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Abstract

Networks are collections of nodes, which can represent entities like people,

genes, or brain regions, and ties between pairs of nodes, which represent var-

ious forms of connection, e.g. social relationships, between them. The study

of networks is booming in biology, economics, statistics, psychology, physics,

computer science, social science, public health, and beyond. Despite the in-

creased interest in network data and its application, methods do not yet exist

to answer many types of statistical and causal questions about observations

collected from networks.

In this dissertation, we illustrate an unacknowledged problem for statis-

tical methods using network data, namely network dependence, and propose

a test for the existence of such dependence. We demonstrate how this kind

of dependence affects the validity of statistical inference. In particular, one of

the most important sources of data on cardiovascular disease epidemiology, the

Framingham Heart Study, is shown to exhibit dependence that could lead to

false statistical conclusions. We also propose a network dependence test that

ii



ABSTRACT

overcomes the high-dimensional structure of network data.

Many researchers interested in social networks in public health and social

science are ultimately interested in causal inference on certain collective be-

haviors or health outcomes observed over the whole network – such as the

causal effect of a certain vaccination plan on the overall rate of infections, or

the causal effect of an online viral marketing program on the sales of products.

In the last part of the dissertation, we focus on one of those questions that aims

to identify the most influential subjects in networks.

iii



ABSTRACT

Primary Readers:

Elizabeth L. Ogburn (Primary Advisor)

Assistant Professor

Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health

Carl Latkin

Professor

Department of Health, Behavior, and Society

Johns Hopkins Bloomberg School of Public Health

Ilya Shpitser

Assistant Professor

Department of Computer Science

Johns Hopkins Whiting School of Engineering

Abhirup Datta

Assistant Professor

Department of Biotstatistics

Johns Hopkins Bloomberg School of Public Health

Alternative Readers:

Elizabeth Stuart

Professor

Department of Mental Health

Johns Hopkins Bloomberg School of Public Health

Michael A. Rosenblum

Associate Professor

Department of Biotstatistics

Johns Hopkins Bloomberg School of Public Health

iv



Acknowledgments

I cannot imagine how this work would be written without my advisor, Betsy

Ogburn. This first word in the acknowledgement reminds me of very first mo-

ment I knocked the door of her office. From then she led me to the world of

social network and causal inference from my total ignorance to the topic and

no research experience. I always loved to talk and work with her through-

out my PhD program. Her insightful comments on research and writing have

guided me to move in the right direction, but yet she always left some room for

improvements with independent and creative thinking.

I am glad to say a big thank you to my undergraduate advisor, Myung-Hee

Cho Paik at Seoul National University, South Korea. Her support and encour-

agement brought me here to this wonderful environment of Johns Hopkins Bio-

statistics. My thanks also go out to the support from Kwanjeong Educational

Foundation.

I am very thankful to thesis readers, Carl Latkin from the Department

of Health, Behavior, and Society, Abhirup Datta from the Department of Bio-

v



ACKNOWLEDGMENTS

statistics, and Ilya Shpitser from the Department of Computer Science. Special

thanks to Ilya Shpitser for his philosophical guidance toward causal inference.

I am also grateful to Elizabeth Stuart and Michael Rosenblum for their consid-

eration and time toward my thesis.

I would like to thank causal inference working group and Survival, Lon-

gitudinal And Multivariate data (SLAM) working group at the Department

of Biostatistics. Working groups within the department always kept me mo-

tivated to learn and discuss interesting research topics. Along with weekly

departmental seminar, these study groups gave me an opportunity to connect

to many researchers from different institutions, which would definitely enrich

my career in the future.

I would like to thank Mei-Cheng Wang for her valuable advice and support.

She led me to view the data with statistical perspectives, and it helped me to

think about research problems from the data. Especially, she invited me to the

research about delivery and reproductive history for women, which diversified

my research. I really enjoyed collaboration with Rajeshwari Sundaram from

National Institutes of Health and Li Liu from the Department of Population,

Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public

Health.

My experience at NeuroData lab in the Department of Biomedical Engineer-

ing mentored by Joshua Vogelstein has opened my eyes to other part of network

vi



ACKNOWLEDGMENTS

science. His devotion and passion toward research always motivated me. My

research with him would not be possible without great mentor, Cencheng Shen

now at University of Delaware.

I also thank my friends (too many to list them all!) for spending fun and

memorable time with me in Baltimore. I cannot imagine my life in Baltimore

without them. I would like to thank my colleagues in the Department of Bio-

statistics. Discussion about our research and our lives nurtured my everyday

life. A very special thank you to Mary Joy, a departmental academic adminis-

trator. Without her, I could have not registered for the class, arranged my oral

examination, and presented my doctoral defense. I appreciate her help for all

of those.

I am deeply thankful to my family and my four grandparents for their un-

conditional love and support. They always respect me and support my life. I

always think how lucky I am to have their love. I have saved my last word of

this acknowledgement for my dear husband Cory Cho, who has been with me

all these years and just started a new chapter of our lives. With these grateful

moments in my mind, I am ready to start our new chapter.

January 2019

Youjin Lee

vii



Contents

Abstract ii

Acknowledgments v

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Statistical problems in network data . . . . . . . . . . . . . . . . . 1

1.2 Organizational overview . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Testing Network and Spatial Autocorrelation 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Moran’s I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 New methods for categorical random variables . . . . . . . 13

viii



CONTENTS

2.2.3 Choosing the weight matrix W . . . . . . . . . . . . . . . . 16

2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Testing for spatial autocorrelation in categorical variables 17

2.3.2 Testing for network dependence . . . . . . . . . . . . . . . . 20

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Spatial data . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Network data . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Moments of Φ . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.2 Asymptotic Distribution of Φ under the Null . . . . . . . . 33

3 Invalid Statistical Inference Due to Social Network Dependence 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Network Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Regression models . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Confounding by network structure . . . . . . . . . . . . . . 42

3.2.3 Testing for network dependence . . . . . . . . . . . . . . . . 43

3.3 Framingham Heart Study . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Confounding by network structure . . . . . . . . . . . . . . 45

3.3.2 Cardiovascular disease epidemiology . . . . . . . . . . . . . 48

3.3.3 Peer effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



CONTENTS

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Appendix : Analysis of the Framingham Heart Study data . . . . 55

3.5.1 Confounding by network structure . . . . . . . . . . . . . . 56

3.5.2 Cardiovascular disease epidemiology . . . . . . . . . . . . . 57

4 Network Dependence Testing via Diffusion Maps and Distance-

Based Correlations 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Diffusion maps . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Distance-based correlations . . . . . . . . . . . . . . . . . . 71

4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Testing procedure of diffusion MGC . . . . . . . . . . . . . . 74

4.3.2 Theoretical properties under exchangeable graph . . . . . 77

4.3.3 Consistency under random dot product graph . . . . . . . . 80

4.4 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Stochastic block model . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 SBM with linear and nonlinear dependencies . . . . . . . . 86

4.4.3 Degree-corrected SBM . . . . . . . . . . . . . . . . . . . . . 87

4.4.4 RDPG simulations . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 DMGC Graph Embedding . . . . . . . . . . . . . . . . . . . . . . . 91

x



CONTENTS

4.6 Real Data Application . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Identifying Causally Influential Subjects on a Social Network 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Existing Measures of Influence . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.2 Centrality measures of influence . . . . . . . . . . . . . . . 107

5.2.3 Influence defined through diffusion processes . . . . . . . . 108

5.2.4 Influence in statistical mechanics . . . . . . . . . . . . . . . 110

5.3 Identifying Causally Influential Nodes . . . . . . . . . . . . . . . . 112

5.3.1 Causal inference . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.2 Causal inference and social networks . . . . . . . . . . . . 113

5.3.3 A causal measure of influence . . . . . . . . . . . . . . . . . 116

5.3.4 Intervention as a trigger of influence . . . . . . . . . . . . . 120

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Agreement between centrality and influence . . . . . . . . 122

5.4.2 Influential nodes under latent confounding . . . . . . . . . 125

5.4.3 Identifying the most influential Supreme Court justice . . 129

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6.1 Data generating models . . . . . . . . . . . . . . . . . . . . 135

xi



CONTENTS

5.6.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6.3 Numerical experiment on Supreme Court justices . . . . . 141

A Supplementary Material of Chapter 4 143

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Additional Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.3 Random Dot Product Graph Simulations . . . . . . . . . . . . . . 153

B Chain Graphs and Causal Inference in Social Network 160

B.1 Graphs and Graphical Models . . . . . . . . . . . . . . . . . . . . . 160

B.1.1 Directed acyclic graph models and causal inference . . . . 163

B.1.2 Undirected graph and chain graph models . . . . . . . . . 167

B.1.3 Graphical models for social interactions . . . . . . . . . . . 170

B.2 Chain Graph Approximation . . . . . . . . . . . . . . . . . . . . . . 172

B.3 Collective Decision Making in Supreme Court . . . . . . . . . . . 181

B.3.1 Causal inference on collective decisions . . . . . . . . . . . 184

B.3.2 Simulation using Supreme Court example . . . . . . . . . 190

Vita 233

xii



List of Tables

2.1 Coverage rate of simultaneous 95% of CI and empirical power of

test statistics under direct transmission. . . . . . . . . . . . . . . . 23

2.2 Permutation tests of dependence based on join count statistics

applied to dominant race/ethnicity group. . . . . . . . . . . . . . . 25

2.3 Permutation tests of dependence based on join count statistics

applied to four different population categories. . . . . . . . . . . . 25

3.1 Results of tests of network dependence for the outcomes, simu-

lated predictor X, and residuals from regressing each outcome

onto X. P-values are obtained from permutation tests. . . . . . . 48

3.2 Results of tests of network dependence for males and females, for

LVM, BMI, and the residuals from regressing LVM onto covari-

ates. P-values are obtained from permutation tests. . . . . . . . . 50

3.3 Tests of network dependence using Moran’s I statistic for Tsuji

et al. (1994). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Tests of network dependence using Moran’s I statistic for Tsuji

et al. (1994). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Mean and standard deviations in the parenthesis of characteris-

tics for eligible subjects. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Replication of Lauer et al. (1991)’s linear regression. . . . . . . . . 59

3.7 Standard deviations of eight different heart rate variability mea-

sures from the original paper (Tsuji et al., 1994). . . . . . . . . . . 60

3.8 Replication of twenty-four Cox models from Tsuji et al. (1994). . . 60

3.9 Moran’s I and its p-value for the outcome, the predictor of inter-

est, and the residuals from the logistic regression model in Wolf

et al. (1991). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Moran’s I and its p-value for the outcome, the predictor of inter-

est, and the residuals from the logistic regression model in Gor-

don et al. (1977). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



LIST OF TABLES

3.11 Moran’s I and its p-value for the outcome, the predictor of inter-

est, and the residuals from the logistic regression model in Levy

et al. (1990). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Average of Spearman rank correlations and its standard errors

between τ and c base on r = 500 independent replicates. . . . . . . 123

5.2 Consequence of ignoring latent variable in measuring influence. . 127

5.3 Estimates for τ ∗ were derived similarly to those in Table 5.2. . . . 129

B.1 The number of cases decided during 1994-2004. . . . . . . . . . . 183

B.2 Coefficients of personal orientation. . . . . . . . . . . . . . . . . . . 187

B.3 Results on collective outcomes when the case is about criminal

procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.4 Results on collective outcomes when the case is about civil rights. 189

B.5 Results on collective outcomes when the case is about economic

activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.6 Results on collective outcomes when the case is about judicial

power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.7 Probability of collective decisions under hypothetical setting. . . . 194

B.8 Results of inference on collective outcomes using chain graph. . . 197

B.9 Results of inference on collective outcomes using chain graph. . . 197

B.10 Results of inference on collective outcomes using chain graph. . . 197

B.11 Results of inference on collective outcomes using chain graph. . . 198

xiv



List of Figures

2.1 Permutation tests based on Φ in spatial autoregressive model. . . 18

2.2 Permutation tests based on Φ in spatial autocorrelated error model. 20

2.3 Simulated 95% confidence intervals under dependence due to di-

rect trasmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Application of Moran’s I and Φ on the distribution of race/ethnicity

groups around 473 power-producing facilities across the U.S.. . . 26

2.5 Social network and blood pressure from the FHS. . . . . . . . . . 30

2.6 Social network and two categorical observations from the FHS. . 31

3.1 Simulated 95% confidence intervals showing bias due to network

confounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Flowchart for data collection in Lauer et al. . . . . . . . . . . . . . 58

3.3 Sex-specific social networks from the left ventricular mass study. 59

4.1 Flowchart for network dependence testing via diffusion maps and

MGC (DMGC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Empirical power under the three-block SBM. . . . . . . . . . . . . 85

4.3 Empirical power under the three-block SBM with varying amount

of nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Empirical power under DC-SBM with varying amount of vari-

ability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Empirical power for 20 different RDPGs. . . . . . . . . . . . . . . 90

4.6 Diffusion distances at each combination of (t, q). . . . . . . . . . . 92

4.7 Adjacency matrix and distance matrix of ASE at increasing q. . . 92

4.8 Performance of selecting optimal Markov time using DMGC method. 94

4.9 C.elegans synapse network and layout. . . . . . . . . . . . . . . . 96

4.10 MGC multiscale map and correlation between the pairwise dis-

tances at diffusion time of t = 1, 3, 5, 10. . . . . . . . . . . . . . . . 97

xv



LIST OF FIGURES

5.1 Agreement between centrality and τ under different diffusion

process scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Influence τ(v) of each justice under hypothetical setting. . . . . . 132

5.3 Agreement bewteen centrality and τ . . . . . . . . . . . . . . . . . . 138

A.1 Performance of distance-based methods under two block SBM. . . 152

A.2 Illustrations of 20 RDPG. . . . . . . . . . . . . . . . . . . . . . . . . 153

B.1 Undirected graph, chain graph, and DAG. . . . . . . . . . . . . . . 162

B.2 Chain graph approximation. . . . . . . . . . . . . . . . . . . . . . . 175

B.3 M-shaped collider paths. . . . . . . . . . . . . . . . . . . . . . . . . 178

B.4 Conditional independence test results for ten random networks. . 180

B.5 The underlying network between nine justices. . . . . . . . . . . . 183

B.6 Fitted results on the underlying network of nine Supreme Court

justices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.7 Simplified chain graph representing data generating process. . . 191

B.8 Results of inference on collective outcomes using chain graph. . . 196

B.9 Results of inference on collective outcomes using chain graph. . . 196

xvi



Chapter 1

Introduction

1.1 Statistical problems in network data

In many scientific and public health studies, observations are collected from

subjects who are related to each other as members of one or a small number

of social networks. For example, subjects are often sampled from one or small

number of schools, hospitals, geographic areas, or online communities, where

they may be connected via social ties or edges such as being friends or sharing

the same teacher or medical provider. These subjects, often called nodes of the

network, are interacting with each other while their features or behaviors are

changing over time, dependent on others’ through social ties.

In public health, social network data has received a lot of attention largely

due to the interest in the ways social interactions or collective behaviors among

1
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humans affect health outcomes in populations (Kaufman, 2017). There has

been much research on the relationship between social networks and mortal-

ity (Berkman and Syme, 1979), mental health (Kawachi and Berkman, 2001;

Russell and Cutrona, 1991), infectious diseases (Eubank et al., 2004; Christley

et al., 2005), and behavioral changes (Voorhees et al., 2005; Centola, 2011). For

the last decade, a series of influential papers by Christakis and Fowler pur-

port to demonstrate that health outcomes, behaviors and attitudes, like obe-

sity (Christakis and Fowler, 2007), smoking (Christakis and Fowler, 2008) or

happiness (Fowler and Christakis, 2008), spread through social networks. Im-

plicitly or explicitly these relationships are causal (Berkman and Syme, 1979;

Kawachi and Berkman, 2001; Russell and Cutrona, 1991).

Despite increased interest in network data in public health and social sci-

ence, however, we found a lack of valid and approachable statistical methods

for observations collected from network nodes, and standard statistical meth-

ods developed for independent observations have been widely used for network

data. Causal inference with observations from network nodes is especially

challenging due to the requirement for high-dimensional data. To illustrate, to

infer a causal statement, e.g. “my friend’s weight gain causes my weight gain”,

using observational data from a single network requires observing longitudinal

data of all the relevant observations, e.g. my and my friend’s weights over time

and all the confounding factors affecting these two outcomes, which explain all

2
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the existing causal relationships involved. In this setting, the number of obser-

vations required explodes over time, and in most cases it is impossible to collect

the kind of real-time data required. Even if we had access to the requisite data,

the resulting model will be high-dimensional and often too big to fit in practice.

Often core research questions raised in social network studies require causal

concepts. We introduce one of them in the dissertation: “who is the most influ-

ential subject in a social network?”. To answer this question, most researchers

defined influence only through descriptive features of the underlying network

or presumed diffusion model, even though some of these researchers inherently

attempted to identify causally influential subjects, who would exert a substan-

tial causal effect on the whole network.

This dissertation does not provide a perfect solution to overcome all of the

aforementioned challenges; instead we demonstrate the necessity for thorough

diagnostics on statistical inference for network data and also for rigorous causal

understanding of social dynamics.

1.2 Organizational overview

In this dissertation, we present statistical methods for network data in

three parts. The first part, presented in Chapter 2 and Chapter 3, introduces

the concept of network dependence and proposes a method to test for such de-

3
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pendence. We further demonstrate that network dependence can lead to in-

valid and biased statistical inference. In addition to simulation studies, we

apply our test for network dependence to several published papers that use the

Framingham Heart Study (FHS) data.

In the second part of the dissertation, presented in Chapter 4, we pro-

pose a new approach to test for network dependence in the presence of high-

dimensional nodal attributes. To overcome model-based approaches and struc-

tural obstacles in network data, we use distance-based correlations applied

to the network embeddings, which yield a theoretically consistent test statis-

tic under mild graph distributional assumptions. Through simulations, we

demonstrate that the test works well for many popular network models. We

apply our distance-based tests on the neuronal network and implement inde-

pendence test between synapse connectivity and each neuron’s position.

While the first two parts of the dissertation are mostly about testing for

dependence in network data and the impact of such dependency on general

statistical inference, the last part illustrates how causal inference on network

nodes’ outcomes can answer a question raised in the study of networks across

many disciplines. In Chapter 5, we define the influence of each node in a net-

work through its causal impact on the collective outcomes across the network.

Chapter 5 uses a specific statistical model, detailed in Appendix B, but suggests

other approaches beyond specific model-based inference.

4
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We present proofs and additional simulations for testing network depen-

dence under high-dimensional setting in Appendix A. In Appendix B we discuss

the details of causal inference on collective outcomes using causal graphical

model called chain graph.

5



Chapter 2

Testing Network and Spatial

Autocorrelation

Testing for dependence has been a well-established component of spatial

statistical analyses for decades. In particular, several popular test statistics

have desirable properties for testing for the presence of spatial autocorrela-

tion in continuous variables. In this chapter we propose two contributions to

the literature on tests for autocorrelation. First, we propose a new test for

autocorrelation in categorical variables. While some methods currently exist

for assessing spatial autocorrelation in categorical variables, the most popular

method is unwieldy, somewhat ad hoc, and fails to provide grounds for a single

omnibus test. Second, we discuss the importance of testing for autocorrelation

in network, rather than spatial, data, motivated by applications in social net-

6
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work data. We demonstrate that existing tests for autocorrelation in spatial

data for continuous variables and our new test for categorical variables can

both be used in the network setting.

This is a joint work in collaboration with Elizabeth Ogburn.

2.1 Introduction

In studies using spatial data, researchers routinely test for spatial depen-

dence before proceeding with statistical analysis (Legendre, 1993; Lichstein

et al., 2002; Diniz-Filho et al., 2003; F Dormann et al., 2007). Spatial depen-

dence is usually assumed to have an autocorrelation structure, whereby pair-

wise correlations between data points are a function of the geographic distance

between the two observations (Cliff and Ord, 1968, 1972). Because autocorrela-

tion is a violation of the assumption of independent and identically distributed

(i.i.d.) observations or residuals required by most standard statistical models

and hypothesis tests (Legendre, 1993; Anselin et al., 1996; Lennon, 2000), test-

ing for spatial autocorrelation is a necessary step for valid statistical inference

using spatial data. For continuous random variables, the most popular tests

are based on Moran’s I statistic (Moran, 1948) and Geary’s C statistic (Geary,

1954). For categorical random variables, however, available tests based on join

count analysis (Cliff and Ord, 1970) are unwieldy and fail to provide a single
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omnibus test of dependence.

Taking temporal dependence into account is similarly widely practiced in

time series settings. But other kinds of statistical dependence are routinely

ignored. In many public health and social science studies, observations are

collected from individuals who are members of one or a small number of social

networks within the target population, often for reasons of convenience or ex-

pense. For example, individuals may be sampled from one or a small number

of schools, institutions, or online communities, where they may be connected

by ties such as being related to one another; being friends, neighbors, acquain-

tances, or coworkers; or sharing the same teacher or medical provider. If in-

dividuals in a sample are related to one another in these ways, they may not

furnish independent observations, which undermines the assumption of i.i.d.

data on which most statistical analyses in the literature rely.

In the literature on spatial and temporal dependence, dependence is often

implicitly assumed to be the result of latent traits that are more similar for

observations that are close than for distant observations. This latent variable

dependence (Ogburn, 2017) is likely to be present in many network contexts as

well. In networks, ties often present opportunities to transmit traits or infor-

mation from one node to another, and such direct transmission will result in

dependence due to direct transmission (Ogburn, 2017) that is informed by the

underlying network structure. In general, both of these sources of dependence
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result in positive pairwise correlations that tend to be larger for pairs of obser-

vations from nodes that are close in the network and smaller for observations

from nodes that are distant in the network. Network distance is usually mea-

sured by geodesic distance, which is a count of the number of edges along the

shortest path between two nodes. This is analogous to spatial and temporal

dependence, which are generally thought to be inversely related to (Euclidean)

distance.

Despite increasing interest in and availability of social network data, there

is a dearth of valid statistical methods to account network dependence. Al-

though many statistical methods exist for dealing with dependent data, almost

all of these methods are intended for spatial or temporal data or, more broadly,

for observations with positions in R
k and dependence that is related to Eu-

clidean distance between pairs of points. The topology of a network is very dif-

ferent from that of Euclidean space, and many of the methods that have been

developed to accommodate Euclidean dependence are not appropriate for net-

work dependence. The most important difference is the distribution of pairwise

distances which, in Euclidean settings, is usually assumed to skew towards

larger distances as the sample grows, with the maximum distance tending to

infinity with n. In social networks, on the other hand, pairwise distances tend

to be concentrated on shorter distances and may be bounded from above. How-

ever, as we elaborate in Section 2.2, methods that have been used to test for
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spatial dependence can be adapted and applied to network data.

A few papers have proposed using Moran’s I in network settings: to confirm

suspected dependence in network (Black, 1992; Long et al., 2015), to identify

appropriate weight matrices for regression models (Butts et al., 2008), or to find

the largest correlation for dimension reduction (Fouss et al., 2016). Many vari-

ables of interest in social network studies are categorical, for example group

affiliations (Kossinets and Watts, 2006), personality (Adamic et al., 2003), or

ethnicity (Lewis et al., 2008). Join count analysis has been recently used for

testing autocorrelation in categorical outcomes observed from social networks

(e.g. Long et al. (2015)). Farber et al. (2009) proposed a more elegant test for

categorical network data and explored its performance in data generated from

a linear spatial autoregression (SAR) model. As far as we are aware, all of

the previous work assumes that the network data were generated from SAR

models, and none of this previous work has considered the performance of au-

tocorrelation tests for more general network settings.

In this chapter we propose a new test statistic that generalizes Moran’s I for

categorical random variables. We also propose to use both Moran’s I and our

new test for categorical data to assess the hypothesis of independence among

observations sampled from a single social network (or a small number of net-

works). We assume that any dependence is monotonically inversely related to

the pairwise distance between nodes, but otherwise we make no assumptions
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on the structure of the dependence. These tests allow researchers to assess the

validity of i.i.d statistical methods, and are therefore the first step towards cor-

recting the practice of defaulting to i.i.d. methods even when data may exhibit

network dependence.

2.2 Methods

2.2.1 Moran’s I

Moran’s I takes as input an n-vector of continuous random variables and

an n × n weighted distance matrix W, where entry wij is a non-negative, non-

increasing function of the Euclidean distance between observations i and j.

Moran’s I is expected to be large when pairs of observations with greater w

values (i.e. closer in space) have larger correlations than observations with

smaller w values (i.e. farther in space). The choice of non-increasing function

used to construct W is informed by background knowledge about how depen-

dence decays with distance; it affects the power but not the validity of tests of

independence based on Moran’s I. The asymptotic distribution of Moran’s I un-

der independence is well established (Sen, 1976) and can be used to construct

hypothesis tests of the null hypothesis of independence. Geary’s c (Geary, 1954)

is another statistic commonly used to test for spatial autocorrelation (Fortin

11
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et al., 1989; Lam et al., 2002; da Silva et al., 2008); it is very similar to Moran’s

I but more sensitive to local, rather than global, dependence. We focus on

Moran’s I in what follows because our interest is in global, rather than local,

dependence. Because of the similarities between the two statistics, Geary’s c

can be adapted to network settings much as we adapt Moran’s I.

Let Y be a continuous variable of interest and yi be its realized observation

for each of n units (i = 1, 2, . . . , n). Each observation is associated with a lo-

cation, traditionally in space but we will extend this to networks. Let W be

a weight matrix signifying closeness between the units, e.g. a matrix of pair-

wise Euclidean distances for spatial data or an adjacency matrix for network

data. (The entries Aij in the adjacency matrix A for a network are indicators

of whether nodes i and j share a tie.) Then Moran’s I is defined as follows:

I =

n
∑

i=1

n
∑

j=1

wij

(

yi − ȳ
)(

yj − ȳ
)

S0

n
∑

i=1

(

yi − ȳ
)2
/n

, (2.1)

where S0 =
n
∑

i=1

(wij + wji)/2 and ȳ =
n
∑

i=1

yi/n. Under independence, the pairwise

products (yi − ȳ)(yj − ȳ) are each expected to be close to zero. On the other

hand, under network dependence adjacent pairs are more likely to have similar

values than non-adjacent pairs, and (yi − ȳ)(yj − ȳ) will tend to be relatively

large for the upweighted adjacent pairs; therefore, Moran’s I is expected to be

larger in the presence of network dependence than under the null hypothesis
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of independence.

The exact mean µI and variance σ2
I of Moran’s I under independence are

given in Sen (1976) and Getis and Ord (1992). The standardized statistic

Istd := (IµI)/
√

σ2
I is asymptotically normally distributed under mild conditions

on W and Y (Sen, 1976). Using the known asymptotic distribution of the test

statistic under the null permits hypothesis tests of independence using the nor-

mal approximation. For network data we propose a permutation test based on

permuting the Y values associated with each node while holding the network

topology constant. Setting wij = 0 for all non-adjacent pairs of nodes results

in increased variability of I relative to spatial data, and therefore the normal

approximation may require larger sample sizes to be valid for network data

compared to spatial data. The permutation test is valid regardless of the dis-

tribution of W and Y and for small sample sizes.

2.2.2 New methods for categorical random vari-

ables

For a K-level categorical random variable, join count statistics compare the

number of adjacent pairs falling into the same category to the expected number

of such pairs under independence, essentially performing K separate hypothe-

sis tests. As the number of categories increases, join count analyses become
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quite cumbersome. Furthermore, they only consider adjacent observations,

thereby throwing away potentially informative pairs of observations that are

non-adjacent but may still exhibit dependence. Finally, the K separate hypoth-

esis tests required for a join count analysis are non-independent and it is not

entirely clear how to correct for multiple testing. To overcome this last limita-

tion, Farber et al. (2015) proposed a single test statistic that combines the K

separate joint count statistics.

Instead of extending join count analysis, we propose a new statistic for cate-

gorical observations using the logic of Moran’s I. This has two advantages over

the proposal of Farber et al. (2015): it incorporates information from discor-

dant, in addition to concordant, pairs and it weights kinds of pairs according to

their probability under the null. To illustrate, under network dependence adja-

cent nodes are more likely to have concordant outcomes and less likely to have

discordant outcomes than they would be under independence. We operational-

ize independence as random distribution of the outcome across the network,

holding fixed the marginal probabilities of each category. The less likely a con-

cordant pair (under independence), the more evidence it provides for network

dependence, and the less likely a discordant pair (under independence), the

more evidence it provides against network dependence. Using this rationale,

a test statistic should put higher weight on more unlikely observations. The

following is our proposed test statistic:

14



CHAPTER 2. TESTING NETWORK AND SPATIAL AUTOCORRELATION

Φ =

n
∑

i=1

n
∑

j=1

wij

{

2I(yi = yj)− 1
}

/pyipyj

S0

, (2.2)

where pyi = P (Y = yi), pyj = P (Y = yj), and S0 =
n
∑

i=1

(wij + wji)/2. The term

(2I(yi = yj) − 1) ∈ {−1, 1} allows concordant pairs to provide evidence for de-

pendence and discordant pairs to provide evidence against dependence. The

product of the proportions pyi and pyj in the denominator ensures that more

unlikely pairs contribute more to the statistic. As the true population propor-

tion is generally unknown, {pk : k = 1, ..., K} should be estimated by sample

proportions for each category.

The first and second moment of Φ are derived in the Appendix 2.6.1. Asymp-

totic normality of the statistic Φ under the null can also be proven based on the

asymptotic behavior of statistics defined as weighted sums under some con-

straints. For more details see Appendix 2.6.2. For binary observations, which

can be viewed as categorical or continuous, our proposed statistic has the de-

sirable property that the standardized version of Φ is equivalent to the stan-

dardized Moran’s I.
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2.2.3 Choosing the weight matrix W

Tests for spatial dependence take Euclidean distances (usually in R
2 or R

3)

as inputs into the weight matrix W. In networks, the entries in W can be com-

prised of any non-increasing function of geodesic distance for the purposes of

the tests for network autocorrelation that we describe below, but for robustness

we use the adjacency matrix A for W, where Aij is an indicator of nodes i and

j sharing a tie. The choice of W = A puts weight 1 on pairs of observations at

a distance of 1 and weight 0 otherwise. In many spatial settings, subject mat-

ter expertise can facilitate informed choices of weights for W (e.g. Smouse and

Peakall 1999; Overmars et al. 2003), but it is harder to imagine settings where

researchers have information about how dependence decays with geodesic net-

work distance. In particular, dependence due to direct transmission is transi-

tive: dependence between two nodes at a distance of 2 is through their mutual

contact. This kind of dependence would be related to the number, and not

just length, of paths between two nodes. It may also be possible to construct

distance metrics that incorporate information about the number and length

of paths between two nodes, but this is beyond the scope of this chapter. In

general in the presence of network dependence adjacent nodes have the great-

est expected correlations; therefore W = A is a valid choice in all settings.

