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Abstract

In this manuscript we seek to relax some of the traditional assumptions associated

with the estimation of causal effects. In particular, we relax the assumption that all

confounders are measured without error and the assumption that the observations in

the sample are independent and identically distributed. Furthermore, we explore the

impact of model misspecification in the estimation of population causal effects.
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Chapter 1

Introduction

At its core, the goal of causal inference is to identify causal relationships and

distinguish them from a correlation analysis.

Estimation of causal effects is of vital importance in public health. Accurate

estimation of causal effects allows researchers and practitioners to assess public policy,

compare treatment efficacy, and evaluate health disparities. In this context, the

main contribution of Donald Rubin and his collaborators was the systematization

and formalization of key concepts that evolved in a concise framework, based on

which causal effects could be defined. This conceptual framework is referred as the

Rubin Causal Model (RCM).

Based on the idea of potential outcomes (Neyman, 1923), the RCM outlined and

listed a precise set of assumptions in which causal effects can be estimated. Before

presenting some key aspects of the RCM, some notation needs to be introduced.
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CHAPTER 1. INTRODUCTION

Throughout this manuscript, the outcome of interest is represented by the letter

Y , the letter T represents a binary exposure/treatment, the set of confounders (i.e. a

set of covariates that are associated with the outcome and the exposure) is identified

by X. For each unit i, Yi(t) with t = 0, 1 represents the outcome that would have

been observed if unit i received the treatment t. For any unit i, the individual level

causal effect is defined as Yi(1)−Yi(0). Notice that only one potential outcome in the

pair {Yi(0), Yi(1)} is observed, therefore individual causal effects cannot be estimated.

Thus, a common practice is to estimate average causal effects.

Traditionally, the two average causal effects most commonly estimated are: (1) the

average treatment effect (ATE) and (2) the average treatment effect on the treated

(ATT). The ATE is defined as the average of the individual treatment effects over the

population, whereas the ATT is defined as the population average of the individual

treatment effect among those units who were actually treated. One of the main

contributions of the RCM is the identification of the required assumptions to correctly

identify and estimate the ATT and ATE. The key assumptions needed to estimate

causal effects can be summarized as follows:

1. Consistency of the observed outcome. As previously stated, for any given unit

i the pair {Yi(0), Yi(1)} for i = 1, 2, ...n is not observable, we only observe one

of the two potential outcomes. In other words, the observed outcome Yi is equal

to Yi = Yi(1)× Ti + Yi(0)× (1− Ti). Thus for any unit, the observed outcome

is equal to the its potential outcome under the treatment received.

2



CHAPTER 1. INTRODUCTION

2. Ignorability assumes that X contains all possible confounders. In other words,

given the set of observed covariates X, the treatment assignment is independent

of the potential outcomes. The ignorability assumption implies that the treat-

ment assignment can be assumed to be random, conditionally on observed char-

acteristics of the units in the sample. Which means that: {Yi(0);Yi(1)} ⊥⊥ Ti|Xi

for all i.

3. Stable Unit Treatment Value Assumption (or SUTVA). The implication of this

assumption is twofold: (1) the treatment assignment of any unit does not affect

the potential outcomes of other units (often referred to as noninterference) and

(2) there is only one version of the treatment, this implies that the treatment

is comparable across units.

4. Experimental treatment assumption or Positivity. This assumption implies,

that for a given set of confounders, each unit has a positive probability of being

assigned to the treatment group (i.e, bounded away from zero)

5. Absence of measurement error. This assumption implies that the observed

outcome, the treatment indicator and all the confounders are measured without

error.

6. Independent and identically distributed observations. Most of the causal infer-

ence methods are developed for simple random samples.

7. Correct model specification. In order to correctly estimate causal effects,

3



CHAPTER 1. INTRODUCTION

causal inference assumes that the statistical models for the outcome and for the

probability of receiving treatment are correctly specified. This assumption can

be relaxed when a doubly robust (DR) estimator is used. When a DR estimator

is computed, it suffices to have one model correctly specified in order to obtain

consistent estimators of causal effects (see Chapter 2).

Although randomized clinical trials (RCT) are considered the gold standard to

evaluate treatments, situations in which randomization of a treatment/exposure is

not feasible are not uncommon, especially in public health research. One of the most

appealing features of the RCM, is that its conceptual framework is broad enough

that allows for the estimation of causal effects using non-experimental data. Methods

like instrumental variables, regression analysis, regression discontinuity, propensity

score stratification, propensity score matching and propensity score weighting, among

others, were promptly developed for this purpose. In this manuscript, we focus on

three propensity score based methods that are commonly implemented: (1) propensity

score matching, (2) propensity score weighting and (3) doubly robust estimators.

The goal of this manuscript is two-fold, on one hand we relax assumptions 5 and 6,

and on the other, we explore the consequences of violating assumption 7. When work-

ing with non-experimental data, especially with self-reported information, measure-

ment error tends to be the rule rather than the exception. Therefore, it is important to

develop methods that can estimate causal effects under the presence of measurement

error. By relaxing assumption 6, we extend causal inference methods to a context

4



CHAPTER 1. INTRODUCTION

of complex survey data. Large scale, complex survey designs are becoming increas-

ingly common in public health. In such large-scale surveys, the sampling framework

may be complicated, and the sampling probabilities (and resulting survey weights)

vary depending on the sampling of sub-populations (these survey weights may then

also be adjusted to account for non-response or to post-stratify to known population

totals). When attempting to make inferences to the target population, the survey

design (e.g., survey weights and design elements) should be correctly incorporated in

the data analysis; otherwise, the parameter estimates may not be relevant to the orig-

inal target population of the survey. Finally, by assessing the consequences of model

misspecification in the propensity score and outcome model, we can evaluate which

causal effect estimators perform better under different degrees of misspecification.

The rest of this manuscript is organized as follows: in Chapter 2 we extend the

Simulation-Extrapolation methodology or SIMEX (Cook and Stefanski, 1994; Carroll

et al., 1996) to a doubly robust estimator of the ATE. This extension allows to miti-

gate the bias in the estimation of the ATE, induced having a single covariate measured

with error. Furthermore, we present a new structure of measurement error. This new

structure is more general than the classical measurement error structure, allowing us

to capture features associated with self-reporting. We illustrate the application of

this method using the National Longitudinal Study of Adolescent to Adult Health

(Add Health) data, to estimate the effect of depression on sexual health. In Chapter

3, we present a propensity score matching estimator of the ATT in the context of

5



CHAPTER 1. INTRODUCTION

complex survey data. In this chapter, we present guidelines on how to handle survey

weights when estimating the ATT using propensity score matching and compare the

performance of different estimation approaches commonly used in the literature. We

illustrate the application of such guidelines by using the Early Childhood Longitudi-

nal Study, Kindergarten class 1998-1999 (ECLS-K) to estimate the effect of special

education services on math skills. In Chapter 4 we compare the impact of model

misspecification when implementing two of the most commonly used propensity score

based methods: propensity score matching and weighting. In this chapter, we present

a measure of the degree of misspecification and evaluate the performance of the esti-

mators considered as a function of the model misspecification. Finally in Chapter 5,

we present our main conclusions and provide a summary of our main findings.

Excerpts of this chapter and Chapter 2 are from the paper entitled “A doubly robust estimator
for the average treatment effect in the context of a mean-reverting measurement error”, which has
been published in Biostatistics (Lenis et al., 2017a).

6



Chapter 2

A doubly robust estimator for the

average treatment effect in the

context of a mean-reverting

measurement error

2.1 Introduction

In many fields measurement error tends to be the rule rather than the exception.

Methods such as Simulation-Extrapolation (SIMEX) (Cook and Stefanski, 1994),

regression calibration (Rosner et al., 1990) and multiple imputation (Cole et al.,

2006; Guo et al., 2012) have been developed to mitigate the impact of measurement

7
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MEAN-REVERTING MEASUREMENT ERROR

error in the estimation of coefficients, but limited work has been done to extend these

approaches to a causal inference context.

Causal inference has provided a number of tools and a clear conceptual frame-

work in which causal effects can be estimated. The development of causal methods

has had an important impact in the design of clinical trials and sampling designs and

the framework has been extended to observational studies and other study designs

where formal randomization is not possible. In particular, since propensity-score

based methods were first introduced by Rosenbaum and Rubin (1983), a wide range

of methods based on propensity scores have been developed to estimate treatment

effects in non-experimental studies. Methods such as matching, weighting or subclas-

sification (Stuart, 2010) allow for comparison of treatment and control groups that

are similar based on a set of observed characteristics. One can also use doubly robust

estimators (Rotnitzky et al., 1998), which utilize models of treatment assignemnt (the

propensity score) and of the outcome, to estimate a treatment effect. One benefit of

doubly robust estimators is that they have an asymptotically normal distribution and

furthermore, they are consistent if either the model for the propensity score or for

the conditional mean of the outcome (but not necessarily both) are correctly spec-

ified. Nevertheless, all of these methods rely on the assumption that all covariates,

treatment indicator and observed outcome are measured without error.

Steiner et al. (2011) has shown that measurement error in the covariates can lead to

bias in the treatment effect estimator, when the true propensity score model depends

8
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on the unobserved true covariates. McCaffrey et al. (2013) has also shown that when

at least one of the covariates is measured with error, balance between the treatment

and control groups on the true (unobserved) covariate is not always achieved. There

is a need to extend and develop methodology to account for measurement error in a

causal inference context. Stürmer et al. (2005) propose a propensity score calibration

method to account for unmeasured confounders (i.e., the true covariate in the context

of measurement error). This method is related to the regression calibration approach

and relies on a validation sample. Nevertheless their method can only apply when

the validation sample has information regarding the set of all relevant covariates and

the treatment assignment. McCaffrey et al. (2013) propose a measurement-error bias-

corrected inverse probability of treatment weighting estimator. This method requires

either the distribution of the measurement error or the unobserved true covariate to

be known, and the propensity score model to be correctly specified. Webb-Vargas

et al. (2015) implement a multiple imputation approach to correct for covariate mea-

surement error in propensity score estimation, and compute a doubly robust estimator

of the treatment effect. However, this method requires knowledge regarding the joint

distribution of the variables (covariates, outcome and treatment indicator). Further-

more, convergence problems have been reported when many binary confounders are

included. Finally, Lockwood and McCaffrey (2015) extended the SIMEX methodol-

ogy to causal inference in the context of typical classical measurement error (i.e., the

error term is additive, non-differential and homoscedastic). In this article we show

9
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that the SIMEX methodology can be extended to a more complex measurement error

structure that has the typical classical measurement error structure as a special case.

Mean-reverting measurement error structures have been described by Bound and

Krueger (1991) in the context of longitudinal data of earnings. As stated by Akee

(2011), mean-reverting measurement error in the context of self-reported earnings

implies that “the higher the true value of earnings, the more likely an individual is

to under report her earnings and vice versa". In general terms and in the context

of self reported variables, a mean-reverting measurement error implies that the units

with larger values of a given variable tend to underreport such values whereas units

with smaller values then to overreport their true value. Mean-reverting measurement

error is traditionally modeled with a similar structure as the typical measurement

error with the exception that the measurement error is negatively correlated with the

true value of the mismeasured covariate. In this article we present an alternative way

to model a mean-reverting measurement error. The main advantage of our proposed

parametrization is two-fold: (1) it allows for “mean-diverging" measurement error (i.e.

higher values of the true covariate are associated with even larger reported values and

vice versa) and (2) the typical classical measurement error structure can be conceived

as a special case of this more general measurement error structure.

We propose to extend the SIMEX methodology to a doubly robust estimator of

the average treatment effect, when a covariate is measured with error (under a mean-

reverting measurement error structure) but the treatment, outcome and the rest of

10
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the covariates are measured without error. This method does not require assumptions

regarding the joint distributions of the variables. Additionally, the validation data

only needs to have information regarding the true covariate and the faulty measured

version. Furthermore, the measurement error structure (i.e., reverting, diverging,

or typical) does not have to be specified beforehand. Validation samples are not

uncommon in studies where acquiring the true value of the covariate of interest is too

expensive, time consuming, or invasive (Pettersen et al., 2012; Saint-Maurice et al.,

2014). Work by Robins (2003), Cole et al. (2006), Goetghebeur and Vansteelandt

(2005), or Edwards et al. (2015) has examined the consequences of measurement

error in the outcome and/or the exposure.

This article is organized as follows: Section 2.2 presents definitions and working

models, Section 2.3 introduces a doubly robust estimator and summarizes the SIMEX

method, Section 2.4 deals with the asymptotics, Section 2.5 presents the results of a

simulation study, Section 2.6 presents an application of the method using the National

Longitudinal Study of Adolescent to Adult Health (Add Health), and Section 2.7

presents our conclusions.

11
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2.2 Definitions

2.2.1 Measurement Error Structure

Different measurement error structures have been proposed in the literature and

most of them can be grouped in two categories: classical and Berkson. Classical mea-

surement error structures assume that the true value of a covariate is not observed but

a faulty version of it is available (which in the literature is referred to as a “surrogate").

In contrast, Berkson measurement error happens “when a group’s average is assigned

to each individual suiting the group’s characteristics. The group’s average is thus the

’measured value’, that is, the value that enters the analysis, and the individual latent

value is the ’true value’." (Heid et al., 2004). Besides the technical differences between

classical and Berkson type error, the main difference between these two structures is

related to the consequences in the estimation of parameters. For example, in the

context of linear regression, it can be shown that under classical measurement error

structures regression coefficients will be inconsistent. However, under Berkson error

structures the estimators, although inefficient, will be consistent.

Throughout this article we assume a measurement error structure that belongs to

the classical type and that affects only one of the covariates. If Xi is defined as the

true and unobserved value of a covariate for unit i, the observed surrogate measure

12
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of Xi, say Wi, is assumed to be of the form:

Wi = Xi + τ1 [Xi − E (Xi)] + σεi (2.1)

where E (Xi) is the expected value of the mismeasured covariate. Notice that differ-

ent configurations of σ and τ1 may lead to different measurement error structures.

For example, if τ1 = 0 the measurement error structure follows a typical classical

measurement error structure. Furthermore we could potentially find combinations of

values for τ1 and σ such that the measurement error could be either mean reverting

or mean diverging. Negative values of τ1 are associated with mean reverting measure-

ment error structures while positive values of τ1 are associated with mean diverging

structures. Observe that if τ1 = −1, W represents random deviations from the mean

of X. Also notice that for a given value of σ and depending on the value of τ1, it is

possible that the variance of the surrogate W will be smaller than the variance of the

true covariate X. Therefore, the notion of reliability
(
i.e. V ar(X)

V ar(W )

)
is no longer fully

informative. Under this measurement error parametrization σεi represents the differ-

ence in the reported values among units with the same true value of the covariate X.

We assume that εi is a random variable following a normal distribution with mean

zero and unit variance that is independent of Xi for all i.

13
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2.2.2 Working Models

The goal of this article is to estimate the average treatment effect (ATE) of a bi-

nary treatment (T ) on an observed outcome (Y , with Y ∈ R) when a set of covariates

(X,Z) are available (with X ∈ R and Z ∈ Rq).

2.2.2.1 Propensity Score

We define the propensity score for unit i as the probability of receiving treatment

given the covariates (X,Z). Explicitly: P (Ti = 1|Xi, Zi) = πi where:

πi(·) ∈
{
π(Xi, Zi;α) : α ∈ Rq+2

}
(2.2)

and π(·) : Rq+1 → (0, 1) is a parametric model that includes an intercept. We also

assume the first derivatives are defined, namely: DT
α,i = ∂πi

∂α

T
=

[
∂πi
∂α1
· · · ∂πi

∂αq+2

]T
.

