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Abstract 

 
Purpose: The resolution of optical images systems is restricted by the diffraction limit. In the past 

two decades super resolution microscopy techniques have been developed to circumvent this 

limitation. However, these techniques depend on state-of-the-art technological advancements. In 

2015, the Boyden Lab at MIT developed a technique called expansion microscopy (ExM) which 

allows nanoscale resolution imaging of tissue samples using conventional diffraction-limited 

microscopes by physically expanding the specimen. Samples are embedded within polyelectrolyte 

gels that get deprotonated in a basic environment; this cause the gel to swell in solutions like water. 

The hydrogel expands, expanding the sample along with it, increasing the distance between closely 

placed structures, thereby resolving them. This thesis aims to develop a tissue processing protocol, 

based on ExM, for high-resolution 3D optical imaging of the vasculature in preclinical models and 

to optimize this protocol across various vascular labels. 

Methods: 10-100 μn sections of the brain, liver, lung, heart, and leg muscle of C57 BALB/c mice 

were individually labeled with Tomato Lectin Tx-Red, Anti-Laminin Cy3 and a BriteVu and 

Galbumin-Rhodamine polymer complex to compare the vasculature pre-and post-expansion. 

Morphological parameters such as mean vessel diameter, area and volume were obtained by 

vascular segmentation using IMARIS ® to quantify the expansion process. 

Results: Similar trends were observed post-expansion in the mean vessel diameter across the 

different organs. A magnification of ~2.5x was observed in the mouse brain, leg, and liver 

vasculature while a ~1.6x magnification was observed in lung vasculature. However, due to 

sampling error expansion was not observed in the vasculature of mouse heart tissue samples. 

Conclusion: Developed a new expansion protocol, VascExM, to obtain high resolution 3D images 

of the Tomato Lectin Tx-Red labelled mouse vasculature using diffraction limited microscopes. 
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CHAPTER 1: INTRODUCTION 

 

1.2 Expansion Microscopy: A new method for circumventing the diffraction limit in optical 

imaging 

 

The resolving power of an optical imaging system is limited by the diffraction of the light. 

The diffraction limit (or Abbe limit) is the smallest distance between two objects that can be 

resolved by the system. It is determined by λ/2NA, where λ is the wavelength of the light and NA 

is the numerical aperture of the lens. Due to this phenomenon, a microscope is not able to resolve 

two objects if they are located at a distance that is shorter than λ/2NA [1]. Scientists have 

developed numerous methods to circumvent this limit. In recent years, several super-resolution 

fluorescence microscopy techniques have been invented to overcome this limit. For example, some 

non-linear methods include, stimulated emission depletion (STED) microscopy achieves this by 

using a laser to suppress the emission from fluorophores not located at the center of the point of 

excitation [2]. Reversible saturable optical fluorescence transitions (RESOLFT) uses fluorescent 

probes which switch between fluorescent state and dark state thus requiring low laser intensity 

which leads to a low residual fluorescence level [3]. Saturated pattern excitation microscopy 

(SPEM) and saturated structured illumination microscopy (SSIM) deplete the fluorophore ground 

state by saturated excitation to generate a sinusoidal emission pattern that is recorded by a detector. 

And some stochastic techniques like photo-activated localization microscopy (PALM or fPALM) 

and stochastic optical reconstruction microscopy (STORM), widefield fluorescence microscopy 

that relies on the stochastic activation of fluorescence to intermittently photoswitch individual 

photoactivatable molecules to a bright state, which are then imaged and photobleached, allowing 

temporary separation of very closely spaced molecules [4]. 
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Recently, expansion microscopy (ExM), a new technique developed by the Edward 

Boyden Lab at MIT in 2015 improves the magnification of optical microscopy, not from the 

instrumentation aspect but from the perspective of the specimen being imaged. The Boyden team’s 

method involved improving the spatial resolution of microscopy by expanding the sample 

specimen rather than investing in more powerful microscopes. ExM merges two scientific 

concepts, the first is the property of polyelectrolyte hydrogels to expand when immersed in 

solvents such as water, and the second is the process of embedding the sample in polymer 

hydrogels for imaging [5]. Thus, ExM enhances the spatial resolution and makes finer structural 

details of the sample visible by using an expandable polymer network which physically expands 

the specimen embedded within it by ~4.5×. Fluorescent-dye conjugated antibodies bound to 

molecules of interest are covalently attached to the polymer network, thus when the polymer 

swells, the specimen anchored to it undergoes isotropic expansion and optical labels close to the 

optical diffraction limit are resolved. ExM enables the use of conventional microscopes for better 

resolved images [6]. Recently, nanoscale-resolution ExM has been optimized for imaging proteins, 

RNA in preserved cells and tissue in a protocol dubbed as proExM and ExFISH, respectively 

[5][6]. 

 

ProExM or Protein retention Expansion Microscopy (Fig.1) resolves images of proteins 

that have been covalently bound to a hydrogel matrix using Acryloyl-X Succinimidyl Ester (SE). 

The SE interacts with the amines in proteins, to copolymerize into the polyacrylamide matrix. This 

embedded sample undergoes enzymatic digestion when submerged in a solution containing 

Proteinase K (ProK). This protease homogenizes the mechanical characteristics of the tissue – 

polymer composite causing isotropic expansion of the composite when it is immersed in water. 

According to Chen et al, fluorescent antibodies survive the proteolysis process, therefore 
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permitting ProExM to be conducted on samples which have been labeled before or after expansion 

[6][7]. 

 

Fig 1. Protein retention ExM (proExM) workflow adapted from Asano et al [7]. Samples are fixed and stained 

with antibodies using conventional immunostaining protocols, then treated at room temperature with Acryloyl-X SE, 

which enables proteins to be anchored to the hydrogel. The samples then undergo gelation, proteinase K (ProK) 

treatment for digestion, and finally expansion in water. 

 
 

In contrast, expansion fluorescence in situ hybridization (ExFISH) is used to image RNA 

molecules. Like ProExM, ExFISH involves anchoring of RNA to the polymer matrix by covalently 

binding to Label X (a combination of LabelIT amine and AcX/DMSO solution) – used in place of 

Acryloyl-X Succinimidyl Ester. The Label X binds to the RNA at Guanine from one end and to 

the polymer at the other. Once the matrix is formed, proteolyzed using ProK and washed with 

PBS, fluorescent probes are used to bind with RNA molecules in the sample and then expanded. 

The composite is imaged while placed in a low-salt buffer to maintain stability of the anchored 

RNA probes.[7] 

 

These original protocols have been further developed over the years. Chang et al, detail the 

development of what is described as iterative expansion microscopy (iExM) [8]. Initial research 

was conducted to explore the possibility to expand a standard ExM gel to greater than ~4.5× 

magnification. However, the hydrogel once expanded to greater than 4.5× became very fragile and 

did not provide the required mechanical support. A second method was implemented wherein the 
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hydrogel was synthesized using a cleavable crosslinker. Using a cleavable crosslinker ensured that 

the sample stayed expanded while a second conventional crosslinker was formed around it. At a 

high pH, the diol bonds in the first gel get cleaved and the gel dissolves, leaving only the second 

conventional crosslinker to be expanded in water. The second gel expands the specimen another 

~4×, for a total increase of ~16-22×. Chang et al implemented iExM to visualize synaptic proteins 

and the architecture of dendritic spines in the mouse brain [8]. 

 

To date ExM has been optimized to visualize microtubules [6], synaptic proteins [7], RNA 

[7], lipids [9], lesions in cancerous and normal clinical samples from organs such as the prostate, 

breast and lung tissue [10]. Imaging these organs and visualizing important architectures using 

ExM has led to nanoscale resolution images while reducing the cost of using high power 

microscopes. However, as of August 2019 ExM had not been employed to visualize the 

vasculature. Therefore, this thesis describes the development of a new tissue processing 

protocol for high-resolution optical imaging of the vasculature in preclinical tissue samples. 

We have dubbed this protocol: vascular expansion microscopy (VascExM). 

 

 

 
1.3 Current Techniques for Imaging the Vasculature: 

 

1.3.1 Computed Tomography (CT) 

 

Developed in the early 70’s by Godfrey Hounsfield and James Ambrose, CT uses ionizing 

radiation (i.e. x-rays) which are beamed through the specimen at multiple projections. These issue- 

attenuated x-ray beams are then detected by an electronic detector array. The greater the density 
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of the object or tissue, the greater the x-ray attenuation. The internal structure of the tissue is then 

reconstructed using these multiple projection views of the recorded x-ray density patterns [11]. 

 

Over the years, as the technology behind CT has advanced significantly many variations 

have been developed, notably reducing the radiation dose and the time it takes to acquire hundreds 

of high-resolution thin-slice images to a few short seconds, compared to the tens of minutes for 

considerably low-resolution ones taken with the earlier iterations. Most commonly, the vasculature 

has been imaged by CT angiography [12], micro-CT [16,17,18,19,20,21], nano-CT [22,23]. In 

vivo CT scanning is used for longitudinal studies whereas ex vivo CT scanning is preferred for 

endpoint studies. 

 

Clinical CT is a significant technological development that can show weak, damaged 

inflamed and blocked blood vessels [13]. Clinical CT can show structural and functional aspects 

of the vascular system, therefore helping doctors to diagnose vascular diseases and disorders. CT 

angiography is used to characterize the vascular structure around the heart [14]. Other research has 

been conducted for peripheral vascular disease to identify blockage in blood vessels including deep 

vein thrombosis and to find aneurysms and bulges that might lead to burst blood vessels [15]. 

 

Due to their smaller scale preclinical models like mouse and rat require advanced CT 

scanning that can resolve vasculature at a micro- or nanoscale (Fig 2). Contrast-enhanced micro- 

CT enables 3D imaging with high spatial resolution (1-100 μm) and permits the differentiation of 

vessels in both in vivo and ex vivo studies of preclinical models. Currently, an in vivo micro-CT 

scanner has resolutions ranging from 100 to 30 μm, while ex vivo scanners have resolutions from 

30 to 1 μm [16]. Micro-CT has been successful in quantifying pulmonary volume in the 

microvasculature of a mouse lung to evaluate pro-angiogenic therapies in pre-clinical models of 
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vascular disease [17], visualizing and quantifying whole tumor vasculature for the study of tumor 

angiogenesis [18,19] and blood flow [20] and 3D cerebral vasculature atlases which are a 

significant resource for future studies [21]. 

 

 
Fig 2. Visualizing microvasculature in a mouse kidney using micro-CT imaging. Positive vascular contrast is 
achieved on micro-CT imaging by perfusing the vasculature with a polymer mixture that contains 1:4.5 radiopaque 

BriteVu® in water and a Galbumin – Rhodamine (0.96mg/ml) based contrast agent. In the μmCT image, glomeruli are 

revealed at a resolution of 7.5 μm. Figure adapted from Bhargava et al, The FASB Journal (2020). 

