
Streaming Algorithms for High Throughput Massive Datasets

by

Gregory A. Vorsanger

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

January, 2017

c⃝ Gregory A. Vorsanger 2017

All rights reserved

Abstract

The field of streaming algorithms has enjoyed a deal of focus from the theoretical

computer science community over the last 20 years. Many great algorithms and mathematical

results have been developed in this time, allowing for a broad class of functions to be

computed and problems to be solved in the streaming model. In the same amount of time,

the amount of data being generated by practical computer systems is simply staggering.

In this thesis, we focus on solving problems in the streaming model that have a unified

goal of being relevant to practical problems outside of the theory community. In terms of a

common technical thread throughout this work, the theme here is an attention to runtime

and the ability to handle large datasets that not only challenge in terms of memory available,

but also in the throughput of the data and the speed at which the data must be processed.

We provide these solutions in the form of both theoretical algorithm and practical

systems, and demonstrate that using practice to drive theory, and vice versa, can generate

powerful new approaches for difficult problems in the streaming model.

Primary Reader: Vladimir Braverman

ii

ABSTRACT

Secondary Reader: Benjamin Van Durme

Third Reader: Joshua Edmison

iii

Acknowledgments

I owe a tremendous amount of gratitude and thanks to all three of my thesis readers who

have all been incredible mentors to me.

Dr. Joshua Edmison has been a guiding light through this process and a great friend. His

unique insight into solving problems using both science and engineering know-how is an

inspiration and has had a great impact on how I approached my graduate research. At every

step of the way he has shown great patience and support of my academic studies, and always

reminded me to keep focused on my goal of graduating. With humor, creative thinking, and

wisdom, Josh has been an excellent person to work for. Thank you Josh.

Dr. Benjamin Van Durme has been a great teacher and role model to me. Ben is a model

of academic efficiency, managing a small army of grad students and producing incredible

research, and I hope to someday achieve that level of managerial and scientific excellence.

Despite how many people he manages, and how busy he is with his many projects, Ben

always responds right away whenever I have a problem, always takes the time to explain

even small concepts if they are unfamiliar, and always supports and listens to my ideas, no

matter how small or how they might turn out. As a co-advisor, Ben has given me incredible

iv

ACKNOWLEDGMENTS

constructive feedback about how to become a better scientist as well as given me many great

opportunities to develop. From the start, Ben has understood my goals both as a student and

post graduation, and has provided me with thoughtful advice and help at every turn. Thank

you Ben.

Dr. Vladimir ”Vova” Braverman and I met almost by accident. After a helpful conver-

sation with Dr. Rao Kosaraju on the process of finding a Ph.D. program, I was trying to

determine if I would even be able to find a topic to study at JHU, let alone a professor to

study with. He suggested looking at Dr. Braverman’s website where I saw said he was

studying streaming algorithms. I hadn’t even taken Algorithms 1. Despite my lack of

knowledge in algorithms, Dr. Braverman believed in me and took me as a student. Vova is

kind, patient, and generous with his time. He has been a fantastic teacher to me and gave me

an environment to grow and learn that many others would not have. Vova always encouraged

me to chase my own academic interests and has provided me with tremendous support and

freedom to do so. Vova has taught me the importance of taking learning one step at a time,

and that with dedication and patience you can become an expert. I would never have been

able to learn the theory that became this thesis without your help and guidance. Thank you

Vova.

My parents, Gary and Debbie, who have not only shown me unwavering support and love,

but have also taught me so much about the importance of hard work and to be unafraid to

follow an unbeaten path. They’ve helped me immeasurably to figure out my unconventional

path through grad school; I cannot thank them enough. Thank you Mom and Dad.

v

ACKNOWLEDGMENTS

Stefanie Berges, who was with me the entire way with love, support, companionship.

Stef would also give me the occasional reminder that, while graduate school is tough, I

should stop complaining, pull it together, and get back to work. I’d be lost without you.

Thank you Stef.

I would like to thank all of my coworkers at Raytheon BBN Technologies who in many

different ways supported me throughout my graduate studies, be it with flexible scheduling,

inspiring technical conversations, or just a beer after work. I’d also like to thank BBN

management for sponsoring my education and being supportive of my schedule. Thank you

BBN.

Finally, to all of my family and friends not mentioned by name, thank you.

vi

Dedication

For Mom, Dad, and Stef. I surely wouldn’t have gotten here without you.

vii

Contents

Abstract ii

Acknowledgments iv

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Overview of Main Results . 2

1.2 The Streaming Model . 3

1.3 Memory and Compromise . 6

1.4 Techniques . 7

1.5 Topics . 8

1.5.1 Theory . 9

1.5.2 Implementation . 11

viii

CONTENTS

2 Subsampling 13

2.1 Introduction . 13

2.1.1 Related Work . 15

2.1.2 Relation to Existing Work on Lower Bounds 17

2.1.3 Objective . 18

2.1.4 Results . 19

2.1.5 Intuition . 21

2.2 Definitions and Facts . 22

2.3 Frequency Moments on Sampled Streams 23

2.4 Finding Heavy Elements . 30

2.5 Discussion . 31

2.6 Open Questions . 33

2.7 Conclusion . 33

2.8 Appendix . 35

2.8.1 Binomial Distribution and Stirling Numbers 35

2.8.2 Useful Inequalities . 36

3 Weighted Sampling Without Replacement 39

3.1 Introduction . 39

3.1.1 Related Work . 41

3.1.2 Results . 42

3.1.3 Intuition . 43

ix

CONTENTS

3.2 Definitions . 43

3.3 Cascade Sampling . 45

3.4 Precise Reduction and Resulting Algorithm 47

3.4.1 Discussion . 49

4 Measuring Hadamard Distance 50

4.1 Introduction . 50

4.1.1 Related Work . 58

4.2 Problem Definition and Notation . 59

4.3 Subadditive Approximations . 63

4.4 Algorithm for Finding Key Rows . 65

4.4.1 Algorithm for Finding All α-Heavy Rows 67

4.4.2 Sum from α-Heavy Rows . 71

4.4.3 Space Bounds . 71

4.5 Applications . 72

4.6 Appendix . 74

4.6.1 Proof of of Lemma 1 . 74

4.7 Proof of Correctness of Algorithm 1 . 75

4.7.1 Recursive Sketches . 82

5 Fuzzy Heavy Hitters 85

5.1 Introduction . 85

x

CONTENTS

5.2 Problem Definition and Assumptions . 86

5.3 Comparison with Other Clustering Problems 90

5.4 Our Algorithm . 92

5.5 Experiments . 102

5.5.1 Synthetic Data . 103

5.5.2 Twitter . 110

5.6 Related Work . 118

5.6.1 Related Problems and Other Datasets 120

5.7 Comparison with First Story Detection . 124

5.8 Future Work . 127

5.9 Chapter Conclusions . 128

6 Conclusion 129

Bibliography 130

A Challenges in Developing Streaming Algorithms 156

Vita 162

xi

List of Tables

4.1 Comparing Approximation Ratios and Space Complexity 56

5.1 Selected Heavy Cluster IDs and Counts 112
5.2 SpaceSaving Accuracy in FHH . 117
5.3 Runtimes of FHH with different features, k’ = 10,000 118
5.4 Topic and Event Heavy Cluster IDs and Counts (50 million Tweets) 123

xii

List of Figures

3.1 Updating a Unit Sample . 49

5.1 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 13. No noise. 106

5.2 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 4. No noise. 106

5.3 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 13. 10% noise. 107

5.4 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 4. 10% noise. 107

5.5 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 13. 25% noise. 108

5.6 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 4. 25% noise. 108

5.7 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 13. 50% noise. 109

5.8 Comparison of FHH output with k-medians on Gaussian clusters arranged
along an Archimedean spiral. k = 4. 50% noise. 109

5.9 Comparison of LFCount and HH runtime 114
5.10 Comparison of LFCount and HH for heavy hitter weights 115
5.11 SFSD Algorithm . 125
5.12 LFCount Algorithm . 125

xiii

Chapter 1

Introduction

The motivation for this thesis is surprisingly simple; storing information has become

very affordable, and time is expensive as ever. The amount of data being generated today

is simply staggering. Twitter generates 500 Million tweets per day,1 data center volume

is constantly increasing,2 and the number of sensors in the world is increasing sharply.3

However, the increase in processing power of computers may not be able to keep up in the

near future,4 and there are still only 24 hours in a day. With this comes a question, what do

we do with all of the data?

In the last 20 years, the field of streaming algorithms has looked to address the theoretical

limitations of processing massive datasets. Many celebrated algorithms have not only pushed

forward the field of theoretical computer science, but also have been seen wide spread use

in applications such as Networks, Compressed Sensing, Machine Learning, and Security.5–8

Because many problems are formally hard in the general case, a compromise is necessary.

1

CHAPTER 1. INTRODUCTION

By softening the assumptions and constraints from the general case, powerful practical

software can be created. In the case of streaming algorithms and the problem of providing

statistics for large data sets, the trade off is that perfect accuracy is not possible and

approximate answers are returned.

In a sentence, the goal of this thesis is for theory to drive practice, and practice to

drive theory. In this thesis we show that using theoretical methods to design algorithms

for practical problems is a valuable problem solving methodology for large datasets. By

focusing in on specific cases as opposed to broad and general ones, this method can provide

novel and useful approaches to computer science problems that may be hard to solve in

the general setting. The goal of all of the algorithms presented in this thesis is the same, to

provide improved methods of calculation that can be used to solve practical problems.

In this research we make multiple different types of practical assumptions, ranging from

the limited availability of finite precision arithmetic (Chapter 3) to the inability to read every

element in a stream (Chapter 2). These assumptions, when combined with a design goal of

processing data quickly, enable the creation of algorithms that provide better performance

when throughput is high and speed is critical.

1.1 Overview of Main Results

In this thesis we consider and provide results for the following problems:

• For the problem of SubSampling in the Streaming model we provide results for a class

of streams we describe as dense streams.9 We provide improved bounds for frequency

2

CHAPTER 1. INTRODUCTION

moments with k = 2. Additionally, as best we are aware, we provide the first bounds

for k < 2, and heavy hitters on sampled streams.

• For the problem of weighted sampling, we provide an algorithm for sampling without

replacement that is less reliant on floating point precision that previous methods.10

• For the problem of measuring the independence of two streams, we provide a general-

ization as well as an improved bound from O

((
log(nm)

ϵ

)1024)
to O

(
1
ϵ7
log12(n) log2

(
nm
ϵ

))
.11

• We introduce a clustering style problem in the streaming model called Fuzzy Heavy

Hitters and introduce the first algorithm and implementation.

While the topics and applications for these results cover a variety of problems in the

same model, the solutions share a common thread. All of these results are focused on

providing analytics for large datasets in a more efficient way than was previously possible,

with a focus on being useful in software, not just theory. This goal is achieved by carefully

choosing assumptions and providing fast per update runtime with the aim of supporting high

throughput data streams.

We provide more detail on the motivation for each of these problems in Section 1.5 and

for each problem we present the work as its own chapter.

1.2 The Streaming Model

This research is focused in the streaming model, a theoretical framework for very large

datasets. Algorithms built in this model are called streaming algorithms, and have three

3

CHAPTER 1. INTRODUCTION

core facets.12 First, they use a sublinear amount of memory. As the dataset grows larger

and larger, the amount of memory used to compute grows much more slowly, allowing

a small amount of memory to enable computation for the largest datasets. Second, the

algorithm uses a small constant number of passes over the data set (ideally one pass). For

truly large datasets, looking through the data more than a handful of times is impractical,

and in many cases, such as network traffic, the data may be unavailable after the initial

processing window. Finally, the algorithm needs to use a sublinear (ideally constant) amount

of time to process each new element.

While there are multiple different types of streams inside of the streaming model, such

as the time-series, cash register, sliding window, and decay, this work focuses mainly on the

cash-register model, which is defined as follows from Muthukrishnan:12

Definition 1.2.1. Given an underlying signal A, a one dimensional function A : [1···N]→ R.

The algorithm is then given an input stream S of length m with elements a1, a2, ...am, where

element ai is a pair (j, Ii) with j ∈ {1, ..., n} and Ii ≥ 0. Each ai can be viewed as a

increment of Ii to A[j].

Within the constraints of the streaming model, there has been a broad focus on providing

algorithms for many different statistics. Many recent and exciting results in the theory

community have focused on driving down the memory cost of algorithms, tightening wider

approximations, or reducing the number of passes. While some of the work present in this

document certainly aligns with the same goals, the focus of this thesis is how to improve

efficiency for practical data sets.

4

CHAPTER 1. INTRODUCTION

While the streaming model is a general model of computation, considerable attention

has been paid to the problems of Heavy Hitters and Frequency Moments. Aside from

the more intuitive use of finding frequent elements, F0 measures the number of unique

elements in a stream, F2 can measure the output size of a self join of a database, and higher

frequency moments can measure the skew of a dataset to determine which algorithms to use

for partitioning.13 Frequency moments can also be used to measure Lk distance between

two streams.

Definition 1.2.2. Frequency Moments

A k-th frequency moment of a stream D is defined by Fk(D) =
∑

i∈[n] f
k
i .

Definition 1.2.3. Heavy Hitters

Let D be a stream and α be a parameter. The index i ∈ [n] is a α-heavy element if

fk
i ≥ αFk.

These problems are very much related, as retrieving the heavy hitters for a dataset can in

turn give an estimate of the frequency moment. This is especially true for larger frequency

moments, such as when k > 3.

The problem of frequency moments was first studied in the streaming model by.14 In

this work they provided an optimal algorithm for F2, but larger frequency moments, k > 2,

was left as an open problem. Algorithms for finding F1 and F2 heavy hitters have been well

studied.15–17 Large frequency moments has also had multiple algorithms steadily improving

bounds.18–20 Further, the field continues to evolve with more pushes towards generalized

5

CHAPTER 1. INTRODUCTION

sketches such as the work of21, 22 that can solve multiple problems using one primitive sketch

solving for heavy hitters.

1.3 Memory and Compromise

At its core, the streaming model is a model of compromise. Consider one of the fundamental

problems in the streaming model, heavy hitters. Informally, heavy hitters represents a

question: ”If I have a lot of labeled elements, such as numbered golf balls, which number

do I have the most of?”

Answering this question on a small scale with a linear amount of memory compared

to the number of elements is trivial using a heap or hash table. However, answering it

using a sublinear amount of memory presents a more difficult challenge. In fact, it’s not

possible for a deterministic algorithm to use a small amount of memory, as shown in a

simple information theoretic argument from Muthukrishnan,12 Theorem 9.

This is a simple example, but is indicative of a larger theme; there are necessary trade-

offs to break boundaries of existing bounds. This means it is necessary to prioritize different

qualities of algorithms over others, such as speed over accuracy, or limiting the generality

of the problem. As mentioned in the previous section, this work focuses on leveraging

these compromises to provide improved algorithms which can make a difference in practical

settings when these compromises make sense.

6

CHAPTER 1. INTRODUCTION

1.4 Techniques

The algorithms in this thesis use a handful of techniques at their core. We now briefly define

them and explain why they are used.

Sampling

When the time comes to implement these algorithms, asymptotic constant time per

update can leave much to be desired. The logical next step then, is to try and figure out how

to make our streaming algorithms more time efficient. While many techniques are used in

this thesis, the two main pillars are sampling and hashing.

Sampling allows an algorithm to process less of the underlying dataset by only selecting

a small portion. As further discussed in Chapters 2 and 3, sampling is a technique that has

been well studied in the streaming model including heavy hitters and quantiles,12 as well as

others.2324252627282930 The practical motivations for sampling expand beyond reducing the

total work load, as some data provides such a high throughput that it’s simply not possible to

process every element if the update time is too slow, such as packets on network routers.31

Hashing

Hashing is another flexible tool used in many different ways throughout this thesis. We

rely on two different kinds of hashing, Universal Hashing and Locality Sensitive Hashing.

Universal Hashing has the advantage of improving worst case retrieval time by reducing

collisions. It does so using a family of hash functions. We use the definition for Universal

hashing from.32 Hashing is used extensively throughout streaming literature for building

7

CHAPTER 1. INTRODUCTION

sketches, including famous algorithms such as the F2 algorithm,14 Count Sketch,15 Count

Min Sketch,16 my work with Braverman, Katzman, and Seidell in,20 the sketches referenced

in Chapter 2 and the sketch in Chapter 4.

Definition 1.4.1. Universal Hashing

Let H be a collection of hash functions that maps from keys from universe S into m bins.

For all h ∈ H , sa = sb, H(sa) = H(sb), i.e. all instances of key si end up in the same bin

mj .H is universal if, given sc ̸= sd, the probability that Pr[H(sc) = H(sd)] =
1
m

.

Locality Sensitive Hashing is a process of solving the approximate nearest neighbor

problem.33 This method was later applied by Charikar34 as a method for approximating the

relative angle of high dimensional vectors by mapping them into a lower dimensional space.

Definition 1.4.2. Locality Sensitive Hashing

For Locality Sensitive Hash Function L, with M = 2b bins, L maps a high dimensional

vector v ∈ Rd into a lower dimensionality Rb. For u, Pr[L(u) = L(v)] = 1 − θ(u, v),

where θ(u, v) is the angle between u and v.

1.5 Topics

The chapters are divided into two main groups, theory and implementation. Each topic

is focused on the main theme of answering theoretical questions that relate to practical

problems, or use theory to drive designing a practical system, as in Chapter 5. The topics

range from solving fundamental problems in the streaming algorithm community, to trying

to apply those concepts to practical computer science settings.

8

CHAPTER 1. INTRODUCTION

1.5.1 Theory

Chapter 2 Sampling and Subsampling:

A common, if not fundamental, problem in data analysis is to ask whether or not looking

at a subset of a larger group of data is sufficient for calculation. This chapter investigates

the ability to sample relatively small amounts of data from a stream and approximately

calculate statistics on the original stream. Generally, sketch algorithms are able to store

such small amounts of data by preserving important characteristics of the data set. With this,

the difficulty of accurate sketching increases dramatically when there is no guarantee that

critical elements will even be observed by the algorithm.

McGregor et al.35 provide worst case theoretical bounds that show space costs for

sampling that are inversely correlated with the sampling rate. Indeed, while the lower bound

of McGregor et al. cannot be improved in the general case, we show it is possible to improve

the space bound for stream D of domain n, when the average positive frequency µ = F1/F0

is sufficiently large. We consider the following range of parameters: µ ≥ log(n) and sample

rate p ≥ Ckµ
−1 log(n), where Ck is a constant. On these streams we improve the bound

from Õ(1
p
n1−2/k) to Õ(n1−2/k) thus giving polynomial improvement in space for sufficiently

large µ and p−1.

Chapter 3 Cascade Sampling:

Continuing with another sampling result, we present Cascade Sampling, an efficient

method for performing weighted sampling without replacement. Weighted sampling without

9

CHAPTER 1. INTRODUCTION

replacement has proved to be a very important tool in designing new algorithms. Cascade

Sampling is not a revolution for weighted sampling, but instead represents a theoretical

result aimed at removing an assumption about decimal precision, in turn providing greater

applicability for practice, especially for systems where floating point operations can be

limited or not implemented, or a high degree of precision is desired.

Efraimidis and Spirakis (IPL 2006) presented an algorithm for weighted sampling

without replacement from data streams. Their algorithm works under the assumption of

precise computations over the interval [0, 1]. Cohen and Kaplan (VLDB 2008) used similar

methods for their bottom-k sketches.

Efraimidis and Spirakis ask as an open question whether using finite precision arithmetic

impacts the accuracy of their algorithm. In this paper we show a method to avoid this problem

by providing a precise reduction from k-sampling without replacement to k-sampling with

replacement. We call the resulting method Cascade Sampling.

Chapter 4 Measuring Independence of Datastreams:

Another seemingly simple problem that is very difficult in the streaming model is the

problem of determining if two streams of data are independent. Our algorithm provides a

solid improvement over the previous bound O(log(n)1024) to O(log(n)14), but unfortunately

this improved algorithm still does not quite push the usefulness of the technique to a practical

level, as this approach only begins to do better than the traditional algorithm at approximately

1 trillion points, which is still larger than most current large data sets where this statistic

needs to be calculated.

10

CHAPTER 1. INTRODUCTION

Phrasing the problem more formally, we aim to obtain small-space approximations of

entrywise functions performed on a matrix that is generated by the outer product of two

vectors given as a stream. In other works, streams typically define matrices in a standard

way via a sequence of updates, as in the work of Woodruff36 and others. We describe the

matrix formed by the outer product, as well as other matrices that are not updated directly

by new streaming elements, as implicit matrices. As such, we consider the general problem

of computing over such implicit matrices with Hadamard functions, which are functions

applied entrywise on a matrix. In this chapter, we apply this generalization to provide new

techniques for identifying independence between two data streams. The previous state of

the art algorithm of Braverman and Ostrovsky37 gave a (1 ± ϵ)-approximation for the L1

distance between the product and joint distributions, using space O(log1024(nm)ϵ−1024),

where m is the length of the stream and n denotes the size of the universe from which stream

elements are drawn. Our general techniques include the L1 distance as a special case, and

we give an improved space bound of O(log12(n) log2(nm
ϵ
)ϵ−7).

1.5.2 Implementation

Chapter 5 Fuzzy Heavy Hitters:

This chapter came out of an interest in better understanding twitter, but grew into a study

on how to group high dimensional data outside of existing clustering techniques such as

k-means, k-medians, or DBscan.38

In this chapter, we define the problem of finding Fuzzy Heavy Hitters; the detection of

11

CHAPTER 1. INTRODUCTION

the heaviest clusters of points in a data stream, and propose a new algorithm to solve this

problem. This algorithm was implemented in C++ with efficiency as a core design tenet.

Experimental results on Twitter and synthetic data sets demonstrate the capability of this

new approach.

Appendix: A Challenges in Developing Streaming Algorithms:

To close the thesis, this appendix provides insight and suggestions for improving the

development of streaming algorithms to be used by the practical computer science com-

munity. The aim of this appendix is to better bridge the gap between theoretical streaming

algorithms and software. Topics include programming languages, data selection, and the

importance of prototypes.

12

Chapter 2

Subsampling

2.1 Introduction

An exciting topic of current algorithms research is evaluating the ability to sample relatively

small amounts of data from a stream and to be able to approximately calculate statistics

on the stream as a whole. In a recent paper,35 McGregor, Pavan, Tithrapura, and Woodruff

provided worst case theoretical bounds that show space costs for sampling that are inversely

correlated with the sampling rate. 1 This implies it is not possible to sample effectively on

the stream without a cost tradeoff. However, experimental work has shown that sampling

can be performed on the stream without sacrificing additional space for accuracy.39 Let us

define the following terms:

Definition 2.1.1. Let m,n be positive integers. A stream D = D(n,m) is a sequence of size

1We have recently learned from an anonymous reviewer that these lower bounds may not hold. We stress
that our techniques are independent of this result, and thus they hold regardless of the correctness of this work.

13

CHAPTER 2. SUBSAMPLING

m of integers a1, a2, . . . , am, where ai ∈ {1, . . . , n}. A frequency vector is a vector of

dimensionality n with non-negative entries fi, i ∈ [n] defined as:

fi = |{j : 1 ≤ j ≤ m, aj = i}|

Definition 2.1.2. A k-th frequency moment of a stream D is defined by Fk(D) =
∑

i∈[n] f
k
i .

F0 is the number of distinct elements in the stream and F∞ = maxi∈[n]fi.

Definition 2.1.3. A dense stream is any stream D s.t F1(D)/F0(D) ≥ log(n)

While the lower bound of McGregor et al. cannot be improved in the general case, we

show it is possible to improve the space bound for a stream D of domain n and length m,

when the the average positive frequency µ = F1/F0 is sufficiently large. Specifically, we

consider the following range of parameters: µ ≥ log(n) and p ≥ Ckµ
−1 log(n), where Ck

is a constant (defined in (2.6)).

As our main technical claim, we show in Theorem 2.3.1 that the frequency moment on

the sampled stream, Dp, is a 1 + ϵ approximation for the frequency moment on the entire

stream with high probability. As a result, we show the problem of computing Fk on D

is reducible to the problem of computing Fk on Dp and the reduction preserves the space

bounds up to a constant factor. In particular, the space bounds are independent of the sample

rate, p. We stress that for our range of parameters the problem of approximating Fk is as

hard as the problem of approximating Fk on the set of all streams. In this case, the lower

bound from40 still applies. However, the lower bound from35 does not apply, as this bound

14

CHAPTER 2. SUBSAMPLING

is proven for streams with average frequency bounded by a constant. On these streams we

improve the bound2 from Õ(1
p
n1−2/k) to Õ(n1−2/k) thus giving polynomial improvement in

space for sufficiently large µ and p−1. Additionally, we provide proof that the same result is

applicable for finding heavy elements (heavy hitters) in the stream. Specifically, we show

that heavy elements in the original stream are heavy elements in the sampled stream. Thus,

techniques to analyze heavy elements are also unaffected by the sampling rate. We also

describe several practical applications where streams have high average frequency.

2.1.1 Related Work

For many applications it is practical to consider sampling data instead of attempting to pro-

cess the entire data set. This is especially true as data sets grow larger and larger. The concept

of accurately calculating statistics using small portions of a stream is not new, and sampling

algorithms in the streaming setting have been studied for a long time,23,24,25,26,27, 28,29.30

Calculating frequency moments is one of the central problems for streaming algorithms,

see, e.g.,,14,41,42,4344, 45,46,47,48,40,49–53,54,55,56,57,58,59 and the references therein. Further,

computing frequency moments and other functions using sampling has been an intriguing

question for a long time.60 For example, Bar-Yossef showed325 that the complexity of

sampling from streams differs from the complexity of sketching by a polynomial factor in

the worst case. Specifically computing F2 is possible using Õ(1) bits, but Ω̃(n0.5) samples

are still needed.
2The Õ notation suppresses factors polynomial to 1

ϵ and factors logarithmic in m and n.
3While Bar-Yossef showed his results in a slightly different model the lower bounds are applicable for the

sampled streams as well. See also Theorem 3.1 from.35

15

CHAPTER 2. SUBSAMPLING

In 2007 Bhattacharyya, Madeira, Muthukrishnan, and Ye61 considered skipping certain

portions of the stream and only examining every Nth item deterministically.

Following this, in62 Problem 13, Matias asked about the effects of subsampling on the

streaming data. His question addresses the issue of very fast streams, ones that cannot be

analyzed effectively even if each element can be processed in O(1) time. In addition to

asking questions regarding,61 he also asked about how subsampling effects the accuracy of

standard calculations, such as frequency moments.

Recent work provided by McGregor, Pavan, Tirthapura, and Woodruff35 considered sam-

pling streams and addressed several fundamental problems, including frequency moments,

heavy hitters, entropy, and distinct elements. In particular, they provide a matching (up to a

polylogarithmic factor) upper and lower bound for the problem of frequency moments for

k > 2 with lower bound of Ω̃(1
p
n1−2/k). However, if we can observe the entire stream, then

we can apply the well known upper bound of Õ(n1−2/k) from Indyk and Woodruff.19 Thus,

the bound of35 shows that it is not possible to obtain approximations without increasing the

space required by a factor of p−1, in the worst case.

