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Abstract

This thesis explores novel drug targets to accelerate therapy for infections caused by the important

human pathogens Mycobacterium avium (Mav) and Mycobacterium tuberculosis (Mtb). Infections

with these bacterial species are notoriously difficult to treat - requiring months to years of intensive

antibiotic therapy. Decreasing this length may help reduce expenditures necessary for monitoring

therapy, improve patient outcomes, and reduce the significant morbidity and mortality caused by

Mav and especially the global pathogen Mtb.

Bacterial antibiotic persistence has been defined as the ability of bacteria to survive in high

concentrations of antibiotics without genetic mutation (ie antibiotic resistance). Thus, infections

caused by Mav and Mtb are highly persistent. A major focus of this work is the discovery of

mechanisms underlying this persistence phenomenon in hopes that this knowledge can be exploited

to improve available therapies.

A major portion of the work is carried out using high-throughput genomic screens involving tech-

niques such as transposon mutagenesis and transposon sequencing (Tn-seq). Statistical methods are

developed and implemented to analyze this dataset with a focus on non-parametric methods. Novel

discoveries include identification of the essential genes of Mav as well as particular genes that assist

in bacterial survival during antibiotic exposure. Mechanisms underlying antibiotic persistence are

discussed and explored in follow-up experiments guided by the high-throughput data. The mecha-

nisms of action of antibiotics beyond well-established drug-target binding are also discussed. The

results presented are relevant to the understanding of antibiotic persistence and may be informative

to efforts to develop new drugs for these difficult-to-treat pathogens.
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Chapter 1

Introduction

1.1 Tuberculosis: The global problem

The burden of tuberculosis. Despite centuries of scientific research and public health effort,

tuberculosis (TB) remains a leading cause of death around the world. Mtb, the pathogen that

causes TB, kills more people every year than any other single pathogen; more than HIV or malaria.

The World Health Organization (WHO) estimates that roughly 10 million people developed TB in

2017 with 1.6 million dying [111].

TB and poverty. It might be argued that TB is fundamentally a disease of poverty. On a

nation-state level, global TB rates are clearly associated with economic activity [53]. Furthermore,

TB has been estimated to greatly reduce the global gross domestic product with approximately $65

billion removed from the global economy each year since 2015 [15]. A separate analysis estimated

that TB cost to the African countries was $50.4 billion per year [57]. In the wealthy, low-burden

countries a major contributor to TB is immigration from high-burden settings. In the United States

roughly 66% of TB cases were among the foreign born [94]. The connection to poverty is particularly

underlined by the fact that efficacious antibiotic therapy for TB has been available for decades yet

millions of lives are lost every year.

High-risk groups. Other groups with high risk of developing TB include those with increased

risk of exposure as well as patient with co-morbidities that make them particularly susceptible to

infection. Patients with a high risk of exposure include prisoners[80] and mine-workers[92], where

it is believed that poor airflow and unsanitary conditions contribute to transmission. Important
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co-morbidities strongly associated with TB infection includes co-infection with HIV, which has been

a major driving force in the spread of TB, particularly in sub-saharan Africa as well as diabetes

mellitus, which is a particular issue in developing countries such as China and India[27].

Clinical presentation and prognosis. The typical TB patient presents with a sputum-

producing cough. Infection occurring outside the lungs, generally a minority of cases[60], can have

various other symptoms depending on location. Frequently the TB patient complains of night-

sweats and feeling of feverishness, though objectively increased body temperature may or may not

be present. In the later stages of the disease anorexia (weight loss), difficulty breathing, and hemop-

tysis (coughing up of blood) frequently occurs [51].

Latent tuberculosis infection (LTBI). It is well established that most patients infected with

TB will not experience symptoms over their lifetime. The typical estimate for the lifetime risk

of developing symptomatic, active TB given a patient is infected with the pathogen is only 10%.

However, transmission of TB is widespread, which has lead to an estimated 23% of the world’s

population being infected with the bacterium [48]. These incredibly abundant, asymptomatic cases

are classified as LTBI and are a major driver of the 10 million active cases observed each year. While

efficacious (albeit intensive) therapy for LTBI has existed for decades, recent work shown that much

shorter antibiotic regimens for LTBI are possible [93]. This strategy may represent an important

opportunity for TB control efforts worldwide.

Goals and strategies for TB elimination. In 2015 the WHO set targets to reduce the number

of deaths due to TB by 90% by 2030 and reduce the incidence by 80% as part of the Sustainable

Development Goals. Additionally goals were set to eliminate financial hardship caused by utilizing

health services upon contracting TB [111]. There exists at least two strategies for eliminating the

mortality and economic suppression brought by TB as envisioned by the WHO. The first is to invest

in general economic development in areas with high TB burden, which should eventually lead to the

development of local healthcare systems and public health institutions who can effectively control

TB. This, after all, was how the developed countries effectively eliminated this disease within their

borders. The second strategy is to focus resources on TB control specifically, which, by their close
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connections, also contributes to economic development. These two strategies highlight a critical

question: How much should be invested in the development of new tools for fighting TB? The goal

of this thesis to provide empirical support for a particular research direction that might, if followed

through to the end, provide new TB therapies that could reduce financial and logistical burdens to

healthcare delivery systems.

1.2 A brief history of TB: A therapeutic perspective

Infectious diseases and life expectancy. It is only relatively recently that infectious diseases,

like TB, are not among the top causes of death in the developed world. In 1900 the mortality

rate due to infectious diseases was 800/100,000 person-years in the United States. This declined

dramatically until 1950 and since then has hovered about 50/100,000[45]. Many factors are com-

monly suggested to explain this accomplishment including improvements in sanitation, development

of vaccines, construction of public health systems able to respond to disease outbreaks, and, most

relevant for this discussion, the development of antibiotic therapy.

Discovery of the bacillus. One of the most important aspects of early infectious disease

research was the isolation of pathogenic organisms. This enabled these diseases to be studied in the

laboratory to much greater depth than before. By the 1870s, scientists had isolated the first organism

known definitely to be the cause of a disease - the bacterium that causes anthrax. A contributor to

this discovery, Robert Koch, then set out to isolate the cause of TB, for which there was evidence of

an infectious cause. By 1882 Koch had isolated Mycobacterium tuberculosis and shown that it could

cause a disease remarkably similar to TB in animals. While this discovery greatly aided diagnosis

and public health measures to control the disease, it did not lead to any curative therapies until

much later.

Therapy in the pre-antibiotic era. In the years before the discovery of antibiotic therapy

for TB, numerous interventions were attempted to provide relief for patients. A variety of therapies

were motivated by early Greek thought suggesting that the human body was composed of four

“humors” (blood, phlegm, yellow bile, and black bile) and, furthermore, that disease was caused
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by a loss of balance between these. Suggested therapies to rebalance the humors included dietary

enrichment (such as drinking milk), the use of special plants, and - more demonstrably harmful -

induced vomiting and blood-letting.

The prescriptions of rest and breathing open air was also common in the pre-antibiotic era. The

sanatorium movement established refuges for TB patients to stay in bed and outdoors. Frequently

the sanatoria were located in the isolated wilderness and most commonly in the mountains. In the

United States the number of sanatorium beds increased to as many as 97,270 in 1942[51]. The

practice of "collapse therapy" in which air is introduced into the lung cavity to disable and deflate

one of the lung lobes was thought to promote healing of the lung. Variations of this technique were

practiced up until the demonstration of antibiotics in the 1940s.

The beginning of antibiotic therapy for TB Paul Ehrlich, in the early 1900s had suggested

that certain chemicals could be found to destroy microbes but leave the human host unscathed.

By 1940 a few examples of such chemicals had been discovered - though nothing with sufficient

potency to treat TB. Jorgen Lehmann, prompted by a recent report, conceived the idea of testing a

derivative of salicylate against TB and eventually selected para-aminosalicylic acid (PAS)[26]. First,

they showed the ability of PAS to inhibit Mycobacterium bovis (a cousin of Mtb). His group and

other Swedish groups then showed that bacterial numbers in the sputum were greatly reduced in

patients treated with PAS.

At the same time, Albert Schatz in the laboratory of Selman Waksman was testing extracts

from naturally occurring soil bacteria in search of something that could inhibit the growth of Mtb

on agar. He eventually discovered such an extract from the bacterium Streptomyces griseus, from

which the drug streptomycin was isolated. Early trials demonstrated streptomycin’s efficacy for

treating patients.

Through the end of the 1920s and into the 1930s, Gerhard Domagk and colleagues at the Bayer

Laboratories had searched for compounds capable of treating a variety of bacterial infections. Even-

tually, they realized that the growth of Mtb could be inhibited by certain sulfonamide compounds
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with a thiazole side chain. This eventually lead them to the discovery of thioactezone. Thioaceta-

zone was effective against Mtb but eventually found to be toxic to humans. After the war, chemists

from the United States learned about thioacetazone and independently tested variations of this

molecule - eventually leading to the simultaneous discovery of the highly potent and much safer

isoniazid by three pharmaceutical companies - Bayer (of Germany), Hoffman-LaRoche, and Squibb

Pharmaceuticals (both of the United States).

Through numerous clinical trials it was eventually discovered that the combination of these

three drugs: PAS, isoniazid, and streptomycin could be combined to yield a highly potent curative

therapy[35]. This “triple therapy” lasting 18 to 24 months became the standard regimen for almost

15 years[77]. However, therapy still required constant monitoring from healthcare professionals

throughout the lengthy regimen, motivating additional research to find shorter regimens.

Discovery of the current regimen and subsequent attempts at further optimization.

Subsequent discoveries lead to the use of the antibiotic regimen used today. Rifampin was derived

from a molecule produced by Amycolatopsis rifamycinica, isolated from a soil sample in Italy in 1957.

A series of clinical trials, many of them by British Medical Research Council (BMRC), established

the usefulness of rifampin for shortening therapy[35]. Animal experiments showed that nicotinamide

was active against Mtb and motivated the discovery of an analog, pyrazinamide [26]. BMRC trials

established the effectiveness of pyrazinamide in shortening therapy from 9 months to 6 months. The

last drug of the standard regimen, ethambutol, was shown to prevent the acquisition of drug resis-

tance in cases where pre-existing resistance to isoniazid cannot be ruled out[51]. Therefore, while

ethambutol does not reduce therapy duration, it helps to reduce the impact of antimicrobial resis-

tance. Today, the standard therapy for curing tuberculosis is a combination of isoniazid, rifampin,

pyrazinamide, and ethambutol (RHZE) for 2 months, followed by 4 months of only isoniazid and

rifampin. This "short-course" therapy provides a durable cure for TB in approximately 95% of

drug-susceptible cases[8].

Work since the establishment of the standard regimen has focused on finding therapies of even

shorter duration. A large trial of a 4-month regimen containing moxifloxacin was found to be inferior
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to the standard regimen [37]. Another large trial of a 4-month regimen containing an increased dose

of rifampin is ongoing (RIFASHORT). However, large additional benefits, both financially and for

reducing TB burden, could be achieved with improved drugs for TB. The White House [49], the

WHO [108], and non-government organizations [34] have all made calls for the development of

improved tuberculosis therapies.

1.3 Non-tuberculous Mycobacteria (NTM)

Basic Information. The non-tuberculous Mycobacteria (NTM) include many important human

pathogens such as Mav, M. abscessus, M. ulcerans, and M. marinum. The NTMs are contrasted

with members of the M. tuberculosis complex, which include M. tuberculosis, M. africanum, and M.

microti. The Mycobacterium avium complex (MAC) is the most common group of NTMs to cause

human disease worldwide[47]. The MAC organisms includes multiple species of NTMs with Mav

being the most common in the US and perhaps worldwide[47].

Mav is an environmental pathogen that is not transmitted person-to-person[32] and is believed

to be acquired directly from household water sources[29]. Patients are like infected via inhalation of

aerosols containing the organism, which can be generated by common activities such as gardening

and showering[44]. Mav is a robust organism and is able to survive for long periods of time without

nutrients[3]. Given its ubiquity and hardiness it may be difficult to prevent patient exposure to Mav.

Thus antibiotic therapy is highly important for control of this pathogen.

Disease characteristics. Mav causes disease in both immunocompromised and immunocom-

petent individuals. In immunocompromised persons, particularly AIDS patients, it can cause severe

disseminated MAC infection. In the setting of a fully functional host response it causes at least two

forms of pulmonary disease[100]. Nodular bronchiectasis (also called Lady Windermere’s syndrome)

is primarily observed in older Caucasian women without pre-existing pulmonary disease. Fibrocavi-

tary disease caused by MAC is most commonly found in patients with a history of tobacco exposure

and chronic obstructive pulmonary disorder (COPD) or other lung disease and affecting primarily

men. It has also been noted that MAC disproportionately affects the elderly. In a study done in
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Oregon, the median age of patients with pulmonary disease caused by NTMs was 68 years, with

74% of those cases caused by MAC[18].

The typical patient infected with Mav in the lungs may present with various symptoms. A

long-lasting cough is commonly present. Fatigue, shortness of breath, coughing up blood, night

sweats, and anorexia can also all be present. In the case of immunocompromised patients (such

as by HIV/AIDS) bacteria can be present in the blood (bacteremia). Symptoms can include fever,

night sweats, chronic diarrhea, weakness, and abdominal pain.

Epidemiology. Unlike the plethora of data for TB, there are no available statistics for the

global incidence of Mav infection. Incidence and mortality are particularly difficult to estimate as

infection with NTMs, including Mav, are generally not reportable to public health authorities [82].

Additionally, in most datasets Mav is rarely distinguished from other members of the MAC. Some

statistics are available for particular countries. In the US, prevalence of NTMs has been estimated

as 27.9/100000 [91]. MAC (not specifically Mav) may account for 80% of these infections [56].

Furthermore, Mav is believed to be the dominant disease causing member of the MAC pathogens

in North America [47]. Based on the available data, it can be reasonably inferred that Mav is likely

the most common NTM to cause disease in the U.S..

Treatment First-line therapy for MAC infections is recommended to include clarithromyin

(CLR) or azithromycin (AZI), rifabutin (RFB), and ethambutol (EMB). The recommended duration

of antibiotic therapy for immunocompetent individuals is at least 12 months after bacteria are no

longer present in sputum[41]. The treatment success rate for MAC infection in the immunocom-

petent host, as measured by culture negativity within a year of starting therapy, is approximately

82% for the standard regimen [42]. The antibiotic therapies available for MAC have significant

side effects including nausea, vomiting, and skin rashes leading to reductions in patient doses[90].

Achieving shorter duration and more efficacious therapy with lower doses is essential for reducing

drug intolerance and improving patient outcomes.
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1.4 Why are current drugs so ineffective at treating My-
cobacteria?

The duration of antibiotic therapy for Mav and Mtb infections is significantly longer than that of

other bacterial infections. For example, in the absence of antibiotic resistance, community acquired

pneumonias (non-mycobacterial) are generally treated with 5-7 days of antibiotics [72] compared to

the months to years of therapy required for these mycobacterial infections.

The proposed theories to explain the long therapy duration invoke the structure of the lesions

observed during tuberculosis. The pathology of pulmonary TB includes the formation of granulomas

in the lungs. These granulomas can vary in appearance and properties. Frequently granulomas, in

the absence of therapy, will form necrosis at the center due to dying host cells. Furthermore,

granulomas can develop fibrosis at their outer edges. Given the organized and non-vascularized

structure of granulomas there may be reduced availability of nutrients and (in the context of therapy)

antibiotics within these lesions relative to the blood stream and surrounding tissue.

Two popular theories exist to explain the exceptionally lengthy therapy required for Mtb infec-

tions. One hypothesis, here called the “persister hypothesis”, postulates the existence, within the

host, of a special population of bacteria refractory to current antibiotics [115]. As discussed later,

reduced nutrient availability within granulomas may contribute to the development of these special

bacteria. Another hypothesis, here called the “drug-permeability hypothesis”, proposes that cur-

rently used drugs do not efficiently penetrate into the closed lesions believed to contain the bacteria

[22]. This hypothesis suggests that efforts to accelerate therapy should focus on increasing penetra-

tion of drugs through changes in chemistry or drug delivery and that new drug development should

focus on permeating areas where current drugs do not. There is evidence supporting both theories

of persistence but no clear demonstration of which types of interventions have stronger effects on

treatment duration in people. However, given the substantial evidence supporting the existence of

persisters in vivo and the observed reduction in therapy duration when a persister-targeting drug

was added to standard therapy in an animal model [43], we will focus here on exploring interventions

to target persister bacteria.
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1.4.1 Bacterial persister hypothesis

Substantial work on exploring persister bacteria has been performed with the model organisms E.

coli. In E. coli, a previous study provided evidence that two different persister states can be defined

in vitro [5]. Type I persisters, based on the behavior of the hipA7 mutant, are non-growing bacteria

produced during stationary phase. In general, it might be said that Type I persisters are induced

by the environment, and particularly by reduced nutrient availability. Type II persisters, based

on the hipQ strain, are slow-growing and generated rarely from non-persisters during exponential

growth. Wakamoto and colleagues showed direct evidence for the existence of a population of cells

matching the Type II persister definition in wildtype Mycobacterium smegmatis[106]. This suggests

that one factor that may allow Mycobacteria to survive during antibiotic exposure in a patient is

the stochastic generation of a special population of slow growing bacteria.

There is also a large body of work suggesting that various stress conditions can induce an antibi-

otic tolerant state in Mycobacteria which suggests the existence of Type I persisters. There is strong

evidence that Mtb-containing lesions (granulomas) are hypoxic [104] and hypoxic bacteria have been

shown to be significantly more tolerant of multiple antibiotics including the first-line TB drugs isoni-

azid (INH) and rifampin (RMP) [36]. Nutrient starvation (immersion in Phosphate-Buffered Saline)

has also been shown to induce tolerance in Mtb to many antibiotics including INH and RMP [36,

112]. It has been speculated that nutrient starvation may occur in the fibrotic areas of granulomas

though it is unclear which nutrient(s) may be limiting[68]. Mav was shown to be significantly more

tolerant of both isoniazid and pyrazinamide in another in vitro stress model [4]. Additionally, bac-

teria were shown to be more tolerant of CLR and EMB in specialized culture conditions to produce

a biofilm [75]. However, little evidence exists that biofilms states occur in vivo. Despite the clear

demonstration that the environment and antibiotic susceptibility are closely linked, the mechanisms

and pathways underlying this environmentally-induced persistence, especially in Mycobacteria, re-

main to be worked out. Knowing these mechanisms could provide a useful guide in designing shorter

regimens to treat infections with Mav and Mtb.
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1.5 Experimental opportunities: High-throughput biology

High-throughput biotechnologies can help to identify candidate antibiotic persistence mechanisms

for further exploration. In this work we have a particular focus on using high-throughput genomics

technologies (including transposon mutagenesis) to identify genes involved in the antibiotic persister

phenotype. This was enabled by recent developments in DNA sequencing which can provide the

investigator the base-by-base sequence of input DNA molecules. This work utilizes both short

read technology primarily from Illumina (eg. HiSeq, MiSeq, NextSeq) and long read sequencing

technology from Pacific Biosciences (eg. RSII).

In analyzing the large amounts of data produced from a modern DNA sequencer a number of

important considerations must be made. First is the consideration of how one should normalize

the data. The efficiency by which a sequencer produces reads inherently varies between samples.

This can be caused by many factors including differences in sample quality and the length of DNA

molecules input to the machine. The most common method is normalization to the total number of

reads. The resulting fractions can then be compared between samples. However, other methods for

normalization exist such as division by read count from a DNA species with a known stable value

(e.g. a "housekeeping" gene).

An additional consideration for the interpretation of sequencing data is the method employed

to compare two sample groups. Typically the chosen method consists of some set of mathematical

operations achieving some statistical guarantees under certain assumptions. The method employed

can be as simple as a t-test for comparing the (normalized) levels of a gene between two samples.

Alternatively, sophisticated methods employing more obscure distributions such as the negative

binomial can be employed. This thesis will employ two styles of method for analysis. Chapter 2

will discuss the use of a modified negative binomial distribution employed to model read counts

sampled from a highly non-Gaussian distribution. Chapters 2-4 will also discuss model-free (or

non-parametric) methods which make no assumptions about the particular form of the underlying

distribution. These non-parametric methods can provide substantially more robust results as fewer

assumptions need to be made about the input data.
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High-throughput biology, while enabling large numbers of different molecules to be measured at

the same time, has also opened the door for large amounts of noise to permeate the results. The

sources of noise are not unique to high-throughput data but, given the large numbers of different

tests involved, can be difficult to manage. While statistical methods can help to reduce the impact

of this noise on the results, no statistical method can fully eliminate it. Therefore any result,

no matter how significant, must be followed up with additional experimentation, preferably with

an entirely unrelated experimental methodology. Given the large number of results from high-

throughput techniques, they could not all be independently tested with low-throughput techniques.

However, some of the most important outcomes were validated and support the conclusions gleaned

from the high-throughput data.

1.6 Outline of Thesis

Chapter 2 of this thesis will discuss work to provide genomic-scale data for a strain of Mav used

in many prior laboratory studies. Of particular note, complete genome sequence of this strain as

well as computer annotations for the likely locations of the genes and other features in the DNA

are provided. A list of genomic features most important for this organism to achieve growth in

the laboratory is also provided. These data may be most useful to drug developers who wish to

find new ways to treat this organism in the human host as well as for laboratory scientists who

may be considering the disruption of certain features for further study. Chapter 3 will concern

the employment of high-throughput techniques to identify elements of this organism that play a

role in the efficacy of antibiotics. As previously discussed, antibiotic persistence (ie the survival of

bacteria in the presence of antibiotics) remains mysterious. This work attempts to shed light on

the mechanisms through which persistence is achieved by identifying the genetic features with roles

to play. These data may be of particular interest to those looking to optimize antibiotic regimens

for the treatment of patients. Chapter 4 discusses work to identify genomic features in the global

pathogen Mtb that attenuate the effect of antibiotics. The role that environmental conditions can

play on the organism’s ability to survive under antibiotic insult is also explored. Furthermore, it
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is shown that a particular gene can boost the effectiveness of one of the first-line drugs used to

these infections with this organism. Chapter 5 discusses the results from the previous chapters and

provides some conclusions and directions for future work.
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Chapter 2

Identifying the essential genes of
Mycobacterium avium

2.1 Objectives

The availability of fast and inexpensive DNA sequencing has enabled the genomes of many organisms

to be determined. A full genome, without gaps or missing sequences is a useful guide for many follow-

on experiments. This includes cloning of genes for investigation of function and for interpretation

of other sequencing data such as RNA-seq or transposon sequencing (Tn-seq). Determination of

the full genome for an organism can now be considered one of the first steps in characterizing the

organism.

Tn-seq is a methodology to quickly characterize gene function in a highly efficient parallelized

way. Most relevant for this chapter is the use of Tn-seq to identify genes required for growth of the

bacterium. These genes required for growth or “essential genes” - as they are commonly called - are of

particular interest for the identification of candidate drug targets and for the further characterization

of the genome. For example, a pharmaceutical company searching for anti-microbials may wish to

focus on identifying inhibitors for essential genes. Additionally, essential genes are not possible to

study through the construction of knockout strains, as is commonly done for non-essential genes.

Thus, the identification of essential genes can be helpful in the choice of experimental method.

While extensive efforts have been made to identify the essential genes of several other Mycobac-

terial species, no complete list of the essential genes in Mav currently exists. An attempt was made

in subspecies paratuberculosis (a subspecies that infects cattle) but this did not use a sufficiently

13



diverse transposon mutant pool to assess the essentiality of individual genes. It was anticipated that

this knowledge, using a human-derived strain, would be very helpful for guiding future efforts to

characterize this important pathogen.

Therefore, we have generated the complete genome sequence of a patient-derived strain of Mav

which is commonly used in preclinical work. This allows integration with the significant knowledge

that has already been generated with this strain. We have completed this sequence without using a

reference genome (ie de novo assembly) partly due its accessibility using modern techniques as well

as the significant anticipated gain in quality for the final sequence given the genomic diversity of

Mav. Furthermore, we have generated transposon mutant pools of sufficient diversity to provide high

quality identifications of the essential genes of Mav. This has enabled us to provide a high-quality

list of the essential genes in Mav.

2.2 De novo assembly and annotation of a novel Mav genome

Substantial portions of this section appeared recently in the journal Scientific Data.[74]

Mav strain 109 (MAC109) was isolated from the blood of an AIDS patient and has been used

frequently in preclinical investigations [33, 65, 13, 17, 46]. In our efforts to study the essential genes

of Mav via transposon mutagenesis (using ϕMycomarT7 [87]), we observed the highest insertion

efficiency with this strain of those we tested (see section 2.3). To simplify the follow-on analysis

as well as enhance the potential utility of MAC109 for future studies focused on Mav genetics,

including RNA-seq and ChIP-seq analyses, we decided to sequence the MAC109 genome. Given

the substantial genetic heterogeneity observed between M. avium isolates[99] (such as the frequent

inclusion of plasmids), we performed de novo assembly. We also provide Gene Ontology (GO)

annotations, which have proven useful in exploratory analysis of the roles of individual genes.

2.2.1 Experimental and Computational Methodology

This section discusses the experimental and computational methodologies used to assemble the

genome of MAC109.
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Bacterial strain. MAC109 was received on agar as a gift from Dr. Luiz Bermudez (Oregon

State University). A single colony was inoculated into Middlebrook 7H9 broth supplemented with

10% OADC, from which stocks were made. These stocks were frozen and subsequently passaged

into fresh broth for generation of bacterial samples for DNA extraction.

DNA Extraction for short read sequencing. DNA was extracted from MAC109 using two

different methods. For Illumina sequencing we used a fast DNA extraction protocol that produces

fragmented DNA. First, a 2 mL O-ring tube was filled with 1 gram of 0.1 mm zirconia/silica beads

(Biospec #11079101z). Then 0.6 mL of liquid containing bacteria was transferred to each tube of

beads. 2uL of RNase A (10 mg/mL, Thermo-Fisher #EN0531) was then added to each tube. Tubes

were bead-beaten for 1 min at max speed. Tubes were then incubated at room temperature for 10

min to degrade RNA. 0.6 mL of saturated phenol solution was then added to tubes. Tubes were

then briefly vortexed and spun for 2 min at 16,000g. The aqueous phase was transferred to clean

microcentrifuge tubes and an equal volume of chloroform/isoamyl (24:1, v/v) was added. Tubes

were briefly vortexed and then centrifuged for 2 minutes at 16,000g. 400 uL of the aqueous phase

was then transferred to clean microcentrifuge tubes. 40 uL of 3 M sodium acetate was added and

tubes were inverted to mix. 880uL of 100% ethanol was added and tubes were inverted to mix. If

the DNA pellet was visible after mixing then tubes were spun at 16,000 g for 2 min, otherwise they

were spun for 15 min. Supernatant was removed and 700 uL of 70% ethanol was added to wash

the pellet. Tubes were centrifuged for an additional 30 s. Supernatant was removed and pellet was

allowed to dry at room temperature for 15 min. Pellet was then dissolved in 100 uL of TE buffer.

A nanodrop was used to determine concentration.

DNA Extraction for long read sequencing. For PacBio sequencing, which requires high

molecular weight DNA, bead beating could not be used and a high molecular weight DNA extraction

protocol for mycobacteria[7] was adapted for this purpose. First, a bacterial pellet was obtained

in a 2 mL Eppendorf tube in 500 uL TE buffer (pH 8.0). We then added an equal volume of

chloroform/methanol (2:1, v/v) and rocked on a platform rocker for 5 min. Then we centrifuged the

suspension at 16,000 g for 2 min. The aqueous and organic phases were removed by pipetting, leaving
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only the band of bacteria at the interface. The delipidated bacteria were then placed in a dry bath at

55 ◦C for 10–15 min to remove traces of the organic phase. 550 uL of 10 mg/mL Lysozyme (Sigma-

Aldrich, dissolved in TE buffer) was then added to the bacteria. The pellet was gently resuspended

with a pipette. Tubes were then placed in a 37 ◦C incubator overnight. On the following day 120

uL of 5% SDS (w/v) and 8uL proteinase K (10 mg/mL, Thermo-Fisher #EO0491) were added to

the tubes. Tubes were then mixed by gentle inversion and incubated at 50 ◦C for 3 hours in a dry

bath. An equal volume ( 750 uL) of PCI (phenol solution/chloroform/isoamylalcohol, 25:24:1, v/v)

was then added and gently inverted on a rocker plate for 30 min. Tubes were then centrifuged at

16,000 g for 5 min. ∼600 uL of the aqueous phase was then transferred to a clean microcentrifuge

tube. 2 uL of RNase A (10 mg/mL, Thermo-Fisher #EN0531) was added and tubes were inverted

to mix. Tubes were then incubated at room temperature for 10 min to remove contaminating RNA.

Chloroform/isoamylalcohol (24:1, v/v) was then added and tubes were inverted for 30 s to mix

thoroughly. Tubes were spun for 2 min at 16,000 g and 400 uL of the aqueous phase was transferred

to a clean microcentrifuge tube. 40 uL of 3M NaCl was added and tubes were mixed by inversion.

0.8 mL of 100% EtOH was added and tubes were mixed by inversion. If DNA pellet was visible by

eye then tubes were spun at 16,000 g for 2 min at room temperature, otherwise they were spun for

15 min. The supernatant was then removed from the pellet and 0.8 mL of 70% ethanol was added

to wash the pellet. Tubes were then spun at 16,000 g for 5 min and supernatant discarded. DNA

pellets were dried for 15 min at room temperature. After drying, pellets were resuspended in 100

uL TE buffer.

Sequencing and de novo assembly of MAC109 genome. Library preparation and se-

quencing were performed by the Deep Sequencing and Microarray Core at the Johns Hopkins School

of Medicine. Library preparation was done with the Illumina TruSeq DNA Nano kit with target

insert size of 350 bp. Short reads were generated using an Illumina Miseq (2×75 bp). After clipping

adapters (internally by Illumina software), there were 3,117,540 reads, which varied in size from 35

to 76 bp (472,180,593 total bases sequenced). Long reads were generated with a PacBio RSII after

library preparation with the SMRTbell Template Preparation kit 1.0 and target read size of 10-20
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kb. Raw PacBio data (*.h5) were converted to subreads (fastq format) with SMRT Tools v5.1.0

(bax2bam v0.0.8, bam2fastq v1.1.1). Raw reads from the Illumina Miseq and Pacbio RSII machines

are available in sequence read archive (SRA).

Reads smaller than 300 bp were filtered out using Trimmomatic v0.36 [11]. After filtering,

there were 151,792 subreads and 1,365,362,111 total bases sequenced. Assembly of the genome was

performed using Unicycler pipeline v0.4.4 in conservative mode [110]. Dependencies for Unicycler

were satisfied with SPAdes v3.11.1 [6], racon v1.2.1 [103], bowtie2 v2.3.4.1[62], and pilon v1.22

[107]. Unicycler was run in hybrid mode, allowing the use of both the Miseq (short, accurate)

reads and PacBio (long, less accurate) reads. This produced an assembly with four circular contigs.

However, one of these contigs was nearly identical to the genome of the bacteriophage PhiX174. It

is highly unlikely that this phage is part of the MAC109 genome and much more likely that this

contig was assembled from contaminating reads from the PhiX library run alongside our sample

on the Miseq. The PhiX contig was therefore removed from the Unicycler assembly. Additionally,

preliminary annotation revealed that the sequence of one of the plasmids started inside a gene. Since

this complicates downstream processing, the start of the sequence was moved accordingly. Bandage

v0.8.1 [109] was used to visualize the final genome assembly (Fig. 2.1a).

Gene and Gene Ontology (GO) Annotations. Gene annotation was done with the Prokary-

otic Genome Annotation Pipeline (PGAP) available from the National Center for Biotechnology

Information [96]. Proteins were given GO annotations using the PANNZER2 webservice with de-

fault settings [98]. We submitted our protein sequences for GO annotation on 2018/06/19 (the

PANNZER2 databases are updated monthly).

Genome Comparison. The nucmer program from MUMmer v4.0.0beta2[73] was used to com-

pute SNPs and dot plots between the MAC104, TH135, and MAC109 genomes. Settings for the full

genome dot plots (Fig. 2.1b and c) were “nucmer –maxmatch -l 20” followed by “delta-filter -l 2500

-m”. For dot plots comparing the TH135 and MAC109 plasmids, settings were “nucmer –maxmatch

-l 10” followed by “delta-filter -l 1000 -m”. Plots were made with gnuplot v5.2 patchlevel 4 (Fig.

2.1b–d). To confirm the subspecies of MAC109 we also used nucmer (with settings: –maxmatch and
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Figure 2.1: Summary of MAC109 genome assembly and homology. (a) MAC109 genome assembly
containing 3 complete circular contigs. (b,c) Dot plots comparing TH135, MAC104, and MAC109
genomes assemblies. Dotted lines separate the replicons of each strain (TH135 has a single plasmid,
MAC104 lacks plasmids). (d) Dot plot comparing the plasmid from the TH135 genome and the two
plasmids from the MAC109 genome.

–minmatch = 10) to check for the presence of insertion elements IS900, IS901, IS1311, and DT1.

2.2.2 Results

The genome of MAC109 consists of a circular chromosome of size 5,188,883 bp and two plasmids of

sizes 147,100 bp and 16,516 bp (Fig. 2.1a), and approximate multiplicities (estimated by Unicycler)

of 1.76x, 4.92x, respectively. We have named the larger plasmid pMAC109a and the smaller plasmid

pMAC109b. Based on the presence of insertion element IS1311 (GenBank accession no. U16276)

and absence of IS900 (accession no. X16293), IS901 (accession no. X59272), and DT1 (accession no.

L04543) we confirm that MAC109 belongs to the Mav subspecies hominissuis [89]. PGAP identified

4,841 protein coding sequences, 53 RNA genes (including 46 tRNAs, 4 rRNAs, and 3 ncRNAs),
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Figure 2.2: Comparison of genome assembly of MAC109 output by Canu vs Unicycler. (a) Dot
plot comparing full Unicycler (3 contigs) assembly vs full Canu assembly (4 contigs). Dotted lines
separate the replicons of each strain. (b) Same comparison but with the largest contig from each
assembly removed. This provides a higher resolution comparison of the small contigs.

and 191 pseudogenes. The annotated genome and raw reads are available under Genbank accession

numbers CP029332-CP029334.

We compared the MAC109 genome to those of Mav strains TH135 and MAC104. MUM-

mer/nucmer estimated 32,974 SNPs relative to MAC104 and 56,751 SNPs relative to TH135 (there

were 46,685 SNPs between TH135 and MAC104). Dot plots of these comparisons are presented

in Fig. 2.1b–d. Notably, a number of large-scale inversion have occurred in these strains. Ad-

ditionally, the pMAC109a plasmid from the MAC109 assembly shares significant regions of sim-

ilarity with the plasmid in TH135, although there are large distinct regions as well (Fig. 2.1d).

PANNZER2 provided a total of 17,292 GO annotations for 3860 unique proteins (among a to-

tal of 4841 proteins). The full list and descriptions of the GO terms can be found at http:

//www.geneontology.org/page/download-ontology.

2.2.3 Validation of assembled genome

To provide support for our assembled MAC109 genome we show that using an entirely different

assembler (Canu v1.7.1[59]) yields an almost identical genome thus supporting our reported genome.

However, unlike Unicycler, Canu is not a hybrid assembler and does not attempt to circularize

contigs. Therefore, a few minor differences are expected. In particular, the assembled contigs are
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linear and might have identical regions at the ends of contigs when the underlying DNA molecules

are circular. Also, Canu does not attempt to move the origin of circular contigs after assembly.

Therefore, the Canu-derived contigs are likely to have different origins than the Unicycler contigs.

