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ABSTRACT 

The Federal Earned Income Tax Credit (EITC) is the largest anti-poverty cash assistance 

program in the United States. The purpose of this dissertation is to identify longitudinal patterns 

of EITC receipt and examine their association with differential health and economic outcomes, to 

confirm whether the EITC is a short-term safety net and expand upon current literature through 

further investigation of individuals that comprise the EITC population. In Chapter 1, I provide an 

overview of the current literature and problem, as well as an overview of the data source and 

methods used in this dissertation. In Chapter 2, I examined the longitudinal impact of the EITC 

by identifying distinct patterns of claiming EITC benefits and examining the relationship 

between those patterns and substance use (tobacco, alcohol, marijuana). I performed a 

longitudinal latent class analysis (LLCA) of individuals who answered a question on claiming 

the EITC from 2003 to 2010 (n=8,514) to identify longitudinal patterns of EITC receipt. I found 

that EITC trajectories differed in their reported tobacco and alcohol use but not marijuana or 

illicit drugs.  In Chapter 3, I further explored the relationship between previously identified EITC 

trajectories and outcomes of economic wellbeing such as material hardship and income-based 

poverty measures. I found significant differences in reported assets and debts across the EITC 

trajectories.  In Chapter 4, I further examined the co-occurrence between these EITC trajectories 

and patterns of substance use across time to determine if claiming the EITC may be contributing 

to differential substance use behaviors. I performed a latent transition analysis (LTA) of EITC 

trajectories and three substance use trajectories (Tobacco, Alcohol, marijuana), separately. I 

found that some EITC trajectories were more likely to have a unique substance use trajectory 

than others. Finally, in Chapter 5, I provided an overview of results and synthesis of finding, 
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discussed implications for the field of public health, and future directions for this body of 

research.  
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CHAPTER 1. Introduction 

1.1. Statement of the problem 
 

The Federal Earned Income Tax Credit (EITC) is the largest anti-poverty cash assistance 

program in the United States, redistributing approximately $60 billion to low-income households 

annually, since it was introduced as a refundable tax credit in 1970. Compared to other social 

welfare programs the EITC has the largest effect, resulting in a 3% reduction in poverty, 

compared with 1.6% reduction for Temporary Assistance for Needy Families (TANF) and 1.3 % 

for the Supplemental Nutrition Assistance Program (SNAP) (Falk and Crandall-Hollick, 2018). 

Low-income individuals are more likely to experience negative outcomes related to health, such 

as addiction, serious mental illness, increased morbidity/mortality, incarceration, and decreased 

access to treatment and social welfare benefits (Alexander et al., 2018; Dasgupta et al., 2018; 

Galea et al., 2004; Iguchi et al., 2002). The U.S. federal government has implemented  numerous 

social welfare programs designed to lift individuals out of poverty by providing cash assistance 

designed to subsidize the purchase of basic necessities, such as food purchases and temporary 

assistance for families in need (Lundberg et al., 2010; Shahidi et al., 2019). The federal EITC has 

been expanded three times in 1993, 2001, and 2008 – each time instituting a higher credit 

amount to adults with two kids, married couples, and adults with 3 or more kids, respectively 

(Crandall-Hollick, 2018).  In 2018, the average EITC credit received nationwide was $2,476 

redistributed across 25 million workers and families (IRS, 2020a). In terms of a conceptual 

working model, the EITC directly impacts income and employment (i.e. labor force 

participation) ) among recipients of the credit. THE EITC is theorized to impact income poverty 

through the direct effect on these two factors. Economists use the conceptual theoretical 

framework of “income” and “substitution” effects to understand the impact tax credits—
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including the EITC—have on labor supply. Based on the assumption that the decision to work is 

about two choices –  leisure (i.e., hours of not working) and consumption (i.e., after-tax dollars 

they can spend on good) (Eissa et al., 1996). Theoretically, the ultimate impact a wage increase 

has on hours worked depends on which effect is greater. If the substitution effect is larger, an 

individual will work more hours as their wages increase (Eissa et al., 1996). If the income effect 

is larger, an individual will work fewer hours as their wages increase and instead consume more 

leisure (Falk and Crandall-Hollick, 2018). This phenomenon explains why researchers are unable 

to separate income and labor effects of the EITC. State EITCs have been implemented in 29 

states and DC and provide a percentage of the federal EITC credit. State EITCS vary 

considerably (3-40%) and have been drastically expanded in recent years (Crandall-Hollick, 

2018; Williams and Waxman, 2018). While state EITCs serve as an additional source of EITC 

variation, bivariate regressions of studies that observe consistent EITC participants found that 

variation in the EITC over time accounts for 67% of variance, number of children accounted for 

13%, while state EITCs accounted for 7% (Bastian and Michelmore, 2015). The EITC is used 

somewhat differently than regular paychecks, often used for investing in housing, car purchase 

and repairs, paying off bills, childcare and/or children’s items (e.g., learning items, clothing, etc.) 

(Despard et al., 2015; Sykes et al., 2015). The EITC is typically used for debt repayment rather 

than wealth or asset accumulation, in this way it can improve economic security (Aladangady et 

al., 2018; Mendenhall et al., 2012; Sykes et al., 2015). The EITC simultaneously impacts two 

key social determinants of health, income and employment – but the EITC is theorized to 

indirectly impact health through four key avenues, access to health insurance coverage, reducing 

stress, decreasing risky behaviors, and increasing nutrition (Rehkopf et al., 2014a; Simon et al., 

2018). Although the EITC is not traditionally thought of as an economic welfare policy like 
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SNAP or TANF, research into the power of these programs to improve poverty and ill-health has 

increased over the last fifteen years (Crandall-Hollick, 2018).  

Growing research into the health effects of the federal EITC have found increases in 

health insurance coverage, educational achievement among children (Bastian and Michelmore, 

2015; Hamad et al., 2018; Strully et al., 2010), improvements in maternal health (Evans and 

Garthwaite, 2014; Hoynes et al., 2015; Strully et al., 2010), decreased smoking among pregnant 

women and single mothers (Averett and Wang, 2013; Cowan and Tefft, 2012), and improved 

well-being (Boyd-Swan et al., 2016). The EITC is theorized to directly impact health through 

health insurance coverage, reducing stress, decreasing risky behaviors, and increasing nutrition 

(Simon et al., 2018). To our knowledge, there are no studies that investigate the effect of the 

EITC on illicit substance use or mental illness. Considering that economic conditions are a major 

contributor to substance use behavior, and substance use behaviors contribute to the political 

opposition of economic assistance programs, it is surprising that this research is not widespread 

(Iguchi et al., 2002; Rhodes, 2009). There is a body of literature devoted to studying the effects 

of income disbursement on substance use behaviors of recipients of cash assistance programs, 

finding increases in drug-related harm, unintentional overdose, hospitalizations, ED visits, and 

treatment interruptions (Dobkin et al., 2007; Krebs et al., 2016; Otterstatter et al., 2016).  

The Federal EITC and Substance Use  

Aside from the econometric literature on tobacco use, there is no consensus on whether 

the EITC generally impacts substance use (SU) behavior. To date there has been no 

comprehensive study of the impact of the EITC on alcohol, marijuana, or illicit substance use, 

although there has been considerable interest in levels of tobacco use. Current research on the 

impact of the EITC is characterized by comparative interrupted time series (CITS) studies 
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focused on changes in smoking behavior after the 1993 legislative expansion (Kenkel et al., 

2013; Pega et al., 2013). The evidence on smoking after EITC implementation is mixed, one 

study found no effect five years after the 1993 expansion (Cowan and Tefft, 2012). One study 

found a very moderate reduction in smoking during pregnancy (OR: 0.95, CI: 0.94-0.96) (Strully 

et al., 2010). Averett and Wang (2013) found no effect for African Americans, but a large effect 

for white Americans, two years after expansion. In this study, among women with low education 

attainment, white women were more likely to reduce their smoking than black women (Averett 

and Wang, 2013). Researchers may speculate that these mixed results are based on sex, 

race/ethnicity, or parent status make sense since these factors are significantly associated with 

claiming the EITC and substance use behaviors (Falk and Crandall-Hollick, 2018; McHugh et 

al., 2018; Wu et al., 2010). Tobacco studies typically restricted the outcome to women, and used 

individuals who had one child during the relevant study period as the comparison group (Averett 

and Wang, 2013; Cowan and Tefft, 2012; Evans and Garthwaite, 2014).  

Only one SU study has examined the immediate impact of the EITC on alcohol and 

marijuana use, including these outcomes in their survey of 30 health behaviors (Rehkopf et al., 

2014a). Authors found that during the months of EITC disbursement, there was a slight increase 

in alcohol use and a decrease in current marijuana use among men and women. The latter result 

was later ruled inconclusive after sensitivity analyses. The key limitation of this study is 

potential selection bias. The EITC credit value is directly determined by number of dependents 

and income level. Authors in this study used the NHANES survey, which does not collect exact 

income or number of children. As a result, they restricted their sample to individuals between 

ages 21 and 40, who they assumed would be most likely to have children under the age of 18 

(Rehkopf et al., 2014b). Many of these assumptions about eligibility requirement for the EITC 
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are commonly used in other empirical studies. Both previously discussed tobacco studies also 

restricted their sample to “working age” adults, due to incomplete information on parent status 

and age of children (Cowan and Tefft, 2012; Strully et al., 2010). Using these assumptions to 

isolate the group of most likely EITC participants is a concerning practice in the EITC literature.  

Methodological Limitations of Current EITC Literature   

Current research on the health effects of the EITC are limited by measurement concerns. 

There are three key issues including restriction to legislative policy expansions, no measurement 

of the long-term effect of the EITC, and misclassification of the EITC population. A 2012 

Cochrane review establishes several methodological flaws that remain pervasive in the current 

body of work on the health effects of  EITC (Pega et al., 2013). The review identified that the 

comparative interrupted time series studies carried a high risk of bias from misclassification of 

the EITC exposure, selection bias, unmeasured or unadjusted confounding, bias due to attrition 

and underlying control for time trends. As a result, the systematic review did not include a meta-

analysis.  

The first problem EITC researchers face is restriction to legislative policy expansions, all 

studies were comparative interrupted time series (CITS) studies. Most difference-in-difference 

analyses of the EITC define the treatment group as EITC-eligible mothers with two or more 

children, and the control group, as EITC-eligible mothers with one dependent child, restricted to 

a sample of women with low-educational attainment (Averett and Wang, 2013; Cowan and Tefft, 

2012; Pega et al., 2013). However, the crucial assumption that underlying trends in health 

outcomes are similar between mothers with one child and mothers with two children, is most 

likely violated. Studies on the number of offspring and health effects have confirmed more 

offspring is positively associated with CVD risk in women and unhealthy behavior and lifestyle 
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as a consequence of raising more children (Magnus et al., 2016). Lower socioeconomic status is 

positively associated with having more children, in part because of delayed childbearing in 

higher income groups (Bhrolcháin and Beaujouan, 2012).  There is no consensus on whether 

number of offspring impacts substance use, but it is reasonable to conclude that socioeconomic 

status and parental lifestyle would be different between mothers who use drugs with one child 

versus two or more children. Current methodological limitations of the EITC and health research 

are also present in the tobacco literature dealing with substance use. For example, Everett and 

Wang (2013) define EITC eligible individuals had two or more children and a high school 

degree, while other studies define them as those with some college, but no Bachelor’s degrees 

(Cowan and Tefft, 2012). This can introduce misclassification, because EITC receipt is based on 

family income, not education.  However, educational level has been used by numerous  

researchers instead of restricting the sample on income, which could introduce selection bias 

(Baker, 2008; Cowan and Tefft, 2012; Gomis-Porqueras et al., 2011; Pega et al., 2013). 

Education is commonly used as a proxy for EITC eligibility in many studies that do not wish to 

use income, due to concerns about confounding and endogeneity bias (Averett and Wang, 2013; 

Baker, 2008; Baughman and Dickert-Conlin, 2009; Evans and Garthwaite, 2014; LaLumia, 

2013). This is a thoughtful decision as the inclusion or omission of income or employment could 

bias the effect towards or away from a null finding.  

Current EITC studies have attempted to observe the longitudinal impact of the EITC 

policy by studying people who claim the credit consistently for multiple years; however, recent 

research using IRS data suggests this may not be the case. Based on analysis of federal tax 

returns, 61% of EITC recipients claimed the EITC for 1 or 2 years (Dowd and Horowitz, 2011). 

Using restricted IRS data to observe EITC recipients over six years, Ackerman (2009) asserted 
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that “millions more people flow in and out of EITC population than a one-year snapshot 

reveals”. This study also concluded that men are more likely to receive the EITC for 1 year at a 

time, while women are more likely to be consecutive recipients (Ackerman, 2009). Yet another 

study using special access IRS panel data found that only 7% claimed the EITC consistently 

during the study period (Masken, 2006). Theoretically, individuals would no longer claim the 

EITC for two primary reasons: (1) economic improvement, such as surpassing minimum income 

requirements or (2) economic decline, such as failing to meet employment requirement or not 

filing an income tax return. Therefore, measuring the precise longitundinal impact of the EITC 

would require allowing individuals to naturally change EITC status throughout the life course.  

The third concern with the current body of research is the exclusive focus  on a subgroup 

of EITC participants - women with children, specifically those with at least two children. 

Although most researchers acknowledge that women with children receive the EITC the most 

often, the articulated goal of the EITC is to help lift families out of poverty (IRS, 2020b). Much 

less research has been conducted on men, childless adults (Simon et al., 2018).  The limitations 

in the research literature have consequences for political debates, leaving room for opponents of 

the EITC to speculate that the policy does not have an impact on men and childless adults and 

federal funding expenditures funding should be reduced (Edwards and de Rugy, 2015; Rachidi, 

2015a; Rachidi and Prasad, 2011).  

1.2.  Overview of Specific Aims  

 The overall goal of this study was to identify longitundinal patterns of EITC receipt and 

examine whether they are associated with differential health and economic outcomes, to confirm 

whether the EITC is a short-term safety net and expand upon current literature through further 

investigation of individuals that comprise the EITC population. Studies conducted using IRS 
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data suggest that the majority of participants do not receive the EITC consecutively and claim it 

for shorter periods of time (Ackerman, 2009; Dowd and Horowitz, 2011; Masken, 2006). This 

creates concern for the current body of EITC studies, which continue to focus on legislative 

expansions from the 1990s and are unable to examine people who start or stop claiming the 

EITC. To model longitudinal EITC receipt, we used latent variable modeling to group 

individuals based on their unobserved heterogeneity in claiming the EITC from 2003 to 2010.  

Aim 1:  Characterize patterns of claiming the EITC from 2003 to 2010 and measure distal 

substance use in 2011 

The first aim was to identify distinct patterns (i.e., trajectories) of claiming the EITC for a 

sample of young adults in the 1997 National Longitundinal Survey of Youth. Latent class 

analysis (LCA) will be used to sort individuals into distinct subgroups based on whether they 

claimed the earned income credit in the previous year. A latent class regression will be used to 

examine substance use in 2011. To identify potential predictors of distinct EITC patterns (e.g. 

sex, parental status, race) covariates will be included as predictors in the model, based on 

previous literature.  

Aim 2: Evaluate whether EITC trajectories are associated with differential indicators of 

economic wellbeing.  

The second aim was to examine if previously enumerated EITC trajectories were 

associated with different outcomes of economic wellbeing. Rather than focusing on income-

based poverty measures alone, I use latent class regression to explore other measures of 

economic wellbeing, such as material hardships.  

Aim 3: Investigate potential co-occurrence between EITC trajectories and substance use 

trajectories for tobacco, alcohol, and marijuana.  
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 The third aim was to investigate the potential co-occurrence between EITC receipt 

trajectories and three separate substance use trajectories to further understand whether long-term 

substance use behaviors are different for different EITC trajectories. I perform a latent transition 

analysis (LTA) of EITC trajectories and three substance use trajectories (tobacco, alcohol, 

marijuana), separately. Because sex is significantly associated with greater likelihood of EITC 

receipt and substance use, I also explored the potential impact of sex as an effect modifier on the 

transition between trajectory classes.   

National Longitudinal Survey of Youth (NLSY97) 

Data for this study are from the 1997 National Longitudinal Survey of Youth (NLSY97), 

which gathers information on the labor force experiences of individuals born between 1980 and 

1984. Interviews have been conducted annually from 1997 to 2011, and biannually from 2013 to 

2015. The survey consists of a representative cross-sectional sample of 6,748 respondents in 

1997, and a supplemental oversample of 2,236 Hispanic or Latino and black respondents. Youth 

respondents' ages ranged from 12-18 in 1997, and 30-36 in 2015. NLSY97 data are weighted to 

be representative at the national level and cumulative sampling & panel data weights are 

provided. The NLSY97 data are collected in 36 states, though data are not representative at the 

state level.  The NLSY97 is the ideal dataset to closely examine the relationship between the 

EITC and substance use since it conducts follow-up surveys until 2011 with detailed information 

on income, state identifiers, and provides a nationally representative sample weight.  

1.3. Methodological Background 

Longitundinal Latent Class Analysis (LLCA) 

The goal of LCA is to classify people into distinct groups of classes based on their 

individual response patterns. The LCA is a person-centered approach that focuses on 
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relationships among people, so that individuals within a group are more similar than individual 

across different groups (Jung and Wickrama, 2008a). While regression modeling takes a 

variable-based approach to understand causality, I recognize that variable based approaches are 

not optimized for situations with information bias or confounding due to unobserved, time 

invariant factors. On the other hand, a person-centered approach has the opposite goal. Instead of 

observing the relationships between variables (sex, number of children, EITC exposure), the 

LCA approach analyzes the latent structure of people, and sorts them into groups (Jung and 

Wickrama, 2008b; Nylund-Gibson and Choi, 2018). This approach is a unique tool to further 

understand who EITC participants are through descriptively quantitative methods.  

The groups in an LCA are latent, in the sense that they are unobserved, and reflect 

individual responses to selected indicators. In the current study, the indicators are repeated 

measures of whether an individual claimed the EITC. This method of using repeated measures is 

often called the longitudinal latent class analysis (LLCA) (Feldman et al., 2009; Nylund-Gibson 

et al., 2014). Distal outcomes can be used to examine whether the latent classes display 

statistically significant mean-level differences in the selected distal outcome variables. In these 

applications, the latent class variable can be used to describe change over time without having to 

make any assumptions about the structure or functional form of the change process whereas 

other longitudinal models do so, such as growth models. LLCA models can thus be specified 

before a growth model or a growth mixture model as a baseline model to explore heterogeneity 

in change (Feldman et al., 2009). For distal outcomes, effects across classes are examined by 

estimating class-specific mean and variance estimates for each distal outcome and then 

conducting pairwise comparisons to determine where among the classes the distal outcomes are 

significantly different. Latent Transition Analysis (LTA) is an extension of latent class analyses 
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methods, and regresses one LCA on another latent class model. While LTA traditional measures 

change in a latent class model at various times points, it can be successfully applied in situations 

that do not involve LCAs. LTA with non-repeated measures are a useful technique to study 

developmental changes, and the three-step method can be used to include covariates as predictors 

in the model (Nylund-Gibson et al., 2014).  

