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ABSTRACT 

For specialized cell function, as well as active cell behaviors like division, migration, and 

tissue development, cells must undergo dynamic changes in shape. To complete these 

processes, cells integrate chemical and mechanical signals to direct force production.  At 

the core of cell shape change is the ability of the cell’s machinery to sense mechanical 

forces and tune the force-generating machinery as needed.  Force-sensitive cytoskeletal 

proteins, including myosin II motors and actin crosslinkers, such as alpha-actinin and 

filamin, accumulate in response to internally generated and externally imposed 

mechanical stresses, endowing the cell with the ability to discern and respond to 

mechanical cues.  The physical theory behind how these proteins display 

mechanosensitive accumulation has allowed us to predict paralog-specific behaviors of 

different crosslinking proteins and identify a zone of optimal actin-binding affinity that 

allows for mechanical stress-induced protein accumulation.  It also allowed us to 

uncover a regulatory mechanism that utilizes the biphasic nature of mechanoresponse to 

tune the myosin II mechanoresponsiveness in mammalian cells. These molecular 

mechanisms coupled to the mechanical feedback systems ensure robust shape change, 

but if they go awry, they are poised to promote disease states, such as cancer cell 

metastasis and loss of tissue integrity. 
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CHAPTER 1. INTRODUCTION  

The concept “form begets function begets form” provides an excellent foundation for 

understanding the behavior of biological systems.  Even cells, the smallest unit of 

complex living systems, assume distinct shapes, mechanical properties, and physical 

behaviors to perform all of the necessary functions of an organism. Different cell types 

use a common set of cytoskeletal elements to provide precise physical support for their 

distinct functions. For example, red blood cells and neurons have very different shapes 

that allow them to perform their specific roles. However, they both utilize alternating 

patterns of actin and spectrin to form cortices with appropriate viscous and elastic 

properties, albeit in different structural arrangements. Perturbations to this structural 

network cause a breakdown in the mechanical properties, or the “form”, of these cells, 

which inhibits cell function (1, 2).  

Fascinatingly, the physical properties of cells are both determined and acted upon by the 

cytoskeletal apparatus. Cells are capable of modifying their own physical properties and 

driving changes in cell shape in response to internal and external chemical and 

mechanical stimuli. These modifications occur through the remodeling of the cell cortex, 

the network of cytoskeletal proteins directly under the plasma membrane. Much 

progress has been made recently in deciphering how chemical signals drive mechanical 

changes, as well as how internally- and externally-generated mechanical cues modulate 

chemical signaling in the cell.  A more complete mechanistic understanding of the 

interface between mechanical and chemical signals that drive cell behavior, including 

tissue development and cancer metastasis, will be needed to modulate these systems 

for the treatment of developmental and metastatic diseases. 

Force generation by, and active remodeling of, the cytoskeletal network at the cortex 

primarily drive cell shape change. The cortex contains structural proteins each with 

distinct physical properties and kinetics of binding and detachment that are poised to 
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respond dynamically to chemical and mechanical signals to effect shape change. The 

cortex is comprised of actin filaments organized in a meshwork ~200-nm thick (3, 4), 

crosslinked by actin-crosslinking proteins and non-muscle myosin IIs, which are the 

primary drivers of network contraction in cells. Among these structural elements are 

regulatory proteins that control actin and myosin dynamics, factors regulating protein 

turnover, membrane linkers, scaffolding/adaptor proteins, Rho GTPases, Rho GTPase 

effectors, and Rho GAPs/GEFs (5). The actin filaments in the cortex are quite short: in 

the social amoeba Dictyostelium discoideum, the average actin filament length is ~100 

nm (4, 6). In mammalian cells, identifying a characteristic length is more challenging 

Fig. 1.1. The structure of the cortex determines its physical properties. (A) Major 
components of the actin cytoskeleton in the cell cortex shown roughly to scale for 
mammalian cells. (B) A simple model of cell mechanics, where the spring kc and the 
viscous damper γb describe the elastic and viscous contributions by the cortex, 
respectively. The damper γa primarily describes the viscous contribution by the cytoplasm. 
Upon aspiration of Dictyostelium cells into a micropipette using a fixed pressure, the length 
of the cell protruding into the pipette (Lp) is observed over time. The model in (B) can be 
accurately used to describe the “creep” of the cells into the pipette in (C). The slope of the 
first and second phases of deformation can be used to compute the value of the viscous 
dampers and γa, respectively. The amplitude of the initial length deformation can be used 
to determine the elastic parameter kc. In the filamin-null, the contribution of initial damper 
γb is much smaller than that of kc, and so initial deformation happens in less than one 
second. The continued flow can be described by γa. In the racE-null, the contribution by γb 
is quite large, causing slow initial deformation, while γa is quite small, displaying no creep 
in the second phase of deformation. 
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because of cell-type diversity, but for leukocytes the majority of filament are <180 nm in 

length (7), slightly longer than in Dictyostelium. Crosslinkers anchor these filaments to 

one another to create the actin meshwork. Crosslinker lengths vary considerably.  For 

example, α-actinin, which binds actin filaments in parallel or anti-parallel orientation, is 

around 35 nm in length (8), while filamin is 160-190 nm (9). To actively contract the 

actin-network, myosin II monomers (a functional monomer includes two heavy chains, 

two essential and two regulatory light chains) assemble into functional bipolar filaments, 

which are ~300 nm in length (10). Thus, actin filaments do not dominate the scale of the 

cortex by length, rather each of these components are of similar scale (Figure 1.1A). In 

the same way, the mechanical properties of the cortex are not dominated entirely by the 

properties of actin filaments, but by this dynamic network of structural and regulatory 

proteins. 

Mechanically, the cell cortex can be described as viscoelastic, or having both elastic and 

viscous characteristics. When probed using very small deformations, such as those 

imposed by laser-tracking microrheology, the cytoskeleton can be described as having 

power-law mechanics with the characteristics of a soft glassy material. Elasticity in the 

material comes from cytoskeletal elements maintaining relatively fixed relationships to 

one another due to the actin crosslinkers and network entanglements that holds the 

filament network together. Viscosity, however, requires the ability of these connections 

from crosslinkers and entanglements to release so that the cytoskeletal elements can 

rearrange.  Furthermore, in cells, active processes that require ATP hydrolysis can also 

‘stir’ these elements, promoting the emergence of a viscous-like character (11, 12).  Cell-

cortex mechanics at these scales have been analyzed in Dictyostelium (4, 13, 14) and in 

multiple mammalian cell types (15, 16). On these low-force regimes, cells are 

predominantly elastic with a mechanical phase angle of ~10-15°.  Further, cells indeed 

show power-law mechanics over multiple logs of time scale (from sub-ms to 100s of ms).  
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However, on longer time-scales, active processes in Dictyostelium begin to dominate 

these low force-regime mechanics (14).  

 

Cell mechanics at larger force regimes and larger deformations, such as cytokinesis or 

those imposed by micropipette aspiration, can be described phenomenologically by 

simpler mechanical models that incorporate elastic springs and viscous dampers 

(dashpots) (Figure 1.1B). In one arrangement, the so-called Voigt model, a viscous 

damper (γb, nN•s/μm3) is placed in parallel with an elastic spring (kc, nN/μm3) to 

approximate the cytoskeleton.  In addition, many shape change processes are damped 

by the viscosity contributed by long time-scale cortex remodeling and the cytoplasm, 

which can be modeled by incorporating an additional viscous damper, γa, placed in 

series (Figure 1.1B)(17). Upon the application of a fixed pressure by micropipette 

aspiration, the cell will deform into the pipette a length, Lp (Figure 1.1B)(17). In wild-type 

and filamin-null Dictyostelium, damper γb approaches zero, so the initial deformation is 

largely elastic and happens in less than one second (Figure 1C)(18). However, in some 

mutants where cytoskeletal regulation is disturbed, such as in the racE-null 

Dictyostelium, the damper γb becomes significant, and the initial deformation occurs over 

a few seconds (Figure 1.1C)(18).  When parameterized with directly measured values, 

these models help account for cell behavior during retraction from an applied force (18), 

cytokinesis (19, 20), and cell motility (17, 21). 

 

Forces acting on the cell cortex 

The forces acting on the cell cortex during shape change processes can be divided into 

inward and outward forces, where inward forces pull the cortex toward the cell center 

and outward forces push the cortex away from the cell center. Inward forces include 

Laplace pressure, contraction driven by myosin motors, and actin crosslinker dynamics 
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coupled with actin polymer disassembly (18-20, 22). An ideal process for studying these 

inward forces is cytokinesis, where cells must contract inward along the cleavage furrow 

to divide one cell into two. During normal cell division of almost all eukaryotic cell types, 

non-muscle myosin II accumulates at the equatorial region of the cell in response to 

signals from the mitotic spindle, where it contracts the actin-network to drive furrow 

ingression. However, in many cell types (Dictyostelium, yeast, and mammalian cells), 

cells are capable of dividing without myosin II. How is this possible? From studies of 

myosin II-null Dictyostelium dividing on surfaces, the major driving force for furrow 

ingression is actually the Laplace pressure (4). Laplace pressure results from the 

pressure difference (ΔP) between the inside (Pin) and outside (Pout) of a liquid interface, 

and is proportional to the product of the surface (cortical) tension and local curvature (∝

	radius-1) of the fluid surface (19). Because of Laplace pressure, mitotic Dictyostelium 

cells can divide by traction-mediated cytofission, where adherent cells protrude in two 

directions, making division across the long axis energetically favorable. The initial 

increase in curvature in the furrow region upon cell elongation combined with cortical 

tension leads to increased inward stresses, promoting furrow ingression. Then, as the 

furrow ingresses, the surface curvature increases, leading to a positive feedback (19). 

Other types of myosins also contribute to cytokinesis and can do so by impacting these 

cell mechanics.  For example, by providing membrane-cortex linkages, myosin I motors 

contribute significantly to cortical tension (23). Myosin II-independent cytokinesis is not 

restricted to Dictyostelium, and likely explains how mammalian cells can divide with 

myosin II inhibition if the adhesion conditions are appropriate (24), and in tissues when 

the myosin II-actin-bound state is prolonged to last an entire cytokinesis furrow 

ingression event (25).   

In fact, in Dictyostelium, normal myosin II activity leads to a slowing down of furrow 

ingression during late stages of cytokinesis (20).  Wild-type Dictyostelium cells are more 



	 6 

deformable in the polar cortex than at the furrow, while there is limited mechanical 

differential in the myosin II-null cells (4). This differential leads to two consequences of 

cell mechanics that likely contribute to this slowdown of furrow ingression in wild-type 

cells (19, 20).  First, as the furrow ingresses, resistive stresses can build in the two 

daughter cell cortices and cytoplasm, slowing furrow ingression.  Genetic mutants 

devoid of myosin II, key actin crosslinkers, or cytoskeletal regulators that control the 

polar cortices appear to alleviate this resistive stress (4).  Second, the accumulation of 

the cytokinetic machinery, including myosin II and actin-crosslinkers, to the cleavage 

furrow cortex can lead to strain-stiffening of the cytoskeletal network, making it more 

difficult for the cortex network to remodel (making it more elastic) (19, 22). Most likely, 

both properties (resistive stresses and strain-stiffening) contribute to the wild-type furrow 

ingression dynamics. 

To drive outward force generation, cells primarily use actin-assembly and/or pressure-

induced blebs. An ideal cellular process for studying the generation of outward forces is 

the leading edge of a migrating cell. At this edge, the forward-driving force is either 

driven by the well-defined Arp2/3 Brownian ratchet (26-28), or pressure-induced bleb 

formation by myosin activity in highly confined, compressed environments (29, 30). The 

Arp2/3 Brownian ratchet moves the plasma membrane forward by stimulating the 

creation of many new actin filament branches at the leading edge. Thermal fluctuations 

in each of these filaments creates space for actin monomers to be added to the barbed 

end of the growing filament, driving the membrane forward (26-28). In another type of 

motility, termed lobopodial migration, cells in confined environments pull their nuclei 

forward by myosin II contraction, using the nucleus as a piston to create enough 

pressure to drive bleb formation at the cell front (31). These blebs then rapidly fill with 

actin-cytoskeletal components, creating a new cortex (29, 30). In both cases, the 
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process that allows faster membrane protrusion should determine the dominant 

behavior. 

