
 i 

 

 

 
THE ROLE OF ADP RIBOSYLATION FACTOR GTPASES IN MYOBLAST 

FUSION IN DROSOPHILA 
 

 

 

 

by 
Theodore Jun Ming Chan 

 

 

 

 

 

 

A thesis submitted to Johns Hopkins University in conformity with the requirements for 
the degree of Master of Science 

 

 

Baltimore, Maryland 
April 2016 

 

 

 

 
© 2016 Theodore Jun Ming Chan 

All Rights Reserved 

 

 

 

 



 ii 

Abstract 

Myoblast fusion is a crucial step in myogenesis and muscle regeneration and is 

highly conserved across many species. A guanine nucleotide exchange factor for the Arf 

GTPase, Loner, is required for myoblast fusion in Drosophila presumably by regulating 

Arf6 GTPase activity. However, other Arfs, such as Arf1, may also be involved in 

myoblast fusion. In this study, I performed a series of loss-of-function and gain-of-

function experiments in embryos, as well as localization experiments in cultured cells and 

in embryos to determine the roles of Arf1, Arf6, and several other Arfs in myoblast 

fusion. arf6 maternal/zygotic mutant embryos did not show fusion defects. Dominant 

negative and constitutively active Arf1 caused fusion defects, but not dominant negative 

Arf6 or constitutively active Arf6. All tested Arfs localized to the fusogenic synapse in 

cultured cells, while Arf6 localized to the fusogenic synapse in embryos, but not Arf1 and 

Arf4. Therefore, Arf1 and Arf6 appear to have redundant functions in myoblast fusion. 

This broad study of several Arfs lays the groundwork for future experiments to pinpoint 

the cellular function of Arfs in myoblast fusion. 
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1. Introduction 

Membrane fusion occurs in virus-cell fusion, intracellular vesicle fusion and cell-

cell fusion (Chen & Olson, 2005). Compared to virus-cell fusion and intracellular vesicle 

fusion, cell-cell fusion remains poorly understood. Cell-cell fusion is a fundamental 

biological process in which mononucleated cells fuse to form multinucleated cells in 

development and homeostasis in multicellular organisms. Cell-cell fusion requires 

membrane fusion between two cells, where two different lipid bilayers merge into one.  

Cell-cell fusion occurs in many organisms and many cell types, including mating 

in yeast, organ formation in Caenorhabditis elegans and myoblast fusion in Drosophila 

melanogaster. In humans and other mammals, cell-cell fusion takes place during 

fertilization, myogenesis, placenta formation, bone remodeling, immune responses and 

other processes (Chen & Olson, 2005). The similar cellular processes in different fusion 

events suggest that cell-cell fusion may share similar mechanisms despite the diversity of 

cell types. Therefore, it may be possible to understand the general mechanism of all cell-

cell fusion events by studying one specific type of cell-cell fusion (Chen & Olson, 2005). 

One reason to study cell-cell fusion is its therapeutic potential. The most famous 

example is fusion of immortal and antibody-secreting B cells to form hybridomas for the 

production of monoclonal antibodies (Kohler & Milstein, 1975). Cell-cell fusion could 

also be utilised to repair tissue damage. For example, since myoblast fusion is an 

essential process in muscle regeneration, enhanced fusion may increase regeneration 

efficiency in damaged muscles. However, many challenges remain before cell-cell fusion 

can be therapeutically manipulated. These challenges include the identification of cells to 

use for reparative fusion, introduction of cells into damaged tissues, activation of cell-cell 



 2 

fusion, and maintenance of the repaired products (Sullivan & Eggan, 2006). 

Myoblast fusion is a crucial step in myogenesis and muscle regeneration, which is 

necessary for the formation of skeletal muscles. Skeletal muscles are made up of 

multinucleated muscle fibers that are formed by fusion of hundreds or thousands of 

mononucleated myoblasts. Due to the complexity of the mammalian musculature, 

myoblast fusion is a highly regulated process. Muscle cells destined to fuse have to 

migrate, recognize, and adhere to each other at the appropriate time and place (Abmayr & 

Pavlath, 2012) by cell adhesion molecules (CAMs). Most of our understanding of 

myoblast fusion comes from Drosophila. The mechanisms of muscle cell fusion in 

mammals remain not well understood.  