 Three Step Method. Latent class modeling techniques include the ability to include 

auxiliary variables (covariates or distal outcome) in the modeling process. While there are 

numerous methods in use to achieve this, the three-step method is commonly recommended to 

avoid shifting measurement parameters that occurs with larger sample sizes and predictors of 

class membership (Nylund-Gibson et al., 2014, 2019).  Covariates are included as auxiliary 

variables in step one, where the latent class enumeration is performed. After this, BCH weights 

are saved for each latent class in an exported datafile. This datafile is used in Step three, to 

perform the latent class regression. This regression has two steps, first the covariates are 

regressed on each latent class, and then the latent class is regressed on the outcome variable 

(Nylund-Gibson et al., 2019).  

Latent Class Enumeration and Fit Statistics  

Latent class enumeration typically involves starting with a two-class model and 

increasing the number of classes and comparing common fit measures. Multiple random starting 

values were used to ensure estimates did not reflect local maxima, and the best log likelihood 

value was replicated. Models were compared based on standard fit statistics, the Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), Lo-Mendel-Rubin (LMR), the 

Log likelihood (LL), the Bootstrapped Likelihood Ratio Tests (BLRT), and the model entropy 

(Masyn, 2013; Nylund-Gibson, 2007; Nylund-Gibson and Choi, 2018). 
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1.4. Public Health Significance  

Although the EITC has historically received more bipartisan support as a tax policy than 

other economic welfare policies, there have been several proposals to change, restructure, or 

otherwise eliminate the program (Falk and Crandall-Hollick, 2018). The policy’s consistent 

status as the most highly funded social policy, makes it a prime target for critics of welfare 

spending and tax credit incentives. It is useful to consider how the EITC compares to other forms 

of economic welfare assistance, such as TANF or SNAP. Categorically speaking, because the 

EITC is an income shock (i.e., lump sum of money received at one time) as opposed to monthly 

cash increments, economic theory suggests that people will respond to it differently than SNAP 

or TANF (Falk and Crandall-Hollick, 2018). The EITC is used for large purchases and debt 

reduction, rather than accumulating wealth (Despard et al., 2015; Sykes et al., 2015). After 

receiving the EITC it is difficult to disentangle the labor participation effects (choice to work) 

from income effects (choice to reduce hours) of the policy, because individual motivation would 

determine whether people choose to work more to increases their  post-tax wages through labor 

participation or increase their leisure and spend more money through an income effect) (Eissa et 

al., 1996). Those in opposition to the EITC assert that providing individuals with a refundable 

tax credit, is essentially welfare assistance and increases the likelihood that they will spend it on 

non-essential purchases that further harm their health (Edwards and de Rugy, 2015; Prasad, 

2011). This is despite the fact that evidence shows EITC recipients spend their refunds on 

childcare or children’s learning items, car repairs and purchases, paying utilities or other bills, 

and housing (Despard et al., 2015; Sykes et al., 2015) 

While single mothers are most likely to receive the EITC, men and childless adults are 

still encouraged to apply. An example of a key message the IRS provides for promotion and 
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marketing states, “No children? You may still qualify for EITC. Check out the EITC Assistant.” 

(IRS, 2020b). Opponents of the EITC are aware of this discrepancy, and frequently point out the 

EITC ends up hurting childless workers who receive no EITC or a small EITC, because it can 

push down market wages (Edwards and de Rugy, 2015). Other studies assert that expanding the 

EITC for men would be ineffective, because the EITC has not been helpful for poor women 

(Marr et al., 2014; Mead, 2014; Rachidi, 2015b). However, many proponents of the EITC are in 

favor of expanding the credit so that childless men and adults can benefit from the policy (Aviva 

Aron-Dine and Sherman, 2007; Kapahi and Fellow, 2019; Maag et al., 2019; Marr et al., 2016). 

In order to fully answer questions about the utility of the EITC for the US population of low-

income filers, I must understand more about what type of people are claiming the EITC over 

time, and whether it appears that their health and economic situation is improving or declining.  

This study will contribute to two key areas of literature -  the effects of social policies on 

mitigating substance use and poverty, and further understanding the EITC population and their 

history of receipt. The current study will provide insights into whether the expansion of non-

traditional welfare policies, such as tax policies, have the potential to impact substance use 

outcomes. If so, policymakers must consider how proposals to restructure the EITC payment 

system may have unintended consequences if not designed to maximize health impact. If current 

research continues to exclude men and childless adults, researchers will be unable to offer an 

evidence-based perspective in policy debates about whether programs like the EITC should be 

restructured. 
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CHAPTER 2. Latent Trajectories of Claiming the Federal Earned Income Tax Credit and 

Substance Use Outcomes 

 

2.1. Abstract  

Objective: The Earned Income Tax Credit (EITC) remains the largest anti-poverty 

program in the US, yet research on its longitudinal health impact among adults is nascent. The 

EITC is a short-term safety net, often claimed intermittently throughout an individual’s life. I 

aimed to understand the longitudinal impact of the EITC by identifying whether distinct patterns 

of claiming EITC benefits are associated with varying substance use outcomes. Method: Using 

data from 8,984 responses to the 1997 National Longitudinal Survey of Youth (NLSY97), which 

was 51% female and oversampled Black and Latino respondents, we performed a longitudinal 

latent class analysis (LLCA) of individuals who answered a question on claiming the EITC from 

2003 to 2010 (n=8,514) to identify longitudinal patterns of EITC receipt. I also examined 

sociodemographic correlates of class membership and tested for differences in four substance use 

outcomes by each latent class. Results: Four EITC classes were enumerated: Non-claimers 

(54%), Initiators (23%), Decliner (12%), and Consistent claimers (11%). EITC Initiators (42%) 

and Consistent claimers (39%) had the highest prevalence of tobacco use, while Non-claimers 

and Decliners (76%) had the highest alcohol use. There were no significant differences by class 

in marijuana or illicit drug use. Conclusion: There are distinct patterns of claiming the EITC, and 

individuals within these trajectories have differential characteristics and substance use behaviors. 

These trajectories formed two groups which were similar in alcohol and tobacco use, Consistent 

claimers/Initiators and Decliners/Non-claimers. Future research should investigate 

characteristics of individuals in these EITC receipt trajectories, to understand what underlying 

factors may be contributing to divergent/convergent substance use behavior. 
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2.2. Introduction  
 

Introduced in 1970 as a refundable credit for low-income, working adults, the Earned 

Income Tax Credit  (EITC) simultaneously impacts two key social determinants of health – 

income and employment (Falk and Crandall-Hollick, 2018). The EITC is a short-term safety net 

typically claimed for 1-2 years at a time and used for large purchases (e.g. car) or debt repayment 

(Ackerman, 2009; Aladangady et al., 2018; Dowd and Horowitz, 2011; Sykes et al., 2015). The 

federal EITC is associated with improvements in maternal health (Evans and Garthwaite, 2014; 

Hoynes et al., 2015; Strully et al., 2010), physical and psychological well-being (Boyd-Swan et 

al., 2016; Gomis-Porqueras et al., 2011; Lenhart, 2019), and educational achievement among 

children. (Bastian and Michelmore, 2015; Hamad et al., 2018; Strully et al., 2010). While 

research has demonstrated the effects of the EITC on some aspects of health, research on its 

substance use effects is limited (Pega et al., 2013). There is no consensus on whether the EITC 

generally impacts substance use behavior, outside of tobacco research which has shown mixed 

effects of the EITC (Kenkel et al., 2013; Lenhart, 2018; Strully et al., 2010). There is only one 

study examining the impact of the EITC on other drugs including alcohol and marijuana, pooling 

together cross-sectional data to observe the EITC. The authors concluded that during the months 

of EITC disbursement, there was no significant impact on alcohol use and an apparent, but 

inconclusive decrease in marijuana use (Rehkopf et al., 2014a). This is surprising, given constant 

political debates about substance use among welfare recipients in the United States (Hager, 

2016). While based on biases rather than fact, concerns about recipients of welfare programs, 

like the EITC, will use their benefits for drugs is a common argument against expanding these 

programs to combat poverty. Beyond political arguments, understanding how the EITC impacts 

substance use is important because economic instability contributes to substance use, and social 

welfare programs are an important tool to interrupt this cycle (Galea and Vlahov, 2002). 
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Furthermore, it is well-known that punitive drug laws and bans on social policies (e.g. Food 

stamps Ban) have disproportionately impacted low-income, communities of color in 

impoverished neighborhoods (Golembeski and Fullilove, 2005; Iguchi et al., 2002). If federal 

funding is any indicator, the EITC is the government’s primary tool for economic mobility for 

low-income adults and whether the EITC has an impact on substance use warrants further 

investigation (Falk and Crandall-Hollick, 2018).  

Extant literature on the health impacts of the EITC faces significant methodological 

concerns, including measurement error and unmeasured confounding (Pega et al., 2013). The 

majority of EITC literature has used comparative interrupted time series study designs, 

particularly with difference-in-differences (DD) designs and has not appropriately accounted for 

changes in policies after the 1993 federal EITC expansion. A difference-in-differences (DD) 

study is a common technique in policy evaluations and estimates the effect of a 

policy/intervention by comparing changes in the outcome between a population that received the 

intervention and a group that did not (control) (Wing et al., 2018). This presents a problem for 

public health datasets, many of which do not provide exact information on income or tax-eligible 

dependents, two factors which directly determine EITC eligibility. As a result, EITC studies that 

use public health datasets must make a number of assumptions to restrict their sample to likely 

“EITC participants”, often based on being of “childbearing age” and income categories that 

rarely align with EITC cutoffs. (Pega et al., 2013; Rehkopf et al., 2014a). Such assumptions are 

necessary for DD designs to create a working conceptual model, yet these assumptions about 

directly measurable EITC criteria introduce considerable measurement error and challenges for 

replication of results.   
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The second problem is the exclusive focus of almost all DD studies of EITC on the 1993 

expansion, which increased the EITC amount for families with two or more children (Pega et al., 

2013). While focusing on a concrete policy change is needed for DD studies, such models are 

vulnerable to confounding due to secular trends. The early 1990s was a period of widespread and 

drastic welfare reform in the U.S., increasing the likelihood of confounding. Although some 

studies that used fixed effects attempt to control other economic welfare policies during that 

time, these designs cannot adjust for unobserved time-variant attitude and behaviors. 

Furthermore these studies do not account for subsequent EITC expansions that occurred in 2001 

and 2009 (LaLumia, 2013). These limitations highlight external validity challenges of EITC 

studies.  

There is a need for research evaluating the impact of EITC receipt on substance use 

longitudinally that addresses the limitations of DD designs. Particularly, studies are needed that 

consider how claiming the EITC may change over an individual’s life course, which has been 

absent from existing literature. This is concerning because evidence suggests that the EITC is a 

short-term safety net. Based on analysis of federal tax returns, 61% of EITC recipients claimed 

the EITC for 1 or 2 years (Dowd and Horowitz, 2011). Theoretically, individuals would stop 

claiming the EITC for two primary reasons: (1) increase in economic stability, such as 

surpassing minimum income requirements or (2) decline in economic stability, such as failing to 

meet the employment requirement or not filing an income tax return. If existing studies limit 

their sample to people who do not change EITC status, they prevent themselves from studying 

long term impact and remove a large segment of the EITC population we are interested in 

studying. There is much political debate about eliminating the program or restructuring it to 
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maximize its benefit, however research of the long-term effect of the EITC among adults, 

remains inconclusive (Edwards and de Rugy, 2015; Pega et al., 2013).  

The Current Study. The goal of the current study is to use Longitudinal Latent Class 

Analysis (LLCA) to identify and group common trajectories of EITC receipt from 2003-2010, 

identify significant demographic correlates of EITC group membership, and examine differences 

in substance use behaviors in 2011 between latent classes. By examining individual trajectories 

of claiming the EITC over time, we can identify and observe groups of individuals that may be 

experiencing economic stability or instability over the years as they claim the EITC. 

Furthermore, rather than measure the effect of the EITC through a policy expansion, the current 

study will measure the effect of differential EITC trajectories on substance use behaviors. By 

studying the effect of the EITC, we are not only studying the long-term effects of the policy but 

are also observing the developmental trajectory of the EITC target population – low-income 

adults in the US.  

2.3. Methods  

Data Source 

Data for this study comes from the 1997 National Longitudinal Survey of Youth 

(NLSY97), a prospective cohort study currently conducted by the Bureau of Labor Statistics 

which gathers information on the labor force experiences of youth born between 1980 and 1984 

as they transition through adulthood (Bureau of Labor Statistics, 2019). These de-identified data 

were deemed exempt from Institutional Review by Johns Hopkins University. Because detailed 

information on income and number of children is unavailable for prior EITC studies, the 1997 

National Longitudinal Survey of Youth (NLSY97) is the ideal dataset to examine the 

relationship between EITC and substance use. Interviews have been conducted annually from 
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1997 to 2011, and biannually from 2013 to the present. The initial NLSY97 survey consists of 

8,194 participants, comprised of a representative cross-sectional sample of 6,748 respondents 

and a supplemental oversample of 2,236 Hispanic/Latino and Black respondents. Youth 

respondents' ages ranged from 12-18 in 1997, and 30-36 in 2015. NLSY97 data are designed to 

be representative at the national level and cumulative sampling & panel data weights are 

provided. Because the goal of the current study is to avoid limitations of  prior causal inference 

EITC studies, I used a model-based approach and did not use study weights (Bureau of Labor 

Statistics, 2019).  

Measures  

 Claiming the EITC on tax return. Indicators of latent class membership are whether 

participants claimed the EITC in the past year, from 2003 to 2010. Although, the NLSY began 

data collection in 1997, I begin the study period in 2003 when all participants were 18 and 

legally eligible to claim independence on their tax return. All individuals who answer “yes” to 

having a source of income in the survey are asked whether they claimed an EITC on their tax 

return last year. For example, in 2007, participants  who reported an income source were asked, 

“Did [you/you or your spouse/you or your partner] claim, or are [you/you or your spouse/you or 

your partner] planning to claim, an Earned Income Tax Credit on your [or your spouse's/or your 

partner's] 2006 Federal Income Tax Return?” Individuals who were originally excluded from the 

question (individuals without a source of income), were coded as not claiming an EITC. 

 Demographic Characteristics. All demographic characteristics are self-reported and 

include sex, race/ethnicity, age, educational attainment, marital status, parent status, and health 

insurance coverage. In terms of race/ethnicity, all NLSY respondents are classified as Hispanic 

/Latino, Black, Non-black/Non-Hispanic, or Mixed race. Similar to other studies, educational 
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attainment was measured as a binary variable comprised of high school (HS) diploma or less and 

some college or more (Gomis-Porqueras et al., 2011). We controlled for demographic 

characteristics in 2011, to adjust for characteristics that may impact substance use in the year we 

accessed our distal outcome. 

Substance Use Outcomes. Substance use outcomes were accessed in 2011, when 

participants were 28 years old on average. Use of tobacco, alcohol, marijuana, and “other illicit 

drug” use since the last NLSY interview is assessed at each follow-up visit. Participants were 

asked, “Since the date of last interview, have you [smoked a cigarette; drank an alcoholic 

beverage; used marijuana, even if only once, for example: grass or pot; used any drugs like 

cocaine or crack or heroin, or any other substance not prescribed by a doctor]?” The NLSY also 

include definitions the interviewer read to participants. An alcoholic drink is defined as “a can or 

bottle of beer, a glass of wine, a mixed drink, or a shot of liquor”, while “other illicit drugs” are 

“any drugs like cocaine or crack or heroin, or any other substance not prescribed by a doctor, in 

order to get high or to achieve an altered state”.  

Statistical Analysis 

The goal of a latent class analysis is to classify individuals into distinct groups of 

categories based on their individual response patterns. The LCA is a person-centered approach 

that focuses on relationships among individuals, so that individuals within a group are more 

similar than individual across different groups (Jung and Wickrama, 2008a). While regression 

modeling takes a variable-based approach to understand causality, we recognize that variable 

based approaches are insufficient in situation where there is information bias. On the other hand, 

a person-centered approach has the opposite goal. Instead of observing the relationships between 

variables (sex, number of children, EITC exposure), the LCA approach analyzes the latent 
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structure of people, and sorts them into groups (Jung and Wickrama, 2008b). This approach is 

required to further understand who EITC participants are through descriptively quantitative 

methods. As a result, we explore the impact of sex, race, age, marital status, parent status, 

parental educational attainment, and health insurance coverage on class membership. Substance 

use outcomes accessed in 2011 for tobacco, alcohol, marijuana, and other illicit drugs were 

included as distal outcomes using a three-step approach (Nylund-Gibson et al., 2019). To assess 

the overall difference between latent classes Wald Test was performed. To compare differences 

between individuals' classes, added additional “model constraints” were added to include 

pairwise comparisons between individuals’ latent classes. All analyses were performed in Mplus, 

version 8 (Muthen and Muthen, 2017).   

LCA Model Fit. LCA models with 1 to 6 classes were fit. Multiple random starting 

values were used to ensure estimates did not reflect local maxima, and the best log likelihood 

value was replicated. Models were compared based on standard fit statistics, the Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), Lo-Mendel-Rubin (LMR), the 

Log likelihood (LL), the Bootstrapped Likelihood Ratio Tests (BLRT), and the model entropy 

(Masyn, 2013; Nylund-Gibson, 2007; Nylund-Gibson and Choi, 2018). 

2.4. Results  

The prevalence of the latent class indicators, demographic characteristics, and distal 

outcomes for the full analytic sample are presented in Table 1. The NLSY97 sample is 51% 

male, 51% white, and on average the highest level of education is some education beyond a high 

school diploma. 

Latent Class Enumeration  
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Based on fit statistics (Table 2) and substantive interpretation, a four-class model was 

chosen (Figure 1). Although a 5-class model was initially preferred by some fit statistics (i.e., 

LMR), the additional class identified was not theoretically meaningful and therefore I chose the 

more parsimonious model. The first and largest class was composed of individuals who had a 

probability of less than 9% of claiming the EITC consistently from 2003 to 2010, labeled Non-

claimers (54% of sample). A second class of those who did not claim the EITC until 2004, 

labeled Initiators (23%). A third class of individuals who claimed the EITC in early years but 

discontinued after 2007 (12%) and was labeled Decliner. Finally, a fourth class was 

characterized by individuals who had a probability of 80% or higher of claiming the EITC every 

year, labeled Consistent claimers (11%). 

Demographic Correlates of Class Membership  

For each latent class, the probability of demographic characteristics is presented, and 

significant associations are bolded (Table 3). Sociodemographic differences are briefly 

mentioned below, and beta coefficients and odds ratio are presented in the appendix (Supplement 

Table 1). Compared to those who did not claim the EITC (i.e., Non-claimers), significant 

correlates among EITC classes were sex, age, highest degree, parental status, and marriage 

status. There were no significant differences in race/ethnicity or health insurance coverage 

among classes (Table 3). Consistent claimers and Initiators were both more likely to have 

children (90%,70%) than Non-claimers or Decliners (31%, 45%). Compared to Non-claimers, all 

of the EITC trajectories were less likely to have any college education, starting with Consistent 

claimers (OR: 0.44, p<0.001), Decliners (OR: 0.53, p<0.001) and Initiators (OR: 0.56, p<0.001) 

(A-Table. 2-1).      
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Substance Use Outcomes by EITC Class Trajectory  

 Tobacco Use. Figure 2 displays the distal outcomes, along with significant pairwise 

comparisons for each class. Tobacco use since the last survey interview differed significantly by 

class as indicated by the Wald’s test (χ = 13.89, p = 0.003). The highest prevalence was among 

Initiators (42%) and lowest among Non-claimers (35%). Initiators were significantly more likely 

to use tobacco than Non-claimers (p=0.007), while Decliners were significantly less likely 

compared to Initiators (β=-0.07, p=0.003).  

