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Abstract

Applying sparse coding on large dataset for image classification is a long standing prob-

lem in the field of computer vision. It has been found that the sparse coding models exhibit

disappointing performance on these large datasets where variability is broad and anomalies

are common. Conversely, deep neural networks thrive on bountiful data. Their success has

encouraged researchers to try and augment the learning capacity of traditionally shallow

sparse coding methods by adding layers. Multilayer sparse coding networks are expected

to combine the best of both sparsity regularizations and deep architectures. To date, how-

ever, endeavors to marry the two techniques have not achieved significant improvements

over their individual counterparts.

In this thesis, we first briefly review multiple structured sparsity priors as well as var-

ious supervised dictionary learning techniques with applications on hyperspectral image

classification. Based on the structured sparsity priors and dictionary learning techniques,

we then develop a novel multilayer sparse coding network that contains 13 sparse coding

layers. The proposed sparse coding network learns both the dictionaries and the regular-

ization parameters simultaneously using an end-to-end supervised learning scheme. We
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ABSTRACT

show empirical evidence that the regularization parameters can adapt to the given training

data. We also propose applying dimension reduction within sparse coding networks to dra-

matically reduce the output dimensionality of the sparse coding layers and mitigate com-

putational costs. Moreover, our sparse coding network is compatible with other powerful

deep learning techniques such as drop out, batch normalization and shortcut connections.

Experimental results show that the proposed multilayer sparse coding network produces

classification accuracy competitive with the deep neural networks while using significantly

fewer parameters and layers.

Primary Reader: Professor Trac D. Tran

Secondary Reader: Professor Mark A. Foster
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Chapter 1

Introduction and Motivation

A long standing and fundamental problem in computer vision is image classification

[1, 2, 3, 4], where an image or a single pixel is labeled to a specified class according to

its visual content. For example, given a natural image, one would like to know whether it

contains an automobile or not [5]. Given a hyperspectral image, one would like to decide

whether a specified hyperpixel belongs to the material of land or grass [4, 6, 7, 8]. It is well

known that human visions are particularly good at dealing with such classification prob-

lems by demonstrating both quick response and high accuracy. Human is able to quickly

learn from very few training samples and give the correct answer based on their life long

experience, whereas most computer vision systems demand tremendous amount of labeled

samples to achieve a comparable performance. In most cases, human vision is so reliable

and superior that the researchers usually regard human vision as a guidance to devise the

computer vision system. For a long period of time, consistent efforts have been endeavored
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to investigate and design computer vision system that could be competitive with human

vision performance in both classification accuracy and computational efficiency.

Years ago, manually engineered features such as SIFT [9] and HOG [10] once domi-

nated the land of computer vision. These delicately engineered features have demonstrated

a rather strong competence of distilling core essence from raw image pixels. However, with

the advent of the big data era, these engineered features quickly become outdated for they

cannot learn from the abundant amount of readily-available training samples. Therefore,

recent years have seen an explosion of interests on developing algorithms that can extract

learnable features from large dataset [3, 11, 12, 13]. Neural networks with multilayer ar-

chitecture, usually referred to as deep learning, have resurged and occupied most of the

research activities. Unlike the engineered features or any single layer model, deep archi-

tecture models have enough learning capacities to extract and absorb the large amount of

representative information from big dataset. However, the deep neural network is prone to

severe overfitting and therefore suffer from the data hungry issue even after trained with a

huge amount of labeled samples. One notable trend in deep learning is to enforce various

regularizations on the network, such as sparsity constraint [14], drop out [15] and batch

normalization [16]. In addition, numbers of efforts have been attempted at enforcing the

reconstruction constraint on the network, i.e. developing a generative model of the neu-

ral network. The intuition behind the generative approach follows a famous quote from

Richard Feymann,

What I cannot create, I do not understand.
—Richard Feymann
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In such cases, the network is trained with a loss function that is characterized by both

discriminative and reconstructive constraints.

The formulation of such loss function reminds us with the sparse coding immediately:

in the land of sparse coding, the loss function of sparse recovery is defined by a deli-

cate balance of reconstruction error and sparsity level. In computer vision, sparse coding

has already been successfully applied to numerous computer vision tasks, including face

recognition [17, 18], scene categorization [19, 20, 21] and object detection [22, 23, 24].

Application of sparse representation-based classifier (SRC) on face recognition [18] has

demonstrated startling robustness over noise and occlusions. Due to the powerful sparsity

prior, the sparse coding is less likely to become overfitted and therefore requiring much

fewer samples for training. More importantly, sparse coding can be easily trained in a un-

supervised fashion, making it less demanded for the labeled training sample and can be

trained on any unlabeled data. Therefore, extending the single-layer sparse coding model

to a multilayer architecture can largely improve the performance of image classification on

large datasets.

Due to the scale of topics involved in this thesis, the background and literature reviews

are left to each individual chapter, which will be a self-containing part with discussion on

how it fits in the overall theme of this thesis. Developing deep sparse coding network is

nontrvial and require several key techniques in which this thesis will address:

• Evaluation and better understanding of sparse recovery algorithms with various struc-

tured sparsity priors (Chapter 2).
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• Development of supervised dictionary for sparse coding with various structured spar-

sity priors (Chapter 3).

• Enforcing invariant property on sparse coding model using large displacement optical

flow (Chapter 4).

• Greedy layer-wise unsupervised dictionary learning with invariant sparse coding

(Chapter 5).

• Development of end-to-end supervised dictionary learning (Chapter 6).

Related papers of my previous work have been presented in smaller parts over a course of

papers [25, 26, 27, 28, 29, 30, 31]. The ultimate goal for this thesis is to develop a sparse

coding model with multilayer architecture that is able to show competitive performance

with deep neural network (Chapter 6). As the dissertation goes through, we shall see that

the structured sparsity priors, supervised dictionary learning and invariant sparse coding are

the step stones that bring us to the approach of supervised deep sparse coding networks. We

show how each individual component contributes to the overall contributions as follows:

Chapter 2 focuses on reviewing and developing various structured sparsity priors,

which is critical for understanding how various sparsity patterns affect the classification

performance. Instead of enforcing sparse regularizor element-wise, the structured sparsity

prior regards the sparse codes as an entity in order to exploit more sophisticated structures

of both the dictionary and the sparse code. More specifically, we review four structured

sparsity priors including joint sparsity prior, Laplacian sparsity prior, group sparsity prior,
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sparse group sparsity prior, and propose low rank group sparsity prior that is able to con-

sistently improve the classification performance on hyperspectral image. We also show

that the classification performance is not only determined by the structured priors, but also

largely depends on the sparse recovery algorithms.

Chapter 3 further develops the supervised dictionary learning algorithm for various

structured sparsity priors. The adoption of supervised dictionary learning is able to sig-

nificantly reduce the required dictionary size for sparse recovery in order to substantially

supress the computational cost. Optimizing the supervised dictionary learning problem is

non-trivial due to the implicit relation between the sparse code and the dictionary. Math-

ematically, this chapter will show how to unravel the sparse code out of the structured

sparsity regularizor by decoupling the sparse code and the dictionary using fixed point dif-

ferentiation. As we shall see, the development of these dictionary learning algorithms paves

the way for training dictionaries for invariant sparse coding.

Having discussed the supervised dictionary learning algorithms, Chapter 4 moves on

to a higher level to exploit the possible ways to generate sparse codes that are invariant to

major transformations of the objects in the image. The poor generalization performance

of sparse coding towards affine transformation motivates us to enforce reasonable manip-

ulations on the dictionary atoms in order to produce invariant sparse codes. Specifically,

I propose to employ the large displacement optical flow for the purpose of describing the

misalignment between each dictionary atom and the testing image in order to align every

single dictionary atom according to the optical flow field. The corresponding dictionary
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is trained efficiently based on supervised task-driven dictionary learning and bilevel opti-

mization.

Chapter 5 further extends the invariant sparse coding to a multilayer architecture,

where the deep architecture is able to significantly increase the learning capacity of the

sparse coding model. In this chapter, the local sparse coding is adopted to improve the

computational efficiency and the invariant property is enforced through the employment of

bag of atoms, which is inspired by the bag of words model. This chapter benefits from the

invariant sparse coding and the task-driven dictionary learning presented in Chapter 4, and

a layer-wise unsupervised dictionary learning algorithm is developed for the proposed in-

variant sparse coding framework, which is able to simultaneously reduce the reconstruction

errors of both the sparse recovery and the local feature descriptor matching.

I present the supervised multilayer sparse coding network with 13 sparse coding layers

in Chapter 6. To the best of my knowledge, this is the first time sparse coding is efficiently

extended to a deep architecture with more than two layers while exhibiting a state-of-the-

art performance. The proposed multilayer sparse coding network is capable of efficiently

adapting its own regularization parameters to a given dataset, and is trained end-to-end

with a supervised task-driven learning algorithm via error backpropagation. Furthermore,

a sparse coding layer utilizing a ’skinny’ dictionary is also devised. Integral to compu-

tational efficiency, these skinny dictionaries compress the high dimensional sparse codes

into lower dimensional structures. This chapter will show that our multilayer architecture

overwhelmingly outperforms traditional one-layer sparse coding architectures while using

6
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much fewer parameters.

Last but not least, I draw the conclusion in Chapter 7 summarizing the contribution of

the dissertation and discuss my future works.
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Chapter 2

Sparse Coding with Structured Sparsity

Priors

In this chapter, we consider the problem of sparse representation with various struc-

tured sparsity priors with application on the hyperspectral image (HSI) classification. By

representing a test pixel as a linear combination of a small subset of labeled pixels, a sparse

representation classifier (SRC) gives rather plausible results compared with that of tradi-

tional classifiers such as the support vector machine (SVM). Recently, by incorporating

additional structured sparsity priors, the second generation SRCs have appeared in the lit-

erature and are reported to further improve the classification performance of HSI. These

priors are based on exploiting the spatial dependencies between the neighboring pixels, the

inherent structure of the dictionary, or both. In this chapter, we review and compare several

structured priors for sparse-representation-based image classification. We also propose a

8
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new structured prior called the low rank group prior, which can be considered as a mod-

ification of the low rank prior. Furthermore, we will investigate how different structured

priors improve the result for the image classification.

2.1 Introduction

In the image classification of HSI, each individual pixel is labeled to one of the classes

based on its spectral characteristics. Due to the numerous demands in mineralogy, agri-

culture and surveillance, the HSI classification task is developing very rapidly and a large

number of techniques have been proposed to tackle this problem [32]. Comparing with

previous approaches, SVM is found highly effective on both computational efficiency and

classification results. A wide variety of SVM’s modifications have been proposed to im-

prove its performance. Some of them incorporate the contextual information in the classi-

fiers [33, 34]. Others design sparse SVM in order to pursue a sparse decision rule by using

`1-norm as the regularizer [35].

Recently, SRC has been proposed to solve many computer vision tasks [18, 36], where

the use of sparsity as a prior often leads to state-of-the-art performance. SRC has also

been applied to HSI classification [37], relying on the observation that hyperspectral pixels

belonging to the same class approximately lie in the same low-dimensional subspace. In

order to alleviate the problem introduced by the lack of sufficient training data, Haq et al.

[38] proposed the homotopy-based SRC. Another way to solve the problem of insufficient

9
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training data is to employ the contextual information of neighboring pixels in the classifier,

such as spectral-spatial constraint classification [39].

In SRC, a test sample x ∈ RM , where M is the number of spectral bands, can be

written as a sparse linear combination of all the training pixels (atoms in a dictionary) as

α̂ = min
z

1

2
‖x−Dz‖2

2 + λ‖z‖1, (2.1)

where z ∈ RN , ‖z‖1 =
N∑
i=1

|zi| is `1-norm. D = [d1,d2, · · · ,dN ] is a structured dictio-

nary formed from concatenation of several class-wise sub-dictionaries, {di}i=1,...,N are the

columns of D and N is the total number of training samples from all the K classes, and λ

is a scalar regularization parameter.

The class label for the test pixel x is determined by the minimum residual between x

and its approximation from each class-wise sub-dictionary:

class(x) = arg min
g
‖x−Dδg(α)‖2

2, (2.2)

where g ⊂ {1, 2, · · · , K} is the group or class index, and δg(α) is the indicator operation

zeroing out all elements of α that do not belong to the class g.

In the case of HSI, SRC always suffers from the non-uniqueness or instability of the

sparse coefficients due to the high mutual coherency of the dictionary [40]. Due to these

undesired properties of the HSI dictionary, the sparse recovery can become unstable and

unpredictable such that even pixels belonging to the same class can have totally different

10
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sparse codes. Fortunately, a better reconstructed signal and a more robust representation

can be obtained by either exploring the dependencies of neighboring pixels or exploiting

the inherent dictionary structure. The problem induced by the high-coherency of the dic-

tionary atoms can also be alleviated through decreasing the variation between the sparse

codes of the hyperspectral pixels that belong to the same class. Recently, structured pri-

ors have been incorporated into HSI classification [37], which can be sorted into three

categories. (a) Priors that only exploit the correlations and dependencies among the neigh-

boring spectral pixels or their sparse coefficient vectors, which includes joint sparsity [41],

graph regularized Lasso (referred as the Laplacian regularized Lasso) [42] and the low-

rank Lasso [43]. (b) Priors that only exploit the inherent structure of the dictionary, such as

group Lasso [44]. (c) Priors that enforce structural information on both sparse coefficients

and dictionary, such as collaborative group Lasso [45] and collaborative hierarchical Lasso

(CHiLasso) [46]. Besides SRC, structured sparsity prior can also be incorporated into other

classifiers such as the logistic regression classifiers [47].

In HSI, pixels that are spatially close to each other usually have similar spectral features

and belong to the same class. The sparse codes of neighboring pixels can become similar

by enforcing a structured sparsity constraint (prior). The simultaneous sparse recovery is

analytically guaranteed to achieve a sparser solution and a lower reconstruction error with

a smaller dictionary [41]. A variety of structured sparsity priors are proposed in the liter-

ature [25] that are capable of generating different desired sparsity patterns for the sparse

codes of neighboring pixels. The joint sparsity prior [37] assumes that the features of all
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the neighboring pixels lie in the same low dimensional subspace and all the corresponding

sparse codes share the same set of dictionary atoms. Therefore, the sparse codes have a

row sparsity pattern, where only a few rows of the sparse codes are nonzero [48, 49]. The

collaborative group sparsity prior [45] enforces the coefficients to have a group-wise spar-

sity pattern, where the coefficients within each active group are dense. The collaborative

hierarchical sparsity prior [46] enforces the sparse codes to be not only group-wise sparse,

but also sparse within each active group. The low rank prior [43] assumes that the neigh-

boring pixels are linearly dependent. It does not necessary lead the coefficients to be sparse,

which is detrimental for a good classification. However, the low rank group prior proposed

in [25] is able to enforce both a group sparsity prior and a low rank prior on the sparse

codes by forcing the same group of dictionary atoms to be active if and only if the corre-

sponding neighboring pixels are linearly dependent. The Laplacian sparsity prior [42] uses

a Laplacian matrix to describe the degree of similarity between the neighboring pixels. The

neighboring pixels that have less spectral features in common are less encouraged to have a

similar sparse codes. It has been shown that all the structured sparsity priors are capable of

obtaining a smoother classification map and improving the classification performance [25].

The main contributions of this chapter are (a) to assess the SRC performance using

various structured sparsity priors for HSI classification, and (b) to propose a conceptually

similar prior to CHiLasso, which is called the low-rank group prior. This prior is based on

the assumption that pure or mixed pixels from the same classes are highly correlated and

can be represented by a combination of sparse low-rank groups (classes). The proposed
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prior takes advantage of both the group sparsity prior, which enforces sparsity across the

groups, and the low rank prior, which encourages sparsity within the groups, by only using

one regularizer.

In the following sections, we investigate the roles of different structured priors imposed

on the SRC optimization algorithm. Starting with the classical sparsity `1-norm prior,

we then introduce several different priors with experimental results. The structured priors

discussed are joint sparsity, Laplacian sparsity, group sparsity, sparse group sparsity, low-

rank and low-rank group prior.

2.2 HSI Classification via Different Structured

Sparse Priors

2.2.1 Joint Sparsity Prior

In HSI, pixels within a small neighborhood usually consist of similar materials. Thus,

their spectral characteristics are highly correlated. The spatial correlation between neigh-

boring pixels can be indirectly incorporated through a joint sparsity model (JSM) [48] by

assuming that the underlying sparse vectors associated with these pixels share a common

sparsity support. Consider pixels in a small neighborhood of T pixels. Let X ∈ RM×T

represent a matrix whose columns correspond to pixels in a spatial neighborhood in a hy-

perspectral image. Columns of X = [x1,x2, · · · ,xT ] can be represented as a linear com-
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bination of dictionary atoms X = DA, where A = [α1,α2, · · · ,αT ] ∈ RN×T represents

a sparse matrix. In JSM, the sparse vectors of T neighboring pixels, which are represented

by the T columns of A, share the same support. Therefore, A is a sparse matrix with only

few nonzero rows. The row-sparse matrix X can be recovered by solving the following

Lasso problem

min
A

1

2
‖X−DA‖2

F + λ‖A‖1,2, (2.3)

where ‖A‖1,2 =
N∑
i=1

‖αi‖2 is an `1,2-norm and αi represents the ith row of A.

The label for the center pixel xc is then determined by the minimum total residual error

class(xc) = arg min
g
‖X−Dδg(A)‖2

F , (2.4)

where δg(A) is the indicator operation zeroing out all the elements of A that do not belong

to the class g.

2.2.2 Laplacian Sparsity Prior

In sparse representation, due to the high coherency of the dictionary atoms, the recov-

ered sparse coefficient vectors for multiple neighboring pixels could be partially different

even when the neighboring pixels are highly correlated, and this may led to misclassifica-

tion. As mentioned in the previous section, joint sparsity is able to solve such a problem

by enforcing multiple pixels to select exactly the same atoms. However, in many cases,

when the neighboring pixels fall on the boundary between several homogeneous regions,
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the neighboring pixels will belong to several distinct classes (groups) and should use dif-

ferent sets of sub-dictionary atoms. Laplacian sparsity enhances the differences between

sparse coefficient vectors of the neighboring pixels that belong to different clusters. We in-

troduce the weighting matrix W, where wij characterizes the similarity between a pair of

pixels xi and xj within a neighborhood. Optimization with an additional Laplacian sparsity

prior can be expressed as

min
A

1

2
‖X−DA‖2

F + λ1‖A‖1 + λ2

∑
i,j

wij‖αi −αj‖2
2, (2.5)

where λ1 and λ2 are the regularization parameters. The matrix W is used to characterize

the similarity among neighboring pixels in the spectra space. Similar pixels will possess

larger weights, and therefore, enforcing the differences between the corresponding sparse

coefficient vectors to become smaller, and similarly allowing the difference between sparse

coefficient vectors of dissimilar pixels to become larger. Therefore, the Laplacian sparsity

prior is more flexible than the joint sparsity prior in that it does not always force all the

neighboring pixels to have the same common support. In this chapter, the weighting matrix

is computed using the sparse subspace clustering method in [50]. Note that this group-

ing constraint is enforced on the testing pixels instead of the dictionary atoms, which is

different from group sparsity. Let L = I−G−1/2WG−1/2 be the normalized symmetric

Laplacian matrix [50], where G is the degree matrix computed from W. We can rewrite

15



CHAPTER 2. SPARSE CODING WITH STRUCTURED SPARSITY PRIORS

the equation (2.5) as

min
A

1

2
‖X−DA‖2

F + λ1‖A‖1 + λ2tr(ALAT ). (2.6)

The above equation can be solved by a modified feature-sign search algorithm [42].

2.2.3 Group Sparsity Prior

The SRC dictionary has an inherent group-structured property since it is composed of

several class sub-dictionaries, i.e., the atoms belonging to the same class are grouped to-

gether to form a sub-dictionary. In sparse representation, we classify pixels by measuring

how well the pixels are represented by each sub-dictionary. Therefore, it would be reason-

able to enforce the pixels to be represented by groups of atoms instead of individual ones.

This could be accomplished by encouraging coefficients of only certain groups to be active

and the remaining groups inactive. Group Lasso [44], for example, uses a sparsity prior that

sums up the Euclidean norm of every group coefficients. It will dominate the classification

performance especially when the input pixels are inherently mixed pixels. Group Lasso

optimization can be represented as

min
α

1

2
‖x−Dα‖2

2 + λ
∑
g∈G

wg‖αg‖2, (2.7)
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where g ⊂ {G1, G2, · · · , GK},
∑
g∈G
‖αg‖2 represents the group sparse prior defined in terms

of K groups, wg is the weight and is usually set to the square root of the cardinality of the

corresponding group to compensate for the different group sizes. Here, αg refers to the

coefficients of each group. The above group sparsity can be easily extended to the case

of multiple neighboring pixels by extending problem (2.7) to collaborative group Lasso,

which is formulated as

min
A

1

2
‖X−DA‖2

F + λ
∑
g∈G

wg‖Ag‖2, (2.8)

where
∑
g∈G
‖Ag‖2 represents a collaborative group Lasso regularizer defined in terms of

group and Ag refers to each of the group coefficient matrix. When the group size is reduced

to one, the group Lasso degenerates into a joint sparsity Lasso.

2.2.4 Sparse Group Sparsity Prior

In the formulations (2.7) and (2.8), the coefficients within each group are not sparse, and

all the atoms in the selected groups could be active. If the sub-dictionary is overcomplete,

then it is necessary to enforce sparsity within each group. To achieve sparsity within the

groups, an `1-norm regularizer can be added to the group Lasso (2.7), which can be written

as

min
α

1

2
‖x−Dα‖2

2 + λ1

∑
g∈G

wg‖αg‖2 + λ2‖α‖1. (2.9)

Similarly, Eq. (2.9) can be easily extended to the multiple feature case, which can be
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written as

min
A

1

2
‖X−DA‖2

F + λ1

∑
g∈G

wg‖Ag‖2 + λ2

∑
g∈G

wg‖Ag‖1. (2.10)

Optimization problem (2.9) is referred in the literature as the sparse group Lasso and

problem (2.10) as the collaborative hierarchical Lasso (CHiLasso) [46].

2.2.5 Low Rank/Group Sparsity Prior

Based on the fact that spectra of neighboring pixels are highly correlated, it is reason-

able to enforce the low rank sparsity prior on their coefficient matrix. The low rank prior is

more flexible when compared with the joint sparsity prior which strictly enforces the row

sparsity. Therefore, when neighboring pixels are composed of small non-homogeneous

regions, the low rank sparsity prior outperforms the joint sparsity prior. Low rank sparse

recovery problem has been well studied in [43] and is stated as the following Lasso problem

min
A

1

2
‖X−DA‖2

F + λ‖A‖∗, (2.11)

where ‖A‖∗ is the nuclear norm [43].

To incorporate the structure of the dictionary, we now extend the low rank prior to group

low rank prior, where the regularizer is obtained by summing up the rank of every group
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.1: Sparsity patterns for the toy example: (a) desired sparsity regions, (b) `1

minimization using ADMM, (c) joint sparsity, (d) collaborative group sparsity, (e)
collaborative sparse group sparsity, (f) low rank sparsity, (g) low rank group sparsity and
(h) Laplacian sparsity via FFS.

19



CHAPTER 2. SPARSE CODING WITH STRUCTURED SPARSITY PRIORS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.2: Results for the Indian Pine image: (a) ground truth, (b) training set and (c) test
set. Classification map obtained by (d) SVM, (e) `1-minimization using ADMM, (f) joint
sparsity, (g) collaborative group sparsity, (h) collaborative sparse group sparsity, (i) low
rank sparsity, (j) low rank group sparsity, (k) `1 minimization via FSS and (l) Laplacian

sparsity via FSS.
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coefficient matrix,

min
A

1

2
‖X−DA‖2

F + λ
∑
g∈G

wg‖Ag‖∗. (2.12)

The low rank group prior is able to obtain the within-group sparsity by minimizing the

nuclear norm of each group. Furthermore, the summation of nuclear norms empowers the

proposed prior to obtain a group sparsity pattern. Hence, the low rank group prior is able

to achieve sparsity both within and across groups by using only one regularization term.

