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Abstract 

Stimulus-driven timing is a fundamental aspect of human and animal behavior.  This type 

of timing can be subdivided into three principal axes: interval generation, storage, and 

evaluation.  In this thesis, we present results related to each of these axes and describe their 

implications for how we understand timed behavior.  In Chapter 2, we address interval 

generation, which is the process of creating an internal representation of an ongoing 

temporal interval.  While several studies have found evidence for neural oscillators which 

may subserve this function, it has remained an open question whether such a mechanism 

can be useful for timing at even the lowest level of cortex.  To address this question, we 

analyze electrophysiological data collected from rats performing a timing task and find 

evidence that, indeed, timed reward-seeking behavior tracks oscillatory states in primary 

visual cortex.  This kind of finding raises an important question: how is this temporal 

information stored after the interval has been generated?  This process is called interval 

storage, and we address the sources of noise that might corrupt it in Chapter 3.  Specifically, 

we devise a novel timing task for humans (BiCaP) to address whether memory biases can 

account for performance on a classification task, in which a subject must decide whether a 

test interval is more similar to one or another reference interval.  We find that they do, and 

argue that these sources of noise must be accounted for in theories of timing.  In Chapter 

4, we deal with interval evaluation which is the process of using this stored temporal 

information to make valuation decisions.  We study this process through the lens of 

foraging behavior.  Specifically, we develop and test a framework that rationalizes 

observed spatial search patterns of wild animals and humans by accounting for the temporal 
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information they gather about their environment, and how they discount delayed rewards 

(temporal discounting).  Lastly, in Chapter 5, we discuss how these processes are integrated 

and the implications of these findings for theories of timing. 
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Chapter 1. Introduction 

In order to survive, animals must execute precise responses to environmental stimuli.  

Doing so requires knowledge of what a stimulus means: both in terms of what it predicts 

and when.  In this thesis, we focus on the temporal dimension and investigate the neural 

mechanisms underlying timed behaviors.  In particular, we concentrate on visually-guided 

timed behaviors.  

In studying timing, there are a variety of temporal ranges to choose from.  At one extreme, 

animals can respond subconsciously in the millisecond range, such as when walking is 

perturbed by an unexpected stimulus but balance is maintained.  At another extreme, 

biological processes across a wide range of organisms follow circadian rhythms which take 

hours or days to adapt to an environmental change (3).  Neither of these processes occurs 

at a conscious level.  Timing at the hundreds of milliseconds to seconds level, on the other 

hand, often involves conscious decision-making and voluntary actions (4, 5) and is 

generally thought to engage distinct neural mechanisms (6).  Here, we are interested in the 

cognitive aspect of timing, and thus focus on interval timing in the seconds range. 

Even within this temporal range, several distinct neural processes are engaged during timed 

behaviors (7–10).  With respect to stimulus-driven behaviors, internally generating 

temporal intervals following a visual stimulus is critical.  Note that generation of a temporal 

interval at the neural level may occur even in the presence or absence of an overt behavior.  

For instance, an animal may be instructed to produce or withhold a lever press for a certain 

duration following a stimulus;  in either case, the animal must be able to internally generate 
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the interval.  In some cases, interval generation would not suffice to accomplish the task at 

hand.  Imagine, for instance, that an animal must compare the duration of an ongoing, cued 

interval to a remembered interval.  In that case, the animal has to store that previous 

temporal interval in memory to be able to make a comparison to the current interval (which 

would also have to be translated into some common currency).  This process is interval 

storage, and in many real-world behaviors it must be used in combination with interval 

generation to successfully accomplish a timed behavior.  Finally, successful decision-

making often relies on incorporating temporal information, even if the decision ultimately 

does not occur on a temporal axis.  For instance, choosing between an option A and an 

option B may not actually require a direct temporal comparison—but information about 

temporal intervals associated with A and B (e.g. I will receive reward sooner if I choose 

option A) can play a role in the decision.  We define this axis of timing as “evaluation”.  In 

sum, we will address how cognitively-complex animals are able to generate, store, and 

evaluate temporal intervals in the seconds range during visually-guided decisions. 

 

1.1 Generating temporal intervals 

Several behavioral tasks have been brought to bear to better understand the neural 

processes underlying interval generation in humans.  One advantage of using human 

subjects, rather than animals, is that they can be explicitly directed to produce an interval 

of a certain length. This sometimes occurs via verbal instruction (e.g. produce a 4 second 

interval) but more commonly occurs by comparison to a reference interval (e.g. produce 
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an interval that closely matches the interval just shown).  Such non-verbal instruction is 

generally preferred as it eliminates the noise that may arise due to translation from a 

verbally-specified quantity. This may be particularly important, as time and quantity 

processing may rely on highly overlapping mechanisms (11).  In many cases, interval 

production involves pressing a keypad to start and/or stop a temporal interval (start/stop 

task), or pressing and holding a key/lever throughout the interval.  In other instances, 

subjects may be asked to produce rhythmic taps (where the time and variability between 

taps is measured), though this type of task is generally not stimulus-guided and, thus, is not 

of primary concern here.   

Repetitive actions of a different variety are, however, one of the primary methods of 

assessing interval production in animals.  In rodents, for example, the fixed- and peak-

interval procedure are commonly used tasks (12).  In the fixed-interval procedure, a 

stimulus is turned on at the start of a trial, and the animal can turn it off and receive a 

reward by performing some action (e.g. pressing a lever or poking into a reward port) after 

a certain amount of time has passed.  If the animal performs this action during the fixed 

interval, nothing happens, and the animal can try again.  Thus, the rate at which the action 

is performed throughout the trial provides a measurement for the internally generated 

interval.  Similarly, the peak-interval procedure contains fixed-interval trials, but also 

interleaves probe trials in which the action neither terminates the stimulus nor results in 

reward.  In this task, the time during which level-pressing is highest is considered to 

correspond to the peak of reward expectation, whereas presses around this time offer a 

sense of the variability associated with this estimate.  While useful, these tasks do not 

require precise timing: the action can occur any time following the stimulus.  To address 
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this, penalties for poor timing (e.g. performing an action well before or after a certain 

interval) may be imposed (13).  Such a task is described in Chapter 2. 

In order to generate these timed behaviors, some form of prolonged neural activity is 

required.  For decades, the predominant view was that timing behaviors were subserved by 

a single centralized clock (14).  Lots of experimental evidence in the last decade, however, 

has pointed to the involvement of many distinct brain regions.  This changing perspective 

applies to stimulus-driven timing in particular; whereas associative areas are commonly 

implicated in complex tasks, mounting evidence suggests that motor and sensory regions 

may play key roles in timing as well.   

One neural signature that has been observed in these brain regions is ramping (or step-

wise) changes in firing rate.  Within motor areas, the most anterior region of the 

supplementary motor area (pre-SMA) has been shown to represent time in this way.  

Specifically, distinct subsets of neurons show exponential buildup or decay  in firing rates 

as they anticipate a change in the color of a visual stimulus after 2,4, or 8 (15).  This 

supports an earlier finding that ramping in pre-SMA is more gradual when the temporal 

interval is more variable (16).  This type of ramping activity has also been observed in 

premotor cortex.  In one study, ramping was only observed for a long delayed stimulus 

change, but not a short delayed or variable stimulus change (17), perhaps because it would 

not be behaviorally useful in these cases.  Outside of motor cortex, ramping activity has 

been observed in associative areas.  Following studies showing that inactivation of PFC 

impairs timing (18, 19), subsequent recordings from single units with medial PFC showed 

ramping activity whose slope decreased as the duration to be timed increased (20, 21).  
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Within lateral intraparietal cortex (LIP), ramping has been observed for proactively-timed 

(i.e. anticipating a cue change) but not reactive (i.e. responding to a cue change) movements 

(22), and has been shown to track the hazard rate of receiving a visual “go” cue (which is 

a complex, non-linear function) (23).  Interestingly, this differential response to 

proactively-timed and reactive movements has been found in subcortical regions, such as 

the putamen (24) and primate motor thalamus (25).  In addition, rodents performing the 

peak-interval procedure exhibit peaks in activity around the targets durations (of 10 and 40 

seconds) in the striatum (26).  

Perhaps most surprisingly of all, interval generation has even been found in sensory cortex.  

Unlike the aforementioned areas, evidence suggests that sensory cortex processes temporal 

information in a modality-specific manner (27).  For instance, disruption of the posterior 

parietal cortex (through rTMS) interfered with timing in the auditory as well as visual 

domain whereas disruption of area MT/V5 during the same task interfered with timing in 

the visual domain only (28).  Given our emphasis on visually-guided behaviors, we will 

therefore focus on visual cortex.  (Interestingly, supramodal timing has been found in 

primary auditory (but not visual) cortex through a similar TMS disruption procedure (27), 

suggesting that auditory cortex may take on a more diverse role in timing).  

Like in parietal cortex, ramping activity has been found to track the hazard rate of a cue 

change in visual cortex.  This has been observed in fMRI studies in primary visual cortex 

(V1) and V2/V3 (29) and has also been confirmed at the single neuron level within V1 

(where the difference in firing rate between an unattended and attended stimulus closely 

tracked the hazard rate of cue disappearance) (30).  This phenomenon has also been 
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reported in V4 neurons as monkeys anticipated an orientation change (31).  Thus, it seems 

that tracking stimulus anticipation is a general feature of the early visual pathway.   

Still more surprising is that visual cortex has been shown to carry temporal information 

about upcoming non-sensory events (32).  Single unit recordings have revealed that 

neurons in V1 can represent the delay between a visual stimulus and a reward with ramping 

or step-wise changes in firing rate (33–35).  Crucially, the duration of these changes 

depended on the expected duration of the delay period, which was knowable based on 

which of two monocular cues was presented. In these studies, there is no specific timing 

requirement for the animal; in fact, the fastest way to achieve reward is to lick as quickly 

as possible at the reward port following the visual stimulus.  However, a recent study 

imposed a timing requirement and found that this ongoing activity is behaviorally relevant 

(36).  Specifically, the amount of water available at the reward port was changed to be 

dependent on the amount of time waited to lick post-stimulus, according to a ramp-like 

structure (where reward increases gradually and then drops abruptly to zero).  Recordings 

from V1 during this task showed firing rate modulations during the period between the 

stimulus and the action, whose optogenetic perturbation shifted behavioral timing.  

Together, these findings support the view that sensory cortex, and visual cortex in 

particular, is involved in interval generation.  Thus, neural activity realted to interval 

generation seems to be exhibited in many brain regions during visually-cued behaviors. 

In addition to sustained neural activity, oscillatory activity has been linked to timing.  While 

there are fewer studies showing a strong association between this type of activity and 

timing, it has nevertheless been observed in diverse brain regions.  Indeed, oscillations in 
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motor cortex (37) and in prefrontal areas (38) have been linked to temporal prediction of 

visual cues.  As with ramping activity, oscillatory activity in the central midline areas of 

cortex has been found to track the hazard rate of visual cue-change expectation (39).  

Within subcortical regions, oscillatory activity in the putamen has been linked to the inter-

tap duration on rhythmic tapping tasks (40) and start/stop tasks (41).  

Within visual cortex, oscillatory responses in the local field potential (V1) have been 

known about for some time (42, 43), but have only recently have been implicated in timing.  

(Again, it is important to keep in mind the distinction between millisecond and seconds-

range timing; high-frequency oscillations in visual cortex have been strongly implicated in 

facilitating stimulus prediction (44, 45) and feature binding (46, 47)).  As with ramping 

activity, oscillations have been implicated in spanning delay intervals between stimulus 

events (e.g. a cue change); a recent study found that gamma oscillatory power in the local 

field potential (LFP) increased as temporal expectation for a visual fixation point change 

increased (48).  

Also like ramping activity, oscillations in sensory cortex have also been implicated in 

interval generation for non-sensory outcomes.  Recently, LFP theta oscillations from V1 

were analyzed in rats performing a similar task to that described earlier for reward timing 

(49).  Whereas early in training the duration of the theta oscillations correlated with only 

the intensity of the stimulus, late in training it correlated strongly with the average delay to 

reward on a given session.  Overall, these studies point to a role for oscillations in timing 

in primary visual cortex.  It is still unclear, however, whether oscillatory activity in V1 is 

behaviorally meaningful as the tasks used to investigate it do not have an explicit timing 
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requirement; the action to achieve reward was either directly cued (48) or was atemporal 

in nature (i.e. ballistic licking) (49).   

In sum, multiple signals have been implicated in stimulus-driven generation of temporal 

intervals.  These signals exist in many brain regions, from motor cortex to the basal ganglia.  

Surprisingly, timed oscillatory signals have even been observed at the very earliest stages 

of visual processing, including primary visual cortex.  It remains unclear, however, whether 

this activity is behaviorally meaningful.  We address this question in Chapter 3, Interval 

generation and oscillations in primary visual cortex.  

1.2 Storing temporal intervals 

The ability to generate intervals, which we discussed in the previous section, is not 

sufficient for a range of problems.  Say, for instance, a subject was shown two successive 

visual stimuli (Cue A and B) that persisted for different durations and then was asked which 

was longer.  While the subject may have generated an internal representation of the ongoing 

interval, it is not clear how it could be directly stored to make this comparison; 

theoretically, it might be possible to internally generate these intervals and then choose the 

cue associated with the interval that lasts longer.  This seems, implausible, however, as the 

decision can be made near instantaneously.  This suggests that, instead, the intervals 

associated with each cue are stored in some way.  The mechanisms underlying that storage 

process are explored in this chapter.  

In our discussion of interval generation in the preceding section, we described common 

temporal production tasks but glossed over the fact that in many of these tasks it is 
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necessary to have a representation of the target interval.  In the peak-interval procedure, 

for instance, it is necessary to have a sense of when the probability of reward is highest 

(which corresponds to the peak rate of the reward-seeking action).  Therefore, even in 

production tasks, there must be an element of interval storage.  This is especially explicit 

in reproduction tasks, where a standard interval is shown and a subject is required to 

reproduce it.   

But there are also a number of tasks for assessing interval storage which isolate its 

mechanism and do not have an explicit production component.  Interval classification is a 

very common method for this (12).  Though there are many variants, classification tasks 

essentially boil down to the task described above for deciding whether the interval 

associated with cue A or B is longer.   In a typical set up, the subject is shown two reference 

intervals during training and told that one is short and one is long.  During testing, the 

subject is shown a variety of intermediate intervals and must indicate (verbally or with a 

keypress) whether a given test interval is closer to the short or long reference interval.  A 

psychometric curve for the probability of selecting “long” can then be created by averaging 

the decisions for each test interval.  Usually, this results in a sigmoidal curve where test 

intervals at the extremes are easy to discriminate, but intervals near the middle of the two 

reference intervals are challenging.  The bisection point is the temporal value at which the 

subject is equally likely to guess that the interval is short or long.  Accurately determining 

the location of the bisection point is considered critical to understanding temporal storage 

and temporal perception, generally (50).  
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Before delving into the neural mechanisms underlying temporal storage and the location 

of the bisection point, it is important to describe several key insights from behavioral 

observations.  One particularly influential finding in the field of psychology is that changes 

in quantities are perceived in proportion to the magnitude of those quantities.  This is called 

Weber’s law (51) and the intuition is as follows: if one were blindfolded and given a 5kg 

block in one hand, and another block in the other hand, how heavy would that block need 

to be so that it could be reliably distinguished as heavier or lighter?  In other words, what 

is the just-noticeable difference (JND)?  A reasonable guess in this case might be 1kg.  But 

what if, instead, the subject was given a 50kg block; would it be possible to notice this 1kg 

difference?  Probably not.  In fact, Weber’s law suggests that the JND is proportionate to 

the quantity being measured, and would therefore be 5kg in this case.  Though perhaps 

overly simplistic (52), this law has been observed to hold in a variety of contexts (53–55), 

including time perception (56).  (By the same intuition, it is easier to tell the difference 

between 5 and 6 seconds than 50 and 51 seconds.)  Scalar Expectancy Theory (SET) (57), 

one of the most influential theoretical accounts of timing, relies heavily on this observation; 

in fact, the scalar in SET refers to the fact that accuracy in timing is a scalar multiple of the 

quantity being measured.  SET provides a description for how comparisons of sample 

intervals in a classification task take place.  According to SET, the ratio of the test interval 

to the short reference interval is compared to the ratio of the long reference interval to the 

test interval, and the reference interval associated with the smaller of these ratios is chosen.  

This comparison, while perhaps not initially as intuitive as a simple arithmetic comparison, 

is motivated by the fact that the reference intervals are different magnitudes and, thus, are 

associated with different JNDs.  To illustrate this point, it is useful to think about where 
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the bisection point between two reference intervals would lie; if the reference intervals 

were 1 second and 5 seconds, respectively, then SET would predict that the bisection point 

(x) lies below the arithmetic mean of 3 seconds, at ~2.236 seconds, because the ratios of 

1:x and x:5 are equivalent at that point. 

Though SET makes precise predictions about the location of the bisection point, noise can 

arise from its underlying neural processes.  SET proposes a pacemaker-accumulator (PA) 

model for interval storage (57, 58), in which  a pacemaker emits discrete pulses which are 

counted by an accumulator, when a stimulus drives completion of a circuit between them. 

The pacemaker component has been suggested to be driven by a neural oscillator (59), as 

it provides a robust and rhythmic (clock-like) signal.  In this way, production and storage 

mechanisms may be intertwined: a pulse-like oscillator could simultaneously generate an 

interval and send its information to an accumulator for temporary storage.  Following 

reinforcement, the scalar value in the accumulator is written to long-term memory.  Thus, 

the scalar value in memory serves as the representation for the duration of the interval.  

When comparing a test interval to a reference interval, therefore, comparison may occur 

between these scalar quantities.   

Noise can enter this system at multiple levels.  For one, the pacemaker itself may operate 

at different speeds.  If it runs too fast, the interval will be perceived as longer than it is in 

reality but if it runs too slow, or its signal is not robust, the interval will be perceived as too 

short.  Second, the gating mechanism could be faulty, being either too permissive or too 

restrictive.  Third, the long-term memory store could be noisy, such that the scalar quantity 

changes over time.  When doing a comparison, therefore, it would matter how far in the 
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past the scalar quantities were transferred to memory.  Pharmacological studies have, 

indeed, dissociated these effects by showing selective adjustment of clock speed and 

memory processes (60).    

As accurately measuring the bisection point is important for theories of timing (50), it is 

important to account for these sources of noise.  Unfortunately, the bisection point is most 

commonly measured using only classification tasks.  It is, therefore, difficult to control for 

these sources of noise.  One straightforward approach to address this problem is to combine 

a standard classification task with a production task in which subjects must generate what 

they believe to be the standard reference intervals (1). Combining interval generation with 

the classification task in this way affords the opportunity to see how memory biases 

influence storage.  Such a task, along with its results and implications, is described in 

Chapter 4.   

It is important to note that the plausibility of the pacemaker-accumulator model has been 

challenged recently.  Though there have been some demonstrations that implicate its 

conceptual components, such as the pharmacological studies described earlier (60), the 

central critique of the model is that it is not rooted in biological plausibility (61).  

Alternatives to SET have been suggested, such as Killeen’s Behavioral Theory of Timing 

(62) and its derivative, the Learning-to-Time model (63), but, ultimately, they are more 

behaviorally than biologically motivated as well.  Still other models eschew the notion of 

a clock entirely, favoring, instead, a memory-based representation for time-keeping (64); 

this, too, is criticized as biologically implausible (if not conceptually implausible owing to 

the need for an arbitrarily high number of integrators to represent various temporal 



 13 

durations (65)).  The research landscape is, therefore, open to alternative theories firmly 

rooted in biology.   

Along this line, a current, popular alternative to the PA model is the Striatal Beat Frequency 

(SBF) model (66).  In this model, various cortical oscillators are initiated by a start gun 

(proposed to be dopaminergic output from the VTA) and medium spiny neurons (MSNs) 

of the striatum decode their output.  Since all of these oscillators operate at different 

frequencies, they are at different scalar values at the time of reinforcement; therefore, the 

vector of scalar quantities decoded by the striatum at the time of reinforcement serves as 

the memory for the interval.  When trying to time an interval, therefore, the state of the 

ongoing oscillations is compared to this remembered vector and, when matched, the 

interval is terminated.  The SBF is appealing because it has roots in biology and offers a 

mechanism by which intervals can be stored.  It also contains some of the high level 

components that would be subject to noise (e.g. pulse-like oscillators running at various 

speeds and memory for the scalar vector).  However, it is hard to imagine how such a 

storage mechanism could be used for the classic case of interval comparison.  While it 

would be possible to determine whether a given interval were near identical to a prior 

interval, it is unclear how the code could be used to determine whether one interval were 

longer than another (and by how much).  Moreover, at this point, more testing and 

experimental support for SBF is needed (61).   

While it is unclear which timing model is most appropriate for explaining interval storage, 

memory is nevertheless a key component of them all.  In Chapter 4, we will investigate 
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how biases in memory can affect time perception and, consequently, performance on a 

bisection task.  

1.3 Evaluating temporal intervals 

Interval generation and storage are fundamental to timing, but they also subserve decision-

making when no explicit timing behavior is required.  For instance, imagine a subject were 

presented with two cues, A and B, each associated with a different length interval, as 

before.  Having learned those intervals, the subject is offered the option of choosing A or 

B, with the stipulation that reward will be received after waiting the duration of the interval 

associated with that stimulus.  In this case, the subject will probably want to choose the 

stimulus associated with the shorter delay.  Note, however, that this choice is not strictly 

timing based.  Rather, the subject is incorporating temporal information into an ultimate 

decision.  We define this process of making decisions that leverage temporal information 

as interval evaluation.   

The example described above is a simple illustration of a powerful concept in interval 

evaluation: temporal discounting.  Simply put, temporal discounting is the concept that a 

reward displaced farther in time is valued less than when it is imminent.  This concept is 

tightly intertwined with the concept of subjective value, which is the perceived value of an 

outcome to an agent.  Generally speaking, animals have a preference for imminent rewards, 

such that the subjective value of an option decreases as the time to reward increases.  But 

this raises an interesting question: exactly how much does subjective value decrease with 
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time?  That is, what is the shape of the temporal discounting function? And, further, what 

variables, if any, influence it?   

Investigation into the exact form of the temporal discounting function has long been a topic 

of vigorous research.  It is of broad relevance to economists, psychologists, and 

neuroscientists alike because it has deep implications for animal and human behavior.  At 

a high-level, it is generally accepted that the temporal discounting function is 

monotonically decreasing.  At a finer level, the discounting function has traditionally been 

modeled as a decreasing exponential in economics (67).  This is appealing because it is 

simple and intuitive; subjective value declines at a rate proportional to its current value 

which implies that, in absolute terms, the subjective value declines much more rapidly for 

nearby than for distant time points.  Intuitively, this makes sense: you probably care a lot 

more about getting a reward today versus tomorrow than about getting it in ten years versus 

ten years and a day.   