 Alcohol Use. Alcohol Use since the last survey interview differed significantly by EITC 

class (χ = 16.62, p = 0.0008), with highest use among Non-claimers (76%) and Decliners (76%), 

and lowest use among Initiators (71%). Initiators had significantly lower alcohol use than 

Consistent claimers (p=0.02) and Decliners (p=<0.001), and marginally lower use than Non-

claimers (p=0.06).  

Marijuana Use. Marijuana use since last interview did not differ significantly by latent 

class (χ = 2.08, p = 0.56). However, while the other three groups were similar in prevalence 

(~17%), the lowest proportion was among Consistent claimers (12%).  

Other Illicit Drugs. Use of Other illicit substances did not differ significantly by EITC 

class (χ = 1.37, p = 0.71), the prevalence of use across all four classes was 3%.  

2.5. Discussion  

The goal of this study was to identify patterns of claiming the EITC and observe distal 

substance use outcomes to examine the longitudinal trajectory of the EITC policy. There were 

four trajectories of EITC claimers that emerged: Non-claimers (54%), Initiators (23%), Decliner 

(12%), and Consistent claimers (11%). There were significant differences between EITC 

trajectories in tobacco and alcohol use, but not marijuana or other illicit drug use. Alcohol use 
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was highest among Non-claimers and Decliners (76%), followed by Consistent claimers (73%), 

and Initiators (71%). Tobacco use was highest for Initiators (43%), Consistent claimer (39%), 

Decliner (37%), and Non-claimers (35%). A key pattern emerged from these findings. Among 

the four groups, Consistent claimers/Initiators had high tobacco, but low alcohol use, while 

Decliners/Non-claimers demonstrated the opposite – low tobacco and high alcohol use. 

To identify the cause of these differential substance use patterns and the apparent 

clustering of the four EITC trajectories into two groups, observing correlates associated with 

each trajectory can provide context. As illustrated in Table 3, Consistent claimers and Initiators 

were both more likely to have children than Non-claimers or Decliners. Compared to Non-

claimers, all EITC trajectories were less likely to have a college education or more. Notably, 

there found no significant differences by class in race or ethnicity. Based on education, parent 

status, and proportions of female participants, Consistent claimers/Initiators include the most 

common population of EITC claimers, single mothers with low education, who are most likely 

lower income than the other EITC trajectories (Decliners, Non-claimers).   

Disparities in tobacco use remain among vulnerable populations defined by sex, 

race/ethnicity, socioeconomic status, education, and geography (Cal Ham et al., 2011; Leas et al., 

2019; Yu et al., 2010). Although some evidence suggests smoking prevalence is similar across 

racial groups, other factors such as tobacco outlet density, industry marketing, and gender norms 

and culture all combine to create a complex picture (Brown-Johnson et al., n.d.; Perkins, 2009). 

This complexity may partially explains why the body of research on EITC and tobacco use has 

yielded mixed results (Averett and Wang, 2013; Kenkel et al., 2013; Pega et al., 2013). Although 

alcohol outlet density and marketing are also higher in low-income communities, alcohol use 
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remains lower among Consistent claimers/Initiators. These results provide partial support for the 

assertion that tobacco use is more susceptible to disparities in use and treatment, than alcohol.  

Although it remains unclear what specific combination of factors is driving this 

relationship, these findings suggest that Consistent claimers/Initiators and Decliners/Non-

claimers are similar to one another and may be similar in other factors that determine the EITC, 

such as employment or annual income.  However, further research is needed to understand 

whether economic improvement or economic decline is occurring in individuals who change 

their EITC claiming status over time i.e., Decliners and Initiators. Examining other indicators of 

economic status would allow us to observe the key intended policy effect of the EITC, which is 

to encourage employment and increase income. Unemployment rates are negatively associated 

with tobacco use, so considering these factors would allow researchers to further explore 

differences in tobacco and alcohol use (Kenkel et al., 2013; Lenhart, 2019).  

Strengths and Limitations. This was the first study to examine individual trajectories of 

claiming the EITC among young adults (20-30) through a Longitudinal Latent Class Analysis, 

and the second study to examine the relationship between the EITC and substances other than 

tobacco. In addition, the NLSY97 is the only national survey with health information that asks 

participants to report whether they have claimed the EITC and includes information on health, 

allowing us to decrease potential misclassification bias of prior studies (Pega et al., 2013). 

Furthermore, the NLSY97 prevents the probable measurement error of prior studies that used 

cross-sectional data, by allowing us to control for individual time-invariant heterogeneity and 

providing more detailed demographic information (i.e., marriage and parental status); however, 

there were  a few limitations. The illicit drugs outcome in this study is a crude measure of illicit 

drug use and prevented us from examining outcomes among different classes by types of illicit 
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drugs. State EITCs were not included in this analysis because the purpose was to examine the 

longitudinal impact of the federal policy. Gender is not measured in the NLSY97, but sex is 

ascertained, preventing us from considering how gender may impact these relationships. In 

addition, we do not know whether individuals who claimed the EITC received it, limiting us to 

an intent-to-treat interpretation of the results. Aside from IRS data, there are no nationally 

representative U.S. health surveys that collect information on individuals’ EITC receipt (Simon 

et al., 2018). However, because the majority of EITC-eligible individuals with children (80–

86%) receive the credit, this assumption is standard for modelling EITC-health effects (Falk and 

Crandall-Hollick, 2018; Simon et al., 2018). Finally, this analysis did not determine causality or 

specific mechanisms that may link the EITC to substance use outcomes. It is reasonable to 

suspect that such mechanisms are related to econometric theory of individual motivation to 

maximize income or leisure upon starting a new job, or psychosocial factors such as stress 

reduction (Eissa et al., 1996).  

Conclusion 

The current study suggested that there are distinct groups of individuals who claim the 

EITC over their lifetime and have different sociodemographic characteristics. This study 

provides support for previous research that concluded that the EITC is a short-term safety net. 

Thus, excluding individuals who do not have a fixed EITC exposure from the sample, prevents 

researchers from observing the complete EITC population. This study revealed that two groups 

of individuals are excluded from the “EITC population” in current studies – those who begin 

claiming the EITC and those who discontinue claiming the EITC. Future studies should consider 

using LCA to identify trajectories of claiming the EITC to create an exposure variable that does 

not require fixed EITC status. These trajectories can then be used in mixture modeling 
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techniques, such as this study, or used as a latent variable in multivariate regression for causal 

inference studies. Understanding the long-term impact of this short-term income support 

program will ultimately help researchers identify how tax credits can be utilized as programs to 

help alleviate poverty and improve health outcomes among low-income, vulnerable populations.   
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Table 2.1. Prevalence of Latent Class Indicators, Demographic Characteristics, and Substance 

Use among full NLSY sample (N=8,984) 

 Full Sample 

Proportion or 

M (SD) 

LCA Indicators – Claimed the 

EITC 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010  

 

 

0.19 

0.23 

0.28 

0.30 

0.32 

0.37 

0.36 

0.30 

Demographic Characteristics  

Male  

Female  

 

0.51 

0.49 

Black 

White 

Hispanic 

Mixed  

0.27 

0.51 

0.21 

0.01 

Age (2003a) 

Age (2011) 

20.9 (1.44) 

28.8 (1.45) 

HS diploma or less (2003) 

Some college or more  

HS diploma or less (2011) 

Some college or more  

0.92 

0.08 

0.67 

0.33 

Health Insurance (2003) 

Health Insurance (2011) 

Parent (2003)  

Parent (2011) 

Married (2003) 

Married (2011) 

0.67 

0.67 

0.19 

0.47 

0.29 

0.31 

Baseline SU Prevalence (2003)  

Use Since Last Interview 

Tobacco 

Alcohol 

Marijuana 

Illicit Drugs 

 

 

0.44 

0.70 

0.23 

0.06 

SU Prevalence (2011)  

Use Since Last Interview  

Tobacco                        

Alcohol 

Marijuana 

Illicit Drugs 

 

 

0.37 

0.74 

0.16 

0.03 

Notes: a Time-varying factors are provided during 2003, the baseline year of the latent class analysis, and 

2011, the year distal substance use outcomes are measured. P = proportion; M = mean; SD = standard 

deviation; LCA = latent class analysis; EITC = earned income tax credit; SU = substance use. 
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Table 2.2. Model Fit Statistics for Trajectories of Claiming the EITC (N=8,514) a 

 
# OF EITC LATENT CLASSES  

FIT MEASURE  2 3 4 5 6 

# of Free 

Parameters 
17 26 35 44 53 

LL -30232.90 -29869.24 -29643.04 -29584.40 -29557.26 

AIC 60499.80 59790.48 59356.07 59256.80 59220.52 

BIC 60619.64 59973.76 59602.80 59566.97 59594.14 

 

LMR 

7274.24 

<0.001 

718.50 

<0.0001 

446.92 

<0.001 

115.85 

0.0001 

53.14 

0.20 

Entropy 0.723 0.659 0.614 0.614 0.588 

Smallest Class 31% 12% 11% 8% 6% 

Notes: a 470 individuals were excluded from the LCA due to missing data on all indicator variables. LL= 

log likelihood; AIC= Akaike information criteria; BIC= Bayesian information criteria; LMR= adjusted 

Lo-Mendell Rubin and p-value.  
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Table 2.3. Estimated Mean Demographic Characteristics by Latent Class Membership  

 
Non-claimers 

Class 1 

Initiator 

Class 2 

Decliner 

Class 3 

Consistent 

claimer 

Class 4 

Female 0.44 0.59 0.45 0.77 

Race 

   Black 

   White 

   Hispanic 

 

0.23 

0.59 

0.17 

 

0.32 

0.37 

0.29 

 

0.21 

0.51 

0.27 

 

0.39 

0.37 

0.23 

Age (2011) 28.8 28.6 28.9 29.3 

Education  

   HS diploma or less 

   Some college or more 

 

 0.55 

0.45 

 

  0.77 

0.23 

 

  0.71 

0.29 

 

0.80 

0.20 

Insured (2011) 0.68 0.69 0.69 0.69 

Parent (2011) 0.31 0.70 0.45 0.90 

Married (2011) 0.36 0.40 0.42 0.48 

Notes: For relevant statistics (odds ratio) refer to Appendix (A-Table2.1) 
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Figure 2.1. 4-Class Model of Trajectories of Claiming the EITC   

 

 
Notes: Y-axis is the probability that individuals in each class would have answered “yes” to claiming the 

EITC, also called the conditional item probability.  
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Figure 2.2. Distal Substance Use Outcomes by Latent EITC Trajectory  

 

 
Notes: Significant pairwise comparisons are displayed by class. #=0.10, *= 0.05, **= 0.01, ***=0.001. 

EITC=earned income tax credit.  
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CHAPTER 3. Latent Trajectories of Federal EITC Receipt and Measures of Economic 

Wellbeing 

 

 

3.1. Abstract  
 

Objective: In Chapter 2, I intended to understand the longitudinal impact of the EITC by 

identifying distinct patterns of claiming EITC benefits. In the current study, I aimed to further 

explore these trajectories by examining their association with measures of economic wellbeing. 

Method: Using data from 8,984 responses to the 1997 National Longitudinal Survey of Youth 

(NLSY97), which oversampled Black and Latino respondents, I performed a longitudinal latent 

class analysis (LLCA) of individuals who answered a question on claiming the EITC from 2003 

to 2010 (n=8,514) to identify longitudinal patterns of EITC receipt. I also examined 

sociodemographic correlates of class membership and tested for differences in eight measures of 

economic wellbeing outcomes, four income-based poverty measures (household worth, assets, 

debts, poverty ratio) and four indicators of material hardship (health, life satisfaction, bill 

collectors, unemployed member). Results: The Income-to-Poverty ratio and value of assets 

varied by class, but there was no difference in household net worth or value of debts. EITC 

Initiators had lower income-based poverty than Consistent claimers, as evidenced by 

significantly higher assets (~ $1.4k vs $890), marginally less debt (~ $5.9k vs $6.7k). 

Conclusion: There are distinct patterns of claiming the EITC, and individuals within these 

trajectories have differential economic health outcomes. These findings suggest that on average, 

people who stop claiming the EITC (i.e., Decliners) stop claiming the credit due to exceeding 

maximum income levels, rather than failing to meet work requirements or filing an income tax 

return.  
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3.2. Introduction  
 

The Federal Earned Income Tax Credit (EITC) was first introduced in 1970 as a 

refundable credit for low-income, working adults. The EITC is the largest anti-poverty cash 

assistance program in the United States and directly impacts two key social determinants of 

health – income and employment (Falk and Crandall-Hollick, 2018). The federal EITC is 

associated with physical and psychological well-being (Boyd-Swan et al., 2016; Gomis-

Porqueras et al., 2011; Lenhart, 2019) and educational achievement among lower-income 

children (Bastian and Michelmore, 2015; Hamad et al., 2018; Strully et al., 2010). While these 

health effects are promising, the primary goal of the EITC is to help lift low-income families out 

of poverty by encouraging work and employment (Falk and Crandall-Hollick, 2018). Some 

literature on the health effects of the EITC include income as a secondary outcome in the 

analysis, to measure whether the EITC has had an impact on health by impacting income and 

employment (Cowan and Tefft, 2012; Kenkel et al., 2013; Rehkopf et al., 2014a).  

Previous research has evaluated the EITC’s employment effects, concluding that the 

EITC increases the work force participation of single mothers and leads to corresponding 

increases in post-tax income. One study found a 34% of the increase in employment for single 

mothers between 1993 and 1999 was due to the EITC (Falk and Crandall-Hollick, 2018). The 

bulk of research has focused on unmarried, single mothers, because like the bulk of EITC 

research, these studies examine how legislative expansions of the EITC influenced previously 

unimpacted groups through causal inference methods. Studies have not investigated the impact 

on childless adults, mainly because the EITC has not been expanded for this group and most 

studies evaluate EITC expansions. Research is less conclusive for married individuals but 

suggests that married women may reduce the number of hours they work (Crandall-Hollick and 

Hughes, 2018).  Investigating the EITC’s impact on equity and poverty reduction, often involves 
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observing poverty rates or tax burden.  Because the EITC is not included in the definition of 

income for the official poverty measure, alternative measures must be used. The Supplemental 

Poverty Measure (SPM), has been used to assess the effects of social policies. When transfers 

from government tax programs were included in a broader measure of poverty, refundable tax 

credits reduced poverty by 3%,compared to 1.6% for food assistance (SNAP) and 0.2% point for 

temporary welfare assistance  (TANF). Research examining if the tax credit improves outcomes 

related to equity such as health and education outcomes is growing. However, there are not many 

EITC studies that measure effects in terms of other economic health indicators, such as ability to 

meet material needs and demands.  

Poverty is a multidimensional phenomenon (Isaacs et al., 2004). Poverty can be 

holistically defined as the extent to which an individual goes without having resources, including 

financial, emotional, mental, and spiritual resources and support systems (Payne, 2013). 

However, we often think of poverty only in terms of having the financial resources to purchase 

goods and services. This is because poverty is often conceptualized in terms of income 

thresholds, namely throughout the U.S. official poverty measure (OPM). While there are specific 

criticisms of the OPM, the major problem can be described in two ways, which Fremstad (2010) 

describes as the “too low, too narrow” problem”. This refers to the fact that the income threshold 

for the federal poverty line is too low, and what type of income and resources qualify as income 

are too restrictive to reflect individual’s material reality. Citro and Michael (1995) describe 

economic poverty as a “low level of material goods or services or a low level of resources to 

obtain these goods and services”. They describe two forms of economic wellbeing, one based on 

lack of resources, typically measured by income, and the other on the lack of goods and services, 

typically thought of as deprivation or hardship.  The OPM and the SPM are both income-based 
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poverty measures, meaning they rely on income to determine poverty. Researchers have turned 

to deprivation poverty measures in recent years, to make up for limitations of income-based 

measures. Material hardship is a deprivation measure comprised of several indicators and is 

increasingly being used to understand relative (having less than peers) and subjective (feeling 

deprived) poverty (Nelson, 2011). While there is no single definition of Material hardship, the 

definition by Beverly (1999) defines it as “inadequate consumption of very basic goods and 

services such as food, housing, clothing, and medical care.” Bauman (1998) describes the 

material hardship approach as using “direct measures of economic well-being to keep track of 

how people are getting by.” Common measures of economic wellbeing used to assess material 

hardship include such as food insecurity, difficulty meeting basic needs, lack of consumer 

durables, housing problems, neighborhood problems, and fear of crime (Nelson, 2011).  

Previous longitundinal research establishes that people experience poverty for different 

durations, some individuals experience generational poverty (lasting for two or more 

generations), while others experience transient poverty (Currie, 2011; Haveman et al., n.d.). 

Another limitation of the extant literature on EITC and health, is the inability to observe the 

long-term impact of the EITC over the years on economic outcomes. Current EITC studies are 

limited by the inability to observe income-based poverty or deprivation over time among EITC 

recipients as they claim the credit on and off throughout their life. The bulk of current EITC 

studies use causal inference study designs to evaluate the effect of legislative expansions of the 

EITC (Pega et al., 2013). One predominant method is the difference-in-difference policy 

analysis, which characterizes most methods.  A DD study is a common technique in policy 

evaluations and estimates the effect of a policy/intervention by comparing changes in the 

outcome between a population that received the intervention and a group that did not (control) 
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(Wing et al., 2018). The problem is that EITC exposure must be fixed to evaluate the impact of 

the policy. As a result, the sample of EITC recipients is composed of people that have claimed 

the credit consecutive years in a row, without interruption. Evidence confirms that the EITC is a 

short-term safety net typically claimed on and off for one or two years at a time(Ackerman, 

2009; Dowd and Horowitz, 2011). Thus, it would yield greater validity if researchers could study 

low-income individuals across the life course as they change their EITC status every year, since 

this what IRS record indicate. Theoretically, individuals would stop claiming the EITC for two 

primary reasons: (1) increase in economic stability, such as surpassing minimum income 

requirements or (2) decline in economic stability, such as failing to meet the employment 

requirement or not filing an income tax return. If existing studies limit their sample to people 

who do not change EITC status, researchers are unable to study a considerable segment of the 

EITC population or understand long term impact. Because poverty is partially characterized by 

economic instability and flux (Currie, 2011), current studies unable to assess whether the 

economic situation of EITC recipients is changing over the years, as they claim the credit 

sporadically.    

In Chapter 2, I identified four trajectories of EITC recipients: Non-claimers (54%), 

Initiators (23%), Decliners (12%), and Consistent claimers (11%). There were significant 

differences between EITC trajectories in tobacco and alcohol use, but not marijuana or other 

illicit drug use. This chapter revealed that two groups of individuals are excluded from the 

“EITC population” in current studies – those who begin claiming the EITC and those who 

discontinue claiming the EITC.  