Table 2.1: Number of training and test samples for the Indian Pine image

Class Train Test
1 6 48
2 137 1297
3 80 754
4 23 211
5 48 449
6 72 675
7 3 23
8 47 442
9 2 18

10 93 875
11 235 2233
12 59 555
13 21 191
14 124 1170
15 37 343
16 10 85

Total 997 9369
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Table 2.2: Classification accuracy (%) for the Indian Pine image using 997 (10.64%)
training samples

Optimization Techniques ADMM/SpaRSA Feature Sign Search
Class SVM `1 JS LS GS SGS LR LRG `1 LS

1 77.08 68.75 79.17 85.42 79.17 87.50 75.00 91.67 66.67 83.33
2 84.96 58.84 81.94 81.34 80.62 79.92 78.60 81.71 74.42 89.90
3 62.67 24.40 56.67 47.35 62.13 76.13 29.87 89.87 69.87 78.38
4 8.57 49.52 27.62 49.76 37.14 54.29 15.24 67.62 64.76 88.15
5 77.18 81.88 85.46 83.96 84.79 82.55 82.10 83.45 91.72 94.43
6 91.82 96.88 98.36 97.48 98.96 98.36 98.21 98.36 97.02 98.52
7 13.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69.57 0.00
8 96.59 96.59 100.00 99.55 99.55 99.55 99.77 99.55 99.55 100.00
9 0.00 5.56 0.00 0.00 22.22 0.00 0.00 0.00 61.11 0.00
10 71.30 24.00 18.94 31.89 39.95 45.58 8.61 49.60 76.46 87.43
11 35.25 96.22 91.63 94.58 91.99 93.02 97.12 92.35 87.62 98.84
12 42.39 32.97 45.29 64.68 69.57 65.58 20.83 82.97 78.26 91.71
13 91.05 98.95 99.47 99.48 99.47 98.95 98.95 99.47 99.47 100.00
14 94.85 98.97 98.97 99.49 98.80 99.31 99.83 99.31 97.77 99.57
15 30.70 49.71 55.85 63.84 50.58 80.99 44.15 89.47 53.80 69.97
16 27.06 88.24 95.29 97.65 95.29 98.82 97.65 97.65 85.88 97.65

OA[%] 64.94 71.17 76.41 79.40 80.19 83.19 71.90 86.46 83.74 92.58
AA[%] 56.53 60.72 68.53 64.67 69.39 72.53 59.14 76.43 79.62 79.87
κ 0.647 0.695 0.737 0.712 0.781 0.807 0.695 0.843 0.833 0.923

2.3 Experimental Verification

2.3.1 Datasets and Dictionary Generation

We evaluate various structured sparsity priors on two different hyperspectral images

and one toy example. The first hyperspectral image to be assessed is the Indian Pine, ac-

quired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which generates 220

bands, of which 20 noisy bands are removed before classification. The spatial dimension

of this image is 145×145, which contains 16 ground-truth classes, as shown in Table I. We

randomly choose 997 pixels (10.64% of all the labelled pixels) for constructing the dictio-

nary and use the remaining pixels for testing. The second image is the University of Pavia,

which is an urban image acquired by the Reflective Optics System Imaging Spectrometer

(ROSIS), contains 610 × 340 pixels. It generates 115 spectral bands, of which 12 noisy
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Table 2.3: Number of training and test samples for the University of Pavia image

Class Train Test
1 139 6713
2 137 1859
3 100 2107
4 133 3303
5 68 1310
6 135 4969
7 95 1261
8 131 3747
9 59 967

Total 997 42926

bands are removed. There are nine ground-truth classes of interests. For this image, we

choose 997 pixels (2.32% of all the labelled pixels) for constructing the dictionary and the

remaining pixels for testing, as shown in Table III. The toy example consists of two differ-

ent classes (class 2 and 14 of the Indian Pine test set), and each class contains 30 pixels.

The dictionary is the same as that for the Indian Pine. The toy example is used to evaluate

the various sparsity patterns generated by the different structured priors.

2.3.2 Models and Methods

The tested structured sparse priors are: (i) joint sparsity (JS), (ii) Laplacian sparsity

(LS), (iii) collaborative group sparsity (GS), (iv) sparse group sparsity (SGS), (v) low rank

prior (LR) and (vi) low rank group prior (LRG), corresponding to Eqs. (7), (10), (12), (14),

(16) and (17), respectively. For SRC, the parameters λ, λ1 and λ2 of different structured

priors range from 10−3 to 0.1. Performance on the toy example will be visually examined

by the difference between the desired sparsity regions and the recovered ones. For the two
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Table 2.4: Classification accuracy (%) for the University of Pavia image using 997
(2.32%) training samples

Optimization Techniques ADMM/SpaRSA Feature Sign Search
Class SVM `1 JS LS GS SGS LR LRG `1 LS

1 84.55 57.11 77.04 95.08 94.01 97.90 91.16 94.15 72.14 95.85
2 82.45 58.22 67.98 66.70 70.04 68.04 69.73 69.32 59.62 64.28
3 77.08 57.33 44.32 77.55 79.45 73.56 75.80 79.73 66.21 76.51
4 94.19 95.94 95.13 95.19 95.31 95.55 95.94 98.46 97.67 98.97
5 99.01 100.00 99.85 100.00 100.00 100.00 100.00 100.00 99.85 100.00
6 23.55 89.60 88.31 96.60 100.00 99.74 100.00 99.96 80.60 98.63
7 2.06 83.27 84.38 96.59 95.24 95.56 95.06 95.24 86.76 94.69
8 33.89 48,65 65.20 67.36 62.24 44.84 65.24 63.06 75.95 95.76
9 53.05 93.69 99.59 99.59 93.38 93.28 93.57 94.00 90.69 98.35

OA[%] 69.84 66.51 74.05 80.82 81.15 79.07 80.81 81.02 71.41 81.84
AA[%] 61.09 75.98 80.06 88.80 87.73 85.36 87.35 87.93 81.05 91.45
κ 0.569 0.628 0.681 0.758 0.675 0.624 0.611 0.66 0.672 0.781

hyperspectral images, classification performance is evaluated by the overall accuracy (OA),

average accuracy (AA), and the κ coefficient measure on the test set. For each structured

prior, we present the result with the highest overall accuracy using cross validation. A

linear SVM is implemented for comparison, whose parameters are set in the same fashion

as in [37].

In experiments, joint sparsity, group sparsity and low rank priors are solved by ADMM

[51], while CHiLasso and Laplacian prior are solved by combining SpaRSA [52] and

ADMM. In addition, in conformity with previous work [42], the Laplacian regularized

Lasso is also solved by a modified feature sign search (FSS) method. In this chapter, we

try to present a fair comparison among all priors. According to the optimization technique,

we sort the structured priors into two categories: (i) priors solved by ADMM and SpaRSA

and (ii) priors solved by FSS-based method. The first row of Table II and Table IV show

the methods used to implement the sparse recovery for each structured prior.
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Table 2.5: Computation time (in seconds) for the Indian Pine image

ADMM/SpaRSA FFS
`1 JS LS GS SGS LR LRG LS `1

1124 1874 4015 2811 2649 4403 2904 1124 11628

2.3.3 Performance

Sparsity patterns of the toy example are shown in Fig. 2.1. The expected sparsity

regions are shown in Fig. 2.1(a), where the y-axis labels the dictionary atom index and x-

axis labels the test pixel index. The red and green regions correspond to the ideal locations

of the active atoms for the class 2 and 14, respectively. Nonzero coefficients that belong

to other classes are shown in blue dots. The joint sparsity, Fig. 2.1 (c), shows clear row

sparsity pattern, but many rows are mistakenly activated. As expected, active atoms in Fig.

2.1 (d), (e) and (g) demonstrate group sparsity patterns. Comparing the GS (d) and SGS

(e), it is observed that most of the atoms are deactivated within groups using SGS. The

low rank group prior (g) demonstrates a similar sparsity pattern as that of SGS. For the

Laplacian sparsity (h), similarity of sparse coefficients that belong to the same classes is

clearly visible.

Table II and Fig. 2.2 show the performance of SRCs with different priors on the Indian

Pine image. A spatial window of 9 × 9 (T = 81) is used since this image consists of

mostly large homogeneous regions. Among SRCs with different priors, the worst result

occurs when we use simple `1-ADMM. Joint sparsity prior gives better result than the low

rank prior. This is due to the large areas of homogeneous regions in this image, which

favors the joint sparsity model. The highest OA is given by the Laplacian sparsity prior via
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FFS, such a high performance is partly contributed to the accurate sparse recovery of the

feature sign search method. Both SGS and LRG outperform GS. We can see that among

ADMM-based based methods, the low rank group prior yields the smoothest result. The

computational time of various structured priors for Indian Pine image are shown in Table

2.5. Among ADMM/SpaRSA-based methods, LRG, GS and SGS take roughly similar time

(∼2500s) to process the image, while LR and JS require longer time (∼4000s). LS via FFS

significantly impedes the computational efficiency.

Results for the University of Pavia image are shown in Table IV. The window size for

this image is 5×5 (T = 25) since many narrow regions are present in this image. The group

sparsity prior gives the highest OA among the priors optimized by ADMM. The low rank

sparsity prior gives a much better result than joint sparsity since this image contains many

small homogeneous regions. The Laplacian sparsity prior via FFS gives the highest OA

performance. However, the difference between performance of various structured priors is

quite small.

2.4 Summary

This chapter reviews five different structured sparse priors and proposes a low rank

group sparsity prior. Using these structured priors, classification results of SRCs on HSI

are generally improved when compared with the classical `1 sparsity prior. The results

have confirmed that the low rank prior is a more flexible constraint compared with the joint
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sparsity prior, while the latter works better on large homogeneous regions. Imposing the

group structured prior on the dictionary always gives higher overall accuracy compared

with the `1 prior. We have also observed that the performance is not only determined by

the structured priors, but also depend on the corresponding optimization techniques.

27



Chapter 3

Sparse Coding with Task-driven

Dictionary Learning and Structured

Sparsity Priors

In this chapter, we develop dictionary learning algorithms for sparse representation with

various structured sparsity priors. As a generative model, sparse coding requires the dic-

tionary to be highly redundant in order to ensure both a stable high sparsity level and a

low reconstruction error for the signal. However, in practice, this requirement is usually

impaired by the lack of labeled training samples. Fortunately, as we discussed in the previ-

ous chapter, the requirement for a redundant dictionary can be less rigorous if simultaneous

sparse approximation is employed, which can be carried out by enforcing various structured

sparsity constraints on the sparse codes of the neighboring pixels. In addition, numerous

28



CHAPTER 3. SPARSE CODING WITH TASK-DRIVEN DICTIONARY LEARNING
AND STRUCTURED SPARSITY PRIORS

works have shown that applying a variety of dictionary learning methods for the sparse

representation model can also improve the classification performance. In this chapter, we

highlight the task-driven dictionary learning algorithm, which is a general framework for

the supervised dictionary learning method. We propose to enforce structured sparsity pri-

ors on the task-driven dictionary learning method in order to improve the performance of

the hyperspectral classification. Our approach is able to benefit from both the advantages

of the simultaneous sparse representation and those of the supervised dictionary learning.

We enforce two different structured sparsity priors, the joint and Laplacian sparsity, on the

task-driven dictionary learning method and provide the details of the corresponding opti-

mization algorithms. Experiments on numerous popular hyperspectral images demonstrate

that the classification performance of our approach is superior to sparse representation clas-

sifier with structured priors or the task-driven dictionary learning method.

3.1 Introduction

Numerous difficulties impede the improvement of image classification performance for

HSI. For instance, the high dimensionality of HSI pixels introduce the problem of the

‘curse of dimensionality’ [53], and the classifier is always confronted with the overfitting

problem due to the small number of labelled samples. Additionally, most hyperpixels are

indiscriminative since they are undesirably highly coherent [54]. In the past few decades,

numerous classification techniques, such as SVM [6], k-nearest-neighbor classifier [8],
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multimodel logistic regression [55] and neural network [7], have been proposed to alleviate

some of these problems to achieve an acceptable performance for HSI classification.

More recently, researchers have focused attention on describing the high dimensional

data as a sparse linear combination of dictionary atoms. SRC has been applied to HSI

classification by Chen et. al. [37], where a dictionary was constructed by stacking all

the labelled samples. Success of SRC requires that the high dimensional data belonging

to the same class to lie in a low dimensional subspace. The outstanding classification

performance is due to the robustness of sparse recovery, which is largely provided by the

high redundancy and low coherency of the dictionary atoms. A low reconstruction error

and a high sparsity level can be achieved if the designed dictionary satisfies the above

properties.

In the classical SRC, the dictionary is constructed by stacking all the training samples.

The sparse recovery can be computationally burdensome when the training set is large. Be-

sides, the dictionary constructed in this manner can neither be optimal for reconstruction

purposes nor for classification of signals. Previous literature have shown that a dictionary

can be trained to have a better representation of the dataset. Unsupervised dictionary learn-

ing methods, such as the method of optimal direction (MOD) [56], K-SVD [57] and online

dictionary learning [58], are able to improve the signal restoration performance of numer-

ous applications, such as compressive sensing, signal denoising and image inpainting.

However, the unsupervised dictionary learning method is not suitable for solving clas-

sification problems since a lower reconstruction error does not necessarily lead to a better
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classification performance. In fact, it is observed that the dictionary can have an improved

classification result by sacrificing some signal reconstruction performance [59]. Therefore,

supervised dictionary learning methods [60] are proposed to improve the classification re-

sult. Unlike the unsupervised dictionary learning, which only trains the dictionary by pur-

suing a lower signal reconstruction error, the supervised learning is able to directly improve

the classification performance by optimizing both the dictionary and classifier’s parameter

simultaneously. The discriminative dictionary learning in [23] minimizes the classification

error of SRC by minimizing the reconstruction error contributed by the atoms from the cor-

rect class and maximizing the error from the remaining classes. The incoherent dictionary

learning in [24] uses SRC as the classifier and tries to eliminate the atoms shared by pixels

from different classes. It increases the discriminability of the sparse codes by decreasing

the coherency of the atoms from different classes. The label consistent K-SVD (LC-KSVD)

[17] optimizes the dictionary and classifier’s parameter by minimizing the summation of

reconstruction and classification errors. It combines the dictionary and classifier’s param-

eter into a single parameter space, which makes it possible for the optimization procedure

to be much simpler than those used in classical SRC. However, a desired and accurate so-

lution is not guaranteed [61] because the cost function can be minimized by decreasing

the reconstruction error while the classification error is increased. A bilevel optimization

formulation would be more appropriate [62], where the update of the dictionary is driven

by the minimization of the classification error. The task-driven dictionary learning (TDDL)

[59] exploits this idea with theoretical proof and demonstrates a superior performance. The
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supervised translation-invariant sparse coding, which uses the same scheme as TDDL, is

developed independently by [63]. It is a more general framework that can be applied not

only to classification, but also nonlinear image mapping, digital art authentiïňĄcation and

compressive sensing. More recently, the group sparsity prior is enforced on a single mea-

surement and the corresponding TDDL optimization algorithm is developed in [64] in order

to improve the performance of region tagging.

In this chapter, we propose a novel method that enforces the joint or Laplacian sparsity

prior on the sparse recovery stage of TDDL. The existing dictionary learning methods have

only been developed for reconstructing or classifying a single measurement. Therefore,

it is advantageous to incorporate structured sparsity priors into the supervised dictionary

learning in order to achieve a better performance. This chapter makes the following contri-

butions:

• We propose a new dictionary learning algorithm for TDDL with joint or Laplacian

sparsity in order to exploit the spatial-spectral information of HSI neighboring pixels.

• We show experimentally that the proposed dictionary learning methods have a sig-

nificantly better performance than SRC even when the dictionary is highly compact.

• We also describe an optimization algorithm for solving the Laplacian sparsity recov-

ery problem. The proposed optimization method is much faster than the modified

feature sign search used in [42].

The remainder of the chapter is organized as follows. In Section 3.2, a brief review
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of TDDL is given. In Section 3.3, we propose a modified TDDL algorithm with the joint

sparsity prior. TDDL with the Laplacian prior and a new algorithm for recovering the

Laplacian sparse problem are stated in Section 3.4. In Section 3.5, we show that our method

is superior to other HSI classification methods through experimental results on several HSI

images. Finally, we provide our summary in Section 3.6.

3.2 Task-driven Dictionary Learning

In TDDL [59], signals are represented by their sparse codes, which are then fed into a

linear regression or logistic regression. Consider a pair of training samples (x,y), where

x ∈ RM is the HSI pixel, M is the number of spectral bands, and y ∈ RK is a binary vector

representation of the label of the sample x. K is the maximum class index. Pixel x can be

represented by a sparse coefficient vector α(D,x) ∈ RN with respect to some dictionary

D ∈ RM×N consisting of N atoms by solving the optimization

α(D,x) = arg min
z
‖x−Dz‖2

2 + λ‖z‖1 +
ε

2
‖z‖2

2, (3.1)

,where λ and ε are the regularization parameters. λ controls the sparsity level of the coef-

ficients α. In our experiments, we set ε to 0 since it does not affect the convergence of the

algorithm and always gives satisfactory results.

To optimize the dictionary, TDDL first defines a convex function L(D,W, {xi}Si=1) to

describe the classification risk in terms of the dictionary atoms, sparse coefficients and the

33



CHAPTER 3. SPARSE CODING WITH TASK-DRIVEN DICTIONARY LEARNING
AND STRUCTURED SPARSITY PRIORS

classifier’s parameter W. The function is then minimized as follows

min
D,W
L(D,W, {xi}Si=1) = min

D,W
f(D,W, {xi}Si=1) +

µ

2
‖W‖2

F , (3.2)

where µ > 0 is a classifier regularization parameter to avoid overfitting of the classifier.

The convex function f is defined as

f(D,W, {xi}Si=1)
∆
=

1

S

S∑
i=1

J (yi,W,αi(D,xi)), (3.3)

where S is the total number of training samples and L(yi,W,αi(D,xi)) is the classi-

fication error for a training pair (xi,yi) which is measured by a linear regression, i.e.

J (yi,W,αi(D,xi)) = 1
2
‖yi −Wαi‖2

2.

In the following part of the section, we omit the subscript i of α for notational sim-

plicity. The dictionary D and the classifier parameter W are updated using a stochastic

gradient descent algorithm, which has been independently investigated by [59, 63]. The

update rules for D and W are


D(t+1) = D(t) − ρ(t) · ∂L(t)/∂D,

W(t+1) = W(t) − ρ(t) · ∂L(t)/∂W,

(3.4)

where t is the iteration index and ρ is the step size. The equations for updating the classifier

parameter W is straightforward since L(y,W,α(D,x)) is both smooth and convex with
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respect to W. We have

∂L
∂W

= (Wα− y)α> + µW. (3.5)

The updating equation for the dictionary can be obtained by applying error backpropaga-

tion, where the chain rule is applied

∂L
∂D

=
∂L
∂α

∂α

∂D
. (3.6)

The difficulty of acquiring a specific form of the above equation comes from ∂α/∂D.

Since the sparse coefficient α(D,x) is an implicit function of D, an analytic form of α

with respect to D is not available. Fortunately, the derivative ∂α/∂D can still be computed

by either applying optimality condition of elastic net [59, 65] or using fixed point differen-

tiation [63, 66].

We now focus on computing the derivative using the fixed point differentiation. As

suggested in [66], the gradient of Eq. (3.1) reaches 0 at the optimal point α̂

∂‖x−Dα‖2
2

∂α

∣∣∣
α=α̂

= −λ∂‖α‖1

∂α

∣∣∣
α=α̂

. (3.7)

Expanding Eq. (3.7), we have

2D>(x−Dα)
∣∣∣
α=α̂

= λ · sign(α)
∣∣∣
α=α̂

. (3.8)

In order to evaluate ∂α/∂D, the derivative of Eq. (3.8) with respect to each element
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Dmn of the dictionary is required. Since the differentiation of the sign function is not well

defined at zero points, we can only compute the derivative of Eq. (3.8) at fixed points when

α[n] 6= 0 [63]

∂αΛ

∂Dmn

= (D>ΛDΛ)−1

(
∂D>Λx

∂Dmn

− ∂D>ΛDΛ

∂Dmn

αΛ

)
and

∂αΛC

∂Dmn

= 0, (3.9)

where Λ and Λc are the indices of the active and inactive set of α respectively. Dmn ∈ R is

the (m,n) element of D. (D>ΛDΛ)−1 is always invertible since the number of active atoms

|Λ| is always much smaller than the feature dimension M .

3.3 Task-driven Dictionary Learning with Joint

Sparsity Prior

We now extend TDDL by using a joint sparsity (JS) prior (TDDL-JS). The joint spar-

sity prior [48, 49] enforces the sparse coefficients of the test pixel and its neighboring

pixels within the neighborhood window to have row sparsity pattern, where all pixels are

represented by the same atoms in the dictionary so that only few rows of the sparse coeffi-

cients matrix are nonzero. The joint sparse recovery can be solved by the following Lasso
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problem

A = arg min
Z
‖X−DZ‖2

F + λ‖Z‖1,2, (3.10)

where A,Z ∈ RN×P are sparse coefficient matrices and X = [x1, . . . ,xP ] ∈ RM×P

represents all the pixels within a neighborhood window centered on a test (center) pixel

xc. Define the label of the center pixel as yc. P is the total number of pixels within the

neighborhood window. ‖Z‖1,2 =
P∑
i=1

‖Zi‖2 is the `1,2-norm of Z. Zi ∈ R1×P is the ith row

of Z. Many sparse recovery techniques are able to solve Eq. (3.10), such as the Alternating

Direction Method of Multipliers [67], Sparse Reconstruction by Separable Approximation

(SpaRSA) [52] and Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [68].

Once the sparse code A is obtained, the sparse codes αc of the center pixel xc is pro-

jected on each of the K decision planes of the classifier. The plane with the largest projec-

tion indicates the class that the center pixel xc belongs to,

identity(xc) = arg max
k

ŷk = arg max
k

(Wαc)k, (3.11)

where αc ∈ RN is the sparse coefficients of the center pixel. In the training stage, it is

expected that the projection of the decision plane corresponding to the class of the center

pixel should be increased while other planes should be orthogonal to αc. Therefore, given
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the training data (X,yc), the classification error for the center pixel xc is defined as

L(yc,W,αc(D,X)) = ‖yc −Wαc‖2
2 +

µ

2
‖W‖2

F , (3.12)

In order to update the dictionary D, we need to apply a chain rule similar to the one in Eq.

(3.6):

∂L
∂D

=
∂L
∂A

∂A

∂D
. (3.13)

Now we focus on the difficult part ∂A
∂D

of Eq. (3.13). Employing the fixed point differenti-

ation on Eq. (3.10), we have

∂‖X−DA‖2
F

∂A

∣∣∣
A=Â

= −λ∂‖A‖1,2

∂A

∣∣∣
A=Â

. (3.14)

In the following part of this section, we omit the fixed point notation. Eq. (3.14) is only

differentiable when ‖Ai‖2 6= 0, where Ai denotes the ith row of A. At points where

‖Ai‖2 = 0, the derivative is not well defined, so we set ∂‖Ai‖2
∂Ai

= 0. Denote Ã = AΛ ∈

RNΛ×P , where Λ is the active set such that Λ = {i : ‖Ai‖2 6= 0, i ∈ {1, . . . , N}}, NΛ =

|Λ|, AΛ is composed of active rows of A, and D̃ is the active atoms of D. Expanding the

derivative of Eq. (3.14) on both sides on the feasible points,

D̃>
(
X− D̃Ã

)
= λ

[
Ã>1
‖Ã1‖2

, . . . ,
Ã>NΛ

‖ÃNΛ
‖2

]>
. (3.15)
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Algorithm 1 Stochastic gradient descent algorithm for task-driven dictionary learning with
joint sparsity prior
Require: Initial dictionary D and classifier W. Parameter λ, ρ and t0.

1: for t = 1 to T do
2: Draw one sample (X,yc) from training set.
3: Find sparse sparse code A according to Eq. (3.10).
4: Find the active set Λ and define NΛ = |Λ|

Λ← {i : ‖Ai‖2 6= 0, i ∈ {1, . . . , N}},

where Ai is the ith row of A.
5: Compute Γ ∈ RNΛP×NΛP

Γ = Γ1 ⊕ · · · ⊕ ΓNΛ ,

Γi =
IP

‖Ãi‖2
− ÃiÃ

>
i

‖Ãi‖32
, i = 1, . . . , NΛ,

where ⊕ is the direct sum of matrices.
6: Compute γ ∈ RNΛP

γ = (D̃>D̃⊗ IP + λΓ)−>vec((WÂ− Ŷ)>W̃).

where vec(·) and W̃ denote the vectorization operator and Λ columns of W respec-
tively.

7: Let β ∈ RN×P . Set βΛC = 0 and construct βΛ ∈ RNΛ×P that satisfies

vec
(
β>Λ
)

= γ.

8: Choose the learning rate ρt ← min(ρ, ρ t0
t ).

9: Update the parameters by gradient projection step

W←W − ρt
(
(Wαc − y)α>c + µW

)
,

D← D− ρt(−DβA> + (X−DA)β>),

and normalize every column of D(t+1) with respect to `2-norm.
10: end for
11: return D and W.

