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Abstract

As we have witnessed the rapid growth of statistical machine learning over the

past decades, the ability of processing big and corrupted data becomes increasingly

important. One of the major challenges is that structured data, such as images, videos

and 3D point clouds, involved in many application scenarios are high-dimensional.

Conventional techniques usually approximate the high-dimensional data with low-

dimensional structures by fitting the data with one or more linear subspaces. However,

their theory and algorithms are restricted to the setting in which the underlying

subspaces have a low relative dimension compared to the ambient space.

This thesis attempts to advance the understanding of subspace learning for data

arising from subspaces of high relative dimension, as well as develop efficient algorithms

for handling big and corrupted data. The first major contribution of this thesis is

a theoretical analysis that extends Dual Principal Component Pursuit (DPCP), a

non-convex approach that learns a hyperplane in the presence of noiseless data,

to learn a subspace of any dimension with noisy data. We provide geometric and

probabilistic analyses to characterize how the principal angles between the global

solution and the orthogonal complement of the subspace behave as a function of the
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noise level. Moreover, we improve the DPCP theory in multi-hyperplane case with a

more interpretable geometric analysis and a new statistical analysis.

The second major contribution of this thesis is the development of a linearly

convergent method for non-convex optimization on the Grassmannian. We show that

if the objective function satisfies a certain Riemannian regularity condition (RRC)

with respect to some point in the Grassmannian, then a Projected Riemannian Sub-

Gradient Method (PRSGM) converges at a linear rate to that point. In particular,

we prove that the DPCP problem for learning a single subspace satisfies the RRC

and PRSGM converges linearly to a neighborhood of the orthogonal complement of

the subspace with error proportional to the noise level. We also extend the RRC to

DPCP for a union of hyperplanes and prove the linear convergence of PRSGM to a

specific hyperplane. Finally, both synthetic and real experiments demonstrate the

superiority of the proposed method.

Primary Reader and Advisor: Daniel P. Robinson

Secondary Reader: René Vidal
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Chapter 1

Introduction

Many real world applications in machine learning, computer vision, and signal pro-

cessing aim to discover certain structures from a large amount of collected data that

are usually of high dimensions. For example, irrelevant information removal from web

image search results [19, 71, 91, 135] involve distinguishing the query intent among

all the retrieved images, whose dimension can be hundreds to millions according to

the number of pixels (resolution) of an image by viewing it as a long vector. Another

closely related example is video abnormal event discovery [27, 98] in which the data

are of even higher dimensions since a video is treated as a sequence of images. For

these applications, however, directly working in the high-dimensional raw space is both

inefficient and unnecessary. It is expected that a certain hidden structure associated

with the data can be well-represented using features with a lower dimension due to

the fact that such structures impose additional constraints on the data, and thus the

problem is transformed into learning a compact representation of the dataset.
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Among the various techniques for modeling specific structures of high-dimensional

data, perhaps the simplest one is as linear subspaces, which assumes that the data

points are drawn from one or more linear subspaces with dimension fewer than that of

the ambient (raw) space. Despite its simplicity, it has been shown effective in a broad

range of application scenarios, such as dimensionality reduction [53, 117], human

face identification and clustering [7, 37], motion segmentation [125, 127], multiple

view geometry [2] and so on. We organize this chapter as follows. In Section 1.1,

we introduce the data modeling for learning linear subspaces from corrupted data

as well as its example applications. Next, in Section 1.2, we discuss the challenges

when the underlying subspaces are of high relative dimension, namely the subspace

dimension is high relative to the ambient dimension, which is no longer appropriately

tackled by the prevalent methods designed for the low relative dimension regime. We

finally summarize the main contributions of this thesis in Section 1.3, and provide the

notation used throughout the thesis in Section 1.4.

1.1 Learning linear subspaces from corrupted data

1.1.1 Data modeling

A rule of thumb in dealing with high-dimensional data is that we aim to find ways to

interpret them with fewer degree of freedoms. This not only facilitates the success

of many real world applications, but also provides insights on characteristics of the

underlying structure of the datasets. In particular, we are interested in fitting one or
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more linear subspaces to data points, depending on the specific task and dataset.

Inliers are the data points that exactly lie in the underlying subspaces that we aim

to identify, while outliers are the data points that do not exhibit the linear structure.

The existence of outliers corrupts the datasets and adversely affects the results of data

analysis methods. Besides outliers, another form of corruption in real world data is

noise, which means that the inliers are perturbed so that they no longer exactly lie on

but close to the subspaces, i.e., they are noisy inliers. Note that noise usually comes

from systematic errors [132, 150], e.g., measurement and sensor error, and is difficult

to be eliminated in the data gathering stage. The above two forms of corruption in

real world datasets pose significant challenges to the subspace recovery task.

Single subspace learning. In the simplest case, inlier points are drawn from

a single subspace, so that the problem is to robustly learn the underlying subspace

in the presence of both outliers and noise. For example, it is well-known [7] that

images of a human face under different lighting conditions approximately lie in a

9-dimensional linear subspace, and thus screening the face pictures of an individual

from other irrelevant images appears as an outlier removal task. Another example in

computer vision is the robust homography estimation from image correspondences

across multiple views [2, 29], which can be cast as robust subspace learning with

dimension 8 and 26 for two and three views, respectively. In fact, Principal Component

Analysis (PCA) [52, 55, 84] is a classical solution for learning such a linear subspace

from data, and it enjoys a closed form solution via the Singular Value Decomposition

(SVD). PCA works well even when the data is noisy, however, the least square loss
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employed in PCA causes its performance to be sensitive to outliers, and thus limits

its performance to a large extent. However, there are many robust PCA methods [9,

11, 13, 28, 61, 75, 76, 94, 119, 136] that have been developed over the past decade.

Multiple subspaces clustering. In may cases, it is inappropriate to model

the dataset with a single subspace; instead, inlier points are assumed to be drawn

from a union of subspaces, and the goal is to estimate the underlying subspaces

and cluster the data points into their respective groups. For example, a dataset

consisting of face images from more than one human subject is naturally treated as a

union of subspaces model [7]. As another example, point trajectories corresponding

to the motions of multiple rigid bodies in a video lie approximately in a union of

3-dimensional affine subspaces [104, 105]. Many other real world applications involve

exploring such multi-subspace structure, including document clustering [97], motion

segmentation [125, 127], 3D point cloud analysis [90, 92], gene expressions [79, 115]

and so on. Similar to single subspace learning, this is an unsupervised problem so

that the hidden structures need to be automatically learned from data. Nevertheless,

unlike the former, clustering multiple subspaces is more difficult due to the potentially

complicated relative arrangement of the underlying subspaces. Although numerous

techniques have been developed in this area, the most well-known approaches are

based on sparse or low-rank representations of the data [35, 36, 37, 69, 70, 72, 124,

141, 142, 143], and we refer the reader to [123, 127] for more details.
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1.1.2 Example applications

We now introduce two examples of robustly learning linear subspaces from 3D point

cloud data, namely 3D roadplane detection (Section 1.1.2.1) and 3D plane clustering

from indoor scenes (Section 1.1.2.2).

1.1.2.1 3D roadplane detection

In the task of 3D road plane detection, we are given a 3D point cloud of a road scene

and the goal is to learn an affine plane A = H+ t ⊂ R3 as a model for the road. This

is important in autonomous driving applications. Here H is a plane through the origin

with normal vector b and t is its translation with respect to the origin; this latter is

the center of the laser sensor. Hence the task is to estimate b and t, which are taken

to be co-linear in order to resolve the inherent ambiguity in estimating t. In turn, this

can be converted to a linear subspace learning problem by working in homogeneous

coordinates, i.e., by embedding A into the linear hyperplane H̄ ⊂ R4 with normal

vector b̄ = [b⊤ − t⊤b]⊤, through the mapping x ↦→ [x⊤ 1]⊤. Figure 1.1 gives an

illustration of the road detection challenge of the KITTI dataset [40], in which the

image data and the depth information for each pixel are collected by a laser scanner.

The depth data can then be used to reconstruct a 3D point cloud corresponding to

the scene. Note that this is exactly a real world application of robust single subspace

learning since the 3D point cloud datasets are usually noisy and corrupted by gross

outliers due to the imperfect depth estimation of the laser sensor.

5



Figure 1.1. An illustration of the 3D roadplane detection problem. The raw image is from
KITTY-CITY-71 [40]. We annotate the frame such that the (noisy) inlier points associated
with the roadplane are in blue and outlier points are in red. The goal is to identify the
underlying roadplane.

1.1.2.2 3D plane clustering from indoor scenes

An interesting problem is that of fitting multiple planes to 3D indoor scene data, which

usually appears in robotics applications where a robot navigates an indoor environment,

e.g., kitchens and bedrooms, and reasons about the interior building structures, e.g.,

desktops and walls. Although the planes associated with an indoor scene are affine in

R3, we work in homogeneous coordinates by adding a 1 as a fourth coordinate, which is

similar to the practice used for single roadplane detection (see Section 1.1.2.1), and the

task is then transformed into a multi-hyperplane clustering problem in R4. Figure 1.2

gives an illustration with frames from the real dataset NYUdepthV2 [92], for which

the indoor RGB images with depth information are collected by a Microsoft kinect

sensor. Again, this problem is challenging not only because it involves the interplay of

more than one underlying subspace but also because of the considerable amount of

noise introduced during the collection of the real data.
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Figure 1.2. An illustration of the 3D plane clustering from an indoor scene. The raw
images are from NYUdepthV2 [92]. We annotate the frames such that the (noisy) inlier
points associated with each plane are in the same color. The goal is to learn the underlying
plane arrangement given the 3D point cloud data.

1.2 High relative dimension challenge

Although the problem of fitting one or more subspaces to a dataset has a long history

(plus numerous robust subspace recovery methods [62] and subspace clustering meth-

ods [123, 127] have emerged over the past twenty years), the existing methods typically

assume that high-dimensional data can be well-approximated by low-dimensional

structures. In other words, they require the dimension of the underlying subspaces to

be relatively low compared to the dimension of the ambient space. This assumption

advances the derivation of strong theoretical results and the development of efficient

implementations since inliers of a subspace with low-dimensional structure are more

well-separated from inliers of other subspaces as well as outliers in a fixed ambient

space. For example, the success of sparse or self-expressive subspace clustering ap-

proaches [35, 36, 37, 72, 124, 141, 142, 143] rely on the property that each data point
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can be represented by a linear combination of a few other points belonging to the same

subspace. However, this property is no longer valid in the high relative dimension

regime, where an underlying subspace itself is high-dimensional, e.g., a hyperplane,

since it is difficult to find a sparse representation of the inlier points.

As already mentioned before, many computer vision applications involve learning

a single hyperplane (e.g., pose estimation in multi-view geometry [2], detection of

planar structures in 3D point clouds [40, 92]), or clustering multiple hyperplanes

(e.g., motion segmentation [105, 125, 128, 130], hybrid system identification [4, 129],

sparse component analysis [41, 50, 137]). For these scenarios, simply applying the

methods designed for the low relative dimension setting is ineffective because the

theory and algorithms do not fit the hyperplane case. There exist methods, such as

K-subspaces [1, 10, 146], that work reasonably well in the high relative dimension

regime, while their theoretical support is limited due to the non-convex nature of the

objective problem. On the other hand, methods like Algebraic Subspace Clustering

(ASC) [126, 127, 129] admit strong theoretical guarantees, but they suffer from an

inherent combinatorial complexity that prohibits them from being applied to high-

dimensional datasets. Indeed, there is relatively littler work in the literature that

directly tackles the high relative dimension regime and provides justifiable theory and

convergent algorithms that scale well to the data size.
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1.3 Thesis contributions

In this thesis, we develop theory and algorithms for learning subspaces of high relative

dimension. In particular, we extend and improve the existing results of Dual Principal

Component Pursuit (DPCP) [106, 109, 111, 112, 113, 152, 153], a state-of-the-art

non-convex optimization based method primarily designed for learning hyperplanes.

To the best of our knowledge, DPCP is the only method that directly focuses on the

high relative dimension regime. In the following, we summarize the main contributions

of this thesis. We remark that the bulk of this work comes from [30, 31, 32, 151].

1.3.1 Geometric and probabilistic analysis of noisy DPCP

DPCP is originally designed for learning a single hyperplane containing the inliers in

the presence of outliers [106, 111, 112]. It is formulated as a non-convex ℓ1 optimization

problem on the sphere, which searches for a basis element of the orthogonal complement

of the subspace, i.e., one normal vector to the underlying subspace. The main

theoretical advantage of DPCP that distinguishes it from existing robust subspace

recovery methods is that it can tolerate as many outliers as the square of the number

of inliers [152, 153], while other methods can only provably handle a number of outliers

on the same order of the number of inliers. However, the analyses of DPCP assume

outliers are the only form of corruption, and its behavior is unclear when data is

further contaminated by noise as is the case in real data sets.

In Chapter 3, we establish a global optimality theory for noisy DPCP that holds

when the inlier points are only assumed to lie close to the underlying subspace S
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due to the existence of noise. We provide a geometric analysis that reveals that the

global minimizers of the non-convex noisy DPCP problem are perturbed away from

the orthogonal complement of the inlier subspace (i.e., S⊥) by an amount proportional

to the noise level, hence generalizing the results of DPCP in the noiseless case. We

also give a probabilistic analysis that further interprets the results and shows that

the DPCP approach is still able to handle O((#inliers)2) outliers even for noisy data.

Finally, we show that the global optimality conditions for noisy DPCP are much

tighter compared to those required for other closely related state-of-the-art methods.

1.3.2 Extension of DPCP for learning a subspace with codi-

mension larger than one

As already mentioned, the DPCP approach is based on an optimization problem over

the sphere that aims at finding a normal vector to a single hyperplane that contains

the inliers. When the codimension of the underlying subspace is larger than 1, i.e.,

not a hyperplane, one could consider computing the subspace as the intersection of

many orthogonal hyperplanes learned by DPCP in a recursive fashion. In practice,

this approach sequentially finds a new basis element of the space orthogonal to the

subspace, which is computationally expensive and lacks any theoretical guarantees.

In Chapter 3, we extend the DPCP approach to the case of learning a subspace S

with codimension larger than 1 by simultaneously computing the entire basis of the

orthogonal complementary subspace (we call this a holistic approach) by solving a

non-convex optimization problem over the Grassmannian [34]. For this new approach,
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we provide geometric and probabilistic analyses related to global optimality in both

noiseless and noisy settings. For noiseless data, under certain conditions, we show

that any global solution of the holistic DPCP optimization problem is an orthonormal

basis of S⊥. If the dataset contains noise, we show that the subspace angle between

the global solution and S⊥ is upper bounded by an amount that is proportional to

the noise level. In both cases, we derive probabilistic arguments showing that the

holistic DPCP approach can tolerate O((#inliers)2) outliers, which is superior to other

existing methods that can handle at best O(#inliers) outliers in theory.

1.3.3 Efficient algorithms for subspace learning with DPCP

The existing scalable and provably convergent algorithms for solving DPCP are

based on a Projected Sub-Gradient Method (DPCP-PSGM) [152, 153], which enjoy

a linear rate of convergence if piecewise geometrically diminishing step sizes are

used. Nevertheless, it is only developed for learning a single basis element of the

orthogonal complement of the underlying subspace S under the noiseless setting.

Since in Chapter 3 we extend the original DPCP approach to learn the entire basis

and prove its effectiveness under both noiseless and noisy settings, it is desired to

develop a unified algorithmic framework that is able to efficiently solve the DPCP

problem for all of these cases.

In Chapter 4, we propose a Projected Riemannian Sub-Gradient Method (PRSGM)

for minimizing non-smooth non-convex functions over the Grassmannian. We show

that if the objective function satisfies a certain Riemannian regularity condition (RRC)
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with respect to some point in the Grassmannian, then PRSGM with appropriate

initialization and geometrically diminishing step size converges at a linear rate to

that point. In particular, we show that the optimization problem associated with the

holistic DPCP approach under noiseless setting satisfies the RRC, which allows us to

apply the generic result and conclude that the PRSGM converges linearly to a basis for

S⊥. We remark that, even for subspaces of codimension 1 (i.e., hyperplanes), PRSGM

improves upon DPCP-PGSM by allowing for a much simpler step size selection strategy

and a weaker condition on the initialization. Furthermore, with noisy data we show

that the holistic DPCP problem satisfies the RRC in a neighborhood of S⊥, leading to

a linear convergence of PRSGM to a neighborhood of S⊥ whose radius is proportional

to the noise level. Experiments on synthetic data demonstrate the superiority of

the holistic DPCP approach implemented by PRSGM relative to the state-of-the-art

in learning a single subspace of high relative dimension. An experiment on road

plane detection with real 3D data further strengthens the view that DPCP performs

favorably against other methods in the high relative dimension regime.

1.3.4 Improved analysis and algorithms of DPCP for learn-

ing a union of hyperplanes

Besides the theory and algorithms of DPCP for learning a single subspace, it is

known [109, 113] that DPCP can also be applied to the case when data points are

drawn from a union of hyperplanes (UoH), for which the DPCP problem admits a

unique global minimizer equal to the normal vector of the most dominant hyperplane

12



and thus it proves to be a useful tool in clustering hyperplanes. However, existing

analyses of DPCP in the multi-hyperplane case focus on the recovery of the hyperplane

with the largest number of points, while lacking a precise characterization of the data

distribution and involving quantities that are difficult to interpret. It is natural

to ask if one can derive a more transparent analysis that allows for a probabilistic

interpretation. Also, the provably convergent algorithm in [109, 113] for solving DPCP

based on recursive linear programming is not efficient. It is unclear whether the

PRSGM proposed in Chapter 4 can be extended to solve DPCP under a UoH model.

In Chapter 5, we introduce a new notion of geometric dominance for determining

the hyperplane that is learned by DPCP under a UoH model, which explicitly captures

the distribution of the data and the geometric relationships among the hyperplanes,

and derive both geometric and probabilistic conditions under which a global solution

to DPCP for a UoH is a normal vector to the geometrically dominant hyperplane.

We then prove that the DPCP problem for a UoH satisfies a RRC, and use this

result to show that the PRSGM exhibits linear convergence to a normal vector of the

geometrically dominant hyperplane. Finally, we integrate DPCP into K-subspaces [1,

10] (DPCP-KSS) by using DPCP to estimate the geometrically dominant hyperplane

for each cluster, and leverage an ensemble of DPCP-KSS via the frameworks of K-

ensembles [42, 58]. Experiments show that by using DPCP we are able to achieve

superior or competitive performance over the state-of-the-art in clustering hyperplanes.
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1.4 Notation

We introduce some general notation used throughout this thesis. We let R denote

the set of real numbers, and RD denote the D-dimensional linear vector space. We

use SD−1 to denote the unit sphere of RD. Letters that are not bolded denote

scalars, such as x ∈ R and K ∈ R, lowercase boldface letters denote vectors, such

as x ∈ RD, and uppercase (calligraphic) boldface letters denote matrices, such as

B ∈ RD×c and X ∈ RD×N . The transpose of a matrix X ∈ RD×N is denoted as

X⊤ ∈ RN×D. We also treat a matrix as a set with all of its columns as its elements,

i.e., x ∈ X means x ∈ RD is a column of X ∈ RD×N . Similarly, if O ∈ RD×M ,

then X ∩O consists of the points of RD that are common columns of X and O.

If S is a subspace of RD, then dim(S) denotes the dimension of S. For a matrix

U ∈ RD×c, we denote by Span(U) the subspace of RD spanned by the columns of

U . For a subspace S with dim(S) = d < D, its orthogonal complement subspace is

denoted as S⊥ with codimension dim(S⊥) = D − d. If S ∈ RD×d is the orthonormal

basis of S, then we use S⊥ ∈ RD×(D−d) to denote the orthonormal basis of S⊥. Also,

the shorthand RHS (respectively, LHS) stands for Right-Hand-Side (respectively,

Left-Hand-Side). For any real valued convex function f(·), we use ∂f(·) to denote

its subdifferential. For any vector x = [x1, · · · , xD]⊤ ∈ RD and p ≥ 1, the ℓp norm

is defined as ∥x∥p :=
(∑D

i=1 |xi|p
) 1

p . Unless stated otherwise, we also write ∥ · ∥ for

the ℓ2 norm. Additionally, we define ∥x∥0 as the number of non-zero entries in x.

Finally, for any matrix A ∈ Rm×n with entries aij, we define the Frobenius norm as

∥A∥F :=
(∑m

i=1
∑n

j=1 |aij|2
) 1

2 .
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Chapter 2

Dual Principal Component Pursuit

(DPCP)

In the context of learning linear structures from corrupted data, to the best of our

knowledge Dual Principal Component Pursuit (DPCP) [106, 109, 111, 112, 113, 152,

153]—a method designed for robust subspace learning and clustering—is the only

method that directly aims at recovering subspaces in the high relative dimension

regime (see Section 1.2). All other existing methods assume the underlying structure

can be well captured by low-dimensional subspaces, thus making DPCP unique.

In this chapter, we first introduce the existing work of DPCP in Section 2.1. Then

in Section 2.2, we briefly review the work closely related to DPCP or highly popular

methods for robust subspace learning and clustering. Finally, in Section 2.3 we discuss

several open problems of DPCP in terms of its theory and algorithms, which also

helps us highlight the main contributions of this thesis.
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2.1 Existing work of DPCP

DPCP was originally proposed as a single subspace learning method [111, 112] in

the high relative dimension regime where d/D ≈ 1 with d and D the underlying

subspace dimension and ambient dimension, respectively. DPCP is a natural choice

for this setting since it learns a subspace by estimating a basis for its orthogonal

complement, which is supposed to be of low dimension. Moreover, DPCP has been

extended to learn a hyperplane arrangement [109, 113] when the data come from a

union of hyperplanes, indicating that it can also be helpful in clustering subspaces of

high relative dimension. We review the existing work of DPCP for learning a single

subspace with outliers [106, 111, 112, 152, 153] in Section 2.1.1 and learning a union

of hyperplanes [106, 109, 113] in Section 2.1.2.

2.1.1 Learning a single subspace with outliers

Consider learning a single subspace from data corrupted with outliers. Suppose we

are given the ℓ2 column-normalized dataset X̃ = [X ,O]Γ ∈ RD×L, where X =

[x1, · · · .xN ] ∈ RD×N are N inlier points within a d-dimensional subspace S of RD

with 1 ≤ d ≤ D − 1, O = [o1, · · · ,oM ] ∈ RD×M are M outlier points that lie on the

unit sphere SD−1 in RD that do not exhibit linear structure, L = N +M is the total

number of points, and Γ is an unknown permutation matrix. The goal of DPCP is to

recover the underlying subspace S from the corrupted data X̃ . Since we might not

necessarily know the subspace dimension d in many cases, DPCP resorts to computing

a maximal hyperplane of RD that contains all the inliers X as the first step, which
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can be used to eliminate the vast majority of outliers. Then, one may either utilize

popular outlier detection methods such as RANSAC [39] on the reduced dataset for

identifying the remaining outliers, or, if d is known, sequentially proceed to compute

S as the intersection of D − d orthogonal hyperplanes that contain X . As the key

ingredient, DPCP proposes to search for a maximal hyperplane that contains all the

inliers by estimating its normal vector from the following problem:

min
b∈RD

X̃⊤b


0
s.t. b ̸= 0, (2.1)

where ∥a∥0 denotes the number of non-zero elements in the vector a. Problem (2.1)

seeks a normal vector b (thought of as a normal to a hyperplane) that is orthogonal to

as many points in X̃ as possible. It has been shown in [106] that with mild assumptions

such as N ≥ d+ 1 and M ≥ D − d, then every solution b∗ to (2.1) is a normal vector

of a hyperplane that contains all the inliers X , or equivalently, b∗ is orthogonal to S.

Although problem (2.1) is intuitive and theoretically feasible, its combinatorial

nature makes it prohibitive in practice. It is reasonable to consider its relaxation [106,

111, 112] that replaces the ℓ0 function in the objective of (2.1) with an ℓ1 norm:

min
b∈RD

X̃⊤b


1
s.t. ∥b∥2 = 1, (2.2)

which is refer to as Dual Principal Component Pursuit (DPCP). Problem (2.2) is non-

smooth and non-convex due to the objective function and the unit sphere constraint.

Note that the same problem has appeared before, as early as in [95], and in the context
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of dictionary recovery [85, 96, 99, 100, 101, 102].

There are two major questions concerning the DPCP problem (2.2): (i) under

what conditions is every global minimizer of (2.2) orthogonal to the underlying inlier

subspace S; and (ii) how to efficiently compute the global minimum of the non-convex

problem (2.2) with theoretical guarantees. In [106, 111, 112], it is shown that if

the outliers O are well-distributed on the unit sphere SD−1 and the inliers X are

well-distributed on S ∩ SD−1, then it is guaranteed that global solutions of (2.2) are

orthogonal to S. However, the analysis is deterministic in nature and difficult to

interpret. In [152, 153], the deterministic analysis is refined to have interpretable

and tighter geometric quantities, and provides a new probabilistic analysis that for

the first time shows that the DPCP problem (2.2) can tolerate M = O(N2) outliers,

thus improving upon the existing provably convergent robust PCA methods that

can only handle M = O(N) outliers. On the other hand, [106, 111, 112] propose to

solve (2.2) through a recursion of convex problems based on linear programs (LPs),

which is guaranteed to converge to a vector orthogonal to S in a finite number of

steps. Nevertheless, this approach is computationally expensive. Alternatively, [106,

111, 112] recommend an Iteratively Reweighted Least Squares (IRLS) method [15,

16, 24], which is more efficient than solving a sequence of LPs, but does not have

convergence guarantees in this case. To address this dilemma, [152, 153] propose a

scalable Projected Sub-Gradient Method with piecewise geometrically diminishing step

sizes (DPCP-PSGM) whose main computational cost each iteration is matrix-vector

multiplications; this method has a linear convergence rate, thus enhancing its usability.
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2.1.2 Learning a union of hyperplanes

Interestingly, although DPCP was originally proposed as a robust single subspace

learning method, it is shown in [106, 109, 113] that DPCP can also be used to learn

a hyperplane arrangement, which can be attributed to its ability to learn a specific

hyperplane from a union of hyperplanes (UoH). Note that the data modeling for a

UoH is fundamentally different than a single subspace case: when we treat the data

points from one specific hyperplane as inliers, the points from the other hyperplanes

play a similar role as “outliers” but exhibit additional linear structure, which we refer

to as structured outliers1, making the problem even more challenging.

Consider the ℓ2 column-normalized dataset X̃ = XΓ ∈ RD×N , where X =

[x1, · · · ,xN ] ∈ RD×N are N inlier points that lie in a union of K hyperplanes

H1, · · · ,HK of RD with unit normal vectors n1, · · · ,nK , respectively, and Γ is an

unknown permutation matrix. We assume that for every k ∈ [K] := {1, · · · , K},

there are precisely Nk inlier points, denoted by Xk ⊂ X , that belong to Hk, so that

∑K
k=1 Nk = N and we can write X̃ = [X1, · · · ,XK ]Γ. Given this model, the goal of

hyperplane clustering is to estimate the underlying hyperplanes {Hk} from the data

X̃ = ⋃K
k=1 Xk, as well as cluster the data points according to their membership.

Although such a UoH model is distinct from the one introduced in Section 2.1.1 for

learning a single subspace, the DPCP optimization problem of interest to us has the

same formulation as (2.2). For the ease of analysis, [106, 109, 113] further assume an
1In learning a single hyperplane from data under a UoH model, the structured outliers are the

data points that come from the remaining hyperplanes; regular outliers are uniformly distributed in
the ambient space. Throughout this thesis, unless stated otherwise, outliers refer to the regular kind.
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ordering N1 ≥ N2 ≥ · · · ≥ NK , and refer to H1 as the dominant hyperplane, namely

one with the largest number of points. Then [106, 109, 113] show that as long as H1

is sufficiently dominant, the data points are well-distributed inside their associated

hyperplanes, and the other hyperplanes are sufficiently separated from each other,

the normal vector of H1, i.e., n1, is the unique (up to sign) global minimizer of the

DPCP problem (2.2). Algorithmically, [106, 109, 113] recommend solving (2.2) with

a standard IRLS method applied to the ℓ1 minimization problem, as suggested in [111,

112], albeit the convergence analysis is left as future work. Finally, when applied to

the task of hyperplane clustering, [106, 109, 113] embed DPCP into a K-subspaces

(KSS) [1, 10] scheme that alternates between assigning data points to clusters and

estimating a hyperplane for each cluster using DPCP, and show that this strategy

works very well in practice.

2.2 Related work

Fitting linear subspaces to data is a fundamental problem in statistical machine

learning that has a long history going back more than a century. As a conventional

method, Principal Component Analysis (PCA) [13, 52, 55, 84] learns a subspace

by minimizing the reconstruction error when projecting the data points to a lower

dimensional space, measured by the mean squared distance between the data and

their projections [84]. Alternatively, it can be viewed as maximizing the variance of

the projected data points [52]. Although PCA enjoys a closed form solution given

by the span of the top eigenvectors of the data covariance matrix and it works well
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even when the data is noisy, it is limited when the dataset is corrupted by outliers

since the ℓ2-based loss in PCA is sensitive to outliers. Another classical approach is

Random Sample Consensus (RANSAC) [39], which is very popular in many computer

vision applications such as camera calibration [81, 149], metric rectification [66, 134]

and so on. Despite its effectiveness in practice, it is sensitive to the settings of many

interrelated hyperparameters, and admits limited theoretical guarantees. In the past

decade, many robust subspace recovery (RSR) methods have been proposed [62, 119]

with the assumption that high-dimensional data can be well-approximated by low-

dimensional structures; representatives include robust PCA [9, 11, 75, 120], low-rank

matrix methods [88, 136], and approaches based on least absolute deviations [61, 76,

145], which are normally solved using a convex optimization approach. However, their

guarantees for theory and algorithms are developed for a low-dimensional underlying

structure, which may be violated in the high relative dimension regime. In Section 2.2.1,

we will briefly review popular representative methods for robust single subspace learning

that are highly related to the rationale behind DPCP.

On the other hand, in many applications the data points are drawn from a union of

subspaces instead of a single one, such as motion segmentation [105, 128, 130], hybrid

system identification [4, 129] and so on. This is known as the problem of subspace

clustering [123], which is a general case of the hyperplane clustering introduced in

Section 2.1.2 in that the underlying subspaces may have different dimensions and

their codimensions are not necessarily equal to one. Most existing subspace clustering

methods require the underlying subspaces to be of low relative dimension compared to
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the ambient space in order to enjoy strong theoretical guarantees together with efficient

implementations, which have been heavily researched in the past decade. For example,

the self-expressive approaches [35, 37, 70, 72, 124, 141, 143] assume each data point

can be expressed as a sparse linear combination of other data points from the same

subspace, which is rarely the case in the high relative dimension regime. There are

many other categories of subspace clustering methods, including algebraic methods [21,

107, 108, 110, 127], iterative methods [1, 10, 114, 146], statistical methods [48, 89,

103], and spectral clustering-based methods [17, 36, 37, 44, 70, 138, 147]. We provide

a brief review of these classes of methods in Section 2.2.2.

2.2.1 Learning a single subspace

RANSAC. Since its inception almost 40 years ago, the Random Sampling And

Consensus (RANSAC) [39] algorithm has been one of the most popular methods in

computer vision. RANSAC alternates between fitting a subspace from d randomly

sampled points (recall that d is the dimension of the underlying subspace) and then

using the number of data points close to the subspace as a measure of the quality

of the estimation. The interplay between four factors governs when RANSAC is

successful: the ambient dimension D, the outlier ratio, the thresholding parameter

for determining when points are considered close to a subspace, and the allocated

time budget. RANSAC can be extremely effective when the probability of sampling

outlier-free samples inside the allocated time budget is large, although its exponential

complexity limits its impact in the high relative dimension regime. There are also
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many derivatives of the standard RANSAC developed in recent years [6, 20, 87].

R1-PCA. Rotational invariant ℓ1-norm PCA (R1PCA) [28] is a natural extension

of PCA that is more robust, whose solution is comprised of the principal eigenvectors

of a robust covariance matrix. In particular, it solves the following problem:

min
U∈RD×d,V ∈Rd×L

X̃ −UV


2,1
=

L∑
j=1
∥x̃j −Uvj∥ s.t. U⊤U = I (2.3)

where X̃ ∈ RD×L is the data matrix, x̃j is the j-th column of X̃ , U is the orthonormal

basis of the estimated underlying subspace, vj is the j-th column of V , and V is the

representation matrix whose columns correspond to the coordinates of the data points

represented by U . The original R1PCA approach proposes to solve problem (2.3) via

alternating minimization that involves some form of the power method [45]. However,

it lacks both a theoretical guarantee for subspace recovery and any convergence

guarantee to the global optimal solution for the non-convex problem (2.3).

CoP. Coherence Pursuit (CoP) [88] is a non-iterative robust PCA method for

recovering a low-dimensional subspace that assumes that the inlier points are likely

to have stronger mutual coherence with a large number of inliers compared with the

unstructured outliers. It measures the mutual coherences according to the column

magnitudes of a gram matrix formed from the dataset, and computes the subspace as

the span of the d data points with largest coherence. CoP is fast due to its non-iterative

nature, especially when the dataset is small. Although CoP can provably handle

outliers and additive noise, it can only tolerate M = O(N) outliers and requires

d <
√
D in theory, making it not well-suited for the high relative dimension regime.
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REAPER. Similar to DPCP, the REAPER method [61] computes the subspace

by aiming to minimize the sum of the distances between all points in the dataset and

the subspace. Specifically, it tackles the following problem:

min
Π∈RD×D

X̃⊤(I−Π)


1,2
=

L∑
j=1
∥(I−Π)x̃j∥2 s.t. Π is an orthoprojector

and trace(Π) = d,

(2.4)

where Π can be thought of the orthoprojector that projects data to the d-dimensional

inlier subspace S. Since problem (2.4) is non-convex due to the orthoprojectors do not

form a convex set, [61] turns to solve a tight convex relaxation that robustly estimates

the orthoprojector onto S, which is referred to as REAPER:

min
P ∈RD×D

X̃⊤(I− P )


1,2
s.t. 0 ≼ P ≼ I and trace(P ) = d, (2.5)

and the underlying subspace S is then computed as the top d eigenvectors of P ∗

with P ∗ the global solution of problem (2.5). [61] establishes the theory for recovering

S from (2.5) under both noiseless and noisy settings. Nevertheless, its theoretical

guarantees require d < (D− 1)/2, thus excluding the high relative dimensional setting,

and can still handle only M = O(N) outliers. Algorithmically, since the original

semi-definite program (2.5) may be prohibitively expensive to solve, [61] proposes to

solve it via an IRLS scheme [144, 145] with a guarantee that the iterates converge to

a point whose value is close to the optimal objective value of (2.5), but it does not

provide the rate of convergence nor how the iterates relate to the recovery of S.
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GGD. Recently, [76] improves upon REAPER with a Geodesic Gradient Descent

(GGD) method for solving the non-convex least absolute deviations problem without

any relaxation. The underlying optimization problem it considers is

min
V ∈RD×d

X̃⊤(I− V V ⊤)


1,2
s.t. V ⊤V = I. (2.6)

Ideally, the global solution V ∗ to problem (2.6) consists of an orthonormal basis

for the underlying subspace S. Note that (2.6) is an optimization problem on the

Grassmannian G(D, d) [34], i.e., the set of d-dimensional subspaces in RD. [76] provides

conditions under which any orthonormal basis of S is a local minimizer of (2.6) for

both noiseless and noisy settings. Additionally, an intrinsic GGD algorithm, for

which the iterates move along a geodesic in G(D, d), is proposed to solve (2.6) with a

guarantee of linear convergence to the local minimizer, if properly initialized. One

advantage of GGD with respect to CoP and REAPER, is that its theoretical analysis

does not have restrictions on the inlier dimension d, hence it can be used in the high

relative dimension regime in theory. On the other hand, like CoP and REAPER,

GGD can only provably handle M = O(N) outliers. Moreover, [76] only provides a

local optimality analysis that characterizes the geometry of the critical points of (2.6),

while a global optimality condition for (2.6) remains an open question.

2.2.2 Clustering multiple subspaces

RANSAC. As a classical method, RANSAC not only can robustly learn a single

subspace in the presence of unstructured outliers, but it can also cluster data points
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according to their memberships when they are drawn from multiple subspaces. Heuris-

tically, it fits one subspace at a time using PCA from d randomly sampled points, in

which it treats the points from other subspaces as structured outliers; this process is re-

peated after the points identified as belonging to the previously selected subspaces are

removed. However, as in the single subspace learning case introduced in Section 2.2.1,

its performance is highly sensitive to various factors, e.g., the thresholding parameter,

and it suffers from an exponential complexity as the number of subspaces grows since

the probability of drawing exactly d inlier points from a subspace drops exponentially

with the number of subspaces.

K-subspaces. K-subspaces (KSS) [1, 10, 114] is a simple but effective method

for subspace clustering, which alternates between assigning data points to clusters and

estimating a subspace for each cluster using PCA. KSS is scalable in practice, but it

can easily get stuck near a local minimum due to its non-convex nature, and it is not

robust to outliers. The suboptimality issue can be alleviated by running the method

multiple times with diverse initializations and then selecting the best, or leveraging

ensembles of multiple KSS results [58, 67]. The lack of robustness stems from the

fact that the squared ℓ2 loss used in PCA is incapable of handling outliers during

the subspace estimation step of KSS where most of the data points in any cluster

come from one underlying subspace (serve as inliers) and the rest are points from the

union of other K − 1 subspaces (serve as structured outliers). In order to improve

its robustness, Median K-Flats (MKF) [146] replaces the squared ℓ2 objective in KSS

with an unsquared one, but it lacks competitive performance as observed by [42].
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Alternatively, [42] proposes to substitute CoP [88] for the PCA step in KSS, but CoP

is only able to deal with low-rank structured outliers, as introduced in Section 2.2.1.

Self expressive methods. Self expressive methods belong to one of the most

effective approaches for clustering low-dimensional subspaces. The fundamental idea

is that a point from one subspace with dimension d can always be expressed as a linear

combination of d linear independent points from the same subspace. This means, if we

consider the outlier-free noise-free case and a data matrix X̃ ∈ RD×N , that x̃j = X̃cj ,

where x̃j is a point (column) of X̃ and cj ∈ RN×1 is its coefficient representation in

terms of the other (N −1) data points in X̃ . Normally, we have N ≫ d, and thus cj is

presumably a sparse vector. In matrix form, we can write X̃ = X̃C where C ∈ RN×N

is a sparse coefficient matrix with diag(C) = 0, and the self-expressive methods seek

to solve a convex optimization problem of the form

min
C∈RN×N

λ
X̃ − X̃C

2

F
+ Φ(C) (2.7)

where λ > 0 is the coefficient parameter, Φ(·) is a regularization function, and different

choices of Φ(·) result in different categories of methods: sparse subspace clustering

(SSC) [35, 36, 37] uses Φ(·) = ∥·∥1, least-squares regression (LSR) [72] uses Φ(·) = ∥·∥2,

low-rank subspace clustering [38, 69, 70, 124, 133, 142] uses Φ(·) = ∥ · ∥∗, and elastic

net subspace clustering (EnSC) [54, 83, 141, 143] uses Φ(·). Given a solution C∗ to

problem (2.7), a pairwise affinity matrix A is built by A = |C∗|+ |C∗⊤|, and finally

a spectral clustering technique [131] is applied to obtain the segmentation. With mild

modifications, (2.7) can be extended to the dataset contaminated with outliers and
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noise. However, the construction of the N ×N coefficient matrix C∗ is expensive with

large-scale data, and the theoretical guarantees for the self-expressive methods require

the underlying subspaces to be low-dimensional, preventing its impact in clustering

high-dimensional subspaces.

Spectral Curvature Clustering. The spectral curvature clustering (SCC)

method [17] is a multi-way spectral clustering technique [46], which is well-suited for

clustering affine subspaces with the same dimension d. In particular, given the data

matrix X̃ ∈ RD×L, it constructs a multi-way affinity A(i1, · · · , id+2) for any d + 2

points in X̃ based on a certain polar curvature, which is zero when points are in the

same subspace. The (d+ 2)-way tensor A of size L× L× · · · × L is then unfolded to

build an affinity matrix A ∈ RL×Ld+1 , which is then followed by the use of standard

spectral clustering. Considering the storage and the expense of computing A, [17]

proposes an iterative sampling procedure to significantly improve the performance.

Nevertheless, the combinatorial nature of SCC prohibits its application in clustering

high-dimensional subspaces in practice.

Algebraic Subspace Clustering. Algebraic subspace clustering (ASC) [74, 107,

108, 110, 127, 129] is a class of purely algebraic algorithms designed for subspace

clustering. The main idea is that a union of K subspaces can be associated with a

set of polynomials of degree K whose derivatives at an inlier point are orthogonal

to the subspace that the point lies in; the clustering is based on the grouping of

these normal vectors. More formally, suppose data are drawn from a union of K

subspaces, i.e., ⋃K
k=1 Sk, with bk a normal to Sk, then one can represent the data with

28



polynomials of degree K of the form p(x) = (b⊤
1 x) · · · (b⊤

Kx) = 0, and the coefficients

of the polynomials can be computed by solving a linear system. ASC can also be

extended to handle noisy data by adding an additional treatment of the involved linear

systems [82, 139]. Although ASC enjoys strong theoretical guarantees, it is sensitive

to outliers and suffers from the combinatorial computational cost in aspects of the

number of underlying subspaces and the ambient dimension.

2.3 Open problems

Despite the advances made by DPCP in robustly learning and clustering high-

dimensional subspaces, there are still many open problems related to DPCP in

terms of both theory and algorithms. We will discuss them in this section and provide

our solutions in the rest of the remainder of the thesis.

2.3.1 Single subspace learning theory with DPCP

2.3.1.1 DPCP in the presence of noisy inliers

As introduced in Section 2.1.1, DPCP uses a non-convex optimization problem for

learning subspaces of high relative dimension from noiseless datasets contaminated

by as many outliers as the square of the number of inliers [152, 153]. Although the

theoretical features of DPCP are appealing, they have only been established for the

idealized case when inliers perfectly lie in the subspace. Experimentally, DPCP has

proved to be robust to noise and outperform the popular RANSAC algorithm on
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3D vision tasks such as road plane detection and relative pose estimation from three

views [29]. Therefore, it is reasonable to ask whether similar theoretical guarantees

hold when there is noise in the data.

