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ABSTRACT 

 
Diffusing Colloidal Probes of Biospecific Interactions and Biological Interfaces 

 May 2014 

 

Gregg Anthony Duncan, B.S., Florida State University 

 

 

Weak, biospecific and non-specific macromolecular interactions play a major role 

in fundamental biological process such as cell adhesion, motility, and signaling and in 

medicine, macromolecules have been integrated into materials for drug delivery and 

tissue engineering applications. Direct measurements capable of sensitively detecting 

weak, specific and non-specific macromolecular interactions at interfaces are needed to 

better understand their function in biological systems and utility in biomaterials.  In this 

dissertation, diffusing colloidal probe microscopy (DCPM) was used to make direct, 

quantitative measurements of colloidal interactions mediated by weak, specific protein-

carbohydrate interactions and interactions with the surface of live cells mediated by 

specific and non-specific macromolecular interactions. In addition, models were 

developed capable of predicting colloid and surface interactions mediated by specific 

biomolecular interactions with direct input of binding affinities for further 

characterization of experimental results. 

 To study reversible protein-carbohydrate interactions, biospecific adsorption of 

the sugar-binding protein, Concanavalin A (ConA), to dextran-modified colloidal 

particles was visualized using fluorescent confocal microscopy and colloidal association 

dynamics mediated by ConA-dextran interactions were quantified using optical video 

microscopy. Our results demonstrate how aggregation kinetics in colloidal dispersions 

can be reversibly tuned with competitive ConA-glucose interactions. Direct connections 
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were established between the observed aggregation kinetics and net particle-particle 

interactions as a function of ConA and glucose concentration. To model this system, 

Monte Carlo simulations were developed to model bulk and interfacial 

biomacromolecular binding. With direct input of dissociation constants, particle-particle 

interactions were predicted for a range of binding affinities and protein concentrations.  

Dark field video microscopy was used to study interactions between live cells and 

colloidal particles functionalized with natural and synthetic macromolecules all with 

relevance to bioengineering. With combined real-time particle tracking and cell boundary 

determination, particle trajectories can be monitored in relation to their distance from cell 

surfaces. Particle-cell surface binding lifetimes and potentials of mean force were 

measured for colloids functionalized with polyethylene glycol (PEG), bovine serum 

albumin (BSA), dextran, and hyaluronic acid (HA). With the modeling tools developed 

for colloidal interactions mediated by biospecific binding, the interactions of targeted 

drug delivery nanoparticles with cell surfaces were characterized for target membrane 

proteins with varying binding affinities and expression levels. These results provide a 

basis for in-depth characterization of biomolecular interactions and biophysical properties 

of cell surfaces with a combination of experimental and modeling techniques. 
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1. INTRODUCTION 

1.1 Significance and Objective* 

The interactions between proteins and carbohydrates play important roles in biology 

and medicine. Biological functions critical to bacteria,
1, 2

 yeast,
3, 4, 5

 and mammalian 

cells
6, 7, 8, 9, 10, 11

 such as cell-cell signaling, migration, and regeneration are dependent on 

weak, specific interactions between proteins and carbohydrates. Protein-carbohydrate 

interactions have been used to engineer biomaterials able to recognize biomolecules and 

cell or tissue type in the body with high specificity for novel biosensing
12, 13, 14, 15

 and 

targeted drug delivery
16, 17, 18, 19, 20, 21

 applications. In order to better understand 

interactions at living biological interfaces (i.e. cells, tissues) and at biologically active 

material interfaces (i.e. biosensors, drug delivery particles), force measurement 

techniques and modeling efforts have allowed for in-depth analysis of biointerfacial 

systems. The binding affinity between proteins and carbohydrates are generally very 

weak further complicating their measurement. Highly sensitive, quantitative 

measurements along with comprehensive models are required to improve the 

fundamental understanding of behavior in biological systems mediated by specific 

protein-carbohydrate interactions and for further development and optimization of new 

biotechnologies that capitalize on these interactions. 

Spectroscopic, scanning probe, and diffusing probe techniques have been developed 

to measure specific biomacromolecular interactions at an interface. Spectroscopic 

techniques such as dynamic light scattering, surface plasmon resonance, total internal 

                                                           

* This dissertation was written in the style of Langmuir. 
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reflection fluorescence microscopy, and ultraviolet-visible spectroscopy use changes in 

emission in bulk solution or at interfaces to detect specific binding of biomacromolecules 

and colloids. In scanning probe techniques such as atomic force microscopy, optical 

tweezers and surface force apparatus, an external force is applied either mechanically or 

optically and the displacement of the probe can be related to the strength of interaction at 

the interface mediated by specific biomacromolecular interactions. Diffusing probe 

techniques such as total internal reflection microscopy and diffusing colloidal probe 

microscopy use the mobility of colloidal particles due to Brownian motion to measure 

changes in colloid-surface and colloid-colloid interactions due to specific 

biomacromolecular interactions at their interface. The advantages and disadvantages of 

using each technique will be further discussed in the next section, but only from 

spectroscopic measurement techniques can important parameters on the 

biomacromolecular scale such as valency, cooperativity, and on/off-rate constants be 

resolved. However, scanning and diffusing probe techniques are able to measure 

interfacial forces due to specific binding of biomacromolecules which cannot be 

measured with spectroscopic techniques.  

Modeling techniques can be used to evaluate parameters on both the 

biomacromolecular and interfacial scale to determine how specific biomacromolecular 

binding can influence interfacial interactions. Equilibrium and dynamic modeling 

techniques have been used to model colloidal and surface interactions mediated by 

biomacromolecular interactions at their interface. Equilibrium modeling such as 

analytical calculation and Monte Carlo (MC) simulation has been used to predict 

interfacial potentials of mean force between colloids and surfaces mediated by specific 
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biomacromolecular interactions. With the appropriate modeling approach, the effects of 

parameters on the biomacromolecular scale, accessible with spectroscopic methods, can 

be correlated to observations on the interfacial scale, from scanning and diffusing probe 

measurements, which allows for further interpretative and predictive power in these 

systems. 

The goal of this dissertation is to develop complementary experimental and modeling 

techniques to interrogate and characterize colloidal and surface interactions mediated by 

weak, specific protein-carbohydrate interactions. By developing these techniques in 

tandem, the interplay of colloidal and surface interactions (e.g. gravity, van der Waals, 

electrostatics) and biomacromolecular interactions (e.g. non-specific steric interactions 

and specific binding between macromolecules) can be better interpreted. Diffusing 

colloidal probe microscopy will be used to measure interfacial interactions mediated by 

protein-carbohydrate interactions. With kT-scale sensitivity, diffusing colloidal probes are 

well suited for measurement of interfacial interactions mediated by weak, reversible 

protein-carbohydrate binding. To model the interactions in these systems, Monte Carlo 

simulations will be used to predict interfacial interactions mediated by specific 

biomacromolecular interactions and to better describe how interactions at the 

biomolecular scale give rise to the observed behavior on the interfacial scale. The two 

systems presented in this dissertation will demonstrate how to measure and model 

colloid-colloid interactions and colloid-cell surface interactions mediated by specific and 

nonspecific biomacromolecular interactions. The results from this work clearly show how 

diffusing colloidal probes can be used to study nonspecific and specific, reversible 

biomacromolecular interactions with experimental and simulation techniques to make 
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connections between phenomena on the colloidal scale to interactions on the 

biomolecular scale. 

 

1.2 Background 

Spectroscopic, scanning probe and diffusing probe techniques are the 3 major classes 

of measurement techniques used to study specific biomacromolecular interactions at 

interfaces. In this section, the general principles, systems studied, and limitations of each 

technique will be discussed. Equilibrium and dynamic modeling techniques can also be 

used as predictive and instructive tools in determining the impact of specific 

biomacromolecular interactions on net interfacial interactions. The basic concepts of each 

modeling technique and systems investigated will also be discussed in this section.   

1.2.1 Spectroscopic Techniques 

Dynamic light scattering (DLS) and ultraviolet-visible spectroscopy (UV-VIS) are 

spectroscopic techniques that can be used to measure changes in turbidity of a solution.
22, 

23
 Both techniques can be used measure specific binding between proteins and colloids 

where either the amount of adsorption in UV-VIS or scattering in DLS from the 

molecules and colloids in solution is dependent on their size. The role of solution 

chemistry, effective concentration, or particle surface chemistry on the binding and 

aggregation kinetics in these systems can be directly investigated with these techniques. 

With these measurements, the dynamics of colloidal aggregation mediated by specific 

protein-carbohydrate interactions systems have been studied.
24, 25, 26, 27

 These techniques 

are limited only to bulk solution measurements and alternative methods are required to 

study binding and aggregation behavior of biomacromolecules and colloids at interfaces. 
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Surface plasmon resonance (SPR) and total internal reflection fluorescence 

microscopy (TIRFM) can be used to study the specific binding of biomacromolecules to 

a substrate.
28, 29

 In SPR, excitation from a light source at a metal-liquid interface causes 

conversion of photons into surface plasmon waves. The light from the interface is total 

internally reflected with a reduced intensity due to the surface plasmon waves generated 

and angle of the reflected light is dependent on the refractive index of the surface. 

Fluctuations in intensity and angle of the reflected light can then be directly correlated to 

specific adsorption of biomacromolecules to the surface. Using this technique, SPR 

sensors can be created where biomacromolecular receptors are attached to a metallic 

surface to detect the adsorption of the complementary ligand from the bulk solution. This 

allows for direct and sensitive measurement of specific binding of biomacromolecules at 

interfaces to determine surface coverage, on/off-rates and binding affinity. SPR sensor 

arrays have been used extensively to measure weak, specific protein-protein and protein-

carbohydrate interactions at interfaces.
30, 31, 32, 33, 34, 35

 

TIRFM is also used to measure binding equilibrium and dynamics of 

biomacromolecules at interfaces. This technique allows fluorescently-tagged 

biomacromolecules at an interface to be detected with single molecule resolution. In 

TIRFM, a laser source directed towards a solid/liquid interface is totally internally 

reflected which then generates an evanescent wave. The evanescent wave will excite 

fluorescent molecules within 100 nm of the interface as its intensity exponentially decays 

as the distance from the surface increases. With illumination localized near the surface, 

background intensity from non-adsorbing fluorescent biomacromolecules is eliminated 

allowing for highly precise measurements of single binding events. This measurement 
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tool has been used to study a variety of systems including protein-protein, nanoparticle-

cell, virus-cell, and cell-substrate interactions and dynamics at interfaces.
36, 37, 38, 39, 40

 

Use of spectroscopic techniques like SPR and TIRFM are very appropriate for the 

study of binding of biomacromolecules at interfaces and can be useful in determination of 

many parameters relevant to biological systems and design of biomaterials. However, 

alternative methods are required to measure potentials of mean force between interfaces 

mediated by individual and ensembles of biomacromolecular complexes. 

1.2.2 Scanning Probe Techniques 

Scanning probe techniques such as AFM and OT rely upon the pertubation of a probe 

near an interface by externally applying force either with mechanical or optical methods 

to measure probe-interface interactions. AFM are able to probe interactions at surfaces 

with immobilized biomolecules or live cells by scanning a mechanical cantilever over the 

sample and the amount of deflection of the cantilever can be related to the force exerted 

on the surface.
41, 42, 43

 This technique has been used for topographical imaging of 

supported lipid bilayers and live cell surfaces.
44, 45, 46, 47

 In addition, the cantilever can be 

functionalized with biomacromolecules, biocolloids, or live cells and its interaction with 

a receptor-functionalized substrate allowing for direct measurement of net forces and 

binding lifetimes mediated by weak, specific biomacromolecular interactions with single 

molecule resolution.
48, 49, 50, 51, 52, 53, 54, 55, 56, 57

 

 OT an optics-based force measurement technique used to measure specific 

biomacromolecular interactions.
58, 59

 In OT, a laser beam can be used to trap objects by 

inducing a dipole in the object that leads to an electrical gradient force that will drive an 

object to the point of focus of the laser beam. This technique has been used to trap and 
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manipulate colloidal particles, live cells, and biomacromolecules for measurements of 

pairwise interactions mediated by biomacromolecules and also has shown promise as a 

means to assemble biomaterials.
54, 60, 61, 62, 63

 Forces mediated by biomacromolecular 

binding can be determined by applying the force required to move particles away from an 

interface until bonds are ruptured. Another strategy used is to weakly trap an object with 

a blinking OT that will hold a particle near an interface and still allow for Brownian 

fluctuations in distance from that interface to determine effective interaction potentials. 

 Scanning probe techniques allow for direct, quantitative measurement of 

biomacromolecular binding at interfaces with single molecule resolution. However all of 

these techniques require external forces to be applied which can pertube more weakly 

binding systems from equilibrium. Aside from blinking OT, weak, kT-scale interactions 

cannot be resolved due to the limited sensitivity of these methods. 

1.2.3 Diffusing Probe Techniques 

 Diffusing probe techniques such as diffusing colloidal probe microscopy (DCPM) 

and total internal reflection microscopy (TIRM) can be used to measure colloidal 

interactions mediated by weak, specific biomacromolecules. DCPM was used most 

extensively in this work to study specific protein-carbohydrate interactions and particle-

cell surface interactions. In DCPM, the 2D diffusion of colloidal particles and phase 

behavior of concentrated dispersions can be related to particle-surface and interparticle 

interactions, respectively. By tracking colloidal particles near interfaces in real-time, 

changes in diffusivity can be related to non-specific interactions and specific 

biomacromolecular surface interactions. Changes in association and dissociation between 

colloidal particles in 2D concentrated dispersions can also be used to measure net 
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colloidal interactions mediated by specific biomacromoleculare interactions. By allowing 

particles to freely diffuse without applying any external forces, the interactions of 

particles with an interface can be probed with kT-scale sensitivity. Many 

biomacromolecular systems such as DNA, protein-protein, and peptide interactions have 

been studied using this technique.
62, 64, 65, 66, 67, 68

 It has also been demonstrated for 

patterned substrates how a surface can be characterized using DCPM
69

 and these same 

principles have been applied extensively in Chapter 8 of this work to study interactions 

of colloidal particles with the surface of cells. 

 In TIRM, colloidal particles diffusing near a surface can be tracked in 3D using 

evanescent wave tracking. By generating an evanescent wave near the surface, the 

intensity of evanescent wave scattering from a colloidal particle can be directly related to 

its height above the surface. By monitoring the particles fluctuation in height over time, a 

histogram of sampled heights can be constructed and particle-surface interaction potential 

can be determined. Using this technique, non-specific biomacromolecular, specific 

protein-carbohydrate and lipid bilayer interactions have been used to measure particle-

surface interactions and binding lifetimes.
70, 71, 72

 While this technique allows for 

sensitive measurement of height from a surface, it was not appropriate for either 

determination of particle-particle interactions where height information is not of crucial 

importance and in particle-cell interactions where scattering from cells in the evanescent 

wave would add noise to measured particle scattering intensity (i.e. particle-surface 

separation). 

1.2.4. Modeling Techniques 

 Equilibrium models of colloidal and interfacial interactions mediated by specific 
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biomacromolecular binding have been developed for a number of biomacromolecular and 

biological systems.
73

 These models allow for more in-depth characterization of force 

measurements in these systems where biomolecular parameters such as binding valency, 

binding affinity, or cooperativity can be directly input and monitored. Analytical and 

Monte Carlo (MC) simulation techniques have been used to study colloid-colloid, 

colloid-surface, cell-surface interactions mediated by specific biomacromolecular 

interactions.
74, 75, 76, 77, 78

 Analytical model are most appropriate for systems with simple 

approximations for the interactions of colloids and biomacromolecules in the system. 

More complex systems such as those studied in this dissertation with multi-component 

mixtures of colloids and biomacromolecules are more easily modeled with MC 

simulation techniques where realistic interaction potentials can be input for each 

component in the systems and equilibrium quantities such as dissociation constants, 

binding isotherms, effective particle-particle and particle-surface interactions can be 

determined.  

1.3 Summary and Dissertation Outline 

 This dissertation is organized as follows: Chapter 2 describes the theoretical 

aspects of (i) colloidal and surface interactions, (ii) colloidal diffusion, (iii) colloidal 

aggregation, (iv) specific biomacromolecular interactions, and (v) Monte Carlo 

simulations. This section is intended to present the fundamental basis of the experimental 

and computational techniques used throughout this dissertation. Chapter 3 presents the 

experimental and computational methods used in this dissertation. Chapters 4-8 contain 

results related to this work. These chapters are or will be individually published. Chapter 

4 describes measurements of colloidal aggregation mediated by protein-carbohydrate 
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interactions. The results include measurements of specific protein surface adsorption to 

colloidal surfaces and aggregation kinetics in concentrated colloidal dispersions. Chapter 

5 describes equilibrium models of colloidal interactions mediated by specific 

biomacromolecular interactions. These results show how net effective colloidal potentials 

mediated by specific biomacromolecular interactions can be determined with 

biomacromolecular binding affinity as input. Chapter 6 describes a newly developed 

imaging and analysis technique to measure colloidal interactions with the surface of cells. 

These results include measurements of diffusion, binding lifetimes, and particle-cell 

surface potential energy profiles. Chapter 7 describes equilibrium modeling of particle-

cell surface interactions mediated by specific interactions with membrane proteins. These 

results show net particle-surface interactions and selectivity of particle-surface binding 

can be manipulated as a function of ligand-receptor binding affinity, membrane protein 

surface density, and particle receptor density. Chapter 8 summarizes the conclusions 

from this dissertation. Finally, Chapter 9 presents some future work related to this 

dissertation. 
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2. THEORY 

2.1 Colloidal and Surface Interactions 

2.1.1 Net Potential Energy Interactions 

 For dispersions of colloidal particles interacting with a surface at physiological 

ionic strength, the overall net interactions of each particle, unet, will be dependent on both 

the net particle-wall interaction potential, upw, and the net particle-particle interaction 

potential, upp, as given by, 

 
  
u

net
(h,r) u

pw
(h)u

pp
(r) (2.1) 

where h is the particle-wall surface separation and r is the particle-particle surface 

separation. The net particle-wall interaction potential is given by, 

 
  
u

pw
(h)upf

G
(h)u

V

pw(h)u
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pw(h)u
B

pw(h)  (2.2) 

where the subscripts refer to gravitational (G), van der Waals (V),  steric (S), and specific 

biomacromolecular interactions (B) and the superscripts refer to particle-field (pf) and 

particle-wall interactions (pw).  The net particle-particle interaction potential is given by, 
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pp (r
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)
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
 

(2.3) 

where the subscripts refer to van der Waals (V), steric (S), and specific 

biomacromolecular interactions (B) and the superscripts refer to particle-particle 

interactions (pp). 

2.1.2 Gravitational Interactions 

The gravitational potential energy of each particle is dependent upon its height 

above the wall, h, and its buoyant mass, m, given by, 

 
  
u

G

pf (h)mgh
4

3
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p


f
)gh  (2.4) 
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where g is the acceleration due to gravity, a is the particle radius, p is the particle 

density, and f is the fluid density. 

2.1.3 van der Waals Interactions 

van der Waals attraction between two flat plates can be predicted by Lifshitz 

theory
79

 with retardation and screening effects incorporated using the Derjaugin 

approximation to account for geometric effects
80

 between a sphere and wall and two 

spheres as, 

 

  

u
V

pw h  a 6  A l  l2 dl
h





u
V
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r





 (2.5) 

where A(l) is the Hamaker function given by,
81
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13
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
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
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(2.6) 

The  terms include the frequency dielectric properties of the particle (1), wall/particle 

(2), and medium (3), and the remainder of the terms are discussed in detail in the 

literature.
81, 82

 The prime (' ) next to the summation indicates that the first term (n=0) is 

multiplied by ½(1+2l)exp(-2l) to account for screening of the zero-frequency 

contribution.  

For simplicity, an inverse power law approximation can be used to model 

particle-wall and particle-particle van der Waals interactions
80

 as, 
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where A is an effective Hamaker constant appropriate over a short range (h < 15 nm) and 

p is a non-integer exponential. The constants, A and p, can be adjusted depending upon 

the dielectric properties and geometry (e.g., sphere-sphere, sphere-wall) of the interacting 

components. 

2.1.4 Nonspecific Macromolecular Interactions 

Nonspecific macromolecular interactions due to the compression of adsorbed 

and/or grafted brush layers on surfaces were modeled by Milner et. al.
83, 84, 85

 and are 

given by,
86
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where, u0 is the free energy per unit area of the uncompressed brush layer given by,
86
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and h0 and r0  are the uncompressed layer thickness given by,
86
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In Eqs. (2.9) and (2.10), N is the number of Kuhn segments in the chain,  is surface 

coverage density,  is an excluded volume parameter, and  is a function of the chain 
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radius. The Derjaguin approximation can then be used to calculate the overall steric 

particle-wall and particle-particle interactions, 
  
u

S

pw(h) and 
  
u

S

pp (r) , respectively, as,
86
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where changes in the interaction due to geometry are accounted for. The resulting 

repulsive steric interactions can be more simply modeled with a short range exponential 

given by,  

 

  

u
S

pw(h)  exp(h)

u
S

pp(r)  exp(r)
 (2.12) 

where  and  are determined by the structure of the macromolecular layers at the 

interface.  

2.1.5 Specific Biomacromolecular Bridging Interactions 

For polysaccharide-functionalized colloidal particles in the presence of adsorbing 

proteins mediated by specific protein-carbohydrate interactions, attractive colloidal 

interactions can be induced between particles via simultaneous binding between 

neighboring particles. Net attractive particle-surface interactions can also be induced by 

specific protein-carbohydrate interactions between polysaccharide-functionalized colloids 

and surface-immobilzed protein receptors (i.e., expressed on cell membranes). To model 

particle-particle or particle-surface interactions mediated by ensembles of weak, 

reversible protein-polysaccharide bridges, an isotropic harmonic well attractive potential 

can be added with the form, 
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where umin is the depth of the harmonic well and hmin and rmin are the positions of the 

harmonic potential well minimum. The resulting net particle-particle or particle-surface 

interaction potential, including van der Waals, steric, and specific biomacromolecular 

bridging interactions, can be modeled with a Morse harmonic potential given as,
87

 

  

  

u
pw

(h) upf

G
(h)u

min
[1exp(k(hh

min
)]2 u

min

u
pp

(r)u
min

[1exp(k(r  r
min

)]2 u
min

 (2.14) 

where k is the decay length that controls the range of the harmonic well. 

2.2 Colloidal Diffusion 

2.2.1 Particle-Wall Hydrodynamics 

A colloidal particle diffusing near a surface will experience hydrodynamic 

interactions that will hinder the lateral motion of the particle from its predicted Stokes-

Einstein diffusivity, where Do = kT/(6a), which depends on the viscosity of the 

medium, . These effects can be accounted for with a hydrodynamic correction factor
88

 

as,  

 
  
D
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o
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(h)  (2.15) 

where f|| is a rational fit to the exact solution given as, 
89
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where (h) = h/(a+b) and b is the polymer brush layer thickness. The distribution of 

heights sampled by the particle, p(h), can be related to the net particle-wall interaction 

potential with Boltzmann’s equation as,
90, 91

 

   
p(h)  exp(

u
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(2.17) 

and predictions of the average lateral diffusion coefficient, D||, can be made using the 

distribution of heights sampled given by,
92
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 (2.18) 

2.2.2 Particle-Particle Hydrodynamics 

In dispersions of colloidal particles, particle-particle hydrodynamic interactions 

will hinder their diffusion and the diffusion coefficient can be predicted for particles in 

concentrated solutions with the correction factor, fpp, given by,
93
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where fpp(r) is a rational fit to exact solutions, given as
94
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(2.20) 

and (r) = r/(a+b).  

2.3 Colloidal Aggregation 

2.3.1 Aggregation Kinetics 

The kinetics of aggregating colloidal suspensions can be characterized by the 

change in concentration of singlets, doublets, and higher order aggregates over time. A 
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simple mass balance can be used to describe the rate of change in singlet concentration 

as,
95
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where i is the concentration of aggregates consisting of i particles at time t and k1i is the 

rate constant for aggregation of single particles with aggregates of size i. For an initially 

stable dispersion, formation of doublets from single particles will largely determine the 

rate of singlet disappearance at the early stages of aggregation and this allows the singlet 

disappearance rate to be further reduced to, 
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(2.22) 

2.3.2 Diffusion-Limited Aggregation 

Diffusion-limited aggregation in colloidal suspensions occurs when colloidal 

particles irreversibly adhere at contact, and the rate of aggregation is directly proportional 

to the colloidal diffusion rate of the colloids. In 1916, Smoluchowski calculated the 

aggregation rate constant of colloidal particles diffusing in 3D as,
96
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A Smoluchowski aggregation rate constant was calculated for particles diffusing in 2D by 

Hardt as,
97
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where 1,o is the initial singlet concentration and ragg is the particle encounter radius.  
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2.3.3 Aggregation into the Secondary Potential Energy Minimum 

In reversibly aggregating colloidal suspensions, particle-particle collisions will 

not always result in the formation of an aggregate. The primary net potential energy 

minimum has an infinite attractive well depth and is inaccessible in these systems due to 

the solution and/or surface chemistry (i.e., long-range electrostatic or short-ranged steric 

interactions). In such colloidal suspensions, aggregation occurs within or over separation 

distances where a secondary attractive well with finite depth dominates the net colloidal 

energy potential. The probability that a collision will result in the formation of an 

aggregate is dependent upon the depth of the secondary minimum. The aggregation rate 

in these systems can be compared to that of diffusion-limited systems using a Fuchs 

stability ratio, defined as,
98
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where kexp is the aggregation rate constant measured experimentally at early times. The 

stability ratio can then be related to net particle-particle interactions, defined in Eq. 

(2.14), with a modified Fuchs integral, as given by, 
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where  is the probability a particle has the thermal energy required to escape the 

secondary minimum, defined as, 

   
1exp(u

min
/ kT)  (2.27) 

where it is assumed that the particles have a Boltzmann distribution of thermal energies. 
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2.4 Specific Biomacromolecular Interactions 

2.4.1 Free Energy of Specific Biomacromolecular Binding 

Receptor-ligand interactions can be modeled as entropic springs with a 

monovalent harmonic well potential, URL. This is an estimate of the free energy between 

two interacting biomacromolecules averaged over all of the angular and conformational 

dependencies of their complex. URL is a function of receptor-ligand separation, r, with the 

form, 
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that has an interaction range, , that can be calculated as, 
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which is dependent on the harmonic well depth, umin, and spring constant, ks. With this 

potential, neither the ligands or receptors have an effective size with umin at zero receptor-

ligand separation.  

 In order to introduce an effective size to the ligands, they can be modeled as hard 

spheres with an isotropic (i.e., non-orientation dependent) harmonic well at their surface. 

For the receptor-ligand nanosphere potential, URLN, we use the form, 
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(2.30)  

Ligands with this effective size will experience infinite repulsion at ligand-receptor 

contact that then decays into an attractive harmonic well.  
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2.4.2 Bulk Dissociation Constant 

 The dissociation constant, Kd, is a measure of the binding affinity between 

biomacromolecules in solution, as given by, 

 

  

K
d


[RL]

[R][L]
  (2.31) 

where [R] and [L]  are the concentrations of free receptors and ligands respectively and 

[RL] is the concentration of receptor-ligand complexes. An analytical expression for the 

dissociation constant of a harmonic well potential can be determined using the Bjerrum 

approach for calculating absolute macromolecular binding free energy developed by Luo 

and Sharp. 
100

 For a simple harmonic well potential, as in Eq. (2.28), Kd can be calculated 

using the expression, 
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which exponentially decays with increasing well depth, and in short, correlates the 

Brownian fluctuations in the position of the biomacromolecules in their bound state to the 

biomacromolecules in their unbound state. 

 In order to make dissociation constant predictions for ligands with an effective 

size, the second virial coefficient, B2, is calculated for the ligand nanospheres to estimate 

their effective interaction strength. The second virial coefficient for a ligand nanosphere, 

B2,RLN,  is calculated with the following expression, 

 ( )/2

2, 4 12 (1 )

lig

RLN

lig

a

U r kT

RLN

a

B V r e dr



    (2.33) 

The first term is the hard sphere component of B2,RLN that is simply four times its volume, 

V. The second term accounts for the harmonic well tail component of B2,RLN and this is 
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calculated using an expression which can be applied to any arbitrary potential to 

determine B2.
101

 An equivalent harmonic well potential is then found by determining a 

harmonic well with the same B2 as the ligand nanosphere potential. The second virial 

coefficient of a harmonic well potential, B2,RL, is calculated as,  
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using the same expression to determine B2 for any arbitrary potential. To find an 

equivalent harmonic well potential, umin in Eq. (2.28) for URL is adjusted at constant ks 

until B2,RL is equal to B2,RLN of the ligand nanosphere potential. These two potentials are 

then considered equivalent and the Kd of the harmonic well calculated from Eq. (2.32) is 

assigned to the ligand nanosphere.  

2.4.3 Biospecific Adsorption at Interfaces 

 Adsorption equilibria of ligands with monovalent interactions and receptors at an 

interface can be predicted with the Langmuir adsorption model as given by, 
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 (2.35) 

which determines the fraction of occupied receptors, , as a function of bulk ligand 

concentration, C. The adsorption coefficient for this system is the inverse of Kd (i.e., the 

association constant, Ka).  

2.5 Monte Carlo Simulations of Colloidal and Biomacromolecular Systems 

2.5.1 Metropolis Monte Carlo Method 

In order to develop models of the colloidal interactions in the presence 

biomacromolecules and biological interfaces, it is important to consider parameters 

traditionally studied in colloidal systems as well as incorporate realistic, biologically 
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relevant parameters to determine their impact on experimentally observed ensemble 

average quantities, such as colloid-colloid or colloid-surface separation. Using a 

statistical mechanics-based formalism, an ensemble average quantity, 
 

A , can be 

directly computed with the expression,
102
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where p and r refer to the particle momenta and position, respectively, and H  is the 

Hamiltonian function of p and r that gives the total energy of the system. Since kinetic 

energy contributions can be ignored in the systems in this work, the expression further 

simplifies to, 
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 (2.37) 

where unet is the net potential energy of the system only dependent on particle positions. 

Even with this simplification, direct computation of this quantity is complicated typically 

by system size and for the systems of interest in this work, bi- and tri-component 

mixtures of atoms (i.e., colloids, proteins, ligands) further complicate their calculation. 

Using traditional integration methods, the computation time required would prove 

prohibitive in analyzing these systems. 

In order to avoid such computationally expensive calculations, the Monte Carlo 

method has been developed where the function unet can be evaluated for random 

configurations of atoms in the system over intervals of interest. However by performing 

this calculation randomly over this interval, computation time can be spent in 

configuration space with little impact on the ensemble average quantity. To interrogate 
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the most statistically relevant configurations, the Metropolis scheme of Monte Carlo 

Sampling was introduced where the random configurations chosen to include in the 

integral calculation are weighted by the Boltzmann factor, 
    
exp u

net
r/kT





. With this 

scheme, attempts are made to change to a random particle configuration, m, from an 

initial configuration, n, and these attempts are only accepted with the following condition 

is met: 

    
x

r
exp[(u

net
(m)u

net
(n)) / kT]  (2.38) 

where xr  is a randomly generated variable from [0,1]. With this criterion, detailed balance 

is maintained as systems will not move from their equilibrium state to a state of higher 

energy. 

2.5.2 Cluster Moves 

Typically in Monte Carlo simulations, attempts are made to translate each atom in 

the system independently and the move is accepted or rejected dependent on the resulting 

free energy change in the system. However, in systems with strongly bound particles 

(e.g., aggregated or covalently bound particles) or mixtures of binary, non-uniform 

colloidal spheres (e.g., colloid-protein mixtures), independent MC translational moves 

are seldom accepted and efficient sampling of random colloidal configurations becomes 

limited. For these more complex systems, cluster move algorithms have been developed 

that allow for simultaneous translation and/or rotation of n associated atoms, where the 

same Metropolis criterion from Eq. (2.38) is applied for the newly generated 

configuration ensuring detailed balance is maintained.
102, 103, 104

 The execution of these 

moves varies dependent on the system being modeled, but details will be given in 
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Chapter 3 of this dissertation as to how these moves are performed for the colloidal 

systems modeled in this work. 