Computing the derivative of Eq. (3.15) with respect to Dmn and transposing both sides

∂
{

(X−DA)> D̃
}

∂Dmn

= λ

[
Γ1

∂Ã>1
∂Dmn

, . . . ,ΓNΛ

∂Ã>NΛ

∂Dmn

]
, (3.16)
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where Γi = IP
‖Ãi‖2

− Ã>i Ãi

‖Ãi‖32
, i = 1, . . . , NΛ. By vectorizing Eq. (3.16), we have

vec

(
∂X>D̃

∂Dmn

− Ã>
∂D̃>D̃

∂Dmn

− ∂Ã>

∂Dmn

D̃>D̃

)
= λ · Γvec

(
∂Ã>

∂Dmn

)
, (3.17)

where Γ = Γ1 ⊕ · · · ⊕ ΓNΛ
. From Eq. (3.17), we reach the vectorization form of the

derivative of Ã with respect to Dmn, given as

vec

(
∂Ã>

∂Dmn

)
=
(
D̃>D̃⊗ IP + λΓ

)−1

vec

(
Ã>

∂D̃>D̃

∂Dmn

+
∂X>D̃

∂Dmn

)
. (3.18)

Now we can update the dictionary element-wise using Eq. (3.18). In order to reach a

more concise form for updating the dictionary, we perform algebraic transformations on

Eq. (3.13) and Eq. (3.18), which are illustrated in Appendix 8.1. We illustrate the overall

optimization for TDDL-JS in Algorithm 1. It should be noted that in the Algorithm 1, we

define Â = [0, . . . ,αc, . . . ,0] ∈ RN×P and Ŷ = [0, . . . ,y, . . . ,0] ∈ RK×P .

3.4 Task-driven Dictionary Learning with Lapla-

cian Sparsity Prior

The joint sparsity prior is a relatively stringent constraint on the sparse codes since it

assumes that all the neighboring pixels have the same support as the center pixel. The
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assumption of the joint sparsity prior can easily be violated on non-homogeneous regions,

such as a region that contains pixels from different classes. This makes choosing a proper

neighborhood window size a difficult problem. When the window size is too large, the

sparse codes of the non-homogeneous regions within the window are indiscriminative. On

the other hand, the sparse codes are not stable if the window size is chosen to be too small.

Ideally, we hope that the performance is insensitive to both the choice of the window size

and the topology of the image. To achieve this requirement, we propose to enforce the

Laplacian sparsity (LP) prior (TDDL-LP) on the TDDL, where the degree of similarity

between neighboring pixels can be utilized to push the sparse codes of the neighboring

pixels that belong to the same class to be similar, instead of enforcing all the neighboring

pixels to have a similar sparse codes blindly. The corresponding Lasso problem can be

stated as follows

A = arg min
Z
‖X−DZ‖2

2 + λ‖Z‖1 + γ
P∑
i,j

cij‖Zi − Zj‖2
2, (3.19)

where Zi and Zj denote the ith and j th columns of Z. cij is a weight whose value is propor-

tional to the spectral similarity of Xi and Xj , which are the ith and j th columns of X. γ is

a regularization parameter.

The Laplacian sparse recovery described by Eq. (3.19) in [42] is able to discriminate

pixels from different classes by defining an appropriate weighting matrix C = [cij] ∈

RP×P . Additionally, it enforces both the support and the magnitude of sparse coefficients

of similar spectral pixels to be similar, whereas the joint sparsity prior enforces sparse
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coefficients of all the pixels within the neighborhood window to have the same support.

Eq. (3.19) can be reformulated as

A = arg min
Z
‖X−DZ‖2

2 + λ‖Z‖1 + γtr(ZLZ>), (3.20)

where L = B −C ∈ RP×P is the Laplacian matrix [69]. B = [bij] ∈ RP×P is a diagonal

matrix such that bii =
∑
j

cij .

In this chapter, we adopt the method of Sparse Reconstruction by Separable Approxi-

mation (SpaRSA) [25, 52] to solve the Laplacian sparse coding problem.

3.4.1 Sparse Recovery Algorithm

A modified feature sign search [42] is capable of solving the optimization problem

(3.20). It uses coordinate descent to update each column of A iteratively. Although it

gives plausible performance for the SRC-based HSI classification [25], it demands a high

computational cost. The SpaRSA-based method can achieve a similar optimal solution of

Eq. (3.20) while being less computational burdensome. Despite the fact that our previous

work [25] has shown that the performance of the SRC-based approach for HSI classifica-

tion can be largely influenced by the choice of specific optimization technique, we found

that such influence is reasonably small when employing the dictionary-learning-based ap-

proach. Therefore, we use a SpaRSA-based method to solve the sparse recovery for the

Laplacian sparsity prior. Although, SpaRSA is originally designed to solve the optimiza-
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tion of single-signal case, it can be easily extended to tackle the problem with multiple

signals, such as the collaborative hierarchical Lasso (C-Hilasso) [46].

SpaRSA is able to solve optimization problems that have the following form

min
A∈RN×P

f (A) + λψ (A) , (3.21)

where f : RN×P → R is a convex and smooth function, ψ : RN×P → R is a separable

regularizer and λ is the regularization parameter. In the particular case of the Laplacian

sparse recovery, the regularizer ψ is chosen to be the `1−norm, i.e. ψ(A) = ‖A‖1, and the

convex function f is set as

f (A) = ‖X−DA‖2
F + γtr

(
ALA>

)
. (3.22)

In order to search the optimal solution of Eq. (3.21), SpaRSA generates a sequence of

iterations A(t), t = 1, 2, . . . , by solving the following subproblem

A(t+1) ∈ arg min
Z∈RN×P

(
Z−A(t)

)>
∇f(A(t)) +

η(t)

2
‖Z−A(t)‖2F + γψ (Z) , (3.23)

where η(t) > 0 is a nonnegative scalar such that η(t) = µη(t−1) and µ > 1. The Eq. (3.23)

can be simplified into the following form by eliminating the terms independent of Z

min
Z∈RN×P

1

2
‖Z−U(t)‖2

F +
γ

η(t)
ψ(Z), (3.24)

where U(t) = A(t) − 1
η(t)∇f(A(t)). The optimization problem in Eq. (3.24) is separable
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Algorithm 2 Sparse recovery for Laplacian sparsity prior using SpaRSA
Require: Dictionary D, constants η0 > 0, 0 < ηmin < ηmax, µ > 1

1: Set t = 0 and A(0) = 0
2: repeat
3: choose η(t) ∈ [ηmin, ηmax]
4: compute U(t) ← A(t) − 1

η(t)∇f(A(t)).
5: repeat
6: A(t) ← S γ

η(t)

(
U(t)

)
,

7: η(t) ← µη(t).
8: until stopping criterion is satisfied
9: t← t+ 1.

10: until stopping criterion is satisfied
11: return The optimal sparse coefficients A∗.

element-wise, which can be reformulated into

min
Aij

1

2
(zij − u(t)

ij )2 +
λ

η(t)
ψij(Z),∀i = 1, . . . , N and j = 1, . . . , P. (3.25)

The problem in Eq. (3.25) has a unique solution and can be solved by the well-known soft

thresholding operator S(·)

z∗ij = S γ

η(t)

(
u

(t)
ij

)
= sign(u

(t)
ij ) max{0, |uij| −

λ

η(t)
}. (3.26)

Comparing with the algorithm proposed in [42], which is based on the coordinate de-

scent, Laplacian sparse recovery using SpaRSA is more computationally efficient since it

is able to cheaply search for a better descent direction ∇f(A). The corresponding opti-

mization is stated in Algorithm 2.
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3.4.2 Dictionary Updating Rule

In order to adjust the dictionary, we now follow Eq. (3.13) to derive ∂A
∂D

using the fixed

point differentiation. Applying differentiation on Eq. (3.19) on the fixed point Â

∂‖X−DA‖2
F + γtr

(
ALA>

)
∂A

∣∣∣
A=Â

= −λ∂‖A‖1

∂A

∣∣∣
A=Â

. (3.27)

In the following part, we omit the fixed point notation. By computing the derivation and

then applying the vectorization on Eq. (3.27), we have

vec
(
D> (X−DA)− γAL

)
= λ · vec (sign (A)) . (3.28)

The differentiation ∂vec(sign(A))
∂Dmn

is not well defined on zero points of vec (sign (A)). Similar

as in TDDL-JS, we set the ith element ∂vec(sign(A))i
∂Dmn

= 0 when vec (sign (A))i = 0. Denote

the Λ as the index set of nonzero elements of vec (sign (A)). Compute the derivative of

Eq. (3.28) with respect to Dmn

∂
{
vec
(
D> (X−DA)− γAL

)
Λ

}
∂Dmn

= 0, (3.29)

which leads to

vec

(
∂D>D

∂Dmn

A− ∂D>X

∂Dmn

+ D>D
∂A

∂Dmn

+ γ
∂A

∂Dmn

L

)
Λ

= 0. (3.30)
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Algorithm 3 Stochastic gradient descent algorithm for task-driven dictionary learning with
Laplacian sparsity prior
Require: Initial dictionary D and classifier W. Parameter λ, ρ and t0.

1: for t = 1 to T do
2: Draw one sample (X,yc) from training set.
3: Find sparse code A according to Eq. (3.10).
4: Find the active set Λ

Λ← {i : vec(A)i 6= 0, i ∈ {1, . . . , NP}},

where vec(A)i is the ith element of vec(A).
5: Let β ∈ RN×P . Set vec(β)ΛC = 0 and compute vec(β)Λ

vec(β)Λ = (IP ⊗D>D + γL⊗ IN )−1
Λ,Λvec(W

>(WÂ− Ŷ))Λ,

and ⊗ denotes the Kronecker product.
6: Choose the learning rate ρt ← min(ρ, ρ t0

t ).
7: Update the parameters by gradient projection step

W←W − ρt
(
(Wαc − y)α>c + µW

)
,

D← D− ρt(−DβA> + (X−DA)β>),

and normalize every column of D(t+1) with respect to `2-norm.
8: end for
9: return D and W.

Now we reach the desired gradient

vec

(
∂A

∂Dmn

)
Λ

=
(
IP ⊗D>D + γL⊗ IN

)−1

Λ,Λ
vec

(
∂D̃>D̃

∂Dmn
Ã +

∂D̃>X

∂Dmn

)
Λ

. (3.31)

By applying algebraic simplification to Eq. (3.31), which is shown in Appendix 8.1, we

reach the optimzation for TDDL-LP as stated in the Algorithm 3. It should be noted that Â

and Ŷ have the same definitions as those in Algorithm 1.
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3.5 Experimental Verification

3.5.1 Datasets and Dictionary Generation

Cross-validation to obtain the optimal values for all parameters, including λ, ε, γ (sparse

coding regularization parameters), µ (regularization parameter for the classifier), ρ0 (initial

step size), N (dictionary size) and P (number of neighboring pixels), would introduce

significant computational cost. Instead, we search for the optimal values for the above

parameters according to the following procedure.

• The candidate dictionary sizes are from 5 to 10 atoms per class. The choice of dictio-

nary size depends on the classification performance and computational cost. In our

experiment, we set the dictionary size to be 5 atoms per class.

• Searching for the optimal window size and the regularization parameters would be

cumbersome. Empirically, we found that the optimal regularization parameters are

less likely to be affected by the choice of the window size. Therefore, for each image,

we fix the window size to be 3×3 in order to save computational resource during the

search of the optimal regularization parameters. Candidate regularization parameters

are {10−3, 10−2, 10−1}.

• The possible candidate window sizes are 3 × 3, 5 × 5, 7 × 7 and 9 × 9. We search

for the optimal window size for each image after finding the optimal regularization

parameters.
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Table 3.1: Parameters used for dictionary learning on the Indian Pine image

Structured Priors λ γ ρ
`1 10−2 - 10−2

JS 10−2 - 10−3

LP 10−2 10−3 10−1

(a) (b)

Figure 3.1: (a) Training sets and (b) test sets of the Indian Pine image.

Computing the gradient for a single training sample at each iteration of Algorithm 1 or

3 will make the algorithm converge very slowly. Therefore, following the previous work

[58, 59], we implement the two proposed algorithms with the mini-batch method, where

the gradients of multiple training samples are computed in each iteration. For the unsuper-

vised learning methods, the batch size is set to 200. For the supervised learning methods,

the batch size is set to 100 and t0 = T/10. We search the optimal regularization param-

eters for each image and found that their optimal values are coincidentally the same. The

reason could be due to our choice of a large interval for the search grid. The regularization

parameters used in our chapter are shown in Table 3.1. We set µ = 10−4. As a standard

procedure, we evaluate the classification performance on HSI image using the overall ac-

curacy (OA), average accuracy (AA) and kappa coefficient (κ). The classification methods
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that are tested and compared are SVM, SRC, SRC with joint sparsity prior (SRC-JS), SRC

with Laplacian sparsity prior (SRC-LP), unsupervised dictionary learning (ODL), unsuper-

vised dictionary learning with joint or Laplacian sparsity prior (ODL-JS, ODL-LP), TDDL,

TDDL-JS and TDDL-LP. During the testing stage, all training pixels are excluded from the

HSI image, which means there may be some ‘holes’ (training pixels deleted) inside a neigh-

borhood window. This is reasonable since we do not want the classification results to be

affected by the spatial distribution of the labelled samples. We use SPAMS toolbox [70] to

perform the joint sparse recovery via the Fast Iterative Shrinkage-Thresholding Algorithm

[68]. The sparse recovery for SRC-based methods are performed via the Alternating Di-

rection Method of Multipliers [67]. The modified SpaRSA shown in Algorithm 2 is used

to solve the Laplacian sparse recovery problem.

For the unsupervised dictionary learning methods, the dictionary is initialized by ran-

domly choosing a subset of the training pixels from each class and updated using the online

dictionary learning (ODL) procedure in [58]. The classifier’s parameter are then obtained

by using a multi-class linear regression. For the supervised dictionary learning methods,

the dictionary and classifier’s parameter are initialized by the training results of ODL for

the unsupervised method.
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Table 3.2: Number of training and test samples for the Indian Pine image

Class # Name Train Test
1 Alfalfa 6 48
2 Corn-notill 137 1297
3 Corn-min 80 754
4 Corn 23 211
5 Grass/Pasture 48 449
6 Grass/Trees 72 675
7 Grass/Pasture-mowed 3 23
8 Hay-windrowed 47 442
9 Oats 2 18

10 Soybeans-notill 93 875
11 Soybeans-min 235 2233
12 Soybean-clean 59 555
13 Wheat 21 191
14 Woods 124 1170
15 Building-Grass-Trees-Drives 37 343
16 Stone-steel Towers 10 85

Total 997 9369

Figure 3.2: The result with different dictionary sizes for the Indian Pine image.
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Figure 3.3: The effect of different window sizes for the Indian Pine image. The dictionary
size is fixed at five atoms per class.
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(a) SVM, OA = 64.94% (b) SRC, OA = 71.17% (c) SRC-JS, OA = 76.41% (d) SRC-LP, OA = 79.40% (e) ODL, OA = 71.04%

(f) ODL-JS, OA = 88.36% (g) ODL-LP, OA = 91.39% (h) TDDL, OA = 81.43% (i) TDDL-JS, OA = 92.65% (j) TDDL-LP, OA = 94.20%

Figure 3.4: Classification map of the Indian Pine image obtained by (a) SVM, (b) SRC, (c) SRC-JS, (d) SRC-LP, (e) ODL, (f)
ODL-JS, (g) ODL-LP, (h) TDDL, (i) TDDL-JS and (j) TDDL-LP.
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Table 3.3: Classification accuracy (%) for the Indian Pine image

Dictionary Size N = 997 N = 80
Class SVM SRC SRC-JS SRC-LP ODL ODL-JS ODL-LP TDDL TDDL-JS TDDL-LP

1 77.08 68.75 79.17 82.42 75.00 97.92 70.83 50.00 35.42 56.25
2 84.96 58.84 81.94 81.34 59.69 91.24 94.26 84.03 94.57 93.95
3 62.67 24.40 56.67 47.35 62.93 81.20 84.40 69.73 84.13 92.13
4 8.57 49.52 27.62 49.76 23.81 47.62 61.90 14.76 79.05 46.19
5 77.18 81.88 85.46 83.96 82.55 93.29 92.62 89.04 90.16 90.83
6 91.82 96.88 98.36 97.48 88.24 99.55 98.96 98.66 99.55 98.96
7 13.04 0.00 0.00 0.00 4.35 17.39 0.00 0.00 0.00 95.65
8 96.59 96.59 100.00 99.55 96.36 99.32 99.32 99.09 100.00 100.00
9 0.00 5.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 71.30 24.00 18.94 31.89 67.51 77.73 91.04 72.90 90.13 94.03
11 35.25 96.22 91.63 94.58 67.94 88.25 94.10 85.46 96.22 97.37
12 42.39 32.97 45.29 64.68 80.62 88.59 83.15 59.06 86.78 95.47
13 91.05 98.95 99.47 99.48 95.79 100.00 100.00 100.00 100.00 100.00
14 94.85 98.97 98.97 99.49 87.20 97.77 99.14 98.11 99.40 99.40
15 30.70 49.71 55.85 63.84 32.16 70.76 67.84 47.66 77.78 82.75
16 27.06 88.24 95.29 97.65 69.41 96.47 85.88 92.94 91.76 98.82

OA[%] 64.94 71.17 76.41 79.40 71.04 88.36 91.39 81.43 92.65 94.20
AA[%] 56.53 60.72 64.67 64.67 62.10 77.94 82.18 66.43 76.56 83.86
κ 0.647 0.695 0.737 0.712 0.691 0.851 0.907 0.8087 0.924 0.940

3.5.2 Performance on AVIRIS Indian Pine Dataset

We first perform HSI classification on the Indian Pine image, which is generated by

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Every pixel of the Indian Pine

consists of 220 bands ranging from 0.2 to 2.4µm, of which 20 water absorption bands are

removed before classification. The spatial dimension of this image is 145 × 145. The

image contains 16 ground-truth classes, most of which are crops, as shown in Table 3.2.

We randomly choose 997 pixels (10.64% of all the interested pixels) as the training set and

the rest of the interested pixels for testing.

The total iterations of unsupervised and supervised dictionary learning methods are set

to 15 and 200 respectively for this image. The classification results with varying dictionary

size N are shown in Fig. 3.2. In most cases, the classification performance increases

with the increment in the dictionary size. All methods attain their highest OA when the
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Table 3.4: Number of training and test samples for the University of Pavia image

Class # Name Train Test
1 Asphalt 548 6304
2 Meadows 540 18146
3 Gravel 392 1815
4 Trees 524 2912
5 Metal sheets 265 1113
6 Bare soil 532 4572
7 Bitumen 375 981
8 Bricks 514 3364
9 Shadows 231 795

Total 3921 40002

dictionary size is 10 atoms per class. The OA of ODL-JS, ODL-LP, TDDL-JS and TDDL-

LP do not change much when the dictionary size increase from 5 to 10 atoms per class.

Therefore, it is reasonable to set the dictionary size to be 5 atoms per class by taking

computational cost into account. Fig. 3.2 also suggests that a plausible performance can be

obtained even when the dictionary is very small and not over-complete. The classification

performance with respect to the window size is demonstrated in Fig. 3.3. Using a window

size of 5 × 5, ODL-JS and TDDL-JS achieves the highest OA of 88.36% and 92.65%,

respectively. When the window size is set to 7× 7, the ODL-LP and TDDL-LP reach their

highest OA = 91.39% and OA = 94.20%, respectively. ODL-JS and TDDL-JS reach better

performance when the window size is not larger than 5×5. The TDDL-LP outperforms all

other methods when the window size is 7×7 or larger. Since a larger window size has more

chances to include non-homogeneous regions, it verifies our argument that the Laplacian

sparsity prior works better for classifying pixels lying in the non-homogeneous regions.

Detailed classification results of various methods are shown in Table 3.3 and visually
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(a) (b)

Figure 3.5: (a) Training sets and (b) test sets of the University of Pavia image.

displayed in Fig. 3.4. The OA of ODL-LP reaches 91.39%, which is more than 20%

higher than that of ODL and 3% higher than that of ODL-JS. The TDDL-LP has the high-

est classification accuracy for most classes. Most methods have 0% accuracy for class 9

since there are too few training samples in this class. The overall performance of TDDL-

JS and TDDL-LP have at least 13% improvement over the other conventional dictionary

learning techniques. TDDL-LP significantly outperforms other methods on the classes that

occupy small regions in the image. The class 7 (Grass/Pasture-mowed), lying in a non-

homogeneous region, has only 3 training samples and 23 test samples. The TDDL-LP is

capable of correctly classify 95.65% test samples while the second highest accuracy is only

17.39%. We notice that the AA of both ODL-LP (82.18%) and TDDL-LP (83.86%) are

at least 4% higher than that of the other methods. This also suggests that the Laplacian-

55



CHAPTER 3. SPARSE CODING WITH TASK-DRIVEN DICTIONARY LEARNING
AND STRUCTURED SPARSITY PRIORS

sparsity-enforced dictionary learning methods work better on non-homogeneous regions,

since the AA can only attain high value when both the most regions reach high accuracy.
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(a) SVM, OA = 69.84% (b) SRC, OA = 66.51% (c) SRC-JS, OA = 74.05% (d) SRC-LP, OA = 80.82% (e) ODL, OA = 64.57%

(f) ODL-JS, OA = 75.83% (g) ODL-LP, OA = 78.15% (h) TDDL, OA = 69.30% (i) TDDL-JS, OA = 84.48% (j) TDDL-LP, OA = 85.70%

Figure 3.6: Classification map of the University of Pavia image obtained by (a) SVM, (b) SRC, (c) SRC-JS, (d) SRC-LP, (e)
ODL, (f) ODL-JS, (g) ODL-LP, (h) TDDL, (i) TDDL-JS and (j) TDDL-LP.
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Table 3.5: Classification accuracy (%) for the University of Pavia image

Dictionary Size N = 3921 N = 45
Class SVM SRC SRC-JS SRC-LP ODL ODL-JS ODL-LP TDDL TDDL-JS TDDL-LP

1 84.55 57.11 77.04 95.08 39.16 86.64 79.38 74.60 79.27 87.77
2 82.45 58.22 67.98 66.70 66.37 56.48 75.89 51.27 86.85 78.89
3 77.08 57.33 44.32 77.55 65.40 80.72 62.42 77.19 71.13 78.79
4 94.19 95.94 95.13 95.19 78.67 99.04 96.91 98.08 98.87 98.21
5 99.01 100.00 99.85 100.00 99.91 100.00 99.82 99.91 99.91 99.91
6 23.55 89.60 88.31 96.60 64.94 96.89 72.13 90.07 68.74 91.64
7 2.06 83.27 96.59 96.59 91.64 91.23 84.10 86.14 68.09 93.17
8 33.89 48.65 65.20 67.36 67.36 90.81 75.98 78.00 95.54 94.20
9 53.05 93.69 99.59 99.59 71.07 98.37 93.46 95.72 91.82 95.09

OA[%] 69.84 66.51 74.05 80.82 64.57 75.83 78.15 69.30 84.48 85.70
AA[%] 61.09 75.98 80.06 88.80 71.66 88.91 82.23 83.44 84.47 90.85
κ 0.569 0.628 0.681 0.758 0.549 0.731 0.747 0.662 0.817 0.835

3.5.3 Performance on ROSIS Pavia Urban Dataset

The last two images to be tested are the University of Pavia and the Center of Pavia,

which are urban images acquired by the Reflective Optics System Imaging Spectrometer

(ROSIS). It generates 115 spectral bands ranging from 0.43 to 0.86µm.

The University of Pavia image contains 610 × 340 pixels. 12 noisiest bands out of all

115 bands are removed. There are nine ground-truth classes of interests as shown in Table

3.4. For this image, the training samples were manually labelled by an analyst. The total

number of training and testing samples is 3, 921 (10.64% of all the interested pixels) and

40, 002 respectively. The training and testing map are visually displayed in Fig. 3.5.

