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Abstract 

Genome interpretation – illustrating how genomic variation affects phenotypic variation – is 

one of the central questions of the early 21st century. Deciphering the mapping between 

genotypes and phenotypes requires the collection of a large amount of data, both genetic and 

phenotypic. Phenotypic profiles, for example, have been systematically recorded and 

archived in hospitals and national health-related organizations for years. Human genome 

sequences, however, had not been sequenced in a high throughput manner until next-

generation sequencing technologies became available in 2005. Since then, vast amounts of 

genotype-phenotype data have been collected, allowing for the unprecedented opportunity 

for genome interpretation. 

 Genome interpretation is an ambitious, poorly understood goal that may require 

collaboration between many disciplines. In this dissertation, I focus on the development of 

computational methods for genome interpretation. Based on recent interest in relating 

genotypes and phenotypes, the task is divided into two stages: discovery (Chapters 2-6) and 

prediction (Chapters 7-10). In the discovery stage, the location of genomic loci associated 

with a phenotype of interest is identified based on sequence-based case-control studies. In 

the prediction stage, I propose a probabilistic model to predict personal phenotypes given an 

individual’s genome by integrating many sources of information, including the phenotype-

associated loci found in the discovery stage. 
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Chapter 1 Overview 

In the following sections, I provide a brief introduction to the methods of genome 

interpretation that I propose for discovery and prediction of genotype-phenotype 

relationships. Note that terminologies used in this dissertation are explained in Appendix A 

Glossary. 

1.1 Causal gene discovery 

In the past few years, case-control studies, aiming to identify the associations between 

genomic loci and common diseases, have shifted their focus from single genes to whole 

exomes. New sequencing technologies now routinely detect hundreds of thousands of 

sequence variants in a single study, many of which are rare or even novel. The limitation of 

classical single-marker association analysis for rare variants has been a challenge in such 

studies. A new generation of statistical methods for case-control association studies has been 

developed to meet this challenge. A common approach to association analysis of rare 

variants is the burden-style collapsing methods to combine rare variant data within 

individuals across or within genes. Here, I propose a new hybrid likelihood model that 

combines a burden test with a test of the position distribution of variants. In extensive 

simulations and on empirical data from the Dallas Heart Study, the new model demonstrates 

consistently good power, in particular when applied to a gene set (e.g., multiple candidate 

genes with shared biological function or pathway), when rare variants cluster in key 

functional regions of a gene, and when protective variants are present. When applied to data 

from an ongoing sequencing study of bipolar disorder (1,135 cases, 1,142 controls) on 

>12,000 genes, the model identifies the microtubule cytoskeleton gene set and the Golgi 
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apparatus gene set significantly associated with bipolar disorder but is unable to detect any 

statistically significant genes after correcting for multiple testing. 

1.2 Personal phenotype prediction 

Genetic screening is becoming possible on an unprecedented scale. However, its utility 

remains controversial. Although most variant genotypes cannot be easily interpreted, many 

individuals nevertheless attempt to interpret their genetic information.  Initiatives such as the 

Personal Genome Project (PGP) and Illumina's Understand Your Genome are sequencing 

thousands of adults, collecting phenotypic information and developing computational 

pipelines to identify the most important variant genotypes harbored by each individual. 

These pipelines consider database and allele frequency annotations and bioinformatics 

classifications. I propose that the next step will be to integrate these different sources of 

information to estimate the probability that a given individual has specific phenotypes of 

clinical interest.  To this end, a Bayesian probabilistic model has been designed to predict the 

probability of dichotomous phenotypes. When applied to a cohort from PGP, predictions of 

Gilbert syndrome, Graves' disease, non-Hodgkin lymphoma, and various blood groups were 

accurate, as individuals manifesting the phenotype in question exhibited the highest, or 

among the highest, predicted probabilities.  Thirty-eight PGP phenotypes (26%) were 

predicted with area-under-the-ROC curve (AUC) > 0.7, and 23 (15.8%) of these were 

statistically significant, based on permutation tests.  Moreover, in a Critical Assessment of 

Genome Interpretation (CAGI) blinded prediction experiment, the models were used to 

match 77 PGP genomes to phenotypic profiles, generating the most accurate prediction of 

16 submissions, according to an independent assessor.  Although the models are currently 

insufficiently accurate for diagnostic utility, I expect their performance to improve with 

growth of publicly available genomics data and model refinement by domain experts. 



 3 

Chapter 2 Complex disease and sequence-based association 

studies 

2.1 History of association studies 

Compared with Mendelian diseases – whose familial trait patterns are controlled by a single 

genomic locus – complex diseases (a group that includes bipolar disorder, many cancers and 

coronary heart disease) tend to be clustered within families but their patterns are not 

segregated by a single allele. In order to test whether a strong genetic component exists in 

complex diseases, others have estimated disease heritability – the fraction of variance in a 

population contributed by genetic components – based on twin and adoption studies. 

Diseases that show a strong genetic component are studied further in order to identify the 

causal genetic component. To further research this genetic component, two research designs 

have been developed: family-based linkage studies and population-based associated studies. 

2.1.1 Family-based linkage study 

The family-based linkage study was developed based on the co-segregation of marker 

variants and affected relatives within families. Co-segregated marker variants may be located 

far from the causal variants found on the same chromosome. The classical linkage analysis 

assumes that a single major locus (SML) dominates the disease status in a family and the 

calculation is carried-out using the lod-score method, which is parameterized by disease allele 

frequency and penetrance. Loci responsible for several complex diseases were successfully 

identified by linkage analysis, including early-onset familial breast cancer [1] and early-onset 

Alzheimer’s disease [2,3].  One limitation of linkage analysis is that the identified loci only 

contribute to a small fraction of affected cases in the population. Also, when multiple loci 
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affect a person’s disease status within a family, co-segregation of marker variants and disease 

yields insignificant results. 

Another type of linkage analysis, non-parametric linkage analysis, identifies marker 

variants whose occurrences in affected relatives in families are higher than expected. This 

method does not assume SML domination, but it usually requires relatively large family size 

and higher penetrance of the responsible loci to have strong statistical power. 

2.1.2 Population-based association study 

Population-based association studies identify disease susceptibility loci based on a collection 

of unrelated individuals in a population. Because of the large sample size, association studies 

are more effective in identifying multiple loci with modest effect size compared to family-

based linkage analyses. A key feature of the human genome which supports this approach is 

called linkage disequilibrium (LD). LD is helpful in that it shows that the human genome can 

be divided into many blocks in which variants are likely to co-occur in a population. As a 

result, if a marker variant is associated with a disease, the actual functional variant is also 

likely found in the LD block that contains the marker variant. Until recently, there was no 

high-quality and high-density set of marker variants that could effectively cover LD blocks 

within the human genome. Due to this limitation, researchers performed population-based 

association studies on candidate genes pre-selected based on prior knowledge about the 

disease in question. Marker variants on candidate genes relied on variants discovered in 

previous studies. Unfortunately, results generated from candidate gene studies were difficult 

to accurately replicate [4], suggesting that most were false positives. This high false positive 

rate implied that our prior knowledge about complex diseases used to pre-select candidate 

genes was limited and ineffective.  
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To overcome the lack of high-density marker variants on human genomes, the 

International HapMap project was initiated in 2002 in order to identify common SNPs with 

minor allele frequencies (MAF) greater than 5% across several continental populations, 

including Yoruba (YRI), European (CEU), Han Chinese (CHB) and Japanese (JPT). In 2005, 

the HapMap project verified that the LD feature is found across the entire human genome 

and reported more than one million unique common SNPs [5]. The reported common 

SNPs, which cover most of the human genome, were further chosen as tags for LD blocks 

and the resulting tag SNPs opened the era of genome-wide association (GWA) studies. 

2.2 Genome-wide association studies 

The discovery of millions of SNPs and verification of LD features in human genomes by the 

International HapMap project have enabled unbiased association analysis across the whole 

genome. Further advances in SNP array technology have driven genotyping costs down and 

made it affordable to perform large-scale association studies. With a large sample size and an 

unbiased search across the whole genome, genome-wide association (GWA) studies were 

expected to uncover the genetic origin of complex diseases. 

2.2.1 Common disease common variant (CDCV) hypothesis 

The anticipated success of GWA studies was underpinned by the common disease common 

variant (CDCV) hypothesis, which states that a few common allelic variants could account 

for the genetic variance in complex disease susceptibility and contribute to disease risk 

additively or multiplicatively with modest effect [6]. With the support of the CDCV 

hypothesis and because common variants are likely to co-occur in the same LD blocks, 

common SNPs (the most abundant type of common variants in genomes) would serve as 

proxies of the disease susceptibility variants nearby. Thus, if the CDCV hypothesis holds, 
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large-scale GWA studies would identify statistically significant tag SNPs whose 

corresponding LD blocks contain disease susceptibility variants. 

2.2.2 Genome-wide association study (GWAS) 

A common approach for GWA studies is a case-control study design, where two groups of 

people are selected based on their disease status – one healthy control group and one case 

group affected by the disease. Every individual in the study is genotyped for pre-selected 

SNPs, followed by calculations that identify any SNPs with significant allele frequency 

differences between the case group and the control group. The effect size of these SNP 

groups is measured using the odds ratio statistic. Larger allele frequency of a SNP in the case 

group compared to the control group would yield an odds ratio significantly greater than 1, 

but the odds ratio would be less than 1 if the opposite were true. A p-value can also be 

calculated for the odds ratio in order to further quantify the significance. The more an odds 

ratio deviates from 1, the more significant the p-value will become. 

Another common approach of GWA studies is quantitative trait study design, which 

is designed to find a quantitative measurement of phenotypes for each individual rather than 

a dichotomous status. In this study design, the effect size of each SNP can be evaluated by 

other methods, including the beta coefficients of linear regression. 

The first successful GWA study was conducted in 2005, comparing 96 cases and 50 

healthy controls for age-related macular degeneration [7]. It was then followed by seven 

large-scale GWA studies (~2000 cases and 3000 shared controls for each disease) conducted 

by the Wellcome Trust Case Control Consortium – WTCCC [8]. Twenty-three significant 

SNPs were reported and twenty-two were replicated in independent studies. Many similar 

successes later on showed the effectiveness of GWA studies. Now, hundreds of diseases and 
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traits have been examined and the results are summarized in a continuously updated online 

catalog: https://www.genome.gov/gwastudies/ [9]. 

2.2.3 Missing heritability 

Although many successful GWA studies have been conducted in past few years, most of the 

reported SNPs (GWAS hits) have small effect size and only can explain a small fraction of 

heritability, the phenotypic variance caused by genetic components [10]. For example, only 

5% of phenotypic variance is explained by more than 40 associated loci identified in GWA 

studies for human height, a classic complex trait with estimated heritability of about 80% 

[11]. With the ultimate goal of uncovering genetic sources that cause phenotypic variance, 

finding missing heritability (the fraction of heritability not explained by GWAS hits) is the 

next emergent issue. 

Several potential sources of missing heritability have been proposed [10]: (1) the 

estimated heritability was inflated; (2) a large number of disease susceptibility common SNPs 

with very small effect size could not be identified based on the current study size; (3) rare 

variants or structural variants poorly captured by SNP chips play an important role in 

phenotypes; and (4) gene-gene interactions, or any interactive effect, among variants not 

considered in analyses have a significant contribution on phenotypic variation. Despite many 

proposed explanations, identifying the major source of missing heritability is an ongoing 

research topic. Fortunately, advances in biotechnologies have accelerated the entire research 

field in recent years. Since 2005, the development of next-generation sequencing technology 

has made genome sequencing more time-efficient and affordable for large-scale association 

studies, allowing for effective examination of the role of rare variants in complex diseases. 

https://www.genome.gov/gwastudies/


 8 

2.3 Sequence-based association study 

Inexpensive, high-throughput sequencing has transformed the field of case-control 

association studies. Research efforts over the past few years led to an explosion of exome 

sequencing studies and exomic variation data (reviewed in [12,13]). One surprising result has 

been the discovery of hundreds of thousands of novel and rare non-silent variants in protein 

coding genes, some of which may have functional consequences related to human health. 

Common diseases, once hypothesized to be primarily due to common variants [6], are now 

believed to have heterogeneous genetic causes, due to both common and rare variants [14-

16]. 

2.3.1 Challenge in statistical analysis 

The challenge of association tests for both common and rare variants comes from two 

aspects that reduce the test’s statistical power: the large number of total SNPs being tested 

and the low frequency of rare variants. Under the CDCV hypothesis, common variants that 

are hypothesized to be responsible for disease susceptibility are linked to tag SNPs within 

LD blocks and the total number of tag SNPs being tested in any study is around one million. 

A significant hit requires a p-value less than 1E-8 after the Bonferroni correction is applied 

for multiple testing when a conventional significance level of 0.05 is used. If the CDCV 

hypothesis is not true, the total number of both common and rare variants considered in a 

study is expected to be much larger than one million. Multiple testing correction for such a 

large number of tested SNPs creates a high barrier for reporting any statistically significant 

hit. 



 9 

 

Figure 2.1: Changes in the statistical significance of a phenotype-associated SNP with allele 

frequency (AF) and study size (SS). The statistical significance of a phenotype-associated 

SNP is calculated by varying the allele frequency of the SNP and the case-control study size, 

assuming that the effect size of the SNP is fixed to a relative risk of 1.5 and the chi-square 

test is used for testing the association. 
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Compared with common variants, the low frequency of rare variants requires a larger 

study size to achieve the same statistical significance. Figure 2.1 shows how the p-value 

varies with study size and allele frequency when testing association for a phenotype-

associated SNP. For example, a genome-wide significance level (1E-8) for a SNP with minor 

allele frequency (MAF) of 10% requires a study size of 10,000, but to reach the same 

significance level for a SNP with MAF of 1%, a study size of 100,000 is needed (See Figure 

2.1). 

Regarding the issue of multiple testing corrections, statistical methods exist to test 

the disease association of a genomic region (ex: a gene), rather than a single SNP, to avoid 

the large number of tests needed to analyze for rare SNPs. For example, testing association 

by genes requires 20,000 tests for genome-wide analysis. Moreover, testing a genomic unit 

gains statistical power by integrating several phenotype-associated SNPs into the same unit. 

This allows for the same statistical significance level with a smaller study size, compared with 

the study size needed to test a single rare SNP.  

2.3.2 Related work 

Increasingly powerful analysis methods exist to detect association between phenotypes and 

variants with small to moderate effect sizes (reviewed in [14]). Rather than testing each 

variant individually, variants can be collapsed or summed with a “burden” approach, in 

which the strength of the phenotypic association is considered with respect to a group of 

variants occurring at a common region or allelic frequency threshold [17-20]. The 

contribution of each variant to the association is weighted by frequency or bioinformatically 

predicted impact [20]. Burden strategies yield a power gain compared to independent tests of 

single variants but lose power when variants with a neutral or protective effect are included. 

Regression models [21] and overdispersion tests [22] detect variants that affect phenotype, 
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regardless of the direction of the effect (deleterious or protective). New approaches continue 

to be introduced, including a mixture model that incorporates gene-gene interactions and an 

adaptive weighting procedure [23]. Furthermore, a recent study suggests that single-variant 

test statistics may be more powerful than collapsing strategies on real data [24]. Importantly, 

no single method appears to be best for all phenotypes, genomic regions, disease models and 

populations [14,25,26]. 

In this dissertation, I propose a new method of detecting the association between 

phenotypes and variants within a genomic region, and compare its performance with three 

existing methods: VT, SKAT and KBAC. VT (Variable Threshold) is a burden test. It selects 

an optimal minor allele frequency (MAF) threshold, by trying many thresholds and 

identifying the one that maximizes the z-score difference between cases and controls. To 

attempt to remove neutral or protective variants from analysis with more focus on rare and 

potentially deleterious variants, all variants whose MAF exceed the threshold are filtered out 

and not considered for analysis. The remaining variants are summed in cases and controls 

and a z-score statistic is used to quantify the difference between the two groups. P-values are 

estimated by permutation [20]. 

 SKAT (Sequence Kernel Association Test) uses a regression model (logistic 

regression for dichotomous traits and linear regression for quantitative traits) where 

phenotypes are the response and genotypes are the predictors. A variance-component score 

statistic Q is computed by comparing the full model with a null model, using a kernel 

function that incorporates allele frequency weights. The statistic follows a mixture of    

distributions, enabling analytical computation of P-values. The regression model enables 

SKAT to incorporate covariates such as weight, age and gender into analysis and, unlike a 

burden test, the variance-component score statistic Q examines the variance of each 
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genotype across cases and controls, allowing SKAT to identify both deleterious and 

protective effects. The default weighting scheme in its kernel function up-weighs rare 

variants in analysis [21]. 

 The Kernel Based Adaptive Cluster (KBAC) was developed to overcome the 

problem of detecting rare variant associations in the presence of misclassification and 

interaction. A vector of genotypes within a genomic region of interests is modeled for each 

sample using a mixture distribution. The calculation adaptively up-weighs the vectors with 

genotype patterns that are more frequently in cases than controls. Distributions of genotype 

vector counts are compared between cases and controls to evaluate the phenotype 

association of the genomic region. The statistical significance of the KBAC can be assessed 

using either permutation or a Monte Carlo approximation. Uniquely, considering multiple 

genotypes enables KBAC identifying interactions among variants [23]. 
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Chapter 3 Burden Or Mutation Position (BOMP) 

3.1 A hybrid likelihood ratio test 

Here I describe a new hybrid likelihood test BOMP (Burden Or Mutation Position test), 

designed for case-control exome sequencing studies, to detect the presence of causal variants 

in a functional group. The functional group can be defined as a gene, genomic region, or 

gene set (multiple genes involved in a pathway or biological process). The test can 

incorporate variant weighting by bioinformatically-predicted functional impact. I combine, 

into a single statistic, a directional burden test in which low frequency variants have 

increased weight and a non-directional positional distribution test that does not consider 

allele frequency. My burden test uses a collapsing strategy and metrics of variant functional 

importance, which are similar to previously published burden tests. An advantage of the test 

is that its formulation into a likelihood ratio uniquely allows us to combine it with the 

positional distribution test. The two tests complement each other and together yield 

increased power to detect biologically important variants, particularly when applied to a gene 

set containing genes with different kinds of variants (e.g., rare, low frequency, common, 

protective). 

 The hybrid likelihood model consists of two likelihood ratio tests (mutation burden 

and mutation position distribution statistics) with the same general form, 

 
      (

         

         
) 

 

Eq 3.1 

 

and tests the evidence for the alternative hypothesis HA that a functional group (FG) of 

interest is associated with a dichotomous phenotype, compared to the null hypothesis H0 
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that they are not associated. Higher values of Λj indicate stronger association between unit j 

and the phenotype. In this work, the functional groups of interest are either single genes or 

sets of multiple genes. 

3.2 Mutation burden statistic 

The first likelihood ratio test is based on comparing mutation burden in cases and controls. 

Each individual is represented by a Bernoulli random variable, which is 1 if the individual’s 

burden exceeds a burden threshold, and 0 otherwise. To model the likelihood, I assume that 

individual burden status is independent and identically distributed (IID). The ratio compares 

an alternative hypothesis that the probability of exceeding the burden threshold is higher in 

cases than in controls and the null hypothesis (that probabilities are equal or lower in cases 

than in controls). Biologically, the IID assumption is not necessarily true. I control for such 

violations by assessing the statistical significance of the likelihood ratio by permuting case 

and control labels. 

3.2.1 Individual burden 

For individual k the gene burden of gj is 

 

     
 ∑    

    

   

 

 

Eq 3.2 

 

where nj,k is the number of variants carried by individual k in gene j and xi,k is the genotype 

of variant vi (0, 1 and 2 representing homozygous reference allele, heterozygous allele and 

homozygous alternative allele respectively). 
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3.2.2 Individual burden thresholds 

A binary variable is used to label individuals whose mutation burden in a gene of interest 

exceeds a critical threshold. If the burden of gene gj in individual k is greater than or equal to 

the threshold t, then it is considered to be phenotype-associated for that individual and Ygj,k 

= 1 (0 otherwise). Because genes are heterogeneous in size, functional importance, mutation 

rate, and tolerance to variation, each gene may have a different value of t. For each gene j, 

this cutoff tj is computed by iterating over all cut-offs and selecting the one that maximizes 

its burden statistic (Equation 3.4). 

3.2.3 Aggregated burdens 

The Ygj,k values are then aggregated by summing over cases and controls: 

  
  ∑      

       

 

  
  ∑      

          

 

The maximum likelihood estimate of the probability that the mutation burden of gene j 

exceeds the threshold in cases is then  ̂ 
  

 

   
   

    , the estimate for controls is 

 ̂ 
  

 

   
   

     and the estimate for both cases and controls is  ̂  
 

     
   

    
  

  , where m is the number of cases and l the number of controls. The probability estimates 

 ̂ 
 ,  ̂ 

  and  ̂  are used as the parameters of three Bernoulli distributions (one for cases, one 

for controls, and one for cases and controls together). Pseudocounts are added to avoid zero 

counts. The aggregated burden calculation (without pseudocounts) is illustrated in Figure 

3.1. 
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Figure 3.1: Aggregated burden calculation in BOMP mutation burden statistic. Vertical bars 

are samples (8 cases and 5 controls). Horizontal bars on each sample are variants colored 

with weights. The individual burden is the weighted sum of variants calculated for each 

sample. The indicator variable Ygj,k is set depending on whether the individual burden 

exceeds the individual burden threshold. The mutation burden statistic uses the aggregated 

burden for cases,   
 , and controls   

 , which are the sums of indicator variables across cases 

and controls respectively.  
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3.2.4 Burden likelihood ratio statistic 

For a gene gj the mutation burden statistic is defined as a ratio of Bernoulli likelihoods: 

 
  (  )     (

  
    

 

  
   ) 

 

Eq 3.3 
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Eq 3.4 

 

 

where m is the number of cases, l the number of controls;   
  is the number of cases whose 

mutation burden in gj exceeds an optimized threshold (3.2.2 Individual Burden Thresholds); 

  
  is the number of controls exceeds the threshold;  ̂ 

  is the maximum likelihood estimate 

of the probability that the burden of gene j exceeds the threshold in cases;  ̂ 
  is the estimate 

that gene j exceeds the threshold in controls,  ̂  is the estimate that gene j exceeds the 

threshold in both cases and controls. First I consider only genes with higher burden in the 

cases, for which  ̂ 
   ̂ 

 . Next, for the remaining genes, for which  ̂ 
   ̂ 

 , Equation 3.4 

is modified, 
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Eq 3.5 
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The modification in Equation 3.5 follows the burden hypothesis that the mutation 

burden in cases is higher than that in controls. Formally, on average, under HA, the number 

of cases in which the burden of gene j exceeds the threshold will be larger than that in 

controls, and otherwise under H0. Thus genes with higher burdens in cases than controls 

(calculated using Equation 3.4) get a high value and those with higher burdens in controls 

than cases (calculated using Equation 3.5) get a low value due to the violation of the burden 

hypothesis. 