2.2.2.2 Conditional Mean model

We assume the conditional mean model to be:

E [Yi|Xi, Zi, Ti] = µi = β0 + ∆Ti +XiβX + ZT
i βZ (2.3)

with β0, βX and ∆ ∈ R and βZ ∈ Rq. We define: Dβ0,i = ∂µi
∂β0

; DβX ,i = ∂µi
∂βX

; DT
βZ ,i

=[
∂µi
∂βZ,1

· · · ∂µi
∂βZ,q

]T
; D∆,i = ∂µi

∂ξ
. We let DT

i = [Dβ0,i, DβX ,i, DβZ ,iDξ,i]
T , notice that

14
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under this model specification, and under the assumptions and regularity conditions

described in Abadie and Imbens (2016) the ATE is equal to ∆.

2.3 Doubly Robust Estimators and SIMEX

2.3.1 Doubly Robust Estimators

Under regularity conditions, if (2.2) or (2.3) are correctly specified, then it can

be shown that there exists a consistent and normally distributed estimator for Θ0 ={
β0, βX , β

T
Z ,∆, α

T
}T ,with Θ0 ∈ R2q+5 (Rotnitzky et al., 1998). Doubly robust esti-

mators can be formulated in the context of estimating equations (Robins et al., 2007).

Define ωi = Ti
πi

+ 1−Ti
1−πi ; and let ΓTi = DT

i
1
vi
ωi [Yi − µi]. We now define the following vec-

tor: ψ1 (Xi, Zi, Ti, Yi,Θ) = [Γi, Dα,i,∆− E [Yi|Xi, Zi, Ti = 1]− E [Yi|Xi, Zi, Ti = 0]]T

where Θ is a vector of parameters in R2q+6. If the propensity score or the condi-

tional mean model are correctly specified then E [ψ1] = 0. Thus if we define Θ̂DR,

such that
∑n

i=1 ψ1

(
Xi, Zi, Ti, Yi, Θ̂DR

)
= 0 then Θ̂DR will be a consistent estima-

tor for Θ0 and will have an asymptotically normal distribution. Additionally, we

assume that if both models are incorrectly specified, the resulting estimator will con-

verge to Θ∗ which is not necessarily equal to Θ0 and the estimator will follow an

asymptotically normal distribution. Explicitly, if we define Θ̃ to be the solution to∑n
i=1 ψ1

(
Xi, Zi, Ti, Yi, Θ̃

)
= 0 then we can conclude that Θ̃→ Θ∗, where Θ∗ may be

different from the true vector of parameters Θ0.

15



CHAPTER 2. A DOUBLY ROBUST ESTIMATOR OF THE ATE UNDER A
MEAN-REVERTING MEASUREMENT ERROR

2.3.2 SIMEX

From this point forward, we assume that the propensity score is correctly spec-

ified. Given that we are implementing a doubly robust estimator of the ATE, if

our method is able to account for the impact of the measurement error in the

prediction of the propensity score the final SIMEX estimator of the treatment ef-

fect will be consistent even when the model for the conditional mean of the ob-

served outcome is misspecified. Therefore, we can estimate the vector of unknown

true parameters Θ0 with Θ̂, by solving the following unbiased estimating equations:∑n
i=1 ψ1

(
Xi, Zi, Ti, Yi, Θ̂DR

)
= 0. Since the variable X is not observed, the solution

to
∑n

i=1 ψ1

(
Wi, Zi, Ti, Yi, Θ̂NAÏV E

)
= 0 will lead to an inconsistent estimator of the

vector of parameters of interest. Therefore the solution to the estimating equations is

a consistent estimator for some other vector of parameters, say Θ∗. This property of

convergence to some vector of parameters is fundamental for the implementation of

the SIMEX methodology. Since convergence is always achieved (even in the presence

of measurement error), we can artificially increase the measurement error in the sur-

rogate W , and evaluate the trend of the bias as a function of such increments. Then

we can extrapolate to the case of no measurement error. We now describe the two

steps in SIMEX: simulation and extrapolation.
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2.3.2.1 Simulation Step

Let B be a large fixed positive integer. Then for each unit i we generate B random

standard normal variables, εib, indexed by b = 1, 2, ..., B. We defineWib asWib = Wi+

√
λσεib for some fixed λ > 0 (for simplicity, σ is assumed to be known) . Let Θ̂b,λbe the

solution to
∑n

i=1 ψ1

(
Wib, Zi, Ti, Yi, Θ̂b,λ

)
= 0. Then we can define Θ̂λ = 1

B

∑B
i=1 Θ̂b,λ.

Now we can repeat this procedure for Λ = {λk : λk > 0 for k = 1, 2, 3..., K} to ob-

tain
{
λ, Θ̂λ

}
λ∈Λ

. This sequence allows us to evaluate the trend of the bias as a

function of the increments in the measurement error and extrapolate to the case of

no measurement error, when λ = −1.

2.3.2.2 Extrapolation Step

Cook and Stefanski (1994) proposed to compute the SIMEX estimator as Θ̂SIMEX =

G
(
ϑ̂,−1

)
, where G (ϑ, λ) : R→ R2q+6 is a parametric model for the vectors Θ̂λ as

a function of Λ and ϑ ∈ Rp is a p-dimensional vector of coefficients associated with

the model. If at least one but, not necessarily both of the working models (i.e.,

the propensity score or the conditional mean model) are correctly specified and the

parametric model G (·, ·) is also correctly specified, then Θ̂SIMEX will be a consistent

estimator of the true vector of parameters Θ0 (Carroll et al., 1996).

17



CHAPTER 2. A DOUBLY ROBUST ESTIMATOR OF THE ATE UNDER A
MEAN-REVERTING MEASUREMENT ERROR

2.4 Asymptotics

When Cook and Stefanski (1994) presented SIMEX, they suggested a bootstrap

procedure to compute standard errors of the SIMEX estimator. A few years later,

Carroll et al. (1996) derived the asymptotic distribution of the SIMEX estimator

under a typical classical measurement error structure and the assumption that σ

is know, Grace (2008) extended these results to longitudinal data. Carroll et al.

(1996) provided guidelines to estimate the distribution of the SIMEX estimator when

the variance of the measurement error is unknown but it can be estimated with an

asymptotic normal estimator. Furthermore, following closely the derivation presented

by Carroll et al. (1996) a valid asymptotic distribution of the ATE can be derived

even when the measurement error has the structure presented in equation 2.1. Thus,

we only need to specify a valid estimator for the variance of the measurement error

when a validation sample is available. Notice that in the validation sample, both X

andW are observed. We denote with m the sample size of the calibration sample and

express equation 2.1 asWi = −τ1E(Xi)+(1+τ1)Xi+σεεi for j = 1, 2, ...m. Therefore

the variance of the measurement error can be estimated by the sample variance of the

residuals of the simple linear regression of X on W . In other words, the estimator of

σ2 can be expressed as if σ̂2 = 1
m

∑m
j=1 e

2
j where ej represents the jth residual of the

simple linear regression of X on W . It can be shown that
√
m
(
σ̂2 − σ2

)
D→ N (0,Ω)

where Ω can be computed using influence functions. More explicitly Ω = E [ϕ2] with

ϕ = (W 2 − E [W 2]) − 2(1 + τ1)(WX − E [WX]) − 2τ1E(X)(1 + τ1) (X − E [X]) +
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(1 + τ1) (X2 − E [X2]).

It is important to note that the measurement error structure presented in Section

2.1 is not innocuous: it can be shown that even after applying the SIMEX method-

ology, when the measurement error has the structure defined in equation 2.1, the

estimator of the coefficient associated with the covariate measured with error will

be inconsistent. A motivating example showing this and a procedure to obtain a

consistent estimator of the coefficient associated with the missmeasured variable are

available in Appendix A in Supplementary Materials.

2.5 Simulation Study.

To evaluate the performance of our estimator we conduct a simulation study to

compare bias, mean squared error (MSE) and coverage of three different estimators

of the treatment effect ∆: (1) the estimator obtained by using X, the true measure

of the covariate, (2) a naive estimator, which ignores the measurement error and

simply uses W , and (3) the SIMEX estimator for the treatment effect. The three

methods implement a doubly robust approach using propensity score weights. A

total of 1000 simulation iteration were implemented. We set G (ϑ, λ) as a quadratic

function; explicitly E
(

Θ̂λ|λ
)

= ω0 + ω1λ + ω2λ
2. Details of the data generating

process can be found in Appendix B in Supplementary Materials. In the simulation

study, we fit a correctly specified propensity score model, but we fit the following
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model for the conditional mean: E(Yi|Ti) = η0 + η1Ti. Notice that we have purposely

omitted Z and X, thus incorrectly specifying the conditional mean model. Since we

are using a doubly robust estimator, it holds that η̂1 will converge to ∆ if our method

is able to account for the impact of the measurement error in the prediction of the

propensity score. We evaluate the performance of the SIMEX estimator described in

Section 3.2 and compare it to that of the naive estimator and the estimator obtained

when the covariate measured without error is used. Figure 1 summarizes our main

findings.

As expected, when the true covariate is used in the estimation, performance is

very good and is used as the baseline for comparisons. The naive method (ignoring

the measurement error) leads to biases in the estimated treatment effect across all

the settings considered. Furthermore, the bias decreases as τ1 increases. In terms

of bias, the SIMEX estimator outperforms the naive method, and this result holds

for all correlation levels of X and Z, and across the different coefficients on X in

the true treatment assignment (propensity score) model. Similar patterns observed

for MSE and coverage, in terms of the SIMEX estimator performing better than the

naive approach.

In general, we observe that the SIMEX approach performs better when the co-

efficient on the true covariate in the propensity score model is small and when the

correlation between the covariates is relatively low. Notice that all methods can pro-

duce coverage above 95%. This is due to the fact that the estimated propensity score
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is used in the computation of the estimators’ weights, and thus the standard errors

are overestimated (Rubin and Thomas, 1996; Rubin and Stuart, 2006). Notice that

the same conclusions hold even when τ1 = 0 (i.e., when the measurement error fol-

lows a typical classical structure) which implies that the defined measurement error

structure defined in Section 2, can easily accommodate for a typical measurement

error structure. In general we observe that, as expected, the estimator that uses X

as a regressor performs better than the SIMEX and the Naive estimators across all

simulated scenarios. The performance of the Naive method suggests that ignoring the

measurement error in a covariate, can induce bias in the estimated treatment effect

which translates into higher MSE and poor coverage. This situation is exacerbated

when the impact of X in the propensity score is large and the correlation, ρ, between

X and Z is high. The simulation study suggests that, implementing the SIMEX

methodology can help to mitigate the consequences associated with measurement

error.

2.6 Application

The National Longitudinal Study of Adolescent to Adult Health (Add Health) is

a multi-year longitudinal study of a nationally-representative sample of adolescents

in the United States that began during the 1994-95 school year, when the adolescents

were in grades 7-12. Information regarding a wide range of topics (e.g., socioeconomic

21



CHAPTER 2. A DOUBLY ROBUST ESTIMATOR OF THE ATE UNDER A
MEAN-REVERTING MEASUREMENT ERROR

factors, relationships, psychological and physical health, etc.) was collected during

four waves. For details see Harris et al. (2009). In this application, we estimate the

effect of depression (the exposure) on sexual health, where Body Mass Index (BMI)

is the confounder measured with error.

We use the Add Health data to evaluate the performance of the SIMEX estimator

in a realistic data context. For this application, we use the publicly available Add

Health data of subjects who participated in Waves I and II. This dataset present a

unique feature: during the second wave BMI was both measured and self-reported.

Thus we can compute the treatment effect using the true BMI, and compare the

result to those obtained implementing SIMEX and those obtained using the naive

approach (using the self-reported BMI). To do this, we artificially construct a vali-

dation sample by randomly selecting 1
6
of the observations (this is the same relative

sample sizes used in simulation study). The variance ratio of the self-reported BMI

to the measured BMI is equal to 0.90 which indicates that the measurement error

structure cannot follow the typical classical structure, since under that structure the

variance of the surrogate is always larger than the variance of the true covariate.

Furthermore, the correlation between the self-reported and the measured BMI is

0.92 and the R2 associated with a simple linear regression of the self-reported mea-

sure on the measured BMI is 0.84. This indicates that the self-reported BMI is a

highly reliable measure of the true BMI and therefore we do not expect significant

differences between the different treatment effect estimations. In fact, the estimated

22



CHAPTER 2. A DOUBLY ROBUST ESTIMATOR OF THE ATE UNDER A
MEAN-REVERTING MEASUREMENT ERROR

treatment effect was 0.052 and statistically insignificant regardless of the approach

used to estimate it.

Thus, we propose a data-based simulation study where all the covariates are ob-

tained from the Add Health data, but the outcome, the exposure and the variable

measured with error are simulated. By controlling the data generating process we

should be able to assess the performance of the SIMEX estimator in more complex

data structure.

2.6.1 Data-based simulation set-up

The Add Health data contains the measured weight and height of all the adoles-

cents in Wave II, and so a highly reliable measure of the Body Mass Index (BMI)

can be obtained. Plankey et al. (1997) and Stommel and Schoenborn (2009) model

self-reported BMI in the context of mean reverting measurement error. In order

to evaluate the performance of the SIMEX estimator, we construct a self-reported

BMI, srBMI, as srBMIi = BMIi + (1 − τ1) (BMIi − E [BMIi]) + σεi with in-

dependently and identically distributed errors εi ∼ N (0, 1) and variance equal to

σ2 = 0.3 × V ar(BMIi). Both the V ar(BMIi) , the E [BMIi] and τ1 are estimated

from the available data.

The set of covariates measured without error, Z, are listed in Table 3.1. These

variables have been suggested by Goodman and Whitaker (2002) to have an effect on

depression, which constitutes the exposure. Goodman and Whitaker (2002)
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also link depression with BMI. Thus, we construct an indicator of depression sta-

tus,mdep1, assuming thatmdep1i ∼ Bernoulli (pi), with pi = expit (−3.3 + αBMIi+

1.1NotWhitei + 6welfare1pi − .5PEd_CCi + .5delinqIi + .8heavydsi).

All coefficients, except the one associated with BMI, are chosen based on a es-

timated logistic regression using the available data. In section 2.5 we have shown

that a strong association between the true values of the unobserved covariate (BMI)

and the exposure (depression) affects the performance of the SIMEX estimator, in

other words the stronger the association between the missmeasured covariate and the

exposure, the more compromised is the performance (in terms of bias, coverage and

MSE) of the SIMEX estimator. Thus we increased the association between BMI and

depression by a factor of twenty, which implies that α (the coefficient on BMI in the

propensity score model) is equal to 0.066.

Wingood et al. (2002) suggests that BMI and depression affect sexual health. We

generate the outcome variable, number of different sexual partners in the last year,

npartneryear, from a normal distribution. That is npartneryeari ∼ N (µi, 1.4
2),

with: µi = β + βBMIi + βmdep1i − βNotWhitei + βwelfare1pi− βPEd_CCi +

βdelinqIi+ .βheavydsi. For simplicity we set β = 1.5. Out of the 2640 complete cases

we randomly select 440 adolescents that will constitute the validation sample (i.e.,

the sample where BMI and the generated variable measured with error, srBMI, are

observed). The remaining 2200 observations constitute the main sample, the sample

where BMI is not observed, but its surrogate is. The doubly robust estimator is
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computed using the data from the main sample. We ran a total of 1,000 iterations

2.6.2 Data-based simulation results

The main results from the data-based simulation are summarized in Table 2.2 .

