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Abstract

Visual information processing in the primate brain is thought to occur along two

major pathways, known as the ventral and dorsal pathways. The ventral (’what’)

pathway has been considered a system specialized for processing visual information

about object structure/shape and identity. Evidence for this view comes from wide-

ranging studies based on fMRI, behavioral effects of lesions and neural recording. In

particular, recording studies in the macaque have revealed strong sensitivity to object

shape information, ranging in complexity from 2D local contour orientation in early

visual areas to 3D local surface curvature in the inferotemporal (IT) cortex, a region

comprising the final stages of the ventral pathway.

While object vision has been the primary focus of research in the ventral pathway,

fMRI studies relating to visual representation of places or environments (e.g. land-

scapes and interiors) have implicated dorsal pathway areas and the parahippocampal

cortex. The goal of the research presented here was to test for the first time us-

ing neural recording whether neurons in anterior IT cortex of the macaque ventral

pathway are in addition to objects also sensitive to environmental shape.

Neural responses were sampled using large-scale abstract visual stimuli that re-

sembled landscapes and interiors. Specifically, visual stimuli spanned the entire scale
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continuum from object-scale to environment-scale stimuli and an adaptive sampling

approach was used to efficiently sample the virtually infinite span of shape space.

The study revealed a surprisingly strong sensitivity to environment-scale shapes

in anterior IT. Additionally, there appeared to be an anatomical segregation in stim-

ulus preference netween two IT sub-regions. Area TEd neurons were found to be

predominantly selective for environment-scale stimuli whereas neurons in STSv were

almost exclusively selective for object-scale stimuli. Extensive tests confirmed that

neural selectivity for environment-scale stimuli is critically dependent on 3D shape.

Areas TEd and STSv have been recently described as forming separate processing

channels in the ventral pathway based on anatomical connectivity evidence. Our

study is the first to provide a functional distinction between these channels based on

object versus environment processing.

Primary Reader: Dr. Charles E. Connor

Secondary Reader: Dr. James Knierim
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Chapter 1

General introduction

1.1 Organization of primate ventral path-

way

For over thirty years, the ventral visual processing pathway of the primate brain

has been regarded as the neural substrate behind our capacity for rapid and robust

object perception (Mishkin et al., 1983; Ungerleider and Haxby, 1994). This is a

computationally difficult task given the variations of the retinal image possible for

a given object and the virtually infinite size of object space (Thorpe et al., 1996).

The original characterization of the monkey ventral pathway describes it as a serially

staged hierarchy starting from the striate cortex (V1) and terminating in the infer-

otemporal cortex (TE). Intermediate processing stages are V2, V4 and TEO. The
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gradually increasing complexity of neuronal response properties for visual stimuli, in-

creasing receptive field sizes and lengthening of response latencies have been used as

evidence for the presence of a hierarchical framework. In V1, neuronal responses can

be characterized based on tuning for local orientation and spatial frequency (Hubel

and Wiesel, 1962; De Valois and De Valois). Tuning for local orientation extends to

illusory contours (Von der Heydt et al., 1984) in V2 neurons which also respond to

more complex shape properties such as edge junctions (Hegdé and Van Essen, 2000).

In V4, there appears to be strong sensitivity to contour curvature (Pasupathy and

Connor, 1999), the first derivative of local contour orientation. As will be described

in the next section, IT neurons respond to further complex properties of stimulus

shape.

Based on a synthesis of neuroanatomical evidence, a recent analysis by Kravitz

et al. (2013) has re-characterized the ventral pathway as a highly recurrent occipi-

totemporal network consisting of multiple processing channels. Specifically, macaque

IT consists of three processing channels as shown in figure 1.1. The first channel

runs along the ventral bank of the superior temporal sulcus (STSv). The second

channel goes through area TEd in the dorsolateral half of the inferior temporal gyrus.