After running (“canu genomeSize = 5.35 m -pacbio-raw pb_reads.fastq.gz”, other settings set to

defaults), Canu assembled 4 linear contigs (Lengths: 5,207,511 bp, 167,345 bp, 37,619 bp, and

1974bp). To compare the Canu assembly with the Unicycler assembly we used MUMmer (“nucmer

–maxmatch -l 20” followed by delta-filter to filter out small matches). Fig. 2.2a shows a dotplot

comparing the entire genomes (“delta-filter -l 2500”). Figure 2.2b compares the smaller contigs

(plasmids) of the Unicyler and Canu assemblies (“delta-filter -l 1000”). This shows that the Canu

contigs repeat themselves at the ends (and in the case of contig 3, repeats occur multiple times),

as expected. Secondly, it can be seen that contigs 1-3 are nearly identical to the Unicycler contigs,

supporting the accuracy of our assembly. However, Canu assembled one additional contig (Canu

contig 4, length = 1974bp) relative to Unicycler. Canu contig 4 was noted to have a high TA

content, although Mycobacteria are known to be GC-rich. To test whether the Canu contigs are

actually present in the MAC109 genome, we mapped our collected Illumina reads, which were not

used in the assembly by Canu, to estimate the multiplicity of each contig. We used bowtie2 v2.3.4.1

with default settings. Overall, >97.9% of the Illumina reads mapped to the Canu contigs. We

then used samtools v1.5 [64] (“samtools sort -o file2.bam file1.sam” followed by “samtools depth

file2.bam”) to calculate the depth at each position and averaged the depth across each contig to

calculate the coverage using a short python3 script. Coverage was 83x for contig 1, 128x for contig

2, and 177x for contig 3. 0 reads mapped to the 1974bp contig output by Canu. Therefore, contig

4 appears to be an entirely erroneous contig. Therefore, we have shown that our assembled genome

is robust to changes in the assembler, although Canu produces an erroneous contig. This supports

the quality of our genome sequence for MAC109.
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2.3 Construction of genome-wide mutant pools

Transposon sequencing (eg TraDIS[63], Tn-seq[24], INseq[39]) has been extensively used to profile

haploid genomes and identify gene disruptions that affect growth under various conditions. Of

potential interest in drug development are those drug targets which profoundly disrupt growth (ie

“essential” genes). To inform future research and Mav drug development efforts we have identified

genes critical for bacterial growth in vitro. To enable this, we developed a statistical approach

for calling genes, based on robust techniques, which is designed to be less susceptible to common

sources of error than existing techniques. We report our predictions of the essential genes of Mav

and compare with predicted essential genes in a cousin, Mtb.

2.3.1 Experimental Methodology

Strains. Mav strains MAC109, MAC104, OSU3388 were a gift from Dr. Luiz Bermudez (Oregon

State University). MAC101 (Chester, ATCC 700898) was a gift from Dr. Eric Nuermberger (Johns

Hopkins School of Medicine). Individual colonies of each strain were isolated and regrown to make

stocks used in the described experiments. MAC101 was seen to form both translucent and opaque

colonies. Both an opaque (MAC101o) and a translucent (MAC101t) colony were isolated and used

for stocks. ϕmycomarT7 was propagated and titered as previously described[71]. Final titers used

for transformations exceeded 1011 plaque forming units (PFU)s/mL.

Media and buffers. To make 7H11 agar 10.25 grams of 7H11 w/o Malachite Green powder

(HiMedia Cat No. 511A) was added to 450mL deionized water. 5mL 50% glycerol was then added

before autoclaving. Hot agar was cooled to 55◦C before addition of 50mL OADC enrichment and

1.25mL 20% Tween-80. To make 7H9/10% OADC: 2.35g 7H9 powder was added to 450mL deionized

water. After sterilization (via autoclaving at 121◦C or by passing through a 0.22um filter) 50mL

of OADC enrichment (Becton-Dickinson) was added. Unless otherwise specified, no Tween-80 or

glycerol was included. To make 7H9/50% OADC: Recipe identical to 7H9/10% OADC but using

250mL water and 250mL OADC. To make PBS-Tw: 1.25mL filter-sterilized 20% Tween-80 was

added to 500mL sterile phosphate-buffered saline (PBS). To make MP Buffer: final concentrations

21



are 50mM Tris-HCl (pH 7.5), 150mM NaCl, 10mM MgSO4, 2mM CaCl2. Autoclave individual

components before combining.

Testing of transformation efficiency of Mav strains. Five strains of Mav (MAC109,

MAC104, OSU3388, MAC101o, MAC101t) were tested for transformation by ϕmycomarT7. For

transformation, strains were grown in 150mL of 7H9/10% OADC. After OD of each strain reached

0.32 – 0.89, 100mL of cultures were equally split into two 50mL conical tubes. Bacteria were pelleted

via centrifugation and reimmersed in 10mL MP buffer. Bacteria were pelleted again via centrifuga-

tion and reimmersed in 4.5mL MP Buffer. 0.5mL of MP Buffer (negative control) or ϕmycomarT7

stock (approximately 10:1, phage:bacteria) was added to each tube. Tubes were incubated for two

days shaking at 37◦C. Bacteria were then pelleted via centrifugation and reimmersed in PBS-Tw.

Bacteria were spun down again and reimmersed in 1mL of PBS-Tw. Transformed bacteria and

negative control for each strain were then diluted in PBS-Tw and plated on 7H11 with and without

50ug/mL kanamycin for determining transformation efficiency and background resistance.

Generation of transposon mutant libraries in MAC109 In preliminary experiments we

found that MAC109 growth increased in broth containing higher concentrations of OADC. We sus-

pect the oleic acid in OADC is the key to achieving this, based on previous reports[28]. 5 independent

transposon mutant pools were generated. MAC109 was grown in 700mL 7H9/50%OADC to OD 2.1

in two 1.5L roller bottles shaking at 37◦C. Based on previous results (data not shown) we estimated

the initial bacterial density based on optical density to be 4 × 108 CFUs/mL (used for calculating

volume of phage stocks to add). Bacteria were aliquoted to 12-50mL conical tubes and centrifuged

(2000g for 5 minutes) and supernatant removed. 5mL MP Buffer was added to each tube and bacte-

rial pellet was reimmersed. Pairs of tubes were pooled yielding 6 10mL aliquots. Samples were then

centrifuged (2000g for 5 minutes) and supernatant removed. Phage (10:1, phage:bacteria) was then

added to all tubes except no-vector control. MP Buffer was added to all tubes to a final volume of

5mL and bacterial pellets were dispersed via pipette. Bacterial/phage mixtures were then placed

on a shaker incubator (37◦C) for two days. Tubes were then centrifuged (2000g for 5 minutes) and

supernatant removed. 10mL PBS-Tw was then added and the bacterial pellet was dispersed via
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Table 2.1: Transformation efficiency of various strains of Mav with ϕmycomarT7.

Strain Transformation
Efficiency

Background
Resistance

MAC101t 1.0E-05 1.5E-07
MAC101o 6.3E-08 1.4E-08
MAC104 3.7E-07 2.9E-08
MAC109 1.5E-05 1.5E-07
OSU3388 1.9E-07 1.4E-07

pipette. Tubes were then spun down again (2000g for 5 minutes), supernatant removed, and 1 mL

of PBS-Tw was used to reimmerse pellets.

50uL of each tube of washed transformants (or no-vector control) were diluted and plated on 7H11

plates, with or without 50ug/mL kanamycin, to determine transformation efficiency and background

resistance. The remainder of the cultures were plated on 7H11 containing 50ug/mL kanamycin in

Pyrex baking dishes (15” x 10”, 500mL agar per dish, 1 tube per dish). After 7-10 days colonies

were scraped from each dish and dispersed in fresh 7H9 broth and frozen in aliquots at -80◦C for

later use.

2.3.2 Results

To identify a suitable strain of Mav for genome-wide mutagenesis we evaluated the ability of

ϕmycomarT7 to transform common laboratory strains. Transformation efficiency and spontaneous

resistance rate (background) were estimated via CFU counts and are provided in Table 2.1. MAC109

was observed to have the highest transformation efficiency with only ∼1% background. Therefore,

we decided to proceed with transposon mutagenesis using this strain. Upon transformation, we

estimated each of our five independent MAC109 transposon mutant libraries contained between

2.2̆4.4 × 105 unique insertion events for a combined total of 1.2 × 106 unique events with ∼2%

background.

2.4 Identifying essential genes
2.4.1 Collection of raw data and processing

DNA was extracted from one aliquot of each transposon mutant pool as generated in section 2.3

using a previously described gDNA extraction protocol for short read sequencing 2.2. We adapted
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Figure 2.3: Tn-seq library preparation produces DNA molecules for sequencing as shown here. The
adapters at each end are involved in attachment to the flow cell. The ends of the transposon (both
3- and 5-prime contribute) are adjacent to a gDNA segment which allows for the location of the
transposon insertion within the genome to be determined. Lastly a UMI is used to identify (and
remove) PCR duplicates originating from the same bacterium - thus reducing PCR bias.

a previously published library prep protocol[69] to prepare libraries for sequencing. Adaptations

include the use of magnetic beads for purification and library size selection as well as changes to PCR

conditions (for details see appendix B). This produces DNA sequencing libraries as shown in figure

2.3. Libraries were sequenced (2×75bp) on an Illumina HiSeq 2500 by the Johns Hopkins GRCF High

Throughput Sequencing Center. 5 independent libraries were sequenced yielding between 2,194,085

– 4,381,545 reads per library for a total of 18,197,728 paired-end reads. The raw reads are provided

in SRA under accession number: PRJNA527645.

As described above, the MAC109 genome contains two plasmids in addition to the bacterial

chromosome. We adapted the TRANSIT pre-processor (tpp)[25] to allow for mapping to multiple

contigs. Our changes were included in the release of TRANSIT/tpp v2.4.0. We used tpp v2.4.0 to

map all reads to the MAC109 genome. Command for processing raw reads: tpp -himar1 -bwa -

bwa-alg aln -ref MAC109.gb -replicon-ids “CP029332,CP029333,CP029334” -reads1 TnPool_1.fastq

-reads2 TnPool_2.fastq -window-size 6 -primer AACCTGTTA -mismatches 2. After PCR duplicate

removal, a total of 10,597,261 unique reads mapped to the genome and were used for analysis.

Confirmation of low permissibility sites. It was previously shown that the Himar1 transpo-

son/transposase system has a reduced rate of insertion in sites with the sequence motif [CG]GNTANC[CG][24].

Indeed, our results confirm that insertion into these low permissibility sites is much less likely than

other sites (Figure 2.4). While we are close to hitting all possible insertion sites in the genome not

matching this motif (ie achieving saturation), a substantial fraction of the low permissibility sites

in the chromosome are unoccupied in all five libraries. This effect is less apparent in the plasmids

likely due to their multiple copy number.
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Figure 2.4: Each barplot shows the fraction of potential Himar1 insertion sites (TA dinucleotide)
observed to have sustained at least one insertion in each independent pool of mutants for each replicon
of the MAC109 genome. The line plots indicate the cumulative fraction of occupied insertion sites.
Notably, the fraction of unique sites occupied saturates for sites not matching the previously defined
sequence motif for low permissibility sites ([CG]GNTANC[CG]). However, sites matching this motif
can be seen to be near saturation only in the case of the small plasmid (pMAC109b).

2.4.2 Statistical analysis

Overview. We used a previously suggested labelling scheme[23] to annotate each gene of MAC109.

A gene is labelled no effect (NE) if a transposon insertion in any of its potential insertion sites causes

no effect on growth. A gene is labelled growth defect (GD) if it contains at least one insertion site

such that upon transposon insertion it results in a decrease in bacterial growth. A gene is labelled

growth advantage (GA) if it contains at least one insertion site that increases bacterial growth. A

gene is labelled essential (ES) if it contains at least one insertion site that results in a 20-fold loss in

viability.

To classify the features of the MAC109 genome with the above schema we have designed a ro-

bust procedure. At a conceptual level, our analysis pipeline proceeds in two steps. First, insertion

sites with no effect on growth (NE) are approximately identified with a rank-based filter procedure.

Second, the counts at the insertion sites identified by the filter are assumed to approximate the null
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distribution and used for statistical hypothesis testing. For identification of ES genes, the approxi-

mate null distribution is fit to a zero-inflated negative binomial distribution, which is then scaled and

used for hypothesis testing. For identifying the GD and GA sites, the empirical cumulative distri-

bution function (ecdf) is used for hypothesis testing. Stouffer’s method is used to combine p-values

from multiple replicates and multiple sites. Lastly, multiple hypothesis correction is performed.

Rank-based filter procedure. Here we will briefly describe the key assumptions and calcu-

lations supporting our approach. We assume that all mutants with a transposon insertion at the

same site will have identical growth rates (ie the growth rate is entirely defined by the insertion

site). This implies that all insertion sites with no effect on growth will be identically distributed.

We also assume that not more than 40% of insertion mutants have a growth defect and not more

than 15% of mutants have a growth advantage (and therefore at least 45% of mutants will have a

growth rate that is identical to wildtype). See figure 2.5 for a conceptual diagram. We have chosen

these thresholds based on previous predictions in Mtb[24] suggesting that disruption of 15% of genes

(a little less than 15% of insertion sites) cause a growth defect and 8% cause a growth advantage.

We have added a large margin of error to ensure conservatism. Note that if some of the identities

of insertions mutants with growth rates identical to wildtype were known ahead of time we could

simply use the distribution of the reads at these sites to train a null model for hypothesis testing

of the other sites. This is the intuition behind our rank-based filter procedure, which will now be

described. Lastly we assume that read counts from distinct sites as well as distinct samples are

statistically independent.

As stated above, the read counts Xi,j for each position (i) and each replicate (j) are assumed to

be independent for all i, j. By assumption, for each j, a subset of Xi,j have the same distribution

as NE mutants and therefore are identically distributed. We don’t know which subset so our first

goal will be to find an approximate subset that will have a distribution approximating the null

distribution.

First we compute the rank of the read counts at each site within each replicate, averaging ties.

Call the ranks ri,j . Then, for each replicate, compute the mean rank of the other replicates (ie leave
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Figure 2.5: Conceptual diagram of the assumptions underlying our proposed rank-based filter
method. We expect that most transposon mutants will not have a growth rate different from wild-
type (ie are NE mutants). A substantial fraction will have a growth defect and a very small fraction
will have a growth advantage. To estimate a null distribution a non-symmetric filter is necessary.
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one out):

mi,j = 1
J − 1

∑︂
j̃ ̸=j

ri,j̃ (2.1)

Then identify a subset of sites such that the mean ranks are within the expected 40% to 85% range:

Sj = {i : 0.4 < mi,j

I
< 0.85} (2.2)

Finally, assemble the read counts of the null-distributed sites into the set X̄j , which is, by definition,

a sample from an approximately null-distributed set of mutants.

X̄j = {Xi,j : i ∈ Sj} (2.3)

Thus we have applied a rank-based filter to leave only a set of samples that are mutually independent

and (approximately) null-distributed.

For simplicity, we index each element of the set X̄j such that each read count is represented with

the variable Yk,j for k = 1, 2, 3, ...,K. K is the number of insertion sites after applying the rank-

based filter. Therefore {Yk,j : k ≤ K} = X̄j . Yk,j can now be used for fitting a zero-inflated negative

binomial distribution (for ES identification) or for computing the ecdf (for GD/GA identification).

Additionally, previous literature suggests that the Himar1 transposon is biased against insertion

sites with the motif (GC)GNTANC(GC)[24]. Therefore, we separately apply the above rank-based

filter to the read count data collected from these sites.

Hypothesis Testing for Essentiality. For simplicity, we will drop the j index as we perform

identical calculations for each replicate using the corresponding X̄j . The zero-inflated negative-

binomial distribution is:

N(y; Θ, r, p) = Θ1[y = 0] + (1 − Θ)Γ(r + y)
y!Γ(r) pr (1 − p)y (2.4)

where 1[...] is the indicator function, Γ() is the gamma function. We will use maximum likelihood
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estimation to fit the parameters. The log-likelihood is:

l(Θ, r, p) = z ln(Θ + (1 − Θ)pr) + (K − z) ln(1 − Θ) +
∑︂

i

ln
(︃

Γ(yi + r)
yi!Γ(r)

)︃

+ (K − z)r ln(p) + ln(1 − p)
∑︂

i

yi

(2.5)

where K is number of samples and z is the number of samples that are zero (ie z = #{yk = 0}).

The gradient is:

∂l

∂Θ = z
1 − pr

Θ + (1 − Θ)pr
− (K − z) 1

1 − Θ (2.6)

∂l

∂r
= z

ln(p)pr(1 − Θ)
Θ + (1 − Θ)pr

+
∑︂

i

(ψ(yi + r) − ψ(r)) + (K − z) ln(p) (2.7)

∂l

∂p
= z

(1 − Θ)pr−1

Θ + (1 − Θ)pr
+ (K − z)r

p
+ 1

1 − p

∑︂
i

yi (2.8)

where ψ is the digamma function. We solve for estimates of the parameters (Θ̂, r̂, p̂) with the L-

BFGS-B algorithm (Scipy v1.2.1). We now precisely define an “essential” genes as one that, when

removed, causes the bacterial colony to be 5% or less of the WT size (ie with a read count 5% of

a mutant with no defect). While the particular threshold we have chosen is somewhat arbitrary,

we feel it is both small enough to avoid misclassifying mutants as essential but not so small so as

to have no hope of classifying highly defective mutants as ES. For hypothesis testing we define a

“borderline ES” mutant by scaling our parameters such that the mean is 5% of the null model but

the dispersion ( 1
r ) is identical. Define p̃ = p̂

(1−0.05)p̂+0.05 . Thus, the cumulative distribution for a

“borderline ES” mutant is:

F (y) =
y∑︂

ỹ=0
N(ỹ; Θ̂, r̂, p̃) (2.9)

Define a second function:

FL(y) =
y−1∑︂
ỹ=0

N(ỹ; Θ̂, r̂, p̃) (2.10)

We calculate a continuously distributed p-value by sampling from a uniform distribution between

FL and F :

qES
i,j ∼ U(FL(Xi), F (Xi)) (2.11)
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where qES
i,j is the p-value for site i, replicate j. We have included the second index (j) to emphasize

that we will have a p-value for each replicate.

To pool essential p-values across samples we use the one-tailed Stouffer’s method at each site:

qES
i = 1 − Φ

⎛⎝ 1√
J

J∑︂
j=0

Φ−1(qi,j)

⎞⎠ (2.12)

Note that because low permissibility sites have a rather different distribution (far more likely to be

zero) we fit a separate negative binomial for these special sites. We also fit separate distributions

for each contig as sequencing depth varies greatly between contigs. P-values are fit in the same way

as described above.

To pool p-values across insertion sites within a gene we use the truncated product method

(TPM)[114] with a truncation threshold of 0.5 (τ < 0.5). TPM provides a principled approach for

limiting the effect of sites with no associated growth defect which would otherwise greatly inflate

the p-values (such as those sites at the C-terminus of the gene which may not disrupt the function

of the protein). We compute a p-value for gene g as:

q̄ES
g =

Ng∑︂
k=1

(︃
Ng

k

)︃
(1 − τ)Ng−k

(︄
w

k−1∑︂
s=0

(k ln τ − lnw)s

s! I[w ≤ τk] + τk1[w > τk]
)︄

(2.13)

where Gg is the set of sites belonging to gene g, Ng is the cardinality of Gg, and w is:

w =
Ng∏︂
i

q
1[qi≤τ ]
i (2.14)

We then control the False Discovery Rate (FDR) using the Benjamini-Hochberg procedure (FDR <

0.01)[9]. If the gene is rejected by this test it is declared ES.

GD/GA Hypothesis Testing. We utilize the read counts for insertion sites identified by the

rank-based filter to form an approximate null distribution and use the ecdf to compute p-values. We

define the ecdf for replicate j as:

Hj(y) = 1
K

K∑︂
k=1

1[Yk,j ≤ y] (2.15)
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Also define:

HL
j (y) = 1

K

K∑︂
k=1

1[Yk,j < y] (2.16)

where HL
j (0) = 0. Note that because Yj,k takes discrete values, HL

j (y) and Hj(y) will generally

differ. To calculate a p-value for site i (replicate j) we sample a uniform distribution bounded by

these two values:

q
GD/GA
i,j ∼ U(HL(Xi), H(Xi)) (2.17)

As before we will compute a separate ecdf for low permissibility sites and for each contig in the

genome.

For a particular insertion site, the p-values from each sample are pooled using the one-tailed

Stouffer’s method, as before. The resulting pooled p-values from all insertion sites within the same

gene are then pooled using a two-tailed version of Stouffer’s method.

q̄GD/GA
g = 2

⎛⎝1 − Φ

⎛⎝ 1√︁
Ng

⃓⃓⃓⃓
⃓⃓∑︂
i∈Gg

Φ−1(qGD/GA
i )

⃓⃓⃓⃓
⃓⃓
⎞⎠⎞⎠ (2.18)

Family-wise error rate (FWER < 1.0) using the Bonferroni correction (ie only a single falsely

detected GA/GD is expected in the results).

Relative fitness (RF). The mutant fitness, relative to wildtype, resulting from disruption of a

particular gene is approximated as follows. First, the mean of the read counts at each insertion site

is calculated across samples:

µi = 1
J

J∑︂
j

Xi,j (2.19)

The site fitness is calculated as the mean read count of each site divided by the median across sites

(ie samples are normalized to the median, which is assumed to have no growth defect):

fi = µi/med
i
µi (2.20)

Finally, each gene is assigned a Relative Fitness equal to the median of the site fitness for all

sites contained in the gene g.

RFg = med
i∈Gg

fi (2.21)

31



Table 2.2: Table of features annotated by our analysis method. NE = No Effect, GD = Growth
Defect, ES = Essential, GA = Growth Advantage, N/A = Feature lacks potential insertion sites
(TA dinucleotide) for the Himar1 transposon or only contains sites shared with another feature.

CDS Pseudogene tRNA Riboswitch rRNA ncRNA tmRNA
NE 2850 117 8 5 2 1 0
ES 259 0 8 0 2 0 1
GD 1208 32 26 0 0 1 0
GA 460 29 0 0 0 0 0
N/A 64 13 4 1 0 0 0

A gene is declared GD if its Relative Fitness is less than 2/3 and is statistically significant after

controlling FWER. Similarly, a gene is declared GA if its Relative Fitness is greater than 1.5 and is

statistically significant after controlling FWER.

2.4.3 Results

Detection of essential MAC109 genetic features. Our analysis method classified 270 features

as ES, 489 features as GA, 1267 features as GD out of 5091 total annotated features. 73 features

contained zero thymine-adenine dinucleotides (TA sites) and 9 features only contained TA sites

shared with another feature. These 82 features therefore cannot be evaluated with the Himar1 system

which only transposes into TA sites. A summary of classifications by feature type is provided in

Table 2.2. Genes classified as essential by our method are provided in Appendix A. Interestingly, our

method identified 3 annotated coding sequences in pMAC109a and 1 coding sequence in pMAC109b

as essential.

Comparison of essential genes with previously published results. We also compared

the results of our analysis method applied to a previously published Tn-seq dataset using Mtb

strain H37Rv[24]. All genes labelled as “ESD” (containing an essential domain) in the previously

published dataset were considered essential for comparison. Figure 2.6 shows the overlap in the

predicted essential coding sequences (CDS) from each method (RNA and other features excluded).

Overall there was good agreement between each method though our method appears to be somewhat

more sensitive for essential gene detection than the HMM-based method at this sample size. Upon

inspection it was observed that the essential genes unique to our method contained a significant

number of sites with zero or very few insertions, but these low read sites were interspersed with sites
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Figure 2.6: Venn diagram of essential genes predictions for Mtb strain H37Rv from our analysis
compared to the previously published essential gene predictions from Dejesus et al [24]. Notably,
the genes labelled essential by the HMM are nearly a subset of the genes labelled as essential by our
method. Only protein coding sequences are considered in this diagram.

containing larger numbers of reads. This fits with expectations that the HMM model is sensitive

primarily to multiple adjacent sites with low read counts, whereas our method is sensitive to the

number of sites per gene regardless of adjacency. The full list of overlapping essential genes is given

in appendix E.

2.5 Summary and Discussion

This chapter discussed our efforts to characterize a frequently utilized patient-derived strain of Mav.

This is intended to provide some of the initial information necessary for developing interventions

to prevent, diagnose, and treat Mav infections. We provided a high-quality and complete genome

along with annotation information. This included gene finding and Ontologies which we expect will

be most helpful for the interpretation of future high-throughput sequencing data. Additionally, we

optimized the transposon mutagenesis of this organism and Tn-seq library preparation enabling us

to collect a high-quality Tn-seq dataset. We developed a novel bioinformatics method for identifying

essential genes from this data which utilizes fewer assumptions about the distribution of read counts

- leading to potentially more reliable results. Finally, we provided a list of the essential genes of Mav

which we expect will be highly useful for prioritization of drug targets and for further characterization

of Mav genes. Incidentally, we found apparently essential genes in the plasmids of Mav. We discuss
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some possible explanations for this surprising result in chapter 5.
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Chapter 3

Adjunctive drug targets in
Mycobacterium avium

3.1 Objectives

As previously discussed, treatment of infections with Mav requires years of multi-drug therapy.

The ability of the bacterium to survive in the presence of antibiotics for such a lengthy period (ie

persist) likely requires the action of bacterial genes. There are two non-exclusive possibilities for

the organization of the bacterial persistence response. First, it is possible that upon treatment with

many different antibiotics that a single bacterial “persistence pathway” is induced which allows the

bacteria to survive multiple drugs. Secondly, it is possible that there are multiple, antibiotic-specific

persistence mechanisms. To investigate how Mav is able to persist in the presence of antibiotics we

utilized our constructed genome-wide transposon mutant pool (see Ch. 2) to do a high-throughput

screen. Our hypothesis was that there are non-essential genes (or other other genetic elements)

involved in the persistence phenomenon. We reasoned that a transposon mutant lacking a gene in

the persistence pathway should be hypersusceptible to antibiotics which could be detected using the

Tn-seq library prep protocol. Characterizing the role of such a gene might suggest new avenues for

targeting persisters and enable improved, shorter therapies for treating infections with Mav.

Additionally, the constructed mutant pool also provided an opportunity to explore the mecha-

nisms of antibiotic action. While the initial steps by which major antibiotics kill bacteria have largely

been elucidated, important unanswered questions remain. Generally speaking a particular antibiotic

will bind to and inhibit the function of a certain target enzyme. For example the drug rifabutin will
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reversibly bind to and inhibit bacterial RNA polymerase. However, there remains significant un-

certainty about the sequence of events leading from the antibiotic binding event to bacterial death.

We hypothesized that there were non-essential genes involved in the “death pathway” triggered by

antibiotic binding in mycobacteria. Transposon mutants with defects in this hypothetical pathway

would appear in a screen to be hypertolerant to antibiotics (ie would survive better than wildtype).

Identifying these mutants and characterizing the function of the mutated gene could lead to a deeper

understanding of the mechanisms of antibiotics and suggest avenues for therapy.

3.2 Differential susceptibility screen
3.2.1 Drugs

CLR, RFB, moxifloxacin (MOX), and EMB were used in these screens. These drugs were chosen as

CLR, RFB, and EMB are commonly used in the treatment of Mav. MOX may be useful in treating

patients who fail macrolide-containing regimens [58]. Ranges of drug concentrations were chosen

based on estimates of the maximum accumulated doses in human lung tissue (likely the highest dose

the bacteria will experience). Dilutions from this maximum dose were also included to simulate

reduced levels of drug, which may be more realistic. Doses achieved in lung tissues were taken to

be 54ug/mL for CLR[31], 0.63ug/mL for RFB[10], 10.0ug/mL for MOX[83], and 21.0ug/mL for

EMB[66] (based on non-human primate data). Final ranges of drug concentrations were a 10-fold

dilution series for each compound: CLR (0.54 - 54 ug/mL), RFB (0.0063 - 0.63 ug/mL), MOX (0.1

- 10.0 ug/mL), EMB (0.21 - 21.0 ug/mL). All drugs were dissolved in dimethyl sulfoxide (DMSO). 3

biological replicates were performed for each drug at each concentration. As described below, only

samples using two doses of each drug were processed for sequencing.

3.2.2 Conditions for screen

The setup for our genome-wide differential susceptibility screen is sketched in figure 3.1. We inocu-

lated a 1mL aliquot of the combined transposon mutant pool (consisting of approximately 1.2 × 106

unique mutants) into 300mL 7H9/30%OADC contained in a 1.3L roller bottle. This was shaken at

37◦C for 24 hours to reduce bacterial clumping (220rpm, 0.75in orbit). The optical density (OD)
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was tracked until exceeding 0.32. The transposon mutants were then diluted to OD 0.1 with cold

7H9/30%OADC and aliquoted to 89 50mL conical tubes, 10mL/tube. Tubes were incubated for 5

hours shaking at 37◦C to allow the bacteria to return to log-phase. 5 tubes were randomly selected

for processing (0 hours). These samples were then processed for CFU enumerate and regrowth (see

below for additional processing details). Note that regrowth is required in order to remove the

contribution of DNA from dead transposon mutant bacteria. Drugs (or DMSO) were then added to

all tubes. Samples were taken at 12 and 48 hours after drug addition and processed for CFUs and

regrowth in the same manner.

Sample processing for CFU enumeration and regrowth. CFUs were estimated throughout

by removing 400uL of bacterial culture, centrifuging (2000g for 5 minutes) and washing twice with

PBS-Tw (to remove antibiotic). 10-fold dilutions were done in PBS-Tw and 50uL of each dilution

was plated on 7H11 agar. T-shaped spreaders were used to spread liquid evenly across plates. CFUs

were counted after 7-8 days. For regrowth, the remainder of each tube was twice centrifuged (2000g

for 10 min) and washed with 10mL PBS-Tw to remove drug. Centrifugation was done a final time

and the sample was reimmersed in 250uL PBS-Tw. 50uL of the washed transposon pool was plated

on each of four 7H11 agar plates and spread with 10-15 3mm sterile glass beads. Samples were

regrown for 7-8 days. Bacterial lawns for the four agar plates were scraped and pooled into 2mL

tubes. DNA extraction was done on regrown samples as described in 2.2 for short read sequencing.

DNA was processed for Tn-Seq as described in appendix B. Libraries were sequenced (2×75bp) on

an Illumina HiSeq 2500 by the Johns Hopkins GRCF High Throughput Sequencing Center. A total

of 59 samples (5 input pool plus 18 groups of triplicates) were sequenced yielding between 2,333,295

– 7,193,522 reads per sample for a total of 269,324,560 paired-end reads.

3.2.3 Mutant hypersusceptibility validation

Himar1 transposon mutants in the orthologs of DFS55_00120 (B6K05_00330), DFS55_00360 (B6K05_00550),

and DFS55_12665 (B6K05_12310) in the MAH11 [113] background were the kind gift of Marte

Dragset (NTNU). These were used to validate our predicted antibiotic differential susceptibility

predictions. Before testing we confirmed the location of the transposon mutant using a previously
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Figure 3.1: Schematic of experimental setup for identifying adjunctive drugs. A transposon mutant
pool constructed in MAC109 (see Ch.2) is grown in a single vessel and aliquoted to tubes. After
a period of adjustment to the new conditions antibiotics (CLR,MOX,RFB,EMB) or vehicle control
(DMSO) are added. After 12 and 48 hours of drug treatment samples are taken for regrowth and
CFU enumeration.
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Figure 3.2: Schematic of analysis pipeline for processing Tn-seq data.

published protocol [81]. Locations of insertions were at bases 186/468 (186bp from start of gene, total

gene length 468 bp), 1504/2634, and 546/2334 for DFS55_00120, DFS55_00360, and DFS55_12665,

respectively.

Mutants were tested for hypersusceptibility by growing each strain (and MAH11 wildtype) in

7H9/30%OADC. After strains reached an OD of more than 1.0 they were filtered through a 5um

syringe filter to remove clumps, as previously described [19]. We found that using a somewhat high

OD greatly reduced the clumping of Mav which permitted more accurate enumeration of colony

forming unitss (CFUs) (via light microscopy, data not shown). Cultures were then diluted to OD

∼ 0.07 in 10mL of fresh 7H9/30%OADC in 50mL conical tubes and allowed to regrow to OD >

1.0. Drugs were then dissolved in DMSO and added. Final drug concentrations for validation were

54ug/mL CLR, 10 ug/mL MOX, 21 ug/mL EMB. DMSO was added to no-drug control. 3 replicates

were performed for each strain-drug pair chosen for validation (33 tubes total). Samples were taken

2 and 4 days after adding antibiotics and diluted in 7H9/30%OADC for CFU enumeration on 7H11

agar plates.

3.3 Computational analysis

A schematic of the pipeline to process the data is provided in figure 3.2. Briefly, raw reads were

mapped as in 2.4.1 using tpp. Counts from tpp were then processed with a custom python script

(Python 3.7) to produce a *.csv file to be read by pandas 0.24.1.

Effect size/log fold change calculation. For calculation of log fold change (LFC) a pseudo-

count of 4 reads was added to all samples before dividing read counts by total read count:

x̃t,ir = Xt,ir + α∑︁T
t (Xt,ir + α)

(3.1)

Where Xt,ir is the read count for insertion site t, for antibiotic treatment group i, for replicate r.

α is the pseudocount (α = 4) and T is the number of insertion sites. A large pseudo count used to

39



stabilize the fold-change which can vary dramatically due to mutants with low representation. The

stabilized-normalized read counts were then averaged:

µt,i = 1
ni

ni∑︂
r

x̃t,ir (3.2)

where ni is the number of treatment groups, and LFC between sample group i and j calculated as

the median of the LFC at individual sites with a gene:

LFCg,(i/j) = medt∈Gg

(︃
log2

(︃
µt,i

µt,j

)︃)︃
(3.3)

where Gg are the set of sites belonging to gene g and LFCg,i/j is the log-fold change between

experimental groups i and j for gene g.

P-value calculation. For calculation of p-values, read counts for each sample were first nor-

malized by dividing by the total read count in each sample (no pseudocounts were used).

xt,ir = Xt,ir∑︁T
t Xt,ir

(3.4)

The Jonckheere-Terpstra (JT) test was applied at each time point[55, 97]. Briefly, the JT test is

a non-parametric test of trend which is more powerful than the more common Kruskal-Wallis test

when the alternative hypothesis assumes a (monotonic) trend of the groups. In this case we have

three groups for each drug at each time point: No drug, low dose, high dose. We expect that if a

mutant is hypersusceptible at a low dose it will be even more hypersusceptible at a higher dose. We

define the alternative hypothesis as:

HA : θ1 ≤ θ2 ≤ ... ≤ θK (3.5)

against a null hypothesis:

H0 : θ1 = θ2 = ... = θK (3.6)

where θ1...θK are measures of a centrality parameter (such as the median) and K is the number of

treatment groups for the drug at a particular time point (in this case K = 3 for all groups). The
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JT test statistic at site t is defined as:

Bt =
K−1∑︂
i=1

K∑︂
j=i+1

ni∑︂
r=1

nj∑︂
s=1

1[xt,ir < xt,js] (3.7)

Computation of p-values at individual sites are computed via permutation test. Naively this would

result in non-uniformly distributed p-values due to the discrete nature of the distribution. To

avoid this we perform uniform random sampling between the two bounding cumulative distribution

functions (cdfs) as described in equation 2.17. Pooling the p-values within each gene is then accom-

plished with the two-sided Stouffer’s method (see equation 2.18). Finally, adjusted p-values are then

computed using the Benjamini-Hochberg procedure. Gene mutants are considered “differentially

susceptible” to a drug if the absolute value of the log2-fold change (relative to no drug control) is

greater than 0.5 and the adjusted p-value is less than 0.05 at both 12 hours and 48 hours.

3.4 Results

CFUs for pools at 0h, 12h, and 48h are provided in figures 3.3 - 3.6. The same no-drug (DMSO-only)

control appears in all plots. Notably the no-drug control has an inflection at the 12h timepoint.

This is likely due to the clumping of the bacteria soon after starting cultures. Under a light micro-

scope (unstained) the no-drug control cultures showed clumps of approximately 5 cells. It is likely

clumping was also present in the drug containing tubes, though these were not examined. Despite

the clumping, which prevents a clear interpretation of the CFU curves, the screen should not be

impacted as each bacterium within each clump will have an identical chance of regrowth. Thus our

major results (the differential representation of mutants exposed to drugs) should not be impacted

by the presence of clumping in our cultures.

Only a subset of samples were chosen to proceed with Tn-Seq. We considered the following

criteria of an antibiotic exposure: (1) Bacterial numbers must exceed 106 CFU/mL at all times

during exposure - this ensures that the probability of losing a particular mutant is minimized. (2)

There should be detectable attenuation of bacterial viability after adding the drug - this ensures

the concentration of antibiotic is high enough to remove highly-susceptible mutants. Otherwise

the concentration might be too low to select against these mutants. (3) A preference for drug
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Figure 3.3: Bacterial viability of transposon mutant pools after addition of CLR at 0 hours. Final
concentration of drug in each tube provided in legend. 3 replicates were collected at each time point.
Points represent median. Error bars are minimum and maximum.

concentrations near or below achievable serum concentration of drug after standard doses. We take

serum values as 2.31 ug/mL CLR, 4.42 ug/mL MOX, 0.52 ug/mL RFB and 2.27 ug/mL EMB [101].

Using this set of criteria we decided to sequence both time points at the following concentrations:

CLR 0.54 and 5.4 ug/mL, MOX 0.1 and 1.0 ug/mL, RFB 0.063 and 0.63 ug/mL, EMB 2.1 and 0.21

ug/mL.