For the University of Pavia, we set the total iterations of unsupervised and supervised

dictionary learning methods to be 30 and 200 respectively. The window size is set to 5× 5

for all joint or Laplacian sparse regularized methods to obtain the highest OA. The ODL-

LP is able to reach a performance of 78.15% for OA, which is more than 14% higher than

that of ODL. The ODL-JS also significantly improves the OA, which is more than 11%

higher than that of ODL. TDDL-LP has the highest OA = 85.70%, which indicates that it
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Table 3.6: Number of training and test samples for the Center of Pavia image

Class # Name Train Test
1 Water 745 64533
2 Trees 785 5722
3 Meadows 797 2094
4 Bricks 485 1667
5 Soil 820 5729
6 Asphalt 678 6847
7 Bitumen 808 6479
8 Tile 223 2899
9 Shadows 195 1970

Total 5536 97940

outperforms other methods when classify large regions of the image. It also has the highest

κ = 0.935. The best classification accuracy for class 1 (Asphalt), which consists of narrow

strips, is obtained by using TDDL-LP (87.77%). Class 2 (Meadows) is composed of large

smooth regions, as expected, TDDL-JS gives the highest accuracy (86.85%) for this class.

TDDL has large amount of misclassification pixels for class 2. The highest AA (90.85%) is

given by TDDL-LP, which confirms that the TDDL-LP is superior to other methods when

classify the pixels in non-homogeneous regions.

The third image where we evaluate various approaches is the Center of Pavia, which

consists of 1094×492 pixels. Each pixel has 102 bands after removing 13 noisy bands. This

image consists of nine ground-truth classes of interest as shown in Table 3.6 and Fig. 3.7.

5, 536 manually labelled pixels are designated as the training samples and the remaining

97, 940 interested pixels are used for testing.

Since this image has more labeled samples than the other two images, we set the total

iterations of unsupervised and supervised dictionary learning methods to be 75 and 1000
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(a) (b)

Figure 3.7: (a) Training sets and (b) test sets of the Center of Pavia image.

respectively. The window size is set to 5 × 5 for the joint sparse and Laplacian sparse

regularized methods. Although the OA of most methods are close, the OA of ODL-JS and

ODL-LP are still around 3% higher than that of ODL. The TDDL-LP reach the highest OA

= 98.67% over all the other methods. The OA of TDDL-JS (98.01%) is slightly lower than

that of the TDDL-LP. We notice that SRC-JS (OA = 98.01%) and SRC-LP (OA=98.36%)

also render competitive performance when compared to TDDL-JS and TDDL-LP due to

the fact that the raw spectral features of this image is already highly discriminative. TDDL-

LP outperforms other methods on almost all classes and works especially well for Class 4

(Bricks), achieving highest accuracy of 97.41%. Except for SRC-LP where the accuracy
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Table 3.7: Classification accuracy (%) for the Center of Pavia image

Dictionary Size N = 5536 N = 45
Class SVM SRC SRC-JS SRC-LP ODL ODL-JS ODL-LP TDDL TDDL-JS TDDL-LP

1 96.97 99.58 99.52 99.28 96.26 99.13 99.69 98.54 98.76 99.13
2 91.09 90.07 96.89 92.11 84.25 94.63 90.63 89.55 97.59 93.01
3 96.08 95.42 99.47 98.62 93.36 96.23 97.61 95.18 96.85 98.71
4 86.32 79.96 78.28 94.72 61.61 64.73 97.30 85.78 85.18 97.41
5 88.57 93.70 97.05 97.14 89.40 84.62 90.00 88.08 98.25 99.59
6 95.27 95.62 98.19 97.18 94.35 95.03 94.49 94.39 99.36 99.18
7 94.03 93.86 97.01 96.84 86.31 86.90 97.33 91.65 94.46 98.66
8 99.83 99.17 99.66 99.66 96.76 99.79 99.00 98.17 99.38 99.73
9 85.74 98.58 99.19 99.95 93.25 90.56 94.42 95.53 91.27 95.61

OA[%] 95.68 97.57 98.01 98.36 93.67 96.13 97.86 96.30 98.01 98.67
AA[%] 93.77 94.00 95.03 97.28 88.39 90.18 95.61 92.99 95.68 97.89
κ 0.923 0.961 0.965 0.971 0.899 0.938 0.965 0.940 0.968 0.979

is 94.72%, none of others reaches accuracy over 90% for Class 4. Additionally, the AA

of TDDL-LP (97.21%) is almost 2% better than that of TDDL-JS (95.68%). These results

support our assertion that the Laplacian sparsity prior provides stronger discriminability on

nonhomogeneous regions. Performance comparison between the SRC-based and TDDL-

based methods have shown that the dictionary size can be drastically decreased by applying

supervised dictionary learning while achieving even better performance.

3.6 Summary

In this chapter, we proposed novel a task driven dictionary learning method with joint

or Laplacian sparsity prior for HSI classification. The corresponding optimization algo-

rithms are developed using fixed point differentiation, and are further simplified for ease

of implementation. We also derived the optimization algorithm for solving the Laplacian

sparse recovery problem using SpaRSA, which improves the computational efficiency due

to the availability of a more accurate descent direction. The performance and the behavior
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of the proposed methods, i.e. TDDL-JS and TDDL-LP, have been extensively studied on

the popular hyperspectral images. The results confirm that both TDDL-JS and TDDL-LP

give plausible results on smooth homogeneous regions, while TDDL-LP one works better

for classifying small narrow regions. Compared to TDDL-JS, TDDL-LP is able to obtain a

more stable performance by describing the similarities of neighboring pixels’ sparse codes

more delicately. The results also confirm that a significantly better performance can still be

achieved when joint or Laplacian prior is imposed by using a very small dictionary. The

overall accuracy of our algorithm can be improved by applying kernelization to the pro-

posed approach. This can be achieved by kernelizing the sparse representation [33] and

using a composite kernel classifier [71].
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(a) SVM, OA = 95.68% (b) SRC, OA = 97.57% (c) SRC-JS, OA = 98.01% (d) SRC-LP, OA = 98.36% (e) ODL, OA = 93.67%

(f) ODL-JS, OA = 96.13% (g) ODL-LP, OA = 97.86% (h) TDDL, OA = 96.30% (i) TDDL-JS, OA = 98.01% (j) TDDL-LP, OA = 98.67%

Figure 3.8: Classification map of the Center of Pavia image obtained by (a) SVM, (b)
SRC, (c) SRC-JS, (d) SRC-LP, (e) ODL, (f) ODL-JS, (g) ODL-LP, (h) TDDL, (i)
TDDL-JS and (j) TDDL-LP.
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Chapter 4

Invariant Single Layer Sparse Coding

In this chapter, we show how to enforce invariant property for sparse coding using large

displacement optical flow. Although sparse representation-based classifiers have shown

outstanding accuracy and robustness in image classification tasks even with the presence

of intense noise and occlusion, it has been discovered that the performance degrades sig-

nificantly either when test image is not aligned with the dictionary atoms or the dictionary

atoms themselves are not aligned with each other, in which cases the sparse linear repre-

sentation assumption fails. In this chapter, having both training and test images misaligned,

we introduce a novel sparse coding framework that is able to efficiently adapt the dictio-

nary atoms to the test image via large displacement optical flow. In the proposed algorithm,

every dictionary atom is automatically aligned with the input image and the sparse code is

then recovered using the adapted dictionary atoms. A corresponding supervised dictionary

learning algorithm is also developed for the proposed framework. Experimental results on
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digit datasets recognition verify the efficacy and robustness of the proposed algorithm.

4.1 Alignment Issue with Sparse Representation

Classifier

SRC has been found to be highly sensitive to the misalignment of the image dataset:

a small amount of image distortion due to translation, rotation, scaling and 3-dimensional

pose variations can lead to a significant degradation on the classification performance [72].

One straightforward way to solve the misalignment problem is to register the test image

with dictionary atoms before sparse recovery. By assuming the dictionary atoms are reg-

istered, Wagner et al. [72] parameterize the misalignment of the test image with an affine

transformation. These parameters are optimized using generalized Gauss-Newton methods

after linearizing the affine transformation constraints. By minimizing the sparse registra-

tion error iteratively and sequentially for each class, their framework is able to deal with a

large range of variations in translation, scaling, rotation and even 3D pose variations. Due

to the adoption of holistic features, sparse coding is more robust and less likely to overfit.

In the case of local feature-based sparse coding, max pooling strategy [73] is often

employed over the neighboring coefficients to produce local translation-invariant property.

Based on spatial pyramid matching framework, Yang et. al. [74] proposed a local sparse

coding model with local SIFT features followed by multi-scale max pooling. The results

on several large variance datasets achieved plausible performance that can hardly be pur-
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sued by simply applying holistic sparse coding. To improve the discriminability of the

sparse codes, their dictionary was trained with supervised learning via backpropagation

[63]. Classification performance of local feature-based sparse coding has also been eval-

uated on several large datasets in [75], demonstrating a state-of-art performance that is

competitive with deep learning [76, 77]. Another interesting approach is the convolutional

sparse coding [78], where the local features are reconstructed by convoluting the local

sparse codes using local dictionary. Visualization of its dictionary shows that the dictio-

nary atoms contain more complex features, therefore having more discriminative power.

In this chapter, we present a novel sparse coding framework that is robust to image

transformation. In the proposed model, each dictionary atom is constructed in the form of a

tensor and is aligned with the test image using the large displacement optical flow concept

[79]. We show experimentally that the proposed sparse coding framework outperforms

most other sparsity-based methods. Specifically, our chapter has the following novelties

and contributions: (i) The proposed algorithm does not require the training dataset to be

pre-aligned. (ii) Adapting the dictionary to the input test image is highly efficient: requiring

only O(PT ) operations for adapting each dictionary atom, where T is the number of pixels

in a searching window and P is the total number of subatoms to be aligned. (iii) Supervised

dictionary learning algorithm is developed for the proposed sparse coding framework.

The remainder of the chapter is organized as follows: We first introduce the proposed

sparse coding framework for dealing with dataset misalignment in Section 4.2.1. Next,

in Section 5.3, we show how to train the dictionary in a supervised manner by solving a
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bilevel optimization problem. Finally, in Section 6.4, experimental results demonstrate that

the proposed framework has a state-of-art performance, which is more promising over most

existing sparsity-based methods.
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4.2 Large Displacement Optical Flow

4.2.1 Invariant Sparse Coding via Large Displacement Op-

tical Flow

In this section, we first introduce how to construct the dictionary atoms and input im-

ages in the form of tensors. We then illustrate how to eliminate the misalignment by dy-

namically adapt the tensor dictionary atoms to the input tensor image.

In the proposed sparse coding model, as shown in Fig. 5.2, both dictionary atom and

input image are represented by image tensors. Each pixel in the tensor image is a vectorized

version of a local patch in the original image, referred to as a vector pixel. Denote the nth

tensor atom as Dn = [dn1, . . . ,dnP ] ∈ RM×P and a given test tensor image as X =

[x1, . . . ,xP ] ∈ RM×P , where dnp ∈ RM is the pth subatom of the nth tensor atom and

xp ∈ RM is the pth vector pixel of the input image. M is the dimension of vector pixel, n is

the dictionary atom index and P is the total number of subatoms in the tensor atom, which

is the same number of vector pixels in the test tensor image. The dictionary is denoted as

D = [D1, . . . ,DN ] ∈ RM×NP . Given a dictionary with N tensor atoms, a typical sparse

recovery problem [18] is formulated as:

α̂ = arg min
α

1

2

P∑
p=1

‖
N∑
n=1

αndnp − xp‖2
2 + λ‖α‖1, (4.1)

where α = [α1, . . . , αN ]> ∈ RN is the sparse coefficient and λ > 0 is the regularization
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parameter. Problem (4.1) is a standard form of `1-sparse recovery problem that can be

efficiently solved using alternating direction method of multipliers (ADMM) [67].

When images in both the training and test datasets are misaligned, sparse coefficients

recovered by solving the problem (4.1) become unreliable, thus resulting in poor classifi-

cation performance. To alleviate the misalignment problem, we propose to register each

tensor atom with the input test image via large displacement optical flow [79]. The notion

of optical flow field is used here to describe the displacements of vector pixels within each

tensor atom, and the sparse recovery is then performed by using only the best matching

subatoms selected from the tensor atoms. The proposed framework is illustrated in Fig.

5.2. Denote Bnp ∈ RM×T as the T subatoms within the searching window centered at the

location p of the nth tensor atom. The recovery of the optical flow and sparse codes can be

formally described as follows:

(α̂, {ĉnp}) = arg min
α,{cnp}

1

2

P∑
p=1

‖
N∑
n=1

αnBnpcnp − xp‖2
2 + λ‖α‖1,

s.t. ‖cnp‖0 = 1, ‖cnp‖1 = 1, cnp ≥ 0,

∀n ∈ [N ], p ∈ [P ],

(4.2)

where ‖cnp‖0 = 1 is the cardinality constraint and cnp ∈ RT is the sparse index vector that

is used to characterize the optical flow field. The constraint in (4.2) suggests that cnp is a

binary index vector and only one element is nonzero, which means that it can only select

one subatom within the searching window.
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The optimization problem in (4.2) is a mixed-integer problem and NP-hard [80]. There-

fore, we propose a heuristic algorithm to find an informative α and the sparse index vectors

{cnp}N,Pn,p=1 for all vector pixels. As shown in Fig. (5.2), the optical flow field for each vector

pixel is found by searching for the best match between neighboring subatoms and the corre-

sponding input vector pixel. In practice, we found that searching for the best match without

involving the sparse code is the key to render plausible performance in both classification

accuracy and computational efficiency. Formally, we propose to find a local optimum of

problem (4.2) by solving the following optimization problem:

α̂ = arg min
α

1

2

P∑
p=1

‖
N∑
n=1

αnBnpĉnp − xp‖2
2 + λ‖α‖1

s.t. ĉnp = arg min
cnp

1

2
‖Bnpcnp − xp‖2

2,

‖cnp‖0 = 1, ‖cnp‖1 = 1, cnp ≥ 0,

∀n ∈ [N ], p ∈ [P ].

(4.3)

In our approach, the sparse coding part of (4.3) is solved by using the alternating direction

method of multipliers (ADMM) [67]. One important advantage of the above model is that

it is highly computational efficient because it only takes O(T ) operations to search for the

best match for each vector pixel.
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4.2.2 Supervised Dictionary Learning for Invariant Sparse

Coding

In order to improve the efficiency of sparse coding and discriminablity of the dictionary,

we employ the supervised dictionary learning framework [59, 63, 81] to optimize the dic-

tionary and the classifier parameters simultaneously. Formulated as a bilevel optimization

problem, the dictionary is updated using back propagation to minimize the classification

error. Formally, the supervised dictionary learning problem can be formulated as follows:

min
W,D

Ey,X [`(y,Wα̂(X, {ĉnp(D)},D))] +
µ

2
‖W‖2

F , (4.4)

where `(·) is some smooth and convex function that is used to define the classification error

and µ > 0 is the regularization parameter used to alleviate the overfitting of the classifier.

Due to the triviality of updating classifier parameters, here we only state the update for the

dictionary:

D← Π(D− ρt · ∂`/∂D), (4.5)

where ρ > 0 is the learning rate, t is the iteration counter and Π is the projection that

regulate the Frobenius norm of every tensor atom to be one. Similar to [59, 63, 81], (4.4)

suggests that the update of both the dictionary and the classifier are driven by reducing

classification error. The local optima can be solved by using descent method [62] based on
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error backpropagation. The sparse code α is an implicit function of X, {cnp} and D. In

addition, each optical flow field cnp is an implicit function of D and xnp. Therefore, given

an input image X and an optimal sparse code α̂, apply the chain rule of differentiation, the

direction along which the upper-level cost decreases can be formulated as:

∂`(y,Wα)

∂D
=

∂`

∂α

∂α

∂D
+

P∑
p=1

∂`

∂Cp

∂Cp

∂D
, (4.6)

where Cp =
⊕N

n=1 c̄np ∈ RNP×N and
⊕

denotes the direct sum. Also, c̄np ∈ RNP is

obtained by zero-padding with cnp, where (N − 1)P + 1 to NP elements of c̄np are from

those of cnp. Due to the binary constraints on {cnp}, every element of the gradient ∂Cp/∂D

equals to zero. On the other hand, the first part of the derivative can be solved by applying

fixed point differentiation [66]. Due to the page limitation of the chapter and the triviality

for deriving the term ∂`/∂α, we only show the final derivation of ∂α/∂D as follows:

∂αΛ

∂dmnp
= Θ−1

Λ,Λ

(
∂(DCp)

>
Λ

∂dmnp
xp −

∂ΘΛ,Λ

∂dmnp
αΛ

)
, (4.7)

where Λ is the index set of active atoms of the sparse code α. (DCp)Λ is the matrix

obtained by collecting the active columns of DCp, Θ =
∑P

ρ=1 C>p D>DCp and ΘΛ,Λ is

the submatrix obtained by selecting the active columns and rows of Θ. The matrix ΘΛ,Λ

is always nonsingular since the total number of measurement MP is always significantly

larger than the number of active atoms. Combining (5.11) with (5.15) for each dictionary

element, the gradient for updating the dictionary can be achieved. For a large dataset, the
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dictionary and the classifier parameters are updated in an online manner.

4.3 Experimental Verification

In this section, we evaluate the proposed algorithm on hand-written digits datasets in-

cluding the MNIST and USPS. The sparse coding is performed with a single dictionary

and linear SVM is used for classification. For a fair comparison, we only compare with the

results that are produced with the same SRC strategy. The dictionary size in our chapter

is set to be no larger than those used in other methods. Similar to [63], parameters in our

experiments are chosen heuristically. The batch size for updating the dictionary is 512.

Initial learning rate ρ is set to 0.001 and λ = 0.01.

4.3.1 Evaluation on the MNIST Database

MNIST [82] consists of a total number of 70, 000 images of digits, of which 60, 000

are training set and the rest 10, 000 are test set. Each digit is centered and normalized in a

28× 28 field. The dictionary size N is set to be 150 for this database.

We first evaluate the performance of the proposed algorithm under various number

of training samples. We follow the same experimental setting as in [83], examining the

classification accuracy given the training size {300, 1K, 2K, 5K, 10K, 20K, 40K, 60K}.

The performance is shown in Fig. 4.2 (a). The proposed method significantly outperforms

the `1 sparse coding-based algorithm (L1SC) [59].
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We then demonstrate the robustness of the proposed method towards various image

deformations. Following a similar setting as in [72], we perform the translation along x

direction, rotation and scaling separately only on the test samples. We report the classifica-

tion accuracy with respect to various levels of deformation and compare the performance

with L1SC. The experimental results are shown in Fig. 4.2(b)-(d). Performance of our

method and L1SC are illustrated in red and blue lines, respectively. The shadow area at

the bottom of each figure is the accuracy difference between the two methods. We can see

for all three deformations, the proposed method consistently outperforms L1SC. In addi-

tion, the hump shape of the shadow area indicates that the proposed method is robust to

numerous image deformations.

Finally, the error rate for the MNIST is shown in Table 4.1. Our method reaches the

lowest error rate of 1.12%. On MNIST, differences of more than 0.1% are statistically

significant [84]. Comparing with the second best algorithm, the proposed method reduces

the error rate by 0.12%, exhibiting better generality and dictionary compactness.

4.3.2 Evaluation on the USPS Database

The USPS dataset has 7, 291 training and 2, 007 test images, where each of them is of

size 16× 16. Being compared to MNIST, the USPS dataset has a much larger variance and

a smaller training set, which challenges the dictionary generality. For a fair comparison, the

dictionary sizeN is set to be 80. Local patch size is 5×5 (M = 25). Searching window size

is 5× 5 (T = 25). The performance of various approaches on USPS database are depicted
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Method MNIST USPS
CBN 1.95 (3× 104) 4.14 (7291)
ESC [85] 5.16 (150) 6.03 (80)
Ramirez et al. [24] 1.26 (800) 3.98 (80)
Deep Belief Network [76] 1.25 (-) - (-)
MMDL [86] 1.24 (150) -(-)
Proposed 1.12 (150) 3.43 (80)
Improvements 9.7% 13.8%

Table 4.1: Error rate (%) on MNIST and USPS datasets. The dictionary size is shown in
the parentheses. Improvements over the second best algorithm is shown in the last line.

in Table 4.1. Our algorithm achieves the lowest error rate 3.43% among other supervised

learning-based methods. The experimental result validates the efficacy of our proposed

algorithm on a dataset with a larger variance.

4.4 Summary

In this chapter, we present a novel sparse coding algorithm that is able to dynamically

select the dictionary subatoms to adapt to the misaligned image dataset. In the proposed

method, both the dictionary atoms and the input test image are represented by tensors, and

each vector pixel in the tensor image is a vectorized local patch. Each tensor atom is aligned

with the input tensor image using large displacement optical flow, which is highly compu-

tationally efficient. Using the fixed point differentiation, a supervised dictionary learning

algorithm is developed for the proposed sparse coding framework, which significantly re-

duces the required dictionary size.
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(a) (b)

(c) (d)

Figure 4.2: The proposed method demonstrates plausible performance on MNIST digits
recognition with a small number of training samples. It also demonstrates robustness
towards various image deformations. Classification accuracy of different experimental
settings are shown in the above sub-figures: (a) Error rate under various sizes of training
samples. (b) Translation along x direction versus classification accuracy. (c) In-plane
rotation only. (d) Scale variation only. In (b)-(c), red and blue lines are the results of the
proposed method and L1SC, respectively. Gray shadow area at the bottom of each figure
is the accuracy difference between the proposed method and L1SC.
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Chapter 5

Unsupervised Multilayer Invariant

Sparse Coding for Large Dataset

Invariant feature extraction has always been pursued in object recognition algorithms

due to its significance in enhancing the classifier generality towards unseen samples. In

this chapter, we introduce a novel local feature-based hierarchical framework to produce

invariant sparse codes for object recognition. In order to enforce the invariant property for

each sample patch (local feature descriptor) in the image, its sparse code is recovered with

a dedicated dictionary whose atoms are adaptively chosen from several bags of candidate

atoms. The single-layer invariant sparse coding model is naturally extended to a multi-layer

hierarchical architecture to further improve the invariance of the sparse codes. We show

that the proposed hierarchical sparse coding model is able to generate complex invariant

properties with layer-wise unsupervised dictionary learning. Experimental results on the
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popular image datasets, including MNIST, CIFAR-10 and STL-10, verify the efficacy and

robustness of the proposed algorithm.

5.1 Introduction

Sparse coding has been successfully applied to numerous computer vision tasks. How-

ever, when the objects in the images have noticeable variations in illumination, translation,

scaling and rotation, these objects are no longer effectively captured by the atoms of the

SRC dictionary. In this case, the underlying linear assumption of SRC is violated and its

classification performance plunges.

To handle the misalignment problem, Wagner et al. [72] proposed to align the test im-

age with dictionary atoms before performing sparse recovery. Their framework is able to

handle a large range of variations in translation, scaling, rotation and even 3D pose vari-

ation. Similar methods have also been proposed in [87, 88] to handle the misalignment

in face recognition or to perform dynamic scene registration. However, these methods are

based on the holistic sparse coding, which is usually intractable when the size of image

is large or when the scene is complex with multiple objects of interest. Besides, the per-

formance of these methods are limited by the enormous variabilities in the image database

where most of these variations cannot be parameterized into any known transformation

group [89].

On the other hand, a patch set-based method in [90] represents each image with numer-
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ous centers of patch clusters so that their location information is discarded. Unfortunately,

since the local features are usually highly correlated, the recovered sparse codes are usu-

ally unstable, resulting in severe overfitting. Numerous works based on collaborative sparse

recovery [42, 91] have also been proposed to improve the robustness of the sparse codes.

However, neither the local sparse coding nor the collaborative sparse recovery enforce

any invariance. To efficiently embed the invariant property within the sparse coding-based

image classifiers, max pooling process is usually employed after the sparse recovery stage,

mimicking an architecture similar to the convolutional neural networks (CNN) [92]. Based

on the spatial pyramid matching framework, Yang et. al. [20] proposed a local sparse

coding model with multi-scale max pooling using local SIFT features. Extracting invariant

features via group sparsity has also been proposed in [93], where each group of dictionary

atoms represents complex discriminative features. In a more direct approach for enforcing

invariant property, Sohn et. al. [94] explicitly employed linear transformation to handle the

image deformation in order to achieve invariance over numerous image transformations.

Another interesting approach is convolutional sparse coding [78], where the local features

are reconstructed by convoluting the local sparse codes with a local dictionary. Visualiza-

tion of their learned dictionary suggests that the dictionary atoms contain more complex

features when the sparse coding is locally translation-invariant.

