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Chapter 1

Introduction

Consider a genomic signature to be a set of genes whose measured expression

is transformed into a prediction of an outcome of interest. Such signatures are

the bases of a set of FDA-approved medical tests for predicting the risk of distal

recurrence and differential survival in breast cancer patients [84, 83, 63]. The

goal of these tests is to provide clinicians with an additional piece of prognostic

information that may affect their decision making pertaining to the treatment of

a breast cancer patient. As it stands, the tests based on these genomic signatures

(MammaPrint, Oncotype DX, Prosigna) are not part of the standard of care for

a patient, and there are many issues in the translation of these discoveries from

bench to bedside that hinder their reliable use [24]. These issues range from

insufficiently thorough validation [86], to technical errors or oversights [5, 46],

to outright retraction of results [75].

In addition to the lack of impact in clinical practice, the difficulty of trans-

lating these genomic discoveries represents uncertainty about the viability of

clinical genomics in general. The vast majority of genetic quantities that are

routinely evaluated for a patient were discovered and characterized prior to the
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era of high-throughput genomics, e.g. [28, 88, 77, 34, 51]. Although there have

been one-off successes [89] and a wide range of candidate and pathway discover-

ies [85], the costs have been great relative to the payout in terms of widespread

clinical use [14]. By examining issues at the point of translation, we can begin

to provide a clearer picture of what is possible and realistic to accomplish in

the clinic with the discoveries that we have from the high-thorughput era.

Here, we examine two prominent issues in the translation of genomic sig-

natures for risk prediction in breast cancer: reproducibility/replicability and

assessment of value added. We address questions of reproducibility and repli-

cability at three levels:

1. on the reproducibility of predictions from a genomic signature-based pre-

dictor (Chapter 2). In this chapter, we introduce the notion of “test set

bias”, which occurs when a genomic signature that has been trained on

one dataset is applied to make predictions on another dataset. Due to

underlying calculations of distance between gene expression profiles in the

process of assigning a risk classification for a particular patient, the test

set data require pre-processing and normalization prior to application of

the predictive model. We show that this can cause the same patient to

receive a different classification depending upon the number and makeup

of the patients their profile is normalized with, even though there is no

underlying biological change in the patient themselves.

2. on the reproducibility of the process of building a predictive model with

gene expression data (Chapter 3). We propose one alternative to gene

signature building that avoids the issue of test set bias introduced in
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Chapter 2. This process uses rank-based features called Top-Scoring Pairs

(TSPs) [79], and we describe novel feature selection and model-building

approaches to produce fast, interpretable TSP-based gene signatures. We

address the issue of reproducibility of the model-building process by de-

scribing the tdsm R package, which intends to make the general appli-

cation of a statistical analysis transparent and well-documented. This is

accomplished with prefabricated analysis templates written in R Mark-

down which restrict user manipulation of parameters and settings.

3. on the distinction between reproducibility and replicability as it pertains

to scientific studies (Chapter 5). In this chapter, we examine the issue of

replicability. While reproducibility refers to applying the same procedure

to the same data and producing the same result [67, 68], replicability (of

a study) refers to running a new experiment to address the same scientific

question and seeing a result consistent with a previous study [4, 42]. We

promote the use of 95% prediction intervals as one way to determine if

an effect estimated from a study replication is consistent with the effect

estimated in the original study. Although this is done with respect to

studies in psychology, the conceptual framework regarding what to expect

when a study is replicated can be applied to the realm of validation and

confirmation studies that are commonly required for genomic signatures.

The second major topic is the question of the value that a prediction from a

genomic signature provides. A risk prediction or classification from a genomic

test may be inconclusive or may provide information redundant with what a

doctor has already surmised from standard clincial quantities. It is well-known
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that doctors send out for genomic tests for a variety of reasons and for a large

variety of patients [24]. As a result, determining whether the prediction from

a test helped the patient is not as simple as looking at the patient’s outcome.

For example, if the doctor ignored the prediction from the genomic test and the

patient had a good outcome, the outcome ought not be attributed to the test

result. We therefore address the question of value by considering how much ad-

ditional information the prediction from a genomic test could provide a clinician

conditional on the clinical quantities already at hand. We approach this in the

realm of randomized clinical trials (RCTs), where we have more control over

experimental design and a direct method for assessing value added. In Chapter

4, we describe a set of RCT simulations based on a real breast cancer dataset.

In this setting, we have available a between-arm treatment effect estimator that

can yield improved precision by adjusting for predictive covariates at baseline

[21]. Through simulation, we determine how much additional precision we gain

by adjusting for different sets of baseline covariates as compared to the basic,

unadjusted treatment effect estimator. We are able to then approximate how

much additional precision we would stand to gain were we to adjust for the

prediction from a genomic test in addition to a set of baseline covariates that a

clinician would consider. We find that there is minimal additional gain, repre-

senting a direct and realistic assessment of the value of a genomic prediction in

the RCT setting.
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Chapter 2

Test Set Bias Affects

Reproducibility of Gene

Signatures

2.1 Abstract

Motivation: Prior to applying genomic predictors to clinical samples, the ge-

nomic data must be properly normalized to ensure that the test set data are

comparable to the data upon which the predictor was trained. The most ef-

fective normalization methods depend on data from multiple patients. From a

biomedical perspective, this implies that predictions for a single patient may

change depending on which other patient samples they are normalized with.

This test set bias will occur when any cross-sample normalization is used before

clinical prediction.

Results: We demonstrate that results from existing gene signatures which

rely on normalizing test data may be irreproducible when the patient population

changes composition or size using a set of curated, publicly-available breast

cancer microarray experiments. As an alternative, we examine the use of gene

signatures that rely on ranks from the data and show why signatures using
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rank-based features can avoid test set bias while maintaining highly accurate

classification, even across platforms.

Availability:The code, data, and instructions necessary to reproduce our

entire analysis is available at https://github.com/prpatil/testsetbias.

2.2 Introduction

One of the most common barriers to the development and translation of genomic

signatures is cross-sample variation in technology, normalization, and laborato-

ries [53]. Technology, batch, and sampling artifacts have been responsible for

the failure of genomic signatures [69, 5], irreproducibility of genomic results [59],

and retraction of papers reporting genomic signatures [75]. Even highly success-

ful signatures such as Mammaprint [84] have required platform-specific retrain-

ing before they could be translated to clinical use [33]. An under-appreciated

source of bias in genomic signatures is test set bias [52]. Test set bias occurs

when the predictions for any single patient depend on the data for other pa-

tients in the test set. For example, suppose that the gene expression data for

a single patient is normalized by subtracting the mean expression and dividing

by the standard deviation of the expression across all patients in the test set.

Then the normalized value for any specific gene for that patient depends on the

values for all the patients they are normalized with. The result is that a patient

may get two different predictions using the same data and the same prediction

algorithm, depending on the other patients used to normalize the test set data

(Figure 2.1).

There are many scenarios under which a patient’s classification ought to
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change: if new information updates or alters the prediction algorithm, or if the

raw, biological patient data itself changes. The case we would like to explore is

when the gene signature and prediction algorithm are “locked down” and when

there is no biological variation in the patient data. We are concerned with

how much data transformation due to pre-processing and normalization affects

classification. It is our assertion that steps taken to transform patient data for

the purposes of applying a prediction algorithm should not alter the patient’s

eventual classification.

Some normalization methods [57, 70, 11] and some batch correction methods

[47, 62] have addressed this issue by normalizing each sample against a fixed, or

”frozen”, set of representative samples. Unfortunately, these approaches can be

applied only to specific platforms where large numbers of representative samples

have been collected. This is especially relevant when custom chips are designed,

as is the case in many clinical applications. There remain a large range of

platforms for measuring gene expression in use by researchers [9], and single

sample normalization methods are not currently available for many of these

platforms. Additionally, methods such as quantile normalization and other

forms of data scaling and transformation have become well-known in the field

and are often applied as standard steps in a data processing pipeline.

Even if single sample normalization methods were universally available, pub-

lic measures of gene expression are frequently pre-processed using a range of

methods for cleaning, normalization, and analysis, resulting in a range of expres-

sion values for the same gene across different platforms [1]. A more tractable

solution is to build gene signatures that do not rely on raw gene expression

values. We propose using the ranks of genes instead of their raw expression

9



Figure 2.1: A description of how test set bias can alter class prediction

for an individual patient. In panel a), we learn a model for predicting if a
patient is in class R (red) or class B (blue). In our training data, the patients
with darker grey features tend to be in class B, while the lighter grey patients
are in class R. We develop a prediction rule from our training data and apply
it to a new darker grey patient, and we see that he is likely to be classified to
class B. In panel b), we attempt to classify a single patient in the context of two
different patient populations. We see that depending on the number and type
of other patients in the population when we normalize the data, the resulting
feature profile for our patient can be drastically different. This leads to different
eventual classifications by our prediction rule. We contend that the ultimate
classification of a patient should not depend on the characteristics of the test
set, but rather solely on the characteristics of the patient himself.
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values under the assumption that any transformation applied to the data is

rank-preserving.

As a concrete example, we focus on the PAM50 signature for breast cancer

subtyping [63] which is used to assign patients with breast cancer to one of five

molecular subtypes: Basal, Luminal A, Luminal B, Her2, Normal. We show

that when the number of patients in the test set changes, the predictions for a

single patient may change dramatically. We also show that variation in patient

populations being predicted upon leads to test set bias. Interestingly, PAM50

can be easily modified into a rank-based signature. We show that predictions

from rank-based PAM50 are comparable to those from standard PAM50, and

that predictions from rank-based PAM50 are invariant to test set bias.

Test set bias is a failure of reproducibility of a genomic signature. In other

words, the same patient, with the same data and classification algorithm, may

be assigned to different clinical groups. A similar failing resulted in the cancel-

lation of clinical trials that used an irreproducible genomic signature to make

chemotherapy decisions [50]. The implications of a patient’s classification chang-

ing due to test set bias may be important clinically, financially, and legally. In

the example of PAM50, a patient’s classification could affect a treatment or

therapy decision. In other cases, an estimation of the patient’s probability of

survival may be too optimistic or pessimistic. The fundamental issue is that

the patient’s predicted quantity should be fully determined by the patient’s ge-

nomic information, and the bias we will explore here is induced completely due

to technical steps.
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2.3 Methods

Study population and data

We collected and curated gene expression microarray data representing 28 inde-

pendent studies [37]. These datasets spanned 15 different proprietary platform

types and a variety of platform versions and included a range of commercial

and private manufacturers, spanning Affymetrix, Illumina, and Agilent as well

as custom arrays. The data were collected from the Gene Expression Omnibus

(GEO) [9], ArrayExpress [64], The University of North Carolina at Chapel Hill

database (UNCDB), Stanford Microarray Database (SMD), and Journal and

Authors’ websites. Metadata were manually curated as previously described

[37]. Experiments ranged from 43 to 1,992 patients, with a median of 131 pa-

tients and a total of 6,297 patients. (Table 2.1).

PAM model fitting

Prediction Analysis of Microarrays (PAM) [82] is a commonly used supervised

learning approach for building prediction models using gene expression data

from microarrays. We employed the pamr package [40] to fit a PAM model using

R. Briefly, pamr takes class labels and microarray data and calculates an average

gene expression profile, or centroid, for each class. It then shrinks the centroid to

eliminate genes that do not contribute to explaining variability between classes.

We then cross-validate to find an appropriate shrinkage threshold to maximize

predictive accuracy of our model. We use this threshold to determine how many

of the genes to keep in the predictor.
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Characteristic Summary

n 6,297
Age (years) 57.29 (13.42)
RFS (years) 7.22 (4.86)
Tumor Size (cm) 2.52 (1.43)
Node

+ 1,871
− 2,857
NA 1,569

Grade1

1 525
2 1,642
3 2,226
NA 1,904

ER
+ 3,635
− 1,556
NA 1,106

PGR
+ 766
− 656
NA 4,875

Her2
+ 496
− 1,437
NA 4,364

Subtype2

Basal 1,254
Her2 927
LumA 2,007
LumB 1,813
Normal 296

Table 2.1: Baseline characteristics of curated dataset Abbreviations:
ER - estrogen receptor status; Her2 - human epidermal growth factor receptor
2 status; Node - whether or not cancer has spread to lymph nodes; PGR -
progesterone receptor status; RFS - recurrence-free survival time. Age, RFS,
Tumor Size are given as means with standard deviations. 1due to the ambiguity
of grade 2, we chose to build all prediction models for grades 1 and 3 only.
2subtypes as predicted by PAM50.
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Normalization procedure

Normalization is accomplished through quantile rescaling as implemented in

the genefu package [39]. This scales each gene expression value x using specific

quantiles from the expression data. First, a quantile q is chosen. Through

examination of many microarray datasets, q = 0.05 was found to be robust. The

expression values corresponding to the desired quantiles q1 = x q

2

and q2 = x1− q

2

are defined, and the scaled value x′ =
x− q1
q2 − q1

is calculated. In contrast to

scaling by the maximum and minimum value, this approach is more robust to

extreme outlying gene expression values.