However, in 2009, Rusu and Dobra39 experimentally showed that when 10% of the

original stream is sampled then the second frequency moment is still preserved. This

provides intuition that there may be certain inputs that allow for an improvement over the

bound from.35

16

CHAPTER 2. SUBSAMPLING

2.1.2 Relation to Existing Work on Lower Bounds

We now explain why the lower bound of Ω̃(1
p
n1−2/k) does not apply to our analysis.

The lower bound in question only applies when n = Θ(m). Consider streams such that

F0 = Ω(n) and for all i either fi = 0 or fi > n. Clearly in this case n = o(m) and thus the

lower bound of35 do not necessarily apply. Indeed, if we sample with probability p = n−0.5

then, with high probability, all sampled frequencies will be in the range [(1− ϵ)n−0.5fi, (1 +

ϵ)n−0.5fi] for constant ϵ and sufficiently large n. Thus, it is not hard to show that Fk on the

entire stream can be approximated by computing the frequency moment on the sampled

stream, F̃k. In this paper we investigate the range of parameters for which sampled streams

possess these properties.

Consider Theorem 4.33 from.25 Let us consider the case when k = 2. To prove the lower

bound of Bar-Yossef considers the following example. Either (1) the stream represents a

frequency vector with all frequencies bounded by 1 or (2) the stream represents a frequency

vector with all frequencies bounded by 1 and one frequency is O(n1/2). Observe that in both

cases the average non-zero frequency µ = O(1). Since we require µ = Ω(Ck log(n)) the

lower bound from25 is not applicable directly to our range of parameters. Is it possible to

increase µ by repeating the same element many times. However, the bound from25 is for

algorithms that are based solely on sampled data. In our model, we first sample and then

we can apply an arbitrary algorithm, including the sketching algorithm for F2 from.14 In

this case the lower bound on the number of samples from25 becomes the lower bound on the

17

CHAPTER 2. SUBSAMPLING

length of the sampled stream Dp which is F̃1.

In the same way consider Section 3.3 from.35 The authors explicitly state that their bound

is for the case when m = Θ(n). (It is important to note that the implicit (and standard)

assumption in35 is that F0 = Θ(n). Otherwise, better bounds are possible, even on the

original stream. E.g., if F0 = O(1) then we can compute any Fk precisely). In the proof of

Theorem 3.3 in35 the construction requires each element to be included at most once in the

stream (except for one special element).

We give polynomial improvements over previous methods for the case when the non-

zero average frequency is polynomial. Consider the stream where the average non-zero

frequency is n3. For sampling rate p = 1
n2 the bound35 is Ω̃(min(n, 1

p
n1−2/k)) = Ω̃(n).

Our improvement for such streams can be as large as Ω̃(n2/k). Consider streams with the

average frequency nζ where 0 < ζ < 1. If the sampling rate is p = Ck log(n)
1
nζ then our

improvement is of order Ω̃(1
p
).

2.1.3 Objective

Specifically we ask the following question:

Question 2.1.1. For which range of parameters it is possible to overcome the lower bound

of 35 and show that similar results can be achieved at a lower space cost?

Our goal is to investigate the range of input where sub-sampling is effective despite the

lower bounds of.35 In particular, we show that if F1 ≥ Ck log(n)F0 then it is possible to

sample the stream with rate Θ
(

Ck log(n)F0

F1

)
without sacrificing precision. We will analyze

18

CHAPTER 2. SUBSAMPLING

upper space bounds for frequency moments on sampled streams.

2.1.4 Results

We show in this paper that the space requirement bound in35 can be improved on a sufficiently

long stream, given input with specific characteristics such that the stream is a dense stream.

We have found good examples of data which have the characteristics and review them in the

discussion section. Specifically, we improve these results for stream D of domain n, when

the average frequency of all elements in D is greater than Ck log(n).

To the best of our knowledge, this is the first theoretical bound that shows strict im-

provement for sampling (no time/space trade-off) and thus gives justification for practical

observations such as.39 Note that our results do not contradict the lower bounds of.35 In,35

the lower bound is given for the case when F1 = Θ(F0); this is not the case for the streams

we analyze, and thus does not effect correctness of the upper bounds in this paper.

All of our results are applicable for the following range of parameters: µ ≥ log(n) and

p ≥ Ckµ
−1 log(n), where Ck is a constant defined in (2.6). Our contributions are:

• As our main technical claim, we show in Theorem 2.3.1 that the frequency moment

on the sampled stream is a 1 + ϵ approximation for the frequency moment on the

entire stream with high probability.

• As a result, we show the problem of computing Fk on D is reducible to the problem

of computing Fk on Dp and the reduction preserves the space bounds up to a constant

factor. In particular, the space bounds are independent of the sample rate, p.

19

CHAPTER 2. SUBSAMPLING

• We provide the bound of Õ(n1−2/k) for k > 2. On our range of parameters we

improve the bounds of35 by a factor of 1/p. In fact, our recent result44 implies a bound

of O(n1−2/k) bits.

• We provide the bound of Õ(1) for 1 ≤ k < 2 for Fk approximation. To the best of our

knowledge this is the first theoretical bound for this range of k on sampled streams.

• We provide proof that our result is also applicable for finding heavy elements (heavy

hitters) in a stream. See Section 4. To the best of our knowledge this is the first

theoretical bound for heavy hitters in sampled streams.

• We give a concentration bound on the sum of k-th powers of binomial random variables

using inequalities for Sterling numbers of the 2nd kind, Bell numbers, and the Hölder

Inequality.

It is important to note that the space lower bound Ω̃(n1−2/k) holds for streams with

arbitrary large µ. To see this, consider a stream D with the average non-zero frequency

smaller than some parameter t. Replace stream D with stream D′, where every element of

D is repeated exactly t times. In this case the average non-zero frequency in D′ is increased

exactly by factor of t. Since the µ is always at least one, we conclude that µ(D′) ≥ t. It

is not hard to see that the lower bound from40 will be applicable for such D′. Thus, our

restrictions do not make the problem of approximating Fk easier.

20

CHAPTER 2. SUBSAMPLING

2.1.5 Intuition

Given a stream D, of length m with domain n, we assume that m = θ(n). However,

as datasets get large, it is often the case that the expected frequency of a given element

increases significantly. If this is the case then we can sample the stream without losing much

precision (at least for the Fk approximation). As a result, we can improve the space bounds

for frequency moments on sampled streams.

Our main claim is that F̃k is approximately p−kFk if the expected frequency µ is suf-

ficiently large and p ≥ µ−1 log(n). Specifically, we prove that the value of the frequency

moment will be preserved (up to a multiplicative error) with high probability. It is easy to

see4 that the sampled frequency f̃i is a random variable with binomial distribution. Thus, the

frequency moment on the sampled stream is F̃k =
∑n

i=1 f̃
k
i where f̃i ∼ B(fi, p).5 Note that

f̃is are independent but not identically distributed since the numbers of trials are different.6

To obtain our result, we use the relation between the the moments of f̃i, the Stirling numbers

of the second kind and the Bell numbers.

Intuitively, when sampling datasets with large average frequency, we can divide all

elements into one of three categories: A1, the category of all elements with frequency greater

than the sampling rate multiplied by an O(log(n)) factor, A2, elements with frequency

greater than the sampling rate but less than A1, and A3, elements with frequency smaller

4Similar observation has been made in35

5We denote B(0, p) as the degenerate distribution concentrated at 0.
6A slightly different case is well studied, when Y =

∑n
i=1 Y

k
i where Yi ∼ B(n, pi), i.e., the number of

trials is the same, but success probabilities are different. See e.g.,63 for more details.

21

CHAPTER 2. SUBSAMPLING

than the sampling rate. With this, we can prove that the group of elements in A1 dominates

the frequency moment of a dense stream. In this paper, we prove that the contribution of the

sampled frequencies from the second two groups is negligible, with high probability. This

allows us to accurately estimate the frequency moment of the sampled stream using only

elements in A1. We also prove that the frequency of each element fi in A1 is preserved within

1 ± Θ(ϵ), while sampling with rate p ≥ Ckµ
−1 log(n), for sufficiently large constant Ck.

Thus, F̃k is a (1± ϵ)-approximation of Fk, and we can accurately perform our computations

on Dp instead of D.

2.2 Definitions and Facts

The average positive frequency is defined as

µ = µ(D) = F1/F0. (2.1)

Note that µ ≥ 1. Let us prove the following simple fact. Fact µkF0 ≤ Fk

Proof. By Hölder inequality F1 ≤ F
1−1/k
0 F

1/k
k . Thus, µkF0 = (F1/F0)

kF0 ≤ Fk.

Definition 2.2.1. Given data stream D = {a1, a2, . . . , am} and a fixed real p ∈ (0, 1), let

Dp be a random sub-stream of D obtained as follows. Let Z1, . . . , Zm be independent

random variables such that Zi = ai with probability p and Zi = −1 with probability (1−p).

Denote D′ to be the sequence Z1, . . . , Zm. Next let Dp be the subsequence of D′ obtained

22

CHAPTER 2. SUBSAMPLING

by deleting all −1s. Define7

f̃i = frequency of i in Dp. (2.2)

F̃k =
n∑

i=1

f̃k
i . (2.3)

B(N, p) is the binomial distribution with N trials and success probability p, where N

is a positive integer and p ∈ [0, 1]. For completeness, define B(0, p) to be the degenerate

distribution concentrated at 0.

2.3 Frequency Moments on Sampled Streams

Define:

αk = 64(k/ϵ)2, (2.4)

βk = (k + 1)Bk, (2.5)

where Bk is the k-th Bell number (see64 for the definition).

Ck = ϵ−1/k(10βk)
1/kαk. (2.6)

Consider stream D such that:

µ ≥ Ck log(n). (2.7)

7Note that we make “two passes” on D to define Dp but our algorithms will only need one pass on Dp.

23

CHAPTER 2. SUBSAMPLING

Let p be such that:

1 ≥ p ≥ µ−1Ck log(n). (2.8)

Let k > 1 and ϵ be arbitrary constants. We now divide elements by frequency. Define:

S1 = {i : fi ≥ αkp
−1 log(n)}, (2.9)

S2 = {i : p−1 ≤ fi < αkp
−1 log(n)}, (2.10)

S3 = {i : fi < p−1}, (2.11)

Denote random variables Xj, j ∈ {1, 2, 3}:

Xj = p−k
∑
i∈Sj

f̃k
i . (2.12)

Denote numbers Aj, j ∈ {1, 2, 3}:

Aj =
∑
i∈Sj

fk
i . (2.13)

For completeness define Aj = Xj = 0 if Sj = ∅ for j = 1, 2, 3. It follows that p−kF̃k =

X1+X2+X3 and Fk = A1+A2+A3. We will show that, with high probability: A1 is very

close to X1, A3 + A2 is negligible in terms of Fk, and X2 +X3 is bounded by c(A3 + A2)

for some constant c. As a result, we will prove that X1 ≈ p−kF̃k is a good approximation of

24

CHAPTER 2. SUBSAMPLING

Fk. Define

γ = ϵ/2k (2.14)

Fact For any i the following is true. If

|p−1f̃i − fi| ≤ γfi (2.15)

then

|p−kf̃k
i − fk

i | ≤ ϵfk
i . (2.16)

Proof. For any fixed value of f̃i put x = p−1f̃i and y = fk
i . The lemma follows from Facts

2.8.2 and 2.8.2. Thus, the lemma follows for the random variable f̃i as well.

Lemma 2.3.1. A2 + A3 ≤ 0.1β−1
k ϵFk < ϵFk.

Proof. Recall that i ∈ (S2 ∪ S3) implies fi < αkp
−1 log(n). Thus,

A2 + A3 =
∑

i∈S2∪S3

fk
i ≤ (αkp

−1 log(n))kF0. (2.17)

Recall that p ≥ Ckµ
−1 log(n). Thus,

A2 + A3 ≤ F0(αkC
−1
k µ)k. (2.18)

Fact (2.6) yields

A2 + A3 ≤ Fk(αkC
−1
k)k. (2.19)

25

CHAPTER 2. SUBSAMPLING

The first inequality of the lemma follows from the definition (2.6) of Ck. The second

inequality follows since βk > 1.

Lemma 2.3.2. P (X2 ≥ ϵFk) ≤ 0.1

Proof. To bound X2 we observe that f̃i ∼ B(fi, p). Also i ∈ S2 implies that 1/p ≤ fi.

Thus, we can apply Lemma 2.8.1. In particular, the case (2.32) gives:

E(f̃k
i) ≤ βk(fip)

k, (2.20)

which in turn gives

E(X2) =
1

pk

∑
i∈S2

E(f̃k
i) ≤ βk

∑
i∈S2

fk
i = βkA2. (2.21)

Combining (2.21) with Lemma (2.3.1) we obtain E(X2) ≤ 0.1ϵFk. Note that X2 is non-

negative. Thus, the lemma follows from Markov inequality.

Lemma 2.3.3. P (X3 ≥ ϵFk) ≤ 0.1

Proof. To bound X3 we observe that i ∈ S3 implies 1/p > fi. Thus we can apply Lemma

2.8.1. In particular (2.33) gives us:

E(X3) =
1

pk

∑
i∈S3

E(f̃k
i) ≤

1

pk
βkF0. (2.22)

26

CHAPTER 2. SUBSAMPLING

Recall that p ≥ Ckµ
−1 log(n) (see (2.8)). Thus, Fact 2.2 gives us:

E(X3) ≤
1

pk
βkF0 ≤

C−k
k βkµ

kF0

logk(n)
≤ 0.1ϵFk. (2.23)

The lemma follows.

Lemma 2.3.4. If i ∈ {2, 3} and |Xi − Ai| > ϵFk then Xi > ϵFk.

Proof. If |Xi − Ai| > ϵFk then either

Xi > Ai + ϵFk (2.24)

or

Xi < Ai − ϵFk. (2.25)

Note that 0 ≤ Ai < ϵFk (by the definition and Lemma 2.3.1) and Xi ≥ 0 (by the definition).

Thus (2.25) is not possible and (2.24) implies Xi > ϵFk.

Lemma 2.3.5. P (|X1 − A1| > ϵFk) ≤ 0.1.

Proof. Note that if S1 = ∅ then X1 = A1 = 0 and thus the lemma is correct. Otherwise, let

i ∈ S1 be fixed. First, we will show that

P (|f̃i − pfi| > γpfi) ≤
1

10n
. (2.26)

Indeed, f̃i =
∑fi

j=1 Yi,j where Yi,j are i.i.d. indicators with mean p. Thus E(f̃i) = pfi, and

27

CHAPTER 2. SUBSAMPLING

by Chernoff bound (see e.g.,,65 B.2) we have:

P (|f̃i − pfi|) > γpfi) ≤ 2e(−γ2pfi)/4. (2.27)

Direct computations and the definitions (2.4) and (2.14) imply that γ2αk = 16. Since i ∈ S1,

it follows that fi ≥ p−1αk log(n). Thus, γ2pfi ≥ γ2αk log(n) = 16 log(n). Substituting

this bound into (2.27) we obtain (for sufficiently large n):

P (|f̃i − pfi|) > γpfi) ≤ 2e−4 log(n) ≤ 1

10n
,

and thus (2.26) holds. Further, Fact 2.3 and (2.26) imply

P (|p−kf̃k
i − fk

i | > ϵfk
i) ≤

1

10n
. (2.28)

If we apply (2.28) to every i ∈ S1 and use the union bound and the fact that |S1| ≤ n then

the lemma follows immediately. Indeed,

P (|X1 − A1| > ϵFk) ≤ P (|X1 − A1| > ϵA1) = (2.29)

P (|
∑
i∈S1

p−kf̃k
i −

∑
i∈S1

fk
i | > ϵ(

∑
i∈S1

fk
i)) ≤

P (∪i∈S1(|p−kf̃k
i − fk

i | > ϵfk
i)) ≤

∑
i∈S1

P (|p−kf̃k
i − fk

i | > ϵfk
i) ≤ 0.1.

28

CHAPTER 2. SUBSAMPLING

Theorem 2.3.1. Let D be a stream such that µ = µ(D) ≥ Ck log(n) and let p be a number

such that 1 ≥ p ≥ µ−1Ck log(n). Let Dp be the sampled stream (see Definition 2.2.1). Let

k > 1 and ϵ be constants. Then the following bound holds for sufficiently large n.

P (|F̃k − Fk| > 3ϵFk) ≤ 0.3.

Proof. Indeed,

P (|F̃k − Fk| > 3ϵFk) ≤ (2.30)

P (|X1 − A1| > ϵFk) + P (|X2 − A2| > ϵFk) + P (|X3 − A3| > ϵFk).

Applying Lemma 2.3.4 we obtain:

P (|F̃k − Fk| > 3ϵFk) ≤ (2.31)

P (|X1 − A1| > ϵFk) + P (X2 > ϵFk) + P (X3 > ϵFk).

The theorem follows from the union bound and Lemmas 2.3.5, 2.3.3, 2.3.2.

Theorem 2.3.2. Let D be a stream such that µ = µ(D) ≥ Ck log(n) and let p be a number

such that 1 ≥ p ≥ µ−1Ck log(n). Let Dp be the sampled stream. Let k > 1 and ϵ be

constants. Then it is possible to output the (1± ϵ)-approximation of Fk by making a single

pass over Dp and computing F̃k. Thus, the problem of computing Fk on D is reducible

to the problem of computing Fk on Dp and the reduction preserves the space bounds. In

29

CHAPTER 2. SUBSAMPLING

particular, the space bounds are independent of p. Current best bounds for Fk include:

1. Õ(n1−2/k) memory bits for k > 2.

2. Õ(1) memory bits for 1 ≤ k < 2.

2.4 Finding Heavy Elements

Definition 2.4.1. Let D be a stream and ρ be a parameter. The index i ∈ [n] is a ρ-heavy

element if fk
i ≥ ρFk.

In this section, we show that a heavy element in the original stream remains a heavy

element in the sampled stream, and therefore we can apply existing techniques for heavy

hitters. The frequency of the found heavy element is (1± ϵ)pfi, with high probability, by

Chernoff bound.

Theorem 2.4.1. Let D be a stream and i be a heavy element w.r.t. Fk on D. Let k ≥ 1 and

let p ≥ µ−1 = F0/F1. Then there exists a constant ck such that with a constant probability,

i is a ck-heavy element w.r.t. Fk on Dp.

Proof. By Chernoff bound, the frequency of i in Dp is at least (1−ϵ)pfi with high probability.

By Fact 2.4, the k-th frequency moment of Dp is bounded by αkµ
−k
∑n

i=1 v
k
i . Thus, i is a

heavy element.

Fact Let V ∈ (Z+)
n be a vector with strictly positive integer entries vi. Let µ =

1
n

∑n
i=1 vi. Note that µ ≥ 1. Let Xi ∼ B(vi, µ

−1) and X =
∑n

i=1X
k
i . Then there exists a

constant αk that depends only on k such that P (X > αkµ
−k
∑n

i=1 v
k
i) < 0.1.

30

CHAPTER 2. SUBSAMPLING

Proof. By Lemma 2.8.1 (See Appendix A)

E(Xk
i) ≤ βk((µ

−1vi)
k + 1)

Thus,

E(X) < βk(µ
−k

n∑
i=1

vki) + βkn.

Also, by the Hölder inequality

∑n
i=1 vi

n1−1/k
≤ (

n∑
i=1

vki)
1/k

Thus,

n1/k = µ−1

∑n
i=1 vi

n1−1/k
≤ µ−1(

n∑
i=1

vki)
1/k

Finally, n < (µ−k
∑n

i=1 v
k
i). We conclude the proof by putting αk = 200βk and applying

Markov’s inequality.

2.5 Discussion

In addition to our theoretical findings, we have identified practical examples of datasets with

high average frequency where using the methods from this paper would be advantageous.

First, social media websites, such as Facebook, seem to be good candidates for subsam-

pling. These sites have datasets large enough to require streaming algorithms66 and a low

ratio of unique users to data generated. In 2010, Facebook66 produced over 60 Terabytes of

31

CHAPTER 2. SUBSAMPLING

data a day, and were storing up to 15 Petabytes of data total. In 2012, Facebook announced

it had 1 billion users and over 1.13 trillion ”Likes” on their website67 and with the large

amount of data generated per day, even with the naive assumption that each user generates

the same amount of information, the stream will maintain a high average frequency of

datapoints per user.

Another potential application lies in detecting specific kinds of DDOS attacks. The

amount of data that is transferred during these attacks is tremendous, with recent examples

sending up to 300 Gigabits of data per second.68 Streaming algorithms have already been

explored as a potential technique to stop DDOS attacks,69 and subsampling can provide the

ability to monitor a small fraction of the total network traffic, while still preserving statistics

on the stream of information, thus aiding the process of packet source IP address monitoring

during DDOS attacks. The act of subsampling provides the ability to gain information

about DDOS traffic that was previously difficult to process due to the volume of packets

received.70 Many DDOS attacks have used a technique known as IP address spoofing, which

allows an attacker to generate a random IP address for every packet sent.71 However, the use

of ingress filters on routers71 creates interesting challenges for malicious parties attempting

this category of attacks. As such, these attackers are forced to use randomized addresses

within a single subnet mask,71 which is much smaller range of potential IP addresses being

used during an attack. Additionally, techniques such as IP density monitoring72 also force

attackers to use more limited IP ranges. This reduction in potential IP space, combined with

the massive amount of packets being transferred may provide a suitable dataset with high

32

CHAPTER 2. SUBSAMPLING

average frequency of packets per IP address or subnet, allowing our methods to be applied.

2.6 Open Questions

We believe there is more work to be done in analyzing sampled streams with specific input.

We ask the following questions:

• Can we expand our techniques to other functions considered by McGregor et al. in35?

We believe this is possible.

• Is it possible to expand our techniques to other functions, such as convex functions?

• Can we define an adaptive version of sampling in which we modify the sampling rate

as a function of stream length?

• Can we apply these techniques to noisy data streams, that is, streams that have a

chance randomly of deleting elements with a probability different than our sample

rate? 8

2.7 Conclusion

We believe that sampling can be a powerful tool in streaming analysis given datasets with

the proper characteristics. Our improved bounds for these datasets allow space efficient

subsampling while preserving frequency moments. We have shown practical examples of

8We thank an anonymous reviewer for this suggestion.

33

CHAPTER 2. SUBSAMPLING

real world datasets that possess the necessary high average frequency and that would be

good candidates for subsampling.

34

CHAPTER 2. SUBSAMPLING

2.8 Appendix

2.8.1 Binomial Distribution and Stirling Numbers

Lemma 2.8.1. Let X ∼ B(N, p). There exists a constant βk that depends only on k and

such that if Np ≥ 1 then

E(Xk) ≤ βk(Np)k, (2.32)

and if Np < 1 then

E(Xk) ≤ βk. (2.33)

Proof. Let S(k, l) be a Stirling number of the second kind and let Bk be the k-th Bell

number (see64 for the definition). Using (3.5) and (1.247) from,63 we can write:

E(Xk) =
k∑

l=0

S(k, l)
N !pl

(N − l)!
. (2.34)

Recall that Bk =
∑k

l=0 S(k, l). Thus,

E(Xk) ≤ Bk

k∑
l=0

(Np)l. (2.35)

If Np ≥ 1 then

E(Xk) ≤ (k + 1)Bk(Np)k, (2.36)

35

CHAPTER 2. SUBSAMPLING

if Np < 1 then

E(Xk) ≤ (k + 1)Bk. (2.37)

We conclude9 our proof by defining βk = (k + 1)Bk.

2.8.2 Useful Inequalities

We will use the following Bernoulli inequality : for 1 > x > 0 and k > 1 (see,74 inequality

(1) in Section 3.1):

(1− kx) ≤ (1− x)k. (2.38)

Also, for x > 0 and k > 1 and 0 < q < p (see,74 inequality (8) in Section 3.1):

(1 + (x/q))q ≥ (1 + (x/p))p. (2.39)

In particular, putting q = 0.5 and p = k we obtain (using the fact that y ≥ y0.5 for

y = (1 + 2x)):

(1 + 2x) ≥ (1 + (x/k))k. (2.40)

Fact Let x, y, ϵ be real numbers, let k > 1 and let γ = ϵ/2k as defined in (2.14). If

x− y ≤ γy (2.41)

9The recent bound on Bell number is Bk <
(

0.792k
ln(k+1)

)k
due to73

36

CHAPTER 2. SUBSAMPLING

then

xk − yk ≤ ϵyk. (2.42)

Proof. Using (2.14) we have x ≤ (1 + ϵ
2k
)y and thus

xk ≤ (1 +
ϵ

2k
)kyk. (2.43)

Applying (2.40) we obtain

(1 +
ϵ

2k
)k ≤ (1 + ϵ). (2.44)

The fact follows.

Fact Let x, y, ϵ be real numbers, let k > 1 and let γ = ϵ/2k as defined in (2.14). If

x− y ≥ −γy (2.45)

then

xk − yk ≥ −ϵyk. (2.46)

Proof. The proof is identical to the proof of Fact 2.8.2, but instead of (2.44) we use

(1− ϵ

2k
)k ≥ (1− 0.5ϵ) ≥ (1− ϵ), (2.47)

37

CHAPTER 2. SUBSAMPLING

where we apply (2.38) for the first inequality.

38

Chapter 3

Weighted Sampling Without

Replacement

3.1 Introduction

Random sampling is a fundamental tool that has many applications in computer science (see

e.g., Motwani and Raghavan,75 Knuth,76 Tille,77 and Olken78). Random sampling methods

are widely used is data stream processing because of their simplicity and efficiency79–841. In

a stream, the size of the domain and the probability of sampling an element both change

constantly; this makes the process of sampling non-trivial. We distinguish between sampling

with replacement, where all samples are independent (and thus can be repeated), and

sampling without replacement, where repetitions are prohibited. As best as we authors can

1In turn, this makes this method useful for fast moving streams, as it gives a strategy to skip elements when
a stream is too fast every element.

39

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

determine, weighted sampling without replacement was first used by Rosen852

In particular, weighted sampling without replacement has proven to be a very important

tool. In weighted sampling, each element is given a weight, where the probability of an

element being selected is based on its weight. In their work Efraimidis and Spirakis86

presented an algorithm for weighted sampling without replacement. Cohen and Kaplan87

use similar methods for their bottom-k sketches. While their preliminary implementation

yielded promising results, Efraimidis and Spirakis86 state, as the main open problem of the

paper, “However, the question if, and to what extent, the finite precision arithmetic affects

the algorithms remains an open problem.”

