 tanh
9
 O-H stretch – partitioning 

51 OOP 7,2,6,13 4R
5
 Ring-OH torsion-partitioning 

1. Total order of all coordinates except the last 4 coordinates are restricted to two. 

2. For bending coordinates, the vertex is the middle atom.  For 4R out-of-plane coordinates the 

permutationally unique atom is the first atom.  The permutationally unique atom is shown in bold face. 

3. Exponential scaling takes the form of w=exp[- - 0)].   H     x      i l        α i        i    by 

fitting average energy of the lowest 3 states near the 2
1
A-3

1
A MEX to a Morse.    

4. The 6 distance (6R) scaling of out-of-plane coordinates is achieved by using all 6 pairs of internuclear 

distances to scale the scalar triple product coordinates.   In this case all 4 atoms are permutationally 

equivalent (up to a sign change of the coordinate).    This is used to characterize ring torsions. 

5. The 4 distance (4R) scaling of out-of-plane coordinates specifies one atom to be special among the 4 

atoms.   This atom will not be allowed to permute with the other 3 atoms. The 3 distances launching 

from this atom are used to perform scaling.   This is used to characterize wagging motions. 

6. The bond-bond dot product coordinate is defined as the dot product between two bond vectors.  This 

involves 4 atoms and effectively describes both the angular motion and out-of-plane torsions.   This 

coordinate has different inversion and permutation symmetry properties when compared with the 

scalar triple product. 

7. The cosine of bond angle is also scaled by the lengths of the two borders to ensure that the coordinate 

properly vanishes upon dissociation.  This function serves to partition the expansion in regions where 

the C-O-H bond is bend and straight.   The maximum order of this coordinate is 1. 

8. The center of the Gaussian function is chosen as the C-C distance of the prefulvenic minimum.   This 

function serves to partition the planar and prefulvenic regions.   The maximum order is 1. 

9. The tanh function is centered around rOH=2.25 bohr.  It serves to partition the region where the OH 

bond is dissociated from the region where it is bound.   The maximum order of this coordinate is 1. 

10. Partitioning is described in Sec. 5.5.2. 

As a consequence of using gradient and derivative coupling information, data at 

the 4649 R
n
 produces almost 0.5 million equations, defining ~ 22,000 Vn.  For the final 

set of R
n
, only ~100 functions are eliminated as linearly dependent using eq. ( 5-22 ) in 

Sec. 5.4.1, reflecting the ability of the null space procedure to identify and exclude 

superfluous functions early in the procedure.  Still the resulting eq. ( 5-15 ) is large in an 

absolute sense, but as we demonstrate below it is quite tractable.   Issues specifically 

related to the handling of eq. ( 5-15 ) for large data sets are discussed in Appendix 5.7.4. 

From an alternative perspective, for a 33 dimensional system that experiences 

various large amplitude motions enabled by the large amount of excess energy available 

to the system from the excited state photodissociation, the representation is rather 
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compact.  The 21894 parameters, average 3649 parameters per block (although not all 

blocks are of equal size).    For comparison a recent state of the art representation of the 

ground state potential energy surface by Czakó and Bowman
82

 for the Cl +CH4  

HCl+CH3, CH3Cl +H reaction used 3262 permutation symmetry adapted polynomials to 

describe the ground state potential energy surface, based on energies at 16,000 points. 

5.5.3 Quality of Fit: Coarse Assays  

The overall RMS energy error, 255 (347) cm
-1

 for energies within 55,000 

(50,000) cm
-1

 of the ground state minimum, is comparable to the RMS error for the high 

quality single potential energy surface result of Czakó and Bowman
82

 noted above and 

given parenthetically.   In this regard note that for energies above 50,000, 55,000, 60,000 

and 70,000 cm
-1 

weighting factors of 0.5, 0.2, 0.1 and 0.05 respectively are used in 

constructing eq. ( 5-15 ).   Figure 5-2 refines the RMS error analysis presenting the error 

for each state as a function of the total energy.  Note that the RMS energy error for the 

2
1
A and 3

1
A states is approximately 50 cm

-1
 for electronic energies < 50,000 cm

-1
, 

reducing considerably the total RMS energy error in the range 40,000 – 50,000 cm
-1

, 

which is key for nonadiabatic dynamics.  This in turn indicates, as will be demonstrated 

further below, that the low energy regions of the excited states are very well described.  

Discontinuities in the underlying ab initio data, discussed in detail in the section 5.5.7 

below, are responsible for much of the RMS energy error. The expansion achieves much 

higher accuracy in regions where ab intio data is smooth.  Discontinuities are frequently 

seen when a change in character from Rydberg states to valence states is involved.  As 

will be discussed in detail in section 5.5.7, the fit representation provides a natural way of 

smoothing out these discontinuous electronic structure results.  To demonstrate and study 
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this smoothing process no attempt was made to modify the electronic structure 

description to remove the discontinuities. 

 
Figure 5-2.  RMS energy error for 1,2,3

1
A states and the total. 

Figure 5-3 plots the norm of the residual energy gradient ||Ñ Ea,J,(m) -Ea,J,(ab)( ) || 

vs the norm of the ab initio determined energy gradient ÑEa,J,(ab)(R) .  Figure 5-4 reports 

a similar plot for the derivative coupling.  These plots demonstrate the good performance 

of the fitting procedure.  The preponderance of the energy gradients are reproduced to 

better than 10% relative error for each of the three states.   The outliers with larger 

magnitudes are on repulsive walls or represent the effects of discontinuities.  Similarly 

the preponderance of the large derivative couplings,   || f a,I,J,(ab) || > 1 have relative errors 

< 10%.  For those f a,I,J,(ab)
 with magnitudes larger than 10

4
, the error in derivative 

couplings is a consequence of small errors in the location of the associated conical 

intersection.  Errors of couplings with magnitudes beyond 10
7
 will inevitably reach 100%  

as energy differences fall below the accuracy that can be achieved by least-squares fit.   

This apparent error is, however,  an artifact caused by the infinity near, but not at, the fit 

conical intersection.  The actual difference between the fit and ab initio result is still very 

small, as evidenced in Figure 5-5 and Figure 5-6, discussed in Sec. 5.5.8 below.   
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Figure 5-3.  Scatter plot for energy gradients. Gradient norms are given in atomic unit.  Norm 

of residual gradient, Ñ(Ea,J,(ab) -Ea,J,(m))  (ordinate) plotted against the magnitude of the ab 

initio energy gradient (abscissa). 

 

Figure 5-4. Scatter plots for derivative couplings. Coupling norms are given in atomic unit. 

Norm of residual coupling f a,J,I ,(ab) - f a,J,I ,(m) (ordinate) plotted against the magnitude of the ab 

initio derivative coupling (abscissa). 
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Figure 5-5. Path from ground state equilibrium to large R(O-H).  

Derivative couplings near the 1
1
A-2

1
A minimum energy conical 

intersection are also shown. 

 

 
Figure 5-6. Derivative couplings near the 2

1
A-3

1
A conical intersection. 
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It is important to note that points with || f a,I,J,(ab) || >10
4
 correspond roughly to 

energy differences less than 1cm
-1

.  Previously such points would have been treated as 

nodes.  However, the volume spanned by these points is extremely small.  Indeed, among 

our numerous test trajectories, no points were found to reach such tight level of 

degeneracy.  Most of the surface hopping events occur at geometries with || f a,I,J,(ab) || 

between 10
1
 and 10

3
, corresponding to energy differences in the range of the partial 

diagonal representation approach.  Among all R
n
, 40 have 1,2

1
A energy differences 

below 1 cm
-1

 and 33 have 2,3
1
A energy differences below 1 cm

-1
, all of which are part of 

the manually chosen skeletal points.  544 R
n
 with small energy separations, including 

these 73 conical intersections are described using the partial diagonalization procedure.  

The majority of these points were obtained through trajectory simulations. 

5.5.4 Quality of Fit: Detailed Assays  

1. Extrema 

  Nine extrema are identified in this work.  These extrema include minima on 1
1
A 

and 2
1
A potential energy surfaces in the phenolic and phenoxylic (product channel) 

regions; 1
1
A – 2

1
A and 2

1
A-3

1
A, minimum energy crossings and three saddle points, a 

saddle point to dissociation on the 2
1
A state, a p ®3s saddle on the 2

1
A state and barrier 

to H
13

 rotation on the 1
1
A state. See Figure 5-5.  

 Table 5-3 reports the RMS error of 13 bond lengths, 18 bond angles and 9 torsion 

angles, using connectivity determined internal coordinates for the extrema noted above.  

These connectivity determined coordinates are tabulated Table 5-8, Table 5-9 and Table 

5-10 in appendix 5.7.5. Geometries, in Cartesian coordinates, of all critical points on both 

ab initio and fit surfaces are provided in Table 5-11 in the same appendix. Their energies 
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are reported in Table 5-4.  Both the energetics and geometries of these minima are well 

reproduced, despite the fact that we are treating all R
n
 in the least squares manner as 

opposed to the approach used in NH3 where such critical points were treated as nodes.  It 

is significant to note that the errors in the fit values of excitation energies and energies at 

the minimum energy crossings are less than 51 cm
-1

, which is much smaller than changes 

in these quantities expected when wave functions used in dynamics on the fly are 

replaced by the more exact wave functions practical in the fit surface paradigm. 

 Two extrema, both on 2
1
A surface, are found in the immediate vicinity of the 2

1
A-

3
1
A minimum energy conical intersection: the 2

1
A(π→π*)  i i            2

1
A( π→3 ) 

Rydberg saddle point.  See Figure 5-5 and Figure 5-6.  Both of these extrema correspond 

to minima on the corresponding diabatic surfaces and the intersection results from the 

crossing between them. The strong diabatic state coupling converts the 2
1
A (π→3 ) 

Rydberg diabatic surface minimum  into a saddle point in adiabatic representation.  As a 

result, the imaginary mode at saddle point is nearly identical with the derivative coupling 

direction at the conical intersection.  It can be seen from Table 5-3 and Table 5-4 that this 

complex structure is well reproduced by fit.   