A more realistic data modeling strategy is to consider the corruption of inliers by

noise. If E = [ϵ1, · · · , ϵN ] ∈ RD×N denotes the additive noise on inliers X , then the

data matrix now has the form X̃ = [X + E O]Γ ∈ RD×L, and the goal of DPCP is to

estimate the underlying subspace S from noisy data X̃ . Recall that when there is no

noise (i.e., E = 0), the vectors b that make X̃⊤b as sparse as possible are precisely

those satisfying b ⊥ S; this is the motivation for problem (2.2). As an analogy, in the

noisy case, we expect X̃⊤b to be close to a sparse vector y in the Euclidean sense,

whenever b is close to a normal vector of S. This motivates [112] to consider the

following denoised version of the DPCP problem2 in (2.2):

min
b∈SD−1,y∈RL

λ ∥y∥1 + 1
2
y − X̃⊤b

2

2
(2.8)

for some λ > 0. However, the performance of (2.8) depends crucially on the parameter

λ, as illustrated in Figure 2.1, where we solve (2.8) by alternating minimization, which

empirically converges fast even though no convergence theory is known. Figure 2.1a

shows that the regularization parameter λ should be chosen very carefully in order to

achieve an optimal result, and Figure 2.1b shows this when the noise level varies.

Comparing the denoised DPCP problem (2.8) with its original formulation (2.2),

a natural question to ask is that whether (2.2) can also be extended to the noisy case
2Problem (2.8) has also appeared in the context of dictionary learning; see [86].
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Figure 2.1. Illustration of the performance for the denoised DPCP problem. We generate
the data according to a certain random spherical model. In particular, σ > 0 denotes
the standard deviation of the Gaussian noise added to the inliers, and we evaluate the
performance of the denoised DPCP problem (2.8) by computing the principal angle θ∗ of its
solution to S⊥. Here, we fix the ambient dimension as D = 30, the subspace dimension as
d = 29, the number of inliers as N = 500, and the outlier ratio as M/(M + N) = 0.7. (a)
Sensitivity to different choices of λ for fixed noise level. (b) Performance of the denoised
DPCP problem (2.8) for a large range of noise levels with specific choices of λ.

such that we can get rid of choosing the extra hyperparameter λ in (2.8). Moreover,

it is unclear what kind of theoretical guarantees we can obtain. Although we expect

that the global solution of the noisy DPCP problem will be perturbed away from

S⊥ with an amount bounded by an increasing function of the noise level, a precise

characterization of such relationship is of interest.

2.3.1.2 DPCP for learning a subspace with codimension larger than 1

In addition to the drawback that the existing analyses of DPCP for learning a single

subspace are restricted to the case of no noise, another drawback is that the current

analyses mainly focus on finding a normal to a single hyperplane that contains the

inliers by solving (2.2). Extending these ideas to the recovery of a subspace with
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codimension c = D − d > 1 requires the recursive application of (2.2) c times, with

each time finding a normal vector to S that is also orthogonal to previously computed

normal vectors. This procedure is computationally expensive and lacks a convergence

analysis. Moreover, the error accumulated during the recursion makes its behavior

difficult to analyze in theory.

A reasonable extension to the current formulation (2.2) of DPCP that learns an

element of a basis of the orthogonal complement subspace S⊥ is that we simultaneously

estimate the entire basis of S⊥ by solving the problem

min
B∈RD×c

X̃⊤B


1,2
=

L∑
j=1

x̃⊤
j B


2

s.t. B⊤B = I. (2.9)

We call problem (2.9) a holistic approach as compared with the recursive approach

with problem (2.2). Note that (2.9) extends (2.2) in that it seeks a matrix B with

orthonormal columns that are orthogonal to as many data points as possible. We

remark that (2.9) has a close relationship to the formulation (2.6) of GGD [76]: the

former considers recovering the orthogonal complement subspace S⊥ while the latter

focuses on estimating the actual subspace S. The fundamental reason for this difference

is that DPCP aims at the high relative dimension regime where d/D ≈ 1, thus making

it more efficient to operate on the dual space. Similar to (2.6), (2.9) is an optimization

problem on the Grassmannian G(D, c) [34], i.e., the set of c-dimensional subspaces in

RD, and is inherently non-convex. An open question that we answer in this thesis is to

establish conditions under which every global solution B∗ of (2.9) is an orthonormal

basis of S⊥ when no noise is present, and how the principal angles between Span(B∗)
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and S⊥ behave as a function of the noise level when the data is noisy.

2.3.2 Efficient algorithms for learning a single subspace with

DPCP

When DPCP was proposed in [111, 112], the core nonconvex optimization problem

was solved by solving a recursion of convex problems based on linear programs (LPs),

and convergence guarantees were established. Nevertheless, the LP-based approach

lacks scalability for big-data applications. To alleviate the issue, [111, 112] recommend

solving (2.2) with an IRLS method that is more efficient but lacks a theoretical

convergence guarantee. Fortunately, [152, 153] take one large step forward by utilizing

a scalable Projected Sub-Gradient Method (DPCP-PSGM), which is proven to have

a linear convergence rate for solving the non-convex problem (2.2) and is orders of

magnitude faster than the LP-based method and IRLS scheme.

Two major limitations of the above algorithms are that, in accordance with Sec-

tion 2.3.1, none of them can provably handle the DPCP problem in the noisy case

or can be extended from codimension one to higher codimensions. On the one hand,

although DPCP-PSGM works well for road plane detection from 3D point cloud data

using the KITTI dataset [40], which is real (and hence noisy) data, it is unknown

whether it provably converges to a neighborhood of S⊥ in the presence of noise. On

the other hand, we are in need of designing an algorithm for solving the holistic DPCP

problem (2.9) that efficiently finds the entire orthogonal basis directly on G(D, c), as

opposed to the less efficient approach of solving a sequence of c problems on G(D, 1).
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In fact, noticing that optimization problems on the Grassmannian G(D, c) commonly

appear in a wide variety of applications, not only including robust subspace recovery

or clustering, but also dictionary learning [86, 100, 101, 102], subspace tracking [5],

system identification [116], action recognition [93], object categorization [49], and

blind deconvolution [148], it would be even more interesting to develop a generic

optimization technique over the Grassmannian with a particular application to the

DPCP problem. However, a key challenge is that the Grassmannian is a non-convex

set, making the associated results difficult to be established in terms of the theoretical

guarantees or the rate of convergence. We face this challenge in this thesis.

2.3.3 Learning a union of hyperplanes with DPCP

One nice thing about DPCP is that problem (2.2) can not only handle regular outliers

from the ambient space such as those appearing in the robust single hyperplane learning

case (Section 2.1.1) but also structured outliers coming from other hyperplanes when

the data points are drawn from a union of hyperplanes (Section 2.1.2) [109, 113]. It is

not known, however, whether DPCP can learn a normal to one of the hyperplanes in

the presence of both structured and regular outliers. In particular, [109, 113] define

the notion of a dominant hyperplane that depends only on the number of inlier points

in each group, while the global optimum also depends on geometric quantities related

to their distribution. In other words, its global optimality analysis lacks a precise

characterization of the distribution of the data. Moreover, the analysis in [109, 113]

is deterministic in nature and involves quantities that are difficult to interpret. It is
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desirable to leverage more transparent geometric quantities such as those introduced

in [152, 153] to derive a probabilistic analysis for the DPCP problem under a UoH

model. Finally, similar to the dilemma in the single subspace learning case, there

does not exist a scalable algorithm that ensures global convergence for learning a

single hyperplane for a UoH. Even more interestingly, provided a generic optimization

algorithm over the Grassmannian is developed (as discussed in Section 2.3.2) that can

be applied to DPCP for data drawn from a single subspace with outliers, is it possible

to extend the algorithm to a UoH setting while enjoy similar convergence properties.

Although the above challenges associated with DPCP under a UoH model do not have

clear solutions, we will address all of them in this thesis.
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Chapter 3

Single Subspace Learning Theory

with DPCP

In this chapter, we establish the theory for learning a single subspace with DPCP. In

particular, we provide geometric and probabilistic analyses for learning a subspace of

any codimension under both noiseless and noisy settings, which largely extends the

existing analysis of DPCP that has only been derived for learning a hyperplane with

noiseless data. In Section 3.1, we present the noisy analysis of the DPCP problem (2.2)

for learning a hyperplane. Then, in Section 3.2 we extend the method to simultaneously

learn the entire basis of the orthogonal complement subspace by solving the holistic

DPCP problem (2.9). Comparison with the theory of other closely related methods is

given in Section 3.3.
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3.1 Learning a hyperplane (codimension equal to

one)

3.1.1 Review of the existing analysis with noiseless data

We now briefly review the existing analysis [152, 153] of the DPCP problem (2.2) for

learning a hyperplane that contains noiseless inliers. Specifically, we will introduce

some useful geometric quantities that are also leveraged in our subsequent analysis.

For convenience, we repeat the optimization problem (2.2) here:

min
b∈RD

X̃⊤b


1
s.t. ∥b∥2 = 1. (3.1)

Here X̃ = [X , O]Γ ∈ RD×L is a (column-wise) unit ℓ2 norm dataset, where X =

[x1, · · · ,xN ] ∈ RD×N are N inlier points spanning a single d-dimensional subspace

S of RD, O = [o1, · · · ,oM ] ∈ RD×M are M outlier points, and Γ is an unknown

permutation matrix.

Since the objective in (3.1) is not continuously differentiable, we need to deal with

its subdifferential. Denote the sign function by

sign(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a/|a|, a ̸= 0,

0, a = 0,

(3.2)
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and denote the subdifferential of the absolute value function |a| by

Sgn(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sign(a), a ̸= 0,

[−1, 1], a = 0.

(3.3)

We also apply sign and Sgn element-wise to vectors. With this notation, [152, 153]

first characterize the distribution of the inliers by

cX ,min := 1
N

min
b∈S∩SD−1

X⊤b


1
. (3.4)

Note that cX ,min is also the permeance statistic defined in [61]. Well-distributed inliers

X leads to a relatively large value of cX ,min since it is difficult to find a single direction

b that is orthogonal to many points in X . Next, to characterize the distribution of

the outliers, similar to cX ,min, [152, 153] define quantities

cO,min := 1
M

min
b∈SD−1

O⊤b


1
and

cO,max := 1
M

max
b∈SD−1

O⊤b


1
.

(3.5)

For well-distributed outliers O, the permeance statistics cO,min and cO,max are bounded

away from small and large values, respectively, since there is not a single direction that

sufficiently captures the distribution of O. Moreover, cO,max − cO,min → 0 as M →∞

for well-distributed outliers [152, Lemma 4]. Finally, besides cO,min and cO,max, [152,
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153] additionally characterize the distribution of the outliers using the quantity

ηO := 1
M

max
b∈SD−1

(I− bb⊤)O sign(O⊤b)


2
, (3.6)

which can be viewed as the maximum norm Riemannian subgradient of the function

1
M

O⊤b


1
. More uniformly distributed outliers lead to smaller values of ηO. This

follows since if M →∞ and O is well distributed, then 1
M
O sign(O⊤b) approaches

the direction of b, which leads to ηO → 0 [152, 153].

With the above geometric quantities, the following lemma characterizes the geom-

etry of critical points of the DPCP problem (3.1).

Lemma 1. ([152, Lemma 1]). Any critical point b of problem (3.1) must either be

a normal vector of S, or have a principal angle θ from S⊥ larger than or equal to

arccos (MηO/NcX ,min), where

ηO := ηO + D

M
. (3.7)

In other words, Lemma 1 indicates that any critical point of (3.1) is either or-

thogonal to the inlier subspace S, or is close to S, with its principal angle θ from S⊥

being larger for well-distributed data points and smaller M/N . The following theorem

provides global optimality conditions for (3.1), under which any global minimizer

of (3.1) must be a normal vector to S.

Theorem 1. ([152, Theorem 1]). Any global solution b∗ to problem (3.1) must be
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orthogonal to the inlier subspace S as long as

M

N
·

√
η2
O + (cO,max − cO,min)2

cX ,min
< 1. (3.8)

One can see that if the data points are well-distributed and we have more and

more inliers and outliers while keeping M/N fixed, then condition (3.8) is more likely

to be satisfied so that any global solution to (3.1) must be orthogonal to S. In order

to better interpret the result in Theorem 1, [152, 153] provide a probabilistic analysis

that characterizes the number of outliers that the DPCP problem (3.1) can tolerate.

Towards that end, they derive concentration bounds for the associated geometric

quantities under a random spherical model as we present next.

Lemma 2. ([152, Lemma 4]). Consider a random spherical model where the columns

of O and X are drawn independently and uniformly at random from the unit sphere

SD−1 and the intersection of the unit sphere and a subspace S of dimension d < D,

respectively. Fix a number t > 0, then

P

⎡⎣cX ,min ≥
√

2
πd
−
(

2 + t

2

)
/
√
N

⎤⎦ ≥ 1− 2e− t2
2 ,

P
[
ηO ≤ C0

(√
D logD + t

)
/
√
M
]
≥ 1− 2e− t2

2 ,

P
[
cO,max − cO,min ≤ (4 + t)/

√
M
]
≥ 1− 2e− t2

2 ,

(3.9)

where C0 is a universal constant that is independent of N,M,D, d and t.

We remark that the concentration bounds in (3.9) give us a better understanding

of those geometric quantities. For example, it shows that cO,max − cO,min → 0 as
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M →∞ for well-distributed outliers. Furthermore, it tells us that NcX ,min scales as

O(N) while MηO only scales as O(
√
M) with high probability. As we substitute the

geometric quantities in (3.8) with their concentration bounds, it leads to the following

probabilistic theorem.

Theorem 2. ([152, Theorem 2]). Consider the random spherical model described

in Lemma 2. Then for any positive scalar t < 2
(√

2N
πd
− 2

)
, with probability at least

1− 6e− t2
2 , any global solution of (3.1) is orthogonal to S as long as

(4 + t)2M + C0
(√

D logD + t
)2
M ≤

⎛⎝√ 2
πd
N −

(
2 + t

2

)√
N

⎞⎠2

,

where C0 is a universal constant that is independent of N,M,D, d and t.

Theorem 2 suggests that the DPCP problem (3.1) can tolerate M = O
(

1
dD log2 D

N2
)

outliers, and in particular can tolerate M = O(N2) for fixed D and d, which is in

sharp contrast with many existing robust PCA methods (see [62] for an overview)

that can only handle M = O(N) outliers in theory. They attribute this advantageous

theoretical property of DPCP to the tighter geometric quantities used for the analysis.

Specifically, as shown in (3.8), the scalings of MηO as O(
√
M) and NcX ,min as O(N)

make it possible to tolerate as many outliers as the square of the number of inliers.

3.1.2 Analysis with noisy data

Although the theoretical features of the DPCP problem (3.1) developed in [152, 153]

are appealing, they have only been established for the idealized case when the inliers
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perfectly lie in the subspace. Yet, DPCP has proved to be competitive on noisy real

datasets, so that it is reasonable to ask whether similar theoretical guarantees hold

when there is noise in the data. As the first contribution of the thesis, we bridge that

gap by extending the analysis of (3.1) to the noisy setting.

Based on the discussion in Section 2.3.1, we consider the same formulation of the

DPCP problem as (3.1) but with noisy data. Let us repeat the problem here:

min
b∈RD

X̃⊤b


1
s.t. ∥b∥2 = 1,

where X̃ = [X + E ,O]Γ ∈ RD×L is a unit ℓ2 norm dataset that contains noisy inliers,

namely E = [ϵ1, · · · , ϵN ] ∈ RD×N is additive noise for the inliers X . Since noiseless

DPCP is a special case of the noisy problem with E = 0, in the rest of the section,

unless stated otherwise, the dataset X̃ refers to the one containing noisy inliers.

Towards analyzing the noisy DPCP problem, we first define the random spherical

model under which the data points for all the simulations in this chapter are generated.

Definition 1 (Random spherical model for a single subspace). Consider a random

spherical model where the columns of O are drawn uniformly from the sphere SD−1, the

columns of noisy inliers X +E are drawn by first independently generating inliers from

N
(
0, 1

d
PS
)

and noise from N
(
0, σ2

D
ID

)
, and then projecting their sum onto SD−1,

where d = dim(S), PS is the ortho-projector onto S, and σ ≥ 0 controls the amount

of noise present in the inliers; under this model, the SNR is E[∥X∥F ]/E[∥E∥F ] = 1/σ.

In the analysis presented in this thesis, we always assume σ < 1.
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We aim to provide a global optimality analysis for the noisy DPCP problem (3.1).

Note that any global solution b to (3.1) must be a critical point, i.e., there exists

v ∈ ∂
X̃⊤b


1

such that (I− bb⊤)v = 0, where

∂
X̃⊤b


1

= (X + E) Sgn
(
(X + E)⊤b

)
+ O Sgn

(
O⊤b

)
.

When noise is not present (i.e., E = 0), the term Sgn
(
(X + E)⊤b

)
= Sgn(X⊤b)

is simple since it only relates to inliers. In the noisy case, however, it is much

more complicated to deal with this term. For example, since the function sign is

discontinuous, Sgn
(
(X + E)⊤b

)
cannot easily be separated into two parts with one

part only involving the inliers and the other part only involving the noise. As a

consequence, compared to the noiseless case, a significantly more technical analysis is

required to analyze the effect of noise.

Geometric quantities. We now introduce several helpful geometric quantities

for analyzing the noisy DPCP problem. Since the noise dose not affect the outlier term

O in the dataset X̃ , we borrow the quantities cO,max, cO,min and ηO (see Section 3.1.1)

from the noiseless analysis [152, 153] to characterize the distribution of the outlier

points. As for noisy inliers, to facilitate an analysis, we decompose the noise as

E = Es + En, where Es is the projection of the noise onto S and En is the projection

of the noise onto S⊥. Denote X̂ := X + Es and Ê := En so that the columns {x̂j}

of X̂ lie in S and the columns {ϵ̂j} of Ê lie in S⊥ for j = 1, · · · , N . X̂ can be

viewed as effective inliers since they lie in S, whereas Ê can be interpreted as effective

noise because it perturbs X̂ away from S. Similar to cX ,min in (3.4), we define the
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permeance statistic [61] associate with the effective inliers as

cX̂ ,min := 1
N

min
b∈S∩SD−1

X̂⊤b


1
, (3.10)

which attains larger values for better distributed inliers. Note that cX̂ ,min involves a

mixture of inliers and components of noise projected onto S. This particular integration

of inliers and noise leads to tighter deterministic bounds in the deterministic phase of

our analysis. Next, we capture the effective noise Ê via the quantity

cÊ,max := 1
N

max
b∈S⊥∩SD−1

Ê⊤b


1
, (3.11)

which is closely related to the total inlier residual R(S) := 1
N

∑N
j=1 ∥ϵ̂j∥2 used by

[61] to measure the level of the effective noise. By the Cauchy-Schwartz inequality⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐ ≤ ∥ϵ̂j∥2 ∥b∥2, it is clear that cÊ,max is a lower bound of R(S) since ∥b∥2 = 1.

Indeed, R(S) only depends on the energy of Ê, whereas cÊ,max also depends on the

distribution of Ê: the more uniformly distributed Ê is in S⊥, the smaller cÊ,max

becomes. Thus, cÊ,max leads to a tighter result in our analysis than if one used R(S).

Finally, two more definitions are needed for our analysis:

RO/X̂ := M

N

ηO
cX̂ ,min

and RÊ/X̂ :=
cÊ,max

cX̂ ,min
. (3.12)

RO/X̂ and RÊ/X̂ can be simply viewed as outlier-to-inlier and noise-to-inlier types of

ratios, respectively. When we fix the inliers and outliers, RÊ/X̂ is proportional to the

noise level (see Figure 3.1a). Similarly, when we fix the inliers and noise level, RO/X̂
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Figure 3.1. Plots of RO/X̂ and RÊ/X̂ as a function of (a) σ and (b) outlier ratio. Here we
fix D = 30, d = 29, N = 1500, and M/(M + N) = 0.7 in (a), and σ = 0.05 in (b).

is proportional to the number of outliers (see Figure 3.1b).

3.1.2.1 Geometry of the critical points

For the rest of the analysis, let θ ∈ [0, π/2] be the principal angle of a vector b ∈ SD−1

from the orthogonal complement subspace S⊥. Thus, b is normal to S if and only if

θ = 0. Using RO/X̂ and RÊ/X̂ defined in (3.12), we can now characterize the geometry

of the critical points of the noisy DPCP problem (3.1).

Lemma 3. Assume RO/X̂ < 1 and

32RÊ/X̂(√
R2

O/X̂
+ 8− 3RO/X̂

) 3
2
(√

R2
O/X̂

+ 8 +RO/X̂

) 1
2
< 1, (3.13)
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then any critical point b of problem (3.1) has its principal angle θ from S⊥ satisfy

θ ≤ sin−1(t1) or θ ≥ sin−1(t2), (3.14)

where 0 ≤ t1 ≤ t2 ≤ 1 are the two nonnegative roots of the quartic equation

t4 +
(
R2

O/X̂ − 1
)
t2 + 4RO/X̂RÊ/X̂ t+ 4R2

Ê/X̂ = 0. (3.15)

Proof. As the first part of the proof, we prove a useful result.

Sublemma 1. Given 0 ≤ α < 1 and β > 0, the equation

h(ϕ) := sin(ϕ) cos(ϕ)− α sin(ϕ)− 2β = 0

has two roots in (0, π/2) if and only if

32β(√
α2 + 8− 3α

)3/2 (√
α2 + 8 + α

)1/2 < 1.

Proof. Note that h(0) = −2β < 0 and h(π/2) = −α− 2β < 0. One can compute its

derivative as

h′(ϕ) = 2 cos2(ϕ)− α cos(ϕ)− 1

and h′(0) = 1−α > 0 and h′(π/2) = −1 < 0, which means h(ϕ) is increasing at ϕ = 0
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and is decreasing at ϕ = π/2. By solving h′(ϕ̄) = 0, we obtain

cos(ϕ̄) = α +
√
α2 + 8
4 > 0 or cos(ϕ̄) = α−

√
α2 + 8
4 < 0.

Since we are only interested in the domain [0, π/2], the second solution is discarded.

Moreover, α ∈ [0, 1) implies (α +
√
α2 + 8)/4 ∈ [

√
2/2, 1), so ϕ̄ = arccos((α +

√
α2 + 8)/4) is indeed a extreme point of h(·) in [0, π/2]. Combining the facts that

h′(ϕ) > 0 for ϕ ∈ [0, arccos(ϕ̄)), h′(ϕ) < 0 for ϕ ∈ (arccos(ϕ̄), π/2], and there is only

one extreme point ϕ̄ in [0, π/2], we know that ϕ̄ is a maximizer. Therefore, h(ϕ) has

two roots in (0, π/2) if and only if h(ϕ̄) > 0, which is further equivalent to

sin(ϕ̄) cos(ϕ̄)− α sin(ϕ̄)− 2β > 0

⇔ (1− cos2(ϕ̄))(cos(ϕ̄)− α)2 > 4β2

⇔
(
8− 2α2 − 2α

√
α2 + 8

) (√
α2 + 8− 3α

)2
> (32β)2

⇔
(√

α2 + 8 + α
) (√

α2 + 8− 3α
)3
> (32β)2

⇔
(√

α2 + 8− 3α
)3/2 (√

α2 + 8 + α
)1/2

> 32β,

thus completing the proof of the sublemma.

Continuing with the proof of Lemma 3, we show that as long as RO/X̂ < 1 and

(3.13) holds, the quartic equation (3.15) must have exactly two roots in [0, 1]. We

consider two cases: RÊ/X̂ = 0 and RÊ/X̂ > 0. If RÊ/X̂ = 0, then the quartic equation
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(3.15) reduces to

t4 + (R2
O/X̂ − 1)t2 = 0, (3.16)

which has two roots in [0, 1]
(
namely 0 and

√
1−R2

O/X̂

)
. On the other hand, if

RÊ/X̂ > 0, consider the following equation for ϕ ∈ (0, π/2):

h(ϕ) := sin(ϕ) cos(ϕ)− sin(ϕ)RO/X̂ − 2RÊ/X̂ = 0. (3.17)

Letting t := sin(ϕ) ∈ (0, 1), we have

t
√

1− t2 = tRO/X̂ + 2RÊ/X̂ ,

which is equivalent to the quartic equation (3.15):

t4 + (R2
O/X̂ − 1)t2 + 4RO/X̂RÊ/X̂ t+ 4R2

Ê/X̂ = 0. (3.18)

This tells us that each root ϕ ∈ (0, π/2) of h(·) corresponds to a root t = sin(ϕ) ∈ (0, 1)

of (3.15). It follows from Sublemma 1 that condition (3.13), RO/X̂ ∈ [0, 1] and

RÊ/X̂ > 0 together ensure that the equation in (3.17) has two roots ϕ1, ϕ2 ∈ (0, π/2).

Then, from the above discussion, we know that sin(ϕ1) and sin(ϕ2) are two positive

roots in [0, 1] of the quartic equation (3.15). Moreover, according to Descartes’ rule of

signs, (3.15) has zero or two positive roots, so that there are no other positive roots.

Therefore, we conclude that if RO/X̂ < 1 and (3.13) holds, the quartic equation (3.15)
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must have exactly two roots in [0, 1], and we denote them as 0 ≤ t1 ≤ t2 ≤ 1.

Next, let us consider the geometry of the critical points of problem (3.1). Similarly,

we consider two cases: RÊ/X̂ = 0 and RÊ/X̂ > 0. If RÊ/X̂ = 0, the problem reduces to

the noiseless case as analyzed in [152, 153] with dataset [X̂ O] (recall that the points

in X̂ lie perfectly in the inlier subspace S). According to Lemma 1, we have

sin(θ) = 0 or sin(θ) ≥
√

1−R2
O/X̂

. (3.19)

Moreover, according to (3.16), in this case we solve for the two roots of (3.15) as

t1 = 0 and t2 =
√

1−R2
O/X̂

. Combine this with (3.19), we obtain

sin(θ) = t1 or sin(θ) ≥ t2. (3.20)

In the remainder of the analysis, we consider the case RÊ/X̂ > 0. For any critical

point b of problem (3.1), we decompose it as b = sin(θ)s + cos(θ)n, where θ ∈ [0, π/2]

is the principal angle of b from S⊥, s ∈ S, andn ∈ S⊥ with ∥s∥2 = ∥n∥2 = 1. Note

that if θ = 0 or θ = π/2, then (3.14) trivially holds. Hence, for the remainder, assume

that θ ∈ (0, π/2). For any critical point b, there exists a vector v ∈ ∂
X̃⊤b


1

so that

(
I− bb⊤

)
v = 0. (3.21)
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We further explicitly write down the subdifferential of
X̃⊤b


1
:

∂
X̃⊤b


1

=
N∑

j=1
Sgn

(
(x̂j + ϵ̂j)⊤b

)
(x̂j + ϵ̂j) +

M∑
j=1

Sgn
(
o⊤

j b
)

oj,

and thus the v as defined above in (3.21) can be written as

v =
N∑

j=1
sgn

(
(x̂j + ϵ̂j)⊤b

)
(x̂j + ϵ̂j) +

M∑
j=1

sgn
(
o⊤

j b
)

oj, (3.22)

where sgn(x) denotes a specific element that belongs to the subdifferential Sgn(x).

Define y := − cos(θ)s + sin(θ)n, which is orthogonal to b. Then, we have that

0 =
⏐⏐⏐⟨(I− bb⊤

)
v,y

⟩⏐⏐⏐ =
⏐⏐⏐v⊤

(
I− bb⊤

)
y
⏐⏐⏐ =

⏐⏐⏐v⊤y
⏐⏐⏐

=

⏐⏐⏐⏐⏐⏐
N∑

j=1
sgn

(
(x̂j + ϵ̂j)⊤b

)
(x̂⊤

j + ϵ̂⊤
j )y +

M∑
j=1

sgn
(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
N∑

j=1
sgn

(
sin(θ)x̂⊤

j s + cos(θ)ϵ̂⊤
j n
) (
− cos(θ)x̂⊤

j s + sin(θ)ϵ̂⊤
j n
)

(3.23)

+
M∑

j=1
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐− cos(θ)
N∑

j=1
sgn

(
x̂⊤

j s + cot(θ)ϵ̂⊤
j n
) (

x̂⊤
j s− tan(θ)ϵ̂⊤

j n
)

+
M∑

j=1
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐− cos(θ)
N∑

j=1
sgn

(
x̂⊤

j s + cot(θ)ϵ̂⊤
j n
) (

x̂⊤
j s + cot(θ)ϵ̂⊤

j n
)

+ cos(θ)
N∑

j=1
sgn

(
x̂⊤

j s + cot(θ)ϵ̂⊤
j n
)

(cot(θ) + tan(θ)) ϵ̂⊤
j n +

M∑
j=1

sgn
(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐
(3.24)

≥ cos(θ)
N∑

j=1

⏐⏐⏐x̂⊤
j s + cot(θ)ϵ̂⊤

j n
⏐⏐⏐−

⏐⏐⏐⏐⏐⏐
M∑

j=1
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐
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− cos(θ)

⏐⏐⏐⏐⏐⏐
N∑

j=1
sgn

(
x̂⊤

j s + cot(θ)ϵ̂⊤
j n
)

(cot(θ) + tan(θ)) ϵ̂⊤
j n

⏐⏐⏐⏐⏐⏐
≥ cos(θ)

N∑
j=1

⏐⏐⏐x̂⊤
j s + cot(θ)ϵ̂⊤

j n
⏐⏐⏐− cos(θ)

N∑
j=1

(cot(θ) + tan(θ))
⏐⏐⏐ϵ̂⊤

j n
⏐⏐⏐

−

⏐⏐⏐⏐⏐⏐
M∑

j=1
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐
≥ cos(θ)

N∑
j=1

⏐⏐⏐x̂⊤
j s
⏐⏐⏐− (2 cos(θ) cot(θ) + sin(θ))

N∑
j=1

⏐⏐⏐ϵ̂⊤
j n
⏐⏐⏐−

⏐⏐⏐⏐⏐⏐
M∑

j=1
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐
> cos(θ)NcX̂ ,min −

2
sin(θ)NcÊ,max −MηO, (3.25)

where (3.23) follows from the decomposition of b and y plus the fact that x̂j ⊥ n, ϵ̂j ⊥

s, (3.24) follows from

x̂⊤
j s− tan(θ)ϵ̂⊤

j n =
(
x̂⊤

j s + cot(θ)ϵ̂⊤
j n
)
−
(
cot(θ)ϵ̂⊤

j n + tan(θ)ϵ̂⊤
j n
)
,

(3.25) uses the definition of cX̂ ,min in (3.10), the definition of cÊ,max in (3.11),

−(2 cos(θ) cot(θ) + sin(θ)) = −2 cos2(θ) + sin2(θ)
sin(θ) = −2− sin2(θ)

sin(θ) > − 2
sin(θ) ,

and the fact that the general position [152, 153] of data ensures that b can be orthogonal
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to at most D columns of O:

⏐⏐⏐⏐⏐⏐
M∑

j=1
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐⏐
∑

{j:o⊤
j b ̸=0}

sign
(
o⊤

j b
)

o⊤
j y +

∑
{j:o⊤

j b=0}
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐
M∑

j=1
sign

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐⏐⏐

∑
{j:o⊤

j b=0}
sgn

(
o⊤

j b
)

o⊤
j y

⏐⏐⏐⏐⏐⏐⏐
≤ max

g,b∈SD−1,g⊥b

⏐⏐⏐g⊤Osign(O⊤b)
⏐⏐⏐+D

= max
b∈SD−1

(I − bb⊤)Osign(O⊤b)


2
+D

= M(ηO +D/M) = MηO.

Therefore, we obtain

0 > cos(θ)NcX̂ ,min −
2

sin(θ)NcÊ,max −MηO, (3.26)

which is equivalent to

cos(θ)− 2
sin(θ)

NcÊ,max

NcX̂ ,min
− MηO
NcX̂ ,min

< 0 (3.27)

⇔ cos(θ)− 2
sin(θ)RÊ/X̂ −RO/X̂ < 0 (3.28)

⇔ sin(θ) cos(θ)− sin(θ)RO/X̂ − 2RÊ/X̂ < 0 (3.29)

where we use the fact that NcX̂ ,min ̸= 0 since RO/X̂ < 1, and the definitions of RÊ/X̂

and RO/X̂ from (3.12).

From (3.29), Sublemma 1, RÊ/X̂ ∈ [0, 1), RÊ/X̂ > 0 and condition (3.13) we

know that h(θ) := sin(θ) cos(θ)− sin(θ)RO/X̂ − 2RÊ/X̂ has two zeros θ1, θ2 ∈ [0, π/2]
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(suppose θ1 < θ2). Based on the proof of Sublemma 1, we know that h(θ) < 0 for

θ ∈ (0, θ1)∪ (θ2, π/2). In other words, the solution for inequality (3.29) satisfies either

0 < θ < θ1 or θ2 < θ < π/2. (3.30)

From the previous discussions on (3.17) and (3.18), we know that zeros θ1, θ2 ∈ [0, π/2]

of h(·) correspond to roots t1 = sin(θ1) and t2 = sin(θ2) of the quartic equation (3.15).

Combining this fact with (3.30), we have either

sin(θ) < t1 or sin(θ) > t2. (3.31)

Finally, (3.20) and (3.31) together imply that any critical point b of problem (3.1)

must have its principal angle θ from S⊥ satisfy either

sin(θ) ≤ t1 or sin(θ) ≥ t2

where 0 ≤ t1 ≤ t2 ≤ 1 are the two nonnegative roots of the quartic equation (3.15).

Discussion of Lemma 3. First note that RO/X̂ < 1 ensures that the de-

nominator of the LHS in (3.13) is well-defined. Since the function a ↦→ f(a) =(√
a2 + 8− 3a

) 3
2
(√

a2 + 8 + a
) 1

2 is decreasing between [0, 1] with f(0) = 8 and

f(1) = 0, (3.13) implies that larger noise levels lead to smaller numbers of out-

liers that DPCP can tolerate. With (3.13), it can be shown that (3.15) has two

nonnegative roots 0 ≤ t1 ≤ t2 ≤ 1, and (3.14) implies that none of the critical points
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Figure 3.2. Plot of (a) t1 and (b) t2 while varying RO/X̂ and RÊ/X̂ . In each plot, condi-

tion (3.13) holds only below the curve, which corresponds to valid pairs of
(
RO/X̂ , RÊ/X̂

)
.

have principal angle in (sin−1(t1), sin−1(t2)). Figure 3.2 displays t1 and t2 while varying

RO/X̂ and RÊ/X̂ under condition (3.13). One can observe that smaller percentages of

outliers and noise levels lead to t1 being closer to 0 and t2 being closer to 1, which

means that critical points of (3.1) either lie in a neighborhood of S⊥ or close to S.

When there is no noise (E = 0), Lemma 3 reduces to Lemma 1 [152, 153]:

RÊ/X̂ = 0 and RO/X̂ = ηO/cX ,min, so that (3.13) always holds and (3.15) becomes

t4 + ((ηO/cX ,min)2 − 1)t2 = 0, which implies t1 = 0 and t2 =
√

1− (ηO/cX ,min)2.

Nevertheless, we stress that the proof for Lemma 3 is far more complicated than for

the noiseless case, partly because of the need to deal with Sgn
(
(X + E)⊤b

)
.

Proposition 1. Assume RO/X̂ < 1 and condition (3.13) holds. Let 0 ≤ t1 ≤ t2 ≤ 1

be the two nonnegative roots of the quartic equation (3.15), then t1 is upper bounded by

t1 ≤
25(

1−RO/X̂

)2 ·RÊ/X̂ . (3.32)
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Proof. First of all, according to the proof of Lemma 3, RO/X̂ < 1 and condition (3.13)

ensure that the quartic equation (3.15) must exactly have two roots in [0, 1], and

we denote them by t1 and t2 with 0 ≤ t1 ≤ t2 ≤ 1. Let t3 and t4 be the other two

roots of (3.15). Based on the relationship between coefficients and roots (Vieta’s

Formulas),we know that

4∑
i=1

ti = 0 and
∑
i,j

titj = R2
O/X̂ − 1, (3.33)

and thus
4∑

i=1
t2i =

( 4∑
i=1

ti

)2

− 2
∑
i,j

titj = 2
(

1−R2
O/X̂

)
. (3.34)

Setting ν :=
√

2
(

1−R2
O/X̂

)
, it then follows that

ν2 =
4∑

i=1
t2i ≥ t2j or ν ≥ tj for j = 1, · · · , 4. (3.35)

We claim that the roots ti, i = 1, · · · , 4, must satisfy the following inequality:

t4 +
(
R2

O/X̂ − 1
)
t2 + 4RO/X̂RÊ/X̂ν + 4R2

Ê/X̂ ≥ 0, (3.36)

where the original linear term 4RO/X̂RÊ/X̂ t in (3.15) reduces to a constant term

4RO/X̂RÊ/X̂ν in (3.36), thus allowing (3.36) to be solved as a quadratic inequality. In
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fact, for any ti, i = 1, · · · , 4, we have

t4
i +

(
R2

O/X̂ − 1
)

t2
i + 4RO/X̂RÊ/X̂ ν + 4R2

Ê/X̂

=
(

t4
i + (R2

O/X̂ − 1)t2
i + 4RO/X̂RÊ/X̂ ti + 4R2

Ê/X̂

)
+ 4RO/X̂RÊ/X̂ ν − 4RO/X̂RÊ/X̂ ti

= 0 + 4RO/X̂RÊ/X̂ (ν − ti) ≥ 0,

where we used (3.35) and that ti, i = 1, · · · , 4, are solutions to equation (3.15).

By viewing (3.36) as a quadratic inequality of u := t2, we have

u2 +
(
R2

O/X̂ − 1
)
u+ 4RO/X̂RÊ/X̂ν + 4R2

Ê/X̂ ≥ 0, (3.37)

and the associated quadratic function has the following two zeros:

u1,2 =
(1−R2

O/X̂
)±

√
(1−R2

O/X̂
)2 − 16R2

Ê/X̂
− 16RO/X̂RÊ/X̂ ν

2

= 1
2(1−R2

O/X̂ )±
√(

1
2(1−R2

O/X̂
)
)2
− 4R2

Ê/X̂
− 4
√

2RO/X̂RÊ/X̂

√
1−R2

O/X̂
.

(3.38)

Note that (1−R2
O/X̂

)2 − 16R2
Ê/X̂
− 16RO/X̂RÊ/X̂ν ≥ 0 is guaranteed by (3.13), and

u1,2 ∈ [0, 1]. Therefore, (3.36) implies that there exists t′ > 0 such that t2 satisfies

t2
2 ≥ (t′)2 :=1

2(1−R2
O/X̂ )

+
√(

1
2(1−R2

O/X̂
)
)2
− 4R2

Ê/X̂
− 4
√

2RO/X̂RÊ/X̂

√
1−R2

O/X̂

(3.39)

In addition to the first and second order symmetric sums (3.33) for the roots of (3.15),

56



we also have the third and fourth order relationships

t1t2t3 + t1t2t4 + t2t3t4 + t1t3t4 = −4RO/X̂RÊ/X̂ and t1t2t3t4 = 4R2
Ê/X̂ . (3.40)

Reorganizing the first equation in (3.40), we have

t1t2(t3 + t4) + (t1 + t2)t3t4 = −4RO/X̂RÊ/X̂ . (3.41)

Since t3 + t4 = −(t1 + t2) from (3.33), we rewrite (3.41) as

(t1 + t2)(t3t4 − t1t2) = −4RO/X̂RÊ/X̂ ,

which implies t3t4 ≤ t1t2. Combine this with the second equation in (3.40), we have

t3t4 ≤ 2RÊ/X̂ . Noticing that

2t3t4 = (t3 + t4)2 − t23 − t24 = (t1 + t2)2 − 2(1−R2
O/X̂ ) + t21 + t22

follows from (3.33) and (3.34), we find together with t3t4 ≤ 2RÊ/X̂ that

t21 + t2t1 + t22 − 2RÊ/X̂ − (1−R2
O/X̂ ) ≤ 0. (3.42)

Viewing this as a quadratic inequality with respect to t1, we solve (3.42) for t1:

t1 ≤
1
2

(
−t2 +

√
4(1−R2

O/X̂
) + 8RÊ/X̂ − 3t22

)
. (3.43)
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We now validate that the square root in (3.43) is well-defined. In fact, we have

4(1−R2
O/X̂ ) + 8RÊ/X̂ − 3t22 = 2(t21 + t22 + t23 + t24) + 8RÊ/X̂ − 3t22

≥ 2(t21 + t22 + t23 + t24) + 4t3t4 − 3t22

= 2t21 − t22 + 2(t3 + t4)2

= 2t21 − t22 + 2(t1 + t2)2

= 4t21 + t22 + 4t1t2 > 0,

where the first equality follows from (3.34), the inequality follows from t3t4 ≤ 2RÊ/X̂

and the third equality follows from (3.33).