Of course, if we have knowledge of the true dependence mechanism, using a

weight matrix that incorporate this information will increase power.
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2.3 Simulations

In Section 2.3.1, we demonstrate the validity and performance of our new

statistic, Φ, for testing spatial autocorrelation in categorical variables. In Sec-

tion 2.3.2, we demonstrate the performance of Moran’s I and Φ for testing for

network dependence.

2.3.1 Testing for spatial autocorrelation in cat-

egorical variables

We replicated one of the data generating settings used by Farber et al.

(2015) and implemented permuation-based tests of spatial dependence using

Φ. First, we generated a binary weight matrix W with entries wij indicating

whether regions i and j are adjacent. The number of neighbors (di) for each

site i was randomly generated through di = 1+Binomial(2(d− 1), 0.5). We sim-

ulated 500 independent replicates of n = 100 observations under each of four

different settings, with d = 3, 5, 7, 10.

We then used W to generate a continuous, autocorrelated variable:

Y ∗ = (In − ρW)−1ϵ

where In is a n× n identity matrix, and ϵi ∼ N(0, 1) and ρ controls the amount
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of dependence. We applied cutoffs based on the (0.25, 0.5, 0.75) quantiles of each

simulated dataset to convert Y ∗ into categorical observations Y = (Y1, Y2, . . . , Yn)

having K = 4 categories.

Figure 2.1 presents the simulation results. It shows that under the null

(ρ = 0), the rejection rate is close to the nominal level of α = 0.05 and that

power to detect dependence increases with ρ.
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Figure 2.1: Permutation tests based on Φ. Dependence increases as ρ in-

creases, and the y-axis is the proportion of 500 independent simulations in

which the test rejected the null hypothesis of independence.

We also simulated data under a spatially correlated error model (F Dor-

mann et al., 2007), using a continuous weight matrix estimated from real spa-

tial data. We used the longitude and latitude of 473 U.S. power generating

facilities (Papadogeorgou, 2017; Papadogeorgou et al., 2016) to construct a Eu-

clidean distance matrix D = [dij], where dij is the Euclidean distance between
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facilities i and j, based on which we constructed a weight matrix Π = [πij]

where πij = exp (−qdij/max({dij : i, j = 1, 2, . . . , n})). The amount of depen-

dence is controlled by q. For each of four settings (no dependence, q = 100, 50, 25)

we simulated n = 473 observations Y∗ = (Y ∗
1 , Y

∗
2 , . . . , Y

∗
n ) 500 times according

to the following model:

Y∗ ∼ BT ξ, (2.3)

where Π = BTB and ξi
i.i.d.
∼ N (0, 1). Finally, we applied cutoffs based on the

(0.1, 0.3, 0.6, 0.85) quantiles of each simulated dataset to convert Y ∗ into cate-

gorical observations Y = (Y1, Y2, . . . , Yn) having K = 5 categories.

We calculated Φ two different ways: using the correct weight matrix, Π, and

using an estimated weight matrix W:

Wij = max (D/dij, 10)

Wii = 0,

where D = maxi,j dij ensures that the smallest weight is 1. The resulting

weights wij are inversely proportional to the Euclidean distance between facil-

ity i and j, but truncated at 10. The percentage of wij = 10, i.e., the percentage

of truncated weights, is about 12%.

Figure 2.2 shows that tests of independence based on Φ using W have in-

creasing power as dependence increases, while tests using the true weight ma-
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trix Π have nearly perfect power under all three alternatives.
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Figure 2.2: Permutation tests based on Φ. Dependence increases as q in-

creases, and the y-axis is the proportion of 500 independent simulations in

which the test rejected the null hypothesis of independence.

2.3.2 Testing for network dependence

In this section we simulate continuous and categorical random variables

associated with nodes in a single interconnected network and with dependence

structure informed by the network ties. We demonstrate that Moran’s I and Φ

provide valid tests for such dependence.

For each of four simulation settings we generated a fully connected social

network with n = 200 nodes. We simulated i.i.d., mean-zero starting values for

each node and then ran several iterations of a direct transmission process, by

which each node is influenced by its neighbors, to generate a vector of outcomes

Y = (Y1, Y2, ..., Y200) associated with the nodes. We ran the simulation 500 times

for each setting, generating 500 outcome vectors. While the amount of network
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Figure 2.3: Each column contains 95% confidence intervals (CIs) for E[Y ] = µ
under dependence due to direct transmission, with increasing dependence from

left (no dependence) to right. The CIs above the dotted line do not contain the

true µ = 0 (red-line) while the CIs below the dotted line contain µ. Coverage

rates of 95% CIs are calculated as the percentages of the CIs covering µ. We

also present the percentages of permutation tests based on Moran’s I that re-

ject the null at α = 0.05; this is the type I error for the leftmost column and the

power for the other three columns.

dependence in the outcomes varied across simulation settings (controlled by

the number of iterations of the spreading process), the expected outcome E[Y ]

was 0 for every setting. To demonstrate the impact of using i.i.d. methods

when dependence is present, in each simulation we calculated a 95% confidence

interval (CI) for E[Y ] under the assumption of independence. We estimated the

mean of E[Y ] using Ȳ and we estimated the standard error (s.e.) for Ȳ under
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the assumption of independence, that is ignoring the presence of any pairwise

covariance terms. The 95% confidence interval is given by Ȳ ± 1.96 ∗ s.e. In each

simulation we also ran a test for network dependence using Moran’s I.

Figure 2.3 displays the results of four simulation settings, with increasing

dependence from left to right. The left-most column represents a setting with

no dependence. Each column depicts 500 95% confidence intervals, one for each

simulation. The confidence intervals below the dotted lines cover the true mean

of 0, while the intervals above the dotted line do not. The coverage is close to the

nominal 95% under independence, but decreases dramatically as dependence

increases, despite the fact that Ȳ remains unbiased for E[Y ]. We also report the

power of permutation tests based on Moran’s I (with subject index randomly

permuted M = 500 times) to reject the null hypothesis of independence at the

α = 0.05 level. Under independence the test rejects 5% of the time, as is to

be expected, and as dependence increases and coverage decreases, the power

of our test to detect dependence increases, achieving almost 90% when the

coverage drops below 70%. (That the power to detect dependence increases

with increasing dependence is robust to the specifics of the simulations, but

the exact relation between coverage and power is not; in other settings 90%

power could correspond to different coverage rates.) These results highlight

the fact that a strict p < 0.05 cut-off may not be appropriate for these tests of

dependence.
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Table 2.1: Coverage rate of simultaneous 95% CIs, empirical power of tests of

independence using asymptotic normality of Φ, and empirical power of per-

mutation tests of independence based on Φ, under direct transmission for

t = 0, 1, 2, 3. The size of the tests is α = 0.05.

95% CI coverage rate % of p-values(z) ≤ 0.05 % of p-values(permutation) ≤ 0.05

t=0 0.94 5.40 4.80

t=1 0.81 39.40 36.20

t=2 0.63 67.80 65.00

t=3 0.43 85.40 83.40

To illustrate the performance of Φ, we simulate a categorical outcome Y with

five levels and with marginal probabilities (p1, p2, p3, p4, p5) = (0.1, 0.2, 0.3, 0.25, 0.15).

To demonstrate the consequences of using i.i.d. inference in the presence of de-

pendence, we calculated simultaneous 95% confidence intervals for estimates

of p1 through p5 using the method of (Sison and Glaz, 1995). We also report

the power to reject the null hypothesis of independence as the percentage of

500 simulations in which hypothesis tests based on our new statistic, Φ, re-

jected the null. Table 2.1 summarizes the simulation results for dependence

by direct transmission. It is evident that as dependence increases, coverage

rates of i.i.d. 95% confidence intervals decrease, and the power to reject the

null increases. Details of the simulation models and results from additional

simulations are provided in the Supplementary Materials. The R function

for testing network dependence and generating network dependent observa-

tions can be found in the netdep R package available at Github (github.com/

youjin1207/netdep).
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2.4 Applications

2.4.1 Spatial data

In this section we apply Φ to spatial data on 473 power producing facili-

ties that we introduced in Section 2.3.1, and compare the results to standard

analyses using join count statistics. In addition to the locations of the 473 fa-

cilities, the data includes information on the characteristics of the surrounding

geographic areas. Details can be found in Table G.1 in Papadogeorgou et al.

(2016).

In Figure 2.4a, we mapped the proportion of the populations within a 100km

radius around each of the facilities falling into three different race/ethnicity

categories. We can apply Moran’s I separately to each of the three proportions,

but Moran’s I cannot provide a single aggregate test statistic aggregating the

three proportions. For example, we may be interested in autocorrelation with

respect to the dominant demographic group (Table 2.2) or regions with more

than 10% Hispanics and African Americans (Table 2.3). Tables 2.2 and 2.3

respectively present the frequency of concordant neighboring pairs with these

characteristics, and the corresponding join count analysis results. To calculate

the join count statistics, we specify a neighborhood size of 15, meaning that

observation j is considered to be adjacent to i if j is one of i’s closet 15 neighbors

in Euclidean distance.
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Table 2.2: Permutation tests of dependence based on join count statistics ap-

plied to dominant race/ethnicity group.

Dominant group White Hispanic African-American

n 446 13 14

Join count statistic 212.63 0.97 0.77

P-value (permutation) 0.0020 0.0020 0.0020

Table 2.3: Permutation tests of dependence based on join count statistics ap-

plied to four different population categories, defined by having ≤10% or >10%

Hispanic or African American residents.

AA > 10%, HP > 10% AA > 10%, HP ≤ 10% AA ≤ 10%, HP > 10% AA ≤ 10%, HP ≤ 10%

n 52 106 98 217

Join-count statistic 7.07 26.63 30.30 69.20

P-value (permutation) 0.0020 0.0020 0.0020 0.0020

In Figure 2.4b, we map the distribution of dominant racial group and re-

gions with more than 10% Hispanics and African Americans and give an om-

nibus test for autocorrelation based on Φ. We observe higher autocorrelation

in the second categorization (Φ : 22.72) than the first categorization (Φ : 9.17),

which cannot be compared from join count statistics presented in Table 2.2 and

Table 2.3.

2.4.2 Network data

The Framingham Heart Study, initiated in 1948, is an ongoing cohort study

of participants from the town of Framingham, Massachusetts that was orig-

inally designed to identify risk factors for cardiovascular disease. The study

has grown over the years to include five cohorts. The original cohort (n = 5, 209)

was originally recruited in 1948 and has been continuously followed since then.
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(a) Proportion of race/ethnicity groups around 473 power-producing facilities across

the U.S.. Applying Moran’s I separately to each proportion, all of the tests reject the

null hypothesis of independence at the α = 0.05 level.
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Categories based on Hispanic and African American populations

(b) Dominant group (left) and categories defined by having ≤10% or >10% Hispanic

or African American residents (right). Omnibus tests of dependence based on Φ reject

the null hypothesis of independence at the α = 0.05 level for both variables.

Figure 2.4

The offspring cohort (n = 5, 124) was initiated in 1971 and includes offspring of

the original cohort members and the offspring’s spouses. The third generation

cohort (n = 4, 095), initiated in 2001, is comprised of offspring of members of

the offspring cohort. Spouses of members of the offspring cohort who were not

themselves included in that cohort and whose children had been recruited into

the third generation cohort were invited to join the New Offspring Spouse Co-

hort (n = 103) beginning in 2003. Two omni cohorts (combined n = 916) were

started in 1994 and 2003 in order to reflect the increasingly diverse popula-

tion of Framingham; these cohorts specifically targeted residents of Hispanic,
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Asian, Indian, African American, Pacific, Islander and Native American de-

scent.

Members of the original cohort are followed through biennial examinations

while members of other cohorts are examined every 4 to 8 years. Each exam-

ination includes non-invasive tests, e.g. X-ray, ECG tracings, or MRI; labora-

tory tests of blood and urine; questionnaires pertaining to diet, sleep patterns,

physical activities, and neuropsychological assessment; and a physical exam,

including assessments for cardiovascular disease, rheumatic heart disease, de-

mentia, atrial fibrillation, diabetes, and stroke. Other measures and tests are

collected sporadically. In addition, in between each exams, participants are reg-

ularly monitored through phone calls. Genotype and pedigree data has been

collected for all (consenting) participants, and the study populations includes

multiple members of 1538 families, making the FHS a powerful resources for

heritability studies. Detailed information on data collected in the FHS can be

found in Tsao and Vasan (2015). Public versions of FHS data from the orig-

inal, offspring, new offspring spouse, and generation 3 cohorts through 2008

are available from the dbGaP database.

For decades, FHS has been one of the most successful and influential epi-

demiologic cohort studies in existence. It is arguably the most important source

of data on cardiovascular epidemiology. It has been analyzed using i.i.d. sta-

tistical models (as is standard practice for cohort studies) in over 3,400 peer-
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reviewed publications since 1950: to study cardiovascular disease etiology (e.g.

Castelli 1988; D’Agostino et al. 2000, 2008), risks for developing obesity (e.g.

Vasan et al. 2005), factors affecting mental health (e.g. Qiu et al. 2010; Saczyn-

ski et al. 2010), cognitive functioning (e.g. Au et al. 2006), and many other

outcomes.

In addition to being a very prominent cohort study, the FHS plays a uniquely

influential role in the study of social networks and social contagion. Leading up

to the publication of Christakis and Fowler (2007), researchers discovered an

untapped resource buried in the FHS data collection tracking sheets: informa-

tion on social ties that allowed them to reconstruct the (partial) social network

underlying the cohort. The tracking sheets were originally intended to facili-

tate exam scheduling, and they asked each participant to name close contacts

who could help researchers to locate the participant if the participant’s contact

information changed. Combining this information with existing data on family

and spousal connections, researchers were able to build a partial social net-

work with ties representing friends, co-workers, and relatives. They then lever-

aged this social network data to study peer effects for obesity (Christakis and

Fowler, 2007), smoking (Christakis and Fowler, 2008), and happiness (Fowler

and Christakis, 2008). The FHS has since been used to study peer effects by

many other researchers (Pachucki et al., 2011; Rosenquist et al., 2010).

We analyzed data from the Offspring Cohort at Exam 5, which was con-
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ducted between 1991 and 1995. Because the publicly available data are divided

into datasets for individuals with and without non-profit use (NPU) consent

and these two datasets have separate network data, we only used data from

the NPU consent group, giving us a sample size of 1,033 with 690 undirected

social network ties.

Figure 2.5 depicts the distribution of systolic and diastolic blood pressure

over the five largest connected network components; darker colors represent

higher blood pressure values. We used Moran’s I to test for network depen-

dence in these two continuous random variables. – systolic blood pressure and

diastolic blood pressure. We found significant evidence of network dependence

in systolic blood pressure (p-value : 0.03), but not for diastolic blood pressure

(p-value : -0.87).
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Systolic blood pressure
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Figure 2.5: The five largest connected components, encompassing 273 subjects,

in the social network of 1,031 subjects from the FHS Offspring Cohort Exam 5

data. The color of the node represents the subject’s blood pressure values: high

values of systolic blood pressure and diastolic blood pressure are darker and

low values are lighter.

We tested for dependence in two different categorical random variables us-

ing Φ: employment status and preferred method of making coffee. Figure 2.6

shows the distribution of the two variables over the largest connected compo-

nent of the network. We found significant evidence of network dependence for

both variables.
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Figure 2.6

2.5 Concluding Remarks

In this chapter, we proposed simple tests for independence among observa-

tions sampled from geographic space or from a network. We demonstrated the

performance of our proposed tests in simulations under both spatial and net-

work dependence, and applied them to spatial data on U.S. power producing

facilities and to social network data from the Framingham Heart Study.

Under network dependence, adjacent pairs are expected to exhibit the great-

est correlations, and for robustness we used the adjacency matrix as the weight

matrix for calculating the test statistic, thereby restricting our analysis to adja-
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cent pairs; if researchers have substantive knowledge of the dependence mech-

anism other weights may increase power and efficiency.

Researchers should be aware of the possibility of dependence in their ob-

servations, both when studying social networks explicitly and when observa-

tions are sampled from a single community for reasons of convenience. As we

have seen in the classic Framingham Heart Study example, such observations

can be correlated, potentially rendering i.i.d. statistical methods invalid. In a

forthcoming companion paper, we illustrate the consequences of assuming that

observations are independent when they may in fact exhibit network depen-

dence.
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2.6 Appendix

2.6.1 Moments of Φ

Let µΦ := E[Φ] and E[Φ2] be the first and second moments of Φ respectively.

Based on these moments, we can derive the variance of Φ, σ2
Φ := E[Φ2]− µ2

Φ.

µΦ =
1

n(n− 1)
{n2k(2− k)− nQ1}

E[Φ2] =
1

S2
0

[

S1

n(n− 1)
(n2Q22 − nQ3)

+
S2 − 2S1

n(n− 1)(n− 2)
((k − 4)k + 4)n3Q1 + n(n((2k − 4)Q2 −Q22) + 2Q3)

+
S2
0 − S2 + S1

n(n− 1)(n− 2)(n− 3)

{

n(−4Q3 + 2nQ22 − 6knQ2 + 12nQ2

− 3k2n2Q1 + 14kn2Q1 − 16n2Q1 + k4n3 − 4k3n3 + 4k2n3)

− ((2k − 4)n2Q2 + n2(kn(2Q1 − kQ1)−Q22) + 2nQ3)
}

]

,

(2.4)

where k is the number of categories; Qm :=
k
∑

l=1

1/pml , (m = 1, 2, 3); Q22 :=

k
∑

l=1

k
∑

u=1

1/plpu ; S0 =
n
∑

i=1

n
∑

j=1

(wij+wji)/2; S1 =
n
∑

i=1

n
∑

j=1

(wij+wji)
2/2; S2 =

n
∑

i=1

(wi·+w·i)
2.

2.6.2 Asymptotic Distribution of Φ under the Null

Shapiro and Hubert (Shapiro and Hubert, 1979) proved the asymptotic nor-

mality of permutation statistics of the form Hn for i.i.d random variables Y1, Y2, . . . , Yn
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under some conditions:

Hn =
n
∑

i=1

n
∑

j=1,j ̸=i

dijh(Yi, Yj), (2.5)

where h(·, ·) is a symmetric real valued function with E[h2(Yi, Yj)] <∞ and D :=

{dij; i, j = 1, ..., n} is a n × n symmetric, nonzero matrix of which all diagonal

terms must be zero. In the context of Φ, h(Yi, Yj) =
(

2I(Yi = Yj)−1
)

/(pYi
pYj

) and

D = W. Requirements for asymptotic normality include
n
∑

i,j=1,j ̸=i

d2ij/
n
∑

i=1

d2i· → 0

and max
1≤i≤n

d2i·/
n
∑

k=1

d2k· → 0 as n→ 0 for di· =
n
∑

j=1

dij. If we use the adjacency matrix

for W, this implies
n
∑

i,j=1,i ̸=j

Aij/
n
∑

i=1

A2
i· → 0 and max

1≤i≤n
Ai·/

n
∑

i=1

A2
i· → 0 where Ai· is

the degree of node i. More details can be found in Shapiro and Hubert (1979);

see also O’Neil and Redner (1993).
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Chapter 3

Invalid Statistical Inference Due

to Social Network Dependence

Researchers across the health and social sciences generally assume that ob-

servations are independent, but when observations are dependent, using sta-

tistical methods that assume independence can lead to biased estimates (with

bias away from the null) and to artificially small p-values, standard errors,

and confidence intervals. This results in inflated false positive rates and may

contribute to replication crises. Here, we describe a largely unrecognized but

common type of dependence due to social network connections, and explain

how such dependence increases variance and engenders confounding that can

lead to biased estimates. We describe network dependence and introduce the

concept of confounding by network structure. We apply a test for network de-
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pendence to several published papers that use the Framingham Heart Study

(FHS) data. Results suggest that some of the many decades of research on

coronary heart disease, other health outcomes, and peer influence using FHS

data may be invalid due to unacknowledged network dependence. The FHS

is not unique; these problems could arise whenever human subjects are re-

cruited from one or a small number of communities, schools, hospitals, etc. As

researchers in psychology, medicine, and beyond grapple with replication fail-

ures, this unacknowledged source of invalid statistical inference should be part

of the conversation.

This is a joint work in collaboration with Elizabeth Ogburn.

3.1 Introduction

The replication crises in psychology, medicine, and other fields have drawn

attention to many ways that the flawed application of statistics can result in

spurious findings. In this paper we identify an unacknowledged but potentially

pervasive source of invalid statistical inference that could lead to inflated false

positive rates, namely social network dependence.

Assuming that data are independent and identically distributed (i.i.d.) is

the default for most applications of statistics, but when i.i.d. statistical meth-

ods are used to analyze data that are in fact dependent, the resulting infer-
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ence is generally anticonservative: standard errors, p-values, and confidence

intervals are artificially small. This can lead to inflated false positive rates.

Whenever human subjects are sampled from one or a small number of commu-

nities, schools, hospitals, etc., as is routine in the health and social sciences,

they may be connected by social ties, such as friendship or family membership,

that could engender statistical dependence, which we refer to as network de-

pendence. When an outcome and an exposure of interest both exhibit network

dependence, estimates of associations will often be biased away from the null

due to confounding by network structure. Yet the i.i.d. assumption is seldom

questioned or tested, and the possible presence of social network dependence

is routinely ignored even when subjects are recruited from a single close-knit

community, as in the influential Framingham Heart Study, which we use to

illustrate these problems.

We define network dependence and confounding by network structure, de-

scribe tests that can help detect when these might be a problem in real data,

and illustrate how ignoring these features of data can result in biased and in-

valid statistical inference. We test for network dependence and for possible

confounding by network structure in several published analyses using data

from the Framingham Heart Study (FHS), which is a paradigmatic example

of an epidemiologic study comprised of individuals who are all members of a

single tight-knit community. The FHS data includes some explicit informa-
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tion about network ties, and researchers have used these data to study social

network phenomena such as social contagion, also with i.i.d. methods. Our

results suggest that the i.i.d. assumption—on which thousands of FHS papers

have relied—does not reliably hold, and that confounding by network structure

may be widespread.

3.2 Network Dependence

A network is a collection of nodes and edges (Newman, 2010), where, in a

social network, a node represents a person and an edge connecting two nodes

represents the existence of some relationship or social tie between them. When

the nodes in a network correspond to students in a high school, for example,

a tie may indicate that two students are in the same class or that they are

members of the same school club; when nodes are patients staying in a hospital,

a tie between patients may represent a shared doctor or a shared hospital unit.

In the literature on spatial and temporal dependence, dependence is often

implicitly assumed to be the result of latent traits that are more similar for

observations that are close than for distant observations. This latent variable

dependence (Ogburn, 2017) is likely to be present in many network contexts as

well. Homophily, or the tendency of similar people to form network ties, is a

paradigmatic source of latent trait dependence. If the outcome under study in
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a social network has a genetic component, then we would expect latent variable

dependence due the fact that family members, who share latent genetic traits,

are more likely to be close in social distance than people who are unrelated. If

the outcome is affected by geography or physical environment, latent variable

dependence could arise because people who live close to one another are more

likely to be friends than those who are geographically distant. In networks,

edges often present opportunities to transmit traits or information from one

node to another, and such direct transmission will result in dependence that is

informed by the underlying network structure (Ogburn, 2017). In general, both

of these sources of dependence result in positive pairwise correlations that tend

to be larger for pairs of observations from nodes that are close in the network

and smaller for observations from nodes that are distant in the network.

To illustrate the consequences of treating network observations as if they

are i.i.d., consider a hypothetical sample of n nodes in a social network, e.g. stu-

dents at a U.S. college with ties representing friendship, cohabitation, partici-

pation in the same activities, etc.. Each node provides an outcome Y , e.g. body

mass index (BMI). Suppose that, as has been suggested by some researchers

(Christakis and Fowler, 2007), BMI exhibits network dependence due to ”so-

cial contagion.” The target of inference is the mean µ of BMI for U.S. college

students. The sample average Ȳ =
n
∑

i=1

Yi/n is unbiased for µ as long as the

students at this particular college are representative of the overall U.S. col-
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lege student population. While bias and representability are not necessarily

affected by social network connections, the variance of Ȳ will be affected by net-

work dependence. For the purposes of this example, suppose that Y1, Y2, ..., Yn

are identically but not independently distributed, with common mean µ and

variance σ2. Then

V ar(Ȳ ) = V ar

(

n
∑

i=1

Yi

)

/n2

=
1

n2

{

n
∑

i=1

σ2 +
∑

i ̸=j

cov(Yi, Yj)

}

=
σ2

n/
(

1 + bn
σ2

) ,

(3.1)

where bn = 1
n

n
∑

i ̸=j

cov(Yi, Yj). The quantity n/
(

1 + bn
σ2

)

in the denominator is the

effective sample size of the dependent sample, and under dependence it is gen-

erally smaller than the apparent sample size n. But it is the effective rather

than the apparent sample size that determines standard errors and rates of

convergence for dependent samples. A researcher who failed to question the

independence of Y1, Y2, ..., Yn would estimate V ar(Ȳ ) with σ2/n, but whenever

bn is positive (as is expected under network dependence), this underestimates

the true variance. Inference using variance estimators based on σ2/n will be

anticonservative: p-values will be artificially low and confidence intervals ar-

tificially narrow. With more dependence bn increases, the effective sample size

decreases, and inference that assumes independence is more anticonservative.
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Very informally, when subjects are independent, each new observation brings

one new ”bit” of information about µ; when subjects are dependent, each new

observation brings less than one new ”bit” of information because some of

the information is redundant due to dependence on the previous observations.

Therefore, a researcher who falsely assumes independence believes that the

data provide more information than they actually do, i.e. the researcher over-

estimates the strength of evidence provided by the data.

In some settings researchers routinely account for statistical dependence in

data analyses: for example, when data are clustered (e.g. clustered randomized

trials, batch effects in lab experiments), when studying genetics or heritability

in a sample of genetically related organisms, or when data may exhibit spatial

or temporal dependence. But outside of these settings it is generally standard

practice to use statistical methods that assume independent and identically

distributed (i.i.d.) data. Despite increasing interest in and availability of social

network data, there is a dearth of valid statistical methods to detect or account

for network dependence.

3.2.1 Regression models

Coefficients from regression models suffer from the same problems as sam-

ple means in the presence of network dependence. Standard regression mod-

els assume independent errors, but when an outcome exhibits network de-
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pendence the regression errors generally will, too, rendering inferences drawn

from the regression models invalid. Although researchers have developed re-

gression models for many kinds of dependent data, it is not clear that any of

them are generally appropriate for social network data, and certainly none are

in wide use for network data.

3.2.2 Confounding by network structure

Bias can result when both an outcome and a covariate of interest exhibit

network dependence. In this case, the network structure can act like a con-

founder, creating a spurious association between the covariate and outcome.

Returning to the example above, suppose researchers use data from the col-

lege students to ascertain whether choice of academic major is associated with

BMI. Students form strong friendships with other students having similar aca-

demic interests, engendering network dependence in academic major. An en-

tirely independent process engenders network dependence in BMI: obesity is

socially contagious, so students who are friends with one another (regardless

of whether the friendship is related to shared academic interests) tend to have

similar BMI. Due solely to the underlying network structure, students with the

same major are expected to have similar BMI. We would not expect to see this

same association in an i.i.d. sample, for example a national sample drawing

independent students from many different colleges. Confounding by network
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structure is analogous to confounding by population stratification and con-

founding by cryptic relatedness, two well-known sources of bias in population-

based genetic association studies when both the outcome and the (in this case

genetic or genomic) covariate of interest share a common dependence structure

(Sillanpää, 2011).

3.2.3 Testing for network dependence

In a companion technical report (Lee and Ogburn, 2018b) we propose sta-

tistical methods to test for the presence of network dependence in data with

some information about network ties, based on Moran’s I, a well-known statis-

tic from the spatial autocorrelation literature. An R package is available (Lee

and Ogburn, 2018a). The test takes as inputs a single value associated with

each subject, e.g. an outcome, predictor, or regression residual, and a weighted

distance matrix with an entry for each pair of subjects. The weight matrix

should place higher weights on pairs of subjects who are close in network dis-

tance and smaller weights on pairs of subjects who are distant in the network.

The choice of weights affects the power, but not the validity, of the test. Simi-

larly, if information is available about some but not all network ties, this will

tend to reduce the power of the test but not affect its validity. A robust choice of

weight matrix is the adjacency matrix for the network, which puts weight 1 on

pairs of subjects who share a network tie and weight 0 otherwise; we use this
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weight matrix throughout. We recommend viewing moderate to large statistics

as evidence of possible dependence even if p-values do not meet an arbitrary

α = 0.05 cut-off, and caution that network dependence may be present even if

these statistics are small. If the test statistic calculated from regression resid-

uals is moderate to large, it suggests that standard error estimates from i.i.d.

regression models may be underestimated. If both of the test statistics calcu-

lated from an outcome and from a covariate of interest are moderate to large,

it suggests that confounding by network structure may be present.

3.3 Framingham Heart Study

The Framingham Heart Study (FHS), initiated in 1948, is arguably the

most important source of data on cardiovascular epidemiology. It is also an in-

fluential source of data on network peer effects. FHS is an ongoing cohort study

of participants from the town of Framingham, Massachusetts, that has grown

over the years to include five cohorts with a total sample of over 15, 000, repre-

senting almost 25% of the total population of Framingham. Multiple members

(> 3) of more than 1, 500 extended families are included in the study popula-

tion. Study participants are followed through exams every 2 to 8 years. In

between exams, participants are regularly monitored through phone calls. De-

tailed information on data collected in the FHS can be found in Tsao and Vasan
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(2015). Public versions of FHS data through 2008 are available from the db-

GaP database. The FHS data have been analyzed using i.i.d. statistical models

(as is standard practice for cohort studies) in over 3,400 peer-reviewed publica-

tions since 1950, most of which use multiple regression to explore associations

between cardiovascular outcomes and various risk factors. Because the indi-

viduals in the FHS are members of a single community, connected by social

and familial ties, the outcomes and covariates of interest may be exhibit net-

work dependence. Yet to our knowledge, none of the published studies using

FHS data has acknowledged this possibility, including in the literature on peer

effects.

Below we demonstrate the potential for bias due to confounding by net-

work structure and show that there is evidence of potentially widespread de-

pendence in the outcomes, predictors, and regression residuals from published

papers using FHS data. The problem of network dependence extends to high

profile research using FHS data to explicitly study peer effects and social con-

tagion in social networks, but with statistical methods designed for i.i.d. data.