Table 5-3.  RMS Error of Fit Critical Point Geometries from Ab Initio Values 

Critical Point Bond Lengths(Å) Bond Angles(°) Torsion Angles(°) 

Phenol 
   

S0 Minimum 0.0005 0.15 0.00 

S1 Minimum 0.0005 0.09 0.00 

S0 Rotational Saddle 0.0013 0.19 0.36 

S1 π 3s Saddle 0.0002 0.07 0.00 

S1 Dissociation Saddle 0.0020 0.20 0.00 

S0-S1 MEX 0.0011 0.07 0.00 

S1-S2 MEX 0.0002 0.06 0.00 

Phenoxyl Radical 
   

S0 Minimum 0.0021 0.13 0.00 

S1 Minimum 0.0007 0.07 0.00 
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Table 5-4.  Energetics of Critical Points in cm
-1

 

Critical Point Ab Initio Fit (Optimized)             Error 

Phenol 
   

S0 Minimum 0.00 56.50 56.50 

S1 Minimum 38021.61 38021.15 -0.46 

S0 Rotational Saddle 1578.27 1718.51 140.24 

S1 (π 3s) Saddle 40433.20 40432.30 -0.90 

S1 Dissocation Saddle 41027.53 40976.60 -50.93 

S0-S1 MEX 28537.27 28581.31 44.04 

S1-S2 MEX 40436.91 40436.15 -0.76 

Phenoxyl Radical 
   

S0 Minimum 24181.17 24261.88 80.70 

S1 Minimum 34738.61 34672.23 -66.38 

 

2. Harmonic Frequencies 

Harmonic frequencies at the extrema noted above are calculated from numerical 

hessians for the ab initio and fit potential energy surfaces using forward differences of 

analytic energy gradients with step sizes of 0.001. The RMS errors for all 33 modes, 

shown in Table 5-5 are between 10 and 23 cm
-1

.   A complete tabulation of the 

frequencies for both ab initio and fit surfaces are can be found in appendix 5.7.6, where it 

is seen that the largest error is ~ 50 cm
-1

.   For the fit potential energy surfaces, it is 

possible to obtain much higher accuracy using centered differences, smaller step sizes, 

and higher order differencing schemes.  By applying all three, the error in harmonic 

frequencies due to numerical differentiation is found to be at most 2 cm
-1

.  Due to the 

limited accuracy of ab initio energy gradients and high cost of evaluation, we did not use 

these techniques for the ab initio frequencies.  Because of the demonstrated similarity 

between the fit and ab initio surfaces, the numerical error of ab initio frequencies is 

expected to be small despite the use of less expensive forward differencing method. 
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Table 5-5. Error in Harmonic Frequencies and Zero Point Energies 

Critical Point RMS Error ZPE Fit ZPE d ZPE 

S0 Minimum 18.45 23947.50 23908.29 -39.21 

S1 Minimum 17.20 22492.03 22486.74 -5.29 

S0 Rotational Saddle 21.94 23711.61 23628.74 -82.87 

S1 (π π*) Saddle 19.60 23494.80 23397.11 -97.69 

S1 Dissociation Saddle 22.52 22055.15 21984.38 -70.77 

Phenoxyl S0 Minimum 13.98 20870.47 20918.73 48.25 

Phenoxyl S1 Minimum 14.45 21019.65 21010.77 -8.88 

 

It is important to note that we do not include any data points that are in close 

vicinity of each other. Especially, the small displacement points used to calculate 

harmonic frequencies for the fit surfaces are NOT used in the fitting procedure. 

Nevertheless, the harmonic frequencies are well reproduced, showing that the fit is not 

“  i y” i      vi i i y      i     i      ll g   i    .  T i     vi             vi         

the quality of the fit. 

5.5.5 Determining  the Domain of Definition of H
d 

Even though the dimensionality of the system is extremely high, the regions, 

particularly on the electronically excited states, accessible to the dynamics of C6H5O-H 

photodissociation is only a small portion of the available space.  It is, however, difficult 

to define this region without detailed knowledge of the dynamics.  A manually chosen 

grid may not cover the relevant regions, or be too extensive to calculate owing to the 

inclusion of irrelevant regions.  

1.  Surface Hopping Quasi-classical Trajectory Simulations 

  In order to obtain a satisfactory yet realistic domain of definition, we employed a 

previously developed scheme
8
 to sample the dynamically relevant region by monitoring 
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surface hopping quasi-classical trajectories(QCT)
48

.  The trajectory simulations are 

performed with the Adiabatic and Nonadiabatic Trajectories 2013 (ANT2013) program 

suite.
68

  A modified Bulirsch-Stoer method with adaptive step size
83

 is used to perform 

integration. 

On the ground state potential energy surface ergodicity complicates the analysis, 

in that, not unexpectedly, some trajectories that transition to the ground state potential 

energy surface, remain there for extended periods of time exploring ever increasing 

regions of nuclear coordinate space. These trajectories can be handled statistically.  For 

the purpose of determining the dynamically important regions, we limit the propagation 

time of the trajectories to 50 ps.  Illustrative of the smoothness of the fit is the fact that for 

all the trajectories run the maximum change in the total energy was 10
-4

 eV over the full 

50 ps of propagation.   The details of the use of QCT to construct the domain of 

definition are presented in Appendix 5.7.3.   We now document properties of the domain 

of definition so obtained. 

2.  Testing the Adequacy of Domain of Definition 

To ensure that the domain of definition is sufficient to describe nonadiabatic 

dynamics 1000 QCT are run using the H
d
 obtained from the final data set.  In general 

with our initial conditions the randomized trajectories have a total energy in or above the 

range the experimental energies (7.41-8.99 eV) defined as the sum of the laser energy and 

the H
d
 determined zero point energy.  See Figure 5-7.  A coarse grained analysis of these 

trajectories is shown in Table 5-6.   Key is the result that 97.4% of the trajectories stay in 

the domain of definition.   Among all simulated trajectories, only 55(5.5%) lasted the full 

duration of 50ps without dissociating, showing that 50ps is a reasonable cutoff simulation 
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time.  All of these 55 trajectories stayed within the domain of definition.  Among the 

trajectories that reached the asymptote in the prescribed simulation time, 42.9% (56%) 

dissociated to 1
1
A(2

1
A) in the product channel. Only 0.7% of trajectories dissociated 

through 3
1
A surface, validating our argument that the symmetry of 3

1
A surface near 

asymptote is not important.   Note that owing to the tight tolerances used on average each 

trajectory required ~5 million  H
d
 evaluations. 

 

Table 5-6.  Dynamics  Summary Assay 

Total Number of Trajectories 1000 

Retention Ratio 97.4% 

Long-living Trajectories 55(5.5%) 

Average Evaluation Count 5.055×10
6
 

Average Total Energy 8.23eV 

Percent Dissociated to 1
1
A 42.9% 

Percent Dissociated to 2
1
A 56.4% 

Percent Dissociated to 3
1
A 0.7% 

 

 

 

 

Figure 5-7. Total Energy Distribution of 1000 Test Quasi-classical Trajectories 
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Figure 5-8 and Table 5-7 provide a more detailed analysis of this test. Top and 

bottom panels of Figure 5-8 report the electronic energies for randomly chosen 

trajectories that dissociate on the 1
1
A, 2

1
A states, respectively.  The trajectory 

terminating at the 1
1
A asymptote is too long to be fully included and only the final 

portion of the simulation is shown.  At five randomly chosen points on each of these 

trajectories, Table 5-7 report the H
d 

 and ab initio determined energies, the energy errors, 

the D1 distance metric (defined and discussed in Appendix 0) and R(OH
13

).  The D1 

distances, being < 0.15, confirm that each trajectory stays in the domain of definition.   

The RMS energy errors from the 5 points, 174 and 116 cm
-1

, respectively, are consistent 

with the RMS energy errors in Figure 5-2, although it is important to note here that these 

test points are not included among the R
n. 

   Movies of these trajectories, available in the 

multimedia versions of Figure 5-8, show a more complete picture of the trajectories, 

including the molecular motion, the magnitude of derivative couplings, the D1 distances, 

the energies and the state transitions as functions of simulation time. 

 

 

Figure 5-8. Energy profile of two sample trajectories that dissociate  on  1
1
A, 2

1
A  

potential energy surfaces.  Black markers denote randomly chosen points for which 

energies are compared with ab initio results. See Tables VIIa-b.    Left:  1
1
A Channel; 

Right: 2
1
A Channel 



 191 

Table 5-7: Fitting Error from Randomly Selected Trajectories.   

A. Dissociating through 1
1
A Channel(TE

a
=7.96eV); RMS Error=173.84cm

-1 

Time 

(fs) 

Current 

Surface 

ab initio 

Energy 

Fit 

Energy 
Error 

D1 

Distance 

OH 

Distance 

503.18 2 47469.1 47587.0 117.8 0.073 1.835 

530.19 2 54990.7 54672.6 -318.1 0.086 1.745 

571.58 2 47266.6 47192.0 -74.6 0.074 1.998 

707.86 2 41201.4 41208.1 6.6 0.066 2.317 

748.87 1 35112.6 34938.2 -174.4 0.074 10.336 

B. Dissociating through 2
1
A Channel(TE=7.40eV); RMS Error=115.8cm

-1 

Time 

(fs) 

Current 

Surface 

ab initio 

Energy 

Fit 

Energy 
Error 

D1 

Distance 

OH 

Distance 

9.80 2 46966.6 46836.2 -130.4 0.064 1.875 

9.81 2 46933.1 46805.5 -127.6 0.064 1.875 

33.60 3 50567.5 50655.1 87.6 0.062 1.919 

63.40 2 39363.0 39485.5 122.6 0.070 2.316 

75.72 2 42957.5 42852.0 -105.4 0.079 3.829 
a
For comparison the estimated experimental total energy (TE) range  is 7.41~8.99eV  

obtained by adding  the H
d
 determined ground state ZPE (2.97eV) to  the experimental 

laser energy range: 4.44~6.02eV.  

 

Not shown are trajectories dissociating on the 3
1
A state.  These rare events, < 

0.7%  of trajectories.  A randomly chosen trajectory (TE=8.77eV) in this class exhibited a 

larger RMS energy error, ~491 cm
-1

.  The large RMS energy errors for this channel 

reflect the fact, that for energies  > 50,000 cm
-1

 lower weights are used in the fit, 

consistent with, as the trajectory statistics demonstrate, the limited importance of this 

    .    Al                 “  g  i     j     i  ”   i       i         1
1
A surface but 

never dissociate.  These trajectories, only 5.5 % of total trajectories, remain in the domain 

of definition for 50 ps but will eventually explore regions outside the domain of 
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definition.  The 5 point RMS energy error for the randomly chosen trajectory 

(TE=7.83eV) was ~ 550 cm
-1

. Should this region be proven important in the future, the 

quality of fit in this region can be improved in a straight forward manner by inclusion of 

more coordinates, similar to the treatment of OH in this work.   