1.1 Myoblast fusion in Drosophila 

Drosophila is an excellent model organism for genetic and cell biological studies 

because of its small size, ease of maintenance, short generation time, large number of 

progeny, and genetic amenability. More importantly, many molecules are conserved 

between Drosophila and humans, as 75% of human disease genes have fly homologs 

(Reiter et al., 2001). Drosophila also has many advantages specific to research on 

myoblast fusion. Firstly, the ease of visualizing the developing musculature allows easy 

screening of mutations that affect fusion. Secondly, Drosophila myogenesis is conserved 

in mammals. Thirdly, Drosophila musculature develops within 5.5 hours during 

embryogenesis, compared to the days to weeks in mammals (Bate, 1990). Lastly, cell-cell 

fusion can be induced in cultured Drosophila S2R+ cells by co-expressing 

Drosophila adhesion molecule Sticks and stones (Sns) and C. elegans fusogenic protein 

EFF-1 (Shilagardi et al., 2013). 
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Myoblast fusion occurs between two types of muscle cells: founder cells and 

fusion competent myoblasts (FCMs). One founder cell fuses with several FCMs to form a 

single myofiber. The founder cell determines the size, position, orientation, epidermal 

attachment, and nerve innervation patterns of the myofiber (Kim et al., 2015). The first 

step of fusion is cell recognition and adhesion by immunoglobin domain–containing 

CAMs. The CAMs expressed in the founder cell are Dumbfounded (Duf) and Roughest, 

which are functionally redundant. The FCM–specific CAMs are Sns and Hibris. Hibris is 

partially redundant with Sns (Kim et al., 2015). Interaction between the cell type–specific 

CAMs triggers distinct signaling events in each cell. For example, Antisocial (Ants) is 

recruited to sites of fusion by Duf to stabilize Duf through a positive feedback loop (Chen 

& Olson, 2001; Menon et al., 2005). 

The second step of fusion is enhancing cell membrane proximity, which is 

achieved by many regulators that regulate Arp2/3 complex–mediated actin 

polymerization and the formation of F-actin foci in the FCM. The F-actin foci in the 

FCM were found to cause an inward curvature on the founder cell membrane, and 

electron microscopy revealed that the foci consist of a cluster of invasive finger–like 

protrusions (Sens et al., 2010). This protrusive structure shares many similarities with a 

podosome structure, which is a dynamic cell-matrix adhesion structure (Kim et al., 2015). 

Thus, this protrusion was named “podosome-like structure” and the interface between the 

two fusion partners is called a fusogenic synapse (Sens et al., 2010). Proper podosome-

like structure invasion by the FCM is necessary for fusion pore formation (Sens et al., 

2010; Chen, 2011). 

The two major nucleation-promoting factors involved in this process belong to the 
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Wiskott-Aldrich syndrome protein (WASP) family – Scar (Richardson et al., 2007) and 

WASP (Kim et al., 2007; Massarwa et al., 2007). Scar functions in the founder cell to 

create a thin actin sheath at the fusion site, and also functions in the FCM with WASP to 

create a dense F-actin focus (Sens et al., 2010; Kim et al., 2015). The small GTPase Rac 

is an upstream activator of the Scar complex (Luo et al., 1994; Hakeda-Suzuki et al., 

2002). Rac localization is likely regulated by the small GTPase Arf6 and Loner, the Arf6 

guanine nucleotide exchange factor (GEF) (Chen et al., 2003). The signaling pathways 

are summarized in Figure 1.  

The third step of fusion is lipid bilayer destabilization. This step is not well 

understood in Drosophila, but studies in cultured mouse C2C12 myoblasts in vitro 

suggest that phosphatidylserine may be flipped to the outer leaflet of the membrane to 

facilitate fusion (van den Eijnde et al., 2001; Jeong and Conboy, 2011). 

Figure 1. Signaling Pathways in Drosophila Myoblast Fusion 
Cell-type–specific CAMs Duf and Sns interact and trigger distinct signaling events in 
each cell. Scar functions in the founder cell to create a thin actin sheath at the fusion 
site, and also functions in the FCM with WASP to create a dense F-actin focus. Dotted 
arrows represent signaling events that have yet to be definitively proven. 
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1.2 The Arf Family 

Arf6 is a member of the ADP-ribosylation factor (Arf) family of small guanine-

nucleotide-binding (G) proteins that regulate many different cellular processes, including 

cytoskeletal dynamics, growth, and membrane trafficking (Bos et al., 2007; Cherfils & 