Despite its simplicity and intuitive appeal, however, the exponential discounting model 

fails another test of intuition.   If given the choice between $10 today and $15 in a month, 

it is likely that many people would choose the earlier, smaller option.  (The exact numbers 

are not important; what is important is that there are some values for which there would be 

a preference for the earlier, smaller option.)  Now imagine that these same people were 

given the choice between $10 in a year and $15 in a year and month.  In this case, it would 

not be surprising for many of these same people to choose the $15 in a year and month 

(larger, later option).  Intuitively, the rationale for this is that by adding a year to both 

options, the month delay for the higher option all of a sudden does not seem matter as 
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much.  This kind of behavior would not be predicted by an exponential discounting model, 

however, because in both cases the marginal gain of $5/month is the same. Since the 

subjective discounting rate is constant in an exponential model, the choice of taking 

$5/month should be the same regardless of context.  We can even take this a step further.  

Instead of having two option sets ($10 today vs $15 in a month and $10 in a year vs $15 in 

a year and a month) imagine that we only had the second option: $10 in a year vs $15 in a 

year and a month.  Imagine that subjects are allowed to choose which option they prefer 

today but also adjust their choice until they have received a reward.  As before, an 

individual choosing today might choose $15 in a year and a month (larger, later option).  

But what happens as the day approaches?  In a year from now, the individual will be in the 

exact same situation as for the other option set: choosing between $10 today and $15 

tomorrow.  At that point, the subject may well prefer the $10 option (smaller, earlier 

option).  Therefore, as time elapses, the preferred option may change from the larger, later 

reward to the smaller, earlier reward.  This phenomenon is known as a preference reversal, 

and it has been observed in animals and humans (68).  

To explain these patterns of human and animal behavior, psychologists have developed 

hyperbolic temporal discounting models (67). Compared to an exponential model, a 

hyperbolic model discounts more steeply at early times but less steeply at late times.  

Therefore, in our example comparison between the two option sets, the additional 

$5/month is more steeply discounted today than in a year and, thus, it makes sense to 

choose the smaller, earlier reward in one case ($10 today vs $15 in a month) and the larger, 

later reward in the other ($10 in a year vs $15 in a year and a month).  Similar logic applies 

to the preference reversal: as time elapses, the steepness of discounting changes such that 
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the preference shifts from the larger, later reward (distant in time; gentle discounting) to 

the smaller, earlier reward (near in time; steep discounting).  Generally speaking, 

hyperbolic or hyperbolic-like models have been found to be superior fits to behavioral data 

than exponential models (69, 70).  Recent work has even demonstrated that a hyperbolic-

like discounting function arises naturally from attempting to maximize reward rate, given 

some practical constraints (71).  

Another related body of work deals with maximizing reward rates across space.  For 

decades, ecologists believed that animals foraged according to Brownian motion—that is, 

random walks in their environment (72).  Recent improvements in tracking devices and 

study methodologies led to the realization that, in fact, animals in the wild often do not 

search according to Brownian motion; in fact, their foraging behavior is characterized by 

a higher frequency of long excursions that is well-described by another process: the Lévy 

flight (73, 74).  Essentially, the distribution that arises from this type of process is power-

law distributed.  This finding is of great interest, in part, because these types of 

superdiffusive movement patterns have been observed for a range of physical phenomena 

(75).  Thus, it is surprising that animals seem to abide by these same movement dynamics.  

This finding is of still greater interest as modeling efforts have shown that, in some cases, 

Lévy foraging patterns may be optimal (76).  Recently, however, studies have pointed out 

that this model of optimality is rather brittle—that is, it holds for only very particular and 

unrealistic constraints and parameters (77).  Aside from the fragility of the model itself, 

one of the implicit, unrealistic assumptions underlying this work is that foragers have no 

spatial memory and have no capacity to produce systematic, deterministic searches.   
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Why, then, do foragers seemingly exhibit these Lévy walks?  Might there be a more 

biologically-plausible explanation for them?  Since spatial search clearly involves 

considerable temporal investment, it is reasonable to assume that these temporal costs are 

accounted for in the search algorithm.  Therefore, the insights related to temporal 

discounting can be brought to bear on this problem.  We explore this connection in Chapter 

4, and describe the results and implications for foraging theory.  Thus, we describe a key 

way in which information about temporal intervals is incorporated into decision-making.   

In the following chapters we will describe our insights into visually-guided interval 

generation (Chapter 2), storage (Chapter 3), and evaluation (Chapter 4) in cognitively-

complex animals.  In chapter 5, we will describe how these findings might be integrated 

into a unified view of timing.    
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Chapter 2. Interval generation and oscillations in 

primary visual cortex 

Abstract  

Several lines of recent work have challenged the long-standing belief that sensory cortex, 

and primary visual cortex (V1) in particular, faithfully represents the physical world. One 

such line of work has suggested that V1 can represent even the non-sensory outcomes that 

a stimulus portends.  Indeed, it has been shown that theta oscillations in the local field 

potential (LFP) of V1 can generate the temporal delay between a visual stimulus and an 

expected reward, following conditioning.  We extend this work by presenting evidence that 

these oscillations relate to a stimulus-driven, timing behavior.  In particular, we show that 

with training, high precision and accuracy in timed behavior tracks theta oscillatory power 

in V1.  In addition, we find that the duration of these theta oscillations covaries with the 

time of action execution.  These LFP oscillations are intimately related to spiking responses 

at the single unit level, and, aggregating correlated input across ensembles of increasing 

size increases the predictive power of the timing signal.  Together, these observations 

suggest that oscillatory activity in V1 carries behaviorally-relevant timing information and, 

thus, they extend our understanding of V1’s role in stimulus-driven behaviors and the role 

of oscillations in interval generation. 
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2.1 Introduction 

Generating timed responses to environmental stimuli is crucial for survival.  Such stimulus-

driven behaviors require knowledge of both what to expect and when, and many high-level 

brain areas have been shown to report this information.  Neurons in the striatum (78–82), 

orbitofrontal cortex (83–86), and amygdala (85) have been found to express temporal 

predictions about outcomes, while  dorsolateral premotor cortex (87–89), prefrontal cortex 

(90), and distinct regions of the striatum (91) have been implicated in translating this 

temporal information into action.  Sensory regions like primary visual cortex (V1)—the 

earliest stage of cortical visual processing—are typically regarded as contributing only to 

the first phase of such behaviors: perception (92, 93).  Recent work suggests, however, that 

experience-dependent plasticity in V1 can also give rise to information about when to 

expect an outcome (30, 33).  It has even been shown that such sustained modulations in 

firing rate in V1 contribute to visually-timed behaviors (36).        

A distinct signal in V1—oscillations in the local field potential (LFP)—has also generally 

been interpreted as relaying perceptual information.  One of the key roles for oscillations, 

particularly in the gamma range, may be to enhance binding of visual features to create a 

complete visual percept (46, 47).  Another crucial function of oscillations is to facilitate 

anticipation of upcoming stimuli, though this type of predictive information is often 

reported as lasting on the order of only tens or hundreds of milliseconds (44, 45, 94).  But 

recent observations have also pointed to a role for oscillations in stimulus prediction on the 

order of seconds (30, 48)—the temporal range that is crucial in most cognitive tasks.  

Moreover, it has been found that theta oscillations in the LFP of well-trained rodents are 
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related to even non-sensory outcome predictions (49).  Specifically, the duration of theta 

oscillations in V1 was found to correlate with the average temporal delay between a visual 

stimulus and an expected water reward.  While it is interesting that this distinct signal 

carries temporal information, it is unclear whether it is behaviorally relevant. 

To address this, we analyzed data from a task (36) in which rodents with chronic electrode 

implants in V1 must execute a visually-cued timed action in order to achieve reward.  

Surprisingly, we found that these visual cues evoked theta oscillations in V1 whose 

presence corresponds, on a per trial basis, to trials with improved performance on the 

timing task.  Further, we find that the duration of these oscillations covaries with the time 

of an action, and that this relationship evolves with training.  This theta oscillatory activity 

in the LFP is intimately related to the activity of single units, which can be observed to 

spike in phase with the LFP oscillation.  Specifically, we find that synchronously firing 

neural ensembles carry predictive information about the timing of the action.  Thus, these 

findings further our understanding of V1’s role in stimulus-driven behaviors, provide 

evidence for theoretical accounts of timing which implicate neuronal oscillators (7, 95, 96), 

and extend our knowledge of the role for theta oscillations.  
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2.2 Results: Oscillatory states appear in V1 during a visually-

cued timing task 

Eight wildtype rats were trained on a timing task (36).  In this task, the animal enters a 

nosepoke to initiate a trial, waited a random delay without licking, received a full-field, 

monocular visual stimulus (100ms, green LED, delivered through head-mounted goggles), 

and then licked at a chosen time.  The time that the animal chooses to lick post-stimulus 

determines the amount of reward it obtains on a given trial.  Specifically, the amount of 

water reward available rises linearly with time up until 1.5 seconds, at which point it drops 

to and remains at zero (Figure 1a).  In this way, animals are encouraged to time their licks 

from the visual stimulus so that they fall near, but not past, the peak of the reward ramp. 

Animals trained in this task exhibit cue-evoked theta oscillations in the local field potential 

recordings from the primary visual cortex.  This theta oscillation can be seen in the average 

voltage trace across trials of a session when aligned to stimulus onset, as in Figure 1b.  In 

this example, the average voltage trace exhibits appreciable oscillatory strength for about 

one second following visual stimulation.  Separating the responses per trial (Figure 1c) 

reveals differences in the presence, amplitude, and duration, of theta oscillations across 

trials (Figure 1c, inset).   

In order to quantify these across-trial differences in the presence, amplitude, and duration 

of oscillations, we transform this raw voltage signal into a metric of oscillation strength. 

We focus our analysis within a 4 to 9 Hz frequency range as the preponderance of the signal 

power falls within this range (Figure 1d).  Using this range, we generate a “concentrated 
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energy” score—a measure of the power and purity of the oscillation (methods)—for every 

time point within each trial, as done previously (49) (Figure 1e). Qualitatively, trials with 

large oscillations in voltage (as in Figure 1c) have high concentrated energy scores (as in 

Figure 1e).   

Using these concentrated energy scores, we can investigate how the oscillation strength— 

defined as the mean concentrated energy within a 200-700ms time window—varies across 

trials. By inspection, the probability density function (Figure 1f) of the oscillatory strength 

(Methods) is well described for this session by a bimodal fit (bottom), but not a unimodal 

fit (top), suggesting that there are distinct oscillatory states across trials.  Therefore, we 

compared the quality of each fit by calculating the difference in the Akaike information 

criterion (AIC) scores (Methods).  For this example, the ∆AIC is large and negative (~-

99.76) which indicates that the bimodal model is heavily favored over the unimodal model.  

Applying this process across all sessions, we found that the bimodal model is 

overwhelmingly preferred (p=6.87e-66, W414=1186, z=-17.14; Figure 1g, histogram), for 

a variety of metrics (Figure 2a) and when compared to a number of alternative models 

(methods; Figure 2b,c).  Given that trials appear to have either a high or low-power 

oscillation, a threshold (Figure 1h) for sorting trials into “oscillation” and “non-oscillation” 

trials was lawfully applied, as done previously (49).  Ordering the trials from Figure 1c by 

the strength of their oscillation makes the difference in oscillatory power across trials 

visually apparent (Figure 1i).  Finally, we define an oscillation’s duration as the interval 

between the first moment post-cue that the concentrated energy score surpasses this 

threshold for detection and the first moment it falls below it.. 
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Figure 1 Oscillatory states are present in V1 during a visually-guided timing task 

a)  Schematic of the task reward structure, in which waiting longer to lick following a 

visual stimulus (time zero) results in a larger volume of water delivery at the lick tube. 

Maximum delivery occurs at 1.5 seconds, and drops to zero thereafter, so that animals must 

time their lick. b) The average voltage trace in the local field potential (LFP) taken from 

an electrode in an example session, with a green bar overlaid to indicate when the visual 

stimulus was on.  Qualitatively, voltage values oscillate for ~1 second post-stimulus. c) 
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Voltage traces per trial for the example session. d) Average time-frequency representation 

of the trials in c. e) Concentrated energy through time of the trials in c. f) The empirical 

probability density function (PDF) for the log(mean concentrated  energy) scores on each 

trial shown in e are shown in blue.  The mean concentrated energy is calculated in a 200-

700ms window post-stimulus. A unimodal Gaussian fit is shown in red (top) and a bimodal 

Gaussian fit is shown in green (bottom).  g) The distribution of the difference in Akaike 

Information Criterion (AIC) values for each model across all sessions is left-shifted, 

indicating an overall preference for the bimodal model.  The dotted lines around zero are 

the bounds at which the relative likelihood of a model compared to another model is 5%.  

h) Sorted concentrated energy scores for the example session with a dotted line indicating 

the threshold used for determining whether a trial has an oscillation. If the concentrated 

energy score crosses this threshold during the 200-700ms window post-stimulus, it is 

considered to have an oscillation.  i) The raw voltage trace in c sorted by the mean 

concentrated energy in the analysis window on a given trial.  Oscillations were detected 

for trials above the dotted line.  
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Figure 2 Trial-by-trial local field potential signals appear bimodal 

a) Empirical probability density function (PDF) for the example in Figure 1 using several 

metrics, including median concentrated energy (top), mean concentrated energy in a late 

analysis window [500-1000ms post-stimulus] (middle), and mean raw energy in a late 

analysis window (bottom). Bimodal Gaussian fits are shown in red. b) The PDF for the 

log(mean concentrated energy) scores in a 200-700ms window post-stimulus with a 

bimodal Gaussian fit (red line, top) and generalized extreme value distribution fit [GEV] 

(red line, bottom). c) The distribution of the difference in Akaike Information Criterion 
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(AIC) values for each model across all sessions is left-shifted, indicating an overall 

preference for the bimodal Gaussian model compared to the GEV model.  The dotted lines 

around zero are the bounds at which the relative likelihood of a model compared to another 

model is 5%. d) Same as in c except that trials are broken down by whether the left eye 

(top) or right eye (bottom) was visually stimulated.  
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2.3 Results: Lick timing precision and accuracy improve 

during theta oscillation states 

Having defined cue-evoked oscillations and their duration, we next addressed whether 

across-trial differences in the performance of the visually-cued timing behavior tracks with 

changes in the oscillatory state.  To visualize whether performance is related to the 

presence/absence of cue-evoked theta oscillations, we plot, per trial, the time of the first 

lick post-stimulus (the behavioral variable relevant for reward acquisition) atop the 

concentrated energy values (see Figure 3a, top for an example session).  Viewed in this 

way, it is apparent that there is considerable variability in the time of the first lick (white 

squares), but challenging to see what, if any, relationship there is between concentrated 

energy and first lick time.  However, sorting trials by the strength of the oscillation (Figure 

3a, bottom) reveals that there is considerably greater precision in time to initiate licking on 

trials with higher oscillatory power.  To quantify this difference, we compared the temporal 

distribution of first lick times (under five seconds post-stimulus (>95%) to avoid outliers) 

on oscillation and non-oscillation trials (Figure 3b; threshold shown by black dotted line).  

First lick times on oscillation trials tend to be more tightly packed (purple line) than on 

non-oscillation trials (green line).  Indeed, this tends to be the case across all sessions 

recorded on this channel (Figure 3c; p= 4.05e-11, W66= 2139, z= 6.60, two-tailed Wilcoxon 

signed rank test against median=0) and all channels (p=4.8e-54, W408=78618, z=15.48).  

Moreover, the difference in variability across sessions from this channel tends to be more 

pronounced in well-trained animals (i.e. rats performing at least three consecutive sessions 

with a median wait time of one second or greater), compared to naïve, on this channel 
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(methods; p= 0.01, U=5274, z= 2.43, n1=66, n2=75, two-sided Mann-Whitney U-test) and 

across all channels (Figure 3d; p= 1.4062e-15, U=205955, z=7.98, n1=408, n2=457).  Since 

this increased variability on non-oscillation trials predominantly comes from a higher 

fraction of early licks, the central tendency of the lick times across sessions is significantly 

lower on non-oscillation trials (median of ~1006ms) than oscillation trials (median of 

~1103ms) (p=1.51e-14, U=193710, z=7.69, n1=409, n2=410, two-sided Mann-Whitney U-

test).  This means that, on average, licks on oscillation trials occur farther along the ramp, 

where more water is available and, thus, are more accurate.  Therefore, the precision and 

accuracy of timed licks are considerably higher on trials with strong oscillations. 

Since the presence of an oscillation detected at a given electrode covaries with behavioral 

improvements, we hypothesized that there would be larger behavioral improvements 

during trials with more spatially widespread oscillations in V1.  Because we analyzed LFP 

recordings from six channels (3 per hemisphere) per session, we can assess how the timed 

lick behavior varies with the number of electrodes reporting an oscillation on a given trial. 

Variability systematically decreases (Figure 3e, top; p=8.27e-05, slope=-1.91e+04, r=.98) 

and the central tendency systematically increases (p=0.020, slope=23.78ms, r= 0.83) as the 

number of electrodes reporting oscillations grows.  These effects translate into a systematic 

increase in the amount of water obtained per trial (Figure 3e, bottom; p=4.9e-04, 

slope=3.43, r=0.96).  Thus, the greater the spatial extent of cue-evoked oscillations within 

V1, the greater the precision and accuracy of timed reward-seeking actions, and the greater 

the obtained reward. 
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These observations suggest that cue-evoked theta oscillatory states observed in V1 may be 

effectors of timed behavior, but this relationship might arise from other sources.  Because 

there is a random delay period between nosepoke entry and visual stimulus onset, this 

higher variability in lick precision on non-oscillation trials might arise from higher 

variability in time waited prior to the stimulus.  Countering this hypothesis, we find that 

the difference in lick variability between oscillation and non-oscillation trials is 

considerably higher than the difference in wait-time variability (Figure 4b; p=3.94e-30, 

z=11.4, U=201251, n1=414, n2=414, two-sided Mann-Whitney U-test).  Furthermore, the 

lick variability is consistently higher on non-oscillation trials, holding the time waited since 

nosepoke entry constant (Figure 4d).  The same is true when controlling for inter-trial 

interval duration and trial number within session (Figures 4e and f, respectively), 

suggesting that these variables do not account for differences in timed licking. 
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Figure 3 Lick time precision is higher during oscillatory states. 

 a) Concentrated energy values with first lick times (white squares) post-stimulus overlaid 

for each trial of an example session in chronological order (top) and sorted by oscillation 

duration (bottom).  The dashed black line is the threshold for being categorized as 

oscillatory. b) Empirical cumulative density functions for the first lick times post-stimulus 
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on oscillation (black) and non-oscillation (green) trials in a. c) Histogram of the difference 

in lick variability on oscillation and non-oscillation trials for each session recorded on a 

given electrode. d) Differences in lick time variability on oscillatory and non-oscillatory 

trials for all sessions and channels of trained (blue) and naïve (red) animals. e) (top) Lick 

time variability decreases as the number of electrodes on which an oscillation was detected 

increases for a given trial. Standard error bars shown in black, with regression line in red.  

(bottom) The percent of water obtained over baseline (defined as trials in which no 

oscillations were detected on any electrodes) increases as the number of electrodes showing 

an oscillation increases. Standard error bars shown in black, with regression line in red.  
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Figure 4 Trial and session statistics do not account for differences in lick precision between 

oscillatory and non-oscillatory trials 

a) Differences between lick time variability on oscillatory and non-oscillatory trials across 

all sessions and channels. b) Differences in lick time variability (blue) are considerably 

larger than differences in stimulus onset time (from nose-poke entry) variability (red) on 

trials in which there was no licking pre-stimulus. c) The concentrated energy scores taken 

from a 50ms window prior to the first lick on oscillation (blue) and non-oscillation (yellow) 

trials from all sessions and channels. d) Differences in lick variability between oscillatory 

and non-oscillatory trials for trials within a given range of times to stimulus onset (from 

nose-poke entry) from 0 to 2.5s in 100ms steps, collapsed across all sessions and channels. 

e) Differences in lick variability between oscillatory and non-oscillatory trials for trials 
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within a given range of inter-trial intervals from 0 to 10s in 100ms steps, collapsed across 

all sessions and channels. f) Differences in lick variability between oscillatory and non-

oscillatory trials for a given trial number in a session, collapsed across all sessions and 

channels. 
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2.4 Results: Timed reward-seeking action tracks oscillation 

duration on a per-trial basis 

Given these differences in behavior with respect to the presence and spatial extent of cue-

evoked theta oscillations within V1, we next assessed whether the duration of these 

oscillations is directly related to the timing of the reward-seeking action (lick initiation). 

Figure 5a shows the first lick time per trial (pink squares) plotted over the concentrated 

energy values for an example session, sorted by oscillation duration.  Indeed, lick initiation 

tends to follow the edge of the oscillations’ termination (black circles).  By transforming 

this data into a scatter plot (Figure 5b), it appears that there is a positive relationship 

between first lick time and oscillation duration.  Indeed, across all sessions from this 

electrode, the distribution of regression slopes is significantly right-shifted (Figure 5c, 

histogram; p=3.29e-05, W69=1902, z=4.15, two-tailed Wilcoxon signed rank test against 

median=0), meaning that there tends to be a positive linear relationship between first lick 

time and oscillation duration.  This relationship holds across all sessions and channels 

(Figure 5d, blue line; p=3.43e-25, W414=65641, z=10.28), and is more pronounced in well-

trained compared to naïve animals (Figure 5d, blue vs red line; p=3.72e-10, U=196120, 

z=6.27, n1=414, n2=486; , two-sided Mann-Whitney U-test).  The same is also true when 

collapsing across channels per session (Figure 6a, top), and using a variety of other metrics 

and filters (Figure 6a, middle and bottom; Figure 6b).  Moreover, the mean slope across 

sessions is significantly higher (p<<.05) than the distribution of mean slopes for shuffled 

lick time data (Figure 5e; black dotted line is actual mean slope).  Finally, as described 

previously (49), the amplitude of the visually evoked potential (VEP)—the acute response 
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to the visual stimulus—is also related to the duration of the oscillation, but it is a 

considerably worse predictor of lick time than oscillation duration (Figure 6c, bottom). 