 

The main drawback of micro-CT imaging is poor soft tissue contrast. This technique 

requires the use of a contrast agent without which blood vessels cannot be differentiated from other 

soft tissue. Thus, the imaging modality can be limited by the properties of the contrast agent used. 

For example, insufficient contrast agent may result in low SNR images that are not easy to analyze 

or quantify. However, a more critical limitation of micro-CT is the lack of advanced analysis and 

quantification software for the analysis of the dense architecture of blood vessels, limiting its use 

to primarily image bones [22]. 



7  

Nano-CT is the promising new high-resolution cross-sectional imaging technique that was 

developed by enhancing the established micro-CT technology. Currently, nano-CT has the 

capability to image objects with the spatial resolution of up to 400nm [23]. Comparison of the 

vasculature in the cerebral cortex of a transgenic mouse model indicates the improved detectability 

of the details of the smaller structures, and increased sharpness of the edges visualized objects 

regardless of the size. This gives a more precise structural information about the vessel [24]. 

 

 

 
1.3.2 Magnetic Resonance Imaging (MRI) 

 

MRI, is a non-invasive imaging technology, produces 2D and 3D anatomical images by 

employing powerful magnets to create strong magnetic fields. The static magnetic field forces 

water protons in the tissue to align with it. A radiofrequency wave is then pulsed through the 

patient to excite the magnetization of the water protons momentarily. The recovery or “relaxation” 

of this “induced” tissue magnetization can then be detected with an antenna and converted to an 

image by the simultaneous imposition of magnetic gradients during the acquisition. Analogous to 

CT, one can employ MRI contrast agents, generally Gadolinium (Gd)-based to image the 

vasculature. Unlike CT, MRI uses “non-ionizing” radiation that makes it safer for use [25]. 

 

Some of the latest research in imaging and studying the vasculature is being done using 

MRI. While there is a large variety of MRI techniques, ex vivo imaging of vasculature in 

preclinical models is primarily conducted by the following techniques: Magnetic resonance 

angiography (MRA), susceptibility weighted imaging (SWI), and intercranial vessel wall imaging 

(IVW). 
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Fig 3. Visualizing microvasculature in a mouse kidney using MRI imaging. Positive vascular contrast is achieved 

on MRI imaging by perfusing the vasculature with a polymer mixture that contains 1:4.5 radiopaque BriteVu® in water 

and a Galbumin – Rhodamine (0.96mg/ml) based contrast agent. Here large vessels in the kidney can be visualized 

with MRI at 60μm. Figure adapted from Bhargava et al, The FASB Journal (2020). 

 
 

 
 

1.3.2.1 Magnetic Resonance Angiography (MRA): 

 

MRA can be categorized into two types based on their working principle: 1) flow based, 

which includes time-of-flight (TOF) MRA and phase contrast (PC) MRA. In flow-based 

techniques, scanners use motion of blood flowing in the vessels for detection. 

 

Time-of-flight (TOF) MRA results when MR contrast differentiates the flowing blood from 

stationary tissue by manipulating its magnetization. The stationary tissue being imaged, is 

magnetically saturated by applying multiple RF pulses, while the fresh inflowing blood that gets 

imaged experiences fewer RF pulses causing it to have a higher initial magnetization level. 
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Therefore, the highly magnetized inflowing blood appears brighter than the saturated background 

tissue. TOF MRA can be categorized into 2D - obtained by imaging multiple 1-3mm thick slices 

with short pulses, usually less than 30ms. 2D TOF is preferred for its short imaging time, 

sensitivity to areas of slow blood flow and ability to expand area of imaging by adding more slices 

of the sample; and 3D - offering high spatial resolution and SNR while imaging small multiplanar 

areas, with limited speed of acquisition [26]. A study conducted by Brubaker et al shows that high 

resolution 3D TOF MRA images at 3T can be used to visualize and classify tumor and normal 

vasculature in transgenic mice [27]. Ultra-high field (7T) TOF MRA captures the cerebral 

microvasculature, enabling the visualization of even minute brain lesions [28]. 

 

Phase contrast (PC) MRA distinguishes between flowing blood from stationary tissue by 

manipulating the phase of the magnetization. PC is based on the phase shift acquired by spins 

moving along a magnetic field gradient [29]. PC MRA can be used to quantify blood flow and 

wall shear stress. However, because of relatively high blood velocities relative to the size of the 

mouse anatomy, signal loss from spin dephasing can be a significant problem in mouse MRA, 

particularly in regions of vessel curvature therefore it is not a common choice [30] 

 

Contrast enhanced (CE) MRA: As the name suggests, CE MRA employs a contrast agent 

(usually a Gadolinium-chelate), injected into the circulatory system to generate high vessel-to- 

background contrast. The presence of Gadolinium within vessels ensures that the vascular signal 

on CE MRA is not hampered by the numerous flow-related artifacts such as signal loss from spin 

saturation or slow flow that can degrade flow-based MRA techniques [31]. Multiple comparative 

studies [32] have been conducted that determine the Contrast-enhanced MRA offers better 

diagnostic accuracy than TOF-MRA, superior localizing capability of vessel occlusion within a 
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shorter acquisition time while providing a larger coverage. In addition, Bullitt et al. shows that CE 

MRA can be used to detect and quantify changes in the 3-D morphology of blood vessels [33]. 

 

 

Fig 4. TOF-, PC- and CE-MRA. (A and B) CE-MRA and TOF-MRA shows an occlusion of right M1 segment of a 

72 -year old woman with acute stroke symptoms before treatment, respectively [Adapted from T. Boujan et al, 2018. 

33]. (C and D) PC- MRA and Gadolinium administered CE- MRA, due to shortening of T1 an improvement is seen 

in the SNR enabling detection of smaller vessels [30]. Compared to TOF-MRA and PC-MRA, CE-MRA shows a 

significant improvement in distinguishing smaller structures. 

 
 

 

 

1.3.2.2 Susceptibility – Weighted Imaging (SWI) 

 

 

SWI is an MRI sequence that exploits the difference in magnetic susceptibility of various 

compounds to provide phase maps with improved contrast-to-noise ratio of the desired 

biomolecule in an MRI. Thus, it is ideal for detecting compounds such as blood, iron, and calcium 
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[34]. SWI has been helpful in detecting micro-and macro-hemorrhages, identifying cerebral 

microvasculature and malformations in low blood flow vessels [34]. An increase in vessel 

visibility was noted when SWI was used to indicate the presence of ischemia in a post‐blast acute 

phase of injury in rat models [35]. It was similarly used to assess the vascular and tissue changes 

post transient cerebral ischemia in a study conducted on mouse models [36]. 

 
 

 

 
Fig 5. Cross-sections quantitative susceptibility maps (QSM) of the ischemic hemisphere of a tMCAO mouse 

after 48 h of reperfusion. White arrows mark the vessels while lesions are marked by the dotted white lines which 

were observed to be visible more prominently at longer time intervals of reperfusion. Figure adapted from M. Vaas et 

al, 2018 [36]. 

 

 
 

1.3.3 Small Animal Positron Emission Tomography (PET) and Single Photon Emission 

Tomography (SPECT) 

 

PET utilizes tracers or contrast agents that contain specially designed radioactive 

molecules, such as Fluorine-18. Cyclotrons are used to generate the radioactive atoms, which are 
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then attached to the specific biomolecule required to be identified in the PET scan. The patient is 

injected with this radioactive molecule or radiotracer. Once inside the patient’s circulatory system, 

the biomolecule creates a positron when the radioactive atom decays. This positron collides with 

an electron in the circulatory system, thereby annihilating each other to release two (511 keV) 

photons of γ-rays (λ <= 1nm) in opposite directions. The PET scanner detects these two photons 

to determine the exact location of their origin. Thousands of these emissions can be detected in a 

short period of time, allowing the sensors to recreate a 3D image of the location of the radiotracer 

distribution in the animal [37]. Small-animal PET has high sensitivity and the ability to provide 

quantitative, in vivo measurement of changes to the cerebral blood flow, glucose metabolism, and 

protein synthesis in the mouse brain microenvironment [38]. PET has also been used commonly 

along with CT and to generate multi modal nuclear images for cardiovascular diseases [39] and 

image the angiogenesis process at a molecular level in the mouse model [39]. PET/CT was also 

used to successfully study the varying degrees of human lung tumor vascularization established in 

a rat model. The PET scans also contributed to characterization of the tumors [40]. 

 

SPECT also uses radioactive tracers to create 3D images like PET. However, SPECT scans 

utilize a single gamma ray (λ <= 1nm) which are emitted from the injected radiotracers, such as 

iodine-123 and iodine -131 [41]. Along with a longer half-life SPECT also differs from PET in its 

spatial resolution, the systems have 12-15 mm and 1-2 mm spatial resolution, respectively. Latest 

preclinical applications of SPET include monitoring angiogenesis to evaluate efficacy of 

therapeutic interventions for cardiovascular diseases [42], 3-D visualization of the architecture of 

intramyocardial vessels during systole and diastole in rats [43]. 
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Fig 6. Small-animal SPECT/CT and PET/CT. (A and B) Coronal (top) and trans axial (bottom) images from study 

of LNCaP prostate cancer xenograft model 72 h after administration of antibody to PSMA labeled with 177Lu. (A) 

SPECT image of tumor uptake. (B) Tumor uptake localized on SPECT/CT overlay images [44]. (C and D) 18F-FDG 

PET image of glucose transporter 1 (Glut1) expression in FDG avid Lkb1 Lkb1-/- (KL) mutant lung tumors. (C) MIP 

of 3D reconstruction (D) MIP of transverse, sagittal and coronal views of lung tumor (T) [45]. 
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CHAPTER 2: Methods and Protocols for VascExM 

 

2.1 Table of Reagents Used 
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2.2 Protocol 

 

2.2.1 Tissue Preparation 

 

C57 BALB/c mice were transcardially perfused with a mixture of BriteVuTM (Scarlet 

Imaging, LCC; Murray, UT, USA) and Galbumin™-Rhodamine B (BioPAL Inc., MA) solution, 

or Tomato lectin-Texas Red (Vector Laboratories, Burlingame, CA) solution, followed by fixation 

for 2-3 days in 10% buffered formalin at 4o C. Once the animal was fixed, the brain, muscle, 

kidneys, liver, and lungs were excised and placed in 10% buffered formalin (Sigma Aldrich, 

Saint Louis, MO) overnight. Following fixation, tissues were transferred to a 30% sucrose 

cryoprotectant solution (Sigma Aldrich, Saint Louis, MO) and incubated overnight at 4o C and then 

frozen in liquid nitrogen (Sigma Aldrich, Saint Louis, MO). Excess sucrose was removed from the 

sample before it was placed in a cryomold and embedded in the optimal cutting medium (OCT, 

Sakura Finetek, Torrance, CA) and placed on a pan floating on liquid nitrogen so that it gradually 

froze over 15 minutes. The sample was then transferred to a cryostat to allow it to acclimatize to 

the temperature in the cryostat chamber (-22o C) for 30-60 minutes before slicing it into sections 

that ranged from 10-100 µm for immunofluorescence staining and subsequent microscopy. 