Most of these local feature-based methods achieve invariant property through either by-

passing the alignment problem [42, 90, 91] or applying post processing [2, 20, 63], such as

max pooling. Few attempts have been made to simultaneously achieve an inherently invari-
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ant sparse code through a sparse recovery method with embedded misalignment compen-

sation. In this chapter, we develop a novel sparse coding framework that is able to produce

invariant sparse codes by adaptively constructing a dedicated dictionary for each input sam-

ple patch during the sparse recovery stage. Layer-wise unsupervised dictionary learning is

also developed for the proposed sparse coding framework. The proposed invariant sparse

coding model is formulated in an intuitively similar way as archetypal analysis [95, 96],

where each adaptive dictionary acts as archetype patterns. For a given input sample, an

adaptive dictionary is constructed from several sub-dictionaries and we refer to each sub-

dictionary as a Bag of Atoms (BoA), where each of them is akin to Bag of Words (BoW)

[97]. We distinguish BoA from BoW in this chapter since the latter one is usually used

directly as a dictionary for sparse recovery in the literature [2, 20] while instead we use a

large number of BoAs for constructing an adaptive dictionary, with which the sparse code

is recovered. Moreover, the sparse recovery is performed using the collaborative represen-

tation so that the invariant property can be enforced with unsupervised dictionary learning

and naturally extended to a multi-layer hierarchical architecture. Specifically, our proposed

model has the following contributions:

• We propose to construct an adaptive dictionary which is dedicated to each input sam-

ple in order to produce inherently invariant sparse code under data variations. Unlike

CNN-based sparse coding methods whose invariant features are obtained with max-

pooling operations, the invariant property of the local sparse codes in the proposed

framework is enforced and integrated into the sparse recovery stage, rendering sparse

81



CHAPTER 5. UNSUPERVISED MULTILAYER INVARIANT SPARSE CODING FOR
LARGE DATASET

codes that are more stable and more invariant.

• Based on a local feature descriptor matching method, we propose to use several BoAs

to adaptively build dedicated dictionaries, which are highly robust and efficient in

sparsely capturing the object of interest.

• We propose a novel method to adaptively construct a dedicated dictionary for each

input sample from several BoAs in order to produce inherently invariant sparse codes.

• We develop a layer-wise unsupervised dictionary learning algorithm with bilevel op-

timization in order to simultaneously minimize the errors of local feature descriptor

matching and signal reconstruction. Using our layer-wise unsupervised dictionary

learning algorithm, we are able to design diverse and contextually rich BoAs.

The rest of the chapter is organized as follows: We first briefly review the local trans-

lation invariant sparse coding proposed in [63, 75] and formulate the proposed hierarchi-

cal invariant sparse coding framework in Section 5.2. Layer-wise unsupervised dictio-

nary learning is developed in Section 5.3. Experimental results on three publicly available

dataset, including MNIST, CIFAR-10 and STL-10, are demonstrated in Section 6.4. Fi-

nally, we summarize the chapter with advantages and disadvantages of the proposed model

in Section 5.5.
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Figure 5.1: Proposed invariant sparse coding framework: N Bags of candidate atoms
{Bn}Nn=1 are shown in the upper part of the figure. The input neighboring local feature
vectors {xt}t∈Ns and the adaptive dictionaries {Ds

t}t∈Ns are shown in the lower part of the
figure. Each bag of atoms Bn is matched against an input local feature descriptor xt,
resulting in an adaptive dictionary atom Bnĉ

s
t,n. After this matching process, the invariant

sparse code α for neighboring local feature vectors {xt}t∈Ns is recovered using all the
adaptive dictionaries {Ds

t}t∈Ns simultaneously. In the above illustrative figure, the number
of atoms P in each BoA is 3, the number of neighboring features vectors T is 4, and the
total number of BoA N is 8.

5.2 Hierarchical Invariant Sparse Coding with

Adaptive Dictionary

Suppose an image is represented by a set of local feature descriptors X = [x1, . . . ,xS] ∈

RM×S , where xs ∈ RM is the sth local feature of the image. At each image pixel we gen-

erate a local feature vector, which is obtained by vectorizing all the pixels within a local

patch or extracting a local SIFT feature descriptor from the local patch. In the rest of the
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chapter, we use the term pixel to refer to our feature vector at each image pixel location.

Let {xt}t∈Ns be a set of neighboring local feature vectors that are extracted from a win-

dow centered at the pixel xs, where Ns is an index set that includes all the pixel indexes

in the specified window. In this chapter, we assume that all the neighboring local features

{xt}t∈Ns have originated from a single latent invariant feature zs ∈ RM 1, which can be

encoded with a single invariant sparse code αs ∈ RN . An interesting question is whether

we can recover the archetypal invariant sparse code αs from the local warped features

{xt}t∈Ns?

In the sparse coding-based approach [63], the neighboring local features are encoded

separately and the invariant sparse code is reached by a pooling strategy. Specifically, given

a dictionary D ∈ RM×N , the sparse codes {αs
t}t∈Ns corresponding to the local feature

vectors {xt}t∈Ns are recovered by solving the following problem:

α̂s
t = arg min

αst

1

2
‖Dαs

t − xt‖2
2 + λ‖αs

t‖1,∀t ∈ Ns, (5.1)

where λ > 0 is the regularization parameter and α̂s
t ∈ RN is the recovered sparse code for

input xst . Solving problem (5.1) alone cannot achieve the invariant sparse code since the

neighboring local features belong to different subspaces, max pooling is therefore applied

to force all neighboring sparse codes to be the same in order to generate a single invariant

1The invariant archetypal feature zs is not unique.
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sparse code α̂s ∈ RN at image location s:

(α̂s)i = max{|(α̂s
1)i|, . . . , |(α̂s

T )i|},∀i = 1, . . . , N, (5.2)

where |(α̂s
t)i| is the absolute value of (α̂s

t)i, which is the ith element of α̂s
t . Major drawback

for this pooling-based strategy is that, it forcefully combines the subspaces that belong

to every neighboring local features all together and produces a sparse code which is not

inherently invariant.

In this chapter, we are trying to recover an invariant sparse code for each input during

the sparse recovery stage. As we will see, instead of using a single dictionary for recovering

the sparse codes of all the neighboring local features, we propose to construct a dedicated

dictionary for each input local feature. Interestingly, the proposed model has a formulation

similar to that of the archetypal analysis [96].

5.2.1 Invariant Sparse Coding with Adaptive Dictionaries

In pursuit of invariant sparse representation, we would like to find a set of adaptive

dictionaries {Ds
t}t∈Ns to recover the invariant sparse code αs from the neighboring feature

vectors {xt}t∈Ns , where

Ds
t = [dst,1, . . . ,d

s
t,N ] ∈ RM×N , (5.3)
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and dst,n ∈ RM is the nth atom of the adaptive dictionary Ds
t . As shown in Fig. 5.1, we

describe every adaptive dictionary atom dsn,t as a linear combination of atoms from a BoA,

Bn = [~bn,1, . . . ,~bn,P ] ∈ RM×P , where each bn,p ∈ RM is a candidate atom2. Formally, for

all the adaptive dictionaries {Ds
t}t∈Ns , where

dst,n = Bnc
s
t,n, ∀n ∈ [N ],∀t ∈ Ns, (5.4)

and cst,n ∈ RP is the matching coeffecient such that cst,n > 0, ‖cst,n‖0 = 1, define the

invariant sparse code αs as the minimizer of

α̂s = arg min
αs

1

2

∑
t∈Ns

‖Ds
tα

s − xt‖2
2 +

λ

T
‖αs‖1, (5.5)

where ‖cst,n‖0 is the `0 or the cardinality norm, and ‖αs‖1 =
∑N

n=1 |(αs)n| is the `1-norm

of the sparse codes. The above formulation is similar to that of the archetypal analysis.

Combining (5.3) and (5.4), we can see that each adaptive dictionary Ds
t in (5.5) is formu-

lated as

Ds
t = [B1c

s
t,1, . . . ,BNcst,N ]. (5.6)

Each optimal matching coefficient ĉst,n is obtained by solving the following `0-minimization

2Each BoA may contain P different of candidate atoms, yet for illustrative purpose, we define the number
P is the same for every BoA.
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problem:

ĉst,n = arg min
cst,n
‖Bnc

s
t,n − xt‖2

2

s.t. ‖cst,n‖0 = 1, cst,n ≥ 0, ∀n ∈ [N ],∀t ∈ Ns, ,∀s ∈ [S]

(5.7)

where ‖cst,n‖0 is the `0-norm or the cardinality of cst,n. The matching coefficient is opti-

mized using the nonnegative orthogonal matching pursuit (OMP) [98] by setting the spar-

sity level to one 3. The formulation of the matching problem (5.7) leads to several ad-

vantages over previous works: First, it is able to handle illumination variance since the

magnitude of cst,n is unconstrained. Second, it forces the coefficients cst,n to have exactly

one nonzero element: we assume that the candidate atoms in the same BoA do not be-

long to the same linear subspace since they are generated by nonlinear transformation of

a latent archetypal local feature. Therefore, further increase in the number of nonzero ele-

ments in cst,n is not necessary and can cause high coherency of atoms during the dictionary

design. Finally, the matching coefficient is computed through matching with the original

input sample xt. On the other hand, in previous works such as the group sparsity-based

invariant feature [93], each atom in the dictionary is implicitly matched with a residue of

the original input sample, eventually leading to unstable sparse codes under data variations.

The proposed invariant sparse coding for a set of given input neighboring samples

3In this chapter, we are only interested in enforcing pixel-level instead of subpixel-level invariant property.
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{xt}t∈Ns can be formulated compactly by combining (5.5), (5.6) and (5.7):

α̂s = min
αs

1

2

∑
t∈Ns

‖
N∑
n=1

(αs)nBnĉ
s
t,n − xt‖2

2 +
λ

T
‖αs‖1,

s.t. ĉst,n = arg min
cst,n
‖Bnc

s
t,n − xt‖2

2,

‖cst,n‖0 = 1, cst,n ≥ 0, ∀n ∈ [N ], t ∈ Ns,∀s ∈ [S].

(5.8)

From (5.8), we can see that the variance of the input samples is captured by the matching

coefficients cst,n and thus the sparse code becomes invariant. Furthermore, the employment

of collaborative sparse recovery over the neighboring features in (5.8) improves the stability

of the sparse codes by achieving a sparser solution. More importantly, it generates a single

output feature vector by integrating the information from all neighboring input samples

so that this local invariant sparse feature vector can be directly used as input to the next

layer in a multi-layer architecture. The proposed sparse recovery stage for problem (5.8) is

solved by using the alternating direction method of multipliers (ADMM) [67].

5.2.2 Hierarchical Invariant Sparse Coding

Extending the proposed invariant sparse coding model to a multi-layer hierarchical ar-

chitecture is necessary for pursuing sparse codes that are progressively invariant and dis-

criminative. The proposed sparse recovery (5.8) not only produce invariant sparse codes,

but combines all the information within the neighborhood window into a single sparse out-

put, which is highly stable and consists of more complicated patterns compared with its
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input counterpart. Formally, at each layer h = 1, . . . , H , let its input be represented by

a set of local features Xh = [x1h , . . . ,xSh ] ∈ RMh×Sh . To get the output of layer h, we

first apply invariant sparse recovery (5.8) on every neighborhood local features of X(h) as

shown in Fig. (5.2). Let A(h) = [α
(h)
1 , . . . ,α

(h)
S ] ∈ RM(h+1)×Sh , then the output of layer h

is:

Y(h) = g(A(h)), (5.9)

where g(·) is a pooling function on A, X(h+1) = Y(h) ∈ RM(h+1)×S(h+1) . For the initial

input layer h = 0, each column vector x
(0)
s of X(0) is a vectorized local patch. The output

sparse codes are concatenated together and fed into a linear classifier, which is chosen as

the linear SVM in this chapter.

Similar to any other multi-layer architecture, overfitting can be a serious problem if not

being dealt with properly. It has been observed that enforcing simply enforcing sparsity

can lead to severe overfitting [20, 75] due to the intense variance of the output sparse

codes at each layer. To alleviate the overfitting problem, we apply two strategies for the

unsupervised dictionary learning and invariant sparse recovery. First, we adopt the dropout

scheme that has been widely used in deep learning to avoid the scenario that certain atoms

always being active. For each given input samples, we randomly drop a rate p of all the

BoA. We found that this heuristic scheme is able to efficiently alleviate the coadaptation

problem among BoA. Second, we only enforce the `0-norm constraint on cst,n as already

shown in problem (5.7), leaving its magnitude to be unconstrained so that the sparse code

can be illumination invariant without normalizing the local sparse code descriptors. In
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order to alleviate the overfitting for the proposed multi-layer architecture, avoiding the

normalization of local descriptors is critical since it can make the hidden layer focus on

learning the robust and stable inputs, which usually corresponds to a higher `2-norm due to

the small reconstruction error. On the contrary, the hidden layer would try to absorb more

information from the unstable inputs if they have the same `2-norm as the stable ones.

5.3 Layer-wise Unsupervised Dictionary Learn-

ing

In order to enhance the performance of invariant sparse coding, we employ the layer-

wise unsupervised dictionary learning to acquire the BoAs. Formulated as a bilevel opti-

mization problem, the dictionary is updated using back propagation to minimize both the

reconstruction error (5.5) and the matching error (5.7). GivenK number of input neighbor-

ing samples for layer h, the unsupervised dictionary learning problem can be formulated as

follows:

min
B

K∑
i=1

S∑
s=1

`({xt}t∈Ns ,B, {cst,n}t∈Ns), (5.10)

where B = {Bn}Nn=1. We have dropped the layer index h and sample index i for simplic-

ity. Problem (5.10) is separable across different neighboring features and can be updated

by independently minimizing `(·). Therefore, we only focus on optimizing `(·) from now
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on. Optimizations (5.8) and (5.10) suggest that the update of the dictionary is driven by

reducing reconstruction error. The local optima can be solved by using gradient descent

method [62] which is based on the error backpropagation algorithm. Each matching co-

efficient cst,n is an implicit function of Bn and xt,∀t ∈ Ns. More specifically, we have

cst,n = cst,n(Bn,xt),∀t ∈ Ns. Given input neighboring samples {xt}t∈Ns , we apply the

chain rule of differentiation, the direction along which the upper-level cost decreases can

be formulated as:

∂`

∂B
=

∂`

∂B
+

T∑
t=1

N∑
n=1

∂`

∂cst,n

∂cst,n
∂Bn

. (5.11)

The derivation for the first term of (5.11) is trivial. We now focus on the derivation of the

second term. Similar to the strategy adopted in [59, 63, 81, 86], we apply the fixed point

differentiation to solve for ∂cst,n/∂Bn. Assuming maxj∈Λ |b>n,jcst,n| is strictly larger than

maxi∈Λc |b>n,jcst,n|, then the optimal solution ĉst,n of (5.8) which is given by nonnegative

OMP satisfies: 
(
B>n (Bnĉ

s
t,n − xt)

)
Λ

= 0,

(
B>n (Bnĉ

s
t,n − xt)

)
Λc
6= 0,

(5.12)

where Λ ⊂ [N ] is the active set, Λc is the complementary set. Here we have assumed that

the matching error ‖Bnĉ
s
t,n − xt‖2

2 6= 0 which is a rather reasonable assumption. It is not

difficult to see that the implicit function cst,n(Bn) is only continuous and differentiable at

its only nonzero point. We set the gradient ∂(ĉst,n)Λ/∂(bn,i)m = 0 to avoid having unstable
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update for inactive candidate atoms, and only the active candidate atoms are updated, where

(bn,i)m ∈ R is the mth element of bn,i. Applying differentiation on both sides of (5.12) at

the nonzero points of the matching coefficient:

∂b>n,j
(
bn,j(c

s
t,n)j − xt

)
∂(bn,j)m

= 0, (5.13)

where (cst,n)j is the j th element of cst,n. Expand the above equation yields:

∂b>n,jbn,j

∂(bn,j)m
(cst,n)j + b>n,jbn,j

∂(cst,n)j

∂(bn,j)m
−

∂b>n,jxt

∂(bn,j)m
= 0. (5.14)

Therefore, we reach the desired gradient:

∂(cst,n)j

∂(bn,j)m
= (b>n,jbn,j)

−1

(
∂b>n,jxt

∂(bn,j)m
−
∂b>n,jbn,j

∂(bn,j)m
(cst,n)j

)
. (5.15)

After combining (5.15) with (5.11) for each element of candidiate dictionary atoms, the

gradient for updating the dictionary can be achieved. For large datasets, the dictionary and

the classifier parameters are updated in an online manner.

5.4 Experimental Verification

In this section, we evaluate our proposed invariant sparse coding algorithm on three

publicly available datasets, including the MNIST, CIFAR-10 and STL-10. The classifica-
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tion is performed using linear SVM with LIBSVM toolbox [99]. The step size used in the

unsupervised dictionary learning is based on the classical neural network method:

ρt =
ρ0√

(Bt)/K + 1
, (5.16)

where t is the iteration counter, ρ0 is the initial step size and B is the batch size which is

set to 2048 in our experiments. Parameters are chosen with a 5-fold cross-validation. We

start searching the step size from 10−2 and increase the step size by a factor of 10 until the

performance on the validation set decreases. The regularization parameter λ is optimized

over the set {10−5, 10−4, . . . , 10−1, 100}. The searching window size is chosen from the set

{2 × 2, 3 × 3, 4 × 4}. Patch size for the first layer is in the set {3 × 3, 4 × 4, . . . , 8 × 8}.

Using a larger number of BoA in this chapter is chosen from the set {100, 200, 400, 800}.

Larger number of BoA may produce better performance, but is right now beyond our com-

putational capacity. In all the experiments, the dropout rate is set to 0.5.

5.4.1 Evaluation on the MNIST Database

The MNIST dataset [82] consists of a total number of 70, 000 images of digits, of which

60, 000 are the training set and the remaining 10, 000 are the test set. Each digit is centered

and normalized to a 28× 28 field.

Before evaluating the object recognition performance, we first examine the patterns of

the atoms within the BoAs obtained by the unsupervised dictionary learning in order to help
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Method Error (%)
Yang et. al. [63] 0.84
CNN [92] 0.53
CKN-PM1 0.63
CKN-PM2 0.53
Proposed - Single Layer 0.66
Proposed - Two Layers 0.51

Table 5.1: MNIST Classification Error.

us understand how the proposed method produces the invariant sparse codes. We randomly

select 10, 000 samples from the training set for the dictionary learning. All atoms in BoAs

are initialized with Gaussian random samples and the patch size is set to 12 × 12. The

number of atoms in each BoA is set to P = 5 and the searching window size is set to 4×4.

The total number of BoA is set to N = 96, i.e., each adaptive dictionary has 128 atoms.

We show all the learned BoAs in Fig. 5.3. It is obvious that the atoms in the same BoA

are highly similar and most of them are slightly translated or rotated versions of each other,

which clearly shows that the proposed sparse coding model can achieve invariant property

towards a number of image variations. On the other hand, this similarity pattern property

also demonstrates that the learned BoAs are highly redundant, which makes it possible to

construct redundant dedicated adaptive dictionaries {Ds
t}t∈Ns in order to produce stable

sparse codes.

The performance of MNIST classification is shown in Table 5.1. The dictionary is

trained using the raw input images without any preprocessing. The number of BoA for

the single layer architecture is set to 200. For the multi-layer architecture, the number
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of layers is 2, the number of BoA is set to be 200 and 400 for the first and the second

layer, respectively. The number of atoms in each bag is set to 9 for every layer. The patch

size for the first layer is 8 × 8. We use max pooling over 2 × 2 regions with stride 2 for

the multi-layer architecture. The proposed single layer invariant sparse coding reaches an

error rate of 0.66%, which gains 21.43% improvement over the supervised sparse coding-

based method [63]. With a two-layer architecture, the proposed method further reduced the

classification error to 0.51%, which is competitive comparing to the state-of-art supervised

CNN [92]. This performance is also slightly better than the convolutional kernel networks.

5.4.2 Evaluation on the CIFAR-10 Database

The CIFAR-10 dataset consists of a total number of 60, 000 color images that belongs

to 10 classes. The database is split into 50, 000 training samples and 10, 000 test samples.

Each class has 5000 training images and 1000 testing images, the size of each image is

32 × 32. Comparing with MNIST, the variance of this image data is significantly larger,

which makes it a more difficult classification task. On the other hand, the local patch de-

scriptors extracted from CIFAR-10 are highly correlated, which can lead to the production

of unstable matching coefficients and sparse codes.

We perform 5-fold cross-valition on 10, 000 samples of the training set. All results are

reported without using data augmentation. The patch size is 6× 6 for constructing the first

layer. The local patch feature descriptors are extracted from the whitened image patches.

The number of BoA is set to 800 for the single layer model. For multi-layer model, the
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Method Accuracy (%)
CKN-PM 78.30
Lin et. al. [100] 80.90
Coates et. al. [75] 81.50
Coates et. al. [101] 82.00
Sohn et. al. [94] 82.20
Proposed - Single Layer 80.53
Proposed - Two Layers 82.27

Table 5.2: CIFAR-10 Classification Accuracy.

first and second layer has a number of 200 and 800 BoAs, respectively. Number of atoms

in each BoA is 9. The searching window size for the first and second layers are set to 3× 3

and 4× 4. Max pooling over 3× 3 with stride 2 is applied for the multi-layer model.

We report the performance in Table 6.2 in comparison with several state-of-art deep

learning-based algorithms. The proposed multi-layer architecture achieves 82.27% classi-

fication accuracy, which is almost 4% higher than the performance of convolutional kernel

networks. Our performance on the CIFAR-10 is also competitive with other state-of-art

methods, which usually use significantly more filters (dictionaries) as well as data augmen-

tation, such as the ones used in [94, 101, 102]. In the work of [75, 101], a total number

of 1600 or 4000 filters are used for sparse coding, which is twice the number used for our

proposed model. Even more features are used in the work of [100], where 3200 and 6400

number of dictionary atoms are used for sparse recovery. Therefore, our algorithm is highly

efficient in terms of exploiting the dictionary expressiveness.
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Method Accuracy (%)
CKN-PM 60.25
Lin et. al. - 1 Layer [100] 59.00
Lin et. al. - 2 Layers [100] 60.40
Sohn et. al. [94] 58.70
Proposed - 1 Layer 58.03
Proposed - 2 Layers 58.96

Table 5.3: STL-10 Classification Accuracy.

5.4.3 Evaluation on the STL-10 Database

The dataset STL-10 is similar to CIFAR-10, but the number of labeled training samples

are even more limited. With a total number of 10 classes, each class in STL-10 has 500

labeled training images and 800 test images, where each image has a size of 96×96 pixels.

Due to its relatively large image size, we have downsampled the images to 32×32 although

most of the compared algorithms are evaluated on the original 96×96 images. This dataset

is more challenging than CIFAR-10 due to the small number of labeled training samples.

The patches extracted from the dataset are preprocessed with zero-phase whitening.

The patch size is set to 6 × 6. The searching window size is 3 × 3 and 5 × 5 for the

first and second layers, respectively. The number of BoA is set to 800 for the single layer

architecture. For the two-layer architecture, the number of BoA for the first and the second

layers are set to 100 and 800, respectively. Max pooling is processed over 3×3 region with

stride 2.

The performance of the proposed invariant sparse coding algorithm on STL-10 is shown

in Table 5.3. Our method achieves classification accuracy of 58.03% and 58.96% for the
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one-layer and two-layers architecture, respectively. The standard deviation of our method

is smaller than 0.6%. Our proposed algorithm demonstrates a performance better than the

invariant neural network [94]. The OMP-based method [100] gives a state-of-art perfor-

mance with an accuracy of 60.40% using a two-layer architecture. Our performance is

competitive while using a significantly smaller number of features. The number of dictio-

nary atoms N used in the work [100] is set to 3200 and 6400 for the first and second layers,

respectively, while we only use a dictionary with at most 800 atoms for sparse recovery.

On the other hand, CKN-PM is performed on the original image dataset without downsam-

pling. The major obstacle for further improvement in performance of our algorithm is that

we are not able to train model with enough number of BoAs or with large image size due

to the intense computation complexity of sparse recovery. In the future work, we will try to

exploit some more computationally efficient coding scheme to substitute the labored sparse

recovery.

5.5 Summary

In this chapter, we have proposed a novel invariant sparse coding algorithm that is able

to build adaptive dictionaries for each input sample, which shares a similar formulation

with the archetypal analysis. By capturing the image misalignment through the match-

ing coefficients, the sparse codes are set free from the variabilities in the local features.

We have also extended the invariant sparse coding model to a multi-layer architecture in
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order to produce sparse codes that are progressively invariant. Different from the CNN-

based sparse coding architectures, the proposed invariant sparse coding framework is able

to achieve inherently invariant sparse codes even without using max-pooling operations.

Our proposed algorithm is also advantageous to CNN when dealing with small training set

due to a stronger generality towards unseen samples. In addition, using the fixed point dif-

ferentiation, a layer-wise unsupervised dictionary learning algorithm is developed for the

proposed invariant sparse coding framework, which is able to simultaneously reduce the

reconstruction errors of both the sparse recovery and the local feature descriptor matching.