3.4.1 Hyper-susceptible mutants

We identified 67 mutants as differentially susceptible for CLR (50 hypersusceptible), 9 for EMB (9

hypersusceptible), 109 for MOX (106 hypersusceptible), 104 for RFB (82 hypersusceptible). Effect

sizes for these mutants are plotted in figures 3.7 - 3.10. Significant mutants and effect sizes are

also provided in appendix C. Additionally, 3 mutants were found to be differentially susceptible (all

were hypersusceptible) to all four drugs including DFS55_00905 (annotated as “acyltransferase”),

DFS55_10120 (MoxR family ATPase), and DFS55_12730 (hypothetical protein).
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Figure 3.4: Bacterial viability of transposon mutant pools after addition of MOX at 0 hours. Final
concentration of drug in each tube provided in legend. 3 replicates were collected at each time point.
Points represent median. Error bars are minimum and maximum.

Figure 3.5: Bacterial viability of transposon mutant pools after addition of RFB at 0 hours. Final
concentration of drug in each tube provided in legend. 3 replicates were collected at each time point.
Points represent median. Error bars are minimum and maximum.

43



Figure 3.6: Bacterial viability of transposon mutant pools after addition of EMB at 0 hours. Final
concentration of drug in each tube provided in legend. 3 replicates were collected at each time point.
Points represent median. Error bars are minimum and maximum.

Figure 3.7: Effect size of disruption of genes in MAC109 (fold-change is normalized to no drug
control). Transposon disruption mutants are sorted from greatest effect size to smallest. Only genes
for which effect size was statistically significant are plotted. Negative values represent mutants
hyper-susceptible to CLR, positive values are hyper-tolerant ones.
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Figure 3.8: Effect size of disruption of genes in MAC109 (fold-change is normalized to no drug
control). Transposon disruption mutants are sorted from greatest effect size to smallest. Only genes
for which effect size was statistically significant are plotted. Negative values represent mutants
hyper-susceptible to MOX, positive values are hyper-tolerant ones.

Figure 3.9: Effect size of disruption of genes in MAC109 (fold-change is normalized to no drug
control). Transposon disruption mutants are sorted from greatest effect size to smallest. Only genes
for which effect size was statistically significant are plotted. Negative values represent mutants
hyper-susceptible to RFB, positive values are hyper-tolerant ones.
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Figure 3.10: Effect size of disruption of genes in MAC109 (fold-change is normalized to no drug
control). Transposon disruption mutants are sorted from greatest effect size to smallest. Only genes
for which effect size was statistically significant are plotted. Negative values represent mutants hyper-
susceptible to EMB, positive values are hyper-tolerant ones. Names of genes (DFS55_#####)
given at bottom.

46



Figure 3.11: Plotted is the change in viability of each strain to CLR normalized to the no-drug
control (DMSO) at 2 days (48h) and 4 days (96h). Smaller values indicate greater susceptibility to
the antibiotic.

3.5 Validation of hypersusceptible mutant phenotypes

To validate our predicted antibiotic hypersusceptibilities we utilized isolated transposon mutants

in the genes DFS55_00120 (predicted to be hypersusceptible to EMB), DFS55_00360 (hypersus-

ceptible to EMB), and DFS55_12665 (hypersusceptible to MOX and CLR). The annotations were

“FHA domain-containing protein”, “penicillin-binding protein”, and “accessory Sec system translo-

case SecA2”, respectively. To compare results between strains we normalized to the median of

day 2 CFUs of no drug controls (for each strain). Our results confirmed hypersusceptibility for

EMB and MOX but we did not observe hypersusceptibility to CLR. Notably, hypersusceptiblity of

DFS55_00120 to EMB was much greater than DFS55_00360.

3.6 Summary and Discussion

In this chapter, we utilized a genome-wide transposon mutant pool in Mav (created as described

in chapter 2) to screen for mutants with a growth phenotype in the presence of antibiotics. Our
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Figure 3.12: Plotted is the change in viability of each strain to MOX normalized to the no-drug
control (DMSO) at 2 days (48h) and 4 days (96h). Smaller values indicate greater susceptibility to
the antibiotic.

Figure 3.13: Plotted is the change in viability of each strain to EMB normalized to the no-drug
control (DMSO) at 2 days (48h) and 4 days (96h). Smaller values indicate greater susceptibility to
the antibiotic.
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hypothesis was that mutants with growth phenotypes might be helpful for a) understanding the

mechanisms of bacterial persistence in Mav and b) identifying the events that occur leading up to

bacterial death in the presence of antibiotics. The hope is that this information might be useful for

shortening regimens used to treat Mav.

There were limitations with our approach. First, mutants in essential genes could not be screened

as these cannot be constructed using transposon mutagenesis. Therefore essential genes that play a

role in these processes will be missed. Second, gene disruptions leading to changes in extracellular

factors (eg. extracelluar proteins) may be missed by our screen as these factors may be complemented

by factors produced by non-defective mutants in the same tube.

Using our screen and high-throughput sequencing (Tn-Seq) we identified hundreds of mutants

likely to have a growth phenotype in the presence of antibiotics. MOX exposure yielded predom-

inantly hypersusceptible mutants with only three hypertolerance mutants. This may suggest that

there are many potential targets to boost the efficacy of moxifloxacin and that the pathway leading

from inhibition of topoisomerases by moxifloxacin to bacterial death only involves a few genes. Ad-

ditionally, given the strong effect sizes observed with moxifloxacin relative to the other drugs this

antibiotic may represent the greatest opportunity for adjunctive therapy to boost its activity.

We followed-up a few of our hypersusceptibility results using individual isolated transposon

mutants. It is important to note that there were differences between the conditions of our screen

and the follow-up experiment. The individual mutants were isolated in MAH11 - an entirely separate

isolate from the MAC109 strain used during our screen. This was necessary as a collection of mutants

in the MAC109 strain is currently unavailable. The relatively small size of the available library (2-3

thousand mutants) also limited the mutants we were able to select for follow-up. Follow-up work

should select mutants with the greatest measured effect size assuming they are available or can be

easily generated. Secondly, we utilized a late-log to early stationary phase culture for validation

whereas our original screen was performed with log-phase cultures. Using a late-log culture was

found to greatly reduce bacterial clumping. This allowed us to more easily interpret the CFU counts

- our measure of hypersusceptibility. However, this may have impacted the state of the bacteria,
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modifying the killing effect of the antibiotics. Given the differences in setup it is reassuring that were

able to confirm hypersusceptibility for EMB and MOX among the three mutants tested. However,

the failure to validate the predicted hypersusceptibility to CLR of the DFS55_12665 mutants does

raise questions about the reliability of our predictions derived from the Tn-seq data. Follow-up work

should seek to quickly validate predictions, preferably through CFU counts as reported here, before

further investigations are carried out.

Pending additional validation, some preliminary conclusions can be made. The hypersusceptibil-

ity of the DFS55_12665 mutant to MOX but not CLR suggests that hypersusceptibility is specific

to a particular drug. This may mean that antibiotic persistence is a drug-specific phenomenon,

meaning a persister to one drug may not necessarily be a persister to another. If validated this

would suggest that highly persistent infections might best be treated using a combination of multi-

ple classes of antibiotics in order to target the different types of persisters. Future work might focus

on the study of persistence to a single particular drug as opposed to pan-drug persistence.
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Chapter 4

Adjunctive drug targets and
mechanisms of antibiotic tolerance
in Mtb

4.1 Objectives

Chapter 3 described out efforts to identify genes involved in the response of Mav to antibiotics.

Similarly, we wished to identify mechanisms by which the global pathogen Mtb is able to survive

exposure to antibiotics as well as those genes involved in our hypothesized antibiotic “death pathway”.

Here we construct genome-wide transposon mutant pools in Mtb and perform similar screens to those

performed in Mav to explore these questions. This also provides us the opportunity to compare the

identified genes from Mtb with those identified in chapter 3 for Mav, which may help to identify

general mycobacterial genes affecting antibiotic killing.

Additionally, we wanted to explore the role of the bacterial extracellular environment in the

acquisition of the persistence phenotype. We hypothesized that the pathways involved in antibiotic

survival are specific to the environment. In particular we were interested in environments known to

greatly reduce antibiotic effectiveness (such as PBS[36, 112]). Identifying mutants with hypersus-

ceptibility phenotypes may be particularly useful for understanding the mechanisms by which these

environments induce an antibiotic persistent phenotype, which are likely connected with the massive

change in metabolism that occurs during starvation [40, 36]. These discoveries may be most relevant

to the environment that Mtb experiences during host infection, which have been speculated to have
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limited nutrient availability [68]. Furthermore, if such genes can be identified and characterized they

may make highly effective drug targets for shortening TB therapy.

4.2 Experimental Methodology
4.2.1 Strains, medium, and buffers

PBS-Tw, MP Buffer and 7H11 agar were made as described in chapter 2. To make 7H9/Tw+/G+/10%

OADC: 2.35g 7H9 powder was added to 450mL deionized water. 2mL of 50%glycerol was then added.

After sterilization (via autoclaving at 121◦C or by passing through a 0.22um filter) and cooling to

room temperature, 50mL of OADC enrichment (Becton-Dickinson) and 1.25mL 20% Tween-80 were

added. To make 7H9/Tw+/G-/10% OADC: Same as above excluding glycerol.

Transposon mutant pools were constructed in H37Rv by adapting a previously published protocol

[69] using ϕmycomarT7. Mtb strain H37Rv was grow from frozen stocks in 450mL 7H9/Tw+/G+/10%

OADC to OD 1.2 in a large roller bottle at 37◦C, shaking. Culture was split into 7 tubes of

50mL/tube. Tubes were centrifuged (2000 g for 5 min) and resuspended in 10mL MP Buffer. This

washing step was repeat 2 additional times. Cells were then spun an additional time (2000g for 5

min) and reimmersed in 4mL MP Buffer. ∼ 1 × 1011 PFUs (10:1 phage:bacilli) of ϕmycomarT7 was

added to 6 of the tubes - the seventh tube recieved only MP Buffer without phage. Tubes were

place on a shaking incubator (37◦C) for two days. After incubation the transformation mixture was

centrifuged (2000g for 5 min) and washed with PBS-Tw to remove residual phage. An additional

centrifugation was done and bacteria were reimmersed in 1mL PBS-Tw.

50uL of each tube of washed transformants (or no-vector control) were diluted and plated on 7H11

plates, with or without 50ug/mL kanamycin, to determine transformation efficiency and background

resistance. The remainder of the cultures were plated on 7H11 containing 50ug/mL kanamycin in

Pyrex baking dishes (15” x 10”, 500mL agar per dish, 1 tube per dish). After 35 days colonies were

scraped from each dish and dispersed by vortexing with sterile glass beads (3mm) in fresh 7H9 broth

and frozen in aliquots at -80◦C for later use. For high-throughput screens equal volumes of all six

pools were combined and frozen in aliquots to increase mutant diversity.

Strains for validation. The CDC1551, caeA-KO mutant, and caeA-COM strains were the
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kind gift of Dr. Shichun Lun and the laboratory of Dr. Bill Bishai. As previously described [70],

caeA-KO is a knockout strain of the caeA/Rv2224c in the CDC1551 background. caeA-COM is

the caeA-KO strain complemented via an integrating plasmid with an intact copy of the gene and

associated promoter.

4.2.2 DNA extraction and Tn-seq

For DNA extraction, a pellet of Mtb was obtained in an O-ring tube and supernatant removed. The

pellet was then heated to 85◦C for 20-30 minutes. After heat killing, the pellet was reimmersed

in 0.6mL CTAB extraction solution (100mL water, 5.84g NaCl, 1g Hexadecyltrimethylammonium

bromide, 0.2mL 0.5M EDTA). The sample was then transferred to a 2mL tube containing 1g 0.1mm

zirconia beads and 0.6mL chloroform. The sample was then bead-beaten for 30 second at 7200rpm

on a Presellys Evolution. The tube was centrifuged at 16,000g for 2 minutes. ∼0.4mL aqueous

(top) phase was then pipetted into a fresh tube avoiding the white interface. 2 volumes of 100%

ethanol was then added and the sample was mixed by inversion to precipitate DNA. In cases where

DNA was visible by eye a 2 minute centrifugation was done, otherwise centrifugation was extended

to 15 minutes. Supernatant was removed and DNA pellet was washed with 700uL 70% ethanol.

The sample was briefly centrifuged again and ethanol was removed. Pellet was allowed to dry for 15

minutes before reimmersion in 100uL Tris-Cl. A nanodrop was used to measure DNA concentration.

4.2.3 Drugs

The drugs INH and RMP were used in these screens as they are part of the first line regimen used

to treat Mtb. The other first line drugs (EMB and pyrazinamide) lack killing activity in vitro

against Mtb and are only used for the first 2 months in the first line TB regimen. Ranges of drug

concentrations were chosen based on estimates of the maximum concentration observed in human

plasma and then performing dilutions to simulate reduced levels of drug. Cmax was assumed to be

1.0 ug/mL for INH and 4.0 ug/mL RMP based on available data [20]. Drugs were dissolved in water

and filter sterilized before use.

53



Figure 4.1: Schematic of experimental setup for identifying adjunctive drugs. A transposon mutant
pool constructed in H37Rv is grown in a single vessel and aliquoted to tubes. After a period of
adjustment to the new conditions, antibiotics (INH,RMP) are added.

4.2.4 Conditions for antibiotic hyper-susceptibility screens

Screen in nutrient-rich medium. The setup for our genome-wide differential susceptibility

screens is sketched in figure 3.1. For screening in rich medium we inoculated a 1mL aliquot of

the combined transposon mutant pool (consisting of approximately 1.2 × 106 unique mutants) into

200mL 7H9/Tw+/G-/OADC contained in a 1.3L roller bottle. This was shaken at 37◦C for 3 days

to reduce bacterial clumping. These samples were then split into 4 50mL aliquots and centrifuged

(2000g for 5 minutes). Pellets were then reimmersed in 5mL 7H9/Tw+/G-/OADC and pooled into

a single tube. The culture was then strained through a 40µm cell strainer to remove very large

clumps. The OD was then taken and the culture diluted to OD 0.1. Diluted culture was aliquoted

to 21 tubes (10mL/tube) for the screen. After 1 day of shaking at 37◦C, drugs (dissolved in water)

were the added to each tube (day 0). Final concentrations of INH were 0.01ug/mL, 0.1ug/mL,

and 1.0ug/mL while final concentrations of RMP were 0.04ug/mL, 0.4ug/mL, and 4.0ug/mL. 3

replicates for each drug-concentration were performed as well as a no drug control (21 tubes total).
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Cultures were checked daily for increased growth. If growth was observed to be near OD 0.8 then

800uL of culture was removed for OD measurement. If OD exceed 0.8 the culture was diluted 1:20

into fresh 7H9/Tw+/G-/10% OADC (with or without drug as appropriate). This passaging routine

was intended to keep the cultures in log-phase throughout the screen. Each day (after dilution, if

necessary) 400uL of culture were removed and processed for CFU enumeration. Briefly, samples

were centrifuged (3000g for 5 minutes) and washed twice with 7H9/Tw+/G-/10%OADC to remove

antibiotic. 10-fold dilutions were done in 7H9/Tw+/G-/10%OADC and 100uL of each dilution was

plated on 7H11 agar. T-shaped spreaders were used to spread liquid evenly across plates. CFUs

were counted after 34-36 days.

After 6 days of drug exposure, tubes were thrice centrifuged (2000g for 5 min) and washed with

10mL 7H9/Tw+/G-/OADC to remove drug before reimmersing in a final volume of 10.8mL. 0.8mL

of each culture was then removed to confirm OD was below 0.4 and diluted appropriately otherwise.

Tubes were passaged and diluted (1:20) in fresh 7H9/Tw+/G-/10%OADC upon reaching above OD

0.8. This was repeated twice (approximately 9-10 doublings). Samples were then centrifuged and

processed for DNA extraction.

DNA library preparation was performed according to an earlier version of the protocol described

in appendix B. Differences from the appendix protocol included use of Thermo-Fisher Taq poly-

merase with Thermopol buffer in place of NEB Q5 master mix (annealing temperatures of 58◦C

for both PCRs). Additionally there were some minor volume changes. Libraries were sequenced

(2×100bp) on an Illumina HiSeq 2500 by Tom Ioerger and Aashish Srivastava of Texas A&M Uni-

versity. A total of 18 samples were sequenced yielding between 3,732,882 – 6,614,078 reads per

sample for a total of 91,626,354 paired-end reads.

Screen in starvation medium. For screening the Mtb transposon mutant library in starvation

conditions we first inoculated a 1mL aliquot of the combined transposon mutant pool into 200mL

7H9/Tw+/G-/10%OADC contained in a 1.3L roller bottle. This was shaken at 37◦C for 1 day

to reduce bacterial clumping. 50mL of this culture was then split into 5 10mL aliquots (in 50mL

conicals) and incubated, shaking for 1 day. The OD was then taken and the cultures were pooled
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and diluted to OD 0.01. Diluted culture was aliquoted to 60 tubes (10mL/tube). After cultures

reached OD 0.85, cultures were repooled. We found growing the pools in these 10mL aliquots reduced

bacterial clumping. After pooling, the culture was centrifuged (3000g for 5 min) and washed twice

with PBS-Tw. The culture was then diluted to OD 0.52 in PBS-Tw. This was then aliquoted

to 90 tubes (10mL/tube) to perform the screen. Immediately, 3 tubes were removed for CFU

enumeration (day -14). After 14 days starvation in PBS-Tw an additional 3 tubes were removed

for CFU enumeration and regrowth (day 0). Drugs (dissolved in water) were then added to the

remaining tubes. Final concentrations of INH were 0.01ug/mL, 0.1ug/mL, and 1.0ug/mL while

final concentrations of RMP were 0.04ug/mL, 0.4ug/mL, and 4.0ug/mL. Samples were taken for

regrowth and CFU enumeration at day 7 and day 14. 6 replicates were performed for each drug-

concentration and timepoint as well as no drug controls (84 tubes total). Only 3 samples from each

group were prepped for sequencing to reduce sample costs.

CFUs were estimated for each sample by removing 400uL of bacterial culture, centrifuging (3000g

for 5 minutes) and washing once with PBS-Tw (to remove antibiotic). 10-fold dilutions were done

in PBS-Tw and 50uL of each dilution was plated on 7H11 agar. T-shaped spreaders were used to

spread liquid evenly across plates. CFUs were counted after 25-35 days. For regrowth, the remainder

of each tube was twice centrifuged (3000g for 5-10 min) and washed with 10mL PBS-Tw to remove

drug. Centrifugation was done a final time and the sample was reimmersed in 250uL PBS-Tw. 50uL

of washed transposon pool was plated on each of four 7H11 agar plates and spread with 10-15 3mm

sterile glass beads. Samples were regrown until bacterial lawn formwed (7-14 days, depending on

group). Lawns for the four agar plates were scraped and pooled into 2mL tubes for DNA extraction.

DNA library preparation was performed as described in appendix B. Libraries were sequenced

(2×100bp) on an Illumina HiSeq 2500 by Tom Ioerger and Aashish Srivastava of Texas A&M Univer-

sity. A total of 36 samples were sequenced yielding between 1,508,879 – 6,085,006 reads per sample

for a total of 134,634,944 paired-end reads.

Screen in hypoxic medium. An attempt to screen the Mtb transposon mutant library under

hypoxic conditions was also made. Briefly, a shaker plate was placed inside an anaerobic chamber
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utilizing a specialized gas mixture to remove oxygen from the chamber. Levels of oxygen was

monitored using a chemical indicator to ensure hypoxia throughout the experiment. Cultures were

setup in a similar fashion to the above screen in starvation medium except using 7H9/Tw+/G-

/OADC in place of PBS-Tw. At OD 0.86, the culture was diluted to 0.54 and aliquoted to 84 tubes

with vented caps to allow the anaerobic atmosphere to reach the liquid (we found that non-vented

tubes were air-tight). All tubes were then transferred to the anaerobic chamber (day -7). After 1

day inside the chamber, stickers were added to block the vents in the cap in an attempt to prevent

water loss. On day 0, (7 days after tubes entered anaerobic chamber) non-vented caps were added

to improve water retention. After adding non-vented caps, antibiotics were added to tubes. Final

concentrations of INH were 0.01ug/mL, 0.1ug/mL, and 1.0ug/mL while final concentrations of RMP

were 0.04ug/mL, 0.4ug/mL, and 4.0ug/mL. Samples were taken for regrowth and CFU enumeration

at day 7, day 14, day 21, and day 28. 3 replicates were performed for each drug-concentration and

timepoint as well as no drug controls (84 tubes total). CFU enumeration and regrowth were done

as written for our screen in starvation medium. CFUs were counted after 21-54 days. Due to issues

encountered with low viability (see Results), these samples were not processed for sequencing.

4.3 Computational Analysis

LFC and p-values for each condition were calculated as described in section 3.3. For the rich medium

screen, gene mutants were considered “differentially susceptible” to a drug if the absolute value of

the log2-fold change (relative to no drug control) was greater than 0.5 and the adjusted p-value

(Benjamini-Hochberg) was less than 0.05. For the starvation medium screen, gene mutants were

considered “differentially susceptible” to a drug if the absolute value of the log2-fold change (relative

to no drug control) was greater than 0.5 and the adjusted p-value was less than 0.05 at both the 7

days and 14 day time points.
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Figure 4.2: Bacterial viability of transposon mutant pools after addition of INH at 0 days. Final
concentration of drug in each tube provided in legend. 3 replicates were collected at each time point.
Points represent median. Error bars are minimum and maximum.

4.4 Results
4.4.1 Transformation efficiency

Upon transformation, we estimated each of our six independent H37Rv transposon mutant libraries

contained between 1.7̆2.5 × 105 unique insertion events for a combined total of 1.2 × 106 unique

events with ∼0.2% background. For all experiments we utilized a combined pool of all 6 independent

pools.

4.4.2 Bacterial viability during screen

During each stress and antibiotic exposure, bacterial viability of the entire transposon mutant pool

was monitored. Bacterial viability during rich medium is provided in figures 4.2-4.3. Viability during

nutrient starvation is provided in figures 4.4 - 4.5. Viability during hypoxic conditions is provided in

figures 4.6 - 4.7. Notably there was a large reduction in viability during exposure to hypoxia which

prevented us from have enough material to proceed with Tn-seq for these samples.
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Figure 4.3: Bacterial viability of transposon mutant pools after addition of RMP at 0 days. Final
concentration of drug in each tube provided in legend. 3 replicates were collected at each time point.
Points represent median. Error bars are minimum and maximum.

Figure 4.4: Bacterial viability of transposon mutant pools in PBS after addition of INH at 0 days.
Final concentration of drug in each tube provided in legend. Between 3 and 6 replicates were
collected at each time point (3 for day -14 and day -7). One outlier at day 7 were removed (likely
a mislabeled sample) and one outlier at day 14 (cause unknown). Points represent median. Error
bars are minimum and maximum.
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Figure 4.5: Bacterial viability of transposon mutant pools in PBS after addition of RMP at 0 days.
Final concentration of drug in each tube provided in legend. Between 3 and 6 replicates were
collected at each time point (3 for day -14 and day -7). One outlier at day 7 were removed (likely
a mislabeled sample) and one outlier at day 14 (cause unknown). Points represent median. Error
bars are minimum and maximum.

Figure 4.6: Bacterial viability of transposon mutant pools under hypoxia after addition of INH at
0 days. Final concentration of drug in each tube provided in legend. 3 replicates were collected at
each time point. Limit of detection at all timepoints was 2 × 103 CFUs/mL.
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Figure 4.7: Bacterial viability of transposon mutant pools under hypoxia after addition of RMP at
0 days. Final concentration of drug in each tube provided in legend. 3 replicates were collected at
each time point. Limit of detection at all timepoints was 2 × 103 CFUs/mL.

Figure 4.8: Effect size of disruption of genes in H37Rv (fold-change is normalized to no drug control)
in rich medium (7H9). Transposon disruption mutants are sorted from greatest effect size to smallest.
Only genes for which effect size was statistically significant are plotted. Negative values represent
mutants hyper-susceptible to INH, positive values are hyper-tolerant ones.
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Figure 4.9: Effect size of disruption of genes in H37Rv (fold-change is normalized to no drug control)
in rich medium (7H9). Transposon disruption mutants are sorted from greatest effect size to smallest.
Only genes for which effect size was statistically significant are plotted. Negative values represent
mutants hyper-susceptible to RMP, positive values are hyper-tolerant ones.

Figure 4.10: Effect size of disruption of genes in H37Rv (fold-change is normalized to no drug control)
in nutrient starvation (PBS). Transposon disruption mutants are sorted from greatest effect size to
smallest. Only genes for which effect size was statistically significant are plotted. Negative values
represent mutants hyper-susceptible to INH, positive values are hyper-tolerant ones.
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Figure 4.11: Effect size of disruption of genes in H37Rv (fold-change is normalized to no drug control)
in Nutrient Starvation (PBS). Transposon disruption mutants are sorted from greatest effect size to
smallest. Only genes for which effect size was statistically significant are plotted. Negative values
represent mutants hyper-susceptible to INH, positive values are hyper-tolerant ones.

4.4.3 Mutants with environment-induced hypersusceptibility

In rich medium we identified 2 mutants as differentially susceptible to INH (2 hypersusceptible),

214 to RMP (121 hypersusceptible). In starvation medium we identified 2 mutants as differentially

susceptible to INH (2 hypersusceptible), 80 to RMP (41 hypersusceptible). Significant mutants and

effect sizes are provided in appendix D. Effect sizes for these mutants are plotted in figures 4.8 -

4.11.

4.5 Validation and exploration of a hypothesized mechanism
4.5.1 Antibiotic susceptibility of the caeA mutant

Our results showed that in rich medium the caeA (Rv2224c) transposon mutants were hypersuscepti-

ble to RMP (log2 fold-change = -1.8). Therefore we decided to validate our results using a knockout

mutant in caeA (caeA-KO) and a mutant strain where the knocked-out gene is complemented with

a second copy (caeA-COM). We tested the antibiotic susceptibility of the caeA-KO, caeA-COM and

background CDC1551 strains. The results are reported in table 4.1. Notably, a few drugs showed
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Table 4.1: MIC of wildtype, caeA-KO, and caeA-COM strains to various antibiotics as measured by
Alarmar blue assay. All MICs were measured in triplicate.

CDC1551-WT caeA-KO caeA-COM
Clarithromycin 4.0625 1.01563 4.0625
Rifampin 0.04 0.01 0.04
Isoniazid 0.03 0.03 0.03
Ethionamide 5-10 10 10
Meropenem 7.13 3.56-7.13 7.13
Amikacin 0.25 0.125 0.25
Moxifloxacin 0.05 0.05 0.05
Vancomycin 20 2.5 20
Ethambutol 1 0.5 1
Chloramphenicol 5 2.5 5
Desacetyl-rifampin 0.038 0.0095 0.038

changes in MIC of 4× or more including rifampin. This provides some validation that this mutant

is hypersusceptible to this drug.

4.5.2 De-acetylation as a mechanism of antibiotic tolerance

After we observed that the caeA gene appears to be involved in tolerance to RMP we speculated

on roles for the gene. Notably, CaeA has been shown to have carboxyesterase activity[70]. Given

that RMP is an ester we speculated that CaeA might remove the ester group from RMP. Further-

more, crystallographic data from the target of RMP (RNA polymerase) shows that the RMP ester

group is likely involved in binding to its target [16]. This suggested a mechanism for our observed

hypersusceptibility phenotype: In wildtype bacteria CaeA cleaves the ester group from RMP, which

reduces binding affinity to RNA polymerase and reduces the effectiveness of the drug. When CaeA

is absent RMP is not cleaved and rifampin activity appears to increase due to increased binding

affinity.

To test this hypothetical tolerance mechanism we compared the activity of desacetyl-rifampin

to rifampin in the wildtype and caeA-KO strain. If our hypothesis was correct then the caeA-KO

should not be hypersusceptible to desacetyl-rifampin (relative to the wildtype). The last row of

table 4.1 shows that the caeA-KO strain is also hypersusceptible to desacetyl-rifampin - proving our

hypothesis incorrect. In conclusion the mechanism by which the caeA-KO mutant is hypersusceptible

to rifampin is not mediated through deacetylation.
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Table 4.2: Mutants (Mtb) differentially susceptible to rifampin in both rich medium (7H9) and
starvation medium (PBS). Numbers represent log fold change between rifampin-treated group and
no-drug control. A negative LFC indicates a mutant is hypersusceptible to the drug while a positive
LFC indicates it is hypertolerant. Samples in rich medium were treated with 0.04ug/mL rifampin.
Sample in starvation medium were treated with 4.0ug/mL. Only significant mutants with an effect
size greater than 1 in either direction (|LFC| > 1) in both conditions are included.

Gene 7H9 6d
LFC

PBS 7d
LFC

PBS 14d
LFC

Annotation

Rv0049 -2.99 -1.45 -1.81 hypothetical protein
Rv0199 1.14 4.5 2.53 membrane protein
Rv0200 1.61 4.69 2.56 transmembrane protein
Rv0655 1.32 5.03 3.01 ABC transporter ATP-binding protein
Rv0819 1.33 -1.44 -1.67 mycothiol acetyltransferase
Rv0994 -3.25 -1.27 -1.01 molybdopterin molybdenumtransferase 1
Rv2179c -2.72 -1.32 -1.3 3’-5’ exoribonuclease
Rv2690c 5.56 3.26 1.63 integral membrane protein
Rv2709 1.16 -1.26 -1.16 transmembrane protein
Rv3723 1.18 4.94 3.04 transmembrane protein

4.5.3 Role of environment in hypersusceptibility

To explore the role the environment plays in hypersusceptibility to antibiotics we compared sig-

nificant genes from the rich medium and nutrient starvation screens. Table 4.2 presents mutants

with differential susceptibility to rifampin in both rich and starvation medium. Table 4.3 presents

mutants with differential susceptibility to rifampin in starvation medium, but with an effect size

(LFC) near zero or in the opposite direction in rich medium. Thus, the differential susceptibility

phenotype of these mutants appears to be significantly impacted by the environment.

4.6 Summary and discussion

We identified hundreds of Mtb transposon mutants with survival phenotypes relative to wildtype

bacteria. Nearly all of these were specific to RMP with only 2 mutants each detected as hypersus-

ceptible to INH in nutrient starvation or rich medium. There are a few possible explanations for

the observed differences in the number of detected phenotypes between the drugs. First, in the case

of the nutrient starvation model (PBS) 3 different RMP concentrations were used for hypothesis

testing. This greatly improves the statistical power for detection using the JT test. Secondly, in the

rich medium model the dose of INH may have been too low - as evidenced by no difference in the

CFU counts for the bulk culture between the low-dose INH group and the no drug control (4.6).
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Table 4.3: Mutants (Mtb) which may be involved in starvation-induced tolerance to RMP. Numbers
represent log fold change between rifampin-treated group and no-drug control. A negative LFC
indicates a mutant is hypersusceptible to the drug while a positive LFC indicates it is hypertolerant.
Samples in rich medium (7H9) were treated with 0.04ug/mL rifampin. Samples in starvation medium
(PBS) were treated with 4.0ug/mL. To compute this list, statistically significant mutants with an
effect size greater than 1 in either direction (|LFC| > 1) in starvation medium were first identified.
These identified mutants were then examined in data collected from rich medium. Mutants included
in the list below are significant in starvation medium and the product of the 7H9 LFC and PBS 14d
LFC is less than 0.5 (suggesting an effect near zero or in the opposite direction in rich medium).

Gene 7H9 6d
LFC

PBS 7d
LFC

PBS 14d
LFC

Annotation

Rv0458 -0.11 2.3 1.05 aldehyde dehydrogenase
Rv0819 1.33 -1.44 -1.67 mycothiol acetyltransferase
Rv0989c 0.03 2.77 1.01 polyprenyl-diphosphate synthase GrcC
Rv0998 -0.22 -1.24 -1.25 acetyltransferase Pat
Rv1183 0.1 0.52 1.12 transmembrane transport protein MmpL10
Rv1908c 0.85 -0.88 -1.15 catalase-peroxidase
Rv2051c -0.19 -1.33 -1.23 polyprenol-monophosphomannose synthase
Rv2199c -0.5 2.53 2.42 cytochrome c oxidase polypeptide 4
Rv2374c -0.2 -1.47 -1.68 heat-inducible transcription repressor HrcA
Rv2392 0.95 -1.29 -1.17 phosphoadenosine phosphosulfate reductase
Rv2633c 0.41 1.76 1.02 hypothetical protein
Rv2709 1.16 -1.26 -1.16 transmembrane protein
Rv2733c 0.01 -1.55 -1.19 (dimethylallyl)adenosine tRNA methylthio-

transferase
Rv3680 -0.26 -1.12 -1.4 anion transporter ATPase
Rv3923c -0.17 -1.1 -1.36 ribonuclease P protein component
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This may have reduced the effect size of mutants hypersuseptible to INH. For future work, it appears

that bacterial viability is highly sensitive to INH as a 10-fold higher dose produced too much killing

to be useful for Tn-seq. Therefore, future attempts might consider either using INH doses between

these two concentrations or else reducing the duration before regrowing the bacteria to ensure lower

bacterial killing at when using a higher antibiotic concentration. Lastly, it is of course possible that

the number of genes involved in persistence during INH exposure is simply substantially less than

for RMP.

The screens performed here also had a number of limitations. As mentioned above, the INH

concentration may not have been sufficiently high to detect many hypersusceptible mutants in rich

medium. Secondly, we utilized two different regrowth protocols for the rich medium and the starva-

tion conditions. This occurred as a result of the decision to improve our protocol when processing

the starvation samples (which were collected months after the rich medium samples). This choice

greatly simplified and accelerated processing primarily by using solid medium to regrow the pools

after antibiotic exposure instead of regrowing in liquid medium. While the components of the liquid

medium (7H9) are largely similar to those of the solid medium (7H11) the liquid medium included

Tween-80 (to avoid clumping) and calcium chloride while the solid medium contained agar, casein

hydrolysate, and glycerol. However, we do not anticipate these differences to make a substantial

different in identified mutants as independent no-drug controls generated in identical conditions were

utilized for all comparisons.

As evidenced in figures 4.6 and 4.7 our attempt to establish a hypoxia model for identifying

hypersusceptible mutants was a failure due to rapid and profound bacterial viability loss. Notably

our results conflict with those previously published for hypoxia models [105, 95] which did not observe

such severe viability loss in similar models. There were some differences between these models

and ours including that our oxygen removal was especially rapid due to our use of an anaerobic

environment, vented tubes, shaking, and a high viability culture - all of which will contribute to a

rapid decline in oxygen concentration in the culture. It is possible that the bacteria are unable to

adjust quickly to the oxygen-free environment and thus are killed quickly in our model. Another
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possibility is that the exclusion of glycerol from our medium may serve some unknown protective

effect.

Interestingly in the nutrient starvation model the observed effect sizes for hypersusceptibility

were somewhat small after 14 days of rifampin treatment (greatest effect size was -1.81, log2). This

suggests that persistence to rifampin under nutrient starvation may involve multiple genes each

with a small contribution to survival or, similarly, genes with redundant function. An interesting

follow-up experiment would be to generate combined knockouts in multiple genes to investigate if

gene disruptions are additive or synergistic. Synergism would suggest redundancy while additivity

would suggest multiple independent pathways for survival are at work. Also, the bacterial viability

in our nutrient starvation model treated with RMP was notably not reduced between day 7 and

day 14 which is somewhat surprising given the bacterial viability reduction observed between day 0

and day 7. There are at least two possible explanations. First, it may be that there is only a small

population of bacteria that are susceptible to RMP under nutrient starvation. These are all killed

between day 0 and day 7 and therefore no susceptible population remains at day 7. Secondly, some

experimental results suggests that rifampin can quickly degrade in vitro. Therefore it is possible

that rifampin is degraded in our model before day 7.

We decided to validate the caeA mutant due both to its clear hypersusceptible phenotype in

nutrient rich medium and the convenient availability of the knockout and complemented strain. Our

results clearly showed hypersusceptibility in a growth based assay. Future work should also test for

hypersusceptibility in a killing-based assay (ie a decrease in CFU) during exposure to rifampin, which

may be most relevant for optimizing bacterial killing and understanding persistence. Interestingly,

the caeA mutant did not show hypersusceptibility to other drugs including INH and MOX. This

suggests that survival in the presence these other drugs may involved entirely independent pathways.

Thus persistence may be a drug-specific phenomenon. Lastly, our results clearly indicated that the

mechanism by which the caeA mutant is hypersusceptible to RMP is not through deacetylation.

Future work should be carried our the identify the true mechanism which may help to optimize

RMP-containing regimens for TB and, hopefully, decrease therapy duration.
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Chapter 5

Discussion and conclusions

5.1 The essential genes of Mav

We identified 230 genes as essential in both Mav and Mtb (appendix E). These may represent par-

ticularly good targets for drug development, as inhibitors of a gene product are likely to be effective

against a close ortholog. As expected, a number of well-demonstrated targets are present. This

includes the targets of the mycobacterial drugs cycloserine (alanine racemase, D-alanine – D-alanine

ligase), rifamycins (RNA polymerase beta subunit), macrolides (50S ribosome), aminoglycosides (30S

ribosome), fluoroquinolones (type IV topoisomerases and gyrases), bedaquiline (ATP synthase), and

ethambutol (arabinosyltransferase). Additional compounds that have been reported to have some

activity against mycobacteria include tryptophan synthase inhibitors [2], ClpP inhibitors [21], and

Rho inhibitors (albeit only shown to be effective through genetic manipulation) [12]. A brief litera-

ture search also reveals many compounds that inhibit non-mycobacterial orthologs of these genes but

appear to lack published results for killing activity in mycobacteria including inhibitors of GroEL

[61], RibBA [52], SecA [54], and LigA [14, 38]. It is thus apparent that many opportunities are

available for targeting these overlapping essential mycobacterial genes.