Combine (3.43) with t2 ≥ t′ > 0, we have

t1 ≤
1
2

(
−t′ +

√
4(1−R2

O/X̂
) + 8RÊ/X̂ − 3(t′)2

)
. (3.44)

Recalling the definition of t′ in (3.39), we have

1−R2
O/X̂ − (t′)2

= 1
2(1−R2

O/X̂ )−
√(

1
2(1−R2

O/X̂
)
)2
− 4R2

Ê/X̂
− 4
√

2RO/X̂RÊ/X̂

√
1−R2

O/X̂

=
4R2

Ê/X̂
+ 4
√

2RO/X̂RÊ/X̂

√
1−R2

O/X̂

1
2(1−R2

O/X̂
) +

√(
1
2(1−R2

O/X̂
)
)2
− 4R2

Ê/X̂
− 4
√

2RO/X̂RÊ/X̂

√
1−R2

O/X̂

≤
4RÊ/X̂ + 2

√
2RÊ/X̂

1
2(1−R2

O/X̂
)

= 8 + 4
√

2
1−R2

O/X̂

RÊ/X̂
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which follows from RÊ/X̂ < 1 and a
√

1− a2 ≤ 1/2 for any 0 ≤ a < 1. Then we obtain

−(t′)2 ≤ −
(

1−R2
O/X̂

)
+ 8 + 4

√
2

1−R2
O/X̂

RÊ/X̂ . (3.45)

Now we are able to bound the RHS of (3.44):

t1 ≤
1
2

(
−t′ +

√
4(1−R2

O/X̂
) + 8RÊ/X̂ − 3(t′)2

)
= 1

2

4(1−R2
O/X̂

) + 8RÊ/X̂ − 3(t′)2 − (t′)2√
4(1−R2

O/X̂
) + 8RÊ/X̂ − 3(t′)2 + t′

≤
4RÊ/X̂ + 2(1−R2

O/X̂
)− 2(1−R2

O/X̂
) + 16+8

√
2

1−R2
O/X̂

RÊ/X̂√
4(1−R2

O/X̂
) + 8RÊ/X̂ −

√
3(t′)2 + t′

≤
4RÊ/X̂ + 16+8

√
2

1−R2
O/X̂

RÊ/X̂√
4(1−R2

O/X̂
) + (1−

√
3)
√

1−R2
O/X̂

=
4RÊ/X̂ + 16+8

√
2

1−R2
O/X̂

RÊ/X̂

(3−
√

3)
√

1−R2
O/X̂

=
20 + 8

√
2− 4R2

O/X̂

(3−
√

3)(1−R2
O/X̂

)3/2 ·RÊ/X̂ ≤
25

(1−RO/X̂ )2 ·RÊ/X̂

where the second inequality follows from (3.45) and
√
a− b ≥

√
a−
√
b for a ≥ b ≥ 0,

the third inequality follows because the denominator is an increasing function of RÊ/X̂

(notice t′ is itself a decreasing function of RÊ/X̂ ) so we substitute RÊ/X̂ with 0 in the

denominator to get an upper bound. This completes the proof.

Discussion of Proposition 1. The upper bound for t1 in (3.32) helps in further

interpreting Lemma 3. In particular, this means that t1 is close to 0 when RÊ/X̂

and RO/X̂ are small. More generally, for fixed O and X̂ , (3.32) guarantees that t1 is

perturbed away from 0 by at most the effective noise level, which is intuitive.
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3.1.2.2 Geometry of the global solutions

We are now ready to provide deterministic conditions under which any global solution

to the noisy DPCP problem (3.1) lies in a neighborhood of S⊥.

Theorem 3. If RO/X̂ < 1, (3.13) holds, and

M

N

cO,max − cO,min

cX̂ ,min
< t2 − 2RÊ/X̂ , (3.46)

then any global minimizer b∗ of (3.1) must have its principal angle θ∗ from S⊥ satisfy

θ∗ ≤ sin−1(t1), (3.47)

where 0 ≤ t1 ≤ t2 ≤ 1 are the nonnegative roots of (3.15).

Proof. Since RO/X̂ < 1 and (3.13) holds, we can apply Lemma 3 to obtain that any

critical point b of problem (3.1) must have its principal angle θ from S⊥ satisfy

sin(θ) ≤ t1 or sin(θ) ≥ t2,

where 0 ≤ t1 ≤ t2 are the two nonnegative roots of (3.15). Since a global minimizer

b∗ must be a critical point, for the sake of contradiction, let us assume (3.47) does

not hold, which allows us to conclude that

sin(θ∗) ≥ t2. (3.48)
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Moreover, for any global minimizer b∗, we decompose it as b∗ = sin(θ∗)s + cos(θ∗)n,

where s ∈ S,n ∈ S⊥ and both s and n are unit vectors. Observing that

X̃⊤b∗


1
= min

b∈SD−1

X̃⊤b


1
≤ min

b∈SD−1∩S⊥

X̃⊤b


1

= min
b∈SD−1∩S⊥

{Ê⊤b


1
+
O⊤b


1

}
≤ NcÊ,max +McO,max

and

X̃⊤b∗


1
=

N∑
j=1

⏐⏐⏐(x̂j + ϵ̂j)⊤b∗
⏐⏐⏐+ M∑

j=1

⏐⏐⏐o⊤
j b∗

⏐⏐⏐
≥

N∑
j=1

⏐⏐⏐x̂⊤
j b∗

⏐⏐⏐− N∑
j=1

⏐⏐⏐ϵ̂⊤
j b∗

⏐⏐⏐+ M∑
j=1

⏐⏐⏐o⊤
j b∗

⏐⏐⏐
= sin(θ∗)

N∑
j=1

⏐⏐⏐x̂⊤
j s
⏐⏐⏐− cos(θ∗)

N∑
j=1

⏐⏐⏐ϵ̂⊤
j n
⏐⏐⏐+ M∑

j=1

⏐⏐⏐o⊤
j b∗

⏐⏐⏐
≥ sin(θ∗)NcX̂ ,min −NcÊ,max +McO,min,

it follows that

sin(θ∗)NcX̂ ,min −NcÊ,max +McO,min ≤ NcÊ,max +McO,max

or, equivalently, that

sin(θ∗) ≤
McO,max −McO,min + 2NcÊ,max

NcX̂ ,min
. (3.49)

Combine (3.48) and (3.49), we have

McO,max −McO,min + 2NcÊ,max

NcX̂ ,min
≥ t2,
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and after rearranging and using the definition for RÊ/X̂ in (3.12), we have

M

N

cO,max − cO,min

cX̂ ,min
≥ t2 − 2RÊ/X̂ ,

which contradicts the condition (3.46), and thus completes the proof.

Discussion of Theorem 3. Theorem 3 builds upon Lemma 3, with the intuition

that critical points that are close to the subspace S (i.e., for which θ∗ ≥ sin−1(t2))

cannot be global minimizers as they result in large objective values. As long as

data points are well-distributed (small cO,max − cO,min, large cX̂ ,min, large t2) and

effective noise is mild (small cÊ,max), (3.46) will be satisfied and global minimizers

must be close to S⊥. When E = 0, we have already remarked that t1 = 0 and

t2 =
√

1− (ηO/cX ,min)2, which together with (3.46) and (3.47) imply that global

minimizers are orthogonal to S when

M

N

cO,max − cO,min

cX ,min
<
√

1− (ηO/cX ,min)2,

which is precisely Theorem 1 of [152, 153] under the noiseless setting.

Corollary 1. Assume RO/X̂ < 1. If it holds that

M

N

cO,max − cO,min

cX̂ ,min
< t′ − 2RÊ/X̂ , (3.50)

then any global minimizer b∗ of problem (3.1) must have its principal angle θ∗ from
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subspace S⊥ satisfy

sin(θ∗) ≤ 25
(1−RO/X̂ )2 ·RÊ/X̂ (3.51)

where t′ is defined in (3.39).

Proof. We first show that if t′ in (3.39) is well-defined, then (3.13) holds. In other

words, we show that if

(
1
2(1−R2

O/X̂ )
)2
− 4R2

Ê/X̂ − 4
√

2RO/X̂RÊ/X̂

√
1−R2

O/X̂
≥ 0 (3.52)

then (3.13) holds. For the sake of contradiction, assume that (3.13) does not hold, so

that according to the proof of Sublemma 1, we have that

h(ϕ) := sin(ϕ) cos(ϕ)−RO/X̂ sin(ϕ)− 2RÊ/X̂ ≤ 0

for any ϕ ∈ [0, π/2]. Let t := sin(ϕ) ∈ [0, 1] so that

t
√

1− t2 ≤ RO/X̂ t+ 2RÊ/X̂ ,

which leads to

h̃(t) := t4 + (R2
O/X̂ − 1)t2 + 4RO/X̂RÊ/X̂ t+ 4R2

Ê/X̂ ≥ 0 (3.53)
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for any t ∈ [0, 1]. Now let us consider the quadratic function

h̄(u) := u2 + (R2
O/X̂ − 1)u+ 4

√
2RO/X̂

√
1−R2

O/X̂
RÊ/X̂ + 4R2

Ê/X̂ ,

whose discriminant ∆ := (1−R2
O/X̂

)2 − 16R2
Ê/X̂
− 16
√

2RO/X̂RÊ/X̂

√
1−R2

O/X̂
≥ 0,

which is exactly the assumption (3.52). Notice that the minimizer of h̄(u) is u∗ =

(1−R2
O/X̂

)/2 ∈ (0, 1) for any u we have

h̄(u) ≥ h̄(u∗)

=
⎛⎝1−R2

O/X̂

2

⎞⎠2

+ (R2
O/X̂ − 1)

1−R2
O/X̂

2 + 4
√

2RO/X̂

√
1−R2

O/X̂
RÊ/X̂ + 4R2

Ê/X̂

>

⎛⎝1−R2
O/X̂

2

⎞⎠2

+ (R2
O/X̂ − 1)

1−R2
O/X̂

2 + 4RO/X̂

√1−R2
O/X̂

2 RÊ/X̂ + 4R2
Ê/X̂

= h̃

⎛⎜⎝
√1−R2

O/X̂

2

⎞⎟⎠ ≥ 0

where the second inequality follows from 4
√

2 > 4/
√

2 and the last inequality follows

from (3.53). Since h̄(u) > 0 for any u, which means ∆ < 0, we reach a contradiction

to (3.52), i.e., ∆ ≥ 0.

We proved that the existence of t′ in (3.39) implies condition (3.13). Together

with RO/X̂ < 1 and t′ ≥ t2, we find that (3.46) holds. Then (3.51) directly follows

from the results of Theorem 3 and Proposition 1.

Discussion of Corollary 1. Corollary 1 is more interpretable than Theorem 3

in characterizing how global solutions to the noisy DPCP problem (3.1) are perturbed
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away from S⊥. Concretely, it removes the obscure quartic equation (3.15) and only

relies on geometric quantities such as RO/X̂ and RÊ/X̂ . Still, it is of the deterministic

type, and we are also interested in the statistical behavior of the geometric quantities

in the noisy case that allows for a better understanding of the problem.

3.1.2.3 Probabilistic analysis

In this section, we provide a probabilistic characterization of global optimality of the

noisy DPCP problem (3.1). Since the associated geometric quantities play critical

roles in the deterministic analysis, understanding their statistical behavior is key to a

probabilistic analysis. Towards that end, we first give their concentration bounds. Note

that the outlier-related geometric quantities, namely cO,max, cO,min and ηO, are the

same as in the noiseless case under the random spherical model (see Definition 1), and

their concentration bounds are already given in (3.9). We only derive concentration

bounds for cX̂ ,min and cÊ,max that are newly introduced under the noisy setting.

We start by presenting some useful preliminary results in statistics.

Lemma 4. (McDiarmid’s Inequality, [78]). Let Z1, . . . , Zn be real-valued independent

random variables, f : Rn → R be a function that satisfies

sup
z1,··· ,zn,z′

i

⏐⏐⏐⏐⏐⏐f(z1, · · · , zi−1, zi, zi+1, · · · , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, · · · , zn)

⏐⏐⏐⏐⏐⏐ ≤ ci,
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for every i = 1, · · · , n. Then

P

⎡⎣⏐⏐⏐⏐⏐⏐f(Z1, · · · , Zn)− E [f(Z1, · · · , Zn)]

⏐⏐⏐⏐⏐⏐ ≥ ϵ

⎤⎦ ≤ 2 exp
(
− 2ϵ2∑n

i=1 c
2
i

)
.

Lemma 5. (Rademacher Comparison, [59, Equation (4.20)]). Let F : R → R be a

convex and increasing function, φi : R → R for 1 ≤ i ≤ N be 1-Lipschitz functions

such that φi(0) = 0, and εi for 1 ≤ i ≤ N be Rademacher random variables. Then,

for any bounded subset T in RN , we have

E

⎡⎣F
⎛⎝ sup

(t1,··· ,tN )∈T

N∑
i=1

εiφi(ti)
⎞⎠⎤⎦ ≤ E

⎡⎣F
⎛⎝ sup

(t1,··· ,tN )∈T

N∑
i=1

εiti

⎞⎠⎤⎦ .

Lemma 6. (Rademacher Symmetrization, [56]). Let F be a class of functions f :

R→ R such that 0 ≤ f(z) ≤ 1, and εi for 1 ≤ i ≤ n be Rademacher random variables.

Then for independent and identically distributed random variables Z1, · · · , Zn, we have

E

⎡⎣sup
f∈F

⎛⎝ 1
n

n∑
i=1

f(Zi)− E[f(Z)]
⎞⎠⎤⎦ ≤ 2E

⎡⎣ sup
f∈F

1
n

n∑
i=1

εif(Zi)
⎤⎦ and

E

⎡⎣sup
f∈F

⎛⎝E[f(Z)]− 1
n

n∑
i=1

f(Zi)
⎞⎠⎤⎦ ≤ 2E

⎡⎣ sup
f∈F

1
n

n∑
i=1

εif(Zi)
⎤⎦.

Moreover, the result also holds for multivariate random variables Z1, · · · , Zn and Z.

Bounding cX̂ ,min. In the following, we present the concentration bound for cX̂ ,min

under the random spherical model specified in Definition 1.

Lemma 7. Consider the random spherical model in Definition 1. For a fixed number
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t > 0, we have

P

⎡⎣cX̂ ,min ≥
√

2
πd
ρ(σ)−

(
2 + t

2

) 1√
N

⎤⎦ ≥ 1− 2e− t2
2 (3.54)

where

ρ(σ) := (1− σ)FD−d,d

( 1
σ

)
(3.55)

with Fd1,d2(·) the cumulative density function (CDF) of F-distribution with Fd1,d2(0) = 0

and Fd1,d2(∞) = 1. Moreover, we have ρ(σ) = 1−O(σ + σ
d
2 ).

Proof. According to the generative model in Definition 1, let x1, · · · ,xN ∼ N
(
0, 1

d
PS
)
,

and ϵ1, · · · , ϵN ∼ N
(
0, σ2

D
I
)

so that the normalized noisy inliers X + E are given as

X =
[

x1

∥x1 + ϵ1∥2
, · · · , xN

∥xN + ϵN∥2

]
and

E =
[

ϵ1

∥x1 + ϵ1∥2
, · · · , ϵN

∥xN + ϵN∥2

]
.

(3.56)

We denote

Es :=
[

ϵs
1

∥x1 + ϵ1∥2
, · · · , ϵs

N

∥xN + ϵN∥2

]
and

En :=
[

ϵn
1

∥x1 + ϵ1∥2
, · · · , ϵn

N

∥xN + ϵN∥2

]
,

(3.57)

where Es = PSE ⊂ S and En = (I− PS)E ⊂ S⊥. By definition, X̂ := X + Es, and
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thus

cX̂ ,min = min
b∈S∩SD−1

1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐ ≥ min

∥b∥=1

1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐

= min
∥b∥=1

1
N

N∑
j=1

⏐⏐⏐⏐⏐(xj + ϵs
j)⊤b

∥xj + ϵj∥2

⏐⏐⏐⏐⏐ = min
∥b∥=1

1
N

N∑
j=1

∥xj + ϵs
j∥2

∥xj + ϵj∥2

⏐⏐⏐v⊤
j b
⏐⏐⏐ ,

where vj is the direction vector of x̂j such that ∥vj∥2 = 1. Denote the scaling factor

of x̂j by

Rj :=
∥xj + ϵs

j∥2

∥xj + ϵj∥2
, (3.58)

we are interested in E [Rj]. Consider the following random variables

Yj :=R2
j =
∥xj + ϵs

j∥2
2

∥xj + ϵj∥2
2

=
∥xj + ϵs

j∥2
2

∥xj + ϵs
j∥2

2 + ∥ϵn
j ∥2

2
and

Zj :=
∥ϵn

j ∥2
2

∥xj + ϵs
j∥2

2
=

σ2

D
X 2

D−d

(1
d

+ σ2

D
)X 2

d

= (D − d)σ2

D + dσ2
X 2

D−d/(D − d)
X 2

d /d

∼(D − d)σ2

D + dσ2 F (D − d, d)

where Xd is the chi-square distribution with d degrees of freedom, and F (d1, d2) is the

F -distribution with parameters d1 and d2. Note that

1
Yj

= 1 + Zj
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and that, for any a ∈ [0, 1], we have

P [Rj ≤ a] = P[
√
Yj ≤ a] = P[Yj ≤ a2] = P

[
1
Yj

≥ 1
a2

]
= 1− P

[
1
Yj

<
1
a2

]

= 1− P
[
1 + Zj <

1
a2

]
= 1− P

[
Zj <

1
a2 − 1

]

= 1− P
[
D + dσ2

(D − d)σ2Zj <
D + dσ2

(D − d)σ2

( 1
a2 − 1

)]

= 1−
∫ D+dσ2

(D−d)σ2 ( 1
a2 −1)

0
fF (t;D − d, d) d t

where fF is the probability density function of F -distribution. Hence

E [Rj] =
∫ 1

0
afRj

(a) d a =
∫ 1

0
a dFRj

(a) = aFRj
(a)
⏐⏐⏐⏐1
0
−
∫ 1

0
FRj

(a) d a

=
∫ 1

0

∫ D+dσ2
(D−d)σ2 ( 1

a2 −1)
0

fF (t;D − d, d) d t d a

≥
∫ 1−σ

0

∫ D+dσ2
(D−d)σ2

(
1

(1−σ)2 −1
)

0
fF (t;D − d, d) d t d a

≥
∫ 1−σ

0

∫ D+dσ2
(D−d)σ2 (2σ)

0
fF (t;D − d, d) d t d a

= (1− σ)FD−d,d

(
2D/σ + dσ

D − d

)
,

(3.59)

where the second inequality follows from 1/(1− σ)2 = ∑∞
i=0(i+ 1)σi.

For any b ∈ SD−1, we define the function fb : SD−1 ∩ S × [0, 1]→ R by

fb(vj, Rj) =
∥xj + ϵs

j∥2

∥xj + ϵj∥2

⏐⏐⏐b⊤vj

⏐⏐⏐ = Rj

⏐⏐⏐b⊤vj

⏐⏐⏐ .

We let µ[0,1] and µSD−1∩S denote the uniform measures on [0, 1] and SD−1 ∩ S, respec-
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tively. Then, it follows that

E
[⏐⏐⏐x̂⊤

j b
⏐⏐⏐] =

∫
vj∈SD−1∩S

∫ 1

0
fb(vj, Rj) dµ[0,1] dµSD−1∩S

=
∫

vj∈SD−1∩S

∫ 1

0
Rj

⏐⏐⏐b⊤vj

⏐⏐⏐ dµ[0,1] dµSD−1∩S

=
∫ 1

0
Rj dµ[0,1]

∫
vj∈SD−1∩S

⏐⏐⏐b⊤vj

⏐⏐⏐ dµSD−1∩S

= cdE [Rj]

≥
√

2
πd

(1− σ)FD−d,d

(
2D/σ + dσ

D − d

)

where cd is the average height of the unit hemisphere of Rd, the last equality follows

from [112, Equation (59)], and the last inequality follows from (3.59) and cd ≥
√

2/(πd)

(as shown in [152, Footnote 9]). Therefore, we obtain

E0 := E
[⏐⏐⏐x̂⊤

j b
⏐⏐⏐] ≥

√
2
πd

(1− σ)FD−d,d

(
2D/σ + dσ

D − d

)
, ∀j. (3.60)

We are now ready to bound cX̂ ,min. Note that

cX̂ ,min ≥ inf
∥b∥2=1

1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐ = inf

∥b∥2=1

1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐− E0 + E0

= E0 − sup
∥b∥2=1

⎛⎝E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎞⎠ .

(3.61)

Since SD−1 is compact, there exists b+ ∈ SD−1 that achieves the supremum in (3.61).
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Then for any x̂1, x̂2, · · · , x̂N , x̂
′
k, we have

⏐⏐⏐⏐⏐⏐ sup
∥b∥2=1

⎛⎝E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎞⎠− sup

∥b∥2=1

⎛⎝E0 −
1
N

∑
j ̸=k

(⏐⏐⏐x̂⊤
j b
⏐⏐⏐+ ⏐⏐⏐x̂′⊤

k b
⏐⏐⏐)
⎞⎠⏐⏐⏐⏐⏐⏐

≤

⏐⏐⏐⏐⏐⏐E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b+

⏐⏐⏐−
⎛⎝E0 −

1
N

∑
j ̸=k

(⏐⏐⏐x̂⊤
j b+

⏐⏐⏐+ ⏐⏐⏐x̂′⊤
k b+

⏐⏐⏐)
⎞⎠⏐⏐⏐⏐⏐⏐

=
⏐⏐⏐⏐ 1
N

(⏐⏐⏐x̂′⊤
k b+

⏐⏐⏐− ⏐⏐⏐x̂⊤
k b+

⏐⏐⏐)⏐⏐⏐⏐ ≤ 1
N

.

Applying Lemma 4 with ck = 1/N , we have

P

⎡⎣⏐⏐⏐⏐⏐⏐ sup
∥b∥2=1

⎛⎝E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎞⎠− E

⎡⎣ sup
∥b∥2=1

⎛⎝E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎞⎠⎤⎦⏐⏐⏐⏐⏐⏐ ≥ ϵ

⎤⎦ ≤ 2e−2ϵ2N .

(3.62)

Moreover, we have

E

⎡⎣ sup
∥b∥2=1

⎛⎝E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎞⎠⎤⎦

≤ 2E

⎡⎣ sup
∥b∥2=1

1
N

N∑
j=1

εj

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎤⎦ ≤ 2E

⎡⎣ sup
∥b∥2=1

1
N

N∑
j=1

εjx̂⊤
j b

⎤⎦
= 2

N
E

⎡⎣ sup
∥b∥2=1

⟨
b,

N∑
j=1

εjx̂j

⟩⎤⎦ = 2
N

E

⎡⎣
N∑

j=1
εjx̂j


2

⎤⎦

≤ 2
N

√E

⎡⎢⎣


N∑
j=1

εjx̂j


2

2

⎤⎥⎦ ≤ 2
N

√E

⎡⎣N +
∑
i ̸=j

εiεjx̂⊤
i x̂j

⎤⎦ = 2√
N

,

(3.63)

where the first inequality follows from Lemma 6, the second inequality follows

from Lemma 5 by letting φi(·) = | · |, and the third inequality comes from Jensen’s

Inequality. Applying (3.63) to (3.62), we obtain

P

⎡⎣ sup
∥b∥2=1

⎛⎝E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎞⎠ ≥ 2√

N
+ ϵ

⎤⎦ ≤ 2e−2ϵ2N .
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Therefore

P

⎡⎣E0 − sup
∥b∥2=1

⎛⎝E0 −
1
N

N∑
j=1

⏐⏐⏐x̂⊤
j b
⏐⏐⏐
⎞⎠ ≤ E0 −

2√
N
− ϵ

⎤⎦ ≤ 2e−2ϵ2N .

From (3.61) we have

P
[
cX̂ ,min ≤ E0 −

2√
N
− ϵ

]
≤ 2e−2ϵ2N .

Applying the lower bound for E0 in (3.60), we obtain

P

⎡⎣cX̂ ,min ≤
√

2
πd

(1− σ)FD−d,d

(
2D/σ + dσ

D − d

)
− 2√

N
− ϵ

⎤⎦ ≤ 2e−2ϵ2N ,

and by setting ϵ = t
2
√

N
, we have

P

⎡⎣cX̂ ,min ≤
√

2
πd

(1− σ)FD−d,d

(
2D/σ + dσ

D − d

)
−
(

2 + t

2

) 1√
N

⎤⎦ ≤ 2e− t2
2 .

From 1
σ
≤ 2D/σ+dσ

D−d
and the fact that all the CDFs are nondecreasing, we get

P

⎡⎣cX̂ ,min ≤
√

2
πd

(1− σ)FD−d,d

( 1
σ

)
−
(

2 + t

2

) 1√
N

⎤⎦ ≤ 2e− t2
2 ,

which completes the proof of (3.54).
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Finally, by expanding the CDF formula of the F-distribution, we have

ρ(σ) = (1− σ)FD−d,d(1/σ)

= (1− σ)
(

1−
∫ ∞

1/σ
fF (x;D − d, d) dx

)

= 1− σ − (1− σ)
∫ ∞

1/σ
fF (x;D − d, d) dx

≥ 1− σ −
∫ ∞

1/σ
fF (x;D − d, d) dx

= 1− σ − 1
B
(

D−d
2 , d

2

) (D − d
d

)D−d
2 ∫ ∞

1/σ
x

D−d
2 −1

(
1 + D − d

d
x

)− D
2

dx

= 1− σ − 1
B
(

D−d
2 , d

2

) (D − d
d

)D−d
2 ∫ ∞

1/σ
x− d

2 −1
[

x

1 + D−d
d
x

]D
2

dx

≥ 1− σ − 1
B
(

D−d
2 , d

2

) (D − d
d

)D−d
2 ∫ ∞

1/σ
x− d

2 −1
(

d

D − d

)D
2

dx

= 1− σ − 1
B
(

D−d
2 , d

2

) ( d

D − d

) d
2 2
d
σ

d
2

= 1− σ −
⎡⎣ 2/d

B
(

D−d
2 , d

2

) ( d

D − d

) d
2
⎤⎦ · σ d

2 ,

where B(·, ·) is the Beta function.

Bounding cÊ,max. Next, we present the concentration bound for cÊ,max under the

random spherical model specified in Definition 1.

Lemma 8. Consider the random spherical model in Definition 1. For a fixed number

t > 0, we have that

P
[
cÊ,max ≤

(
1 + 2√

N

)
δ(σ) + t

2
√
N

]
≥ 1− 2e− t2

2 (3.64)
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where

δ(σ) :=
√
σ +
√

1− σ
√
Fd,D−d(σ), (3.65)

and Fd1,d2(·) is the cumulative density function (CDF) of the F-distribution with

Fd1,d2(0) = 0 and Fd1,d2(∞) = 1. Moreover, we have δ(σ) = O(σd/4 + σ1/2).

Proof. According to the generative model in Definition 1, let x1, · · · ,xN ∼ N
(
0, 1

d
PS
)
,

and ϵ1, · · · , ϵN ∼ N
(
0, σ2

D
I
)
, so that from (3.56), (3.57) and Ê = En, we have

cÊ,max = max
b∈S⊥∩SD−1

1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐ ≤ max

∥b∥=1

1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐

= max
∥b∥=1

1
N

N∑
j=1

⏐⏐⏐⏐⏐ ϵn
j

⊤b

∥xj + ϵj∥2

⏐⏐⏐⏐⏐ = max
∥b∥=1

1
N

N∑
j=1

∥ϵn
j ∥2

∥xj + ϵj∥2

⏐⏐⏐v⊤
j b
⏐⏐⏐ ,

where vj is the direction vector of ϵ̂j such that ∥vj∥2 = 1. Denote the scaling factor

of ϵ̂j by

Rj :=
∥ϵn

j ∥2

∥xj + ϵj∥2
,

we are interested in E [Rj]. Consider the following random variables

Yj :=R2
j =

∥ϵn
j ∥2

2

∥xj + ϵj∥2
2

=
∥ϵn

j ∥2
2

∥xj + ϵs
j∥2

2 + ∥ϵn
j ∥2

2
and

Zj :=
∥xj + ϵs

j∥2
2

∥ϵn
j ∥2

2
=

(1
d

+ σ2

D
)X 2

d

σ2

D
X 2

D−d

= D + dσ2

(D − d)σ2
X 2

d /d

X 2
D−d/(D − d)

∼ D + dσ2

(D − d)σ2F (d,D − d),

74



where Xd is the chi-square distribution with d degrees of freedom, and F (d1, d2) is the

F -distribution with parameters d1 and d2. Note that

1
Yj

= 1 + Zj,

and that for any a ∈ [0, 1], we have

P [Rj ≤ a] = P[
√
Yj ≤ a] = P[Yj ≤ a2] = P

[
1
Yj

≥ 1
a2

]
= 1− P

[
1
Yj

<
1
a2

]

= 1− P
[
1 + Zj <

1
a2

]
= 1− P

[
Zj <

1
a2 − 1

]

= 1− P
[

(D − d)σ2

D + dσ2 Zj <
(D − d)σ2

D + dσ2

( 1
a2 − 1

)]

= 1−
∫ (D−d)σ2

D+dσ2 ( 1
a2 −1)

0
fF (t; d,D − d) d t

where fF is the probability density function of the F-distribution. Therefore,

E [Rj] =
∫ 1

0
afRj

(a) d a =
∫ 1

0
a dFRj

(a) = aFRj
(a)
⏐⏐⏐⏐1
0
−
∫ 1

0
FRj

(a) d a

=
∫ 1

0

∫ (D−d)σ2

D+dσ2 ( 1
a2 −1)

0
fF (t; d,D − d) d t d a

=
∫ √

σ

0

∫ (D−d)σ2

D+dσ2 ( 1
a2 −1)

0
fF (t; d,D − d) d t d a

+
∫ 1

√
σ

∫ (D−d)σ2

D+dσ2 ( 1
a2 −1)

0
fF (t; d,D − d) d t d a

≤
∫ √

σ

0
1 d a+

∫ 1
√

σ

∫ (D−d)σ2

D+dσ2 ( 1
σ )

0
fF (t; d,D − d) d t d a

=
√
σ + (1−

√
σ)Fd,D−d

(
(D − d)σ
D + dσ2

)
≤
√
σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)
.

(3.66)
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For any b ∈ SD−1, we define the function fb : SD−1 ∩ S⊥ × [0, 1]→ R by

fb(vj, Rj) =
∥ϵn

j ∥2

∥xj + ϵj∥2

⏐⏐⏐b⊤vj

⏐⏐⏐ = Rj

⏐⏐⏐b⊤vj

⏐⏐⏐ .

Letting µ[0,1] and µSD−1∩S⊥ denote the uniform measures on [0, 1] and SD−1 ∩ S⊥,

respectively, it follows that

E
[⏐⏐⏐ϵ̂⊤

j b
⏐⏐⏐] =

∫
vj∈SD−1∩S⊥

∫ 1

0
fb(vj, Rj) dµ[0,1] dµSD−1∩S⊥

=
∫

vj∈SD−1∩S⊥

∫ 1

0
Rj

⏐⏐⏐b⊤vj

⏐⏐⏐ dµ[0,1] dµSD−1∩S⊥

=
∫ 1

0
Rj dµ[0,1]

∫
vj∈SD−1∩S⊥

⏐⏐⏐b⊤vj

⏐⏐⏐ dµSD−1∩S⊥

= cD−dE [Rj]

≤
√
σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)
,

(3.67)

where cD−d is the average height of the unit hemisphere of RD−d, the last equality

follows from [112, Equation (59)], and the last inequality follows from (3.66) and

cD−d ≤ 1 [112, Equation (23)]. Therefore, we obtain

E0 := E
[⏐⏐⏐ϵ̂⊤

j b
⏐⏐⏐] ≤ √σ +

√
1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)
, ∀j. (3.68)

We are now ready to bound cÊ,max. Note that

cÊ,max ≤ sup
∥b∥2=1

1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐ = sup

∥b∥2=1

⎛⎝ 1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐− E0

⎞⎠+ E0. (3.69)
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Since SD−1 is compact, there exists b+ ∈ SD−1 that achieves the supremum in (3.69).

Therefore, for any ϵ̂1, ϵ̂2, · · · , ϵ̂N , ϵ̂
′
k, we have

⏐⏐⏐⏐⏐⏐ sup
∥b∥2=1

⎛⎝ 1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐− E0

⎞⎠− sup
∥b∥2=1

⎛⎝ 1
N

∑
j ̸=k

(⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐+ ⏐⏐⏐ϵ̂′⊤

k b
⏐⏐⏐)− E0

⎞⎠⏐⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐ 1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b+

⏐⏐⏐− E0 −

⎛⎝ 1
N

∑
j ̸=k

(⏐⏐⏐ϵ̂⊤
j b+

⏐⏐⏐+ ⏐⏐⏐ϵ̂′⊤
k b+

⏐⏐⏐)− E0

⎞⎠⏐⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐ 1
N

(⏐⏐⏐ϵ̂⊤
k b+

⏐⏐⏐− ⏐⏐⏐ϵ̂′⊤
k b+

⏐⏐⏐)⏐⏐⏐⏐ ≤ 1
N
.

(3.70)

Applying Lemma 4 with ck = 1
N

, we have

P

⎡⎣⏐⏐⏐⏐⏐⏐ sup
∥b∥2=1

⎛⎝ 1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐− E0

⎞⎠− E

⎡⎣ sup
∥b∥2=1

⎛⎝ 1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐− E0

⎞⎠⎤⎦⏐⏐⏐⏐⏐⏐ ≥ ϵ

⎤⎦ ≤ 2e−2ϵ2N .

(3.71)

Moreover, we have

E

⎡⎣ sup
∥b∥2=1

⎛⎝ 1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐− E0

⎞⎠⎤⎦
≤ 2E

⎡⎣ sup
∥b∥2=1

1
N

N∑
j=1

εj

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐
⎤⎦ ≤ 2E

⎡⎣ sup
∥b∥2=1

1
N

N∑
j=1

εj ϵ̂
⊤
j b

⎤⎦
= 2
N
E

⎡⎣ sup
∥b∥2=1

⟨
b,

N∑
j=1

εj ϵ̂j

⟩⎤⎦ ≤ 2
N
E

⎡⎣
N∑

j=1
εj ϵ̂j


2

⎤⎦

≤ 2
N

√E

⎡⎢⎣


N∑
j=1

εj ϵ̂j


2

2

⎤⎥⎦ = 2
N

√E

⎡⎣ N∑
j=1
∥ϵ̂j∥2

2 +
∑
i ̸=j

εiεj ϵ̂⊤
i ϵ̂j

⎤⎦

≤ 2√
N

√σ + (1− σ)Fd,D−d

(
(D − d)σ
D + dσ2

)

≤ 2√
N

⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠ ,

(3.72)

where the first inequality follows from Lemma 6, the second inequality follows
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from Lemma 5 by letting φi(·) = | · |, the fourth inequality comes from the Jensen’s

Inequality, and the fifth inequality follows from an upper bound for E[∥ϵ̂j∥2
2] = E[R2

j ]

that is similar to (3.66). Applying (3.72) to (3.71), we obtain

P

⎡⎣ sup
∥b∥2=1

⎛⎝ 1
N

N∑
j=1

⏐⏐⏐ϵ̂⊤
j b
⏐⏐⏐− E0

⎞⎠ ≥ 2√
N

⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ ϵ

⎤⎦
≤ 2e−2ϵ2N .

Therefore, from (3.69), we have

P

⎡⎣cÊ,max ≥ E0 + 2√
N

⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ ϵ

⎤⎦ ≤ 2e−2ϵ2N .

Applying the upper bound for E0 in (3.68), we obtain

P

⎡⎣cÊ,max ≥
(

1 + 2√
N

)⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ ϵ

⎤⎦ ≤ 2e−2ϵ2N ,

and by setting ϵ = t
2
√

N
we have

P

⎡⎣cÊ,max ≥
(

1 + 2√
N

)⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ t

2
√
N

⎤⎦ ≤ 2e− t2
2 .

Note that (D−d)σ
D+dσ2 ≤ σ and all the CDFs are nondecreasing, we get

P
[
cÊ,max ≥

(
1 + 2√

N

)(√
σ +
√

1− σ
√
Fd,D−d (σ)

)
+ t

2
√
N

]
≤ 2e− t2

2 ,

which completes the proof of (3.64).
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Finally, by expanding the CDF formula of the F-distribution, we have

Fd,D−d(σ) = 1
B
(

d
2 ,

D−d
2

) ( d

D − d

) d
2 ∫ σ

0
x

d
2 −1

(
1 + d

D − d
x

)− D
2

dx

≤ 1
B
(

d
2 ,

D−d
2

) ( d

D − d

) d
2 ∫ σ

0
x

d
2 −1 dx

= 1
B
(

d
2 ,

D−d
2

) ( d

D − d

) d
2 2
d
· σ

d
2

where B(·, ·) is the Beta function. Hence

δ(σ) =
√
σ +

√
(1− σ)Fd,D−d(σ)

≤
√
σ +

√
Fd,D−d(σ)

≤
√
σ +

⎡⎣ 2/d
B
(

d
2 ,

D−d
2

) ( d

D − d

) d
2
⎤⎦

1
2

· σ
d
4 .

which completes the proof.

Discussion of Lemma 7 and Lemma 8. First note that the concentration

bound for cX̂ ,min reduces to the one for cX ,min in (3.9) when E = 0 (or σ = 0). In

particular, since ρ(σ) = 1−O(σ + σ
d
2 ), ρ(σ) tends to be large (close to 1) for small

σ. Compared with cX ,min, one of the major challenges for deriving the concentration

for cX̂ ,min in the noisy case is that under the random spherical model (Definition 1),

the columns of X̂ now lie inside the unit sphere due to the effect of the additive

noise, making it difficult to analyze their statistical behavior. On the other hand,

since δ(σ) = O(σ d
4 + σ

1
2 ), the concentration for cÊ,max in (3.64) essentially implies

that cÊ,max = O(σ d
4 + σ

1
2 ) with high probability. However, we remark that when
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σ = 0, (3.64) does not immediately lead to cÊ,max = 0 because of the existence of the

additional small term t
2
√

N
, which is an artifact of the proof technique used; we believe

that the upper bound for cÊ,max can be improved to a quantity proportional to σ by a

more sophisticated analysis.

We are now ready to give the probabilistic characterization of the global optimality

for the noisy DPCP problem (3.1).

Theorem 4. Consider the random spherical model of Definition 1. If 0 < t <

2
(√

2N
πd
ρ(σ)− 2

)
, then with probability at least 1− 8e−t2/2, any global solution to the

noisy DPCP problem (3.1) must have its principal angle θ∗ from S⊥ satisfy

sin(θ∗) ≤
C1δ(σ) + t

2
√

N√
2

πd
ρ(σ)− C2

t
√

M+
√

DM log D
N

− 4+t√
N

(3.73)

as long as

M
(
(4
√

2 +
√

2t)2 + C3(
√
D logD + t)2

)
≤ N2

(
1√
πd
ρ(σ)− C4δ(σ)− 4 + 3t

2
√

2N

)2

(3.74)

where C1, C2, C3, C4 are universal constants that are independent of N,M,D, d, t, σ.

Proof. Theorem 4 follows directly from Corollary 1 by plugging the concentration

bounds for cO,max−cO,min and ηO from (3.9), cX̂ ,min from (3.54), and cÊ,max from (3.64)

into (3.50) and (3.51).

Discussion of Theorem 4. The effect of the noise in perturbing the global

solution away from S⊥ is captured by (3.73), where the RHS approaches 0 when
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(a) σ = 0 (b) σ = 0.1

Figure 3.3. Plot of sin(θ∗) where θ∗ is the principal angle between the computed solution
b∗ to the noisy DPCP problem (3.1) and S⊥ when varying N and M for (a) noise level
σ = 0 and (b) noise level σ = 0.1. Here D = 30 and d = 29.

σ → 0, except for the small term t
2
√

N
, which we commented earlier is (we believe)

due to the proof technique used. Moreover, (3.73) together with δ(σ) = O(σd/4 + σ
1
2 )

and ρ(σ) = 1−O(σ+ σd/2) imply that sin(θ∗) = O((σd/4) + σ
1
2 ) when σ is small. The

inequality (3.74) suggests that, unlike existing state-of-the-art O(N) outlier bounds

as reviewed in [62], DPCP can tolerate O(N2) outliers even for noisy data. Figure 3.3

verifies this point by plotting sin(θ∗).

3.2 Learning a subspace with codimension larger

than one

So far, all of the analyses of DPCP for learning a single subspace have been restricted

to finding a normal vector to a maximal hyperplane that contains the inliers by

solving (3.1), regardless of whether the data is contaminated by noise or not. Although

81



this approach can be extended to a subspace of higher codimension through a recursive

approach that sequentially finds a new basis element of the space orthogonal to the

subspace, the procedure is computationally expensive and lacks theoretical support.

In this section, we consider a more powerful approach for learning a d-dimensional

subspace S in RD with codimension c = D − d larger than 1 by simultaneously

estimating the entire basis of the orthogonal complement subspace S⊥. We term this

as a holistic approach, which is stated in (2.9), and for convenience we repeat here:

min
B∈RD×c

X̃⊤B


1,2
=

L∑
j=1

x̃⊤
j B


2

s.t. B⊤B = I (3.75)

where X̃ = [X + E ,O]Γ is the dataset that has the same form as in the previous

section. Intuitively, in the noiseless case (E = 0), if B is an orthonormal basis of

S⊥, then the objective in (3.75) only depends on the outliers and is insensitive to

the choice of B since outliers are unstructured, which motivates the formulation.

Although it naturally extends the original DPCP problem (3.1) by seeking a matrix B

with orthonormal columns that are orthogonal to as many data points as possible, its

theoretical guarantees for recovering an orthonormal basis of S⊥ under both noiseless

and noisy settings remain open questions.

3.2.1 Background

Towards analyzing the holistic DPCP problem (3.75), we first introduce some back-

ground knowledge. Observe that (3.75) is an optimization problem on the Grassman-
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nian G(D, c) [34], i.e., the set of c-dimensional subspaces in RD, we parameterize

G(D, c) with orthonormal matrices in the set O(D, c) := {B ∈ RD×c : B⊤B = I}.

In particular, when c = 1, we also use SD−1, i.e., the unit sphere, as a substitute for

O(D, 1), for which the problem reduces to (3.1). In addition, we denote O(c, c) by O(c)

for simplicity. Let S⊥ ∈ O(D, c) be an orthonormal basis of S⊥. Since the objective

function in (3.75) is rotational invariant, we consider equivalence classes of matrices.

In particular, for U ,V ∈ G(D, c) we say U is equivalent to V if Span(U ) = Span(V ),

and use U to represent the equivalence class [U ] := {UR : R ∈ O(c)}.

As the dataset is contaminated with noise, a solution B∗ to (3.75) is expected to

be perturbed away from S⊥, which can be measured geometrically by the principal

angles between two subspaces, which we now define.

Definition 2 ([57]). Let U ,V ∈ RD×c be orthonormal matrices. The principal angles

between Span(U) and Span(V ) are defined as

θi(U ,V ) = arccos
(
σi(U⊤V )

)
(3.76)

for all i ∈ {1, 2, . . . , c}, where σi(·) denotes the i-th largest singular value. The largest

principal angle θc(U ,V ) defines the subspace angle between Span(U ) and Span(V ).

With Definition 2, we can compute how close Span(B∗) and Span(S⊥) = S⊥ are

to one another. In particular, when Span(B∗) = S⊥, we have θ1(B∗,S⊥) = · · · =

θc(B∗,S⊥) = 0 so that their subspace angle is zero, thus justifying the definition.