The first column of Table 2.2 shows the name of the covariates used in the outcome

model, in the second column the true value of the estimated parameters are displayed,

in the third column we computed the average value of the estimated parameter (across

the 1,000 iterations), the fourth column gives the percentage bias (in absolute value),

the fifth column shows the empirical coverage of the 95% confidence interval and

finally, the last column gives the MSE. Part I of Table 2.2 shows the estimation

results using the measured BMI. As expected, the bias is negligible and the empirical

coverage confidence intervals is close to 95% for all the covariates included in the

outcome model. Part III of Table 2.2 shows the estimating results associated with the

naive method (i.e., using the generated self-reported BMI), the performance of the

naive estimator is far from ideal and the estimators of the coefficients associated with

the variables mdep1, NotWhite and delinqI have on average biases larger than 10%.

This is particularly important in the estimated treatment effect (i.e., the coefficient

associated with the variable mdep1) where the bias is about 32%. Part II of Table

2.2 presents the estimation results obtained by implementing the SIMEX method.

On average almost all of the coefficients have biases less than 5% (the only exception

is the estimator associated with the covariate mdep1 that has a bias of 5.01% ).
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The results shown in Table 2.2 incorporate the correction suggested in Appendix

A in Supplementary Materials. The bias of the SIMEX estimator associated with

the estimation of the treatment effect is 5.01%, in other words SIMEX was able to

remove about 84% of the bias associated with the naive estimation of the treatment

effect. It is important to notice that the standard errors associated with the SIMEX

estimators tend to be larger that the ones obtained by the other two methods. This

could potentially translate into a power loss, nevertheless the comparison of theMSE

of the SIMEX estimators to that of the naive approach, suggests that the efficiency

loss is negligible.

2.7 Conclusions

In this article we propose a new structure of measurement error that has the

typical classical measurement error structure as a special case. We found that using

a covariate measured with error can lead to biases in the estimation of the average

treatment effect in non-experimental studies even when a doubly robust estimator

is utilized. Our theoretical results and simulation study suggests that the SIMEX

estimator can help to mitigate this problem, and a data-based simulation suggests

that the SIMEX estimator can help to reduce up to 84% of the bias introduced in

the estimation of the treatment effect using the covariate measured with error. It is

important to highlight that the SIMEX estimator also helps to reduce the bias of the
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other estimated coefficients in the outcome model.

Compared to other methods that address measurement error in a causal frame-

work (Stürmer et al., 2005), our use of SIMEX only requires information information

related to the covariate and its surrogate in the validation sample. The data-based

simulations suggest that this methodology can be applied to complex data structures

with multiple binary covariates, which is an improvement over the Multiple Impu-

tation for External Calibration approach (Webb-Vargas et al., 2015), which assumes

joint multivariate normality of the covariates. Future work should further investigate

the relative performance of these methods under a wider range of settings.

The main limitation of the SIMEX approach is the assumption that the paramet-

ric model G (ϑ, λ) is correctly specified. This assumption is not testable, and future

work should investigate how robust the SIMEX estimator is to different model specifi-

cations (Cook and Stefanski, 1994). In addition, the method presented in this article

only considers the case of a linear outcome model; further work will concentrate on

extending this approach to different parametrizations, such as general linear models.

In conclusion, we have shown that estimating an average treatment effect using

a doubly robust estimator in non-experimental studies can lead to significant biases

when a mismeasured covariate is used in the estimation. However, the SIMEX esti-

mator can be used to mitigate this problem. This extension is particularly relevant

to public health research, where measurement error tends to be the rule rather than

the exception.
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2.8 Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Figure 2.1: Absolute bias, coverage and mean squared error (MSE) as functions of
τ1 for different levels of correlation of the covariates and effect size of the unobserved
variable in the propensity score (simulation study).
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Table 2.1: Empirical example using Add Health data: Covariates used in propensity
score and outcome models

Wave Covariates Code Description
I Race NotWhite Indicator variable indicating if the

respondent did not answer that his or her
race is White

I Welfare welfare1p Indicator variable indicating that at least
one of the subject’s parents responded that
he or she receives government assistance.

I Parent’s
Education

PEd_CC Indicator variable that identifies if at least
one parent completed college or higher level
education.

II Heavy
Drinking or
Smoking

heavyds Indicator variable that takes the value one if
the adolescent is either a heavy smoker or a
heavy drinker or both. Heavy smokers are
those individuals for whom the amount of
cigarettes smoked in the last month is in the
top quartile. Heavy drinkers are those
individuals who have had at least three drinks
per week. These cutoffs are based on those
used in Goodman and Whitaker (2002).

II Delinquent
Behavior

delinqI Indicator variable that identifies if the
adolescent was seriously involved in criminal
activities, as measured by scoring in the top
quartile of the Add Health delinquency scale.
This dichotomization follows the same criteria
as Goodman and Whitaker (2002).
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Table 2.2: Estimation results from the data-based simulation.

Part I
True

Average Bias Coverage MSE
Depression (mdep1) 1.50 0.21% 94.8% 0.006
Race (NotWhite) -1.50 0.06% 95.5% 0.007

Welfare (welfare1p) 1.51 0.39% 94.1% 0.016
Parents’ Education (PEd_CC) -1.50 0.10% 93.6% 0.010

BMI 1.50 0.00% 94.2% 0.000
Delinquent Behavior (delinqI) 1.51 0.34% 94.1% 0.009

Heavy Drinking or Smoking (heavyds) 1.50 0.06% 95.4% 0.008
Part II
SIMEX

Average Bias Coverage MSE
Depression (mdep1) 1.42 5.01% 93.9% 0.006
Race (NotWhite) -1.52 1.44% 96.1% 0.007

Welfare (welfare1p) 1.48 1.55% 96.5% 0.016
Parents’ Education (PEd_CC) -1.47 1.78% 94.4% 0.010

BMI 1.55 3.29% 100% 0.000
Delinquent Behavior (delinq1) 1.52 1.47% 95.7% 0.009

Heavy Drinking or Smoking (heavyds) 1.49 0.62% 96.9% 0.008
Part III
Naive

Average Bias Coverage MSE
Depression (mdep1) 1.98 31.72% 11.9% 0.249
Race (NotWhite) -1.32 11.8% 81.4% 0.053

Welfare (welfare1p) 1.57 4.63% 95.7% 0.055
Parents’ Education (PEd_CC) -1.64 9.32% 87.9% 0.051

BMI 1.38 7.94% 0.0% 0.014
Delinquent Behavior (delinqI) 1.31 12.96% 81.1% 0.061

Heavy Drinking or Smoking (heavyds) 1.59 5.86% 94.2% 0.032
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Chapter 3

It’s all about balance: propensity

score matching in the context of

complex survey data

3.1 Introduction

3.1.1 Background

Non-experimental data are increasingly used to estimate the causal effects of cer-

tain exposure/intervention (hereafter, ‘treatment’), especially when a randomized

trial is infeasible or unethical. More often than not, the interest is in causal effect

estimates that generalize to an entire target population, as opposed to apply to only
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a data sample. These interests combined call for the use of data that help inform

about the target population and statistical methods that ensure the inferences are as

accurate as possible. Two tools available for these purposes are large-scale nationally-

representative datasets and propensity score methods.

Large scale, complex survey designs are widely used and usually have a well-

defined target population and sampling framework. The sampling framework may

be complicated, and the sampling probabilities vary depending on the sampling of

sub-populations. When attempting to make inferences to the target population, the

survey survey weights and other design elements should be correctly used in data

analysis; otherwise, the parameter estimates may not be relevant to the original

target population of the survey (e.g., Hansen et al., 1983; Korn and Graubard, 1995a;

Korn and Graubard, 1995b and Little (2003)).

The causal inference framework introduced by Rubin (1974) extended the estima-

tion of causal effects to non-experimental studies. Since propensity scores (i.e., the

probability of receiving treatment given a set of observed covariates) were introduced

by Rosenbaum and Rubin (1983), a wide range of methods have been developed to

estimate treatment effects in non-experimental studies (e.g., propensity score based

matching, weighting, and subclassification).

In particular, propensity score matching estimators have been widely used in the

context of non-experimental studies. Matching methods help reduce bias in the esti-

mation of causal effects (see Rubin, 1973a), and are intuitive and relatively easy to
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implement. However, standard propensity score matching methods do not give guid-

ance on how to incorporate survey weights, and conceptually it is somewhat unclear

how to do so. As a consequence, researchers using propensity score matching methods

often do not incorporate the complex survey design (e.g., Morgan et al., 2008). This

paper aims to provide guidance on propensity score matching using complex survey

data to ensure that the estimated causal effects apply to the target population.

3.1.2 Previous Research in this Area

There has been extensive work in each of the two areas to be investigated in this

article (complex surveys and propensity scores), but only limited work on how to

combine them.

Propensity score methods have been developed under the assumption of a simple

random sample (SRS), yet this sampling scheme is hardly ever used since every unit in

the population has to be listed, making this sampling method very cumbersome to use

for large populations. To guarantee representation of the population, complex survey

techniques such as stratification and clustering may be implemented. In addition to

the sampling design, certain adjustments (e.g., adjustment for non-response or post-

stratification to match population composition) are also built into survey weights,

which are used to scale the sample back to the population.

There is a general consensus that ignoring survey weights leads to external validity

bias, because inferences about the population are based on a unrepresentative analytic
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sample. Thus, survey weights and the sampling design should be incorporated in

the estimation process. It has been widely documented how to incorporate survey

weights in the estimation of means, totals and ratios (see Cochran, 1977; Groves et al.,

2009), nonetheless there is controversy over how to incorporate survey weights in more

complex statistical analysis (see Gelman, 2007), and propensity score methods are no

exception to that.

A propensity score based analysis includes two key stages: (1) estimating propen-

sity scores, and (2) using them in the estimation of causal effects. Regarding whether

to use the survey weights in the estimation of the propensity scores, Brunell and

DiNardo (2004) and Heckman and Todd (2009) argue that it is fine to not do so,

because “the odds ratio of the propensity score estimated using misspecified weights

is monotonically related to the odds ratio of the true propensity scores” (Heckman

and Todd (2009) p.3), “and therefore does not change the relative weighting of the

data” (Brunell and DiNardo (2004), p.32). Ridgeway et al. (2015) argue – in the

context of propensity score weighting – that survey weights should be incorporated

in the estimation of the propensity scores, and failure to do so may lead to inconsis-

tent estimators. Austin et al. (2016) explore propensity score matching and conclude

that whether survey weights are incorporated in propensity scores estimation does

not affect the performance of the causal effects estimators.

There are also questions about how the survey weights should be used in the second

stage: the use of the propensity scores – for example, after implementing a propensity
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score matching procedure, whether survey weights need to be incorporated to assess

the balance of the covariates, or, in the context of propensity score weighting, how

the final weights should be constructed. There is thus a broad array of approaches

used in the literature, and until recently there was almost no methodological work on

the best ways to use propensity scores with complex surveys, with the exception of

Zanutto (2006), Ridgeway et al. (2015) and Austin et al. (2016).

In this article we extend the scope of the analysis of previous research to incor-

porate different non-response mechanisms. This allows us to (1) evaluate the perfor-

mance of different matching estimators in realistic scenarios (given that non-response

is nearly always present), and (2) identify features of the non-response mechanism

that may impact the performance of the matching estimators. As such, the main goal

of this article is to identify ways in which the survey weights should be incorporated

when using propensity score matching to estimate causal effects, under a variety of

non-response mechanisms. ? explored how to combine propensity score weighting

and multiple imputation to correct for biases due to non-response.

The rest of this article is organized as follows: in Section 3.2 we discuss the

definitions and assumptions involved in the estimation of the average causal effect, and

how survey weights should be incorporated in the estimation procedure. Section 3.3

describes a simulation study and summarizes our main findings. Section 3.4 compares

the performance of the different estimation procedures in an application using the

Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ESCL-K). In
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Section 3.5 we present our main conclusions and discussion.

3.2 Definitions, Assumptions, Propensity Score

and Survey Weights

3.2.1 Definitions and Assumptions

The Causal Inference Framework

Traditionally, causal treatment effects are defined based on the Rubin Causal

Model (RCM) (Rubin, 1974). In the RCM, the causal effect associated with a binary

treatment T (with value 1 representing the treatment of interest and 0 otherwise), is

defined in terms of potential outcomes. For each unit i, Yi(t) with t = 0, 1 represents

the outcome that would have been observed if unit i received the treatment t. For

any unit i, only one potential outcome in the pair {Yi(0), Yi(1)} is observed, and

thus the observed outcome is Yi = Yi(1) × Ti + Yi(0) × (1− Ti). Given that unit

level treatment effects are not identified, we are often interested in average treatment

effects. At the population level, the most commonly used average treatment effects

are: (1) the population average treatment effect (PATE) and (2) the population

average treatment effect on the treated (PATT).

The PATE is defined as the average of the individual treatment effects over the
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population, PATE = 1
N

∑N
i=1 [Yi(1)− Yi(0)], where N represents the population size.

The PATT is the average of the individual treatment effects over the units in the pop-

ulation who were actually treated, PATT = 1∑N
i=1 Ti

∑N
i=1 Ti [Yi(1)− Yi(0)]. When

treatment effects are homogeneous (i.e., they are the same for all units in the pop-

ulation), the PATE is equal to the PATT. When treatment effects are not homoge-

neous, the PATT and the PATE can be quite different. Under of randomization of

the treatment, estimation of causal effects is straightforward. Nevertheless in non-

experimental data, there are a number of assumptions needed to interpret results as

causal (see Rosenbaum and Rubin (1983) and Hernan and Robins (2017)), includ-

ing, perhaps most importantly, that there are no unmeasured confounders, known as

unconfounded treatment assignment (see, Hernan and Robins (2017))

3.2.2 Population vs. Sample Treatment Effects

Ideally, we would like to estimate population causal effects but it is rare to have

full data on an entire population. In reality, causal effects are often estimated using a

sample drawn from the population. Thus, we need to differentiate the PATE (PATT)

from the sample ATE (ATT) – hereafter, SATE (SATT) – which is the average of the

individual treatment effects for all treated units in the sample. When does a valid

estimator for the SATE (SATT) correctly estimate the PATE (PATT)? The answer

to this question depends on two key factors: (1) the sampling design and (2) the

non-response mechanism.

38



CHAPTER 3. PROPENSITY SCORE MATCHING WITH COMPLEX SURVEY
DATA

Under an heterogeneous treatment effect, an unbiased estimator of the SATE

(SATT) will accurately estimate the PATE (PATT) only when the sample distribution

of the confounders is similar to its population counterpart. Therefore, unless survey

weights are used to weight the sample back to the population, using the survey sample

to estimate an ATE (ATT) will result in a consistent estimator for the SATE (SATT)

but not for the PATE (PATT).

In addition, the nature of the non-response mechanism can potentially impact the

estimation of the PATE (PATT). Non-response, a phenomenon by which data cannot

be collected for some units that were initially selected to be in the survey sample,

tends to be rule rather the exception in complex surveys. Non-response is a form of

missing data. Traditionally, missing data mechanisms are grouped in three categories:

(1) Missing Completely at Random (MCAR), (2) Missing and Random (MAR) and

(3) Missing not at Random (MNAR) (see Little and Rubin (1989)).

Even if the sampling is designed to allow using the SATE (SATT) to estimate the

PATE (PATT) (for example, SRS), if the non-response mechanism is either MAR or

MNAR, the SATE (SATT) for the resulting sample may differ substantially from the

PATE (PATT). Since survey weights generally incorporate non-response adjustment,

failure to include them in the estimation procedure may result in misleading estima-

tion results. More details on non-response mechanisms are available in Appendix A

in the supplementary material.
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3.2.3 Survey Weights and the Propensity Score

In this section we formalize the the non-response mechanisms and the propensity

score model. Consider a binary indicator Si that takes the value 1 if the ith unit

has been selected into the survey sample and 0 otherwise. Additionally consider

a response indicator, Ri, which takes the value 1 if unit i responds to the survey.