In this paper we continue this work and provide a new algorithm to avoid the issue of

relying on finite precision arithmetic. With this result we show that precision loss is not

required in order to sample without replacement. We accomplish this by providing a precise

reduction from k-sampling without replacement to k-sampling with replacement, using a

special case of k-sampling with replacement, unit sampling (where k=1). Additionally, we

believe that in the future our method of expressing different random samples via reduction

will provide a tool that allows further translation of other sampling methods into a more

effective form for streams.
2The authors would like to thank Edith Cohen for help tracing the history of this problem

40

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

3.1.1 Related Work

Due to its fundamental nature, the problem of random sampling has received considerable

attention in the last few decades.

In 2005, Vitter30 presented uniform sampling using a reservoir (with and without re-

placement) over streams. Further, the question of reductions between sampling methods

has been addressed before. For instance, Chaudhuri, Motwani and Narasayya29 briefly

discuss reductions for various sampling methods. Cohen and Kaplan87 use a “mimicking

process” in their papers, which is essentially a reduction from sampling without replacement

to sampling with replacement.

Chaudhuri, Motwani and Narasayya29 use the well-known method of “over-sampling”,

i.e. we sample the set independently until k distinct elements are obtained. Clearly, this

schema does not introduce any precision loss, since unit sampling is used as a black-box.

Unfortunately, the amount of resources required to determine this information is a

function of the weight distribution for the data set, and thus can be arbitrarily large.

In particular, consider the case when there is an element with weight that is overwhelm-

ingly larger than the rest of the population. In this case, the number of repetitions found

while sampling with replacement is significantly larger then k.

Probably the first effective non-streaming solution for the weighted sampling without

replacement problem was the algorithm of Wong and Easton.88 It is used by many other

algorithms (see Olken78 for the discussion). For data streams, Efraimidis and Spirakis86

41

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

proposed an algorithm that is based on the “exponent method”. The algorithm requires

precise computations of random keys r1/w(p), where r ∼ U [0, 1]. The sample generated

is composed of the k elements with maximal keys. Cohen and Kaplan87 used similar

methods as a building block for their bottom-k sketches. The bottom-k sketch is an effective

construction that has been extensively used for various applications including approximations

of aggregative queries over data streams. As Cohen and Kaplan89 show, these methods are

very effective in practical applications and are superior to the sketches that are based on

sampling with replacement.

While effective in practice, the algorithms of Efraimidis and Spirakis and Cohen and

Kaplan introduce a loss of accuracy, since their techniques require additional floating point

arithmetic operations.

3.1.2 Results

In this paper we show that the tradeoff between precision and performance is not a neces-

sary property of sampling without replacement from data streams and construct a precise

streaming reduction from k-sampling without replacement to k-sampling with replacement.

This result provides a practical improvement to the algorithms of Efraimidis and Spirakis in

cases where high accuracy is required.

Our method is yields a surprisingly simple algorithm, given the importance of sampling

without replacement and the existence of many previous methods. We call this algorithm

Cascade Sampling. In particular, when used with the algorithm from29 Cascade Sampling

42

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

requires O(k) memory, constant time per element and the same precision as in.29

3.1.3 Intuition

Let Λ be any algorithm that maintains a unit weighted sample from stream D. Similarly to

the over-sampling method, we maintain instances of Λ. Namely, we maintain k instances

Λ1, . . . ,Λk. However, we introduce the idea of stream modification. That is, instead of

applying Λ independently and symmetrically on D, we apply Λi on the modified stream

Di that does not contain samples of Λj for j < i. In particular, Λi may process its input

elements in an order different from the order of their arrival in D. This simple but novel idea

is sufficient to solve the problem. In particular, we can claim that the input of Λi is a random

set that precisely matches the definition of weighted sampling without replacement. Since

we use Λ as a black box with only a constant number of auxiliary variables, specifically

pointers, the resulting schema is a precise reduction.

3.2 Definitions

An important building block of our algorithm is the concept of a unit sample, that is, the

ability to sample a single element from a set.

Definition 3.2.1. Let S be a finite set of elements and let w be a non negative function

w : S → R. A random element XS with values from S is a unit weighted random sample

if, for any a ∈ S, P (XS = a) = w(a)
w(S)

. Here w(S) =
∑

a∈S w(a).

For an algorithm instantiating weighted unit sampling we provide Black-Box WR2

43

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

from.29 Black-Box WR2 is a unit sample when r = 1.

Algorithm 1 Black-Box WR2: Algorithm for Weighted Unit Sampling

1. W ← 0.

2. Initialize reservoir with length r = 1, λ0.

3. For each tuple t in stream:

(a) Get next tuple t with weight w(t)

(b) W ← W + w(t)

(c) Set λ0 = t with prob. w(t)
W

4. Return λ0

Definition 3.2.2. A data stream is an ordered, set of elements, p1, p2, . . . , pn, that can be

observed only once. An algorithm A is a streaming sampling algorithm if A outputs a

sample using a single pass over the data set.

Definition 3.2.3. A set X = {X1, . . . , Xk} is called a k-sample with replacement from S

if X1, . . . , Xk are independent random unit samples from S.

Another fundamental sampling method is weighted sampling without replacement.

Definition 3.2.4. Let S be a finite set such that |S| ≥ k. An ordered set X = {X1, . . . , Xk}

is called a k-sample without replacement from S, |S| ≥ k if X1 is a weighted unit sample

from S and for any j > 1, Xj is a weighted unit sample from S \ {X1, . . . , Xj−1}.

44

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

Definition 3.2.5. We say that there exists an a reduction from a k-sampling to a unit sampling

if for any unit sampling algorithm Λ there exists a k-sampling algorithm Υ = Υ(Λ) that

uses Λ as a black-box. We say that the reduction is precise if for any Λ that requires memory

m and time t:

1. Υ(Λ) requires O(km) memory and O(kt) time.

2. Υ(Λ) only uses comparisons (in addition to using A as a black box).

In other words, Υ(Λ) does not introduce any precision loss.

There exists a (trivial) precise reduction from weighted sampling with replacement to

unit sampling. In this paper we give the first precise streaming reduction for weighted

sampling without replacement to unit sampling.

3.3 Cascade Sampling

Let S be a finite set such that |S| ≥ k and let a /∈ S. Denote T = S ∪ {a}, and let

w : T ↦→ R+ be a function. Let {X1, . . . , Xk} be a k-sample without replacement from S

with respect to w. Define an ordered sequence {Y1, . . . , Yk}3 as follows:

Y1 =

⎧⎪⎪⎨⎪⎪⎩
a, w.p. w(a)

w(T)
;

X1, otherwise.
(3.1)

3Here the additional randomness is independent.

45

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

For i ≥ 1 define4:

Li = {X1, . . . , Xi, a} \ {Y1, . . . , Yi}. (3.2)

We will show that |Li| = 1; assuming that, let Zi be the single element from Li, i.e.,

Li = {Zi}. Put Ui = T \ {Y1, . . . , Yi}. Define

Yi+1 =

⎧⎪⎪⎨⎪⎪⎩
Zi, w.p. w(Zi)

w(Ui)
;

Xi+1, otherwise.
(3.3)

Lemma 3.3.1. For all i = 1, . . . , k the ordered set {Y1, . . . , Yi} is an i-sample without

replacement from T with respect to w.

Proof. We prove the lemma by induction on i. For i = 1 the statement follows from direct

computation and definitions. Assuming that the lemma is correct for i we need to prove that

Yi+1 ∈ T \ {Y1, . . . , Yi}, (3.4)

and for any b ∈ Ui:

P (Yi+1 = b) =
w(b)

w(Ui)
. (3.5)

To show (3.4) observe that {Y1, . . . , Yi} ⊆ {X1, . . . , Xi, a} and Yi+1 ∈ {Xi+1, Zi}. By

definition Xi+1 /∈ {X1, . . . , Xi, a} and Zi /∈ {Y1, . . . , Yi}.

To show (3.5) fix {X1, . . . , Xi} and {Y1, . . . , Yi}; it follows that Zi is fixed as well.

Denote Vi = Ui \ {Zi−1} and Hi = S \ {X1, . . . , Xi}; it follows that Hi = Vi. For any
4Here \ denotes the set difference, i.e. A \B = {x : x ∈ A, x /∈ B}.

46

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

fixed b ∈ Vi we have

P (Yi+1 = b) = P (Xi+1 = b)
w(Vi)

w(Ui)
=

w(b)

w(Hi)

w(Vi)

w(Ui)
=

w(b)

w(Ui)
.

The case b = Zi−1 is similar.

3.4 Precise Reduction and Resulting Algorithm

Let Λ be an algorithm that maintains a unit weighted sample from D. The algorithm from29

is an example of Λ but our reduction works with any algorithm for unit weighted sampling.

We construct an algorithm Υ = Υ(Λ) such that Υ maintains a k-sample without replacement.

Specifically, we maintain k instances of Λ: Λ1, . . . ,Λk such that the input of Λi is a random

substream of D that is selected in a special way. We denote the input stream for Λi as Di. Let

Xi be the sample produced by Λi. The critical observation is that our algorithm maintains

the following invariant: at any moment Di = D \ {X1, . . . , Xi−1}. Thus, by definition, the

weighted sample from Di is the i-th weighted sample from D when the samples are without

replacement.

Theorem 3.4.1. Algorithm Υ = Υ(Λ) maintains a weighted k-sample without replacement

from D. If Λ requires space O(g) and time per element O(h), then Υ requires O(kg) space

and O(kh) time respectfully. Thus, there exists a precise reduction from k-sampling without

replacement to a unit sampling.

Proof. Follows from the description of the algorithm (See Algorithm 2) and Lemma 3.3.1.

47

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

Algorithm 2 Cascade Sampling
Input: Data Stream D = {p1, . . . , pn},

Λ is an algorithm that maintains a unit weighted sample from D,

Λ1, . . . ,Λk are independent instances of Λ

Output: Weighted k-Sample Without Replacement {Y1, . . . , Yk}

1. For j = 1, 2, . . . , n

(a) new = pj

(b) For i = 1, . . . ,min{j, k}

i. If (i < j) then set previous = Yi (where Yi the current output of Λi).

ii. Feed Λi with new

iii. If Yi changes its value to new, then set new = previous.

2. Output {Y1, . . . , Yk}

Algorithm 2 provides a solution to the weighted k-Sampling without replacement

problem. To better demonstrate the algorithm, we show an example of updating a single unit

sample inside of loop (b) in Figure 1. In this example, unit sample λ1 has currently sampled

element a and unit sample λ2 has currently sampled element b, where a and b are elements

that appeared previously in the stream.

48

CHAPTER 3. WEIGHTED SAMPLING WITHOUT REPLACEMENT

Figure 3.1: Updating a Unit Sample

3.4.1 Discussion

There are several directions in which our algorithm can be improved. In particular, run time

dependent on the number of samples is one issue for practical datasets with large k. We

believe this can be improved by combining several sampling steps into a single step which

will be useful for the cases when the element will not be sampled into any of the substreams.

This will often be the cases with elements with small weights. Specifically, we ask if it is

possible to reduce the total running time from O(nk) to O(n log k).

Another interesting direction is applying this algorithm to weighted random sampling

with a bounded number of replacements as shown in.90 Finally, this method may also be

interesting when applied to the Sliding Window Model45 and Streams with Deletions.82

49

Chapter 4

Measuring Hadamard Distance

4.1 Introduction

Measuring Independence is a fundamental statistical problem that is well studied in computer

science. Traditional non-parametric methods of testing independence over empirical data

usually require space complexity that is polynomial in either the support size or input size.

With large datasets, these space requirements may be impractical, and designing small-space

algorithms becomes desirable 1.

Measuring independence is a classic problem in the field of statistics (see Lehmann91)

as well as an important problem in databases. Further, the process of reading in a two-

column database table can be viewed as a stream of pairs. Thus, the streaming model is a

natural choice when approximating pairwise independence as memory is limited. Indeed,

1While the sketch based methods shown in this chapter have fast per-element update time, they may in fact
have slower update time than maintaining a traditional matrix data structure, but the size of the matrix required
by such a data structure is simply too large for massive datasets.

50

CHAPTER 4. MEASURING HADAMARD DISTANCE

identifying correlations between database columns by measuring the level of independence

between columns is of importance to the database and data warehouse community (see,

e.g.,92 and,93 respectively).

In this paper we provide new techniques for measuring independence between two data

streams and present new tools to expand existing techniques. The topic of independence

was first studied in the streaming model by Indyk and McGregor94 where the authors gave

an optimal algorithm for approximating the L2 distance between the product and joint

distributions of two random variables which generate a stream. In their work, they provided

a sketch that is pairwise independent, but not 4-wise independent, so analysis similar to that

of Alon, Matias, and Szegedy14 cannot be applied directly. This work was continued by

Braverman and Ostrovsky,37 where the authors considered comparing among a stream of

k-tuples and provided the first (1±ϵ)-approximation for the L1 distance between the product

and joint distributions. Their algorithm is currently the best known space bound, and uses

O(1
ϵ1024

log1024(nm)) space for k = 2, where m is the length of the stream and n denotes

the size of the universe from which stream elements are drawn. We present new methods, in

the form of a general tool, that enable us to improve this bound to O(1
ϵ7
log12(n) log2(nm

ϵ
)).

In previous works, a central challenge has been maintaining an approximation of the

matrix that is generated by the outer product of the two streaming vectors. As such, we

consider computing functions on such an implicit matrix. While, matrices have been studied

previously in the streaming model (e.g.,36), note that we cannot use standard linear sketching

techniques, as the entries of the matrix are given implicitly and thus these methods do not

51

CHAPTER 4. MEASURING HADAMARD DISTANCE

apply directly.

Generalizing this specific motivating example, we consider the problem of obtaining

a (1 ± ϵ)-approximation of the L1 norm of the matrix g[A], where g[A] is the matrix A

with a function g applied to it entrywise. Such mappings g are called Hadamard functions

(see95, 96). Note that we sometimes abuse notation and apply the function g to scalar values

instead of matrices (e.g., g(aij) where aij is the (i, j)th entry in matrix A). We require the

scalar form of function g to be even, subadditive, non-negative, and zero at the origin. We

show that, given a blackbox r(n)-approximation of ∥g[A]∥1 =
∑

i

∑
j g(aij) (where aij

is the (i, j)th entry in matrix A) and a blackbox (1 ± ϵ)-approximation of the aggregate

of g applied entrywise to a vector obtained by summing over all rows, we are able to

improve the r(n)-approximation to a (1 ± ϵ)-approximation (where r(n) is a sufficiently

large monotonically increasing function of n). Hence, we give a reduction for any such

function g. Our reduction can be applied as long as such blackbox algorithms exist.

An interesting special case of our result is when the matrix is defined by the L1 distance

between the joint and product distributions, which corresponds to measuring independence in

data streams. Since such blackbox algorithms are known for L1, not only does our framework

generalize the problem of measuring independence according to the L1 distance, but our

algorithmic techniques also yield improved space bounds over the previous state of the art

result.37 Moreover, our framework would immediately translate improved space bounds

for the blackbox algorithms to improved space bounds for the application of measuring

independence. Note that, for Lp where 0 < p < 1, such blackbox algorithms are not known.

52

CHAPTER 4. MEASURING HADAMARD DISTANCE

If such algorithms for the Lp distance were to be designed, our reductions work and can be

applied. While there are a variety of ways to compute distances between distributions, the

Lp distance is of particular significance as evidenced in.97

Motivating Problem

We begin by presenting our motivating problem, which concerns (approximately) measuring

the distance between the product and joint distributions of two random variables. That is,

we attempt to quantify how close two random variables X and Y over a universe [n] =

{1, . . . , n} are to being independent. There are many ways to measure the distance between

distributions, but we focus on the L1 distance. Recall that two random variables X and Y

are independent if, for every i and j, we have Pr[X = i ∧ Y = j] = Pr[X = i] Pr[Y = j].

In our model, we have a data stream D which is presented as a sequence of m pairs

d1 = (i1, j1), d2 = (i2, j2), . . . , dm = (im, jm). Each pair dk = (ik, jk) consists of two

integers taken from the universe [n].

Intuitively, we imagine that the two random variables X and Y over the universe [n]

generate these pairs, and in particular, the frequencies of each pair (i, j) define an empirical

joint distribution, which is the fraction of pairs that equal (i, j). At the same time, the

stream also defines the empirical marginal distributions Pr[X = i],Pr[Y = j], namely the

fraction of pairs of the form (i, ·) and (·, j), respectively. We note that, even if the pairs are

actually generated from two independent sources, it may not be the case that the empirical

distributions reflect this fact, although for sufficiently long streams the joint distribution

53

CHAPTER 4. MEASURING HADAMARD DISTANCE

should approach the product of the marginal distributions for each i and j. This fundamental

problem has received considerable attention within the streaming community, including the

works of.37, 94

Problem 1. Let X and Y be two random variables defined by the stream of m pairs

d1 = (i1, j1), . . . , dm = (im, jm), where each ik, jk ∈ [n] for all k. Define the frequencies

fi = |{k : dk = (i, ·)}| and fj = |{k : dk = (·, j)}| (i.e., the frequency with which i appears

in the first coordinate and j appears in the second coordinate, respectively). Moreover, let

fij = |{k : dk = (i, j)}| be the frequency with which the pair (i, j) appears in the stream.

This naturally defines the joint distribution Pr[X = i∧ Y = j] =
fij
m

and the product of the

marginal distributions Pr[X = i]Pr[Y = j] =
fifj
m2 . The L1 distance between the product

and joint distributions is given by:

n∑
i=1

n∑
j=1

⏐⏐⏐⏐fijm − fifj
m2

⏐⏐⏐⏐ .
If X and Y are independent, we should expect this sum to be close to 0, assuming the

stream is sufficiently long. As a generalization to this problem, we can view the n2 values

which appear in the summation as being implicitly represented via an n× n matrix, where

the (i, j)th entry is given by
⏐⏐⏐fijm − fifj

m2

⏐⏐⏐. For the motivating problem, this matrix is given

implicitly as it is not given up front and changes over time according to the data stream

(each new pair in the stream may change a particular entry in the matrix). However, one can

imagine settings in which these entries are defined through other means. In practice, we may

54

CHAPTER 4. MEASURING HADAMARD DISTANCE

still be interested in computing approximate statistics over such implicitly defined matrices.

Contributions and Techniques

Our main contributions in this paper make progress on two important problems:

1. For any subadditive, even Hadamard function g where g is non-negative and g(0) = 0,

given an implicitly defined n×n matrix A with entries aij , let g[A] be the matrix where

the (i, j)th entry is g(aij). We are the first to provide a general reduction framework for

approximating ∥g[A]∥1 =
∑

i=1

∑n
j=1 g(aij) to within a (1± ϵ)-factor with constant

success probability. More formally, suppose we have two blackbox algorithms with

the following guarantees. One blackbox algorithm operates over the implicit matrix A

and provides a very good (≈ 1± ϵ) approximation to ∥g[JA]∥1 =
∑n

j=1 g(
∑n

i=1 aij)

except with inverse polylogarithmic probability, where J = (1, . . . , 1) is the row

vector of dimension n with every entry equal to 1. The second blackbox algorithm

operates over the implicit matrix A and solves the problem we wish to solve (i.e.,

approximating ∥g[A]∥1) with constant success probability, although it does so with

a multiplicative approximation ratio of r(n) (which may be worse than (1 ± ϵ) in

general). We show how to use these two blackbox algorithms and construct an

algorithm that achieves a (1± ϵ)-approximation of ∥g[A]∥1. If S1, S2 denote the space

used by the first and second blackbox algorithms, respectively, then our algorithm

uses space O
(

r4(n)log8(n)
ϵ5

· (log3(n) + S1 + log(n) · S2)
)

. We state this formally in

Theorem 4.2.1.

55

CHAPTER 4. MEASURING HADAMARD DISTANCE

2. Given the contribution above, it follows that setting g(x) = |x| solves Problem 1,

namely the problem of measuring how close two random variables are to being

independent, as long as such blackbox algorithms exist. In particular, the work

of Indyk97 provides us with the first blackbox algorithm, and the work of94 pro-

vides us with the second blackbox algorithm for this choice of g. Combining these

results, we improve over the previous state of the art result of Braverman and Os-

trovsky37 and give improved bounds for measuring independence of random vari-

ables in the streaming model by reducing the space usage from O
(
(log(nm)

ϵ
)1024

)
to

O
(

1
ϵ7
log12(n) log2(nm

ϵ
)
)

(see Table 5.3).

Previous Work L1 approximation Memory

IM0894 log(n) O
(

1
ϵ2
log
(
nm
ϵ

)
log
(
m
ϵ

))

BO10137 (1± ϵ) O

((
log(nm)

ϵ

)1024)

Our Result (1± ϵ) O
(

1
ϵ7
log12(n) log2

(
nm
ϵ

))
.

Table 4.1: Comparing Approximation Ratios and Space Complexity

Examples of such Hadamard functions which are subadditive, even, non-negative, and

zero at the origin include g(x) = |x|p, for any 0 < p ≤ 1. Note that our reduction in the first

item can only be applied to solve the problem of approximating ∥g[A]∥1 if such blackbox
1The paper of37 provides a general bound for the L1 distance for k-tuples, but we provide analysis for pairs

of elements, k = 2, in this paper. The bound in the table is for k = 2.

56

CHAPTER 4. MEASURING HADAMARD DISTANCE

algorithms exist, but for some functions g this may not be the case. As a direct example

of the tools we present, we give a reduction for computing the Lp distance for 0 < p < 1

between the joint and product distributions in the streaming model (as this function is even

and subadditive). However, to the best of our knowledge, such blackbox algorithms do not

exist for computing the Lp distance. Thus, as a corollary to our main result, the construction

of such blackbox algorithms that are space efficient would immediately yield an algorithm

that measures independence according to the Lp distance that is also space efficient.

Our techniques leverage concepts provided in37, 94 and manipulates them to allow them

to be combined with the Recursive Sketches data structure98 to gain a large improvement

compared to existing bounds. Note that we cannot use standard linear sketching techniques

because the entries of the matrix are given implicitly. Moreover, the sketch of Indyk

and McGregor94 is pairwise independent, but not 4-wise independent. Therefore, we

cannot apply the sketches of14, 94 directly. We first present an algorithm, independent of

the streaming model, for finding heavy rows of a matrix norm given an arbitrary even

subadditive Hadamard function g. In order to do this, we first prove a key theorem regarding

such Hadamard functions g which states that the quantity ∥g[JA]∥1 =
∑n

j=1 g(
∑n

i=1 aij)

is a (1 ± ϵ)-approximation to the heavy row of the matrix g[A] (if it exists). With this in

mind, we show how to use the blackbox algorithm that yields an r(n)-approximation to

∥g[A]∥1 in order to identify when heavy rows exist in the matrix, and then use the other

blackbox algorithm to obtain a (1 ± ϵ)-approximation of ∥g[JA]∥1 (which is in turn a

(1± ϵ)-approximation to the heavy row, as just mentioned). These ideas form the foundation

57

CHAPTER 4. MEASURING HADAMARD DISTANCE

of our algorithm for approximating heavy rows. We then apply the Recursive Sum algorithm

from98 on top of our heavy rows algorithm to obtain our main result.

4.1.1 Related Work

In their seminal 1996 paper Alon, Matias and Szegedy14 provided an optimal space ap-

proximation for L2. A key technical requirement of the sketch is the assumption of 4-wise

independent random variables. This technique is the building block for measuring the

independence of data streams using L2 distances as well.

The problems of efficiently testing pairwise, or k-wise, independence were considered

by Alon, Andoni, Kaufman, Matulef, Rubinfeld and Xie;99 Alon, Goldreich and Mansour;100

Batu, Fortnow, Fischer, Kumar, Rubinfeld and White;101 Batu, Kumar and Rubinfeld;102

Batu, Fortnow, Rubinfield, Smith and White103 and.104 They addressed the problem of

minimizing the number of samples needed to obtain a sufficient approximation, when the

joint distribution is accessible through a sampling procedure.

In their 2008 work, Indyk and McGregor94 provided exciting results for identifying the

correlation of two streams, providing an optimal bound for determining the L2 distance

between the product and joint distributions of two random variables.

In addition to the L2 result, Indyk and McGregor presented a log(n)-approximation

for the L1 distance. This bound was improved to a (1 ± ϵ)-approximation in the work of

Braverman and Ostrovsky37 in which they provided a bound of O(1
ϵ1024

log1024(nm)) for

pairs of elements. Further, they gave bounds for the comparison of multiple streaming

58

CHAPTER 4. MEASURING HADAMARD DISTANCE

vectors and determining k-wise relationships for L1 distance. Additionally, in105 Braverman

et al. expanded the work of94 to k dimensions for L2. While our paper only addresses

computation on matrices resulting from pairwise comparison (k = 2), we believe the

techniques presented here can be expanded to tensors, (i.e., when stream elements are

k-tuples), similarly to.105 Recently, McGregor and Vu106 studied a related problem regarding

Bayesian networks in the streaming model.

Statistical Distance, L1, is one of the most fundamental metrics for measuring the

similarity of two distributions. It has been the metric of choice in many of the above testing

papers, as well as others such as Rubinfeld and Servedio;107 Sahai and Vadhan.108 As such,

a main focus of this work is improving bounds for this measure in the streaming model.

4.2 Problem Definition and Notation

In this paper we focus on the problem of approximating even, subadditive, non-negative

Hadamard functions which are zero at the origin on implicitly defined matrices (e.g., the

streaming model implicitly defines matrices for us in the context of measuring independence).

The main problem we study in this paper is the following:

Problem 2. Let g be any even, subadditive, non-negative Hadamard function such that

g(0) = 0. Given any implicit matrix A, for any ϵ > 0, δ > 0, output a (1± ϵ)-approximation

of ∥g[A]∥1 except with probability δ.

We now provide our main theorem, which solves Problem 2.

59

CHAPTER 4. MEASURING HADAMARD DISTANCE

Theorem 4.2.1. Let g be any even, subadditive, non-negative Hadamard function g where

g(0) = 0, and fix ϵ > 0. Moreover, let A be an arbitrary matrix, and J be the all 1’s row

vector J = (1, . . . , 1) of dimension n. Suppose there are two blackbox algorithms with the

following properties:

1. Blackbox Algorithm 1, for all ϵ′ > 0, returns a (1± ϵ′)-approximation of ∥g[JA]∥1,

except with probability δ1.

2. Blackbox Algorithm 2 returns an r(n)-approximation of ∥g[A]∥1, except with prob-

ability δ2 (where r(n) is a sufficiently large monotonically increasing function of

n).

Then, there exists an algorithm that returns a (1± ϵ)-approximation of ∥g[A]∥1, except

with constant probability. If Blackbox Algorithm 1 uses space SPACE1(n, δ1, ϵ
′), and

Blackbox Algorithm 2 uses space SPACE2(n, δ2), the resulting algorithm has space

complexity

O

(
r4(n)

ϵ5
(log10(n) + log8(n)SPACE1(n, δ1, ϵ

′) + log9(n)SPACE2(n, δ2))

)
,

where ϵ′ = ϵ
2
, δ1 is a small constant, and δ2 is inverse polylogarithmic.