Experiments on the MNIST, CIFAR-10 and STL-10 datasets show that the performance of

the proposed method is competitive with the state-of-art methods. We have discovered that

the learned atoms in each BoA display similar patterns even if we do not explicitly enforce

the similarity constraints over these atoms.
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Figure 5.2: Multi-layer invariant sparse coding architecture: The input of layer h is X(h).
Invariant sparse code for every location s is computed by solving problem (5.8),
producing a sparse output A(h), which can be used directly as the layer output or further
processed through a max pooling layer.
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Figure 5.3: Visualization of BoAs learned from the MNIST dataset. Number of BoA is set
to 96, each BoA contains 5 candidate atoms. The searching window size is set to 4× 4.
The training patch size is 12× 12. All training patches have been whitened. We can see
that each BoA contains atoms with similar patterns in that the atoms in the same BoA are
slightly translated or rotated versions of each other.
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Chapter 6

Supervised Multilayer Sparse Coding

Networks

In this chapter, we propose a novel multilayer sparse coding network capable of ef-

ficiently adapting its own regularization parameters to a given dataset. The network is

trained end-to-end with a supervised task-driven learning algorithm via error backprop-

agation. During training, the network learns both the dictionaries and the regularization

parameters of each sparse coding layer so that the reconstructive dictionaries are smoothly

transformed into increasingly discriminative representations. We also incorporate a new

weighted sparse coding scheme into our sparse recovery procedure, offering the system

more flexibility to adjust sparsity levels. Furthermore, we have devised a sparse coding

layer utilizing a ’skinny’ dictionary. Integral to computational efficiency, these skinny dic-

tionaries compress the high dimensional sparse codes into lower dimensional structures.

102



CHAPTER 6. SUPERVISED MULTILAYER SPARSE CODING NETWORKS

The adaptivity and discriminability of our 13-layer sparse coding network are demon-

strated on four benchmark datasets, namely Cifar-10, Cifar-100, SVHN and MNIST, most

of which are considered difficult for sparse coding models. Experimental results show that

our architecture overwhelmingly outperforms traditional one-layer sparse coding architec-

tures while using much fewer parameters. Moreover, our multilayer architecture fuses the

benefits of depth with sparse coding’s characteristic ability to operate on smaller datasets.

In such data-constrained scenarios, we demonstrate our technique can overcome the limi-

tations of deep neural networks by exceeding the state of the art in accuracy.

6.1 Introduction

Sparse coding is well suited to real-life image recognition tasks in which images are

often degraded by sensor static or when objects in the image are occluded. However, when

the noise in the data is actually an expression of the natural variation of objects, such as

those caused by changes in illumination or orientation, the linear representation of sparse

coding becomes a liability [63, 72]. As such, sparse coding models exhibit disappointing

performance on large datasets where variability is broad and anomalies are common.

Conversely, deep neural networks thrive on bountiful data. Their success derives from

an ability to distill the core essence of a subject from abundant diverse examples [3, 11, 103,

104, 105]. This feat has encouraged researchers to try and augment the learning capacity

of traditionally shallow sparse coding methods by adding layers [100, 106, 107]. Theoret-
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ically, multilayer sparse coding networks are expected to combine the best of both strate-

gies. For instance, the imperative for sparse codes to adequately reconstruct an input signal

[108] ameliorates information degeneracy issues within deep architectures [109, 110]. Fur-

thermore, multilayer sparse coding networks demand less training data as compared to

deep neural networks. To date, however, endeavors to marry the two techniques have not

achieved significant improvements over their individual counterparts [100, 107].

The realization of a successful multilayer sparse coding architecture is obstructed by

three critical challenges:

• Efficiently learning dictionaries with sufficient discriminative power.

• Avoiding the growth of overly fat dictionaries.

• Calibrating large quantities of regularization parameters.

Supervised dictionary learning with labeled data provides an opportunity to overcome

the first challenge. However, the difficulty lies in computing the gradient with respect to

each dictionary element. As covered in the first portion of Section 6.2, there has been

inspiring breakthroughs in adapting supervised dictionary learning algorithms for use in

shallow sparse coding frameworks [59, 63], but recent progress has slowed. We attempt to

build on past achievements by training a multilayer sparse coding network using end-to-end

supervised dictionary learning.

The second challenge arises during the sparse recovery procedure. The dictionary must

grow fat with reference data if it is to perform a satisfactory reconstruction of the input sig-

104



CHAPTER 6. SUPERVISED MULTILAYER SPARSE CODING NETWORKS

nal from a sparse code. In a multilayer environment, dictionaries deeper in the network bear

a greater burden, for they must convey crucial information with increasing austerity. This is

particularly problematic for unsupervised dictionary learning. The unsupervised learning

algorithm cannot judge what information to retain or discard based on reconstructive feed-

back. As the dictionaries grow more obese, the sparse codes become further attenuated.

Processing such structures is computationally prohibitive. We apply supervised dictionary

learning and signal compression algorithms to address this issue. Inspired by the Network

in Network [111] and SqueezeNet [112] architectures, we propose a downsampling sparse

coding layer that balances discriminative power with reconstructive potential. In contrast

to the fat dictionary, the downsampling layer uses a much skinnier dictionary for lossy

compression of the high-dimensional sparse codes while also introducing an additional

nonlinearity to the network.

The third obstruction is inflicted by the large parameter space of the multilayer sparse

coding network. Traditionally, the sparsity level in a sparse coding model is chosen manu-

ally by cross-validation and remains fixed throughout training. As the network gains layers,

the manual selection of regularization parameters quickly becomes daunting. Hence, we

propose automatically adapting the sparsity level via task-driven regularization.

To summarize, this chapter makes the following contributions to sparse coding net-

works:

• Reduction of sparse code dimensionality by employing ’skinny’ dictionaries to create

downsampling sparse coding layers.
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• Dynamic adaptation of `1 regularization parameters with task-driven regularization.

• Supervised, end-to-end training of a multilayer sparse coding network with the afore-

mentioned features.

In Section 6.2, we briefly review the works related to supervised dictionary learning

and adaptive regularization. In Section 6.3, we elaborate on our network design, adaptive

regularization technique, and end-to-end supervised training procedure. In order to clearly

perceive the efficiency of supervised learning, we do not apply any unsupervised learning

schemes to pretrain the dictionary. In Section 6.4, we evaluate our multilayer sparse cod-

ing network on four benchmark datasets, including Cifar-10, Cifar-100, SVHN and MNIST.

The first three datasets are considered to be highly challenging for sparse coding. Of partic-

ular interest is the Cifar-100 which poses formidable challenges to sparse coding and deep

networks alike. In our evaluation, we show our network to decisively outperform shallow

sparse coding architectures as well as a similarly structured convolutional neural network

baseline. Moreover, we demonstrate our network attains highly competitive results with

state-of-the-art models such as residual representation [103] in terms of both classification

accuracy and convergence rate.
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6.2 Supervised Learning and Adaptive Regular-

ization

Supervised dictionary learning strengthens the discriminative power of the sparse codes

by exploiting the labeled samples. Due to the nonsmoothness of the `1-regularizer, comput-

ing the gradient with respect to the dictionary is a tricky task. Overcomplete independent

component analysis [113] is proposed to orthogonalize the dictionary and approximate the

sparse coding with a linear function such that the differentiation of the implicit sparse cod-

ing function can be avoided. Fast approximation of sparse coding is proposed in [106] to

train the dictionary of each layer in a greedy, unsupervised fashion and initialize a corre-

sponding multilayer neural network with the pretrained sparse coding dictionaries. Bradley

et. al. [66] propose to directly compute the gradient of the dictionary by switching the `1

regularizor with the smoothed Kullback-Leibler divergence. More thorough study on task-

driven dictionary learning algorithms with various applications are carried out in [59]. Ap-

plying fixed point differntiation and error backpropagation, a supervised dictionary learning

scheme for the shallow sparse coding model is proposed in [63].

In sparse coding, by adapting the sparsity level we can achieve a better approximation

of the underlying model for a given training data with lower estimation bias. The adaptive

Lasso is proposed in [114] and has been proved to satisfy the oracle property [115]. Do et.

al. [116] propose to substitute the sparsity level of orthogonal matching pursuit (OMP) with

a predefined halting criterion. In low-level feature representation, a nonparametric method
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based on expectation minimization algorithm [117] is proposed to automatically adjust

the sparsity level for the soft thresholding operator. In the case of image deblurring and

superresolution, the regularization parameters are proposed to be estimated by assuming

the distribution of sparse codes follow a zero-mean Laplacian distribution [118]. To be

noted, all these methods are carried out for the purpose of low-level feature extraction and

are based on shallow structures with unsupervised learning.

6.2.1 Multilayer Architecture

To begin, we formulate a generalized, multilayer sparse coding architecture as illus-

trated Fig. 6.1. Let an image with H × W pixels and C channels be represented by a

3-dimensional tensor X ∈ RH×W×C . Denote a single C-channel pixel as xi ∈ RC , where

i ∈ [HW ]1 is the linear index of the pixel. We define the hyperpixel xi ∈ RM as the

concatenation of neighboring pixels of xi within a K×K receptive field (a patch of neigh-

boring pixels) such that xi = [y>i , . . . , x
>
i+K2 ]> and M = CK2. We denote the sparse

coding as a nonlinear function f : RM → RN such that the sparse code at the location i

can be recovered as

α∗i = f(xi,Θ), (6.1)

where Θ represents the parameters for a given sparse coding layer.

The sparse code α∗ ∈ RN is generally of much higher dimension than the input sig-

nal. Thus, if output sparse codes are naively and repeatedly fed into successive sparse
1[N ] denotes the set of nonnegative integers no larger than N .
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coding layers, computational complexity quickly explodes. Inspired by Network in Net-

work [111] and SqueezeNet [112], we introduce a downsampling sparse coding layer with

an excessively skinny dictionary to reduce the dimensions of the sparse codes while also

forcing sparsity of the low-dimension outputs, as shown in Fig. 6.1a. Unlike compression

with linear projection, such as random projection or PCA, reducing the signal dimension

with a sparse coding scheme achieves a good preservation of prior layer information while

infusing more nonlinearity into the network.

6.3 Multilayer Sparse Coding networks
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Figure 6.1: Architecture of our multilayer sparse coding network: (a) Composite sparse coding module consists of
vectorization operation on a patch of pixels for generating a hyperpixel and followed by consecutively stacking upsampling
and downsampling sparse coding layers. In our experiment, vectorization operations at all layers are conducted within 3× 3
receptive fields. (b) Our multilayer sparse coding network is constructed by repeatedly stacking multiple composite sparse
coding modules. The network does not contain any pooling operation, subsampling is conducted with a stride of 2.
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Our multilayer sparse coding network is constructed by the repeated stacking of our

composite sparse coding modules, as depicted in Fig. 6.1b. There are three main opera-

tions within a module. First is i) hyperpixel construction within 3 × 3 receptive fields of

low dimensional inputs. Next, ii) an upsampling sparse coding layer transforms the input

hyperpixel into a feature map of high dimension sparse codes. Finally, with iii) downsam-

pling sparse coding, our skinny dictionary compresses the high-dimensional sparse codes

into a low-dimensional space. More specifically, we have

α∗ = f(f(x,Θu),Θd), (6.2)

where we have dropped the subscript indices for simplicity. Θu, Θd are the parameter sets

of the upsampling and downsampling sparse coding layers, respectively. In this chapter,

all upsampling dictionaries have 3 × 3 receptive fields and all downsampling dictionaries

have 1 × 1 receptive fields. The 1 × 1 receptive field is used to make the dimensionality

reduction more efficient. Unlike multilayer neural networks, there is no need to implement

nonlinear activation functions after the sparse coding layer because of the enforcement of

the nonlinear sparsity regularization prior.

6.3.1 Weighted Nonnegative Sparse Coding

Sharing a formulation similar to adaptive Lasso [114], our loss function is designed to

increase the efficiency of the proposed multilayer sparse coding network. Formally, given
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an input signal x ∈ RM and a dictionary D ∈ RM×N with N atoms and M measurements,

we would like to represent the local feature x with a sparse signal α ∈ RN by solving the

following problem

α∗ = arg min
α>0

1

2
‖x−Dα‖2

2 +
N∑
i=1

|λ1ixi|+
λ2

2
‖α‖2

2, (6.3)

where {λ1i}Ni=1, λ2 are the regularization parameters, λ1i 6= 0,∀i ∈ [N ] and λ2 > 0. Eq.

(6.3) can be simplified as

α∗ = arg min
α>0

1

2
‖y −Dα‖2

2 + ‖Γα‖1 +
λ2

2
‖α‖2

2, (6.4)

by denoting Γ = diag(λ11, . . . , λ1N) ∈ RN×N .

There are two major differences between Eq. (6.4) and the adaptive Lasso models pre-

viously reported in [114, 119]. First, in the case of the adaptive Lasso, the initial regulariza-

tion parameter is set with a nonzero estimation. In our case, the adaptive `1 regularization

parameters need not start from a nonzero point since we train these parameters with back-

propagation. The nonnegative constraint on the sparse code prevents our network from

getting trapped into a linear system. Second, the `1-regularization parameters are only con-

strained to be nonzero, not nonnegative, so as to reduce the chance of getting stuck at zero,

where the boundary of the projection set lies.

In this chapter, nonnegativity is enforced upon sparse codes to promote stability and

efficiency during sparse recovery [100, 120, 121, 122]. At the outset of training, the near-
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zero initialized `1 regularization parameters have negligible effect on enforcing sparsity

patterns. Therefore, the nonnegativity constraint has the supplementary upshot of prevent-

ing the network from collapsing into a linear system. We observe through experimentation

the nonnegativity constraint hastens convergence.

We solve problem (6.4) using the algorithm of alternative direction method of multi-

pliers (ADMM) [67]. For clarity, we describe the ADMM algorithm for our multilayer

sparse coding network in Algorithm 4. In practice, we set the parameter of the augmented

Lagrangian term to be a fixed value so that we only have to compute the matrix inversion

once when given a fixed dictionary. Similar strategies have also been adopted in [43]. The

parameter ρ in Algorithm 4 needs to be carefully chosen in order to achieve a fast con-

vergence for the sparse codes. In the case of our multilayer sparse coding network, the

norm of dictionary atoms in each layer have drastically different magnitudes, which will

be discussed in fuller detail in the next section. To compensate for the fluctuation of the

dictionary norm, we empirically choose the parameter ρ = ρ0‖Ai‖2
2, where i is the index

of the dictionary atom with largest `2-norm.

Algorithm 4 ADMM for multilayer sparse coding network

Require: Dictionary D ∈ RM×N , input feature x ∈ RM , regularization parameters
Γ,λ2, ρ = ρ0‖Ai‖2

2, ρ0 = 0.1, precomputed C−1 = (D>D + ρIN + |Γ|)−1,
B = C−1A>y, u, z = 0 ∈ RN .

1: while stopping criterion not satisfied do
2: α = B + ρC−1(z− u)
3: z = (α + u− diag(Γ)/ρ)+
4: u = u + α− z
5: end while
6: return α.
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Figure 6.2: (a) - (b): Evolution and distribution of the regularization parameters,
respectively. The parameters are extracted from the last sparse coding layer. (c)-(d):
Evaluation of the behavior of upsampling and downsampling layer, respectively. The blue
and red lines indicate the nonzero elements and reconstruction error in percentage,
respectively. Layer index specified by the module index.

6.3.2 Adaptive Regularization

Previous works on sparse coding usually select the regularization parameters manually

by cross-validation. However, this scheme is infeasible when we extend the sparse cod-

ing to multilayer architectures. Tuning regularization parameters by hand would introduce

two major issues in the case of multilayer architectures. First and obviously, manually

searching for the optimal parameters of the underlying model would become onerous since

the parameter space grows exponentially larger when the model becomes deeper. Second,
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during experimentation, we found that our multilayer sparse coding network with fixed

regularization parameters suffers from low convergence rate and low classification perfor-

mance.

To begin training, we initialize the `1-regularization parameter Γ with some small value

to avoid numerical issues (set to be 10−5 in this chapter) and then optimize the underlying

sparsity level of the network with the given training data. Applying error backpropagation

with the projected gradient descent algorithm, we have

λ1i ← λ1i − η
∂L

∂α∗
∂α∗

∂λ1i

, s.t. λ1i 6= 0, (6.5)

where η > 0 is the learning rate, L is the total task-driven loss function defined in Eq.

(6.6). The detailed updating rule for regularization parameters will be discussed in the next

section. As we shall see in the experiment, Eq. (8.25) causes the regularization parameters

to adjust during training in order to render sparse outputs.

6.3.3 Supervised Dictionary Learning

Most of the dictionary learning methods confine the dictionary atoms within a closed

unit `2-norm ball in order to keep the dictionary from exploding and producing trivially

sparse solutions. During the experiment, we found that such restriction severely hampers

the convergence rate of our sparse coding network when it becomes significantly deep. Fur-

thermore, enforcing normalization on the dictionary atoms is dangerous when task-driven
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regularization is employed. As training progresses, some atoms will become permanently

deactivated by regularization parameters which have exceeded a certain threshold. There-

fore, we only loosely regularize the dictionary atoms with an `2-norm, otherwise known as

weight decay in neural networks. More specifically, we have

L(Θ) = V (Θ) +
µ

2

H∑
i=1

(‖Dh‖2
F + ‖Γh‖2

F ), (6.6)

where µ > 0 is the weight decay, h is the layer index, Θ is the parameters of the whole

networks, V (·) is the discriminative logistic loss function and L(·) is the overall task-driven

loss function.

To optimize the network, we need to compute the gradient of the loss function with

respect to the input x, output α and the regularization parameter Γ for each sparse coding

layer. We apply fixed point differentiation to reach the desired gradients. The updating

rules are stated as follows and a detailed derivation is left to the Appendix:

∂L

∂Dij

=
∂L

∂α
· (D>D + λ2I)−1

Λ (
∂D>Λα

∂Dij

− ∂D>ΛDΛ

∂Dij

yΛ)

∂L

∂xi
=
∂L

∂α
· (D>D + λ2I)−1

Λ

∂D>Λx

∂xi

∂L

∂λ1j

=
∂L

∂α
· −(D>D + λ2I)−1

Λ sign(αΛ)j, s.t. λ1j 6= 0, (6.7)

where the subscript Λ denotes the active set of the sparse code α, DΛ is composed of the
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active columns of D and αΛ is the active elements of the sparse code. During training, the

computation of (D>D +λ2I)−1
Λ could be a bottleneck since we have to compute it at every

location of all the sparse coding layers. Fortunately, as training progresses, the computation

demand decreases since the outputs of each layer become sparser and the average size of

the active set shrinks.

In the case of shallow sparse coding models, active atoms are usually defined as {αi :

|xi| > ε, ∀i ∈ [N ]}, where ε is a small constant value to avoid numerical instability and

αi is the ith element of the sparse code α. In multilayer sparse coding networks, a fixed

threshold ε does not function well since the magnitude of the sparse codes changes drasti-

cally from one layer to another due to the lack of normalization on dictionaries atoms. To

compensate for this effect, we set the threshold as

ε = ε0
‖α‖2

‖Di‖2

, (6.8)

where i is the index of a dictionary atom with largest `2 norm and ε0 is the threshold when

both dictionary atoms and input signal are `2-normalized. We set ε0 = 10−3 throughout our

chapter.
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Sparse Coding Network CNN baseline
3× 3 upsampling, 16 3× 3 conv, 16

1× 1 downsampling, 16 1× 1 conv, 16
3× 3 upsampling, 64 3× 3 conv, 64

1× 1 downsampling, 16 1× 1 conv, 16
3× 3 upsampling, 64 3× 3 conv, 64

1× 1 downsampling, 16 1× 1 conv, 16
3× 3 upsampling, 64 3× 3 conv, 64

1× 1 downsampling, 32 1× 1 conv, 32
3× 3 upsampling, 128, /2 3× 3 conv, 128, /2
1× 1 downsampling, 32 1× 1 conv, 32
3× 3 upsampling, 128 3× 3 conv, 128

1× 1 downsampling, 64 1× 1 conv, 64
3× 3 upsampling, 256, /2 3× 3 conv, 256, /2

global average pooling
10 or 100 way fc, softmax

Table 6.1: Network Configuration

6.4 Experimental Verification

We evaluate our multilayer sparse coding network on the benchmark dataset of CIFAR-

10, CIFAR-100, SVHN and MNIST. All programs 2 are written in MATLAB with C++ and

CUDA based on the MatConvNet framework [123]. All experiments are conducted on a

server with three Nvidia Titan X GPUs. The batch size is set to be 64 for all four datasets.

The architecture of our sparse coding network and an equivalent CNN baseline is shown

in Table 6.1. For the CNN baseline, each convolutional layer is followed by a ReLU layer

[14], which is omitted in the table. The configuration of the network architecture is inspired

by the residual network [103]. The network structure consists of two key features. First,

there are no maxpooling layers. The spatial subsampling operation is fulfilled by specific

2Codes used in this chapter will become publicly available soon.
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Figure 6.3: Visualization of feature map: From left to right: Original image; feature maps
of our sparse coding network - feature maps contain mostly background are labeled with
yellow rectangles; and feature map of the baseline CNN.

sparse coding layers with a stride of 2, denoted as ‘/2’. Second, the subsampling is carried

out in deeper layers instead of the shallower ones. Both of these two strategies have been

verified to improve the classification performance in multilayer architectures [103, 124].

Our sparse coding network consists of six composite sparse coding modules with a total

number of 13 sparse coding layers, 1 global spatial average pooling layer [111] and 1 fully

connected layer as shown in Table 6.1. The number of dictionary atoms of each downsam-

pling layer is set to be 4 times smaller than its preceding upsampling layer, yielding a 0.25

compression rate. Our network has a total of 0.27 million learnable parameters.
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Figure 6.4: Performance comparison with the CNN baseline on CIFAR-10. Dashed and
bold lines denote training and testing error, respectively.

6.4.1 Evaluation on CIFAR-10 Database

Our most extensive experiment is conducted on the CIFAR-10 dataset [125], which

consists of 60, 000 color images that are evenly splitted into 10 classes. The database is

split into 50, 000 training samples and 10, 000 test samples. Each class has 5, 000 training

images and 1, 000 testing images with size 32× 32.

During the training, every training image undergoes data augmentation by applying ran-

dom horizontal flipping as well as random translation with up to 4 pixels in each direction.

Both training and testing images are preprocessed with per-pixel-mean subtraction, which

is a common procedure for preprocessing CIFAR-10 [75, 103, 111, 126]. We only tune the

initial learning rate by cross-validation. We use the first 45, 000 samples for training and

the remaining 5, 000 samples for testing. The weight decay is set to 0.0001 and the initial
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learning rate is set to 0.01. The learning rate is decreased by a factor of 10 after 80 epochs.

We run a total number of 120 epochs which takes 76.5 hours on our server. Since we only

tune the initial learning rate, we do not guarantee that our multilayer sparse coding network

or the baseline CNN can reach its best performance.

In Fig. 6.3, we display the feature maps of both the sparse coding network and the

baseline CNN, which are produced by the output of the 5th layer of our sparse coding

network and the corresponding ReLU layer of the CNN baseline, respectively. The output

of the selected layer contains 64 channels and for each image we present the eight feature

maps with the largest `2-norms. These visualizations indicate the multilayer sparse coding

network has a much better separation of the foreground and background. The background

contains mostly low-frequency nondiscriminative information, which can be reconstructed

easily with few dictionary atoms. Together with the nonnegativity constraint on the sparse

codes, our network produces the unmixing effect as we see in the feature map. In addition,

the feature map is also much sparser than that of the CNN. Moreover, the feature maps

of the sparse coding network are similar to each other, verifying the fact that the atoms

belonging to similar subspaces are activated.

6.4.1.1 Behavior of Sparse Coding Layers

We now study the behavior of the upsampling and downsampling layers of our mul-

tilayer sparse coding network as well as the evolution of the regularization parameters by

referring to Fig. 6.2.
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Optimization of regularization parameters: The evolution of the regularization param-

eter with respect to epochs is shown in Fig. 6.2a. The displayed regularization parameters

are extracted from the last sparse coding layer, which contains a total of 256 learnable regu-

larization parameters. The parameters grow to larger magnitude as training progresses and

cease to grow when the learning rate is decreased by a factor of 10. Shown in Fig. 6.2b,

more than 90% of the regularization parameters have a magnitude above 0.001, which is

able to enforce the output to be highly sparse. Illustrated in Fig. 6.2c, less than 10% of the

output elements of the last sparse coding layer are nonzero.