 

 

 
2.2.2 Immunofluorescence staining 

 

Immunofluorescence staining was performed on tissue sections to detect the presence of 

laminin and α-SMA on the vasculature. The sections were first washed in a PBS solution for 15 

minutes and then permeabilized in PBST solution (PBS containing 0.5% Tween 20) for 15 minutes 

on an orbital shaker at 30 rpm. Once permeabilized, the samples were incubated in carbo-free 
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blocking solution (Vector Labs, Burlingame, MA) for 1 hour at room temperature. Blocking 

prevented non-specific binding of antibodies to the tissue, thus reducing background due to non- 

specific staining. Subsequently, the sections were incubated overnight in 150 μl of the pre- 

conjugated primary anti-α-SMA-FITC (1:100 dilution) and primary anti-laminin (1:200 dilution) 

antibody. The incubation period was directly proportional to the thickness of the tissue sections (1 

night/10 μm). Next, the sections were rinsed multiple times in PBS solution. For the pre- 

conjugated antibody, the sections were immediately transferred onto a slide, counterstained with 

DAPI for 1-3 minutes, mounted in aqueous mounting medium and cover slipped. For the 

unconjugated antibody, a two-step labeling procedure was followed. Once the anti-laminin 

antibody was rinsed, the sections were incubated with goat anti-rabbit Cy-3 secondary antibody 

for 3 hours. After the secondary antibody was rinsed off with PBS, the counterstaining and 

mounting steps were repeated for these tissue sections. Multiple fields of each sample were imaged 

using a Zeiss 710 NLO multiphoton microscope equipped with appropriate filter sets (please see 

section 2.4.2). 

 

 

 
2.2.3 Gel Preparation for Sample Expansion 

 

To physically expand the tissue, expansion microscopy requires the sample to be embedded 

in a dense hydrogel synthesized evenly throughout the specimen, which undergoes isotropic 

expansion when immersed in water. 

 

Once the pre-expansion samples were imaged, they were prepared for the expansion 

process. The slides were incubated in PBS for 2 hours to remove the coverslip with ease. The 

samples were removed from the slide and rinsed in PBS for 10 minutes to start the first step of 
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expansion, i.e. gelation. The following solutions were prepared beforehand: AcX /DMSO solution, 

Stock X, 4HT, TEMED and APS. 

 

1. The tissue was incubated in the AcX solution overnight at room temperature. 

 

2. While the sample was incubating in AcX, a gelation chamber was constructed, by placing two 

No. 1.5 coverslips on the edges of the slide. The coverslips were kept in place with the help of 

superglue. The coverslips were then wrapped using parafilm. The parafilm ensured the chamber 

was airtight, preventing leakage of the gel solution from the edges when the lid (i.e. coverslip) was 

placed over the chamber. 

 

3. Once the samples were done incubating in AcX solution, they were washed twice in PBS for 

15 mins at a time. 

 

4. The gelling solution was freshly prepared each time by adding Stock X, 4HT solution, TEMED 

and APS together in this specific order at a volumetric ratio of 47:1:1:1. 

 

5. 100 μl of the gelling solution was placed in the chamber onto which the tissue sample was 

transferred carefully using a paint brush, taking care to ensure there were no folds in the tissue 

section. Once the lid was placed on the slide and air bubbles removed, the chamber was kept in 

the dark at 4o C for 30 minutes. After this initial incubation, the chamber was transferred to a 37o 

C incubator for 1-2 hours depending on the thickness of the tissue section, for polymerization. 

Care was exercised to ensure that the chamber was not tilted or shaken during the gelation process. 
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2.2.4 Digestion 

 

After the chamber was removed from the incubator, the lid was gently separated from the 

it. Using a fine paint brush, the gel was transferred into a container of digestion buffer in which it 

incubated overnight at room temperature in the dark. 

 

 

 
2.2.5 Expansion and Storage 

 

The digested gel was trimmed to a reasonable size for ease of handling. When the sample 

was ready to be imaged, the gel was immersed in water for 10 minutes. This was repeated three 

times with fresh water for a total of 30 minutes. At this juncture the sample is optically clear, 

completely expanded, and ready for imaging. In case the samples do not need to be imaged 

immediately after gelation, the gel embedded samples can be stored in PBS in the dark at 4oC, 

after which they can be expanded. 

 

 

 
2.3 Vascular Labels 

 

2.3.1 Structure of Blood Vessels 

 

Blood vessels form a complex and organized network in organisms to facilitate the 

transport of blood cells, oxygen, and other nutrients throughout their body, while simultaneously 

removing the waste and carbon dioxide expended by their organs [46]. 

 

The vascular network consists of three major types of blood vessels: arteries, capillaries, 

and veins. Arteries deliver the blood from the heart to the organs by branching into smaller vascular 
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structures called arterioles which finally form capillaries that are 5-10 μm in diameter and are the 

primary site of exchange for nutrients like oxygen. Capillaries eventually merge to form venules. 

Venules are 7 μm to 35 μm in diameter and connect the capillaries to the veins that transport the 

carbon dioxide rich blood back to the heart [46][47]. 

 

Structurally, arteries and veins can be deconstructed into three layers which surround the 

lumen. The tunica intima, the innermost and thinnest layer consisting of endothelial cells which is 

supported by connective tissue. The second layer, tunica media, is made up of smooth muscle 

actin, elastic fibers, and connective tissue. Being one of the thickest layers in the vessel, it provides 

structural support, the smooth muscle cells impart vasoreactivity, i.e. they contract or relax blood 

vessels based on signals from the autonomic nervous system and the elastic fibers maintain the 

elasticity of the vessel by allowing it to expand and contract, thereby controlling the flow of blood. 

Finally, the outermost layer is the tunica externa or adventitia that is composed of connective tissue 

fiber. Due to their minimal thickness, capillaries do not need much structural support and are only 

made up of a single layer of endothelial cells [47]. 
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Fig 7. Typical structure of an artery, vein and capillary. The image labels the different layers of an artery, vein 

and capillary. The arteries and veins are divided into elastic tissue, tunica interna, tunica media and tunica externa 

which envelop the lumen. The arteries and veins branch into arterioles and venules which further diverge into 

capillaries, which transport blood and other nutrients in organs to and from the heart [47]. 

 
 

The primary antibodies were chosen based on the different antigens they bound to blood 

vessels. The specificity of the binding mechanism between the antibodies and their antigen is an 

advantageous way to selectively identify proteins in the endothelial or smooth muscle cells in a 

tissue section. 

 

2.3.2 Tomato Lectin 

 

Tomato lectin is a carbohydrate that binds to the luminal surface of endothelial cells and 

the N-glycan glycoproteins associated with the endothelial cells. These surface glycoproteins act 

as binding sites for a variety of endogenous molecules and the injected tomato lectin may have to 

compete with these molecules to access the binding site. This is commonly employed as an 

intravascular tag for blood vessels in preclinical studies [48]. Tomato lectin preconjugated to the 
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fluorophore Texas Red (Vector Laboratories, Burlingame, CA) was administered intravenously to 

the animal at a concentration of 20 µg/ml. Once the animal was euthanized, it was placed in 10% 

buffered formalin for two days to fix the organs before harvesting them. 

 

 

 
2.3.4 BriteVu 

 

BriteVu™ solution (Scarlet Imaging, LCC; Murray, UT, USA) is a radiodense 

intravascular contrast agent used to visualize the vasculature using x-ray CT. It is transcardially 

perfused into the animal after heparinized saline has been used to flush out the blood, followed 

immediately by freshly prepared solution according to the manufacturer instructions. Once the 

animal is perfused, it is incubated overnight at 4o C, to enable polymerization [49]. For concurrent 

fluorescent imaging, a Rhodamine B conjugated MRI contrast agent, Galbumin™-Rhodamine B 

(BioPAL Inc., MA) was added to the BriteVu solution prior to perfusion. Rhodamine B has an 

excitation maximum of 556 nm and a maximal emission wavelength of 627 nm [50]. 

 

 

 
2.3.4 Laminin 

 

Vascular basement membrane (BM) is a fibrous, extracellular matrix that envelopes 

endothelial cells. Communication between the BM and the endothelial cells is integral to 

maintaining the structure and function of the vessel walls [51]. Laminins are one of the main 

components of the vascular basement membrane. They are heterotrimeric glycoproteins consisting 

of α, β, and γ chains. There are 15 different isoforms of laminin that have been discovered based 

on the placement of these chains. Anti-laminin antibodies bind to these laminin structures in the 
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vascular basement membrane [52]. An unconjugated, anti-laminin (Sigma Aldrich, Saint Louis, 

MO) primary antibody was used at 1:200 dilution with overnight incubation at room temperature. 

A goat anti-rabbit Cy-3 was used as the secondary antibody at a 1:100 dilution. 

 

 

 
2.3.5 Alpha-Smooth Muscle Actin 

 

Found in between the endothelial cells and connective fibers, smooth muscle is present to 

maintain the structural integrity and vasoreactivity of the vasculature, as described in section 2.3.1. 

Smooth muscle is found more frequently in the larger blood vessels since they require more 

structural support than the finer capillaries [53]. Sections were incubated in 1:100 dilution of ⍺- 

Smooth Muscle Actin (Sigma Aldrich, Saint Louis, MO) pre-conjugated to the fluorophore FITC. 

The sections were incubated overnight at room temperature. 

 
 
 

2.3.6 Counterstains 

 

Some sections were counterstained with 4′,6-diamidino-2-phenylindole, dihydrochloride 

(DAPI, Thermo Fisher Scientific, Richmond, IL) and anti GFAP-Alexa Fluor 488 (Biolegend, 

Dedham, MA) to distinguish the nuclei and astrocytes, respectively. DAPI is a fluorophore which 

binds to the AT regions in the minor curve of dsDNA and is therefore used  as  a nuclear 

counterstain. DAPI is excited between 358-461 nm and fluoresces in the blue (~490–450 nm) [54] 

region of the visible spectrum. GFAP is a member of the family of intermediate filaments. They 

form networks around the glial cells to support and strengthen their structure. Multiple GFAP 

proteins bind together to form astroglial cells or astrocytes. These cells play many crucial roles in 
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maintaining and repairing a variety of cells in the central nervous system. GFAP conjugated to 
 

Alexa Fluor 488 that is excited at 495 nm and fluoresces in ~560-520 [55] part of the visible 

spectrum was used for this study. 