Note that we can reduce the constant failure probability to inverse polynomial failure

probability via standard techniques, at the cost of increasing our space bound by a logarithmic

factor. Observe that Problem 2 is a general case of Problem 4.1 where g(x) = |x| (i.e., L1

60

CHAPTER 4. MEASURING HADAMARD DISTANCE

distance). In the streaming model, we receive matrix A implicitly, but we conceptualize the

problem as if the matrix were given explicitly and then resolve this issue by assuming we

have blackbox algorithms that operate over the implicit matrix.

We define our stream such that each element in the stream dk is a pair of values (i, j):

Definition 4.2.1 (Stream). Let m,n be positive integers. A stream D = D(m,n) is a

sequence of length m, d1, d2, . . . , dm, where each entry is a pair of values in {1, . . . , n}.

Let g : R → R be a non-negative, subadditive, and even function where g(0) = 0.

Frequently, we will need to discuss a matrix where g has been applied to every entry. We

use the notations from95 which are in turn based on notations from.96

Definition 4.2.2 (Hadamard Function). Given Matrix A of dimensions n× n a Hadamard

function g takes as input a matrix A and is applied entrywise to every entry of the matrix.

The output is matrix g[A]. Further, we note that the L1 norm of g[A] is equivalent to the

value we aim to approximate, ∥g[A]∥1 =
n∑

i=1

n∑
j=1

g(aij).

We frequently use hash functions in our analysis, we now specify some notation. We

sometimes express a hash function H as a vector of values {h1, h2, ..., hn}. Multiplication

of hash functions, denoted H ′ = HAD(Ha, Hb), is performed entrywise such that {h′
1 =

ha
1h

b
1, ..., h

′
n = ha

nh
b
n}.

We now define two additional matrices. All matrices in our definitions are of size n× n,

and all vectors are of size 1× n. We denote by [n] the set {1, . . . , n}.

Definition 4.2.3 (Sampling Identity Matrix). Given a hash function H : [n]→ {0, 1}, let

61

CHAPTER 4. MEASURING HADAMARD DISTANCE

hi = H(i). The Sampling Identity Matrix IH with entries bij is defined as:

IH =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bii = hi

bij = 0 for i ̸= j.

That is, the diagonal of IH are the values of H . When we multiply matrix IH by A, each row

of IHA is either the zero vector (corresponding to hi = 0) or the original row i in matrix

A (corresponding to hi = 1). We use the term “sampling” due to the fact that the hash

functions we use throughout this paper are random, and hence which rows remain untouched

is random. The same observations apply to columns when considering the matrix AIH .

Definition 4.2.4 (Row Aggregation Vector). A Row Aggregation Vector J is a 1×n vector

with all entries equal to 1.

Thus, JA yields a vector V where each value vj is
∑n

i=1 aij .

Black Box Algorithm 1. (1± ϵ′)-Approximation of g on a Row Aggregate Vector

Input: Matrix A, and hash function H .

Output: (1± ϵ′)-approximation of ∥g[JIHA]∥1 with probability (1− δ1).

The space Black Box Algorithm 1 (BA1) uses is referred to as SPACE1(n, δ1, ϵ
′) in our

analysis.

Black Box Algorithm 2. r(n)-Approximation of ∥g[IHA]∥1

Input: Matrix A and hash function H .

Output: An r(n)-approximation of ∥g[IHA]∥1 with probability (1− δ2).

62

CHAPTER 4. MEASURING HADAMARD DISTANCE

The space Black Box Algorithm 2 (BA2) uses is referred to as SPACE2(n, δ2) in our

analysis.

Definition 4.2.5 (Complement Hash Function). For hash function H : [n]→ {0, 1} define

the Complement Hash Function H̄ as H̄(i) = 1 if and only if H(i) = 0.

Definition 4.2.6 (Threshold Functions). We define two threshold functions, which we denote

by ρ(n, ϵ) = r4(n)
ϵ

and τ(n, ϵ) = 2r2(n)
O(ϵ)

.

Definition 4.2.7 (Weight of a Row). The weight of row i in matrix A is given by uA,i =

n∑
j=1

aij .

Definition 4.2.8 (α-Heavy Rows). Row i is α-heavy for 0 < α < 1 if uA,i > α∥A∥1.

Definition 4.2.9 (Key Row). We say row i is a Key Row if: uA,i > ρ(n, ϵ)(∥A∥1 − uA,i).

While Definition 4.2.8 and Definition 4.2.9 are similar, we define them for convenience, as

our algorithm works by first finding key rows and then building on top of this to find α-heavy

rows. We note that, as long as ρ(n, ϵ) ≥ 1, a matrix can have at most one key row (since any

matrix can have at most 1
α
α-heavy rows, and a key row is α-heavy for α = ρ(n,ϵ)

1+ρ(n,ϵ)
).

4.3 Subadditive Approximations

In this section we show that a (1 ± ϵ)-approximation of even, subadditive, non-negative

Hadamard functions which are zero at the origin are preserved under row or column

aggregations in the presence of sufficiently heavy rows or columns.

63

CHAPTER 4. MEASURING HADAMARD DISTANCE

Theorem 4.3.1. Let B be an n×n matrix and let ϵ ∈ (0, 1) be a parameter. Recall that J is a

row vector with all entries equal to 1. Let g be any even, subadditive, non-negative Hadamard

function which satisfies g(0) = 0. Denote ui =
∑n

j=1 g(bij), and thus ∥g[B]∥1 =
∑n

i=1 ui.

If there is a row h such that uh ≥ (1− ϵ
2
)∥g[B]∥1 then |uh − ∥g[JB]∥1| ≤ ϵ∥g[JB]∥1.

Proof. Denote V = JB. Without loss of generality assume u1 is the row such that u1 ≥

(1− ϵ
2
)∥g[B]∥1. By subadditivity of g: ∥g[V]∥1 ≤ ∥g[B]∥1 ≤ 1

1− ϵ
2
u1 ≤ (1 + ϵ)u1. Further,

we have b1j = (
∑n

i=1 bij −
∑n

i=2 bij). Since g is even and subadditive, and such functions

are non-negative, we have g(b1j) ≤ g (
∑n

i=1 bij) +
∑n

i=2 g(bij). Rearranging and summing

over j, we get:
∑n

j=1 g (
∑n

i=1 bij) ≥
∑n

j=1 (g(b1,j)−
∑n

i=2 g(bij)).

Therefore:

∥g[V]∥1 =
n∑

j=1

g

(
n∑

i=1

bij

)
≥

n∑
j=1

(
g(b1,j)−

(
n∑

i=2

g(bij)

))
= u1 − (∥g[B]∥1 − u1).

Finally:

∥g[V]∥1 ≥ u1−(∥g[B]∥1−u1) = 2u1−∥g[B]∥1 ≥ u1(2−
1

1− ϵ
2

) = u1
1− ϵ

1− ϵ
2

≥ u1(1−ϵ).

64

CHAPTER 4. MEASURING HADAMARD DISTANCE

4.4 Algorithm for Finding Key Rows

Definition 4.4.1 (Algorithm for Finding Key Rows).

Input: Matrix A and Sampling Identity Matrix IH generated from hash function H .

Output: Pair (a, b), where the following holds for a, b, and the matrix W = IHA:

1. The pair is either (a, b) = (−1, 0) or (a, b) = (i, ũW,i). Here, ũW,i is a (1 ± ϵ)-

approximation to uW,i and the index i is the correct corresponding row.

2. If there is a key row i0 for the matrix W , then a = i0.

Before describing the algorithm and proving its correctness, we prove the following

useful lemma in Appendix 4.6.1.

Lemma 4.4.1. Let U = (u1, . . . , un) be a vector with non-negative entries of dimension n

and let H ′ be a pairwise independent hash function where H ′ : [n]→ {0, 1} and P [H ′(i) =

1] = P [H ′(i) = 0] = 1
2
. Denote by H̄ ′ the hash function defined by H̄ ′(i) = 1−H ′(i). Let

X =
∑

i H
′(i)ui and Y =

∑
i H̄

′(i)ui. If there is no 1
16

-heavy element with respect to U ,

then:

Pr

[(
X ≤ 1

4
· ∥U∥1

)
∪
(
Y ≤ 1

4
· ∥U∥1

)]
≤ 1

4
.

Theorem 4.4.1. If there exist two black box algorithms as specified in Black Box Algo-

rithms 1 and 2, then there exists an algorithm that satisfies the requirements in Defini-

tion 4.4.1 with high probability.

65

CHAPTER 4. MEASURING HADAMARD DISTANCE

Algorithm 3 Algorithm Find-Key-Row
The algorithm takes as input matrix A and hash function H : [n]→ {0, 1}

for ℓ = 1 to N = O(log n) do
Generate a pairwise independent, uniform hash function Hℓ : [n]→ {0, 1}
Let T1 = HAD(H,Hℓ), T0 = HAD(H, H̄ℓ)
Let y1 = BA2(A, T1), y0 = BA2(A, T0) (BA2 is run with constant failure probability

δ2)
if y0 ≥ τ(n, ϵ) · y1 then

bℓ = 0
else if y1 ≥ τ(n, ϵ) · y0 then

bℓ = 1
else

bℓ = 2

if |{ℓ : bℓ = 2}| ≥ 2
3
n then

Return (−1, 0)
else

if there is a row i such that i satisfies |{ℓ : Hℓ(i) = bℓ}| ≥ 3
4
·N then

Return (i, BA1(A,H)) (BA1 is run with ϵ′ = ϵ
2

and δ1 is set to be inverse
polylogarithmic)

else
Return (−1, 0)

Proof. We will prove that Algorithm 3 fits the description of Definition 4.4.1. Using standard

methods such as in,60 we have a loop that runs in parallel O(log(n)) times so that we can

find the index of a heavy element and return it, if there is one. To prove this theorem,

we consider the following three exhaustive and disjoint cases regarding the matrix g[IHA]

(recall that H : [n]→ {0, 1}):

1. The matrix has a key row (note that a matrix always has at most one key row).

2. The matrix has no α-heavy row for α = 1− ϵ
8
.

3. The matrix has an α-heavy row for α = 1− ϵ
8
, but there is no key row.

We prove that the algorithm is correct in each case in Lemmas 4.7.1, 4.7.2, and 4.7.3,

66

CHAPTER 4. MEASURING HADAMARD DISTANCE

respectively. Due to page length constraints, these proofs can be found in Appendix 4.7.

With the proof of these three cases, we are done proving that Algorithm 3 performs

correctly. We now analyze the space bound for Algorithm 3.

Lemma 4.4.2. Algorithm 3 uses O
(
SPACE1(n, δ1,

ϵ
2
) + log(n)(log2(n) + SPACE2(n, δ2))

)
bits of memory, where δ1 is inverse polylogarithmic and δ2 is a constant.

Proof. Note that, in order for our algorithm to succeed, we run BA1 with an error parameter

of ϵ′ = ϵ
2

and a failure probability parameter δ1 which is inverse polylogarithmic. Moreover,

we run BA2 with a constant failure probability. We also require a number of random bits

bounded by O(log2(n)) for generating each hash function Hℓ, as well as the space required

to run BA2 in each iteration of the loop. Since there are O(log n) parallel iterations, this

gives the lemma.

4.4.1 Algorithm for Finding All α-Heavy Rows

Algorithm 3 only guarantees that we return key rows. Given a matrix A, we now show that

this algorithm can be used as a subroutine to find all α-heavy rows i with respect to the

matrix g[A] with high probability, along with a (1± ϵ)-approximation to the row weights

ug[A],i for all i. In order to do this, we apply an additional hash function H : [n] → [τ]

which essentially maps rows of the matrix to some number of buckets τ (i.e., each bucket

corresponds to a set of sampled rows based on H), and then run Algorithm 3 for each bucket.

The intuition for why the algorithm works is that any α-heavy row i in the original matrix

67

CHAPTER 4. MEASURING HADAMARD DISTANCE

A is likely to be a key row for the matrix in the corresponding bucket to which row i is

mapped. Note that, eventually, we find α-heavy rows for α = ϵ2

log3 n
. The algorithm sets

τ = O
(

ρ(n,ϵ) log(n)
α2

)
and is given below.

Algorithm 4 Algorithm Find-Heavy-Rows
This algorithm takes as input a matrix A and a value 0 < α < 1.

Generate a pairwise independent hash function H : [n]→ [τ], where τ = O
(

ρ(n,ϵ) log(n)
α2

)
for k = 1 to τ do

Let Hk : [n]→ {0, 1} be the function defined by Hk(i) = 1⇐⇒ H(i) = k

Let Ck = Find-Key-Row(A,Hk)

Return {Ck : Ck ̸= (−1, 0)}

Theorem 4.4.2. Algorithm 4 outputs a set of pairs Q = {(i1, a1), . . . , (it, at)} for t ≤ τ

which satisfy the following properties, except with probability 1
logn

:

1. ∀j ∈ [t] : (1− ϵ)ug[A],ij ≤ aj ≤ (1± ϵ)ug[A],ij .

2. ∀i ∈ [n]: If row i is α-heavy with respect to the matrix g[A], then ∃j ∈ [t] such that

ij = i (for any 0 < α < 1).

Proof. First, the number of pairs output by Algorithm 4 is at most the number of buckets,

which equals τ . Now, the first property is true due to the fact that Algorithm 3 has a high

success probability. In particular, as long as the failure probability is at most 1
τ ·logc(n) for

some constant c (which we ensure), then by union bound the probability that there exists

a pair (ij, aj) ∈ Q such that aj is not a (1± ϵ)-approximation to ug[A],ij is at most inverse

polylogarithmic.

68

CHAPTER 4. MEASURING HADAMARD DISTANCE

Now, to ensure the second item, we need to argue that every α-heavy row gets mapped

to its own bucket with high probability, since if there is a collision the algorithm cannot

find all α-heavy rows. Moreover, we must argue that for each α-heavy row i with respect

to the matrix g[A], if i is mapped to bucket k by H , then row i is actually a key row in the

corresponding sampled matrix g[Ak] (for ease of notation, we write Ak to denote the matrix

HkAk). More formally, suppose row i is α-heavy. Then the algorithm must guarantee with

high probability that, if H(i) = k, then row i is a key row in the matrix g[Ak]. If we prove

these two properties, then the theorem holds (since Algorithm 3 outputs a key row with high

probability, if there is one).

Observe that there must be at most 1
α

rows which are α-heavy. In particular, let R be the

set of α heavy rows, and assume towards a contradiction that |R| > 1
α

. Then we have:

∥g[A]∥1 ≥
∑
i∈R

ug[A],i ≥
∑
i∈R

α∥g[A]∥1 = α · ∥g[A]∥1 · |R| > ∥g[A]∥1,

which is a contradiction. Hence, we seek to upper bound the probability of a collision when

throwing 1
α

balls into τ bins. By a Birthday paradox argument, this happens with probability

at most 1
2·τ ·α2 , which can be upper bounded as follows:

1

2τα2
≤ α2

2α2ρ(n, ϵ) log(n)
=

1

2ρ(n, ϵ) log(n)
=

ϵ

2r4(n) log(n)
,

which is inverse polylogarithmically small.

Now, we argue that every α-heavy row i for the matrix g[A] is mapped to a sampled

69

CHAPTER 4. MEASURING HADAMARD DISTANCE

matrix such that i is a key row in the sampled matrix with high probability. In particular,

suppose H(i) = k, implying that row i is mapped to bucket k. For ℓ ̸= i, let Xℓ be the

indicator random variable which is 1 if and only if row ℓ is mapped to the same bucket as i,

namely H(ℓ) = k (i.e., Xℓ = 1 means the sampled matrix g[Ak] contains row i and row ℓ).

If row i is not a key row for the matrix g[Ak], this means that ug[Ak],i ≤ ρ(n, ϵ)(∥g[Ak]∥1 −

ug[Ak],i). Observe that, if row i is mapped to bucket k, then we have ug[Ak],i = ug[A],i. Hence,

the the probability that row i is not a key row for the sampled matrix g[Ak] (assuming row i is

mapped to bucket k) can be expressed as Pr[ug[A],i ≤ ρ(n, ϵ)(∥g[Ak]∥1− ug[A],i)|H(i) = k].

By pairwise independence of H , and by Markov’s inequality, we can write:

Pr
[
ug[A],i ≤ ρ(n, ϵ)(∥g[Ak]∥1 − ug[A],i)

⏐⏐⏐ H(i) = k
]

= Pr

[
ug[A],i ≤ ρ(n, ϵ)

∑
ℓ̸=i

ug[A],ℓXℓ

⏐⏐⏐⏐⏐ H(i) = k

]

= Pr

[
ug[A],i ≤ ρ(n, ϵ)

∑
ℓ̸=i

ug[A],ℓXℓ

]

= Pr

[∑
ℓ̸=i

ug[A],ℓXℓ ≥
ug[A],i

ρ(n, ϵ)

]
≤

ρ(n, ϵ)E
[∑

ℓ̸=i ug[A],ℓXℓ

]
ug[A],i

=
ρ(n, ϵ)

∑
ℓ̸=i ug[A],ℓ

τ · ug[A],i

≤ ρ(n, ϵ)∥g[A]∥1
ατ∥g[A]∥1

=
α2ρ(n, ϵ)

4α · ρ(n, ϵ) log(n)
≤ α

4 log(n)
.

Here, we choose τ = 4ρ(n,ϵ) log(n)
α2 , and get that the probability that a particular α-heavy row

i is not a key row in its corresponding sampled matrix is at most α
4 log(n)

. Since there are at

most 1
α

rows which are α-heavy, by union bound the probability that there exists an α-heavy

row that is not a key row in its sampled matrix is at most 1
4 log(n)

.

70

CHAPTER 4. MEASURING HADAMARD DISTANCE

Thus, in all, the probability that at least one bad event happens (i.e., there exists a pair

(ij, aj) such that aj is not a good approximation to ug[A],ij , there is a collision between

α-heavy rows, or an α-heavy row is not a key row in its corresponding sampled matrix) is at

most 1
log(n)

. This gives the theorem.

4.4.2 Sum from α-Heavy Rows

We now have an algorithm that is able to find all α-heavy rows for α = ϵ2

log3 n
, except with

probability 1
logn

. In the language of,98 by Theorem 4.4.2, our α-heavy rows algorithm outputs

an (α, ϵ)-cover with respect to the vector (ug[A],1, ug[A],2, . . . , ug[A],n) except with probability

1
logn

, where ϵ > 0 and α > 0. Hence, we can apply the Recursive Sum algorithm from98

(see Appendix 4.7.1 for the formal definition of an (α, ϵ)-cover, along with the Recursive

Sum algorithm) to get a (1 ± ϵ)-approximation of ∥g[A]∥1. Note that the Recursive Sum

algorithm needs α = ϵ2

log3 n
and a failure probability of at most 1

logn
, which we provide.

Hence, we get the following theorem.

Theorem 4.4.3. The Recursive Sum Algorithm, using Algorithm 4 as a subroutine, returns

a (1± ϵ)-approximation of ∥g[A]∥1.

4.4.3 Space Bounds

Lemma 4.4.3. Recursive Sum, using Algorithm 4 as a subroutine as described in Sec-

tion 4.4.2, uses the following amount of memory, where ϵ′ = ϵ
2
, δ1 is inverse polylogarithmic,

71

CHAPTER 4. MEASURING HADAMARD DISTANCE

and δ2 is a small constant:

O

(
r4(n)

ϵ5
(log10(n) + log8(n)SPACE1(n, δ1, ϵ

′) + log9(n)SPACE2(n, δ2))

)
.

Proof. The final algorithm uses the space bound from Lemma 4.4.2, multiplied by τ =

O
(

ρ(n,ϵ) log(n)
α2

)
, where α = ϵ2

ϕ3 , ϕ = O(log n), and ρ(n, ϵ) = r4(n)
ϵ

. This gives τ =

1
ϵ5
r4(n) log7(n) to account for the splitting required to find α-heavy rows in Section 4.4.1.

Finally, a multiplicative cost of log(n) is needed for Recursive Sum, giving the final bound.

4.5 Applications

We now apply our algorithm to the problem of determining the L1 distance between joint

and product distributions as described in Problem 4.1.

Space Bounds for Determining L1 Independence

Given an n × n matrix A with entries aij =
fij
m
− fifj

m
, we have provided a method to

approximate the value ∥g[A]∥1:

n∑
i=1

n∑
j=1

g

(
fij
m
− fifj

m

)
.

Let g be the L1 distance, namely g(x) = |x| (hence, the (i, j)th entry in g[A] is given by

|fij
m
− fifj

m
|). We now state explicitly which blackbox algorithms we use:

72

CHAPTER 4. MEASURING HADAMARD DISTANCE

• Let Black Box Algorithm 1 (BA1) be the (1 ± ϵ)-approximation of L1 for vectors

from.97 The space of this algorithm is upper bounded by the number of random bits

required and uses O(log(nm
δϵ
) log(m

δϵ
) log(1

δ
)ϵ−2) bits of memory.

• Let Black Box Algorithm 2 (BA2) be the r(n)-approximation, using the L1 sketch

of the distance between joint and product distributions from.94 This algorithm does

not have a precise polylogarithmic bound provided, but we compute that it is upper

bounded by the random bits required to generate the Cauchy random variables simi-

larly to BA1. This algorithm requires O(log(nm
δϵ
) log(m

δϵ
) log(1

δ
)ϵ−2) bits of memory.

These two algorithms match the definitions given in Section 4.2, thus we are able to give a

bound of O(1
ϵ7
log14(n) log2(nm

ϵ
)) on the space our algorithm requires. We can improve this

slightly as follows.

Corollary 1. Due to the nature of the truncated Cauchy distribution (see94), we can further

improve our space bound to O
(

1
ϵ7
log12(n) log2(nm

ϵ
)
)
.

Proof. Due to the constant lower bound on the approximation of L1, instead of 1
r2(n)

≤

∥g[W]∥1 ≤ r2(n), we get C ≤ ∥g[W]∥1 ≤ log2(n) for some constant C. As the space

cost from dividing the matrix into submatrices as shown in Section 4.4.1 directly depends

on these bounds, we only pay an O(r2(n)) multiplicative factor instead of an O(r4(n))

multiplicative factor and achieve a bound of O
(

1
ϵ7
log12(n) log2(nm

ϵ
)
)
.

73

CHAPTER 4. MEASURING HADAMARD DISTANCE

4.6 Appendix

4.6.1 Proof of of Lemma 1

Proof. Note that we always have the equality X+Y =
∑

i H
′(i)ui+H̄ ′(i)ui =

∑
i H

′(i)ui+

(1 − H ′(i))ui = ∥U∥1, and moreover E[X] =
∑

i uiE[H ′(i)] = 1
2
· ∥U∥1. Also, observe

that

V ar[X] = E[X2]− (E[X])2

=
∑
i

E[(H ′(i))2]u2
i +

∑
i̸=j

E[H ′(i)H ′(j)]uiuj −
1

4
· ∥U∥21

=
1

2

∑
i

u2
i +

1

4

∑
i̸=j

uiuj −
1

4

(∑
i

u2
i +

∑
i̸=j

uiuj

)
=

1

4

∑
i

u2
i .

Using the fact that there is no 1
16

-heavy element with respect to U , which implies that

ui ≤ 1
16
· ∥U∥1 for all i, we have:

V ar[X] =
1

4

∑
i

u2
i ≤
∥U∥1
64

∑
i

ui =
∥U∥21
64

.

Now we can apply Chebyshev’s inequality to obtain:

Pr

[(
X ≤ 1

4
· ∥U∥1

)
∪
(
Y ≤ 1

4
· ∥U∥1

)]
= Pr

[
|X − E[X]| ≥ ∥U∥1

4

]
≤ 16 · V ar[X]

∥U∥21
≤ 16 · ∥U∥21

64 · ∥U∥21
=

1

4
.

74

CHAPTER 4. MEASURING HADAMARD DISTANCE

4.7 Proof of Correctness of Algorithm 1

Throughout the lemmas, we imagine that the hash function H : [n]→ {0, 1} is fixed, and

hence the matrix g[IHA] is fixed. All randomness is taken over the pairwise independent

hash functions Hℓ that are generated in parallel, along with both blackbox algorithms.

To ease the notation, we define

W = IHA, W1 = IT1A, and W0 = IT2A

(recall the notation from Algorithm 3 that T1 = HAD(H,Hℓ) and T0 = HAD(H, H̄ℓ)).

Finally, for each row i in the matrix g[W], we define the shorthand notation ui = ug[W],i.

Lemma 4.7.1. If the matrix g[IHA] has a key row, Algorithm 3 correctly returns the index

of the row and a (1 ± ϵ)-approximation of the weight of the key row except with inverse

polylogarithmic probability.

Proof. Suppose the matrix g[IHA] has a key row, and let i0 be the index of this row. We

prove that we return a good approximation of ug[W],i0 with high probability. In particular,

we first argue that, for a fixed iteration ℓ of the loop, we have the property that bℓ equals

Hℓ(i0), and moreover this holds with certainty. We assume without loss of generality that

Hℓ(i0) = 1 (the case when Hℓ(i0) = 0 is symmetric). In particular, this implies that the key

row i0 appears in the matrix g[W1].

75

CHAPTER 4. MEASURING HADAMARD DISTANCE

By definition of BA2, the following holds for y1 = BA2(A, T1) and y0 = BA2(A, T0),

except with probability 2δ2 (where δ2 is the failure probability of BA2):

y1 ≥
∥g[W1]∥1
r(n)

and y0 ≤ ∥g[W0]∥1r(n).

We have the following set of inequalities:

∥g[W1]∥1 ≥ ui0 > ρ(n, ϵ)(∥g[W]∥1 − ui0) ≥ ρ(n, ϵ)∥g[W0]∥1,

where the first inequality follows since g is non-negative and the key row i0 appears in

the matrix g[W1] (and hence the L1-norm of g[W1] is at least ui0 since it includes the row

i0), the second inequality follows by definition of i0 being a key row for the matrix W ,

and the last inequality follows since the entries in row i0 of the matrix W0 are all zero (as

Hℓ(i0) = 1) and the remaining rows of W0 are sampled from W , along with the facts that g

is non-negative and g(0) = 0.

Substituting for ρ(n, ϵ), and using the fact that y1 and y0 are good approximations for

∥g[W1]∥1 and ∥g[W0]∥1 (respectively), except with probability 2δ2, we get:

y1 ≥
∥g[W1]∥1
r(n)

>
r3(n)

ϵ
· ∥g[W0]∥1 ≥

r2(n)

ϵ
· y0 ≥ τ(n, ϵ) · y0,

and thus in this iteration of the loop we have bℓ = 1 except with probability 2δ2 (in the case

that Hℓ(i0) = 0, it is easy to verify by a similar argument that y0 ≥ τ(n, ϵ) · y1, and hence

76

CHAPTER 4. MEASURING HADAMARD DISTANCE

we have bℓ = 0). Hence, for the row i0, we have the property that bℓ = Hℓ(i0) for a fixed

ℓ, except with probability 2δ2. By the Chernoff bound, as long as δ2 is a sufficiently small

constant, we have bℓ = Hℓ(i0) for at least a 3
4
-fraction of iterations ℓ, except with inverse

polynomial probability. The only issue to consider is the case that there exists another

row i ̸= i0 with the same property, namely bℓ = Hℓ(i) for a large fraction of iterations

ℓ. However, if bℓ = Hℓ(i), it must be that at least one of y1, y0 is a bad approximation or

Hℓ(i) = Hℓ(i0), which happens with probability at most 2δ2+ 1
2
. Therefore, by the Chernoff

bound, the probability that this happens for at least a 3
4
-fraction of iterations ℓ is at most

1
2O(logn) , which is inverse polynomially small. By applying the union bound, the probability

that there exists such a row is at most n−1
2O(logn) , which is at most an inverse polynomial.