The third channel goes through area TEv in the ventromedial half of the inferior

temporal gyrus. These areas have distinct connections to output targets such as

prefrontal cortex, basal ganglia and medial temporal structures. These distinct con-

nectivity patterns point towards potentially major functional specializations within
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IT cortex, a region that has mostly been studied for its role in object vision. The

evidence presented here will highlight a major difference in function between 2 of

these anatomically distinct channels (STSv and TEd) in terms of preferential visual

processing for objects versus environments/places.

1.2 Macaque inferotemporal cortex: Ob-

ject vision

The inferotemporal cortex is a high-level visual area considered to be critical for

processing information about object form and identity. Bilateral removal of anterior

regions of IT cortex (area TE) produces severe impairment in object discrimination

tasks. In contrast, tasks involving evaluation of spatial relations between objects are

only affected by bilateral removal of the posterior parietal cortex located in the dorsal

visual processing stream(Mishkin et al., 1983; Mishkin, 1982; Pohl, 1973).

A lot has been learned about IT neural response properties since initial descrip-

tions of larger receptive fields and more complex preferred visual stimuli (e.g faces)

compared to edge-detectors of early visual cortex (Gross et al., 1972; Desimone et al.,

1984). There is now strong evidence that IT neurons are sensitive to object form or

shape (Tanaka, 1996; Kourtzi and Connor, 2011). Additionally, it has been reported

that IT response selectivity for object shape is organized in a columnar fashion (Fujita

et al., 1992).
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Despite the challenge of adequate sampling in the enormous space of objects recent

novel approaches have provided some insight into the nature of object representation

in IT. A single-cell study using an evolutionary sampling algorithm has demonstrated

tuning for explicit 3D object shape information in terms of curvature, relative position

and orientation of local object features (Yamane et al., 2008). Quantitative analy-

ses of shape tuning in IT has also demonstrated sensitivity to more abstract shape

descriptors such as the medial axis structure of objects (Hung et al., 2012). These

findings support structural theories of object shape (Marr and Nishihara, 1978; Bie-

derman, 1987) which are based on a three dimensional representation of structural

parts labeled, shape primitives, and their spatial relationships. Such coding schemes

provide a more compact and explicit representation of object shape compared to the

highly distributed and implicit representation in primary visual cortex.

Object representation in IT based on semantic or categorical information is an

alternative theory to coding schemes based on structural information. Our ability

to group objects using non-structural information such as animacy, behavior, utility

and other conceptual associations suggests the presence of categorical representations

(Kourtzi and Connor, 2011). It has been shown using multidimensional scaling anal-

ysis that the response pattern of a population of IT neurons differentiates between

animate and inanimate object categories, as well as within category subdivisions in-

volving faces, hands and bodies (Kiani et al., 2007). These categorical distinctions

based on differential response patterns have also been observed in humans based on
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imaging work (Kriegeskorte et al., 2008).

Object representation in IT also appears to be modular for certain object cate-

gories of evolutionary importance, such as faces. There appears to be a network of face

patches dedicated for the processing of faces (Tsao et al., 2008). In similar fashion,

there also exist regions that in IT that are particularly sensitive to color information

(Komatsu et al., 1992,?; Lafer-Sousa and Conway, 2013). Therefore, IT cortex ap-

pears to show a high degree of functional specialization that is further corroborated

by the results presented here.

1.3 Visual processing of places or environ-

ments

As the previous section highlighted, much of the research dedicated to the study

of macaque IT has focused on object vision. However, objects in the real-world exist

within places or environments, such as landscapes or interiors. Figure 1.2 shows two

example real-world places in which the environment structure (green) has been distin-

guished from the objects (red). Objects can be described as entities that are relatively

small in scale and are bounded within the visual field. In contrast, environments are

composed of unbounded surfaces that are large-scale and extend beyond our visual

field. This vast difference in scale and topology between object and environment

structure forms the primary focus of the investigation presented here.
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There have been many studies on place/environment visual processing based on