Zeghouf, 2013). Like other G proteins, Arf GTPases cycle between GTP-bound and 

GDP-bound states. GEFs catalyze GDP release and GTP binding, while GTPase–

activating proteins (GAPs) catalyze the hydrolysis of GTP-bound Arfs. Based on 

sequence homology, the six mammalian Arf proteins are divided into three classes: Class 

I (Arf1, Arf2, Arf3), Class II (Arf4 and Arf5) and Class III (Arf6) (Donaldson & Jackson, 

2011). In Drosophila, each class has a single Arf ortholog: Class I (Arf1/Arf79F), Class 

II (Arf4/Arf102F) and Class III (Arf6/Arf51F). The Arf family also includes Arf-like 

(Arl) proteins, which have a wider range of roles than Arfs, and Sar1, which is 

functionally similar to Arf1 in coat complex recruitment in vesicle budding (Donaldson 

& Jackson, 2011).  

In mammals, there are 15 Arf GEFs, which are divided into six families, and 31 

Arf GAPs, which are divided into nine major subgroups (Donaldson & Jackson, 2011). 

Two Arl GAPs have been found, but no specific Arl GEFs have been identified 

(Donaldson & Jackson, 2011). The proper localization of Arf GEFs is crucial because 

they ensure the correct temporal and spatial activation of Arfs. Besides catalyzing GTP 

exchange and hydrolysis, Arf GEFs and GAPs also assemble protein complexes at 

specific sites within cells, thus increasing the versatility of signaling networks 

(Donaldson & Jackson, 2011). For example, Arf GAPs have multiple functional domains 

that can interact, independently of their GAP activity, with proteins that regulate 
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membrane trafficking and the actin cytoskeleton (Inoue & Randazzo, 2007).  

Arfs localize to the plasma membrane as well as the membranes of the secretory, 

endosomal and lysosomal pathways (Donaldson & Jackson, 2011). It appears that Arf1 is 

released from membranes upon GTP hydrolysis, while Arf4 and Arf6 remain bound to 

membranes in their GDP-bound state and can bind to membrane-localized partners (Chun 

et al., 2008; Duijsings et al., 2009). For example, Arf6-GDP binds to the Kalirin family 

of Rho GEFs, which activates Rac (Koo et al., 2007). Arf6 inactivation is also important 

for maintaining the podosome in osteoclasts (Heckel et al., 2009). Since both Arf6-GTP 

and Arf6-GDP interact with proteins that regulate other small G proteins, the regulated 

cycle of GTP binding and hydrolysis is important for the biological function of Arf6.  

1.3 Loner and the Arf Family in Myoblast Fusion 

Rac localization to the fusogenic synapse is likely regulated by the small GTPase 

Arf6 and its GEF Loner/Schizo (Chen et al., 2003; Onel et al., 2004). Loner was 

discovered in a genetic screen for muscle development regulators in Drosophila. Loner is 

required for myoblast fusion and is recruited by Duf in the founder cell, although it may 

be present in the FCM as well (Richardson et al., 2007; Bulchand et al., 2010). The Sec7 

domain of Loner possesses GEF activity towards Arf6. Arf6 likely recruits Rac to the 

membrane (Chen et al., 2003), activates the Scar complex (Koronakis et al., 2011), and/or 

regulates actin remodeling through lipid metabolism (D’Souza-Schorey & Chavrier, 

2006). Myoblast fusion is impaired when dominant negative Arf6 protein (Arf6T27N) is 

expressed (Chen et al., 2003). Arf6 has also been shown to regulate mammalian myoblast 

fusion through PLD activation and PI(4,5)P2 
production (Bach et al., 2010).  

Although Loner and Arf6 have been shown to play a role in Drosophila myoblast 
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fusion, studies have suggested that other Arfs may interact with Loner. One study showed 

that myoblast fusion is not affected in arf6 maternal/zygotic null mutants, which suggests 

that Arf6 may be functionally redundant with another Arf protein (Dyer et al., 2007). 

Another study showed that dominant negative (DN) Arf1, but not DN-Arf6, causes 

myoblast fusion defects that resemble loner mutants (Dottermusch-Heidel et al., 2012). In 

the same study, constitutively active (CA) Arf1, but not CA-Arf6, partially rescued loner 

myoblast fusion defect. In a yeast two-hybrid assay, DN-Arf1 (Arf1T31N), but not DN-

Arf6, CA-Arf1, or CA-Arf6, interacts with Loner (Dottermusch-Heidel et al., 2012). 