Lastly, consider Xi which represents a q−dimensional vector, for unit i, that contains

all the confounders (i.e., X has all the covariates that are related to the treatment

assignment and the potential outcomes). We assume that at the population level each

Oi = (Xi, Ti, Yi, Si, Ri) is independent and identically distributed with a joint density

function f : Rq+1×{0, 1}3 → R+. We represent the marginal distribution for a subset

of covariates Z (i.e., Z ⊂ X) with fZ. We assume that the survey sample has finite size

of n =
∑N

i=1 SRi, where N represents the population size, and for every i = 1, . . . , n,

SRi = Si ×Ri. Notice that SRi constitutes a indicator variable that takes the value

1 if the sample unit i is selected into the survey and responds to the survey. We

consider the case where the probability of being observed in the sample (i.e., SR = 1)

is function of X and potentially the treatment indicator (T ). Explicitly we assume

that p = fSR|X,T (SR = 1|X = x, T = t) where fSR|X,T : Rq+1 → (0, 1). We assume

that p ∈ (0, 1), i.e., there is not a set of values of the covariates X and T for which the

probability of being in the sample is exactly 1 or exactly 0. Furthermore we assume

that the final survey weights, ω, are equal to the inverse of the probability of being

observed in the sample, that is ω =
1

p
=

1

fSR|X,T (SR = 1|X = x, T = t)
. These final
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survey weights combine the original sampling weights (associated with the designed

sampling probabilities) with corrections for non-response (see Appendix B).

We define the propensity score as π = fT |X (T = 1|X = x), the probability of

receiving treatment conditional on X, with fT |X : Rq → (0, 1). Note that π represents

the probability of receiving treatment in the population. In order to estimate π,

survey weights need to be incorporated in the estimation procedure. Failure to do

so will result in the estimation of the propensity score in the sample, in other words,

πS = fT |X,RS (T = 1|X = x, RS = 1), with fT |X,RS : Rq+1 → (0, 1). Notice that if the

sample distribution of X is different from its population counterpart, then π 6= πS.

3.2.4 Survey Weights After Matching

Throughout this article, we focus on estimating the PATT. We argue that in

order to estimate the PATT, survey weights may not need to be incorporated in the

estimation of the propensity score model, and show that the weights of the treated

units should be transferred to the comparison units to which they have been matched

to, before estimating the outcome model – as suggested by Reardon et al. (2009).

To see this, consider the following strategy: in a first step we implement a matching

procedure using the predicted propensity score (either the π̂S or π̂ can be used in the

procedure). We assume that k comparison units were matched without replacement

to each treated observation. Now, in order to identify the weights for the treated

(ωt) and comparison units (ωc) to use in the outcome analysis, we note that under a
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successful implementation of the matching procedure, for every x in X, the following

equations hold:

fX|T (X = x|T = 1) = wc(x)× fx|(T,M)(X = x|T = 1,M = 1) (3.1)

fX|T (X = x|T = 1) = wt(x)× fX|(T,M)(X = x|T = 0,M = 1) (3.2)

In other words, after weighting, we want the distribution of the covariates among

treated and comparison units in the matched sample (M = 1), to be similar to the

distribution of the covariates among the treated at the population level. From (3.2)

we obtain that

wt(x) =
fX|T (X = x|T = 1)

fX|(T,M)(X = x|T = 1,M = 1)

=
fM |T (M = 1|T )

fM |(X,T )(M = 1|X = x, T = 1)
(3.3)

If we do not trim any treated units from the survey sample, it holds that fM |T (M =

1|T = 1) = fSR|T (SR = 1|T = 1) and fM |X,T (M = 1|X = x, T = 1) = fSR|X,T (SR =

1|X = x, T = 1). Thus (3.3) can be expressed as:

ωt(x) =
1

fSR|X,T (SR = 1|X = x, T = 1)
. (3.4)

Therefore we can conclude that units in the treatment group should be weighted using

the survey weights assigned by the survey design. Combining (3.1), (3.2) and (3.4)
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allows us to find an expression for the weights of the comparison units:

wc(x) = ωt(x)×
fX|(T,M)(X = x|T = 1,M = 1)

fX|(T,M)(X = x|T = 0,M = 1)

= ωt(x)×
f(T |X,M)(T = 1|X = x,M = 1)

1− f(T |X,M)(T = 1|X = x,M = 1)
×
f(T |M)(T = 0|M = 1)

f(T |M)(T = 1|M = 1)
(3.5)

where fT |X,M(T = 1|X = x,M = 1) is the value of the propensity score computed

among the matched observations. Since we implemented k : 1 matching it holds that

fT |M(T = 0|M = 1)

fT |M(T = 1|M = 1)
=

k
(k+1)

1
(k+1)

= k, thus we can write (3.5) as

ωc(x) = ωt(x)×
fT |X,M(T = 1|X = x,M = 1)

1− fT |X,M(T = 1|X = x,M = 1)
× k

Also note that for a large matched sample, it should hold that

fT |X,M(T = 1|X = x,M = 1)

1− fT |X,M(T = 1|X = x,M = 1)
=

1

k

Thus ωc(x) = ωt(x).

This suggests that the matched comparison units should be assigned the survey

weight of the treatment unit they have been matched to. Thus, the weights of the

units in the comparison group are different from their original survey weights. Details

of the resulting estimator of the PATT using this weight transfer, is available in the

supplementary material (see Appendix C).
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3.3 Simulation Study

In order to explore the empirical implications of the results of the previous sec-

tion, we implement a simulation study to assess (1) whether the performance of the

propensity score matching estimator is affected by how (or if) the survey weights are

incorporated in the estimation of the propensity score model, (2) whether the weight

transfer presented in Section 3.2.4 improves the performance of matching estimators,

and (3) whether our conclusions depend on the assumed non-response mechanism and

on the difference between the SATT and the PATT.

Our simulation set-up follows closely the one used by Austin et al. (2016). Austin

et al. (2016) consider a population of size N = 1, 000, 000, with 10 strata. In each

stratum there are 20 clusters, each composed of 5, 000 units. Six baseline covariates

(X1, ..., X6) are considered. The data generating mechanism for the baseline covari-

ates is such that: (1) the probability density function is normal, (2) the covariates

are independent (i.e., correlation between any pair of covariates is set equal to 0), (3)

the standard deviation, across all the covariates, is equal to 1 and (4) the means vary

across strata and cluster. More explicitly, for each strata (j), the mean of the covari-

ates deviates in µlj from 0, where µlj are obtained assuming that µlj ∼ N (0, τ stratum).

Within each strata, the mean of each cluster (k) deviates from the strata specific

mean by µlk, with µlk ∼ N
(
0, τ cluster

)
. Thus the distribution of the lth variable, in

the jth stratum, among the units of the kth cluster is Xl,ijk ∼ N (µlj + µlk, 1). We

set τ stratum = 0.35 and τ cluster = 0.25, 0.15, 0.05. Each value of τ cluster defines a
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Scenario 1, 2 and 3 respectively. The probability of receiving treatment depends on

the baseline covariates via a logistic model. The conditional means of the potential

outcomes are constructed as a linear function of treatment, baseline covariates and

interactions terms between T and X1, X2 and X3 (i.e., the treatment effect is hetero-

geneous). In our simulation study, we introduce stratum-specific treatment effects,

which allow us to vary the difference between the PATT and the SATT. The size of

the stratum-specific effects are selected such that
(
SATT
PATT

− 1
)
×100 takes roughly the

values −50%,−40%,−30%,−20%,−10% and 0%.

We also extend the original set-up by considering four non-response scenarios.

The first two scenarios are No-missing data (NM) and Missing at Random (MAR)

where non-response depends on the six baseline covariates. The third is Missing at

Random with additional covariate (MARX) where non-response depends on the

same six baseline covariates plus an additional covariate X7 not observed in the

survey sample. In this situation, the survey weights are constructed using all seven

covariates, but the analysis uses only six; this reflects the reality that some data

(e.g., number of contact attempts) may be available to the team that conducted

the survey but are typically not available to data users. The fourth mechanism is

Missing at Random where non-response depends on the six baseline covariates and

the treatment assignment (MART). Across the four mechanisms, the probability of

response is generated using logistic models.

The final survey weights are defined as the number of individuals each person
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represents times the inverse of the probability of responding. The average response

rate across the MAR, MARX and MART models is close to 90%. We are aware that

this response rate is high, nevertheless this allows us to compare the performance

of the different PATT estimators without incurring in sample size adjustments. In

practice, to compensate for non-response, samples sizes are increased by the inverse

of the average response rate. By considering a relatively high respond rate, we do not

need to implement such adjustments. We believe that increasing the non-response

rate will only exacerbate our results.

For each scenario, and for each level of PATT-SATT relative difference, we ran

1000 iterations, and compare the performance of different estimators (described shortly).

Performance is quantified by three metrics: (1) bias (in absolute value), (2) root mean

square error (RMSE, defined as the square root of the sum of the squared bias and

the variance of the estimator) and (3) empirical coverage of the 95% confidence in-

terval. The parameters chosen in the simulation study are generally the same as the

ones used by Austin et al. (2016) – see details in Appendix B in the supplementary

material.

3.3.1 Estimators of the PATT

The estimators of the PATT considered in our article are grouped based on: (1)

how the survey weights are used in the estimation of the propensity score and (2)

whether the weight transfer described in Section 3.2.4 is implemented. Regarding the
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estimation of the propensity score, there are three alternatives to consider regard-

ing the use of the survey weights: (1) not incorporate the weights in the estimation

(UPS), (2) incorporate the weights in a weighted estimation (WPS), and (3) incor-

porate the survey weights as a covariate in the propensity score model (CPS). Once

the propensity score was estimated, 1:1 matching (nearest neighbor) without replace-

ment was implemented. After the matching procedure is executed, the survey weight

of the treated can be transferred to the comparison units they have been matched to

(WT) or each observation can retain their original survey weights (OW). Therefore,

the estimator labeled as "CPS|WT" is the estimator of the PATT in which the sur-

vey weights are used as a covariate in the estimation of the propensity score model

and the weight transfer described in Section 3.2.4 is implemented.

In addition to the 6 estimators previously described, we also considered a "Naïve"

estimator of the PATT. The Naïve estimator uses propensity score matching but

ignores the survey design all together. That is, it does not incorporate the survey

weights in the estimation of the propensity score nor uses them to weight the observed

outcome; the Naïve estimator is thus a valid estimator of the SATT but not necessarily

the PATT.

Work by Cochran and Rubin (1973), Rubin (1973b), Carpenter (1977), Rubin

(1979), Rosenbaum and Rubin (1984), Robins and Rotnitzky (1995), Heckman and

Todd (2009), Rubin and Thomas (2000), Glazerman et al. (2003) Imai and Van Dyk

(2004), Abadie and Imbens (2006) and Ho et al. (2007) suggested that defining an
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outcome model that adjusts for confounders in the estimation of causal effects, can

improve causal inferences. Thus, following Ridgeway et al. (2015) we considered two

outcome models: (1) an "unadjusted" model that has the treatment assignment (T )

as the only regressor and (2) an "adjusted" model that in addition to the treatment

assignment, includes the baselines covariates as regressors, but it does not include

interaction terms.

3.3.2 Results

Diagnostics

First we evaluate how balanced the distribution of the survey weights and the

baseline covariates is between the treated and comparison groups as a result of im-

plementing the matching procedures described in Section 3.3.1. Balance is defined

in terms of the standardized mean difference (SMD). Notice that the SMD under

the Naive estimation approach provides a measure of balance achieved in the sam-

ple, since it does not incorporate the survey weights. Since the other methods do

incorporate survey weights in their estimation of causal effects, the calculation of the

SMD associated with these estimators uses the survey weights, therefore we consider

them measures of balance at the population level. Table 3.1, shows the SMD in the

population, before any matching procedure was implemented.

Figures 3.1, 3.2 and 3.3 summarize our main findings for Scenarios 1, 2 and 3,
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respectively. In these figures, the vertical axis displays the average value of the SMD

(across the 1, 000 iterations in our simulation study). Each row of plots represents

a different non-response scenario. Each shape identifies the different procedure used

in the estimation of the propensity score model: (1) triangles are associated with

the estimators that do not incorporate the survey weights in the estimation of the

propensity score model, but the sample weights are used in the computation of the

SMD after matching, (2) circles represents the SMD after matching when the survey

weights were incorporated in a weighted estimation of the propensity score model

and (3) squares show the balance achieved after the matching procedure when the

weights were used as a covariate in the estimation of the propensity score model.

Darker shaded markers are associated with the implementation of the weight transfer

described in Section 3.2.4, lighter shades show the balance achieved when each sample

unit kept its original survey weight. We also display the SMD achieved by the Naive

estimator using a black asterisk. The red line in Figure 3.1, shows the threshold value

of 0.20 (see Rosenbaum and Rubin (1985)); SMDs above that threshold indicate that

the matching procedure was not effective.

The patterns that we observe in Figure 3.1 are consistent across all scenarios (see

Figures 3.2 and 3.3). First we observe that, in general, good balance is achieved by all

matching procedures, although there are some exceptions; the SMD for covariate X6

is not always below 0.20 when the non-response mechanism is MART. Second, when

the non-response mechanism is MAR, MARX or No Missing, the weight transfer may
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translate into worse balance (this is particularly clear for covariate X3 and in multiple

covariates in Scenario 3). Nevertheless, this situation is reversed when the non-

response mechanism is MART. In fact, failure to implement the weight transfer can

yield poor balance in some of the covariates. Interestingly we observe that when the

non-response mechanism is different from MART, balance in the covariates translates

into balance of the survey weights.

Finally note that for most of the baseline covariates and across non-response

mechanisms the Naive method achieves better balance than any other of the matching

procedures implemented. However it is important to notice that the Naive method

achieves good balance in the sample, but this does not imply that good balance is

achieved in the population.

Treatment Effect Estimation Results

The estimators that only used the treatment indicator (T ) as a covariate in the

outcome model estimation are labeled as "Y ∼ T", whereas the estimators that ad-

ditionally adjust for the vector of covariates X are labeled as "Y ∼ T + X"

Figure 3.4 displays our findings for Scenario 1. Each column in the plot shows one

of the metrics (bias in absolute value, empirical coverage of the 95% confidence interval

and RMSE) chosen to asses the performance of the different matching estimators.

Each row of plots represent a different non-response scenario. We keep the same

shape scheme used to assess the balance. The type of line is associated with how
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the survey weights we incorporated in the outcome estimation. Solid, darker lines

are associated with the implementation of the weight transfer, whereas dashed lighter

lines show the performance achieved when each sample unit kept its original sampling

weight. The performance achieved by the Naive estimator is shown using solid black

lines with asterisks.

Differences in the performance of the estimators are more pronounced when we

consider the "unadjusted" estimators. As expected, as the percentage difference be-

tween the SATT and the PATT increases in absolute value, the naive estimator per-

formance worsens. Notice that this result holds even when the outcome model adjusts

for the covariates. When survey weights are incorporated in the analysis keeping the

original weights translates to reduction of bias (this is true for all non-response mech-

anisms considered except MART). Adjusting for covariates in the outcome model

translates into better performance (across the three metrics considered). In gen-

eral we observe that how the survey weights are incorporated in the estimation of

the propensity score does not yield differences in the performance of the estimators.