more global techniques such as fMRI. These studies were initiated by the discovery

of the human parahippocampal place area (PPA) (Epstein and Kanwisher, 1998), a

cortical region in the parahippocampal gyrus that exhibits larger BOLD signals when

subjects view images of environments versus objects. There is considerable debate

over the nature of PPA selectivity for environments, ranging from arguments for sen-

sitivity to the spatial layout of environments (Kravitz et al., 2011; Park et al., 2011),

context-dependent representation of objects (Bar, 2004; Bar et al., 2008) and selec-

tivity for high spatial frequencies present in images of environments (Rajimehr et al.,

2011). In addition to PPA, other environment-selective regions have been identified

in the retrosplenial complex and the transverse occipital sulcus, with parallel fMRI

studies in macaques identifying potential homologs (Nasr et al., 2011). Lesions in the

PPA lead to anterograde amnesia for scene layouts (Aguirre and D’Esposito, 1999).

In this condition patients have difficulty orienting themselves in novel environments.

This result combined with fMRI experiments that have pointed to a lack of a famil-

iarity effect (higher responses for images of familiar versus unfamiliar scenes) suggests

that activation in PPA does not reflect processes directly involved in recognition but

might reflect the encoding of current spatial information about scenes (Epstein et al.,

1999).

There has only been one neural recording study of environment processing in

macaques (Kornblith et al., 2013). In this study fMRI was used to identify an envi-
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ronment selective region (LPP: Lateral Place Patch) located in posterior regions of the

ventral pathway (just anterior to V4). Single-unit recording in this area showed about

50% of the neurons had significantly higher responses to photographs of scenes com-

pared to objects, textures and scrambled scene parts. Concurrent micro-stimulation

of area LPP with fMRI allowed for an identification of a second potential scene selec-

tive region (MPP: Medial Place Patch) in a quite medial location, area TFO. Targeted

neural recording in this area also confirmed selectivity for photographs of environ-

ments. It was also reported in this study that responses were modulated by texture,

which, as will be demonstrated here, serves as an important depth cue.

Although, most areas implicated in environment processing are located outside

of anterior regions of IT cortex (TE), a recent high resolution human fMRI study

(Stansbury et al., 2013) has demonstrated scene-related activity in more anterior

regions of the ventral pathway. The work presented here is the first neural recording

study that comprehensively looks at sensitivity to both objects and environments in

anterior inferotemporal cortex.
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1.4 Summary of chapters

In chapter 2, the methodology is described with particular emphasis on the design

of abstract visual stimuli resembling objects and environments. The stereoscopic dis-

play setup that was used to show very large-scale visual stimuli will also be described.

The particular implementation of an adaptive sampling algorithm used to probe neu-

ral responses will be explained with detailed information about the parameterization

of scale and shape morphing techniques.

In chapter 3, the main neural recording results from the adaptive sampling algo-

rithm in processing channels STSv and TEd will be presented. Specifically, analysis

of shape scale sensitivity will demonstrate a biased preference for object-scale versus

environment-scale visual stimuli between STSv and TEd. Analyses looking at tem-

poral response properties and response distribution selectivity based on a sparseness

measure are also presented. The consistency of the adaptive algorithm under different

initial conditions is analyzed by comparing lineage-specific response patterns.

In chapter 4, the results from a series of auxiliary tests for low-level image prop-

erties will be presented. These include potential sensitivity to 2D stimuli, texture

frequency, contrast patterns from different lighting conditions and peripheral visual

stimulation, regardless of shape scale. In addition, results are presented from a test

looking at the sensitivity of TEd neurons to shading, stereo and texture 3D depth

cues.