If a gene set rather than a single gene is used as the functional group, the burden is 

aggregated across all genes in the set, and the procedure is otherwise identical. 

 

3.3 Mutation position distribution statistic 

The second likelihood ratio test is based on comparing the positional distribution of 

mutations in cases and controls. The codons of a gene are partitioned into windows and 

mutation count (burden score) is computed for each window in cases only, controls only, 

and in cases and controls together. To model the likelihood, each window mutation count is 

considered to be a random variable in a multinomial distribution. If the partition contains d 

windows, there are d possible outcomes for each mutation. There are also d multinomial 

parameters for the partition. 

3.3.1 Window mutation counts 

Let the window mutation counts in the multinomial distributions be     
 ,     

  and     
    

(cases only, controls only and in cases and in controls together) 

for cases     
  ∑              , 

for controls     
  ∑                 , 
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for cases and controls     
    ∑                           . 

where Sx,j,k (computed as in Equation 3.2) is the score for individual k in window x. 

The maximum likelihood estimate of the multinomial parameters (including 

pseudocounts) is then 
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Eq 3.6 

 

 
 ̂   

  
    

 

∑ (    
   ) 

 

 

Eq 3.7 
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Eq 3.8 

 

3.3.2 Position distribution likelihood ratio statistic 

For a gene gj, the statistic is defined as a ratio of multinomial likelihoods: 
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Eq 3.9 
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for cases   
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Eq 3.10 
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for controls   

  ∏ ( ̂   
 )

    
   

  
 

Eq 3.11 

 

 
for cases and controls   

    ∏ ( ̂   )
    

     
  

 

Eq 3.12 

 

It follows that under HA, the likelihood for cases will be different than for controls 

and that under H0, they are not different. In contrast to the mutation burden statistic, there 

is no directionality in the mutation position distribution statistic, because   (  ) will be 

large when either  ̂   
  or  ̂   

  is large. 

A toy example of aggregated window mutation count calculation is illustrated in 

Figure 3.2. 
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Figure 3.2: Aggregated window mutation count calculation for BOMP mutation position 

distribution statistic. Aggregated window mutation counts are calculated for cases, WA, 

controls, WU, and cases and controls combined, WA+U, across x windows for gene j. 
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3.3.3 Windows and sequence segmentation 

Each gene has many possible window partitions, and I don’t know in advance which is the 

most informative for the position distribution statistic. One way to create candidate window 

partitions (i.e., sequence segmentation) for a gene of length L is to select a window size s and 

a series of possible offsets, based on a selected shift increment t. Each offset generates a new 

segmentation (Figure 3.3). For example, if the window size is 8 and the shift increment is 1, 

the first offset begins at the first position of the gene and generates a segmentation of ⌈
 

 
⌉ 

windows. The second offset will begin at position 2 of the gene and generate a new 

segmentation of ⌈
   

 
⌉    windows, etc. In this work I used four combinations of window 

size s and shift increment t: (8,1), (16,2), (32,4) and (64,8), yielding 32 candidate 

segmentations for a gene. These choices were not optimized and can be adjusted, according 

to user preference and/or prior knowledge. The best segmentation is selected by computing 

the likelihood ratio   (  )  (Equation 3.9) for each segmentation and picking the 

segmentation with the largest   (  ). Alternatively, this likelihood ratio can be modified by 

computing     
 ,     

  and     
    with respect to total positions mutated, rather than total 

number of mutations. 
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Figure 3.3: Window and sequence segmentations. The mutation position distribution statistic 

requires a segmentation for a sequence of interest (e.g., a gene). I generate candidate 

segmentations by selecting a window size s and allowing a series of possible offsets, based on 

a selected shift increment t. In this example, I illustrate the eight possible window 

segmentations of a gene with 24 codons (represented by rectangles), using a window size of 

8 and a shift increment of 1. 
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For the position distribution statistic, if a gene set rather than a single gene is used as 

a functional group, the best window segmentation is computed for each gene, and the 

calculation of the position distribution statistic is otherwise identical. 

The mutation burden and mutation position burden statistics are combined into a 

single log likelihood ratio, 

    
   (  )    (  )  

Eq 3.13 

 

 

3.4 Statistical significance 

P-values for each    
 are computed with a null distribution, generated by repeated 

permutation of case and control labels. All parameters of   (  ) and   (  ), including the 

maximum likelihood burden threshold and segmentation pattern, are calculated initially for 

empirical data and then re-calculated for each iteration of the permutation. Thus, N 

iterations yield N null    

   
 where n ranges from 1 to N (see also 5.1.4 computation 

complexity). The permutation controls for confounding effects, such as properties that 

characterize a particular gene or region of interest (i.e., nucleotide diversity, GC content and 

recombination rate), which are the same when used to estimate    
 and each null    

   
. 

After N iterations (e.g., N = 106) 

 

   
 

 (        
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Eq 3.14 
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While   (  )  and   (  )  are not independent, using the permutation test yields an 

accurate P-value estimate, because any dependencies in    
 are reproduced in each null    

   
. 

3.5 Extensions to the basic method 

3.5.1 Genetic models 

Either dominant or additive genetic models can be specified. Under the dominant genetic 

model, both homozygous and heterozygous variants have xi = 1; under the additive model, 

homozygous variants have xi = 2 and heterozygous variants xi = 1. For all experiments in 

this work, additive models were used. 

3.5.2 Variant scores 

The individual burden (see 3.2.1 Individual burden) can be modified by incorporation of 

score coefficients so that      
 ∑     

    

   
  . The score for a variant vi can be either a 

bioinformatics-based score      , an allele-frequency-based score    
 

√        
, following 

[18,20]; or the product of both    
  

√        
. Next I explain how these scores are 

calculated. In this work, variant scores were used only in the burden statistic. The allele-

frequency-based score was used for all simulations and the product of allele-frequency and 

bioinformatics scores was used on all empirical data. 

3.5.3 Bioinformatics score 

Each nonsilent variant vi can be assigned a score          to represent its contribution to a 

disease phenotype of interest, where      indicates no contribution and      indicates a 

strong contribution. These scores are estimated with Variant Effect Scoring Tool (VEST) [27]. 
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Variants causing nonsense, nonstop or frameshift alterations to a gene’s protein product 

receive     . Variants causing missense alterations are scored with a Random Forest 

classifier [28,29]; the score is the fraction of decision trees in the forest that classified the 

variant as deleterious. Alternatively, other bioinformatics methods that score missense 

variants can be used to generate    values, if scaled to range from 0 to 1. 

The Variant Effect Scoring Tool is a Random Forest classifier, trained with the 

CHASM software suite’s Classifier Pack and SNVBox [30]. The Forest contains 1000 

decision trees. The positive class of 45,000+ missense variants is taken from the Human 

Gene Mutation Database (HGMD) [31]. The negative class of variants is taken from a set of 

common variants (MAF>0.01 validated by the 1000genomes project [32], compiled in the 

SNP135 table of the UCSC Genome Browser database[33]. Each missense variant is 

represented by 86 features in SNVBox, including conservation scores, amino acid residue 

substitution scores, UniProtKB annotations [34], and predicted local protein structure [35]. 

3.5.4 Allele-frequency-based scores 

For each variant vi, I estimate its mean population allele frequency    as follows: 

 
      

  
    

   

    
 

 

Eq 3.15 

 

where   
  and   

  are allele counts of variant vi in cases and controls, respectively; N is the 

number of individuals in both cases and controls; and the constants are pseudocounts from 

a beta prior.  
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Chapter 4 BOMP Performance Evaluation 

I evaluated the power of the BOMP hybrid likelihood model with both simulations and 

empirical data from the Dallas Heart Study [36]. All results were compared with several 

leading statistical methods to detect causal variation in case-control association studies. I 

attempted to select representative methods for burden (VT), regression (SKAT), and 

mixture modeling approaches (KBAC). The permutation test was used to compute p-values. 

Briefly, the null statistic was generated by repeating the whole calculation described in 

Chapter 3 with randomly permuted case-control labels, while holding fixed the choices of 

the individual burden threshold and the window segmentation, used on the original data. 

The generation of the null statistic only assumed the exchangeability among samples, which 

holds true because it is a population-based case-control study. Thus, a permutation test 

yields a correct null distribution and type I error should be well controlled. Section 4.1 

introduces how the simulated data were generated; 4.2 shows the statistical power analysis 

using simulated data; and 4.3 describes the experimental results for the empirical benchmark 

set, the Dallas Heart Study. 

4.1 Simulation framework 

Simulated case-control studies were generated using two demographic growth models, eight 

disease etiologies, and a stochastic model of genotype-phenotype association. The true 

disease etiology for most complex diseases is still unknown and many factors, such as 

population structure and causal allele frequencies, can potentially affect the performance of 

association tests. Varying the parameter combination allowed me not only to simulate the 

complex diseases as realistically as possible but also to provide a fair and comprehensive 

comparison among different methods. 
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4.1.1 Demographic models 

Kryukov et al. [37] used sequence data for 58 genes from 757 European-American 

individuals to fit parameters of a demographic model, with Wright-Fisher diffusion 

approximation, assuming long-term constant size succeeded by a bottleneck and then 

exponential growth (Figure 4.1). The best fitting distribution of fitness effects/selection 

coefficients (DFE) was a two-component mixture of gamma distributions: 

 S ∼ 0.2*Gamma(1, 106 ) + 0.8*Gamma(0.56231, 0.01)  

Eq 4.1 

 

Mixture parameters and software to estimate the mixture were generously provided by G. 

Kryukov of the Broad Institute (Boston, MA USA). However, because his study focused on 

the simulation of variants that are deleterious to the phenotype, protective variants were not 

modeled in the mixture of gamma distributions. 

Boyko et al. [38] used genome-wide polymorphism data and fixed differences 

between the human and chimp genomes, to estimate demography and DFE for 19 African 

American samples, with Wright-Fisher and Poisson Random Field theory [39-41]. The best-

fitting demographic model was a two-epoch instantaneous growth model for the African 

Americans (Figure 4.1). A best fitting DFE model, by maximum likelihood estimate, had 

three parameters: proportion of positively selected sites (1.86%); shape (0.228) and rate 

(16.54) of a gamma distribution for sites with deleterious fitness effects. Positive selection 

was fixed at s = 9.7 × 10−5. 
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Figure 4.1: Demographic models of European-American and African-American populations. 

The models were fit to European-American [37] and African-American sequencing data [38]. 
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4.1.2 Generating genomic populations 

The general Wright-Fisher model/forward population genetic simulation tool SFS code [42] 

was used to generate 100 effective genomic populations and to sample 1,000,000 haplotypes 

per population. As in [23], the simulated haplotypes in each population were randomly 

paired to generate 500,000 diploid individuals. Two demographic growth structures were 

used: an exponential growth model fitted to deep resequencing data from European 

Americans [37] and a simple bottleneck model fitted to whole-genome polymorphism data 

from African-Americans [38] (4.1.1 Demographic models). For the exponential growth 

demographic model, DFE was modeled with a two-component gamma mixture (similar to 

[37]). For the simple bottleneck model, DFE was modeled as described in [38]. Following 

[37], the mutation rate was set to 1.8 × 1E-8 per generation for all simulations. 

4.1.3 Generating phenotypic traits for individuals with a single causal gene 

The individuals in a population were then associated with a quantitative phenotypic trait, 

which I assumed to drive a disease or other dichotomous phenotype, so that individuals with 

high values of the trait would have the phenotype and those with low values of the trait 

would not. Eight possible phenotypic etiologies were considered (Table 4.1). Each etiology 

was defined by properties of its causal variants. Variants could be rare, low frequency, or 

common. They could occur only in key functional regions. They could have small or large 

effects (value of k in Equation 4.2). Protective modifier variants might or might not be 

present. In this work, only coding, non-synonymous variants were considered as causal or 

protective for all etiologies. (However, etiologies that consider silent variants, which impact 

gene regulation, could also be defined.) For etiologies with key region variants, I used 

haplotypes that contained multiple coding segments (100 segments, each 30 bases long). 

Otherwise haplotypes contained a single coding segment of 1500 bases. 
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Table 4.1: Eight phenotypic etiologies used in simulation experiments. Rare 

variant=phenotype caused by multiple rare deleterious variants. Low frequency 

variant=phenotype caused by multiple low frequency deleterious variants. Key Region 

variant=rare deleterious variants are localized to key regions. Common variant=phenotype 

caused by a single deleterious common variant. The etiologies Rare+Protect, LowFreq+Protect, 

KeyRegion+Protect and Common+Protect were identical to the first four except that they include 

protective variants. 1Minor allele frequency of deleterious causal variants, 2Selection 

coefficients of deleterious causal variants, 3Effect size of deleterious causal variants, 

4Selection coefficient of protective causal variants, 5Effect size of protective modifier 

variants, 6Required functional role of causal and protective variants, NS=coding non-

synonymous, AA=African-American simple bottleneck demographic model [38], 

EA=European-American exponential growth demographic model [37]). *−0.5σ for 

protective modifier variants with AF<5%,−0.1σ for protective modifier variants with 

AF>5%. 
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To generate the phenotypic traits for the genomic populations, I selected a phenotype 

etiology and a population that contains variants meeting the criteria for causality in that 

etiology (Table 4.1).  Next the quantitative phenotype trait QT was generated for each 

individual in the population, using an approach based on [37]. Trait values were drawn from 

Gaussian distributions, such that individuals with no causal variants had 

   ∼                     

Eq 4.2 

 

Individuals with n causal variants had 

 
  ∼  (  ∑   

 

   

  )              

 

Eq 4.3 

 

where ∑    
 
    is the mean shift in trait value (the shift per variant) for an individual and    

is the effect size of causal variant i.  To match the expected effect size of significant 

common and rare variants in GWAS, effect sizes of 0.1σ for common variants and a range 

of 0.5σ − 1.0σ for rare variants were used. 

Most significant common variants in GWAS have odds ratios < 2.0 [15]. For case-

control simulations, an odds ratio was analytically equated with mean shift in a quantitative 

phenotypic trait, given the assumed phenotype prevalence of 1%. Effect size in phenotype 

etiology “common” (Table 4.1) was 0.1σ, which can be shown equivalent to an odds ratio of 

1.41 assuming the MAF of 10% for the common variant. 

In the simulations, the strongest effects were 1.0σ for rare variants in Key Regions. I 

assumed that these variants occur at functionally important positions (Key Regions) in a 



 33 

gene of interest, and that they were unlikely to occur more than once in a single individual 

because very few variants were located in Key Regions and each of them was rare in the 

population. This choice of effect size is somewhat larger than that used by Kryukov et al. 

[37], who used a range of 0.25σ − 0.5σ for rare variants, since these variants were not only 

rare but also located in Key Regions assumed to be functionally important to the gene 

function. To account for heterogeneity within a particular phenotype etiology, effect size was 

allowed to be 0 for a designated fraction of causal variants. 

4.1.4 Case-control study generation 

At this stage, each population consists of a set of "genomic individuals", each with a real-

valued quantitative trait. To construct the case-control studies, an extreme phenotype model 

was used. Phenotype prevalence was set at 1%, i.e., the 1% of individuals in the selected 

population with the highest values of QT were considered affected and the 25% of individuals 

with the lowest values of QT unaffected. 

 Case-control studies were generated by sampling without replacement from affected 

and unaffected groups in a population. Individuals with intermediate phenotype values were 

not included in case-control studies. The random process used to generate QT (Phenotypic 

trait generation) ensures varied penetrance and phenocopy rates in each case-control study, 

e.g., some individuals carrying deleterious variants were not affected, while some with no 

deleterious variants were affected. 

4.1.5 Null case-control study 

A null case-control sample was also generated, with no phenotype etiology, in which the 

phenotypic trait was drawn from a standard normal distribution for every individual in the 

sample. 
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4.1.6 Generalization to multiple genes 

For a scenario in which the functional group of interest was a gene set e.g., involved in a 

pathway or biological process, I constructed a new population of 500,000 individuals, in 

which each individual had multiple genes. This population was created by sampling genes 

from the diploid gene populations generated previously (4.1.2 Generating genomic 

populations). Next, I specified a gene set size and fraction of genes in the gene set that 

contain causal variants. A phenotype etiology was then randomly selected for each gene that 

contains causal variants. Finally, the phenotypic trait for each individual in the population 

was generated using Equations 4.2 and 4.3. Gene set case-control studies were generated 

with the same protocol as for single causal genes. 

4.1.7 Heterogeneity in the simulation 

Complex phenotypes are expected to have considerable genetic heterogeneity i.e., they may 

be the consequence of alterations in hundreds of potentially causal genes, and affected 

individuals may have causal and/or protective variants in different subsets of these genes. 

The simulations done in this work reflected this heterogeneity (example in Figure 4.2). 
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Figure 4.2: Example of how our simulations capture genetic heterogeneity in complex 

phenotype. Each horizontal grid line represents a genomic individual. (Cases and controls 

shown separately.) Each vertical gridline represents a gene. Causal variants (both deleterious 

and protective) are shown as triangles. Different case individuals have different patterns of 

causal variants and the allele frequencies of the variants range from rare (1 allele) to common 

(190 alleles). Causal variants are also observed in the control individuals. Type=Downward 

pointing triangles are deleterious variants, upward pointing triangles are protective variants. 

(200 genomic individuals from African-American demographic model are shown). 
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4.2 Power analysis using simulated data 

First, I assessed the power of BOMP to detect genes with causal variants in an extreme 

phenotype case-control study, for a phenotype with 1% population prevalence, and 

significance level α = 0.05. I considered that deleterious causal variants might either be rare, 

low frequency or common and that modifying protective variants might be present. Power 

to detect causal variants was assessed initially with respect to a single candidate gene and 

then for candidate gene sets, ranging in size from 2 to 24 genes. I studied gene sets in which 

all genes contained causal variants and those in which only a fraction of genes contained 

causal variants. Both African-American and European-American demographic models were 

considered. For each combination of attributes (phenotype etiology, population 

demographic, case-control study size), 250 case-control studies were simulated to assess 

power. 
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Figure 4.3: Single gene methods power comparison. Power estimates for BOMP, VT, SKAT, 

KBAC (KBAC1P= minor allele frequency defined as < 1%, KBAC5P= minor allele 

frequency defined as < 5%). Each vertical line represents power estimates for each method, 

based on 250 simulated case-control studies. AA=the case-control studies were drawn from 

gene populations generated with an African-American simple bottleneck demographic 

model. EA=the case-control studies were drawn from gene populations generated with a 

European-American exponential growth demographic model. The eight variant causality 

(phenotype etiology) models are defined in Table 4.1. Since the European-American 

demographic model does not account for common or protective variants, etiologies 

involving common or protective variants were only considered for the African-American 

demographic model. 
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4.2.1 Power analysis of simulated case-control studies 

In single-gene case-control study simulations, a study size of 2000 (1000 cases, 1000 

controls) was required for any of the methods to achieve at least 80% power to detect causal 

variants. BOMP had > 80% power for three of the tested phenotype etiologies (Common 

variant, KeyRegion+Protect, and Common+Protect). When the study size was increased to 

5000, several of the methods (BOMP, SKAT, VT, and KBAC5P (MAF< 5%)) had > 80% 

power for selected etiologies (Figure 4.3). BOMP was consistently more powerful than other 

methods and appeared to be particularly useful for certain phenotype etiologies (Key region 

variant, Common variant, and all etiologies involving protective variants (Table 4.1)). All 

methods were less powerful when applied to case-control studies using the European- 

American demographic model (in which variants are either rare or singletons) (Figure 4.4). 
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Figure 4.4: Distributions of allele frequencies and raw allele counts in simulated European-

American and African-American populations. The European-American population consists 

almost entirely of rare variants, while the African-American population contains a wider 

range of rare, low-frequency, and common variants. Percentage of variants with allele 

frequencies and raw allele counts in the designated ranges are shown. Because > 99% of 

European-American allele frequencies are < 0.1%, I include a blow-up of frequencies > 

0.1%, which range from 0.05% to 0.2%. Demographic models shown in Figure 4.1. 
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Next, I explored how the power of the tested methods could be improved by application to 

a candidate gene set rather than a single candidate gene. I simulated case-control studies, in 

which each genomic individual had multiple genes, all or some of which contained causal 

variants. The gene sets in which all genes contained causal variants ranged from 2 to 5 genes. 

Gene sets with mixtures of casual and non-causal genes ranged from 4 to 15 genes (ratios of 

causal to non-causal 3:1, 3:3, 3:6, 3:9, and 3:12). Causal variants were equally likely to be 

from any of the phenotype etiologies dominated by rare variants. The assumption that even 

25% of genes in a set contain causal variants is certainly optimistic, but this experiment 

allowed us to compare the extent to which each method was affected by the fraction of 

causal genes in a set. 

When all genes in a gene set contained causal variants, power increased for all methods as 

gene set size increased. When the gene sets contained a mixture of genes, both with and 

without causal variants, the power decreased with the causal to non-causal ratio. For the 

African-American demographic model, BOMP and SKAT were the most robust to gene sets 

with low causal to non-causal ratio. As in the single gene experiment, all methods had less 

power in the European-American demographic than in the African-American. For the 

European-American, none of the methods had power > 80% for any of the gene sets. For 

the African-American demographic, BOMP, SKAT, and VT had power > 80% when gene 

sets of sizes 4 and 5 contained all causal variants. BOMP was the only method with power > 

80% for any of the mixed gene sets tested (gene set sizes 3,6, and 9, with ratio of causal to 

non-causal 3:0, 3:3 and 3:6) (Figure 4.5). 