Our analysis classified four protein-coding genes on the two plasmids as essential (3 on pMAC109a

and 1 on pMAC109b). This was somewhat surprising, as these plasmids have multiple copies per cell,

and a disruption of a single gene copy should, in theory, be complemented by other copies. We used

NCBI BLAST to find homologs of these genes. DFS55_24645 (on pMAC109a) and DFS55_25425

(on pMAC109b) are homologous to Rep, a protein critical for the replications of plasmids. Thus,
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one possible explanation for the essentiality of these Rep homologs is that plasmid copy number

will decrease in daughter cells inheriting the plasmid (with no plasmid replication possible in a cell

with all copies containing disrupted Rep). This is a strong selective pressure against the mutant

plasmid. DFS55_14680 (on pMAC109a) is a ParA homolog. ParA controls the distribution of

plasmids to daughter cells such that cells inherit the plasmid more equally. It is not immediately

apparent how a more random distribution of the plasmids due to disruption of ParA would lead to

a growth defect. Lastly, DFS55_24600 (on pMAC109a) is a hypothetical protein also classified as

essential. It lacks a paralog in the MAC109 chromosome and an ortholog in Mav strain 104 (which

does not contain plasmids). Thus, it appears to be non-essential for the Mav subsp. hominissuis

pangenome. DFS55_24600 is homologous to Rv3081 from Mtb and our analysis identified Rv3081

as “GD” (approximately 0.25 Relative Fitness). It is also apparent from examining the raw Tn-

seq read counts that transposon insertion in the beginning of this gene does not have a profound

effect on growth rate in MAC109 (this trend is less clear in H37Rv). Given these observations we

can only speculate that this gene is addictive in MAC109 (and weakly addictive in H37Rv) – and

may represent a toxin-antitoxin fusion with the toxin domain near the N-terminus. Future work

could clone DFS55_24600 into an episomal (non-integrating) mycobacterial shuttle vector (such as

pPB10) and examine the retention of the episome with and without this gene in the absence of

antibiotic selection. Additionally, an attempt could be made to isolate a MAC109 mutant cured of

pMAC109a.

Our analysis method to detect essential genes has several advantages over other methods, includ-

ing its high robustness as the result of using the zero-inflated negative-binomial to model read counts,

which can more accurately account for non-saturating libraries, as these have a high probability of a

site having no observed insertions. This may be especially important for transposons which cannot

easily achieve saturation without very large numbers of transformants (e.g. due to lack of strict TA

site bias of Himar1), such as the Tn5 system [67]. Also, we have fully exploited the statistical inde-

pendence of samples, which increases our statistical power. Other models, such as hidden Markov

models, generally pool samples, limiting the usefulness of having biological replicates. However,
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Figure 5.1: Venn diagram of Mav genes that, when disrupted, lead to hypersusceptibility to multiple
drugs.

our method also has limitations. Using our collected data, we detected a somewhat low number of

essential features in MAC109 relative to H37Rv (270 and 738, respectively) despite evidence that

the genome was saturated with insertions (Figure 1). Most likely, this is due to our somewhat low

sample size (5 independent libraries). Therefore, we believe that sequencing additional indepen-

dent transposon mutant libraries could significantly increase the statistical power to detect essential

genes in MAC109, particularly for features with fewer insertion sites. A previous study [24] used

14 independent libraries for H37Rv, which seemed to give our method good statistical power and

may be a useful sample-size target for future studies. Additionally, while our method can correctly

handle sites with low rates of insertion (e.g., [CG]GNTANC[CG]) it is possible that additional such

sites exist that have not yet been defined. Defining the sites with low rates of insertion is especially

important to avoid features falsely classified as essential.
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Figure 5.2: Venn diagram of Mav genes that, when disrupted, lead to hypertolerance to multiple
drugs.

5.2 How specific are hypersusceptible mutants to a drug?

It was hypothesized that there might be a single pathway that controls the persister phenotype in

the presence of multiple drugs. However, due to the use of a single set of samples as the control

group there will be some expected positive correlation between groups. This complicates using

the high-throughput data to assess this question as some overlap is expected due to sharing of the

controls. Noting this limitation, a comparison of hypersusceptible mutants between drug classes

shows that most of the mutants hypersusceptible to CLR and MOX were unique for those drugs

5.1. About 30% of mutant hypersusceptible to RFB were unique to this drug. These results suggest

that many mutants are hypersusceptible only to a specific drug as opposed to all antibiotics classes.

Furthermore our data shows that in the specific cases of the DFS55_12665 mutant in Mav and

the caeA/Rv2224c mutant in Mtb that hypersusceptibility was somewhat specific to particular drug

classes. The DFS55_12665 mutant was clearly hypersusceptible to MOX but lacked any detectable

hypersusceptibility to CLR. These results suggests that there may not be a single antibiotic survival
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pathway or "persistence pathway" but rather a persistence pathway specific for each drug of those

we tested. It is possible that elements of these pathways may overlap which would explain the

hypersusceptible mutants shared between drugs.

Similarly it was also hypothesized that there exists a single death pathway that is triggered

by all antibiotic classes. The overlap of a small set of genes involved in death due to MOX,CLR,

and RFB is intriguing 5.2. This hints at an overlap in at least part of the pathway, though the

issue of bias due to shared controls as discussed above is still a risk. Perhaps most interesting

is pyruvate kinase (DFS55_10765) which was found to confer hypertolerance to MOX, CLR, and

RFB in Mav. Pyruvate kinase converts phosphoenolpyruvate and ADP to pyruvate and ATP, which

occurs irreversibly under physiological conditions[88]. Thus, removal of this enzyme should lead to

a decrease in the concentration of pyruvate. Interestingly, it was recently shown that accumulation

of pyruvate can lead to increased killing by moxifloxacin [30]. Thus reduced pyruvate levels by

removal of pyruvate kinase might be expected to produce the opposite effect. However, this effect

was shown to result from the activity of pyruvate oxidase for which there is no annotated homolog

in Mycobacteria. To explain this, there may be a weakly homologous enzyme with pyruvate oxidase

activity in Mycobacteria. Alternatively, hypertolerance to antibiotics caused by increased pyruvate

levels might be mediated through another mechanism entirely. Additional work should confirm the

role of pyruvate kinase in antibiotic death after exposure to MOX, CLR, and RFB using isolated

mutant strains. After validation, work should examine the accumulation of phosphoenolpyruvate

(and also reactive oxygen species, which are produced by pyruvate oxidase) in this mutant before

and during early exposure to these antibiotics.

5.3 Role of environment in hypersusceptibility

We found that mutations in the gene Rv1901/cinA cause hypersusceptibility to INH in both rich and

starvation media with a particularly strong effect in starvation (appendix D). There is some weak

evidence that Rv1901 may be a nicotinamide amidase (KEGG database: https://www.genome.jp/
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dbget-bin/www_bget?mtu:Rv1901%5C%5C). Given INH has a similar molecular structure to nicoti-

namide it is possible that cinA degrades INH directly or intrabacterial products of INH, potentially

reducing the toxicity of these products in the cell. We also identified mutants in Mtb which are dif-

ferentially susceptible to rifampin in both rich medium and starvation medium in table 4.2. Notably,

the mutants which were hypertolerant in PBS can be seen to have smaller LFCs at day 14 than at

day 7. This suggests that these gene disruptions primarily delay the killing achieved by rifampin.

Many of these are membrane proteins so one possible mechanism is that these membrane proteins,

when present, allow rifampin into the cell. Thus removal of these channels will delay rifampin’s

entrance and killing activity. We also note that Rv2179c has been shown to be structurally closely

related to RNase T[1], which is involved in processing various functional RNAs (mRNAs, tRNAs,

etc). Therefore one possible mechanism for rifampin hypersusceptibility in these mutants is that

bacteria with unprocessed functional RNA molecules are particularly impacted when rifampin binds

the RNA polymerase - the only source of new RNA.

Interestingly, we identified two gene disruptions which lead to hyptertolerance in rich medium

(7H9) but hypersusceptibility in starvation medium (PBS). These genes may be particularly inter-

esting as these mutants seem to be less affected by the environmental changes (ie they have reduced

killing in rich medium but increased killing in starvation medium). It may be that these genes are

involved in the mechanism by which bacteria become hypertolerant during nutrient starvation. To

further explore this we also identified mutants with large LFC in starvation medium but with small

or opposite direction LFC in nutrient rich medium (table 4.3). We found that Rv2374c/HrcA causes

strong hypersusceptibility to rifampin in PBS but not 7H9. Additionally we found that the mutants

in the gene Rv1908c/katG confer hypersusceptibility to rifampin (but not 7H9). This may be due to

katG preventing the accumulation of reactive oxygen species duing PBS exposure - which has been

previously been linked to antibiotic activity in other bacterial species[102].
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5.4 Adjunctive drug targets common to both Mav and Mtb

As we tested a rifamycin in both Mav and Mtb, we wondered whether there were overlaps in the genes

involved in differential susceptibility between the two organisms - suggesting conserved mycobacterial

pathways involved in rifamycin activity and potential targets for inhibition in multiple pathogens.

We identified 8 gene disruption that cause strong hypersusceptibility and 1 gene disruption that

causes strong hypertolerance (|LFC| > 1) in both Mtb and Mav.

Rv0820 (PhoT) is annotated as a phosphate ABC transporter. Notably, it is a close homolog of

the active phosphate transporter PstB. Rv0929 and Rv0930 code for the PstA and PstC components

of the PstA-C active bacterial phosphate transporter[50]. This suggests a connection between phos-

phate transport and rifamycin killing. It is possible that low intrabacterial phosphate levels may

boost rifamycin activity in Mycobacteria though the rich medium is not phosphate limiting so this

would need to be explored further. Rv2224c/caeA is a protease (and carboxylesterase) which we’ve

validated in H37Rv to be hypersusceptible to rifampin 4. This represents a particularly attractive

target to boost the activity of rifamycin-containing regimens in multiple Mycobacteria given its wide

distribution and substantial effect size. Interestingly, an inhibitor is already available for this protein

which could be further optimized to potentially reduce the duration of rifamycin-containing regi-

mens [78]. Disruption of Rv2179c, which appears to cause hypersusceptibility to rifampin in nutrient

starvation, may also trigger rifamycin hypersusceptibility in Mycobacteria generally. As speculated

above, this may be related to its hypothesized role in processing functional RNA molecules. Addi-

tionally, proteins Rv0049, Rv1836c, and Rv3005c have no known function but were also found to have

strong hypersusceptibility to rifamycins. The single gene disruption found to confer hypertolerance

to rifamycins was Rv0819, annotated as a mycothiol acetyltransferase. This is somewhat surpising

given that mycothiol synthesis has been linked to rifamycin hypersusceptibility [79]. Notably, the

gene for Rv0819/DFS55_21365 is oriented such that a transposon disruption in this gene could

affect the downstream transcription of the nearby gene Rv0820/DFS55_21345. It has been noted

previously that the kanamycin promoter within the Himar1 transposon can serve as a promoter for

downstream gene expression[86]. Therefore it is possible that a transposon insertion in this gene
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Table 5.1: Mutants differential susceptible to rifamycins in Mtb and Mav. Significant mutants with
an effect size greater than 1 in either direction (|LFC| > 1). Negative LFC implies the mutant is
hypersusceptible whereas positive LFC implies it is hypertolerant to rifampin in rich medium.

Mtb
Gene

Mav Gene Mtb
LFC

Mav
LFC

Mtb Annotation Mav Annotation

Rv0049 DFS55_00355 -2.99 -1.09 hypothetical protein hypothetical protein
Rv0819 DFS55_21365 1.33 1.23 mycothiol acetyltrans-

ferase
mycothiol synthase

Rv0820 DFS55_21345 -1.42 -1.69 phosphate ABC trans-
porter ATP-binding
protein PhoT

phosphate ABC trans-
porter ATP-binding
protein

Rv0929 DFS55_20215 -1.23 -1.87 phosphate ABC trans-
porter permease PstC

phosphate ABC trans-
porter permease sub-
unit PstC

Rv0930 DFS55_20210 -1.16 -1.0 phosphate ABC trans-
porter permease PstA

phosphate ABC trans-
porter permease PtsA

Rv1836c DFS55_12730 -1.45 -1.44 hypothetical protein hypothetical protein
Rv2179c DFS55_14810 -2.72 -1.09 3’-5’ exoribonuclease hypothetical protein
Rv2224c DFS55_15065 -1.8 -2.17 carboxylesterase A alpha/beta hydrolase
Rv3005c DFS55_07355 -1.25 -1.06 hypothetical protein DoxX family protein

promotes survival during exposure to rifamycins as a result of increased expression of Rv0820 which,

as noted above, may be involved in survival to rifamycins.

5.5 Limitations and future directions

One of the major limitations of this work is that essential genes cannot be assessed for their effect

on hypersusceptibility. Likely this can be addressed in future work utilizing new high-throughput

“knockdown” technologies which allow for reduced levels of particular genes to be achieved[85]. Much

of the experimental setup and analysis developed here for our approach using the Tn-seq technology

could easily be transferred to an effort utilizing these newer techniques for understanding persistence

and antibiotic mechanisms.

Of primary importance for future work is the confirmation of the predictions from high-throughput

data. As discussed in the introduction, these high-throughput techniques often have substantial noise

and therefore must be validated, ideally with an entirely independent methodology. Here, this can

likely most easily be accomplished by creation of knockout strains via a technique other than trans-

poson mutagenesis. New methods allow for knockouts to be quickly generated in Mtb[76] and are

likely functional in other Mycobacteria such as Mav. In designing validating assays a focus should
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be placed on assessing increased killing - not just inhibition. Drugs such as ethambutol are known to

have good inhibitory properties but have very little killing activity in Mtb. Here we have confirmed

increased killing in Mav mutants using CFU counts, which are relatively robust but time consum-

ing. Assays using bioluminescence or other ATP measurements may accelerate the ability to assess

mutants for increased antibiotic killing [84]. However, a final validation should still be done with

CFU enumeration or other direct viability assay (ie not ATP based).

In assessing multiple drugs, multiple environments, and multiple bacteria we have generated a

wide array of potentially useful data for understanding antibiotic activity. However, it also became

clear that validation studies for all the various conditions and experimental setups would be chal-

lenging. Therefore, future work should seek to focus on one particular drug and one bacterial species,

potentially in a few easily achieved in vitro environments. This focus should allow for stronger and

more precise conclusions to be made about antibiotic persistence.

Additionally, multiple properties of Mtb make experiments with this organism exceedingly diffi-

cult. These include its slow growth rate, preference for specialized medium (which is labor-intensive

to make and generally cannot be ordered pre-made through biotech companies), the need for spe-

cialized facilities, and the propensity to form clumps in liquid culture. This last feature led to many

failed experiments during this work. Mav grows significantly faster and is generally safer to handle

though clumping is still a major issue - especially for interpreting CFU counts. Follow-up work to

understand the mechanisms underlying the observed changes in antibiotic activities should first uti-

lize more efficient model organisms such as E. coli and M. smegmatis. This approach will provide an

opportunity to optimize assay conditions without wasting samples and time working with the more

difficult model species. However, it is essential that discoveries in these simpler model organisms

eventually be validated in the less-efficient, but more clinically-relevant ones.

Future work should utilize the data presented here to further define mechanisms of bacterial per-

sistence. Given the apparent lack of overlap between mutants hypersusceptible to particular drugs

we suggest that individual drugs may have individual pathways by which bacteria persist. Therefore
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work should focus on understanding persistence one drug at a time. Understanding bacterial persis-

tence may help in the design of novel compounds to accelerate therapy for mycobacterial infections

- which could profoundly accelerate control efforts globally and reduce logistical costs. Innovations

in TB control are critical as millions of lives continue to be lost yearly to Mtb.
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Appendix A

Gene predictions for Mav

The table on the next page reports predictions for the impact of disrupting each of the annotated

genomic features in Mav strain MAC109 based on my collected Tn-seq data. Each feature is labelled

with the final 5 digits of the locus tag provided in the Genbank file (see Ch.2 for reference). This

number is unique for each feature and only excludes an invariant alphanumeric string to distinguish

the genomes from other in Genbank (ie it excludes “DFS55_” specific to the MAC109 genome).

The second column provides the logarithm, base 10, of the RF (see chapter 2 for definition). The

third column provides the predicted effect of disruption of each feature. See Ch.2 for definition of

each two letter code and method for prediction. A computer-readable version of this table including

additional information is provided as an associated file (AppendixA_FullTable.csv).
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Feature Log(RF) Class
00005 -inf ES
00010 -inf GD
00015 -1.01 GD
00020 -1.13 NE
00025 -inf ES
00030 -inf ES
00035 0.77 NE
00040 -inf GD
00045 -inf GD
00050 0.39 GA
00055 0.4 NE
00060 0.45 NE
00065 0.66 NE
00070 0.66 GA
00075 0.28 NE
00080 -0.87 NE
00085 0.64 GA
00090 -inf GD
00095 -inf ES
00100 -inf GD
00105 0.76 GA
00110 0.32 NE
00115 -0.53 NE
00120 0.1 NE
00125 -0.0 NE
00135 0.59 NE
00140 0.14 NE
00145 0.03 NE
00150 0.7 GA
00155 -inf GD
00160 0.21 NE
00165 0.24 NE
00170 -0.22 NE
00175 0.42 GA
00180 0.29 GA
00185 0.11 NE
00190 0.2 NE
00195 0.26 NE
00200 -0.44 NE
00205 0.25 NE
00210 0.01 NE
00215 -inf GD
00220 -0.57 NE
00225 -1.17 GD
00230 -0.35 NE
00235 0.29 NE
00240 0.68 NE
00245 0.15 NE
00250 0.77 GA
00255 0.07 NE
00260 0.38 NE
00265 0.72 GA
00270 0.91 NE
00275 0.5 NE
00280 -inf ES
00285 -0.53 NE
00295 0.24 NE
00300 0.57 GA
00305 0.57 NE
00310 0.17 NE
00315 0.29 NE
00320 0.27 NE
00325 -0.57 GD
00330 -0.94 GD
00335 -0.89 GD
00340 -inf ES
00345 0.01 NE
00350 0.73 GA
00355 0.28 NE
00360 -0.23 GD
00365 -0.42 GD
00370 0.71 NE
00375 -1.59 GD
00380 -inf GD
00385 -inf NE
00390 -0.08 NE
00395 -inf ES
00400 -0.01 NE
00405 -0.25 NE
00410 -0.23 NE
00415 -0.5 GD
00420 0.45 GA
00425 -0.05 NE
00430 -0.12 NE
00435 -0.19 NE
00440 -inf ES
00445 -0.49 NE
00450 -0.59 GD
00455 0.45 NE
00460 -0.02 NE
00465 -0.53 GD
00470 0.14 NE
00475 0.6 NE
00480 -0.7 GD
00485 -0.26 GD
00490 -1.12 GD

Feature Log(RF) Class
00495 -0.99 GD
00505 0.3 NE
00510 -0.14 NE
00515 0.09 NE
00520 0.03 NE
00525 0.19 NE
00530 0.53 GA
00535 -0.28 NE
00540 -0.08 NE
00545 0.37 NE
00550 0.11 NE
00555 -1.01 GD
00560 0.49 GA
00565 -0.26 NE
00570 -0.49 NE
00575 0.44 NE
00580 -0.95 GD
00585 -1.15 GD
00590 -1.32 GD
00595 0.0 NE
00600 -0.3 NE
00605 -0.89 GD
00610 -0.85 NE
00615 -0.38 NE
00620 -0.74 NE
00625 0.22 NE
00630 0.22 NE
00635 -1.03 NE
00640 0.19 NE
00645 -0.7 NE
00650 0.25 NE
00655 0.16 NE
00660 -0.05 NE
00665 0.74 NE
00670 -0.02 NE
00675 0.86 GA
00680 0.27 NE
00685 -0.13 NE
00690 0.36 NE
00695 0.22 NE
00700 0.13 NE
00705 -0.28 GD
00710 -0.12 NE
00715 -0.15 NE
00720 -0.23 NE
00725 0.07 NE
00730 -0.59 GD
00735 -0.18 NE
00740 0.08 NE
00745 -0.94 GD
00750 -inf NE
00755 -0.44 NE
00760 0.73 NE
00765 -0.09 NE
00770 0.51 NE
00775 0.49 NE
00780 0.38 NE
00785 0.36 NE
00790 0.21 NE
00795 -0.44 NE
00800 0.66 NE
00805 0.26 NE
00810 -0.05 NE
00815 -0.01 NE
00820 -inf NE
00825 0.42 NE
00830 0.04 NE
00835 -2.23 NE
00840 -0.98 GD
00845 -0.63 NE
00850 -1.95 GD
00855 -0.48 NE
00860 0.07 NE
00865 0.0 NE
00870 -0.52 GD
00875 -0.8 GD
00880 -0.35 GD
00885 -0.87 GD
00890 -0.33 GD
00895 -0.25 NE
00900 0.26 NE
00905 -0.55 GD
00910 -0.34 NE
00915 -0.57 NE
00920 0.12 NE
00925 0.01 NE
00930 -0.41 NE
00935 -0.57 NE
00940 -0.22 NE
00945 0.34 NE
00950 -0.76 GD
00955 -0.26 GD
00960 -0.36 NE
00965 -0.7 NE
00970 0.81 NE
00975 0.53 GA

Feature Log(RF) Class
00980 0.42 NE
00985 0.59 NE
00990 0.52 NE
00995 -1.29 GD
01000 -0.83 NE
01005 0.31 NE
01010 0.56 NE
01015 0.3 NE
01020 0.8 NE
01025 0.04 NE
01030 -0.23 NE
01035 -0.6 GD
01040 -0.34 NE
01045 -1.0 GD
01050 0.21 NE
01055 0.92 NE
01060 -0.65 NE
01065 0.3 NE
01070 0.03 NE
01075 -0.13 NE
01080 -0.89 NE
01085 0.3 NE
01090 -0.25 NE
01095 -0.45 NE
01100 0.39 NE
01105 -0.46 GD
01110 -0.18 NE
01115 0.53 NE
01120 0.07 NE
01125 0.06 NE
01130 0.2 NE
01135 0.34 NE
01140 0.12 NE
01145 0.3 GA
01150 0.67 GA
01155 0.59 GA
01160 -0.1 NE
01165 0.01 NE
01170 -0.13 NE
01175 -0.43 NE
01180 0.12 NE
01185 0.61 GA
01190 0.82 NE
01195 0.47 NE
01200 1.0 NE
01205 0.27 NE
01210 0.86 NE
01215 0.81 GA
01220 0.08 NE
01225 0.49 NE
01230 -0.26 NE
01235 -0.01 NE
01240 0.26 NE
01245 0.15 NE
01250 0.41 NE
01255 0.23 NE
01260 -1.08 GD
01265 -0.08 NE
01270 0.34 NE
01275 0.34 NE
01280 -1.03 NE
01285 -0.2 GD
01290 -0.88 GD
01295 -0.51 GD
01300 -1.01 GD
01305 -inf NE
01310 -0.72 GD
01315 -0.87 GD
01320 0.08 NE
01325 0.57 NE
01330 -inf ES
01335 0.84 NE
01340 0.51 NE
01345 -0.86 GD
01350 -1.4 GD
01355 -0.3 NE
01360 -1.62 GD
01365 -1.62 GD
01370 -1.51 GD
01375 -0.87 GD
01380 -1.03 GD
01385 -inf GD
01390 -1.97 GD
01395 -1.33 GD
01400 -1.81 GD
01405 -2.23 GD
01410 0.06 NE
01415 -0.58 GD
01420 -0.86 NE
01425 -1.49 NE
01430 -1.16 GD
01435 -0.69 GD
01440 0.03 NE
01445 0.38 NE
01455 -0.25 NE
01460 -1.51 NE

Feature Log(RF) Class
01465 -1.01 GD
01470 -0.79 NE
01475 -0.24 GD
01480 -1.57 GD
01485 -1.0 GD
01490 -1.0 GD
01495 0.83 NE
01500 0.73 GA
01505 0.39 GA
01510 -0.66 GD
01515 -0.98 GD
01520 -0.52 GD
01525 -0.17 NE
01530 -0.25 GD
01535 -0.4 GD
01540 -0.89 NE
01545 -0.54 NE
01550 -0.19 NE
01555 -0.03 NE
01560 0.19 NE
01565 0.41 NE
01570 0.04 NE
01575 0.84 NE
01580 0.72 GA
01585 0.41 GA
01590 -inf ES
01595 0.34 NE
01600 0.03 NE
01605 0.09 NE
01610 -0.19 NE
01615 -0.74 GD
01620 0.88 GA
01625 -0.15 NE
01630 -0.19 NE
01635 0.06 NE
01640 -0.27 NE
01645 -0.36 NE
01650 -0.98 GD
01655 -0.05 NE
01660 -0.24 NE
01665 -0.23 NE
01670 0.18 NE
01675 0.04 NE
01680 -0.11 NE
01685 -0.23 NE
01690 0.73 NE
01695 0.56 GA
01700 -inf ES
01705 -inf ES
01710 -inf GD
01715 -inf ES
01720 -inf GD
01725 -0.01 NE
01730 0.09 NE
01735 0.61 GA
01740 0.42 GA
01745 0.23 NE
01750 -0.67 NE
01755 -0.19 NE
01760 -0.18 NE
01765 0.25 NE
01770 -0.64 NE
01775 -0.71 GD
01780 -1.02 NE
01785 -0.52 GD
01790 -0.88 GD
01795 -0.14 NE
01800 -0.9 GD
01805 -inf ES
01810 -inf GD
01815 -0.13 NE
01820 0.17 NE
01825 0.46 NE
01830 -0.24 NE
01835 -0.32 NE
01840 0.17 NE
01845 0.45 NE
01850 -0.07 NE
01855 -0.02 NE
01865 -0.15 NE
01870 0.4 GA
01875 0.15 NE
01880 0.1 NE
01885 0.27 NE
01890 -0.44 GD
01895 -0.43 NE
01900 -0.07 NE
01905 -0.59 GD
01910 -0.94 NE
01915 -0.18 NE
01920 -inf NE
01925 -0.81 NE
01930 -0.47 GD
01935 -0.84 NE
01940 0.19 NE
01945 0.86 GA
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Feature Log(RF) Class
01950 0.1 NE
01955 0.56 GA
01970 0.22 NE
01975 -0.15 NE
01980 0.14 NE
01985 -0.41 NE
01990 -0.09 NE
01995 -0.29 GD
02000 -0.42 NE
02005 -0.6 GD
02010 -0.17 NE
02015 -0.05 NE
02020 -0.08 NE
02025 -0.34 NE
02030 0.28 NE
02035 -0.27 NE
02040 0.1 NE
02045 0.03 NE
02050 0.3 NE
02055 0.02 NE
02060 -0.67 GD
02065 -0.71 GD
02070 -0.47 NE
02075 -1.28 GD
02080 -1.2 GD
02085 -0.0 NE
02090 -1.04 GD
02095 -1.29 GD
02100 -1.02 NE
02105 -1.51 GD
02110 -0.53 GD
02115 -0.18 GD
02120 -0.85 GD
02125 -0.35 NE
02130 -0.48 NE
02135 0.74 NE
02140 -1.13 GD
02145 0.28 NE
02150 -0.36 NE
02155 0.26 NE
02160 0.01 NE
02165 -0.06 NE
02170 0.3 NE
02175 0.2 NE
02180 0.74 NE
02185 0.55 NE
02190 -0.01 NE
02195 0.48 NE
02200 -0.38 GD
02205 0.16 NE
02210 -0.13 NE
02215 -1.23 GD
02220 -1.33 GD
02225 -0.74 GD
02230 0.41 NE
02235 0.37 NE
02240 -0.45 NE
02245 -0.99 GD
02250 0.09 NE
02255 -0.92 GD
02260 0.74 NE
02265 0.8 NE
02270 0.69 GA
02275 0.1 NE
02280 0.29 NE
02285 0.4 NE
02290 -0.16 NE
02295 0.43 NE
02300 0.09 NE
02305 1.04 GA
02310 0.73 NE
02315 -inf ES
02320 0.2 NE
02325 -inf GD
02330 -1.75 ES
02335 0.22 NE
02340 0.07 NE
02345 0.54 GA
02350 -0.6 GD
02355 0.53 GA
02360 0.67 GA
02365 0.74 GA
02370 0.26 NE
02375 -inf ES
02380 -1.81 NE
02385 -0.28 GD
02390 0.35 NE
02395 -0.02 NE
02400 0.71 GA
02405 -0.35 NE
02410 -0.3 NE
02415 -0.93 NE
02420 -0.63 NE
02425 -0.11 NE
02430 -0.19 GD
02435 -0.3 GD

Feature Log(RF) Class
02440 -0.16 NE
02445 0.09 NE
02450 0.2 NE
02455 -inf GD
02460 -1.46 GD
02465 -inf GD
02470 0.12 NE
02475 0.32 NE
02480 -0.09 NE
02485 0.45 NE
02490 -inf ES
02495 -0.09 NE
02500 0.09 NE
02505 0.52 NE
02510 0.34 NE
02515 -0.85 NE
02520 0.34 NE
02525 -inf ES
02530 -0.18 NE
02535 0.84 NE
02540 -0.51 NE
02545 -0.06 NE
02550 0.14 NE
02555 0.05 NE
02560 -0.13 NE
02565 -0.33 NE
02570 -0.23 GD
02575 -1.0 GD
02580 -1.23 NE
02585 0.92 NE
02590 -0.29 NE
02595 -0.18 NE
02600 -0.35 GD
02605 0.03 NE
02610 -0.8 GD
02615 -0.57 NE
02620 -1.03 GD
02625 -0.34 GD
02630 -0.6 GD
02635 -0.12 NE
02640 0.13 NE
02645 0.47 NE
02650 -0.06 NE
02655 0.03 NE
02660 0.25 GA
02665 0.34 NE
02670 -2.11 GD
02675 -inf ES
02680 -inf GD
02685 -inf GD
02690 -0.88 GD
02695 -0.36 NE
02700 -0.35 NE
02705 -0.53 NE
02710 0.44 NE
02715 -1.19 GD
02720 -1.41 GD
02725 0.01 NE
02730 0.12 NE
02735 -0.99 GD
02740 -0.94 GD
02745 -1.49 NE
02750 -1.71 GD
02755 -inf GD
02760 -inf ES
02765 -0.07 NE
02770 -0.02 NE
02780 -0.3 GD
02785 -0.96 GD
02790 -inf GD
02795 -inf GD
02800 0.93 GA
02805 0.07 NE
02810 -0.75 GD
02815 -inf GD
02820 -0.66 GD
02825 -1.19 NE
02830 -1.21 GD
02835 -0.12 NE
02840 0.2 NE
02845 0.42 NE
02850 0.72 GA
02855 0.32 NE
02860 0.43 NE
02865 0.08 NE
02870 0.53 GA
02875 0.6 GA
02880 -inf ES
02885 0.75 GA
02890 0.27 NE
02895 0.36 NE
02900 0.43 NE
02905 0.92 GA
02910 1.17 GA
02915 -0.06 NE
02920 0.36 NE

Feature Log(RF) Class
02925 -1.18 GD
02930 -0.24 NE
02935 0.22 NE
02940 0.62 NE
02945 0.58 GA
02950 0.36 NE
02955 0.35 NE
02960 0.2 NE
02965 -0.48 GD
02970 0.1 NE
02975 -0.28 NE
02985 0.52 GA
02990 -1.38 GD
02995 0.99 NE
03000 -0.37 NE
03005 -0.23 NE
03010 0.55 NE
03015 -0.45 NE
03020 0.65 NE
03025 0.43 NE
03030 0.17 NE
03035 0.18 NE
03040 0.31 NE
03045 0.64 GA
03050 1.32 GA
03055 0.43 GA
03060 0.96 GA
03065 0.29 GA
03070 0.95 NE
03075 0.53 NE
03080 0.12 NE
03085 0.53 GA
03090 0.37 NE
03095 -inf GD
03100 0.38 GA
03105 -0.68 NE
03110 0.24 NE
03115 0.19 NE
03120 -0.61 NE
03125 0.08 NE
03130 -inf ES
03135 -0.07 NE
03140 -1.01 GD
03145 0.96 NE
03150 -0.07 NE
03155 -0.41 NE
03160 0.19 NE
03165 -0.7 NE
03170 0.5 NE
03175 0.16 NE
03180 -1.42 GD
03185 0.29 NE
03190 0.83 GA
03195 0.36 GA
03200 0.53 GA
03205 0.8 GA
03210 -1.93 GD
03215 0.44 GA
03220 0.37 NE
03225 -inf GD
03230 -0.34 NE
03235 -0.36 NE
03240 0.97 GA
03245 1.02 NE
03250 -inf ES
03255 -inf GD
03260 -inf GD
03265 -inf ES
03270 0.0 NE
03275 1.35 NE
03280 0.62 NE
03285 0.8 GA
03290 -0.26 NE
03295 -0.28 NE
03300 0.11 NE
03310 -0.04 NE
03315 -0.53 GD
03320 0.59 NE
03325 -1.32 GD
03330 -0.39 NE
03335 0.52 NE
03340 0.81 NE
03345 -inf ES
03350 -1.95 GD
03355 -1.81 GD
03360 -2.27 GD
03365 -1.79 GD
03370 -inf GD
03375 0.49 GA
03380 0.55 NE
03385 -1.27 NE
03390 -0.12 NE
03395 -1.2 GD
03400 -0.33 NE
03405 -1.19 GD
03410 -0.87 GD

Feature Log(RF) Class
03415 0.31 NE
03420 -2.11 GD
03425 0.09 NE
03430 -1.28 GD
03435 -0.89 NE
03440 -0.48 NE
03445 0.42 NE
03450 0.33 NE
03455 -0.63 NE
03460 0.85 GA
03465 -1.07 GD
03470 -0.62 GD
03475 0.35 NE
03480 0.25 NE
03485 0.87 GA
03490 -0.06 NE
03495 -0.86 NE
03500 -0.21 NE
03505 -1.29 GD
03510 -inf GD
03515 0.53 NE
03520 -1.93 NE
03525 -1.08 GD
03530 0.01 NE
03535 0.19 NE
03540 -1.01 GD
03545 0.38 GA
03550 -0.35 NE
03555 0.4 NE
03560 0.49 NE
03565 -0.15 NE
03570 0.87 GA
03575 -inf GD
03580 0.54 NE
03585 0.44 NE
03590 -0.38 NE
03595 0.15 NE
03600 -0.04 NE
03605 0.01 NE
03610 0.55 GA
03615 0.37 NE
03620 -0.17 NE
03625 -0.18 NE
03630 0.4 NE
03635 0.18 NE
03640 0.14 NE
03645 0.21 NE
03650 -0.75 GD
03655 0.15 NE
03660 0.31 NE
03665 0.14 NE
03670 -0.1 NE
03675 -0.95 GD
03680 0.37 NE
03685 -0.82 GD
03690 -0.98 NE
03695 -0.71 NE
03700 -0.72 NE
03705 -0.96 GD
03710 -0.94 GD
03715 -0.51 GD
03720 -1.62 GD
03725 -1.93 ES
03730 -0.93 GD
03735 -1.03 GD
03740 -0.74 GD
03745 -0.78 GD
03750 -1.2 GD
03755 -0.79 GD
03760 -1.02 GD
03765 0.59 GA
03770 -0.08 NE
03775 -0.31 NE
03780 -0.24 NE
03785 -0.15 NE
03790 0.06 NE
03795 -0.56 NE
03800 0.35 NE
03805 0.68 GA
03810 0.07 NE
03815 0.19 NE
03820 -inf ES
03825 -inf ES
03830 -0.58 NE
03835 -inf ES
03840 -inf ES
03845 -inf NE
03850 -inf NE
03855 -inf GD
03860 -inf ES
03865 -inf GD
03870 -inf GD
03875 0.48 NE
03880 0.12 NE
03885 0.51 GA
03890 0.27 GA
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Feature Log(RF) Class
03895 0.62 GA
03900 -0.12 NE
03905 0.73 NE
03910 -0.02 NE
03915 -0.73 NE
03920 -1.11 NE
03925 0.05 NE
03930 -inf GD
03935 0.58 NE
03940 0.69 NE
03945 0.06 NE
03950 -1.64 GD
03955 -inf ES
03960 -inf ES
03965 -inf ES
03970 -inf ES
03975 0.57 GA
03980 0.9 GA
03985 0.79 NE
03990 -0.14 NE
03995 -1.26 GD
04000 -1.1 GD
04005 -1.17 GD
04010 -0.42 NE
04015 -0.64 NE
04020 0.12 NE
04025 -inf GD
04030 -inf GD
04035 -inf ES
04040 -inf ES
04045 0.1 NE
04050 0.61 NE
04055 -0.55 NE
04060 -0.32 NE
04065 -0.29 NE
04070 -0.15 NE
04075 -1.13 NE
04080 -0.96 NE
04085 0.01 NE
04090 0.16 NE
04095 -0.86 GD
04100 -0.62 GD
04105 -0.76 GD
04110 -0.52 GD
04115 -1.16 GD
04120 0.35 NE
04125 -inf ES
04130 -inf ES
04135 -inf ES
04140 -inf GD
04145 -inf GD
04155 -inf GD
04160 -inf GD
04165 -inf ES
04170 -inf GD
04175 -1.34 NE
04180 -0.0 NE
04185 -0.27 GD
04190 -1.02 GD
04195 -0.21 GD
04200 0.45 NE
04205 -0.41 NE
04210 -inf GD
04215 -inf NE
04220 -inf GD
04225 -inf NE
04230 -inf ES
04235 -inf ES
04240 -inf GD
04245 -inf GD
04250 -inf GD
04255 -1.58 GD
04260 -0.16 NE
04265 -0.68 GD
04270 0.02 NE
04275 -0.21 NE
04280 -0.49 NE
04285 -0.21 NE
04290 -0.09 NE
04295 -0.0 NE
04300 -0.04 NE
04305 -1.19 GD
04310 -0.67 NE
04315 0.12 NE
04320 -inf ES
04325 -inf GD
04330 -0.76 NE
04335 1.0 GA
04340 -0.24 NE
04345 -0.14 NE
04350 -1.12 GD
04355 -0.14 NE
04360 0.3 NE
04365 -0.22 NE
04370 -1.75 GD
04375 -0.21 GD