 

 

 
2.4 Fluorescence Imaging 

 

2.4.1 Principle of Fluorescence Microscopy 

 

Fluorescence is a physical phenomenon wherein a material emits light as the result of 

absorbing light of a shorter wavelength in the form of photons. The difference in incident and 

emitted wavelength was called the Stokes shift after physicist George Gabriel Stokes [56][57]. 

After absorption of photons, the electrons in the ground state of the substance shift to the higher 

energy level. At this level, the electrons are very unstable and dissipate their energy through 

internal conversion and vibrational relaxation, falling to the first excited state. The wavelength of 

the emitted light is inversely proportional to energy according to: E = hc/λ, where E = energy, h = 

Planck's constant, ν = frequency, c = the speed of light in vacuum, and λ = wavelength. Therefore, 

the loss in energy due to the Stokes shift results in the emission of a longer wavelength photon. 

This is represented pictorially by the Jablonski energy diagram shown in Fig 8 [58]. 
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Fig 8. Jablonski Energy Diagram. The diagram shows the shift of electrons from ground state to higher energy level 

where they are highly unstable. To achieve stability, they dissipate energy falling to the first excited state. This loss in 

energy results in the emission of a photon with longer wavelength. 

 
 

 

 

2.4.2 Confocal microscopy 

 

Confocal microscopy is a widely used optical imaging technique. Unlike a compound light 

or fluorescence microscope that captures light from multiple focal planes to create a single two- 

dimensional image, confocal microscopes acquire images by focusing light on a single point within 

a defined focal plane via a spatial pinhole, eliminating scattered light from non-focal planes. This 

significantly reduces image distortion and improves resolution when imaging thick tissue samples. 

Point-by-point scanning of two-dimensional images at varying depths can be captured from 

multiple planes and reconstructed into a three-dimensional image of the sample. Laser scanning 

microscopy is a confocal technique that serially images a sample using various laser excitation 

lines and emission filters, facilitating detailed fluorescence imaging [59]. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/optical-imaging-technique
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2.4.3 Two-photon excitation (2PE) microscopy 

 

2PE is a recently developed microscopy technique based on a nonlinear optical process 

that uses two low-energy photons from the same laser. The molecule to be imaged absorbs the 

identical photons simultaneously. The intensity is highest in the vicinity of the focus and drops off 

quadratically with distance above and below reducing photodamage to regions surrounding the 

focal point. Therefore, fluorophores are excited in a small focal region. The excitation wavelengths 

used in 2PE microscopy, are in the deep red and near IR (~700-1200 nm) range and penetrate 

tissue better than the visible wavelengths (~390-700 nm) used in single-photon microscopy 

techniques. 2PE offers comparable contrast and resolution to confocal microscopes without the 

pinhole [60]. 

 

 

 
2.4.4 Image Acquisition 

 

Pre- and post-expansion images of the tissues were acquired on a Zeiss LSM 710 NLO 

using a W Plan-APOCHROMAT 20×/1.0 water immersion objective. Multiple fields of view 

(FOV) were acquired from each sample using UV (355 nm), HeNe (458/488/514 nm) and argon 

(543 nm, 561 nm, 594 nm, 633 nm) lasers [61]. Laser excitation wavelengths were selected based 

on fluorophores used in the immunofluorescence staining procedure (Table 2.2). 
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Table 2.2: List of fluorophores used in this study. 
 

 

 

 

 

 

2.5 Image Preprocessing 

 

Vessels were segmented from the acquired z-stack images using the interactive microscopy 

image analysis software IMARIS® 9.5.1 (Oxford Instruments, Belfast, UK). First, the 3D rendered 

image was preprocessed using IMARIS®’s inbuilt image processing menu. The menu provides 

various smoothing, thresholding and contrast functions. A combination of gaussian filter, 

background subtraction, and normalization functions was optimized for smoothing, thresholding, 

and contrast adjustment, respectively. The gaussian filter smoothens the image by removing 

structures smaller than the manually adjustable filter width. The process preserves the total image 

intensity while suppressing noise evenly across it. The background subtraction function defines 

the background at each voxel using the gaussian filter width and performs baseline subtraction of 

the background to eliminate any non-uniformities in the background. The manually entered 

baseline value is subtracted from the intensity of each voxel in the image, if the result is positive, 
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that value is set as the new intensity of the voxel, else if the result is negative, the intensity of that 

voxel is set to zero. And finally, the normalize layer function adjusts the brightness and contrast 

of each individual z-slice to a uniform range. The algorithm computes mean and standard deviation 

for the entire z-stack and then repeats the calculations for each individual slice. The intensity of 

each section is then adjusted to match the overall mean and standard deviation by linear 

transformation. 

 

Once the images were preprocessed, they were opened in surpass view. In this view an 

object toolbar is visible on the screen, which offers tools to segment different cellular structures. 

For vessel extraction the FilamentTracer tool was used. The FilamentTracer feature was created 

to segment, edit, display and measure neuronal structures like dendrites and filaments, however, 

they have also been used successfully for segmentation of blood vessels. The creation wizard 

window acts as a user interface element, sequentially guiding the user through all the steps required 

to process the data (Fig 9 A and B) [62]. 

 

1. The First window presents the user with two algorithms to automatically create filaments. 

 

These options were AutoPath and Thresholding. We selected the AutoPath Algorithm because this 

method segments the vessels based on the local intensity contrast (Fig 9 C). 

 

2. In the second window, the channel which needs to be processed is selected, and each 

channel was segmented separately. Vessels were tagged with red fluorophores (e.g. Texas Red, 

Cy3 and Rhodamine B), therefore the red channel was selected to be segmented first. The 

checkbox provided for the calculation of the diameter of each filament was also selected. Also, in 

the third window, the starting point diameter (SPD) and end point diameter (EPD) were specified. 
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These limits act as the upper and lower thresholds for the diameter of vessels to be segmented and 

were selected based on the thickness of vessels (Fig 9 D). 

 

3. The third window displays histograms for SPD and EPD along with their thresholds. The 

thresholds can be manually adjusted, and the update viewed in the display area. The AutoPath 

Algorithm generates starting points from where the vessels branch out and places seeds along the 

vessel based on local intensity contrast as per the threshold specified in the histogram. The box 

specifying removal of seed points near the starting point is unchecked, and the Remove 

Disconnected Segments option was selected. These filters improve the accuracy of the filament 

tracing while eliminating the regions of high background noise and low signal regions by setting 

the gap length to determine which vessels were disconnected (Fig 9 E). 

 

4. The fourth window appears when Remove Disconnected Segments is selected. This 

window provides a histogram to manually adjust the vessels segmentation selected by local 

thresholding (Fig 9 F). 

 

5. The final step before segmentation is the selection of the algorithm for measuring the vessel 

diameter. IMARIS® offers two methods for calculating the diameter: the shortest distance from a 

distance map or the approximate circle of a cross-sectional area. In the first method, the seed point 

acts as the center of the vessel and the closest boundary from that point is considered the diameter. 

In the second method, the diameter gets calculated from a circular cross section area around the 

seed point, the value of which was determined manually using a histogram and adjusting the 

threshold. Either of the two methods can be selected based on which one shows better segmentation 

of vessel. The shortest distance works better when there are fewer starting points and more seeds, 
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while the approximate cross-sectional area option is preferred when a large variation is seen in the 

thickness of vessels in the same FOV (Fig 9 G). 

 

6. The final segmented output can be seen overlain on the display area while the statistical 

data is seen in the final window (Fig 9 G). 
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Fig 9. (Left) Workflow of FilamentTracer tool in IMARIS®. (Right) Flowchart illustrating the vessel 

segmentation pipeline followed in IMARIS®. 
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2.6 Quantitative Analysis 

 
IMARIS® processes the final segmented data to generate summary statistics of the 

following variables: Dendrite Area, Dendrite Volume, Dendrite branch Depth, Dendrite Mean 

Diameter. Mean data values were used for all analyses. For multiple FOV of the same sample, a 

two-tailed paired t-test was used to determine if there was a significant difference in vessel 

diameter and vascular volume between the pre- and post-expansion groups. For analyzing the 

differences in vessel diameter and vascular volume pre- and post-expansion across multiple 

samples, a one-tail paired t-test was performed (p-values ≤ 0.05 were considered significant). 
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CHAPTER 3 

 

3. Results 

 

3.1 Validation of expansion 

 

The results of statistical analysis methods described in Ch 3 are elaborated on in this chapter. For 

paired and unpaired t-tests the null hypothesis (H0) tested was that there was no significant 

difference in vascular architecture after tissue expansion. Hence, the alternative hypothesis (H1) 

was that there was a change in the vascular architecture after the expansion process. The t-tests 

were conducted on pre- and post-expansion values of morphological parameters such as: mean 

vessel diameter, mean vessel area, and mean vessel volume computed using the IMARIS® 

software. The changes in mean intensity of fluorescence of the samples before and after expansion 

were also measured using the Fiji software. 

 

 

3.2 Vascular Architecture for Brain Tissue 

 

3.3.1 Pre-expansion 

 

The morphological parameters for the vasculature extracted from brain tissue before 

expansion are summarized in Tables 3.1 and 3.2. 



33  

Table 3.1 –Mean values for vessel diameter, vessel volume, vessel area and vessel length for three (T)Lectin – 

Texas Red labeled coronal mouse brain sections (M1-M3) from two or more FOV. 

 

Morphological Parameters M1 M2 M3 

Mean vessel diameter ± Std Dev 

 

(μm) 

 

3.35 ± 1.71 
 

4.01 ± 1.34 
 

4.38 ±1.01 

Mean vessel volume ± Std Dev 

 

(μm)3 

 
220.10 ± 193.23 

 
328.00 ± 388.16 

 
267.96 ± 251.20 

Mean vessel area ± Std Dev 

 

(μm)2 

 
183.93 ± 167.37 

 
295.79 ± 321.41 

 
239.96 ± 217.19 

Mean vessel length ± Std Dev 

 

(μm) 

 
18.52 ± 16.84 

 
22.37 ± 24.76 

 
17.87 ± 19.36 

 

 

 

 

Fig 10. Results of preprocessing and segmentation of (T)Lectin-Tx Red labeled vessels in brain vasculature of 

pre-expansion mouse M1: (A) Rendering of the preprocessed confocal image of a FOV of (T)Lectin-Tx Red stained 

vessels from mouse M1 using Fiji software with Gaussian Blur = 2.0μm. (B) Segmentation of vessels (grey) in (A) 

using the FilamentTracer tool from IMARIS® which also computes the morphological parameters. The blue spheres 

indicate starting points for identifying vessel segments created by the IMARIS® algorithm (see section 2.5 for details). 