5.5.6 Extent of the Domain of Definition  

Here we describe the extent of the final domain of definition to illustrate the range 

of nuclear configurations that H
d
 must represent.  The domain of definition includes 

motion in which the benzene ring exhibits significant deviations from harmonic motion.  

Figure 5-9 reports histograms showing the range of bond distances, bond angles  and 

dihedral angles encountered. The corresponding values at the 1
1
A1 state equilibrium 

structure are indicated by vertical arrows.  Figure 5-10 depicts phenol at the largest 

displacement along nine coordinates not involved in the dissociation process with 

energies below 50,000 cm
-1

.  The histogram shows that the trajectories can access a very 

wide range of geometries including large amplitude motions of the benzene ring 

particularly when propagating on the ground state, due to the large excitation energy.    

Most significantly, large numbers of trajectories experience excitation of OH bond 

torsional modes that resulted in full rotations around C-O bond.  This motion is facilitated 

by the 2
1
A potential energy surface which is lower in energy for nonplanar structures 

near the 2
1
A-3

1
A minimum energy conical  intersection region due to the a'' derivative 

couplings.    Other than motions involving the dissociating hydrogen atom, large 

amplitude motion of out-of-plane bends of peripheral C-H and C-O bonds on the benzene 

ring and the distorsion of the ring itself are also found quite frequently among the 1000 

trajectories.   
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Figure 5-9. Large amplitude motion.  Histogram showing displacements along bond 

distances, bond angles and dihedral angles for all data points used in the fit. 

 

 

Figure 5-10. Large amplitude motion used to confirm domain of definition.  Pictures of 

phenol showing largest displacements along 9 internal coordinates for R
n
 with energy 

<50,000cm
-1

 .  Bond stretches, bond angles and dihedral angles except those involved in 

the dissociation of O-H bond are included. 
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We also located and fit the 1
1
A-2

1
A intersection in the prefulvenic region

54
 (See 

Figure 5-11), along with the linear synchronous transit path leading to it and the 

associated saddle point.   The barrier is found to be 39072cm
-1

 above the global 

minimum, which is accessible at the energy level of the simulations.  However, no 

trajectory is found to surmount this barrier to reach the prefulvenic region.    

 
Figure 5-11. Quality of Fit Energy and Coupling on Path to Prefulvenic Intersection 

5.5.7 Automatic Smoothing of Discontinuities in Ab Initio Data 

As noted previously, discontinuities in the ab initio data make a significant 

contribution to the RMS energy error.  In this section we demonstrate how the fit smooths 

out these discontinuities producing in effect coupled potential energy surfaces which are 

better than the ab initio data from which they are derived.  In phenol the discontinuities 

are found to be a result of Rydberg orbital leaving the active space.   In the Frank-Condon 

region, the 3
1
A           (π→3 ) Ry b  g          .  A   -Rydberg orbital is therefore 

needed in the reference space to properly describe this state.   However, outside the 

Frank-Condon region, particularly as R(O-H)  increases, the Rydberg state becomes a 

highly excited state and is not present in the reference space.  As a result, the 3s Rydberg 
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orbital does not contribute to the 1-3
1
A states.  When this change of orbital character 

occurs abruptly the result is a discontinuity in the energy of all the states because of the 

change in the level of correlation.   While it may be possible to remove this discontinuity 

by changing the active space or the weighting scheme, in nonadiabatic processes, such 

Rydberg-valence or other orbital switchings are very common and avoiding such 

discontinuity is often not practical.  In a direct dynamics simulation, such discontinuities 

preclude conservation of total energy and can result in erroneous dynamics. 

The fitting procedure provides a natural way of removing the discontinuity by 

interpolating between the two solutions and smoothing the discontinuous potential.   We 

found that the points with large fitting error are in most cases in vicinity of such 

discontinuities.   To illustrate this, we selected the R
n
 with the largest fitting error, 1669 

cm
-1

. Using the trajectory that generated this point, an (extrapolated) path (a set of test 

points) was created by moving along the plus and minus directions of the momentum at 

that point in the generating trajectory.   Ab initio data are calculated at these test points to 

illustrate the behavior of both ab initio and fit potentials around the discontinuity.   The 

results are shown in Figure 5-12.  The discontinuity is evident in the ab initio data, but 

the fit potentials are quite smooth.   The orbital change that resulted in this discontinuity 

is shown in the inset, demonstrating that the interchange of a Rydberg orbital and a 

correlating orbital is the culprit.   Note that none of these test points are included in the 

R
n
.  The D1 distance of these points is given in the figure.  All points are seen to be in the 

domain of definition.  The smoothing functionality of fit potential is also evidenced in the 

tight conservation of total energy in the QCT, with variances less than 10
-7

eV for most 

trajectories, and no more than 10
-4 

eV change even for propagation time as long as 50ps. 
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Figure 5-12. Analysis of a discontinuity in the ab initio data caused by a change from 

Rydberg to valence character of an orbital in the active space.   Discontinuity occurs for 

R(OH) ~ 1.185 Å.   

Left: Inset show the change in the orbital from Rydberg  to valence character.  Solid lines 

show fit. Small dots show ab initio results.  The large black dot indicates the only R
n
 

included in the fit.  The magnitude of the derivative coupling near the 2
1
A – 3

1
A avoided 

crossing is shown in upper plate.   Right: The D1 distance of the remaining ab initio 

points  are shown in the upper  plot  in  plate and ground state energies from fit and ab 

initio data, including points in the fit and test points that are not used in the fit, are shown 

in the bottom plate. 

5.5.8 Treatment of Conical Intersections 

The partial diagonalization procedure introduced in this work provides an 

automated approach to characterizing conical intersections and their neighborhood.  In 

this section we assess the efficacy of this approach. Figure 5-5 and Figure 5-6 address the 

ability of H
d
 to correctly reproduce nonadiabatic coupling, considering the vicinity of the 

minimum energy 1
1
A-2

1
A and 2

1
A-3

1
A intersections, respectively.  Test points (points 

not included in the R
n
) near each of the minimum energy intersections are shown.  Again 

in these figures only the single near conical intersection point (there are no nodes in this 
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fit) is included in the R
n
.  The remaining points are test points for some of which ab initio 

data were also determined.   To illustrate the accuracy of the partial diagonal 

representation procedure, both ab initio and H
d
 determined derivative couplings are 

reported in Figure 5-5 and Figure 5-6. The good agreement between the ab initio and H
d
 

derivative coupling is evident showing that fitting in the partial diagonal representation 

correctly reproduces quantities in adiabatic representation, while avoiding the need to 

require exact degeneracy of the two states in question. The relative error of derivative 

coupling is still around or below 1%, except for the extremely narrow area near the 

infinity where a very small shift in geometry of conical intersection can give rise to an 

artificially large relative error.  It is evident, however, that the geometry error is 

extremely small and the fit couplings, although slightly shifted, very closely reproduced 

the ab initio values.    

5.6 Summary and Conclusions 

We report the extension of an algorithm for representing adiabatic states coupled 

by conical intersections using a quasi-diabatic state Hamiltonian useful in four and five 

atom systems, to treat nonadiabatic processes in considerably larger molecules.  The 

method treats all internal degrees of freedom and is based on energies, energy gradients 

and derivative couplings obtained solely from ab initio multireference configuration 

interaction wave functions.  The domain of definition of H
d 

 is constructed using quasi-

classical surface hopping trajectories.  The algorithm can simultaneously describe large 

amplitude motion and dissociation.  These capabilities are attributable to the following 

procedures introduced here: (i) The representation is built up by adding data at points 

determined by quasi-classical surface hopping trajectories.  Initially only a small fraction 
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of the functions ultimately required are needed.  This causes significant linear 

dependence problems.  A null space projector, which removes basis functions from the 

expansion until they are needed, avoids these issues and eliminates functions which are 

not useful in the fit.  (ii) A partial diagonalization procedure allows for automated, but 

accurate, treatment of the vicinity of extended seams of conical intersection. (iii) The use 

of redundant variables limits the otherwise rapid growth of the basis functions required to 

described distinct regions of nuclear coordinate space. The fitting procedure can smooth 

irregularities in the electronic energies attributable to the orbital changes that are 

frequently encountered in nonadiabatic processes producing a representation which is 

better than the electronic structure data from which it is derived.   

The potential of this algorithm is demonstrated using the photodissociation of 

phenol governed by its 1
1
A, 2

1
A and 3

1
A electronic states as a test.  The results are quite 

encouraging as the representation was able to treat all 33 internal coordinates.  This 

approach is expected to find application in grid based quantum dynamics such as the 

multiconfiguration time-dependent Hartree method,
84

 where analytic representations of 

the coupled PESs are essential.  However, since it brings more accurate electronic 

structure data to bare on the dynamics problem while removing the time to evaluate the 

electronic structure data as an issue, it will also improve the performance of trajectory 

based methods, including quasi-classical surface hopping methods
48

  and quantum 

techniques including ab initio multiple spawning (AIMS)
34

 and direct dynamics 

variational multiconfiguration Gaussian (DD-vMCG).
36
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5.7 Appendices 

5.7.1 Partial diagonalization of H
d
(R

n
) 

In order to construct the gradients in eq. ( 5-17 ) the  derivatives of  the d
J
 with 

respect to the Vj  are required.  This is numerically challenging when an R
n
 is at or near a 

conical intersection, since the (near) degeneracy makes the d
J
 sensitive functions of Vn.  

To remove this sensitivity the (near) degenerate eigenstates are 'rotated' to a new, 

nondiagonal representation.  In this appendix we describe how this is accomplished.  In 

Appendix 5.7.2 we use these results to determine   J

l

I

V
dd



†

. 

We define two conditions: 

for 
dnabJanabIa

tEE  )()(
)(,,)(,,

RR ;    d
I( )

†

H
d
d

J = 0 ( 5-36 ) 

for Ea,I ,(ab)(Rn )- Ea,J,(ab)(Rn ) < td
;   g

I,J
 • h

I,J
  =0 ( 5-37 ) 

For simplicity we say states satisfying A.1b are degenerate and form a degeneracy group.  

Condition ( 5-37 ) will be recognized as defining the rotation, see eq. ( 5-41 ) below, used 

to form the orthogonal g
I,J

 and h
I,J

 vectors at points of true degeneracy.  In that case the 

rotated d
J
 remain eigenstates of H

d
.  Here, since Ea,J,(ab)(Rn ) ¹ Ea,I ,(ab)(Rn )  the rotated d

J
 

are no longer eigenstates. Since N
state 

may be greater than Ni
deg

, the dimension of the i
th 

degeneracy group, the representation is denoted partially diagonal. Below we describe 

how a partial diagonalization is achieved.   