Upsampling layer: Illustrated in Fig. 6.2c, the outputs of the upsampling layers are

much sparser than the downsampling layers. The shallower layers tend to have low recon-

struction error with low sparsity level, whereas the deeper layers usually have high recon-

struction error but low sparsity level. For instance, the first upsampling layer has approxi-

mately 45% nonzero sparse coefficients with less than 25% reconstruction errors, while the

two deepest upsampling layers have less than 10% nonzero coefficients with 50% − 60%

reconstruction errors. This observation verifies the fact that the shallower layers produce

low-level reconstructive features, while the deeper layers produce discriminative features

with weak reconstructive power.

Downsampling layer: Unlike the upsampling layers, most of the downsampling layers

are far less discriminative as shown in Fig. 6.2d. Except for the last downsampling layer

that reaches a sparsity level of 20%, all others have 40%−50% nonzero sparse coefficients.
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6.4.1.2 Fast Convergence with Task-driven Regularization

We now demonstrate the advantage of using weighted Lasso over the heuristic `0 pur-

suit, such as OMP. We train our 14-layer sparse coding network 3 by using both weighted

Lasso and OMP. For the OMP-based network, we set the desired number of nonzero el-

ements to be 15 for all sparse coding layers. The convergence comparisons between the

OMP-based network and the weighted Lasso-based network are shown in Fig. 6.4. At 120

epochs, the network with OMP has converged on a nearly 0.25 test error, while our mul-

tilayer sparse coding network descends below the same level in just 5 epochs. The result

also shows our network to converge substantially faster and reach a higher classification

accuracy than the CNN baseline.

6.4.1.3 Comparison with State-of-the-art Models

We compare the performance of our multilayer sparse coding network with other state-

of-the-art models using CIFAR-10, most of which are based on a CNN architecture. Our

14-layer sparse coding network achieves 91.43% accuracy on CIFAR-10 using merely

0.27M parameters. Among all other methods, only the 20-layer residual network (ResNet)

has a comparable number of parameters, yet we maintain fewer layers. Our model signif-

icantly overwhelms the previous sparse-coding-based models, including the OMP-based

[100] and nonnegative-OMP based models [75], by a margin of 10%.

3Including 13 sparse coding layers and 1 fully connected layer.
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Method # params # layers Accuracy (%)
Maxout [75] - - 90.62
SCKN [127] 10.50M 10 90.80
NIN [111] - - 91.19
DSN [126] 1.34M 7 92.03

ResNet [103] 0.27M 20 91.75
OMP [75] 0.70M 2 81.50

PCANet [1] 0.28B 3 78.67
NOMP [100] 1.09B 4 81.40
CNN-baseline 0.27M 14 88.56

Proposed 0.27M 14 91.43

Table 6.2: CIFAR-10 Classification Accuracy.

6.4.2 Evaluation on CIFAR-100 Database

CIFAR-100 has exactly the same set of images as CIFAR-10 but are split into 10 times

more classes, therefore each class has much fewer training samples compared with CIFAR-

10, making it a more challenging dataset for the task of classification. We directly use the

same network configuration and hyperparameters used in the CIFAR-10 experiment. We

do not guarantee that our network is able to reach its best performance. We preprocess the

images in exactly the same way as CIFAR-10, i.e., subtract per-pixel mean and perform

data augmentation. A summary of the state-of-the-art methods on CIFAR-100 is provided

in Table 6.3. Comparison of the convergence rate with our CNN baseline is shown in Fig.

6.5. With 14 sparse coding layers, our network achieves a classification accuracy of 72.64%

, which surpasses most of the state-of-the-art CNN-based methods. Due to the strong

regularization of sparse coding, we gain greater improvements on CIFAR-100 compared

with the gains achieved on CIFAR-10, thus validating the efficiency of our multilayer sparse
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Figure 6.5: Performance comparison with the CNN baseline on CIFAR-100. Dashed and
bold lines denote training and testing error, respectively.

coding network when dealing with a relatively small number of training samples per class.

Method # params # layers Accuracy (%)
NOMP [100] 1.09B 4 60.08
Maxout [75] - - 63.46
NIN [111] - - 64.32
DSN [126] 1.34M 7 63.46

All-CNN [124] 1.40M 10 66.29
Highway [128] 2.3M 19 67.76
ResNet [129] 0.46M 32 68.10
CNN-baseline 0.27M 14 67.58

Proposed 0.27M 14 72.64

Table 6.3: CIFAR-100 Classification Accuracy.
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6.4.3 Evaluation on SVHN Database

SVHN [130] is a dataset consisting of color images of digits collected from Google

Street View. The images are of size 32 × 32 with 73, 257 images for training and 26, 032

images for testing. The dataset also comes with 531, 131 additional labeled images. Again,

we directly use the network configuration for CIFAR-100. This dataset is less difficult due

to a large number of the labeled training samples. For a fair comparison, we delete 400

samples per training class and 200 samples per class from the extra set, which are used

for cross-validation by the compared methods in Table 6.4. The network is trained only

on the training and the extra set. The image of the dataset is preprocessed by subtracting

per-pixel-mean and we do not conduct any data augmentation. Due to the large size of the

dataset, we only train our network with 20 epochs. We achieve a test error of 2.16% with a

few learnable parameters. A summary of comparable methods is shown in Table 6.4. Our

sparse coding network outperforms the CNN-baseline with 0.8% and is comparable with

other state-of-the-art performance while using substantially fewer parameters.

Method # params # layers Error (%)
RCNN [12] 2.67M - 1.77
ReNet [13] 23.12M 7 2.38
DSN [126] 1.34M 7 1.92

Maxout [75] - - 2.37
NIN [111] - - 2.35

CNN-baseline 0.27M 14 2.95
Proposed 0.27M 14 2.16

Table 6.4: SVHN Classification Error.
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6.4.4 Evaluation on MNIST Database

The MNIST [82] dataset consists of 70, 000 images of digits, of which 60, 000 are the

training set and the remaining 10, 000 are the test set. Each digit is centered and normalized

to a 28 × 28 field. We subtract the per-pixel-mean of each image and do not perform any

data augmentation. We run a total of 20 epochs. The classification error on this dataset is

reported in Table 6.5. With limited epochs, our sparse coding network achieves a classifi-

cation error of 0.39%, which is comparable with state-of-the-art performance. Meanwhile,

our approach also easily outperforms the CNN baseline with a margin of 0.8%.

Method # params # layers Error (%)
ScatNet [89] - 3 0.43
PCANet [1] - 3 0.62
Maxout [75] - - 0.45
NIN [111] - - 0.47

CKN 0.44M 3 0.39
DSN [126] 0.35M 3 0.39

Highway [128] 0.15M 20 0.45
ResNet [103, 131] - 100 0.51

CNN-baseline 0.27M 14 0.47
Proposed 0.27M 14 0.39

Table 6.5: MNIST Classification Error.

6.5 Summary

In this chapter, we have developed a novel multilayer sparse coding network by train-

ing the dictionaries and the regularization parameters simultaneously using an end-to-end
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supervised learning scheme. We have shown empirical evidence that the regularization pa-

rameters can adapt to the given training data. Experimental results also confirm that our

network converges substantially faster than the OMP-based sparse coding network. The

high computational complexity of multilayer sparse coding networks has motivated us to

explore more efficient strategies for accomplishing sparse recovery. We propose applying

downsampling within sparse coding modules to dramatically reduce the output dimension-

ality of the layers and mitigate computational costs. Moreover, we also show that our

sparse coding network is compatible with other powerful deep learning techniques such

as batch normalization. We have demonstrated our sparse coding network easily outper-

forms a comparable baseline CNN. Moreover, our network produces results competitive

with deep neural networks but uses significantly fewer parameters and layers. In particular,

our network performs exceedingly well on CIFAR-100, indicating a lower training data

requirement compared to multilayer neural networks.
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Chapter 7

Conclusion and Future Research

7.1 Conclusion

In this thesis, we have exploited and evaluated four key components in sparse coding

with application on image classification in order to: i) enforce various structured sparsity

priors for achieving more stable sparse codes; ii) train the dictionary using task-driven dic-

tionary learning in order to improve the coding efficiency; iii) enforce the invariant property

for gaining more generality toward the variability, and iv) extend the sparse coding model

to a multilayer architecture so that its learning capacity can be substantially augmented.

In Chapter 2 and Chapter 3 we have exploited various structured sparsity priors and de-

veloped supervised dictionary learning algorithms for efficient representation. We propose

a new dictionary learning algorithm for task-driven dictionary learning with joint or Lapla-

cian sparsity in order to exploit the spatial-spectral information of HSI neighboring pixels.
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We show experimentally that the proposed dictionary learning methods have a significantly

better performance than SRC even when the dictionary is highly compact. We also describe

an optimization algorithm for solving the Laplacian sparsity recovery problem. The pro-

posed optimization method is much faster than the modified feature sign search used in

[42].

We present a novel sparse coding framework in Chapter 4 that is robust to image trans-

formation. In the proposed model, each dictionary atom is constructed in the form of a

tensor and is aligned with the test image using the large displacement optical flow con-

cept [79]. The proposed algorithm does not require the training dataset to be pre-aligned.

Adapting the dictionary to the input test image is highly efficient: requiring only O(PT )

operations for adapting each dictionary atom, where T is the number of pixels in a search-

ing window and P is the total number of subatoms to be aligned. Supervised dictionary

learning algorithm is developed for the proposed sparse coding framework.

Extending invariant sparse coding model to multilayer architecture is discussed in Chap-

ter 5 and Chapter 6. We first develop a layer-wise unsupervised dictionary learning algo-

rithm with bilevel optimization in order to simultaneously minimize the errors of local

feature descriptor matching and signal reconstruction. Using our layer-wise unsupervised

dictionary learning algorithm, we are able to design diverse and contextually rich BoAs.

We have extended the sparse coding model to a multilayer architecture with as many as

13 sparse coding layers. We have demonstrated our sparse coding network easily outper-

forms a comparable baseline CNN. Moreover, our network produces results competitive
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with deep neural networks but uses significantly fewer parameters and layers.

7.2 Future Research

Our sparse coding networks confront with a scalability issue due to the high compu-

tational demand of the sparse recovery and dictionary learning. We intend to address the

scalability issue in the our future work, which is discussed in more details as follows.

7.2.1 Integrating Sparse Coding Networks with Convolu-

tional Neural Networks

One should not ignore either the benefit of applying convolutional layer or sparse cod-

ing layer. On one hand, convolutional layer is highly computationally efficient though

requiring more samples to regularize the learnable parameters. On the other hand, sparse

coding layer demands much fewer training samples at the sacrifice of high computational

cost for recovering the sparse codes. For a given deep architecture, the shallower layer

comes with a smaller receptive field and the local features in the corresponding layer have

much smaller variations. Therefore, the shallower layers require few labeled training sam-

ples to avoid overfitting. Hence, a deep network that has convolutional layers in the shal-

lower part and sparse coding layers in the deeper part should be able to enjoy both the low

computational cost and less severe data hunger issue.
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In addition, unlike our previous work that uses sparse coding layer with 1×1 kernels for

dimension reduction, we propose to use the convolutional layer with 3×3 kernels to reduce

the dimension of the input sparse code. The motivations are 1) The dimension reduction

layer contains only few number of learnable parameters and therefore these parameters

should be able to be regularized by the data itself. 2) The output of the convolutional layer

is highly sparse and also nonnegative, i.e., the input for each sparse coding layer is highly

sparse and nonnegative. Since the dictionary atoms and the input feature lie in the same

subspace, we should be able to naturally enforce nonnegativity constraint on the dictionary.

Such nonnegativity regularization on the dictionary atoms can further allow us to use the

theorems related with nonnegative matrix factorization (NMF) to explain the behavior of

the sparse coding layer.

7.2.2 Fast Approximation of Sparse Coding

The success of multilayer sparse coding network has reaffirmed that multilayer archi-

tecture can escape from degeneracy issues by resorting to a generative model. In our deep

coding network, both sparse coding and sparse clustering are critical for a stabilizing mul-

tilayer system. However, there is one major issue that frustrates our sparse coding network,

namely the high computation cost as well as memory requirement. One natural question is

how to design highly scalable deep coding network that can largely reduce computational

demand by stop chasing unnecessary recovery accuracy while encouraging clustering. As

validated in neural network, network with binary activation is able to produce reasonable
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performance on relatively shallow networks. Such discovery confirms that the sparse-code

support is already accurate enough if we directly use the activated neurons. Again, maybe

such support is already accurate enough for clustering purposes.

Denote D as the weights for the neural network or the deep coding dictionary, b be

the bias, x as the signal observation and α as the desired sparse code. For illustration

purpose, we only consider single signal case and the convolutional case can be naturally

extended. We select the support of the sparse codes using ReLU activation function Λ =

logical(relu(D(x + b))) where logical(·) is the binarization operation and Λ is the active

set. This clever approach allows us to compute the gradient of the loss function w.r.t. the

bias using backpropagation. To reconstruct the magnitude of the sparse code α, we propose

to solve the following nonnegative least square problem:

α∗Λ = argminαΛ>0‖DΛαΛ − (y + b)‖2
2 + λ‖α‖2

2, (7.1)

where αΛ is the active elements of the sparse code, λ > 0 is the `2 regularizor used to

stabilize the model when the code is not sparse enough. Problem (7.1) can be solved much

more efficiently. When we add the bias to the input signal y, the sparse code also tries to

recover the bias component, therefore preserving the gradient information. We intend to

explore gradient descent techniques to optimize D, b, and α alternatingly.
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7.2.3 Construction of Wide Sparse Coding Network

Wide neural network, where each layer contains large number of filters, have shown

its effectiveness in reducing the required number of layers, hence significantly increase the

computational efficiency of the network. Unfortunately, previous works have shown that

extending the network to a wider architecture is not trivial. As the network becomes wider,

the overfitting issue become more and more severe.

Sparse coding layer is a perfect building block for such wide network: First, the dictio-

nary for sparse recovery is naturally designed to have a wide architecture so as to gain the

redundancy and robustness. In most cases, the number of dictionary atoms is 4 − 6 times

larger than the number of the measurement, rendering a network with extremely wide struc-

ture. Second, sparsity regularizor acts as a strong prior that is able to largely alleviate the

overfitting issue when the network becomes extremely wide. Last but not least, as the

network goes wider, the dictionary atoms naturally becomes sparser as we have already

discussed in Section 7.2.1. In the future, we will investigate how to efficiently employ

highly redundant dictionary in the sparse coding network.
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Appendix

8.1 Appendix A

We can infer from Eq. (3.18) that vec (∂A/∂Dmn) = 0, ∀n ∈ Λc, which indicates

∂L/∂Dmn = 0, ∀n ∈ Λc. Therefore, we only need to take the gradient ∂L/∂Dmn, ∀n ∈ Λ

into account.

From the Eq. (3.13) and Eq. (3.18), we achieve the gradient for every element of D̃,

∂L
∂D̃mn

= vec

(
∂L
∂Ã

)>
· vec

(
∂Ã

∂D̃mn

)
, (8.1)

wherem = 1, . . . ,M and n = 1, . . . , NΛ. Let g = vec
(

∂f

∂Ã>

)
= vec

((
WÂ− Ŷ

)>
W̃

)
and W̃ = WΛ is the Λ columns of W. Expand Eq. (3.18) and combine it with Eq. (8.1),
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we have

∂L
∂D̃mn

= Umn − Vmn and
∂L
∂D̃

= U−V, (8.2)

where U,V ∈ Rm×NΛ and every element Umn, Vmn are defined as

Umn = g>
(
D̃>D̃⊗ IP + λΓ

)−1

vec
(

(X−DA)> Ẽmn

)
,

Vmn = g>
(
D̃>D̃⊗ IP + λΓ

)−1

vec
(
Ã>Ẽ>mnD̃

)
,

where Ẽmn ∈ RM×NΛ is the indicator matrix that element (m,n) of Ẽmn is 1 and all other

elements are zero.

Consider the simplification for U first

Umn = g>
(
D̃>D̃⊗ IP + λΓ

)−1 (
Ẽ>mn ⊗ IP

)
vec
(

(X−DA)>
)

= g>Fñvec
(

(X−DA)>
)
m̃
, (8.3)

where F =
(
D̃>D̃⊗ IP + λΓ

)−1

; m̃(m) = {(m − 1)P + 1, . . . ,mP}, ñ(n) = {(n −

1)P + 1, . . . , nP} denote the index sets; Fñ are the ñ columns of F.

Let ξm = vec
(

(X−DA)>
)
m̃

. It can be shown that ξ>m is the mth row of (X−DA).

Now the (m,n) element Umn of the first part U can be written as

Umn =
(
g>F

)ñ
ξm, (8.4)
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Stacking all elements of U

U =


(
g>F

)1̃
ξ1 · · ·

(
g>F

)ÑΛ ξ1

... . . . ...(
g>F

)1̃
ξM · · ·

(
g>F

)ÑΛ ξM


= ξ

[
(g>F)1̃> · · · (g>F)ÑΛ

>

]
, (8.5)

where Λn denotes the nth element of set Λ.

Now consider simplification for V. Each element Vmn of V can be written as

Vmn = g>F · vec
(
Ã>Ẽ>mnD̃

)
= g>F

(
D̃>Ẽmn ⊗ IP

)
vec
(
Ã>
)

= g>F
(
D̃>m ⊗ IP

)
Ã>n , (8.6)

where Ãn is the nth row of Ã and D̃m is the mth row of D.

Stacking every element of V, such that

V =


g>F

(
D̃>1 ⊗ IP

)
· · · g>F

(
D̃>1 ⊗ IP

)
... . . . ...

g>F
(
D̃>M ⊗ IP

)
· · · g>F

(
D̃>M ⊗ IP

)

A>
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=


∑N

n=1 D>1n
(
g>F

)
n̄

A>1 · · ·
∑N

n=1 D>1n
(
g>F

)
n̄

A>N

... . . . ...∑N
n=1 D>Mn

(
g>F

)
n̄

A>1 · · ·
∑N

n=1 D>Mn

(
g>F

)
n̄

A>N


= D

[(
g>F

)>
1̄
. . .
(
g>F

)>
P̄

]
A>, (8.7)

where p̄(p) = {p, p+ P, . . . , p+ (N − 1)P}. Combining Eq. (8.5) and Eq. (8.7)

∂L
∂D̃

= U−V = ξβ>Λ − D̃βΛÃ> and
∂L
∂D

= ξβ> −DβA>, (8.8)

where βΛc = 0 and βΛ = [
(
g>F

)>
1̃
, · · · ,

(
g>F

)>
∼
NΛ

]>. More generally, we have defined

βΛ ∈ RNΛ×P such that vec(β>Λ ) = Fg.

8.2 Appendix B

The gradient for updating the dictionary can be written as

∂L
∂Dmn

= vec

(
∂L
∂A

)>
· vec

(
∂A

∂Dmn

)
= vec

(
∂L
∂A

)>
Λ

· vec
(

∂A

∂Dmn

)
Λ

, (8.9)
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Expand Eq. (3.31) and combine it with Eq. (8.9), the desired gradient is

∂L
∂Dmn

= Umn − Vmn and
∂L
∂D

= U−V, (8.10)

where

Umn = g>F−1vec
(
E>mn (X−DA)

)
Λ
,

Vmn = g>F−1vec
(
D>EmnA

)
Λ
,

F =
(
IP ⊗D>D + γL⊗ IN

)−1

Λ,Λ
.

Let g has the same definition as that in Section 8.1. The first part U of ∂f
∂Dmn

is

Umn = g>Fvec
(
E>mn (X−DA)

)
Λ

=
(
g>F

)
ñ
vec (X−DA)m̃(m,n) (8.11)

Emn ∈ RM×N is the indicator matrix that the (m,n) element is 1 and all other elements

are zero. m̃ and ñ are defined as the following index sets,

m̃(m,n) = {m, . . . ,m+ pM, . . . }, ∀p s.t. n+ pN ∈ Λ

ñ(n) = {n, n+N, . . . , n+ (P − 1)N} ∩ Λ
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Eq. (8.11) can be further simplified by introducing h(n) ∈ RP , such that

h(n) =


(
g>F

)
n+pN

, if n+ pN ∈ ñ(n), ∀p

0, otherwise

(8.12)

Now Eq. (8.11) can be rewritten as,

Umn = h(n)>ξm, (8.13)

where ξ>m is the mth row of X −DA. The first part U of the gradient ∂f
∂D

can be obtained

by stacking all Umn in Eq. (8.13)

U =


ξ>1 h(1) · · · x>1 h(N)

... . . . ...

ξ>Mh(1) · · · ξ>Mh(N)


= ξ

[
h(1) · · ·h(N)

]
= ξβ>, (8.14)

where we define β =
[
h(1), · · · ,h(N)

]> ∈ RN×P . By examining the nonzero elements

position of h(1), . . . ,h(N), it is not difficult to find the relation between β and g>F

vec (β)Λ = Fg and vec (β)Λc = 0. (8.15)
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Now consider the second term Vmn of ∂f
∂Dmn

Vmn =
(
g>F

) (
IP ⊗D>Emn

)
Λ,Λ

vec (A)Λ

=
(
g>F

) ([
Dmvec(A)n . . .Dmvec(A)(n+(P−1)N)

]>)
Λ

= Dm

P∑
p=1

An,pβ
p, (8.16)

where βp is the pth column of β. The differentiation ∂f
∂D

can be derived from Vmn in Eq.

(8.16)

V =


D1

[∑P
p=1 A1,pβ

p, · · · ,
∑P

p=1 AN,pβ
p

]
...

DM

[∑P
p=1 A1,p (Fg)p̂ · · ·

∑P
p=1 AN,p (Fg)p̂

]


= D

[
P∑
p=1

A1,pβ
p · · ·

P∑
p=1

AN,pβ
p

]

= DβA>, (8.17)

Combining Eq. (8.14) and Eq. (8.17), we reach the gradient of the dictionary

∂L
∂D

= ξβ> −DβA>. (8.18)

141



CHAPTER 8. APPENDIX

8.3 Appendix C

We now demonstrate the details for the derivation of Eq. (7). Let α∗ ∈ RN be the

optimal point of Lasso problem, which satisfies the first order optimality condition

D>Dα−D>x + Γsign(Γα) + λ2α = 0, (8.19)

where we have omitted the superscript ‘∗’ for simplicity. We first derive the gradient ∂α/∂Dij for

a single dictionary element Dij . Differentiate both sides of Eq. (8.19) w.r.t. Dij

∂D>D

∂Dij
x + D>D

∂α

∂Dij
− ∂D>x

∂Dij
+ Γ

∂sign(Γα)

∂Dij
= 0. (8.20)

The inactive atoms are not updated since the gradient ∂sign(Γα)/∂Dij on which αj = 0 is not well

defined [59, 63]. Let Λ be the active set of the sparse code and only the active atoms are updated

∂D>ΛDΛ

∂Dij
x + D>ΛDΛ

∂α

∂Dij
−
∂D>Λx

∂Dij
+ ΓΛ

∂sign(Γα)Λ

∂Dij
= 0, (8.21)

where j ∈ Λ, ΓΛ ∈ RK×K is the submatrix of Γ selected by the active set Λ andK is the cardinality

of the active set Λ. We reach the updating rule for a single dictionary element

∂L

∂Dij
=

(
∂L

∂α

)>
Λ

· (D>D + λ2I)−1
Λ (

∂D>Λα

∂Dij
−
∂D>ΛDΛ

∂Dij
αΛ), (8.22)

where (D>D + λ2I)Λ ∈ RK×K is the submatrix of (D>D + λ2I) selected by the active set Λ.

Similarly, the gradient of sparse code α w.r.t to each input signal element xi can be reached by
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differentiating both sides of Eq. (8.19) w.r.t. xi

D>ΛDΛ
∂α

∂xi
−
∂D>Λx

∂xi
+ ΓΛ

∂sign(Γα)Λ

∂xi
= 0. (8.23)

Eq. (8.23) is equivalent with

∂L

∂xi
=

(
∂L

∂α

)>
Λ

· (D>D + λ2I)−1
Λ

∂D>Λx

∂xi
. (8.24)

Finally, differentiating both sides of Eq. (8.19) w.r.t. λj

D>ΛDΛ
∂α

∂λj
+ Ejsign(Γα)Λ = 0, (8.25)

where Ej ∈ RK×K is the indicator matrix such that only the element (j, j) equals to one and zeros

elsewhere. Eq. (8.25) can be further simplified as

∂L

∂λ1j
=

(
∂L

∂α

)>
Λ

· −(D>D + λ2I)−1
Λ sign(ΓΛαΛ)j , s.t. λ1j 6= 0, (8.26)

where sign(ΓΛαΛ)j = Ejsign(Γα)Λ ∈ RK .