Since the objective in (3.75) involves the sum of ℓ2 norms, with a mild abuse of
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notation on the subdifferential of the absolute value function defined in (3.3), we

denote the subdifferential of ∥a∥2 for any a ∈ Rc by

Sgn(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{a/∥a∥2}, a ̸= 0,

{d ∈ Rc : ∥d∥ ≤ 1}, a = 0.
(3.77)

Within this context, an element of the set Sgn(a) of particular interest will be

sign(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a/∥a∥2, a ̸= 0,

0, a = 0.
(3.78)

In this section, unless stated otherwise, Sgn(a) and sign(a) refer to the above general-

ized definitions for analyzing the holistic DPCP problem (3.75). Finally, we can write

the subdifferential of
X̃⊤B


1,2

at B as

∂
X̃⊤B


1,2

=
L∑

j=1
x̃j Sgn

(
x̃⊤

j B
)

=
N∑

j=1
(xj + ϵj) Sgn

(
(xj + ϵj)⊤B

)
+

M∑
j=1

oj Sgn
(
o⊤

j B
)
.

3.2.2 Analysis with noiseless data

We first analyze the holistic DPCP problem (3.75) in the noiseless setting where E = 0.

We consider the same random spherical model (see Definition 1) for the underlying

dataset as in analyzing (3.1) since the problem formulation is the only difference.

Geometric quantities. For inliers, we adopt the same permeance statistic

cX ,min in (3.4) from [152, 153]. For outliers, we extend the ηO quantity in (3.6) for
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codimension c = 1, to the more general case of c ≥ 1 by defining

ηO,c := 1
M

max
B∈O(D,c)

(I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)


F
(3.79)

which is the maximum norm of a Riemannian subgradient of 1
M
∥O⊤B∥1,2. As an

analogy to ηO, the ηO,c characterizes how well the outliers are distributed in the

ambient space, with more uniformly distributed outliers leading to smaller ηO,c. We

remark that ηO,c ≡ ηO when c = 1. Besides ηO,c, we also use another two quantities

to describe the distribution of outliers, namely, we extend the definitions for cO,min

and cO,max in (3.5) for c = 1 to the following:

cO,min,c := 1
M

min
B∈O(D,c)

M∑
j=1
∥o⊤

j B∥2 and

cO,max,c := 1
M

max
B∈O(D,c)

M∑
j=1
∥o⊤

j B∥2.

(3.80)

Well-distributed outliers lead to larger values for cO,min,c and smaller values for cO,max,c,

and a small gap between cO,max,c and cO,min,c.

3.2.2.1 Geometry of the critical points

Using the above geometric quantities, we have the following lemma, which characterizes

the geometry of the critical points of (3.75) in a deterministic sense.

Lemma 9. Suppose E = 0. Then, any critical point B of problem (3.75) must either

be an orthonormal basis for S⊥, or span a subspace that has an angle θ from S⊥ larger
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than or equal to arccos(MηO,c/NcX ,min) where

ηO,c := ηO,c + D

M
.

Proof. As the first step of the proof, we prove the following useful result.

Sublemma 2. Suppose u,v ∈ Rn\{0}, vi ≥ 0,∀i, and vn ≥ vi,∀i ̸= n. Then

⟨u,u⊤ diag(v)⟩
∥u⊤ diag(v)∥ ≥ |un|.

Proof. We are going to prove that

⟨u⊤ diag(v),u⟩
∥u⊤ diag(v)∥ =

∑n
i=1 u

2
i vi√∑n

i=1 u
2
i v

2
i

≥ |un|.

Squaring both sides and then rearranging yields

(
n−1∑
i=1

u2
i vi + u2

nvn

)2

≥ u2
n

(
n−1∑
i=1

u2
i v

2
i + u2

nv
2
n

)
,

which is equivalent to

(
n−1∑
i=1

u2
i vi

)2

+ 2u2
nvn

n−1∑
i=1

u2
i vi ≥ u2

n

n−1∑
i=1

u2
i v

2
i . (3.81)

Since vi ≥ 0,∀i and vn ≥ vi,∀i ̸= n, we always have u2
nvn

∑n−1
i=1 u

2
i vi ≥ u2

n

∑n−1
i=1 u

2
i v

2
i ,

and thus (3.81) always holds, which completes the proof.

We now proceed by proving that any critical point B that is not an orthonormal
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basis for S⊥ must span a subspace that is far from S⊥. Let S ∈ RD×d be an

orthonormal basis of the subspace S and let S⊥ ∈ RD×c be an orthonormal basis of

the orthogonal complement S⊥. We rewrite B as

B = SS⊤B + S⊥(S⊥)⊤B, (3.82)

where SS⊤B represents the projection of B onto the subspace S, while the other term

S⊥(S⊥)⊤B represents the projection of B onto the complement S⊥. Let (S⊥)⊤B =

U cos(Θ)R⊤ be the canonical SVD of (S⊥)⊤B, where cos(Θ) is a diagonal matrix with

cos(θ1), . . . , cos(θc) along its diagonal, U ∈ Rc×c,R ∈ Rc×c are orthonormal matrices.

Here θi is the i-th principal angle between Span(B) and S⊥. When θ1 = · · · = θc = 0,

it implies that B ∈ [S⊥], i.e., B is equivalent to S⊥. Since we assume that B is not

orthogonal to S, we always have θc > 0 (recall that θc ≡ θmax(B,S⊥)).

Next, we will prove Lemma 9 when c ≤ d, and the case c > d can be proved

in a similar way. If c ≤ d, we rewrite S⊤B = V sin(Θ)R⊤, where V ∈ Rd×c is an

orthonormal matrix. Thus, we have

B = SV sin(Θ)R⊤ + S⊥U cos(Θ)R⊤. (3.83)

Without loss of generality, we consider R = I since the objective function of (3.75) is

rotation invariant. Letting P = SV and Q = S⊥U , we have

B = P sin(Θ) + Q cos(Θ), (3.84)
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where P ∈ RD×c and Q ∈ RD×c are orthonormal matrices satisfying Span(P ) ⊆ S

and Span(Q) ⊆ S⊥. As a result, P is orthogonal to Q and B is orthonormal. Next,

we define

G = P cos(Θ)−Q sin(Θ) (3.85)

so that G is an orthonormal matrix and orthogonal to B.

Let f(B) :=
X̃⊤B


1,2

. For any critical point B of problem (3.75), there exists

W ∈ ∂f(B) such that (I−BB⊤)W = 0. Due to the general position [152, 153] of

the data and B /∈ [S⊥], B can be orthogonal to K ≤ D − c columns of X̃ , and

0 = (I−BB⊤)W

= (I−BB⊤)
⎛⎝ N∑

j=1
xj sign

(
x⊤

j B
)

+
M∑

j=1
oj sign

(
o⊤

j B
)

+ ξ

⎞⎠ ,

where ξ = ∑K
k=1 x̃jk

αjk
with x̃j1 , · · · , x̃jK

the columns of X̃ orthogonal to B, and

{∥αj1∥, · · · , ∥αjK
∥} ∈ [−1, 1]. We then have

0 =
⏐⏐⏐⟨(I−BB⊤)W , G

⟩⏐⏐⏐ =
⏐⏐⏐⟨W , (I−BB⊤)G

⟩⏐⏐⏐ = |⟨W , G⟩|

=

⏐⏐⏐⏐⏐⏐
⟨

N∑
j=1

xj sign(x⊤
j B), G

⟩
+
⟨

M∑
j=1

oj sign(o⊤
j B), G

⟩
+ ⟨ξ, G⟩

⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
x⊤

j G, sign(x⊤
j B)

⟩
+
⟨

(I−BB⊤)
M∑

j=1
oj sign(o⊤

j B), G

⟩
+ ⟨ξ, G⟩

⏐⏐⏐⏐⏐⏐
≥

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
x⊤

j G, sign(x⊤
j B)

⟩⏐⏐⏐⏐⏐⏐−
⏐⏐⏐⏐⏐⏐
⟨

(I−BB⊤)
M∑

j=1
oj sign(o⊤

j B), G

⟩⏐⏐⏐⏐⏐⏐− |⟨ξ, G⟩| .

(3.86)
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The first term in (3.86) can be written as

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
x⊤

j G, sign(x⊤
j B)

⟩⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
x⊤

j P cos(Θ), sign(x⊤
j P sin(Θ))

⟩⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
x⊤

j P cos(Θ),x⊤
j P sin(Θ)

⟩
∥x⊤

j P sin(Θ)∥

⏐⏐⏐⏐⏐⏐
≥ cos(θc)

N∑
j=1

⟨
x⊤

j P ,x⊤
j P sin(Θ)

⟩
∥x⊤

j P sin(Θ)∥

≥ cos(θc)
N∑

j=1
|x⊤

j pc| ≥ cos(θc)NcX ,min,

(3.87)

where the first inequality utilizes the fact that θ1 ≤ θ2 ≤ · · · ≤ θc, and the second

inequality follows from Sublemma 2 where pc is the cth column of P . Plugging this

result into (3.86), and using the definition of ηO,c, we have

0 ≥ cos(θc)NcX ,min −MηO,c −D.

This tells us that if B /∈ [S⊥], then it is far from [S⊥] in the sense that the largest

principal angle θc ≡ θmax(B,S⊥) satisfies

cos(θc) ≤
MηO,c

NcX ,min
,

thus completing the proof when c ≤ d.

On the other hand, if c > d, there are only d principal angles between the subspaces

spanned by S ∈ RD×d and B ∈ RD×c. Since θ1 ≤ θ2 ≤ · · · ≤ θc are the principle

angles between Span(S⊥) and Span(B), according to [57], the principal angles between

Span(S) and Span(B) are π
2 − θc, · · · , π

2 − θc−d+1. Similar to the case of c ≤ d, we
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rewrite S⊤B = V sin(Θ)R⊤, where V =
[
0 V

]
with V ∈ Rd×d an orthonormal

matrix. Thus again, we have

B = SV sin(Θ)R⊤ + S⊥U cos(Θ)R⊤. (3.88)

The rest of the proof is now the same as before after one replaces V by V and Θ by

Θ = diag(θc−d+1, · · · , θc). This completes the proof.

Discussion of Lemma 9. Lemma 9 generalizes the special case c = 1 in Lemma 1.

It says that, with noiseless data, any critical point of the holistic DPCP problem (3.75)

either spans S⊥ or spans a subspace that is far from S⊥. Note that for well-distributed

inliers and outliers (M/N and c fixed), the geometric location of B becomes more

restricted. Moreover, any critical point B such that Span(B) is sufficiently close to

S⊥ (angle smaller than arccos(MηO,c/NcX ,min) ) must satisfy Span(B) = S⊥, which

motivates the next result on the geometry of the global minimizers.

3.2.2.2 Geometry of the global solutions

Theorem 5. Suppose E = 0. Then, any global solution B∗ to problem (3.75) must

be an orthonormal basis for S⊥ as long as

M

N
·

√
η2
O,c + (cO,max,c − cO,min,c)2

cX ,min
< 1. (3.89)

Proof. Let B∗ be a global optimal solution of (3.75). To reach a contradiction, suppose
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that B∗ is not an orthonormal basis for S⊥. It then follows from Lemma 9 that

cos(θc) ≤
MηO,c

NcX ,min
, (3.90)

where θc is the subspace angle between Span(B∗) and S⊥. Utilizing the fact that B∗

is a global solution, we have

∥X̃⊤B∗∥1,2 ≤ min
B∈O(D,c),B⊥S

∥X̃⊤B∥1,2 = min
B∈O(D,c),B⊥S

∥O⊤B∥1,2 ≤McO,max,c. (3.91)

On the other hand, by utilizing a similar decomposition of B∗ as in (3.84), we can

write B∗ = P sin(Θ) + Q cos(Θ), where P ∈ RD×c and Q ∈ RD×c are orthonormal

matrices satisfying Span(P ) ⊆ S and Span(Q) ⊆ S⊥, and Θ is the diagonal matrix

whose diagonal entries θ1 ≤ θ2 ≤ · · · ≤ θc are the principal angles between Span(B∗)

and S⊥. Then we have

∥X̃⊤B∗∥1,2 =
N∑

j=1
∥x⊤

j B∗∥2 +
M∑

j=1
∥o⊤

j B∗∥2

=
N∑

j=1
∥x⊤

j P sin(Θ)∥2 +
M∑

j=1
∥o⊤

j B∗∥2

=
N∑

j=1

√ c∑
k=1

sin2(θk)(x⊤
j pk)2 +

M∑
j=1
∥o⊤

j B∗∥2

≥
N∑

j=1
sin(θc)

⏐⏐⏐x⊤
j pc

⏐⏐⏐+ M∑
j=1
∥o⊤

j B∗∥2

≥ sin(θc)NcX ,min +McO,min,c,
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which together with (3.91) gives

sin(θc) ≤
M(cO,max,c − cO,min,c)

NcX ,min
. (3.92)

Combining (3.92) and (3.90), we obtain

1 = sin2(θc) + cos2(θc) ≤
M2(η2

O,c + (cO,max,c − cO,min,c)2)
N2c2

X ,min
,

which contradicts (3.89), thus completing the proof.

Discussion of Theorem 5. Theorem 5 is an extension of Theorem 1 for the

hyperplane case. Condition (3.89) tells us that, with fixed M/N and c, as we obtain

more and more data points that are well-distributed, (3.89) is easier to be satisfied and

thus any global solution to problem (3.75) spans S⊥. We remark that a similar theorem

appeared in [29, Proposition 3], where they analyzed a group-DPCP formulation

different from (3.75) that was designed specifically for homography estimation.

3.2.2.3 Probabilistic analysis

We now derive a probabilistic result that characterizes global optimality for prob-

lem (3.75) with noiseless data that is more interpretable. As a first step, we derive

concentration bounds for the generalized geometric quantities ηO,c and cO,max,c−cO,min,c

appearing in the deterministic Theorem 5. We begin with basic results in statistics.

Suppose Z1, . . . , Zn are n independent and identically distributed (i.i.d.) random

observations from a probability measure P on a measurable space (Ω,A). Given a
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measurable function f : Ω→ R, the empirical process evaluated at f is defined as

Gnf :=
√
n

(
1
n

n∑
i=1

f(Zi)−
∫
f dP

)
, (3.93)

where
∫
f dP is the expectation of f under P and 1

n

∑n
i=1 f(Zi) is called the empirical

distribution. Define an envelope function F : Ω → R such that |f | ≤ F for every

f ∈ F , where F is a given class of measurable functions. The Lr(P )-norm is defined

as ∥f∥Lr(P ) = (
∫
|f |r dP )1/r. Given two functions l and u, the bracket [l, u] is the

set of all functions f with l ≤ f ≤ u. An ϵ-bracket in Lr(P ) is a bracket [l, u] with
∫
(u− l)r dP ≤ ϵr (since l ≤ u, it is equivalent to say ∥u− l∥Lr(P ) ≤ ϵ). The bracket

number N[](ϵ,F , L2(P )) is the minimum number of ϵ-brackets needed to cover F ,

which can be viewed as a metric for characterizing the size of the class of functions F .

Lemma 10. ([118, Corollary 19.35]). For any class F of measurable functions and

associated envelope function F , we have

E
[
sup
f∈F
|Gnf |

]
≲ J[](∥F∥P,2,F , L2(P )), (3.94)

where J[](∥F∥P,2,F , L2(P )) is called the bracketing integral and defined as

J[](∥F∥L2(P ),F , L2(P )) =
∫ ∥F ∥L2(P )

0

√
log

(
N[](ϵ,F , L2(P ))

)
d ϵ.

Lemma 11 (Vector-valued Comparison Inequality for Rademacher Process, [77]).

Let F be a class of functions f : RD → Rc and let hi : Rc → R for i = 1, . . . , N be
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1-Lipschitz functions. Then, for any v1, . . . ,vN ∈ RD, we have

E

⎡⎣ sup
f∈F

N∑
i=1

εihi(f(vi))
⎤⎦ ≤ √2E

⎡⎣ sup
f∈F

N∑
i=1

ε⊤
i f(vi)

⎤⎦,

where εi are independent Rademacher random variables, and each εi ∈ Rc is indepen-

dent with each component an independent Rademacher random variable.

Bounding ηO,c. In the following, we present the concentration bound for ηO,c

under the random spherical model specified in Definition 1.

Lemma 12. Consider the random spherical model in Definition 1. Fix a number

t > 0, it follows that

P
[
ηO,c ≤ C0

√
cD logD + t√

M

]
≥ 1− 2e− t2

2 , (3.95)

where C0 is a universal constant independent of N,M,D, d, c and t.

Proof. First note that

ηO,c = 1
M

max
B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
M∑

j=1

⟨
sign(B⊤oj),G⊤oj

⟩⏐⏐⏐⏐⏐⏐ ,

and that we are going to show that

E

⎡⎣ sup
B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
M∑

j=1

⟨
sign(B⊤oj),G⊤oj

⟩⏐⏐⏐⏐⏐⏐
⎤⎦ ≲
√
cD log (D)

√
M,

where ≲ means smaller than up to a universal constant. By defining the set F :=
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{(B,G) : B,G ∈ O(D, c),G ⊥ B}, and the parameterized function fB,G(o) :=⟨
sign(B⊤o),G⊤o

⟩
, the class of functions we are interested in is F := {fB,G : (B,G) ∈

F}. Note that for any fB,G ∈ F , we have E[fB,G(o)] = E
[⟨

sign(B⊤o),G⊤o
⟩]

= 0.

Then, by viewing

1√
M

sup
B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
M∑

j=1

⟨
sign(B⊤oj),G⊤oj

⟩⏐⏐⏐⏐⏐⏐
as an empirical process, together with (3.93), this indicates that

M∑
j=1

⟨
sign(B⊤oj),G⊤oj

⟩
=
√
MGMfB,G,

where GMfB,G is the empirical process of fB,G.

To utilize Lemma 10, we show that the corresponding bracketing integral is finite

for our problem. Since |fB,G(o)| ≤ ∥o∥2 for any (B,G) ∈ F, we know F (o) = ∥o∥2

is the envelope function of F and ∥F∥P,2 = 1. Thus, we only need to consider the

bracket integral J[](1,F , L2(P )), where P is the corresponding probability measure.

To that end, we compute the bracket number N[](ϵ,F , L2(P )).

Since our function fB,G is parameterized by (B,G), covering the class of functions

F is related to covering the set F. For any fixed (B,G) ∈ F, define the set of points

near (B,G) as

B((B,G), ϵ1) :=
{

(B′,G′) ∈ F :
√
∥B −B′∥2

F + ∥G−G′∥2
F ≤ ϵ1

}
,

95



and define

A :=
{
o ∈ SD−1 :

sign(o⊤B)− sign(o⊤B′)
 ≤ ϵ2, ∀ (B′,G′) ∈ B((B,G), ϵ1)

}
.

If o ∈ A, then for any (B′,G′) ∈ B((B,G), ϵ1) we have

|fB,G(o)− fB′,G′(o)|

=
⏐⏐⏐⟨sign(B⊤o),G⊤o

⟩
−
⟨
sign(B′⊤o),G′⊤o

⟩⏐⏐⏐
=
⏐⏐⏐⟨sign(B⊤o), (G−G′)⊤o

⟩
−
⟨(

sign(B′⊤o)− sign(B⊤o)
)
,G′⊤o

⟩⏐⏐⏐
≤ ∥G−G′∥ +

sign(B′⊤o)− sign(B⊤o)


≤ ϵ1 + ϵ2.

On the other hand, if o ∈ Ac, then for any (B′,G′) ∈ B((B,G), ϵ1) we have

|fB,G(o)− fB′,G′(o)| =
⏐⏐⏐⟨sign(B⊤o),G⊤o

⟩⏐⏐⏐+ ⏐⏐⏐⟨sign(B′⊤o),G′⊤o
⟩⏐⏐⏐ ≤ 2.

In summary, we have

|fB,G(o)− fB′,G′(o)| ≤ ϵ11A(o) + 21Ac(o), ∀ (B′,G′) ∈ B((B,G), ϵ1), (3.96)

where the indicator function 1A(o) is defined as 1A(o) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, o ∈ A

0, o ∈ Ac

.
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In order to bound P [o ∈ Ac], we note that

sign(o⊤B)− sign(o⊤B′)


=
 o⊤B

∥o⊤B∥
− o⊤B′

∥o⊤B′∥

 =


o⊤B′

 o⊤B −
o⊤B

 o⊤B′

∥o⊤B∥ ∥o⊤B′∥


=


o⊤B′

 o⊤(B −B′)−
(o⊤B

 − o⊤B′
)o⊤B′

∥o⊤B∥ ∥o⊤B′∥


≤ ∥B −B′∥
∥o⊤B∥

+

⏐⏐⏐o⊤B
 − o⊤B′

⏐⏐⏐
∥o⊤B∥

≤ 2∥B −B′∥
∥o⊤B∥

≤ 2 ϵ1

∥o⊤B∥
.

Thus, as long as
o⊤B

 ≥ ϵ1
2ϵ2

, we have
sign(o⊤B)− sign(o⊤B′)

 ≤ ϵ2. Hence

P [o ∈ Ac] ≤ P
[o⊤B

 ≤ ϵ1

2ϵ2

]
≤ P

[
o1 ≤

ϵ1

2ϵ2

]
≲ D

ϵ2
1
ϵ2

2
, (3.97)

where o1 is the first entry in o, and the last inequality follows from [153, Lemma 12].

We now define a bracket [l, u] by

l(o) = fB,G(o)− (ϵ1 + ϵ2)1A(o)− 21Ac(o) and

u(o) = fB,G(o) + (ϵ1 + ϵ2)1A(o) + 21Ac(o).
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Due to (3.96), we have fB′,G′ ∈ [l, u] for all (B′,G′) ∈ B((B,G), ϵ1). Also,

∥u− l∥L2(P ) = ∥2(ϵ1 + ϵ2)1A(o) + 41Ac(o)∥L2(P )

=
√

4(ϵ1 + ϵ2)2P[o ∈ A] + 16P[o ∈ Ac]

< 2(ϵ1 + ϵ2) + 4
√
P[o ∈ Ac]

≤ 2(ϵ1 + ϵ2) + 4
√
C1D

ϵ1

ϵ2

(3.98)

where the last inequality follows from (3.97) with C1 a universal constant. Therefore,

the number of brackets to cover F is equal to the number of such balls B((B,G), ϵ1)

that cover F. According to [121, Lemma 5.2], the covering number for F is

N (F, ϵ1) ≤
(

1 + 2
√

2
ϵ1

)2cD

. (3.99)

Recall that the bracket number N[](ϵ,F , L2(P )) is the minimum number of ϵ-brackets

needed to cover F , where an ϵ-bracket in L2(P ) is a bracket [l, u] with ∥u− l∥L2(P ) ≤ ϵ.

Thus, by letting ϵ2 = √ϵ1, 2(ϵ1 +√ϵ1) + 4
√
C1D
√
ϵ1 = ϵ and plugging this into (3.99),

we obtain the bracket number

N[](ϵ,F , L2(P )) ≤
(

1 + C2
D

ϵ2

)2cD

,

where C2 is a universal constant. Now from Lemma 10, we have

1√
M

E

⎡⎣ sup
B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
M∑

j=1

⟨
sign(B⊤oj),G⊤oj

⟩⏐⏐⏐⏐⏐⏐
⎤⎦

≲
∫ 1

0

√(
1 + C2

D

ϵ2

)2cD

d ϵ ≲
√
cD logD.

(3.100)
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Since the product of compact spaces is compact, there exist B+,G+ ∈ O(D, c) for

which the supremum in (3.100) is achieved. Then, for any o′
k ∈ SD−1, we have

⏐⏐⏐⏐⏐⏐ sup
B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
M∑

j=1

⟨
sign(B⊤oj),G⊤oj

⟩ ⏐⏐⏐⏐⏐⏐
− sup

B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
∑
j ̸=k

⟨
sign(B⊤oj),G⊤oj

⟩
+
⟨
sign(B⊤o′

k),G⊤o′
k

⟩ ⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

≤

⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

M∑
j=1

⟨
sign(B+⊤oj),G+⊤oj

⟩⏐⏐⏐⏐⏐⏐−
⏐⏐⏐⏐⏐⏐
∑
j ̸=k

⟨
sign(B+⊤oj),G+⊤oj

⟩
+
⟨
sign(B+⊤o′

k),G+⊤o′
k

⟩⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

≤

⏐⏐⏐⏐⏐⏐
⟨
sign(B+⊤ok),G+⊤ok

⟩
−
⟨
sign(B+⊤ok),G+⊤o′

k

⟩ ⏐⏐⏐⏐⏐⏐ ≤ 2,

where the second inequality follows from the reverse triangle inequality. Apply-

ing Lemma 4 with ck = 2 and using (3.100), we obtain

P

⎡⎣ sup
B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
M∑

j=1

⟨
sign(B⊤oj),G⊤oj

⟩ ⏐⏐⏐⏐⏐⏐ ≳
√
M
√
cD logD + ϵ

⎤⎦ ≤ 2e− 2ϵ2
4M .

Setting ϵ = t
√
M , we have

P

⎡⎣ sup
B,G∈O(D,c),G⊥B

⏐⏐⏐⏐⏐⏐
M∑

j=1

⟨
sign(B⊤oj),G⊤oj

⟩ ⏐⏐⏐⏐⏐⏐ ≳
(√

cD logD + t
)√

M

⎤⎦ ≤ 2e− t2
2 .

Plugging back into the definition of ηO,c, we get

P
[
ηO,c ≳

√
cD logD + t√

M

]
≤ 2e− t2

2 ,

thus completing the proof.

Bounding cO,max,c − cO,min,c. Next, we present the concentration bound for
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cO,max,c − cO,min,c under the random spherical model specified in Definition 1.

Lemma 13. Consider the random spherical model in Definition 1. For a fixed number

t > 0, we have that

P
[
cO,max,c − cO,min,c ≤

4
√

2c+ t√
M

]
≥ 1− 2e− t2

2 . (3.101)

Proof. First note that

cO,max,c − cO,min,c

= sup
B∈O(D,c)

1
M

M∑
j=1

B⊤oj

 − inf
B∈O(D,c)

1
M

M∑
j=1

B⊤oj


= sup

B∈O(D,c)

⎛⎝ 1
M

M∑
j=1

B⊤oj

 − κ
⎞⎠+ sup

B∈O(D,c)

⎛⎝κ− 1
M

M∑
j=1

B⊤oj


⎞⎠

(3.102)

where κ := Eo∼SD−1

B⊤o
. Applying Lemma 6, we have

E

⎡⎣ sup
B∈O(D,c)

⎛⎝ 1
M

M∑
j=1

B⊤oj

 − κ
⎞⎠⎤⎦ ≤ 2

M
E

⎡⎣ sup
B∈O(D,c)

M∑
j=1

εj

B⊤oj


⎤⎦,

E

⎡⎣ sup
B∈O(D,c)

⎛⎝κ− 1
M

M∑
j=1

B⊤oj


⎞⎠⎤⎦ ≤ 2

M
E

⎡⎣ sup
B∈O(D,c)

M∑
j=1

εj

B⊤oj


⎤⎦,

(3.103)

where εi are independent Rademacher random variables. We then apply Lemma 11,
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and get

2
M

E
[

sup
B∈O(D,c)

M∑
j=1

εj

B⊤oj

 ]

≤ 2
√

2
M

E
[

sup
B∈O(D,c)

M∑
j=1

ε⊤
j B⊤oj

]

= 2
√

2
M

E
[

sup
B∈O(D,c)

⟨
B,

M∑
j=1

ojε⊤
j

⟩]

≤ 2
√

2c

M
E

⎡⎣
M∑

j=1
ojε⊤

j


F

⎤⎦ ≤ 2
√

2c

M

√E

⎡⎢⎣


M∑
j=1

ojε⊤
j


2

F

⎤⎥⎦

= 2
√

2c

M

√E

⎡⎣M +
∑
i ̸=j

ε⊤
i εjoT

i oj

⎤⎦ = 2
√

2c

M

√
M = 2

√
2c√

M
,

where εi ∈ Rc contains independent Rademacher random variables, the second in-

equality utilizes the Cauchy-Schwartz inequality that ⟨B,A⟩ ≤ ∥B∥F∥A∥F , and the

last inequality follows from Jensen’s Inequality. Together with (3.102) and (3.103),

this leads to

E

⎡⎣ sup
B∈O(D,c)

1
M

M∑
j=1

B⊤oj

 − inf
B∈O(D,c)

1
M

M∑
j=1

B⊤oj


⎤⎦ ≤ 4

√
2c√
M

. (3.104)

Furthermore, notice that for any o′
k ∈ SD−1, we have

⏐⏐⏐⏐⏐ sup
B∈O(D,c)

1
M

M∑
j=1

B⊤oj

 − inf
B∈O(D,c)

1
M

M∑
j=1

B⊤oj


− 1

M

(
sup

B∈O(D,c)

( M∑
j ̸=k

B⊤oj

 +
B⊤o′

k

 )− inf
B∈O(D,c)

( M∑
j ̸=k

B⊤oj

 +
B⊤o′

k

 ))⏐⏐⏐⏐⏐ ≤ 2
M

,
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which after applying Lemma 4 and using (3.104) leads to

P

⎡⎣ sup
B∈O(D,c)

1
M

M∑
j=1

B⊤oj

 − inf
B∈O(D,c)

1
M

M∑
j=1

B⊤oj

 ≥ 4
√

2c√
M

+ ϵ

⎤⎦ ≤ 2e− ϵ2M
2 .

Finally, by setting ϵ = t√
M

, we get

P

⎡⎣ sup
B∈O(D,c)

1
M

M∑
j=1

B⊤oj

 − inf
B∈O(D,c)

1
M

M∑
j=1

B⊤oj

 ≥ 1√
M

(4
√

2c+ t)
⎤⎦ ≤ 2e− t2

2 .

Plugging this back into the definitions of cO,max,c and cO,min,c, we have

P
[
cO,max,c − cO,min,c ≥

4
√

2c+ t√
M

]
≤ 2e− t2

2 ,

thus completing the proof.

Discussion of Lemma 12 and Lemma 13. First note that, similar to the

concentrations of ηO and cO,max − cO,min in (3.9), both ηO,c and cO,max,c − cO,min,c

scale as O(1/
√
M). Moreover, the role of c can be seen clearly from (3.95) and (3.101):

as c increases, both ηO,c and cO,max,c − cO,min,c tend to be larger. Together with the

sufficient condition (3.89) for a global solution to (3.75) to span S⊥, this implies

that (3.89) is more difficult to be satisfied for larger values of c.

We are now ready to give the probabilistic characterization of the global optimality

for the holistic DPCP problem (3.75) for the noiseless setting.

Theorem 6. Consider the random spherical model in Definition 1 with σ = 0. Fix

any 0 < t < 2
(√

2N
πd
− 2

)
. With probability at least 1− 6e− t2

2 , any global solution B∗
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to problem (3.75) must be an orthonormal basis for S⊥ if

M
(
(4
√
c+ t)2 + C0(

√
cD logD + t)2

)
≤ N2

⎛⎝√ 2
πd
−
(

2 + t

2

) 1√
N

⎞⎠2

, (3.105)

where C0 is a universal constant that is independent of N,M,D, d, c and t.

Proof. Theorem 6 follows directly from Theorem 5 by plugging the concentrations for

cX ,min from (3.9), ηO,c from (3.95), and cO,max,c− cO,min,c from (3.101) into (3.89).

Discussion of Theorem 6. Condition (3.105) interprets the global optimality

condition (3.89) of Theorem 5 with natural quantities such as N,M,D, d and c. Most

importantly, it validates that the new formulation (3.75) of DPCP on the Grassmannian

G(D, c) is still able to tolerate O(N2) outliers for recovering the entire orthonormal

basis of S⊥. Also, note that for fixed N , M , D, and d, the smaller c becomes, the easier

it is for condition (3.105) to be satisfied. For the hyperplane case c = 1, Theorem 6

reduces to Theorem 2 that analyzes the original DPCP problem (3.1) without noise.

3.2.3 Analysis with noisy data

We now consider the holistic DPCP problem (3.75) under the scenario when inliers X

are further contaminated with noise, i.e., σ > 0 and E ̸= 0 in Definition 1. As with

the analysis for the noisy setting in Section 3.1.2, we decompose the noise term as

E = Es + En, where Es is the projection of E onto S and En is the projection onto S⊥.

Observe that the term Es plays the same role as inliers since its columns lie exactly in

S, and that the component En is the effective noise that influences the global solution
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to problem (3.75), making it different from the noiseless case. As before, we separate

them by denoting X̂ := X + Es with Span(X̂ ) ⊆ S and Ê := En with Span(Ê) ⊆ S⊥.

Since we have X + E = X̂ + Ê , and we can rewrite the objective in (3.75) as

f(B) =
N∑

j=1
∥(x̂j + ϵ̂j)⊤B∥2 +

M∑
j=1
∥o⊤

j B∥2,

with x̂j and ϵ̂j the j-th columns of X̂ and Ê , respectively.

Geometric quantities. First note that the previous quantities related to outliers,

i.e., cO,max,c, cO,min,c and ηO,c, remain the same. For noisy inliers, we adopt the

cX̂ ,min defined in (3.10) to characterize the distribution of the mixture of inliers and

components of noise projected onto the inlier subspace. Additionally, we have one

extra quantity with respect to Ê , namely

cÊ,max,c
:= 1

N
max

B∈O(D,c)

N∑
j=1
∥ϵ̂⊤

j B∥2, (3.106)

which generalizes cÊ,max defined in (3.11) for c = 1, and quantifies the effective

noise level. Note that cÊ,max,c
≤ 1

N

∑N
j=1 ∥ϵ̂j∥2, which is the total inlier residual used

in [61], but cÊ,max,c
also considers the geometry of the effective noise. To simplify the

presentation of the remaining analysis, let

RO/X̂ ,c
:= M

N

ηO,c

cX̂ ,min
and RÊ/X̂ ,c

:=
cÊ,max,c

cX̂ ,min
, (3.107)

which are analogous to RO/X̂ and RÊ/X̂ defined in (3.12) and can be viewed as
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outlier-to-inlier and noise-to-inlier type of ratios, respectively.

3.2.3.1 Geometry of the critical points

We are now ready to characterize the distribution of the critical points of problem (3.75)

when the dataset is further contaminated with noise.

Lemma 14. Assume RO/X̂ ,c
< 1 and

32RÊ/X̂ ,c(√
R2

O/X̂ ,c
+ 8− 3RO/X̂ ,c

) 3
2
(√

R2
O/X̂ ,c

+ 8 +RO/X̂ ,c

) 1
2
< 1. (3.108)

Then, every critical point B of problem (3.75) spans a subspace that has an angle θ

from S⊥ satisfying

θ ≤ sin−1(t1) or θ ≥ sin−1(t2) (3.109)

where 0 ≤ t1 ≤ t2 ≤ 1 with t1 be the smallest nonnegative root of the quartic equation

t4 + (R2
O/X̂ ,c

− 1)t2 + 4RO/X̂ ,c
RÊ/X̂ ,c

t+ 4R2
Ê/X̂ ,c

= 0 (3.110)

and

t2 :=
√

1− 1
4

(
RO/X̂ ,c

+
√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

)2
. (3.111)

Proof. We note that the condition (3.108) and the quartic equation (3.110) have the

same formulation as the condition (3.13) and the quartic equation (3.15) in Lemma 3,

respectively. Then, according to the first part of the proof of Lemma 3, we know that

if RO/X̂ ,c
< 1 and (3.108) holds, the quartic equation (3.110) must have exactly two
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roots in [0, 1], and we denote the smallest one by t1.

Next, let us consider the geometry of the critical points of problem (3.75). There

are two cases: RÊ/X̂ ,c
= 0 and RÊ/X̂ ,c

> 0. If RÊ/X̂ ,c
= 0, we can compute that t1 = 0

from (3.110) and that t2 =
√

1−R2
O/X̂ ,c

from (3.111), and can note that problem

reduces to a noiseless one with dataset [X̂ O] (recall that the points in X̂ lie perfectly

in the inlier subspace S). According to Lemma 9, we have

sin(θ) = 0 or sin(θ) ≥
√

1−R2
O/X̂ ,c

, (3.112)

which justifies the correctness of (3.109).

It remains to consider the case when RÊ/X̂ ,c
> 0. For any critical point B of

problem (3.75), we utilize a similar decomposition of B as in (3.84), namely

B = P sin(Θ) + Q cos(Θ), (3.113)

where P ∈ RD×c and Q ∈ RD×c are orthonormal matrices satisfying Span(P ) ⊆ S and

Span(Q) ⊆ S⊥,and Θ is the diagonal matrix whose diagonal entries θ1 ≤ θ2 ≤ · · · ≤ θc

are the principal angles between Span(B) and S⊥ (θc ≡ θ is also the subspace angle

between Span(B) and S⊥ ). As a result, P is orthogonal to Q and B is orthonormal.

Note that if θc = 0 (B is orthogonal to S) or θc = π/2, then (3.109) is trivial. Hence,

for the rest of our discussion, we assume that θc ∈ (0, π/2).

Let f(B) :=
X̃⊤B


1,2

. For any critical point B of problem (3.75), there exists

W ∈ ∂f(B) such that (I −BB⊤)W = 0. Due to the general position [152, 153]
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of the data and the fact that B is not orthogonal to S, B can be orthogonal to

K ≤ D − c columns of X̃ , and therefore we have that

0 = (I−BB⊤)W

= (I−BB⊤)
⎛⎝ N∑

j=1
(x̂j + ϵ̂j) sign((x̂j + ϵ̂j)⊤B) +

M∑
j=1

oj sign(o⊤
j B) + ξ

⎞⎠

where ξ = ∑K
k=1 x̃jk

αjk
with x̃j1 , · · · , x̃jK

the columns of X̃ orthogonal to B, and

{∥αj1∥, · · · , ∥αjK
∥} ∈ [−1, 1]. We further define

G = P cos(Θ)−Q sin(Θ),

which is also an orthonormal matrix that is orthogonal to B. Then, we have

0 =
⏐⏐⏐⟨(I−BB⊤)W , G

⟩⏐⏐⏐ =
⏐⏐⏐⟨W , (I−BB⊤)G

⟩⏐⏐⏐ = |⟨W , G⟩|

=

⏐⏐⏐⏐⏐⏐
⟨

N∑
j=1

(x̂j + ϵ̂j) sign((x̂j + ϵ̂j)⊤B), G

⟩
+
⟨

M∑
j=1

oj sign(o⊤
j B), G

⟩
+ ⟨ξ, G⟩

⏐⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐

N∑
j=1

⟨
(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩

+
⟨

(I−BB⊤)
M∑

j=1
oj sign(o⊤

j B), G

⟩
+ ⟨ξ, G⟩

⏐⏐⏐⏐⏐
≥

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩⏐⏐⏐⏐⏐⏐−MηO,c −D.

(3.114)
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Considering the first term, we have

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩
−

N∑
j=1

⟨
x̂⊤

j G, sign(x̂⊤
j B)

⟩⏐⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐

N∑
j=1

⟨
x̂⊤

j P cos(Θ)− ϵ̂⊤
j Q sin(Θ), sign

(
x̂⊤

j P sin(Θ) + ϵ̂⊤
j Q cos(Θ)

)⟩

−
N∑

j=1

⟨
x̂⊤

j P cos(Θ), sign(x̂⊤
j P sin(Θ))

⟩ ⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
x̂⊤

j P cos(Θ), sign
(
x̂⊤

j P sin(Θ) + ϵ̂⊤
j Q cos(Θ)

)
− sign(x̂⊤

j P sin(Θ))
⟩⏐⏐⏐⏐⏐⏐

+
⏐⏐⏐⏐⏐

N∑
j=1

⟨
ϵ̂⊤

j Q sin(Θ), sign
(
x̂⊤

j P sin(Θ) + ϵ̂⊤
j Q cos(Θ)

)⟩ ⏐⏐⏐⏐⏐
≤

N∑
j=1

⏐⏐⏐⟨x̂⊤
j P cos(Θ), sign

(
x̂⊤

j P sin(Θ) + ϵ̂⊤
j Q cos(Θ)

)
− sign(x̂⊤

j P sin(Θ))
⟩⏐⏐⏐

+
N∑

j=1

ϵ̂⊤
j Q sin(Θ)

 .

(3.115)

Letting a1 := x̂⊤
j P cos(Θ),a2 := x̂⊤

j P sin(Θ), e := ϵ̂⊤
j Q cos(Θ), we have

|⟨a1, sign(a2 + e)− sign(a2)⟩|

=
⏐⏐⏐⏐⏐⟨a1,a2 + e⟩
∥a2 + e∥

− ⟨a1,a2⟩
∥a2∥

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐⟨a1,a2 + e⟩ ∥a2∥ − ⟨a1,a2⟩ ∥a2 + e∥

∥a2 + e∥∥a2∥

⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐⟨a1,a2⟩ (∥a2 + e∥ − ∥a2∥)− ⟨a1, e⟩ ∥a2∥

∥a2 + e∥∥a2∥

⏐⏐⏐⏐⏐
≤
⏐⏐⏐⏐⏐⟨a1,a2⟩ (∥a2 + e∥ − ∥a2∥)

∥a2 + e∥∥a2∥

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐ ⟨a1, e⟩
∥a2 + e∥

⏐⏐⏐⏐⏐
≤ ∥a1∥∥e∥
∥a2 + e∥

+ ∥a1∥∥e∥
∥a2 + e∥

= 2∥a1∥∥e∥
∥a2 + e∥

.
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Plugging this back into (3.115), we have

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩
−

N∑
j=1

⟨
x̂⊤

j G, sign(x̂⊤
j B)

⟩⏐⏐⏐⏐⏐⏐
≤ 2

N∑
j=1

∥x̂⊤
j P cos(Θ)∥∥ϵ̂⊤

j Q cos(Θ)∥
∥x̂⊤

j P sin(Θ) + ϵ̂⊤
j Q cos(Θ)∥ + sin(θc)

N∑
j=1

ϵ̂⊤
j Q


≤ 2

N∑
j=1

(
∥x̂⊤

j P ∥
|x̂⊤

j pc sin(θc) + ϵ̂⊤
j qc cos(θc)|

+ sin(θc)
)ϵ̂⊤

j Q
 .

