
LEARNING FEATURE REPRESENTATION FOR

AUTOMATIC SPEECH RECOGNITION

by

Pegah Ghahremani

A dissertation submitted to The Johns Hopkins University in conformity with

the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2019

c⃝ 2019 Pegah Ghahremani

All rights reserved

Abstract

Feature extraction in automatic speech recognition (ASR) can be regarded

as learning representations from lower-level to more abstract higher-level fea-

tures. Lower-level feature can be viewed as features from the signal domain,

such as perceptual linear predictive (PLP) and Mel-frequency cepstral coef-

ficients (MFCCs) features. Higher-level feature representations can be con-

sidered as bottleneck features (BNFs) learned using deep neural networks

(DNNs). In this thesis, we focus on improving feature extraction at different

levels mainly for ASR.

The first part of this thesis focuses on learning features from the signal

domain that help ASR. Hand-crafted spectral and cepstral features such as

MFCC are the main features used in most conventional ASR systems; all are

inspired by physiological models of the human auditory system. However, some

aspects of the signal such as pitch cannot be easily extracted from spectral

features, but are found to be useful for ASR. We explore new algorithm to ex-

tract a pitch feature directly from a signal for ASR and show that this feature,

ii

ABSTRACT

appended to the other feature, gives consistent improvements in various lan-

guages, especially tonal languages.

We then investigate replacing the conventional features with jointly train-

ing from the signal domain using time domain, and frequency domain ap-

proaches. The results show that our time-domain joint feature learning setup

achieves state-of-the-art performance using MFCC, while our frequency do-

main setup outperforms them in various datasets.

Joint feature extraction results in learning data or language-dependent fil-

ter banks, that can degrade the performance in unseen noise and channel con-

ditions or other languages. To tackle this, we investigate joint universal fea-

ture learning across different languages using the proposed direct-from-signal

setups. We then investigate the filter banks learned in this setup and propose

a new set of features as an extension to conventional Mel filter banks. The re-

sults show consistent word error rate (WER) improvement, especially in clean

condition.

The second part of this thesis focuses on learning higher-level feature em-

bedding. We investigate learning and transferring deep feature representa-

tions across different domains using multi-task learning and weight transfer

approaches. They have been adopted to explicitly learn intermediate-level fea-

tures that are useful for several different tasks.

Primary Readers and Advisors: Daniel Povey, Sanjeev Khudanpur

iii

ABSTRACT

Secondary Readers: Hynek Hermansky, Najim Dehak

iv

Acknowledgments

I would like to thank my advisors Daniel Povey and Sanjeev Khudanpur

for giving me the valuable opportunity to investigate the topics of my interests

and their great guidance and support during my graduate life.

Also, I want to thank my committee members - Hynek Hermansky and Na-

jim Dehak for their company which helped me keep motivated and for their

valuable feedback. I am grateful for the suggestions from Shinji Watanabe,

which resulted in improving the thesis.

I would like to thank Vimal Manohar, Hossein Hadian, Vijay Peddinti,

David Snyder, Xiahui Zhang, Matthew Wiesner, Chunxi Liu, Hainan Xu, Har-

ish Mallidi, Phani Sankar and Raghavendra Pappagari. Many thanks to Jan

Trmal for his help with Kaldi issues.

Thanks to Jasha Droppo, Mike Seltzer and Geoffry Zweig, Microsoft Re-

search, for their fantastic assistance during my internship. They helped me to

expand my research view to a great extent.

Finally, I would especially like to thank my amazing family for their love,

v

ACKNOWLEDGMENTS

support, and constant encouragement over the years. In particular, I would

like to thank my amazing husband, Hossein, for his unconditional love and

support during all these years. Without him, it would have been impossible

for me to pursue my Ph.D. degree. Thank you to my wonderful parents, Zinat

and Ali, for being the best parents and role models. I undoubtedly could not

have done this without you. Last but not least, I want to thank my parents-

in-law, Ata and Farideh, my wonderful sister, Parmida, and my sisters-in-law,

Maryam and Fatemeh, for all of their support and encouragement.

vi

Dedication

This thesis is dedicated to my beloved parents, sister and my wonderful

husband.

vii

Contents

Abstract ii

Acknowledgments v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Problem . 2

1.2 Thesis outline . 3

1.3 Contributions . 10

2 Hand-designed feature extraction 13

2.1 Pitch and probability of voicing . 13

2.1.1 Existing pitch extraction methods 14

2.1.2 The Kaldi pitch extractor 15

viii

CONTENTS

2.1.3 Pitch post-processing methods 22

2.1.4 Probability of voicing measure 24

2.1.5 Normalization of pitch . 25

2.1.6 Delta feature . 25

2.1.7 Results . 26

3 Joint feature extraction and classification training 30

3.1 Time-domain joint feature extraction 31

3.1.1 Prior work . 31

3.1.2 Raw waveform processing 33

3.1.3 Data perturbation . 33

3.1.4 Pooling methods . 34

3.1.5 Speaker adaptation in raw waveform setup 38

3.1.6 CNN-based raw waveform setup 39

3.1.7 Results . 49

3.2 Frequency-domain joint feature extraction 54

3.2.1 Prior work . 54

3.2.2 Proposed feature extraction block 56

3.2.3 Normalization block . 58

3.2.4 Results . 61

3.2.5 Filter analysis . 63

3.3 Multiscale feature learning from frequency domain 66

ix

CONTENTS

3.3.1 Prior work . 68

3.3.2 Proposed method . 69

3.3.3 Effect of scale and frame rate with MFCC 74

3.3.4 Multiscale feature learning 75

4 Joint feature extraction application in emotion identification 81

4.1 Prior work . 82

4.2 Feature extraction in emotion identification 85

4.3 Results . 89

4.4 Modeling long temporal context . 91

4.5 Variable-length vs. fixed length training 96

5 Universal feature extraction 100

5.1 Multilingual feature extraction . 101

5.2 Learning universal filter banks . 104

5.2.1 Filter bank universality . 105

5.2.2 Multi-English dataset . 108

5.2.3 Multilingual dataset . 110

6 Data-driven based feature learning 114

6.1 Prior work . 116

6.2 DNN-c features . 118

6.3 fDNN-c features . 123

x

CONTENTS

6.4 Modified Mel filter bank . 128

6.5 Results . 135

7 Deep feature representation transfer across domains 143

7.1 Prior work . 143

7.2 Joint multi-task learning . 147

7.3 Weight transfer . 147

7.4 Teacher-student transfer learning 157

7.5 Transfer learning in sampling rate mismatch condition 162

7.6 Transfer learning in environment mismatch 165

7.7 Weight transfer vs. multi-task training 166

7.8 Transfer learning using different objectives 167

8 Conclusion and future work 169

8.1 Conclusion . 169

8.2 Future work . 173

Vita 175

xi

List of Tables

2.1 Parameters of our algorithm, and their default values 16
2.2 Off-the-shelf pitch extractors (Vietnamese LimitedLP) 28
2.3 Comparing pitch and POV algorithms on tonal languages 28

3.1 Data perturbation effect on WSJ 34
3.2 WER (%) results on the Switchboard LVCSR task 38
3.3 WER (%) results of a 100 hours Switchboard LVCSR task using

different compression methods . 44
3.4 WER (%) results on the WSJ LVCSR task 51
3.5 Effect of NiN nonlinearity . 52
3.6 WER (%) results on the Switchboard LVCSR task 53
3.7 Effect of different filter bank constraint methods 58
3.8 Effect of different components in the normalization block 59
3.9 Frequency-domain vs. time-domain 64
3.10 Performance of the proposed frequency-domain setup on various

databases . 65
3.11 Context specification in normal and double frame rate network . 73
3.12 Performance of MFCC features using different scales and input

frame rates . 74
3.13 Effect of number of scales in the multiscale dbl setup 76
3.14 Effect of sub-band combination from different window scales.

([fs1 , fs2],[fl1 , fl2]) is an ordered sub-band pair selected from 15 and
30 ms, respectively. 79

3.15 Performance of the proposed frequency-domain setup on various
databases using different scales and input frame rates. 80

4.1 Low-level descriptors (LLDs) and high-level statistical functions
(HSFs) for speech emotion recognition 86

4.2 Effect of different feature extraction methods 88

xii

LIST OF TABLES

4.3 Effect of data perturbation on emotion identification in our best
setup without tuning decode time parameters 91

4.4 Effect of long temporal modeling layers 92
4.5 Layer wise context of a temporal modeling block for TDNN-LSTMP-

Attention setup . 95
4.6 Effect of time pooling in the LSTM setup 96
4.7 Effect of training example chunk length. The numbers inside

parenthesis are results using looped decoding. 99

5.1 WER vs. different data selection methods. 103
5.2 WER using different features . 104
5.3 Effect of transferring filter banks from other datasets 108
5.4 WER (%) frequency-domain feature extraction setup vs. MFCC . 110
5.5 Performance of the universal frequency-domain setup on unseen

target datasets . 112

6.1 Frequency-domain setup vs. proposed analytic filters 121
6.2 Effect of fb1 and fb2 . 130
6.3 Effect of bwmin and sbw for bandwidth approximation in modified

Mel filter banks . 132
6.4 Effect of linear and overlap-based bandwidth combination methods133
6.5 Performance of the proposed features on various databases 136
6.6 Performance of the proposed DNN-c and fDNN-c features on a

low resource Vietnamese dataset 137
6.7 Performance of the proposed fDNN-c and modified Mel filter bank

features on far-field databases . 138

7.1 Single-stage vs. two-stage WER results on SWBD→AMI-SDM. . 150
7.2 WER(%) results for different source models: SWBD → AMI. . . . 155
7.3 Speaker adaptation: 8kHz SWBD → 8kHz AMI-SDM WER(%) re-

sults . 157
7.4 WER (%) results on AMI-SDM . 163
7.5 WER results: Librispeech to AMI transfer 165
7.6 WER results: SWBD to AMI and WSJ transfer 167
7.7 Transfer learning for frame-level CE vs. sequence-level LF-MMI

objective . 168

xiii

List of Figures

2.1 Gross pitch error (% voiced frames >10% pitch error): Keele database 27
2.2 (a) WER (upper figure) (b) ATWV (lower figure) results on BA-

BEL LimitedLP Dev10h for No-pitch vs. SAcC Pitch+POV vs.
Kaldi Pitch+POV . 29

3.1 Proposed NiN nonlinearity . 37
3.2 Convergence of training objective function in raw waveform setup

using NiN nonlinearity vs. MFCC setup using ReLU 37
3.3 Learned envelopes li in the NiN pooling layer 43
3.4 Raw waveform feature extraction block 46
3.5 Layer configuration in raw waveform classification block 46
3.6 Training log likelihood for different pooling methods 47
3.7 Learned filter banks using different regularization techniques . . 49
3.8 Frequency-domain feature extraction setup 57
3.9 Normalization block . 59
3.10 Scales and offsets vs. frequency for narrowband and wideband

data in a normalization layer . 60
3.11 Convergence of scales and offsets in a normalization layer 61
3.12 Magnitude response of learned filter ordered in center frequency 63
3.13 Effect of ρ on the main lobe width of “Povey” widnow 70
3.14 Multiscale frequency-domain feature extraction setup (a) Filter

bank (i.e., FB) learning block, (b) Multiscale setup with separate
FB and full spectrogram for each window length, (c) Multiscale
setup with separate FB and only a few sub-bands for each win-
dow length, and (d) Multiscale setup with only a few sub-bands
for each window length and common FB 72

3.15 Demonstration of learned filters on Switchboard, AMI-SDM. First
row and third row are on Switchboard using 2-scales and 3-scales,
respectively. Second row is on AMI-SDM using 2-scales. 78

xiv

LIST OF FIGURES

4.1 Learned filter banks for ASR and age identification tasks using
proposed time-domain and frequency-domain setups 88

4.2 Layout of the proposed end to end DNNs for an emotion identifi-
cation task . 90

5.1 Proposed multilingual structure . 102
5.2 Comparison of center frequency vs. filter index for multi-English

and Switchboard datasets . 110
5.3 Learned universal filter banks on 8kHz and 16kHz multi-language

datasets . 113

6.1 Center frequency vs. filter index 120
6.2 Filter bandwidth vs. center frequency for different filter banks . . 122
6.3 Original vs. GMM-based approximation of filters and unweighted

GMM components (The ordered weights of GMM components are
shown on top of figures). 123

6.4 GMM estimated center frequency distribution for different datasets126
6.5 Weighted GMM based center frequency vs. filter index for differ-

ent datasets. Left figure is a 8kHz Switchboard dataset and right
figure corresponds to 16kHz datasets. 127

6.6 Sub-band filter overlap vs. sub-band center frequency 128
6.7 Center frequency vs. filter index (fb1 = 300 Hz, fb2 = 1500 Hz in

modified Mel) . 130
6.8 Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on Switch-

board on reverberated test sets. 139
6.9 Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on clean

Switchboard on additive noise test sets 140
6.10 Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on additive-

noise Switchboard on additive noise test sets 141
6.11 Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on rvb+additive-

noise Switchboard on additive noise test sets 142

7.1 Overall single-stage vs. two-stage weight transfer training archi-
tecture . 149

7.2 WER(%) vs. number of transferred layers for Switchboard to AMI 151
7.3 WER(%) vs. number of transferred layers for Librispeech to WSJ 152
7.4 WER(%) vs. size of target WSJ corpus (in number of speakers)

for baseline and transferred model from Librispeech 154
7.5 Overall narrowband to wideband weight transfer architecture. . . 163

xv

Chapter 1

Introduction

The emergence of deep neural networks (DNNs) as acoustic models results

in considerable advancement in automatic speech recognition (ASR) in recent

years. DNNs are able to extract discriminative feature representations that

are robust to distortions and variability in speech signals [?]. DNNs are ap-

plicable in (a) learning new feature representations from the signal domain,

(b) generating phone posteriors or internal representations (e.g., BNF), and (c)

building another model with a discriminative front-end [?]. Convolution neu-

ral networks (CNNs) [?, ?, ?] and recurrent neural networks (RNNs) [?, ?, ?]

have also been exploited as acoustic models.

1

CHAPTER 1. INTRODUCTION

1.1 Problem

ASR maps a speech signal to the corresponding sequence of words. To per-

form this, a series of acoustic features are extracted from the speech signal.

Most speech recognition systems use a frame-based model in which an input

waveform is converted into a sequence of frames of features with equal dimen-

sions. The goal of feature extraction in ASR is to represent a window of speech

samples with a feature vector that represents the underlying phonetic content

of the speech. Most conventional speech recognition systems have primarily

focused on using traditional handcrafted features such as log Mel filter banks

(FBANKS). These features are low dimensional representations of the speech

signal, and they preserve the information required to achieve high ASR per-

formance. The Mel features are derived by element-wise multiplication of the

magnitude spectrum with positive Mel filter weights followed by L2 pooling.

Gammatone features are also computed by convolution of the time-domain sig-

nal with gammatone filters [?] followed by average pooling. These features

are inspired by physiological models of the human auditory system, and may

not be the most appropriate features for the final ASR objective of word error

rate (WER) reduction. Recent advances in deep learning have led to perfor-

mance improvement in ASR. With the increase in computational power and

the availability of large speech corpora, it should be possible to learn features

2

CHAPTER 1. INTRODUCTION

automatically from speech databases. DNN model can also take input features

with large dimensions and combine information from different sources. Fea-

ture extraction in ASR can also be regarded as learning more abstract feature

embedding using DNNs.

In this thesis, we aim to answer two main questions. First, can we im-

prove ASR performance by defining new features, which are complementary

to conventional features, and also can we get any improvement by joint fea-

ture extraction and classification training from the signal domain using DNNs

compared to conventional features? Second, what is the best approach to learn

deep feature representations using DNN and transfer them across different

languages and datasets with various mismatched conditions in ASR?

1.2 Thesis outline

A brief outline of this thesis is as follows:

Hand-designed feature extraction

In the first part of this thesis (Chapter 2), we start exploring new algorithms

to extract hand-designed features directly from a signal, that are complemen-

tary to spectral features for use in ASR. Pitch is a time-domain aspect of the

signal that cannot be easily extracted from spectral features like MFCC.

3

CHAPTER 1. INTRODUCTION

Pitch and probability of voicing

Tone plays a lexical role in determining the meaning of words in tonal lan-

guages such as spoken Mandarin [?]. In nontonal languages, intonation may

be used for higher-level meanings associated with emotion and do not change

the base meaning of words. Many research efforts have been conducted to in-

corporate tone information in ASR, especially for tonal languages. In Section

2.1, we present a new algorithm that produces pitch and probability-of-voicing

estimates for use as features in ASR systems. The results show considerable

WER improvements compared to conventional pitch extraction algorithms [?].

Joint feature extraction and classification train-

ing

While chapter 2 explores extracting hand-designed features from the signal,

in the next part of this thesis (Chapter 3), we use deep learning approaches to

do feature extraction and classification jointly from the speech signal. Data-

driven feature extraction techniques, which jointly train feature extraction and

classification, are expanded considerably with the development of deep learn-

ing algorithms [?, ?, ?, ?, ?]. In direct-from-signal models, the first layers of

the network are designed to learn filter banks directly from the raw waveform.

Most of the prior research using raw waveform systems are still behind the

4

CHAPTER 1. INTRODUCTION

conventional Mel space systems especially in small to medium training data

conditions (10− 300 hours of training data).

Time-domain joint feature extraction

The direct-from-signal setup described in Section 3.1 contains the convolu-

tion in the first layer of the network followed by pooling and compression. The

convolution layer operates on a raw speech signal with long filters to mimic

bandpass filters. Most feature extraction techniques use static compression

methods such as 10th-root and log to reduce the feature’s dynamic range. The

log compression is used on the filter outputs to reduce the dynamic range of

features in this setup. Next, the filter outputs are aggregated over a portion of

the time axis using our proposed Network-in-Network (NiN) pooling structure

(described in Subsection 3.1.4).

Many variations for a given phoneme in the form of phase shifts and tem-

poral distortions can be detrimental to learn directly from the raw waveform.

Hand-designed features like MFCC and PLP and the ones proposed in Chap-

ter 2 are more invariant to these variations. To handle this issue, convolution

over time is done and the information aggregation over the convolution filter

outputs using pooling are used in the model. The success of the direct-from-

signal models highly depends on the choice of convolution and pooling meth-

ods [?, ?, ?, ?]. We explore various pooling techniques i.e., no pooling, max [?],

5

CHAPTER 1. INTRODUCTION

p-norm [?], average pooling. We propose a new type of pooling method, NiN

pooling, that is a special case of the network-in-network architecture, with re-

peated blocks interleaved between layers of rectified linear units (ReLU). We

achieve state-of-the-art performance using the proposed structure as a pooling

layer [?].

Frequency-domain joint feature extraction

The time-frequency duality suggests extending direct-from-signal feature

extraction techniques and jointly learns the filter banks on the real and imagi-

nary part of the Fourier transform of the input signal [?] (complex linear com-

ponent, i.e., CLP). The setup described above (Section 3.1) performs filtering

and pooling in the time-domain. Filtering and pooling in the frequency domain

can help to avoid the complexity of training convolution layer and parameter

tuning. Since the phase information is less important for single microphone

ASR, the filter training and pooling can be done on the input signal energy to

reduce complexity in the CLP model. In Section 3.2, we simplify our previous

approach in Section 3.1 (i.e., time-domain feature learning) by operating in the

frequency domain. We include a Fourier transform layer in the network and

let the network learn the filter banks in the frequency domain.

Frequency-domain feature learning has been previously used in [?] and [?],

however, we propose a new normalization layer which helps with better train-

6

CHAPTER 1. INTRODUCTION

ing stability and better convergence of the filters. Additionally, we employ a

different weight constraint approach which further improves the results. We

use the proposed frequency-domain layer in state-of-the-art ASR setup and

show significant WER improvements on various well-known large vocabulary

databases.

Joint feature extraction application in emotion

identification task

Humans express emotional state-related information through numerous sub-

tle ways including low-level acoustic descriptors like pitch, voicing probability,

energy, zero-crossing rate, Mel filter bank features, formant locations, band-

widths, harmonics-to-noise ratio and jitter. Some of these features may or may

not be directly represented by common features. Joint feature extraction in

this setup attempts to learn a specific set of filters, jointly optimized to mini-

mize emotion identification objectives.

Joint feature extraction shows some improvements in ASR, and the goal in

Chapter 4 is to see improvement from the direct-from-signal setup in another

speech task. We investigate the effect of the proposed setups of Chapter 3 in

a speech-based emotion identification (Section 4). The results in emotion iden-

tification shows improvements over 257-dimensional magnitude FFT vectors

7

CHAPTER 1. INTRODUCTION

based on the DNN setup reported in [?].

Universal feature extraction

In Chapter 5, we extend exploring joint feature extraction by learning mul-

tilingual features by sharing knowledge across different languages. We inves-

tigate knowledge transfer across languages via learning a language-universal

feature extractor that is trained over a group of languages. In this setup, a

separate output layer is used for each language, while all other hidden layers

jointly model the variability of all the source languages.

Multilingual bottleneck feature extraction

In Section 5.1, we use conventional MFCC features to train a universal

multilingual model and use BNFs that are extracted from this model as an ad-

ditional language-independent feature vector to improve the ASR performance

for a target in-domain language [?].

Universal filter bank learning

The primary challenge in joint feature extraction setup is to learn language

or data-independent filter banks, which generalizes to other languages and

datasets. In Section 5.2, we explore the proposed direct-from-signal model

8

CHAPTER 1. INTRODUCTION

on multi-English and multi-language datasets. One of the main objectives in

this section is to use the best direct-from-raw-waveform setup in the universal

acoustic model setup to train universal bandpass filters. This model uses a uni-

versal phone set ASR system, and it allows us to leverage existing resources

in other languages. We also investigate the setup in the multi-English dataset

to learn a set of filter banks, which generalizes to different noise and channel

conditions, by pooling multiple English corpora.

Data-driven feature learning

The main topic of Chapter 6 is a new set of data-driven filters. Based on

the learned filters in frequency-domain layers in Section 3.2, we propose a new

set of approximated filters, that enable faster training of the acoustic models

while delivering the same improvement as the proposed joint feature extrac-

tion setup. We propose new warping functions to approximate the center fre-

quencies based on the learned filters. Also, we investigate new methods to

approximate bandwidths for new filters.

Deep feature representation across domains

As discussed in Section 5.1, multi-task learning and weight transfer across

different languages, as two transfer learning approaches, help to learn better

9

CHAPTER 1. INTRODUCTION

feature representations and improve ASR performance. In Chapter 7, we in-

vestigate these 3 transfer learning approaches to transfer knowledge between

models in different domains. These approaches have been adopted to explic-

itly learn intermediate-level features in the neural network that are useful

for several different tasks. The intermediate representation in neural net-

works trained on speech data appears not to be specific to any particular task,

while the higher layers are task-specific. We also investigate sequence-trained

teacher-student framework [?] as a transfer learning approach in sampling-

rate mismatched scenario and compare its performance with weight transfer.

1.3 Contributions

We make the following contributions in this dissertation through different

chapters:

Chapter 2

• Proposed a new pitch extraction algorithm that produces pitch and probability-

of-voicing estimates for use as features in ASR [?].

• These features show significant performance improvement in tonal lan-

guages and substantial improvements for non-tonal languages and it is

now widely used in different applications.

10

CHAPTER 1. INTRODUCTION

Chapter 3

• Proposed time-domain joint feature learning setup that outperforms cur-

rent joint feature learning setups and achieves state-of-the-art perfor-

mance on ASR application [?]. This setup also achieves best performance

in the speech-based emotion identification [?].

• Proposed frequency-domain joint feature learning setup that is faster to

train and shows WER improvements on various large vocabulary databases

[?].

Chapter 6

• Investigated learned filters in the frequency-domain joint feature extrac-

tion setup and proposed a new set of approximated filters that deliver the

improvement gained from the proposed joint feature extraction setup.

• Proposed modified Mel filter bank features based on the learned filter

banks, that shows some improvement on various clean and noisy databases.

Chapter 7

• Investigated different transfer learning methods in ASR in more detail [?,

?] and proposed a weight transfer setup for use in ASR that shows con-

11

CHAPTER 1. INTRODUCTION

siderable improvement on different datasets.

12

Chapter 2

Hand-designed feature

extraction

2.1 Pitch and probability of voicing

In this section, we present an algorithm that produces pitch and probability

of voicing (POV) estimates for use as features in ASR systems. These features

show significant performance improvements in tonal languages ASR systems

and even substantial improvements for non-tonal languages. Our method,

which we are calling the Kaldi pitch tracker (implemented in the Kaldi ASR

toolkit), is a highly modified version of the getf0 (RAPT) algorithm [?]. Unlike

the original getf0, we do not make a hard decision whether any given frame is

voiced or unvoiced; instead, we assign a pitch even to unvoiced frames while

13

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

constraining the pitch trajectory to be continuous. Our algorithm also produces

a quantity that can be used as a POV measure; it is based on the normalized

autocorrelation measure that is used by our pitch extractor. We present results

on data from various languages in the BABEL project [?] and show a significant

improvement over systems without tonal features and systems where pitch and

POV information is obtained from SAcC, another existing pitch tracker [?], or

getf0.

Our goal in this section is to obtain well-performing pitch and POV features

for use in speech recognition, and accurately produce a standardized pitch fea-

ture for use in the Kaldi ASR toolkit [?]. In Subsection 2.1.1, we review dif-

ferent pitch trackers to select the best previously published pitch extraction

algorithms; in Subsection 2.1.2, we describe our proposed method. We detail,

in Subsection 2.1.3, the pitch post-processing methods for the baseline pitch

and POV features, and our proposed pitch and POV features. We describe our

ASR system and datasets and show experimental results in Subsection 2.1.7.

2.1.1 Existing pitch extraction methods

We started our work by obtaining various off-the-shelf pitch extractors,

namely Yin [?], getf0 [?], SAcC [?], Wu [?], SWIPE [?] and YAAPT [?]. We com-

pared their accuracy as pitch trackers (see Subsection 2.1.7). For this, we used

the Keele database [?], which consists of about half an hour of speech manually

14

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

labeled for pitch and voicing. We selected three of the best-performing methods

for further study; these were SAcC, Yin, and getf0 (we did not consider YAAPT

at this point because of its greater complexity; it is based on getf0).

Next, as will be seen in the experimental section, we compared the pitch

features of SAcC, Yin, and getf0 in an ASR task. For this comparison, we

processed the pitch as described in Subsection 2.1.3 and used the voicing fea-

ture from SAcC. Other feature extractors don’t generate POV feature. These

experiments did not show substantial differences between the various pitch ex-

tractors, so we used getf0 as our starting point as it seemed to perform slightly

better than Yin, and it is a relatively simple algorithm to implement (SAcC

showed better performance, but it is a fairly complex method).

2.1.2 The Kaldi pitch extractor

Our algorithm is a highly modified version of the getf0 algorithm. It is based

on finding lag values that maximize the normalized cross correlation function

(NCCF). Like most pitch extraction algorithms, our algorithm has some pa-

rameters that are set by hand and are shown in Table 2.1. It should not be

necessary to change any of these values when applying them to other datasets

with different sampling rates.

Probably, the most significant change from getf0 is that rather than making

hard decisions about voicing on each frame, we treat all frames as voiced and

15

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

Parameter Value Explanation
min-f0 50 Minimum possible frequency value (Hz)
max-f0 400 Maximum possible frequency value (Hz)
window-width 0.025 Length in seconds of window used for NCCF
window-shift 0.01 Frame-shift, in seconds (should match

that used for baseline features e.g., PLP)
soft-min-f0 10 Minimum f0, applied in soft way;

must not exceed min-f0.
nccf-ballast 0.625 Increasing this factor reduces NCCF for quiet

frames, helping ensure pitch continuity
in unvoiced regions

penalty-factor 0.1 Factor that penalizes frequency change
delta-pitch 0.005 Smallest relative change in pitch

that our algorithm measures
lowpass-cutoff 1000 Low-pass cutoff that we apply to

the raw signal
lowpass-filter-width 2 Integer that determines filter width

of low-pass filter (more gives wider filter with
sharper cutoff)

resample-frequency 4000 Sample frequency for NCCF;
must exceed twice lowpass-cutoff.

upsample-filter-width 5 Integer that determines filter width
when upsampling NCCF

Table 2.1: Parameters of our algorithm, and their default values

allow the Viterbi search to interpolate across unvoiced regions naturally. To

make this happen, we had to make a few changes. We do not limit the search

to the relative local maxima of the NCCF– we allow it to take any value on a

reasonably fine grid. Also, we alter the penalty on the change ∆ in log-pitch

from proportional to |∆| to ∆2, which causes the algorithm to interpolate across

constant regions of the NCCF linearly. In addition, we add a “ballast” term to

the NCCF formula which makes it approach zero for “quiet” areas of the signal;

for this to work, we have to energy-normalize the signal globally. This requires

lookahead, as does the Viterbi search. We also created a modified version of

the algorithm for online use which is available in Kaldi.

16

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

We low-pass the signal to 1kHz which improves accuracy as well as making

the algorithm more efficient by allowing us to work with a sub-sampled signal.

Moreover, we obtain a feature based on the values of the NCCF, not just the

lag at which it is maximized, not just the lag at which it is maximized, which

is related to the POV and helps in ASR.