At each R
n 

all states are initially eigenstates of H
d
, that is they satisfy eq. ( 5-2 ).  

However, when their energies are closer than a preassigned t
d
 they are quasi degenerate 

and are required to satisfy ( 5-37 ).  We show that these equations define the rotated d
I
 .  
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Define, J

I

d

JI
dd 

)(

,
 where d

I
 are the vectors of H

d
 with phases chosen so that det(d

(d)
) = 1.  

Let d
(p)

 contain  the orthonormal vectors defining the partially diagonal representation 

defined by ( 5-37 ).  d
(p)

 is given by 

exp
)()( dp

dd   , ( 5-38 ) 

where Θ is a skew symmetric matrix. Θ can be taken to be block diagonal since for d
i
 in 

different degeneracy groups, ( 5-36 ) is satisfied by the original d
I
.  Note too that Θ 

Ni
deg

(Ni
deg

-1)/2 undetermined parameters which is precisely the number of equations in ( 

5-37 ).  However for Ni
deg

 > 2 it is less than straightforward to directly determine 

ΘInstead we write 

)(
expexp

i

i

   ( 5-39 ) 

where  

牋 
)(

),(),(

)(

),(),(

)(

,

k

MkJNkI

k

NkJMkI

k

NM
   ( 5-40 ) 

so that each expΘ 
(i)

 is a Jacobi-type rotation with only four nonzero elements.  Thus the 

solution is now reduced to finding a sequence of triples k = (θk, I(k),J(k)) that gives d
(p)

 

whose vectors satisfy  ( 5-36 ), ( 5-37 ).  Intuitively we expect that the sequence of 2x2  

Jacobi style rotations, based on the two state rotation
76

 

]|||[|

•2
4tan

22,,2,,

,,

JIJI

JIJI

hg

hg



  ( 5-41 ) 

will do the job.  We now show that this is indeed the case.  

Define, for a particular I, J  pair of states in the k
th

 degeneracy group, the (n+1)
th

 

transformation       kn
 expdd  , where  JI ,,k .  The I

th 
column of d

(n) 
[d(θ)] is 

denoted  d
I,(n)

[d
I
(θ)]

 
so that 



 201 

d
I (q ) =  d

I,(n) cosq - d
J,(n) sinq

d
J (q ) = d

I ,(n) sinq + d
J ,(n) cosq

 ( 5-42 ) 

Since h
I,J

 = L
I,J,(m) 

 and   g
I,J

 = [L
J,J,(m) 

– L
I,I,(m)

]
 
/2 (see eq.4), rotating the d

(n) 
 rotates h

I,J 
 

and   g
I,J

 ( 5-42 ) we have 

hI,J (q ) = -gI ,J,(n) sin2q + hI ,J,(n) cos2q

gI ,J (q ) =  hI ,J,(n) sin2q + gI ,J ,(n) cos2q
 ( 5-43 ) 

Then the condition ( 5-37 ),      0
,,

 
JIJI

gh  gives tan4q  from eq. ( 5-41 ) which 

defines the rotation matrix giving  d
(n+1)

 . 

Since we are only rotating one pair of states at a time, when Ni
deg

 > 2 the rotation 

between I and J will change the orthogonality involving a third state K in the same 

degenerate block as I or J.    It is, therefore not evident that this iterative procedure will 

eventually converge.  It is not even clear that this set of equations has a valid solution. 

To address this issue, we reformulate the eq. ( 5-37 ) as a minimization problem, so 

that the existence of a solution and convergence conditions can be more easily 

established.  We emphasize, as noted above, that each quasi-degenerate block is treated 

independently of the others.  If Ni
deg

 = 2, then that block can be constructed in 1 iteration, 

because the rotation satisfies the only equation in that block without affecting any other 

state pairs.  If Ni
deg

 ≥ 3        bl   b            i       i g. 

First examine eq. ( 5-43 ) for a pair of states I and J that are in the same quasi-

  g        bl  k.    Di       i  i g  i                gl  θ       v  

1/ 2
dh

I ,J (q )

dq
= -g

I ,J ,(n) cos2q - h
I ,J,(n) sin2q

1/ 2
dg I ,J (q )

dq
=  hI ,J ,(n) cos2q - g I ,J,(n) sin2q

 ( 5-44 ) 
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Combining eqs. ( 5-43 ) and ( 5-44 ) 

dh
I ,J (q )

dq
•h

I ,J (q ) = (| gI ,J,(n) |2 - | h I ,J,(n)
 |2 )sin 4q - 2  h

I ,J,(n) • g
I ,J,(n) cos4q

 
dgI ,J (q )

dq
• gI ,J (q ) = -(| g I ,J,(n) |2 - | hI ,J ,(n)

 |2 )sin 4q + 2gI ,J,(n)hI ,J,(n) cos4q

 ( 5-45 ) 

and 

dh
I ,J (q )

dq
•h

I ,J (q) = 2g
I,J (q ) •h

I ,J (q ) = -
dg

I ,J (q )

dq
•g

I ,J (q ) ( 5-46 ) 

These equations give a relation between g
I,J

, h
I,J

 orthogonality and norms of g
I,J

 and h
I,J

  

JIJIJIJIJIJI ,,,,,,
4)()( hghhgg 











 ( 5-47 ) 

We also need the effect of a rotation on one pair of states (I,J) on the orthogonality of 

g and h vectors involving a third state K (in the same quasi-degenerate block as I and J).  

Using eq. ( 5-41 ) and the fact the d
K,(n)

 is unchanged  we have 

h
I,K q( ) = d

I ,(n)† cosq -d
J,(n)† sinq( )ÑH

d
d

K = h
I ,K,(n) cosq -h

J,K,(n) sinq  ( 5-48 ) 

h
J,K q( ) = d

J,(n)† cosq + d
I ,(n)† sinq( )ÑH

d
d

K = h
J,K,(n) cosq + h

I ,K,(n) sinq  ( 5-49 ) 

Therefore from ( 5-48 ) 

   


cossinsincos2/1
)(,,)(,,)(,,)(,,,,

2
,

nKJnKInKJnKIKIKI

KI

hhhhhh
h











    2sin2/12cos
2

)(,,
2

)(,,)(,,)(,,







 
nKInKJnKJnKI

hhhh  ( 5-50 ) 

and from ( 5-49 ) 

   


cossinsincos2/1
)(,,)(,,)(,,)(,,

2
,

nKInKJnKInKJ

KJ

hhhh

h





 

 2sin2/12cos
2

)(,,
2

)(,,)(,,)(,,







 
nKJnKInKJnKI

hhhh  ( 5-51 ) 
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so that  

0
2

,
2

,








 


 KIKJ
hh


 ( 5-52 ) 

Adding eqs. ( 5-47 )  and ( 5-52 ) gives 

JIJIS ,,
4 hg 






 ( 5-53 ) 

where 




LK

LK
S

2
,

h  is the sum of the norms of all h vectors between states in the quasi-

degenerate block of states I and J.  It is important to notice that S is a block quantity,  

independent of the states I and J being rotated and that q  is part of the triple k = (q , I, J).  

For the current representation d
(n)

 to be converged for this block,  g•h must vanish at q  = 

0, for all pairs in the degeneracy group.  From eq.( 5-52 ) is equivalent to the condition 

that S is stationary with respect to any rotation within the block.    Since S is a sum of 

norms, it is non-negative.   Being a non-negative continuous function, S is guaranteed to 

have a minimum.   The solution to eq. ( 5-37 ) is therefore also guaranteed.   However, 

this does not guarantee that this solution is unique, and in fact we find multiple solutions 

almost always exist.  

We now show that the Jacobi type iteration scheme leads to a solution of eq. ( 5-37 ).  We 

show that a rotation by k = (q , I, J )  reduces the magnitude of positive semi definite S 

and hence moves toward the solution.  From eq. ( 5-48 ), ( 5-49 )  

   







2
2

)(,,)(,,)(,,2
2

)(,,

2
2

)(,,)(,,)(,,2
2

)(,,

2
)(,,)(,,

2
)(,,)(,,

2
,

2
,

cossincos2sin

sinsincos2cos

sincossincos

nKJnKJnKInKI

nKJnKJnKInKI

nKInKJnKJnKIKJKI

hhhh

hhhh

hhhhhh







 
2

)(,,
2

)(,, nKJnKI
hh   ( 5-54 ) 
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so that any change of S comes exclusively from the I, J subspace.  In the I, J subspace 

h
I ,J q( )

2

= h
I ,J,(n) cos2q - h

I ,J,(n) sin2q
2

= h
I ,J,(n)

2

cos2 2q + g
I ,J,(n)

2

sin2 2q - 2h
I ,J,(n) × g

I ,J ,(n) sin2q cos2q

=
1

2
h

I ,J,(n)
2

+ g
I ,J ,(n)

2

( )

  

  4sin4cos
2

1 )n(,,)n(,,
2

)n(,,
2

)n(,, JIJIJIJI
ghgh 







   ( 5-55 ) 

To simplify eq. ( 5-55 )     i   C  α          

 C =
1

4
h

I,J,(n)
2

- g
I ,J ,(n)

2

( )
2

+ h
I ,J ,(n) × g

I ,J,(n)( )
2

 ( 5-56 ) 

 








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



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


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)n(,,)n(,,

2
)n(,,

2
)n(,,

C

C

JIJI

JIJI

gh

gh
 ( 5-57 ) 

giving 

 h
I ,J q( )

2

=
1

2
h

I ,J,(n)
2

+ g
I ,J,(n)

2

( ) +Ccos a + 4q( ) ( 5-58 ) 

The definition of 4  in Eq. ( 5-41 ) can be rewritten 

Csin(4q +a) = 0 ( 5-59 ) 

which has solutions 

4q +a = (2k -1)p   for k=1 ,2  ( 5-60 ) 

where we have chosen the values of   for which   

cos a + 4q( )  = -1 ( 5-61 ) 

From eq. ( 5-58 ) eq. ( 5-60 ), ( 5-61 ) give the solutions for which hI ,J q( )
2

 is minimal.  