(3.116)

As in the proof of Lemma 3, we expect that in the noisy case the angle between

Span(B) and S⊥, i.e., θc, is either near zero or close to π/2. On the one hand,

from (3.114), we have

0 ≥

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩⏐⏐⏐⏐⏐⏐−MηO,c −D

≥

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
x̂⊤

j G, sign(x̂⊤
j B)

⟩⏐⏐⏐⏐⏐⏐−MηO,c −D

−

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩
−

N∑
j=1

⟨
x̂⊤

j G, sign(x̂⊤
j B)

⟩⏐⏐⏐⏐⏐⏐
> cos(θc)

N∑
j=1

⏐⏐⏐x̂⊤
j pc

⏐⏐⏐− 2
sin(θc)

N∑
j=1

ϵ̂⊤
j Q

−MηO,c −D

> cos(θc)NcX̂ ,min −
2

sin(θc)
NcÊ,max,c

−MηO,c

(3.117)

where the second inequality follows from the reverse triangular inequality, the third in-

equality follows from (3.116), and the last inequality uses the definitions of cX̂ ,min, cÊ,max,c

and ηO,c. Thus, we obtain

0 > cos(θc)NcX̂ ,min −
2

sin(θc)
NcÊ,max,c

−MηO,c, (3.118)
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which has the same formulation of (3.26). According to the proof of Lemma 3,

the lower valid region for θc is θc ≤ sin−1(t1), where t1 is the smallest nonnegative

root of (3.110). On the other hand, for sufficiently large θc, (3.116) is bounded by

2
cos(θc)

∑N
j=1 ∥ϵ̂⊤

j Q∥, and thus similar to (3.118), we have

0 > cos(θc)NcX̂ ,min −
2

cos(θc)
NcÊ,max,c

−MηO,c

⇔ cos2(θc)− cos(θc)RO/X̂ ,c
− 2RÊ/X̂ ,c

< 0

⇔ cos(θc) <
1
2

(
RO/X̂ ,c

+
√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

)
.

(3.119)

By defining

t2 :=
√

1− 1
4

(
RO/X̂ ,c

+
√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

)2
,

and combining (3.112) and (3.119), we obtain an upper valid region for θc as θc ≥

sin−1(t2). In summary, any critical point B of problem (3.75) spans a subspace that

has an angle θc from S⊥ satisfying

θc ≤ sin−1(t1) or θc ≥ sin−1(t2).

Finally, we show that t2 ≥ t1. Note that it follows from (3.37) and (3.38) that

t21 ≤ 1
2(1−R2

O/X̂ ,c
), so that it is sufficient to show

t22 = 1− 1
4

(
RO/X̂ ,c

+
√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

)2
≥ 1

2

(
1−R2

O/X̂ ,c

)
,
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which is equivalent to

1
2RO/X̂ ,c

√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

+ 2RÊ/X̂ ,c
− 1

2 ≤ 0, (3.120)

which is guaranteed by condition (3.108), and thus completes the proof.

Discussion of Lemma 14. The feasible region for (RO/X̂ ,c
, RÊ/X̂ ,c

) with condi-

tion (3.108) satisfied is shown as the area under the curve in Figure 3.4, which implies

that the outlier-to-inlier ratio and the noise-to-inlier ratio cannot be very large at the

same time. In other words, larger noise levels restrict the number of outliers that the

holistic DPCP problem (3.75) can tolerate. Next, (3.109) indicates that any critical

point B of the noisy problem (3.75) spans a subspace that is close to either S⊥ or S.

Figure 3.4 provides a better understanding of t1 and t2: with smaller outlier-to-inlier

ratio and noise-to-inlier ratio, t1 is closer to 0 (lighter) and t2 is closer to 1 (darker),

making the geometric location of B more restricted. Compared with Lemma 9 for the

noiseless case where B is an exact orthonormal basis of S⊥ if it is sufficiently far from

S, here we can only guarantee that it lies in a neighborhood of S⊥, i.e., θ ≤ sin−1(t1),

due to the noise. According to Proposition 1, one can further bound t1 by

t1 ≤
25RÊ/X̂ ,c

(1−RO/X̂ ,c
)2 . (3.121)

When there is no noise, from (3.121) we have t1 = 0, and from (3.111) we have

t2 =
√

1−R2
O/X̂ ,c

, which is consistent with Lemma 9. Moreover, (3.121) shows that t1

is small with small outlier-to-inlier ratio and noise-to-inlier ratio, and is proportional to
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Figure 3.4. Plot of (a) t1 and (b) t2 in Lemma 14 given (RO/X̂ ,c
, RÊ/X̂ ,c

) pairs such that
condition (3.108) holds true (area below the curve).

the effective noise level. Finally, compared with Lemma 3 that analyzes the geometry

of the critical points for the noisy problem (3.1) with c = 1, where both t1 and

t2 are defined by the nonnegative roots of (3.15), in this generalized analysis t2 is

decoupled from (3.110) (see (3.111)) since we have used a different proof technique

for problem (3.75) defined over the Grassmannian.

3.2.3.2 Geometry of the global solutions

Using Lemma 14, we now characterize the global solution of the holistic DPCP

problem (3.75) in the noisy setting.

Theorem 7. If RO/X̂ ,c
< 1, (3.108) holds, and

R2
O/X̂ ,c

+
⎛⎝M(cO,max,c − cO,min,c)

NcX̂ ,min
+ 2RÊ/X̂ ,c

⎞⎠2

+ 8RÊ/X̂ ,c
< 1, (3.122)

then any global solution B∗ of problem (3.75) must span a subspace that has an angle
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θ∗ from S⊥ satisfying

θ∗ ≤ sin−1(t1), (3.123)

where 0 ≤ t1 ≤ 1 is the smallest nonnegative root of (3.15).

Proof. Since RO/X̂ ,c
< 1 and (3.108) holds, we can apply Lemma 14 to obtain that

any critical point B of problem (3.75) must have principal angle θ from S⊥ satisfy

sin(θ) ≤ t1 or cos(θ) ≤ 1
2

(
RO/X̂ ,c

+
√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

)
,

where 0 ≤ t1 ≤ 1 is the smallest nonnegative root of (3.110). Since a global minimizer

B∗ must be a critical point, to reach a contradiction, let us assume that (3.123) does

not hold, so that

cos(θ∗) ≤
√
R2

O/X̂ ,c
+ 8RÊ/X̂ ,c

. (3.124)

Utilizing the fact that B∗ is a global solution, we have

∥X̃⊤B∗∥1,2 ≤ min
B∈O(D,c),B⊥S

∥X̃⊤B∥1,2

= min
B∈O(D,c),B⊥S

{
∥Ê⊤B∥1,2 + ∥O⊤B∥1,2

}
≤ NcÊ,max,c

+McO,max,c.

(3.125)

On the other hand, by utilizing a similar decomposition of B∗ as in (3.84), we can

write B∗ = P sin(Θ) + Q cos(Θ), where P ∈ RD×c and Q ∈ RD×c are orthonormal
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matrices satisfying Span(P ) ⊆ S and Span(Q) ⊆ S⊥,and Θ is the diagonal matrix

whose diagonal entries θ1 ≤ θ2 ≤ · · · ≤ θc are the principal angles between Span(B∗)

and S⊥ (θc ≡ θ∗ is also the subspace angle between Span(B∗) and S⊥ ). Then

∥X̃⊤B∗∥1,2 =
N∑

j=1
∥(x̂j + ϵ̂j)⊤B∗∥2 +

M∑
j=1
∥o⊤

j B∗∥2

=
N∑

j=1
∥x̂⊤

j P sin(Θ) + ϵ̂⊤
j Q cos(Θ)∥2 +

M∑
j=1
∥o⊤

j B∗∥2

≥
N∑

j=1
∥x̂⊤

j P sin(Θ)∥2 −
N∑

j=1
∥ϵ̂⊤

j Q cos(Θ)∥2 +
M∑

j=1
∥o⊤

j B∗∥2

≥
N∑

j=1
sin(θ∗)

⏐⏐⏐x̂⊤
j pc

⏐⏐⏐− N∑
j=1
∥ϵ̂⊤

j Q∥2 +
M∑

j=1
∥o⊤

j B∗∥2

≥ sin(θ∗)NcX̂ ,min −NcÊ,max,c
+McO,min,c,

which together with (3.125) gives

sin(θ∗) ≤
M(cO,max,c − cO,min,c) + 2NcÊ,max,c

NcX̂ ,min
. (3.126)

Combining (3.124) and (3.126), we obtain

1 = sin2(θ∗) + cos2(θ∗)

≤ R2
O/X̂ ,c

+
⎛⎝M(cO,max,c − cO,min,c)

NcX̂ ,min
+ 2RÊ/X̂ ,c

⎞⎠2

+ 8RÊ/X̂ ,c
,

which contradicts (3.122), thus completing the proof.

Discussion of Theorem 7. Condition (3.122) is sufficient to ensure that global

solutions of problem (3.75) span a subspace that is close to S⊥. We interpret (3.122)
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as follows: with fixed M/N , as data points are increasing (cO,max,c − cO,min,c → 0)

and well-distributed (large cX̂ ,min, small RO/X̂ ,c
), and the effective noise is mild (small

RÊ/X̂ ,c
), (3.122) will be satisfied and global solutions of (3.75) must be close to S⊥.

Note that in the noiseless case, condition (3.122) is equivalent to condition (3.89) and

t1 = 0, which means Theorem 7 is precisely Theorem 5 in the noiseless setting.

3.2.3.3 Probabilistic analysis

We now provide a probabilistic characterization of global optimality for problem (3.75)

in the noisy setting. We have already derived the concentration bounds for cX̂ ,min

(Lemma 7), ηO,c (Lemma 12) and cO,max,c − cO,min,c (Lemma 13). For a statistical

analysis of the deterministic result in Theorem 7, we are left to derive a concentration

inequality for cÊ,max,c
.

Bounding cÊ,max,c
. In the following, we present the concentration bound for

cÊ,max,c
under the random spherical model specified in Definition 1.

Lemma 15. Consider the random spherical model defined in Definition 1. For a fixed

number t > 0, we have

P
[
cÊ,max,c

≤
(

1 + 2
√

2c√
N

)
δ(σ) + t√

N

]
≥ 1− 2e− t2

2 (3.127)

where δ(σ) is defined in (3.65).

Proof. According to the generative model in Definition 1, let x1, · · · ,xN ∼ N
(
0, 1

d
PS
)
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and ϵ1, · · · , ϵN ∼ N
(
0, σ2

D
I
)

be from (3.56) and (3.57), and Ê = En. Then, we have

cÊ,max,c
= max

B∈O(D,c)

1
N

N∑
j=1

ϵ̂⊤
j B


2

= max
B∈O(D,c)

1
N

N∑
j=1

 ϵn
j

⊤B

∥xj + ϵj∥2


2
≤ 1

N

N∑
j=1

∥ϵn
j ∥2

∥xj + ϵj∥2

where the last inequality follows from ∥B∥2 = 1. Defining the random variable

Rj :=
∥ϵn

j ∥2

∥xj + ϵj∥2
,

we are interested in E [Rj]. According to the proof of Lemma 8 and (3.66), we have

E [Rj] ≤
√
σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)
,

which leads to

E0 := E
[
∥ϵ̂⊤

j B∥2
]
≤ E[Rj] ≤

√
σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)
. (3.128)

We are now ready to bound cÊ,max,c
. Note that

cÊ,max,c
= sup

B∈O(D,c)

1
N

N∑
j=1

ϵ̂⊤
j B


2

= sup
B∈O(D,c)

⎛⎝ 1
N

N∑
j=1

ϵ̂⊤
j B


2
− E0

⎞⎠+ E0. (3.129)

Since O(D, c) is compact, there exists B+ ∈ O(D, c) that achieves the supremum in
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(3.129). Therefore, for any ϵ̂1, ϵ̂2, · · · , ϵ̂N , ϵ̂
′
k, we have

⏐⏐⏐⏐⏐⏐sup
⎛⎝ 1
N

N∑
j=1

ϵ̂⊤
j B


2
− E0

⎞⎠− sup
⎛⎝ 1
N

∑
j ̸=k

(ϵ̂⊤
j B


2

+
ϵ̂′⊤

k B


2

)
− E0

⎞⎠⏐⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐ 1
N

N∑
j=1

ϵ̂⊤
j B+


2
− E0 −

⎛⎝ 1
N

∑
j ̸=k

(ϵ̂⊤
j B+


2

+
ϵ̂′⊤

k B+


2

)
− E0

⎞⎠⏐⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐ 1
N

(ϵ̂⊤
k B+


2
−
ϵ̂′⊤

k B+


2

)⏐⏐⏐⏐ ≤ 2
N
.

(3.130)

Applying Lemma 4 with ck = 2
N

, we have

P

⎡⎣⏐⏐⏐⏐⏐⏐sup
⎛⎝ 1
N

N∑
j=1

ϵ̂⊤
j B


2
− E0

⎞⎠− E

⎡⎣sup
⎛⎝ 1
N

N∑
j=1

ϵ̂⊤
j B


2
− E0

⎞⎠⎤⎦⏐⏐⏐⏐⏐⏐ ≥ ϵ

⎤⎦ ≤ 2e− ϵ2N
2 .

(3.131)

Moreover, we have

E

⎡⎣ sup
B∈O(D,c)

⎛⎝ 1
N

N∑
j=1

ϵ̂⊤
j B


2
− E0

⎞⎠⎤⎦
≤ 2E

⎡⎣ sup
B∈O(D,c)

1
N

N∑
j=1

εj

ϵ̂⊤
j B


2

⎤⎦ ≤ 2
√

2E

⎡⎣ sup
B∈O(D,c)

1
N

N∑
j=1

ε⊤
j B⊤ϵ̂j

⎤⎦
= 2
√

2
N

E

⎡⎣ sup
B∈O(D,c)

⟨
B,

N∑
j=1

ϵ̂jε⊤
j

⟩⎤⎦ ≤ 2
√

2c

N
E

⎡⎣
N∑

j=1
ϵ̂jε⊤

j


F

⎤⎦

≤ 2
√

2c

N

√E

⎡⎢⎣


N∑
j=1

ϵ̂jε⊤
j


2

F

⎤⎥⎦ = 2
√

2c

N

√E

⎡⎣ N∑
j=1
∥ϵ̂j∥22 +

∑
i ̸=j

ε⊤
i εj ϵ̂⊤

i ϵ̂j

⎤⎦

≤ 2
√

2c√
N

√
σ + (1− σ)Fd,D−d

((D − d)σ
D + dσ2

)
≤ 2
√

2c√
N

⎛⎝√σ +
√

1− σ

√
Fd,D−d

((D − d)σ
D + dσ2

)⎞⎠ ,

(3.132)

where the first inequality follows from Lemma 6, the second inequality follows

from Lemma 11 by taking hj = ∥ · ∥2, the third inequality follows from Cauchy-
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Schwartz, the fourth inequality follows from the Jensen’s Inequality, and the fifth

inequality follows from an upper bound for E[∥ϵ̂j∥2
2] = E[R2

j ] that is similar to (3.66).

Applying (3.132) to (3.131), we obtain

P

⎡⎣sup
⎛⎝ 1
N

N∑
j=1

ϵ̂⊤
j B


2
− E0

⎞⎠ ≥ 2
√

2c√
N

⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ ϵ

⎤⎦
≤ 2e− ϵ2N

2 .

Therefore, from (3.129), we have

P

⎡⎣cÊ,max,c
≥ E0 + 2

√
2c√
N

⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ ϵ

⎤⎦ ≤ 2e− ϵ2N
2 .

Applying the upper bound for E0 in (3.128), we obtain

P

⎡⎣cÊ,max,c
≥
(

1 + 2
√

2c√
N

)⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ ϵ

⎤⎦ ≤ 2e− ϵ2N
2 ,

and by setting ϵ = t√
N

we have

P

⎡⎣cÊ,max,c
≥
(

1 + 2
√

2c√
N

)⎛⎝√σ +
√

1− σ

√Fd,D−d

(
(D − d)σ
D + dσ2

)⎞⎠+ t√
N

⎤⎦ ≤ 2e− t2
2 .

Noting that (D−d)σ
D+dσ2 < σ and all the CDFs are nondecreasing, we get

P
[
cÊ,max,c

≥
(

1 + 2
√

2c√
N

)(√
σ +
√

1− σ
√
Fd,D−d (σ)

)
+ t√

N

]
≤ 2e− t2

2 ,

which completes the proof.
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Discussion of Lemma 15. It has been shown in Lemma 8 that δ(σ) = O(σ d
4 +σ 1

2 ),

implying that the concentration for cÊ,max,c
in (3.127) implies that cÊ,max,c

= O(σ d
4 +σ 1

2 )

with high probability. However, as in the discussion after Lemma 8, the concentration

bound for cÊ,max,c
does not immediately imply cÊ,max,c

= 0 when σ = 0 because of the

term t√
N

(this is usually very small since N is very large compared with t), which

appears to be an artifact of the proof technique; improvement is left as future work.

We now give the probabilistic characterization of the globally optimal solutions for

the problem (3.75).

Theorem 8. Consider the random spherical model defined in Definition 1. Assume

N > c. Then for any positive t < 2
(√

2N
πd
ρ(σ)−2

)
, with probability at least 1−8e−t2/2,

any global solution B∗ of problem (3.75) must span a subspace that has an angle θ∗

from S⊥ satisfying

sin(θ∗) ≤
C1δ(σ) + 25t√

N√
2

πd
ρ(σ)− C2

t
√

M+
√

cDM log D
N

− 4+t
2
√

N

(3.133)

as long as

M
(
(8
√

2c+ 2t)2 + C3(
√
cD logD + t)2

)

≤ N2

⎡⎣⎛⎝√ 2
πd
ρ(σ)− 4 + t

2
√
N

⎞⎠2

− C4δ(σ)− 16t2
N
− 8t√

dN

⎤⎦, (3.134)

where C1, C2, C3, C4 are universal constants independent of N,M,D, d, c, t and σ.
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(a) σ = 0 (b) σ = 0.1

Figure 3.5. Plot of the subspace angle between Span(B∗) and S⊥ with B∗ the computed
solution to the noisy holistic DPCP problem (3.75) when varying N and M for noise level
(a) σ = 0 and (b) σ = 0.1. Here we fix D = 30 and c = 5.

Proof. Theorem 8 follows directly from Theorem 7 and

t1 ≤
25RÊ/X̂ ,c

(1−RO/X̂ ,c
)2 (3.135)

by plugging the concentrations for cX̂ ,min from (3.54), ηO,c from (3.95), cO,max,c −

cO,min,c from (3.101), and cÊ,max,c
from (3.127) into (3.122) and (3.135).

Discussion of Theorem 8. Towards interpreting Theorem 8, first recall that

δ(σ)→ 0 and ρ(σ)→ 1 as σ → 0. Then, (3.133) indicates that the angle θ∗ between

S⊥ and the subspace spanned by a global solution B∗ of (3.75) becomes close to zero

as σ → 0, and sin(θ∗) = O(σd/4 +σ
1
2 ) which is of the same order as δ(σ). Furthermore,

the sufficient condition (3.134) implies that problem (3.75) can also tolerate O(N2)

outliers for learning the entire orthonormal basis for S⊥ with noisy data, as illustrated

in Figure 3.5. Finally, we remark that condition (3.134) does not necessarily have
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the same form as condition (3.105) when σ = 0 or the condition in (3.74) when c = 1

because the proof used is different; however, they all reveal that the DPCP problems

(both (3.1) and (3.75)) can handle O(N2) outliers, which is an apparent advantage

over other RSR methods [62] that can only deal with O(N) outliers in theory.

3.3 Comparison with state-of-the-art

As noted in Section 2.2, DPCP is very closely related to least absolute deviations sub-

space learning methods. Two important representatives of that class are REAPER [61]

and the Geodesic Gradient Descent (GGD) method of [76]. In particular, the GGD

problem (2.6) shares a similar formulation as (3.75), which optimizes over G(D, d)

and aims at recovering an orthonormal basis for the underlying subspace S instead of

a basis for the dual space S⊥ as in DPCP, while the problem of REAPER (2.5) can be

viewed as a convex relaxation of it. In this section, we compare the theoretical results

of DPCP to those known for REAPER and GGD. We show that the global optimality

conditions for DPCP given in the previous sections are much tighter compared to

those required for REAPER. In fact, they are even an improvement over conditions

that enable a local stability characterization of the function landscape given by [76].

Comparison with REAPER [61]. For the global optimality analysis, [61,

Theorem 2.1] asserts that any global minimizer of the REAPER problem (2.5) spans
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(b) Check (3.137) for REAPER, c = 1
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(c) Check (3.108) and (3.122), c = 5
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(d) Check (3.137) for REAPER, c = 5

Figure 3.6. Check whether (3.108) and (3.122) for DPCP and (3.137) for REAPER [61]
are satisfied (white) or not (black) when varying the outlier ratio M/(M + N) and σ. Here
we fix D = 30 and N = 1500.

a subspace that has an angle θ∗ from S satisfying

sin(θ∗) ≤ 2NR(S)[
N

4
√

d
cX̂ ,min −MA (S)−NR(S)

]
+

, (3.136)

where R(S) := 1
N

∑N
j=1 ∥ϵ̂j∥2 is the total inlier residual (recall that it is an upper

bound for cÊ,max or cÊ,max,c
), A (S) := 1

M
∥O∥2∥PS⊥O∥2 ≥ 0 is an alignment statistic

that measures the amount of linear structure in the outliers, and [a]+ = a if a > 0 and

0 otherwise. Here PS⊥ is the orthoprojection onto S⊥ and the overline spherization
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(b) Upper bound for sin(θ∗) in (3.136)

Figure 3.7. Evaluation of (a) t1 in Theorem 7 and (b) upper bound for sin(θ∗) in (3.136),
with D = 30 and N = 1500. In (b), we only plot (3.136) for M

M+N ∈ {0, 0.01} since it is only
meaningful for a mild size of the outlier ratio.

operator normalizes the columns of a matrix. To make (3.136) meaningful, we require

MA (S)
NcX̂ ,min

<
1

4
√
d
−RÊ/X̂ ,c

. (3.137)

We compare the necessary condition (3.137) for REAPER to (3.108) and (3.122) for the

DPCP problem (3.75) (see Theorem 7). In a special case that there are no outliers, i.e.,

A (S) = 0, (3.137) requires RÊ/X̂ ,c
< 1

4
√

d
. By contrast, (3.108) only requires RÊ/X̂ < 1

4

(see Figure 3.4). More generally, in the presence of outliers, MA (S) in (3.137) scales

as O(M) under the Haystack model [61], whereas the quantity M(cO,max,c − cO,min,c)

in (3.122) scales as O(
√
M) as proved in Lemma 13, indicating that the theoretical

analysis for DPCP potentially tolerates more outliers. Numerically, this is captured

in Figure 3.6, in which we observe that (3.108) and (3.122) are satisfied for a much

larger range of outlier ratio and noise levels. Finally, note that R(S) appears both in

the numerator and denominator in the RHS of (3.136), which makes the entire upper
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(f) c = 5, M
M+N = 0.7

Figure 3.8. Comparison between the quantity γ of [76] and sin−1(t2) in the cases of c = 1
(top row) and c = 5 (bottom row) with outlier ratio M

M+N ∈ {0.1, 0.4, 0.7}. Here we fix
D = 30 and N = 3000.

bound blow up quickly when the noise level increases; see Figure 3.7b. In contrast,

according to Theorem 7 and (3.121), the upper bound for sin(θ∗) in our analysis,

i.e., t1, is roughly proportional to the effective noise level (see Figure 3.7a), and thus

provides more insight into the problem.

Comparison with the local optimality conditions of [76]. The GGD pa-

per [76] only provides local optimality analysis for the problem (2.6), which is exactly

the dual form of the holistic DPCP problem (3.75) considered in this chapter. [76,

Theorem 2] asserts that, given 0 < η < γ < π/2 such that a certain stability condition

holds, any critical point of (2.6) spans a subspace that has an angle θ from S satisfying

θ < η or θ > γ. (3.138)
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Note that Lemma 14 has similar statements in characterizing the geometry of the

critical points for (3.75). Particularly, in (3.109) we have

θ ≤ sin−1(t1) or θ ≥ sin−1(t2). (3.139)

For both results, a tighter analysis corresponds to a smaller η or sin−1(t1) (closer to 0)

and a larger γ or sin−1(t2) (closer to π/2) so that the geometric distribution of the

critical points are more restricted. As a simulation, we compare (3.138) and (3.139)

by manually setting η equal to sin−1(t1) and then compare sin−1(t2) and γ. Figure 3.8

shows the comparison between γ and sin−1(t2) under different codimensions, and

percentages of outlier ratio and noise levels. In most of the cases, we can observe that

sin−1(t2) is larger than γ by a significant amount, under the restriction that η is equal

to sin−1(t1), thus suggesting that (3.139) is a tighter result compared with (3.138).

Moreover, (3.138) is sensitive to the variation of the outliers, while (3.139) is rather

stable (compare Figure 3.8a to Figure 3.8c and Figure 3.8d to Figure 3.8f). Finally, we

mention that the relationship between η and γ in [76] is captured by the complex inlier-

outlier stability statistic, which is not as clear as for our t1 and t2, with the latter being

explicitly defined by (3.110) and (3.111). In conclusion, we believe that Lemma 14

represents a theoretical and practical improvement over the characterization of the

critical points of (3.75) given previously by [76] for a dual formulation of the problem.
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Chapter 4

Efficient Algorithms for Learning a

Single Subspace with DPCP

We have established the theory of DPCP for learning a single subspace with any

codimension under both noiseless and noisy settings in Chapter 3. Nevertheless, the

existing algorithms (and their convergence theory) for DPCP are designed the case

of codimension equal to 1 and noiseless data. The other scenarios (i.e., codimension

larger than 1 and noisy data) call for the design of a unified algorithmic framework

that is both scalable and emits a convergence theory for all of the above cases.

In this chapter, we focus on a linearly convergent method for non-smooth non-

convex optimization on the Grassmannian, which will cover robust subspace learning

via DPCP as a particular application. In Section 4.1, we briefly introduce optimization

on the Grassmannian along with the necessary background and notation. In Sec-

tion 4.2, we present a Projected Riemannian Sub-Gradient Method (PRSGM) with
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linear convergence guarantees, and show that PRSGM applied to the holistic DPCP

problem (2.9) can provably recover a basis (respectively, an approximate basis) for the

orthogonal complement of the underlying subspace in the noiseless setting (respectively,

noisy setting). Experiments using synthetic and real data in Section 4.3 demonstrate

the effectiveness and superiority of PRSGM.

4.1 Introduction

Optimization problems on the Grassmannian G(D, c) (a.k.a. the Grassmann manifold

consisting of the linear c-dimensional subspaces in RD) appear in a wide variety of

applications. A problem of interest in this thesis is a robust subspace recovery problem,

namely learning a d-dimensional subspace S ⊂ RD from corrupted data. As discussed

in previous chapters, the original DPCP problem (2.2) involves optimization on the

sphere (G(D, 1)), the holistic DPCP problem (2.9) estimates an entire orthonormal

basis for S⊥ by optimizing over G(D, c) (recall that c = D − d is the codimension of

the underlying subspace), and the GGD problem (2.6) learns an orthonormal basis for

S by optimizing on G(D, d). A key challenge to such problems is that the optimization

problems are non-convex since the Grassmannian is a non-convex set.

One approach to solving optimization problems on the Grassmannian is to exploit

the fact that the Grassmannian is a Riemannian manifold, and develop generic Rieman-

nian optimization techniques. When the objective function is twice differentiable, [8]

shows that Riemannian gradient descent and Riemannian trust-region methods con-

verge to first- and second-order stationary solutions, respectively. Newton algorithms
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on the Grassmannian have been developed in [34]. When Riemannian gradient de-

scent is randomly initialized, [60] further shows that it converges to a second-order

stationary solution almost surely, but without any guarantee on the convergence rate.

Non-smooth trust region algorithms [47], gradient sampling methods [22, 23], and

proximal gradient methods [18] have also been proposed for non-smooth manifold

optimization when the objective function is not continuously differentiable. However,

the available theoretical results establish convergence to stationary points from an

arbitrary initialization with either no rate of convergence guarantee, or at best a

sublinear rate1.

On the other hand, when the constraint set is convex, [25, 26, 65] show that

subgradient methods can handle non-smooth and non-convex objective functions as

long as the problem satisfies certain regularity conditions called sharpness and weak

convexity. In such a case, R-linear convergence1 is guaranteed (e.g., see robust phase

retrieval [33] and robust low-rank matrix recovery [65]). Analogous to other regularity

conditions for smooth problems, such as the regularity condition of [14] and the error

bound condition in [73], sharpness and weak convexity capture regularity properties

of non-convex and non-smooth optimization problems. However, these two properties

have not yet been exploited for solving problems on the Grassmannian, or other

non-convex manifolds.

A related regularity condition, which in this thesis we call the Riemannian Regu-

larity Condition (RRC), has been exploited for orthogonal dictionary learning (ODL)
1Suppose the sequence {xk} converges to x⋆. We say it converges sublinearly if limk→∞ ∥xk+1 −

x⋆∥/∥xk−x⋆∥ = 1, and R-linearly if there exists C > 0, q ∈ (0, 1) such that ∥xk−x⋆∥ ≤ Cqk, ∀k ≥ 0.
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[3], which solves an ℓ1 minimization problem on the sphere, a manifold parameterizing

G(D, 1). However, under this RRC, Projected Riemannian Sub-Gradient Methods

have only been proved to converge at a sublinear rate. On the other hand, a Projected

Sub-Gradient Method (DPCP-PSGM) [152, 153] has been successfully used and proved

to converge at a piecewise linear rate for the DPCP problem (2.2). However, i) it is

restricted to optimization on the sphere (G(D, 1)) even for subspaces of codimension

higher than 1, so it may not be applicable to problem (2.9); (ii) it has only be shown

to converge to a basis element of S⊥ with noiseless data; and (iii) the convergence

analysis does not reveal the origin of the improved convergence rate.

4.1.1 Background

In this chapter, we consider minimization problems on the Grassmannian G(D, c).

We adopt the same notation as in Section 3.2.1. In particular, we parameterize

points on the Grassmannian by representing an element of G(D, c) by an orthonormal

matrix in O(D, c) = {B ∈ RD×c : B⊤B = Ic}, which is also the well-known Stiefel

manifold. When D = c, we denote O(c, c) by O(c), the orthogonal group. This matrix

representation is not unique since Span(BQ) = Span(B) for any Q ∈ O(c). Thus,

we say that {A,B} ⊂ G(D, c) are equivalent if Span(A) = Span(B). With this

understanding, we use B to represent the equivalence class [B] = {BQ : Q ∈ O(c)}

and consider the parameterized problem studied in [34, 49] give by

minimize
B∈O(D,c)

f(B) (4.1)
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where f : RD×c → R is lower semi-continuous, possibly non-convex and non-smooth,

and invariant to the action of O(c), i.e., f(B) = f(BQ) for any Q ∈ O(c). Again,

the global minimum of (4.1) is not unique since if B∗ is a global minimum, then any

point in [B∗] is also a global minimum.

For any A,B ∈ O(D, c), as specified in Definition 2, the principal angles between

Span(A) and Span(B) are defined as θi(A,B) = arccos(σi(A⊤B)) for i = 1, . . . , c,

where σi(·) denotes the i-th largest singular value. As before, the largest principal

angle θc(A,B) is referred to as the subspace angle between Span(A) and Span(B).

We then define the distance between A and B as

dist(A,B) :=
√2

c∑
i=1

(
1− cos(θi(A,B))

)
= min

Q∈O(c)
∥B −AQ∥F (4.2)

where the last term is also known as the orthogonal Procrustes problem. The second

equality in (4.2) follows from the result [51] according to which the optimal rotation

matrix Q minimizing ∥B−AQ∥F is Q∗ = UV ⊤, where UΣV ⊤ is the SVD of A⊤B.

Thus, dist(A,B) = 0 iff Span(A) = Span(B). We also define the projection of B

onto [A] as

PA(B) = AQ∗, where Q∗ = arg min
Q∈O(c)

∥B −AQ∥F .

Here AQ∗ is in [A], with Q∗ representing a nonlinear transformation of A⊤B, as

described above. The following result implies that θc(A,B) and dist(A,B) are

equivalent in characterizing how close A and B are to each other.
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Proposition 2. The definition (4.2) of dist(A,B) is equivalent to the subspace angle

θc(A,B) in measuring the similarity between A and B in the following sense:

sin(θc(A,B)) ≤ dist(A,B) ≤
√

2c · sin(θc(A,B)).

Proof. To prove the first inequality, we have

dist(A,B) =
√2

c∑
i=1

(1− cos(θi(A,B))) =
√ c∑

i=1
4 sin2 (θi(A,B)/2)

≥ 2 sin(θc(A,B)/2)

≥ 2 sin(θc(A,B)/2) cos(θc(A,B)/2)

= sin(θc(A,B)).

To prove the second inequality, we have

dist(A,B) =
√ c∑

i=1
4 sin2 (θi(A,B)/2)

≤ 2
√
c · sin(θc(A,B)/2)

≤
√

2c · sin(θc(A,B))

where we used the fact that sin(a/2) ≤ sin(a)√
2 for a ∈ [0, π/2].

Since f can be non-smooth and non-convex, we utilize the Clarke subdifferential,

which generalizes the gradient for smooth functions and the subdifferential in convex
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analysis. The Clarke subdifferential [3] of a locally Lipschitz function f at B is

∂f(B) := conv
{

lim
i→∞
∇f(Bi) : Bi → B, f differentiable at Bi

}

where conv denotes the convex hull. When f is differentiable at B, its Clarke

subdifferential is simply {∇f(B)}. When f is not differentiable at B, the Clarke

subdifferential is the convex hull of the limit of gradients taken at differentiable points.

Note that the Clarke subdifferential ∂f(B) is a nonempty and convex set since a

locally Lipschitz function is differentiable almost everywhere.

Since we consider problems on the Grassmannian, we use tools from Riemannian

geometry to state optimality conditions. From [34], the tangent space of the Grass-

mannian at [B] is defined as TB := {W ∈ RD×c : W ⊤B = 0}, and the orthogonal

projector onto the tangent space is I − BB⊤, which is well-defined and does not

depend on the class representative since AA⊤ = BB⊤ for any A ∈ [B]. We gener-

alize the definition of the Clarke subdifferential and denote by ∂̃f the Riemannian

subdifferential of f [3]:

∂̃f(B) := conv
{

lim
i→∞

(I−BB⊤)∇f(Bi) : Bi → B, f differentiable at Bi

}
.

We say that B is a critical point of (4.1) if and only if 0 ∈ ∂̃f(B), which is a necessary

condition for being a minimizer to (4.1).
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Figure 4.1. Illustration of the Riemannian regularity condition in Definition 3. Red nodes
denote [B∗], with the top one closest to B. Inequality (4.3) requires the angle between
PB∗(B)−B (purple arrow) and −G(B) (blue arrow) to be sufficiently small.

4.2 Projected Riemannian Sub-Gradient method

In this section, we state our key Riemannian regularitity condition (RRC, Section 4.2.1),

propose a Projected Riemannian Sub-Gradient Method (Section 4.2.2) based on RRC,

analyze its convergence properties (Section 4.2.3), and show it can be applied to solving

the DPCP problem (2.9) under both noiseless and noisy settings (Section 4.2.4).

4.2.1 Riemannian Regularity Condition (RRC)

Definition 3. Let {α, ϵ} > 0 and B∗ ∈ O(D, c). We say f : RD×c → R satisfies the

(α, ϵ,B∗)-Riemannian regularity condition (RRC) if for every B ∈ O(D, c) satisfying

dist(B,B∗) ≤ ϵ, there exists a Riemannian subgradient G(B) ∈ ∂̃f(B) such that

⟨PB∗(B)−B,−G(B)⟩ ≥ α dist(B,B∗). (4.3)

Strictly speaking, Definition 3 is extrinsic since we view the Grassmannian as
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embedded in the Euclidean space and (4.3) uses the standard inner product in the

Euclidean space. Recently, a particular instance of Definition 3 was shown to hold [3]

in the context of ODL. Note that −G(B) is not necessarily a descent direction for

all G(B) ∈ ∂̃f(B), and that the set of allowable Riemannian subgradients that

satisfy (4.3) need not include the minimum norm element from ∂̃f(B) even though

that one is known to be a descent direction [43]. In Section 4.2.4, we show that a

natural choice of Riemannian subgradient satisfies (4.3) for DPCP, where B∗ is a

target solution. As illustrated in Figure 4.1, condition (4.3) implies that the negative

of the chosen Riemannian subgradient G(B) has a positive angle with PB∗(B)−B.

To see this, let

ξ := sup {∥G(B)∥F : dist(B,B∗) ≤ ϵ} (4.4)

denote an upper bound on the size of the Riemannian subgradients in a neighborhood

of B∗ (we assume that ξ <∞). From (4.3) we have

⟨PB∗(B)−B,−G(B)⟩
∥PB∗(B)−B∥F∥G(B)∥F

= ⟨PB∗(B)−B,−G(B)⟩
dist(B,B∗)∥G(B)∥F

≥ α

ξ
,

which gives a bound on the sum of the cosines of the principal angles between

PB∗(B)−B and −G(B) and implies that

ξ ≥ α. (4.5)
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In fact, by applying the Cauchy-Schwartz inequality to (4.3), we have

∥G(B)∥F dist(B,B∗) ≥ ⟨B − PB∗(B),G(B)⟩ ≥ α dist(B,B∗),

which leads to

∥G(B)∥F ≥ α, ∀B /∈ [B∗], dist(B,B∗) ≤ ϵ. (4.6)

We will show in Section 4.2.3 that if the (α, ϵ,B∗)-RRC holds, then a Projected Rie-

mannian Sub-Gradient Method will converge to B∗ when an appropriate initialization

and step size strategy are used.

4.2.1.1 Comparison with regularity conditions for non-smooth functions

Definition 3 is similar in nature to other regularity conditions that characterize

geometric properties of the objective function. Perhaps the most closely related ones

for non-smooth functions are sharpness and weak convexity. Consider a function

h : RD → R and assume that the set of global minima

X := {z ∈ RD : h(z) ≤ h(x) for all x ∈ Rn} (4.7)

is non-empty. Then, h is said to be sharp with parameter ν > 0 (see [12]) if

h(x)− min
z∈RD

h(z) ≥ ν dist(x,X ) (4.8)
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holds for all x ∈ RD. The function h is said to be weakly convex with parameter

τ ≥ 0 if x ↦→ h(x) + τ
2∥x∥

2 is convex [122]. If h is both sharp and weakly convex,

then [25, 65] show that

⟨PX (x)− x,−d⟩ ≥ ν dist(x,X )− τ

2 dist2(x,X ) (4.9)

for any x ∈ RD and any d ∈ ∂h(x), where PX is the orthogonal projector onto the

set X . Note that (4.9) is useful when its RHS is nonnegative, i.e., when dist(x,X ) ≤

(2ν)/τ . Thus, for any ϵ < (2ν)/τ , we have

⟨PX (x)− x,−d⟩ ≥
(
ν − τ

2 ϵ
)

dist(x,X ) for all d ∈ ∂h(x) (4.10)

whenever x satisfies dist(x,X ) ≤ ϵ. Noting the similarity between (4.10) and (4.3) (B∗

can be taken as a minimizer of h), the RRC (4.3) can be viewed as a generalization of

(4.10) (the consequence of sharpness and weak convexity) to the Riemannian manifold.

There are two main differences. First, (4.3) differs from (4.10) in that its LHS involves

the Riemannian subgradient due to the Grassmannian constraint. Second, (4.3) is only

required to hold for a particular Riemannian subgradient at B, while (4.10) holds for

all subgradients, thus imposing a slightly stronger regularity condition on the problem.

4.2.1.2 Comparison with regularity conditions for smooth functions

Aside from the weak convexity and sharpness, another regularity condition related

to Definition 3 is the one proposed in [14]: we say a continuously differentiable function
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g : RD → R satisfies the (α, γ, ϵ)-regularity condition, if for all x ∈ RD such that

dist(x,X ) ≤ ϵ, where X is the set of global minima of g as defined in (4.7), we have

⟨PX (x)− x,−∇g(x)⟩ ≥ α dist2(x,X ) + γ∥∇g(x)∥2. (4.11)

We now compare (4.3) with (4.11). On the one hand, (4.11) has a form similar to (4.3)

as both attempt to provide lower bounds for the inner product between the gradient

(or Riemannian subgradient) and the vector x− PX (x) for any x that is close to X .

On the other hand, (4.11) mainly differs from (4.3) in two aspects. First, compared

with (4.3), the RHS of (4.11) has an additional term that depends on the magnitude

of the gradient, i.e., ∥∇g(x)∥2, while it is impossible to include the Riemannian

subgradient term ∥G(B)∥F into the RHS of (4.3) since then as its LHS goes to 0

when B tends to B⋆ the term ∥G(B)∥F does not vanish due to (4.6). Moreover, by

applying the Cauchy-Schwartz inequality to the LHS of (4.11), we obtain

γ∥∇g(x)∥2 ≤ dist(x,X )∥∇g(x)∥ − α dist2(x,X ),

which implies ∥∇g(x)∥ → 0 as dist(x,X )→ 0, hence in sharp contrast to (4.6).

4.2.2 Projected Riemannian Sub-Gradient method on the

Grassmannian

We now propose to solve (4.1) using the Projected Riemannian Sub-Gradient Method

(PRSGM), which is summarized in Algorithm 1. Given the t-th iterate Bt, the next
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Algorithm 1 Projected Riemannian Sub-Gradient Method (PRSGM)
1: Initialization: set B0 and µ0;
2: for t = 0, 1, . . . do
3: Obtain G(Bt) ∈ ∂̃f(Bt) satisfying (4.3) with B = Bt;
4: Compute a step size µt according to a certain rule;
5: Update the iterate:

B̂t+1 ← Bt − µtG(Bt) and Bt+1 ← orth(B̂t+1); (4.12)

6: end for

iterate Bt+1 is obtained by first moving in a direction opposite to a Riemannian

subgradient at Bt that satisfies the regularity condition (4.3), and then performing

orthonormalization. In Section 4.2.4, we will show that such a projected Riemannian

subgradient can be computed for the DPCP problem. We remark that Algorithm 1

is an extrinsic method since the iterates are not computed by moving along the

Grassmannian; rather, the intermediate point B̂t+1 is projected onto the Grassmannian.