Feature Log(RF) Class
04380 -0.57 GD
04385 -0.32 NE
04390 -0.6 NE
04395 -0.28 NE
04400 -0.52 GD
04405 -0.09 NE
04410 0.09 NE
04415 -0.61 NE
04420 -0.69 NE
04425 0.67 NE
04430 -0.33 NE
04435 -1.49 NE
04440 0.3 NE
04445 -0.13 NE
04450 0.45 GA
04455 -inf GD
04460 -inf ES
04465 0.1 NE
04470 -0.1 NE
04475 -inf ES
04485 -inf ES
04490 -1.97 NE
04495 -inf ES
04500 -inf GD
04505 -inf GD
04510 -1.93 GD
04515 -1.02 NE
04520 0.32 NE
04525 0.37 NE
04530 0.41 NE
04535 -1.45 GD
04540 -1.06 GD
04545 -0.45 NE
04550 0.66 NE
04555 -0.37 NE
04560 -inf ES
04565 -1.67 GD
04570 -inf ES
04575 -0.1 NE
04580 -0.53 NE
04585 0.6 GA
04590 0.04 NE
04595 0.78 NE
04600 -0.07 NE
04605 -inf ES
04610 0.64 NE
04615 0.06 NE
04620 0.16 NE
04625 0.38 GA
04630 -inf ES
04635 -0.62 GD
04640 -1.64 GD
04645 -0.8 GD
04650 -0.44 GD
04655 -1.11 GD
04660 -inf GD
04665 0.33 NE
04670 0.13 NE
04675 -0.36 NE
04680 0.26 NE
04685 0.38 NE
04690 0.53 NE
04695 -0.08 NE
04700 0.33 NE
04705 -inf ES
04710 -1.46 GD
04715 0.36 NE
04720 0.67 GA
04725 -inf NE
04730 0.37 GA
04735 0.55 NE
04740 -0.47 GD
04745 -inf ES
04750 0.56 NE
04755 -0.5 GD
04760 -0.41 NE
04765 -0.27 NE
04770 -0.0 NE
04775 -0.37 GD
04780 0.23 NE
04785 0.17 NE
04790 0.27 NE
04795 -inf GD
04800 -1.86 GD
04805 -0.02 NE
04810 0.56 NE
04815 0.25 NE
04820 0.36 NE
04825 0.5 GA
04830 0.29 NE
04835 0.61 GA
04840 -0.39 NE
04845 -0.35 NE
04850 0.73 GA
04855 0.4 NE
04860 0.57 GA

Feature Log(RF) Class
04865 1.0 NE
04870 -inf GD
04875 -inf NE
04880 1.19 NE
04885 -0.41 NE
04890 -0.96 GD
04895 -1.24 GD
04900 -0.8 GD
04905 -1.2 GD
04910 0.14 NE
04915 0.1 NE
04920 -inf ES
04925 -0.09 NE
04930 -0.31 NE
04935 -1.64 GD
04940 -0.87 GD
04945 -0.34 NE
04950 0.18 NE
04955 -0.28 NE
04960 -1.09 GD
04965 0.21 NE
04970 0.3 NE
04975 -0.19 NE
04980 0.54 NE
04985 0.09 NE
04990 -0.03 NE
04995 0.45 NE
05000 -0.2 NE
05005 0.25 NE
05010 0.65 NE
05015 0.37 NE
05020 0.23 NE
05025 0.39 NE
05030 0.13 NE
05035 -0.71 GD
05040 -0.28 GD
05045 -0.22 NE
05050 0.12 NE
05055 0.38 GA
05060 0.07 NE
05065 -0.01 NE
05070 0.07 NE
05075 -1.62 GD
05080 -0.74 NE
05085 -0.14 NE
05090 0.47 NE
05095 0.42 NE
05100 -0.34 GD
05105 -0.5 NE
05110 0.13 NE
05115 0.29 NE
05120 -0.22 NE
05125 -0.29 GD
05130 0.68 GA
05135 0.17 NE
05140 -0.31 GD
05145 -0.01 NE
05150 0.12 NE
05155 0.97 NE
05160 0.51 NE
05165 0.85 NE
05170 1.0 GA
05175 0.51 NE
05180 -inf ES
05185 0.69 NE
05190 0.59 GA
05195 0.06 NE
05200 0.86 NE
05205 -inf ES
05210 0.46 GA
05215 -inf NE
05220 0.81 NE
05225 -inf GD
05230 -inf GD
05235 -2.11 GD
05240 0.65 NE
05245 0.98 GA
05250 0.31 NE
05255 0.38 NE
05260 0.57 GA
05265 0.35 GA
05270 -0.05 NE
05275 0.47 NE
05280 -0.97 GD
05285 0.45 NE
05290 0.25 NE
05295 0.0 NE
05300 -2.23 ES
05305 -inf ES
05310 -inf ES
05315 1.0 NE
05320 0.09 NE
05325 0.09 NE
05330 -1.36 NE
05335 -0.36 NE
05340 -inf NE

Feature Log(RF) Class
05345 0.43 NE
05350 -1.18 NE
05355 -inf ES
05360 0.08 NE
05365 -inf ES
05370 0.23 NE
05375 0.58 NE
05380 0.49 GA
05385 -0.25 NE
05390 0.49 NE
05395 0.99 GA
05400 -inf ES
05405 -inf ES
05410 -1.41 GD
05415 -0.59 NE
05420 -1.37 GD
05425 -0.51 NE
05430 0.66 GA
05435 -inf ES
05440 0.47 NE
05445 0.11 NE
05450 -0.47 GD
05455 0.01 NE
05460 0.24 NE
05465 -0.1 NE
05470 0.79 GA
05475 0.5 GA
05480 0.8 GA
05485 -0.0 NE
05490 -0.55 NE
05495 -0.18 NE
05500 -0.14 NE
05505 0.28 NE
05510 -0.28 GD
05515 -0.7 GD
05520 -0.88 GD
05525 -0.38 GD
05530 0.15 NE
05535 0.17 NE
05540 -inf GD
05545 0.33 NE
05550 0.21 GA
05555 1.27 NE
05560 0.2 NE
05565 -0.18 NE
05570 -0.95 GD
05575 -1.24 GD
05580 0.07 NE
05585 -0.3 NE
05590 -0.82 NE
05595 0.82 GA
05600 0.46 NE
05610 0.5 NE
05615 -0.01 NE
05620 -1.1 GD
05625 0.66 NE
05630 0.44 NE
05635 -0.21 NE
05640 -1.29 GD
05645 0.12 NE
05650 0.15 NE
05655 0.35 GA
05660 0.3 GA
05665 0.79 GA
05670 0.31 NE
05675 0.97 NE
05680 -0.86 GD
05685 0.08 NE
05690 -inf ES
05695 -0.3 NE
05700 -0.9 NE
05705 -0.55 GD
05710 0.1 NE
05715 -0.4 NE
05720 -0.96 GD
05725 0.0 NE
05730 0.09 NE
05735 0.83 NE
05740 -inf ES
05745 0.78 NE
05750 1.04 NE
05755 0.36 NE
05760 0.58 NE
05765 -0.28 NE
05770 -0.23 NE
05775 -0.42 GD
05780 -inf GD
05785 0.32 NE
05790 -0.87 GD
05795 -0.56 GD
05800 0.19 NE
05805 0.16 NE
05810 0.04 NE
05815 0.29 NE
05820 -0.24 NE
05825 0.3 NE
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Feature Log(RF) Class
05830 0.12 NE
05835 -0.39 GD
05840 -0.06 NE
05845 0.69 GA
05850 0.92 GA
05855 0.62 GA
05860 -0.07 NE
05865 -0.14 NE
05870 0.19 NE
05875 0.19 NE
05880 -0.21 NE
05885 0.06 NE
05890 0.07 NE
05895 0.43 NE
05900 -0.14 NE
05905 0.39 GA
05915 0.4 GA
05920 -0.04 NE
05925 -0.29 NE
05930 0.69 NE
05935 0.05 NE
05940 0.4 GA
05945 0.63 GA
05950 0.45 NE
05955 0.08 NE
05960 0.37 GA
05965 0.24 NE
05970 0.15 NE
05975 -0.04 NE
05980 0.18 NE
05985 0.28 NE
05990 0.63 GA
05995 -0.06 NE
06000 -0.17 NE
06005 0.77 NE
06010 0.04 NE
06015 0.42 GA
06020 0.49 GA
06025 0.79 GA
06030 0.61 GA
06035 1.02 GA
06040 0.34 GA
06045 0.6 NE
06050 -0.41 NE
06055 -0.49 GD
06060 -1.56 GD
06065 -0.51 GD
06070 -0.26 GD
06075 -0.33 NE
06080 -0.69 GD
06085 -0.5 NE
06090 -0.37 NE
06095 0.01 NE
06100 0.69 NE
06105 0.34 NE
06110 -0.11 NE
06115 0.52 NE
06120 -0.45 NE
06125 0.03 NE
06130 -0.2 NE
06135 0.69 GA
06140 0.27 NE
06145 0.27 NE
06150 0.04 NE
06155 0.9 GA
06160 0.53 GA
06165 0.28 NE
06170 0.22 GA
06175 -0.08 NE
06185 -1.5 GD
06190 -0.41 GD
06195 -0.38 GD
06200 -inf NE
06205 -0.23 NE
06210 -0.47 GD
06215 -1.27 GD
06220 -0.86 NE
06225 -inf GD
06230 -0.92 GD
06235 -inf ES
06240 -0.39 NE
06245 -0.23 NE
06250 -0.77 GD
06255 -0.6 GD
06260 -0.02 NE
06265 -0.05 NE
06270 0.3 NE
06275 -inf NE
06280 -inf NE
06285 -inf GD
06290 -1.93 GD
06295 -0.65 GD
06300 -1.08 NE
06305 -0.21 GD
06310 0.48 GA
06315 0.51 NE

Feature Log(RF) Class
06320 0.32 NE
06325 0.66 NE
06330 -0.4 NE
06335 -0.41 GD
06340 -0.97 NE
06345 -0.38 GD
06350 -0.36 GD
06355 -0.06 NE
06360 -0.47 NE
06365 -0.73 GD
06370 -0.92 GD
06375 -0.93 GD
06380 -0.11 NE
06385 -0.32 NE
06390 -0.85 NE
06395 0.07 NE
06400 -0.78 GD
06405 -0.87 GD
06410 0.21 NE
06415 -0.93 GD
06420 -1.31 GD
06425 -1.21 GD
06430 -1.62 GD
06435 -1.2 GD
06440 -0.63 GD
06445 -1.45 GD
06450 -0.88 GD
06455 -0.93 GD
06460 -1.33 GD
06465 -1.22 GD
06470 -0.22 GD
06475 -1.81 ES
06480 -0.93 GD
06485 -0.43 GD
06490 -0.41 NE
06495 -0.66 NE
06500 -0.31 NE
06505 -1.07 NE
06510 -1.0 NE
06515 0.12 NE
06520 -1.54 GD
06525 -0.58 GD
06530 -1.04 GD
06535 -1.17 GD
06540 -0.77 GD
06545 -0.63 GD
06550 -0.56 NE
06555 -0.73 GD
06560 -0.4 NE
06565 -inf GD
06570 0.31 NE
06575 -0.88 GD
06580 -0.28 GD
06585 -1.1 GD
06590 -1.42 GD
06595 0.08 NE
06600 -1.34 GD
06605 -0.18 NE
06610 0.55 NE
06615 0.7 GA
06620 -inf ES
06625 -0.11 NE
06630 0.84 GA
06635 -inf ES
06640 -1.93 ES
06645 -inf ES
06650 0.1 NE
06655 0.95 GA
06660 -inf ES
06665 0.28 NE
06670 0.63 NE
06675 -0.37 GD
06680 0.29 NE
06685 0.31 NE
06690 0.05 NE
06695 -0.74 GD
06700 -0.17 NE
06705 0.4 NE
06710 -0.55 GD
06715 0.22 NE
06720 -0.17 NE
06725 -0.87 NE
06730 -0.06 NE
06735 -0.25 NE
06740 0.54 NE
06745 -0.95 GD
06750 0.27 NE
06755 -0.6 GD
06760 0.94 NE
06765 0.09 NE
06770 0.47 GA
06775 0.16 NE
06780 -inf ES
06785 -0.61 GD
06790 0.58 NE
06795 0.65 NE

Feature Log(RF) Class
06800 0.67 NE
06805 0.25 NE
06810 -0.28 GD
06815 -0.59 NE
06820 -0.28 NE
06825 -0.16 NE
06830 -0.56 GD
06835 -0.71 GD
06840 -0.66 GD
06845 -1.81 GD
06850 -0.49 GD
06855 -1.23 GD
06860 -0.1 NE
06865 -inf GD
06870 -0.58 GD
06875 0.5 NE
06880 -0.15 NE
06885 0.53 NE
06890 -1.07 GD
06895 -0.57 NE
06900 -0.48 NE
06905 -0.74 GD
06910 -0.24 NE
06915 -0.12 NE
06920 -0.75 GD
06925 -0.45 NE
06930 0.32 NE
06935 0.35 NE
06940 -0.18 NE
06945 -0.47 NE
06950 0.38 NE
06955 -0.36 NE
06960 -0.55 NE
06965 0.11 NE
06970 0.36 NE
06975 0.2 NE
06980 0.13 NE
06985 0.31 NE
06990 0.53 GA
06995 0.6 NE
07000 0.44 GA
07005 0.38 NE
07010 0.49 NE
07015 0.38 NE
07020 -0.07 NE
07025 -inf ES
07030 -inf ES
07035 -inf ES
07040 0.12 NE
07045 0.08 NE
07050 0.22 NE
07055 -0.18 NE
07060 -inf ES
07065 0.35 NE
07070 0.61 GA
07075 -1.93 GD
07080 -inf ES
07085 -inf GD
07090 -0.01 NE
07095 0.29 NE
07100 -0.12 NE
07105 -0.32 NE
07110 -0.26 NE
07115 0.57 GA
07120 0.93 NE
07125 -inf ES
07130 -0.07 NE
07140 -1.15 GD
07145 0.05 NE
07150 0.49 NE
07155 -inf GD
07160 -0.36 NE
07165 -0.3 NE
07170 -0.98 GD
07175 -0.7 GD
07180 -0.82 GD
07185 0.04 NE
07190 -0.05 NE
07195 -0.69 GD
07200 -0.05 NE
07205 0.12 NE
07210 0.25 NE
07215 -0.66 GD
07220 -1.62 GD
07225 -0.98 GD
07230 -0.33 NE
07235 -0.52 GD
07240 0.03 NE
07245 -inf GD
07250 -1.97 GD
07255 0.0 NE
07260 0.33 NE
07265 -1.15 GD
07270 -1.24 GD
07275 0.22 NE
07280 0.11 NE

Feature Log(RF) Class
07285 -inf ES
07290 0.17 NE
07295 -0.17 NE
07300 0.17 NE
07305 -0.7 NE
07310 -0.53 GD
07315 -0.78 GD
07320 -0.53 NE
07330 -inf ES
07335 -0.61 GD
07340 -0.42 NE
07345 -inf ES
07350 0.51 NE
07355 -0.03 NE
07360 -0.13 NE
07365 -0.68 GD
07370 -1.62 NE
07375 -1.24 GD
07380 -0.03 NE
07385 -0.12 NE
07390 -inf GD
07395 -0.77 GD
07400 -0.81 GD
07405 -1.34 GD
07410 -inf ES
07415 -inf ES
07420 -inf GD
07425 0.16 NE
07430 -0.39 GD
07435 -0.87 GD
07440 -1.42 GD
07445 -1.15 GD
07450 -0.3 GD
07455 -0.81 GD
07460 -0.16 NE
07465 0.62 NE
07470 -inf ES
07475 -1.81 GD
07480 0.05 NE
07485 -0.52 NE
07490 -0.58 NE
07495 0.11 NE
07500 0.64 GA
07505 0.58 GA
07510 -0.38 NE
07520 -0.33 NE
07525 0.29 NE
07530 -0.7 NE
07535 0.33 NE
07540 -inf GD
07550 0.08 NE
07555 -inf ES
07560 -inf GD
07565 0.12 NE
07570 -inf GD
07575 -0.24 NE
07580 0.4 NE
07585 0.41 GA
07590 0.26 NE
07595 0.22 NE
07600 0.77 GA
07605 0.8 GA
07610 0.63 GA
07615 0.59 GA
07620 0.39 NE
07625 0.62 GA
07630 0.82 GA
07635 0.26 NE
07640 0.98 GA
07645 -inf ES
07650 0.37 GA
07655 -0.8 GD
07660 0.21 NE
07665 0.35 GA
07670 0.43 NE
07675 0.43 GA
07680 0.57 GA
07685 0.37 GA
07690 0.43 GA
07695 0.01 NE
07700 0.17 NE
07705 -1.32 GD
07710 -0.04 NE
07715 -0.54 GD
07720 -0.03 NE
07725 0.15 NE
07730 -0.07 NE
07735 0.3 NE
07745 0.32 NE
07750 -inf GD
07755 -inf NE
07760 -inf GD
07765 -0.21 NE
07770 -0.78 GD
07775 -0.32 NE
07780 -inf GD
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07785 0.0 NE
07790 -inf GD
07795 -0.04 NE
07800 -0.14 NE
07805 -0.61 GD
07810 0.4 NE
07815 0.57 NE
07820 -inf NE
07825 0.13 NE
07830 -0.07 NE
07835 -0.01 NE
07840 0.33 NE
07845 0.66 GA
07850 -inf GD
07855 -0.51 NE
07860 -0.91 GD
07865 -inf GD
07870 0.27 NE
07875 0.44 NE
07880 -inf GD
07885 0.42 NE
07890 0.69 GA
07895 0.77 GA
07900 0.79 GA
07905 0.48 NE
07910 -0.31 NE
07915 -0.24 NE
07920 -0.27 NE
07925 -0.23 NE
07930 0.72 GA
07935 0.84 GA
07940 0.26 NE
07945 0.68 GA
07950 0.57 NE
07955 -inf GD
07960 -inf GD
07965 0.39 NE
07970 -0.15 NE
07975 0.83 NE
07980 0.03 NE
07985 0.69 GA
07990 0.29 NE
07995 -0.27 NE
08000 0.36 NE
08005 -inf ES
08010 0.22 NE
08015 -inf GD
08020 -2.23 GD
08025 0.54 GA
08030 0.63 GA
08035 0.54 GA
08040 0.14 NE
08045 -inf ES
08050 -0.74 GD
08055 -inf GD
08060 0.32 NE
08065 0.6 GA
08070 0.62 NE
08075 -inf ES
08080 -0.98 GD
08085 -0.33 NE
08090 -0.66 GD
08095 -0.86 GD
08100 -1.34 GD
08105 -0.46 NE
08110 -0.41 NE
08115 -0.15 NE
08120 0.15 NE
08125 -0.39 NE
08130 -1.21 GD
08135 -0.62 GD
08140 -0.69 GD
08145 -0.64 GD
08150 -0.77 GD
08155 -0.82 NE
08160 -1.07 GD
08165 -0.69 GD
08170 -0.47 NE
08175 0.21 NE
08180 -inf ES
08185 -0.41 NE
08190 -0.26 NE
08195 -0.45 NE
08200 -inf GD
08205 1.08 GA
08210 -inf ES
08215 -0.56 NE
08220 -0.66 NE
08225 0.31 NE
08230 0.25 NE
08235 0.32 NE
08240 -0.49 NE
08245 -0.45 GD
08250 0.44 GA
08255 -0.87 GD
08260 -inf GD

Feature Log(RF) Class
08265 0.44 NE
08270 -1.24 GD
08275 -0.24 GD
08280 0.11 NE
08285 -inf ES
08290 -0.48 NE
08295 -inf ES
08300 -0.08 NE
08305 -0.01 NE
08310 -0.39 NE
08315 0.11 NE
08320 0.08 NE
08325 -0.64 GD
08330 -0.69 GD
08335 -0.19 NE
08340 0.43 NE
08345 0.46 NE
08350 0.09 NE
08355 -0.04 NE
08360 0.41 NE
08365 -1.28 NE
08370 0.16 NE
08375 0.17 NE
08380 -0.75 NE
08385 -0.44 GD
08390 -0.95 GD
08395 -1.34 NE
08400 0.0 NE
08405 0.15 NE
08410 -0.1 NE
08415 -inf ES
08420 -inf GD
08425 -0.65 NE
08430 -0.18 GD
08440 -0.48 NE
08445 -inf GD
08450 -0.94 GD
08455 -0.62 GD
08460 -0.2 GD
08465 0.81 NE
08470 -inf ES
08475 0.71 GA
08480 -inf GD
08485 0.92 NE
08490 0.96 GA
08495 0.4 NE
08500 -0.12 NE
08505 0.54 NE
08510 -0.0 NE
08515 1.03 GA
08520 1.05 GA
08525 0.67 GA
08530 0.39 NE
08535 -0.37 NE
08540 0.25 NE
08545 1.23 GA
08550 0.42 NE
08555 0.99 GA
08560 -0.72 GD
08565 -0.7 GD
08570 -inf GD
08575 0.53 GA
08580 0.43 GA
08585 0.09 NE
08590 0.29 GA
08595 -inf NE
08600 -0.45 NE
08605 0.52 NE
08610 0.22 NE
08615 0.34 NE
08620 -0.19 NE
08625 0.7 GA
08630 0.09 NE
08635 0.76 GA
08640 0.14 NE
08645 -0.67 NE
08650 0.68 NE
08655 0.62 NE
08660 0.67 GA
08665 0.27 NE
08670 0.44 NE
08675 -0.12 NE
08680 -0.65 NE
08685 0.2 NE
08690 -inf ES
08695 -0.25 NE
08700 0.05 NE
08705 0.25 NE
08710 -1.54 GD
08715 -1.15 GD
08720 -1.05 NE
08725 -0.76 NE
08730 -0.02 NE
08735 -0.11 NE
08740 0.55 GA
08745 0.15 NE

Feature Log(RF) Class
08750 -1.2 GD
08755 -1.62 GD
08760 -1.19 GD
08765 -inf ES
08770 0.44 NE
08775 -inf ES
08780 0.06 NE
08785 0.34 NE
08790 0.6 GA
08795 -inf ES
08800 -inf ES
08805 -inf ES
08810 -0.58 NE
08815 -0.3 NE
08820 -0.54 NE
08825 -inf ES
08830 0.34 NE
08835 0.42 NE
08840 -0.38 NE
08845 -1.27 GD
08850 0.22 NE
08855 0.87 NE
08860 -0.32 NE
08865 0.7 GA
08870 -0.4 NE
08875 -0.48 NE
08880 -0.04 NE
08885 -0.53 GD
08890 -0.06 NE
08895 -0.66 GD
08900 -0.7 NE
08905 -0.36 NE
08910 0.07 NE
08920 0.25 NE
08925 -0.54 NE
08930 -0.54 NE
08935 -0.17 NE
08940 -1.23 GD
08945 -1.05 GD
08950 -0.41 NE
08955 0.42 NE
08960 -0.2 NE
08965 -0.13 NE
08970 0.48 NE
08975 0.2 NE
08980 -inf GD
08990 -inf ES
09000 -0.67 GD
09005 0.72 NE
09010 -0.33 GD
09015 -0.46 GD
09020 -0.26 NE
09025 -0.6 NE
09030 -0.49 GD
09035 -0.45 GD
09040 0.16 NE
09045 0.2 NE
09050 0.15 NE
09055 0.4 NE
09060 -0.32 NE
09065 -0.05 NE
09070 -0.37 NE
09080 -0.86 GD
09085 0.11 NE
09090 -0.1 NE
09095 0.43 NE
09100 -1.24 GD
09105 -1.11 GD
09110 -1.38 GD
09115 0.63 NE
09120 0.42 NE
09125 -0.34 NE
09130 0.81 GA
09135 -1.62 NE
09140 0.34 NE
09145 0.78 NE
09150 0.25 NE
09155 0.08 NE
09160 0.49 GA
09165 0.1 NE
09170 -0.08 NE
09175 -0.32 NE
09180 -inf ES
09185 -0.85 GD
09190 -inf GD
09195 -inf ES
09200 -inf GD
09205 -1.93 GD
09210 0.42 NE
09215 0.17 NE
09220 -1.76 GD
09225 -1.56 GD
09230 0.01 NE
09235 0.81 GA
09240 -0.03 NE
09245 0.22 NE

Feature Log(RF) Class
09250 0.92 GA
09255 0.19 NE
09260 -0.69 NE
09265 -0.8 GD
09270 0.26 NE
09275 0.47 GA
09280 0.47 GA
09285 1.22 GA
09290 -0.89 GD
09295 -0.54 GD
09300 -0.23 NE
09305 0.84 NE
09310 -0.76 GD
09315 -1.04 GD
09320 -inf ES
09325 -0.18 NE
09330 -inf ES
09335 -0.37 NE
09340 -0.12 NE
09345 -0.0 NE
09350 -0.13 NE
09355 -0.77 GD
09360 0.45 NE
09365 -0.18 NE
09370 -0.15 NE
09375 -1.19 GD
09380 -0.86 GD
09385 -0.48 NE
09390 -0.56 NE
09395 -inf ES
09400 0.34 NE
09405 -0.16 NE
09410 0.79 GA
09415 0.8 GA
09420 0.55 NE
09425 0.72 NE
09430 0.17 NE
09435 0.24 NE
09440 -0.49 NE
09445 -0.27 GD
09450 -0.07 NE
09455 0.17 NE
09460 1.04 NE
09465 0.72 NE
09470 0.51 NE
09475 -inf ES
09485 -0.3 NE
09490 -inf GD
09495 0.31 NE
09500 0.18 NE
09505 -0.3 NE
09510 -1.33 NE
09515 -0.07 NE
09520 -0.34 GD
09525 -0.05 NE
09530 0.4 NE
09535 0.33 NE
09540 -inf ES
09545 -inf ES
09550 -inf ES
09555 -inf GD
09560 0.27 NE
09565 -0.11 NE
09570 -inf GD
09575 -inf ES
09580 0.39 NE
09585 -0.3 GD
09595 -0.52 NE
09600 -0.93 GD
09605 -1.08 NE
09610 -0.72 NE
09615 -0.85 GD
09620 -1.34 GD
09625 -0.79 GD
09630 -0.42 NE
09635 -0.73 NE
09640 -0.69 GD
09645 -1.06 NE
09650 0.08 NE
09655 -1.93 GD
09660 -inf GD
09665 -inf GD
09670 -1.5 NE
09675 -inf ES
09680 -inf ES
09685 -inf GD
09695 -0.73 NE
09700 0.48 NE
09705 -inf GD
09710 -1.97 GD
09715 -inf ES
09720 0.15 NE
09725 -0.22 NE
09730 -0.03 NE
09735 -0.21 NE
09740 -0.46 NE
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09745 -0.34 NE
09750 -inf ES
09755 -1.08 NE
09760 0.35 NE
09765 -inf ES
09770 0.21 NE
09775 -inf GD
09780 -inf GD
09785 -1.45 GD
09790 -1.06 NE
09795 -inf ES
09800 -inf ES
09805 -inf NE
09810 -1.23 GD
09815 0.25 NE
09820 0.38 NE
09825 -0.37 GD
09830 0.61 GA
09835 -0.34 GD
09840 -inf GD
09845 0.35 NE
09850 -0.14 NE
09855 0.07 NE
09860 -0.64 NE
09865 -0.24 NE
09870 -0.13 NE
09875 -0.19 NE
09880 -0.83 GD
09885 0.08 NE
09890 0.24 NE
09895 -0.55 NE
09900 -0.45 NE
09905 0.22 NE
09910 -1.1 GD
09915 -1.67 GD
09920 -0.95 GD
09925 0.16 NE
09930 0.08 NE
09935 -0.76 GD
09940 -0.4 NE
09945 -0.56 GD
09950 -0.33 GD
09955 0.03 NE
09960 -1.46 NE
09965 -0.04 NE
09970 -0.59 GD
09975 -1.03 GD
09980 -inf ES
09985 -inf GD
09990 0.22 NE
09995 0.77 NE
10000 -1.45 GD
10005 -0.71 GD
10010 -0.07 NE
10015 -inf GD
10020 -0.0 NE
10025 -inf ES
10030 -inf ES
10035 -inf ES
10040 -1.81 GD
10045 -0.66 GD
10050 -0.75 NE
10055 0.58 NE
10060 0.64 NE
10070 -0.15 NE
10075 0.86 NE
10080 0.46 GA
10085 -0.1 NE
10090 -0.7 NE
10095 0.06 NE
10100 -inf ES
10105 -inf GD
10110 -1.64 GD
10115 0.45 NE
10120 0.47 NE
10125 0.28 NE
10130 0.06 NE
10135 0.02 NE
10140 -inf GD
10145 -inf ES
10150 -inf ES
10155 -0.47 NE
10160 -0.55 NE
10165 0.29 NE
10170 0.61 NE
10175 0.11 NE
10185 0.69 NE
10190 -0.73 GD
10200 -0.42 NE
10205 0.88 NE
10210 -0.43 NE
10215 -0.29 NE
10220 0.1 NE
10225 0.63 GA
10230 0.96 GA
10235 0.19 NE

Feature Log(RF) Class
10240 0.31 NE
10245 0.22 NE
10250 0.46 GA
10255 0.55 GA
10260 0.44 NE
10265 -0.12 NE
10270 -0.12 NE
10275 -0.13 NE
10280 -0.42 NE
10285 -1.97 GD
10290 0.27 NE
10295 -0.52 GD
10300 0.25 NE
10305 0.21 NE
10310 0.12 NE
10315 -0.37 GD
10320 0.15 NE
10325 0.22 NE
10330 -0.48 GD
10335 -0.04 NE
10340 0.4 GA
10345 0.37 GA
10350 0.39 GA
10355 0.49 NE
10360 -0.12 NE
10365 0.29 NE
10370 0.04 NE
10375 0.22 NE
10380 -0.28 GD
10385 -0.23 NE
10390 -0.07 NE
10395 0.69 NE
10400 0.37 NE
10405 0.74 GA
10410 0.2 NE
10415 0.42 GA
10420 -0.65 GD
10425 -1.16 NE
10430 0.12 NE
10435 -0.66 NE
10440 0.22 NE
10445 -inf ES
10450 0.05 NE
10455 0.04 NE
10460 0.5 GA
10465 -1.94 GD
10470 -0.71 NE
10475 0.64 NE
10480 0.58 NE
10485 0.43 GA
10490 0.34 NE
10495 0.07 NE
10500 -inf ES
10505 -0.49 NE
10510 0.42 NE
10515 -0.28 NE
10520 0.03 NE
10525 0.77 GA
10530 0.81 GA
10535 0.15 NE
10540 0.31 NE
10545 -0.09 NE
10550 -1.23 GD
10555 -0.68 GD
10560 -1.43 GD
10565 -0.38 GD
10570 0.28 NE
10575 0.83 GA
10580 1.07 GA
10585 0.78 GA
10590 0.45 NE
10595 -inf NE
10600 -1.93 GD
10605 -0.38 NE
10610 -0.54 GD
10615 0.46 GA
10620 0.8 NE
10625 0.32 NE
10630 1.13 GA
10635 0.96 GA
10640 0.89 GA
10645 0.84 NE
10650 0.45 GA
10655 -0.54 NE
10660 0.27 NE
10665 -0.26 NE
10670 0.28 NE
10675 0.45 NE
10680 -inf GD
10685 -inf GD
10690 -inf GD
10695 -inf GD
10700 -inf GD
10705 -0.54 NE
10710 -inf GD
10715 -inf GD

Feature Log(RF) Class
10720 0.39 NE
10725 -1.2 NE
10730 -inf ES
10735 -0.78 GD
10740 -inf GD
10745 -inf ES
10750 -inf ES
10755 -inf ES
10760 0.43 NE
10765 0.5 NE
10770 0.63 NE
10775 -0.99 NE
10780 -0.31 NE
10785 -0.28 NE
10790 -0.2 NE
10795 -0.6 NE
10800 0.29 NE
10805 0.56 GA
10810 -2.11 GD
10815 0.74 NE
10820 -0.24 NE
10825 0.82 GA
10830 -1.0 GD
10835 -0.6 NE
10840 0.2 NE
10845 -inf ES
10850 -inf GD
10855 -0.47 NE
10860 0.12 NE
10865 -0.45 GD
10870 -0.38 NE
10875 -0.41 GD
10880 0.09 NE
10890 0.47 GA
10895 0.85 GA
10900 0.54 GA
10905 0.84 GA
10910 0.61 NE
10915 0.36 GA
10920 0.91 GA
10925 1.18 GA
10930 0.76 GA
10935 0.49 GA
10940 -0.02 NE
10945 0.58 NE
10950 -0.38 GD
10955 0.16 NE
10960 -0.37 GD
10965 -0.88 GD
10970 0.51 NE
10975 0.46 NE
10980 -0.29 NE
10985 -0.93 GD
10990 -inf GD
11000 -inf GD
11005 0.42 NE
11010 0.38 GA
11015 0.9 GA
11020 0.55 GA
11025 -inf GD
11030 -inf ES
11035 -inf ES
11040 -inf GD
11045 -inf ES
11050 -inf ES
11055 -inf GD
11060 -0.52 NE
11065 -inf ES
11070 -inf ES
11075 0.45 GA
11080 -1.14 GD
11085 -0.6 GD
11090 -0.93 GD
11095 -0.05 NE
11100 -0.58 NE
11105 0.19 NE
11110 0.37 NE
11115 0.01 NE
11120 0.22 NE
11125 -0.09 NE
11130 -0.28 NE
11135 -0.02 NE
11140 -0.31 NE
11145 -0.65 GD
11150 -0.5 NE
11155 -1.04 GD
11160 -0.34 GD
11165 -0.57 NE
11170 0.47 NE
11175 1.03 GA
11180 -0.03 NE
11185 -1.23 GD
11190 0.09 NE
11195 -0.12 NE
11200 -0.6 NE
11205 -0.0 NE