Inserting eq. ( 5-61 ) into ( 5-58 ) gives 

       

h
I ,J q( )

2

=
1

2
h

I ,J,(n)
2

+ g
I ,J,(n)

2

( ) -
1

2
h

I ,J ,(n)
2

- g
I ,J,(n)

2

( )
2

+ 2 h
I ,J ,(n) × g

I,J,(n)( )
2

 

 

           £
1

2
h

I ,J ,(n)
2

+ g
I,J,(n)

2

( ) -
1

2
h

I ,J,(n)
2

- g
I,J,(n)

2
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= min h
I ,J,(n)

2

, g
I ,J,(n)

2

( )      ( 5-62 ) 

where min() denotes the smaller of the two arguments.   The equal sign holds only when 

the term   0
2)n(,,)n(,,


JIJI
gh . Thus  hI ,J

2

 and hence S are strictly decreasing unless 

 )n(,,)n(,, JIJI
gh  =0. By choosing the pairs of states I and J with the largest rotation angle 

every iteration, the rotation will always lower the value of S until             holds for 

all pairs of states I and J, which is the desired result. 

 Finally we explain how the partially diagonalized representation is used in the 

fitting procedure.  The derived transformation  acts on the diagonal 

matrix E
(m)

, with matrix elements = EI ,J

(m) = dJ,KEa,J,(m) forming 

 ( 5-63 ) 

and also 

 ( 5-64 ) 

where we have introduced the superscript (m) to indicate that model H
d
 values are used.   

The same rotation procedure is also performed for the ab initio data to transform them 

into the same representation. Note that only energy gradients and derivative couplings are 

needed to determine the Θ,  Therefore ab initio data can be rotated without any 

knowledge of d. We then require  

Hpd,(m) = Hpd,(ab)
  and    dH

pd,(m) = dH
pd,(ab)  ( 5-65 ) 
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where the superscript (ab) indicates  that the   is determined from the ab initio data.   

Note that when first part equation ( 5-65 ) holds, the ab initio and H
d
 will have the same 

eigenvectors, therefore we have )()( mab
  . As a result, equation ( 5-65 ) is equivalent 

with the corresponding equations in adiabatic representation.  Thus even though the fit is 

done in the partially diagonal representation, the resulting H
d
 is accurate in the adiabatic 

representation. The equations in ( 5-65 ) can be solved in a least square sense or exactly 

using Lagrange multipliers.  As a result of the least squares procedure, the H
d
 fit in 

adiabatic and partially diagonal representations will be different, however this difference 

is small when the fitting error is small.  
 

5.7.2 Calculating Ñd
J
for an arbitrary number of degeneracy groups composed of 

an arbitrary number of degenerate states  

 In order to construct the gradients in eq. ( 5-17 ) the derivatives of the d
J
 with 

respect to the Vj  are required.  Below we show how this is done when partial 

degeneracies may exist.  It is convenient to define 

IJ

i

i

J

IJI

i
D

V
D

,†,




d
d  ( 5-66 ) 

  J

k

d

IJI

k

V
d

H
dv






†,
 ( 5-67 ) 

E pd,I,J,(m) = d
I( )

†

H
d
d

J
 ( 5-68 ) 

where we have suppressed the superscript (p) on the d
J
 for simplicity.  As we will show 

below, a system of linear equation for couplings D
I,J

i can be obtained by differentiating 

A.1b for each pair of states I and J.  There will be two cases to consider: (i) N
state 

= 

Ni
deg

>2; and (ii) there is more than one degeneracy group.   There is clearly a relation 

between these quasi-degenerate groups and true N-state conical intersection seams.  In a 
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future investigation the potential for the present analysis to be used to make the 

parametrization of an N-state conical intersection continuous along the N
int

 – 5 

dimensional seam
85

 will be considered.   

(i) D
I,J

 between N states in a degeneracy group 

  For N degenerate states we have  [see eq. ( 5-35 )] 
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 ( 5-69 ) 

If more than two states are in the degeneracy group, the D
I,J

 become members of a system 

of inhomogeneous  linear equations 
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( 5-70 ) 

 (ii) D
I,J

 between states in distinct degeneracy groups 

Within a degeneracy group, the states are linear combinations of adiabatic states.  

However, off-diagonal matrix elements between different groups vanish.  Therefore 

differentiating d
I( )

†

H
d
d

J = 0 with respect to Vi  gives 

JI

i

IK

mIKpdKJ

i

JK

mJKpdKI

i
EDED

,

~

)(,,,,

~

)(,,,,
v   ( 5-71 ) 

where the ~ implies the sum is restricted  to elements of the same degeneracy group.    

Eqs. ( 5-71 )

 

and ( 5-70 ) plus the antisymmetry of  D
I,J

 in eq. ( 2-1 ) provides a system of 

linear

 

equations for the Dk

I ,J .  Note that each subscript k  is determined separately and if 
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at an R
n
 there are only 2 nondegenerate states eq. ( 5-71 )

 

reduces to the standard result 

Di

I ,J =
vi

I ,J

(Ea,J,(m) - Ea,I ,(m))
. 

5.7.3 Extending the Skeletal Data 

In this appendix the extension of the initial skeletal data set to a domain of 

definition appropriate for nonadiabatic dynamics is described.  The skeletal data, 610 R
n
, 

was comprised of the nine critical points in Table 5-3 and Table 5-4, loops around them 

and paths between them.  QCT simulations are then performed on a fit of the skeletal 

potentials.  The initial conditions for positions and momenta are produced by sampling a 

quasi-classical distribution of the ground vibrational state on the ground electronic state.   

The trajectory is then started on the 3
1
A state. This initial condition is not chosen to 

simulate a particular experiment, but rather to ensure coverage of the relevant area.  

Although the 3
1
A surface has no significant transition dipole, it strongly couples with the 

2
1
A state, crossing with it near the Frank-Condon region. It is therefore important to 

correctly describe the 3
1
A surface near Frank-Condon region.  In order to achieve this, 

we initialized the test trajectories on 3
1
A surface, which are found to cover a wider region 

of configuration space than initialization on 2
1
A surface with similar energy.  This 

produces the desired broad total energy distribution on the excited state.  See Figure 5-11.  

The range of total energy distribution extends beyond that of the experimental conditions, 

which is necessary to ensure sampling of areas that will otherwise not be accessible to 

QCT due to the lack of tunneling effects. 

   As the trajectory propagates, each time an evaluation of the fit potential is made, 

the minimum distance to the current point from previously fit points is evaluated.  We use 

the subset of the coordinate functions, 1-40, 42, 51 in Table 5-2, to calculate the distance, 
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denoted D1.  D1 provides a natural way to ensure that upon dissociation the internal 

coordinates that are converted into translation and rotations of dissociated pieces properly 

vanish and do not contribute to the distance.  When calculating distances, all 

permutation-inversions are looped over and the smallest distance among them is used.  A 

new data point is added to the defining data set when its D1 exceeds a predetermined 

threshold. This threshold is dynamically adjusted:  the threshold is increased when the ab 

initio data produced at new points are found to be well predicted by the existing fit and 

tightened when more than 5% of test trajectories produce new candidate data points, and 

kept constant if otherwise.  Five to ten data points are selected from each trajectory that 

travel beyond range of existing data points, and trajectories are run until about 100 data 

points are chosen.  Ab initio data are then calculated at these newly chosen points, and are 

subsequently incorporated into the fit.    The trajectory simulations are performed again 

with the updated threshold. This procedure is repeated until the ratio of trajectories 

staying in range is satisfactory, 97% – 100 %, and the new points at threshold are well 

predicted by the fit.  Note that if ab initio results of the candidate points from a trajectory 

are found to have been well reproduced by the fit values, that trajectory is relabeled as 

staying in range in the convergence analysis.  About 30% of the candidate points fall into 

this category in the final stage of the expansion procedure. In this case the procedure 

converged at distance of 0.15 per coordinate, which is approximately 0.01 a.u. per 

coordinate distance near the Frank-Condon region.    

5.7.4 Improved Least Squares Algorithm for Handling Large Systems 

In this appendix we explain how eq. ( 5-15 ) based on large data sets is 

constructed and solved.  Our previous algorithm used for tetra-atomic and penta-atomic 
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molecules was not particularly demanding of computational resources.  For the larger 

systems considered here it becomes a formidable task to solve in eq. ( 5-15 ) or even store 

the required data.   For example, for phenol, an expansion of 21,976 coefficients is used 

and the normal equations are constructed from 444,776 linear equations.   Simply to store 

this (444776 x 21976) matrix requires more than 72GB of memory, and additionally the 

storage of the normal equations matrix, W
l q†

W
lsq

 and eigenvector matrices requires 

3.6GB of memory each.  This is very difficult to satisfy without parallelization on even 

high-end computers, and many interesting systems where the method can potentially be 

applied are larger than phenol.  The computational cost of the construction of normal 

equations, as well as the diagonalization procedure required for the eigenvalue 

decomposition which was used in our previous works, scale as O(n
3
) and also becomes 

expensive for larger systems. 

As described below, we have modified our handling of eq. ( 5-15 ) to significantly 

reduce memory consumption to less than 10% of that used in our previous approach, and 

at the same time introduce parallelism that allows the method to be used in much larger 

systems.  In the improved algorithm, the fitting procedure is tractable on one single 

computation node for large problems like phenol, and even larger problems are also 

readily tractable with parallelization.  

(i) Solution of Normal Equations 

In our previous approach, solution of the normal equations is achieved by an 

eigenvalue decomposition procedure, which requires O(n
3
) computation time and an 

extra O(n
2
) memory space for the storage of eigenvectors.   The use of less expensive 

direct methods for solving linear equations without explicit inversion was precluded by 
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the ill-conditioned normal equations matrix.  However, after applying the preconditioning 

procedure in section 5.4.1, linear dependencies are largely removed from least squares 

block, and we apply a standard Rank-Revealing QR factorization, using the DGEQP3 

subroutine in LAPACK, to remove linear dependencies among the exact equations.  With 

linear dependencies removed, direct linear equation solvers can now be applied. This 

reduces the computational effort for the solution of linear equations to O(n
2
). Avoiding 

the need to store the eigenvectors required in explicit inversion techniques, reduces the 

memory required for the solution procedure. The cost of the solution of normal equations 

is found to be negligible compared to that of the construction of normal equations matrix. 

 (ii) Construction of Normal Equations 

In the new algorithm, the storage of the matrix W
lsq 

is avoided.  Narrow stripes of 

W
lsq 

that contain only equations for one data point are constructed and stored. The normal 

equations can be obtained by summing over contributions from these smaller matrices. 