Resampling method

For completeness, we will specify the method we use to resample signals.

Let the sampled source signal be viewed as a continuous function of time s(t),

where the n’th sample xn becomes a Dirac delta function shifted to time n/S

where S is the sampling rate, and scaled by xn/S. We define a filter function

fC,w(t), parameterized by a cutoff frequency C ≤ S/2, and an integer width

factor w ≥ 1. Let the window function w(t) be a raised-cosine (Hanning) window

with support on
[−w
2C

, w
2C

]
. Then define

fC,w(t) = 2C sinc(2Ct)w(t) (2.1)

where sinc is the normalized sinc function. To take a sample of the signal

at an arbitrary time t, we simply evaluate
∫
u
s(u)f(t − u) which is the sum

s′(t) =
∑

n xn
fC,w(t−n/S)

S
. Naturally, we only evaluate this for the values of n for

which the summand is nonzero.

17

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

Subsampling and normalization

Let the input to the algorithm be a discretely sampled signal, sampled with

sampling frequency S. The first stage is to use the resampling method above,

with the filter parameterized by lowpass-cutoff and lowpass-filter-width, to re-

sample the signal at a sampling frequency resample-frequency. Next, we nor-

malize the resampled signal’s dynamic range by dividing by the root-mean-

square signal value (if it is nonzero). Let the result be the signal xn, with n =

0, 1, . . . N−1. We then apply pre-emphasis, setting yn = xn−preemph-coeffxn−1.

Computing the NCCF

First, we need to establish the range of lags over which to compute the

NCCF. These depend on the frequency range we search over. Define the quan-

tities min-lag = 1/max-f0, max-lag = 1/min-f0, which are the minimum and

maximum lags (in seconds) at which we need the NCCF, and furthermore de-

fine upsample-filter-frequency as resample-frequency/2 which is the filter cut-

off we will use when upsampling the NCCF. Then with filter-width w (in sec-

onds) defined as upsample-filter-width/upsample-filter-frequency.

Let outer-min-lag = min-lag − w/2 and outer-max-lag = max-lag + w/2,

which gives us a slightly larger range of lags over which to compute the NCCF

(we need to extend the range by half the width of the filter function we’ll use

when up-sampling the NCCF).

18

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

Consider the frame-index t = 0, 1, The time span of the signal that we

need to process starts at the closest sample to the time t ·window-shift and is of

the length window-width + outer-max-lag (in seconds). We produce output for

all frame-indices t such that this time span is wholly within the time span of

the input file. Let wt = (wt,0, wt,1, . . .) be the sequence of samples used for frame

t; this is a subsequence of the sequence xn, of the length⌈
(window-width + outer-max-lag) · resample-frequency

⌉
samples, but with its

mean subtracted away. Let vt,i represent the sub-sequence of wt starting at

position i and of length n = ⌈window-width · resample-frequency⌉, so for in-

stance vt,3 = (wt,3, . . . , wt,n+3). Where convenient, we will view these sequences

as vectors. The NCCF for frame t and lag-index l is

ϕt,l =
vT
t,0vt,l√

||vt,0||22||vt,l||22 + n4 nccf-ballast
, (2.2)

where ||x||22 = xTx. We compute this for all l s.t. outer-min-lag ≤ l/resample-frequency ≤

outer-max-lag.

19

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

Upsampling the NCCF

Next, we upsample the NCCF in a non-linear way: that is, we measure the

NCCF at the geometrically increasing sequence of lag values

Li = min-lag (1 + delta-pitch)i , i ≥ 0, Li ≤ max-lag, (2.3)

where the condition Li ≤ max-lag determines the maximum index i. For each

index i, we compute the NCCF Φt,i which is the NCCF ϕt,Li
measured on frame

t at lag Li, using the resampling method described in Subsection 2.1.2 param-

eterized by upsample-filter-frequency and upsample-filter-width.

Defining the cost function

Suppose the range of the frame-index t is 0 ≤ t < T and the range of the lag

index i is 0 ≤ i < I (we will mention later how these ranges are determined).

The pitch trajectory is obtained by minimizing a cost function defined on a

sequence of indices s = (st)
T−1
t=0 ; each element st is interpreted as a lag-index i,

so 0 ≤ st < I. The cost function consists of a local cost for each time t plus a

term that penalizes changes in frequency:

C(s) =
T−1∑
t=0

local-cost(t, st) +
T−1∑
t=1

penalty-factor(log(Lst/Lst−1))
2, (2.4)

20

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

where the configuration value penalty-factor controls how strongly we penalize

changes in frequency, and we define

local-cost(t, i) = 1− Φt,i(1− soft-min-f0Li) (2.5)

View 1 − Φt,i as the basic local cost, and the multiplicative factor on Φt,i as

a kind of penalization of high lags, which will tend to keep the selected lags

substantially below 1/soft-min-f0.

Optimizing the cost function

The algorithm we use to compute the sequence s that minimizes C(·) is

based on the Viterbi algorithm. A naive implementation would take quadratic

time in the number I of lag-indices. Let the Viterbi back-trace on time t > 0

and lag i be b(t, i); this evaluates an integer index (like i) that is the optimal

lag-index on time t−1 that we “point back to” from (t, i). Due to convexity w.r.t

i in the transition-cost, we can show that b(t, i + 1) ≥ b(t, i). We can use this

to obtain an exact search algorithm that takes time closer in practice to linear

in I (although not provably so; it is data-dependent). Let the forward-cost be

written as c(t, i). Ignoring all end effects for purposes of exposition, the basic

idea is that, on time t, we first do a “forward pass” for i = 0 to I−1, and set

c(t, i) and b(t, i) while only considering the previous forward-costs c(t−1, j) for

j = b(t, i−1) to i. Then, in a “backward pass” for i = I−1 to 0, we see whether

21

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

we can get a better forward-cost and corresponding backtrace than we already

have by considering the previous forward-costs c(t−1, j) for j = i+1 to b(t, i+1).

Let the result of this computation be the state-sequence s = (st)
T−1
t=0 .

Results

The output of this algorithm is the pitch and the NCCF values for each

frame. The pitch for frame t equals 1/Lst, with lags Li as defined in Equa-

tion (2.3). The NCCF values are computed at the selected lags, so on frame t

we output Φt,st (see Subsection 2.1.2); however, for purposes of this output we

compute the NCCF without the nccf-ballast term in Equation (2.2) (and treat-

ing 0/0 as zero in case of a zero sequence in the signal). This means that we

need to do the upsampling computation of the NCCF twice. Next, we describe

how we post-process the output for use as features for ASR.

2.1.3 Pitch post-processing methods

Baseline pitch post-processing method

The post-processing that we used for all the non-Kaldi pitch features is

based on [?, p.46,54], and is similar to the system of the “Swordfish” team 1

in the BABEL program (IARPA-BAA-11-02); our experimental setup is part of
1Thanks to Arlo Faria who developed the pitch processing for that system

22

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

the “Radical” team’s larger system. First, if there are regions where the pitch

extractor says there is no voicing, we interpolate the pitch values from the ad-

jacent voiced region in a straight line across the gap; or for unvoiced regions

at file boundaries, we continue the first or last pitch value. We also add a little

noise to the pitch values at this point. Then, we take the log of the resulting

pitch values. We then apply the mean subtraction, subtracting the mean of

a window of length 151 frames, centered on the current frame. To the result-

ing pitch, we apply short-time smoothing, averaging over a centered window

of 5 frames. The reason why it is necessary to add noise and do short-time

averaging is that many pitch extractors (including SAcC) output pitch, that

is quantized to discrete values, produces a “blocky-looking” pitch trace. These

operations help make the pitch trace smoother.

The POV feature is obtained as follows, and note that for all baseline sys-

tems we used the POV estimates from SAcC. We used log((p+0.0001)/(1.0001−

p)) as the feature, where 0 ≤ p ≤ 1 is the POV estimate from SAcC. So the out-

put is two features representing pitch and POV. We append these to the PLP

features, and treat them the same way we would treat extra PLP coefficients

(i.e., we apply cepstral mean subtraction, and delta computations or splicing

followed by LDA).

23

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

2.1.4 Probability of voicing measure

Processing NCCF into a probability of voicing measure

The basis for our POV measures are the NCCF values for each frame. Their

range is [−1, 1], but it is usually positive. We process the raw NCCF value in

two ways.

Accurate probability of voicing

The first method is only used as a part of the pitch mean-subtraction al-

gorithm we describe below; it processes the NCCF value into a reasonably ac-

curate POV measure. The following formula was obtained by plotting the log

of count(voiced) / count(unvoiced) on the Keele database as a function of the

NCCF, and manually creating a function to approximate it.

Let the NCCF on a given frame be written c. Compute its absolute value:

l = −5.2 + 5.4 exp(7.5(a−1)) + 4.8a− 2 exp(−10a) + 4.2 exp(20(a− 1)) (2.6)

Here, a = |c| and l is intended to approximate the log-likelihood ratio

log(p(voiced)/p(unvoiced)). Then let p = 1/(1 + exp(−l)), and p is a reasonable

approximation to the POV on this frame.

24

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

Method for use as a feature

The other method we use to process the NCCF produces a value that seems

to result in good performance when used as a feature. This method was de-

signed to give the feature a reasonably Gaussian distribution (although there

are still noticeably separate peaks for voiced and unvoiced frames). If −1 ≤ c ≤

1 is the raw NCCF, we let the output feature be f = 2
(
(1.0001− c)0.15 − 1

)
.

2.1.5 Normalization of pitch

We use the short-time mean subtraction approach of [?], however, for the

POV weighting: on each time t we subtract a weighted average pitch value,

computed over a window of width 151 frames centered at t and weighted by the

POV value p described in Subsection 2.1.4. Please note that the improvement

in WER from incorporating the weighting in the mean subtraction was quite

small: of the order of 0.1% WER averaged across various languages.

2.1.6 Delta feature

We have extended our post-processing by adding a third feature consisting

of the delta-log-pitch computed directly from the un-normalized log pitch, in

the usual way (using ±2 frames of context). The motivation was to get an exact

delta-pitch feature without inaccuracies caused by the moving-window mean

subtraction. This, together with the previous two features, is appended to the

25

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

raw MFCCs or PLP and shows around 0.4% absolute improvement on top of

the results we present below.

2.1.7 Results

Kaldi BABEL pipeline

Our system is mostly as described in [?], although we have made various

improvements since then. We measure our systems using %WER and using

actual term weighted value (ATWV), which is a measure of keyword search

effectiveness [?]; larger values are better. We train on the so called LimitedLP

training data, which is around 10 hours × number of languages.

Of the languages we tested, only Vietnamese2 and Cantonese3 have tone

marked in the dictionary. We configured Kaldi in such a way that the acous-

tic decision tree can ask about tone. Of the other languages, Zulu4 is the only

one that is considered to be a tonal language, but its lexicon is not marked for

tone. We also tested on Assamese5 and Bengali6. In all cases, we tested on the

official BABEL Dev10h development set. For the keyword search, the develop-

ment keyword phrase lists, usually provided by other participants in the pro-

gram, lists were used. Please note, while we see improvements in WER/ATWV
2Language collection release IARPA-babel-107b-v0.7.
3Language collection release IARPA-babel-101b-v0.4c sub-train1
4Language collection release IARPA-babel-206b-v0.1d
5Language collection release IARPA-babel-102b-v0.4.
6Language collection release IARPA-babel-103b-v0.3.

26

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

by using pitch, even in the atonal BABEL languages, separate experiments

on Switchboard English showed no improvement from our features, compared

with just MFCC. Perhaps, English is exceptional in some way.

In some of our experiments, we appended fundamental frequency variation

(FFV) features [?]. These are seven-dimensional features which are informa-

tive about pitch changes. These features were part of our standard pipeline

when our pitch features were based on SAcC, but we find that they are not

helpful in combination with the features from our improved pitch tracker.

Experimental results

Figure 2.1 compares our pitch tracker with various baselines, using the

Keele corpus. Our pitch tracker provides substantially better accuracy than

the others (but bear in mind that we tuned it on this setup and that the er-

ror ratio of some of the baselines may be inflated because they classified some

frames as unvoiced).

kaldi getf0 sacc yin swipe wu yaapt
0

2

4

6

8

10

12

14

16

18

20

22

24

pitch trackers

 G
P

E
(%

)

Figure 2.1: Gross pitch error (% voiced frames >10% pitch error): Keele
database

27

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

In Table 2.2, we compare the Yin, getf0, and SAcC pitch trackers on Viet-

namese data. Because not all the pitch trackers provide a POV, we used the

SAcC POV. We also added FFV [?] features, as these were part of our original

SAcC-based recipe. SAcC was still the best of the original pitch trackers we

tested, but due to the simplicity of getf0 we felt it was the best starting point

for our work.

Features WER
Yin pitch + SAcC POV + FFV 68.1
GetF0 pitch + SAcC POV + FFV 68.0
SAcC pitch + SAcC POV + FFV 67.6

Table 2.2: Off-the-shelf pitch extractors (Vietnamese LimitedLP)

Vietnamese Cantonese
Pitch POV %WER %ATWV %CER %ATWV
- - 71.3 20.0 63.3 18.5
SAcC SAcC 68.9 22.0 60.6 20.8
getf0 SAcC 68.8 21.3 60.1 20.0
Kaldi SAcC 67.1 24.0 58.1 24.1
Kaldi Kaldi 65.6 27.1 56.5 23.5

Table 2.3: Comparing pitch and POV algorithms on tonal languages

Table 2.3 shows various combinations of pitch and POV features, on tonal

languages, without FFV features. As shown, the Kaldi pitch and POV features

are each better than the corresponding SAcC-based feature.

We tested our pitch extractor on two atonal languages, Bengali and As-

samese. The Kaldi pitch tracker has good performance in atonal languages

too. Figure 2.2 shows that adding our tone features results in very good gains

28

CHAPTER 2. PITCH AND PROBABILITY OF VOICING

in these languages. So as can be seen, we get consistent improvement in tonal

and atonal languages on the ASR system.

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Vietnamese Cantonese (CER) Bengali Assamese Zulu

Li
m

it
e

d
LP

 W
E

R
(%

)

Baseline

SAcC

Kaldi

16

17

18

19

20

21

22

23

24

25

26

27

28

Vietnamese Cantonese Bengali Assamese

Li
m

it
e

d
LP

 A
T

W
V

(%
)

Baseline

SAcC

Kaldi

Figure 2.2: (a) WER (upper figure) (b) ATWV (lower figure) results on BABEL
LimitedLP Dev10h for No-pitch vs. SAcC Pitch+POV vs. Kaldi Pitch+POV

29

Chapter 3

Joint feature extraction and

classification training

In recent years, different studies have proposed different methods for DNN-

based feature extraction and joint acoustic model training and feature learning

from a raw waveform for large vocabulary speech recognition. However, con-

ventional pre-processed methods such as MFCC and PLP are still preferred in

the state-of-the-art speech recognition systems as they are perceived to be more

robust. Besides, the raw waveform methods do not significantly outperform

the conventional methods. In this chapter, we investigate direct-from-signal

joint feature learning, and propose new time-domain (i.e., Section 3.1) and

frequency-domain (i.e., Section 3.2) setups, which allow doing acoustic mod-

eling directly from the raw waveform.

30

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

3.1 Time-domain joint feature extraction

3.1.1 Prior work

Most conventional speech recognition systems use handcrafted spectral and

cepstral features such as MFCC [?], PLP [?] and Mel filter bank. All of these are

inspired by physiological models of the human auditory system and may not be

the most appropriate features for the final ASR objective of WER reduction.

DNNs have been shown to be able to easily integrate the feature extraction

stage with the classification stage. In [?], it was shown we could learn Mel-

like filter banks from the power spectrum. Tuske et al. [?] proposed using

the raw time signal directly as input to a DNN. Since then there have been

many publications [?, ?, ?, ?, ?, ?] analyzing methods to learn directly from the

raw waveform. To the best of our knowledge, [?] is the only research where a

raw waveform system is shown to give a better recognition performance than

conventional features. However, they only report results using a large training

set. In [?], the authors show improvement over conventional features only after

appending the raw waveform to the conventional features. It is not clear how

any of these approaches would perform on standard LVCSR tasks relative to

the state-of-the-art systems that include speaker adaptation. In this section,

we show that it is possible to beat the recognition performance of a state-of-

the-art MFCC-based DNN system [?] on the Wall Street Journal (WSJ) task

31

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

and match the performance on the Switchboard [?] task.

One of the issues with learning directly from the raw waveform is the large

number of variations for a given phoneme in the form of phase shifts and tem-

poral distortions. The input to the neural network (NN) is at a very fast rate

(8-16 kHz), and using a broad temporal context would result in requiring a

sizeable linear layer in DNN. It results in difficulties in performing backpropa-

gation through time in an RNN. A typical approach dealing with these issues is

to perform max-pooling over time [?]. In [?], conventional pooling approaches

such as max, p-norm, and averaging functions are compared. Bhargava et

al. [?] use a pre-trained bottleneck neural network to extract features that are

spliced at a slower 10 ms period over a long temporal window. In this section,

we present a novel NiN [?] architecture that aggregates filter outputs over

time. The NiN is randomly initialized and jointly trained with the rest of the

network. We show that with this architecture, the network can train just as

fast as our baseline MFCC-based DNN.

In the realm of traditional features, speaker adaptation is usually done us-

ing a generative framework that involves transforming features to a differ-

ent space using fMLLR [?] or applying a speaker-dependent bias by append-

ing features like i-vectors [?, ?]. However, i-vectors are not straightforward to

work with, especially in mismatched conditions [?], and requires careful pre-

processing such as segmentation and new architectural tricks [?]. We could

32

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

not get i-vectors working as well in the raw waveform setup as in the MFCC

setup. Instead, we experiment with an adaptation approach that uses activa-

tion statistics of hidden units accumulated over about a 2-second long window.

We show that using this approach eliminates the performance gap compared

to the state-of-the-art MFCC-based DNN system with i-vector speaker adapta-

tion.

3.1.2 Raw waveform processing

The input frames to the neural network are non-overlapping 10 ms long

segments of the raw waveform signal. The raw waveform samples are quan-

tized to 16 bits per sample and the mean and variance are normalized at the

utterance level. The mean-variance normalization can be important for stable

training [?].

3.1.3 Data perturbation

The Fourier modulus is translation invariant and stable to additive noise

but unstable to small deformations at high frequencies [?]. FFT-based features

such as MFCC and PLP are invariant to modest translations. A large amount

of variations in the raw waveform input for a given phoneme can be detri-

mental to training. One approach to mitigate this is to artificially perturb the

33

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

data to make the network invariant to those perturbations. We exploit differ-

ent audio augmentation techniques at signal level. The data is augmented by

changing the speed of the audio signal and producing different versions of the

original signal with speed factors in the range [0.9, 1.1] [?]. We also do this for

the baseline MFCC setup. To achieve translation invariance, we alter the raw

input signal during training by shifting the samples randomly to the right for

up to 20% of the frame window size. This means that in different epochs, we

might see the same data at different shifts.

Data perturbation can significantly help in improving performance on small

datasets such as WSJ. Table 3.1 shows the effect of random shifts on final vali-

dation and training log-likelihoods.

Table 3.1: Data perturbation effect on WSJ

Perturbation method Training CE Validation CE
No random shift -0.96 -1.22
With random shift -0.88 -1.13

3.1.4 Pooling methods

The input speech frame to the neural network in the direct-from-signal

setup is at a very fast rate (e.g., 8-16 kHz) and using a wide temporal con-

text would result in requiring a large linear layer. A typical approach is to pool

over time, where a max [?], p-norm [?] and average pooling are the conven-

tional pooling methods. Improper down-sampling of the output of wideband

34

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

filters can lead to severe aliasing which is not a reversible operation [?]. In this

section, we present a new NiN [?] architecture that aggregates filter outputs

over time. We use this structure as a pooling layer to aggregate the filter’s

output (see Figure 3.3).

Network-in-network (NiN) nonlinearity

In this section, we introduce a new type of nonlinearity that is a special

case of the NiN nonlinearity proposed in [?]. It is a many-to-many nonlinearity

consisting of two block diagonal matrices, with repeated blocks, interleaved

between layers of rectified linear units (ReLU). A normalization layer [?] is

always added after the NiN nonlinearity to stabilize training. Figure 3.3 shows

a graphical representation of the nonlinearity.

The transformation block U1 of size m × k maps an input of size m into

a higher dimensional space with dimension k, and it is subsequently passed

through ReLU nonlinearity. We will refer to the quantity k as the “NiN hidden

dimension.” The second transformation block U2 of size k × n maps it down to

a lower dimensional space with dimension n followed by another rectification

using ReLU nonlinearity. We will refer to the combination of U1 block and U2

block along with the ReLUs as a “micro neural network block” as marked in

Figure 3.3.

To concisely describe the proposed NiN nonlinearity, we can say that it is a

35

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

group of micro neural network blocks applied to non-overlapping patches of the

input with each block being a nonlinear transformation from m dimensional

space to n dimensional space.

If the micro neural network block parameters are shared across the NiN,

each column of block U1 can be interpreted as a 1-d convolution filter with

a filter size m and a filter shift m. Thus, the same filter is applied to non-

overlapping patches to model local connectivity. The shared parameters in the

NiN nonlinearity keep its total parameter count low relative to the size of its

input and output and allow it to train faster.

We use this nonlinearity at the output of the convolution layer. This type

of nonlinearity is helpful in reducing variability and pooling the information

without having too many parameters to learn. This nonlinearity learns very

powerfully with fewer parameters than the conventional ReLU-based layer,

and is constructive for the raw waveform setup.

36

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

U1 U1

U2 U2
Micro Neural
Network Block

ReLU

ReLU

ReLU

…	

…	

Figure 3.1: Proposed NiN nonlinearity

50 100 150 200 250 300

−0.25

−0.2

−0.15

−0.1

Iteration

T
ra

in
 lo

g−
lik

el
ih

oo
d

MFCC

Raw waveform

Figure 3.2: Convergence of training objective function in raw waveform setup
using NiN nonlinearity vs. MFCC setup using ReLU

37

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

Comparison with other pooling methods

We compare the effects of different pooling techniques (i.e., no pooling, max

[?], p-norm [?]) with our proposed NiN pooling structure in Table 3.2. The

overall feature extraction block used in all experiments is similar to the ar-

chitecture described in Subsection 3.1.6 and the main difference is that differ-

ent pooling techniques are used instead of the NiN block in Figure 3.5. The

classification block used in all experiments is the same as the layer structure

described in Figure 3.5.

As shown in Table 3.2, NiN pooling as a trainable pooling layer outperforms

conventional pooling methods. This layer is a second level time-convolution

layer, which enables the network to exploit various sampling rates.

Table 3.2: WER (%) results on the Switchboard LVCSR task

Hub5’00
Model Total SWBD
No pooling 27.4 18.8
Max pooling 17.3 11.8
p-norm pooling 16.7 11.4
NiN pooling 15.9 10.4

3.1.5 Speaker adaptation in raw waveform setup

Statistic pooling layer

The statistic pooling layer extracts 1st and 2nd order statistics from hidden

layer activations. These statistics are computed over a moving window of up to

38

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

200 frames (2 seconds) and appended to the input of the next hidden layer.

Given an n-dimensional input, this layer computes a 2n dimensional output

consisting of

1. n dimensions of the moving average mean of the input

2. n dimensions of the raw diagonal 2nd-order statistics

We expect this layer to capture long-term effects in the signal such as a

speaker, channel and environment characteristics. This is particularly useful

in the raw waveform setup as the raw signal has more information related to

these characteristics, which are not in MFCCs.

3.1.6 CNN-based raw waveform setup

Our raw waveform setup consists of two parts – a feature extraction block

and a classification block. The feature extraction block, described in this sub-

section, consists of a CNN layer to process the raw waveform samples. The

CNN outputs are aggregated using the proposed NiN nonlinearity. The clas-

sification block in our setup uses the basic time-delay neural network (TDNN)

architecture [?], but it uses the proposed NiN as the nonlinearity instead of

ReLU. This is described in detail in this section.

39

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

Feature extraction block

The feature extraction block used in the raw waveform setup is illustrated

in Figure 3.5. We take M samples of the raw waveform and convolve them with

N K-dimensional filters in the 1-d convolution layer. S is the step size taken

along the input axis for computing the next dot-product of input and filters.

Using the step size is equivalent to subsampling the output of convolution by

a rate of S. This helps in reducing computation time. The output dimension of

the convolution layer is N ×D, where D = M−K
S

+1. Next, we take the absolute

value of the filter outputs and take the log.

The major difference in our CNN architecture compared to the conventional

setups such as the ones in [?,?,?] is the use of a NiN nonlinearity. These setups

use conventional pooling techniques such as max pooling over time to reduce

the output of the convolutional layer to N × 1 from N ×D. Our proposed NiN

nonlinearity (see Subsection 3.1.4) takes the place of this pooling layer. The U1

block of the first NiN nonlinearity is chosen to be of dimension D × k, where k

is the NiN hidden dimension that is typically around 5D. A single micro neural

network block is shared across all N filters. Each micro neural network block

aggregates information over D samples.

40

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

HOW DOES NIN POOLING WORK?

The output y, for a time-convolution layer can be written as

yk,t =
K∑
τ=0

st+τ · hk,τ (3.1)

st is the input signal, sampled at 8kHz for Switchboard experiments and yk,t

is the subsampled output, where k is a filter index and t is subsampled every s

frames. hk,t is the kth FIR filter impulse response with a length of 31.25 ms and

250 samples. The nonlinearity function applied to the output of the convolution

layer can be interpreted as envelope extraction, which contains rectification,

low-pass filtering and sub-sampling. We subsampled the output of convolution

yk,t after every 10 samples, which has a fixed 6.25 ms rate. The NiN layer

generalizes the downsampling block and makes it a trainable block as follows:

xj,k,t = f3

(M∑
i=0

f2

(N∑
τ=0

f1(yk,t+τ) · li,τ,k
)
· zi,j,k

)
(3.2)

lki,τ is the trainable low-pass filters with size M for filter k and the results show

that sharing the low-pass filter envelopes across filters results in the best per-

41

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

formance. ReLU nonlinearity (i.e., max(0, x)) is used in most direct-from-signal

models [?]. We used two different nonlinearity functions, absolute function

|x| and rectification max(0, x), as f1(x) on the output of pooling and the re-

sults show 0.5% absolute WER improvement using absolute function on the

Hub5’00 Switchboard test set. f3 is the ReLU function applied after the first

nonlinearity block in the NiN block and li,k is the ith block in the NiN block.

Figure 3.3 shows learned envelopes li with f1 as |x| learned on Switchboard

datasets, where the NiN blocks with size 75 × 16 are shared across all filter

outputs and 75 envelopes are trained as described in Equation 3.2.

42

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

0 18 43 68 94
t (ms)

-2

0

2

Fi
lte

r
en

ve
lo

pe

Figure 3.3: Learned envelopes li in the NiN pooling layer

COMPRESSION METHODS

The two common compression methods used to reduce dynamic range in

feature extraction are as follows:

1. 10th-root compression: It is shown in [?] to work better in time-filtered

Gammatone features.

2. The log compression method: The two common approaches to tackle the

43

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

log singularity at 0 are stabilized log (i.e., log(x + δ)) and clipped log (i.e.,

log(max(δ, x))).

Table 3.3 shows the results of a Switchboard subset of 100 hrs using dif-

ferent compression methods. As shown, two logarithmic approaches produce

almost the same results in our raw waveform setup.

Table 3.3: WER (%) results of a 100 hours Switchboard LVCSR task using
different compression methods

Hub5’00
Model eval2000(Total/callhome) rt03
No compression 16.0/21.0 21.2
Stabilized log, δ = 10−10 15.8/20.9 21.6
Stabilized log, δ = 10−2 15.9/21.3 21.6
Clipped log, δ = 10−4 16.3/21.6 21.7

We have two consecutive layers of the proposed NiN nonlinearity. The nor-

malization layer, that we use after each nonlinearity, scales down the output

and keeps its averaged norm in check.

In speaker adaptation experiments using a raw waveform setup, i-vectors

are appended to the NiN output at this stage after first being passed through

a separate affine component and a ReLU layer [?]. In the MFCC setup, we

append and pass the i-vectors and MFCC through an LDA transformation [?].

Figure 3.6 compares the convergence rate using 3 different approaches to

pool over time. In these experiments, we use the same classification block

architecture, but different pooling methods on the outputs of the convolution

layer in the feature extraction block. As shown, using NiN to aggregate out-

44

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

puts converges faster than both p-norm pooling and using no pooling. Our

experiments also demonstrate that the NiN aggregation shows a 1% WER im-

provement over using p-norm pooling.

Classification block

Figure 3.5 shows the structure of a DNN layer used in the classification

block. We use a TDNN architecture [?] to splice D3 dimensional inputs at

different time steps t1, t2, · · · , tn, but also append to this the moving statis-

tics extracted using the statistics extraction layer (Subsection 3.1.5). Then,

we rearrange the dimensions of the spliced input so that the L shared micro

neural network blocks in the NiN nonlinearity are applied on d = D3

L
dimen-

sional patches of input data. The d-dim input patches are extracted from all

the n time steps and they are appended with the statistics extracted over time

steps tl, · · · , tr for the same d dimensions. The NiN nonlinearity is followed by

a normalization layer and a full affine transformation to reduce the output di-

mension to D3. We stack several layers of this type to form the classification

block.