The Current Study. The current study seeks to understand whether economic wellbeing 

outcomes vary across individuals with various EITC receipt history. The goal of the current 
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study is to extend the previously enumerated EITC trajectory classes (Aim 1) in order to identify 

significant characteristics (i.e., correlates) of class membership (e.g., age, sex) and understand if 

these classes impact economic wellbeing outcomes. One concern with current EITC studies is 

the inability to look at the impact of longitudinal EITC receipt due to limitations of current EITC 

study design.  The previous study concluded that it is important to consider the impact of 

different EITC trajectories because they may have a differential effect on health behaviors 

specifically substance use behavior. By examining individual trajectories of claiming the EITC 

over time, we can observe groups of individuals that are improving, declining, or remaining 

consistent in claiming the EITC. Despite its non-inclusion in the official poverty measure, the 

EITC is the government’s primary tool for economic mobility for low-income adults and 

whether the EITC has an impact on substance use warrants further investigation (Falk and 

Crandall-Hollick, 2018).  

3.3. Methods 

The 1997 National Longitudinal Survey of Youth (NLSY97) 

Data for this study are from the 1997 National Longitudinal Survey of Youth (NLSY97), 

a prospective cohort study currently conducted by the Bureau of Labor Statistics which gathers 

information on the labor force experiences of youth born between 1980 and 1984 as they 

transition through adulthood (Bureau of Labor Statistics, 2019). Because detailed information on 

income and number of children is unavailable for prior EITC studies, the 1997 National 

Longitudinal Survey of Youth (NLSY97) is the ideal dataset to examine the relationship between 

EITC and substance use. Interviews have been conducted annually from 1997 to 2011, and 

biannually from 2013 to the present. The initial NLSY97 survey consists of 8,194 participants, 

comprised of a representative cross-sectional sample of 6,748 respondents and a supplemental 



39 

 

oversample of 2,236 Hispanic/Latino and Black respondents. Youth respondents' ages ranged 

from 12-18 in 1997, and 30-36 in 2015. NLSY97 data are designed to be representative at the 

national level and cumulative sampling & panel data weights are provided. Because the goal of 

the current study is to avoid limitations of  prior causal inference EITC studies, I used a model-

based approach and did not use study weights (Bureau of Labor Statistics, 2019). These de-

identified data were exempt from Institutional Review by the Johns Hopkins Bloomberg School 

of Public Health .  

Measures  

 Claiming the EITC on tax return. Indicators of latent class membership are whether 

participants claimed the EITC in the past year, from 2003 to 2010. Although, the NLSY began 

data collection in 1997, the  study period began in 2003 when all participants were 18 and legally 

eligible to claim independence on their tax return. All individuals who answer “yes” to having a 

source of income in the survey are asked whether they claimed an EITC on their tax return last 

year. For example, in 2007, participants  who reported an income source were asked, “Did 

[you/you or your spouse/you or your partner] claim, or are [you/you or your spouse/you or your 

partner] planning to claim, an Earned Income Tax Credit on your [or your spouse's/or your 

partner's] 2006 Federal Income Tax Return?” Individuals who were originally excluded from the 

question (individuals without a source of income), were coded as not claiming an EITC. 

 Demographic Characteristics. All demographic characteristics are self-reported and 

include sex, race, age, marital status, educational attainment, parent status, and health insurance 

coverage. The NLSY97 survey staff created a single combined race variable. All respondents are 

classified as Hispanic /Latino, Black, Non-black/Non-Hispanic, or Mixed race. Hispanic of 

Latino ethnicity was given prioritized in creation of this variable. Similar to other studies, 
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educational attainment was measured as a binary variable comprised of high school (HS) 

diploma or less and some college or more (Gomis-Porqueras et al., 2011). Some demographic 

characteristics are time-varying outcomes, such as age, health insurance, and marital status. To 

understand whether these variables change over time, I provided estimates from 2003, the 

baseline year for the study period (2003) and compare them to the year that distal outcomes are 

measured (2008).  

Economic Wellbeing Outcomes. Several income measures and self-reported material 

hardship indicators were included to measure poverty or economic wellbeing. Specifically, 

income measures of economic wellbeing included household income-to-poverty ratio, the 

amount of financial debt the participant owed (excluding housing value), financial assets 

(including nonfinancial assets), and the net worth of the participants’ household. Details on the 

value of a respondent's financial asset holdings (e.g., real estate, businesses, vehicles) and 

amount of debt (excluding housing), were generated retrospectively for all participants regardless 

of survey interview round at age 25. Values for financial assets and debt were top coded at 

$300,000 and $370,000, respectively. Income to poverty ratio is the ratio of household income to 

poverty level in the previous year, accounting for household size. The range of values in 2008 

when study outcomes are measured was 0-19.4, and a higher ratio indicates a lower level of 

poverty relative to household income. Participants general health was measured by asking 

individuals “In general, how is your health?” Responses ranged from 1 to 5, ranging from 

Excellent, Very Good, Good, Fair, and Poor. Participants were also asked about unemployment 

in the household: “In the last five years, did any adult member of your household (other than 

yourself) experience one or more periods of unemployment lasting at least six months?” to which 

participants answered (yes/no). This question was asked this question from 2007-2009 while 
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participants were 24-26 years on average, until every participant was asked the question.  To 

assess life satisfaction, participants were asked “All things considered, how satisfied are you 

with your life as a whole these days? Please give me an answer from 1 to 10, where 1 means 

extremely dissatisfied and 10 means extremely satisfied.” This question was asked once in 2008, 

when participants were aged 25.  

Statistical Analysis 

The goal of a latent class analysis (LCA) is to classify individuals into distinct groups of 

categories based on their individual response patterns. The LCA is a person-centered approach 

that focuses on relationships among individuals, so that individuals within a group are more 

similar than individual across different groups (Jung and Wickrama, 2008a). While regression 

modeling takes a variable-based approach to understand causality, we recognize that variable 

based approaches are insufficient in situation where there is information bias. On the other hand, 

a person-centered approach has the opposite goal. Instead of observing the relationships between 

variables (e.g., sex, number of children, EITC exposure), the LCA approach analyzes the latent 

structure of people, and sorts them into groups (Jung and Wickrama, 2008b). This approach is 

required to further understand who EITC participants are through descriptively quantitative 

methods. As a result, we explore the impact of sex, race, age, marital status, parent status, 

parental educational attainment, and health insurance coverage on class membership. Measures 

of economic wellbeing were accessed in 2008, when participants were 25 years old on average, 

and included as distal outcomes using a three-step approach (Nylund-Gibson et al., 2019). To 

assess the overall difference between latent classes, a Wald Test was performed. To compare 

differences between individuals' classes, added additional “model constraints” were added to 
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include pairwise comparisons between individuals’ latent classes. All analyses were performed 

in Mplus, version 8 (Muthen and Muthen, 2017).   

LCA Model Fit. LCA models with 1 to 6 classes were fit. Multiple random starting values 

were used to ensure estimates did not reflect local maxima, and the best log likelihood value was 

replicated. Models were compared based on standard fit statistics, the Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC), Lo-Mendel-Rubin (LMR), the Log 

likelihood (LL), the Bootstrapped Likelihood Ratio Tests (BLRT), and the model entropy 

(Masyn, 2013; Nylund-Gibson, 2007; Nylund-Gibson and Choi, 2018).  

3.4. Results  

The prevalence of the latent class indicators, demographic characteristics, and distal 

outcomes for the full analytic sample are provided (Table 1). The NLSY97 sample is 51% male, 

51% white, and in 2008 the average educational attainment was at least a high school diploma.  

Latent Class Enumeration  

Based on fit statistics (Table 2) and substantive interpretation, a four-class model was 

chosen (Figure 1). Although a 5-class model was initially preferred by some fit statistics (i.e., 

LMR), the additional class identified was not theoretically meaningful and therefore we chose 

the more parsimonious model. The first and largest class was composed of individuals who had a 

probability of less than 9% of claiming the EITC consistently from 2003 to 2010, labeled Non-

claimers (54% of sample). A second class of those who did not claim the EITC until 2004, 

labeled Initiators (8%). A third class of individuals who claimed the EITC in early years but 

discontinued after 2007 (13%) and was labeled Decliner. Finally, a fourth class was 

characterized by individuals who had a probability of 80% or higher of claiming the EITC every 

year, labeled Consistent claimers (10%). 
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Demographic Correlates of Class Membership  

For each latent class, the probability of demographic characteristics is presented, and 

significant associations are bolded (Table 3). Sociodemographic differences are briefly 

mentioned below, and coefficients and odds ratios are included in the appendix for a referent 

class of Non-claimers (A-Table 3.1) and Consistent claimers (A-Table 3.2). Compared to Non-

claimers (i.e. those who did not claim the EITC), significant correlates among EITC trajectories 

were sex, education, parent status, marital status, and health coverage (Table 3). There were no 

significant differences in race/ethnicity by class. Compared to Consistent claimers, Initiators 

were less likely to be female (OR: 0.44, p<0.001), less likely to be parents (0.21, p<.001), and 

less likely to be married (0.66, p<0.001) (A-Table 3.2). Compared to Initiators, Decliners are 

significantly less likely to be parents (OR: 0.30, p=<0.001), but more likely to be married (OR: 

2.10, p=0.003). 

Indicators of Material Hardship by Class  

 General Health. General Health differed marginally by class (χ = 7.53, p = 0.06), with the 

best health reported by Non-claimers, with the lowest rating of 2.14, and the worst health rating 

of 2.47 reported by Consistent claimers. Consistent claimers were significantly more likely than 

Non-claimers to report a lower general health rating (β =0.14, p=0.007).  

 Life Satisfaction. Life satisfaction did not differ significantly overall by class (χ = 5.415, 

p = 0.14), however Consistent claimers had significantly lower life satisfaction than Decliners (β 

=-0.256, p=0.02).  

Pressure from Bill Collectors. The proportion of individuals reporting pressure from bill 

collectors differed significantly by class (χ = 33.6, p<0.0001). EITC Decliners were less likely to 

report pressure from bill collectors than Consistent claimers (β =-0.075., p=0.01), but 
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significantly more likely than Non-claimers (β =0.042, p=0.05). Although Consistent claimers 

report more pressure from bill collectors than Non-claimers (β =0.117, p<0.001) and Initiators (β 

=0.059, p=0.02), Initiators are more likely to report pressure than Non-claimers (β =0.017, 

p=0.001). 

Unemployed Household Member. The proportion of individuals reporting an unemployed 

household member in the last 5 years did not differ overall by class, but there were two 

significant pairwise comparisons. Decliners had a lower proportion of unemployed members 

than Consistent claimers (β =-0.049, p=0.04) and Consistent claimers had a higher proportion 

than Non-claimers (β =0.039, p=0.04).   

3.4.4. Income Measures by Class  

Household Poverty Ratio. The ratio of household income to poverty in the previous year 

differed significantly by class (χ = 17.02, p = 0.0007). The lowest poverty was among Non-

claimers with a corresponding ratio of 4.15, while Consistent claimers had the highest amount of 

poverty and lowest ratio of 2.26. Consistent claimers had more poverty than Non-claimers (β= -

0.61, p=<0.001), and Non-claimers had less poverty than Initiators (β =0.397, p=0.02). However, 

Decliners had significantly less poverty (4.07) than Consistent claimer’s (β =0.761, p=0.001) and 

Initiators (β =0.553, p=0.02).  

Household Net Worth at 25. Household net worth did not differ significantly overall by 

class (χ = 3.43, p = 0.33), however Consistent claimers had a marginally lower net worth than 

Non-claimers (β =-0.154, p=0.09).  

Assets at age 25. The value of financial and nonfinancial assets varied significantly by 

class (χ = 41.03, p<0.0001). Non-claimers had the $3,630 in assets, while Consistent claimers 

had $888.91 in assets. Decliners ($3,050) had more assets than Consistent claimers (β =0.923, 
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p=0.001) and Initiators (β =0.573, p=0.004). Consistent claimers had significantly less assets 

than Non-claimers (β =-0.965., p<0.001) and Initiators (β =-0.349., p=0.07).  Non-claimers had 

significantly more assets (β =0.616, p<0.001.) than Initiators ($1,365). 

Debts at age 25. The value of debts did not differ significantly overall by class (χ = 4.82, 

p=0.19), though there were significant pairwise differences. Non-claimers had the highest 

amount of debt $9,996, while Initiators had the lowest at $5,978. Non-claimers had significantly 

more debt than Initiators (β =0.18, p=0.04). Consistent claimers had marginally more debt 

($6,714) than Initiators (β =0.174, p=0.10).  

3.5. Discussion  

The goal of this study was to identify whether longitudinal trajectories of claiming the 

EITC are associated with differential measures of economic wellbeing measured by income-

based poverty and material hardship. There were four EITC trajectories: Non-claimers (54%), 

Initiators (23%), Decliners (12%), and Consistent claimers (11%). For income measures, the 

income to poverty ratio and value of assets varied by class, but there was no difference in 

household net worth or value of debts. Our findings suggest that compared to assets, evaluating 

debt-based measures may not be a robust was indicator of income-based poverty, because 

Decliners and Non-claimers had more debt than their lower-income counterparts. Typically, 

attending education would be correlated with higher debt, however we did adjust for education 

level in these analyses. In terms of indicators of material hardship, general health and pressure 

from bill collectors varied by class, but overall life satisfaction and unemployment among a 

member of the household did not. The fact that general health varied marginally by class, while 

life satisfaction did not is interesting, though future research is required. While only one 

comparison between Consistent claimers and Non-claimers was driving the significant 
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association for general health, these two trajectories most accurately represent EITC recipients 

and non-recipients in the current literature. Previous research on EITC and subjective wellbeing 

established that EITC recipients have lower health ratings that individuals who do not claim the 

EITC (Boyd-Swan et al., 2016). Taken together, these findings could provide minor evidence to 

support the assertion that perceived health measures are less susceptible to self-report bias than 

more abstract questions about life satisfaction (Boyd-Swan et al., 2016). Furthermore, questions 

about life satisfaction would more accurately measure subjective poverty (feeling deprived) 

rather than relative (material deprivation) and absolute (income deprivation) poverty.  

Findings from the current study were consistent with results from Chapter 2. EITC 

Consistent claimers and Initiators appear similar to one another on income-based poverty 

measures, while the same is true for Non-claimers and Decliners. On average, people who stop 

claiming the EITC (i.e., Decliners) stop claiming due to exceeding maximum income levels, 

rather than failing to meet work requirements or filing an income tax return. Compared to EITC 

Initiators, Decliners had significantly more assets (~ $1.4k vs $3k) and significantly less 

poverty, evidenced by a higher income to poverty ratio. Between Initiators and Decliners there 

are no differences by sex, race, or education. Compared to Initiators, Decliners are significantly 

less likely to be parents (OR: 0.30, p=<0.001), but more likely to be married (OR: 2.10, 

p=0.003). Pressure from Bill Collectors is also good measure to illustrate the difference between 

the Initiator and Decliner trajectories. Decliners had significantly less pressure from Bill 

Collectors than Consistent claimers, but still reported more than Non-claimers. It appears that 

EITC Decliners experience increased income after no longer claiming the EITC, but their 

income is not as high as Non-claimers. While this may be unsurprising, it is meaningful to know 

that on average, individuals in the Decliner trajectory did not stop claiming the EITC due to 
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increases in income-based poverty (i.e., job loss). Between Initiators and Decliners there are no 

differences by sex, race, or education.  

Initiators reported more pressure from bill collectors than Non-claimers, but less pressure 

than Consistent claimers. Our results suggest that EITC Initiators have higher economic 

wellbeing than Consistent claimers, as evidenced by significantly higher assets (~ $1.4k vs 

$890), marginally less debt (~ $5.9k vs $6.7k). Notably, Consistent claimers and Initiators did 

not differ significantly by race, education, or health coverage. Compared to Consistent claimers, 

Initiators were more likely to be single males without children. Given that current research 

focuses on single mothers because they receive the EITC most consistently (although men and 

childless also claim the credit), it makes sense that the group with the second highest probability 

of receiving the EITC (i.e., Initiators) are comprised of men and childless adults who also claim 

the credit, but do not receive it as often as single mothers (i.e., Consistent claimers).  

Our findings suggest that while men are less likely to claim the EITC as often as 

consistently as women, they are more likely to stop or start claiming the credit. Whether this is 

due to better economic outcomes than their female counterparts or rarity of receiving the EITC 

credit is unknown. However, economists and proponents of EITC reform or elimination often 

point out that the credit does not help low-income families, so much as it helps low-income 

women (Mead, 2020; Rachidi, 2015b). Researchers from the Cato Institute have suggested that 

the EITC ends up hurting childless workers who receive no EITC or a small EITC, because it can 

push down market wages (Edwards and de Rugy, 2015). In another critical review of the EITC, 

Mead (2014) argues that expanding the EITC credit for men would be ineffective and “recent 

claims made on behalf of the EITC have stoked false hopes that work incentives alone might 

bring low-income men into the work force in large numbers.” This is based on the assertion that 
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poor men respond similarly to poor women to work incentives. That said, many proponents of 

the EITC are in favor of expanding the credit so that childless men and adults can benefit from 

the policy (Aviva Aron-Dine and Sherman, 2007; Kapahi and Fellow, 2019; Maag et al., 2019; 

Marr et al., 2016). In many cases, childless adults carry a heavier tax burden and have their 

income pushed below the poverty line due to tax liability (Marr et al., 2014)   

Strengths and Limitations. This was the first study to examine the relationship between 

the EITC and material hardship by using individual trajectories of claiming the EITC through a 

Longitudinal Latent Class Analysis (LLCA). In addition, the NLSY97 is the only national survey 

with health information that includes a survey item on claiming the EITC receipt, allowing us to 

decrease potential misclassification bias of prior studies (Pega et al., 2013). Furthermore, the 

NLSY97 prevents the probable measurement error of prior studies that used cross-sectional data, 

by allowing us to control for individual time-invariant heterogeneity and providing more detailed 

demographic information (i.e., marriage and parental status). State EITCs were not included in 

this analysis because the purpose was to examine the longitudinal impact of the federal policy. 

Future research should explore whether there is a unique impact of state EITCs. In addition, we 

do not know whether individuals who claimed the EITC receive it, limiting us to an intent-to-

treat interpretation of the results. There are no nationally representative U.S. health surveys that 

collect information on individuals’ EITC receipt (Simon et al., 2018). However, because the 

majority of EITC-eligible individuals with children (80–86%) receive the credit, this assumption 

is standard across studies for modelling EITC-health effects (Falk and Crandall-Hollick, 2018; 

Pega et al., 2013; Simon et al., 2018). There were several indicators of material hardship (i.e., 

food security, neighborhood conditions) we were unable to include because they are not accessed 

in the NLSY97. However, some measures of material hardship are better suited to detect short-
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term poverty, such as bill collectors. While other factors, such as neighborhood conditions may 

reflect longer term poverty (Iceland and Bauman, 2007). Our analysis provide further support 

that including measures of income-based poverty and material hardship may be necessary to 

capture the multidimensional effects of poverty (Nelson, 2011).  