These studies suggest that Loner may target another GTPase in addition to Arf6. It is also 

possible that Arf6 and Arf1 are functionally redundant. Furthermore, it is unknown 

whether Arf1 and Arf6 function in the founder cell, in the FCM, or both. In addition, the 

role of other Arfs, such as Arf4, Arl1 and Arl2, in myoblast fusion is unknown. The 

fusion phenotypes of the aforementioned Arf genotypes are listed in Table 1.  

The goal of this study was to investigate the function of several Arf GTPases in 

myoblast fusion in Drosophila, especially Arf1 and Arf6. My hypothesis was that Arf1 

and Arf6 are functionally redundant in Drosophila myoblast fusion, since both may be 

downstream of Loner and necessary for myoblast fusion. To pinpoint which Arfs are 

involved in myoblast fusion, both loss-of-function and gain-of-function experiments were 

performed in embryos, and localization experiments were performed in cultured cells and 

in embryos. 
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Table 1. Summary of known fusion phenotypes of different Arf genotypes 
Wildtype phenotype is indicated by “wt”. DN-Arf6 has been shown to impair 
myoblast fusion (Chen et al., 2003), but a later study showed that it does not impair 
myoblast fusion (Dotterbusch-Heidel et al., 2012).  
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2. Results 

2.1 Maternal/zygotic arf6 Mutant Embryos Did Not Show Fusion Defects 

To test my hypothesis that Arf1 and Arf6 are functionally redundant, I observed 

the fusion phenotype of arf6;arf1 zygotic double mutant embryos. No fusion defects were 

observed in arf6;arf1 zygotic mutants (data not shown). Since both Arf1 and Arf6 have 

strong maternal contribution (Fisher et al., 2012), there may still be Arf1 and Arf6 

activity in the arf6;arf1 zygotic mutants. To test whether a more complete knockdown of 

Arf6 would produce a fusion defect, I generated arf6/arf6;arf1/+ embryos without 

maternal contribution of arf6. These embryos did not show fusion defects (Fig. 2).  

Figure 2. arf6 maternal/zygotic mutant embryos did not show fusion defects 
arf6/arf6;arf1/+ embryos without maternal contribution of arf6 were labeled with !-
GFP (green) and !-MHC (red). arf6 maternal/zygotic mutants were identified by their 
lack of GFP expression (see methods for details). Embryos were magnified (B), as 
indicated by the white box (A). Scale bars, 20"m. 
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2.2 Dominant Negative Arf1 Impairs Myoblast Fusion in Drosophila Embryos, but Not

Dominant Negative Arf6 

To study whether Arf1 and Arf6 play a role in myoblast fusion, I expressed 

dominant negative (DN) forms of Arf1 and Arf6 in all muscles in embryos using a 

muscle–specific GAL4 driver. Many unfused myoblasts were observed when DN-Arf1 

was expressed (Fig. 3A). No unfused cells were observed when DN-Arf6 was expressed 

in the muscles (Fig. 3B). Therefore, DN-Arf1 impairs myoblast fusion, while DN-Arf6 

does not.  

Figure 3. Expression of DN-Arf1 and DN-Arf6 in embryos 
DN-Arf1 and DN-Arf6 were expressed in the muscles using a twist (twi)-GAL4 driver. 
Muscles were labeled with !-myosin heavy chain (MHC) (green). The top layer and 
bottom layer of the musculature are shown. Arrows indicate unfused cells. Scale bar, 
10"m. 
!
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2.3 Constitutively Active Arf1 Impairs Myoblast Fusion in Drosophila Embryos More 

Severely than Constitutively Active Arf6 

Gain-of-function experiments can provide further insight to the role of Arf1 and 

Arf6 in myoblast fusion. I thus expressed constitutively active (CA) Arf1 and CA-Arf6 in 

all muscles in Drosophila embryos. No developed musculature can be observed in 

embryos expressing CA-Arf1 (Fig. 4A). 

Defects in myoblast fusion cause an increase in the number of mononucleate

myoblasts present in muscles because the myoblasts are unable to fuse. However, many 

“holes” can be observed in the embryos when CA-Arf1 is expressed (Fig. 4A), which 

reflect a loss of muscle cells. Since Arf1 is required in secretory pathways (Donaldson "!