When the non-response model is MART we observe that the weight transfer reduces

bias associated with the estimation of the PATT; this is true even after adjusting for

relevant covariates (although is more obvious among the "unadjusted" estimators of

the PATT). Furthermore, among the "unadjusted" estimators, we observe that the

weight transfer is not only associated with better balance but also better coverage

and better RMSE. Among the "unadjusted" estimators and when the non-response
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mechanisms is MART, we also observe that a weighted estimation of the propensity

score models translates into gains of efficiency (reduction of the RMSE). Nevertheless,

this gain is not substantial when covariates are included in the outcome model. We

believe that the reason why the weight transfer described in Section 3.2.4 does not

improve the performance of the estimators in the non-response mechanisms besides

MART (i.e., MAR, MARX and No-Missing) is due to the fact that if the matching

procedure is successful, then balance in the covariates will translate in balance of the

survey weights. Therefore the weight transfer is implicitly implemented. This hypoth-

esis seems to be confirmed by Figures 3.1, 3.2 and 3.3, which show that when that

non-response mechanism is different from MART, balance in the covariates translates

into balance of the survey weights. Furthermore, notice that when the non-response

is MART good balance of the baseline covariates does not imply good balance of

the survey weights, and therefore the weight transfer improves the performance of

the estimators. Another key feature of the results depicted in Figure 3.4 (and also

true in Figures 3.5 and 3.6), is that even when the percentage difference between the

SATT and the PATT is as high as 50%, incorporating the survey weights translates

into significant bias reduction. However, as the percentage difference between the

SATT and the PATT gets close to 0, no significant differences in the performance

of the naive and the other estimators is observed (this is the default scenario of the

simulation set-up implemented by Austin et al. (2016)).
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3.4 Application

In this section we use The Early Childhood Longitudinal Study, Kindergarten class

1998-1999 (ECLS-K) (see Tourangeau et al. (2009)) to estimate the effect of special

education services on math skills, replicating Keller and Tipton (2016). Keller and

Tipton (2016) provide an excellent guide on how to implement different R packages

to estimate causal effects by implementing different matching procedures using the

work of Morgan et al. (2008) as a motivating example. We follow closely the work by

Keller and Tipton (2016) since they provide a comprehensive list of the variables used

in their analysis. It is worth noticing that Morgan et al. (2008) does not explicitly

mention how the survey weights are incorporated in the estimation of the propensity

score matching estimators and neither does Keller and Tipton (2016) (although Keller

and Tipton (2016) explicitly state that the purpose of their article is to illustrate how

different software can be use to implement propensity score matching and their results

should not be interpreted in a causal context)

The ECLS-K is a longitudinal study that examines child early school experiences

beginning with kindergarten until eighth grade that collects information: (1) at the

child level , (2) at the household level and (3) at the school level. The data was ac-

cessed through http://www.researchconnections.org/childcare/studies/28023

(see U.S. Department of Education. Institute of Education Sciences. National Cen-

ter for Education Statistics. (2011))

Since our goal is methodological, to compare the different methods, we do not
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assess the plausibility of the key assumptions that would be needed to interpret the

results as causal, and thus the results should not be treated as definitive causal effects

regarding the effect of special of education services on learning skills. We follow Keller

and Tipton (2016) and estimate the effect of elementary school special education ser-

vices on math achievement in fifth grade. We consider 39 covariates in the propensity

score model (which include demographic, socio-economical, academic, household and

school level variables). A codebook of the variables used in this application is avail-

able in the supplementary materials (see SUP_Application.R). We fit an unadjusted

outcome model as well as one that adjusts for the same set of covariates included in

the propensity score model. Table ?? displays the balance achieved by each method

considered in our simulation study. Overall we observe that most of the matching

procedures were effective in increasing the balance for the covariates. Nevertheless,

some of the methods were not able to improve balance enough to generate SMDs

smaller than 0.20 on some of the covariates (see the highlighted cells in Table ??).

Notice that WPS|WT is the only method that achieved SMDs smaller that 0.20 in

38 of the 39 covariates considered. The last row in Table ?? shows the SMD of the

survey weights after the matching procedure. Note that the good balance in the co-

variates does translate into good balance in the survey weights (across all methods);

this seems to indicate that the non-response mechanism may not be MART and thus

that the weight transfer may not improve estimation of the PATT.

Table 3.3, shows the estimated PATT. As expected most of the estimators produce
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similar estimators with the exception of the Naive estimator, which is likely a biased

estimate of the PATT.

3.5 Discussion

In this article we explore how different ways of using survey weights can affect the

performance of propensity score matching PATT estimators based on complex survey

data when different non-response mechanisms are considered. To our knowledge,

this is the first article that explores the impact of non-response mechanisms on the

performance of propensity score matching estimators.

We have also evaluated how the difference between that SATT and the PATT

affect the performance of different propensity score matching estimators. When we

first replicated the simulation study designed by Austin et al. (2016) we found that the

Naïve estimator of the PATT performed as well as any of the other PATT estimators

considered by the authors. This was due to the fact that the PATT and the SATT

where practically identical. Based on our simulation study and application to the

ECLS-K dataset, we conclude that:

How the survey weights are incorporated in the estimation of the propen-

sity score does not affect the performance of the matching estimators. This

result holds true across all non-response mechanisms, although we found evidence that

a weighted estimation of the propensity score model can increase the efficiency of the
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PATT estimator when an unadjusted outcome model is estimated and the missing

data pattern is MART.

Adjusting for relevant covariates in the outcome model improves the

performance of the estimators. This result is consistent with findings by others

(e.g., Drake, 1993; McCaffrey et al., 2004; Frölich, 2007; Robins et al., 2007; Lee et al.,

2011; Imai and Ratkovic, 2014; Ridgeway et al., 2015).

Survey weights should be incorporated in the outcome analysis. Our

results indicate that not including survey weights in the estimation procedure may

lead to substantial bias.

A weight transfer improves the performance of the matching estimators

under the MART non-response mechanism. This performance improvement

occurs when the PATT is estimated using an unadjusted outcome model.

Population balance of covariates is crucial to the estimation of pop-

ulation treatment effects. We found that the key element to obtain accurate

estimates of the PATT is to achieve good population balance in the observed co-

variates. That is, survey weights need to be incorporated when assessing balance.

Population balance (evaluated by SMD) was the best predictor of the performance of

the estimator. In our simulation study we observe that the average correlation (i.e.,

averaged across the covariates) between bias and SMD achieved by the estimators

that use survey weights (i.e., excluding the Naive estimator) is 0.77; the correlations

(also excluding the Naive estimator) of Coverage and RMSE with SMD are −0.66
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and 0.62, respectively. For the Naive estimator, we also computed the correlation of

SMD (in this case, representing sample balance) with the three performance metrics;

the correlations are 0.00 with Bias, −0.15 with Coverage, and −0.1 with RMSE. This

shows that good sample balance does not necessarily translate into good performance

of the propensity score matching estimator; it is population balance that matters.

The balance achieved in the survey weights after the matching proce-

dure could potentially help identify the nature of the non-response mech-

anism. When the non-response is MART we observed that: (1) good balance in the

confounders does not imply balance of the survey weights, and (2) the weight trans-

fer improves the performance of the estimators. We therefore recommend checking

population balance on the covariates and on the survey weights after matching.

If balance is achieved on the former but not on the latter, and especially if there is

theoretical or prior empirical basis to suspect that non-response (or sample selection)

may have been influenced by treatment status, we recommend implementing a weight

transfer.

It is important to note that the confidence intervals presented in this article were

constructed using the ’survey’ package in R (?). There has been limited work to

evaluate the asymptotic properties of matching estimators, except for the significant

contributions made by Abadie and Imbens (2006), Abadie and Imbens (2008) and

Abadie and Imbens (2016). Future work will focus on generalizing their results to the

context of complex survey data.
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In our article we have restricted our attention to matching estimators of the PATT

where the matching procedure was implemented without replacement. It has been

pointed out – in the context of a SRS – that when matching with replacement is

used, weights should created to guarantee that the matched treated and comparison

groups are weighted up to be similar (Ho et al., 2011); future work will extend such

weights computation to cover matching with replacement using complex survey data.

Finally, in our simulation study we assume that the propensity score model is correctly

specified. Future work will evaluate how the performance of propensity score matching

estimators is affected by misspecification of the propensity score model, of the outcome

model, and of both.

In conclusion, accurate estimates of the PATT can be obtained using complex

survey data and propensity score matching, especially if it can be shown that good

covariate balance is obtained in the population of interest.
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Software

The simulation study, plots and the application were implemented using the soft-

ware R and the platform RStudio (RStudio Team, 2015). The following packages

were used: ‘data.table’ (Dowle et al., 2015), ‘ggplot2’ (Wickham, 2009), ‘MatchIt’

(Ho et al., 2011), ‘survey’ (?), ‘sampling’ (Tillé and Matei, 2015) and ‘xtable’ (Dahl,

2016).

Supplementary Material

Supplementary material include: Appendices A, B, C and D. The R script used to:

(1) generate the population data (SUP_DataGen.R), (2) implement the simulation

study (SUP_Simulation.R), (3) combine the results (SUP_CombiningResults.R), (4)

create plots (SUP_PlotSMD.R and SUP_PlotPATT.R) and (5) execute the applica-

tion (SUP_Application.R this R script also contains the codebook for the variables

used) and is available online at http://biostatistics.oxfordjournals.org.
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Table 3.1: Standardized Mean Differences (Population level)

Scenario X1 X2 X3 X4 X5 X6
1 0.11 0.28 0.43 0.49 0.69 0.81
2 0.03 0.16 0.34 0.59 0.57 0.91
3 0.09 0.22 0.33 0.48 0.60 0.81

Table 3.2: SMD achieved by the different estimation procedures.

Variable Naive
UPS CPS WPS

OW WT OW WT OW WT

FEMALE 0.08 0.08 0.06 0.08 0.06 0.03 0.01

WHITE 0.05 0.05 0.05 0.05 0.05 0.10 0.14

WKSESL 0.04 0.04 0.06 0.04 0.06 0.05 0.09

C1R4RSCL 0.04 0.04 0.03 0.04 0.03 0.06 0.04

C1R4MSCL 0.13 0.13 0.24 0.13 0.24 0.00 0.04

S2KPUPRI 0.25 0.25 0.15 0.25 0.15 0.01 0.02

P1ELHS 0.02 0.02 0.04 0.02 0.04 0.02 0.10

P1EHS 0.06 0.06 0.09 0.06 0.09 0.05 0.03

P1ESC 0.10 0.10 0.08 0.10 0.08 0.02 0.00

P1EC 0.15 0.15 0.09 0.15 0.09 0.13 0.04

P1EMS 0.00 0.00 0.07 0.00 0.07 0.08 0.04

P1EPHD 0.04 0.04 0.00 0.04 0.00 0.10 0.05

P1FIRKDG 0.16 0.16 0.14 0.16 0.14 0.20 0.17

Continued on next page
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Table 3.2 – continued from previous page

Variable Naive
UPS CPS WPS

OW WT OW WT OW WT

P1AGEENT 0.12 0.12 0.07 0.12 0.07 0.06 0.06

T1LEARN 0.01 0.01 0.05 0.01 0.05 0.05 0.10

P1HSEVER 0.03 0.03 0.03 0.03 0.03 0.03 0.16

FKCHGSCH 0.00 0.00 0.09 0.00 0.09 0.05 0.12

S2KMINOR 0.10 0.10 0.09 0.10 0.09 0.21 0.12

P1FSTAMP 0.02 0.02 0.13 0.02 0.13 0.05 0.14

SGLPAR 0.05 0.05 0.07 0.05 0.07 0.04 0.17

TWOPAR 0.05 0.05 0.07 0.05 0.07 0.04 0.17

P1NUMSIB 0.06 0.06 0.01 0.06 0.01 0.07 0.12

P1HMAFB 0.04 0.04 0.17 0.04 0.17 0.03 0.19

WKCAREPK 0.03 0.03 0.14 0.03 0.14 0.06 0.06

P1EARLY 0.07 0.07 0.09 0.07 0.09 0.05 0.09

P1WEIGHO 0.06 0.06 0.11 0.06 0.11 0.05 0.09

C1FMOTOR 0.14 0.14 0.29 0.14 0.29 0.13 0.11

C1GMOTOR 0.15 0.15 0.20 0.15 0.20 0.06 0.07

P1HSCALE 0.12 0.12 0.08 0.12 0.08 0.04 0.05

P1SADLON 0.04 0.04 0.22 0.04 0.22 0.02 0.01

Continued on next page
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Table 3.2 – continued from previous page

Variable Naive
UPS CPS WPS

OW WT OW WT OW WT

P1IMPULS 0.09 0.09 0.17 0.09 0.17 0.02 0.06

P1ATTENI 0.14 0.14 0.23 0.14 0.23 0.10 0.04

P1SOLVE 0.26 0.26 0.38 0.26 0.38 0.20 0.14

P1PRONOU 0.03 0.03 0.10 0.03 0.10 0.28 0.26

P1DISABL 0.13 0.13 0.08 0.13 0.08 0.12 0.04

AVG4RSCL 0.03 0.03 0.04 0.03 0.04 0.15 0.03

AVG4MSCL 0.01 0.01 0.04 0.01 0.04 0.19 0.02

AVGWKSES 0.03 0.03 0.06 0.03 0.06 0.14 0.03

C1_6FC0 0.11 0.11 0.00 0.11 0.00 0.08 0.00
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Table 3.3: PATT estimation. Unadjusted vs. Adjusted

Unadjusted 95% CI Adjusted 95% CI
Naive -2.62 (-4.44; -0.81) -3.30 (-5.98; -0.61)

UPS|OW -5.25 (-8.55; -1.94) -7.86 (-13.42; -2.30)
UPS|WT -4.33 (-7.24; -1.42) -9.92 (-14.98; -4.86)
CPS|OW -5.79 (-8.98; -2.61) -6.63 (-12.18; -1.08)
CPS|WT -5.31 (-8.39; -2.24) -7.59 (-12.89; -2.29)
WPS|OW -4.62 (-8.05; -1.19) -6.39 (-11.90; -0.88)
WPS|WT -2.80 (-6.13; 0.53) -5.97 (-11.34; -0.61)

The first column displays the estimation result of implementing an unadjusted re-
gression model and the second column shows the associated 95% confidence interval.
The third column, shows the results of estimating the PATT adjusting for the set
of covariates considered in Table ??, and the last column shows the associated 95%
confidence interval.
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Figure 3.1: Diagnostics. SMD computed in the matched samples in Scenario 1.
The Naive method represents balance in the sample (since it does not involve the
survey weights in its computation). The other methods incorporate survey weights
in the computation of the SMD, thus are considered measures of balance in the
population.
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Figure 3.2: Diagnostics. SMD computed in the matched samples in Scenario 2.
The Naive method represents balance in the sample (since it does not involve the
survey weights in its computation). The other methods incorporate survey weights
in the computation of the SMD, thus are considered measures of balance in the
population.
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Figure 3.3: Diagnostics. SMD computed in the matched samples in Scenario 3.
The Naive method represents balance in the sample (since it does not involve the
survey weights in its computation). The other methods incorporate survey weights
in the computation of the SMD, thus are considered measures of balance in the
population.
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Figure 3.4: Scenario 1 Bias in absolute value, coverage and root mean squared error
(RMSE) as functions of the % difference between the SATT and PATT (simulation
study).
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Figure 3.5: Scenario 2 Bias in absolute value, coverage and root mean squared error
(RMSE) as functions of the % difference between the SATT and PATT (simulation
study).
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Figure 3.6: Scenario 3 Bias in absolute value, coverage and root mean squared error
(RMSE) as functions of the % difference between the SATT and PATT (simulation
study).
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Chapter 4

Propensity Score Methods Under

Different Degree of Model

Misspecification in the Context of

Complex Survey Data

4.1 Introduction

Randomized clinical trials (RCT) are considered the gold standard for estimating

causal effects. In a RCT the researcher knows the treatment assignment mechanisms,

allowing unbiased estimators of causal effects. Nevertheless, is not unusual to find

circumstances where a random assignment of the treatment is unfeasible or unethical.
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When this happens, researchers need to rely on non-experimental data.