3.3.1 Confounding by network structure

In order to demonstrate the bias that can arise when both a predictor and

an outcome share common network structure, we simulated a covariate with

dependence structure governed by the FHS social network but otherwise unre-
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lated to any of the variables measured in the FHS. We generated a continuous

network dependent covariate, X, conditional on the FHS network, indepen-

dently 500 times. We regressed a cardiovascular outcome (systolic blood pres-

sure, SBP), a lifestyle outcome (employed or not), a health-seeking behavior

outcome (visited a doctor due to illness), and a non-cardiovascular health out-

come (diagnosis of corneal arcus) from the FHS data onto X. For each of the

four outcomes we fit the same regression model independently 500 times, once

for each of the independently generated covariates.

Figure 3.1 shows the coverage of 95% confidence intervals for β, the coeffi-

cient for X in the regression of each outcome onto X plus an intercept. Because

the covariate is generated without reference to any of these outcomes, the true

value of β for a population-based, rather than network, sample is 0. However,

for all four outcomes the confidence intervals are not centered around 0, indi-

cating that estimates of β are biased due to confounding by network structure.

For all four outcomes the confidence intervals exhibit undercoverage, ranging

from 65% to 85% rather than the nominal rate of 95%. While the bias is due to

confounding by network structure; the undercoverage may be due to both con-

founding and to network dependence in the regression residuals, which could

result in underestimated standard errors. Table 3.1 reports the p-values for

tests of dependence in the four outcomes, the predictor X (averaged across 500

replicates), and the residuals from the regression of the outcome on X (aver-
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Figure 3.1: Each column contains 95% confidence intervals (CIs) for the coef-

ficient for a random, network dependent covariate. The CIs above the dotted

line do not contain the null value β = 0 (red-line) while the CIs below the dot-

ted line contain 0. Coverage rates of 95% CIs are calculated as the percentages

of the CIs covering 0.

aged across 500 replicates for each outcome). For three of the outcomes (SBP,

employment, and corneal arcus) tests based on Moran’s I suggested strong ev-

idence of dependence; for visit to doctor the test did not show strong evidence

of dependence in the outcome or residuals (though we reiterate that a null test

does not imply a lack of dependence). Simulation and analysis details are in

the Supplementary Materials.
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Table 3.1: Results of tests of network dependence for the outcomes, simulated

predictor X, and residuals from regressing each outcome onto X. P-values are

obtained from permutation tests.

Systolic blood pressure Employed Visited doctor Corneal arcus

p-value for outcome 0.03 0.00 0.71 0.01

Average p-value for predictor 0.00 0.00 0.00 0.00

Average p-value for residuals 0.04 0.00 0.70 0.02

3.3.2 Cardiovascular disease epidemiology

In order to evaluate whether network dependence and confounding due to

network structure may undermine research using FHS data, we chose regres-

sion models from five published papers in the epidemiologic and medical lit-

erature and applied our tests of dependence to the outcomes, covariates, and

regression residuals. We screened for ease of replicability using publicly avail-

able data (i.e. models are explicitly defined using variables that are available

in the public data), and selected the first five papers that we found on Google

Scholar that met the replicability criteria. Because we require social network

information for our tests of dependence, and because that information is not

available for all individuals and is not straightforward to harmonize across ex-

ams, we ran the published regression models on subsets of the data for which

network information was readily available. Below we report results from the

two papers for which we found the strongest evidence of dependence: the mod-

els reported in these two papers show compelling evidence of network depen-

dent outcomes, covariates, and residuals. We also found moderate evidence of
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dependence in some of the analyses reported in each of the other three papers

(Wolf et al., 1991; Gordon et al., 1977; Levy et al., 1990); details are in the

Supplementary Information.

Lauer et al. (1991) examined the association between obesity and left ven-

tricular mass (LVM); this paper is one of the authors’ many highly cited papers

on LVM, which is of interest to many researchers due to its relationship with

cardiovascular disease (Levy et al., 1990) and other cardiovascular outcomes.

The study assessed the relationship between obesity and LVM using the es-

timated coefficients for BMI in sex-specific linear regressions adjusted for age

and systolic blood pressure, where the outcome was LVM normalized by height.

This analysis indicated that obesity is a significant predictor of LVM condi-

tional on age and systolic blood pressure for both men and women.

In order to test whether the assumptions of independence inherently as-

sumed by Lauer et al. (1991) are valid, we applied Moran’s I to normalized

LVM and to BMI, separately for males and females, and to the residuals from

our replication of the Lauer et al. sex-specific regressions. The results are re-

ported in Table 3.2. In order for the inference reported in Lauer et al. (1991)

to be valid, the errors from the regressions should be independent, however

Moran’s I provides evidence of network dependence for the residuals in addi-

tion to the marginal LVM variable, for both males and females, undermining

the i.i.d. assumption on which the validity of the linear regression model rests.
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Table 3.2: Results of tests of network dependence for males and females, for

LVM, BMI, and the residuals from regressing LVM onto covariates. P-values

are obtained from permutation tests.

Y Istd P-value

Male

Normalized LVM 2.26 0.01

BMI 1.36 0.09

Residual from LVM ˜ BMI + age + systolic BP 1.34 0.11

Female

Normalized LVM 2.23 0.02

BMI 1.51 0.06

Residual from LVM ˜ BMI + age + systolic BP 2.92 0.00

Furthermore, for both sexes there is evidence of network dependence for both

LVM and BMI, suggesting that any association may be due to confounding by

network structure.

Cox proportional hazards models (Cox, 1992) are commonly applied to the

FHS data to assess risk factors for mortality. When the assumptions of the Cox

model hold, including i.i.d. observations, Martingale residuals are expected to

be approximately uncorrelated in finite samples (Lin et al., 1993; Tableman

and Kim, 2003). We looked for evidence of residual dependence in a study by

Tsuji et al. (Tsuji et al., 1994) of the association between eight different heart

rate variability (HRV) measures and four-year mortality. We replicated the

twenty-four separate Cox models reported in Tsuji et al. (1994): for each of

eight measures of HRV we fit models without adjusting for covariates, adjust-

ing for age and sex, and adjusting for clinical risk factors in addition to age and

sex.

Table 3.3 shows the results of applying tests of independence using Moran’s
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Table 3.3: Tests of network dependence using Moran’s I statistic applied to

each HRV measure and to the Martingale residuals from the Cox models for

eight different HRV measures. P-values are obtained from permutation tests.

HRV measures: lnSDNN lnpNN50 lnr-MSSD lnVLF lnLF lnHF lnTP lnLF/HF

Covariate

Istd 0.33 -0.41 -0.12 1.72 1.62 0.83 1.85 -0.03

P-value 0.38 0.59 0.52 0.06 0.08 0.20 0.06 0.47

Residuals from unadjusted model for all-cause mortality

Istd 1.57 1.65 1.64 1.38 1.38 1.54 1.38 1.59

P-value 0.06 0.04 0.04 0.08 0.09 0.06 0.08 0.05

Residuals from model for all-cause mortality adjusted for age and sex

Istd 1.94 2.00 2.05 1.92 1.75 1.95 1.87 1.97

P-value 0.02 0.02 0.02 0.02 0.04 0.02 0.03 0.03

Residuals from model for all-cause mortality adjusted for age, sex, and clinical risk factors

Istd 1.55 1.52 1.56 1.60 1.46 1.53 1.52 1.52

P-value 0.07 0.07 0.07 0.06 0.09 0.07 0.09 0.07

I to the Martingale residuals from the twenty-four different regression mod-

els, which suggest that the i.i.d. assumption may be violated in most or all

of these regressions. Interestingly, Moran’s I statistic is larger with smaller

p-values for the covariates that were found to be significant predictors of all

cause mortality. This is consistent with a hypothesis that the statistically sig-

nificant associations are due to confounding by network structure rather than

to true population-level associations.

3.3.3 Peer effects

The FHS plays a uniquely influential role in the study of social networks

and social contagion. Christakis and Fowler (C&F) discovered an untapped re-

source buried in the FHS data collection tracking sheets: information on social

ties that, combined with existing data on connections among the FHS partici-
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pants, allowed them to reconstruct the (partial) social network underlying the

cohort. They then leveraged this social network data to study peer effects for

obesity (Christakis and Fowler, 2007), smoking (Christakis and Fowler, 2008),

and happiness (Fowler and Christakis, 2008). Researchers have since used the

same methods as C&F to study peer effects in the FHS and in many other social

networks settings. However, like epidemiologists studying cardiovascular dis-

ease, C&F and other researchers using non-experimental data to assess peer

effects generally use statistical models that assume independence across sub-

jects (Lyons, 2011); e.g. Trogdon et al. (2008); Fowler and Christakis (2008);

Rosenquist et al. (2010). To assess peer influence for obesity, C&F fit longi-

tudinal logistic regression models of each individual’s obesity status at exam

k = 2, 3, 4, 5, 6, 7 onto each of the individual’s social contacts’ obesity statuses

at exam k and k − 1 (with a separate entry into the model for each contact),

controlling for individual covariates and for the node’s own obesity status at

exam k − 1. They used generalized estimating equations (Liang and Zeger,

1986) to account for correlation within individual, but their model assumes

independence across individuals. Christakis and Fowler fit this model sepa-

rately for ten different types of social connections, including siblings, spouses,

and immediate neighbors.

We replicated a secondary analysis in which the social contacts’ obesity sta-

tuses at exams k − 1 and k − 2 were used instead of k and k − 1; we replicated
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this analysis to avoid the misspecification inherent in the former specification

(Lyons, 2011). Although it would be possible to adapt our proposed test of de-

pendence to longitudinal or clustered data, that is beyond the scope of this pa-

per and for simplicity we fit the C&F model at a single time point and selected

one social contact for each node in order to have one residual per individual.

We chose to use exam 3 for the outcome data because it gave us the largest

sample size. We looked at sibling relationships because this gives the largest

number of ties in the underlying network compared to the other nine types of

relationships considered by Christakis and Fowler and because we had a prior

hypothesis that close genetic relationships would evince dependence in obesity

status.

We calculated Moran’s I for the outcome (obesity status in exam 3), the pre-

dictor of interest (sibling’s obesity status in exam 2), and the residuals from

the logistic regression of each node’s exam 3 obesity status onto the node’s own

obesity status in exam 2, the sibling’s obesity status in exam 2, the sibling’s

obesity status at exam 1, and covariates age, sex, and education. For the out-

come Istd = 7.10 (p < 0.01) and for the exposure Istd = 15.91 (p < 0.01) (because

BMI is a binary variable I is equivalent to Φ), suggesting that confounding by

network structure could contribute to any apparent association between the

outcome and the exposure of interest. Istd = 2.76 (p < 0.01) for the regression

residuals, providing strong evidence that the i.i.d. assumption on which these
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analyses rests may be invalid. Details of our analysis can be found in the Sup-

plementary Information.

3.4 Discussion

As researchers across many scientific disciplines grapple with replication

crises, many sources of artificially small p-values and inflated false positive

rates have received attention, but the possible impact of network dependence

has been overlooked. In this paper, we used simple tests for independence

among observations sampled from a single network to demonstrate that many

types of analyses using FHS data may have reported biased point estimates

and artificially small p-values, standard errors, and confidence intervals due to

unacknowledged network dependence.

A limitation to the widespread application of these tests is their reliance

on social network information, which is not available in most studies that are

not explicitly about networks. Except in pathological cases, missing data on

network ties will affect the power but not validity of these tests, so adding

information on one or two ties per subject to a data collection protocol would

enable researchers to test for network dependence. When some of the network

ties are familial, and when genetic data is available, as is the case in the FHS,

techniques developed to control for confounding due to cryptic relatedness (Sil-
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lanpää, 2011) may be helpful for estimating the unknown familial network

structure and for controlling for confounding due to that structure.

Future work is needed on methods to account for dependence if it is de-

tected. Although many statistical methods exist for dealing with dependent

data, most of these methods are intended for spatial or temporal data, or, more

broadly, for observations with positions in R
k and dependence that is related to

Euclidean distance between pairs of points. The topology of a network is very

different from that of Euclidean space, and careful work is needed to justify the

use of existing methods for social network data and to develop new methods.

We recommend that researchers designing new studies with human sub-

jects avoid recruiting from one or a small number of underlying social net-

works whenever possible, and researchers working with existing data should

be aware of the possibility that social network dependence may undermine the

use of i.i.d. models.

3.5 Appendix : Analysis of the Framing-

ham Heart Study data

The publicly available data are divided into datasets for individuals with

and without non-profit use (NPU) consent, and for each replication we selected

the dataset with more eligible individuals or more observed network ties, ex-
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cept for the peer influence analysis, where we merged both consent groups.

3.5.1 Confounding by network structure

We used four random outcomes (systolic blood pressure, employed or not,

visited a doctor due to illness, diagnosis of corneal arcus) from the Offspring

Cohort at Exam 5 with NPU consent. The number of non-missing observations

and the number of edges are shown in Table 3.4.

Systolic blood pressure Employed Visited doctor Corneal arcus

Sample size (n) 1031 1021 1028 1019

The number of edges (m) 683 670 681 674

Table 3.4: The number of observations and of undirected edges sampled from

the Offspring Cohort at Exam 5.

For each of these four outcomes, we used the n×n outcome-specific adjacency

matrix A to simulate continuous network dependent covariates (X1, X2, . . . , Xn)

conditional on A as follows:

(X1, X2, . . . , Xn) ∼MVN (µ = (µ1, µ2, . . . , µn),Σn) , (3.2)

where µi = 1 if
n
∑

j=1

Aij > 0 and µi = −1 otherwise (i = 1, 2, . . . , n). A variance-

covariance matrix Σn = [σij] has a diagonal of 0.5, σij = σji = 0.2 if Aij = Aji = 1,

and σij = σji = 0.1 otherwise (i, j = 1, 2, . . . , n; i ̸= j).
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3.5.2 Cardiovascular disease epidemiology

Lauer et al. (Lauer et al., 1991) used data from individuals with echocardio-

grams between 1979 and 1983, which coincides with the period of the original

cohort Exam 16 (1979 - 1982) and the offspring cohort Exam 2 (1979 - 1983).

Because we require information on network ties in order to test for dependence,

we will consider a subset of the data used in Lauer et al. (1991), namely the ob-

servations from the Original Cohort Exam 16 (1979 - 1982) and the Offspring

Cohort Exam 2 (1979 - 1983) without NPU consent. Because the analysis in

Lauer et al. (1991) is stratified by sex, we constructed sex-specific adjacency

matrices using the network ties which were in existence at the start of the co-

horts (1979) or were initiated no later than the end of the original cohort Exam

16 (1982), so that any network ties present between 1979 to 1982 are taken

account in the adjacency matrices. Figure 3.2 describes the eligibility criteria

we used.

Tables 3.5 through 3.8 give summary measures for the variables used in our

analyses and report the coefficients from the models that we fit. These can be

compared to the published summaries and models in the original papers; we

concluded that the summaries and models are sufficiently similar to deem our

replications successful.
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Original Cohort Exam 16

(n = 356).

Offspring Cohort Exam 2

(n = 2, 451).

Free of congestive heart failure, coronary heart failure,

and cardiovascular disease at 1979.

No clinical evidence of myocardial infarction.

Systolic blood pressure not higher than 140 mm Hg

or diastolic blood pressure not higher than 90 mm Hg

by echocardiographic examination.

No evidence of pulmonary disease, or valvular heart disease.

Total number of eligible subjects : n = 1, 802.

Total number of eligible subjects without any missing data : n = 1, 688.

Male : n = 685. Female : n = 1, 003.

Figure 3.2: Flowchart for determining eligible healthy subjects from the Origi-

nal and Offspring Cohorts consent group to replicate the left ventricular mass

analysis of Lauer et al. (1991)

Table 3.5: Mean and standard deviations in the parenthesis of characteristics

for eligible subjects. This corresponds to Table 1 in the original paper (Lauer

et al., 1991) of left ventricular mass study.

Male (n = 685) Female (n = 1,003)

Age (year) 40.23 (10.04) 42.04 (10.67)

Weight (kg) 80.61 (10.86) 62.29 (11.10)

Height (cm) 177.2 (7.25) 162.3 (6.32)

BMI (kg/m2) 2.33 (0.90) 1.75 (0.95)

Systolic BP (mmHg) 118.28 (9.41) 112.22 (11.20)

LVM (g) 207.27 (46.45) 135.2 (30.65)

Adjusted LVM (g/m) 116.85 (25.18) 83.3 (18.61)
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Male Network
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(a) Istd = 1.34 ( p-value : 0.090)
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(b) Istd = 2.92 ( p-value : 0.002)

Figure 3.3: The largest connected components of the sex-specific social net-

works from left ventricular mass (LVM) study (Lauer et al., 1991), displayed

using Fruchterman-Reingold algorithm. Darker colored nodes represent

subjects with higher values of residuals from the regression of normalized LVM

onto BMI, age, and systolic blood pressure.

Table 3.6: Replication of Lauer et al.’s linear regression of height-corrected left

ventricular mass on BMI, age and systolic blood pressure.

Estimate Standard error t-value Pr(>|t|)

Male (n = 685)

Intercept 70.46 11.35 6.21 0.00

Age -0.16 0.09 -1.69 0.09

BMI : 23-25.99 kg/m2 8.87 2.50 3.55 0.00

BMI : 26-29.99 20.43 2.57 7.95 0.00

BMI : ≥ 30 27.87 3.57 7.81 0.00

Systolic BP 0.34 0.10 3.40 0.00

Female (n = 1, 003)

Intercept 49.19 5.18 9.50 0.00

Age 0.20 0.05 3.89 0.00

BMI : 23-25.99 6.95 1.22 5.70 0.00

BMI : 26-29.99 15.02 1.61 9.34 0.00

BMI ≥ 30 27.97 2.02 13.86 0.00

Systolic BP 0.17 0.05 3.45 0.00
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Table 3.7: Standard deviations of eight different heart rate variability mea-

sures from [Table 4] of the original paper (Tsuji et al., 1994) and from the 516

subjects we used to replicate the original analysis.

lnSDNN lnpNN50 lnr-MSSD lnVLF lnLF lnHF lnTP lnLF/HF

Original paper 0.33 1.32 0.44 0.76 0.82 0.85 0.73 0.57

Our data 0.33 1.36 0.46 0.74 0.84 0.88 0.73 0.57

Table 3.8: Replication of twenty-four Cox models from [Table 5] in Tsuji et al.

(Tsuji et al., 1994).

Hazard ratio 95% CI P-value

Unadjusted (n = 516)

lnSDNN 1.31 (1.04, 1.64) 0.0217

lnpNN50 1.03 (0.81, 1.31) 0.8229

lnr-MSSD 1.05 (0.82, 1.34) 0.7092

lnVLF 1.53 (1.23, 1.90) 0.0001

lnLF 1.57 (1.25, 1.98) 0.0001

lnHF 1.27 (0.99, 1.64) 0.0607

lnTP 1.49 (1.20, 1.86) 0.0004

lnLF/HF 1.35 (1.08, 1.68) 0.0095

Age- and sex-adjusted (n = 516)

lnSDNN 1.32 (1.06, 1.65) 0.0146

lnpNN50 1.14 (0.90, 1.45) 0.2781

lnr-MSSD 1.19 (0.94, 1.51) 0.1493

lnVLF 1.53 (1.23, 1.91) 0.0001

lnLF 1.56 (1.24, 1.97) 0.0002

lnHF 1.35 (1.06, 1.72) 0.0150

lnTP 1.51 (1.21, 1.89) 0.0003

lnLF/HF 1.17 (0.93, 1.46) 0.1911

Age, sex, and clinical risk factors adjusted (n = 512)

lnSDNN 1.29 (1.02, 1.62) 0.0312

lnpNN50 1.13 (0.88, 1.44) 0.3480

lnr-MSSD 1.20 (0.94, 1.54) 0.1425

lnVLF 1.55 (1.24, 1.95) 0.0002

lnLF 1.49 (1.16, 1.92) 0.0018

lnHF 1.31 (1.03, 1.68) 0.0304

lnTP 1.51 (1.19, 1.90) 0.0006

lnLF/HF 1.10 (0.86, 1.41) 0.4570
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Tables 3.9 through 3.11 summarize the results of tests for network depen-

dence applied to the outcomes, primary covariates of interest, and residuals

from the models of the three studies (Wolf et al., 1991; Gordon et al., 1977;

Levy et al., 1990) that we did not include in the main text.

Table 3.9: Wolf et al. (Wolf et al., 1991) estimated the association between

atrial fibrillation (AF) on sex- and age-group-specific two-year incidence of

stroke, controlling for coronary heart disease, hypertension, and cardiac failure

history. We replicated the analyses using data from the Original Cohort Exam

17 without NPU consent (the original study combined data from 17 exams).

Below we report Moran’s I statistic and the corresponding permutation-based

p-values for the outcome (stroke), the predictor of interest (AF), and the resid-

uals from the full logistic regression model.

Stroke AF Residuals n
Istd p-value Istd p-value Istd p-value

Male

60-69 yr -0.19 0.460 0.22 0.152 -0.08 0.408 228

70-79 yr -0.05 0.304 -0.10 0.438 0.01 0.274 267

80-89 yr -0.85 0.908 -0.67 0.794 -0.95 0.950 93

Female

60-69 yr -1.02 0.984 -0.01 0.690 -0.67 0.942 258

70-79 yr -0.12 0.544 0.04 0.334 0.15 0.368 398

80-89 yr 1.09 0.120 -0.06 0.410 -0.10 0.476 179
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Table 3.10: Gordon et al. (1977) examined the association between HDL

cholesterol and four-year incidence of coronary heart disease (CHD) for men

and women aged 49 to 82 years old between 1969 and 1971, which coincides

with Original Cohort Exam 11. We used the Original Cohort Exam 11 (with

NPU consent group) to replicate their univariate logistic regressions of CHD

on HDL, and below we report the network dependence test statistics and cor-

responding permutation-based p-values for the outcome, the predictor, and the

residuals. (Due to the large amount of missingness in HDL, the statistics for

the residuals are based on smaller sample sizes.)

Y Sex n Moran’s Istd P-value

Four-year incidence of CHD Male 1123 0.32 0.350

Female 1416 -0.60 0.704

High density lipoproteins (HDL) Male 552 1.64 0.042

Female 640 2.05 0.030

Residuals from logistic regression Male 552 -1.10 0.952

Female 640 -0.10 0.524
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Table 3.11: Levy at al. (Levy et al., 1990) investigated the relationship be-

tween left ventricular mass (LVM) and cardiovascular disease (CVD) for sub-

jects 40 years old or older. We replicated their analyses of four-year incidence

of CVD by running the logistic regression adjusted for age, diastolic blood pres-

sure, pulse pressure, antihypertensive treatment, the number of cigarettes per

day, diabetes status, body-mass index, ratio of total to high-density lipoprotein

cholesterol, left ventricular hypertrophy on echocardiography, and left ventric-

ular mass; below we report tests of network dependence and corresponding

permutation-based p-values for the outcome (CVD), the predictor of interest

(LVM), and the regression residuals. As in the original study we used observa-

tions (n = 469 males and n = 713 females) from the Original Cohort Exam 16

and the Offspring Cohort Exam 12, but we restricted our sample to those with

NPU consent only.

Sex Y Moran’s Istd P-value

Male Incidence of CVD -0.63 0.744

Female Incidence of CVD 0.74 0.210

Male LVM 1.87 0.046

Female LVM 1.21 0.146

Male Residuals -1.10 0.912

Female Residuals -0.20 0.450
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Chapter 4

Network Dependence Testing via

Diffusion Maps and

Distance-Based Correlations

Deciphering the associations between network connectivity and nodal at-

tributes is one of the core problems in network science. The dependency struc-

ture and high-dimensionality of networks pose unique challenges to traditional

dependency tests in terms of theoretical guarantees and empirical performance.

We propose an approach to test network dependence via diffusion maps and

distance-based correlations. We prove that the new method yields a consis-

tent test statistic under mild distributional assumptions on the graph struc-

ture, and demonstrate that it is able to efficiently identify the most informative
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graph embedding with respect to the diffusion time. The testing performance

is illustrated on both simulated and real data.

This is a joint work in collaboration with Chencheng Shen, Carey E. Priebe,

and Joshua T. Vogelstein.

4.1 Introduction

Network data has seen increased availability and influence which moti-

vated numerous recent advances of statistics and applications in physics, com-

puter science, biology, social science, and more. However, data scientists and

statisticians still confront many new and exciting challenges due to the distinct

structure of network data. A network (or graph) is formally defined as an or-

dered pair G = (V,E), where V represents the set of nodes (or vertices) and E

is the set of edges (or links), and n = |V|. The edge connectivity of a graph can

be compactly represented by the adjacency matrix A = {A(i, j) : i, j = 1, .., n},

where A(i, j) is the edge weight between node i and node j, e.g., for an un-

weighted and undirected network, A(i, j) = A(j, i) = 1 if and only if node i and

node j are connected by an edge, and zero otherwise. In addition to edges, each

node has a nodal attribute, denoted Xi ∈ R
p, and X = [X1| · · · |Xn].

This chapter focuses on testing the relationship between network connec-

tivity and nodal attributes. Each node often has an associated nodal attribute,
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and we would like to test whether the attributes are independent of the graph

topology. Assuming for the adjacency matrix A and attributes X, the connec-

tivity and attribute corresponding to each vertex are identically and jointly

distributed according to FAX , the null and alternative hypotheses of interest

are:

H0 : FAX = FAFX (4.1)

HA : FAX ̸= FAFX .

This independence test is a crucial first step in exploring many network data,

e.g. determining potential correlation between cultural tastes and relation-

ships over social network (Lewis et al., 2012), or identifying association be-

tween the strength of functional connectivity and brain physiology (e.g., re-

gional cerebral blood flow) in brain network (Liang et al., 2013). Sometimes the

correlations among nodes are not proportional to the strength of connectivity

between them. For instance, in signaling network of biological cells, reaction

rate for each cell exhibits nonlinear dependence on the neighboring response

due to complex, cooperative biological process involved (Hernandez-Hernandez

et al., 2017). As an another example, in social network analysis, rumors may

propagate at rates dependent on a few focal persons, rather than strength of

connectivity (Nekovee et al., 2007).
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A notable obstacle in network inference is the structure of the edge con-

nectivity, e.g., for an undirected graph, A is a symmetric binary matrix where

edges are not independent of each other, which prevents many well-established

methods from being directly applicable. One approach is to assume certain

model on the graph structure, and then solve the inference question based on

the model assumption (Wasserman and Pattison, 1996; Fosdick and Hoff, 2015;

Howard et al., 2016). Another approach is spectral embedding, which first em-

beds the n×n adjacency matrix A into an n×q matrix U by eigendecomposition,

and then carries out the later inference task on U (Rohe et al., 2011; Sussman

et al., 2012; Tang et al., 2017). For example, the network dependence test pro-

posed by Fosdick and Hoff (Fosdick and Hoff, 2015) assumes that the adjacency

matrix is generated from a multivariate normal distribution of the latent fac-

tors, and estimates the latent factor associated with each node from A, followed

by applying the standard likelihood ratio test on the normal distribution.

However, model-based approaches are often limited by, and do not perform

well beyond, the model assumptions. Moreover, spectral embedding is suscep-

tible to misspecification of the dimension of q. Both of these factors can signif-

icantly degrade the later inference performance. Indeed, as a ground truth is

unlikely in real networks (Peel et al., 2017), one often desires a method that

is effectively non-parametric and robust against algorithm parameter selec-

tion (Chen et al., 2016).

67



CHAPTER 4. MULTIVARIATE NETWORK DEPENDENCE TESTING

We propose a method to test network dependency via diffusion maps and

distance (or kernel)-based correlations, which is theoretically consistent un-

der mild graph distributional assumptions (see Section 4.3.2), and works well

for many popular network models. The proposed method also overcomes pa-

rameter selection issues, and exhibits superior empirical testing performance.

The R code and accompanying data are publicly available online at http:

//neurodata.io/tools/mgc and https://github.com/neurodata/mgc.

4.2 Preliminaries

4.2.1 Notation

We denote a random variable by capital letter X with distribution FX . For

each node i ∈ V, its attribute is denoted by Xi whose realizations are in R
p,

and its edge connectivity vector is denoted by Ai, with realizations in R
n con-

structing n × n adjacency matrix A. We assume that (Xi, Ai) ∼ FXA, i.e.,

identically distributed attributes and connectivity vectors. Later we intro-

duce a multiscale node-wise representation of the nodes as an n × q matrix

Ut = [U t
1|U

t
2| · · · |U

t
n] for any t ∈ {0}

⋃

Z
+, where q is the embedding dimension

and t is the Markov iteration time step. Let ·∗ denote estimated optimality; ·t

denotes either the tth power or time step, which shall be clear in the context;
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and ·T is the matrix transpose.

4.2.2 Diffusion maps

Because the rows and columns of a symmetric adjacency matrix may be cor-

related, directly operating on the adjacency matrix breaks theoretical guaran-

tees of existing dependence tests. The diffusion map is introduced as a feature

extraction algorithm by Coifman and Lafon (Coifman et al., 2005; Coifman and

Lafon, 2006; Lafon and Lee, 2006), which computes a family of embeddings

in Euclidean space by eigendecomposition on a diffusion operator of the given

data. Here we introduce a version tailored to adjacency matrices.

To derive the diffusion maps for given observations of size n, the first step

is to choose a n × n kernel matrix K that represents the similarity within the

sample data. The adjacency matrix A is a natural similarity matrix; for undi-

rected graphs we let K = A, for directed graphs we let K = (A +AT )/2. Next

compute the normalized Laplacian matrix by

L = B−1/2KB−1/2, (4.2)

where B is the n×n degree matrix of K. When B(i, i) or B(j, j) is zero, L(i, j) =

0.

The diffusion map Ut = {U t
i ∈ R

q : i = 1, . . . , n} is then computed by eigen-
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decomposition, namely

U t
i =

(

λt
1ϕi1, λt

2ϕi2, · · · , λt
qϕiq

)T

∈ R
q; i = 1, . . . , n, (4.3)

where {λt
j : j = 1, 2, . . . , q} and {ϕj ∈ R

n : (ϕ1j, ϕ2j, . . . , ϕnj), j = 1, 2, . . . , q} are

the q largest eigenvalues and corresponding eigenvectors of L respectively, and

λt
j is the tth power of the jth eigenvalue. The diffusion distance between the

ith observation and the jth observation is defined as the weighted ℓ2 distance

of the two points in the observation space, which equals the Euclidean distance

in the diffusion coordinate:

Ct(i, j) = ∥U t
i − U t

j∥; i, j = 1, 2, . . . , n, (4.4)

where ∥ · ∥ is the Euclidean distance.