Conclusion  

The current study revealed that measures of income-based poverty and indicators of 

material hardship vary significantly across different EITC receipt trajectories. In terms of 

income, people who stop claiming the EITC (i.e., Decliners) stop claiming due to exceeding 

maximum income levels, rather than failing to meet work requirements or filing an income tax 

return. In addition, men appear to claim the EITC for a shorter time than women. This provides 

further support for the Chapter 1 conclusion that excluding individuals who do not have a fixed 

EITC exposure, prevents researchers from studying two important groups –people who change 

EITC status during life (decliners and initiators) and people who claim for shorter periods of 

time (men). Future research on the EITC should consider using latent class analysis to identify 

distinct trajectories of receipt to identify these two groups and create an exposure variable that 

can be used as a covariate in multivariate regression techniques.  
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Table 3.1. Prevalence of Latent Class Indicators, Demographic Characteristics, and Economic 

Wellbeing among full NLSY sample (N=8,984) 

 Full Sample 

Proportion or Mean (SD) 

Claimed the EITC 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010  

 

0.19 

0.23 

0.28 

0.30 

0.32 

0.37 

0.36 

0.30 

Demographic Characteristics  

Male  

Female  

 

0.51 

0.49 

Black 

White 

Hispanic 

Mixed  

0.27 

0.51 

0.21 

0.01 

HS diploma or less (2003) 

Some college or more  

HS diploma or less (2008) 

Some college or more  

0.92 

0.08 

0.71 

0.29 

Health Insurance (2003) 

Health Insurance (2008) 

Parent (2003) 

Parent (2008) 

Married (2003) 

Married (2008) 

0.67 

0.67 

0.19 

0.38 

0.11 

0.29 

Material Hardship Indicators (2008)  

General Health  

Life Satisfaction  

Bill Collectors  

Unemployed Member                         

Income Poverty Measures (2008)  

Poverty Ratio 

Household Worth at 25 ($) 

Assets at 25 ($) 

Debts at 25 ($) 

 

2.24 (0.95) 

7.63 (1.85) 

0.15 

0.10 

 

3.57 (3.59) b 

12,800.33 (4.38) 

2407.91 (9.22) 

7,984.68 (4.56) 

Notes: a Time-varying factors are provided during 2003, the baseline year of the latent class analysis, and 

2008, the year distal substance use outcomes are measured. b The range of possible income-to-poverty 

ratio values were 0.00-19.37.  P = proportion; M = mean; SD = standard deviation; LCA = latent class 

analysis; EITC = earned income tax credit; SU = substance use. 
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Table 3.2. Model Fit Statistics for Trajectories of Claiming the EITC (N=8,514) a 

 
# OF EITC LATENT CLASSES  

FIT MEASURE  2 3 4 5 6 

# of Free 

Parameters 
17 26 35 44 53 

LL -30232.90 -29869.24 -29643.04 -29584.40 -29557.26 

AIC 60499.80 59790.48 59356.07 59256.80 59220.52 

BIC 60619.64 59973.76 59602.80 59566.97 59594.14 

 

LMR 

7274.24 

<0.001 

718.50 

<0.0001 

446.92 

<0.001 

115.85 

0.0001 

53.14 

0.20 

Entropy 0.723 0.659 0.614 0.614 0.588 

Smallest Class 31% 12% 11% 8% 6% 

Notes: a 470 individuals were excluded from the LCA due to missing data on all indicator variables. LL= 

log likelihood; AIC= Akaike information criteria; BIC= Bayesian information criteria; LMR= adjusted 

Lo-Mendell Rubin and p-value.  
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Table 3.3. Estimated Means for Demographic Covariates by EITC Latent Class  

 
Non-claimer 

Class 1 

Initiator 

Class 2 

Decliner 

Class 3 

Consistent 

claimer 

Class 4 

Sex 

   Female 
0.45 0.51 0.44 0.76 

Race 

   Black 

   White 

   Hispanic 

 

0.22 

0.60 

0.17 

 

0.34 

0.39 

0.26 

 

0.22 

0.52 

0.26 

 

0.39 

0.37 

0.23 

Education  

   HS diploma or less 

   Some college or more  

 

0.61 

0.39 

 

0.82 

0.18 

 

0.74 

0.26 

 

       0.86 

0.14 

Parent (2008) 0.17 0.57 0.34 0.90 

Married (2008) 0.25 0.27 0.36 0.42 

Insured (2008) 0.69 0.60 0.68 0.67 

Notes: For relevant statistics refer to Appendix  (A-Table 3.1) 
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Figure 3.1. Material Hardship Indicators by EITC Trajectory (Health, Life Satisfaction, Bill 

Collectors, Unemployment) 

 

 
Notes: Significant pairwise comparisons are displayed by class. #=0.10, *= 0.05, **= 0.01, ***=0.001. 

EITC=earned income tax credit; Unemployed Member= unemployed member in household.  
 

 

 

 

 

 

 

 

 

 



54 

 

Figure 3.2. Income-based Poverty Indicators by EITC Trajectory (Household worth, Asset, 

Debts, Income poverty ratio)  
 

 
Notes: Significant pairwise comparisons are displayed by class. #=0.10, *= 0.05, **= 0.01, ***=0.001. 

EITC=earned income tax credit.  
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CHAPTER 4.  Co-occurring Trajectories of Earned Income Tax Credit Receipt and 

Substance Use: A Latent Transition Analysis  

 

4.1. Abstract  
 

Objective: In Chapter 2, I identified distinct trajectories of EITC receipt and confirmed 

that people with different EITC trajectories had differential substance use behavior in 2011. In 

Chapter 3, I further revealed that EITC trajectories also differ on indicators income and poverty. 

The current study aims to further examine the co-occurrence between these EITC trajectories and 

patterns of substance use to determine if claiming the EITC may be contributing to differential 

substance use behaviors. Method: Using data from 8,984 responses to the 1997 National 

Longitudinal Survey of Youth (NLSY97), which and oversampled Black and Latino 

respondents, I performed a latent transition analysis (LTA) of EITC trajectories and three 

substance use trajectories (tobacco, alcohol, marijuana), separately. I also explored whether sex 

significantly impacts transition probabilities. Results: For tobacco, Consistent claimers had the 

highest probability of being a non-smoker (50%), while Initiators had the highest probability of 

smokers (36%). For alcohol, compared to other EITC groups, Initiators had the lowest 

probability (54%) of being a drinker and Non-claimers had the highest (64%). For marijuana, 

Consistent claimers had the highest probability (85%) of being a non-user. Conclusion: Although 

further research is required, these findings suggest people with different patterns of claiming the 

EITC over time (trajectories) have different substance use behaviors over time as well. While 

these findings cannot prove that these differential behaviors are caused by EITC trajectory, they 

are evidence of distinct differences between individuals who have a particular history of 

receiving the EITC.  
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4.2. Introduction  

While research on the health benefits of the Earned Income Tax Credit (EITC) is 

growing, research on potential substance use effects remain limited (Pega et al., 2013). There is a 

need for research evaluating the longitudinal impact of EITC receipt on substance use that 

addresses the limitations of current EITC studies. That is, studies are needed that consider how 

claiming the EITC may change over an individual’s life course, which has been absent from 

existing literature. This is concerning because evidence suggests that the EITC is a short-term 

safety net. Based on analysis of federal tax returns, 61% of EITC recipients claimed the EITC for 

1 or 2 years (Dowd and Horowitz, 2011).  

Substance use is a point of concern for opponents of economic assistance programs, yet 

comparatively little research has focused on the EITC. The evidence on smoking after EITC 

implementation is mixed, one study found no effect five years after EITC implementation 

(Cowan and Tefft, 2012). Another study found a very moderate reduction in smoking during 

pregnancy (Strully et al., 2010). Another examination of current smoking behavior found no 

effect for African Americans, but a decrease for white mothers, two years after implementation 

(Averett and Wang, 2013). Tobacco studies typically restricted the outcome to women,  and used 

individuals receiving a smaller EITC credit as the comparison group (Averett and Wang, 2013; 

Cowan and Tefft, 2012; Evans and Garthwaite, 2014). There is only one study examining the 

impact of the EITC on other drugs including alcohol and marijuana, pooling together cross-

sectional data to observe the EITC. The authors concluded that during the months of EITC 

disbursement, there was no significant impact on alcohol use and an inconclusive decrease in 

marijuana use (Rehkopf et al., 2014a). However, this study had a few limitations that support the 

need for future research. The authors were evaluating the 1993 EITC legislative expansion and 
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were therefore limited to adults with two or more children. The Rehkopf (2014) study was 

unique because they included both men and women in their sample. Women are more likely to 

claim and receive the EITC credit, but generally less likely to engage in substance use than 

males(Falk and Crandall-Hollick, 2018; McHugh et al., 2018). For this reason, the few studies 

that investigate the EITC and tobacco use typically restrict their analysis to women Rehkopf 

(2014) study was unique because they performed a stratified analysis for men and women. It is 

important to consider the role of sex in the relationship between the EITC and substance use 

since women are most likely to claim and receive the EITC credit, but generally less likely to 

engage in substance use than males (McHugh et al., 2018; Perkins, 2009).  

The Current Study. The goal of the current study is to use latent transition analysis to 

investigate the co-occurring trajectories of EITC receipt and tobacco, alcohol, and marijuana use 

from 2003 to 2010. I will perform a longitudinal latent class analysis (LLCA) for each factor and 

then model the probability of joint membership between trajectories.  I also explore the impact of 

sex on the transition probabilities between EITC trajectories and substance use trajectories. By 

studying the trajectory of the EITC, I am not only studying the developmental trajectory of the 

EITC target population – low-income adults in the US, but also trying to gauge whether there are 

co-occurring, long term effects of the policy.  

4.3. Methods 

1997 National Longitudinal Survey of Youth (NLSY97)  

The NLSY97 is a prospective cohort study currently conducted by the Bureau of Labor 

Statistics which gathers information on the labor force experiences of youth born between 1980 

and 1984 as they transition through adulthood (Bureau of Labor Statistics, 2019). This de-

identified data were deemed exempt by the Johns Hopkins Bloomberg School of Public Health 
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Institutional Review Board. Because detailed information on income and number of children is 

unavailable for prior EITC studies, the 1997 National Longitudinal Survey of Youth (NLSY97) 

is the ideal dataset to examine the relationship between EITC and substance use. Interviews have 

been conducted annually from 1997 to 2011, and biannually from 2013 to the present. The initial 

NLSY97 survey consists of 8,194 participants, comprised of a representative cross-sectional 

sample of 6,748 respondents and a supplemental oversample of 2,236 Hispanic/Latino and Black 

respondents. Youth respondents' ages ranged from 12-18 in 1997, and 30-36 in 2015. NLSY97 

data are designed to be representative at the national level and cumulative sampling and panel 

data weights are provided. Because the goal of the current study is to avoid limitations of  prior 

causal inference EITC studies, we used a model-based approach and did not use study weights 

(Bureau of Labor Statistics, 2019).  

Measures  

 Claiming the EITC. Indicators of latent class membership are whether or not 

participants claimed the EITC on their tax return in the past year, from 2003 to 2010. Although, 

the NLSY began data collection in 1997, we began our study period in 2003 when all 

participants were 18 and legally eligible to claim independence on their tax return. All 

individuals who answer “yes” to having a source of income in the survey are asked whether they 

claimed an EITC on their tax return last year. For example, in 2007, participants  who reported 

an income source were asked, “Did [you/you or your spouse/you or your partner] claim, or are 

[you/you or your spouse/you or your partner] planning to claim, an Earned Income Tax Credit 

on your [or your spouse's/or your partner's] 2006 Federal Income Tax Return?” Individuals who 

were originally excluded from the question (individuals without a source of income), were coded 

as not claiming an EITC. 
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Past Year Substance Use. Indicators of latent class membership are binary indicators of 

tobacco, alcohol, and marijuana use since the last NLSY interview from 2003 to 2010. 

Participants were asked, “Since the date of last interview, have you [smoked a cigarette; drank an 

alcoholic beverage; used marijuana, even if only once, for example: grass or pot; used any drugs 

like cocaine or crack or heroin, or any other substance not prescribed by a doctor]?” The NLSY 

also include definitions the interviewer read to participants. An alcoholic drink is defined as “a 

can or bottle of beer, a glass of wine, a mixed drink, or a shot of liquor.”  

 Controlling for Sex. Sex was self-reported in the NLSY97. We controlled for sex, 

because previous evidence confirms that it may impact both substance use and the likelihood of 

receiving the earned income tax credit. To test whether sex also had an impact on the co-

occurrence between EITC trajectory and substance use trajectory, we also tested separately for 

an interaction.  

Statistical Analysis 

The goal of LCA is to classify individuals into distinct groups of categories based on 

their individual response patterns. The LCA is a person-centered approach that focuses on 

relationships among individuals, so that individuals within a group are more similar than 

individual across different groups (Jung and Wickrama, 2008a).The Latent Transition Analysis is 

an extension of this method, typically used to examine transitions from one cross-sectional LCA 

class to another. In our context, transitions will be interpreted as co-occurrence between long-

term trajectories. While there is no distinction the literature, this analysis may be thought of as a 

“joint trajectory analysis” composed of two conjoined LCA models. The LTA was performed 

using a three-step approach to prevent shifting of measurement parameters in the LCA model  

(Nylund-Gibson et al., 2019). The three-step technique was used to specify each LTA model. 
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This included performing separate LCAs, merging them into one dataset with auxiliary 

(predictor, outcome) variables, and specifying an LTA model (Nylund-Gibson et al., 2014). To 

test for the interaction between sex and co-occurring EITC and SU trajectories vary by sex, we 

included an interaction by including an additional statement regressing sex on substance use in 

each of the four latent class regressions of EITC and specific substance use trajectory (Nylund-

Gibson et al., 2014, 2019). All analyses were performed in Mplus, version 8 (Muthen and 

Muthen, 2017). 

LCA Model Fit. LCA models with 1 to 6 classes were fit for multiple random starting 

values were used to ensure estimates did not reflect local maxima, and the best log likelihood 

value was replicated. Models were compared based on standard fit statistics, the Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), Lo-Mendel-Rubin (LMR), the 

Log likelihood (LL), the Bootstrapped Likelihood Ratio Tests (BLRT), and the model entropy 

(Masyn, 2013; Nylund-Gibson, 2007; Nylund-Gibson and Choi, 2018).  

4.4. Results  

The prevalence of the indicators used in each latent class analysis and demographic 

characteristics used in the LTA are presented for the full sample in Table 1. The NLSY97 sample 

is 49 % female.  

Latent Class Enumeration  

Based on substantive interpretation, a four-class model was chosen for all four latent 

class analyses (Table 2). Although a 5-class model was initially preferred for the EITC by some 

fit statistics (i.e., LMR), the additional EITC class identified was not theoretically meaningful 

and therefore we chose the more parsimonious EITC model. Generally, after class enumeration 
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surpassed four, the substance use classes began to be defined by the rate of change across time, 

rather than type of change.  

EITC LCA. The first and largest class (Figure 1) was composed of individuals who had a 

probability of less than 9% of claiming the EITC consistently from 2003 to 2010, labeled Non-

claimers (54% of sample). A second class of those who did not claim the EITC until 2004, 

labeled Initiators (8%). A third class of individuals who claimed the EITC in early years but 

discontinued after 2007 (13%) and was labeled Decliners. Finally, a fourth class was 

characterized by individuals who had a probability of 80% or higher of claiming the EITC every 

year, labeled Consistent claimers (10%). 

 Tobacco LCA. The largest class (Figure 1) was characterized by individuals who had a 

probability of less than 3%, labeled Non-smokers (47% of sample). A second class of those who 

had a probability of 90% or higher of smoking every year, labeled Smokers (32%). A third class 

of individuals who had a probability of 70%, which began to decrease rapidly after 2006 to 16%, 

labeled Quitter (12%). Finally, a fourth class of people who had a probability of 20%, which 

began to increase rapidly after 2006, labeled Riser (8%). 

Alcohol LCA. The largest class (Figure 2) was characterized by individuals who had a 

probability of 90% or higher of drinking from 2003 to 2010, labeled Drinkers (62% of sample). 

A second class of those who had a probability of less than 10% of drinking alcohol from 2003 to 

2010, labeled Non-drinkers (15%). A third class of individuals who had a probability increasing 

their use from 30% to 75% and was labeled Riser (13%). Finally, a fourth class of people who 

had a probability of decreasing their use from 80% to 30%, labeled Quitters (10%). 

Marijuana LCA. The largest class (Figure 3) was composed of individuals who had a 

probability of less than 3% and labeled Non-user (72% of sample). A second class of those who 
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had a probability of 83% of higher of using marijuana every year, labeled Users (12%). A third 

class of individuals who had a probability of 60%, which began decreasing steadily in 2005 to 

15%, labeled Quitters (10%). Finally, a fourth class of people who had a probability of 20%, 

which began increasing in 2006 to 50%, labeled Riser (6%). 

EITC Class Trajectory by Substance Use LCA 

 Patterns of Tobacco Use by EITC Class. Table 3 presents the unconditional transition 

probabilities which describe co-occurrence between each substance use trajectory and EITC 

recipient trajectory. Consistent claimers had the highest likelihood of being (.50) in the Non-

smoker group, while Initiators had the lowest prevalence (.40). Slightly more Initiators were in 

the smoker class (.36), compared to .33 or 33% of Consistent claimers. Comparing Decliners to 

Non-claimers, both trajectories had a similar likelihood of being a smoker (.31 vs .32), a non-

smoker (.45 v .46) and or a quitter (.13 v .15). However, 0.12 of Decliners were in the Riser 

trajectory, compared to 0.07 of Non-claimers. However, individuals in the Non-claimer 

trajectory had a higher likelihood (.15) of being a Quitter as opposed to a Riser (.07), which was 

distinct from other EITC trajectories. 

Patterns of Alcohol Use by EITC Class. Table 3 presents the unconditional transition 

probabilities describing co-occurrence between each substance use trajectory and EITC recipient. 

Consistent claimer and Initiators had similar likelihood of being in each alcohol trajectory, 

except for Drinkers (.60 v .54). Initiators had the lowest likelihood of being a Drinker among 

EITC groups (.54). Decliners were less likely to engage in alcohol use than Non-claimers, in 

regard to being a Drinker (.60 v .64), Quitter (.14 v .10), and Non-drinker (.10 v .14), but slightly 

more likely to increase their use over time (.16 v .12). Of all EITC trajectories, Non-claimers had 

the highest likelihood of being a Drinker (.64). Consistent claimers had a larger difference 
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between the likelihood of being a Riser (.18) as opposed to a Quitter (.12), which was distinct 

from other EITC trajectories. 

Patterns of Marijuana Use by EITC Class. Table 3 presents the unconditional transition 

probabilities describing co-occurrence between each substance use trajectory and EITC recipient 

trajectory. Consistent claimers and Initiators were similar in terms of likelihood of being a 

marijuana user (.10 v .11), but Initiators were more likely to be a Riser (.01 v .04), Quitter (.04 v 

.09), or Non-user (.85 v .77). Consistent claimers had the highest probability of being non-users 

of all EITC trajectories (.85). Decliners and Non-claimers were similar in terms of being a User 

(.14 v .16) and Riser (.03 v .02). However, Decliners were less likely to be a Quitter (.03 v .10) 

and more likely to be a Non-user (.79 v .72), suggesting lower marijuana use than Non-claimers.  