Figure 4. Expression of CA-Arf1 and CA-Arf6 in embryos 
CA-Arf1 and CA-Arf6 were expressed in muscles using muscle–specific (twi-GAL4) 
(A, D), founder cell–specific (rp298-GAL4) (B, E), and FCM–specific (sns-Gal4) (C, 
F) GAL4 drivers. Muscles were labeled with !-MHC (green). Arrows indicate unfused 
cells. The top layer and bottom layer of the musculature are shown. Scale bars, 10"m.  
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Jackson, 2011), expressing CA-Arf1 in the mesoderm may have caused defects in other 

cellular processes such as cell differentiation. Therefore, CA-Arf1 and CA-Arf6 were 

expressed in the founder cell or FCM exclusively to reduce the effects of CA-Arf1 on 

processes other than myoblast fusion. CA-Arf1 caused fusion defects when expressed in 

the FCM (Fig. 4C) and marginal defects when expressed in the founder cell (Fig. 4B). 

CA-Arf6 did not cause fusion defects when expressed in all muscles (Fig. 4D), caused 

marginal defects when expressed in the founder cell (Fig. 4E) and did not cause fusion 

defects when expressed in the FCM (Fig. 4F). The fusion phenotypes of embryos 

expressing DN-Arfs and CA-Arfs are summarized in Table 2.  

2.4 Several Arfs are Enriched at the Fusogenic Synapse in Drosophila S2R+ Cells 

Proper localization of fusion regulators is important because the correct timing 

and positioning of the fusogenic synapse is needed for proper musculature formation. 

Table 2. Summary of fusion phenotypes of embryos expressing DN-Arfs and CA-
Arfs 
DN-Arfs and CA-Arfs were expressed in all muscles, the founder cell, and FCM 
specifically using twi-GAL4, rp298-GAL4, and sns-GAL4 respectively. Minus signs (-) 
indicate the severity of the fusion defects, wt indicates wildtype phenotype or marginal 
fusion defects, and ND (not determined) indicate experiments that were not 
performed. The asterisk (*) indicates that expression of CA-Arf1 likely affected 
processes other than myoblast fusion (Fig. 4A). 
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Thus, I investigated the subcellular localization of Arf proteins in Drosophila S2R+ cells 

that have been induced to fuse. Although S2R+ cells are not muscle cells, the induced 

fusion between S2R+ cells is mediated by a similar podosome-like stucture as in 

Drosophila embryos. I expressed GFP-Arf1 (Fig. 5A), GFP-Arf4 (Fig. 5B), GFP-Arf6 

(Fig. 5C), GFP-Arl1 (Fig. 5D) and GFP-Arl2 (Fig. 5E) constructs in S2R+ cells, then 

used an α-GFP antibody to detect the localization of the Arfs. To visualize the fusogenic 

synapse, F-actin was labeled by phalloidin and V5-tagged Sns was labeled with an α-V5 

antibody. All tested GFP-Arfs co-localized with the F-actin focus and Sns. Therefore, 

GFP-Arf1, GFP-Arf4, GFP-Arf6, GFP-Arl1 and GFP-Arl2 are enriched at the fusogenic 

synapse in cultured cells. 

2.5 Arf6 is Enriched at the Fusogenic Synapse in Drosophila Embryos 

Since in vitro experimental results are not always reflective of the in vivo system, 

I then investigated the localization of Arf1-GFP and Arf6-GFP, as well as Arf4-GFP in 

embryos. UAS-Arf-GFP transgenes were expressed in all muscles using muscle–specific 

GAL4 drivers. F-actin was labeled with phalloidin, and Duf or Ants were labeled with 

antibodies to visualize the fusogenic synapse. Arf6-GFP was enriched at the fusogenic 

synapse (Figures 6E-F), while Arf1-GFP (Fig. 6A-B) and Arf4-GFP (Fig. 6C-D) were 

not. There was some localization of Arf1 and Arf4 around the fusogenic synapse, as 

indicated by the “fuzzy” area around the fusogenic synapse (Fig. 6B, 6D).  
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Figure 5. Enrichment of GFP-Arfs at the fusogenic synapse in Drosophila S2R+ 
cells 
S2R+ cells were transfected with Sns-V5, Eff1-HA to induce fusion, as well as 
appropriate GFP-Arf constructs. Cells were labeled with DAPI (blue), !-GFP (green), 
phalloidin (red) and !-V5 (pink). Arrows indicate the fusogenic synapse. Scale bar, 
5"m. 
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Figure 6. Enrichment of Arf-GFP at fusogenic synapses in embryos 
Arf1-GFP and Arf6-GFP were expressed in the muscles using a dmef2-GAL4 driver 
(A, B, E, F), while Arf4-GFP was expressed using a twi-GAL4 driver (C, D). Embryos 
were labeled with !-GFP (green), phalloidin (red) and !-Duf (A, B, E, F) or !-Ants 
(blue) (C, D) to visualize the fusogenic synapses. Fusogenic synapses were magnified 
(B, D, F), as indicated by the white boxes (A, C, E). Arrows indicate the fusogenic 
synapse. Scale bars, 5"m.  
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3. Discussion 