 Biologically, I didn’t expect that every gene in a real gene set would contain causal 

variants. Thus our simulated gene sets were designed to contain a mix of genes with causal 

variants and those without. The burden tests (VT) were not able to effectively capture the 
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difference between the two and lost power as the number of non-causal variants in the 

simulations increased (Figure 4.5). The genotype vectors computed by KBAC become larger 

and more heterogeneous when applied to a gene set, rather than a single gene. Thus, the 

KBAC strategy of leveraging the number of shared genotype vectors among cases and/or 

controls was less effective when applied to gene sets than to single genes. The BOMP hybrid 

likelihood statistic (with strong contributions from the BOMP position distribution statistic), 

and SKAT were the most powerful when applied to gene sets, rather than single genes. I 

attributed this result to the increase in the number of significant localized units in a gene set 

that contained more than one causal gene. 
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Figure 4.5: Power estimates for multiple gene case-control studies with causal variants 

equally likely to be from any phenotype etiology dominated by rare variants. A,B. X-axis 

shows number of candidate genes in 250 simulated case-control studies (approximately one-

third each from phenotype etiologies Rare, LowFreq and KeyRegion). All genes contain 

causal variants. For each method, average power is shown. Power increases for all methods 

as the number of candidate genes with causal variants increases. C,D. X-axis shows the 

number of candidate genes and the ratio of genes containing causal variants to those that do 

not contain causal variants. As the ratio decreases, the power of the tested methods also 

decreases. (Tested methods are BOMP, VT, SKAT and KBAC1P= minor allele frequency 

defined as < 1%, KBAC5P= minor allele frequency defined as < 5%). AA=the case-control 

studies were drawn from gene populations generated with an African-American simple 

A" B"

C" D"
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bottleneck demographic model. EA=the case-control studies were drawn from gene 

populations generated with a European-American exponential growth demographic model.) 
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 Next, because the underlying etiologies could be heterogeneous, I reconsidered the 

assumption that casual variants in a gene set were equally likely to come from a few 

phenotype etiologies that are dominated by rare causal variants. Instead, I sampled 

phenotype etiologies from nine multinomial distributions (Figure 4.6). For these 

experiments, the number of candidate genes was fixed at nine and the ratio of causal to non-

causal genes was 3:6. BOMP’s power advantage over the other tested methods was larger in 

this experiment than in the single candidate gene experiment. For case-control study size of 

1000, BOMP power was > 80% for the multinomial distributions dominated by the key 

region variant etiology (African-American) and etiologies involving protective variants. For 

case-control study size of 2000, BOMP power was > 80% for all six multinomial 

distributions possible for the African-American model (Figure 4.7), and SKAT power was > 

80% for the multinomial distributions dominated by the key region variant etiology (African-

American) and etiologies involving protective variants. 
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Figure 4.6: Nine multinomial distributions used to construct sets of multiple candidate genes 

for case-control studies. Each multinomial distribution is named for its dominant phenotype 

etiology. 
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 In Figure 4.3, each of the eight designed etiologies was simulated for a single gene. In 

Figure 4.7, etiologies of causal genes in the gene set were dominated by one of the eight 

designed etiologies with the possibility of mixing other etiologies. Thus, comparing the single 

gene experiments in Figure 4.3 with the gene set experiments in Figure 4.7, performance of 

each method in general showed a similar trend across corresponding etiologies. However, 

BOMP was slightly powerful than other methods when testing on a gene set than when 

testing on a single gene. The power gain was attributed to the combination of mutation 

burden statistic and mutation position distribution statistic, expanding BOMP’s capability of 

identifying causal genes with more than one etiology in a gene set. 
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Figure 4.7: Power estimates for multiple genes case-control studies with causal variants from 

phenotype etiologies randomly sampled from nine multinomial distributions (Figure 4.6). 

Power estimates for BOMP, VT, SKAT, KBAC (KBAC1P= minor allele frequency defined 

as < 1%, KBAC5P= minor allele frequency defined as < 5%). Each vertical line represents 

power estimates for each method, based on 250 simulated case-control studies. The genomic 

individuals each had nine genes, of which three contained causal variants and six did not. 

The phenotype etiologies for the three genes with causal variants were randomly sampled 

from nine multinomial distributions (Figure 4.5). AA=African-American simple bottleneck 

demographic model. EA=European-American exponential growth demographic model. 
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 Genetic causes of a complex trait can be heterogeneous. Many genes are causal but 

having variants in few of them is sufficient to develop the phenotype. Testing on single 

genes or a small gene set will not have sufficient power to identify the association due to the 

sparse signals. Instead, testing on a carefully chosen larger gene set, which contains a 

significant part of causal genes, may work. To examine this, I explored the power of BOMP 

with respect to case-control study size, using a set of 24 candidate genes as the functional 

group. I varied the ratio of casual to non-causal genes from 1:3, 1:1, and 3:1. Here, causal 

variants were again equally likely to be from any of the phenotype etiologies dominated by 

rare variants. For a case-control study size of 1000, BOMP’s power exceeded 0.8, regardless 

of the causal-to-non-causal gene ratio (African-American only), and for the 1:1 and 3:1 

causal-to-non-causal gene ratios for European-American. A study size of 200 was sufficient 

for power > 0.8 for 1:1 and 3:1 ratios (African-American only) (Figure 4.8). 
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Figure 4.8: BOMP Power estimates for multiple genes (24) case-control studies. Power 

estimates for BOMP; each estimate is based on 250 simulated case-control studies 

((approximately one-third each from phenotype etiologies Rare, LowFreq and KeyRegion). 

The genomic individuals each had 24 genes, the tatio of genes with causal variants to those 

without causal variants was either 1:3 (6 causal, 18 non-causal), 1:1 (12 causal, 12 non-

causal), or 3:1 (18 causal, 6 non-causal). AA=African-American simple bottleneck 

demographic model. EA=European-American exponential growth demographic model. 
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I reasoned from these results that, for a population whose allele frequency spectrum 

is similar to our European-American demographic model simulations, current whole-exome 

case-control studies were not sufficiently powered. These studies lacked power to find causal 

variants both at the single gene level (as proposed by [37]) and for modestly-sized gene sets. 

However, if the allele frequency spectrum is more similar to the African-American 

demographic model, BOMP may be able to detect causal variation in larger gene sets, given 

the size of current whole-exome studies. 

4.2.2 Relative contributions of mutation burden and mutation positional distribution 

in simulated case-control studies 

BOMP is composed of the mutation burden statistic and the mutation position distribution 

statistic, each of which tests the association using different approaches. The mutation burden 

statistic collapses all (weighted) variants within a functional group, performing a 

unidirectional burden test, while the mutation position distribution statistic collapses variants 

within small windows that segment a functional group, performing a bidirectional over-

dispersion test over the windows. It is interesting to find whether the combined one is better 

than either and when one is better than the other. 

I computed average power for single candidate gene case-control studies and 

multiple candidate gene case-control studies (nine genes, 3:6 causal to non-causal ratio), with 

respect to both demographic models, all phenotype etiologies (Table 4.1) for single genes, 

and all combinations of phenotype etiologies for gene sets (Figure 4.6). BOMP’s hybrid 

likelihood model had better power than either of its components: the mutation burden and 

mutation position distribution statistics (Figure 4.9). The burden statistic had more power in 

single-gene studies, while the position statistic had more power in the gene set studies. 
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Figure 4.9: BOMP burden and position statistics complement each other. Breakdown of 

contribution of BOMP mutation burden (BOMP B) and BOMP positional distribution 

(BOMP P) statistics averaged over single candidate gene power estimates (Figure 4.3) and 

multiple candidate gene power estimates (nine genes, 3 with causal variants and 6 with no 

causal variants) (Figure 4.7) for case-control study sizes of 200, 1000, 2000, and 5000. 

Combining the two statistics consistently yielded improved power with respect to each 

statistic on its own. The BOMP burden statistic had more power than BOMP position for 

the simulations based on a single candidate gene, and vice versa in the simulations with nine 

candidate genes and 3:6 causal to non-causal ratio. 
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 In general, mutation burden tests outperformed the position distribution statistic 

when causal variants were rare and were not clustered. The position distribution test 

outperformed burden tests when the number of rare variants was similar in cases and 

controls, but where cases and controls differed with respect to the positional distribution of 

the variants. To illustrate this point, I show a case in which burden tests would miss such a 

difference (Figure 4.10). In the genomic region shown, cases and controls each have 9 total 

variants, but an informative window segmentation yields distinct regions in which the 

number of variants seen in cases and controls is substantially different. The difference 

between cases and controls is also missed by SKAT, which consider variants one at a time, 

because at each position the number of variants in cases and controls is similar. 

  



 53 

 

Figure 4.10: Example variation pattern in which positional distribution outperforms burden 

tests. A toy example of a genomic region containing variants (blue squares) in cases and 

controls. I assume that the region is important for phenotype. Variant counts in casees (red). 

Variant counts in controls (purple). Cases and controls each have a total of 9 variants in this 

region, so burden statistics (e.g., VT or BOMP burden) are not able to detect that the region 

is important for phenotype. BOMP’s position distribution statistic collapses variants into 

short, localized windows (red dashed lines) and detects that the number of variants seen in 

cases and controls is different within the windows. I note that a method that does not 

collapse variants, such as SKAT, does not have much power to detect the difference 

between cases and controls, because at each position the number of variants in cases and 

controls is similar. 
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Both collapsing burden and position distribution tests outperform SKAT when 

causal variants are very rare. Figure 4.11 shows the power of VT, SKAT, BOMP burden, 

and BOMP position distribution in 10,000 simulated European-American individuals, using 

our Rare and Key Region Variant phenotype etiologies. The European-American 

populations contain a large fraction of rare variants (Figure 4.4 shows exact allele frequencies 

and raw counts). Our simulations of the Rare Variant etiology in this population generate 

rare variants that are not clustered, and the methods with highest power are VT burden and 

BOMP burden tests. In Key Region Variant simulations where rare variants are positioned 

differently in cases and controls, the position distribution statistic has higher power than 

either of these burden tests. 
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Figure 4.11: Power of position distribution statistics compared to burden methods and 

SKAT. Burden tests outperform the position distribution statistic when causal variants are 

rare and are not clustered, as in our simulations of Rare Variant phenotype etiology and 

European-American demographic. The position distribution test outperforms burden tests 

when the number of rare variants is similar in cases and controls but the positional 

distribution of the variants differs in cases and controls like simulations of Key Region 

Variant phenotype etiology and European-American demographic. Both collapsing burden 

and position distribution tests outperform SKAT when causal variants are very rare. RareEA 

= rare variant phenotype etiology (Table 4.1) and European-American demographic model. 

KeyRegionEA = key region variant phenotype etiology (Table 4.1) and European-American 

demographic model. Power shown on Y-axis. Simulations with 10,000 samples are shown. 
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 In summary, collapsing unidirectional causal variants increases power while 

collapsing neutral (non-causal) variants or causal variants in the opposite direction dilutes (or 

cancels out) the mutation burden difference between cases and controls, and thus causes 

power loss. In the gene set simulation, the functional group was mixed with both causal 

genes and non-causal genes, which contain many neutral (non-causal) variants. Burden tests, 

which collapse all variants within the functional group, lost power while the position statistic, 

which does not collapse all variants across the functional group, was relatively invariant to 

the mix of neutral variants compared with burden tests. In the simulations of Rare Variant 

etiology, burden tests gained power by collapsing unidirectional causal variants. In the 

simulations of Key Region Variant etiology where rare causal variants occurred only in small 

domains in the protein sequences, burden tests still obtained some power gain by collapsing 

all variants when compared to SKAT, which does not collapse any variants. The position 

statistic, which precisely collapses causal variants in the domains without mixing other 

neutral variants, gained the most power. 

4.3 Performance summary for each method based on simulations 

In the simulations, I found that the performance of all tested methods depended on choice 

of phenotype etiology and demographic model. 

The VT method is a burden test, a class of methods in which it is assumed that all 

variants lower than a MAF of interest are deleterious. Burden tests accumulate signal by 

collapsing variants across a genomic region. They are valuable in detecting associations 

between rare variants and phenotypes, when case-control studies are not large enough to 

detect association between a single rare variant and the phenotype. An important advance of 

the VT burden test is that it adaptively learns a MAF threshold from the data, efficiently 
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filtering out a large number of non-causal variants. In our simulations, it always has the most 

power for rare variant etiology and European-American demographic, in which the 

population is enriched for very rare variants. However, in other etiologies, it does not do 

quite as well. For example, in the low frequency etiology, in which causal variants must have 

at least 0.1% MAF, a single MAF threshold will not well separate causal and non-causal 

variants. VT also loses some power when common or protective variants are included in an 

etiology and does not gain power when variant positions are distributed differently in cases 

and controls. 

 The SKAT linear kernel regression model circumvents an important limitation of 

burden tests, which is that they can only detect causal variants that are deleterious. In 

contrast, SKAT belongs to a class of methods in which emphasis is placed on the variance 

of genotype frequencies in cases and controls. It does no collapsing and each variant 

(genotype) is treated as an independent covariate. Thus, it is sensitive to both deleterious and 

protective effects, and it has good power in the presence of protective variants. SKAT 

weights variants according to their MAF, by treating the MAF as a random variable from a 

Beta density. Beta parameters are set so as to give increased weight to those MAFs 

considered most likely to be causal a priori. Using default settings, common variants get 

decreased weight, which is reflected in power loss in our simulations based on the common 

variant etiology (MAF>5%). Variants in simulations based on the low frequency etiology 

(0.1%<MAF≤5%) are well captured by this Beta density, and I see that SKAT has good 

power for this etiology. While rare variants also get high SKAT weights, I found that SKAT 

loses power in simulations based on the rare variant etiology in the European-American 

demographic model. Because there are many extremely rare variants present, the SKAT 
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model will estimate a very small marginal effect size for each variant and fail to reject the null 

hypothesis of zero marginal effect size. 

 KBAC differs from SKAT, VT, and BOMP in that the phenotype association of a 

genotype vector, rather than single variants, is calculated. Each individual is represented by a 

pattern of 0’s, 1’s, and 2’s for M sites in a candidate genomic region. Only sites where rare 

variants have been seen in a case or control are included. An adaptive weight is computed 

for each vector using a mixture model, and the KBAC statistic for a genomic region of 

interest is the weighted sum of vector frequency differences in cases vs. controls. A strength 

of this strategy is that it implicitly considers interactions among variants, which are not 

incorporated into the other tested methods. A weakness is that the information in a vector 

frequency difference depends on the number of individuals sharing a common vector. In 

sequencing studies with many rare variants, the probability of seeing the same vector more 

than once is low. In our simulations, there are no interactions among variants and an 

important strength of KBAC is not utilized. Particularly in simulations involving the 

European-American exponential demographic model, which is enriched for very rare 

variants and thus has few shared vectors, KBAC has low power. Like SKAT, KBAC can 

handle protective variation, and in our simulations, it has relatively good power for etiologies 

that include protective variants. KBAC only considers variants with less than a pre-specified 

MAF to be causal. I selected MAF thresholds of (recommended) 1% and 5%, which resulted 

in KBAC having low power for our common variant etiology. However, KBAC can be 

extended to include common variants as co-variates in a logistic regression model, which 

could improve power for this etiology. 

 BOMP is a hybrid likelihood model, which conceptually (but not mathematically) 

incorporates the general approaches represented by VT and SKAT. VT assumes that cases 
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have more variants in phenotype-associated genomic regions, with MAF below an optimized 

threshold, than controls. SKAT assumes that the subset of variants that are truly phenotype-

associated are over-represented in cases or controls. The BOMP burden statistic captures the 

scenario in which cases have more variants than controls (allele frequencies are incorporated 

via coefficient scores), while the position distribution statistic captures the scenario in which 

cases have more variants than controls (or vice versa) in highly localized, functionally 

important genomic regions, from 8 to 64 codons in length. Essentially, SKAT does the same 

thing, except that the localization unit is defined as a single variant (codon or nucleotide). 

When SKAT or the BOMP position distribution statistic detects significant differences 

between cases and controls within a localization unit, no further collapsing takes place. Thus, 

both do well at detecting protective vari- ants. However, using localized collapsing, the 

BOMP position distribution statistic gains power to detect differences between cases and 

controls (Figure 4.10) that would be missed by either SKAT or a burden statistic. 

 BOMP’s combination statistic is effective for most of our tested etiologies. It is 

particularly effective for the key region etiology, but relatively less effective for the rare 

variant etiology, particularly with the European-American demographic. For this etiology, by 

construction, the causal rare variants are distributed randomly across the simulated genomic 

region, and the BOMP position distribution statistic gains no power by collapsing within a 

localized region. A burden statistic using an optimized MAF threshold is very effective for 

this etiology. 

4.4 Dallas Heart Study 

Extensive simulation investigated the performance of each method being applied on various 

phenotype etiologies. However, the performance of each method being tested on simulated 

data may differ from that on real data due to the complex nature of population genetics. For 
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example, the strength of linkage disequilibrium varies across the human genome. Real 

genomes may contain hidden population structures that are likely to produce false 

associations. Moreover, when dealing with real data, technical problems such as batch effects 

and sequencing errors may be introduced. Therefore, in addition to extensive simulation, an 

empirical benchmark is required for a fair comparison. 

I applied the BOMP hybrid likelihood model to the analysis of data from the Dallas 

Heart Study (DHS) [36]. Romeo et al. explored genetic contributions to plasma triglyceride 

(TG) levels in ∼ 3500 individuals in the DHS, by resequencing the coding regions of 

angiopoietin-like (ANGPTL) family genes, which were hypothesized to play key roles in TG 

metabolisms in humans. The ANGPTL genes regulate the activity of a key enzyme in TG 

metabolism, lipoprotein lipase (LPL), via post-transcriptional modifications and were jointly 

associated with low triglyceride levels by [36]. Specifically, ANGPTL3, ANGPTL4, and 

ANGPTL5 were functionally validated as causal genes, playing non-redundant roles and 

underlying TG levels as a functional group [36]. The ANGPTL gene set has been analyzed in 

several computational papers and used as a benchmark to compare methods that predict the 

impact of rare and common variants from sequencing data [20,21,23,43-46]. 

 I stratified the DHS samples by ethnicity (Hispanic, non-Hispanic white, non-

Hispanic black) and gender. Because BOMP was designed for dichotomous phenotypes, I 

selected the lower and upper quartiles from each group, by TG level (totaling 1775 

individuals, with 897 cases and 878 controls). Sixty mutations in ANGPTL3, ANGPTL4, 

and ANGPTL5 occurred in these individuals. 

 I computed a P-value for each of the three ANGPTL genes and for the ANGPTL 

gene set, using BOMP (with and without bioinformatics scores), the burden statistic VT 
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(with and without bioinformatics variant weighting), the overdispersion statistic SKAT, and 

the mixture-model KBAC statistic (with four parameter settings) (Table 4.2). 
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Table 4.2: Dallas Heart Study. P-values of association between dichotimized trygliceride 

levels and variation in three ANGPTL family genes sequenced in Dallas Heart Study. 

ANGPTL - multiple gene set including ANGPTL3, ANGPTL4, and ANGPTL5. The most 

significant P-value for each is highlighted in bold. BOMP= combined Burden and Position 

statistics VT = variable threshold burden test [20] SKAT = sequence kernel association test 

(linear weighting version) [21], KBAC = Kernel-based adaptive cluster [44] (1D = single 

direction, 2D = two direction, 1P=rare variants defined as < 1% MAF, 5P=rare variants 

defined as < 5% MAF). VEST = BOMP and VT with VEST score variant weighting. 

 

  



 63 

The hybrid BOMP test, with bioinformatics scores and allele frequency variant 

weighting, had the most significant P-value for the ANGPTL gene set (P = 2.6E − 05), 

which should be sufficient to detect ANGPTL-phenotype association, using a gene set based 

analysis in a whole-exome study, after multiple testing correction (Table 4.2). The hybrid 

BOMP P-value was more significant than either of its components (the BOMP burden and 

position distribution scores). This result was consistent with the average behavior of BOMP 

in our simulation-based analysis of power (Figure 4.8). However, the two component scores 

did not yield an improved hybrid score on every gene. For ANGPTL3, ANGPTL4, and 

ANGPTL5, the hybrid score P-value was not as significant as the P-values of the most 

significant component score. The burden-based VT score (with bioinformatics score variant 

weighting) had the most significant P-values for ANGPTL3 (P = 0.015); the BOMP position 

distribution score for ANGPTL4 (P = 1.6E − 05), closely followed by VT (with 

bioinformatics scores) (P = 1.7E − 05), and the overdispersion test SKAT (P = 5.78E−05). 

KBAC, with single directional scoring (only deleterious variants counted) and threshold for 

rare variation set at MAF < 1%, had the most significant P-value for ANGPTL5 (P = 

0.023). 

These results confirm previous reports that the performance of current methods to 

detect causal variants depends on which genes are selected for benchmarking [14,24]. While 

the dataset is small, it is interesting to note that P-values of association between variant 

ANGPTL family genes and dichotomized serum triglyceride levels from the Dallas Heart 

Study were most significant for the BOMP hybrid model, when the genes were considered 

together as a gene set. However, the burden statistic VT had the most significant P-value for 

ANGPTL3, and the KBAC P-value was the most significant for ANGPTL5 (specifically 

with single directional scoring and threshold for rare variation set at MAF < 1%). For 
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ANGPTL4, the most significant P-values were from the BOMP positional distribution 

score, VT, and SKAT. Each of these genes had a different pattern of variation frequencies in 

cases and controls, which presented advantages and obstacles for each method. For example, 

ANGPTL3 had a high frequency variant (M259T) that occurred more often in cases than 

controls and many “noisy” rare/singleton variants that occurred either in cases or controls. 

VT took advantage of the signal in M259T because its threshold adapted to maximize the 

burden increase in cases versus controls, and thus M259T was included in its burden 

calculation. BOMPs burden statistic did not give as much importance to M259T, because it 

down-weighs high frequency variants. KBAC included M259T only when its allele frequency 

threshold parameter was set to 5% but was penalized when it was set to 1%. ANGPTL4 had 

two high frequency variants (T266M with AF=0.27 and R278Q with AF=0.03). T266M 

occurred more often in controls while R278Q occurred more often in cases. VT took 

advantage of signal in R278Q and other rare variants that occurred more often in cases and 

adaptively learned the allele frequency threshold to filter out T266M from analysis. BOMP 

position distribution statistic and SKAT took advantage of signals in both T266M and 

R278Q while BOMP burden statistic was penalized by T266M. ANGPTL5 had a high 

frequency variant (T268M), which occurred more often in controls. Other variants are very 

rare although they occurred more often in cases. Because of the sparse signals, BOMP, VT 

and SKAT did not perform well on ANGPTL5. 

 BOMP is not designed to be adjusted for additional covariates, which are often 

available in phenotype studies. For example, it is not designed to explicitly deal with different 

ancestries in a structured population. However, if the true population structure is known and 

the number of subpopulations is not too large, I can run analyses with stratification to get 

around this problem, as I (and the authors of the VT and SKAT papers) did for ANGPTL 
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family genes in the Dallas Heart Study [20,21]. Using this strategy, one begins with a 

quantitative trait (serum triglyceride levels), stratifies individuals into groups, then identifies 

extreme phenotype individuals from each group. Cases are then those individuals from all 

groups at one extreme and controls are those individuals from all groups at the other 

extreme. An alternative strategy is to permute case-control labels only within each group to 

generate a correct null distribution. 

 Incorporating bioinformatics scoring of variants (by VEST) yielded improved P-

values for both BOMP and VT on the Dallas Heart Study data. While it has been suggested 

that bioinformatics misclassification of variants might be more of a liability than a benefit, 

our results (albeit on a small gene set) suggest the opposite. Functional classification of 

variants in both coding and non-coding regions of the genome is an active research area in 

bioinformatics, and as methods improve, it is likely that they will increasingly contribute to 

statistical analysis of causal variation. 
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Chapter 5 Application on bipolar case-control study 

5.1 Genetic studies in Bipolar disorder 

5.1.1 Contribution of genetic components in Bipolar disorder 

Bipolar disorder (BP) is among the most important public health problems in the world. 