In order to justify (4.12), we show that B̂t+1 in (4.12) always has full column rank

given Bt ∈ O(D, c). In fact, since B̂t+1 = Bt − µtG(Bt), we have

B̂⊤
t+1B̂t+1 = I + µ2

t (G(Bt))⊤ G(Bt), (4.13)

where the equality follows because Bt ∈ O(D, c) is orthogonal to G(Bt). Thus, the

eigenvalues of B̂⊤
t+1B̂t+1 are always greater than or equal to 1. Therefore, all singular

values of B̂t+1 are non-vanishing, which means B̂t+1 has full column rank.

Note that there are multiple ways to orthonormalize B̂t+1, although for our purpose

they are all equivalent since they all correspond to the same subspace. In (4.12), orth

refers to any method that finds an orthonormal basis for Span(B̂t+1). For example, one
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can compute Bt+1 to be the Gram-Schmidt orthonormalization of B̂t+1, or as the first c

left singular vectors of B̂t+1. Also, no specific step size rule is provided in Algorithm 1,

whereas specific choices are made for the convergence analysis in Section 4.2.3.

4.2.2.1 Connection to the projected subgradient and the geodesic subgra-

dient methods

We now relate the Projected Riemannian Sub-Gradient Method (PRSGM) with the

Projected Sub-Gradient Method (PSGM) used in [152, 153] and the Geodesic Gradient

Descent (GGD) method used in [76]. In particular, PSGM is developed and analyzed

for solving the DPCP problem (2.2) on the sphere, i.e., O(D, 1). Consider c = 1 in

our objective problem (4.1) so that {Bt} ⊂ O(D, 1) in Algorithm 1. First, we claim

that PRSGM and PSGM are essentially the same except that the step sizes are scaled

differently. For a subgradient dt ∈ ∂f(Bt) ⊂ RD, the PSGM uses the update

B̂♮
t+1 ← Bt − µ♮

tdt and B♮
t+1 ← B̂♮

t+1/∥B̂
♮
t+1∥2,

which is the same as Algorithm 1 except that the Riemannian subgradient G(Bt)

in (4.12) is replaced by the subgradient dt, and µ♮
t is the step size for PSGM. To relate

B̂♮
t+1 with B̂t+1, we observe that

B̂♮
t+1 = Bt − µ♮

tdt = Bt − µ♮
tBtB

⊤
t dt − µ♮

tG(Bt)

= (1− µ♮
tB

⊤
t dt)

(
Bt −

µ♮
t

1− µ♮
tB

⊤
t dt

G(Bt)
)
,
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which implies that B̂♮
t+1 is the scaled version of B̂t+1 if we set µt = µ♮

t

1−µ♮
tB⊤

t dt
in (4.12),

or equivalently, µ♮
t = µt

1+µtB⊤
t dt

. With this choice, B♮
t+1 = Bt+1 if µ♮

t is sufficiently

small so that (1 − µ♮
tB

⊤
t dt) > 0. Thus, the convergence guarantee for PRSGM

in Section 4.2.3 can be directly applied for PSGM by using the step size µ♮
t = µt

1+µtB⊤
t dt

,

which is close to µt as long as µt is small.

Both PRSGM and PSGM are extrinsic since the iterates are allowed to move

outside the underlying Grassmannian. In contrast, the GGD method proposed in [76]

is intrinsic, for which the geodesic derivatives are formulated such that the iterates

always move along the Grassmannian. With this in mind, consider optimization over

O(D, 1). The geodesic subgradient method uses the update

B⋄
t+1 ← cos(µ⋄

t )Bt − sin(µ⋄
t )

G(Bt)
∥G(Bt)∥2

where µ⋄
t is the corresponding step size. Note that B⋄

t+1 is always on the sphere due

to the fact that G(Bt) is orthogonal to Bt. Again, by writing

B⋄
t+1 = cos(µ⋄

t )
(

Bt − tan(µ⋄
t )
G(Bt)
∥G(Bt)∥2

)

and following a similar argument as before, we can see that the convergence analysis

for PRSGM in Section 4.2.3 can also be applied to the geodesic subgradient method

in this case with the step size µ⋄
t = arctan(µt∥G(Bt)∥2).
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4.2.3 Convergence analysis

Our convergence analysis for Algorithm 1 relies in the RRC of Definition 3. When

this regularity condition holds, we show that the iterates of Algorithm 1 exhibit

the following properties: (i) they converge to a neighborhood of the set B∗ when a

constant step size is used, and (ii) they converge at an R-linear rate to B∗ when a

geometrically diminishing step size is used.

4.2.3.1 Constant step size

We first consider the convergence of Algorithm 1 when a constant step size is used.

Proposition 3. Suppose that for some (α, ϵ,B∗) the function f satisfies the (α, ϵ,B∗)-

RRC in Definition 3. Let {Bt} be generated by Algorithm 1 with step size

µt ≡ µ ≤ αϵ

ξ2

and initial iterate B0 satisfying dist(B0,B
∗) ≤ ϵ, where ξ is defined in (4.4). Then,

for all t ≥ 0, it holds that

dist(Bt,B
∗) ≤ max

{
dist(B0,B

∗)− µαt

2 ,
µξ2

α

}
. (4.14)

Proof. We have already shown that in Algorithm 1 that B̂t+1 always has full column

rank. Let B̂t+1 = P ΩQ⊤ be a reduced SVD of B̂t+1, where Ω is an c× c diagonal

matrix with singular values w1, . . . , wc along the diagonals. According to (4.13), the

eigenvalues of B̂⊤
t+1B̂t+1 are always greater than or equal to 1, which implies that
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w1, . . . , wc ≥ 1. Therefore, for any U ∈ O(D, c), it follows that

∥B̂t+1 −U∥2
F − ∥Bt+1 −U∥2

F

= ∥P ΩQ⊤∥2
F − ∥P Q⊤∥2

F − 2 trace((Ω− I)P ⊤UQ)

≥
c∑

i=1
ω2

i − 1− 2(ωi − 1) =
c∑

i=1
(ωi − 1)2 ≥ 0,

(4.15)

where we have chosen Bt+1 to be P Q⊤, and the last line directly follows Von Neu-

mann’s inequality, i.e., trace(F ⊤G) ≤ ∑
i σi(F )σi(G) where σ1(·) ≥ σ2(·) ≥ · · · ≥ 0

are the singular values of a matrix.

We prove (4.14) by induction. It is clear that (4.14) holds when t = 0. Now assume

that (4.14) holds at the t-th iteration, which implies that dist(Bt,B
∗) ≤ ϵ. Then,

dist2(Bt+1,B
∗)

≤ ∥Bt+1 − PB∗(Bt)∥2
F ≤ ∥B̂t+1 − PB∗(Bt)∥2

F

= ∥Bt − µG(Bt)− PB∗(Bt)∥2
F

= ∥Bt − PB∗(Bt)∥2
F − 2µ⟨Bt − PB∗(Bt),G(Bt)⟩+ µ2∥G(Bt)∥2

F

≤ dist2(Bt,B
∗)− 2αµ dist(Bt,B

∗) + µ2ξ2

(4.16)

where the second line uses (4.15), and the last line uses the RRC (4.3).

It is clear from (4.16) that dist2(Bt+1,B
∗) ≤ dist2(Bt,B

∗) if dist(Bt,B
∗) ≥ µξ2

2α
.
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In particular, when dist(Bt,B
∗) ≥ µξ2

α
, we have

dist2(Bt+1,B
∗) ≤ dist2(Bt,B

∗)− αµ dist(Bt,B
∗) + µ2ξ2 − αµ dist(Bt,B

∗)

≤
(

dist(Bt,B
∗)− µα

2

)2
,

which implies that

dist(Bt+1,B
∗) ≤ dist(Bt,B

∗)− µα

2

since dist(Bt,B
∗) ≥ µξ2

α
≥ µα.

On the other hand, when dist(Bt,B
∗) ≤ µξ2

α
, it also follows from (4.16) that

dist2(Bt+1,B
∗) ≤ max

⎧⎨⎩
(
µξ2

α

)2

− 2µαµξ
2

α
+ µ2ξ2, µ2ξ2

⎫⎬⎭
= max

⎧⎨⎩
(
µξ2

α

)2

− µ2ξ2, µ2ξ2

⎫⎬⎭
≤ max

⎧⎨⎩
(
µξ2

α

)2

− µ2ξ2, µ2ξ2 ξ
2

α2

⎫⎬⎭
=
(
µξ2

α

)2

where the first inequality follows from the fact h(a) := a2 − 2αµa is increasing in

[a′,∞] for any a′ such that h(a′) ≥ 0, and the second inequality utilizes (4.5). Thus

by induction, (4.14) holds for all iterations t ≥ 0.

Discussion of Proposition 3. Towards interpreting Proposition 3, first con-

sider the case dist(B0,B
∗) > µξ2/α, in which case (4.14) implies that after at most

T = 2(dist(B0,B
∗) − µξ2/α)/(µα) iterations, the inequality dist(Bt,B

∗) ≤ µξ2/α
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will hold for all t ≥ T . In that sense, Proposition 3 essentially says that no further

decay of dist(Bt,B
∗) can be guaranteed. This agrees with empirical evidence regard-

ing Algorithm 1 with a constant step size (see Section 4.3). Note that (4.14) also

suggests a tradeoff in selecting the step size µ. A larger step size µ leads to a faster

decrease on the bound but a larger universal upper bound of µξ2/α, which may even

exceed dist(B0,B
∗) if µ is too large.

4.2.3.2 Geometrically diminishing step size

A useful strategy to balance the tradeoff discussed in the case of constant step size

is to use a diminishing step size that starts relatively large and decreases to zero as

the iterates proceed. As the universal upper bound µξ2

α
in (4.14) is proportional to

µ, it is expected that the decay rate of the step size will determine the convergence

rate of the iterates. In this section, we consider a geometrically diminishing step size

scheme, i.e., we decrease the step size by a fixed fraction between iterations. Our

argument is inspired by [25, 65]. Convergence with geometrically diminishing step size

is guaranteed by the following result, which shows that if we choose the decay rate

and initial step size properly, then the PRSGM converges to B∗ at an R-linear rate.

Theorem 9. Suppose that the function f satisfies the (α, ϵ,B∗)-RRC in Definition 3.

Let {Bt} be the sequence generated by Algorithm 1 with step size

µt = µ0β
t (4.17)
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and initialization B0 satisfying dist(B0,B
∗) ≤ ϵ. Assume that

µ0 ≤
α dist(B0,B

∗)
2ξ2 and√1− 2 αµ0

dist(B0,B∗) + µ2
0ξ

2

dist2(B0,B∗)
=: β ≤ β < 1,

(4.18)

where ξ is defined in (4.4). Then, the sequence {Bt} satisfies

dist(Bt,B
∗) ≤ dist(B0,B

∗)βt for all t ≥ 0. (4.19)

Proof. We prove (4.19) by induction. It is clear that (4.19) holds when t = 0.

Now assume that (4.19) holds at the t-th iteration, which implies that dist(Bt,B
∗) ≤

dist(B0,B
∗)βt. Since Bt satisfies the Riemannian regularity condition (4.3), according

to the proof of Proposition 3, we know that (4.16) holds:

dist2(Bt+1,B
∗) ≤ dist2(Bt,B

∗)− 2αµt dist(Bt,B
∗) + µ2

t ξ
2

= (dist(Bt,B
∗)− αµt)2 + µ2

t (ξ2 − α2).
(4.20)

From the assumption that dist(Bt,B
∗) ≤ dist(B0,B

∗)βt and

dist(B0,B
∗)βt ≥ 2µ0ξ

2

α
βt ≥ 2αµ0β

t = 2αµt ≥ αµt,

where the first inequality follows from assumption (4.18) and the second inequality

follows from ξ ≥ α in (4.5). Therefore, (4.20) achieves its maximum at dist(Bt,B
∗) =
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dist(B0,B
∗)βt. Plugging this observation into (4.20) gives

dist2(Bt+1,B
∗) ≤ dist(B0,B

∗)2β2t − 2αµt dist(B0,B
∗)βt + µ2

t ξ
2

= dist(B0,B
∗)2β2t − 2αµ0 dist(B0,B

∗)β2t + µ2
0β

2tξ2

= dist(B0,B
∗)2β2t

(
1− 2 αµ0

dist(B0,B∗) + µ2
0ξ

2

dist(B0,B∗)2

)

≤ dist(B0,B
∗)2β2(t+1)

(4.21)

where the last line holds because β ≥ β =
√

1− 2 αµ0
dist(B0,B∗) + µ2

0ξ2

dist(B0,B∗)2 in (4.18).

Hence, the induction proof is complete.

Discussion of Theorem 9. The rate at which {dist(Bt,B
∗)}t≥0 tends to

zero in (4.19) is determined by β, which has to satisfy (4.18). Note that β is

well defined and is strictly less than 1 in (4.18). To see this, on the one hand,

µ0 ≤ α dist(B0,B
∗)/2ξ2 and ξ ≥ α together imply 1 − 2αµ0/dist(B0,B

∗) ≥ 0. On

the other hand, −2αµ0/dist(B0,B
∗)+µ2

0ξ
2/dist2(B0,B

∗) < 0 is a decreasing function

of µ0 when µ0 ∈ (0, α dist(B0,B
∗)/2ξ2]. In particular, when µ0 = α dist(B0,B

∗)/2ξ2,

we have β =
√

1− 3α2/4ξ2, giving the fastest decaying rate by setting β = β. Note

that if dist(B0,B
∗) is not known a priori, then one can replace it by its upper bound ϵ

in (4.18) and (4.19) and the results still hold. Finally, we remark that the decaying rate

of dist(Bt,S
⊥) is determined by the diminishing factor β. A large β may lead to a slow

convergence rate while a small β, e.g., smaller than β, may lead to divergence. We will

see this tradeoff more clearly with numerical experiments as presented in Section 4.3.

146



4.2.4 Applications to DPCP

In this section, we show that Algorithm 1 achieves an R-linear convergence rate

when applied to the DPCP problem (2.9) for estimating a basis for the orthogonal

complement of the underlying subspace under both noiseless (Section 4.2.4.1) and

noisy (Section 4.2.4.2) settings.

4.2.4.1 Data corrupted by outliers only

Recall the DPCP problem (2.9) with noiseless data, which was given as

min
B∈O(D,c)

f(B) :=
X̃⊤B


1,2
≡

L∑
j=1

x̃⊤
j B


2

where X̃ = [X , O]Γ ∈ RD×L is the dataset with inliers X ∈ RD×N spanning a

d-dimensional subspace S of RD, outliers O ∈ RD×M , unknown permutation Γ, and

c = D−d is the codimension of S. We will show that the DPCP problem (2.9) satisfies

the RRC, which will then be used to establish convergence rates. Since the objective

function f is regular [3], it follows from [140] that ∂̃f(B) = (I−BB⊤)∂f(B). Also

note that the ℓ2 norm is subdifferentially regular, thus by the chain rule one natural

choice for the Riemannian subgradient is

G(B) = (I−BB⊤)
L∑

j=1
x̃j sign(x̃⊤

j B), (4.22)

where sign(a) is defined in (3.78). With the geometric quantities cX ,min in (3.4) and

ηO,c in (3.79), we now state a key insight, namely that the DPCP problem (2.9)
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satisfies the RRC of Definition 3.

Lemma 16. For any ϵ <
√

2
(
1−MηO,c/NcX ,min

)
, the DPCP problem (2.9) satisfies

the (α, ϵ,S⊥)-RRC with α = ((1− ϵ2/2)NcX ,min −MηO,c)/
√

2c and any orthonormal

basis S⊥ for S⊥. Also,

∥G(B)∥F ≤
√
N ∥X∥2 +MηO,c, ∀B ∈ O(D, c) (4.23)

where ∥A∥2 denotes the spectral norm of a matrix A.

Proof. Let S ∈ RD×d be an orthonormal basis of the subspace S and let S⊥ ∈ RD×c

be an orthonormal basis of the orthogonal complement S⊥. By utilizing similar

decomposition as in (3.84), we have

B = P sin(Θ) + Q cos(Θ)

where P and Q are orthonormal matrices satisfying Span(P ) ⊆ S and Span(Q) ⊆ S⊥,

and Θ is the diagonal matrix whose diagonal entries θ1 ≤ θ2 ≤ · · · ≤ θc are the principal

angles between Span(B) and S⊥. After defining

G = P cos(Θ) sin(Θ)−Q sin2(Θ),
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we have

⟨−G(B),PS⊥(B)−B⟩ = ⟨−G(B),Q⟩

= −
⟨

(I−BB⊤)
⎛⎝ L∑

j=1
x̃j sign(x̃⊤

j B)
⎞⎠ ,Q⟩

=
⟨

N∑
j=1

xj sign(x⊤
j B) +

M∑
j=1

oj sign(o⊤
j B),G

⟩

=
N∑

j=1

⟨
x⊤

j P cos(Θ) sin(Θ), sign(x⊤
j P sin(Θ))

⟩

−
⟨

G, (I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)
⟩

(4.24)

where the second equality follows from (I−BB⊤)Q = G and the very last line uses

the fact that G ∈ Span(B⊥). We bound the first term in the last line of (4.24) by

N∑
j=1

⟨
x⊤

j P sin(Θ) cos(Θ), sign(x⊤
j P sin(Θ))

⟩

≥ cos(θc)
N∑

j=1

⟨
x⊤

j P sin(Θ), sign(x⊤
j P sin(Θ))

⟩

= cos(θc)
N∑

j=1

x⊤
j P sin(Θ)


2
≥ cos(θc) sin(θc)

N∑
j=1

⏐⏐⏐x⊤
j pc

⏐⏐⏐
≥ cos(θc) sin(θc)NcX ,min

(4.25)

where the first inequality follows because 0 ≤ θ1 ≤ θ2 ≤ · · · θc ≤ π
2 , and the last

inequality utilizes the definition of cX ,min in (3.4) since pc ∈ S ∩ SD−1. On the other
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hand, the second term in the last line of (4.24) can be bounded by

⏐⏐⏐⏐⏐⏐
⟨

G, (I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)
⟩⏐⏐⏐⏐⏐⏐

=

⏐⏐⏐⏐⏐⏐
⟨

P cos(Θ) sin(Θ)−Q sin2(Θ), (I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)
⟩⏐⏐⏐⏐⏐⏐

≤ sin(θc)

⏐⏐⏐⏐⏐⏐
⟨

P cos(Θ)−Q sin(Θ), (I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)
⟩⏐⏐⏐⏐⏐⏐

≤ sin(θc)

(I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)


F

≤ sin(θc)MηO,c

(4.26)

where the first inequality follows because 0 ≤ θ1 ≤ θ2 ≤ · · · θc ≤ π
2 , the second

inequality utilizes the fact that P cos(Θ)−Q sin(Θ) is an orthonormal matrix, and

the last inequality follows from the definition of ηO,c in (3.79).

Plugging the bounds from (4.25) and (4.26) into (4.24), we obtain

⟨−G(B),PS⊥(B)−B⟩ ≥ sin(θc)(cos(θc)NcX ,min −MηO,c). (4.27)

According to Proposition 2, we know that ∥PS⊥(B) − B∥2
F = dist(B,S⊥)2 ≤

2c sin2(θc), which together with (4.27) leads to

⟨−G(B),PS⊥(B)−B⟩ ≥ cos(θc)NcX ,min −MηO,c√
2c

dist(B,S⊥). (4.28)

On the other hand, we have

∥B − PS⊥(B)∥2
F = 2

c∑
i=1

(1− cos(θi)) ≥ 2(1− cos(θc)),

150



which implies that cos(θc) ≥ 1 − ∥B−P
S⊥ (B)∥2

F

2 . Combining this with (4.28) and

∥B−PS⊥(B)∥F ≤ ϵ shows that the DPCP problem (2.9) satisfies the (α, ϵ,S⊥)-RRC.

Finally, we prove (4.23). Let us denote Z as the matrix with
{
sign(x⊤

j B)
}N

j=1

being its rows, so that ∥Z∥F ≤
√
N . Moreover, utilizing the definition of ηO,c in (3.79),

we are able to bound the Riemannian subgradient in (4.22) as

∥G(B)∥F =

(I−BB⊤)
N∑

j=1
xj sign(x⊤

j B) + (I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)


F

≤
(I−BB⊤)XZ


F

+

(I−BB⊤)
M∑

j=1
oj sign(o⊤

j B)


F

≤
(I−BB⊤)X


2
∥Z∥F +MηO,c

≤
√
N ∥X∥2 +MηO,c

(4.29)

where the second inequality follows from ∥AB∥F ≤ ∥A∥2∥B∥F .

Combining Lemma 16 with Theorem 9 allows us to conclude the linear conver-

gence of Algorithm 1, when applied to problem (2.9) in the noiseless setting, to any

orthonormal basis of S⊥ when a geometrically diminishing step size is used.

Theorem 10. Suppose that the initialization B0 satisfies

dist(B0,S
⊥) <

√
2 (1−MηO,c/NcX ,min),

with S⊥ any orthonormal basis for S⊥. Let {Bt} be the sequence generated by Algo-

rithm 1 for solving the DPCP problem (2.9) with G(Bt) in (4.22) and step size µt =

µ0β
t, where µ0 and β satisfy (4.18) with ϵ = dist(B0,S

⊥), α = ((1− ϵ2/2)NcX ,min −
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MηO,c)/
√

2c, and ξ =
√
N ∥X∥2 +MηO,c. Then, it holds that

dist(Bt,S
⊥) ≤ dist(B0,S

⊥)βt, ∀t ≥ 0,

i.e., {Bt} converges to S⊥ at an R-linear rate.

Proof. The proof of Theorem 10 directly follows the RRC for problem (2.9) as stated

in Lemma 16 and the convergence result for Algorithm 1 as stated in Theorem 9.

Discussion of Theorem 10. Theorem 10 implies that the PRSGM applied to

problem (2.9) with a good initialization converges to an orthonormal basis of S⊥ at

an R-linear rate, which is a significant improvement over the alternative approach

of solving a sequence of c problems of the form (2.2) on G(D, 1). Note that when

c = 1, PSGM was proved to have a piecewise linear convergence rate in [152, 153].

Nevertheless, in this case, Theorem 10 of PRSGM still improves upon PSGM in

three ways: (i) it allows for a simpler strategy for selecting the step size than does

the piecewise geometrically diminishing step size, which has two more parameters

controlling when and how often to decay the step size; (ii) it provides a more transparent

convergence analysis since its proof follows directly from the RRC and Theorem 9;

and (iii) it places a slightly weaker requirement on the initialization B0, which in

practice is implemented by spectral initialization [112, 152, 153], namely the bottom

eigenvectors of X̃ X̃⊤ are used. The next result provides theoretical guarantees for

the spectral initialization in the sense that dist(B0,S
⊥) is reasonably small.

Proposition 4. The spectral initialization B0, which is defined by taking the bottom
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c eigenvectors of X̃ X̃⊤, satisfies

dist(B0,S
⊥) ≤

√∑c
j=1 σ

2
j (O)−∑D

j=D−c+1 σ
2
j (O)

σ2
d(X ) (4.30)

where σℓ(·) denotes the ℓ-th largest singular value.

Proof. Note that for any B that is orthogonal to S, we have

∥X̃⊤B∥2
F = ∥O⊤B∥2

F = trace(B⊤OO⊤B) =
c∑

j=1
b⊤

j OO⊤bj ≤
c∑

j=1
σ2

j (O). (4.31)

Since B0 = arg minB∈O(D,c)

X̃⊤B
2

F
, we have

X̃⊤B0

2

F
≤

c∑
j=1

σ2
j (O). (4.32)

On the other hand, let S be an orthonormal basis for S and let Φ be the coefficients

of X in S, i.e., X = SΦ. Then, it follows that

X̃⊤B0

2

F
=
X⊤B0

2

F
+
O⊤B0

2

F
=
X⊤SS⊤B0

2

F
+
O⊤B0

2

F

=
Φ⊤S⊤B0

2

F
+
O⊤B0

2

F
≥ σ2

min(Φ)
S⊤B0

2

F
+
O⊤B0

2

F

≥ σ2
d(X ) ∥B0 − PS⊥(B0)∥2

F +
D∑

j=D−c+1
σ2

j (O)

(4.33)

where we first utilize the fact that X lies in S so that X = SS⊤X , the inequality

follows because ∥AB∥2
F = trace(A⊤ABB⊤) ≥ σmin(A⊤A)

BB⊤


F
for any A,B,

and the last line follows from
S⊤B0

2

F
=
SS⊤B0

2

F
=
B0 − S⊥(S⊥)⊤B0

2

F
=

∥B0 − PS⊥(B0)∥2
F . Combining (4.32), (4.33), and the fact that dist(B0,S

⊥) =
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∥B0 − PS⊥(B0)∥F , we obtain

dist(B0,S
⊥)2 ≤

∑c
j=1 σ

2
j (O)−∑D

j=D−c+1 σ
2
j (O)

σ2
d(X ) ,

which completes the proof.

4.2.4.2 Data corrupted by outliers and noise

It has been shown in Section 4.2.4.1 that the PRSGM applied to the DPCP prob-

lem (2.9) with noiseless data converges linearly to an orthonormal basis, say S⊥, of

S⊥. However, the analytical result cannot be immediately generalized to noisy data

of the form X̃ = [X + E , O]Γ with the noise matrix E ̸= 0 denoting the additive

noise imposed on the inliers X . In this case, one can only expect that PRSGM at

best converges to a neighborhood of S⊥ as suggested by the noisy analyses in Sec-

tion 3.2.3. Note that the convergence analysis of PRSGM is built upon a particular

RRC (Definition 3), which is a local geometric property of the problem relative to a

point of interest, e.g., S⊥ in our case. In this section, we will show that when data is

corrupted by noise, the RRC for (2.9) only holds outside a neighborhood of S⊥ with

a radius proportional to the effective noise level, which is then used to show that the

PRSGM converges linearly to that neighborhood of S⊥.

In line with the noisy analysis in Section 3.2.3, we reorganize the noisy inliers X +E

by X̂ + Ê with X̂ denoting the effective inliers and Ê denoting the effective noise,

and Span(X̂ ) ⊆ S and Span(Ê) ⊆ S⊥. Also, we will use the geometric quantities

introduced in Section 3.1.2 and Section 3.2.3, e.g., cX̂ ,min, cÊ,max,c
, RO/X̂ ,c

and RÊ/X̂ ,c
,
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for the rest of the convergence analysis. The following result gives the RRC for the

DPCP problem (2.9) with noisy data.

Lemma 17. For any ϵ > 0 satisfying

ϵ
(
1−RO/X̂ ,c

− ϵ2/2
)
≥ 4
√

2cRÊ/X̂ ,c
, (4.34)

let

α :=
NcX̂ ,min

2
√

2c

((
1− ϵ2

2

)
−RO/X̂ ,c

)
.

Then for any B ∈ O(D, c) satisfying

ϵ ≥ dist(B,S⊥) ≥ ω :=
2NcÊ,max,c

α
(4.35)

and G(B) ∈ ∂̃f(B) defined as in (4.22), it holds that

⟨−G(B),PS⊥(B)−B⟩ ≥ α dist(B,S⊥). (4.36)

Also,

∥G(B)∥F ≤ ξ :=
√
N∥X + E∥2 +MηO,c, ∀B ∈ O(D, c). (4.37)

Proof. Let S ∈ RD×d be an orthonormal basis of the subspace S and let S⊥ ∈ RD×c

be an orthonormal basis of the orthogonal complement S⊥. By utilizing a similar
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decomposition as in (3.84), we have

B = P sin(Θ) + Q cos(Θ)

where P and Q are orthonormal matrices satisfying Span(P ) ⊆ S and Span(Q) ⊆ S⊥,

and Θ is the diagonal matrix whose diagonal entries θ1 ≤ θ2 ≤ · · · ≤ θc are the principal

angles between Span(B) and S⊥. Defining

G = P cos(Θ) sin(Θ)−Q sin2(Θ),

which is orthogonal to B, it follows that

⟨−G(B),PS⊥(B)−B⟩ = ⟨−G(B),Q⟩

= −
⟨

(I−BB⊤)
⎛⎝ L∑

j=1
x̃j sign(x̃⊤

j B)
⎞⎠ ,Q⟩

= −
⟨

N∑
j=1

(x̂j + ϵ̂j) sign((x̂j + ϵ̂j)⊤B) +
M∑

j=1
oj sign(o⊤

j B),G
⟩

= −
⟨

N∑
j=1

(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)
⟩

−
⟨

(I−BB⊤)
M∑

j=1
oj sign(o⊤

j B),G
⟩

(4.38)

where the second equality follows from (I−BB⊤)Q = G and the very last line utilizes

the fact that G ∈ Span(B⊥).
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For the first term in (4.38), according to the proof of Lemma 14, we have

⏐⏐⏐⏐⏐
N∑

j=1

⟨
−(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩
−

N∑
j=1

⟨
−x̂⊤

j G, sign(x̂⊤
j B)

⟩ ⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐

N∑
j=1

⟨
x̂⊤

j P cos(Θ) sin(Θ)− ϵ̂⊤
j Q sin2(Θ), sign(x̂⊤

j P sin(Θ) + ϵ̂⊤
j Q cos(Θ))

⟩
−

N∑
j=1

⟨
x̂⊤

j P cos(Θ) sin(Θ), sign(x̂⊤
j P sin(Θ))

⟩ ⏐⏐⏐⏐⏐
≤

N∑
j=1

(
2∥x̂⊤

j P ∥
|x̂⊤

j pc sin(θc) + ϵ̂⊤
j qc cos(θc)|

+ sin(θc)
)
∥ϵ̂⊤

j Q∥ ≤ 2NcÊ,max,c
.

(4.39)

Moreover, from (4.25), we already know that

N∑
j=1

⟨
−x̂⊤

j G, sign(x̂⊤
j B)

⟩
=

N∑
j=1

⟨
x̂⊤

j P cos(Θ) sin(Θ), sign(x̂⊤
j P sin(Θ))

⟩

≥ cos(θc) sin(θc)NcX̂ ,min.

(4.40)

Therefore, we obtain

N∑
j=1

⟨
−(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩

≥
N∑

j=1

⟨
−x̂⊤

j G, sign(x̂⊤
j B)

⟩

−

⏐⏐⏐⏐⏐⏐
N∑

j=1

⟨
−(x̂j + ϵ̂j)⊤G, sign((x̂j + ϵ̂j)⊤B)

⟩
−

N∑
j=1

⟨
−x̂⊤

j G, sign(x̂⊤
j B)

⟩ ⏐⏐⏐⏐⏐⏐
≥ sin(θc) cos(θc)NcX̂ ,min − 2NcÊ,max,c

.

On the other hand, the second term in (4.38) is bound by sin(θc)MηO,c as shown
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in (4.26). Combining these bounds with (4.38), we arrive at

⟨−G(B),PS⊥(B)−B⟩

≥ sin(θc)
(
cos(θc)NcX̂ ,min −MηO,c −D

)
− 2NcÊ,max,c

≥ sin(θc)NcX̂ ,min

(
cos(θc)−RO/X̂ ,c

)
− 2NcÊ,max,c

where we used the definition of RO/X̂ ,c
in (3.107). According to Proposition 2, we

know that dist(B,S⊥) ≤
√

2c sin(θc), which allows us to conclude that

⟨−G(B),PS⊥(B)−B⟩

≥
NcX̂ ,min√

2c
(
cos(θc)−RO/X̂ ,c

)
dist(B,S⊥)− 2NcÊ,max,c

.

For any ϵ > 0 and dist(B,S⊥) ≤ ϵ, from the definition of dist(·, ·) in (4.2) we have

ϵ ≥

√2
c∑

i=1
(1− cos(θi)) ≥

√
2(1− cos(θc)) ⇒ cos(θc) ≥ 1− ϵ2

2 .

Hence we obtain

⟨−G(B),PS⊥(B)−B⟩ ≥
NcX̂ ,min√

2c

((
1− ϵ2

2

)
−RO/X̂ ,c

)
dist(B,S⊥)− 2NcÊ,max,c

.

We now let dist(B,S⊥) ≥
4
√

2cR
Ê/X̂ ,c

1−R
O/X̂ ,c

−ϵ2/2 , in which case we have

⟨−G(B),PS⊥(B)−B⟩ ≥
NcX̂ ,min

2
√

2c

((
1− ϵ2

2

)
−RO/X̂ ,c

)
dist(B,S⊥), (4.41)

which completes the proof of (4.36).
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Finally, we prove (4.37). Similar to the proof of (4.29), we denote Z as the matrix

with
{
sign(xj + ϵj)⊤B

}N

j=1
being its rows; note that ∥Z∥F ≤

√
N . Hence we have

∥G(B)∥F ≤ ∥(I−BB⊤)(X + E)∥2∥Z∥F +MηO,c ≤
√
N∥X + E∥2 +MηO,c,

which completes the proof.

Discussion of Lemma 17. First, condition (4.35) specifies both an upper bound

and a lower bound that dist(B,S⊥) needs to satisfy: the upper bound ϵ indicates that

the RRC is a local geometric property around S⊥, which is the same as in Lemma 16

when E = 0, while the lower bound ω implies the RRC may not hold within a small

radius of S⊥ due to the existence of noise. Note that the lower bound ω for dist(B,S⊥)

leads to a region around S⊥ inside which the RRC is not guaranteed and its radius ω

is proportional to the effective noise level (vanishing as E → 0), making the entire

lemma reduce to the noiseless one as stated in Lemma 16. We remark that (4.34) gives

a valid range for ϵ and thus ensures the validity of (4.35). Given dist(B,S⊥) ∈ [ω, ϵ],

the RRC condition (4.36) states that a negative Riemannian subgradient −G(B) has

a small angle with the direction pointing towards S⊥ at B.

With the RRC for problem (2.9) for the noisy setting stated in Lemma 17, we

provide the convergence analysis for PRSGM (Algorithm 1) to any orthonormal basis

of S⊥ with two different strategies of updating the step size: constant step size and

geometrically diminishing step size.

Proposition 5. Consider α, ϵ, ω and ξ defined in Lemma 17. Suppose the initialization
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B0 of Algorithm 1 satisfies dist(B0,S
⊥) ≤ ϵ, and let {Bt} be the iterates generated

with constant step size µt ≡ µ satisfying

µ ≤ α(ϵ− ω)
ξ2 . (4.42)

Then it holds that

dist(Bt,S
⊥) ≤ max

{
dist(B0,S

⊥)− tαµ

2 ,
µξ2

α
+ ω

}
. (4.43)

Proof. We prove (4.43) by induction. Obviously, it is true when t = 0. Next, suppose

it holds for the t-th iteration, i.e., that

dist(Bt,S
⊥) ≤ max

{
dist(B0,S

⊥)− tαµ

2 ,
µξ2

α
+ w

}
. (4.44)

From (4.42) and dist(B0,S
⊥) ≤ ϵ we know that dist(Bt,S

⊥) ≤ ϵ. It now follows for

the (t+ 1)-th iteration that

dist2(Bt+1,S
⊥) ≤ ∥Bt+1 − PS⊥(Bt)∥2

F

≤ ∥B̂t+1 − PS⊥(Bt)∥2
F

= ∥Bt − µG(Bt)− PS⊥(Bt)∥2
F

= ∥Bt − PS⊥(Bt)∥2
F − 2µ⟨Bt − PS⊥(Bt),G(Bt)⟩+ µ2∥G(Bt)∥2

F

(4.45)

where the second line follows from (4.15).

Case (I): dist(Bt,S
⊥) ≥ ω. Utilizing the Riemannian regularity condition (4.36),
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from the last line in (4.45) we obtain

dist2(Bt+1,S
⊥) ≤ dist2(Bt,S

⊥)− 2µα dist(Bt,S
⊥) + µ2ξ2. (4.46)

It is clear that dist2(Bt+1,S
⊥) ≤ dist2(Bt,S

⊥) if dist(Bt,S
⊥) ≥ µξ2

2α
. In particular,

when dist(Bt,S
⊥) ≥ µξ2

α
, we have

dist2(Bt+1,S
⊥) ≤ dist2(Bt,S

⊥)− αµ dist(Bt,S
⊥)− αµ dist(Bt,S

⊥) + µ2ξ2

=
(

dist(Bt,S
⊥)− µα

2

)2
− αµ dist(Bt,S

⊥) + µ2ξ2 − µ2α2

4

≤
(

dist(Bt,S
⊥)− µα

2

)2
,

which implies that

dist(Bt+1,S
⊥) ≤ dist(Bt,S

⊥)− µα

2 (4.47)

since dist(Bt,S
⊥) ≥ µξ2

α
≥ µα due to (4.5).

On the other hand, when dist(Bt,S
⊥) < µξ2

α
, it also follows (4.46) that

dist2(Bt+1,S
⊥) ≤ max

⎧⎨⎩
(
µξ2

α

)2

− 2µαµξ
2

α
+ µ2ξ2, µ2ξ2

⎫⎬⎭
= max

⎧⎨⎩
(
µξ2

α

)2

− µ2ξ2, µ2ξ2

⎫⎬⎭
≤ max

⎧⎨⎩
(
µξ2

α

)2

− µ2ξ2, µ2ξ2 ξ
2

α2

⎫⎬⎭
≤
(
µξ2

α

)2

,
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where the first inequality follows from the fact that h(a) := a2 − 2αµa + µ2ξ2 is

upper bounded by max{h(µξ2/α), h(0)} when µξ2

α
≥ µα, and the second inequality

utilizes (4.5). This tells us that

dist(Bt+1,S
⊥) ≤ µξ2

α
. (4.48)

Combining (4.44), (4.47) and (4.48), we obtain that

dist(Bt+1,S
⊥) ≤ max

{
dist(Bt,S

⊥)− (t+ 1)αµ
2 ,

µξ2

α
+ ω

}
. (4.49)

Case (II): dist(Bt,S
⊥) < ω. The assumptions for RRC in Lemma 17 do not hold,

but we can bound the last line in (4.45) such that

dist2(Bt+1,S
⊥) ≤ dist2(Bt,S

⊥) + 2µ dist(Bt,S
⊥)ξ + µ2ξ2

< ω2 + 2µωξ + µ2ξ2 = (µξ + ω)2

≤
(
µξ
ξ

α
+ ω

)2

=
(
µξ2

α
+ ω

)2

,

(4.50)

where the last line utilizes (4.5), which implies that

dist(Bt+1,S
⊥) < µξ2

α
+ ω. (4.51)

Combining (4.49) and (4.51), we have

dist(Bt+1,S
⊥) ≤ max

{
dist(Bt,S

⊥)− (t+ 1)αµ
2 ,

µξ2

α
+ ω

}
,
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which completes the proof.

Discussion of Proposition 5. Proposition 5 shows that with a constant step

size, Algorithm 1 applied to the noisy DPCP problem (2.9) ensures convergence to a

neighborhood of S⊥ if properly initialized. If dist(B0,S
⊥) > µξ2/α+ ω, then {Bt}

will get closer to S⊥ until the iterates enter the region where dist(Bt,S
⊥) ≤ µξ2/α+ω,

after which no further decay is guaranteed. Also, a larger step size µ results in faster

convergence of Bt to a larger neighborhood of S⊥. Compared with Proposition 3, the

valid range for step size µ in (4.42) gets more restricted by an amount α
ξ2ω that reflects

the influence of the noise. Moreover, the guaranteed neighborhood of convergence

in (4.43) with noisy data is enlarged by ω. This makes sense because, according

to Lemma 17, the RRC may not hold inside a region around S⊥ with radius ω. Finally,

since ω → 0 as E → 0, the results of Proposition 5 reduce to that of Proposition 3 for

problem (2.9) with noiseless data.

We now consider diminishing step sizes.

Theorem 11. Consider α, ϵ, ω and ξ as defined in Lemma 17. Suppose the initial-

ization B0 of Algorithm 1 satisfies dist(B0,S
⊥) ≤ ϵ, and let {Bt} be the iterates

generated with step size

µt = µ0β
t
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satisfying

µ0 ≤
α

ξ2 min
{

dist(B0,S
⊥)

2 , ϵ− ω
}

and√1− 2 αµ0

dist(B0,S⊥) + µ2
0ξ

2

dist2(B0,S⊥)
=: β ≤ β < 1.

(4.52)

Then it holds that

dist(Bt,S
⊥) ≤ dist(B0,S

⊥)βt + ω, ∀t ≥ 0. (4.53)

Proof. The validity of the definition of β is given after Theorem 9. Let us prove (4.53)

as well as dist(Bt,S
⊥) ≤ ϵ for all t by induction. Obviously, it is true when t = 0.

Now suppose that it holds for the t-th iteration, i.e., that

dist(Bt,S
⊥) ≤ dist(B0,S

⊥)βt + ω and dist(Bt,S
⊥) ≤ ϵ. (4.54)

Consider the (t+ 1)-th iteration.

Case (I): dist(Bt,S
⊥) ≥ ω. Utilizing the Riemannian regularity condition (4.36),

from the last line in (4.45) we obtain

dist2(Bt+1,S
⊥) ≤ dist2(Bt,S

⊥)− 2αµt dist(Bt,S
⊥) + µ2

t ξ
2

= (dist(Bt,S
⊥)− αµt)2 + µ2

t (ξ2 − α2).
(4.55)
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From dist(Bt,S
⊥) ≤ dist(B0,S

⊥)βt + ω and

dist(B0,S
⊥)βt ≥ 2µ0ξ

2

α
βt ≥ 2αµ0β

t = 2αµt,

where the first inequality follows from (4.52) and the second inequality follows

from (4.5), we know that (4.55) achieves its maximum at dist(Bt,S
⊥) = dist(B0,S

⊥)βt+

ω. Plugging this back into (4.55) gives

dist2(Bt+1,S
⊥)

≤ dist2(B0,S
⊥)β2t + 2ω dist(B0,S

⊥)βt

+ ω2 − 2αµtω − 2αµt dist(B0,S
⊥)βt + µ2

t ξ
2

= dist2(B0,S
⊥)β2t − 2αµ0 dist(B0,S

⊥)β2t + µ2
0β

2tξ2

+ ω2 + 2ω dist(B0,S
⊥)βt − 2αµtω

= dist2(B0,S
⊥)β2t

(
1− 2 αµ0

dist(B0,S⊥) + µ2
0ξ

2

dist2(B0,S⊥)

)

+ ω2 + 2ω dist(B0,S
⊥)βt − 2αµtω

≤ dist2(B0,S
⊥)β2(t+1) + ω2 + 2ω dist(B0,S

⊥)βt − 2αµtω

≤ dist2(B0,S
⊥)β2(t+1) + ω2 + 2ω dist(B0,S

⊥)βt+1

=
(
dist(B0,S

⊥)βt+1 + ω
)2

where the second inequality follows from the definition of β and β ≤ β in (4.52), and

the last inequality follows from

dist(B0,S
⊥)βt − αµt ≤ dist(B0,S

⊥)βt+1. (4.56)
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To see why (4.56) holds, first note that after writing µt = µ0β
t, (4.56) is equivalent

to dist(B0,S
⊥) − αµ0 < dist(B0,S

⊥)β. In fact, from (4.5) we have µ2
0ξ2

dist2(B0,S⊥) ≥

µ2
0α2

dist2(B0,S⊥) , and thus

β =

√1− 2 αµ0

dist(B0,S⊥) + µ2
0ξ

2

dist2(B0,S⊥)

≥

√1− 2 αµ0

dist(B0,S⊥) + µ2
0α

2

dist2(B0,S⊥)

= 1− αµ0

dist(B0,S⊥) .