45

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

N 1-d convolution
Filter with dim K

 Raw input
M samples

Log(Abs(x)) NIN NIN

i-vector
I samples

Affine
transform

J×I

1×
D

1×
D

2

1×J

Affine
transform
D3×(D2+J)

1× ((M-K) ⁄ S+1)

1×
D

1

1×
D

3

Filter1

Filter2

FilterN

Feature
Extract
Block

ReLU

…

Figure 3.4: Raw waveform feature extraction block

Feature
Extraction

Block

 Raw
input

 i-vector

t = t1
1×D3

t = tn

t = t2

Xt1

Xtn

Xtn

M

S

Permute

Xt1[1:d]

Xtn[1:d]
M[1:d]
S[1:d]

NIN Normalization

Affine
Transform

[tl : tr]

Layer
Configuration

1×D3

…
	

…
	

…
	

…
	

Figure 3.5: Layer configuration in raw waveform classification block

46

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

10 20 30 40 50 60 70
−3

−2.5

−2

−1.5

−1

−0.5

Iteration

T
ra

in
in

g
lo

g−
lik

el
ih

oo
d

No Pooling
Pnorm Pooling
NIN Pooling

Figure 3.6: Training log likelihood for different pooling methods

Effect of regularization

Mel filters are sparse and narrowband in the frequency domain. One of

the main challenges in learning time-domain filters is to learn narrowband

filters, which are non-uniformly spaced across frequency. We investigate dif-

ferent regularization techniques such as l1 regularization on the frequency do-

main transformation of time-domain filter weight, and l2 regularization on fil-

ter weights. Dropout [?] is another regularization technique, which randomly

sets some portion of activation to be zero during training and helps to improve

model generalization and prevents over-fitting.

L1 regularization

We minimize L1-norm for convolution filter wi trained in time-domain in

FFT domain

47

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

L1(Zi) =
N∑
j=1

⏐⏐Zij

⏐⏐ = N∑
j=1

Zij

Zi =
⏐⏐FFT(wi)

⏐⏐
L2 regularization

We used a modified version of L2 regularization, proportional shrink. It

scales down parameters in the convolution layer with some scaling factors pro-

portional to training iteration and learning rate. Figure 3.7 shows the learned

filter banks using different regularization techniques. As can be seen, the pro-

portional shrink as an extension to L2-regularization produces a higher number

of narrowband and sparse filter banks. Also, L2-regularization demonstrates

the best WER results compared to the others.

48

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

Baseline

2000 4000

20

40

60

80

100

-60

-40

-20

0

20
Proportional-shrink

2000 4000

20

40

60

80

100

-60

-40

-20

0

20

dropout=20%

2000 4000

20

40

60

80

100

-60

-40

-20

0

20
l1-regulizer

2000 4000
Frequency(Hz)

20

40

60

80

100

F
ilt

er
 n

um
be

r
(s

or
te

d)

-60

-40

-20

0

20

Figure 3.7: Learned filter banks using different regularization techniques

3.1.7 Results

We conduct our experiments on two corpora – 300 hours Switchboard con-

versational telephone speech corpus [?] and 80 hours WSJ continuous speech

corpus [?]. All of our experiments are conducted using the Kaldi Speech Recog-

nition Toolkit [?]. For the baseline, we use DNNs in time-delay neural network

architecture with 40-dim MFCC features as input. For speaker-adapted sys-

tems, 100-dim i-vectors were appended to the input features. The reader is

directed to [?] for the architectural details.

49

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

WSJ task

The raw waveform setup used in WSJ experiments is as described in Sub-

section 3.1.6, but we use p-norm pooling instead of the NiN nonlinearity, and

the classification block uses a conventional TDNN layer. The networks here,

including the MFCC baselines, are trained using a frame cross-entropy objec-

tive. The statistics extraction layer is not used in these experiments as the

cross-entropy model trains on small chunks over which we cannot extract reli-

able statistics.

The CNN layer in the feature extraction block consists of N = 40 filters.

The filter size used is 30 ms on a raw waveform signal that is sampled at 16

kHz. The filter step size used is 0.62 ms. The output of the convolution filters

are pooled over time using p-norm pooling instead of using NiN nonlinearity.

The classification block has six hidden layers, each with 750 ReLU units. Ta-

ble 3.4 compares the results of our raw waveform setup and the MFCC-based

TDNN system on the WSJ 5K vocabulary task. The first two rows represent

the systems without speaker adaptation. We see that the raw waveform system

performs more than 1% absolute better than the MFCC baseline.

From the next two rows, we see that adding i-vectors to the MFCC sys-

tem improves the MFCC baseline but still does not beat the raw waveform

setup without i-vectors. This may indicate that our raw waveform setup is

less sensitive to speaker mismatches. Adding i-vectors to the raw waveform

50

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

setup degrades the result. In the final experiment, we tried adding the NiN

nonlinearity but could not get any improvement over ReLU.

Table 3.4: WER (%) results on the WSJ LVCSR task

Model Nov’92 eval Nov’93 dev
MFCC 5.28 8.29
Raw 3.95 7.34
MFCC + i-vector 4.52 7.51
Raw + i-vector 4.06 7.80
Raw + i-vector + NiN 4.13 7.71

Switchboard task

Table 3.6 compares the results of the proposed raw waveform system and

the MFCC-based TDNN system on the Switchboard task. The results are re-

ported for both the Hub5’00 and the RT’03 evaluation sets.

In the raw waveform setup, the CNN layer consists of N = 100 filters. The

filter size used is 31.25 ms on a raw waveform signal that is sampled at 8

kHz, and the filter step size is 1.25 ms. The feature extraction block uses NiN

nonlinearity with 100 micro neural network blocks with input size m = 16 (same

as the convolution filter output dimension), NiN hidden dimension k = 120

and output size n = 18. The output dimension of the feature extraction block

is D3 = 500. The classification block has 6 hidden layers, with either ReLU

nonlinearity (600 hidden units) or NiN nonlinearity. The NiN nonlinearity has

100 micro neural network blocks with input size m = 5, NiN hidden dimension

k = 75 and output size n = 18. The neural networks are trained using lattice-

51

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

free MMI [?]. In the experiments using the statistics extraction layer, mean

and standard deviation of the hidden layer, activations are computed over the

available frames on either side for up to a maximum of 99 frames.

Table 3.5 shows the effect of using NiN nonlinearity in the classification

block in the raw waveform setup. Both the ReLU and NiN systems have the

same TDNN structure regarding context [?] and use the same feature extrac-

tion block including i-vectors. We see that using NiN nonlinearity demon-

strates 1% improvement over the conventional ReLU nonlinearity in the raw

waveform setup. However, we found that the NiN nonlinearity does not show

any improvement over ReLU on the MFCC setup.

Table 3.5: Effect of NiN nonlinearity

Hub5’00 RT’03
Model Total SWBD Total SWBD
ReLU 17.2 11.5 19.9 24.0
NiN 16.1 10.5 18.9 23.1

Table 3.6 compares the raw waveform setup with NiN nonlinearity and the

MFCC setup with ReLU nonlinearity. The first two rows in the table are the

results without speaker adaptation.

The next two rows show the effect of adding the statistics extraction layer.

We see that the statistics extraction layer improves the performance of both

MFCC and raw waveform setups. The raw waveform setup works slightly bet-

ter than the MFCC setup, which may indicate that the statistics layer helps

52

CHAPTER 3. TIME-DOMAIN JOINT FEATURE EXTRACTION

the network to extract some speaker or channel dependent information directly

from the raw waveform, which may be removed during the MFCC extraction

process.

The last two rows show the effect of speaker adaptation by adding i-vectors.

We see that i-vectors show much improvement in the MFCC setup, but only a

little improvement in the raw waveform setup. We hypothesize that the raw

waveform possesses more information than the MFCC features and the net-

work can learn to account for the speaker and environment variability. How-

ever, we need to perform more experiments to verify this hypothesis.

Table 3.6: WER (%) results on the Switchboard LVCSR task

Hub5’00 RT’03
Model Total SWBD Total SWBD
MFCC 17.5 11.6 22.1 26.6
Raw 17.4 11.5 21.7 26.5
MFCC + Stats 16.4 11.0 20.0 24.3
Raw + Stats 16.3 10.6 19.1 23.3
MFCC + i-vector 15.7 10.4 19.2 23.5
Raw + i-vector 16.1 10.5 18.9 23.1

53

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

3.2 Frequency-domain joint feature ex-

traction

In the work presented in this section, we simplify our previous approach [?]

(i.e., time-domain feature learning) by operating in the frequency domain. That

is, we include a Fourier transform layer in the network and let the network

learn the filter banks in the frequency domain. Frequency-domain feature

learning has been previously used in [?] and [?], however, we propose a new

normalization layer which helps with stabilization and better convergence of

the filters. Additionally, we employ a different weight constraint approach

which further improves the results. We use the proposed frequency-domain

layer in the state-of-the-art LF-MMI setup and show significant WER improve-

ments on various well-known large vocabulary databases. Time-domain fea-

ture learning is explained in detail in Section 3.1. In Section 3.2, our proposed

frequency-domain approach, as well as previous work on frequency-domain fea-

ture learning, is described. The experiments and results are presented in Sub-

section 3.2.4.

54

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

3.2.1 Prior work

Most of the data-driven feature learning approaches in recent years have at-

tempted to do feature learning directly from the time-domain waveform. Tüske

[?] trained a DNN acoustic model on waveforms and showed that auditory-like

filters could be learned using fully connected DNNs. Other research studies

usually use time convolution layers, which share weights across time shifts

[?,?,?].

The first layer in a time-domain feature learning setup is usually a time-

convolution layer, which is like a finite-impulse-response filter bank followed

by a nonlinearity. This layer is expected to approximate the standard filter

banks, which are often implemented as filters followed by rectification and av-

eraging over a small window. The output of this layer can be referred to as

time-frequency representation. Next, the rectification or absolute function is

applied to the output of the convolution filters, and the log compression is used

on the absolute value of the filter outputs to reduce the dynamic feature range.

To the best of our knowledge, most of the reported results show performance

degradation when using time-domain feature learning and [?] and [?] are the

research studies where raw waveform setup slightly outperforms the conven-

tional features. [?] proposed a new nonlinearity to aggregate filter outputs lead-

ing to results competitive with the state-of-the-art baseline systems.

In contrast to time-domain feature learning where the inputs to the CNN

55

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

and filter bank layers are raw speech samples, in the frequency-domain feature

learning the samples are passed through a Fourier transform layer first [?,?,?].

In this study, we adopt a similar frequency-domain approach but with a few

significant differences. Specifically, we use an extra normalization block, and

constrain the weights in the filter bank layer to a short range. The details of

our setup will be explained in the following subsections.

3.2.2 Proposed feature extraction block

The overall process of feature learning in our setup is shown in Figure 3.8.

The input features of the neural network are non-overlapping 10 ms segments

of the raw waveform signal. Each segment is represented by a vector of ampli-

tude values (e.g., for 8kHz speech, the features will be 80-dimensional). Unlike

acoustic modeling from time-domain [?], there is no need for input normaliza-

tion in the frequency-domain setup. As shown in Figure 3.8, the input features

are first passed through a pre-processing layer which performs pre-emphasis

and DC-removal. Then they go through the Fourier transform layer which is

implemented using sine/cosine transforms. L2-normalization is also applied

to the output of the Fourier transform. The next step is the normalization

block which is explained in Subsection 3.2.3. After normalization, there is the

main filter bank layer. Implementation-wise, the filter bank layer is an NxM

weight matrix (i.e., a linear transform), where each row represents an M-point

56

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

filter. The weights in this matrix constrained according to Equation 3.3 which

is applied after updating the parameters of the filter bank for each mini-batch

during training.

x

Preprocessing
(pre-emphasis,

windowing, dc-removal)

Fourier
transform

L2-norm

Normalization

Log

CNN

Power spectrum

……..f1 f2 fN-1 FN

Figure 3.8: Frequency-domain feature extraction setup

W ′

ij = max(α1,min(Wij, α2)) α1 < α2 (3.3)

We tried different values for α1 and α2 and determined that 0 and 1 produce

the best results. Table 3.7 compares the different constraints we tried. In

addition, we compared this method with the proposed method in [?], where the

parameters are constrained to be positive by using exponentiation as exp(Wij)

but found that our approach was more effective.

The filter bank layer is followed by log compression which is a common prac-

tice in DNN acoustic modeling, where the log compression helps to reduce the

57

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

dynamic range of the filter banks. We investigated two common log methods:

(1) clipped log (i.e., log(max(δ, x))) and (2) stabilized log (i.e., log(x+δ)) and found

that clipped log was more effective which is what we use in this setup. Finally,

the log filter bank features passed to a CNN layer. We use a 2-dim convolution

layer with 32 filters with a size of 3 × 3, with time stride 2 instead of pooling

with factor 2 in this setup.

Table 3.7: Effect of different filter bank constraint methods
Method WER

Proposed weight constraint (α1, α2)

(−∞,∞) 15.9
(−∞, 1) 16.0
(0,∞) 14.5
(0, 1) 14.3

exponential weights1 15.3

3.2.3 Normalization block

As suggested in [?], applying normalization before filter learning is benefi-

cial. Distribution of the inputs can change during training and the first layer

of the network is more sensitive to these changes which can slow down train-

ing or make it unstable. Therefore, we normalize the input power spectrum

which helps to stabilize training and to better train narrowband filter banks.

As shown in Figure 3.8, the inputs to the filter learning stage are normalized.

This is shown in more detail in Figure 3.9. Specifically, we first transform the

power spectrum features to log-space, where batch normalization is applied,

58

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

that is, normalizing the features over a mini-batch. We use batch normaliza-

tion proposed in [?] which allows using much larger learning rates. After batch

normalization, the outputs are normalized globally using mean and variance

parameters that are jointly learned with other parameters during training.

Finally, the parameters are transformed back into normal space using the ex-

ponential function.

We examine the effect of each component in the normalization block in Table

3.8. As shown, applying the normalization in log-space is crucial. Besides,

batch-normalization has a significant effect on the final WER too.

Log

Batch-Normalization

Mean-variance learning
and normalization

(µ , σ)

Exponent

Figure 3.9: Normalization block

Table 3.8: Effect of different components in the normalization block
log-domain batch-norm global norm WER

✓ ✓ ✓ 14.3
✓ ✓ ✗ 14.6
✗ ✓ ✓ 17.2
✓ ✗ ✓ 15.0

59

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

Scale and offset analysis

Figure 3.11 shows scale and offset values in a normalization block proposed

in Subsection 3.2.3 on narrowband 8-kHz and wideband 16-kHz datasets. As

shown, scales are larger in low-frequency FFT bins in log domain in [0− 1]kHz

that is equivalent to applying a larger power in the normal domain. As shown,

the smaller scale values applied in the high-frequency bins in the range [6 −

8]kHz and the scale values are approximately 1 in the mid-frequency range [1−

6]kHz. Smaller values for scales correspond to power 1 in the normal domain,

which is equivalent to not changing any frequency values. The offset range on

FFT bins in the log-domain is [−0.5, 0.5], which is equivalent to per-dimension

60

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

FFT scaling in a normal domain with [exp(−0.5), exp(0.5)] = [0.6, 1.6].

0 2000 4000 6000 8000

Frequency [Hz]

0

0.5

1

1.5

2

Sc
al

e

Scale in normalization layer

wsj
tedlium
ami-sdm

0 2000 4000 6000 8000

Frequency [Hz]

-1

-0.5

0

0.5

1

O
ff

se
ts

Offsets in normalization layer

wsj
tedlium
ami-sdm

0 1000 2000 3000 4000

Frequency [Hz]

0

0.5

1

1.5

2

Sc
al

e

Scale in normalization layer: Swbd

0 1000 2000 3000 4000

Frequency [Hz]

-1

-0.5

0

0.5

1
O

ff
se

t
Offset in normalization layer: Swbd

Figure 3.10: Scales and offsets vs. frequency for narrowband and wideband
data in a normalization layer

61

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

Scale values for Normalization component: SWBD

500 1000 1500 2000 2500 3000 3500

Frequency(Hz)

It
ar

at
io

n
 n

u
m

b
er

0.8

1

1.2

1.4

1.6

1.8

Offset values for Normalization component: SWBD

1000 2000 3000 4000 5000 6000 7000

Frequency(Hz)

It
ar

at
io

n
 n

u
m

b
er

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 3.11: Convergence of scales and offsets in a normalization layer

3.2.4 Results

In this section, we compare our proposed frequency-domain setup with the

time-domain setup proposed in [?] trained on the 300hrs Switchboard task. We

evaluate the full Hub5 ’00 set (also called “eval2000”). 2 We also compare two

conventional baselines: MFCC and log-Mel filter bank features. The MFCC

baseline system uses spliced 40-dimension MFCC feature vectors followed by
2We perform all the experiments using the Kaldi speech recognition toolkit [?].

62

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

an LDA layer. Note that the results for 40-dimension and 80-dimension MFCC

features were the same (not shown). Mel features were generated by passing

the power spectrum through a set of Mel filters, and log-Mel filter bank features

were generated by applying a log compression on the Mel features. The log-Mel

features – as well as all other feature learning layers we are comparing here –

are followed by a CNN layer. The rest of the network structure is the same in

all experiments (i.e., after the LDA or CNN layer). Specifically, we use blocks

of TDNN layers [?] trailed by batch-normalization [?] and rectified linear units.

The results are shown in Table 3.9. The time-domain feature extraction

setup used in the 3rd row of this table is similar to [?]. We also show the results

of training separate filters on real and imaginary parts of the Fourier transform

as done in the complex linear projection (CLP) method proposed in [?]. Particu-

larly, we train two separate filter banks, WR and WI , on the real and imaginary

parts of the signal’s Fourier transform and the real and complex parts of the

output computed as WRXR − WIXI and WRXI + WIXR. L2-norm followed by

log nonlinearity is also used to compute the log filter bank features. We can

see that our proposed frequency-domain setup outperforms other frequency-

domain, time-domain and conventional setups. In our setup, we used 40, 100,

and 200 filters in the filter bank layer and all cases led to the same result

shown in Table 3.9.

63

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

3.2.5 Filter analysis

Figure 3.12 shows the filter bank weights learned for the proposed frequency-

domain setup with and without normalization. Clearly, normalization helps in

learning less noisy filters.

Frequency-domain

No normalization

1000 2000 3000 4000

Frequency(Hz)

20

40

60

80

100

F
il

te
r

n
u

m
b
er

 (
so

rt
ed

)

-20

-10

0

10

20

Frequency-domain

With normalization

1000 2000 3000 4000

Frequency(Hz)

20

40

60

80

100

F
il

te
r

n
u

m
b
er

 (
so

rt
ed

)

-20

-10

0

10

20

Time domain

1000 2000 3000 4000

Frequency(Hz)

20

40

60

80

100

F
il

te
r

n
u

m
b

er
 (

so
rt

ed
)

-20

-10

0

10

20

Figure 3.12: Magnitude response of learned filter ordered in center frequency

The filters learned in the filter bank layer are usually interpreted as a band-

pass impulse response. One of the main issues in time-domain filter learning is

that the filters are not usually narrowbanded and regularization is necessary.

We use L1 regularization on the Fourier transform of the filters learned in the

time-domain setup which is helpful in learning narrowband filters. As can be

64

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

seen in Figure 3.12, this issue is alleviated in frequency-domain filter learning.

The filter banks learned in this domain are narrowbanded, and few filters show

multiple pass-bands. We apply L2-regularization on filter bank weights in the

frequency-domain and CLP setups.

Table 3.9: Frequency-domain vs. time-domain

Method WER
eval2000 rt03

40-dim MFCC 14.9 17.8
log-Mel fbank∗ 15.1 18.5
Time-domain setup1 14.4 17.4
Time-domain setup2 15.2 18.2
Proposed frequency-domain setup∗ 14.3 17.0
CLP∗ 14.9 17.6

*: CNN layer added after log filter banks.

Finally, we evaluate our proposed frequency-domain setup on various databases,

namely TedLium [?], AMI IHM and SDM [?], Wall Street Journal [?] and Lib-

rispeech [?]. The results are shown in Table 3.10. The amount of training

data for filter learning varies from 80-1000 hours across these tasks. The base-

lines are the state-of-the-art TDNN models trained on standard 40-dimension

MFCC features. We use 100 filters in 8kHz tasks and 200 filters for the 16kHz

tasks. The results on Librispeech are obtained by rescoring with a 4−gram lan-

guage model. We use the same CNN layer as described in Subsection 3.2.2 in

all the experiments. An average relative improvement of 1 to 7% was observed

over the conventional state-of-the-art MFCC based models.

65

CHAPTER 3. FREQUENCY-DOMAIN JOINT FEATURE EXTRACTION

Table 3.10: Performance of the proposed frequency-domain setup on various
databases

Database Test set Baseline Proposed setup

Switchboard eval2000 14.9 14.3
rt03 17.8 17.0

Wall Street Journal eval92 2.6 2.4
dev93 4.7 4.6

TED-LIUM dev 8.3 7.8
test 8.8 8.4

AMI-IHM eval 20.3 19.9
dev 20.4 20.1

AMI-SDM dev 37.3 36.3
eval 40.9 40.2

Librispeech dev-other 10.6 9.7
test-other 10.9 10.2

66

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

3.3 Multiscale feature learning from fre-

quency domain

For speech recognition, features, that can be extracted from both narrow-

band and wideband spectrograms, are important for good accuracy. ASR sys-

tems usually use single fixed frame lengths and the classification models are

expected to learn key patterns with the objective of minimizing WER. How-

ever, it is not easy to detect important patterns from fixed length frames as

some speech attributes require longer window lengths for a better estimate

and some require smaller window lengths.

a narrowband spectrogram [?] is computed over a long segment of the time

signal to capture the rapid change in amplitude at the time of vocal fold closure

and used to estimate the fundamental frequency and intonation. On the other

hand, a wideband spectrogram [?] is calculated over a short time window and

captures rapid changes in amplitude and the timing of changes in vocal tract

resonances more reliably. It is created with more coarse-grained frequency

analysis to model the broad spectrum envelope peaks that correspond to vocal

tract formants.

With the advent of DNNs in recent years, different parts of the ASR systems

such as acoustic and language modeling have greatly improved. However, most

commonly used ASR systems still use conventional hand-crafted features such

67

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

as MFCC [?], PLP [?] and log-Mel filter banks.

Data-driven feature extraction methods aim to jointly learn feature extrac-

tion and acoustic modeling. However, these methods have not significantly

outperformed conventional features on LVCSR tasks [?,?,?].

Recent work on frequency-domain feature learning [?] shows promising re-

sults in the data-driven feature learning regime with low latency. Filter banks

trained in this setup are constrained by their window size to a single scale. In

this section, we explore jointly learning filter banks at multiple scales. Multi-

scale time-domain convolution filter learning has been investigated in different

tasks such as ASR [?], image classification [?] and gesture detection [?]. The

multiscale convolution systems split the spectrum into different filter banks

using different strides and window sizes.

In this chapter, we propose a new multiscale feature learning using fre-

quency domain setup by jointly learning multiple filter banks on signal frames

with different lengths. We also find optimum sub-bands from different scales

and show that combining these sub-bands results in the same improvement

while requiring less computation and outperforms features learned on the sin-

gle scale.

Also, we investigate the effect of increasing temporal resolution in multi-

scale filter bank learning by increasing the input frame rate while having a

fixed output frame rate. The computational cost is optimized using a new

68

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

time delay network architecture with higher down-sampling in the interme-

diate layers of the network. In addition, we show that a higher input frame

rate in multiscale feature learning outperforms a normal frame rate.

3.3.1 Prior work

Authors in [?,?] proposed learning features from raw waveforms using mul-

tiscale setups. In [?], the effect of temporal and frequency resolution by chang-

ing the frame rate and number of filters were presented in a connectionist

temporal classification (CTC) framework and have shown significant improve-

ments. In [?], authors investigated feature learning from the raw waveforms

extracted at multiple downsampled rates in the context of the emotion recog-

nition task.

Chan and Peddinti [?, ?, ?], whose work is based on hand-designed fea-

tures, studied various wavelet based features to overcome the limitations of

the Fourier transform in terms of temporal and frequency resolution. All of

them reported improvements but their work was on a relatively clean dataset

(i.e., TIMIT as a phone recognition task). Therefore, there is still a need to in-

vestigate effectiveness of these kinds of features on noisy datasets and LVCSR

tasks.

In contrast to the studies of [?, ?, ?], authors in [?] have explored extract-

ing features from longer time scales compared to the usual 10-30 ms windows

69

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

where LPC was used in a frequency domain to model temporal peaks.

3.3.2 Proposed method

In this section, we explain our multiscale feature extraction method from

speech spectrograms. Figure 3.14 shows the process of feature learning for an

LVCSR task from a speech spectrogram using our proposed 2-scale frequency

domain setup. The raw waveform is passed through a pre-processing layer

which performs pre-emphasis and DC removal on windowed speech segments

with a 10 ms shift. The Fourier transform is applied on windowed segments

to obtain a spectrogram. The “Povey” window, defined in Equation 3.4, is an

extension to the Hamming window function, that goes to zero smoothly at the

edges, to avoid large side-lobes. The input frame length can be adjusted by

changing the power (ρ) in the “Povey” window. Larger power results in smaller

effective window size and larger mainlobe.

The actual input window size used in both scales is 30 ms and the effective

input window sizes used for learning filter banks are 30 ms (wide window) and

15 ms frame length (narrow window) modeled using ρ1 and ρ2 value of 4.0 and

0.85, respectively (i.e., Figure 3.14). We compared this setup with using actual

window sizes 30 and 15 ms with default ρ value of 0.85 (i.e., rows 1 and 2 in

Table 3.15). Figure 3.13 demonstrates the effect of different ρ values on the

main lobe width and side lobe roll-off rate. The width of the main lobe in 30

70

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

ms window with ρ value of 6.0 is 280 Hz, while this width for 15 ms window

and default ρ value of 0.85 is 120 Hz. The ρ value of 4.0 with window size 30ms

gives closer main lobe width as 15 ms window with default ρ of 0.85. In spite

of this fact, the results show the same performance in both setups. Also, we

experimented using multiscale dbl setup with 3 different ρ values for smaller

scale, 2.1, 4.0 and 6.0 with actual window size 30 ms. The results show ρ of 4.0

gives best performance.

-10 -5 0 5 10

t (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
ve

y
w

in
do

w

0 100 200 300 400

Frequency (Hz)

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

W
in

do
w

 F
re

qu
en

cy
 R

es
po

ns
e

(d
B

)

ws=30ms, =0.85
ws=15ms, =0.85
ws=30ms, =2.1
ws=30ms, =4.0
ws=30ms, =6.0

Figure 3.13: Effect of ρ on the main lobe width of “Povey” widnow

71

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

Then, L2-normalization is applied on the Fourier transform output followed

by a normalization block. The normalization block consists of applying log,

batch-normalization, mean-variance learning and normalization, and exponent,

which is described in detail in [?].

After normalization, there is the main filter bank layer which is basically

a linear layer. Each row in the weight matrix of this linear layer can be in-

terpreted as a filter. The weights of the matrix were clipped to be between

0 and 1. Log compression is applied on this filter bank output to reduce the

dynamic range which is a common practice in DNN acoustic modeling. The

normalization block together with a filter bank and log compression is shown

in Figure 3.14(a). Finally, these compressed features are passed to a 2D-CNN

layer with 32 kernels. Convolution is performed with 3 × 3 filters and a stride

of 2. For more detailed analysis, please refer to [?].

w(n) = [0.5(1− cos(
2nπ

N
))]ρ (3.4)

The full-band multiscale setup, explained in Figure 3.14(b), uses a full spec-

trum from both narrow and wide input frames, and two separate sets of filter

banks with N1 and N2 filters trained separately on a normalized wideband

and narrowband spectrum. Based on results from the setup shown in Fig-

72

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

ure 3.14(b), we also experimented with constraining the filter banks to a subset

of frequencies which we call a sub-band multiscale model and Figure 3.14(c),(d)

are the corresponding setups. With the setup in Figure 3.14(c), separate filter

banks are learned for each window length. With the setup in Figure 3.14(d),

sub-bands from different scales are appended and a common filter bank is

learned for both window lengths.

(a)

(c)

(b)

Normalization

Log

……..f1

Filter-bank learning block (FB) x

Full Spec

FB

x

Classification block

x

Sub-bands
S1,1 .…. S1,d

x

Classification block

S1,1 .…. S1,d S2,l .…. S2,N

Classification block

CNN1

CNN1 CNN2

!1

CNN2

CNN1

(d)

!2
Full Spec

FB

Sub-bands
S2,k .…. S2,N

FB FB

f2 fN-1 fN

Sub-bands
S1,1 .…. S1,d

Sub-bands
S2,k .…. S2,N

FB

x x

!1 !2 !1 !2

Figure 3.14: Multiscale frequency-domain feature extraction setup (a) Filter
bank (i.e., FB) learning block, (b) Multiscale setup with separate FB and full
spectrogram for each window length, (c) Multiscale setup with separate FB
and only a few sub-bands for each window length, and (d) Multiscale setup
with only a few sub-bands for each window length and common FB

We used a basic TDNN layer [?] for a classification block. To model a larger

73

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

temporal resolution, we increased the input frame rate to 200 Hz by reducing

the frame shift to 5 ms, while the output frame rate is still 33 Hz. To reduce

the computational cost of increasing the input frame rate, the explicit down-

sampling is applied by multiplying the time-offset in the TDNN layer by a

factor of 2 and the effective context is the same as the baseline model with a 10

ms frame-shift. The context in a normal and double frame-rate network (i.e.,

dbl) is shown in Table 3.11.