   




1

††

i

ii

lsqlsq
WWWW

  

 

In most cases, W
lsq

 is by far the largest data structure, responsible for more than 90%of 

the memory consumption, because the number of equations is far greater than the number 

of unknown coefficients. Wi however, only contains a very small number of equations 

and takes an ignorable amount of memory.  Thus by constructing normal equations one 

slice at a time, the memory requirement is reduced to less than 10% with no extra 

performance cost.    

In the new fitting algorithm, the computation and summation of all matrix-matrix 

products Wi( )
†
Wi  is the only O(n

3
) operation in the fitting procedure and constitute most 
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of the computation time.  Each of these pieces can be constructed independently and the 

summation is not sensitive to the ordering.  The procedure can therefore be readily 

parallelized with the ScaLAPACK subroutine PDSYRK which is fully optimized and 

freely available on most architectures.  

5.7.5 Geometries of Ab Initio and Fit Critical Points 

Table 5-8. Bond Lengths of Critical Points. “Ab initio” refers to the value of internal 

coordinates on ab initio potential energy surfaces, and “Error” refers to the difference 

between fit and ab initio internal coordinates (fit minus ab initio coordinate value). 

(a) Phenol Minima 

Atoms 1
1
A Minimum 2

1
A Minimum 

  Ab Initio Error Ab initio Error 

C1 C2 1.3965 -0.0002 1.4316 -0.0004 

C1 C6 1.3989 0.0006 1.4269 -0.0002 

C1 O7 1.3457 -0.0005 1.3377 -0.0001 

C2 C3 1.3983 0.0008 1.4315 0.0003 

C2 H8 1.0833 0.0004 1.0807 0.0003 

C3 C4 1.3950 0.0011 1.4332 0.0015 

C3 H9 1.0815 0.0003 1.0789 0.0002 

C4 C5 1.3992 -0.0001 1.4318 0.0009 

C4 H10 1.0809 0.0000 1.0805 0.0003 

C5 C6 1.3940 0.0010 1.4341 0.0005 

C5 H11 1.0815 0.0000 1.0788 0.0001 

C6 H12 1.0805 0.0001 1.0781 0.0001 

O7 H13 0.9692 -0.0001 0.9703 -0.0003 
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Table 5-8. Bond Lengths of Critical Points (Continued) 

(b) Phenol Saddle Points 

Atoms 
1

1
A OH Torsional 

Saddle Point 

2
1
A π→3s Rydberg 

Saddle Point
†
 

2
1
A Dissociative 

Saddle Point 

  Ab Initio Error Ab initio Error Ab initio Error 

C1 C2 1.3954 -0.0004 1.4340 -0.0002 1.4442 -0.0006 

C1 C6 1.3954 -0.0004 1.4363 -0.0002 1.4454 -0.0013 

C1 O7 1.3725 -0.0015 1.2740 0.0000 1.2584 0.0019 

C2 C3 1.3971 0.0027 1.3706 -0.0002 1.3723 0.0006 

C2 H8 1.0811 -0.0002 1.0797 0.0000 1.0773 0.0003 

C3 C4 1.3976 0.0013 1.4196 0.0003 1.4176 -0.0016 

C3 H9 1.0815 0.0004 1.0800 0.0001 1.0808 -0.0006 

C4 C5 1.3976 0.0013 1.4159 -0.0001 1.4164 -0.0002 

C4 H10 1.0812 0.0009 1.0806 -0.0002 1.0808 0.0004 

C5 C6 1.3971 0.0027 1.3728 -0.0001 1.3738 0.0009 

C5 H11 1.0815 0.0004 1.0791 0.0000 1.0795 0.0001 

C6 H12 1.0811 -0.0002 1.0788 0.0000 1.0787 0.0009 

O7 H13 0.9695 0.0007 0.9997 -0.0002 1.1085 -0.0063 

†  This saddle point on adiabatic surface is a minimum on the diabatic surface 

(c) Phenol Minimum Energy Conical Intersections 

Atoms 1
1
A,2

1
A MEX 2

1
A,3

1
A MEX 

  Ab Initio Error Ab initio Error 

C1 C2 1.4341 -0.0004 1.4337 0.0000 

C1 C6 1.4364 0.0004 1.4359 -0.0003 

C1 O7 1.2698 0.0014 1.2760 0.0002 

C2 C3 1.3850 0.0015 1.3729 -0.0003 

C2 H8 1.0799 0.0001 1.0798 0.0000 

C3 C4 1.4060 0.0000 1.4201 0.0002 

C3 H9 1.0818 0.0001 1.0799 0.0001 

C4 C5 1.4070 0.0014 1.4163 0.0000 

C4 H10 1.0811 0.0005 1.0806 -0.0001 

C5 C6 1.3838 0.0009 1.3750 -0.0001 

C5 H11 1.0818 0.0002 1.0791 0.0000 

C6 H12 1.0807 0.0004 1.0788 0.0000 

O7 H13 1.7612 0.0027 0.9981 -0.0002 
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Table 5-8. Bond Lengths of Critical Points(Continued) 

(d) Phenoxyl Radical Minima 

Atoms 1
1
A Minimum 2

1
A Minimum 

  Ab Initio Error Ab initio Error 

C1 C2 1.4572 -0.0003 1.3986 0.0005 

C1 C6 1.4572 -0.0003 1.3986 0.0005 

C1 O7 1.2328 0.0060 1.3393 0.0017 

C2 C3 1.3790 0.0026 1.3956 0.0010 

C2 H8 1.0812 0.0006 1.0809 0.0004 

C3 C4 1.4134 0.0007 1.3969 0.0001 

C3 H9 1.0819 0.0001 1.0818 0.0000 

C4 C5 1.4134 0.0007 1.3969 0.0001 

C4 H10 1.0812 0.0003 1.0812 0.0004 

C5 C6 1.3790 0.0026 1.3956 0.0010 

C5 H11 1.0819 0.0001 1.0818 0.0000 

C6 H12 1.0812 0.0006 1.0809 0.0004 

 

Table 5-9. Bond Angles of Critical Points.  All the bending angles of the benzene ring 

and one angle for each atom outside the benzene carbons are included. The second atom 

index in the atom list correspond to the vertex of the bond angle. 

(a) Phenol Minima 

Atoms 1
1
A Minimum 2

1
A Minimum 

   
Ab Initio Error Ab Initio Error 

C2 C1 C6 119.86 0.18 122.04 0.13 

C2 C1 O7 122.66 0.00 121.28 -0.13 

C1 C2 C3 119.93 -0.04 118.81 0.00 

C1 C2 H8 119.99 -0.08 120.25 -0.19 

C2 C3 C4 120.51 -0.11 119.65 -0.11 

C2 C3 H9 119.28 -0.04 120.17 0.08 

C3 C4 C5 119.20 0.11 121.01 0.08 

C3 C4 H10 120.39 0.10 119.39 -0.02 

C4 C5 C6 120.65 0.01 119.61 -0.05 

C6 C5 H11 119.31 0.20 120.22 0.10 

C1 C6 C5 119.84 -0.15 118.87 -0.06 

C1 C6 H12 118.87 0.11 119.08 0.00 

C1 O7 H13 109.61 0.40 109.63 0.01 
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Table 5-9. Bond Angles of Critical Points (Continued) 

(b) Phenol Saddle Points 

Atoms 
1

1
A OH Torsional 

Saddle Point 

2
1
A π→3s Rydberg 

Saddle Point 

2
1
A Dissociative 

Saddle Point 

   
Ab Initio Error Ab Initio Error Ab Initio Error 

C2 C1 C6 119.98 0.16 120.62 0.05 119.38 0.27 

C2 C1 O7 119.73 -0.06 122.69 -0.06 122.74 -0.45 

C1 C2 C3 119.96 0.00 118.97 0.03 117.89 0.18 

C1 C2 H8 119.00 -0.01 118.99 -0.15 119.42 -0.09 

C2 C3 C4 120.23 -0.19 120.40 -0.09 118.10 0.33 

C2 C3 H9 119.64 -0.01 119.90 0.07 122.48 -0.25 

C3 C4 C5 119.58 0.22 120.72 0.07 120.70 -0.08 

C3 C4 H10 120.21 -0.11 119.53 0.01 119.67 0.04 

C4 C5 C6 120.23 -0.19 120.10 -0.01 119.63 0.05 

C6 C5 H11 119.64 -0.01 120.07 -0.01 120.45 0.10 

C1 C6 C5 119.96 0.00 119.19 -0.05 119.73 -0.02 

C1 C6 H12 119.00 -0.01 117.92 0.01 119.82 -0.08 

C1 O7 H13 107.75 0.54 113.55 -0.10 120.30 0.07 

 

 (c) Phenol Minimum Energy Conical Intersections 

Atoms 1
1
A,2

1
A MEX 2

1
A,3

1
A MEX 

   
Ab Initio Error Ab Initio Error 

C2 C1 C6 118.11 -0.07 120.71 0.02 

C2 C1 O7 122.85 -0.13 122.62 -0.04 

C1 C2 C3 120.24 0.11 118.96 0.03 

C1 C2 H8 118.64 -0.07 119.03 -0.13 

C2 C3 C4 120.78 -0.04 120.34 -0.07 

C2 C3 H9 119.56 0.07 119.91 0.07 

C3 C4 C5 119.87 -0.05 120.75 0.06 

C3 C4 H10 120.01 -0.06 119.51 0.02 

C4 C5 C6 120.48 0.03 120.08 -0.01 

C6 C5 H11 119.75 0.02 120.08 -0.01 

C1 C6 C5 120.52 0.02 119.16 -0.03 

C1 C6 H12 117.88 0.10 117.97 0.00 

C1 O7 H13 113.71 -0.03 113.38 -0.07 

Table 5-9. Bond Angles of Critical Points (Continued) 
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(d) Phenoxyl Radical Minima 

Atoms 1
1
A Minimum 2

1
A Minimum 

   
Ab Initio Error Ab Initio Error 

C2 C1 C6 116.91 0.19 121.14 -0.03 

C2 C1 O7 121.54 -0.10 119.43 0.01 

C1 C2 C3 120.90 -0.13 118.95 0.02 

C1 C2 H8 117.22 0.19 119.90 0.16 

C2 C3 C4 120.45 0.07 120.73 -0.01 

C2 C3 H9 120.13 -0.10 119.14 0.05 

C3 C4 C5 120.39 -0.06 119.49 0.02 

C3 C4 H10 119.80 0.03 120.26 -0.01 

C4 C5 C6 120.45 0.07 120.73 -0.01 

C6 C5 H11 120.13 -0.10 119.14 0.05 

C1 C6 C5 120.90 -0.13 118.95 0.02 

C1 C6 H12 117.22 0.19 119.90 0.16 

 

Table 5-10. Dihedral Angles of Phenol OH-Torsional Saddle Point.  The point reported 

here, the OH-torsional saddle point on the ground state, is the only non-planar critical 

point. All the planar critical points on ab initio surfaces are also exactly planar in the fit 

due to symmetry constrains. 