(C) Overlay of the results of preprocessed image (A) (red channel) and vessel segmentation (B) (gray channel) to 

assess the quality of segmentation. 
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Table 3.2 – Mean values for vessel diameter, vessel volume, vessel area and vessel length for two anti-Laminin 

Cy3 antibody labeled coronal mouse (M1 and M2) brain sections from two or more FOV. 

 

Morphological Parameters M1 M2 

Mean vessel diameter ± Std Dev (μm) 8.28 ± 2.59 10.11 ± 2.85 

Mean vessel volume ± Std Dev (μm)3 939.05 ± 854.50 2324.80 ± 2096.12 

Mean vessel area ± Std Dev (μm)2 488.41 ± 433.24 10697 ± 989.63 

Mean vessel length ± Std Dev (μm) 37.55 ± 19.56 31.96 ± 39.91 

 

 
 

 

Fig 11. Results of preprocessing and segmentation of anti-Laminin Cy 3 labeled vessels in brain vasculature of 

pre-expansion mouse M1: (A) Volume rendering of the preprocessed confocal image of a FOV of vessels from 
mouse M1 using preprocessing tools in IMARIS® with Gaussian filter = 1.0μm, background subtraction = 106 μm. 

(B) Segmentation of vessels (grey) in (A) using the FilamentTracer tool from IMARIS®. The blue spheres indicate 

the starting points for identifying vessel segments created by the IMARIS® algorithm (see section 2.5 for details). (C) 

Overlay of the results of preprocessed image (A) (red channel) and vessel segmentation (B) (gray channel) to assess 

quality of segmentation. 

 
 

 

3.3.2 Post- Expansion 

 

The morphological parameters for vasculature extracted from brain tissues post-expansion are 

summarized in Tables 3.3 and 3.4. 
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Table 3.3 – Mean values for vessel diameter, vessel volume, vessel area and vessel length of three (T)Lectin – 

Texas Red labeled coronal mouse (M1-M3) brain sections from two or more FOV post-expansion. 

 

Morphological Parameters M1 M2 M3 

Mean vessel diameter ± Std Dev 

 

(μm) 

 

8.53 ± 2.58 
 

6.94 ± 1.51 
 

10.03 ± 3.74 

Mean vessel volume ± Std Dev 

 

(μm)3 

 
939.05 ± 847.80 

1134.17 ± 

 

1164.23 

 
1518.04± 1301.22 

Mean vessel area ± Std Dev 

 

(μm)2 

 
488.5 ± 429.84 

1055.09 ± 

 

1423.16 

 
726.56 ± 605.65 

Mean vessel length ± Std Dev 

 

(μm) 

 
15.59 ± 19.41 

 
47.62 ± 57.33 

 
19.95 ± 33.69 

 

 

 
 

 

Fig 12. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in brain vasculature of 

post-expansion mouse M1 : (A) Volume rendering of preprocessed confocal image of a FOV of (T) Lectin-Tx Red 
stained vessels from mouse M1 using preprocessing tools in IMARIS® software, Linear Stretch, Gaussian filter = 

1.0μm, background subtraction = 170μm. (B) Segmentation of vessels (grey) in (A) using the FilamentTracer tool 

from IMARIS®. The blue spheres indicate the starting points for identifying vessels created by the IMARIS® algorithm 

(see section 2.5 for details). (C) Overlay of the results of preprocessed image (A) (red channel) and vessel 

segmentation (B) (grey channel) to assess quality of segmentation. 
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Table 3.4 –Mean values for vessel diameter, vessel volume, vessel area and vessel length for two anti-Laminin 

Cy3 antibody labeled coronal mouse (M1-M2) brain sections from two or more FOV pre-expansion. 

 

Morphological Parameters M1 M2 

Mean vessel diameter ± Std Dev (μm) 13.34 ± 3.61 14.49 ± 4.06 

 

Mean vessel volume ± Std Dev (μm)3 

 

6217.96 ± 4871.65 

 

6899.84 ± 5580.41 

Mean vessel area ± Std Dev (μm)2 
 

1987.71 ± 1414.00 
 

2124.39 ± 1589.52 

Mean vessel length ± Std Dev (μm) 42.12 ± 39.11 40.26 ± 48.44 

 

 

 

 
 

 

Fig 13. Results of preprocessing and segmentation of anti-Laminin Cy 3 labeled vessels in brain vasculature of 

post-expansion mouse M1 based on explanation given in Fig.5: (A) Rendering of the preprocessed confocal image 

of a FOV of anti-Laminin Cy3 labeled vessels from mouse M1 using preprocessing tools in IMARIS® with Threshold 

Cutoff = 30.4, Gaussian filter = 2.0μm and background subtraction = 78μm. (B) Segmentation of vessels (grey 

channel) in (A) using the FilamentTracer tool from IMARIS® which computes the morphological parameters. The 

blue spheres indicate starting points for identifying vessel segments created by the IMARIS® algorithm (see section 

2.5 for details). (C) Overlay of the results of preprocessed image (A) (red channel) and vessel segmentation B to assess 

quality of segmentation. 
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Fig 14. Comparison of mean vessel diameter across multiple samples pre-and post-expansion. (A) A 4.7 μm 

increase is observed between pre-expansion (9.12μm) and post-expansion mean vessel diameter (13.91μm) for anti- 

Laminin Cy3 labeled brain tissue. (B) For (T) Lectin-Tx Red labeled brain sections a 5.1μm increase is observed 

between pre-expansion (3.4μm) and post-expansion mean vessel diameter (8.5μm). *p-values<0.05. The error bars 

represent the standard deviation. 

 

 
 

3.4 Vascular Architecture for Heart Tissue 

 

3.4.1 Pre-Expansion 

 

The morphological parameters for vasculature extracted from heart tissue before expansion are 

summarized in Table 3.5. 

 
Table 3.5 – Mean values for vessel diameter, vessel volume, vessel area and vessel length of three (T) Lectin – 

Texas Red labeled coronal mouse (M1-M3) heart sections from two or more FOV pre-expansion. 

 

Morphological Parameters M1 M2 M3 

Mean vessel diameter ± Std Dev(μm) 7.90 ± 4.08 4.20 ± 0.66 5.19 ± 1.01 

Mean vessel volume ± Std Dev(μm)3 1205.99 ± 1433.78 934.42 ± 873.59 572.57 ±571.88 

Mean vessel area ± Std Dev(μm)2 506.46 ± 412.64 856.24 ± 775.41 546.37 ± 570.12 

Mean vessel length ± Std Dev(μm) 17.61 ± 15.11 65.29 ± 59.24 45.44 ± 48.57 
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Fig 15. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in heart vasculature of 

pre-expansion mouse M1 : (A) Volume rendering of the preprocessed confocal image of a FOV of (T) Lectin-Tx 

Red stained vessels from mouse M1 using preprocessing tools in Fiji software, Gaussian blur = 1.0μm (B) 

Segmentation of vessels (grey) in (A) using the FilamentTracer tool from IMARIS® which also computes the 

morphological parameters. The blue spheres indicate starting points for identifying vessels segmented by the 

IMARIS® algorithm. (C) Overlay of the results of preprocessed image (A) (red channel) and vessel segmentation (B) 

(grey) to assess quality of segmentation. 

 

 

 

3.4.2 Post-Expansion 

 

The morphological parameters for vasculature extracted from brain tissue post expansion 

are summarized in Table 3.6 

 
Table 3.6 – Mean values for vessel diameter, vessel volume, vessel area and vessel length of three (T) Lectin – 

Texas Red labeled coronal mouse (M1-M3) heart sections from two or more FOV post-expansion. 

 

Morphological Parameters M1 M2 M3 

Mean vessel diameter ± Std Dev (μm) 3.27 ± 0.50 2.76 ± 0.42 2.75 ± 0.68 

Mean vessel volume ± Std Dev (μm)3 129.02 ± 91.51 83.60 ± 54.66 73.29 + 69.24 

Mean vessel area ± Std Dev (μm)2 138.28 ± 85.48 119.19 ± 132.73 107.69 ± 95.33 

Mean vessel length ± Std Dev (μm) 13.36 ± 11.61 14.13 ± 13.02 13.02 ± 11.86 
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Fig 16. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in heart vasculature of 

post-expansion mouse M2 : (A) Rendering of the preprocessed confocal image of a FOV of (T) Lectin-Tx Red 

stained vessels from mouse M2 using preprocessing tools in IMARIS® software, Threshold Cutoff = 42.4, Gaussian 

filter = 2.0μm and background subtraction = 105μm (B) Segmentation of vessels (grey) in (A) using the 

FilamentTracer tool from IMARIS®. The blue spheres indicate starting points for identifying vessels created by the 

IMARIS® algorithm. (C) Overlay of the results of preprocessed image (A) (red channel) and vessel segmentation (B) 

(grey) to assess quality of segmentation. 
 

 

Fig 17. Comparison of mean vessel diameter across multiple samples pre-and post-expansion for (T) Lectin- 

Tx Red labeled heart sections. A 3.83μm decrease is observed between pre-expansion (6.76μm) and post- 
expansion mean vessel diameter (2.93μm). *p-values<0.05. The error bars represent the standard deviation. 

 

3.5 Vascular Architecture for Liver Tissue 

 

3.5.1 Pre-Expansion 
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The morphological parameters for vasculature extracted from liver tissue before expansion 

are displayed in Table 3.7 

 
Table 3.7 – Mean values for vessel diameter, vessel volume, vessel area and vessel length of two tomato lectin – 

Texas Red labeled coronal mouse liver (M1-M2) sections from two or more FOV pre-expansion. 

 

Morphological Parameters M1 M2 

Mean vessel diameter ± Std Dev (μm) 2.41 ± 0.53 2.28 ± 0.35 

Mean vessel volume ± Std Dev (μm)3 155.84 ± 36.17 202.85 ± 36.66 

Mean vessel area ± Std Dev (μm)2 331.49 ± 50.06 387.82 ± 55.62 

Mean vessel length ± Std Dev (μm) 8.31 ± 7.59 59.20 ± 9.46 

 

 

 

 

 

Fig 18. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in liver vasculature of 

ppre-expansion mouse M1 : (A) Rendering of preprocessed confocal image of a FOV of (T) Lectin-Tx Red stained 

vessels from mouse M1 using preprocessing tools in IMARIS® software, Threshold Cutoff = 24.4, Gaussian filter = 

2.0μm and background subtraction = 124μm (B) Segmentation of vessels (grey) in (A) using the FilamentTracer tool 

from IMARIS® which also computes the morphological parameters. The blue spheres indicate starting points for 

identifying vessels created by the IMARIS® algorithm. (C) Overlay of the results of preprocessed image (A) (red 

channel) and vessel segmentation (B) (grey) to assess quality of segmentation. 
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3.5.2 Post-Expansion 

 

The parameters for vasculature extracted from liver tissue before expansion are displayed 

in Table 3.8. 