Feature Log(RF) Class
11210 0.23 NE
11215 -inf ES
11220 0.71 NE
11225 -0.88 NE
11230 0.16 NE
11235 0.81 NE
11240 -0.37 NE
11245 -inf ES
11250 0.18 NE
11255 -0.54 NE
11260 -0.23 NE
11265 -inf ES
11270 -0.27 NE
11275 -0.18 NE
11280 0.29 NE
11285 -0.34 NE
11290 -0.16 NE
11295 -0.65 NE
11300 -0.42 NE
11305 -1.75 GD
11310 -inf GD
11315 -inf NE
11320 0.34 GA
11325 0.97 GA
11330 0.61 NE
11335 0.93 GA
11340 0.33 NE
11345 0.45 GA
11350 0.75 GA
11355 0.41 GA
11360 0.56 NE
11365 0.38 GA
11370 0.26 NE
11375 0.02 NE
11380 0.47 GA
11385 0.39 NE
11390 1.16 GA
11395 0.4 NE
11400 0.85 GA
11405 0.63 GA
11410 -0.01 NE
11415 -0.32 GD
11420 -0.33 GD
11425 -0.17 NE
11430 0.08 NE
11435 -0.31 GD
11440 -0.39 GD
11445 -0.23 GD
11450 0.03 NE
11455 -0.13 NE
11460 -0.2 NE
11465 -0.39 NE
11470 -0.01 NE
11475 -0.97 GD
11480 -0.42 NE
11485 0.37 NE
11490 -0.5 NE
11495 0.22 NE
11500 -0.15 NE
11505 0.09 NE
11510 0.01 NE
11515 -0.14 NE
11520 -0.44 NE
11525 0.01 NE
11530 0.48 GA
11535 -0.18 NE
11540 0.51 NE
11545 0.38 NE
11550 0.59 GA
11555 0.16 NE
11560 -inf GD
11565 0.71 NE
11570 0.79 GA
11575 0.69 GA
11580 0.52 GA
11585 0.46 GA
11590 1.19 GA
11595 0.95 GA
11600 -0.01 NE
11605 -0.31 NE
11610 0.21 NE
11615 0.57 GA
11620 -0.26 NE
11625 0.83 GA
11630 0.6 NE
11635 0.57 GA
11640 0.77 GA
11645 0.4 GA
11650 0.74 GA
11655 0.28 NE
11660 0.38 NE
11665 0.21 NE
11670 0.66 NE
11675 0.56 NE
11680 0.24 NE
11685 0.4 NE
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Feature Log(RF) Class
11690 0.54 GA
11695 0.52 GA
11700 0.83 GA
11705 0.38 NE
11710 0.79 GA
11715 0.32 NE
11720 -0.43 NE
11725 -0.29 NE
11730 -0.42 NE
11735 -0.26 NE
11740 -0.61 NE
11745 0.32 NE
11750 0.92 NE
11755 0.35 NE
11760 0.78 GA
11765 0.33 NE
11770 0.32 NE
11775 0.12 NE
11780 -0.05 NE
11785 0.26 NE
11790 0.7 GA
11795 0.48 GA
11800 -inf NE
11805 0.65 GA
11810 0.4 GA
11815 -inf ES
11820 0.34 NE
11825 0.59 NE
11830 -0.04 NE
11835 0.2 NE
11840 0.73 GA
11845 0.66 GA
11850 0.38 GA
11855 0.02 NE
11860 0.06 NE
11865 0.45 NE
11870 0.72 GA
11875 0.65 GA
11880 0.78 GA
11885 -1.62 NE
11890 -0.05 NE
11895 0.33 NE
11900 0.3 NE
11905 0.63 GA
11910 0.67 NE
11915 0.03 NE
11920 0.54 NE
11925 0.87 NE
11930 -0.38 NE
11935 0.5 NE
11940 0.15 NE
11945 0.08 NE
11950 -0.77 GD
11955 0.07 NE
11960 -0.37 GD
11965 -0.65 GD
11970 -1.05 NE
11975 -1.03 GD
11980 -0.34 NE
11985 -0.99 GD
11990 -0.61 GD
11995 -0.58 GD
12000 -0.91 GD
12005 -0.3 GD
12010 -0.33 GD
12015 -1.02 GD
12020 0.8 NE
12025 0.5 NE
12030 0.11 NE
12035 0.25 NE
12040 -0.01 NE
12045 -0.07 NE
12050 0.08 NE
12055 0.05 NE
12060 0.04 NE
12065 0.41 NE
12070 0.1 NE
12075 -0.57 NE
12080 -1.17 NE
12085 -0.46 NE
12090 0.1 NE
12095 0.54 GA
12100 -0.41 NE
12105 0.6 GA
12110 -1.05 GD
12115 0.75 NE
12120 -0.82 GD
12125 -0.21 NE
12130 -0.85 GD
12135 -0.45 GD
12140 0.1 NE
12145 -0.47 NE
12150 -0.64 NE
12155 -0.35 GD
12160 0.32 NE
12165 -0.77 GD

Feature Log(RF) Class
12170 -1.0 GD
12175 -1.32 GD
12180 -0.77 GD
12185 -0.29 GD
12190 -0.22 NE
12195 0.05 NE
12200 -0.36 NE
12205 -0.22 NE
12210 0.22 NE
12215 -0.49 GD
12220 -0.42 GD
12225 -0.85 GD
12230 -0.72 GD
12235 -0.66 GD
12240 -0.29 GD
12245 0.07 NE
12250 1.04 GA
12255 0.61 NE
12260 0.66 GA
12265 0.44 NE
12270 0.06 NE
12275 -0.32 NE
12280 0.11 NE
12285 0.19 NE
12290 -0.53 GD
12295 -0.62 GD
12300 -1.29 GD
12305 0.51 NE
12310 -0.1 NE
12315 -0.65 NE
12320 -0.15 NE
12325 0.43 NE
12330 -0.31 NE
12335 0.11 NE
12340 0.04 NE
12345 0.08 NE
12350 0.14 NE
12355 -1.35 GD
12360 -0.54 NE
12365 -0.12 NE
12370 -0.37 GD
12375 -0.51 GD
12380 -0.92 GD
12385 -0.65 GD
12390 0.32 NE
12395 -1.48 GD
12400 -0.33 GD
12405 -0.8 NE
12410 -0.87 NE
12420 0.6 GA
12425 0.57 NE
12430 0.59 NE
12435 -1.93 NE
12440 0.12 NE
12445 -0.1 NE
12450 -0.19 NE
12455 -0.57 GD
12460 0.37 NE
12465 -0.06 NE
12470 0.13 NE
12475 0.22 NE
12480 0.19 NE
12485 0.71 GA
12490 0.48 NE
12495 0.69 GA
12500 0.74 GA
12505 0.85 GA
12510 0.39 NE
12515 0.79 GA
12520 0.74 GA
12525 0.01 NE
12530 0.5 GA
12535 0.33 GA
12540 0.56 GA
12545 -0.34 GD
12550 0.22 NE
12555 -1.75 GD
12560 0.36 GA
12565 -0.05 NE
12570 -0.5 GD
12575 0.66 GA
12580 0.73 GA
12585 0.6 GA
12590 0.5 NE
12595 0.01 NE
12600 0.28 NE
12605 0.95 GA
12610 0.51 GA
12615 0.66 GA
12620 0.84 NE
12625 0.7 GA
12630 0.7 GA
12635 0.45 NE
12640 0.5 NE
12645 0.22 NE
12650 -0.23 NE

Feature Log(RF) Class
12655 0.2 NE
12660 0.28 NE
12665 0.36 GA
12670 -2.23 GD
12675 0.25 NE
12680 0.26 NE
12685 0.28 NE
12690 -0.67 NE
12695 -0.39 NE
12700 -inf GD
12705 0.73 GA
12710 -inf GD
12715 -1.27 GD
12720 0.39 NE
12725 0.01 NE
12730 -0.48 NE
12735 -inf ES
12740 0.58 NE
12745 0.41 NE
12750 -0.22 NE
12755 -0.88 NE
12760 0.43 NE
12770 0.63 GA
12775 0.6 GA
12780 0.85 NE
12785 0.68 NE
12790 -0.1 NE
12795 -1.56 ES
12800 0.14 NE
12805 0.6 GA
12810 -0.27 NE
12815 0.68 NE
12820 1.0 GA
12825 1.39 GA
12830 0.79 GA
12835 0.6 NE
12840 1.03 GA
12845 0.66 GA
12850 0.23 NE
12855 0.65 GA
12860 0.47 NE
12865 0.02 NE
12870 0.02 NE
12875 0.66 GA
12880 0.09 NE
12885 0.06 NE
12890 0.05 NE
12895 -0.31 NE
12900 -0.03 NE
12905 0.83 NE
12910 0.31 NE
12915 -0.44 NE
12920 0.16 NE
12925 -0.98 GD
12930 0.18 NE
12935 0.32 NE
12940 0.28 NE
12945 -0.62 NE
12950 0.23 NE
12955 0.19 NE
12960 0.86 NE
12965 0.31 NE
12970 -0.1 NE
12975 0.74 NE
12980 0.03 NE
12985 -0.57 NE
12990 -0.14 NE
12995 0.47 NE
13000 0.14 NE
13005 -0.04 NE
13010 0.58 NE
13015 0.59 NE
13020 0.69 GA
13025 0.41 NE
13030 0.79 GA
13035 0.97 GA
13040 0.14 NE
13045 -0.6 NE
13050 -1.93 GD
13055 0.14 NE
13060 0.55 NE
13065 0.43 NE
13070 0.67 NE
13075 0.36 NE
13080 0.35 GA
13085 0.19 NE
13090 -0.15 NE
13095 -1.09 GD
13100 -0.32 GD
13105 -0.28 NE
13110 0.43 NE
13115 0.06 NE
13120 0.14 NE
13125 0.54 NE
13130 -0.03 NE
13135 0.41 NE

Feature Log(RF) Class
13140 0.54 NE
13145 -0.16 NE
13150 0.52 NE
13155 -0.07 NE
13160 0.55 NE
13165 0.38 NE
13170 0.42 GA
13180 0.38 NE
13185 0.11 NE
13190 0.52 NE
13195 0.24 NE
13200 0.37 NE
13205 0.22 NE
13210 -0.23 NE
13215 0.26 NE
13220 0.11 NE
13225 0.6 NE
13230 0.66 NE
13235 -0.15 NE
13240 0.17 NE
13245 0.3 NE
13250 0.52 NE
13255 0.14 NE
13260 0.64 GA
13265 0.9 GA
13270 0.64 GA
13275 0.52 NE
13280 0.01 NE
13285 -0.58 NE
13290 -0.84 GD
13295 -0.06 NE
13300 0.35 NE
13305 0.01 NE
13310 0.7 NE
13315 0.09 NE
13320 -0.13 NE
13325 0.4 NE
13330 -0.03 NE
13335 -0.0 NE
13340 0.13 NE
13345 -inf NE
13350 -0.17 NE
13355 0.43 NE
13360 0.89 GA
13365 0.9 GA
13370 -0.6 NE
13375 -0.61 NE
13380 0.09 NE
13385 -0.09 NE
13390 -0.76 GD
13395 -0.1 NE
13400 0.01 NE
13405 -0.46 NE
13410 -0.34 GD
13415 -0.11 NE
13420 0.05 NE
13425 0.86 GA
13430 0.06 NE
13435 0.11 NE
13440 0.15 NE
13445 0.74 GA
13450 -0.64 GD
13455 -0.8 NE
13460 0.11 NE
13465 0.39 NE
13470 0.8 GA
13475 0.24 NE
13480 -0.03 NE
13485 0.28 NE
13490 -1.32 GD
13495 0.14 NE
13500 -0.89 NE
13505 0.57 NE
13510 0.67 NE
13515 -0.33 NE
13520 -0.43 NE
13525 -0.26 GD
13530 -0.83 GD
13535 -0.2 NE
13540 -0.65 GD
13545 -0.3 GD
13550 -1.45 GD
13555 -0.43 NE
13560 -0.43 GD
13565 0.79 GA
13570 0.38 NE
13575 -0.01 NE
13580 -0.5 NE
13585 -0.69 GD
13590 0.04 NE
13595 0.01 NE
13600 -1.02 GD
13605 -0.19 NE
13610 0.31 NE
13615 0.3 GA
13620 -0.12 NE
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Feature Log(RF) Class
13625 0.21 NE
13630 0.21 NE
13635 0.68 NE
13640 1.25 GA
13645 0.73 GA
13650 -0.15 NE
13655 0.53 GA
13660 0.72 GA
13665 0.37 GA
13675 0.92 GA
13680 0.71 GA
13685 0.18 NE
13690 0.23 NE
13695 0.37 NE
13700 0.57 GA
13705 0.34 NE
13710 0.69 GA
13715 0.7 NE
13720 0.51 GA
13725 0.82 GA
13730 0.48 NE
13735 0.64 GA
13740 0.03 NE
13745 0.03 NE
13755 0.27 NE
13760 -0.28 GD
13765 -0.56 NE
13770 -0.1 NE
13775 -0.86 GD
13780 -0.76 GD
13785 -0.72 GD
13790 -0.36 GD
13795 -0.05 NE
13800 0.14 NE
13805 0.79 NE
13810 -0.12 NE
13815 0.12 NE
13820 -1.09 GD
13825 -1.15 NE
13830 -0.79 GD
13835 -0.45 NE
13840 -0.21 NE
13845 -0.68 NE
13850 -1.04 GD
13855 -1.11 GD
13860 -0.18 NE
13865 0.47 NE
13870 -0.53 NE
13875 -0.26 NE
13880 -0.12 NE
13885 -0.14 NE
13890 -0.64 GD
13895 -0.59 NE
13900 -0.53 NE
13905 -0.71 NE
13910 -0.8 NE
13915 -0.6 GD
13920 -0.37 GD
13925 -0.35 NE
13930 0.4 NE
13935 -0.15 NE
13940 -inf NE
13945 0.05 NE
13950 -0.69 GD
13955 0.1 NE
13960 0.74 GA
13965 -0.19 NE
13970 0.43 NE
13975 0.32 NE
13980 -0.79 NE
13985 0.1 NE
13990 -0.48 NE
13995 0.11 NE
14000 -0.71 NE
14005 -0.07 NE
14010 -0.26 GD
14015 -0.23 GD
14020 0.31 NE
14025 -0.15 NE
14030 -0.45 NE
14035 -0.29 GD
14040 -0.08 NE
14045 0.11 NE
14050 -0.99 GD
14055 0.38 NE
14060 -0.6 GD
14065 -0.15 NE
14070 -0.93 GD
14075 -1.19 GD
14080 -1.67 GD
14085 -0.94 GD
14090 -1.97 ES
14095 -inf ES
14100 0.68 NE
14105 -inf NE
14110 -inf ES

Feature Log(RF) Class
14115 0.06 NE
14120 0.73 GA
14125 0.23 NE
14130 -0.56 NE
14135 -0.08 NE
14140 -0.57 GD
14145 -0.07 NE
14150 -0.72 GD
14155 -1.97 GD
14160 -0.07 NE
14165 0.14 NE
14170 0.59 NE
14175 0.36 NE
14180 0.01 NE
14185 -0.16 NE
14190 -2.23 GD
14195 -0.72 GD
14200 -1.22 GD
14205 0.48 NE
14210 0.64 GA
14215 -0.77 GD
14220 -0.98 GD
14225 0.12 NE
14230 -0.33 GD
14235 0.98 GA
14245 0.45 GA
14250 0.53 NE
14255 -inf ES
14260 -0.04 NE
14265 -0.41 GD
14270 0.26 NE
14275 0.44 GA
14280 0.32 NE
14285 -inf GD
14290 -1.37 GD
14295 0.9 GA
14300 0.27 NE
14305 0.1 NE
14310 -0.05 NE
14315 0.51 NE
14320 1.27 GA
14325 -0.04 NE
14330 0.83 GA
14335 0.22 NE
14340 0.34 NE
14345 0.04 NE
14350 0.91 GA
14355 0.12 NE
14360 0.13 NE
14365 0.11 NE
14370 -inf ES
14375 -inf GD
14380 -0.84 GD
14385 0.5 NE
14390 -0.13 NE
14395 -1.32 GD
14400 -0.54 GD
14405 -0.87 GD
14410 -0.98 NE
14415 -0.26 NE
14420 -0.75 GD
14425 -1.25 NE
14430 -0.78 GD
14435 -0.67 GD
14440 0.66 GA
14445 0.57 NE
14450 -1.32 GD
14455 -0.55 GD
14460 -0.85 NE
14465 -0.4 GD
14470 -0.89 GD
14475 -0.49 GD
14480 -0.52 GD
14485 -0.62 NE
14490 -0.73 GD
14495 -0.81 GD
14500 0.25 NE
14505 -0.48 GD
14510 0.56 NE
14515 0.76 NE
14520 0.44 NE
14525 0.57 NE
14530 0.32 GA
14535 -1.17 NE
14540 -0.24 NE
14545 -inf GD
14550 -inf ES
14555 -0.23 NE
14560 0.59 GA
14565 0.47 GA
14570 0.77 NE
14575 -inf GD
14580 0.24 NE
14585 -0.11 NE
14590 0.13 NE
14595 0.63 GA

Feature Log(RF) Class
14600 -0.98 NE
14605 -0.05 NE
14610 0.09 NE
14620 -0.14 NE
14625 0.14 NE
14630 0.09 NE
14635 -0.11 NE
14640 -0.19 NE
14645 -0.01 NE
14650 0.49 NE
14655 0.51 NE
14660 0.21 NE
14665 -inf ES
14675 -inf ES
14680 -inf NE
14685 -0.65 NE
14690 -inf GD
14695 -1.14 GD
14700 -inf GD
14705 -inf ES
14710 -inf ES
14715 -inf GD
14720 -inf GD
14725 -inf GD
14730 -inf GD
14735 -inf ES
14740 -inf ES
14745 -inf GD
14750 -inf ES
14755 -inf GD
14760 -0.34 NE
14765 0.4 NE
14770 0.48 NE
14775 -1.34 GD
14780 -0.93 GD
14785 -inf ES
14790 0.08 NE
14795 -0.5 GD
14800 -0.66 GD
14805 -0.2 NE
14810 0.11 NE
14815 0.35 NE
14820 0.2 NE
14825 -inf ES
14830 -0.4 NE
14835 -0.33 NE
14840 -0.39 NE
14845 0.07 NE
14850 0.54 GA
14855 -inf GD
14860 0.53 NE
14865 0.31 NE
14870 -0.23 NE
14875 -0.27 NE
14880 -inf ES
14885 -inf ES
14890 -1.81 GD
14895 -inf ES
14900 -1.97 ES
14905 -0.19 NE
14910 0.07 NE
14915 -0.22 NE
14920 -1.32 NE
14925 -1.66 GD
14930 -inf ES
14935 -0.23 NE
14940 0.32 NE
14945 -1.64 NE
14950 -0.31 NE
14955 0.15 NE
14960 0.1 NE
14965 -0.76 GD
14970 -0.46 NE
14975 -0.64 GD
14980 -1.46 GD
14985 -0.06 NE
14990 -0.06 NE
14995 -0.39 NE
15000 -0.03 NE
15005 -1.31 GD
15010 -0.2 NE
15015 -inf GD
15020 -2.23 GD
15025 -0.27 NE
15030 0.04 NE
15035 -inf ES
15040 -0.05 NE
15045 0.41 NE
15050 -0.35 NE
15055 -inf ES
15060 0.4 NE
15065 0.27 GA
15070 0.56 NE
15075 -inf GD
15080 0.51 NE
15085 0.65 NE

Feature Log(RF) Class
15090 0.16 NE
15095 -0.38 GD
15100 -inf GD
15105 -1.09 GD
15110 -0.33 NE
15115 0.91 NE
15120 -1.01 GD
15125 0.44 NE
15130 -1.05 GD
15135 -1.03 NE
15140 -0.01 NE
15145 -0.7 NE
15150 -1.06 GD
15155 -0.48 NE
15160 -inf GD
15165 -0.88 GD
15170 -0.7 GD
15175 -0.18 GD
15180 -0.49 NE
15185 -0.31 NE
15190 -0.47 NE
15195 0.9 NE
15200 0.44 NE
15205 -0.65 GD
15210 -inf ES
15215 -inf GD
15220 -inf GD
15225 -inf ES
15230 -0.1 NE
15235 -0.12 NE
15240 -0.64 GD
15245 -0.27 GD
15250 -0.2 NE
15255 -0.59 GD
15260 -0.15 NE
15265 1.08 NE
15270 0.5 NE
15275 0.81 GA
15280 -0.22 NE
15285 -0.04 NE
15290 0.05 NE
15295 -0.17 NE
15300 0.26 NE
15305 0.32 NE
15310 0.13 NE
15315 -0.83 GD
15320 -0.31 GD
15325 -0.11 NE
15330 0.46 NE
15335 0.45 NE
15340 -0.64 NE
15345 -0.77 GD
15350 -0.09 NE
15355 0.15 NE
15360 -0.57 GD
15365 0.27 NE
15370 0.11 NE
15375 0.56 GA
15380 -0.53 GD
15385 0.35 GA
15390 0.03 NE
15395 0.36 NE
15400 -0.15 NE
15405 -0.55 GD
15410 -1.34 GD
15415 -1.16 GD
15420 0.29 NE
15425 -0.28 GD
15430 -0.06 NE
15435 0.13 NE
15440 -0.48 NE
15450 0.28 NE
15455 0.3 NE
15460 -0.13 NE
15465 -0.36 NE
15470 0.09 NE
15475 -0.36 GD
15480 -1.04 GD
15485 -0.06 NE
15490 -1.24 GD
15495 -0.17 NE
15500 -0.2 GD
15505 -0.99 GD
15510 -0.73 NE
15515 -0.35 GD
15520 -1.03 GD
15525 -1.09 GD
15530 -0.05 NE
15535 -0.24 NE
15540 0.32 NE
15545 0.1 NE
15550 -0.76 GD
15555 0.24 NE
15560 -0.22 NE
15565 -0.58 GD
15570 -1.32 GD
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Feature Log(RF) Class
15575 -1.27 GD
15580 -0.51 GD
15585 -0.17 NE
15595 -0.04 NE
15600 -0.66 NE
15605 -0.98 GD
15610 -0.14 NE
15615 -1.22 GD
15620 -0.48 GD
15625 -1.15 GD
15630 -0.07 NE
15640 0.34 NE
15645 -0.72 GD
15650 -0.68 GD
15655 -0.7 GD
15660 0.25 NE
15665 0.31 NE
15670 0.19 NE
15675 0.13 NE
15680 0.28 NE
15685 0.47 NE
15690 -inf GD
15695 -0.8 GD
15700 -0.33 GD
15705 -0.36 GD
15710 -0.08 NE
15715 0.53 NE
15720 0.53 GA
15725 -0.48 GD
15730 0.44 NE
15735 0.42 GA
15745 0.82 GA
15750 0.61 GA
15755 0.56 GA
15760 0.53 NE
15765 0.23 NE
15770 0.92 GA
15775 0.82 NE
15780 0.43 GA
15785 0.6 GA
15790 0.74 NE
15795 0.41 GA
15800 0.69 GA
15805 1.02 NE
15810 0.68 GA
15815 0.58 GA
15820 1.08 GA
15825 0.57 NE
15830 0.42 GA
15835 0.73 NE
15840 0.5 NE
15845 0.31 NE
15850 0.29 NE
15855 -0.45 NE
15860 -0.35 NE
15865 -0.13 NE
15870 -1.62 GD
15875 -0.22 NE
15880 -1.51 GD
15885 -1.09 GD
15890 -0.78 GD
15895 -0.83 GD
15900 -0.46 GD
15905 0.11 NE
15910 -0.91 GD
15915 -0.54 NE
15925 0.16 NE
15930 0.32 NE
15935 0.2 NE
15940 -0.42 GD
15945 -0.44 GD
15950 -inf NE
15955 -0.27 NE
15960 -0.9 GD
15965 -inf NE
15970 -1.27 GD
15975 -1.08 GD
15980 -1.28 GD
15985 -0.43 NE
15990 -1.15 GD
15995 -1.62 GD
16000 -0.42 GD
16005 -0.62 NE
16010 -0.19 NE
16015 -1.04 GD
16020 -0.15 NE
16025 0.23 NE
16030 -0.15 NE
16035 -1.32 GD
16040 -1.93 GD
16045 -1.23 GD
16050 -0.98 GD
16055 -0.2 NE
16060 -inf NE
16065 -inf GD
16070 -0.14 NE

Feature Log(RF) Class
16075 -inf ES
16080 -0.37 NE
16085 -0.6 GD
16090 -0.36 NE
16095 -0.07 NE
16100 0.36 NE
16105 -inf ES
16110 -0.78 NE
16115 -0.19 NE
16120 -0.8 NE
16125 -inf ES
16130 -0.4 NE
16135 0.56 NE
16140 -0.87 GD
16145 -1.41 GD
16150 -0.95 GD
16155 0.15 NE
16160 -0.54 NE
16165 0.68 GA
16170 0.57 NE
16175 0.29 NE
16180 0.05 NE
16185 0.15 NE
16190 0.59 NE
16195 -0.88 NE
16200 1.06 NE
16205 -0.41 NE
16210 -1.93 NE
16215 -0.42 GD
16220 -0.94 GD
16225 -1.08 GD
16230 -1.67 GD
16235 -1.93 GD
16240 -0.65 GD
16245 -1.47 GD
16250 -0.71 GD
16255 -0.04 NE
16260 -0.74 NE
16265 -0.4 GD
16270 -1.34 GD
16275 -0.42 GD
16280 -0.86 GD
16285 -0.71 GD
16290 -0.75 GD
16295 -inf GD
16300 -0.11 NE
16305 -0.3 GD
16310 -0.43 NE
16315 -0.6 NE
16320 -0.07 NE
16325 -0.82 GD
16330 -0.11 NE
16335 -1.47 GD
16340 -0.63 GD
16345 -0.67 NE
16350 -0.85 GD
16355 -0.83 GD
16360 0.05 NE
16365 -0.6 GD
16370 -0.39 GD
16375 -0.18 NE
16380 -0.11 NE
16385 -0.36 NE
16390 -1.24 GD
16395 -0.91 GD
16400 -0.91 GD
16405 -0.32 GD
16410 0.44 NE
16415 0.52 NE
16420 0.62 NE
16425 -0.12 NE
16430 -0.06 NE
16435 0.23 NE
16440 0.09 NE
16445 0.42 GA
16450 -0.16 NE
16455 0.43 GA
16460 -0.68 GD
16465 0.79 NE
16470 0.06 NE
16475 -0.59 GD
16480 -0.26 NE
16485 -0.1 NE
16490 -0.49 NE
16495 -0.02 NE
16500 -0.55 NE
16510 0.27 NE
16515 -1.66 GD
16520 0.15 NE
16525 0.26 NE
16530 0.79 GA
16535 0.13 NE
16540 -0.55 NE
16545 0.17 NE
16550 -0.08 NE
16555 0.4 GA

Feature Log(RF) Class
16565 -inf GD
16570 0.74 NE
16580 -0.62 NE
16585 -0.63 GD
16590 -0.78 GD
16595 -0.65 GD
16600 0.14 NE
16605 -0.07 NE
16610 -0.09 NE
16615 -0.64 GD
16620 0.09 NE
16625 -0.57 GD
16630 -0.3 NE
16635 0.08 NE
16640 -0.54 NE
16645 -1.06 GD
16650 -0.44 NE
16655 -0.24 NE
16660 -inf ES
16665 -0.58 GD
16670 -0.04 NE
16675 -0.21 NE
16680 -0.27 NE
16685 -0.45 GD
16690 -1.48 NE
16695 -0.19 NE
16700 -0.93 GD
16705 -0.47 NE
16710 -0.38 GD
16715 -0.07 NE
16720 -0.77 GD
16725 -inf ES
16730 0.35 NE
16735 -0.25 GD
16740 -0.41 NE
16745 -0.37 NE
16750 -inf ES
16755 -inf GD
16765 -1.13 GD
16770 -1.54 GD
16775 -1.46 GD
16780 -0.2 NE
16785 -1.64 ES
16790 -inf ES
16795 0.35 NE
16800 0.03 NE
16805 0.65 GA
16810 0.14 NE
16815 0.51 NE
16820 0.26 GA
16825 -inf ES
16830 0.32 NE
16835 -inf GD
16840 -inf GD
16845 0.21 NE
16850 -inf GD
16855 -1.93 GD
16860 0.49 NE
16870 -0.53 NE
16875 -inf GD
16880 -0.11 NE
16885 0.0 NE
16890 0.44 NE
16895 0.79 NE
16900 0.29 NE
16905 0.43 NE
16910 0.49 NE
16915 -1.23 GD
16920 -0.72 GD
16925 -0.3 NE
16930 -0.31 GD
16935 -inf ES
16940 0.59 NE
16945 -1.81 GD
16950 0.16 NE
16955 -0.38 NE
16960 -0.1 NE
16965 0.11 NE
16970 -inf GD
16975 0.34 GA
16980 0.17 NE
16985 -0.71 NE
16990 -0.64 GD
16995 0.67 NE
17000 -1.3 GD
17005 -0.9 GD
17010 -1.06 GD
17015 -0.4 NE
17020 0.49 NE
17025 -0.75 GD
17030 -1.04 GD
17035 -0.44 GD
17040 0.05 NE
17045 0.31 NE
17050 0.36 NE
17055 -inf GD

Feature Log(RF) Class
17060 -0.99 GD
17065 -0.36 NE
17070 -inf GD
17075 0.29 NE
17080 0.36 NE
17085 -0.04 NE
17090 0.45 GA
17095 0.08 NE
17100 -inf GD
17105 -0.03 NE
17110 0.61 GA
17115 -inf NE
17120 0.27 NE
17125 0.21 NE
17130 0.22 NE
17135 -0.01 NE
17140 -0.01 NE
17145 0.29 GA
17150 -1.17 GD
17155 -0.46 NE
17160 -0.07 NE
17165 0.32 GA
17170 0.2 NE
17175 0.59 NE
17180 -0.09 NE
17185 -0.21 NE
17190 0.33 GA
17195 0.07 NE
17200 0.4 GA
17205 0.21 NE
17210 0.07 NE
17215 0.04 NE
17220 -0.55 NE
17230 -inf ES
17235 0.52 NE
17240 -1.01 GD
17245 0.42 GA
17250 -0.57 NE
17255 -0.19 NE
17260 -1.12 GD
17265 -0.26 NE
17270 -0.52 GD
17275 -0.81 NE
17280 -inf GD
17285 -0.56 GD
17290 -0.21 GD
17295 -0.04 NE
17305 -1.45 GD
17310 -0.15 NE
17315 -0.11 NE
17320 -0.28 NE
17325 0.26 NE
17330 -0.27 NE
17335 -0.49 GD
17340 -0.37 GD
17345 0.44 NE
17350 -0.07 NE
17355 0.74 GA
17360 -0.28 NE
17365 -0.93 GD
17370 -0.26 NE
17375 -1.06 GD
17380 -0.35 GD
17385 -0.44 GD
17390 0.0 NE
17395 -0.85 GD
17400 -0.07 NE
17405 -0.85 GD
17410 -0.52 GD
17415 0.67 NE
17420 0.39 NE
17425 -0.73 GD
17430 -0.45 GD
17435 -0.08 NE
17440 -0.25 GD
17445 -1.08 NE
17450 -0.98 GD
17455 -0.6 GD
17460 -1.04 GD
17465 -1.02 GD
17470 -0.62 GD
17475 -1.23 GD
17480 -0.36 GD
17485 -0.78 GD
17490 -1.45 GD
17495 -1.56 GD
17500 -0.9 GD
17505 -1.34 GD
17510 -1.31 GD
17515 -1.28 GD
17520 -0.16 NE
17525 -0.02 NE
17530 -1.56 NE
17535 -1.01 GD
17540 -0.59 GD
17545 -0.52 GD
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Feature Log(RF) Class
17550 -1.97 GD
17555 -1.4 GD
17560 -inf NE
17565 -0.83 GD
17570 -0.78 GD
17575 -inf GD
17580 -0.77 GD
17585 -1.56 GD
17590 -0.13 NE
17595 -0.93 NE
17600 -0.67 GD
17605 -0.21 NE
17610 -inf GD
17615 -0.6 GD
17620 -0.52 NE
17625 -0.49 NE
17630 0.37 NE
17635 -1.46 GD
17640 -0.29 NE
17645 -inf GD
17650 0.16 NE
17655 -0.55 NE
17660 -0.26 NE
17665 0.63 NE
17670 0.23 NE
17675 -0.0 NE
17680 -0.05 NE
17685 0.11 NE
17690 0.1 NE
17695 -0.79 NE
17700 -1.15 GD
17705 -0.18 NE
17710 -0.29 NE
17715 -0.49 NE
17720 -0.37 GD
17725 -0.6 NE
17730 0.27 NE
17735 -0.4 NE
17740 0.72 NE
17745 0.71 GA
17750 0.27 NE
17755 -0.28 NE
17760 0.1 NE
17765 -inf ES
17770 -inf ES
17775 -0.21 NE
17780 -0.16 NE
17785 -0.19 NE
17790 -0.97 NE
17795 -0.0 NE
17800 0.02 NE
17805 0.25 NE
17810 -0.08 NE
17815 0.13 NE
17820 -0.02 NE
17825 -0.9 GD
17830 -0.05 NE
17835 -0.05 NE
17840 0.2 GA
17845 0.74 GA
17850 -0.22 NE
17855 0.43 GA
17860 0.44 GA
17865 -0.42 NE
17870 -inf ES
17875 -inf ES
17880 -inf GD
17885 -0.17 NE
17890 -0.98 NE
17895 -0.84 NE
17900 -inf ES
17905 -inf ES
17910 -inf ES
17915 -inf ES
17920 -inf GD
17925 -inf GD
17930 -inf GD
17935 -inf GD
17940 -inf ES
17945 0.11 NE
17950 -inf NE
17955 -inf ES
17960 -0.34 NE
17965 -inf ES
17970 -0.14 NE
17975 -inf ES
17980 -inf GD
17985 -inf ES
17990 -inf ES
17995 -inf ES
18000 -inf GD
18005 0.11 NE
18010 0.02 NE
18015 0.61 NE
18020 1.0 NE
18025 0.73 NE

Feature Log(RF) Class
18030 0.2 NE
18035 -0.05 NE
18040 -0.27 NE
18045 0.66 GA
18055 0.22 NE
18060 0.42 NE
18065 0.71 NE
18070 0.44 NE
18075 0.34 NE
18080 0.09 NE
18085 0.63 NE
18090 0.58 GA
18095 0.59 GA
18100 0.14 NE
18105 0.4 NE
18110 0.54 NE
18115 0.53 GA
18120 0.58 GA
18125 0.34 NE
18130 0.94 NE
18135 0.45 GA
18140 0.73 GA
18145 0.66 GA
18150 0.27 GA
18155 0.69 GA
18160 0.46 NE
18165 0.09 NE
18170 -inf GD
18175 0.29 NE
18180 0.44 GA
18185 0.09 NE
18190 0.28 NE
18195 0.23 NE
18200 0.54 NE
18205 -0.18 NE
18210 0.02 NE
18215 0.28 NE
18220 0.27 NE
18225 -0.6 NE
18230 -0.54 GD
18235 -0.21 NE
18240 0.45 NE
18245 -1.46 NE
18250 -0.5 GD
18255 -0.67 GD
18260 -0.78 GD
18265 -0.51 GD
18270 -0.76 GD
18275 -0.76 GD
18280 0.09 NE
18285 0.12 NE
18290 0.02 NE
18295 0.21 NE
18300 0.06 NE
18305 -0.44 GD
18310 -1.09 GD
18315 -0.56 NE
18320 -0.21 NE
18325 -0.17 NE
18330 -1.24 GD
18335 -0.01 NE
18340 0.46 NE
18345 -0.06 NE
18350 0.42 NE
18355 -0.36 GD
18360 -0.32 NE
18365 -0.28 NE
18370 -0.32 NE
18375 0.33 NE
18380 0.01 NE
18385 0.29 NE
18390 -0.23 NE
18395 -inf ES
18400 -0.54 GD
18405 0.12 NE
18410 -0.32 NE
18415 -0.2 NE
18420 -0.39 GD
18425 -0.4 NE
18430 -0.7 GD
18435 -0.87 GD
18440 -0.73 GD
18445 -0.04 NE
18450 -0.01 NE
18455 -1.03 GD
18460 -0.37 GD
18465 -0.67 GD
18470 -0.23 NE
18475 0.33 NE
18480 -0.14 NE
18485 0.64 NE
18490 0.79 GA
18495 -1.33 GD
18500 -0.54 NE
18505 -inf GD
18510 0.19 NE