In chapter 5, the implication of the results with respect to current understanding
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of IT visual processing is discussed, with particular emphasis on its potential role

in representation of environments. Future experiments and analyses that will help

further clarify the nature of IT sensitivity to environmentsl visual information is

described at the end.
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Chapter 2

Methods

Recording and behavioral procedures are described in the following sections. The

method for generation of abstract shapes that resemble objects and environments are

explained in detail. This formed a critical part of the project. The display setup used

in this project will be described. The display system was created to be as immersive

as possible for conveying the difference in scale between object and environment struc-

ture. The particular implementation of an adaptive stimulus sampling algorithm and

the stimulus transformations used in the algorithm are also covered in this chapter.

2.1 Behavioral task

Single-unit recording was performed on two male rhesus monkeys (Macaca mu-

latta) while they performed a passive fixation task. They were trained to maintain
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fixation within 1o(radius) of a 0.1o diameter spot for trials lasting 4 seconds each in

order to obtain a juice reward. Eye position was tracked using a 1000 Hz infrared

eye-camera (EyeLink). The monkeys were seated at a distance of 55 cm from the

visual display screen. The head was immobilized with a titanium post mounted in an

acrylic cap attached to the skull with orthopedic screws. All animal procedures were

approved by the Johns Hopkins Animal Care and Use Committee and conformed to

US National Institutes of Heath and US Department of Agriculture guidelines.

2.2 Electrophysiological recording proce-

dures

The electrical activity of well-isolated single neurons was recorded with epoxy-

coated tungsten electrodes (Microprobe or FHC) that were guided into the brain

using a custom-built micro-drive assembly placed on a recording chamber over the

craniotomy. The custom electrode drive had two degrees of rotational freedom al-

lowing access to the entire extent of the inferotemporal cortex from a single circular

craniotomy of 1 cm diameter. The electrodes were inserted through a transdural guide

tube. Action potentials of individual neurons were amplified and electrically isolated

using a Tucker-Davis Technologies recording system. Individual neurons were isolated

online using a custom-built software implementing a level trigger and multiple-window

discriminator.
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Recording locations were targeted stereotaxically using structural magnetic reso-

nance images obtained prior to the start of experiments. For each desired recording

target identified in the MRI image the required angles and depth of electrode penetra-

tion were determined based on geometrical information about the recording chamber.

The determination of recording location was further refined based on sequences of

sulci and response characteristics observed while lowering the electrode. Inferotem-

poral neurons were sampled in the posterior-anterior range of +8 to +22 mm (with

respect to the inter-aural line) in the ventral bank of the superior temporal sulcus

(STSv) and area TEd.

2.3 Trial paradigm

During fixation visual stimuli were flashed on the screen for a presentation period

of 750 ms and with an inter-stimulus interval of 250 ms. 4 stimuli were displayed

per trial. The fixation target appeared at screen center, at one of 4 right/left image

disparities corresponding to fixation at 55 cm (screen depth), 100 cm, 10 m, or 100 m.

The stimulus was always tangent to the fixation point, at 0 disparity, so the monkey

was always fixating a point on the stimulus surface. The fixation depth for stimuli

within a trial was kept the same to avoid rapid changes in fixation point disparity.
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2.4 Visual stimulus display setup

A visual display system was set up with the aim of conveying as much as possible

the vast difference in scale between environment and object structure. Therefore, in

order to maximal realism the required display system needed to be capable of showing

very large-scale stimuli. To achieve this a stereoscopic projection system onto a large

screen was used as shown in figure 2.1. The screen subtended 77 degrees of visual angle

horizontally and 61 degrees vertically at a viewing distance of 55 cm from the monkey.

Stereo depth cue was conveyed using differential polarization of the left and right eye

stereo images (rendered in openGL) back-projected from two precisely aligned high-

resolution (1400 X 1050) color projectors. Alignment of projectors was performed

by superimposing two projected rectangular grids (one from each projector) using

electronic lens shift features. Linearly polarized filters with mutually perpendicular

axes of polarization were positioned in front of each projector lens. Matching filters

were positioned in front of the monkey’s eyes. The screen (Stewart - FilmScreen

150) was a rear-projection screen that maintained light polarization. Prior to each

experimental session, binocular fusion and stereoscopic depth perception were verified

with a random dot stereogram saccade target detection task. In addition to stereo,

visual stimuli were rendered with texture and shading depth cues which unlike stereo

are important for conveying depth structure at far distances.