 

Chemical and mechanical inputs direct shape change 

During cell shape change behaviors, including cytokinesis and cell migration, two distinct 

classes of contributions control the direction, magnitude, and robustness of the process: 

chemical and mechanical inputs. An example of a chemical input is the external 

chemical gradient of cAMP sensed by Dictyostelium during chemotaxis (32), which 

drives the directional activation of the branched actin network in pseudopods at the cell 

front and the contraction of myosin II at the cell back. Chemical signals can also be 

internal, such as those from the mitotic-spindle-associated chromosomal passenger 

complex proteins (CPCs) INCENP (inner centromere protein) and kinesin 6, which 

promote cytokinesis (33, 34). However, the spindle is not essential for symmetrical or 

asymmetrical cytokinesis in many cell types (35-38). In reality, the integration of both 

chemical and mechanical signaling drives cytokinesis (Figure 1.2). In Dictyostelium, 

myosin II and cortexillin I, an actin crosslinker, initially accumulate to the cleavage furrow 

as a result of spindle signaling. However, when mechanical stress is applied to the 

cortex, the existing myosin II bipolar filaments experience this stress, which leads to a 

local increase in myosin II concentration.  In the context of cytokinesis, this cooperative 

myosin II assembly occurs even in the absence of spindle-associated chemical-signaling 

inputs (39-41). Molecularly, under resistive load, the myosin II lever arms stall in the 

phase of the power stroke that is the isometric, cooperative binding state.  First, the 

myosin II duty ratio is load-sensitive. In mammalian nonmuscle myosin IIB, for example, 

when a myosin II head imposes a piconewton-range resistive load on another, the 

second head releases ADP at a 10-fold slower rate than an unloaded head 

(0.023±0.003s-1 versus 0.27±0.06s-1) (42).  Second, more than just inhibiting ADP-



	 8 

release, force can trap the myosin II motor in the cooperative isometric state, which 

promotes the binding of additional myosin motors to the actin filament nearby due to a 

propagated conformational change in the actin filament (43-45). This cooperative binding 

state was specifically implicated in mechanosensitive accumulation by experiments 

where the myosin II lever arm was lengthened or shortened (40).  A longer lever arm led 

to greater accumulation at lower applied stresses while shortening the lever arm led to 

significantly reduced accumulation across all pressure ranges.  Additional controls ruled 

out myosin II motility velocity as the explanation.  This cooperative accumulation can 

account quantitatively for myosin and cortexillin I accumulation in response to 

mechanical stress (41).  Further, this cooperative accumulation can account for the 

insertion of myosin II into the cortex of the cleavage furrow, where it promotes additional 

accumulation of kinesin 6 (Kif12) and INCENP through the cortexillin I-binding IQGAP2 

(GapA) (46) (Figure 1.2). Thus, the cleavage furrow cortex comprises a 

mechanochemical feedback loop, where both chemical and mechanical signals promote 

accumulation of the appropriate machinery (46, 47).  This system is inherently quite 

robust; the network of cytokinesis cytoskeletal machinery stabilizes under mechanical 

load in a manner that is independent of any single protein (22).   
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Another interesting example of mechanical and chemical signaling integration that drive 

cell shape change can be found in cell-surface proteins that associate between cells. 

During myoblast fusion in Drosophila, the cell-surface markers Sns and Duf of the 

fusion-competent cell and founder cell, respectively, associate to activate downstream 

signaling in both cells (39).  In the fusion-competent cell, Sns signaling activates WASP 

to drive the assembly of an actin focus, which pushes finger-like actin projections into 

the founder cell. In the founder cell, signaling downstream of Duf drives Rho activation 

and myosin II contractility, allowing the cell to oppose the projections with enough force 

to allow cell-cell fusion (39). Interestingly, in the absence of the cytoplasmic domain of 

Duf, myosin II still accumulates at the site of cell-cell fusion in the founder cell. This 

accumulation appears to be due to the same force-dependent assembly of myosin II into 

bipolar filaments (39).  

Fig. 1.2. Integrated chemical and mechanical feedback loops drive cleavage furrow 
ingression. At the cleavage furrow of dividing Dictyostelium, the Chemical Signaling Module, 
including INCENP and Kif12 (the kinesin 6 family protein), can activate the recruitment of 
contractile machinery, including cortexillin I (CortI) and myosin II (MyoII). Simultaneously, the 
contractile machinery, which comprises the Mechanosensory Module, can accumulate in 
response to the forces created by furrow ingression and drive the activation of the chemical 
signaling module through IQGAP2.  The overall system allows for ~5-fold amplification of 
myosin II accumulation at the cleavage furrow in response to mechanical stress. 
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Force-sensing by other actin-associated proteins 

A number of other actin-binding proteins have demonstrated the ability to sense and 

respond to force. In the adherens junctions of epithelial cells, the minimal cadherin-

catenin complex, including α-catenin, β-catenin, and E-cadherin, interacts with actin-

filaments in a force-dependent manner. Force propagating from the actin cytoskeleton of 

one cell to another through E-cadherin attachments increases the binding lifetime of the 

cadherin-catenin complex to actin. In single molecule experiments, the complex-actin 

binding lifetime increases from ~60 ms at low force to ~120 ms at 10 pN of applied force 

(48). At higher forces, these bonds then slip so that they display a catch-slip behavior, 

depending on the force-regime. The catch-slip bond’s contribution to the 

mechanosensitive accumulation (the accumulation of a protein in response to applied 

stress) of the actin crosslinking protein α-actinin and filamin have been demonstrated in 

Dictyostelium (18, 49). The mechanosensitive accumulation of mammalian α-actinin and 

filamin paralogs will be covered in detail in Chapter 2. Briefly, mechanoaccumulation is 

unique to the α-actinin 4 paralog, and is not observed for α-actinin 1 (Figure 1.3A) (18, 

49), and is likely important for its recruitment to focal adhesions under high tension (50). 

Similarly, the mammalian paralog filamin B shows higher mechanosensitive 

accumulation than filamin A (Figure 1.3B). In both cases, reaction-diffusion models 

(Figure 1.3C,D) for force-dependent binding can predict which paralog will accumulate 

based on the intrinsic difference in actin-binding affinity of the paralogs (49). The models 
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utilize parameters for crosslinker concentration, diffusion rates, on- and off-rates for actin 

binding measured in Dictyostelium and mammalian cells, and the catch-slip 

The results show that an optimal dissociation equilibrium constant (KD) to actin exists for 
both non-cooperative (α-actinin) and cooperative (filamin) actin-binding proteins where 
mechanoaccumulation is maximized.  Please note that for panels C and D, the affinities 
represent the affinities of single actin binding heads, and not an overall apparent affinity 
from the complete crosslinking reaction. (E) At a high actin-binding affinity, actin crosslinking 
proteins do not have a large enough unbound pool to dynamically respond to force applied 
during micropipette aspiration. At a very low actin-binding affinity, actin-binding proteins do 
not bind the cortex with enough affinity to remain locked-on at sites of mechanical stress. 
Thus, an optimal zone exists for actin-binding affinity where mechanoaccumulation is 
maximal. This is demonstrated by the inset, showing accumulation of α-actinin 4 during 
micropipette aspiration.	

Fig. 1.3. Mechanoaccumulation by 
actin-binding proteins is determined 
by an optimal zone of actin-binding 
affinity (A) The low-affinity α-actinin 4, 
transfected into HeLa cells, 
accumulates over time in response to 
micropipette aspiration at a region of 
high network dilation, the “tip” of the 
cell (calculated by fluorescence 
intensity at the tip, It, normalized to the 
fluorescence intensity at the opposite 
side of the cell, Io). The high-affinity α-
actinin 1 does not accumulate. (B) The 
high-affinity filamin B accumulates to a 
region of high shear deformation, the 
“neck” of the cell, during micropipette 
aspiration (calculated by the 
fluorescence intensity at the neck, In, 
normalized to the fluorescence 
intensity at the opposite side of the 
cell, Io). The lower affinity filamin A 
does not accumulate. For filamin B, a 
second phase of myosin II-mediated 
flow carries the protein to the tip, which 
accounts for the decrease beginning 
around 12 s. (C) The accumulation of a 
force-dependent actin-binding protein 
like α-actinin is modeled using four 
different actin-binding affinities, using a 
reaction-diffusion model of force-
dependent actin binding using 
physiological G- and F-actin 
concentrations, crosslinker 
concentrations, and published actin 
binding affinities. (D) The accumulation 
of filamin is modeled using the same 
four actin-binding affinities but 
considering cooperativity to account for 
the accelerating rate of accumulation.  
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characteristics of the bonds (18, 49, 51). The models recapitulate the kinetics of protein 

accumulation over time, capturing a sigmoidal rise for filamin, and an exponential rise for 

α-actinin. The models also illuminate an optimal actin-binding affinity zone for 

mechanoresponsive proteins. In other words, if the intrinsic actin-binding affinity of a 

crosslinker is too high, the cell will not have a sufficient monomeric pool available to 

respond to the applied force, and if the affinity is too low, the protein will not bind actin 

well enough to stay bound to the network in regions of stress (Figure 1.3E). The exact 

set-point where the actin-binding affinity is ideal for mechanoresponse also depends on 

cooperativity: a model that invokes cooperative actin-binding predicts a lower set-point 

than one without cooperativity. The cooperativity in the model used to predict filamin 

accumulation is the reason the filamin model predicts a lower ideal actin affinity for 

mechanoaccumulation than the α-actinin model does (49) (Figure 1.3C,D). 

The branched actin network itself also responds to mechanical inputs, affecting cell 

shape change. The forced curvature of actin filaments beyond normal fluctuations in 

actin filament bending promotes the binding of the Arp2/3 complex to the convex side of 

the filament (52). This can explain how actin filaments bent along the front edge of a 

migrating cell ensure the binding of the Arp2/3 complex to the convex side, allowing 

branching of a new filament in the direction of the plasma membrane. Similarly, the 

application of load to branched actin networks as they assemble drives an increase in 

the density and number of actin filaments, through the formation of up to 3.5-fold more 

Arp2/3 complex-mediated actin branches and 3-fold tighter actin filament packing, while 

not changing the length of the filaments (53). This ability to build variably-dense actin 

networks provides cells the adaptability to push their leading edge through extracellular 

environments of variable stiffness.  
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Mechanochemical signaling allows dynamic escalation of force-production 

To accomplish the fundamental processes involving cell-shape change, cells integrate 

chemical and mechanical inputs and ensure robust completion of the task with 

remarkable versatility. During cytokinesis, Dictyostelium myosin II is likely capable of a 

30-50-fold dynamic range in force production, through a 3-5 fold increase from 

accumulation of myosin II at the furrow by chemical and mechanical signals (46) and a 

5-8 fold increase in duty ratio under applied load. This 5-8 fold increase due to a shift in 

duty ratio assumes that Dictyostelium myosin II shows a similar force-dependent duty 

ratio as observed for mammalian nonmuscle myosin II (42) (Figure 1.2). Even this 

dynamic range underestimates the cell’s capabilities, because without myosin II, the 

cells can divide using Laplace pressure, which can be an order of magnitude more 

powerful than myosin II-mediated contractility (19, 20).  Similarly, cells can theoretically 

increase the “motor output” of the Arp2/3 complex-actin network at the leading edge by 

an order of magnitude during migration by force opposition alone (53).  

The relative expression of mechanosensory proteins provides yet another level of control 

by cells.  By expressing mechanoresponsive isoforms of myosin II, α-actinin, or filamin, a 

mammalian cell can tune its ability to rapidly respond to imposed force. In fact, the 

mechanoresponsive crosslinker α-actinin 4 is essential for pancreatic cancer cell 

migration, was	increased in expression in 63% of pancreatic cancer patients, and was a 

significant negative predictor of patient survival (54). Thus, understanding how and 

which proteins are essential for mechanical stress-response may provide new strategies 

for stopping the force-dependent processes essential to cancer cells, such as division, 

migration, and metastasis.  

In addition, it will be important to delve deeper into the integration of chemical and 

mechanical signals in cells. For example, chemical signaling from Rac1 is known to 

activate PKC, which contributes to mammalian myosin light chain and heavy chain 
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phosphorylation (55, 56). PKC’s phosphorylation of the Myosin IIA heavy chain at S1916 

is essential for the cell’s ability to sense and respond to the mechanical input of 

substrate stiffness at focal adhesions (57). In Chapter 2, we demonstrate that Myosin IIB 

shows differential mechanoresponsiveness across cell types, and within a cell-type, 

myosin IIB shows differential mechanoaccumulation across the phases of the cell cycle 

(49).  As myosin IIB’s subcellular localization is regulated primarily by a single site of 

heavy chain phosphorylation (58), the tuning of this myosin’s mechanoaccumulative 

ability by heavy chain phosphorylation will be investigated in Chapter 3.  

 

In addition, skeletal muscle myosin II has mechanical compliance in the tail region that 

can be even larger than the head region (59). Thus, mechanical strain across the myosin 

filaments could provide a basis for cross-talk between the motors and tails under 

mechanical load.  Compliance in the non-muscle myosin II tail has not yet been 

definitively demonstrated.  However, the ability of a long lever arm mutant myosin 

(2xELC) in the context of the phosphomimic (3xAsp) tail mutant to assemble into 

filaments in vivo is highly consistent with the concept of cross talk between the two parts 

of the myosin molecule (60). Also, molecular simulations accurately depicting the 

behavior of non-muscle myosin II in response to an applied stress require not just force 

feedback, but strained and unstrained states of myosin II bipolar filaments, wherein the 

strained state the myosin remains assembled until the bipolar filament relaxes (47). 

Thus, an important concept to be tested for non-muscle myosin II is whether there is 

compliance in the non-muscle myosin II tail, and how this compliance affects its 

mechanosensitive assembly and phosphoregulation.  These answers will be essential 

for learning how to tune the cellular response to the mechanochemical inputs that drive 

cell-shape change processes in normal and disease states.   
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CHAPTER 2. MECHANOACCUMULATIVE ELEMENTS OF THE MAMMALIAN ACTIN 
CYTOSKELETON 
 
As mentioned above, to change shape, divide, form junctions, and migrate, cells 

reorganize their cytoskeletons in response to changing mechanical environments (61-

64). Actin cytoskeletal elements, including myosin II motors and actin crosslinkers, 

structurally remodel and activate signaling pathways in response to imposed stresses 

(46, 65-68). Recent studies demonstrate the importance of force-dependent structural 

rearrangement of α-catenin in adherens junctions (48) and vinculin’s molecular clutch 

mechanism in focal adhesions (69). However, the complete landscape of cytoskeletal 

mechanoresponsive proteins and the mechanisms by which these elements sense and 

respond to force remain to be elucidated. To find mechanosensitive elements in 

mammalian cells, we examined protein relocalization in response to controlled external 

stresses applied to individual cells. Here, we show that non-muscle myosin II, α-actinin, 

and filamin accumulate to mechanically stressed regions in cells from diverse lineages. 

Using reaction-diffusion models for force-sensitive binding, we successfully predicted 

which mammalian α-actinin and filamin paralogs would be mechanoaccumulative.  