Table 3.11: Context specification in normal and double frame rate network

Layer Normal input context Dbl input context
1 [-1,1] [-2,2]
2 conv([-1,1],[-1,1],2,32) conv([-1,1],[-1,1],2,32)
3∗ {-1,0,1} {-2,0,2}
4 {-1,0,1} {-2,0,2}
5 {-1,0,1} {-2,0,2}
6 {-3,0,3} {-6,0,6}
7 {-3,0,3} {-6,0,6}
8 {-3,0,3} {-6,0,6}
9 {-3,0,3} {-6,0,6}
10 {0} {0}

∗: The i-vector appended at this layer for speaker adaptation.

We investigate the performance of our proposed multiscale feature learning

using single and double input frame rates and compare the results with using

multiscale MFCC setups. In addition, based on the filters learned for each

window scale, we investigated constraining the model to learn a specific set of

filters for each scale.

We evaluated our approach on various clean databases, namely Switch-

74

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

board [?], TedLium [?] and noisy datasets, AMI-IHM and AMI-SDM [?]. We

performed our initial experiments on Switchboard and AMI-SDM to study the

multiscale and multi-frame rate setup.

3.3.3 Effect of scale and frame rate with MFCC

In this section, we investigate extracting multiple sets of MFCC features

using signal frames with different lengths. Window frames of 17 and 30 ms

are used to obtain 40-dimension MFCC features (17 ms frame is selected to

have the same FFT size for an 8kHz dataset). These features are concatenated

and used as input to the network in a multiscale setup. We also investigate

the effect of increasing the input frame rate from 100 to 200 Hz by reducing

the frame shift. The TDNN context proposed in Table 3.11 is used in normal

and double input frame rate setup. Table 3.12 shows the results using MFCC

features extracted using 2 scales and 2 input frame rates. As shown, increasing

the input frame rate degrades the performance, and only a slight improvement

is observed with multiscale MFCC.

Table 3.12: Performance of MFCC features using different scales and input
frame rates

100Hz 200Hz
Database Test set 30 ms (17, 30) 30 ms (17, 30)

Switchboard eval2000 14.8 14.7 15.2 14.8
rt03 18.1 17.7 18.1 18.0

We also experimented with wavelet features as they provide the flexibility

75

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

on temporal and frequency resolution. To extract wavelet features, we exper-

imented with different discrete wavelet functions on a frame length of 24 ms.

Daubechies wavelet with 12-taps worked best among all. Experiments with

both full tree split and Mel-scale based split did not give us any significant re-

sults compared to MFCC. We obtained a 19.4% WER on the eval2000 test set

with a full tree split which is 4.6% absolute worse than MFCC.

3.3.4 Multiscale feature learning

Effect of number of scales

In the multiscale time convolution setup in [?], increasing the number of

scales to 3 shows considerable improvement. To find the optimum number of

scales, we experimented with learning features using a single scale, 2-scales,

and 3-scales. For each scale, a separate set of filters are learned and the out-

puts of filter banks for all scales are concatenated at the end of the feature

extraction block which will be used for classification (i.e., Figure 3.14(b)). We

experimented with three scales with actual window sizes (15, 20, 30)ms and

(15, 30, 60)ms and ρ value of 0.85. Also, we compared the results with single

scale setup with window sizes 15, 30 and 60 ms. From Table 3.13, it is clear

that using 2-scales is much better than a single scale and a slight degradation

is observed with three scales on Switchboard datasets. On the other hand, 3-

76

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

scale setup gives some improvement on AMI-SDM. We decided to use only two

scales for further experiments.

Table 3.13: Effect of number of scales in the multiscale dbl setup

Database Test set 15 30 60 (15, 30) (15, 20, 30) (15, 30, 60)

Switchboard eval2000 14.0 14.3 14.9 14.0 14.2 14.1
rt03 16.6 17.0 17.0 16.2 16.5 16.4

AMI-SDM dev 35.6 35.3 36.4 34.8 34.8 34.5
eval 39.4 38.9 40.1 38.8 38.6 38.1

Figure 3.15 shows the filters learned on each window length. It can be ob-

served in the case of Switchboard (first and third rows) that filters learned on

a 30 ms (wide) window length mostly focused on high frequencies [1 − 4]kHz

whereas filters learned on a 10 ms (narrow) window length are on low frequen-

cies up to 1.5kHz. Surprisingly, filters learned on 60 ms are mainly on a low

frequency sub-band [0− 1.5]kHz.

Filters learned on a 30 ms window length on AMI-SDM (second row) show

similar behavior to a 60 ms Switchboard and 80% of filters learned on a low-

frequency sub-band [0 − 1.5]kHz. However, the filters learned on a wide win-

dow AMI-SDM don’t seem to be specific to low-frequency sub-bands, and still,

20% of filters are learned on high frequency. The reason could be because this

dataset is reverberant and noisy which makes the signal non-stationary within

a window of 30 ms. We also observe similar behavior for filter banks learned

on small 15 ms window lengths for AMI-SDM and 80% of filters learned on a

high-frequency sub-band [1.5− 8]kHz.

77

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

Based on this observation, we experimented with explicit constraints on the

sub-bands that can be used in learning filters on each window length.

Frequency sub-band combination at different scales

As shown in Figure 3.15, there is a frequency overlap [1 − 1.5]kHz between

the filters learned from both window lengths. We hypothesize that constrain-

ing the model to learn dedicated low and high-frequency filters in each set will

allow the model to perform better which also has the advantage of less compu-

tation.

Table 3.14 shows the results of sub-band combinations for different scales.

The effective small and large window lengths are 15 and 30 ms, respectively,

and their frequency sub-bands are denoted by an ordered pair ([fs1 , fs2],[fl1 , fl2]).

The Nyquist frequencies, denoted by fnq, for Switchboard and AMI-SDM are

4kHz and 8kHz, respectively. The 200 Hz input frame-rate setup is used in all

the experiments listed in this table.

Experiments in rows 1, 2 and 3 in Table 3.14 use 100 filters in the filter bank

layer (refer to Figure 3.14(a)). We have observed a slight WER degradation

when we used only 50 filters, as shown in row 4. The experiment in rows 5

and 6 use the setup proposed in Figure 3.14(d) with 100 and 200 filters in the

filter bank layer and 32 and 64 kernels used in the CNN layer. As can be seen,

increasing the number of filters does not improve the results.

78

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

Table 3.14 shows that combining a high-frequency sub-band from the smaller

scale (i.e., wide spectrogram) and low-frequency sub-band from the larger scale

(i.e., narrow spectrogram) results in the same performance improvements as

combining full-bands. Also, comparing results in rows 3 and 5 shows that learn-

ing separate filter banks on different scales produces better results.

SWBD wide-window fBanks

1 2 3 4
Frequency(Hz)

20

40

60

80

100

Fil
ter

 nu
mb

er
(so

rte
d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SWBD narrow-window fBanks

1 2 3 4
Frequency(Hz)

20

40

60

80

100

Fil
ter

 nu
mb

er
(so

rte
d)

0.2

0.4

0.6

0.8

AMI-SDM wide-window fBanks

1 2 3 4 5 6 7 8
Frequency(Hz)

20

40

60

80

100

Fil
ter

 nu
mb

er
(so

rte
d)

0.2

0.4

0.6

0.8

AMI-SDM narrow-window fBanks

1 2 3 4 5 6 7 8
Frequency(Hz)

20

40

60

80

100

Fil
ter

 nu
mb

er
(so

rte
d)

0.2

0.4

0.6

0.8

narrow-window filters, 15 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7
mid-window filters, 20 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.2

0.4

0.6

0.8

wide-window filters, 30 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.2

0.4

0.6

0.8

narrow-window 15 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

0.6
mid-window 30ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

wide-window 60ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

narrow-window filters, 15 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7
mid-window filters, 20 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.2

0.4

0.6

0.8

wide-window filters, 30 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.2

0.4

0.6

0.8

narrow-window 15 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

0.6
mid-window 30ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100
Fi

lte
r n

um
be

r (
so

rte
d)

0.1

0.2

0.3

0.4

0.5

wide-window 60ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

narrow-window filters, 15 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7
mid-window filters, 20 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.2

0.4

0.6

0.8

wide-window filters, 30 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.2

0.4

0.6

0.8

narrow-window 15 ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

0.6
mid-window 30ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

wide-window 60ms

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r n
um

be
r (

so
rte

d)

0.1

0.2

0.3

0.4

0.5

Figure 3.15: Demonstration of learned filters on Switchboard, AMI-SDM.
First row and third row are on Switchboard using 2-scales and 3-scales, re-
spectively. Second row is on AMI-SDM using 2-scales.

79

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

Table 3.14: Effect of sub-band combination from different window scales.
([fs1 , fs2],[fl1 , fl2]) is an ordered sub-band pair selected from 15 and 30 ms, re-
spectively.

Database Switchboard AMI-SDM
Test set (N1, N2) eval2000 rt03 dev eval
([0− fnq],[0− fnq])(b) (100, 100) 14.0 16.2 34.8 38.8
([0− 1.5],[1− fnq])(c) (100, 100) 14.1 16.6 35.7 39.4

([1− fnq], [0− 1.5])(c)
(100, 100) 13.9 16.3 34.9 38.8
(50, 50) 14.0 16.4 35.0 39.0

([1− fnq], [0− 1.5])(d)
(200)∗ 14.1 16.3 35.2 39.2
(100)∗ 14.0 16.4 35.4 39.3

*: Single filter bank layer used on top of combined sub-bands.

Effect of input frame rate

Table 3.15 shows the results of a variety of clean and noisy datasets for

normal and double frame rate networks (i.e., explained in Subsection 3.3.2)

using the setup shown in Figure 3.14(b). We ensured that the input context

used in the classification block for both frame rates is the same by doubling

the time-offset in each TDNN layer (i.e., shown in Table 3.11). We can observe

significant improvements with a double scale input compared to a single scale.

Also, the double frame rate is beneficial in multiscale feature learning except

for the TedLium database.

80

CHAPTER 3. MULTISCALE FEATURE LEARNING FROM FREQUENCY
DOMAIN

Table 3.15: Performance of the proposed frequency-domain setup on various
databases using different scales and input frame rates.

100Hz 200Hz
Database Test set 30 ms (15, 30) ms 30 ms (15, 30) ms

Switchboard eval2000 14.3 14.4 14.1 14 (13.9∗)
rt03 17.0 16.6 16.5 16.2 (16.3∗)

AMI-IHM dev 20.1 20.1 19.8 19.7
eval 19.9 19.9 19.6 19.4

AMI-SDM dev 36.3 36.0 35.3 34.8
eval 40.2 39.9 38.9 38.8

TedLium dev 7.8 7.9 7.9 7.8
test 8.4 8.3 8.2 8.4

*: Multiscale with separate input frames 15, 30 ms.

81

Chapter 4

Joint feature extraction

application in emotion

identification

Speech-based emotion classification has been gaining popularity for the de-

velopment of emotionally sensitive human machine interaction (HMI) systems.

In the evolving setups of intelligent commercial dialogue systems and smart

call centers, emotion information obtained from speech can be used as meta-

data to understand speakers’ psychology and response. There are a number

of modalities that can be used to determine a human’s emotions, which in-

cludes facial expression, body movement, physiological measures such as gal-

vanic skin response and voice or speech. Automatic emotion classification sys-

82

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

tems have been developed using all of these modalities. However, designing a

speech-based emotion detection system has some particular importance. Hu-

mans express emotional state related information through numerous subtle

ways including low-level acoustic descriptors like pitch, voicing probability,

energy, zero-crossing rate, Mel filter bank features, formant locations, band-

widths, harmonics-to-noise ratio, jitter, etc., that may or may not be directly

represented by standard features such as Mel filter bank or formant locations,

pitch, voicing, etc. Researchers have been primarily focused on deriving useful

statistical feature sets from low-level acoustic cues as well as on developing

an efficient machine learning based modeling strategy to learn the emotion

dependent temporal and contextual variations of speech.

4.1 Prior work

The primary challenge in this chapter is that the feature set needs to be

robust enough to capture the emotional content from various styles of speak-

ing and complicated emotional states like happy and excited, angry and frus-

trated, etc. Machine learning based models have also been used to derive

high-level features to represent the whole utterance from low-level acoustic

features. Recently, deep learning approaches are becoming popular for model-

ing emotion-specific information from speech signals [?] [?] [?] [?] [?]. However,

83

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

there is a recent trend in deep speech-based system design which attempts

to derive features of the input signal directly from raw, unprocessed speech

waveforms excluding the necessity of hard-coded feature extraction outside the

DNN. Such approaches have shown appreciable reliability and state-of-the-art

performance in speech recognition tasks [?,?,?]. In the domain of a paralinguis-

tic, Trigeorgis et al., 2016, used raw waveforms for speech emotion dimensional

rating in a deep CNN framework [?]. Motivated by such success of raw wave-

forms, in this study we propose using raw waveform front-end layers to learn

emotion-specific cues within the network and design an end to end DNN setup

for categorical emotion identification tasks.

The raw waveform front end [?] used in this study attempts to learn a spe-

cific set of filters that are jointly optimized with the rest of the network and the

filter bank is learned to optimize the emotion identification objective.

A challenging issue in an emotion identification task is effective modeling

of the long temporal context. This is because emotion-specific information lies

in the long span of time to a great extent. We explore multiple DNN architec-

tures to appropriately model such long-term dependencies of emotion cues and

provide a comparative analysis. We use temporal convolution in the form of

TDNN layers [?] and unidirectional recurrent projected long short-term mem-

ory (LSTM) [?] layers individually with the raw waveform front end. We also

experiment with an interleaving TDNN with unidirectional LSTM (TDNN-

84

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

LSTM) setup and time restricted attention mechanisms [?] which enables the

DNN to be more attentive to emotionally sensitive portions of speech. We use

such time restricted attention layers with both an LSTM and TDNN-LSTM

setup, and we observe that attention improves the accuracy significantly in

both of these setups as well as helps reduce confusion among individual cate-

gories.

We experiment with statistics extraction layers which were previously used

with the xvector setup of the speaker and language identification [?,?,?]. Also,

we experiment with all these temporal modeling setups individually with the

frequency and time domain raw waveform front end and observe the best re-

sults using a TDNN-LSTM-attention setup with a time domain raw waveform

front end.

All of the results have been reported on the categorical emotion identifica-

tion problem of the interactive emotional motion capture (IEMOCAP) database

[?]. We design a baseline DNN setup with TDNN layers using a high-resolution

23-dimensional MFCC. Experimental results confirm the improvement obtained

from the proposed raw waveform based DNN setups which learn features within

the network over the MFCC based DNN setup where hardcoded features were

used. We also experiment separately with time and frequency domain data-

driven filter learning approaches in the raw waveform setup. In addition, we

include a few intermediate experimental comparisons regarding DNN training

85

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

time and decode time dependencies on seeing more or less context. Such de-

pendencies play a very critical role for an emotion identification task. In our

best DNN setup, we observe 8.31% improvement regarding weighted accuracy

(WA) and 4.37% improvement in terms of unweighted accuracy (UA) over a

257-dimensional magnitude FFT vectors based DNN setup reported in [?].

4.2 Feature extraction in emotion iden-

tification

Emotions influence both the voice characteristics as well as linguistic con-

tent of speech. Most previous research studies in speech emotion recognition

have been focused on the search for speech features that are indicative of differ-

ent emotions [?] and used suprasegmental/prosodic features as their acoustic

cues. Pitch, energy and rhythm are prosodic features and suprasegmental fea-

tures are computed on a whole sentence or emotion instance. These cues are

important indicators of emotional states [?] and used in many emotion recog-

nition systems [?,?,?]. The spectral information of speech is another important

feature for representing emotional states, which has been found to be useful

for emotion classification [?,?].

It is still unclear which features are more informative about emotions. The

traditional approach is to extract a large number of statistical features, de-

86

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

scribed in Table 4.1, and perform classification using standard machine learn-

ing algorithms. Some acoustic features are usually extracted from short frames

of 20 to 50 ms, and are called low-level descriptors (LLD). Then, various sta-

tistical aggregation functions such as mean, max and variance are applied to

LLDs over the whole utterance to extract long utterance level feature vectors.

Some of these features are mentioned in Table 4.1. The high-level statistical

functions describe the temporal variations of LLDs during the utterance, and

the assumption is that emotional content correlates with temporal variations,

rather than short-term LLDs.

Table 4.1: Low-level descriptors (LLDs) and high-level statistical functions
(HSFs) for speech emotion recognition

LLDs pitch, voicing probability, energy, zero-crossing,
Mel filter banks, MFCCs, formant locations/bandwidths,
harmonics-to-noise ratio, jitter

HSF mean, variance, min, max, range, median, quartiles,
higher order moments (skewness, kurtosis),
linear regression coefficients.

Here, we describe the baseline MFCC based DNN setup and two raw wave-

form feature extraction front end setups (Sections 3.1 and 3.2) for the emotion

identification task. Table 4.2 presents the results obtained from all three exper-

iments. The neural network setup used in all these experiments is explained

in detail in Section 4.4.

Most speech systems use short-term hand-crafted spectral and cepstral fea-

tures based on fixed filters, such as MFCC or Mel filter banks. In the first

87

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

experiment, we use 23-dimensional MFCC features as input to DNN. The de-

termination of parameters from the raw signal compared with the classical

representations in the time or frequency domain seems to have more advan-

tages.

However, using a fixed filter may not be the most appropriate for a final

objective of minimizing emotional states classification errors. In the next ex-

periment, row 2 of Table 4.2, we use a direct-from-signal setup described in [?]

which attempts to learn filters within the DNN. We refer to this as time domain

raw waveform front end in the rest of the description. The input frames are 40

ms long segments of raw waveform signal with 10 ms overlap. This raw wave-

form front end has a 1−d time convolution layer, which operates on a 40 ms raw

signal with a step size of 1.25 ms and the filter outputs are aggregated using

two trainable NiN nonlinearity layers introduced in [?]. We also used a setup

proposed in [?], where the signal is first transformed into the frequency domain

and a trainable filter bank layer, which is modeled using linear transformation,

is jointly trained with the rest of the network.

We observe that using a direct-from-signal setup can improve the perfor-

mance significantly compared to the baseline MFCC. Also, we observe that the

results of the time domain raw waveform front end are better than learning

features from the frequency domain. We need to do more experiments using

complex domain filter learning to model phase information, which can be use-

88

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

ful in learning emotional states. In all results reported hereafter, we use a

time-domain feature extraction block.

Table 4.2: Effect of different feature extraction methods

Feature extraction method WA
MFCC 59.9
Time-domain 65.5
Frequency-domain 63.4

Figure 4.1 shows the learned filter banks in ASR and age identification

tasks using proposed time-domain and frequency domain setups. As shown, fil-

ter banks are wider, especially in the high-frequency region in the time-domain

setup. Also, there are more filter banks in the frequency sub-band [0, 200] Hz

in the frequency-domain setup.
Frequency-domain ASR

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r
nu

m
be

r
(s

or
te

d)

0.2

0.4

0.6

0.8

Frequency-domain Emotion ID

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r
nu

m
be

r
(s

or
te

d)

0.05

0.1

0.15

Time-domain ASR

1000 2000 3000 4000
Frequency(Hz)

20

40

60

80

100

Fi
lte

r
nu

m
be

r
(s

or
te

d)

-20

-10

0

10

20
Time-domain Emotion ID

1000 2000 3000 4000
Frequency(Hz)

20

40

60

80

100

Fi
lte

r
nu

m
be

r
(s

or
te

d)

-20

-10

0

10

20

Figure 4.1: Learned filter banks for ASR and age identification tasks using
proposed time-domain and frequency-domain setups

89

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

4.3 Results

This section describes the experimental details and results. All of our exper-

iments are done using the Kaldi toolkit [?]. All of DNN based emotion identi-

fication setups described in this section have two common structures as shown

in Figure 4.2 (a) and (b). The initial block contains raw waveform front-end

layers as described in Section 4.2. The temporal modeling layers are either

TDNN or LSTM or a combination of the two along with an attention layer. We

use a statistics pooling layer before a softmax layer as in Figure 4.2(a) to get

segment-level emotion class output. We also use an attention layer in the tem-

poral modeling block. We do post-processing as an averaging of posteriors over

frames outside the network to get the segment-level emotion class output as in

Figure 4.2(b).

90

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

Figure 4.2: Layout of the proposed end to end DNNs for an emotion identifi-
cation task

We have used four emotion categories (neutral, angry, sad and happy) from

the interactive emotional dyadic motion capture (IEMOCAP) database [?]. The

database consists of about 12 hours of audiovisual data (speech, video, and

facial motion capture) from five mixed gender pairs of male and female actors,

in two recording scenarios: scripted and improvised speech. It is organized

in five sessions, four of which are used for training and one is used for testing.

Each wave file has a segment-level emotion category label annotated by human

annotators.

The performance of the emotion identification DNNs are reported using two

parameters, WA which is the overall classification accuracy and UA which is

the average recall over the emotion categories.

To increase the amount of data in the training set, we perform data augmen-

91

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

tation utilizing amplitude and speed perturbation. For each speech signal, five

different amplitude modulated versions are created initially. Then, speed per-

turbation [?] is applied on the amplitude modulated signals with speed factors

of 0.9, 1.0, and 1.1. The effect of data perturbation on the emotion identification

task can be seen in Table 4.3.

Table 4.3: Effect of data perturbation on emotion identification in our best
setup without tuning decode time parameters

Perturbation WA UA
No 60.27 48.84
Yes 66.07 57.215

4.4 Modeling long temporal context

The DNN is trained to classify different emotional states. Training exam-

ples consist of chunks of speech features ranging from 0.6 to 35 seconds with

a single emotional state label. We use the softmax layer at the end of the net-

work to give the network freedom to model any distribution over output and

each emotional state modeled as a separate output class.

One of the main issues in predicting emotional state is that the emotion cues

cannot be easily estimated over a small span of time and we need to preserve

the temporal context or use long examples to estimate the emotional state of

speakers. In this section, we compare different approaches in modeling tempo-

ral context. We use TDNN architecture which models long-term temporal de-

92

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

pendencies in models described in this section. One disadvantage of temporal

modeling using TDNN is the linear increase in parameters and computation

with an increase in the temporal context; a non-uniform sub-sampling method

helps to mitigate this issue. We also use only LSTM layers with and without

attention for temporal modeling in a recurrent way.

Table 4.4: Effect of long temporal modeling layers

Temporal Modeling WA UA
TDNN-Statistics Pooling 65.5 55.3
TDNN-LSTM 59.5 56.4
TDNN-LSTM-Attention 66.3 60.3
LSTM 59.9 53.7
LSTM-Attention 63.4 56.2

Statistic pooling layer

We use the TDNN layer as a temporal convolution in this setup, and the

context used in the TDNN layer is similar to the setup in [?]. The statistic

pooling layer [?, ?] is used in this setup, which aggregates all available frame

level inputs for the intermediate layer in the network and outputs their mean

and standard deviation. This layer operates on the entire segment and the

mean and standard deviation are concatenated together and passed through

a feedforward layer, and finally, a softmax layer is applied on them. Despite

the TDNN-LSTM setup, we use a single emotional state label for the entire

example in this setup. One disadvantage of this setup is that the speech and

93

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

non-speech frame weights are similar in computing the mean and standard

deviation in the statistic pooling layer and the error is back-propagated uni-

formly from this layer across all time frames. This requires the use of energy

based SAD to filter out non-speech frames. The results of not filtering the non-

speech frames is a large degradation in this setup. This issue is solved using

a TDNN+LSTM+Attention setup, in which the non-speech frames are not re-

moved

TDNN-LSTM

In this setup, we use temporal convolution in the form of TDNN layers along

with LSTM layers. We use interleaving of temporal convolution with unidirec-

tional LSTM, which has been reported to outperform bidirectional LSTM [?].

Also, we use per-frame objective, where all frames have the same emotional

state label for each utterance. We use a higher frame rate at lower layers of

LSTM, and a TDNN layer in the network and layer frame rate decreased with

layer depth. The layer-wise context of a temporal modeling block is similar to

config 1 of Table 4.5 except that this setup does not have an attention layer.

The results of this setup are shown in row 2 of Table 4.4.

94

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

TDNN-LSTM with time-restricted attention

We exploit a time-restricted self-attention mechanism, where the input and

output sequence lengths are the same, and it attends at a particular frame with

a limited number of frames to its left and right. A time-restricted attention

layer [?] is used as the last layer along with TDNN and a unidirectional LSTM

layer. The architecture of a TDNN-LSTM-Attention setup contains interleav-

ing TDNNs and LSTMs with an attention layer after the last LSTM layer. The

layer-wise context of the temporal modeling block of this setup is shown in

config 1 of Table 4.5. The dimensions of projection and the recurrence are one

quarter the cell dimension. We found that a cell dimension of 128 is optimal for

the current emotion identification task and with the recurrence of dimension 32

and the dimension 64’s output of LSTM. The LSTMs operate with a recurrence

that spans 3 time steps. The attention layer used has 12 heads, a context of

[−5, 2], a key-dimension of 40 and a value dimension of 60. In this setup, we use

a per frame dropout using the dropout schedule method described in [?] where

the entire vector is forced to be zero or one. The dropout schedule is expressed

as a piecewise linear function on the interval [0, 1], where f(0) gives the dropout

proportion at the start of training and f(1) gives the dropout proportion after

seeing all the data. A dropout schedule of the form 0, 0@0.20, p@0.5, 0@0.75, 0

is used in this setup, where p is 0.3 in the results reported here. Thus, the

dropout probability is 0 at f(0), 0 at f(0.2), 0.3 at f(0.5), 0 at f(0.75) and 0 at

95

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

f(1). In this setup, we average frame posteriors outside the network to get a

segment level aggregate from the frame level posteriors. The performance of

this setup is shown in row 3 of Table 4.4. We add some extra left context at

the time of decoding which provides flexibility to the network regarding the

number of frames it sees in addition to what is provided during training. We

evaluate the model several times to tune this length of decode time context.

Also, we observe improvement by using a longer training chunk by using fixed

length examples during training. Details of fixed length versus variable length

training example experiments are reported in Section 4.5.

Table 4.5: Layer wise context of a temporal modeling block for TDNN-LSTMP-
Attention setup

Config1 Config2
Layer Context Layer-type Context Layer-type

1 [-1, 0, 1] TDNN [-1,0,1,2] TDNN
2 [0] LSTM1 [-3,0,3,6] TDNN
3 [-3, 0, 3] TDNN [0] LSTM1

4 [-3, 0, 3] TDNN [-6,0,6,12] TDNN
5 [0] LSTM1 [0] LSTM2

6 [-3, 0, 3] TDNN [-12,0,12, 24] TDNN
7 [-3, 0, 3] TDNN [-5,2] Attention
8 [0] LSTM1 [-12,0,12] TDNN
9 [-5, 2] Attention

LSTM1: delay time=-3
LSTM2: delay time=-6

96

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

LSTM with time restricted attention

We use three unidirectional LSTM layers in this setup with a cell dimension

of 128 and a recurrent and nonrecurrent projection dimension of 32. In prior

work on a language identification task [?], it was suggested to perform pooling

over a time recurrent layer to reduce redundancy. We experiment using a max

pooling layer after the last LSTM layer and observe improvement in the accu-

racy. A comparison of results of LSTM with and without time pooling is shown

in Table 4.6. We also add time restricted attention to this LSTM only setup.

We observe significant improvement using a time restricted attention layer as

a final layer in the LSTM only setup as shown in rows 4 and 5 of Table 4.4.

Also, we use a similar dropout schedule as in Section 4.4.

Table 4.6: Effect of time pooling in the LSTM setup

Temporal Modeling WA UA
LSTM 54.5 48.9
LSTM with max pooling 59.9 53.7

4.5 Variable-length vs. fixed length train-

ing

The training and test utterances used in our emotion identification setup

have variable lengths in the range of 0.6 to 10 seconds, and we need high accu-

97

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

racy on short segments during test time. It is challenging to get utterance-level

representation, which is normalized over different lengths. Minimizing net-

work sensitivity to speech duration is important. One solution is to train the

network on chunks of different durations. In this section, we investigate the

effect of training with variable length chunks, where the output is generated

from the entire utterance (if it is shorter than 6 seconds). We compare the re-

sults with dividing the utterance into fixed-length chunks and randomize and

use them for training. Table 4.7 presents the results using models trained on

the fixed and variable-length examples. The model configurations used in all

experiments are described in Table 4.5.

In the experiment in row 1, the length of example chunks varied from 1

to 6 seconds, and the entire utterance is used as an example if it is shorter

than 6 seconds. The size of mini-batches is a function of example length (e.g.,

mini-batch sizes used for examples with lengths of 100 and 200 are 128 and 64,

respectively) and the total number of frames is almost equal in different mini-

batches. The network configuration, Config2, is used in this experiment that is

described in Table 4.5. The use of future context information in unidirectional

LSTM is accomplished using delayed prediction of the output label. We use

delay time 3 and 6 for LSTM layers in our experiments. For the LSTM layer,

we use an effective temporal context and decay time, and it helps to generalize

unseen sequence length which is equivalent to a maximum number of frames

98

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

that are remembered via the LSTM layer. We use a decay time of 100 frames in

this experiment, and the error is back-propagated through 100 effective frames.