2.5.3 Free Energy Estimation 

It is also desirable to estimate changes in free energy, W, based on an order 

parameter, Ω, that shows dependency on the configurations sampled in the system. 

Fortunately, these can also be obtained from Metropolis Monte Carlo by measuring the 

distribution of Ω sampled in your system, (Ω), at equilibrium. The change in free energy 

can then be computed using a Boltzmann distribution analysis, as given by,
22
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where Ωo is the order parameter at a reference state.  This is a simple, straightforward 

method to determine changes in free energy near the global minimum but is insufficient 

in determining changes at values of the order parameter far from this point due to limited 

sampling. 

2.5.4 Umbrella Sampling 

In order to sample non-equilibirum states far from the free energy minimum of a 

given order parameter, a technique known as Umbrella Sampling was developed by 

Torrie and Valleau.
105

 Umbrella Sampling allows the system to sample non-equilibrium 

states by applying a biasing potential, ub(Ω) that restricts configurations to values of Ω 

and r away from equilibrium. The free energy of the system with the biasing potential, 

Wb(Ω) can also be determined using a Boltzmann distribution analysis as shown in Eq.  

(2.39) and the unbiased potential, W(Ω), can be calculated as,  
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where Cb is an unknown additive constant that can be later determined from the reference 

state.  
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3. METHODS 

3.1 Functionalization of Colloids and Surfaces 

3.1.1 Physisorption of Macromolecules 

All colloidal particles and surfaces used in this work were composed of silicon 

dioxide (SiO2). Since protein and cell solutions are at physiological ionic strength (150 

mM NaCl), a steric polymer or protein surface layer was necessary to provide 

interparticle stability and to prevent adsorption of SiO2 colloids to silica substrates. In 

order to physically adsorb macromolecules to colloids and surface, they were first 

modified with a hydrophobic coating to allow for self-assembly of dense polymer and 

protein layers. Procedures were developed for hydrophobic modification of both silica 

colloids and surfaces. 

Glass microscope slides (Fisher Scientific, Pittsburgh, PA) and cover slips 

(Corning Life Science, Tewskbury, MA) were hydrophobically modified by spin coating 

polystyrene onto their surface.
106

 The substrates were first cleaned by sonication in 

acetone for 30 minutes then placed in Nochromix (Godax Laboratories, Cabin John, MD) 

overnight. Next, they were rinsed 20x times with DI water then sonicated in 0.1 M KOH 

for 30 minutes. They were again rinsed 20x times with DI water and dried with nitrogen.  

A thin film of polystyrene is made on the glass substrate using a spin coater (Laurell 

Technologies Corp., North Wales, PA) by placing a 3% (w/w) solution of polystyrene in 

toluene onto the glass substrate and spinning until the drop spreads and deposits onto the 

surface. The amount of polystyrene solution, rotation speed, and duration were optimized 

for each size of the substrate. The specific parameters used are available in the Materials 

and Methods sections of Chapters 4 and 6. 
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Batch cells are then created on the substrate to physisorb polymers and proteins to 

their surface. To create a batch cell, the slides were allowed to dry for 30 minutes before 

adhering a 1 mm ID Viton O-ring (McMaster Carr, Inc., Robbinsville, NJ) onto the slide 

with vacuum grease. Twenty-five µL of 1000 PPM (1 mg/mL) solution of F108-Pluronic 

(PEG-PPO-PEG triblock copolymer, BASF, Wyandotte, MI) or bovine serum albumin 

(BSA, Sigma, St. Louis, MO) are added to the batch cell and allowed to adsorb for 4 

hours. The hydrophobic PPO chains in F108-Pluronic and the hydrophobic domains of 

BSA allow these macromolecules to form monolayers on the polystyrene-coated 

substrates. Excess, un-adsorbed F108-pluronic or BSA was removed by rinsing with a 

pipette 5 times with phosphate buffered saline (PBS, Invitrogen, Carlsbad, CA) before 

each experiment. 

Silica particles were hydrophobically modified with 1-octadecanol with a 

procedure adapted from literature.
107

 A solution of as purchased SiO2 colloids (Bangs 

Laboratories, Fishers, IN) was made in deionized water. The particle solution was 

centrifuged and re-suspended in DI water 5 times followed by centrifugation and re-

suspension 5 times in 200 proof ethanol to remove all water from the particle solution. 

The particle solution was then added to a 0.1 mg/mL solution of 1-octadecanol in 200 

proof ethanol in a 50 mL round bottom flask. The solution is then mixed and heated at 

50ºC under a nitrogen blanket (reactant mixture is flammable) until the 1-octadecanol is 

dissolved. Once the ethanol has evaporated, the nitrogen stream is removed and the flask 

is heated to 200ºC and held at this temperature for 3 hours to fixate the 1-octadecanol to 

the surface of the particles. Once the reaction has completed, the vessel is cooled to room 

temperature and the reactant mixture is recovered in chloroform to dissolve any free 1-
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octadecanol from solution. The particle solution is then centrifuged and re-dispersed in 

chloroform 5 times followed by centrifugation and re-dispersion in 200 proof ethanol to 

remove all chloroform. The particles are then stored at -5ºC in 200 proof ethanol. To 

adsorb macromolecules to the 1-octadecanol coated silica particles, the particles are 

dispersed in 1 mg/mL F108-pluronic or BSA solutions for at least 4 hours. Excess F108-

pluronic or BSA is removed by centrifugation and re-suspension in DI water 5 times. 

3.1.2 Chemisorption of Macromolecules 

Colloidal particles were functionalized with polysaccharide layers with protocols 

adapted from literature
108, 109

 to provide steric stability and allow for study of specific 

protein-carbohydrate interactions. However, the polysaccharides in this work are 

relatively hydrophilic polymers and will not physisorb to a hydrophobic surface. Silane 

chemistry was used to introduce functional groups on the surface of silica particles to 

chemically conjugate polysaccharides to their surface. This same chemistry was also used 

on silica substrates to introduce polysaccharide layers to provide both steric stability for 

colloidal particles and adherent substrate appropriate for in vitro cell culture to be 

discussed in the next section. 

To functionalize colloidal silica with polysaccharides, either an epoxy or amino-

silane linker was used to chemically graft polysaccharides to the surface dependent on the 

polysaccharide used. Before functionalization, the silica particles were washed using a 

micro-centrifuge (MiniSpin-plus, Eppendorf, Hamburg, Germany) by centrifugation and 

re-dispersion in fresh DI water. This washing step was repeated 5 times. The particles 

were then dispersed in dry ethanol and washed an additional 5 times in dry ethanol. To 

modify particles with an epoxy silane linker, the particles were dispersed in a 0.1% (v/v) 
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3-glycidoxypropyltrimethoxysilane (GPTMS, Sigma, St. Louis, MO) solution in dry 

ethanol for 1 hour. To modify particles with an amino-silane linker, the particles were 

dispersed in a 2% (w/w) (3-aminopropyl)triethoxysilane (APTES, Sigma, St. Louis, MO) 

solution in dry ethanol for 24 hours. The silane linker-modified silica colloids were then 

washed 5 times in dry ethanol and 5 times in DI water. To conjugate dextran (500 kDa, 

Sigma, St. Louis, MO) onto silica particles, epoxy-silane (GPTMS) modified colloids 

were dispersed in 30% (w/w) aqueous solution of polysaccharide and gently mixed with a 

magnetic stir bar for 24 hours. To conjugate hyaluronic acid (HA, 1 MDa, R&D Systems, 

Minneapolis, MN) to silica particles, amino-silane (APTES) modified colloids were 

dispersed in a 3 mg/mL HA solution for at least 20 hours. The polysaccharide-modified 

particles are then centrifuged at 10,000 RPM for 10 minutes and re-dispersed in fresh DI 

water. They are then washed with DI water an additional 5 times. Pluronic-F108 is then 

physisorbed onto the polysaccharide-modified particles by dispersing the particles in 

1000 ppm (1 mg/mL) aqueous solution of F108-Pluronic overnight. The F108 coating 

step is to ensure the particles are fully coated with a polymer brush to improve colloidal 

stability. The particles are then rinsed 5 times in DI water and dispersed in PBS. 

3.1.3 Surfaces with Adherent Cells 

To study colloidal interactions with the surface of cells, live cells were cultured 

onto cover slips for imaging with synthetic polymer, protein, and polysaccharide-

decorated colloids. It was important to design the surface to both provide stability for the 

colloidal particles and allow for cells to adhere and spread onto the surface. To 

accomplish this, cover slips were coated with HA--which is found in the extracellular 

matrix--to facilitate cell adhesion through specific protein-carbohydrate interactions, 
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which allows for adjustment of polymer brush thickness by varying HA molecular 

weight. The amino silane linker, APTES, was again used to functionalize silica cover 

slips with HA and once functionalized, these surfaces were seeded with cells. 

Glass cover slips (18 mm x 18 mm) were first cleaned as explained previously 

with sonication in acetone for 30 minutes, overnight soak in Nochromix, and a 30-minute 

KOH treatment. Once cleaned and dry, the cover slips were then placed in 2% (w/w) 

APTES solution in ethanol for 24 hours for amino-silane functionalization. To rinse 

excess APTES away from the surface, slides are first sonicated in ethanol for 30 minutes, 

followed by sonication in water for 30 minutes, and then dried with nitrogen. Once dry, 

the APTES-coated coverslips were placed into dishes on top of 1 mm ID viton O-rings. A 

3 mg/mL HA (100 kDa, Lifecore Biomedical, Chaska, MN) solution was made in DI 

water filtered with a Anotop 0.02 µm syringe filter (Whatman. Pittsburgh, PA) to ensure 

sterility. 500 µL of the sterilized HA solution was placed on each APTES-coated cover 

slip and kept covered in a dish coated with moist towels to chemisorb for at least 20 

hours.  

Once the HA chemisorption step was completed, the HA-coated cover slips were 

placed under UV irradiation for 30 minutes to again ensure sterility and placed into a 6-

well plate (Corning Life Science, Tewskbury, MA) in PBS. MDA-MB-231 epithelial 

breast cancer cells (MDA231, National Cancer Institute Physical Sciences-Oncology 

Center (NCI-PSOC), National Institues of Health, Bethesda, MD) were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen, Grand Island, NY) containing 

10% (v/v) fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA). MDA231 

cells were seeded onto HA-coated coverslips at a 1:4 ratio (~50,000 cells/cm
2
) in 
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complete media (10% FBS in DMEM). The cells are then allowed to adhere and spread 

onto the HA-coated coverslips overnight before each experiment. 

3.2 Microscopy Techniques 

3.2.1 Bright Field Microscopy 

Bright field microscopy (BFM) is one of the simplest and most widely used 

microscopy techniques for imaging colloidal particles and biological samples. In this 

technique, transmitted light is used to illuminate the sample and the objects in the sample 

will absorb this light creating contrast with the background. For colloidal silica, the 

particles will appear brighter than the background with the highest intensity at their 

center allowing them to be identified with image analysis algorithms. This imaging 

technique was used most extensively in Chapter 4. For those experiments, an inverted 

optical microscope (Axioplan 2, Carl Zeiss, Obercheken, Germany) with a 63x objective 

(LD-Plan Neofluar, NA = 0.75, Carl Zeiss) was used to capture images in real time with a 

12-bit CCD camera (ORCA-ER, Hamamatsu, Hamamatsu City, Japan). However, one 

common issue for biological samples is the lack of contrast with the background image 

and in the next section, the use of dark field microscopy will be discussed to overcome 

this limitation. 

3.2.2 Dark Field Microscopy 

Dark field microscopy (DFM) is a technique used where scattering from the 

sample is collected resulting in a dark background where no objects are present. As is 

illustrated in Figure 3.1, a dark field condenser blocks direct illumination from a 

transmitted light source and only allows light with wide incident angles to illuminate the 

sample which is scattered by objects in the field of view . This allows for high contrast 
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imaging of colloidal particles, particularly metallic particles due to local surface plasmon 

enhanced scattering, and also in biological samples where the cytoskeleton and other 

internal components scatter under dark field illumination. This technique is limited to 

samples that scatter brightly under dark field illumination which can be an issue for non-

metallic particles such as polystyrene dependent on their size. DFM was performed using 

an inverted optical microscope (Axioplan 2, Carl Zeiss, Obercheken, Germany) with a 

dark field condenser (dry, 0.8/0.95 NA, Carl Zeiss) and a 40x objective (LD-Plan 

Neofluar, NA = 0.75, Carl Zeiss). 

3.2.2 Laser Scanning Confocal Microscopy 

Laser scanning confocal microscopy (LSCM) is a technique used for high 

resolution 2D and 3D imaging of samples with either fluorescence or reflectance. A laser 

 

Fig 3.1. Schematic of Dark Field Microscopy. Adapted from literature.
110
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source illuminates the sample and any out-of- plane objects can be blocked from the field 

of view by adjusting the size of a pinhole that allows the return of reflected or emitted 

light.  This enhances the resolution possible compared to conventional microscopy 

techniques while sacrificing the total measurable intensity that can de detected. This 

limitation can be overcome with the use of photodetectors with increased sensitivity. This 

imaging technique was used in Chapter 4 to image both colloids and biomacromolecules 

with a combination of reflectance and fluorescence imaging, respectively. LSCM 

imaging was performed using an inverted confocal microscope (Axio Observer.Z1, Carl 

Zeiss) with a mounted scanning laser (LSM 5 Pascal Scanner, Carl Zeiss) and an oil-

immersion 63x objective (Apochromat, NA = 1.45, Carl Zeiss). A 102 µm x 102 µm area 

was scanned in reflection and fluorescence mode with a 488 nm 500 mW Ar laser as an 

excitation source. 

3.3 Image Analysis 

3.3.1 Tracking Colloidal Particles 

In this work, colloidal particles were identified and tracked using bright and dark 

field microscopy. Image analysis routines written in both FORTRAN
111

 and MATLAB
112

 

have been developed to identify centers and construct trajectories of colloidal particles 

from experimental images. In either BFM or DFM, particles could be distinguished from 

the background based on their increased intensity and the particle center can be found 

with pixel-level resolution as the maximum intensity due to their spherical shape. Sub-

pixel accuracy can be achieved by refining the particle centroid with an intensity-based 

weighting function that considers pixels within a given radius of the maximum intensity 

centroid (xm, ym) given by,
112
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where mo = 

 

A(xm  i,ym  j)
i2 j2w2
  is the integrated intensity of the sphere’s image and 

the refined particle coordinates are determined as (xr, yr) = (xm + x, ym + y). Particle 

trajectories are constructed by linking particle centers based on their displacement from 

frame to frame. In order to correctly link particle centers, the particle diffusion 

coefficient, D, and the frame rate of images captured, fr, can be used to estimate a 

characteristic diffusion length scale,
 
rD 

Dfr


, and particle trajectories are chosen such 

that their displacement is less than or equal to rD. 

When simultaneously tracking colloidal particles and cells in dark field 

microscopy experiments, there is the added difficulty of discriminating between real 

particle centers from colloidal dark field scattering and erroneous particle centers found 

from dark field scattering from intracellular components (i.e. cytoskeleton, organelles, 

vesicles). Since the intensity of scattering from silica particles and intracellular 

components is relatively similar, differentiating between particle and cell scattering based 

on intensity alone is not possible. To differentiate between colloids and cells, we use the 

added condition that particles that are tracked and included for analysis must have a 

trajectory that begins outside of defined cell boundaries.  In Fig. 3.2, the results of this 

added criteria are shown where Fig. 3.2A shows the initial centers found based on 

intensity. In Fig. 3.2B, the centers are shown after analyzing each particle trajectory and 

deleting trajectories that start within the cell boundaries (marked with white lines). While 
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this will eliminate real particle centers that start within the boundaries, this ensures that 

all trajectories included for analysis are colloids and not scattering points in the cell. 

3.3.2 Tracking Live Cells 

Using DFM, colloidal particles and live cells were imaged simultaneously to 

study particle-cell interactions. To discriminate between colloidal particles and cells, 

MATLAB routines were developed to identify the positions of cell boundaries over time. 

Using functions from the MATLAB Image Processing Toolbox, the following steps 

were taken to identify and track cells in each image which are illustrated in Figure 3.3. 

First, the entire is image is thresholded to obtain a black and white image, shown in 

Figure 3.3A, that will show both cells and colloidal particles. Silica particles cannot be 

eliminated based on intensity alone as their scattering under dark field illumination is on 

the order of that from live cells. Cells and particles were distinguished using a size 

criteria as cells were typically 10-20 times larger than the silica particles studied in this 

work. Objects from the thresholded image with areas greater than 500 µm
2
 were labeled 

as cells and boundary points were determined for each cell in the frame drawn in white 

 

Fig 3.2. (A) Particle centers (red circles) found based on brightest intensities. (B) True 

particle centers with trajectories starting outside of the cell boundaries (white lines). 
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Figure 3.3B. The coordinates of these boundaries were then used to determine the 

position of colloidal particles with respect to the surface of the cell in real time. 

3.3.3 Colloidal Particle to Cell Surface Distance 

In order to measure equilibrium particle-cell interactions, particle-cell surface 

radial distribution functions were constructed which could be interpreted with a 

Boltzmann probability analysis. With cell surface boundary coordinates and particle 

 

Fig 3.3. (A) Thresholded image from dark field microscopy of silica particles and live 

cells. (B) Cell boundaries (drawn in white) determined using minimum area cutoff. 

 

Fig 3.4.  Measuring particle center (red circles) to cell boundary (white lines) distance, r. 

Measured r are shown as dashed green lines. 
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centers determined, the distance between the particle center and each boundary 

coordinates, r, is measured and the nearest boundary point, shown in Fig. 3.4, is recorded 

as the particle distance from the cell. Fig 3.5A shows an example histogram of particle-

cell distance constructed from the r measured. In Fig 3.5B, the particle-cell potential of 

mean force, W(r), is shown which is calculated from that histogram with a Boltzmann 

probability analysis as given by, 

 
  
W(r)ln(p(r)/ p(r

m
)) (3.2) 

where rref is a chosen reference r, where W(rref) = 0 kT. The interpretation of the obtained 

potentials will be discussed in Chapter 6. 

 

3.4 Umbrella Sampling in Monte Carlo Simulations 

3.4.1 Order Parameter Based Biasing Potential 

As was explained in Chapter 2, Monte Carlo Umbrella Sampling techniques can 

be used to determine equilibrium and non-equilibrium free energy landscapes by 

 

Fig 3.5. (A) Histogram of particle-cell surface distance p(r). (B) Particle-cell surface 

potential of mean force, W(r), determined from p(r) in (A). 
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applying a biasing potential for an order parameter of interest, Ω. The form of this biasing 

potential should be chosen such that the order parameter is restricted to a specific interval 

of values. For simplicity, a hard wall biasing potential, ub(Ω), was used with the form, 

  

  

ub() 0  if 1  n

ub()   otherwise
 (3.3) 

where ub(Ω) goes to infinity at values of Ω outside of the interval [Ω1, Ωn]. This ensures 

any moves outside of this interval will be rejected.  

3.4.2 Determining Free Energy Landscapes 

Recall from Chapter 2 for determination of the unbiased free energy landscape, 

W(Ω), given by, 

   

W()

kT
 [W

b
()u

b
()] / kT C

b

 
(3.4) 

the only unknown parameter is the additive constant Cb which must be determined 

to extract W(Ω) from the measured biased free energy landscape Wb(Ω). This is depicted 

in Fig. 3.3 where Ω-dependent biased simulations over the three intervals, [Ω1, Ω2], [Ω3, 

Ω4], and [Ω5, Ω6], would be used to determine the unbiased free energy from the interval 

[Ω1, Ω6]. The additive constant Cb can be determined by compared over the overlapping 

 

Fig 3.6. Schematic of Umbrella Sampling scheme. Each sampled region is color coded to 

denote sampling bins at intervals [Ω1,Ω2] (red), [Ω3,Ω4] (green), and [Ω5,Ω6] (blue).  
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umbrella regions, 23 and 45 marked in Fig. 3.3, to find its value in each measured 

Wb(Ω). For example in the biased free energy landscape Wb(Ω) over the interval [Ω1,Ω2], 

Wb,12(Ω),  the additive constant Cb,12 is given as, 

 

  

C
b,12

C
b,34



W
b,12

(i)W
b,34

(i)
i

3


23




23

 (3.5) 

This again leaves Cb3,4 as an unknown quantity which can then be determined with 

comparison to Wb,56(Ω) in the umbrella region 45, and the added designation of Ω6 as the 

reference state where W(Ω6) = 0 kT. From equation (3.4), the additive constant Cb,56=Wb 

(Ω6) and Equation (3.5) can be similarly posed for Cb,34 as 

  

  

C
b,34

C
b,56



W
b,34

(i)W
b,56

(i)
i

5


45




45

 (3.6) 

3.5 Monte Carlo Move Algorithms 

3.5.1 3D Rotational Receptor Moves 

In order to maintain uniform spacing between the receptors and the surface while 

making 3D receptor rotational moves, the rotations made must be uniform in Euclidean 

space. The following algorithm was developed by Arvo to make random, uniform 

rotational moves:
113 

1. Rotate randomly about the z axis by applying the rotation matrix, R:  

 

  

R 

cos(2
1
)

sin(2
1
)

0

sin(2
1
)

cos(2
1
)

0

0

0

1

 (3.7) 
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2. Rotate randomly from the position (0, 0, a + hrec) to a random position by using the 

Householder matrix, H:  

   H I2vvT
 (3.8) 

     where v is the matrix, 

   

  

v 

cos(2
2
) 

3

sin(2
2
) 

3

1
3

 

(3.9)  

3. The final rotation can be defined with matrix, M as: 

  MHR (3.10)

where 1 is a random variable that ranges from 0 to 1 and the random variables 2 and 3 

also range from 0 to a maximum rotational step size, srot. A maximum value of 1 x 10
-3

 

for srot was found empirically to not disturb the equilibrium receptor coverage and 

allowed for efficient configurational sampling.  

3.5.2 Colloid-Ligand Cluster Moves 

In order to allow our colloids to freely diffuse with dense coverages of ligands on 

their surface, cluster moves were used to translate all interacting colloids and ligands 

when attempting colloidal MC moves. The following algorithm was used to decide 

whether to accept or reject the cluster moves: 

1.  Determine number of ligands, n, bound to a receptor on the colloid (r < alig + ) 

2. Move n ligands on colloid with same translation and rotation as attempted by the 

colloid and receptors in that step. 
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3. Calculate total change in energy due to the cluster move, E, for colloid and the n 

ligands bound. 

 
 

E  E
part

 E
lig

n

  (3.11) 

  

where Epart is the change in energy of the nanoparticle and Elig is the change an energy 

of a ligand. 

4. If E is less than or equal to zero or e
(-E)

 is greater than a random integer, the 

cluster move is accepted. 

By applying the metropolis criterion to these cluster moves, the potential for biasing in 

these moves was avoided. MC move efficiency of the colloid and ligands was still 

maintained for particles with dense coverages of ligands on their surface with a minimum 

of ~78% acceptance rate. 
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4. REVERSIBLE COLLOIDAL AGGREGATION MEDIATED 

BY PROTEIN-CARBOHYDRATE INTERACTIONS  

4.1 Introduction 

Protein-carbohydrate interactions are essential to many processes in biology with 

clinical significance such as cell-cell signaling, recognition, self-renewal and migration. 

Specifically, adhesion of cells to neighboring cells and extracellular matrix (ECM) can be 

induced through weak, specific protein-carbohydrates interactions. As adhesive agents, 

glycosolated (carbohydrate-modified) proteins and lipids can be presented as cell surface-

immobilized membrane components and in a number of cases, soluble saccharide-

binding proteins known as lectins and carbohydrates can be produced as soluble factors 

that can induce or inhibit adhesion. For example, -galactoside binding lectins, termed 

galectins, are secreted by lymphocytes into the ECM and can link together cells through 

binding of the carbohydrate domains of glycoproteins expressed on their surface. 
114, 115, 

116
 Hyaluronic acid (HA) is a polysaccharide found in the ECM that is recognized by the 

membrane protein CD44 to mediate cell-ECM adhesion and upregulated production of 

soluble HA has been linked to metastatic behavior in cancer cells.
10, 117

 Bacterial 

pathogens produce galactose binding lectins, LecA and LecB, to stimulate lectin-

polysaccharide mediated cohesion in biofilm matrices in order to initiate formation and 

maintain stability of biofilms.
118, 119

 Many of these proteins exist as dimers and tetramers 

capable of multi-valent carbohydrate binding and in order to induce adhesion at 

biological interfaces, many of these weak protein-carbohydrate binding events must 

occur simultaneously. Multi-valency on both the biomacromolecular and interfacial scale 

makes possible a wide range of adhesion strengths from weak and reversible to strong 

and irreversible.  
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Binding of lectins to surface-immobilized polysaccharides,
120

 glycans,
121

 and 

glycolipids
122

 have been measured with surface spectroscopy methods to determine the 

effects of surface binding equilibria and valency on adsorption isotherms. To quantify 

adhesion mediated by protein-carbohydrate interactions, mechanical and optical force 

measurement techniques have been employed. Atomic force microscopy (AFM) has been 

used to directly measure protein-carbohydrate binding at the single molecule level as well 

as on a multi-valent interfacial level. Lectin-polysaccharide,
123

 lectin-glycoprotein,
124

 and 

lectin-coated colloid-cell interactions
125

 have been probed with AFM to measure rupture 

forces and binding lifetimes. Total internal reflection microscopy (TIRM) has been used 

to directly measure particle-wall interactions, binding lifetimes, and binding isotherms 

between lectin-decorated colloids with substrates functionalized with polysaccharides.
126

 

Mannose
123

 and glucose
126

 were also introduced to determine their impact on lectin-

polysaccharide mediated adhesion where these monosaccharides could act to inhibit 

lectin-polysaccharide binding. However in each of these measurements, the surface 

density of lectins and carbohydrate ligands remains unchanged as the molecules are 

chemically grafted or physisorbed to the surface. As we have pointed out, many 

biological systems will have adsorption of lectins and carbohydrates dependent on other 

biomolecular cues that can strengthen or weaken adhesion. In this case, competitive 

lectin-monosaccharide binding will not only affect overall lectin-polysaccharide mediated 

adhesion, but also the relative surface coverage of lectins or polysaccharides.  

The stability in colloidal suspensions can also be related to the interfacial 

interactions between colloids. Optical microscopy measurements have been used to 

monitor particle-particle association in 2D concentrated colloidal dispersions mediated by 
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specific binding in a range of biomacromolecular systems including lectins,
68

 DNA,
64

 and 

membrane proteins.
127

 The association kinetics and equilibrium structure in these 

colloidal systems can be attributed to the effective colloidal interactions induced by 

specific biomacromolecular binding at their interfaces. Although these interactions 

cannot be directly measured as in AFM and TIRM measurements, the association of 

colloidal particles in these suspensions will also be highly sensitive to the net colloidal 

interactions and compared to direct single probe (AFM) and single particle (TIRM) 

measurements, a greater amount of statistics can be easily obtained with many particle-

particle collisions occurring. This is ideal for measurement of adhesion induced by weak, 

specific protein-carbohydrate interactions where weak, reversible binding events can 

occur. 

In this work, quasi-2D concentrated dispersions will be used to measure surface 

adsorption and aggregation kinetics mediated by specific protein-carbohydrate 

interactions. As illustrated in Figure 4.1, specific binding between the lectin 

Concanavalin A (ConA) and dextran immobilized on the colloidal surfaces will lead to 

adsorption of ConA onto the colloidal surfaces and once adsorbed, ensembles of weak 

ConA-dextran bonds can form between colloidal particles. Glucose can act as an inhibitor 

of specific ConA-dextran interactions and will lead to changes in both the amount of 

surface adsorption and strength of ConA-dextran binding. This gives us the unique ability 

to interrogate how both the ConA surface coverage and strength of binding affect the 

resulting net particle-particle interactions by changing the concentration of ConA and 

also with the addition of glucose. Using laser scanning confocal microscopy (LSCM), the 

adsorption of ConA to dextran-modified colloidal particles can be visualized and with 
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video microscopy (VM), the rate of aggregation was quantified as a function of ConA 

and glucose concentration. By visualizing the adsorption of ConA to the particle surface 

with LSCM, the effects of changing ConA and glucose concentration on ConA surface 

adsorption are clearly demonstrated and with this, connections between the surface 

coverage of ConA and observed aggregation rate from VM can be established.  

Aggregation kinetics in this system will be greatly impacted by changes in net particle 

interactions mediated by the protein-carbohydrate binding and using a stability ratio 

analysis, we will relate the observed colloidal stability to the net particle-particle 

interactions. Ultimately, the findings from this work allow us to understand how to 

manipulate protein surface adsorption and bridging mediated by weak, specific protein-

carbohydrate interactions to reversibly tune net colloidal interactions. 

 

Figure 4.1. Schematics of (A) reversible ConA-dextran binding, (B) reversible ConA-

glucose binding and (C) reversible aggregation in a quasi-2D dispersion of dextran coated 

colloids mediated by competitive ConA-dextran and ConA-glucose binding. 
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4.2 Theory  

4.2.1 Interaction Potentials 

For a quasi-2D concentrated dispersion of colloidal particles diffusing over a 

surface, the overall net interactions of each particle, unet, will be dependent on both the 

net particle-wall interaction potential, upw, and the net particle-particle interaction 

potential, upp, given by, 

 
  
u

net
(h,r) u

pw
(h)u

pp
(r) (4.1) 

where h is the particle-wall surface separation and r is the particle-particle surface 

separation. Specifically for a polysaccharide-coated particle diffusing over a polymer-

coated substrate at physiological ionic strength in the presence of adsorbing and non-

adsorbing proteins, the net particle-wall interaction potential is given by, 

 
  
u

pw
(h)upf

G
(h)u

V

pw(h)u
S

pw(h)
 

(4.2) 

where the subscripts refer to gravitational (G), van der Waals (V), and steric (S) 

interactions and the superscripts refer to particle-field (pf) and particle-wall interactions 

(pw). Electrostatic interactions are negligible at physiological ionic strengths where the 

Debye length is ~1 nm and depletion attraction induced by non-adsorbing proteins can be 

ignored with volume fractions less than 0.001 in all cases. The gravitational potential 

energy of each particle is dependent upon its height above the wall, h, and its buoyant 

mass, m, given by, 

 
  
u

G

pf (h)  mgh 
4

3
a3(

p
 

f
)gh (4.3) 

where g is the acceleration due to gravity, a is the particle radius, p is the particle 

density, and p is the fluid density. van der Waals attraction between two flat plates can 
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be predicted by Lifshitz theory
79

 with retardation and screening effects incorporated 

using the Derjaugin approximation to account for geometric effects
80

 (e.g. sphere-wall, 

sphere-sphere). For simplicity, an inverse power law approximation can be used to model 

van der Waals interactions between a particle and a wall, given by, 

 
  
u

V

pw(h)  aA
pw

hp
 (4.4) 

where Apw is an effective Hamaker constant appropriate over a short range (h < 15 nm) 

and p is a noninteger power. The fitting constants Apw and p can be adjusted depending 

upon the dielectric properties of the materials. Repulsive steric interactions will occur at 

the interface between the particle and the wall due to compression of the macromolecules 

at their surfaces and this can be modeled with a short range exponential given by,  

   
u

S

pw(h)  exp(h)  (4.5) 

where  and  are determined by the structure of the macromolecular layers at the 

interface.  