Feature Log(RF) Class
18515 -0.47 GD
18520 -0.3 NE
18525 -0.95 GD
18530 -0.75 GD
18535 -0.6 GD
18540 -0.22 NE
18545 0.04 NE
18550 -0.62 NE
18555 0.45 GA
18560 0.19 NE
18565 0.15 NE
18570 -inf GD
18575 -inf NE
18580 -inf GD
18585 0.45 NE
18590 0.44 NE
18595 0.43 NE
18600 0.18 NE
18605 -0.64 NE
18610 -0.56 GD
18615 -0.57 GD
18620 -1.16 GD
18625 0.39 NE
18630 -0.13 NE
18635 0.16 NE
18640 -0.03 NE
18645 0.18 NE
18650 -0.45 NE
18655 0.36 NE
18660 0.42 GA
18665 0.36 NE
18670 0.38 NE
18675 -inf ES
18680 -0.13 NE
18685 -0.91 GD
18690 -inf ES
18695 0.24 NE
18700 -0.6 NE
18705 0.1 NE
18710 -0.6 GD
18715 -0.55 NE
18720 -0.48 GD
18725 -0.65 GD
18730 -1.29 GD
18735 0.01 NE
18740 -0.89 GD
18745 -1.06 NE
18750 -0.65 GD
18755 -0.91 GD
18760 -0.74 GD
18765 -0.78 GD
18770 0.14 NE
18775 -0.59 GD
18780 -0.58 GD
18785 -0.52 NE
18790 -1.06 GD
18795 -0.18 NE
18800 -0.84 GD
18805 -0.68 GD
18810 -0.21 NE
18815 0.11 NE
18820 -0.75 GD
18825 -0.03 NE
18830 0.64 NE
18835 0.38 NE
18840 1.12 GA
18845 0.59 NE
18850 -0.22 NE
18855 0.04 NE
18860 0.22 NE
18865 0.1 NE
18870 -inf ES
18875 0.45 GA
18880 0.44 NE
18885 0.12 NE
18890 -0.1 NE
18895 -0.49 GD
18900 -0.12 NE
18905 0.44 NE
18910 -0.23 NE
18915 -0.4 NE
18925 0.18 NE
18930 0.38 NE
18935 -0.1 NE
18945 0.26 NE
18950 0.19 NE
18955 0.04 NE
18960 0.1 NE
18965 -0.17 NE
18970 0.4 GA
18975 0.16 NE
18980 1.06 GA
18985 0.1 NE
18990 0.85 GA
18995 -0.78 GD
19000 -0.48 NE

Feature Log(RF) Class
19005 0.19 NE
19010 -0.49 GD
19015 -0.24 NE
19020 -0.72 GD
19025 -0.29 NE
19030 -0.88 GD
19035 -0.17 NE
19040 -0.45 GD
19045 -0.89 GD
19050 -1.43 GD
19055 -0.46 GD
19060 0.52 NE
19065 -0.31 GD
19070 -0.21 GD
19075 -0.2 GD
19080 -0.52 GD
19085 -0.28 NE
19090 0.4 NE
19095 -1.49 NE
19100 -0.08 NE
19105 0.07 NE
19110 0.24 NE
19115 -1.64 GD
19120 -1.62 GD
19125 -0.47 NE
19130 -0.33 GD
19135 0.16 NE
19140 -0.28 NE
19145 -0.71 GD
19150 -0.03 NE
19155 0.05 NE
19160 -0.65 NE
19165 -0.59 NE
19170 0.57 NE
19175 -0.51 NE
19180 -0.43 NE
19185 0.45 NE
19190 -0.08 NE
19195 -0.11 NE
19200 -0.64 GD
19205 0.62 NE
19210 0.32 NE
19215 0.38 GA
19220 0.42 NE
19225 -0.91 GD
19230 -inf GD
19235 0.15 NE
19240 -0.45 NE
19245 -1.59 GD
19250 -0.5 NE
19255 -0.34 GD
19260 -0.71 GD
19265 0.22 NE
19270 -0.93 GD
19275 -inf ES
19280 -1.67 GD
19285 -0.43 NE
19290 -1.32 GD
19295 -0.27 NE
19300 -inf ES
19305 -inf ES
19310 -inf ES
19315 0.4 NE
19320 0.74 GA
19325 -inf ES
19330 0.58 GA
19335 0.45 NE
19340 0.1 NE
19350 0.18 NE
19355 -0.76 NE
19360 0.16 NE
19365 -0.28 NE
19370 0.4 NE
19375 0.24 NE
19380 0.45 NE
19385 0.09 NE
19390 1.28 GA
19395 0.35 NE
19400 -0.36 NE
19405 -0.0 NE
19410 0.57 NE
19415 0.19 NE
19420 0.64 NE
19425 0.4 NE
19430 -0.62 NE
19435 0.31 NE
19440 -0.17 NE
19445 -1.32 NE
19450 -0.62 GD
19455 0.4 NE
19460 0.05 NE
19465 0.14 NE
19470 0.28 NE
19475 0.4 NE
19480 0.09 NE
19485 0.11 NE
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Feature Log(RF) Class
19490 -inf GD
19495 0.1 NE
19500 0.07 NE
19505 -0.34 NE
19510 0.12 NE
19515 0.11 NE
19520 -0.76 GD
19525 0.33 NE
19530 0.29 NE
19535 -0.19 GD
19540 -0.77 GD
19545 -0.89 GD
19550 -0.24 GD
19555 -0.67 GD
19560 -0.24 GD
19565 -0.48 GD
19570 -inf GD
19575 -inf GD
19580 -inf ES
19585 -0.48 GD
19590 0.42 NE
19595 0.48 GA
19600 0.31 NE
19605 0.76 GA
19610 -inf NE
19615 -inf GD
19620 -inf ES
19625 0.31 NE
19630 0.11 NE
19635 0.28 NE
19640 -1.12 NE
19645 -inf GD
19650 0.47 GA
19655 0.6 NE
19660 -inf GD
19665 0.57 NE
19670 0.91 GA
19675 0.88 GA
19680 -inf ES
19685 0.3 NE
19690 0.58 GA
19700 -1.34 GD
19705 -0.73 GD
19710 -0.53 NE
19715 -0.02 NE
19720 0.51 NE
19725 -0.53 NE
19730 -0.46 GD
19735 -0.71 NE
19740 -1.67 GD
19745 -0.21 NE
19755 -0.26 NE
19760 -0.73 GD
19765 -0.93 GD
19770 -1.04 GD
19775 -0.74 GD
19780 -0.72 GD
19785 -0.83 GD
19790 -0.49 NE
19795 -0.37 NE
19800 -0.61 NE
19805 0.55 NE
19810 -0.07 NE
19815 0.05 NE
19820 0.23 NE
19825 0.15 NE
19830 0.15 NE
19835 0.07 NE
19840 0.09 NE
19845 0.09 NE
19850 -0.84 NE
19855 -1.24 GD
19860 -0.85 NE
19865 -0.2 NE
19870 -0.99 NE
19875 -0.26 GD
19880 -0.31 NE
19885 0.45 NE
19890 -0.42 GD
19895 -0.55 NE
19900 -inf GD
19905 -0.32 NE
19910 0.35 GA
19915 0.56 NE
19920 0.34 GA
19925 0.02 NE
19930 0.31 NE
19935 -inf GD
19940 0.37 GA
19945 0.47 NE
19950 -0.24 NE
19955 -inf GD
19960 0.27 NE
19965 0.8 NE
19970 0.04 NE
19975 -0.08 NE

Feature Log(RF) Class
19980 -0.29 NE
19985 -0.04 NE
19990 0.21 NE
19995 -inf ES
20000 0.39 GA
20005 -0.83 NE
20010 0.02 NE
20015 -0.78 GD
20020 -1.26 GD
20025 -1.12 GD
20030 -0.5 GD
20035 -0.44 GD
20040 -0.39 GD
20045 -1.08 GD
20050 -1.02 GD
20055 -0.35 NE
20060 0.43 GA
20065 -inf ES
20070 -inf GD
20075 -1.02 NE
20080 -0.28 NE
20085 0.51 NE
20090 0.68 NE
20095 -inf GD
20100 -inf GD
20105 0.04 NE
20110 -0.2 NE
20115 -0.74 GD
20120 -1.26 NE
20125 -1.21 GD
20130 -0.39 NE
20135 -0.9 GD
20140 0.06 NE
20145 -0.08 NE
20150 -0.07 NE
20155 -0.29 NE
20160 -0.02 NE
20165 0.21 NE
20170 -0.21 NE
20175 -0.75 GD
20180 -0.98 GD
20185 -0.28 NE
20190 -inf ES
20195 -0.64 GD
20200 -1.03 GD
20205 -0.86 GD
20210 0.1 NE
20215 0.18 NE
20220 0.24 NE
20225 -0.11 NE
20230 -0.3 NE
20235 -0.02 NE
20240 -1.41 GD
20245 -0.19 GD
20250 -inf GD
20255 -0.14 NE
20260 -0.15 NE
20265 -0.65 NE
20270 0.2 NE
20275 0.39 NE
20280 0.12 NE
20285 0.79 NE
20290 0.06 NE
20295 -0.43 GD
20300 -0.26 NE
20305 -0.68 NE
20310 -0.32 NE
20315 -0.77 GD
20320 0.05 NE
20325 -0.46 GD
20330 -0.49 NE
20335 -inf GD
20340 -0.31 NE
20345 -0.28 NE
20350 -0.03 NE
20355 -0.33 GD
20360 -inf GD
20365 0.43 NE
20370 -0.6 NE
20375 -0.62 NE
20380 -0.03 NE
20385 -inf ES
20390 -1.26 NE
20400 0.3 NE
20410 0.82 NE
20415 0.73 NE
20420 0.31 NE
20425 -0.4 NE
20430 -0.38 NE
20435 0.44 NE
20440 -0.12 NE
20445 0.21 NE
20450 0.69 NE
20455 -0.0 NE
20460 0.29 NE
20465 1.07 GA

Feature Log(RF) Class
20470 0.11 NE
20475 0.97 NE
20480 0.3 NE
20485 0.81 NE
20490 1.14 GA
20495 0.13 NE
20500 -0.17 NE
20505 0.24 NE
20510 0.47 NE
20515 0.14 NE
20520 0.24 NE
20525 -0.55 NE
20530 -0.18 NE
20535 -1.41 GD
20540 -0.26 NE
20545 -0.72 GD
20550 0.15 NE
20555 0.08 NE
20560 -0.53 NE
20565 -0.12 NE
20570 0.18 NE
20575 0.96 NE
20580 -0.44 GD
20590 -0.48 NE
20595 -0.59 GD
20600 0.6 GA
20605 0.7 GA
20610 -0.33 NE
20615 0.44 GA
20620 -0.47 NE
20625 0.02 NE
20630 -0.46 NE
20635 -0.76 GD
20640 -0.67 GD
20645 -1.93 GD
20650 -0.46 GD
20655 0.21 NE
20660 -0.07 NE
20665 -0.12 NE
20670 -0.53 NE
20675 -0.15 NE
20680 -0.06 NE
20685 -0.94 GD
20690 -0.67 GD
20695 -0.7 GD
20700 -0.54 NE
20705 0.3 NE
20710 -0.43 GD
20715 0.74 GA
20720 0.64 GA
20725 0.92 GA
20735 0.16 NE
20740 0.22 NE
20745 -0.31 NE
20750 -0.61 NE
20755 -0.65 GD
20760 -0.85 GD
20765 -0.2 NE
20770 -0.56 GD
20775 0.22 NE
20780 -0.01 NE
20785 0.18 NE
20790 -0.38 NE
20795 -0.55 GD
20800 -1.1 GD
20805 -0.58 GD
20810 -1.13 GD
20815 0.44 NE
20820 -0.32 NE
20825 0.03 NE
20830 -0.35 NE
20835 0.05 NE
20840 0.23 NE
20845 -0.21 GD
20850 -0.21 NE
20855 0.1 NE
20860 -0.13 NE
20865 -0.32 NE
20870 -0.17 NE
20875 -0.02 NE
20880 -0.05 NE
20885 0.79 NE
20890 -0.95 NE
20895 -0.8 GD
20900 -0.18 NE
20905 0.26 NE
20910 -0.59 GD
20915 -0.7 GD
20920 -1.93 NE
20925 -0.84 GD
20930 -0.79 GD
20935 -0.78 NE
20940 -1.15 GD
20945 0.1 NE
20950 -0.29 NE
20955 -0.74 NE

Feature Log(RF) Class
20960 0.14 NE
20965 -0.08 NE
20970 -1.12 GD
20975 -1.05 GD
20980 -1.06 GD
20985 -0.67 GD
20990 -1.45 GD
21000 -0.78 GD
21005 -0.26 NE
21010 -0.89 GD
21015 -1.08 GD
21020 -1.25 GD
21025 -2.27 GD
21030 -0.85 GD
21035 -1.22 GD
21040 -0.68 GD
21045 -1.08 GD
21050 -0.9 GD
21055 -0.72 GD
21060 -1.32 GD
21065 -1.95 GD
21070 -0.33 NE
21075 -1.64 GD
21080 -0.41 NE
21085 -0.2 NE
21090 -0.55 GD
21095 -1.06 GD
21100 -0.55 GD
21105 -0.93 GD
21110 -1.81 GD
21115 0.07 NE
21120 0.39 NE
21125 0.14 NE
21130 -0.35 GD
21135 -0.9 GD
21140 -1.25 GD
21145 0.09 NE
21150 -0.25 GD
21155 -0.24 NE
21160 0.06 NE
21165 -0.02 NE
21170 -0.15 NE
21175 0.11 NE
21180 -0.13 NE
21185 -0.55 NE
21190 0.26 NE
21195 0.33 NE
21200 0.17 NE
21205 0.14 NE
21210 -0.0 NE
21215 0.62 NE
21220 0.15 NE
21225 -0.02 NE
21230 0.37 NE
21235 -0.05 NE
21240 0.03 NE
21245 0.7 GA
21250 0.06 NE
21255 -0.24 NE
21260 0.8 GA
21265 -inf GD
21270 -inf NE
21275 -inf GD
21280 -inf ES
21285 0.37 NE
21290 0.57 GA
21295 -0.12 NE
21300 0.29 NE
21305 0.6 GA
21310 0.21 NE
21315 -inf ES
21320 0.55 GA
21325 0.7 NE
21330 0.53 GA
21335 -0.95 GD
21340 -0.83 GD
21345 0.18 GA
21350 0.25 GA
21355 0.38 GA
21360 0.33 GA
21365 0.52 GA
21370 0.42 GA
21375 -1.81 GD
21380 0.11 NE
21385 -0.71 NE
21390 0.81 GA
21395 -inf NE
21400 0.39 GA
21405 0.68 NE
21410 -inf ES
21415 -inf NE
21420 -inf ES
21425 -inf ES
21430 -0.54 NE
21435 -1.37 GD
21440 -inf ES
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Feature Log(RF) Class
21445 0.58 NE
21450 -0.35 NE
21455 0.0 NE
21460 0.49 NE
21465 -0.48 NE
21470 0.02 NE
21475 0.15 NE
21480 0.17 NE
21485 -inf GD
21495 0.33 NE
21500 -0.1 NE
21505 -0.48 GD
21510 -0.77 NE
21515 -0.02 NE
21520 0.45 GA
21525 0.59 NE
21530 0.28 NE
21535 -0.72 GD
21540 -inf ES
21545 0.38 NE
21550 -0.52 GD
21555 -inf ES
21560 0.64 NE
21565 -0.38 NE
21570 -0.31 NE
21575 -1.19 GD
21580 -inf GD
21585 0.24 NE
21590 -1.04 GD
21595 0.1 NE
21600 -0.15 NE
21605 0.22 NE
21610 -0.67 GD
21615 0.49 NE
21620 -0.45 GD
21625 -0.38 NE
21630 -0.28 NE
21640 -0.49 GD
21645 -1.1 NE
21650 1.24 NE
21655 0.3 NE
21660 0.04 NE
21670 -inf GD
21675 0.02 NE
21680 -0.11 NE
21685 0.04 NE
21690 0.59 NE
21695 -0.11 NE
21700 -0.1 NE
21705 -0.81 NE
21710 -0.35 GD
21715 0.65 GA
21720 0.51 GA
21725 0.1 NE
21730 -0.5 NE
21735 -0.22 NE
21740 0.38 NE
21745 0.76 NE
21750 0.18 NE
21755 0.04 NE
21760 -0.89 NE
21765 -0.42 GD
21770 -0.43 NE
21775 -0.41 GD
21780 -1.62 GD
21785 -0.59 GD
21790 -0.95 GD
21795 -0.23 GD
21800 -0.98 GD
21805 -0.18 NE
21810 -0.08 NE
21815 0.57 NE
21820 0.07 NE
21825 0.77 GA
21830 -0.15 NE
21835 -0.37 NE
21840 -inf NE
21845 -0.69 NE
21850 -0.57 GD
21855 -0.12 NE
21860 -0.62 NE
21865 -0.13 NE
21870 -0.22 NE
21875 -0.26 NE
21880 -0.09 NE
21885 0.12 NE
21890 -0.14 NE
21895 0.26 NE
21900 -0.09 NE
21905 -0.39 NE
21910 0.17 NE
21915 -0.68 NE
21920 -0.1 NE
21925 -0.17 NE
21930 -0.47 GD
21935 -1.46 GD

Feature Log(RF) Class
21940 -0.61 GD
21945 -0.35 NE
21950 0.41 NE
21955 0.51 GA
21960 0.29 NE
21965 -0.22 GD
21970 -1.23 GD
21975 -0.8 GD
21980 -1.29 GD
21985 -0.66 GD
21990 -0.83 GD
21995 -0.65 GD
22000 -0.66 GD
22005 -0.46 NE
22010 0.5 NE
22015 -0.37 NE
22020 -0.23 NE
22025 -0.71 NE
22030 -0.3 GD
22035 -0.09 NE
22040 -0.59 GD
22045 -1.04 NE
22050 -0.81 GD
22055 0.2 NE
22060 -0.11 NE
22065 -1.0 GD
22070 0.26 NE
22075 -0.19 NE
22080 0.04 NE
22085 -0.66 GD
22090 -0.81 GD
22095 -0.6 GD
22100 -0.31 GD
22105 -0.95 GD
22110 -0.65 NE
22115 -0.69 NE
22120 -0.89 GD
22125 -0.89 GD
22130 -0.08 NE
22135 0.17 NE
22140 0.2 NE
22145 0.24 NE
22150 0.12 NE
22155 0.31 NE
22160 0.36 NE
22165 0.59 GA
22170 -0.73 GD
22175 -0.1 NE
22180 -0.26 NE
22185 0.42 NE
22190 -0.24 NE
22195 0.36 NE
22200 -0.17 NE
22205 0.2 NE
22210 -0.22 NE
22215 -0.49 NE
22220 -inf ES
22230 -inf GD
22235 -inf ES
22240 0.27 NE
22245 0.98 GA
22250 -0.32 NE
22255 -inf ES
22260 -1.56 NE
22265 -0.48 NE
22270 -0.25 NE
22275 0.6 NE
22280 -0.51 NE
22285 0.14 NE
22290 -inf GD
22295 -0.4 NE
22300 0.4 NE
22305 -inf ES
22310 -1.05 NE
22315 -inf ES
22320 -0.24 NE
22325 -inf GD
22330 -inf ES
22335 -1.93 NE
22340 -0.74 GD
22345 0.79 NE
22350 -2.11 GD
22355 -1.93 GD
22360 -inf GD
22365 -inf GD
22370 -0.25 NE
22375 0.39 NE
22380 0.93 GA
22385 0.0 NE
22390 -0.32 GD
22395 -0.77 GD
22400 -0.41 GD
22405 -0.25 NE
22410 0.16 NE
22415 0.8 NE
22420 -1.31 GD

Feature Log(RF) Class
22425 -inf GD
22430 0.16 NE
22435 -1.35 GD
22440 -inf ES
22445 0.35 NE
22450 -1.97 GD
22455 -0.23 NE
22460 0.03 NE
22465 -inf ES
22470 -inf ES
22475 -inf ES
22480 -inf GD
22485 -0.04 NE
22490 -inf ES
22495 -0.16 NE
22500 -0.69 NE
22505 -0.15 NE
22510 0.48 NE
22515 0.49 NE
22525 0.15 NE
22530 -0.33 NE
22535 -0.59 NE
22540 -1.56 NE
22545 0.35 NE
22550 0.23 GA
22555 -1.1 GD
22560 0.1 NE
22565 -0.4 GD
22570 -0.36 NE
22575 -0.39 GD
22580 -0.6 GD
22585 0.01 NE
22590 -0.19 NE
22595 0.49 NE
22600 -inf GD
22605 -1.81 GD
22610 -1.93 GD
22615 -0.03 NE
22620 -1.93 GD
22625 -0.06 NE
22630 0.21 NE
22635 0.32 NE
22640 0.29 GA
22645 1.0 GA
22650 0.54 NE
22655 -0.86 GD
22660 -1.09 GD
22665 -0.09 NE
22670 0.51 GA
22675 -0.19 NE
22680 0.2 NE
22685 -inf ES
22690 0.19 NE
22695 -0.33 GD
22700 0.2 NE
22705 0.38 NE
22710 0.68 NE
22715 0.02 NE
22720 0.26 NE
22725 -0.25 NE
22730 -0.09 NE
22735 -0.08 NE
22740 0.07 NE
22745 -1.64 GD
22750 -0.11 NE
22755 -1.09 GD
22760 -0.72 GD
22765 0.34 NE
22770 -0.84 NE
22775 -0.32 NE
22780 -1.64 NE
22785 -0.47 NE
22790 0.46 NE
22795 0.35 NE
22800 -0.25 GD
22805 -0.35 NE
22810 0.78 NE
22815 0.41 NE
22825 -1.81 GD
22830 -0.58 NE
22835 0.7 NE
22840 0.49 GA
22845 -0.97 NE
22850 0.21 NE
22855 0.52 NE
22860 0.18 NE
22865 0.62 NE
22870 -0.78 NE
22875 -1.09 NE
22880 -0.64 NE
22885 -1.26 GD
22890 -0.71 GD
22895 -0.65 GD
22900 -1.54 GD
22905 -0.17 NE
22910 -1.1 GD

Feature Log(RF) Class
22915 -0.15 NE
22920 -0.19 NE
22925 0.51 NE
22930 0.24 NE
22935 0.11 NE
22940 -0.18 NE
22945 -inf NE
22950 -inf ES
22955 -0.48 GD
22960 0.58 GA
22965 0.59 NE
22970 -inf ES
22975 -inf ES
22980 0.35 NE
22985 0.6 NE
22990 -0.41 NE
22995 -0.46 NE
23000 0.03 NE
23005 0.59 GA
23010 -inf ES
23015 -inf ES
23020 -0.56 NE
23025 -inf GD
23030 -0.21 NE
23035 0.64 NE
23040 0.32 NE
23045 -1.93 GD
23050 -0.17 NE
23055 0.16 NE
23060 -0.32 NE
23065 -0.04 NE
23070 0.62 GA
23075 -0.0 NE
23080 0.07 NE
23085 0.13 NE
23090 -0.31 NE
23095 0.47 NE
23100 -0.16 NE
23105 -1.05 GD
23110 -0.0 NE
23115 0.5 NE
23120 0.12 NE
23125 -0.24 NE
23130 0.03 NE
23135 0.2 NE
23140 0.14 NE
23145 -inf ES
23150 0.06 NE
23155 0.48 NE
23160 -0.84 NE
23165 -0.43 NE
23170 0.22 NE
23175 -0.06 NE
23180 0.14 NE
23190 -0.21 NE
23195 -0.27 NE
23200 0.45 NE
23205 0.01 NE
23210 0.22 NE
23215 -0.21 NE
23220 0.16 NE
23225 0.23 NE
23230 -0.26 NE
23235 0.11 NE
23240 -0.14 NE
23245 -0.22 NE
23250 -0.32 NE
23255 -inf NE
23260 0.14 NE
23265 -0.17 NE
23270 -0.69 GD
23275 -0.77 NE
23280 -0.76 NE
23285 -1.04 GD
23290 -0.5 NE
23300 -0.18 NE
23305 -0.33 GD
23310 -1.13 GD
23315 -0.07 NE
23320 -0.55 GD
23325 -1.97 ES
23330 -0.4 GD
23335 -0.33 NE
23345 -0.07 NE
23350 -0.44 GD
23355 -0.97 GD
23360 -0.87 GD
23365 -0.48 NE
23370 -1.27 NE
23375 0.12 NE
23380 -0.06 NE
23385 -0.13 NE
23390 0.39 NE
23395 0.18 NE
23400 -0.12 NE
23405 -0.07 NE
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Feature Log(RF) Class
23410 -0.26 NE
23415 0.12 NE
23420 -0.03 NE
23425 0.48 NE
23430 0.02 NE
23435 0.32 NE
23440 0.14 NE
23445 -0.05 NE
23450 -0.5 NE
23455 -0.23 NE
23460 0.27 NE
23465 0.58 NE
23470 0.63 NE
23475 0.37 NE
23480 -0.0 NE
23485 -0.07 NE
23490 0.04 NE
23495 -0.71 GD
23500 0.37 NE
23505 -inf GD
23515 -0.42 NE
23520 -2.23 GD
23525 0.33 NE
23530 0.52 NE
23535 -1.08 NE
23540 -0.66 NE
23545 -0.71 GD
23555 -0.1 NE
23560 0.25 NE
23565 -0.03 NE
23570 0.18 NE
23575 -0.19 NE
23580 -0.45 GD
23585 -0.35 GD
23590 -0.52 NE
23595 -0.73 GD
23600 0.73 NE
23605 -0.96 GD
23610 0.15 NE
23615 0.22 NE
23620 -0.08 NE
23625 0.65 NE
23630 0.35 NE
23635 0.0 NE
23640 -inf GD
23645 -inf NE
23650 0.48 NE
23655 0.75 GA
23660 0.5 NE
23665 0.49 GA
23670 0.05 NE
23675 0.56 NE
23680 -0.83 GD
23685 -inf GD
23690 0.29 NE
23695 -0.86 GD
23700 0.21 NE
23705 -inf GD
23710 -inf ES
23715 -inf ES
23720 -inf GD
23725 0.51 NE
23730 -1.4 GD
23735 0.29 NE
23740 -0.2 NE
23745 -inf ES
23750 -inf ES
23755 -inf ES
23760 -inf ES
23765 0.19 NE
23770 -0.33 NE
23775 0.34 NE
23780 -inf ES
23785 -inf ES
23790 0.38 NE
23795 0.18 NE
23800 0.25 NE
23805 -0.09 NE
23810 -inf ES
23815 -inf ES
23820 -inf ES
23825 -0.05 NE
23830 0.62 GA
23835 -inf ES
23840 -inf ES
23845 -inf ES
23850 -0.45 NE
23855 -inf ES
23860 -inf ES
23865 -2.23 GD
23870 0.48 NE
23875 0.35 NE
23880 0.53 GA
23885 0.54 NE
23890 0.06 NE
23895 -0.42 GD

Feature Log(RF) Class
23900 -1.45 GD
23905 0.03 NE
23910 0.31 NE
23915 0.45 NE
23920 -1.81 NE
23925 0.57 NE
23930 -inf ES
23935 1.13 GA
23940 0.9 GA
23950 -0.06 NE
23955 0.06 NE
23960 0.21 NE
23965 0.51 NE
23970 0.21 NE
23975 0.8 GA
23980 -0.81 GD
23985 0.01 NE
23990 0.44 GA
23995 0.83 NE
24000 -0.36 NE
24005 -1.01 NE
24010 1.28 NE
24015 -1.45 NE
24020 0.69 GA
24025 0.46 NE
24030 0.6 NE
24035 0.17 NE
24040 0.63 GA
24045 0.31 NE
24050 -inf ES
24055 -inf ES
24060 0.18 NE
24065 -0.58 NE
24070 -0.68 NE
24075 0.12 NE
24080 -0.02 NE
24085 0.1 NE
24090 0.44 NE
24095 0.67 GA
24100 0.01 NE
24105 0.58 NE
24110 0.98 NE
24115 0.86 GA
24120 0.77 GA
24125 0.99 GA
24130 0.49 GA
24135 0.01 NE
24140 -0.29 NE
24145 -0.66 NE
24150 0.29 NE
24155 -0.4 GD
24160 -0.74 GD
24165 -0.34 NE
24170 -0.68 NE
24175 0.23 NE
24180 -1.76 GD
24185 0.62 NE
24190 -0.65 GD
24195 -0.4 GD
24200 0.17 NE
24205 -0.22 NE
24210 0.22 NE
24215 -0.88 NE
24220 -0.2 NE
24225 -1.64 GD
24230 0.5 NE
24235 0.63 GA
24240 0.98 NE
24245 0.76 GA
24250 -0.57 NE
24255 0.5 NE
24260 0.32 NE
24265 -1.62 GD
24270 -0.22 NE
24275 -0.09 NE
24280 -0.35 NE
24285 0.1 NE
24290 0.42 NE
24300 0.44 NE
24305 0.52 NE
24310 -0.06 NE
24315 -0.19 NE
24320 -0.22 NE
24325 -0.4 NE
24330 -0.29 GD
24335 -0.46 NE
24340 -0.35 GD
24345 -0.89 GD
24350 -1.02 GD
24355 -0.3 GD
24360 -0.41 NE
24365 -0.4 GD
24370 -0.81 GD
24375 0.11 NE
24380 -0.4 GD
24385 -0.33 NE

Feature Log(RF) Class
24390 -0.61 NE
24395 -1.01 GD
24400 -0.96 GD
24405 -0.11 NE
24410 -0.13 NE
24415 0.18 NE
24420 0.37 NE
24425 0.23 GA
24430 0.32 NE
24435 0.3 NE
24440 0.36 GA
24445 0.12 NE
24450 -0.3 NE
24455 0.11 NE
24460 0.2 NE
24465 0.2 NE
24470 0.11 NE
24475 0.11 NE
24480 0.37 GA
24485 0.99 NE
24490 0.95 GA
24495 0.89 GA
24500 0.61 GA
24505 -0.55 NE
24510 -inf ES
24515 -inf ES
24520 0.64 NE
24525 0.22 NE
24530 0.68 GA
24535 0.39 GA
24540 0.14 NE
24545 0.4 NE
24550 -inf ES
24555 0.48 NE
24560 -inf GD
24565 -inf GD
24570 0.2 NE
24575 -0.34 NE
24580 -inf ES
24585 0.12 NE
24595 -inf GD
24600 -inf ES
24605 0.11 NE
24610 0.25 NE
24615 -0.0 NE
24620 -0.14 NE
24625 -0.21 NE
24630 0.12 NE
24635 0.08 NE
24640 -0.83 GD
24645 -inf ES
24650 0.15 NE
24655 0.34 NE
24660 0.43 NE
24665 0.55 NE
24670 0.22 NE
24675 0.35 NE
24680 -1.9 ES
24690 0.52 NE
24695 0.31 NE
24700 0.69 GA
24705 0.42 NE
24710 0.28 NE
24715 0.26 NE
24720 -0.2 NE
24725 0.05 NE
24730 -0.11 NE
24735 -0.15 NE
24740 0.06 NE
24745 0.11 NE
24750 0.33 NE
24755 -0.11 NE
24760 0.34 NE
24765 -0.02 NE
24770 0.47 NE
24775 -0.45 GD
24780 0.22 NE
24785 0.19 NE
24790 0.14 NE
24795 0.26 NE
24800 0.62 NE
24805 0.19 NE
24810 0.33 NE
24815 -0.08 NE
24820 -0.65 NE
24825 0.3 NE
24830 0.49 NE
24835 -0.42 NE
24840 0.69 NE
24845 0.31 NE
24850 0.28 NE
24855 0.05 NE
24860 0.34 NE
24865 0.5 GA
24870 0.36 NE
24875 -0.21 GD

Feature Log(RF) Class
24880 -0.12 NE
24885 0.3 NE
24890 -0.98 GD
24895 -0.45 GD
24900 -0.25 NE
24905 0.15 NE
24910 -0.17 NE
24915 -0.27 NE
24920 -0.58 GD
24925 -1.18 GD
24930 0.02 NE
24935 -0.04 NE
24940 0.29 NE
24945 -0.2 NE
24950 -0.38 GD
24955 -0.9 NE
24960 -0.49 GD
24965 -0.51 GD
24970 -1.26 GD
24975 0.03 NE
24980 0.82 GA
24985 0.51 NE
24990 0.41 NE
24995 0.39 NE
25000 0.15 NE
25005 0.25 NE
25015 0.2 NE
25020 -0.74 GD
25025 -0.2 NE
25030 -0.83 GD
25035 -0.21 GD
25040 -0.75 GD
25045 -0.12 NE
25050 0.04 NE
25055 0.07 NE
25060 0.14 NE
25065 0.47 NE
25070 0.23 NE
25075 0.46 NE
25080 0.13 NE
25085 0.74 NE
25090 -0.82 GD
25095 0.09 NE
25100 0.13 NE
25105 0.32 NE
25110 -0.08 NE
25115 0.07 NE
25120 0.02 NE
25125 -0.83 GD
25130 0.19 NE
25135 -0.32 GD
25140 -0.54 GD
25145 -0.2 GD
25150 0.12 NE
25155 -0.5 GD
25160 -0.74 GD
25165 0.6 NE
25170 0.09 NE
25175 0.28 NE
25180 -0.06 NE
25185 -0.3 NE
25190 -0.52 GD
25195 -0.64 GD
25200 0.1 NE
25205 -0.78 GD
25210 0.04 NE
25215 -0.58 GD
25220 0.1 NE
25225 -0.25 GD
25230 -0.07 NE
25235 0.32 NE
25240 0.34 GA
25245 0.37 NE
25250 0.81 GA
25255 0.45 NE
25260 0.5 GA
25265 -0.16 NE
25270 -0.42 GD
25275 0.03 NE
25280 0.04 NE
25285 0.19 NE
25290 0.48 NE
25295 0.24 NE
25300 -0.56 GD
25305 0.27 NE
25310 0.08 NE
25315 -0.01 NE
25325 -0.12 NE
25330 0.38 NE
25335 -0.03 NE
25340 -0.24 GD
25345 -0.29 GD
25350 -0.47 GD
25355 -0.44 GD
25360 0.05 NE
25365 -0.45 GD
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Feature Log(RF) Class
25370 -0.18 GD
25375 -0.26 GD
25380 0.4 NE
25385 0.29 NE
25390 0.65 GA
25395 0.13 NE
25400 -0.02 NE
25405 0.21 NE
25410 -0.23 GD
25415 0.39 NE
25420 -0.03 NE
25425 -2.74 ES
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Appendix B

Protocol for preparing Tn-seq
libraries
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Tn-seq Library Preparation-Q5
Version 14

Short Code: tnlibV14

Prepared by: Will Matern
Last updated: 04/01/2019 at 11:01

Equipment and Reagents
• TE (Tris EDTA) buffer
• Covaris MicroTube
• Covaris S220
• Tris-Cl buffer
• Nanodrop
• Thermo-Fisher Fast DNA End Repair Kit (Cat. #K0771)
• AxyPrep beads
• Magnetic plate (for removing beads)
• 70% EtOH (Ethanol)
• ThermoPol buffer
• dNTPs (NEB)
• Taq DNA Polymerase (NEB #M0267)
• 100uM adapter oligo 1 (ATGATGGCCGGTGGATTTGTGNNANNANNNTG-

GTCGTGGTAT)
• 100uM adapter oligo 2 (pTACCACGACCA-NH2, 5 prime phosphorylated with

amino modifier at 3 prime)
• 50mM MgCl2
• Thermocycler
• Blunt/TA Ligase Master Mix (NEB #M0367S)
• Q5 Hot Start 2X Master Mix
• 10uM adapter primer (ATGATGGCCGGTGGATTTGTG)
• 10uM transposon primer (TAATACGACTCACTATAGGGTCTAGAG)
• SPRIselect beads
• 85% EtOH
• 10uM sol adapt [matches adapter, see below for sequence]
• 10uM sol mar mix [matches transposon, see below for sequence]

Sequencing Oligos
10uM sol mar mix consists of an equal parts mix of the following oligos diluted to 10uM
in Tris-Cl:

• AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCT CGGGGACTTATCAGCCAACC

• AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCT TCGGGGACTTATCAGCCAACC

• AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCT GATACGGGGACTTATCAGCCAACC

• AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCT ATCTACGGGGACTTATCAGCCAACC
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10uM sol adapt consits of one of the following oligos diluted to 10uM in Tris-Cl. Note
that if multiplexing, a different oligo for each sample on the run must be used. Each
oligo is constructed as one of four “backbones” with a different barcode (index) for dis-
tinguishing multiplexed samples. A mutliplexed run should consist of an equal molar
mix of each backbone (to increase base diversity)

• Backbone 1: CAAGCAGAAGACGGCATACGAGAT XXX XXX XX GTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTGTCAATGATGGCCGGTGGATT
TGTG

• Backbone 2: CAAGCAGAAGACGGCATACGAGAT XXX XXX XX GTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTCGTCCATGATGGCCGGTGGAT
TTGTG

• Backbone 3: CAAGCAGAAGACGGCATACGAGAT XXX XXX XX GTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTACAGTCCCATGATGGCCGGTG
GATTTGTG

• Backbone 4: CAAGCAGAAGACGGCATACGAGAT XXX XXX XX GTGACTG
GAGTTCAGACGTGTGCTCTTCCGATCTTAGTGGATGATGGCCGGTGGA
TTTGTG

Where “XXX XXX XX” are barcodes used to distinguish mutliplexed samples. Bar-
codes we’ve used include the following: “ACA CGA TC”, “AGC ATA CA”, “TGC TAC
GC”, “AGT CTA CA”, “CTC ATG CA”, “AGT TCG GA”, “CAT GAT CG”, “CGT
CAT CA”, “CGC GCG GT”, “GAC CTG CA”, “TGA GAC TT”, “AAG TAG AG”,
“GAG ATC TT”, “GCC GAT GT”, “TAC GTA CC”, “CAG TTC AT”, “TCC CTA
TA”, “GTC CGA TC”, “GGT TCA AC”, “CAC GTA CT”, “TGT CAA GT”, “TGT
TCC GA”, “TTC CGG AG”, “CGA TCA AG”, “CGA GGA GA”, “TGG GGG AC”,
“TGC CTC GG”, “TTA CAA CG”, “CGA AAC CC”, “ATC ACT CT”, “TTC AGC
AT”, “ACT TGG TG”. Note: The Illumina software to demultiplex will organize reads
by the reverse complement of the sequence included in the above oligos.