In this experiment, we use a longer decay time to remember longer frames

for extended example chunks. The network learns emotional states on longer

chunks more efficiently. The frame-level cross entropy objectives are improved

with a faster rate using variable length utterances, and the model converges

within 30 epochs.

In the experiments in row 2, we used a fixed length chunk with 50 frames,

and the network trained for the same number of epochs. As expected, it is

harder to learn emotional states over 0.5 seconds. The network converges

slower, and it needs to train for a longer time. The interesting point about

this setup is higher randomization. Long chunks in the variable length setup

are segmented into subsegments with a smaller size (e.g., 600 frames are seg-

mented into 6 subsegments with 100 frames.). The network uses these sub-

segments randomly in different mini-batches during training, which results in

more randomness during training. It can aid in better convergence in stochas-

tic gradient descent (SGD) and can be the reason for accuracy improvement for

the fixed chunk length setup.

The results in rows 3 and 4 are trained on fixed chunks with lengths of 50

and 100 frames, respectively, and the training epoch is increased to 100. The

result shows that the network needs longer training time to learn emotional

99

CHAPTER 4. JOINT FEATURE EXTRACTION IN EMOTION
IDENTIFICATION

states using fixed length chunks. The results reported within brackets in rows

3 and 4 are the WA obtained by providing an effectively unlimited left context

during decode time. It means the network is allowed to reuse hidden state

activations from the previously computed chunk. As can be seen from Table

4.7, unlimited left context helps only with smaller training chunks.

Table 4.7: Effect of training example chunk length. The numbers inside paren-
thesis are results using looped decoding.

chunk length epoch WA UA
100− 6001 30 65 53.0
502 30 60.78 53.93
502 100 66.4 (67.2) 60.3
1002 100 70.1 (66) 60.7
1: Config2 is used in this setup.
2: Config1 is used in this setup.

100

Chapter 5

Universal feature extraction

The DNN can be used as a complex feature extractor and act as the language-

universal feature extractor to learn the universal structure of speech that is

common across different languages. It is shown that DNN is highly effective in

learning representation, which is invariant to different variations in data such

as speakers, environment, and channels. Researchers used BNFs to leverage

out-of-domain resources that can be multilingual or cross-lingual sources. Us-

ing data from other sources, the BNFs learn the structure of speech and help

to improve ASR performance. Therefore, we can compensate for the lack of

training data in the target language. In Section 5.1, we explore multilingual

BNF extraction.

In addition to what was described in Chapter 3, one of the main issues in

the direct-from-signal setup is the filter bank over-training especially in low

101

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

resource conditions. As shown in Subsection 5.2.1, transferring filter banks

across English datasets with different channels, recording and noise conditions

degrades the ASR performance. Multilingual feature extraction can help solve

data scarcity, mismatch issues and close the gap between resource-rich and

resource-scarce languages or datasets. Section 5.2 uses a proposed direct-from-

signal structure (Section 3.2) to learn a set of universal filters that are shared

across different datasets and languages.

5.1 Multilingual feature extraction

We explored training the multilingual DNN and its use for both tandem

and hybrid systems. In the hybrid system, the posterior probability for the tar-

get language in the multilingual model is directly used for decoding. In this

system, a few hours of the target language are required to train the language-

specific output layer. In a traditional tandem system [?], a DNN is trained

to classify context-independent states and the outputs from the DNN are pro-

jected down to a low-dimensional space. The BNF, in our tandem system, is

extracted from this model and a separate model is trained on the target lan-

guage using stacked BN and MFCC features.

102

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

Phone	 posterior	 for	
language	 1

Phone	 posterior	 for	
language	 2

Phone	 posterior	 for	
language	 N

…
.

Language	 independent	 layers

Language	 dependent	 layers

Bottleneck	 Layer

Figure 5.1: Proposed multilingual structure

Data selection

We used language identification on 25 available Babel languages to pick

the most similar languages to the target language. In this setup, the closest

languages are selected by computing the average language class posterior over

all frames for a given target language. We tried two different data selection

approaches. In the first approach, 10 randomly chosen languages are selected

and in the second approach, the multilingual TDNN model is trained on the

103

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

most similar languages. In the second approach, we used the confusion matrix

generated from the language-identification system to select 10 languages which

are most confusable with Georgian. The language identification system is a

neural network which is trained to classify 2-10 second utterances into one

of the 25 languages. It uses the TDNN [?] and a statistic pooling layer [?].

The closest languages are selected by computing the average language class

posterior over all frames from a given language. As can be seen, data selection

is important in multilingual training and random selection of 10 languages

shows less improvement. This shows that selecting languages with a higher

similarity to the original language helps learning better multilingual BNFs.

Table 5.1: WER vs. different data selection methods.

Data selection WER
Baseline 49.7
Random Selection 49.2
LID-Based Selection 47.3

Multilingual setup

In this setup, we used 80 hrs of data from 10 languages identified as the

closest ones to Georgian (Lithuanian, Mongolian, Turkish, Kazakh, Kurmanji,

Pashto, Swahili, Tok Pisin, Igbo, and Dholuo) to train a multilingual acoustic

model for estimating several language-specific senone posteriors. The multilin-

gual acoustic model is an HMM-TDNN hybrid system where the TDNN stuc-

ture shares all layers, other than the final affine layer, among different lan-

104

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

guages. As shown in [?], activations from the higher layers of a DNN are more

robust to variations and distortions from the speech signal and the BN layer at

a higher layer generates discriminative and invariant feature representation.

The TDNN acoustic model has 6 layers where the fifth layer has a 42 dimen-

sional BN. In each epoch of training, the TDNN is trained using mini-batches of

data sampled from all 11 languages. The sampling of the mini-batches is based

on the relative frequency of data from these languages The high-resolution

MFCC (dimension of 40), pitch features (dimension of 3, see [?]), are appended

as input for the DNN acoustic model. The outputs of the BN layer are termed

as multilingual bottleneck features (MLBNFs).

Table 5.2 shows results using MLBNFs. The BLSTM acoustic model trained

on 80 hours of Georgian. The result shows 1% absolute WER improvement over

baseline setup.

Table 5.2: WER using different features

Acoustic model Features WER
BLSTM MFCC+i-vector 45.9
BLSTM MFCC+i-vector+pitch 45.0
BLSTM MFCC+i-vector+pitch+MLBNF 44.0

5.2 Learning universal filter banks

As shown in Chapter 3, the proposed frequency-domain setup produces the

best results on various LVCSR tasks. In this section, we investigate the effec-

105

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

tiveness of the joint feature extraction method, proposed in Section 3.2, over

hand-designed features on the multi-English and multi-language datasets. In

Subsection 5.2.1, we investigate the transferability of the filter banks across

different datasets. In Subsection 5.2.2, we investigate the effect of learning

filter banks using multiple English corpora with various recording and noise

conditions. In Subsection 5.2.3, we investigate the effect of language diversity

on learning a universal set of filter banks using a frequency-domain setup and

multiple language corpora.

5.2.1 Filter bank universality

In this section, we investigate transferability of the filter banks learned

on different datasets and whether the filter banks trained on one dataset are

applicable to other datasets and can be exploited without degrading the per-

formance. Table 5.3 shows results of 4 English language datasets. The filter

banks used in the filter bank layer are the ones trained on different datasets

using the proposed frequency setup (i.e., the filter banks for experiments in

Table 3.10) and the transferred filter bank layer (i.e., as shown in Figure 3.8)

is fixed in all experiments.

The filter bank matrix W is applied on the normalized FFT-bin vector x for

a 16kHz input signal. The FFT vector x can be divided into xL and xH w.r.t FFT-

bins in frequency sub-bands [0− 8]kHz and [8− 16]kHz. The filter bank matrix

106

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

W is also split into 4 non-overlapping matrix blocks as shown in Equation 5.1.

The main assumption in transferring the filter banks from 8 to 16 kHz datasets

is that the matrix norm for submatrices WLH and WHL are close to zero and

we can neglect the correlation between low-frequency and high-frequency sub-

bands. WHLxL and WLHxH are negligible.

In transferring the 8kHz filter banks WL to the 16kHz dataset, a new ran-

domly initialized set of filters, WH, for frequency range [8 − 16] kHz, xH , is

added to the filter banks layer. The filter bank for the 8kHz dataset, WL, used

for frequency bins corresponds to [0− 8] kHz, xL, and the output is the same as

in Equation 5.1.

In transferring the 16kHz filter banks to 8kHz datasets, the subset of the

filter banks for frequency range [0 − 8]kHz,

[
WLWHL

]T

is used as a fixed set

of filter banks in 8kHz datasets.

The filter banks trained on Switchboard, TedLium, AMI IHM, and AMI

SDM (i.e., experiments in Table 3.10) are used in the feature extraction block

(i.e., Figure 3.8) and are fixed. The scale and offset layer in the normalization

107

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

block is transferred and retrained on the target datasets.

⎡⎢⎢⎢⎣ WL WLH

WHL WH

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣xL

xH

⎤⎥⎥⎥⎦ (5.1)

=

⎡⎢⎢⎢⎣WLxL +WLHxH

WHxH +WHLxL

⎤⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎣WLxL

WHxH

⎤⎥⎥⎥⎦

As shown in Table 5.3, transferring filter banks between AMI-IHM and

SWBD datasets results in 0.3− 0.4% WER degradation on both datasets. How-

ever, transferring the filter banks between SWBD and AMI-SDM as a dis-

tant microphone dataset with reverberation results in larger WER degradation

around 1%. The interesting finding is that transferring the filter banks from

TedLium to AMI-SDM shows 0.2 − 0.3% WER improvement compared to us-

ing an in-domain AMI-SDM filter bank. Also, the results show that TedLium

is more robust in transferring a filter bank from other datasets and the WER

degradation, by using out-of-domain filter banks, is negligible.

108

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

Table 5.3: Effect of transferring filter banks from other datasets

Database Test Set Filter Bank
8kHz SWDB 16kHz AMI-IHM 16kHz AMI-SDM 16kHz TedLium

SWBD eval2000 14.3 14.7 15.5 15.0
rt03 17.0 17.3 18.3 17.7

AMI-IHM dev 20.4 20.1 20.0 20.1
eval 20.3 19.9 19.9 19.8

AMI-SDM dev 37.3 36.3 36.3 36.1
eval 41.2 40.5 40.2 39.9

TedLium dev 8.1 8.1 8 7.8
eval 8.5 8.5 8.4 8.4

5.2.2 Multi-English dataset

In this section, we combine multiple English corpora, WSJ [?], Switch-

board [?], HUB4, TedLium and Fisher [?]. Speed perturbation [?] is performed

on the amplitude modulated signals with speed factors of 0.9, 1.0 and 1.1 to

augment the dataset for DNN training. Switchboard and Fisher are 8kHz and

WSJ, TedLium and HUB4 are 16kHz datasets. To handle different sampling

rates for different corpora, all datasets are downsampled to 8kHz for narrow-

band experiments and upsampled to 16kHz for wideband experiments. The ba-

sic dictionary is prepared on a combination of Switchboard, CMU and TedLium

lexicons and a G2P model is trained using the combined lexicon. The pronun-

ciations are synthesized for out-of-vocabulary (OOV) words across all training

transcripts using the G2P model and the final lexicon is produced. The speaker

adapted training (SAT) is trained on fMLLR adapted features on a subset of

109

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

combined datasets. The DNN model contains 7 layers of TDNN with a size of

1024 and despite the model proposed in Section 5.1, a shared output layer is

used across all datasets. A 100-dim i-vector is trained on a subset of combined

corpora and is added to input features for speaker adaptation.

Learning filter banks using multiple English datasets is more difficult due

to higher channel, noise and volume variations. The normalization block in

the frequency-domain setup (i.e., Section 3.2) performs global normalization

over different datasets, and the scale values in the scale and offset layer can be

varied among different datasets which can result in training instability. The

filter banks learned on the multi-English dataset are noisy and have higher

entropy and multiple peaks. Figure 5.2 compares the center frequency ver-

sus the filter index for filter banks trained on multi-English and Switchboard

datasets. The noisy filter banks are removed using the entropy threshold. It

also compares these center frequencies with the ones computed using DNN-

c method (i.e., Section 6.2). As can be seen, there are more filters in some

specific frequency sub-bands (e.g., [0 − 1200] Hz) on Switchboard compared to

multi-English datasets.

110

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

0 1000 2000 3000 4000

Center Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

Fi
lte

r
in

de
x

multi-en 100f
swbd 100f
DNN-C

1 2 3 4
Frequency(kHz)

10

20

30

40

50

60

70

80

90

100

Fi
lte

r
in

de
x

(s
or

te
d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.2: Comparison of center frequency vs. filter index for multi-English
and Switchboard datasets

Table 5.4 compares the results using conventional 40-dim MFCC and the

frequency domain setup proposed in Section 3.2.

Table 5.4: WER (%) frequency-domain feature extraction setup vs. MFCC

Test set MFCC Frequency-domain setup
SWBD eval2000 14.1 13.7
SWBD rt03 15.8 14.8
TedLium test 10.9 10.5

5.2.3 Multilingual dataset

Developing a new set of universal filters, that can be applicable to all lan-

guages without performance degradation, is challenging. A popular approach

111

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

(i.e., used in Section 5.1) is to train multi-language BNFs by training a multi-

language acoustic model. In this section, we consider a different scenario,

where the target language is unseen during training. To do this, a consis-

tent phone set is required across all languages, and should have good phone

set coverage for unseen languages. We train an acoustic model on multiple lan-

guages by sharing a common phonemic representation as a universal phone set

of ASR. Our approach is similar to that of [?]. We use a selection of 21 mixed

bandwidth Babel languages that are released by the IARPA Babel program

(each LLP consists of 13 hours of transcribed data; 90% of Babel datasets are

8kHz and 10% are 44100Hz), 16kHz Spanish Hub4-NE and 16kHz French and

Russian languages from Voxforge. Diphthongs and riphthongs are split into

their constituent phones to increase cross-language phone coverage and en-

force sharing of the phoneme. Also, we standardize the representation of tone

(tonal trajectory) across all training languages. Eleven factorized TDNN lay-

ers with dimensions of 256 are used in the network architecture. The dropout-

probability technique in [?] is used during training. The dropout schedule is

in the form of ′0, 0@0.20, 0.5@0.50, 0′, where it applies no dropout in 20% of the

training and the dropout proportion is linearly increased to 50% until reaching

50% training and reduced to 0 at the end of training. The network is trained

using LF-MMI criterion.

We also bootstrapped the lexicon using a G2P from provided resources. The

112

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

vocabulary is generated from the provided text. In the first set of experiments,

the datasets are downsampled to a bandwidth of 8kHz, and the raw frequency

domain block (i.e., proposed in Section 3.2) is used in the raw frequency domain

experiments. In the next set of experiments, all datasets are upsampled to

a bandwidth of 16kHz, and have the same topology as the 8kHz bandwidth

experiments.

Lorelei [?] 16kHz IL9 from the incident language pack and Haitian Creole

(L201) from the IARPA Babel language project are used for evaluation. No data

adaptation is done to adapt the universal model to new languages in Table 5.5.

None of these target languages are involved during training. Database IL9

is considered as an almost-zero-resource target language with 15-minute data,

and the Haitian Creole dev set (L201) contains 10 hours. The results in rows 1

and 2 are evaluated on an unadapted universal model.

Table 5.5: Performance of the universal frequency-domain setup on unseen
target datasets

Database 8kHz 16kHz
MFCC Universal filters MFCC Universal filters

L201 69 69.6 69.6 69.9
IL9 63.6 62.8 63.3 62.3

Figure 5.3 shows filter banks that are trained on 8kHz and 16kHz multi-

language datasets. As shown, 50% of filters are trained on frequency range

[0− 1]kHz and the filter bandwidth in this sub-band is increased by increasing

the center frequency. Twenty percent of filters are in the high-frequency sub-

113

CHAPTER 5. UNIVERSAL FEATURE EXTRACTION

band [4− 8]kHz and the filters in this sub-band are noisy.

Learned universal filters, 8kHz

1 2 3 4
Frequency(kHz)

20

40

60

80

100

Fi
lte

r
nu

m
be

r
(s

or
te

d)

0.2

0.4

0.6

0.8

Learned universal filters, 16kHz

1 2 3 4 5 6 7 8
Frequency(kHz)

20

40

60

80

100

Fi
lte

r
nu

m
be

r
(s

or
te

d)

0.2

0.4

0.6

0.8

Figure 5.3: Learned universal filter banks on 8kHz and 16kHz multi-language
datasets

114

Chapter 6

Data-driven based feature

learning

Mel scale is the most commonly used warping function in extracting fea-

tures for ASR. It is known to be very effective, however, it is not specifically

designed for the current ASR models which are based on DNNs. In this chap-

ter, we propose 3 new features based on filter banks learned in the frequency

domain setup (Section 3.2) on different datasets. We first introduce a new

frequency warping function which is simple, scalable and invertible. This

warping function is parameterized using 3 parameters and we use it to pro-

pose a new set of features called DNN coefficients (DNN-c), which uses cosine-

shaped filters. The bandwidths are computed using a piece-wise linear func-

tion. Additionally, we propose an alternative set of features called formant

115

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

DNN-c (fDNN-c) in which we use Gaussian mixture models (GMM) to indi-

rectly capture the formant information. Finally, we propose a modified version

of Mel filters, which uses a modified version of Mel scale function and whose

bandwidths are computed as a combination of piece-wise linear bandwidth and

overlap-based bandwidth. By evaluating the proposed features on a variety of

databases, we see consistent improvements over Mel filter bank features.

The Mel scale is a perceptual scale of frequencies which is handcrafted

based on physiological models of the human auditory system. This scale is

used in the MFCC and log-Mel features, which are perhaps the most commonly

used features for ASR. However, they are not guaranteed to work well with the

latest ASR models which are all based on DNN.

One approach for extracting features that are more suited to DNNs is to

train the ASR model from the signal domain and let the network craft its own

features in a data-driven scheme. This is also known as joint feature extraction

and acoustic modeling and has been investigated in a few studies [?,?,?].

In particular, in Chapter 3, we proposed a data-driven feature learning

layer that can be trained jointly with ASR [?]. We used that to learn new

filter banks, outperforming the MFCC-based models. The main drawback was

that the network learned data dependent filter banks and could overfit to the

training data.

To address this issue, we proposed a new analytic filter bank which we es-

116

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

timated using the learned data-driven filter banks. We successfully obtained

similar results as the learned filter bank using the analytic filters.

In this chapter, we propose 3 new alternatives for MFCC features: DNN-

c, fDNN-c and modified MFCC. These features are based on the filter banks

directly learned on different narrowband and wideband datasets using the joint

feature learning setup proposed in [?].

At the core of DNN-c features is an invertible frequency warping function

that is used for finding the center frequencies for the filters. This warping

function is analogous to the Mel scale. The bandwidth for filters is computed

using a piece-wise linear function of the center frequencies.

Formant DNN-c features (fDNN-c) are variants of DNN-c, where the center

frequency is computed using piece-wise linear function and the filter band-

width is a function of filter overlap, where the filter overlaps are approximated

on the learned filter banks and depend on the center frequency of the filters.

6.1 Prior work

The main baselines in this chapter are MFCC and Mel filter bank features

which are both well known and use the Mel scale [?]. The bark scale is an-

other well-known frequency warping function, on which distances correspond

with preceptually equal distances [?]. A novel warping function based on high-

117

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

energy portions of speech signals is proposed in [?]. Other data-driven ap-

proaches comparable to our work include [?] which uses linear discriminant

analysis to maximize the separability between linguistic classes and [?] which

uses the discriminative feature extraction for designing warping functions.

Filter shape

We use cosine-shaped filters for filter shape in 3 new features. The formula

used for filter estimation is shown in Equation 6.1, where each filter is specified

using a center frequency fc and a bandwidth w. As shown, the filters estimated

using this formula have the same energy.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2.0
w
cos(π(x−fc)

w
) fc − w

2
≤ x ≤ fc +

w
2

0 else

(6.1)

It can be demonstrated mathematically that the proposed cosine-shaped

filters have the bandwidth of w
2

according to the noise-equivalent formula.

118

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

6.2 DNN-c features

Center frequency approximation

In this approach, we create a new frequency space – called DNN-c space –

in which the center frequencies for the filters are linearly spaced. The warping

function to transform a normal frequency to DNN-c space is defined as g(f)

in Equation 6.2. Using this warping function along with the low and high

frequencies fl, fh (in the normal frequency space), we can compute the center

frequency for the ith filter f
′
c(i) as f

′
c(i) = [g(fh)−g(fl)]i

M−1
+ g(fl) in DNN-c space,

where M is the number of filters (i.e., bands). Finally, f ′
c(i) can be transformed

back to normal space using g−1(f
′
).

g(f) = γ[(f + f0)
α − fα

0] (6.2)

The parameters in Equation 6.2 (i.e., f0, γ and α) are estimated using mini-

batch SGD. The training data used to estimate the parameters are the center

frequencies for the filter banks trained on narrowband datasets (8kHz SWBD

using 40, 100 and 200 filters), wideband datasets (16-kHz AMI-IHM, AMI-

SDM, TedLium, and WSJ using 100 filters) and mix-band datasets (SWBD,

119

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

TedLium, HUB4 are combined, and down-sampled to 8kHz and up-sampled to

16kHz). This results in the following values for these parameters:

f0 = 900 (6.3)

γ = −0.695

α = 0.001

Figure 6.1 shows the Mel, data-driven and DNN-c center frequencies using

the proposed formula for different datasets.

We also compared a new invertible function with the approach proposed

in [?], which uses a polynomial function to approximate the center frequencies.

In the polynomial approach, a new set of filters are approximated using the

filter banks learned on the 8kHz Switchboard, which is trained (separately)

using 40, 100 and 200 filters. The center frequencies fc are estimated using a

4th order polynomial which is, in turn, approximated using least-square error

minimization on the center frequencies for the 40, 100 and 200 learned filters.

The approximated polynomial is shown in Equation 6.4. Nyquist and f are in

Hz, and M is the number of filters.

120

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

0 1 2 3 4
Center frequency (kHz)

0

10

20

30

40

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-40f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

20

40

60

80

100

Fi
lte

r i
nd

ex
Center frequency (kHz), swbd-100f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), ami-ihm-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), ami-sdm-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200
Fi

lte
r i

nd
ex

Center frequency (kHz), tedlium-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), wsj-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), multi-en-16kHz-200f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

20

40

60

80

100

Fi
lte

r i
nd

ex

Center frequency (kHz), multi-en-8kHz-200f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

10

20

30

40

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-40f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

20

40

60

80

100

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-100f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), ami-ihm-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex
Center frequency (kHz), ami-sdm-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), tedlium-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), wsj-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), multi-en-16kHz-200f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

20

40

60

80

100
Fi

lte
r i

nd
ex

Center frequency (kHz), multi-en-8kHz-200f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

10

20

30

40

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-40f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

20

40

60

80

100

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-100f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), swbd-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), ami-ihm-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex
Center frequency (kHz), ami-sdm-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), tedlium-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), wsj-200f

Data-driven
Estimated
Mel

0 1 2 3 4 5 6 7 8
Center frequency (kHz)

0

50

100

150

200

Fi
lte

r i
nd

ex

Center frequency (kHz), multi-en-16kHz-200f

Data-driven
Estimated
Mel

0 1 2 3 4
Center frequency (kHz)

0

20

40

60

80

100
Fi

lte
r i

nd
ex

Center frequency (kHz), multi-en-8kHz-200f

Data-driven
Estimated
Mel

Figure 6.1: Center frequency vs. filter index

fc(i) = a1f
4 + a2f

3 + a3f
2 + a4f + a5 (6.4)

f =
i×Nyquist

M

(a1, a2, a3, a4) = (1.6e−11,−7.4e−8, 2.2e−4, 0.23, 0)

We approximate the warping function using center frequency for the learned

121

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

filters on narrowband, wideband, and mixed-band datasets. The main issue

with the proposed formula in Equation 6.4 is that it is only applicable in the

narrowband dataset.

To evaluate the proposed analytic filters (in Section 6.2), we set the filters in

the filter bank layer (in the DNN acoustic model) using the proposed analytic

set of filters and train the DNN while the filters are fixed. The results are pre-

sented in Table 6.1. We can see the proposed analytic filters have outperformed

the proposed frequency-domain filters based on which they are approximated.

This might be because they are fixed during the training.

Table 6.1: Frequency-domain setup vs. proposed analytic filters

Database Test set 40-dim MFCC F-domain setup Approx. filters
Pol. warping2 Inv warping3

Switchboard eval2000 14.9 14.3 14.2 14.3
rt03 17.8 17.0 16.8 17.1

AMI-SDM dev 37.3 36.3 36.6 36.6
eval 41.2 40.1 40.4 40.5

1: Subsection 3.2.2
2: Eq. 6.4
3: Eq. 6.2

Bandwidth approximation

To measure the filter bandwidth for the learned filters, we considered noise

equivalent bandwidth estimation, in which the bandwidth for filter u is defined

as
∑

i u
2
i /(maxj uj)

2δf , where δf = Nyquist
N

and N is the number of FFT bins.

We estimate the bandwidth for the learned filters as a piece-wise linear

122

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

function of the center frequencies. The plot of the filter bandwidth vs. cen-

ter frequency for the learned and approximated filters is shown in Figure 6.2.

The important observation is that the optimal filter bandwidth stays constant

as the number of filters is increased especially in certain frequency sub-bands

around formant frequencies; this is not how triangular Mel filter banks are set

up. As shown in Figure 6.2, the network learns filters with the same band-

width in certain frequency sub-bands, for a different number of filters. In other

frequency sub-bands, the network with a larger number of filters learns more

filters with lower frequency bandwidth.

0 500 1000 1500 2000 2500 3000 3500 4000

Center frequency [Hz]

0

50

100

150

200

250

300

350

400

450

500

B
an

d
w

id
th

 [
H

z]

Mel filter bank, 100 filters
Audiological filter bank, 100 filters
Learned filters, 40 filters
Learned filters, 100 filters
Learned filters, 200 filters
approximated filters

500Hz

1200Hz

3000Hz

Figure 6.2: Filter bandwidth vs. center frequency for different filter banks

123

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

6.3 fDNN-c features

The primary assumption in center frequency approximation in Section 6.2

is that the learned filters are single peak and the center frequency and band-

width are approximated using this assumption. However, this is not always the

case with the filters trained using the frequency-domain setup. As can be seen

in Figure 6.3, some of the learned filters in the frequency-domain setup have

multiple peaks. The center frequency method used in Equation 6.2 selects the

peak with the maximum value as the center frequency. Also, having multiple

peaks can affect bandwidth computation in Section 6.2.
0 1 2 3 4

Frequency(kHz)

0

0.01

0.02

0.03

0.04

0.05 [0.22677 0.29396 0.28605 0.19322]

Original filter
GMM estimate
GMM cmp 1
GMM cmp 2
GMM cmp 3
GMM cmp 4

0 1 2 3 4
Frequency(kHz)

0

0.02

0.04

0.06

0.08 [0.25488 0.05545 0.3514 0.33827]

Original filter
GMM estimate
GMM cmp 1
GMM cmp 2
GMM cmp 3
GMM cmp 4

0 1 2 3 4
Frequency(kHz)

0

0.02

0.04

0.06

0.08

0.1

0.12 [0.13075 0.22258 0.25798 0.3887]

Original filter
GMM estimate
GMM cmp 1
GMM cmp 2
GMM cmp 3
GMM cmp 4

0 1 2 3 4
Frequency(kHz)

0

0.01

0.02

0.03

0.04

0.05

0.06 [0.35027 0.29143 0.3583]

Original filter
GMM estimate
GMM cmp 1
GMM cmp 2
GMM cmp 3

0 1 2 3 4
Frequency(kHz)

0

0.01

0.02

0.03

0.04

0.05

0.06 [0.3116 0.1293 0.43974 0.11936]

Original filter
GMM estimate
GMM cmp 1
GMM cmp 2
GMM cmp 3
GMM cmp 4

0 1 2 3 4
Frequency(kHz)

0

0.02

0.04

0.06

0.08 [0.2802 0.21669 0.26932 0.23379]

Original filter
GMM estimate
GMM cmp 1
GMM cmp 2
GMM cmp 3
GMM cmp 4

Figure 6.3: Original vs. GMM-based approximation of filters and unweighted
GMM components (The ordered weights of GMM components are shown on top
of figures).

124

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

Another issue is regarding the bandwidth estimation method described in

Section 6.2, where we proposed a piece-wise linear function for bandwidth ap-

proximation. It is possible that filters do not overlap in some frequency bands

especially in high-frequency bands when a smaller number of filters are used

in the DNN-c method.

To address these issues, we approximate learned filter banks using GMMs,

and we propose a new warping function using the mean distribution of the

learned GMMs. Also, we propose a new method for approximating bandwidth

for the filters in different regions to solve the issue where some regions were

not covered.