When t = 0, the diffusion map is exactly the same as a normalized graph

Laplacian embedding in Rohe et al. (2011) up-to a linear transformation; when

t > 0, the diffusion maps are weighted graph Laplacian by powered eigenval-

ues (Lafon and Lee, 2006); and the diffusion map at t = 1 equals the adjacency

spectral embedding (ASE) up-to the degree constant (Sussman et al., 2014).

Therefore, the diffusion maps can be viewed as a single index family of em-

beddings. The embedding dimension choice q can be selected via the profile

likelihood method in Zhu and Ghodsi (2006), which is a standard algorithm
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in dimension reduction literature. To select the optimal t, we will utilize a

smoothing technique to maximize the dependency, as discussed below.

4.2.3 Distance-based correlations

The problem of testing general dependencies between two random variables

has seen notable progress in recent years. The Pearson’s correlation (Pear-

son, 1895) is the most classical approach, which determines the existence of

linear relationship via a correlation coefficient in the range of [−1, 1], with

0 indicating no linear association and ±1 indicating perfect linear associa-

tion. To better capture the dependencies not limited to linear relationship,

a variety of distance-based correlation measures have been suggested, includ-

ing the Mantel coefficient (Mantel, 1967), distance correlation (DCORR) and

energy statistic (Székely et al., 2007; Székely and Rizzo, 2013a; Rizzo and

Székely, 2016), kernel-based independence test (Gretton and Gyorfi, 2010),

Heller-Heller-Gorfine (HHG) test (Heller et al., 2013, 2016), and multiscale

graph correlation (MGC) (Shen et al., 2018a,b), among others. In particular,

distance correlation is a distance-based dependency measure that is consis-

tent against all possible dependencies with finite first moments. The multi-

scale graph correlation (MGC) statistic inherits the same consistency of dis-

tance correlation with remarkably better finite-sample testing powers under

high-dimensional and nonlinear dependencies, via defining a family of local
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correlations and efficiently searching for the optimal local scale in testing. Here

we briefly introduce DCORR and MGC.

Given n pairs of sample data (U,X) = {(Ui, Xi)
i.i.d.
∼ FUX ∈ R

q × R
p : i =

1, 2, . . . , n}. Denote the pairwise distances within {Ui}
n
i=1 and {Xi}

n
i=1 as C(i, j) =

∥Ui − Uj∥ and D(i, j) = ∥Xi − Xj∥ for i, j = 1, 2, . . . , n respectively. The sample

distance covariance is defined as

DCOVn(U,X) =
1

n2

n
∑

i,j=1

C̃(i, j)D̃(i, j), (4.5)

where C̃ and D̃ doubly-center C and D by their column means and row means,

respectively, i.e., C̃ = HCH, where H = In×n − Jn×n/n (the double centering

operation matrix), In×n is the n×n identity matrix (ones on the diagonal, zeros

elsewhere), and Jn×n is the n × n matrix of all ones. The distance correlation

(DCORR) follows by normalizing distance covariance via Cauchy-Schwarz into

the range of [−1, 1] (i.e., divide by {
n
∑

i,j=1

C̃(i, j)2/n2
n
∑

i,j=1

D̃(i, j)2/n2}1/2). Székely

et al. (2007) shows that sample DCORR converges to a population form, which

is asymptotically 0 if and only if independence, i.e., FUX = FUFX , resulting

in a consistent statistic for independence testing; an unbiased sample ver-

sion of distance correlation is later proposed to eliminate the sample bias in

DCORR (Székely and Rizzo, 2013b, 2014), which is the default for DCORR im-

plementation in this chapter.
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The MGC statistic is an optimal local version of distance correlation, aim-

ing at improving finite-sample testing power. It first derives all local distance

covariances DCOVkl as

DCOV
kl
n (U,X) =

1

n2

n
∑

i,j=1

C̃k(i, j)D̃l(i, j); k = 1, . . . , κ, l = 1, . . . , γ, (4.6)

where κ and γ are the number of unique numerical values in C and D respec-

tively; C̃k(i, j) = C̃(i, j)I(RC

ij ≤ k); I(·) is the indicator function; and RC

ij is a

rank function of Ui relative to Uj, i.e., RC

ij = k if Ui is the kth nearest neighbor

of Uj, and define equivalently D̃l(i, j) = D̃(i, j)I(RD

ij ≤ l) for {Xi}. Then the local

distance correlations {(DCORRkl)} are the normalizations of the local distance

covariances into [−1, 1] via Cauchy-Schwarz. Among all possible neighborhood

choices, the MGC statistic equals the maximum local correlation within the

largest connected component of significant local correlations, i.e.,

MGCn(U,X) = DCORR
(kl)∗

n (U,X), where (kl)∗ = argmax
(kl)

S(DCORR
kl
n ) (4.7)

for a smoothing operation S(·) that filters out all in-significant local correla-

tions.

MGC has been shown to have power almost equal or better than DCORR through-

out various types of general dependencies. Despite searching over all possible

neighborhoods for the optimal local correlation, it is also computationally effi-
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cient with a similar running time complexity as DCORR and HHG. The details

on the population statistic, sample version on unbiased DCORR, and running

time analysis are described in Shen et al. (2018a).

4.3 Main Results

4.3.1 Testing procedure of diffusion MGC

Algorithm 1 Testing procedure of DMGC.

Input: Adjacency matrix A ∈ R
n×n and nodal attributes X = {Xi ∈ R

p : i =
1, 2, . . . , n}.

(1) Symmetrize A by K = (A+AT )/2.

(2) Obtain normalized graph Laplacian matrix L = B−1/2KB−1/2.

(3) Do eigendecomposition to obtain diffusion maps Ut = {U t
1, U

t
2, . . . , U

t
n} for

t = 0, 1, 2, . . . , 10.

(4) Derive n×n Euclidean distance of diffusion map Ct, i.e., diffusion distance,

across t, and n× n Euclidean distance of nodal attributes, D.

(5) Compute MGC statistics using two distance matrices, Ct and D,

for t = 0, 1, . . . , 10.

(6) Derive DMGC statistic MGC∗
n ({U

t},X) by estimating t∗.
(7) Compute p-value using permutation test.

Output: P-value at the estimated optimal step t∗, the estimated optimal time

step t∗, dimension choice of q via profile likelihood method, multiscale lo-

cal correlation maps {DCORRkl
n (U

t,X)}, the optimal neighborhood choice

(k∗, l∗).

Here we develop diffusion MGC (DMGC), which synthesizes diffusion map

embedding as a node-wise representation and distance-based measure by MGC as

a test statistic to detect the signal using smoothed maximum statistic. A

flowchart of the testing procedure is illustrated in Figure 4.1. The algorithm
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Input: Adjacency Matrix A ∈ R
n×n Input: Attributes X = {Xi ∈ R

p : i =
1, 2, . . . , n}

(1) Kernel Matrix K = (A+AT )/2

(2) Normalized Graph Laplacian L =
B−1/2KB−1/2

(3) Diffusion Maps Ut = {U t
i ∈ R

q : i =
1, 2, . . . , n} for t = 0, 1, . . . , 10

(4) Diffusion Distances Ct = {∥U t
i −

U t
j∥} ∈ R

n×n, t = 0, 1, 2, . . . , 10
(4) Euclidean Distances D = {∥Xi −
Xj∥} ∈ R

n×n

(5) MGC statistic {MGCn(U
t,X) : t = 0, 1, 2, . . . , 10}

(6) DMGC statistic MGC∗
n({U

t},X)

(7) Compute p-value

Eigendecomposition

Smoothed maximum statistic

Permutation Test

Figure 4.1: Flowchart for network dependence testing via diffusion maps and

MGC (DMGC).

is flexible in the choice of correlation measures: by following the exact same

steps except replacing MGC by DCORR, HHG, or another correlation measure

in Step (5), one can compute the diffusion DCORR or diffusion HHG statistic.

The details for each step are described in Algorithm 1. In selecting t∗ among

multiscale statistics, the motivation of the smoothing in Step (6) is the fol-

lowing: suppose that edge connectivity is dependent with the attributes and
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there exists an optimal t for detecting the relationship, then the test statistic

at adjacent time steps should also exhibit strong signal, because the level of

connectivity considering all paths of length t between each pair is most similar

to those of length t − 1 or t + 1. Under independence, a large test statistic at

certain t can occur by chance and cause a direct maximum to have a low test-

ing power, while the smoothed maximum effectively filters out any noisy and

isolated large test statistic. In practice, it suffices to consider t ∈ [0, 1, . . . , 10]

or even smaller upper bound like 3 or 5. When smoothed maximum does not

exist, we set t = 3 as the default choice.

The permutation test in Step (7) is a common nonparametric procedure

used for real data testing in almost all dependency measures (Székely et al.,

2007; Heller et al., 2013; Gretton and Gyorfi, 2010; Shen et al., 2018a), which

is valid as long as the observations are exchangeable under the null (Rizzo

and Székely, 2016). Because the null distribution of any correlation measure

depends on the marginal distribution and is difficult to obtain, the permuta-

tion test breaks the dependence of the given data while keeping the marginal

distributions, and is thus able to empirically approximate the null distribution.
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4.3.2 Theoretical properties under exchangeable

graph

To derive the theoretical consistency of our methodology, the following dis-

tributional assumptions on the distribution of the graph and the nodal at-

tributes are required:

(C1) Graph G is an induced subgraph of an infinitely exchangeable graph,

i.e., the adjacency matrix A satisfies

A(i, j)
d
= A(σ(i), σ(j)) (4.8)

for any i, j = 1, 2, . . . , n and any permutation σ of size n ∈ N. The notation
d
=

stands for equality in distribution.

(C2) Each nodal attribute Xi is generated independently and identically

from FX with finite first moment.

(C3) The matrix A is constrained to a domain Ω, such that the diffusion map

embedding from A ∈ Ω to Ut is injective for some t.

Condition (C1) states that G is a collection of independently sampled nodes

and their induced subgraph (Orbanz and Roy, 2015; Tang et al., 2017; Orbanz,

2017); this is a distributional assumption satisfied by many popular statistical

networks models. Based on condition (C1), the diffusion map Ut at each t can
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furnish exchangeable and asymptotic conditional i.i.d. embedding for the set

of nodes V(G), under which the permutation test is valid.

Theorem 1. Assume G satisfies (C1). Then at each fixed t, the diffusion maps

Ut = {U t
i , i = 1, 2, . . . , n} embedded from the adjacency matrix A as Equa-

tion 4.3 are exchangeable. As a result, there exists an underlying variable θt

distributed as the limiting empirical distribution of Ut, such that U t
i |θ

t are

i.i.d. for i = 1, 2, . . . , n as n→∞.

This exchangeability and asymptotically conditionally i.i.d. property of the

diffusion map leads to the consistency of DMGC for testing independence be-

tween Ut and X. Moreover, due to condition (C1), the permutation test is ap-

plicable to any Ut from an exchangeable sequence. In that sense, condition

(C2) is merely a regularity condition; while the distribution of U t
i always satis-

fies the finite-moment assumption (shown in the Supplementary Material for

proof of Theorem 2). The condition (C1) and (C2) lead to the consistency of the

intermediate test statistic between the diffusion map at each t and the nodal

attribute.

Theorem 2. Assume the graph G and the nodal attributes satisfy condition

(C1) and (C2). Then as n → ∞, the MGC statistic between the diffusion map Ut

at any fixed t and the nodal attributes X satisfies:

MGCn(U
t,X)→ c ≥ 0, (4.9)

78



CHAPTER 4. MULTIVARIATE NETWORK DEPENDENCE TESTING

where equality holds if and only if FU tX = FU tFX , where each observation in Ut

is identically distributed as FU t .

The consistency of DMGC follows in the next theorem, which is extended to

consistency between edge connectivity and nodal attributes if condition (C3) is

satisfied. Condition (C3) connects the dependence test between X and Ut to

the test between X and A in Equation 4.1.

Theorem 3. Under the same assumption in Theorem 2, it holds that

MGC
∗
n({U

t},X)→ c ≥ 0, (4.10)

with equality holds if and only if FU tX = FU tFX for all t ∈ [0, 10]. Therefore,

DMGC is a valid and consistent statistic for testing independence between the

diffusion maps {Ut} and nodal attributes X.

If condition (C3) holds, then MGC∗
n({U

t},X) is also valid and consistent for

testing independence between the adjacency matrix and nodal attributes, i.e., it

converges to 0 if and only if the nodal attribute X is independent of the node

connectivity A.

Interpreted in another way, DMGC is always valid to use under Condition

(C1) and (C2), but may not always detect the dependency between the edge

connectivity and nodal attributes if the dependency signal is lost during the

diffusion map embedding procedure. Therefore, condition (C3) on injective
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transformation is a sufficient condition to preserve the dependency signal for

diffusion maps.

Corollary 1. Theorem 3 still holds, when any of the following changes are ap-

plied to the testing procedure described in Section 4.3.1:

(1) The MGC statistic in step 2 is replaced by sample DCORR or HHG;

(2) When A is restricted to be symmetric, binary, and of finite rank q < n,

then condition (C3) holds at t = 1.

Namely, point (1) suggests that under diffusion maps, consistent distance-

based measures such as DCORR and HHG can also be used instead of MGC; this

enables us to compare DMGC to diffusion DCORR and HHG in the simulations.

And point (2) offers an example of random matrix A where the diffusion map

is guaranteed injective within the domain.

4.3.3 Consistency under random dot product graph

In this section, we consider the random dot product graph model (RDPG),

which is widely used in network modeling and ideal for illustration. A graph

generated from RDPG model has an edge probability as a dot product of i.i.d.

node-wise latent position: assuming each node has a latent position Wi
i.i.d.
∼ FW

for i = 1, 2, . . . , n, the edge probability pr(A(i, j) = 1 | Wi,Wj) is determined by
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the dot product of the latent positions, i.e.,

A(i, j) | Wi,Wj
i.i.d.
∼ Bern

(

⟨Wi,Wj⟩
)

, i, j = 1, 2, . . . , n and i < j, (4.11)

under the restriction that all Wi’s are non-negative vectors and the dot product

must be normalized within [0, 1].

An RDPG is an exchangeable graph model that satisfies condition (C1).

In addition, RDPG fully specifies all exchangeable graph models that are un-

weighted and symmetric, whose probability generating matrix P(i, j) = ⟨Wi,Wj⟩

is positive semi-definite.

Proposition 1 (Sussman et al. (2014)). An exchangeable random graph has a

finite rank q and positive semi-definite link matrix P, if and only if the random

graph is distributed according to a random dot product graph with i.i.d. latent

vectors {Wi ∈ R
q, i = 1, . . . , n}.

Indeed, many other popular network modelings are special cases of RDPG,

including the stochastic block model, its degree-corrected version, the latent

factor model from Fosdick and Hoff (2015), etc.

Proposition 2 (Rohe et al. (2011)). Let L be the normalized graph Lapla-

cian for an adjacency matrix A generated by an RDPG with latent positions

of which construct the matrix of W = [W1|W2| . . . |Wn] ∈ R
q×n. Let Ut=1 =

[U t=1
1 |U

t=1
2 | . . . |U

t=1
n ] ∈ R

q×n. Then there exists a fixed diagonal matrix M and
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an orthonormal rotational matrix Q ∈ R
q×q such that ∥Ut=1 − QMW∥ → 0

almost surely.

Therefore, under RDPG, the diffusion map Ut=1 asymptotically equals the

latent position W up to a linear transformation. As the latent position under

RDPG can be asymptotically recovered by diffusion maps, DMGC is consistent

against testing general dependency between A and X under RDPG.

Corollary 2. Under an induced subgraph from exchangeable graph with posi-

tive semi-definite link function, the DMGC statistic is consistent for testing inde-

pendence between edge connectivity and nodal attributes.

4.4 Numerical Studies

4.4.1 Stochastic block model

Throughout the numerical studies, we compare DMGC to the likelihood ra-

tio test proposed by Fosdick and Hoff (FH) (Fosdick and Hoff, 2015), single

embedding tests (using the adjacency spectral embedding (AM) and the latent

factors (LF) with distance-based tests like (DCORR and HHG), as well as dif-

fusion DCORR and diffusion HHG. The main approach of DMGC is denoted as

MGC◦DM (or DMGC for brevity), and the benchmarks are FH, MGC/DCORR/HHG◦

AM/LF/DM.
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For each simulation, we generate a sample graph and the corresponding at-

tributes, compute the correlation measure on the respective embedding, carry

out the permutation test with r = 500 random samples for each method, and

reject the null if the resulting p-value is less than α = 0.05. The testing power

of each method equals the percentage of correct rejection out of m = 100 Monte-

Carlo replicates, and a higher power implies a better method against the given

dependency structure. The first simulation samples graphs from the stochastic

block model (SBM) (Airoldi et al., 2008; Hanneke and Xing, 2009; Rohe et al.,

2011; Xin et al., 2017). The SBM assumes that each of n nodes in G must belong

to one of K ∈ N blocks, and determines the edge probability based on the block-

membership of the connecting nodes: For i = 1, . . . , n, assume that a latent

variable of Zi
i.i.d.
∼ Multinomial

(

π1, π2, ..., πK

)

denotes the block-membership of

each node, and bkl ∈ {0, 1} implies the edge probability between any two nodes

of class k and l respectively; then the upper triangular entries of A are inde-

pendently and identically distributed conditioned on Z = {Zi : i = 1, 2, . . . , n}:

A(i, j) | Zi, Zj
i.i.d.
∼ Bernoulli

(

K
∑

k,l=1

bklI
(

Zi = k, Zj = l
))

; i < j, i, j = 1, 2, . . . , n,

(4.12)

where I(·) is the indicator function.

Our desire is to detect whether the adjacency structure is dependent on
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nodal attributes, which here corresponds to the block assignment. Thus we

consider testing dependency between the graph having the adjacency matrix

A and a noisy block-membership X, which are correlated through true block-

membership Z:

Zi
i.i.d.
∼ Multinom(1/3, 1/3, 1/3),

A(i, j) | Zi, Zj ∼ Bernoulli (0.5I(|Zi − Zj| = 0) + 0.2I(|Zi − Zj| = 1) + 0.4I(|Zi − Zj| = 2)) ,

Xi | Zi ∼Multinom((1 + I(Zi = 1))/4, (1 + I(Zi = 2))/4, (1 + I(Zi = 3))/4),

(4.13)

and we set the sample size as n = 100. Equation 4.13 implies that the within-

block edge probability is always 0.5; while the between-block edge probability

is 0.2 when the block labels differ by 1, and 0.4 when the block labels differ

by 2. A visualization of the sample data is shown in Figure 4.7(a). Note that

nodal attributes X from the above model are the noisy version of the true block-

membership by: for each i, Xi = Zi with probability 0.5, and equally likely to

take other values in Ω, i.e., the true block-membership are observed half of

the time. Notably, although within-block edge probability is the largest, the

between-block edge probability is not linearly related to the distance of the

block-membership, i.e., the edge probability between a node of block 1 and a

node of block 3 is higher than the edge probability between block 1 and block 2.

Therefore, this three-block SBM generates a noisy and nonlinear dependency
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MGC dCorr HHG FH

 LF

AM

DM

0.11 0.10 0.11 0.08

0.19 0.30 0.37  NA

0.54 0.23 0.41  NA

Empirical Power (n = 100)

0 0.2 0.4 0.6

Test statistics

M
e
tr

ic
s

Figure 4.2: The power heatmap under the three-block SBM (Equation 4.13)

demonstrates that among all possible combinations of test statistics with dis-

tance metrics, DMGC (top left entry) provides the best power.

structure between A and X. Here DMGC is expected to work better than all the

other combinations mainly because MGC captures high-dimensional nonlinear

dependencies better than DCORR, HHG, and the standard likelihood ratio test.

Indeed, Figure 4.2 shows that DMGC prevails in the testing powers among all

the methods.
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4.4.2 SBM with linear and nonlinear dependen-

cies

One of the many advantages in SBM is that we can easily create nonlinear

dependency by manipulating a parameter. To better understand the advantage

of our main approach (MGC ◦ DM) under different scenarios, here we use the

same three-block SBM and its block-membership {Zi : i = 1, 2, . . . , n = 100} as

in the previous section, except that the edge probability is now controlled by

β ∈ (0, 1) as follows for all i, j = 1, . . . , n:

A(i, j) | Zi, Zj ∼ Bernoulli (0.5I(|Zi − Zj| = 0) + 0.2I(|Zi − Zj| = 1) + βI(|Zi − Zj| = 2)) .

(4.14)

The noisy block-membership X is generated in the same way as before. When

β = 0.2, the three-block SBM is the same as a two-block SBM, where within-

block edge probability equals 0.5 while the between-block edge probability is

always 0.2, i.e., it represents a linear association between the adjacency matrix

and the block-membership; when β < 0.2, the association is still monotonic;

when β > 0.2 and gets further away, the relationship becomes strongly nonlin-

ear. Figure 4.3 plots the power against β for all diffusion maps-based methods.

All of diffusion MGC, diffusion DCORR, and diffusion HHG perform almost the
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Figure 4.3: The power curve with respect to increasing β under three-block

SBM (Equation 4.14). When β ≤ 0.2, the dependency between the adjacency

matrix and the block structure is linear or monotonic; when β > 0.2, the depen-

dency becomes more and more nonlinear and non-monotonic as β gets further

away from 0.2. Among all methods utilizing diffusion maps, MGC is evidently

the best performing one when β ≥ 0.25, implying that it better captures non-

linear dependencies. FH does not perform well for any value of β.

same at linear dependency (i.e, β ≤ 0.2), with diffusion MGC (DMGC) being sig-

nificantly more powerful as the dependency shifts to strong nonlinearity and

even increasing as β increases. This observation demonstrates empirically that

MGC better captures nonlinear dependencies in network testing for these set-

tings.

4.4.3 Degree-corrected SBM

In this section we compare different embeddings under the degree-corrected

stochastic block model (DC-SBM), which better reflects many real-world net-

works (Karrer and Newman, 2011). The DC-SBM is an extension of SBM by

introducing an additional random variable ci to control the degree of each node.
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We set n = 200 with two blocks, select the binary block-membership Zi uni-

formly in Ω = {0, 1}, and generate the edge probability by

A(i, j) | Zi, Zj, Ci, Cj ∼ Bernoulli (0.2CiCj · I(|Zi − Zj| = 0) + 0.05CiCj · I(|Zi − Zj| = 1)) ,

(4.15)

where Ci
i.i.d.
∼ Uniform(1− τ, 1 + τ) for i = 1, . . . , n, and τ ∈ [0, 1] is a parameter

to control the amount of variability in the edge degree, e.g., as τ increases, the

model becomes more complex as the variability of the edge probability becomes

larger; when τ = 0, the above model reduces to a two-block SBM without any

variability induced by {Ci : i = 1, 2, . . . , n}.

0.0 0.2 0.4 0.6 0.8 1.0

τ

P
o
w

e
r

0
0
.2

5
0
.5

0
.7

5
1

MGC ⋅ DM

MGC ⋅ AM

MGC ⋅ LF
FH Test

Figure 4.4: The power curve with respect to increasing τ under DC-SBM (Equa-

tion 5.3). The edge variability increases as τ does, the testing power of diffusion

maps is relatively stable against increasing variability; the adjacency spectral

embedding is slightly worse, while the latent positions fail to detect the depen-

dency across all levels of τ .

We again generate the nodal attributes X as a noisy version of the true

block-membership via Bernoulli distribution, i.e., for each i, Xi = Zi with prob-
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ability 0.6, and equals the wrong label with probability 0.4. Figure 4.4 compares

different embeddings with MGC, which shows that MGC◦ DM (DMGC) and MGC◦

AM have better testing performance over the other embedding methods for all

values of τ .

4.4.4 RDPG simulations

Here we present a variety of RDPG simulations by generating the latent

variables via the 20 relationships in Shen et al. (2018a) with different levels of

noise, consisting of various linear, monotonic and non-monotonic (and therefore

nonlinear) relationships. The details of simulation schemes are in the Supple-

mentary Material while a general outline for data generating process is:

(

W̃i X̃i

)

i.i.d.
∼ FW̃ X̃ i = 1, 2, . . . , n,

A(i, j) | Wi,Wj ∼ Bernoulli (⟨Wi,Wj⟩) , i < j = 1, 2, . . . , n, (4.16)

where Wi = (W̃i − min({W̃j : j = 1, 2, . . . , n}))/(max({W̃j : j = 1, 2, . . . , n}) −

min({W̃j : j = 1, 2, . . . , n}) for i = 1, 2, . . . , n, so that all the latent variable range

from 0 to 1. We apply the same scaling from X̃i to Xi for visual consistency.

Thus the latent positions and nodal attributes are correlated via a joint distri-

bution of FW̃ X̃ , which includes linear, quadratic, circle, and more. Figure 4.5

shows empirical power obtained from m = 100 independent replicates when
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Figure 4.5: Power comparison for 20 different RDPGs with n = 50 nodes

per m = 100 independent replicates. It shows that when latent positions Wi

and nodal attributes Xi are dependent via a close-to-linear relationship (up-

per panel), all the distance-based tests achieve similar power while FH test is

slightly worse due to its model-based nature. When non-linearity between Wi

and Xi becomes evident like circle or ellipse (lower panel), DCORR and FH tests

are far behind than MGC and HHG.

the number of nodes is n = 50. A lack of power in the FH test is evident even

though data generative model in Equation 4.16 agrees with Fosdick and Hoff

(2015)’s.

All the distance-based methods work fairly well, with diffusion MGC and

diffusion HHG being the best performers. Note that the last scenario is an

independent relationship and all tests achieve a power approximately at 0.05,

implying that they are all valid tests; there are also a few dependencies of very

low power due to the complexity of the relationship (sine, spiral, square, etc.),
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but their powers all converge to 1 as sample size n increases.

4.5 DMGC Graph Embedding

This section demonstrates that in deriving DMGC, we preserve dependency

structure between A and X without cross-validation or over-fitting by virtue of

effectively estimating parameters of t and q.

As a reminder, the dimension choice q is selected by the second elbow of the

absolute eigenvalue scree plot by the profile likelihood method from Zhu and

Ghodsi (2006), which is a widely-used automatic algorithm for selecting the

number of important features whenever eigenvalues or singular values are in-

volved. The choice of t∗ is based on a smoothed maximum, i.e., we take the max-

imum correlation only when consecutive MGC statistics are also large. Viewed

in another way, DMGC selects the optimal diffusion map that maximizes the

MGC statistic. Thus any testing advantage shall come down to whether it is

able to optimize the embedding without over-fitting, and we investigate how

well our procedure is able to preserve the dependency compared to using a

single embedding choice.

Figure 4.6 presents the diffusion distances at different t and q for the three-

block stochastic block model in Equation 4.13. Although the resulting embed-

ding is sensitive to both t and q in Figure 4.6 (a)–(d), at optimal t∗ = 2 it is
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(a)
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<1 1.5 2

(b)

t=2   q=10

0 0.35 0.70

(c)

t=10   q=10

0 0.17 0.34

(d)

t=2   q=1

0 0.17 0.34

(e)

t=2   q=3

0 0.31 0.62

(f)

t=2   q=45

0 0.36 0.72

(g)

t=2   q=70

0 0.36 0.72

(h)

Figure 4.6: Generate a three-block adjacency matrix A by Equation 4.13 at

n = 100, and compute the diffusion distances at each combination of (t, q). A

visualization of adjacency matrix is provided in Figure 4.7 (a); upon fixing a

good t, many choices of q preserve the block structure. Note that the first three

elbows of eigenvalues are (1, 45, 70) and t∗ = 2, so panel (g) is the optimal diffu-

sion map by DMGC.

A

0 0.5 1

(a)

q = 3

0 0.72 1.44

(b)

q = 10

0 1.05 2.10

(c)

q = 99

0 1.56 3.12

(d)

Figure 4.7: Panel (a) shows the adjacency matrix of three-block adjacency ma-

trix A generated by Equation 4.13. Panel (b)–(d) show the Euclidean distance

matrix of ASE at increasing q, using the same adjacency matrix of Panel (a).

Only ASE at q = 3, namely at the correct dimension, is able to display a clear

block structure. Note that the first three elbows are (1, 45, 70), so ASE has a

more obscure block structure when the dimension is chosen via the scree plot,

comparing to the DMGC embedding in Figure 4.6 (g).
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robust against q, e.g., Figure 4.6 (e)–(h) show that for a wide range of q the

block structure is preserved in the resulting diffusion maps including the sec-

ond elbow, so the DMGC embedding preserves the dependency structure well.

On the other hand Figure 4.7 shows that a choice of t without maximizing

the dependency can be very sensitive to the choice of q, and may fail to preserve

the dependency structure. Figure 4.7 shows the Euclidean distance of the ad-

jacency spectral embedding (ASE) (Sussman et al., 2012) applied to the same

adjacency matrix. For ASE, the correct dimensional choice equals the number

of blocks, i.e., the distance matrix at q = 3 shows a clear block structure (Fig-

ure 4.7 (b)). However, a slight misspecification of q can cause the embedding to

have a more obscure block structure, and the elbow method often fails to find

the correct q for ASE.

Next we compare testing performance of the DMGC embedding Ut∗ versus

all other diffusion maps Ut, e.g., both ASE and graph Laplacian embedding are

equivalent to Ut=1 up-to a linear transformation. Figure 4.8 shows the propor-

tion of choosing t as the optimal among {0, 1, 2, . . . , 10} and the testing power for

each t and also t∗. Figure 4.8 (a) illustrates that under the SBM dependency

structure in Equation 4.14 with β = 0.50, diffusion MGC is mostly likely to

choose t∗ = 2 as the optimal time-step, and the testing power is almost equiva-

lent to the best power among all t ∈ {0, 1, 2, . . . , 10}. The same phenomena hold

for diffusion DCORR and diffusion HHG, and Figure 4.8 (b) illustrates another
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Figure 4.8: Testing power comparison between DMGC and MGC on each

diffusion map. Using m = 100 replicates, the solid red line plots the

power of MGC∗
n({U

t},X); the dash line plots the power of MGCn(U
t,X) for

t ∈ {0, 1, 2, . . . , 10}; the bar plot shows the proportion that diffusion MGC se-

lects each t ∈ {0, 1, 2, . . . , 10} as the optimal t∗. Diffusion HHG and diffu-

sion DCORR are also added by different colors. For each method, the diffusion

statistic is able to achieve an excellent power that is almost equivalent to the

best possible power among all t, implying that the methodology is able to iden-

tify the graph embedding that best preserves the dependency structure.

RDPG simulation example by Equation 4.16.