Furthermore, a Goldilocks zone must exist for each protein where the actin-binding 

affinity must be optimal for accumulation. In addition, we leveraged genetic mutants to 

gain a molecular understanding of the mechanisms of α-actinin and filamin catch-

bonding behavior. Two distinct modes of mechanoaccumulation can be observed: a fast, 

diffusion-based accumulation and a slower, myosin II-dependent cortical flow phase that 

acts on proteins with specific binding lifetimes. Finally, we uncovered cell-type and cell-

cycle-stage-specific control of the mechanosensation of myosin IIB, but not myosin IIA or 

IIC. Overall, these mechanoaccumulative mechanisms drive the cell’s response to 

physical perturbation during proper tissue development and disease. 
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Identification of mechanosensitive cytoskeletal elements  
To identify mechanosensitive elements, we examined protein relocalization in response 

to controlled external stresses applied locally to individual cells. We characterized more 

than 20 actin-binding, signaling, and lipid-binding proteins by transiently expressing 

fluorescently-tagged constructs in Jurkat T-cells (Fig. 2.1), NIH 3T3 fibroblasts (Fig. 

2.2A), HeLas (Fig. 2.2B), and HEK 293Ts (Fig. 2.2C). Cells were deformed into the 

pipette by micropipette aspiration (MPA) (70) to a length twice the radius of the pipette 

(2Lp/Rp) for five minutes using a fixed pressure defined by their mechanical properties 

(Jurkat: 0.075 nN/μm2; NIH 3T3: 0.15 nN/μm2; HEK 293T:  0.15 nN/μm2; HeLa: 0.2 

nN/μm2). We have previously determined computationally that the tip region in the 

pipette is the region of highest dilational deformation, while the pipette neck experiences 

shear deformation (18). The concept of dilation of the cytoskeleton at the tip region is 

Fig. 2.1. Five actin-binding proteins respond to an externally applied mechanical 
stress.  A ratio (It/Io) of maximum tip intensity (It) to opposite cortex intensity (Io) shows that 
actin-binding proteins α-actinin 4, filamin B, myosin IIA, myosin IIB, and myosin IIC 
accumulated to the highest level among 22 cytoskeletal, signaling, and lipid-binding proteins 
in Jurkat cells (*p<0.05, **p<0.0001). 
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also supported by the immediate decrease in actin density upon deformation by MPA 

(not shown), similar to what has been observed in red blood cells (71). Furthermore, 

although the actin network has a very fast recovery time, a significant immobile fraction 

Figure 2.2. Actin-binding proteins respond most-strongly to externally-applied 
mechanical stress. Related to Figure 2.1. (A) In NIH 3T3 cells, (B) HeLa cells, and (C) 
HEK 293T cells, α-actinin 4, filamin B, and myosins IIA and IIC showed the most robust 
accumulation. The peak accumulation of myosin IIB varied between cell types (n values 
noted on bars, *p<0.05, **p<0.005).  
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exists, which is likely to be the network that experiences these two modes of deformation 

(22).  Maximal protein accumulation in response to dilational deformation was quantified 

by normalizing the fluorescence intensity of the cortex in the tip region (It) to that of the 

unstressed cortex opposite the pipette (Io) (Fig. 2.1).  The grey bar represents the 95% 

confidence interval for cytosolic GFP quantified in the same manner, a control used in all 

cell types to denote the threshold over which a protein must accumulate to be 

significantly mechanosensitive. The response of the majority of proteins fell within this 

confidence interval, implying their insensitivity towards dilational deformation in all cell 

types. The greatest accumulative responses were observed in actin-binding proteins, 

including the myosin IIs. The extent of myosin accumulation did not correlate with the 

radius of the pipette, ruling out accumulation due to specific local membrane curvature 

(Fig 2.3D). In addition, the curvature-sensing protein i-BAR showed no accumulation 

(Fig 2.2B), supporting the notion that the observed accumulations are due to mechanical 

stress sensing rather than curvature sensing. We selected the highly accumulative 

myosin II, α-actinin, and filamin for further characterization. 

 

Non-muscle myosin II mechanosensation  

Non-muscle myosin II is an established part of a mechanosensitive system both in 

Dictyostelium and Drosophila, where it accumulates at the site of applied forces and 

drives cellular contraction (18, 39, 46, 70). The magnitude of accumulation depends on 

the net force on each myosin II head and requires the presence of actin-crosslinkers to 

anchor actin filaments (18, 40, 41, 56). Mammalian cells express three paralogs of non-

muscle myosin II: IIA (MYH9), IIB (MYH10), and IIC (MYH14). By examining differences 

in accumulation of these paralogs across multiple cell lines during MPA, we aimed to 

uncover how the mechanoresponsiveness of this important mechanoenzyme is 
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regulated in mammalian cells. The paralogs have differing duty ratios (56), unique force-

Figure 2.3. Myosin IIB mechanoresponse is not dependent on endogenous expression 
or myosin IIA mechanoresponse. Related to Figure 2.4. (A) Neither the endogenous 
expression of the three myosin II paralogs, (B) nor the resting cortical tension of Jurkat, NIH 
3T3, and HeLa cells correlate with myosin IIB mechanoresponse (Fig. 2.4B). Because Cos-7 
cells do not express myosin IIA (A), yet show robust myosin IIB accumulation to the tip (n=7) 
(C), myosin IIA expression is not required for the myosin IIB mechanoresponse. (D) The 
curvature of the cortex at the tip of cells was estimated as 2/r, where r is the radius of the 
pipette used for MPA. Curvature was then plotted against the peak accumulation of myosin 
IIB (It/Io), demonstrating no correlation between curvature and myosin IIB accumulation at the 
tip. (Fig. 2.4B). (E) ML7 and Y-27632 treatments inhibit the peak tip accumulation 
(normalized to the intensity at the opposite side of the cell (It/Io)) of myosin IIA, myosin IIB, α-
actinin 4 K255E, and Filamin B, but not wild-type α-actinin 4, in Jurkat cells (*p<0.005, 
**p<0.0001 for inhibitor values compared to “No Inhibitor” values). While myosin IIC 
accumulated significantly in the absence of inhibitor compared with GFP (p<0.05, see Fig. 1), 
it did not accumulate significantly in the presence of ML7 (p=0.40) or Y-27632 (p=0.62).	
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dependent affinities to F-actin (42), and distinct spatial distributions in migrating cells 

(56, 72, 73) suggesting non-overlapping roles for the myosin II paralogs. Several studies 

revealed that cells respond to their mechanical environment by modifying or regulating 

the expression of these distinct myosin IIs (65, 72, 74). 

In response to dilational stress, we found myosin IIA and IIC exhibited a characteristic 

accumulation curve in all cell types, showing a short (30-70s) delay followed by a 

sigmoidal rise in protein intensity, plateauing by 150-200s (Fig. 2.4A,C).  This biphasic 

behavior is characteristic of cooperative binding interactions, a behavior we previously 

modeled for Dictyostelium myosin II (47). The network stress-dependent stalling of 

myosin II heads in the strongly-bound state during the myosin power stroke gives rise to 

this cooperativity and promotes bipolar thick filament assembly (18, 40, 45, 46). Once 

the accumulated myosin II fully opposes the applied stress, the bound heads do not 

experience increasing stress, resulting in maximal accumulation (18, 47). 

Interestingly, while the accumulation kinetics for myosin IIA and IIC were nearly identical 

between cell types, myosin IIB showed highly cell-type and cell-cycle-stage specific 

behavior. In Jurkats, myosin IIB was the most mechanoresponsive paralog, achieving 

greater than two-fold normalized intensity relative to the opposite cortex. In HeLa cells, 

myosin IIB accumulated moderately, while in NIH 3T3 cells, no appreciable 

accumulation was detected (Fig. 2.4B). This difference in accumulation did not correlate 

with endogenous expression levels (Fig. 2.3A inset) or the cortical tensions of the cell 

types (Fig. 2.3B). It is unlikely that the accumulation of any paralog can be attributed to 

co-assembly with another, given the consistent behavior of myosin IIA and IIC in cells 

endogenously expressing very different quantities of all three proteins. In fact, while the 

mechanoresponse of myosin IIB correlated with IIA expression for these first three cell 

types, Cos-7 cells, which lack myosin IIA (Fig. 2.3A inset), showed robust myosin IIB 
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accumulation (Fig. 2.3C), demonstrating that IIB’s mechanoresponse is independent of 

	

Fig. 2.4 Myosin IIA and IIC show mechanoaccumulation in all contexts examined, 
whereas myosin IIB shows mechanoaccumulation in distinct cell types and phases 
of the cell cycle. (A) Traces of myosin IIA and (C) myosin IIC accumulation over time 
(Normalized Intensity, It/Io normalized to time zero) show initial sigmoidal kinetics indicative 
of cooperativity, followed by a late plateau, a curve which is similar in three distinct cell 
types: NIH 3T3 fibroblasts, Jurkat T-cells, and HeLas (n>10 cells/trace). (B) Myosin IIB 
shows distinct kinetics and levels of mechanoresponsive plateau in the three cell types 
(n>10 cells/trace). (D) Representative images of the maximum accumulation of GFP-
labeled myosins shows a similar ratio of tip intensity to opposite cortex intensity for myosin 
IIA and IIC in all three cells, but a very different ratio for myosin IIB (scale bar = 10 μm). (E) 
Myosin IIA behaves similarly between the phases of the cell cycle induced by treatment 
with STLC (metaphase) STLC+Purvalanol (anaphase) or DMSO (interphase), while (F) 
myosin IIB becomes non-mechanoresponsive in anaphase (n>9 cells/trace). 
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IIA.  In addition, the accumulation of myosin IIB exceeded that of any other myosin II in 

Jurkat cells and did not accumulate in 3T3s despite the presence and accumulation of 

myosin IIA. Further, while myosin IIA showed no change in mechanoresponse over the 

cell cycle in HeLa cells (Fig. 2.4E, Fig. 2.6A,B), the myosin IIB mechanoresponse is cell 

cycle phase-specific; it accumulates in interphase and metaphase but not anaphase 

(Fig. 2.4F, Fig. 2.6A,B). This cell-cycle specificity implicates relatively transient 

regulatory mechanisms for the myosin IIB mechanoresponse that tune cellular shape-

change during cytokinesis. One explanation is the phosphoregulation of IIB is distinct 

from that of IIA and IIC. Indeed, a short serine-rich stretch within the assembly domain of 

IIB confers its distinct localization pattern and behavior in cells in a phosphorylation-

dependent manner (58), and this regulation could also affect myosin IIB 

mechanoaccumulation.  

 

Paralog-specific mechanoresponsiveness of actin crosslinking proteins 

Force sharing among actin crosslinkers is also important for cellular 

mechanoresponsiveness (18). From our search for mechanoresponsive elements, the 

actin crosslinkers α-actinin 4 and filamin B strongly responded. Interestingly, α-actinin 1 

and filamin A did not accumulate significantly in any cell type. Thus, we examined what 

factors could lead to such paralog-specific differences. We previously characterized the 

force-dependent accumulation of the Dictyostelium α-actinin and filamin to dilated and 

sheared regions, respectively (18). In the absence of myosin II, we determined α-actinin 

strongly accumulated to dilated regions of the cell with significantly faster kinetics than 

myosin II. In contrast, filamin displayed rapid, cooperative, local enrichment in sheared 

regions at the pipette neck (18).  
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Paralog-specific mechanoresponsiveness of α-actinin 

	

Fig 2.5. A force-dependent 
model based on actin 
binding affinity predicts 
the mechanoaccumulative 
behavior of α-actinins, and 
the high affinity α-actinin 4 
mutant K255E is non-
mechanoresponsive. (A) A 
reaction-diffusion catch-bond 
model of 
mechanoaccumulation 
derived from parameters 
outlined in Dictyostelium 
predicts high accumulation of 
mammalian α-actinin 4 and 
low accumulation of α-actinin 
1 based on published actin-
binding affinities. (B) This 
prediction captured both the 
protein behavior and shape 
of the curve in aspiration 
experiments in Jurkat cells 
(It/Io normalized to time zero, 
n=12 cells/trace). (C) The α-
actinin 4 K255E mutant has 
a five-fold higher binding 
affinity and shows delayed, 
myosin-dependent (D) 
accumulation as determined 
by using the pan-myosin II 
inhibitor ML-7 at 30 μM 
(n>16 cells/trace). Myosin 
accumulation was fully 
inhibited by ML-7 (Fig. 2.3E). 
(E) FRAP analysis of HeLa 
cells expressing GFP-α-
actinin 4 and the K255E 
mutant in normal and 
compressed state. White 
boxes show bleached region 
at the time of bleaching, 
“Time τ” shows the level of 
fluorescence for each 
condition after one e-fold 
time of recovery as outlined 
in (G) (scale bar=10 µm). 
(F,G) Representative FRAP 
traces show a much faster 
recovery time for α-actinin 4 
than K255E. The applied 
stress from agarose overlay 
drives slower recovery of α-
actinin 4, but no change in 
K255E recovery (*p=0.001, 
**p<0.0001). 
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We modified a reaction-diffusion model first developed for Dictyostelium α-actinin (18) to 

predict mammalian α-actinin accumulative behavior (Fig. 2.5A), by using measured 

binding affinities for mammalian α-actinin 1 (Kd= 0.36 μM) or α-actinin 4 (Kd= 32 μM) 

without altering the other parameters. This model assumes the binding lifetime of α-

actinin increases upon the application of force due to catch-bond behavior. Simulations 

of the model predicted that, owing to intrinsic differences in their initial binding affinities, 

α-actinin 4, but not α-actinin 1, would accumulate in response to deformation (Fig. 2.5A). 

During MPA, α-actinin 4 strongly accumulated in Jurkat cells with a curve shape 

strikingly similar to those in the simulations, while α-actinin 1 did not accumulate (Fig. 