 
Table 3.8 – Mean values for vessel diameter, vessel volume, vessel area and vessel length of two (T) Lectin – 

Texas Red labeled coronal mouse (M1-M2) liver sections from two or more FOV post-expansion. 

 

Morphological Parameters M1 M2 

Mean vessel diameter ± Std Dev (μm) 7.23 ± 1.34 4.32 ± 0.36 

Mean vessel volume ± Std Dev (μm)3 1575.87 ± 1909.50 367.8 ± 42.8 

Mean vessel area ± Std Dev (μm)2 850.23 ± 1002.21 592.9± 68.9 

Mean vessel length ± Std Dev (μm) 36.06 ± 42.37 30.01 ± 9.81 

 

 
 

 

Fig 19. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in liver vasculature of 

post-expansion mouse M1 : (A) Rendering of the preprocessed confocal image of a FOV of (T) Lectin-Tx Red 

stained vessels from mouse M1 using preprocessing tools in IMARIS® software, Threshold Cutoff = 29.6, Gaussian 

filter = 2.0μm and background subtraction = 106μm (B) Segmentation of vessels (grey) in (A) using the 

FilamentTracer tool from IMARIS®. The blue spheres indicate starting points for identifying vessels segmented by 

the IMARIS® algorithm. (C) Overlay of the results of preprocessed image (A) (red channel) and vessel segmentation 
(B) (grey) to assess quality of segmentation. 
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Fig 20. Comparison of mean vessel diameter across multiple samples pre-and post-expansion for (T) Lectin-Tx 

Red labeled liver sections. A 3.53μm increase is observed between pre-expansion (2.35μm) and post-expansion mean 

vessel diameter (5.87μm). p-value<0.05. The error bars represent the standard deviation. 

 
 

 

 

3.6 Vascular Architecture for Lung Tissue 

 

3.6.1 Pre-Expansion 

 

The parameters for vasculature extracted from lung tissue before expansion are displayed 

in Table 3.9. 

 
Table 3.9 – Mean values for vessel diameter, vessel volume, vessel area and vessel length of two (T) Lectin- 

Texas Red labeled coronal mouse lung sections from two or more FOV pre-expansion. 

 

Morphological Parameters M1 M2 

Mean vessel diameter ± Std Dev (μm) 3.23 ± 0.27 5.59 ± 0.80 

Mean vessel volume ± Std Dev (μm)3 79.08 ± 55.51 499.67 ± 894.64 

Mean vessel area ± Std Dev (μm)2 97.45 ± 68.34 366.98 ± 664.61 

Mean vessel length ± Std Dev (μm) 9.60 ± 6.86 21.49 ± 39.41 



43  

 
 

Fig 21. Results of preprocessing and segmentation of (T)Lectin-Tx Red labeled vessels in lung vasculature of 

pre-expansion mouse M1 : (A) Rendering of the preprocessed confocal image of a FOV of (T) Lectin-Tx Red stained 

vessels from mouse M1 using preprocessing tools in IMARIS® software, Threshold Cutoff = 45.9, Gaussian filter = 

2.0μm and background subtraction = 173μm (B) Segmentation of vessels (grey) in (A) using the FilamentTracer tool 

from IMARIS® which also computes the morphological parameters. The blue spheres indicate the starting points for 

identifying vessels created by the IMARIS® algorithm. (C) Overlay of the results of preprocessed image (A) (red 

channel) and vessel segmentation (B) (grey) to assess quality of segmentation. 

 

 

 

 

3.6.2 Post-Expansion 

 

The parameters for vasculature extracted from lung tissue before expansion are displayed 

in Table 3.10. 

 
Table 3.10 – Mean values for vessel diameter, vessel volume, vessel area and vessel length of two (T) Lectin – 

Texas Red labeled coronal mouse (M1 and M2) lung sections from two or more FOV post-expansion. 

 

Morphological Parameters M1 M2 

Mean vessel diameter ± Std Dev (μm) 6.31 ± 1.24 8.41 ± 3.72 

Mean vessel volume ± Std Dev (μm)3 540.36 ± 586.66 1702.44 ± 2607.62 

Mean vessel area ± Std Dev (μm)2 350.60 ± 390.92 721.90 ± 829.38 

Mean vessel length ± Std Dev (μm) 18.56 ± 20.25 27.39 ± 31.33 

A B C 

200μm 200μm 200μm 
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Fig 22. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in lung vasculature of 

post-expansion mouse M2 : (A) Rendering of the preprocessed confocal image of a FOV of (T) Lectin-Tx Red 

stained vessels from mouse M2 using preprocessing tools in IMARIS® software, Threshold Cutoff = 32.7, Gaussian 

filter = 2.0μm and background subtraction = 105μm (B) Segmentation of vessels (grey) in (A) using the 

FilamentTracer tool from IMARIS®. The blue spheres indicate starting points for identifying vessels created by the 

IMARIS® algorithm. (C) Overlay of the results of preprocessed image (A) (red channel) and vessel segmentation (B) 

(grey) to assess quality of segmentation. 
 

 
 

Fig 23. Comparison of mean vessel diameter across multiple samples pre-and post-expansion for (T) Lectin-Tx 

Red labeled lung sections. A 2.87μm increase is observed between pre-expansion (4.49μm) and post-expansion mean 
vessel diameter (7.36μm). p-value<0.05. The error bars represent the standard deviation. 
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3.7 Vascular Architecture for Leg Muscle Tissue 

 

3.7.1 Pre-Expansion 

 

The parameters for vasculature extracted from leg muscle sections before expansion are 

displayed in Table 3.11. 

 
Table 3.11– Mean values for vessel diameter, vessel volume, vessel area and vessel of three (T)Lectin–Texas 

Red labeled coronal mouse (M1-M3) leg muscle sections from two or more FOV pre-expansion. 

 

Morphological 

 

Parameters 

 

M1 
 

M2 
 

M3 
 

M4 

Mean vessel diameter 

 

± Std Dev (μm) 

 

13.55 ± 4.87 
 

7.73 ± 1.39 
 

6.12 ± 1.39 
 

7.41 ± 1.86 

Mean vessel volume ± 

 

Std Dev (μm)3 

2607.02 ± 

 

2009.04 

1734.37 ± 

 

2934.86 

 
851.02 ± 1008.60 

 
693.07 ± 521.60 

Mean vessel area ± 

 

Std Dev (μm)2 

 
825.34 ± 574.53 

 
844.90 ± 1356.08 

 
538.26 ± 642.82 

 
385.17 ± 278.82 

Mean vessel length ± 

 

Std Dev (μm) 

 
19.87 ± 15.02 

 
31.90 ± 50.22 

 
25.54 ± 34.08 

 
17.93 ± 16.49 
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Fig 24. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in leg muscle vasculature 

of pre-expansion mouse M1 : (A) Rendering of the preprocessed confocal image of a FOV of (T) Lectin-Tx Red 

stained vessels from mouse M1 using preprocessing tools in IMARIS® software, Linear Stretch, Gaussian filter = 

1.0μm, background subtraction = 106μm. (B) Segmentation of vessels (grey) in (A) using the FilamentTracer tool 

from IMARIS® which computes morphological parameters. The blue spheres indicate starting points for identifying 

vessels created by the IMARIS® algorithm (see section 2.5 for detail). (C) Overlay of the results of preprocessed image 
(A) (red channel) and vessel segmentation (B) (grey) to assess quality of segmentation. 

 

 
 

 

3.7.2 Post-Expansion 

 

The parameters for vasculature extracted from lung tissue before expansion are displayed 

in Table 3.12 

 
Table 3.12 – Mean values for vessel diameter, vessel volume, vessel area and vessel length segmentation of two 

(T) Lectin Texas Red labeled coronal mouse (M1-M2) leg sections from two or more FOV post-expansion. 

 

Morphological Parameters M1 M2 

Mean vessel diameter ± Std Dev (μm) 24.15 ± 6.04 17.88 ± 6.60 

Mean vessel volume ± Std Dev (μm)3 17424.60 ± 12045.04 10199.30 ± 11440 

Mean vessel area ± Std Dev (μm)2 2706.21 ± 1968 2434.77 ± 818 

Mean vessel length ± Std Dev (μm) 31.53 ± 28.5 51.44 ± 55.6 
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Fig 25. Results of preprocessing and segmentation of (T) Lectin-Tx Red labeled vessels in leg muscle vasculature 

of post-expansion mouse M1 : (A) Rendering of the preprocessed confocal image of a FOV of (T) Lectin-Tx Red 

labeled vessels from mouse M1 using preprocessing tools in IMARIS® software, Linear Stretch, Gaussian filter = 

2.0μm, background subtraction = 87μm. (B) Segmentation of vessels (grey) in (A) using the FilamentTracer tool from 

IMARIS® which computes morphological parameters. The blue sphere indicates starting point for identifying vessels 

created by the IMARIS® algorithm (see section 2.5 details). (C) Overlay of the results of preprocessed image (A) (red 

channel) and vessel segmentation (B) (grey) to assess quality of segmentation. 

 

 
 

 

Fig 26. Comparison of mean vessel diameter across multiple samples pre-and post-expansion for (T) Lectin-Tx 

Red labeled leg muscle sections. A 12.32μm increase is observed between pre-expansion (8.70μm) and post- 

expansion mean vessel diameter (21.02μm). *p-value<0.05. The error bars represent the standard deviation. 
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The morphological parameters vessel area, vessel volume and vessel length computed by 

IMARIS® show high standard deviations. In most samples the coefficient of variation (CV = 

stdev/mean) was greater than or equal to one, this indicates that the distribution is not centered. 

The reason for this is the algorithm on which the vessels are segmented. The software does not 

segment whole vessels, rather a vessel is segmented into a group of smaller sections. The algorithm 

generates each segment using the SPD and EPD specified as guides (see section 2.5 for details). 