Hence, in this case, the algorithm returns (i0, BA1(A,H)) except with inverse polynomial

probability.

We now argue that ũg[W],io = BA1(A,H) is a (1± ϵ)-approximation of ug[W],i0 , except

with inverse polylogarithmic probability. By definition of BA1, which we run with an error

parameter of ϵ′ = ϵ
2
, it returns a

(
1± ϵ

2

)
-approximation of ∥g[JW]∥1 except with inverse

polylogarithmic probability, where W = IHA. Moreover, since i0 is a key row, we have:

ui0 > ρ(n, ϵ)(∥g[W]∥1 − ui0)⇒ ui0 >
ρ(n, ϵ)∥g[W]∥1
1 + ρ(n, ϵ)

≥
(
1− ϵ

8

)
∥g[W]∥1,

where the last inequality follows as long as r4(n) ≥ 8− ϵ. This implies that i0 is
(
1− ϵ

8

)
-

heavy with respect to the matrix g[W], and hence we can apply Theorem 4.3.1 to get

77

CHAPTER 4. MEASURING HADAMARD DISTANCE

that:

(1± ϵ)ui0 ≥
(
1 + ϵ

2

)(
1− ϵ

4

)ui0 ≥
(
1 +

ϵ

2

)
∥g[JW]∥1 ≥ ũg[W],i0

≥
(
1− ϵ

2

)
∥g[JW]∥1 ≥

(
1− ϵ

2

)(
1 + ϵ

4

)ui0 ≥ (1− ϵ)ui0 ,

where the first inequality holds for any 0 < ϵ ≤ 1, the second inequality holds by Theo-

rem 4.3.1, the third inequality holds since ũg[W],i0 is a
(
1± ϵ

2

)
-approximation of ∥g[JW]∥1,

and the rest hold for similar reasons. Hence, our algorithm returns a good approximation

as long as BA1 succeeds. Noting that this happens except with inverse polylogarithmic

probability gives the lemma.

Lemma 4.7.2. If the input matrix has no α-heavy row, where α = 1 − ϵ
8
, then with high

probability Algorithm 3 correctly returns (−1, 0).

Proof. In this case, we have no α-heavy row for α = 1 − ϵ
8
, which implies that ui ≤

α∥g[W]∥1 =
(
1− ϵ

8

)
∥g[W]∥1 for each row i in the matrix g[W]. In this case, we show the

probability that Algorithm 3 returns a false positive is small. That is, with high probability,

in each iteration ℓ of the loop the algorithm sets bℓ = 2, and hence it returns (−1, 0). We

split this case into three additional disjoint and exhaustive subcases, defined as follows:

1. For each row i, we have ui ≤ 1
16
∥g[W]∥1.

2. There exists a row i with ui >
1
16
∥g[W]∥1 and ∀j ̸= i we have uj ≤ ϵ

128
ui.

3. There exist two distinct rows i, j where ui >
1
16
∥g[W]∥1 and uj >

ϵ
128

ui.

78

CHAPTER 4. MEASURING HADAMARD DISTANCE

We define X =
∑

i h
ℓ
iui and Y =

∑
i h̄

ℓ
iui, where hℓ

i = Hℓ(i) and h̄ℓ
i = H̄ℓ(i). Hence,

we have X = ∥g[W1]∥1 and Y = ∥g[W0]∥1, and moreover X + Y = ∥g[W]∥1 (recall that

g[W1] = g[IT1A] and g[W0] = g[IT0A]).

In the first subcase, where there is no 1
16

-heavy row, we can apply Lemma 4.4.1 to the

vector (u1, . . . , un) to get that:

Pr

[(
X ≤ ∥g[W]∥1

4

)
∪
(
Y ≤ ∥g[W]∥1

4

)]
≤ 1

4
.

By definition of BA2, the following holds for y1 = BA2(A, T1) and y0 = BA2(A, T0)

except with probability 2δ2, where δ2 is the success probability of BA2:

∥g[W1]∥1
r(n)

≤ y1 ≤ r(n)∥g[W1]∥1 ,
∥g[W0]∥1
r(n)

≤ y0 ≤ r(n)∥g[W0]∥1.

Hence, except with probability 1
4
+ 2δ2, we have the following constraints on y0 and y1:

y0 ≤ r(n)Y ≤ r(n) · 3
4
· ∥g[W]∥1 ≤ 3r(n)X ≤ 3y1r

2(n) ≤ τ(n, ϵ) · y1, and

y1 ≤ r(n)X ≤ r(n) · 3
4
· ∥g[W]∥1 ≤ 3r(n)Y ≤ 3y0r

2(n) ≤ τ(n, ϵ) · y0,

in which case we set bℓ = 2. If δ2 is some small constant, say δ2 ≤ 1
32

, then for a fixed

iteration ℓ, we set bℓ = 2 except with probability 5
16

. Now, applying the Chernoff bound, we

can show that the probability of having more than a 2
5
-fraction of iterations ℓ with bℓ ̸= 2 is

at most an inverse polynomial. Hence, in this subcase the algorithm outputs (−1, 0), except

79

CHAPTER 4. MEASURING HADAMARD DISTANCE

with inverse polynomial probability.

In the second subcase, we have ui >
1
16
∥g[W]∥1 and, for all j ̸= i, uj ≤ ϵ

128
ui. Then,

since ui is not
(
1− ϵ

8

)
-heavy with respect to g[W], we have:

uj ≤
ϵ

128
· ui ≤

1

16
(∥g[W]∥1 − ui).

Hence, we can apply Lemma 4.4.1 to the vector U = (u1, . . . , ui−1, 0, ui+1, . . . , un) (since

∥U∥1 = ∥g[W]∥1 − ui, and moreover each entry in U is at most 1
16
∥U∥1). Letting X ′ =∑

j ̸=i h
ℓ
juj and Y ′ =

∑
j ̸=i h̄

ℓ
juj , we get that:

Pr

[(
X ′ ≤ 1

4
· ∥U∥1

)
∪
(
Y ′ ≤ 1

4
· ∥U∥1

)]
≤ 1

4
.

This implies that X ≥ X ′ > 1
4
(∥g[W]∥1 − ui) ≥ ϵ

32
∥g[W]∥1 and Y ≥ Y ′ > 1

4
(∥g[W]∥1 −

ui) ≥ ϵ
32
∥g[W]∥1. Moreover, except with probability 2δ2, y1 and y0 are good approximations

to ∥g[W1]∥1 and ∥g[W0]∥1, respectively. Thus, except with probability 1
4
+ 2δ2, we have:

y0 ≤ r(n)Y ≤ r(n)
(
1− ϵ

32

)
∥g[W]∥1 ≤ r(n)

(
1− ϵ

32

)
· 32
ϵ
·X

≤ 32r2(n)

ϵ
· y1 ≤ τ(n, ϵ) · y1, and

y1 ≤ r(n)X ≤ r(n)
(
1− ϵ

32

)
∥g[W]∥1 ≤ r(n)

(
1− ϵ

32

)
· 32
ϵ
· Y

≤ 32r2(n)

ϵ
· y0 ≤ τ(n, ϵ) · y0.

This implies that, except with probability 1
4
+2δ2, the algorithm sets bℓ = 2 for each iteration

80

CHAPTER 4. MEASURING HADAMARD DISTANCE

ℓ. Applying the Chernoff bound again, we see that the probability of having more than a

2
5
-fraction of iterations ℓ with bℓ ̸= 2 is at most an inverse polynomial. Thus, in this subcase,

the algorithm outputs (−1, 0) except with inverse polynomial probability.

We now consider the last subcase, where ui >
1
16
∥g[W]∥1 and there exists j ̸= i such

that uj > ϵ
128

ui. Note that the probability that i and j get mapped to different matrices

is given by Pr[Hℓ(i) ̸= Hℓ(j)] =
1
2
. Assume without loss of generality that Hℓ(j) = 1

(the case that Hℓ(j) = 0 is symmetric). In the event that i and j get mapped to difference

matrices and y1, y0 are good approximations to ∥g[W1]∥1, ∥g[W0]∥1 respectively, which

happens with probability at least 1
2
− 2δ2, we have:

y1 ≥
X

r(n)
≥ uj

r(n)
≥ ϵ

128r(n)
· ui ≥

ϵ

128r(n)
· 1
16
· ∥g[W]∥1

≥ ϵ

2048r(n)
· Y ≥ ϵ

2048r2(n)
· y0 =⇒ y0 ≤

2048r2(n)

ϵ
· y1 ≤ τ(n, ϵ) · y1, and

y0 ≥
Y

r(n)
≥ ui

r(n)
≥ ϵ

128r(n)
· ui ≥

ϵ

128r(n)
· 1
16
· ∥g[W]∥1

≥ ϵ

2048r(n)
·X ≥ ϵ

2048r2(n)
· y1 =⇒ y1 ≤

2048r2(n)

ϵ
· y0 ≤ τ(n, ϵ) · y0.

Thus, except with probability at least 1
2
− 2δ2, the algorithm sets bℓ = 2 for each iteration ℓ.

We apply the Chernoff bound again to get that bℓ = 2 for at least a 2
5
-fraction of iterations,

except with inverse polynomial probability. Hence, the algorithm outputs (−1, 0) except

with inverse polynomial probability.

Lemma 4.7.3. If the matrix g[IHA] does not have a key row but has an α-heavy row i0,

81

CHAPTER 4. MEASURING HADAMARD DISTANCE

where α = 1− ϵ
8
, then Algorithm 3 either returns (−1, 0) or returns a (1± ϵ)-approximation

of uIHA,i0 and the corresponding row i0 with high probability.

Proof. We know there is an α-heavy row, but not a key row. Note that there cannot be more

than one α-heavy row for α = 1 − ϵ
8
. If the algorithm returns (−1, 0), then the lemma

holds (note the algorithm is allowed to return (−1, 0) since there is no key row). If the

algorithm returns a pair of the form (i, BA1(A,H)), we know from Theorem 4.3.1 that the

approximation of the weight of the α-heavy row is a (1± ϵ)-approximation of ∥g[W]∥1 as

long as BA1 succeeds, which happens except with inverse polylogarithmic probability (the

argument that the approximation is good follows similarly as in Lemma 4.7.1). We need

only argue that we return the correct index, i0. Again, the argument follows similarly as in

Lemma 4.7.1. In particular, if Hℓ(i) = bℓ for a fixed iteration ℓ, then at least one of y0, y1 is

a bad approximation or Hℓ(i0) = Hℓ(i), which happens with probability at most 2δ2 + 1
2

(where δ2 is the failure probability of BA2). We then apply the Chernoff bound, similarly

as before.

With Lemmas 4.7.1, 4.7.2, and 4.7.3, we are done proving that Algorithm 3 fits the

description of Definition 4.4.1, except with inverse polylogarithmic probability.

4.7.1 Recursive Sketches

Definition of a Cover:

Definition 4.7.1. A non-empty set Q ∈ Pairst, i.e., Q = {(i1, w1), . . . , (it, wt)} for some

t ∈ [n], is an (α, ϵ)-cover with respect to the vector V ∈ [M]n if the following is true:

82

CHAPTER 4. MEASURING HADAMARD DISTANCE

1. ∀j ∈ [t] (1− ϵ)vij ≤ wj ≤ (1± ϵ)vij .

2. ∀i ∈ [n] if vi is α-heavy then ∃j ∈ [t] such that ij = i.

Definition 4.7.2. Let D be a probability distribution on Pairs. Let V ∈ [m]n be a fixed

vector. We say that D is δ-good with respect to V if for a random element Q of Pairs with

distribution D the following is true:

P (Q is an (α, ϵ)-cover of V) ≥ 1− δ.

Using notation from,98 for a vector V = (v1, . . . , vn), we let |V | denote the L1 norm of V ,

|V | =
∑n

i=1 vi. Consider Algorithm 6 from:98

Algorithm 5 Recursive Sum (D, ϵ)

1. Generate ϕ = O(log(n)) pairwise independent zero-one vectors H1, . . . , Hϕ. Denote

by Dj the stream DH1H2...Hϕ

2. Compute, in parallel, Qj = HH(Dj,
ϵ2

ϕ3 , ϵ,
1
ϕ
)

3. If F0(Vϕ) > 1010 then output 0 and stop. Otherwise, compute precisely Yϕ = |Vϕ|

4. For each j = ϕ− 1, . . . , 0, compute

Yj = 2Yj+1 −
∑

i∈Ind(Qj)

(1− 2hj
i)wQj

(i)

5. Output Y0

83

CHAPTER 4. MEASURING HADAMARD DISTANCE

Theorem 4.1 from:98

Theorem 4.7.1. Algorithm 5 computes a (1± ϵ)-approximation of |V | and errs with prob-

ability at most 0.3. The algorithm uses O(log(n)µ(n, 1
ϵ2 log3(n)

, ϵ, 1
log(n)

)) bits of memory,

where µ is the space required by the above algorithm HH .

84

Chapter 5

Fuzzy Heavy Hitters

5.1 Introduction

Streaming approaches have been developed for several classic clustering problems, including

k-median,109–112 k-means113, 114 and facility location.115 These algorithms are typically

applied to multidimensional elements such as vectors in Rd. Separately, there are a variety

of approaches for discovering the most frequent discrete elements in a stream, referred to as

finding heavy hitters.116

We combine these two tasks into a novel problem definition, that of finding Fuzzy Heavy

Hitters: we assume each point in the data stream is drawn from one of very many (k) latent

clusters, and our goal is to find the k′ heaviest clusters (that is, the clusters containing the

most points from the stream). As we constrain ourselves to the streaming data setting, we

cannot afford the memory to store nor the time to organize all the incoming data points.

85

CHAPTER 5. FUZZY HEAVY HITTERS

Furthermore, we assume there is insufficient memory and time to track all k clusters, and

that we are only allowed a single pass over the data.

We tackle this problem by creating a new algorithm which we call Local Fuzzy Counting

(LFCount, or LFC). This algorithm is built by modifying an existing Heavy Hitter algorithm,

the Space Saving117 frequent elements algorithm, to fit the Fuzzy Heavy Hitters problem.

This concept represents a general framework for solving problems with these underlying

groupings.

One such example of latent clusters is the concept of finding matching topics across

multiple documents. Topic detection in data streams, such as in118 is just one application

of the general FHH approach (see Section 5.6 for a discussion on topic detection and other

applications for FHH).

We apply the Local Fuzzy Counting algorithm to the problem of topic detection in data

streams, as shown in the work of Petrovic et. al.118 Our implementation provides improved

space and time complexity over previous results with a minimal accuracy trade-off.

5.2 Problem Definition and Assumptions

We begin by defining the data stream of vectors.

Definition 5.2.1. Datastream

Let n be a positive integer. A stream D = D(n) on Rd is a sequence of length n, denoted

a1, a2, . . . , an, in which each entry ai is a vector in Rd.

Definition 5.2.2. α-Heavy Hitter

86

CHAPTER 5. FUZZY HEAVY HITTERS

Given a stream of points D = p1, p2, . . . , pn from a metric space (X, d), suppose that

there exists a function τ : [n]→ [k] mapping each point in the stream to one of k classes.

For each i ∈ {1, . . . , k}, let Ci = {pj : τ(pj) = i, 1 ≤ j ≤ n} denote the set of points from

the stream assigned to the i-th class, and let fi = |Ci| be the frequency of that class. We say

the i-th class is α-heavy if fi ≥ αn.

Definition 5.2.3. Heavy Hitter Algorithm (HHA)

A Heavy Hitter Algorithm finds the α-heavy classes of a stream D.

We now formally define the Fuzzy Heavy Hitter (FHH) problem.

Definition 5.2.4. (k, r, α)-Fuzzy Heavy Hitter

Consider a promise problem wherein we are guaranteed that the input classes and the

function τ satisfy the following size property:

• For all i ∈ [k] we have diamCi ≈ r

where diamCi = maxp,q∈Ci
d(p, q) is the diameter of the i-th class. The (k, r, α)-Fuzzy

Heavy Hitter problem is a promise problem wherein we are guaranteed that the above

condition holds, and our task is to find a representative point from each of the α-heavy

classes. That is, letting H = {i ∈ [n] : |Ci| ≥ αn} denote the set of indices of heavy classes,

we return a representative point p ∈ Ci for each i ∈ H .

Observation: using the same notation as in Definition 5.2.4, |H| ≤ 1/α.

We solve a slightly modified version of this problem:

87

CHAPTER 5. FUZZY HEAVY HITTERS

Definition 5.2.5. (k, r, α, ϵ)-Approximate Fuzzy Heavy Hitter

The approximate Fuzzy Heavy Hitter Problem is formulated the same as the Fuzzy Heavy

Hitter Problem in Definition 5.2.4, with the only difference being that while in the original

problem we return exactly the exact heaviest items, we instead guarantee with probability

greater than 2/3 we return k elements from H = {i ∈ [n] : |Ci| ≥ αϵn} where 0 < ϵ < 1 is

a small constant and guarantee with probability greater than 2/3 that we do not return any

elements not in H .

This approximate formulation represents a more reasonable problem to solve given

the randomized tools that are useful to the field. The notion of a known diameter in both

problems is a natural one; the algorithm needs some notion of a distance threshold between

elements to group them as similar, so the clusters need to be no more than the given size.

In terms of the separability of classes, we assume that elements belonging to the heaviest

clusters are ”nice” as named by Ackerman and Dasgupta,119 and based on definitions from

Balcan, Blum and Vempala.120

Definition 5.2.6. Nice Clusters

A Nice Cluster Ci is defined where ∀j ̸∈ Ci, ∀i ∈ Ci, d(i1, i2) < r < d(i, j)

This assumption allows us to guarantee that two heavy clusters do not partially overlap,

removing the ability to falsely report two clusters as one ID. We do not need to make a

separability assumption about the non heavy clusters, as if they were to sufficiently overlap

the overlapping section would be a heavy cluster by definition, and subject to the niceness

assumption.

88

CHAPTER 5. FUZZY HEAVY HITTERS

This separability assumption allows us to quickly obtain correctness for the LFCount

algorithm in the theoretical setting as a direct result of SpaceSaving. In our implementation,

we account for the potential overlap of classes with a variance reduction strategy.

In many practical datasets heavy items tend to be distinct, as shown in Table 5.1. When

heavy elements are not distinct, or have less predictable shapes, other clustering methods

such as density based clustering may be preferable.38

While there is requirement for the relative size of classes, there is no such assumption

made about the separability between classes, we leverage the natural separability of classes

in practical datasets to more easily distinguish between different labels.

For example, consider the task of finding the popular topics in a collection of text

documents given the bag-of-words representation of the data.121–123 In this setting, each

document’s representation is sparse and we expect the representations of two documents

discussing different topics to be separated by a larger distance than the representations of

two documents discussing the same topic. As another example, consider data drawn from a

Gaussian mixture model: if the means of the latent classes are suitably far from one another

and the variances are suitably small, then the data generated from this model will satisfy the

two assumptions of Definition 5.2.4 with high probability.

While we focus on text for our experimentation, the FHH problem is in no way restricted

to text, as we discuss further in Section 5.6.1.

In settings where separability is not a characteristic of the dataset, the problem is still

89

CHAPTER 5. FUZZY HEAVY HITTERS

solvable 1. In the case where classes overlap almost entirely, the classes are so similar that

they can be safely treated as one and reporting on one is acceptable due Definition 5.2.5.

Similarly, if there is minimal overlap under-counting is not an issue as it is unlikely for an

element to be more than ϵ smaller than it’s original value and thus will still be a member

of the correct output set H . In this second case it is possible that the label for a cluster is

incorrect, but this can be remedied by sampling centroids as opposed to choosing the first to

arrive or updating the ”centroid” as time passes; we leave this improvement for future work.

Throughout this chapter we will speak interchangeably about finding the approximate

top-k′ heaviest clusters and finding k αk′-approximately heavy clusters. We note that given

some value α, by the observation above, there are at most 1/α heavy clusters. In the opposite

direction, if we want k′ clusters, it is necessary that all of those clusters be suitably large

such that they can be found in reasonably small space. Thus, we assume there is some value

αk′ , that is a constant lower bound to the size of the k′-th element. This is necessary since if

the size of the k′-th cluster is O(1/n), no small space algorithm can hope to find that cluster.

5.3 Comparison with Other Clustering Problems

At first glance, the FHH problem may seem similar to clustering with outliers,124, 125 but the

problems are distinct. In clustering with outliers the goal is to remove a set number of points

until the optimal clustering in minimized. This is still very much reliant on the distances

between points, and can cause issues. Imagine an example where there are two large groups

1Additionally, future FHH algorithms may not need this assumption, this assumption is directly tied to the
construction of LFCount

90

CHAPTER 5. FUZZY HEAVY HITTERS

of elements near each other, and then a single smaller groups of points located very far away

from the first two clusters. In clustering with outliers, the centroids would need to move

towards the far away cluster, causing less total points being close to the centroid. On the

other hand, FHH aims to place cluster IDs over regions containing the most points within a

set distance of the centroid. This means that once a point is outside of the a clusters radius,

the distance to those other points does not impact the result.

A more closely related problem is that of Approximate Facility Location (AFL).126 In

AFL, a set of facilities are placed so that they may optimally service as many clients. In an

applied setting, this might be placing hospitals such that driving distance is minimized for as

many people as possible. This problem can be formulated with many different constraints,

such as limiting the maximum number of clients per facility (capacitated), and usually also

includes a method where the number of factories may be increased at some cost.

FHH can be thought of as a special case of AFL where a constant number of facilities is

chosen in advance, the facilities are uncapacitated, and have a maximum radius of service

r. Further discussion of related works can be found in Section 5.6. At the time of writing,

we are not aware of any theoretical results that solve this specific variation of the problem

or provide a lower bound, which is an easier formulation than the general case due to the

constant number of facilities and the limited search radius.

91

CHAPTER 5. FUZZY HEAVY HITTERS

5.4 Our Algorithm

A FAST CHECK FOR MEMBERSHIP

In most heavy hitter algorithms, the data being processed is discrete. This property

allows for quick comparison by checking if two items are equivalent by direct comparison

or comparing the results of universal hashing. However, for the FHH problem, the dataset is

comprised of high dimensional vectors. In this setting we must match elements which are

not identical, causing new challenges to arise. Intuitively, if we somehow knew the correct

class label of each observation in our stream (and could determine this class label quickly),

classical heavy hitter techniques would apply directly to the task at hand using universal

hashing.

In the case of a stream of vector observations, the notion of distance between matching

items becomes an issue. In our case, this means this universal hashing cannot be applied

directly and we must find some other way to determine class membership for these vectors.

Such methods also introduce additional challenges in applying heavy hitters algorithms

directly.

For the problem of heavy hitters, the clusters in Definition 5.2.4 define a different method

for determining class membership and we now describe a method for checking membership

with an arbitrary distance function. If a distance function returns a point is within r from a

centroid, it belongs to that centroid, and if a point is farther than r from a centroid, it does

not belong.

92

CHAPTER 5. FUZZY HEAVY HITTERS

Note, that due to the approximate nature of some of the algorithms we use to solve

this problem, we are not able to guarantee that for a given two items within distance 2r

that they will both be assigned to the same cluster. While this distance computation for

determining membership may be costly for high-dimensional data, the sparsity observed in

many practical applications allows us to determine cluster membership in close to constant

time, allowing us to use counter-based heavy hitter algorithms117 to solve the problem.

This ability to determine whether or not two elements are in the same cluster is a weaker

capability than that assumed for standard heavy hitter algorithms, where by assumption each

element of the stream is simply one of m possible types (i.e., the true class labels are known

explicitly). This requires us to modify existing heavy hitter algorithms, and requires more

computation per update than in the discrete case.

A HEAVY HITTER APPROACH

A straightforward approach based on an adaptation of existing counter-based heavy

hitter algorithms provides a baseline solution to the AFHH problem. This method requires

O(n/αk′) time and only one pass over the data. Using the comparison properties discussed

in the previous section, we can apply any number of algorithms for finding heavy clusters.

In particular, we use the Space-Saving frequent elements algorithm.117 Space-Saving is a

counter-based technique for approximately finding the most frequent items in a datastream.

The algorithm works by maintaining a set of counters that each correspond to a held heavy

element and incrementing the counter when the element is seen. If an element does not

match any of the held elements, the element with the lowest count is evicted and the new

93

CHAPTER 5. FUZZY HEAVY HITTERS

element takes its place; the counter is not reset. With Space-Saving, if the k′-th heaviest

element has weight fk′ = αk′n then we can find the approximate top k′ classes using

O(1/αk′) space, in the sense that we do not overestimate the heaviness of any element

by more than an additive error of nαk′ . Moreover, under the assumptions of our promise

problem and the niceness of heavy clusters, we are guaranteed not to miss any of the top k′

elements.

The time bound of our adapted algorithm is worse than that of the standard Space-Saving

algorithm in the integer setting as a direct result of the fact that we cannot use a traditional

hash table on our vector observations. As a result, the arrival of each new point requires a a

linear sweep over the buckets to search for a collision. This results in a O(n/αk′) runtime

using a single pass over the data rather than the linear runtime required by the Space-Saving

algorithm.

In practice, there tends to be a good deal of turnover in the SpaceSaving buckets with

lower counts. Intuitively, this is due to the fact that while the data structure guarantees it

will return elements that are α heavy, each bucket has no guarantee it will actually return a

heavy element. Elements can be confirmed as heavy with a second pass by checking the

fuzzy count of the heavy element, but can also be improved by maintaining a larger number

of total buckets than is required to reduce the amount of error in the count.

For large practical datasets, α′
k can be a very large constant with multiplicative impact

on runtime. Consider a data set with 1 billion points. If the goal is to find α′
k = 0.001

heavy hitters, we would need to perform a linear sweep over one million buckets per update.

94

CHAPTER 5. FUZZY HEAVY HITTERS

Unfortunately, this degree of scaling is not sufficient for real world datasets, and we need an

improved approach.

LOCALITY SENSITIVE HASHING

While universal hashing is not applicable to FHH, locality sensitive hashing (LSH)33 is.

LSH gives an approximate solution to the nearest neighbor problem. This method was later

applied by Charikar34 as a method for approximating the relative angle of high dimensional

vectors by mapping them into a lower dimensional space. Charikar’s method approximately

preserves cosine similarity, and we use this approach in our algorithm.