This normalization procedure is applied internally when the intrinsic.cluster.predict

function from the genefu package is used and the model’s standardization (“std”)

parameter is set to “robust”. For example, we can make PAM50 predictions

using pre-packaged models in genefu called pam50 or pam50.robust. The gene

centroid information is the same in both cases, but pam50 has std = “none”

and pam50.robust has std = “robust”. This means that if we apply intrin-

sic.cluster.predict with pam50, the test data will not be normalized in any way,

but if we use pam50.robust the quantile rescaling procedure described above

will be applied.

Estimating test set bias

We used two approaches to estimate test set bias. When considering the PAM50

predictor, we simply applied the pre-defined prediction model from the genefu

package ([39]) to make predictions on our data.

To train a PAM model, we used 10-fold cross-validation. We create a test
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set that is approximately 10% of the total data and use the remaining 90% to

train the model. We use the internal cross-validation functions provided in the

pamr package [40] to produce a shrinkage threshold and determine the number

of genes necessary to make predictions. We then apply this predictor both in the

test set, which comes from the same platform, and on other microarray datasets

that used different platforms. This process is repeated within each of the cross-

validation folds to get average prediction accuracies and standard deviations.

When predicting tumor grade (1-3 with increasing severity), we restricted to

patients graded 1 or 3 as grade 2 is considered to be ambiguous.

2.4 Results

Normalization makes patient predictions depend on other

patients’ data

Consider the PAM50 signature [63]. The class assignment for a new patient is

made by calculating a measure of closeness between the new patient and the

average patient profile in each possible class, then choosing the class that was

closest to the sample. For example, PAM50 consists of 50 genes and predicts

five classes, so each class centroid is a profile of the average expression of each

of the 50 genes within that class. The authors used correlation as a measure

of closeness for a given sample to each class centroid - that is, correlation is

calculated between the 50 genes in the patient sample and the 50 genes in each

class centroid. This is the step that necessitates suitable rescaling of the test

data before predictions are made.
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We considered two scenarios which illustrate how PAM50 can produce vary-

ing subtype predictions for a particular patient when the data for other pa-

tients used in normalization varies. We used data from GSE7390 (n=198), an

experiment conducted using the Affymetrix hgu133plus2 microarray. In each

experiment, we normalized the gene expression measurements in the test set to

fall between 0 and 1.

First we created predictions where we normalized all patients together. Then

we calculated predictions for the same patients when normalized in smaller

groups (n=2,10,20,40,80,100,120) and measured the agreement between the pre-

dictions for the exact same patient when normalized with all patients versus a

smaller subset of patients. When normalized in small batches, the predictions

for the same patient changed compared to the case where all patients were

normalized together Figure 2.2A.

Next we predicted on patient populations that varied in the distribution of

ER (Estrogen Receptor) status, which is an important factor in breast cancer

prognosis and treatment. Again we applied the PAM50 predictor to the entire

test set. Then we created subsets of the entire test set with differing percentages

of ER-negative patients and applied the predictor to each subset. When the

percentage of ER-negative patients in the subset matched the percentage in the

entire test set, patient subtypes best agreed with the original predictions on the

entire test set. However, when the ER status of the other patients in the test set

varied, the predictions for the same patient were often different Figure 2.2B.
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Prediction Data

Affy Agilent Illumina

Grade 1 3 1 3 1 3
Train Norm. Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Affy Scaled 0.92 0.13 0.67 0.17 0.72 0.05 0.63 0.02 0.95 0.01 0.57 0.02
Unscaled 0.92 0.13 0.65 0.16 0.79 0.02 0.59 0.01 0.97 0.01 0.51 0.03

Agilent Scaled 0.93 0.02 0.59 0.04 0.72 0.32 0.56 0.05 0.96 0.01 0.41 0.03
Unscaled 0.94 0.02 0.55 0.04 0.72 0.32 0.65 0.09 0.97 0.01 0.34 0.05

Illumina Scaled 0.87 0.00 0.75 0.04 0.75 0.02 0.64 0.01 0.92 0.06 0.65 0.05
Unscaled 0.79 0.03 0.87 0.02 0.83 0.02 0.58 0.01 0.84 0.08 0.71 0.06

Table 2.2: Average accuracy of scaled and unscaled predictions over

different training and testing sets We trained a PAM model to predict tu-
mor grade (either grade 1 or 3) using 10-fold cross-validation on one Affymetrix
(GSE7390), Agilent (ISDB10845), and Illumina (ISDB10278) dataset each. The
left column presents upon which platform each model was trained, and the top
row presents upon which platform each trained model was applied to make
predictions. To get average accuracy and standard deviations for a particular
platform, we use the model generated under each fold of the cross-validation
to make predictions on the remaining test set of the same platform as well as
the two other platforms. We applied this model after normalizing (“scaled”)
the data and after leaving it unnormalized (“unscaled”). We find that the ac-
curacies for predicting grade were similar whether the data were normalized or
unnormalized.
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Using gene ranks with unnormalized data produces com-

parable accuracy

When PAM50 was proposed, the authors chose to calculate similarity based on

Spearman correlation ([63]). Spearman correlation finds the correlation between

the ranks of the two sets of gene expression measurements rather than correla-

tion between the actual values. We hypothesized that this rank-based prediction

would be immune to some changes of scale across platforms and other platform-

specific artifacts. With traditional signatures, these are precisely the reasons

why normalization is necessary. To examine this preliminarily, we re-ran the

process from the previoius section but simply did not normalize the data and

relied on the internal rank-based correlation calculation. We recreated Fig-

ures 2.2A & B when the data were “unscaled”. These appear as Appendix

Figure 7.1, and they show that the predictions remain constant as sample size

and ER status vary when the data are unnormalized and a rank-based metric

is employed.

To further evaluate this hypothesis we used the previously proposed PAM

signature-building procedure [82] to build a genomic signature to predict tumor

grade (a clinical quantity indicating severity) using three datasets measured

on different platforms: GSE7390 (Affymetrix; n=198), ISDB10845 (Agilent;

n=337), and ISDB10278 (Illumina; n=1,992). We used 10-fold cross-validation

to train a model on a particular dataset, made predictions on the testing portion

of that dataset, and applied the trained model to the two remaining datasets

which represent two different platforms. We averaged over the ten folds in each

case to obtain mean accuracy and standard deviation.
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To make predictions, we used Spearman correlation to mimic how the PAM50

signature is used [63]. We predicted new patient samples using our PAM sig-

nature for grade both with and without normalization. The same set of genes

and prediction algorithm are used in both cases - the only difference is that in

the former we normalize the test set patient data, and in the latter we leave it

unnormalized. We observed that the normalized and un-normalized predictors

performed similarly across platforms Table 2.2.

Within-platform (Affy-Affy, Agilent-Agilent, Illumina-Illumina inTable 2.2),

there is no appreciable difference in the average accuracy of predictions when

the test data are normalized or unnormalized. For Affy, the grade 1 and 3 av-

erage accuracies when the data are normalized are 0.92 (0.13) and 0.67 (0.17),

respectively, as compared to 0.92 (0.13) and 0.65 (0.16) when the data are un-

normalized. For Agilent, the relevant figures are 0.72 (0.32); 0.56 (0.05) for

normalized vs. 0.72 (0.32); 0.65 (0.09) for unnormalized, and for Illumina 0.92

(0.06); 0.65 (0.05) vs. 0.84 (0.08); 0.71 (0.06). In all cases, the ranges of the

unnormalized average accuracies substantially overlap those of the normalized

average accuracies. Results across platforms (the off-diagonal table entries) tell

a similar story. It is the case that if the scaled predictor performs better on

grade 1 than the unscaled, then the opposite will be true for grade 3 (see, for

example, the Affy-Agilent result). This is due to the fact that patients can be

classified as either grade 1 or 3, so if the unscaled version predicts more grade 3

than grade 1, the change in the respective accuracies will be proportional. This

analysis suggests that using the PAM predictor for grade with Spearman corre-

lation for making classifications without normalizing the test set data produces

similar predictive accuracy to when the test data are normalized.
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2.5 Discussion

We found that breast cancer tumor subtype predictions varied for the same

patient when the data for that patient were processed using differing numbers

of patient sets and patient sets had varying distributions of key characteristics

(ER status). This is undesirable behavior for a prediction algorithm, as the same

patient should always be assigned the same prediction assuming their genomic

data do not change. The fact that sample size affects normalized data values is

unsurprising, but the fact that classifications varied by how many patients were

ER- in the test set speaks to the generalizibility of an algorithm. Ideally, the test

set should be “similar” in composition to the dataset upon which a classification

algorithm was trained. The result in Figure 2.2B is undoubtedly related to

the fact that ER+ patients are different in terms of gene expression from ER-

patients, but we see that even slight perturbations in the ER composition of

the subpopulation can affect patient classifications. This raises the question of

how similar the test set needs to be to the training data for classifications to be

trusted when the test data are normalized.

The PAM50 signature uses Spearman correlation to assess distances when

making predictions, so we leveraged this by comparing how a PAM signature

using Spearman correlation predicts tumor grade outcomes with and without

normalization. We found the results to be comparable, but the unnormalized

approach guarantees the same prediction for the same patient every time. A

gene signature that employs rank-based features or makes other rank-based

calculations is one robust approach to avoiding test set bias. Although all gene

signature classifiers do not necessarily have a completely rank-based mode as
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PAM50 does, the broader implication of this result is that one may endeavour

to build predictors that operate on the ranks of data only, thereby bypassing

the need for any normalization step when predicting on a test set.
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Chapter 3

A Standardized Approach to

Building Gene Signatures with

Rank-Based Features

3.1 Abstract

The development of a gene signature often involves complicated and irrepro-

ducible data modeling and prediction schemes. Here, we introduce a novel gene

signature building algorithm and the Templated Deterministic Statistical Ma-

chines (tdsm) R package. We first describe the statistical underpinnings of an

approach that relies on rank-based genomic features with the intention of creat-

ing small, interpretable predictive models. We then demonstrate this approach

and compose an R Markdown template of the data analysis. We use this tem-

plate to motivate the use of the tdsm package, which promotes transparency

and documentation of a statistical analysis by limiting user-driven adjustments.

23



3.2 Introduction

Apart from a handful of success stories [84, 83, 63] translation of gene signatures

from research to clinic has been slower than desired. One primary cause is

difficutly with the interpretation and reliability of the underlying predictive

model that maps gene expression measurements to an outcome prediction [24].

Another major issue is the lack of reproducibilty plaguing many facets of the

signature-building process. We have previously shown that normalization and

data pre-processing steps may lead to undesired biases in predictions made

by gene signatures [65], which represents an issue with the reproducibility of

predictions from a particular gene signature model. Others have described issues

with the process of model-building, which propegate in insufficient validation

[86], technical oversight [5, 46], and can lead to retraction of seemingly promising

genomic predictors [75].

To address reproducibility of predictions, we describe a modeling approach

predicated on simple decision trees [81] which use rank-based Top-Scoring Pairs

(TSPs) [32] as predictive features. These features are not prone to the normal-

ization and pre-processing issues that may be encountered when dealing with

raw gene expression values. We also summarize a novel feature selection scheme

that produces relevant and informative gene pairs under very few parametric

assumptions.

These methods are bundled into a new R package, tdsm (https://github.com/

prpatil/tdsm), which uses R Markdown to produce a standard HTML report

that describes precisely how the resulting decision tree model is built. Having

this report generated every time a gene signature is built will allay some of the
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questions surrounding the reproducibility of the model-building process. Writ-

ten description of each step and the required code are made available within the

document, which can be easily shared and examined. We use this templated

analysis to build an alternative to the MammaPrint signature which uses fewer

genes and a more interpretable model to make predictions of risk of recurrence

in breast cancer.