Formants are the peaks in the spectrum caused by the resonance of the

vocal tract. It has been shown that formant has a smoother trajectory, which is

more consistent for a given phone class than MFCC parameters [?]. We call this

method fDNN-c (formant DNN-c) because the intuition is based on formants

and as shown in Figure 6.4, there is a higher filter probability distribution

around the first, second and third formants.

Note that in this method, we still use the same cosine-shaped filters that are

used in DNN-c, but we use a different warping function as well as a different

bandwidth function.

125

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

Center frequency approximation

To get the center frequencies for the cosine-shaped filters in this method,

we fit a separate GMM to each filter in the learned filter banks. Specifically,

for a 100-band filter bank we fit 100 GMMs, where each one can have 1 to

5 components depending on the number of peaks in the corresponding filter.

Here, we think of the probabilities in GMMs as weights in the filters.

Once the GMMs are estimated, we compute the weights p(fi) for N frequen-

cies f1, f2, ..., fN linearly spanning the whole frequency band (e.g., 0 to 4000), as

the sum of the probabilities of fi according to all the GMMs. The weights are

normalized so that they add up to one. A plot of these weights (as a function of

frequency) is shown in Figure 6.4.

Then we split the whole frequency band into M sub-bands so that in each

sub-band the area under the curve shown in Figure 6.1 is the same.

Finally, the center frequencies are determined using the estimated sub-

bands and N filters are uniformly distributed among M sub-bands, where each

sub-band contains N
M

filters (linearly spaced in the sub-band). Figure 6.5 shows

center frequency vs. filter index for 8kHz and 16kHz datasets. The ’DNN-c’ line

shows the center frequencies computed using the DNN-c method, proposed in

Equation 6.2.

126

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency(Hz)

0

0.005

0.01

0.015

0.02

0.025

0.03

Fr
eq

ue
nc

y
Pr

ob
ab

ilt
y

(%
)

swbd
ami-ihm
multi-en 8kHz
multi-en 16kHz1st formant

2nd formant

pitch

3rd formant

Figure 6.4: GMM estimated center frequency distribution for different
datasets

Bandwidth approximation

In this method, instead of approximating the bandwidths based on the

frequency-domain learned filters, we determine the bandwidth for each cosine-

shaped filter based on the overlaps. Specifically, we compute the overlap in

the learned filters as an average of normalized correlations between adjacent

filters in each frequency sub-band (i.e., frequency sub-bands computation de-

scribed in Section 6.3).

Figure 6.6 shows the filter overlap between two cosine-shaped filters that is

a function of the ratio of their center distance, d, and the filter bandwidth wf

127

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

0 1000 2000 3000 4000

Center Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100
Fi

lte
r

in
de

x

swbd-100f
swbd-40f
swbd-200f
DNN-C

0 2000 4000 6000 8000

Center Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

Fi
lte

r
in

de
x

tedlium-200f
wsj-200f
ami-ihm-200f
ami-sdm-200f
DNN-C

Figure 6.5: Weighted GMM based center frequency vs. filter index for dif-
ferent datasets. Left figure is a 8kHz Switchboard dataset and right figure
corresponds to 16kHz datasets.

(i.e., r = d
wf

).

fop(r) = −sin(π(r − 1))

π
+ (r − 1) cos(πr) (6.5)

We approximate r as a function of filter overlap op, where r = (0.42 exp2.68op +0.9)−1

if op ≤ 0.8 and otherwise r = (0.009 exp9.26op +0.3)−1. Then, the filter bandwidth

128

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

0 1000 2000 3000 4000 5000 6000 7000

Center frequency per region (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
lte

r
ov

er
la

p
pe

r
re

gi
on

swbd-200f
tedlium-200f
wsj-200f
ami-ihm-200f
ami-sdm-200f

Figure 6.6: Sub-band filter overlap vs. sub-band center frequency

wf is computed as d
r
, where d is ws

M
(where ws is the sub-band bandwidth in Hz

and M is the number of filters per sub-band) as defined in Section 6.3.

6.4 Modified Mel filter bank

Center frequency approximation

In this section, a modified Mel scale function is proposed to estimate the

center frequencies based on filters learned in the filter bank layer in DNN. As

shown in Figure 6.4, the center frequency distribution probability is higher

129

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

around the average of the first and second formant frequencies. The original

Mel scale function has a higher distribution around 700 Hz and the center fre-

quency distribution is gradually decreased after 700 Hz. Equation 6.6 is a new

warping function, that is a modified version of Mel scale function. fb1 and fb2

are the parameters in the modified Mel warping function.

g(f) = log

(
fb1 + fb2 log(1 +

f

fb2
)

)
(6.6)

fb1 ∈ [300, 900]Hz

fb2 ∈ [1500, 3500]Hz

Figure 6.7 compares center frequency for DNN-c, fDNN-c, original and mod-

ified Mel warping functions. As can be seen, the modified Mel warping function

shows closer center frequency approximation to DNN-c and fDNN-c. fb1 and fb2

used in this figure are 300 Hz and 1500 Hz, respectively.

Table 6.2 shows the effect of two cutoffs fb1 and fb2 in modified Mel warp-

ing function on Switchboard, AMI-SDM and CHiME5. The bandwidth in the

filter banks is approximated using methods proposed in Equation 6.7, where

bwmin and sbw are at 30 and 60 Hz. Log and DCT transform are applied on the

modified Mel filter banks. 80-dim modified MFCC are used in all experiments.

130

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

0 1000 2000 3000 4000 5000 6000 7000 8000

Center Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

fi
lte

r
nu

m
be

r

DNN-c
fDNN-c
Modified Mel
Mel

Figure 6.7: Center frequency vs. filter index (fb1 = 300 Hz, fb2 = 1500 Hz in
modified Mel)

Table 6.2: Effect of fb1 and fb2

(fb1 , fb2)
SWBD AMI-SDM CHiME5

rt03 eval2000 dev eval devworn devbeamformit
(300, 1500) 17.3 14.6 36.2 40.5 45.6 79.7
(500, 1500) 17.4 14.6 36.5 40.6 - -
(300, 2000) 17.4 14.6 36.4 40.5 - -
(300, 2000)1 17.6 14.6 36.6 40.6 - -
(300, 3500) 17.5 14.5 36.6 40.5 - -
(500, 3500) 17.4 14.5 36.6 40.5 54.8 88.1
(900, 3500) 17.4 14.7 36.3 40.3 - -
1: 40-dim modified MFCC

Bandwidth approximation

Sections 6.2 and 6.3 propose two different approaches for filter bandwidth

approximation in DNN-c and fDNN-c features. The first approach (i.e., band-

131

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

width approximation in Section 6.2) estimates the bandwidth, which is a func-

tion of center frequency, using the piece-wise linear function. In this approach,

the bandwidth does not depend on the number of filters and the main drawback

is that some frequency regions, especially in the high-frequency sub-band, may

not cover with any filters. In the second approach (i.e., bandwidth approx-

imation in Section 6.3), the filter bandwidth is approximated to satisfy spe-

cific overlap between neighboring filters. Using this approach, the bandwidth

strongly depends on the number of filters. However, this behavior is not seen

in low-frequency sub-bands for filters learned in the filter bank layer in DNN.

In this section, the goal is to combine the benefit of both methods in low and

high-frequency sub-bands and combine the bandwidth using a bandwidth es-

timation formula. Equation 6.7 shows the formula used to approximate band-

width in the modified Mel filter banks. The bandwidth bw(i) for filter i is a

combination of bwlin(i) and bwop(i). bwlin(i) is estimated using linear function

and is not a function of number of filters (i.e. bwmin ≤ bwlin(i) ≤ bwmin + sbw).

Also, bwop(i) is computed based on an overlap op to satisfy minimum overlap

between adjacent filters.

132

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

bwlin(i) = bwmin + sbw(
fc(i)

fc(i) + fb1
) (6.7)

bwmin ∈ [30, 100]Hz

sbw ∈ [30, 100]Hz

bwop(i) = (fc(i)− fc(i− 1))(1 + op)

op ∈ [0.0, 0.5]

bw(i) =
√

bwlin(i)2 + bwop(i)2

Table 6.3 compares the results using different values of bwmin and sbw. The

result shows that the WER is less sensitive to these parameters. The LDA

layer is applied on the first layer of the network but a CNN layer is not. In this

table, fb1 and fb2 at 300 and 1500 Hz, are used in all experiments.

Table 6.3: Effect of bwmin and sbw for bandwidth approximation in modified Mel
filter banks

(bwmin, sbw)
SWBD AMI-SDM AMI-IHM

eval2000 rt03 dev eval dev eval
(30, 60) 14.6 17.3 36.2 40.5 20.4 20.6
(80, 30) 14.5 17.2 36.2 40.3 20.4 20.6
(50, 50) 14.6 17.2 36.4 40.4 20.4 20.6
(60, 50) 14.6 17.1 36.4 40.6 20.3 20.4
(80, 100) 14.5 17.4 36.4 40.4 20.5 20.7

We also used two different methods to combine linear bandwidth bwlin and

133

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

overlap-based bandwidth bwop. To combine bandwidths, two functions were

used: g1 =
√

bw2
lin + bw2

op and g2 =
√

bwlinbwop, where two bandwidth values bwlin

and bwop are lower bounds for g1 and upper and lower bounds for g2. Table 6.4

compares the results using two combination methods, and bwmin and sbw are

at 30 and 60 Hz in these experiments. Also, we experimented with different

overlap values, 0.0, 0.1, 0.2 and 0.5 and op value of 0.1 gives best performance

on 300 hours Switchboard.

Table 6.4: Effect of linear and overlap-based bandwidth combination methods

Method SWBD AMI-SDM
eval2000 rt03 dev eval

g1 14.6 17.4 36.6 40.5
g2 14.7 17.5 36.8 40.8

Effect of modified Mel filter bank parameters in

different noise conditions

In this section, we investigate the effect of different parameters in the mod-

ified MFCC features in different noise conditions. We evaluate the effect of

4 different paramters in the modified Mel filter bank, (fb1 , fb2 , bwmin, sbw) (i.e.,

see Equations 6.6 and 6.7), in different noise conditions. Through data aug-

mentation, we increase the amount and diversity of the training data. We

employ additive noise and reverberation. Reverberation involves convolving

room impulse responses (RIR) with audio. For additive noise, we use the MU-

134

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

SAN dataset, which consists of over 900 noises, 42 hours of music from various

genres and 60 hours of speech from twelve languages. We experiment using 3

different training datasets; 1) clean: 300 hours clean Switchboard dataset (no

speed perturbation), 2) add-noise: 300 hours clean is combined with 300 hours

data perturbed with MUSAN noises, 3) rvb + add-noise: 300 hours clean com-

bined with 300 hours data perturbed with additive noise and 300 hours data

reverberated with RIRs. The training data augmentation details used in this

setup are described in [?]. We evaluate the setup on noise-added and reverber-

ated copies of rt03 and eval2000. The test datasets are perturbed with different

additive noises with various SNR levels (i.e., babble, music and noise with 0-20

dB SNR) and are also artificially reverberated via convolution with simulated

RIRs.

Figure 6.8 shows the effect of different parameters for the models trained

using 3 different training datasets and evaluated on clean and reverberated

test sets. As shown, parameter sets (1500, 300, 80, 30) and (3500, 900, 80, 30) re-

sult in the best performance in most cases. Besides, increasing the initial band-

width bwmin degrades the performance. Also, increasing sbw which results in a

larger bandwidth for the filter banks in a mid-frequency region degrades the

performance. In addition, (bwmin, sbw) of (80, 100) degrades the best results us-

ing rvb+add-noise training datasets for the reverberated test sets. It shows

that increasing bandwidth hurts modified MFCC performace. Consider that

135

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

the bandwidth for the frequency response of the whole system is constrained

by a frequency response of the window function. The frequency response of a

window function can be estimated as a width of the main sidelobe. We used a

25 ms “Povey” window which has a main sidelobe is 60 Hz.

Figures 6.9, 6.10 and 6.11 show the effect of modified MFCC parameters

on different types of additive noises. The results show that the test data per-

turbed with additive noises are less sensitive to the modified Mel filter bank

parameters, especially for the models trained on training dataset (2). Over-

all, parameter sets (1500, 300, 80, 30) and (3500, 900, 80, 30) show the best per-

formance in most cases, especially in rvb+add-noise training condition. The

interesting point is that the WER results on test data perturbed with “babble”

noise are less sensitive to the parameters, especially on low SNR conditions.6.5 Results

Performance on clean datasets

We evaluate the proposed DNN-c, fDNN-c, and modified MFCC features

on various clean databases, namely TedLium [?], Heroico and Switchboard [?].

The results are shown in Table 6.5. The amount of training data varies from

10 to 300 hours across these tasks. The baseline is the state-of-the-art TDNN

models trained on standard 40-dim MFCC features. We used 69-dim fDNN-

c features with a filter overlap of 0.6, that is linearly increased to 0.7 for

136

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

f ≤ 3kHz and constant overlap of 0.7 for f ≥ 3kHz. In DNN-c experiments, 60-

dim features are used. A 1-byte compression is used to compress the features

in both DNN-c and fDNN-c experiments. We used 80-dim modified MFCC fea-

tures (i.e., Section 6.4), where 300 and 1500 Hz were used as fb1 and fb2 in

computing warping function and 80 and 30 Hz represented function g1 with op

value of 0.1 used to compute bandwidth.

Table 6.5: Performance of the proposed features on various databases

Database Test set MFCC DNN-c fDNN-c Modified MFCC

Switchboard eval2000 14.9 14.3 14.4 14.5
rt03 17.8 17.1 17.1 17.2

Hereico test 52.4 51.4 51.3 -
non-native 55.6 54.6 54.3 -

TED-LIUM test 7.8 7.9 7.6 7.8
dev 7.4 7.4 7.2 7.4

Performance on low resource dataset

Table 6.6 compares results using Mel filter banks, fDNN-c, DNN-c and mod-

ified Mel filter bank features. We can see that DNN-c has achieved the same

results as Mel filter banks, while fDNN-c has slightly improved the results.

Performance on far-field datasets

The ASpIRE task data is released as part of the ASpIRE far-field recog-

nition challenge by IARPA [?] and it uses the English portion of the Fisher

137

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

Table 6.6: Performance of the proposed DNN-c and fDNN-c features on a low
resource Vietnamese dataset

Feature dev 10hrs
Mel filter banks 51.5
DNN-c 51.6
fDNN-c 51.0
fDNN-c1 51.2
Modified Mel filter banks 51.4
1: 100-dim fDNNC

dataset [?] for acoustic and language model training. Two datasets (5hrs dev

and 10hrs dev-test) are provided as part of the ASpIRE challenge for eval-

uation. A major challenge in this dataset is the severe mismatch between

the training data: The training data is telephony speech but the test data is

recorded reverberant speech. To overcome this issue, the mismatched rever-

beration is simulated, and each utterance reverberates 3 times with 3 different

impulse responses. In these experiments, we use a 300 hrs subset of a Fisher

dataset, which is randomly selected. To investigate the effect of noise and re-

verberation, two subsets of Fisher datasets are selected (test and dev sets),

and the reverberation is applied to both (i.e., test-rvb, dev-rvb) and the perfor-

mance is reported on both clean and reverberated subsets. The training and

validation objective during training of the ASpIRE acoustic model shows that

the training is more stable using DNN-c features. The reason can be related to

a larger bandwidth in DNN-c features.

The results on far-field data are shown in Table 6.7. As shown, there is more

138

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

improvement for AMI-SDM and no improvement for AMI-IHM. Also, there is a

small amount of degradation on reverberated test sets for ASpIRE using fDNN-

c and the modified Mel filter banks does not degrade the performance. The

reason might be that the bandwidth in fDNN-c is larger spacially in a low-

frequency sub-band.

Table 6.7: Performance of the proposed fDNN-c and modified Mel filter bank
features on far-field databases

Database Test set Mel fBanks fDNN-c Modified Mel fBanks

AMI-IHM dev 20.4 20.1 20.2
eval 20.3 20.2 20.2

AMI-SDM dev 37.3 36.4 36.2
eval 41.2 40.4 40.3

ASpIRE dev 17.0 17.2 16.8
dev-rvb 24.7 24.8 24.6

test 17.3 17.3 17.5
test-rvb 22.2 23 22.4

Aspire-dev 65.8 66.1 65.9

139

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

(a) eval2000: clean test condition

clean rvb + add-noise add-noise
Training dataset

14

16

18

W
E

R
(%

) (1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)(b) eval2000: reverberated test condition

clean rvb + add-noise add-noise
Training dataset

25
30
35
40
45

W
E

R
(%

) (1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)(c) rt03: clean test condition

clean rvb + add-noise add-noise
Training dataset

16

18

20

W
E

R
(%

) (1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)(d) rt03: reverberated test condition

clean rvb + add-noise add-noise
Training dataset

20

30
40
50

W
E

R
(%

) (1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)

Figure 6.8: Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on Switch-
board on reverberated test sets.

140

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

Train data : clean condition eval2000 with noise type : babble

snr = 20 snr = 15 snr = 10

20

40

60

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)Train data : clean condition eval2000 with noise type : music

snr = 20 snr = 15 snr = 10
15

20

25

30

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)Train data : clean condition eval2000 with noise type : noise

snr = 20 snr = 15 snr = 10
15

20

25

30

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)

Figure 6.9: Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on clean
Switchboard on additive noise test sets

141

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

Train data : add-noise condition eval2000 with noise type : babble

snr = 20 snr = 15 snr = 10

20

30

40

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)Train data : add-noise condition eval2000 with noise type : music

snr = 20 snr = 15 snr = 10

16

18

20

22

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)Train data : add-noise condition eval2000 with noise type : noise

snr = 20 snr = 15 snr = 10

16

18

20

22

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)

Figure 6.10: Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on
additive-noise Switchboard on additive noise test sets

142

CHAPTER 6. DATA-DRIVEN BASED FEATURE LEARNING

Train data : rvb+add-noise condition eval2000 with noise type : babble

snr = 20 snr = 15 snr = 10

20

30

40

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)Train data : rvb+add-noise condition eval2000 with noise type : music

snr = 20 snr = 15 snr = 10

16

18

20

22

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)Train data : rvb+add-noise condition eval2000 with noise type : noise

snr = 20 snr = 15 snr = 10

16

18

20

22

W
E

R
(%

)

(1500,300,30,60)
(1500,300,80,100)
(1500,300,80,30)
(2000,300,50,50)
(2000,300,60,50)
(2000,300,0,0)
(2000,300,80,30,no-op)
(3500,900,80,100)
(3500,900,30,60)
(3500,900,80,30)

Figure 6.11: Effect of (fb1 , fb2 , bwmin, sbw) for modified MFCC trained on
rvb+additive-noise Switchboard on additive noise test sets

143

Chapter 7

Deep feature representation

transfer across domains

7.1 Prior work

Transfer learning is the general machine learning approach of transferring

knowledge from one model to another, and can be used in a different, but re-

lated task or domain and can be regarded as a superset of unsupervised adap-

tation, domain adaptation, model compression, and other related problems.

There is a rich survey of transfer learning methods in the literature [?, ?, ?].

In the case where we have to learn a smaller model on the same domain, the

approach is called “model compression”. The “domain adaptation” approach is

utilized where we have to learn a model in a different domain. In this study,

144

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

we investigate the use of transfer learning in ASR tasks for adapting neural

networks to different domains or datasets.

One of the advantages of deep learning is to learn a hierarchy of feature rep-

resentations from low-level to more abstract higher-level features [?,?]; conse-

quently, it can be useful in transfer learning. Multi-task learning [?] has been

adopted to explicitly learn intermediate-level features in the neural network

that are useful for several different tasks. In an alternate paradigm, pretrain-

ing [?,?] has been used to learn intermediate representations that are useful for

different tasks implicitly. The intermediate layers in neural networks that are

trained on speech data appear to not be specific to any particular task, while

the higher layers are task-specific [?]. This has been demonstrated in [?], where

unsupervised pretraining using deep belief networks (DBN) has been shown to

learn representations useful for phoneme recognition and audio classification

tasks. Unsupervised pretraining has also been applied to multilingual speech

recognition [?]. Supervised training using out-of-domain data is also a form of

pretraining and has been used to learn multilingual BNFs in [?,?].

Similar ideas of using learned representations from one model as “guides” to

train better or more complex models have shown good success. In [?], averaged

posteriors from an ensemble of networks are used to guide the training of the

networks in the ensemble. In [?], a DNN is used to regularize the training

of a complex RNN for ASR. In the FitNet approach [?], networks deeper than

145

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

the parent network are trained using regressors in intermediate layers. Deep

adaptation network (DAN), proposed in [?], relies on a similar idea for domain

adaptation by matching mean-embeddings of hidden layer representations.

Transfer learning methods have been applied to speech processing in var-

ious settings. Wang et al. [?] give a good overall survey of methods used in

speech processing. Domain adaptation by adapting network parameters, and

in particular speaker adaptation, has been attempted using simple linear input

network (LIN) [?]. This has inspired more advanced methods like fDLR [?] and

linear transforms at various stages of the network [?] using Liner Hidden Net-

work (LHN). The weight transfer method described in this research is similar

to LHN-based adaptation, but we re-initialize an affine layer instead of train-

ing a newly added layer. LHN-based adaptation is compared with multitask

learning in [?]. A speaker adaptive training (SAT) type approach is investi-

gated for speaker adaptation of DNN by learning hidden unit contributions

(LHUC) [?]. In [?], various transfer learning approaches for speaker adapta-

tion are compared including multi-task learning. Multi-task architectures with

hidden layers shared across languages have been used successfully for multi-

lingual training [?, ?]. Not only is the amount of data found to be necessary

for effective transfer learning, but also the similarity of the languages, i.e., the

relatedness of the task [?,?].

For the experiments, we use TDNN [?] with i-vectors [?] for speaker adapta-

146

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

tion [?]. For details about the training of TDNN with the lattice-free maximum

mutual information (LF-MMI) objective, the reader is directed to [?]. Sequence

discriminative training using maximum mutual information (MMI) [?] has

been shown to improve the performance of frame-level cross-entropy trained

neural networks. However, neural networks are trained from scratch using ob-

jectives like CTC [?] and LF-MMI [?], and these usually outperform the frame-

level trained ones.

We train the network with an LF-MMI objective and cross-entropy regular-

ization. For our experiments, we use several different corpora – Switchboard,

Librispeech [?], WSJ and AMI [?] in both individual headset microphone (IHM)

and single distance microphone (SDM) conditions.

In this chapter, we investigate 3 different approaches to transfer knowledge

between networks. For this study, we circumvent the side effect of language

similarity (or dissimilarity) seen in multilingual training and focus only on En-

glish datasets, albeit in different language domains and environments (chan-

nels). Section 7.2 describes a joint multi-task approach for transfer learning.

Section 7.3 describes the weight transfer approach and discusses various

training strategies in the weight transfer approach. Section 7.4 investigates

the teacher-student (T-S) learning as a transfer learning approach.

147

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

7.2 Joint multi-task learning

In this approach, we use the setup where the initial layers of the network

are shared across all tasks, and each task has a specific final layer. This ap-

proach has been previously used in several studies including [?, ?, ?]. If tasks

are known to have different importance, then they can be weighted proportion-

ally as in [?]. Unlike [?], which uses model averaging (typically after training

over 400,000 frames), we train for different tasks in different mini-batches,

which averages over a mini-batch (typically 10,000 frames). This can reduce

optimization difficulty due to co-adaptation during training the network. An-

other issue is over-training to a specific task, which might degrade performance

in other tasks as seen in [?] when transferring from Fisher English to other

languages. To reduce such an over-training effect, the gradients are scaled for

each task by a factor inversely proportional to the square root of the number of

training samples in that task.

7.3 Weight transfer

The main idea here is that the internal layers of DNN learn intermediate-

level representations of input, which can be pre-trained on one dataset (or task)

and re-used on the other tasks. A typical weight transfer approach is to first

train the model on a large dataset, retain only n layers and add new task-

148

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

specific adaptation layers over those.

The usual strategy is to perform two-stage training by freezing the trans-

ferred layers and training task-specific layers in the 1st training stage and then

fine-tuning the whole network in the 2nd stage of training using a smaller learn-

ing rate [?]. However, we show in Section 7.3 that it is better to perform single-

stage training – train the transferred layers with a smaller learning rate while

training the task-specific layers with a more significant learning rate.

In this section, we investigate the effectiveness of weight transfer under

various source and target conditions. Further, the effectiveness of the weight

transfer approach is investigated as a function of the amount of data in the

source and target domains. In addition, the performance of the weight transfer

as a function of the performance of the source model on the source domain is

investigated.

Single-stage vs. two-stage training

Table 7.1 shows results using two different weight transfer strategies. In

these experiments, as shown in Figure 7.1, 5 layers of the source model, that

are trained on the Switchboard dataset, are transferred to the AMI-SDM dataset

and 2 randomly initialized layers added on top of the transferred layers. The

global learning rate is the same in all stages of experiments, and the learn-

ing rate for each layer is the global learning-rate scaled by its learning rate

149

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

factor. In two-stage training, the transferred layers are fixed, and only the

task-specific layers are trained in the first stage with a learning rate factor α

for s1 epochs. Then, in the second stage, the whole network is fine-tuned us-

ing a smaller learning rate factor β for s2 epochs. In single-stage training, the

transferred layers are trained with a learning rate factor α, while newly added

layers are trained with the global learning rate, all for s1 epochs.

…
…
…
…

…
…
…
…

LR-factor = ⍺

LR-factor = 1LR-factor = 0

…
…
…
…

LR-factor = 1LR-factor = ⍺1-
st

ag
e

tra
in

in
g

2-
st

ag
e

tra
in

in
g

Task-dependent
layers

Transferred layers

Figure 7.1: Overall single-stage vs. two-stage weight transfer training archi-
tecture

The i-vector used in all experiments in Table 7.1 is extracted using the

SWBD extractor. The “baseline” row of Table 7.1 reports the results using the

model trained on just a 8kHz AMI-SDM dataset for 4 epochs with no weight

transfer. As shown in the table, single-stage training shows better results than

the conventional two-stage training with a smaller number of epochs. The

single-stage results improve as we increase the learning rate factor α.

Besides, fine-tuning the single-stage trained model by training the whole

150

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

model with a smaller learning rate does not improve the results as shown in

experiment 6 in Table 7.1. In a single-stage∗ model, the single-stage trained

model is fine-tuned for s2 = 1 epoch.

Table 7.1: Single-stage vs. two-stage WER results on SWBD→AMI-SDM.

Model LR factors # epochs WER%
α β s1 s2 dev eval

1 Baseline 1 - 4 45.3 50.0

2 two-stage (s1) 0.25 1 4 2 50.6 55.0
two-stage (s2) 46.5 51.2

3 two-stage (s1) 0.25 1 2 2 51.8 56.3
two-stage (s2) 46.4 51.5

4 single-stage 0.02 - 4 - 45.4 50.3
5 single-stage 0.1 - 4 - 44.5 49.7

6 single-stage 0.1 - 2 1 44.5 49.4
single-stage∗ 44.3 49.5

7 single-stage 0.25 - 2 - 44.0 48.9
*: fine-tune whole net

Number of transferred layers

The initial layers in the DNNs are “generic” and final layers are task-specific;

so there must be a transition boundary from generic to specific in some layers.

To investigate this, we conduct two weight transfer experiments to target cor-

pus AMI in IHM condition, one with Librispeech as the source corpus and the

other with SWBD as the source corpus. The number of layers in the Librispeech

and SWBD neural networks were 6 and 7, respectively. The neural networks

all had TDNN architectures with the same overall input context.

In the first case with Librispeech as the source, the results in Figure 7.2

151

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

show that the most considerable WER reduction was achieved by transferring

half of the layers (3 or 4 layers out of 7). On the other hand, for the case of

SWBD as the source corpus, the most substantial WER reduction was achieved

by transferring a larger proportion of layers (5 out of 6 layers).

In the case of SWBD, a larger proportion of transferred layers might be

better because SWBD and AMI-IHM senones are more similar compared to

Librispeech and AMI-IHM. This might be expected because SWBD and AMI-

IHM are both spontaneous speech corpora, while Librispeech is a read speech

corpus.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 1 2 3 4 5

Re
l.	
W
ER

	Im
pr
ov
em

t(%
)

Num	of	Transferred	Layers

SWBD->AMI-IHM	dev

SWBD->AMI-IHM	eval

Librispeech->	AMI-IHM	dev

Librispeech->	AMI-IHM	eval

Figure 7.2: WER(%) vs. number of transferred layers for Switchboard to AMI

In the weight transfer approach described above, the last layer is not usu-

ally transferred since the phone set, the tree in the source and the target do-

main are different. However, in some cases, we can use the same phone set for

both the source and the target data, and hence share the tree and the senones.

In these situations, we can transfer the whole network, including the last layer.

152

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

This is particularly useful in cases where the target corpus is very small com-

pared to the source corpus, as found in the case of the MGB-3 challenge [?].

We share the phone sets for Librispeech and WSJ and do weight transfer

from Librispeech to WSJ by transferring all the layers. Figure 7.3 shows the

results of weight transfer for a different number of transferred layers including

the whole network transfer of 7 layers. Here, transferring all the layers shows

the best WER performance.