Covariate Results for Final LTA Model 

 Table 4 presents results are presented for the regression of the latent class variable on the 

covariates (Table 4). This model included an interaction term that allowed the co-occurrence 

between EITC classes and substance use trajectories to be different by sex(Table 5). In other 

words, we tested to sex changed the probability of transitioning among the EITC and substance 

use trajectories.  

 Tobacco Use and EITC Trajectories. Regarding sex differences, tobacco smokers and 

risers were less likely to be female than non-smokers. There was one significant interaction for 

the effect of sex. Compared to Non-claimers who do not smoke, females in the EITC Decliner 

class were less likely (OR:0.33, p=0.001) to be quitters. In other words, females who no longer 

claim the EITC over time are more likely to be smokers or risers.  

Alcohol Use and EITC Trajectories. Regarding sex differences, non-drinkers were less 

likely to be female than drinkers. There was one significant interaction of sex across EITC 
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trajectories. Compared to Non-claimers who drink alcohol, female EITC Initiators were more 

likely to be non-drinkers (OR: 2.50, p=0.03).  

Marijuana Use and EITC Trajectories. Regarding sex differences, marijuana users are 

less likely to be female than non-users. There was one significant interaction of sex across EITC 

trajectories. Compared to Non-claimers who were non-users, EITC Initiators who were female 

were more likely to be marijuana users (OR: 4.39, p=0.05).  

4.5. Discussion  

The shape of the EITC trajectories and all three substance use trajectories were similar in 

pattern. All four LCA’s identified four stable trajectories: a high class, a low class, increasing 

class, and a decreasing class. This common phenomenon, called the cat’s cradle, occurs 

commonly in LCAs of substance use, most commonly alcohol (Sher et al., 2011). Scientists 

investigated whether this may be evidence of artificial results or underpowered results, through 

simulation and concluded that most applications identified a four-class model, regardless of 

sample size. With increased sample, occasionally one or two additional classes are identified by 

fit statistics, but they often do not have a meaningful theoretical or clinical interpretation (Sher et 

al., 2011).  

For each substance use category, at least one EITC trajectory was characteristically 

different from the rest of the groups. Consistent claimers had the highest probability of being a 

tobacco non-smoker (50%), while Initiators had the highest probability of tobacco smokers 

(36%). For alcohol, compared to other EITC groups, Initiators had the lowest probability (54%) 

of being an alcohol drinker, while Non-claimers had the highest (64%). Consistent claimers had 

the highest probability (85%) of not smoking marijuana. There were significant sex differences 

for each substance and a significant effect of being a female for three groups, female Decliners 
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were less likely to quit tobacco, female Initiators were more likely to be non-drinker, and female 

Initiators were more likely to be a marijuana smoker. Regarding sex differences, Tobacco 

smokers and risers were more likely to be male than non-smokers. This makes sense considering 

sex differences in tobacco use prevalence, but also explains why Consistent claimers had a 50% 

chance  of being placed in the Non-Smoker trajectory(Perkins, 2009). The EITC population is 

typically female, therefore the Consistent claimer trajectory would reflect the most likely 

recipients of the credit (Dowd and Horowitz, 2011; Evans and Garthwaite, 2014). In terms of 

alcohol, non-drinkers were more likely to be male than drinkers. There were significant sex 

differences for each substance and a significant effect of sex for three groups, Decliners who quit 

tobacco, Initiators who do not drink alcohol, and Initiators who smoke marijuana. 

Compared to other groups, Non-claimers had a larger difference between the probability 

of being a Quitter or Riser (.15 v .07).  This suggests that Non-claimers were more likely than 

other EITC trajectories to quit smoking tobacco between 2003 and 2010.  These findings are 

consistent with the evidence of that tobacco use declines more slowly in lower-income groups 

than more affluent populations potentially due to disparities in tobacco use, marketing, and 

treatment efficacy (Cal Ham et al., 2011; Leas et al., 2019; Yu et al., 2010). 

Although Consistent claimers and Initiators had similar likelihood of being a smoker (10 

v 11), Initiators were more likely to smoke marijuana because they were more likely to be in the 

Riser or Quitter trajectory. Consistent claimers were distinctly different from other classes in 

their marijuana use, with 85% in the non-smoker class. In Chapter 2, results revealed there were 

no significant differences in marijuana use in 2011 by EITC trajectory. This illustrates the 

importance of considering trajectories of substance use to understand nuances in behavior. 
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Surprisingly, Initiators, shared similarities common with Decliners and Non-claimers in Riser, 

Quitter and Non-user marijuana use trajectories.  

Strengths and Limitations. This was the first study to examine trajectories of claiming the 

EITC and substance use patterns among young adults (20-30) through a Latent Transition 

Analysis. In addition, the NLSY97 is the only national survey with health information that asks 

participants to report whether they have claimed the EITC and includes information on health, 

allowing us to decrease potential misclassification bias of prior studies (Pega et al., 2013). 

However, there were also a few limitations. State EITCs were not included in this analysis 

because the purpose was to examine the longitudinal impact of the federal policy, and state 

EITCS were being introduced and expanded in multiple states. In addition, we do not know 

whether individuals who claimed the EITC received it, limiting us to an intent-to-treat 

interpretation of the results. There are no U.S. health surveys that collect information on 

individuals’ EITC receipt (Simon et al., 2018). However, because the majority of EITC-eligible 

individuals with children (80–86%) receive the credit, this assumption is standard for modelling 

EITC-health effects (Falk and Crandall-Hollick, 2018; Simon et al., 2018). We also use a crude 

measure of substance use, observing binary measure as opposed to frequency of use. Finally, this 

analysis cannot speak to causality or specific mechanisms that may link the EITC to substance 

use outcomes.  

Conclusion 

The current study found that certain EITC trajectories were more likely to engage in 

substance use throughout their life. EITC trajectories appear to have some contribution to 

differential substance use behavior. This study provides support for previous research that 

concluded that the EITC is a short-term safety net (Ackerman, 2009; Dowd and Horowitz, 2011). 
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Current studies present an incomplete picture of the EITC population, since many remove men 

and childless adults from the sample. Our findings reveal that observing the long-term EITC 

impact without excluding people based on sex or changing EITC status, is necessary.  
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Table 4.1. Prevalence of Latent Class Indicators and Sex among full sample (N=8,514) 

 Full Sample 

Proportion or Mean (SD) 

Claimed the EITC 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010  

 

0.19 

0.23 

0.28 

0.30 

0.32 

0.37 

0.36 

0.30 

Tobacco Use   

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010     

Alcohol Use  

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010  

Marijuana Use  

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

 

0.43 

0.43 

0.43 

0.44 

0.43 

0.41 

0.40 

0.38 

 

0.70  

0.72 

0.76 

0.76 

0.76 

0.77 

0.74 

0.73 

 

0.23 

0.21 

0.21 

0.19 

0.18 

0.18 

0.16 

0.17 

Male  

Female  

0.51 

0.49  

Notes: P = proportion; M = mean; SD = standard deviation; LCA = latent class analysis; EITC = earned 

income tax credit; SU = substance use. 
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Table 4.2. Model Fit Statistics for Four Latent Class Analyses: EITC Receipt, Tobacco, Alcohol, 

and Marijuana Use 

 
 

No. of Classes  LL BIC 
LMR  

(p-value) 
Entropy 

Smallest 

Class  

EITC (N=8514)a      

2 
-30232.90 606019.64 7274.24 (<.001) .723 .31 

3 -29869.24 59973.76 718.50 (<.0001) .659 .12 

 

4 -29643.04 59602.80 446.92 (<.001) .614 .11 

 

5 -29584.40 59566.97 115.85 (.0001) .614 .08 

6 -29557.26 59594.14 53.12 (.20) .588 .06 

Tobacco 

(N=8518)      

2 -24512.03 49177.90 31624.90 (<.0001) .928 .45 

3 -23096.03 46427.35 2797.65 (<.0001) .850 .21 

4 -22607.37 45531.48 965.47 (<.0001) .857 .08 

5 -22513.70 45425.59 185.07 (<.0001) .819 .06 

6 -22466.39 45412.43 93.46 (.03) .796 .04 

7 -22421.52 45404.13 91.51 (.0001) .802 .03 

8 -22396.72 45435.98 48.99 (.08) .798 .021 

Alcohol (N=8508)      

2 -24785.75 49725.34 17343.61 (<.0001) .875 .30 

3 -23864.47 47964.20 1820.22 (<.0001) .797 .14 

4 -23553.17 47423.05 615.05 (<.0001) .787 .10 

5 -23492.98 47384.10 118.927 (.0006) .732 .08 

6 -23465.98 47411.55 53.34 (.04) .686 .05 

7 -23429.91 47420.85 71.26 (.005) .730 .02 

8 -23403.57 47449.61 52.04 (.06) .714 .03 

Marijuana 

(N=8507)      

2 -19996.13 40146.08 16879.37 (<.0001) .907 .22 

3 -19284.97 38804.99 1405.27 (<.0001) .823 .11 
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4 -19084.50 38485.70 395.87(<.0001) .824 .06 

5 -19008.89 38415.90 149.40 (.0001) .776 .07 

6 -18973.68 38426.94 69.55 (.002) .760 .04 

7 -18943.74 38448.50 59.15 (.16) .761 .02 

Note. a The initial NLSY 1997 sample was 8,914, respondents that lacked information on all eight 

indicators were excluded from the LCA. LL= log likelihood; BIC= Bayesian information criteria; LMR= 

adjusted Lo-Mendell Rubin and p-value.   
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Table 4.3.  Latent Transition Analysis Transition Probabilities Based on the Unconditioned 

Latent Transition Analysis Model Probabilities (Tobacco, Alcohol, & Marijuana Use 

Trajectories)  
 EITC CLASS TRAJECTORY 

TOBACCO CLASS 

Consistent 

claimer 
Initiator Decliner Non-claimers 

Smoker 0.33 0.36 0.31 0.32 

Riser 0.09 0.11 0.12 0.07 

Quitter 0.08 0.10 0.13 0.15 

Non-smoker 0.50 0.43 0.45 0.46 

ALCOHOL CLASS      

Non-drinker 0.17 0.15 0.10 0.14 

Riser 0.18 0.17 0.16 0.12 

Quitter 0.12 0.15 0.14 0.10 

Drinker 0.60 0.54 0.60 0.64 

MARIJUANA CLASS     

User 0.10 0.11 0.14 0.16 

Riser 0.01 0.04 0.03 0.02 

Quitter 0.04 0.09 0.03 0.10 

Non-user 0.85 0.77 0.79 0.72 

Notes: Bold indicates statistically significant logit value for LTA of alcohol on the transition to EITC 

class. SU = substance use; EITC = earned income tax credit; LCA = latent class analysis  
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Table 4.4. Covariate Table for LTA Model that Included Interaction Effects  

LCA 

Model 
 Logit SE P Value OR 

EITC LCA       

Claimers  Sex (Female)  1.344 1.107 <0.001 3.83 

Initiators   0.278 0.082 0.001 1.32 

Decliners   0.048 0.116 0.680 1.05 

Tobacco LCA       

Smokers  Sex (Female) -0.472 0.094 <0.001 0.62 

Increase   -0.465 0.249 0.062 0.63 

Decrease    -0.180 0.151 0.233 0.84 

Alcohol LCA       

Non-drinkers Sex (Female) -0.264 0.124 0.033 0.77 

Increase   -0.102 0.175 0.559 0.90 

Decrease    -0.003 0.188 0.989 0.997 

Marijuana  Sex (Female)     

Smoker  -1.655 0.167 <0.001 0.19 

Start  0.710 0.438 0.105 2.03 

Quit   -0.198 0.202 0.326 0.82 

Notes: Referent Group is EITC Non-claimers, and Non-users for each substance. Alcohol is 

the only exception, where the referent group is Drinkers.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

 

 

Table 4.5. Interaction Effect of Sex in LTA Model                                                                         
EITC 

Trajectory  

Substance Use 

LCA  
Logit SE P Value OR p-value 

 TOBACCO       

Claimers  Smokers 0.202 0.251 0.421 1.224 .466 

 Riser 0.731 0.704 0.299 2.078 .461 

 Quitter  -0.322 0.551 0.560 0.725 .491 

Initiators  Smokers -0.018 0.198 0.928 0.982 .927 

 Riser -0.233 0.446 0.602 0.792 .557 

 Quitter -0.211 0.410 0.606 0.809 .565 

Decliners  Smokers -0.223 0.296 0.451 0.800 .398 

 Riser -0.144 0.570 0.801 0.866 .787 

 Quitter -1.109 0.622 0.074 0.330 .001 

 ALCOHOL       

Claimers  Non-drinker 0.806 0.336 0.017 2.24 .100 

 Riser 1.906 0.883 0.031 6.73 .335 

 Quitter -0.011 0.455 0.980 0.99 .980 

Initiators  Non-drinker 0.916 0.271 0.001 2.50 .027 

 Riser 0.322 0.322 0.331 1.38 .406 

 Quit  0.144 0.352 0.682 1.16 .703 

Decliners  Non-drinker 0.777 0.454 0.087 2.18 .234 

 Riser 0.858 0.477 0.072 2.36 .227 

 Quit  -0.834 0.611 0.173 0.43 .033 

 MARIJUANA      

Claimers  User 0.796 0.449 0.076 2.22 .221 

 Riser 7.458 0.851 <.0001 1733.3 .240 

 Quitter 0.075 1.082 0.945 1.09 .947 

Initiators  User 1.478 0.386 <0.001 4.39 .045 

 Riser -0.753 0.685 0.271 0.47 .101 

 Quitter -0.628 0.517 0.224 0.53 .091 

Decliners  User 0.576 0.565 0.308 1.78 .439 

 Riser -0.724 1.018 0.477 0.49 .296 

 Quitter 0.128 1.300 0.921 1.14 .926 

Notes: The effect of SU trajectory on the co-occurrence with EITC Class, SU is the independent variable 

in regression 
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Figure 4.1. LCA of EITC Receipt and LCA of Tobacco Use (2003-2010) 

Notes: X-axis is the survey year. Y-axis is the conditional item probability, or likelihood that individuals 

in each class would answer “yes” to claiming the EITC or using tobacco since the last NLSY survey. 
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Figure 4.2. LCA of EITC Receipt and LCA of Alcohol Use (2003-2010) 

 
Notes: X-axis is the survey year. Y-axis is the conditional item probability, or likelihood that individuals 

in each class would answer “yes” to claiming the EITC or using alcohol since the last NLSY survey. 
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Figure 4.3. LCA of EITC Receipt and LCA of Marijuana (2003-2010) 

 
Notes: X-axis is the survey year. Y-axis is the conditional item probability, or likelihood that individuals 

in each class would answer “yes” to claiming the EITC or using marijuana since the last NLSY survey. 
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CHAPTER 5. Discussion 

The overall goal of this study was to identify longitundinal patterns of EITC receipt and 

examine their association with differential health and economic outcomes, to confirm whether 

the EITC is a short-term safety net and expand upon current literature through further 

investigation of individuals that comprise the EITC population. We used latent variable 

modeling to group individuals based on their unobserved heterogeneity and distinct pattern of 

claiming the EITC from 2003 to 2010. We were interested in capitalizing on the underlying 

heterogeneity in EITC receipt over time to group individuals into meaningful classes and explore 

correlates of substance use and economic health outcomes.  This investigation replicated 

previous evidence suggesting the EITC is not claimed consecutively, but sporadically, and 

provide evidence on whether future studies should consider using alternative study designs that 

allows consideration of longitudinal EITC trajectory (Ackerman, 2009; Dowd and Horowitz, 

2011; Pega et al., 2013).   

This study applied a novel technique to examine the EITC since latent variable modeling 

has not been applied to understand this policy and its recipients. Our findings corroborate 

previous evidence that the EITC is a short-term benefit, claimed sporadically throughout life 

(Ackerman, 2009; Dowd and Horowitz, 2011; Masken, 2006).  This study revealed four 

individual trajectories of EITC receipt from 2003 to 2010, consistently claiming the EITC, 

initiating or declining, and not claiming the credit. This study revealed that two groups of 

individuals are excluded from the “EITC” population in current studies – those who begin 

claiming the EITC and those who discontinue the EITC. In conclusion, defining long-term EITC 

claimers as individuals who claim the credit consecutive years, prevents researchers from 

observing the full sample of eligible tax filers with differential histories of receiving the EITC.  
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5.1. Summary of Main Findings 
 

In Chapter 2, we conducted a latent class analysis to identify longitudinal patterns of 

EITC receipt. We also examined sociodemographic correlates of class membership and tested for 

differences in four substance use outcomes by each latent class. Indicators of latent class 

membership are whether participants claimed the EITC in the past year, from 2003 to 2010. All 

demographic characteristics are self-reported and include sex, race/ethnicity, age, educational 

attainment, marital status, parent status, and health insurance coverage. Substance use outcomes 

were accessed in 2011, when participants were 28 years old on average. Tobacco, alcohol, 

marijuana, and “other illicit drug” use since the last NLSY interview was assessed at each 

follow-up visit. There were four EITC trajectories: Non-claimers (54%), Initiators (23%), 

Decliners (12%), and Consistent claimers (11%). There were significant differences between 

EITC trajectories in tobacco and alcohol use, but not marijuana or other illicit drug use. Alcohol 

use was highest among Non-claimers and Decliners (76%), followed by Consistent claimers 

(73%), and Initiators (71%). Tobacco use was highest for Initiators (43%), Consistent claimer 

(39%), Decliner (37%), and Non-claimers (35%). Among the four groups, Consistent 

claimers/Initiators had high tobacco, but low alcohol use, while Decliners/Non-claimers 

demonstrated the opposite – low tobacco and high alcohol use. These findings suggest that 

Consistent claimers/Initiators and Decliners/Non-claimers are like one another and may be 

similar in other factors that determine the EITC, such as employment or annual income. 

Chapter 3 expanded upon findings from Chapter 2 by aiming to investigate whether 

measures of economic wellbeing would also differ by EITC trajectory. We also examined 

sociodemographic correlates of class membership and tested for differences in eight measures of 

economic wellbeing outcomes, four income-based poverty measures (household worth, assets, 

debts, poverty ratio) and four indicators of material hardship (health, life satisfaction, bill 
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collectors, unemployed member).  Poverty ratio and assets varied by class, but there was no 

difference in household net worth or value of debts. EITC Initiators had lower income-based 

poverty than Consistent claimers, as evidenced by significantly higher assets (~ $1.4k vs $890), 

marginally less debt (~ $5.9k vs $6.7k). Consistent with Chapter 2, we revealed that there are 

distinct patterns of claiming the EITC, and individuals within these trajectories have differential 

economic health outcomes, in addition to substance use behavior.  These results suggest that on 

average, people who stop claiming the EITC (i.e., Decliners) stop claiming due to exceeding 

maximum income levels, rather than failing to meet work requirements or filing an income tax 

return.  