15





ages were displayed in stereo using a passive polarization technique. High luminance
output projectors were used to offset brightness reduction due to filter and screen
media. Optic fiber cables positioned at the corners of the screen image were used to
detect precise onset and offset of visual stimuli. As indicated an infrared eye camera
was used to track eye position.
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2.5 Visual stimulus shape generation

Software was created capable of generating unique abstract shapes resembling

objects and environments. These abstract shapes served as visual stimuli to probe

neural responses. As shown previously for the domain of objects (Yamane et al., 2008;

Hung et al., 2012), abstract stimuli make it possible to primarily focus on shape/form

information because they lack the semantic confounds associated with natural image

stimuli. Here we tested abstract stimuli that ranged in scale from object-like shapes

subtending a few degrees of visual angle to environment-like shapes that extended

beyond the 77 degree boundary of the display screen, resembling landscapes and

interiors (figure 2.2). Shapes of intermediate scale that resembled very large objects

were also explored. In fact, as demonstrated in figure 2.3, the stimulus-generation

software was capable of sampling in a parameterized way the entire scale continuum

from object to environment-scale stimuli. The use of custom designed abstract shapes

allowed for the parameterization of scale which is the target of a quantitative analysis

presented in chapter 3.

Each stimulus was derived from a spherical B-spline surface represented as a polar

grid of control points. There are several advantages to using spline-based visual stim-

uli. OpenGL, which was used to render stimuli, has a very fast and stable algorithm

to evaluate B-spline vertices. Fast generation of stimuli was important since as will

be explained in section 2.6 an adaptive sampling algorithm was used that requires

online generation of stimuli based on neural feedback. Most importantly spline based
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stimuli make it relatively easy to define a large variety of shapes by simply applying

various transformations to the control points.

The control points of the starting sphere were arranged as a series of latitudinal

rings between the two poles of the sphere. Initially, the spherical spline surface was

set to a particular scale based on the angular subtense of its diameter which could

range from 4 degrees to 142 degrees, encompassing the object to environment scale

continuum. Note that since the boundary of the screen was limited to 77 degrees,

stimuli derived from spheres of very large diameters (beyond 77 degrees) only had their

visible surface displayed on the screen. The global orientation of the sphere was set by

randomly applying rotations about the cardinal axes. Next the sphere was randomly

modified in shape to produce each unique stimulus. These shape variations were

produced by applying specific changes to the position of the control points. Large-

scale shape variation was produced by randomly changing the positions, orientations,

sizes and aspect ratios of 2-5 latitudinal control point rings forming the spline sphere.

Smaller scale variations were based on defining points and paths along the surface

and applying random height perturbations creating structures resembling hills and

valleys in the case of large-scale stimuli. Surface smoothness was also parameterized.

This paramterization covered the range of curvilinear structures found in natural

landscapes to rectilinear structures of man-made environments (e.g interiors). Note

in the case of environment-like stimuli that resembled interiors the implicit position

of the template sphere was such that the viewer was located inside the sphere.
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2.6 Adaptive stimulus sampling algorithm

The main challenge to neural recording studies of complex visual form is that

the visual stimulus domain is virtually infinite. Even if the scope of visual stimuli is

constrained to shapes of limited complexity adequate sampling would require stimu-

lus set sizes far beyond the practical limits (greater than 1000 stimuli) of recording

experiments. Therefore, sampling methods based on a random selection of stimuli

could easily fail to detect the maximal response range of the neuron. This would

be especially problematic in this investigation which involves the comparison of neu-

ral responses to object and environment-like stimuli. Preference may be incorrectly

attributed to one of the two stimulus categories (object versus environment) if the

random stimuli of the truly preferred category fail to sample the high response range

of the neuron.