From β ≥ β, we have

β ≥ 1− αµ0

dist(B0,S⊥) ,

which implies dist(B0,S
⊥)− αµ0 < dist(B0,S

⊥)β. Hence we conclude that

dist(Bt+1,S
⊥) ≤ dist(B0,S

⊥)βt+1 + ω.

Similarly, from dist(Bt,S
⊥) ≤ ϵ and ϵ ≥ dist(B0,S

⊥)βt ≥ 2αµt, plugging

dist(Bt,S
⊥) = ϵ back into (4.55) gives

dist2(Bt+1,S
⊥) ≤ ϵ2 − 2αµtϵ+ µ2

t ξ
2 ≤ ϵ2
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where the last inequality comes from (4.52) and

µtξ
2

α
= µ0β

tξ2

α
≤ µ0ξ

2

α
≤ ϵ− ω ≤ 2ϵ ⇒ −2αµtϵ+ µ2

t ξ
2 ≤ 0.

Hence we also have dist(Bt+1,S
⊥) ≤ ϵ in this case.

Case (II): dist(Bt,S
⊥) < ω. The assumptions for RRC in Lemma 17 do not hold,

but similar to (4.50), we can bound the last line in (4.45) such that

dist(Bt+1,S
⊥) ≤ µtξ + ω = µ0β

tξ + ω

≤ α dist(B0,S
⊥)

2ξ2 βtξ + ω

≤ 1
2 dist(B0,S

⊥)βt + ω

≤ dist(B0,S
⊥)βt+1 + ω

where the second inequality utilizes the upper bound of µ0 in (4.52), the third inequality

follows from (4.5), and the last inequality follows from β ≥ β ≥
√

1− 3α2

4ξ2 ≥ 1
2 . Note

that from (4.52) we have

µ0β
tξ + ω ≤ µ0ξ + ω ≤ ϵ− ω + ω = ϵ,

and thus dist(Bt+1,S
⊥) ≤ ϵ also holds in this case.

Therefore, from the above discussion, the following holds for all t ≥ 0:

dist(Bt,S
⊥) ≤ dist(B0,S

⊥)βt + ω and dist(Bt,S
⊥) ≤ ϵ,
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which completes the proof.

Discussion of Theorem 11. With a strategy of geometrically diminishing step

size in Algorithm 1, Theorem 11 implies that PRSGM applied to the noisy DPCP

problem (2.9) with proper initialization converges to a neighborhood of S⊥ at a linear

rate, whose radius ω is proportional to the effective noise level. This is in sharp

contrast with the convergence analysis with noiseless data in Theorem 10 for which

the PRSGM converges linearly to S⊥. Moreover, we note that the requirement for

the initial step size µ0 is more restricted by an amount of α
ξ2ω due to the existence of

noise. Finally, if no noise is present, we have ω = 0, which implies a linear convergence

to S⊥, which is consistent with Theorem 10.

We now provide a result that guarantees that the spectral initialization provides a

good enough starting point for solving the noisy problem (2.9).

Proposition 6. The spectral initialization B0, which is obtained by taking the bottom

c eigenvectors of X̃ X̃⊤, satisfies

dist(B0,S
⊥) ≤

√∑c
j=1 σ

2
j (O)−∑D

j=D−c+1 σ
2
j (O) + 2∑c

j=1 σ
2
j (Ê)

σ2
d(X̂ )

(4.57)

where σℓ(·) denotes the ℓ-th largest singular value.
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Proof. Similar to the proof of Proposition 4, we have

∥X̃⊤B0∥2
F = min

B∈O(D,c)
∥X̃⊤B∥2

F

≤ min
B∈O(D,c),Span(B)=S⊥

∥X̃⊤B∥2
F

= min
B∈O(D,c),Span(B)=S⊥

{
∥(X̂ + Ê)⊤B∥2

F + ∥O⊤B∥2
F

}

= min
B∈O(D,c),Span(B)=S⊥

{
∥Ê⊤B∥2

F + ∥O⊤B∥2
F

}

≤
c∑

j=1
σ2

j (O) +
c∑

j=1
σ2

j (Ê)

(4.58)

where we used the fact that Span(X̂ ) ⊆ S, Span(Ê) ⊆ S⊥, and (4.31).

On the other hand, since Span(X̂ ) ⊆ S, let S be an orthonormal basis for S and

let Φ be the coefficients when X̂ is expressed with S, i.e., X̂ = SΦ. Then, we have

X̃⊤B0

2

F
=
(X̂ + Ê)⊤B0

2

F
+
O⊤B0

2

F

≥
X̂⊤B0

2

F
−
Ê⊤B0

2

F
+
O⊤B0

2

F

≥ σ2
d(X̂ ) ∥B0 − PS⊥(B0)∥2

F −
c∑

j=1
σ2

j (Ê) +
D∑

j=D−c+1
σ2

j (O)

(4.59)

where the last inequality follows from (4.33). Combining (4.58), (4.59), and the fact

that dist(B0,S
⊥) = ∥B0 − PS⊥(B0)∥F , we obtain

dist(B0,S
⊥)2 ≤

∑c
j=1 σ

2
j (O)−∑D

j=D−c+1 σ
2
j (O) + 2∑c

j=1 σ
2
j (Ê)

σ2
d(X̂ )

,

which completes the proof.
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4.3 Experiments

In this section we evaluate PRSGM (Algorithm 1) applied to solve the DPCP prob-

lem (2.9) experimentally. In Section 4.3.1 we investigate the convergence properties of

PRSGM and its performance of robustly learning a subspace of high relative dimension

using synthetic data. We further demonstrate its superiority by experimenting on

roadplane detection using real 3D data in Section 4.3.2.

4.3.1 Synthetic data

Convergence of PRSGM. We first conduct experiments under different settings

to verify the convergence properties of PRSGM (Algorithm 1) with geometrically

diminishing step sizes for solving problem (2.9). The data are generated according to

the random spherical model in Definition 1, where we fix D = 30 and N = 500. We

use the spectral initialization as stated before, and compute the initial step size µ0 by

one iteration of a backtracking line search. Figure 4.2 demonstrates the convergence

of PRSGM with different subspace dimension d (or codimension c = D − d), outlier

ratio M
M+N

, and the geometric decreasing factor β. Each of the three columns, from

left to right, corresponds to a noise level with σ = 0, 10−6 and 10−3, respectively.

In particular, Figures 4.2a, 4.2b and 4.2c show the convergence of PRSGM with

M
M+N

= 0.7, β = 0.8 under different subspace dimension d and noise level σ. We

observe that the PRSGM converges linearly to S⊥ with noiseless data, and converges

to a neighborhood of S⊥ when the noise level is moderate, regardless of the subspace

dimension d; hence numerically justifying Theorem 11. In Figures 4.2d, 4.2e and 4.2f,
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Figure 4.2. Convergence of PRSGM (Algorithm 1) for the noisy DPCP problem (2.9).
Each of the three columns, from left to right, corresponds to a noise level with σ = 0, 10−6

and 10−3, respectively. For all the cases, we fix D = 30, N = 500. Moreover, we choose B0
as the bottom c eigenvectors of X̃ X̃⊤ and compute the initial step size µ0 by a backtracking
line search method. The relative distance re-dist(Bt, S⊥) is defined by dist(Bt, S⊥)/

√
c.

we set d = 25, β = 0.8 while varying the outlier ratio M
M+N

and noise level σ. We also

observe linear convergence to a neighborhood of S⊥, except for the case M
M+N

= 0.9

in which case we have many more outliers than inliers. Finally, in Figures 4.2g,

4.2h and 4.2i, we set M
M+N

= 0.7, d = 25 while vary the factor β that controls the

geometrically diminishing step size and noise level σ. In particular, it verifies the

role of β as indicated by Theorem 11, namely that β controls the convergence speed.
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Figure 4.3. Performance of PRSGM (Algorithm 1) for the noisy DPCP problem (2.9)
with different step size choices µt. For all the cases, we fix D = 30, d = 20, N = 500 and

M
M+N = 0.7. Moreover, we choose B0 as the bottom c eigenvectors of X̃ X̃⊤. The relative
distance re-dist(Bt, S⊥) is defined by dist(Bt, S⊥)/

√
c.

When β is too small, e.g., β ∈ {0.1, 0.2, 0.4}, convergence may not occur, which agrees

with (4.52) and (4.53). However, when β ∈ {0.6, 0.8, 0.9} the algorithm converges at

an R-linear rate, with larger values of β resulting in slower convergence speeds.

We further investigate the performance of PRSGM with different choices of step

size µt, as illustrated in Figure 4.3. Similar to the patterns in Figure 4.2, we observe

linear convergence for the geometrically diminishing step size, which converges much

faster than when a constant step size or classical diminishing step size (O(1/k) and

O(1/
√
k)) is used, under both noiseless and noisy settings.

Robust subspace learning with DPCP solved by PRSGM. After numeri-

cally justifying the convergence properties of PRSGM, we now turn our focus onto

applying PRSGM to the DPCP problem (2.9) for robustly learning a subspace S of

high relative dimension. As a comparison, we also try the approach of solving (2.2)

recursively (see Algorithm 2). Note that in Algorithm 2, the subproblem is slightly

different from the original DPCP problem (2.2) in that it has one more constraint

on b, i.e., b ⊥ Span(B). However, the additional constraint can be removed by
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Algorithm 2 The Recursive DPCP Approach for Learning a Subspace
Input: data X̃ , codimension c;

1: Set B ← ∅;
2: for i = 1, 2, · · · , c do
3: Compute b(i) ← arg minb∈SD−1,b⊥Span(B)

X̃⊤b


1
;

4: Update B ← B ∪
{
b(i)

}
;

5: end for

transformation of the optimization variable. Consider the following subproblem:

min
b∈SD−1,b⊥Span(B)

X̃⊤b


1
(4.60)

where B =
{
b(1), · · · , b(p)

}
is an orthonormal set with 1 ≤ p < c. Let A⊥ ∈ RD×(D−p)

be an orthonormal matrix that is orthogonal to Span(B), thus allowing the constraint

b ⊥ Span(B) can be parameterized as b = A⊥τ , making subproblem (4.60) is

equivalent to

min
τ∈SD−p−1

X̃⊤A⊥τ


1
.

This is an optimization problem over the sphere that can be solved by PRSGM.

Besides the holistic and recursive approaches of DPCP, we also consider other closely

related subspace recovery methods that include PCA, R1PCA [28], REAPER [61],

and GGD [76]. Note that R1PCA, REAPER and GGD are primarily designed for

learning a low-dimensional subspace. Observing that the objective function of GGD is

similar to (2.9) except that it learns a basis for S instead of S⊥, we also apply GGD

to learn a basis of S⊥, and call it GGD-dual. For the DPCP approaches implemented

with PRSGM, we use the spectral initialization, compute the initial step size µ0 by

one iteration of a backtracking line search, and set the diminishing factor β = 0.6.
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(f) DPCP-recursive (0.0994s)
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(g) DPCP-holistic (0.0251s)

Figure 4.4. Phase transition of the distance between the ground-truth basis for the (dual)
subspace and the computed basis by different methods when varying the outlier ratio
M/(M + N) and σ. The lighter the color, the smaller the distance. The mean running time
for each method is also recorded. Here we fix D = 100, c = ⌈0.05D⌉ = 5, N = 10D, and the
results are averaged over 100 experiments.

For all the methods, the maximal number of iterations is set to 200, and the relative

convergence accuracy, wherever applicable, is set to 10−6. We conduct the experiments

with D ∈ {100, 1000}, c = ⌈0.05D⌉ and N = 10D and plot the phase transition of

the distance between the ground-truth basis for the (dual) subspace and the basis

computed by different methods when varying the outlier ratio M
M+N

and noise level σ.

As demonstrated in Figures 4.4 and 4.5, PCA and REAPER are the least com-
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(f) DPCP-recursive (79.74s)
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Figure 4.5. Phase transition of the distance between the ground-truth basis for the (dual)
subspace and the computed basis by different methods when varying the outlier ratio
M/(M + N) and σ. The lighter the color, the smaller the distance. The mean running time
for each method is also recorded. Here we fix D = 1000, c = ⌈0.05D⌉ = 50, N = 10D, and
the results are averaged over 100 experiments.

petitive methods in the test. PCA is not robust to outliers although it is the fastest

for its simplicity. We conjecture that REAPER does not perform well as a robust

subspace recovery method because it needs more inlier points for the underlying convex

relaxation to be effective (in contrast to the non-convex approaches used by GGD and

DPCP). R1PCA performs well with moderate outliers but is still unable to handle a

high outlier ratio. Meanwhile, it is very time-consuming for estimating a subspace of
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high relative dimension. Next, GGD, GGD-dual and DPCP-holistic perform similarly

well in terms of accurately estimating a ground-truth basis even with a high outlier

ratio. However, GGD takes significantly longer time since it optimizes over G(D, d),

which is inefficient in the high relative dimension regime. We see that applying GGD

to learn the dual subspace in G(D, c), i.e., GGD-dual, is much faster, although not

as fast as our holistic DPCP approach that solves (2.9) with PRSGM. Finally, we

note that the recursive DPCP approach (Algorithm 2) is slow due to its recursive

nature; moreover, as the outlier ratio and noise level increase, its estimation of the

underlying subspace becomes less accurate since the error tends to accumulate during

the recursive procedure. We conclude that the proposed holistic DPCP approach

performs favorably against the competitors in the high relative dimension regime.

4.3.2 Roadplane detection using real 3D data

In this section, we use the experimental setup of [153] to further compare DPCP

and alternative methods in the task of 3D roadplane detection. As introduced

in Section 1.1.2.1, given a 3D point cloud of a road scene our goal is to learn an affine

plane A = H+ t ⊂ R3 as a model for the road, where H is a plane through the origin

with normal vector b and t is its translation with respect to the origin. We convert it

to a linear subspace learning problem by working in homogeneous coordinates, i.e.,

by adding 1 at the fourth coordinate and embedding A into the linear hyperplane

H̄ ⊂ R4 with normal vector b̄ = [b⊤ − t⊤b]⊤.

We use the 3D point clouds from the KITTI dataset [40]. In addition to the 7 frames
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annotated in [153], we further annotate 131 frames. Each point cloud contains around

105 points with approximately 50% outliers. The data are homogenized and normalized

to unit ℓ2-norm. We compare DPCP-PRSGM (Algorithm 1) to PCA, RANSAC [39],

R1PCA [28], REAPER [61] and GGD [76]. Since the task involves optimization over

the sphere, we also compare with the previously developed DPCP methods for learning

a hyperplane, namely DPCP-PSGM [152, 153], DPCP-IRLS and DPCP-d [112] (see

problem (2.8)). Additionally, for DPCP-PRSGM and DPCP-PSGM, we test with both

geometrically decaying step size and a modified backtracking line search as described

in [153]; the latter is known to perform well in practice but lacks a convergence theory.

As a result, we denote these variants as DPCP-PRSGM-decay, DPCP-PRSGM-ls,

DPCP-PSGM-decay, and DPCP-PSGM-ls.

Since DPCP-PRSGM-decay, DPCP-PSGM-decay and DPCP-d are among the

fastest methods with comparable running times, we let them run to convergence and

then set the running time of the slowest as the time budget for the remaining methods.

For RANSAC, we also include a version with 10× and 100× that time budget. For

all the DPCP approaches, we use the spectral initialization and compute the initial

step size by one iteration of a backtracking line search. For DPCP-PRSGM-decay and

DPCP-PSGM-decay, we set the diminishing factor to 0.6. We tune the parameters of

the other algorithms on a randomly selected training set of 13 frames and use the rest

of the frames for evaluation. Each method is tuned to achieve an optimal error and

then re-tuned to be as fast as possible without exceeding 5% of that error. The λ of

DPCP-d is set to 2.76√
N+M

, the minimum step size allowed for the DPCP approaches is
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Table 4.1. 3D road plane estimation using 125 annotated frames of the KITTI dataset.

Methods/metric ROC θ̂ θ̂ t̂ # iterations time (in msec)
PCA 0.76 4.40 1.73 14% N/A 1
RANSAC×1 0.78 3.74 4.18 12% 3.8 31
RANSAC×10 0.91 1.58 2.85 5% 18.7 149
RANSAC×100 0.93 1.47 2.77 4% 64.1 515
R1PCA 0.89 2.24 0.93 8% 6.1 25
REAPER 0.88 2.48 1.07 8% 4.1 27
GGD 0.80 3.40 1.59 11% 3.0 26
DPCP-IRLS 0.81 3.67 1.48 12% 3.0 29
DPCP-d 0.92 1.51 0.82 5% 6.5 16
DPCP-PSGM-ls 0.92 1.59 0.76 5% 37.3 24
DPCP-PSGM-decay 0.85 2.90 1.15 10% 31.1 14
DPCP-PRSGM-ls 0.92 1.59 0.76 5% 35.8 24
DPCP-PRSGM-decay 0.85 2.96 1.17 10% 31.1 14

set to 10−9, and the relative convergence accuracy, wherever applicable, is set to 10−6.

Table 4.1 reports geometric, clustering and algorithmic metrics for the various

methods. Once a method has computed an estimated normal vector b̂ ∈ R4, we

extract from it estimates b̂, t̂. We report the corresponding estimation errors, i.e., the

angle θ̂ between b
∗ and b̂, the angle θ̂ between b∗ and b̂, and 100

t∗ − t̂


2
/ ∥t∗∥2 %,

where b
∗
, b∗, t∗ are the ground-truth values. By varying a threshold on the distances

of all points to the estimated affine plane, the area under the ROC curve is obtained

(this is also the internal thresholding parameter for RANSAC), with higher values

indicating better performance. Finally, the number of averaged iterations executed

by each method and its running time in msec are also reported. Notably, not only

does DPCP-PRSGM-ls, DPCP-PSGM-ls and DPCP-d outperform RANSAC×1 and

RANSAC×10, but its performance is comparable with that of RANSAC×100, which

they still surpass in estimating the orientation of the normal vector b∗: RANSAC×100
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Figure 4.6. 3D point clouds and estimated translations for frame 328 of KITTY-CITY-71,
with inliers in blue and outliers in red.

is off by 2.77◦ on average, while DPCP-PRSGM-ls (DPCP-PSGM-ls) and DPCP-d are

only off by 0.76◦ and 0.82◦, respectively; see Figure 4.6. We also note that although

DPCP-PRSGM-decay and DPCP-PSGM-decay are among the fastest methods, they

are not competitive to their counterparts that use the modified line search for updating

the step size. On the other hand, DPCP-IRLS and REAPER make heavy use of the

SVD, which makes them slow to run on O(105) points, and eventually inaccurate

given the limited time budget. As illustrated in Figures 4.7 and 4.8, we visualize the

results of the above methods by projecting the 3D point clouds onto the image.
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Figure 4.7. Projections of 3D point clouds for frame 328 of KITTY-CITY-71 onto the
image, with inliers in blue and outliers in red.
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Figure 4.8. Projections of 3D point clouds for frame 881 of KITTY-CITY-71 onto the
image, with inliers in blue and outliers in red.
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Chapter 5

Learning a Union of Hyperplanes

with DPCP

In Chapter 3 and Chapter 4, we established theory and developed algorithms for

learning a single subspace of high relative dimension with DPCP. It is known [109, 113]

that DPCP is able to handle data points drawn from a union of hyperplanes (UoH),

where it is used to learn the normal vector to a dominant hyperplane. Nevertheless,

existing analyses of DPCP in the multi-hyperplane case lack a precise characterization

of the distribution of the data and are difficult to interpret. Furthermore, the provable

algorithm based on solving a recursion of linear programs is inefficient. Thus, it is

reasonable to ask whether we can provide a more transparent analysis by leveraging

the geometric quantities and analytical techniques from Chapter 3 as well as extend

the PRSGM proposed in Chapter 4 to solve the DPCP problem under a UoH model.

We structure this chapter as followings. In Section 5.1, we introduce the problem
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of learning a hyperplane under a UoH model, and discuss the limitations of closely

related work. Next, we provide an improved analysis of the DPCP problem for a UoH

in Section 5.2. The extension of the PRSGM applied to DPCP for a UoH is given

in Section 5.3. We present how to do hyperplane clustering with DPCP in Section 5.4.

Finally, the results of our numerical experiments are presented in Section 5.5.

5.1 Introduction

DPCP has been analyzed for learning a hyperplane from data under a UoH model [106,

109, 113] by optimizing the same problem (2.2) as for learning a single hyperplane:

min
b∈RD

X̃⊤b


1
s.t. ∥b∥2 = 1. (5.1)

The distinction is that the dataset now has the form of X̃ = [X1, · · · ,XK ]Γ ∈ RD×N ,

where ⋃K
k=1 Xk = X ∈ RD×N are N inlier points that lie in a union of K hyperplanes

H1, · · · ,HK of RD with unit normal vectors n1, · · · ,nK , respectively, and Xk are Nk

inlier points that belong to Hk for every k ∈ [K] := {1, · · · , K}.

As discussed in Section 2.1.2, the data modeling for a UoH is fundamentally

different than a single hyperplane learning case since when we treat the data points

from one specific hyperplane as inliers, the points from other hyperplanes cannot

be merely viewed as regular outliers as before since they exhibit additional linear

structures, and hence need to be treated differently in the analysis. The problem (5.1)

becomes even more challenging if the dataset X̃ also contains regular outliers, i.e.,
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X̃ = [X1, · · · ,XK ,O]Γ ∈ RD×(N+M), with O ∈ RD×M the M outlier points that do

not exhibit any certain structures, which is excluded in the analysis of (5.1) in [106,

109, 113]. It is not known, however, whether DPCP can learn a normal to one of the

hyperplanes in the presence of both structured and regular outliers. In fact, several

related questions remain unanswered. Under what conditions is a global optimum

of the DPCP problem (5.1) a normal to one of the hyperplanes? When the global

optimum is a normal, which hyperplane is it a normal to? Can the convergence of some

optimization algorithm to a global solution to the non-convex DPCP problem under

the UoH1 data model be guaranteed? This chapter addresses all of these challenges.

Before moving on, we discuss the limitations of the most closely related work.

Note that [113] has partially addressed the previous challenges of DPCP for a UoH

without outliers, while [64] analyzed ℓp recovery of a single subspace from a union

of subspaces with problem (5.1) as a special case (i.e. p = 1 and subspaces are of

dimension d = D−1). Three key aspects of their limitations should be emphasized (see

Table 5.1 for a summary). First, in the analysis of which hyperplane is recovered, [113]

and [64] introduce different notions of a “dominant” or “most significant” hyperplane,

which depend only on the (expected) number of points in each group. In particular,

the hyperplane (say H1) with the most number of points is defined as the dominant

hyperplane in [113], i.e.,

N1 > max
k≥2

Nk. (5.2)

It is proved in [113] that a global solution of (5.1) is a normal vector of H1 under
1For the rest of the chapter, when we say “a UoH model”, we assume it contains regular outliers.
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certain conditions that implicitly make use of the distribution of the data, but are

deterministic in nature and difficult to interpret. On the other hand, [64] considers a

random model where inliers are sampled from (∪K
k=1Hk) ∩ SD−1 with weights {ψk}K

k=1

(ψk is the weight of sampling inliers in Hk) and outliers are sampled from SD−1 with

weight ψ0, and ∑K
k=0 ψk = 1. Then H1 is defined as the most significant hyperplane if

ψ1 >
K∑

k=2
ψk. (5.3)

The number of sampled points, in expectation, is equivalent to N1 >
∑

k≥2 Nk. We

argue that the global optimum depends not only on the (expected) number of data

points in each group, but also on geometric quantities related to their distribution.

Currently there is no notion of geometric dominance that captures these aspects.

Second, [113] provides geometric conditions under which the global minimum is

a normal to the “dominant” hyperplane, and [64] provide probabilistic conditions.

However, neither have both types of analyses, nor do the analyses make connections

to geometric dominance. Third, the provably convergent algorithm in [113], which is

based on a recursion of linear programs (LPs), is not scalable, while the recommended

Iteratively Reweighted Least Squares (IRLS) [61, 63] approach does not have a guarantee

for the DPCP problem. Meanwhile, [64] does not provide concrete algorithms for

solving the problem. In other words, there lacks an algorithm that is scalable and

enjoys a convergence guarantee for learning a single hyperplane under a UoH model.

It is desirable that the PRSGM developed in Chapter 4 can be provably extended to

solve (5.1) for a specific hyperplane.
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Table 5.1. The theory and algorithms for learning a hyperplane under a UoH model for
the most closely related work.

Theory Algorithms
Which hyperplane

does it recover?
Handle
outliers

Analytical
approach

Convergence
guarantee

Scale
well?

[64] most significant plane
(see (5.3)) ✓ probabilistic – – –

[113] dominant plane
(see (5.2)) ✗ geometric LPs ✓ ✗

IRLS ✗ ✓

This
work

geometrically dominant plane
(see Definition 4) ✓ probabilistic

+ geometric PRSGM ✓ ✓

5.2 Analysis of DPCP for a union of hyperplanes

In this section, we introduce a new notion of geometric dominance for determining

the hyperplane that is learned by the DPCP problem (5.1) under a UoH model (Sec-

tion 5.2.1), present deterministic geometric analyses of its critical points (Section 5.2.2)

and global solutions (Section 5.2.3), and also provide an interpretable probabilistic

analysis (Section 5.2.4).

5.2.1 Geometrically dominant hyperplane

Building upon problem (5.1), we consider a dataset X̃ that also contains the regular

outlier term O. If b is a normal vector to a hyperplane, it is orthogonal to all the

data points within this hyperplane. Thus, we attempt to find a normal vector to one

specific hyperplane by solving

min
b∈SD−1

f(b) :=
X̃⊤b


1

=
K∑

k=1

X⊤
k b


1
+
O⊤b


1
.
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Note that for learning a single hyperplane, say H1, when the inliers are uniformly

distributed in H1 ∩ SD−1 and the outliers are uniformly distributed in SD−1, according

to the theory established in Chapter 3, we know that the DPCP problem (5.1) can

provably recover the true normal vector to H1 provided that the number of outliers is

big-O of the square of the number of inliers. When X consists of inliers from a union

of K hyperplanes, as is the case considered in this chapter, the analysis of a single

hyperplane cannot be applied here by treating the data points from one hyperplane as

inliers and the rest as outliers since the data distribution in other planes is far from

uniform and thus violates the prior assumptions.

Geometric quantities. Since the outlier term O is the same as before, we adopt

the quantities cO,max and cO,min defined in (3.5) and ηO defined in (3.6) to characterize

the distribution of the outliers. Next, for the inlier subset Xk in hyperplane Hk, similar

to the definition of cX ,min in (3.4), we define

cXk,min := 1
Nk

min
b∈Hk∩SD−1

X⊤
k b


1
and

cXk,max := 1
Nk

max
b∈Hk∩SD−1

X⊤
k b


1
.

(5.4)

A well-distributed Xk leads to a large value of cXk,min and small value of cXk,max since

it is difficult to find a single direction b that is orthogonal to (or in line with) many

points in Xk. Finally, parallel to the definition of ηO in (3.6), we define the following

quantity that further characterizes the distribution of inliers:

ηXk
:= 1

Nk

max
b∈Hk∩SD−1

(PHk
− bb⊤)Xk sign(X⊤

k b)


2
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where PHk
is the orthonormal projection onto Hk and sign(a) denotes that we apply

sign(·) as defined in (3.2) element-wise to a vector a. Note that how ηXk
is different

from ηO in (3.6): the unit vector b in the definition of ηXk
is also restricted to be

inside Hk for the sake of characterizing the distribution of inliers Xk. We will see

shortly that the optimality analysis for (5.1) based on these geometric quantities is

easier to interpret and facilitates a probabilistic analysis.

Geometrically dominant hyperplane. For the objective in (5.1), the outlier

term
O⊤b


1

should be nearly constant for well distributed outliers, so that the

minimizer of (5.1) is determined by the relative importance of the inlier terms
X⊤

k b


1
.

We also expect the relative orientation of the underlying hyperplanes to play an

important role in determining the solution to (5.1). For example, in the case that

data are uniformly sampled and each plane has the same point weights, the solution

of (5.1) has a bias towards the normals of the planes that are close to each other.

Noting that the geometric relationships among {Hk} are determined by the principal

angles between {nk}, we define θkℓ ∈ [0, π/2] to be the principal angle between nk

and nℓ. By analyzing the first-order necessary condition for problem (5.1), we define

ζk as the following measure of the relative dominance for Xk that considers the point

weights, data distribution, and relative orientation of the hyperplanes:

ζk := NkcXk,min√
1⊤W max

(k,k)1 +∑
ℓ̸=k NℓηXℓ

+MηO
(5.5)
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where

W max :=
(
NkcXk,maxNℓcXℓ,max cos(θkℓ)

)
1≤k,ℓ≤K

∈ RK×K (5.6)

whose (k, ℓ)th entry represents the joint importance of Xk and Xℓ weighted by cos(θkℓ),

W max
(k,k) is the principal submatrix obtained by deleting the kth row and kth column of

W max, 1 is the vector of all ones, and ηO := ηO +D/M is defined in (3.7). Note the

following: (i) the numerator NkcXk,min of (5.5) gives the contribution from Xk; (ii) the

term 1⊤W max
(k,k)1 in the denominator counts the sum of the entries in W max

(k,k), capturing

the total contributions from {Xℓ}ℓ̸=k; and (iii) the last term ∑
ℓ ̸=k NℓηXℓ

+ MηO is

typically small2 compared with the former two terms. Overall, ζk measures the relative

dominance of Xk over {Xℓ}ℓ̸=k. We see that a larger relative dominance of Xk (i.e.

larger ζk) results from better distributed data points, larger Nk relative to M and Nℓ

for ℓ ̸= k, and better separation of the other hyperplanes (large θij, i, j ̸= k, i ̸= j).

Definition 4. With ζk in (5.5), we say that Hk is a geometrically dominant hyperplane

if and only if ζk ≥ ζℓ,∀ℓ ∈ [K].

The notion of geometric dominance makes the deterministic analysis more inter-

pretable (Sections 5.2.2 and 5.2.3) and allows a probabilistic analysis (Section 5.2.4)

that is easier to be satisfied with only a mild number of sampled points.

Proposition 7. There is at most one k ∈ [K] such that ζk > 1, in which case it also

holds that ζℓ < 1 for all ℓ ∈ [K]\k.
2Assuming points in Xk and O are uniformly sampled from SD−1 ∩Hk and SD−1, respectively,

according to Lemma 2, both NkcXk,max and NkcXk,min scale as O(Nk), while NkηXk
scales as O(

√
Nk)

and MηO scales as O(
√

M).
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Proof. Without loss of generality, assume ζ1 > 1 and ζ2 ≥ 1. From (5.5) we have

1 < ζ1 = N1cX1,min√
1⊤W max

(1,1)1 +∑
ℓ̸=1 NℓηXℓ

+MηO
<

N1cX1,min√
1⊤W max

(1,1)1
<
N1cX1,min

N2cX2,max

where we used the fact that 1⊤W max
(1,1)1 > N2

2 c
2
X2,max, from which we obtain that

N1cX1,min > N2cX2,max. Similarly, we have

1 ≤ ζ2 = N2cX2,min√
1⊤W max

(2,2)1 +∑
ℓ̸=2 NℓηXℓ

+MηO
<

N2cX2,min√
1⊤W max

(2,2)1
<
N2cX2,min

N1cX1,max

so that N2cX2,min ≥ N1cX1,max. Combining these results with cX2,max ≥ cX2,min gives

N1cX1,min > N2cX2,max ≥ N2cX2,min ≥ N1cX1,max,

which contradicts the fact that cX1,min ≤ cX1,max, hence completing the proof.

Discussion of Proposition 7. It follows from Proposition 7 that if ζk > 1

then Hk is the unique geometrically dominant hyperplane. For the rest of the

analysis, we assume that there always exists k ∈ [K] such that ζk > 1; the scenario

that such a geometrically dominant hyperplane does not exist is left for future

work. We note that this assumption ensures a simple landscape of the non-convex

DPCP problem (5.1) that allows us to show that under certain conditions the global

minimizers of (5.1) are guaranteed to be normal vectors of the geometrically dominant

hyperplane (Theorem 12). The assumption may be stronger than needed in theory3

3In fact, [113, Proposition 5] shows that for three equi-angular hyperplanes, global minimizers
of (5.1) can be normal vectors of any of the planes when they are well-separated and the data points
are well-distributed.
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since it excludes the possibility that normals of the other hyperplanes are global

solutions to (5.1), which are also of interest. Furthermore, we remark that other works

make similar assumptions—[113] requires (5.2) and [64] requires (5.3). We will see

that, when data is sampled from a specific random spherical model (Theorem 13), the

geometric dominance not only implies that both (5.2) and (5.3) hold, but also that

it has the advantage of explicitly characterizing the data distribution. Finally, this

assumption is likely to be satisfied in the subspace estimation step of K-subspaces

(KSS) [1, 10] where most of the points in the estimated cluster are expected to be

sampled from one dominant hyperplane with the remaining points belonging to the

other hyperplanes; this works well in practice as we will see in Section 5.5.

5.2.2 Geometry of the critical points

Without loss of generality, we assume ζ1 > 1, i.e., that H1 is the geometrically

dominant hyperplane. In the next result, we characterize critical points of (5.1) with

respect to the geometrically dominant hyperplane H1.

Lemma 18. Any critical point b of problem (5.1) must belong to {±n1} or have its

principal angle θ from n1 satisfy θ ≥ arcsin
(√

1− (1/ζ1)2
)
.

Proof. Our goal is to characterize the geometry of a critical point b of (5.1) with

respect to the geometrically dominant hyperplane H1. We observe that a Riemannian

subgradient for the inlier term
X⊤

k b


1
is of the form

(I− bb⊤)Xk sign(X⊤
k b) = (I− bb⊤)

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j ,
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where x
(k)
j as the jth point in Xk and sign(·) is defined in (3.2). Let θk be the

principal angle between b and nk. We first show that for any k ∈ [K] and b that is

not orthogonal to Hk i.e., b /∈ {±nk}, it holds that

cos(θk)NkcXk,min ≤

(I− bb⊤)
Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

≤ cos(θk)NkcXk,max +NkηXk
.

(5.7)

By decomposing b = sin(θk)s̄k + cos(θk)n̄k, where s̄k ∈ Hk, n̄k ∈ H⊥
k , and

∥s̄k∥2 = ∥n̄k∥2 = 1, it follows that

(I− bb⊤)
Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

2

=


Nk∑
j=1

sign(x(k)
j

⊤
b)
(

x
(k)
j − sin(θk)(x(k)

j

⊤
s̄k)b

)
2

2

=


Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j − sin(θk)
Nk∑
j=1

sign(x(k)
j

⊤
b)(x(k)

j

⊤
s̄k)b


2

2

=
Xk sign(X⊤

k b)− sin(θk)
X⊤

k s̄k


1

b
2

2

=
Xk sign(X⊤

k b)
2

2
+ sin2(θk)

X⊤
k s̄k

2

1
− 2 sin(θk)

X⊤
k s̄k


1

b⊤Xk sign(X⊤
k b)

=
Xk sign(X⊤

k b)
2

2
+ sin2(θk)

X⊤
k s̄k

2

1
− 2 sin2(θk)

X⊤
k s̄k

2

1

=
Xk sign(X⊤

k b)
2

2
− sin2(θk)

X⊤
k s̄k

2

1

(5.8)

where the first equality follows from b⊤x
(k)
j = sin(θk)s̄⊤

k x
(k)
j and the third equality

follows from sign(x(k)
j

⊤
b) = sign(sin(θk)s̄⊤

k x
(k)
j ) = sign(s̄⊤

k x
(k)
j ). To bound the last
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line in (5.8), we note that

Xk sign(X⊤
k b)

2

2
=
Xk sign(X⊤

k b)
2

2
∥s̄k∥2

2

≥

⎛⎝Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j

⊤
s̄k

⎞⎠2

=
X⊤

k s̄k

2

1

(5.9)

where we used the Cauchy-Schwartz inequality and sign(x(k)
j

⊤
b) = sign(sin(θk)s̄⊤

k x
(k)
j ) =

sign(s̄⊤
k x

(k)
j ). Using the bound from (5.9) in (5.8), we obtain

(I− bb⊤)
Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

2

≥
X⊤

k s̄k

2

1
− sin2(θk)

X⊤
k s̄k

2

1

= cos2(θk)
X⊤

k s̄k

2

1
≥ cos2(θk)N2

k c
2
Xk,min,

which proves the lower bound in (5.7). To show the upper bound in (5.7), we have

Xk sign(X⊤
k b)

2

2
=
Xk sign(X⊤

k s̄k)
2

2

=
s̄ks̄⊤

k Xk sign(X⊤
k s̄k) +

(
PHk
− s̄ks̄⊤

k

)
Xk sign(X⊤

k s̄k)
2

2

=
s̄ks̄⊤

k Xk sign(X⊤
k s̄k)

2

2
+
(PHk

− s̄ks̄⊤
k

)
Xk sign(X⊤

k s̄k)
2

2

=
X⊤

k s̄k

2

1
+
(PHk

− s̄ks̄⊤
k

)
Xk sign(X⊤

k s̄k)
2

2

(5.10)
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where the last line utilizes ∥s̄k∥2 = 1. Plugging (5.10) into (5.8), we obtain

(I− bb⊤)
Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

2

=
X⊤

k s̄k

2

1
+
(PHk

− s̄ks̄⊤
k

)
Xk sign(X⊤

k s̄k)
2

2
− sin2(θk)

X⊤
k s̄k

2

1

= cos2(θk)
X⊤

k s̄k

2

1
+
(PHk

− s̄ks̄⊤
k

)
Xk sign(X⊤

k s̄k)
2

2

≤ (cos(θk)NkcXk,max +NkηXk
)2 ,

(5.11)

which completes the proof of (5.7).

Let f(b) :=
X̃⊤b


1
. For any critical point b of problem (5.1), there exists

v ∈ ∂f(b) such that (I−bb⊤)v = 0. Due to the general position [152, 153] assumption

of the data and b /∈ {±n1}, b can be orthogonal to at most R < D data points,

meaning that we can write

0 = (I− bb⊤)
⎛⎝ K∑

k=1

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j +
M∑

j=1
sign(oj

⊤b)oj + ξ

⎞⎠ (5.12)

where ξ = ∑R
r=1 τjr x̃jr with x̃j1 , · · · , x̃jR

the columns of X̃ orthogonal to b, and

{τj1 , · · · , τjR
} ⊂ [−1, 1]. Therefore, we can write

0 ≥

(I− bb⊤)
K∑

k=1

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

−

(I− bb⊤)
M∑

j=1
sign(oj

⊤b)o(1)
j


2

−
(I− bb⊤)

R∑
r=1

τjr x̃jr


2

≥

(I− bb⊤)
N1∑
j=1

sign(x(1)
j

⊤
b)x(1)

j


2

−

(I− bb⊤)
K∑

k=2

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

−MηO.
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Together with (5.7), we have

cos(θ1)N1cX1,min ≤

(I− bb⊤)
N1∑
j=1

sign(x(1)
j

⊤
b)x(1)

j


2

≤

(I− bb⊤)
K∑

k=2

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

+MηO

≤
K∑

k=2

(I− bb⊤)
Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

+MηO

≤
K∑

k=2
cos(θk)NkcXk,max +

K∑
k=2

NkηXk
+MηO.

(5.13)

Moreover, from [109, Lemma 12], we know that

K∑
k=2

cos(θk)NkcXk,max ≤

⎡⎣ K∑
k=2

N2
k c2

Xk,max + 2
∑

i ̸=j,i,j ̸=1
NiNjcXi,maxcXj ,max cos(θij)

⎤⎦ 1
2

(5.14)

where θij ∈ (0, π/2] is the principal angle between ni and nj. By the definition

of W max in (5.6) and W max
(1,1), the RHS of (5.14) can be simplified as

√
1⊤W max

(1,1)1.

Plugging it into (5.13), we have

cos(θ1) ≤

√
1⊤W max

(1,1)1 +∑K
k=2 NkηXk

+MηO

N1cX1,min
= 1
ζ1
, (5.15)

which leads to sin(θ1) ≥
√

1− 1/ζ2
1 with ζk defined in (5.5). Since among {ζk}K

k=1, ζ1

is the only one greater than 1, (5.15) is informative and well-defined, and we conclude

that any critical point b of (5.1) must satisfy either

b ∈ {±n1} or θ1 ≥ arcsin
(√

1− (1/ζ2
1 )
)
,
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(a) (b)

Figure 5.1. Illustration on the distribution of the critical points of problem (5.1). (a) Since
n2, n3 /∈ C, they could be critical points; (b) Since n2 ∈ C it cannot be a critical point, but
n3 could be because n3 /∈ C.

which completes the proof.

Discussion of Lemma 18. Intuitively, Lemma 18 suggests that any critical point

of (5.1) is either a normal vector of H1, or very close to H1 (i.e., within a region defined

by the geometric dominance level of X1). As the relative dominance of X1 increases

(larger ζ1), the location of a critical point b becomes more restricted. In particular,

Lemma 18 allows us to conclude that n1 is the single (up to direction) critical point

inside of the cone C := {y ∈ RD : |y⊤n1| > 1/ζ1, ∥y∥2 = 1} centered around ±n1.