Indeed, by utilizing a collection of {Ut} and identifying the strongest de-

pendence signal, the smoothed maximum statistic has always achieved satis-
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factory performance throughout the experiments in both the testing power and

the resulting embedding, which does not rely on cross validation nor on multi-

ple testing. On the other hand, most of the existing network methodology relies

on a single embedding choice, therefore either falls short in practice due to a

poor embedding choice or requires computationally intensive cross validation

and further corrections to avoid potential over-fitting.

4.6 Real Data Application

As an illustrative example, we apply our distance-based tests on the neu-

ronal network of hermaphrodite Caenorhabditis elegans (C.elegans) composed

of 279 nonpharyngeal neurons connected each other through chemical and

electrical synapses (Varshney et al., 2011). Each node represents an individ-

ual neuron and edge weights indicate the number of synapses between them.

Among a few known attributes including types of neurotransmitter and role of

neurons, we use one dimensional, continuous position of each neuron as a nodal

attribute X. Figure 4.9 shows that neurons at low location and high location

are connected to other neurons distributed throughout the region; while those

at the relatively middle of location are connected to the neurons only within

the narrower area. The independence test between synapse connectivity and

each neuron’s position can be connected to growing studying on relationship
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between physical arrangement and functional connectivity in C.elegans (Chen

et al., 2006; Kaiser and Hilgetag, 2006) or in others’ (Cherniak et al., 2004;

Alexander-Bloch et al., 2012). For the purpose of analysis we binarize and

symmetrize both chemical and electrical synapses and add them together to

simplify the adjacency matrix that represents overall synapse connectivity of

C.elegans. We apply MGC, DCORR, HHG, and FH to testing independence be-

tween connectivity through synapses and neuron’s position. All of these tests

result very low p-values less than 0.002. Dimension of local distance corre-

C.elegans synapse network and layout

Physical location
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Figure 4.9: Each dot represents the existence of synapses from each neuron at

y-axis indexed from low location to high location to other neuron on x-axis at

certain position among 68 different locations. Color of dots represents synapse

type, either chemical or electrical, and size of dots is proportional to the number

of synapse but truncated at 10.

lation map (DCORRkl(U,X)) depends on the number of unique neighborhood

scale with respect to distance in diffusion maps from graph (synapse connec-
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Figure 4.10: Local correlation maps of 279×68 matrices of which row and

column specify the neighborhood scale in synapse’ connectivity and position

respectively. Figure (c) presents the correlation map at optimal time t∗ = 5
where local optimality is achieved in local scale in position, which also implies

that MGCn(Ut=4,X), MGCn(Ut=5,X), and MGCn(Ut=6,X) result three maximum

statistics among those of t = 0, 1, 2, . . . , 10. Panel (e)-(h) show standardized

Euclidean pairwise distance within {U t
i } scaled by its maximum according to

Euclidean distance of {Xi} for t = 1, 3, 5, 10, among of which correlation between

two distances is most evident at t∗ = 5 with highest correlation coefficient ρ.

tivity) and nodal attribute (position); here we have κ = 279 rows and γ = 68

columns each. Figure 4.10 presents local distance correlation map with respect

to local distance of synapse connectivity (C̃k(i, j)) and local distance of position

(D̃l(i, j)) across diffusion times. These plots show that the optimal local corre-

lation is detected at non-global neighborhood choice in position, i.e. l∗ ̸= 68 (the

global maximum), which provides evidence of non-linear dependence between

connectivity and position; in addition, the plots show that when t = 5, this non-
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global optimality manifests most, resulting DMGC statistic at optimal t∗ = 5

where the optimal neighborhood choice is (k∗, l∗) = (269, 42). Figure 4.10 (e)-(d)

illustrate the rough relationship between Euclidean distance in diffusion maps

and nodal attributes at different diffusion time (t = 1, 3, 5, 10). These present

that correlations between two distances are most clear at t∗ = 5. These findings

support the results of DMGC along with the choice of optimal scales.

4.7 Discussion

Our contribution in this chapter is three-fold. First, we propose a new

method for testing dependency on network data, which combines various state-

of-the-art techniques from different domains into a valid, consistent, and inter-

pretable test procedure that is also numerically superior. Second, the method-

ology in this chapter also defines a good correlation measure on nodes, thus

enabling many popular statistical techniques on graph structure such as fea-

ture screening and outlier detection. Third, the utilization of diffusion maps

not only warrants the integration with various types of distance-based corre-

lations, but also makes the testing method robust against parameter misspec-

ification. In these ways our procedure overcomes an important practical issue

that often plagues existing approaches, and can provide an extremely useful

tool for later inference tasks like classification and regression.

98



CHAPTER 4. MULTIVARIATE NETWORK DEPENDENCE TESTING

Nevertheless there are several follow-ups that would further advance the

work. First of all, theoretical background in choosing smoothed optimal statis-

tic is lacking; assuming t′ is the true optimal diffusion time, it will be essential

to find more systematic and reliable way to estimate t′ and quantify variability

in the estimated optimal t∗, based only on the testing statistics. This would

possibly reduce computational burden instead of going over all possible diffu-

sion times, e.g. t = 0, 1, 2, . . . , 10. Moreover, even though we briefly discussed

one example in Section 4.5, it is still obscure what is the impact of dimensional

choice of q on diffusion map embedding and impact of combinational choice of

(q, t) for diffusion map on testing. Therefore it is a natural next step to provide

more efficient and rigorous grounds for choosing tuning parameters for multi-

scale test statistics. Finally, since one can apply diffusion to any graph, and

one can think of any affinity (or kernel) matrix as a graph, this method can

straightforwardly be applied to more general testing scenarios, which will be

of interest for future work.
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Chapter 5

Identifying Causally Influential

Subjects on a Social Network

Researchers across a wide array of disciplines are interested in identifying

the most influential node(s) in a network. We argue that, although influence is

often defined only implicitly in these literatures, the operative notion is inher-

ently causal: influential nodes are those on which we would intervene in order

to achieve the greatest effect across the entire network. We review existing

measures of influence, which usually rely on features of the network structure

or on simple diffusion models for the flow of information/outcomes over net-

work nodes. We illustrate that popular measures of influence fail to capture

true causal influence in general, and propose a class of new measures of nodal

influence based on the strength of a causal effect of an intervention on cer-
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tain characteristics of the node(s) on the outcomes observed across the entire

network. We illustrate estimation of influence using data on Supreme Court

justices’ decisions.

This is a joint work in collaboration with Elizabeth Ogburn and Ilya Sh-

pitser.

5.1 Introduction

Networks are collections of nodes, which represent entities such as peo-

ple, institutions, genes, or brain regions; ties between pairs of nodes represent

various forms of connections between them (Newman, 2018). For example, in

a social network the ties may correspond to friendship, family, coworker, or

neighbor relationships. The study of networks is booming in biology (Simko

and Csermely, 2013; Wang et al., 2014), economics (Banerjee et al., 2013),

statistics (Shalizi and Thomas, 2011; Smith et al., 2018), psychology (Robin-

augh et al., 2016), physics (Albert and Barabási, 2002; Castellano et al., 2009),

computer science (Kempe et al., 2003; Chen et al., 2009, 2010), and beyond.

We are concerned with a commonly studied problem across all of these disci-

plines: identifying the most important or influential node(s) in a given net-

work. This problem has implications for predicting outcomes or processes in

a network, for designing interventions on a network, and for understanding
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the dynamics underlying a network. Despite the vast literature on identify-

ing important or influential nodes (Kempe et al., 2003; Borgatti, 2005; Fowler

et al., 2007; Kitsak et al., 2010; Aral and Walker, 2012), few researchers have

clearly defined “importance” or “influence,” and those that have generally re-

sort to model-dependent definitions that may not generalize beyond a particu-

lar mathematical model of network dynamics. We claim that in most, but not

all, contexts, the desiderata for important or influential nodes correspond to a

causal definition of influence: on which nodes should we intervene in order to

have the greatest impact across the entire network?

Although the two terms are often used interchangeably in the existing lit-

erature (e.g. Lü et al. (2016)), we will distinguish between the overarching con-

cept of importance, which may refer to predictive/descriptive or causal notions,

and influence, which is an inherently causal notion representing one kind of im-

portance. We will refer to notions of importance that do not correspond to influ-

ence as “descriptive importance” As examples of the latter, consider PageRank,

which was originally designed to assess the relative importance of websites by

counting the number of links to the websites across the web (Page et al., 1999),

and h-index, which quantifies the importance of researchers by the number of

citations their papers have received (Moed, 2006). PageRank is meant to cap-

ture the usefulness or desirability of a website and h-index the productivity

and impact of a researcher’s body of work. These are indeed purely descrip-
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tive versions of importance (though of course a popular website or a productive

researcher could also wield influence).

Measures of descriptive importance can be used to predict dynamics in a

network, but they cannot generally be used to understand the mechanisms

by which those dynamics operate or to predict the impact of interventions

on the network; those endeavors require causal concepts, which are often of

more interest to researchers. For example, researchers have attempted to iden-

tify influential nodes in social networks in order to learn how targeted adver-

tising affects overall sales (Trusov et al., 2009; Katona et al., 2011), to stop

the spread of disease through targeted vaccination efforts (Perisic and Bauch,

2009; Bauch and Galvani, 2013), and to maximize the diffusion of information

across an entire network (Banerjee et al., 2013). Yet even when the goal is to

find causally influential nodes, causal methods have been used only exceed-

ingly rarely (Smith et al., 2018). Instead, researchers most often identify the

most central nodes in a network, or posit a model for diffusion of information,

behavior, or other outcomes over the network and define influence in terms of

the parameters of the diffusion model. This discrepancy between measures of

influence and the causal nature of the underlying research question may help

explain the failure of some strategies for disseminating information or chang-

ing behavior via influential nodes to perform as expected (Paluck et al., 2016;

Chin et al., 2018).

104



CHAPTER 5. IDENTIFYING INFLUENTIAL SUBJECTS

In what follows we focus on the identification of influential nodes in social

networks, but the concepts we discuss can extend naturally to other kinds of

networks (biological, institutional, etc.). In Section 5.2, we review the existing

literature. In Section 5.3 we use concepts from causal inference to propose

a new class of definitions of influence. In Section 5.4, we compare popular

measures of influence to ours. Section 5.5 concludes.

5.2 Existing Measures of Influence

5.2.1 Preliminaries

We make the routine assumption that influence operates (only) through net-

work ties. A network tie, represented by an edge, connects pairs of subjects and

implies some kind of relationship between them. Each subject, or node, can

exert influence on its peers and can also be susceptible to its adjacent peers

influence via edges. Depending on the context, edges can transmit informa-

tion, political power, infectious disease, or gossip, or can induce collaboration

or shared behavior. Ties can be directed, representing one-way relationships,

or undirected, representing symmetric relationships; they can be binary, rep-

resenting the presence or absence of a tie, or weighted, representing ties of

different strengths. In what follows we focus on the simplest and most com-
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mon setting of binary edges.

The structure of an n-node network is encoded in the n×n adjacency matrix

A, where Aij = 1 if there is an edge from node i to node j and Aij = 0 otherwise.

If the network is undirected, Aij = Aji; while if an edge from node i to node j

does not necessarily imply an edge from node j to node i, G is directed. Because

some relationships may be asymmetric due to power differences or social dy-

namics, e.g. relationships between boss/employee, leader/follower, teacher/student,

etc., we consider directed networks in this chapter. We denote a network by G

and denote its set of nodes as V(G).

Much of the existing literature on influential nodes relies entirely on net-

work structure as given by the adjacency matrix in order to define influence.

Another set of popular approaches rely on models for the diffusion process of

information or behavior over the network, which clearly plays an important

role in addition to network structure. For example, an infectious disease may

spread differently from gossip over the same network. Although node influence

depends both on network structure and the diffusion process, and although

most of the existing literature defines influence in terms of one or both of

these features of the network, neither of these concepts explicitly defines in-

fluence (Smith et al., 2018).
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5.2.2 Centrality measures of influence

Node importance has been widely measured using centrality with the im-

plicit or explicit goal of measuring the influence of one node on the whole net-

work (Kiss and Bichler, 2008; Bakshy et al., 2011; Chami et al., 2014).

Degree centrality is the most popular measure of node importance and is

based only on the number of ties per node (Freeman, 1978). In a directed net-

work, influence is usually measured by out-degree, or the number of edges em-

anating from each node to other nodes. Two other popular centrality measures

are betweenness and closeness centrality. The betweenness of node v is defined

as the sum of the proportions of the shortest paths between all pairs of nodes

pass through the node v, and closeness of node v under a directed network

is proportional to the inverse of the average length of the geodesic distance

between the node v to all other nodes in G (Freeman, 1978). Finally, eigenvec-

tor centrality is defined through the eigenvector associated with the greatest

eigenvalue of the adjacency matrix (Bonacich, 1987), and the eigenvector cen-

trality of one node is proportional to those of its adjacent nodes. Many variants

of eigenvector centrality have been proposed such as Katz centrality (Katz,

1953), PageRank (Page et al., 1999), and principal component centrality (Ilyas

and Radha, 2011).

Using centrality measures as proxies for influence implicitly relies on spe-

cific diffusion models for the flow of information through edges. Borgatti (2005)
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showed that different centrality measures will capture influence under differ-

ent diffusion models. For example, both betweenness and closeness centrality

presume that information travels between two nodes only through the shortest

available path. If node v1 exerts influence on v2 via a higher frequency of in-

formation leaving v1 and arriving at v2, then betweenness centrality measures

influence. But if, on the other hand, what matters is the time until the first

arrival of information from v1 to v2 then closeness centrality is the operative

measure of influence.

However, the implicit assumptions about the diffusion process (e.g. travel-

ing only through the shortest paths) and the targeted outcomes (e.g. frequency

of stopping while traveling or first arrival times) have rarely been specified or

acknowledged in research that uses centrality measures to capture influence.

Furthermore, when the relationships between nodes do not correspond to a

small class of diffusion models, what researchers describe as influence is often

far removed from the explicit notion of the centrality except in a very few cases

(we will describe one such case in Section 5.4).

5.2.3 Influence defined through diffusion processes

Another popular approach to measuring influence in networks is to specify

a particular diffusion process, the threshold model (Granovetter, 1978) or the

cascade model (Goldenberg et al., 2001), and to identify influential nodes by
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analyzing the process for a specific network of interest, usually via simulation

(Kempe et al., 2003; Chen et al., 2010; Narayanam and Narahari, 2011). The

consequent results are heavily dependent on the presumed diffusion models as

well as on a correctly specified network structure. This method has been used

to analyze infectious disease epidemics using standard epidemic models like

the susceptible-infected-susceptible model (SIS model) or susceptible-infected-

recovered model (SIR model) (Bailey et al., 1975) (e.g. Saito et al. (2012); Sikic

et al. (2013)). The literature is full of other examples in which methods for

determining influence associated with nodes are valid only under a particular

diffusion process (e.g. Aral and Walker (2012); Beaman et al. (2015)).

Relatively recently, several researchers have defined new centrality mea-

sures based on different diffusion models in order to capture influence (Sikic

et al., 2013; Banerjee et al., 2014; Saito et al., 2016). As an example, Banerjee

et al. (2013) defined a diffusion centrality which requires stringent assump-

tions about the diffusion process–information flows from one node to its adja-

cent nodes with a fixed probability independently at each period of time, and

this continues for a specified period of time. Diffusion centrality of node i can

be interpreted as the expected number of times that information initiated from

the node i reaches any other nodes during the specified period. Here, a tar-

geted outcome is explicitly specified, but this interpretation is only valid when

the assumed diffusion model is true.
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When diffusion models are not correctly specified, influence measures based

on those models fail to accurately predict the effect of interventions on the

network. Therefore, influence measures depending on diffusion processes are

not reliable estimands for influence unless researchers have explicit knowledge

of how outcomes travel across network ties.

5.2.4 Influence in statistical mechanics

Statistical mechanics provides a probabilistic framework to understand macro-

scopic phenomena as a result of behaviors and interactions among microscopic

constituents (Chandler, 1987; Bialek et al., 2012), and especially to understand

thermodynamics (Gibbs, 2014). Many researchers have proposed statistical

mechanics approaches to identifying influential nodes, usually based on at-

tempts to describe social dynamics using models developed for thermodynam-

ics (Bahr and Passerini, 1998; Albert and Barabási, 2002; Castellano et al.,

2009; Bialek et al., 2012; Lucas, 2013), and especially for ferromagnetic inter-

actions, as we describe below.

To illustrate, social dynamics have often been compared to ferromagnetic

interactions in magnets (Castellano, 2012); where one atomic spin is depen-

dent on others in microscopic perspective while the state among ferromagnets

makes a transition from irregular to regular phase in macroscopic world. Re-

searchers have used this phenomenon as an anology to an individual’s deci-
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sions that are influenced by those of others in social network. Thus just as the

collective behavioral changes in spins are traditionally modeled by the Ising

model (Binney et al., 1992), Ising model has also modeled social dynamics for

collective behavior or opinion formation (Grabowski and Kosiński, 2006) in so-

cial network. As an example of Ising model for social influence study, Lee et al.

(2015) proposed a maximum entropy model with a particular application to

quantifying the influence of Supreme Court justices of the United States. In

Lee et al. (2015) one of the proposed measures for influence associated with

each Supreme Court justice is the impact of individual perturbations around

his or her average vote into the resulting, collective outcomes, e.g., the major-

ity vote. Liu et al. (2010) also used the Ising model to predict collective opinion

formation in a network in order to search for the subset of nodes exhibiting

the largest influence by pretending that votes of the subset of justices are set

to be fixed. See Klemm et al. (2012); Lucas (2013); Lynn and Lee (2016) for

more examples that apply the Ising model to understand collective behaviors

and identify the influence of each subject in a network.

Statistical mechanics used in social influence study understands collective

behavior in social network as behaviors of physical movements, and numerous

studies described above provide a measure of influence based on this under-

standing. However, there is no guarantee that human’s collective behaviors

would well be fitted into the framework for molecular behaviors; for instance,
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while thermodynamics are governed by the laws of thermodynamics (Callen,

1998), no particular laws regulate how human subjects behave individually

and collectively, and no validation has been performed yet to justify the com-

patibility between social dynamics and thermodynamics. In Section 5.4 we use

a variant of the Ising model to identify the influence of Supreme Court justices

based on the justification of its use under certain conditions (Ogburn et al.,

2018a).

5.3 Identifying Causally Influential Nodes

Most of the research described above is motivated by the problem of maxi-

mizing (or minimizing) the chance of observing certain collective outcomes, or

population-level changes, via the least intensive intervention (Ballester et al.,

2006; Klemm et al., 2012; Kim et al., 2015; Chin et al., 2018). To put this more

concretely, an intervention on the most influential nodes has the largest causal

effect on collective outcomes.

5.3.1 Causal inference

Before defining influence as a causal quantity, we first introduce potential

outcomes (Rubin, 1974, 1977, 2005). Consider a variable for binary interven-

tion Z, either 0 or 1, then a pair of potential outcomes for unit i under Z = 0 and
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Z = 1 are (Yi(0), Yi(1)) respectively, representing the outcome that we would

have observed for unit i if we could have intervened to set Zi = 0 or Zi = 1;

generally Yi(z) denotes a response of unit i when its value of intervention vari-

able Z is z. Traditionally, researchers make the Stable Unit Treatment Value

Assumption (SUTVA) (Rubin, 1990b) that the potential outcome of i is not be

affected by other units’ treatment (no interference), but when subjects in a so-

cial network interact with one another and affect one another’s outcomes, this

assumption must be relaxed, as we discuss below.

Under our network setting, we should first consider three components for

causal inference: unit, treatment, and outcome. All the nodes in a network are

units of study; they are all subject to influence from one another. A treatment

or intervention acts as a source or trigger of influence, and changes in outcome

represent the consequence of such an intervention (Valente, 2012). We discuss

which intervention is considered in studying influence in Section 5.3.4.

5.3.2 Causal inference and social networks

In a social network setting, the SUTVA assumption is often violated due to

the possibility of a causal effect of one’s treatment assignment on others’ out-

comes. The effect of one unit’s treatment on another’s outcome is known as

interference (Rubin, 1990a; Sobel, 2006; Hudgens and Halloran, 2008; Tchet-

gen and VanderWeele, 2012; Aronow and Samii, 2013; Athey et al., 2018). For
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example, vaccinating one unit not only decreases the risk of infection for that

unit but also has a causal effect in decreasing the risk of infection for others,

too (VanderWeele et al., 2012; Perez-Heydrich et al., 2014). Under interfer-

ence, one unit’s potential outcome could vary depending on others’ treatment

assignment; therefore, we must define potential outcomes with respect to the

treatment assignments of all subjects, or at least of subjects within the sphere

of influence (Rubin, 1990a; Hudgens and Halloran, 2008; Tchetgen and Van-

derWeele, 2012; Manski, 2013).

Suppose that there are N nodes in the underlying network G. Let Z =

(Z1, Z2, . . . , ZN) denote random variables for a node-level intervention (as de-

fined in Section 5.3.4), and assume that these interventions are binary, either

0 or 1, for simplicity. Following the potential outcome framework of causal

inference, denote the potential outcome of node i given a vector of treatment

assignment of whole N nodes, z = (z1, z2, . . . , zN) as Yi(z), which would be node

i’s response if N nodes, including node i, on the network were assigned to z.

This notation implies that the potential outcome of node i may vary depending

on other nodes’ intervention assignment. That is, even if zi = z′i, Yi(z) is not

necessarily the same as Yi(z
′) for any i = 1, 2, . . . , N .

Depending on context, an intervention on influential nodes will maximize

(e.g., increase the number of people who buy a new product) or minimize (e.g.,

reduce the number of people infected with a disease) the intervention’s ef-
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fect. Without loss of generality, let us assume that we want to maximize an

average of potential outcomes in this chapter. Then the problem of identify-

ing the most influential nodes can be translated into the problem of identi-

fying the intervention assignment z such that expectation of average of po-

tential outcomes under z,
N
∑

i=1

E [Yi(z)] /N , has the largest value among a set

of potential outcomes, {E[Yi(z)] : i = 1, 2, . . . , N, for all z ∈ {0, 1}N}, i.e., z =

argmaxZ∈{0,1}N
N
∑

i=1

E [Yi(Z)] /N . The number of intervened nodes is often fixed,

most often at a single node to identify the single most influential node in the

network.

Identification of the causal effect of intervention assignment requires a no

unmeasured confounding assumption (Rubin, 1974), and for simplicity we con-

sider a network experiment (Centola, 2010; Bond et al., 2012; Aronow and

Samii, 2013; Aral and Walker, 2014; Paluck et al., 2016) where random assign-

ment of the intervention is marginally independent of the potential outcomes

(network ignorability (VanderWeele, 2008; Tchetgen et al., 2017)),

Z ⊥ Y (z) for all z ∈ {0, 1}N . (5.1)

Identification and estimation of causal effects under this assumption has been

discussed in the network experiment setting (Fowler and Christakis, 2010;

Bond et al., 2012; Aral and Walker, 2012, 2014; Kim et al., 2015) where network
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ignorability is guaranteed.

In observational settings network ignorability is likely violated, e.g. by con-

founding due to homophily or assortative mixing, in which similarities in out-

comes create an edge between the nodes, as well as confounding due to many

other latent factors (Aral et al., 2009; Shalizi and Thomas, 2011). However,

causal effects are still identified if observed confounders suffice to render treat-

ments and potential outcomes conditionally independent.

Z ⊥ Y (z) | C for all z ∈ {0, 1}N , (5.2)

for any observed confounders C = (C1,C2, . . . ,CN) (conditional network ignor-

ability) (Tchetgen et al., 2017).

5.3.3 A causal measure of influence

In connection with the causal nature of the underlying research question

in identifying influential subjects, we define a function of influence associated

with any nodes V , τ : V → R, using counterfactual outcomes. For any V ∈

V(G):

τ(V ) =
N
∑

i=1

E [Yi(zV )] /N

=
N
∑

i=1

E [Yi(zj,j∈V = 1, zk,k/∈V = 0)] /N.

(5.3)
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If Y is a binary outcome indicating being active (Y = 1) or not (Y = 0), τ(V )

denotes the proportion of active nodes over the network when we only inter-

vene on a set of nodes V ∈ V(G); if Y is a continuous outcome, τ(V ) is an

average of n potential outcomes under the same intervention assignment of

zV = {zj,j∈V = 1, zk,k/∈V = 0}. This influence measure of τ leaves the diffusion

process between the intervention assignment and the responses unspecified.

For instance, intervention of zV may directly increase the outcome Yj, j /∈ V

(direct interference); or increase in Yi (i ∈ V ) due to the direct effect from zV

may change the outcome of j, j /∈ V (social contagion). Therefore, no matter

how zV affects the collective outcomes, τ(V ) estimates the causal effect of in-

tervening node(s) of V on the collective outcomes, and differences in τ(·)’s can

be explained only through the intervention assignment under network ignora-

bility. In the longitudinal setting, the treatment assignment might change the

underlying network structures (e.g. Rand et al. (2011)) as well as the poten-

tial outcomes, and treatments can be time-dependent. In these settings, it is

natural and reasonable to consider zV in Equation 5.3 as an initial treatment

assignment on node V so that influence from previous treatment assignments

cannot be involved; in a similar manner, it is most relevant to consider stabi-

lized outcomes at final time point as collective outcomes of interest among the

evolving outcomes so that we allow enough time for influence to pass through

the nodes in a network. Our definition of influence can handle the fact that
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network topology might change over time.

Our measure of influence τ(·) (Equation 5.3) is closely related to the influ-

ence function of σ(·) in Kempe et al. (2003) except that Kempe et al. (2003) only

considered a binary outcome and direct intervention on the outcome without a

formal causal statement. Their function of σ(A) represents “the expected size

of the activated set if A is targeted for initial activation”; when Y is binary,

σ(V ) = N · τ(V ) under the assumption of network ignorability when the inter-

vention directly performs on the dynamic outcome of interest. Banerjee et al.

(2013) also defined a notion of diffusion centrality as “the fraction of other units

(households) who would eventually participate if this unit (household) were the

only one initially informed.” In this case targeted outcomes (participation) and

interventions (being informed) are well defined, but effect of the interventions

on the outcomes is not necessarily causal. Even if it were, diffusion centrality

matches the influence measure of τ only if their diffusion model is correctly

specified and influence is measured on a single node.

On the other hand, we may want to consider a general form of node influence

as a function of other nodes’ treatment assignment; for instance, in case we

cannot control the treatment assignment for some nodes, changes in collective

behavior due solely to the target nodes, e.g. V ∈ V(G), under a fixed treatment

assignment on V(G)\V can serve as a measure for influence of V . Equation 5.4

generalizes τ(V ) in Equation 5.3 such that τ(V ; z′) may vary depending on the
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treatment vector z′ ∈ {0, 1}N . Fixing z′ to 0N yields the same results as τ(V ) in

Equation 5.3 subject to shifting by
N
∑

i=1

E [Yi(0N)] /N , where 0m denotes a vector

of m zeros.

τ(V ; z′) =
N
∑

i=1

{

E
[

Yi(zj,j∈V = 1, zk,k/∈V = z′k,k/∈V )
]

− E
[

Yi(zj,j∈V = 0, zk,k/∈V = z′k,k/∈V )
]}

/N.

(5.4)

The general influence measure of τ(V ; z′) as a causal effect has already been

discussed in Smith et al. (2018) where only the influence of a single node (|V | =

1) is considered. This general definition of influence is useful given a single

observation of a network where we often do not have control over the observed

intervention; yet in identifying the most influential nodes independently of the

observed intervention, forcing non-target nodes as control (as Equation 5.3)

provides a fair comparison between the causal effects from different sets of

nodes.

Sometimes very specific quantities other than τ might be of interest in

studying influential nodes, e.g., locally defined influence originating from a

particular node (Bond et al., 2012) or influence transferring between a partic-

ular pair (Fowler and Christakis, 2010). Even though these do not necessarily

identify the most influential nodes in general, we can approach these problems

using counterfactual outcomes by defining δij as the influence of node i on node
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j:

δij = E [Yj(zi = 1, z−i = 0N−1)]− E [Yj(z = 0N)] , (5.5)

where z−i = z \ {zi}. Note that δij does not merely denote the causal effect of i’s

treatment on j’s outcome, but a set of all N treatments z′ = {zi = 1, z−i = 0N−1}

on j’s outcome. Taken together, influence as the strength of causal effect of the

intervention is coherent with the underlying research question, even though

details of the measure may vary depending on the specifics of the research

question.

5.3.4 Intervention as a trigger of influence

When measuring influence over a network, an intervention or treatment

on the nodes can either be a direct intervention performed on the evolving

outcome (e.g. increasing one-pound weight gain of each student at initial time

point of study compared to that at previous reference time point to see who

has the largest influence over all classmates’ weights at the end of study) or an

intervention through an external factor (e.g. giving a vaccine to each subject to

see whose vaccination would prevent infectious diseases most efficiently). Liu

et al. (2010) called the direct intervention on outcomes the placement of a fixed

number of positive seeds; according to their definition, the placement of fixed
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positive outcome values on the most influential nodes would yield the largest

expected number of positive nodes in the network. Similarly Lee et al. (2015)

also defined the influence of each Supreme Court justice as the impact of the

fluctuations on his or her own outcome (small increments in tendency to vote in

a certain way) on the collective vote results. When we are interested in direct

interventions on units’ outcomes, randomized experiments may be impossible,

because it is often infeasible or unethical to randomize changes to the outcome

directly. Nevertheless we can define the influence of a node (or nodes) as the

causal effect of intervening the time-evolving outcome at baseline (t = 0) on the

whole outcome at the final time point (t = T ).

On the other hand, external factors, called network intervention, can be un-

derstood as “purposeful efforts to generate social influence” (Valente, 2012).

Examples where external interventions generate social influence over collec-

tive outcomes can be found in the literature as well: information on a microfi-

nance loan program (intervention) was injected by the microfinance institution

to increase adoption rate of the program (outcome) in Banerjee et al. (2013); in

a Facebook experiment, a Facebook message (intervention) about new products

is randomly sent to a users Facebook friends and these recipients’ adoption of

the products was measured to identify each user’s influence (Aral and Walker,

2012); and in Nickerson (2008), voters were given different face-to-face mes-

sages (intervention) to investigate their messages effects on the subjects family
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members’ propensity to vote (outcome). More examples of external interven-

tions cascading in a social network can be found in Kim et al. (2015); Cai et al.

(2015) and Paluck et al. (2016).

5.4 Simulations

The first section of the simulation investigates whether popular centrality

measures agree with the influence measure of τ when only a single node is in-

tervened upon, and the second section introduces a hypothetical experiment for

identifying the most influential Supreme Court justices. Throughout the sim-

ulations, we assume network ignorability without any confounders. Details of

the simulations can be found in the supplementary material. An implement-

ing software R package is provided in https://github.com/youjin1207/

netchain.