Definition 5.4.1. Locality Sensitive Hashing

For Locality Sensitive Hash Function H , with M = 2b bins, L maps a high dimensional

vector v ∈ Rd into a lower dimensionality Rb. For v′ ̸= v, Pr[H(v′) = H(v)] = 1−θ(v′, v),

where θ(v′, v) is the angle between v′ and v.

To achieve this, LSH first generates a set of random hyperplanes u⃗ ∈ U, |U | = b. Then,

for each element hashed, LSH returns a bit signature by computing the boolean value

∀u⃗ ∈ U, v⃗ · u⃗ > 0 and returning a concatenation of the resulting values. The number of

bits in the bit signature is equal to 2|U |. With this, we can imagine LSH dividing high

dimensional space into different regions dependent on the number of these hyperplanes. We

call these regions bins.

Other work has used LSH for it’s ability to preserve cosine distance between elements

and find nearest neighbors by computing the hamming distance of signatures, such as

95

CHAPTER 5. FUZZY HEAVY HITTERS

Ravichandran et. al127 and Jansen and Van Durme.128 In this thesis, we use LSH only for

the process of creating these regions, similarly to previous work like the Streaming First

Story Detection work of Petrovic et. al.118

LSH is a powerful tool for approximating the nearest neighbors of an element, and

can be used to give approximate labels to an item such that they could be computed by a

sketch based heavy hitters algorithm. However, LSH also introduces an additional layer of

approximation, which can have a negative impact on accuracy.

LSH is very much an enabling technology for solving FHH and presents many questions

about using LSH to fill the role of universal hashing for many established techniques.

However, LSH is not a cure-all solution for the problem, and below we provide some context

on some of the design decisions we did not make when applying LSH, and why.

At one extreme, if a very large amount of LSH bins was used to try and divide space

very finely, then each vector would receive its own unique integer representation. While this

may work for finding the Heavy Hitters of high dimensional vectors, it does not solve the

problem for Fuzzy Heavy Hitters, as the resulting integer for each vector would still need to

be compared using a distance function to determine proximity to other elements.

Looking at SpaceSaving, a question is why would we not use LSH as a direct substitute

for universal hashing to create a hash table to allow O(1) lookup inside of our SpaceSaving

data structure to check if it contains the new element. The answer is that when using LSH

with a large number bits, such that there are a sufficient number of unique bins such that

a hash table built with linked lists would not have an impractical amount of collision, the

96

CHAPTER 5. FUZZY HEAVY HITTERS

distance r that lands inside a single bin is very small and similar items are not grouped.

Conversely, if we use too few bits, we end up grouping many elements of varying distance

together and are unable to provide an accurate analysis. This tension between LSH not

providing enough resolution versus dividing clusters is one of the core challenges of our

solution to the FHH problem.

As discussed in earlier chapters, sketch based algorithms are a common form of stream-

ing algorithm. While many rely on hashing, the construction is more complex than the hash

table based approach in SpaceSaving. Again, the question would be whether or not we

could extend a sketch based algorithm such as Count Min Sketch129 to FHH by replacing an

integer hash function with LSH. While we do not claim that such a method is not possible,

as many of these algorithms already handle item collisions as part of their design, we believe

the amount of LSH bits required to obtain accurate division of the data set would likely end

up dividing the data too far for accurate recovery of element counts and identifiers. Further,

counter based approaches provide similar guarantees without requiring as many LSH bits.

However, if such a technique were to exist, it certainly may provide improved performance,

and we leave that approach as an open problem.

The fundamental tradeoff with using LSH is using an amount of bits such that you are

able to effectively divide your dataset without using too many bits such that the dataset is

over-divided.

97

CHAPTER 5. FUZZY HEAVY HITTERS

A HYBRID APPROACH

We present Local Fuzzy Counting, or LFCount, an algorithm that uses both LSH and

heavy hitters to quickly and accurately solve the FHH problem. The underlying data

structure creates many instances of Space-Saving and LSH to assign elements to Space-

Saving ”buckets”.

In the above Heavy Hitters based algorithm, and in early testing, we found that by

maintaining only a single instance of Space-Saving had issues with both accuracy and

runtime efficiency. As the number of buckets grew large, the linear sweep becomes very

costly, and due to the noise in our experimental data sets many elements would be from

small disjoint classes, causing a high turnover in keys.

To improve upon the initial design we use a streaming implementation of LSH. With

LSH we create a hash mapping from vectors to b bins, with one bin for each unique LSH

signature. With this, we maintain many parallel instances of Space-Saving each with c

counters, one for each LSH bin. This reduces the search time for each Space-Saving as well

as allowing us to maintain a stricter comparison inside of each LSH bin, as LSH provides

that all elements are approximate nearest neighbors for a radius r′ > r, where r is the radius

of the clusters we aim to find.

The LSH method we use in our experiments functions in a streaming way128 and gives

fast updates. This gives us an update time of O(c), where c < n/αk′ by approximately a

factor of b to give similar results.

98

CHAPTER 5. FUZZY HEAVY HITTERS

Algorithm 6 Online LFCount Algorithm
for all Documents d in corpus do

add d to LSH
S ← the SpaceSaving data structure in the LSH bin where d lands
Insert d into S
for all For s in S do

c = distance(d, s)
if c > thresh then

s+=1
else

Evict s with smallest count, replace with d, keep old counter

After online component, perform Variance Reduction (See Algorithm 7)

PERFORMANCE AND PARAMETER SELECTION

For an LFCount instance with 2b bins each with c counters, the algorithm has a worst

case runtime of O(c ∗m), and assuming an even distribution of unique elements across the

bins, will find all elements at least α = m
c2b

heavy on the data stream, and over-count by at

most α = m
c2b

, by the correctness of SpaceSaving.

With this, we observe that the runtime of the algorithm is linearly dependent on the

number of buckets per SpaceSaving. The number of buckets per SpaceSaving is relative

to the total number of buckets c2b, which dictates the accuracy of SpaceSaving. A natural

next step then would be to increase the number of LSH bits, which in turn would decrease

the number of counters per bucket and improve speed; however, this can negatively impact

accuracy.

As was discussed in the previous section, there is an upper limit to the amount of LSH

bits that can be used before accuracy is compromised. At one extreme, we could imagine

using a very long LSH signature. In this case, every unique element would have its own

99

CHAPTER 5. FUZZY HEAVY HITTERS

Algorithm 7 LFCount Variance Reduction Method
Collect Heavy Hitters from each LSH bin, place all in array A
With vart as the number of variance reduction iterations to perform:
for i < vart do

Create LSH ′
i with new random hyperplanes

Create HashTable B, mapping from int to array
for all Heavy Documents ai in A do

j = LSH ′
i(hd)

for all Heavy Documents in vector B[j] do
c = distance(d, hd

i)
if c > thresh ∗ 2 then

s+ = 1
else

append ai to B[j]

for all B[j] in B do
Create new Array A’
Append all arrays B[j] to A’
Delete B
Set A = A’
i++

SpaceSaving instance inside of a unique LSH bin and LFCount would not return the correct

answer. On the other extreme, if LSH is not used, the accuracy is maximized, but a full

linear search over all buckets is required.

Of course, in between these extremes is a lot of room for calibration and as such finding

the right parameterization yields the best results. The ideal calibration is one where LSH

does not split up too many heavy clusters between bins, while minimizing the number of

buckets per LSH bin as to maximize the speed of the algorithm. This best configuration is

data set dependent, and there is unfortunately no “silver bullet” solution for LFCount.

100

CHAPTER 5. FUZZY HEAVY HITTERS

VARIANCE REDUCTION

One of the issues with this design is that clusters can be divided across LSH boundaries,

so a variance reduction step is needed. In some cases, this division will simply remove a

small portion of the ”heaviness” from the element, in others, it’s possible to divide a very

heavy element into two separate heavy elements. Even with k′ << k, we find experimentally

that a direct pairwise comparison of the b ∗ c buckets held by SpaceSaving, requiring O(k′),

returned by the algorithm required too much time to be effective at scale. Instead, we use an

improved method.

Given the number of LSH bits used for the initial pass, we select a smaller number of

bits (e.g. from 16 to 12 or 8 to 4), and give the LSH instance a new random seed. Then,

create a hash table, B mapping from integer LSH values to arrays. For each item in the set

of heavy elements, hash the item and then do a pairwise comparison with all members of

the corresponding array given by the hash table.

Experimentally, a single pass of this method was found to be insufficient for certain

values of r. To solve this issue, we iteratively feed the vector of heavy elements to the

variance reduction step, each time recombining clusters previously divided by LSH. With

this, the odds of dividing a cluster fall dramatically, but we still instead have a runtime of

O(k′2/2b), and allows parallel updating of the variance reduction step, allowing up to 22b

parallel processes. Thus, we are able to recombine split elements when the separate parts

are both heavy, providing more accurate counts and rankings of the heaviest elements. For

larger k′ in practice, it is usually the correct choice to choose a larger LSH value and perform

101

CHAPTER 5. FUZZY HEAVY HITTERS

variance reduction multiple times.

This variance reduction method does introduce a challenge. Consider the following

example, it is possible for cluster A and B to contain center ac and bc respectively, as well

as elements ae ab which are both thresh away from their centers. Then, if ac and bc are

within a distance threshold, they would merge into a single cluster C. In this scenario, it

is possible for C to have elements separated by a distance of 3r be grouped into the same

cluster. This is solved by the recombination step using a higher threshold for equality than

the main phase of the algorithm, as to avoid generating false positives by over-combining.

Finally, a drawback of this variance reduction approach is that it does not function on a

per element basis. This computation is inefficient, and should only be performed periodically

or at the end of the stream.

5.5 Experiments

IMPLEMENTATION AND TESTING

We implemented our LFCount algorithm using C++ and running on machines with 12/16

2.1Ghz Cores with tasks limited to 100GB of memory (the algorithm uses dramatically less

memory). We evaluated our algorithm on two datasets. The first dataset is a 2-dimensional

synthetic dataset generated under the assumptions of our promise problem: finding points

distributed along an Archimedes Spiral. We also performed experiments on one billion

tweets taken from the 1% sample of tweets provided by the Twitter API,130 with dates

ranging from 2013 to 2015.

102

CHAPTER 5. FUZZY HEAVY HITTERS

5.5.1 Synthetic Data

In terms of choosing a distance function for our experiments, Ertoz, et al.131 observe that

choosing a distance function that captures an appropriate notion of similarity can be difficult.

Determining the best distance function for a given dataset is not the focus of the current

work. For this experiment we use L1 distance, as this allows us to to best compare with

k −medians.

This dataset is generated under the requirement that all centroids are at least distance

2r apart and such that all of the points for the centroid lie inside the radius. The points for

the centroid are generated randomly inside of the circle, and are Gaussian-distributed away

from the centroid. This is a stricter assumption than being ”nice” for heavy elements, but

helps model the data nicely and makes it easier to compute for k-medians. Distances are

measured using L1 distance.

The Archimedes spiral gives us an even distribution of clusters through space, as well as

consistent inter-cluster distance, the constantly increasing spiral creates a lower bound for

the minimum distance between two clusters.

In terms of accuracy, because we use synthetic data where all centers are 2r apart, with

all elements inside of the radius r, we can quickly and accurately . Due to the correctness of

Space-Saving, when LSH does not introduce error we properly find all of the heavy elements

in the stream that are at least m
b

heavy, where b is the number of buckets. Thus, we use this

data to evaluate the performance of our approach in finding dense regions in a streaming

103

CHAPTER 5. FUZZY HEAVY HITTERS

manner.

COMPARISON WITH k-MEDIANS

We now compare LFCount against k-medians in the setting when the centroids are

2r-separated and the points are Gaussian-distributed inside of the centroids. While the

centroids are mutually 2r-separated, we note that arbitrary points in adjoining clusters may

not be. In this scenario, it is possible that the returned clusters are not well-aligned over

the data and there is not a guarantee that our method will return the true top k. In this

experiment 10,000 points are Zipfian distributed across 13 clusters. Our goal is to return the

top k′ = 4 clusters. Thus, we compare with k-medians in two cases, k = 4 and k = 13. We

show both examples, as where k = 13 would be ideal to partition the data given that there

are 13 true clusters, k = 4 compares directly with the result we aim to return from LFCount.

The different colored points represent the clustering assigned using k-medians. We show

the lowest-cost k-medians solution out of three (using three random initializations). The

solid black circles encompass the three true heaviest clusters; the dotted green circles are

centered on the centroids returned by LFCount.

We evaluate the algorithms in four settings: No noise, 1,000 additional points of

noise (10%), 2,500 additional points of noise (25%), and 5,000 additional points of noise

(50%). The noise is generated by adding points at uniform random at a range at most 1.25

times the further most point in generated for a cluster. We show these results in Figures

5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8

What we see in these experiments is that in all cases with k = 13 , kmedians struggles

104

CHAPTER 5. FUZZY HEAVY HITTERS

with the data and divides up the true clusters across multiple centroids, failing to obtain

information about the heavy clusters. With k = 4, k-medians tends to group two clusters

together and then distinctly identify the other two, additionally,the location of the centroids

placed by k-medians is not close to heavy region. When noise is added these issues intensify,

and in 5.8, we see the points of a heavy cluster is even divided over two k-medians centroids.

On the contrary, even with noise LFCount successfully finds and returns the heaviest regions

with some error as noise increases.

105

CHAPTER 5. FUZZY HEAVY HITTERS

Figure 5.1: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 13. No noise.

Figure 5.2: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 4. No noise.

106

CHAPTER 5. FUZZY HEAVY HITTERS

Figure 5.3: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 13. 10% noise.

Figure 5.4: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 4. 10% noise.

107

CHAPTER 5. FUZZY HEAVY HITTERS

Figure 5.5: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 13. 25% noise.

Figure 5.6: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 4. 25% noise.

108

CHAPTER 5. FUZZY HEAVY HITTERS

Figure 5.7: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 13. 50% noise.

Figure 5.8: Comparison of FHH output with k-medians on Gaussian clusters arranged along
an Archimedean spiral. k = 4. 50% noise.

109

CHAPTER 5. FUZZY HEAVY HITTERS

5.5.2 Twitter

Our main goals in building a streaming algorithm are using a small amount of memory,

taking a small number of passes, being accurate, and being fast enough to handle a high

throughput data set. We are able to control the amount of memory as it is directly related

to the number of buckets used by the data structure, and the algorithm is designed to take

one pass. Thus, this section is chiefly concerned with testing the accuracy of finding the

fuzzy heavy hitters and evaluating the speed of the algorithm. For these experiments we

use cosine distance, as we felt is was best for handling the high dimensional sparse vector

representation of tweets.

PARAMETERIZATION

LFCount has multiple parameters to consider, including number of parallel threads,

number of buckets, and number of bins. The performance of the LFCount algorithm is

dependent on the ratio of the number of unique keys to the size of both the LSH bins and

the SpaceSaving buckets, and thus choosing a representative parametrization is key. We

choose to use 1.3 million total buckets, divided across 16 bits of LSH, for 65536 bins with

20 buckets each. This allows for a quick updates, while having enough buckets per bin

such that SpaceSaving accurately finds the heavy elements in that bin, as long as they are

more than α = 0.05 heavy on the substream. Assuming an even distribution of elements

across bins, this lets us find items that occur at least 1, 000 times in the full dataset, and we

overestimate the counts of heavy elements by at most 1, 000.

110

CHAPTER 5. FUZZY HEAVY HITTERS

A major hurdle preventing us from obtaining ground truth at scale. While for LFCount

we use LSH to allow us to only compare to 20 elements per update, in a naive approaches

we must compare to every other element, which requires O(n2) time. This can be months

of computation for larger data sets. To resolve this, for certain experiments we choose mid

sized data sets of ten to fifty million tweets, as opposed to the full 1 billion tweet data set.

Tweets Found

In the Twitter data, the frequent clusters we found were commonly used expressions,

automated messages, as well as popular events. A selection of some of the heaviest heavy

labels returned is shown below.

These items are not the heaviest k’ by count, but give a good representation of the

elements shown in the top k’. The text is taken directly from the cluster ID returned by

LFCount.

111

CHAPTER 5. FUZZY HEAVY HITTERS

Tweet Text Count

GET MORE FOLLOWERS MY BEST FRIENDS? I

WILL FOLLOW YOU BACK IF YOU FOLLOW ME -

http://t.co/t5SyGeh

157,000

Test 67,300

:(67,000

:) 56,810

Lol 41,750

Good morning to all 37,560

Goodnight :) 33,469

Table 5.1: Selected Heavy Cluster IDs and Counts

What we see in the results for Twitter is that there is a lot of redundancy and non-event

noise. Large amounts of tweets are greetings or automatically generated messages. The

nature of this data suggests a potential additional use for the Fuzzy Heavy Hitters problem

and LFCount, that we did not foresee: removing common but unimportant messages, which

we call stop messages.

STOP MESSAGES

Using LFCount, we we can create a filtering concept similar to stop words132 in text

analysis. Where stop words are common terms that should be ignored, these ”stop messages”

on Twitter represent the most commonly exchanged messages that we also wish to ignore.

112

CHAPTER 5. FUZZY HEAVY HITTERS

This concept allows us to use LFCount as a tool to determine stop messages for a data

set which can then be used as a filter to improve accuracy or reduce the size of the dataset

for other algorithms 2, which we leave as future work.

HEAVY HITTERS AND FUZZY HEAVY HITTERS

Considering the close relationship between FHH and Heavy Hitters, we compare the

effectiveness of the two for characterizing the Twitter dataset. With this, we are looking to

resolve the question of whether or not a Heavy Hitters algorithm can provide an accurate

approach to finding Fuzzy Heavy Hitter cluster IDs on Twitter. If the answer is yes, this

implies that the fuzzy weight is primarily occupied by very similar near duplicates (or exact

duplicates) on Twitter.

To evaluate this difference, Figure 5.9 shows an experiment evaluating the heavy hitters

of a 50 million tweet dataset, and examining the k′ = 10, 000, 50, 000, and 500, 000 labels

returned by a Heavy Hitter algorithm and compares the result to the LFCount algorithm.

In this case, the evaluation for Heavy Hitters operates as shown in Algorithm . Labels

are obtained by using a memory unbounded heavy hitter algorithm using a hash table and

counters. Then, for the k′ heaviest hitters, we treat these as cluster ID labels, and perform a

second pass over the dataset to determine the fuzzy count for these cluster IDs. For time

efficiency, we divide the stream using LSH and then all items in the same bin are compared

to see if they are within radius r. This gives us the final fuzzy weight of the top k′ heavy

hitters.
2For example, see section 5.6.1 for discussion of Topic Detection and Tracking algorithms.

113

CHAPTER 5. FUZZY HEAVY HITTERS

Algorithm 8 Naive Heavy Hitter Algorithm
Initialize Hash Table H, with each entry being a counter.
for all Documents d in stream do

H(d)++
Sort H by counter values
Let D′ be top k′ values in H
for all d′ in D′ do

Compute LSHd’
Create A, an array of pairs in the LSH bin where d lands
Create counter cd′ = 0
Append (d′, cd′) to A.

for all Documents d in stream do
Compute LSH(d’
for all d′ ∈ LSH(d) do

if (dist(d,d’) > thresh) then
cd′++

A similar method is used for FHH as shown in Algorithm 9, where instead we take the

cluster ID output of LFCount and use a second pass to get an accurate fuzzy count for the

clusters returned, to remove any over-counting caused by SpaceSaving.

For these experiments, 1,000,000 total SpaceSaving buckets are used in all 3 experiments,

and the k′ = 10,000, 50,000, and 500,000 labels are returned. This constant number of total

SpaceSaving buckets explains the similar runtime for the LFCount experiments.

Figure 5.9: Comparison of LFCount and HH runtime

114

CHAPTER 5. FUZZY HEAVY HITTERS

Algorithm 9 LFCount Second Pass for Accurate Fuzzy Counting
Given final LFCount Data Structure LFC
Sort LFC by counter values
Let TOP be top k′ values in LFC
for all d′ in TOP do

Compute LSH(d′)
Create A, an array of pairs in the LSH bin where d lands
Create counter cd′ = 0
Append (d′, cd′) to A.

for all Documents d in stream do
Compute LSH(d′)
for all d′ ∈ LSH(d) do

if (dist(d,d’) > thresh) then
cd′++

Figure 5.10: Comparison of LFCount and HH for heavy hitter weights

Effectiveness of LSH and Variance reduction

In the variance reduction step for LFCount, using a cosine distance of 0.6, there were

approximately 5% collisions between clusters across LSH bins in the initial de-duplication

round, and never for any subsequent iterative round. With this, we are reasonably confident

that cluster splitting at 16 bit LSH and 1 billion tweets is not introducing additional error.

Accuracy of SpaceSaving Counts and Labels

In addition to understanding how LSH impacts accuracy, we also evaluate the accuracy

of the labels returned by the SpaceSaving algorithm. SpaceSaving favors over-counting and

115

CHAPTER 5. FUZZY HEAVY HITTERS

can dramatically over count elements that are not sufficiently heavy. Thus, for understanding

the efficacy of the method on the Twitter dataset, we need to obtain more accurate counts

for each label.

To accomplish this, we perform a second pass over the dataset using the labels returned

by SpaceSaving, similarly to our approach in the previous experiment comparing LFCount

and HH. Due to runtime concerns, we again use LSH to hash these labels into bins, and

compare each element to the members of the corresponding bin. Thus, these counts are

not precise, but are much more accurate and there is no potential for over-counting from

SpaceSaving. Table 5.2 shows the results, and we observe that while FHH does over count,

the labels returned represent the set of heavy clusters, and the heavy cluster IDs hold a

meaningful proportion of the total fuzzy weight.

In the table, we measure at two different levels of buckets, 1.3 million and 2.6 million,

and evaluate either the top k′ = 100, 000 or k′ = 500, 000 heaviest elements in those buckets.

Our goal is to quantify the degree of over-counting, as well as understand the amount of

fuzzy weight held by these top elements. The column ”FHH Count” is the total fuzzy weight

returned by LFCount, which is the over-counted approximation returned by SpaceSaving.

The column ”True Count (TC)” is the result of the second pass obtaining the actual counts

for each cluster.

We compare the ratio of TC to FHH to determine the relative accuracy of the counts

returned by the data structure. Finally, we evaluate the amount of fuzzy weight held by the

top k′ cluster IDs in the column ”TC % of n”. This gives a picture of how effective LFCount

116

CHAPTER 5. FUZZY HEAVY HITTERS

is at giving a holistic picture of the dataset. The main result of this table is that with only

2.6 million counters, when FHH returns the 500,000 heaviest cluster IDs in those counters,

those cluster IDs are representative of almost 15% of the dataset.

FHH Total Buckets k’ k’ vs n FHH Count True Count (TC) TC vs FHH TC % of n

1.3M 100,000 0.0001 212M 96M 0.45 9.6%

1.3M 500,000 0.0005 549M 116M 0.21 11.6%

2.6M 500,000 0.0005 370M 148M 0.4 14.8%

Table 5.2: SpaceSaving Accuracy in FHH

This data shows that with correct parameterization the count values provided by Space-

Saving do have a degree of over-counting, but the centroids returned do in fact hold a

substantial amount of the elements in the Twitter example when compared to the amount of

data stored. Notably, as k’ approaches the number of FHH total buckets, the accuracy of

counts decreases. This follows the properties of SpaceSaving, as the lower count buckets

change labels more frequently and are more prone to error, depending on the number of

heavy elements in the data set.

IMPLEMENTATION THROUGHPUT

The performance of our implementation is promising, with a throughput of over 1.5 bil-

lion tweets per day, as shown in Table 5.3. These results were obtained using 8 SpaceSaving

threads, 2 LSH threads, and 3 additional thread used for queuing. Given the parallelized

nature of the design, this method scales well to a larger number of threads, giving improved

117

CHAPTER 5. FUZZY HEAVY HITTERS

throughput as needed.

Additionally, we implemented and tested code for online reporting of near duplicates 3 to

evaluate the potential for LFCount to be used as a preprocessing filter for other algorithms.

LSH/SS buckets Near Duplicate Counting Variance Reduction Time

16/20 No No 10 hr

16/20 Yes No 11.5 hr

16/20 Yes 8 12 hr

16/20 Yes 12 13.5 hr

Table 5.3: Runtimes of FHH with different features, k’ = 10,000

5.6 Related Work

Approximation Algorithms for Clustering

Streaming clustering has been well-studied by the theoretical computer science commu-

nity both in the case of general metric spaces109, 109, 110, 133 and Euclidean geometries.111–113, 134, 135

Further, approximations for k-means in both standard and136 and streaming137 settings are

efficient in space and time. However, these methods require at least linear memory with

relation to k.

Algorithms for Noisy Datasets

Other clustering techniques, such as DBSCAN,38 relate closely to FHH. Where DB-

SCAN finds points and continues outwards depending on the number of near neighbors,
3See section 5.6.1 for discussion of Near Duplicate Detection

118

CHAPTER 5. FUZZY HEAVY HITTERS

FHH focuses on finding the regions with the most points; which are the points with the most

near neighbors.

Other methods, such as Skinny-dip,138 also focus on clustering noisy datasets. We do

not compare our FHH implementation directly with this algorithm, however, we differ in

our focus on a single efficient pass over the dataset while using a small amount of memory

relative to the data.

Finally, this method is similar to Clustering with Outliers,124, 125 which has also been

studied in the streaming model.139 As discussed in Section While clustering with outliers

attempts to remove points to make a minimum cost clustering and carefully place the centroid,

we solve the slightly easier problem of identifying clusters with many elements within a

radius by placing approximate centers, without the need to place centers that optimizes

distance between the points. While our algorithm may provide some approximation of a

solution to the clustering with outliers problem, it is not the intention and we do not provide

bounds. Future work may further consider the relationship between the two problems.

Heavy Hitters The Heavy Hitters problem is a popular problem in the field of Streaming

algorithms.18, 140 Many approaches rely on sketching data, such as15, 16 but these methods do

not work given the fuzzy nature of our data set as we describe below. Thus we relate closer

to counting based algorithms, specifically.117

Clustering with Outliers The Fuzzy Heavy Hitters problem is distinct from the k-means

with outliers problem.141 Despite the similarities in the assumptions on the data, in the case

of k-means with outliers the goal is to minimize a distance function where in our case we

119

CHAPTER 5. FUZZY HEAVY HITTERS

are attempting to find dense regions of the data.

Relation to Location Problems This problem also has a relation to the facility location

problem studied extensively by the Operations Research community.142, 143 However, those

formulations are based around significantly smaller dimensional data than our concern here.

One such example is the result in the streaming mode provided by Czumaj, Lammersen,

Monemizadeh and Sohler,115 which provides an approximation algorithm for points in R2.

As discussed in Section 5.6, FHH and Approximate Facility Location are similar prob-

lems, and FHH can be viewed as a special case of Approximate Facility Location.

Social Media and Microblogs Social media websites like twitter have a tremendous

amount of topics, but very few of them are of actual interest. These datasets are of primary

interest and our goal is to provide a small space, one pass algorithm that can detect these

stories. Other work such as118, 144, 145 has explored topic detection in twitter.