Given these observations, we investigated whether the strength of the oscillation influences 

the relationship between first lick time and oscillation duration.  Since the oscillation would 

likely exert less influence over behavior the weaker it is, we hypothesize that the 

relationship between first lick time and oscillation duration would degrade with oscillation 

strength (as appears to be the case in Figure 5a).  Indeed, filtering by trials with the 

strongest oscillations (that is, taking the x percent strongest oscillations, as defined by the 

mean concentrated energy in a 200-700ms window post-stimulus, in a given session) yields 

the strongest correlations (Figure 5f).  Coupled with the observations above, this indicates 

that the duration of cue-evoked oscillations relates to the timing of reward-seeking actions. 
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Figure 5 Lick time correlates with oscillation duration in trained animals 

a) Concentrated energy values with first lick times overlaid (pink squares) on trials sorted 

by oscillation duration. b) Scatter plot showing the relationship between oscillation 

duration and first lick time for the trials in a with a regression line shown in orange. c) The 

distribution of the slopes of regression for each session recorded on a given channel. d) 

The empirical cumulative distribution of the slopes of regression for all sessions and 

channels from naïve (red) and trained (blue) animals. e) The null distribution of slopes for 

the sessions taken from the trained cohort, calculated by randomly shuffling the 
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relationship between the lick time and oscillation duration 1000 times.  The actual mean 

slope across session is shown by the black dotted line. f) The slope of regression decreases 

as the percentage of trials with the strongest oscillations is systematically increased.  To do 

this systematic sweep, we sorted trials recorded on a given session/electrode by their mean 

concentrated energy and took the top x percent of trials. Therefore, the x-axis ranges from 

5% (in which only the trials in the top 5% of oscillation strength are included) to 100% (in 

which all trials are included). 
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Figure 6 Lick time correlates with oscillation duration across a wide range of metrics and 

parameters 

a) Slopes of regression for trained animals (blue) are right-shifted compared to naïve 

animals (red) when combining across channels per session (top) and using unrewarded 

trials only (middle). This trend can also be observed for the correlation coefficient (bottom) 

across all sessions and channels. b) Mean slope of regression across all sessions and 

channels for a variety of upper lick time and oscillation duration limits. c) (top) Local field 

potential trace from a single trial with a 250ms gray bar overlaid to highlight the visually 

evoked potential [VEP]. (bottom) The percent of variance explained by a regression of lick 



 40 

time against oscillation duration (brown) or VEP amplitude (green) relative to a model 

containing both variables.  
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2.5 Results: Cue-evoked single unit oscillations are predictive 

of timing performance 

Having observed this timing-related activity at the level of the local field potential, we 

sought to investigate the response patterns of single neurons recorded during this task.  An 

example response is shown in Figure 7a.  The spike raster (top) and peristimulus time 

histogram (bottom) across the whole session (i.e. all trials with a stimulus) suggest that this 

neuron primarily responds acutely to the visual stimulus (presented at time zero).  

However, separating each trial by whether an oscillation was detected in the local field 

potential (for a given electrode within the same hemisphere) reveals that there are, in fact, 

quite different response patterns during oscillation and non-oscillation trials (Figure 7b and 

c).  In particular, there is a long-duration oscillatory firing pattern on the oscillation trials, 

whereas there is predominantly an acute stimulus response on non-oscillation trials.  

Indeed, many neurons (~66%) show a significant difference in their responses on 

oscillation and non-oscillation trials (Figure 8a; methods).  This difference is quantified as 

the Autocorrelation Difference Index (ADI; methods), for which positive scores indicate 

more oscillatory spiking activity on LFP-identified oscillation trials.  The ADI for this 

example neuron is ~1.46, and the distribution of ADI’s across all neurons is positively-

shifted (Figure 9b, histogram; p =5.27e-34, W263=32152, z=12.16, two-tailed Wilcoxon 

signed rank test against median=0).   

Given this rhythmic discharge pattern, we characterized how oscillatory single unit activity 

was synchronized with the local field potential signal.  To assess this, we converted the 

local field potential voltage into a phase angle at every point in time and asked how well 
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the spikes aligned to a particular phase of the signal (methods).  For this example, the spikes 

(white squares) appear to be concentrated before the peak of the oscillatory envelope 

(Figure 9b, left; Figure 8c; p=1.50e-88, z=182.33, Rayleigh’s test for non-uniformity).  

Indeed, the spikes from most neurons across the population cluster around this phase 

(Figure 9b, right), indicating that these single units tend to be part of ensembles of neurons 

which are locked with one another.   

Given that the LFP oscillations are related to timing behavior and single unit activity is 

related to the LFP signal, we next assessed whether, and in what way, single unit oscillatory 

activity could be related to timing behavior. We addressed this issue by restricting our 

analysis to the spiking activity for each recorded neuron, setting the LFP data aside.  For 

each neuron, we categorized each trial from its recorded session as oscillatory or non-

oscillatory on the basis of its spike train (Methods), and then quantified the difference in 

first lick variance between these categories.  As with categorizing trials on the basis of 

oscillations detected in the LFP, we found that sessions tended to have higher lick variance 

on non-oscillatory trials, which in this case corresponds to leftward-shifted scores (Figure 

9d, blue line; p=6.49e-05, W257=11812, z=-3.99).  Further, given that neurons tended to be 

phase-locked to a particular phase of the LFP theta oscillation, we assessed whether 

aggregating evidence from multiple spike trains recorded simultaneously might boost the 

signal, improve classification, and consequently accentuate these behavioral differences.  

Indeed, by categorizing a trial based on the activity of multiple units, we found an even 

greater average difference in lick variance on oscillation and non-oscillation trials (Figure 

9c, red line; p=4.06e-05, W63=416, z=-4.05).  In addition, the performance of timed reward-

seeking behavior on oscillating trials improves with the size of the ensemble, as indexed 
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by an increase in the difference of lick variance between oscillation and non-oscillation 

trials (Figure 9d, sessions in gray, session averages in pink; p=.03, slope=-2.76, r=.28). 
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Figure 7 Neural oscillations occur during LFP oscillations 

a) Spike rasters (top) for an example neuron on all trials, b) oscillation trials, and c) non-

oscillation trials of a session.  The peristimulus time histogram for each group is shown 

below.  
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Figure 8 Neurons spike at a consistent phase of the oscillations in the local field potential.  

a) P-values for the null hypothesis that there is no difference in spike distributions between 

trials with and without an oscillation in the local field potential for each neuron.  The dotted 

red line indicates where p=.05. b) The Autocorrelation Difference Index (which is a 

measure of the difference in the level of autocorrelation between spike-separated 

oscillation and non-oscillation trials) is considerably higher in neurons for which the null 

hypothesis stated in a is rejected (blue) than in those for which it is not (red). c) Heat maps 

showing the filtered local field potential (top) and phase angle (bottom) on LFP oscillation 

trials, with spikes from the example neuron in Figure 7 overlaid (white squares). 
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Figure 9 Timed lick behavior tracks single unit spike coherence  

a) The distribution of the Autocorrelation Difference Index across all neurons is right-

shifted, indicating that the spike train autocorrelation is higher on LFP oscillation trials. b) 

Polar plots indicating the distribution of LFP oscillation phase angles at which spikes occur 

for the example neuron (left) and the mean phase angle for each neuron in the population 

(right). c)  Empirical cumulative distribution functions for the difference in lick variance 

on spike-separated oscillation and non-oscillation trials (var[osc]-var[non-osc]) for 

individual neurons (blue) and neural ensembles (red). d) Relationship between neural 

ensemble size and difference in lick variance on each session (gray dots), with a regression 

line (dotted black line), and session means per ensemble size (pink dots).  
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2.6 Results: The likelihood of evoking an oscillation covaries 

with the recently experienced reward rate 

Since timing is more precise and accurate during oscillatory states in V1, we wondered 

what behavioral variable(s) might influence the likelihood of observing an oscillation on a 

given trial.  To assess this, we created a logistic regression model with several candidate 

explanatory variables, in which the dependent variable was the fraction of channels 

detecting an oscillation (out of six).  Of the variables tested, the inter-trial interval (that is, 

the time from nosepoke exit to subsequent trial initiation) was consistently the most 

informative (i.e. the distribution of its t-statistic across sessions was shifted farthest from 

zero) (Figure 10a).  Because the regression statistics can be influenced by extreme values, 

we probed this relationship further by plotting the likelihood of oscillation with respect to 

inter-trial interval alone (Figure 10b).  It can be seen from this plot that longer inter-trial 

intervals decrease the probability of evoking an oscillation.  Such a relationship may arise 

if the cortical state was tracking some behavioral rate, such as the trial rate, photic rate (i.e. 

the rate of visual stimulation), or reward rate recently experienced until that moment by the 

animal.  Therefore, we sought to dissociate these possibilities.  Specifically, we compared 

the receiver operating characteristic (ROC) values—a measure of the discriminability 

between two distributions, in this case the rates on oscillation vs non-oscillation trials—

across all sessions.  For the filter parameter (which sets the integration dynamics for 

calculating the behavioral rates) associated with the maximal mean ROC (methods), all 

three variables are good predictors of oscillation likelihood, but the reward rate is the best 

predictor of the three (Figure 10c).  In fact, the reward rate was consistently the best 



 48 

predictor over the full range of time windows analyzed (that is, the windows over the rates 

were calculated) (Figure 10d).  This suggests that oscillations are most prevalent during 

periods of high experienced reward rate in this behavioral timing task. 
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Figure 10 Reward rate is related to oscillation likelihood 

a)  Distributions of t-statistics across sessions for several variables in a logistic regression 

model in which the dependent variable is the fraction of electrodes displaying an oscillation 

on a given trial (out of six).  Of the variables considered here, the distribution of t-statistics 

for the inter-trial interval (red line)—the time between exit on the previous trial to 

subsequent trial initiation—is the farthest shifted from zero.  b)  Relationship between the 

probability of oscillation and the inter-trial interval (exit to poke time).  Probabilities are 

calculated by taking the number of oscillations divided by the total number of observations 

(i.e. all analyzed channels and trials) falling within a range of inter-trial intervals 500ms 
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wide, sweeping from .5s to 30s.  c)  Empirical cumulative distribution functions (CDFs) 

for the receiver operating characteristic (ROC) values, across sessions, associated with the 

difference in various behavioral rates (reward, trial, and photic) between oscillation and 

non-oscillation trials.  These CDFs correspond to the exponential filter (used to calculate 

the rates) yielding the maximal mean ROC (methods).  d)  The mean ROC values for each 

rate variable across sessions, for each exponential filter size tested.  Daggers denote where 

the mean ROC value associated with reward rate is significantly different from that 

associated with trial rate.  
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2.7 Materials and Methods 

2.7.1 Behavioral task and neural recordings 

Experimental procedures were as previously described (36).  Briefly, water-deprived, 

adult, male, wild-type, Long-Evans rats were trained to perform a visually-cued timing 

task, in which they entered a nosepoke, waited a random delay without licking, received a 

100 ms full-field, monocular visual stimulus, executed a lick, and obtained a water reward 

(on 5/6 visually-cued trials).  The amount of reward available upon licking post-stimulus 

increased linearly up to 1.5 seconds, after which no reward was available (Figure 1a).  After 

animals were sufficiently trained (average wait times exceeded one second for three 

consecutive days), they were stereotaxically implanted bilaterally with 2x8 electrode arrays 

targeted toward layer IV of the binocular zone of primary visual cortex (V1). Following 

recovery and water deprivation, animals performed the task while neural recordings were 

collected, amplified, and filtered by Neurlanyx (Bozeman, MT) hardware.  For a different 

cohort of animals, referred to here as naïve, implantation occurred prior to training (and 

the ramp of available reward extended only to 1, instead of 1.5, seconds).  All procedures 

were conducted in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals and were approved by The Johns Hopkins University Institutional Animal Care 

and Use Committee.  Six spatially-distant electrodes (3 per hemisphere) were selected for 

local field potential analysis, to reduce redundancy in the signals.  
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2.7.2 Local field potential processing 

Neural signals were continuously sampled at 32kHz, downsampled to 2.2kHz, and 

bandpass filtered (1-400Hz). This filtered LFP signal was then converted to concentrated 

energy scores by applying the methodology in (49).  Here, concentrated energy is defined 

as the mean energy divided by the purity.  To calculate the mean energy, we first generate 

a time-frequency representation from the filtered LFP by applying Gabor filters with 

frequencies from 4 to 9 Hz in .5 Hz steps (standard deviation of Gaussian kernel=.5). The 

mean of this time-frequency representation across all frequency values for each point in 

time is defined as the mean energy.  Purity, a measure of how concentrated the energy 

was across the range of frequencies assessed, was calculated as:  

𝑝𝑢𝑟𝑖𝑡𝑦 =  Σ𝑓2 ∗ 𝑒𝑛𝑜𝑟𝑚 − (𝑓 ∗ 𝑒𝑛𝑜𝑟𝑚)2 

where f is the frequency values and 𝑒𝑛𝑜𝑟𝑚 is the energy at each frequency at every point in 

time normalized to the total energy at that time.    

2.7.3 Oscillation detection and duration 

The concentrated energy scores during a session were used to detect the presence of an 

oscillation and  duration, as described previously (49).  To categorize trials into oscillatory 

and non-oscillatory groups, we first created a threshold according to the formula:  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = (𝐶𝐸𝑚𝑎𝑥 − 𝐶𝐸𝑚𝑖𝑛)/𝑐 

where 𝐶𝐸𝑚𝑎𝑥 and 𝐶𝐸𝑚𝑖𝑛are the maximum and minimum mean concentrated energy scores 

(taken from a 200-700ms window following a visual stimulus) for any visually-cued trial 
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across the session, respectively, and c is a constant equal to 2.5.  An oscillation trial is then 

defined as any trial where the concentrated energy value crosses this threshold at any point 

in the 200-700ms post-stimulus window.  For trials with an oscillation, the duration of the 

oscillation was the amount of time between when the concentrated energy exceeded this 

threshold to when it subsequently fell below the threshold. 

2.7.4 Oscillation states 

In order to establish whether it is appropriate to treat trials as belonging to one of two 

classes (oscillatory or non-oscillatory), we modeled the post-stimulus responses across 

trials.  To do this, we took the mean concentrated energy from a 200-700ms window post-

stimulus on each trial and attempted to find a good fit to this distribution.  We started with 

the most straightforward hypothesis that the concentrated energy values across trials arose 

from a Gaussian process, 𝒩(𝜇, 𝜎), which would result in a unimodal distribution.  This 

was tested against a mixed model in which two Gaussian processes are linearly 

combined, 𝑝 ∗ 𝒩(𝜇1, 𝜎1) + (1 − 𝑝) ∗ 𝒩(𝜇2, 𝜎2), which would result in a bimodal 

distribution. To compare these “1-gaussian” and “2-gaussian” models, we calculated the 

Akaike information criterion (AICc) values for each.  The AIC takes into account the 

likelihood (derived from maximum likelihood estimation) and also the model complexity, 

such that models with more parameters are penalized. In this case, the 2-gaussian model 

has 5 parameters whereas the 1-gaussian model has only 2 parameters.  AICc is a correction 

for small samples and is calculated as 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝑘(𝑘 + 1)/(𝑛 − 𝑘 − 1).  The 

difference in AICc values (or, more specifically, exp((𝐴𝐼𝐶𝑐1 − 𝐴𝐼𝐶𝑐2)/2)) provides a 

measure, then, of the relative likelihoods of the models.   
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Because a unimodal Gaussian model is a simplistic alternative, we also tested against a 

variety of more plausible models.  Specifically, we tried to find the best alternative to the 

2-gaussian model among 17 continuous distributions implemented in a custom MATLAB 

script by Mike Sheppard (2012) [Fit all valid parametric probability distributions to data, 

MATLAB Central File Exchange, Retrieved November 17, 2015] which includes, among 

others, the following distributions: Beta, Exponential, Gamma, Generalized extreme value, 

Inverse Gaussian, Logistic, Log-logistic, Lognormal, Normal, Rayleigh, and Weibull.  Of 

these, ten provided reasonable fits to the data in less than 30% of cases and, thus, were 

excluded from the data.  Of the remaining seven candidates (which provided reasonable 

fits in 100% of cases), the Generalized extreme value distribution had the lowest overall 

AICc value across sessions and, therefore, was chosen as the best alternative to the 2-

gaussian model.  Unlike the unimodal Gaussian model, this model has skew and, thus, can 

fit the distribution of concentrated energies across trials better.  

2.7.5 Visually-evoked potential correlation 

The acute response to the visual stimulus, termed the visually-evoked potential (VEP), is 

defined here as the voltage modulation in the local field potential during the first 200ms 

post-stimulus.  To assess whether the correlation between the timed lick and oscillation can 

be explained by an earlier physiological event, we assessed whether the magnitude of the 

visually evoked potential (that is, the absolute difference between the peak and the trough 

in the voltage trace during this 200ms period) might be predictive of lick time.  Specifically, 

we calculated the percent of variance explained by a single variable (either oscillation 

duration or VEP amplitude) compared to a linear regression with both variables, across all 

sessions and channels. 
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2.7.6 Spike-LFP phase locking 

Spiking data was manually sorted using Offline Sorter software from Plexon (Dallas, 

TX).  Finding the phase of the oscillation at which these spikes occurred required 

converting the filtered LFP signal into a phase position at each time point.  This was 

achieved, as previously described (49, 97, 98), by decomposing the signal with a discrete, 

Meyer-type wavelet transform into its 3.9 to 7.9Hz components, applying a Hilbert 

transform on the reconstituted signal, and computing the angle of this result, z, with the 

following equation: 𝑎𝑛𝑔𝑙𝑒(𝑧) = 𝑖𝑚𝑎𝑔(log(𝑧)).  Rayleigh’s test for circular uniform 

distributions was then used to determine whether the phase angles at which the spikes 

occurred was isotropic.      

2.7.7 Spike train analysis 

In order to compare the degree of rhythmic activity on oscillatory and non-oscillatory trials, 

we created the Autocorrelation Difference Index (ADI).  The ADI is the difference in the 

autocorrelation scores on oscillation and non-oscillation trials, which are defined as the 

sum of the sample autocorrelation function from 100 to 300ms (which encompasses the 

range of the oscillatory periods) derived from the peristimulus time histogram (PSTH).   

To separate trials based on their spike trains alone, we assessed whether the autocorrelation 

score defined above increased or decreased as each trial was removed from a session’s 

overall PSTH.  If removing a trial decreased the overall autocorrelation, it was considered 

an oscillatory trial and vice versa.  For the ensemble analysis, each neuron in the ensemble 

(that is, the group of neurons recorded simultaneously during a session) was given a vote 
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based on the aforementioned criterion, and the majority vote determined whether a 

particular trial was labeled as oscillatory. 

2.7.8 Oscillation prevalence modeling  

To dissociate the contributions 

 of various behavioral rates (reward, trial, and photic) to the likelihood of evoking an 

oscillation, we systematically swept through a parameter space of integration filters that 

incorporated past behavioral statistics.  For completeness, we used both a uniform and 

exponential distribution as filters.  The distribution of means tested for each filter type were 

identical, and were 2𝑥 seconds, where x took on all integer values from 0 to 11, inclusive.  

The differentiability between the rates computed for all these parameters on oscillation and 

non-oscillation trials was measured on each session using the receiver operating 

characteristic (ROC).  The mean ROC for a particular filter, mean parameter, and rate type 

was the average ROC value computed in this way across sessions and channels.  We define 

the maximal mean ROC as the highest mean ROC for a given filter type (across all mean 

parameters and rate types). 

2.7.9 Assessing the acute effect of licking  

We examined the possibility that the lick itself could affect an ongoing oscillation, thereby 

artificially creating a distinction between oscillatory and non-oscillatory states.  Three 

analysis were brought to bear on this question.  First, we asked whether licking acutely 

suppresses an oscillation.  To address this, we calculated the average difference in 

concentrated energy between a 50ms window before and after a lick and compared it to the 
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null distribution of concentrated energy differences obtained by repeatedly (n = 1000) 

shuffling the relationship between the lick times and trial number.  Second, we investigated 

whether there was a phase relationship between licking and oscillations, in a manner 

similar to that described above in Spike-LFP Phase Locking, but for licks.  Third, we 

asked whether there was a discernable difference in oscillatory power even prior to licking.  

To address this, we calculated the distribution of concentrated energy scores in 50ms 

windows prior to the first lick on a given trial for oscillation and non-oscillation trials 

separately.    
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2.8 Discussion 

Appropriately timing actions in response to sensory stimuli is a necessary ability for 

survival.  Here, we show that oscillatory states in primary visual cortex may contribute to 

this ability.  Specifically, we show that there is an enhancement of precision and accuracy 

of timed reward-seeking responses following a visual cue, when that cue evokes theta 

oscillations in V1.  The more widespread across V1 this theta oscillation is, the greater the 

improvement in timing performance.  An appealing hypothesis to explain the difference in 

timed lick behavior between oscillatory and non-oscillatory states is that an ongoing 

oscillation in V1 exerts an influence on the animal’s decision to lick (perhaps via a 

downstream motor region) by suppressing licking throughout its duration.  Under this 

hypothesis, we would expect the time of the first lick to covary with the duration of the 

oscillation.  Indeed, this relationship was stronger for well-trained compared to naïve 

animals, suggesting that the association between the oscillatory state and the timed 

behavior is learned.  Furthermore, we found strong evidence for this oscillatory state in the 

spiking data of simultaneously recorded neurons.  These oscillatory firing signals are 

related to enhanced timing precision and, in addition, act in concert as ensembles to boost 

the predictive signal.  Together, these data suggest that there is a distinct oscillatory state 

in primary visual cortex that is related to the performance of visually-timed actions. 

An alternative to this interpretation is that lick initiation itself shuts down ongoing 

oscillations.  If this were the case, non-oscillation trials would appear to have earlier (and 

perhaps more variable) lick times, as a lick during the scoring window would increase the 

likelihood of being categorized as a non-oscillation trial. This explanation is not 
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satisfactory for a number of reasons, however.  First, a prior study (49) in which animals 

could and did lick freely post-stimulus (and before the typical delay to reward) did not 

detect a supression in ongiong oscillatory power.  In line with this observation, we find that 

the first lick following a visual stimulus does not acutely suppress an ongoing oscillation 

(p=.90, by random shuffling; methods). Second, as shown previously (49), we did not find 

any phase relationship between licking and oscillations, suggesting that the oscillation was 

not being driven by motor output (p>.05, Rayleigh’s test for non-uniformity; methods).  

Third, we found that the distribution of oscillation strengths is already much lower for non-

oscillation than oscillation trials prior to a lick (Figure 4c; p<.001, U=2.89e09, z=-261.86, 

n1=59466, n2=143514, two-sided Mann-Whitney U-test; methods) which suggests that 

these differences exist before the action.  In sum, these observations suggest that the timing 

activity in V1 is not merely a consequence of the behavioral action itself.  

Our findings thus further our understanding of V1’s role in stimulus-driven behaviors.  

Traditionally, V1 was thought to contribute only to the first stage of such behaviors: 

sensation.  Along these lines, primary visual cortex has been regarded as a feature detector 

which relays faithful representations of the visual world to downstream regions.  This view 

has been challenged by recent work suggesting that V1 can actively generate predictions 

about visual input (99–103) and can be influenced by behavioral variables such as 

attentional states (104–108) and reinforcement (109–111) (e.g. water reward).  Whereas 

these findings pertain to influences on perception, our findings provide evidence that V1 

makes predictions about non-visual outcomes.  Specifically, we find that following the 

acute visual response, V1 exhibits long-lasting theta oscillations that subtend the interval 

between stimulus and action during a timing task.  Thus, these oscillations in primary visual 
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cortex are a signature of V1’s involvement beyond perception and into the decision-making 

phase of a timed, stimulus-driven behavior. 