Since the mean values of these parameters does not represent the mean of a complete vessels but 

smaller sections, the resulting mean values do not yield any trend in samples pre-and post- 

expansion. Only the mean vessel diameter data had a CV of less than one and was therefore used 

for further comparison between pre-and post-expansion samples. 
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CHAPTER 4 

 

4. Discussion 

 

4.1 VascExM Protocol 

 

The first aim of this thesis was to adapt expansion microscopy (ExM) protocols originally 

intended for mapping proteins in histological tissue as described in Asano et al. 2018, into a novel 

protocol for optical imaging of labeled vasculature in preclinical tissue samples. We termed this 

new protocol ‘VascExM’. 

 

During the initial stages of protocol development, immunostaining was performed in 24- 

well plates, to ensure minimal handling of samples, the same plate was then used as the gelation 

chamber. This resulted in the utilization of 200 μl of gelling solution per sample. This led to the 

formation of 1-1.5 mm thick gels in which samples were susceptible to folding (Fig 27 F and G). 

Another concern was that on expanding the gel in water, made it significantly swell vertically (~3 

mm). This created challenges for imaging because the thickness of the gel was not accommodated 

by the limited working distance of the 20× lens (NA=1.0) on the Zeiss 710 microscope. Moreover, 

thick gels were fragile during handling after expansion, and could not be stored for re-expansion. 

 

After multiple containers were tested for reducing the gel’s thickness, it was determined 

that the thinnest gels could be made by expanding the samples directly on the slide. For this 

purpose, gelation chambers were created by gluing no. 1.5 coverslips at the ends of the slide to act 

as spacers and give height to the chamber (Fig. 27 A). The sample was then carefully placed in the 

gelation solution in the gap between the spacers. A no. 1 coverslip was placed on the container as 

a lid to prevent evaporation of the gelation solution during incubation. However, leakage of the 
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solution was observed from the edges, near the spacers. This was overcome by wrapping spacers 

with parafilm instead of gluing them down seen in Fig 27 B. The malleable parafilm sealed the 

chamber, preventing any leakage. Along with reducing unexpanded gel thickness from 1-1.5 mm 

to 0.5-0.7 mm (Fig 27 C, D and E), the amount of gelation solution required for the protocol also 

decreased to 80-100 μl. Thus, the time taken for polymerization in the incubator was reduced from 

2-3 hours to 45-60 minutes. 

 

On observing the expanded samples under the microscope, excessive fragmentation of the 

tissue was noted. To optimize the expansion, incubation time for the digestion process was 

decreased from overnight to 5 hours. Similarly, the incubation time for expansion of the gel in 

water was also reduced from 60 to 45 minutes, to help maintain the structural integrity of the 

expanded sample. 
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Fig 27. Pictures of gelation chambers and gels during VascExM protocol development. (A) First iteration of 
slide-based gelation chamber in which spacers were glued down at the corners of the slide, but leakage of gelation 

solution occurred at the edges as indicated by the red arrows. (B) The final chamber prototype used in the VascExM 

protocol - here parafilm was used to secure the spacers and a coverslip was used as a lid for the chamber. (C) 

Representative gels formed using the slide-based gelation chamber. (D) Pre-expansion coronal section of the mouse 

brain displayed on a slide. (E) Post- expansion coronal section from (D) placed in a petri dish with water for the 

diffusion step. (F) Representative gels formed in the wells of a 24-well plate “gelation chamber”. (G) During 

expansion in water, folding can be seen along the height of each sample as indicated by the yellow brackets. 
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4.2 Vessel Segmentation Pipeline 

 

4.2.1 IMARIS® Segmentation 

 

 

The regular and hierarchical branching of vasculature in coronal sections of mouse brain, 

heart and leg tissue were segmented using IMARIS® software as explained in section 2.5. The 

quality of the vessel segmentation was assessed by visual inspection. The values of all 

morphological parameters generated were exported to Microsoft Excel for statistical analysis. Data 

for any irregular branches generated by the FilamentTracer tool in IMARIS® software were 

excluded based on the diameter thresholds set in IMARIS® before mean values were calculated 

(Fig 28). 

Fig 28. Segmentation of (T)-Lectin Texas Red stained vasculature in mouse brain tissue post-expansion. Arrows 
point to irregular branches generated by the FilamentTracer tool’s algorithm in regions where actual vessels were not 

present. 
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4.3 Discussion of Results 

 

The second aim of this thesis was to determine which vascular labeling method lends itself best to 

tissue expansion. Three kinds of vascular labels with different binding properties were tested in 

the brain tissue. 

 

4.3.1 Anti-Laminin Cy3 Antibody Labeling 

 

Visual inspection of expanded tissue images showed that vessels exhibiting intact and 

continuous laminin labeling appeared fragmented along their length. As described in Chapter 2, 

the anti-laminin antibody binds to its epitope on the basement membrane, the outer layer of the 

vessel, responsible for providing structural support. In both pre- and post-expansion images, the 

laminin binding could be observed along outer edges of the vessels. Since IMARIS® segments 

vessels based on their image intensity, this posed a hurdle when calculating the accurate diameter 

of vessels as shown in Fig 29. 
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. 

 

Fig 29. Issues observed for anti-Laminin Cy3 antibody staining in the mouse brain. (A) Arrows indicate 

fragmentation of the vessel label after expansion. (B) Segmentation of image A using IMARIS®. Segmentation is done 

based on local intensity, therefore only the outermost boundary of each vessel gets segmented. The true diameter of 

the vessels is not accurately identifiable; arrows indicate regions of improper segmentation. 

 

 
 

4.3.2 Tomato(T)-Lectin Texas Red Labeling 

 

The intravenously administered (T)Lectin solution binds to the luminal (i.e. inner) surface 

of the blood vessels. Therefore, in the 3D renderings of the tissue samples, vessels appear stained 

evenly across their entire width. It was observed that the continuous and unfragmented labeling 

was maintained post-expansion in the samples. Examples of (T)-Lectin Texas Red Labeling have 

been detailed in Chapter 3. 
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4.3.3 BriteVu and Galbumin-Rhodamine Polymer Labeling 

 

While the two samples that were expanded showed no expansion of the administered 

BriteVu-Galbumin-Rhodamine polymer within the vessels, results of the analysis were 

inconclusive due to the limited number of tissue samples. Furthermore, perfusion efficiency in the 

available samples seemed poor, resulting in few labeled vessels per field prior to expansion. 

 

Due to the fragmentation of expanded vasculature observed in samples stained with anti- 

laminin, and poor BriteVu polymer perfusion, tomato lectin was considered a better vascular label 

for VascExM for this thesis. Thus, vascular expansion was performed using tomato lectin as the 

contrast agent for the remaining organs. 

 

 

 
4.3.4 Trends seen in organs 

 

Quantitative analysis of the changes in morphological parameters post-expansion were 

performed as explained in section 2.6. 

 

To compare the efficacy of expansion for (T) Lectin-Tx Red and anti-Laminin Cy3 labels, 

change in signal intensity was assessed in samples pre- and post-expansion. Expanded anti- 

Laminin labeled sections indicated an approximately 87% decrease in mean intensity of label 

observed in post-expansion tissue samples. Whereas (T)-Lectin only resulted in a 2% decrease in 

mean intensity post-expansion. Tillberg et al and Gao et al explain that the Cyanine fluorophores 

lose structural stability during the polymerization which makes fluorophores like Cy3 more 

susceptible to degradation, yielding lower label per unit pixel. 
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Fig 30. Comparison of mean label intensity across multiple brain tissue samples pre-and post-expansion. (T) 

Lectin-Tx Red labeled samples underwent a decrease of ~400 units in mean intensity after expansion. For anti-Laminin 

Cy3 a 16132-unit (i.e. 87%) decrease was observed post-expansion *p-value<0.05. The error bars represent the 

standard error of the mean. 

 
 

 

 

Though a significant difference is seen in the intensity of both vascular labels, expanded 

brain tissue sections stained with (T) Lectin and anti-Laminin exhibited a 158% and 156% increase 

in the mean vessel diameter, respectively. A similar trend was observed in leg muscle, liver, and 

lung vasculatures. Post-expansion samples saw a 154%, 150% and 64% increase in their mean 

vessel diameters, respectively. However, changes in parameters in heart tissue did not exhibit an 

increase in mean vessel diameter. Post-expansion showed an approximately 61% decrease in size. 

One reason for this could be due to sampling error, without the registration of post-ExM samples 

on pre-ExM we faced difficulty in acquiring images from the same area once the samples had 

expanded. 

 

4.4 VascExM Protocol 

 

Based on the results of these preliminary studies the finalized VascExM protocol we 

developed is summarized below: 
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Tissue Preparation 

 

Perfused animal is fixed in 10% buffered formalin at 4o C for 2-3 days before being 

transferred to 30% sucrose cryoprotectant solution (Sigma Aldrich, Saint Louis, MO) and 

incubated overnight at 4o C. Once the sample sinks in the sucrose solution it is embedded in the 

optimal cutting medium (OCT, Sakura Finetek, Torrance, CA) and flash frozen in liquid nitrogen 

for 15 minutes and placed in the cryotome. Sample are acclimatized to the temperature in the 

cryostat chamber (-22o C) for 30-60 minutes before being glued onto the chuck to and sliced into 

sections of required thickness (10-100 µm) and stored at 4 °C until they are ready for staining. 

 

Immunostaining 

 

Wash sections in a 1× PBS solution for 15 minutes and then permeabilize in 1× PBST 

solution (PBS containing 0.5% Tween 20) for 15 minutes on an orbital shaker at 30 rpm. Incubate 

the washed samples in 1× carbo-free blocking solution (Vector Labs, Burlingame, MA) for 1 hour 

at room temperature. After blocking, the sections are incubated overnight in 150 μl of the pre- 

conjugated primary anti-α-SMA-FITC (1:100 dilution) and primary anti-laminin (1:200 dilution) 

antibody. The incubation period is directly proportional to the thickness of the tissue sections (1 

night/10 μm). Next, rinse the section 3 times in PBS solution for 10 minutes each. For the pre- 

conjugated antibody, the sections need to be immediately transferred onto a slide, counterstained 

with DAPI for 1-3 minutes, mounted in aqueous mounting medium and cover slipped. For the 

unconjugated antibody, the two-step labeling procedure is followed. Once the anti-laminin 

antibody is rinsed, the sections need to be incubated in goat anti-rabbit Cy-3 secondary antibody 

for 3 hours. Rinse the secondary antibody off with a 15-minute PBS wash, and then counterstain 

with DAPI and coverslip. 
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Image multiple fields of each sample using 10x and 20x Zeiss 710 NLO multiphoton 

microscope equipped with appropriate filter sets (please see section Image Acquisition at the end 

of Protocol). 

 

Gelation 

 

After the pre-expansion samples are imaged, prepare them for expansion. Incubate the 

slides in PBS for 2 hours to remove the coverslips with ease. Remove the samples from the slide 

and rinse in PBS for 10 minutes. 

