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Abstract

Dynamic instrumentation and estimation of vehicle attitude is critical to the

accurate navigation of land, sea, and air vehicles in dynamic motion. The fo-

cus of this thesis is the development of algorithms for improved performance

of attitude and heading reference systems (AHRSs) and robotic vehicle navi-

gation. inertial measurement unit (IMU) sensor bias estimation methods for

use in the calibration of AHRSs and an adaptive attitude estimator operating

directly of SO(3) are reported. The reported algorithms provide online calibra-

tion and attitude estimation methods which enable more accurate navigation

for robotic vehicles.

This thesis differentiates AHRSs into two categories – AHRSs that esti-

mate true-North heading and those that estimate magnetic north heading.

Chapters 3-5 report several novel algorithms for micro-electro-mechanical

systems (MEMS) IMU sensor bias estimation. Observability, stability, and pa-

rameter convergence are evaluated in numerical simulations, full-scale vehicle

laboratory experiments, and full-scale field trials in the Chesapeake Bay, MD.

Chapter 6 reports an adaptive sensor bias observer and attitude observer

operating directly on SO(3) for true-North gyrocompass systems that uti-

lize six-degrees of freedom (DOF) IMUs with three-axis accelerometers and
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three-axis angular rate gyroscopes (without magnetometers) to dynamically

estimate the instrument’s time-varying true-North attitude (roll, pitch, and

geodetic heading) in real-time while the instrument is subject to a priori un-

known rotations. Stability proofs for the reported bias and attitude observers,

preliminary simulations, and a full-scale vehicle trial are reported.

The presented calibration methods are shown experimentally to improve

calibration of AHRS attitude estimation over current state of the art sensor

bias estimation methods, and this thesis presents a true-North gyrocompass

system based on adaptive observers for use with strap-down IMUs. These

results may prove to be useful in the development of navigation systems for

small low-cost robotic vehicles.
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Chapter 1

Motivation

The dynamic instrumentation and estimation of vehicle attitude, especially

geodetic heading, is critical to the accurate navigation of land, sea, and air

vehicles in dynamic motion. The need for accurate attitude estimation is

particularly acute in the case of vehicles operating in global positioning system

(GPS) denied environments (such as underwater). Smaller and lower-cost

vehicles represent an additional challenge due to their limited sensor budget,

small physical size, and limited energy storage capacity.

Over the past decade, the development of a new generation of small

low-cost robotic vehicles has begun to enable oceanographic, environmental

assessment, and national security missions that were previously considered

impractical or infeasible (e.g. [8, 9, 14, 26, 40, 47, 66, 80]). These small low-cost

robotic vehicles commonly employ micro-electro-mechanical systems (MEMS)

inertial measurement units (IMUs) comprised of 3-axis MEMS magnetometers,

angular rate sensors, and accelerometers to estimate local magnetic heading,

pitch, and roll, typically to within several degrees of accuracy, but require

careful soft-iron and hard-iron calibration and compensation to achieve these
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accuracies. Moreover, magnetic attitude sensors must be recalibrated for

soft-iron and hard-iron biases whenever the vehicle’s physical configuration

changes significantly (i.e. sensors or other payloads added or removed), as

very commonly occurs on oceanographic marine and experimental robotic

vehicles. Studies have shown that the accuracy of heading sensors is often the

principal error source in overall navigation solutions [30]. Thus it is essential

to estimate accurately and compensate for attitude sensor biases in order to

achieve high accuracy attitude estimation.

This thesis differentiates attitude and heading reference systems (AHRSs)

into two different classifications – those that estimate true-North heading and

those that estimate magnetic north heading. The focus of this thesis is the

estimation of attitude and IMU sensor biases for use in the calibration of these

two different classes of AHRSs.

1.1 True-North Versus Magnetic Heading

True-North heading estimation differs from that of magnetic heading in that

true-North heading is the direction towards the Earth’s axis of rotation at the

North Pole, while magnetic heading measures the direction of the horizontal

component of the Earth’s local magnetic field, which differs dramatically from

true-North, often by many 10’s of degrees and varies with geodetic location

and over time – a difference termed local magnetic variation.

Magnetic heading AHRSs utilize magnetometers for measuring the Earth’s

local magnetic field vector and fuse that measurement with accelerometer

measurements to generate a magnetic heading direction in the local level
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plane. Magnetometers (including those employed in IMUs) are subject to two

primary sensor calibration errors: hard-iron and soft-iron biases. Hard-iron

biases are constant magnetometer sensor bias terms due to the permanent

magnetic signature of the instrument and the vehicle. Soft-iron biases are non-

constant magnetometer sensor bias terms due to the magnetic permeability

of the instrument and the vehicle, and will vary with vehicle heading and

attitude. For most IMU magnetometers, hard-iron biases dominate soft-iron

biases.

The most commonly utilized model for 3-axis magnetometer hard-iron

and soft-iron sensor bias is

mm(t) = Tmt(t) + mb + ηm(t) (1.1)

(1.2)

where mm(t) ∈ R3 is the measured magnetic sensor value in the instrument

frame, mt(t) ∈ R3 is the true magnetometer field vector in the instrument

frame, T ∈ R3×3 is a positive definite symmetric (PDS) matrix due to soft-iron

effects, mb ∈ R3 is the sensor bias due to hard-iron effects, and ηm(t) is the

zero-mean Gaussian measurement noise.

The gyroscope sensors (includes all MEMS IMUs) used in magnetic-North

attitude sensors typically lack the sensitivity (the magnitude of Earth rate is

orders of magnitude smaller than the magnitude of MEMS angular rate gyro

sensor noise) to detect the 15◦/hr angular rate of Earth and are commonly
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modeled as

wm(t) =��
��⌃

0
wE(t) + wv(t) + wb + ηw(t) (1.3)

where wm(t) ∈ R3 is the measured angular rate vector in instrument coordi-

nates, wE(t) ∈ R3 is the angular rate of the Earth (15◦/hr), wv(t) ∈ R3 is the

angular rate of the instrument with respect to the local North, East, Down

frame, wb ∈ R3 is a constant measurement bias, and ηw(t) ∈ R3 is zero-mean

Gaussian measurement noise.

In contrast, true-North gyrocompass systems use high-end gyroscopes,

such as three-axes fiber optic gyroscopes (FOGs) or ring laser gyros (RLGs),

which are sensitive enough (∥wE(t)∥ ≳ ∥ηw(t)∥) to measure Earth’s angular

rate and are typically modeled as

wm(t) = wE(t) + wv(t) + wb + η(t) (1.4)

where the terms are the same as in (1.3). Table 6.1, on page 127, compares the

technical specifications of these different classes of IMUs. By fusing gyroscope

and accelerometer measurements, true-North gyrocompass systems generate

an estimate for the true-North heading direction and roll and pitch (local

level).

In both classes of AHRSs, sensor biases vitiate the accuracy of attitude

estimation of the systems. Hence, accurate estimation of sensor biases is

essential for AHRSs. In magnetic heading systems, soft-iron and hard-iron

magnetometer biases, T and mb, are the most important biases to estimate and

compensate for, and in true-North heading systems, accurate wb estimation
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and compensation is essential. In addition fo estimation and compensation of

sensor biases, this thesis focuses on methods for performing on-line estimation

and compensation of IMU sensor biases for use in both magnetic-North and

true-North AHRSs.

1.2 Thesis Outline

The main contributions of this Thesis are presented in Chapters 3-6. Chapters

3-5 focus on novel on-line methods for the calibration of magnetic heading

AHRSs, while Chapter 6 presents nonlinear adaptive observers for a true-

North gyrocompass AHRS.

Chapter 2 - Preliminaries: Chapter 2 defines the coordinate frames, notation,

and mathematic preliminaries used in this thesis.

Chapter 3 - Sensor Bias Identification in 9-DOF MEMS IMUs [61]: Nine

degrees of freedom (DOF) inertial measurement units (IMUs) comprised of

three-axis magnetometers, three-axis accelerometers, and three-axis angular

rate sensors are commonly used in AHRSs. These systems fuse IMU mea-

surements to generate estimates of the instrument’s roll, pitch, and magnetic

heading. However, their accuracy is limited by sensor measurement bias that

is unknown a priori. Hence, accurate sensor bias estimation and compensation

is essential for true attitude estimation. This chapter reports a novel adaptive

sensor bias observer for sensor measurement biases in 9-DOF IMUs. The

algorithm requires (i) smaller angular movements of the instrument than

other reported sensor bias calibration methods, (ii) does not require a priori

knowledge of local fields like the local magnetic field or the local gravity
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vector, and (iii) does not require knowledge of the attitude of the instrument.

Stability proofs, preliminary simulations, and a full-scale vehicle experimental

evaluation are reported. These results were reporting in [61].

Chapter 4 - A Stable Adaptive Observer for Hard-Iron and Soft-Iron Bias

Calibration and Compensation for Two-Axis Magnetometers [62]: This chap-

ter addresses the problem of on-line estimation and compensation of the hard-

iron and soft-iron biases of a 2-axis magnetometer under dynamic motion,

utilizing only biased measurements from a 2-axis magnetometer.

The proposed adaptive observer formulates the relation between the true

magnetic field vector and the magnetometer measurements as an algebraic

system where the unknown biases enter linearly. The observer is shown to

be globally stable. When the magnetometer measurements are persistently

exciting (PE), the system is shown to be globally asymptotically stable, and

the biases are shown to converge to their true values. The estimated biases are

used to provide a calibrated magnetic field direction vector which is utilized

to estimate magnetic geodetic heading.

The adaptive observer is evaluated in a numerical simulation and a full-

scale vehicle trial. For the proposed observer: (i) knowledge of the instrument

attitude is not required for sensor bias estimation, (ii) zero a priori knowledge

of the local magnetic field vector magnitude or vector direction is needed

for accurate AHRS calibration, (iii) the system is shown to be globally stable,

(iv) the error system is shown to be globally asymptotically stable when the

measured magnetometer signal is PE. (v) magnetometer hard-iron and soft-

iron bias compensation is shown to dramatically improve dynamic heading
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estimation accuracy. These results were reporting in 4.

Chapter 5 - Online 3-Axis Magnetometer Hard-Iron and Soft-Iron Bias and

Angular Velocity Sensor Bias Estimation Using Angular Velocity Sensors

for Improved Dynamic Heading Accuracy [63]: This chapter addresses the

problem of dynamic on-line estimation and compensation of hard-iron and

soft-iron biases of 3-axis magnetometers under dynamic motion in field

robotics, utilizing only biased measurements from a 3-axis magnetometer

and a 3-axis angular rate sensor. These results were developed in collabora-

tion with Abhimanyu Shah and are reported in [63].

The proposed magnetometer and angular velocity bias estimator (MAVBE)

utilizes a 15-state process model encoding the nonlinear process dynamics

for the magnetometer signal subject to angular velocity excursions, while

simultaneously estimating 9 magnetometer bias parameters (for both hard-

iron and soft-iron bias) and 3 angular rate sensor bias parameters, within an

extended Kalman filter (EKF) framework. Bias parameter observability is

evaluated. The bias-compensated signals, together with 3-axis accelerometer

signals, are utilized to estimate bias compensated magnetic geodetic heading.

Performance of the proposed MAVBE method is evaluated in comparison

to the widely cited magnetometer-only TWOSTEP [2] method in numerical

simulations, laboratory experiments, and full-scale field trials of an instru-

mented AUV in the Chesapeake Bay, MD, USA. For the proposed MAVBE, (i)

instrument attitude is not required to estimate biases, and the results show

that (ii) the biases are observable, (iii) the bias estimates converge rapidly

to true bias parameters, (iv) only modest instrument excitation is required
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for bias estimate convergence, and (v) compensation for magnetometer hard-

iron and soft-iron bias dramatically improves dynamic heading estimation

accuracy.

Chapter 6 - Adaptive Bias and Attitude Observer on the Special Orthogo-

nal Group for True-North Gyrocompass Systems [58, 59, 60, 64, 65]: This

chapter reports an adaptive sensor bias observer and attitude observer op-

erating directly on SO(3) for true-North gyrocompass systems that utilize

six-DOF inertial measurement units IMUs with three-axis accelerometers and

three-axis angular rate gyroscopes (without magnetometers). Most present-

day low-cost robotic vehicles employ attitude estimation systems that employ

micro-electromechanical systems MEMS magnetometers, angular rate gyros,

and accelerometers to estimate magnetic attitude (roll, pitch, and magnetic

heading) with limited heading accuracy. Present day MEMS gyros are not

sensitive enough to dynamically detect the Earth’s rotation, and thus can-

not be used to estimate true-North geodetic heading. Relying on magnetic

compasses can be problematic for vehicles which operate in environments

with magnetic anomalies and those requiring high accuracy navigation as the

limited accuracy (> 1◦ error) of magnetic compasses is typically the largest

error source in underwater vehicle navigation systems. Moreover, magnetic

compasses need to undergo time-consuming recalibration for hard-iron and

soft-iron errors every time a vehicle is reconfigured with a new instrument or

other payload, as very frequently occurs on oceanographic marine vehicles. In

contrast, the gyrocompass system reported herein utilizes FOG IMU angular

rate gyro and MEMS accelerometer measurements (without magnetometers)
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to dynamically estimate the instrument’s time-varying true-North attitude

(roll, pitch, and geodetic heading) in real-time while the instrument is subject

to a priori unknown rotations. This gyrocompass system is (i) immune to

magnetic anomalies and (ii) does not require recalibration every time a new

payload is added to or removed from the vehicle. Stability proofs for the

reported bias and attitude observers, preliminary simulations, and a full-scale

vehicle trial are reported that suggest the viability of the true-North gyro-

compass system to provide dynamic real-time true-North heading, pitch, and

roll utilizing a comparatively low-cost FOG IMU. Several different earlier

approaches to these problems are reported in [58, 59, 60, 64], and the final

version and results are reported in [65].

Chapter 7 - Conclusion: The thesis results are summarized and directions for

future work are presented.

Appendix A - Johns Hopkins University (JHU) hydrodynamic test facil-

ity (HTF): This appendix reports the Johns Hopkins University (JHU) hydro-

dynamic test facility (HTF) [29] and its JHU remotely operated vehicle (ROV)

and JHU Iver3 autonomous underwater vehicle (AUV) used for the design,

development, and testing of oceanographic systems.
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Chapter 2

Preliminaries

This chapter summarizes the coordinate frames, notation, and math prelim-

inaries used in this thesis. Section 2.1 defines the coordinate frames used

throughout this thesis, Section 2.2 presents the rotation matrix and vector

notation used, and Section 2.3 reports mathematical operators, propositions,

and lemmas used throughout this thesis.

2.1 Coordinate Frames

We define the following coordinate frames:

• Instrument Frame: A frame, denoted (i), fixed in the IMU instrument.

• North-East-Down (NED) Frame: The NED frame, denoted (N), has its

x-axis pointing North, its y-axis pointing East, its z-axis pointing down,

and its origin co-located with that of the instrument frame.

Figure 2.1 illustrates these two coordinate frames.
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Figure 2.1: The North-East-Down (NED) and instrument coordinate frames are co-
located.
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2.2 Notation

For vectors, a leading superscript indicates the frame of reference and a follow-

ing subscript indicates the signal source, thus Nwm is the measured instrument

angular velocity in the NED frame and iam is the measured instrument linear

acceleration in the instrument sensor frame.

For rotation matricies a leading superscript and subscript indicates the

frames of reference. For example, N
i R is the rotation from the instrument frame

to the NED frame.

2.3 Mathematical Preliminaries

This section presents operators and mathematical facts that will be used

throughout this thesis.

2.3.1 Operators

The following operators will be used throughout this thesis.

Skew-Symmetric Operator: J is a mapping R3 → so(3), such that ∀ x ∈

R3,

J (x) =

⎡⎣ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎤⎦ , (2.1)

where x = [x1 x2 x3]
T. We define its inverse J −1 : so(3) → R3, such that

∀x ∈ R3, J −1(J (x)) = x.

Jacobian Operator: D is a mapping Rm → Rm×n , such that for x ∈ Rn

and f : Rn → Rm, Dx[ f (x)]µ gives the m × n Jacobian of f (x) with respect to
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x evaluated at µ.

Stack Operator: ( · )s is a mappingRm×n → Rmn. For a matrix A ∈ Rm×n,

the stack operator [55] is defined as

As = [a11 . . . am1 a12 . . . am2 a1n . . . amn]
T. (2.2)

Kronecker Product For a matrix A ∈ Rp×q and B ∈ Rr×s, the Kronecker

product [55] is defined as

A ⊗ B =

⎡⎢⎣a11B . . . a1qB
...

...
ap1B . . . apqB

⎤⎥⎦ . (2.3)

2.3.2 Mathematical Background

We will make use of the following mathematical facts:

Proposition: For Q(t) ∈ so(3), the rotation matrix R(t) can be computed

by Rodrigues Equation [41]

R(t) = I3×3 + γ(t)Q(t) + κ(t)Q(t)2 (2.4)

where

γ(t) =
sin(∥q(t)∥)

∥q(t)∥ (2.5)

κ(t) =
1 − cos(∥q(t)∥)

∥q(t)∥2 (2.6)

q(t) = J −1(Q(t)). (2.7)
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Proposition: q̇(t) is related to Ṙ(t) by the mapping

RT(t)Ṙ(t) = J (A(q(t))q̇(t)) (2.8)

where A(q(t)) is the right Jacobian of R(t) = eJ (q(t)) with respect to the

angular position vector q(t) ∈ R3. A(q(t)):

A (q(t)) = I3×3 − ϕ(t)J (q(t)) + ψ(t)J 2 (q(t)) (2.9)

ϕ(t) =
1 − cos (∥q(t)∥)

∥q(t)∥2 (2.10)

ψ(t) =
∥q(t)∥ − sin (∥q(t)∥)

∥q(t)∥3 (2.11)

and its inverse,

A−1(q(t)) = I3×3 + αJ (q(t)) + β(t)J 2(q(t)) (2.12)

where

α =
1
2

, (2.13)

β(t) =
1

∥q(t)∥2 − 1 + cos(∥q(t)∥)
2∥q(t)∥ sin(∥q(t)∥) , (2.14)

are reported in [7].

If A(q(t)) is invertible, (2.8) can be rearranged as

q̇(t) = A−1 (q(t))J −1
(

RT(t)Ṙ(t)
)

. (2.15)

Definition (Persistent Excitation (PE)) [52]: A matrix function W : R+ →

15



Rm×m is PE if there exists T, α1, α2 > 0 such that for all t ≥ 0:

α1 Im ≥
∫ t+T

t
W(τ)WT(τ) dτ ≥ α2 Im (2.16)

where Im ∈ Rm×m is the identity matrix.

Definition: Uniform Complete Observability (UCO) [52] The system

[A(t), C(t)] is called uniformly completely observable (UCO) if there exist

strictly positive constants β1, β2, δ, such that, ∀t0 ≥ 0

β2 I ≥ N(t0, δ) ≥ β1 I (2.17)

where N(t0, δ) ∈ Rn×n is the observability grammian

N(t0, δ) =
∫ t0+δ

t0

ΦT(τ, t0)CT(τ)C(τ)Φ(τ, t0) dτ (2.18)

and Φ(t, t0) is the transition matrix for A(t) [51].

Lemma 1 : The following lemma is a variation of Lemma A.1 in [5]. Given

a system of the following form:

ẋ(t) = A(t)x(t) + f (t) (2.19)

y(t) = Cx(t) (2.20)

where x(t) ∈ Rn, and y(t) ∈ Rp such that

(i) limt→∞ ∥y(t)∥ = 0

(ii) limt→∞ ∥ f (t)∥ = 0

(iii) [A(t), C] is UCO;
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then limt→∞ ∥x(t)∥ = 0.

Lemma 1 Proof: The proof follows the structure of the proof of Lemma

A.1 in [5].

First, note that from (iii), the system

ẋ(t) = A(t)x(t) (2.21)

y(t) = Cx(t) (2.22)

is UCO. That is, ∃β1, β2, δ > 0 such that ∀t0 ≥ 0, the observability grammian

N(t0, δ) =
∫ t0+δ

t0

ΦT(τ, t0)CTCΦ(τ, t0) dτ (2.23)

satisfies (2.17).

Next, recall that the solution of the system (2.19) for any t0 ≥ 0 is given by

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ) f (τ) dτ. (2.24)
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Then

N(t, δ)x(t) =
∫ t+δ

t
ΦT(τ, t)CTCΦ(τ, t) dτ x(t)

=
∫ t+δ

t
ΦT(τ, t)CTCΦ(τ, t)[Φ(t, t0)x(t0)

+
∫ t

t0

Φ(t, s) f (s) ds] dτ

=
∫ t+δ

t
ΦT(τ, t)CTC[x(τ)

−
∫ τ

t
Φ(τ, s) f (s) ds] dτ

=
∫ δ

0
ΦT(σ + t, t)CT[Cx(σ + t)

−
∫ σ+t

t
CΦ(σ + t, s) f (s) ds] dσ

=
∫ δ

0
ΦT(σ + t, t)CT[y(σ + t)

−
∫ σ

0
CΦ(σ + t, v + t) f (v + t) dv] dσ (2.25)

Since

• Φ(σ + t, t) and Φ(σ + t, v + t) are bounded (from (iii)) on [0, δ],

• limt→∞ y(t) = 0,

• and limt→∞ f (t) = 0,
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then

lim
t→∞

N(t, t + δ)x(t) = 0. (2.26)

Thus, from (2.26) and (iii), we can conclude that

lim
t→∞

∥x(t)∥ = 0. (2.27)

Barbalat’s Lemma [27]: Let ϕ : R→ R be a uniformly continuous function

on [0, ∞). Suppose that limt→∞
∫ t

0 ϕ(τ) dτ exists and is finite. Then,

lim
t→∞

ϕ(t) = 0. (2.28)
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Chapter 3

Sensor Bias Identification in 9-DOF
MEMS IMUs

3.1 Introduction

This chapter is based on the results and research reported in [61]. The chapter

reports, to the authors’ knowledge, the first method for doing real-time sensor

bias estimation of 9-DOF IMUs without the need for knowledge of the instru-

ment’s attitude. In addition, the proposed algorithm requires smaller angular

movements compared to common sensor bias estimation methods, does not

require local field information, and can be implemented in real-time.