For polysaccharide-coated particles at physiological ionic strength in the presence 

of adsorbing and non-adsorbing proteins, the net particle-particle interaction potential is 

given by, 

 

  

u
pp

(r) u
V

pp(r
i,j

)u
S

pp(r
i,j

)u
B

pp(r
i,j

)
ij

  (4.6) 

where the subscripts refer to van der Waals (V), steric (S), and specific 

biomacromolecular interactions (B) and the superscripts refer to particle-particle 

interactions (pp). van der Waals interactions between two particles can also be modeled 

with an inverse power law approximation given by,  

 
  
u

V

pp (r )  2aA
pp

r p
 (4.7) 
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where App is an effective Hamaker constant scaled to 0.5Apw to account for the Derjaugin 

geometric correction and steric interactions between two particles can be modeled with a 

short-ranged exponential given by,  

   
u

S

pp(r)  exp(r)  (4.8) 

ConA will reversibly adsorb to the surface of the colloidal particles due to specific 

interactions with the dextran on the colloidal surfaces. ConA can simultaneously bind to 

up to 4 glucose subunits on the dextran chains and this also allows for bridging between 

colloidal particles via ConA-dextran binding events. To model particle-particle 

interactions mediated by ensembles of ConA bridges forming reversibly between 

particles, an isotropic harmonic well attractive potential can be added with the form, 

 

  

u
B

pp(r) U
min

(
r  r

min

r
min

)2
 (4.9) 

where Umin is the depth of the harmonic well and rmin is the position of the harmonic 

potential well minimum. The resulting overall particle-particle interaction potential can 

be well described by a Morse harmonic potential
87

 given by, 

  
  
u

pp
(r)U

min
[1exp(k(rr

min
)]2U

min
 (4.10) 

where k is the decay length that controls the range of the harmonic well. 

 

4.2.2 Hydrodynamic Interactions 

A colloidal particle near a planar substrate will experience hydrodynamic 

interactions that will hinder the lateral motion of the particle from its predicted Stokes-

Einstein diffusivity, where Do = kT/(6a), and these effects can be accounted for with a 

hydrodynamic correction factor
88

 as, 
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D

||
(h)  D

o
f
||
(h)  (4.11) 

where f|| is a rational fit to the exact solution
89

 as, 

 
  

f
||
(h)

1220(h)2 5654(h)100

12420(h)2 12233(h)431
 (4.12) 

where (h) = h/(a+dex) and dex is the dextran layer thickness. The distribution of 

heights sampled by the particle, p(h), can be related to the net particle-wall interaction 

potential with Boltzmann’s equation as,
90, 91

 

   
p(h)  exp(

u
pw

(h)

kT
)
 

(4.13) 

and predictions of the average lateral diffusion coefficient, D||, can be made using the 

distribution of heights sampled given by,
92

 

 
  

D
||


D
||
(h) p(h)dh
p(h)dh

 (4.14) 

In quasi-2D concentrated dispersions, particle-particle hydrodynamic interactions will 

further hinder the diffusion of the particles and the lateral diffusion coefficient can be 

predicted for particles in concentrated solutions with the correction factor, fpp, as, 
93

 

   
D

||,pp
(r)  f

pp
(r)  D

||
 (4.15) 

where fpp(r) is a rational fit to exact solutions as,
94

 

 

  

f
pp

(r)
54 (r)371 (r)2 8 (r)

54 (r)3154(r)2 60 (r)4
 (4.16) 

where (r) = r/(a+dex).  

Aggregation Kinetics  
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To experimentally determine the rate of aggregation, the rate of singlet particle 

disappearance can be measured over time. A simple mass balance can be used to describe 

the singlet disappearance rate as,
95

 

   

d
1

dt
 2k

11


1

2  k
1i


1


i
i2

N

  (4.17) 

where i is the areal number density of aggregates consisting of i particles and k1i is the 

rate constant for aggregation of single particles with aggregates of size i. For an initially 

stable dispersion, formation of doublets from single particles will largely determine the 

rate of singlet disappearance at the early stages of aggregation and this allows the singlet 

disappearance rate to be further reduced to, 

   

d
1

dt
 2k

11


1

2
 (4.18) 

We can then integrate Eq. (4.18) with respect to time with an initial singlet concentration 

of 1,o at t = 0 which yields,  

   


1,o


1

1 4k
11


1,o
t  (4.19) 

Eq. (4.19) shows that the ratio of the initial singlet concentration to the singlet 

concentration at time t should increase linearly with time and have a slope that is 

dependent upon the singlet aggregation rate constant, k11. A Smoluchowski singlet 

aggregation rate constant can be calculated for particles diffusing in 2D as,
97
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where ragg is the particle encounter radius where ragg = a +dex + aConA and aConA is the 

radius of gyration of ConA. To compare the rate for diffusion-limited aggregation to that 

found in experiment, the stability ratio can be calculated as, 

 
  

W 
k

11,Smol

k
11,exp

 (4.21) 

where kexp is the aggregation rate constant measured experimentally at early times. We 

can define the time frame of early kinetics using a collision rate time constant that we 

have defined as,  

 
  

 
r


2

D
||

 (4.22) 

where r is the average radial distance between particles given by, 

   
r



1,o

1/2(2a2
dex

)
 

(4.23) 

The stability ratio can then be related to net particle-particle interactions. Using the 

pairwise colloidal interaction potential defined in Eq. (4.10), stability ratios can be 

predicted for aggregation into a secondary minimum with a modified Fuchs integral 

given by,
99
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
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where  is the probability a particle has the thermal energy required to escape the 

secondary minimum defined as, 

   
1exp(U

min
/kT)  (4.25) 

where it is assumed that the particles have a Boltzmann distribution of thermal energies. 

4.3 Materials and Methods 
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4.3.1 PEG-Coated Microscope Slide 

Glass microscope slides (Fisher Scientific, Pittsburgh, PA) were sonicated in 

acetone for 30 minutes then placed in Nochromix (Godax Laboratories, Cabin John, MD) 

overnight. The slides were then rinsed 20x times with DI water then sonicated in 0.1 M 

KOH for 30 minutes. They were again rinsed 20x times with DI water and dried with 

nitrogen. Polystyrene-coated glass microscope slides were made using a spin coater 

(Laurell Technologies Corp., North Wales, PA) by placing a ~1 mL drop of a 3% (w/w) 

solution of polystyrene in toluene onto the glass microscope slides and spinning at 1,000 

RPM for 40 s. A batch cell is made on the polystryrene-coated microscope slide by 

adhering a 1 mm ID Viton O-ring (McMaster Carr, Inc., Robbinsville, NJ) onto the slide 

with vacuum grease. F108-Pluronic (PEG-PPO-PEG triblock copolymer, BASF, 

Wyandotte, MI) was physisorbed to the polystyrene-modified glass microscope slides by 

adding 25 µL of 1000 ppm (1 mg/mL) solution of F108-Pluronic in DI water to the O-

ring and it is allowed to adsorb for at least 4 hours. Before each experiment, the cell is 

rinsed 5x times with phosphate buffered saline (PBS, Invitrogen, Carlsbad, CA) to 

remove excess, unadsorbed F108. 

4.3.2 Dextran-Modified Colloidal Silica 

 Nominal 2.34-µm silica microspheres (Bangs Laboratories, Fishers, IN) were 

functionalized with dextran by chemisorption to the surface of the particle through an 

epoxy silane linkage.
109, 126

 Before functionalization, the silica particles were washed 

using a micro-centrifuge (MiniSpin-plus, Eppendorf, Hamburg, Germany) by 

centrifugation at 55,000 RPM for 90 s followed by re-dispersion in fresh DI water. This 

washing step was repeated 5 times. The particles were then dispersed in dry ethanol and 
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washed an additional 5 times in dry ethanol. The particles were then dispersed in a 0.1% 

(v/v) 3-glycidoxypropyltrimethoxysilane (GPTMS, Sigma, St. Louis, MO) in dry ethanol 

for 1 hour. The GPTMS-modified silica colloids were then washed 5 times in dry ethanol 

and 5 times in DI water. They were then dispersed in 30% (w/w) aqueous solution of 500 

kDa dextran and gently mixed with a magnetic stir bar for 24 hours. The dextran-

modified particles are then centrifuged at 10,000 RPM for 10 minutes and re-dispersed in 

fresh DI water. They are then washed with DI water an additional 5 times. Pluronic-F108 

is then physisorbed onto the dextran-modified particles by dispersing the particles in 

1000 ppm (1 mg/mL) aqueous solution of F108-Pluronic overnight. The F108 coating 

step is to ensure the particles are fully coated with a polymer brush to improve colloidal 

stability. The particles are then rinsed 5 times in DI water and then dispersed in PBS. 

4.3.3 Video Microscopy 

 Twenty-five μL of dextran-coated silica particle solution is added into a PEG-

coated batch cell and particles are allowed to sediment for 10 minutes to create a 

concentrated quasi-2D dispersion as shown in a schematic in Figure 1C. A stock solution 

of 10 µM ConA (Sigma, St. Louis, MO) in PBS was filtered with a 0.2 µm filter (SFCA, 

Fisher Scientific, Pittsburgh, PA) and used to create all concentrations of ConA and 

glucose solutions. Before each experiment, the solution in the O-ring was switched with 

solutions of ConA and glucose in PBS. The cell is then covered with a glass coverslip. 

Experiments were performed using an inverted optical microscope (Axioplan 2, Carl 

Zeiss, Obercheken, Germany) with a 63x objective (LD-Plan Neofluar, NA = 0.75, Carl 

Zeiss). Before each experiment, the solution in the O-ring was switched with solutions of 

ConA and glucose in PBS. The cell is then sealed with a glass microscope coverslip.  
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Once the cell is sealed, images are collected with a 12-bit CCD camera (ORCA-ER, 

Hamamatsu, Hamamatsu City, Japan) operated in binning mode 4 (length per pixel, lpp = 

385 nm/pixel, Image area, Ai = 336 x 256 pixels = 129 x 98.56 µm
2
) at a 0.5 s frame rate 

for a total of 3600 frames (1 hr duration). The particle coordinates in each frame are 

determined using image analysis algorithms coded in FORTRAN. The number of 

associated particles can then be tracked by measuring the distance between particle 

centers, Rij,, in each frame. If Rij was less than a cutoff radius, Rcut = 2a + lp, particles i 

and j are considered associated. 

4.3.4 Laser Scanning Confocal Microscopy 

All experiments were performed in cells consisting of a 1 mm ID Viton O-ring 

sealed with vacuum grease to a bare glass cover slip (Corning Life Science, Tewskbury, 

MA). Twenty-five μL of dextran-coated silica particle in PBS is added to the O-ring and 

particles are allowed to sediment for 10 minutes. Since the glass coverslip is bare, the 

particles will irreversibly adhere to the surface due to van der Waals interactions and 

allowing for subsequent imaging in both reflection mode, to image particles, and 

fluorescence mode, to image ConA, that could be later overlayed. A stock solution of 10 

µM fluorescein isothiocyanate-conjugated ConA (FITC-ConA, Sigma, St. Louis, MO) in 

PBS was filtered with a 0.2 µm filter and used to create all concentrations of ConA and 

glucose solutions. Once the particles are immobilized, the solution in the O-ring is 

switched with solutions of FITC-ConA and glucose in PBS. Images were collected using 

an inverted confocal microscope (Axio Observer.Z1, Carl Zeiss) with a mounted 

scanning laser (LSM 5 Pascal Scanner, Carl Zeiss) and an oil-immersion 63x objective 
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(Apochromat, NA = 1.45, Carl Zeiss). A 102 µm x 102 µm area was scanned in reflection 

and fluorescence mode with a 488 nm 500 mW Ar laser as an excitation source.  

4.4 Results and Discussion 

4.4.1 Specific Adsorption of ConA to Dextran-Modified Colloids 

 In prior work,
126

 we first demonstrated how strong attraction was induced via 

ConA-dextran tethering between a particle and a surface. Although ConA has only a 

weak affinity for dextran, multiple ConA-dextran bridges between the particle and the 

wall lead to very strong, irreversible net particle-wall interactions. These particle-wall 

interactions could be further tuned using a monosaccharide like glucose to weaken ConA-

dextran interactions which in turn weakened the net particle-wall interactions. Using 

these same principles, we will now show how particle-particle interactions can be 

manipulated by using multi-valent ConA-dextran interactions to induce attraction 

between dextran-functionalized colloids.  

In Figure 4.2, we begin by first visually demonstrating the effects of varying 

ConA concentrations on the amount of adsorbed ConA to the surface of dextran-

functionalized particles with LSCM imaging and how that relates to particle-particle 

association with snapshots from VM experiments. Adsorption to a surface leads to 

concentrations at the interface that are higher than that of the bulk concentration. This can 

be qualitatively illustrated with fluorescent images of ConA-FITC where fluorescent 

intensities greater than the bulk fluorescent intensity will clearly indicate where ConA 

adsorption has occurred. Combining fluorescent imaging of ConA-FITC with reflectance 

imaging to show where particles are located then allows us to show when ConA has 

specifically adsorbed to the surface of the dextran-modified particles. Snapshots from 
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VM experiments of quasi-2D concentrated dispersions of dextran-modified particles after 

1 hr in solutions of ConA illustrate how altering ConA-dextran mediated particle-particle 

interactions leads to changes in the stability of the dispersions. 

 

Noticeable variations in the amount of ConA specifically adsorbed to the particles 

are observed for ConA concentrations ([C]) ranging from 0.1 µM – 10 µM range and this 

is shown in the left column of Figure 4.2. When [C] = 0.1 µM, no ConA adsorption can 

be seen on the surface of the dextran-modified particles. When [C] = 1 µM, we begin to 

see ConA accumulate on the surface of the particles and an even greater amount ConA 

adsorbs to the surface of the particles at [C] = 10 µM. These variations in adsorption are 

 

Figure 4.2. 2 µm dextran-modified silica colloids in the presence of ConA. The left 

column shows static images of dextran modified colloids (shown in green) taken from 

LSCM in varied concentrations of ConA-FITC (shown in red) and glucose. The right 

column shows the final snapshot taken at t = 1 hr from VM experiments at the 

corresponding concentrations of ConA.  
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not unexpected in these concentration ranges as the equilibrium surface coverage will be 

dependent on the ConA-dextran dissociation constant, KC. A simple Langmuir isotherm 

model can be used to relate the equilibrium surface coverage to KC as given by, 

   

 
K

C

1[C]

1 K
C

1[C]
 (4.26) 

where KC
-1

  (i.e. ConA-dextran association constant) is the adsorption coefficient.  

 The high equilibrium surface coverages observed with [C] = 1 and 10 µM are 

reasonable based on reported KC from 0.1-1 µM.
128, 129

 The apparent vanishing of ConA 

surface adsorption at a bulk ConA concentration of 0.1 µM would support an estimated 

KC closer to 1 µM. However, a simplified Langmuir isotherm model, more appropriate 

for monovalent surface adsorption, does not account for cooperativity or multi-valency of 

ConA-dextran interactions which could also play an important role in the expected 

surface coverage.  

 In the right column of Figure 4.2, the final snapshot at t = 1 hr in VM experiments 

is shown at the same ConA concentration range from 0.1 - 10 µM. At [C] = 0.1 µM, the 

quasi-2D dispersion of dextran-coated particles largely remains in a stable, fluid state 

where only a few small clusters of associated particles have formed. When the 

concentration is increased to 1 µM, a majority of the particles have associated into larger 

clusters. At [C] = 10 µM, all particles have associated into large fractal-like aggregates. 

The presence of these large clusters at [C] = 1 and 10 µM indicates a net attraction 

between the colloidal particles which can be related to the ConA adsorption that was 

observed in the left column of Figure 4.2. Since ConA is a tetramer capable of binding up 

to 4 glucose subunits of the dextran chains, ConA can specifically adsorb to two particles 

once the particles come into contact to create a bridge. Multiple, simultaneous 
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occurrences of weak ConA-dextran bridging events can then lead to strong, net particle-

particle interactions. 

 Net particle-particle interaction potentials induced by specific ConA-Dextran 

binding will be examined further in later sections, but inferences to the differences in 

particle-particle interactions at varied [C] can be made from the final state of the 

dispersion and the structure of the aggregates that have formed. The weakest particle 

association is clearly observed at [C] = 0.1 µM where only a few clusters of particles 

have formed. It is clear at both [C] = 1 µM and 10 µM, many large clusters have formed 

due to strong net attraction between the colloids. However, the aggregates at [C] = 1 µM 

are noticeably more compact than those seen at  [C] = 10 µM which have a more stringy 

and fractal-like structure. Fractal aggregate formation is characteristic of aggregation in 

the reaction-limited regime in systems with strong, irreversible particle-particle 

interactions.  

4.4.2 Effects of Competitive ConA-Glucose Binding 

 In Figure 4.3, LSCM imaging of ConA on dextran-coated colloids and snapshots 

from VM experiments are shown at a fixed ConA concentration and varied glucose 

concentrations to illustrate the effect of introducing a monosaccharide inhibitor of ConA-

dextran interactions. We can again visualize the particle surface adsorption of ConA with 

fluorescence-reflectance image overlays to assess the effect of competive ConA-glucose 

binding on the specific adsorption of ConA to dextran-coated colloids. The stability of 

dispersions of dextran coated colloids in the presence of ConA and glucose can be shown 

visually in the final snapshots taken from VM experiments. 
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 In the left column of Figure 4.3, LSCM images are shown at a fixed 10 µM ConA 

concentration and varied glucose concentrations ([G]). When [C] = 10 µM in the absence 

of glucose, we observed the greatest amount of ConA adsorption to the particles as 

shown in the left column of Figure 4.2. At [C] = 10 µM and [G] = 1 mM, we still see a 

large amount of ConA adsorbed to the surface as was previously seen in the absence of 

glucose. When [G] is increased to 10 mM, there is a significant decrease in the amount of 

ConA adsorbed to the surface of the dextran-coated particles.  Finally at [G] = 100 mM, 

virtually no ConA adsorbs to the surface of the particles. By introducing glucose at these 

conditions, we anticipated that ConA particle surface adsorption would be greatly 

impacted by glucose occupying and potentially displacing dextran from ConA binding.  

 

Figure 4.3. 2 µm dextran-coated silica colloids in the presence of ConA and glucose. The 

right column shows static images of dextran-coated colloids (shown in green) taken from 

LSCM in varied concentrations of ConA-FITC (shown in red) and glucose. The left 

column shows the final snapshot taken at t = 1 hr from VM experiments at the 

corresponding concentrations of ConA and glucose. 
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We can rationalize the observed changes in surface adsorption as competitive 

inhibition of ConA-dextran interactions with glucose. By adding glucose as a competitive 

monosaccharide, the interactions between ConA and dextran will be effectively 

weakened and as a result, changes to KC to an effective dissociation constant, KC,eff, 

which can be calculated as, 

   

K
C ,eff

 K
C

(1
[G]

K
G

)  (4.27) 

where KG is the ConA-glucose dissociation constant. As [G] increases to values on the 

order of KG, KC,eff will begin to increase and this will lead to decreases in the equilibrium 

surface coverage as predicted in Eq. (4.27). With reported KG ranging from 1-25 mM,
33, 

130, 131
 the trends observed in the surface adsorption of ConA as a function of glucose 

concentration are reasonable within this range of concentrations.  

The right column of Figure 4.3 shows the final snapshots from VM experiments at a 10 

µM ConA concentration and glucose varied over the same range from 1-100 mM. In the 

absence of glucose, all particles were associated into large fractal aggregates at [C] = 10 

µM as shown in the right column of Figure 2. At [G] = 1 mM, large fractal aggregates 

were also observed after 1 hr. At [G] = 10 mM, only a small fraction of particles 

associate into clusters and at [G] = 100 mM, the dispersion remains in a stable, fluid 

state. We can again relate these trends to changes in net particle-particle interactions 

mediated by ConA-dextran binding. Introducing glucose will not only reduces the 

amount of ConA adsorb to the surface, but it will also hinder ConA-dextran bridge 

formation as a result of the effective weakening of ConA-dextran interactions. The 

combination of lower ConA surface coverages and weaker ConA-dextran bridges due to 

competitive ConA-glucose binding explains the resulting weakening of net particle-
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particle attraction.  

4.4.3 Aggregation Kinetics of Dextran Coated Colloids in ConA and Glucose 

 In Figure 4.4, we quantify the aggregation kinetics of dextran-modified particles 

in the presence of ConA and glucose by tracking the areal number density of 

unassociated particles, 1, over time. By using a criteria based on the particle-particle 

separation, we are able to identify when colloidal particles are in contact. However even 

in stable quasi-2D concentrated dispersions, a number of particles that are not necessarily 

associated into doublets or larger clusters can be in contact due to the high particle 

collision frequency. To account for this, we can use a singlet ratio, 1 = 1/1,o, where 1,o 

is the initial areal number density of singlets. Compared to a stable, concentrated 

dispersion, the number of apparent singlet particles will be greatly reduced as clusters of 

particles form due to aggregation. By using the singlet ratio, the progression from an 

initially stable dispersion to an unstable, aggregated dispersion can be more easily 

monitored.  

In Figure 4.4A, aggregation kinetics are presented for quasi-2D concentrated 

dispersions of dextran-coated particles with [C] ranging from 0.01 µM to 10 µM. At [C] 

= 0.01 µM (yellow diamonds), no aggregation is observed as the singlet ratio fluctuates at 

values from 0.9 to 1. At [C] = 0.1 µM (green squares), particles slowly aggregate and 

after 1 hour, approximately half of the initial singlets have associated into aggregates. At 

[C] = 1 µM (red triangles down), the particles have more rapidly associated into 

aggregates until reaching a plateau singlet ratio around 0.1 after 2200 s (~37 min). At [C] 

= 10 µM (black circles), the aggregation rate is further increased reaching the same 
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plateau value after 700 s (~12 min). It is clear that rate of aggregation is strongly 

dependent upon [C].  

As was explained visually with Figure 4.2, increasing [C] leads to increases in the 

amount of ConA adsorbed to the particles and this will also increase the frequency of 

ConA-dextran bridging events between particles. The kinetics of colloidal aggregation 

will be highly dependent upon interparticle interaction potentials. This is reflected in the 

observed aggregation kinetics as increasing [C] leads to more rapid singlet disappearance. 

As the number ConA-dextran bridges increases, stronger net particle-particle attraction 

will be induced which will increase the rate of particle association. 

In Figure 4.4B, aggregation kinetics are shown at fixed [C] = 10 µM and [G] = 0, 

0.1, 1, 2, 5, 10, 25, 100 mM to examine how competitive ConA-glucose binding alters 

aggregation mediated by ConA-dextran binding. In the absence of glucose (black circles), 

rapid flocculation was observed and this can be compared to the aggregation rate as [G] 

increases. At 0.1 mM (red triangles down) and 1 mM (green squares), rapid aggregation 

is still observed with the singlet ratio again reaching a plateau value around ~0.1 after 

700 s. At 2 mM (yellow diamonds), the rate of aggregation is slightly hindered and a 

plateau singlet ratio of ~0.25 is reached. At 5 mM (blue triangles up), the aggregation rate 

is greatly decreased and a plateau value of 0.1 is eventually reached after 2800 s (~46 

min). At [G] = 10 mM (pink hexagons), 25 mM (cyan circles) and 100 mM (gray 

triangles down), the dispersions remain stable for the duration of the experiment with the 

singlet ratio fluctuating at values between 0.9 and 1.  

As pointed out in the visual interpretation of competitive ConA-glucose binding 

in Figure 4.3, both adsorption of ConA to the particle and ConA’s ability to form  
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attractive bridges via specific ConA-dextran interactions will be hindered in the presence 

of glucose. When [G] < 1 mM, no net effect was observed on the aggregation rate.  We 

begin to see weakening ConA-dextran mediated particle interactions at [G] = 2 and 5 mM 

 

Figure 4.4. Singlet ratio versus time for (A) dextran coated colloids in [C] = 10 µM 

(black circles), 1 µM (red triangles), 0.1 µM (green squares), 0.01 µM (yellow diamonds) 

and (B) for dextran coated colloids with [C] = 10 µM and [G] = 0 mM (black circles), 0.1 

mM (red triangles down), 1 mM (green squares) 2 mM (yellow diamonds), 5 mM (blue 

triangles up), 10 mM (pink hexagons), 25 mM (cyan circles), and 100 mM (gray triangles 

down).  
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with slower aggregation rates however the extent of aggregation is similar to that of the 

[G] = 0 mM case. Once [G] reaches 10 mM, net particle-particle attraction is significantly 

reduced and particles no longer associate into aggregates. From these results, it is clearly 

shown how competitive ConA-glucose interactions can be used to manipulate the net 

particle-particle interactions by limiting ConA adsorption and effectively weakening 

specific ConA-dextran interactions.  

 In Figure 4.5, the inverse singlet ratio is shown as a function of time using the 

aggregation kinetics at early times for each of the cases shown in Fig. 4.4. In a 

flocculating suspension, doublets will begin forming from the association of singlet 

particles at the onset of aggregation. To measure the rate of doublet formation, the 

inverse of the rate of singlet disappearance can be examined at the early stages of 

aggregation. As shown in Eq. (4.19), the inverse singlet ratio, 1
-1

 = 1,o/1, will increase 

linearly with time at short times as doublets form and can be used to determine the 

singlet-singlet reaction rate constant, k11. The rate of single particle association will also 

be dependent on 1,o as the number of collisions between particles increases with 

increasing particle concentration. A collision rate time constant, , can be used to account 

for these effects and is defined in Eq. (4.20). We can use  to normalize the time scale of 

early kinetics in experiments with different 1,o. 

In Figure 4.5A, the inverse singlet ratio is shown as a function time at varied 

ConA concentration. The lines shown are linear fits to each case to determine the singlet-

singlet reaction rate constant reported in Table 1. With [C] = 1 µM and lower, there is no 

increase in the inverse singlet ratio indicating no doublet formation at short times. When 

[C] = 10 µM (black circles), 1
-1 

increases linearly at short times as was expected and this 
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is an indication of doublet formation. The rate of singlet-singlet association is clearly 

influenced [C] as this alters ConA-dextran mediated particle-particle interactions. 

 In Figure 4.5B, the inverse singlet ratio is shown as a function time at fixed 10 

µM ConA concentration and varied glucose concentration where we can again see the 

inhibitory effects of competitive ConA-glucose interactions. At [G] < 1 mM, the linear 

increase in 1
-1

 is observed at approximately the same rate seen in the absence of glucose. 

At [G] > 2 mM, we observe inhibition of doublet formation at short times with little 

 
Figure 4.5. Inverse singlet ratio versus time for (A) dextran coated colloids in [C] = 10 

µM (black circles), 1 µM (red triangles), 0.1 µM (green squares), 0.01 µM (yellow 

diamonds) and (B) for dextran coated colloids with [C] = 10 µM and [G] = 0 mM (black 

circles), 0.1 mM (red triangles down), 1 mM (green squares) 2 mM (yellow diamonds), 5 

mM (blue triangles up), 10 mM (pink hexagons), 25 mM (cyan circles), and 100 mM 

(gray triangles down). 
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increase in 1
-1

. In the next section, the rate of doublet formation will be related to 

pairwise colloidal interactions using a stability ratio analysis. 

Table 4.1 Values of 1,o, , measured k11,exp and predicted k11,Smol for diffusion-limited 

aggregation for each ConA and glucose concentration. 
[C] (µM) [G] (mM) 1,o (µm

-2
)  (s) k11,exp (µm

2
/s) k11,Smol (µm

2
/s) 

0.01 0 0.048 96.8 5.39 x 10
-3 

 0.845 

0.1 0 0.039 140 4.07 x 10
-3

 0.744 

1 0 0.047 98.8 0.014 0.827 

10 0 0.043 116 0.42 0.782 

10 0.1 0.051 82.7 0.50 0.874 

10 1 0.043 118 0.37 0.782 

10 2 0.052 77.2 0.028 0.894 

10 5 0.066 43.4 1.76 x 10
-3

 1.07 

10 10 0.04 131 1.21 x 10
-3

 0.757 

10 25 0.047 98.8 1.45 x 10
-3

 0.827 

10 100 0.039 140 7.56 x 10
-4

 0.744 

 

4.4.4 Stability Ratio and Net Particle-Particle Interactions 

In Figure 4.6, the stability ratio measured from k11 is shown and based on the 

measured stability ratio, predictions of theoretical Morse potential well depth are shown. 

The stability ratio is used to compare aggregation kinetics at early times in experiment to 

the expected rate for diffusion-limited aggregation. In order to relate early aggregation 

kinetics to particle-particle interactions, the stability ratio for theoretical particle-particle 

interactions potentials can be calculated using Eq. (4.24). In many electrostatically 

stabilized colloidal systems, an energy barrier may exist that colloidal particles must 

surmount before irreversibly aggregating at the primary minimum. However, the 

colloidal particles in this system have macromolecular coatings that provide steric 

stability and present an essentially infinite barrier to aggregation into the primary 

minimum. With the primary minimum inaccessible, reversible aggregation due to a 
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secondary minimum can occur where the range and depth of the secondary minimum will 

affect the rate of colloidal aggregation. Morse harmonic well potentials are used to model 

the secondary minimum in this system where the depth of the well is varied as a function 

of ConA and glucose concentration. 

In Figure 4.6A, the stability ratio is shown as a function of ConA concentration. 

As the ConA concentration increases, the stability ratio decreases from a value near 200 

at [C] = 0.1 µM, typical for stable suspensions, to a value near 1 at [C] = 10 µM where 

the aggregation rate approaches that of the diffusion-limited rate. We can see from this 

trend that as [C] increases, the system aggregates more rapidly as the ConA-dextran 

mediated particle-particle attraction increases. By increasing [C], a greater amount of 

ConA adsorbs to the particles and as a result of this, increases in ConA-dextran bridging 

events would be expected. 

In Figure 4.6B, the stability ratio is shown as function of glucose concentration at 

a fixed [C] = 10 µM. A stability ratio remains near 1 at glucose concentration below 1 

mM. At these low glucose concentrations, ConA-dextran mediated appear undisrupted as 

the aggreration remains diffusion-limited.  At [G] = 2 mM, the stability ratio increases to 

around 30 and at [G] > 5 mM, the suspension completely re-stabilizes with stability ratios 

approaching 1000. This threshold value of [G] = 5 mM could be seen as the point where 

ConA binding sites are saturated due to ConA-glucose interactions. With ConA-dextran 

interactions inhibited, particle-particle association via ConA-dextran binding will also be 

limited and the dispersions remain stable.  
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In Figure 4.6C, we relate the transitions in colloidal stability as a function of [C] 

to pairwise particle interactions using a Fuchs integral stability ratio analysis. Using the 

harmonic well depth, Umin, as an adjustable parameter, theoretical Morse potentials are 

predicted based on the stability ratios measured in experiment. It is expected in this 

system that a secondary minimum will exist due to ConA bridging between dextran 

layers. As the frequency and number of these reversible ConA-dextran bridges increases, 

the depth of the effective particle-particle harmonic well should also increase. At [C] < 1 

µM, vary shallow well depths from 0.01 - 0.1 kT are predicted where very weak, 

reversible particle-particle association would be expected. At [C] = 10 µM, the depth well 

increases dramatically to 10 kT where particles would irreversibly adhere at contact. This 

 

Figure 4.6. Measured stability ratio, W, as a function of (A) ConA and (B) glucose 

concentration shown on a log-log scale. Predicted Morse potential well depth, Umin, as a 

function of (C) ConA and (D) glucose concentration shown on a log-log scale.  
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result shows how particle-particle interactions can be tuned over a wide range of 

strengths using weak ConA-dextran interactions. 

In Figure 4.6D, we apply the Fuchs stability ratio analysis to predict Morse 

potential well depths as a function of glucose concentration. At [G] = 1 and 0.1 mM, 

attractive well depths of ~4 and 10 kT, respectively, are predicted indicating very strong 

particle-particle attraction remains at these low glucose concentrations. The attraction is 

dramatically reduced at [G] = 2 mM with a well depth of 0.1 kT that then reduces in 

further to 0.01 kT at [G] > 5 mM. Competitive ConA-glucose interactions have a clear 

effect on the ConA-dextran mediated particle-particle interactions. As more ConA 

binding sites are occupied by glucose, ConA will more weakly adsorb to the dextran 

layers which will decrease the strength and overall number of ConA-dextran bridges. 

With ensembles of these weak, ConA-dextran bridges necessary to induce strong 

attraction between the particles, a very sharp transition from strong, irreversible particle 

interactions to weak, reversible particle interactions would be expected due to disruption 

of ConA-dextran interactions with glucose as an inhibitor. 