Finally, we describe the structure of the tdsm package as it pertains to

supporting multiple such templated analyses. We restrict user input to the

analysis of choice to only the required data. As a result, users have no control

over parameters, which are set by default as part of the analysis template. The

user may wish to duplicate a given template and edit parameter choices before

running the analysis. For this contingency, we provide duplicate template

and diff template, which allow the user to document a comparison between

the edited template and the original. The user is therefore informed of how

their changes to the template propagated into changes in their results.

3.3 Methods

Suppose we have a training dataset consisting of n patients and m genes whose

expression has been characterized. We also have some outcome vector Y ∈

{0, 1} of length n. Similarly, we have a validation dataset consisting of p patients

and m genes, with outcome vector W ∈ {0, 1} of length p. We wish to extract

some subset g ∈ m and define a mapping f : g 7→ {0, 1}.

25



3.3.1 Top-Scoring Pairs

The base feature used for prediction is the Top-Scoring Pair (TSP), first sug-

gested by Geman et. al. [32]. For individual i and for two gene expression

values, gij, gik ∈ m, we may consider the indicator of the expression of the first

gene being less than the expression of the second, zijk = I(gij < gik). In our

setting, the TSP would be the pair of genes that maximizes |P (gij < gik|yi =

0) − P (gij < gik|yi = 1)|. In a regression setting, fitting the regression model

E[zijk|yi] = β0 + β1yi and choosing maxjk|β1| yields the TSP.

Ideally, we would be able to examine all pairwise comparisons of m genes to

choose the TSP, but aside from the computational difficulty, we would find that

most gene pairs would not make good predictive features; i.e., most pairs are

likely to find gij < gik holds for all yi, hence class differentiation is not possible.

Instead, we propose some feature selection approaches that allow us to consider

useful pairs in a tractable manner.

3.3.2 Feature Selection - Empirical Controls

To find G we employ a two-step feature selection algorithm. The first step, em-

pirical control feature selection, is a filtering step that does not use the outcome

vector Y to pare down the list of candidate gene pairs. As described above, if

we consider all pairwise comparisons of m genes most are likely to be unsuitable

for differentiating classes, i.e. the vector Zjk = I(gij < gik) ∀i will have zeros

or ones in large proportion. Instead, under empirical controls, we search for a

specific type of gene pair that has a better chance of “flipping” between the two

classes. The pair we desire is one where gj has fairly constant gene expression
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across all individuals (the empirical control), while gk has high variance in ex-

pression across all individuals. Figure 3.1 displays an example pair of genes

that exhibit this relationship.

The procedure to find these candidate pairs is as follows:

1. Sort m genes by their average expression and separate into groups by Q

quantiles.

2. Within each quantile grouping, compute and sort by variance and identify

the h highest- and lowest-varying genes (2h total genes).

3. Create all possible pairs between the h highest- and h lowest-varying genes.

Figure 3.2 displays the advantage of choosing pairs via the empirical con-

trol method. We computed the proportion of ones in the vector Zjk for 6400

randomly selected gene pairs, and did the same for 6400 gene pairs selected

via empirical controls. The histogram for the randomly selected pairs has large

atoms at zero and one, suggesting that most pairs of genes consist of one gene

whose relative expression dominates the other. The histogram for the pairs

chosen via empirical controls has a more normal shape. These pairs would be

better candidates to associate with an outcome as there is a chance they will

differentiate a class due to more consistent “flipping” behavior.

3.3.3 Feature Selection - Conditional Pair Choice

Once we have a candidate set of genes C derived from the empirical control

feature selection procedure, we wish to identify any pairs that might be predic-

tive of the outcome. We would additionally like to select subsequent pairs that

27



Figure 3.1: Pair of empirical control genes exhibiting “flipping” po-

tential. The raw gene expression values (y-axis) for two genes are plotted for
each patient (x-axis). In this case, RP11 (in orange) is the empirical control,
low-variancel gene, while USP7 (in blue) is a high-variance gene from within the
same quantile as RP11. This pair possesses greater potential for differentiating
classes since the relationship between the expression of the two genes is not
constant across all patients.
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provide additional information about the outcome above the already-selected

pairs. To accomplish this, we leverage the fact that the test statistic for β̂1

from the regression E[Y |X] = βX is equal to the test statistic for γ̂1 from the

regression E[X|Y ] = ΓY . A proof of this property is provided in Appendix

B.

Given this property, our conditional pair selection procedure is as follows:

1. Find the pair (j, k) that maximizes the absolute test statistic for β̂1 from

the regression E[Zjk|Y ] = βY

2. Move the vector Zjk to the right-hand side, and find the next pair (r, s)

that maximizes the absolute test statistic for γ̂1 from the regression E[Zrs|Y, Zjk] =

ΓD, where D =
[

Y Zjk

]

.

3. Repeat step 2 until the desired number of pairs have been found.

By flipping the regression, we need only change the right-hand side of the

equation once to include the TSP chosen in the previous step. This allows for

faster application of the simultaneous regression equations for all j, k at each

iteration of the procedure. This process produces the set G of gene pairs that

will be used in a decision tree for the prediction of Y . The key attribute of

selecting features in this manner is that once Zjk is chosen and added to the

right-hand side, the next chosen pair, Zrs, represents the maximum absolute

test statistic for yi conditional on the information provided by Zjk.

3.3.4 Decision tree modeling

We use the rpart [81] package in R to build a decision tree using the pairs

chosen through the feature selection steps described previously. We wrap a layer
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of cross-validation around the entire procedure described thus far: before the

empirical control step, we set up five-fold cross-validation and iterate building

the tree on four-fifths of the data and predicting on the held-out one-fifth. We

use cross-validation to estimate out-of-sample accuracy of the final tree model,

which is built using the same procedure but using the whole data.

If the user has provided a validation dataset, then the entire training set

is put through the procedure described above. If a validation dataset has not

been provided, then the full training dataset is split into training and testing

subsets at the outset, and the testing subset is used as a validation dataset. As

a summary, we report the out-of-sample accuracy as estimated through cross-

validation, the predictive accuracy of the model on the validation dataset, and

use the pROC [71] R package to display ROC curves for both the training and

validation data as a means of comparison.

3.3.5 Standardized Reporting and tdsm Package

We use the rmarkdown [10], knitr [90], and knitrBootstrap [41] packages to

render an HTML report that contains code chunks as well as descriptions of the

modeling process. An excerpt from an example report is shown in Figure 3.3.

The user may only provide input data to this report. Parameter choices for

the number of pairs in a model or the number of empirical control pairs are

fixed within the report. We have provided additional utilities should the user

desire to alter these parameters. The goals of developing the tdsm package in

this manner are to (1) be transparent about the analysis process; (2) should

the user make changes to the analysis process, be transparent about what those

changes are and how they affected results.
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due to their changes. We have also provided for file differentiation (the purple

path). After the user has duplicated and edited the template, they can use the

diff template function to produce an HTML rendering of a diff command

(via the diffr package [60], which uses the codediff.js Javascript library).

Within this file, line differences between the original and edited templates are

highlighted and documented. We also allow the user to share this HTML diff

rendering online as an anonymous Github Gist with the submit diff command.

Our eventual intention is to collect the various changes made by different users

to a particular template and determine if the default template ought to be

changed to reflect common usage.

3.4 Discussion

As a proof-of-concept, we build our own gene signature for risk of breast cancer

recurrence using the original MammaPrint training and validation datasets [54].

We provide the ROC curve excerpted from the full report and mark where

the sensitivity and specificity of the actual MammaPrint test would fall for

comparison in Figure 3.5. The model we developed through this procedure

only uses three pairs of genes (six genes total), as compared to seventy genes used

by the MammaPrint model. Both the TSP-based model and the MammaPrint

model possess relatively high sensitivity and low specificity depending on the

choice of a desired threshold. From the ROC curve, we see that both perform

comparably on the validation data.

Examining the decision tree in Figure 3.6, we are more easily able to in-

terpret how each gene pair contributes to the eventual class assignment for a
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Figure 3.4: Schematic workflow of tdsm package. This schematic illus-
trates the different paths a user can take when using the tdsm package. In blue
is the default path, where the user supplies input data to a default template
and views the resulting HTML report. In orange is the alternative path, where
the user chooses to edit a default template and run their input data through
the edited template as opposed to the default. In this case, we recommend the
addition of the purple path, where an edited template is differentiated against
the default and the diff is saved to a separate HTML file. The user has the
option to subsequently upload the saved diff as an anonymous Github Gist so
that it may be shared and archived online.
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3.5 Conclusion

We have described here one approach to gene signature building that avoids

issues in reproducibility, both in the predictions of the model and in the model-

building process. For the former, we introduce decision trees that use Top-

Scoring Pairs. These are small, interpretable models that do not require data

pre-processing or normalization prior to application as they operate on relative

gene expression. We demonstrated the viability of this modeling procedure by

recreating a simplified version of the MammaPrint risk predictor which com-

pared favorably in sensitivity and specificity to the original.

For the latter, we have described the tdsm R package which contains the

TSP regression procedure as its first templated analysis. Our intention with

this package is to make an analysis process fully transparent and documented.

By restricting user input solely to data, we produce standard reports that can

be easily compared with one another. We also provide utilities in the case that

the user wishes to tune the analysis to their liking. We encourage the user

to differentiate their edited analysis template against the original so that the

differences are documented and the resulting differences in analysis results are

explicable. any normalization step when predicting on a test set.
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Chapter 4

Genomic and Clinical Predictors

for Improving Estimator

Precision in Randomized Trials

of Breast Cancer Treatments

4.1 Abstract

Background: The hope that genomic biomarkers would dramatically and im-

mediately improve care for common, complex diseases has been tempered by

slow progress in their translation beyond bioinformatics. We propose a novel

use of genomic information where the goal is to improve estimator precision

in a randomized trial. We analyze the potential precision gains from the pop-

ular MammaPrint genomic signature and clinical variables in simulations of

randomized trials analyzed using covariate adjustment.

Methods: We apply an estimator for the average treatment effect in the trial

that adjusts for prognostic baseline variables to improve precision [21]. This

precision gain can be translated directly into sample size reduction and cor-

responding cost savings. We conduct simulation studies based on resampling
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genomic and clinical data of breast cancer patients from four publicly available

observational studies.

Results: Separate simulation studies were conducted based on each of the four

data sets, with sample sizes ranging from 115 to 307. Adjusting only for clinical

variables provided gains of -1%, 5%, 6%, 17%, compared to the unadjusted

estimator. Adjusting only for the MammaPrint genomic signature provided

gains of 2%, 4%, 4%, 5%. Simultaneously adjusting for clinical variables and the

genomic signature provided gains of 2%, 6%, 7%, 16%. The differences between

precision gains from adjusting for genomic plus clinical variables, versus only

clinical variables, were -1%, 0%, 1%, 3%.

Conclusions: Adjusting only for clinical variables led to substantial precision

gains (at least 5%) in three of the four data sets, with a 1% precision loss in

the remaining data set. These gains were unchanged or increased when sample

sizes were doubled in our simulations. The precision gains due to incorporating

genomic information, beyond the gains from adjusting for clinical variables, were

not substantial.

Keywords: adjustment, genomics, precision, translation

4.2 Introduction

The announcement of the Precision Medicine Initiative [23] stated that “Pre-

cision medicine’s more individualized, molecular approach to cancer will enrich

and modify, but not replace, the successful staples of oncology – prevention, di-

agnostics, some screening methods, and effective treatments – while providing

a strong framework for accelerating the adoption of precision medicine in other
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spheres.” In the realm of genomic biomarker development, this mandate puts

an explicit focus on “enrichment”, i.e. how much additional information a new

marker can provide to supplement the standard course of care. The uncertain

value of genomic measurements for improving clinical practice has been a criti-

cal roadblock in the translation of genomic markers to the clinic [16], in addition

to problems with reproducibility [6], interpretability [49], and cost [3]. A small

number of laboratory tests based on genomic signatures have been approved for

clinical use. Tests such as MammaPrint [83], Oncotype DX [61], and Prosigna

[63] rely on measurement of expression for a set of genes that are associated

with differential survival and severity of breast cancer cases.

It is difficult to evaluate the clinical value that these genomic signatures add

beyond standard clinical factors measured for all breast cancer patients, such

as age, estrogen receptor status, tumor size, and tumor grade. It is also known

that tests based on genomic signatures are not part of the standard of care in

many cases [25, 16]. Ongoing clinical trials are being performed to ascertain

the value of some of these signatures to make adaptive treatment decisions [8].