Nine DOF IMUs comprised of three-axis magnetometers, three-axis ac-

celerometers, and three-axis angular-rate sensors are widely used in AHRSs

for robotic vehicle navigation and in personal electronics such as smart-phones

and tablets. AHRSs are comprised of two classes: AHRSs that estimate true-

North heading and those that estimate magnetic-North heading. True-North

heading AHRSs require angular rate sensors sensitive enough to dynamically

estimate Earth-rate (typically fiber-optic or ring-laser gyros). Magnetic-North
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heading AHRSs instead use magnetometers for estimating heading, as their

angular rate sensors commonly are not sensitive enough to detect Earth-rate

dynamically (i.e. all MEMS gyros). This chapter will focus on the ubiqui-

tous latter class of AHRSs that employ angular rate sensors which lack the

sensitivity to detect the Earth-rate signal. Magnetometers measure Earth’s

local magnetic field vector and are commonly used to determine the device

heading. Accelerometers measure the linear acceleration and are commonly

used as a low frequency measurement of Earth’s local gravity vector (roll and

pitch). Angular-rate gyroscopes measure the angular velocity of the device.

Several methods for doing magnetic heading attitude estimation with 9-

DOF IMUs have been reported. Crassidis et al. provide a review of attitude

estimation methods [12]. Nonlinear complementary filters for doing attitude

estimation are reported by Hamel and Mahony [20], Mahony et al. [35], and

Metni et al. [37, 38]. Wu et al. report a globally asymptoticly stable attitude

observer on SO(3) and a recent study by Costanzi et al. explores utilizing a

FOG for doing attitude estimation under unknown magnetic disturbances

[10].

These attitude observers, however, require accurate sensor bias estimation

and calibration in order to achieve accuracy to within several degrees of

accuracy. Moreover, magnetic attitude sensors must be recalibrated for soft-

iron and hard-iron errors whenever the vehicle physical configuration changes

significantly (i.e. sensors or other payloads added or removed, etc.). Studies

have shown that the accuracy of these magnetic heading sensors can be a

principal error source in overall navigation solutions [30]. Thus, it is essential
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to accurately estimate sensor biases in order to achieve high accuracy attitude

estimation.

Several methods for magnetometer bias estimation have been reported

in recent years. Alonso and Shuster proposed the widely cited “TWOSTEP”

method [1] for estimating magnetometer hard-iron sensor bias, and in an-

other paper an extended method for calculating magnetometer scale and

orthogonality factors as well [2]. Vasconselos et al. present magnetometer bias

estimation as an ellipsoid fitting problem which can be solved with an iterative

maximum likelihood estimate (MLE) approach [74]. Kok et al. [31] and Li and

Li [33] fuse accelerometer measurements with magnetometer measurements

to estimate magnetometer sensor bias. These methods, however, require large

angular movements and are batch estimators that are not practical for on-line

real-time estimation of magnetometer sensor bias.

Sensor biases change over time due to changes in sensor payload, temper-

ature, etc., which make it imperative to estimate sensor biases in real time.

Crassidis et al. report an extension to the TWOSTEP method based on the EKF

[11] and Guo et al. present an alternative EKF approach for doing magnetome-

ter sensor bias estimation [19]. Troni and Whitcomb [70, 72] report an adaptive

method utilizing gyroscope measurements for doing magnetometer sensor

measurement hard-iron bias estimation. However, while these approaches

estimate magnetometer biases in real time they do not address real-time es-

timation of accelerometer and angular-rate gyroscope sensor bias which is

needed for accurate dynamic attitude estimation.

George and Sukkarieh report an identifier for accelerometer and gyroscope
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sensor bias [18]. However, they utilize GPS which is unavailable to robotic

vehicles in GPS-denied environments (i.e. land and air vehicles without clear

view of the sky, and all submerged underwater vehicles). Scandaroli et al. [54]

and Scandaroli and Morin [53] also report a sensor bias estimator for 6-DOF

IMUs (3-axis accelerometer and 3-axis gyroscope) utilizing computer vision.

This method though is dependent on the presence of a vision system, which

requires identification markers and a camera system which is unavailable for

many robotic vehicle (e.g. many underwater vehicles (UVs)). In addition,

Metni et al. and Pflimlin et al. report nonlinear complementary filters for esti-

mating attitude and gyroscope sensor bias [37, 38, 50]. While these estimators

identify angular-rate sensor bias or both angular-rate and linear acceleration

sensor bias, they do not estimate sensor biases of full 9-DOF IMUs that are

commonly used in attitude estimation systems.

This chapter is organized as follows: Section 3.2 reports the IMU mea-

surement model. Section 3.3 reports the 9-DOF IMU sensor bias observer

and stability proof. Section 3.4 presents numerical simulations. Section 3.5

presents experimental results. Section 3.6 summarizes and concludes.
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3.2 9-DOF IMU Measurement Model

We define the following measurement models for 9-DOF IMUs:

iae(t) = iag(t) + iav(t) + iab (3.1)

iwe(t) = iwE(t) + iwv(t) + iwb (3.2)

ime(t) = Timt(t) + imb (3.3)

where iwe(t) is the noise-free angular-rate measurement, iwE(t) is the true

angular velocity due to the rotation of the Earth, iwv(t) is the true angular

velocity due to the rotation of the instrument with respect to the NED frame,

iwb is the angular velocity sensor bias offset, iae(t) is the noise-free linear

acceleration measurement, iag(t) is the true linear acceleration due to gravity

and the Earth’s rotation, iav(t) is the instrument’s true linear acceleration with

respect to Earth, iab is the linear accelerometer sensor bias offset, ime(t) is the

noise-free magnetometer measurement, imt(t) is Earth’s true magnetic field, T

is the orthogonality matrix, and imb is the magnetometer sensor bias offset. T

is a heading dependent magnetometer error that is commonly called soft-iron

error, while the constant magnetometer bias, imb, is called hard-iron error and

is often the dominant magnetometer error source.

For many robotic vehicles, the gravitational field iag(t) dominates the

vehicle linear acceleration (iav(t)). Thus, it is common to employ the approxi-

mation

iae(t) ≈ iag(t) + iab (3.4)
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as a low-frequency estimate of (3.1) [10, 35, 50, 78]. The measurement noise

in MEMS IMU angular rate sensors is many orders of magnitude larger than

the Earth-rate signal iwE(t). Hence, it is common to neglect the (undetectable)

Earth-rate signal in MEMS IMU gyro measurement models. A previous study

by Troni and Whitcomb [72] has shown that the orthogonality matrix, T,

in the MicroStrain 3DM-GX3-25 MEMS IMU is close to the identity matrix.

Therefore, T is approximated to be the identity matrix and the resulting sensor

measurement model is

iae(t) = iag(t) + iab (3.5)

iwe(t) = iwv(t) + iwb (3.6)

ime(t) = imt(t) + imb. (3.7)

Hard-iron errors dominate soft-iron errors, and hence hard-iron bias estima-

tion is the magnetometer sensor bias focused on in this chapter. We address

soft-iron errors in Chapters 4 - 5.

3.3 9-DOF IMU Sensor Bias Observer

3.3.1 System Model

We consider the system model

Nag = N
i R(t)

(
iae(t)− iab

)
(3.8)

Nmt =
N
i R(t)

(
ime(t)− imb

)
(3.9)
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where N
i R(t) is the rotation from the instrument frame, denoted i, to the NED

frame, denoted N. Differentiating (3.8) and (3.9) and rearranging terms yields

i ȧe(t) = −J
(

iwe(t)− iwb

) (
iae(t)− iab

)
(3.10)

≈ −J
(

iwe(t)
) (

iae(t)− iab

)
+ J

(
iwb

)
iae(t) (3.11)

iṁe(t) = −J
(

iwe(t)− iwb

) (
ime(t)− imb

)
(3.12)

≈ −J
(

iwe(t)− iwb

)
ime(t) + J

(
iwe(t)

)
imb (3.13)

where we employ the approximation that J
(iwb

) iab ≈ 0 and J
(iwb

) imb(t) ≈

0, since the cross products between sensor biases are orders of magnitude

smaller than the other signals.

3.3.2 9-DOF IMU Sensor Bias Observer

We consider the observer system model

i ˙̂ae(t) = −J
(

iwe(t)
) (

i âe(t)− i âb(t)
)
+ J

(
iŵb(t)

)
i âe(t)− ka∆a(t)

(3.14)

i ˙̂me(t) = −J
(

iwe(t)− iŵb(t)
)

im̂e(t) + J
(

iwe(t)
)

im̂b(t)− km∆m(t)

(3.15)

i ˙̂wb(t) = −KbwJ
(

iae(t)
)

∆a(t)− KbwJ
(

ime(t)
)

∆m(t) (3.16)

i ˙̂ab(t) = KbaJ
(

iwe(t)
)

∆a(t) (3.17)

i ˙̂mb(t) = KbmJ
(

iwe(t)
)

∆m(t) (3.18)
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where ka and km are positive scalar gain constants, Kbw , Kba , and Kbm are

constant positive definite diagonal gain matrices, and we define the error

terms as

∆a(t) = i âe(t)− iae(t) (3.19)

∆m(t) = im̂e(t)− ime(t) (3.20)

∆wb(t) = iŵb(t)− iwb (3.21)

∆ab(t) = i âb(t)− iab (3.22)

∆mb(t) = im̂b(t)− imb. (3.23)

Note that in order to show that ∆a(t) and ∆m(t) are asymptotically stable, the

gains ka and km are chosen to be scalar gains instead of matrix gains.
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3.3.3 Error System

The resulting error system is

∆ȧ(t) = −J
(

iae(t)
)

∆wb(t) + J
(

iwe(t)
)

∆ab(t)

− ka∆a(t)−J
(

iwe(t)− iŵb(t)
)

∆a(t) (3.24)

∆ṁ(t) = −J
(

ime(t)
)

∆wb(t) + J
(

iwe(t)
)

∆mb(t)

−J
(

iwe(t)− iŵb(t)
)

∆m(t)− km∆m(t) (3.25)

∆ẇb(t) = −KbwJ
(

iae(t)
)

∆a(t)− KbwJ
(

ime(t)
)

∆m(t) (3.26)

∆ȧb(t) = KbaJ
(

iwe(t)
)

∆a(t) (3.27)

∆ṁb(t) = KbmJ
(

iwe(t)
)

∆m(t). (3.28)

3.3.4 Stability

Consider the Lyapunov function candidate

V =
1
2

∆aT(t)∆a(t) +
1
2

∆mT(t)∆m(t) +
1
2

∆wT
b (t)K

−1
bw

∆wb(t)

+
1
2

∆aT
b (t)K

−1
ba

∆ab(t) +
1
2

∆mT
b (t)K

−1
bm

∆mb(t) (3.29)
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where V is a smooth, positive definite, and radially unbounded function by

construction. Differentiating (3.29) yields

V̇ =
(
−∆aT(t)J

(
iae(t)

)
+ ∆aT(t)J

(
iae(t)

))
∆wb(t)

+
(
−∆mT(t)J

(
ime(t)

)
+ ∆mT(t)J

(
ime(t)

))
∆wb(t)

+
(

∆aT(t)J
(

iwe(t)
)
− ∆aT(t)J

(
iwe(t)

))
∆ab(t)

+
(

∆mT(t)J
(

iwe(t)
)
− ∆mT(t)J

(
iwe(t)

))
∆mb(t)

− ∆aT(t)J
(

iwe(t)− iŵb(t)
)

∆a(t)− ∆mT(t)J
(

iwe(t)− iŵb(t)
)

∆m(t)

− ka∥∆a(t)∥2 − km∥∆m(t)∥2

= −ka∥∆a(t)∥2 − km∥∆m(t)∥2 (3.30)

≤ 0. (3.31)

The time derivative of the Lyapunov candidate function is negative semi-

definite, thus guaranteeing global stability of the system, but additional argu-

ments are needed to show global asymptotic stability.

Since the Lyapunov function (3.29) is radially unbounded, bounded be-

low by 0, and bounded above by its initial value, V(t0), due to (3.30), we

can conclude that ∆a(t), ∆m(t), ∆wb(t), ∆ab(t), and ∆mb(t) are bounded. If

we make the assumption that the signals iae(t), iwe(t), ime(t), and iwb are

bounded, then (3.24)-(3.28) are bounded, and hence (3.19)-(3.23) are uniformly
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continuous. For all t ≥ 0,(∫ t

0
∥∆a(τ)∥2 dτ

)1/2

≤
(

1
ka

V(t = t0)

)1/2

, (3.32)

(∫ t

0
∥∆m(τ)∥2 dτ

)1/2

≤
(

1
km

V(t = t0)

)1/2

. (3.33)

Hence, ∆a(t), ∆m(t) ∈ L2. Therefore, from Barbalat’s lemma [27], ∆a(t) and

∆m(t) are globally asymptotically stable at the origin. Hence,

lim
t→∞

∆a(t) = 0, (3.34)

lim
t→∞

∆m(t) = 0. (3.35)

Additional PE arguments beyond the scope of this chapter are required to

show global asymptotic stability of the sensor biases; however preliminary

numerical simulations and experimental results both demonstrate the bias

observer to be asymptotically stable when the IMU sensor measurements are

PE.

3.4 Simulation Evaluation

This section reports a preliminary evaluation of the bias-observer for 9-axis

IMUs, described in Section 3.3, with numerical simulations.

3.4.1 Simulation Setup

The sensor bias observer was evaluated in two numerical simulations.

• Sensor measurement sampling was simulated at 100Hz.
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• The observer gains used during the simulations are:

ka = 1 (3.36)

km = 1 (3.37)

Kbw =

⎡⎣ 0.025 0 0
0 0.025 0
0 0 0.125

⎤⎦ (3.38)

Kba =

⎡⎣ 0.1 0 0
0 0.1 0
0 0 2

⎤⎦ (3.39)

Kbm =

⎡⎣ 0.5 0 0
0 0.5 0
0 0 5

⎤⎦ (3.40)

• Simulations include sensor measurements with sensor noise represen-

tative of the LORD MicroStrain 3DM-GX3-25 AHRS (LORD Sensing,

Williston, VT, USA) [39] — σa = 0.00065 g, σw = 0.005 rad/s, σm = 0.001

gauss.

• The simulation measurements include the sensor biases of:

wb =
[

4 −2 1
]T /1000 rad/s, (3.41)

ab =
[

2 −1 1
]T /1000 g, (3.42)

mb =
[

2 −5 3
]T /10 gauss. (3.43)

• Simulations were for a latitude of 39.32◦N and a longitude of 76.62◦W.
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Figure 3.1: Attitude of the 9-DOF IMU during the Sim1 simulation.

• In Sim1, the simulated instrument is subject to roll and pitch changes of

∼ ±25◦ and heading changes of ∼ ±180◦. Figure 3.1 show the attitude

of the instrument in Sim1.

• In Sim2, the simulated instrument experiences roll changes of ∼ ±100◦,

pitch changes of ∼ ±50◦, and heading changes of ∼ ±180◦. Figure 3.2

show the attitude of the instrument in Sim2.

3.4.2 Simulation Results

The estimated sensor bias errors for the two simulations are shown to converge

to zero in Figures 3.3-3.5. Figure 3.3 reports the estimated accelerometer bias
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Figure 3.2: Attitude of the 9-DOF IMU during the Sim2 simulation.

error, Figure 3.4 reports the estimated angular-rate gyro bias error, and Figure

3.3 reports the estimated magnetometer hard-iron bias error. The reported bias

errors converge to zero, demonstrating the convergence of the estimate sensor

bias terms to their true values. In Sim1 and Sim2, all of the sensor biases

converge. Sim1’s sensor biases converge in ∼ 30 minutes, and in Sim2, the

sensor biases converge within 10 minutes. The slow convergence of the Sim1

accelerometer’s z-component when compared to Sim2 is due to the smaller

attitude changes that the instrument is experiencing. In Sim1, the instrument

experiences roll and pitch changes of ∼ ±25◦, while in Sim2, the instrument

experiences changes of ∼ ±90◦. Like many adaptive identifiers, the rate of
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Figure 3.3: The accelerometer sensor bias estimate error is shown to converge to zero,
demonstrating convergence of the estimated parameter to its true value.

convergence is a function of the degree of PE that the system is receiving.

Hence, the biases converge faster in Sim2 when compared to Sim1 because

Sim2 is experiencing larger changes in attitude.

Sim1 and Sim2 demonstrate convergence of the 9-DOF IMU’s sensor biases

while employing the reported adaptive observer. The simulation results

suggest the practical utility of using the observer reported in Section 3.3 to

conduct real-time sensor bias estimation in 9-DOF IMUs.
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Figure 3.4: The angular-rate sensor bias estimate error is shown to converge to zero,
demonstrating convergence of the estimated parameter to its true value.
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Figure 3.5: The hard-iron magnetometer sensor bias estimate error is shown to
converge to zero, demonstrating convergence of the estimated parameter to its true
value.
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3.5 Experimental Evaluation

This section reports a preliminary evaluation of the bias-observer for 9-axis

IMUs, described in Section 3.3, in a full-scale experimental trial with an IMU

on an UV.

3.5.1 Test Facility

An experimental trial was performed with the Johns Hopkins University (JHU)

remotely operated vehicle (ROV) equipped with a LORD MicroStrain 3DM-

GX3-25 AHRS (LORD Sensing, Williston, VT, USA) [39] in the facility’s 7.5 m

diameter ×4 m deep fresh water tank. See Appendix A on page 189 for more

information on the JHU ROV and the JHU hydrodynamic test facility (HTF).

3.5.2 Experimental Setup

The gyrocompass system is evaluated with a preliminary vehicle trial employ-

ing a LORD MicroStrain 3DM-GX3-25 AHRS [39].

• The observer gains used during the simulations are the same ((3.36)-

(3.40)) as those used in the Sim1 and Sim2 simulations.

• Exp1 was conducted at a latitude of 39.32◦N and a longitude of 76.62◦W.

• The IMU was sampled at 100Hz.

• The ROV was commanded to execute smooth sinusoidal rotations (∼

180◦ in heading and ∼ 10◦ in roll and pitch) while in closed-loop control.

The attitude of the instrument is reported in Figure 3.6.
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Figure 3.6: Vehicle attitude during the laboratory experiment.

3.5.3 Experimental Results

The laboratory experiment’s sensor bias estimates are shown in Figures 3.7-

3.9. Figure 3.7 reports the estimated accelerometer bias, Figure 3.8 reports

the estimated angular-rate gyro bias, and Figure 3.9 reports the estimated

magnetometer hard-iron bias. The results show that during this experimental

evaluation of the reported sensor bias observer, the sensor biases converge. In

this preliminary result, the observer took ∼ 10 minutes to converge. This is

consistent with the convergence time of Sim2.

The experimental evaluation suggest the practical utility of using the
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Figure 3.7: IMU accelerometer sensor bias estimation during the laboratory experi-
ment.

observer to conduct real-time sensor bias estimation in 9-DOF IMUs. We

are currently investigating improvements to the observer’s adaptive gains to

improve its rate of convergence.

3.6 Conclusion

This chapter reports the derivation and stability proof of an adaptive observer

for sensor biases in 9-DOF IMUs. Preliminary simulations and a prelimi-

nary experimental evaluation using a MicroStrain 3DM-GX3-25 AHRS are
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Figure 3.8: IMU angular rate gyro sensor bias estimation during the laboratory
experiment.

presented.

The preliminary simulations and vehicle trial suggest, for the case of a

rotating IMU, the asymptotic convergence of the sensor biases to their true

values. Both the simulations and vehicle experiment demonstrate convergence

of the sensor biases within ∼ 10 minutes.

In future studies, the author hopes to improve the time of convergence,

extend proof to analytically show asymptotic stability of the sensor biases,

and do thorough vehicle trials both in the lab and in the field.
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Figure 3.9: IMU magnetometer hard-iron sensor bias estimation during the laboratory
experiment.
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Chapter 4

A Stable Adaptive Observer for
Hard-Iron and Soft-Iron Bias
Calibration and Compensation for
Two-Axis and Three-Axis
Magnetometers

4.1 Introduction

This chapter is based on the research originally reported in [62]. Dynamic in-

strumentation and estimation of vehicle attitude, especially geodetic heading,

is critical to the accurate navigation of land, sea, and air vehicles in dynamic

motion. Many of these land and sea vehicles are passively stable in roll

and pitch, and hence, experience relatively modest changes in roll and pitch

during normal operation (e.g. surface vehicles, autonomous underwater ve-

hicles (AUVs), and underwater remotely operated vehicles (ROVs)). For this

class of vehicles, it is possible to use 2-axis magnetometers for estimating the

heading of the vehicle. However, the accurate magnetic heading estimation is
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commonly vitiated by very significant hard-iron and soft-iron magnetometer

biases.