2.5B). However, the experimentally observed accumulation of α-actinin 4 was about 25 

times slower than in the simulations. This difference is partly explained by a slower α-

actinin rate of diffusion (3.7±0.2 μm2/s as measured by Fluorescence Correlation 

Spectroscopy (FCS) in Figure 2.7D-F, compared to 10 μm2/s used in the original model) 

and longer actin filaments in the mammalian cytoskeleton compared with Dictyostelium 

(75). To fully recapitulate the experiment, the on and off rates of actin-binding had to be 

slowed eight-fold, suggesting a level of mammalian α-actinin regulation not seen in 

Dictyostelium (Fig. 2.7A).  

Here, through the use of modeling, we showed the initial binding affinity of an actin 

crosslinker dictates its general mechanoaccumulative behavior.  In the model, the rapid 

accumulation of the lower-affinity α-actinin 4 is driven by a high rate of exchange with the 

actin network and a large pool of the unbound species. This dynamic crosslinker 

exchange can explain the rapid and dramatic changes in localization as the crosslinkers 

lock onto the network in response to mechanical stress.  Further, actin-binding affinity 

must be low enough for there to be an available pool of cross-linkers for 
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mechanoaccumulation to occur, but high enough for the protein to bind; hence a 

Goldilocks zone of affinity is suggested – not too high, not too low, just right. 

To probe the molecular mechanism of α-actinin catch-bond behavior, we analyzed the α-

actinin actin-binding domain (ABD), which is highly conserved among actin binding 

proteins (76). This domain consists of two calponin homology (CH) domains, each with 

an actin-binding site, that are normally tethered in a closed conformation by a salt bridge 

at the CH-CH interface. A mutation of lysine-255 to glutamate (K255E) in α-actinin 4 

disrupts this salt bridge, driving the molecule into a permanently open configuration and 

revealing a third actin-binding site. In vitro, the K255E mutant has a five-fold higher actin 

binding affinity than the wild-type protein(77, 78). We hypothesized that network stress 

disrupts the salt bridge and converts the protein into the open, high affinity conformation, 

giving rise to catch-bond behavior of WT α-actinin 4 and leading to localized, stress-

dependent accumulation. To test this, we analyzed the mechanoaccumulation kinetics of 

the K255E mutant, which we hypothesized lacks this mechanosensitive switch. Indeed, 

α-actinin 4 K255E did not accumulate in the first 100 s of aspiration. However, the 

mutant began to accumulate after 100 s (Fig 2.5C) with accumulation kinetics mirroring 

those of myosin II (Fig. 2.4). Therefore, we tested the role of myosin II by inhibiting the 

mechanoresponse of the three myosins with the myosin light chain kinase inhibitor ML7 

(Fig. 2.3E). Upon the addition of 30 µM ML7, wild-type α-actinin 4 protein still 

accumulated considerably, while the K255E mutant did not (Fig. 2.4D). To rule out off-

target effects of ML7, we independently verified the result using 10 μM Y-27632, an 

inhibitor of the Rho-associated kinase ROCK, which also regulates myosin light chain 

phosphorylation. The results were nearly identical for the two inhibitors (Fig. 2.3E). The 

model predicts that a simple five-fold change in actin-binding affinity would not prevent 
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α-actinin 4 accumulation (Fig. 2.7B), suggesting the K255E mutation perturbs α-actinin’s 

mechanism of mechanoresponse.  

To assess the necessity of the salt bridge for catch-bonding, we analyzed the 

fluorescence recovery after photobleaching (FRAP) of both wild-type and mutant α-

actinin 4 in HeLa cells in the absence or presence of compressive stress (Fig. 2.5E). 

Figure 2.6. 
Mechanoresponsiveness 
of myosin II and anillin in 
HeLa cells. Related to 
Figure 2.4.  (A) 
Representative micrographs 
of micropipette aspiration on 
HeLa cells transiently 
expressing GFP-myosin IIA 
or IIB. Nocodazole 
treatment induces 
metaphase arrest so these 
cells are also in metaphase. 
(Scale bar = 10 μm). (B) 
Average ratio of GFP-
myosin II mean intensity at 
the tip to that at the 
opposite cortex for 
aspirated HeLa cells.  (C) 
Cortical tension 
measurements using 
micropipette aspiration for 
interphase and mitotic HeLa 
cells. DMSO and ML7 
measurements were 
performed on interphase 
cells. (D) Representative 
micrographs of micropipette 
aspiration on HeLa cells 
stably expressing GFP-
anillin. (E) Average ratio of 
GFP-anillin mean intensity 
at the tip to that at the 
opposite cortex. (F) Kinetic 
traces for anillin’s 
mechanosensitive 
accumulation (normalized to 
t = 0 s) in monopolar mitotic 
cells. n value is listed on 
bars; n for each kinetic trace 
is the same as listed on 
corresponding bar in (E) (*p 
< 0.05, **p < 0.005). 
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Cells were compressed with a thin sheet of agarose, reducing their height by a roughly a 

Figure 2.7. Modeling and measuring the mechanisms of filamin and α-actinin 
mechanoresponse. Related to Figures 2.5 and 2.8. (A) The simulations for α-actinin 1 and 
α-actinin 4 match the experimentally observed accumulation curve when the on and off rates 
are slowed by a factor of 8, preserving each protein’s Kd. (see Fig. 2.5B). (B) For both α-actinin 
and (C) filamin, a catch-bond model predicts poor accumulation at very high binding affinities 
(Kd = 0.36μM), presumably due to a lack of free monomer in the cytoplasm. (B) The Kd of α-
actinin 4 (32μM) predicts robust accumulation in the non-cooperative α-actinin model, (C) but 
poor accumulation in the cooperative filamin model. The Kd of filamin B and α-actinin 4 K255E 
(7μM) predicts accumulation in both models. (C) The Kd of filamin A (17μM) predicts no 
accumulation in the filamin model. Thus, both very high and very low Kd values can inhibit 
filamin’s mechanoaccumulation; the Kd at which the most robust accumulation occurs depends 
on whether the model is non-cooperative (α-actinin, Fig. 2.5B) or cooperative (filamin, Fig. 
2.8B) (D) Representative correlation curve measured by FCS for α-actinin 4 in Jurkat cells and 
(E) filamin B in HeLa cells. (F) Measured diffusion constants for GFP (26±2.0), α-actinin 4 
(3.7±0.20), and filamin B (3.3±0.30). (G) Rotated view of a 3D projection of Hela cells, which 
are flattened to an approximate height of 2 μm when compressed with a sheet of 1% agarose 
0.2 mm thick for Fig. 2.5E-G. (H) Compressed α-actinin 4 showed a higher immobile fraction 
(*p=0.007), while there was no significant difference between the immobile fraction of the 
K255E mutant with and without compression (n values noted on bars). (I) A mutant lacking the 
hinge region of filamin B did not show a difference in accumulation to the tip (It/Io) or the neck 
(In/Io) of the aspirated Jurkat cell (n=9). 
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factor of 2.  We have demonstrated previously that this technique drives the 

accumulation of mechanosensitive proteins, including myosin II and cortexillin, to the 

cell’s lateral edges where dilation is highest (18) as the cell actively resists the applied 

load (22). Although the exact force felt by the cytoskeleton is difficult to quantify in this 

technique, the recovery time (τ) of proteins that lock onto the cytoskeleton under 

physiologically-relevant applied loads increases (22). The K255E mutant localized to 

stress fibers more readily than the wild-type even without applied stress, but all FRAP 

measurements were taken from the cell cortex (Fig. 2.5E). Similar to a previous report 

Figure 2.8. A force-
dependent model based on 
actin binding affinity 
predicts the 
mechanoaccumulative 
behavior of filamins to a 
region of shear deformation, 
followed by myosin driven 
cell tip accumulation.  (A) A 
cooperative reaction-diffusion 
catch-bond model of 
mechanoaccumulation 
predicts low accumulation of 
filamin A and high 
accumulation of filamin B to 
the neck region of the cell, 
where shear deformation is 
highest. (B) In Jurkat cells, 
filamin A does not accumulate 
appreciably while filamin B 
accumulates to the cell neck, 
though initial accumulation 
was followed by a decay 
phase (In/Io normalized to time 
zero, n=10). (C) This decay 
phase resulted from flow of 
filamin B, but not filamin A, 
from the cell neck to the cell tip 
(scale bars = 10 μm). (D) 
Accumulation to the cell neck 
was not myosin dependent 
(n=10).  (E) However, flow to 
the cell tip was myosin II 
dependent.  Cells in D and E 
were treated with DMSO or the 
pan-myosin II inhibitor ML-7 at 
30 μM (n=12). 
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(78), the higher affinity K255E mutant showed much slower recovery than wild-type (Fig 

2.5F,G). Interestingly, while wild-type α-actinin 4 showed slower recovery under agarose 

overlay, the K255E mutant showed no significant change in recovery time (τ) or 

immobile fraction (Fig. 2.5F,G, Fig. 2.7H). Thus, the catch-bond behavior of α-actinin 4 

is most likely dependent on the conversion of the highly conserved ABD from a closed to 

an open conformation, a change regulated by the salt bridge. In addition, a late, myosin-

dependent cortical flow phase is responsible for moving the higher affinity K255E mutant 

to the tip region, a phenomenon we also observed with filamin (see below).  

Paralog-specific mechanoresponsiveness of filamin 

In mammalian cells, non-muscle filamins A and B form Y-shaped dimers which 

orthogonally crosslink actin filaments (79). We previously found that Dictyostelium 

filamin, which forms a similar V-shaped dimer, is sensitive to shear deformation. This 

sensitivity manifests as an accumulation to the neck of the cell being deformed (18). The 

reaction-diffusion model for filamin included cooperativity and predicted robust 

accumulation of the higher affinity filamin B (Kd= 7 μM), and reduced accumulation of 

lower-affinity filamin A (Kd= 17 μM) (Fig. 2.8A). This is in contrast with the stronger 

accumulation for lower affinity α-actinin 4. While both α-actinin (non-cooperative) and 

filamin (cooperative) models unveil a Goldilocks zone for which the Kd is optimal for 

accumulation, the Kd that allows the most robust accumulation for each protein depends 

on whether cooperativity is present (Fig. 2.7B,C).  

We were initially surprised to find that mammalian filamin B accumulated at the tip of the 

cell in our studies in Jurkats, instead of the neck region. Upon closer analysis, we noted 

that within 15 s of the pressure application, filamin B accumulated to the aspirated cell 

neck (Fig. 2.8B). The kinetics of this accumulation showed acceleration (Fig. 2.8B), 

suggesting cooperativity exists between neighboring actin-bound filamin B molecules.  
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Longer-term tracking revealed that filamin B flows from the neck to the tip of the cell 

along the cortex (Fig. 2.8C,E), a process not observed in Dictyostelium. Filamin A failed 

to respond to applied pressure (Fig. 2.8B,C). Since the time scale for the tip 

accumulation of filamin B is ~80 s (Fig. 2.8E), along myosin II’s time scale, we 

hypothesized that filamin B accumulation in the tip was driven by myosin II 

accumulation. Upon the addition of 30 µM ML7 or 10 μM Y-27632 (Fig. 2.3E), filamin B 

showed normal neck accumulation (Fig. 2.8D) but did not accumulate to the tip (Fig. 

2.8E).  It has been shown that a filamin A mutant lacking the hinge 1 region fails to 

cause strain stiffening induced by its wild-type counterpart (80). However, in our 

experiments, the filamin B hinge mutant showed wild-type mechanoaccumulation to 

either the neck or the tip of the cell (Fig. 2.7I), indicating shear-force sensation does not 

depend on this hinge. Thus, filamin B shows both rapid, intrinsic, shear deformation-

sensitive accumulation at the cell neck, as well as myosin II-dependent cortical flow to 

the tip of the cell upon applied force. This myosin-dependent cortical flow resembles that 

seen in the α-actinin 4 K255E mutant; these two proteins have similar affinities for actin 

(Kd≈7 μM), which may allude to the requirement of a specific actin-binding affinity in 

order to be acted upon by the myosin-dependent flow. In HeLa cells, the important 

cytokinesis-regulator anillin also responds to the tip of the pipette, but does so 

exclusively during anaphase in a myosin-dependent manner (Fig. 2.6D-F). This implies 

a biological role for myosin-dependent accumulation in mammalian cytokinesis. These 

myosin-driven cortical network flows are similar to those essential for proper asymmetric 

cell division during C. elegans development (81).  
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Conclusions 

In this study, we uncovered mammalian mechanosensors that accumulate under 

mechanical stress. We identified a Goldilocks zone of actin-binding affinities, determined 

by their cooperative or non-cooperative binding properties, which dictates the maximal 

accumulation of these elements. We discovered two distinct modes of force-dependent 

accumulation: a rapid, diffusion-based mode dependent on molecular catch-bonding 

behavior, and a slower, myosin II-dependent cortical flow which drives actin-binding 

proteins to the cell tip. We also discovered the cell-type- and cell-cycle-specific 

mechanosensitivity of myosin IIB, which is intriguing in light of studies implicating myosin 

IIB as a driver of breast-cancer metastasis (82). In Chapter 3, we will uncover how 

heavy-chain phoshoregulation of myosin IIB contributes to this mechanoresponsive 

pattern.  
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CHAPTER 3. PKCζ PROVIDES SETPOINT CONTROL FOR MYOSIN IIB 
MECHANOSENSITIVE DYNAMICS 
 
 
As covered in Chapter 2, non-muscle myosin II senses and accumulates in response to 

mechanical inputs during cytokinesis and cell migration, which allows for the proper 

spatial localization and function of the protein (18, 41, 44, 46, 49, 65, 83). Interestingly, 

signaling pathways—such as Cdc42/mPAR6/PKCζ—can directly impact the dynamics of 

the non-muscle myosin II pool (58, 84). Understanding how this chemical regulation 

affects the ability of non-muscle myosin II to bind specifically to actin filaments 

experiencing mechanical load is key to determining the molecular mechanism by which 

non-muscle myosin II is tuned to localize correctly in cells during shape-change 

processes. 