These observations also extend our knowledge about the role and behavioral significance 

of theta oscillations.  In the hippocampus, theta oscillations have been implicated in several 

cognitive functions, including voluntary movement, learning, and memory processes 

(112).  This rhythm is believed to contribute to these processes partly through facilitation 

of information transfer with prefrontal cortex (113, 114).  Indeed, oscillatory synchrony is 

a common mechanism for inter-regional communication which has been shown in a 

number of circuits (115), including those involving visual cortex (116–119).  In our 

visuomotor task, this mechanism may allow the output from primary visual cortex to be 

effectively read out by a motor region that ultimately initiates the action.  Within visual 

cortex itself, oscillations are often studied from a perceptual perspective and have been 

found to enhance responding to particular stimuli (120–122) and enable feature binding 

(46, 47).  Recent work has found, however, that oscillatory states in primary visual cortex 

may also be related to expectancy of future outcomes (48, 49).  We extend these findings 

by showing that theta oscillations in V1 are related to the precision and accuracy of 

visually-timed actions.  Though theoretical accounts of timing often implicate oscillatory 

processes in such timed behaviors (7), evidence supporting these theories has been lacking 

(61).   Finding this kind of signal as the earliest stage of cortical visual processing is 

particularly surprising and may suggest that such a mechanism is a common feature of local 

circuits.  



 61 

These findings also raise the question of why there are multiple (i.e. oscillatory and non-

oscillatory) states in V1.  One straightforward possibility is that maintenance of an 

oscillatory response pattern is energetically taxing and, therefore, must be limited.  

Another, compatible possibility—given the relationship between reward rate and 

oscillation prevalence (Figure 10)—is that animals performing the timing task are seeking 

to balance knowledge accumulation with reward accumulation (i.e. the exploration vs 

exploitation trade-off) (123).  Under this construction, it may be advantageous for an agent 

to exploit its knowledge of the environment by tracking a theta oscillation and waiting a 

precise amount of time when the reward rate is high, but explore the environment 

otherwise.  In support of this hypothesis, a prior study found that experimentally increasing 

the reward rate increased the likelihood of evoking an oscillation (49).  Future studies that 

precisely manipulate reward rate during a behavioral timing task will help elucidate the 

role this factor plays in governing cortical state and temporal decision-making.   

A potentially rich avenue of future exploration would be to investigate what downstream 

regions are receiving and processing this information from V1.  One plausible candidate is 

motor cortex, which might directly use the signals emanating from V1 to exert control over 

the action (in this case, licking or suppression of licking).  In this simple circuit, the 

oscillatory signal might facilitate information transfer between these regions, as has been 

shown for similar circuits (115, 118, 124), even those involving primary visual cortex (116, 

117), or might simply provide a much clearer and robust signal for motor cortex to 

interpret.  In a similar vein, this oscillatory signal might be processed in the basal ganglia, 

a subcortical region crucial for voluntary movement, which is active even prior to self-

initiated actions (91).  A popular theoretical model for this type of interaction is the striatal 
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beat-frequency model, in which medium spiny neurons of the striatum detect an activity 

pattern across cortical oscillators in order to demarcate a temporal interval.    It is also 

possible that areas comprising the reward system receive this output from V1.  An 

appealing candidate in this regard is the ventral tegmental area (VTA) in the midbrain, 

which must receive reward-expectancy information in order to generate the prediction 

errors that are crucial for reinforcement learning.  Given these possibilities, it would be 

informative to simultaneously record from these brain areas and V1 as animals perform 

this visually-cued timing task.  

Another central question is how this oscillatory expectation signal in V1 arises.  Along 

these lines, modelling work has suggested that reinforcement signals induce the synaptic 

changes underlying cortical reward timing (125) and experimental work has demonstrated 

that cholinergic innervation from the basal forebrain is both necessary (34) and sufficient 

(35) for generating such signals in V1.  Other neuromodulator systems, like the 

dopaminergic and serotonergic systems, may also play a role.  As the dopaminergic system 

has been implicated in tracking vigor and reward rate (126), it might also contribute to the 

association between oscillation prevalence and reward rate described here (Figure 10).  It 

might be interesting, therefore, to study how disrupting or inducing these systems impacts 

the oscillatory signals and the behavior on this visually-cued timing task.  It is also likely 

that inhibitory interneurons—which are often implicated as key players in generating 

cortical oscillatory rhythms (127)—contribute to the oscillatory expectation signal in V1.  

In this regard, selective manipulation of Parvalbumin, Somatostatin, and Vasoactive 

Intestinal Polypeptide-expressing inhibitory interneurons, which are abundant in cortex, 
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may provide further insight into the origins and functions of oscillatory states in primary 

visual cortex.   
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Chapter 3. Interval storage and memory bias 

effects 

Abstract 

A common method for studying interval storage is classification, in which a subject must 

indicate whether a given probe duration is nearer a previously learned short or long 

reference interval. This task is designed to reveal the probe duration that is equally likely 

to be labeled as short or long, known as the temporal bisection point. Studies have found 

that this bisection point is influenced by a variety of factors including the ratio of the target 

intervals, the spacing of the probe durations, the modalities of the stimuli, the attentional 

load, and the inter-trial duration. While several of these factors are thought to be mediated 

by memory effects, the prototypical classification task affords no opportunity to measure 

these memory effects directly. Here, we present a novel bisection task, termed the 

“Bisection by Classification and Production” (BiCaP) task, in which classification trials 

are interleaved with trials in which subjects must produce either the short or long referents 

or their midpoint. Using this method, we found a significant correlation between the means 

of the remembered referents and the bisection points for both classification and production 

trials. We then cross-validated the bisection points for production and classification trials 

by showing that they were not statistically differentiable. In addition to these population-

level effects, we found within subjects evidence for co-variation across a session between 

the production bisection points and the means of the remembered referents. Finally, by 

using two sets of referent durations, we showed that only memory bias-corrected measures 
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were consistent with a previously reported effect in which the ratio of the referents affects 

the location of the bisection point. These results argue that memory effects should be 

considered in temporal tasks.  
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3.1 Introduction 

Organisms rely on a wide range of temporal information to guide their behavior (7). At one 

end of the spectrum, organisms require sub-second information to guide movement (128, 

129). At the other end, their circadian rhythms are entrained by temporal cycles that span 

days (130). In between these extremes, organisms must be able to evaluate the length of 

temporal intervals on the order of seconds to hours to guide their decision-making (4, 5, 

131, 132). Because of the importance of this type of temporal information, interval timing 

has been studied extensively in laboratory settings. 

A common method for studying interval timing in humans is a classification task (133, 

134). While the precise form of this task has been modified frequently, its essential 

component is that subjects are required to classify sample temporal intervals as short or 

long. Typically, this classification relies on the subject remembering previously learned 

short and long reference intervals (i.e. similarity method). The obtained data is the 

percentage that the subject chooses to label an interval “long” as a function of probe 

duration length. From this data, the bisection point, or probe duration at which a subject is 

equally likely to choose “short” or “long”, can be calculated. 

Several theories of timing and time perception make predictions about the location of the 

bisection point. One of the most influential theories of timing, scalar expectancy theory 

(57), posits that the bisection point lies at the geometric mean of the short and long 

reference intervals (134). Another timing theory, which assumes a difference rule for 

comparing a probe duration to the short and long referents, predicts that the bisection point 
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lies at the arithmetic mean of the referents (133). More contemporary theories have been 

brought to bear in an attempt to systematically explain the observed variations in the 

bisection point location from the harmonic mean to the arithmetic mean (Killeen et al., 

1997; Kopec and Brody, 2010) and rationalize such variations in terms of reward-rate 

maximization (71) and optimal temporal risk assessment (137, 138).  Given that these many 

theoretical accounts of timing make specific predictions about the location of the bisection 

point, obtaining accurate and meaningful measurements of the bisection point is crucial.  

Indeed, many factors have been shown to affect the location of the bisection point. These 

factors include the ratio of the target intervals (50, 139), the spacing of the probe durations 

(140, 141), the modalities of the stimuli (142–146), the attentional load (147–150), and the 

inter-trial duration (151, 152). Several of these factors are thought to affect memory and, 

thereby, the subjective representation of time. Increasing the cognitive load, for example, 

by requiring subjects to observe emotionally-charged faces can cause either an 

overestimation or underestimation of time on a temporal bisection task, depending on 

whether the stimulus is arousing (e.g. angry face) or attention-demanding (e.g. shameful 

face), respectively (149).  Analogously, requiring subjects to engage in tasks which demand 

working memory, like remembering a series of digits, will cause distortions in temporal 

production (147, 148). Similarly, varying inter-trial duration is believed to affect the degree 

of memory trace degradation and, thereby, whether a subject is more likely to label an 

interval “short” (choose-short effect) or “long” (choose-long effect) (151, 152). 

It is not surprising that these factors affect time perception given that memory is a key 

component of several interval timing models. In pacemaker accumulator models, the 
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number of pulses generated by a pacemaker during the reference interval is stored in 

memory and compared against the number of pulses generated by a probe duration (58). 

This comparison serves as a proxy for comparing the length of a probe duration to the 

referent. Thus, affecting the rate of the pacemaker during the referent/probe duration, or 

altering values stored in memory, can affect the subjective representation of time. 

Pharmacological manipulations showing a dissociation of the effects on memory from 

effects on perception have bolstered this view (60, 153). Another model of interval timing, 

the striatal beat-frequency model, also reserves a key role for memory (66, 154). In this 

model, striatal neurons compare ongoing cortical oscillatory patterns to prior patterns of 

activation that co-occurred with the expiration of an interval. Still other models have 

posited that the strength of a memory trace is itself an internal clock (64, 155) which 

naturally meshes with the notion that alterations in memory affect time perception. 

Given the importance of memory in temporal perception, several variants of the 

prototypical bisection task have been developed to study its role. One variant of the 

similarity method, in which subjects are explicitly taught to recognize the short and long 

reference intervals, is the partition method, in which subjects must infer the range of 

intervals and, concomitantly, what constitutes a short and long interval (139, 141, 156). 

Interestingly, the results from these experiments indicate that both methods yield similar 

outcomes, suggesting that subjects do not compare probe durations directly to referents. 

Instead, it is believed that subjects translate these referent durations into a mental 

representation threshold above which a probe duration is classified as long and below 

which a probe duration is classified as short, a process which may be integral in cross-

domain comparisons of quantities (157). Another variant of the prototypical task in which 
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referents are provided at the beginning of the session only (i.e. “no-referents” method), is 

the “fixed-referents” task, in which the same referents are displayed before each trial (158). 

By replaying the reference intervals before each trial, the contribution of memory to the 

decision process should be reduced.  Yet another variant, the “roving-referents” task (159, 

160) changes the referent intervals on a trial-by-trial basis, thereby reducing or eliminating 

the effect of memory.    

Entirely different methods have also been employed to study temporal perception. One of 

the most prevalently used methods is a reproduction task in which subjects observe a 

temporal interval on each trial and must reproduce it as accurately as possible (161, 162). 

In this way, the translation of real time into subjective time can be observed across a wide 

range of time points while minimizing the role of memory. Another method requires 

subjects to periodically produce taps at a frequency set by a guiding stimulus (163). In this 

method, the readout is the temporal error in tapping after the guide stimulus has been 

removed. Yet another production method asks subjects to wait for a time specified by a 

verbal cue (e.g. 4 seconds). While relevant to some applications, this method does not fully 

control for subjects’ prior experience and also may be confounded by the interaction 

between magnitude (e.g. numerosity) and temporal perception (164–166). Though 

informative, these experimental methods do not, by construction, reserve a large role for 

memory and are, therefore, not ideal for studying its effects. 

Our goal was to develop a method for directly assessing how memory affects the bisection 

point location in prototypical bisection tasks. To do this, we developed the “Bisection by 

Classification and Production” (BiCaP) task which interleaves trials in which subjects must 



 70 

use their memory to produce the short or long reference intervals or their midpoint with 

trials in which they must classify probe durations as short or long. Both classification and 

production trials yield an estimate of the bisection point (the point at which the subject 

classifies the interval “long” 50% of the time and the produced midpoint interval, 

respectively). We anticipated that the bisection point generated from each method would 

not be differentiable. Further, we hypothesized that the biases in the memory of the 

referents, as measured on a fraction of production trials, would co-vary with the location 

of the bisection point for both classification and production trials. This is indeed what we 

found. Additionally, the BiCaP task is a novel and powerful method for studying temporal 

perception generally. 
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3.2 Results: Performance on the BiCaP Task 

To assess the effects of memory on the bisection point, we developed the “Bisection by 

Classification and Production” (BiCaP) task (Figure 11a), which consists of classification 

(top) and production (bottom) trials. Using this design, we were able to compare the 

bisection point produced from classification trials with the midpoint from production trials 

and, simultaneously, assess what the subjects believe the reference intervals to be. We used 

two sets of reference intervals, 1/5 seconds and 2/4 seconds, for different cohorts. 

We analyzed data from subjects in the 1/5s group to generate descriptive statistics for 

classification and production trials. As expected, data on classification trials in this group 

showed a monotonically increasing relationship between the length of the probe duration 

and the proportion that the interval was classified “long” (Figure 11b, black dots with 

SEMs across subjects). After fitting a sigmoid function to the data (R2=0.99), we found 

that the interpolated point at which the subject was equally likely to classify a probe 

duration as short or long (i.e. the bisection point) was 2.859s. This point has an associated 

Weber ratio, which is a measure of the standard deviation around a point divided by its 

mean. For classification, the Weber ratio is the difference limen, defined as half the 

difference in interval lengths at the points where the subject responded long 75% and 25% 

of the time, divided by the bisection point. The Weber ratio of the classification bisection 

point for the 1/5 group was 0.212.  

Mean responses on production trials are shown in the same panel (Figure 11b, lines). The 

mean produced bisection point, shown in red, is 3.269s ± 0.066s (SEM). The mean 
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produced short and long interval, shown in black, is 0.948s ± 0.032 and 5.844s ± 0.128s, 

respectively. Whereas the mean produced short interval was only slightly shorter than 1 

second, the mean produced long interval was nearly a whole second above its true value of 

5 seconds. Therefore, while the arithmetic mean of the referent intervals is 3 seconds, the 

bias-corrected arithmetic mean (i.e. the AM of the produced short and long reference 

intervals), shown by a solid green line, was 3.396s ± 0.066s. 

Next, we assessed whether the scalar property (57), which states that the standard deviation 

in time estimation grows linearly with temporal magnitude, holds for 

individual subjects in the 1/5 group. To do this, we calculated the Weber-like fraction 

(167), or coefficient of variation (i.e. standard deviation/mean), for production across the 

range of times tested (i.e. short reference, midpoint, and long reference). The median values 

for the population of subjects are plotted with the error bars indicating the interquartile 

range (Figure 11b, middle). To test whether Weber’s law holds across the pool of subjects, 

we compared the coefficient of variation (CV) for the population across the three intervals 

(short reference, production bisection point and long reference). We found a significant 

difference in median (p = 0.012, χ2(29)=8.83, Kruskal Wallis test) for produced intervals 

with the 1s and 5s references. Thus, our data does not support Weber’s law in the 

production of these intervals. Such a decreasing trend for the CV has also been observed 

in humans previously, wherein shorter intervals have larger CVs than longer ones (168). 

These analyses were repeated for the data from the 2/4 group. As was the case for the 1/5 

group, the proportion of probe durations classified “long” monotonically increased with 

the length of the probe duration (Figure 11c, black dots). The classification bisection point 



 73 

was 3.180s and the Weber fraction was 0.155. As before, averaged responses on production 

trials are shown in the same panel (Figure 11c, lines). The mean production bisection point 

was 3.347s ± 0.061s. The mean production time for the short and long interval was 2.347s 

± 0.054s and 4.767s ± 0.101s, respectively. Consequently, the bias-corrected arithmetic 

mean of the two referents is larger than 3 (3.557s ± 0.057s). Repeating the same analysis 

with the Weber fractions for produced intervals in the 2/4 group, we found no difference 

in median across the range of intervals (p=0.24, χ2(29)=2.82, Kruskal Wallis test), which 

is consistent with Weber’s law.  
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Figure 11 Performance on the BiCaP Task  

a. Design of the BiCaP task which consists of two trial types—classification and 

production—pseudo-randomly interleaved. b. The proportion that a given probe duration 

is classified long (left panel, black dots with SEMs across subjects) for the population in 

the 1/5s referent group. Mean produced intervals for the short reference (black dotted line), 

long reference (black dotted line), and midpoint (red dotted line) are shown along with the 

SEM (gray bars). The bias-corrected arithmetic mean (AM) (i.e. the AM of the produced 

short and long referent intervals) is shown in green. Note that both the produced midpoint 

and the bias-corrected AM lie above the true AM of the 1/5s reference intervals (i.e. 3 

seconds). The mean coefficient of variation (CV) across subjects for each production 
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interval is shown with SEMs on the middle panel.  The empirical cumulative distribution 

function (CDF) of production times for the short reference (blue), long reference (red), and 

midpoint (yellow) is shown on the right panel. c. The population data for the 2/4s group. 
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3.3 Results: The location of the bisection point covaries with 

memory biases 

Next, we sought to assess the degree to which memory biases may have affected the 

location of the bisection point on both classification and production trials. To this end, we 

examined the correlation between the bias-corrected mean and the bisection points across 

subjects for classification trials (p=0.022, R2=0.26) and production trials (p=1.9x10-7, 

R2=0.79) and found both to be significant (Figure 12a, top). (Separating by groups, we 

found: classification 1/5s: p=0.175, R2=0.22; production 1/5s: p=0.002, R2=0.70; 

classification 2/4s: p=0.098, R2=0.30, production 2/4s: p=3.14x10-5, R2=0.90). We 

examined the co-variation between classification and production bisection points (Figure 

12c) and also found no significant difference between these groups (p = 0.15, two-tailed 

Mann-Whitney U test, U18 = 356, z = -1.45). 

Whereas classification is a purely perceptual measure of the subjective estimate of time, 

production includes both a perceptual component and a motor component. If the movement 

time associated with the motor component is automatically compensated for by the brain, 

we could treat the movement time to be zero (as we have done above). If it is not, however, 

the movement time would be likely added to the end of the interval. Using a prior study in 

which the mean movement time of clicking a computer mouse was estimated to be 

approximately 175 ms (using EEG to detect the moment of movement initiation) (Houlihan 

et al., 1998) as a guide, we subtracted this number from the subjects’ responses on 

production times. As expected, this manipulation did not affect the degree of correlation 

between the bias-corrected mean and the bisection points (Figure 12b). It did, however, 
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make the difference between production and classification bisection points even weaker (p 

= 0.64, U18 = 392, z = -0.47) (Figure 12d). 

We next sought to determine whether there was evidence for memory bias within data 

from individual subjects. To do this, we divided each subject’s session into ten equal 

blocks and asked whether the average midpoint production in a given block correlated 

with the mean of the produced short and long referent in that block.  We found that for 

the 1s/5s group, data from eight out of ten subjects showed positive slopes of regression 

(Figure 13a, left).  We compared the average slope across subjects (Figure 13a, red star) 

to that of the null distribution of slopes calculated by bootstrapping (Methods) and found 

that it was significantly different (p < .001).  We repeated this analysis for the 2s/4s 

group.  We found that data from nine out of ten subjects in this group showed positive 

slopes (Figure 13b, left) and the average slope across subjects was, again, significantly 

higher than that expected by chance (Figure 13b, red star; p = .007).  Therefore, we found 

evidence from individual subjects that memory bias across the session in the production 

of the referents correlated with the produced bisection point.  
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Figure 12 Memory bias in production and classification 

a. We found a statistically significant correlation between the bias-corrected AM and the 

classification bisection point (p=.022) assuming a movement time 0 ms (left panel). We 

also found a highly significant correlation (p=1.9x10-7) with the bias-corrected AM for the 

production bisection point (right panel).  b. These results do not change assuming a 

different movement time (i.e. 175 ms). Production bisection points were not statistically 

distinguishable from classification bisection points c. if movement time was assumed to be 

zero (p = 0.15, two-tailed Mann-Whitney U test, U18 = 356, z = -1.45) or d. if movement 

time was assumed to be 175ms (p = 0.64, U18 = 392, z = -0.47). 
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Figure 13 Within-subject analysis of memory bias in production   

a. Slope of regression in the 1/5s referent group between the mean of the produced referents 

and the averaged midpoint production per block for each subject. Data from 8/10 subjects 

show positive slopes.  The sampling distribution of slopes was calculated by bootstrapping 

(right).  The average slope for the 1/5s groups (red star) was significantly higher than the 

null distribution (p < .001). b. This analysis was repeated for the 2/4s referent group.  Data 

from 9/10 subjects showed positive slopes and the average slope was significantly higher 

than that of the null distribution (p = .007).  
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3.4 Results: The bias-corrected bisection point exhibits the 

referent ratio effect 

Prior work has shown that the ratio of referent intervals can affect the location of the 

bisection point (50, 139). A meta-analysis of classification data (136) reported that the 

bisection point lies near the geometric mean (GM) for ratios of 2 or less and lies near the 

arithmetic mean (AM) for ratios of 4 or greater. Since our referent interval sets spanned 

this range, we are able to assess whether our data follows this trend. We first performed 

these calculations for the population without taking into account memory bias. Neither 

the production nor the classification bisection points exhibited the referent ratio effect: 

the production bisection points for both groups were significantly greater than the 

arithmetic mean (1/5s: p = 9.2x10-5, W199=6845, z=-3.91; 2/4s: p = 1.16x10-6, 

W199=5995, z=-4.86, two-tailed Wilcoxon signed rank test against median=3) and the 

classification bisection points were higher for the 2/4 group (3.180s) than the 1/5 group 

(2.859s) and were found to be significantly different by bootstrapping (p<0.001).  

Given that the bisection points correlate with a bias-corrected measure, we sought to 

determine whether the referent ratio effect could be observed for the remembered referents 

instead. To this end, we created a distance index defined as: 

   

Thus, when D.I = 0, the bisection point equals the bias-corrected GM and when D.I=1, the 

bisection point equals the bias-corrected AM. Analyzing the data this way, we found 

evidence for the referent ratio effect in production trials (but not classification trials for 

bisection point  bias corrected GM
Distance index=

bias corrected AM bias corrected GM




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which the power was likely too low). Qualitatively, the mean of the distance index for the 

1/5s group was higher than that of the 2/4s group for both classification and production 

trials (Figure 14a), even when assuming a non-zero movement time (Figure 14b). 