This chapter reports a novel adaptive observer for real-time estimation of

2-axis magnetometer hard-iron and soft-iron iron biases of dynamic (rotating

and translating) 2-axis magnetometers without a priori knowledge of the

instrument’s attitude or the instrument’s local magnetic field vector. Unlike

previous on-line approaches which utilize the EKF, global stability of the error

system is proved. Moreover, under a persistently exciting (PE) condition,

the error system is shown to be globally asymptotic stable, and the sensor

bias estimates are shown to converge to the true bias values. We report

performance analyses in a numerical simulation study and in an actual full-

scale experimental trial with a 2-axis magnetometer on the Johns Hopkins

University (JHU) remotely operated vehicle (ROV) (Appendix A, Figure A.2).

Advantages of the proposed approach include the following: (i) knowl-

edge of the instrument attitude or angular velocity is not required for sensor

bias estimation, (ii) zero a priori knowledge of the local magnetic field vector

magnitude or vector direction is needed, (iii) the system is shown to be glob-

ally stable, (iv) the error system is shown to be globally asymptotically stable

when the measured magnetometer signal is PE. (v) magnetometer hard-iron

and soft-iron bias compensation is shown to dramatically improve dynamic

heading estimation accuracy.
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4.1.1 Background and Motivation

Accurate sensing and estimation of heading is critical for precise navigation of

a wide variety of vehicles. The need for accurate heading estimation is particu-

larly acute in the case of vehicles operating in GPS-denied environments such

as underwater. Small low-cost UVs commonly employ MEMS magnetome-

ters to estimate local magnetic heading typically to within several degrees

of accuracy, but require careful soft-iron bias and hard-iron bias calibration

and compensation to achieve these accuracies. Moreover, magnetic heading

sensors must be re-calibrated for soft-iron and hard-iron bias whenever the

vehicle’s physical configuration changes significantly (i.e. sensors or other

payloads added or removed, etc.), as very frequently occurs on oceanographic

marine vehicles. Studies have shown that the accuracy of these magnetic head-

ing sensors can be a principal error source in overall navigation solutions [30].

Thus, when employing magnetic heading sensors it is essential to accurately

estimate sensor biases in order to achieve high accuracy heading estimation.

In the design of surface and underwater oceanographic vehicles, great

care is taken to isolate and separate on-board magnetic compasses from any

possible time-varying on-board magnetic disturbance sources. Active electro-

magnetic components are chosen to have closed magnetic flux-paths, and

magnetic compass heading are located as far as possible from on-board passive

magnetic, passive permeable, and active electro-magnetic components. With

proper design, time-varying on-board magnetic disturbance can be rendered

negligible. What remains an ubiquitous problem, however, and is the focus

of this chapter, is the estimation and compensation for the the effects of the
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magnetic bias (“hard iron”) and permeability (“soft iron”) of the entire vehicle

on the compass heading.

4.1.2 Literature Review

Several methods for magnetometer bias estimation have been reported in

recent years. Alonso and Shuster proposed the “TWOSTEP” method [1] for es-

timating magnetometer hard-iron sensor bias, and in later work, an extended

method for calibrating magnetometer scale and orthogonality factors, or soft-

iron bias, as well [2]. Vasconselos et al. present bias estimation (hard-iron and

soft-iron) as an ellipsoid fitting problem which can be solved with an iterative

MLE approach [74]. Many least squares methods are reported for the ellipsoid

fitting problem (e.g. [3, 15, 16, 46]) and Wu et al. [79] frame the ellipsoid fitting

problem as a particle swarm optimization (PSO). Kok et al. [31] and Li and Li

[33] fuse accelerometer measurements with magnetometer measurements to

estimate magnetometer sensor bias, and Papafotis and Sotiriadis [48] report

an algorithm for three-axis accelerometer and magnetomoter calibration using

a gradient decent method. These methods, however, are batch estimators that

are not practical for on-line estimation of magnetometer sensor bias. In order

to be used in real time, these methods most be modified to run over a sliding

window or with an iterative approach.

Sensor biases change over time due to changes in sensor payload, tem-

perature, local field disturbances, etc., which make it imperative to estimate

sensor biases in real time. In [61, 70] the authors report adaptive methods

utilizing magnetometer and gyroscope measurements for estimating 3-axis

46



magnetometer hard-iron sensor biases, but these approaches do not address

soft-iron bias estimation.

Crassidis et al. report an extension to the TWOSTEP method based on

the EKF [11] and Guo et al. present an alternative EKF approach for doing

magnetometer sensor bias estimation [19]. Han et al. [21] report a gyroscope-

aided EKF method for magnetic calibration. However, these studies do not

report analytical guarantees of the stability or the convergence of the sensor

biases to their true values.

Soken and Sakai [56] report a magnetometer calibration method using

the TRIAD algorithm and an unscented Kalman filter (UKF). However, this

method requires knowledge of the initial attitude of the instrument, has a

slow convergence time, and the study reports no stability guarantees.

The present chapter reports a novel method for real-time soft-iron and

hard-iron bias calibration for 2-axis magnetometers utilizing only biased

measurements from a 2-axis magnetometer. The proposed algorithm is shown

to be globally asymptotically stable when the measured magnetometer is PE,

does not require local field information for calibrating the measured magnetic

field vector direction, does not require any knowledge of the instrument’s

attitude or angular velocity, and can easily be implemented on-line in real-

time.

4.1.3 Chapter Outline

This chapter is organized as follows: Section 4.2 gives an overview of the

magnetometer measurement model. Section 4.3 reports the adaptive soft and
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hard iron observer and Section 4.4 reports a least squares approach. Section 4.5

presents numerical simulation evaluation of the observer. Section 4.6 reports

a full scale vehicle trial. Section 4.7 presents a 3-axis version of the adaptive

observer. Section 4.8 summarizes and concludes.

4.2 Magnetometer Measurement Model

Magnetometers (including those employed in IMUs) are subject to two pri-

mary sensor calibration errors: hard-iron and soft-iron. Hard-iron errors are

constant magnetometer sensor bias terms due to the permanent magnetic

signature of the instrument and the vehicle. Soft-iron errors are non-constant

magnetometer sensor bias terms due to the magnetic permeability of the in-

strument and the vehicle, and will vary with vehicle heading and attitude.

For most IMU magnetometers, hard-iron errors dominate soft-iron errors.

We define the following measurement model for 2-axis magnetometers:

mm(t) = Tmt(t) + b (4.1)

where mm(t) ∈ R2 is the noise-free magnetometer measurement, mt(t) ∈ R2

is Earth’s true magnetic field, T ∈ R2×2 is a diagonally-dominant PDS matrix

representing soft-iron bias, and b ∈ R2 represents the magnetometer hard-iron

bias.
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4.3 Adaptive Soft-Iron and Hard-Iron Bias Observer

This section reports the derivation of a novel on-line adaptive observer for

hard-iron and soft-iron magnetometer biases in 2-axis magnetometers. The

biases are assumed to be very slowly time varying, and hence we model them

as constant terms and update the estimates continuously.

4.3.1 Magnetometer Bias System Model

We can rearrange (4.1) as

mt(t) = T−1 (mm(t)− b) . (4.2)

Taking the inner product of (4.2) with itself results in

∥mt(t)∥2 = (mm(t)− b)T T−2 (mm(t)− b) (4.3)

= mT
m(t)T

−2mm(t)− 2mT
m(t)T

−2b + bTT−2b. (4.4)

Subtracting bTT−2b from both sides results in

ϕ = mT
m(t)T

−2mm(t)− 2mT
m(t)T

−2b (4.5)

where ϕ = ∥mt(t)∥2 − bTT−2b. Dividing both sides of (4.5) by ϕ results in

1 = mT
m(t)Γmm(t)− 2mT

mα (4.6)

where Γ ∈ R2×2 and α ∈ R2 are defined as

Γ = T−2/ϕ (4.7)
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and

α = T−2b/ϕ. (4.8)

We note that this approach only works when ϕ is not close to zero. Thus, we re-

quire that the hard-iron bias is smaller than the magnitude of the true magnetic

field vector. Fortunately, this condition is true for most magnetometers.

Using the identity

vec (AXB) =
(

BT ⊗ A
)

vec (X) (4.9)

(4.6) can be written as

1 =
[

mT
m(t)⊗ mT

m(t) −2mT
m(t)

] [ vec (Γ)
α

]
(4.10)

where ⊗ is the Kronecker product and vec ( · ) is the vectorization (or “stack”)

operator [55].

Using the common assumption that the soft-iron bias term T is a PDS

matrix, Γ is parameterized as

Γ =

[
a c
c b

]
. (4.11)

Using this parameterization and rearranging terms in (4.10), the system

model becomes

1 = wT(t)θ (4.12)
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where

w(t) =

⎡⎢⎢⎣
m2

x(t)
m2

y(t)
2mx(t)my(t)
−2mm(t)

⎤⎥⎥⎦ , (4.13)

θ =

[
tp
α

]
, (4.14)

tp =

⎡⎣ a
b
c

⎤⎦ , (4.15)

where mx(t) ∈ R and my(t) ∈ R are the x and y components of magnetometer

measurement signal mm(t) respectively, w(t) ∈ R5 is a known nonlinear time-

varying function of the measured magnetometer signal mm(t), and θ ∈ R5 is

a constant vector encoding the true soft-iron and hard-iron bias parameters.

4.3.2 Adaptive Observer for Hard-Iron and Soft-Iron Bias

We note that the algebraic system (4.12) has the same form as the vector input,

single output system presented in Chapter 3 of [42]. (4.12) can be rearranged

such that the exact true plant takes the form

0 = wT(t)θ − 1. (4.16)

Defining θ̂(t) as the adaptive identifier’s estimate of the (unknown) true

51



parameter θ, the identifier plant takes the form

e(t) = wT(t)θ̂(t)− 1 (4.17)

= wT(t)∆θ (4.18)

where e(t) as the error associated with the identifier plant, and ∆θ(t) is the

parameter error

∆θ(t) = θ̂(t)− θ. (4.19)

Note that since θ is constant

∆θ̇(t) = ˙̂θ(t). (4.20)

The adaptive observer’s parameter update law for the parameter θ̂(t) is

chosen to be

∆θ̇(t) = −Kw(t)e(t) (4.21)

˙̂θ(t) = −Kw(t)wT(t)θ̂(t) + Kw(t) (4.22)

where K ∈ R5×5 is a constant PDS adaptation gain matrix.

4.3.3 Stability Analysis

Consider the Lyapunov function candidate

V =
1
2

∆θT(t)K−1∆θ(t). (4.23)
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where V is a positive definite, C1, and radially unbounded function by con-

struction. The time derivative of (4.23) is

V̇ = ∆θT(t)K−1∆θ̇(t) (4.24)

= −∆θT(t)w(t)e(t) (4.25)

= −∆θT(t)w(t)wT(t)∆θ(t) (4.26)

≤ 0. (4.27)

Thus V̇ is negative semi-definite, and the error system (4.21) is globally stable.

If, in addition, w(t) is PE [42, 52], the error system is globally asymptotically

stable. That is, if there exists finite α, β, T > 0 such that

αI ≤
∫ t+T

t
w(τ)wT(τ) dτ ≤ βI (4.28)

for all t ≥ 0 and I is the identity matrix, then the proposed observer is

globally asymptotically stable and limt→∞ θ̂(t) = θ. It is unclear how to show

analytically that a PE mm(t) signal implies that w(t) is PE. We were able to

check numerically, however, that a variety of PE mm(t) signals all resulted

in a PE w(t), thus satisfying the conditions of (4.28). Moreover, the resulting

numerically simulated system and the experimentally evaluated systems were

both observed to be asymptotically stable.

53



4.4 Least Squares Soft-Iron and Hard-Iron Estima-
tion

This section reports the derivation of a least squares approach for hard-iron

and soft-iron magnetometer biases in 2-axis magnetometers to be used as a

comparison to the adaptive observer presented in the previous section. As in

the previous section, the biases modeled as constant terms.

From (4.12), the ith measurement satisfies

1 = wT
i θ (4.29)

where

wi =

⎡⎢⎢⎢⎣
m2

x,i
m2

y,i
2mx,imy,i
−2mm,i

⎤⎥⎥⎥⎦ , (4.30)

mm,i is the ith magnetometer measurement and mx,i, my,i are the x and y

components of mm,i respectively. By arranging the wi vectors such that

WT =

⎡⎢⎢⎢⎣
wT

1
wT

2
...

wT
n

⎤⎥⎥⎥⎦ (4.31)
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(4.29) can be rewritten as ⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
wT

1
wT

2
...

wT
n

⎤⎥⎥⎥⎦ θ (4.32)

= WTθ. (4.33)

The least squares solution θ∗ is then found by Moore-Penrose inverse

θ∗ =
(

WWT
)−1

W

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ . (4.34)

4.5 Numerical Simulation Evaluation

The instantaneous estimated heading can then be computed as

γ̂ = atan2
(
−my, mx

)
− γ0, [71] (4.35)

where γ0 is the known local magnetic variation and where mx ∈ R, my ∈ R

are the x and y components, respectively, of the mt signal.

4.5.1 Simulation Setup

The magnetometer sensor bias observer is evaluated in a numerical simulation.

• Sensor measurements were simulated to represent the magnetometer of

the KVH 1775 IMU (KVH Industries, Inc., Middletown, RI, USA) [32].

• Magnetometer sensor measurement sampling was simulated at 20 Hz.
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• Simulated magnetometer measurements include sensor noise of σm =

0.002 Gauss (G) which is consistent with the KVH 1775 IMU.

• The simulated hard-iron magnetometer measurement bias was

b =

[
0.06
−0.07

]
G (4.36)

which is consistent with hard-iron biases observed experimentally with

the KVH 1775 IMU.

• The simulated soft-iron magnetometer measurement bias was

T =

[
1.1 0.2
0.2 0.95

]
. (4.37)

• Simulations were for a latitude of 39.32◦N and a longitude of 76.62W.

• The simulated instrument was commanded to execute smooth sinu-

soidal rotations of roughly ±300◦ in heading. Figure 4.4 reports the

instrument’s attitude during the first 35 seconds of the simulation with

a period of of rotation of ∼ 31 seconds.

• The observer’s initial conditions were set to

θ̂(t0) =
[

1 1 0 0 0
]T /ϕ (4.38)

where

ϕ = ∥mt∥2 (4.39)

= ∥
[

0.205796 −0.040654
]
∥2 G2. (4.40)
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Figure 4.1: Simulation: The parameter error of the estimated t̂p(t) from the true
value tp. a, b, c are the components of tp as defined in (4.15).

• The gain matrix used during the simulation was

K = diag
([

100 100 100 1 1
])

. (4.41)

4.5.2 Simulation Results

Figure 4.1 reports the parameter error of the estimated t̂p(t) from the true

value of tp, and Figure 4.2 reports the parameter error of the estimated b̂(t)

from the true value b where the recovered value for the estimated hard-iron
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Figure 4.2: Simulation: The parameter error of the estimated b̂(t) from the true value
b where bx, by are the x and y components of the hard-iron sensor bias.

bias term b̂(t) is found by

b̂(t) = Γ̂−1(t)α̂(t). (4.42)

The simulation results show that when the magnetometer measurements are

PE, the parameter estimates converge to their true values.

Note that Γ is T−2 scaled by 1/ϕ. Therefore, in order to recover the true

soft-iron bias, T, knowledge of the true magnetic field magnitude is necessary.

However, since the calibrated magnetometer measurement is commonly used

as a reference direction in AHRSs [20, 78], recovering the true magnitude of
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Figure 4.3: Simulation: Comparison of the uncalibrated (uncal), least squares (ls)
calibrated, and adaptive observer (adap) calibrated magnetometer measurements.

T is not critical to the accurate estimation of heading. However, if ∥mt(t)∥

is known (For field vehicles, the local magnetic field strength is commonly

estimated by magnetic field models like the World Magnetic Model (WMM)

[43] or the International Geomagnetic Reference Field (IGRF) model [68].), ϕ

can be recovered by
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Figure 4.4: Simulation: Top: The true instrument heading from the first 35 seconds
of the simulation. Bottom: Heading error corresponding to the uncalibrated (uncal),
least squares (ls) calibrated, and adaptive observer (adap) calibrated magnetometers
during the first 40 seconds of the simulation.

ϕ = ∥mt∥2 − bTT−2b (4.43)

= ∥mt∥2 − ϕbTΓb (4.44)

=
∥mt∥2

1 + bTΓb
(4.45)

and hence, the true T can be recovered.
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Using the simulation’s final parameter estimates, Γ̂(t f ) and b̂(t f ) to cali-

brate the magnetometer, the heading estimate of the instrument is calculated

by (4.35). Figure 4.3 shows the comparison between the uncalibrated and cali-

brated magnetometer measurements and Figure 4.4 reports the corresponding

heading and heading error during the first 35 seconds of the simulated ex-

periment. The simulation shows that after the sensor bias estimates have

converged, the calibrated magnetometer corresponds to a heading RMSE of

0.63◦. This is a vast improvement over the heading RMSE 24.2◦ corresponding

to the uncalibrated magnetometer and very close to the error corresponding

to the least squares calibrated magnetometer of 0.58◦.

4.6 Vehicle Experimental Evaluation

4.6.1 Experimental Test Facility

Experimental trials were performed with the JHU remotely operated vehicle

(ROV), equipped with a KVH 1775 IMU (KVH Industries, Inc., Middletown,

RI, USA) [32], in the 7.5 m diameter, 4 m deep fresh water test tank in the

JHU HTF. The JHU ROV is passively stable in roll and pitch due to a large

center-of-gravity to center-of-buoyancy separation, and experiences limited

roll and pitch excursions in normal operation. See Appendix A on page 189

for more info on the JHU ROV and the JHU HTF.

4.6.2 Experimental Setup

The adaptive observer for hard-iron and soft-iron magnetometer sensor biases

is evaluated with a full scale vehicle trial employing the MEMS magnetometer
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in the KVH 1775 IMU.

• The magnetometer was sampled at 20 Hz.

• The magnetometer was aligned via a fixture to the ROV’s iXBLUE

PHINS inertial navigation system (INS) (iXblue SAS, Cedex, France).

The PHINS attitude is used as ground truth during the experimental

evaluation of the observer.

• The experiment was conducted at a latitude of 39.32◦N and a longitude

of 76.62W.

• The JHU ROV was commanded to execute smooth sinusoidal rotations

of roughly ±200◦ in heading while in closed loop control. Figure 4.9

reports the instrument’s attitude during the first 35 seconds of the simu-

lation with a period of of rotation of ∼ 65 seconds.

• The initial conditions for the sensor bias estimates are given by (4.38)-

(4.40).

• The gain matrix K used during the vehicle trial was (4.41), the same as

in the simulation evaluation.

4.6.3 Experimental Results

The estimated parameters from the experiment are shown in Figures 4.5 -

4.6 where the estimated hard iron bias term b̂(t) is calculated by (4.42). The

vehicle trial results show that when the magnetometer measurements are PE,

the parameter estimates converge to a steady-state value.
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Figure 4.5: Vehicle Trial Experiment: The adaptive observer’s estimated t̂p(t) where
a, b, c are the components of tp as defined in (4.15).

In experimental trials, the true sensor biases are unknown, and thus the

accuracy of the estimated biases cannot be measured directly. Instead, the

accuracy of the heading estimate is used as an error metric for sensor bias

estimation.

As discussed in Section 4.5.2, t̂p(t) and b̂(t) can be used to calibrate the

magnetometer measurements for a calibrated magnetic field reference direc-

tion that is used for heading estimation in AHRSs.

Figure 4.7 shows the comparison between the uncalibrated, least squares

calibrated, and adaptive observer calibrated magnetometer measurements
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Figure 4.6: Vehicle Trial Experiment: The adaptive observer’s estimated b̂(t) where
bx, by are the x and y components of the hard-iron sensor bias.

and Figure 4.8 reports the corresponding heading error during the first 400

seconds of the vehicle trial. The experiment shows that the adaptive observer

calibrated magnetometer corresponds to a heading RMSE of 1.91◦, which is

identical to the heading RMSE corresponding to the least squares calibrated

magnetometer and much improved over the heading RMSE of 8.77◦ of the

uncalibrated magnetometer.

Figure 4.9 shows the true roll, pitch, and heading of the vehicle during the

first 400 seconds of vehicle trial. The vehicle experienced very limited roll and

pitch excursions during the vehicle trial.
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Figure 4.7: Vehicle Trial Experiment: Comparison of the uncalibrated (uncal), least
squares (ls) calibrated, and adaptive observer (adap) calibrated magnetometer mea-
surements.

Note that, in this experimental trial, the parameter initial condition was

chosen to be far from the true parameter. Because of this, the estimated param-

eter had to evolve far from the initial condition to the true parameter. Hence,

the gain matrix K was chosen to be large to facilitate fast convergence of the

parameter. In the presence of measurement noise, smaller gains allow the esti-

mated parameter to converge to a smaller neighborhood of the true parameter

than higher gains. However, this increase in accuracy comes with a longer

convergence time. The gain matrix K, used in the experimental evaluation,

provided a balance of accuracy and fast convergence. It is important to note
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Figure 4.8: Vehicle Trial Experiment: Heading error corresponding to the uncali-
brated (uncal), least squares (ls) calibrated, and adaptive observer (adap) calibrated
magnetometers during the first 400 seconds of the vehicle trial experiment.

that in adaptive systems there is no method for choosing “ideal” gains. Instead

the gain matrix K must be tuned empirically. The sensor noise, the amount

of PE the instrument experiences, and the accuracy of the initial guess of the

bias terms all affect the rate of convergence and the size of the neighborhood

that the estimated parameters converge to. When tuning K, the diagonal gains

should be chosen large enough such that the parameters converge to a steady-

state neighborhood while small enough that the parameters do not oscillate.