In the social amoeba Dictyostelium discoideum, the regulation of myosin II (myoII) 

turnover and localization during cytokinesis and chemotaxis is controlled by the 

phosphorylation of three threonine residues in the myoII heavy chain helical tail region 

by the myosin heavy chain kinases (MHCKA, MHCKB, MHCKC, MHCKD; (85). A mutant 

myosin II protein containing aspartic acids at all three threonine residues to mimic 

phosphorylation (3xAsp) form very limited bipolar filaments in vitro, shows very little 

enrichment in the actin cortex in cells, and does not accumulate at the furrow during 

cytokinesis (60, 86, 87). In contrast, a myosin II mutant protein containing 

nonphosphorylatable alanine residues at the three critical threonines (3xAla) shows 

higher assembly into bipolar filaments than wild-type and over-accumulates in the cell 

cortex and cleavage furrow (60, 86, 87).  In this study, to emulate the mechanical 

stresses that cells produce internally or experience externally without probing substrate 

adhesion-based signaling, we again use micropipette aspiration (MPA). Using this 

method, wild-type GFP-MyoII accumulates in response to imposed stress, but the under-

assembled GFP-3xAsp and the over-assembled GFP-3xAla mutants do not (40).  This 
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result indicates a critical relationship between myosin II assembly/disassembly dynamics 

and mechanoresponsiveness, and that the setpoint of myosin II assembly and 

mechanoresponse is controlled by myosin heavy chain kinase activity.  

In mammalian cells, the three non-muscle myosin II paralogs - NMIIA, NMIIB, and NMIIC 

- are regulated by RLC and heavy chain phosphorylation (56, 88). Spatially-broad force-

dependent activation of NMII through phosphorylation of the RLC has been 

demonstrated (56, 89). Certainly, RLC phosphorylation is required for myosin II 

mechanoresponsiveness in Dictyostelium and mammalian cells (39, 40, 49). Inhibition of 

RLC phosphorylation by inhibiting calcium-activated MLCK or RhoA-activated ROCK, 

inactivates and prevents force-dependent accumulation of all three mammalian NMIIs 

(49). However, RhoA, ROCK, and MLCK do not show mechanosensitive accumulation 

and calcium signaling is not required for myosin’s mechanoaccumulation (18, 39, 49).  

Thus, even though RLC phosphorylation is essential for activating myosin, it does not 

specifically direct myosin binding to actin filaments experiencing tension.  Instead, 

mechanical stress directly promotes the cooperative binding of myosin II to actin in 

Dictyostelium, Drosophila and mammalian cells (39, 42-45, 90).   

Furthermore, as discovered in Chapter 2, the mammalian NMIIs show paralog-specific 

regulation of mechanoresponsiveness.  The peak accumulation of NMIIA and NMIIC 

during MPA is very similar across multiple mammalian cell types and across the cell 

cycle.  However, the peak accumulation of NMIIB is differentially regulated across cell 

types and phases of the cell cycle (49). Thus, this unique behavior cannot be explained 

by RLC activation as the three NMII isoforms share the canonical calcium- and RhoA-

dependent mechanisms of RLC phosphorylation (56). This myosin paralog-specific 

mechanoresponsiveness, in combination with the importance of heavy chain regulation-

dependent mechanoresponse in Dictyostelium (40), led us to investigate the influence of 

NMIIB heavy chain phosphoregulation on mechanoresponsiveness.  
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The NMII heavy chain tail is phosphorylated by PKC, casein kinase II, and TRPM7 

enzymes (56). Phosphorylation of the NMIIA tail by PKCβ results in paralog-specific 

binding by S100A4 (or mestastasin 1, Mts1) and increased NMIIA filament turnover (56). 

For NMIIB, paralog-specific phosphorylation by the atypical PKCζ leads to slower 

filament assembly and altered NMIIB organization in cells (84). Phosphomimetic NMIIB 

mutants mimicking PKCζ phosphorylation (1935D) show faster turnover in cells by 

Fluorescence Recovery After Photobleaching (FRAP) and altered localization during 

migration (58). NMIIB localization is PKCζ-dependent, as an overactive version of the 

kinase (myristoylated-PKCζ) alters the morphology of migrating cells expressing wild-

type NMIIB but has no effect on cells expressing the non-phosphorylatable mutant, 

NMIIB 1935A (58). Here, we show that by controlling the assembly of NMIIB in bipolar 

filaments that associate with the actin cytoskeleton, PKCζ-dependent heavy chain 

phosphorylation provides setpoint control for NMIIB mechanoresponsiveness.  

 

Myosin II heavy chain phosphorylation controls mechanoresponse in 

Dictyostelium in a biphasic manner 

In beginning to decipher how NMIIB setpoint control might work, we noticed a trend in 

the Dictyostelium system that provides powerful insight.  In Ren et al., 2009, myosin II 

heavy chain null (myoII) Dictyostelium cells expressing N-terminal GFP-labeled wild-type 

myosin II were aspirated by MPA, and the GFP-myoII responded by accumulating in the 

pipette in response to the applied stress (Fig. 3.1A). In contrast, GFP-3xAsp or GFP-

3xAla proteins did not accumulate in response to applied stress (Fig. 3.1A). 

Mechanoresponsiveness for these mutants in the MPA assay was quantified using a 

ratio of the peak background-corrected fluorescence intensity in the pipette to the 



	 35 

intensity of the cortex at the opposite side of the cell (Ip/Io) (40). Cytoskeletal association 

of these mutants had also been measured previously via cytoskeletal fractionation (91). 

When we compiled these observations by plotting the mechanoresponsiveness as a 
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Figure 3.1. Myosin II cytoskeletal association and mechanoresponsiveness have a 
biphasic relationship in Dictyostelium. (A) GFP-MyoII accumulates to the region of the cell 
dilated by the pipette upon applied force. MyoII mutants mimicking heavy chain 
phosphorylation (GFP-3xAsp) or non-phosphorylatable mutants (GFP-3xAla) do not respond 
to the applied force. (B) Mechanoresponsiveness has a biphasic dependency on the 
percentage of myosin that is cytoskeleton-associated. Peak myosin II mechanoresponse is 
calculated as the highest ratio of background-subtracted intensity in the pipette (Ip) to the 
background-subtracted intensity at the cortex at the opposite side of the cell (Io) in 5 minutes, 
and are reproduced from Ren et al, 2009 with permission. Percent cytoskeletal is measured 
by cytoskeletal fraction and reproduced from Rai and Egelhoff, 2011 with permission. (C) 
Scheme to model the assembly of myosin II bipolar filaments, including exchange between 
assembly-incompetent, assembly competent, actin-bound, and actin-unbound monomers 
(boxed). Monomers then assemble into dimers, tetramers, and bipolar filaments. (D) A 
computational model for myosin II mechanosensitive assembly predicts that when increased 
or decreased by an order of magnitude, rates affecting myosin II transition from assembly-
incompetent to assembly-competent (k+, k-), from actin-unbound to actin-bound (k1), or from 
monomer to dimer (k2) will reproduce a biphasic relationship between the percent of myosin II 
assembled and the mechanoresponse at 5 minutes.	
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function of percentage of myosin II in the cytoskeletal fraction, we observed a biphasic 

relationship (Fig. 3.1B). Very poor mechanoresponsiveness was observed when myosin 

II cytoskeletal association was low (12%, GFP-3xAsp) or high (47%, GFP-3xAla).  

However, wild-type GFP-myoII had high mechanoresponsiveness but had intermediate 

cytoskeletal association (21%, wild-type GFP-myoII).   

To validate this biphasic relationship between degree of cytoskeletal association and the 

myosin II’s mechanoresponsiveness, we leveraged a computational model we 

developed previously to describe mechanosensitive accumulation of myosin II in 

Dictyostelium (18, 41, 47). The model describes bipolar filament formation from the 

monomers to filaments consisting of up to 36 dimers in the mature bipolar filaments. 

Monomers are assumed to be in one of four states, depending on whether they are 

bound to actin or not, and/or assembly competent or incompetent (Fig. 3.1C). We also 

consider that the detachment of bound myosin from actin is force-sensitive. Spatially, we 

compartmentalize the cell into three regions: the cytosol, and two separate cortex 

regions, depending on whether the cortical regions are under mechanical stress or not.  

Simulations were used to compute the fraction of myosin in filaments and the ratio of 

myosin between the cortex at the site of applied stress over the site without stress.  At 

the nominal parameter values, the fraction of myosin in bipolar filaments was 21% and 

the ratio between myosin cortex concentrations was 1.9 (the point at which all curves 

intersect in Fig. 3.1D).  These simulations were then repeated while varying several of 

the parameters describing rates of monomer and dimer interconversion one order of 

magnitude above and below nominal values (Fig. 3.1D).  In all cases, mechanosensitive 

accumulation vs. filament formation displayed the same biphasic pattern seen 

experimentally, with the peak mechanosensitive accumulation occurring between 20-

25% assembly.  
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NMIIB cytoskeletal enrichment predicts mechanoresponsiveness in mammalian 

cells in a biphasic manner 

To investigate the cell-type specific mechanoresponsiveness of NMIIB demonstrated 

previously (49), and in light of the impact of myosin II cytoskeletal association on 
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Figure 3.2. Myosin IIB cytoskeletal enrichment predicts mechanoresponsiveness 
in mammalian cells in a biphasic manner. (A) Representative cytoskeletal assembly 
assay westerns quantified in (B), which shows median cytoskeletal association less 
than 10% for NMIIA, and highly divergent median cytoskeletal association for NMIIB in 
HeLa, Jurkat, and NIH 3T3 cells. (C) Plotting peak mechanoresponse (Ip/Io) against 
percent cytoskeletal shows that NMIIB mechanoresponse is optimal in Jurkat cells, 
which have moderate cytoskeletal association among the three cell types. NMIIA shows 
no such relationship. (D) Representative intensity line scans of GFP-NMIIA or (E) GFP-
NMIIB at the initial frame of an MPA experiment demonstrate low initial cortical 
enrichment in three cell types for GFP-NMIIA, but divergent cortical enrichment for the 
three cell types for GFP-NMIIB. (F) Representation of the quantification of cortical 
enrichment by comparing background-subtracted mean intensity in the membrane 
region (Im) to that of the cytosolic region (Ic). (G) Quantification of cortical enrichment 
(Im/Ic) in three cell types show no significant differences for GFP-NMIIA, but differences 
in GFP-NMIIB highly similar to the differences in panel (B). (H) Plotting each cell’s peak 
mechanoresponse (Ip/Io) as a function of its initial cortical enrichment value (Im/Ic) shows 
a biphasic distribution similar to a Gaussian function. *p<0.05, **p<0.005, ***p<0.0005.	
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mechanoresponsiveness observed in Dictyostelium (Fig. 3.1; (40, 91), we quantified the 

cytoskeletal association of myosin II in HeLa, Jurkat, and NIH 3T3 cells. HeLa, Jurkat, 

and NIH 3T3 cells were gently lysed and subjected to cytoskeletal fractionation, and the 

cytoskeletal and supernatant fractions were probed for NMIIA or NMIIB (Fig. 3.2A). All 

three cell types showed less than 10% association of NMIIA with the cytoskeleton, and 

stronger cortical association of NMIIB than NMIIA (Fig. 3.2B). HeLa cells showed the 

highest NMIIB cytoskeletal association (27±2.8%), followed by Jurkat cells (17±1.3%) 

and NIH 3T3 cells (4.3±0.81%) (Fig. 3.2B). Peak NMIIB mechanoresponse in five 

minutes demonstrated biphasic behavior as a function of cytoskeletal association, 

reminiscent of the relationship seen in Dictyostelium (Fig. 3.1).  NMIIA, on the other 

hand, showed no clear correlation (Fig. 3.2C).  

To more closely probe the relationship between myosin cortical association and 

mechanoresponsiveness, we measured these two parameters in individual cells. 

Fluorescence intensity line scans across individual cells were performed at the time 

when cells are initially contacted with the pipette (t=0), avoiding the nucleus. NMIIA 

shows low cortical enrichment with very little variation between the three cell types (Fig. 

3.2D). NMIIB shows very little cortical enrichment in NIH 3T3 cells, moderate enrichment 

in Jurkat cells, and heavy enrichment in HeLa cells (Fig. 3.2E). The level of enrichment 

was quantified for each cell by taking a ratio of background-corrected mean fluorescence 

intensity at the cell membrane to the intensity inside the cytoplasm (Im/Ic) (Fig. 3.2F, G). 

While no significant difference was seen between the three cell types for NMIIA, NMIIB 

showed significant differences between each of the cell types (Fig. 3.2G). This trend 

closely resembles the cytoskeletal association measured at a population level in Figure 

3.2B. Plotting each cell as a function of both peak mechanoresponse and cortical 

enrichment (Im/Ic) shows that moderately enriched cells, with Im/Ic values between 1.5 

and 2.0, show the highest mechanoresponsiveness (Fig. 3.2H). Each cell type clusters 



	 39 

distinctly, with NIH 3T3 cells on the far left of the Gaussian fit, Jurkat cells in the center 

and high on the curve, and HeLa cells falling on the right (Fig. 3.2H). Comparison of 

overall fluorescence intensity with mechanoresponsiveness in cells shows very poor 

correlation, indicating that the level of NMIIB expression has a minor effect on 

mechanoresponsiveness compared with assembly (Fig. 3.3A).  