A main drawback of non-experimental data is that the treatment assignment is

not random, therefore there may be confounders that are related to the outcome

and differ between treatment and comparison groups. Failure to address confounding

will lead to biased estimators of causal effects. One way to mitigate confounding by

observed characteristics is using the propensity score, which models the probability

of being assigned to the treatment group given the set of confounders.

Model misspecification can be an issue in two ways when using propensity score

methods to estimate causal effects: first, in estimating the propensity score, and

second, in the outcome model. Since the true treatment assignment mechanism is

hardly ever known when working with non-experimental data, different approaches

have been suggested to model and estimate the propensity score. While some authors

have proposed nonparametric estimation procedures (Hahn, 1998; Imbens, 2004; Ho

et al., 2011), it is common practice to estimate the propensity score parametrically

via logistic regression.

Models are also used in the outcome analysis. Work by Cochran and Rubin

(1973), Rubin (1973b), Carpenter (1977), Rubin (1979), Rosenbaum and Rubin

(1984), Robins and Rotnitzky (1995), Heckman and Todd (2009), Rubin and Thomas

(2000), Glazerman et al. (2003) Imai and Van Dyk (2004), Abadie and Imbens (2006)

and Ho et al. (2007) suggested that adjusting for confounders in an outcome model

may significantly improve inference on causal effects.
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Thus, model assisted estimation of causal effects is a common practice in causal

inference. However, there have been relatively few formal investigations of the conse-

quences of model misspecification for different propensity score methods, and whether

results are more sensitive to misspecification of the outcome or treatment assignment

model. Previous studies of model misspecification in the context of causal infer-

ence have grouped misspecified models in broad ad-hoc categories such as “incorrect

model" or “wrong model" (Drake, 1993; Kang and Schafer, 2007; Robins et al., 2007).

To our knowledge, this is the first attempt to systematically quantify the degree of

model misspecification and evaluate its impact on two of the more commonly used

estimation procedures (i.e., propensity score matching and weighting) under different

survey designs.

Complex survey designs provide an extra layer of complexity when estimating

causal effects. Non-experimental studies often use complex survey data, but there

is relatively little guidance on how to incorporate the survey design in propensity

score methods. Work by Austin et al. (2016) and Lenis et al. (2017b) extended the

use of propensity score matching to complex survey data. Similarly, Ridgeway et al.

(2015) provided some insight on how to compute IPTW estimators using complex sur-

vey data; however, it is unclear whether model misspecification would have different

implications in the complex survey context.

This paper is organized as follows: in Section 4.2, we present key definitions

and assumptions needed for the estimation of causal effects in the context of non-
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experimental data. Section 4.3 reviews the methods implemented in our simulation

study. Section 4.4 contains the details of our simulation study. In Section 4.5, the

main results are presented, followed by the discussion and main conclusions in Section

4.6.

4.2 Definitions and Assumptions

4.2.1 The Causal Inference Framework

Traditionally, causal treatment effects are defined using the Rubin Causal Model

(RCM) (Rubin, 1974). In the RCM, an individual treatment effect, associated with

a binary treatment assignment T , is defined in terms of potential outcomes. For each

unit i, Yi(t) with t = 0, 1, represents the outcome that would have been observed if

unit i received the treatment t. Thus, the treatment effect for the ith unit is equal

to Yi(1)− Yi(0). Notice that for any unit i, the pair (Yi(0), Yi(1)) is not observable -

only one of the two potential outcomes is observed. Explicitly, the observed outcome,

Yi, is defined as:

Yi = Yi(1)× Ti + Yi(0)× (1− Ti) (4.1)

Equation (4.1) is referred as the “consistency of the observed outcome assumption"

(Hernan and Robins, 2017). Given that the unit level treatment effects cannot be

estimated directly, we are often interested in estimating average treatment effects.
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At the population level, the most commonly defined average effects are: (1) the

population average treatment effect (PATE) and (2) the population average treatment

effect on the treated (PATT).

The PATE is defined as average effect across the population:

PATE = E [Y (1)− Y (0)] (4.2)

Under randomization of the treatment, units in the treated group and the units in

the control group have similar distributions of covariates (observed and unobserved)

and potential outcomes. In this way, the average outcome computed among the

units in the treated group serves as a good counterfactual for the average outcome

computed among the units in the control group. The differences between these two

averages is an estimator of the population average treatment effect (PATE).

The PATT is defined as the average causal effect, computed only among those

units in the population who were actually treated:

PATT = E [Y (1)− Y (0)|T = 1] (4.3)

When the treatment is randomized, it holds that the PATE is equal to the PATT.

In non-experimental studies, where the treatment and comparison groups may be

quite different from one another on confounders and effects, the PATT and the PATE

can be different.
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When randomization is not feasible, additional assumptions are required to iden-

tify and estimate treatment effects. In particular, a crucial assumption in the esti-

mation of treatment effects is referred to as “ignorability" (Rosenbaum and Rubin,

1983). To further describe the implications of this assumption, we define for all i,

Xi as q−dimensional vector of covariates, i.e., Xi = (X1,i, . . . , Xq,i). Ignorability

assumes that X contains all possible confounders: all variables related to treatment

assignment and outcome. In other words, given the set of observed covariates X, the

treatment assignment is independent of the potential outcomes. The ignorability as-

sumption means that the treatment assignment is random, conditionally on observed

characteristics of the units in the sample. This implies that:

(Yi(0);Yi(1)) ⊥⊥ Ti|Xi (4.4)

Another key assumption of the RCM is the Stable Unit Treatment Value Assump-

tion (SUTVA). The implication of this assumption is twofold: (1) the treatment

assignment of any unit does not affect the potential outcomes of other units (often

referred to as non-interference) and (2) there is only one version of the treatment,

implying that the treatment is comparable across units (Rubin, 1980).
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4.2.2 PATT versus SATT

While many researchers are interested in estimating causal effects at a population

level, data from a study sample can only be used to truly and consistently estimate

a sample ATE (SATE). Estimation of the PATE requires one to have access to data

on the full target population of interest, which is rare in practice. The SATE repre-

sents the difference in average outcomes if everyone in the survey sample received the

treatment versus everyone in the survey sample receiving the control condition. An

unbiased estimator of the SATE (SATT) will correctly estimate the PATE (PATT)

only when the sample distribution of the relevant variables is similar to its target pop-

ulation counterpart. One sampling design that guarantees this is a simple random

sample (SRS), but this kind of sampling technique is hardly ever used. In general,

most surveys are the result of complex sampling designs. Therefore, unless survey

weights are used to weight the sample back to the population, using sample informa-

tion to estimate a treatment effect will result in a consistent estimator for the SATE

(SATT) but not for the PATE (PATT).

4.3 Propensity Score Methods

In this section we present two commonly used techniques to estimate population

causal effects: (1) Propensity Score Matching and (2) Inverse Probability of Treatment

Weighting. While we focus on estimating the PATT in this paper, these methods can
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also be used to estimate the PATE (Abadie and Imbens, 2006; Ridgeway et al., 2015)

4.3.1 Propensity Score Matching (PSM)

Matching estimators have been widely used in the context of non-experimental

studies. They help reduce bias in the estimation of causal effects (Rubin, 1973a),

are intuitive and relatively easy to implement. Fundamentally, matching matches

individual observations (i.e., comparison to treated units) on a set of observed covari-

ates. The main goal of this matching approach is to generate a new sample (i.e., the

matched sample), such that for every treated unit there is (at least) one comparison

unit with similar values of observed covariates. The outcome of interest is then com-

pared between the matched treated and matched comparison subjects to estimate

the causal effect. One main disadvantage of this procedure resides in the fact that as

the number of variables on which units are matched increases, the chances of finding

matched pairs with similar observed characteristics decreases exponentially. Thus,

matching directly on a set of covariates is only feasible in large samples and/or if a

small set of covariates are used in the matching procedure. This is why propensity

score matching can be useful. Rosenbaum and Rubin (1983) showed that a similar

(or balanced) distribution of the observed characteristics can also be achieved when

the matching procedure is based on the propensity score instead of the entire set

of observed covariates. Guidelines regarding the implementation of propensity score

matching in the context of complex survey data can be found in Austin et al. (2016)
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and Lenis et al. (2017b)

4.3.2 Inverse Probability of Treatment Weighting

An alternative approach to estimate causal effects is to compute an inverse prob-

ability of treatment weighting (IPTW) estimator. In the context of simple random

samples (SRS), an IPTW estimator of the ATT requires, as a first step, the compu-

tation of propensity score based weights. The units in the comparison group receive

a weight equal to the odds of receiving treatment, while the treated receive a weight

equal to one. This serves to weight the comparison group to look similar to the

treatment group, thus estimating the ATT (Robins et al., 2000; Harder et al., 2010).

After the propensity score weights are computed, a weighted difference in means

(exposed versus unexposed) can be computed in order to estimate the ATT. Further-

more, weighted regression models can be fit to estimate causal effects (Joffe et al.,

2004). This approach allows for the estimation of causal effects adjusting for rele-

vant confounders. Ridgeway et al. (2015) developed a strategy to compute an IPTW

estimator using complex survey data.

A different weighting strategy needs to be implemented when the goal is to estimate the ATE
(Austin, 2011)
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4.3.3 Degree of Misspecification (DoM)

Previous work has not explicitly addressed the level of misspecification in the

propensity score and outcome model when assessing the impact of misspecification in

the estimation of causal effects. In this article we propose a measure of the DoM of a

model and explore how the DoM impacts the performance of the estimators consid-

ered. Controlling the DoM will allow us to: (1) evaluate how robust the considered

estimators are to different levels of DoM and (2) assess whether the same level of

DoM in each model (i.e., propensity score and outcome) has the same impact on the

performance of the estimators considered.

Throughout this paper, we will use η to represent the DoM for a given model.

For a given dependent variable, Z, we define µi as the mean of Z conditional on a

set of predictors (i.e., E [Zi|Xi]). We assume that there is a function gC such that

µi = gC(Xi). Thus, η can be defined as:

η =
1

N

N∑
i=1

|ĝ(Xi)− ĝC(Xi)|
σ
ĝC

(4.5)

Here N represents the population size, ĝC(Xi) is the predicted conditional mean

under the correct model specification for unit i with i = 1, ..., n, ĝ(Xi) is the predicted

conditional mean under a given model specification for unit i with i = 1, ..., n. The

Here Xi represents the set of predictors. This set can also contain the treatment indicator.
Notice that this is implies a slight abuse in notation since in Section 4.2 we defined Xi as a set of
confounders that did not include the treatment indicator
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symbol σ
ĝC

represents the standard deviation of the predicted conditional means

under the correct model specification. Thus when g = gC , we have that η = 0 and

when g 6= gC η > 0. Therefore we have that η ∈ [0,∞), and as η increases, so does

the degree of misspecification of a given model.

This measure of DoM has some desirable properties: (1) is unit independent,

which facilitates the comparisons across different working models and types of de-

pendent variables (e.g., continuous, binary, categorical, etc.), (2) the magnitude is

informative (i.e., higher values of η are associated higher degree of misspecifica-

tion), (3) since η is computed in the population, it is not affected by sample size or

the survey design.

Notice that η is defined as a parameter in our simulation study and since its

computation requires knowledge of the true parametric model, it cannot be used

in a real data analysis. Since our simulation study involves the estimation of the

propensity score and outcome model, we have a DoM associated with the estimation

of the propensity model (ηT ) and a DoM related to the outcome model (ηY ).

The DoM of the propensity score model is defined as:

ηT =
1

N

N∑
i=1

|π̂i − π̂iC |
σπ̂C

(4.6)

Here π̂i is the predicted probability of being assigned to the treatment group

under a given model specification, π̂iC is the predicted probability of being assigned
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to the treatment group under the correct model specification and σπ̂C is the standard

deviation of the predicted probabilities of being assigned to the treatment group under

the correct model specification. The DoM associated with the outcome of interest is

defined as:

ηY =
1

N

N∑
i=1

|Ŷi − ŶiC |
σŶ C

(4.7)

Here Ŷi is the predicted observed outcome under a given model specification, ŶiC

is the predicted observed outcome under the correct model specification and σŶ C is

the standard deviation of the predicted observed outcomes under the correct model

specification.

4.3.4 Methods examined

In our simulation study (see Section 4.4) we compute two propensity score based

methods to estimate the PATT: (1) propensity score matching and (2) propensity

score weighting.

First, w implement a 1-to-1 nearest neighbor matching without replacement.

When the sample is obtained using a complex survey design, we follow Lenis et al.

(2017b). Since we are assuming a non-response rate of 0% we do not implement

the weight transfer described in Lenis et al. (2017b). We do incorporate the survey
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weights in the estimation of the propensity score model, since Lenis et al. (2017b)

argue that doing so could lead to more efficient estimators of the PATT.

Second, we estimate the PATT by computing an IPTW estimator. When the

sample is the result of a complex survey design, we follow Ridgeway et al. (2015).

That is, the survey weights are incorporated in the estimation of the propensity

score model, and the final weights used in the outcome analysis are constructed by

multiplying each survey weight by the propensity score based weights.

When the stratified two stage sample is used to fit the propensity score and out-

come models, we use the R package “survey" (Lumley, 2004, 2016) to account for the

survey design and weights in the estimation procedure.

4.4 Simulation Study

4.4.1 The Data Generating Mechanism (DGM)

Our simulation study follows closely the one presented by Austin et al. (2016),

with some modifications: (1) the PATT and the SATT are different and (2) the degree

of misspecification of the working models for the propensity score and outcome can

be controlled.

As in Austin et al. (2016), we consider the case of a population of size N =

1, 000, 000, divided into 10 strata. Each strata contains 20 clusters, each composed

of 5, 000 units.
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We consider two confounders Xl with l = 1, 2 and a data generating mechanism

for the baseline covariates such that: (1) the probability density function is Normal,

(2) the covariates are independent (i.e., correlation between the covariates is set equal

to 0), (3) the standard deviation for each covariate is equal to 1 and, (4) the means

vary across strata and cluster. Explicitly, for each strata j, the mean of the covariates

deviates in µlj from 0, where µlj are obtained assuming that µlj ∼ N (0, τ stratum).

Within each strata, the mean of each cluster (k) deviates from the strata specific

mean by µlk, with µlk ∼ N
(
0, τ cluster

)
. Thus the distribution of the lth variable, in

the jth stratum, among the units of the kth cluster is Xljk ∼ N (µlj + µlk, 1). We set

τ stratum = 0.35 and τ cluster = 0.25. The values for τ stratum and τ cluster are extracted

from Austin et al. (2016)

The treatment assignment (Ti) model is defined as a Bernoulli random variable

Ti ∼ Be (pi) with logit (pi) = α0 +
∑2

l=1 αlXli + δdα3X1iX2i with α0 = log (0.20),

α1 = log(2.00), α2 = log(2.50), and α3 = log(3.00). In this model, the multiplier δd

with d = 1, .., 11 allows us to control the degree of misspecification of the working

model (see Section 4.4.3) used to estimate the propensity score. The values of δd are

selected such that the degree of misspecification (DoM) varies from 0.00 to 0.50.