This is a balancing act as the higher the gains, the faster the parameters will

converge to a neighborhood of the true parameters but the neighborhood will
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Figure 4.9: True instrument heading, pitch, and roll from the first 400 seconds of the
vehicle trial experiment.

be larger. Similarly, the smaller the gains, the slower the convergence, but the

neighborhood will be smaller.

In practice, after an initial calibration of the magnetometer, the previous

parameter estimate could be used as an initial condition. Thus, after a rough

alignment, a smaller gain matrix can be chosen to provide a more accurate

estimate of the true parameter.
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4.7 Adaptive Observer for Hard-Iron and Soft-Iron
Bias for 3-Axis Magnetometers

Note that the algebraic system, (4.12), presented in Section 4.3 can be extended

to the 3-axis case. This section reports the derivation of an extension to 3-axis

magnetometers of the 2-axis adaptive observer for hard-iron and soft-iron

magnetometer sensor biases presented in Section 4.3.

4.7.1 Magnetometer Bias System Model

Similar to (4.1), we define the measurement model for 3-axis magnetometers

to be:

mm(t) = Tmt(t) + b (4.46)

where mm(t) ∈ R3 is the noise-free magnetometer measurement, mt(t) ∈ R3

is Earth’s true magnetic field, T ∈ R3×3 is a diagonally-dominant PDS matrix

representing soft-iron bias, and b ∈ R3 represents the magnetometer hard-iron

bias.

We can rearrange (4.46) as

mt(t) = T−1 (mm(t)− b) . (4.47)

Following the same method presented in Section 4.3, taking the inner

product of (4.47) with itself and rearranging terms results in

1 =
[

mT
m(t)⊗ mT

m(t) −2mT
m(t)

] [ vec (Γ)
α

]
(4.48)
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where ϕ = ∥mt(t)∥2 − bTT−2b and Γ ∈ R2×2 and α ∈ R2 are defined as

Γ = T−2/ϕ (4.49)

and

α = T−2b/ϕ. (4.50)

Using the common assumption that the soft-iron bias term T−1 is a PDS

matrix, Γ is parameterized as

Γ =

⎡⎣ a d e
d b f
e f c

⎤⎦ . (4.51)

Using this parameterization and rearranging terms in (4.48), the system

model becomes

1 = wT(t)θ (4.52)
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where

w(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2
x(t)

m2
y(t)

m2
z(t)

2mx(t)my(t)
2mx(t)mz(t)
2my(t)mz(t)
−2mm(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.53)

θ =

[
tp
α

]
, (4.54)

tp =

⎡⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
e
f

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.55)

where mx(t) ∈ R, my(t) ∈ R, mz(t) ∈ R are the x, y, z components of

magnetometer measurement signal mm(t) respectively, w(t) ∈ R9 is a known

nonlinear time-varying function of the measured magnetometer signal mm(t),

and θ ∈ R9 is a constant vector encoding the true soft-iron and hard-iron bias

parameters.

4.7.2 Adaptive Observer for Hard-Iron and Soft-Iron Bias

Similar to as in Section 4.3.2, the adaptive observer’s parameter update law

for the parameter θ̂(t) is chosen to be

∆θ̇(t) = −Kw(t)e(t) (4.56)

˙̂θ(t) = −Kw(t)wT(t)θ̂(t) + Kw(t) (4.57)
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where K ∈ R9×9 is a constant PDS adaptation gain matrix.

4.7.3 Stability Analysis

Consider the Lyapunov function candidate

V =
1
2

∆θT(t)K−1∆θ(t). (4.58)

where V is a positive definite, C1, and radially unbounded function by con-

struction. The time derivative of (4.58) is

V̇ = ∆θT(t)K−1∆θ̇(t) (4.59)

= −∆θT(t)w(t)e(t) (4.60)

= −∆θT(t)w(t)wT(t)∆θ(t) (4.61)

≤ 0. (4.62)

Thus V̇ is negative semi-definite, and the error system (4.56) is globally stable.

In addition, as in the 2-axis case, if w(t) is PE [42, 52], the error system is

globally asymptotically stable.

4.7.4 3-axis Adaptive Observer Simulation

The 3-axis observer is evaluated in two numerical simulations. The simulated

magnetometer measurements include sensor noise of σm = 0.002 Gauss (G)
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and sensor biases of

T =

⎡⎣ 1.10 0 0
0 0.95 0
0 0 1.1

⎤⎦ , (4.63)

b =
[

0.06 −0.07 0.03
]T . (4.64)

The observer’s initial conditions were set to

θ̂(t0) =
[

1 1 1 0 0 0 0 0 0
]T /ϕ (4.65)

where

ϕ = ∥mt∥2 (4.66)

= ∥
[

0.20579 −0.04065 0.46879
]
∥2 G2. (4.67)

The gain matrix used was

K = diag([10 10 10 10 10 10 1 1 1]). (4.68)

In 3Axis-Sim1, the instrument experiences large changes in roll, pitch, and

heading enabling full coverage of a sphere by the measure magnetic field

vector. Figure 4.10 reports the true magnetic field, mt(t), from the simulation.

Figures 4.11-4.12 report the parameter errors from 3Axis-Sim1. The parameter

errors are shown to converge to zero. Hence, when w(t) is PE, the parameters

converge to their true values.

In 3Axis-Sim2, the instrument experiences smaller changes in roll and

pitch than in 3Axis-Sim1. Figure 4.13 reports the true magnetic field, mt(t).
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Unlike in 3Axis-Sim1, in 3Axis-Sim2, the magnetometer experiences smaller

rotations in roll and pitch. The limited motion of the instrument in 3Axis-

Sim2 is shown in Figures 4.14-4.15 to not be enough for the convergence of

the parameters to their true values. In 3Axis-Sim2, the magnetic field vector

does not cover enough of the sphere to allow accurate sensor bias estimation.

Simulations have show that, the 3-axis adaptive observer requires roll and

pitch magnitudes of > 45◦ in order fo the observer to converge to the true

parameter values.

The 3-axis adaptive observer suffers from the same problem as using least-

squares for doing magnetometer hard-iron and soft-iron calibration — they

require large angular rotations and full coverage of the sphere in order for

them to be used for accurate magnetometer sensor bias estimation. The 3-

axis adaptive observer is not suitable for use in the many vehicles which are

passively stable in roll and pitch and experience only limited motion in roll

and pitch. This class of vehicles is unable to attain the roll and pitch angles

required for the observer to accurately estimate the magnetometer soft-iron

and hard-iron biases.

4.8 Conclusion

This chapter reports a novel adaptive observer for on-line, real-time estimation

of hard-iron and soft-iron magnetometer biases in 2-axis magnetometers for

use in AHRSs. AHRSs commonly use calibrated magnetometers as a measure-

ment of the magnetic field direction for estimating heading. The accuracy of

these systems rely on the calibrated magnetometer direction to be accurate,
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Figure 4.10: 3Axis-Sim1: True magnetic field vector, mt(t).
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Figure 4.11: 3Axis-Sim1: Estimated α̂(t) error.
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Figure 4.12: 3Axis-Sim1: Estimated γ̂(t) error.
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Figure 4.13: 3Axis-Sim2: True magnetic field vector, mt(t).
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Figure 4.14: 3Axis-Sim2: Estimated α̂(t) error.

78



0 10 20 30 40 50 60
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 4.15: 3Axis-Sim2: Estimated γ̂(t) error.
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but do not require the correct magnitude of the calibrated magnetometer.

Estimating the magnetometer’s soft-iron bias up to a scale factor preserves the

calibrated magnetometer’s direction. Hence, the proposed approach which

observes a scaled version of T, can be utilized to bias-compensate magnetome-

ters to provide accurate heading estimates.

The observer uses only magnetometer sensor signals, does not require

knowledge of the instrument attitude, and is shown to be globally stable.

When the measured magnetometer is PE, the observer is shown to be glob-

ally asymptotically stable where the estimated parameters converge to their

true values. The simulation study and full-scale vehicle experiment suggest

that the observer can be utilized to provide accurate magnetometer bias com-

pensation for AHRS. The vehicle trial shows that the estimated parameters

converge to a steady state and the calibrated magnetometer’s corresponding

heading estimate tracks ground truth heading to 1.9◦ RMSE which is the

RMSE corresponding to the least squares calibration.

In addition to the 2-axis adaptive observer, a 3-axis extension of the ob-

server is reported. The 3-axis observer however, is shown to suffer from the

same drawbacks of most previously reported least-squares methods. Large

angular rotations and full coverage of the sphere are required in order for the

3-axis observer to be used for accurate magnetometer sensor bias estimation.

The 3-axis adaptive observer is not suitable for use in the class of vehicles

which are passively stable in roll and pitch and the focus of this chapter.

Chapter 5 addresses the problem of estimating the full 3-axis magnetometer

soft-iron and hard-iron sensor biases in vehicles experiencing small roll and
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pitch rotations.

In future studies, the authors hope to develop a coarse and fine alignment

protocol to allow for fast convergence and accurate bias estimation and employ

the observer in field trials.
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Chapter 5

Online Three-Axis Magnetometer
Hard-Iron and Soft-Iron Bias and
Angular Velocity Sensor Bias
Estimation Using Angular Velocity
Sensors for Improved Dynamic
Heading Accuracy

5.1 Introduction

This chapter is based on the research originally reported in [63]. Abhimanyu

Shah collaborated on this research and is a co-author of [63]. The dynamic

instrumentation and estimation of vehicle attitude, especially geodetic head-

ing, is critical to accurate navigation of land, sea, and air vehicles in dynamic

motion. The utility of the ubiquitous 9-axis inertial measurement unit (IMU)

(with 3-axis magnetometers, 3-axis angular rate sensors, and 3-axis accelerom-

eters) for accurate heading estimation is commonly vitiated by very significant

hard-iron and soft-iron magnetometer biases, as well as by angular-rate sensor
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biases. Many previously reported bias estimation approaches are complicated

by (i) the need to know the instrument’s real-time attitude (heading, pitch,

and roll), or (ii) the need for the instrument to experience very large atti-

tude motion excursions (which may be infeasible for instruments mounted in

many full-scale vehicles) like required by the TWOSTEP method [1, 2], many

ellipsoid fitting methods, and the adaptive observer presented in Section 4.7.

This chapter reports a novel method for dynamic on-line estimation of

hard-iron and soft-iron biases of 3-axis magnetometers under dynamic motion

(rotation and translation) without any knowledge of the instrument’s real-time

attitude. Our approach is to formulate a nonlinear process dynamics model for

the variation in the magnetic field vector over time as the instrument is subject

to a priori unknown angular velocities. We report a 15-state bias estimator

utilizing this process model that simultaneously estimates (i) a 3-axis dynamic

process-model estimate of the true magnetic field vector, (ii) all 6 soft-iron bias

magnetometer bias terms, (iii) all 3 hard-iron bias magnetometer bias terms,

and (iv) all 3 angular velocity sensor bias terms. The proposed magnetometer

and angular velocity bias estimator (MAVBE) is implemented as an extended

Kalman filter (EKF) in which the difference between the estimated process

model magnetometer measurement and the actual observed magnetometer

measurement provide the EKF innovations. The 3-axis accelerometer signal is

then utilized with the estimator signals to provide improved accuracy gyro-

stabilized dynamic heading estimation. We report an observability analysis of

the system. We report performance analysis and comparision to the widely

cited magnetometer only TWOSTEP method [2] in a numerical simulation
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study, in full-scale laboratory experimental trials with a 9-axis IMU on the

Johns Hopkins University (JHU) remotely operated vehicle (ROV), Figure A.2,

and in at-sea field experimental trials with a 9-axis IMU on the JHU Iver3

autonomous underwater vehicle (AUV) in the Chesapeake Bay, MD, USA,

Figure A.3.

Advantages of the proposed MAVBE approach include the following: (i)

knowledge of the instrument attitude is not required for sensor bias estimation,

(ii) the system is shown to be observable, (iii) bias estimates converge rapidly

to true bias parameters, (iv) only modest instrument excitation is required

for bias estimate convergence, (v) magnetometer hard-iron and soft-iron bias

compensation is shown to dramatically improve dynamic heading estimation

accuracy.

5.1.1 Background and Motivation

Accurate sensing and estimation of attitude (i.e. geodetic heading, and roll

and pitch referenced to the local gravitational field) are critical components of

navigation systems for a wide variety of robotic vehicles. The need for accurate

attitude estimation is particularly acute in the case of vehicles operating in

GPS-denied environments such as underwater.

Over the past decade, the development of a new generation of small low-

cost UVs has begun to enable oceanographic, environmental assessment, and

national security missions that were previously considered impractical or

infeasible (e.g. [8, 9, 47, 66, 80]). These small low-cost UVs commonly employ

MEMS IMUs comprised of 3-axis MEMS magnetometers, angular rate sensors,
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and accelerometers to estimate local magnetic heading, pitch, and roll, typi-

cally to within several degrees of accuracy, but require careful soft-iron and

hard-iron calibration and compensation to achieve these accuracies. Moreover,

magnetic attitude sensors must be recalibrated for soft-iron and hard-iron

biases whenever the vehicle’s physical configuration changes significantly (i.e.

sensors or other payloads added or removed), as very commonly occurs on

oceanographic marine vehicles. Studies have shown that the accuracy of mag-

netic heading sensors is often the principal error source in overall navigation

solutions [30]. Thus it is essential to estimate accurately and compensate for

attitude sensor biases in order to achieve high accuracy attitude estimation.

However, common approaches for hard-iron and soft-iron bias calibration

require significant angular motion of the instrument (which is impossible on

many UVs and land vehicles). We show that the use of angular-rate signals in

the proposed MAVBE method enables the calibration to be performed with

smaller angular excursions of the instrument, thus enabling the calibration of

land and underwater vehicle compasses.

5.1.2 Literature Review

A variety of methods for magnetometer bias estimation have been reported.

Geophysics researchers commonly use batch methods for magnetometer cali-

bration [6, 22]. Alonso and Shuster proposed the “TWOSTEP” method [1] for

estimating magnetometer sensor bias, and an extended method for calculating

magnetometer scale and orthogonality factors as well [2]. Vasconselos et al.

report magnetometer bias estimation as an ellipsoid fitting problem which can
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be solved with an iterative MLE approach [74]. Many least squares methods

are reported for the ellipsoid fitting problem [3, 15, 16, 46] and Wu et al. [79]

frame the ellipsoid fitting problem as a particle swarm optimization (PSO).

Kok et al. [31] and Li and Li [33] fuse accelerometer measurements with

magnetometer measurements to estimate magnetometer hard-iron sensor bias,

and Papafotis and Sotiriadis [48] report an algorithm for three-axis accelerom-

eter and magnetometer calibration using a gradient descent method. All of

these methods, however, require large angular rotations of the instrument

to achieve accurate bias estimation (which may be infeasible for instruments

mounted in many full-scale vehicles) and, moreover, they are batch estimators

that are not designed for on-line estimation of magnetometer sensor bias.

Sensor biases change over time due to changes in the configuration and

payloads of the host vehicle, temperature, etc., which make it imperative to

estimate sensor biases in real time. In [70], the authors report a novel method

utilizing angular velocity measurements for estimating magnetometer hard-

iron sensor biases, but the reported algorithm does not address soft-iron

calibration and it assumes that the angular velocity sensor signal is already

bias-compensated. In [61], the current author extended the work by [70] to

include estimation of angular-rate gyroscope and accelerometer measurement

biases, but this approach also does not address soft-iron magnetometer bias

calibration.

Crassidis et al. report an extension to the TWOSTEP method based on the

EKF [11] and Guo et al. report an alternative EKF approach for doing magne-

tometer sensor bias estimation [19]. However, these approaches require large
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angular rotations of the instrument for accurate magnetometer calibration,

similar to the batch methods mentioned above.

Soken and Sakai [56] report a magnetometer calibration method using the

TRIAD algorithm and an UKF. However, this method requires knowledge of

the initial attitude of the instrument and exhibits a lengthy convergence time.

Han et al. [21] report a gyroscope-aided EKF method for magnetic calibra-

tion. However, based upon our review of source code kindly provided by the

original authors, this approach appears to integrate the angular rate forward

in time which introduces random walk, thus it is not clear that it can be used

continuously for a long period of time. In addition, their algorithm requires

large angular rates for the hard iron bias to converge and appears to be unable

to identify the hard or soft iron biases of high-end MEMS IMUs like the ones

used in the current paper.

The present chapter reports a novel method for real-time estimation and

compensation of 3-axis magnetometer soft-iron and hard-iron and angular

rate sensor biases utilizing biased angular rate sensor measurements. The

proposed MAVBE algorithm requires smaller angular motion compared to

previously reported magnetometer bias estimation methods, does not require

any knowledge of the instrument’s attitude, can be implemented on-line in

real-time, exhibits rapid estimate convergence, and requires only knowledge

of the local magnetic field magnitude. If the local magnetic field magnitude is

not known, the proposed method can still recover the direction of the magnetic

field vector which is all that is needed for accurate navigation.
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5.1.3 Chapter Outline

This chapter is organized as follows: Section 5.2 reports the exact deterministic

process model, a discrete-time stochastic approximate process model, and an

EKF formulation of the MAVBE. Section 5.3 discuses the evaluation of the

MAVBE. Section 5.4 reports simulation evaluation of the proposed MAVBE

approach for magnetometer and angular velocity sensor bias estimation, bias

compensation, and heading estimation. Section 5.5 reports laboratory ex-

perimental evaluation of the MAVBE approach in full-scale UV laboratory

experimental trials. Section 5.6 reports field experiments of the proposed

MAVBE method in full-scale AUV field experiments in the Chesapeake Bay,

MD, USA. Section 5.7 summarizes and concludes.

5.2 Magnetometer and Angular Velocity Bias Esti-
mator (MAVBE) Formulation

This section reports the derivation of a novel online magnetometer and angular

velocity bias estimator (MAVBE) for simultaneous hard-iron and soft-iron

magnetometer and angular-rate sensor bias estimation and compensation.

The biases are assumed to be very slowly time varying, and hence we model

them as constant terms and update the estimates continuously.

5.2.1 Exact System Process Model

Magnetometers (including those employed in IMUs) are subject to two pri-

mary sensor calibration errors: hard-iron and soft-iron biases. Hard-iron
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biases are constant magnetometer sensor bias terms due to the permanent

magnetic signature of the instrument and the vehicle. Soft-iron biases are non-

constant magnetometer sensor bias terms due to the magnetic permeability

of the instrument and the vehicle, and will vary with vehicle heading and

attitude. For most IMU magnetometers, hard-iron biases dominate soft-iron

biases.

The most commonly utilized models for 3-axis magnetometer hard-iron

and soft-iron bias, and for 3-axis angular velocity sensor bias are

mm(t) = Tmt(t) + mb (5.1)

wm(t) = wt(t) + wb, (5.2)

where mm(t) ∈ R3 and mt(t) ∈ R3 are the noise-free measured and true

magnetometer values, respectively, in the instrument frame, T ∈ R3×3 is a

PDS matrix due to soft-iron effects, mb ∈ R3 is the sensor bias due to hard-

iron effects, wm(t) ∈ R3 and wt(t) ∈ R3 are the noise-free measured and true

angular velocity signals, respectively, in the instrument frame, and wb ∈ R3 is

the angular velocity bias.

The PDS matrix T is parameterized as

T =

⎡⎣ a b c
b d e
c e f

⎤⎦ (5.3)

where we define tp ∈ R6 as the vector of the 6 unique elements of T such that

tp =
[

a b c d e f
]T . (5.4)

90



Note that using this parameterization of T does not ensure that T is nonsin-

gular. However in practice, we have observed T to be a diagonally dominant

nonsingular matrix which results in our estimates of T to be far from singular.

In order to ensure T to be nonsingular, one may try to estimate a triangu-

lar matrix corresponding to the Cholesky decomposition of T instead of T

directly.

The true magnetometer value in the NED frame, Nmt ∈ R3, is constant

and is related to the true magnetometer value in the instrument frame by

Nmt = R(t) mt(t), (5.5)

where R(t) ∈ SO(3) is the time varying rotation of the instrument frame with

respect to the NED frame. Taking the time derivative of (5.5) yields

0 = Ṙ(t) mt(t) + R(t)ṁt(t). (5.6)

Rearranging (5.6) yields

ṁt(t) = −J (wt(t))mt(t), (5.7)

and substituting (5.2) yields

ṁt(t) = −J (wm(t)− wb)mt(t). (5.8)

Since the bias terms are assumed to be at most very slowly time varying,

they are modeled as constants. Finally, the exact deterministic full state process
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model can be written in state space form⎡⎢⎢⎣
ṁt(t)

ṁb
ṫp
ẇb

⎤⎥⎥⎦
  

=

⎡⎢⎢⎣
−J (wm(t)− wb)mt(t)

O3×1
O6×1
O3×1

⎤⎥⎥⎦
  

(5.9)

Φ̇(t) = f (Φ(t)) , (5.10)

with the measurement model as[
mm(t)

∥mt(t)∥2

]
   =

[
T mt(t) + mb
mT

t (t)mt(t)

]
   (5.11)

z(t) = h(Φ(t)) (5.12)

whereOm×n is a zero matrix of dimension m× n, Φ(t) ∈ R15 is the state vector,

and z(t) ∈ R4 is the measurement. The wb bias term is included in the state

vector because we have a process model for it (bias is assumed to be constant),

however the time-varying wm(t) term was excluded from the state since its

process model is unknown. It is instead considered to be an exogenous input

signal. Modeling wm(t) as a exogenous input is a common approach used in

magnetometer calibration (e.g. [21, 56, 70]). Note that, unlike [70], herein we

do not assume the angular velocity signal to be already bias-compensated.