2

2.5

3

3.5

4

4.5

5

4 5 6 7

W
ER

(%
)

Number	of	Transferred	Layers

Libri->WSJ	(dev93)

Libri->WSJ	(eval92)

(all-layers)

Figure 7.3: WER(%) vs. number of transferred layers for Librispeech to WSJ

Amount of target data

To investigate the effect of the amount of data in the target corpus in trans-

fer learning, we experiment with transfer learning from 1000 hours Librispeech

corpus to 80 hours WSJ. The amount of data in the target WSJ corpus varied

by using subsets containing 84 (15h), 144 (40h) and 284 (80h) speakers, respec-

tively. For comparison, the results of training directly on WSJ data subsets, i.e.,

153

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

without transfer learning, are shown as “baseline”. In all these experiments,

the i-vector extractor trained on only Librispeech data. Figure 7.4 shows the

WER results for baseline WSJ and transferred model trained using the WSJ

subsets. As seen in the figure, using transfer learning with 84 speakers shows

the greatest improvement and it decreases as we add more data to the tar-

get corpus. The results show that weight transfer is most effective when the

amount of data in the target corpus is small and insufficient to train a good

model.

Interestingly, Figure 7.4 shows that the improvement to the 84-speaker

WSJ model due to weight transfer is greater than that obtained by using the

rest of the 200 in-domain speakers in WSJ data (i.e., extra 65 hours in-domain

data).

As explained before, the phone sets and lexicons in Librispeech and WSJ

are similar which allows us to transfer the final layer too. Therefore, we tried

a full network transfer with varying amounts of target data. Since the final

layer in DNNs is usually a large transformation with the dimensionality of

hidden layer sizes by the number of senones, training this layer from scratch

can be more difficult when there is a less amount of training data in the target

domain. As a result, we expect the already-trained final layer transfer to be

more helpful in such cases. This can be observed in Figure 7.4. The “baseline”

results in the figure are the models trained using only the WSJ dataset with

154

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

a different number of speakers and the initial model in the “baseline” results

is randomly initialized. The i-vector for the target WSJ in all experiments was

extracted using source extractors.

2	

3	

4	

5	

6	

7	

8	

80	 120	 160	 200	 240	 280	 320	

W
ER

	 	 (
%
)	

Number	 of	 Speakers	

Baseline	 dev93	
Librispeech-‐>WSJ	 dev93	
	 Librispeech-‐>WSJ	 dev93(all-‐layer	 Transfer)	
Baseline	 eval92	
Librispeech-‐>WSJ	 eval92	
Librispeech-‐>WSJ	 eval92(all-‐layer	 Transfer)	

Figure 7.4: WER(%) vs. size of target WSJ corpus (in number of speakers) for
baseline and transferred model from Librispeech

Power of source model

In this section, we investigate the effectiveness of the weight transfer method

as a function of the number of parameters used in the source model and the

number of epochs used to train it. We answer whether a weak source model

(as measured on source test set performance) can still be useful as a seed for

weight transfer. Table 7.2 shows the WER results for weight transfer from

SWBD to AMI in both IHM and SDM conditions. The baseline source model

in SWBD is trained for four epochs. The first column of the table shows WER

results on the eval2000 test set for SWBD using a different source model. The

results, using the baseline model for weight transfer, are shown in row 1 of the

155

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

table. If, instead, we train a model that has only 30% of the number of param-

eters as the baseline model, the performance on the eval2000 test set drops by

0.8 to 17.8%. Using this as a seed for weight transfer, we get a WER perfor-

mance that is worse as shown in row 2. However, if we train the same model as

in the baseline, but for fewer epochs like 1 or 2 instead of 4, and use it as a seed

for weight transfer, the WER performance is closer to that of the fully-trained

baseline model. This is despite the seed model having a WER (17.9%) on the

source domain as weak as the model that has 30% of the number of parameters

(17.8%).

These results suggest that the source model can learn some generic features

from the source data in the initial stages of training that are useful for the

target data. However, the later stages of training will learn features specific to

the source data that are not very useful for the target data.

Table 7.2: WER(%) results for different source models: SWBD → AMI.

Source Target corpus
SWBD AMI-SDM AMI-IHM

Model eval2000 dev eval dev eval
4 epochs 17.0 43.5 48.7 22.5 22.8
4 epochs 30% Params 17.8 45.6 50.3 23.3 23.6
1 epoch 17.9 43.8 48.9 22.8 23.3
2 epochs 17.1 43.5 48.8 22.6 23.1

156

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

Effect of i-vector extractor

We use i-vector based speaker adaptation of DNNs. In the weight transfer

learning approach, we have to use the same i-vector extractor for both pieces of

training on source data as well as adaptation to target data. In this section, we

investigate the effect of using different i-vector extractors. We conduct weight

transfer experiments from SWBD to AMI in SDM condition (down-sampled to

8kHz) using i-vector extractors trained in 3 different ways – one trained only on

the source (SWBD) data, one trained on 25% of the subset of data from source

and target, and one trained only on the target (AMI) data. The “baseline”

columns of Table 7.3 report results on directly training the neural network on

the AMI data, i.e., without transfer learning. Comparing the last three rows

with the first row showing WER without i-vector adaptation, we can see that

any of the three extractors show 3-4% absolute improvement. This suggests

that even an out-of-domain i-vector extractor is suitable for speaker adapta-

tion in ASR. These are also 1-2% better than the CMVN normalization results

shown in row 2 of the table. The “weight transfer” columns in Table 7.3 show

that using the extractor trained on combined data (row 4) shows more than

1% absolute improvement over using an i-vector extractor trained only on the

source data (row 3).

157

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

Table 7.3: Speaker adaptation: 8kHz SWBD → 8kHz AMI-SDM WER(%) re-
sults

Extractor Baseline Weight transfer
dev eval dev eval

No adaptation 49.5 53.7 45.7 50.0
CMVN adaptation 48.0 52.7 45.8 50.7

i-vector adaptation
SWBD extractor 46.2 51.1 44.6 49.5
Combined extractor 45.8 50.8 43.5 48.7
AMI-SDM extractor 45.3 50 - -

7.4 Teacher-student transfer learning

Teacher-student (T-S) learning is a transfer learning approach, where a

teacher network is used to “teach” a student network to make the same pre-

dictions as the teacher. Originally formulated for model compression, this ap-

proach has also been used for domain adaptation. It is particularly effective

when parallel data is available in source and target domains [?]. The stan-

dard approach uses a frame-level objective of minimizing the KL-divergence

between the frame-level posteriors of the teacher and student networks. How-

ever, this may not apply to state-of-the-art speech recognition models that are

trained at the sequence-level, and in particular using LF-MMI.

A sequence-level objective for T-S learning was introduced in [?] for model

compression from an ensemble. In that study, the KL divergence between the

sequence-level posteriors of the teacher and student network was interpolated

158

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

with an MMI objective for sequence-discriminative training. However, it was

applied in the lattice-based discriminative training framework. Unlike that

research, we apply sequence-level KL divergence in the lattice-free training

framework and domain adaptation scenario. In [?], a lattice-free sequence-

level KL divergence objective was introduced for model compression. Our re-

search in this section differs in how the supervision for training the student is

generated. In particular, we make use of the lattice supervision used for semi-

supervised training in [?]. An alternative view to the KL divergence objective

is that of a regularizer which prevents the model from diverging too much from

what the original model predicts. Thus, the KL divergence was used as a reg-

ularizer in supervised adaptation in [?] to prevent the model from over-fitting

to a small adaptation set. A sequence-level KL version of this idea was used to

regularize LF-MMI training in [?] for supervised adaptation to small adapta-

tion sets. On the other hand, our work in this paper focuses on unsupervised

domain adaptation, i.e., when we have unsupervised target-domain data. In

this context, we can view the sequence-level KL objective to be regularizing

semi-supervised LF-MMI training to prevent the model from over-fitting to the

unsupervised data.

159

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

Sequence-KL objective

We propose using the KL divergence between sequence-level posteriors of

the teacher and student network as the objective for T-S learning as shown in

Equation (7.1). This objective is similar to the ones in [?, ?], but our approach

differs in the implementation. We describe our method and the differences in

the rest of this section.

FKL =−
∑
r

∑
π∈L

P(π | O(r);λ∗) log

[
P(π | O(r);λ∗)

P(π | O(r);λ)

]
(7.1)

∝
∑
r

∑
π∈L

P(π | O(r);λ∗) logP(π | O(r);λ)

=
∑
r

∑
π∈L

P(π | O(r);λ∗) log
[
P(O(r) | π;λ)P(π)

]
− logP(O(r);λ) (7.2)

In Equation (7.1), the probability distributions corresponding to the teacher

and student models are parameterized by their neural network parameters λ∗

and λ, respectively.

The second term in Equation (7.2) i.e., the log-likelihood under the student

network, is entirely independent of the teacher network and is the same as the

denominator term in the MMI objective. In [?], this term was computed using

a denominator lattice created using a weak LM. However, we compute this by

160

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

considering all the paths in a fixed denominator graph GDEN, just as in the case

of LF-MMI. The denominator graph is created using a 4-gram phone LM [?]

trained using interpolated counts from source and target domains [?].

We compute the first term in Equation (7.2) as a summation over HMM

state sequences π = s1 . . . sT in the lattice supervision L created by decoding the

utterance using the teacher network. We use a strong 3-gram or 4-gram word

LM, preferably in the target domain to do the decoding. This results in sharper

target posteriors for training the student network compared to computing the

summation over HMM state sequences in a weak denominator graph GDEN as

done in [?]. We give more details about creating the lattice supervision in Sec-

tion 7.4.

Domain adaptation

In this section, we describe how we use T-S learning for domain adaptation.

Teacher-student learning is useful for domain adaptation when parallel

data is available or can be artificially created [?]. For this, we first use a trained

teacher network to decode the data in the source domain and dump the lattices.

The performance is expected to be better if the teacher network was trained on

data matched to the source domain. These lattices are converted to supervision

using the smart splitting method in [?]. What this means is that when we cre-

ate the supervision, we split the lattice into chunks, keeping the relative scores

161

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

of different paths in the chunk the same as they would in the original lattice.

This allows us to use the same supervision for training the student network

using either LF-MMI or sequence-KL.

We then train the student network from scratch using parallel data (parallel

to the data in the source domain) in the target domain and the supervision

created as described above. Note that if we do not have parallel data, we can

still use the same data to propagate through the teacher network and to train

the student network.

One distinction between the supervision used for sequence-KL and the one

used for LF-MMI is that the former uses a frame tolerance of 0. In [?], frame

tolerance of ±30ms was used for LF-MMI to allow senones to appear slightly

ahead or behind where they appeared in the lattice. For sequence-KL, we had

to force the senones to appear precisely where they did in the lattice. The

reason for this is that if we used a higher frame tolerance, we would have to

recompute the acoustic scores in the supervision by propagating through the

teacher network. However, for a frame tolerance of 0, we can use the existing

acoustic scores in the lattice and dump the numerator posteriors.

162

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

7.5 Transfer learning in sampling rate

mismatch condition

One of the main difficulties in transfer learning for ASR is the sampling

rate mismatch of the recordings (e.g., 8kHz, 16kHz, etc.). Transferring informa-

tion across datasets with different sampling rates requires down-sampling of

data, which results in some loss of high-frequency information and degrades

ASR performance. To verify this, we trained two separate TDNNs – one using

MFCC features extracted from 16kHz data and the other from down-sampled

8kHz data– on AMI corpus in SDM condition. The results in the first two rows

of Table 7.4 show that removing high-frequency information results in 3 to 4%

WER degradation. The deletion error is decreased in the down-sampled ex-

periment, while the substitution error is increased considerably in the far-field

scenario.

We used the transfer learning approach to adapt the 8kHz trained network

to the 16kHz features on the AMI-SDM dataset. Here, we retrain the first affine

transform, W, after input features and fine-tune the rest of the network with

a much smaller learning rate. In the experiment indicated by (∗) described

in Figure 7.5, a new affine transform W is added before the LDA layer of the

8kHz trained network and this transform is initialized to regress the 16kHz

features to 8kHz features. The results in rows 3 and 4 of Table 7.4 show that

163

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

the information loss due to pretraining on down-sampled data as opposed to

the full-band 16kHz data can only be partially recovered by learning a simple

new adaptation layer at the initial layer.

…
.…
.

…
.…
.

8kHz	MFCC

16kHz	MFCC

W

Figure 7.5: Overall narrowband to wideband weight transfer architecture.

Table 7.4: WER (%) results on AMI-SDM

Model WER
dev eval

16kHz 40.5 44.4
8kHz 43.6 48.6
8 ⇒16 kHz transfer 41.9 46.2
8 ⇒16 kHz transfer∗ 42.4 47.2

16kHz SWBD⇒AMI 39.4 43.9
TS learning
8kHz SWBD⇒ 16kHz AMI 40.1 44.5
2-stage transfer1

1:1st stage:8kHz⇒16kHz SWBD, 2nd stage:16kHz SWBD⇒16kHz AMI.

Mixed-bandwidth ASR training, which combines narrowband (inserting ze-

164

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

ros for high-frequency bands) and wideband speech signal can improve ASR

performance on a narrowband test domain [?]. The second transfer learning

approach is to train the source model using MFCC features extracted from up-

sampled 16kHz data and transfer the layers from the up-sampled source model

using the weight transfer approach in Section 7.3. We tried this by using a

source model trained on up-sampled 16kHz SWBD data as the seed model for

weight transfer to AMI-SDM. As shown in row 4 of Table 7.4, this approach

shows 1% absolute WER improvement over the baseline that uses only 16kHz

AMI-SDM data.

The last experiment in Table 7.4 shows T-S transfer learning results from

8kHz SWBD to 16kHz AMI. We tried two approaches as follows:

(a) We use 8kHz, and 16kHz AMI as parallel data and the teacher model

is trained on 8kHz SWBD. The student model is trained using weighted objec-

tives as sequence-KL using lattice posterior extracted for 8kHz AMI using the

teacher network and LF-MMI using 16kHz AMI.

(b) In the second approach, we first use the T-S approach to transfer 8kHz

SWBD to 16kHz SWBD. Then, we use the 16kHz network as a teacher to ex-

tract lattice posterior for 16kHz AMI.

165

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

7.6 Transfer learning in environment mis-

match

In this section, we discuss experiments showing transfer learning from Lib-

rispeech to AMI in IHM and SDM conditions. The results are in Table 7.5. The

“baseline” row of the results in this table is trained with only the 80 hours tar-

get datasets. The i-vector in all experiments in Table 7.5 was extracted using

i-vector extractor trained on Librispeech. The weight transfer model shows 1%

absolute improvement in WER in the case of SDM condition, and 2% absolute

improvement in WER in the case of IHM condition. This might suggest that

having the source and target data from a similar environment condition (like

Librispeech and AMI IHM) is better for the weight transfer scenario.

Table 7.5: WER results: Librispeech to AMI transfer

WER(%)
Target Data System dev eval

AMI-SDM Baseline 41.0 45.2
Weight transfer 39.9 44.2

AMI-IHM Baseline 22.2 22.4
Weight transfer 20.6 20.5

166

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

7.7 Weight transfer vs. multi-task train-

ing

In this section, two transfer learning approaches are investigated for trans-

ferring information from the 300 hrs SWBD dataset to the AMI-IHM, AMI-

SDM and WSJ datasets. The i-vector extractor in these experiments is trained

on 25% of pooled speed-perturbed data across all datasets. The “baseline” sys-

tem is trained only on the target dataset. As discussed in Section 7.5, down-

sampling the data degrades performance on the AMI dataset. So we report re-

sults on the 8kHz baseline for all the corpora. The results in Table 7.6 show good

improvement over baseline using both weight transfer and multi-task training.

We also tried a multi-task approach, where data pooled from all three target

datasets, and all layers except the last layer are shared across all datasets.

This is reported in the multi-task-pool row and shows a slight improvement

over multi-task using just source and target data in the cases of AMI-SDM and

AMI-IHM.

167

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

Table 7.6: WER results: SWBD to AMI and WSJ transfer

WER Rel. WER(%)
AMI-SDM dev eval dev eval
Baseline 45.3 50 - -
Weight transfer 43.9 49.3 3.1 1.4
Multi-task 45 49.2 0.66 1.6
Multi-task-pool 44.9 49.6 0.9 0.8

AMI-IHM dev eval dev eval
Baseline 23.6 24.6 - -
Weight transfer 22.7 23.2 3.8 5.7
Multi-task 22.4 22.7 5.1 7.7
Multi-task-pool 22.1 22.6 6.4 8.2

WSJ dev93 eval92 dev93 eval92
Baseline 5.49 3.15 - -
Weight transfer 5.32 2.84 3.1 9.8
Multi-task 4.8 2.57 12.5 18.5
Multi-task-pool 4.99 2.53 9.1 19.7

Multi-task-pool: Trained on pooled speed-perturbed SWBD, AMI-SDM, AMI-
IHM, and WSJ datasets.

7.8 Transfer learning using different ob-

jectives

The state-of-the-art neural networks in ASR are trained with sequence-

level objectives like LF-MMI [?]. Frame-level objectives used in model transfer

such as using soft-targets [?,?] are not naively applicable to the LF-MMI objec-

tive as the neural network outputs are not frame-level posteriors. Regressing

information too close to the output may not be applicable as the outputs are

168

CHAPTER 7. DEEP FEATURE REPRESENTATION TRANSFER ACROSS
DOMAINS

not specifically trained for good frame-wise predictions. Furthermore, output

nodes in the LF-MMI networks operate at a lower (one-third) frame rate.

Table 7.7 shows transfer learning results using frame-level cross entropy

vs. the sequence-level LF-MMI objective. The i-vector extractor is trained on

25% of the combined data from all the datasets for all the experiments, and all

datasets are down-sampled to 8kHz. In the multi-task training experiments,

the TDNN models are trained on pooled speed-perturbed datasets of SWBD,

AMI-SDM, AMI-IHM, and WSJ using cross-entropy and LF-MMI objectives. In

weight transfer experiments, both source and target models are trained using

the same objective function i.e., both cross-entropy or both LF-MMI. SWBD is

used as the source dataset for the weight transfer experiments. The results

show that transfer learning is as useful for the LF-MMI objective as it is for

frame-level cross-entropy objective.

Table 7.7: Transfer learning for frame-level CE vs. sequence-level LF-MMI
objective

Cross-Entropy LF-MMI
WSJ dev93 eval92 dev93 eval92
Baseline 6.38 3.38 5.49 3.15
Multi-task∗ 5.85 3.47 4.99 2.53

AMI-IHM dev eval dev eval
Baseline 26 27.6 23.6 24.6
Multi-task∗ 23.7 25.1 22.1 22.6
Weight transfer 25.2 26.3 22.7 23.2

*: Trained on pooled speed-perturbed SWBD, AMI-SDM, AMI-IHM, and WSJ
datasets.

169

Chapter 8

Conclusion and future work

8.1 Conclusion

In this thesis, we investigated learning new feature representations at dif-

ferent levels for ASR. In the first part of this thesis, we focused on learning

features at the signal level. We investigated learning new features; the first

was to learn pitch as a complementary feature to conventional features for

ASR and the second was to exploit joint feature extraction to learn data-driven

based sets of filter banks.

In the second part of this thesis, we focusd on learning new feature repre-

sentations at intermediate and higher-levels using DNNs. This can be viewed

as transferring feature representations learned on other tasks. We investi-

gated 3 different transfer learning approaches in ASR in more detail.

170

CHAPTER 8. CONCLUSION AND FUTURE WORK

We proposed a robust pitch tracking algorithm based on NCCF, that showed

performance improvement compared to off-the-shelf pitch tracking methods.

Also, it showed 6% absolute WER improvement on tonal and 2% on atonal lan-

guages (Figure 2.2).

In the next part, we investigated joint feature extraction in more detail us-

ing new time-domain and frequency-domain setups. We first presented time-

domain CNN-TDNN based architecture for the raw waveform setup. This

model contained “NiN” pooling that showed a 5-8% relative improvement com-

pared to other pooling methods (Table 3.2). In addition, we proposed a new

statistic pooling layer as an alternative to the i-vector adaptation method,

that showed more improvement on a raw setup compared to a baseline MFCC

setup (Table 3.6). Next, it showed competitive WER results with state-of-the-

art networks based on conventional features (Table 3.6). We also introduced

a new frequency-domain feature learning setup that included a new normal-

ization block and short-range weight constraint. It showed consistent 1-7%

relative WER improvement on various wideband and narrowband databases

(Table 3.10). Finally, feature learning from the spectrogram at multiple scales

with a different frequency and time resolution was investigated in more detail

using a proposed frequency-domain feature learning setup. We demonstrated

that the optimum number of scales in the multiscale frequency-domain setup

is 2. In addition, the multi-scale 200Hz setup showed a 3-5% relative WER im-

171

CHAPTER 8. CONCLUSION AND FUTURE WORK

provement over a 100 Hz system with a single scale in different datasets (Table

3.15). Combining a low-frequency sub-band from the larger scale and a high-

frequency sub-band from the smaller scale showed similar improvement with

less computation (Table 3.14).

We extended this work to other speech tasks and investigated the effect of

direct-from-signal learning in the emotion task. The time-domain joint feature

learning showed an 8% WA improvement and 4.4% UA improvement in emotion

identification (Table 4.2).

We also designed 3 new sets of features for DNN based ASR: DNN-c, fDNN-

c and modified Mel filter banks, based on the learned filter banks in the filter

bank layer in frequency-domain setup for different datasets. DNN-c features

exploited a new invertible warping function for center frequency approxima-

tion and the bandwidth was approximated using the piece-wise linear func-

tion. Some filters learned in the filter bank layer contain multiple peaks. In

fDNN-c feature, GMM is used to approximate the center frequency in warp-

ing function approximation. Also, the filter bandwidth is approximated based

on the overlap between adjacent filters. We also design a modified version

of Mel filter banks. The warping function was modified to show better cen-

ter frequency approximation based on filters learned in the filter bank layer

in different datasets. The bandwidth was also computed using the combina-

tion of the overlap-based bandwidth and piece-wise linear function. The new

172

CHAPTER 8. CONCLUSION AND FUTURE WORK

proposed features, especially modified versions of Mel filter banks, showed con-

sistent WER improvements ranging from 0.2− 0.4% on various clean and noisy

databases, compared to Mel filter bank features (Tables 6.5 and 6.7).

Finally, we investigated weight transfer and multi-task training in ASR us-

ing a sequence-trained neural network based on LF-MMI in different acoustic

conditions. We demonstrated that multi-task learning performs better than

weight transfer, but weight transfer is preferable since it does not require re-

training on the pooled data. We showed that single-stage training is better

than two-stage training. Also, training the source model for a long time in

weight transfer was not required. A single epoch of training on the source do-

main was enough and the results on the target domain were not sensitive to the

power of the source domain’s model. In addition, we showed that the weight

transfer performance depends on the speaker adaptation approach. The best

performance in i-vector based speaker adaptation was achieved by training the

i-vector extractor on a combined source and target data. Also, we showed that

both methods are equally applicable to sequence-level objectives like LF-MMI

as frame-level CE objectives. Moreover, we examined two approaches in sam-

pling rate mismatch condition and investigated sequence-level T-S learning in

this condition.

173

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Future work

In this thesis, we probed feature learning for supervised training and how

the learned features are applied to supervised training problems in ASR. It

is possible to learn unsupervised feature embedding, where the objective is to

separate similar vs. different acoustic signal pairs. Two acoustic signals are de-

fined to be similar, if they are produced by applying different transformations

such as adding noise and reverberation to the same acoustic signal, otherwise

they are defined as different. This can result in learning a new feature embed-

ding that is invariant to different noise conditions. Similar approaches have

recently shown good results for text-dependent and independent speaker iden-

tification tasks [?]. However, it would be important to scale these methods to

large problems, since they need to compute pairwise statistics between differ-

ent data points and the time complexity for these algorithms is O(n2), where n

is the size of training data.

Another important property for features is the invariance to speakers. Speaker

adaptation often results in large gains in the accuracy of ASR systems. In Sub-

section 3.1.5, we proposed a new statistic pooling layer, which aggregates the

statistics over a moving window of up to 200 frames (2 sec), captures long-term

effects in the signal and helps to normalize over some local variances. How-

ever, it does not attempt to encourage the invariance over whole utterances of

174

CHAPTER 8. CONCLUSION AND FUTURE WORK

speakers. Learning new feature embedding with this invariance for ASR can

be a new direction for future attempts.

Another important application for joint feature extraction is multi-channel

ASR systems. The phase information is necessary for multi-channel process-

ing, where the phase preserves relative delay of the speech at each micro-

phone. The future research is to automatically learn the optimal features in

the multi-channel scenario without any signal processing based beamforming

approaches.

As shown in Section 3.3, joint feature learning from the spectrogram using

multiple scales with a different time resolution showed a nice improvement.

To simplify the setup, the features learned at each scale can be investigated in

more detail and the improvement can be extended to new modified Mel filter

bank features using multiple scales and frame rates.

175

Bibliography

[1] D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide, “Feature learn-

ing in deep neural networks-studies on speech recognition tasks,” arXiv

preprint arXiv:1301.3605, 2013.

[2] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep bottleneck

features using stacked auto-encoders,” in Acoustics, Speech and Signal

Processing (ICASSP), 2013 IEEE International Conference on. IEEE,

2013, pp. 3377–3381.

[3] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,

“Convolutional neural networks for speech recognition,” IEEE/ACM

Transactions on audio, speech, and language processing, vol. 22, no. 10,

pp. 1533–1545, 2014.

[4] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl, G. Saon,

H. Soltau, T. Beran, A. Y. Aravkin, and B. Ramabhadran, “Improve-

ments to deep convolutional neural networks for lvcsr,” in Automatic

176

BIBLIOGRAPHY

Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop

on. IEEE, 2013, pp. 315–320.

[5] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep

convolutional neural networks for lvcsr,” in Acoustics, speech and signal

processing (ICASSP), 2013 IEEE international conference on. IEEE,

2013, pp. 8614–8618.

[6] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep

recurrent neural networks,” in Acoustics, speech and signal processing

(icassp), 2013 ieee international conference on. IEEE, 2013, pp. 6645–

6649.

[7] A. L. Maas, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and A. Y. Ng,

“Recurrent neural networks for noise reduction in robust asr,” in Thir-

teenth Annual Conference of the International Speech Communication

Association, 2012.

[8] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent

neural network architectures for large scale acoustic modeling,” in Fif-

teenth annual conference of the international speech communication as-

sociation, 2014.

[9] R. Schluter, I. Bezrukov, H. Wagner, and H. Ney, “Gammatone features

and feature combination for large vocabulary speech recognition,” in

177

BIBLIOGRAPHY

Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE In-

ternational Conference on, vol. 4. IEEE, 2007, pp. IV–649.

[10] S. Duanmu, The phonology of standard Chinese. Oxford University

Press, 2007.

[11] P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal, and

S. Khudanpur, “A pitch extraction algorithm tuned for automatic speech

recognition,” in Acoustics, Speech and Signal Processing (ICASSP), 2014

IEEE International Conference on. IEEE, 2014, pp. 2494–2498.

[12] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals,

“Learning the speech front-end with raw waveform cldnns,” in Sixteenth

Annual Conference of the International Speech Communication Associa-

tion, 2015.

[13] N. Jaitly and G. Hinton, “Learning a better representation of speech

soundwaves using restricted boltzmann machines,” in 2011 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2011, pp. 5884–5887.

[14] D. Palaz, R. Collobert, and M. M. Doss, “Estimating phoneme class con-

ditional probabilities from raw speech signal using convolutional neural

networks,” 2013.

178

BIBLIOGRAPHY

[15] Z. Tüske, P. Golik, R. Schlüter, and H. Ney, “Acoustic modeling with deep

neural networks using raw time signal for lvcsr.” in Proc. Interspeech,

2014.

[16] Y. Hoshen, R. J. Weiss, and K. W. Wilson, “Speech acoustic modeling from

raw multichannel waveforms,” in Acoustics, Speech and Signal Process-

ing (ICASSP), 2015 IEEE International Conference on. IEEE, 2015, pp.

4624–4628.

[17] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep neural

network acoustic models using generalized maxout networks,” in Acous-

tics, Speech and Signal Processing (ICASSP), 2014 IEEE International

Conference on. IEEE, 2014, pp. 215–219.

[18] P. Ghahremani, V. Manohar, D. Povey, and S. Khudanpur, “Acoustic mod-

elling from the signal domain using cnns.” in INTERSPEECH, 2016, pp.

3434–3438.

[19] E. Variani, T. N. Sainath, I. Shafran, and M. Bacchiani, “Complex linear

projection (clp): A discriminative approach to joint feature extraction and

acoustic modeling.” in INTERSPEECH, 2016, pp. 808–812.

[20] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, and B. Ramabhadran,

“Learning filter banks within a deep neural network framework,” in

179

BIBLIOGRAPHY

Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE

Workshop on. IEEE, 2013, pp. 297–302.

[21] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. Saon, and B. Ramab-

hadran, “Improvements to filterbank and delta learning within a deep

neural network framework,” in Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp.

6839–6843.

[22] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech emotion

recognition using recurrent neural networks with local attention,” in

Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Interna-

tional Conference on. IEEE, 2017, pp. 2227–2231.

[23] J. Trmal, M. Wiesner, V. Peddinti, X. Zhang, P. Ghahremani, Y. Wang,

V. Manohar, H. Xu, D. Povey, and S. Khudanpur, “The kaldi openkws

system: Improving low resource keyword search,” Proc. Interspeech 2017,

pp. 3597–3601, 2017.