The above observation ensures that every normal in the set {±n2, · · · ,±nK} that

lies inside of C is not a critical point (see Figure 5.1). We will later see in Section 5.3

how this facilitates the convergence of PRSGM to {±n1} when it is initialized inside

C because n1 (up to direction) is the only possible solution within the region.
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5.2.3 Geometry of the global solutions

Lemma 18 is useful in helpful us understand the geometry of the global solutions

of (5.1). To show that any global minimizer b∗ is a normal vector to the geometrically

dominant hyperplane H1, i.e., b∗ ∈ {±n1}, we need to ensure that every critical point

close to H1 is not a global solution. Inspired by the analysis in [113], we define

γk := NkcXk,min∑
ℓ̸=k NℓcXℓ,max sin(θkℓ)−

√∑K−1
i=2 λi

(
W min

(k,k)

)
+M(cO,max − cO,min)

. (5.16)

Here, W min is the same as W max in (5.6) by replacing cXk,maxcXℓ,max with cXk,mincXℓ,min,

and λ1(A) ≥ · · · ≥ λn(A) are the eigenvalues of an n-by-n matrix A. In fact, we

can show that every global solution of (5.1) is not far from {±n1} in the sense that

its principal angle θ from n1 satisfies θ ≤ arcsin(1/γ1). Combining this fact with

Lemma 18 establishes our main theoretical result as follows.

Theorem 12. Any global solution b∗ of problem (5.1) is a normal vector to the

geometrically dominant hyperplane H1 if

1
ζ2

1
+ 1
γ2

1
< 1. (5.17)

Proof. To show that any global minimizer b∗ is a normal vector to H1, we first prove

that every critical point close to H1 is not a global solution. In other words, any global

solution of (5.1) is not far from {±n1}.

For k ∈ [K]\{1}, recall that θkℓ ∈ [0, π/2] is defined as the principal angle between
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nk and nℓ. We rewrite n1 = sin(θ1k)s̄k + cos(θ1k)n̄k, where s̄k ∈ Hk, n̄k ∈ H⊥
k , and

∥s̄k∥2 = ∥n̄k∥2 = 1. Since b∗ is a global minimizer, we have

X̃⊤b∗


1
=

K∑
k=1

X⊤
k b∗


1

+
O⊤b∗


1

≤
K∑

k=2

X⊤
k n1


1

+
O⊤n1


1

=
K∑

k=2

X⊤
k (sin(θ1k)s̄k + cos(θ1k)n̄k)


1

+
O⊤n1


1

=
K∑

k=2
sin(θ1k)

X⊤
k s̄k


1

+
O⊤n1


1

≤
K∑

k=2
sin(θ1k)NkcXk,max +McO,max

(5.18)

where we used the fact that n̄k is orthogonal to Xk. On the other hand, for all k ∈ [K],

we decompose b∗ = sin(θk)s̄′
k + cos(θk)n̄′

k where θk is the principal angle between b∗

and nk, s̄′
k ∈ Hk, n̄′

k ∈ H⊥
k , and ∥s̄′

k∥2 = ∥n̄′
k∥2 = 1. Then we have

X̃⊤b∗


1
=

K∑
k=1

X⊤
k b∗


1

+
O⊤b∗


1

=
K∑

k=1

X⊤
k (sin(θk)s̄′

k + cos(θk)n̄′
k)


1
+
O⊤b∗


1

= sin(θ1)
X⊤

1 s̄′
1


1

+
K∑

k=2
sin(θk)

X⊤
k s̄′

k


1

+
O⊤b∗


1

≥ sin(θ1)N1cX1,min +
K∑

k=2
sin(θk)NkcXk,min +McO,min

≥ sin(θ1)N1cX1,min +
[

K∑
k=2

N2
k c

2
Xk,min − λ1(W min

(1,1))
] 1

2

+McO,min

(5.19)

where we used the fact that n′
k is orthogonal to Xk, and the last inequality follows
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from [109, Lemma 13]. Note that since

K∑
k=2

N2
k c

2
Xk,min = trace(W min

(1,1)) =
K−1∑
i=1

λi(W min
(1,1)),

we can simplify (5.19) and write it as

X̃⊤b∗


1
≥ sin(θ1)N1cX1,min +

√K−1∑
i=2

λi(W min
(1,1)) +McO,min. (5.20)

Combining (5.18) and (5.20), we obtain

sin(θ1)

≤
∑K

k=2 sin(θ1k)NkcXk,max −
√∑K−1

i=2 λi(W min
(1,1)) +M(cO,max − cO,min)

N1cX1,min
= 1
γ1
,

(5.21)

which indicates that any global minimizer b∗ must be close enough to {±n1} such

that its principal angle θ1 from n1 satisfies θ1 ≤ arcsin (1/γ1) .

We now prove Theorem 12 by contradiction. Suppose there exists a global minimizer

b∗ that satisfies b∗ /∈ {±n1}, then by Lemma 18, we have cos(θ1) ≤ 1/ζ1. Moreover,

(5.21) tells us that sin(θ1) ≤ 1/γ1, which when combined together yields

1 = sin2(θ1) + cos2(θ1) ≤
1
ζ2

1
+ 1
γ2

1
,

which contradicts (5.17), and thus completes the proof.

We first give additional interpretations of γk. Note that γk is similar to ζk, which

characterizes the relative dominance of Xk from a different perspective. First, the
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term M(cO,max−cO,min) in the denominator of (5.16) represents the impact of outliers:

uniformly distributed outliers with M → ∞ cause the difference cO,max − cO,min

to vanish, making the term small (see Lemma 2). Next, to better understand the

square root part in (5.16), for simplicity we consider the equi-angular case for {Hℓ}ℓ̸=k

such that θij ≡ θ′ for all i, j ̸= k, i ≠ j. Then, one can obtain ∑K−1
i=2 λi(W min

(k,k)) =

(1− cos(θ′))∑ℓ̸=k,r N
2
ℓ c

2
Xℓ,min, where r = arg maxℓ̸=k NℓcXℓ,min. For a global solution

to be a normal of Hk, one may expect: (i) a large relative disparity in significance

between Xk and Xℓ for all ℓ ̸= k so that NkcXk,min
NℓcXℓ,max

is large; (ii) Hk to be relatively

close to the other planes so that the energy concentrated around Hk is relatively

large, i.e., θkℓ is relatively small; and (iii) the other planes {Hℓ}ℓ̸=k are relatively well

separated so that the energy concentrated around any of them is relatively small, i.e.,

θ′ is relatively large. All these conditions lead to γk being large.

Discussion of Theorem 12. An interpretation of Theorem 12 follows from the

above discussion about ζk and γk: for a fixed number of inliers {Nk} and outliers M , if

data points are well-distributed (large cXk,min, small cXk,max, small ηXk
, small ηO, small

cO,max − cO,min) and H1 is closer to the other planes (relatively small θ1ℓ, ℓ ̸= 1) than

the other planes are to each other (relatively large θij, i, j ̸= 1, i ̸= j), then both ζ1

and γ1 tend to be large, (5.17) is more likely to be satisfied, and any global minimizer

is a normal vector of H1. In contrast to the discrete result in [113], which is based on

a continuous variant of (5.1) without outliers and uses quantities such as the spherical

cap discrepancy or circumradii of polytopes that are difficult to interpret, the global

geometric analysis here focuses on the discrete problem (5.1) and leverages geometric
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quantities to explicitly characterize the underlying distribution of both inliers and

outliers. Finally, when the dataset is further contaminated with noise, one may expect

that the error between the global minimizer and the true normal vector to H1 to be

proportional to the noise level, as analyzed for a single subspace case in Section 3.1.2.

The extension to noisy data is by no means trivial, and we leave it as future work.

5.2.4 Probabilistic analysis

In this section, we present a probabilistic characterization of the global optimal

solutions of problem (5.1) under a UoH model. We first explicitly state the random

spherical model for a UoH that we will consider.

Definition 5 (Random spherical model for a UoH). Consider a random spherical

model where the M columns of O are drawn uniformly from the sphere SD−1, and the

Nk columns of Xk are drawn uniformly from SD−1 ∩Hk for k ∈ [K], where Hk is a

given hyperplane in RD with dim(Hk) = D − 1.

Compared with the random spherical model for a single subspace given in Def-

inition 1, Definition 5 specifies a similar generative model for data drawn from a

UoH. Note that we already have the concentration properties for the outlier-related

quantities, namely cO,max − cO,min and ηO, under such models as stated in Lemma 2.

On the other hand, the concentration bounds for the inlier-related geometric quantities,
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namely cXk,min, cXk,max and ηXk
, follow from [152, Lemma 4], which leads to

P
[
cXk,min ≥ C̄0 −

(
2 + t

2

)
/
√
Nk

]
≥ 1− 2e− t2

2 ,

P
[
cXk,max ≤ C̄0 +

(
2 + t

2

)
/
√
Nk

]
≥ 1− 2e− t2

2 , and

P
[
ηXk
≤ C1

(√
D logD + t

)
/
√
Nk

]
≥ 1− 2e− t2

2

(5.22)

for any number t > 0, where

C̄0 := (D − 3)!!
(D − 2)!! ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2
π
, for even D,

1, for odd D,

n!! :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n(n− 2)(n− 4) · · · 4 · 2, if n is even,

n(n− 2)(n− 4) · · · 3 · 1, if n is odd,

(5.23)

and C1 is a universal constant that is independent of K, {Nk}, M , D and t. We are

now able to state our probabilistic result.

Theorem 13. For the random spherical model in Definition 5, the probability that

any global solution of (5.1) is a normal vector of H1 is at least 1 − 2(K + 1)e−t2/2,

where t > 0 satisfies, with C̄0 defined in (5.23), the inequality

C̄0
∑
k ̸=1

Nk +
⎛⎝C1
√
D log(D) + 3t

2

⎞⎠∑
k ̸=1

√
Nk +

(
C2
√
D logD + t

)√
M

< C̄0N1 −
(√

2 + t

2
√

2
)√

N1 (5.24)

where C1, C2 are universal constants that are independent of K, {Nk}, M , D and t.
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Proof. We first note that

ζ̃1 := N1cX1,min∑
k ̸=1 NkcXk,max +∑

k ̸=1 NkηXk
+MηO

< ζ1 and

γ̃1 := N1cX1,min∑
k ̸=1 NkcXk,max +M(cO,max − cO,min) < γ1,

so that

1
ζ̃2

1
+ 1
γ̃2

1
< 1, (5.25)

meaning that (5.17) holds. Therefore, any global solution of (5.1) is a normal vector

of H1. Therefore, Theorem 13 follows directly from Theorem 12 by plugging the

concentrations for cO,max − cO,min, ηO from (3.9) and cXk,min, cXk,max, ηXk
from (5.22)

into (5.25).

Discussion of Theorem 13. Note that C̄0 ∈
[√

2
π(D−1) ,

√
1

D−1

]
(see [152, foot-

note 9]) is a constant for fixed D. As the number of inliers from the hyperplanes goes

to infinity and the other parameters are fixed, (5.24) roughly requires ∑k ̸=1 Nk < N1,

which coincides with (5.3) of [64] (in expectation). Also, as the number of inliers

goes to infinity, (5.24) implies that the DPCP approach for a UoH can tolerate

M = O((N1 −
∑

k ̸=1 Nk)/D)2) outliers, which generalizes the result in [152, 153] for

a single subspace. Finally, since (5.24) is linear in t, it gives an upper bound for t,

which is roughly O((N1 −
∑

k≥2 Nk −
√
M)/(∑k

√
N +

√
M)).

A similar probabilistic result is provided in [64, Theorem 1.1] but for a different
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generative model where the number of points sampled in each hyperplane is not fixed

in advance, as opposed to M and {Nk} here, but is controlled by the sampling weights

{ψk}K
k=0 (see (5.3)). With this difference in mind, we now compare [64, Theorem 1.1]

with (5.24). Towards that goal, dividing both sides of (5.24) by the total number of

data points N +M , and viewing M
N+M

as ψ0 and Nk

N+M
as ψk, gives

ψ1 >
K∑

k=2
ψk + 3

√
D · t+ ρ(D)√
N +M

K∑
k=0

√
ψk, (5.26)

where ρ(D) :=
√

2D logDmax(C1, C2). Our result and [64, Theorem 1.1] require a

similar condition on ψk to guarantee that any global solution of (5.1) is a normal

vector of H1 with certain probability. On one hand, (5.26) requires ψ1 to be larger

than ∑K
k=2 ψk by a positive amount (which goes to 0 if the total number of points

goes to infinity), which is slightly stronger than (5.3) in [64]. On the other hand,

[64, Theorem 1.1] only ensures a probability of 1 − C3 exp
(
−N+M

C4

)
, where C3 =

O
(
DD(D−1)/2 +D8(D−1)

)
and C4 = O (D16) (assuming the other parameters such as

K are fixed), thus needing to sample Ω(D18 logD) points to make the probability

overwhelming (e.g., probability of 1− O(exp(−D)) if N +M = Ω(D19 logD)). For

comparison, by taking t =
√

N+M
D3 , Theorem 13 now requires ψ1 to be larger than

∑K
k=2 ψk by a small amount of

(
3
D

+ ρ(D)√
N+M

)∑√
ψk and guarantees with probability

1−2(K+1) exp
(
−N+M

2D3

)
, which only requires a total sampling of Ω(D3) points to make

the probability overwhelming (e.g., probability of 1−O(exp(−D)) if N+M = Ω(D4)),

which is much smaller than the Ω(D18 logD) needed in [64].
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Algorithm 3 Projected Riemannian Sub-Gradient Method (PRSGM) for solving (5.1)
1: Initialization: b0 ∈ SD−1, step size µ0, and β ∈ (0, 1).
2: for t = 0, 1, 2, · · · do
3: Compute a Riemannian subgradient: G(bt)← (I− btb

⊤
t )X̃ sign(X̃⊤bt);

4: Update the step size in a geometrically diminishing fashion: µt ← µ0β
t;

5: Update the iterate:

b̂t+1 ← bt − µtG(bt) and bt+1 ← b̂t+1/∥b̂t+1∥2;

6: end for

5.3 Projected Riemannian Sub-Gradient method

for learning a union of hyperplanes

In Section 5.2, we have shown that the non-convex DPCP problem (5.1) is effective in

robustly recovering a specific hyperplane for a UoH. The work of [113] proposed to solve

(5.1) by either an LP-based algorithm that involves a sequence of convex optimization

problems thus is computationally expensive, or an IRLS algorithm that requires doing

an SVD in each iteration and lacks a convergence guarantee. In this work, motivated by

the Projected Riemannian Sub-Gradient Method (PRSGM) analyzed in Chapter 4 for

solving optimization problems over the Grassmannian (Section 4.2.3) and its successful

application to the DPCP problem (2.9) for learning a single subspace (Section 4.2.4),

we now extend it to solve problem (5.1) with data drawn from a UoH.

As summarized in Algorithm 3, we apply the general PRSGM framework (see Algo-

rithm 1) for solving (5.1) and focus on its convergence to the geometrically dominant

hyperplane H1. In particular, each iterate of the PRSGM computes a natural Rieman-

nian subgradient (I− bb⊤)X̃ sign(X̃⊤b), which only involves matrix-vector multiplica-

tions, hence is computationally efficient compared with solving an LP. Moreover, since
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PRSGM has been proved (see Theorem 10 and Theorem 11) to converge to a global

solution at a linear rate with appropriate initialization and geometrically diminishing

step size in the single subspace case, we extend this analysis to the UoH model and

prove a linear convergence rate. Towards that goal, we measure the distance between

any vector b ∈ SD−1 and our target solution set {±n1} by

dist(b, {±n1}) = min(∥b− n1∥2, ∥b + n1∥2),

which is a special case of (4.2). Also, it is clear that

P{±n1}(b) = sign(b⊤n1)n1.

The next result establishes the Riemannian regularity condition (RRC) (see Defi-

nition 3) for problem (5.1), which we use to obtain a linear convergence rate.

Lemma 19. For any ϵ ∈
(
0,
√

2(1− 1/ζ1)
)

and α =
√

2
2 N1cX1,min ((1− ϵ2/2)− 1/ζ1)

with ζ1 defined in (5.5), the DPCP problem (5.1) satisfies the following (α, ϵ,n1)-RRC:

for every b ∈ SD−1 satisfying dist(b, {±n1}) ≤ ϵ, we have

⟨sign(b⊤n1)n1 − b,−(I− bb⊤)X̃ sign(X̃⊤b)⟩ ≥ α dist(b, {±n1}). (5.27)

Proof. First note that for any ϵ ∈
(
0,
√

2(1− 1/ζ1)
)

and dist(b, {±n1}) ≤ ϵ, we must
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have b /∈ H1 and thus sign(b⊤n1) ̸= 0. In fact, if b ∈ H1, then

dist(b, {±n1}) = min(∥b− n1∥2, ∥b + n1∥2) =
√

2 > ϵ.

Without loss of generality, let us assume sign(b⊤n1) > 0 since the analysis for the case

of sign(b⊤n1) < 0 is similar. For any b ∈ SD−1, the projection of b onto {±n1} is

P{±n1}(b) = arg min
z∈{±n1}

∥z − b∥2 = sign(b⊤n1)n1 = n1.

Letting θ1 ∈ [0, π/2) be the angle between b and n1, we can write

b = sin(θ1)s1 + cos(θ1)n1

where s1 ∈ H1 ∩ SD−1. Next, we define

g := (I− bb⊤)n1 = n1 − b(b⊤n1)

= n1 − (sin(θ1)s1 + cos(θ1)n1) cos(θ1)

= sin(θ1)(− cos(θ1)s1 + sin(θ1)n1) = sin(θ1)ĝ

(5.28)
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where ĝ = − cos(θ1)s1 + sin(θ1)n1 is orthogonal to b and ∥ĝ∥2 = 1. We have

⟨
sign(b⊤n1)n1 − b,−(I− bb⊤)X̃ sign(X̃⊤b)

⟩
=
⟨
n1,−(I− bb⊤)X̃ sign(X̃⊤b)

⟩
= −

⟨
X̃ sign(X̃⊤b), (I− bb⊤)n1

⟩
= −

⟨
X̃ sign(X̃⊤b), g

⟩
= −

⟨
N1∑
j=1

sign(x(1)
j

⊤
b)x(1)

j +
K∑

k=2

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j +
M∑

j=1
sign(o⊤

j b)oj , g

⟩

= sin(θ1) cos(θ1)
X⊤

1 s1


1
−
⟨

K∑
k=2

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j +
M∑

j=1
sign(o⊤

j b)oj , g

⟩

(5.29)

where we used the result in (5.28). Now consider the second term in (5.29):

⟨
K∑

k=2

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j +
M∑

j=1
sign(o⊤

j b)oj, g

⟩

= sin(θ1)
⟨

K∑
k=2

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j +
M∑

j=1
sign(o⊤

j b)oj, ĝ

⟩

= sin(θ1)
⟨

(I− bb⊤)
K∑

k=2

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j , ĝ

⟩

+ sin(θ1)
⟨

(I− bb⊤)
M∑

j=1
sign(o⊤

j b)oj, ĝ

⟩

≤ sin(θ1)
K∑

k=2

(I− bb⊤)
Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

+ sin(θ1)

(I− bb⊤)
M∑

j=1
sign(o⊤

j b)oj


2

≤ sin(θ1)
(

K∑
k=2

cos(θk)NkcXk,max +
K∑

k=2
NkηXk

+MηO

)

≤ sin(θ1)
N1cX1,min

ζ1

(5.30)

where the first equality follows from g = sin(θ1)ĝ in (5.28), the second equality follows

from (I− bb⊤)ĝ = ĝ, the first inequality follows from the Cauchy-Schwartz inequality
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and ∥ĝ∥2 = 1, the second inequality follows from (5.7), and the last inequality follows

from the definition of ζ1 in (5.5). Plugging (5.30) back into (5.29), we obtain

⟨
sign(b⊤n1)n1 − b,−(I− bb⊤)X̃ sign(X̃⊤b)

⟩
≥ sin(θ1)N1cX1,min(cos(θ1)− 1/ζ1).

(5.31)

Since dist(b, {±n1}) = min(∥b−n1∥2, ∥b+n1∥2), and θ1 is the principal angle between

b and n1, we obtain

dist2(b, {±n1}) = ∥b∥2
2 + ∥n1∥2

2 − 2b⊤n1 = 2− 2 cos(θ1). (5.32)

Moreover, from Proposition 2, we have

dist(b, {±n1}) ≤
√

2 sin(θ1). (5.33)

For any ϵ > 0 such that dist(b, {±n1}) ≤ ϵ, from (5.32) we have

cos(θ1) = 2− dist2(b, {±n1})
2 ≥ 2− ϵ2

2 . (5.34)

According to (5.31), and making use of (5.33) and (5.34), we have

⟨
sign(b⊤n1)n1 − b,−(I− bb⊤)X̃ sign(X̃⊤b)

⟩
≥ sin(θ1)N1cX1,min(cos(θ1)− 1/ζ1).

≥
√

2
2 N1cX1,min

((
1− ϵ2

2

)
− 1
ζ1

)
dist(b, {±n1}).

(5.35)
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To ensure that the RHS of (5.35) is nonnegative, we require ϵ <
√

2(1− 1/ζ1), which

completes the proof.

Discussion of Lemma 19. In words, (5.27) guarantees that when b is close to a

target solution ±n1 (a normal vector of the geometrically dominant hyperplane H1),

the negative Riemannian subgradient points toward the target solution. The choice

of ϵ and α in Lemma 19 depends on the geometric dominance level of X1. A larger

dominance level for X1 (larger ζ1) leads to a larger ϵ (i.e., a larger initialization region)

and larger α (i.e., the negative Riemannian subgradient points closer to ±n1). Using

the RRC in (5.27), we are now able to apply Theorem 9 to obtain a convergence result

for Algorithm 3.

Theorem 14. Let {bt} be the sequence generated by Algorithm 3 for solving prob-

lem (5.1) with initialization b0 satisfying θ̂0 = arccos(|n⊤
1 b0|) < arccos(1/ζ1) and step

size µt = µ0β
t such that

0 < µ0 ≤
αϵ

2ξ2 and 1 > β ≥
√

1− 2αµ0

ϵ
+ µ2

0ξ
2

ϵ2 ,

where ϵ =
√

2(1− cos(θ̂0)), α =
√

2
2 N1cX1,min

(
cos(θ̂0)− 1/ζ1

)
, and

ξ =
√

1⊤W max1 +
K∑

k=1
NkηXk

+MηO +D. (5.36)

Then, the principal angle θ̂t between bt and n1 decays at a linear rate:

sin(θ̂t) ≤ ϵ · βt for all t ≥ 0.
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Proof. First note that

ϵ =
√

2(1− cos(θ̂0)) = dist(b0, {±n1}) (5.37)

where the last equality follows from (5.32). To satisfy the RRC in (5.27), we require

ϵ <
√

2(1− 1/ζ1).

Combining this inequality with (5.37) gives the requirement on the initialization, i.e.,

θ̂0 < arccos(1/ζ1).

In other words, by choosing the initialization b0 satisfying θ̂0 < arccos(1/ζ1), and

ϵ =
√

2(1− cos(θ̂0)), α =
√

2
2 N1cX1,min

(
cos(θ̂0)−1/ζ1

)
, from Lemma 19 the (α, ϵ, {±n1})-

RRC in (5.27) is satisfied. Moreover, for the Riemannian subgradient G(b) used

in Algorithm 3, we have

∥G(b)∥2 =
(I− bb⊤)X̃ sign(X̃⊤b)


2

=

(I− bb⊤)
K∑

k=1

Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j + (I− bb⊤)
M∑

j=1
sign(o⊤

j b)oj


2

≤
K∑

k=1

(I− bb⊤)
Nk∑
j=1

sign(x(k)
j

⊤
b)x(k)

j


2

+

(I− bb⊤)
M∑

j=1
sign(o⊤

j b)oj


2

≤
K∑

k=1
cos(θk)NkcXk,max +

K∑
k=1

NkηXk
+MηO

≤
√

1⊤W max1 +
K∑

k=1
NkηXk

+MηO
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where the second inequality follows from (5.7), and the last inequality from (5.14).

We now apply Theorem 9 by specifying ξ as in (5.36) to obtain that {bt} satisfies

dist(bt, {±n1}) ≤ dist(b0, {±n1})βt,∀k ≥ 0. (5.38)

From Proposition 2, we have dist(bt, {±n1}) ≥ sin(θ̂t), and thus from (5.38) we obtain

sin(θ̂t) ≤ dist(b0, {±n1})βt = ϵ · βt

where the last equality follows (5.37).

Discussion of Theorem 14. Theorem 14 ensures that a properly initialized Algo-

rithm 3 converges linearly to a normal vector of the geometrically dominant hyperplane

H1, i.e., ±n1, provided a certain geometrically diminishing step size is used. Note

that Theorem 12 implies that ±n1 are global solutions to (5.1) when condition (5.17)

is satisfied. The initialization requirement coincides with Lemma 18, which states that

any critical point inside the cone C = {y ∈ RD : |y⊤n1| > 1/ζ1, ∥y∥2 = 1} must be a

normal vector of H1 (see Figure 5.1). Moreover, as discussed after Theorem 9, the

diminishing factor β is crucial to the convergence properties of the PRSGM in Algo-

rithm 3: convergence may fail if β is too small, and convergence may be slow when β

is too large, which will be further illustrated in Section 5.5. Finally, a result similar

to Proposition 4 that ensures a spectral initialization b0 = arg minb∈SD−1

X̃⊤b
2

2

for Algorithm 3 is close enough to {±n1} can be stated as follows.

Proposition 8. The spectral initialization b0 computed as the bottom eigenvector of
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the matrix X̃ X̃⊤ satisfies

dist(b0, {±n1}) ≤

√∑K
k=2

(
σ2

1(Xk)− σ2
D−1(Xk)

)
+ σ2

1(O)− σ2
D(O)

σ2
D−1(X1)

(5.39)

where σℓ(·) denotes the ℓ-th largest singular value.

5.4 Hyperplane clustering with DPCP

Recall that K-subspaces (KSS) [1, 10] is a simple iterative framework for subspace

clustering that alternates between assigning data points to clusters and fitting a

subspace to each cluster. The previous sections concentrated on the theory and

algorithms for solving the DPCP problem (5.1) for a UoH, showing it recovers the

geometrically dominant hyperplane. Inspired by the fact that condition (5.24) in

Theorem 13 is likely to hold in the subspace estimation step of KSS (since we expect

most of the points in the estimated cluster to belong to a single hyperplane), we use a

family of KSS variants for hyperplane clustering. Note that the better performance of

the iterative KSS approach over the sequential approach, which fits one hyperplane

at a time and removes the points belonging to the previously selected subspace, was

observed in [113] where the DPCP problem was solved by IRLS.

Aside from the standard KSS, we also consider the following two improved variants.

Ensemble KSS (EKSS). The performance of KSS is sensitive to its initialization

because the problem is non-convex. A practical approach is to repeat the process for

multiple random initializations and then pick the best one, or combine the results

213



together in a certain way. Based on the fact that partially-correct clustering information

from each random initialization of KSS can be combined to obtain a better clustering

result, the Ensemble KSS (EKSS) [68] constructs an affinity matrix whose (i, j)th

entry is the number of times the ith and jth points are clustered together, and then

applies spectral clustering to obtain the final clustering results.

Cooperative Re-initialization (CoRe) KSS. The Cooperative Re-initialization

(CoRe) [58] framework optimizes a group of clustering results (replicas) by greedily

swapping clusters between them to improve the overall quality. Both EKSS and CoRe

expect the clustering in each replica to be partially correct, and that the same pattern

of errors will not be made by all replicas. CoRe is capable of identifying bad clusters

in a replica and swapping them with better alternatives by monitoring the change in

the objective value, and hence it is observed to be more efficient than EKSS.

Since the above variants of KSS use PCA as the standard way to fit a hyper-

plane to a cluster, we denote them as PCA-KSS, PCA-EKSS, and PCA-CoRe-KSS.

To improve their performance, we replace PCA by our DPCP approach with the

PRSGM (Algorithm 3) and denote these KSS variants by DPCP-KSS, DPCP-EKSS,

and DPCP-CoRe-KSS. We also use the CoP [88] to fit the hyperplane for each cluster,

resulting in the three KSS variants CoP-KSS [42], CoP-EKSS [68], and CoP-CoRe-KSS.

Experimental results using both synthetic and real data for all of these algorithmic

variants are presented in the next section.
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5.5 Experiments

In this section, we evaluate the PRSGM (Algorithm 3) for solving the DPCP prob-

lem (5.1) under a UoH model. In Section 5.5.1 we investigate the performance of

integrating DPCP into various KSS variants (see Section 5.4) using synthetic data.

We further demonstrate its performance and superiority by experimenting on plane

clustering using real 3D data in Section 5.5.2.

5.5.1 Synthetic data

Convergence of PRSGM. We first numerically justify the convergence properties

of PRSGM (Algorithm 3) for solving the DPCP problem (5.1) under a UoH model.

The data are generated based on the random spherical model in Definition 5, where

we fix D = 9, N = 2000 with Nk+1 = 0.5Nk. Figure 5.2 shows the convergence of

PRSGM for various values of the geometric diminishing factor β, different outlier

ratios M
M+N

, and different numbers of underlying hyperplanes K, where we use the

spectral initialization and set the initial step size µ0 to 0.01. One can observe linear

convergence of PRSGM to H1 for all the cases if the diminishing factor β is tuned

properly. In particular, it verifies the role of β in Theorem 14, which is similar to that

of Theorem 9, namely that it controls the convergence speed. When β is too small,

e.g., β ∈ {0.1, 0.2, 0.4}, convergence may fail, which agrees with (4.18) and (4.19).

However, when β ∈ {0.6, 0.8, 0.9}, the algorithm converges linearly, with larger values

of β resulting in slower convergence speeds.

Hyperplane clustering. Next, we compare the performance of the methods
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Figure 5.2. Convergence of PRSGM (Algorithm 3) to H1 for the DPCP problem (5.1)
under a UoH model. In the experiments, we fix D = 9, N = 2000 with Nk+1 = 0.5Nk. We
choose b0 as the bottom eigenvector of X̃ X̃⊤ and set the initial step size µ0 to 0.01.

discussed in Section 5.4. Following the setup in [113], we test with ambient dimensions

D = 4, 9 for the synthetic experiments. And we test with K = 2, 3, 4, 5, N = 50KD

(each plane has the same number of points so that Nk = 50D), and M
M+N

= 0.3. Since

the KSS-style methods (without ensemble) are sensitive to initialization, we run them

10 times with random initializations until convergence (tolerance of 0.001) or 100

iterations is reached, and then select the best (i.e., the one with the lowest objective

value). The CoRe methods operate directly on these 10 replicas to return an improved

clustering result by aggregating the knowledge. For the EKSS-like methods, in each

replica we run the KSS-style methods for only 10 iterations but build the affinity

matrix based on 1000 such replicas, which is suggested in [68]. For the KSS variants

involve DPCP, we make the conservative choice of fixing β = 0.9 in PRSGM, which
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Table 5.2. Mean hyperplane clustering accuracy (runtime in seconds) over 50 independent
experiments when D = 4.

D = 4
K = 2 K = 3 K = 4 K = 5

MKF 0.7937 (0.13) 0.6263 (0.19) 0.5548 (0.23) 0.4643 (0.29)
SCC 0.9445 (0.21) 0.9209 (0.46) 0.9093 (0.77) 0.8784 (1.48)
EnSC 0.7011 (0.14) 0.4912 (0.23) 0.3913 (0.30) 0.3254 (0.41)

SSC-ADMM 0.6801 (0.86) 0.4810 (2.30) 0.3795 (4.32) 0.3175 (9.91)
SSC-OMP 0.5707 (0.07) 0.4134 (0.09) 0.3291 (0.12) 0.2747 (0.38)

DPCP-KSS 0.9834 (0.11) 0.9463 (0.46) 0.8985 (0.77) 0.8103 (1.05)
CoP-KSS 0.9614 (0.11) 0.8747 (0.42) 0.8300 (0.81) 0.7630 (1.24)
PCA-KSS 0.9601 (0.01) 0.8623 (0.05) 0.8142 (0.12) 0.7461 (0.19)

DPCP-EKSS 0.9889 (5.85) 0.8807 (8.19) 0.9778 (9.45) 0.9489 (12.67)
CoP-EKSS 0.8278 (10.90) 0.8393 (16.69) 0.8772 (20.46) 0.7938 (29.40)

PCA-EKSS 0.8278 (4.10) 0.8274 (6.03) 0.8517 (7.46) 0.7542 (10.58)

DPCP-CoRe-KSS 0.9832 (0.20) 0.9715 (0.55) 0.9561 (1.23) 0.9599 (1.93)
CoP-CoRe-KSS 0.9612 (0.10) 0.8992 (0.48) 0.9065 (0.96) 0.8907 (1.74)

PCA-CoRe-KSS 0.9603 (0.02) 0.8981 (0.12) 0.8769 (0.32) 0.8586 (0.80)

empirically works well but additional tuning for β is still possible. Besides those KSS

variants, we also test the performance of other state-of-the-art subspace clustering

algorithms that include MKF [146], SCC [17], SSC-ADMM [35], EnSC [141], and

SSC-OMP [143]. For MKF, we set the step size for gradient boosting to be 0.001,

the maximal allowed iterations to be 10000; and for SCC, we use the linear spectral

curvature clustering implementation; for EnSC, we set λ = 0.95 and α = 200; for

SSC-ADMM, we set ρ = 1 and α = 20; for SSC-OMP, we set kmax = 5 and ϵ = 10−8.

Table 5.2 and Table 5.3 report the mean clustering accuracy (runtime in seconds) of

the methods on 50 independent instances with the highest two clustering accuracies

in each column given in bold when D = 4 and D = 9, respectively.

One can see that the SC methods EnSC, SSC-ADMM, and SSC-OMP, which

are designed primarily for the low relative dimension setting, are among the least
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competitive for clustering hyperplanes. Notably, SSC-ADMM is significantly slower

than other competitors, especially when the ambient dimension and the number of

underlying hyperplanes become large. Also, MKF and SCC do not perform well.

Among the other methods, we observe that within each scheme, algorithms that

involve DPCP (implemented by PRSGM in Algorithm 3) almost always perform the

best. As a result, in each column the best method is the one that uses DPCP as the

internal solver for identifying the dominant hyperplane in a cluster. We find that with

as little as 10 replicas, the methods built on the CoRe framework perform very well.

We believe this result is because CoRe is more aggressive in dealing with bad clusters,

i.e., swapping them with other estimates, while for EKSS even bad clusters still have a

good chance of influencing the final clustering results. Finally, the EKSS-like methods

take significantly more time compared with other variants because its success relies

on a large number replicas to build an affinity matrix of high quality.
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Table 5.3. Mean hyperplane clustering accuracy (runtime in sec) over 50 independent
experiments when D = 9.

D = 9
K = 2 K = 3 K = 4 K = 5

MKF 0.5840 (0.19) 0.3973 (0.22) 0.2949 (0.22) 0.2470 (0.29)
SCC 0.9126 (1.46) 0.5940 (3.53) 0.3138 (5.83) 0.2519 (12.33)
EnSC 0.6223 (0.49) 0.3996 (1.63) 0.3125 (2.27) 0.2540 (2.76)

SSC-ADMM 0.6683 (10.09) 0.4010 (46.49) 0.2999 (112.77) 0.2548 (296.68)
SSC-OMP 0.5267 (0.13) 0.3573 (0.54) 0.2732 (0.71) 0.2232 (0.93)

DPCP-KSS 0.9927 (0.66) 0.9807 (1.24) 0.8051 (1.29) 0.5004 (1.80)
CoP-KSS 0.9706 (0.75) 0.9358 (2.78) 0.8380 (5.28) 0.5110 (8.35)
PCA-KSS 0.9619 (0.05) 0.9243 (0.22) 0.8074 (0.51) 0.5130 (0.93)

DPCP-EKSS 0.9938 (11.53) 0.9517 (16.15) 0.4908 (33.10) 0.2920 (44.41)
CoP-EKSS 0.8271 (43.96) 0.7900 (60.34) 0.3706 (107.24) 0.2867 (133.72)

PCA-EKSS 0.8221 (7.48) 0.7539 (14.00) 0.3660 (28.56) 0.2868 (39.68)

DPCP-CoRe-KSS 0.9928 (0.96) 0.9857 (3.98) 0.9784 (7.83) 0.9628 (11.12)
CoP-CoRe-KSS 0.9706 (0.78) 0.9415 (2.89) 0.9258 (5.64) 0.9089 (10.22)

PCA-CoRe-KSS 0.9619 (0.07) 0.9370 (0.38) 0.9278 (1.23) 0.9083 (4.11)

5.5.2 Plane clustering using real 3D data

We explore the performance of DPCP in hyperplane clustering using the real dataset

NYUdepthV2 [80], as introduced in Section 1.1.2.2, which contains indoor RGB images

of size 480 × 640 × 3 together with depth information for each pixel. We use the

experimental setup of [113], where the hyperplane annotation is done manually on

92 indoor RGBd images taken by Microsoft Kinect, but only the 89 of them that

contain more than one hyperplane are preserved. Thus, each RGBd image consists of

480× 640 depth values and Ki planes with Ki > 1, i ∈ {1, 2, ..., 89}. After the camera

calibration, 307,200 3D points are obtained from each image, which has dominant

hyperplanes such as floors, walls and so on. Ground-truth labels indicate that each

point either belongs to plane of index from {1, 2, · · · , Ki}, or is an outlier (index 0).
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Table 5.4. Mean clustering error (running time in seconds) for KSS variants with different
“backbones” on 89 annotated images of NYUdepthV2.

KSS CoRe-KSS EKSS
DPCP 10.2% (0.09) 9.3% (1.11) 8.0% (15.81)
PCA 12.4% (0.04) 11.7% (1.17) 10.8% (12.72)
CoP 11.0% (0.04) 10.8% (0.83) 13.8% (18.12)

Pre-processing. For computational reasons, we perform superpixel representation

where each image is segmented into about 1000 superpixels and the set of pixels

corresponding to each superpixel is substituted by their median depth. Since the

planes associated with an indoor scene are affine in R3, we use homogeneous coordinates

by appending 1 at the fourth coordinate and normalize it to unit length in R4. Finally,

since different superpixels represent different numbers of underlying pixels, we adopt

the practice in [113] that each homogenized superpixel is further weighted according to

its size so that points representing larger numbers of superpixels have more influence.

Evaluation. Given the estimated clusters for the superpixels, we assign the

original pixels to the same cluster as their representatives. Note that none of the

algorithms considered are explicitly configured to detect outliers, instead they assign

every point to some plane. We only evaluate the clustering error of the inlier subset in

the estimated clusters as was the practice in [113]. The clustering error is defined to be

the sum of mismatches from each cluster divided by the total number of inliers. Since

the labels of the ground-truth clusters could be mismatched with the estimations, we

report the minimum clustering error after performing a linear assignment.

Results. We now compare the KSS variants with different “backbones” as intro-
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duced in Section 5.4, namely PCA, CoP and DPCP, in clustering hyperplanes on the

89 annotated images of NYUdepthV2. The parametric setting for each method is the

same as for the synthetic experiments. Note that here we exclude the other general

subspace clustering algorithms discussed in the synthetic experiments since they have

been shown to be less competitive for the hyperplane clustering task (see Section 5.5.1).

We first show in Table 5.4 the average clustering error for the KSS variants applied

to the real data. One can see that a similar phenomenon appears as in the synthetic

experiments, namely that the algorithm achieving the lowest mean clustering error

is one using DPCP as the internal subproblem (solved by PRSGM in Algorithm 3)

for estimating the dominant hyperplane within each KSS framework. On the other

hand, although the KSS method runs very fast, it is generally not comparable with

CoRe-KSS or EKSS in this test. Note that EKSS takes significantly longer time for

its construction of the affinity matrix, which is based on 1000 KSS replicas. Finally,

in Figures 5.3, 5.4 and 5.5, we give visual comparisons of various approaches on

clustering hyperplanes from 3D point clouds of image 55, image 5 and image 60 in

NYUdepthV2, respectively.
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Figure 5.3. Visualization of various approaches in clustering two hyperplanes from a 3D
point cloud of image 55 in NYUdepthV2.
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Figure 5.4. Visualization of various approaches in clustering three hyperplanes from a 3D
point cloud of image 5 in NYUdepthV2.
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Figure 5.5. Visualization of various approaches in clustering four hyperplanes from a 3D
point cloud of image 60 in NYUdepthV2.
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Chapter 6

Conclusions

This thesis developed extensive theory and algorithms for subspace learning for data

arising from subspaces of high relative dimension.

In Chapter 3 we extended the global optimality analysis of the Dual Principal

Component Pursuit (DPCP) method from learning a hyperplane with noiseless data

to a subspace of any dimension in the high relative dimension regime with noisy data.

We established a geometric analysis that revealed that the subspace angle between

the global solution to the non-convex DPCP problem and the orthogonal complement

of the subspace is upper bounded by an amount that is proportional to the noise

level. We also derived a probabilistic analysis that shows that the DPCP problem

for learning a subspace of high relative dimension can handle O((#inliers)2) outliers

even in the noisy setting, which is superior to other existing robust subspace recovery

methods that can tolerate at best O(N) outliers in theory.

In Chapter 4 we presented a Projected Riemannian Sub-Gradient Method (PRSGM)
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and showed that with proper initialization and step size, it converges linearly to

some points at which the objective function satisfies a certain Riemannian regularity

condition (RRC). We then applied PRSGM to the DPCP problem for learning a single

subspace and proved that it converges linearly to a neighborhood of the orthogonal

complement subspace, whose region is proportional to the noise level. Experiments on

synthetic data and 3D roadplane detection demonstrated the effectiveness of using

PRSGM as the subproblem solver for DPCP in robust single subspace learning.

In Chapter 5 we improved the existing global optimality theory of DPCP for a

union of hyperplanes (UoH) by deriving a more transparent geometric analysis and a

new probabilistic analysis. Our analysis shows that under certain conditions any global

solution to DPCP for a UoH is a normal vector to a geometrically dominant hyperplane.

Also, we proved a convergence result for PRSGM when used for DPCP under a UoH

model. Finally, by integrating DPCP into KSS (DPCP-KSS) and utilizing ensembles

of DPCP-KSS, experiments on synthetic data and 3D plane clustering showed that

we achieve state-of-the-art performance in hyperplane clustering.

There are many interesting directions for future work. Theoretically, one can

extend the analysis of DPCP for a UoH to a union of high dimensional subspaces.

Algorithmically, one can design an efficient intrinsic optimization method for solving

DPCP wherein the iterates move along geodesic directions, which contrasts the

extrinsic PRSGM. Finally, one can explore additional applications of DPCP such as

clustering deep features extracted from images of a single object category in ImageNet.
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