We propose to evaluate the use of genomic signatures in a different setting by

considering the prognostic value added from adjusting for a genomic signature

in a randomized clinical trial of a new treatment versus control.

In a randomized trial the primary analysis typically involves estimating the

average treatment effect. Adjusting for baseline variables that are prognostic for

the outcome can lead to improved precision in estimating the average treatment

effect at large sample sizes (i.e., asymptotically as sample size grows). [91]

showed that for continuous outcomes and a linear model with main terms, the

analysis of covariance (ANCOVA) estimator is guaranteed to be consistent and
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as or more precise than the standard unadjusted estimator, even if the linear

model is not correctly specified, i.e., the true distribution of the outcome given

baseline covariates may be much more complex than the linear model used, and

still the guarantee holds.

More recently, estimators with the same desirable property as the ANCOVA

procedure have been extended to binary and count outcomes; see [18, 80, 73]

and [36]. [21] provide a review of these recent estimators, which are designed to

estimate an average treatment effect in the general setting of an observational

study, where the probability of being assigned to treatment is not randomized

and must be learned from the data. These estimators may also be applied to

randomized trials, where their guarantees on improved precision require fewer

assumptions than in an observational study since in a randomized trial the

assignment probability is known (and set by design).

The above estimators all have the aforementioned consistency and precision

guarantee. One difference among them is that the estimators of [91, 80]; and [21]

do not require solving a non-convex (and therefore computationally challenging)

optimization problem; however, the benefit of solving such a problem, as done

by the estimators of [18, 73] and [36], is that they have potential for further

precision gains, so there is a computation versus precision tradeoff.

The precision gains provided by adjusting for baseline variables depend on

how correlated the baseline variables are with the outcome and the degree of

chance imbalance in the baseline variables across the treatment groups. To the

best of our knowledge, the value of such adjustment has not yet been assessed

using simulations based on resampling from breast cancer patient data sets, as

we do here. We resample in a way that preserves correlations between baseline
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variables and the outcome in order to give a realistic assessment (as best as we

can using simulations and our data sets) of the magnitude of precision gains

likely to be observed in practice.

We aim to determine the prognostic value of clinical and/or genomic vari-

ables measured at baseline (pre-randomization). Of particular interest is the

additional gain from adjusting for the genomic signature beyond that obtained

by adjusting for standard clinical baseline variables. Our definition of preci-

sion gain in this setting equals the percent sample size reduction from using

the adjusted estimator compared to the unadjusted estimator in order to attain

the same power, asymptotically. Although perhaps not as groundbreaking of a

result as once hoped, this approach represents a realistic attempt to assess the

value of the information provided by a genomic signature.

4.3 Methods

4.3.1 Data

Microarray data used to validate the MammaPrint model [17] were gathered as

described in the appendix of [55]. The MammaPrint validation data set consists

of 307 breast cancer patients. Table 4.1 summarizes the key clinical factors

recorded for these patients as well as their MammaPrint risk prediction, which

is a binary classification based on the risk score calculated by the MammaPrint

model [83]. We dropped 11 patients whose estrogen receptor (ER) status or

tumor grade were unknown and conducted our analysis using the 296 remaining

patients.

We also conduct simulations based on three external breast cancer data
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Characteristic Summary

n 307
Age (years) 47.08 (7.27)
Five-Year Recurrence

Yes 47
No 260

Tumor Size (mm) 21.48 (7.71)
Grade

1 47
2 126
3 126
Unknown 8

ER
+ 212
− 90
Unknown 5

MammaPrint Risk Prediction
High 194
Low 113

Table 4.1: MammaPrint validation data set. ER - estrogen receptor sta-
tus, Grade - tumor severity grading (3 is most severe), Five-Year Recurrence -
whether or not cancer has reappeared after five years, MammaPrint risk pre-
diction - high or low risk for cancer recurrence. Age and Tumor Size are given
as means with standard deviations in parentheses.
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sets described in the Supplementary Material (Appendix C). These are called

GSE19615, GSE11121, GSE7390, with sample sizes 115, 200, 198, respectively.

4.3.2 Statistical Method to Adjust for Baseline Covari-

ates

We define the average treatment effect to be the difference between the pop-

ulation mean of the primary outcome under assignment to treatment and the

population mean under assignment to control. The term “covariate adjustment”

means that information from baseline variables is used to improve the precision

in estimating the average treatment effect. This is done by adjusting for chance

imbalances in baseline variables between treatment and control arms. Since

our focus is improved precision for estimating the average treatment effect, we

do not consider effects within subgroups; investigating the latter is an area for

future research.

Increased precision for estimation of the average treatment effect can lead

to a trial with fewer participants and shorter duration, compared to a trial with

the same power that uses a less precise estimator. This is because the sample

size for a trial is typically selected in order to achieve a desired power, e.g.,

80% or 90%, at an alternative (e.g., the minimum, clinically meaningful effect

size); using a more precise estimator leads to a smaller required sample size

to achieve the power goal. More precise estimators can be used to reduce the

sample size even when the average treatment effect is zero, which is the setting

of our simulation study. This can be achieved by prespecifying the sample size as

that which achieves a desired power at a given alternative, taking into account

the percent variance reduction from using the adjusted estimator compared to

44



the unadjusted estimator. A more flexible approach is to use information based

monitoring, where the trial runs until a preplanned information level has accrued

(see, e.g., [44]). Information with respect to a given estimator, defined as the

reciprocal of its variance, accrues faster for estimators with greater precision,

leading to smaller sample sizes.

We assume each participant in the trial contributes a data vector D =

(W,A, Y ), where W = (W1, . . . ,Wj) is a vector of covariates measured at base-

line, A is an indicator of study arm (0 = control, 1 = treatment), and Y is a

binary outcome of interest which in our case is the indicator of cancer recurrence

within 5 years from baseline. We assume the trial data consist of n independent,

identically distributed participant data vectors {Di}ni=1 drawn from unknown

joint distribution P on (W,A, Y ). We assume a nonparametric model except

that W and A are independent by randomization (called the randomization

assumption), and we assume the regularity conditions in [21, Section 3.2].

The goal is to estimate the average treatment effect defined as the difference

between 5 year survival probabilities comparing treatment versus control, i.e.,

ψ = E[Y |A = 1]− E[Y |A = 0] = P (Y = 1|A = 1)− P (Y = 1|A = 0). (4.1)

Another possible treatment effect, which we do not consider, is the hazard ratio

under a proportional hazards model. This would have the advantage that the

recurrence time (rather than only the indicator Y of recurrence by 5 years) is

fully used; however, a disadvantage is that inferences depend on the proportional

hazards assumption being correct, and these inferences would typically be biased

(even at large sample sizes) if that assumption fails to hold.
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The unadjusted estimator of ψ is defined as

ψ̂una =

∑n
i=1 YiAi

∑n
i=1Ai

−
∑n

i=1 Yi(1− Ai)
∑n

i=1(1− Ai)
.

This estimator is consistent (i.e., converges in probability to the population

average treatment effect ψ) but ignores the baseline variables W . If W is prog-

nostic for Y then it is possible to improve precision by appropriately adjusting

for W . Throughout, we do not assume that W contains information about

treatment effect heterogeneity, i.e., who benefits more or less from treatment;

we only use W as prognostic variables that may explain some of the variation

in Y . This variation could be unrelated to treatment.

To leverage the information in W , we apply the enhanced efficiency, doubly-

robust estimator of [21, Section 4.2], which is a special case of the class of

estimators from [73] that is slightly modified for use in the randomized trial

context. We denote this estimator by ψ̂adj. Software to compute this estimator

is given in R and SAS by [21]. The R code we used is available at the link in

Section 2.5.

The estimator ψ̂adj uses parametric working models for the mean of the

outcome given baseline variables and study arm. We call these working models

since we do not assume they are correctly specified. The true data generating

distribution may differ arbitrarily from the functional form of the model.

Computation of ψ̂adj is accomplished via the following steps:

1. Let α = (α0, . . . , αj)
T . Fit the following propensity score working model

for P (A = 1|W ): g(W,α) = logit−1 (α0 + α1W1 + . . .+ αjWj) via maxi-

mum likelihood estimation and denote the estimator of α by α̂ = (α̂0, . . . , α̂j)
T .
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2. For each arm a ∈ {0, 1}, define the following working model for E(Y |A =

a,W ):

Q(a)(W,β(a)) = logit−1
(

β
(a)
0 + β

(a)
1 W1 + . . . β

(a)
j Wj

)

. Fit the above model

at a = 1 using weighted logistic regression with weights
1

g(W, α̂)
and us-

ing only participants with A = 1 to obtain estimated coefficients β̂(1) =

(β̂
(1)
0 , . . . , β̂

(1)
j ). Define the initial estimator for E[Y |A = 1] as µ̂1 =

1

n

∑n
i=1Q

(1)(Wi, β̂
(1)), where the sum is taken over all participants. The

estimator µ̂0 for E[Y |A = 0] is obtained analogously by setting a = 0, re-

placing A = 1 with A = 0, and replacing
1

g(W, α̂)
by

1

1− g(W, α̂)
above.

3. Define the new covariate µa(W ) = Q(a)(W, β̂(a))− µ̂a for each a ∈ {0, 1},

which uses µ̂a, β̂
(a) as estimated in step 2. Fit the following augmented

propensity score model for P (A = 1|W ): gaug(W,α, γ) = logit−1(α0 +

α1W1 + . . . + αjWj + γ0µ0(W ) + γ1µ1(W )) using maximum likelihood

estimation to obtain estimated coefficients α̃ and γ̃ = (γ̃0, γ̃1).

4. Recompute step 2 using gaug(W, α̃, γ̃) in place of g(W, α̂) in the weights to

obtain new estimates µ̃1, µ̃0. Define the adjusted estimator of the average

treatment effect as ψ̂adj = µ̃1 − µ̃0.

Throughout, we assume there are no missing data and the vector (Wi, Ai, Yi)

is observed for each participant i. The models g and gaug are correctly specified

as long as each contains an intercept due to the randomization assumption. By

design, each participant is assigned to treatment or control with probability 0.5,

independent of his/her baseline variables, so P (A = 1|W = w) = P (A = 1) =
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0.5 for all values of w. Consider the model

g(W,α) = P (A = 1|W ) = logit−1(α0 + α1W1 + . . .+ αkWk)

Setting α1 . . . αk = 0 and α0 = logit(1/2) yields correct specification of the

model, i.e., the model at these parameter values equals the true distribution

P (A = 1|W ) = P (A = 1) = 1/2. The same holds for gaug. Though the data

generating distribution has A independent of W , in any given realization of the

data there can be imbalances in W across arms due to chance variation.

The models Q(0), Q(1) will typically be misspecified if any of the baseline

variables is continuous valued or has many discrete levels. An important feature

of the estimator ψ̂adj is that it is consistent regardless of whether the parametric

models Q(0), Q(1) are correctly specified; that is, consistency holds even when

the true data generating distribution E(Y |A = a,W ) does not have the form

Q(a)(W,β(a)) for any β. Furthermore, the estimator ψ̂adj is guaranteed to have

asymptotic precision equal to or greater than that of the unadjusted estimator

as proved by [73, 21]. However, depending on the number of baseline covariates

and the sample size, the precision may be worse for the adjusted estimator

compared to the unadjusted estimator; this can happen if the baseline variables

are only weakly (or not at all) prognostic, there are more than a few of them,

and the sample size is relatively small.

It is also possible to use the output of step 2 to construct the simpler es-

timator µ̂1 − µ̂0 of the average treatment effect. This estimator is called the

double-robust weighted least squares estimator (DR-WLS) and is attributed to

Marshall Joffe by [72]. The value of adding steps 3 and 4 is that the resulting

estimator has been proved to be asymptotically as or more precise than the
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unadjusted estimator [73, 21].

4.3.3 Baseline Covariates used for Adjustment

The baseline variables W used in the estimators defined above must be pre-

specified. They can be any functions of measurements made prior to random-

ization. We define four sets of covariates that we will adjust for using the

procedure described in Section 2.2:

• W−ER : {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor Grade = 3)}

• WC : {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor Grade = 3), ER

Status}

• WG: {MammaPrint Risk Category}

• WCG: {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor Grade = 3), ER

Status, MammaPrint Risk Category}

Here, I(Tumor Grade = 2) is an indicator of whether or not the patient’s tumor

is severity grade 2.