As seen in (5.11), the measurement model requires knowledge of the

magnitude of the local magnetic field vector which is available for most field

vehicles via the WMM [43] or the IGRF model [68]. Note that if the local

magnetic field vector magnitude is unknown, by setting ∥mt(t)∥2 to a non-

zero positive constant (e.g. Setting ∥mt(t)∥2 = 1 will normalize the estimated
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corrected magnetic field vector to 1.), the direction of the corrected magnetic

field vector can still recovered, allowing accurate magnetic heading estimates.

5.2.2 MAVBE Process Model Linearization

The MAVBE EKF was implemented using a linear process model. The nonlin-

ear dynamics given in (5.10) were linearized using an approach that follows

closely from that used by Webster in [75]. The linearization of f (Φ) about an

arbitrary operating point µ is given by

f (Φ(t)) = f (µ) + DΦ(t)[ f (Φ(t)) ]µ(Φ(t)− µ) + H.O.T. (5.13)

Neglecting the higher order terms (H.O.T), and rearranging yields

f (Φ(t)) = DΦ(t)[ f (Φ(t)) ]µ  
A(Φ(t))

Φ(t) + f (µ)− DΦ(t)[ f (Φ(t)) ]µµ  
u(Φ(t))

(5.14)

where u(Φ(t)) ∈ R15 is referred to as the pseudo-control input and A(Φ(t)) ∈

R15×15 is the Jacobian of f (Φ(t)) with respect to Φ(t) evaluated at µ. Noting

that Φ(t) is a function of time, the noise-free linearized process model is given

by

Φ̇ = A(Φ(t))Φ(t) + u(Φ(t)) (5.15)

z(t) = h (Φ(t)) (5.16)
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where

A(Φ(t)) = DΦ[ f (Φ(t)) ]µ (5.17)

=

[
−J (wm(t)− wb) O3×9 −J (mt(t))

O12×3 O12×9 O12×3

]
µ

. (5.18)

5.2.3 MAVBE Observability

The system (5.15)-(5.16) is observable on [t0, t f ] if and only if the observability

Gramian

M(t0, t f ) =
∫ t f

t0

HT(t, t0)CT(t)C(t)H(t, t0) dt (5.19)

is full rank where H(t, t0) is the state transition matrix [51] and C(t) is the

measurement Jacobian

C(t) = DΦ(t)[ h(Φ(t)) ]Φ(t). (5.20)

It is unclear how to show analytically that a PE wm(t) signal results in a full-

rank observability Gramian, and thus observability of the state vector. We

were able to check numerically, however, that a variety of PE wm(t) signals

result in a full-rank observability Gramian, and thus observability of the state

vector.
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5.2.4 MAVBE Process Model Discrete-Time Stochastic Approx-
imation

Using the approach followed in [75], the noise-free continuous time system

(5.15)-(5.16) can be approximated as the discrete-time stochastic system

Φk+1 = ĀkΦk + B̄ku(Φk) + wk (5.21)

zk = h (Φk) + vk, (5.22)

where wk ∼ N (0, Q) is the independent zero-mean Gaussian process noise

and vk ∼ N (0, R) is the independent zero-mean Gaussian measurement noise.

Āk is related to A(t) at time t = k by

Āk = eA(Φk)τ (5.23)

where τ is the discretization time step. Similarly, B̄k can be computed as

B̄k =
∫ τ

0
eA(Φk)(τ−s) ds

= eA(Φk)τ
∫ τ

0
e−A(Φk)sds

= Āk

∫ τ

0
e−A(Φk)sds.

(5.24)

5.2.5 MAVBE EKF For Magnetometer Bias Estimation

The process model used to predict the state is

Φ′
k = Āk−1Φk−1 + B̄k−1uk−1, (5.25)
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and the predicted covariance matrix is

Σ′
k = Āk−1Σk−1ĀT

k−1 + Q, (5.26)

where Q is the process noise covariance matrix (constant). The Kalman gain is

given by

Kk = Σ′
kC̄k

T
(C̄kΣ′

kC̄k
T
+ R)−1, (5.27)

where R is the measurement covariance matrix (constant), and

C̄k = DΦ[ h(Φk) ]Φ′
k

(5.28)

=

[
T I3

(
mT

t (k)⊗ I3
)

Dtp [T
s]

2mT
t (k) O1×3 O1×9

]
Φ′

k

(5.29)

where In is the identity matrix of dimension n × n. The updated state estimate

is

Φk = Φ′
k + Kk(zk − C̄Φ′

k). (5.30)

The updated covariance estimate is

Σk = (I15 − KkC̄k)Σ
′
k. (5.31)

5.3 Magnetometer Bias and Angular Velocity Esti-
mator (MAVBE) Performance Evaluation

The remainder of this chapter is concerned with evaluating the proposed

MAVBE presented in Section 5.2 in comparison to previously reported ap-

proaches to magnetometer bias estimation. We report a comparative perfor-

mance analysis of the proposed MAVBE to the widely cited batch-processing
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TWOSTEP method reported by Alonso and Shuster [2]. The TWOSTEP al-

gorithm is based on minimizing a negative-log-likelihood function which

can have multiple minima and maxima. A centering procedure first step is

used to provide a good initial estimate of the sensor bias, and then a second

step iteratively solves for the local minimum. Note that Dinale provides an

excellent overview of the TWOSTEP method, and that Appendix C.1 of [13]

provides a reference Matlab implementation of the TWOSTEP method which

proved to be very helpful when implementing the TWOSTEP comparison

[13].

The performance of these approaches are evaluated in the following three

ways:

1. First, in Section 5.4, we report the evaluation of these approaches in

numerical simulations in which both the the true simulated bias values

and the true simulated heading values are known exactly.

2. Second, in Section 5.5, we report the evaluation of these approaches in

full-scale laboratory experimental trials with a laboratory testbed ROV

in which the true sensor biases are unknown, and thus the accuracy of

the estimated biases cannot be measured directly. Instead, the accuracy

of the heading estimate is used as an error metric for sensor bias esti-

mation. The heading estimate was computed using accelerometer and

magnetometer signals from the MicroStrain 3DM-GX5-25 9-Axis IMU

(LORD Sensing-MicroStrain, Williston, Vermont, USA) [39], together

with the sensor bias estimates. In the laboratory experiments, the es-

timated heading was compared to the ground truth heading from a
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high-end INS, the iXBlue PHINS III (iXBlue SAS, Cedex, France), with

heading accuracy of 0.05◦/ cos(latitude). [24, 25].

3. Third, in Section 5.6, we report the evaluation of these approaches in full-

scale sea-trials with the JHU Iver3 AUV, in which neither the true bias

values nor the true heading is known. In the field experimental trials, ve-

hicle XY navigation error is used as a proxy for the accuracy of the magne-

tometer calibration. The vehicle track is recalculated using Doppler dead

reckoning for each magnetometer calibration method and compared to

the GPS track of the vehicle. In addition to the TWOSTEP method, the

proposed MAVBE is compared to L3 OceanServer’s commercial solu-

tion for a calibrated magnetic compass using the OceanServer OS5000

magnetic compass [44].

5.3.1 Attitude Calculation

The vehicle coordinates are defined such that the x-axes is pointed forward on

the vehicle, the y-axes is pointing starboard, and the z-axes down. Using this

coordinate frame, the instantaneous estimated roll ϕ and pitch θ angles of the

vehicle can be computed by [71]

ϕ̂ = atan2
(
−ay,−az

)
, (5.32)

θ̂ = atan2
(

ax,
√

a2
y + a2

z

)
, (5.33)

where ax, ay, az are the x, y, z components, respectively, of the accelerometer

signal. The calibrated magnetic field vector, m(t), in the vehicle frame is

98



transformed to the local level frame by the relation lm = l
vR(t)m(t) where

l
vR(t) ∈ SO(3) is the rotation matrix using the roll and pitch estimates. Us-

ing the approach of [71], the instantaneous estimated heading can then be

computed as

γ̂ = atan2
(
−lmy, lmx

)
− γ0, (5.34)

where γ0 is the known local magnetic variation and where lmx, lmy are the

x, y components, respectively, of the lm signal.

5.3.2 Doppler Dead Reckoning Navigation

Doppler velocity logs (DVLs) are commonly used on UVs to measure vehicle

three-axis velocity. When a DVL has bottom-lock, the instrument provides

accurate measurements of the UV’s three-axis velocity with respect to the

fixed sea floor.

Using the roll, pitch, heading attitude of the vehicle, these velocity mea-

surements can be transformed into world frame by [71]

wv(t) = w
v R(t) v

i R iv(t) (5.35)

where v
i R is the constant rotation matrix from the instrument coordinate frame

to the vehicle coordinate frame, w
v R(t) is the time varying rotation matrix

from the vehicle coordinate frame to the inertial world coordinate frame (the

rotation matrix corresponding to the roll, pitch, heading of the vehicle), iv(t)

is the vehicle’s velocity in the DVL instrument’s coordinate frame, and wv(t)

is the world frame vehicle velocity. wv(t) can then be integrated to provide
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the dead reckoning position estimate [76]

w p(t) = w p(t0) +
∫ t

t0

wv(τ) dτ. (5.36)

5.4 MAVBE Simulation Evaluation

5.4.1 Simulation Setup

The proposed bias estimation and compensation algorithm was evaluated in

a numerical simulation using Matlab. Simulated IMU sensor measurements

were generated by simulating sinusoidal vehicle motions. The simulated

data was generated at 20 hz. Noise was added to this data with characteris-

tics observed from experimental bench tests of a MicroStrain 3DM-GX5-25

[39]. The measured standard deviations of the simulated magnetometer and

angular-rate sensors sampled at 20 hz and the simulated “true” sensor biases

used during the simulated data generation, which are realistic sensor bias

values for a MicroStrain 3DM-GX5-25 as observed from bench tests, are given

in Table 5.1.

Table 5.1: Simulation Setup Parameters.

Sensor Noise
σm [2 2 2]T · 10−4 G
σw [2.4 2.4 2.4]T · 10−4 rad/s

Sensor Bias
mb [0.6 -0.7 -1]T · 10−1 G
wb [-2 3 -1]T · 10−3 rad/s
tp [1.1 0.1 0.03 0.95 0.01 1.2]T

Sensor Bias Estimate Initial Values
m̂b(t0) [0 0 0]T G
t̂p(t0) [1 0 0 1 0 1]T

ŵb(t0) [0 0 0]T rad/s
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(a) Sim1: True magnetic field vector.

(b) Sim2: True magnetic field vector.

Figure 5.1: Simulation: The true magnetic field vectors in the instrument frame
during the simulations.
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The simulated instrument experienced smooth sinusoidal rotations. In

Sim1, the instrument experiences changes in roll, pitch, and heading of ±180◦.

However, in Sim2 the instrument experiences smaller angular rotations with

roll and pitch magnitudes of < 50◦ and heading of ±180◦. Figure 5.1 shows

the true magnetic field in the instrument frame.

The MAVBE was executed at 10 hz, the initial conditions for the sensor

biases estimates are given in Table 5.1, and the measurement covariance matrix,

R, was populated with the square of the σm standard deviations along the

diagonal entries such that

R = diag([4 4 4]) · 10−8, (5.37)

and a process covariance matrix, Q, that works well is

Q = diag([1 1 1 1 1 1 1 1 1 1 1 1 0.01 0.01 0.01]) · 10−10. (5.38)

Larger Q values resulted in quicker convergence, at the expense of more

oscillatory final steady states, while lower Q values resulted in slower conver-

gence, but a smoother final steady state. We selected Q empirically to provide

a balance between convergence time and a smooth final steady state. In the

future, two different process covariance matrices could be chosen for coarse

and fine alignment in order to achieve fast convergence and a less oscillatory

final steady state. Also, after an initial calibration, previous estimates for

the sensor biases can be used as initial conditions to the MAVBE in order to

greatly decrease convergence time of the proposed estimator.
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Table 5.2: Table of estimated bias values for the two experiments.

mb (G) tp wb (◦/s)
True [0.060 -0.070 -0.100] [1.100 0.100 0.030 0.950 0.010 1.200] [-0.002 0.003 -0.001]
MAVBE Sim1 [0.059 -0.070 -0.100] [1.099 0.100 0.030 0.949 0.010 1.200] [-0.002 0.003 -0.001]
TWOSTEP Sim1 [0.064 -0.080 -0.084] [1.100 0.100 0.030 0.950 0.010 1.200] N/A
MAVBE Sim2 [0.060 -0.070 -0.096] [1.100 0.100 0.030 0.950 0.010 1.192] [-0.002 0.003 -0.001]
TWOSTEP Sim2 [0.062 -0.075 -0.123] [1.148 0.104 0.031 0.992 0.009 1.317] N/A

Table 5.3: Comparison of heading RMSEs between the calibration techniques.

Calibration Method Sim1 Sim2
Uncalibrated 23.35◦ 19.21◦

MAVBE 0.54◦ 0.58◦

TWOSTEP 0.61◦ 1.42◦

5.4.2 Simulation Results

The error in estimated sensor biases for the simulations are shown in Figures

5.2-5.3. The simulation results show that the MAVBE can accurately estimate

the true values of mb, tp, and wb. Since, in simulation, the true values of the

biases are known, it is easy to verify that the biases estimates converge to the

true bias values, and not to arbitrary incorrect values, which would generally

be the case if wm(t) was not a PE signal.

Table 5.2 presents the biases estimated by the MAVBE and TWOSTEP

methods during Sim1 and Sim2. In addition, Table 5.3 lists the heading errors

corresponding to using the biases from Table 5.2 for magnetometer calibration.

In Sim1, the resulting heading RMSE of the calibrated magnetometer from

the MAVBE and TWOSTEP methods was similar at 0.54◦ and 0.61◦ RMSE

respectively. In Sim1, the large angular rotations of the instrument provide

rich magnetometer measurements, allowing both of the methods to find the

true sensor biases. However, in Sim2 the resulting heading RMSE of the

calibrated magnetometer from the MAVBE and TWOSTEP methods differ.
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Figure 5.2: Simulation 1 Results. MAVBE magnetometer and angular rate sensor
bias estimate errors converge to zero, i.e the estimated biases converge to their known
true values.

The MAVBE method performs better, with a heading RMSE of 0.58◦, than the

TWOSTEP method with a heading RMSE of 1.42◦. Since the magnetometer

measurements in Sim2 are less PE than in Sim1 the use of the angular ve-

locity measurements allows the MAVBE method to perform better than the

magnetometer only TWOSTEP method.

Sim2 illustrates the main benefit of the proposed MAVBE. The modest

attitude motion is sufficient for the MAVBE bias estimates to converge to their

true values. However, in Sim2, the TWOSTEP method is unable to estimate

all of the magnetometer bias terms accurately.
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Figure 5.3: Simulation 2 Results. MAVBE magnetometer and angular rate sensor
bias estimate errors converge to zero, i.e the estimated biases converge to their known
true values.

The proposed MAVBE estimator’s ability to converge to the proper biases

while the instrument experiences modest changes in roll and pitch allows

the method to be employed on most large full-scale ROVs, and some AUVs,

which are typically very stable in roll and pitch, and hence, are unable to

achieve larger roll and pitch changes required by many common methods like

the TWOSTEP method for magnetometer calibration.
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Figure 5.4: Laboratory Experiments: Exp1 and Exp2 angular velocity measurements.

5.5 MAVBE Laboratory Experimental Evaluation

5.5.1 Experimental Test Facility

Experimental trials were performed with the JHU ROV, which is described in

Appendix A.2 on page 189.

5.5.2 Experimental Setup

The JHU ROV was commanded to execute smooth sinusoidal rotations of

roughly ±180◦ in heading and ±15◦ in pitch. Two experiments were con-

ducted at different angular velocities. In experiment 1 (Exp1), the vehicle was
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(a) Exp1: Corrected magnetic field vector

(b) Exp2: Corrected magnetic field vector

Figure 5.5: Laboratory Experiments: The corrected magnetic field vectors for Exp1
and Exp2

.
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Table 5.4: Table of estimated bias values for the two laboratory experiments.

mb (G) tp wb (◦/s)
MAVBE Exp1 [0.053 0.006 0.171] [0.662 0.005 0.028 0.634 0.009 0.974] [0.0006 0.0019 0.0006]
TWOSTEP Exp1 [0.123 0.002 0.874] [0.346 0.003 0.017 0.327 0.006 0.395] N/A
MAVBE Exp2 [0.054 0.008 0.171] [0.681 0.009 0.031 0.645 0.007 0.990] [0.0002 0.0018 0.0005]
TWOSTEP Exp2 [0.106 0.024 0.070] [0.629 0.010 0.012 0.600 -0.001 1.025] N/A

Table 5.5: Comparison of heading RMSEs between different calibration techniques
for the two laboratory experiments.

Calibration Method Exp1 Exp2
Uncalibrated 23.34◦ 28.00◦

MAVBE 0.75◦ 1.12◦

TWOSTEP 2.88◦ 2.60◦

subject to smaller angular velocities than in experiment 2 (Exp2). Figure 5.4

presents the measured angular velocities from the two laboratory experiments,

and Figure 5.5 shows the corrected magnetic field vector during the Exp1

and Exp2 experiments. IMU data was logged at 20 hz using the MicroStrain

3DM-GX5-25. The initial conditions for the sensor bias estimates are the same

as given in Table 5.1. The MAVBE was executed at 10 hz, and the process and

measurement covariance matrices are given by (5.38) and (5.37), respectively.

5.5.3 Experimental Results

The sensor bias estimates for Exp1 and Exp2 are presented in Figures 5.6-5.7

and the final bias estimates in Table 5.4. The results show that the MAVBE

sensor bias estimates converge to constant values. Since the true bias values

are unknown, the final bias estimates were used for calibration of the mag-

netometer and angular rate sensors, enabling heading error to be used as

an error metric. Table 5.5 reports the MAVBE’s and TWOSTEP’s calibrated

magnetometer respective heading errors. In both laboratory experiments,
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Figure 5.6: Experiment 1 (Exp1) Results: MAVBE magnetometer and angular rate
sensor bias estimates converge to constant values.

the heading estimates corresponding to the MAVBE calibrated magnetometer

closely tracks the ground truth value with a RMSE of roughly 1◦. However,

the TWOSTEP calibrated magnetometer leads to a worse RMSE of > 2.5◦. The

difference between the RMSE corresponding to the MAVBE and TWOSTEP

calibration methods demonstrates the advantage of the MAVBE method for

providing accurate magnetometer calibration on field vehicles which are un-

able to achieve the large roll and pitch changes required by many common

methods like the TWOSTEP and ellipsoid fitting methods for magnetometer

calibration.
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Figure 5.7: Experiment 2 (Exp2) Results: MAVBE Magnetometer and angular rate
gyro bias estimates converge to constant values.

In addition, note that in Figures 5.6-5.7, the sensor bias estimates in Exp2

converged faster than those in Exp1. This is due to the fact that the instrument

in Exp2 experienced higher angular velocities than in Exp1 (seen in Figure

5.4). The increased excitement of the instrument in Exp2 lead to a faster

convergence time for the sensor bias estimates than those in Exp1.
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5.6 MAVBE Field Trial Experimental Evaluation

5.6.1 Test Vehicle

Experimental fields trials were performed with the JHU’s Iver3 AUV (L3

OceanServer, Fall River, MA, USA) [45] in the Chesapeake Bay, MD, USA. The

JHU Iver3 AUV is described in Appendix A.3 on page 190.

5.6.2 Experimental Setup

The initial conditions for the sensor bias estimates are given in Table 5.1, the

same as in the simulations.

The 3DM-GX5-25 IMU was sampled at 20 Hz. The MAVBE was executed

at 10 hz, and the measurement covariance matrix, R, was populated with the

square of the σm standard deviations along the diagonal entries such that R is

(5.37), and the process covariance matrix, Q, is (5.38).

Before running the two field trials, a compass calibration for the Iver3’s

OS5000 magnetic compass [44] was completed per the instructions by L3

OceanServer [45]. Note that the JHU Iver3 AUV has its own L3 OceanServer

proprietary magnetometer calibration method for the OS5000 magnetic com-

pass based on heading sweeps and a look up table. This process is a two

step process involving heading sweeps on a stand and an in-water compass

calibration mission. During the field trials, the proposed MAVBE method

is compared not only to the TWOSTEP method (as done in the simulation

and laboratory experiments), but also to OceanServer’s OS5000 commercial

magnetic compass.
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Table 5.6: Table of estimated bias values for the two field experiments.

mb (G) tp wb (◦/s)
MAVBE Dive1 [-0.084 0.149 0.0146] [0.986 0.002 -0.001 0.972 -0.002 0.955] [0.0011 -0.0009 0.0005]
TWOSTEP Dive1 [-0.085 0.1468 -0.005] [-0.009 -0.006 -0.067 -0.006 -0.071 -0.990] N/A

+ [0.074 0.078 1.088]i + [0.003 0.003 0.037 0.003 0.039 0.539]i
MAVBE Dive2 [-0.084 0.149 0.020] [0.970 0.002 -0.002 0.966 -0.003 0.947] [0.0012 -0.0008 0.006]
TWOSTEP Dive2 [0.080 0.022 0.009] [-0.329 -0.017 0.067 -0.357 0.032 -0.992] N/A

+ [-0.057 -0.029 0.560]i + [0.008 0.004 -0.077 0.002 -0.040 0.754]i

Two field trials were conducted in Round Bay on the Chesapeake Bay, MD,

USA. The JHU Iver3 AUV conducted two surface missions following cardinal

and intercardinal heading directions. The trials were designed so that the

JHU Iver3 AUV would follow track-lines along cardinal and intercardinal

heading directions in order to ensure that the magnetometer is fully calibrated

for all heading directions. The trials were conducted on the water surface

to allow for GPS to be used as a navigation ground truth and in shallow

water to allow for DVL bottom-lock velocity measurements. Two trials were

conducted ∼ 4.5 hours apart (one in the morning and one in the afternoon)

in order to confirm our assumption that the sensor biases were in fact slowly

time varying and did not change drastically between experiments. Since the

JHU Iver3 does not have a high-end INS (like used on the JHU ROV in the

laboratory experiments) to compare heading estimates, XY navigation error is

used as a proxy for the magnetometer calibration during the field trials. The

recalculated dead reckoning navigation for each magnetometer calibration

method is compared to the GPS track of the vehicle.