 

NMIIB heavy chain phosphomimetic and non-phosphorylatable mutants change 

cortical enrichment and mechanoresponsiveness 

To test whether altering the cortical enrichment of NMIIB is sufficient to change NMIIB 

mechanoresponsiveness in a single cell-type, we expressed GFP-NMIIB constructs with 

phosphomimetic and non-phosphorylatable mutations in the tail domain. In HeLa cells, 

the 1935D mutant showed reduced initial enrichment in the cortex compared to the 

1935A mutant and much higher mechanoresponsiveness than the 1935A mutant over 

five minutes (Fig. 3.4). Quantification of the cortical enrichment (Im/Ic) of the 1935D 

mutant showed a lower value than wild-type, while the 1935A mutant showed no change 

(Fig. 3.4B). Quantification of mechanoresponse kinetics was performed by normalizing 

	

Figure 3.3. Magnitude of mechanoresponse is independent of intensity of GFP-NMIIB 
in cells. (A) In HeLa, NIH 3T3, and Jurkat cells, GFP-NMIIB fluorescence intensity is similar, 
and shows poor correlation with mechanoresponse. (B) In HeLa cells, GFP-NMIIB, GFP-
NMIIB 1935A, and GFP-NMIIB 1935D fluorescence intensity is similar, and shows poor 
correlation with mechanoresponse. (D) In NIH 3T3 cells, GFP-NMIIB, GFP-NMIIB 1935A, 
and GFP-NMIIB 1935D fluorescence intensity is similar, and shows poor correlation with 
mechanoresponse. 
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the Ip/Io value at each time point to the Ip/Io at t=0, then averaging each time point to 
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Figure 3Figure 3.4. Myosin IIB heavy chain phosphomimetic and non-phosphorylatable 
mutants change cortical enrichment and mechanoresponsiveness. (A) Representative 
time series for MPA of HeLa cells expressing GFP-tagged phosphomimetic (NMIIB 1935D) 
or non-phosphorylatable (NMIIB 1935A) mutants of NMIIB. (B) Quantification of initial 
cortical enrichment (Im/Ic) of NMIIB shows a highly significant reduction in cortical enrichment 
for the 1935D mutant, but not for the 1935A mutant, compared to wild-type GFP-NMIIB. (C) 
Accumulation during MPA over 250 seconds shows much more robust response for the 
1935D mutant compared to the 1935A mutant or wild-type NMIIB. (D) Plotting peak 
mechanoresponse (Ip/Io) and initial cortical enrichment (Im/Ic) for each cell shows that all cells 
expressing the 1935A mutant are found in the lower right region of the graph (grey shaded 
area), while all cells expressing the 1935D mutant are found in the upper left region of the 
graph (unshaded region). (E) Representative time series for MPA of NIH 3T3 cells 
expressing GFP-tagged phosphomimetic (NMIIB 1935D) or non-phosphorylatable (NMIIB 
1935A) mutants of NMIIB. (F) Quantification of initial cortical enrichment (Im/Ic) of NMIIB 
shows a highly significant reduction in cortical enrichment for the 1935D mutant, and a non-
significant upward trend for the 1935A mutant, compared to wild-type GFP-NMIIB. (G) 
Accumulation during MPA over 250 seconds shows mechanoresponse for the 1935A 
mutant, while no significant accumulation is seen for the 1935D mutant or WT NMIIB. (H) 
Plotting peak mechanoresponse (Ip/Io) and initial cortical enrichment (Im/Ic) for each cell 
shows that all cells expressing the 1935D mutant are found in the lower right region of the 
graph (grey shaded area), while all cells expressing the 1935A mutant are found in the upper 
right region of the graph (unshaded region). Error bars are SEM, *p<0.05, **p<0.005, 
***p<0.0005.	
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create a single curve (Fig. 3.4C). While the 1935A mutant showed similar 

mechanoresponsiveness to wild-type NMIIB, the 1935D mutant showed much higher 

mechanoresponsiveness (Fig. 3.4C). Plotting each cell as a function of initial cortical 

enrichment (Im/Ic) and peak mechanoresponse shows that all cells expressing NMIIB 

1935A partition to the bottom right of the graph (shaded region) where most wild-type  

NMIIB cells are also found (Fig. 3.4D). In contrast, the 1935D-expressing cells are found 

in the upper left portion of the graph (unshaded region, Fig. 3.4D). Comparison of 

fluorescence intensity with mechanoresponse for the three NMIIB mutants shows very 

poor correlation (Fig. 3.3B). These data suggest that in HeLa cells, where a large 

fraction of NMIIB is associated with the cortex, reducing cortical association (1935D) 

improves mechanoresponsiveness.  

To test whether increasing the cortical association of NMIIB would improve NMIIB 

mechanoresponsiveness in cells that have very low initial cortical association of NMIIB, 

we tested the same GFP-NMIIB phosphomimetic and non-phosphorylatable mutations in 

NIH 3T3s. Here, the 1935D mutant showed very low initial cortical association and no 

mechanoresponsiveness, while the 1935A mutant showed increased cortical association 

and mechanoresponsiveness over 5 minutes (Fig. 3.4E, F, G). Specifically, much like in 

HeLa cells, the 1935D mutant showed lower cortical enrichment than wild-type while the 

1935A mutant showed a slight increase, although not a statistically significant change 

from wild-type (Fig. 3.4F). Plotting each cell as a function of initial cortical enrichment 

(Im/Ic) and peak mechanoresponse shows that all cells expressing NMIIB 1935D partition 

to the bottom left of the graph (shaded region, Fig. 3.4H). In contrast, the 1935A-

expressing cells are found in the upper right portion of the graph (unshaded region, Fig. 

3.4D). Comparison of fluorescence intensity with mechanoresponse for the three NMIIB 

mutants shows very poor correlation (Fig. 3.3C). These data suggest that in NIH 3T3 

cells, where a small fraction of NMIIB is associated with the cortex, increasing cortical 
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association, even marginally, improves mechanoresponsiveness. The HeLa and NIH 

3T3 cell graphs including the NMIIB tail mutants (Fig. 3.4D, H) appear to represent the 

right and left sides, respectively, of a biphasic relationship (Fig. 3.2C,H).  

 

 

PKCζ expression and activity alters NMIIB cortical association and 

mechanoresponsiveness 

To directly address the role of the kinase PKCζ in regulating the cortical association and 

mechanoresponsiveness of myosin II, we first measured the relative endogenous 

expression of the kinase in HeLa, Jurkat, and NIH 3T3 cells. NIH 3T3 cells showed the 

highest levels of PKCζ, followed by Jurkat and HeLa cells (Fig. 3.5A). Comparing mean 

cortical enrichment (Im/Ic) values for NMIIA and NMIIB (Fig. 3.2G) to expression of PKCζ 

in the three cell types shows a steep negative correlation for NMIIB (Fig. 3.5A). The 

slope of the linear fit for NMIIB (-0.067) is more than five-fold steeper than the linear fit 

for NMIIA (-0.013). Due to the high expression of PKCζ and low cortical association of 

NMIIB in NIH 3T3 cells, we asked whether inhibition of PKCζ function, using a 

myristoylated-PKCζ pseudosubstrate inhibitory peptide (PKCζ inhibitor), would affect the 

cortical association of NMIIB. The addition of 10 µM PKCζ inhibitor significantly 

increased the cytoskeletal association of NMIIB, but not NMIIA, in NIH 3T3 cells (Fig. 

3.5B). Treatment with the inhibitor also improved NMIIB mechanoresponsiveness, while 

NMIIA mechanoresponsiveness was unaffected (Fig. 3.5C). The magnitude of NMIIB 

mechanoresponsiveness seen in the presence of PKCζ inhibitor is very similar to that of 

the NMIIB 1935A mutant (Fig. 3.4G). 

In HeLa cells, where NMIIB cytoskeletal association is high (Fig. 3.2) and PKCζ 

expression is low, we tested the effect of overexpression (OE) and activation of PKCζ on 

NMIIB cytoskeletal association and mechanoresponsiveness. Overexpression was 
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performed transiently with either wild-type PKCζ or myristoylated-PKCζ, which is 

constitutively active due to anchorage on the plasma membrane. Compared with 

overexpression of an empty plasmid, NMIIA cytoskeletal association was not altered 
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Figure 3.5. PKCζ expression and activity alters NMIIB cortical association and 
mechanoresponse. (A) PKCζ expression anti-correlates with NMII cortical enrichment, with 
5-fold steeper slope for NMIIB than NMIIA. (B) PKCζ inhibition increases NMIIB cytoskeletal 
association and does not change NMIIA association in 3T3 cells. (C) Inhibition of PKCζ 
increases NMIIB mechanoresponse, but does not change NMIIA mechanoresponse in 3T3 
cells. (D) Overexpression of PKCζ, constitutively active Myristoylated-PKCζ, or treatment 
with PKCζ inhibitor does not change NMIIA cytoskeletal association. (E) However, 
overexpression of PKCζ and Myr-PKCζ reduces the cytoskeletal association of NMIIB in 
HeLa cells, while PKCζ inhibitor has no effect. (F) PKCζ overexpression improves 
mechanoresponse, while Myr-PKCζ overexpression shows no change in mechanoresponse 
in HeLa cells. Error bars are SEM, *p<0.05, **p<0.005, ***p<0.0005. 
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upon PKCζ overexpression, myristoylated-PKCζ overexpression, or treatment with PKCζ 

inhibitor (Fig. 3.5D). However, NMIIB showed a significant reduction in the cytoskeletal 

fraction following 18-fold PKCζ and 10-fold myristoylated-PKCζ overexpression (Fig. 

	

Figure 3.6. PKCζ overexpression and NMIIA knockdown alter mechanoresponse in 
HeLa cells. (A, B) The ratio of NMIIB in the cytoskeleton, C, to the supernatant, S, is altered 
by the overexpression of PKCζ or Myristoylated-PKCζ in HeLa cells. (C, D) NMIIA 
expression is significantly reduced in two HeLa shRNA NMIIA knockdown lines, while NMIIB 
expression does not significantly change. (C, E) In the two shRNA NMIIA knockdown lines, 
NMIIB cytoskeletal association is increased, while the association of the remaining NMIIA 
does not change. (F) GFP-NMIIB mechanoresponse is lost in the shIIA-2 knockdown line, 
and is not rescued by the NMIIB 1935D mutant. N-values displayed on bars, error bars are 
SEM, *p<0.05, **p<0.005, ***p<0.0005. 
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3.5E; Fig. 3.6A, B). Inhibition of PKCζ did not significantly affect NMIIB cortical 

association (Fig. 3.5E), which is consistent with the finding that the NMIIB 1935A mutant 

behaves like wild-type NMIIB in HeLa cells (Fig. 3.4B, C). Interestingly, while the 

overexpression of wild-type PKCζ significantly increased NMIIB 

mechanoresponsiveness, the overexpression of myristoylated-PKCζ did not (Fig. 3.5F). 

This can be explained by the biphasic relationship between cortical association and 

mechanoresponsiveness: pushing NMIIB cytoskeletal association too low results in 

suboptimal mechanoresponsiveness.  

We next sought to determine whether inputs to NMIIB assembly other than PKCζ could 

similarly perturb NMIIB mechanoresponsiveness. Due to the ability of NMIIA and NMIIB 

to co-assemble into hetero-filaments (92, 93), we reasoned that NMIIA could affect the 

filament assembly properties of NMIIB in cells. NMIIB assembly was indeed significantly 

higher in two HeLa NMIIA knockdown cell lines, compared to control (Fig. 3.6C, E). The 

percent NMIIA knockdown achieved in shIIA-1 and shIIA-2 was 80% and 95%, 

respectively (Fig. 3.6D). The large reduction in NMIIA expression in shIIA-2 is also 

accompanied by punctate distribution of GFP-NMIIB in the HeLa cortex (Fig. 3.6F), 

implying that NMIIA influences the dynamics of NMIIB assembly and turnover. This 

increase in assembly results in a reduction of mechanoresponsiveness (Fig. 3.6F), even 

with the NMIIB 1935D mutant, indicating that assembly-state is the primary determinant 

of NMIIB mechanoresponsiveness.  

 

NMIIB mechanoresponsiveness depends on the fraction of free and assembled 

myosin II, not concentration of monomers	
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Since NMII accumulation is mediated by the addition of diffusing subunits to the 

mechanically loaded actomyosin network, we considered the possibility that the most 

sensitive parameter for mechanoresponsiveness was the concentration of free myosin in 

the cytosol.  To measure total NMII concentration in cells, we compared endogenous 

NMIIA and NMIIB in HeLa cell lysates to known quantities of the purified tail fragment of 

NMIIA or NMIIB, which contains the antibody epitope (Fig. 3.7A). We then compared the 

amount of NMIIA and NMIIB in Jurkat and NIH 3T3 cells, loaded with equal amounts of 

total protein (Fig. 3.7B). This allowed for the calculation of the concentration of NMIIA 

and NMIIB in HeLa, Jurkat, and NIH 3T3 cells (Fig. 3.7C). To our knowledge, 

quantification of the concentration of NMIIA and NMIIB in mammalian cells has not been 

reported previously. The concentrations measured here, 200-550 nM NMIIA and 36-120 

nM NMIIB, are similar to concentrations measured for the two myosin II isoforms in yeast 

(Myo2p: 450nM, Myp2p: 380nM, (94)), but lower than the 3.4 µM found in Dictyostelium 
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Figure 3.7. 
Concentration of 
monomeric NMIIB in 
cells does not 
predict 
mechanoresponse. 
(A) Quantification of 
NMIIA and NMIIB 
concentration in HeLa 
cells using a purified 
epitope standard. (B) 
Comparison of total-
protein-matched 3T3 
and Jurkat lysate to 
HeLa lysate allows (C) 
the quantification of 
NMIIA and NMIIB 
concentration in each 
cell type ± SEM. (D) 
Concentration of 
soluble NMIIB is not 
predictive of NMIIB 
mechanoresponse. 
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(95).  A comparison of NMIIB mechanoresponsiveness and the concentration of soluble 

NMIIB (calculated from total NMIIB and the percent soluble, Fig. 3.2B) shows no 

obvious correlation (Fig. 3.7D). However, the comparison of the percent of NMIIB in the 

cytoskeletal fraction and NMIIB mechanoresponsiveness demonstrates a clear biphasic 

relationship (Fig. 3.8A). All conditions tested here are included in this graph, along with 

two additional cell lines (HEK 293 and Cos-7) which have been measured previously 

(49, 96). Overall, the ability of NMIIB to respond to mechanical stress is dependent on 

the ratio of cytoskeletal-associated and free NMIIB in a biphasic manner, with maximal 

mechanoresponsiveness occurring at a cytoskeletal association fraction of ~20%, very 

similar to what was observed in Dictyostelium. 