With these four sets of covariates, we are able to contrast gains in precision

from different covariate sources. We compare adjusting for WC versus W−ER to

determine how much adding the clinical covariate ER status to other clinical

covariates improves precision. We also compare the prognostic value of the

genomic predictor plus clinical covariates (WCG) versus clinical covariates alone

(WC).
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We consider the clinical covariates above because they reflect quantities that

clinicians may commonly use to evaluate cancer-related risks and courses of ther-

apy. The number of covariates we are adjusting for here exceeds the conservative

approach recommended by [21]. They recommend 2-3 adjustment covariates at

sample sizes such as ours. The potential downside to adjusting for greater num-

bers of covariates is that we risk non-negligible increases in estimator variance

if our covariates turn out to be non-prognostic for the outcome, as shown in

Section 4.4. We chose to include larger numbers of covariates here in order to

compare the added value of MammaPrint above the prognostic value of the full

set of relevant clinical covariates available in our data sets.

4.3.4 Simulations

We conducted a simulation study with the goal of comparing the variance of the

unadjusted and adjusted estimators to determine how much precision we may

gain from adjusting for clinical and genomic covariates. For each of the four

data sets described in Section 4.3.1 and in the supplement, we construct a data

generating distribution that mimics the observed correlation between baseline

variables and outcomes.

To preserve the relationship between outcome and potentially prognostic co-

variates from the original data set, we resample participants with replacement

and create a new sample of the size of our data set (296 for the MammaPrint

validation data) for each simulated trial; we record (W,Y ) for each resampled

participant. This maintains the empirical joint distribution of (W,Y ), preserv-

ing the correlation of these variables. In each simulated trial, the study arm
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assignment A of each participant is a random draw from the Bernoulli dis-

tribution with probability 1/2 of being 0 or 1, independent of (W,Y ). The

population average treatment effect defined in (4.1) corresponding to the above

data generating distribution is therefore ψ = 0.

The reason we do not simply resample patient data vectors (W,A, Y ) with

replacement from a given data set is that the resulting data generating distri-

bution would not have treatment A independent of baseline variables W (as

in a randomized trial). This is because our data sets are from observational

studies, as opposed to randomized trials. Though it would be preferable to use

data from randomized trials, we were not able to obtain data from any such

trials that also recorded the MammaPrint predictor at baseline. Observational

studies still can provide a rough approximation to the magnitude of potential

precision gains from covariate adjustment, since these gains are directly related

to the variance of Y explained by W [21].

For each data generating distribution described above, we construct J =100,000

simulated trial data sets, each of sample size equal to the original data set (ex-

cluding patients with missing data). Using the jth simulated data set, we com-

pute the unadjusted estimator ψ̂j
una and the adjusted estimator ψ̂j

adj using each

of the covariate sets W−ER,WC ,WG,WCG. We then approximate the bias and

variance of each of these estimators based on its values over the 100,000 simu-

lated trials. Since ψ = 0, the bias B of an estimator ψ̂ is E(ψ̂)−ψ = E(ψ̂), which

is approximated by the average of ψ̂ over the 100,000 simulated trials we con-

ducted. We similarly approximate the variance of each estimator. For the un-

adjusted estimator, the approxmiate bias and variance based on our simulation

study are denoted by Buna =
1
J

∑J
j=1 ψ̂

j
una and σ2

una =
1

J−1

∑J
j=1(ψ̂

j
una −Buna)

2,
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respectively. The bias and variance approximations for the adjusted estimator

ψ̂adj are denoted similarly: Badj =
1
J

∑J
j=1 ψ̂

j
adj, σ

2
adj =

1
J−1

∑J
j=1(ψ̂

j
adj − Badj)

2.

For conciseness, we refer the these approximations as the bias and variance

of the corresponding estimator, rather than writing “approximate bias” and

“approximate variance”.

We define the (percent) precision gain due to the adjusted estimator in

comparison to the unadjusted estimator, as approximated by simulation, as

Gadj =
σ2
una − σ2

adj

σ2
una

x 100%. The precision gain equals, asymptotically (as sam-

ple size goes to infinity), the percent reduction in sample size to achieve a desired

power at a local alternative comparing the adjusted versus unadjusted estima-

tor. It equals 1−1/RE, where RE is the asymptotic relative efficiency. Negative

values of Gadj correspond to efficiency losses, which can occur if baseline vari-

ables are only weakly (or not at all) prognostic for the outcome. Asymptotically

(as sample size goes to infinity), Gadj converges to a nonnegative value, which

represents zero or positive precision gain, as proved by [73, 21].

Simulations were conducted via the BatchJobs R package [13], which allows

for an interface between R and a cluster queuing system. We parallelized such

that 1000 simulated data sets were constructed concurrently by each of 100

processors on a Sun Grid Engine (SGE) cluster, which sped up the computation

of our approximations.

We also conducted simulation studies as above except where the sample

size in each simulated trial is double that of the original data set. In all of

our simulation studies, each simulated participant’s data is an independent,

identically distributed draw from a joint distribution P (which depends on the

data set being resampled from) on (W,A, Y ). Therefore, even though we are
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resampling (with replacement) double the sample size n from the original data

set, the effective sample size is 2n (i.e., each estimator’s variance is roughly cut

in half compared to its variance at the original sample size.) To illustrate this

point, consider the analogy of drawing n independent, identically distributed

realizations Y1, . . . , Yn from a Bernoulli distribution with true probability 1/4

of being 1. Though this is equivalent to resampling n times with replacement

from the four person data set {0, 0, 0, 1} (with equal chance of each), each draw

is independent and the effective sample size equals the number of draws n. The

precision gains from adjustment are expected to be similar or slightly greater

than when the original sample sizes are used, since at larger sample sizes there

is less variability in the estimated coefficients β̂(a) in the working model fits

Q(a)(W, β̂(a)) used in ψ̂adj.

4.3.5 Reproducibility

Our analyses are reproducible. Code, data files, and supplementary results are

available at

https://github.com/leekgroup/genesigprecision

4.4 Results

Table 4.2 presents variances for each estimator and the precision gain Gadj,

using different sets of baseline covariates, for the MammaPrint validation data

set and the data sets GSE19615, GSE11121, GSE7390. All precision gains Gadj

are rounded to the nearest percent.

Consider the left half of Table 4.2, which corresponds to simulated trials

having the same sample size as the corresponding data set. Adjusting only for
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Original Sample Size Double Sample Size
Covariate Set σ2

una σ2
adj Gadj σ2

una σ2
adj Gadj

MammaPrint data set
W−ER 0.0018 0.0017 4% 0.00089 0.00084 6%
WC 0.0018 0.0017 5% 0.00089 0.00083 6%
WG 0.0018 0.0017 5% 0.00089 0.00084 5%
WCG 0.0018 0.0017 6% 0.00089 0.00082 7%

GSE19615 data set
W−ER 0.0088 0.0078 11% 0.0044 0.0037 14%
WC 0.0088 0.0073 17% 0.0044 0.0035 21%
WG 0.0088 0.0084 4% 0.0044 0.0042 4%
WCG 0.0088 0.0074 16% 0.0044 0.0035 21%

GSE11121 data set
W−ER 0.0036 0.0034 7% 0.0018 0.0016 9%
WC 0.0036 0.0034 6% 0.0018 0.0017 9%
WG 0.0036 0.0036 2% 0.0018 0.0018 2%
WCG 0.0036 0.0034 7% 0.0018 0.0016 9%

GSE7390 data set
W−ER 0.0045 0.0045 -1% 0.0022 0.0022 1%
WC 0.0045 0.0045 -1% 0.0022 0.0022 1%
WG 0.0045 0.0043 4% 0.0022 0.0022 4%
WCG 0.0045 0.0044 2% 0.0022 0.0021 5%

Table 4.2: Precision gains due to adjustment for different sets of

baseline covariates
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clinical variables (WC) provided precision gains Gadj of -1%, 5%, 6%, 17% (from

smallest to largest), compared to the unadjusted estimator, across the four data

sets. Adjusting only for the MammaPrint genomic signature (WG) provided

gains of 2%, 4%, 4%, 5%. Simultaneously adjusting for clinical variables and

the genomic signature (WCG) provided gains of 2%, 6%, 7%, 16%.

Each of the above precision gains Gadj was unchanged or increased when

each simulated trial has double the sample size as the corresponding data set

(right half of Table 4.2). This is to be expected, as described above. For each

estimator, covariate set, and data set, the variance at double the sample size

was approximately half of the corresponding variance at the original sample

size, as expected.

The additional gain due to the genomic predictor is defined as the differ-

ence between the precision gain from WCG versus WC . First, consider the left

half of Table 4.2, where each simulated trial has the same sample size as the

corresponding data set. In simulations based on the MammaPrint validation

data, the genomic predictor provided an additional gain of 1% above using all

clinical factors. In two of the other data sets, the additional gains due to the

MammaPrint predictor were 0% (GSE11121) and 3% (GSE7390). Using a third

such data set, GSE19615, adjusting for the MammaPrint prediction in addition

to the clinical covariates decreased precision by 1% compared to adjustment for

clinical covariates alone. Such losses in precision can occur when adjusting for

a variable that is only weakly prognostic (or not prognostic) for the outcome.

The additional gains due to the genomic predictor were 0%, 0%, 1%, 4% when

sample sizes in the simulations were doubled (right half of Table 4.2).

We also examined the additional gains due to ER status, defined as the
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difference between the precision gains from WC versus W−ER. These values

were -1%, 0%, 1%, 6%, for the four data sets, based on simulations at the

original sample size. Qualitatively, these were similar to the magnitudes of

additional gains due to the genomic predictor.

We conducted additional simulations where we generated baseline covariates

independent of the outcome, in order to determine the magnitude of precision

losses due to adjusting for pure noise. This quantifies the loss that would occur

if one were to prespecify an analysis that adjusts for variables conjectured to

be prognostic, but these variables turn out to be non-prognostic. We generated

100,000 simulated trial data sets as above, except where the data generating dis-

tribution has baseline variables W independent of Y . This was done by resam-

pling W with replacement from its marginal distribution in the MammaPrint

data set, and similarly resampling Y from its marginal distribution. The results

are shown in Table 4.3. As expected, all combinations of covariates produce

zero or negative precision gains, with greater losses when adjusting for larger

covariate sets (due to more degrees of freedom in the working models). The

maximum loss in precision is 3% when using the original sample sizes (left half

of Table 4.3). This is due to the inclusion of greater than the recommended

number of adjustment covariates, as described in Section 2.3. The potential

losses are smaller if the sample size is larger, as shown in the right half of Ta-

ble 4.3 where the maximum loss is 1%. Larger sample sizes tend to decrease

the magnitude of precision losses since asymptotically (as sample size goes to in-

finity), Gadj converges to a nonnegative value, which represents zero or positive

precision gain, as proved by [73, 21]. We present additional simulation results

with W generated independent of Y in the Supplementary Material where we
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Original Sample Size Double Sample Size
Covar. Set σ2

una σ2
adj Gadj σ2

una σ2
adj Gadj

W−ER 0.00177 0.00181 -2% 0.00090 0.00091 -1%
WC 0.00177 0.00182 -2% 0.00090 0.00091 -1%
WG 0.00177 0.00178 0% 0.00090 0.00090 0%
WCG 0.00177 0.00183 -3% 0.00090 0.00091 -1%

Table 4.3: Precision gains under data generating distribution

with W and Y independent, based on marginal distributions from

MammaPrint validation data set.

reduce the number of clinical covariates adjusted for, resulting in smaller preci-

sion losses.

The bias approximations Buna and Badj were both quite small, with mag-

nitudes of at most 0.0003 over the four simulation studies. We examined the

distribution of the differences between ψ̂j
una and ψ̂

j
adj over the j = 1, . . . , 100, 000

iterations in the simulation using the Mammaprint validation data set; the his-

togram of ψ̂j
una − ψ̂j

adj appears in Figure 4.1, and analogous histograms for the

other datasets along with a table comparing the distributions of differences

across the four simulation studies are available in the supplement. For the sim-

ulation with the MammaPrint dataset, we saw an average difference of 0.00005

(standard deviation=0.0145). The 2.5% and 97.5% quantiles of ψ̂j
una− ψ̂j

adj were

[-0.029, 0.029]; this implies that 95% of the differences between the unadjusted

and adjusted estimators had magnitudes smaller than 3%. The correlation of

the two estimators was 0.94.