In Chapter 4, we access whether there is co-occurrence between patterns of substance use 

EITC trajectories from 2003 to 2010, to examine if EITC receipt trajectories may be contributing 

to differential substance use behaviors. Using data from 8,984 responses to the 1997 National 

Longitudinal Survey of Youth (NLSY97), which  oversampled Black and Latino respondents, we 

performed a latent transition analysis (LTA) of EITC trajectories and three substance use 

trajectories (tobacco, alcohol, marijuana), separately. We also tested for an interaction of sex for 

each transition. For tobacco, Consistent claimers had the highest probability of being a non-

smoker (50%), while Initiators had the highest probability of smokers (36%). For alcohol, 

compared to other EITC groups, Initiators had the lowest probability (54%) of being a drinker 

and Non-claimers had the highest (64%). For marijuana, Consistent claimers had the highest 

probability (85%) of being a non-smoker. These findings showed that certain EITC trajectories 

were more likely to engage in substance use throughout their life. EITC trajectories appear to 

have some contribution to differential substance use behavior. This study provides support for 

previous research that concluded that the EITC is a short-term safety net. 



80 

 

5.2. Synthesis of Findings  

This study had two major findings: (1) there are distinct trajectories of EITC receipt and 

(2) the individuals in these trajectories differ in demographic characteristics, and substance use 

behavior, and economic health outcomes. This study supports the assertion that the EITC is a 

short-term safety net and replicates the results of previous IRS studies using data from a health 

dataset. Studies using special access IRS data found that very few people claim the EITC for 

consecutive years (Ackerman, 2009; Dowd and Horowitz, 2011; Masken, 2006) This study 

found that 11% were Consistent claimers, 35% were Initiators or Decliners, and 54% were Non-

claimers. In other words, of the 3,879 people who were placed in a trajectory that included 

receiving the EITC, 76% of those EITC claimers (2,956) were people who changed their EITC 

status at some point during the study period. This study revealed that two groups of individuals 

are excluded from the “EITC” population in current studies – those who begin claiming the 

EITC and those who discontinue the EITC. Therefore, excluding individuals who do not have a 

fixed EITC exposure from the sample, prevents researchers from observing the complete EITC 

population. Current literature describes EITC participants as low-income, typically unmarried 

women with have children, because this is the group that receive the credit most often (Falk and 

Crandall-Hollick, 2018). Current studies present an incomplete picture of the “EITC population” 

since many remove men and childless adults from the sample. Our findings reveal that observing 

the long-term EITC impact without excluding people based on sex or changing EITC status, is 

necessary. Although EITC Consistent claimers were 77% female, EITC Initiators were 59% 

female and Decliners were 45% female. It appears that while men are less likely to claim the 

EITC as often as women consistently, they are more likely to stop or start claiming the credit. 

This finding is consistent with current evidence that suggests men claim the EITC for shorter 
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time periods than women (Masken, 2006)  This study also had important implications for 

beginning to understand substance use behavior in EITC recipients. In Chapter 2, results 

revealed there were no significant differences in marijuana use in 2011 by EITC trajectory. 

However, results from Chapter 4, which included trajectories of marijuana use over 8 years, 

found differences for individuals with different EITC trajectories. This demonstrates that 

considering trajectories of substance use is necessary to reveal potential nuance in health 

behavior.  

It is important to point out that these EITC trajectories do not cause the differences in 

substance use that we observed. We may only conclude that substance use appears different 

across different EITC trajectories (Nylund-Gibson and Choi, 2018). The LCA grouped together 

similar individuals based on their EITC receipt, and then compared the mean substance use 

between each group. In theory, Consistent claimers could have high SU for another unobserved 

reason or unobserved similarity between these people in a subgroup, that is not related to the 

EITC indicators used to form LCA subgroups. Therefore, we examined correlates, or predictors 

of class membership. Consistent claimers are mostly female and have children, the population 

that mostly get the EITC. Otherwise, the general population of women with children would not 

typically have higher levels of substance use than men (McHugh et al., 2018). These correlates 

of class membership are crucial to allow us to interpret the characteristics of each subgroup or 

latent trajectory. These analyses do not mean the EITC policy alone can explain why a given 

EITC trajectory has higher substance use or value of assets. This analysis investigated whether a 

person’s individual history (pattern) of claiming the EITC over many years, can have any effect 

on their substance use, either cross sectionally (Chapter 2) or longitudinally (Chapter 4). While it 

is reasonable given the income-health gradient to assume that people with different patterns of 
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employment or income would have different levels of health behaviors, this is a challenge all 

EITC studies face. The EITC directly impacts employment and increases post-tax income, so 

disentangling the effects of the credit from these factors and the decision whether or not to 

include them in the model, is a persistent limitation for researchers investigating the EITC (Pega 

et al., 2013). Future studies should seek to investigate and understand what people in these 

trajectories look like on a variety of factors, so that we may begin to understand why the 

substance use outcomes differ among different trajectories. To begin this endeavor, we examined 

the co-occurrence between EITC trajectories and patterns of substance use (Aim 3).  

5.3. Strengths and Limitations  

This was the first study to examine trajectories of claiming the EITC and substance use 

patterns among young adults (20-30) through latent variable modeling. A Longitudinal LCA 

(also called repeated measures LCA) was conducted. In an LLCA the latent class variable can be 

used to describe change over time without having to make any assumptions about the structure or 

functional form of the change process, unlike other longitudinal models such as growth models. 

That said, an LLCA can be specified before a growth model or a growth mixture model as a 

baseline model to explore heterogeneity in change. There were also several limitations that 

present opportunities to improve rigor.  

 In addition, the NLSY97 is the only national survey with health information that asks 

participants to report whether they have claimed the EITC and includes information on health, 

allowing us to decrease potential misclassification bias of prior studies (Pega et al., 2013).. 

However, there were also a few limitations. State EITCs were not included in this analysis 

because the purpose was to examine the longitudinal impact of the federal EITC policy, and state 

EITCS were being introduced and expanded in multiple states. In addition, we do not know 
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whether individuals who claimed the EITC received it, limiting us to an intent-to-treat 

interpretation of the results. Aside from IRS data, there are no nationally representative U.S. 

health surveys that collect information on individuals’ EITC receipt (Simon et al., 2018). 

However, because the majority of EITC-eligible individuals with children (80–86%) receive the 

credit, this assumption is standard for modelling EITC-health effects (Falk and Crandall-Hollick, 

2018; Simon et al., 2018).  In addition, this analysis cannot speak to causality or specific 

mechanisms that may link the EITC to substance use outcomes. Finally, the measure of 

substance use is a limitation. Because we observe annual substance use, as opposed to frequency 

or other indicators of severity, we are limited in the conclusions we can make in this initial study.  

However, the 1997 NLSY includes frequency and severity measures of substance use, making 

this a potential future endeavor.  

5.4. Future Directions  

Implications for Research. This study provides support for the assertion that the EITC is 

a short-term safety net. Future studies should consider EITC trajectory and pay consideration to 

how analysts are restricting their sample to likely EITC recipients. This study provided evidence 

that excluding individuals who do not have a fixed EITC exposure from the sample, prevents 

researchers from observing the complete EITC population. Future research on the EITC and 

health should consider using latent class analysis to identifying distinct trajectories of claiming 

the EITC, to create an exposure variable that does not require fixed EITC status. These 

trajectories can then be used in mixture modeling techniques, such as this study, or used as a 

latent variable in multivariate regression for causal inference studies. Understanding the long-

term impact of this short-term income support program will ultimately help researchers identify 
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how tax credits can be utilized as programs to help alleviate poverty and improve health 

outcomes among low-income, vulnerable populations.  

Implications for Policy and Practice. This study confirms that men are more likely to 

claim the earned income credit for one year. Indeed, men were more likely to belong to a group 

of individuals who begin claiming the EITC over their lifetime (EITC Initiators). These findings 

contradict criticism from political opponents of the EITC who assert that the refundable credit is 

minimally useful only for low-income mothers and assert that benefits should not be available to 

men or childless adults. This research also revealed that indicators of economic wellbeing, like as 

the income-to-poverty ratio or value of financial assets,  differ significantly between individuals 

who claim the credit consistently and those who begin claiming it over the years. Understanding 

these differences not only has implication for understanding the relationship between income and 

health for men and women but understanding how the policy is being implemented and 

evaluating the impact among the true population of people who receive it.  

 

 

 

 

 

 

 

 

 



85 

 

REFERENCES 

 

Ackerman, D. (2009). The Pattern of EITC Claims Over Time: A Panel Data Analysis. Internal 

Revenue Service Research Conference. Washington, DC. 

Aladangady, A., Aron-Dine, S., Cashin, D., Dunn, W., Feiveson, L., Lengermann, P., Richard, 

K., et al. (2018). High-frequency Spending Responses to the Earned Income Tax Credit. 

FEDS Notes. Washington, DC. doi: 10.17016/2380-7172.2199 

Alexander, M. J., Kiang, M. V., and Barbieri, M. (2018). Trends in Black and White Opioid 

Mortality in the United States, 1979–2015. Epidemiology, 29(5), 707–715. doi: 

10.1097/EDE.0000000000000858 

Averett, S., and Wang, Y. (2013). The Effects of the Earned Income Tax Credit Payment 

Expansion on Maternal Smoking. Health Economics, 22, 1344–1359. doi: 

10.1002/hec.2886 

Aviva Aron-Dine, B., and Sherman, A. (2007). WAYS AND MEANS COMMITTEE CHAIRMAN 

CHARLES RANGEL’S PROPOSED EXPANSION OF THE EITC FOR CHILDLESS 

WORKERS: AN IMPORTANT STEP TO MAKE WORK PAY. Washington, DC. Retrieved 

from https://www.cbpp.org/sites/default/files/atoms/files/10-25-07tax.pdf 

Baker, K. (2008). Do Cash Transfer Programs Improve Infant Health: Evidence from the 1993 

Expansion of the Earned Income Tax Credit. Retrieved from 

https://economics.nd.edu/assets/24011/baker_paper.pdf 

Bastian, J., and Michelmore, K. (2015). The Long-Term Impact of the Earned Income Tax Credit 

on Children’s Education and Employment Outcomes. SSRN Electronic Journal, 36(4), 

1127–1163. doi: 10.2139/ssrn.2674603 

Baughman, R., and Dickert-Conlin, S. (2009). The Earned Income Tax Credit and Fertility. 

Journal of Population Economics, 22(3), 537–563. 

Bhrolcháin, M. N., and Beaujouan, E. (2012). Fertility postponement is largely due to rising 

educational enrolment. Population Studies, 66(3), 311–327. doi: 

10.1080/00324728.2012.697569 

Boyd-Swan, C., Herbst, C. M., Ifcher, J., and Zarghamee, H. (2016). The earned income tax 

credit, mental health, and happiness. Journal of Economic Behavior & Organization, 126, 

18–38. North-Holland. doi: 10.1016/J.JEBO.2015.11.004 

Brown-Johnson, C. G., England, L. J., Glantz, S. A., and Ling, P. M. (n.d.). Tobacco Industry 



86 

 

Marketing to Low Socio-economic Status Women in the US. doi: 10.1136/tobaccocontrol-

2013-051224 

Bureau of Labor Statistics. (2019). The NLSY97 Sample: An Introduction. National 

Longitudinal Surveys. Retrieved July 20, 2019, from 

https://www.nlsinfo.org/content/cohorts/nlsy97/intro-to-the-sample/nlsy97-sample-

introduction-0 

Cal Ham, D., Przybeck, T., Strickland, J. R., Luke, D. A., Bierut, L. J., and Evanoff, B. A. 

(2011). Occupation and Workplace Policies Predict Smoking Behaviors: Analysis of 

National Data from the Current Population Survey. J Occup Environ Med, 53(11), 1337–

1345. doi: 10.1097/JOM.0b013e3182337778 

Cowan, B., and Tefft, N. (2012). Education, maternal smoking, and the earned income tax credit. 

B.E. Journal of Economic Analysis and Policy, 12(1), 1–47. doi: 10.1515/1935-1682.3305 

Crandall-Hollick, M. L. (2018). The Earned Income Tax Credit (EITC): A Brief Legislative 

History. Washington, DC. Retrieved from www.crs.gov 

Crandall-Hollick, M. L., and Hughes, J. S. (2018). The Earned Income Tax Credit (EITC): An 

Economic Analysis. #R44057. Washington, DC. Retrieved from www.crs.gov. 

Currie, J. (2011). Inequality at Birth: Some Causes and Consequences. American Economic 

Review , 101(3), 1–22. doi: 10.1257/aer.101.3.1 

Dasgupta, N., Beletsky, L., and Ciccarone, D. (2018). Opioid Crisis: No Easy Fix to Its Social 

and Economic Determinants. American Journal of Public Health, 108(2), 182–186. doi: 

10.2105/AJPH.2017.304187 

Despard, M. R., Perantie, D. C., Oliphant, J., and Grinstein-Weiss, M. (2015). Do EITC 

Recipients Use Their Tax Refunds to Get Ahead? Evidence From the Refund to Savings 

Initiative (CSD Research Brief No. 15-38). St. Louis, MO. Retrieved from 

https://openscholarship.wustl.edu/cgi/viewcontent.cgi?article=1589&context=csd_research 

Dobkin, C., Puller, S. L., Chay, P. K., Ishii, J., Joyce, T., Kletzer, L., Lee, D., et al. (2007). The 

effects of government transfers on monthly cycles in drug abuse, hospitalization and 

mortality ☆. Journal of Public Economics, 91, 2137–2157. doi: 

10.1016/j.jpubeco.2007.04.007 

Dowd, T., and Horowitz, J. B. (2011). Income Mobility and the Earned Income Tax Credit: 

Short-Term Safety Net or Long-Term Income Support. Public Finance Review, 39(5), 619–



87 

 

652. doi: 10.1177/1091142111401008 

Edwards, C., and de Rugy, V. (2015). Earned Income Tax Credit: Small Benefits, Large Costs. 

Washington, DC. 

Eissa, N., Liebman, J. B., Chamberlain, G., Cutler, D., Elmendorf, D., Feenberg, D., Feldstein, 

M., et al. (1996). LABOR SUPPLY RESPONSE TO THE EARNED INCOME TAX 

CREDIT*. The Quarterly Journal of Economics. Retrieved from 

https://academic.oup.com/qje/article-abstract/111/2/605/1938452 

Evans, W. N., and Garthwaite, C. L. (2014). Giving Mom a Break: The Impact of Higher EITC 

Payments on Maternal Health. American Economic Journal: Economic Policy, 6(2), 258–

290. doi: 10.1257/pol.6.2.258 

Falk, G., and Crandall-Hollick, M. L. (2018). The Earned Income Tax Credit (EITC): An 

Overview. R43805. Washington, DC. Retrieved from www.crs.gov 

Feldman, B. J., Masyn, K. E., Conger, R. D., and Feldman, B. (2009). New Approaches to 

Studying Problem Behaviors: A Comparison of Methods for Modeling Longitudinal, 

Categorical Adolescent Drinking Data NIH Public Access. Dev Psychol, 45(3), 652–676. 

doi: 10.1037/a0014851 

Galea, S., Nandi, A., and Vlahov, D. (2004). The social epidemiology of substance use. 

Epidemiologic Reviews, 26(August), 36–52. doi: 10.1093/epirev/mxh007 

Galea, S., and Vlahov, D. (2002). Social determinants and the health of drug users: 

socioeconomic status, homelessness, and incarceration. Public Health Reports, 117 

Suppl(Suppl 1), S135-45. SAGE Publications. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/12435837 

Golembeski, C., and Fullilove, R. (2005). Criminal (in)justice in the city and its associated health 

consequences. American Journal of Public Health, 95(10), 1701–1706. doi: 

10.2105/AJPH.2005.063768 

Gomis-Porqueras, P. ;, Mitnik, O. A. ;, Peralta-Alva, A. ;, and Schmeiser, M. D. (2011). The 

effects of female labor force participation on obesity ( No. 6071). IZA Discussion papers. 

Bonn. Retrieved from http://hdl.handle.net/10419/58977www.econstor.eu 

Hager, E. (2016, February 4). Six States Where Felons Can’t Get Food Srtamps. The Marshall 

Project. doi: 10.1177/0194599816678386 

Hamad, R., Collin, D. F., and Rehkopf, D. H. (2018). Estimating the Short-Term Effects of the 



88 

 

Earned Income Tax Credit on Child Health. American Journal of Epidemiology, 187(12), 

2633–2641. doi: 10.1093/aje/kwy179 

Haveman, R., Blank, R., Moffitt, R., Smeeding, T., and Wallace, G. (n.d.). The War on Poverty: 

Measurement, Trends, and Policy. doi: 10.1002/pam.21846 

Hoynes, H., Miller, D., and Simon, D. (2015). Income, the Earned Income Tax Credit, and Infant 

Health. American Economic Journal: Economic Policy, 7(1), 172–211. doi: 

10.1257/pol.20120179 

Iceland, J., and Bauman, K. J. (2007). Income poverty and material hardship: How strong is the 

association? The Journal of Socio-Economics, 36, 376–396. doi: 

10.1016/j.socec.2006.12.003 

Iguchi, M. Y., London, J. A., Forge, N. G., Hickman, L., Fain, T., and Riehman, K. (2002). 

Elements of well-being affected by criminalizing the drug user. Public Health Reports, 117 

Suppl, S146-50. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1913697&tool=pmcentrez&ren

dertype=abstract 

IRS, I. R. S. (2020a). Statistics for Tax Returns with an EITC. EITC Central. Retrieved July 15, 

2020, from https://www.eitc.irs.gov/eitc-central/statistics-for-tax-returns-with-eitc/statistics-

for-tax-returns-with-eitc 

IRS, I. R. S. (2020b). Basic Marketing and Communication Materials: Key Communication 

Messages. EITC Central. Retrieved July 15, 2020, from eitc.irs.gov/partner-toolkit/basic-

marketing-communication-materials/key-communication-messages/eitc-key 

Isaacs, J., Ouellette, T., Burstein, N., Long, D., and Beecroft, E. (2004). Measures of Material 

Hardship Final Report Office of the Assistant Secretary for Planning and Evaluation 

Measures of Material Hardship Prepared for. Washington DC. Retrieved from 

https://aspe.hhs.gov/system/files/pdf/73366/report.pdf 

Jung, T., and Wickrama, K. A. S. (2008a). An Introduction to Latent Class Growth Analysis and 

Growth Mixture Modeling. Social and Personality Psychology Compass, 2(1), 302–317. 

doi: 10.1111/j.1751-9004.2007.00054.x 

Jung, T., and Wickrama, K. A. S. (2008b). An Introduction to Latent Class Growth Analysis and 

Growth Mixture Modeling. Social and Personality Psychology Compass, 2(1), 302–317. 

doi: 10.1111/j.1751-9004.2007.00054.x 



89 

 

Kapahi, V., and Fellow, K. C. (2019). Prosperity for All: Expanding the Earned Income Tax 

Credit for Childless Workers. Trenton, NJ. Retrieved from www.njpp.org 

Kenkel, D., Schmeiser, M. D., and Urban, C. (2013). Is Smoking Inferior? Evidence from 

Variation in the Earned Income Tax Credit. Journal of Human Resources, 49(4), 1094–

1120. doi: 10.2139/ssrn.1961196 

Krebs, E., Wang, L., Olding, M., DeBeck, K., Hayashi, K., Milloy, M.-J., Wood, E., et al. 