According to the WHO Global Burden of Disease Study, BP is one of the top ten leading 

causes of lifelong disability. The illness is characterized by manias and depressions, which are 

syndromes of abnormal mood, thinking, and behavior. Originally called manic-depressive 

illness, BP was one of the first psychiatric disorders to be targeted for genetic study; 

however, unraveling the specific genetic causes of BP has proven to be a formidable 

challenge. Studies in genetic epidemiology have revealed a substantial genetic component to 

this illness, supporting the rationale for screening the genome for variants associated with 

BP. Evidence for the importance of genetic factors in BP etiology is well supplied by family, 

twin, and adoption studies. BP probands were studied in 12 family studies, in which the 

majority of subjects were directly interviewed [47]. The results showed that the combined 

rate for BP in relatives of ill probands was 10.7%, while the comparable rate in relatives of 

control probands was 1.0%. Moreover, compared to schizophrenia, the sibling recurrence 

risk for BP is roughly the same, but far below that for single-gene diseases such as 

phenylketonuria where the relative risk to siblings is many fold higher. The magnitude of the 

relative risk to siblings suggests that genes associated with BP should be discoverable. Twin 

studies have attempted to distinguish the impact of shared environment from that of shared 

genes. In the three studies that assessed BP, the differential concordance rate for MZ twins 

(63%) and for DZ twins (13%) yielded a heritability figure of 0.78 [47]. Adoption studies 

have also attempted to separate genetic from environmental effects. Mendlewicz and Rainier, 
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who conducted the most methodologically rigorous adoption study of BP, found that the 

biological parents of BP adoptees had a 31% rate of mood disorders, which was significantly 

higher than the 12% rate of mood disorders in the adoptive parents of these adoptees and 

the 2% rate in the biological parents of the control adoptees [48]. Several segregation 

analyses in family studies supported a major locus contributing to BP inheritance [49-51], but 

others have not found such evidence [52,53]. 

5.1.2 Linkage analysis in Bipolar disorder 

Many BP linkage analyses have been conducted to identify BP susceptibility loci. A reliable 

finding requires genome-wide statistical significance and replication of loci in more than one 

study. Many BP susceptibility loci have been repeatedly implicated, but not with genome-

wide significance. Several findings have reached genome-wide statistical significance in multi-

family samples: 8q24 [54], 15q14 [55], 18q12 [56], 21q22 [57], and 22q12 [58]. Unfortunately, 

these regions have not been consistently replicated across studies. Three meta-analyses of 

linkage studies have been conducted for BP. Badner and colleagues performed a meta- 

analysis of 11 BP genome scans, replicating two significant regions, 13q32 and 22q 12-13, at 

a genome-wide level [59]. However, a second meta-analysis, which used data from 18 

genome scans and obtained unpublished data from investigators, found that no region 

reached genome-wide significance across the combined studies. The strongest regions were: 

9p21-22, 10q11-22, 14q24-32, 18p-18q21, and to a lesser extent 8q24 [60]. The third meta-

analysis, examining original genotype data from genome-wide scans including 5,179 subjects 

in 1,067 families, provided strong support for linkage on 6q and 8q as well as suggestive 

evidence for loci on 9p and 20p [61]. Three meta-analyses did not demonstrate a clear 

agreement. 
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5.1.3 GWA Studies in Bipolar disorder 

Recently, genome-wide association studies (GWAS) have been performed for BP based on 

the CDCV (Common Disease Common Variant) hypothesis. The first four independent 

studies did not identify any genome-wide significant signals [8,62-64]. Signals in ANK3 gene 

and CACNA1C gene, however, showed statistical significance at a genome-wide level in a 

meta-analysis, which combined 3 GWAS samples [65]. Interestingly, both of these genes 

encode proteins that play a role in synaptic function, as ANK3 is an adaptor protein found 

at axon initial segments that has been shown to regulate the assembly of voltage-gated 

sodium channels, and CACNA1C is a calcium channel subunit. Later, a meta-analysis 

combining 11 GWAS samples identified another genome-wide significant gene, SYNE1, 

associated with BP [66]. 

5.1.4 Rare variant search in Bipolar disorder 

Both CDCV (Common Disease Common Variant) and CDRV (Common Disease Rare 

Variant) were theoretically supported to explain the underlying genetics for complex diseases 

[6,67]. GWA studies, which are based on the CDCV hypothesis, have had a number of 

notable successes in many diseases like diabetes, coronary heart disease, and Crohn’s disease 

[8]. On the other hand, rare variants (the genetic causes hypothesized by CDRV) have been 

found to play a role in lipid abnormalities [68] and in severe childhood onset obesity [69]. 

The two approaches are not incompatible as all human diseases have an allelic series 

of mutations that can range from the very rare to the common. Classical diseases such as 

hemoglobinopathies have long been known to have extremely rare (<0.01%) mutations in 

the beta globin gene leading to thalassemias and very common (>10%) mutations such as 

the sickle mutation. These variants have different mutation rates but are likely maintained by 
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different population genetic processes such as natural selection: mutation-selection balance 

for the rare variants and overdominant selection for the common ones. Broad screens of a 

variety of cases reveal both rare and common variants. Studies of RET mutations in 

Hirschsprung disease [70] and those by Jeff Murray on IRF6 in cleft lip and palate [71] are 

good examples of the likely mutation spectrum. In Hirschsprung disease, the vast majority of 

mutational types are individually rare (<1/1,000) with large effects on penetrance, but the 

most common mutation is a polymorphic (24%) enhancer variant with a smaller effect on 

penetrance. 

Because GWA studies are only designed to assay variants with at least 1-5% minor 

allele frequencies, rare variants are not captured. Only deep resequencing can assess this 

potentially critical portion of disease alleles. Several recent studies have uncovered rare 

variants related to common diseases. One high- throughput sequence study of the 

ANGPTL4 gene found a 3.8% prevalence of rare variants in Caucasian subjects with 

triglycerides in the lower quartile compared with 0.5% in subjects with triglycerides in the 

highest quartile [72]. Another study of MCR4 and obesity found a rate for rare variants of 

2.6% vs. 0.6% in controls [73]. These studies demonstrate that differences in the gene-wide 

rates of coding rare variants in the 2-3% range can be detected in a deep resequencing study. 

Considering limited success in BP GWA studies and the evidence of both common and rare 

variants contributing to complex diseases, performing a deep resequencing study to uncover 

rare variants that are associated with BP is required. 

5.2 Bipolar case-control study 

A sequence-based case-control study for BP was conducted in the psychiatry department at 

Johns Hopkins University since 2010. The project originally targeted the coding regions of 
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genes expressed in synapses, which were hypothesized to be highly related to BP, and later 

extended to a whole-exome sequencing case-control study. BOMP was used in the study for 

identifying BP causal genes. 

5.2.1 Sequencing platform, variant calling and quality control 

Groups in the psychiatry department at Johns Hopkins examined whole-exome sequencing 

data on the first 1,177 cases and 1,155 controls from this study. These samples were 

sequenced in four rounds, over a four-year period. In the first round, Nimblegen v1.0 arrays 

were used for exome capture and the Illumina GAII platform for next-generation 

sequencing. In the subsequent rounds, Nimblegen v2.0 arrays and the Illumina HiSeq2000 

platform were used, with promoter regions and some extra genes added in the last two 

rounds. Only samples with target sequencing coverage of at least 80% at 20X sequencing 

depth were included for further analysis. Sequence readouts from the samples were aligned 

to the human reference genome sequence database using BWA [74]. Variants were then 

called after realignment around indels and recalibration of base quality scores with GATK 

[75] in target regions. Quality control for variant calling required coverage of at least 6X 

depth with a SNP quality score of 30 or higher to eliminate false-positives. Variants were 

annotated to dbSNP135 and collected in VCF files. The quality controls include missingness 

(missing entries) per position, missingness per subject, Hardy-Weinberg Equilibrium (HWE) 

and principle component analysis (PCA) for ancestry background checks. Finally, 1,135 cases 

and 1,142 controls (1,076 males and 1,201 females) were analyzed using BOMP. 

5.2.2 BOMP analysis 

Acknowledging the results of genome-wide association studies, we hypothesized that BP 

should be largely attributed to rare variants in the population. We defined variants with 



 71 

minor allele frequencies less than 5% to be rare. Any position with a missing rate- the 

fraction of missing calls across subjects- higher than 0.15 is removed in the analysis. For the 

remaining positions, missing calls are filled with major alleles and only non-synonymous 

variants (including missense, stop loss and stop gain variants), small indels causing frameshits 

and exonic splicing variants are examined. 

To predict whether a missense variant is damaging to the protein function or not, we 

used several bioinformatics tools, including Polyphen2 (both the HumDiv model and the 

HumVar model) [76], SIFT [77], Mutationtaster [78] and VEST [27]. Based on the 

predictions from these tools and the mutation types, variants are sorted into three groups – a 

disruptive group (DIS), a non-synonymous strict group (NSS) and a non-synonymous broad 

group (NSB). DIS included stop loss, stop gain, exonic splicing and frameshift variants. NSS 

included variants in DIS plus missense variants predicted as damaging by all of the 

bioinformatics tools listed above. Finally, NSB included variants in DIS plus missense 

variants predicted as damaging by any of the bioinformatics tools listed above.  

BOMP was run on each group. The bioinformatics weights for variants in DIS were 

set to 1.0 and the bioinformatics weights for the remaining missense variants were set to 

VEST scores in the BOMP burden statistic calculation. A maximum of 1,000,000 

permutations were used to evaluate the statistical significance for each phenotype-gene 

association. Both Bonferroni and Benjamini-Hochberg procedures [79] were used for 

correction of testing multiple genes. 

5.2.3 BOMP single gene results 

The top 30 genes, in order of ascending BOMP p-values, from the DIS, NSS and NSB 

groups are shown in Table 5.1, 5.2 and 5.3 respectively. Unfortunately, no gene was 

statistically significant after multiple testing corrections. TYRO3 was the only gene with false 
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discovery rates less than 1.0 in all three analyses, and may be an interesting candidate gene 

for further study.  

TYRO3 produces a receptor protein tyrosine kinase (RPTK) whose function is to transduce 

signals from the extracellular matrix into the cell by binding to several ligands. It regulates 

many physiological processes including cell survival, migration and differentiation. TYRO3 

signaling is also involved in processes such as neuron protection from excitotoxic injury, 

platelet aggregation and cytoskeleton reorganization. Additionally, RPTKs have been shown 

to modulate signaling cascades that influence synaptic function in the central nervous system 

(CNS) [80,81]. A recent study found prominent expression of TYRO3 in dendrites might 

suggest the capability to modulate signaling pathways triggered by synaptic transmission [82]. 

This finding aligned well with our original hypothesis of a causal relationship between 

synaptic genes and BP. 
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Name BOMP BOMP_B BOMP_P Bonferron
i 

BH-FDR 

TYRO3 0.000046 0.000058 0.000281 0.410044 0.410044 

FAM81B 0.000370 0.001990 0.000790 1.000000 1.000000 

ZNF677 0.000610 0.000610 0.001300 1.000000 1.000000 

PKHD1 0.000880 0.010050 0.000950 1.000000 1.000000 

RBMX 0.001100 0.001100 0.003800 1.000000 1.000000 

MUC6 0.001900 0.010699 0.003700 1.000000 1.000000 

PFAS 0.002000 0.016998 0.001200 1.000000 1.000000 

ETFB 0.002400 0.002500 0.009799 1.000000 1.000000 

LY75-CD302 0.003300 0.011799 0.003400 1.000000 1.000000 

DEPDC1 0.003900 0.019398 0.003800 1.000000 1.000000 

VPS13B 0.004500 0.006199 0.008799 1.000000 1.000000 

TMCO4 0.004600 0.025697 0.006299 1.000000 1.000000 

BRCA2 0.005899 0.029697 0.003500 1.000000 1.000000 

CLEC7A 0.007099 0.007099 0.015298 1.000000 1.000000 

PTH2R 0.007099 0.024198 0.009299 1.000000 1.000000 

CBX8 0.007199 0.010299 0.010499 1.000000 1.000000 

LARP7 0.008099 0.007999 0.028497 1.000000 1.000000 

PCDHAC1 0.008499 0.008499 0.063894 1.000000 1.000000 

OR5H2 0.009299 0.009299 0.017198 1.000000 1.000000 

NUMA1 0.009399 0.009399 0.018898 1.000000 1.000000 

RAB18 0.009999 0.009999 0.034097 1.000000 1.000000 

LY75 0.011099 0.011099 0.037496 1.000000 1.000000 

GPRC6A 0.011199 0.012899 0.058994 1.000000 1.000000 

LRIG1 0.013199 0.013199 0.030597 1.000000 1.000000 

NWD1 0.013299 0.037796 0.116888 1.000000 1.000000 

TIGD4 0.014599 0.014599 0.040496 1.000000 1.000000 

ABCA2 0.015698 0.015698 0.034397 1.000000 1.000000 

GPATCH2L 0.015998 0.015998 0.034597 1.000000 1.000000 

CCDC59 0.016598 0.018398 0.035196 1.000000 1.000000 

ATP11A 0.017698 0.017698 0.033697 1.000000 1.000000 

Table 5.1: Top 30 genes of the BOMP results using disruptive (DIS) variants only. 

Disruptive variants include stop loss, stop gain, exonic splicing and frameshift variants. 

NAME=gene name, BOMP=p-value of BOMP statistic, BOMP_B=p-value of BOMP 

burden statistic, BOMP_P=p-value of BOMP position distribution statistic, 

Bonferroni=corrected family-wise p-value of BOMP statistic and BH-FDR=Benjamini-

Hochberg false discovery rate at p-value of BOMP statistic. 
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Name BOMP BOMP_B BOMP_P Bonferron

i 
BH-FDR 

TYRO3 0.000028 0.000030 0.000283 0.347648 0.347648 

ZNF677 0.000660 0.000660 0.001230 1.000000 1.000000 

IFT81 0.001100 0.001400 0.002300 1.000000 1.000000 

RBMX 0.001100 0.001100 0.003700 1.000000 1.000000 

PKHD1 0.001100 0.043196 0.000300 1.000000 1.000000 

ACADS 0.001100 0.001100 0.047995 1.000000 1.000000 

DDOST 0.002100 0.005899 0.008299 1.000000 1.000000 

LY75-CD302 0.002500 0.010999 0.003200 1.000000 1.000000 

MUC6 0.002700 0.009699 0.003400 1.000000 1.000000 

TRPV1 0.002800 0.002800 0.423658 1.000000 1.000000 

ETFB 0.002900 0.003000 0.011199 1.000000 1.000000 

FHL2 0.003400 0.003400 0.297170 1.000000 1.000000 

FAM81B 0.003500 0.112689 0.001700 1.000000 1.000000 

XYLB 0.004400 0.013299 0.014499 1.000000 1.000000 

MCTP2 0.004700 0.002600 0.603340 1.000000 1.000000 

BRCA2 0.005799 0.036596 0.006999 1.000000 1.000000 

ACOX3 0.005999 0.004200 0.402060 1.000000 1.000000 

GEMIN5 0.005999 0.441156 0.001100 1.000000 1.000000 

FBXW5 0.006799 0.032097 0.025097 1.000000 1.000000 

GLB1L 0.006799 0.009099 0.066593 1.000000 1.000000 

CBX8 0.007199 0.010099 0.014199 1.000000 1.000000 

CLEC7A 0.007299 0.007299 0.014399 1.000000 1.000000 

PCDHAC1 0.007299 0.007299 0.062194 1.000000 1.000000 

TMCO4 0.007299 0.040896 0.004300 1.000000 1.000000 

PFAS 0.007499 0.021098 0.018098 1.000000 1.000000 

OR5H2 0.007599 0.007599 0.015498 1.000000 1.000000 

LARP7 0.007899 0.016198 0.013499 1.000000 1.000000 

RASAL2 0.007999 0.033997 0.066593 1.000000 1.000000 

TRMT44 0.008099 0.008099 0.277172 1.000000 1.000000 

DEPDC1 0.008199 0.033597 0.008199 1.000000 1.000000 

Table 5.2: Top 30 genes of the BOMP results using non-synonymous strict (NSS) variants 

only. Non-synonymous strict variants include stop loss, stop gain, exonic splicing and 

frameshift variants, and missense variants predicted as damaging by all of the bioinformatics 

tools used in the analysis: PolyPhen 2, SIFT, Mutationtaster and VEST. NAME=gene name, 

BOMP=p-value of BOMP statistic, BOMP_B=p-value of BOMP burden statistic, 

BOMP_P=p-value of BOMP position distribution statistic, Bonferroni=corrected family-
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wise p-value of BOMP statistic and BH-FDR=Benjamini-Hochberg false discovery rate at p-

value of BOMP statistic. 
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Name BOMP BOMP_B BOMP_P Bonferron
i 

BH-FDR 

GALNT15 0.000120 0.001140 0.000540 1.000000 0.752866 

C9orf9 0.000130 0.001140 0.017340 1.000000 0.752866 

OR1B1 0.000140 0.000410 0.005910 1.000000 0.752866 

TYRO3 0.000280 0.005080 0.000390 1.000000 0.981910 

GMPS 0.000380 0.001770 0.000670 1.000000 0.981910 

FAM81B 0.000490 0.190548 0.000260 1.000000 0.981910 

ZNF677 0.000590 0.000590 0.001320 1.000000 0.981910 

SEMA3G 0.000630 0.047150 0.000570 1.000000 0.981910 

OR6K3 0.000740 0.001180 0.029130 1.000000 0.981910 

SH3RF1 0.000810 0.000600 0.032330 1.000000 0.981910 

MEGF11 0.000930 0.001740 0.031300 1.000000 0.981910 

GFOD1 0.001100 0.001500 0.061394 1.000000 0.981910 

ANKHD1-
EIF4EBP3 

0.001100 0.004500 0.011499 1.000000 0.981910 

ABCC11 0.001100 0.102990 0.000500 1.000000 0.981910 

ANKRD26 0.001100 0.000800 0.039996 1.000000 0.981910 

EIF2AK4 0.001190 0.002500 0.053689 1.000000 0.981910 

CACHD1 0.001190 0.145459 0.000380 1.000000 0.981910 

GEMIN5 0.001200 0.153285 0.000500 1.000000 0.981910 

CDC42BPG 0.001300 0.003200 0.014999 1.000000 0.981910 

ZZZ3 0.001320 0.001990 0.014840 1.000000 0.981910 

TMEM115 0.001400 0.003300 0.041296 1.000000 0.981910 

DUOXA2 0.001400 0.001900 0.188981 1.000000 0.981910 

ZNF776 0.001400 0.001400 0.007999 1.000000 0.981910 

FAM212B 0.001500 0.001500 0.875212 1.000000 1.000000 

PYHIN1 0.001600 0.087491 0.001000 1.000000 1.000000 

USP6NL 0.001700 0.010799 0.002200 1.000000 1.000000 

RBMX 0.001700 0.001700 0.004400 1.000000 1.000000 

KCTD9 0.001800 0.006499 0.002600 1.000000 1.000000 

CYTL1 0.001820 0.002930 0.010620 1.000000 1.000000 

MAML1 0.001900 0.002100 0.039496 1.000000 1.000000 

Table 5.3: Top 30 genes of the BOMP result using non-synonymous broad (NSB) variants 

only. Non-synonymous broad variants include stop loss, stop gain, exonic splicing and 

frameshift variants, and missense variants predicted as damaging by any of the 

bioinformatics tools used in the analysis: PolyPhen 2, SIFT, Mutationtaster and VEST. 

NAME=gene name, BOMP=p-value of BOMP statistic, BOMP_B=p-value of BOMP 

burden statistic, BOMP_P=p-value of BOMP position distribution statistic, 
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Bonferroni=corrected family-wise p-value of BOMP statistic and BH-FDR=Benjamini-

Hochberg false discovery rate at p-value of BOMP statistic. 
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5.2.4 BOMP gene set results 

Although it lacks a rigorous definition, a gene set refers to a combination of genes. With 

about 20,000 genes for consideration, the number of possible gene sets for analysis is vast. 

To constrain our search space, our collaborators suggested that I focus on 306 gene sets 

collected in SynaptomDB where each gene set contains a significant fraction of genes 

involved in synaptic functions [83]. Gene sets in SynaptomeDB were originally created by 

three pathway curation organizations: KEGG [84], BioCarta [85] and Gene Ontology [86]. 

The top 10 gene sets, in order of ascending BOMP p-values, from the DIS, NSS and NSB 

groups are shown in Table 5.4, 5.5 and 5.6 respectively. 

In general, the results aligned with the findings in simulations that the BOMP 

position distribution statistic was much more effective for detecting the association for a 

gene set than the BOMP burden statistic. In the DIS group, 2 out of 306 gene sets had a p-

value < 0.05 after Bonferroni correction and 7 had a Benjamini-Hochberg false discovery 

rate (BH-FDR) < 0.05. In the NSS group, only 1 (1 for NSB group) out of 306 gene sets had 

a Bonferroni-corrected p-value < 0.05 and 1 (5 for NSB group) had a BH-FDR < 0.05. 

Interestingly, the set of genes associated with the microtubule cytoskeleton was the 

most significant gene set with Bonferroni corrected p-value and BH-FDR < 0.05 in both the 

DIS group and the NSS group, in which only highly damaging variants were considered. 

This gene set was created by Gene Ontology containing genes involved in the part of the 

cytoskeleton composed of microtubules and associated proteins. Microtubules are well 

known to play a key role in the trafficking of neurotransmitters to the synapse and recent 

evidence further illustrated the mechanism of neurotransmission regulated by the 

microtubule cytoskeleton [87]. The relationship between mental disorders such as 

schizophrenia and defects in the microtubule has been wildly discussed [88-90]. BOMP 
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showed that the genes involved in the microtubule cytoskeleton are significantly associated 

with BP. Furthermore, four genes, PKHD1, BRCA2, NUMA1 and ABCA2, in the gene set 

had p-values less than 0.05. Among them, a SNP in BRCA2 was reported to be associated 

with BP in a case-control study [91] and ABCA2 interacts with the gene GPR50, which has 

been identified as a genetic risk factor for BP [92]. 