5.4.1 Agreement between centrality and influ-

ence

We consider out-degree, betweenness, closeness, eigenvector, and diffusion

centrality for comparison with our influence measure τ under five different dif-

fusion processes. As a measure of agreement between τ and each centrality
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measure, we use Spearmans rank correlation ρ (Spearman, 1904) which quan-

tifies correlations between ranks with respect to τ and with respect to central-

ity c. The Spearmans rank correlation ranges from -1 to +1 where +1 indicates

a perfect positive monotonicity between τ and c. We assume five different dif-

Out-degree Betweenness Closeness Eigenvector Diffusion

Homogeneous direct interference 1.00 (0.00) 0.63 (0.06) 0.94 (0.01) 0.66 (0.06) 0.96 (0.01)

Contagion process 0.92 (0.02) 0.67 (0.05) 0.89 (0.03) 0.59 (0.07) 0.90 (0.03)

Distance-dependent process 0.97 (0.01) 0.63 (0.06) 0.99 (0.01) 0.66 (0.06) 0.98 (0.00)

Traffic-dependent process 0.63 (0.06) 1.00 (0.00) 0.62 (0.06) 0.85 (0.03) 0.63 (0.06)

Homogeneous diffusion process 0.93 (0.01) 0.62 (0.06) 0.97 (0.01) 0.66 (0.06) 1.00 (0.00)

Table 5.1: Average of Spearman rank correlations and its standard errors

between τ and c base on r = 500 independent replicates.

fusion models given an underlying social network comprised of N = 100 nodes,

generate r = 500 Monte-Carlo replications for each model, and calculate the

rank correlation of ρ between c and τ for each replication. Homogeneous direct

interference implies a homogeneous causal effect of adjacent peers’ interven-

tion on the outcome; the contagion process implies a causal effect of an adjacent

peer’s outcomes on one’s outcome over time; the distance-dependent process

means a causal effect of others’ intervention which depends on the geodesic

distance between the nodes. The traffic-dependent process and homogeneous

diffusion process are derived to match betweenness and diffusion centrality re-

spectively. Even though at most one measure perfectly agrees with τ under

each scenario, all five diffusion processes are based on stringent assumptions,

e.g. homogeneous diffusion rate over nodes, interference only through adjacent

peers, diffusion process through geodesic distance, etc. Details of each process
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are illustrated in the supplementary material. The average of the rank corre-

lations for each scenario is presented in Table 5.1.
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(a) Homogeneous direct interference
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(b) Traffic-dependent process
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(c) Homogeneous diffusion process

Figure 5.1: Each matrix contains 100 × 100 cells; each cell illustrates how

much the top l% of influential nodes from each centrality measure cover the

top k% of influential nodes in terms of τ if l ≥ k (lower right corner); when

l < k (upper left corner) each cell represents the probability of how much the

top k% in each centrality covers the top l% in τ . Under homogeneous direct

interference (Figure 5.1a), degree centrality and τ are perfectly monotonic; the

same is true for betweenness and τ in Figure 5.1b and for diffusion centrality

and τ in Figure 5.1c.

Figure 5.1 illustrates the probabilities of interest like “What are the chances

of having the top 10% of nodes in term of τ in the top 20% of out-degree nodes?”;

under each of five diffusion processes we calculated agreement between cen-
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trality and the influence measure τ empirically using r = 500 replicates. Other

relevant figures for different diffusion processes can be found in the supple-

mentary material. Even though almost all of the commonly used centralities

fail to capture τ , under the specific data generating process of stringent as-

sumptions, higher centrality implies higher influence of τ . For example, when

the treatment assigned to each node has a homogeneous causal effect on its ad-

jacent nodes and with other additional assumptions, higher out-degree central-

ity exactly implies higher influence, and vice versa; under the traffic-dependent

process higher betweenness strictly implies higher influence (see proof in the

supplementary material). However, given that these agreements require im-

plausible conditions for most of the applications, all of the suggested centrality

measures fail to identify causally influential nodes in general.

5.4.2 Influential nodes under latent confound-

ing

Identifying the influence of nodes fails not only because of misspecified dif-

fusion processes but also because of latent confounding between the interven-

tion and outcome of interest. Through simple, empirical examples, we illus-

trate two cases where the measure of influence becomes useless due to con-

founding by latent variables. We present simplified numerical examples with
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three nodes followed by specific illustrative descriptions. Confounding com-

monly occurs when a latent variable is highly predictable for an intervention

variable and outcome variable at the same time. In Equation 5.6, consider a

latent variable L denoting an indicator for joining a gym, and an intervention

variable Z indicating recent weight loss. Assume that we are interested in

whose weight loss is more influential in terms of making three people exercise.

Let Y be an indicator for exercising or not, and pretend that there is no causal

effect of Z on Y directly nor indirectly from peers. Instead, if adjacent peers

join the gym (Lj = 1 for adjacent peer j ̸= i), each person is more likely to

exercise (positive effect of AijLj).

Li
i.i.d.
∼ Bernoulli(0.5), i = 1, 2, 3

Zi | Li ∼ Bernoulli(0.5 + β(2Li − 1))

Yi | L ∼ Bernoulli(0.3 + 0.3Li + 0.4
N
∑

j=1

AijLj/N)

(5.6)

By varying a value of β = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5), we estimated false influ-

ence τ ∗(1), τ ∗(2), and τ ∗(3) ignoring the existence of a latent variable of L by

averaging 10000 observations of (Y1, Y2, Y3) under intervention of {z1, z2, z3} =

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Under the assumption of network ignorability and

consistency of those average values, say τ̂ ∗, would be close to the true value
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of τ ’s. Because Z = (Z1, Z2, Z3) has no causal effect at all on the outcome

Y = (Y1, Y2, Y3), Yi(z) = Yi(z
′) for all possible values of z ̸= z′ and for all i = 1, 2, 3,

the influence measure τ(i) should be identical across i = 1, 2, 3.

β τ̂ ∗(1) τ̂ ∗(2) τ̂ ∗(3)
0.0 0.5336 0.5382 0.5369

0.1 0.5187 0.5277 0.5263

0.2 0.4952 0.5220 0.5050

0.3 0.4826 0.5095 0.4831

0.4 0.4642 0.5004 0.4639

0.5 0.4452 0.4858 0.4464

Table 5.2: Let τ ∗ denote the false influence measure ignoring a latent vari-

able L. Each of τ̂ ∗ is derived by averaging three outcomes under z1, z2, and z3,

and then we randomly generate potential outcomes 1000 times to calculate τ̂ ∗.
Under β = 0.0, τ ∗ = τ .

In Table 5.2, unit 2 falsely looks most influential because if unit 1 (or unit

3) is the only one who lost weight, unit 2 and unit 3 (or unit 1 and unit 2) are

more likely not to sign up for the gym as β increases. Because they are friends

with each other (A23 = A12 = 1) they are less likely to exercise together due to

smaller
N
∑

i=1

AijLj; while if unit 2 is only one who lost weight, unit 1 and unit

3 are more likely not to sign up for the gym, but because they are not friends

with each other (A13 = 0), the adverse effect on exercising is less so decrease in

τ̂ ∗(2) is less significant than other two as β increases.

Now assume that a latent variable L denotes a previous midterm exam

score for three units; an intervention variable Z is a binary indicator of taking

an advanced online class or not. As β increases, L is more predictable for Z
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in the same direction. Assume that we are interested in the influence of each

unit taking an advanced online class on the final exam grades of the whole

class (on the three units in our case); let Y = 1 mean higher grades and Y = 0

mean lower grades at final exam compared to the midterm exam. As shown in

Equation 5.7 there is not causal effect of Z on Y but instead we assume a peer

effect among students who have similar grades at the midterm to improve their

grades; students are encouraged to do better if they are surrounded by students

with similar performance. We can consider a matrix Wij = AijI(Li = Lj) as an

another adjacency matrix forming as a result of homophily, and probability

of Yi = 1 (improved grades at the final exam) increases proportionally to the

number of homogeneous friends.

Li
i.i.d.
∼ Bernoulli(0.5), i = 1, 2, . . . , N

Zi | Li ∼ Bernoulli(0.5 + β(2Li − 1))

Yi | Li ∼ Bernoulli(0.3 + 0.3Li + 0.4
N
∑

j=1

AijI(Lj = Li)/N)

(5.7)
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β τ̂ ∗(1) τ̂ ∗(2) τ̂ ∗(3)
0.0 0.5357 0.5442 0.5426

0.1 0.5286 0.5257 0.5319

0.2 0.5176 0.5039 0.5225

0.3 0.5128 0.4777 0.5098

0.4 0.5004 0.4407 0.4944

0.5 0.4853 0.3994 0.4860

Table 5.3: Estimates for τ ∗ were derived similarly to those in Table 5.2.

Contrary to Table 5.2, unit 2 looks less influential in Table 5.3 because if

unit 2 is only one who takes an advanced lecture, unit 1 and unit 3 are likely

to have poor grades on the previous exam. Because unit 1 and 3 do not know

each other, their grades do not benefit from peer effects.

Therefore as presented in both cases of Equation 5.6 and Equation 5.7, ig-

noring any latent factors in the causal pathway between Z and Y easily results

in a misleading influence measure.

5.4.3 Identifying the most influential Supreme

Court justice

In political science or general decision making, identifying whom to per-

suade or to whom additional information should be provided to elicit a certain

social phenomenon are considered important issues (Huckfeldt and Sprague,

1995; Kenny, 1998). We introduce the example of the nine Supreme Court jus-
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tices debating each other to reach a consensus. Identifying the most influential

Supreme Court justices has been studied (Altfeld and Spaeth, 1984; Kosma,

1998; Pryor, 2017) using different definitions for influence. Recently, the in-

fluence of each justice has received a lot of attention after the retirement of

Justice Kennedy. In our data analysis assuming certain hypothetical condi-

tions, we investigate how Justice Kennedys influence varies depending on the

other eight justices’ votes and his relationship with them.

In this context, a binary random variable Y stands for the characteristics

of each vote – liberal(1) or conservative(-1). We chose five periods having dis-

tinct sets of justices across time period for convenience, with more than 200

decisions made per period. We identify an edge between the justices, which

implies some dependency between their votes. We then introduce a hypothet-

ical justice-level treatment Z where zv = 1 only increases justice v’s chance

of casting liberal votes with larger effects for justices with larger variability

in their votes. Because each Z is randomly assigned to the justice, network

ignorability is ensured in our simulation. To identify the causal effect of the

treatment on the collective outcomes (e.g. the number of liberal votes or unan-

imous decisions), we assume a chain graph model (Ogburn et al., 2018a) on

analytically identified edges by an ad hoc method of selecting pairs with sig-

nificant two-way interaction effects from pairwise saturated log-linear model.

In the chain graph model, to reflect the real voting tendencies of the justices,
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we keep the estimates of the main effect and two-way interaction effects from

the log-linear model using real data, and based on these coefficients we esti-

mate the influence of each justice over five different periods. We assume no

higher than pairwise interactions between the justices. Figure 5.2 illustrates

a hypothetical influence with uncertainties from coefficients of the main effect

and two-way interaction effect (box plot), showing that the influence of Jus-

tice Kennedy fluctuates over time (black dot). The influence of each justice in

this particular case can be interpreted as the proportion of liberal votes among

nine justices assuming that a hypothetical intervention that only increases the

propensity to cast a liberal vote is assigned to each justice. It might also be of

interest to study a pair of justices who have the largest influence. We can de-

fine τ as the probability of having unanimous decision, not an average liberal

(or conservative) vote, under each treatment assignment. An important caveat

here is that our results are valid only when the causal effect for the interven-

tions on each justice we assumed are correct and when chain graph models are

correctly specified. The chain graph we used for the inference also implies that

the intervention of one justice does not have any direct effect on the other jus-

tices votes nor on any interaction between the justices and also assumes that

contagion only occurs for pairs of justices specified in the model and, if any,

no higher-order than two-way interactions exist. Given these assumptions and

the hypothetical treatment effect, Figure 5.2 shows the absolute effects of each
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Influence of Supreme Court Justices (1987−1989)
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Influence of Supreme Court Justices (1991−1992)
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Influence of Supreme Court Justices (1994−2004)
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Influence of Supreme Court Justices (2005−2008)
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(d) Based on n = 252 votes

Figure 5.2: Dots in each box plot denote the influence of each justice given

main effects and two-way interaction effects from the log-linear model; while

each box plot illustrates the empirical distribution of such influences based

on coefficients from conditional log-linear models of the bootstrap sample. We

have less variability in Figure 5.2c because there was smaller variability in

each justices votes with large number of observations (n = 893) so is causal

effect of the treatment.

justice on the number of liberal votes vary across the court; for instance, pro-

viding each justice a hypothetical intervention to cast a liberal vote still leads

to less than 50% of liberal votes on average from 1991 to 1992 while interven-

ing any justice leads to greater than 60% of liberal votes on average from 1994

to 2004. Justice Kennedy’s influence in terms of increasing liberal votes is rel-
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atively higher than other liberal justices generally; this is probably because

Justice Kennedy often sided with conservatives. His hypothetical influence is

the highest among nine justices from 1994 to 2004, which implies that provid-

ing Justice Kennedy an incentive to make a liberal decision would maximize

the number of liberal votes across the court compared to providing the same

incentive to any of the other eight justices.

5.5 Discussion

In this chapter, we propose a class of causal measures of influence for nodes

in a network. The research on measuring influence over social networks to date

has tended to focus on specific features of networks and diffusion processes

instead of defining target estimands without reference to a specific model. We

found that most of the centrality measures that are dependent only on the

network structure actually implicitly make highly stringent assumptions on

diffusion processes and identify influential nodes only under these presumed

diffusion process.

Above all, our main concern is the discrepancy between each of the estima-

tors and what they originally were intended to measure. We suggest that no

matter how plausible or practical centrality measures are to evaluate, the in-

fluence measure of τ as a causal effect is what we should instead target. Failure
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to consider causal interpretation might lead to policy making based on spuri-

ously ‘influential’ nodes, which would not achieve the anticipated effect on the

network. Identification and estimation of causal effects under complex obser-

vational study is extremely challenging, and in this chapter we do not suggest

a particular estimation method to identify influential nodes.

Targeting a parameter of interest, e.g. τ , rather than a model or an esti-

mation method, allows flexibility but at the same time leaves unanswered the

question of how to estimate this parameter. As we often observe a single net-

work at a certain time point, rather than multiple, independent observations

of the network, identification of influence for any set of nodes of interest is

almost infeasible. Even if we had multiple observations, unless we are able

to randomize every possible combination of treatment assignments, we should

make some assumptions about the range of influence, which often requires

some knowledge of network structure.

Model approximation using chain graph model (Ogburn et al., 2018a) might

not be applicable for most of the network data. The lack of accurate knowledge

about network data or model mis-specification is especially likely to engender

bias. When the number of nodes is small enough (e.g., nine Supreme Court

justices), and the number of observations is sufficiently large, a pair-wise satu-

rated conditional log-linear model might be practical to use without any model

assumptions except that of no higher than two-way interactions. However, this
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still requires a substantial computational burden due to calculation of the nor-

malizing constant (Besag, 1975).

Despite the technical difficulties of the estimation method, we suggest a

new way to understand influence in a social network with coherent, causal in-

terpretation. With this target estimand as a research objective, future research

should focus on designing efficient and effective randomization schemes to in-

fer influence of the nodes on a social network, and identification and estimation

of τ in observational settings.

5.6 Appendix

5.6.1 Data generating models

Directed random graph G ∼ G(0.1, 0.05) was generated by sample-sbm

function provided by igraph R, having two blocks with sample size of N/2

for each. Same-block probability is 0.1 and 0.05 otherwise. Denote the adja-

cency matrix by A of G. For each diffusion process, graphs G are randomly

generated r = 500 times.

The geodesic distance from node i to node j by dist(ij), a total number of

the shortest paths from node i to node j by σij, the total number of this shortest

path passing through node v as σij(v). We assume network ignorability and
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consistentcy conditions in this simulation so E[Yi|Z] = E[Yi(Z)] for all i.

1. Homogeneous direct interference

E[Yi|Z] = 0.1 + 0.3Zi + 0.2
N
∑

j=1

AjiZj/N (5.8)

2. Contagion process

E[Y 1
i |Z] = 0.1 (5.9)

E[Y t
i |Z] = 0.7E[Y t−1

i |Z] + 0.15Zi + 0.1
N
∑

j=1

AjiY
t−1
j /N, t = 2, 3, . . . , 10. (5.10)

3. Distance-dependent process

E[Yi|Z] = 0.1 + 0.3Zi + 0.2
N
∑

j=1

Zjdist
−1(j, i) (5.11)

4. Traffic-dependent process

E[Yi|Z] = 0.1 + 0.3Zi + 0.5
N
∑

j=1

Zj

N
∑

k=1,k ̸=j ̸=i

σki(j)/σki (5.12)
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5. Homogeneous diffusion process

E[Y 0
i |Z] = 0.3 (5.13)

For t = 1, 2, 3, 4, 5 : (5.14)

E[Y t
i |Z] = 0.4E[Y t

i |Z] +
t
∑

k=1

(0.3A)kz (5.15)

We used diffusion centrality with diffusion rate of 0.1 under all processes

except for homogeneous diffusion process where we specified true diffusion rate

of 0.3 when deriving diffusion centrality. Figure 5.3 shows agreement matrices

of five centrality measures under contagion process and distance-dependent

process.
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(a) Contagion process
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(b) Distance-dependent process

Figure 5.3: Each matrix contains 100 × 100 cells of which each cell illustrates

how much top l% of influential nodes in terms of each centrality measure covers

top k% of influential nodes in terms of τ if l ≥ k (lower right corner); when

l < k (upper left corner) each cell represents the probability how much top k%
in each centrality covers top l% in τ . Under contagion process (Figure 5.3a),

degree, closeness, and diffusion centrality work reasonably well while both of

betweenness and eigenvector centrality does not capture influence of τ well

under two processes. Closeness centrality which is represented as a reciprocal

of the sum of the geodesic distances between the node and all other nodes,

agrees with τ under distance-dependent process but does not perfectly agree

because τ is proportional to the sum of all reciprocal geodesic distances, not to

the reciprocal of the sum.

5.6.2 Proofs

Denote a zero vector of length m by 0m, i.e., z = 0N is a null treatment

assignment for all of N nodes. A vector of z−i has a length of N − 1, removing

an element of zi from z = (z1, z2, . . . , zN).

Proposition 3. Under network ignorability condition (Condition 5.1), when

treating each node has a homogeneous effect only on its adjacent nodes and
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direct treatment effects as well as baseline distribution of potential outcomes

under the null treatment (z = 0N ) are homogeneous across all the nodes, higher

out-degree centrality implies higher influence of τ , and vice versa.

Proof of Proposition 3. Assume that δ := E(Yi(z = 0N)) > 0, α := E(Yi(zi =

1, z−i = 0N−1)) − E(Yi(z = 0N)) > 0 for all i = 1, 2, . . . , N , and β := E(Yi(zj =

1, z−j = 0N−1)) − E(Yi(z = 0N)) > 0 for all edges from j to i. Then if out-degree

of node u, denoted by du(:=
N
∑

i=1

Aui), is larger than out-degree of v, denoted by

dv(:=
N
∑

i=1

Avi), τu > τv.

τu =
N
∑

i=1

E(Yi(zi = 1, z−i = 0N−1))/N

=
N
∑

i=1

E(Yi|zi = 1, z−i = 0N−1)/N

=
N
∑

i=1

(

δ + αzi + β
N
∑

k=1

Akizk

)

/N

=δ + α/N + β

N
∑

i=1

Aui/N

=δ + α/N + βdu/N

>δ + α/N + βdv/N

=τv

(5.16)

If τu > τv, we can easily show from the above equations that du > dv.
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Proposition 4. Under network ignorability condition (Condition 5.1), if treat-

ing node k lying on shortest path from node i( ̸= k) to node j( ̸= k, i) has a ho-

mogeneous effect on node j with a size of σij(k)/σij for all i, j, k ∈ {1, 2, . . . , N}

and direct treatment effect as well as baseline distribution of potential outcomes

under the null treatment (z = 0N ) are homogeneous across all the nodes, higher

betweenness centrality implies higher influence of τ , and vise versa.

Proof of Proposition 4. Assume that δ := E(Yi(z = 0N)) > 0, α := E(Yi(zi =

1, z−i = 0N−1)) − E(Yi(z = 0N)) > 0 for all i = 1, 2, . . . , N , and α := E(Yi(zj =

1, z−j = 0N−1))−E(Yi(z = 0N)) > 0 for all edges from j to i. Then if betweenness

of node u, denoted by bu(:=
∑

i ̸=u ̸=j

σij(u)/σij), is larger than betweenness of v,

denoted by bv(:=
∑

i ̸=v ̸=j

σij(v)/σij), τu > τv.

τu =
N
∑

i=1

E(Yi(zi = 1, z−i = 0N−1))/N

=
N
∑

i=1

(

δ + αzi + β

N
∑

k=1

zk

N
∑

j=1; j ̸=k ̸=i

σji(k)/σji

)

/N

=δ + α/N + β
N
∑

i=1

N
∑

j=1; j ̸=u ̸=i

σji(u)/(σjiN)

=δ + α/N + βbu/N

>δ + α/N + βbv/N

=τv

(5.17)
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5.6.3 Numerical experiment on Supreme Court

justices

In hypothetical setting for numerical experiment, we introduce partial in-

formation on Supreme Court Justice data from Washington University Law

Schools Supreme Court Database (http://scdb.wustl.edu/ data.php) (See

Appendix B for details). For each of five different periods, we fitted an undi-

rected edges among nine justice by ruling out insignificant interaction term

from pair-wise saturated log-linear models. In order to reflect the magnitude

of interactions between a pair of justices and justice-level propensity toward

liberal (or conservative) opinion, we borrowed the estimated parameters in the

log-linear model with only significant edges between node i and j, i.e. eij = 1,

included in the model (Equation 5.18).

p
(

Y = (y1, y2, . . . , y9)
)

=
1

B
exp

⎧

⎨

⎩

9
∑

i=1

αiyi +
9
∑

i,j=1,eij=1

βijyiyj

⎫

⎬

⎭

, (5.18)

where B denotes a normalizing constant. We apply the maximum likelihood

estimates of {(αi, βij; i, j = 1, 2, . . . , 9; eij = 1)} from Equation 5.18 to the fol-

lowing simulation model of Equation 5.19.
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p
(

Y = (y1, y2, . . . , y9)|z
)

=
1

B(z)
exp

⎧

⎨

⎩

9
∑

i=1

γiziyi +
9
∑

i=1

α̂iyi +
9
∑

i,j=1,eij=1

β̂ijyiyj

⎫

⎬

⎭

,

(5.19)

where z = (z1, z2, . . . , z9) denotes hypothetical binary intervention of -1 or 1; γi

represents the causal effect of intervention of zi on yi and we assume that γi is

standard deviation of αi from Equation 5.18 under the belief that justices who

showed much variabilities in his or her votes they are likely to be influenced by

intervention more. Since γi is always positive, intervention only increases the

chance of liberal votes for all justices. Note, Equation 5.19 only includes up-to

two-way interactions between the justices and does not include the interference

term, e.g. ziyj for i ̸= j; hence estimated influence in Figure 5.2 is based on our

own assumption of hypothetical, particular intervention.
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Appendix A

Supplementary Material of

Chapter 4

This is a joint work in collaboration with Chencheng Shen, Carey E. Priebe,

and Joshua T. Vogelstein.

A.1 Proofs

Unless mentioned otherwise, throughout the proof section we always omit

the superscript t for the diffusion map at a fixed t, i.e., we use U = {Ui : i =

1, 2, . . . , n} instead of Ut = {U t
i : i = 1, 2, . . . , n} because most results hold for

any t, similarly we use θ instead of θt whenever appropriate.

(Theorem 1). By the de Finetti’s Theorem (Diaconis and Freedman, 1980; O’Neill,

143



APPENDIX A. SUPPLEMENTARY MATERIAL OF CHAPTER 4

2009; Orbanz and Roy, 2015), it suffices to prove that the diffusion map U =

{Ui : i = 1, . . . , n} is always exchangeable in distribution, i.e., for any n and

all possible permutation σ, the permuted sequence Uσ = {Uσ(1), Uσ(2), . . . , Uσ(n)}

always distributes the same as the original sequence U = {U1, U2, . . . , Un}.

Transforming Equation 4.3 in the main chapter into matrix notation yields

U = ΛtΦT ,

where U is the q×n matrix having Ui as its ith column, Λ = diag{λ1, λ2, . . . , λq}

is the diagonal matrix having selected eigenvalues of L, Φ = [ϕ1, ϕ2, · · · , ϕq]

consists of the corresponding eigenvectors, ·t denotes tth power, and ·T is the

matrix transpose. It suffices to show that U and UΠ are identically distributed

for any permutation matrix Π of size n.

Given that the graph G is an induced subgraph of an infinitely exchange-

able graph, it holds that A(σ(i), σ(j))
d
= A(i, j), which further holds for the

symmetric graph Laplacian L:

L(σ(i), σ(j)) = A(σ(i), σ(j))/{
∑

j

A(σ(i), σ(j))
∑

i

A(σ(i), σ(j))}1/2

d
= A(i, j)/{

∑

j

A(i, j)
∑

i

A(i, j)}1/2

= L(i, j).
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In matrix notation, ΠTLΠ
d
= L for any permutation matrix Π.

By eigen-decomposition, the first q eigenvalues and the corresponding eigen-

vector of ΠTLΠ are Λ and ΠTΦ, so it follows that at any t

Φ
d
= ΠTΦ

⇔ U = ΛtΦT d
= ΛtΦTΠ = UΠ.

Thus columns in U are exchangeable, i.e., the diffusion maps, {Ui ∈ R
q : i =

1, 2, . . . , n}, are infinitely exchangeable. By the de Finetti’s Theorem, there ex-

ists an underlying variable θ distributed as the limiting empirical distribution,

such that Ui|θ are asymptotically i.i.d.

(Theorem 2). We first state three lemmas:

Lemma 1. Under the same assumptions of Theorem 2, for any finite time-step

t, the underlying distribution of U t
i of the diffusion map is of finite first moment.

Lemma 2. The distance covariance of (U,X) = {(Ui, Xi) : i = 1, . . . , n} defined

in Equation 4.5 in the Chapter 4 satisfies

DCOVn(U,X) =

ˆ

Rq+p

|ĝU,X(t, s)− ĝU(t)ĝX(s)|
2dw(t, s), (A.1)

where w(t, s) ∈ R
q×Rp is a nonnegative weight function that equals (cqcp|t|

1+q
q |s|

1+p
p )−1,

cq is a nonnegative constant, ĝ· is the empirical characteristic function of {(Ui, Xi) :
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i = 1, 2, ..., n} or the marginals, e.g., ĝU,X(t, s) = 1
n

∑n
i=1 exp{i ⟨t, Ui⟩ + i ⟨s,Xi⟩}

with i representing the imaginary unit.

Lemma 3. Assume U = {Ui ∼ FU : i = 1, 2, . . . , n} are conditional i.i.d. as U |θ,

and X = {Xi
i.i.d.
∼ FX : i = 1, 2, . . . , n}, and all distributions are both of finite

first moment. It follows that

DCOVn(U,X)→ DCOV(U,X) as n→∞,

where DCOV(U,X) :=
´

Rq+p |gU,X(t, s)− gU(t)gX(s)|
2dw(t, s) is the population dis-

tance covariance, and g· is the characteristic function, i.e., gU,X(t, s) = E(exp{i ⟨t, U⟩+

i ⟨s,X⟩}).

By Theorem 1, the diffusion maps Ui are asymptotically i.i.d. conditioned

on θ, whose finite moment is guaranteed by Lemma 1. The nodal attributes Xi

are i.i.d. as FX of finite first moment as assumed in (C2). Therefore a direct

application of Lemma 2 and Lemma 3 yields that

DCOVn(U,X)→

ˆ

Rq+p

|gU,X(t, s)− gU(t)gX(s)|
2dw(t, s),

which equals 0 if and only if U is independent of X. As distance correlation is
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just a normalized version of distance covariance, it further leads to

DCORRn(U,X)→ c ≥ 0, (A.2)

for which the equality holds if and only if FUX = FUFX . By Shen et al. (2018a),

Equation A.2 also holds for MGC when it holds for DCORR.

(Lemma 1). To prove that U is of finite first moment, it suffices to show that

∥Ui∥2 is always bounded for all i ∈ [1, n].

By Equation 3, we have

∥Ui∥
2
2 =

q
∑

j=1

λ2t
j ϕ

2
j(i)

≤

q
∑

j=1

λ2t
j

≤ q,

where the second line follows by noting ϕj(i) ∈ [−1, 1] (the eigenvector ϕj is

always of unit norm), and the third line follows by observing that |λj| ≤ ∥L∥∞ =

1.

Therefore, all of Ui are bounded in ℓ2 norm as n → ∞, so the underlying

variable U must be of finite first moment for any finite t.

(Lemma 2). This lemma is a direct application of Theorem 1 in Székely et al.
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(2007), which holds without any assumption on (U,X) = {(Ui, Xi) : i = 1, 2, ..., n},

e.g., it holds without assuming exchangeability, nor identically distributed, nor

finite first moment.

(Lemma 3). This lemma is equivalent to Theorem 2 in Székely et al. (2007),

except the i.i.d. assumption is replaced by exchangeable assumption, i.e., the

original set-up needs (U,X) = {(Ui, Xi) : i = 1, 2, . . . , n} to be independently

identically distributed as FUX with finite first moment; whereas the diffusion

map {Ui : i = 1, 2, . . . , n} is asymptotically conditional i.i.d. with finite first

moment.

Note that ĝU,X(t, s) = E(ĝU,X(t, s)|θ), and each term in ĝU,X(t, s)|θ is asymp-

totically i.i.d. of each other. Thus

ˆ

|ĝU,X(t, s)− ĝU(t)ĝX(s)|
2dw = E(

ˆ

|ĝU,X(t, s)− ĝU(t)ĝX(s)|
2dw|θ)

→ E(

ˆ

|gU,X(t, s)− gU(t)gX(s)|
2dw|θ)

=

ˆ

|gU,X(t, s)− gU(t)gX(s)|
2dw,

where the convergence in the second step follows from Theorem 2 in Székely

et al. (2007) on the i.i.d. case.
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(Theorem 3). From Theorem 2, it holds that

MGCn(U
t,X)→ c ≥ 0 (A.3)

for each t, with equality if and only if independence. The DMGC algorithm

enforces that

max{MGCn(U
t,X), t = 0, 1, . . . , 10} ≥ MGC

∗
n({U

t},X) ≥ MGCn(U
t=3,X),

thus Equation A.3 also holds when MGC(Ut,X) is replaced by MGC∗({Ut},X).