In general, we expect the difference between the unadjusted and adjusted

treatment effect estimators to be small unless there is substantial chance imbal-

ance between treatment and control arms that is accounted for by the adjusted

estimator. In that case, we would expect the adjusted estimator to be closer to
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Figure 4.1: Histogram of ψ̂j
una − ψ̂j

adj. The histogram of differences between
the unadjusted and adjusted estimators is approximately normal and is centered
close to the true effect of zero (mean=0.00005, standard deviation=0.0145). The
adjusted estimator is closer than the unadjusted estimator to the true effect
approximately 53% of the time. For this histogram, we considered the adjusted
estimator using all available baseline covariates (clinical + genomic).
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the true effect. In our setting, the adjusted estimator was closer to the true effect

of zero 53% of the time, suggesting a slight improvement over the unadjusted

estimator.

4.5 Supplementary Material

We provide summaries of the data sets GSE19615, GSE11121, and GSE7390.

We also present a table analogous to Table 4.3 except where we reduce the

maximum number of adjustment covariates to three. The result is that precision

losses are smaller when covariates are generated independent of the outcome Y ,

compared to the precision losses in Table 4.3. These materials can be found

in Appendix C.

4.6 Conclusion

Appropriately adjusting for prognostic baseline covariates has potential to im-

prove precision in estimating the average treatment effect in randomized trials.

If baseline factors are collected for patients enrolled in a study, then adjusting

for them can reduce the sample size necessary to obtain a desired precision in

estimation of the average treatment effect and, therefore, the cost to run the

trial.

The precision gains from adjusting for clinical variables were substantial

(5%, 6%, 17%) in simulation studies based on three out of four data sets we

considered; the last data set led to a loss in precision of 1%. These precision

gains slightly increased when sample sizes were doubled, showing that covariate

adjustment can be valuable both at moderate (115 to 307) and larger sample
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sizes, in the context of breast cancer treatment trials.

The additional gains from adjusting for the genomic predictor were quite

small. We consider several possible explanations for this finding. First, our

estimator may not have effectively extracted the additional prognostic informa-

tion in the genomic marker; e.g., it may be that including interactions between

the MammaPrint score and clinical variables, or using a less parametric model

than logistic regression (e.g., splines), would lead to an adjusted estimator with

better precision than we observed. This is difficult to evaluate, since using more

flexible models could lead to overfit; this may be controllable via penalization or

cross-validation, and is an area of future research. Another possible explanation

is that the MammaPrint risk score is too coarse a summary measure of the 70

gene expression levels measured by the MammaPrint assay, for our purpose.

The MammaPrint risk score was not designed for maximizing additional prog-

nostic value beyond what is explained by clinical variables. It may be that a

different function of the 70 gene expression levels would lead to greater precision

gains, but this is beyond the scope of this paper. A third possible reason for

the lackluster additional gains from the genomic predictor is that there may be

little additional prognostic value in the genomic information for the outcome

we considered. The MammaPrint score in the validation set examined here was

89% sensitive to high risk-of-recurrence patients, 42% specific to low risk-of-

recurrence [55], but these measures ignore the variation that can be explained

by clinical variables.

The additional gain due to the genomic predictor was roughly similar to

the additional gain from including ER status over other clinical covariates. ER

status may lack prognostic power if ER positive participants are treated with

60



adjuvant tamoxifen [20]. Similarly, it is possible that the MammaPrint score

influenced treatment decisions, which could lead to decreased prognostic value.

A limitation of our approach is that we used data from observational studies,

rather than from randomized trials. If the prognostic value of baseline variables

is similar in a randomized trial setting, then our results may shed light on the

order of magnitude of precision gains that can be achieved from covariate ad-

justment. However, if the prognostic value of baseline variables for the outcome

is systematically different in a randomized trial, then our results would not ap-

ply. Future work involves applying our simulation approach to randomized trial

data sets. Another limitation of our approach is that we ignore censoring due

to loss to follow up. It is possible to incorporate censoring into our estimator,

under a missing at random assumption, but this is an area for future work.

Our focus was on the prognostic value of different variables, that is, the abil-

ity of these variables to explain variation in the outcome (5 year recurrence). In

contrast, the more ambitious goal of personalized medicine is to find predictive

variables, i.e., variables that discriminate between those who are likely to ben-

efit from a specific treatment or not. Being prognostic is not a prerequisite for

being predictive, e.g., as in the case of ER status. However, the MammaPrint

score having little prognostic value beyond the variation explained by clinical

covariates indicates that its utility for covariate adjustment is limited.
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Chapter 5

A Glass Half-Full Interpretation

of Replicability in Psychological

Science

5.1 Abstract

A recent study of the replicability of key psychological findings is a major con-

tribution toward understanding the human side of the scientific process. De-

spite the careful and nuanced analysis reported in the paper, mass, social, and

scientific media adhered to the simple narrative that only 36% of the studies

replicated their original results. Here we show that 77% of the replication ef-

fect sizes reported were within a 95% prediction interval based on the original

effect size. In this light, the results of Reproducibility Project: Psychology can

be viewed as a positive result for the scientific process.

5.2 Introduction

It is natural to hope that when two scientific experiments are conducted in the

same way, they will lead to identical conclusions. This is the intuition behind the
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recent tour-de-force replication of 100 psychological studies by the Open Science

Collaboration, Reproducibility Project: Psychology [22]. At incredible expense

and with painstaking effort, the researchers attempted to replicate the exact

conditions for each experiment, collect the data, and analyze them identically

to the original study.
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Figure 5.1: 95% prediction intervals suggest most replication effects

fall in the expected range A plot of original effects on the correlation scale
(x-axis) and replication effects (y-axis). Each vertical line is the 95% prediction
interval based on the original effect size. Replication effects could either be
below (pink), inside (grey), or above (blue) the 95% prediction interval.

The original analysis considered both subjective and quantitative measures
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of whether the results of the original study were replicated in each case. They

compared average effect sizes, compared effect sizes to confidence intervals, and

measured subjective and qualitative assessments of replication. Despite the

measured tone of the manuscript, the resulting mass, social, and scientific me-

dia coverage of the paper fixated on a statement that only 36% of the studies

replicated the original result [66].

Although we may hope that a properly replicated study will provide the

same result as the original, foundational statistical principles suggest that this

may not be the case. The Reproducibility Project: Psychology study coincided

with extensive discussion on what it means for a study to be reproducible and

how to account for different sources of variation when replicating [45]. Stanley

and Spence [78] showed through simulation how sampling and measurement

variation interplay with the size and reliability of an effect to produce wide

distributions of replication effect sizes. These examinations were accompanied

by discussions of adequate study power [56, 58], sample size [29, 74], and how

meta-analysis may address the consequences of inadequate power or sample size

[15]. Anderson and Maxwell [2] furthered these concepts by categorizing the

different goals of replicating a study and recommending appropriate analyses

and equivalence tests specific to each goal. In sum, the sources of variability

that make replicating the result of a particular study so difficult were well-

documented when the Reproducibility Project: Psychology study was underway.
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5.3 Defining and Quantifying Replication Us-

ing P-values

Despite the nuanced understanding of the factors that affect reproducibility, the

publicized 36% figure refers only to the percentage of study pairs that reported

a statistically significant (P < 0.05) result in both the original and replication

studies. The relatively low number of results that were statistically significant

in both studies was the focus of extreme headlines like “Over half of psychology

studies fail reproducibility test.” [7] and played into the prevailing narrative

that science is in crisis [30].

The most widely disseminated report from this paper is based on a mis-

interpretation of reproducibility and replicability. Reproducibility is defined

informally as the ability to recompute data analytic results conditional on an

observed data set and knowledge of the statistical pipeline used to calculate

them [67, 68]. The expectation for a study to be reproducible is that the ex-

act same numbers will be produced from the same code and data every time.

Replicability of a study is the chance that a new experiment targeting the same

scientific question will produce a consistent result [4, 42]. When a study is

replicated, it is not expected that the same numbers will result for a host of

reasons including both natural variability and changes in the sample population,

methods, or analysis techniques [48].

We therefore do not expect to get the same answer even if a perfect repli-

cation is performed. Defining replication as consecutive results with P < 0.05

squares with the intuitive idea that replication studies should arrive at similar

conclusions. So it makes sense that despite the many reported metrics in the
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original paper, the media has chosen to focus on this number. However, this

definition is flawed since there is variation in both the original study and in the

replication study, as has been much-studied in the psychology community to

date. Even if you performed 10,000 perfect studies and 10,000 perfect replica-

tions of those studies, you would expect the number of times both P-values to

be less than 0.05 to vary.

We conducted a small simulation based on the effect sizes presented in the

original article. In the original study, the authors applied transformations to 73

of the 100 studies whose effects were reported via test statistics other than the

correlation coefficient (e.g. t-statistics, F-statistics). We simulated 10,000 per-

fect replications of these 73 studies based on one degree of freedom tests. Each

of these 10,000 simulations represents a perfect version of the Reproducibility

Project with no errors. In each case, we calculated the percentage of P-values

less than 0.05. The percentage of P-values less than 0.05 ranged from 73% to

91% (1st to 3rd quartile; high: 100%; low: 6%) with a high degree of variability

(Figure 5.2).

5.4 Prediction Intervals

Sampling variation alone may contribute to “un-replicated” results if you define

replication by a P-value cutoff. We instead consider a more direct approach

by asking the question: “What effect would we expect to see in the replica-

tion study once we have seen the original effect?” This expectation depends

on many variables about how the experiments are performed [35]. Here we
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assume the replication experiment is indeed a true replication - a not unreason-

able assumption in light of the effort expended to replicate these experiments

accurately.

One statistical quantity that incorporates what we can reasonably expect

from subsequent samples is the prediction interval. A traditional 95% confidence

interval describes our uncertainty about a population parameter of interest. We

may see an odds ratio reported in a paper as 1.6 [1.2, 2.0]. Here, 1.6 is our best

estimate of the true population odds ratio based on the observed data. The

range [1.2, 2.0] is our 95% confidence interval constructed from this study. If

we were able to observe 100 samples and construct a 95% confidence interval

for each sample, 95 of the 100 would contain the true population odds ratio.

A prediction interval makes an analogous claim about an individual future

observation given what we have already observed. In our context, given the

observed original correlation and some distributional assumptions (described in

detail in the Methods section), we can construct a 95% prediction interval and

state that if we were to replicate the exact same study 100 times, 95 of our

observed replication correlations will fall within the corresponding prediction

interval.

A crucial characteristic of the prediction interval which makes it a suitable

tool for our purposes is that it takes the variability in the observed data as

well as the future data point into account. This is shown explicitly through

calculation in the Methods section, but the basic concept is that constructing

a prediction interval relies on computing a contrast between a summary of the

observed data (such as the mean, X̄) and the theoretical “next” observation,

Xn+1. Then the variance of the distribution of X̄ − Xn+1 will depend on the
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variance of both X̄ and Xn+1, as will the subsequent interval calculated from

that distribution.

5.5 Using Prediction Intervals to Assess Repli-

cation

Assuming the replication is true and using the derived correlations from the

original manuscript, we applied Fisher’s z-transformation [27] to calculate a

pointwise 95% prediction interval for the replication effect size given the original

effect. The 95% prediction interval is r̂orig ± z0.975
√

1
norig−3

+ 1
nrep−3

, where r̂orig

is the correlation estimate in the original study; norig, nrep are the sample sizes

in the original and replication studies; and z0.975 is the 97.5% quantile of the

normal distribution (Methods). The prediction interval accounts for variation

in both the original study and in the replication study through the sample sizes

incorporated in the expression of the standard error.

We observe that for the 92 studies where a replication correlation effect size

could be calculated, 69 (or 75%) were covered by the 95% prediction interval

based on the original correlation effect size (Figure 5.1). In two cases, the

replication effect was actually larger than the upper bound of the 95% predic-

tion interval. Considering the asymmetric nature of the comparison, one might

consider these effects as having “replicated with effect clear”. We then estimate

that 71/92 (or 77%) of replication effects are in or above the 95% prediction

interval based on the original effect. Some of the effects that changed signs upon

replication still fell within the 95% prediction intervals calculated based on the

original effects. This in unsurprising in light of the relatively modest sample

sizes and effects in both the original and replication studies (Figure 5.3).
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We note here that of the 69 replication effect sizes that were covered by the

95% prediction interval, two replications showed a slightly negative correlation

(-0.005, -0.034) as compared to a positive correlation in the original study (0.22,

0.31, respectively). In the first study, the original and replication sample sizes

were 110 and 222; in the second study, they were 53 and 72. We would classify

these two studies as “replicated with ambiguous effect” as opposed to “replicated

with effect clear” due to the change in direction of the effect, although both are

very close to zero. All other negative replication effects did not fall into the

95% prediction intervals, and hence were considered “did not replicate”.