The genes associated with the Golgi apparatus, defined by Gene Ontology, was the 

only gene set with both Bonferroni corrected p-value and BH-FDR less than 0.05 when all 

possible damaging variants were considered. Genes in the gene set form a compound 

membranous cytoplasmic organelle in eukaryotic cells where proteins produced on the 

ribosomes of the rough endoplasmic reticulum are further processed for glycol-modification 

and sorting and packaging to a variety of cellular locations, which plays a key role in 

neurotransmitter synthesis. The Golgi apparatus was suspected to cause neurodegenerative 

diseases but the mechanisms remain to be clarified [93]. One recent study illustrated that 

mitochondria alterations in the fragmented (falling apart) Golgi apparatus in the neurons of 

patients with Alzheimer’s disease causes the accumulation of amyloid deposits, 

demonstrating the synaptic pathology [94]. Interestingly, the alteration of the Golgi 

apparatus may be associated with alterations of microtubules, the cellular component that 

had a significant p-value in the DIS and NSS groups [95]. In the Golgi apparatus gene set, 

twelve genes had a p-value < 0.05: ATXN2, PCSK5, CHST2, TYR, DOPEY1, SLC30A5, 

CLASP1, CLCN3, AFTPH, SYNE1, RHOT2 and SI. Some of them have been implicated as 

being responsible for mental disorders including BP: ATXN2 schizophrenia [96], PCSK5 

mental retardation [97], TYR and SYNE1 bipolar disorder [66,98]. 
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#Name BOMP BOMP_
B 

BOMP_
P 

Bonferroni BH-
FDR 

MICROTUBULE_CYTOSKELE
TON 

0.000039 0.050447 0.000011 0.011934 0.011934 

INTRINSIC_TO_PLASMA_ME
MBRANE 

0.000160 0.949771 0.000070 0.048960 0.017340 

INTRINSIC_TO_MEMBRANE 0.000170 0.920241 0.000080 0.052019 0.017340 

ORGANELLE_ORGANIZATIO
N_AND_BIOGENESIS 

0.000660 0.026710 0.002640 0.201958 0.041310 

INTEGRAL_TO_PLASMA_ME
MBRANE 

0.000680 0.948111 0.000380 0.208078 0.041310 

INTEGRAL_TO_MEMBRANE 0.000810 0.957040 0.000470 0.247858 0.041310 

CYTOSKELETON 0.001090 0.176098 0.000990 0.333537 0.047648 

TRANSPORT 0.003400 0.653635 0.001800 1.000000 0.113209 

LIGASE_ACTIVITY 0.003600 0.011999 0.023798 1.000000 0.113209 

ESTABLISHMENT_OF_LOCA
LIZATION 

0.003700 0.384462 0.003200 1.000000 0.113209 

Table 5.4: Top 10 gene sets of the BOMP results using disruptive (DIS) variants only. In 

consideration of disruptive variants only, BOMP gene set analysis was performed on 

candidate gene sets in which synaptic genes are significantly enriched. Disruptive variants 

include stop loss, stop gain, exonic splicing and frameshift variants. NAME=gene name, 

BOMP=p-value of BOMP statistic, BOMP_B=p-value of BOMP burden statistic, 

BOMP_P=p-value of BOMP position distribution statistic, Bonferroni=corrected family-

wise p-value of BOMP statistic and BH-FDR=Benjamini-Hochberg false discovery rate at p-

value of BOMP statistic. 
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#Name BOMP BOMP_
B 

BOMP_
P 

Bonferroni BH-
FDR 

MICROTUBULE_CYTOSKELE
TON 

0.000032 0.722813 0.000005 0.009792 0.009792 

REGULATION_OF_GENE_EX
PRESSION 

0.000780 0.256907 0.000840 0.238678 0.119339 

INTRINSIC_TO_PLASMA_ME
MBRANE 

0.002600 0.914209 0.001700 0.795520 0.206529 

SECRETORY_PATHWAY 0.002700 0.286171 0.001900 0.826117 0.206529 

ORGANELLE_ORGANIZATIO
N_AND_BIOGENESIS 

0.004400 0.458854 0.003800 1.000000 0.209471 

IMMUNE_SYSTEM_PROCESS 0.005699 0.741026 0.003300 1.000000 0.209471 

NUCLEUS 0.005699 0.937506 0.003600 1.000000 0.209471 

REGULATION_OF_CELLULA
R_METABOLIC_PROCESS 

0.005999 0.195180 0.008099 1.000000 0.209471 

CYTOSKELETON 0.006199 0.369063 0.006299 1.000000 0.209471 

INTRINSIC_TO_MEMBRANE 0.007099 0.904110 0.005000 1.000000 0.209471 

Table 5.5: Top 10 gene sets of the BOMP results using non-synonymous strict (NSS) 

variants only. In consideration of non-synonymous strict variants only, BOMP gene set 

analysis was performed on candidate gene sets in which synaptic genes are significantly 

enriched. Non-synonymous strict variants include stop loss, stop gain, exonic splicing and 

frameshift variants and missense variants predicted as damaging for all of the bioinformatics 

tools used in the analysis: PolyPhen 2, SIFT, Mutationtaster and VEST. NAME=gene name, 

BOMP=p-value of BOMP statistic, BOMP_B=p-value of BOMP burden statistic, 

BOMP_P=p-value of BOMP position distribution statistic, Bonferroni=corrected family-

wise p-value of BOMP statistic and BH-FDR=Benjamini-Hochberg false discovery rate at p-

value of BOMP statistic. 
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#Name BOMP BOMP_
B 

BOMP_
P 

Bonferroni BH-FDR 

GOLGI_APPARATUS 0.000050 0.827392 0.000020 0.015300 0.015300 

INTRINSIC_TO_MEMBRANE 0.000250 0.776272 0.000200 0.076499 0.038250 

INTEGRAL_TO_MEMBRANE 0.000490 0.918181 0.000420 0.149939 0.039015 

NERVOUS_SYSTEM_DEVELO
PMENT 

0.000510 0.735773 0.000430 0.156058 0.039015 

GOLGI_APPARATUS_PART 0.000710 0.066999 0.001170 0.217258 0.043452 

PERINUCLEAR_REGION_OF
_CYTOPLASM 

0.001100 0.563744 0.000600 0.336566 0.056094 

MICROTUBULE_CYTOSKELE
TON 

0.002300 0.938106 0.001600 0.703730 0.100533 

SECRETORY_PATHWAY 0.002900 0.735626 0.001700 0.887311 0.110914 

MICROTUBULE_BASED_PRO
CESS 

0.003900 0.626537 0.002800 1.000000 0.132587 

CELL_PROJECTION 0.004800 0.307869 0.005000 1.000000 0.146865 

Table 5.6: Top 10 gene sets of the BOMP results using non-synonymous broad (NSB) 

variants only. In consideration of non-synonymous broad variants only, BOMP gene set 

analysis was performed on candidate gene sets in which synaptic genes are significantly 

enriched. Non-synonymous broad variants include stop loss, stop gain, exonic splicing and 

frameshift variants, and missense variants predicted as damaging by all of the bioinformatics 

tools used in the analysis: PolyPhen 2, SIFT, Mutationtaster and VEST. NAME=gene name, 

BOMP=p-value of BOMP statistic, BOMP_B=p-value of BOMP burden statistic, 

BOMP_P=p-value of BOMP position distribution statistic, Bonferroni=corrected family-

wise p-value of BOMP statistic and BH-FDR=Benjamini-Hochberg false discovery rate at p-

value of BOMP statistic. 
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Chapter 6 BOMP: Future Work and Conclusion 

6.1 Power increase by removing non-causal variants 

A causal gene may contain both causal and non-causal variants. Including non-causal 

variants in the analysis often decreases statistical power. Case-control labeling is the most 

informative feature in terms of removing or lowering the weight of non-causal variants. 

Existing methods utilize this feature in different ways. The BOMP burden statistic uses it to 

pick the burden threshold (see 3.2.2 individual burden threshold) that maximizes the 

likelihood ratio. VT uses it to choose the allele frequency threshold that maximizes the z-

scores. SKAT regresses the case-control label on variants, putting higher weights on variants 

that are likely to be causal. Many more undiscovered methods exist to calculate the gene 

statistic, and better utilization of the case-control labels may better separate causal variants 

from non-causal variants in the analysis, yielding a statistical power increase. 

 In addition to the case-control label, other variant features may help filter out or 

lower the weight of non-causal variants in association tests. Allele frequency and 

bioinformatics scores have been used for this purpose in several existing methods. The 

BOMP position distribution statistic attempts to capture the hypothesis that causal variants 

may be locally clustered in functional domains. Any intuition that can distinguish causal from 

non-causal variants would be useful to increase the statistical power of association tests in 

the future. 

6.2 Extension to quantitative trait study 

Currently, the BOMP statistic can only handle dichotomous phenotypes in a case-control 

study design. A natural progression is to extend the framework to identify causal genes for 

quantitative trait studies. The simplest approach is to transform a quantitative trait study into 
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a case-control study: for example, taking the extreme phenotype where samples with extreme 

traits in both directions are labeled as either cases or controls. In the extreme phenotype 

study design, an individual is either a case (with a case membership of 1 and a control 

membership of 0) or a control (with a case membership of 0 and a control membership of 1) 

or neither (with a case membership of 0 and a control membership of 0). A more generalized 

transformation from the quantitative trait study to a case-control study is to give a soft 

assignment to the case-control membership for each individual. Each individual can have 

nonzero values for both case and control memberships. An individual’s two memberships 

must sum to 1 and the fraction belonging to the case group and the control group depends 

on how extreme the individual’s trait is. If the trait of a higher value is defined to be more 

severe, the individual with a higher value trait will have a greater percentage of the case 

membership and a lesser percentage of the control membership. The BOMP statistic can be 

calculated in the same way with few modifications listed as follows. 

Equations in 3.2.3: 
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Equations in 3.3.1: 
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where   
  and   

  are the case and the control memberships for individual k respectively 

(  
      and   

      if the individual is 70% of the case group and 30% of the control 

group, for example). With these modifications, the extended version of BOMP for 

quantitative traits can also be evaluated using the simulated and empirical data from the 

Dallas Heart Study. 

 The assignment of the case-control memberships for each individual actually weights 

each sample in the association analysis. A sample with a case/control membership of 1 has 

the highest weight while a sample with equal case/control memberships (a membership of 

0.5 for each) does not contribute to the association analysis. The choice of the assignment 

function depends on the distribution of quantitative traits in the study and the phenotype 

that is being analyzed. It is an interesting topic, but beyond the scope of this dissertation. 

6.3 Network analysis 

Sparsity is the major difficulty of association analyses for identifying genetic causes, greatly 

decreasing the power of association tests. In addition to improving the power of a method in 

the statistical sense, effective approaches to aggregate the sparse signals may strengthen the 

association between the phenotype and the genomic unit that contains the aggregated 

signals. Adding more samples aggregates signals at every causal variant but increases cost. 

Testing the association based on single genes rather than single variants, as do the methods 

discussed in this dissertation, aggregate variant-level signals by genes, with no additional cost 

or sacrifice of genomic resolution. Network analysis, which has been used commonly in 

cancer research, follow the same concept, aggregating gene-level signals onto a set of genes 

that interact with each other. I believe this type of analysis will be the next significant effort, 

if genetic heterogeneity behind complex phenotypes is currently underestimated. Given that 
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no significant genes were identified in the BP project (See Chapter 5), genetic heterogeneity 

for certain phenotypes probably goes beyond the capability of existing gene association tests 

at the sample size of ~ 2000. Thus, network analysis for identifying a set of associated genes 

may be emphasized as more and more sequence-based association studies are conducted in 

the near future. 

 Here I propose a framework of network analysis for sequence-based association 

studies, identifying a set of functionally relevant genes with phenotypic associations 

quantified by the phenotype-gene association test. Suppose that I have a network where 

nodes are genes or gene products and edges are interactions between two nodes. Many kinds 

of networks have been constructed [99]. For example, a PPI network is built by taking 

proteins as nodes and physical interactions between proteins as edges. The construction of 

the network depends on the biological mechanisms underlying the phenotype. Additionally, 

by running the phenotype-gene association test, each gene has a quantitative measurement, a 

p-value for example, indicating the strength of its phenotypic association. To combine 

association strengths and biological interactions, I will first project the quantitative 

measurement associated with each gene onto the corresponding node in the network, and 

then identify a set of highly interconnected genes with significantly strong phenotypic 

associations. The algorithm of identifying this gene set requires further development. 

6.4 Conclusion 

In summary, I have developed a new method for identifying causal variants in high-

throughput sequencing data from case-control studies. It is shown to have good power 

relative to other leading methods and can be flexibly used in a variety of realistic scenarios. 

The genetic architecture of most common human phenotypes is likely complex, involving 

variants with a wide spectrum of frequencies from rare to common. The emergence of 
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whole-exome and genome sequencing studies promises to accelerate our ability to 

interrogate the genetic architecture of these phenotypes. However, a major challenge 

remains: how to make sense of the enormous amounts of data generated by such studies. 

This new method provides another useful tool in a growing toolbox for analyzing the data 

from such studies. 
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Chapter 7 Personalized Genome Interpretation 

A central question in modern human genetics is how inter-individual variation impacts 

human phenotypes.  Unprecedented technological advances will soon make whole genome 

DNA sequencing services available to a large number of people.  However, interpreting the 

variant genotypes found in an individual’s genome remains challenging, and is the focus of 

many academic, government, and commercial efforts. Here I address some limitations of 

state-of-the-art biomedical informatics tools to interpret genomic data, and I propose a 

Bayesian probabilistic model that begins to address these limitations. 

7.1 State-of-art personalized genome interpretation 

An individual's whole genome sequence yields 3.2 million variant genotypes on average [100].  

Genome interpretation requires reducing this very large number to a more tractable list.  

Current informatics tools prioritize variant genotypes, using database annotations, 

bioinformatics function prediction, and allele frequencies.  For example, the PGP's GET-

Evidence pipeline [100] prioritizes non-synonymous substitution variant calls over other 

alterations and ranks variant calls with a heuristic point system incorporating PolyPhen-2 

classifications [76], and variant allele frequencies, variant and gene annotations in multiple 

public databases. The "Disease Risk of Volunteers Project" informatics pipeline identifies 

disease-causing mutations (DMs) in the Human Gene Mutation Database [101], eliminates 

any variants with minor allele frequency (MAF) > 0.01, those predicted to be benign by two 

out of three bioinformatics classifiers, and those seen more than three times in their cohort.  

In both projects, short lists of putatively important risk variant genotypes identified by the 

pipelines are reviewed by researchers and shared with participants. 
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7.2 The ultimate goal of personalized genome interpretation – personal 

phenotype prediction 

The purpose of personal genome interpretation is to understand how variant genotypes 

impact upon an individual's lifetime risk of specific diseases or traits. Annotating single 

variant genotypes is just the first step. Most human phenotypes result from a constellation of 

variant genotypes and non-genetic contributions.  Here I shift the focus from interpretation 

of single variant genotypes to identifying genes and genotypes that impact the phenotype 

and estimating their penetrance.  To my knowledge, the only previous comparable approach 

to this problem considered each variant genotype as an independent medical test with an 

associated likelihood ratio [102].  A "pre-test" probability of phenotype, based on age- and 

gender-based prevalence, was multiplied by a chain of likelihood ratios for each common 

variant, yielding a post-test probability of phenotype. In a pioneering study of the genome of 

a single individual, this method was used to predict the probability of 55 disease phenotypes 

[103]. The likelihood ratios were derived from extensive database annotations and 480 

publications of cohort and case-control studies.    

I present a formal Bayesian probabilistic model that for the first time integrates 

annotations of phenotype prevalence, both rare and common variant genotypes and disease-

associated genes, and yields a single posterior probability for a phenotype of interest. I use 

self-reported phenotypes and medical information shared by participants in the PGP to 

quantitatively assess the performance of the model on a cohort of individuals. Notably, our 

models do not use information from the 130 members of the PGP cohort to fit or optimize 

parameters. However, eventually the availability of information from thousands of 

individuals could enable learning these parameters directly from individuals' genomes and 

reported phenotypes, enabling significantly better phenotype predictions.  
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Chapter 8 Probabilistic Model for Personal Phenotype 

Prediction 

8.1 Overview of Bayesian network model 

I designed a Bayesian model to predict whether an individual possessed a phenotype of 

interest, based on genome sequence and estimated prevalence (Figure 8.1).  Three categories 

of variables are included in the model.  Categorical variables (0, 1, or 2) in the first layer 

represent observed genotypes, limited to those with phenotype-associated variants and 

predicted functional variants.  Real-valued variables [0,1] in the second layer represent the 

probability that phenotype-associated genes are functionally altered.   To estimate the 

aggregated penetrance of the genotypes, functional alterations are grouped into four abstract 

categories in the third layer.  The probability that each of these categories is altered depends 

either on high penetrance variants (Bernoulli variable SVH), low penetrance variants 

(Bernoulli variable SVL), high penetrance genes (Bernoulli variable SGH), or low penetrance 

genes (Bernoulli variable SGL). The joint distribution of SVH, SVL, SGH, SGL is used to infer the 

state of Bernoulli variable Y, which represents phenotype status. All equations and 

derivations are reported in the following sections. 

 The model was designed to compute the probability by integrating the most 

common types of identified genetic annotations – phenotype-associated variants/genes. 

However, most of phenotype-associated variants/genes do not have quantitative 

measurements for the strength of the phenotypic association, which is essential for 

parameter estimation and inference calculation in the probabilistic model. To overcome this 

practical problem, I make assumptions to reduce the number of parameters based on 

qualitative statements. For example, one may suggest that the nodes in the 3rd layer (SVH, SVL, 
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SGH, SGL) can be removed and the links to the 3rd layer can be directly linked to the 

phenotype Y in the 4th layer, meaning that phenotype-associated variants/genes affect the 

phenotypic status, which is more intuitive than adding the 3rd layer. The model without the 

3rd layer, however, requires the calculation of the joint distribution of all phenotype-

associated variants/genes and the phenotype Y, which may require a huge number of 

parameters depending on the number of phenotype-associated variants/genes. Adding the 

3rd layer helps to group the variants and genes into sets and to apply different inference 

techniques based on their qualitative properties and constraints on quantitative 

measurements. Other assumptions that are made to overcome the sparsity of quantitative 

measurement will be discussed when describing the inference calculation. 
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Figure 8.1:  Topology of the model to predict phenotype from an individual's genome 

sequence. Red nodes in the first layer of the model represent the individual's genotype calls 

at genomic positions associated with the phenotype of interest.  They are sorted into three 

categories: VH  (HGMD DM variants), VL  (NHGRI GWAS hits), and VF (<0.01 MAF in 

any population reported in ESP6500 (http://evs.gs.washington.edu/EVS/) or 1000 

Genomes [32]), found in genes annotated as associated with the phenotype.  Green nodes in 

the second layer represent genes split into high penetrance GH or low penetrance GL based 

on database annotations.  Blue nodes in the third layer are Bernoulli random variables, 

abstractly representing mechanisms that explain the phenotype, sorted into those altered by 

high penetrance variants SVH, low penetrance variants SVL, high penetrance genes SGH, or low 

penetrance genes SGL.   The blue node Y is a Bernoulli random variable representing 
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individual phenotypic status.  Directed edges show the dependencies between nodes.   A set 

of model parameters is estimated for each phenotype and each individual. 
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8.2 Topology of the probabilistic model 

The model has the same overall topology, irrespective of the phenotype predicted and the 

individual being assessed (Figure 8.1).   

First layer.  The nodes in the first layer represent observed genotypes (0, 1 or 2) from an 

individual’s genome (homozygous reference allele, heterozygous allele, or alternate 

homozygous allele). Only genotypes annotated as directly associated with the phenotype are 

included.  Genotypes are sorted into the following categories: high penetrance VH  (HGMD 

DM variants); low penetrance VL  (NHGRI GWAS hits); and rare (putatively functional) 

genotypes VF (<0.01 MAF in any population reported in ESP6500 [104] or the 1000 

Genomes Project [32]).  Putatively functional genotypes are only counted if they occur in 

genes annotated as being associated with the phenotype.   

Second layer. These nodes represent genes, split into those annotated as high penetrance GH or 

low penetrance GL.  Their values depend on links to nodes in the first layer.  Only genes 

whose translated products were bioinformatically predicted to be functionally altered by VF 

genotypes are included (8.5 Functional impact of variants on phenotype-associated genes).   

Third layer.  These nodes are Bernoulli random variables, which represent sets of hidden 

mechanisms that account for the clinical phenotype.  Conditional independence given an 

individual's genomic data is assumed.  The probability that each of the nodes is set to 1 

depends on the high penetrance variants (Bernoulli variable SVH); the low penetrance 

variants (Bernoulli variable SVL); the high penetrance genes (Bernoulli variable SGH); and the 

low penetrance genes (Bernoulli variable SGL), respectively. The joint distribution of SVH, SVL, 

SGH, SGL is used to infer the state of Bernoulli variable Y. 

Fourth layer.  The Bernoulli variable Y represents the phenotypic status of the individual, and 

the posterior probability of Y is the final output of the model. 
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8.3 Inference of phenotype status 

The topology of the model yields the following equation for the posterior probability of an 

individual's phenotypic status, given genome sequence data. 

 
 

 

Eq 8.1 

 

where the summation is over all possible configurations of SVH, SGH, SGL and SVL. I reduce 

the number of penetrance parameters by assuming that I can disregard lower penetrance 

genotypes if higher penetrance genotypes are present, as follows: 

 

 

 

Eq 8.2 

 

Using (Eq 8.2), (Eq 8.1) can be rewritten so that the joint distribution of SVH, SVL, SGH, SGL 

depends only on nine parameters. 

 

 

 

Eq 8.3 

 

8.3.1 Posterior probabilities of random variables SVH, SVL, SGH, SGL 

The model contains four random variables that represent sets of "hidden" biological 

processes impacted by four categories of variants: high penetrance variants (SVH), low 

penetrance variants (SVL), high penetrance genes (SGH) and low penetrance genes (SGL). I 

designed equations to estimate the posterior probabilities of these random variables based 

P(Y = 1|Data) = P(Y = 1,SVH ,SGH ,SGL ,SVL |Data)å
= P(Y = 1| SVH ,SGH ,SGL ,SVL )P(SVH ,SGH ,SGL ,SVL |Data)å
= P(Y = 1| SVH ,SGH ,SGL ,SVL )P(SVH |Data)P(SGH |Data)P(SGL |Data)P(SVL |Data)å

P(Y =1| SVH =1,SGH ,SGL ,SVL ) = P(Y =1| SVH =1)

P(Y =1| SVH = 0,SGH = 1,SGL ,SVL ) = P(Y =1| SVH = 0,SGH =1)

P(Y =1| SVH = SGH = 0,SGL =1,SVL ) = P(Y =1| SVH = SGH = 0,SGL =1)

P(Y = 1|Data) =

P(Y = 1| SVH = 1)P(SVH = 1|Data)

+P(Y = 1| SVH = 0,SGH = 1)P(SVH = 0,SGH = 1|Data)

+P(Y = 1| SVH = SGH = 0,SGL = 1)P(SVH = SGH = 0,SGL = 1|Data)

+P(Y = 1| SVH = SGH = SGL = 0,SVL = 1)P(SVH = SGH = SGL = 0,SVL = 1|Data)

+P(Y = 1| SVH = SGH = SGL = SVL = 0)P(SVH = SGH = SGL = SVL = 0 | Data)
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on individuals’ variants, assuming that very little is known about the actual mechanisms by 

which each set of categorized variants impact the representative set of biological processes. 

The random variable (SVH, SVL, SGH, SGL) is set to 1, indicating that the representative set of 

biological processes is functionally damaged by the associated variants. 