An open question in the field of mechanobiology concerns the molecular mechanisms by 

which chemical and mechanical signals are integrated by cells. While molecular systems 

where mechanical inputs are sensed and converted into chemical signals have been 

studied, systems where chemical inputs tune the ability of molecular machinery to sense 

Figure 3.8. Relationship between NMIIB mechanoresponsiveness and cytoskeletal 
association is biphasic. (A) The fraction of NMIIB found in the cytoskeleton predicts 
NMIIB in a biphasic manner across many mammalian cell lines and conditions. (B) 
Graphical depiction of the relationship between cytoskeletal association and 
mechanoresponse. Low cytoskeletal enrichment reflects a relatively large amount of 
monomeric myosin with poor ability to assemble in response to stress. High cytoskeletal 
assembly reflects a relatively small pool of monomeric myosin, and an impaired ability to 
assemble new filaments at sites of stress. At an intermediate cytoskeletal assembly value, 
NMIIB mechanoresponse is maximal. Error bars are SEM. 
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and respond to forces are less well understood. We propose that in the case of myosin 

II, chemical signals, including phosphorylation through myosin heavy chain kinases like 

PKCζ, tune the setpoint for myosin II mechanoresponsiveness: enough myosin II must 

be assembled in the network to sense mechanical stress and lock-in the cooperative 

state while a sufficient free pool of subunits must be available to grow the actomyosin 

network in response to the mechanical stress (Fig. 3.8B).  High levels of heavy-chain 

phosphorylation lead to low affinity for the bipolar filament and low levels of cytoskeletal 

association. Low levels of heavy-chain phosphorylation lead to high affinity for the 

bipolar filament and high levels of cytoskeletal association. An optimal condition exists 

where filament affinity is high enough to facilitate robust assembly locally at a site of 

stress, but low enough to allow for turnover in other regions of the cell to release free 

subunits. In fact, the mechanism by which NMIIB localizes to the rear of migrating cells 

is thought to be dependent on both mechanical and chemical signaling cues. Raab, et al. 

demonstrated that rear localization of NMIIB is mechanoresponsive; the occurrence of 

NMIIB polarization is dependent on substrate stiffness (65). On the other hand, Juanes-

Garcia, et al. demonstrated that NMIIB localization is dependent on chemical signals 

driving phosphorylation of the heavy chain by PKCζ (58). The integration of these 

signals that allow for proper NMIIB localization and function can be explained by the 

mechanism outlined in this study: PKCζ tunes the setpoint of NMIIB assembly, which 

determines the ability of NMIIB to respond to mechanical stress.  
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CHAPTER 4. CONCLUSIONS  

In this study, we have identified a number of actin cytoskeletal proteins that are able to 

accumulate to a site of imposed mechanical stress in the cell. By imposing a well-

defined stress at a specific time using MPA, were able to quantify the kinetics of 

accumulation and geometries to which certain specific actin-binding proteins 

accumulate. These data provided mechanistic insight into mechanosensitive behaviors; 

some proteins display sigmoidal accumulation kinetics indicative of cooperative behavior 

while others do not, and some proteins accumulate to regions of the cell experiencing 

shear deformation, while other accumulate to regions experiencing dilation. We were 

able to validate, using agarose overlay, that global mechanical stress on cells also drives 

cortex association in these mechanoresponsive proteins. For both the actin-crosslinking 

proteins and myosin II, we observed biphasic behavior; a state exists where species 

respond optimally to external stress, while species with lower or higher affinity for 

binding the actin filament do not respond as well to this stress. For the actin crosslinking 

proteins ⍺-actinin and filamin, the intrinsic actin-binding affinity of the paralog could be 

used to predict which paralog would be mechanoresponsive in our MPA assay, which 

closely mirrors the magnitude of stresses cells experience during cytokinesis and 

migration. These data can begin to explain mechanistically why some actin-crosslinking 

proteins accumulate to sites of stress in the cell, while others do not.  

For ⍺-actinin, we found evidence to suggest that a salt-bridge in the actin-binding 

domain plays a large role in mechanosensation by allowing the domain to switch 

between structural states having differing affinities for actin when force is applied. As the 

calponin-homology domain of ⍺-actinin is highly conserved among many actin-binding 

proteins, this paradigm most likely extends to a number of actin-binding proteins, 

including utrophin, dystrophin, spectrins, and filamins. This notion, that a calponin-

homology domain can sense tension on actin fibers, has been validated using the 
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utrophin actin-binding domain in yet-unpublished work by Andrew Harris, PhD, in the 

laboratory of Daniel Fletcher, PhD, at University of California Berkeley.  

 

In the case of myosin II, the assembly of myosin II into filaments with many actin-binding 

domains greatly influences its ability to remain associated with actin filaments due to its 

relatively low duty ratio compared with “walking” myosins. We demonstrate here that the 

kinetics by which myosin II assembles into filaments, which can be influenced by 

phosphorylation of the myosin II tail, has a biphasic impact on the ability of myosin II to 

accumulate in response to stress. This understanding of how chemical signaling events 

influence mechanical systems provides insight into how myosin IIB localization is 

determined in migrating cells, and more broadly, how the mechanical and chemical 

signals integrate in cells to generate predictable, force-dependent outcomes.  

As growing evidence demonstrates that cell behavior is modulated by the mechanical 

properties of the actin network, the molecular mechanisms of the mechanoresponsive 

cytoskeletal elements involved become critical to understand. For example, 

mechanotransducing stress fibers, which dynamically form and dissolve during cell 

migration, are crosslinked largely by α-actinins and therefore could become more stable 

via α-actinin catch-bonding under load (97, 98). In addition to genetic diseases related to 

filamin B and α-actinin 4 mutations (99, 100), increased expression of the 

mechanosensitive paralogs of α-actinin and filamin are strong negative prognosticators 

in multiple metastatic cancers (101-103). As mentioned, the localization and behavior of 

myosin IIB in stress fibers during cell migration is known to depend on both chemical 

and mechanical inputs (58, 65). Defining the mechanisms by which individual proteins 

and the network as a whole respond to force and determining which cytoskeletal 

elements are mechanosensitive is essential for elucidating normal mechanosensitive 

biological processes and identifying new targets for inhibiting aberrant processes in 
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disease states. In fact, the biphasic relationship between cortex affinity and 

mechanoresponse may be crucial to consider when designing treatment strategies for 

complex diseases, such as cancer.  In some instances, it may be optimal to inhibit a 

process, but the same strategy may drive the system into a more aggressive, active 

state if the system is poised differently. 
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CHAPTER 5. FUTURE DIRECTIONS 

In the future, I can envision many directions the study can take, but here I will discuss 

three specific lines of possible inquiry. The first involves investigation into the stress-

sensing ability of the a-actinin actin-binding domain. The second involves characterizing 

the relationship between the expression of mechanoresponsive proteins and a cell’s 

ability to migrate in physiologically-accurate scenarios. The third involves inquiry into 

how kinases which phosphorylate myosin themselves are regulated by mechanical 

stress.  

To investigate the ability of the a-actinin actin-binding domain to sense stress, I envision 

both in vivo and in vitro approaches. The first step for an in vitro approach would be to 

purify the actin-binding domains of a-actinin 1, a-actinin 4, and a-actinin 4 with a K255E 

mutation labeled fluorescently. Using an optical trap or magnetic beads, tension would 

be placed on an actin filament, and the binding of the actin-binding domains monitored 

by an increase in fluorescence intensity. A next step would be to verify that the transition 

of the domain from a closed to an open configuration, due to breaking of the salt bridge 

at residue 255, is the mechanism by which the domain can sense stress. Mutating both 

of the residues involved in the salt bridge to cysteines would lock the protein in the 

closed configuration, and we would predict that in vivo (by MPA) and in vitro (by 

magnetic bead or optical trap) the domain would bind actin at relatively low affinity, but 

not be able to transition to the species that binds to actin under load at a higher affinity. 

To begin an inquiry into how the expression of mechanoresponsive proteins alters cell 

migration, I would start with the highly-tunable myosin IIB in white blood cells, where 

migratory behavior is robust and which currently lacks endogenous myosin IIB. 

Preliminary data suggests that the expression of myosin IIB using adenovirus in mouse 

macrophages (RAW 264.7) increases their random migration velocity (data not shown). 
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In a next step, stable RAW 264.7 cell lines should be developed which express wild-type 

myosin IIB, the 1935A mutant, or the 1935D mutant. A careful quantification of the 

assembly state of these mutants should be done, followed by micropipette aspiration to 

determine the species which accumulates most robustly in response to applied stress. 

Random migration and chemotaxis assays can be done in 2D and 3D collagen matrixes 

to compare the contribution of the mutants of myosin IIB to migration speed in these 

different environments. Finally, the migration of macrophages expressing these variants 

of myosin IIB on different substrate stiffnesses could be compared to determine whether 

the different myosin phosphorylation states are tuned to respond to different substrate 

stiffnesses.  

Third, it is known from data previously acquired by Tianzhi Luo, the Dictyostelium 

myosin heavy chain kinase C (MHCKC) accumulates in time with myosin II in response 

to MPA. In addition, altered activity of PKCz has been shown to be stimulated by shear 

stress to cells using fluid flow. Thus, the question remains: How do kinases like MHCKC 

and PKCz respond to stress and what effect does this have on myosin II? Normally, 

MHCKC is localized mostly to the cytoplasm, until cytokinesis or MPA. It is known that 

MHCKC does not localize properly to the cleavage furrow in the absence of myosin II, so 

it is likely that myosin II is required also for its localization in response to stress during 

MPA. Thus, can MHCKC sense the species of myosin II that is under stress? This would 

imply that some type of compliant element exists in the myosin II tail, where when the 

myosin II filament is stretched, MHCKC binding is increased. To test this, magnetic 

beads could be used to stretch a myosin II filament, and fluorescently-labeled MHCKC 

binding monitored. Fluorescent PKCz would also be a great kinase to test in this 

experiment, with mammalian myosin IIB tails stretched by the magnetic beads. Ideally, 

kinase activity could be monitored during the assay, to determine whether the 
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phosphorylation of the myosin II tail occurs primarily in the stressed or the unstressed 

condition.  
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CHAPTER 6. MATERIALS AND METHODS 
 
Cell culture  

Jurkat cells were cultured in RPMI 1640 (Sigma-Aldrich) with 10% FBS (Life 

Technology). HeLa, Cos-7, and NIH 3T3 cells were cultured in DMEM (Life Technology) 

with 10% FBS. For MPA experiments, adherent cells were cultured on tissue-culture 

treated dishes (Corning), detached using 0.05% trypsin (Life Technologies), centrifuged 

and resuspended in media. Transient transfections were performed using FuGene HD 

(Promega) for adherent cells, and electroporation for Jurkat cells. For FRAP studies, 

HeLa cells were cultured on glass-bottom dishes (Corning) and transferred to Leibowitz 

Media (Life Technology) + 10% FBS four hours prior to imaging. 

 

Constructs  

The following plasmids were acquired from Addgene: 

Construct Addgene Number Resource 

EGFP-C1-β-actin 31949 Vladislav Verkhusha  

Mcherry-UtrCH-pCS2 26740 William Bement  

mCherry-Ezrin-C14 55042 Michael Davidson 

EGFP-C1-Talin 26724 Anna Huttenlocher 

EFGP-N1-ACTN1 11908 Carol Otey  

Mcherry-N1-coronin1B 27694 Christien Merrifield  

E-cadherin-GFP 28009 Jennifer Stow  

EGFP-C1-PH-PLCδ 21179 Tobias Meyer  

mcherry-C1-cofilin 27687 Christien Merrifield  

EGFP-MLCK-C2 46316 Anne Bresnick  
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The Ras binding domain sequence from human Raf and the PH domain of human AKT 

were cloned into the FUW2 vector, tagged with GFP and mCherry respectively. GFP 

tagged constructs for EGFP-C3-myoIIA, EGFP-C3-myoIIB and EGFP-N3-myoIIC, were 

gifts from Robert Adelstein.  CFP-C1-Kras, EYFP-C1-Rac1 and Lifeact-RFP-N1 were 

gifts from Takanari Inoue.  EGFP-N1-ACTN4 was a gift from Allan Wells. A point 

mutation K255E was made in EGFP-N1-ACTN4 by site-directed mutagenesis to 

generate EGFP-N1-ACTN4 (K255E). The filamin A construct, pmdsRed-FLNA, was a 

gift from Fumihiko Nakamura. Filamin B full length construct EGFP-FLNB-pCI-C1, and 

hinge 1 deletion mutant construct EGFP-FLNB(ΔH1)-pCI-C1 were gifts from Arnoud 

Sonnenberg. Constructs for Septin 1 and 7, EGFP-N1-sept1 and EGFP-C1-sept7, were 

gifts from William Trimble. EYFP-paxillin and EGFP-vinculin were gifts from Susan 

Craig. GFP-tagged NMIIB containing 1935D and 1935A mutations were gifts from 

Miguel Vicente-Manzanares.  