Quantitatively, the production bisection point for the 1/5s group was significantly different 

from the GM (Two-tailed Mann-Whitney U test with n =10, p = 0.0091 U = 140, z = 2.608; 

n = 10, p = 0.0046, U = 143, z = 2.8347, for 0ms and 175ms movement times, respectively) 

but not the AM (p = 1, U = 105, z = 0, for both movement times).  While these comparisons 

were not significant for the 2/4s group, the production bisection points for the 1/5s and 2/4s 

groups were significantly different in closeness to the GM and AM (0.0376, U = 77, z = -

2.0788 for both movement times), as expected by the referent ratio effect. 
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Figure 14 The effect of referent ratio on the bisection point location 

Previous work has demonstrated that the bisection point transitions toward the arithmetic 

mean (AM) from the geometric mean (GM) as the ratio of the referents increases (50, 136, 

139).  Here, we show the cumulative distribution function (CDF) of the distance indexes 

(defined in Results) for classification and production bisection points. Qualitatively, the 

data obeys this trend as the median bisection point across all subjects is closer to the AM 
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for the 1/5s group (referent ratio of 5) than the 2/4s group (referent ratio of 2) for both 

classification (left) and production (right) trials assuming a. a movement time of 0 ms and 

b. a movement time of 175 ms.  A quantitative treatment of this data can be found in 

Results.  
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3.5 Material and Methods 

3.5.1 Subjects 

20 healthy, human subjects aged 22-38 participated in this study. All subjects were 

recruited from The Johns Hopkins University were naïve about the purpose of the study 

and gave consent to participate. All procedures were approved by the Institutional Review 

Board (IRB).      

3.5.2 Apparatus  

Subjects were placed in a quiet room in front of a MacBook Pro. Instructions were 

displayed on the screen and simultaneously read aloud by the experimenter. All responses 

were registered by clicks on a wireless mouse. For production trials, the subjects had to 

left-click to start and stop the interval. For classification trials, the subjects had to left- or 

right-click to classify the interval as short or long, respectively. Clicks prior to the end of 

the interval were not registered. To proceed to a subsequent trial, the subject was required 

to tap the space bar once. The trial type was indicated at the top of the screen. Stimuli were 

presented and responses were collected by custom-made code written in Java (JDK 

6.0_65).  

3.5.3 Task 

Training 

Prior to testing, subjects experienced a training phase that consisted of three parts. In the 

first part, observation, subjects were instructed to observe short and long intervals. Each 
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interval was labeled as either “SHORT” or “LONG” at the top of the screen. 12 

observation trials were given. In the second part, classification training, subjects were 

shown an unlabeled short or long reference interval and instructed to classify. Depending 

on whether they classified it correctly or incorrectly, they were shown a smiley or frowny 

face for 1 second. In order to pass classification training, the subject had to correctly 

classify 3 short and 3 long intervals consecutively by type (with the trial types interleaved 

with one another). In the third part, production training, subjects were instructed to 

produce the short or long reference interval by instructions at the top of the screen. 

Depending on whether the response was close enough (i.e. within a window centered on 

the appropriate interval whose half-width was a Weber fraction of 0.2), they were shown 

a smiley or frowny face for 1 second. The value of the Weber fraction was chosen to be 

close to the fraction observed for well-trained subjects on classification and production 

tasks; a meta-analysis of classification data shows that the Weber fraction is around .2 for 

human subjects (136) and a similar production procedure to the one used here found a 

Weber fraction around .15 in well-trained humans who receive do not receive feedback 

and do not chronometrically count (169). 

 Additionally, subjects received feedback about how far from the appropriate interval they 

were off (in milliseconds, rounded to the nearest integer). This feedback would appear on 

the left or right side of the screen depending on whether the response was short or long, 

respectively. The text was in green font for correct responses and red for incorrect 

responses.  
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Production training itself was divided into three stages, in which the subject produced short 

referents only, long referents only, and then short and long referents inter-mixed. For 

training on the short trials only, the mean ±the standard deviation of the subject’s last 8 

responses needed to be between the lower (LBshort) and upper (UBshort) bound (in seconds). 

The same calculation was performed for the long trials except the range was LBlong and 

UBlong. During the final part, in which trials were inter-mixed, these criteria were applied 

to short and long trials separately. 

Subjects were placed into one of two groups. In one group, the 1v5 group, the subjects (10) 

were trained with a short referent that was 1 second in length and a long referent that was 

5 seconds in length. For production training in this group, LBshort = .6s, UBshort = 1.4s, 

LBlong = 3.75s, and UBlong = 6.25s. In other words, the mean ± the standard deviation on 

short production trials had to be between .6s and 1.4s over the last 8 responses, whereas 

the mean ± the standard deviation on long production trials had to be between 3.75s and 

6.25s. In the other group, the 2v4 group, subjects (10) were trained with a short referent 

that was 2 seconds and the long referent that was 4 seconds. For production training in this 

group, LBshort = 1.5s, UBshort = 2.5s, LBlong = 3s, and UBlong = 5s. The subjects were never 

explicitly told which group they were in nor what the length of the referent stimuli were.  

Experimental Testing 

After passing training, subjects were told they would be asked to "1. CLASSIFY the sample 

interval (based on whether it's closer to the short or long target interval) or 2. PRODUCE 

the short interval, long interval or MIDPOINT between them" during testing. All subjects 

performed a novel task called the “Bisection by Classification and Production” (BiCaP). 
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This task combines a prototypical classification task (133, 134) with novel aspects. For the 

classification component, subjects were required to classify a probe duration as either short 

or long (by left- or right-clicking, respectively). The novel aspect of the task, the production 

component, required subjects to produce the short referent, the long referent, or the 

midpoint between them (by left-clicking to start and stop the interval). Note that while 

subjects produced the long and short referents during training, they were required to 

produce a third interval, the midpoint, during testing. Trial types were indicated at the top 

of the screen. For classification trials, the instruction was “CLASSIFY” whereas for the 

production trials the instruction was “PRODUCE SHORT”, “PRODUCE LONG”, or 

“PRODUCE MIDPOINT”. No feedback was provided during testing.  

Stimuli 

The stimuli were blue ovals (122 x 73 pixels) that appeared at the center of a white 

background (1220 x 730 pixels). The duration that the blue interval appeared on the screen 

constituted the length of the interval. On classification trials, the subject could left or right-

click after the stimulus had ended. On production trials, a blue oval would appear upon 

clicking to start the interval and would disappear upon clicking to end the interval.  

During training, only short and long referents were displayed. On each trial, the probability 

of receiving a short or long referent (or being asked to produce the short or long referent in 

the third stage of production training) was equal. During testing, many probe durations 

were displayed. For the 2v4 group, the probe durations used were {2.0, 2.33, 2.66, 3.0, 

3.33, 3.66, 4.0} and for the 1v5 group, the probe durations were {1.00, 1.67, 2.33, 3.00, 

3.67, 4.33, 5.00} (i.e. 7 linearly spaced intervals between the short and long referent, 
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inclusive). In all, 110 trials were performed by each subject during testing. A block 

structure was used in which each block consisted of 11 trials and there were ten blocks per 

session. A block consisted of 7 classification trials (one of each probe duration), 2 midpoint 

production trials, and 2 referent production trials (1 short and 1 long). Within a block, the 

presentation order was random. 

3.5.4 Analysis of classification 

To analyze classification data, we numerically fit a psychometric function for the 

probability that an interval t is labeled as closer to “long” by the generalized logistic 

function shown below 

   

where p1, p2, p3 and p4 represent free-fit parameters. Once the best fit parameters were 

obtained using non-linear regression, the bisection point (the duration for which 

p(“long”)=0.5) was calculated as 

   

The Weber fraction was measured the difference limen, which is defined as half the 

difference in the durations corresponding to p(“long”)=0.75 and p(“long”)=0.25, 

divided by the bisection point. This is shown below 
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The sensory Weber fraction was calculated as the ratio between the error and bisection 

point. 

In order to calculate the 95% confidence intervals, we used bootstrapping. This was 

performed for 1000 runs by randomly drawing different trials with replacement and 

calculating the resultant Weber fraction for each run. The 95% confidence intervals were 

measured from this sampling distribution.  

To test whether the slopes of covariation between the bias-corrected arithmetic mean (i.e. 

the mean of the produced short and long referent intervals) with respect to production 

bisection point and classification bisection point were significantly different, we used 

bootstrapping. For each bootstrap, we randomly selected subjects with replacement and 

calculated the difference in these slopes. This procedure was repeated 2,000 times to 

obtain a two-tailed p value for whether the sampling distribution of the difference in 

slopes was significant.  To look for within-subject evidence of memory bias in the 

production bisection point, we divided the data from each subject’s session into 10 equal 

blocks of 11 trials each (which was the experimentally imposed block length).  For each 

block we averaged the two midpoint productions and computed the mean of the short and 

long referent productions.  We then regressed the averaged midpoint against the mean of 

the referent productions per block and obtained the slope of regression for each subject.  

The mean of the slopes across subjects within the 1s/5s or 2s/4s cohort was compared to a 

null distribution of slopes from each cohort.  The null distribution was created by 

randomly shuffling the data within a subject’s session, computing the slope of regression 

for each subject, and taking the average of the slopes from each subject.  This procedure 
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was repeated 1,000 times to obtain a two-tailed p value for whether the average of the 

slopes across subjects within each cohort was significantly different from the mean of the 

null distribution. 
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3.6 Discussion 

Considering the effect of memory bias on the bisection point location is critical as different 

theoretical accounts of timing make different predictions about where it lies (50). Theories 

that hypothesize a linear mapping between real time and subjectively represented time, and 

assume a difference rule in comparing a probe duration to each of the referents, predict that 

the bisection point lies at the arithmetic mean (133).  Scalar timing theory, which favors a 

ratio rule for comparing a probe duration to each referent, predicts that the bisection point 

lies instead at the geometric mean (134).  Still other theories, which perhaps best accord 

with the preponderance of the behavioral data, predict that the bisection point location will 

vary, based on task parameters and subjective statistics, all the way from the arithmetic 

mean down to the harmonic mean (71, 135, 136).  Given the importance of the bisection 

point location to these theories, it is critical to account for the sources of bias in measuring 

the bisection point.     

We sought to measure the memory bias in bisection point location by employing both 

temporal classification and production methods. While several studies have examined the 

similarities and differences between temporal classification and production (163, 170), the 

“Bisection by Classification and Production” (BiCaP) task we used is unique in that these 

methods are employed simultaneously (by interleaving different trial types within a single 

session). Using this method, we were able to directly address whether memory biases can 

affect the location of the bisection point.  Indeed, we found that the bias-corrected 

arithmetic mean, calculated from the mean produced time of the short and long referents, 

co-varied with the classification bisection point (Figure 12, column 1). We also found co-
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variation with the production bisection point (Figure 12, column 2). While we found 

significant co-variation between the bias-corrected arithmetic mean and the production 

bisection point within the 1/5s and 2/4s groups separately, we did not observe the same 

within each group for the classification bisection point.  Perhaps the bias-corrected 

arithmetic mean is not as predictive of the classification bisection point location as it is 

derived from production trials, and, consequently, higher power would be needed to reveal 

significance within these groups.  We also found evidence for within-subject co-variation 

between the production bisection point and the mean of the remembered referents across 

the session (Figure 13). Taken together, we show that considering memory bias of the 

referents helps account for the variability in the bisection point observed on both 

classification and production trials.  Such bias is difficult to directly measure in 

prototypical classification tasks in which only data about the bisection point (both its 

location and associated CV) is obtained.    

An alternative explanation of our findings is that the observed biases are attributable to 

clock speed changes. This interpretation is challenged by the fact that we do not observe 

biases in production of the one second reference duration whereas we do observe a large 

bias for production of the five second duration. It is possible, however, that this differential 

observation is due to the fact that different mechanisms may underlie sub- and supra-

second timing (171).  To further address this question, we looked at whether a clock speed 

interpretation could apply to the 2/4s group.  If clock speed is accounting for the observed 

effects, then we might expect to find a change in produced times of the reference durations 

from training to testing. Assuming the clock speed changes were linear, we should expect 

to see a proportional change for the short reference duration as the long reference duration 
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(which in this case, are 2 and 4 seconds, respectively).  To test this, we performed a two-

sided Wilcoxon signed rank test and found that the medians of the ratios for the 2s duration 

(that is, the ratio of the production duration during testing to the duration during training) 

were significantly different from those of the 4s duration (p = .0039). We repeated this for 

the 1/5s group and, not surprisingly, found that the medians were again significantly 

different (p = .0059). This suggests that our effects are not attributable to linear variations 

in clock speed. It is difficult, of course, to rule out the possibility that some arbitrary non-

linear clock speed variation may account for our effects, but a linear relationship in 

commonly assumed is pacemaker-accumulator models (60). 

Importantly, prior work has studied the effects of reference memory and found no effect 

on time perception (158, 172, 173). Allan and Gerhardt directly addressed this issue by 

comparing the prototypical bisection task to a “roving-referents” task (159, 160), in which 

new referents are shown prior to every trial and the subjects must determine whether a 

probe interval is more similar to the first or second referent. In this study, no difference 

was observed between the prototypical task and the roving referents version of the task. 

One explanation for this conflicting result is that this study was performed in the sub-

second range with intervals that spanned 400 to 750ms. As mentioned above, many 

empirical findings suggest that there is a perceptual dichotomy between sub- and supra-

second timing (171) and it has been shown that different brain regions are engaged in sub 

and supra-second timing tasks (174). Consequently, it is possible that memory biases are 

much smaller in the sub-second range where the interval storage may be more accurate. In 

addition, the ratios of the reference durations used in that study were all less than the ratios 

used here (five for the 1/5s group and two for the 2/4s group). Since errors in time 
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perception are known to grow with the duration of the intervals to be timed (Gibbon, 1977), 

we reason that errors in temporal memory may grow with the length of the intervals to be 

remembered and, consequently, memory biases in the bisection point may be larger for 

higher reference durations. Given our finding, it would be interesting in the future to 

administer the BiCaP task using reference durations in the sub-second range.  

In addition to directly addressing the contribution of memory bias to the measurement of 

the bisection point, the results from the BiCaP task also afforded the opportunity to look at 

whether production and classification rely on common timing mechanisms, a question 

which has been elegantly addressed in prior work (163, 170, 175–177). We were able to 

build on this body of work in several ways.  First, whereas most previous studies have 

relied on comparisons across different experimental blocks, the BiCaP task involves 

comparisons among trial types within a single session. This approach may, therefore, better 

control for state effects, thereby decreasing the likelihood that subjects rely on short-term 

muscle memory to guide performance in production trials.  It should be noted, however, 

that inter-mixing these trial types may affect the performance on each type.  As it is known, 

for instance, that the order of reference duration presentation can affect the bisection 

location (158), it is possible that the presence of a classification trial or a short reference 

production could affect, say, a midpoint production.  It would be informative, therefore, to 

see how these results vary when trial-type blocks are used. Second, several of these studies 

have used rhythmic tapping tasks, in which the subject must produce periodic and repetitive 

movements, as a basis for comparison to classification. We chose a different approach as 

the motor movements themselves in tapping tasks contribute a large source of variability 

in the responses (176, 178). Third, while most previous human studies have focused on the 
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sub-second range, we were interested in the seconds range of temporal perception. Using 

this method, we found that the bisection point derived from production and classification 

trials could not be distinguished (Figure 12, column 3). This lends support to the hypothesis 

that these distinct methods share at least partially overlapping timing mechanisms (163, 

170, 175).  

We sought to address not only whether production and perception relied on similar timing 

mechanisms, but also what the nature of these mechanisms might be. By using two sets of 

referent probes (1/5s and 2/4s) we were better able to address this question as the location 

of the bisection point derived from classification has been shown to vary with the ratio of 

the referents used (50, 139). A meta-analysis showed that the bisection point will tend to 

be nearer the arithmetic mean for referent ratios exceeding 4 and be nearer the geometric 

mean for ratios lower than 2 (136). Our reference sets spanned this range (ratio of 5 for the 

1/5s and ratio of 2 for 2/4s group) so we were able to investigate this question. Interestingly, 

the raw bisection points for classification and production clearly did not accord with this 

trend and, in fact, were not consistent with any known model (50).  The fact that our raw 

bisection points do not accord with that of Wearden and Ferrara (1996) and others may be 

due to the fact that they use interval durations that are approximately an order of magnitude 

smaller; as it is known that different timing mechanisms are engaged for sub- and supra-

second timing, (7) the memory bias may not be as large a factor in this temporal regime. 

However, when we looked at the location of the bisection points with respect to bias-

corrected measures of the arithmetic (Figure 14, green lines) and geometric (Figure 14, 

blue lines) means, we found significant evidence that the production bisection point 

followed this trend (though the classification data was likely underpowered to address this 
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question). It is important to note, however, that the presence of the one second reference 

duration, which may engage multiple timing mechanisms as mentioned above, may affect 

the comparison between the 1/5s and 2/4s groups. It is also important to note that, in 

addition to the reference duration ratio, the bisection point location can also be affected by 

the probe spacing and the presence of feedback.  Here, we chose a linear probe spacing 

which, compared to logarithmic spacing, has been shown to push the bisection point closer 

to the arithmetic mean in human subjects (136, 141). Therefore, it is possible that the 

bisection points in this study, which tended to be higher than the arithmetic mean, would 

have been pushed lower by a non-linear probe spacing.  In addition, it is likely that the 

presence of feedback (similar to that used in training) on some fraction of trials would have 

yielded more veridical timing. 

One aspect of our data violates a long-held tenet of time perception—scalar timing. 

Specifically, scalar expectancy theory predicts that as the standard deviation in temporal 

estimation grows with the temporal magnitude to be estimated (57). Although scalar timing 

is commonly cited as a fundamental feature of time perception, there are many examples 

in which it is violated (168, 179). Our data adds to these examples, as Weber’s law was 

violated for production trials in that the CVs of the production for the short, long, and 

midpoint intervals were significantly different in the 1/5s group. A potentially trivial 

explanation for this result is that the subjects were trained much more extensively on the 

referent intervals than on the midpoint intervals (which they were required to produce de 

novo, without any feedback, during testing). This does not explain why our results were 

consistent with Weber’s law in the 2/4s group, however.  Another explanation, alluded to 

above, is that the one second reference duration engages another timing mechanism from 
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that engaged by the reference durations in the supra-second range. Interestingly, we did 

find evidence that the CV is inversely related to the bisection point on production trials in 

the 1/5s group (slope = -8.53, p = .0042, R2 = .6627), as predicted by some theoretical 

accounts of timing (71, 137). This relationship was not significant for classification trials 

or for the 2/4s group. 

In sum, we have shown evidence that memory bias can account for variation in the location 

of the bisection point for both classification and production. In addition, by interleaving 

these trial types, we were able to simultaneously measure the classification and production 

bisection points and found that they were not significantly different, suggesting that these 

tasks rely on at least partially overlapping timing mechanisms. Using bias-corrected 

measures we were able to recapitulate some previously reported effects of the referent ratio 

on the bisection point, which non-corrected measures could not explain. These results 

suggest that it is important to consider memory bias in timing and design future 

experiments to measure its effects.  
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Chapter 4. Interval evaluation and spatial 

foraging patterns 

Abstract 

Understanding the exploration patterns of foragers in the wild provides fundamental insight 

into animal behavior. Recent experimental evidence has demonstrated that path lengths 

(distances between consecutive turns) taken by foragers are well fit by a power-law 

distribution. Numerous theoretical contributions have posited that “Lévy random walks”—

which can produce power-law path length distributions—are optimal for memoryless 

agents searching a sparse reward landscape. It is unclear, however, whether such a strategy 

is efficient for cognitively complex agents, from wild animals to humans. Here, we 

developed a model to explain the emergence of apparent power-law path length 

distributions in animals that can learn about their environments. In our model, the agent’s 

goal during search is to build an internal model of the distribution of rewards in space that 

takes into account the cost of time to reach distant locations (i.e. temporally discounting 

rewards). For an agent with such a goal, we find that an optimal model of exploration in 

fact produces hyperbolic path lengths, which are well-approximated by power laws.  We 

then provide support for our model by showing that humans in a laboratory spatial 

exploration task search space systematically and modify their search patterns under a cost 

of time. In addition, we find that path length distributions in a large dataset obtained from 

free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we 

provide a general theoretical framework for understanding spatial exploration patterns of 
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cognitively complex foragers through the lens of temporal discounting and interval 

evaluation. 
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4.1 Introduction  

Understanding the movement patterns of wild animals is a fundamental question in ecology 

with implications for wildlife conservation. It has recently been hypothesized that random 

search patterns known as Lévy walks are optimal and underlie the observed power-law 

movement patterns of wild foragers. However, as Lévy walk models assume that foragers 

do not learn from experience, they may not apply generally to cognitive animals. Here, we 

present a novel decision-theoretic framework wherein animals attempting to optimally 

learn from their environments will show near-power law distributed path lengths due to 

temporal discounting (where the value of a reward diminishes with the delay in its receipt).  

We then provide experimental support for this framework in human exploration in a 

controlled laboratory setting and in animal foraging in the wild. 

Lévy walks are a special kind of random walk whose path lengths form a power law 

distribution at their asymptotic limit (x): min( )  ;  1 3;  p x x x x      (180–183). 

Numerous recent papers have demonstrated that foraging animals in the wild or under 

controlled conditions show path lengths consistent with power laws (74, 184–189), which 

are proposed to arise from an underlying Lévy walk process. Theoretical models have 

demonstrated that such a process can be optimal for memoryless agents searching for 

randomly distributed rewards across space under certain conditions (76, 180, 181). 

Together, these findings have led to the Lévy flight foraging hypothesis which states that 

such search patterns have arisen due to their evolutionary advantage (181, 182) However, 

since many animals, including humans, are cognitively complex and can learn from their 

environments, it is important to address whether such heavy-tailed path lengths are optimal 
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even for cognitively complex agents (05). The question of how memory influences 

foraging patterns  has been approached in some contexts (190–193) but has not yet been 

sufficiently addressed (77, 194–196). 

Because power-law path lengths have been observed in sparse and dynamic environments 

(e.g. open ocean), in which foragers rarely revisited previously rewarded locations (187, 

188, 197, 198), it is reasonable to assume, as foundational models have, that there is little 

advantage to learning about the reward distributions at any given spatial location. Hence, 

under this assumption, prior studies constrained the class of models studied to random 

searches in the absence of learning. However, despite the fact that remembering spatial 

locations in environments such as open oceans may not be advantageous, it is widely 

believed that many ecological parameters, including prey distributions, show high degrees 

of spatial autocorrelation (199, 200).  Moreover, it has been found that these distributions 

can exist as hierarchies, wherein large, global spatial structures comprise smaller, more 

local structures, and, that predators potentially learn these mean scales in the spatial 

distribution of prey (199, 200). Therefore, given the existence of patterns in the distribution 

of prey in relative space, it may be advantageous for predators to build representations, or 

models, of these patterns as opposed to performing purely random searches (05a,b). In this 

paper, we show that in order to optimally learn the reward distribution across relative 

spatial scales in the service of future reward rate maximization, foragers would produce 

approximate power-law path lengths, resembling Lévy walks. 
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Figure 15 Optimal search of a bounded area containing reward by a forager with spatial 

memory 

A forager with spatial memory searches a bounded area containing uniformly distributed 

rewards. The optimal solution, assuming that the forager has a limited perceptual range, 

is to tessellate the search region into bins defined by the perceptual range so that every 

location in the search space can be sensed by single visits to the locations xmin+rp, 

xmin+3rp, xmin+5rp, … xmax. If the forager has no spatial memory and hence cannot 

remember which location it visited on the previous search bout, it will be suboptimal.  
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4.2 Results: Optimal foraging under temporal constraints  

How might foragers build a model of the relative spacing between food items? Consider 

the foraging behavior of albatrosses, for instance. A straightforward solution is to build a 

model of rewards obtained as a function of distance flown on each step (16c). Since the 

speed of movement during searching is often nearly constant for many foragers (e.g. 8, 16), 

this model can also be built with respect to the time flown on each step. The question faced 

by the forager then becomes how to sample different step lengths so as to maximize the 

ability to detect differences in reward distributions associated with each step length.  