Relation to Parallelization of SpaceSaving Recently, there has been a interest in

parallelizing frequent element algorithms such as in146 and.147 It may be possible to improve

the accuracy of our algorithm by using a parallelized Space Saving implementation and

slightly different parameterization; however, our method obtains similar performance by

running multiple instances of the Space Saving algorithms in parallel.

5.6.1 Related Problems and Other Datasets

We now briefly discuss related problems that apply to Twitter and other datasets that represent

open problems and directions about how to apply FHH.

120

CHAPTER 5. FUZZY HEAVY HITTERS

NEAR DUPLICATE DETECTION

One related problem to the FHH problem is Near Duplicate Detection, which is the

process of finding similar items and grouping them. Approximate near duplicate detection

has been used in the text community for handling large data sets such as websites148.149

An example of the usefulness of this method is to return a variety of responses to a search

engine query, as opposed to many very similar results. LFCount is able to solve a slightly

modified version of the problem where it can detect the near duplicates of heavy elements.

LFCount is able to report online in one pass whether or not a new item is a near duplicate

of a heavy element among all previously seen items, but requires a second pass to be able to

perform near duplicate detection for items that are globally heavy to the stream. LFCount is

able to find near duplicates for globally heavy elements by modifying Algorithm 9 such that

after every update, an item is returned as a near duplicate if any counter is incremented, and

otherwise is not a near duplicate. LFCount may prove a useful application for approximately

finding near duplicates, which allows for algorithms that want to process only unique

elements.

TOPIC DETECTION AND TRACKING

Another area related to the FHH problem and the LFCount algorithm is Topic Detection

and Tracking (TDT). This problem has been well studied and many algorithms have been

directly compared thanks to a common NIST dataset of newspaper articles.150 Different

methods have also been applied to Twitter151.152 A major goal of topic detection is to find

121

CHAPTER 5. FUZZY HEAVY HITTERS

information related to events and be able to report that a new event has occurred. For

datasets where important events are heavy, FHH provides an efficient solution for finding

these events. On Twitter, while these topics are not extremely heavy, we do find event data,

as shown in Table 5.4.

In Table 5.4 we show topics found in output processing a 50 million Tweet sample. We

this smaller volume as it represents a smaller timeframe for tweets to be distributed over

(3 months versus 3 years), which improves performance for finding events. We seen in

this table that we are able to find instances of sporting events, technology, and news. We

observed that many of the notable events in the dataset were retweets. Retweets are the

same message shared multiple times, which are not necessarily fuzzy in nature, but any

embellishment or modification of the message is caught by FHH and considered the same

message. An important step in testing on applying FHH to the TDT problem in future work

would be evaluating the performance on finding topics where there are fewer retweets.

122

CHAPTER 5. FUZZY HEAVY HITTERS

Tweet Text Count

Giambi comes through with the walk off 3 run homer. Crazy

9th inning, but the bottom line is a good win for the Rockies.

Tacos tomorrow.

1200

Key: RT @androidcentral: Minecraft Pocket Edition

now available in the Android Market for the Xperia Play

http://t.co/CQxzCVH #android

780

RT @ndtv: Delhi Police shouldnt have allowed themselves

to be used as a tool in the hands of the govt, says Kiran Bedi

490

RT @freepsports: #Michigan beats #NotreDame, 35-31 425

Table 5.4: Topic and Event Heavy Cluster IDs and Counts (50 million Tweets)

An open problem is to use LFCount to make a preprocessing filter for TDT algorithms.

The goal of this construction would be to remove the stop messages introduced in Section

5.5.2. These messages, which may not have value as topics, but are very frequent, can be

removed by LFCount, in turn improving the performance of the TDT algorithm.

A variation of TDT, where the goal is to find the first instance of an event is Streaming

First Story Detection,118 is discussed in the next section.

FINDING HALOS

Streaming algorithms have recently been very successful at finding patterns in the

distribution of matter and galaxies in the universe called halos.153 This approach brings a

123

CHAPTER 5. FUZZY HEAVY HITTERS

problem once reserved for super computers to a laptop while yielding accurate results. In this

task, the goal is to return k halos, and the size of the particle stream, 1010, is large enough

where FHH may be more effective than other clustering methods. The FHH construction

may help further, as the current methodology requires drawing a static grid over space and

finding heavy cells, FHH may be able to group these data points more efficiently.

5.7 Comparison with First Story Detection

STREAMING FIRST STORY DETECTION

There are some important similarities with this work and the paper Streaming First Story

Detection (SFSD)118 by Petrovic, Osborne, and Lavrenko. The goal of First Story Detection

is to determine if a story arriving is the first of its kind. Similarly to LFCount, they use

Twitter data as their test dataset. To achieve this goal, the authors create an algorithm using

LSH and holding a constant number of the most recent tweets. This combination allows

the algorithm to quickly evaluate the newness of incoming tweets in a memory efficient,

streaming way.

To compare the algorithms used to solve the respective problems; LFCount also uses a

constant number of items per LSH bit signature. However, by using a different underlying

data structure for comparison and storage, we are able to gain a major improvement in

accuracy per bucket using the LFCount algorithm for solving the FHH problem. This in turn

allows us to use fewer buckets, which directly improves speed and memory, compared to

using the SFSD algorithm to try and solve the FHH problem. This gain lies in the efficiency

124

CHAPTER 5. FUZZY HEAVY HITTERS

for all Documents d in corpus do
add d to LSH
S ← contents of the LSH bucket where d lands
for all Documents d′ in S do

c = distance(d, d′)
if c < dismin(d) then

dismin(d)← c

if dismin(d) > t then
compare d to a fixed number of most

recent documents as in traditional document
comparison and update dismin as necessary

assign score dismin to d
add d to inverted index.

Figure 5.11: SFSD Algorithm

for all Documents d in corpus do
add d to LSH
S ← the SpaceSaver data structure in the LSH bin where d lands
Insert d into S
for all For s in S do

c = distance(d, s)
if c > thresh then

s+=1
else

Evict s with smallest count, replace with d, keep old counter
Variance Reduction (See Algorithm 7)

Figure 5.12: LFCount Algorithm

125

CHAPTER 5. FUZZY HEAVY HITTERS

of our modified Space-Saving data structure where we preserve elements in memory based

on their frequency, not by timestamp as is the case with SFSD.

A notable difference between the two algorithms is that LFCount is not capable of

finding new stories at the point of origination (finding the first node in a thread) due to a

smaller number of stored elements. However, Petrovic et. al focus on identifying tweets

that are in ”threads that grow the fastest”, a task we are able to accomplish. By using an

FHH based approach, we are able to find the heaviest threads from the Topic Detection

perspective. Further, with modification, the algorithm can also account for the notion of

only finding recent events by using some notion of decay or using sliding a window heavy

hitter algorithm, and we leave this improvement for future work.

In terms of a performance and memory comparison, we maintain k copies of the Space

Saver data structure with b buckets each. By comparison, SFSD stores S items per LSH

value, where S >> b

Further, SFSD uses multiple hash tables, as finding a near neighbor is critical for each

element. We don’t have this requirement, as we simply need a majority of items per cluster

to be detected, and use a single hash table at a time. We perform offline variance reduction

to recombine any clusters which may have been divided by LSH in this way.

PERFORMANCE

We note that while the algorithm is similar to that of SFSD, due to the nature of their

algorithm, similar accuracy requires many more buckets per bin, and thus has a large constant

multiplier in time, and does not allow a direct time comparison.

126

CHAPTER 5. FUZZY HEAVY HITTERS

5.8 Future Work

In introducing this problem, we also open up many experiments and questions that may

be addressed in future work, both algorithmic and in implementation. We believe at this

point the most important algorithmic step forward would be evaluating the applicability of

sketch based algorithms for this problem, as such an algorithm could provide both accuracy

and performance improvements. In terms of application improvements, a key focus moving

forward will be determining a method to automatically parameterize this algorithm, as the

current implementation is highly dependent on domain knowledge.

In the opposite direction of generalization, one approach for future work would be to

try and apply specialized domain specific methods. In our experimentation we do not use

any text preprocessing outside of tokenization, and do not use any text tools such as TFIDF,

noun identification, or other methods commonly used for higher accuracy in analyzing text.

Using these methods, or similar methods for other fields , may show how useful FHH is for

a variety of problems.

An additional direction for future work is considering the importance of the age of data

and how that impacts the importance of heavy hitters. Two approaches come to mind as

reasonable approaches. The first would be a sliding window based approach where multiple

copies of a data structure such as LFCount are started at various time intervals and run for a

set amount of time. The second approach would be to slowly decay counter values over time

to allow new heavy hitters to more rapidly overtake older elements. Developing techniques

127

CHAPTER 5. FUZZY HEAVY HITTERS

may help adapt FHH to solve additional problems.

5.9 Chapter Conclusions

In sum, we introduce a new problem definition for finding groups of heavy elements in

vector space. We provide the LFCount to solve this problem. We use Twitter as an example

of how this problem and solution is applicable to practical datasets. Our future work might

consider increased effort in processing and filtering the content for further dataset specific

improvements on processing the Twitter dataset. Beyond Twitter, this problem definition

and approach are relevant to other domains, such as other social media streams and other

settings with sparse vectors such as data from many heterogeneous sensors.

128

Chapter 6

Conclusion

With all of this work taken together, I believe we present a strong argument; not only

furthering the evidence for the usefulness of streaming algorithms for fast datasets, but for

the importance of designing theoretical methods with the goal of solving practical problems,

and the capability of the resulting software.

This thesis covers a wide variety of topics: sampling, heavy hitters, frequency moments,

and matrix functions. The variety and complexity of these problems speaks to the usefulness

of the approach. Most importantly, each solution is built to help improve practical software

that processes fast datasets.

Data will not get smaller. The world will not slow down. The best path forward is one

where theory can drive practice and practice can drive theory.

129

Bibliography

[1] I. LiveStats. Twitter usage statistics. [Online]. Available: http://www.internetlivestats.

com/twitter-statistics/

[2] J. M. Hawkins. (2015, November) 2016: The year of the data center.

[Online]. Available: http://www.datacenterknowledge.com/archives/2015/11/23/

2016-year-data-center/

[3] I. Gartner. Gartner says 6.4 billion connected ”things” will be in use in

2016, up 30 percent from 2015gartner says 6.4 billion connected ”things”

will be in use in 2016, up 30 percent from 2015. [Online]. Available:

http://www.gartner.com/newsroom/id/3165317

[4] T. SImonite. (2016, March) Intel puts the brakes on moore’s

law. [Online]. Available: https://www.technologyreview.com/s/601102/

intel-puts-the-brakes-on-moores-law/

[5] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with opensketch,”

in Proceedings of the 10th USENIX Conference on Networked Systems Design and

130

http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.datacenterknowledge.com/archives/2015/11/23/2016-year-data-center/
http://www.datacenterknowledge.com/archives/2015/11/23/2016-year-data-center/
http://www.gartner.com/newsroom/id/3165317
https://www.technologyreview.com/s/601102/intel-puts-the-brakes-on-moores-law/
https://www.technologyreview.com/s/601102/intel-puts-the-brakes-on-moores-law/

BIBLIOGRAPHY

Implementation, ser. nsdi’13. Berkeley, CA, USA: USENIX Association, 2013, pp.

29–42. [Online]. Available: http://dl.acm.org/citation.cfm?id=2482626.2482631

[6] A. Gilbert and P. Indyk, “Sparse recovery using sparse matrices.” Institute of

Electrical and Electronics Engineers, 2010.

[7] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan, “Hash

kernels for structured data,” Journal of Machine Learning Research, vol. 10, no. Nov,

pp. 2615–2637, 2009.

[8] S. Schechter, C. Herley, and M. Mitzenmacher, “Popularity is everything: A new

approach to protecting passwords from statistical-guessing attacks,” in Proceedings

of the 5th USENIX conference on Hot topics in security. USENIX Association,

2010, pp. 1–8.

[9] V. Braverman and G. Vorsanger, “Sampling from dense streams without penalty,”

in International Computing and Combinatorics Conference. Springer, 2014, pp.

13–24.

[10] V. Braverman, R. Ostrovsky, and G. Vorsanger, “Weighted sampling without re-

placement from data streams,” Information Processing Letters, vol. 115, no. 12, pp.

923–926, 2015.

[11] V. Braverman, A. Roytman, and G. Vorsanger, “Approximating subadditive hadamard

functions on implicit matrices,” RANDOM 2016, 2016.

131

http://dl.acm.org/citation.cfm?id=2482626.2482631

BIBLIOGRAPHY

[12] S. Muthukrishnan, “Data streams: algorithms and applications,” Found. Trends

Theor. Comput. Sci., vol. 1, no. 2, pp. 117–236, Aug. 2005. [Online]. Available:

http://dx.doi.org/10.1561/0400000002

[13] D. P. Woodruff, “Frequency moments,” in Encyclopedia of Database Systems, 2009,

pp. 1169–1170.

[14] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating the

frequency moments,” J. Comput. Syst. Sci., vol. 58, no. 1, pp. 137–147, 1999.

[15] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data streams,”

in Proceedings of the 29th International Colloquium on Automata, Languages and

Programming, ser. ICALP ’02. London, UK, UK: Springer-Verlag, 2002, pp.

693–703. [Online]. Available: http://dl.acm.org/citation.cfm?id=646255.684566

[16] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the

count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1, pp. 58–75, Apr.

2005. [Online]. Available: http://dx.doi.org/10.1016/j.jalgor.2003.12.001

[17] K. G. Larsen, J. Nelson, H. L. Nguyên, and M. Thorup, “Heavy hitters via cluster-

preserving clustering,” 57th Annual Foundations of Computer Science (FOCS), 2016.

[18] V. Braverman and R. Ostrovsky, “Approximating large frequency moments with

pick-and-drop sampling,” in Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques. Springer, 2013, pp. 42–57.

132

http://dx.doi.org/10.1561/0400000002
http://dl.acm.org/citation.cfm?id=646255.684566
http://dx.doi.org/10.1016/j.jalgor.2003.12.001

BIBLIOGRAPHY

[19] P. Indyk and D. Woodruff, “Optimal approximations of the frequency moments

of data streams,” in Proceedings of the thirty-seventh annual ACM symposium on

Theory of computing, ser. STOC ’05. New York, NY, USA: ACM, 2005, pp.

202–208. [Online]. Available: http://doi.acm.org/10.1145/1060590.1060621

[20] V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger, “An optimal algorithm

for large frequency moments using o(nˆ(1-2/k)) bits,” in APPROX/RANDOM 2014,

September 4-6, 2014, Barcelona, Spain, 2014, pp. 531–544. [Online]. Available:

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.531

[21] V. Braverman and R. Ostrovsky, “Zero-one frequency laws,” in Proceedings

of the Forty-second ACM Symposium on Theory of Computing, ser. STOC

’10. New York, NY, USA: ACM, 2010, pp. 281–290. [Online]. Available:

http://doi.acm.org/10.1145/1806689.1806729

[22] V. Braverman and S. R. Chestnut, “Universal Sketches for the Frequency Negative

Moments and Other Decreasing Streaming Sums,” in APPROX/RANDOM 2015,

ser. Leibniz International Proceedings in Informatics (LIPIcs), N. Garg, K. Jansen,

A. Rao, and J. D. P. Rolim, Eds., vol. 40. Dagstuhl, Germany: Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 591–605. [Online]. Available:

http://drops.dagstuhl.de/opus/volltexte/2015/5325

[23] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream evolution,”

in Proceedings of the 32nd international conference on Very large data bases,

133

http://doi.acm.org/10.1145/1060590.1060621
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.531
http://doi.acm.org/10.1145/1806689.1806729
http://drops.dagstuhl.de/opus/volltexte/2015/5325

BIBLIOGRAPHY

ser. VLDB ’06. VLDB Endowment, 2006, pp. 607–618. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1182635.1164180

[24] B. Babcock, M. Datar, and R. Motwani, “Sampling from a moving window over

streaming data,” in Proceedings of the thirteenth annual ACM-SIAM symposium

on Discrete algorithms, ser. SODA ’02. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 2002, pp. 633–634. [Online]. Available:

http://dl.acm.org/citation.cfm?id=545381.545465

[25] Z. Bar-Yossef, “The complexity of massive data set computations,” Ph.D. dissertation,

Berkeley, CA, USA, 2002, aAI3183783.

[26] V. Braverman, R. Ostrovsky, and D. Vilenchik, “How hard is counting triangles in

the streaming model?” in Automata, Languages, and Programming, ser. Lecture

Notes in Computer Science, F. Fomin, R. Freivalds, M. Kwiatkowska, and D. Peleg,

Eds. Springer Berlin Heidelberg, 2013, vol. 7965, pp. 244–254. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-39206-1 21

[27] V. Braverman, R. Ostrovsky, and G. Vorsanger, “Weighted sampling without replace-

ment from data streams,” submitted, 2013.

[28] V. Braverman, R. Ostrovsky, and C. Zaniolo, “Optimal sampling from

sliding windows,” in Proceedings of the twenty-eighth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, ser. PODS

134

http://dl.acm.org/citation.cfm?id=1182635.1164180
http://dl.acm.org/citation.cfm?id=545381.545465
http://dx.doi.org/10.1007/978-3-642-39206-1_21

BIBLIOGRAPHY

’09. New York, NY, USA: ACM, 2009, pp. 147–156. [Online]. Available:

http://doi.acm.org/10.1145/1559795.1559818

[29] S. Chaudhuri, R. Motwani, and V. Narasayya, “On random sampling over joins,” in

Proceedings of the 1999 ACM SIGMOD international conference on Management of

data, ser. SIGMOD ’99. New York, NY, USA: ACM, 1999, pp. 263–274. [Online].

Available: http://doi.acm.org/10.1145/304182.304206

[30] J. S. Vitter, Random sampling with a reservoir. v.11 n.1, pp.37–57: ACM Transac-

tions on Mathematical Software (TOMS), 1985.

[31] B. Claise, “Cisco systems netflow services export version 9,” vol. RFC 3954.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.

MIT press Cambridge, 2001, vol. 6.

[33] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions via

hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518–529.

[34] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, ser.

STOC ’02. New York, NY, USA: ACM, 2002, pp. 380–388. [Online]. Available:

http://doi.acm.org/10.1145/509907.509965

[35] A. McGregor, A. Pavan, S. Tirthapura, and D. Woodruff, “Space-efficient estimation

of statistics over sub-sampled streams,” in Proceedings of the 31st symposium on

135

http://doi.acm.org/10.1145/1559795.1559818
http://doi.acm.org/10.1145/304182.304206
http://doi.acm.org/10.1145/509907.509965

BIBLIOGRAPHY

Principles of Database Systems, ser. PODS ’12. New York, NY, USA: ACM, 2012,

pp. 273–282. [Online]. Available: http://doi.acm.org/10.1145/2213556.2213594

[36] D. P. Woodruff, “Sketching as a tool for numerical linear algebra,” CoRR, vol.

abs/1411.4357, 2014. [Online]. Available: http://arxiv.org/abs/1411.4357

[37] V. Braverman and R. Ostrovsky, “Measuring independence of datasets,” in Proceed-

ings of the 42nd annual ACM Symposium on Theory of Computing, 2010.

[38] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for

discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34,

1996, pp. 226–231.

[39] F. Rusu and A. Dobra, “Sketching sampled data streams,” in Proceedings of

the 2009 IEEE International Conference on Data Engineering, ser. ICDE ’09.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 381–392. [Online].

Available: http://dx.doi.org/10.1109/ICDE.2009.31

[40] A. Chakrabarti, S. Khot, and X. Sun, “Near-optimal lower bounds on the multi-party

communication complexity of set disjointness,” in IEEE Conference on Computa-

tional Complexity, 2003, pp. 107–117.

[41] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, “An information statistics

approach to data stream and communication complexity,” in Proceedings of the 43rd

Symposium on Foundations of Computer Science, ser. FOCS ’02. Washington,

136

http://doi.acm.org/10.1145/2213556.2213594
http://arxiv.org/abs/1411.4357
http://dx.doi.org/10.1109/ICDE.2009.31

BIBLIOGRAPHY

DC, USA: IEEE Computer Society, 2002, pp. 209–218. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645413.652164

[42] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, “Counting

distinct elements in a data stream,” in Proceedings of the 6th International

Workshop on Randomization and Approximation Techniques, ser. RANDOM

’02. London, UK, UK: Springer-Verlag, 2002, pp. 1–10. [Online]. Available:

http://dl.acm.org/citation.cfm?id=646978.711822

[43] P. Beame, T. S. Jayram, and A. Rudra, “Lower bounds for randomized read/write

stream algorithms,” in Proceedings of the thirty-ninth annual ACM symposium on

Theory of computing, ser. STOC ’07. New York, NY, USA: ACM, 2007, pp.

689–698. [Online]. Available: http://doi.acm.org/10.1145/1250790.1250891

[44] V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger, “Approximating large

frequency moments with o(n1−2/k) bits,” CoRR, vol. abs/1401.1763, 2014.

[45] V. Braverman and R. Ostrovsky, “Smooth histograms for sliding windows,” in

Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer

Science, ser. FOCS ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.

283–293. [Online]. Available: http://dx.doi.org/10.1109/FOCS.2007.63

[46] ——, “Approximating large frequency moments with pick-and-drop sampling,” in

APPROX-RANDOM, 2013, pp. 42–57.

137

http://dl.acm.org/citation.cfm?id=645413.652164
http://dl.acm.org/citation.cfm?id=646978.711822
http://doi.acm.org/10.1145/1250790.1250891
http://dx.doi.org/10.1109/FOCS.2007.63

BIBLIOGRAPHY

[47] ——, “Generalizing the layering method of Indyk and Woodruff: Recursive sketches

for frequency-based vectors on streams,” in APPROX-RANDOM, 2013, pp. 58–70.

[48] A. Chakrabarti, G. Cormode, and A. McGregor, “Robust lower bounds

for communication and stream computation,” in Proceedings of the 40th

annual ACM symposium on Theory of computing, ser. STOC ’08. New

York, NY, USA: ACM, 2008, pp. 641–650. [Online]. Available: http:

//doi.acm.org/10.1145/1374376.1374470

[49] D. Coppersmith and R. Kumar, “An improved data stream algorithm for frequency

moments,” in Proceedings of the fifteenth annual ACM-SIAM symposium on

Discrete algorithms, ser. SODA ’04. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 2004, pp. 151–156. [Online]. Available:

http://dl.acm.org/citation.cfm?id=982792.982815

[50] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan, “Comparing data streams

using hamming norms (how to zero in),” in Proceedings of the 28th international

conference on Very Large Data Bases, ser. VLDB ’02. VLDB Endowment, 2002, pp.

335–345. [Online]. Available: http://dl.acm.org/citation.cfm?id=1287369.1287399

[51] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, “An approximate

l1-difference algorithm for massive data streams,” in Proceedings of the 40th Annual

Symposium on Foundations of Computer Science, ser. FOCS ’99. Washington,

138

http://doi.acm.org/10.1145/1374376.1374470
http://doi.acm.org/10.1145/1374376.1374470
http://dl.acm.org/citation.cfm?id=982792.982815
http://dl.acm.org/citation.cfm?id=1287369.1287399

BIBLIOGRAPHY

DC, USA: IEEE Computer Society, 1999, pp. 501–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=795665.796530

[52] S. Ganguly, “Estimating frequency moments of data streams using random linear

combinations,” in APPROX-RANDOM, 2004, pp. 369–380.

[53] S. Ganguly and G. Cormode, “On estimating frequency moments of data

streams,” in Proceedings of the 10th International Workshop on Approximation

and the 11th International Workshop on Randomization, and Combinatorial

Optimization. Algorithms and Techniques, ser. APPROX ’07/RANDOM ’07.

Berlin, Heidelberg: Springer-Verlag, 2007, pp. 479–493. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-74208-1 35

[54] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee, “Estimating statistical

aggregates on probabilistic data streams,” in PODS ’07: Proceedings of the twenty-

sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.

New York, NY, USA: ACM, 2007, pp. 243–252.

[55] D. M. Kane, J. Nelson, and D. P. Woodruff, “On the exact space complexity of

sketching and streaming small norms,” in Proceedings of the 21st Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2010), 2010.

[56] ——, “An optimal algorithm for the distinct elements problem,” in Proceedings

of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

139

http://dl.acm.org/citation.cfm?id=795665.796530
http://dx.doi.org/10.1007/978-3-540-74208-1_35

BIBLIOGRAPHY

database systems, ser. PODS ’10. New York, NY, USA: ACM, 2010, pp. 41–52.

[Online]. Available: http://doi.acm.org/10.1145/1807085.1807094

[57] P. Li, “Compressed counting,” in Proceedings of the twentieth Annual ACM-SIAM

Symposium on Discrete Algorithms, ser. SODA ’09. Philadelphia, PA, USA: Society

for Industrial and Applied Mathematics, 2009, pp. 412–421. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1496770.1496816

[58] J. Nelson and D. P. Woodruff, “Fast Manhattan sketches in data streams,” in PODS

’10: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems of data. New York, NY, USA: ACM, 2010, pp.

99–110.

[59] D. Woodruff, “Optimal space lower bounds for all frequency moments,” in SODA ’04:

Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms.

Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2004, pp.

167–175.

[60] V. Braverman and R. Ostrovsky, “Zero-one frequency laws,” in Proceedings

of the 42nd ACM symposium on Theory of computing, ser. STOC ’10.

New York, NY, USA: ACM, 2010, pp. 281–290. [Online]. Available:

http://doi.acm.org/10.1145/1806689.1806729

[61] S. Bhattacharyya, A. Madeira, S. Muthukrishnan, and T. Ye, “How to scalably and

accurately skip past streams,” in Proceedings of the 2007 IEEE 23rd International

140

http://doi.acm.org/10.1145/1807085.1807094
http://dl.acm.org/citation.cfm?id=1496770.1496816
http://doi.acm.org/10.1145/1806689.1806729

BIBLIOGRAPHY

Conference on Data Engineering Workshop, ser. ICDEW ’07. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 654–663. [Online]. Available:

http://dx.doi.org/10.1109/ICDEW.2007.4401052

[62] “Open problems in data streams and related topics,” in IITK workshop on algorithms

for data streams. http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf .

[63] N. Johnson, A. Kemp, and S. Kotz, Univariate discrete distributions. Wiley-

Interscience, 2005.

[64] D. E. Knuth, The art of computer programming, volume 1 (3rd ed.): fundamental

algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,

Inc., 1997.

[65] V. V. Vazirani, Approximation algorithms. New York, NY, USA: Springer-Verlag

New York, Inc., 2001.

[66] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma, R. Murthy, and

H. Liu, “Data warehousing and analytics infrastructure at facebook,” in Proceedings

of the 2010 ACM SIGMOD International Conference on Management of data, ser.

SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 1013–1020. [Online].

Available: http://doi.acm.org/10.1145/1807167.1807278

[67] H. Popkin, “Facebook hits 1 billion users,” http://www.today.com/tech/facebook-hits-

1-billion-users-6271714, October 2012.