To show that the test is valid and consistent, it suffices to show that with

probability approaching 1, MGCn(U,Xσ)→ 0. This holds when (Ui, Xi)
i.i.d.
∼ FUX :

the proof in supplementary of Shen et al. (2018a) shows that the percentage

of partial derangement of finite sample size converges to 1 among all random

permutations, such that with probability converging to 1 a permutation test

breaks dependency.

For exchangeable {Ui} here, we instead have (Ui, Xi)|θ
i.i.d.
∼ FUX|θ asymptoti-

cally. The distribution of θ is the limiting empirical distribution of {Ui}, which

is either asymptotically independent of all Xi or dependent only on finite num-

ber of Xi. Thus Ui is asymptotically conditionally independent with Xσ(i) with
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probability converging to 1, and we have

MGCn(U,Xσ) = E(MGCn(U,Xσ)|θ)→ 0

Moreover, when the transformation from A to Ut is injective, we have

A is independent of X

⇔ U t is independent of X for all t

⇔ MGCn(U
t,X) is asymptotically 0,

where the second line follows from injective transformation, and the third line

follows from Theorem 1 and Theorem 2. Thus DMGC is consistent between A

and X.

Note that without the injective condition, the reverse direction of the second

line may not always hold, i.e., when the diffusion maps are independent from

the nodal attributes, the adjacency matrix may be still dependent with the

nodal attributes. In that case, DMGC is still valid but the dependency may not

be detected by DMGC.

(Corollary 1). (1) Changing the test statistic only affects Theorem 2. Both

DCORR and MGC satisfy Theorem 2 directly, while HHG is also a statistic that

is 0 if and only if independence (Heller et al., 2013).
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(2) When A is symmetric and binary, the transformation from A to L is

injective, i.e., two different A always produce two different L. Then for each

unique L, the eigen-decomposition is always unique such that L to Ut=1 is in-

jective, provided that the dimension choice is made correct at q.

(Corollary 2). From Proposition 1 and 2, Ut=1 is asymptotically equivalent to

the latent positions W up-to a bijection. Moreover, under RDPG, if two differ-

ent adjacency matrices yield the same Ut=1, they must asymptotically equal

the same latent positions and asymptotically the same adjacency matrix (i.e.,

the difference in Frobenius norm converges to 0). Therefore injective holds

asymptotically, and Theorem 3 applies.

A.2 Additional Simulation

In order to investigate the performance of test statistics under the violation

of non-positive semi-definite link function, i.e. under non-RDPG, we generate

following stochastic block model (SBM) with two blocks for i, j = 1, 2, . . . , n =

100:

Zi
i.i.d.
∼ B(0.5)

A(i, j) | Zi, Zj ∼ Bernoulli ((0.5− ϵ)I (|Zi − Zi| = 0) + 0.3I (|Zi − Zj| ≠ 0))

Xi | Zi ∼ B (Zi/3) ,

(A.4)
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where Zi represents block membership and nodal attribute of Xi depends on

Zi. Above Equation A.4 results non-positive semi-definite graph when ϵ > 0.2,

and beyond ϵ > 0.2 increasing ϵ implies larger dependency.

Level of deviation (ε)

P
o
w

e
r

0
0
.2

0
.4

0
.6

0
.8

1

0 0.3 0.35 0.4 0.5

l

l

l
l

l

l

l l

l l l l

l
l

l

l

MGC ⋅ DM

dCorr ⋅ DM

HHG ⋅ DM
FH Test

Figure A.1: Note that discrepancy in edge probability between the two blocks

is both 0.2 when ϵ = 0 and ϵ = 0.4. Whereas MGC, DCORR, and HHG achieve

higher power at ϵ = 0.4 than ϵ = 0.0, FH test does not work well under ϵ > 0.2.

Here testing power is empirically derived from m = 500 random replicates of

which p-value is from r = 500 permutation samples.

Figure A.1 shows that distance-based methods, i.e., MGC, DCORR, and HHG,

all preserve testing power under ϵ > 0.2; while likelihood-based test of FH-test

does not.
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A.3 Random Dot Product Graph Simu-

lations
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Figure A.2: Illustrations of randomly generated n = 50 points of {(Wi, Xi) : i =
1, 2, . . . , 50} (red dots) along with their population version without noise (black

dots).

For the 20 simulations under RDPG, we describe the generating distribution

(W̃i, X̃i)
i.i.d.
∼ FW̃ ,X̃ under each scenario. Visualization for the sample observa-

tions of {(Wi, Xi) : i = 1, 2, . . . , n = 50} is shown in Figure A.2. Notation-wise,

N(µ, σ) denotes the normal distribution with mean µ and standard deviation σ,

U[a, b] denotes the uniform distribution from a to b, B(p) denotes the Bernoulli
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distribution with probability p, and ϵi denotes white noise.

1. Linear

W̃i ∼ U[0, 1], ϵi ∼ N(0, 0.5),

X̃i = W̃i + ϵi.

2. Exponential

W̃i ∼ U[0, 3], ϵi ∼ N(0, 5),

X̃i = exp(W̃i) + ϵi.

3. Cubic

W̃i ∼ U[0, 1], ϵi ∼ N(0, 0.5),

X̃i = 20(W̃i − 0.5)3 + 2(W̃i − 0.5)2 − (W̃i − 0.5) + ϵi.

4. Joint Normal

(W̃i, X̃i) ∼ N
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5. Step Function

W̃i ∼ U[−1, 1], ϵi ∼ N(0, 0.5),

X̃i = I(W̃i > 0) + ϵi.

6. Quadratic

W̃i ∼ U[−1, 1], ϵi ∼ N(0, 0.3),

X̃i = W̃ 2
i + ϵi.

7. W Shape

W̃i ∼ U[−1, 1]

X̃i = 4(W̃ 2
i − 0.5)2

8. Spiral

Zi ∼ U[0, 5], ϵi ∼ N(0, 0.1),

W̃i = Zi cos(Ziπ),

X̃i = Zi sin(Ziπ) + ϵi.
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9. Bernoulli

W̃i ∼ B(0.5), ϵi ∼ N(0, 1),

X̃i = (2B(0.5)− 1)W̃i + ϵi.

10. Logarithm

W̃i ∼ U[−1, 1], ϵi ∼ N(0, 5),

X̃i = 5 log2(|W̃i|) + ϵi.

11. Fourth Root

W̃i ∼ U[0, 1], ϵi ∼ N(0, 0.5),

X̃i = (|W̃i + ϵi|)
1/4

.

12. Sine Period 4π

W̃i ∼ U[−1, 1], ϵi ∼ N(0, 0.01),

X̃i = sin(4W̃iπ) + ϵi.
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13. Sine Period 16π

W̃i ∼ U[−1, 1], ϵi ∼ N(0, 0.01),

X̃i = sin(16W̃iπ) + ϵi.

14. Square

Ui1 ∼ U[−1, 1], ui2 ∼ U[−1, 1],

W̃i = Ui1 cos(−π/8) + Ui2 sin(−π/8),

X̃i = −Ui1 sin(−π/8) + Ui2 cos(−π/8).

15.Two Parabolas

Z̃i ∼ B(0.3), ϵi ∼ N(0.5, 0.3),

W̃i ∼ U[0, 1],

X̃i = (W̃ 2
i + ϵi)(Z̃i − 0.5).
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16. Circle

Ui ∼ U[−1, 1], ϵi ∼ N(0, 0.05),

W̃i = cos(Uiπ),

X̃i = sin(Uiπ) + ϵi.

17. Ellipse

Ui ∼ U[−1, 1],

W̃i = 5 cos(Uiπ),

X̃i = sin(Uiπ).

18. Diamond

Ui1 ∼ U[−1, 1], Ui2 ∼ U[−1, 1],

W̃i = Ui1 cos(−π/4) + Ui2 sin(−π/4),

X̃i = −Ui1 sin(−π/4) + Ui2 cos(−π/4).
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19. Multiplicative Noise

W̃i ∼ N(0.5, 1), ϵi ∼ N(0.5, 1),

X̃i = W̃i · ϵi

20. Independence

W̃i ∼ N(0, 1)

X̃i ∼ U(0, 1)
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Appendix B

Chain Graphs and Causal

Inference in Social Network

This is a joint work in collaboration with Elizabeth Ogburn and Ilya Sh-

pitser, and this Appendix presents a part of Ogburn et al. (2018b).

B.1 Graphs and Graphical Models

Graphical models use graphs–collections of vertices, representing random

variables, and edges representing relations between pairs of vertices–to con-

cisely represent conditional independences that hold among the random vari-

ables. At their most general, the graphical models we will consider in this pa-

per are represented by mixed graphs containing directed (→), and undirected
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(−) edges, such that at most one edge connects two vertices. In this section we

review necessary concepts and terminology.

A sequence of non-repeating vertices (V1, . . . , Vk) is called a path if for ev-

ery i = 1, . . . , k − 1, Vi and Vi+1 are connected by an edge. A path is partially

directed if there exists an ordering of the vertices such that all directed edges

in the path point towards the vertex with a larger index. A partially directed

path is directed if it contains no undirected edges. A mixed graph is contains

a partially directed cycle if it contains a partially directed path with a directed

edge from the last to the first node in the path. A mixed graph with no partially

directed cycles is called a chain graph (CG). A chain graph without undirected

edges is called a directed acyclic graph (DAG), and a chain graph without di-

rected edges is an undirected graph (UG).

If an edge A → B exists in a graph G, A is a parent of B, and B is a child

of A. If an edge A − B exists in G, then A is a neighbor of B (and vice versa).

The sets of parents and children of A in G are denoted by paG(A) and chG(A),

respectively. We define these sets on sets of vertices disjunctively, e.g. for a set

of vertices A, paG(A) ≡
⋃

A∈A paG(A).

Consider an edge subgraph of a CG G that drops all directed edges and

retains undirected edges. A connected component in such a subgraph is called

a block. The set of blocks in a CG G will be denoted by B(G). This set partitions

the set of vertices in G. In an undirected graph G, a clique is a maximal fully
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V1 V2

V3V4

(a)

V1 V2

A2A1

(b)

A

C

Y

(c)

Figure B.1: (a) A simple undirected graph. (b) The simplest chain graph with

an independence model not representable as either a DAG or an undirected

graph. (c) A causal graph representing observed confounding of the treatment

A and outcome Y by a set of covariates C.

connected set of vertices. Let the set of cliques in the edge subgraph be C(G).

Note that unlike B(G), C(G) is not necessarily a partition of vertices in G.

Graphical models encode conditional independences that hold in p(V), the

joint distribution of the random variables corresponding to the vertices of the

graph. When a conditional independence holds, it tells us something about

how p(V) can be factorized, informing choices of models for p(V). In the next

sections, we describe results that translate the conditional independences en-

coded in a graphical model into a factorization of p(V), and describe models

for p(V) that are consistent with the factorization. Any joint density that can

be written according to that factorization will be consistent with the graphical

model.
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B.1.1 Directed acyclic graph models and causal

inference

Given DAG G, a DAG model is a set of distributions p(V) that satisfy the

following Markov factorization:

p(V = v) =
∏

V ∈V

p(V | paG(V )). (B.1)

That is, the joint distribution of V is given by the product of the conditional dis-

tributions of each node given its parents. Each conditional distribution can be

modeled directly to get parsimonious models for joint distributions over DAGs.

If a path in a DAG includes X, W and Z and if there are arrows from

both X and Z into W , then W is a collider on the path. A path can be un-

blocked, meaning roughly that information can flow from one end to the other,

or blocked, meaning roughly that the flow of information is interrupted at some

point along the path. If all paths between two variables are blocked, then the

variables are d-separated, and if two variables are d-separated then they are

statistically independent. A path is blocked if there is a collider on the path

such that neither the collider itself nor any of its descendants is conditioned

on. An unblocked path can be blocked by conditioning on any noncollider along

the path. Two variables are d-separated by a set of variables if conditioning

on the variables in the set suffices to block all paths between them, and if two
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variables are d-separated by a third variable or a set of variables then they are

independent conditional on the third variable or set of variables (Pearl, 2000).

DAGs are powerful tools for causal inference using observational data and

have gained widespread use in epidemiology, social sciences, and other fields,

because they can be used to determine whether and how a counterfactual quan-

tity can be identified from observed data. A primary object of interest in causal

inference is a counterfactual or potential outcome Y (a), which is a random vari-

able representing the outcome, Y , that would have been observed if, possi-

bly contrary to fact, an exposure or treatment A had been set to a. For a bi-

nary treatment, causal effects of A on Y can be expressed as contrasts between

E[Y (1)] and E[Y (0)].

Inferences about counterfactuals are possible under assumptions linking

the distribution p(V), with {Y,A} ⊆ V, representing factual data we observe,

and the counterfactual distributions p(Y (a)) for any a in the support of A.

The consistency assumption states that if the event A = a is observed, then

Y (a) = Y . In other words, the response Y does not distinguish between coun-

terfactual assignment and factual occurrence of any value a. In the case of

binary A, consistency entails that we observe one of the two counterfactual

responses Yi(1), Yi(0) for every unit i. The specific response we obtain corre-

sponds to actually observed value of Ai (treatment for that unit). Consistency

on its own is insufficient to make inferences about the ACE, as it gives us
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only half of the relevant information. The assumption of conditional ignorabil-

ity (Rosenbaum and Rubin, 1983), or no unmeasured confounders, states that

A ⊥⊥ {Y (1), Y (0)} | C, for a set of observed variables C. Conditional ignorability

is meant to represent the situation where A is not randomized and the treat-

ment assignment process and the outcomes are confounded, but all sources of

confounding are observed and contained in C. Under this assumption, we have

the following derivation:

p(Y (a)) =
∑

C

p(Y (a) | C)p(C) =
∑

C

p(Y (a) | A = a,C)p(C) =
∑

C

p(Y | a,C)p(C).

This is sometimes known as the adjustment formula or backdoor formula.

A DAG is called a causal DAG if it includes all common parents of any

node in the graph. Whether conditional ignorability holds for a particular

treatment-outcome relation can be read off of a causal DAG via the backdoor

criterion (see Pearl (2000)): if all of the paths from the treatment to the outcome

that begin with an arrow pointing into treatment can be blocked by observed

covariates, then conditional ignorability holds. As a simple example, a setting

where conditional ignorability hold are represented by a DAG in Figure B.1

(c). The directed arrows in such graphs can be interpreted informally to mean

direct causation (see e.g. (Richardson and Robins, 2013) for a precise interpre-

tation). In Figure B.1 (c), C acts as an observed common cause of A and Y , and
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therefore any observed association between A and Y could be due to either the

causal relationship of A and Y , represented by a directed edge between them,

or to the non-causal dependence induced by C.

The g-formula (Robins, 1986) generalizes the adjustment formula to de-

scribe the relationship between the observed data distribution p(V) and distri-

butions of counterfactual random variables of the form {V \A}(a) ≡ {V (a)|V ∈

V A}. The intervention operation that sets a variable A to a can be viewed as re-

placing the distribution p(A | paG(A)) by a deterministic distribution p(A = a) =

1, and all distributions {p(V | paG(V )} by distributions {p(V | paG(V ) \ {A}, a)}

for V ∈ chG(V ). Generalizing this reasoning to a set of variables A being inter-

vened on to attain a set of values a results in the g-formula:

p ({V \A} (a) = v) =
∏

V ∈V\A

p(V = v | paG(V ) \A, aA∩paG(V )) (B.2)

where aA∩paG(V ) denotes the intervention values for the subset of A that inter-

sects with the parents of V .

Typically in causal inference applications, we are interested in the counter-

factual response of a single outcome variable Y ∈ V \A to an intervention that

sets A to a, which can easily be obtained from the g-formula, especially for a low

dimensional outcome Y . But in settings with complex networks of outcomes,

e.g. representing systems of agents interacting with one another, statistical
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inference about the g-formula is impractical or impossible, and other tools are

needed.

B.1.2 Undirected graph and chain graph mod-

els

Given an undirected graph G, an undirected graphical model is a set of dis-

tributions p(V) that satisfy the global Markov property (Lauritzen, 1996): each

node is independent of its non-neighbors conditional on its neighbors. That

gives the following clique factorization:

p(V) =
1

Z

∏

C∈C(G)

ϕC(C). (B.3)

Any undirected graphical models can be written as a log-linear model, with a

term for each clique in the factorization:

p(V = v) =
1

Z
exp

⎧

⎨

⎩

∑

C∈C(G)

log ϕC(vC)

⎫

⎬

⎭

, (B.4)

where Z is a normalizing constant. This form implies conditional independence

constraints on p(V) via the global Markov property on G.

For example, the factorization for the grid graph in Figure B.1 (a) can be
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re-expressed as

p(V = (v1, v2, v3, v4)) =
1

Z
ϕ1,2(v1, v2)ϕ2,3(v2, v3)ϕ3,4(v3, v4)ϕ1,4(v1, v4)

=
1

Z
exp {log ϕ1,2(v1, v2) + log ϕ2,3(v2, v3) + log ϕ3,4(v3, v4) + log ϕ1,4(v1, v4)}

=
1

Z
exp{h1v1 + h2v2 + h3v3 + h4v4

+ k1,2v1v2 + k2,3v2v3 + k3,4v3v4 + k1,4v1v4},

where without lack of generality we can assign hivi to any log ϕij. Conditional

independence constraints V1 ⊥⊥ V3 | V2, V4 and V2 ⊥⊥ V4 | V1, V3 hold in any

p(v1, v2, v3, v4) with the above factorization.

Chain graphs allow both directed and undirected edges, and can be used to

define hybrid graphical models combining features of both undirected graphs

and DAGs (Lauritzen, 1996). Given a chain graph G with a vertex set V, we

say a distribution p(V) is in the chain graph model of G, if

p(V = v) =
∏

B∈B(G)

p(B | paG(B)), (B.5)

where each factor p(B | paG(B)) further factorizes as

p(B | paG(B)) =
1

Z(paG(B))

⎛

⎝

∏

C∈C((GfaG(B))
a),C ̸⊆paG(B)

ϕC(vC)

⎞

⎠ , (B.6)

Z(vpaG(B)) is a mapping from values of paG(B) to appropriate normalizing con-
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stants, (GfaG(B))
a is an undirected graph consisting of vertices in faG(B) ≡

B ∪ paG(B), and an undirected edge between any pair in faG(B) adjacent in

G or any pair in paG(B).

The chain graph factorization can be viewed as a two-level factorization.

The outer factorization (B.5) resembles the Markov factorization for DAG mod-

els (B.1) (Pearl, 1988), while the inner factorization (B.6) for each outer factor

p(B | paG(B)) resembles the undirected factorization (B.3). The chain graph

factorization of p(V) induces a set of conditional independences on p(V) via a

global Markov property just as was the case for undirected models, although

this property is more involved to define (see Lauritzen (1996) for details).

For example, the chain graph in Figure B.1 (b) has the factorization

p(v1, v2, a1, a2) =

(

1

Z(a1, a2)
exp {ϕv1,v2(v1, v2)ϕv1,a1(v1, a1)ϕv2,a2(v2, a2)}

)

p(a1)p(a2).

and implies that the conditional independences V1 ⊥⊥ A2 | A1, V2 and V2 ⊥⊥ A1 |

A2, V1 hold in p(v1, v2, a1, a2).

Undirected and chain graph models have a deceptively intuitive appeal for

modeling social network data. At first glance the global Markov property seems

like a reasonable way to impose statistical structure on the ties in a social net-

work: it implies that each node is “screened off” from its non-neighbors given

its neighbors, which sounds consistent with a process of influence where each
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node can only affect its neighbors and any longer range dependence is medi-

ated by paths from one node, through its neighbors, to the broader network.

However, undirected edges are not consistent with the causal influence of one

individual on another. Indeed, Lauritzen and Richardson (2002) argue that

many seemingly intuitive uses for the undirected edges in undirected and chain

graphs are in fact misguided. Undirected edges have been used to represent

symmetric associations, non-causal associations, simultaneous responses, pro-

cesses with feedback, ignorance of the direction of arrow between two nodes,

and causal relations that can change directions, but all of these are inconsis-

tent with chain graph models. Importantly, they argue that there are no chain

graph models consistent with most DAG models: these two classes of models

represent largely non-overlapping classes of joint distributions. Even project-

ing a DAG model onto a subset of variables in the model cannot generally re-

sult in a chain graph model. Instead, the undirected edges in chain graphs

represent certain kinds of equilibria, some examples of which are described in

Lauritzen and Richardson (2002).

B.1.3 Graphical models for social interactions

Causal DAG models, or the mathematically equivalent causal structural

equation models, are assumed either implicitly or explicitly in almost all exist-

ing methods for learning about social interactions, interference, and contagion
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from observational data. DAGs and causal structural equation models corre-

spond to a mechanistic view of the (macroscopic) world, which is espoused by

most researchers across many disciplines. In particular, almost all approaches

to learning about causal effects from data assume are based on this mechanis-

tic view of the world. The impact that one individual has on another is a causal

effect, and therefore most of the literature on social influence makes use of

causal ideas, terminology, and methods (though sometimes not overtly).

Ogburn et al. (2014) is an overview of the use of DAGs to represent inter-

ference and contagion. New methods for learning about spillover and conta-

gion effects from social network data similarly rely on assumptions that are

consistent with DAG models but not with CG models, explicitly in the case of

methods for observational data proposed by van der Laan (2014) and Ogburn

et al. (2017) and implicitly in many of the methods based on randomized exper-

iments (e.g. Aronow and Samii, 2012; Athey et al., 2016; Bowers et al., 2013;

Choi, 2014; Eckles et al., 2014; Forastiere et al., 2016; Graham et al., 2010;

Hong and Raudenbush, 2006, 2008; Hudgens and Halloran, 2008; Jagadeesan

et al., 2017; Liu and Hudgens, 2014; Liu et al., 2016; Rosenbaum, 2007; Rubin,

1990a; Sobel, 2006; Tchetgen Tchetgen and VanderWeele, 2012; VanderWeele,

2010). However, as we will show in the next section and as has been acknowl-

edged by some of the aforementioned researchers, DAGs in these settings can

quickly become cumbersome.
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B.2 Chain Graph Approximation

In contrast to classical causal inference, where treatments and outcomes

are independent across subjects, we are interested in representing and rea-

soning about situations where outcomes are complicated and may represent

dependent processes across individuals connected by social ties. Consider a

social network of n individuals, or nodes. Node i is associated with a treat-

ment or exposure, Ai, an outcome Yi, and possibly covariates. For example, Y

could represent opinions and A advertising campaigns; Y could represent be-

havior and A encouragement interventions, or Y could represent an infectious

disease and A vaccination. We represent a set of outcomes on individuals in

a social network by vertices connected by undirected edges. In addition, we

want to represent causal influences of interventions on these outcomes, and

variables that may serve as confounders for such influences in observed data.

Edges involving these variables will be directed, representing causality. When

individual’s beliefs or opinions undergo phase transitions to orderly states, e.g.

when there is external pressure to reach a unanimous consensus, or when it

can be argued that the distribution of individual’s behaviors, beliefs, opinions,

or other outcomes attains an equilibrium across network ties, then a chain

graph may be the correct model for the joint distributions of outcomes across

a network and interventions on those outcomes. For example, in the Supreme
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Court data that we analyze below, outcomes represent decisions made under

time constraints and with pressure for the nine justices to reach a unanimous

decision; these may indeed be in equilibrium. More common in the existing lit-

erature are settings in which DAG models would be the most appropriate but

are not tractable given reasonable constraints on data collection.

We make the routine assumption that interference can occur only directly

between two individuals who share a tie in the underlying social network. That

is, any effect of an ego’s treatment on a non-alter’s outcome must be mediated

by mutual connections. Figure B.2 (a) depicts one of the simplest such settings:

the network is comprised of only three individuals; individuals 1 and 2 share

a tie and 2 and 3 share a tie; each individual’s outcome is affected by her own

treatment, her own past outcomes, and her social contacts’ past outcomes. In

order for this DAG to be valid, the units of time captured must be small enough

that any influence passing from 1 to 3 through 2 cannot occur in fewer than 2

time steps (Ogburn et al., 2014). This will be the case if influence can only occur

during discrete interactions such as in-person or online encounters, and the

unit of time is chosen to be the minimum time between encounters. This DAG

model encodes several conditional independences, and if we are able to observe

the outcome for all agents at all time steps, inference under these models may

be possible (Ogburn et al., 2017).

However, in most practical applications, with the exception of online social

173



APPENDIX B. CHAIN GRAPHS AND CAUSAL INFERENCE IN SOCIAL

NETWORK

networks, it is only be possible to observe the outcome at one or a few time

points. If data are generated according to the DAG in Figure B.2 (a) but the

outcome is observed at only one time point (at which the outcome is not in a

chain graph equilibrium), then the resulting model is represented by a mixed

graph representing the latent projection of all of the variables in Figure B.2 (a)

onto the subset of those variables that are actually observed, with bidirected

edges representing the presence of one or more hidden common causes (Spirtes

and Verma, 1992). A general construction algorithm for these latent projection

mixed graphs is given by Pearl (2009), and the result for Figure B.2 (a) is shown

in Figure B.2 (b).

Collecting or accessing the detailed temporal data required to use the mod-

els like Figure B.2 (a) is often impractical or impossible, but the saturated

model for the marginal in Figure B.2 (b) quickly becomes unwieldy, as the num-

ber of parameters required to estimate and use the model grows exponentially

with the number of nodes: the latent projection graph will generally not be

sparse, even if the underlying social network governing opinion formation is.

To see this, note that after a single time step, an individual only influences

neighboring individuals, but after two time steps, also neighbors of neighbors.

In the three-person network represented by Figure B.2, this is enough to render

the latent projection of Fig B.2 (b) fully saturated, with no conditional indepen-

dences. After many time steps, the individual’s influence would have time to
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Figure B.2: (a) Causal DAG representing opinion formation among peers. Ai

represents interventions meant to influence subject i, Y k
i is the ith subject’s

opinion at time k. (b) A latent projection of the model in (a) onto variables

A1, A2, A3, Y
T
1 , Y T

2 , Y T
3 , representing the distribution of opinion in (a) at time T ,

before equilibrium is reached. The red bidirected arrows represent the fact that

the outcomes at intermediate time points are unmeasured common causes of

the observed outcomes. (c) A chain graph model that approximates the distri-

bution of opinion in (a) at time T under certain data generating processes.

reach most of the social network. This implies that any two outcomes at time t,

for a large enough t, will be related via a chain of hidden common causes, even

if the corresponding individuals are far from each other in the social network.

To represent these chains of hidden common causes, the latent projection graph

would contain a clique of bidirected edges encompassing opinions of everyone

in the network. The significance of a non-sparse latent projection is that the

corresponding statistical model is has exponentially many parameters, even if

all variables are binary. These limitations are reflected in the literature, which

rarely includes applications to real data.

Unlike the model in Figure B.2 (b), the chain graph model represented by

Figure B.2 (c) is not saturated. In certain cases, a chain graph model that is as

sparse as the underlying social network may serve as a good approximation of

the intractable latent projection model.
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Consider chain graph models like the one in corresponding to Figure B.2

(c), but with arbitrary undirected components corresponding to outcomes ob-

served on social network nodes. These models imply that each node’s out-

come is independent of its non-neighbors’ outcomes conditional on its neigh-

bors’ outcomes and on any treatments or covariates with arrows pointing into

the node. For chain graphs like Figure B.2 (c), with a single treatment for

each node, the conditional independences implied by the graph are of the form

Y T
i ⊥⊥Aj, Y

t
j | Ai,

{

Y T
l , ∀l adjacent to i

}

. These conditional independences fail

to hold in the corresponding DAG models due to two different types of paths,

depicted in red in Figure B.3.

Paths like the one in Figure B.3 (a) represent the fact that the past out-

comes of mutual connections affect both Y T
i and Y T

j ; this is just one of many

such paths. All of these paths can be blocked by conditioning on

{Y t
l , for all l adjacent to i and for 1 ≤ t ≤ T − 1} (Ogburn and VanderWeele,

2017). If the outcome evolves slowly over time, Y t
l and Y T

l will be highly cor-

related and conditioning on {Y T
l , for all l adjacent to i} will mostly block these

paths. We expect the paths through Y t
l to be weaker for smaller t than for t

close to T . If paths through Y t
l are weaker for earlier times t, then the re-

lationship between Y t
l and Y T

l can also weaken for decreasing t – as long as

it remains strong enough to allow conditioning on Y T
l to approximately block

paths through Y t
l .
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However, conditioning on
{

Y T
l , for all l adjacent to i

}

opens paths through

colliders, like the one depicted in Figure B.3 (b). M-shaped collider paths like

these are known to induce weak dependence in general (Greenland, 2003), and

the magnitude can be bounded more precisely using knowledge of the partial

correlation structure of the variables along the path (Chaudhuri and Richard-

son, 2002). Informally, if the dependence of Y T
l on Y T−1

l is stronger than that

of Y T
l on Y T−1

i and Y T−1
j , as it will be if the outcome evolves slowly over time,

then the dependence induced by paths through colliders may be negligible.

Although chain graph models exist in which the relationships along undi-

rected edges are not symmetric, we found in simulations that DAGs with sym-

metric relationships for connected pairs of individuals were better approxi-

mated by chain graphs. It might be reasonable to assume this kind of sym-

metry if, for example, the outcome is a behavior or belief and the subjects are

peers with no imbalance of power or influence, or if the outcome is an infectious

disease and the subjects have similar underlying health and susceptibility sta-

tuses.

To demonstrate how the data generated from DAG model can be success-

fully approximated by a chain graph, we simulated ten random nine-node

graphs with edge probability p = 0.3 with nine agents. For each random graph,

we generated outcomes for each node according to a DAG model independently

1000 times (See Equation B.7). For all nonadjacent pairs (i, j), we tested (1)
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Figure B.3: Paths that connect Y T
1 and Y T

3 even when conditioning on Y T
2 and

A1 and/or A3. Boxes indicate variables that are conditioned on.

the null hypothesis of marginal independence Y t
i ⊥⊥Y

t
j , (2) the null hypothesis

of conditional independence Y t
i ⊥⊥Y

t
j | {Y

t
l , ∀l adjacent to i}, and (3) the null hy-

pothesis of conditional independence Y t
i ⊥⊥Y

t
j | Ai, {Y

t
l , ∀l adjacent to i}.
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(B.7)

where B(p) denotes Bernoulli distribution with probability p; N (µ, σ) denotes
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Normal distribution with mean µ and standard deviation σ; N(v) means a set

of adjacent nodes of v. Conditional and marginal independence test results

applied for all non-adjacent pairs are presented in Figure B.4.
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Figure B.4: Each bar plot shows the proportion of rejecting the null of marginal

independence (blue), conditional independence 1 (green), conditional indepen-

dence 2 (red) applied for all non-adjacent pairs from each random graph. Here

marginal independence means Y t
i ⊥ Y t

j ; conditional independence 1 means

Y t
i ⊥ Y t

j

⏐

⏐Y t
N(i)\{i}; and conditional independence 2 means Y t

i ⊥ Y t
j

⏐

⏐Y t
N(i)\{i}, Ai.