However, foragers do not treat the same reward available at different delays equally: the 

later the receipt of a reward, the less its subjective value (202, 203). In other words, the 

subjective value of a reward expected after a long flight is smaller than that of the same 

reward obtained immediately. Many behavioral experiments have shown that the cost of 

time associated with a delayed reward takes a specific functional form: that of a hyperbolic 

(for µ=1) or hyperbolic-like (for µ1) function (202–209), shown below, 

(1) 

where SV(r,t) and D(r,t) represent the subjective value and discounting function, 

respectively, of a reward of magnitude r delayed by a time t. c and µ represent parameters 

that measure the rate at which the value of a delayed reward is discounted. In light of such 

a cost of time, exploration of a given flight time ought to be done under consideration of 

its utility for future exploitation. Thus, the foragers must explore so as to maximize their 

( , ) ( , )

(1 )

r
SV r t rD r t

t

c



 





 104 

ability to discriminate subjective value (not reward) distributions associated with different 

step lengths. 

Here, we show that in order to maximize the ability to discriminate the subjective value 

distributions associated with different step lengths, the forager has to sample each step 

length in proportion to the uncertainty in subjective value associated with that step length. 

This strategy makes intuitive sense since the higher the uncertainty associated with an 

option, the more it must be sampled to learn its properties. Such a strategy of exploring in 

proportion to uncertainty has previously been assumed to be an exploration heuristic (210). 

However, we show that it is in fact optimal for maximizing discriminability (Figure 16). 

For a forager that initiates exploration under a uniform prior (i.e. no a-priori assumption 

regarding the distribution of rewards), sampling in proportion to uncertainty in subjective 

value equates to sampling in proportion to the discounting function associated with a flight 

time. As previously mentioned, the discounting function over flight time is hyperbolic. 

Therefore, for constant speed, the discounting function for a path length is also hyperbolic. 

Thus, we predict that the path length distribution of a forager attempting to explore the 

reward distribution across relative space will be  

(2) 

This is similar in appearance to a power law, but differs due to the presence of an additive 

constant c.  Consequently, while it decays asymptotically as a power law, it predicts a 

constant probability at low values. Further, note that any distribution that is consistent with 

a strict power law (e.g. prior observations of foraging patterns (74, 187, 188)) will 

p(x)µ
1

(1+
x

c
)m

;  or rearranging by a constant,  p(x)µ
1

(c+ x)m
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necessarily be consistent with the above distribution since the power law distribution is a 

special case of Equation 2 in which c=0. Since foragers might limit the range of their 

exploration to a bounded interval of step lengths (e.g. due to behavioral/environmental 

constraints), the above probability distribution would only be expected to hold in a 

truncated domain (between xmin and xmax) under exploration. Further, in reward dense 

environments, we propose that observed path lengths would reflect not just the intended 

path lengths shown in Equation 2, but also the truncation due to prey encounter, thus 

resulting in exponential path lengths (as has previously been shown (186); Figure 17). 
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Figure 16 Model for adaptive benefits of apparent Lévy walks 

a. The environments of foragers often show spatial autocorrelation with a mean spatial 

scale. Thus, it is likely that foragers attempt to build a model of the mean spatial scale by 

building a model of rewards obtained for different flight distances (b & c) (see text). d. An 

optimal model of exploration that maximizes discriminability requires foragers to sample 
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different flight distances (or durations) in proportion to the uncertainty in subjective value 

of rewards predicted at those distances. If the prior expectation of rewards is uniform, the 

sampling of different flight distances will produce a hyperbolic-like distribution—due to 

hyperbolic discounting—that can appear to be power law distributed. 
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Figure 17 Prey truncation leads to exponential path lengths when the density of food is 

high:  

Observed path lengths of foragers no longer reflect the intended path lengths when the 

distribution of prey is high due to prey-encounter truncation. The resultant path lengths can 

be shown to be exponential for a 2-D environment with randomly distributed prey. 
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4.3 Results: Human exploratory task  

The model described above makes several predictions about search behavior of a 

cognitively-complex agent that we could test with humans in a controlled laboratory 

setting. Specifically, we sought to determine 1) whether humans search space in a random 

search pattern as expected from the Lévy walk model, or, in a systematic and deterministic 

way, and, 2) whether spatial search patterns are sensitive to the cost of time incurred in 

traversing the space. To test this, we designed a spatial exploration task for humans with 

and without the cost of time (Methods). In phase 1 (with a time cost) of this task, subjects 

could stop an image of a flying albatross in order to reveal a fish at a given spatial location.  

The goal of the subjects was to build a model of the distribution of fish as the knowledge 

acquired during this exploration phase could then be used on one exploitation trial to collect 

the largest fish possible. Crucially, flying longer distances across the screen took 

proportionally more time (the longest distance corresponded to waiting 10 seconds). 

Unknown to the subjects was that the distribution of fish sizes at any given location was 

uniform between fixed bounds. To test path lengths in the absence of a time-cost, we 

removed the distance-time relationship in phase 2 and allowed the subjects to explore by 

merely clicking a given location with a computer mouse. In other words, they no longer 

had to wait for the albatross to fly to that location. 

We found that in both phases, the pattern of search was non-random. Subjects 

systematically explored the space by, for instance, undertaking longer and longer path 

lengths or undertaking shorter and shorter path lengths from the end of the screen (Figure 

18b). Statistically, the probability of finding bouts of positive path length differences or 
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negative path length differences between consecutive paths was higher than chance in 

every subject for phase 2 (p<0.05, runs test with Benjamini-Hochberg correction for 

multiple comparisons, n=12). For phase 1, the non-randomness in the search was 

statistically significant in 10 out of 12 subjects (p<0.05, runs test with Benjamini-Hochberg 

correction for multiple comparisons). Thus, human spatial search in this random 

environment is not random. This conclusion is also bolstered by prior studies 

demonstrating that numerous animals remember spatial locations to produce non-random 

spatial search patterns in the wild (196, 211–217). We also found that the distribution of 

path lengths in phase 1 was significantly different from that in phase 2 (Figure 18c; 

p<0.001, two-tailed two sample Kolmogorov Smirnov test) due to the cost of time, as 

predicted by our temporal discounting model. Thus, human data supports two key 

predictions of our model, viz. that spatial search by cognitively complex agents is 

systematic and non-random and that temporal discounting plays a fundamental role in the 

shaping of such search. These datasets are relatively small, however—as it is difficult to 

encourage human subjects to explore for long periods in a laboratory setting—and, 

therefore, are insufficient for model comparisons (though our model is consistent with the 

data).  Therefore, to perform model comparisons, where a considerable amount of data is 

required, we turned to foraging data in the wild where, in some instances, thousands of 

path lengths have been recorded from individual animals. 
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Figure 18 Human spatial exploration task with and without temporal costs 

a. Schematic of the computer task (Methods): In phase 1, an albatross flies across the 

screen from a “nest” at a constant speed. Thus, the flight time is proportional to the 

distance flown. The farthest end of the ocean corresponds to ten seconds of flight time. In 

phase 2, subjects can make the albatross jump to a spot (i.e. teleport). Thus, flight time is 

independent of distance and is zero. b. Data from example subjects showing systematic 

search behavior across space. c. Raw CDF of the population data across subjects for 

phase 1 and phase 2 showing sensitivity of exploration to the cost of time. 
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4.4 Results: Path length distributions of wild animals are well-

fit by a hyperbolic model  

Given the preponderance of evidence that foraging path lengths are well-fit by the power 

law distribution (74, 184–187), the immediate question to be addressed is whether the 

hyperbolic distribution of path lengths expected from Equation 

Error! Reference source not found. can be well-described by a power law. Since the 

above distribution (and a power law) is defined in a bounded domain, we tested against a 

truncated power law (see Methods for details). We found that for random numbers 

generated using Equation Error! Reference source not found., Akaike Information 

Criterion weights (wAIC) overwhelmingly supports a truncated power law compared to a 

truncated exponential (wAICtp=1.000 and wAICexp=0.000) for all parameters tested (Figure 

19a). 

At this point, we wondered whether previously analyzed foraging data (187) may be well-

explained by our model. For this analysis, we compared a hyperbolic model to a power law 

model, as the power law distribution was found to provide a good fit to the data (187) and 

is generally compared against the exponential distribution to assert the presence of Lévy 

walks (74, 76, 184–186, 188, 189).  To be clear, we compared against the power law 

distribution, not the family of distributions which have power-law distributions at their 

asymptotic limits—to which a hyperbolic and power law model both belong.  One 

important point to note here is that while a strict power-law distribution is a special case of 

the hyperbolic distribution, it is not trivially true that in a direct comparison between the 

two models, the data will be better fit by a hyperbolic distribution. Specifically, a 
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hyperbolic distribution will have a faster decay at large values and slower decay at small 

values when compared to the closest power law. Thus, for real data that are approximated 

by a power law (better than an exponential distribution), it may well be that the data is 

inconsistent with this specific prediction for a hyperbolic model. In such a case, the best fit 

hyperbolic model will reduce to the best fit power law and hence, model selection (by 

wAIC) would favor the pure power-law model over the hyperbolic model owing to fewer 

parameters. 

Since differentiating between two highly similar distributions requires considerable 

statistical power, we limited our test to eight individual marine animals, comprising four 

blue sharks Prionace glauca (PG) and four basking sharks Cetorhinus maximus (CM), for 

which a substantial number of path lengths (>10,000) were recorded. The results for two 

individuals, blue sharks PG2 and PG4, are shown in Figure 19b and c, respectively.  In 

both cases, the hyperbolic fit (cyan) provides an excellent fit to the data.  Notably, the 

truncated power law fit is visually compelling for PG2 (Figure 19b) but not PG4 (Figure 

19c).  Indeed, individual PG2 represents a typical case where the fits are not easily 

distinguishable visually (as in the simulation in Figure 19a), but where the wAIC 

overwhelmingly favors a hyperbolic model. Examining all individuals, we found that the 

hyperbolic model provided a superior explanation of the data when compared to power law 

and exponential models in all but one individual (Table 1). In this individual (CM3), the 

exponential model provided the best fit, potentially due to prey encounter-related 

truncation (186). In all other cases, the hyperbolic model was overwhelmingly favored 

(wAIC=1.000), except in PG3 where support was not as clear-cut (wAIC=.708). Hence, 

our theoretical model provides a superior fit to previously collected foraging data.   
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Figure 19 Previously collected data from wild animals is well-fit by a hyperbolic model 

than a power law model 

a. Random data generated from a hyperbolic distribution (blue dots) can be well-

approximated by a power law distribution (red), but not by an exponential distribution 

(green): 25000 random numbers were generated from a hyperbolic distribution (Equation 

2; Methods) with truncation set to be between 10 and 1000. The best fit truncated power 

law describes the data significantly better than the best fit exponential (wAICtp=1.000 and 

wAICexp=0.000).  b. Previously collected data (blue dots) that is well fit by a hyperbolic 
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model (cyan) and power law model (red), but not an exponential model (green).  c. Data 

from a subject in which the hyperbolic model is considerably preferred to any alternative 

model. 
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 Type xmin 

xmax 

 

µpl µhyp chyp 

KS D statistic wAIC 

pl hyp exp pl hyp exp 

CM1 Disc 1 322 -1.19 -1.41 1.19 0.061 0.026 0.356 <10-6 1.000 <10-6 

CM2 Disc 6 91 -2.07 -3.03 7.20 0.056 0.083 0.127 <10-6 1.000 <10-6 

CM3 Disc 7 68 -1.49 -8 88.64 0.077 0.051 0.059 1×10-91 1×10-11 1.000 

CM4 Disc 7 63 -1.44 -1.79 4.25 0.015 0.007 0.061 2×10-4 1.000 <10-6 

PG1 Disc 2 185 -2.10 -2.24 0.36 0.013 0.003 0.248 <10-6 1.000 <10-6 

PG2 Disc 3 185 -1.63 -1.82 1.23 0.022 0.007 0.219 <10-6 1.000 <10-6 

PG3 Disc 4 218 -1.70 -1.77 0.57 0.025 0.018 0.222 0.292 0.708 <10-6 

PG4 Cont 0.027 87.3 -1.38 -1.90 0.13 0.150 0.031 0.376 <10-6 1.000 <10-6 

 

Table 1 Results of fitting truncated power law (pl), truncated hyperbolic (hyp) and 

truncated exponential models to data previously collected from individual marine animals. 

 

CM, basking shark; PG, blue shark. The first seven animals had quantized data 

(Type=Disc) that could be considered as resulting from a discrete probability distribution. 

For these animals, we divided the data by their common factor to get the discrete data (e.g. 

the first animal had unique observations 1,2,3,…,322). xmin and xmax represents the best fit 

truncation across all three distributions (Methods).  The best fit parameters, goodness of fit 

(Kolmogorov-Smirnov D statistic), and relative quality of fit (wAIC) are shown. 
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4.5 Results: Optimal exploration with noisy temporal 

representations 

In our model for foraging animals in the wild, we previously assumed perfect ability to 

estimate the time flown on a given step. Since we know that the error in estimating longer 

intervals is larger than that of smaller ones (218), we derived the optimal exploration model 

for the biologically realistic case in which time perception is subjective and noisy 

(Appendix). In this model, the sampling per bin of path length (or equivalently, real time) 

for maximizing discriminability of rewards associated with that path length will be 

determined by the degree of nonlinearity in time perception as different bins in subjective 

time are scaled differently depending on the non-linearity (Figure 20c). Theoretically, it 

has been proposed previously that the degree of non-linearity in time perception is directly 

related to the discounting function in subjective time (71) (Figure 20d, left). Consequently, 

we show—based on our prior theory of temporal perception and decision-making (71, 219–

221)—that the optimal path length distribution would be 

(3) 

Here, v is the speed of the animal. The term Time is the interval over which the past reward 

rate experienced by an animal is estimated so as to make appropriate intertemporal 

decisions that maximize reward rates (71, 219, 220). Importantly, this term governs the 

non-linearity of time perception and the steepness of temporal discounting (71, 219–221).  

Thus, the power-law that best approximates the above distribution would have an exponent 

determined by the non-linearity of time perception (20d). 

3

1
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p x
T x






 118 

It is important to note that the derivations mentioned above necessarily simplify the 

foraging problem faced by animals in the wild. For instance, one factor that we did not yet 

take into account is that animals might account for other sources of risk such as that 

resulting from competition in their exploratory model. In such a case, we show in the 

Appendix that the probability distribution of path length durations can be calculated as 

1

3

1
( )

( ) (1 )ime

p t

T t k r t 



 

 (2) 

where k and α represent the magnitude of competition such that an increase in their values 

represent more competition and hence, shorter path lengths. r in Equation (2) can  be 

thought of as the mean reward expected in an environment; the higher the mean reward 

expected, the larger the competition and shorter the path lengths. The asymptotic limit of 

Equation (2), for positive α, will have a power law exponent greater than 3 and hence, will 

be outside the Lévy range of exponents. However, in cases where the asymptotic limit 

cannot be reached, as is often the case in biology where path lengths are often truncated 

either by the physical world or potentially by some internal limit set by the forager, a best 

fit truncated power law will appear to have a lower exponent than the real generative 

process, with the apparent exponent lying between 0 and 3+1/α. 

An even more complete model of animal movements would involve additional factors. 

Nevertheless, the simplified model presented here demonstrates that path lengths of 

foragers with spatial memory that build a map of their environment for future exploitation 

can be heavy-tailed and nearly power-law distributed. 
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Figure 20 Optimal exploration when temporal representations are noisy.  

a. Optimal algorithm for exploration. b. If temporal resolution is constant at every interval, 

subjective representation of time can be represented as a linear function of real time, with 

constant noise. However, it is known that errors in timing increase with the interval being 

timed (Buhusi and Meck, 2005b). In this case, subjective representation of time can be 

represented as a non-linear function with the non-linearity controlled by the parameter 

Time (Namboodiri et al., 2014a, 2014b, 2014c). c. When subjective representation of time 

is non-linear (concave), equal bins in subjective time correspond to bins of increasing width 

in real time. d. A theory of reward-rate maximization (Namboodiri et al., 2014a, 2014b, 

2014c) predicts linear sampling for optimal exploration in subjective time, with the slope 
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determined by Time. In real time, this sampling becomes hyperbolic with its decay 

controlled by Time. 
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4.6 Materials and Methods 

4.6.1 Experimental Design  

Subjects 

The 12 subjects that participated in this experiment were healthy individuals aged 22-35 

recruited from Johns Hopkins University. All procedures were approved by the 

Institutional Review Board (IRB) and all subjects gave oral consent prior to the start of the 

experiment, as required by the IRB. 

Exploration Task 

We developed an exploration task for human subjects. Our task was divided into two 

phases.  At the start of each trial in phase 1, an image of an albatross would begin flying 

(i.e. moving) from its “nest” left to right across the “sky” (i.e. light blue patch of screen).  

Subjects were instructed to stop the albatross at any point by clicking a mouse.  When the 

albatross was stopped, it would instantaneously dive into the “water” (i.e. dark blue patch 

of screen) and an image of a fish would be revealed.  Unknown to the subject, the size of 

the fish was drawn from a uniform distribution with five discrete outcomes.  After the fish 

was displayed for 1 second, the albatross returned to its nest and immediately began to fly 

in the next trial. 

In phase 1, it would take the albatross 10 seconds to fly the entire length of the screen.  The 

speed of the albatross was constant and was 109 pixels per second.  If the subject waited 

for the albatross to traverse the entire screen (i.e. waited 10 seconds), the albatross 



 122 

automatically dove into the water and a fish was revealed.  This only happened on rare 

occasions, however, as the subjects usually stopped the albatross well short of 10 seconds. 

Prior to the start of phase 1, subjects were informed that they would have exactly 3 minutes 

to explore the region and “discover where the biggest fish swim.”  They were also informed 

that at the end of the phase, they would be given just one chance to catch the largest fish 

they could and that their payout would be “determined exclusively by the size of the fish 

on this one trial” and not by the fish caught during exploration.  In this way, the subjects 

were incentivized to explore the region. 

Following phase 1, phase 2 began.  In phase 2, the subjects were instructed that the 

albatross was flying over a different region of the ocean and, thus, they had to explore again 

to know where the biggest fish swim. The albatross remained in its nest until the subject 

clicked on a region of space (as indicated by a gray region that ran the length of the screen) 

to which it instantaneously teleported.  Therefore, there was no time cost in exploring 

farther regions of space, as there was in phase 1.  The instructions for phase 2 were similar 

to those for phase 1 except that subjects were informed that they had 1 minute to explore 

the region. This limit was imposed so that subjects would complete a similar number of 

trials in phase 1 and phase 2 (since trials in phase 2 are shorter as the albatross teleports 

rather than flies).  Aesthetic changes (background color, fish image, and fish size) were 

made between phases to encourage exploration by underscoring the instruction that the 

environments in phase 1 and 2 were distinct. 

Procedure 
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Subjects were placed in a quiet room in front of a 13-inch MacBook Pro.  On-screen 

instructions were read aloud by the experimenter to ensure that the subject understood 

them.  At the end of the experiment, subjects answered a questionnaire administered by 

the experimenter and were monetarily compensated for their participation. 

Display 

The experiment was controlled by custom-made code written in Java (JDK 6.0_65).  The 

display was 1220 pixels wide and 730 pixels high.  The area of the fish image (i.e. the size 

of the fish) was a random integer value between 1 and 5 scaled by a constant factor.   

4.6.2 Animal foraging data 

Blue (n = 4) and basking sharks (n = 4) were each fitted with a pressure-sensitive data 

logger that recorded an individual time series of depth measurements as the fish swam 

through the water column, as described previously (187). Raw depth measurements from 

loggers were converted into move step-lengths (the distance between consecutive turns) by 

calculating the vertical movement step (in m) between successive vertical changes in 

direction (from down to up and vice versa), as described previously (187). 

4.6.3 Procedure to fit data 

The general approach used here to test the appropriateness of different models is to 1) 

estimate the respective parameters using maximum likelihood estimation (MLE) for the 

same set of possible truncations across all models, 2) set the best truncation to that resulting 

in the lowest Kolmogorov-Smirnov (KS) D statistic across all models and all truncations, 

and 3) quantify relative likelihoods of models using Akaike Information Criterion (AIC). 
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The truncated hyperbolic-like distribution, shown in Equation (2), needed to be statistically 

characterized (Appendix). The truncated power law distribution is a particular example of 

a truncated hyperbolic distribution for c=0. To test whether data generated from this 

distribution can be mistaken for a power law distribution, we generated data using the 

following random number generator 

 
1

1 1 1 1
min max min( ) ( ) ( )t t c t c t c u c                

where t is the random variate following the truncated hyperbolic-like distribution, tmin and 

tmax are the minimum and maximum truncation limits, c and µ are the parameters of the 

distribution, and u is a uniform random variate. For the purpose of 0, tmin was set at 10 and 

tmax at 1000. The procedure for fitting and testing of power law, hyperbolic and exponential 

models is explained below. 

We fit the data using three models: exponential, truncated power law, and truncated 

hyperbolic.  As discussed in prior work1,2, upper truncation is important for power law and 

hyperbolic models, but not exponential models, as such heavy-tailed models cannot last for 

an infinite domain in the real world. Additionally, a lower truncation is necessary for the 

power law model as it is not defined for a flight time of zero. Consequently, as done 

previously1,2, we used a truncation for all the models tested. Unlike before, however, we 

did not tune the truncation parameters to each model.  Rather, we tuned them across all 

models by picking the truncation that resulted in the lowest Kolmogorov Smirnov D-

statistic across all models and all truncations. The different values of the truncation tested 

were as follows: for discrete data, the low truncation possibilities were set to 1, 2,…, 7 and 
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the upper truncation to 80th , 84th,…, 100th percentiles of the unique observations in the 

data, whereas for continuous data, the possible options for the minimum truncation were 

set to 0th, 4th,…, 20th percentiles and the upper truncation was chosen from 80, 84, …100 

(percentile) for which at least 80% of the data was retained. Thus, if the lower truncation 

was set to 20th percentile, the upper truncation had to be the 100th percentile, whereas the 

possible upper truncations with a lower truncation of 16th percentile were 96th and 100th 

percentiles. Thus, truncation limits are not free-fitting parameters for each distribution that 

add cost to the AIC. The benefit of using this approach is that the exact same data is used 

for comparison across all the models, thus avoiding different domains of the probability 

distribution functions for the different distributions tested. 