141

http://dx.doi.org/10.1109/ICDEW.2007.4401052
http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf
http://doi.acm.org/10.1145/1807167.1807278

BIBLIOGRAPHY

[68] D. Lee, “Global internet slows after ’biggest ddos in history’,”

http://www.bbc.co.uk/news/technology-21954636, March 2013.

[69] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Streaming algorithms

for robust, real-time detection of ddos attacks,” in Proceedings of the 27th

International Conference on Distributed Computing Systems, ser. ICDCS ’07.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 4–. [Online]. Available:

http://dx.doi.org/10.1109/ICDCS.2007.142

[70] Y. Xiang, Y. Lin, W. Lei, and S. Huang, “Detecting ddos attack based on network

self-similarity,” IEE Proceedings-Communications, vol. 151, no. 3, pp. 292–295,

2004.

[71] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mechanisms,”

ACM SIGCOMM Computer Communication Review, vol. 34, pp. 39–53, 2004.

[72] M. Goldstein, M. Reif, A. Stahl, and T. Breuel, “Server-side prediction of source ip

addresses using density estimation,” in Availability, Reliability and Security, 2009.

ARES ’09. International Conference on, 2009, pp. 82–89.

[73] D. Berend and T. Tassa, “Improved bounds on bell numbers and on moments of sums

of random variables,” in Probability and Mathematical Statistics, vol. 30, no. 2, pp.

185–205.

[74] P. Bullen, D. Mitrinović, and P. Vasić, Means and their inequalities, ser. Mathematics

142

http://dx.doi.org/10.1109/ICDCS.2007.142

BIBLIOGRAPHY

and its applications. East European series. D. Reidel, 1988. [Online]. Available:

http://books.google.com/books?id=cjzvAAAAMAAJ

[75] R. Motwani and P. Raghavan, Randomized algorithms. New York, NY: Cambridge

University Press, 1995.

[76] D. E. Knuth, The art of computer programming, volume 1 (3rd ed.): fundamental

algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,

Inc., 1997.

[77] Y. Tille, Sampling Algorithms. Verlag: Springer, 2006.

[78] F. Olken and D. Rotem, “Random sampling from databases: a survey,”

Statistics and Computing, vol. 5, no. 1, pp. 25–42, 1995. [Online]. Available:

http://dx.doi.org/10.1007/BF00140664

[79] M. Szegedy, “The DLT priority sampling is essentially optimal,” in Proceedings

of the thirty-eighth annual ACM symposium on Theory of computing, ser. STOC

’06. New York, NY, USA: ACM, 2006, pp. 150–158. [Online]. Available:

http://doi.acm.org/10.1145/1132516.1132539

[80] T. Johnson, S. Muthukrishnan, and I. Rozenbaum, “Sampling algorithms in a stream

operator,” in Proceedings of the 2005 ACM SIGMOD international conference on

Management of data, ser. SIGMOD ’05. New York, NY, USA: ACM, 2005, pp.

1–12. [Online]. Available: http://doi.acm.org/10.1145/1066157.1066159

143

http://books.google.com/books?id=cjzvAAAAMAAJ
http://dx.doi.org/10.1007/BF00140664
http://doi.acm.org/10.1145/1132516.1132539
http://doi.acm.org/10.1145/1066157.1066159

BIBLIOGRAPHY

[81] P. B. Gibbons and Y. Matias, “New sampling-based summary statistics for improving

approximate query answers,” in Proceedings of the 1998 ACM SIGMOD international

conference on Management of data, ser. SIGMOD ’98. New York, NY, USA: ACM,

1998, pp. 331–342. [Online]. Available: http://doi.acm.org/10.1145/276304.276334

[82] G. Frahling, P. Indyk, and C. Sohler, “Sampling in dynamic data streams and

applications,” in Proceedings of the twenty-first annual symposium on Computational

geometry, ser. SCG ’05. New York, NY, USA: ACM, 2005, pp. 142–149. [Online].

Available: http://doi.acm.org/10.1145/1064092.1064116

[83] M. Kolonko and D. Wäsch, “Sequential reservoir sampling with a nonuniform

distribution,” ACM Trans. Math. Softw., vol. 32, no. 2, pp. 257–273, Jun. 2006.

[Online]. Available: http://doi.acm.org/10.1145/1141885.1141891

[84] K.-H. Li, “Reservoir-sampling algorithms of time complexity o(n(1 + log(n/n))),”

ACM Trans. Math. Softw., vol. 20, no. 4, pp. 481–493, Dec. 1994. [Online]. Available:

http://doi.acm.org/10.1145/198429.198435

[85] B. Rosén, “Asymptotic theory for successive sampling with varying probabilities

without replacement, I,” The Annals of Mathematical Statistics, vol. 43, no. 2, pp.

373–397, 1972. [Online]. Available: http://www.jstor.org/stable/2239977

[86] P. S. Efraimidis and P. G. Spirakis, “Weighted random sampling with a reservoir,”

Inf. Process. Lett., vol. 97, no. 5, pp. 181–185, Mar. 2006. [Online]. Available:

http://dx.doi.org/10.1016/j.ipl.2005.11.003

144

http://doi.acm.org/10.1145/276304.276334
http://doi.acm.org/10.1145/1064092.1064116
http://doi.acm.org/10.1145/1141885.1141891
http://doi.acm.org/10.1145/198429.198435
http://www.jstor.org/stable/2239977
http://dx.doi.org/10.1016/j.ipl.2005.11.003

BIBLIOGRAPHY

[87] E. Cohen and H. Kaplan, “Tighter estimation using bottom k sketches,” Proc.

VLDB Endow., vol. 1, no. 1, pp. 213–224, Aug. 2008. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1453856.1453884

[88] C.-K. Wong and M. C. Easton, “An efficient method for weighted sampling without

replacement,” SIAM Journal on Computing, vol. 9, no. 1, pp. 111–113, 1980.

[89] E. Cohen and H. Kaplan, “Summarizing data using bottom-k sketches,” in Pro-

ceedings of the twenty-sixth annual ACM symposium on Principles of distributed

computing. ACM, 2007, pp. 225–234.

[90] P. S. Efraimidis, “Weighted random sampling over data streams,” arXiv preprint

arXiv:1012.0256, 2010.

[91] E. L. Lehmann and J. P. Romano, Testing statistical hypotheses. Springer Science

& Business Media, 2006.

[92] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the attribute value

independence assumption,” in Proceedings of the 23rd International Conference on

Very Large Data Bases, 1997.

[93] R. Kimball and J. Caserta, “The data warehouse etl toolkit: Practical techniques for

extracting, cleaning, conforming, and delivering data,” 2004.

[94] P. Indyk and A. McGregor, “Declaring independence via the sketching of sketches,”

145

http://dl.acm.org/citation.cfm?id=1453856.1453884

BIBLIOGRAPHY

in Proceedings of the 19th annual ACM-SIAM Symposium on Discrete Algorithms,

2008.

[95] D. Guillot, A. Khare, and B. Rajaratnam, “Complete characterization of hadamard

powers preserving loewner positivity, monotonicity, and convexity,” Journal of Math-

ematical Analysis and Applications, vol. 425, no. 1, pp. 489–507, 2015.

[96] R. A. Horn and C. R. Johnson, “Topics in matrix analysis,” Cambridge University

Presss, Cambridge, 1991.

[97] P. Indyk, “Stable distributions, pseudorandom generators, embeddings, and data

stream computation,” J. ACM, vol. 53, no. 3, pp. 307–323, 2006.

[98] V. Braverman and R. Ostrovsky, “Generalizing the layering method of Indyk and

Woodruff: Recursive sketches for frequency-based vectors on streams,” Accepted to

the 16th. International Workshop on Approximation Algorithms for Combinatorial

Optimization Problems (APPROX’2013)., 2013.

[99] N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie, “Testing

k-wise and almost k-wise independence,” in Proceedings of the 39th annual ACM

Symposium on Theory of Computing, 2007.

[100] N. Alon, O. Goldreich, and Y. Mansour, “Almost k-wise independence versus k-wise

independence,” Information Processing Letters, vol. 88, no. 3, pp. 107–110, 2003.

[101] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White, “Testing

146

BIBLIOGRAPHY

random variables for independence and identity,” in Proceedings of the 42nd annual

IEEE Symposium on Foundations of Computer Science, 2001.

[102] T. Batu, R. Kumar, and R. Rubinfeld, “Sublinear algorithms for testing monotone

and unimodal distributions,” in Proceedings of the 36th annual ACM Symposium on

Theory of Computing, 2004.

[103] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, “Testing that distribu-

tions are close,” in Proceedings of the 41st annual IEEE Symposium on Foundations

of Computer Science, 2000.

[104] ——, “Testing closeness of discrete distributions,” Journal of the ACM, vol. 60, no. 1,

p. 4, 2013.

[105] V. Braverman, K.-M. Chung, Z. Liu, M. Mitzenmacher, and R. Ostrovsky, “AMS

Without 4-Wise Independence on Product Domains,” in Proceedings of the 27th

International Symposium on Theoretical Aspects of Computer Science, 2010.

[106] A. McGregor and H. T. Vu, “Evaluating bayesian networks via data streams,” in

Proceedings of the 21st International Computing and Combinatorics Conference,

2015.

[107] R. Rubinfeld and R. A. Servedio, “Testing monotone high-dimensional distributions,”

in Proceedings of the 37th annual ACM Symposium on Theory of Computing, 2005.

147

BIBLIOGRAPHY

[108] A. Sahai and S. Vadhan, “A complete problem for statistical zero knowledge,” Journal

of the ACM, vol. 50, no. 2, pp. 196–249, 2003.

[109] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data streams,” in

Proceedings 41st FOCS, 2000., pp. 359–366.

[110] M. Charikar, L. O’Callaghan, and R. Panigrahy, “Better streaming algorithms for

clustering problems,” in Proceedings of the thirty-fifth annual ACM symposium on

Theory of computing, ser. STOC ’03. New York, NY, USA: ACM, 2003, pp. 30–39.

[Online]. Available: http://doi.acm.org/10.1145/780542.780548

[111] S. Har-Peled and S. Mazumdar, “Coresets for k-means and k-median clustering and

their applications,” in Proceedings36th STOC, 2004, pp. 291–300.

[112] G. Frahling and C. Sohler, “Coresets in dynamic geometric data streams,” in Proceed-

ings37th STOC, 2005., pp. 209–217.

[113] K. Chen, “On coresets for k-median and k-means clustering in metric and Euclidean

spaces and their applications,” SIAM Journal on Computing, vol. 39, no. 3, pp.

923–947, 2009.

[114] D. Feldman, M. Monemizadeh, and C. Sohler, “A PTAS for k-means clustering based

on weak coresets,” in Proceedings23rd Symposium on Computational Geometry,

2007., pp. 11–18.

[115] A. Czumaj, C. Lammersen, M. Monemizadeh, and C. Sohler, “(1+ ε)-approximation

148

http://doi.acm.org/10.1145/780542.780548

BIBLIOGRAPHY

for facility location in data streams,” in Proceedings24th SODA, 2013., pp. 1710–

1728.

[116] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data streams,”

Proc. VLDB Endow., vol. 1, no. 2, pp. 1530–1541, Aug. 2008. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1454159.1454225

[117] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of frequent and

top-k elements in data streams,” in Database Theory-ICDT 2005. Springer, 2005,

pp. 398–412.

[118] S. Petrović, M. Osborne, and V. Lavrenko, “Streaming first story detection with appli-

cation to twitter,” in Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Linguistics.

Association for Computational Linguistics, 2010, pp. 181–189.

[119] M. Ackerman and S. Dasgupta, “Incremental clustering: The case for extra clusters,”

in Advances in Neural Information Processing Systems, 2014, pp. 307–315.

[120] M.-F. Balcan, A. Blum, and S. Vempala, “A discriminative framework for clustering

via similarity functions,” in Proceedings of the fortieth annual ACM symposium on

Theory of computing. ACM, 2008, pp. 671–680.

[121] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” Journal of

Machine Learning Research, vol. 3, pp. 993–1022, Jan 2003.

149

http://dl.acm.org/citation.cfm?id=1454159.1454225

BIBLIOGRAPHY

[122] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings of the Na-

tional Academy of Sciences, vol. 101, no. suppl 1, pp. 5228–5235, Apr 2004.

[123] D. M. Blei, “Probabilistic topic models,” Communications of the ACM, vol. 55, no. 4,

pp. 77–84, 2012.

[124] K. Chen, “A constant factor approximation algorithm for k-median clustering with

outliers.” in SODA, vol. 8. Citeseer, 2008, pp. 826–835.

[125] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan, “Algorithms for facility

location problems with outliers,” in Proceedings of the twelfth annual ACM-SIAM

symposium on Discrete algorithms. Society for Industrial and Applied Mathematics,

2001, pp. 642–651.

[126] D. B. Shmoys, É. Tardos, and K. Aardal, “Approximation algorithms for facility

location problems,” in Proceedings of the twenty-ninth annual ACM symposium on

Theory of computing. ACM, 1997, pp. 265–274.

[127] D. Ravichandran, P. Pantel, and E. Hovy, “Randomized algorithms and nlp: using

locality sensitive hash function for high speed noun clustering,” in Proceedings of the

43rd Annual Meeting on Association for Computational Linguistics. Association

for Computational Linguistics, 2005, pp. 622–629.

[128] A. Jansen and B. Van Durme, “Efficient spoken term discovery using randomized

150

BIBLIOGRAPHY

algorithms,” in Automatic Speech Recognition and Understanding (ASRU), 2011

IEEE Workshop on. IEEE, 2011, pp. 401–406.

[129] G. Cormode and S. Muthukrishnan, “An improved data stream summary: The

count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1, pp. 58–75, Apr.

2005. [Online]. Available: http://dx.doi.org/10.1016/j.jalgor.2003.12.001

[130] [Online]. Available: https://dev.twitter.com/docs

[131] L. Ertöz, M. Steinbach, and V. Kumar, “Finding clusters of different sizes, shapes,

and densities in noisy, high dimensional data.” in SDM. SIAM, 2003, pp. 47–58.

[132] H. Schütze, “Introduction to information retrieval,” in Proceedings of the international

communication of association for computing machinery conference, 2008.

[133] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan, “Maintaining variance and

k-medians over data stream windows,” in Proceedings9th PODS, 2003., pp. 234–243.

[134] P. Indyk, “Algorithms for dynamic geometric problems over data streams,” in Pro-

ceedings36th STOC, 2004., pp. 373–380.

[135] S. Har-Peled and A. Kushal, “Smaller coresets for k-median and k-means clustering,”

in Proceedings21st Symposium on Computational Geometry, 2005., pp. 126–134.

[136] R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swamy, “The effectiveness of Lloyd-

type methods for the k-means problem,” in FOCS, 2006.

151

http://dx.doi.org/10.1016/j.jalgor.2003.12.001
https://dev.twitter.com/docs

BIBLIOGRAPHY

[137] V. Braverman, A. Meyerson, R. Ostrovsky, A. Roytman, M. Shindler, and B. Tagiku,

“Streaming k-means on well-clusterable data,” in Proceedings of the Twenty-Second

Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’11. SIAM, 2011,

pp. 26–40. [Online]. Available: http://dl.acm.org/citation.cfm?id=2133036.2133039

[138] S. Maurus and C. Plant, “Skinny-dip: Clustering in a sea of noise,” KDD, 2016.

[139] R. M. McCutchen and S. Khuller, “Streaming algorithms for k-center clustering with

outliers and with anonymity,” in Approximation, Randomization and Combinatorial

Optimization. Algorithms and Techniques. Springer, 2008, pp. 165–178.

[140] G. Cormode and M. Hadjieleftheriou, “Finding the frequent items in streams of data,”

Communications of the ACM, vol. 52, no. 10, pp. 97–105, 2009.

[141] M. Charikar, L. O’Callaghan, and R. Panigrahy, “Better streaming algorithms for

clustering problems,” in Proceedings of the thirty-fifth annual ACM symposium on

Theory of computing. ACM, 2003, pp. 30–39.

[142] A. Meyerson, “Online facility location,” in FOCS, 2001.

[143] Z. Drezner and H. W. Hamacher, Eds., Facility Location: Applications and Theory.

Springer Verlag, 2004.

[144] M. Osborne, S. Moran, R. McCreadie, A. V. Lunen, M. Sykora, E. Cano, N. Ireson,

C. MacDonald, I. Ounis, Y. He, T. Jackson, F. Ciravegna, and A. O’Brien, “Real-time

detection, tracking and monitoring of automatically discovered events in social media,”

152

http://dl.acm.org/citation.cfm?id=2133036.2133039

BIBLIOGRAPHY

in Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics, Baltimore, USA, 2014.

[145] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang, “Topicsketch: Real-time bursty

topic detection from twitter,” in Data Mining (ICDM), 2013 IEEE 13th International

Conference on. IEEE, 2013, pp. 837–846.

[146] P. Roy, J. Teubner, and G. Alonso, “Efficient frequent item counting in multi-core

hardware,” in Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2012, pp. 1451–1459.

[147] M. Cafaro, M. Pulimeno, and P. Tempesta, “A parallel space saving algorithm

for frequent items and the riemann-hurwitz zeta distribution,” arXiv preprint

arXiv:1401.0702, 2014.

[148] M. Theobald, J. Siddharth, and A. Paepcke, “Spotsigs: robust and efficient near

duplicate detection in large web collections,” in Proceedings of the 31st annual

international ACM SIGIR conference on Research and development in information

retrieval. ACM, 2008, pp. 563–570.

[149] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic clustering

of the web,” Computer Networks and ISDN Systems, vol. 29, no. 8, pp. 1157–1166,

1997.

153

BIBLIOGRAPHY

[150] M. Connell, A. Feng, G. Kumaran, H. Raghavan, C. Shah, and J. Allan, “Umass at

tdt 2004,” in Topic Detection and Tracking Workshop Report, vol. 19, 2004.

[151] S. Phuvipadawat and T. Murata, “Breaking news detection and tracking in twitter,” in

Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM

International Conference on, vol. 3. IEEE, 2010, pp. 120–123.

[152] M. Cataldi, L. Di Caro, and C. Schifanella, “Emerging topic detection on twitter based

on temporal and social terms evaluation,” in Proceedings of the Tenth International

Workshop on Multimedia Data Mining. ACM, 2010, p. 4.

[153] Z. Liu, N. Ivkin, L. Yang, M. Neyrinck, G. Lemson, A. Szalay, V. Braverman,

T. Budavari, R. Burns, and X. Wang, “Streaming algorithms for halo finders,” in

e-Science (e-Science), 2015 IEEE 11th International Conference on. IEEE, 2015,

pp. 342–351.

[154] (2016). [Online]. Available: http://www.nvidia.com/object/cuda home new.html

[155] (2016, 11). [Online]. Available: https://www.khronos.org/opencl/

[156] [Online]. Available: https://wiki.tiker.net/CudaVsOpenCL

[157] (2016). [Online]. Available: http://jcuda.org/

[158] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One sketch to rule

them all: Rethinking network flow monitoring with univmon,” in Proceedings of the

2016 conference on ACM SIGCOMM 2016 Conference. ACM, 2016, pp. 101–114.

154

http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/
https://wiki.tiker.net/CudaVsOpenCL
http://jcuda.org/

BIBLIOGRAPHY

[159] (2016, 11). [Online]. Available: http://www-03.ibm.com/software/products/en/

ibm-streams

[160] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

155

http://www-03.ibm.com/software/products/en/ibm-streams
http://www-03.ibm.com/software/products/en/ibm-streams

Appendix A

Challenges in Developing Streaming

Algorithms

156

APPENDIX A. CHALLENGES IN DEVELOPING STREAMING ALGORITHMS

In the course of both implementing and observing others implement streaming algo-

rithms, the challenge is clear.

This section comes from observations of my professional experience working at Raytheon

BBN Technologies as well as implementing algorithms in my academic research. In an

engineering setting, when a novel and difficult problem arise there is a clear need for quickly

evaluating the applicability of different techniques. The barrier of entry to experimentation

and evaluation makes or breaks the likelihood of a method being used, regardless of whether

or not it is objectively the best method to solve the problem in a vacuum.

Understandably, in my research I largely found that papers that successfully implement

streaming algorithms do not discuss some of the systems engineering difficulties that they

face, instead focusing on design choices. Selecting a programming language, finding

test data, and rapid prototyping are all key steps in evaluating the usefulness of a new

algorithm, and these steps require an almost disjoint skill set to that of theoretical algorithm

development.

Thus, having seen both sides of this problem, I believe it is of critical importance that

the streaming and data science communities work together to remove the very high barrier

of entry to implementing and testing streaming algorithms, so that exciting new theoretical

algorithms are not passed over in practical settings.

Programming Languages:

Programming languages present a serious road-bump for proof of concept algorithm

implementation. Variance reduction is a critical step in many randomized algorithms, and

157

APPENDIX A. CHALLENGES IN DEVELOPING STREAMING ALGORITHMS

in streaming algorithms this usually takes the form of running the algorithm many times

in parallel and then comparing the results to get a final answer (e.g.,20, 37, 129 and most of

the other sketches referenced in this thesis). Parallel programming adds a great deal of

additional programming challenges and pitfalls, as running a polylogarthmic number of

copies of an algorithm can require careful memory and CPU management.

Moreover, popular implementations of Python and Ruby use a Global Interpreter Lock,

which prevents multiple threads from running simultaneously. Evaluating on such large

datasets demands threads to run at the same time; and combined with the fact that interpreted

languages such as Python are slower, this pushes development to compiled languages, where

comparative development time can be longer as well.

Inside the space of compiled languages, further considerations such as leveraging GPU

processing154, 155 also can give a major improvement performance and improve paralleliza-

tion. However, different GPU libraries perform differently with different hardware (see this

website dedicated to comparing NVIDIA’s CUDA against the open source Open CL156).

Additionally, different levels of software maturity, such as the difference between jcuda,157

Java bindings for CUDA, and NVIDIA’s C++ CUDA library, can also impact the gains

obtained by using GPU processing.

Data and Ground Truth:

As shown in Chapter 2, new streaming algorithms can provide dramatically improved

performance over previous methods on datasets with particular properties, however, as

datasets grow large, establishing accurate ground truth becomes increasingly difficult. While

158

APPENDIX A. CHALLENGES IN DEVELOPING STREAMING ALGORITHMS

in some cases it may be possible to generate synthetic datasets with these characteristics,

there are cases where analyzing practical data is preferable.

Even if given an unlimited amount of memory, many traditional algorithms require

O(n2) computation for exact solutions. For larger datasets, this may take years, but for

carefully chosen test datasets, weeks or months is an option. Spending a month to generate

ground truth is expensive when prototyping a new algorithm. Further, this can leads to a

variety of different datasets, with different sizes and qualities. However, if in the near future,

standard datasets can be prepared, we would in turn see better cross paper comparison,

allowing easier selection of the best algorithms, and improving the path to transitioning

cutting-edge theory.

The need for Prototypes:

The purpose of this section is to highlight the difficulty in moving these algorithms

from theory to practice. From experience, I have found the strongest argument that can be

made in a software development is a working prototype. While many specific algorithms

are available implemented and made publicly available, we have not observed a general

push to provide a baseline set of tools for supporting streaming algorithm implementation.

Some groups have made platforms for improving development, such as open-sketch for

network monitoring,5 or the Univmon project158 but there is no such platform we are aware

of for general software development. Without concrete implementations of these algorithms

which can be tested and observed outside of the theory community, these algorithms may be

overlooked.

159

APPENDIX A. CHALLENGES IN DEVELOPING STREAMING ALGORITHMS

Some big data development environments, such as IBM streams,159 support creating soft-

ware that supports lots of hardware in a parallelized way, with a focus on large development

teams. This is a critical task in its own right; however, these kind of systems do not appear

to do enough help move new complex algorithms from theory to a software prototype.

A Path Forward for the Data Science Community:

With these three challenges, we are faced with a very complex problem. We have

algorithms based in complex mathematics, that require increased development time due

to the use of compiled programming languages, and we need appropriate datasets for

testing. Taken together, this lack of tools represents a major boundary for improving classic

results with good asymptotic bounds, but may be able to perform better with modifications

in software. The main observation of this thesis is the need to develop of a library of

functionality to quickly implement cutting edge streaming algorithms to evaluate their

effectiveness on practical datasets.

This library solves a few problems, one, it provides a strong guideline for a programming

language to be used, allowing for future API and function development to be reused or

re-purposed by future algorithm creators. Further, giving developers the building blocks

to build algorithms can dramatically increase development time, as well as decreasing the

knowledge barrier by not requiring the developer to be experts in commonly used primitives

such as random generators or hash functions not available in standard libraries such as

LSH in Scikit Learn for Python.160 Finally, it provides easier cross comparison between

algorithms when identical code primitives for randomization are used to evaluate practical

160

APPENDIX A. CHALLENGES IN DEVELOPING STREAMING ALGORITHMS

memory usage as well as execution speed.

Creating this set of tools greatly reduces the complexity many individual tasks on the

road to use. However, more importantly, it helps bridge the very large and very important

gap between theory and practice.

161

Vita

Gregory Alexander Vorsanger received his BS degree in Computer Engineering from Johns

Hopkins University in 2011, where he graduated with General University Honors, as well as

The Charles A. Conklin Award in recognition of his academic achievements. In 2012, he

earned a Masters degree in Security Informatics, and began working part time at Raytheon

BBN Technologies. In 2013, Greg enrolled in the Computer Science PhD program, where

his work focused on Streaming Algorithms. Greg received an MSE in Computer Science in

2014, and is currently a Staff Scientist at Raytheon BBN Technologies.

162

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview of Main Results
	The Streaming Model
	Memory and Compromise
	Techniques
	Topics
	Theory
	Implementation

	Subsampling
	Introduction
	Related Work
	Relation to Existing Work on Lower Bounds
	Objective
	Results
	Intuition

	Definitions and Facts
	Frequency Moments on Sampled Streams
	Finding Heavy Elements
	Discussion
	Open Questions
	Conclusion
	Appendix
	Binomial Distribution and Stirling Numbers
	Useful Inequalities

	Weighted Sampling Without Replacement
	Introduction
	Related Work
	Results
	Intuition

	Definitions
	Cascade Sampling
	Precise Reduction and Resulting Algorithm
	Discussion

	Measuring Hadamard Distance
	Introduction
	Related Work

	Problem Definition and Notation
	Subadditive Approximations
	Algorithm for Finding Key Rows
	Algorithm for Finding All α-Heavy Rows
	Sum from α-Heavy Rows
	Space Bounds

	Applications
	Appendix
	Proof of of Lemma 1

	Proof of Correctness of Algorithm 1
	Recursive Sketches

	Fuzzy Heavy Hitters
	Introduction
	Problem Definition and Assumptions
	Comparison with Other Clustering Problems
	Our Algorithm
	Experiments
	Synthetic Data
	Twitter

	Related Work
	Related Problems and Other Datasets

	Comparison with First Story Detection
	Future Work
	Chapter Conclusions

	Conclusion
	Bibliography
	Challenges in Developing Streaming Algorithms
	Vita