Atoms Torsion Angles 

    Ab Initio Error 

C1 C2 C3 C4 1.60 -0.06 

C1 C2 C3 H8 -0.38 0.20 

C1 C2 C3 H9 -3.35 0.97 

C1 C5 C6 H11 -0.58 0.17 

C1 C5 C6 H12 -0.13 0.07 

C2 C1 C6 C5 3.45 -0.35 

C2 C1 C6 O7 -7.36 0.19 

C2 C1 O7 H13 -58.23 0.02 

C2 C3 C4 H10 0.89 0.07 
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Table 5-11. Cartesian Geometries of Ab Initio and Fit Critical Points. 

Global Minimum of Phenol on 1
1
A Surface 

Ab Initio 

C   1 -1.71199 0.00000 -0.00355 

 C   2 -0.38703 0.00000 -2.28592 

 C   3 2.25531 0.00000 -2.27653 

 C   4 3.58568 0.00000 -0.00072 

 C   5 2.24422 0.00000 2.27787 

 C   6 -0.39003 0.00000 2.28562 

 O   7 -4.25259 0.00000 0.10850 

 H   8 -1.40667 0.00000 -4.06095 

 H   9 3.26110 0.00000 -4.05562 

 H   10 5.62832 0.00000 0.00218 

 H   11 3.24992 0.00000 4.05715 

 H   12 -1.44535 0.00000 4.03357 

 H   13 -4.94260 0.00000 -1.58804 

 

Fit 

C   1 -1.70919 0.00000 -0.00616 

 C   2 -0.38584 0.00000 -2.28904 

 C   3 2.25798 0.00000 -2.27955 

 C   4 3.58511 0.00000 0.00050 

 C   5 2.24382 0.00000 2.27902 

 C   6 -0.39228 0.00000 2.28726 

 O   7 -4.24868 0.00000 0.10736 

 H   8 -1.40946 0.00000 -4.06266 

 H   9 3.26295 0.00000 -4.05986 

 H   10 5.62780 0.00000 0.01070 

 H   11 3.25599 0.00000 4.05473 

 H   12 -1.44850 0.00000 4.03492 

 H   13 -4.95144 0.00000 -1.58367 
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Minimum of Phenol on 2
1
A Surface 

Ab Initio 

C   1 -1.73357 0.00000 0.00165 

 C   2 -0.42173 0.00000 -2.36445 

 C   3 2.28335 0.00000 -2.35542 

 C   4 3.61539 0.00000 0.00274 

 C   5 2.28196 0.00000 2.35716 

 C   6 -0.42807 0.00000 2.36106 

 O   7 -4.25944 0.00000 0.10204 

 H   8 -1.46586 0.00000 -4.11957 

 H   9 3.31397 0.00000 -4.11458 

 H   10 5.65718 0.00000 0.00029 

 H   11 3.31068 0.00000 4.11711 

 H   12 -1.50656 0.00000 4.08948 

 H   13 -4.94350 0.00000 -1.59927 

 

Fit 

C   1 -1.73122 0.00000 0.00211 

 C   2 -0.42216 0.00000 -2.36469 

 C   3 2.28355 0.00000 -2.35858 

 C   4 3.61499 0.00000 0.00311 

 C   5 2.28193 0.00000 2.35970 

 C   6 -0.42907 0.00000 2.36286 

 O   7 -4.25696 0.00000 0.09932 

 H   8 -1.47431 0.00000 -4.11563 

 H   9 3.31495 0.00000 -4.11763 

 H   10 5.65739 0.00000 0.00164 

 H   11 3.31344 0.00000 4.11834 

 H   12 -1.50982 0.00000 4.09002 

 H   13 -4.93890 0.00000 -1.60230 
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Phenol OH-Torsional Saddle on 1
1
A Surface 

Ab Initio 

C   1 1.70414 -0.06132 0.00000 

 C   2 0.38672 0.00094 -2.28343 

 C   3 -2.25337 0.00895 -2.28242 

 C   4 -3.58237 0.00868 0.00000 

 C   5 -2.25337 0.00895 2.28242 

 C   6 0.38672 0.00094 2.28343 

 O   7 4.28901 0.15282 0.00000 

 H   8 1.43947 0.02854 -4.03398 

 H   9 -3.26478 0.02118 -4.05823 

 H   10 -5.62551 0.02439 0.00000 

 H   11 -3.26478 0.02118 4.05823 

 H   12 1.43947 0.02854 4.03398 

 H   13 4.98958 -1.53996 0.00000 

 

Fit 

C   1 1.70195 -0.06106 0.00000 

 C   2 0.38780 -0.00403 -2.28463 

 C   3 -2.25734 0.00604 -2.28707 

 C   4 -3.58309 0.01092 0.00000 

 C   5 -2.25734 0.00604 2.28707 

 C   6 0.38780 -0.00403 2.28463 

 O   7 4.28398 0.15398 0.00000 

 H   8 1.44305 0.02528 -4.03317 

 H   9 -3.26639 0.02473 -4.06505 

 H   10 -5.62783 0.02903 0.00000 

 H   11 -3.26639 0.02473 4.06505 

 H   12 1.44305 0.02528 4.03317 

 H   13 5.00169 -1.53307 0.00000 
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Phenol π→3s Saddle on 2
1
A Surface(Minimum on Diabatic Surface) 

Ab Initio 

C   1 -1.71123 0.00000 -0.00999 

 C   2 -0.36563 0.00000 -2.36218 

 C   3 2.22419 0.00000 -2.32593 

 C   4 3.54895 0.00000 0.00671 

 C   5 2.22373 0.00000 2.33108 

 C   6 -0.37039 0.00000 2.34980 

 O   7 -4.11556 0.00000 0.11260 

 H   8 -1.42363 0.00000 -4.10679 

 H   9 3.26603 0.00000 -4.08079 

 H   10 5.59094 0.00000 0.00432 

 H   11 3.25837 0.00000 4.08841 

 H   12 -1.46491 0.00000 4.06975 

 H   13 -4.95751 0.00000 -1.57862 

 

Fit 

C   1 -1.70990 0.00000 -0.00937 

 C   2 -0.36530 0.00000 -2.36175 

 C   3 2.22412 0.00000 -2.32776 

 C   4 3.54745 0.00000 0.00625 

 C   5 2.22353 0.00000 2.33114 

 C   6 -0.37035 0.00000 2.35081 

 O   7 -4.11438 0.00000 0.11161 

 H   8 -1.42835 0.00000 -4.10324 

 H   9 3.26669 0.00000 -4.08249 

 H   10 5.58910 0.00000 0.00570 

 H   11 3.25845 0.00000 4.08824 

 H   12 -1.46548 0.00000 4.07047 

 H   13 -4.95221 0.00000 -1.58126 
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Phenol OH dissociation Saddle on 2
1
A Surface 

Ab Initio 

C   1 -1.74067 0.00000 -0.02115 

 C   2 -0.35323 0.00000 -2.37127 

 C   3 2.23947 0.00000 -2.31989 

 C   4 3.56135 0.00000 0.01006 

 C   5 2.22368 0.00000 2.32840 

 C   6 -0.37230 0.00000 2.34281 

 O   7 -4.11706 0.00000 0.06926 

 H   8 -1.41214 0.00000 -4.11009 

 H   9 3.28534 0.00000 -4.07415 

 H   10 5.60366 0.00000 0.01596 

 H   11 3.25334 0.00000 4.08944 

 H   12 -1.46190 0.00000 4.06550 

 H   13 -5.03035 0.00000 -1.81582 

 

Fit 

C   1 -1.73865 0.00000 -0.01592 

 C   2 -0.35731 0.00000 -2.36835 

 C   3 2.23657 0.00000 -2.31907 

 C   4 3.55540 0.00000 0.00902 

 C   5 2.22057 0.00000 2.32845 

 C   6 -0.37702 0.00000 2.34912 

 O   7 -4.11906 0.00000 0.06152 

 H   8 -1.41044 0.00000 -4.11129 

 H   9 3.28156 0.00000 -4.07250 

 H   10 5.59840 0.00000 0.01563 

 H   11 3.26742 0.00000 4.07960 

 H   12 -1.46725 0.00000 4.07346 

 H   13 -5.01100 0.00000 -1.82060 
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Phenol 1
1
A,2

1
A Minimum Energy Conical Intersection 

Ab Initio 

C   1 -1.76483 0.00000 0.05018 

 C   2 -0.39931 0.00000 -2.29064 

 C   3 2.21794 0.00000 -2.28967 

 C   4 3.57697 0.00000 -0.00649 

 C   5 2.27315 0.00000 2.31068 

 C   6 -0.34136 0.00000 2.36137 

 O   7 -4.16201 0.00000 0.15873 

 H   8 -1.45347 0.00000 -4.03794 

 H   9 3.22700 0.00000 -4.06760 

 H   10 5.61982 0.00000 -0.03346 

 H   11 3.32177 0.00000 4.06557 

 H   12 -1.37748 0.00000 4.12128 

 H   13 -5.63663 0.00000 -2.82485 

 

Fit 

C   1 -1.76777 0.00000 0.05317 

 C   2 -0.40153 0.00000 -2.28640 

 C   3 2.21857 0.00000 -2.28944 

 C   4 3.57945 0.00000 -0.00733 

 C   5 2.27414 0.00000 2.31193 

 C   6 -0.34211 0.00000 2.36379 

 O   7 -4.16796 0.00000 0.15510 

 H   8 -1.45710 0.00000 -4.03299 

 H   9 3.22712 0.00000 -4.06788 

 H   10 5.62312 0.00000 -0.03822 

 H   11 3.32430 0.00000 4.06632 

 H   12 -1.37407 0.00000 4.12711 

 H   13 -5.63460 0.00000 -2.83800 
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Phenol 2
1
A,3