The posterior probabilities of SVH, SVL, SGH, SGL are computed as: 

 

 

 

Eq 8.4 

 

SVH represents the functional status of the set of biological processes that are affected by 

high penetrance variants. In Equation 8.4, it is assumed that any high penetrance variant 

genotype is able to cause functional damage (               ) due to its high 

penetrance. 

 

 

 

 

Eq 8.5 

 

where  is calculated as in (Eq. 8.28) and Data is the VEST gene level 

statistic (Eq. 8.27).  SGH represents the functional status of the set of biological processes that 

are affected by high penetrance genes. I make the assumption that if there are multiple high 

penetrance genes, the one with the most severe damage (       (   
  |    ) ) 

dominates the impact to the functional status. Considering the tolerance to variants, the 

function is impacted only when the most severe gene damage exceeds a baseline. 

P(SVH =1|Data) =
1,  annotated variant genotype match

0,  otherwise

ì
í
ï

îï

P(SGH =1|Data) = max
maxi{P(GHi =1|Data)}-maxi{E[P(GHi =1)]}

0

ì
í
ï

îï

P(GHi =1|Data)
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Eq 8.6 

 

where  is calculated as in (Eq. 8.28) and Data is the VEST gene level 

statistic (Eq. 8.27).  SGL represents the functional status of the set of biological processes that 

are affected by low penetrance genes. If there are multiple low penetrance genes, the 

combined impact of  is estimated with a noisy-OR model, exponentiated 

by a phenotype-specific weight ( ), which controls for ascertainment bias (some 

phenotypes have hundreds of annotated low-penetrance genes while others have very few 

annotated low-penetrance genes) (Eq. 8.17). The noisy-or model assumes that low 

penetrance genes impact SGL independently. 

 
 

 

Eq 8.7 

 

where ORi is the odds ratio of genotype . SVL represents the functional status 

of the set of biological processes that are affected by low penetrance variants, GWAS hits in 

my current implementation. I assume that the impact of low penetrance variants follow the 

multiplicative model, adjusted by a phenotype-specific weight ( ), which controls for 

ascertainment bias (Eq. 8.19). 

 

8.3.2 Penetrances of random variables (SVH, SVL, SGH, SGL) 

Penetrance of SVH. 

P(SGL =1|Data) =1- (1- P(GLi =1|Data))
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P(Y =1| SVH =1) =

0.90, Homozygous variant genotype or dominant heterozygous genotype

0.45, Heterozygous genotype with unknown genetic model

ì
í
ï

îï

 

 

 

Eq 8.8 

 

In the absence of quantitative annotations (effect size) I estimate that a homozygous variant 

genotype or heterozygous variant genotype (if the genetic model is dominant) has 

penetrance of 0.9 and a heterozygous variant genotype has penetrance of 0.45, when the 

genetic model is unknown to us. The penetrance estimation is somewhat arbitrary due to the 

absence of quantitative annotations. The estimation can be customized for the phenotypes 

where the genetic causality is well studied (See penetrance of ABO blood SNPs as an 

example at the end of this section). 

 

Penetrance of SVL. 

 
P(Y =1| SVH = SGH = SGL = 0,SVL =1) =

1

n
P(Y =1|Vi =1)

i=1

n

å  
 

Eq 8.9 

 

where P(Y =1|Vi =1)  is computed by (Eq. 8.25) and n is the total number of low 

penetrance variants associated with the phenotype. 

Penetrance of SGH. 

 
P(Y =1| SVH = 0,SGH =1) =

q´ P(Y =1)

P(V =1)
 

 

Eq 8.10 
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where q is a variable related to k1 ´
1

n
ORii=1

n

å  (Eqs. 8.22-25), P(Y=1) is the prevalence of 

the phenotype for the individual, and P(V=1) is the frequency of a rare variant, estimated as 

0.01. k1 = 5  based on estimates by [15] about the higher penetrance of rare vs. common 

variants. 

Penetrance of SGL. 

 
P(Y =1| SVH = SGH = 0,SGL =1) =

q ´ P(Y =1)

P(V =1)
 

 

Eq 8.11 

 

where q is a variable related to k2 ´
1

n
ORii=1

n

å  (Eqs. 8.22-25), P(Y=1) is the prevalence of 

the phenotype for the individual, and P(V=1) is the frequency of a rare variant, estimated as 

0.01. k2 = 2 based on estimates by [15] about the higher penetrance of rare vs. common 

variants. 

Penetrance of ABO blood SNPs. 

ABO blood group is an example whose genetic components have been well studied, 

enabling customized penetrance estimation with better accuracy. Differences in the presence 

(or absence) of certain antigens on the exterior of human red blood cells define our blood 

type system, which is an important consideration in human blood transfusion. The ABO 

blood type system, the most important blood type system, was initiated from discoveries in 

early 1900s [105,106]. Individuals, depending on the appearance of A and B antigens on their 

red blood cells, were classified into four blood types, A, B, O and AB. ABO blood type is 

determined by a single gene, ABO, so the parents’ alleles at the ABO gene determine one 

individual’s blood type. In 1990, Yamamoto et al. shows that three SNPs at the ABO gene 
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could segregate individuals with blood types A, B, O and AB [107]. Later, more 

polymorphisms were found in the ABO gene that might affect the presence of A and B 

antigens [108,109]. The combinations of 3 key SNPs (rs8176719, rs8176746 and rs8176747) 

with their linked ABO blood types was summarized in SNPedia to predict individuals’ ABO 

blood types [110]. I incorporated these 3 SNPs into SVH (high penetrant variant) for ABO 

blood type prediction and the penetrance of each pattern of the 3 SNPs regarding to ABO 

blood types was set based on the previous studies summarized in SNPedia (Table 8.1). 
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rs8176719 rs8176746 rs8176747 P(O) P(A) P(B) P(AB) 

-/- T/T G/G 0.95 0 0 0 

-/- T/T C/G 0.95 0 0 0 

-/- T/T CC 0.95 0 0 0 

-/- G/T G/G 0.95 0 0 0 

-/- G/T C/G 0.95 0 0 0 

-/- G/T CC 0.95 0 0 0 

-/- G/G G/G 0.95 0 0 0 

-/- G/G C/G 0.95 0 0 0 

-/- G/G CC 0.95 0 0 0 

C/- G/G CC 0 0.95 0 0 

C/C G/G CC 0 0.95 0 0 

C/- G/T C/G 0 0.25 0.75 0 

C/- T/T G/G 0 0 0.95 0 

C/C T/T G/G 0 0 0.95 0 

C/C G/T C/G 0 0 0 0.95 

Table 8.1: Penetrance estimates for blood. The penetrance of each blood group is assigned 

based on genotype of SNPs rs8176719, rs8176746, and rs8176747. The assignment is 

determined according to the qualitative description of blood group determination in 

SNPedia [110]. 
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8.3.3 Penetrance of unknown factors 

In 8.3.2, I described the penetrance estimate when any of SVH, SVL, SGH, or SGL equals 1. The 

penetrance when SVH, SVL, SGH, SGL are all zeros, called the penetrance of unknown factors, 

is missing and will be discussed in this section. SVH, SVL, SGH, SGL are all zeros when none of 

the variants that would cause the phenotype occur in the individual’s genome based on the 

incorporated genetic annotations. Unknown factors, including non-genetic components 

(such as environmental factors) and those genetic components that are phenotype-associated 

but not incorporated in the model, may contribute to the individual’s phenotype 

susceptibility. Unless the genetic annotations used in the model can fully determine the 

phenotypic outcome (such as for the ABO blood group), the penetrance of unknown 

factors, estimated in the following, should not be zero. The estimate of the penetrance of 

unknown factors is derived as follows: 

 

 

P(Y =1| SVH = SGH = SGL = SVL = 0) =
[5]

E[P(SVH = SGH = SGL = SVL = 0)]
 

 

Eq 8.12 

 

Derivation of Eq. 8.12 

 Prevalence = E[P(Y = 1)] = P(Y = 1|Data)P(Data)å
= P(Y = 1| SVH ,SGH ,SGL ,SVL )´ E[P(SVH ,SGH ,SGL ,SVL )]å

[1] = P(Y = 1 | SVH = 1)´ E[P(SVH = 1)]

[2] +P(Y = 1| SVH = 0,SGH = 1)´ E[P(SVH = 0,SGH = 1)]

[3] +P(Y = 1| SVH = SGH = 0,SGL = 1)´ E[P(SVH = SGH = 0,SGL = 1)]

[4] +P(Y = 1| SVH = SGH = SGL = 0,SVL = 1)´ E[P(SVH = SGH = SGL = 0,SVL = 1)]

[5] +P(Y = 1| SVH = SGH = SGL = SVL = 0)´ E[P(SVH = SGH = SGL = SVL = 0)]

 

 

Eq 8.13 

 

[1]+[2]+[3]+[4] is the fraction of prevalence from genetic contributions and [5] is the 

fraction of prevalence from other contributions (unknown factors). The ratio between 
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[1]+[2]+[3]+[4] and [5] can be determined by heritability if available. Otherwise, a ratio of 1 

is used in this work. 

I assume [1]=[2]=0 (E[P(SVH =1)]= E[P(SGH =1)]= 0 ) and [3]=[4]. Thus, Eq. 8.14 and Eq. 

8.15 can be derived. The assumption, [1]=[2]=0, indicates that the fraction of phenotype 

carriers who have high penetrance genetic causes is negligible in the population. 

 
E[P(SGL =1)]=

[3]

P(Y =1| SVH = SGH = 0,SGL =1)
 

 

Eq 8.14 

 

 
E[P(SGL = 0,SVL =1)]=

[4]

P(Y =1| SVH = SGH = SGL = 0,SVL =1)
 

 

Eq 8.15 

 

Assuming that SGL and SVL are independent, 

 E[P(SGL = 0,SVL = 0)] = E[P(SGL = 0)]E[P(SVL = 0)]

= (1- E[P(SGL =1)])(1-
E[P(SGL = 0,SVL =1)]

1- E[P(SGL =1)]
)

 

 

Eq 8.16 

 

8.3.4 Phenotype specific weights 

Posterior probabilities of SVL (Eq. 8.6) and SGL (Eq. 8.7) are likely to be confounded by 

ascertainment bias, given the wide range of annotated variants and genes available for 

different phenotypes (Figure 10.2).  I incorporate two weights a SGL
 and a SVL

, computed 

with numerical optimization, to control this bias. 

Derivation: 
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 E[P(SGL =1)]=1- E[(1- P(GLi =1))
aSGL ]

i

Õ  
 

Eq 8.17 

Equate (Eq. 8.14) and (Eq. 8.17) 

Solve for a SGL
. 

According to (Eq. 8.15) and (Eq. 8.16) 

 
E[P(SVL =1)]=

E[P(SGL = 0,SVL =1)]

1- E[P(SGL =1)]
 

 

Eq 8.18 

and 

 
E[P(SVL =1)] =1- E[((ORi )

VLi )
-aSVL ]

i

Õ  

=1- (ORi )
- jaSVL P(VLi = j)

jÎ{0,1,2}

å
i

Õ
 

 

Eq 8.19 

Equate (Eq. 8.18) and (Eq. 8.19) 

Solve for a SVL
.  

Optimization requires the following constraints for numerical stability: 

 0 £aSVL £1 

0 £aSGL £1 

 

Eq 8.20 

To compute a SGL
 and a SVL

 in (Eq. 8.17) and (Eq. 8.19) requires estimates of expected values 

for the frequency of functionally impacted low penetrance genes and the odds ratios of 

GWAS hits associated with the phenotype. I estimated these expected values using databases 

of variants in general populations, the Exome Variant Server ESP6500 [104] and 1000 

Genomes Project data [32].  Using the ESP6500, I find all rare variants (<1% MAF) in the 

selected genes and their population frequencies and compute functional impact scores (Eq. 

8.28).  Next, for each gene I simulate a population of 10,000 individuals, to match the 
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frequency spectrum of rare variants in ESP6500. I assume that rare variants within a gene are 

not in linkage disequilibrium.  I calculate P(GLi =1|Data)  for each simulated individual to 

estimate  (Eq. 8.17).  I calculate the allele frequency of each selected GWAS hit in the 

ESP6500 (for coding variants) and 1000 Genomes (for non-coding variants).  I use the allele 

frequencies and the assumption of Hardy-Weinberg equilibrium, to compute (Eq. 8.19). 

8.4 Penetrance of GWAS hits 

For the great majority of variant genotypes, I was unable to find literature or database 

annotations that estimated penetrance, with respect to the associated phenotypes in my study.  

However a quantitative measure related to penetrance, the odds ratio, was available for most 

GWAS hits. I converted odds ratio to penetrance, using estimates of genotype population 

frequencies and phenotype prevalence, as follows: 

The binary random variables V and Y represent a variant genotype and a phenotype of 

interest.  By definition, 

 
OR =

P(V =1|Y =1) / (1- P(V =1|Y =1))

P(V =1|Y =1) / (1- P(V =1|Y = 0))
 

 

Eq 8.21 

which I rewrite by setting the numerator to q/(1-q) and the denominator to p/(1-p) 

 
OR =

q / (1- q)

p / (1- p)
=
q- qp

p - qp
 

 

Eq 8.22 

then 

 OR´ p- q = (OR-1)´ qp   

Eq 8.23 
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 P(V =1) = P(V =1,Y = 0)+ P(V =1,Y =1)

= P(V =1|Y = 0)P(Y = 0)+ P(V =1|Y =1)P(Y =1)

= p ´ P(Y = 0)+ q ´ P(Y =1)

 

 

Eq 8.24 

The term P(V = 1) represents the population frequency of the variant genotype V.  I 

estimate this term by counting how often it occurs in the 1000 Genomes database of human 

variation.  In this work, I used frequencies from the 1000 Genomes European-American 

population, but estimates could be improved by using a population matched to a particular 

individual.  The term P(Y = 1) represents the frequency of the phenotype, or its prevalence.  

Wherever possible, I estimated phenotype prevalence for each individual, considering 

her/his self-reported age, gender, and ancestry if the data are available.  

Finally, solving for q, the penetrance can be computed with Bayes’ rule: 

 
P(Y =1|V =1) =

q´ P(Y =1)

P(V =1)
 

 

Eq 8.25 

8.5 Functional impact of variants on phenotype-associated genes 

8.5.1 Predicted functional impact of variants on gene products 

I predicted the impact of variants on the protein product of a gene in a particular individual 

for all genes annotated as associated with the phenotype.  Only rare variants were considered 

(MAF < 1% in ESP6500 and 1000 Genomes) because their low frequency may be the result 

of selection assuming that the phenotype that they are associated with decreases an 

individual’s fitness.  Then, each rare variant that caused an amino acid substitution was 

scored with the Variant Effect Scoring Tool (VEST) [27], yielding a score mi. VEST is a 

bioinformatics tool predicting the impact of a missense mutation on the gene’s function (See 

also 3.5.3). The logic behind it is that a missense rare variant with a high VEST score is 
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predicted to functionally alter the phenotype-associated gene, so it is likely to cause the 

phenotype. Rare truncating (nonsense, nonstop, frameshift) and splice site variants dj were 

assumed to have a larger impact on average than rare missense variants. These events were 

given a score proportional to the highest scoring amino acid substitution variant in the gene 

and their allele frequency AFdj in the 130 PGP genomes as 

 d j = maxi{mi}´ (1- AFd j )  
 

Eq 8.26 

I made the simplifying assumption that rare variants in a gene were not in linkage 

disequilibrium and were therefore independent. I used Fisher’s method to combine their 

VEST p-values, yielding a gene-level VEST statistic 

 
TGENE = -2 ´ ln(pi )

i=1

N

å
 

 

Eq 8.27 

8.5.2 Estimating the probability that a gene is functionally altered 

TGENE, derived in Eq. 8.27, quantifies the functional impact of N rare variants within the 

gene. Thus, it can be used to estimate the probability that the gene is functionally altered, by 

computing              where G is a Bernoulli random variable and set to 1 when the 

gene G is functionally altered. The probability can be calculated using Bayes’ rule (Eq. 8.28) 

if the null distribution (the distribution of TGENE given G=0), the alternative distribution (the 

distribution of TGENE given G=1) and the prior,       , are available. Formally, the 

probability that a gene is functionally altered in an individual is: 

 
P(G =1|TGENE ) =

P(TGENE |G =1)P(G =1)

P(TGENE |G =1)P(G =1)+ P(TGENE |G = 0)P(G = 0)
 

 

Eq 8.28 



 108 

where TGENE = -2´ ln(pi )i=1

N

å  and pi is the VEST P-value of each variant i in the gene. 

P(TGENE |G =1)and are estimated with simulation, based on empirical data.  

I assume that a single rare functional variant in a gene is sufficient for the function of that 

gene’s translated product to be altered. I simulate the distribution of TGENE in a sample of 

genes having one rare functional variant and N-1 benign variants, varying N from to 1 to 50. 

P(TGENE |G =1)  is estimated by generating 10,000 functionally altered genes, each of which 

contains one rare functional variant randomly drawn from the HGMD DM class and N-1 

variants randomly drawn from 1000 Genomes (MAF > 0.01).  P(TGENE |G = 0) is estimated 

by generating 10,000 genes that are not functionally altered, by randomly drawn N variants  

(MAF > 0.01) from 1000 genomes. I assume a uniform prior. 

 P(G =1)= P(G = 0)= 0.5  

Eq 8.29 

  

P(TGENE |G = 0)
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Chapter 9 Model Performance 

9.1 Data sources 

To evaluate the model performance, I need (1) individual genomes as input data, (2) 

phenotypic profiles of the individuals in (1) for evaluation, (3) phenotype prevalence for 

assigning priors, and (4) phenotype-associated variant/gene annotations for model 

construction. Many individual genomes are available in public databases such as 1000 

genome project, dbGAP and PGP but only individual genomes in PGP have corresponding 

phenotypic profiles. Thus, I used the genome-phenotype data from PGP and collected 

priors and genetic annotations for the phenotypes listed in PGP phenotypic profiles. 

9.1.1 Individual genomes 

PGP collected tissue samples from the participants and created cell lines, which are cells with 

the ability to divide for indefinite periods, for the purpose of DNA sequencing [100]. The 

whole genome sequencing was done by Complete Genomics, a biotechnology company 

developing human genome sequencing platform [111], with periodically updated sequencing 

pipelines from v1.0 to v2.5 by the time this dissertation is written. I downloaded variant 

genotypes from 174 genomes sequenced by Complete Genomics with the 2.0 Standard 

pipeline, from the PGP website (http://my.pgp-hms.org) (as of 02/10/2014). Variant 

genotypes were obtained from the GFF format (General Feature Format, a format wildly 

used as a protocol for the transfer of genomic feature information) file produced by PGP's 

Genome-Environment-Trait-Evidence (GET-Evidence) pipeline [100].  Only variant 

position, reference, and alternative allele calls from the GFF file were employed. 44 genomes 

were excluded from consideration because they were missing a trait survey, associated age, 

http://my.pgp-hms.org/
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gender or ancestry, or did not have GET-Evidence GFF files, yielding 130 genomes to be 

analyzed. 

9.1.2 Individual phenotypes 

PGP participants have the option of filling out a “traits questionnaire”, consisting of 239 

dichotomous phenotypes.  Blood groups were also provided in “Personal Health Records” 

of the participants, yielding a total of 243 phenotypes.  Results of the questionnaire and 

blood groups were downloaded from the PGP website and considered to be accurate.  Of 

the 243 phenotypes, only 153 were reported by at least one PGP participant, and 146 also 

had available prevalence information. 

9.1.3 Phenotype prevalence 

Internet searches for information about the prevalence and heritability of each trait were 

performed manually. Wherever possible, I found the most relevant prevalence for an 

individual, considering her/his age, gender, and self-reported ancestry. Data sources included 

SEER (NCI), websites for CDC (http://www.cdc.gov) and HHS (http://www.hhs.gov/), 

and the published literature. 

9.1.4 Gene and variant annotations 

Variant annotations were collected from NHGRI-GWAS 

(https://www.genome.gov/26525384) (downloaded 09/11/2013), HGMD Professional 

(HGMD Pro) v.2013,2 [101] (downloaded 06/26/2013), and SNPedia [110]. Gene 

annotations were collected from OMIM [112] (downloaded 09/09/2013), disease-gene 

associations were mined from the literature (http://diseases.jensenlab.org downloaded 

07/25/2013), and HGMD Pro v.2013.2 [101].  NHGRI GWAS variants were included if 

they had an odds-ratio (OR) or beta regression coefficient > 1 and <= 20.  HGMD Pro 

http://www.cdc.gov/
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variants were included if and only if they were in the most confident disease mutation class 

(DM).  SNPedia was used as to identify SNPs associated with blood groups, known to be 

high penetrance (http://snpedia.com/index.php?title=ABO_blood_group&oldid=560223) 

[110]. Disease-gene associations mined from literature were included only if they were rated 

as high confidence by the mining algorithm.  For associations from Jensen's database [113], 

which computes a Z-score for each disease-gene association, I required Z-score > 4.0 or 

ranking in the top-5 associated genes for the disease, according to Z-score.  HGMD Pro 

genes were considered to be in the DM class if they contained at least one mutation in the 

DM class. 

9.2 Performance evaluation 

9.2.1 Evaluation metric 

Each phenotypic model was assessed by its ability to correctly rank individuals in the PGP 

cohort, as area under the ROC curve (AUC).  No cross-validation was performed because 

neither model topology nor parameters were estimated or optimized with information from 

the PGP cohort. P-values and FDR were estimated with permutation. 

9.2.2 Statistical significance 

I assessed models by their classification performance, as area under the ROC curve (AUC).  

I computed the statistical significance of AUC with permutation tests as follows.  Let Yij and 

Mij be two 130x146 matrices, where each row i indexes a PGP participant and each column j 

indexes a phenotype. Yij is a matrix of posterior probabilities, with respect to each PGP 

participant i having phenotype j.   Mij is a binary matrix, and each component shows the true 

status of PGP participant i with respect to phenotype j  (0 or 1).  I calculated the actual AUC 

for each phenotype j by comparing columns Y.j  and M.j . Next, I generated matrices Mij
1, 

http://snpedia.com/index.php?title=ABO_blood_group&oldid=560223
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Mij
2, . . . , Mij

K (K=10,000), where each matrix was a random permutation of the rows of Mij.  

I constructed a null distribution of AUC statistics by calculating the AUC for each 

phenotype j using columns Y.j  and M.j
1, M.j

2, . . . , M.j
K . The estimated p-value for 

phenotype j AUC is 

 

 

 

Eq 9.1 

 

The null distribution of AUC statistics was also used to compute p-values for each null AUC 

k 

 

 

 

Eq 9.2 

Let   be a list of p-values (Eq. 9.1) for all L=146 phenotypes, 

sorted in ascending order.  Then for each p-value cutoff (at rank l). 