4.5 Conclusions 

Colloidal stability and aggregation kinetics were measured in quasi-2D 

concentrated dispersions of dextran-modified colloidal particles in the presence of varied 

ConA and glucose concentrations. Specific adsorption of ConA to dextran-modified 

colloids was observed using combined confocal fluorescence and reflectance imaging and 

aggregation kinetics in these dispersions were quantified using optical video microscopy. 

Instability was induced in the dispersions as ConA concentration increased. Increasing 

the ConA concentration lead to greater equilibrium coverage of ConA on the surface of 
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the particles allowing for stronger ConA-dextran mediated particle-particle binding 

events. Stability could be re-established using glucose as a competitive inhibitor in 

dispersions that rapidly aggregated at a 10 µM ConA concentration. The presence of 

glucose lead to lower equilibrium ConA-particle surface coverages and weaker ConA-

dextran mediated particle-particle interactions. Using a stability ratio analysis, predictions 

of net particle-particle interactions were made using the initial rate of aggregation. Future 

work will aim to make comparisons of the predicted particle-particle interactions to 

quantitative modeling efforts to further interpret the effects of weak, specific protein-

carbohydrate interactions on the observed colloidal interactions. 
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5. MODELING COLLOIDAL INTERACTIONS MEDIATED 

BY WEAK, SPECIFIC BIOMACROMOLECULAR BINDING 

5.1 Introduction 

Specific, reversible interactions between nucleic acids, peptides, proteins, and 

carbohydrates are critical to many important biological functions. The movement of cells 

is coordinated through weak protein-protein and protein-carbohydrate interactions for 

dynamic control of morphology, viscoelasticity, and surface adhesion.
7
 Transcription 

regulator proteins must interact weakly with DNA to facilitate an efficient search through 

billions of base pairs for target sequences.
132

 The onset and progression of many disease 

states are dependent on processes mediated by weak, specific biomacromolecular 

interactions such as anomalous self-assembly of proteins in amyloid fibrillogenesis
133

 and 

weakened membrane protein adhesion in cancer metastasis.
134

 Weak, specific 

biomacromolecular interactions have also been exploited in biosensors
135

 and drug 

delivery vehicles
136

 where they can act as highly sensitive detectors and triggers to 

provide a tunable response to target biomolecules. By understanding these interactions at 

both the biomacromolecular and interfacial scale, their roles in fundamental biology can 

be further elucidated and with more rigorous models, their use as tools in diagnostic and 

therapeutic applications can be further improved. 

Experimental techniques such as fluorescence resonance energy transfer
137

 and 

surface plasmon resonance
138

 have been used to determine the binding equilibria of 

biomacromolecules interacting in bulk solution and at an interface, respectively. Bulk and 

interfacial dissociation constants can be determined with these techniques, but relating 

them to effective colloidal and surface interactions mediated by their complexes requires 

alternative methods. Atomic force microscopy (AFM) has been used to sensitively 
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measure integrin-mediated interactions with fibronectin
139

 and E/N-cadherin binding
140

 at 

the surface of cells. Optical force measurement techniques such as total internal reflection 

microscopy (TIRM) and optical tweezers have been used to measure weak, kT scale 

interactions between colloids and surfaces mediated by protein-carbohydrate 

interactions,
70

 temperature-sensitive DNA complexation,
63

 and actomyosin binding.
54

 

Colloidal attraction induced by weak, specific biomacromolecular interactions can range 

from equilibrium interactions to guide colloidal self-assembly using DNA
63

 to non-

equilibrium irreversible aggregation induced by membrane proteins
66

 and peptides.
67

   

Predicting effective colloid and surface interactions, either analytically or in 

simulation, is challenging in these types of systems. Many factors such as surface 

receptor coverage, receptor-ligand interaction strength and range will have a great impact 

on the observed attraction strength between the interfaces. Modeling through analytical 

and simulation techniques have been employed to quantify effective interactions in a 

number of systems such as DNA mediated colloidal assembly systems
63, 75

 and ligand-

receptor mediated effective colloid-cell surface interactions for targeted drug delivery,
141, 

142
 and membrane protein mediated cell adhesion.

143, 144
 However, many of these models 

are specific to the material system of interest and cannot be broadly applied to 

equilibrium and non-equilibrium effective colloidal and surface interactions mediated by 

reversible biomacromolecular interactions. 

In this work, we develop a computational model of biomacromolecular binding at 

interfaces and effective colloidal and surface interactions mediated through these 

receptor-ligand surface interactions. Fig. 5.1 outlines the systematic approach taken to 

develop this model from the biomacromolecular scale up to the colloidal and interfacial 
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scale. In order to develop a quantitative model of colloidal and surface interactions driven 

by biomacromolecules, it is important to establish a solid framework of how specific, 

reversible biomacromolecules interact in the bulk solution phase, shown in Fig. 5.1A, and 

at flat and colloidal interfaces, shown in Fig. 5.1B and 5.1C, respectively. The receptor-

ligand interactions are modeled in this work with a quasiharmonic interaction potential 

allowing for direct input of each constituent dissociation constant. Bulk equilibrium 

association and interfacial equilibrium adsorption on colloids and surfaces were 

determined over a range of interaction strengths and ligand sizes. With 

biomacromolecular interactions characterized at interfaces, ligand-receptor mediated 

effective potentials of mean force between colloids as shown in Fig. 5.1D could then be 

determined using Monte Carlo simulation combined with Umbrella Sampling
105

 (MC-

US).  

Using this model, direct connections can be made to biomacromolecular binding 

at interfaces to measured equilibrium and non-equilibrium colloidal and surface 

interactions. Experimental measurements teamed with modeling efforts will allow for a 

more in-depth and complete description of the role that biomacromolecular interactions at 

interfaces play in these systems. By developing a model with well-defined, biologically 

relevant parameters, experimentally determined quantities from AFM (i.e., surface 

adhesion), TIRM (i.e. colloid-surface interactions), optical tweezers (i.e. colloidal pair 

potentials), and optical microscopy (i.e., colloidal phase behavior) can be further 

interpreted to observe the effects of valency, binding affinity, binding lifetimes, and 

surface receptor density.  
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5.2 Theory 

5.2.1 Theoretical Model 

In this work, effective interactions of receptor-functionalized colloids in the 

presence of freely diffusing ligands will be investigated. A lectin-polysaccharide system 

 

Figure 5.1. Schematics of (A) receptor-ligand bulk molecular equilibrium association, 

(B) receptor-ligand surface adsorption, (C) receptor-ligand particle surface adsorption, 

and (D) receptor-ligand mediated particle-particle interactions.  
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was chosen to demonstrate the utility of this model for real biomacromolecular systems. 

The lectin Concanavilin A (ConA), shown in Fig. 5.1A, can be approximated as a hard 

sphere with a well-defined specific interaction with receptors. A ‘sticky’ hard sphere 

representation has been used to model protein interactions in crystallization of 

concentrated solutions
145, 146

 and at interfaces during adsorption.
147, 148

 The 

polysaccharide dextran, also shown in Fig. 5.1A, will have a simplified representation. 

Rather than including a rigorous description of freely-jointed carbohydrate chains, the 

polysaccharide layers will be represented as interactive sites that have no effective size.  

The interactive carbohydrate sites will be immobilized directly above a surface to 

characterize equilibrium association of ligands at a flat interface as shown in Fig. 5.1B 

and at a colloidal surface as shown in Fig 5.1C. The simplified polysaccharide 

representation was decided upon by considering the interactions of the lectins at the 

interface. The specific adsorption of the lectins to the polysaccharide layers will be 

dependent on its interactions with carbohydrate subunits at the surface of the 

polysaccharide layers and lectin bridges formed between the polysaccharide layers will 

mediate the resulting colloidal interactions. Steric contributions from the polysaccharide 

layers to the effective colloidal interactions are not crucial in this study of the specific 

interactions as penetration of the lectins into a polysaccharide layer is unlikely. To study 

effective colloidal interactions mediated by lectin-carbohydrate interactions, effective 

potentials of mean force will be determined between 2 carbohydrate receptor-decorated 

colloidal particles with lectins equilibrated at their surface as shown in Fig. 5.1D. 

Although these representations were chosen considering a specific material 

system, we will show how this approach could be broadly applied to a range of 
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biomacromolecular systems by presenting a general model for a three-component system 

consisting of colloids, ligands, and their complimentary receptors.  A summary of the 

interactions of each component in the system is given in Table 5.1. Colloids and ligands 

are treated as hard spheres with radius a and alig, respectively. Hard wall interactions 

exist for colloids interacting with other colloids and ligands in the system. Ligands 

experience a hard wall interaction with the colloids and surfaces, but have no net 

interaction with other ligands. The receptors are treated as points in space with no 

effective size. Receptors will only experience interactions with ligands in this system, and 

in the next section, these interactions will be defined.  

5.2.2 Receptor-Ligand Interaction Potentials 

Receptor-ligand interactions are modeled as entropic springs with a monovalent 

harmonic well potential, URL. This is an estimate of the free energy between two 

interacting biomacromolecules averaged over all of the angular and conformational 

dependencies of their complex. It has been successfully used in molecular dynamics 

studies of single-well receptor-ligand interactions.
149, 150

 URL is a function of receptor-

ligand separation, r, with the form, 
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(5.1) 

that has an interaction range, , that can be calculated as, 
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2u
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k
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 (5.2) 

which is dependent on the harmonic well depth, umin, and spring constant, ks. With this 

potential, neither the ligands nor receptors have an effective size with umin at zero 
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receptor-ligand separation. The effective size of the biomacromolecules is important to 

consider in these systems and we will demonstrate how this can be added to their overall 

interactions. 

The ligands of interest in this work (i.e. ConA) will be represented as hard spheres 

that interact specifically with receptors in the bulk or at an interface. In order to introduce 

an effective size to the ligands, they can be modeled as hard nanospheres with harmonic 

well tails. For the receptor-ligand nanosphere potential, URLN, we use the form, 
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(5.3)  

These ligands with an effective size will experience infinite repulsion at ligand-receptor 

contact that then decays into a harmonic well. It is important to note that these hard 

spheres with a harmonic well tail will not produce the same binding equilibria of the 

harmonic well potentials alone. Increasing the effective size at constant ks and umin also 

increases the effective ligand-receptor attraction. The goal in this work is to model the 

specific interactions of biomacromolecules in these systems with well-defined association 

equilibria and in the next section, we will show how biomacromolecular dissociation 

constants are calculated. 

5.2.3 Predicting Receptor-Ligand Association Equilibria 

An analytical expression for the dissociation constant, Kd, of a harmonic well 

potential can be determined using the Bjerrum approach to calculating absolute 

macromolecular binding free energy developed by Luo and Sharp. For a simple harmonic 

well potential as in Eq. (5.3), the Kd can be calculated with the expression,
100
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 (5.4)  

which in short, correlates the Brownian fluctuations in position of the biomacromolecules 

in their bound state to the biomacromolecules in their unbound state and exponentially 

decays with increasing well depth. Dissociation constants can be predicted for a wide 

range of harmonic well potentials. This expression also shows that an infinite set of 

harmonic well potentials can be created with identical dissociation constants as it is not 

only dependent on the well depth, but also the range of the interaction. This expression is 

limited to predictions for harmonic well potentials and an alternative method is required 

for ligands with an effective size. 

Table 5.1  Pairwise interaction potential, Uij, as function of separation, r, for each 

component in the system.  

                     j                                    
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 Eq. (5.3) 
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In order to make dissociation constant predictions for ligands with an effective 

size, the second virial coefficient, B2, is calculated for the ligand nanospheres to estimate 

their effective interaction strength. The second virial coefficient for the ligand 

nanosphere, B2,RLN,  is calculated with the following expression, 
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The first term is the hard sphere component of B2,RLN that is simply four times its volume, 

V. The second term accounts for the harmonic well tail component of B2,RLN and this is 

calculated using an expression which can be applied to any arbitrary potential to 

determine B2. 
101

 An equivalent harmonic well potential is then found by determining a 

harmonic well with the same B2 as the ligand nanosphere potential. The second virial 

coefficient of a harmonic well potential, B2,RL, is calculated as,  

 
  

B
2,RL

12 r2(1e
(
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RL
(r)
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0



 )dr  (5.6) 

using the same expression to determine B2 for any arbitrary potential. To find an 

equivalent harmonic well potential, umin in Eq. (5.4) for URL is adjusted at constant ks 

until B2,RL is equal to B2,RLN of the ligand nanosphere potential. These two potentials are 

then considered equivalent and the Kd of the harmonic well calculated from Eq (5.4) is 

assigned to the ligand nanosphere.  

With these dissociation constants determined, adsorption equilibria at an interface 

can also be predicted. Since the receptor-ligand interactions in our model are monovalent, 

the Langmuir adsorption model can be used to predict adsorption equilibria at an 

interface with the expression, 

 

  

 
K
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1C

1 K
d

1C
 (5.7) 

which determines the fraction of occupied receptors, , as a function of bulk ligand 

concentration, C. The adsorption coefficient for this system is the inverse of Kd (i.e., the 

association constant, Ka). Using the combined Bjerrum-B2 approach to predict Kd, the 
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equilibrium interactions of receptors and ligands of varied size can also be predicted at 

interfaces. 

5.3 Methods 

5.3.1 Simulations of Bulk and Interfacial Equilibrium Interactions  

MC simulations of bulk equilibrium association (MC-EA) were used to determine 

the dissociation constant of a receptor and a ligand with harmonic well interactions. All 

fixed parameters used in each simulation set are presented in Table 5.2. In all 

simulations, a fixed spring constant, ks was used and  of each harmonic well was 

calculated with Eq. (5.2). as a function of Umin. For each case, periodic boundary 

conditions were used to maintain a constant bulk ligand and receptor concentration of 

0.1Kd determined with Eq. (5.4) The receptors and ligands are considered to be in their 

bound state if r < (alig + ). The dissociation constant was calculated from the 

concentration of unbound receptors, [R], unbound ligands, [L], and receptor-ligand 

complexes, ([RL]) as  
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  (5.8) 

which averages over the n configurations generated.   

MC simulations of biomacromolecular surface adsorption (MC-SA) were used to 

determine the Langmuir isotherms of freely diffusing ligands interacting with surface 

immobilized receptors. Receptor sites with a uniform spacing of LR were immobilized at 

height hrec above a surface with area SA. A bulk ligand concentration is maintained in a 

Table 5.2 Fixed parameters used in MC bulk equilibrium association simulations (MC-

EA), MC surface adsorption simulations (MC-SA), MC colloidal surface adsorption 
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simulations (MC-CSA), and MC umbrella sampling (MC-US) simulations. The variables 

correspond to the following quantities starting from the first row: maximum step size in 

ligand radii for MC-EA and MC-SA and in particle radii for MC-CSA and MC-US; 

maximum rotation distance in particle radii; spring constant; bulk ligand concentration; 

number of ligands; number of receptors; particle radius; planar surface area for MC-SA 

and colloidal surface area for MC-CSA and MC-US; aspect ratio of box; lateral receptor 

spacing; volume of cell; and height of box. Dashes indicate the parameter was varied 

throughout or not applicable in that particular simulation set.  

 MC-EA MC-SA MC-CSA MC-US 

n 2 x 10
6
 2 x 10

6
 2 x 10

6
 2 x 10

6
 

s (radii) 0.01 0.01 0.01 0.01 

srot (radii) - - 0.0001 0.0001 

ks (pN/nm) 7 7 7 7 

C (µM) 
0.01Kd  

from Eq. (5.4) 
10 10 - 

Nlig 1 100 568 867 

Nrec 1 16 - - 

a (nm) - - 100 100 

hrec (nm) - 
alig +   

from Eq. (5.2) 

alig +   

from Eq. (5.2) 

alig +   

from Eq. (5.2) 

SA (µm
2
) - 0.075 0.126 0.252 

AR 1 1 1 1 

LR (nm) - 68 30 30 

Vcell (µm
3
) - 0.017 0.094 - 

H (nm) - 221 455 - 

 

box with periodic boundary conditions in the x and y directions and a fixed height, H. As 

in the bulk molecular adsorption MC simulations, the concentrations of each component 

and their complexes are tracked and the fraction of occupied receptors are calculated with 



 

 82 

the equation, 
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averaged over n configurations. 

MC simulations of biomacromolecular colloidal surface adsorption (MC-CSA) 

were used to determine Langmuir isotherms of freely diffusing ligands at a receptor-

functionalized colloidal surface. In these simulations, a colloid with radius a is placed in 

a box with periodic boundaries in all directions to maintain a bulk ligand concentration of 

C. Receptors are uniformly placed on the surface of the colloid with LR of 1.5alig and 

surface-receptor spacing of hrec above the colloidal surface. The number of receptors on 

the colloidal particles, Nrec, varied from 225-236 depending upon alig and  in each case. 

In these simulations, colloids make 2D translational moves in the x- and y-direction and 

ligands are allowed to make 3D translational moves.  In order to prevent dynamic arrest 

of a ligand-coated colloid, translational colloid-ligand cluster moves are made for all 

ligands bound to receptors. The colloids also perform 3D rotational receptor moves to 

sample alternative receptor configurations. The procedures for performing 3D rotational 

receptor moves and colloid-ligand cluster moves are explained in detail in Chapter 3. The 

fraction of occupied receptors was calculated with Eq. (5.9). 

5.3.2 Umbrella Sampling Simulations 

MC-US simulations were used to determine the potentials of mean force between 

2 receptor-functionalized colloids in the presence of ligand nanospheres. Umbrella 

sampling has been used to construct free energy landscapes in biomolecular systems
151

 



 

 83 

and colloidal systems
152, 153

 and there are a number of references that discuss this 

technique in detail.
105, 154

 In these simulations, translational moves by the colloids are 

restricted to one dimension in the x-direction and the ligands are allowed to translate in 

3D. 3D rotational receptor moves and colloid-ligand cluster moves (described in Chapter 

3) are also employed to ensure the colloids are diffusing freely and able to sample many 

configurations.  

To perform MC-US simulations, a hard wall biasing potential is introduced to 

restrict parameters to regions of interest. The hard-wall biasing potential used in this 

work was applied to the surface-to-surface separation between the colloids, L, with all 

MC moves outside of the specified bounds for L rejected. Using the hard wall biasing 

potential, particles can be placed in energetically unfavorable portions of the potential of 

mean force that allows us to avoid sampling issues. Twelve simulations with L 

constrained to bins of 5 nm widths were performed for each case. The bins each 

simulation probes are sequentially chosen to cover a range of L from 10-48 nm with 

adjacent bins overlapping in 2 nm regions. These overlapping regions allow us to connect 

adjacent bins for the construction of potentials of mean force, W as a function of L. All 

potentials take a reference free energy as what is found at L = 48 nm in each case. At a 

separation of L = 48 nm, the ligand nanospheres are unable to form bridges between 

colloids in all cases. In addition to W, the average number of bridges, Nbridge and 

histograms of bridge energy, Ubridge, and bridge orientation with respect to the colloids, , 

were determined. 
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5.4 Results and Discussion 

5.4.1 Bulk Equilibrium Association of Biomacromolecules 

 In order to characterize interactions between freely diffusing biomacromolecules, 

MC-EA simulations were carried out to determine the Kd for ligand nanospheres and 

receptors diffusing in bulk solution as a function of umin and alig. To carry out these 

simulations, one ligand and one receptor are placed in a box and binding events between 

the ligand and receptor can be monitored which we illustrate in Fig. 5.2A-C with a linear 

color scale for the ligand nanosphere that goes from white when URL = 0 (i.e., when the 

ligand is ubound) to red when URL = -umin (i.e., when the ligand is tightly bound).  By 

studying these ligand-receptor pairs, we can monitor binding events over a statistically 

significant amount of configurations as shown in Fig. 5.2D with minimal computational 

expense. We can then obtain the cumulative average concentration of each species in the 

system as shown in Fig. 5.2E. With these concentrations, Kd can be calculated using Eq. 

(5.8) and Fig. 5.2F shows how the value of Kd converges once a sufficient sampling of 

binding events have been collected.  

 This technique was used to study Kd as a function of umin and alig. The results are 

shown in Fig. 5.2G where wide ranges of Kd over 8 orders of magnitude were 

investigated. The lines in Fig. 5.2G represent our theoretical predictions based on Eq. 

(5.4) for harmonic wells combined with comparisons of B2 calculated with Eq. (5.5) and 

Eq. (5.6). A bulk ligand and receptor concentration of 0.1Kd calculated from Eq.  (5.4) 

was used in each case to ensure that many binding and unbinding events could be 

observed which led to more accurate determinations of Kd. Agreement is seen between  
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Figure 5.2. (A-C) Snapshots of a ligand and receptor interacting in MC-EB simulations 

where ligands have a linear color scale from white when URL = 0 to red when URL = 

umin. (D) [RL]i , (E) [R] and [RL], and (F) Kd  are shown as a function of n. (G) Kd for 

alig = 0 nm (black), 2.5 nm (red), 5 nm (blue), and 10 nm (green) is shown as function of 

umin where solid lines represent theoretical predictions of Kd and solid circles were 

obtained from MC-EA simulations.   
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the Kd observed in simulation and theoretical predictions made using Eq. (5.4). We also 

observe a systematic decrease in Kd as the effective size of the ligand nanosphere 

increases at fixed umin. This decrease in Kd arises from an effective increase in ligand-

receptor attraction due to the increase in ligand nanosphere surface area. The second 

virial coefficient allows us to determine how much this effective ligand-receptor 

attraction changes as a function of umin and alig by equating ligand nanospheres to ligand-

harmonic well potentials with equal B2. 

5.4.2 Specific Adsorption of Ligands at Interfaces 

With receptor-ligand interactions characterized in the bulk phase, next we were 

interested in studying these same interactions at an interface. We began first by 

determining surface adsorption equilibria of ligand nanospheres at a receptor-

functionalized flat surface in MC simulations as is shown in Fig. 5.3A and 5.3B. Surface 

adsorption equilibria were then determined on a receptor-functionalized colloid which is 

illustrated in Fig. 5.3C and 5.3D. The same ligand energy coloring scheme presented in 

Fig 5.2A-C is used to more clearly show surface bound ligands and ligands diffusing in 

the bulk. Using a strategy similar to that used in the bulk phase, we can determine the 

equilibrium surface coverage, , with the average concentrations of unbound receptors, 

[R], and occupied receptors, [RL]. 

Figure 5.3E shows theoretical and simulation results of Langmuir isotherms for 

ligand nanospheres as a function of umin and alig on flat surfaces and colloids. The 

theoretical Langmuir fitting is done with Eq. (5.7) where Kd
-1

 is calculated using the 

Bjerrum-B2 approach. There is excellent agreement between the theoretical predictions 

for surface coverage Kd
-1

 as the adsorption coefficient and what was found in our  
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simulations for the flat interface shown as open circles in Fig. 5.3E. These results also 

show the effect of increasing ligand size as the surface coverage increases due the 

increase in surface area of the ligand nanosphere. It is important to highlight the effect of 

receptor placement at the flat interface. In order to prevent steric hindrance between the 

ligand nanospheres and the surface, the receptors are placed at hrec of (alig + ) nm above 

 

Figure 5.3. Snapshots of MC-SA simulations at C = 10 µM and (A) umin= 3 kT and (B) 9 

kT where ligands have a linear color scale from white when URL = 0 to red when URL = 

umin. Snapshots of MC-CSA simulations at C = 10 µM, (A) umin= 3 kT and (B) umin= 9 kT 

where ligands have a linear color scale from white when URL = 0 to red when URL = umin. 

(E) Langmuir isotherms from umin= 1 - 12 kT with C = 10 µM and alig = 0 nm (black), 2.5 

nm (red), 5 nm (blue), and 10 nm (green). Solid lines represent theoretical predictions of 

θ. Open circles were obtained from MC-SA simulations and x’s obtained from MC-CSA 

simulations.  
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the surface as is depicted in Fig. 5.1B and these effects were observed in preliminary 

results when the receptors were placed at distances less than (alig + ).  

This model for our receptor-functionalized interface was then extended to a 

diffusing colloid. Figure 5.3E also shows results as x’s for the surface coverage as a 

function of umin and alig on a colloid with radius a functionalized with receptors on it’s 

surface. We also see great agreement with the theoretical predictions for the surface 

adsorption equilibria on a diffusing colloid. With the determination of colloidal potentials 

of mean force based on the receptor-ligand interactions in sight, it was important at this 

stage to determine an appropriate algorithm in these MC simulations that allows for 

translation and rotation of the colloid with dense coverages of ligand nanospheres without 

interfering with appropriate surface equilibria at different conditions.  

With the typical Metropolis MC simulation scheme, MC move efficiency 

becomes a major concern in modeling of multi-component systems like binary colloidal 

mixtures 
155

 or colloid-polymer systems 
156

 and for these cases, a number of cluster move 

schemes have been developed.
103

 This strategy was employed for our binary colloid-

ligand nanosphere system. All ligands associated to a colloid’s receptors can be quickly 

identified and a MC cluster move based on the change in energy for the colloid and all 

associated ligand nanospheres can be made. By accounting for the change in energy for 

all molecules involved in the cluster move, we avoid disruption of the surface equilibria 

at the interface by attempting these cluster moves. More details on this algorithm and the 

efficiency of these moves are presented in Chapter 3. With this algorithm, we were 

prepared to study colloidal interactions mediated by ligands adsorbed to their surface and 

in the next section, we will show how we quantify these effective colloidal interactions 
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for a model protein-carbohydrate system.  

5.4.3 Potentials of Mean Force Mediated by Receptor-Ligand Interactions 

With these ligand-receptor interactions characterized at colloidal interfaces, the 

interactions between colloids with ligands equilibrated at their receptor-functionalized 

surfaces could then be investigated. To illustrate how this model could be used for 

specific material systems, we chose a parameter space directly applicable to weak, 

specific interactions between the lectin, ConA and the polysachharide, dextran. This 

system has been the focus of many experimental studies of ConA-dextran mediated 

colloidal interactions.
70, 157, 158, 159, 160

 The dissociation constant for ConA and dextran has 

been reported from 0.1-1 µM.
161, 162

 ConA are represented as a ligand nanospheres with 

alig = 5 nm and umin = 9 kT (corresponding to Kd = 0.536 µM) to interact specifically with 

dextran receptors (i.e. glucose subunits) on the colloidal surfaces.  

To probe the effects of freely diffusing ConA on dextran-decorated colloids, we 

first studied the effects of ConA concentration, [C], on effective colloidal interactions. 

Representative snapshots at L = 15 nm and varied [C] are shown in Fig. 5.4A-D with a 

slight change in ligand energy coloring scheme that now will range from white when URL 

= 0 to red when URL = 2umin to clearly show freely diffusing (white), surface adsorbed 

(light red), and bridging ligand nanospheres (red). By changing concentration, the density 

of ConA adsorbed on the dextran-decorated surface can vary from very high to low 

coverage. In this range of [C], the fraction of occupied receptors varies from 0.02 at [C] = 

0.01 µM, shown in Fig. 5.4A, up to 0.86 at [C] = 10 µM, shown in Fig. 5.4D. Changing 

concentrations of ConA bound to the colloidal surfaces will also lead to changes in the 

number of ConA bridges formed (i.e., red nanospheres in Fig. 5.4A-D) that will mediate 
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the effective colloidal attraction.  

 

 

Figure 5.4. Snapshots of MC-US simulations at umin= 9 kT and (A) [C]= 0.01 µM ,(B) 

0.1 µM, (C) 1 µM, and (D) 10 µM where ligands have a linear color scale from white 

when URL = 0 to red when URL = 2umin. (E) Nbridgeand (F) W versus L for umin= 9 kT and 

[C]= 0.01 µM (circles), 0.1 µM (triangles down), 1 µM (squares), and 10 µM 

(diamonds). 
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In Fig. 5.4E and 5.4F, potentials of mean force, W, and the average number of 

bridges, Nbridge, as a function of separation, L, are shown at umin = 9 kT and varied [C]. 

Although the number of bridges formed is continually fluctuating, Nbridge is an 

informative quantity in this system where effective colloidal attraction is induced by 

biomacromolecular bridges between the colloidal interfaces. At [C] = 10 µM (diamonds), 

ensembles of up to 10 ConA bridges form between the colloidal interfaces and induce a 

strong effective colloidal attraction. When the concentration is lowered to [C] = 1 µM 

(squares), the effective colloidal attraction increases even further. The bridging profiles at 

[C] = 10 µM and 1 µM look very similar until L is between 20 and 30 nm where the 

number of bridges increases at [C] = 1 µM. This can be explained by the difference in the 

amount of adsorbed ConA to each colloidal surface where a lower surface coverage 

leaves more receptors available for bridge formation. When the concentration is further 

lowered to 0.1 µM (triangles down) and 0.01 µM (circles), the fraction of occupied 

dextran receptors drops dramatically which leads to a decrease in both the number of 

bridges formed and effective colloidal attraction. 

It has also been shown experimentally that the addition of monosaccharide inhibitors like 

glucose or mannose can weaken the net ConA-dextran mediated attraction between 

colloids.
70, 159, 160

 In this model, the inhibitory effect due to competitive binding of 

monosaccharides was introduced as a change in the affinity of ConA for the dextran 

receptors on the colloids. By decreasing umin (i.e., increasing the Kd), we can introduce 

this weakening of the ConA-dextran interactions due to ConA sites being occupied by 

monosaccharides. . Representative snapshots at L = 15 nm and varied umin are shown in  



 

 92 

Fig. 5.5A-D which illustrate how changing umin at a fixed [C] leads to changes in 

surface coverage of ConA and this will also lead to changes in the number and relative 

strength of each bridge formed which will, in turn, change the effective colloidal 

 

Figure 5.5. Snapshots of MC-US simulations at L = 15 nm, [C]= 10 µM , and (A) umin= 3 

kT , (B) umin= 5 kT, (C) umin= 7 kT and (D) umin= 9 kT where ligands have a linear color 

scale from white when URL = 0 to red when URL = 2umin. (E) Nbridge and (F) W versus L 

for [C] = 10 µM and umin= 1 kT (circles), umin= 3 kT (triangles down), umin= 5 kT 

(squares), umin= 7 kT (diamonds), and umin = 9 kT.  
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interactions.  

In Fig. 5.5E and 5.5F, W and Nbridgeas a function of L are shown at [C]= 10 µM 

and varied umin. When umin is lowered from 9 kT (triangles up) to 7 kT (diamonds), W is 

weakened and Nbridge slightly falls, but the resulting effective attraction would still result 

in strong, irreversible attraction between the colloids. When the specific interaction 

between ConA and dextran is further weakend to 5 kT (squares), there is a large decrease  

in the number of bridges formed which results in a further weakening of W into a weaker, 

reversible regime. This sharp transition from strong, irreversible effective attraction to 

weak, reversible effective attraction has been seen in experimental studies of this system 

70
 and also in computational studies of similar biomacromolecular systems.

163
 If umin is 

weakened further to 1 kT (circles) and 3 kT (triangles down), only occasionally do 

bridges form and no net colloidal attraction is induced. 

5.4.4 Energy and Orientation of Ligand Bridges  

The effective potentials that we have determined for a model lectin-carbohydrate 

system clearly show how colloidal potentials can be mediated through their interactions. 

With receptors immobilized on the colloidal surfaces, freely diffusing ligands can adsorb 

to their surface and create attractive bridges. Figures 5.4 and 5.5 show that effective 

colloidal potentials can be changed as function of C, to change the equilibrium ligand 

surface coverage, , and ligand-receptor potential well depth, umin, to vary the strength of 

each bridge formed between the colloidal particles. The strength of effective colloidal 

attraction generated by these bridges will not only be dependent on the number of bridges 

and their energies, but also the orientation of the bridges with respect to the colloidal 
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surfaces will play a role in the effective colloidal interactions. In Fig. 5.6A-D, the 

progression of the number of bridges and bridge orientation as a function of L is shown  

visually for a representative ConA-dextran case at umin = 9 kT and [C]= 10 µM. When L = 

10 nm as is shown in Fig. 5.6A, the highest number of bridges are able to form due to the 

proximity of the receptor layers. However, the majority of the bridges formed at this 

separation are not oriented normal to the colloidal surfaces and will not be able to exert a 

great amount of attractive force in that direction. When the colloids are further separated 

at L = 20 nm as is shown in Fig. 5.6B, the number bridges formed decreases, but we 

begin to see bridges with orientations closer to normal to each surface. When L = 30 nm 

as is shown in Fig. 5.6C, one bridge is present centrally between the particles and it must 

take a normal orientation in order to interact with a receptor on each particle. If separated 

even further, the colloids move beyond the range from which ligands can form bridges 

and this is shown in Fig. 5.6D at L = 40 nm. These clearly illustrate that the number of 

bridges along with the orientation of each bridge is highly dependent on the separation 

between the colloids. 