 

AcX treatment. Resuspend the Acryloyl-X, SE solution in anhydrous DMSO at a concentration 

of 10 mg/mL (aliquot and store in desiccated environment at -200C for up to 3 months). Dilute the 

AcX/DMSO solution in PBS at a concentration of 0.1 mg/ml. Incubate the rinsed samples in this dilution 

for 6 h, at RT. 

 

While the sample is incubating in AcX, construct a gelation chamber and gelation solution. 

For gelation chamber, superglue two No. 1.5 coverslips on the edges of a slide, then wrap both 

edges evenly using parafilm. 

 

The gelling solution needs to be freshly prepared each time by adding Stock X, 4HT 

solution, TEMED and APS together in this specific order at a volumetric ratio of 47:1:1:1. All 

solutions should be aliquoted and stored at -200C, APS and 4HT aliquots should be prepared fresh 

every 3-4 weeks. 
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Table 4.1 Gelation Solution 
 

Reagent Stock Solution 

 

Concentration 

Stock solution Volume 

Stock X * 9.4ml 

4HT 0.5% w/v 1ml 

TEMED 10% w/w (as determined in 

 

container) 

1ml 

APS 10% w/w 1 ml 

 

 

 

 

 

  
    *Table 4.2 Stock X Solution 

 

Stock X 

Reagents 

Stock Solution 

 

Concentration(g/100m

l) 

Stock 

Solution 

 

Volume(ml) 

Sodium acrylate 35 2.25 

Acrylamide 40 0.5 

N, N ′ -

Methylenebisacrylamide 

2 0.75 

Sodium Chloride 29.2(5

M) 

4 

PBS 10× 1 

Water 0.9 

Total 9.4 
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Once the samples are done incubating in AcX solution, wash twice with PBS for 15 mins 

each time. 

 

Place 80-100 μl of the gelling solution in the chamber and carefully transfer the tissue 

sample onto the solution using a paint brush, ensure there are no folds in the tissue section. Seal 

the chamber with a coverslip on the top to prevent any leakage of solution. 

 

Once the lid is placed on the slide and air bubbles removed, keep the chamber in the dark 

at 4oC for 30 minutes. After this initial incubation, transfer the chamber to a 37o C incubator for 

polymerization 1-2 hours depending on the thickness of the tissue section. Ensure that the chamber 

was not tilted or shaken during the gelation process. 

 

 

 
Digestion 

 

While polymerization occurs prepare the digestion buffer. 

 

Table 4.3 Digestion Buffer 
 

Digestion Buffer Reagents Final 

 

concentration(/100ml) 

Triton X-100 0.50g 

EDTA, disodium (0.5M, pH 8) 0.2ml 

Tris.Cl (1M, pH 8) 5ml 

NaCl 4.67g 

Proteinase K 1:100 dilution** 

Water Add up to total 100ml 



61  

 

** The digestion buffer is aliquoted and stored at -200C without the Proteinase K. Proteinase K is added immediately 

before the digestion step after buffer is thawed. 

 

 

 

After 1- 2 h the chamber is removed from the incubator. Separate the lid gently from the 

top by using a blade. Using a fine paint brush, transfer the gel into a container of digestion buffer 

to incubate for 5h at room temperature in the dark. 

 

Expansion and Storage 

 

In case the samples do not need to be imaged immediately after gelation, the gel embedded 

samples can be stored in PBS in the dark at 4oC and expanded as needed. 

Trim the digested gel to a reasonable size for ease in handling. Prior to imaging samples, 

immerse the gel in water for 10-15 minutes. Repeat this step three times with fresh water each time 

for a total of 30-45 minutes. At this juncture the sample should be optically clear, completely 

expanded, and ready for imaging. 

 

Imaging Acquisition 

 

Pre- and post-expansion images of the tissues are acquired on a Zeiss LSM 710 NLO using 

a W Plan-APOCHROMAT 20×/1.0 water immersion objective. Isolate the required FOV with 

distinctly labeled vasculature using the 10× air objective. Once the FOV is selected, switch to the 

20× objective and refocus the sample, add a drop or two of water to form a water column between 

the sample and the objective. On the imaging software (Zen v2.3), set the lasers in the specific 
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range according to the fluorophores being imaged (see Table 2.2 for detail). Adjust the value of 

laser power, pinhole width and gain so that least amount of background in observed while imaging 

the vasculature. To obtain a 3D image, set the range along the z-axis to be imaged and run the z- 

stack protocol in the software. A collection of 2D images (of the XY plane) will be taken along 

the z-axis at regular intervals which can be stitched to obtain a 3D structure of the labeled 

vasculature. 
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CHAPTER 5 

 

5. Conclusion and Future Prospects 

 

5.1 Conclusion 

 

In conclusion I would like to recapitulate the initial aims and final findings of the thesis: 

 

I. The first aim of this thesis was to develop a tissue processing protocol for high-resolution 

optical imaging of the vasculature in preclinical models. 

 

VascExM is a new protocol to obtain high resolution 3D optical images of the vasculature 

in the mouse model using chemical reagents and diffraction-limited microscope hardware 

already common in biology labs. The protocol was successful in expanding vasculature in 

the brain, leg and liver to a magnification of ~2.5× and lung vasculature to ~1.64× (all 

calculation were performed using mean values) A constraint of the developed technique      

was the long incubation time required for the protocol. The entire process could take seven 

to ten days for a sample depending on its thickness. 

 

II. The second aim was to determine the efficacy of expansion protocol across various 

vascular labels. 

 

To optimize VascExM we tested three different vascular labeling methods: Based on the 

experiments conducted, it was determined that tomato-lectin exhibited the most intact and 

continuous vascular label pre- and post-expansion. The experiments also demonstrated that 

Texas-Red did not undergo any significant loss in signal intensity post-expansion making 

it an ideal fluorophore for imaging expanded samples. Due to limited availability of well- 

perfused BriteVu and Galbumin-Rhodamine polymer tissues this observation needs to be 
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explored further using a larger number of polymer perfused samples. 

 

III. A third aim initially discussed for this thesis was to locate landmark vessels pre- and post- 

expansion for registration of expanded sample images with pre-expansion images. Due to 

the time constraints arising from the Covid-19 induced closure of the lab, this aim was not 

completed. Instead, unpaired statistical analysis was performed on the pre-and post- 

expansion morphological data for each tissue sample. To ensure accuracy, pre-and post- 

expansion images were taken from the same regions in each sample. 

 

IV. The thesis committee identified questions that should be answered in the future to ensure 

widespread applicability of this protocol. These include the following, was the tissue 

expansion isotropic in nature, how can this be validated? Was the expansion affected by 

the type or thickness of tissue, how can this be determined? Lastly, on what basis were 

the different vascular labels selected for testing? Were multiple fixatives also tested, if so, 

what was their effect on the tissue expansion? To validate the isotropic nature of the 

expansion and determine how the thickness of the tissue affects the expansion process a 

non-rigid registration of the pre- and post-expansion images needs to be performed with 

respect to each other. Through rigid transformations of rotation, scaling and translation, 

the extent of distortion between the two images can be calculated. Analysis of the 

distortion among sections of varying thicknesses can help ascertain the degree to which 

the expansion process depends on the thickness of tissue samples. Once aligned, for 

further confirmation, a vessel count can be done to determine if vascular structures have 

been lost due to expansion. Furthermore, the vascular labels selected were done 

strategically after a detailed literature review. As per Chen et al, 2015 most fluorescent 

proteins and dyes are compatible, therefore the selection was done based on the binding 
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action of the label to its specific epitope in the vasculature. Anti-Laminin Cy3 utilizes 

antibody binding action to attach only to the laminin in the basement membrane, whereas 

the injectable nature of Tomato Lectin Tx-red allows the label to fill the vessel and attach 

to the glycoproteins in the luminal surface, lastly, the Brite Vu and Galbumin Rhodamine 

polymer complex, is an MRI and CT visible contrast agent being used for other 

multimodal visualization projects in the Pathak Lab and was selected to determine the 

possibility of merging images from VascExM with those projects. While various vascular 

labels were tested, the rest of the staining protocol was unchanged, and no tests were 

performed to compare the impact of different fixatives on the expansion of the tissue 

sample.  

 

 

5.2 Future research opportunities 

 

 

 

 This thesis lays the groundwork for a wide range of applications that can benefit from a 

3D high- resolution vascular imaging technique like VascExM. Some examples of future 

research opportunities are given below. 

 

I. VascExM is a new protocol for obtaining high resolution optical images using sample 

expansion to circumvent the diffraction limit. This optical imaging technique can be used 

to combine optical vascular data with that from μCT and μMRI to enable multimodality 

visualization of fixed tissue sections. A vessel segmentation pipeline can be developed to 

co-register vasculature images from expanded samples on with μCT and μMRI. High- 

resolution multimodality 3D images can then be used for visualizing more comprehensive 
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details of the vasculature. 

 

II. While VascExM has been used to expand the vasculature in normal mouse organs, we have 

started the process for optimizing this high-resolution 3D imaging technique for the 

vasculature in tumor xenografts. 3D nanoscale visualization of tumor vasculature via 

VascExM can be co-registered with μCT and μMRI data for multimodal visualization of 

the tumor microenvironment. 

 
 

III. Zhao et al in 2017 developed a form of ExM optimized for clinical pathology workflows 

called ExPath. These high-resolution images of neoplastic lesions generated after 

expansion were used to develop a model using machine learning to optically train and 

classify breast tumors into early or late stage tumors. Similarly, VascExM of preclinical 

tumor models could be implemented to classify the changes in vasculature between early 

and late stage tumors. 
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• Advised and edited resumes and cover letters for undergraduate students  
• Communicated with recruiters to develop relation between companies and the Career Center      

 
     President: Pratibimb, the Dramatic Society of DTU, New Delhi, India                                                            January 2015- January 2018  

• Acted, wrote and led 30+ students in annual productions for statewide theatre competitions   
 

     Logistics Head: Karyon, the Biotechnology Fest of DTU, New Delhi, India                                                    January 2017- January 2018  

• Founded and organized Ignite’18 – The Scientific Lecture Series  

• Managed logistical arrangements for The Annual Biotechnology festival which with an estimated 500+ attendance  
  
SPECIALIZED SKILLS 

Software: R, MATLAB, MINITAB, C++, Data Structure and Database Management System, MICROSOFT Office 
Laboratory: Growth and Maintenance of Cell Lines, Gel-Electrophoresis (Agarose, SDS PAGE), Immunoblotting, 
Immunohistochemistry (Fluorescence, Chromogenic), Protein Quantification, PCR, Gel Extraction, Restriction Digestion, ELISA, 
LUMINEX  