 
 

 

Eq 9.3 

and 

 
 

 

Eq 9.4 

9.3 Result 

9.3.1 Overall performance 

For each phenotype, I used the model to compute the posterior probability of each 

individual having that phenotype (Eq. 8.1) and ranked the 130 PGP participants accordingly. 

p-val j =
#(nullAUC j ³ AUC j)+1

K +1

Null p-val
j

(k ) =
#(nullAUC j ³ nullAUC

j

(k ))

K

 {p-val(1),p-val(2), ,p-val(L )}

FDR(l ) = E[#FD(p-val(l))] l

 q-val(l ) = min{FDR(l ), ,FDR(L)}
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The individual with the largest posterior probability was assigned Rank #1, the second 

largest Rank #2, and so forth.  Then I assessed the ranking for each phenotype using area 

under the ROC curve (AUC) and computed the statistical significance of the AUC according 

to nominal p-value and false discovery rate (FDR) (9.2 Performance evaluation). Thirty-eight 

PGP phenotypes (26%) were predicted with area-under-the-ROC curve (AUC) > 0.7, and 23 

(15.8%) of these were statistically significant (p-value < 0.05 and FDR < 0.1) (Figure 9.1). 

Sixty-four phenotypes were predicted as random or worse (AUC ≤ 0.5). 
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Figure 9.1: Prediction results of the model on 38 dichotomous phenotypes. Each row 

represents a clinical phenotype and consists of 130 cells, each of which represents a Personal 

Genome Project (PGP) participant.  Cells in each row are ranked by the posterior probability 

that the participant has the phenotype.  Cells are colored by true phenotypic status.  Blue 

cells indicate that a participant has the phenotype, and red cells that a participant does not 

have the phenotype.  If a cell is colored light grey, the true phenotypic status is unknown. If 

a cell is colored dark grey, the PGP participant is not considered in the evaluation because 

the phenotype is gender-specific. #PGP=number of participants in each row having the true 
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phenotypic status.  AUC = area under the receiver operating characteristic curve, a 

threshold-free metric of classifier performance. p-value and FDR = statistical significance of 

the AUC value, based on permutation testing. 
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9.3.2 Contributions from prevalence and genome sequences 

 

The model incorporated both genome sequence and population phenotype prevalence, and I 

measured the contributions of each to prediction performance.  First, AUC, p-values and 

FDR for the top predicted 38 phenotypes were computed using each individual’s estimated 

phenotype prevalence instead of a posterior probability.  Next, I repeated these 

computations using the genome sequences and assigning each phenotype the same baseline 

prevalence, set to be the average prevalence across all phenotypes.  Comparison of genome-

only, prevalence-only, and combined results showed that 14 phenotypes had higher genome-

only than prevalence-only AUCs (Figure 9.2). Thus, these phenotypes likely have a strong 

genetic component, and at least some of the underlying genes and variant genotypes are 

represented in the annotation databases. 
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Figure 9.2: Contribution of population prevalence and genome sequence to prediction 

results in Fig 9.1. Each row represents a phenotype and consists of three cells, representing 

(a) model predictions based only on phenotype-specific population prevalence (Prevalence 

Only), (b) model predictions based on genome sequence (with assumption that every 

phenotype and every individual has the same prevalence), and (c) model predictions that 

combine genome sequence and phenotype-specific population prevalence.  Cells are colored 

by the area under the ROC curve (AUC) yielded by each model.  Contributions vary among 
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phenotypes due to differences in quality of available information with respect to prevalence 

and database annotations of variant genotypes. 
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9.3.3 Contributions from SVH, SVL, SGH, SGL 

Finally, I explored whether all categories of genomic annotations -- GWAS hits, variant 

genotypes in disease-associated genes, and high-penetrance variant genotypes -- were useful 

in predicting each phenotype, by calculating the prediction performance if only one of these 

had been used. 
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Figure 9.3: Contribution of GWAS hits, low penetrance genes, high penetrance genes, and 

high penetrance variants to prediction results. Each row represents a phenotype predicted 

with AUC>0.7 by genome sequence (Figure 9.2 (b)) and contains five cells. Cells are colored 

by the area under the ROC curve (AUC) yielded by a model that contains only 1:GWAS hits, 

2:Low penetrance genes, 3:High penetrance genes, 4:High penetrance variants.  The fifth cell 

shows AUC of the combination model used to assess results in this work that considers all 

of 1,2,3, and 4.  The combination model generally yields the best performance: however, for 

most phenotypes, only one or two of 1, 2, 3 or 4 appears to contribute. 
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 Six of the phenotypes were predicted best by GWAS hits -- the autoimmune 

disorders Graves' disease, alopecia areata and Crohn's disease; the cardiovascular disorders, 

deep vein thrombosis and aortic aneurism; and chronic obstructive pulmonary disease 

(Figure 9.3).  Only one PGP participant (PGP-48) had Graves' disease, and she was ranked 

second out of 130 (AUC=1.0) (Figure 9.1).  Her genome harbored numerous risk alleles at 

the sites of 16 GWAS hits (9 homozygous and 7 heterozygous risk alleles). One PGP 

participant (PGP-69) had alopecia areata (autoimmune-related hair loss), and he was ranked 

seventh out of 130 (AUC=0.953). His genome harbored 7 GWAS hits (4 homozygous and 3 

heterozygous risk alleles).  A complete list of PGP participants with these six phenotypes 

and the underlying GWAS hits are in Tables A.1-A.6.  

 Three phenotypes were predicted best by non-synonymous coding variants in 

annotated disease genes and bioinformatics variant classifications -- the common, hereditary 

liver disease Gilbert's syndrome, epilepsy and non-age-related cataracts (Figure 9.3). Only 

one of these predictions was statistically significant (Gilbert's syndrome, P=0.023 and 

FDR=0.073) (Figure 9.1).  One PGP participant (PGP-125) reported having Gilbert's 

syndrome, and he was ranked third out of 130 (AUC=0.984). He had a rare, heterozygous 

missense mutation P229L in the Gilbert's syndrome-associated gene UGT1A1.  Of note, 

with only 130 samples, if only one PGP participant had a particular phenotype, statistical 

significance according to our permutation test required that the model allocate them rank 1 – 

4 within the cohort.   

 Five phenotypes were predicted best by high penetrance variant genotypes -- von 

Willebrand disease, hypertrophic cardiomyopathy, and three blood groups (Figure 9.3).   

Only the blood groups were statistically significant (Figure 9.1). The A, B and O blood 



 122 

groups were well represented in the 130 PGP participants, and known variant genotypes 

[107] ranked individuals with AUC=0.92 for group A, AUC=1 for group B, and AUC=0.917 

for group O.  In addition, 27 phenotypes had combined results -- genome sequence plus 

prevalence – better than or equal to prevalence-only AUC (Figure 9.2, Table A.7).    

 With a few exceptions (blood groups and Gilbert’s syndrome), all of our best 

predicted phenotypes were complex and multi-genic. Common variants, likely involved in 

transcriptional regulation, and rare variants causing protein defects, both played important 

roles in these predictions.  However, for each phenotype, the best predictions were 

generated by only a single category of annotations and were either GWAS hits, high 

penetrance variants, low penetrance genes containing rare variants, or high penetrance genes 

containing rare variants.  

 Of all the best predicted phenotypes, only glaucoma benefited from more than one 

category of annotations -- high penetrance variants and low penetrance genes.  For this 

phenotype, the two PGP participants with glaucoma (PGP-15 and PGP-88) were ranked as 

6 and 17 out of 130 (AUC=0.92) (Figure 9.1). PGP-15 had a glaucoma-associated high-

penetrance variant in the gene WDR36 (A449T), and PGP-88 had a rare variant (N286T) in 

the glaucoma-associated gene PCMTD1. 

9.4 Critical Assessment for Genome Interpretation (CAGI) 2012-13 

9.4.1 PGP challenge 

In 2012-13, the Critical Assessment of Genome Interpretation (CAGI) blinded prediction 

experiment included a challenge based on prediction of PGP phenotypes.  A total of 291 

PGP participants provided phenotypic profiles, reporting their status with respect to 243 

dichotomous clinical traits to the experiment organizers.  Lab members and I were one of 
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several prediction teams, who were provided both genomic data for 77 PGP participants and 

291 phenotypic profiles, of which 214 were decoys. The challenge was to identify the 77 

PGP participants by matching their genomes and profiles.  We used the posterior 

probabilities of our phenotypic models to provide a rank order matching of the PGP 

participants and their profiles.  Briefly, for each participant, the phenotypic profiles were 

ranked from most probable to least probable for that individual.  Prediction teams were 

evaluated by an independent assessor based on count of correct top-ranked profiles and also 

by mean rank of the correct profiles for all participants.   

9.4.2 Matching algorithm 

We calculated a weighted Bernoulli likelihood for each pair of PGP genome i and 

phenotypic profile k as 

      ∏ [                                  ]
  

   

Eq 9.5 

where x indexes phenotypes,    is the predicted status of phenotype x for PGP genome i, 

    is the phenotypic status reported in the phenotypic profile k, and    is the weight of 

our prediction for phenotype x. If any information is not available for a phenotype, for 

example if the phenotypic status is not reported or there is no prediction for the phenotype, 

we assigned       to that phenotype in Eq. 9.1. The probability of matching the pair was 

calculated by normalizing the likelihoods over phenotypic profiles for each PGP genome as 

             
    

∑      
 

 

Eq 9.6 
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   was estimated using a training set where possible, and was guessed otherwise. In this 

competition, 20 profile-matched genomes were given. We trained the weights on genomes in 

the training set, by maximizing the multinomial log-likelihood with regularization as 

       [∑                                               ]  ‖ ‖  

Eq 9.7 

where ‖ ‖ is the norm of the weight vector. The likelihood was maximized using a greedy 

optimization algorithm. 

9.4.3 Assessment of phenotype-genotype matching algorithms in CAGI 2012-13 

Prediction accuracy was measured by an independent assessor with the following criteria. 

First, the number of correctly top-ranked phenotypic profiles was computed. To assess the 

significance of that finding, benchmark or null prediction used uniformly random matches 

between phenotypic profiles and genomes, i.e., for a given genome, each phenotypic profile 

being equally possible. The simulation was repeated 104 times and the number of correctly 

top-ranked profiles was recorded each time. In this setting, none of the simulations yielded 

five or more correctly top-ranked phenotypic profiles to the corresponding genomes, and 

hence the significance level for observing five or more correct matches is < 10-4. 

9.4.4 CAGI 2012-13 PGP result 

For 27 of the 77 PGP participants, genotypic data from 23andMe was also available to the 

prediction teams on the PGP website, and identification of these participants was considered 

to be trivial.  Furthermore, the website contained the critical information that no blood or 

saliva samples had been collected for 108 of the profile decoys, thereby making it possible to 

exclude these profiles as potential matches.  According to the independent assessor, after 

elimination of the 27 participants with genotypic data and the 108 profile decoys, our team 
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correctly predicted the largest number (six) of top-ranked participants and had the lowest 

mean rank for correct profiles (25.4), of the 16 submissions to the challenge.  Based on an 

empirical null distribution, our prediction had p-value<10-4. 
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Chapter 10 Discussion and Future Work for Personal 

Phenotype Prediction 

I introduce a Bayesian probabilistic model that allows individuals to estimate their risk of 

having a dichotomous phenotype.  The models could be useful as an extension to existing 

pipelines for genome interpretation, such as those currently used by PGP (GET-Evidence) 

[100], DRV [114], UYG, and the Interpretome [115]. These pipelines rely on database 

annotations of variant genotypes and genes, allele frequencies and bioinformatics methods 

for variant function prediction.  The PGP, DRV, and UYG pipelines yield lists of prioritized 

variant genotypes and associated evidence to support the hypothesis as to whether a single 

variant genotype is involved in a given disease/trait of interest. The Interpretome provides 

prioritized lists for rare variants and phenotype predictions based on common variants. My 

Bayesian probabilistic model could use any of these prioritized lists and provide phenotype 

predictions, which consider the contributions of both rare and common variants. 

10.1 Strengths of the model 

The model presented here could be used in the setting of an adult volunteer cohort.  Within 

this setting, it provides interpretable results to help individuals understand their risk of a 

phenotype of interest.  To our knowledge, it is the first such model to use population-level 

prevalence as a prior, integrate the contribution of rare and common variant genotypes 

harbored by an individual, and consider the modulating effects of incomplete penetrance, 

environmental, and unknown factors.  In addition to a final posterior estimate of an 

individual’s phenotypic risk, the model provides information about the separate 

contributions of population-level prevalence and personal genome sequence.  Each 

individual can also learn their rank probability within the cohort, a number that may be 
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easier to understand than a raw posterior probability.  I can further inform individuals as to 

how much each prediction can be trusted, based on the model's previous performance.  

The model is flexible, and it can be reasonably applied to predict any individual's 

probability of having any dichotomous phenotype with a genetic component.  The key 

elements are: estimating prior probabilities that the individual has the phenotype, ideally 

considering age, gender and ancestry; identifying annotated genes and variant genotypes 

associated with the phenotype; finding the subset of those present in the individual's genome 

sequence and estimating their aggregate penetrance; and finally computing the posterior 

probability that the individual has the phenotype.  Genes and variant genotypes are sorted 

into four categories: low penetrance variants, low penetrance genes, high penetrance variants, 

and high penetrance genes. The aggregate penetrance of each category is estimated with a 

mathematical model (Eqs. 8.8-8.11).  Bioinformatics variant function predictions are also 

incorporated. Variant genotypes in all phenotype-associated genes are scored with VEST 

[27], a bioinformatics classifier that estimates a significance level (p-value) for each variant 

score. The p-values are aggregated into a gene-level score using Fisher's method, then used 

to estimate the posterior probability that the gene was affected, with empirical data. Any 

variant function prediction method that yields p-values and/or any of a number of gene-

level variant aggregation methods can be used. 

The advantage of integrating the impact of both rare and common variants can be 

quantified by comparing our model with a model based only on the burden of putatively 

damaging alleles (MAF<0.01) in our sets of phenotype-associated genes.  When applied to 

the same PGP cohort, this simple burden model yielded only one predicted phenotype that 

was statistically significant after multiple testing correction (in contrast to my model's 23 

statistically significant predicted phenotypes) (Figure 10.1). 
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Figure 10.1: Prediction results of simple mutation burden model: Six phenotypes predicted 

with AUC>0.7 are shown. Each row represents a clinical phenotype and consists of 130 

cells, each of which represents a Personal Genome Project (PGP) participant.  Cells in each 

row are ranked by the burden of putatively damaging alleles (MAF<0.01) in the same sets of 

phenotype-associated genes used in Figure 9.1.  Cell coloring has the same meaning as in 

Figure 9.1. #PGP=number of participants in each row having the true phenotypic status.  

AUC = area under the receiver operating characteristic curve, a threshold-free metric of 

classifier performance. p-value and FDR = statistical significance of the AUC value, based 

on permutation testing. 

 

  



 129 

10.2 Limitations of the model 

Incomplete and inaccurate information about genes, variant genotypes, and phenotypes in 

current databases limit the model's utility. As an example, for 42 PGP phenotypes, I was 

unable to find any associated genes or variants.   Furthermore, the association of a particular 

gene or variant to a phenotype may not be quantitative, with respect to effect size.  Thus, I 

make simplifying quantitative assumptions about their aggregate penetrance, as follows: 1) 

GWAS hits and any disease-gene associations lacking careful curation are assigned low 

penetrance; 2) curated (DM) disease variants and genes in HGMD and OMIM are assigned 

high penetrance; 3) presence of a highly penetrant variant dominates the posterior (Eq. 8.2); 

4) penetrance of a GWAS hit is estimated by its reported odds ratio, allele frequency and 

phenotype prevalence (Eqs. 8.21-8.25); 5) the effect sizes of rare non-silent variants are 

assigned to be greater than the effect sizes of GWAS hits associated with the same 

phenotype [10]; 6) changes in gene product function are computed using only rare 

(MAF<0.01) non-silent variants; 7) interactions among genes and variant genotypes are not 

considered; 8) low prevalence is assigned to variants and genes with high penetrance; 9) Only 

small-scale, non-silent variants are considered, although some phenotypes may be better 

predicted by other genetic or epigenetic alterations.    

The phenotypes predicted in our study include those known to have strong genetic 

components, such as Gilbert’s syndrome, von Willebrand disease and epilepsy [116-118] and 

others lacking evidence of strong genetic contribution, such as hiatal hernia and dental 

cavities [119,120].  Of 146 phenotypes, I identified associated genes or variant genotypes for 

104.  If I consider the raw count of annotated genes, GWAS hits, and high penetrance 

variants per phenotype, the range is large, with some phenotypes having thousands and 

others fewer than ten annotations (Figure 10.2).  These differences affected our ability to 
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predict phenotypes.  For example, Gilbert’s syndrome and von Willebrand disease were 

among our best predicted phenotypes.  Both have been studied for many years and causal 

genes (UGT1A1 for Gilbert’s syndrome and VWF for von Willebrand disease) are known 

[116,118].  By contrast, ulcerative colitis is believed to have a genetic component but the 

causal genes are still largely unknown [121], and no genetic components for dandruff have 

been identified [122].   

Out of seven cancer phenotypes, only kidney cancer and non-Hodgkins lymphoma were 

predicted with AUC>0.7 and high statistical significance (P-value<0.05, FDR<0.1), and 

these predictions were driven by population-based priors (Figure 9-2).  Because most cancers 

have strong environmental contributions, improved predictions would require more 

information about carcinogen exposures and resulting patterns of somatic mutations.  Our 

current models rely on germline variants, which may be useful for predicting familial cancers, 

but are less relevant for the more common sporadic cancers. 



 131 

 

Figure 10.2: Distribution of annotated genes, GWAS hits and high penetrance variants for 

phenotypes analyzed in this study. Phenotypes are ordered by total counts of annotated 

genes and variants that I found.  Counts are shown on a log scale for easier visualization.  

For each phenotype the (log) count of annotated genes is colored red, GWAS hits green, and 

high penetrance variants blue.  Some phenotypes have a very large number of annotations 

and others have very few.  For 42 phenotypes, I did not find any annotated genes or 

variants. 
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The model predictions for 64 PGP phenotypes were no better than random (Table A.8).   

For 38 phenotypes, either I was unable to find evidence of phenotypic association with 

genes or variant genotypes, or I found such evidence but was unable to match it with 

variants in any PGP genomes.  For the remaining 26 phenotypes, I suspect that errors in 

annotations and in our model assumptions about penetrance are responsible.   For example, 

my predictions of hereditary neuropathies in PGP (including Charcot-Marie-Tooth disease) 

yielded an AUC of 0.405.  I identified 813 mutations in 37 genes associated with this 

phenotype in HGMD's high confidence of disease association (DM) class.  Although six of 

these were found in the genomes of nine PGP participants, none of them reported this 

clinical phenotype.  It appears that in assuming that HGMD DM mutations had high 

penetrance, I overestimated the probability that these nine individuals had a hereditary 

neuropathy.  In addition, one PGP participant reported the phenotype but did not have any 

of the mutations, which could be due to our omission of the most common causes of 

hereditary neuropathy -- duplications or deletions of the PMP22 (peripheral myelin protein) 

gene [123]. 

10.3 Future work 

Improvements in the infrastructure of disease gene annotations and the growing 

communities of adult volunteers, such as the PGP, have the potential to significantly 

improve the utility of the model proposed here. I have discussed the many simplifying 

assumptions about penetrance parameters that were used in the current work.  However, if a 

resource that provided the genomes and phenotypic profiles of a large number of people 

were available, I could use it for maximum likelihood estimation of the penetrance 

parameters in our model. Such a resource would also allow us to generate reference panels 
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for adult genetic testing.  I could use the model to compute the posterior probability of each 

sequenced individual for each phenotype of interest and generate ranked lists consisting of 

thousands of individuals. As the lists grow larger, they would also grow in utility for 

individuals who learn their ranking within the lists.  The model could also be extended to 

include genomic copy number variations and even data from microbiomes.  

I expect that as a larger number of individuals become interested in personal 

genomics, members of communities such as the PGP will have access to family pedigree 

information and/or genotype or sequencing data from family members.  The availability of 

pedigree information would allow me to estimate a personalized phenotype prior for each 

individual, rather than estimating these priors only by population prevalence. Numerous 

methods have been developed for this purpose [124-126]. Genotype or sequencing data 

from family members could be used to improve both imputation of missing genotypes and 

phasing [127,128].  While phasing is not currently considered in our models, knowledge of 

whether multiple variants are in the same haplotype or simply on the same chromosome 

could be informative with respect to their phenotypic impact [129-131].   

I am optimistic that integrated models such as the one presented here will contribute 

to increasingly accurate and interpretable predictions of clinical phenotype from genome 

sequence in the near future. 
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Chapter 11 Concluding Remark 

Leveraging the recent advances in next-generation sequencing technologies, in this 

dissertation I proposed two probabilistic models that further facilitate genome interpretation. 

The first model was developed to discover the causal genes for a complex disease by 

contrasting the genetic background between a group of disease-affected cases and a group of 

healthy controls. The second model predicts personal phenotypes based on an individual’s 

genome by integrating population prevalence, bioinformatics variant functional predictions, 

population allele frequency and annotated phenotype-associated variants/genes. 

In the first part (chapters 2-6), a hybrid likelihood model, BOMP, was proposed to 

identify disease-associated genes based on sequence-based case-control studies. BOMP was 

developed to combine the advantages of burden tests and over-dispersion tests with the 

additional strength of detecting locally clustered causal variants. The model was evaluated 

using both simulated and empirical data. In simulation, it shows consistently good power 

under various disease etiologies, and even outperforms other leading methods when a set of 

putatively causal genes is tested, when rare causal variants are locally clustered in a gene, or 

when protective variants exist. In an empirical benchmark set from Dallas Heart Study, 

BOMP successfully identifies the set of three causal genes, with a p-value slightly more 

significant than other leading methods. When applied to a bipolar disorder case-control 

study, BOMP identified 2 significant gene sets, the microtubule cytoskeleton and the Golgi 

apparatus, from 306 preselected synaptic gene sets. However, it did not report any significant 

gene after correcting for multiple testing. This disappointing result is probably due to genetic 

heterogeneity. The development of higher-level integrative analysis such as gene set analysis 

or network analysis may be required to overcome the genetic heterogeneity behind complex 

diseases. 
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In the second part (chapter 7-10), a Bayesian network was proposed for predicting 

personal phenotypes based on individuals’ genome sequences. It is the first probabilistic 

model predicting personal phenotypes using both common and rare variants on the genome 

sequence. To compute the posterior probability for a phenotype of interest, it uses age, 

gender and ancestry-specific prevalence as priors, incorporates population allele frequency 

and bioinformatics predictions to estimate the functional impact on disease-associated genes 

and integrates various types of phenotype-associated genes/variants annotated in databases. 

Phenotypic profiles and whole genomes of 130 individuals were downloaded from the 

Personal Genome Project (PGP) and evaluated the model performance on 146 clinical 

phenotypes. Thirty-eight PGP phenotypes (26%) were predicted with area-under-the-ROC 

curve (AUC) > 0.7, and 23 (15.8%) of these were statistically significant, based on 

permutation tests. Although currently the model does not have strong predictive power, and 

is far from use as a diagnostic for most of the phenotypes, there is significant improvement 

possible, as more and more genotype-phenotype data become available in the near future. 