To more quantitatively examine these effects, histograms of the bridge energy, 

Ubridge, is shown in Fig. 5.6E as function of L. In Fig. 5.6E, a histogram of Ubridge as a 

function of L, (L, Ubridge), is shown where it is also normalized by (L) to show the 

relative frequency of bridge energies at each separation. At shorter separations where L < 

20 nm, the receptor layers on opposite colloids are interpenetrating (hrec = 8.25 nm), 

shown in Fig. 5.6A, which allows for very strong bridges to form with Ubridge ranging 

from 1.8 – 2umin. As the colloids are further separated to L > 30 nm, the ligands are 

unable to have short range interactions with a receptor on each of the colloids and this  
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leads to a weakening of the bridges with Ubridge ranging from 1.0 – 1.2umin. If we were to 

take the sum of the energies of each bridge to calculate the expected attraction between  

 

Figure 5.6. Snapshots of MC-US simulations at [C] = 10 µM, umin= 9 kT, and (A) L = 10 

nm, (B) 20 nm, (C) 30 nm and (D) 40 nm where ligands have a linear color scale from 

white when URL = 0 to red when URL = 2umin. 2D histograms of (E) Ubridge and (F)  as a 

function of L at [C]= 10 µM and umin = 9 kT with a linear color scale from 0 to 1 of 

frequency (L, Ubridge) and (L, ), respectively, normalized by total frequency (L).  
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the colloids, we would obtain effective colloidal attractive well depths of ~160-180 kT 

rather than the ~19 kT well depth found in the MC-US simulation results for this case 

shown in Fig. 5.5F. Clearly, these effective colloidal interactions cannot be explained 

simply as an ensemble average of the bridge energies. 

To further examine bridge orientation, histograms of orientation with respect to 

the colloidal surfaces, , is shown in Fig. 5.6F as function of L. The bridges can take a 

range of orientations between the colloidal particles from parallel to the surfaces (i.e.,  = 

0º) to normal to the surfaces (i.e.,  = 180º). Only forces exerted normal to the colloidal 

surfaces by these bridges will generate effective colloidal attraction and this will be 

dependent on the orientation of the bridges. When L < 15 nm, the bridges have mostly 

acute orientations to the surfaces with  ranging from 0-40º and In Fig. 5.6A, the 

representative snapshot at L = 10 nm shows that the close proximity of receptor layers 

forces the majority of bridges (red spheres) to take these orientations. As the colloids 

separate further from L = 20 – 30 nm, bridges begin to sample higher  up to 120º and 

bridges will be able to exert a greater amount of force normal to each surface as the 

snapshot at L = 20 nm in Fig. 6 B illustrates. It is not until L > 30 nm where we begin to 

see a high sampling of bridges with orientations normal to the surface ( = 180º) and in 

Fig. 5.6C, a representative snapshot at L = 30 nm shows a bridge form centrally between 

the colloids with an orientation normal to both surfaces.  

The results in Fig. 5.6 demonstrate how the interplay of multiple parameters leads 

to the observed effective colloidal interactions and we can begin to provide a more 

intuitive and physical interpretation of the simulation results we have obtained.  The 

effective colloidal attraction will not only be dependent on the number and overall energy 
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of ligand bridges, but also their orientation to the surfaces. Bridges that form parallel with 

respect to the particle surfaces will not generate the same amount of attraction as those 

normal to the surfaces. Depending on their position between the colloids, they could also 

sterically hinder attraction between the surfaces as can be seen in Fig. 5.6A where they 

lie in close proximity to both colloidal surfaces. Bridges that are normal to both surfaces 

will generate the greatest amount of colloidal attraction, but this orientation only becomes 

likely as L approaches the maximum bridge length where consequently Ubridge decreases. 

It is clear that these quantities do not work independently to change W and using this 

model, we can investigate how they are interconnected. Future work will aim to develop 

an analytical model that uses key parameters such as umin, , Ubridge, and  to determine 

what net effect each bridge has on the effective colloidal potentials.  

5.5 Conclusions 

This work provides a model of receptor-ligand mediated colloidal potentials of 

mean force with a range of input parameters such as Kd, ligand size, ligand concentration, 

and receptor coverage. MC simulations of receptors and ligand nanospheres interacting in 

the bulk phase and interfaces allowed us to probe the effects of ligand size and interaction 

well depth. Developing a formalism starting at the biomacromolecular level for 

determining Kd between receptors and ligand nanospheres was crucial in the 

determination of interactions between colloids mediated by these biomacromolecules. 

With the dissociation constant and ligand size as inputs, colloidal potentials of mean 

force could then be determined with MC umbrella sampling and cluster move techniques 

that allowed for efficient configurational sampling in this three-component system. Using 

this technique, colloidal interactions were determined for a model lectin-polysaccharide 
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system to demonstrate how this approach could be applied to real systems. As a result of 

the presence of the freely diffusing ConA nanospheres, net attraction could be generated 

between dextran-decorated colloids by ensembles of ConA-dextran bridges. The 

coverage of ConA, dependent on [C] and Kd, and the relative lifetimes or strength of each 

ConA-dextran bridge, dependent on umin, clearly mediate the resulting net colloidal 

attraction. This provides a versatile model that could be applicable to a range of material 

systems and applications with biological relevance.  Future work will look to make direct 

comparisons of the results from this work to experimentally determined equilibrium 

colloidal interactions mediated by ConA-dextran binding. These modeling approaches 

will also be extended to colloid-surface interactions to study biomacromolecular 

interactions relevant to biosensing and targeted drug delivery applications. 
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6. DIFFUSING COLLOIDAL PROBES OF CELL SURFACES 

6.1 Introduction 

In the development of innovative biotechnologies, precise design of biomaterials 

(i.e targeted nanoparticle drug carriers, biosensors, biocompatible tissue scaffolds) is 

required to optimize interactions at the surface of cells and tissues for robust response to 

biomolecular and biophysical cues.
164, 165

 While a number of synthetic and biological 

materials have proven useful in biomedical applications, a fundamental understanding of 

their interactions with live biological interfaces will aid in more efficient design and 

implementation in new therapeutic and diagnostic tools. To develop models to describe 

the interactions in these complex biological systems, highly sensitive, quantitative 

measurements are needed capable of directly interrogating the surface of cells and 

tissues.  

Spectroscopic techniques such as surface plasmon resonance (SPR) and total 

internal reflection microscopy (TIRFM) can be used to measure the distribution of 

biomacromolecules at interfaces between cells and polymer, protein, and carbohydrate 

functionalized substrates.
35, 166, 167, 168, 169, 170, 171

 However, the interactions between these 

biomaterials and cells can only be inferred from local changes in concentration of 

membrane-associated biomolecules (i.e. membrane protein clustering, actin stress fibers) 

and cell morphology (i.e. cell spreading, focal adhesions). Atomic force microscopy 

(AFM) has been used to directly measure interactions of cells with biofunctionalized 

colloids and substrates. 
41, 44, 51, 55, 125, 140

 The deflection of a mechanical cantilever in 

contact with surface of the cell is used to measure interfacial interactions and can also be 

used to determine the topography of cells and tissues. However, the sensitivity of this 
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technique is limited by the spring constant of the cantilever to forces greater than ~1 pN. 

Direct, quantitative measurements capable of resolving weak, biomacromolecular 

interactions with single molecule resolution require more sensitive measurement 

techniques. 

Diffusing colloidal probe microscopy (DCPM) is the technique most closely 

related to the results in this work where measurements of interfacial interactions are 

determined from the trajectories of freely diffusing colloidal particles bearing adsorbed or 

grafted macromolecules near macromolecule-coated surfaces. This technique has been 

used to characterize nonspecific polymer-protein, supported lipid bilayer, specific 

protein-carbohydrate and specific protein-protein interactions.
71, 72, 127, 172

 With no 

external manipulation, force measurements can be made with kT-scale sensitivity in a 

direct, statistically significant manner. In this work, the analytical and interpretative tools 

developed in these studies are extended to colloidal interactions with live cell surfaces. A 

diverse group of synthetic and biological macromolecules, all with relevance to 

bioengineering, were studied to demonstrate the utility of this method for a wide range of 

material systems. Direct measurements of nonspecific interactions between live cell 

surfaces and polyethylene glycol (PEG), bovine serum albumin (BSA), and dextran as 

well as specific interactions between live cells and hyaluronic acid (HA), a 

glycosoaminoglycan found in the extracellular matrix, were measured using a suite of 

image analysis tools to extract dynamic and equilibrium particle-cell surface interactions. 

Dark field video microscopy is used for label-free imaging of colloids and live 

cells. Image analysis techniques capable of automated detection of colloids and cell 

surfaces allow for real-time, 2D multi-particle and multi-cell tracking. By using micron-
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sized colloidal probes above the minimum size required for passive or active uptake into 

the cell,
18, 173, 174

 our study can focus solely on the transport of particles approaching the 

cell and their interactions with the cell surface. Dynamic and equilibrium analyses of 

individual and ensembles of colloidal trajectories off the cell (i.e. on background 

substrate) and on the cell are used to determine mean squared displacement, particle cell-

surface association lifetimes, and particle-cell surface interaction potentials. With the 

particle diffusion and net interactions well understood between synthetic and biological 

macromolecular layers from prior studies,
71, 72, 106, 172, 175

 measurements on the 

background substrate can be used for comparison to the much more complex, multi-

faceted interactions measured for particles on the cell surface.  

6.2 Theory 

6.2.1 Interaction Potentials 

For a macromolecule-coated colloidal particle diffusing over a macromolecule-

coated surface or cell surface at physiological ionic strength, the net particle-surface 

interaction potential is given by,  
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where the subscripts refer to gravitational (G), van der Waals (V), steric (S), and specific 

biomacromolecular (B) interactions and the superscripts refer to particle-field (pf) and 

particle-surface interactions (ps). The gravitational potential energy of each particle is 

dependent upon its height above the surface, h, and its buoyant mass, m, as, 
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where g is the acceleration due to gravity, a is the particle radius, p is the particle 

density, and p is the fluid density. van der Waals attraction between two flat plates can 

be predicted by Lifshitz theory
79

 with retardation and screening effects and using the 

Derjaugin approximation to account for geometric effects.
80

 For simplicity, an inverse 

power law approximation can be used to model van der Waals interactions between a 

particle and a wall given by,
80, 111
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where Aps is an effective Hamaker constant appropriate over a short range (h < 15 nm) 

and p is a noninteger power. The fitting constants Aps and p can be adjusted depending 

upon the dielectric properties of the materials. Repulsive steric interactions will occur at 

the interface between the particle and surface due to compression of macromolecules at 

their interfaces and this can be modeled with a short range exponential given by,  

   
u

S

ps(h)  exp(h)  (6.4) 

where  and  are determined by the structure of the macromolecular layers. To model 

particle-surface interactions mediated by specific biomacromolecular interactions 

between a particle and a surface (i.e particle surface-immobilized ligands binding to 

membrane protein receptors), an isotropic harmonic well attractive potential can be added 

with the form
87

, 
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where umin is the depth of the harmonic well and rmin is the position of the harmonic 

potential well minimum.  
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6.2.2 Hydrodynamic Interactions 

 A colloidal particle near a planar substrate will experience hydrodynamic 

interactions that will hinder the lateral motion of the particle from its predicted Stokes-

Einstein diffusivity, Do, and these effects can be accounted for with a hydrodynamic 

correction factor
88

 as, 
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where f|| is a rational fit to the exact solution
89

 as, 
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where (h) = h/(a+) and  is the macromolecular layer thickness. The distribution of 

heights sampled by the particle, p(h), can be related to the net particle-surface interaction 

potential with Boltzmann’s equation
90, 91

 as,  

   
p(h) exp(u
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(h) / kT)  (6.8) 

and predictions of the average lateral diffusion coefficient, D||, can be made using the 

distribution of heights sampled given by,
92
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6.2.3 Particle-Surface Association Lifetime 

A characteristic time scale of colloidal diffusion, a, can be determined as 
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for a given characteristic length scale, lpp = 607 nm, chosen here as the pixel scale in 

DFVM images. The association lifetime of a colloidal particle to a surface, ta, is 
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dependent on this characteristic time scale and the net colloid-surface interaction 

potential as approximated by,
71, 172
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and can be rearranged to relate ta to umin directly as 
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where exp(|umin|/kT) is the probability a particle will escape an attractive energy well with 

depth umin assuming a Boltzmann distribution of thermal energies and reduces to a when 

no net colloid-surface interaction is present. To determine if colloids were associated to 

the surface, the position of the particle was monitored for time a = 6.14 s (6 consecutive 

images) and if the coordinates in these images had a standard deviation xy < 120 nm, the 

particle was considered associated to the surface. This tolerance was determined from the 

theoretical diffusion-limited motion of a particle at contact with a surface calculated from 

Eq. (6.6). 

6.2.4 Particle-Cell Surface Interaction Potentials 

Histograms of particle center to cell boundary distance, p(r), can be constructed as 

described in Chapter 3. With these histograms, particle-cell surface potentials of mean 

force, W(r), can be calculated with Boltzmann’s equation as, 
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where rref is a reference particle-cell surface separation with W(rref) = 0 kT. As the particle 

will only interact with the cell at r/a < 1, rref  was chosen at 10a where no effective 

interaction with the cell is expected. 
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6.3 Materials and Methods 

6.3.1 Batch Cell Preparation 

Glass cover slips (24 mm x 60 mm, Corning Life Science, Tewskbury, MA) were 

hydrophobically modified by spin coating polystyrene onto their surface. The substrates 

were first cleaned by sonication in acetone for 30 minutes then placed in Nochromix 

(Godax Laboratories, Cabin John, MD) overnight. Next, they were rinsed 20x times with 

DI water then sonicated in 0.1 M KOH for 30 minutes. They were again rinsed 20x times 

with DI water and dried with nitrogen.  A thin film of polystyrene is made on the glass 

cover slip using a spin coater (Laurell Technologies Corp., North Wales, PA) by placing 

~500 µL of 3% (w/w) solution of polystyrene in toluene onto the cover slip and spinning 

at 1000 RPM for 40 s. To create a batch cell, the slides were allowed to dry for 30 

minutes before adhering a 1 mm ID Viton O-ring (McMaster Carr, Inc., Robbinsville, 

NJ) onto the slide with vacuum grease. Twenty-five µL of 1000 PPM (1 mg/mL) solution 

of F108-Pluronic (PEG-PPO-PEG triblock copolymer, BASF, Wyandotte, MI) are added 

to the batch cell and allowed to adsorb for 4 hours. Excess, un-adsorbed F108-pluronic 

was removed by rinsing with a pipette 5 times with phosphate buffered saline (PBS, 

Invitrogen, Carlsbad, CA) before each experiment.  

6.3.2 Hyaluronic Acid-Coated Cover Slips With Adherent Cells 

A protocol adapted from literature was used to adhere HA to silica surfaces.
176

 

Glass cover slips (18 mm x 18 mm, Corning Life Science, Tewskbury, MA) were first 

cleaned with sonication in acetone for 30 minutes and allowed soak overnight in 

Nochromix. Next, they were rinsed 20 times with DI water followed by sonication in 0.1 

M KOH for 30 minutes. They were again rinsed 20 times with DI water and dried with 
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nitrogen. The cover slips were allowed to dry for an additional 30 minutes before being 

placed in 2% (w/w) APTES solution in ethanol for 24 hours for amino-silane 

functionalization. To rinse excess APTES away from the surface, slides are first 

sonicated in ethanol for 30 minutes, followed by sonication in water for 30 minutes, and 

then dried with nitrogen. A 3 mg/mL HA (100 kDa, Lifecore Biomedical, Chaska, MN) 

solution was made in DI water filtered with a Anotop 0.02 µm syringe filter (Whatman. 

Pittsburgh, PA) to ensure sterility. 500 µL of the HA solution were placed on each 

APTES-coated cover slip and were kept covered in a dish coated with moist towels to 

chemisorb for at least 20 hours. Once the HA chemisorption step was completed, the HA-

coated cover slips were placed under UV irradiation for 30 minutes to ensure sterility and 

then placed into a 6-well plate (Corning Life Science, Tewskbury, MA) in PBS.  MDA-

MB-231 epithelial breast cancer cells (MDA231, National Cancer Institute Physical 

Sciences-Oncology Center (NCI-PSOC), National Institues of Health, Bethesda, MD) 

were maintained in DMEM (Invitrogen, Grand Island, NY) containing 10% (v/v) fetal 

bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA).
177

 MDA231 cells were 

seeded onto HA-coated coverslips at a 1:4 ratio (~50,000 cells/cm
2
) in complete media 

(10% FBS in DMEM). The cells are then allowed to adhere and spread onto the HA-

coated coverslips overnight before each experiment. 

6.3.3 Physisorption of F108-Pluronic (PEG) and BSA to Colloidal Silica 

Silica particles were modified with a hydrophobic octadecanoic acid layer using a 

procedure adapted from literature. 
107

 A 1 mL solution of as purchased SiO2 colloids 

(2.34 µm, Bangs Laboratories, Fishers, IN) was made in deoionized water. Using a 

micro-centrifuge (MiniSpin-plus, Eppendorf, Hamburg, Germany), the particle solution 
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was centrifuged at 5.5k RPM for 90 s and re-suspended in DI water 5 times followed by 

centrifugation at 5.5k RPM for 90 s and re-suspension 5x in 200 proof ethanol to remove 

water from the particle solution. The particle solution was then added to 9 mL of 0.1 

mg/mL solution of 1-octadecanol in 200 proof ethanol in a 50 mL round bottom flask. On 

a stirring hot plate, the solution was mixed and heated at 50ºC under a nitrogen blanket 

(reactant mixture is flammable) until the 1-octadecanol is dissolved. Once the ethanol has 

evaporated, the nitrogen stream was removed and the flask is heated to 200ºC and held at 

this temperature for 3 hours to fixate the 1-octadecanol to the surface of the particles. 

Once the reaction has completed, the vessel is cooled to 25 ºC and the reactant mixture is 

recovered with 4 mL of chloroform to dissolve any free 1- octadecanol from solution. 

The particle solution was then centrifuged at 5.5k RPM for 90 s and re-dispersed in 

chloroform 5 times followed by centrifugation and re-dispersion in 200 proof ethanol an 

additional 5 times to remove all chloroform. To adsorb macromolecules to the 1-

octadecanol coated silica particles, the particles are dispersed in 1 mg/mL F108-pluronic 

or BSA solutions for at least 4 hours. Excess F108-pluronic or BSA is removed by 

centrifugation at 5.5k RPM for 4 min and re-suspension in DI water 5 times. 

6.3.4 Chemisorption of Dextran and Hyaluronic Acid to Colloidal Silica 

Colloidal silica particles were functionalized with polysaccharides using silane 

linkers with a procedure adapted from literature.
109, 176

 Before functionalization, silica 

particles were washed by centrifugation at 5.5k RPM for 90 s and re-dispersion in fresh 

DI water. This washing step was repeated 5 times. The particles were then dispersed in 

dry ethanol and washed an additional 5 times in dry ethanol. To modify particles with an 

epoxy silane linker, the particles were then dispersed in a 0.1% (v/v) solution of 3-
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glycidoxypropyltrimethoxysilane (GPTMS, Sigma, St. Louis, MO) in dry ethanol for 1 

hour. To modify particles with an amino silane linker, the particles were dispersed in a 

2% (w/w) (3-aminopropyl)triethoxysilane (APTES, Sigma, St. Louis, MO) in dry ethanol 

for 24 hours. The silane linker-modified silica colloids were then washed 5 times in dry 

ethanol and 5 times in DI water. To conjugate dextran (500 kDa, Sigma, St. Louis, MO) 

onto silica particles, Epoxy-silane (GPTMS) modified colloids were then dispersed in 

30% (w/w) aqueous solution of polysaccharide solution and gently mixed with a 

magnetic stir bar for 24 hours. To conjugate hyaluronic acid (HA, 1 MDa, R&D Systems, 

Minneapolis, MN) to silica particles, amino-silane (APTES) modified colloids were 

dispersed in 3 mg/mL HA solutions for at least 20 hours. The polysaccharide-modified 

particles are then centrifuged at 10,000 RPM for 10 minutes and re-dispersed in fresh DI 

water. They are then washed with DI water an additional 5 times. Pluronic-F108 is then 

physisorbed onto the polysacharide-modified particles by dispersing the particles in 1000 

ppm (1 mg/mL) aqueous solution of F108-Pluronic overnight. The F108 coating step is to 

ensure the particles are fully coated with a polymer brush to improve colloidal stability. 

The particles are then rinsed 5 times in DI water and then dispersed in PBS. 

6.3.5 Preparation of Samples for Dark Field Video Microscopy 

Protein, polymer, or polysaccharide coated silica particle solutions were diluted at 

a 1:10 ratio in complete media (10% FBS in DMEM). 100 μL of particle solution in 

complete media was added into an F108-Pluronic (PEG)-coated batch cell and particles 

are allowed to sediment for 2-3 minutes. The batch cell was then irradiated under UV for 

30 minutes to sterilize the sample. Next, the o-ring on the batch cell was removed and a 

HA coated coverslip seeded with MDA-231 cells is placed on top of the 100 µL drop of 
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particle solution. The sample is then sealed along its edges with nail polish. For imaging, 

the samples are inverted so the particles can then sediment onto the surface with adherent 

cells and placed on the microscope with an attached temperature controller (BC-110, 

20/20 Technology, Wilmington, NC) kept at 37º C for the duration of the experiment. 

Experiments were performed using an inverted optical microscope (Axioplan 2, Carl 

Zeiss, Obercheken, Germany) with a dark field condenser (dry, 0.8/0.95 NA, Carl Zeiss) 

and a 40x objective (LD-Plan Neofluar, NA = 0.75, Carl Zeiss). Images are collected 

with a 12-bit CCD camera (ORCA-ER, Hamamatsu, Hamamatsu City, Japan) operated in 

binning mode 4 (length per pixel, lpp = 0.607 µm/pixel, Image area, Ai = 336 pixels x 256 

pixels = 203 µm x 155 µm) at a 1 s frame rate for a total of 1800 frames (30 min 

duration). The particle trajectories off and on the cell surface are determined using image 

analysis algorithms coded in MATLAB that have been described in Chapter 3.  

6.4 Results and Discussion 

6.4.1 Tracking Colloidal Particles Interacting With Live Cells 

The diffusion of colloidal silica particles functionalized with PEG, BSA, dextran, 

and HA over an HA-coated substrate with adherent MDA231 epithelial breast cancer 

cells was studied to measure nonspecific and specific biomacromolecular interactions 

with the surface of the cells. As shown with Eqs. (6.8) and (6.9), the diffusivity of 

colloidal particles near a surface can be directly related to equilibrium and non-

equilibrium particle-surface interactions. The buoyant weight of micron-sized particles 

will confine their diffusion to separations near the surface and their lateral motion will 

depend highly on its interactions with the surface. At physiological ionic strengths, steric 

interactions between macromolecular layers on the particle and surface are required to 
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levitate the particle above the surface to allow it to diffuse laterally. While the 

macromolecular coating on the particles varied across cases, the silica substrates used in 

this work were coated with HA to provide both steric stability for the particles and an 

adherent surface for cell seeding. Low particle densities, with area fractions from 0.01 - 

0.05, were used to limit particle-particle interactions that could effect particle diffusion or 

particle-cell surface interactions.  

Fig. 6.1 shows an example image taken from a DFVM experiment clearly 

showing particles and cells with high contrast suitable for the analysis techniques 

discussed in Chapter 3. Coordinates are determined for the cell boundary, drawn as white 

lines in Fig. 6.1, and the particle centers are found, shown as red circles in Fig. 6.1.  

Particle centers and cell boundaries are found in each image and the trajectories of 

particles were determined allowing for measurement of particle dynamics both off the 

cell surface, shown as red lines in Fig. 6.1, and on the cell surface, shown as green lines 

in Fig. 6.1. The trajectories of the particles will be highly dependent on their interactions 

with the underlying surface and with our analysis tools, particle dynamics can be 

measured on the cell surface and the background substrate.  
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6.4.2 Particle Diffusion Off and On Cell Surfaces   

Hydrodynamic particle-surface interactions will hinder the lateral motion of 

colloidal particles to rates much slower than its predicted Stokes-Einstein diffusivity. 

Nonspecific and specific macromolecular interactions between the particle and surface 

will further increase the degree of hindrance to particle diffusion depending on the 

density and structure of the macromolecular layers on each surface. The trajectories of 

colloidal particles were measured both on the HA-coated substrate, shown as red lines in 

Fig. 6.1, and on the cell surface, shown as green lines in Fig. 6.1, to see how the diffusion 

of particles compared between each surface. The mean squared displacement was 

determined off the cell surface (on HA-coated substrate) and on the cell surface shown in 

Fig. 6.2 for each macromolecular coating used. The diffusion rate was fit with theory that 

accounts for hydrodynamic interactions with the surface and the particle-surface 

 

Figure 6.1 Colloidal trajectories of PEG-coated 2 µm silica particles interacting with 

MDA231 cells from DFVM experiments processed with image analysis in MATLAB. 

Cell boundaries at t = 0 are drawn in white. Particle centers are marked with a red circle 

and trajectories are drawn as lines with their color depending whether the particles is 

within the cell boundaries (green lines) and outside the cell boundaries (red lines). 
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macromolecular layer thickness was predicted for each case that is summarized in Table 

6.1. 

Table 6.1 Parameters from theoretical fits determined from Eq. (6.6) to mean squared 

displacement data shown in Fig. 6.2 of particles off cell surface (HA) and on cell surface 

(MDA231). 

Particle/Surface D|| (µm
2
/s)   (nm) p (nm)  s (nm) 

 PEG/HA 0.066 26 11 15 

BSA/HA 0.07 23 8 15 

Dextran/HA 0.053 30 15 15 

HA/HA 0.053 30 15 15 

PEG/MDA231 0.075 21 11 10 

BSA/MDA231 0.075 21 8 13 

Dextran/MDA231 0.057 29 15 14 

HA/MDA231 0.012 - - - 

 

The mean squared displacement of particles on the HA-coated substrate is shown 

in Fig. 6.2A for each macromolecular coating. The measured diffusivities for each case 

are reasonable when hydrodynamic and nonspecific macromolecular interactions are 

considered for particles diffusing near a surface. The total thickness of the 

macromolecular layers on the particle and surface,  = p + s, were found with Eqs. (6.6) 

and (6.7). The thickness of adsorbed PEG monolayers have been measured directly with 

total internal reflection microscopy
172

 and was used to determine each individual layer 

thickness with values shown in Table 6.1. As the thickness of the layers increases, 

diffusion is further hindered due to the increase in effective particle size. The rate of 

diffusion from each case increases as expected based on the thickness of each 

macromolecular layer. BSA-coated silica, p = 8 nm, diffused most rapidly over the 

surface as it is expected to have the thinnest layer on its surface and PEG, with p = 11 

nm, diffused more slowly. Dextran and HA had slighty thicker macromolecular layers, 



 

 113 

with p = 15 nm, and showed the slowest diffusion over the HA-coated substrate. These 

results show that the particles interact nonspecifically with the background HA-coated 

surface which gives us confidence when we analyze their trajectories on cell surfaces that 

(1) the particles are diffusing primarily in 2D near the surface and (2) these coatings 

provide sufficient steric stability to prevent nonspecific adhesion to surfaces.   

Measurements and theoretical fits of mean squared displacement of colloidal 

particles on the MDA231 cell surface are shown in Fig. 6.2B for each case. A variety of 

membrane-associated proteins and carbohydrates are present on the surface of the cell 

which lead to nonspecific and specific interactions with the synthetic and biological 

macromolecules on the particle surface. Net repulsive steric interactions lead to hindered 

diffusion rates due to hydrodynamic interactions with the cell surface for PEG, BSA, and 

dextran coated silica particles. In comparison to on the backgroud substate, the lateral 

diffusion of PEG, BSA, and dextran were similar on the surface of the cell with only 

slight decreases in fits for  shown in Table 6.1. The macromolecular layer thickness on 

 

Figure 6.2 Mean squared displacement of PEG (circles), BSA (triangle down), Dextran 

(squares), and HA (diamonds) coated 2 µm silica when (A) off MDA231 cell surface 

(red) and (B) on MDA231 cell surface (green). Dashed lines from theoretical fits with Eq. 

(6.6) to diffusion data. 
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the cell surface, s, varied from 10-14 nm for each of these cases. The layer thickness of 

cell-surface associated glycoproteins, glycolipids, and carbohydrates, known as the 

glycocalyx, can vary widely in size from nanometers to several microns dependent on 

cell and tissue type.
178, 179, 180

 Our measurements, on the order of nanometers, are 

consistent with in vitro measurements of glycocalyx thickness. 

HA-coated particles were immobilized on the surface of the cell with a large 

reduction in diffusion rate (D|| 0.05Do). The MDA231 cell line used in this work has 

been thoroughly characterized and has shown abnormal overexpression of CD44, a 

transmembrane protein known to interact specifically with HA in the extracellular 

matrix.
10, 177

 Unlike the net repulsive interactions seen in prior cases, strong, attractive 

particle-surface interactions are induced by specific CD44-HA interactions which lead to 

association of particles to the cell surface. While we can infer changes from net repulsive 

to net attractive particle- cell surface interactions based on measured lateral diffusion 

rate, the next sections will show how more direct, quantitative measurements of colloidal 

interactions with the surface of the cell can be made. 

6.4.3 Particle-Cell Surface Association Lifetimes 

Rather than using ensemble measurements of diffusion such as mean squared 

displacement, analysis of individual trajectories can provide local information on 

dynamics of particles interacting with cells that can be related to net particle-cell surface 

interactions. As shown in Eq. (6.12), the association time of particles to a surface, ta, has 

kT-scale sensitivity to the particle-surface attractive well depth, umin. To determine if 

colloidal particles have associated to the cell surface, the displacement of the particle can 

be measured over a characteristic time scale, a = 6.14 s, chosen based on the diffusion-
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limited motion of the particle. In the limit of no net attraction with the cell surface, ta 

reduces to the diffusion-limited time a and will increase exponentially with only small 

increases in net particle-surface attraction. With this measurement, weak, intermittent 

association as well as strong, irreversible association to the cell surface can be detected 

which is important in evaluation of nonspecific and specific macromolecular coatings for 

biomedical applications. Fig. 6.3 shows measured association lifetime histograms, p(ta), 

for PEG, BSA, Dextran, and HA-coated particles on the surface of MDA231 cells. As ta 

depends exponentially on umin, histograms were populated from a (6.14 s) to the total 

time of each experiment (1800 s) over 10 bins with exponential spacing shown in Table 

2. A linear color scale of 
  
ln(t

a
/

a
)|u

min
| /kT

 
is used for each bar to show the net 

particle-cell surface attraction determined for each association time.  

Table 6.2 Parameters used for association lifetime histograms and logarithmic color scale 

for 
  
ln(t

a
/

a
)|u

min
| /kT shown in Fig. 6.3.  