[24] V. Manohar, P. Ghahremani, D. Povey, and S. Khudanpur, “A teacher-

student learning approach for unsupervised domain adaptation of

sequence-trained asr models,” in Spoken Language Technology Workshop

(SLT), 2018 IEEE. IEEE, 2018, pp. 366–369.

[25] M. Sarma, P. Ghahremani, D. Povey, N. K. Goel, K. K. Sarma, and N. De-

180

BIBLIOGRAPHY

hak, “Emotion identification from raw speech signals using dnns,” Proc.

Interspeech 2018, pp. 3097–3101, 2018.

[26] P. Ghahremani, H. Hadian, H. Lv, D. Povey, and S. Khudanpur, “Acoustic

modeling from frequency-domain representations of speech.” in INTER-

SPEECH, 2018, pp. 3434–3438.

[27] P. Ghahremani, V. Manohar, H. Hadian, D. Povey, and S. Khudanpur, “In-

vestigation of transfer learning for asr using lf-mmi trained neural net-

works,” in 2017 IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU). IEEE, 2017, pp. 279–286.

[28] D. Talkin, “A robust algorithm for pitch tracking (rapt),” vol. 495. New

York: Elsevier, 1995, p. 518.

[29] B. S. Lee, “Noise robust pitch tracking by subband autocorrelation clas-

sification,” Ph.D. dissertation, Columbia University, 2012.

[30] D. Povey, A. Ghoshal et al., “The Kaldi Speech Recognition Toolkit,” in

Proc. ASRU, 2011.

[31] A. De Cheveigné and H. Kawahara, “Yin, a fundamental frequency esti-

mator for speech and music,” vol. 111, 2002, p. 1917.

[32] D. P. Ellis and B. S. Lee, “Noise robust pitch tracking by subband auto-

181

BIBLIOGRAPHY

correlation classification,” in 13th Annual Conference of the International

Speech Communication Association, 2012.

[33] M. Wu, D. Wang, and G. Brown, “A multipitch tracking algorithm

for noisy speech,” IEEE Transactions on Speech and Audio Processing,

vol. 11, no. 3, pp. 229–241, 2003.

[34] A. Camacho and J. G. Harris, “A sawtooth waveform inspired pitch esti-

mator for speech and music,” Journal of the Acoustical Society of Amer-

ica, vol. 124, no. 3, pp. 1638–1652, 2008.

[35] K. Kasi and S. A. Zahorian, “Yet another algorithm for pitch tracking,”

in Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE Inter-

national Conference on, vol. 1. IEEE, 2002, pp. I–361.

[36] F. Plante, G. F. Meyer, and W. A. Ainsworth., “A pitch extraction reference

database,” in Eurospeech, 1995, pp. 837–840.

[37] X. Lei, “Modeling lexical tones for mandarin large vocabulary continuous

speech recognition,” Ph.D. dissertation, University of Washington, 2006.

[38] G. Chen, S. Khudanpur, D. Povey, J. Trmal, D. Yarowsky, and O. Yilmaz,

“Quantifying the value of pronunciation lexicons for keyword search

in lowresource languages,” in Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on, 2013, pp. 8560–8564.

182

BIBLIOGRAPHY

[39] J. G. Fiscus, J. Ajot, J. S. Garofalo, and G. Doddington, “Results of the

2006 spoken term detection evaluation,” in ICSLP, 2007.

[40] K. Laskowski, M. Heldner, and J. Edlund, “The fundamental frequency

variation spectrum,” in FONETIK, 2008.

[41] P. Mermelstein, “, psychological and instrumental,” vol. 116. New York:

Academic, 1976, pp. 374–388.

[42] H. Hermansky, “Perceptual linear predictive (plp) analysis of speech,”

vol. 87, 1990, pp. 1738–1752.

[43] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, and B. Ramabhadran,

“Learning filter banks within a deep neural network framework,” in

Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE

Workshop on. IEEE, 2013, pp. 297–302.

[44] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals,

“Learning the speech front-end with raw waveform cldnns,” in Proc. In-

terspeech, 2015.

[45] M. Bhargava and R. Rose, “Architectures for deep neural network based

acoustic models defined over windowed speech waveforms,” in Sixteenth

Annual Conference of the International Speech Communication Associa-

tion, 2015.

183

BIBLIOGRAPHY

[46] D. Palaz, R. Collobert et al., “Analysis of cnn-based speech recognition

system using raw speech as input,” in Proceedings of Interspeech, no.

EPFL-CONF-210029, 2015.

[47] P. Golik, Z. Tüske, R. Schlüter, and H. Ney, “Convolutional neural net-

works for acoustic modeling of raw time signal in lvcsr,” in Sixteenth An-

nual Conference of the International Speech Communication Association,

2015.

[48] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, M. Bacchiani, and

A. Senior, “Speaker location and microphone spacing invariant acous-

tic modeling from raw multichannel waveforms,” in Automatic Speech

Recognition and Understanding (ASRU), 2015 IEEE Workshop on, 2015.

[49] D. Povey, V. Peddinti, D. Galvez, P. Ghahrmani, V. Manohar, X. Na,

Y. Wang, and S. Khudanpur, “Purely sequence-trained neural networks

for asr based on lattice-free mmi,” 2016.

[50] J. J. Godfrey et al., “Switchboard: Telephone speech corpus for research

and development,” in ICASSP, 1992.

[51] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013.

[52] M. J. F. Gales and P. C. Woodland, “Mean and Variance Adaptation

184

BIBLIOGRAPHY

Within the MLLR Framework,” Computer Speech and Language, vol. 10,

pp. 249–264, 1996.

[53] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end

factor analysis for speaker verification,” vol. 19, no. 4. IEEE, 2011, pp.

788–798.

[54] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation

of neural network acoustic models using i-vectors.” in ASRU, 2013, pp.

55–59.

[55] V. Peddinti, G. Chen, V. Manohar, T. Ko, D. Povey, and S. Khudanpur,

“Jhu aspire system: Robust lvcsr with tdnns, i-vector adaptation, and

rnn-lms,” in ASRU, 2015.

[56] S. Garimella, A. Mandal, N. Strom, B. Hoffmeister, S. Matsoukas, and

S. H. K. Parthasarathi, “Robust i-vector based adaptation of dnn acoustic

model for speech recognition,” 2015.

[57] J. Andén and S. Mallat, “Deep scattering spectrum,” vol. 62, no. 16.

IEEE, 2014, pp. 4114–4128.

[58] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for

speech recognition,” in Proceedings of INTERSPEECH, 2015.

[59] R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass

185

BIBLIOGRAPHY

sampling,” IEEE Transactions on signal processing, vol. 39, no. 9, pp.

1973–1984, 1991.

[60] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint

arXiv:1312.4400, 2013.

[61] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving Deep Neu-

ral Network Acoustic Models using Generalized Maxout Networks,” in

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Interna-

tional Conference on, May 2014, pp. 215–219.

[62] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network

architecture for efficient modeling of long temporal contexts,” in Proceed-

ings of INTERSPEECH, 2015.

[63] ——, “A time delay neural network architecture for efficient modeling of

long temporal contexts,” in Proceedings of INTERSPEECH, 2015.

[64] V. Tinto, “Dropout from higher education: A theoretical synthesis of re-

cent research,” Review of educational research, vol. 45, no. 1, pp. 89–125,

1975.

[65] D. B. Paul and J. M. Baker, “The design for the wall street journal-based

csr corpus,” in Proceedings of the workshop on Speech and Natural Lan-

guage. Association for Computational Linguistics, 1992, pp. 357–362.

186

BIBLIOGRAPHY

[66] D. Povey, A. Ghoshal et al., “The Kaldi Speech Recognition Toolkit,” in

Proc. ASRU, 2011.

[67] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International conference

on machine learning, 2015, pp. 448–456.

[68] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,

M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech

recognition toolkit,” in IEEE 2011 workshop on automatic speech recog-

nition and understanding, no. EPFL-CONF-192584. IEEE Signal Pro-

cessing Society, 2011.

[69] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,

“Phoneme recognition using time-delay neural networks,” in Readings

in Speech Recognition. Elsevier, 1990, pp. 393–404.

[70] A. Rousseau, P. Deléglise, and Y. Esteve, “Ted-lium: an automatic speech

recognition dedicated corpus.” in LREC, 2012, pp. 125–129.

[71] I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bourban, M. Flynn,

M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos et al., “The ami meeting

corpus,” in Proceedings of the 5th International Conference on Methods

and Techniques in Behavioral Research, vol. 88, 2005, p. 100.

187

BIBLIOGRAPHY

[72] D. B. Paul and J. M. Baker, “The design for the wall street journal-based

csr corpus,” in Proceedings of the workshop on Speech and Natural Lan-

guage. Association for Computational Linguistics, 1992, pp. 357–362.

[73] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an

asr corpus based on public domain audio books,” in Acoustics, Speech

and Signal Processing (ICASSP), 2015 IEEE International Conference

on. IEEE, 2015, pp. 5206–5210.

[74] S. Cheung and J. S. Lim, “Combined multiresolution (wide-band/narrow-

band) spectrogram,” IEEE Transactions on signal processing, vol. 40,

no. 4, pp. 975–977, 1992.

[75] P. Ghahremani, H. Hadian, H. Lv, D. Povey, and S. Khudanpur, “Acoustic

modeling from frequency domain representations of speech,” Proc. Inter-

speech 2018, pp. 1596–1600, 2018.

[76] Z. Zhu, J. H. Engel, and A. Hannun, “Learning multiscale features di-

rectly from waveforms,” arXiv preprint arXiv:1603.09509, 2016.

[77] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2015, pp. 1–9.

188

BIBLIOGRAPHY

[78] N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout, “Multi-scale deep

learning for gesture detection and localization,” in Workshop at the Eu-

ropean conference on computer vision. Springer, 2014, pp. 474–490.

[79] T. Sivanagaraja, M. K. Ho, A. W. Khong, and Y. Wang, “End-to-end speech

emotion recognition using multi-scale convolution networks,” in Asia-

Pacific Signal and Information Processing Association Annual Summit

and Conference (APSIPA ASC), 2017. IEEE, 2017, pp. 189–192.

[80] C. Chan, P. Ching, and T. Lee, “Noisy speech recognition using de-noised

multiresolution analysis acoustic features,” The Journal of the Acoustical

Society of America, vol. 110, no. 5, pp. 2567–2574, 2001.

[81] C.-P. Chan, Y. W. Wong, T. Lee, and P.-C. Ching, “Two-dimensional multi-

resolution analysis of speech signals and its application to speech recog-

nition,” in Acoustics, Speech, and Signal Processing, 1999. Proceedings.,

1999 IEEE International Conference on, vol. 1. IEEE, 1999, pp. 405–

408.

[82] V. Peddinti, T. Sainath, S. Maymon, B. Ramabhadran, D. Nahamoo, and

V. Goel, “Deep scattering spectrum with deep neural networks,” in Acous-

tics, Speech and Signal Processing (ICASSP), 2014 IEEE International

Conference on. IEEE, 2014, pp. 210–214.

[83] M. Athineos and D. P. Ellis, “Frequency-domain linear prediction for tem-

189

BIBLIOGRAPHY

poral features,” in Automatic Speech Recognition and Understanding,

2003. ASRU’03. 2003 IEEE Workshop on. IEEE, 2003, pp. 261–266.

[84] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: Telephone

speech corpus for research and development,” in Acoustics, Speech, and

Signal Processing, 1992. ICASSP-92., 1992 IEEE International Confer-

ence on, vol. 1. IEEE, 1992, pp. 517–520.

[85] J. Niu, Y. Qian, and K. Yu, “Acoustic emotion recognition using deep neu-

ral network,” in Chinese Spoken Language Processing (ISCSLP), 2014

9th International Symposium on. IEEE, 2014, pp. 128–132.

[86] K. Han, D. Yu, and I. Tashev, “Speech emotion recognition using deep

neural network and extreme learning machine,” in Fifteenth annual con-

ference of the international speech communication association, 2014.

[87] J. Lee and I. Tashev, “High-level feature representation using recurrent

neural network for speech emotion recognition,” 2015.

[88] M. Neumann and N. T. Vu, “Attentive convolutional neural network

based speech emotion recognition: A study on the impact of input fea-

tures, signal length, and acted speech,” arXiv preprint arXiv:1706.00612,

2017.

[89] D. Palaz, R. Collobert et al., “Analysis of cnn-based speech recognition

190

BIBLIOGRAPHY

system using raw speech as input,” in Proceedings of INTERSPEECH,

no. EPFL-CONF-210029, 2015.

[90] N. Jaitly and G. Hinton, “Learning a better representation of speech

soundwaves using restricted boltzmann machines,” in Acoustics, Speech

and Signal Processing (ICASSP), 2011 IEEE International Conference

on. IEEE, 2011, pp. 5884–5887.

[91] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou,

B. Schuller, and S. Zafeiriou, “Adieu features? end-to-end speech emotion

recognition using a deep convolutional recurrent network,” in Acoustics,

Speech and Signal Processing (ICASSP), 2016 IEEE International Con-

ference on. IEEE, 2016, pp. 5200–5204.

[92] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent

neural network architectures for large scale acoustic modeling,” in Fif-

teenth annual conference of the international speech communication as-

sociation, 2014.

[93] D. Povey, H. Hadian, P. Ghahremani, K. Li, and S. Khudanpur, “A time-

restricted self-attention layer for asr,” in Acoustics, Speech and Signal

Processing (ICASSP), 2018 IEEE International Conference on. IEEE,

2018.

[94] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep neural

191

BIBLIOGRAPHY

network embeddings for text-independent speaker verification,” in Proc.

Interspeech, 2017, pp. 999–1003.

[95] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-

vectors: Robust dnn embeddings for speaker recognition,” Submitted to

ICASSP, 2018.

[96] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N.

Chang, S. Lee, and S. S. Narayanan, “Iemocap: Interactive emotional

dyadic motion capture database,” Language resources and evaluation,

vol. 42, no. 4, p. 335, 2008.

[97] M. Tahon and L. Devillers, “Towards a small set of robust acoustic fea-

tures for emotion recognition: challenges,” IEEE/ACM Transactions on

Audio, Speech and Language Processing (TASLP), vol. 24, no. 1, pp. 16–

28, 2016.

[98] R. Banse and K. R. Scherer, “Acoustic profiles in vocal emotion expres-

sion.” Journal of personality and social psychology, vol. 70, no. 3, p. 614,

1996.

[99] R. Tato, R. Santos, R. Kompe, and J. M. Pardo, “Emotional space im-

proves emotion recognition,” in Seventh International Conference on Spo-

ken Language Processing, 2002.

192

BIBLIOGRAPHY

[100] C. M. Lee, S. Narayanan, and R. Pieraccini, “Recognition of negative

emotions from the speech signal,” in Automatic Speech Recognition and

Understanding, 2001. ASRU’01. IEEE Workshop on. IEEE, 2001, pp.

240–243.

[101] D. Litman and K. Forbes, “Recognizing emotions from student speech in

tutoring dialogues,” in Automatic Speech Recognition and Understand-

ing, 2003. ASRU’03. 2003 IEEE Workshop on. IEEE, 2003, pp. 25–30.

[102] K. R. Scherer, “Vocal communication of emotion: A review of research

paradigms,” Speech communication, vol. 40, no. 1-2, pp. 227–256, 2003.

[103] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for

speech recognition.” in INTERSPEECH, 2015, pp. 3586–3589.

[104] V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur, “Low latency acoustic

modeling using temporal convolution and lstms,” IEEE Signal Process-

ing Letters, vol. 25, no. 3, pp. 373–377, 2018.

[105] G. Cheng, V. Peddinti, D. Povey, V. Manohar, S. Khudanpur, and Y. Yan,

“An exploration of dropout with lstms,” in Proc. Interspeech, 2017.

[106] T. N. Trong, V. Hautamäki, and K. A. Lee, “Deep language: a compre-

hensive deep learning approach to end-to-end language recognition,” in

Odyssey: the Speaker and Language Recognition Workshop, 2016.

193

BIBLIOGRAPHY

[107] H. Hermansky, D. P. Ellis, and S. Sharma, “Tandem connectionist feature

extraction for conventional hmm systems,” in icassp. IEEE, 2000, pp.

1635–1638.

[108] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,

“Phoneme recognition using time-delay neural networks,” vol. 37, no. 3.

IEEE, 1989, pp. 328–339.

[109] C. Cieri, D. Miller, and K. Walker, “The fisher corpus: a resource for the

next generations of speech-to-text.” in LREC, vol. 4, 2004, pp. 69–71.

[110] K. M. Knill, M. J. Gales, A. Ragni, and S. P. Rath, “Language inde-

pendent and unsupervised acoustic models for speech recognition and

keyword spotting,” in Fifteenth Annual Conference of the International

Speech Communication Association, 2014.

[111] G. Cheng, V. Peddinti, D. Povey, V. Manohar, S. Khudanpur, and Y. Yan,

“An exploration of dropout with lstms,” in Proc. Interspeech, 2017.

[112] S. Strassel and J. Tracey, “Lorelei language packs: Data, tools, and re-

sources for technology development in low resource languages.” in LREC,

2016.

[113] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measure-

194

BIBLIOGRAPHY

ment of the psychological magnitude pitch,” The Journal of the Acoustical

Society of America, vol. 8, no. 3, pp. 185–190, 1937.

[114] E. Zwicker, “Subdivision of the audible frequency range into critical

bands (frequenzgruppen),” The Journal of the Acoustical Society of Amer-

ica, vol. 33, no. 2, pp. 248–248, 1961.

[115] K. Paliwal, B. Shannon, J. Lyons, and K. Wójcicki, “Speech-signal-based

frequency warping,” IEEE signal processing letters, vol. 16, no. 4, pp.

319–322, 2009.

[116] L. Burget and H. Heřmanskỳ, “Data driven design of filter bank for

speech recognition,” in International Conference on Text, Speech and Di-

alogue. Springer, 2001, pp. 299–304.

[117] A. Biem and S. Katagiri, “Filter bank design based on discriminative

feature extraction,” in icassp. IEEE, 1994, pp. 485–488.

[118] Z. Hu and E. Barnard, “Smoothness analysis for trajectory features,” in

icassp. IEEE, 1997, p. 979.

[119] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-

vectors: Robust dnn embeddings for speaker recognition,” 2018.

[120] M. Harper, “The automatic speech recogition in reverberant environ-

195

BIBLIOGRAPHY

ments (aspire) challenge,” in Automatic Speech Recognition and Under-

standing (ASRU), 2015 IEEE Workshop on. IEEE, 2015, pp. 547–554.

[121] S. J. Pan and Q. Yang, “A survey on transfer learning,” vol. 22, no. 10.

IEEE, 2010, pp. 1345–1359.

[122] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer learn-

ing using computational intelligence: a survey,” vol. 80. Elsevier, 2015,

pp. 14–23.

[123] Y. Bengio et al., “Deep learning of representations for unsupervised and

transfer learning.” vol. 27, 2012, pp. 17–36.

[124] Y. Bengio, F. Bastien, A. Bergeron, N. Boulanger-Lewandowski, T. M.

Breuel, Y. Chherawala, M. Cisse, M. Côté, D. Erhan, J. Eustache et al.,

“Deep learners benefit more from out-of-distribution examples.” in AIS-

TATS, 2011, pp. 164–172.

[125] R. Caruana, “Multitask learning,” in Learning to learn. Springer, 1998,

pp. 95–133.

[126] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for

deep belief nets,” vol. 18, no. 7. MIT Press, 2006, pp. 1527–1554.

[127] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Ben-

196

BIBLIOGRAPHY

gio, “Why does unsupervised pre-training help deep learning?” vol. 11,

no. Feb, 2010, pp. 625–660.

[128] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learn-

ing for audio classification using convolutional deep belief networks,” in

Advances in neural information processing systems, 2009, pp. 1096–1104.

[129] P. Swietojanski, A. Ghoshal, and S. Renals, “Unsupervised cross-lingual

knowledge transfer in dnn-based lvcsr,” in Spoken Language Technology

Workshop (SLT), 2012 IEEE. IEEE, 2012, pp. 246–251.

[130] S. Thomas, M. L. Seltzer, K. Church, and H. Hermansky, “Deep neural

network features and semi-supervised training for low resource speech

recognition,” in Proc. ICASSP, May 2013, pp. 6704–6708.

[131] K. Veselỳ, M. Karafiát, F. Grézl, M. Janda, and E. Egorova, “The

language-independent bottleneck features,” in Spoken Language Tech-

nology Workshop (SLT), 2012 IEEE. IEEE, 2012, pp. 336–341.

[132] X. Zhang, D. Povey, and S. Khudanpur, “A diversity-penalizing ensemble

training method for deep learning.” in INTERSPEECH, 2015, pp. 3590–

3594.

[133] Z. Tang, D. Wang, and Z. Zhang, “Recurrent neural network training

with dark knowledge transfer,” in Acoustics, Speech and Signal Process-

197

BIBLIOGRAPHY

ing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016, pp.

5900–5904.

[134] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,

“Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550, 2014.

[135] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable fea-

tures with deep adaptation networks.” in ICML, 2015, pp. 97–105.

[136] D. Wang and T. F. Zheng, “Transfer learning for speech and language

processing,” in Signal and Information Processing Association Annual

Summit and Conference (APSIPA), 2015 Asia-Pacific. IEEE, 2015, pp.

1225–1237.

[137] J. Neto, L. Almeida, M. Hochberg, C. Martins, L. Nunes, S. Renals,

and T. Robinson, “Speaker-adaptation for hybrid hmm-ann continuous

speech recognition system.” International Speech Communication As-

sociation, 1995.

[138] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong, “Adaptation of

context-dependent deep neural networks for automatic speech recog-

nition,” in Spoken Language Technology Workshop (SLT), 2012 IEEE.

IEEE, 2012, pp. 366–369.

[139] R. Gemello, F. Mana, S. Scanzio, P. Laface, and R. De Mori, “Linear hid-

198

BIBLIOGRAPHY

den transformations for adaptation of hybrid ann/hmm models,” vol. 49,

no. 10. Elsevier, 2007, pp. 827–835.

[140] Z. Huang, J. Li, S. M. Siniscalchi, I.-F. Chen, J. Wu, and C.-H. Lee, “Rapid

adaptation for deep neural networks through multi-task learning,” in

Sixteenth Annual Conference of the International Speech Communication

Association, 2015.

[141] P. Swietojanski, J. Li, and S. Renals, “Learning hidden unit contributions

for unsupervised acoustic model adaptation,” vol. 24, no. 8. IEEE, 2016,

pp. 1450–1463.

[142] Z. Huang, S. M. Siniscalchi, and C.-H. Lee, “A unified approach to trans-

fer learning of deep neural networks with applications to speaker adap-

tation in automatic speech recognition,” vol. 218. Elsevier, 2016, pp.

448–459.

[143] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin,

and J. Dean, “Multilingual acoustic models using distributed deep neural

networks,” in Proc. ICASSP. IEEE, 2013, pp. 8619–8623.

[144] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language knowl-

edge transfer using multilingual deep neural network with shared hid-

den layers,” in Proc. ICASSP. IEEE, 2013, pp. 7304–7308.

199

BIBLIOGRAPHY

[145] F. Grézl, E. Egorova, and M. Karafiát, “Study of large data resources for

multilingual training and system porting,” vol. 81. Elsevier, 2016, pp.

15–22.

[146] R. Sahraeian and D. Van Compernolle, “Using weighted model averaging

in distributed multilingual dnns to improve low resource asr,” vol. 81.

Elsevier, 2016, pp. 152–158.

[147] M. Karafiat, L. Burget, P. Matejka, O. Glembek, and J. Cernocky, in Proc.

ASRU. IEEE, Dec., pp. 152–157.

[148] L. Bahl, P. Brown, P. de Souza, and R. Mercer, “Maximum Mutual In-

formation Estimation of Hidden Markov Model parameters for Speech

Recognition,” in Acoustics, Speech, and Signal Processing, IEEE Interna-

tional Conference on ICASSP ’86., vol. 11, Apr 1986, pp. 49–52.

[149] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-

ist temporal classification: labelling unsegmented sequence data with

recurrent neural networks,” in Proc. ICML. ACM, 2006, pp. 369–376.

[150] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an

ASR corpus based on public domain audio books,” in Proc. ICASSP.

IEEE, 2015, pp. 5206–5210.

[151] I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bourban, M. Flynn,

200

BIBLIOGRAPHY

M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos et al., “The ami meeting

corpus,” in Proceedings of the 5th International Conference on Methods

and Techniques in Behavioral Research, vol. 88, 2005.

[152] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are

features in deep neural networks?” in Advances in neural information

processing systems, 2014, pp. 3320–3328.

[153] V. Manohar, D. Povey, and S. Khudanpur, “JHU Kaldi System for Arabic

MGB-3 ASR Challenge using Diarization, Audio-Transcript alignment

and Transfer learning,” in Automatic Speech Recognition and Under-

standing (ASRU), 2017 IEEE Workshop on, 2017.

[154] J. Li, M. L. Seltzer, X. Wang, R. Zhao, and Y. Gong, “Large-

scale domain adaptation via teacher-student learning,” arXiv preprint

arXiv:1708.05466, 2017.

[155] J. Wong and M. Gales, “Sequence student-teacher training of deep neural

networks,” in Proceedings of the Annual Conference of the International

Speech Communication Association, INTERSPEECH, vol. 8, 2016, pp.

2761–2765.

[156] N. Kanda, Y. Fujita, and K. Nagamatsu, “Investigation of lattice-free

maximum mutual information-based acoustic models with sequence-

201

BIBLIOGRAPHY

level kullback-leibler divergence,” in 2017 IEEE Automatic Speech

Recognition and Understanding Workshop (ASRU), Dec 2017, pp. 69–76.

[157] V. Manohar, H. Hadian, D. Povey, and S. Khudanpur, “Semisupervised

training of acoustic models using lattice-free mmi,” in ICASSP, 2018.

[158] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “Kl-divergence regularized

deep neural network adaptation for improved large vocabulary speech

recognition,” in Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on. IEEE, 2013, pp. 7893–7897.

[159] Y. Long, Y. Li, H. Ye, and H. Mao, “Domain adaptation of lattice-free

mmi based tdnn models for speech recognition,” International Journal of

Speech Technology, vol. 20, no. 1, pp. 171–178, 2017.

[160] V. Manohar, D. Povey, and S. Khudanpur, “JHU Kaldi System for Arabic

MGB-3 ASR Challenge using Diarization, Audio-Transcript alignment

and Transfer learning,” in Proc. ASRU 2017, 2017.

[161] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning small-size dnn with

output-distribution-based criteria,” in Fifteenth Annual Conference of the

International Speech Communication Association, 2014.

[162] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” 2015.

202

BIBLIOGRAPHY

[163] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel, and

S. Khudanpur, “Deep neural network-based speaker embeddings for end-

to-end speaker verification,” in 2016 IEEE Spoken Language Technology

Workshop (SLT). IEEE, 2016, pp. 165–170.

203

Vita

Pegah Ghahremani received her Master of Technology by research degree in

Electrical and Computer Engineering from Johns Hopkins University in 2014.

She completed her PhD. in Electrical and Computer Engineering with Dan

Povey and Sanjeev Khudanpur while being affiliated to the Center for Lan-

guage and Speech Processing (CLSP) at Johns Hopkins University in 2019.

She contributes to the acoustic modeling code in Kaldi project. She is cur-

rently a Research Scientist at Amazon, Seattle, USA. Her research interests

include maachine learning, automatic speech recognition, speaker recognition,

and natural language understanding. In the past, she also had intership at

Microsoft research (MSR).

204

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Problem
	Thesis outline
	Contributions

	Hand-designed feature extraction
	Pitch and probability of voicing
	Existing pitch extraction methods
	The Kaldi pitch extractor
	Pitch post-processing methods
	Probability of voicing measure
	Normalization of pitch
	Delta feature
	Results

	Joint feature extraction and classification training
	Time-domain joint feature extraction
	Prior work
	Raw waveform processing
	Data perturbation
	Pooling methods
	Speaker adaptation in raw waveform setup
	CNN-based raw waveform setup
	Results

	Frequency-domain joint feature extraction
	Prior work
	Proposed feature extraction block
	Normalization block
	Results
	Filter analysis

	Multiscale feature learning from frequency domain
	Prior work
	Proposed method
	Effect of scale and frame rate with MFCC
	Multiscale feature learning

	Joint feature extraction application in emotion identification
	Prior work
	Feature extraction in emotion identification
	Results
	Modeling long temporal context
	Variable-length vs. fixed length training

	Universal feature extraction
	Multilingual feature extraction
	Learning universal filter banks
	Filter bank universality
	Multi-English dataset
	Multilingual dataset

	Data-driven based feature learning
	Prior work
	DNN-c features
	fDNN-c features
	Modified Mel filter bank
	Results

	Deep feature representation transfer across domains
	Prior work
	Joint multi-task learning
	Weight transfer
	Teacher-student transfer learning
	Transfer learning in sampling rate mismatch condition
	Transfer learning in environment mismatch
	Weight transfer vs. multi-task training
	Transfer learning using different objectives

	Conclusion and future work
	Conclusion
	Future work

	Vita