I showed that Arf1 and Arf6 are the most likely candidates to have a function in 

myoblast fusion. First, arf6 maternal/zygotic mutant embryos did not show fusion 

defects. These embryos were derived from arf6KO/arf61 mothers and were also 

heterozygous arf1 mutants (Fig. 2). My results are consistent with the study by Dyer et 

al., who showed that embryos derived from arf61/arf61 mothers did not show fusion 

defects (Dyer et al., 2007). Since Arf6 is strongly enriched at the fusogenic synapse in the 

embryo (Fig. 6E-F) and likely has a function in myoblast fusion, the results from the arf6 

mutant experiment suggest that another protein compensated for Arf6 function. Given 

results from the dominant negative experiments (Fig. 3) and data from other labs 

(Dottermusch-Heidel et al., 2012), Arf1 likely compensated for Arf6 function.  

To further study which Arfs are involved in myoblast fusion, I tested loss-of-

function and gain-of-function Arfs for fusion defects. I first sought to replicate previous 

experiments by expressing DN-Arf6 and DN-Arf1 in Drosophila embryos. Expressing 

DN-Arf6 in embryos did not cause fusion defects, while expressing DN-Arf1 impaired 

myoblast fusion (Fig. 3). A study by Dottermusch-Heidel et al. also showed that DN-

Arf1, but not DN-Arf6, causes myoblast fusion defects that resemble loner mutants 

(Dottermusch-Heidel et al., 2012). However, a previous study in my lab showed that DN-

Arf6 expressed in the founder cell does cause fusion defects (Chen et al., 2003), which 

was not the case in this study. One thing to note is that the DN-forms of Arf1 and Arf6 

used by Chen et al. and Dottermusch-Heidel et al. were “nucleotide-free” Arf1 and Arf6 

(Arf1T31N and Arf6T27N), whereas “GDP-locked” Arf1 and Arf6 were used in this study 

(Arf1T48N and Arf6T44N), which may explain the variation in fusion phenotypes observed. 
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Another explanation for the difference in fusion phenotypes is the variation in the 

expression level of DN-Arf6, since it is unclear how many copies of the GAL4 driver and 

the UAS transgene were used in previous studies. If insufficient DN-Arf6 was expressed, 

Arf6T27N and Arf6T44N may both be unable to completely inhibit endogenous Arf6 and 

perhaps other highly homologous Arfs, such as Arf1. Increasing the copies of the GAL4 

driver and the UAS transgene, as well as increasing the experimental temperature may 

lead to more consistent fusion defects. Furthermore, the founder-cell specific rp298-

GAL4 driver (which is on the X chromosome) used by Chen et al. causes fusion defects 

in embryos hemizygous for the rp298-GAL4 driver (Sens et al., 2010). Although male 

flies carrying the rp298-GAL4 driver were used to drive the expression of Arf6T27N to 

reduce fusion defects from the rp298-GAL4 driver, genetic interactions cannot be ruled 

out. The twi-GAL4 driver used by Dottermusch-Heidel et al. and in this study does not 

have such genetic interactions. To conclude, my study shows that one copy of UAS-DN-

Arf1, but not UAS-DN-Arf6, causes fusion defects.  

CA-Arf6 did not cause fusion defects (Fig. 4D-F), while expressing CA-Arf1 in 

the FCM caused fusion defects (Fig. 4C). Expressing constitutively active Arf1 in all 

muscles likely caused defects in many cellular processes other than fusion (Fig. 4A), 

because Arf1 is an essential protein that acts as a regulator in secretory pathways 

(D’Souza-Schorey & Chavrier, 2006), while Arf6 is not an essential protein (Dyer et al., 

2007). GTP hydrolysis of Arf1 is required for the dissociation of COPI from transport 

vesicles (D’Souza-Schorey & Chavrier, 2006). Defects in myoblast fusion result in many 

unfused cells. However, a decrease in the number of myoblasts was observed in embryos 

expressing CA-Arf1. Expressing CA-Arf1 in the FCM (Fig. 4C), but not in the founder 
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cell (Fig. 4B), caused fusion defects. It is therefore possible that Arf1 localizes to the 

fusogenic synapse and affects myoblast fusion exclusively in the FCM.  