5.6.3 Experimental Results

The MAVBE’s sensor bias estimates for Dive1 and Dive2 are presented in

Figures 5.9 - 5.10 and Table 5.6. The results show that the MAVBE’s sensor
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(a) Dive1: Corrected magnetic field vector.

(b) Dive2: Corrected magnetic field vector.

Figure 5.8: Field Trials: The corrected magnetic field vectors for Dive1 and Dive2
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Figure 5.9: Dive 1 (Dive1) Results: MAVBE magnetometer and angular rate sensor
bias estimates converge to constant values.
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Figure 5.10: Dive 2 (Dive2) Results: MAVBE magnetometer and angular rate sensor
bias estimates converge to constant values.

115



1800 1850 1900 1950 2000 2050
1100

1150

1200

1250

1300

Figure 5.11: Dive 1 (Dive1) Navigation Tracks: Comparison of the Doppler dead
reckoning navigation between the tracks from MAVBE compass calibration, the
OS5000 calibrated compass, and the GPS ground truth track.
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Figure 5.12: Dive 2 (Dive2) Navigation Tracks: Comparison of the Doppler dead
reckoning navigation between the tracks from MAVBE compass calibration, the
OS5000 calibrated compass, and the GPS ground truth track.

117



1190 1195 1200 1205 1210 1215 1220
0

5

10

15

20

25

Figure 5.13: Dive 1 (Dive1) Navigation Error: Comparison of the Doppler dead
reckoning navigation error of the tracks from MAVBE compass calibration and the
OS5000 calibrated compass.

118



920 925 930 935 940 945 950 955
0

2

4

6

8

10

12

14

16

18

20

Figure 5.14: Dive 2 (Dive2) Navigation Error: Comparison of the Doppler dead
reckoning navigation error of the tracks from MAVBE compass calibration and the
OS5000 calibrated compass.
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bias estimates converge to constant values. The final bias estimates were

used for calibration of the magnetometer and angular rate sensor. Table

5.6 reports the final estimated sensor biases from Dive1 and Dive2 used for

calibration. Figure 5.8 shows the corrected magnetic field vectors from the

two field experiments. From Figure 5.8, it is evident that the Iver3 AUV

experienced very little excitement in roll and pitch, and hence there is not

great coverage of the sphere. As discussed earlier, common methods for

magnetometer calibration like the TWOSTEP and ellipsoid fitting methods

require sufficient excitement of the magnetometer for their convergence to the

correct sensor bias estimates. During the two field experiments however, the

AUV was stable in roll and pitch, and the TWOSTEP method was unable to

accurately estimate the sensor bias. Table 5.6 reports the TWOSTEP estimated

biases, which are clearly incorrect as they are found to be imaginary.

As reported in Table 5.6, the TWOSTEP algorithm failed to produce realis-

tic bias estimates for either Dive1 or Dive2. For these dives, the TWOSTEP

method produced (physically meaningless) imaginary values for the mag-

netometer hard-iron and soft-iron estimates. Hence, the proposed MAVBE

calibration is compared to the Iver3 AUV’s calibrated OS5000 compass which

relies on L3 OceanServers proprietary magnetometer calibration method based

on heading sweeps and a look up table. In addition, since the Iver3 AUV does

not have a high end INS to provide heading as a comparison to the calibrated

magnetometer heading, Doppler navigation error is used as an error metric.

Figures 5.11-5.12 show the MAVBE and OS5000 calibrated magnetic com-

pass navigation tracks in comparison with the GPS ground truth track, and
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Figures 5.13-5.14 show the the respective two norm error of the navigation

tracks. From Figures 5.13-5.14, we see that the MAVBE calibrated compass

leads to more accurate Doppler dead reckoning navigation than the industry

standard provided by L3 OceanServer’s calibrated OS5000 magnetic com-

pass. The navigation track error for the Dive1 and Dive2 field experiments

demonstrate that the MAVBE calibrated MicroStrain 3DM-GX5-25 provides

improved performance over the calibrated OS5000 compass. In addition, the

field experiments demonstrate the ability of the MAVBE method to properly

calibrate magnetometers on robotic vehicles which are stable in roll and pitch.

This is in contrast to the TWOSTEP method which is unable to estimate the

magnetometer hard-iron and soft-iron sensor bias during the field trials.

5.7 Conclusion

This chapter reports a novel method for online, real-time estimation of hard-

iron and soft-iron magnetometer biases and angular rate sensor biases in

inertial measurement units (IMUs) for use in AHRSs. AHRSs commonly use

bias-compensated magnetometer measurements to estimate heading. By uti-

lizing angular rate sensor measurements, smaller angular rotations of the

instrument (in comparison to previously reported methods for magnetometer

calibration) are required for accurate compensation of magnetometer and an-

gular velocity sensor biases. Since the proposed estimator works with smaller

changes in roll and pitch than previously reported methods, it can be imple-

mented on real full-scale ROVs to provide online estimates of magnetometer

sensor biases to allow real-time bias-compensation for these sensors.
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Oceanographic underwater vehicles (UVs) and surface vehicles, which

are commonly passively stable in roll and pitch, are unable to achieve the

roll and pitch required for the common magnetometer calibration methods

like the TWOSTEP and ellipsoid fitting methods. The simulations, laboratory

experiments, and field trials show that the proposed MAVBE magnetometer

calibration method provides improved performance over common methods

like the TWOSTEP method and the OceanServer Iver3 AUV commercial

solution. The TWOSTEP method was unable to estimate the magnetometer

sensor biases during the field experiments due to the limited motion in roll

and pitch. The ability of the proposed MAVBE method to accurately estimate

magnetometer biases when there is limited excitation of the magnetometer

signal illustrates the advantage of the proposed calibration method over

common calibration methods like the TWOSTEP and ellipsoid fitting methods

which fail when there is low coverage of the magnetometer on the sphere.

As demonstrated in the field experiments, the proposed method leads to

improved position estimation of the Iver3 AUV over the TWOSTEP calibrated

magnetometer and the calibrated OceanServer OS5000 magnetic compass.

In future studies, the authors hope to improve the convergence time of the

estimator by developing coarse and fine alignment protocols. Different values

for the process covariance matrix, Q, could be chosen during the coarse and

fine alignment to enable both a fast convergence of the sensor biases and a

smooth final steady state.
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Chapter 6

Adaptive Bias and Attitude
Observer on the Special
Orthogonal Group for True-North
Gyrocompass Systems

6.1 Introduction

This chapter is based on the research reported in [65]. This chapter reports

two novel algorithms – one for real-time adaptive bias estimation of a dynamic

(rotating) IMU without use of magnetometers or a priori knowledge of the in-

strument’s attitude and one for estimating attitude directly on SO(3) without

linearization or an EKF. Preliminary simulation and experimental results of

the reported true-North gyrocompass system employing a low-cost FOG IMU

are reported.

Previous papers [58, 59, 60, 64] report earlier versions of this algorithm.

The current chapter differs from this previous work [58, 59, 60, 64] by pre-

senting a new formulation of the sensor bias estimation which relies on fewer
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assumptions, generalizing the attitude algorithm to be used with general field

vector measurements, presenting asymptotic stability proofs for the proposed

observers, and providing an approach for choosing observer gains.

6.1.1 Background and Motivation

Accurate sensing and estimation of true-North geodetic heading and local

level (roll and pitch) referenced to the local gravitational field (which we will

refer to as true-North attitude) are critical components of high-accuracy navi-

gation systems for a wide variety of robotic vehicles. The need for accurate

true-North attitude estimation is particularly acute in the case of vehicles oper-

ating in GPS-denied environments (such as underwater) and in magnetically

compromised environments (such as near ferromagnetic structures, buildings,

or natural local magnetic anomalies). Smaller and lower-cost vehicles repre-

sent an additional challenge due to their limited sensor budget, small physical

size, and limited energy storage capacity.

Over the past decade the development of a new generation of small low-

cost UVs has begun to enable oceanographic, environmental assessment, and

national security missions that were previously considered impractical or

infeasible (e.g. [8, 9, 47, 66, 80]). This new generation of UVs often employ

low-cost navigation systems that presently limit them to missions requiring

only low-precision navigation of O(1-100)m accuracy when submerged. High-

end navigation approaches, of O(0.1-10)m accuracy, traditionally require a

Doppler sonar, costing $20k-$50k USD, and a North-seeking gyrocompass or

INS, costing $50k-$250k. These high-end navigation approaches are largely
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incompatible with low-cost AUVs with target total vehicle cost of $50k-$250k.

Moreover, the high cost, large size, and high power-consumption of com-

mercially available optical true-North seeking gyrocompasses is a principal

barrier to the widespread use of high accuracy navigation for smaller and

lower-cost UVs.

Most small low-cost UVs typically employ MEMS IMUs comprised of

3-axis MEMS magnetometers, gyros, and accelerometers to estimate local

magnetic heading, pitch, and roll, typically to within several degrees of accu-

racy, but require careful soft-iron and hard-iron calibration and compensation

to achieve these accuracies. Moreover, magnetic attitude sensors must be

recalibrated for soft-iron and hard-iron errors whenever the vehicle’s physical

configuration changes significantly (i.e. sensors or other payloads added or

removed, etc.), as very frequently occurs on oceanographic marine vehicles.

Studies have shown that the accuracy of these magnetic heading sensors can

be a principal error source in overall navigation solutions [30].

Recently, a new class of lower-cost (∼$20k USD), compact, and lower

power FOG IMUs have become available — for example the commercial-off-

the-shelf (COTS) KVH 1775 FOG IMU (KVH Industries, Inc., Middletown,

RI, USA) – that provide sensor accuracies sufficient for estimation of true-

North heading, pitch, and roll. This is in contrast to MEMS IMUs, which

employ MEMS gyros that lack the sensitivity necessary to detect Earth-rate,

and hence true-North heading, and thus rely on MEMS magnetometers to

sense magnetic heading.
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6.1.2 True-North Versus Magnetic Heading

True-North heading estimation differs from that of magnetic heading in that

true-North is the direction towards the Earth’s axis of rotation at the North

Pole, while magnetic heading measures the direction of the horizontal com-

ponent of the Earth’s local magnetic field, which differs dramatically from

true-North, often by many 10’s of degrees – a difference termed local mag-

netic variation. The angular rate sensors (includes all MEMS IMUs) used in

magnetic-North attitude sensors typically lack the sensitivity (the magnitude

of Earth rate is orders of magnitude smaller than the magnitude of MEMS

angular rate gyro sensor noise) to detect the angular rate of Earth (15◦/hr)

and are commonly modeled as

wm(t) =����⌃
0

wE(t) + wv(t) + wb + η(t) (6.1)

where wm(t) ∈ R3 is the measured angular rate vector in instrument coor-

dinates, wE(t) ∈ R3 is the angular rate of the Earth (15◦/hr), wv(t) ∈ R3

is the angular rate of the instrument with respect to the local North-East-

Down (NED) frame, wb ∈ R3 is a constant measurement bias, and η(t) ∈ R3

is zero-mean Gaussian measurement noise. In contrast, true-North gyrocom-

pass systems use high-end angular rate sensors, such as three-axes FOGs or

RLGs, which are sensitive enough (∥wE(t)∥ ≳ ∥η(t)∥) to measure Earth’s

angular rate and are typically modeled as

wm(t) = wE(t) + wv(t) + wb + η(t) (6.2)
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IMU Grade Accel.
Sensor
Type

Accel. Bias Ang. Rate
Sensor
Type

Ang. Drift Size, Weight, Power Cost

(A) High-End
FOG/RLG

Mass ∼ 1 − 10µG Optical < 1◦/h 5250 cm3 4.5kg 14W ∼$135K

(B) Low-Cost
FOG

MEMS ∼ 1mG Optical < 1◦/h 650 cm3 0.7kg <5W ∼$19K

(C) MEMS MEMS ∼1 mG MEMS > 10◦/h 12 cm3 18g 0.4W ∼$2K

Table 6.1: Comparison of (A) Conventional Navigation-Grade FOG/RLG IMUs, (B)
Low-Cost FOG IMUs, and (C) MEMS IMUs Specifications. (A-B) are two classes of
IMUs suitable for true-North gyrocompasses, and (C) are MEMS IMUs which do not
have angular rate gyros sensitive enough to be used for true-North gyrocompass
systems.

where the terms are the same as in (6.1). Table 6.1 compares these different

classes of IMUs.

By fusing gyroscope and accelerometer measurements, true-North gy-

rocompass systems generate an estimate for the wE(t) component of the

measured angular rate wm(t). Since the Earth’s angular rate, wE(t), lies in the

local North-down plane, the estimated angular-rate of Earth (wE(t)) and the

estimated gravity vector can be fused to estimate the true-North direction,

roll, and pitch. We define the local North-down plane to be the plane that

intersects the origin of the NED frame (defined in Section 2.1) and spans the

North and down directions.

6.1.3 Chapter Organization

This chapter is organized as follows: Section 6.2 provides a literature review

of attitude and sensor bias estimation. Section 6.3 presents the IMU sensor

measurement model. Section 6.4 reports the sensor bias and East vector ob-

server and stability proof. Section 6.5 numerically evaluates the observability

gramian of the three simulations in order to analytically show asymptotic
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stability of the observer present in 6.4. Section 6.6 presents the attitude ob-

server and stability proof. Section 6.7 introduces the Gyrocompass system.

Section 6.8 presents preliminary numerical simulations and experimental

results. Section 6.9 summarizes and concludes.

6.2 Literature Review

Because field sensors, such as angular rate gyros and accelerometers, have

significant sensor bias terms that typically vary strongly with instrument

temperature and otherwise drift very slowly over time, it is necessary to

simultaneously estimate field sensor bias terms AND estimate attitude. Sec-

tion 6.2.1 reviews relevant literature on attitude estimation, and Section 6.2.2

reviews relevant literature on IMU sensor bias estimation.

6.2.1 Attitude Estimation

The majority of the attitude estimation literature addresses the case of mag-

netic heading attitude estimation using MEMS IMUs [12, 19, 20, 37, 38, 78].

[35] report an attitude nonlinear complementary filter on SO(3). A recent

study by [10] explores utilizing a FOG for attitude estimation under unknown

magnetic disturbances. These studies however, differ from the current paper

as they estimate magnetic-North heading, while the present paper presents

an estimator for true-North heading.

[36] reports a method for estimating roll and pitch using a three-axis ac-

celerometer and three-axis gyroscope IMU and a monocular camera. This

approach however is impractical for many UV applications (e.g. when there
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is poor visibility due to water turbidity, operating in the mid-water, oper-

ating in a region with a featureless bottom) and impossible for the many

unmanned underwater vehicles (UUVs) that are not equipped with cameras

and lights/strobes.

[4] report a nonlinear attitude observer based upon angular rate gyros and

single body-fixed vector measurements of a constant “inertial vector” (e.g.

3-axis magnetometer) where the gyros and fixed-vector sensor are all assumed

to be bias-free. A numerical simulation evaluation is reported.

Unlike AHRSs which use magnetometers to estimate magnetic heading,

true-North gyrocompasses estimate geodetic true north without the use of

magnetometers. Lèon Foucault first predicted that the gyroscope could be

used as a compass in 1852. During the early twentieth century, Dr. Hermann

Franz Joseph Hubertus Maria Anschütz-Kaempfe and Elmer Sperry began

work on developing gyrocompasses based on the prior work by Foucault. In

1906, Anschütz-Kaempfe began designing a gyrocompass for his under ice

submarine called "The U-Boat in Service of Polar Exploration" and conducted

sea trials on the Deutschland in 1908. Shortly after in late 1907 or early 1908,

Sperry began the development of his own gyrocompass [23].

The first practical gyrocompass system was patented by Elmer Sperry

in 1911 [23, 57, 69]. Sperry’s original gyrocompass was centered around a

high accuracy mechanical gyroscope, and in WWI and WWII, Sperry gyro-

compasses were widely equipped on warships and airplanes as the primary

navigational instrument. While the first gyrocompass systems were mechani-

cal, the invention of ring laser gyros (RLGs) in the 1960s [34] and fiber optic
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gyroscopes (FOGs) in the 1970s [73] enabled optical gyroscopes to be used in

gyrocompasses. It is commonly understood that most modern commercial

of the shelf true-North gyrocompasses utilize a high-end gyroscope and ac-

celerometer in an EKF framework to estimate sensor biases and attitude. The

gyrocompass system reported in this chapter differs from previous gyrocom-

passes by utilizing full nonlinear adaptive observers without linearization.

Preliminary studies by the author [58, 59] suggest the practical utility of

a low-cost FOG IMU as the primary sensor in a North-seeking gyrocompass

system. These studies assume that sensor biases have been calculated and

compensated for a priori and rely on the differentiation of accelerometer mea-

surements for estimating true-North. Numerical simulation and experimental

evaluations are reported.

[64] presents a true-North gyrocompass system which estimates true-North

attitude without the need to differentiate accelerometer measurements and

also addresses the problem of real time bias estimation for both gyros and

accelerometers. The current chapter differs from the previous attitude ob-

server by generalizing the algorithm to be used with general field vector

measurements and provides a local asymptotic stability proof and observ-

ability analysis. Numerical simulation and full-scale vehicle experimental

evaluations are reported.

130



6.2.2 Inertial Measurement Unit (IMU) Sensor Bias Estima-
tion

Several methods for IMU measurement bias estimation have been reported in

recent years. Much of this literature, though, focuses on magnetometer bias

estimation [1, 2, 11, 17, 19, 31, 33, 61, 70, 72].

Many papers report results for gyro sensor bias estimation. However, most

address MEMS gyro sensor bias estimation in which the angular rate due

to Earth’s rotation is ignored in the gyro measurement model. They use a

measurement model similar to that of (6.1) and neglect the Earth rate term

because Earth rate is dynamically undetectable with MEMS gyros.

[18] report an identifier for accelerometer and gyroscope sensor bias. How-

ever, they utilize GPS which is unavailable to submerged vehicles.

[53] and [54] also report a sensor bias estimator for 6-DOF IMUs utilizing

computer vision. This method though is dependent on the presence of a

computer vision system, which requires illumination of optical identification

markers in the environment and a camera system which is unavailable for

many robotic vehicles (e.g. many underwater vehicles).

[37, 38] and [50] report nonlinear complementary filters for estimating

attitude and gyroscope sensor bias. While these estimators identify angular-

rate sensor bias, they do not address linear acceleration sensor bias and do

not distinguish the gyroscope sensor bias from Earth’s angular velocity.

[60] addresses the problem of identifying and distinguishing the gyro

bias from the Earth-rate signal. However, this reported approach requires

knowledge of the instrument’s real-time attitude.
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[64] reports an adaptive sensor bias and north observer to be used in a

true-North gyrocompass system without a priori knowledge of the instrument’s

attitude. The present chapter differs from this previous work by presenting

a new formulation of the sensor bias estimation which relies on fewer as-

sumptions, a proof of asymptotic stability (instead of only stability), and an

approach for choosing observer gains.

6.3 Sensor Model

The sensor measurement models for angular rate and linear acceleration are

iwe(t) = iwE(t) + iwv(t) + iwb (6.3)

iwm(t) = iwe(t) + iηw(t) (6.4)

iae(t) = iag(t) + iav(t) + iab (6.5)

iam(t) = iae(t) + iηa(t) (6.6)

where iwm(t) ∈ R3 is the IMU measured angular-rate, iwe(t) ∈ R3 is the

biased noise-free angular-rate, iwE(t) ∈ R3 is the true angular velocity due

to the rotation of the Earth, iwv(t) ∈ R3 is the true angular velocity due to

the rotation of the instrument with respect to the NED frame, iwb ∈ R3 is the

angular velocity sensor bias offset, iηw(t) ∈ R3 is the zero-mean Gaussian

angular velocity sensor noise, iam(t) ∈ R3 is the IMU measured linear accel-

eration, iae(t) ∈ R3 is the biased noise-free linear acceleration, iag(t) ∈ R3 is

the true linear acceleration due to gravity and the Earth’s rotation, iav(t) is
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Figure 6.1: Histogram of the components of the vehicle acceleration experience by
the JHU ROV during the vehicle trial. The vehicle acceleration data is from the high-
end PHINS INS on the JHU ROV. As shown above, the vehicle experiences vehicle
accelerations which are orders of magnitude smaller than gravity (<< 9.81 m/s2).

the instrument’s true linear acceleration with respect to Earth, iab ∈ R3 is the

linear accelerometer sensor bias, and iηa(t) ∈ R3 is the zero-mean Gaussian

linear accelerometer sensor noise.

For many robotic vehicles, the gravitational field iag(t) dominates the ve-

hicle linear acceleration (iav(t)). Thus, it is common to use the approximation

iae(t) ≈ iag(t) + iab (6.7)

as a low-frequency estimate of (6.5). This approximation, (6.7), is used in

[10, 35, 50, 78]. Figure 6.1 presents the vehicle acceleration experienced by
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the JHU ROV in the vehicle trial. From Figure 6.1, it is evident that the

magnitude of the vehicle accelerations experienced in the vehicle trial are

orders of magnitude smaller than the gravity vector.