Marginally dependent non-adjacent pairs Y t
i and Y t

j are conditionally indepen-

dent when conditioned on Ai as well as Y t
N(i)\{i}, maintaining nominal 5% of

rejection rate (horizontal line). (Zero proportion of conditional independence

tests in network 8 is due to large adjacent peers conditioned on compared to

the sample size n = 1000.)
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We found that the conditional independence nulls were rejected at close to

the nominal rate of 5% expected under the null. In contrast, the marginal

independence null was rejected more frequently, suggesting that conditioning

on neighbors’ outcomes may recover approximate independence under at least

some data generating processes, and that the chain graph model may in those

cases be a reasonable parsimonious approximation to the true underlying con-

ditional independences.

B.3 Collective Decision Making in Supreme

Court

The U.S. Supreme Court is comprised of nine justices, one of whom is the

Chief Justice, tasked with presiding over oral arguments, serving as the spokesper-

son for the court, and other administrative roles. After a case is heard by the

Supreme Court, the justices discuss and decide the case over a period of several

weeks or months. The final outcome is decided by majority vote; the majority

and, when the decision is not unanimous, the minority write opinions justify-

ing their decisions. The oral and written arguments presented to the court and

the judicial opinions are public resources; however, we have no access to the de-

bates and discussions that lead the justices to their decisions. This precludes

the use of a DAG model for the evolution of individuals’ opinions over time, but
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is amenable to a chain graph model with Yi defined as Justice i’s final opinion.

Data on all Supreme Court decisions since 1946, along with rich informa-

tion on the nature of the cases and the opinions, is maintained by Washing-

ton University Law School’s Supreme Court Database (http://scdb.wustl.

edu/data.php). We used the subset of these data corresponding to the Second

Rehnquist Court, a period of ten years (1994-2004) during which the same nine

justices served together: William Rehnquist (Chief Justice), John Paul Stevens,

Sandra Day O’Connor, Antonin Scalia, Anthony Kennedy, David Souter, Clarence

Thomas, Ruth Bader Ginsburg, and Stephen Breyer. Over these ten years the

court decided 893 cases.

The Supreme Court Database has classified each case into one of 14 issue

areas, such as criminal procedure and civil rights. We examined the effect of

issue area on conservative vs. liberal opinions. For each case, each justice has

an outcome, Y , which is an indicator of a liberal opinion. The ruling in the case

is liberal if at least 5 of the justices form liberal opinions and conservative oth-

erwise. During the Rehnquist court, 56% of the decisions were conservative.

Clarence Thomas was the most conservative justice, signing the conservative

opinion in 72% of cases, while Ruth Bader Ginsburg was the most liberal, sign-

ing the liberal opinion in 60% of cases. However, we found that issue area had a

strong effect on both individual outcomes and on overall court decisions, which

is consistent with literature on the effect of issue areas on the ideology of each
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justice or on the final decision of Supreme Court (Tate, 1981; Lu and Wang,

2011).

Issue area Criminal procedure Civil rights First amendment Due process Privacy Attorneys

|case| 231 161 59 43 21 5

Issue area Unions Economic Activity Judicial Power Federalism Federal taxation Total

|case| 18 145 133 57 20 893

Table B.1: The number of cases decided during 1994-2004. There is no case

about Interstate relations, Miscellaneous, nor Private action.

YRehnquist YBreyer

YStevens

YO’Connor

Acase : Judicial Power

YKennedy

YScalia

YSouter

YThomas

YGinsburg

Figure B.5: The underlying network between nine justices assuming the model

where the intervention of A indicates the case is about judicial power. The color

of each node indicates well-known political orientation or political party affili-

ation – red indicates conservative or from republican party, and blue indicates

liberal or from democratic party, but of course, we do not know the it really

is. The undirected edge between the justices implies the existence of some in-

teractions or feedback in decision making procedures learned through network

structure learning procedure.
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B.3.1 Causal inference on collective decisions

We will separately consider the effects of indicators of (i) criminal procedure,

(ii) civil rights, (iii) economic activity, and (iv) judicial power on conservative vs

liberal opinions. Although there is strong evidence (including self-report by

the justices) that the Court works hard to come to unanimous decisions, 5-to-4

decisions are frequent (Sunstein, 2014; Riggs, 1992). There is also considerable

academic interest in each justice’s personal orientation (Songer and Lindquist,

1996; Tate, 1981). A chain graph model can answer causal questions such as:

do any of the issue areas cause a significantly greater probability of unanimous

decisions relative to the other areas?

First, we fit a log-linear model with all pairwise interaction terms in order

to estimate the social network by which justices influence one another, with

undirected edges between justices given by the magnitude of their interaction

coefficient. (This ad-hoc method performed as well as established structure-

learning algorithms in simulations and was easier to implement.) We used this

estimated network as the undirected component of a chain graph and added a

single treatment variable, i.e. issue area, that jointly affects each justice’s out-

come. The resulting chain graph for the judicial power issue area is displayed

in Figure B.5. Informally, there seems to be a liberal (blue) clique and two

conservative (red) cliques: a more moderate one comprised of O’Connor and

Kennedy, and a more conservative one comprised of Scalia and Thomas–with
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Chief Justice Rehnquist serving as a hub with connections to almost every

other justice (with the exception of Souter). We found that justices interact

with one another not only based on their shared liberal or conservative lean-

ings, but also across that divide. For example, Justices Stevens and Kennedy

are known to have had different judicial philosophies and views, but there is

anecdotal evidence that they often influenced one another’s votes1. The tie be-

tween Breyer and O’Connor could be explained by their social connections2 or

their shared views on judicial independence3. Thomas and Breyer sat next to

each other on the bench and were thought to have developed a close working

relationship as a result4.

Separately for each of the four issue areas, we estimated the parameters of

the following chain graph model, based on the graph in Figure B.5:

p
(

Y = (y1, y2, . . . , y9)|A = a
)

=
1

Z
exp

⎧

⎨

⎩

9
∑

i=1

hiyi +
9
∑

i,j=1,eij=1

kijyiyj +
9
∑

i=1

γiayi

⎫

⎬

⎭

,

(B.8)

where eij = 1 implies justice i and j share an undirected edge in the chain

graph. The parameter hi represents the conservative or liberal leaning of Jus-

tice i, with a positive hi indicating bias towards liberal opinions, and the inter-

1http://www.nytimes.com/2007/09/23/magazine/23stevens-t.html
2http://blogs.findlaw.com/supreme_court/2017/03/supreme-court-

shutters-justice-oconnors-workout-class.html
3http://www.pbs.org/newshour/bb/law-july-dec06-independence_09-26/
4http://www.abajournal.com/news/article/breyer_sometimes_poses_

questions_for_thomas_during_oral_arguments/
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action parameter kij captures the tendency of Justices i and j to agree, with a

positive kij indicating tendency to agree while a negative kij indicates tendency

to disagree. The parameter γi is related to the causal effect of issue area a on

Justice i’s opinions, with positive γi indicating tendency toward liberal opinions

above and beyond what can be explained by the Justice’s independent leaning

or by the interactions with other Justices. In principle three-way interactions

could be added to the model to capture tendencies of groups of three justices to

agree or disagree beyond what the pairwise interactions explain, but we did not

have enough data to reliably estimate these additional parameters. We boot-

strapped the standard errors in order to calculate 95% confidence intervals,

with nb = 500 bootstrap samples for each model.

Table B.2 displays the main effects for each justice across four issue areas.

As expected, Rehnquist, O’Connor, and Thomas tended towards opinions that

were more conservative across all issue areas, while Stevens, Souter, and Gins-

burg tended towards more liberal opinions. The direction of the main effect for

Justices Scalia, Kennedy, and Breyer depends on the issue area. In Figure B.6

the shade of the node reflects the estimated main effect and the type and width

of the edges reflects the magnitude and sign of the estimated interaction for

A = I(judicial power). The dotted edge connecting Rehnquist and Stevens

represents the only negative interaction. Interestingly, the Rehnquist/Stevens

interaction term is negative (and statistically significant) across all four issue
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areas. This is corroborated by anecdotal evidence, as Stevens was reputed to

be the most likely to disagree with the other justices5 (Sirovich, 2003).

Issue WHRehnquist JPStevens SDOConnor AScalia AMKennedy

Criminal procedure -0.29 [-0.54 ,-0.12] 0.48 [0.35 ,0.63] -0.33 [-0.50 ,-0.16] -0.00 [-0.16 ,0.17] -0.12 [-0.28 ,0.04]

Civil rights -0.12 [-0.35 ,0.07] 0.51 [0.37 ,0.68] -0.27 [-0.46 ,-0.10] -0.02 [-0.19 ,0.15] -0.21 [-0.38 ,-0.03]

Economic activity -0.16 [-0.37 ,0.02] 0.33 [0.20 ,0.47] -0.28 [-0.45 ,-0.12] -0.00 [-0.17 ,0.18] -0.05 [-0.20 ,0.11]

Judicial power -0.20 [-0.46 ,0.02] 0.26 [0.13 ,0.40] -0.23 [-0.43 ,-0.04] -0.13 [-0.32 ,0.08] -0.02 [-0.19 ,0.15]

Issue DHSouter CThomas RBGinsburg SGBreyer

Criminal procedure 0.18 [0.00 ,0.39] -0.42 [-0.61 ,-0.25] 0.30 [0.09 ,0.50] 0.03 [-0.15 ,0.23]

Civil rights 0.27 [0.08 ,0.45] -0.55 [-0.76 ,-0.37] 0.08 [-0.13 ,0.28] 0.15 [-0.03 ,0.35]

Economic activity 0.07 [-0.08 ,0.24] -0.29 [-0.46 ,-0.13] 0.31 [0.09 ,0.49] 0.01 [-0.18 ,0.19]

Judicial power 0.20 [-0.00 ,0.40] -0.28 [-0.49 ,-0.09] 0.14 [-0.09 ,0.33] 0.04 [-0.15 ,0.25]

Table B.2: Coefficients and their 95% confidence intervals corresponding to

personal orientation {ki : i = 1, 2, . . . , 9} in model B.8.

5http://www.nytimes.com/2007/09/23/magazine/23stevens-t.html?mcubz=0
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YRehnquist YBreyer

YStevens

YO’Connor

Acase : Judicial Power

YKennedy

YScalia

YSouter

YThomas

YGinsburg

Figure B.6: The color of each node is shaded according to the estimated co-

efficients for the main effect in Table B.2. The darker the red node, the more

conservative the corresponding justice’s vote tends to be even with influence

of others considered; similarly, the darker the blue node, the more liberal the

justice’s votes are. The width of the edge between justice i and j is weighted

proportional to the absolute value of coefficients kij, and the edge between jus-

tice Rehnquist and justice Stevens is dashed due to the negative value of the

coefficient.

Using the model given in Equation B.8, we estimated the causal effects

of issue area on the majority-based decisions of the nine justices. We found

that judicial power resulted in the highest probability of unanimous decisions,

with those decisions more likely than baseline to be conservative (Table B.6).

Economic activity resulted in a higher probability of liberal and unanimous
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decisions than baseline (Table B.5). Criminal procedures and civil rights both

increased the probability of 4 (liberal)-to-5 (conservative) decisions (Table B.3

and Table B.4).

Criminal procedure

|nl| 0 1 2 3 4

a=1 0.19 (0.02) 0.11 (0.01) 0.08 (0.01) 0.09 (0.01) 0.17 (0.02)

a=0 0.22 (0.02) 0.10 (0.01) 0.06 (0.00) 0.06 (0.00) 0.10 (0.01)

Causal effect -0.03 (0.02) 0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.06 (0.02)

|nl| 5 6 7 8 9

a=1 0.10 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.01) 0.11 (0.02)

a=0 0.07 (0.01) 0.06 (0.01) 0.07 (0.01) 0.06 (0.00) 0.18 (0.01)

Causal effect 0.02 (0.01) -0.00 (0.01) -0.03 (0.01) -0.02 (0.01) -0.07 (0.02)

Table B.3: The estimated probability of having unanimity (when |nl| = 0, 9) or

having dissension when the case is about criminal procedure (a = 1) or others

(a = 0) according to the number of liberal-side vote |nl|. The probability of

unanimity towards liberal opinions decreases in this case.

Civil rights

|nl| 0 1 2 3 4

a=1 0.18 (0.02) 0.11 (0.02) 0.07 (0.01) 0.07 (0.01) 0.16 (0.02)

a=0 0.22 (0.01) 0.10 (0.01) 0.07 (0.00) 0.07 (0.00) 0.11 (0.01)

Causal effect -0.05 (0.03) 0.02 (0.02) 0.00 (0.01) 0.01 (0.01) 0.05 (0.02)

|nl| 5 6 7 8 9

a=1 0.10 (0.01) 0.06 (0.01) 0.08 (0.01) 0.05 (0.01) 0.12 (0.02)

a=0 0.07 (0.01) 0.06 (0.01) 0.06 (0.01) 0.06 (0.00) 0.18 (0.01)

Causal effect 0.03 (0.01) -0.00 (0.01) 0.02 (0.01) -0.01 (0.01) -0.06 (0.02)

Table B.4: The estimated probability of having unanimity (when |nl| = 0, 9) or

having dissension when the case is about civil rights (a = 1) or others (a = 0)

according to the number of liberal-side vote |nl|. The probability of unanimity

towards liberal opinions decreases and 5(conservative)-to-4(liberal) decisions

increase in this case.

Economic activity
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|nl| 0 1 2 3 4

a=1 0.23 (0.03) 0.09 (0.01) 0.07 (0.01) 0.05 (0.01) 0.07 (0.01)

a=0 0.21 (0.01) 0.10 (0.01) 0.07 (0.00) 0.07 (0.00) 0.13 (0.01)

Causal effect 0.02 (0.03) -0.01 (0.01) 0.00 (0.01) -0.01 (0.01) -0.06 (0.01)

|nl| 5 6 7 8 9

a=1 0.05 (0.01) 0.05 (0.01) 0.06 (0.01) 0.08 (0.01) 0.25 (0.03)

a=0 0.09 (0.01) 0.06 (0.01) 0.07 (0.01) 0.05 (0.00) 0.15 (0.01)

Causal effect -0.03 (0.01) -0.02 (0.01) -0.00 (0.01) 0.03 (0.01) 0.10 (0.03)

Table B.5: The estimated probability of having unanimity (when |nl| = 0, 9)

or having dissension when the case is about economic activity(a = 1) or others

(a = 0) according to the number of liberal-side vote |nl|. The probability of

unanimity towards liberal opinions increases in this case.

Judicial power

|nl| 0 1 2 3 4

a=1 0.32 (0.03) 0.11 (0.01) 0.07 (0.01) 0.05 (0.01) 0.07 (0.01)

a=0 0.19 (0.01) 0.10 (0.01) 0.07 (0.00) 0.07 (0.00) 0.13 (0.01)

Causal effect 0.13 (0.04) 0.01 (0.01) -0.00 (0.01) -0.02 (0.01) -0.06 (0.01)

|nl| 5 6 7 8 9

a=1 0.06 (0.01) 0.05 (0.01) 0.06 (0.01) 0.06 (0.01) 0.16 (0.03)

a=0 0.08 (0.01) 0.06 (0.01) 0.07 (0.01) 0.06 (0.00) 0.17 (0.01)

Causal ffect -0.03 (0.01) -0.01 (0.01) -0.01 (0.01) -0.00 (0.01) -0.01 (0.03)

Table B.6: The estimated probability of having unanimity (when |nl| = 0, 9)

or having dissension when the case is about judicial power (a = 1) or others

(a = 0) according to the number of liberal-side vote |nl|. The probability of una-

nimity towards conservative opinions increases and relatively, 5(conservative)-

to-4(liberal) decisions decreases.

B.3.2 Simulation using Supreme Court example

To illustrate how chain graphs can be used to estimate causal effects with

individual-level treatments, we simulated data from the undirected component

of the graph in Figure B.5 with the addition of individual-level treatments A
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and individual level covariates C that are dependent across justices and have

direct casual effects on A and Y . Treatment Ai nudges Justice i towards a

liberal decision. The graph for this setting is too complicated to be helpful,

but Figure B.7 illustrates a simplified chain graph following our data generat-

ing process for three justices sharing two network ties (between 1 and 2 and

between 2 and 3). We specified baseline main effects and pairwise interac-

tion terms using estimates from a log-linear model fit to the actual Supreme

Court data, and then varied the magnitude of the main effects and two-way

interaction terms by controlling the parameters α and β respectively. For each

combination of parameter values, we generated 500 simulated data sets from

the chain graph model, each of which used Gibbs sampling to produce 2000

observations of (Y,A,C).

Y1 Y2 Y3

A1 A2 A3

C1 C2 C3

Figure B.7: Simplified 3-node chain graph representing the data generating

process used in simulations.

Using the same coefficients of ĥ = {ĥi; i = 1, 2, . . . , 9} and k̂ = {k̂ij; i, j =

1, 2, . . . , 9, eij = 1} from Equation 5.18, a chain component of (C,A,Y) are sim-
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ulated using Gibbs sampler (Algorithm 2).

Algorithm 2 Simulation data of (C,A,Y) using Gibbs sampler.

Data: For s = 0, generate initial values (C(0),A(0),Y(0)) :
begin

C
(0)
i

i.i.d.
∼ B(0.5) i = 1, 2, . . . , 9;

A
(0)
i

i.i.d.
∼ B(0.3) i = 1, 2, . . . , 9;

Y
(0)
i ∼ B(logistic(ĥi)), i = 1, 2, . . . , 9;

Y
(0)
i ← 2Y

(0)
i − 1, i = 1, 2, . . . , 9;

for s = 0,1, . . . , 2999 do
i← sample({1, 2, . . . , 9});

C
(s+1)
i ∼ B

(

logisticg(Ci|C
(s)
−i )
)

;

A
(s+1)
i ∼ B

(

logisticg(Ai|C
(s),A

(s)
−i )
)

;

Y
(s+1)
i ∼ B

(

logisticg(Yi|C
(s),A(s),Y

(s)
−i )
)

;

Y
(s+1)
i ← 2Y

(s+1)
i − 1;

Set C
(s+1)
−i = C

(s)
−i , A

(s+1)
−i = A

(s)
−i , and Y

(s+1)
−i = Y

(s)
−i .

Result: {(C(s),A(s),Y(s)); s = 1001, 1002, . . . , 3000}

The above Gibbs sampling utilizes the last n = 2000 sequences of (C,A,Y)

excluding first 1000 burn-in. The Equations B.9 are the conditional densities

used in the Gibbs sampling.

g(Ci|C−i) =− 0.5− 0.2
∑

j∈N(i)\{i}

Cj

g(Ai|C,A−i) =− 0.5− 0.2
∑

j∈N(i)\{i}

Cj + 0.1
∑

j∈N(i)\{i}

Aj

g(Yi|C,A,Y−i) = αĥi + 0.5Ai − 0.2Ci + β
∑

j∈N(i)\{i}

k̂ijYj.

(B.9)

Here the coefficients of {ĥi; i = 1, 2, . . . , 9} and {k̂ij; i, j = 1, 2, . . . , 9, eij = 1}

are from the fitted parameters of the log-linear model (Equation B.10) using
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893 decisions made in Supreme Court. It is believed that incorporating such

parameters in the simulated data reflects the (relative) magnitude of the main

effect and two-way interaction effect embedded in the real data.

p
(

Y = (y1, y2, . . . , y9)
)

=
1

Z
exp

⎧

⎨

⎩

9
∑

i=1

hiyi +
9
∑

i,j=1,eij=1

kijyiyj

⎫

⎬

⎭

(B.10)

For each of nr = 500 simulations having n = 2000 observations generated

from a Gibbs sampler chain graph model, we fit the (correctly-specified and

most parsimonious) log-linear models to estimate unknown parameters in the

conditional density of f(Y|a, c; Θ). Then by Besag (1974), conditional den-

sities (or conditional clique potentials) of f(Yi|Y−i, a, c; Θ̂) can be derived for

i = 1, 2, ..., 9. Details on how to derive conditional densities from the log-linear

models using a chain graph are described in Tchetgen et al. (2017). These

conditional densities are used for Algorithm 3 to generate counterfactual out-

comes.

Let C(s+1000) = c(m) for m = 1, 2, . . . , n = 2000 from 2000 sequences of pre-

vious Algorithm 3. Probability associated with the counterfactual collective

outcome under the treatment a can be estimated using the (hypothetical) ob-
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Algorithm 3 Generating Gibbs sampler based on the estimated coefficients.

Data: Intervention vector a = (a1, a2, . . . , a9), a set of observed covariates c =
{(c1, c2, . . . , c9)}, and estimated coefficients Θ̂.

begin

For s = 0, generate initial values Y(0) :

Y
(0)
i ∼ B(0.5), i = 1, 2, . . . , 9

Y
(0)
i ← 2Y

(0)
i − 1, i = 1, 2, . . . , 9

for s = 0,1, . . . , 5999 do
i← sample({1, 2, . . . , 9});

Y
(s+1)
i ∼ f(Yi|c, a,Y

(s)
−i ; Θ̂);

Y
(s+1)
i ← 2Y

(s+1)
i − 1;

Set Y
(s+1)
−i = Y

(s)
−i

Result: {Y(s) = (Y
(s)
1 , Y

(s)
2 , . . . , Y

(s)
9 ); s = 1001, 1002, . . . , 6000}

served covariates {c(m) = (c(m)1, c(m)2, . . . , c(m)9) : m = 1, 2, . . . , n} :

p̂[Y(a) = y] =
n
∑

m=1

p̂
(

Y(a) = y|a, c(m); Θ̂
)

/n

=
n
∑

m=1

{

6000
∑

s=1001

I
(

Y(s)(a, c(m); Θ̂) = y
)

/5000

}

/n.

(B.11)

Intervened justice (a) P (Y(a) = y;
∑

y = 9) P (Y(a) = y;
∑

y = 0) P (Y(a) = y;
∑

y = 5) P (Y(a) = y;
∑

y = 4)
O’Connor, Scalia, Kennedy, Thomas 0.3672 0.1149 0.0628 0.0646

Stevens, Souter, Ginsburg, Breyer 0.2196 0.0685 0.1216 0.1882

Rehnquist 0.1690 0.2338 0.0679 0.1040

Thomas 0.1717 0.2374 0.0699 0.1066

Stevens 0.1415 0.1957 0.0851 0.1344

Scalia 0.1696 0.2345 0.0703 0.1061

Table B.7: Probability of having unanimous liberal decision (
∑

y = 9), unan-

imous conservative decision (
∑

y = 0), five-liberal votes (
∑

y = 5), and five-

conservative votes (
∑

y = 4) under six different treatment assignments. The

first set of justices (O’Connor, Scalia, Kennedy, and Thomas) represents con-

servative arms; while the second set (Stevens, Souter, Ginsburg, and Breyer)

represents liberal arms. Rehnquist is a cheif Supreme Court justice; Thomas is

known as the most conservative justice among nine while Stevens is the most

liberal; Scalia is relatively neutral.

Table B.7 presents the true probability of four different counterfactual out-
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comes when α = β = 2, under six different treatment assignments (treating

four conservative justices; treating four liberal justices; treating chief justice

Rehnquist; treating Justice Thomas; treating Justice Stevens; treating Justice

Scalia). The table shows that in our simulated data treating the four conser-

vative justices results in a higher probability of unanimous liberal decisions

(0.37) than treating the four liberal justices (0.22). Similarly, treating the most

liberal justice (Stevens) has the smallest effect on the probability of unanimous

liberal decisions compared to treating Justices Rehnquist, Thomas, or Scalia.

Treating Justice Stevens has the greatest impact on the probabilities of 5-to-4

or 4-to-5 decisions. Treating the four conservative justices together results in

relatively high probability of 5(liberal)-to-4(conservative) decisions (0.12).

Figure B.8 and B.9 compare the true probability of counterfactual unani-

mous votes and neck-and-neck votes respectively and their estimates based on

the Gibbs samplers under two treatment assignments (treating four conser-

vative justices and treating four liberal justices). Bias in each estimate and

its coverage rate of 95% empirical confidence intervals are presented from Ta-

ble B.8 to Table B.11.
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Figure B.8: As α or β increases, we are more likely to have concentrated obser-

vations in the certain cell and have less (or empty) observations in the others,

so we have a bias and less coverage rates with finite sample (n = 2000). Note

that under β = 2, compared to β = 1, we observe higher probability of having

unanimous decisions. In overall, treating conservative arms is more beneficial

than treating liberal arms to draw unanimous liberal decision.
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Figure B.9: Generally speaking, treating liberal arms (toward liberal opinion)

increases the probability of 5-to-4 or 4-to-5 decisions.
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Intervened justice (a) P (Y(a) = y;
∑

y = 9) P (Y(a) = y;
∑

y = 0) P (Y(a) = y;
∑

y = 5) P (Y(a) = y;
∑

y = 4)
O’Connor, Scalia, Kennedy, Thomas -0.0045 (97.00%) 0.0001 (96.00%) 0.0019 (94.20%) 0.0024 (95.40%)

Stevens, Souter, Ginsburg, Breyer 0.0022 (94.40%) 0.0008 (94.40%) -0.0050 (95.00%) -0.0069 (93.60%)

Rehnquist 0.0041 (94.60%) -0.0079 (96.60%) 0.0049 (92.80%) 0.0011 (96.00%)

Thomas 0.0049 (94.00%) -0.0086 (95.40%) 0.0053 (94.00%) -0.0000 (95.40%)

Stevens 0.0072 (93.40%) -0.0081 (95.60%) 0.0050 (92.60%) -0.0021 (95.40%)

Scalia 0.0062 (94.20%) -0.0087 (96.00%) 0.0052 (93.80%) -0.0005 (94.60%)

Table B.8: When α = 1 and β = 1 in Equation B.9, bias and coverage rate of

95% confidence intervals in nr = 500 estimated p̂(Y(a) = y) assuming correctly

specified chain graph.

Intervened justice (a) P (Y(a) = y;
∑

y = 9) P (Y(a) = y;
∑

y = 0) P (Y(a) = y;
∑

y = 5) P (Y(a) = y;
∑

y = 4)
O’Connor, Scalia, Kennedy, Thomas -0.0531 (95.20%) 0.0167 (94.00%) 0.0063 (96.00%) 0.0119 (92.80%)

Stevens, Souter, Ginsburg, Breyer 0.0216 (96.00%) 0.0313 (92.80%) -0.0191 (91.80%) -0.0327 (84.40%)

Rehnquist 0.0857 (88.80%) -0.0963 (85.20%) 0.0081 (93.20%) 0.0024 (94.80%)

Thomas 0.0878 (89.20%) -0.0970 (85.80%) 0.0077 (93.80%) 0.0017 (94.80%)

Stevens 0.1111 (86.20%) -0.0890 (86.60%) 0.0019 (95.20%) -0.0082 (96.00%)

Scalia 0.0898 (89.20%) -0.0965 (86.20%) 0.0076 (94.60%) 0.0013 (95.00%)

Table B.9: When α = 1 and β = 2 in Equation B.9, bias and coverage rate

of 95% confidence intervals in nr = 500 estimated p̂(Y(a) = y) assuming cor-

rectly specified chain graph. Coverage rate when we only intervene a single

justice (Rehnquist, Thomas, Stevens, and Scalia) drops due to small number of

uanimous observations under a single treatment.

Intervened justice (a) P (Y(a) = y;
∑

y = 9) P (Y(a) = y;
∑

y = 0) P (Y(a) = y;
∑

y = 5) P (Y(a) = y;
∑

y = 4)
O’Connor, Scalia, Kennedy, Thomas -0.0046 (95.00%) -0.0002 (95.80%) 0.0026 (95.20%) 0.0039 (93.40%)

Stevens, Souter, Ginsburg, Breyer 0.0043 (94.80%) 0.0012 (94.80%) -0.0079 (92.20%) -0.0134 (91.60%)

Rehnquist 0.0033 (93.80%) -0.0053 (96.80%) 0.0044 (94.60%) 0.0008 (95.00%)

Thomas 0.0045 (92.40%) -0.0060 (96.40%) 0.0041 (94.80%) -0.0015 (94.40%)

Stevens 0.0059 (92.40%) -0.0041 (97.00%) 0.0035 (94.00%) -0.0051 (94.40%)

Scalia 0.0045 (94.20%) -0.0057 (96.80%) 0.0039 (95.20%) -0.0016 (95.00%)

Table B.10: When α = 2 and β = 1 in Equation B.9, bias and coverage rate of

95% confidence intervals in nr = 500 estimated p̂(Y(a) = y) assuming correctly

specified chain graph.
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Intervened justice (a) P (Y(a) = y;
∑

y = 9) P (Y(a) = y;
∑

y = 0) P (Y(a) = y;
∑

y = 5) P (Y(a) = y;
∑

y = 4)
O’Connor, Scalia, Kennedy, Thomas -0.0682 (93.60%) 0.0087 (94.40%) 0.0125 (92.40%) 0.0236 (90.60%)

Stevens, Souter, Ginsburg, Breyer 0.0402 (94.20%) 0.0333 (91.80%) -0.0285 (87.60%) -0.0574 (80.80%)

Rehnquist 0.0646 (91.40%) -0.0787 (88.80%) 0.0101 (91.60%) 0.0043 (94.60%)

Thomas 0.0676 (91.40%) -0.0822 (87.60%) 0.0084 (93.80%) 0.0018 (95.80%)

Stevens 0.0935 (88.20%) -0.0605 (93.60%) -0.0008 (96.40%) -0.0163 (96.00%)

Scalia 0.0671 (91.60%) -0.0784 (90.20%) 0.0088 (93.40%) 0.0025 (95.40%)

Table B.11: When α = 2 and β = 2 in Equation B.9, bias and coverage rate of

95% confidence intervals in nr = 500 estimated p̂(Y(a) = y) assuming correctly

specified chain graph. Similar to Table B.9, the magnitude of two-way interac-

tions (β) that is as strong as real data, may engender almost zero unanimous

observations when only a single justice were treated.
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Székely, G. and Rizzo, M. (2014). Partial distance correlation with methods for

dissimilarities. Annals of Statistics, 42(6):2382–2412.
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