Bin ta (s) ln(ta/a) color  

1 6.14 0 violet 

2 11.5 0.63 dark blue 

3 21.7 1.26 blue 

4 40.8 1.89 blue-gray 

5 76.7 2.52 green 

6 144 3.16 light green 

7 271 3.79 yellow 

8 509 4.42 orange 

9 958 5.05 orange-red 

10 1800 5.68 red 

 

A histogram of association lifetimes for PEG-coated particles to MDA231 cells, 

shown in Fig. 6.3A, showed only minimal sampling of association lifetimes greater than 

a. Particles largely show short association times indicative of net repulsive interactions 
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with the surface of the cell. This is consistent with the average ensemble diffusion of 

PEG-coated particles on MDA231 cells, shown in Fig. 6.2B, where particles were able to 

freely diffuse on the cell surface. As PEG is commonly used as a stabilizing coating 

against nonspecific adhesion, no net attraction was expected for particles with dense PEG 

brushes on their surface. The association lifetimes for BSA-coated particles, shown in 

Fig. 6.3B, was similar to the PEG-coated particles with the mode association lifetime at 

a and again was consistent with their ensemble average lateral diffusion.  As serum 

adsorption is known to facilitate adhesion for in-vitro cell culture and cellular uptake of 

nanoparticles, longer association lifetimes could be expected in this case. However, 

changes in particle-cell interactions have been observed for particles with pre-formed, 

adsorbed serum layers (as in this work) compared to serum from surrounding medium 

dynamically forming layers on the particle surface.
181, 182

 The composition (i.e. profile of 

adsorbed serum proteins) and architecture (i.e. dense and irreversible versus soft and 

exchangeable serum layers) of the corona also greatly impact protein corona-mediated 

particle-cell interactions.   

While largely short association lifetimes were measured for dextran-coated 

particles shown in Fig. 6.3C, some weak, intermittent association lifetimes were seen in 

this case. In comparison to PEG, dextran clearly shows longer-lived association to the 

cell surface and weak, net attraction to the surface of the cell. The ensemble average 

lateral diffusion measurement for dextran on the cell, shown in Fig. 6.2C, would indicate 

little change in particle dynamics and clearly is an insensitive measure of weak, 

reversible particle-surface interactions. For natural and synthetic polymer coatings like 

dextran and PEG used to prevent adhesion of drug delivery particles to surrounding 
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tissues and compromise of implanted devices due to biofouling,
183, 184, 185

 measurements 

of particle-cell surface association lifetime can be used as a highly sensitive metric of 

anti-adhesive properties.  

 

To probe specific interactions with MDA231 cells, the interactions of HA-coated 

particles with the cell surface were measured. The association lifetime histogram for HA-

coated particles, shown in Fig. 6.3D, contrasted greatly with the short association 

lifetimes measured in other cases. A striking increase in long association lifetimes is 

observed for HA-coated particles with the mode at ta = 21.7 s (~4a). As overexpression 

 

Figure 6.3 Association lifetime histograms, p(ta), for (A) PEG-coated, (B) BSA-coated, 

Dextran-coated (C), and HA-coated (D) 2 µm silica particles on the surface of MDA231 

cells. Histograms constructed from particle trajectories within cell boundaries (shown as  

green lines in Fig. 6.1). Each bar has a linear color scale of ln(ta/τa) ≈ |umin|/kT 
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of CD44 is common for MDA-MB-231 and other cancerous cell types, CD44 binding of 

HA leads to increases in ta due to strong, net particle-cell surface interactions. While 

specific CD44-HA interactions are typically weak with Kd ranging from 1 µM - 1 mM,
186

 

multi-valency on the particle scale will allow for many CD44-HA bonds to form in 

parallel and induce strong adhesion to the cell surface.  

6.4.4 Particle-Cell Surface Interaction Potentials  

 In addition to dynamic measures of cell-surface interactions, equilibrium particle-

cell surface interactions can be assessed with our image analysis tools. As shown in 

Chapter 3, the radial distance between particle centers and nearest cell boundary, r, can 

be measured and histograms of particle-cell surface separations, p(r), are constructed. 

Figure 6.4 shows the particle – cell surface separation histograms for each case. Changes 

in sampled r measured in the particle-cell radial distributions can be related to particle-

cell surface interaction potentials with Eq. (6.13). For the quasi-2D interactions of 

particles with cells in our experiments, this reduction in dimensionality provides a 

relevant measure of equilibrium interactions with the cell surface. Fig. 6.5 shows the 

measured particle-cell surface interaction potentials for each particle coating. A reference 

state is chosen at r = 10a as it is assumed no net interactions between the particle and the 

cell surface will occur at such far separations. 

 In the radial distribution of PEG-coated particles shown in Figure 6.4A, a 

relatively constant distribution of distances are sampled at separations greater than 2a. At 

these separations far from the cell, the sampling will simply depend on the area fraction 

of particles on the surface which is observed with p(r)  1. Values of r < 0 are given for 

radial positions sampled within the cell boundaries and sampling at these positions 
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remains relatively constant for PEG coated particles until separations in the range r < -2a. 

Decreased sampling at r < -2a was a common feature in the distributions across all cases. 

The distribution of distances sampled for BSA and dextran-coated particles approaching 

the cell (r < 2a), shown in Fig. 6.4B and 6.4C respectively, was much different then PEG 

with increased sampling at these distances. HA-coated particles also showed an increase 

in sampling as they approached the cell and even further increased sampling within the 

cell boundaries (-2a < r < 0).  

 To interpret thes distributions, particle-cell surface interaction potentials were 

determined from the measured p(r) shown in Fig. 6.4. From the particle-cell surface 

interaction potential for PEG-coated particles shown in Fig. 6.5A, no net interactions are 

observed at separations greater than 2a as would be expected at such large distances from 

 

Figure 6.4 Ensemble average particle-cell radial distribution function, p(r), for (A) PEG-

coated, (B) BSA-coated, (C) Dextran-coated, and (D) HA-coated 2 µm silica particles 

interacting with MDA231 cells normalized by p(rref = 10a).  
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the cell. As the particle approaches the surface (r < 2a), the free energy fluctuates around 

~0 kT with no appreciable attraction to the cell surface. As it diffused further onto the cell 

(r < -2a), a net repulsive interaction is seen. While no net interactions are expected based 

on measured association lifetimes for PEG-coated particles shown in Fig. 6.3A, a 

gravitational barrier to diffusion laterally onto the cell could be present due to cell 

topography. Although the ensemble average interactions of the particles with the cells 

cannot directly yield single cell topography, a gradual increase in height would be 

expected based on the “hill” shape characteristic of cells cultured in 2D.
187

 

 Interaction potentials measured for BSA and dextran coated particles with 

MDA231 cells, shown in Fig. 6.5B and 6.5C respectively, both showed net attraction at 

particle-cell surface contact (at r  a) with repulsion to radial positions further on top of 

 

Figure 6.5 Ensemble average particle-cell surface potentials of mean force, W(r), 

determined from radial distribution functions in Fig. 6.4 for (A) PEG-coated, (B) BSA-

coated, (C) Dextran-coated, and (D) HA-coated 2 µm silica particles interacting with 

MDA231 cells. 
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the cell (r < -2a). With attractive minimum of ~2 kT for BSA and dextran coated 

particles, reversible association to the cell surface would be expected and is consitent 

with measured association dynamics in Fig. 6.4. Net attraction to the cell surface is seen 

for HA-coated particles at radial positions on the cell (at -2a < r < a). The attractive 

minimum of ~4 kT will lead to much stronger particle cell-surface association and is 

again consistent with the long association lifetimes of HA-coated particles on the cell 

surface shown in Fig. 6.3D. While sampling limits quantitative determination of these 

free energy landscapes, the trends observed help to show the differences in particle – cell 

surface interactions mediated by synthetic and biological macromolecules present on the 

particle surface. The steepness of repulsion varies from case to case, but the overall trend 

is consistent with a gravitational barrier to diffusion on top of the cell. W(r) can be used 

as a composite measure of biomolecular and biophysical properties of the cell as 

differences in these potentials arise from the net contributions of biomacromolecular 

interactions and ensemble average topography of the cells. 

6.5 Conclusions 

In this work, dark field video microscopy combined with newly developed image 

analysis techniques was used for real-time, simultaneous tracking of particles and cells. 

Quantitative analysis of single colloidal trajectories allowed for direct measurements of 

particle-cell surface association lifetimes that showed remarkable sensitivity to changes 

in surface chemistry. In addition, equilibrium particle-cell surface interactions were 

measured from ensemble average radial particle positions with respect to the surface of 

the cell. This technique provides a highly sensitive assay of particle-cell surface 

interactions capable of interrogating nonspecific, specific biomolecular interactions as 
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well as biophysical interactions between particles and cells. These results also show 

promise as a non-intrusive, high-throughput techniqe for mapping live cell and tissue 

topography using diffusing colloidal probes. Ultimately, our findings demonstrate a 

powerful technique for characterization of biomaterial-cell surface interactions crucial to 

biosensing, drug delivery, diagnostic imaging, and tissue engineering applications. 
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7. DESIGNING SUPER-SELECTIVE DRUG DELIVERY 

NANOPARTICLES USING MONTE CARLO SIMULATIONS 

7.1 Introduction 

Targeted drug therapies have gained much attention for the preferential delivery 

of medicine to diseased tissues, with benefits including reduced damage to healthy tissues 

and have significantly lowered dosages required. In nanoparticle-based drug therapies, 

targeting agents can be introduced to the particle surface to allow for the selective 

binding to membrane proteins with anomalous or over-abundant expression in diseased 

cells. If a membrane protein is exclusively expressed on diseased cells, functionalization 

with high affinity targets (i.e. antibodies) allows for nanoparticles to selectively bind to 

cells with this protein present.
188, 189

 This strategy has been effective for a number of 

diseases such as arthritis,
190

 cancer,
191

 and multiple sclerosis.
192

 However, if the target 

protein is present at moderate levels on healthy cells, high-affinity targeting agents lose 

selectivity due to adherence to both diseased and healthy cells which is typical for many 

therapeutic targets. In such situations, recent work has shown that binding selectivity can 

be recovered by engineering nanoparticles with weaker targeting affinity, which require 

multi-valent binding that can only be induced at cell surfaces with abnormally high 

expressions of the target membrane proteins. This has been demonstrated with targeting 

of integrins with the reactive tripeptide sequence of fibronectin, RGD,
193, 194, 195

 and 

targeting of CD44 with hyaluronic acid (HA)
196, 197, 198, 199, 200

 for delivery of 

chemotherapeutics for cancer.  

Designing nanoparticles for super-selective targeted delivery with experimental 

assays alone is challenging and labor intensive due to a variety of possible 

functionalization strategies. Comprehensive models of nanoparticle-based therapies can 
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provide guidance in choosing nanoparticle designs to narrow the parameter space for 

more efficient screening. Recent modeling efforts have aimed to characterize the 

nanoparticle-cell interactions mediated by ligand-membrane protein targeting with 

analytical and simulation techniques. Nanoparticle design parameters ranging from ligand 

binding affinity, ligand density, ligand tether length, tether valency (i.e. bi-, tri-, 

tetravalent tethers), and substrate rigidity have been investigated for cell surfaces with 

varying densities of target membrane proteins.
78, 201, 202, 203, 204, 205

 Notably, Frenkel et. 

al.
206

 developed an analytical model of super-selective nanoparticle binding which 

demonstrated how weak, multi-valent binding allowed for selectivity for surfaces with 

high densities of target biomacromolecules. However, realistic, experimentally-

determined binding affinities have not been investigated for these systems as translating 

measurable parameters (such as dissociation constant, Kd) to inputs for modeling 

nanoparticle-cell surface interactions is not straightforward. Also, experimentally 

determined membrane protein densities for healthy and infected cells have yet to be used 

as inputs into these models. Using parameters representative of the actual diseased and 

healthy cell populations will allow for more accurate predictions of selectivity for 

targeted nanoparticle drug vectors. 

Binding affinities for many target membrane proteins have been measured 

experimentally using FRET,
207

 NMR,
186, 208

 and SPR.
170, 209, 210

 However, these ensemble 

measurements of ligand-protein association do not directly yield single molecule binding 

energetics. In Chapter 5, formalism was developed to predict Kd for an input ligand-

receptor interaction potential allowing for more realistic representations of these systems. 

This same technique will be applied in this study to represent specific target membrane 
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proteins overexpressed on diseased cell surfaces. Quantitative measurements of 

membrane protein expression have been made using flow cytometry for weak affinity 

target membranes on healthy and diseased cells
177, 211, 212, 213

 and these values were used 

as inputs into the model.  

In this work, Monte Carlo simulations were used to study nanoparticle-cell 

interactions mediated by specific interactions between surface-immobilized ligand 

receptors on the particle and target membrane proteins on the surface of a cell. 

Parameters most relevant towards the design of targeted drug delivery vectors were 

explored to determine their effects on the net particle-cell surface interactions. For 

example the dissociation constant, Kd, determines how strongly the ligand and protein 

will interact which changes the net interaction between the particle and cell. Since weaker 

binding affinities are most relevant toward super-selective targeting therapies, Kd in the 

mM to µM range were explored. In order to investigate realistic membrane protein 

densities for healthy and diseased cells, a range of membrane protein densities was 

chosen based on flow cytometry measurements of CD44 expression where 233  52 

molecules/µm
2
 were found on colon carcinoma cells compared to 66  6 molecules/µm

2
 

on healthy platelets.
214

 In modeling these highly complex biological systems, exploring 

parameters that closely match those in real systems will better demonstrate what is 

required to design nanoparticles with high selectivity.  

7.2 Theory 

7.2.1 Ligand-Membrane Protein Interaction Potentials 

 Membrane proteins in this work are represented as hard spheres that interact 

specifically with receptors on the particle surface represented as points in space. In order 
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to introduce an effective size to the membrane proteins, they can be modeled as hard 

nanospheres with an isotropic (i.e., no orientation dependence) attractive well on their 

surface. For the ligand-membrane protein nanosphere potential, ULPN, we use the form, 
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(7.1) 

where r is the ligand to membrane protein separation, ap is the radius of the protein, umin 

is the ligand-protein attractive well depth, and  is the range of the attractive well. The 

goal in this work is to model the specific interactions of ligands and membrane proteins 

with realistic dissociation constants and in the next section, we will show how this can be 

determined. 

7.2.2 Determining Kd for Ligand- Membrane Protein Interaction Potentials 

An analytical expression for the dissociation constant, Kd, of a harmonic well 

potential can be determined using the Bjerrum approach of Luo and Sharp to calculating 

absolute macromolecular binding free energy. For a simple harmonic well potential with 

the form, 
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the Kd can be calculated with the expression,
100
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 (7.3)  

This is limited to predictions for these simple harmonic well potentials without an 

effective size. An alternative formalism was developed in Chapter 5 to determine Kd for 
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membrane protein nanospheres. We begin by calculating the second virial coefficient, B2, 

for the protein nanospheres to estimate their effective interaction strength. The second 

virial coefficient for the protein nanosphere, B2,LPN, is calculated with the following 

expression, 
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The first term is the hard sphere component of B2,LPN that is simply four times its volume, 

V. The second term accounts for the harmonic well tail component of B2,LPN and this is 

calculated using an expression which can be applied to any arbitrary potential to 

determine B2
101

. Next, a simple harmonic well with the same effective ineraction strength 

(i.e same B2) must be founde. The second virial coefficient of a harmonic well potential, 

B2,LP, is calculated as,  
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using the same expression to determine B2 for any arbitrary potential. To find an 

equivalent harmonic well potential, umin in Eq. (2.28) (7.2) for ULP is adjusted at constant 

ks until B2,LP is equal to B2,LPN of the membrane protein nanosphere. The Kd of the 

harmonic well calculated from Eq. (7.3) is then assigned to the membrane protein 

nanosphere potential. This approach was found to accurately predict Kd for MC 

simulations of protein nanospheres interacting with ligands in Chapter 5.  

7.3 Methods 

As is illustrated in Figure 7.1, a colloidal particle (a = 100 nm) decorated with 

ligand receptors distributed with equal spacing, srec, on its surface was allowed to  
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translate and rotate in 3D above a membrane protein receptor functionalized substrate. 

Generation of receptor configurations and execution of particle receptor rotations is 

detailed in Chapter 3. Target membrane proteins were represented as hard spheres with  

radius ap = 10 nm that diffuse in 2D above the cell surface with surface area Acell = 1 µm
2
 

and interact specifically with particle receptors as described previously. Particle ligand 

receptors are placed (ap + ) nm normal to the particle surface to prevent steric hindering 

of ligand-membrane protein binding. To interrogate varied particle receptor densities, srec 

on each particle was changed leading to various number densities of receptors on 

particles at different Kd. The receptor spacing used in each case and number density 

ranges are shown in Table 7.1. The particles are allowed to equilibrate above the surface 

for 5 x 10
5
 MC steps and particle-cell surface separation, h, is then monitored for 2 x 10

7
 

steps. Histograms of h sampled, p(h) are constructed and potentials of mean force, W(h) 

are determined with a Boltzmann probability analysis as,
71, 111
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)

 

(7.6) 

where W(h0 = 100 nm) = 0 kT was chosen as the reference state in each case. The number 

 

Figure 7.1 Schematic of receptor-ligand mediated nanoparticle-cell interactions.   
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of ligand-membrane protein bonds, Nb, was monitored in each step and histograms were 

constructed for each sampled binding valency. The fraction of bound particle 

configurations, where Nb ≥ 1, was also monitored over the course of each simulation. 

Table 7.1 Parameters used in MC Simulations for receptor spacing, srec, and range of 

receptor number densities, Nrec, and average number density of receptors, Nrec 

srec/nm Nrec range Nrec 

30 100-104 102 

20 225-235 230 

10 900-940 923 

7.4 Results and Discussion 

7.4.1 Particle-Cell Surface Separations at Varied Kd 

In Figure 2, the height of the particle above the cell surface, h, is shown as a 

function of MC step at a fixed membrane protein density representative of a cancerous 

cell (cell = 256/µm
2
) and receptor spacing (srec = 20 nm) while varying Kd for the target 

protein. The dissociation constant was changed in each case by varying Umin in Eq. (7.1) 

from 1 – 10 kT in order to explore binding affinities in the µM to mM range suited for 

super-selective targeting. A linear color scale is included which shows the number of 

ligand-membrane protein bonds, Nb, present at each height to illustrate how these specific 

interactions affect heights sampled by the colloid above the surface. This helps to 

illustrate the relationship between binding of target membrane proteins and association of 

nanoparticles to the surface of the cell. 

In Fig. 7When Kd = 630 µM (Fig. 7.2A), the ligands only interact weakly with the 

proteins on the cell surface (umin = 2 kT).  As a result, the particle samples heights further 

from the surface as only a few bonds form transiently between the ligands and membrane 

proteins.   
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This contrasts with Kd = 120 µM (Fig. 7.2B) where ligands interact more strongly with 

the membrane proteins. This leads to stronger association with the surface of the cell and 

heights less than 10 nm are frequently sampled. Reversible association between the 

particle and cell surface is evident in this case as the ligand-membrane protein bonds 

formed vanish and h >> ap are sampled. The ligand-membrane protein binding affinity 

was further increased and is shown in Fig. 7.2C with a Kd = 14 µM (umin = 6 kT). While 

Nb fluctuates in this case, only a single height is sampled over the course of the 

simulation. This was also the case at Kd = 0.7 µM (umin = 8 kT) shown in Fig. 7.2D. With 

ensembles of strong bridges present in each step, a very strong net particle-cell surface 

interaction is induced and the particle irreversibly associates with the surface of the cell. 

proteins  (Umin = 4 kT) and form larger ensembles of bonds with the surface of the cell. 

 With the obtained distributions in height, net interaction potentials can be 

 

Figure 7.2 Sample trajectories of particle-cell surface separation, h versus step from MC 

simulations at ρcell = 256 µm
-2

 and (A) Kd = 630 µM, (B)  Kd = 120 µM, (C)  Kd = 14 µM 

(C), and Kd = 0.7 µM (D). Each data point has a linear color scale dependent upon the 

number of bridges formed in each step, Nb. 
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determined provided adequate sampling of various h values. In the cases studied in this 

work, reversible particle-cell association was seen for Kd < 40 µM (Umin < 5 kT) where a 

wide distribution of heights were sampled. When Kd > 40 µM, the particles irreversibly 

associated with the surface of the cell by only sampling limited distributions of h. 

Although effective particle-cell interaction potentials can be determined for these cases 

with methods shown in Chapter 5, it was not of interest in this study to quantitatively 

determine these potentials as they all will result in irreversible cell surface adhesion and 

the aim in this study is to demonstrate selectivity between cells with different membrane 

expression. In the next section, effective nanoparticle-cell interactions will be examined 

as a function of Kd and membrane protein density to further illustrate how sensitivity to 

specific cell surface protein expression levels can be designed in targeted nanoparticle 

vectors. 

7.4.2 Particle-Cell Surface Interaction Potentials  

In Figure 7.3, particle-cell surface interaction potentials are shown for fixed 

particle receptor spacing, (srec = 20 nm, Nrec = 230), at 5 different membrane protein 

surface densities, cell, over a physiologically relevant range (64/µm
2
 – 256/µm

2
). Ligand-

membrane protein mediated particle-cell surface interaction potentials are then 

determined at each cell for Kd ranging from 5200 µM – 40 µM to determine how affinity 

for the target membrane protein impacts the effective interaction of the particle with the 

cell. 
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In Fig. 7.3A, net particle-cell interaction potentials are shown at cell = 256 µm
2
 

with 5200-120 µM. At Kd = 5200 µM and 630 µM (black and red circles), the particle has 

no net attractive interactions with the cell surface and at h < 10 nm, the particle has a net 

repulsive interaction with the cell surface. Repulsive interactions with the surface at h < 

ap  are due to hard sphere repulsive interactions between the membrane proteins with the 

particle and particle receptors when r < ap in Eq. (7.1). At these low binding affinities 

(Umin from 1-2 kT), the effective particle-cell surface attraction generated by bonds 

formed is insignificant in comparison to the net repulsion due to the presence of hard 

spheres on the cell surface. When the affinity is increased to Kd = 460 µM and 120 µM 

(green and yellow circles), net attractive particle-cell interactions are induced once the 

receptors come within range of interacting with the membrane proteins at h < 20 nm. The 

 

Figure 7.3 Particle-Cell Surface Interaction Potentials at (A) ρcell = 256 µm
2
, (B) ρcell = 

196µm
2
, (C) ρcell = 100 µm

2
, and (D) ρcell = 64 µm

2 
and Kd = 5200 µM (black), Kd = 630 

µM (red), Kd = 460 µM (green), and Kd = 120 µM (yellow) and ) Kd = 40 µM (blue).  
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attractive well depth increases as a function of binding affinity as ensembles of ligand-

membrane protein bonds form between the particle and the surface.  

The expression of membrane proteins was decreased to measure these same 

particle-cell surface interactions with levels expected on healthy cells. In Figs.7.3B-D, 

net particle-cell interaction potentials were determined for membrane protein densities 

from 196/µm
2
 – 64/µm

2
, respectively. It is again seen at lower binding affinity cases with 

Kd = 5200 µM and 630 µM (black and red), no net attraction is generated as one would 

expect with lowered membrane protein densities. The net repulsion due to hard sphere 

interactions between the particle and particle receptors with the membrane proteins also 

decreases in strength as their density decreases on the surface. As the affinity increases to 

Kd = 460 µM and 120 µM, net attractive interactions are again induced with the 

magnitude of the attractive well depth decreasing with as the membrane protein 

decreases. In Fig. 7.3C-D, potentials are shown for Kd = 40 µM (Umin = 5 kT) as adequate 

sampling was obtained for these lower membrane protein densities. However, the 

attractive well depth for this case only decreases to ~3 kT at the lowest (healthy) cell 

expression levels shown which would still lead to significant association of the particle to 

the cell.  

With varying surface densities of membrane proteins present on the surface of the 

cell, the interaction of the nanoparticle with the surface of the cell can change 

significantly dependent on the binding affinity between the ligand receptors and target 

membrane proteins. In order to introduce selectivity in targeted nanoparticle drug vectors, 

the interactions with the surface of the cell must vary from strong net attractive 

interactions with diseased cells to weak or ideally net repulsive interactions with healthy 
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cells. Of the cases shown in Fig. 7.3, net interactions were the most sensitive to 

membrane protein density at Kd = 120 µM with attractive well depths from ~4 kT at the 

highest membrane protein density to ~1 kT at the lowest membrane protein expression. 

By utilizing weak, reversible ligand-protein interactions, multi-valency on the particle 

scale can be introduced that allows for net particle-cell interactions that vary widely in 

strength. In the next sections, the influence of membrane expression levels and particle 

functionalization on particle-cell binding valency will be discussed to illustrate how it can 

be used to tailor these interactions for targeting specific cell types. 

7.4.3 Particle-Cell Surface Binding Valency  

To introduce selectivity for specific cell surfaces, ligand-membrane protein 

mediated interaction potentials can be tailored based on Kd and cell of the target 

membrane protein. Binding valency on the particle scale becomes an important factor in 

designing particles selective to specific membrane protein expression levels. For weaker 

affinity targets with Kd in µM range, multiple ligand-membrane protein bonds form in 

parallel to generate significant net particle-cell attraction as shown in Fig. 7.3. Figure 7.4 

illustrates how this particle-cell binding valency varies over a range of Kd and cell for 

particles with Nrec  = 230. 
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In Fig. 7.4A-C, representative snapshots are shown from below the particle to 

show the number of bonds present with Kd = 120 µM and Nrec = 229 at varied cell. The 

glass-bottom view of the particle above the cell surface helps to visualize how particle-

cell binding valency changes at each membrane surface density. For each membrane 

protein (small spheres), a linear color scale is used to indicate ligand-protein binding 

energy, ULPN, where particles turn from white when unbound (i.e. ULPN = 0) to red when 

tightly bound  (i.e. ULPN = Umin). When cell = 64/µm
2
 shown in Fig. 7.4A, only a single 

bond is present with between the particle and cell surface. When cell = 144/µm
2
 shown in 

 

 

Figure 7.4 Representative snapshots with glass-bottom view from beneath nanoparticle 

with Nrec= 229 and (A) ρcell = 64/µm
2
, (B) ρcell = 144/µm

2
, and (C) ρcell = 256/µm

2
 at Kd = 

120 µM. Target membrane proteins have linear color scale depending on binding energy, 

ULPN, ranging from white when unbound (ULPN = 0) to red when tightly bound (ULPN = 

Umin). (D) Mode valency of surface-bound nanoparticle configurations as a function of 

Kd and ρcell. 
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Fig. 7.4B, multi-valent particle-cell binding is seen with 3 ligand-protein bonds formed 

simultaneously. Particle-cell binding valency further increases at cell = 256/µm
2
, shown 

in Fig 7.4C, with 6 bonds present. The binding energy of each bond formed also varies in 

magnitude and is clearly shown in each case with the ULPN color scale in Fig. 7.4. The 

number of bonds and distribution of bond energies will ultimately determine the net 

interaction induced between the particle and surface.  

In Figure 7.4D, the mode of the particle-cell binding valency from all bound 

particle configurations is shown as a function of Kd and cell for more quantitative 

comparison.  For the weakest binding affinities with Kd from 5200 µM - 460 µM, the 

particle-cell interactions are largely monovalent which explains the weak net particle-cell 

interactions seen in Fig. 7.3. At Kd = 120 µM, particle-cell binding valency transitions 

from monovalent binding at low membrane protein densities to multi-valent binding at 

higher membrane protein densities. This shift in binding valency explains the sensitivity 

of the net particle-cell interactions to cell seen in Fig. 7.3. Multi-valent binding occurs at 

all Kd > 120 µM on each cell surface independent of membrane protein density. With 

multi-valent particle-cell binding at both healthy and diseased membrane protein 

expression levels, net attractive interactions will be present at all cell surfaces and 

selectivity will be lost.  

The valency of particle-cell binding can also be tuned by changing the density of 

ligands, Nrec, functionalized on the nanoparticle. This design parameter allows us to 

engineer nanoparticles to selectively bind to cells given a specific Kd and cell. We 

demonstrate this for a target membrane protein with a specific Kd and cell varied from 

64/µm
2 

(healthy cells) to 256/µm
2
 (diseased cells) with nanoparticles functionalized with 
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varying amounts of ligands. Fig. 7.5 visualizes changes in valency for each Nrec 

investigated in Fig. 7.5A-C with quantitative comparison of all cases in Fig. 7.5D. 

 

In Fig. 7.5A-C, representative snapshots are shown again below the particle with 

a linear color scale of ULPN for all membrane proteins for an example case with ρcell = 

256/µm
2 

and Kd = 460 µM. When Nrec = 102 shown in Fig. 7.5A, only a single bond is 

present between the particle and cell surface. When Nrec increased to 229 shown in Fig. 

7.5B, multi-valent bonding is seen with 2 ligand-membrane protein bonds present. When 

 

 

Figure 7.5 Representative snapshots with glass-bottom view from beneath nanoparticle 

with (A) Nrec = 102, (B) Nrec = 229, and (C) Nrec = 913 at ρcell = 256/µm
2 

and Kd = 460 

µM. Target membrane proteins have linear color scale depending on binding energy, 

ULPN, ranging from white when unbound (ULPN = 0) to red when tightly bound (ULPN = 

Umin). 
 
(D) Mode valency of surface-bound nanoparticle configurations as a function of 

Kd and Nrec. 
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Nrec is further increased to 913 in Fig. 7.5C, 7 membrane proteins are tightly bound to 

particle lignad receptors. This shows how changes in nanoparticle design (i.e surface 

functionality) can impact the particle-cell binding valency and as a result, the effective 

particle-cell interactions will change dependent upon membrane protein expression. 

In Fig. 7.5D, we examine the effects of nanoparticle ligand receptor density on 

particle-cell binding valency with diseased cells (ρcell = 256/µm
2
) for the example cases 

discussed in Fig. 7.5A-C. With Nrec = 102 and Nrec = 229, the particle only binds 

monovalently with the cell surface at all target membrane protein densities. At Nrec = 913, 

we begin to see multi-valent binding that increases as a function of membrane protein 

density. As ligand-membrane protein binding is highly reversible at such high Kd, larger 

numbers of ligands must be present for multiple bonds to be formed simultaneously. 

These results illustrate how binding valency can be tuned with particle design and in the 

next section, the effects of particle design on selectivity for specific target membrane 

proteins will be discussed.  

7.4.4 Selectivity for Diseased Versus Healthy Cells 

In order to design super-selective nanoparticle drug carriers, the ligand receptor 

density must be carefully chosen to effectively tune the net particle-cell interactions to 

diseased cells with abnormal expression levels while also having very weak or ideally a 

net repulsive interaction with the surface of healthy cells. In this work, the fraction of 

surface-bound particle configurations (i.e. when Nb ≥ 1), , was used as a measure of 

selectivity. In Fig. 7.6, we show how  changes for 4 different target membrane proteins 

by varying Kd and 3 different nanoparticle designs by varying Nrec. 
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With Nrec = 102 (circles) and Nrec= 230 (triangles down), only a small fraction 

of particle configurations were bound to the cell surfaces with  < 0.2 at all levels of 

membrane protein expression. As was discussed in the last section for this case, the 

number of ligands present was much too low to show multi-valent binding and as a result, 

only weak effective particle-cell interactions can be induced for these expression levels. 

At Nrec = 923 (squares), the fraction of bound particles increases dramatically from  = 

0.28 at healthy cells with ρcell = 64/µm
2
 to  = 0.95 at diseased cells with ρcell = 256/µm

2
. 

It was this case in Figure 7.5D that showed multi-valent particle cell binding in response 

to changes in ρcell and as a result, it shows the most selective binding to cell surfaces with 

high membrane protein expression.  

 

Figure 7.6 Fraction of particle configurations bound to cell surface, χ, versus ρcell at Kd 

= 630 µM (black), Kd = 460 µM (red), and  Kd= 120 µM (blue) and Kd = 40 µM (green) 

with Nrec = 102 (circles), Nrec = 230 (triangles down), and Nrec = 923 (squares). 
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Target membrane proteins with higher binding affinity were also investigated 

with Kd = 120 µM shown in Fig 7.6B and Kd = 40 µM shown in Fig. 7.6C. In these cases, 

the most selective binding was seen at Nrec = 230 for Kd = 120 µM and Nrec = 102 for 

Kd = 40 µM. At an even higher binding affinity with Kd = 120 µM shown in Fig 7.6D, the 

particle was only weakly selective at Nrec = 102 with  = 0.85 at healthy cells with ρcell 

= 64/µm
2
 to  = 1.0 at diseased cells with ρcell = 256/µm

2
. These results show how 

particle design could be directed to engineer super-selective nanoparticles given a 

specific Kd of target membrane protein and range of ρcell for diseased versus healthy cells. 