Given (6.7), the sensor measurement model becomes

iwe(t) = iwE(t) + iwv(t) + iwb (6.8)

iwm(t) = iwe(t) + iηw(t) (6.9)

iae(t) = iag(t) + iab (6.10)

iam(t) = iae(t) + iηa(t). (6.11)

Section 6.8.5 shows the proposed algorithms perform well in the ex-

perimental trial where the vehicle experienced small vehicle accelerations

(∥iav(t)∥ ≈ 0), thus empirically justifying the neglection of the vehicle acceler-

ation term iav(t) in (6.7) for a slowly accelerating vehicle.

6.4 Sensor Bias and East Observer

This section reports the derivation and stability analysis of an adaptive sensor

bias and East vector observer for six-DOF IMUs equipped with a three-axis

accelerometer and three-axis angular rate gyroscope. The field sensor biases

are assumed to be very slowly time varying, and hence we model them as

constant terms and update their estimates continuously.
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Note that to estimate true-North heading, the angular rate gyroscope

must be sensitive enough to detect Earth-rate. The measurement noise of

present-day angular rate gyros in MEMS IMUs is orders of magnitude larger

than what is needed to detect the extremely minute signal of the Earth’s

rotation rate (15◦/hr), thus, MEMS IMUs cannot be utilized to dynamically

estimate directly true-North heading. At present, true-North attitude can only

be successfully instrumented with high-end, angular-rate gyros that employ

RLG or FOG angular rate sensors, or that employ large inertial-grade mechan-

ical gyrocompasses. Although high-end angular-rate gyros are necessary for

true-North gyrocompasses, the systems do not simply employ a better IMU

(more precise, without ferromagnetic disturbances) to obtain more precise re-

sults using common algorithms utilizing magnetic heading sensors, but rather

use the local gravity vector and Earth’s rotation axis for estimating true-North

attitude. This is impossible with an IMU that is not sensitive enough to detect

Earth’s rotation.

The present chapter reports a system that successfully estimates true-North

attitude utilizing a new class of compact, low-power, and lower cost FOG

IMUs.

6.4.1 System Model

We consider the system model

Nag = N
i R(t)iag(t) (6.12)

Ne = N
i R(t)ie(t) (6.13)
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where the “East” vector,

ie(t) = J
(

iwE(t)
)

iag(t), (6.14)

is defined as the cross product of the Earth’s rotation axis with the local

gravity vector. Note that the proposed observer will not work well near the

geographic north and south poles where the local gravity vector is close to

collinear with the Earth’s rotation axis.

Since Nag and Ne are constant in the NED frame, differentiating (6.12) and

(6.13), rearranging terms, and substituting (6.8) yields

i ȧg(t) = −J
(

iwe(t)− iwb − iwE(t)
)

iag(t) (6.15)

i ė(t) = −J
(

iwe(t)− iwb − iwE(t)
)

ie(t). (6.16)

From (6.10), we know that

iag(t) = iae(t)− iab (6.17)

i ȧg(t) = i ȧe(t)− i ȧb

= i ȧe(t). (6.18)

Substituting (6.10), (6.14), and (6.18) into (6.15) and (6.16) results in

i ȧe(t) = −J
(

iwe(t)− iwb

)
iag(t) + ie(t)

= −J
(

iwe(t)− iwb

) (
iae(t)− iab

)
+ ie(t). (6.19)
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Since the cross products between sensor biases and Earth-rate are or-

ders of magnitude smaller than the other signals, we make the approxi-

mations that J
(iwb

) iab ≈ 0 and J
(iwb +

iwE(t)
) ie(t) ≈ 0. Note that for

the KVH FOG IMU used in the present chapter, ∥J
(iwb

) iab∥ is order 10−7

and ∥J
(iwb +

iwE(t)
) ie(t)∥ is order 10−7, while ∥J

(iwe(t)
) (iae(t)− iab

)
∥

is order ≥ 10−4, ∥J
(iwb

) iae(t)∥ is order 10−1, ∥ie(t)∥ is order 10−4, and

∥J
(iwe(t)

) ie(t)∥ is order ∥iwv(t)∥ ∗ 10−4.

The resulting plant is

i ȧe(t) = −J
(

iwe(t)
) (

iae(t)− iab

)
+ J

(
iwb

)
iae(t) + ie(t) (6.20)

i ė(t) = −J
(

iwe(t)
)

ie(t) (6.21)

iẇb = 0 (6.22)

i ȧb = 0 (6.23)

y(t) = iae(t). (6.24)
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6.4.2 Sensor Bias and East Observer Update Law

We propose the observer

i ˙̂ae(t) = −J
(

iwe(t)
) (

i âe(t)− i âb

)
+ J

(
iŵb

)
i âe(t) + i ê(t)− ka∆a(t)

(6.25)

i ˙̂e(t) = −J
(

iwe(t)
)

i ê(t)− ke∆a(t) (6.26)

i ˙̂wb(t) = −kbwJ
(

iae(t)
)

∆a(t) (6.27)

i ˙̂ab(t) = kbaJ
(

iwe(t)
)

∆a(t) (6.28)

ŷ(t) = i âe(t) (6.29)

where ka, ke, kbw , and kba are constant positive scalar gains, i âe(t), i ê(t), iŵb(t),

and i âb(t) are the estimates of iae(t), ie(t), iwb, and iab respectively, and

∆a(t) = i âe(t)− iae(t) (6.30)

∆e(t) = i ê(t)− ie(t) (6.31)

∆wb(t) = iŵb(t)− iwb (6.32)

∆ab(t) = i âb(t)− iab (6.33)

∆y(t) = ŷ(t)− y(t) (6.34)

are the corresponding error terms.
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Note that in the proposed algorithm, the signals iwe(t) and iae(t) are

the only signals in the instrument frame needed for the algorithm to work.

Knowledge of Nag and NwE is not needed.

6.4.3 Error System

The resulting error system is

∆ȧ(t) = −J
(

iwe(t)
)

∆a(t) + J
(

iwe(t)
)

∆ab(t)

+ J
(

iŵb(t)
)

∆a(t)−J
(

iae(t)
)

∆wb(t) + ∆e(t)− ka∆a(t) (6.35)

∆ė(t) = −J
(

iwe(t)
)

∆e(t)− ke∆a(t) (6.36)

∆ẇb(t) = −kbwJ
(

iae(t)
)

∆a(t) (6.37)

∆ȧb(t) = kbaJ
(

iwe(t)
)

∆a(t) (6.38)

∆y(t) = ∆a(t). (6.39)

6.4.4 Stability

Consider the Lyapunov function candidate

V =
1
2

∆aT(t)∆a(t) +
1

2ke
∆eT(t)∆e(t) +

1
2kbw

∆wT
b (t)∆wb(t)

+
1

2kba

∆aT
b (t)∆ab(t) (6.40)
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where V is a smooth, positive definite, and radially unbounded function by

construction. Differentiating (6.40) results in

V̇ = ∆aT(t)∆ȧ(t) +
1
ke

∆ėT(t)∆e(t) +
1

kbw

∆ẇT
b (t)∆wb(t) +

1
kba

∆ȧT
b (t)∆ab(t)

=
(
−∆aT(t)J

(
iae(t)

)
+ ∆aT(t)J

(
iae(t)

))
∆wb(t)

+
(

∆aT(t)J
(

iwe(t)
)
− ∆aT(t)J

(
iwe(t)

))
∆ab(t)

+
(

∆aT(t)− ∆aT(t)
)

∆e(t) +
1
ke

∆eT(t)J
(

iwe(t)
)

∆e(t)

+ ∆aT(t)J
(

iŵb(t)− iwe(t)
)

∆a(t)− ka∆aT(t)∆a(t)

= −ka∥∆a(t)∥2

≤ 0. (6.41)

Since ka is a positive scalar, the time derivative of the Lyapunov function is

negative semidefinite and the observer is globally stable.

Since (6.40) is radially unbounded, bounded below by 0, and bounded

above by its initial value, V(t0), due to (6.41), we can conclude that ∆a(t),

∆e(t), ∆wb(t), and ∆ab(t) are bounded. If we make the assumption that the

signals iae(t), iwe(t), iwb, and iab are bounded, then (6.35)-(6.39) are bounded,

and hence (6.30)-(6.33) are uniformly continuous.
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For all t ≥ 0,

−
∫ t

t0

V̇(τ) dτ =
∫ t

t0

ka∥∆a(τ)∥2 dτ

V(t0)− V(t) = ka

∫ t

t0

∥∆a(τ)∥2 dτ

V(t0) = ka

∫ t

t0

∥∆a(τ)∥2 dτ + V(t). (6.42)

Since V(t) ≥ 0 ∀t > t0, (6.42) can be written as

ka

∫ t

t0

∥∆a(τ)∥2 dτ ≤ V(t0)

(∫ t

t0

∥∆a(τ)∥2 dτ

)1/2

≤
(

V(t0)

ka

)1/2

. (6.43)

Hence, ∆a(t) ∈ L2 [27].

Since ∆a(t) ∈ L2 ∩ L∞ and ∆ȧ(t) is bounded, from Corollary 2.9 in [42],

we conclude that ∆a(t) is globally asymptotically stable at the origin,

lim
t→∞

∆a(t) = 0. (6.44)

Note that we can rewrite the error system into the form

θ̇(t) = A(t)θ(t) + f (t) (6.45)

y(t) = Cθ(t) (6.46)
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where

θ(t) =

⎡⎢⎢⎣
∆a(t)
∆e(t)

∆wb(t)
∆ab(t)

⎤⎥⎥⎦ , (6.47)

A(t) =
[

0 g(t)
0 0

]
, (6.48)

g(t) =
[

I −J
(iae(t)

)
J

(iwe(t)
)

−J
(iwe(t)

)
0 0

]
, (6.49)

f (t) =

⎡⎢⎢⎣
−J

(iwe(t)− ŵb(t)
)
− ka I

−ke I
−kbwJ

(iae(t)
)

kbaJ
(iwe(t)

)
⎤⎥⎥⎦ ∆a(t), (6.50)

C =
[

I 0 0 0
]

, (6.51)

and I ∈ R3×3 is the identity matrix. Since limt→∞ ∆a(t) = 0, we conclude that

(i) limt→∞ ∥y(t)∥ = 0

(ii) limt→∞ ∥ f (t)∥ = 0

Thus, if [A(t), C] is UCO, from Lemma 1, page 16, we conclude the error

system is asymptotically stable and hence

lim
t→∞

∥θ(t)∥ = 0. (6.52)

We conclude that, if iae(t), iwe(t), iwb, and iab are bounded and [A(t), C] is
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UCO, then the system is asymptotically stable. Note that for UVs, the signals

iae(t), iwe(t), iwb, and iab are all bounded (see Figure 6.18 for the sensor mea-

surements from the numerical simulations and vehicle trial), so convergence

of the observer is dependent on [A(t), C] being UCO. In our case, where A(t)

depends on the coupled exogenous signals iwe(t) and iae(t), it is not obvi-

ous that Φ(t, t0) (the transition matrix for A(t)) has a closed-form solution

for non-trivial iwe(t) and iae(t), and, in consequence, it is not clear how to

prove analytically that the observability grammian N(t0, δ), defined in (2.18),

satisfies (2.17). It is easy to verify numerically that when iwe(t) and iae(t) are

PE, [A(t), C] is UCO. Conversely, it is also easy to verify numerically that

when iwe(t) and iae(t) are not PE, [A(t), C] is not UCO. Section 6.5 reports

numerical evaluations of the observability gramian for the simulation data

presented in Section 6.8.

6.5 Uniform Complete Observability (UCO) Of The
Sensor Bias and East Observer

As stated in Section 6.4.4, asymptotic convergence of the sensor bias and

East observer to the true values is dependent on [A(t), C] being uniformly

completely observable (UCO). However, it is not obvious that Φ(t, t0), the

transition matrix for A(t), has a closed-form solution for non-trivial iwe(t)

and iae(t) and, in consequence, it is not clear how to prove analytically that

the observability gramian

N(t0, δ) =
∫ t0+δ

t0

ΦT(τ, t0)CTCΦ(τ, t0) dτ (6.53)
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satisfies (2.17).

We have, however, verified numerically that when iwe(t) and iae(t) are

PE, [A(t), C] is UCO. Figures 6.3-6.5 present the instrument measurements

from the three simulations. The following subsections present results from

numerically evaluating the observability gramian of the three simulations.

6.5.1 Sim1 Simulation

In sim1, iwe(t) and iae(t) are constant (i.e. heading, pitch, and roll are all uni-

formly zero), and thus, not persistently exciting (PE). Hence, the observability

gramian for [A(t), C] is not full rank and [A(t), C] is not UCO. Numerically,

we can verify that rank (N(0, 60)) = 6, σmin(N(0, 60)) = 4.59 × 10−12, and

σmax(N(0, 60)) = 6.96 × 106 (full rank occurs when rank (N(0, 60)) = 12).

6.5.2 Sim2 Simulation

In sim2, the vehicle only experiences changes in heading only, with uniformly

zero roll and pitch, and iwe(t) and iae(t) are not PE. Hence, the observability

gramian for [A(t), C] is not full rank and [A(t), C] is not UCO. Numerically,

we can verify that rank (N(0, 60)) = 10, σmin(N(0, 60)) = 3.76 × 10−12, and

σmax(N(0, 60)) = 6.90 × 106 (full rank occurs when rank (N(0, 60)) = 12).

6.5.3 Sim3 Simulation

In sim3, the vehicle experiences changes in roll, pitch, and heading, and

iwe(t) and iae(t) are PE. The observability gramian for [A(t), C] can be shown
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numerically to be full rank and, in consequence, [A(t), C] is UCO. Numer-

ically, we can verify that rank (N(0, 60)) = 12, σmin(N(0, 60)) = 1.04, and

σmax(N(0, 60)) = 4.89 × 106 (full rank occurs when rank (N(0, 60)) = 12).

6.5.4 Conclusion

We conclude from numerically evaluating the observability gramians over

t = [0, 60] from the three simulations, that when iwe(t) and iae(t) are PE

(sim3), the observer is asymptotically stable. Note that during sim2, although

the observability gramian is not full rank, excitement in heading (sim2) causes

the observability gramian to be rank 10, which is a higher rank than in the

case of a stationary instrument (sim1).

6.6 Attitude Observer

This section reports the derivation and stability analysis of an attitude observer

that estimates directly on SO(3). The observer is inspired in part by the

research of [35] on nonlinear complementary filters on SO(3) and research

by [28] on adaptive identification on SO(3). The general terms x and z are

used because the observer is not limited to the problem of true-North attitude

estimation — it can also be applied (for example) to magnetometer-IMU

systems for attitude estimation with respect to local magnetic-North.
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6.6.1 Plant

Consider the plant

Nx = N
i R(t)ix(t) (6.54)

Nz = N
i R(t)iz(t) (6.55)

where ix(t) and iz(t) are orthogonal such that ixT(t)iz(t) = 0. The signals

Nx ∈ R3, ix(t) ∈ R3, Nz ∈ R3, and iz(t) ∈ R3 are known and non-zero. The

rotation matrix N
i R(t) ∈ SO(3) is unknown.

6.6.2 Identification Plant

Define N
i R̂(t) ∈ SO(3) to be the estimate of N

i R(t), and N x̂, N ẑ ∈ R3 to be the

estimated plant output

N x̂ = N
i R̂(t)ix(t) (6.56)

N ẑ = N
i R̂(t)iz(t), (6.57)

where ix(t), iz(t) are “field vectors”. In out particular instance, the field vectors

are iag(t), ie(t) respectively.

6.6.3 Parameter Error

The parameter error is defined as

R̃(t) = N
i RT(t)N

i R̂(t). (6.58)

When N
i R̂(t) = N

i R(t), N
i RT(t)N

i R̂(t) = I where I is the 3 × 3 identity matrix.
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6.6.4 Attitude Observer Update Law

We choose the update law

N
i

˙̂R(t) = N
i R̂(t)J

(
x̃(t) + z̃(t) + iwe(t)− iwb − N

i R̂T(t)NwE

)
. (6.59)

where the x̃(t) ∈ R3 and z̃(t) ∈ R3 are local field vector error terms defined,

respectively, as

x̃(t) = kx(t)J
(

ix(t)
)

N
i R̂T(t)Nx (6.60)

z̃(t) = kz(t)J
(
(I − P(t)) iz(t)

)
N
i R̂T(t)Nz (6.61)

where the projection matrix, P(t), and normalized vector i x̄(t) are defined as

P(t) = i x̄(t)i x̄T(t), (6.62)

i x̄(t) = ix(t)
1

∥ix(t)∥
, (6.63)

and kx(t) and kz(t) are positive scalar gains.

6.6.5 Error System

The corresponding error system is

˙̃R(t) = N
i ṘT(t)N

i R̂(t) + N
i RT(t)N

i
˙̂R(t)

= −J
(

iwv(t)
)

R̃(t) + R̃(t)J
(

x̃(t) + z̃(t) + iwe(t)− iwb − N
i R̂T(t)NwE

)
.

(6.64)
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Using the property J (v)R = RJ (RTv) for v ∈ R3 and R ∈ SO(3), (6.64)

becomes

˙̃R(t) = R̃(t)J
(

x̃(t) + z̃(t) + iwe(t)− iwb − R̃T(t)iwE(t)− R̃T(t)iwv(t)
)

= R̃(t)J
(

x̃(t) + z̃(t) + iwEv(t)− R̃T(t)iwEv(t)
)

(6.65)

where

iwEv(t) = iwE(t) + iwv(t). (6.66)

6.6.6 Stability

Consider the Lyapunov function candidate

V =
1
2

q̃T(t)q̃(t) (6.67)

where V is a smooth, positive definite function by construction and q̃(t)

defined in (2.7). Note that in the following stability proof, the fact J (v)v = 0

∀v ∈ R3, and consequently qT A−1(q) = qT is used repeatedly.

Differentiating (6.67) yields

V̇ = q̃T(t) ˙̃q(t). (6.68)

Substituting (2.15) into (6.68) results in

V̇ = q̃T(t)
(

A−1 (q̃(t))J −1
(

R̃T(t) ˙̃R(t)
))

, (6.69)
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and substituting (2.12) and (6.65) into (6.69) results in

V̇ = q̃T(t)
(

x̃(t) + z̃(t) + iwEv(t)− R̃T(t)iwEv(t)
)

. (6.70)

Substituting (2.4) into (6.70) yields

V̇ = q̃T(t)
(

x̃(t) + z̃(t) + iwEv(t)−
(

I − γ(t)J (q̃(t)) + κ(t)J 2 (q̃(t))
)

iwEv(t)
)

= q̃T(t)
(

x̃(t) + z̃(t) + iwEv(t)− iwEv(t)
)

= q̃T(t) (x̃(t) + z̃(t)) . (6.71)

Substituting (6.60), (6.61), into (6.71) yields

V̇ = kx(t)q̃T(t)J
(

ix(t)
)

N
i R̂T(t)Nx + kz(t)q̃T(t)J

(
(I − P(t)) iz(t))

)
N
i R̂T(t)Nz

= kx(t)q̃T(t)J
(

ix(t)
)

R̃T(t)ix(t) + kz(t)q̃T(t)J
(

iz(t)
)

R̃T(t)iz(t)

− kz(t)q̃T(t)J
(

i x̄(t)i x̄T(t)iz(t)
)

R̃T(t)iy(t). (6.72)

Note that since x is perpendicular to z, ixT(t)iz(t) = 0. Thus, (6.72) becomes:

V̇ = kx(t)q̃T(t)J
(

ix(t)
)

R̃T(t)ix(t) + kz(t)q̃T(t)J
(

iz(t)
)

R̃T(t)iz(t).

(6.73)

Using the fact that q(t)TJ (x(t))J 2 (q(t)) x(t) = 0 and substituting (2.4) into
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(6.73) yields

V̇ = −kx(t)γ̃(t)q̃T(t)J
(

ix(t)
)
J (q̃(t)) ix(t)

− kz(t)γ̃(t)q̃T(t)J
(

iz(t)
)
J (q̃(t)) iz(t)

= −kx(t)γ̃(t)∥J
(

ix(t)
)

q̃(t)∥2 − kz(t)γ̃(t)∥J
(

iz(t)
)

q̃(t)∥2

< 0 (6.74)

where γ̃(t) is defined in (2.5). Thus, the time derivative of the Lyapunov

function is locally negative definite and the observer is locally asymptotically

stable.

6.7 Gyrocompass System

The gyrocompass system is comprised of the bias (Section 6.4) and attitude

(Section 6.6) observers. The estimates of ie(t), iwb, and iab from the bias

observer presented in Section 6.4 are utilized in real-time by the attitude
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Figure 6.2: Block diagram of the gyrocompass system.

observer of Section 6.6 as follows:

Nx = −
(

I3×3 +
1
g0
J (NwE)

2
)

e3, (6.75)

Nz = J
(

NwE

)
Nx, (6.76)

e3 =
[

0 0 1
]T , (6.77)

ix(t) = iae(t)− i âb(t), (6.78)

iz(t) = i ê(t), (6.79)

iwb =
iŵb(t) (6.80)

where g0 is the magnitude of the local gravity field (∼ 9.81 m/s2).