(2016). Increased drug use and the timing of social assistance receipt among people who 

use illicit drugs. Social Science & Medicine, 171, 94–102. doi: 

10.1016/j.socscimed.2016.11.006 

LaLumia, S. (2013). The EITC, Tax Refunds, and Unemployment Spells. American Economic 

Journal: Economic Policy, 5(2), 188–221. doi: 10.1257/pol.5.2.188 

Leas, E. C., Schleicher, N. C., Prochaska, J. J., and Henriksen, L. (2019). Place-Based Inequity 

in Smoking Prevalence in the Largest Cities in the United States. JAMA Internal Medicine, 

179(3), 442–444. American Medical Association. doi: 10.1001/jamainternmed.2018.5990 

Lenhart, O. (2018). The effects of income on health: new evidence from the Earned Income Tax 

Credit. Review of Economics of the Household. doi: 10.1007/s11150-018-9429-x 

Lenhart, O. (2019). The effects of income on health: new evidence from the Earned Income Tax 

Credit. Review of Economics of the Household, 17, 377–410. doi: 10.1007/s11150-018-

9429-x 

Lundberg, O., Fritzell, J., Åberg Yngwe, M., and Kölegård, M. L. (2010). The potential power of 

social policy programmes: income redistribution, economic resources and healthijsw_7. 

International Journal of Social Welfare , 19, S2–S13. doi: 10.1111/j.1468-

2397.2010.00727.x 

Maag, E., Werner, K., and Wheaton, L. (2019). Expanding the EITC for Workers without 

Resident Children. Washington DC. Retrieved from www.urban.org 

Magnus, M. C., Iliodromiti, S., Lawlor, D. A., Catov, J. M., Nelson, S. M., and Fraser, A. 

(2016). Meeting Abstracts Association of the number of off spring with risk of 

cardiovascular disease in men and women: the role of shared lifestyle characteristics. The 

Lancet (Vol. 388). doi: 10.1016/S0140-6736(16)32307-8 

Marr, C., Frentz, N., Parrott, S., Sherman, A., and Huang, C.-C. (2014). Lone Group Taxed Into 

Poverty Should Receive a Larger EITC. Washington, DC. Retrieved from www.cbpp.org 



90 

 

Marr, C., Huang, C.-C., Murray, C., and Sherman, A. (2016). Strengthening the EITC for 

Childless Workers Would Promote Work and Reduce Poverty Improvement Targeted at 

Lone Group Taxed into Poverty. Washington,. Retrieved from 

http://www.whitehouse.gov/sites/default/files/docs/eitc_report.pdf. 

Masken, K. (2006). Longitundinal Study of EITC Claimants. Retrieved from 

https://www.irs.gov/pub/irs-soi/06masken.pdf 

Masyn, K. (2013). The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis. 

In T. D. Little (Ed.), The Oxford Handbook of Quantitative Methods,  (Vol. 2). 

McHugh, R. K., Votaw, V. R., Sugarman, D. E., and Greenfield, S. F. (2018, December 1). Sex 

and gender differences in substance use disorders. Clinical Psychology Review. Elsevier 

Inc. doi: 10.1016/j.cpr.2017.10.012 

Mead, L. M. (2014). Overselling the Earned Income Tax Credit. National Affairs, 20–33. doi: 

10.4135/9781452286143.n175 

Mead, L. M. (2020). Overselling the Earned Income Tax Credit | National Affairs. National 

Affairs, 44. Retrieved from https://www.nationalaffairs.com/publications/detail/overselling-

the-earned-income-tax-credit 

Mendenhall, R., Edin, K., Crowley, S., Sykes, J., Tach, L., Kriz, K., and Kling, J. R. (2012). 

THE ROLE OF EARNED INCOME TAX CREDIT IN THE BUDGETS OF LOW-

INCOME FAMILIES. Social Service Review, 86(3), 367–400. Retrieved from 

https://users.nber.org/~kling/eitc.pdf 

Muthen, B. O., and Muthen, L. K. (2017). Mplus Users Guide (8th ed.). Los Angelos, CA: 

Muthen & Muthen. Retrieved from 

https://www.statmodel.com/download/usersguide/MplusUserGuideVer_8.pdf 

Nelson, G. (2011). Measuring Poverty: The Official U.S. Measure and Material Hardship. 

Poverty & Public Policy, 3(5), 1–35. doi: 10.2202/1944-2858.1077 

Nylund-Gibson, K. (2007). Deciding On the Number of Classes In Latent Class Analysis and 

Growth Mixture Modeling: A Monte Carlo Simulation Study. Structural Equation 

Modeling, 14(4), 535–569. doi: 10.1080/10705510701575396 

Nylund-Gibson, K., and Choi, A. Y. (2018). Ten frequently asked questions about latent class 

analysis. Translational Issues in Psychological Science, 4(4), 440–461. doi: 

10.1037/tps0000176 



91 

 

Nylund-Gibson, K., Grimm, R., and Masyn, K. (2019). Prediction from Latent Classes: A 

Demonstration of Different Approaches to Include Distal Outcomes in Mixture Models La 

Patera View project Dual-Process Discrete-Time Survival Analysis View project. Structural 

Equation Modeling, 1–19. doi: 10.1080/10705511.2019.1590146 

Nylund-Gibson, K., Grimm, R., Quirk, M., and Furlong, M. (2014). A Latent Transition Mixture 

Model Using the Three-Step Specification. Structural Equation Modeling, 21(3), 439–454. 

doi: 10.1080/10705511.2014.915375 

Otterstatter, M. C., Amlani, A., Guan, T. H., Richardson, L., and Buxton, J. A. (2016). Illicit 

drug overdose deaths resulting from income assistance payments: Analysis of the ‘check 

effect’ using daily mortality data. International Journal of Drug Policy, 33, 83–87. doi: 

10.1016/j.drugpo.2016.05.010 

Payne, R. K. (2013). A framework for understanding poverty: a cognitive approach (Fifth.). 

Highlands, Texas: Aha! Process, Inc. 

Pega, F., Carter, K., Blakely, T., and Lucas, P. J. (2013). In-work tax credits for families and 

their impact on health status in adults. Cochrane Database of Systematic Reviews, (8), 1-57. 

doi: 10.1002/14651858.CD009963.pub2.www.cochranelibrary.com 

Perkins, K. A. (2009). Sex differences in nicotine reinforcement and reward: Influences on the 

persistence of tobacco smoking. In A. Caggiula and R. Bevins (Eds.), The Motivational 

Impact of Nicotine and its Role in Tobacco Use. Nebraska Symposium on Motivation, vol. 

55. (Vol. 55, pp. 143–169). New York, NY: Springer. doi: 10.1007/978-0-387-78748-0_9 

Prasad, M. (2011). Tax “Expenditures” and Welfare States: A Critique. Journal of Policy 

History, 23(2), 251–266. doi: 10.1017/S0898030611000066 

Rachidi, A. (2015a). Balancing the trade-offs: Options for expanding the childless worker 

earned...: EBSCOhost, (June 2015), 1–17. Retrieved from 

http://web.a.ebscohost.com.proxy1.library.jhu.edu/ehost/pdfviewer/pdfviewer?vid=1&sid=8

9209f85-ce07-49ba-959a-4ac33d7a7fa6%40sessionmgr4007 

Rachidi, A. (2015b). Balancing the trade-offs: Options for expanding the childless worker 

earned...: EBSCOhost. Retrieved from 

http://web.a.ebscohost.com.proxy1.library.jhu.edu/ehost/pdfviewer/pdfviewer?vid=1&sid=8

9209f85-ce07-49ba-959a-4ac33d7a7fa6%40sessionmgr4007 

Rachidi, A., and Prasad, M. (2011). Tax “Expenditures” and Welfare States: A Critique. Journal 



92 

 

of Policy History, 23(2), 251–266. doi: 10.1017/S0898030611000066 

Rehkopf, D. H., Strully, K. W., and Dow, W. H. (2014a). The short-term impacts of earned 

income tax credit disbursement on health. International Journal of Epidemiology, 43(6), 

1884–1894. doi: 10.1093/ije/dyu172 

Rehkopf, D. H., Strully, K. W., and Dow, W. H. (2014b). The short-term impacts of earned 

income tax credit disbursement on health. International Journal of Epidemiology, 43(6), 

1884–1894. doi: 10.1093/ije/dyu172 

Rhodes, T. (2009). Risk environments and drug harms: A social science for harm reduction 

approach. International Journal of Drug Policy, 20(3), 193–201. Elsevier. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/19147339 

Shahidi, F. V, Ramraj, C., Sod-Erdene, O., Hildebrand, V., and Siddiqi, A. (2019). The impact of 

social assistance programs on population health: a systematic review of research in high-

income countries. BMC Public Health, 19(1), 2. doi: 10.1186/s12889-018-6337-1 

Sher, K. J., Jackson, K. M., and Steinley, D. (2011). Alcohol Use Trajectories and the Ubiquitous 

Cat’s Cradle: Cause for Concern? Journal of Abnormal Psychology, 120(2), 322–335. 

American Psychological Association Inc. doi: 10.1037/a0021813 

Simon, D., Mclnerney, M., and Goodell, S. (2018). The Earned Income Tax Credit, Poverty, and 

Health. Health Affairs Health Policy Brief, 1–6. doi: 10.1377/hpb20180817.769687 

Strully, K. W., Rehkopf, D. H., and Xuan, Z. (2010). Effects of Prenatal Poverty on Infant 

Health: State Earned Income Tax Credits and Birth Weight. Am Sociol Rev, 75(4), 534–562. 

doi: 10.1177/0003122410374086 

Sykes, J., Kriz, K., Edin, K., and Halpern-Meekin, S. (2015). Dignity and Dreams: What the 

Earned Income Tax Credit (EITC) Means to Low-Income Families. American Sociological 

Review , 80(2), 243–267. doi: 10.1177/0003122414551552 

Williams, E., and Waxman, S. (2018). States Can Adopt or Expand Earned Income Tax Credits 

to Build a Stronger Future Economy. Washington, DC. Retrieved from 

https://www.cbpp.org/research/state-budget-and-tax/states-can-adopt-or-expand-earned-

income-tax-credits-to-build-a 

Wing, C., Simon, K., and Bello-Gomez, R. A. (2018). Designing Difference in Difference 

Studies: Best Practices for Public Health Policy Research Keywords. Annu. Rev. Public 

Health, 39, 453–469. doi: 10.1146/annurev-publhealth 



93 

 

Wu, L.-T., Ling, W., Burchett, B., Blazer, D. G., Shostak, J., and Woody, G. E. (2010). Gender 

and racial/ethnic differences in addiction severity, HIV risk, and quality of life among 

adults in opioid detoxification: results from the National Drug Abuse Treatment Clinical 

Trials Network. Substance abuse and rehabilitation, 2010(1), 13–22. Dove Press. doi: 

10.2147/SAR.S15151 

Yu, D., Peterson, N. A., Sheffer, M. A., Reid, R. J., and Schnieder, J. E. (2010). Tobacco outlet 

density and demographics: Analysing the relationships with a spatial regression approach. 

Public Health, 124, 412–416. doi: 10.1016/j.puhe.2010.03.024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

APPENDICES 

 

 

A-Table 2.1. Odds Ratios for Latent regression of EITC Trajectory and Demographic 

Characteristics for SU Outcomes (Reference, Non-claimers)  

 Initiator 

Class 2 

Decliner 

Class 3 

Consistent  

Class 4 

  

Odds Ratio (p-value) 

Female 1.02 (0.82) 0.94 (0.62) 2.75 (<.001) 

Race 

   Black 

   White 

   Hispanic        

1.52 (0.46) 

0.86 (0.72) 

1.55 (0.45) 

1.77 (0.63) 

1.74 (0.64) 

3.02 (0.46) 

1.63 (0.44) 

0.70 (0.39) 

1.13 (0.82) 

Age (2011) 0.86 (<.001) 1.02 (0.66) 1.23 (<.001) 

Some college 

education (2011) 

 

0.53 (<.001) 0.56 (<.001) 0.44 (<.001) 

Health Insured 

(2011) 
1.05 (0.63) 1.08 (0.61) 0.91 (0.45) 

Parent (2011) 3.43 (<.001) 1.63 (0.008) 12.94 (<.001) 

Married (2011) 0.74 (0.002) 1.09 (0.58) 1.05 (0.70) 

Notes: Class 1 (Non-claimers) is the referent group. EITC = earned income tax credit; SU= 

substance use.  
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A-Table 3.1. Odds Ratios for Latent regression of EITC Trajectory and Demographic 

Characteristics for Economic Wellbeing (Reference, Non-claimers)  

 Initiator 

Class 2 

Decliner 

Class 3 

Consistent  

Class 4 

  

Odds Ratio (p-value) 

Female 0.91 (.350) 0.85 (.169) 2.08 (<.001) 

Race 

   Black 

   White      

Hispanic 

 

1.67 (.390) 

0.90 (.814) 

1.66 (.395) 

 

1.23 (.780) 

1.10 (.897) 

1.85 (.497) 

 

1.71 (.429) 

0.74 (.497) 

1.13 (.824) 

Some college 

education (2008) 

 

0.62 (<.001) 0.66 (<.001) 0.54 (<.001) 

Insured (2008) 0.70 (<.001) 0.95 (.700) 0.68 (<.001) 

Parent (2008) 7.46 (<.001) 2.25 (.001) 35.52 (<.001) 

Married (2008) 0.62 (<.001) 1.31 (.110) 0.94 (.644) 

Notes: Class 1 (Non-claimers) is the reference group. EITC = earned income tax credit.  
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A- Table 3.2. Odds Ratios for Latent regression of EITC Trajectory and Demographic 

Characteristics for Economic Wellbeing (Reference Group, Consistent claimers)  

 Non-claimers 

Class 1 

Initiator 

Class 2 

Decliner 

Class 3 

  

Odds Ratio (p-value) 

Female     0.48(<.001) 0.44 (<.001) 0.409 (<.001) 

Race 

   Black 

   White     Hispanic 

0.57 (.177) 

1.35 (.616) 

0.88 (.801) 

0.98 (.972) 

1.22 (.787) 

1.47 (.636) 

0.72 (.637) 

1.48 (.687) 

1.63 (.634) 

College Education 

(2008) 
1.84 (.005) 1.14 (0.52) 1.21 (0.42) 

Insured (2008) 1.48 (.015) 1.04 (.808) 1.40 (.110) 

Parent (2008) 0.03 (<.001) 0.21 (<.001) 0.06 (<.001) 

Married (2008) 1.06 (.663) 0.66 (.001) 1.39 (.122) 

Notes: Class 4 (Consistent claimers) is the reference group. EITC = earned income tax credit.  
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Heroin and Injection Drug Use (IDU) in 13 US Cities, 1999 to 2015”. College on Problems of 
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Brighthaupt S, Fleming CB, Cambron C, Johnson RM, Deal LT, Guttamanova K. “Grade level 

differences in trends in adolescent marijuana use in Washington State, 2004-2016”. Organized 

Symposium on Adolescent Marijuana Use Amidst Reformed State-Level Marijuana Laws. 

Society for Prevention Research, 26th Annual Meeting, Washington, DC; June 1, 2018.  

Posters in Scientific Meetings 

Brighthaupt S, Johnson RM, Johnson J. “Alcohol control policies and youth past 30-day 

marijuana and heavy marijuana use in45 states, 1991- 2011”. College on Problems of Drug 

Dependence Conference, 79th Annual Scientific Meeting. Montreal, Quebec; June 2017. 

Belay H, Bland L, and Brighthaupt S. “Picture a Responsible Community @ Columbia” 

Bacchus Initiatives of NASPA General Assembly Conference. Orlando, FL; November 2014. 

Brighthaupt S, Lupica C. “Role of the lateral habenula in cocaine self-administration behavior.” 

Presented at the National Institute on Drug Abuse, Baltimore, MD on August 5, 2014 and 

National Institutes of Health, Bethesda, MD on August 7, 2014.   

Belay H, Bland L, Brighthaupt S, and Canales C. “Responsible Communities at Columbia and 

Beyond.” Bacchus Initiatives of NASPA General Assembly Conference. Reston, VA; November 

2013.  

Brighthaupt S. “Characterizing Hypothalamic circuitry in the dbx-1 cKO mouse.” Children’s 

National Medical Center, Washington, DC on August 3, 2013.                                                                                                                                                                                                

Brighthaupt S. “Now And Later: A Study On Delay Discounting.” Charles Herbert Flowers 

High School Research Symposium, Springdale, MD on May 30, 2012.  

Invited Seminars 

Speaker. “DSIP Lunch Series.” Diversity Summer Internship Program. Johns Hopkins 

Bloomberg School of Public Health. Baltimore, MD; May 29, 2019.  

Panelist. “Doctoral Student Wellbeing: Welcome to the First Year”. Office of Student Life. 

Johns Hopkins Bloomberg School of Public Health. Baltimore, MD; January 31, 2019.  
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Speaker. “Research Spotlight: Insights from an NIH Trainee”. Substance Use Lecture Series. Hi-

Step Summer Program. National Institutes of Health. Bethesda, MD; August 2, 2018.  

Speaker. “DSIP Lunch Series.” Diversity Summer Internship Program. Johns Hopkins 

Bloomberg School of Public Health. Baltimore, MD; June 8, 2018.  

Panelist. “Science Honors Program: Science Undergraduate Panel.” Panel Presentation. 

Columbia University Office of Undergraduate Admissions. New York, NY; October 24, 2015. 

Panelist. “Creating Community: An Introduction to Student Life.” Multicultural Recruitment 

Committee Open House. Columbia University Office of Undergraduate Admissions. New York, 

NY; September 13, 2014. 

 

PROFESSIONAL ACTIVITIES   

Participation on Advisory Panels  

Global Alliance on Behavioral Health and Social Justice, Early Career Sub-Committee, 

2016-2017 

Johns Hopkins Bloomberg School of Public Health, Graduate Student Assembly 

(Departmental Representative), 2016-17  

Columbia University, Student Health Advisory Committee (Council Member), Columbia 

University, 2014-16 

 

EDITORIAL ACTIVITIES 

Ad-hoc Reviewer  

Journal of Adolescent Health 

 

AWARDS & HONORS  

2016 - 20 Drug Dependence Epidemiology Training Grant (T32), Awarded by National 

Institute on Drug Abuse  

2020   Michael J. Klag and Lucy Meoni Centennial Scholarship, Awarded by  

JHSPH Mental Health Dept.                         

2018  Symposium Abstract of Distinction, Awarded by Society for Prevention  

Research                       

2015  Work Exemption Program Grant ($2,063), Awarded by Columbia  

University 

2015  Alumni and Parent Internship Fund ($1,632), Awarded by Columbia  

University  

2014 Outstanding Presentation Award, Awarded by the National Institute on Drug 

Abuse  
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2013 - 15       Dean’s List, Columbia University 

2012  Horace E. Davenport Named Scholarship, Awarded by Columbia  

University  

2012 - 15  America Needs You Fellowship ($2,500) 

 

 

 

 