The potential outcomes model under control is defined as Yi (0) ∼ N(µ0
i , σ

2),

with µ0
i = β0 +

∑2
l=1 βlX1i + ∆m(δd)β3X1iX2i +

∑10
j=2 θjSTRji, where β0 = log(0.20),

β1 = log(2.50), β1 = − log(2.00), β3 = log(4.50), θj = log(0.50) for j = 2, .., 5, and

θj = log(2.00) for j = 6, ..., 10. The term
∑10

j=2 θjSTRj,i ensures that the PATT and
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the SATT will be different. The variable STRj,i is a categorical variable that takes the

value 1 if the sample unit i belongs to the jth stratum. The parameter ∆(δd)m with

m = 1, ..., 11 is indexed by δd to ensure that for every degree of misspecification in

the propensity score model, the degree of misspecification of the outcome model also

ranges from 0.00 to 0.50 by 0.05 increments. The potential outcome under treatment

is defined by Yi (1) ∼ N(µ1
i , σ

2), with µ1
i = µ0

i + γ, with γ = log(3.00). Recall that

the observed outcome (Yi) is defined as:

Yi = Ti × Yi(1) + (1− Ti)× Yi(0)

We model the outcome of interest as a continuous variable for two reasons. First,

since the treatment effect is homogeneous, the PATT is equal to γ. Second, having

a continuous outcome will allow us fit a model for the outcome of interest in the

matched sample that will yield a consistent estimator of the PATT. This is due to

the fact, as stated in Austin et al. (2016), “that propensity score methods result

in marginal estimates of effect, rather than conditional estimates of effect. When

outcomes are continuous, a linear treatment effect is collapsible: the conditional and

marginal estimates coincide. When the outcome is binary, regression adjustment in

the propensity score matched sample will typically result in an estimate of the odds

ratio. The odds ratio (like the hazard ratio) is not collapsible; thus the marginal and

conditional estimates will not coincide."
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4.4.2 Survey Designs

In our simulation study we consider two sampling schemes: first, we consider a

simple random sampling scheme. Under this survey design, 5, 000 units were randomly

selected from the population without replacement. Second, we also implement a two

stage stratified sample. As mentioned in Section 4.4.1, the target population consists

of 10 strata, each with 20 clusters. Within each stratum, 5 clusters are selected

randomly without replacement. Within each selected cluster, we draw a random

sample without replacement of the final sampling units. Within each stratum, the

same number of observations are selected among the sampled clusters. We allocate

sample sizes to the 10 strata as follows: 750, 700, 650, 600, 550, 450, 400, 350, 300,

and 250. Therefore, the final sample consists of 5, 000 units, which represents 0.5%

of the target population. Survey weights are constructed to be equal to the inverse

of the selection probability. Strata divide the population in mutually exclusive and

exhaustive groups, and clusters within each stratum are randomly selected. Thus

every strata is represented in the final sample, but not every cluster. For example,

strata could be defined by states, while counties or street blocks define the clusters.

In this example, every state will be represented in the final sample but not every

county.

For simplicity, we assume a 0% non-response rate (work by Lenis et al. (2017b)

explored the consequences of the non-response in the estimation of population causal

effects in the context of complex survey data).
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We implement 1, 000 iterations in our simulation study. That is, under both

sampling schemes 1, 000 samples are drawn from the population.

4.4.3 Analysis models

After the sample is obtained, the following propensity score model is estimated:

logit (pi) = a0 +
2∑
j=1

ajXji (4.8)

Notice that by setting δ1 = 0 (see Section 4.4.1) the working model defined by equation

4.8 will be correctly specified, thus making the degree of misspecification equal to 0

(ηT = 0). The analysis outcome model is defined by the following equation:

mi = b0 +
2∑
j=1

bjXj1 +
10∑
j=2

bj+2STRji + b13Ti (4.9)

Here mi represents the model for the mean of the observed outcome, given the

confounders, the strata identifier and the treatment assignment. Again, by setting

∆1(δd) = 0 for all δd (see Section 4.4.1), the working model defined by equation 4.9

will be correctly specified, making the associated degree of misspecification equal to

0 (ηY = 0). Notice that the working models defined by equations 4.8 and 4.9 include

all confounders, thus the assumption of no unmeasured confounders holds. Therefore,

the source of the misspecification in both models is the omission of the interaction
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term (i.e., X1X2).

4.5 Results

In this section we evaluate the performance of the estimator of γ as a function of

the degree of misspecification using the following three metrics: (1) percentage bias

(in absolute value), (2) empirical coverage of the 95% confidence interval and (3) root

mean squared error.

Our main results are summarized in figures 4.1, 4.2 and 4.3. The vertical axis

displays the DoM in the outcome model (ηY ) while the horizontal axis shows the DoM

in the propensity score model (ηT ). The top two panels show the results associated

with a SRS while the bottom two panels display the results associated with a two-stage

stratified sample. The two panels on the left show the results using the propensity

score matching approach and the plots on the right are associated with the IPTW

estimator.

Figure 4.1 shows how the percentage of bias (in absolute values) is affected by the

DoM in both models. Lighter shades indicate less bias, while darker shades indicate

higher levels of bias. Observe from Figure 4.1 that results are similar for the simple

random sample (top two panels) and a complex survey design (bottom two panels).

As expected, the bias of the estimator increases as the DoM increases in both models.

In fact, when the DoM is 0.50 in both models, the bias (in absolute value) can be as

Plots with value labels are available in the appendix.
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high as 200%. When the outcome model is correctly specified (ηY = 0), both methods

yield unbiased estimators of the PATT, regardless of the DoM associated with the

propensity score model (ηT ≥ 0). When the propensity score is correctly specified

(ηT = 0) we observe that the IPTWmethod (right panels) returns an estimator that is

unbiased regardless of the level of DoM associated with the outcome model (ηY ≥ 0).

This is due to the fact that the procedure used in the computation of the IPTW

estimator yields the doubly robust estimator attributed to Joffe (Robins et al., 2007).

Doubly robust estimators (Scharfstein et al., 1999; Kang and Schafer, 2007) yield

consistent estimators of the PATT when either the propensity score or the outcome

model (but not necessarily both) are correctly specified (i.e., ηT = 0 or ηY = 0). This

same result does not hold for the propensity score matching estimator. From Figure

4.1, observe that when the propensity score model is correctly specified (i.e. ηT = 0)

the bias of the matching estimator increases as the DoM of the outcome model also

increases (i.e. ηY ≥ 0). Therefore misspecifying the propensity score model results in

smaller biases than misspecifying the outcome model. This result is consistent with

the one obtained by Drake (1993).

Figure 4.2 displays the results associated with the empirical coverage of the 95%

confidence interval. Lighter shades indicate higher coverage, while darker shades

depict lower empirical coverage. Observe that there is a sharp fall in the coverage

when the DoM exceeds 0.15 in both models. This is due to the fact that values

of DoM higher than 0.15 are associated with bias larger than 10% (see Figure 4.1).

102



CHAPTER 4. PROPENSITY SCORE METHODS UNDER DIFFERENT
DEGREE OF MODEL MISSPECIFICATION

Therefore, this pattern is expected, since the confidence intervals are centered at a

value far from the true value of γ.

Figure 4.3 summarizes the results for RMSE. Lighter shades indicate lower values

of the RMSE, while darker shades show higher levels of RMSE. Notice that Figure

4.1 and Figure 4.3 display a similar pattern, indicating that there are no significant

differences in the efficiency of the estimation procedures.

4.6 Discussion

In this paper, we explore how model misspecification affects the performance of

two of the most commonly used methods to estimate the PATT: (1) propensity score

matching and (2) IPTW. As noted in Section 4.4.3, an outcome model that adjusts

for the confounders was used to estimate the PATT (i.e., γ).

One contribution of this paper is the careful quantitification of model misspecifi-

cation. In Section 4.3.3 (see equations 4.6 and 4.7) we presented η, a metric of the

degree of misspecification for a given model. Given that η is unitless, it can be used

to compare the DoM of different models and different types of dependent variables.

The fact that η is not affected by the sample size and survey design allowed us to

evaluate the performance of the estimators in the context of complex survey data and

simple random sampling.

To our knowledge, this is the first attempt to systematically quantify the degree
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of model misspecification in the analysis models in order to evaluate its impact in

the estimation of causal effects. Still, there are some limitations to our approach.

The metric used to quantify the degree of misspecification (i.e., η) is computed at

the population level and requires knowing the true model. Future work will focus on

providing measures of the DoM that can be computed at a sample level. Additionally,

we only explored the consequences of omitting the interaction term. In our simulation

study, link functions are correctly specified and all relevant confounders are observed

and measured without error. Future work will focus on assessing the impact of other

types of model misspecification.

Based on the metric of model misspecification, we evaluated the performance of

methods for estimating the PATT in the presence of propensity score and/or outcome

model misspecification. Perhaps not surprisingly, but importantly, we found similar

results across simple random samples and complex survey sample designs. This is

useful guidance for researchers and implies that findings may be similar for a variety

of study designs

Both estimation procedures yield similar performance in terms of bias, coverage

and RMSE when the outcome model is correctly specified (ηY = 0), but the propen-

sity score model is not (ηT ≥ 0). When the propensity score model is correctly

specified (ηT = 0), the IPTW estimator is robust to different degrees of misspecifi-

cation associated with the outcome model. This is expected given the doubly robust

nature of this estimator. When the propensity model is correctly specified (ηT = 0),
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the bias of the propensity score matching estimator increases as the DoM of the out-

come model increases (ηY ≥ 0). Thus, when implementing matching, misspecifying

the propensity score model results in smaller biases than misspecifying the outcome

model. This confirms the results from Drake (1993). Nevertheless, it is important to

keep in mind that true models are rarely known. Thus in practice, it is very likely

that both models (i.e., the propensity score and the outcome) will be misspecified

(i.e., ηT > 0 and ηY > 0). When this is the case, the performance of both estimation

procedures is practically identical, which confirms the results obtained by Kang and

Schafer (2007).

In conclusion, as the degree of model specification increases, the performance of

the estimators considered worsens. Under the more realistic scenario that both mod-

els (i.e., propensity score and outcome) present some degree of misspecification, the

performance of the two estimators considered is practically identical. Thus, there is

no methodological substitute for well a informed and carefully planned model speci-

fication.
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Figure 4.1: |% Bias.| % Bias in absolute value associated with the estimation of
γ as a function of the Degree of Misspecification of: (1) the Propensity Score Model
(ηδ), and (2) the Outcome Model (η∆(δ)) (simulation study).
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Figure 4.2: |Coverage.| Empirical coverage of the 95 interval in the estimation of
γ as a function of the Degree of Misspecification of: (1) the Propensity Score Model
(ηδ), and (2) the Outcome Model (η∆(δ)) (simulation study).
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Figure 4.3: |RMSE.| RMSE associated with the estimation of γ as a function of
the Degree of Misspecification of: (1) the Propensity Score Model (ηδ), and (2) the
Outcome Model (η∆(δ)) (simulation study).
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Discussion

Throughout this article we explored relaxing some of the traditional assumptions

used in the estimation of causal effects, in a context of non-experimental data.

First, we relaxed the assumption that all confounders are measured without error

by extending the SIMEX methodology to compute a doubly robust estimator of the

average treatment effect when a single covariate is measured with error. Furthermore,

we presented a more general structure of measurement error which allows for a mean

reverting measurement error and has the classical measurement error structure as a

special case. This extension is particularly relevant to public health research where

measurement error tends to be rule rather than the exception, especially since the use

of self-reported data is becoming increasingly common. Variables like, weight, BMI,

height and income are some examples of variables, that when are self reported, display

a mean-reverting error structure. They main drawback associated with using our more
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general structure of measurement error is that the coefficient in the outcome model

associated with the covariate measured with error will be inconsistently estimated.

Nevertheless in Appendix 6.1 we provided a procedure that solves this problem. There

are, nonetheless, limitations associated with this work: (1) the SIMEX extension can

only be used when there is a single miss-measured confounder, (2) the estimation

procedure relies heavily on parametric assumptions for the outcome and propensity

score model and the model chosen for the extrapolation step, and (3) the extension can

only handle continuous outcomes. Future work will focus on extending this estimation

procedure for different types of outcome variables such as binary and categorical.

In Chapter 3 of this manuscript, we presented a set of guidelines to estimate

the average treatment effect among the treated using complex survey data. This

work is particularly relevant to public health research since non-experimental data

are increasingly being used to estimate causal effects, especially when a randomized

trial is infeasible. Large scale, complex survey designs are widely used to estimate

causal effects but limited work has been done to create clear and concise guidelines

regarding the estimation of causal effects using complex survey data. In this chapter,

we provided a formal justification for the weight transfer first proposed by Reardon

et al. (2009) and our simulation study, also extended previous work by incorporating a

key feature associated with complex survey data: non-response. Up to this point, the

work that explored the implementation of causal inference methods in the context of

complex survey data (Ridgeway et al., 2015; Austin et al., 2016) failed to incorporate
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this feature in their simulation studies. We considered different non-response models

and concluded that when the non-response depends on the exposure, implementing

the weight transfer yielded a less biased estimator of the population average treatment

effect on the treated. We have also showed that when estimating causal effects using

complex survey data, population balance (i.e., standardized mean difference) should

be computed. That is, the survey weights should be included in the computation of

measures of balance. It is important to notice that our conclusions hold for matching

without replacement. Future work will extend this procedure to different propensity

score matching algorithms and will also focus on generalizing different measures of

balance such that survey weights can be incorporated in their computation.

Finally, in Chapter 4, we explored the consequences of model misspecification in

the estimation of causal effects. We introduced a metric to quantify the degree of

misspecification in a given model. To our knowledge this is the first effort to sys-

tematically quantify the degree of model misspecification. Not surprisingly, we found

similar results across simple random samples and samples with a complex survey

design. When the outcome model was correctly specified, we noticed that both esti-

mation procedures yielded similar performance in terms of bias, coverage and RMSE

for different DoM in the propensity score model. Nevertheless, when the propen-

sity score model was correctly specified, we observed that the IPTW estimator was

robust to different degrees of misspecification associated with the outcome model.

This was expected given the doubly robust nature of this estimator. When consider-
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ing the propensity score matching estimator, we observed that when the propensity

model was correctly specified, its bias increased as the DoM of the outcome model

increased. Thus, when using propensity score matching, misspecifying the propensity

score model resulted in smaller biases than misspecifying the outcome model. This

confirms the results reached by Drake (1993). Under the more realistic scenario that

both models (i.e., propensity score and outcome) present some degree of misspeci-

fication the performance of the two estimators considered was practically identical.

Thus, we found that there is no methodological substitute for an informed and care-

fully planned model specification.

Throughout this manuscript we relaxed some of the assumptions associated with

the estimation of causal effects, in a context of non-experimental data. Furthermore,

we explored the consequences of model misspecification in the performance of two

widely used estimators of the ATT. We hope that this work will help inform the

discussion on how to estimate causal effects, as public health research relies more

frequently on non-experimental data.
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Appendix

6.1 AMotivating Example (Appendix A, Chap-

ter 2).

Consider the simple case of a linear regression model with only two covariates X

and Z and an outcome Y . In this motivating example, X is measured with error.

The measurement error structure is the same as the one presented in Section 2.1 of

the main document. To assess the consequences of having a variable measured with

error we express Xi as a function of Wi. Explicitly

Xi =
Wi − σεεi + τ1E(Xi)

1 + τ1

(6.1)
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Replacing (6.1) in the outcome model, we obtain that:



Y1

...

Yn−1

Yn


=



1 W1−σεεi+τ1E(X)
1+τ1

Z1

...
...

...

1 Wn−1−σεεi+τ1E(X)
1+τ1

Zn−1

1 Wn−σεεi+τ1E(X)
1+τ1

Zn




β0

βX

βZ

+



υ1

...