The combined use of the reported East and bias observer (for accelerom-

eters and angular rate sensor bias calibration on-the-fly) and the reported

attitude observer will be termed the “gyrocompass system" in the following

sections. Figure 6.2 shows a block diagram of the gyrocompass system.
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6.8 Gyrocompass System Evaluation

The gyrocompass system is preliminarily evaluated in three numerical simu-

lations and one UV experimental trial.

Note that in the derivation and stability proofs presented in Sections 6.4

and 6.6, the noise free case (6.8-6.10) of the measurement model is used. In

the evaluation of the gyrocompass system, actual noisy sensor measurements

(6.9-6.11) are used.

6.8.1 Gain Selection

As with most adaptive systems that rely on persistence of excitation [42, 52] to

converge to the true parameter values, the rate of convergence is dependent

on the amount of excitation the system is experiencing and observer gains.

In order to choose the gyrocompass gains, a constrained optimization using

MATLAB’s nonlinear programing solver fmincon was used to select gains for

the sensor bias and East observer.

The optimization was setup as follows:

• The kx(t) = 1 and ky(t) = 1 gains were held constant since these attitude

observer gains are easy to tune by hand.

• The ka, ke, kbw , and kba gains from the sensor bias and East observer are

the parameters optimized over.

• RMSE of the roll, pitch, and heading from the gyrocompass system is

the function optimized.
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• A 30 minute long simulation sampled at 10Hz with ∥iav(t)∥ = 0 was

used. Note that the simulation was sampled at 10hz to allow the op-

timization to run faster and that this simulation experienced different

instrument rotations than the simulations and vehicle trial presented in

Sections 6.8.2-6.8.5.

• RMSE was started to be calculated 10 minutes after filter starts.

• Initial conditions were

ka = 5.0 · 10−1 (6.81)

ke = 1.0 · 10−3 (6.82)

kbw = 1.0 · 10−5 (6.83)

kba = 5.0 · 10−1. (6.84)

These were chosen from previous experience with these gains working

well.

• The constraints on the gain values were

0 < ka < 10 (6.85)

0 < ke < 1 (6.86)

0 < kbw < 1 (6.87)

0 < kba < 1 (6.88)
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The gains resulting from the optimization are

ka = 3.3 · 10−1 (6.89)

ke = 1.2 · 10−3 (6.90)

kbw = 1.5 · 10−5 (6.91)

kba = 8.0 · 10−1 (6.92)

kx(t) = 1 (6.93)

ky(t) = 1 (6.94)

where kx(t) and ky(t) are the static gains chosen for the attitude observer.

These gains were used during the simulations and vehicle experiment pre-

sented in this paper. We note that this gain optimization process did not

result in gains that were significantly different from the initial gains that we

manually selected, and did not result in significant improvements in observer

performance.

Note: During the simulations and vehicle experiment, we gain-scheduled

the sensor bias gains, kbw and kba , by setting them to zero for the first minute

of operation to allow the i ê(t) and i âe(t) signals to settle so that the sensor

bias estimates are not driven far from their true values during the start-up

transient period.
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6.8.2 Simulation Setup

The gyrocompass system is evaluated in three numerical simulations.

• Sensor measurement sampling was simulated at 1kHz.

• Simulations include sensor biases consistent in magnitude to those seen

in KVH 1775 IMUs.

• Simulations were for a latitude of 39.32◦N (Baltimore, MD, USA).

• ∥iav(t)∥ = 0 for the three simulations.

• Simulations included sensor measurements with sensor noise representa-

tive of the KVH 1775 FOG IMU (used iam(t) and iwm(t) instead of iae(t)

and iwe(t)). Angular velocity sensor and linear accelerometer sensor

noises are computed from the IMU’s specifications [32], as per [77], and

confirmed by the authors experimentally to be σw = 6.32 × 10−3 rad/s

and σa = 0.0037 g.

• The sensor biases used in the three simulations are:

wb =
[
−2 3 −1

]T · 10−5 rad/s (6.95)

ab =
[

1 −0.5 1
]T · 10−3 g (6.96)

• The sim1 simulation experienced no rotation. Figure 6.3 reports the IMU

sensor measurements from sim1.
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• The sim2 simulation experienced changes in heading. Figure 6.4 reports

the IMU sensor measurements from sim2.

• The sim3 simulation experienced changes in heading, roll, and pitch.

Figure 6.5 reports the IMU sensor measurements from sim3.

• Root mean square error (RMSE) was started to be calculated 20 minutes

after filter starts.

• The initial condition, N
i R̂(t), is chosen such that the initial heading is off

by ∼ 30 − 35◦. This is an initial heading that can be easily achieved with

magnetic compasses. In the future, we plan to use the magnetometer

in the KVH IMU for choosing the initial condition of the proposed

gyrocompass system.

• The sensor biases estimates, iŵb(t) and i â(t), were all set to zero for their

initial conditions.

6.8.3 Simulation Results

The estimated attitude and sensor bias errors for the three simulations are

shown in Figures 6.6-6.17. Figure 6.6 reports the comparison between the

reported gyrocompasses attitude estimate and the PHINS INS “ground truth”

attitude for sim1. Figure 6.7 reports the corresponding attitude error for sim1.

Figure 6.8 reports the sim1 estimated angular rate bias errors, and Figure 6.9

reports the sim1 estimated accelerometer bias errors. Similarly, Figures 6.10

and 6.11 report the sim2 KVH vs PHINS attitude comparison and respective

attitude errors, and Figures 6.12 and 6.13 report the sim2 angular rate and
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Figure 6.3: Sim1 KVH simulation measurements.
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Figure 6.4: Sim2 KVH simulation measurements.
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Figure 6.5: Sim3 KVH simulation measurements.
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accelerometer estimated sensor biases, respectively. Lastly, Figures 6.14 and

6.15 report the sim3 KVH vs PHINS attitude comparison and respective

attitude errors, and Figures 6.16 and 6.17 report the sim3 angular rate and

accelerometer estimated sensor biases, respectively.

The sim1 simulation results show that when the instrument is not excited

via rotations, the gyrocompass system bias estimates and attitude estimates

do not converge to their true values. This is consistent with adaptive iden-

tifiers which rely on persistence of excitation [42, 52]. In the sim2 and sim3

simulations, the attitude converges. Specifically, the simulations show (after

the system has converged) the gyrocompass system to estimate roll and pitch

within 0.1◦ and heading within 1◦ in RMSE. The sim3 simulation converges

faster than the exp2 simulation due to the increased excitation experienced by

the instrument in the sim3 simulation.

In simulations with no sensor noise (not shown), we observed the attitude

and bias errors estimations errors to converge to zero. In the three simula-

tions reported herein, which include simulated sensor noise for the gyros

and accelerometers, we see the attitude estimation errors converge to a neigh-

borhood zero. As shown in the stability proof, the convergence of the bias

estimation error is seen to depend upon the richness of the attitude excursions

(persistence of excitation) the IMU experiences: In simulation sim1, where the

IMU is motionless, the bias estimates do not converge to the true bias values.

In simulation sim2, where the IMU experiences excursions in heading, with

roll and pitch remaining zero, only four of the six components of the bias

estimate converge to the neighborhood of the true values. In simulation sim3,
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Figure 6.6: Comparison between sim1 KVH simulation and PHINS ground truth
attitude.

where the IMU experiences attitude excursions in 3-DOF, all six bias estimate

terms converge to the “true” bias values.

It is important to note that the iŵb(t) and i âb(t) update laws do not update

bias components in the kernels of J
(iae(t)

)
and J

(iwe(t)
)

respectively. Thus,

in the case of sim2 where the instrument only experiences changes in heading

(the PE condition for asymptotic stability is not met when the instrument only

experiences heading changes), the components of the biases along the gravity

vector do not evolve. This configuration is common in oceanographic UVs

which are commonly passively stable in roll and pitch. Since the convergence
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Figure 6.7: Sim1 KVH simulation attitude error.

162



0 5 10 15 20 25 30
MINUTES

-5

0

5

D
eg

/S

10 -5 X Component of  w b

0 5 10 15 20 25 30
MINUTES

-5

0

5

D
eg

/S

10 -5 Y Component of  w b

0 5 10 15 20 25 30
MINUTES

-5

0

5

D
eg

/S

10 -5 Z Component of  w b

Figure 6.8: Sim1 estimated angular rate bias errors.

163



0 5 10 15 20 25 30
MINUTES

-0.02

0

0.02

m
/s

2

X Component of  a b

0 5 10 15 20 25 30
MINUTES

-0.02

0

0.02

m
/s

2

Y Component of  a b

0 5 10 15 20 25 30
MINUTES

-0.02

0

0.02

m
/s

2

Z Component of  a b

Figure 6.9: Sim1 estimated linear acceleration bias errors.
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Figure 6.10: Comparison between sim2 KVH simulation and PHINS ground truth
attitude.
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Figure 6.11: Sim2 KVH simulation attitude error.
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Figure 6.12: Sim2 estimated angular rate bias errors.
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Figure 6.13: Sim2 estimated linear acceleration bias errors.
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Figure 6.14: Comparison between sim3 KVH simulation and PHINS ground truth
attitude.
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Figure 6.15: Sim3 KVH simulation attitude error.
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Figure 6.16: Sim3 estimated angular rate bias errors.
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Figure 6.17: Sim3 estimated linear acceleration bias errors.
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of i ê(t) is dependent on accurate estimation of the components of the biases in

the North-East plane, the gyrocompass system is still able to converge to the

correct attitude in sim2 (only heading changes) since the components of the

biases which affect the accuracy of the “East” estimate are properly estimated.

Thus, in vehicles like oceanographic UVs which are passively stable in roll

and pitch, it is not necessary to estimate accurately the components of the

biases along the gravity vector in order to achieve accurate true-North attitude

estimation.

6.8.4 Experimental Setup

The gyrocompass system is evaluated with a preliminary vehicle trial em-

ploying a comparatively low-cost (∼ $20k USD) FOG KVH 1775 IMU (KVH

Industries, Inc., Middletown, RI, USA).

• The KVH 1775 FOG IMU was sampled at 5kHz.

• The KVH 1775 FOG IMU was aligned via a fixture to the ROV’s iXBLUE

PHINS INS (iXblue SAS, Cedex, France). The PHINS attitude is used

as ground truth during our experimental evaluation of the attitude

estimator.

• The KVH experiment was conducted at a latitude of 39.32◦N (Baltimore,

MD, USA).

• The ROV was commanded to execute smooth sinusoidal rotations (∼

720◦) in heading while in closed-loop control. Figure 6.18 reports the

IMU sensor measurements from the KVH experiment.
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• The ROV experienced ∥iav(t)∥ ≈ 0 during the experiment.

• RMSE error was started to be calculated 20 minutes after filter starts.

• The initial condition, N
i R̂(t), is chosen such that the initial heading is

off by ∼ 40◦. This is an initial heading that can be easily achieved with

magnetic compasses. In the future, we plan to use the magnetometer

in the KVH IMU for choosing the initial condition of the proposed

gyrocompass system.

• The sensor biases estimates, iŵb(t) and i â(t), were all set to zero for their

initial conditions.

• The instrument is mounted on the vehicle such that the instrument’s

x-axis is toward starboard, the y-axis is toward up, and the z-axis is

toward stern of the vehicle.

6.8.5 Experimental Results

The attitude and sensor bias estimations and attitude errors for the vehicle

trial are shown in Figures 6.19 - 6.22. Figure 6.21 reports the estimated angular

rate sensor bias and Figure 6.22 reports the estimated accelerometer sensor

bias. Figure 6.19 reports the comparison of the reported gyrocompass system’s

estimated attitude to that of the PHINS INS used as a “ground truth” during

the laboratory experimental evaluation. Figure 6.20 reports the corresponding

roll, pitch, and heading error. The results show that during this experimental

evaluation of the gyrocompass system, the attitude estimate converged to the
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Figure 6.18: Vehicle trial KVH measurements.

true attitude. Roll and pitch converged to within 0.15◦ RMSE and true-North

heading to within 1◦ RMSE of their true values.

In this experiment, where the vehicle and IMU principally experienced

excursions in heading, with vehicle’s roll and pitch remaining passively stable

near zero, we see that the attitude estimation errors converge to a neighbor-

hood zero and four of the six bias estimate terms converge to steady values.

Thus the experimental conditions and experimental results of the bias and

attitude estimator are seen to be similar to that observed in the simulation

study sim2.

Note that as in sim2, the JHU ROV is a passively in roll and pitch and
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Figure 6.19: Comparison between the KVH experiment and PHINS ground truth
attitude.
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Figure 6.20: KVH experiment attitude error.
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predominantly experiences attitude changes in heading only. Hence, while the

components of the biases along the gravity vector (along the IMU’s y-axis) do

not converge to their correct values (See Figure 6.22), the true-North attitude

does converge to the correct attitude.

In this preliminary result, the estimator took ∼15 minutes to converge to

the correct true-North heading. Long convergence time is typical of true-North

gyrocompass systems. For example, the iXBlue PHINS takes ∼10 minutes to

achieve fine alignment [25]. We are currently investigating improvements to

this sensor bias and East observer (e.g. adaptive gains) to improve its rate of

convergence.

6.9 Conclusion

This chapter reports the derivation and stability analysis of an adaptive bias

and East vector observer and an attitude observer for use in true-North gyro-

compass systems. Preliminary simulations and a full-scale vehicle experiment

using a commercially available low-cost FOG IMU are reported.

The preliminary simulation and vehicle trial suggest, for the case of a

gyrocompass system that experiences rotations, the convergence of the re-

ported gyrocompass system to the true attitude without using magnetometers.

The vehicle trial shows roll and pitch converge to within 0.15◦ RMSE and

true-North heading to within 1◦ RMSE of their true values.

In future studies, the author hopes to improve the time of convergence,

increase the accuracy of the gyrocompass system, extend the system to non-

trivial vehicle accelerations, and conduct extensive full-scale experimental
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vehicle trials both in the lab and in the field.
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Chapter 7

Conclusion

7.1 Thesis Summary

This thesis reports algorithms for the estimation of inertial measurement

unit (IMU) sensor biases for use in the calibration of attitude and heading

reference systems (AHRSs). AHRSs are divided into two classes of AHRSs –

one for those systems which estimate true-North heading and one for those

systems which estimate magnetic-North heading. Chapters 3 - 5 present

novel algorithms for calibrating and compensating for sensor biases arising

in magnetic-North heading AHRSs. Chapter 6 reports nonlinear adaptive

observers for IMU sensor bias estimation and attitude estimation directly on

SO(3) for use in a true-North gyrocompass AHRS. Stability or observability

analysis is included for every reported algorithm.

Chapter 3 reports the derivation and stability proof of an adaptive observer

for sensor biases (magnetometer hard-iron bias only, no soft-iron sensor bias)

in 9-degrees of freedom (DOF) IMUs. Numerical simulations and an exper-

imental evaluation are presented. Although only stability of the adaptive
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observer is analytically shown, the simulations and vehicle trial suggest, for

the case of a rotating IMU, the asymptotic convergence of the sensor biases to

their true values.

Chapter 4 reports a novel magnetometer sensor bias adaptive observer

for the class of vehicles which are passively stable in roll and pitch. The

chapter reports an method for on-line, real-time estimation of hard-iron and

soft-iron magnetometer biases in 2-axis magnetometers for use in AHRSs. The

observer uses only magnetometer sensor signals, does not require knowledge

of the instrument attitude, and is shown to be globally stable. When the

measured magnetometer is persistently exciting (PE), the observer is shown

to be globally asymptotically stable where the estimated parameters converge

to their true values. A simulation study and full-scale vehicle experiment

with comparison to a least squares method are reported and suggest that the

observer can be utilized to provide accurate magnetometer bias compensation

for AHRS. In addition to the 2-axis adaptive observer, a 3-axis extension of the

observer is reported. The 3-axis observer however, is shown to suffer from the

same drawbacks of many previously reported least-squares methods. Large

angular rotations and full coverage of the sphere are required in order for the

3-axis observer to be used for accurate magnetometer sensor bias estimation.

The 3-axis adaptive observer is not suitable for use on vehicles which are

passively stable in roll and pitch, which are the focus of this chapter.

Chapter 5 reports a novel method for online, real-time estimation of hard-

iron and soft-iron magnetometer biases and angular rate sensor biases in IMUs

for use in AHRSs. By utilizing angular rate sensor measurements, smaller
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angular rotations of the instrument (in comparison to previously reported

methods for magnetometer calibration like the 3-axis method presented in

Chapter 4 and the TWOSTEP method) are required for accurate compensation

of magnetometer and angular velocity sensor biases. Since the proposed esti-

mator works with smaller changes in roll and pitch than previously reported

methods, it can be implemented on real full-scale remotely operated vehi-

cles (ROVs), which are commonly passively stable in roll and pitch, to provide

online estimates of the full 3-axis magnetometer sensor biases. Numerical

simulations, laboratory experiments, and field trials show that the proposed

MAVBE magnetometer calibration method provides improved performance

over common methods like the TWOSTEP method and the OceanServer Iver3

AUV commercial solution. The ability of the proposed MAVBE method to

accurately estimate magnetometer biases when there is limited excitation of

the magnetometer signal illustrates the advantage of the MAVBE method over

common calibration methods like the TWOSTEP and ellipsoid fitting methods

which fail when there is low coverage of the magnetometer on the sphere.

Chapter 6 reports the derivation and stability analysis of an adaptive bias

and East vector observer and an attitude observer for use in a true-North

gyrocompass system. Preliminary simulations and a full-scale vehicle ex-

periment using a commercially available low-cost FOG IMU are reported.

The preliminary simulation and vehicle trial suggest, for the case of a gyro-

compass system that experiences rotations, the convergence of the reported

gyrocompass system to the true attitude without using magnetometers.
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7.2 Future Work

In future work, the author hopes to improve the convergence times of the

reported observers and conduct more extensive field testing.

• For the adaptive observer reported in Chapter 3, future work includes

improving the time of convergence, extending the proof to analytically

show asymptotic stability of the sensor biases, and to do thorough

vehicle trials both in the lab and in the field.

• For the magnetometer soft-iron and hard-iron adaptive observer pre-

sented in Chapter 4, the author hopes to develop a coarse and fine

alignment protocol to allow for fast convergence and accurate bias es-

timation, employ the observer in field trials, and provide a sensitivity

analysis on how roll and pitch affect the sensor bias estimates.

• Future work on the Chapter 5 reported MAVBE calibration method

includes improving convergence time of the estimator by developing

coarse and fine alignment protocols, comparison of the MAVBE cali-

brated AHRS with a ”ground truth” system like a high-end inertial

navigation system (INS), and conducting extensive field testing. Differ-

ent values for the process covariance matrix, Q, could be chosen during

the coarse and fine alignment to enable both a fast convergence of the

sensor biases and a smooth final steady state.

• In future studies, the author hopes to improve the time of convergence

and increase the accuracy of the Chapter 6 gyrocompass system, extend
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the system to accommodate for nontrivial vehicle accelerations, and

conduct extensive full-scale experimental vehicle trials both in the lab

and in the field. The author would also like to employ the algorithm

on KVH IMU data logged during dives with the Sentry autonomous

underwater vehicle (AUV) on the Bowditch Seamont in August 2018.
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Appendix A

Johns Hopkins University (JHU)
Hydrodynamic Test Facility (HTF)

The Johns Hopkins University (JHU) hydrodynamic test facility (HTF) [29]

contains a test tank, a remotely operated vehicle (ROV), and autonomous

underwater vehicle (AUV) for the design, development, and testing of oceano-

graphic systems.

A.1 JHU HTF Test Tank

The JHU HTF contains an indoor fresh water tank measuring 7.5 meters in

diameter by 4 meters deep with a capacity of 174,000 liters. The facility has

two 1-ton overhead gantry cranes for working over the tank and in the lab.

A.2 JHU ROV

The JHU ROV is a fully actuated (six-DOF) vehicle with six 1.5 kW DC brush-

less electric thrusters and employs a suite of sensors commonly employed on

deep submergence underwater vehicles. Figure A.2 shows the test facility and
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Figure A.1: The Johns Hopkins University (JHU) hydrodynamic test facility (HTF)
test tank (Image credit: Louis Whitcomb, JHU).

the ROV operating in the test tank. The ROV is instrumented with a high-end

INS, the iXBlue PHINS III (iXBlue SAS, Cedex, France) [24, 25], a MicroStrain

3DM-GX5-25 IMU [39], a KVH 1775 (KVH Industries, Inc., Middletown, RI,

USA) FOG IMU [32], a 1200 kHz bottom-lock Doppler sonar (RD Instruments,

San Diego, CA), and a 8CDP010-1 Digiquartz depth sensor (Paroscientific Inc.,

Redmond, WA) [49].

A.3 JHU Iver3 AUV

The facility contains the JHU Iver3 AUV (L3 OceanServer, Fall River, MA,

USA) [45]. The AUV is an under-actuated AUV equipped with a 600 kHz

Phased Array RDI Explorer DVL [67], a MicroStrain 3DM-GX5-25 [39] IMU,

and the a OceanServer OS5000 [44] magnetic compass. Figure A.3 shows the
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Figure A.2: The Johns Hopkins University (JHU) hydrodynamic test facility (HTF)
and the fully actuated JHU ROV (Image credit: Louis Whitcomb, JHU).
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(a) (b)

Figure A.3: Field trials were conducted with the Johns Hopkins University (JHU)
Iver3 autonomous underwater vehicle (AUV) in the Chesapeake Bay, MD, USA. The
JHU Iver3 has a full suite of navigation sensors, including a Doppler velocity log
(DVL) and several inertial measurement units (IMUs) (Image credit: Paul Stankiewicz,
JHU).

JHU Iver3 AUV during the vehicle tests. Table A.2 lists the sensors on board

the JHU Iver3.
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