Using target proteins with µM-range Kd, particle-cell interactions can be further 

optimized by modifying the amount of ligand receptors immobilized to the nanoparticle 

surface.  

7.5 Conclusions 

In this work, nanoparticle interactions with the surface of cells mediated by 

specific binding to target membrane proteins was investigated using Monte Carlo 

Simulations with realistic, experimentally verified binding affinities and membrane 

protein expression levels. By measuring interactions of nanoparticles with both diseased 

cells having abnormal over-expression of target proteins and healthy cells expressing 

normal levels of target proteins, our results show that multi-valent nanoparticle-cell 

binding mediated by weak, reversible ligand-membrane protein interactions proved the 

most effective means to discriminate between healthy and diseased cell surfaces. While 

higher binding affinity targets (Kd < 1 nM) are attractive due to their specificity for target 

membrane proteins, they are most appropriate when only sparse amounts are present on 

healthy cells which is not always the case for diseases like cancer where abnormal 
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expression is common. Using lower affinity ligands (Kd ≈ 1 µM – 1 mM) to target for 

diseased cells with marked overexpression of target membrane proteins, nanoparticles 

can be designed with the requirement of multi-valency on the nanoparticle scale to induce 

adhesion only at diseased cell surfaces. With this model, informed design choices for 

targeted nanoparticle drug delivery vectors can be made to maximize selectivity for 

specific diseased cell populations. In future work, comparisons between the interactions 

determined using this computational model and experimental measurements of particle-

cell interactions in Chapter 6 will help to identify additional parameters to improve the 

accuracy of the model. 
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8. CONCLUSIONS 

The primary goal of this research is to combine experimental measurements made 

using diffusing colloidal probe microscopy (DCPM) with Monte Carlo (MC) simulation 

techniques to allow for more in-depth analysis of specific and non-specific 

biomacromolecular interactions at colloidal and live cell surfaces. DCPM has proven an 

effective means to make quantitative, sensitive measurements of weak, specific 

biomacromolecular interactions
72, 127, 215

 and to image free energy landscapes of patterned 

interfaces (analogous to cell seeded substrates).
69

 In this work, DCPM was used to 

measure colloidal interactions mediated by competitive protein-carbohydrate interactions. 

Additionally, image analysis techniques were developed to extend the use of DCPM for 

measuring specific and nonspecific biomacromolecular interactions with the surface of 

live cells. MC simulations have been used extensively to study biological and colloidal 

systems.
77, 216, 152, 163

 Models of colloidal and surface interactions mediated by specific 

biomolecular binding were developed to further interpret these experimental results.  

This work began with the sugar-binding protein, Concanavalin A (ConA), where 

colloidal association dynamics were measured in quasi-2D concentrated dispersions of 

dextran-modified colloidal particles in the presence of ConA and glucose. Specific 

adsorption of ConA was visualized with fluorescent assays to determine how competitive 

ConA-glucose interactions affected the amount of ConA surface adsorption. Aggregation 

kinetics were reversibly tuned by varying ConA and glucose over a range of 

concentrations on the order of each constituent dissociation constant. A secondary 

stability ratio analysis then relates net particle-particle interactions to initial aggregation 

kinetics in these dispersions as a function of ConA and glucose concentration.  
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To model this system, receptor-ligand mediated colloidal potentials of mean force 

were measured using MC Umbrella Sampling Simulations. Initial results focused on 

characterization of biomacromolecular interactions in the bulk and at interfaces which 

lead to development of an additional theoretical formalism to predict dissociation 

constants for a wide range of input receptor-ligand interaction potentials. With the 

dissociation constant and ligand size as inputs, colloidal potentials of mean force could 

then be determined for with parameters representative of the ConA-Dextran system.  

These results demonstrated how freely diffusing ConA nanospheres could adsorb to the 

surface of dextran-decorated colloids and induce net particle-particle attraction by 

formation of ensembles of ConA-dextran bridges. While our results were focused on this 

particular system, the model could be easily applied to a number of related 

biomacromolecular systems. 

Next, diffusing colloidal probe microscopy was further developed for 

measurement of specific and non-specific interactions with the surface of live cells. 

Novel dark field imaging and particle-cell image analysis techniques allow for the direct, 

quantitative measurement of cell surface interactions. The diffusion of particles on the 

surface of cells was used to determine lateral diffusion rates on the cell, association 

lifetimes to the cell surface, and particle-cell surface interaction potentials. A variety of 

particle surface coatings relevant to drug delivery, biosensing and tissue engineering were 

investigated to determine their impact on net particle-cell surface interactions. The results 

from this work demonstrate for the first time how measurements of colloid-cell surface 

interactions can be made using diffusing colloidal probes. 
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Using the principles developed in Chapter 5 to model colloids and 

biomacromolecules, nanoparticle interactions with the surface of cells mediated by 

specific binding to target membrane proteins was investigated using MC simulations. 

Realistic, experimentally verified binding affinities and membrane protein expression 

levels were input to determine the selectivity of specific nanoparticle designs for certain 

cell types (diseased or healthy). By measuring interactions of nanoparticles with both 

diseased cells having abnormal over-expression of target proteins and healthy cells 

expressing normal levels of target proteins, our results show that multi-valent 

nanoparticle-cell interactions mediated by weak, reversible ligand-membrane protein 

binding proved the most effective means to discriminate between healthy and diseased 

cell surfaces. Using lower affinity ligands to target for diseased cells with marked 

overexpression of target membrane proteins, nanoparticles can be designed with the 

requirement of multi-valency on the nanoparticle scale to induce adhesion to the cell 

surface leading to much improved selectivity for specific cell populations. With this 

model, experimental measurements of cell surface interactions can be further interpreted 

with realistic biological parameters. 

The work in this dissertation aimed to develop (1) quantitative models of colloidal 

interactions mediated by biospecific interactions and (2) further extend DCPM to 

measure colloid and cell surface interactions mediated by specific and non-specific 

macromolecular interactions. Kinetic assays of colloidal association allow for dynamic 

and equilibrium characterization of particle-particle interactions mediated by weak, 

specific binding between proteins and carbohydrates. Weak, specific protein-

carbohydrate and non-specific interactions were also studied for their impact on colloidal 
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interactions with the surface of cells. The experimental and computational techniques 

used in this work could be applied to study a variety of colloidal systems and 

biomolecules with relevance to fundamental biology and biomedical applications. In 

future work, comparisons between the interactions determined using the computational 

models and experimental measurement techniques developed in this dissertation will help 

in rational design of functionalized colloids and in identifying additional parameters to 

improve the accuracy of these models. 
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9. FUTURE RESEARCH 

9.1 Association Dynamics of HA-Coated SiO2 Colloids with Soluble CD44 and HA 

In Chapter 4, the aggregation kinetics of colloids mediated by ConA-dextran 

interactions was investigated. The initial doublet formation rate was then also related to 

net particle-particle interactions. To probe CD44-HA interactions measured on MDA-

MB-231 (MDA231) epithelial breast cancer cells in Chapter 6, soluble CD44 could be 

obtained with immunoprecipitation techniques
214

 from MDA231 cells and association 

dynamics could be measured in quasi-2D concentrated dispersions of HA coated colloids, 

as shown in Fig. 9.1A. Soluble HA of different molecular weight could be added as a 

competitor which is illustrated in Fig. 9.1B to inhibit CD44-HA mediated particle-

particle binding. These could be used as complementary measurements to those on actual 

cell surfaces to compare particle-particle interactions with different amounts of soluble 

HA. It is believed soluble HA production by metastatic cancer cells such as MD231 cells 

could facilitate invasiveness
10

 and this assay could prove as a useful tool to study how 

competitive HA interactions could weaken cell-extracellular matrix adhesion.  

 

 

Fig 9.1 (A) Video microscopy image of Quasi-2D concentrated dispersion of HA 

coated silica particles on F108 coated substrate. (B) Schematic of CD44-HA 

mediated colloidal interactions. 
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9.2 Dextran/HA Hybrid SiO2 Colloids Interacting with Cancerous MDA-MB-231 

and Healthy MCF-10A Cells 

 For super-selective targeted drug vectors, we demonstrated in Chapter 7 that 

changes in multi-valent particle cell interactions could help make particles selective only 

for diseased cells. In Chapter 6, strong net particle-cell surface interactions were induced 

by HA-coated silica particles due to specific CD44-HA interactions. Dextran coated 

colloidal silica only showed weak net attractive interactions with the cell surface. To 

control particle-cell binding valency, mixed hybrid coatings of dextran and HA could be 

used to modulate the net particle-cell interactions. Using the modeling tools developed in 

Chapter 7 as a guide, different surface coverages could be interrogated and their 

interactions could be measured on cancerous MDA231 and healthy MCF-10A epithelial 

breast cancer cells where marked overexpression of CD44 is expected on cancerous 

cells.
177

  

 In Figure 9.2, some preliminary results on making hybrid dextran-HA coatings 

and their interactions with MDA231 cells are shown. To make the hybrid layer, polymer 

mixtures of dextran and HA are made and used to coat epoxy-silane modified silica 

particles. To determine if this produced hybrid layers, the particles were stained with 

FITC-ConA which only binds specifically to dextran. For 1% HA/dextran shown in 

Figure 9.2A, a large amount of ConA adsorbed to the particle and a large decrease in the 

amount of ConA adsorbed to the surface indicating a decrease in the amount of dextran 

present on the 10% HA / 90% Dextran coated silica. While the exact amounts of dextran 

and HA cannot be determined from this assay, it is clear this synthesis scheme is able to 

produce hybrid layers. The amount adsorbed at 10% HA / 90% dextran is very similar to 

the 100% HA case which could be due to steric screening of the dextran chains by the 
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large HA present with a molecular weight of 1 MDA (Rg  100 nm).  

 The interactions of these hybrid particles with MDA231 cells were tested with 

dark field video microscopy and are shown in Figure 9.2D-F. These preliminary results 

showed a reduction in particle-cell surface association with less irreversibly bound 

particles on the MDA231 cell surface.  However, many particles non-specifically adhered 

to the background HA-substrate which is not ideal when probing specific CD44-HA 

interactions on the cell. Future work will aim to optimize the hybrid HA/dextran coating 

protocol and test these hybrid particles with healthy MCF10A cells to see how the net 

particle-cell interactions are affected. Experimental results will be compared with those 

found through modeling to find additional parameters that could improve its accuracy. 

 

Fig 9.2 Fluorescent confocal microscopy images of (A) 1% HA/99% Dextran, (B) 

10% HA / 90% Dextran and (C) 100% HA coated silica particles in 10 µM FITC-

ConA. MATLAB analysis of dark field microscopy images of (A) 1% HA-Dextran, 

(B) 10% HA-Dextran and (C) 100% HA coated silica particles interacting with 

MDA-MB-231 cells. 
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9.3 Gold Nanoparticle Interactions With MDA-MB-231 Cells 

 Dark field scattering on metallic colloids is greatly enhanced to due local surface 

plasmon resonance effects. For gold nanoparticles, the enhancement of scattering 

intensities allows for imaging of diffraction-limited particles with sizes ranging from 10-

100 nm. Particles in this size range would allow for both particle dynamics on the surface 

and intracellular transport upon uptake via endocytosis to be studied. Figure 9.3 shows 

some preliminary studies how changes in particle composition can lead to changes in net-

particle cell interactions. In Fig. 9.3A, the mean squared displacement is shown for PEG-

coated 400 nm colloidal gold on (green circles) and off (red circles) the MDA231 cell 

surface and it is clear the diffusion drastically hindered on the surface of the cell. While 

PEG-coated silica was highly stable on MDA231 cells, increases in van der Waals 

attraction could lead to nonspecific adhesion for gold nanoparticles. Figure 9.3B shows a 

2D free energy landscape that helps to visualize the location and strength of adhesion 

showing that strong adhesion was most prevalent near the cell surface. Future work will 

interrogate to characterize intracellular transport of smaller 100 nm gold. 

 

Fig 9.3 Mean squared displacement of 400 nm F108-coated gold nanoparticles on 

(green) and off (red) MDA231 cell surface. Two dimensional free energy landscape of 

400 nm F108-coated gold nanoparticles on MDA231 cells (outlined black and shaded). 
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 9.4 Measuring Cell Topography With Diffusing Colloidal Probes 

 In Chapter 6, diffusing colloidal probe measurements were used to measure 

specific and non-specific macromolecular interactions with live cell surfaces. For PEG-

coated silica particles, particle-cell surface distance potentials of mean force, W(r), 

showed repulsion at r < 0 believed to be due to gravitational effects from cell 

morphology. In order to further investigate this effect, smaller colloidal particles able to 

make larger height excursions to probe the height of the entire surface of the cell can be 

used. In Figure 9.4, we show some preliminary results from PEG-coated, fluorescently-

labeled, 800 nm silica particles interacting with MDA231 cells. Fluorescent particles are 

used here to allow for fluorescent confocal microscopy imaging. Confocal microscopy 

also allows for 3D imaging which will be useful in verifying the heights particles samples 

on the cell surface. 

 In Figure 9.4A, confocal images from XY scans were taken of the colloidal 

particles on MDA231 cells. The particles (green spheres) were highly concentrated so 

that the entire surface could be sampled. The MDA231 cells are not stained but can be 

clearly seen as the dark regions where less particles have diffused. To relate the 2D 

positions sampled by each particle can be related to the topography, an inverse 

Boltzmann analysis can be used to convert a 2D (x,y) coordinate probability distributions 

to a 2D (x,y) coordinate free energy landscape. This landscape could then be interpreted 

as a measure of gravitational potential energy and the height on the cell at each position 

could be measured. Compared to typical techniques such as atomic force microscopy for 

measuring surface topography, this would allow for a less intrusive, higher throughput 

method to determine cell topography. 



 

 151 

 To verify the heights determined on cells, XZ scans of the sample, shown in Fig. 

9.4B, could be used to visualize areas on the cell where the particles have “jumped”. It 

can be seen in Fig. 9.4B that the particles are able to sample higher positions on the cell 

due to their smaller size. These XZ scans can be taken very rapidly compared to 3D 

confocal imaging via XYZ stacks allowing for single nanoparticles to be resolved. Future 

work will also include fluorescent imaging of the MDA231 cells to directly verify their 

topography. Particle-particle interactions will also need to be considered for appropriate 

handling of the measured 2D (x,y) coordirnate probability distributions and 

sedimentation equilibrium observed from XZ scans. 

 

 

Fig 9.4  (A) XY and (b) XZ Scans from Fluorescent Confocal Microscopy for FITC-

labeled 800 nm silica particles diffusing on MDA231 cells (dark regions). 



 

 152 

REFERENCES 

1. Flemming, H.-c.; Wingender, J. The biofilm matrix. Nature reviews. 

Microbiology 2010, 8, 623-33. 

2. Diggle, S. P.; Stacey, R. E.; Dodd, C.; Cámara, M.; Williams, P.; Winzer, K. The 

galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas 

aeruginosa. Environmental … 2006, 8, 1095-1104. 

3. Stratford, M. Yeast flocculation: reconciliation of physiological and genetic 

viewpoints. Yeast (Chichester, England) 1992, 8, 25-38. 

4. Goossens, K.; Willaert, R. Flocculation protein structure and cell-cell adhesion 

mechanism in Saccharomyces cerevisiae. Biotechnology letters 2010, 32, 1571-

1585. 

5. Verstrepen, K. J.; Derdelinckx, G.; Verachtert, H.; Delvaux, F. R. Yeast 

flocculation: what brewers should know. Applied microbiology and biotechnology 

2003, 61, 197-205. 

6. Alon, R.; Ley, K. Cells on the run: shear-regulated integrin activation in leukocyte 

rolling and arrest on endothelial cells. Current opinion in cell biology 2008, 20, 

525-32. 

7. Vicente-Manzanares, M.; Choi, C. K.; Horwitz, a. R. Integrins in cell migration - 

the actin connection. Journal of Cell Science 2009, 122, 1473-1473. 

8. McEver, R. P. Selectin-carbohydrate interactions during inflammation and 

metastasis. Glycoconjugate journal 1997, 14, 585-91. 

9. Lasky, L. A. Interpreters of Selectins : Cell-Specific Carbohydrate Information 

During Inflammation. Science 1992, 258, 964-969. 

10. Zöller, M. CD44: can a cancer-initiating cell profit from an abundantly expressed 

molecule? Nature reviews. Cancer 2011, 11, 254-67. 

11. Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nature 

reviews. Cancer 2004, 4, 528-539. 

12. Zeng, X.; Andrade, C. A. S.; Oliveira, M. D. L.; Sun, X.-L. Carbohydrate–protein 

interactions and their biosensing applications. In Analytical and Bioanalytical 

Chemistry, 2012; Vol. 402, pp 3161-3176. 

13. Scarano, S.; Mascini, M.; Turner, A. P. F.; Minunni, M. Surface plasmon 

resonance imaging for affinity-based biosensors. Biosensors & bioelectronics 

2010, 25, 957-966. 

14. Jelinek, R.; Kolusheva, S. Carbohydrate biosensors. Chemical reviews 2004, 104, 

5987-6015. 

15. Homola, J. Present and future of surface plasmon resonance biosensors. 

Analytical and bioanalytical chemistry 2003, 377, 528-539. 

16. Hilt, J. Z.; Byrne, M. E. Configurational biomimesis in drug delivery: Molecular 

imprinting of biologically significant molecules. In Advanced Drug Delivery 

Reviews, 2004; Vol. 56, pp 1599-1620. 

17. Bareford, L. M.; Swaan, P. W. Endocytic mechanisms for targeted drug delivery. 

In Advanced Drug Delivery Reviews, 2007; Vol. 59, pp 748-758. 

18. Cho, K.; Wang, X.; Nie, S.; Chen, Z. G.; Shin, D. M. Therapeutic nanoparticles 

for drug delivery in cancer. Clinical cancer research : an official journal of the 

American Association for Cancer Research 2008, 14, 1310-1316. 



 

 153 

19. Yamazaki, N.; Kojima, S.; Bovin, N. V.; André, S.; Gabius, S.; Gabius, H. J. 

Endogenous lectins as targets for drug delivery. In Advanced Drug Delivery 

Reviews, 2000; Vol. 43, pp 225-244. 

20. Smart, J. D. Lectin-mediated drug delivery in the oral cavity. In Advanced Drug 

Delivery Reviews, 2004; Vol. 56, pp 481-489. 

21. Minko, T. Drug targeting to the colon with lectins and neoglycoconjugates. In 

Advanced Drug Delivery Reviews, 2004; Vol. 56, pp 491-509. 

22. Schurr, J. M. Dynamic light scattering of biopolymers and biocolloids. CRC 

critical reviews in biochemistry 1977, 4, 371-431. 

23. Misra, P.; Dubinskii, M. A. Ultraviolet spectroscopy and UV lasers; CRC 

Press2002. 

24. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Nanogold plasmon resonance-based 

glucose sensing. 2. Wavelength-ratiometric resonance light scattering. Anal Chem 

2005, 77 (7), 2007-14. 

25. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Nanogold-plasmon-resonance-based 

glucose sensing. Analytical biochemistry 2004, 330, 145-55. 

26. Barone, P. W.; Strano, M. S. Reversible Control of Carbon Nanotube Aggregation 

for a Glucose Affinity Sensor. Angewandte Chemie 2006, 118, 8318-8321. 

27. Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K. Quantitative and Reversible 

Lectin-Induced Association of Gold Nanoparticles Modified with α-Lactosyl-ω-

mercapto-poly(ethylene glycol). Journal of the American Chemical Society 2001, 

123, 8226-8230. 

28. Axelrod, D. Chapter 7: Total internal reflection fluorescence microscopy. 

Methods in cell biology 2008, 89, 169-221. 

29. Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: review. 

Sensors and Actuators B-Chemical 1999, 54 (1-2), 3-15. 

30. Wang, Y.; Gildersleeve, J. C.; Basu, A.; Zimmt, M. B. Photo- and biophysical 

studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high 

density assays. The journal of physical chemistry. B 2010, 114, 14487-94. 

31. Vedala, H.; Chen, Y.; Cecioni, S.; Imberty, A.; Vidal, S.; Star, A. Nanoelectronic 

detection of lectin-carbohydrate interactions using carbon nanotubes. Nano letters 

2011, 11, 170-5. 

32. Smith, E. a.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M. Surface plasmon 

resonance imaging studies of protein-carbohydrate interactions. Journal of the 

American Chemical Society 2003, 125, 6140-8. 

33. Liang, P.-H.; Wang, S.-K.; Wong, C.-H. Quantitative analysis of carbohydrate-

protein interactions using glycan microarrays: determination of surface and 

solution dissociation constants. Journal of the American Chemical Society 2007, 

129, 11177-84. 

34. Munoz, E. M.; Correa, J.; Riguera, R.; Fernandez-Megia, E. Real-time evaluation 

of binding mechanisms in multivalent interactions: a surface plasmon resonance 

kinetic approach. Journal of the American Chemical Society 2013, 135, 5966-9. 

35. Wang, W.; Wang, S.; Liu, Q.; Wu, J.; Tao, N. Mapping single-cell-substrate 

interactions by surface plasmon resonance microscopy. Langmuir : the ACS 

journal of surfaces and colloids 2012, 28, 13373-9. 



 

 154 

36. Wang, Z.; Tiruppathi, C.; Minshall, R. D.; Malik, A. B. Size and dynamics of 

caveolae studied using nanoparticles in living endothelial cells. ACS nano 2009, 

3, 4110-6. 

37. Lisse, D.; Richter, C. P.; Drees, C.; Birkholz, O.; You, C.; Rampazzo, E.; Piehler, 

J. Monofunctional stealth nanoparticle for unbiased single molecule tracking 

inside living cells. Nano Lett 2014, 14 (4), 2189-95. 

38. Langdon, B. B.; Kastantin, M.; Walder, R.; Schwartz, D. K. Interfacial Protein-

Protein Associations. Biomacromolecules 2013. 

39. Guo, S.-M.; Bag, N.; Mishra, A.; Wohland, T.; Bathe, M. Bayesian Total Internal 

Reflection Fluorescence Correlation Spectroscopy Reveals hIAPP-Induced 

Plasma Membrane Domain Organization in Live Cells. Biophysical journal 2014, 

106, 190-200. 

40. Ewers, H.; Smith, A. E.; Sbalzarini, I. F.; Lilie, H.; Koumoutsakos, P.; Helenius, 

A. Single-particle tracking of murine polyoma virus-like particles on live cells 

and artificial membranes. Proceedings of the National Academy of Sciences of the 

United States of America 2005, 102, 15110-5. 

41. Müller, D. J.; Dufrêne, Y. F. Atomic force microscopy: a nanoscopic window on 

the cell surface. Trends in cell biology 2011, 21, 461-9. 

42. Katan, A. J.; Dekker, C. High-speed AFM reveals the dynamics of single 

biomolecules at the nanometer scale. Cell 2011, 147, 979-82. 

43. Francis, L. W.; Lewis, P. D.; Wright, C. J.; Conlan, R. S. Atomic force 

microscopy comes of age. Biology of the cell / under the auspices of the European 

Cell Biology Organization 2010, 102, 133-43. 

44. Raman, a.; Trigueros, S.; Cartagena, a.; Stevenson, a. P. Z.; Susilo, M.; Nauman, 

E.; Contera, S. A. Mapping nanomechanical properties of live cells using multi-

harmonic atomic force microscopy. Nature nanotechnology 2011, 6, 809-14. 

45. Dufrêne, Y. F.; Martínez-Martín, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. 

Multiparametric imaging of biological systems by force-distance curve-based 

AFM. Nature methods 2013, 10, 847-54. 

46. Kirmizis, D.; Logothetidis, S. Atomic force microscopy probing in the 

measurement of cell mechanics. International journal of nanomedicine 2010, 5, 

137-45. 

47. El Kirat, K.; Morandat, S.; Dufrêne, Y. F. Nanoscale analysis of supported lipid 

bilayers using atomic force microscopy. Biochimica et biophysica acta 2010, 

1798, 750-65. 

48. Zhu, C.; Lou, J.; McEver, R. P. Catch bonds: physical models, structural bases, 

biological function and rheological relevance. Biorheology 2005, 42 (6), 443-62. 

49. Zhang, W.; Stack, A. G.; Chen, Y. Interaction force measurement between E. coli 

cells and nanoparticles immobilized surfaces by using AFM. Colloids and 

surfaces. B, Biointerfaces 2011, 82, 316-24. 

50. Xu, L.-C.; Logan, B. E. Interaction forces measured using AFM between colloids 

and surfaces coated with both dextran and protein. Langmuir : the ACS journal of 

surfaces and colloids 2006, 22, 4720-7. 

51. Vasir, J. K.; Labhasetwar, V. Quantification of the force of nanoparticle-cell 

membrane interactions and its influence on intracellular trafficking of 

nanoparticles. Biomaterials 2008, 29, 4244-52. 



 

 155 

52. Roiter, Y.; Ornatska, M.; Rammohan, A. R.; Balakrishnan, J.; Heine, D. R.; 

Minko, S. Interaction of nanoparticles with lipid membrane. Nano letters 2008, 8, 

941-4. 

53. Ritchie, K.; Kusumi, A. Single molecule probe scanning optical force imaging 

microscope for viewing live cells. Journal of Biological Physics 2002, 28 (4), 

619-626. 

54. Nishizaka, T.; Seo, R.; Tadakuma, H.; Kinosita, K.; Ishiwata, S. Characterization 

of single actomyosin rigor bonds: load dependence of lifetime and mechanical 

properties. Biophysical journal 2000, 79, 962-74. 

55. Iyer, S.; Woodworth, C. D.; Gaikwad, R. M.; Kievsky, Y. Y.; Sokolov, I. 

Towards nonspecific detection of malignant cervical cells with fluorescent silica 

beads. Small (Weinheim an der Bergstrasse, Germany) 2009, 5, 2277-84. 

56. Ebner, A.; Kienberger, F.; Kada, G.; Stroh, C. M.; Geretschläger, M.; 

Kamruzzahan, a. S. M.; Wildling, L.; Johnson, W. T.; Ashcroft, B.; Nelson, J.; 

Lindsay, S. M.; Gruber, H. J.; Hinterdorfer, P. Localization of single avidin-biotin 

interactions using simultaneous topography and molecular recognition imaging. 

Chemphyschem : a European journal of chemical physics and physical chemistry 

2005, 6, 897-900. 

57. Abu-Lail, N. I.; Camesano, T. a. Polysaccharide properties probed with atomic 

force microscopy. Journal of microscopy 2003, 212, 217-38. 

58. Grier, D. G. A revolution in optical manipulation. Nature 2003, 424 (6950), 810-

816. 

59. Svoboda, K.; Block, S. M. Biological applications of optical forces. Annual 

review of biophysics and biomolecular structure 1994, 23 (1), 247-285. 

60. Watanabe, T. M.; Iwane, A. H.; Tanaka, H.; Ikebe, M.; Yanagida, T. Mechanical 

Characterization of One-Headed Myosin-V Using Optical Tweezers. PLoS ONE 

2010, 5, e12224. 

61. Mirsaidov, U.; Scrimgeour, J.; Timp, W.; Beck, K.; Mir, M.; Matsudaira, P.; 

Timp, G. Live cell lithography: using optical tweezers to create synthetic tissue. 

Lab on a chip 2008, 8, 2174-81. 

62. Valignat, M. P.; Theodoly, O.; Crocker, J. C.; Russel, W. B.; Chaikin, P. M. 

Reversible self-assembly and directed assembly of DNA-linked micrometer-sized 

colloids. Proc Natl Acad Sci U S A 2005, 102 (12), 4225-9. 

63. Biancaniello, P.; Kim, A.; Crocker, J. Colloidal Interactions and Self-Assembly 

Using DNA Hybridization. Physical Review Letters 2005, 94, 94-97. 

64. Wu, K.-T.; Feng, L.; Sha, R.; Dreyfus, R.; Grosberg, A. Y.; Seeman, N. C.; 

Chaikin, P. M. Kinetics of DNA-coated sticky particles. Physical Review E 2013, 

88, 022304. 

65. Di Michele, L.; Varrato, F.; Kotar, J.; Nathan, S. H.; Foffi, G.; Eiser, E. Multistep 

kinetic self-assembly of DNA-coated colloids. Nature communications 2013, 4, 

2007. 

66. Everett, W. N.; Beltran-Villegas, D. J.; Bevan, M. A. Concentrated diffusing 

colloidal probes of Ca2+-dependent cadherin interactions. Langmuir : the ACS 

journal of surfaces and colloids 2010, 26, 18976-84. 

67. Schoen, A. P.; Hommersom, B.; Heilshorn, S. C.; Leunissen, M. E. Tuning 

colloidal association with specific peptide interactions. Soft Matter 2013, 9, 6781. 



 

 156 

68. Hiddessen, A. L.; Rodgers, S. D.; Weitz, D. A.; Hammer, D. A. Assembly of 

Binary Colloidal Structures via Specific Biological Adhesion. Langmuir 2000, 16, 

9744-9753. 

69. Bahukudumbi, P.; Bevan, M. A. Imaging energy landscapes with concentrated 

diffusing colloidal probes. The Journal of chemical physics 2007, 126, 244702. 

70. Eichmann, S. L.; Meric, G.; Swavola, J. C.; Bevan, M. A. Diffusing colloidal 

probes of protein-carbohydrate interactions. Langmuir : the ACS journal of 

surfaces and colloids 2013, 29 (7), 2299-310. 

71. Everett, W. N.; Wu, H.-j.; Anekal, S. G.; Sue, H.-j.; Bevan, M. A. Diffusing 

Colloidal Probes of Protein and Synthetic Macromolecule Interactions. 

Biophysical Journal 2007, 92, 1005-1013. 

72. Everett, W. N.; Bevan, M. a. kT-Scale interactions between supported lipid 

bilayers. Soft Matter 2014, 10, 332. 

73. Wang, W.; Donini, O.; Reyes, C. M.; Kollman, P. A. Biomolecular simulations: 

recent developments in force fields, simulations of enzyme catalysis, protein-

ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual 

review of biophysics and biomolecular structure 2001, 30, 211-43. 

74. Martinez-Veracoechea, F. J.; Mognetti, B. M.; Angioletti-Uberti, S.; Varilly, P.; 

Frenkel, D.; Dobnikar, J. Designing stimulus-sensitive colloidal walkers. Soft 

matter 2014. 

75. Mladek, B. M.; Fornleitner, J.; Martinez-Veracoechea, F. J.; Dawid, A.; Frenkel, 

D. Procedure to construct a multi-scale coarse-grained model of DNA-coated 

colloids from experimental data. Soft Matter 2013, 9, 7342. 

76. Varilly, P.; Angioletti-Uberti, S.; Mognetti, B. M.; Frenkel, D. A general theory 

of DNA-mediated and other valence-limited colloidal interactions. The Journal of 

chemical physics 2012, 137, 094108. 

77. Irvine, D. J.; Hue, K.-A.; Mayes, A. M.; Griffith, L. G. Simulations of cell-surface 

integrin binding to nanoscale-clustered adhesion ligands. Biophysical journal 

2002, 82, 120-32. 

78. Hagy, M. C.; Wang, S.; Dormidontova, E. E. Optimization of functionalized 

polymer layers for specific targeting of mobile receptors on cell surfaces. 

Langmuir : the ACS journal of surfaces and colloids 2008, 24, 13037-47. 

79. Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P. The general theory of van 

der Waals forces. Advances in Physics 1961, 10, 165-209. 

80. Bevan, M. a.; Prieve, D. C. Direct Measurement of Retarded van der Waals 

Attraction. Langmuir 1999, 15, 7925-7936. 

81. Prieve, D. C.; Russel, W. B. Simplified Predictions of Hamaker Constants from 

Lifshitz Theory. J. Colloid Interface Sci. 1988, 125, 1. 