υn−1

υn




Y1

...

Yn−1

Yn


=



1 W1 Z1

...
...

...

1 Wn−1 Zn−1

1 Wn Zn


︸ ︷︷ ︸

W ′


β0 + βX

τ1E(X1)
1+τ1

βX
1+τ1

βZ


︸ ︷︷ ︸

β′

+



υ1 − βX σεε1
1+τ1

...

υn−1 − βX σεεn−1

1+τ1

υn − βX σεεn
1+τ1


︸ ︷︷ ︸

µ

Then the linear regression estimator for β′ is computed as:

β̂′ =
[
W ′TW

]′−1
W ′TY

= β′ +

[
1

n
W ′TW ′

]−1
1

n
W ′Tµ

Notice that since 1
n
W Tµ does not converge to a null vector, ignoring the measure-

ment error will lead to inconsistent and biased estimators of the regression coefficients.

Furthermore, SIMEX will provide a consistent estimator of β′ but not β. Thus when

the model for the conditional mean of the outcome is linear; the treatment indicator

is measured without error and the model includes a covariate that is mismeasured,
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the treatment effect will be consistently estimated after applying SIMEX but the co-

efficient associated with the surrogate will not. Nonetheless there are scenarios where

the coefficient associated with the mismeasured variable may be of interest. In this

section we propose a simple procedure to obtain a consistent estimator of the coef-

ficient associated with X (the covariate measured with error) and valid confidence

intervals. By Carroll et al. (1996) we know that

√
n

(
β̂X

1 + τ1

− βX
1 + τ1

)
D→ N (0,Λ1)

Recall that in the validation sample, both X andW are observed. Let j = 1, ...,m

index the units in our independent external validation sample. Let Wj represent, for

unit j, the measurement of Xj. It is important to note, in this validation sample both

Wj andXj are observed. Since we can rewriteWi asWi = −τ1E (Xi)+(1+τ1)Xi+σεi,

thus (1 + τ1) can be estimated using a simple linear regression model. Thus we can

have that
√
m
(

1̂ + τ1 − 1− τ1

)
D→ N (0,Λ2) and under the assumption that m

n
→ k,

we can conclude that
√
n
(

1̂ + τ1 − 1− τ1

)
D→ N

(
0, 1

k
Λ2

)
. Since the main and the

validation samples are independent it holds that

√
n


 β̂X

1+τ1

1̂ + τ1

−
 βX

1+τ1

1 + τ1


 D→ N


 0

0

 ,

 Λ1 0

0 1
k
Λ2




Thus we obtain that
√
n
(
β̂X − βX

)
D→ N (0,Λ), with Λ =

(
βX

1+τ1

)2
1
k
Λ2 + (1 +
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τ1)2Λ1 . A similar procedure can be implemented to obtain a consistent estimator of

the intercept in the outcome model.

6.2 Simulation Set-Up (Appendix B, Chap-

ter 2).

To evaluate the performance of our estimator we conduct a simulation study to

compare bias, mean squared error (MSE) and coverage of three different estimators

of the treatment effect ∆: (1) the estimator obtained by using X, the true measure of

the covariate, (2) a naive estimator, which ignores the measurement error and simply

uses W , and (3) the SIMEX estimator for the treatment effect. The three methods

implement a doubly robust approach using propensity score weights. A total of 1000

simulation iteration were implemented for each set of simulation parameters. For

each simulation we generated a main sample of n = 2500 units and independent

validation sample of m = 500 units. Within each simulation the SIMEX estimator

was computed using B = 100 and Λ = {λ = 0.02 + l × 0.04 : l = 0, ..., 49}. Finally,

we set G (ϑ, λ) as a quadratic function; explicitly E
(

Θ̂λ|λ
)

= ω0 + ω1λ+ ω2λ
2.
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6.2.1 The data generating process

6.2.1.1 The Covariates

We assume that there are only two relevant covariates in the propensity score and

in the conditional mean model, namely X and Z, where X ∈ R and Z ∈ R . We

generate Xi and Zi from a bivariate normal distribution with correlation ρ, namely:

 Xi

Zi

 ∼ N


 0

0

 ,

 1 ρ

ρ 1




We consider three values for ρ: 0.3, 0.5 and 0.7.

6.2.1.2 The Treatment Assignment

Treatment is assigned according to the following rule:

Ti|Xi, Zi ∼ Bernoulli

(
eα0+α1Xi+α2Zi

1 + eα0+α1Xi+α2Zi

)

Where α0 is fixed at 0.5, αZ is fixed at 0.6, and αX takes two values: 0.5 and 1.0.

6.2.1.3 The Outcome

The data generating process for the potential outcomes is Yi(Ti) = β + ∆Ti +

βXXi + βZZi + ζi where we generate independently identically distributed errors ζi

from a standard normal distribution. Again the parameter of interest is ∆, which is

117



CHAPTER 6. APPENDIX

set equal to 1. We set β equal to 0.5, βX equal to 0.5 and βZ equal to 0.6. The observed

outcome Y is constructed from the simulated data as Yi = Ti×Yi(Ti)+(1−Ti)×Yi(Ti)

6.2.1.4 Measurement Error

Throughout this article we assume a non-traditional classical measurement error

structure defined in Section 2.1 of the main document. We set the value of σ2 to

0.35 and we consider five possible values for τ1 : −0.25,−0.20,−0.15, −0.10 and 0.00.

Table 6.1 summarizes all the parameters used in the simulation study.

Table 6.1: Parameters used in the simulation study.

Parameter Value Parameter Value

Sample
Nsim 1000

W

τ
(1)
1 0.25

m 500 τ
(2)
1 0.20

n 2500 τ
(3)
1 0.15

T

α 0.5 τ
(4)
1 0.10

αZ 0.6 τ
(5)
1 0.05

αX (small) 0.5
αX (large) 1.0

(X,Z)
low ρ 0.3 σ 0.34

medium ρ 0.5

Y

β 0.5
high ρ 0.9 βZ 0.6

SIMEX
B 100 βX 0.5
Λ {λ = 0.02, 0.06, ..., 1.98} ξ 1
Nsim represents the number of iterations.
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6.3 Non-response mechanisms (Appendix A,

Chapter 3).

Traditionally, missing data mechanisms are grouped in three categories: (1) Miss-

ing Completely at Random (MCAR), (2) Missing and Random (MAR) and (3) Miss-

ing not at Random (MNAR). Under a MCAR mechanism, the probability that one

observation will have missing information, is completely random. In other words,

there is no relationship between the propensity of the data to be missing and the

values of the variables in the data set. When the non-response follows a MAR mech-

anism, the propensity of the data to be missing is random, conditional on the set

of observed variables. In other words the observed values of the available data, can

predict the probability of one observation to have missing information. Finally when

the non-response is MNAR, the probability of having missing information depends

on unobserved variables. That is, even after accounting for the observed variables

available in the data, the propensity of the data to be missing is not random.
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6.4 Non-response and Survey Weights (Ap-

pendix B, Chapter 3).

The survey weights, ω, are equal to the inverse of the probability of being observed

in the sample, formally:

ω =
1

p
=

1

fSR|(X,T ) (SR = 1|X, T )
(6.2)

Notice that this definition allows for a non-response rate different from 0 and

different non-response mechanisms. To see this, consider the case where S and R

are independent conditional on (X, T ). Then it holds that fSR|(X,T ) (SR = 1|X, T )

it’s equal to fS|(X,T ) (S = 1|X, T ) times fR|(X,T ) (R = 1|X, T ), this last term models

the non-response mechanism. Notice that if fR|(X,T ) (R = 1|X, T ) = 1 for all (x, t)

in (X, T ) then the non-response rate is 0. If fR|(X,T ) (R = 1|X, T ) = fR (R = 1) the

non-respond mechanism is MCAR. Finally, the non response could be MAR and

NMAR depending on whether the all the elements in (X, T ) are observed. If every

element in (X, T ) is available to estimate the probability of non-response, then the

non-response mechanism is MAR, otherwise the non-response process is NMAR. In

this way, ω (the final observed sampling weight) is a combination of the survey weights

associated with the sampling design itself but also incorporates corrections associated

with non-response.
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6.5 Estimating the PATT (Appendix C, Chap-

ter 3.

Here we incorporate the weight transfer to estimate the PATT. The PATT will

be estimated as the difference of the weighted mean of the observed outcomes of the

treated and their matched comparison units. This estimator of the PATT makes

the use of the weights explicit, nevertheless it is important to recall that a outcome

model can be defined and the weights can be incorporated in its estimation. Under

the assumption that a k : 1 matching procedure was implemented it holds that for

every treated unit j with j = 1, 2, . . . , nT =
∑N

i=1 SRi×Ti , we have h(j) = 1, 2, . . . k

comparison units. Thus the PATT can be computed by
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P̂ATT =

∑nT
j=1 yj × ωtj(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωtj(x)∑nT

j=1

∑k
h(j)=1 ω

t
j(x)

=

∑nT
j=1 yj × ωtj(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωtj(x)∑k

h(1)=1 ω
t
1(x) +

∑k
h(2)=1 ω

t
2(x) + ...+

∑k
h(nT )=1 ω

t
nT

(x)

=

∑nT
j=1 yj × ωtj(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωtj(x)

kωt1(x) + kωt2(x) + ...+ kωtnT (x)

=

∑nT
j=1 yj × ωtj(x)∑nT

j=1 ω
t
j(x)

−
∑nT

j=1

∑k
h(j)=1 yh(j) × ωtj(x)

k
∑nT

j=1 ω
t
j(x)

=

nT∑
j=1

[
yj ×

ωtj(x)∑nT
j=1 ω

t
j(x)

]
−

nT∑
j=1

k∑
h(j)=1

[
yh(j) ×

ωtj(x)

k
∑nT

j=1 ω
t
j(x)

]

=

nT∑
j=1

yj ×W t
j −

nT∑
j=1

k∑
h(j)=1

yh(j) ×W c
j

Defining

W t
j =

ωtj(x)∑nT
j=1 ω

t
j(x)

W c
j =

ωtj(x)

k
∑nT

j=1 ω
t
j(x)

We can conclude that

W c
j =

1

k
W t
j
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Notice that each of the nT treated units receives a weight of W t
j and each of

the comparison units a weight of 1
k
W t
j . Interestingly, when this weight transfer is

implemented and then the PATT is estimated, we find that the estimation procedure

assigns to each unit of the comparison group a final weight that is proportional to

the final weight received by the treated unit to which they have been matched to.

Such proportion is defined by the number of comparison units used to matched each

treated unit. Notice that a similar result is obtained when considering simple random

samples, see Stuart (2010).

Simulation Study (Appendix D, Chapter 3).

As in Austin et al. (2016), we consider the case of a population of size N =

1, 000, 000. There are 10 strata in the population, each stratum has a total of 100, 000

observations. Within each strata there are 20 clusters, each of is composed of 5, 000

units. There are six covariates Xl with l = 1, ..., 6 and the data generating mech-

anism for the baseline covariates is such that: (1) the probability density function

is normal, (2) the covariates are independent (i.e., correlation between any pair of

covariates is set equal to 0), (3) the standard deviation, across all the covariates, is

equal to 1 and (4) the means vary across strata and cluster. More explicitly, for each

strata (j), the mean of the covariates deviates in µlj from 0, where µlj are obtained

assuming that µlj ∼ N (0, τ stratum). Within each strata, the mean of each cluster (k)
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deviates from the strata specific mean by µlk, with µlk ∼ N
(
0, τ cluster

)
. Thus the

distribution of the lth variable, in the jth stratum, among the units of the kth cluster

is Xl,ijk ∼ N (µlj + µlk, 1). We set τ stratum = 0.35 and τ cluster = 0.25, 0.15, 0.05.

Each value of τ cluster defines a different scenario. Unless otherwise specified, values

of the population coefficients are the ones used by Austin et al. (2016)

The treatment assignment (Ti) model is defined as a Bernoulli random variable

Ti ∼ Be (pi) with logit (pi) = α0 +
∑6

l=1 αlXl,i with α0 = log
(

0.3290
0.9671

)
, α1 = log(1.10),

α2 = log(1.25), α3 = log(1.50), α4 = log(1.75), α5 = log(2.00) and α6 = log(2.50).

The potential outcomes models are defined as Yi (0) = β0 +
∑6

l=1 βlX1,i + ε

with ε ∼ N(0, 1) and β0 = 0, β1 = 2.50, β1 = −2.00, β3 = 1.75, β4 = −1.25, and

β6 = 1.10. The potential outcome under treatment is defined by Yi (1) = Yi (0) + δ0 +

δ1

∑3
l=1 βlXl,i +

∑10
j=1 ηjSTRj,i with δ0 = 1 and δ1 = 0.2. The term

∑10
j=1 ηjSTRj,i

is the first departure form the simulation set-up design by Austin et al. (2016). This

additional term allows us to control how different the PATT and the SATT are.

The variable STRj,i is a categorical variable that takes the value 1 if the sample

unit i belongs to the jth stratum. For each of the three scenarios we consider six

different values for the vector of parameters (η1, ..., η10) such that
(
SATT
PATT

− 1
)
× 100

takes roughly the values −50%,−40%,−30%,−20%,−10% and 0% . In addition to

a continuous outcome Austin et al. (2016) also considered a dichotomous outcome; in

our article, we restrict our attention to continuous outcomes. We define an indicator

variable Rm with m = 1, 2, 3, 4 which takes the value 1 is the unit responded and
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0 otherwise. We consider the following non-response cases: No-missing data (NM),

R1i = 1 for all i. Missing at Random (MAR): the non-response rate depends on the

six baseline covariates, explicitly we assume that R3i ∼ Be(p3i) with logit (p3i) = γ0 +∑6
l=1 γlXl,i and γ0 = −log(0.030), γ1 = −log(1.10), γ2 = −log(1.25), γ3 = −log(1.50),

γ4 = −log(1.75), γ5 = −log(2.00), γ6 = −log(2.50). Missing at Random with an

additional covariate X7 (MARX): the non-response rate depends on the baseline

covariates but additionally, depends on a covariate X7 that is not observed in the

final sample, but affect the response rate. Formally,R3i ∼ Be(p3i) with logit (p3i) =

γ0 +
∑7

l=1 γlXl,i where γ7 = −log(2.50). This non-response mechanism, aims to

model the situation in which the survey weights can are constructed using information

that is only available to the survey team (i.e., X7), but not available to the final

user (e.g., number of contact attempts). The data generating mechanism for the

covariate X7 is the same as the one for the baseline covariates. The final non-response

mechanism consider is Missing at Random where the non-response depends on the

baseline covariates and the treatment assignment (MART). Explicitly R4i ∼ Be(p4i)

with logit (p3i) = γ0 +
∑6

l=1 γlXl,i + ∆Ti and ∆ = −2.

6.6 Plots with data labels (Appendix A, Chap-

ter 4).
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Figure 6.1: |% Bias.| % Bias in absolute value associated with the estimation of
γ as a function of the Degree of Misspecification of: (1) the Propensity Score Model
(ηδ), and (2) the Outcome Model. (η∆(δ)) (simulation study).
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Figure 6.2: |Coverage.| Empirical coverage of the 95 interval in the estimation of
γ as a function of the Degree of Misspecification of: (1) the Propensity Score Model
(ηδ), and (2) the Outcome Model (η∆(δ)) (simulation study).
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Figure 6.3: |RMSE.| RMSE associated with the estimation of γ as a function of
the Degree of Misspecification of: (1) the Propensity Score Model (ηδ), and (2) the
Outcome Model (η∆(δ)) (simulation study).
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