The ML estimate for the exponent in the truncated power law model was numerically 

calculated by solving Equation (16). Similarly, the ML estimate for c and µ for the 

truncated hyperbolic model was numerically calculated by solving equations (14) and (15)

.  Lastly, the ML estimate for the truncated exponential model was calculated by solving 

Equations (23) or (25). 

We used AIC to compare the three models. Since the truncation parameters were set to be 

the same for all models, these were not counted as free-fit parameters in the calculation of 

AIC. Thus, the AIC for the different models were calculated as shown below (each AIC 

was calculated using the correction for small sample sizes, i.e. they were AICc). The 

numbers of free-fit parameters for the different models were: one for “tp”, one for “exp”, 

and, two for “hyp”. 
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4.7 Discussion 

In this work, we first argued that even though natural environments of foragers are often 

highly stochastic such that remembering reward distributions associated with a specific 

location might not be useful, there still might be additional statistical regularities that 

cognitively complex foragers may exploit. Specifically, if foragers aim to build models of 

reward distribution across relative space, we showed that an optimal model of exploration 

would require sampling in proportion to the uncertainty of subjective value associated with 

a reward obtained after a given path length. Since it is often observed that the subjective 

value of rewards obtained after a delay is discounted hyperbolically with respect to the 

delay, we showed that the resultant path lengths would be hyperbolically distributed. In 

support of our model, we found that humans engaged in a laboratory exploration task 

searched space systematically and account for the cost of time in traversing space.  Next, 

we showed that data generated from a hyperbolic distribution is better fit by a power law 

distribution than an exponential distribution and that previously collected data from 

foraging animals in the wild can be better explained by a hyperbolic model than a power 

law model. Additionally, we extended our model to show that for foragers in the wild with 

noisy temporal perception, the exponent of the best fit power law is governed by the non-

linearity of time perception and the amount of competition faced from other foragers. Thus, 

we argue that search patterns in complex agents are unlikely to be purely random in 

situations where cognitive modeling is advantageous, and that approximate power-law path 

lengths emerge due to the temporal discounting of farther rewards. Hence, our model 

provides a novel and principled way of understanding search patterns and, thus, contributes 

to the ongoing discussion regarding the mechanistic origins of power-law path lengths in 



 128 

foragers (222–233).  

It is important to note that the human exploratory task presented here has superficial 

differences from the general model of exploration of relative space that was proposed 

earlier for foragers in the wild. The main difference is that while foragers in the wild were 

predicted to explore relative locations in space (i.e. locations relative to their current 

position), humans in this task are exploring absolute locations in space (i.e. locations 

relative to a fixed location). However, there is a fundamental equivalence between both 

cases in that exploration is performed with respect to the distance traveled on each search 

bout.  In this sense, exploration of absolute space in one dimension is just a special case of 

exploration in relative space.  Consequently, the discounting of rewards for future 

exploitation is defined with respect to the distance traveled during exploratory bouts in 

both cases. Thus, our laboratory task provides a test for the conceptual framework we 

developed here. 

In the following section, we consider potential predicted deviations from the simplified 

model presented here. We presented a model for animal movements in the wild by 

assuming that animals are building a model of the subjective value of reward distributions 

across relative space. Our calculations would thus be expected to be true only when animals 

are in fact building such a model. Since animals would likely not spend their entire foraging 

time building such a model, in these cases, one must expect deviations from the hyperbolic 

distribution of path lengths predicted here. One such instance would be when animals are 

exploiting knowledge gained from the aforementioned exploration. If foragers realized that 

there is indeed a scale over which prey are distributed across space, they would fly these 
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distances under exploitation. Thus, for exploitation, one would predict unimodal 

distributions of path lengths if the foragers are flying an optimal distance. Another 

prediction of our framework would be that paths of foragers might show directional 

preferences. If there is anisotropic autocorrelation in the spatial distribution of prey, the 

foragers would likely also learn the optimal angle to travel. Thus, one would predict non-

uniform spread of directions of travel.  

Further, even when foragers are building a model of subjective value of reward 

distributions across relative space, our calculations have ignored complications such as 

models of risk associated, for instance, with competition from other foragers. These 

complications would introduce quantitative deviations from the simplified framework 

presented here (see Section 0). On a related note, it must also be pointed out that optimizing 

discriminability between all choices is not required to optimize the ability to pick the 

maximum reward in a static environment. However, since reward environments are rarely 

static, it is likely that animals evolved a mechanism to build models of the world 

appropriate for mapping the entire distribution of subjective values. Another caveat is in 

relation to the dimensionality of the environment to explore. Here, the assumption was that 

the dependence of interest to the animal is on the distance from the previous reward (i.e. 

autocorrelation). This results in a 1-D exploration problem irrespective of the 

dimensionality of the environment. Further, we have assumed radial symmetry in 

autocorrelation. Despite these caveats, our calculations illustrate how path lengths of 

foragers in the wild can be heavy-tailed, as experimentally observed. 

Author contributions 
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Chapter 5. General discussion 

In the previous chapters, we described elements of three key aspects of visually-guided 

timing: interval generation, storage and evaluation.  In this chapter, we briefly summarize 

our findings, discuss their relationship to one another, and describe their implications for 

models of timing.   

In Chapter 2, we found evidence for behaviorally-relevant interval generation at the earliest 

stage of cortical visual processing, the primary visual cortex (V1).  Specifically, we found 

that reward-seeking timed behavior tracks distinct theta oscillation states in V1.  During 

these states, both the behavioral precision and accuracy on the timing task was much 

improved, and the degree of improvement was largest when the oscillatory signal was 

spatially widespread.  Importantly, the duration of these oscillations covaries with the 

timing of the reward-seeking action on a per trial basis.  Surprisingly, using these LFP-

defined states to separate single unit activity revealed otherwise unappreciated patterns of 

activity.  We devised a strategy to capture these activity patterns using spikes trains alone 

and found that behavioral performance on the timing task improved during periods of high 

coherence.  Finally, we found that the prevalence of these states covaried with the rate of 

experienced reward, thus linking them to motivation and the balance between exploration 

and exploitation.  Together, these findings point to a behavioral role for theta oscillations 

in V1, and for interval generation even at the earliest level of sensory cortex. 

In Chapter 3, we described drawbacks with current methods of measuring temporal storage, 

highlighting classification, in which subjects must assess whether a given interval is more 
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similar to a short or long reference interval.  Specifically, we described the possible sources 

of noise in measuring the temporal bisection point, the sample interval at which subjects 

are equally likely to label an interval as “short” or “long”, and the implications its 

measurement has for theories of timing.  One prominent source of bias in the bisection 

point may arise from noisy memory processes, as memory is a fundamental component of 

mechanistic models of time perception, and we therefore sought to directly measure 

memory biases by creating a novel task, “Bisection by Classification and Production” 

(BiCaP).  Using this task, we found that the classification bisection point varied with the 

bias-corrected arithmetic mean (calculated from the mean produced time of the short and 

long reference intervals) and covaried with the production bisection point.  In addition, we 

found evidence for within-subject covariation between the production bisection point and 

the mean of the remembered reference intervals across the session.  Together, these 

findings suggest that memory bias can contribute to the variability in interval storage, thus 

highlighting the need to account for it in experimental measurements and theoretical 

models.   

In Chapter 4, we discussed interval evaluation through the lens of studying how 

cognitively-complex foragers use temporal information to efficiently forage.  We found 

that an agent who maximizes information about temporally-discounted outcomes will 

exhibit search patterns which are well-approximated by power-law path lengths (which 

have been extensively observed in nature (180–186), but are, in fact, hyperbolic.  We test 

our model with data collected from humans engaged in a laboratory exploration task and 

animals foraging in the wild and find that key predictions of our model are supported, 

including that our hyperbolic model outperforms extant models in describing the data.  We 
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also extend our model to the realistic case in which temporal estimates are subjective and 

noisy.  Together, our results provide a compelling demonstration of how interval evaluation 

may impact complex decisions.  

Though investigated independently, the aspects of timing investigated in each of these 

chapters are intimately related.  In fact, in each chapter there are implicit references to the 

other aspects of timing.  Though we focused on interval generation in Chapter 2, 

successfully accomplishing the task requires that the rodents store information about the 

interval (storage) and attach behavioral significance to it (evaluation).   Though we focused 

on interval storage in Chapter 3, subjects also needed to generate intervals in order to 

produce them.  Finally, though we focused on interval evaluation in Chapter 4, making 

optimal foraging decision requires that animals had experience with (generation) and stored 

prior intervals.  This is not a coincidence: most real-world timing behaviors require these 

multiple aspects of timing.   

This gives us hope that we can understand the multiple axes of interval timing, and 

rationalize our findings, within a unified framework.  At a high level, our results support a 

view in which a behavioral arc proceeds sequentially from interval generation to storage to 

evaluation.  First, given that timing-related theta oscillations are observed at even the 

earliest level of cortical processing, primary visual cortex (Chapter 2), they may be a 

common mechanism of interval generation.  Second, since memory biases in interval 

production correlate with movements in classification measurements (Chapter 3), interval 

storage and generation are likely to rely on at least partially overlapping mechanisms.  

Lastly, complex evaluations take place on these stored intervals, as demonstrated by spatial 



 134 

exploration patterns in foraging (Chapter 4).  Thus, interval generation, storage, and 

evaluation may be explicitly connected.   

At a finer resolution, we can assess whether our results are consistent with extant timing 

models, such as the influential Pacemaker-Accumulator model (58).  In this model, a 

pacemaker outputs discrete ticks which are counted by an accumulator and, subsequently, 

sent to working and long-term memory.  Temporal classification decisions are then made 

by comparing the interval in working memory with the reference interval stored in long-

term-memory.  Scalar Expectancy Theory (SET) (57) is the most commonly cited 

implementation of a PA model.  Traditionally, the pacemaker in SET has been 

conceptualized as a centralized apparatus emitting Poisson-distributed pulses.  Yet, this 

idea has fallen out of favor as evidence for such a pacemaker is lacking (234).  On the other 

hand, many examples of emergent oscillatory activity have been found.  Along this line, 

the type of oscillatory activity we observed in primary visual cortex (Chapter 2) would 

serve as an excellent pacemaker: its output is highly structured and consistent and offers a 

high signal-to-noise ratio.  In fact, such oscillatory activity has been proposed as a 

pacemaker before (59). Our data also supports the notion of a distinct memory store for 

intervals; we found that biases in memory for specific durations could account for shifts in 

the temporal bisection point better than generalized shifts in clock-speed (Chapter 3).  

These memory effects could also be dissociated from an accumulator, as drift occurred 

even in the absence of new reference interval presentation.  Such separation among the 

various components of the PA has also been supported by pharmacological studies showing 

a clear dissociation between effects on clock speed and memory (60).  On the other hand, 
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it has been difficult to find a neural instantiation of the accumulator, leading some to 

question (for this and other reasons) the plausibility of the PA model (155, 234, 235).  

Partially to address the shortcomings of the PA model, the Striatal Beat Frequency (SBF) 

model has been developed.  In contrast to the PA model, it makes very concrete 

assumptions about the neural underpinnings of interval generation and storage.  In the SBF 

model, a bank of cortical oscillators at different frequencies are synchronized (reset) at trial 

onset by dopaminergic projections form the Ventral Tegmental Area (VTA) and Substantia 

Nigra Pars Compacta (SNpc), and downstream neurons in the striatum listen to their output 

(66).  These medium spiny neurons of the striatum act as coincidence detectors, comparing 

the pattern of activity across the cortical oscillators to the pattern they exhibited at the 

termination of a previously presented interval.  (As others have pointed out, however, it is 

not entirely clear, how the comparison to the remembered pattern is performed (234)).  It 

is biologically plausible that coincidence detection is subserved by medium spiny neurons 

of the striatum, as cortico-striatal loops are known to be a robust feature of neural 

processing.  In addition, the type of time-related oscillatory activity we observed in V1 

(Chapter 2) is more in-line with the SBF model than the PA model, as the SBF model has 

at its core the assumption that multiple cortical oscillators contribute to timing (7). The fact 

that we observe this activity at even the earliest stage of visual processing also adds weight 

to the proposition that time perception is a distributed feature of local circuits rather than 

the providence of a single, centralized clock. 

While aspects of both the PA and SBF models are consistent with the data presented here, 

neither deals explicitly with interval evaluation—that is, the process by which these 
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temporal memories are used for atemporal decision-making.  For such decision-making, 

these temporal memories must be translated into a currency of valuation.  At a behavioral 

level, considerable evidence points to the fact humans and animals discount delayed 

rewards hyperbolically (67); such a discounting model was used to explain foraging 

patterns of wild animals and humans in Chapter 4.  At a neural level, it has been suggested 

that Orbitofrontal Cortex (OFC) outputs a discounted subjective value signal, as most 

neurons within it fire more strongly to a reward delivered after a shorter delay (236) and 

lesions to it can result in less impulsive behavior (237).  This region also seems to provide 

a prospective subjective value signal, as many neurons modulate their firing depending on 

whether a cue is predictive of a short or long delay (236, 238).  (There has even been a 

popular proposal that the OFC translates a range of parameters into a common value 

currency (239–241), yet, contrary to this, it has been shown that storage of reward size and 

delay are dissociable (236)).  The Ventral Tegmental Area (VTA) has also been implicated 

in prospective reporting of subjective value; these dopamine neurons have been found to 

respond more weakly for learned stimuli associated with more delayed rewards, according 

to a hyperbolic function (242).  In humans, fMRI studies have also implicated the ventral 

striatum, medial prefrontal cortex, and posterior cingulate cortex in encoding the subjective 

value of delayed monetary rewards (243).  It is important to note that these observations 

do not explain precisely how this translative computation to subjective value occurs, how 

it is used, or why it follows a hyperbolic function.  Recent work has shed light on the latter 

question, suggesting that a hyperbolic-like function emerges if an agent is seeking to 

optimize its reward rate, given some particular constraints (71).  This theory—known as 

TIMERR (for Training-Integrated Maximized Estimation of Reinforcement Rate)—also 
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accounts for the fundamental observation that the degree of discounting is context-specific 

and varies across and within individuals. 

While this theory deals with the situation in which the agent already has complete 

information about its environment, it does not address how temporal information factors 

into decision-making when there is incomplete knowledge of the environment.  We deal 

with such a situation in Chapter 4, and find that the hyperbolic path length distributions 

exhibited by foragers can be explained by a model which factors in the temporal discounts 

associated with searching distant regions.  But what neural substrates might underlie 

generation of these path lengths?   The answer probably involves a combination of regions, 

including hippocampal cells representing spatial information (244–246), prefrontal cortical 

cells involved in movement planning (247), and midbrain, striatal, and prefrontal neurons 

involved in temporal discounting (236, 242, 243).  There has even been a suggestion that 

evidence for superdiffusive movement paths can be decoded directly from the neural 

dynamics within CA1 and motor neurons (246).  Therefore, interval evaluation involves 

coordination of various, disparate brain regions.  

Understanding the precise mechanistic underpinnings of interval generation, storage, and 

evaluation is important not only because it sheds light on normal brain function but also 

because it provides a window into pathological disease.  Parkinson’s disease, which is 

characterized by cell death in the Substantia Nigra Pars Compacta (SNpc), leading to a 

reduction in dopamine levels and concomitant ataxia, is a prime example of this.  Indeed, 

dopamine is considered an important neurotransmitter in both PA and SBF models of 

timing (7) and depletion of dopamine levels in Parkinson’s patients appears to affect 

interval timing: Parkinson’s patients have a hard time keeping the timing associated with 



 138 

two stimuli separate; in reproducing these intervals, they regress toward the mean of the 

two intervals (248). Further, these patients fail to exhibit the scalar timing property—the 

fundamental property in which the coefficient of variation (standard deviation/mean) is 

constant across the temporal range—when tested off their L-dopa medication.  Very 

recently, a direct connection between dopamine and timing at the seconds range was 

observed through optogenetic manipulation of midbrain dopamine cells (249).  Timing 

deficits in schizophrenic and severely depressed individuals have added weight to the 

hypothesis that dopamine depletion adversely impacts time perception (250).  Patients with 

Huntington’s disease, a genetic disorder characterized by a mutation in the Huntington 

protein which leads to a degeneration of medium spiny neurons in the striatum early on in 

disease progression, have also exhibited deficits in time perception. For example, patients 

that are predicted to show imminent onset of the disease show hypoactivation of the 

putamen, thalamus, pre-SMA, and cingulate areas, and corresponding deficits in timing 

performance compared to healthy controls and patients where predicted disease onset will 

not occur for many years (251).  This implicates dysfunction in the thalamo-cortico-striatal 

loop, which is relevant in both PA and SBF timing models, in timing impairments in 

Huntington’s patients. This connection is bolstered by the finding that there is hypoactivity 

in the putamen, thalamus, and medial prefrontal cortex of schizophrenic patients exhibiting 

impaired duration discrimination (252).  Finally, diseases which principally affect short-

term memory, such as Alzheimer’s disease, have also been linked to impairments in time 

perception (253).  Together, these observations provide insight into the fundamental 

mechanisms of timing and, simultaneously, help us better understand what goes awry in 

these pathological illnesses. 
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In this thesis, we have attempted to relate our findings to cohesive frameworks of timing 

and time perception.  It is important to note, however, that we have neglected several forms 

of timing.  This raises the question: are the myriad forms of timing reconcilable into a 

single, comprehensive framework?  At the macro scale, circadian rhythms govern our 

biological clocks, and rely heavily on the superchiasmatic nucleus in the hypothalamus.  

Given that disruptions of circadian rhythms in mice have no observable effect on interval 

timing, it seems that these processes are orthogonal (254). At the millisecond scale, motor 

timing  guides our behavior (128) and research has suggested that it relies on different 

mechanisms from interval timing in the seconds range (6).  Indeed, whereas lesion studies 

have strongly implicated the cerebellum in millisecond timing (255) and maintaining 

balance (256, 257), it appears to not be necessary for interval timing (258, 259).  Thus, it 

seems reasonable to develop distinct models for these different temporal regimes.  At some 

point, however, perhaps in translating a cognitively-timed decision to a split-second 

subconsciously-timed action, these systems likely interact, and studying their intersection 

might be a fruitful line of future research. 
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Appendix 

Derivations for optimal foraging under different constraints  

As explained in the main text, we assume that animals are mapping out a distribution of 

subjective reward values across relative space (i.e. distances traveled). To this end, we 

assume that they maintain a constant speed and are mapping out the distribution of rewards 

against the time flown on each step length (Figure 16). The aim for such an exploration is 

to sample each option a given number of times to build a map of the reward distribution 

across relative space for future exploitation. Since it is known that the subjective value of 

a delayed reward decays systematically with respect to the delay (e.g. “which do you prefer: 

$100 now or $100 in a year?”), exploration of relative space should also consider the 

subjective value of a reward for a given flight time. In other words, the exploration of a 

given flight time must be done under consideration of its utility for future exploitation. We 

also assume that the search space for exploration is bounded by the forager to be between 

a minimum (tmin) and a maximum flight time (tmax). Note that we are using symbols for time 

here but they can easily be converted to distance as time=distance/speed. This conversion 

obviously applies to the case of constant speed, but also to the case where speed is variable, 

but independent of distance flown.    

If there were no discounts (subjective value of a delayed reward divided by the subjective 

value of that reward when obtained immediately) associated with time and all flight times 

are expected to have the same reward distribution, the optimal manner to map out the 

reward-flight time relationship would be to sample all possible flight times equally and 
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note the corresponding reward amounts. Such a sampling strategy would lead to a uniform 

distribution of sample times between tmin and tmax. 

However, when different time intervals have different associated discounts, the problem of 

optimal sampling becomes non-trivial. We first solve this problem for the simpler case of 

two possible flight time options (similar to the “two-armed bandit” problem), under the 

following assumptions: 

1) As in our behavioral task, the environment is stationary such that the reward 

distribution associated with any option does not change in time. 

2) The aim of exploration is to ascertain the optimal option for future exploitation. 

3) The total number of trials to explore is fixed. The aim of the agent is to calculate 

how to sample the two different options while keeping the total number of trials 

fixed. This assumption will be relaxed later to also consider a) the case where the 

total time for exploration is fixed, and b) a case where the stopping of exploration 

has to be determined by the forager.  

4) The agent has access to the standard error of the mean of an option after n 

samplings. 

We first consider the case where total number of trials for exploration is fixed. 

Total number of trials for exploration fixed 

With the above assumptions, the problem faced by the agent is exactly the same as the 

problem faced in designing an optimal experiment so as to maximize one’s ability to 

distinguish between the mean of two distributions. The solution for the optimal experiment 
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design is to sample each option in such a way that the t-statistic between the two 

distributions can be maximized. Hence, for the agent trying to solve the optimal exploration 

problem, the task is to maximize the t-statistic between the subjective value distributions 

of the two options. Since the variances of the subjective values for the options will not be 

same owing to the multiplicative discounts, one has to use Welch’s t-statistic for unequal 

variances (260), which is defined as: 

𝑡 =  
< 𝑥1 >  − < 𝑥2 >

𝜎𝑑
 

where xi is the subjective value for option ‘i’, <x> denotes the expected value of x and σd 

refers to the standard error of the difference of means. Since the number of samplings of 

either option only affects σd, maximizing the t-statistic is the same as minimizing σd. 

If the distributions of rewards for each option are independent and identical, with a standard 

deviation σ, σd—the standard error of the difference of subjective means of the two 

options—would be: 

𝜎𝑑 =  𝜎√
𝑑1

2

𝑛1
+

𝑑2
2

𝑛2
 

where d1 and d2 are the discounts associated with the two options, and n1 and n2 are the 

number of times the two options were sampled. Given that the total number of trials is 

constant (N), n2 = N-n1.  

Minimizing σd is equivalent to minimizing the square of σd. At the minimum of the square 

of σd, the derivative of σd
 2 with respect to n1 will be zero. Therefore, 
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𝑑(𝜎𝑑
2)

𝑑𝑛1
=  𝜎2 (−

𝑑1
2

𝑛1
2

+
𝑑2

2

(𝑁 − 𝑛1)2
) =  0 

 

⇒
𝑛1

𝑑1
=

𝑛2

𝑑2
 

The second derivative can be verified to be positive at this solution, showing that σd is 

indeed at its minimum for the above solution. 

Hence, for a binary choice between options with independent and identically distributed 

(i.i.d) reward distributions but with different discounts, optimal exploration requires 

sampling in proportion to the discounts. 

Next, we extend this analysis to the case of k options (“k-armed bandits”), each having i.i.d 

reward distributions with different discounts, dk. While it is hard to identify a single metric 

whose optimality can identify the option with the maximum subjective value, one can 

define the optimality metric as the sum of variances of the difference distributions for each 

distinct pair of options. Minimizing this metric will lead to maximum discriminability 

between all options. Hence, for the k-option case, we assume that the aim of the agent is to 

maximize the ability to distinguish between the subjective rewards of the k options. With 

this assumption, the agent has to minimize 

𝜎𝑛𝑒𝑡
2 =  ∑ 𝜎𝑑

𝑖𝑗2

𝑖<𝑗
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where σd
ij is the standard error of the difference of the expected subjective rewards of 

options i and j. 