We also considered the 73 studies the author’s reported to be based on one

degree of freedom tests. In 51 of these 73 studies (70%), the replication effect was

within the 95% prediction interval. The same two cases where the replication

effect exceeded the 95% prediction interval were in this set leaving us with an

estimate of 53/73 (73%) of these studies had replication effects consistent with

the original effects.

Based on the theory of the prediction interval we expect about 2.5% of the

replication effects to be above and 2.5% of the replication effects to be below

the prediction interval bounds. Since about 23% were below the bounds, this

suggests that not all effects replicate or that there were important sources of

heterogeneity between the studies that were not accounted for. The key message

is that replication data—even for studies that should replicate—is subject to

natural sampling variation in addition to a host of other confounding factors.

It is notable that almost all of the replication study effect sizes were smaller

than the original study effect sizes, whether or not they fell inside the 95% pre-

diction interval. In the original set of 92 studies, of those where the replication
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effect falls within the 95% prediction interval (69 studies), 55/69 (80%) had a

replication effect size that was smaller than the original effect size. This speaks

to the notion that there are likely a host of biases that pervade the original

study, pertaining mostly to the desire of reporting a small effect that is statis-

tically significant [31]. In this sense, our analysis complements the finding of

the Open Science Collaboration while simultaneously providing some additional

perspective on the expectation of replicability.

5.6 Conclusion

We need a new definition for replication that acknowledges variation in both

the original study and in the replication study. Specifically, a study replicates

if the data collected from the replication are drawn from the same distribution

as the data from the original experiment. To definitively evaluate replication

we will need multiple independent replications of the same study. This view

is consistent with the long-standing idea that a claim will only be settled by

a scientific process rather than a single definitive scientific paper. We support

Registered Replication Reports [76] and other such policies that incentivize

researcher contribution to these efforts.

The Reproducibility Project: Psychology study highlights the fact that effects

may be exaggerated and that replicating a study perfectly is challenging. We

were caught off guard by the immediate and strong sentiment that psychology

and other sciences may be in crisis [30]. Our first reaction to Figure 3 from the

original manuscript was pleasant surprise. The fact that many effects fall within

the predicted ranges despite the long interval between original and replication
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study, the complicated nature of some of the experiments, and the differences

in populations and investigators performing the studies is a reason for optimism

about the scientific process. It is also in line with estimates we have previously

made about the rate of false discoveries in the medical literature [43]. While

there is a work to be done, the glass may not be quite as empty as the prevailing

narrative would suggest.

We stress that the approach outlined here of is easily applied when the

result of interest in a study can be summarized by one value upon which we can

ascribe distributional assumptions. In reality, most scientific studies are quite

a bit more complex, dealing in multiple stimuli [87], adaptation over time and

circumstance [12], and complicated data sources [19], just to name very few.

Our suggestion of 95% prediction intervals to help assess replication is meant

to establish a conceptual framework and motivate researchers to simply begin

considering what is a reasonable expectation for a replicated effect. Extending

these concepts to modern study designs is the next step in auditing the conduct

of scientific research.

5.7 Methods

5.7.1 Calculating a 95% Prediction Interval

Comparing 95% Confidence Interval Calculation to 95% Prediction

Interval Calculation

Suppose we observe data X1, . . . , Xn from a normal distribution with mean µ

and variance σ2, with σ2 known. Then by the Central Limit Theorem, X̄ ∼

N(µ, σ2/n) and Z =
X̄ − µ

σ/
√
n

∼ N(0, 1). We can state that P (−z0.975 < Z <
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z0.975) = 0.95. This leads to the following arithmetic:

P (−z0.975 < Z < z0.975) = 0.95

P (−z0.975 <
X̄ − µ

σ/
√
n
< z0.975) = 0.95

P (−X̄ − z0.975
σ√
n
< −µ < −X̄ + z0.975

σ√
n
) = 0.95

P (X̄ − z0.975
σ√
n
< µ < X̄ + z0.975

σ√
n
) = 0.95

Hence, we state the 95% confidence interval for µ as X̄ ± z0.975σ/
√
n.

Contrast this with the procedure with constructing a 95% prediction inter-

val for Xn+1, another observation from the original normal distribution. From

above, Xn+1 ∼ N(µ, σ2) and X̄ ∼ N(µ, σ2/n). Since both are normally dis-

tributed, we are able to state the distribution of their difference: X̄ −Xn+1 ∼

N(0, σ2 + σ2/n) = N(0, σ2(1 + 1/n)). This means that
X̄ −Xn+1

σ
√

1 + 1/n
∼ N(0, 1).

We can run through a series of similar arithmetic as above to isolate Xn+1 and

produce the 95% prediction interval for Xn+1 as X̄ ± z0.975σ
√

1 + 1/n. Notice

that in the calculation of the prediction interval, both the variability of the ob-

served sample X1, . . . , Xn as well as the variability of the new observation Xn+1

come into play.

Note that the 95% confidence interval for the true difference (here µ−µ = 0)

is X̄−Xn+1± z0.975σ
√

1 + 1/n, and that this is referring to a population differ-

ence of zero. Let us suppose that once this confidence interval is constructed,

zero is outside and strictly below the interval. Then we would have the following

equations:
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(X̄ −Xn+1)− σ
√

1 + 1/n > 0

(X̄ −Xn+1) + σ
√

1 + 1/n > 0

If we add our quantity of interest for the prediction interval, Xn+1, to both

sides, we have:

X̄ − σ
√

1 + 1/n > Xn+1

X̄ + σ
√

1 + 1/n > Xn+1

A similar argument can be made if zero is outside and strictly above the

95% confidence interval for the difference. Hence, the new observation Xn+1

falls inside the 95% prediction interval if and only if zero, the true population

difference, falls inside the 95% confidence interval for the difference.

95% Prediction Interval for Correlation Coefficients

We calculate a prediction interval based on the original rorig and replication

rrep correlation estimates. Under normality and independence assumptions, the

Fisher z-transformation provides the relationship:

zf = arctanh(r̂) =
1

2
log

(

1 + r̂

1− r̂

)

∼ N

(

1

2

(

1 + ρ

1− ρ

)

,
1

N − 3

)
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Assume that r̂orig and r̂rep are the estimates from the original and replication

studies and assume they have a common value. Then, we make the conservative

assumption that the original and replication experiments are independent, we

can calculate:

ẑforig − ẑfrep ∼ N

(

0,
1

norig − 3
+

1

nrep − 3

)

then letting setotal =
√

1
norig−3

+ 1
nrep−3

we know that:

1

setotal
(ẑforig − ẑfrep) ∼ N(0, 1)

so we have that:

P (−z1−α/2 <
1

setotal
(ẑforig − ẑfrep) < z1−α/2) = 1− α

P (−ẑforig − z1−α/2setotal > −ẑfrep > −ẑforig + z1−α/2setotal) = 1− α

P (ẑforig − z1−α/2setotal < ẑfrep < ẑforig + z1−α/2setotal) = 1− α

So a (1 − α)% prediction interval for zfrep is ẑforig ± setotalz1−α/2. We can

then apply the inverse of the Fisher z-transform to obtain bounds for rrep on

the appropriate scale.

74



5.7.2 P-value Simulation

To simulate, we took all reported correlation coefficients for original studies. As

described above, arctanh(r̂) ∼ N
(

1
2

(

1+ρ
1−ρ

)

, 1
N−3

)

. We set ρ = r̂orig, and sim-

ulated 100 times, for each study, from the distribution N
(

1
2

(

1+r̂orig
1−r̂orig

)

, 1
nrep−3

)

,

where nrep was the sample size of each replication experiment. If nrep was un-

available, we used norig, and if both were unavailable, we used the median of

the original sample sizes. If r̂orig was unavailable, we similarly used the median

of the correlations coefficients for the original studies.

Once we had 10,000 realizations from the distribution of the replicate correla-

tion coefficients, we back-calculated them into F-statistics. We used the formula

from the supplement of the original paper: r =

√

√

√

√

F df1
df2

F df1
df2

+ 1

√

1

df1
. From these

10,000 F-statistics, we were able to calculate 10,000 P-values and count up how

many were < 0.05

We made two assumptions/simplifications in the course of running this sim-

ulation, as it is merely for illustrative purposes. (1) We assumed that the corre-

lation coefficient reported for the original study represented the true, population

correlation coefficient (2) we converted all simulated correlation coefficients to

F (1, df2) statistics, where df2 were the degrees of freedom from the size of the

replication study. Since 70% of the original studies conducted the same analysis,

we felt that this was a reasonable simplification for comparative purposes.

5.7.3 Code

Code and data to reproduce this analysis is available from:

• https://github.com/jtleek/replication paper

75



• http://jtleek.com/replication paper/code/replication analysis.html
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5.8 Supplementary Figures
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Figure 5.2: Empirical probability of replicating by effect size. We
simulated 10,000 effects from a distribution that assumes the original study
effect is true. These were converted to test statistics, for which P-values were
calculated. We then colored each point from Figure 3 in the original paper by
how many times the calculated P-value was < 0.05 out of the 10,000 simulations.
This corresponds to the empirical probability of each study “replicating” by
twice showing a statistically significant P-value
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Figure 5.3: Sample sizes of studies in the Reproducibility Project col-

ored by whether they fell in the 95% prediction interval. A plot of the
original versus replication sample size colored by whether the resulting replica-
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interval based on the original effect size.
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Chapter 6

Conclusion

In this compendium of work, we have proposed a set of novel approaches for

building and investigating genomic signatures. All of these proposals have been

made with downstream clinical impact in mind. Specifically, we examined is-

sues in reproducibility, replicability, and additional value provided by genomic

prediction.

We first described an issue in the reproducibility of predictions from existing

gene signatures based on gene expression information. In introducting “test

set bias”, we illustrated how necessary steps in normalization and data pre-

processing depend upon the size and characteristics of the test set of patients

upon which we are applying the predictive model. We applied the PAM50

subtyper to a real breast cancer data set and showed that patients in subsamples

of different sizes or proportions of Estrogen Receptor negative patients may

receive a different subtype assignment than they did when processed with the

entire data set. Since this is simply a technical context change and not a true

biological change in the patient, we deem this to be problematic and suggest

rank-based prediction as an alternative that can avoid this form of bias.
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We then suggested a novel signature-building method that uses rank-based

features (Top-Scoring Pairs) as primary predictors in a decision tree. These

choices are motivated by our desire to make the entire signature-building pro-

cess more transparent, interpratable, and reproducible. We described “empir-

ical controls” and conditional feature addition via regression as filtration and

wrapper steps unique to Top-Scoring Pair selection. We compared a small de-

cision tree built from our method that relies on fewer than ten genes to the

MammaPrint signature, which relies on seventy genes, and showed that the

performance of our signature was comparable on the original MammaPrint val-

idation data. To ensure reproducibility and transparency of the procedure, we

described the tdsm R package, which provides templated data analyses with

user input as the only parameter.

Supposing that we have built a genomic signature that does not succumb

to “test set bias” and is well-defined and interpretable, the question remains of

how much additional value a prediction from this signature would provide above

what a doctor already knows when a breast cancer patient is examined in the

clinic. To address this question, we proposed the use of covariate adjustment

techniques in the realm of randomized clinical trials. We described a class

of adjusted estimators that provide as much or more precision (small variance)

when compared to the standard, unadjusted average treatment effect estimator.

We leveraged the fact that we can estimate precision gain due to covariate

adjustment to test different sets of covariates in a trial simulation based on real

data with exogenous assigned treatment. Of specific interest was comparing

the relative gain due to adjusting for a set of only clinical covariates (Age,

ER Status, Tumor Size, Tumor Grade) to the same set with the MammaPrint
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prediction included. We showed that an additional 1-2% gain in precision can

be attributed directly to the prediction from MammaPrint.

Finally, we described the issue of replicability of a scientific study through

an example in the psychology literature. We suggested 95% prediction intervals

as a method to establish expectations of a plausible range of values within

which a replicated finding could reasonably fall. We used this approach to

provide context to a recent study on replicability in psychology and were able

to assure that most of the replicated effects fell within a plausible range when

the variability in both the original study and the replication were taken into

account. We included this work in reference to genomic signatures to emphasize

the need for multiple validation studies for confirmation of an association.