Procedure
Shear DNA

1. Combine 5 ug (or more) of transposon containing genomic DNA with TE buffer
to a total volume of 130uL in a Covaris MicroTube.

2. Settings for Covaris S220/E220 in NGSC for shearing to 500bp Note: These dif-
fer from settings suggested by Covaris. You should titrate the shear duration
the first time and run a gel to confirm proper size. Duty Cycle-5%, Intensity-
3, Cycle/Burst-200, Time-50 seconds. Degas water bath for at least 30 minutes.
Bath temperature should reach ∼5◦C before shearing.

3. Purify DNA with spin column. Elute into 43.5 uL of Tris-Cl.
4. Remove 1uL to quantify DNA with nanodrop.

End-repair
1. Kit name: Thermo-Fisher Fast DNA End Repair Kit (Cat. #K0771)
2. Add the following to a clean PCR tube:

DNA ∼3ug ( )
10X End Repair Buffer 5uL
DNA End Repair Enzyme Mix 2.5uL
Water ( )

Total Volume 50uL
3. Incubate at 20◦C on lab bench for 5 minutes (do not exceed 20 min).
4. Purify DNA with 90uL AxyPrep beads. Elute into 32 uL of Tris-Cl into a

PCR tube.
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AxyPrep Mag PCR Clean-up
1. Take AxyPrep Mag PCR Clean-up bead solution out of 4◦C. Mix well to homo-

geneously disperse the beads before use.
2. Add 1.8x volume of beads to sample (18uL per 10uL of sample).
3. Mix beads and sample by pipetting 5 times.
4. Incubate mixed samples for 5 minutes at room temperature.
5. Place samples onto magnetic plate for ∼ 1 minute, or until solution is clear.
6. Aspirate cleared solution from beads and discard.
7. Hint: Aspirate slowly from the very bottom of the tube and possibly leave a small

amount behind to avoid pipetting the beads.
8. Wash beads with 180uL of 70% EtOH. Let sit for 30 seconds before aspirating

ethanol and discarding. Repeat for a total of two washes.
9. Allow residual EtOH to evaporate for 1-5 minutes. Do not overdry!

10. Remove samples from magnetic plate. Add appropriate volume (1-2uL more
than you need) of appropriate elution buffer. Let sit for 1 min to elute DNA.

11. Place samples back on magnetic plate to separate beads from solution.
12. Transfer eluate to fresh tube.

A-tailing
1. Using tube from A-tailing combine:

DNA 32uL
10X ThermoPol Buffer 5uL
10mM dATP 10uL
Taq DNA Polymerase (NEB: #M0267) 3uL

Total Volume 50uL
2. Incubate tube at 72.0 ◦C for 45 minutes in a thermocycler.
3. Purify with 90uL AxyPrep beads. Elute into 13uL of Tris-Cl. Hint: You can

preload the fresh tube with adapter (see: Ligation of adapters).

Adapter Annealing
1. Combine the following in a .2mL PCR tube:

100uM Adapter Oligo 1 (TACCA...) 48uL
100uM Adapter Oligo 2 (ATGATG...) 48uL
50mM MgCl2 4uL

Total Volume 100uL
2. Using thermocycler, heat adapter mix to 95 ◦C for 10 minutes and then slowly

reduce temperature to 20◦C over 2 hours (∼ .6 ◦C/min).

Ligation of adapters
1. To a fresh PCR tube, add the following (add master mix last and mix well):

annealed adapter mix 2uL
(A-tailed DNA) 13uL
Blunt/TA Ligase Master Mix (NEB #M0367S) 15uL

Total Volume 30uL
2. Incubate 60min at room temperature (on bench).
3. Purify with 54uL AxyPrep beads. Elute into 21uL of Tris-Cl.
4. Quantify DNA with nanodrop. You should have .8-2 ug (40-100 ng/uL) of DNA.

PCR1: Himar1 + adapter
1. In a PCR tube combine the following. Hint: Add primers + mastermix to each

PCR well first. Then add water and DNA to each well and pipette up-and-down
to mix.
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Reagent ×1
Q5 Hot Start 2X Master Mix 25uL
10uM adapter primer 2.5uL
10uM transposon primer 2.5uL
Adapter Ligated DNA 800ng ( )
Water ( )

Total volume per tube 50uL

2. Amplify DNA in thermocycler using the following PCR protocol:
1 cycle 30s @ 98 ◦C
20 cycles 10s @ 98 ◦C

30s @ 65 ◦C
30s @ 72 ◦C

1 cycle 2min @ 72 ◦C
30 minutes

SPRIselect size selection (230bp-700bp)
1. Thoroughly shake SPRIselect bottle to resuspend beads. Add 27.5uL of beads to

50uL PCR sample.
2. Mix total reaction volume by pipetting 10 times and incubate at room temperature

for 1 minute.
3. Place tube on magnetic stand and allow beads to settle on magnet.
4. Transfer clear eluate to clean tube. Discard tubes with beads.
5. Thoroughly shake SPRIselect bottle to resuspend beads. Add additional 12.5uL

of beads to sample (total volume: 90uL).
6. Mix total reaction volume by pipetting 10 times and incubate at room temperature

for 1 minute.
7. Place tube on magnetic stand and allow beads to settle on magnet.
8. Discard supernatant by pipetting from the bottom of the tube.
9. With tube still on magnet, add 180uL of 85% ethanol and incubate at room

temperature for 30 seconds.
10. Discard ethanol supernatant by pipetting.
11. Allow residual ethanol to evaporate by leaving tube open on bench for 2 minutes.
12. Remove tube from magnet and add 50uL of Tris-Cl to elute DNA. Mix by

pipetting up and down 10 times and incubate at room temperature for 1 minute.
13. Place tube on magnetic stand and allow beads to settle.
14. Transfer clear eluate to eppendorf tube.
15. Measure samples with Nanodrop. Dilute all samples to between 0.4 - 1.25 ng/uL.

Note: Preliminary evidence suggests that Qubit greatly underestimates the amount
of DNA at this step (5-10 fold), possibly due to large amounts of ssDNA. Note:
Dilution is needed in order to avoid saturating the PCR#2 reaction (which causes
PCR bubbles - making BioA useless).

PCR2: Hemi-nested PCR and Addition of Illumina attachment sequences
(P5/P7)

1. In a PCR tube combine the following:
Reagent ×1
10uM sol adapt (matches adapter) 1uL
10uM sol mar mix (matches Tn) 1uL
Diluted size-selected DNA (0.4 - 1.25 ng/uL) 2uL
Q5 Hot Start 2X Master Mix 10uL
Water 6uL

Total volume per tube 20uL
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2. Amplify DNA in thermocycler using the following protocol:
1 cycle 30s @ 98 ◦C
10 cycles 10s @ 98 ◦C

30s @ 67 ◦C
30s @ 72 ◦C

1 cycle 2min @ 72 ◦C
15 minutes

3. Purify with 18uL SPRIselect beads. Elute into 20uL Tris-Cl.
4. Quantify DNA with Qubit or qPCR (Nanodrop is NOT reliable). DNA concen-

tration should be between 5 - 20 nM (and must be at least 2nM for sequencing).
If concentration is not high enough then increase input to PCR#2. Note: On
Agilent Bioanalyzer traces these libraries gave a small peak at about twice the
size of the rest of the library (1000bp vs 500bp). This is believed to be due to
some non-specific amplicon (likely linear amplification from the adapter sequence).
This secondary peak should not affect bulk quantitation via Qubit, Bioanalyzer,
or qPCR. Hypothetical ways to eliminate these peaks include increasing cycles of
PCR#2. Note: Qubit is faster and easier for quantitation.
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Appendix C

Hypersusceptibility predictions for
Mav

The tables on the following pages report predictions for the impact of disrupting each of the an-

notated genomic features in Mav strain MAC109 based on my collected Tn-seq data. Only sta-

tistically significant genes are reported (see Ch. 3 for thresholds). The four tables report the

effect size of removing the gene on bacterial viability after exposure to CLR (5.4ug/mL), MOX

(10ug/mL), RFB (0.63ug/mL), and EMB (2.1ug/mL) respectively. Negative values indicate the

mutant is hypersusceptible to the drug while positive values indicate hypertolerance. Each feature

is labelled with the final 5 digits of the locus tag provided in the Genbank file (see Ch.2 for refer-

ence). This number is unique for each feature and only excludes an invariant alphanumeric string to

distinguish the genomes from other in Genbank (ie it excludes “DFS55_” specific to the MAC109

genome). The second and third columns provides the logarithm, base 2, of the fold-change of the

mutant 12 and 48 hours of drug exposure, respectively (relative to no drug control). See chapter 3

for additional details. Computer-readable versions of these tables including additional information

are provided as associated files (AppendixC_FullTable_CLR.csv, AppendixC_FullTable_MOX.csv,

AppendixC_FullTable_RFB.csv, AppendixC_FullTable_EMB.csv).
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Feature CLR 12h CLR 48h
03215 -2.88 -2.99
10120 -1.17 -1.91
12730 -1.57 -1.65
08190 -1.57 -1.39
15065 -0.9 -1.39
10815 -1.82 -1.32
16070 -1.16 -1.23
00905 -0.64 -1.22
03080 -0.82 -1.22
19360 -0.84 -1.19
02655 -1.31 -1.17
25370 -0.68 -1.1
07105 -0.71 -1.06
18590 -0.82 -1.04
08650 -1.01 -1.03
12665 -0.58 -1.02
08575 -1.62 -1.01
02650 -1.85 -0.99
02660 -1.76 -0.99
14910 -0.68 -0.9
18980 -1.51 -0.89
07230 -0.73 -0.89
05615 -0.92 -0.88
05685 -1.06 -0.87
00975 -1.79 -0.86
02265 -0.61 -0.86
23995 -0.54 -0.85
18480 -1.36 -0.84
14565 -0.67 -0.81
20365 -1.0 -0.78
25405 -0.97 -0.73
07130 -0.67 -0.72
25420 -0.95 -0.72
02440 -0.66 -0.72
25375 -0.63 -0.72
22340 -0.75 -0.72
25385 -1.01 -0.71
25380 -1.04 -0.71
17715 -1.03 -0.7
14655 -0.51 -0.68
21330 -0.52 -0.6
22280 -0.58 -0.59
23935 -0.58 -0.59
20105 -0.57 -0.57
24640 -0.62 -0.55
00980 -0.94 -0.54
25400 -0.6 -0.53
02385 -0.58 -0.52
13810 -0.55 -0.51
15050 -0.91 -0.51
16845 0.72 0.66
20235 1.08 0.73
18380 0.55 0.86
22165 0.54 0.93

Feature CLR 12h CLR 48h
05640 0.58 1.0
23890 0.63 1.01
10665 1.01 1.09
05665 0.88 1.1
20040 0.64 1.1
21755 0.52 1.28
01380 0.79 1.31
03015 0.52 1.39
21750 0.62 1.4
10765 1.18 1.48
13800 0.8 1.65
10660 1.5 1.91
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Feature MOX 12h MOX 48h
23975 -2.67 -4.56
07350 -2.79 -4.47
10120 -3.1 -4.3
03885 -4.35 -3.65
15265 -2.05 -3.43
22595 -1.09 -3.18
14115 -1.42 -3.03
14295 -1.84 -2.97
07355 -1.61 -2.92
18595 -1.5 -2.73
10115 -1.61 -2.71
04840 -1.94 -2.69
22980 -1.93 -2.51
07940 -1.55 -2.5
23390 -1.56 -2.46
14300 -1.78 -2.43
08050 -1.36 -2.4
05660 -1.64 -2.4
05655 -1.65 -2.38
08530 -1.7 -2.31
20215 -1.47 -2.23
15065 -1.48 -2.21
21405 -0.57 -2.19
00905 -1.6 -2.14
20220 -1.67 -2.08
12730 -1.44 -1.92
19985 -1.17 -1.91
19835 -1.3 -1.9
21345 -1.6 -1.9
17245 -0.92 -1.9
19360 -1.17 -1.84
12835 -0.71 -1.83
00125 -0.97 -1.8
05695 -0.86 -1.78
22990 -0.62 -1.77
14275 -0.85 -1.73
09485 -1.72 -1.73
05375 -0.73 -1.71
07230 -1.16 -1.71
00355 -0.92 -1.69
00970 -1.69 -1.69
00015 -1.56 -1.68
05330 -0.94 -1.68
07105 -1.07 -1.66
12540 -0.88 -1.65
20210 -1.4 -1.64
07130 -1.09 -1.62
12530 -0.7 -1.62
18280 -1.1 -1.6
05720 -1.5 -1.59
07240 -0.94 -1.59
10110 -1.15 -1.57
00900 -0.99 -1.55
14810 -0.94 -1.54

Feature MOX 12h MOX 48h
14355 -0.7 -1.53
05715 -0.54 -1.52
13140 -0.81 -1.49
11275 -0.67 -1.48
16635 -1.0 -1.47
18275 -0.81 -1.45
12535 -0.84 -1.43
07235 -0.61 -1.43
22485 -0.5 -1.43
01570 -0.92 -1.42
10925 -0.98 -1.42
23895 -0.92 -1.4
04845 -0.96 -1.39
10470 -0.63 -1.37
05325 -0.6 -1.34
25390 -0.8 -1.32
23495 -0.79 -1.32
05685 -0.95 -1.31
03500 -0.64 -1.29
07785 -0.65 -1.25
18915 -0.74 -1.22
02950 -1.17 -1.22
16630 -1.23 -1.22
03200 -0.53 -1.22
02640 -0.78 -1.2
12510 -0.79 -1.17
14865 -0.69 -1.16
25370 -0.72 -1.13
12525 -0.58 -1.13
10400 -0.78 -1.12
10405 -0.69 -1.1
03125 -0.54 -1.08
00360 -0.72 -1.07
23740 -0.88 -1.06
12665 -0.74 -1.01
19670 -0.64 -1.01
02800 -0.64 -0.97
19515 -0.54 -0.97
19850 -0.52 -0.95
10575 -0.75 -0.95
04450 -0.53 -0.94
03530 -0.9 -0.94
20355 -0.62 -0.92
15050 -0.56 -0.89
02440 -0.6 -0.8
14095 -0.91 -0.78
14530 -0.51 -0.77
19520 -0.62 -0.69
18590 -0.7 -0.68
19220 -0.7 -0.67
14915 -0.63 -0.56
23935 -0.57 -0.53
05640 0.51 0.56
20040 0.75 1.32

Feature MOX 12h MOX 48h
10765 0.74 1.48
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Feature RFB 12h RFB 48h
03215 -2.75 -3.68
25390 -1.56 -2.47
15065 -1.43 -2.17
10120 -2.6 -2.03
25370 -1.1 -1.93
25360 -1.98 -1.89
10125 -2.36 -1.87
20215 -0.9 -1.87
15265 -1.64 -1.73
03080 -1.52 -1.72
11285 -0.95 -1.7
21345 -1.02 -1.69
18595 -1.22 -1.69
20220 -1.23 -1.64
19360 -1.11 -1.63
07350 -2.35 -1.62
23975 -2.92 -1.58
05660 -0.97 -1.55
12540 -0.5 -1.51
10470 -0.54 -1.47
12730 -1.55 -1.44
25410 -1.18 -1.37
22480 -0.84 -1.37
08215 -0.77 -1.34
00970 -1.19 -1.32
03200 -0.63 -1.3
25420 -1.06 -1.28
07130 -0.73 -1.19
24570 -0.83 -1.17
25385 -0.88 -1.17
05330 -0.73 -1.17
25405 -0.98 -1.16
25375 -0.73 -1.16
14660 -1.41 -1.15
00125 -0.57 -1.15
00355 -1.96 -1.09
14810 -0.77 -1.09
00360 -0.94 -1.08
10115 -1.89 -1.07
07355 -1.99 -1.06
05695 -0.95 -1.01
20210 -1.26 -1.0
07105 -0.58 -0.99
25365 -0.86 -0.98
18590 -1.78 -0.96
08650 -2.25 -0.93
23390 -1.3 -0.92
00900 -0.75 -0.9
08725 -0.5 -0.9
13390 -0.55 -0.89
07240 -0.88 -0.89
08530 -0.51 -0.88
10925 -1.52 -0.86
20500 -0.97 -0.82

Feature RFB 12h RFB 48h
14115 -1.82 -0.79
00905 -1.11 -0.79
19835 -0.86 -0.79
25395 -0.64 -0.79
25415 -0.94 -0.78
11595 -0.58 -0.77
02385 -0.63 -0.77
05655 -0.87 -0.75
22990 -0.76 -0.74
25400 -0.69 -0.74
02905 -0.58 -0.72
11005 -0.67 -0.71
00120 -0.84 -0.7
14275 -0.81 -0.68
15050 -0.58 -0.68
18840 -1.05 -0.67
02605 -0.59 -0.64
05190 -0.64 -0.61
05685 -1.46 -0.6
04985 -0.71 -0.6
19670 -0.69 -0.6
03055 -0.5 -0.59
20495 -1.09 -0.57
19940 -0.62 -0.56
07230 -0.89 -0.54
03890 -0.67 -0.54
02800 -0.72 -0.53
10575 -0.93 -0.52
08665 0.78 0.52
19605 0.52 0.58
02500 0.54 0.73
10205 0.87 0.81
10665 0.94 0.83
18875 0.71 0.84
01580 0.63 0.88
21750 0.69 0.91
14525 0.58 0.94
19735 0.89 0.99
10325 0.57 1.09
02115 0.61 1.21
21365 0.75 1.23
07565 0.9 1.34
20040 1.18 1.4
05640 1.44 1.41
12705 0.65 1.43
05645 1.19 1.55
03545 1.19 1.76
10660 1.41 1.93
16845 1.39 2.19
10765 2.01 2.47
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Feature EMB 12h EMB 48h
00905 -0.72 -1.4
10120 -0.54 -1.3
03885 -0.68 -1.2
00120 -0.87 -1.19
09485 -0.98 -1.14
19515 -0.83 -1.1
12730 -0.56 -0.83
00360 -0.59 -0.82
08650 -0.54 -0.72
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Appendix D

Hypersusceptibility predictions for
Mtb

The tables on the following pages report predictions for the impact of disrupting each of the an-

notated genomic features in Mtb strain H37Rv based on collected Tn-seq data. Only statistically

significant genes are reported (see Ch. 4 for thresholds). The four tables report the effect size of

removing the gene on bacterial viability after exposure to INH (1.0ug/mL) or RMP (4.0ug/mL).

Tables for the rich medium condition are printed first followed by tables for the starvation con-

dition. Negative values indicate the mutant is hypersusceptible to the drug while positive values

indicate hypertolerance. The first column provides the name of each feature. The second and sub-

sequent columns provides the logarithm, base 2, of the fold-change of the mutant after 6d (for rich

medium) or 7d and 14d (for starvation) relative to no drug control. See chapter 4 for additional

details. Computer-readable versions of these tables including additional information are provided

as associated files (AppendixD_FullTable_7H9_INH.csv, AppendixD_FullTable_7H9_RMP.csv,

AppendixC_FullTable_PBS_INH.csv, AppendixC_FullTable_PBS_RMP.csv).
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Feature INH
Rv2428 -1.83
Rv1901 -1.22
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Feature RMP
Rv0994 -3.25
Rv0049 -2.99
Rv2179c -2.72
Rv0472c -2.29
Rv1433 -2.08
Rv2047c -1.87
Rv2224c -1.80
Rv3267 -1.79
Rv2525c -1.78
Rv2190c -1.69
Rv0862c -1.68
Rv0999 -1.65
Rv1411c -1.65
Rv0503c -1.64
Rv2781c -1.58
Rv1244 -1.56
Rv1821 -1.54
Rv3207c -1.52
Rv1860 -1.50
Rv1435c -1.49
Rv0202c -1.49
Rv1127c -1.46
Rv3717 -1.46
Rv0861c -1.45
Rv1836c -1.45
Rv1126c -1.44
Rv0820 -1.42
Rv3822 -1.39
Rv2363 -1.35
Rv3811 -1.32
Rv1006 -1.28
Rv0497 -1.27
Rv3005c -1.25
Rv2700 -1.25
Rv1410c -1.23
Rv0929 -1.23
Rv1884c -1.22
Rv1566c -1.22
Rv2171 -1.16
Rv0930 -1.16
Rv1886c -1.13
Rv2176 -1.11
Rv1272c -1.07
Rv0129c -1.05
Rv1273c -1.05
Rv1683 -1.05
Rv0642c -1.04
Rv1096 -1.03
Rv3330 -0.99
Rv0309 -0.99
Rv3922c -0.94
Rv3682 -0.94
Rv0474 -0.92
Rv0928 -0.90

Feature RMP
Rv3630 -0.87
Rv3919c -0.87
Rv1608c -0.86
Rv3311 -0.86
Rv2248 -0.84
Rv3818 -0.83
Rv1209 -0.82
Rv1421 -0.82
Rv2463 -0.82
Rv1282c -0.82
Rv3719 -0.81
Rv2696c -0.80
Rv2048c -0.80
Rv0007 -0.79
Rv2170 -0.77
Rv1280c -0.77
Rv1281c -0.72
Rv1607 -0.72
Rv1555 -0.72
Rv3803c -0.71
Rv2672 -0.71
Rv2197c -0.71
Rv0179c -0.69
Rv2553c -0.68
Rv0805 -0.67
Rv3178a -0.66
Rv1246c -0.66
Rv3600c -0.66
Rv0111 -0.65

Rv0500A -0.65
Rv1159 -0.65
Rv2684 -0.65
Rv3632 -0.65
Rv3271c -0.64
Rv3910 -0.64
Rv0961 -0.64
Rv2931 -0.63
Rv2508c -0.62
Rv0996 -0.61
Rv3779 -0.61
Rv1459c -0.61
Rv2462c -0.59
Rv1220c -0.58
Rv2398c -0.58
Rv0051 -0.58
Rv0204c -0.58
Rv0017c -0.57
Rv1698 -0.57
Rv2930 -0.56
Rv0954 -0.56
Rv2214c -0.56
Rv0191 -0.55
Rv3775 -0.55
Rv0432 -0.55

Feature RMP
Rv0201c -0.55
Rv1420 -0.54
Rv2933 -0.54
Rv2864c -0.54
Rv1478 -0.54
Rv3256c -0.53
Rv0235c -0.53
Rv3820c -0.53
Rv3310 -0.53
Rv1541c -0.53
Rv0009 -0.52
Rv0483 -0.51
Rv1057 -0.50
Rv3869 0.50
Rv0392c 0.51
Rv3057c 0.54
Rv3873 0.56
Rv1070c 0.57
Rv0092 0.60
Rv1333 0.60
Rv1197 0.61
Rv2334 0.61
Rv0362 0.61
Rv1334 0.64
Rv0812 0.65
Rv2372c 0.65
Rv3316 0.67
Rv0167 0.67

Rv0530A 0.69
Rv2404c 0.69
Rv3876 0.72
Rv1337 0.72
Rv0056 0.74
Rv2772c 0.74
Rv2970c 0.74
Rv3615c 0.74
Rv2347c 0.75
Rv0157 0.75
Rv0178 0.76
Rv3777 0.77
Rv1486c 0.77
Rv1956 0.78
Rv0238 0.79
Rv2222c 0.80
Rv3871 0.82
Rv3269 0.83
Rv3135 0.85
Rv2722 0.85
Rv2335 0.85
Rv1908c 0.85
Rv1008 0.86
Rv2326c 0.88
Rv1129c 0.90
Rv0169 0.91

Feature RMP
Rv2702 0.91
Rv0175 0.94
Rv3842c 0.94
Rv1009 0.94
Rv1335 0.94
Rv0905 0.94
Rv2392 0.95
Rv0734 0.95
Rv1745c 0.95
Rv0171 0.99
Rv1030 0.99
Rv3421c 1.00
Rv0513 1.01
Rv1029 1.01
Rv2173 1.02
Rv0172 1.03
Rv0177 1.03
Rv3270 1.05
Rv0818 1.10
Rv2782c 1.10
Rv1130 1.10
Rv0199 1.14
Rv2721c 1.15
Rv0168 1.15
Rv0174 1.15
Rv1336 1.16
Rv2709 1.16
Rv0173 1.17
Rv3723 1.18
Rv1455 1.18
Rv0508 1.21
Rv1013 1.24
Rv0176 1.24
Rv0170 1.25
Rv1112 1.31
Rv1691 1.32
Rv1170 1.32
Rv0655 1.32
Rv0819 1.33
Rv2391 1.49
Rv1387 1.57
Rv3419c 1.57
Rv0200 1.61
Rv3484 1.69
Rv1386 2.01
Rv2140c 2.13
Rv2691 2.15
Rv2692 2.18
Rv2694c 2.18
Rv1957 2.26
Rv3200c 2.84
Rv2690c 5.56
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Feature INH 7d INH 14d
Rv1901 -3.15 -3.22
Rv0767c -2.29 -2
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Feature RMP 7d RMP 14d
Rv0049 -1.45 -1.81
Rv2374c -1.47 -1.68
Rv0819 -1.44 -1.67
Rv3680 -1.12 -1.40
Rv3923c -1.10 -1.36
Rv2179c -1.32 -1.30
Rv0998 -1.24 -1.25
Rv2051c -1.33 -1.23
Rv2733c -1.55 -1.19
Rv2392 -1.29 -1.17
Rv2709 -1.26 -1.16
Rv1908c -0.88 -1.15
Rv0994 -1.27 -1.01
Rv0956 -1.11 -0.95
Rv3624c -0.96 -0.92
Rv0238 -0.65 -0.90
Rv3261 -0.88 -0.87
Rv1836c -1.14 -0.84
Rv1328 -0.57 -0.82
Rv2731 -1.00 -0.81
Rv1638 -0.74 -0.79
Rv1691 -0.75 -0.78
Rv0003 -0.52 -0.74
Rv0949 -1.07 -0.74
Rv3024c -1.01 -0.72
Rv3160c -0.80 -0.70
Rv1624c -0.53 -0.69
Rv1633 -0.59 -0.68
Rv2793c -0.80 -0.66
Rv2737c -0.80 -0.65
Rv1909c -0.58 -0.64
Rv2391 -0.72 -0.63
Rv0861c -0.76 -0.63
Rv0999 -0.82 -0.60
Rv2672 -1.01 -0.59
Rv0680c -0.57 -0.56
Rv3544c -0.74 -0.55
Rv0530A -0.74 -0.55
Rv3241c -0.57 -0.55
Rv2047c -1.16 -0.54
Rv2048c -0.92 -0.50
Rv0503c 0.54 0.52
Rv0761c 1.46 0.52
Rv2536 1.73 0.57
Rv1016c 1.82 0.58
Rv0696 1.49 0.59
Rv2500c 0.76 0.64
Rv0175 2.15 0.64
Rv0172 2.11 0.73
Rv1211 1.69 0.73
Rv0173 2.20 0.75
Rv1017c 2.05 0.75
Rv0167 1.87 0.76
Rv0168 1.94 0.77

Feature RMP 7d RMP 14d
Rv0694 1.23 0.77
Rv0169 1.96 0.77
Rv0171 1.98 0.77
Rv0177 2.10 0.78
Rv0174 2.26 0.78
Rv0176 2.06 0.78
Rv0170 2.05 0.80
Rv0693 1.66 0.81
Rv3311 1.41 0.85
Rv0692 1.87 0.86
Rv0513 3.12 0.92
Rv0863 0.70 0.94
Rv3331 0.61 0.94
Rv0178 2.27 0.95
Rv2173 0.73 0.98
Rv0989c 2.77 1.01
Rv2633c 1.76 1.02
Rv0458 2.30 1.05
Rv1183 0.52 1.12
Rv0678 1.24 1.43
Rv2690c 3.26 1.63
Rv2199c 2.53 2.42
Rv0199 4.50 2.53
Rv0200 4.69 2.56
Rv0655 5.03 3.01
Rv3723 4.94 3.04
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Appendix E

Essential genes shared between
Mav and Mtb

The table on the next page reports genes found to be essential in both Mav and Mtb. A computer-

readable version of this table including additional information is provided as an associated file

(AppendixE_FullTable.csv).
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MAC109 Name H37Rv Name
DFS55_00005 Rv0001
DFS55_00025 Rv0005
DFS55_00030 Rv0006
DFS55_00095 Rv0014c
DFS55_00280 Rv0041
DFS55_00340 Rv0046c
DFS55_00440 Rv3907c
DFS55_01330 Rv0164
DFS55_01590 Rv0206c
DFS55_01700 Rv0224c
DFS55_01705 Rv0225
DFS55_01715 Rv0227c
DFS55_01805 Rv0236c
DFS55_02315 Rv0334
DFS55_02330 Rv0338c
DFS55_02375 Rv0350
DFS55_02490 Rv0364
DFS55_02525 Rv0357c
DFS55_02675 Rv0415
DFS55_02760 Rv0423c
DFS55_02880 Rv0440
DFS55_03250 Rv0509
DFS55_03265 Rv0512
DFS55_03345 Rv0524
DFS55_03835 Rv0635
DFS55_03840 Rv0636
DFS55_03860 Rv0639
DFS55_03955 Rv0667
DFS55_03960 Rv0668
DFS55_04035 Rv0684
DFS55_04040 Rv0685
DFS55_04125 Rv0700
DFS55_04130 Rv0701
DFS55_04135 Rv0702
DFS55_04165 Rv0708
DFS55_04230 Rv0718
DFS55_04235 Rv0719
DFS55_04320 Rv0732
DFS55_04460 Rv3464
DFS55_04475 Rv3462c
DFS55_04485 Rv3460c
DFS55_04495 Rv3458c
DFS55_04560 Rv3443c
DFS55_04570 Rv3441c
DFS55_04605 Rv3436c
DFS55_04630 Rv3423c
DFS55_04705 Rv3411c
DFS55_04745 Rv3396c
DFS55_04920 Rv3336c
DFS55_05180 Rv3285
DFS55_05205 Rv3280
DFS55_05300 Rv3266c
DFS55_05305 Rv3265c
DFS55_05310 Rv3264c

MAC109 Name H37Rv Name
DFS55_05355 Rv3257c
DFS55_05365 Rv3255c
DFS55_05400 Rv3248c
DFS55_05405 Rv3247c
DFS55_05435 Rv3240c
DFS55_05690 Rv3206c
DFS55_05740 Rv3198c
DFS55_06620 Rv3105c
DFS55_06645 Rv3100c
DFS55_07025 Rv3053c
DFS55_07030 Rv3052c
DFS55_07035 Rv3051c
DFS55_07060 Rv3048c
DFS55_07080 Rv3043c
DFS55_07285 Rv3014c
DFS55_07330 Rv3011c
DFS55_07345 Rv3009c
DFS55_07410 Rv2992c
DFS55_07470 Rv2981c
DFS55_07555 Rv2969c
DFS55_08005 Rv2883c
DFS55_08045 Rv2870c
DFS55_08180 Rv2845c
DFS55_08210 Rv2839c
DFS55_08285 Rv2786c
DFS55_08295 Rv2783c
DFS55_08415 Rv2764c
DFS55_08470 Rv2748c
DFS55_08690 Rv2703
DFS55_08775 Rv2682c
DFS55_08795 Rv2678c
DFS55_08800 Rv2677c
DFS55_08805 Rv2676c
DFS55_08825 Rv2673
DFS55_09180 Rv2614c
DFS55_09195 Rv2611c
DFS55_09330 Rv2580c
DFS55_09395 Rv2572c
DFS55_09475 Rv2555c
DFS55_09540 Rv2540c
DFS55_09545 Rv2539c
DFS55_09550 Rv2538c
DFS55_09575 Rv2533c
DFS55_09675 Rv1383
DFS55_09680 Rv1384
DFS55_09715 Rv1392
DFS55_09750 Rv1402
DFS55_09795 Rv1412
DFS55_09800 Rv1415
DFS55_09980 Rv1449c
DFS55_10025 Rv1461
DFS55_10030 Rv1462
DFS55_10035 Rv1463
DFS55_10100 Rv1475c

MAC109 Name H37Rv Name
DFS55_10145 Rv1484
DFS55_10150 Rv1485
DFS55_10445 Rv1536
DFS55_10500 Rv1547
DFS55_10730 Rv1609
DFS55_10745 Rv1612
DFS55_10750 Rv1613
DFS55_10755 Rv1614
DFS55_10845 Rv1630
DFS55_11030 Rv1650
DFS55_11035 Rv1652
DFS55_11045 Rv1654
DFS55_11050 Rv1655
DFS55_11065 Rv1658
DFS55_11070 Rv1659
DFS55_11215 Rv1689
DFS55_11245 Rv1695
DFS55_11265 Rv1699
DFS55_22305 Rv3596c
DFS55_12735 Rv1837c
DFS55_12795 Rv1854c
DFS55_14110 Rv2051c
DFS55_14370 Rv2121c
DFS55_14550 Rv2139
DFS55_14665 Rv2145c
DFS55_14675 Rv2147c
DFS55_14705 Rv2152c
DFS55_14710 Rv2153c
DFS55_14735 Rv2158c
DFS55_14740 Rv2163c
DFS55_14750 Rv2165c
DFS55_14785 Rv2174
DFS55_14825 Rv2182c
DFS55_14880 Rv2192c
DFS55_14885 Rv2193
DFS55_14895 Rv2195
DFS55_14900 Rv2196
DFS55_14930 Rv2201
DFS55_15035 Rv2220
DFS55_15210 Rv2242
DFS55_15225 Rv2245
DFS55_16075 Rv2343c
DFS55_16105 Rv2357c
DFS55_16125 Rv2361c
DFS55_21315 Rv0824c
DFS55_16660 Rv2421c
DFS55_16725 Rv2438c
DFS55_16750 Rv2439c
DFS55_16785 Rv2447c
DFS55_16790 Rv2448c
DFS55_16825 Rv2457c
DFS55_16935 Rv2477c
DFS55_17230 Rv2524c
DFS55_17765 Rv1327c
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MAC109 Name H37Rv Name
DFS55_17770 Rv1326c
DFS55_17900 Rv1310
DFS55_17905 Rv1309
DFS55_17910 Rv1308
DFS55_17915 Rv1307
DFS55_17940 Rv1302
DFS55_17955 Rv1299
DFS55_17965 Rv1297
DFS55_17975 Rv1296
DFS55_17985 Rv1294
DFS55_17990 Rv1293
DFS55_17995 Rv1292
DFS55_18395 Rv1254
DFS55_18675 Rv1202
DFS55_18690 Rv1201c
DFS55_18870 Rv1166
DFS55_19275 Rv1098c
DFS55_19300 Rv1094
DFS55_19305 Rv1093
DFS55_19310 Rv1092c
DFS55_19580 Rv1023
DFS55_19620 Rv1017c
DFS55_19680 Rv1007c
DFS55_19995 Rv0982
DFS55_20065 Rv0957
DFS55_20385 Rv0884c
DFS55_21410 Rv0811c
DFS55_21420 Rv0809
DFS55_21425 Rv0808
DFS55_21440 Rv0803
DFS55_21540 Rv0780
DFS55_21555 Rv0777
DFS55_22220 Rv3580c
DFS55_22235 Rv3583c
DFS55_22255 Rv3587c
DFS55_22315 Rv3598c
DFS55_22330 Rv3602c
DFS55_22440 Rv3628
DFS55_22465 Rv3634c
DFS55_22470 Rv3635
DFS55_22490 Rv3646c
DFS55_22950 Rv3709c
DFS55_22970 Rv3712
DFS55_22975 Rv3713
DFS55_23010 Rv3721c
DFS55_23015 Rv3722c
DFS55_23710 Rv3781
DFS55_23715 Rv3782
DFS55_23745 Rv3790
DFS55_23750 Rv3791
DFS55_23755 Rv3792
DFS55_23760 Rv3793
DFS55_23780 Rv3794
DFS55_23785 Rv3795

MAC109 Name H37Rv Name
DFS55_23810 Rv3799c
DFS55_23815 Rv3800c
DFS55_23820 Rv3801c
DFS55_23840 Rv3805c
DFS55_23845 Rv3806c
DFS55_23855 Rv3808c
DFS55_23860 Rv3809c
DFS55_23930 Rv3834c
DFS55_24050 Rv3858c
DFS55_24055 Rv3859c
DFS55_24510 Rv3909
DFS55_24515 Rv3910
DFS55_24550 Rv3915
DFS55_24580 Rv3921c
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