However, conclusions cannot be made solely based on gain-of-function 

experiments. Firstly, the effects of CA-Arfs, or DN-Arfs, may not be specific to myoblast 

fusion. Secondly, constitutively active Arfs may not accurately reflect the function of the 

wildtype Arfs. While Dottermusch-Heidel et al. showed that CA-Arf1, but not CA-Arf6, 

rescued loner mutants (Dottermusch-Heidel et al. 2012), this per se cannot prove that 

wildtype Arf1, not Arf6, is downstream of Loner. Although CA-Arf1 can compensate for 

the lack of loner signaling, this experiment does not show the role of wildtype Arf1 in 

myoblast fusion. While gain-of-function experiments can provide hints as to which Arf is 

involved in myoblast fusion, conclusions should not be made solely based on these 

experiments.  

Furthermore, I expressed GFP-tagged Arfs in Drosophila cells due to the 

experimental efficiency of the S2R+ cell line. Arf1, Arf4, Arf6, Arl1 and Arl2 all 

localized at the fusogenic synapse (Fig. 5), which implies that all tested Arfs may have a 

function in myoblast fusion. I also showed that Arf6 was highly enriched at the fusogenic 

synapse in embryos, while Arf1 and Arf4 showed limited enrichment around the 

fusogenic synapse (Fig. 6). This suggests strongly that Arf6 has a role in fusion but does 

not rule out roles for Arf1 and Arf4. However, in vitro experimental results are not 

always reflective of the in vivo system. One explanation for the localization of all tested 

Arfs in vitro is that GFP tagging may have affected the localization of Arfs. Using other 

tags or generating antibodies for Arfs may circumvent this issue. Another possible 

explanation is that upstream regulators in cultured cells, such as Loner, are not as active 
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compared to upstream regulators in the embryo, causing the localization of multiple Arfs 

to compensate for the Arf primarily involved in myoblast fusion. Furthermore, while it is 

possible that Loner recruited all tested Arfs in S2R+ cells, other recruiters of Arfs may be 

present at the fusogenic synapse in S2R+ cells. 

Although all tested Arfs localized at the fusogenic synapse in S2R+ cells, it is 

unlikely that all of them are functionally redundant with each other. It is possible that 

some Arfs, especially Arl1 and Arl2, perform a supporting role in myoblast fusion. 

Studying the localization of Arfs in different arf mutants should provide more hints as to 

which Arfs are more important in fusion. 

It is still unclear why only Arf6 is highly enriched at the fusogenic synapse in the 

embryo, but only DN-Arf1 and CA-Arf1 show fusion defects. One key experiment to test 

my hypothesis that Arf1 and Arf6 are functionally redundant is to express both DN-Arf1 

and DN-Arf6 in the embryo and observe whether there is a synthetic phenotype. An 

alternative and more conclusive experiment would be to generate arf1 arf6 double 

mutants without maternal contribution of either Arf. One caveat of this experiment is that 

Arf1 is an essential protein in the Drosophila embryo. Thus, in vitro experiments using 

S2R+ cells should be informative, since RNAi can be used to inhibit expression of 

different Arfs. By using different combinations of dsRNA and observing the fusion 

phenotypes, we can elucidate the relationship between Arf1 and Arf6, as well as between 

other Arfs. 

Furthermore, my findings suggest that Arf4, which is not well characterized, may 

also have a redundant role with other Arfs in myoblast fusion. Generating arf4 knockout 

mutants and embryos expressing dominant negative Arf4 should help elucidate this role. 



 20 

Using CRISPR to generate arf1 arf4 arf6 triple mutant flies would reveal whether these 

three Arfs are functionally redundant. Another interesting experiment would be to 

investigate the interactions between Loner and Arfs, as it is currently unknown whether 

Loner interacts with Arfs other than Arf6.  

This broad study of multiple Arfs lays the foundation for future experiments to 

determine the cellular function of Arfs in myoblast fusion in Drosophila. Understanding 

the complex signaling pathways in myoblast fusion is a crucial step towards tapping into 

the therapeutic potential of cell-cell fusion. 
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4. Materials and Methods 

Molecular Biology 

Full-length cDNAs of Arf1, Arf4, Arf6, Arl1 and Arl2 were amplified by PCR 

using primers listed in Table 3 from Drosophila embryonic cDNA and tagged with GFP 

at the N-terminus using the Gateway cloning system (Invitrogen). All constructs were 

verified by sequencing analysis. 