These two models are independent of each other, but tightly linked in achieving 

genome interpretation. From the perspective of a predictive framework, the first model 

identifies the effective predictors (disease-associated genes) in population level by searching 

over a huge set of possible predictors (genes on the entire genome), while the second model 

performs a personalized prediction by integrating the effective predictors identified in 

association methods like the first model. Thus, in the future, these two parts could be either 

improved separately for any phenotype, or better integrated and customized for a particular 

phenotype of interest to advance and improve genome interpretation. 
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APPENDX A: Glossary of terms 

Association test (genetics): a statistical test that measures the strength of the association 

between a genomic locus and a phenotype of interest. 

Case control study: a type of observational study in which two existing groups differing in 

outcome are identified and compared on the basis of some supposed causal attribute. 

Common disease common variant (CDCV): a hypothesis, which predicts that common 

disease-causing alleles, or variants, will be found in all human populations that manifest 

a given disease. 

Effect size: a quantitative measure of the strength of a phenomenon. For example, effect 

size of a disease susceptibility SNP can be measured in several ways such as penetrance, 

relative risk or odds ratio. 

Etiology: the manner of causation of a disease or a condition. 

Genome-wide association (GWA) study: an examination of many common genetic 

variants (typically SNPs) in different individuals to see if any variant is associated with a 

trait. 

Genotype: the genetic makeup of a cell, an organism or an individual. The genotype of a 

single nucleotide polymorphism (SNP) in human DNA is usually expressed in the form 

of 0 (homozygous reference alleles), 1 (heterozygous alleles) and 2 (homozygous 

alternative alleles) by comparing it with the human reference genome. 

Heritability: the fraction of the phenotypic variance in the population that is explained by a 

genetic component. 

Linkage disequilibrium (LD): the non-random association of alleles at two or more loci 

that descend from single, ancestral chromosomes. 
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Odds ratio (OR): a measurement to quantify how strongly the presence ( ) or absence ( ̅) 

of property A is associated with the presence ( ) or absence ( ̅) of property B in a 

given population. Formally, 

   
            ̅ 

   ̅       ̅  ̅ 
 

Minor allele frequency: the frequency at which the least common allele occurs in a given 

population. 

Multiple testing correction: a measurement to quantify the statistical significance of seeing 

a true positive when multiple hypotheses are tested. 

P-value: a quantitative measurement of the statistical significance of an element X, formally, 

the probability of seeing an element equal to or more extreme than X from the null 

distribution. 

Penetrance: a measurement to quantify how strongly the presence ( ) or absence ( ̅) of 

property A is associated with the presence ( ) or absence ( ̅) of property B in a given 

population. Formally, 

                  

Phenocopy: the variation in phenotype that is caused by non-genetic factors, such that the 

individual’s phenotype matches the phenotype that is determined by genetic factors. 

Quantitative trait study: a type of observational study in which phenotypes that vary in 

degree and can be attributed to polygenic effects, i.e., product of two or more genes, 

and their environment. 

Relative risk (RR): a measurement to quantify how strongly the presence ( ) or absence 

( ̅) of property A is associated with the presence ( ) or absence ( ̅) of property B in a 

given population. Formally, 
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     ̅ 
 

Tag SNP: a representative single nucleotide polymorphism (SNP) in a region of the genome 

with high linkage disequilibrium that represents a group of SNPs called a haplotype. 

Single nucleotide polymorphism (SNP): a DNA sequence variation occurring commonly 

within a population in which a Single Nucleotide – A, T, C and G – in the genome 

differs between members of biological species or paired chromosomes. 
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APPENDX A: Supplementary tables 

ID Risk allele PGP48 
Zygosity 

rs3761959 C 1 

rs1024161 C 1 

rs6832151 T 1 

rs370409 C 2 

rs4313034 C 2 

rs3893464 A 2 

rs9355610 A 1 

rs1521 C 2 

rs4947296 T 1 

rs4248154 T 2 

rs4713693 C 1 

rs3132613 G 1 

rs2273017 G 2 

rs9394159 A 2 

rs6457617 C 2 

rs505922 C 2 

Table B.1: GWAS hits correctly identified that PGP-48 has Graves' disease. A single PGP 

participant had Graves' disease and she was ranked second out of 130, according to the 

posterior probability of having this phenotype (AUC=1.0, P-value=0.01, FDR=0.039).  

Listed are the rsIDs of 16 GWAS hits, the risk alleles harbored by PGP-48, and the zygosity 

of each GWAS hit. 
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ID Risk allele PGP69 
Zygosity 

rs694739 G 2 

rs1701704 T 1 

rs1024161 C 1 

rs7682241 G 1 

rs9479482 C 2 

rs9275572 A 2 

rs10760706 T 2 

Table B.2: GWAS hits correctly identified that PGP-69 has alopecia areata. A single PGP 

participant had alopecia areata, and he was ranked seventh out of 130, according to posterior 

probability (AUC=0.953, P-value=0.055, FDR=0.143).  Listed are the rsIDs of 7 GWAS 

hits, the risk alleles harbored by PGP-69, and the zygosity of each GWAS hit. 

  



 141 

 

ID Risk allele PGP39 
Zygosity 

rs1998598 A 1 

rs11584383 C 1 

rs1142287 C 1 

rs7517810 C 1 

rs9286879 A 1 

rs7554511 A 1 

rs6601764 T 1 

rs4409764 G 1 

rs1398024 G 1 

rs12722489 T 1 

rs11190140 C 1 

rs11190141 T 1 

rs12242110 A 1 

rs1250550 A 1 

rs1250544 A 1 

rs10883365 A 1 

rs7076156 A 1 

rs17582416 T 1 

rs7927894 C 1 

rs11229030 T 1 

rs7927997 C 1 

rs11564258 G 1 

rs11175593 C 1 

rs17221417 C 1 

rs151181 T 1 

rs2076756 A 1 

rs11871801 C 1 

rs2542151 T 1 

rs1893217 A 1 

rs740495 A 1 

rs10495903 C 1 

rs13003464 A 1 

rs7423615 C 1 

rs13428812 A 1 

rs10188217 T 1 

rs762421 A 1 

rs1736020 A 1 

rs2838519 A 1 

rs1736135 C 1 
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rs713875 G 1 

rs2413583 T 1 

rs3197999 G 1 

rs9858542 G 1 

rs7702331 G 1 

rs3091338 C 1 

rs2188962 C 1 

rs11742570 T 1 

rs12521868 G 1 

rs6596075 G 1 

rs9292777 C 1 

rs2549794 T 1 

rs7746082 G 1 

rs17309827 G 1 

rs212388 T 1 

rs1847472 A 1 

rs9469220 G 1 

rs2301436 C 1 

rs6568421 A 1 

rs415890 G 1 

rs7807268 C 1 

rs1551398 G 1 

rs4871611 G 1 

rs12677663 G 1 

rs4263839 A 1 

rs3810936 T 1 

rs4077515 C 1 

rs11209026 A 2 

rs4656940 G 2 

rs11465804 G 2 

rs2274910 T 2 

rs2797685 C 2 

rs1819658 T 2 

rs694739 G 2 

rs4902642 A 2 

rs4780355 C 2 

rs3091315 G 2 

rs744166 G 2 

rs3091316 A 2 

rs2872507 G 2 

rs736289 C 2 

rs6545946 T 2 

rs3792109 G 2 



 143 

rs10210302 C 2 

rs2241880 A 2 

rs3828309 A 2 

rs4809330 A 2 

rs4820425 C 2 

rs1386478 G 2 

rs10045431 A 2 

rs6556412 G 2 

rs11167764 A 2 

rs359457 C 2 

rs6908425 T 2 

rs1456896 C 2 

rs1456893 G 2 

rs6651252 C 2 

rs10758669 A 2 

Table B.3: GWAS hits correctly identified that PGP-39 has Crohn's disease. A single PGP 

participant had Crohn's disease, and she was ranked ninth out of 130, according to posterior 

probability (AUC=0.937, P-value=0.072, FDR=0.166).  Listed are the rsIDs of 97 GWAS 

hits, the risk alleles harbored by PGP-39, and the zygosity of each GWAS hit. 
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ID Risk allele PGP142 
Zygosity 

PGP72 
Zygosity 

rs1018827 G 0 1 

rs7659024 G 1 1 

rs2519093 C 2 1 

rs495828 G 2 1 

rs505922 T 2 1 

Table B.4: GWAS hits correctly identified that PGP-142 and PGP-72 have deep vein 

thrombosis. Two PGP participants had deep vein thrombosis, and they were ranked tenth 

and twentieth out of 130, according to posterior probability (AUC=0.893, P-value=0.027, 

FDR=0.08).  Listed are the rsIDs of 9 GWAS hits, the risk alleles harbored by PGP-142 and 

PGP-72, and the zygosity of each GWAS hit. 
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ID Risk allele PGP158 
Zygosity 

rs1466535 A 2 

rs2383207 A 2 

Table B.5: GWAS hits predicted that PGP-158 has aortic aneurism. One PGP participant 

had aortic aneurism, and she was ranked 34 out of 130, according to posterior probability 

(AUC=0.76, P-value=0.273, FDR=0.35).  Listed are the rsIDs of 2 GWAS hits, the risk 

alleles harbored by PGP-158, and the zygosity of each GWAS hit. 
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ID Risk allele PGP38 
Zygosity 

PGP39 
Zygosity 

rs114216682 C 2 2 

rs117607728 T 2 2 

rs8034191 T 1 1 

rs8050136 C 1 2 

rs76351433 C 2 2 

rs10928927 T 1 1 

Table B.6: GWAS hits correctly identified that PGP-39 and PGP-38 have chronic 

obstructive pulmonary disease (COPD). Two PGP participants had COPD, and they were 

ranked fifth and 56th out of 130, according to posterior probability (AUC=0.772, P-

value=0.102, FDR=0.205).  Listed are the rsIDs of 6 GWAS hits, the risk alleles harbored by 

PGP-39 and PGP-38, and the zygosity of each GWAS hit. 
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Phenotype Prevalence 
Only 

Genome 
Only 

Combined 

bloodGroup_B 0.5 1 1 

graves_disease 0.5 1 1 

non-hodgkin_lymphoma 0.98 0.828 0.992 

kidney_cancer 0.988 0.496 0.988 

gilbert_syndrome 0.5 0.976 0.984 

endometrial_cancer 0.962 0.5 0.974 

kidney_stone 0.968 0.663 0.956 

alopecia_areata 0.5 0.953 0.953 

prostate_cancer 0.972 0.909 0.943 

von_willebrand_disease 0.5 0.941 0.941 

crohns_disease 0.5 0.937 0.937 

breast_fibroadenoma 0.85 0.742 0.923 

glaucoma 0.97 0.868 0.92 

bloodGroup_A 0.535 0.919 0.92 

bloodGroup_O 0.499 0.915 0.917 

deep_vein_thrombosis 0.5 0.893 0.893 

benign_prostatic_hypertrophy 0.891 0.5 0.891 

age-related_cataract 0.88 0.496 0.878 

fibrocystic_breast_disease 0.861 0.5 0.861 

colon_cancer 1 0.477 0.836 

infantile_juvenile_and_presenile_cataract 0.5 0.825 0.825 

temporomandibular_joint_tmj_disorder 0.813 0.496 0.813 

breast_cancer 0.874 0.431 0.799 

osteoarthritis 0.803 0.466 0.796 

atrial_fibrillation 0.795 0.571 0.79 

raynauds_phenomenon 0.777 0.5 0.777 

iron_deficiency_anemia 0.782 0.477 0.777 

chronic_obstructive_pulmonary_disease 0.598 0.884 0.772 

epilepsy 0.508 0.77 0.77 

aortic_aneurysm 0.5 0.76 0.76 

diverticulosis 0.747 0.5 0.747 

inguinal_hernia 0.739 0.5 0.739 

presbyopia 0.728 0.521 0.739 

hashimotos_thyroiditis 0.729 0.5 0.729 

urinary_tract_infection 0.721 0.5 0.721 

hyperopia 0.704 0.5 0.704 

uterine_fibroids 0.662 0.556 0.703 

hypertrophic_cardiomyopathy 0.5 0.702 0.702 

endometriosis 0.5 0.694 0.694 
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hair_loss 0.65 0.649 0.685 

myocardial_infarction 0.724 0.283 0.685 

dupuytrens_contracture 0.5 0.685 0.685 

hypertension 0.69 0.509 0.672 

colon_polyps 0.684 0.517 0.67 

central_serous_retinopathy 0.655 0.5 0.655 

chronic_bronchitis 0.648 0.5 0.648 

dry_eye_syndrome 0.653 0.496 0.646 

age-related_hearing_loss 0.65 0.496 0.644 

bundle_branch_block 0.654 0.472 0.642 

chronic_tension_headaches 0.633 0.5 0.633 

migraine_with_aura 0.564 0.552 0.632 

peptic_ulcer 0.5 0.627 0.627 

diabetes_mellitus_type_2 0.696 0.461 0.626 

tinnitus 0.624 0.5 0.624 

rheumatoid_arthritis 0.607 0.68 0.615 

tennis_elbow 0.612 0.5 0.612 

cardiac_arrhythmia 0.5 0.61 0.61 

carpal_tunnel_syndrome 0.5 0.609 0.609 

osteoporosis 0.685 0.361 0.607 

migraine_without_aura 0.55 0.57 0.604 

barretts_esophagus 0.5 0.595 0.595 

non-melanoma_skin_cancer 0.594 0.5 0.594 

hemorrhoids 0.591 0.5 0.591 

scoliosis 0.608 0.435 0.591 

high_triglycerides 0.579 0.565 0.585 

premature_ventricular_contractions 0.572 0.5 0.572 

impacted_tooth 0.5 0.57 0.57 

asthma 0.572 0.522 0.566 

allergic_contact_dermatitis 0.562 0.495 0.56 

rotator_cuff_tear 0.559 0.5 0.559 

ovarian_cysts 0.526 0.528 0.548 

myopia 0.552 0.499 0.547 

astigmatism 0.588 0.398 0.547 

hypothyroidism 0.509 0.537 0.541 

varicose_veins 0.502 0.522 0.539 

gallstones 0.5 0.539 0.539 

gingivitis 0.529 0.5 0.529 

pilonidal_cyst 0.528 0.5 0.528 

varicocele 0.465 0.667 0.527 

gout 0.514 0.5 0.514 

essential_tremor 0.633 0.315 0.509 

geographic_tongue 0.508 0.5 0.508 



 149 

trigger_finger 0.5 0.5 0.5 

dermatographia 0.5 0.5 0.5 

frozen_shoulder 0.5 0.5 0.5 

hyperhidrosis 0.5 0.5 0.5 

strabismus 0.5 0.5 0.5 

tongue_tie 0.5 0.5 0.5 

cafe_au_lait_spots 0.5 0.5 0.5 

osgood-schlatter_disease 0.5 0.5 0.5 

chronic_sinusitis 0.5 0.5 0.5 

sciatica 0.5 0.5 0.5 

floaters 0.5 0.5 0.5 

scheuermanns_kyphosis 0.5 0.5 0.5 

other_thrombophilia 0.5 0.5 0.5 

dandruff 0.5 0.5 0.5 

folate_deficiency_anemia 0.5 0.5 0.5 

spermatocele 0.5 0.5 0.5 

irritable_bowel_syndrome 0.5 0.5 0.5 

rectal_prolapse 0.5 0.5 0.5 

skin_tags 0.5 0.5 0.5 

hiatal_hernia 0.5 0.5 0.5 

plantar_fasciitis 0.5 0.5 0.5 

menieres_disease 0.5 0.5 0.5 

canker_sores 0.5 0.5 0.5 

keloids 0.5 0.5 0.5 

chronic_recurrent_tonsillitis 0.5 0.5 0.5 

cluster_headaches 0.5 0.5 0.5 

fissured_tongue 0.5 0.5 0.5 

female_infertility 0.5 0.5 0.5 

urethral_diverticulum 0.5 0.5 0.5 

uterine_prolapse 0.5 0.5 0.5 

nasal_polyps 0.5 0.5 0.5 

deviated_septum 0.5 0.5 0.5 

lichen_planus 0.5 0.496 0.496 

thyroid_nodule 0.5 0.496 0.496 

mitral_valve_prolapse 0.5 0.496 0.496 

appendicitis 0.5 0.496 0.496 

fibromyalgia 0.5 0.492 0.492 

retinal_detachment 0.5 0.492 0.492 

lactose_intolerance 0.492 0.5 0.492 

rosacea 0.5 0.492 0.492 

dental_cavities 0.491 0.5 0.491 

spinal_stenosis 0.5 0.483 0.483 

narcolepsy 0.5 0.482 0.482 
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porphyria 0.5 0.48 0.48 

color_blindness 0.5 0.48 0.48 

male_infertility 0.5 0.476 0.476 

psoriasis 0.5 0.47 0.468 

acne 0.463 0.5 0.463 

bunions 0.463 0.5 0.463 

lipoma 0.5 0.459 0.459 

high_cholesterol 0.417 0.556 0.455 

congenital_heart_defect 0.5 0.448 0.448 

idiopathic_thrombocytopenic_purpura 0.444 0.5 0.444 

cleft_uvula 0.5 0.437 0.437 

growth_hormone_deficiency 0.487 0.407 0.435 

gastroesophageal_reflux_disease 0.5 0.431 0.431 

eczema 0.486 0.435 0.431 

hereditary_motor_and_sensory_neuropathy 0.5 0.405 0.405 

allergic_rhinitis 0.5 0.397 0.397 

ulcerative_colitis 0.5 0.382 0.382 

cervical_cancer 0.295 0.974 0.333 

sjogrens_syndrome 0.295 0.5 0.295 

polycystic_ovary_syndrome 0.5 0.284 0.284 

nonalcoholic_fatty_liver_disease 0.492 0.111 0.111 

Table B.7: Phenotype model prediction performance (AUC) for 130 PGP participants, using 

genome sequence only, prevalence only, and both. Phenotypes are sorted by the difference 

between AUC of the prevalence only model and the AUC of the model that uses both 

genome sequence and prevalence.  Only phenotypes reported in at least one PGP are listed. 
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Phenotype #PGP AUC p-value FDR 

Strabismus 1 0.500 1.0000 1.000 

Osgood-Schlatter disease 1 0.500 1.0000 1.000 

Other thrombophilia (includes antiphospholipid 
syndrome) 

1 0.500 1.0000 1.000 

Folate deficiency anemia 1 0.500 1.0000 1.000 

Scheuermann's kyphosis 1 0.500 1.0000 1.000 

Meniere's disease 1 0.500 1.0000 1.000 

Chronic/recurrent tonsillitis 1 0.500 1.0000 1.000 

Urethral diverticulum 1 0.500 1.0000 1.000 

Dermatographia 2 0.500 1.0000 1.000 

Uterine prolapse 2 0.500 1.0000 1.000 

Tongue tie (ankyloglossia) 2 0.500 1.0000 1.000 

Rectal prolapse 2 0.500 1.0000 1.000 

Fissured tongue 2 0.500 1.0000 1.000 

Trigger finger 3 0.500 1.0000 1.000 

Spermatocele 3 0.500 1.0000 1.000 

Frozen shoulder 3 0.500 1.0000 1.000 

Female infertility 3 0.500 1.0000 1.000 

Hyperhidrosis (excessive sweating) 4 0.500 1.0000 1.000 

Cluster headaches 5 0.500 1.0000 1.000 

Hiatal hernia 8 0.500 1.0000 1.000 

Keloids 8 0.500 1.0000 1.000 

Cafe au lait spots 8 0.500 1.0000 1.000 

Nasal polyps 10 0.500 1.0000 1.000 

Sciatica 11 0.500 1.0000 1.000 

Chronic sinusitis 13 0.500 1.0000 1.000 

Irritable bowel syndrome (IBS) 15 0.500 1.0000 1.000 

Deviated septum 16 0.500 1.0000 1.000 

Plantar fasciitis 17 0.500 1.0000 1.000 

Skin tags 33 0.500 1.0000 1.000 

Floaters 34 0.500 1.0000 1.000 

Dandruff 44 0.500 1.0000 1.000 

Canker sores (oral ulcers) 48 0.500 1.0000 1.000 

Lichen planus 1 0.496 1.0000 1.000 

Thyroid nodule(s) 3 0.496 1.0000 1.000 

Mitral valve prolapse 6 0.496 1.0000 1.000 

Appendicitis 11 0.496 1.0000 1.000 

Retinal detachment 1 0.492 1.0000 1.000 

Fibromyalgia 2 0.492 1.0000 1.000 

Lactose intolerance 5 0.492 1.0000 1.000 
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Rosacea 9 0.492 1.0000 1.000 

Dental cavities 109 0.491 1.0000 1.000 

Spinal stenosis 7 0.483 1.0000 1.000 

Narcolepsy 2 0.482 0.6223 0.669 

Porphyria 1 0.480 1.0000 1.000 

Color blindness 5 0.480 1.0000 1.000 

Male infertility 3 0.476 1.0000 1.000 

Psoriasis 5 0.468 0.5940 0.658 

Acne 50 0.463 0.8593 0.831 

Bunions 8 0.463 1.0000 1.000 

Lipoma 8 0.459 1.0000 1.000 

High cholesterol (hypercholesterolemia) 36 0.455 0.7911 0.787 

Congenital heart defect 3 0.448 1.0000 1.000 

Idiopathic thrombocytopenic purpura (ITP) 2 0.444 0.6555 0.684 

Cleft uvula 1 0.437 0.5607 0.631 

Growth hormone deficiency 3 0.435 0.6511 0.684 

Gastroesophageal Reflux Disease (GERD) 3 0.431 1.0000 1.000 

Eczema 20 0.431 0.8391 0.817 

Hereditary motor and sensory neuropathy 
(includes Charcot-Marie-Tooth disease and 
HNPP) 

1 0.405 1.0000 1.000 

Allergic rhinitis (includes hay fever) 1 0.397 0.6100 0.663 

Ulcerative colitis 4 0.382 0.7820 0.785 

Cervical cancer 1 0.333 0.6714 0.686 

Sjogren's syndrome (Sicca syndrome) 1 0.295 1.0000 1.000 

Polycystic ovary syndrome (PCOS) 2 0.284 0.8360 0.817 

Nonalcoholic fatty liver disease (NAFLD) 1 0.111 0.8915 0.847 

Table B.8: Phenotypes that were predicted no better than random by our models.  

Phenotype: the poorly predicted clinical phenotypes. #PGP: the number of PGP 

participants who reported having the phenotype.  AUC: the area under the receiver 

operating characteristic curve of our model predictions. p-value: the statistical significance of 

each AUC.  FDR: the false discovery rate (FDR). None of the predictions are significant. 
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