 

Drug treatment  

Myosin II light chain inhibitor ML-7 (Sigma I2764) was dissolved in DMSO. The final 

concentration of DMSO in culture medium was kept below 0.15% during drug treatment.  

After resuspension, cells were treated with DMSO or ML-7 for 15 minutes prior to 

imaging. Myristoylated-PKCζ pseudosubstrate peptide inhibitor (Life Technologies) was 

dissolved in water and delivered to cells at 10 µM for one hour prior to imaging or cell 

lysis. Control cells received the carrier only. 

 

pcDNA4-PKCZeta WT His 24609 Jeff Wrana 

Myr.PKCzeta.FLAG 10802 Alex Toker 
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Measurements of mechanosensory response of proteins using micropipette 

aspiration  

Micropipette aspiration was performed as described previously (28). In short, a pressure 

difference was generated by adjusting the height of a motor-driven water manometer. 

Mammalian cells expressing desired fluorescent proteins were loaded into the 

observation chamber, which was filled with either DMEM or RPMI 1640 medium 

depending on the cell type. Cell types were deformed equally using the ratio of the 

aspirated length of the cell in the pipette (Lp) over the radius of the pipette (Rp) as a 

guide. Once a pressure was determined for each cell type for which Lp/Rp was 

approximately equal to two, this fixed pressure was used for all cells of that type. These 

values were different between cell types (0.075 nN/μm2 for Jurkats, 0.15 nN/μm2 for NIH 

3T3s, 0.2 nN/μm2 for HeLas, and 0.15 nN/μm2 for Cos-7) due to the unique cortical 

tensions of these cells (Fig. 2J). Pressures higher than this often led to blebbing, or the 

separation of cell membrane from the cortex. All cells which demonstrated blebbing at 

any time during recording were discarded. Images were collected with an Olympus IX81 

microscope equipped with Metamorph software and analyzed using ImageJ (National 

Institutes of Health). After background correction, the fluorescence intensity at the 

accumulation sites inside the micropipette were normalized against the opposite cortex 

of the cell.  This was repeated for each frame to obtain timecourses and account for 

expression level variation and photobleaching.  

 

Measurement of fluorescence recovery after photobleaching (FRAP) 

FRAP was performed as described previously (22). HeLa cells were plated at low 

density on glass-bottom dishes and transiently transfected 40 hours prior to imaging. 

The culture media was changed to Leibowitz Media four hours prior to imaging. FRAP 

experiments were performed using a Zeiss AxioObserver with 780-Quasar confocal 
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module, with a 63x (NA 1.4) objective at 37C and 5% CO2. A small region of the cell 

cortex was bleached using a 488 nm Argon laser and the fluorescence recovery was 

recorded until recovery saturated (100 frames, 5-15 s/frame depending on the protein). 

The size and placement of the bleach region was kept relatively constant across 

measurements. For each frame, the average intensity of the bleached cortical region, 

reference (unbleached) region, and background was quantified using ImageJ (National 

Institutes of Health). For photobleaching correction, the reference theoretical intensity 

(RTI) was calculated by fitting the background subtracted reference intensity to an 

exponential decay equation as follows: 

 

(1) 𝑅𝑇𝐼(𝑡) = 	𝐴 − 𝐵	 ∙ 𝑒123 

Where, A, B and C are fitting parameters.  

 

The intensity of the bleached region was background subtracted and normalized to RTI. 

The normalized intensity (NI) was obtained by normalizing this to the pre-bleach intensity 

(average of 4 pre-bleach images), and was fitted to a single exponential as follows:  

 

(2) 𝑁𝐼(𝑡) = 	𝑚6(1 − 𝑚8 	 ∙ 𝑒193) 

Where, m1, m2 are fitting parameters and k is the recovery rate.  

The recovery time, t, and the immobile fraction, Fi were measured as:  

 

(3) Recovery time, 𝜏 = 1/𝑘 

 

(4) Immobile fraction, 𝐹> = 	
61?@

61?@A?B
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Measurement of diffusion time by fluorescence correlation spectroscopy (FCS) 

Jurkat (ACTN4) or HeLa (FLNB) cells were plated at low confluence in glass bottom 

dishes, transiently transfected 40 hours prior to imaging, and media was replaced with 

Leibowitz media 4 hours prior to imaging. FCS was performed exactly as previously 

described (22) at 37C and 5% CO2 on a Zeiss AxioObserver with 780-Quasar confocal 

module & FCS, with a C-Apochromat 40x (NA 1.2) water objective. 

 

Engineered cell lines 

NMIIA knockdown lines were generated in HeLa cells using constructs from the Broad 

Institute TRC shRNA library distributed as bacterial glycerol stocks by Open Biosystems. 

The negative control construct (shCTL) was used, as well as: 

 

HeLa shIIA-1 (TRCN0000029467): 5’-CCGCGAAGTCAGCTCCCTAAA-3’ 

HeLa shIIA-2 (TRCN0000029468): 5’-GCCAAGCTCAAGAACAAGCAT-3’ 

 
Target plasmids were co-transfected with generation 2.0 lentiviral packaging plasmids 

psPAX.2 (Addgene #12260) and pMD2.G (Addgene #12259), gifts from Didier Trono, via 

Transit 20/20 (Mirrus) transfection reagent into Lenti-X HEK293t cells (Clontech). Lenti-X 

HEK293t cells were allowed to produce virus for 48 hours, then media was collected and 

added to HeLa cultures. HeLa cells were treated with 5ug/mL puromycin (Life 

Technologies) until growth of resistant cells occurred. Knockdown was verified by 

western analysis. 

 

Cytoskeletal fractionation 

Adherent mammalian cells were trypsinized (Jurkat cells are non-adherent) and rotated 

in media for 10 minutes to allow for stress fibers to collapse, leaving behind primarily 
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cortical actin cytoskeleton that had been allowed to equilibrate following loss of cell 

adhesion. This condition reflects the cytoskeletal organization probed by MPA when 

measuring mechanoresponse. All three cell types were then lysed using a buffer 

containing 50 mM PIPES pH 6.8, 46 mM NaCl, 2.5 mM EGTA, 1 mM ATP, 1 mM MgCl2, 

0.5% Triton X-100, and a protease inhibitor cocktail containing benzamidine, leupeptin, 

pepstatin A, TPCK, TLCK, Aprotinin, and PMSF (osmotic strength was measured via 

conductance and found to be 17 mS/cm, equivalent to 150 mM NaCl). 

 

Myosin quantification 

Cells were trypsinized and counted, then centrifuged into pellets containing 5x105 cells 

each. These pellets were washed in PBS and recentrifuged, then lysed in 75 µL RIPA 

lysis buffer plus 15 µL 6xSDS buffer. Due to cell volume and residual PBS, the total 

lysate volume reached 100 µL. 10 µL of lysate was added to each well of a 7% SDS-

PAGE gel, or the equivalent of 5x104 cells/well. In addition, each well was spiked with a 

known quantity of purified myosin II tail fragment, containing the epitope region for the 

antibodies used, with sequential 2-fold dilutions. A 7% gel was used because it allowed 

for optimal transfer of both the large molecular weight endogenous myosin II and the 

smaller molecular weight purified tail fragment out of the gel. Transfer was most effective 

at a constant 45V for 16 hrs, using PVDF membranes to prevent smaller protein pass-

through and verifying complete transfer of larger proteins by performing a Coomassie 

stain to verify that no protein was left in the gel following transfer. The average volume of 

an individual cell for each cell type was determined from the micropipette aspiration 

images, where cell radius is measured, and assuming the cell shape to be a sphere prior 

to aspiration. For each experiment, a standard curve was created from the spiked tail 

fragment to determine the total number of moles of endogenous myosin II in each lane. 

The number of cells per lane multiplied by the average volume of a single cell gave the 
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total cell volume per lane, and concentration was determined as a ratio of these two 

values.  

 

Western analysis 

SDS-PAGE gels with 10% acrylamide were made in house and transfers were 

performed at 90V for 90 minutes. Blots were blocked in 5% dry milk in PBS + 0.1% 

Tween-20 (Sigma) and incubated with primary antibodies overnight in 5% milk in PBS-T. 

The NMIIA antibody used was Poly19098 (BioLegend, 909801), the PKCζ antibody was 

H-1 (Santa Cruz, sc-17781), and the NMIIB antibody was from the Developmental 

Studies Hybridoma Bank, BF-F3, deposited by Schiaffino, S. (DSHB Hybridoma Product 

BF-F3). Blots were imaged using Li-Cor fluorescent secondary antibodies on the Li-Cor 

Odyssey CLx Blot Imager. 

 

Model description for myosin II mechanoresponse 

States considered 

The computational model has been described previously (18, 41, 47).  Briefly, we 

assume that monomers exist in one of four states: assembly-incompetent, unbound (to 

actin) monomers (𝑀); assembly-competent, unbound monomers (𝑀); assembly-

incompetent, actin-bound monomers (𝑀D∗); and assembly-competent, actin-bound 

monomers (𝑀∗). The latter is the fundamental unit of bipolar filament assembly. Two of 

these monomers bind to form parallel dimers (D*) which then subsequently associate in 

an anti-parallel fashion to form the tetramer (T*). Subsequently, dimers add laterally to 

the bipolar tetramer to build the bipolar filaments, which range in size from 3 to 36 

dimers for Dictyostelium myosin II. The assembly scheme describing this process is 

illustrated in Fig. 1.1C, where the various interconversion parameters are given.   
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Interconversion between states 

A full description of the interconversion between states has been described previously 

(41, 47) For the most part, interconversion between the various states is assumed to 

follow mass-action dynamics with constant rates. The exception is the rate constant k-1 

which describes myosin unbinding to actin, and that this constant is force-dependent. In 

this case, we assume a Bell-like molecular catch bond model and compute: 

 

𝑘16 = 𝑘16F exp(−D𝐸H 𝑘H𝑇⁄ ) 

 

where 𝑘16F  is the unbinding rate constant in the absence of force and cooperative 

interactions, and ΔEb is the change in binding energy (Eb) associated with cooperative 

and force-dependent myosin II–actin binding. This is given by: 

 

D𝐸H = D𝐸J +
Force 
a	myosin 

 

where myosin is the total concentration of the bound myosin.  The first term, ΔEs, is the 

change in strain energy associated with myosin-actin cooperative interactions and is 

given by the piecewise linear function: 

 

D𝐸J = L
c6f, f < f∗

c6f
∗ + c8(f− f∗), f ≥ f∗

 

 

where f=3´myosin/Cactin.  The different nominal parameter values are given below (41, 

47): 
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k+	 0.05	 s-1µM-1	 k_	 0.59	 s-1	

kon	 0.45	 s-1µM-1	 	 	 	

k1	 konCactin	 s-1	 k-10	 300	 s-1	

k2	 0.37	 s-1µM-1	 k-2	 0.01	 s-1	

k3	 0.0396	 s-1µM-1	 k-3	 0.0045	 s-1	

k4 1.25	 s-1µM-1	 k-4	 0.025	 s-1	

kn,	n>4 2.50	 s-1µM-1	 k-n,	n>4	 0.2	 s-1	

c1 11.11	 kBT	nm	 c2	 1.92	 kBT	nm	

a 36	 	 f*	 0.11	 	

	

	

	 	 	 	 	

Compartmental model 

Spatially, we consider a compartmental model consisting of three compartments, one 

representing the cytosol and the other two cortical regions. The latter two represent the 

region of the cortex where aspiration pressure is applied from the remaining cortex. The 

cell is assumed to be a sphere of radius Rc=5 µm. The cortex forms a shell th=350 nm 

thick on the outside of this sphere. We assume that the aspirating pipette has a radius of 

Rp=2.5 µm and that the aspirated region forms a hemisphere of this radius. Thus, the 

total surface area of the cortex is SA=4p Rc2 of which SAp=2p Rp2 experiences stress.  

Thus, the cytosol, cortex, aspirated cortex and unaspirated cortex compartments have 

volumes Vcytosol=4p(Rc-th)3/3, Vcortex=4p3/3-Vcytosol, Vcortex(SAp/SA) and Vcortex (1-SAp /SA) 

respectively. 
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Transfer between the different compartments is modeled by including a diffusive flux 

between the two cortical compartments and the cytosol. If D is the diffusion coefficient, 

then the flux per unit area is given by -DdC/dx where C is the concentration of the 

species in question.  For dx we use the thickness of the cortex. This is in units of 

numbers per unit area per time so we multiply by the surface area of the interface 

computed above.  To account for the effect on the concentration of a molecule in a 

compartment we need to divide by that compartment’s volume.    

We assume that D=0.8 µm2/s is the diffusion coefficient of unbound myosin monomers, 

as measured in Drosophila S2 cells (104), which is very close to the diffusion coefficient 

for mCherry-myosin II measured for this study in Dictyostelium by Fluorescence 

Correlation Spectroscopy (0.97±0.35 µm2/s). Bound monomers, dimers and tetrameters 

diffuse at 1/400 this rate. Bipolar filaments having more than three dimers do not diffuse.  

 

Simulation implementation 

The model was simulated by solving differential equations for each of the states (40 

states) in each of the three different compartments (120 total states).  Initial conditions 

for each of the states were first computed in the absence of any external stress. 

Thereafter, for each set of parameters, differential equations were solved using Matlab’s 

(Mathworks, Natick, MA) ode23s stiff solver for 1000 seconds in the absence of force, 

followed by 300 seconds during which force F=100kbT was incorporated into the 

equation for k-1. 

 

Statistical analysis  

Statistical analysis was performed with the using Graph Prism (www.graphpad.com) or 

KaleidaGraph (Synergy Software). The Mann-Whitney test was used for non-parametric 
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comparisons of different data sets. Data sets were also analyzed by analysis of variance 

(ANOVA) with a Fisher's least significant difference comparison. Both methods obtained 

nearly identical conclusions.  
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