1
A Minimum Energy Conical Intersection 

Ab Initio 

C   1 -1.71136 0.00000 -0.00965 

 C   2 -0.36783 0.00000 -2.36236 

 C   3 2.22626 0.00000 -2.32737 

 C   4 3.55066 0.00000 0.00665 

 C   5 2.22568 0.00000 2.33211 

 C   6 -0.37264 0.00000 2.35057 

 O   7 -4.11963 0.00000 0.11213 

 H   8 -1.42606 0.00000 -4.10704 

 H   9 3.26775 0.00000 -4.08237 

 H   10 5.59263 0.00000 0.00434 

 H   11 3.26038 0.00000 4.08940 

 H   12 -1.46705 0.00000 4.07053 

 H   13 -4.95464 0.00000 -1.57907 

 

Fit 

C   1 -1.71035 0.00000 -0.00908 

 C   2 -0.36725 0.00000 -2.36197 

 C   3 2.22623 0.00000 -2.32889 

 C   4 3.54949 0.00000 0.00614 

 C   5 2.22554 0.00000 2.33209 

 C   6 -0.37253 0.00000 2.35102 

 O   7 -4.11915 0.00000 0.11138 

 H   8 -1.42966 0.00000 -4.10403 

 H   9 3.26861 0.00000 -4.08366 

 H   10 5.59119 0.00000 0.00569 

 H   11 3.26035 0.00000 4.08928 

 H   12 -1.46738 0.00000 4.07081 

 H   13 -4.95093 0.00000 -1.58090 
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Minimum of Phenoxyl Radical on 1
1
A Surface 

Ab Initio 

C   1 -2.18997 0.00000 0.00000 

 C   2 -0.74940 0.00000 2.34677 

 C   3 1.85640 0.00000 2.31757 

 C   4 3.18392 0.00000 0.00000 

 C   5 1.85640 0.00000 -2.31757 

 C   6 -0.74940 0.00000 -2.34677 

 O   7 -4.51955 0.00000 0.00000 

 H   8 -1.80878 0.00000 4.09383 

 H   9 2.90248 0.00000 4.07428 

 H   10 5.22706 0.00000 0.00000 

 H   11 2.90248 0.00000 -4.07428 

 H   12 -1.80878 0.00000 -4.09383 

 

Fit 

C   1 -2.18840 0.00000 0.00000 

 C   2 -0.75208 0.00000 2.34876 

 C   3 1.85868 0.00000 2.31794 

 C   4 3.18814 0.00000 0.00000 

 C   5 1.85868 0.00000 -2.31794 

 C   6 -0.75208 0.00000 -2.34876 

 O   7 -4.52931 0.00000 0.00000 

 H   8 -1.80914 0.00000 4.09851 

 H   9 2.90283 0.00000 4.07610 

 H   10 5.23185 0.00000 0.00000 

 H   11 2.90283 0.00000 -4.07610 

 H   12 -1.80914 0.00000 -4.09851 
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Minimum of Phenoxyl Radical on 2
1
A Surface 

Ab Initio 

C   1 -2.08229 0.00000 0.00000 

 C   2 -0.78366 0.00000 2.30201 

 C   3 1.85346 0.00000 2.28008 

 C   4 3.18355 0.00000 0.00000 

 C   5 1.85346 0.00000 -2.28008 

 C   6 -0.78366 0.00000 -2.30201 

 O   7 -4.61329 0.00000 0.00000 

 H   8 -1.82547 0.00000 4.05889 

 H   9 2.86359 0.00000 4.05734 

 H   10 5.22678 0.00000 0.00000 

 H   11 2.86359 0.00000 -4.05734 

 H   12 -1.82547 0.00000 -4.05889 

 

Fit 

C   1 -2.08492 0.00000 0.00000 

 C   2 -0.78528 0.00000 2.30249 

 C   3 1.85372 0.00000 2.28059 

 C   4 3.18345 0.00000 0.00000 

 C   5 1.85372 0.00000 -2.28059 

 C   6 -0.78528 0.00000 -2.30249 

 O   7 -4.61918 0.00000 0.00000 

 H   8 -1.82202 0.00000 4.06315 

 H   9 2.86549 0.00000 4.05687 

 H   10 5.22746 0.00000 0.00000 

 H   11 2.86549 0.00000 -4.05687 

 H   12 -1.82202 0.00000 -4.06315 
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5.7.6 Harmonic Frequencies of Ab Initio and Fit Critical Points 

 (a) Frequencies at Phenol Minima 

Mode 
1

1
A 2

1
A 

Frequency Error Frequency Error 

1 243.86 -5.72 160.46 -8.41 

2 339.10 34.21 193.06 20.47 

3 430.82 -10.02 236.57 52.02 

4 436.49 7.73 360.24 -3.08 

5 525.89 11.42 372.91 48.29 

6 564.68 6.99 424.39 5.31 

7 664.46 2.73 473.79 -24.07 

8 723.49 -54.65 503.16 -14.76 

9 774.93 -4.83 508.69 2.68 

10 838.51 -2.77 528.16 24.19 

11 876.16 -7.81 581.12 -28.54 

12 889.21 8.21 602.63 -18.86 

13 960.06 -6.26 683.05 1.07 

14 980.43 19.06 831.64 -2.55 

15 1067.69 1.10 978.35 -13.20 

16 1093.14 -18.17 1017.43 -2.77 

17 1145.42 -0.37 1033.97 -6.12 

18 1227.13 10.56 1217.78 9.81 

19 1254.32 -12.26 1235.61 10.43 

20 1266.68 20.53 1265.93 3.28 

21 1396.62 -15.86 1398.42 -5.14 

22 1410.86 5.77 1434.07 -6.52 

23 1459.39 11.27 1509.81 4.69 

24 1594.84 -5.93 1555.96 -15.80 

25 1639.17 -30.52 1672.64 -12.89 

26 1741.49 -39.25 1707.21 -9.00 

27 1764.67 -35.17 1818.67 -20.31 

28 3328.84 16.27 3355.68 3.44 

29 3345.88 13.89 3361.88 2.07 

30 3357.33 10.15 3381.67 3.28 

31 3371.09 5.37 3389.45 -3.01 

32 3379.22 4.71 3402.56 -11.62 

33 3803.12 -18.80 3787.09 5.05 

RMSE  18.45 
 

17.20 
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(b) Frequencies at Phenol Saddle Points 

Mode 

1
1
A OH Torsional 

Saddle Point 

2
1
A π→3s Rydberg 

Saddle Point 

2
1
A Dissociative Saddle 

Point 

Frequency Error Frequency Error Frequency Error 

1 -485.66 54.39 -499.67 -42.23 -3394.71 26.72 

2 244.87 -8.18 196.80 -24.48 188.36 -28.45 

3 430.69 -17.92 452.33 -22.95 368.27 -10.51 

4 435.51 14.60 478.15 -35.27 463.35 -18.44 

5 537.54 -23.10 521.97 -12.11 477.85 -23.30 

6 560.68 5.75 552.18 -1.75 548.63 -2.85 

7 662.62 9.50 604.98 0.82 552.23 10.70 

8 719.95 -32.47 670.37 6.18 610.60 11.94 

9 791.15 -7.66 796.13 -3.54 670.23 -26.81 

10 863.28 -20.86 823.25 0.91 809.18 -25.67 

11 868.92 -13.10 871.40 14.19 821.15 -18.72 

12 927.02 -16.85 938.85 -20.18 862.67 0.82 

13 976.76 -41.82 1001.74 -54.99 924.13 -44.86 

14 988.28 31.51 1020.36 -10.60 985.45 -34.72 

15 1068.78 -4.56 1038.24 5.95 1005.06 -12.92 

16 1092.12 10.29 1059.51 13.98 1034.56 -10.80 

17 1142.11 3.30 1151.47 -12.71 1056.62 28.56 

18 1228.55 1.88 1217.89 -24.97 1113.04 -17.62 

19 1241.78 -3.06 1260.65 -16.20 1166.58 -5.11 

20 1252.56 33.91 1269.19 11.17 1223.49 7.20 

21 1356.43 9.33 1452.26 -30.72 1252.79 25.40 

22 1367.77 8.71 1490.44 -15.42 1423.33 -17.61 

23 1420.90 9.09 1520.38 -1.26 1457.82 30.75 

24 1570.21 -25.42 1575.18 -17.48 1519.30 -6.49 

25 1630.65 -19.33 1642.29 -10.26 1548.29 -12.55 

26 1725.50 -47.87 1651.92 -5.29 1642.82 -13.63 

27 1755.49 -44.15 1772.06 18.40 1671.19 -28.26 

28 3341.58 4.69 3016.65 -10.43 1771.63 61.57 

29 3347.79 -0.50 3372.76 -0.35 3366.00 -7.41 

30 3362.43 3.56 3379.33 20.31 3378.47 9.92 

31 3366.39 2.61 3388.55 12.93 3390.13 13.20 

32 3376.23 6.76 3395.87 10.26 3400.11 13.88 

33 3768.67 5.62 3406.44 20.48 3406.96 11.25 

RMSE  21.94 

 

19.60  22.52 
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(c) Frequencies at Phenoxyl Radical Minima 

Mode 
1

1
A 2

1
A 

Frequency Error Frequency Error 

1 197.87 -16.05 244.97 -16.30 

2 392.51 -10.24 406.34 7.64 

3 476.82 4.46 435.11 -9.26 

4 486.59 -1.90 514.73 14.07 

5 546.97 1.00 549.99 7.34 

6 623.18 11.87 655.86 3.60 

7 661.48 -8.69 699.51 -32.28 

8 772.64 21.09 758.84 5.53 

9 809.84 -3.47 834.31 1.91 

10 833.38 22.80 872.28 -12.23 

11 894.63 7.46 890.27 -18.53 

12 977.06 -27.13 966.31 -17.71 

13 984.10 -2.11 980.14 -7.00 

14 1040.26 -14.10 1063.93 -7.54 

15 1050.10 -1.70 1091.34 -19.07 

16 1135.87 3.72 1146.26 14.98 

17 1205.36 7.82 1227.81 -0.41 

18 1223.49 0.25 1253.18 -5.93 

19 1313.55 32.79 1310.57 25.88 

20 1400.34 -0.83 1331.59 43.94 

21 1514.45 -8.11 1425.57 1.31 

22 1517.07 23.52 1550.33 2.21 

23 1578.68 28.13 1603.60 -8.15 

24 1638.52 -8.33 1688.62 8.57 

25 1668.43 -10.53 1738.07 -10.69 

26 3340.77 10.86 3340.88 2.11 

27 3344.61 9.50 3350.21 4.09 

28 3365.65 -0.43 3362.40 -6.01 

29 3369.39 8.62 3370.26 2.83 

30 3377.33 16.24 3376.01 7.34 

RMSE  48.25 
 

-8.88 
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