Public Health Impact

The goal of this work is to improve the standing of genomic predictors in clinical

use. By assessing their reproducibility, replicability, and value, we hope that

signatures produced in the future will be more reliable, consistent, and trust-

worthy. Assuming that the underlying relationship between genomic features

and the outcome of interest is informative, we hope that these improved sig-

natures have greater potential to be part of the standard of care for patients.

For cancer patients, a genomic test may be less invasive than a tumor biopsy

or other standard clinical technique, so if tests based on genomics are truly

providing additional value in a reliable manner, there is great opportunity to

substantially improve patient care.
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Chapter 7

Appendices

7.1 Appendix A
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7.2 Appendix B

7.2.1 Proof of t-statistic equivalency when regression is

flipped

Suppose we have vectors X, Y, Z1, Z2 of length n x 1. Let Z =
[

1 Z1 Z2

]

,

D =
[

X Z
]

, β =
[

β1 β0 β2 β3
]

, H = I − Z(Z ′Z)−1Z ′. We organize β as

stated so that β1 is the multiple regression coefficient for X. We establish a

partial least squares regression as follows:

Y = Dβ′ + ε

HY = HDβ′ +Hε

eY |Z = eX|Zβ1 + ε∗

Here, eY |Z is the vector of residuals from regressing Y on Z. We will then use

the least squares solution for β1 in terms of residuals, and recall the definition

that cor(a, b) = cov(a, b)sd(a)sd(b):

β̂1 = (e′X|ZeX|Z)
−1e′X|ZeY |Z

=
cov(eX|Z , eY |Z)

var(eX|Z)

=
cor(eX|Z , eY |Z)sd(eX|Z)sd(eY |Z)

sd(eX|Z)2

= ρX,Y |Z

sd(eY |Z)

sd(eX|Z)

where ρX,Y |Z is the parital correlation coefficient for X and Y given Z, by

definition the correlation of the residuals above.
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Next, recall that ˆvar(β̂) = s2(D′D)−1. In the residual equation, this simpli-

fies to
1

n−p

∑

(eY |Z − êY |Z)
2

(n− 1)var(eX|Z)
=

∑

(eY |Z − êY |Z)
2

(n− p)(n− 1)var(eX|Z)

In the above equation, we must set p to the number of parameters in the original

multiple regression, Y = Dβ′, to ensure proper calculation of the variance.

Combining the first two steps, we have the expression for the t-statistic for

β1, denoted tX , in terms of the partial regression equation:

tX =

ρX,Y |Z

sd(eY |Z)

sd(eX|Z)
√

∑

(eY |Z − êY |Z)
2

(n− p)(n− 1)var(eX|Z)

We manipulate this expression as follows:

tX =

ρX,Y |Z

sd(eY |Z)

sd(eX|Z)
√

∑

(eY |Z − êY |Z)
2

(n− p)(n− 1)sd(eX|Z)2

=
ρX,Y |Zsd(eY |Z)

√

(n− p)(n− 1)
√
∑

(eY |Z − êY |Z)2

=
ρX,Y |Z

√

(n− p)
√

(n− 1)var(eY |Z)
√

∑

(eY |Z − êY |Z)2

=
√

(n− p)ρX,Y |Z

√

∑

(eY |Z − ēY |Z)
2

∑

(eY |Z − êY |Z)2

Here we note that for a simple linear regression, 1−r2 = SSE

SST
=

∑

(yi − ŷi)
2

∑

(yi − ȳi)2
,

where r is the corresponding correlation coefficient. So the final term in the ex-

pression above simplifies to
1

√

1− ρ2X,Y |Z

. And we have:
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tX =
√

(n− p)ρX,Y |Z

√

∑

(eY |Z − ēY |Z)
2

∑

(eY |Z − êY |Z)2

=

√

(n− p)ρX,Y |Z
√

1− ρ2X,Y |Z

tX
√

1− ρ2X,Y |Z =
√

(n− p)ρX,Y |Z

t2X(1− ρ2X,Y |Z) = (n− p)ρ2X,Y |Z

t2X = (n− p)ρ2X,Y |Z + t2Xρ
2
X,Y |Z

ρ2X,Y |Z =
t2X

t2X + (n− p)

ρX,Y |Z =
tX

√

t2X + (n− p)

We now exchange Y and X in the equation Y = Dβ′ + ε by defining F =
[

Y Z
]

, Γ =
[

γ1 γ0 γ2 γ3
]

and the corresponding equation X = FΓ′ + δ,

we are able to equate the corresponding t-statistic for Y , tY , by noting that

ρX,Y |Z = ρY,X|Z :

t2X
t2X + (n− p)

=
t2Y

t2Y + (n− p)

t2X(t
2
Y + (n− p)) = t2Y (t

2
X + (n− p))

t2Xt
2
Y + t2X(n− p) = t2Y t

2
X + t2Y (n− p)

t2X = t2Y
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Since the correlation coefficient relationship ρX,Y |Z = ρY,X|Z implies that

both have the same sign,
tX

√

t2X + (n− p)
must have the same sign as the cor-

responding expression for tY . The denominators in both equivalent expressions

must be positive, so the numerator determines the sign of the expression. It

follows that tX = tY .

7.3 Appendix C

7.3.1 Data Sets GSE19615, GSE11121, GSE7390

The three datasets GSE19615, GSE11121, GSE7390 are available from the Gene

Expression Omnibus [26]. We obtained the datasets using the MetaGX package

in R (available at https://github.com/bhaibeka/MetaGx). Their key character-

istics are summarized in Tables 7.1–7.3 below. In our analyses, we dropped the

two patients in GSE7390 whose tumor grade was unknown.

7.3.2 MammaPrint Prediction

We used the genefu package in R [38] to make MammaPrint predictions using

the gene expression data supplied with each dataset described in Section 1.

We specifically used the gene70 function, which takes as input the expression

data matrix and gene annotations and provides as output both a continuous

risk score and the dichotomized risk classification. We used the latter as the

MammaPrint risk covariate in our covariate adjustment steps. For each dataset,

we used the same covariate setsW−ER,WC ,WG,WCG for adjustment, as defined

in section 2.3 of the main text.
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Characteristic Summary

n 115
Age (years) 53.89 (11.78)
Five-Year Recurrence

Yes 60
No 55

Tumor Size (cm) 2.31 (1.21)
Grade

1 23
2 28
3 64
Unknown 0

ER
+ 70
− 45
Unknown 0

MammaPrint Risk Prediction
High 87
Low 28

Table 7.1: Characteristics of dataset GSE19615. ER - estrogen receptor
status, Grade - tumor severity grading (3 is most severe), Five-Year Recurrence
- whether or not cancer has reappeared after five years, MammaPrint risk pre-
diction - high or low risk for cancer recurrence. Age and Tumor Size are given
as means with standard deviations in parentheses.
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Characteristic Summary

n 200
Age (years) 59.98 (12.36)
Five-Year Recurrence

Yes 153
No 47

Tumor Size (cm) 2.07 (0.99)
Grade

1 29
2 136
3 35
Unknown 0

ER
+ 162
− 38
Unknown 0

MammaPrint Risk Prediction
High 142
Low 58

Table 7.2: Characteristics of dataset GSE11121. ER - estrogen receptor
status, Grade - tumor severity grading (3 is most severe), Five-Year Recurrence
- whether or not cancer has reappeared after five years, MammaPrint risk pre-
diction - high or low risk for cancer recurrence. Age and Tumor Size are given
as means with standard deviations in parentheses.
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Characteristic Summary

n 198
Age (years) 46.39 (7.22)
Five-Year Recurrence

Yes 135
No 63

Tumor Size (cm) 2.18 (0.80)
Grade

1 30
2 83
3 83
Unknown 2

ER
+ 134
− 64
Unknown 0

MammaPrint Risk Prediction
High 144
Low 54

Table 7.3: Characteristics of dataset GSE7390. ER - estrogen receptor
status, Grade - tumor severity grading (3 is most severe), Five-Year Recurrence
- whether or not cancer has reappeared after five years, MammaPrint risk pre-
diction - high or low risk for cancer recurrence. Age and Tumor Size are given
as means with standard deviations in parentheses.
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7.3.3 Differences between unadjusted and adjusted esti-

mators

To assess how different the estimators computed under the unadjusted and ad-

justed cases are, we looked at the difference ψ̂j
una−ψ̂j

adj over the j = 1, . . . , 100, 000

iterations in each of the four simulations using the four datasets in our study.

A histogram of the differences for the simulation using the MammaPrint vali-

dation dataset is presented in the main manuscript. Three histograms for the

simulations using GSE19615, GSE11121, and GSE7390 appear in this supple-

ment, below. We also present in Table 7.4 a comparison across all four studies

of the average difference, the standard deviation of the difference, and the per-

centage of times that the unadjusted estimator was larger in absolute value than

the adjusted estimator. Since the true treatment effect was set to zero in each

simulation study, if the adjustment covariates are prognostic of the outcome, we

would expect the adjusted estimator to be closer to zero more often than the

unadjusted estimator. This occurred in over 50% of the iterations in all four

studies. In all cases, we used the estimators adjusted for all available covariates

(clinical + genomic).

7.3.4 Variation in magnitude of precision loss when co-

variates are not prognostic

We presented in Table 4.3 of the main text the loss in precision due to adjust-

ment when data was generated from a distribution with W and Y independent.

We used more covariates than are usually recommended for this procedure be-

cause we wanted to include all clinically relevant baseline covariates that are

usually measured for a breast cancer patient. We found that the sample size
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Figure 7.2: Histogram of ψ̂j
una− ψ̂j

adj, GSE19615. The histogram of differ-
ences between the unadjusted and adjusted estimators is roughly normal and
is centered close to zero (mean=-6.7e-07, standard deviation=0.05). The un-
adjusted estimator is larger in absolute value than the adjusted estimator in
approximately 55% of simulations.
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Figure 7.3: Histogram of ψ̂j
una− ψ̂j

adj, GSE11121. The histogram of differ-
ences between the unadjusted and adjusted estimators is roughly normal and
is centered close to zero (mean=-4.6e-05, standard deviation=0.0242). The un-
adjusted estimator is larger in absolute value than the adjusted estimator in
approximately 53% of simulations.
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Figure 7.4: Histogram of ψ̂j
una − ψ̂j

adj, GSE7390. The histogram of differ-
ences between the unadjusted and adjusted estimators is roughly normal and
is centered close to zero (mean=0.0001, standard deviation=0.0219). The un-
adjusted estimator is larger in absolute value than the adjusted estimator in
approximately 51% of simulations.
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Dataset mean(ψ̂j
una − ψ̂j

adj) SD(ψ̂j
una − ψ̂j

adj) % |ψ̂j
una| > |ψ̂j

adj|
Mammaprint 5.4e-05 0.0145 53.1
GSE19615 -6.7e-07 0.05 55.2
GSE11121 -4.6e-05 0.0242 52.8
GSE7390 1.3e-04 0.0219 51.0

Table 7.4: Differences between unadjusted and adjusted estimators

We find that the average difference between the unadjusted and adjusted esti-
mators is similar across all simulations and the standard deviations are compa-
rable, although the standard deviation in GSE19615 is more than twice as large
as the others. The final column in the table shows the percentage of simulation
iterations in which the adjusted estimator was closer in absolute value than the
unadjusted estimator to the true treatment effect of zero. For each dataset, this
occurred in slightly more than 50% of the iterations.

Original Sample Size
Covariate Set σ2

una σ2
adj Gadj

W−ER 0.00178 0.00180 -1.1%
WC 0.00178 0.00181 -1.5%
WG 0.00178 0.00179 -0.4%
WCG 0.00178 0.00181 -1.8%

Table 7.5: Precision gains under data generating distribution

with W and Y independent, based on marginal distributions from

Mammaprint validation data set, using fewer clinical covariates.

in the simulated trials and the number of covariates we included affected the

magnitude of precision losses. To illustrate, we conducted additional simulation

studies where W and Y are independent, both using the MammaPrint valida-

tion dataset, where we used fewer adjustment covariates as shown in Table 7.5.

Specifically, we defined new covariate setsW ′
−ER ={Tumor Size},W ′

C = {Tumor

Size, ER status}, W ′
G = {MammaPrint Risk Prediction}, W ′

CG = {Tumor Size,

ER status, MammaPrint Risk Prediction}. The precision losses were smaller in

magnitude when we reduced the number of adjustment covariates in this way.
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