Expanding the expression on the RHS gives  

𝜎𝑛𝑒𝑡
2 = 𝜎2(

𝑑1
2

𝑛1
+

𝑑2
2

𝑛2
+  

𝑑1
2

𝑛1
+

𝑑3
2

𝑛3
+ 

𝑑1
2

𝑛1
+

𝑑4
2

𝑛4
+ ⋯

𝑑1
2

𝑛1
+

𝑑𝑘
2

𝑛𝑘
+

𝑑2
2

𝑛2
+

𝑑3
2

𝑛3
+

𝑑2
2

𝑛2
+

𝑑4
2

𝑛4
+

⋯ +
𝑑2

2

𝑛2
+

𝑑𝑘
2

𝑛𝑘
+ ⋯) 

Collecting like terms,  

𝜎𝑛𝑒𝑡
2 = 𝜎2(𝑘 − 1)(∑

𝑑𝑖
2

𝑛𝑖
)

𝑖

 

Since the total number of trials is constant, nk can be written as . 

At the minimum of σnet
 2, its partial derivative with respect to any ni,i<k will be zero. 

Therefore, 

𝜕𝜎𝑛𝑒𝑡
2

𝜕𝑛𝑖
=  𝜎2 (−

𝑑𝑖
2

𝑛𝑖
2 +

𝑑𝑘
2

(𝑁 − ∑ 𝑛𝑗𝑗,𝑗<𝑘 )2
) =  0 

⇒
𝑛𝑖

𝑑𝑖
=

𝑛𝑘

𝑑𝑘
 , 𝑖 < 𝑘 

Hence, even in the k-option case between options with i.i.d reward distributions but with 

different discounts, optimal exploration requires sampling in proportion to the discounts. 

  –  k i

i k

n N n


 
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It is important to point out that the optimal exploration requires sampling in proportion to 

the discounts only when comparing between options with i.i.d reward distributions. The 

general solution as we worked out for the case with different variances associated with the 

real values of each option is to sample in proportion to the estimated variance of the mean 

of the subjective values associated with that option (n α d2σ2/n ). It is interesting to point 

out that a similar strategy, in which exploration of an option was proportional to 

uncertainty, was assumed for some previous studies of exploratory behavior in humans 

(210, 261).  

Extending this to the continuous case, if we denote the probability of sampling the flight 

time t by p(t) and substitute a hyperbolic or a hyperbolic-like (202) discounting function 

for D(t), we get that for optimal exploration, assuming that flight time is proportional to 

distance traveled, 

   (1) 

where c and µ represent the two constants in the hyperbolic-like function. In other words, 

an optimal agent samples flight times in proportion to its hyperbolic-like discounting 

function. Equation (1) has been derived using the assumption that the bins in flight time 

(or relative spatial location) are linearly spaced. This in turn results from the assumption 

that the error in perception of time for each flight time is constant. This is an inaccurate 

assumption as it is known that errors in the representation of longer temporal intervals are 

larger. For such a case of noisy temporal representation, see Section 0. 

 

min max

1
( ) ;

( )
p t t t t

c t 
  


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Total time for exploration fixed 

Now, we solve for optimal exploration when the total time for exploration is fixed. As 

before, the aim is to minimize σd
 2

 but under the constraint that n1t1+n2t2=T, where T is the 

total time available for exploration. Taking the derivative with respect to n1, we get  

   

Thus,  

 

Thus the minimum of σd
 2 is when  

 

i.e. 

 

For the case with k options, we have to minimize  
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under the constraint nk = T – (n1t1+….+nk-1tk-1). Taking the partial derivative with respect 

to any ni<k, we get 

 

Setting the derivative to zero, we get 

 

Thus, 

 

Extending this to the continuous case, we get that when the total time for exploration is 

held constant, the probability of sampling a particular flight time must be  

(2) 

It is important to mention the caveats associated with the above model for optimality. It is 

defined as an extension of the optimal experimental design concept wherein the only aim 
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of the forager is to maximize the ability to discriminate between the means of the subjective 

values for different flight times. That is, the forager is seeking to purely explore the 

environment without exploiting its knowledge. The optimality is thus defined by this 

constraint. The second caveat associated with the above model is that it is only a steady-

state solution for optimality. In other words, it only says that at the steady state, the 

probability of sampling a given flight time is as expressed by Equations (1) and (2). It does 

not provide a dynamical solution and hence, does not predict how the sampling will 

develop with experience. For a discussion of this point, see Section 5. These equations also 

assume that every flight time is equally likely to contain the largest fish, i.e. that the prior 

is uniform. 

Self-initiated stopping rule for exploration 

With the above caveats in mind, we can now attempt to define a stopping rule for 

exploration. Such a rule would be useful when the exploration phase is not well-defined, 

as we assumed previously with fixed total samplings or fixed total time. A reasonable 

stopping rule can be defined as the moment when the net discriminability (1/σnet
2) goes 

above a threshold. This threshold might represent the maximum resolution available to the 

agent. In other words, sampling beyond this point affords no benefit to the agent in terms 

of new information about subjective value. A caveat of the above statement is that in some 

cases, there might be no need to exploit even after this threshold has been met. For instance, 

the total time available for exploration to a forager could be much more than that needed 

to meet the maximum discriminability threshold. In this case, further exploration can be 

aimed at gaining more information about the rewards themselves. Under this framework, 
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if there is infinite time to explore (i.e. no opportunity to exploit any knowledge gained), 

the forager will start sampling uniformly within the bounded search region.  

Mathematically, we can quantify the above mentioned stopping rule of maximum 

discriminability as the sampling when σnet
2= σstop

2. For this calculation, we assume that the 

forager is sampling each option in proportion to its uncertainty (or discount, assuming 

uniform prior). To calculate the sampling at the stoppage point, let us represent ni
stop=βdi. 

β can now be calculated as the value that satisfies 

 

Substituting ni
stop=βdi, we get 

 

Therefore, 

 

Or, 
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(3) 

As mentioned previously, if there is no possibility to exploit even after the above threshold 

has been met, the sampling will then be directed towards gathering more information about 

the rewards themselves. In this case, the steady-state sampling will be uniform. 

Exploration under noisy temporal estimation 

In the prior sections, we have assumed that errors in the representation of time are constant 

for every flight time. This is, however, not true. Hence, the sampling of different flight 

times will be done linearly with respect to the subjective representation of those intervals 

(Figure 20), rather than their real time values (as was previously assumed). In a previous 

theory on intertemporal decision-making and time perception (71, 219), we showed that a 

decision-making algorithm that considers reward rate maximization over limited temporal 

interval (including a past interval over which reward rate is estimated as well as the 

expected interval to future reward) explains well-established observations in intertemporal 

decision-making and time perception. In our theory, the subjective value of a delayed 

reward was calculated as  

(4) 

where SV(r,t) is the subjective value of a delayed reward of magnitude r and delay t, aest is 

the experienced reward rate estimated over the duration Time (referred to as “past integration 

interval”). The above equation holds when the average reward rate estimated in the past is 
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assumed to not be available during the delay to the current reward, resulting in an 

opportunity cost of the delay. If such an opportunity cost is not present or accounted for, 

the numerator in Equation (4) will not contain the aestt term. We also showed that the 

subjective representation of the delay t can be represented by 

(5) 

The above equation represents approximate scalar timing (error in timing grows in 

proportion to interval being timed (218)) and thus takes into account noisy temporal 

estimation. It says that the representation of time is non-linear and that this non-linearity is 

controlled by the past integration interval, Time. 

 

The subjective value of a delayed reward can be expressed in terms of the subjective 

representation of the delay as 

 

Thus, the discounting of a delayed reward is linear with respect to the subjective 

representation of the delay. It also has two components: one is an explicit cost of time (the 

first term on the R.H.S) and the second is the opportunity cost of time, expressed in terms 

of the subjective representation of the delay (second term on the R.H.S). 
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For exploration, the aim is to sample intervals keeping in mind the explicit cost of time. 

Thus the subjective value considered during exploration will not include the opportunity 

cost term. Hence, for exploration, 

 

Thus, the discounting function in terms of subjective representation of time is expressed 

as 

 

As was mentioned previously, the sampling under exploration will be done in subjective 

time and not real time. Thus, the sampling probability of a flight time t can be expressed 

(similar to Equation (1)) as  

(6) 

The corresponding sampling in real time can then be calculated as 

 

From Equation (5),  and from Equation (6), . 
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(7) 

Or equivalently,  

(8) 

This equation is similar in form to Equation (1) but has a fixed power of 3. When Time→0, 

equation (8) predicts exploratory sampling with a power law with exponent= 3. When 

Time→∞, the R.H.S will be dominated by a constant and thus, the sampling will be uniform. 

Uniform sampling can also be approximated by a power law of exponent = 0. Thus, 

equation (8) predicts that optimal exploratory sampling of foragers in the wild will depend 

on their past integration interval—a quantity that measures future tolerance to delay in 

decision-making, and, the non-linearity of time perception.  

For a given value of Time, the closest power law fit to equation (8) can be calculated by 

equating the medians of the two distributions. This calculation is worked out below. 

From Equation (19), the median for Equation (8) can be expressed as 

  
1

2 2 2 2
min max min( ) 0.5 ( ) ( )ime ime ime imemedian x T x T x T T



             

From Equation (18), the median for the closest truncated power law can be expressed as 

 
1

1 1 1 1
min max min( ) 0.5( )opt opt opt optmedian tp x x x

             

3

1
( )

(1 )
ime

p t
t

T





3

1
( )

( )ime

p t
T t






 154 

Equating the two medians, the exponent (µopt) for the closest power law to Equation (8) is 

the solution to 

 
1 1

1 1 1 2 2 21 2
min max min min max min0.5( ) ( ) 0.5 ( ) ( )opt opt opt opt

ime ime ime imex x x x T x T x T T
   


                   

 (9)     

This can only be calculated numerically and depends on the value of Time. When Time=0, it 

is easy enough to see that µopt=3. When Time→∞, the R.H.S of Equation (9) tends to the 

limit 0.5(xmax+xmin). Hence, the solution for µopt=0 in this case. Thus, in all cases, the 

exponent of the best fit power law to Equation (8) will be between 0 and 3.  

An important caveat needs to be mentioned regarding Equation (8). Its derivation assumes 

that the discounting function is calculated without any associated model of risk such as 

those resulting from competition due to other predators. These factors are quite likely 

important in determining the success of foragers in the wild and hence, would likely be 

included in their decision-making. However, to preserve simplicity, we have chosen to 

ignore such factors. Simple models of such risk can be found in the supplement of our prior 

theoretical work (71). When such factors are included in the discounting function, the 

resultant path length distribution would be much more complicated. Further, as mentioned 

in Section 0, the above model assumes a uniform prior. Hence, real life path lengths will 

certainly be more complicated than the simple model presented here. Nevertheless, our 

model shows that the resultant path lengths will be heavy-tailed. 
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Modeling risk due to competition 

In section 0, we considered the simple case where animals in the wild only have to account 

for the passage of time in calculating the temporal discounting. Specifically, we assumed 

that they do not face explicit risks of losing rewards or at least, that they do not model such 

risks. However, this assumption is almost definitely incorrect. In the presence of such 

competition, during the course of a foraging path, the value of a reward might reduce since 

other animals might consume it. Considering such a risk as a stochastic process with a 

mean decay proportional to the magnitude of the reward (i.e. larger rewards are more 

sought after), we showed previously that an appropriate model of risk can be 

mathematically expressed as 

  
1

(start of path)
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(1 (start of path) )

r
r t

k r t 





  

Here, r(start of path) is the reward magnitude at the start of a given path of duration t and 

k and α represent the degree of competition—the larger their values, the more the 

competition. In the time t, the mean reward is expected to have decayed to the value r(after 

path of duration t) as expressed above. As is clear, this introduces another power law form 

to the model expressed in Section 0. Thus, a more complete model of path length 

distribution can be obtained by combining temporal uncertainty (shown in Equation (8)) 

and competition risk (shown above) as  
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Here, r can be thought of as the mean reward expected in an environment. 

Statistical characterization of the hyperbolic distribution in Equation (1) 

Rewriting Equation (1) with a proportionality constant k, we get 

 min max( ) ( ) ;p t k c t t t t      

For this expression to represent a probability distribution, k must have a value such that it 

is normalized over the domain. We first consider the case of continuous data for which the 

integral of the probability distribution should be 1, i.e. 

 
max

min

( ) 1

t

t

k c t dt    

Solving for k, we get 

1 1

max min

1

( ) ( )
k

t c t c 


 




  
 

Thus, 

1 1

max min

1
( ) ( )

( ) ( )
p t t c

t c t c



 

 

 


 

  
  (11) 

The cumulative distribution function can be calculated as 

min min

1 1

max min

1
( ) ( ) ( )

( ) ( )

t t

t t

F t p t dt t c dt
t c t c



 

 

 


  

     
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Solving and simplifying, we get 

1 1

min

1 1

max min

( ) ( )
( )

( ) ( )

t c t c
F t

t c t c

 

 

 

 

  


  
  (12) 

For testing whether observed data is consistent with the probability distribution shown in 

Equation (11), it is important to be able to generate random numbers following that 

distribution. This can be done using inverse transform sampling, provided one has access 

to a uniform random variate u. Inverse transform sampling states that solving for t in the 

equation below will require that t is distributed according to the distribution shown in 

Equation (11). 

 

i.e. 

1 1

min

1 1

max min

( ) ( )

( ) ( )

t c t c
u

t c t c

 

 

 

 

  


  
 

Solving for t, we get 

 
1

1 1 1 1
min max min( ) ( ) ( )t t c t c t c u c                 (13) 

Equation (13) describes the random number generator for the distribution shown in 

Equation (11) with u being a uniform random variate between 0 and 1. 

( )F t u
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The next question to be addressed is that of parameter estimation for Equation (11) when 

attempting to fit experimental data. This can be done using maximum likelihood estimation 

as shown below. 

Say that we have n independent observations that are assumed to be from the hyperbolic 

distribution in Equation (11). Let the ith observation be ti. Then the likelihood of the data 

given parameters c and µ is:  

 

The log-likelihood is 

 

Substituting p(ti) from Equation (11) 

1 1

max min

1
log( ) log( ( ) )

( ) ( )
i

i

t c
t c t c



 

 

 


 

  
L  

Simplifying, 

1 1

max minlog( ) log(1 ) log( ) log(( ) ( ) )i

i

t c t c t c             L  

Performing the sums, we get 

1 1

max minlog( ) log(1 ) log( ) log(( ) ( ) )i

i

n t c n t c t c           L  

( )i

i

p tL

log( ) log( ( ))i

i

p tL
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At the maximum of the log-likelihood function, its partial derivatives with respect to c 

and µ will be zero. 

Therefore, 

1 1

max min

log( )
log(1 ) log( ) log(( ) ( ) ) 0i

i

n t c n t c t c  
 

  
         

    


L
 

Thus, we get 

1 1

max max min min

1 1

max min

( ) log( ) ( ) log( )1
log( )

1 ( ) ( )
i

x c x c x c x c
x c

x c x c

 

 

 

 

    
  

   
  (14) 

where  signifies the mean. 

Similarly, 

1 1

max min

log( )
log(1 ) log( ) log(( ) ( ) ) 0i

i

n t c n t c t c
c c

     
         

    


L
 

1 max min

1 1

max min

( ) ( )
( ) (1 )

( ) ( )
i

x c x c
x c

x c x c

 

 
 

 


 

  
   

  
  (15) 

Equations (14) and (15) have to be numerically solved simultaneously to calculate the 

maximum likelihood estimates for parameters c and µ.  

In practice, this numerical estimation has to be multi-stepped since typical numerical 

solvers only provide local solutions. To ensure that the initial values for numerical solution 

are close to the global solution, we used the following procedure. First, we calculated the 
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pure power law fit to data using the version of Equation (14) with c=0. This is also the ML 

estimator for a pure power law as calculated previously (262) and is shown below. 

1 1

max max min min

1 1

max min

( ) log( ) ( ) log( )1
log( )

1 ( ) ( )
i

x x x x
x

x x

 

 

 

 


 

 
  (16) 

Equation (16) also needs to be estimated numerically. The initial value for this solution 

was taken as the ML exponent for a non-truncated power law which has an analytical 

expression shown below (262). The expression can be obtained as the limit xmax→∞ in 

Equation (16). 

min

1
1

log( ) log( )ix x
  


  (17) 

Once the solution to Equation (16) was obtained, the numerical solution for Equations 

(14) and (15) were calculated using the procedure explained below.  Call µmle for 

Equation (16) as µtp since this is the MLE exponent for a pure truncated power law 

model. The initial values of µ for the numerical solution for Equations (14) and (15) were 

taken as [µtp, µtp+0.05, µtp+0.05,…, µtp+2]. 

The corresponding initial values of c for each of the above mentioned µ was calculated as 

the value that would produce the same median for the truncated hyperbolic distribution as 

the median for the best fit truncated power law with exponent µtp. This is calculated as 

shown below. 

1
1 1 1 1

min max min( ) 0.5( )mle mle mle mlemedian tp x x x
             (18) 
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 
1

1 1 1 1
min max min(hyp) ( ) 0.5 ( ) ( )median x c x c x c c                 (19) 

Equating the above two values and solving for c for each value of µ from the list [µtp, 

µtp+0.05, µtp+0.05,…, µtp+2] provides the appropriate initial point for the numerical 

solution for Equations (14) and (15). However, the above equations need to be solved 

numerically as well. The initial value for this solution was set sequentially. For µ= µtp, the 

initial value for c was taken as zero. The solution to this equation provided the initial value 

for µ= µtp+0.05. The solution for this equation provided the initial value for µ= µtp+0.1 

and so on.  

For each of the above combinations of c and µ as initial values, the corresponding log-

likelihood of the data was calculated. The maximum likelihood c and µ for solving 

Equations (14) and (15) were taken as the pair that maximized the global (against initial 

values for numerical optimization) log-likelihood calculated above. To appropriately 

compare the exponential model to truncated hyperbolic and power law models, it is 

important to use a truncated exponential model. If k is the normalization constant, the 

exponential distribution can be defined as 

 

with  

 

min max( ) ;tp t ke t t t  

max

min

( ) 1

t

t

p t dt 
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Solving for k, we get 

 

Thus the truncated exponential model used for calculating likelihoods is 

(20) 

It is Equation (20) that must be used to calculate Lexp in Equation (5). 

The cumulative distribution function over the truncated domain for the exponential 

distribution can be calculated as 

 

Solving and simplifying, we get 

(21) 

A random number generator for this distribution can again be obtained using inverse 

transform sampling by solving for t in the equation below  

 

where u is a uniform random variate. 

min

max min( )
1

t

t t

e
k

e






 




min

max min

( )

min max( )
( ) ;

1

t t

t t

e
p t t t t

e





  

 
  



max min

min min

min max( )
( ) ( ) ;

1

t t t

t t

t t

e
F t p t t t t

e





 

 
   

 

min

max min

( )

( )

1
( )

1

t t

t t

e
F t

e





 

 






( )F t u
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Solving for t, we get 

(22) 

To get a maximum likelihood estimate of λ, the log likelihood of the data can be 

expressed as 

min

max min

( )

( )
log( ) log( )

1

it t

t t
i

e

e





  

 



L   (23) 

We found the MLE λ by numerically maximizing the above equation. 

 

Discrete distributions 

Since previously collected data (Table 1) also contained discrete data, we derive the above 

procedure for discrete data here. For truncated discrete data, the only difference from the 

above derivation is that the sum of the probability distribution should equal 1, rather than 

the integral. For the truncated hyperbolic model, the appropriate probability distribution 

function can be written as 

max

min

min max

( )
( ) ;

( )
t

t

c t
p t t t t

c t










  


 

The ML estimates of c and µ were calculated by numerically maximizing the log-

likelihood of the data 

 max min( )

min

1
log(1 1 )

t t
t t u e





 
   
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max

min

log() log( ) log( ( ) )
t

i

t

c t c t        

We used the same procedure as described in the above section for global maximization.  

The same equation above was used to estimate the best fit power law distribution by setting 

c=0. 

For a discrete truncated exponential distribution, the probability distribution function can 

be written as 

min

max min

( )

( 1)
( ) (1 )

1

t t

t t

e
p t e

e






 


  
 


  (24) 

The ML estimate for λ was calculated by maximizing the log-likelihood. It can be shown 

that this is equivalent to numerically solving the following equation 

  

max min

max min

( 1)

max min min( 1)
( 1)

(1 ) 1

t t

it t

e e
t t t t

e e





  

  
    

 
  (25) 

  

Truncation due to prey encounter 

A curious observation regarding forager path lengths is that they tend to become diffusive 

when food abundance is high (187, 188). While it was previously argued that Brownian 

walks are sufficiently productive under high food density (187, 188), a recent experimental 
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finding demonstrated that such path lengths result from truncation of search due to prey 

encounter (186). A simple theoretical argument provided an explanation for this result. 

However, their calculation was in one-dimension. Here, we extend their argument to search 

in 2-D.  

We first calculate the probability distribution of truncated path lengths. An easy solution 

is to assume that foragers are moving in a straight line until they hit a food item and then 

calculate the resultant path length distribution. We assume that food is homogenously 

distributed with density (number per unit area) ρ. Denote the diameter of the prey (or a 

cluster of prey) as dprey, the CDF of path lengths as F(r), path lengths as r, probability 

density function of path lengths as p(r). Then the infinitesimal change in the CDF, dF(r) 

over a distance dr from r corresponds to the probability that the path length lies between r 

and r+dr. This is equal to the probability that the forager at least moved r (= 1-F(r)) 

multiplied by the probability that the forager hit a target between r and r+dr. The second 

probability can be calculated as the total angle covered by prey in the ring between r and 

r+dr divided by 2π. The total number of foragers (on an average) in this ring equals 2πrdrρ. 

Thus, we can write 

 

If the forager had a sensory diameter of dperc, the above equation would remain exactly the 

same but with the change that dprey would change to dprey+dperc.  

Solving the above equation, we get 

( ) (1 ( )).2 .
2

preyd

rdF r F r rdr 


 
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(26) 

Thus the pdf of path lengths is given by 

 

Hence, the prey-truncated path lengths are exponentially distributed. 

If the intended path length distribution (CDF) for exploration was Fintended(r), the 

probability that the path length is at least greater than r is the probability that the intended 

path length is at least greater than r multiplied by the probability that there was no prey-

truncation within r. The latter probability, from Equation (26), is 1-F(r). Thus, the observed 

path lengths would be 

(27) 

Thus, as the density of prey increases, path lengths approach the exponential distribution.  

 

( ) 1 preyd r
F r e


 

( )
( ) preyd r

prey

dF r
p r d e

dr





 

int1 ( ) (1 ( )) preyd r

observed endedF r F r e

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