 

Cell culture and Transfection  

Drosophila S2R+ cells were cultured in Schneider’s medium (Gibco) 

supplemented with 10% fetal bovine serum (Gibco) and penicillin/streptomycin (Sigma). 

Cells were transfected using Effectene (Qiagen) according to the manufacturer’s 

Table 3. Primers used to amplify full-length Arfs cDNAs 
Full-length cDNAs of Arf1, Arf4, Arf6, Arl1 and Arl2 were amplified by PCR from 
Drosophila embryonic cDNA using the listed primers. 
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protocol.  

Reconstitution of Cell-Cell Fusion in Cultured Cells 

S2R+ cell fusion was induced as previously described (Shilagardi et al., 2013). To 

summarize, S2R+ cells were transfected with Sns-V5, Eff1-HA to induce fusion, as well 

as appropriate GFP-Arf constructs. After 48 hours, cells were fixed and labeled as 

follows.  

Immunocytochemistry  

Two days after transfection in PBS, cells were fixed with 4% formaldehyde and 

washed in PBST (PBS with 0.1% Triton X-100) and PBSBT (PBST with 0.2% BSA) 

consecutively, and stained with the following primary antibodies in PBSBT: mouse α-V5 

(1:2000; Invitrogen) and chicken α-GFP (1:2000). Secondary FITC-, Cy5-, or Cy3-

conjugated antibodies (Jackson Immunoresearch) were used at 1:500 in PBST. DAPI 

stain (1:1000) and Alexa 568-conjugated phalloidin (1:500; Invitrogen) were added with 

the secondary antibodies in PBST.  

Fly Genetics 

Fly stocks were obtained from the Bloomington Stock Center (Bloomington, IN), 

except for the following: UAS-Arf1::GFP; UAS-Arf4::GFP; UAS-Arf6::GFP; UAS-Arf6 

[T44N]; UAS-Arf6 [Q67L]; UAS-Arf1 [Q71L]; UAS-Arf1 [T48N]; arf1182-1/TM3; 

arf6KO/CyO,twi-Gal4,UAS-GFP , arf1182-1/TM3,twi-GAL4,UAS-GFP (unpublished, 

courtesy of Dr. Donghoon Lee, generated at Dr. Tony Harris’ lab at the University of 

Toronto); arf61/CyO (Dyer et al., 2007); arf6KO/CyO (Huang et al., 2009). 

To express genes in all muscle cells, founder cells, and FCMs, females carrying 

transgenes downstream of an UAS promoter were crossed with twi-GAL4 or dmef2-
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GAL4, rP298-GAL4 (Menon &	Chia, 2001) and sns-GAL4 (Kocherlakota et al., 2008) 

males respectively.  

arf6 zygotic mutant embryos without maternal contribution were produced by 

first crossing arf6KO females with arf61 males. arf6KO/arf61 females were then crossed 

with arf6KO/CyO,twi-Gal4,UAS-GFP;arf1182-1/TM3,twi-GAL4,UAS-GFP males to 

produce arf6KO/arf6KO;arf1182-1/+ embryos. Mutant embryos were identified by the lack 

of GFP expression.  

All crosses were done on standard fly food at 25°C.  

Immunohistochemistry 

Stage 15-17 embryos were fixed and stained as previously described (Kim et al., 

2007; Sens et al., 2010). The following antibodies were added in PBSBT: α-muscle 

myosin heavy chain (1:1000), α-GFP (1:500; Invitrogen), α-Ants (1:1000) (Chen and 

Olson, 2001) and α-Duf (1:500) (Sens et al., 2010). The following secondary antibodies 

were added at 1:200: Alexa488- (Invitrogen), Cy3-, and Cy5-conjugated (Jackson). 

Vectashield Mounting Medium (Vector Laboratories) was used to mount the embryos.  

To stain F-actin, embryos were fixed for 50-60 min at room temperature in 

formaldehyde-saturated heptane (1:1 mix of 37% formaldehyde/heptane and shaken 

well), then devitellinized by hand in PBST. Alexa568-conjugated phalloidin (Invitrogen) 

was then added at 1:200.  

Fluorescent images were taken on an LSM 700 Meta confocal microscope (Zeiss) 

and acquired with LSM software (Zeiss) and processed using Adobe Photoshop CS5.1 

(Adobe).  
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