82. Bevan, M. A.; Prieve, D. C. Direct measurement of retarded van der Waals 

attraction. Langmuir 1999, 15 (23), 7925-7936. 

83. Milner, S. T. Compressing Polymer Brushes - a Quantitative Comparison of 

Theory and Experiment. Europhys. Lett. 1988, 7 (8), 695-699. 

84. Milner, S. T. Polymer Brushes. Science 1991, 251 (4996), 905-914. 

85. Milner, S. T.; Witten, T. A.; Cates, M. E. Theory of the Grafted Polymer Brush. 

Macromolecules 1988, 21 (8), 2610-2619. 



 

 157 

86. Li, D. C.; Rogers, J.; Biswal, S. L. Probing the Stability of Magnetically 

Assembled DNA-Linked Colloidal Chains. Langmuir 2009, 25 (16), 8944-8950. 

87. Konowalow, D. D.; Hirschfelder, J. O. Intermolecular Potential Functions for 

Nonpolar Molecules. Physics of Fluids 1961, 4, 629. 

88. Goldman, A. J.; Cox, R. G.; Brenner, H. Slow viscous motion of a sphere parallel 

to a plane wall—II Couette flow. Chemical Engineering Science 1967, 22, 653-

660. 

89. Anekal, S. G.; Bevan, M. a. Self-diffusion in submonolayer colloidal fluids near a 

wall. The Journal of Chemical Physics 2006, 125, 34906. 

90. Alexander, B. M.; Prieve, D. C. Hydrodynamic Technique for Measurement of 

Colloidal Forces. Langmuir : the ACS journal of surfaces and colloids 1987, 3 

(5), 788-795. 

91. Pagac, E. S.; Tilton, R. D.; Prieve, D. C. Hindered Mobility of A Rigid Sphere 

Near A Wall. Chemical Engineering Communications 1996, 148-150, 105-122. 

92. Bevan, M. a.; Prieve, D. C. Hindered diffusion of colloidal particles very near to a 

wall: Revisited. The Journal of Chemical Physics 2000, 113, 1228. 

93. Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics. In Englewood 

Cliffs NJ, 1965; Vol. 40, pp 329-331. 

94. Anekal, S. G.; Bevan, M. a. Interpretation of conservative forces from Stokesian 

dynamic simulations of interfacial and confined colloids. The Journal of 

Chemical Physics 2005, 122, 34903. 

95. Ristenpart, W. D.; Aksay, I. a.; Saville, D. a. Assembly of colloidal aggregates by 

electrohydrodynamic flow: Kinetic experiments and scaling analysis. Physical 

Review E 2004, 69, 021405. 

96. Smoluchowski, M. Z Physik Chem 1916, 92 (129). 

97. Hardt, S. L. Rates of diffusion controlled reactions in one, two and three 

dimensions. Biophysical Chemistry 1979, 10, 239-243. 

98. Fuchs, N. Z Physik 1934, 89 (736). 

99. Hogg, R.; Yang, K. C. Secondary coagulation. Journal of Colloid and Interface 

Science 1976, 56, 573-576. 

100. Luo, H.; Sharp, K. On the calculation of absolute macromolecular binding free 

energies. Proceedings of the National Academy of Sciences of the United States of 

America 2002, 99, 10399-404. 

101. Bevan, M. A.; Petris, S. N.; Chan, D. Y. C. Solvent Quality Dependent 

Continuum van der Waals. Langmuir : the ACS journal of surfaces and colloids 

2002, 104, 7845-7852. 

102. Frenkel, D.; Smit, B. Understanding molecular simulation: from algorithms to 

applications. Academic Press 2002, New York, . 

103. Liu, J.; Luijten, E. Rejection-Free Geometric Cluster Algorithm for Complex 

Fluids. Physical Review Letters 2004, 92, 1-4. 

104. Luijten, E.; Liu, J. Cluster Algorithms : Beyond Suppression of Critical Slowing 

Down. 2003, 225-231. 

105. Torrie, G. M.; Valleau, J. P. Monte Carlo Free Energy Estimates Using Non-

Boltzmann Sampling: Application to the Sub-Critical Lennard-Jones Fluid. 

Chemical Physics Letters 1974, 28, 578-581. 



 

 158 

106. Bevan, M. A.; Prieve, D. C. Forces and Hydrodynamic Interactions between 

Polystyrene Surfaces with Adsorbed PEO−PPO−PEO. Langmuir 2000, 16, 9274-

9281. 

107. van Helden, A. K.; Jansen, J. W.; Vrij, A. Preparation and Characterization of 

Spherical Monodisperse Silica Dispersions in Non-Aqueous Solvents. J. Colloid 

Interface Sci. 1981, 81 (2), 354-368. 

108. Das, S.; Banquy, X.; Zappone, B.; Greene, G. W.; Jay, G. D.; Israelachvili, J. N. 

Synergistic Interactions between Grafted Hyaluronic Acid and Lubricin Provide 

Enhanced Wear Protection and Lubrication. 2013. 

109. Elender, G.; Kühner, M.; Sackmann, E. Functionalisation of Si/SiO2 and glass 

surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosensors 

& bioelectronics 1996, 11, 565-77. 

110. Hu, M.; Novo, C.; Funston, A.; Wang, H.; Staleva, H.; Zou, S.; Mulvaney, P.; 

Hartland, G. V. Dark-field microscopy studies of single metal nanoparticles : 

understanding the factors that influence the linewidth of the localized surface 

plasmon resonance. 2008, 1949-1960. 

111. Wu, H.-J.; Bevan, M. a. Direct measurement of single and ensemble average 

particle-surface potential energy profiles. Langmuir : the ACS journal of surfaces 

and colloids 2005, 21, 1244-54. 

112. Crocker, J. C.; Grier, D. G. Methods of Digital Video Microscopy for Colloidal 

Studies. Journal of Colloid and Interface Science 1996, 179, 298-310. 

113. Arvo, J. Fast Random Rotation Matrices. Graphics Gems III 1992, 117-120. 

114. Cummings, R.; Liu, F. Galectins. In Essentials of Glycobiology, 2nd ed.; Varki, 

A.; Cummings, R.; Esko, J., Eds.; Cold Spring Harbor, 2009. 

115. Gorelik, E.; Galili, U.; Raz, A. On the role of cell surface carbohydrates and their 

binding proteins (lectins) in tumor metastasis. Cancer Metastasis Reviews 2001, 

20, 245-77. 

116. Rabinovich, G. a.; Toscano, M. a. Turning 'sweet' on immunity: galectin-glycan 

interactions in immune tolerance and inflammation. Nature reviews. Immunology 

2009, 9, 338-52. 

117. Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nature 

reviews. Cancer 2004, 4, 528-39. 

118. Diggle, S. P.; Stacey, R. E.; Dodd, C.; Cámara, M.; Williams, P.; Winzer, K. The 

galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas 

aeruginosa. Environmental Microbiology 2006, 8, 1095-1104. 

119. Flemming, H.-c.; Wingender, J. The biofilm matrix. Nature Reviews 2010, 8, 623-

633. 

120. Sato, Y.; Yoshioka, K.; Murakami, T.; Yoshimoto, S.; Niwa, O. Design of 

biomolecular interface for detecting carbohydrate and lectin weak interactions. 

Langmuir : the ACS journal of surfaces and colloids 2012, 28, 1846-51. 

121. Scurr, D. J.; Horlacher, T.; Oberli, M. a.; Werz, D. B.; Kroeck, L.; Bufali, S.; 

Seeberger, P. H.; Shard, A. G.; Alexander, M. R. Surface characterization of 

carbohydrate microarrays. Langmuir : the ACS journal of surfaces and colloids 

2010, 26, 17143-55. 



 

 159 

122. Matsubara, T.; Iijima, K.; Nakamura, M.; Taki, T.; Okahata, Y.; Sato, T. Specific 

binding of GM1-binding peptides to high-density GM1 in lipid membranes. 

Langmuir : the ACS journal of surfaces and colloids 2007, 23, 708-14. 

123. Castro, L. B. R.; Kappl, M.; Petri, D. F. S. Adhesion forces between hybrid 

colloidal particles and concanavalin A. Langmuir : the ACS journal of surfaces 

and colloids 2006, 22, 3757-62. 

124. Evans, E.; Leung, a.; Hammer, D.; Simon, S. Chemically distinct transition states 

govern rapid dissociation of single L-selectin bonds under force. Proceedings of 

the National Academy of Sciences of the United States of America 2001, 98, 3784-

9. 

125. Dörig, P.; Ossola, D.; Truong, A. M.; Graf, M.; Stauffer, F.; Vörös, J.; Zambelli, 

T. Exchangeable Colloidal AFM Probes for the Quantification of Irreversible and 

Long-Term Interactions. Biophysical journal 2013, 105, 463-72. 

126. Eichmann, S. L.; Meric, G.; Swavola, J. C.; Bevan, M. A. Diffusing Colloidal 

Probes of Protein − Carbohydrate Interactions. Langmuir : the ACS journal of 

surfaces and colloids 2013, 29, 2299-2310. 

127. Everett, W. N.; Beltran-Villegas, D. J.; Bevan, M. a. Concentrated diffusing 

colloidal probes of Ca2+-dependent cadherin interactions. Langmuir : the ACS 

journal of surfaces and colloids 2010, 26, 18976-84. 

128. Liang, F.; Pan, T.; Sevick-Muraca, E. M. Measurements of FRET in a glucose-

sensitive affinity system with frequency-domain lifetime spectroscopy. 

Photochemistry and photobiology 2005, 81, 1386-94. 

129. Oda, Y.; Kasai, K.; Ishii, S. Studies on the specific interaction of concanavalin A 

and saccharides by affinity chromatography. Application of quantitative affinity 

chromatography to a multivalent system. Journal of biochemistry 1981, 89, 285-

96. 

130. Shimura, K.; Kasai, K. Determination of the affinity constants of concanavalin A 

for monosaccharides by fluorescence affinity probe capillary electrophoresis. 

Analytical biochemistry 1995, 227, 186-94. 

131. Wang, X.; Ramström, O.; Yan, M. Quantitative analysis of multivalent ligand 

presentation on gold glyconanoparticles and the impact on lectin binding. 

Analytical chemistry 2010, 82, 9082-9. 

132. Slutsky, M.; Mirny, L. a. Kinetics of protein-DNA interaction: facilitated target 

location in sequence-dependent potential. Biophysical journal 2004, 87, 4021-35. 

133. Selkoe, D. J. Folding proteins in fatal ways. Nature 2003, 426, 900-4. 

134. Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nature 

reviews. Cancer 2004, 4, 528-39. 

135. Hamachi, I.; Nagase, T.; Shinkai, S.; V, K. U. A General Semisynthetic Method 

for Fluorescent Saccharide-Biosensors Based on a Lectin. Journal of the 

American Chemical Society 2000, 12065-12066. 

136. Simnick, A. J.; Valencia, C. A.; Liu, R.; Chilkoti, A. Morphing low-affinity 

ligands into high-avidity nanoparticles by thermally triggered self-assembly of a 

genetically encoded polymer. ACS Nano 2010, 4, 2217-27. 

137. Weiss, S. Fluorescence Spectroscopy of Single Biomolecules. Science 1999, 283, 

1676-1683. 



 

 160 

138. Smith, E. A.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M. Surface plasmon 

resonance imaging studies of protein-carbohydrate interactions. Journal of the 

American Chemical Society 2003, 125, 6140-8. 

139. Li, F.; Redick, S. D.; Erickson, H. P.; Moy, V. T. Force measurements of the 

alpha5beta1 integrin-fibronectin interaction. Biophysical journal 2003, 84, 1252-

62. 

140. Ounkomol, C.; Yamada, S.; Heinrich, V. Single-cell adhesion tests against 

functionalized microspheres arrayed on AFM cantilevers confirm heterophilic E- 

and N-cadherin binding. Biophysical journal 2010, 99, L100-2. 

141. Wang, S.; Dormidontova, E. E. Nanoparticle design optimization for enhanced 

targeting: Monte Carlo simulations. Biomacromolecules 2010, 11, 1785-95. 

142. Moore, N. W.; Kuhl, T. L. The role of flexible tethers in multiple ligand-receptor 

bond formation between curved surfaces. Biophysical Journal 2006, 91, 1675-87. 

143. Irvine, D. J.; Hue, K.-A.; Mayes, A. M.; Griffith, L. G. Simulations of cell-surface 

integrin binding to nanoscale-clustered adhesion ligands. Biophysical Journal 

2002, 82, 120-32. 

144. Wu, Y.; Honig, B.; Ben-Shaul, A. Theory and simulations of adhesion receptor 

dimerization on membrane surfaces. Biophysical journal 2013, 104, 1221-9. 

145. J., N.; Liu, X. Y. Protein Interactions in Undersaturated and Supersaturated 

Solutions: A Study Using Light and X-Ray Scattering. Biophysical Journal 2003, 

84 (1), 523-532. 

146. Piazza, R.; Peyre, V.; Degiorgio, V. "Sticky hard spheres" model of proteins near 

crystallization: A test based on the osmotic compressibility. Physical Reveiw E 

1998, 58 (3), 2733-2736. 

147. Ravichandran, S.; Talbot, J. Mobility of Adsorbed Proteins: A Brownian 

Dynamics Study. Biophysical Journal 2000, 78 (1), 110-120. 

148. Dickinson, E. Adsorption of Sticky Hard Spheres: Relevance to Protein 

Competitive Adsorption. Journal of the Chemical Society. Faraday Transactions 

I 1992, 88 (24), 3561-3565. 

149. Bryce, R. A.; Hillier, I. H.; Naismith, J. H. Carbohydrate-protein recognition: 

molecular dynamics simulations and free energy analysis of oligosaccharide 

binding to concanavalin A. Biophysical Journal 2001, 81, 1373-88. 

150. Woo, H.-j.; Roux, B. Calculation of absolute protein – ligand binding free. 

Proceedings of the National Academy of Sciences of the United States of America 

2005, 102 (19), 6825-6830. 

151. Marsili, S.; Barducci, A.; Chelli, R.; Procacci, P.; Schettino, V. Self-healing 

umbrella sampling: a non-equilibrium approach for quantitative free energy 

calculations. The Journal of Physical Chemistry B 2006, 110, 14011-3. 

152. Beltran-Villegas, D. J.; Bevan, M. a. Free energy landscapes for colloidal crystal 

assembly. Soft Matter 2011, 7, 3280. 

153. Blaak, R.; Auer, S.; Frenkel, D.; Löwen, H. Crystal Nucleation of Colloidal 

Suspensions under Shear. Physical Review Letters 2004, 93, 4-7. 

154. Virnau, P.; Muller, M. Calculation of free energy through successive umbrella 

sampling. Journal of Chemical Physics 2004, 120 (23), 10925-30. 



 

 161 

155. Malherbe, J. G.; Amokrane, S. Asymmetric mixture of hard particles with 

Yukawa attraction between unlike ones : a cluster algorithm simulation study 

Molecular Physics 1999, 97, 677-683. 

156. Vink, R. L. C.; Horbach, J. Critical behaviour and interfacial fluctuations in a 

phase-separating model colloid–polymer mixture: grand canonical Monte Carlo 

simulations. Journal of Physics: Condensed Matter 2004, 16, 3807-3820. 

157. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Nanogold Plasmon Resonance-Based 

Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering. 

Analytical Biochemistry 2005, 77, 2007-2014. 

158. Chern, C. S.; Lee, C. K.; Tsai, Y. J.; Ho, C. C. Colloidal stability of dextran-

modified latex particles toward adsorption of concanavalin A. Colloid & Polymer 

Science 1998, 276, 427-433. 

159. Zhang, J.; Roll, D. Aggregation of silver nanoparticle-dextran adducts with 

concanavalin A and competitive complexation with glucose. The Journal of 

Physical Chemistry B 2004, 108, 12210-12214. 

160. Barone, P. W.; Strano, M. S. Reversible Control of Carbon Nanotube Aggregation 

for a Glucose Affinity Sensor. Angewandte Chemie 2006, 118 (48), 8318-8321. 

161. Liang, F.; Pan, T.; Sevick-Muraca, E. M. Measurements of FRET in a glucose-

sensitive affinity system with frequency-domain lifetime spectroscopy. 

Photochemistry and photobiology 2005, 81 (6), 1386-94. 

162. Oda, Y.; Kasai, K.-i.; Ishii, S.-i. Studies on the Specific Interaction of 

Concanavalin A and Saccharides by Affinity Chromotography to a Multivalent 

System. The Journal of Biochemistry 1981, 89 (1), 285-296. 

163. Martinez-Veracoechea, F. J.; Frenkel, D. Designing super selectivity in 

multivalent nano-particle binding. Proceedings of the National Academy of 

Sciences of the United States of America 2011, 108, 10963-8. 

164. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; 

Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical 

interactions at the nano-bio interface. Nature materials 2009, 8, 543-557. 

165. Israelachvili, J. Differences between non-specific and bio-specific, and between 

equilibrium and non-equilibrium, interactions in biological systems. Quarterly 

reviews of biophysics 2005, 38, 331-337. 

166. Giebel, K.; Bechinger, C.; Herminghaus, S.; Riedel, M.; Leiderer, P.; Weiland, 

U.; Bastmeyer, M. Imaging of cell/substrate contacts of living cells with surface 

plasmon resonance microscopy. Biophysical journal 1999, 76, 509-516. 

167. Hoover, D. K.; Lee, E.-J.; Yousaf, M. N. Total internal reflection fluorescence 

microscopy of cell adhesion on patterned self-assembled monolayers on gold. 

Langmuir : the ACS journal of surfaces and colloids 2009, 25, 2563-2566. 

168. Parsons, J. T.; Horwitz, A. R.; Schwartz, M. A. Cell adhesion: integrating 

cytoskeletal dynamics and cellular tension. Nature reviews. Molecular cell 

biology 2010, 11, 633-643. 

169. Steyer, J. A.; Almers, W. A real-time view of life within 100 nm of the plasma 

membrane. Nature reviews. Molecular cell biology 2001, 2, 268-275. 

170. van der Merwe, P. A.; Barclay, A. N. Analysis of cell-adhesion molecule 

interactions using surface plasmon resonance. Current Opinion in Immunology 

1996, 8, 257-261. 



 

 162 

171. Ziblat, R.; Lirtsman, V.; Davidov, D.; Aroeti, B. Infrared surface plasmon 

resonance: a novel tool for real time sensing of variations in living cells. 

Biophysical journal 2006, 90, 2592-2599. 

172. Eichmann, S. L.; Meric, G.; Swavola, J. C.; Bevan, M. A. Diffusing colloidal 

probes of protein-carbohydrate interactions. Langmuir : the ACS journal of 

surfaces and colloids 2013, 29, 2299-2310. 

173. Mailänder, V.; Landfester, K. Interaction of nanoparticles with cells. 

Biomacromolecules 2009, 10, 2379-400. 

174. Chauhan, V. P.; Jain, R. K. Strategies for advancing cancer nanomedicine. Nature 

materials 2013, 12, 958-62. 

175. Eichmann, S. L.; Bevan, M. A. Direct measurements of protein-stabilized gold 

nanoparticle interactions. Langmuir : the ACS journal of surfaces and colloids 

2010, 26, 14409-14413. 

176. Das, S.; Banquy, X.; Zappone, B.; Greene, G. W.; Jay, G. D.; Israelachvili, J. N. 

Synergistic interactions between grafted hyaluronic acid and lubricin provide 

enhanced wear protection and lubrication. Biomacromolecules 2013, 14, 1669-77. 

177. Agus, D. B.; Alexander, J. F.; Arap, W.; Ashili, S.; Aslan, J. E.; Austin, R. H.; 

Backman, V.; Bethel, K. J.; Bonneau, R.; Chen, W.-C.; Chen-Tanyolac, C.; Choi, 

N. C.; Curley, S. A.; Dallas, M.; Damania, D.; Davies, P. C. W.; Decuzzi, P.; 

Dickinson, L.; Estevez-Salmeron, L.; Estrella, V.; Ferrari, M.; Fischbach, C.; Foo, 

J.; Fraley, S. I.; Frantz, C.; Fuhrmann, A.; Gascard, P.; Gatenby, R. A.; Geng, Y.; 

Gerecht, S.; Gillies, R. J.; Godin, B.; Grady, W. M.; Greenfield, A.; Hemphill, C.; 

Hempstead, B. L.; Hielscher, A.; Hillis, W. D.; Holland, E. C.; Ibrahim-Hashim, 

A.; Jacks, T.; Johnson, R. H.; Joo, A.; Katz, J. E.; Kelbauskas, L.; Kesselman, C.; 

King, M. R.; Konstantopoulos, K.; Kraning-Rush, C. M.; Kuhn, P.; Kung, K.; 

Kwee, B.; Lakins, J. N.; Lambert, G.; Liao, D.; Licht, J. D.; Liphardt, J. T.; Liu, 

L.; Lloyd, M. C.; Lyubimova, A.; Mallick, P.; Marko, J.; McCarty, O. J. T.; 

Meldrum, D. R.; Michor, F.; Mumenthaler, S. M.; Nandakumar, V.; O'Halloran, 

T. V.; Oh, S.; Pasqualini, R.; Paszek, M. J.; Philips, K. G.; Poultney, C. S.; Rana, 

K.; Reinhart-King, C. A.; Ros, R.; Semenza, G. L.; Senechal, P.; Shuler, M. L.; 

Srinivasan, S.; Staunton, J. R.; Stypula, Y.; Subramanian, H.; Tlsty, T. D.; 

Tormoen, G. W.; Tseng, Y.; van Oudenaarden, A.; Verbridge, S. S.; Wan, J. C.; 

Weaver, V. M.; Widom, J.; Will, C.; Wirtz, D.; Wojtkowiak, J.; Wu, P.-H. A 

physical sciences network characterization of non-tumorigenic and metastatic 

cells. Scientific reports 2013, 3, 1449. 

178. Boddohi, S.; Kipper, M. J. Engineering nanoassemblies of polysaccharides. 

Advanced materials (Deerfield Beach, Fla.) 2010, 22, 2998-3016. 

179. Fu, B. M.; Tarbell, J. M. Mechano-sensing and transduction by endothelial 

surface glycocalyx: composition, structure, and function. Wiley interdisciplinary 

reviews. Systems biology and medicine 2013, 5, 381-90. 

180. Qazi, H.; Palomino, R.; Shi, Z.-D.; Munn, L. L.; Tarbell, J. M. Cancer cell 

glycocalyx mediates mechanotransduction and flow-regulated invasion. 

Integrative biology : quantitative biosciences from nano to macro 2013, 5, 1334-

43. 

181. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; 

Dawson, K. A. Physical-chemical aspects of protein corona: relevance to in vitro 



 

 163 

and in vivo biological impacts of nanoparticles. Journal of the American 

Chemical Society 2011, 133, 2525-34. 

182. Jedlovszky-Hajdú, A.; Bombelli, F. B.; Monopoli, M. P.; Tombácz, E.; Dawson, 

K. A. Surface coatings shape the protein corona of SPIONs with relevance to their 

application in vivo. Langmuir : the ACS journal of surfaces and colloids 2012, 28, 

14983-91. 

183. Varshosaz, J. Dextran conjugates in drug delivery. In Expert Opinion on Drug 

Delivery, 2012; Vol. 9, pp 509-523. 

184. Kozak, D.; Chen, A.; Bax, J.; Trau, M. Protein resistance of dextran and dextran-

poly(ethylene glycol) copolymer films. Biofouling 2011, 27, 497-503. 

185. Pasut, G.; Veronese, F. M. PEG conjugates in clinical development or use as 

anticancer agents: An overview. In Advanced Drug Delivery Reviews, 2009; Vol. 

61, pp 1177-1188. 

186. Banerji, S.; Wright, A. J.; Noble, M.; Mahoney, D. J.; Campbell, I. D.; Day, A. J.; 

Jackson, D. G. Structures of the Cd44-hyaluronan complex provide insight into a 

fundamental carbohydrate-protein interaction. Nature structural & molecular 

biology 2007, 14, 234-9. 

187. Curtis, A.; Wilkinson, C. Topographical control of cells. In Biomaterials, 1997; 

Vol. 18, pp 1573-1583. 

188. Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle and targeted systems for 

cancer therapy. Advanced Drug Delivery Reviews 2012, 64, 206-212. 

189. Schrama, D.; Reisfeld, R. a.; Becker, J. C. Antibody targeted drugs as cancer 

therapeutics. Nature reviews. Drug discovery 2006, 5, 147-59. 

190. Olsen, N. J.; Stein, C. M. New drugs for rheumatoid arthritis. The New England 

journal of medicine 2004, 350, 2167-79. 

191. Sievers, E. L.; Senter, P. D. Antibody-drug conjugates in cancer therapy. Annual 

review of medicine 2013, 64, 15-29. 

192. Rose, J. W.; Foley, J.; Carlson, N. Monoclonal antibody treatments for multiple 

sclerosis. Current neurology and neuroscience reports 2008, 8, 419-26. 

193. Arosio, D.; Manzoni, L.; Araldi, E. M. V.; Scolastico, C. Cyclic RGD 

functionalized gold nanoparticles for tumor targeting. Bioconjugate chemistry 

2011, 22, 664-72. 

194. Kunjachan, S.; Pola, R.; Gremse, F.; Theek, B.; Ehling, J.; Moeckel, D.; 

Hermanns-Sachweh, B.; Pechar, M.; Ulbrich, K.; Hennink, W. E.; Storm, G.; 

Lederle, W.; Kiessling, F.; Lammers, T. Passive versus Active Tumor Targeting 

Using RGD- and NGR-Modified Polymeric Nanomedicines. Nano letters 2014. 

195. Simnick, A. J.; Valencia, C. A.; Liu, R.; Chilkoti, A. Morphing low-affinity 

ligands into high-avidity nanoparticles by thermally triggered self-assembly of a 

genetically encoded polymer. ACS nano 2010, 4, 2217-27. 

196. Bhang, S. H.; Won, N.; Lee, T.-J.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H.-

S.; Sung, Y.-E.; Hahn, S. K.; Kim, B.-S.; Kim, S. Hyaluronic acid-quantum dot 

conjugates for in vivo lymphatic vessel imaging. ACS nano 2009, 3, 1389-98. 

197. Cho, H.-J.; Yoon, H. Y.; Koo, H.; Ko, S.-H.; Shim, J.-S.; Lee, J.-H.; Kim, K.; 

Kwon, I. C.; Kim, D.-D. Self-assembled nanoparticles based on hyaluronic acid-

ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. 

Biomaterials 2011, 32, 7181-90. 



 

 164 

198. Choi, K. Y.; Chung, H.; Min, K. H.; Yoon, H. Y.; Kim, K.; Park, J. H.; Kwon, I. 

C.; Jeong, S. Y. Self-assembled hyaluronic acid nanoparticles for active tumor 

targeting. Biomaterials 2010, 31, 106-14. 

199. Choi, K. Y.; Yoon, H. Y.; Kim, J.-H.; Bae, S. M.; Park, R.-W.; Kang, Y. M.; 

Kim, I.-S.; Kwon, I. C.; Choi, K.; Jeong, S. Y.; Kim, K.; Park, J. H. Smart 

nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS nano 

2011, 5, 8591-9. 

200. Platt, V. M.; Szoka, F. C. Anticancer therapeutics: targeting macromolecules and 

nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Molecular 

pharmaceutics 2009, 5, 474-86. 

201. Moore, N. W.; Kuhl, T. L. The role of flexible tethers in multiple ligand-receptor 

bond formation between curved surfaces. Biophysical journal 2006, 91, 1675-87. 

202. Zhang, C.-z.; Wang, Z.-g. Polymer-tethered ligand-receptor interactions between 

surfaces II. Langmuir : the ACS journal of surfaces and colloids 2007, 23, 13024-

39. 

203. Wang, S.; Dormidontova, E. E. Nanoparticle design optimization for enhanced 

targeting: Monte Carlo simulations. Biomacromolecules 2010, 11, 1785-1795. 

204. Sarvestani, A. S. The effect of substrate rigidity on the assembly of specific bonds 

at biological interfaces. Soft Matter 2013, 9, 5927. 

205. Liu, J.; Weller, G. E. R.; Zern, B.; Ayyaswamy, P. S.; Eckmann, D. M.; 

Muzykantov, V. R.; Radhakrishnan, R. Computational model for nanocarrier 

binding to endothelium validated using in vivo, in vitro, and atomic force 

microscopy experiments. Proceedings of the National Academy of Sciences of the 

United States of America 2010, 107, 16530-5. 

206. Martinez-Veracoechea, F. J.; Frenkel, D. Designing super selectivity in 

multivalent nano-particle binding. Proceedings of the National Academy of 

Sciences of the United States of America 2011, 108, 10963-10968. 

207. Parsons, M.; Messent, A. J.; Humphries, J. D.; Deakin, N. O.; Humphries, M. J. 

Quantification of integrin receptor agonism by fluorescence lifetime imaging. 

Journal of cell science 2008, 121, 265-71. 

208. Meinecke, R.; Meyer, B. Determination of the Binding Specificity of an Integral 

Membrane Protein by Saturation Transfer Difference NMR: RGD Peptide 

Ligands Binding to Integrin α IIb β 3 †. Journal of Medicinal Chemistry 2001, 

44, 3059-3065. 

209. Liu, L.-k.; Finzel, B. C. Fragment-Based Identification of an Inducible Binding 

Site on Cell Surface Receptor CD44 for the Design of Protein-Carbohydrate 

Interaction Inhibitors. Journal of medicinal chemistry 2014, 57, 2714-25. 

210. Wild, M. K.; Huang, M. C.; Schulze-Horsel, U.; van der Merwe, P. a.; Vestweber, 

D. Affinity, kinetics, and thermodynamics of E-selectin binding to E-selectin 

ligand-1. The Journal of biological chemistry 2001, 276, 31602-12. 

211. Vellon, L.; Menendez, J. a.; Lupu, R. AlphaVbeta3 integrin regulates heregulin 

(HRG)-induced cell proliferation and survival in breast cancer. Oncogene 2005, 

24, 3759-73. 

212. Pyne, S.; Hu, X.; Wang, K.; Rossin, E.; Lin, T.-I.; Maier, L. M.; Baecher-Allan, 

C.; McLachlan, G. J.; Tamayo, P.; Hafler, D. a.; De Jager, P. L.; Mesirov, J. P. 

Automated high-dimensional flow cytometric data analysis. Proceedings of the 



 

 165 

National Academy of Sciences of the United States of America 2009, 106, 8519-

24. 

213. Irish, J. M.; Kotecha, N.; Nolan, G. P. Mapping normal and cancer cell signalling 

networks: towards single-cell proteomics. Nature reviews. Cancer 2006, 6, 146-

55. 

214. Alves, C. S.; Burdick, M. M.; Thomas, S. N.; Pawar, P.; Konstantopoulos, K. The 

dual role of CD44 as a functional P-selectin ligand and fibrin receptor in colon 

carcinoma cell adhesion. American journal of physiology. Cell physiology 2008, 

294, C907-16. 

215. Eichmann, S. L.; Meric, G.; Swavola, J. C.; Bevan, M. A. Di ff using Colloidal 

Probes of Protein − Carbohydrate Interactions. 2013. 

216. Mac Gabhann, F.; Yang, M. T.; Popel, A. S. Monte Carlo simulations of VEGF 

binding to cell surface receptors in vitro. Biochimica et biophysica acta 2005, 

1746, 95-107. 

 



 

 166 

VITA 

Name:   Gregg A. Duncan 

Birth: March, 05, 1987, Saint Petersburg, FL 

Address: Gregg A. Duncan may be contacted through Dr. M. A. Bevan at 

the Chemical and Biomolecular Engineering Department, Johns 

Hopkins University, Baltimore, MD 21218 

Email Address: gduncan@jhu.edu  

Education: B.S., Chemical Engineering, Florida State University,  

Tallahassee, FL, 2009 

Research: Light Scattering From Mixtures of Nanoparticles with S. 

Ramakrishnan, Florida State University, Tallahassee, FL, 2007-

2009 

 

 

 

 

 