143



Bibliography

[1] T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: A simple deep

learning baseline for image classification?” IEEE Transactions on Image Process-

ing, vol. 24, no. 12, pp. 5017–5032, Dec. 2015.

[2] J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong, “Locality-constrained

linear coding for image classification,” in in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), Jun. 2010.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Conference and Workshop on Neural Information

Processing Systems (NIPS), Dec. 2012.

[4] G. Camps-Valls, D. Tuia, L. Bruzzone, and J. Atli, “Advances in hyperspectral im-

age classification: Earth monitoring with statistical learning methods,” IEEE Signal

Processing Magazine, vol. 31, no. 1, pp. 45–54, Jan. 2014.

[5] X. Mei and H. Ling, “Robust visual tracking and vehicle classification via sparse

144



BIBLIOGRAPHY

representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 33, no. 11, pp. 2259–2272, Nov. 2011.

[6] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing im-

ages with support vector machines,” IEEE Transaction on Geoscience and Remote

Sensing, vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[7] J. Benediktsson, P. Swain, and O. Ersoy, “Neural network approaches versus statisti-

cal methods in classification of multisource remote sensing data,” IEEE Transaction

on Geoscience and Remote Sensing, vol. 28, no. 4, pp. 540–552, Jul. 1990.

[8] L. Ma, M. M. Crawford, and J. Tian, “Local manifold learning-based k-nearest-

neighbor for hyperspectral image classification,” IEEE Transaction on Geoscience

and Remote Sensing, vol. 48, no. 11, pp. 4099–4109, Nov. 2010.

[9] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Apr. 2004.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

in IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2005.

[11] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional

neural networks,” in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), Jun. 2016.

145



BIBLIOGRAPHY

[12] M. Liang and X. Hu, “Recurrent convolutional neural network for object recogni-

tion,” in IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2015.

[13] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. C. Courville, and Y. Bengio, “Renet:

A recurrent neural network based alternative to convolutional networks,” CoRR, vol.

abs/1505.00393, May 2015.

[14] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” in International Conference on Machine Learning (ICML), Jun. 2010.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal of

Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International Conference on Machine

Learning (ICML), Jul. 2015.

[17] Z. Jiang, Z. Lin, and L. Davis, “Label consistent K-SVD: Learning a discriminative

dictionary for recognition,” IEEE Transactions on Pattern Analysis Machine Intelli-

gence, vol. 35, no. 11, pp. 2651–2664, Nov. 2013.

[18] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recognition via

146



BIBLIOGRAPHY

sparse representation,” IEEE Transaction on Pattern Analysis and Machine Intelli-

gence, vol. 31, no. 2, pp. 210–227, Feb. 2009.

[19] Y. Boureau, F. R. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features for

recognition,” in in IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR), Jun. 2010, pp. 2559–2566.

[20] J. Yang, K. Yu, Y. Gong, and T. S. Huang, “Linear spatial pyramid matching using

sparse coding for image classification,” in in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), Jun. 2009, pp. 1794–1801.

[21] J. Yang, K. Yu, and T. S. Huang, “Efficient highly over-complete sparse coding using

a mixture model,” in in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), Sept. 2010, pp. 113–126.

[22] S. Agarwal and D. Roth, “Learning a sparse representation for object detection,” in

ECCV, vol. 4, May 2002, pp. 113–130.

[23] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discriminative learned

dictionaries for local image analysis,” in in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), Jun. 2008, pp. 1–8.

[24] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering via dictio-

nary learning with structured incoherence and shared features,” in in IEEE Computer

147



BIBLIOGRAPHY

Society Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2010,

pp. 3501–3508.

[25] X. Sun, Q. Qu, N. M. Nasrabadi, and T. D. Tran, “Structured priors for sparse-

representation-based hyperspectral image classification,” IEEE Geoscience and Re-

mote Sensing Letters, vol. 11, no. 7, pp. 1235–1239, Jul. 2014.

[26] X. Sun, N. M. Nasrabadi, and T. D. Tran, “Task-driven dictionary learning for hyper-

spectral image classification with structured sparsity constraints,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 53, no. 8, pp. 4457–4471, Aug. 2015.

[27] Q. Qu, X. Sun, N. M. Nasrabadi, and T. D. Tran, “Subspace vertex pursuit for sepa-

rable non-negative matrix factorization in hyperspectral unmixing,” in ICASSP, May

2014.

[28] X. Sun, N. M. Nasrabadi, and T. D. Tran, “Task-driven dictionary learning for hy-

perspectral image classification with structured sparsity priors,” in ICIP, Oct. 2014.

[29] Xiaoxia, N. M. Nasrabadi, and T. D. Tran, “Sparse coding with fast image alignment

via large displacement optical flow,” in ICASSP, Mar. 2016.

[30] L. Liu, J. Glaister, X. Sun, A. Carass, T. D. Tran, and J. L. Prince, “Segmentation

of thalamus from mr images via task-driven dictionary learning,” in Proceedings of

SPIE, Feb. 2016.

[31] X. Sun, N. M. Nasrabadi, and T. D. Tran, “Supervised multilayer sparse coding

148



BIBLIOGRAPHY

networks for image classification,” CoRR, vol. abs/1701.08349, 2017. [Online].

Available: http://arxiv.org/abs/1701.08349

[32] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-

Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton,

and G. Trianni, “Recent advances in techniques for hyperspectral image processing,”

Remote Sensing of Environment, vol. 113, no. 6, pp. S110 – S122, 2009.

[33] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances, and J. Calpe-

Maravilla, “Composite kernels for hyperspectral image classification,” IEEE Geo-

science and Remote Sensing Letters, vol. 3, no. 1, pp. 93–97, Jan. 2006.

[34] L. Yang, S. Yang, P. Jin, and R. Zhang, “Semi-supervised hyperspectral image clas-

sification using spatio-spectral laplacian support vector machine,” IEEE Geoscience

and Remote Sensing Letters, vol. 11, no. 3, pp. 651–655, March 2014.

[35] J. Zhu, S. Rosset, R. Tibshirani, and T. J. Hastie, “1-norm support vector machines,”

in in Conference and Workshop on Neural Information Processing Systems (NIPS),

S. Thrun, L. K. Saul, and P. B. Schölkopf, Eds., Dec. 2004, pp. 49–56.

[36] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse representa-

tion for computer vision and pattern recognition,” Proceedings of the IEEE, vol. 98,

no. 6, pp. 1031–1044, Jun. 2010.

[37] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classification us-

149

http://arxiv.org/abs/1701.08349


BIBLIOGRAPHY

ing dictionary-based sparse representation,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 49, no. 10, pp. 3973–3985, Oct. 2011.

[38] Q. Haq, L. Tao, F. Sun, and S. Yang, “A fast and robust sparse approach for hy-

perspectral data classification using a few labeled samples,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 50, no. 6, pp. 2287–2302, Jun. 2012.

[39] R. Ji, Y. Gao, R. Hong, Q. Liu, D. Tao, and X. Li, “Spectral-spatial constraint hyper-

spectral image classification,” IEEE Transactions on Geoscience and Remote Sens-

ing, vol. 52, no. 3, pp. 1811–1824, March 2014.

[40] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse unmixing of hyperspec-

tral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 6, pp.

2014–2039, Jun. 2011.

[41] J. Chen and X. Huo, “Theoretical results on sparse representations of multiple-

measurement vectors,” IEEE Transactions on Signal Processing, vol. 54, no. 12,

pp. 4634–4643, Dec. 2006.

[42] S. Gao, I. Tsang, and L. Chia, “Laplacian sparse coding, hypergraph Laplacian

sparse coding, and applications,” IEEE Transactions on Pattern Analysis Machine

Intelli- gence, vol. 35, no. 1, pp. 92–104, Jan. 2013.

[43] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace

150



BIBLIOGRAPHY

structures by low-rank representation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 35, no. 1, pp. 171–184, Jan. 2013.

[44] A. Rakotomamonjy, “Surveying and comparing simultaneous sparse approximation

(or group-lasso) algorithms.” Signal Processing, vol. 91, no. 7, pp. 1505–1526, Jul.

2011.

[45] S. Kim and E. P. Xing, “Tree-guided group lasso for multi-task regression with struc-

tured sparsity,” in International Conference on Machine Learning (ICML), pp. 543–

550, Jun. 2010.

[46] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar, “C-Hilasso: A collaborative

hierarchical sparse modeling framework,” IEEE Transaction on Signal Processing,

vol. 59, no. 9, pp. 4183–4198, Sept. 2011.

[47] Y. Qian, M. Ye, and J. Zhou, “Hyperspectral image classification based on structured

sparse logistic regression and three-dimensional wavelet texture features,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 51, no. 4, pp. 2276–2291,

Apr. 2013.

[48] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse

approximation. Part I: Greedy pursuit,” Signal Processing, vol. 86, no. 3, pp. 572–

588, Mar. 2006.

[49] S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions to linear

151



BIBLIOGRAPHY

inverse problems with multiple measurement vectors,” IEEE Transaction on Signal

Processing, vol. 53, no. 7, pp. 2477–2488, Jul. 2005.

[50] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and ap-

plications,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 35,

no. 11, pp. 2765–2781, Nov. 2013.

[51] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization

and statistical learning via the alternating direction method of multipliers,” Journal

FTML, vol. 3, no. 1, pp. 1–122, Jan. 2011.

[52] S. Wright, R. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by separable

approximation,” IEEE Transaction on Signal Processing, vol. 57, no. 7, pp. 2479–

2493, Jul. 2009.

[53] F. J. Herrmann, M. P. Friedlander, and O. Yilmaz, “Fighting the curse of dimen-

sionality: compressive sensing in exploration seismology,” IEEE Signal Processing

Magazine, vol. 29, no. 3, pp. 88–100, May 2012.

[54] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse unmixing of hyperspec-

tral data,” IEEE Transaction on Geoscience and Remote Sensing, vol. 49, no. 6, pp.

2014–2039, Jun. 2011.

[55] J. Li, J. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral image segmen-

152



BIBLIOGRAPHY

tation using multinomial logistic regression with active learning,” IEEE Transaction

on Geoscience and Remote Sensing, vol. 48, no. 11, pp. 4085–4098, Nov. 2010.

[56] K. Engan, S. Aase, and J. Hakon Husoy, “Method of optimal directions for frame

design,” in ICASSP, vol. 5, pp. 2443–2446, Mar. 1999.

[57] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing over-

complete dictionaries for sparse representation,” IEEE Transaction on Signal Pro-

cessing, vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[58] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for sparse

coding,” in International Conference on Machine Learning (ICML), pp. 689–696,

Jun. 2009.

[59] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE Transac-

tion on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 791–804, Apr.

2012.

[60] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach, “Supervised dictionary

learning,” in Conference and Workshop on Neural Information Processing Systems

(NIPS), pp. 1033–1040, Dec. 2008.

[61] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary training for

image super-resolution,” IEEE Transaction on Image Processing, vol. 21, no. 8, pp.

3467–3478, Aug. 2012.

153



BIBLIOGRAPHY

[62] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” An-

nuals of Operation Research, vol. 153, no. 1, pp. 235–256, Apr. 2007.

[63] J. Yang, K. Yu, and T. Huang, “Supervised translation-invariant sparse coding,” in

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2010.

[64] J. Zheng and Z. Jiang, “Tag taxonomy aware dictionary learning for region tagging,”

in IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 369–376, Jun. 2013.

[65] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,”

Journal of the Royal Statistical Society, Series B, vol. 67, pp. 301–320, Dec. 2005.

[66] D. M. Bradley and J. A. Bagnell, “Differentiable sparse coding,” in Conference and

Workshop on Neural Information Processing Systems (NIPS), Dec. 2008.

[67] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization

and statistical learning via the alternating direction method of multipliers,” Founda-

tions and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, Jan. 2011.

[68] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for lin-

ear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–

202, Jan. 2009.

154



BIBLIOGRAPHY

[69] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17,

no. 4, pp. 395–416, Dec. 2007.

[70] J. Mairal, R. Jenatton, R. B. Francis, and R. O. Guillaume, “Network flow algo-

rithms for structured sparsity,” in Conference and Workshop on Neural Information

Processing Systems (NIPS), Dec. 2010.

[71] Y. Chen, N. Nasrabadi, and T. Tran, “Hyperspectral image classification via ker-

nel sparse representation,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 51, no. 1, pp. 217–231, Jan. 2013.

[72] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma, “Toward a prac-

tical face recognition system: Robust alignment and illumination by sparse repre-

sentation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 34,

no. 2, pp. 372–386, Feb. 2012.

[73] H. Lee, R. B. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief net-

works for scalable unsupervised learning of hierarchical representations,” in in In-

ternational Conference on Machine Learning (ICML), Jun. 2009, pp. 609–616.

[74] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using

sparse coding for image classification,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), Jun. 2009.

[75] A. Coates and A. Y. Ng, “The importance of encoding versus training with sparse

155



BIBLIOGRAPHY

coding and vector quantization,” in International Conference on Machine Learning

(ICML), Jul. 2011.

[76] G. E. Hinton and S. Osindero, “A fast learning algorithm for deep belief nets,” Neural

Computation, vol. 18, pp. 1527–1554, 2006.

[77] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Partial Face Recognition: A

Sparse Representation-based Approach,” in ICASSP, Mar. 2016.

[78] K. Kavukcuoglu, P. Sermanet, Y. lan Boureau, K. Gregor, M. Mathieu, and Y. L.

Cun, “Learning convolutional feature hierarchies for visual recognition,” in in Con-

ference and Workshop on Neural Information Processing Systems (NIPS), Dec.

2010, pp. 1090–1098.

[79] T. Brox and J. Malik, “Large displacement optical flow: Descriptor matching in

variational motion estimation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 3, pp. 500–513, Mar. 2011.

[80] D. Bertsimas and R. Weismantel, “Optimization over integers,” Athena Scientific,

2005.

[81] J. Yang, Z. Wang, Z. Lin, X. Shu, and T. Huang, “Bilevel sparse coding for coupled

feature spaces,” in in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), Jun. 2012.

[82] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

156



BIBLIOGRAPHY

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

Nov. 1998.

[83] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional kernel net-

works,” in Conference and Workshop on Neural Information Processing Systems

(NIPS), Dec. 2014.

[84] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training

of deep networks,” in Conference and Workshop on Neural Information Processing

Systems (NIPS), Dec. 2007.

[85] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms,” in in

Conference and Workshop on Neural Information Processing Systems (NIPS), Dec.

2006.

[86] Z. Wang, J. Yang, N. Nasrabadi, and T. Huang, “A max-margin perspective on sparse

representation-based classification,” in in IEEE International Conference on Com-

puter Vision (ICCV), Dec. 2013.

[87] J. Huang, X. Huang, and D. Metaxas, “Simultaneous image transformation and

sparse representation recovery,” in in IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR), Jun. 2008.

[88] X. Shu, Y. Gao, and H. Lu, “Face recognition via robust face representation and

compressive sensing,” in ISPACS, Dec. 2010, pp. 1–4.

157



BIBLIOGRAPHY

[89] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Transac-

tion on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1872–1886,

Aug. 2013.

[90] S. Gao, Z. Zeng, K. Jia, T.-H. Chan, and J. Tang, “Patch set based representation for

alignment-free image set classification,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. PP, no. 99, pp. 1–1, 2015.

[91] S. Gao, K. Jia, L. Zhuang, and Y. Ma, “Neither global nor local: Regularized patch-

based representation for single sample per person face recognition,” International

Journal of Computer Vision, vol. 111, no. 3, pp. 365–383, 2015.

[92] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-

stage architecture for object recognition?” in in IEEE International Conference on

Computer Vision (ICCV), Sept. 2009.

[93] Y. LeCun, “Learning invariant feature hierarchies,” in European Conference on

Computer Vision, Oct. 2012.

[94] K. Sohn and H. Lee, “Learning invariant representations with local transformations,”

in in International Conference on Machine Learning (ICML), Jul. 2012.

[95] Y. Chen, J. Mairal, and Z. Harchaoui, “Fast and robust archetypal analysis for rep-

resentation learning,” in in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), Jun. 2014.

158



BIBLIOGRAPHY

[96] A. Cutler and L. Breiman, “Archetypal analysis,” in Technometrics, vol. 36, no. 4,

Nov. 1994, pp. 338–347.

[97] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories,” in in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, Jun. 2006.

[98] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via

orthogonal matching pursuit,” IEEE Transaction on Information Theory, vol. 53,

no. 12, pp. 4655–4666, Dec. 2007.

[99] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology, vol. 2, pp. 1–27, Apr. 2011.

[100] T. Lin and H. T. Kung, “Stable and efficient representation learning with nonnega-

tivity constraints,” in International Conference on Machine Learning (ICML), Jun.

2014.

[101] A. Coates and A. Y. Ng, “Selecting receptive fields in deep networks,” in in Confer-

ence and Workshop on Neural Information Processing Systems (NIPS), Dec. 2011.

[102] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio, “Max-

out networks,” in in International Conference on Machine Learning (ICML), Jun.

2013.

[103] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

159



BIBLIOGRAPHY

in IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2016.

[104] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to

human-level performance in face verification,” in IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR), Jun. 2014.

[105] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Ben-

gio, “Show, attend and tell: Neural image caption generation with visual attention,”

in International Conference on Machine Learning (ICML), Jul. 2015.

[106] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Inter-

national Conference on Machine Learning (ICML), Jun. 2010.

[107] Y. He, K. Kavukcuoglu, Y. Wang, A. Szlam, and Y. Qi, “Unsupervised feature learn-

ing by deep sparse coding,” in SIAM International Conference on Data Mining, Apr.

2014.

[108] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information,” IEEE Transactions

on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[109] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

Jun. 2015.

160



BIBLIOGRAPHY

[110] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Im-

proving neural networks by preventing co-adaptation of feature detectors,” CoRR,

vol. abs/1207.0580, Jul. 2012.

[111] M. Lin, Q. Chen, and S. Yan, “Network in network,” CoRR, vol. abs/1312.4400,

Dec. 2013.

[112] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1mb model

size,” CoRR, vol. abs/1602.07360, Feb. 2016.

[113] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng, “ICA with reconstruction cost

for efficient overcomplete feature learning,” in Conference and Workshop on Neural

Information Processing Systems (NIPS), Dec. 2011.

[114] H. Zou, “The adaptive lasso and its oracle properties,” Journal of the American

Statistical Association, vol. 101, no. 476, pp. 1418–1429, Dec. 2006.

[115] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its

oracle properties,” Journal of the American Statistical Association, vol. 96, no. 456,

pp. 1348–1360, Dec. 2001.

[116] T. T. Do, L. Gan, N. Nguyen, and T. D. Tran, “Sparsity adaptive matching pursuit

algorithm for practical compressed sensing,” in Asilomar Conference on Signals,

Systems and Computers, Oct. 2008.

161



BIBLIOGRAPHY

[117] V. C. Raykar and L. H. Zhao, “Nonparametric prior for adaptive sparsity,” Journal

of Machine Learning Research, vol. 9, pp. 629–636, May 2010.

[118] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and super-resolution by

adaptive sparse domain selection and adaptive regularization,” IEEE Transactions

on Image Processing, vol. 20, no. 7, pp. 1838–1857, Jul. 2011.

[119] C.-H. Z. Jian Huang, Shuangge Ma, “Adaptive Lasso for sparse high-dimensional

regression models,” Statistica Sinica, vol. 18, no. 4, pp. 1603–1618, Oct. 2008.

[120] P. O. Hoyer, “Non-negative sparse coding,” in IEEE Workshop on Neural Networks

for Signal Processing, Feb. 2002.

[121] J. Mairal, F. R. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factoriza-

tion and sparse coding,” Journal of Machine Learning Research, vol. 11, pp. 19–60,

Mar. 2010.

[122] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu, “Non-negative low rank and

sparse graph for semi-supervised learning,” in IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR), Jun. 2012.

[123] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural networks for matlab,”

in Proceeding of the ACM International Conference on Multimedia, Dec. 2015.

[124] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller, “Striving for

simplicity: The all convolutional net,” CoRR, vol. abs/1412.6806, Dec. 2014.

162



BIBLIOGRAPHY

[125] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny im-

ages,” Master’s thesis, Department of Computer Science, University of Toronto, Apr.

2009.

[126] C. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in

Conference and Workshop on Neural Information Processing Systems (NIPS), May

2015.

[127] J. Mairal, “End-to-end kernel learning with supervised convolutional kernel

networks,” CoRR, vol. abs/1605.06265, May 2016. [Online]. Available: http:

//arxiv.org/abs/1605.06265

[128] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” CoRR, vol.

abs/1505.00387, May 2015.

[129] S. Zagoruyko and N. Komodakis, “Wide residual networks,” CoRR, vol.

abs/1605.07146, May 2016. [Online]. Available: http://arxiv.org/abs/1605.07146

[130] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits

in natural images with unsupervised feature learning,” in Conference and Workshop

on Neural Information Processing Systems (NIPS), Dec. 2011.

[131] A. Patala, “Residual networks in torch (MNIST 100 layers),” https://deepmlblog.

wordpress.com/2016/01/05/residual-networks-in-torch-mnist/, Jun. 2016.

163

http://arxiv.org/abs/1605.06265
http://arxiv.org/abs/1605.06265
http://arxiv.org/abs/1605.07146
https://deepmlblog.wordpress.com/2016/01/05/residual-networks-in-torch-mnist/
https://deepmlblog.wordpress.com/2016/01/05/residual-networks-in-torch-mnist/


Vita

Xiaoxia Sun was born in Shenyang, China in 1988.

He received the B.Eng. degree in electronic engineering

from Beihang University, Beijing, China, in 2011 and the

M.Sc. degree in electrical and computer engineering from

the Johns Hopkins University, Baltimore, MD, USA, in

2013.Since June 2012 he has been working as an Asso-

ciate Member of Technical Staff at the U.S. Army Re-

search Laboratory, Adelphi, MD, USA. He received M.S.E

degree from the Johns Hopkins in 2012. He is currently with the Electrical and Computer

Engineering Department, Johns Hopkins University. His research interests include the the-

ory and applications of compressed sensing and sparse representations, deep learning and

large-scale optimization problems.

164


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction and Motivation
	Sparse Coding with Structured Sparsity Priors
	Introduction
	HSI Classification via Different Structured Sparse Priors
	Joint Sparsity Prior
	Laplacian Sparsity Prior
	Group Sparsity Prior
	Sparse Group Sparsity Prior
	Low Rank/Group Sparsity Prior

	Experimental Verification
	Datasets and Dictionary Generation
	Models and Methods
	Performance

	Summary

	Sparse Coding with Task-driven Dictionary Learning and Structured Sparsity Priors
	Introduction
	Task-driven Dictionary Learning
	Task-driven Dictionary Learning with Joint Sparsity Prior
	Task-driven Dictionary Learning with Laplacian Sparsity Prior
	Sparse Recovery Algorithm
	Dictionary Updating Rule

	Experimental Verification
	Datasets and Dictionary Generation
	Performance on AVIRIS Indian Pine Dataset
	Performance on ROSIS Pavia Urban Dataset

	Summary

	Invariant Single Layer Sparse Coding
	Alignment Issue with Sparse Representation Classifier
	Large Displacement Optical Flow
	Invariant Sparse Coding via Large Displacement Optical Flow
	Supervised Dictionary Learning for Invariant Sparse Coding

	Experimental Verification
	Evaluation on the MNIST Database
	Evaluation on the USPS Database

	Summary

	Unsupervised Multilayer Invariant Sparse Coding for Large Dataset
	Introduction
	Hierarchical Invariant Sparse Coding with Adaptive Dictionary
	Invariant Sparse Coding with Adaptive Dictionaries
	Hierarchical Invariant Sparse Coding

	Layer-wise Unsupervised Dictionary Learning
	Experimental Verification
	Evaluation on the MNIST Database
	Evaluation on the CIFAR-10 Database
	Evaluation on the STL-10 Database

	Summary

	Supervised Multilayer Sparse Coding Networks
	Introduction
	Supervised Learning and Adaptive Regularization
	Multilayer Sparse Coding networks
	Multilayer Architecture
	Weighted Nonnegative Sparse Coding
	Adaptive Regularization
	Supervised Dictionary Learning

	Experimental Verification
	Evaluation on CIFAR-10 Database
	Evaluation on CIFAR-100 Database
	Evaluation on SVHN Database
	Evaluation on MNIST Database

	Summary

	Conclusion and Future Research
	Conclusion
	Future Research
	Integrating Sparse Coding Networks with Convolutional Neural Networks
	Fast Approximation of Sparse Coding
	Construction of Wide Sparse Coding Network


	Appendix
	Appendix A
	Appendix B
	Appendix C

	Vita