As an improvement over random sampling, adaptive search methods use neural

responses to guide sampling towards the high response region of the shape domain

for the particular neuron. Previously, this method has been successfully applied to

object shape coding (Yamane et al., 2008; Hung et al., 2012). Given a limited number

samples, adaptive methods provide a more focused sampling in the relevant response

region of the neuron compared to random methods. Therefore, adaptive sampling

was used here to allow for a more fair comparison between optimized objects and

optimized environment stimuli.
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2.6.1 Specific implementation of adaptive sampling

Initially responses are obtained to a set of randomly generated shapes. These are

called the first generation stimuli. Importantly, stimuli in the object, intermediate

and environment-scale range are equally sampled. Each stimulus is repeated 5 times

and the order of stimulus presentation is randomized. For the next generation, 20%

of the stimuli are random shapes and 80% are partially morphed versions of stimuli

(ancestors) from generation one. In section 2.7 the morphs will be described in

more detail. The selection of ancestor stimuli from generation 1 to produce morphed

descendants was probabilistic. High response stimuli had a greater probability of

producing morphed descendants. Specifically, ancestors were rank ordered based on

their response and divided into 5 percentile ranges. Thirty percent of ancestors were

from the top range (90-100% of maximum response), twenty percent each from the

three middle ranges (70-90, 50-70, 30-50%), and ten percent from the bottom range

(0-30%). It is important that descendants from low to medium response stimuli

are collected to prevent an early convergence of the algorithm to a local minimum.

Sampling from the lower response stimuli also helps with constraining of shape-tuning

models.

This procedure is repeated for multiple generations for as long as the neuronal

isolation can be maintained, typically 5-8 generations for a total of 400-640 stimuli.

Each generation consists of both random shapes and morphed descendants generated

from potential ancestors across all previous generations. Critically, for each cell two
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lineages of our adaptive algorithms are performed where each lineage begins with a

different set of random shapes and independently evolves across multiple generations.

Running these 2 lineages allows verification of convergence under different initial

random shapes. Each generation in this adaptation procedure comprises 40 stimuli

in each of the 2 lineages, for a total of 80 stimuli.

The particular values used for the proportion of random versus morphed stimuli

and the values specifying probability distributions for ancestor selection were chosen

based on previous experiments. The challenge is to find values that provide a balanced

trade-off between fuller exploration of the stimulus search space and refinement of

existing solutions.

As mentioned earlier, equal number of random stimuli were sampled from the

object-, intermediate- and environment-scale range. Object-scale stimuli were based

on spline spheres with diameters subtending 4 - 22 degrees. Intermediate-scale stim-

uli subtended 22 - 80 degrees and the environment-scale range subtended 80 - 142

degrees. In order to select stimulus scale within each scale-range, uniform sampling

was performed. An alternative method for random selection of stimulus scale would

have been to uniformly sample from the entire 4 - 142 degree range without first

subdividing intro specific intervals. In the latter approach it was observed that only a

small proportion of stimuli visually appeared object-like relative to large-scale stimuli.

Therefore, in order to avoid this under-sampling of object-like stimuli, the scale-range

was divided into specific intervals (unequal: Objects [4 - 22 degrees] and environ-
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ments [80 - 142 degrees] ) and then equal numbers of stimuli were generated from

each of them using uniform sampling. The choice of 80 degrees as the transition from

intermediate- to environment-scale stimuli was based on the fact that at that scale

stimuli began to extend well beyond the boundaries of the display screen, resembling

unbounded landscapes. As will be shown in the results (3.6), responses of neurons in

the TEd channel of IT greatly increased near this scale transition. The choice of 22

degrees for the transition from object- to intermediate-scale stimuli was based on the

upper limit of stimulus sizes used in previous studies looking at object vision.

2.7 Morphing transformations

Descendant stimuli in the adaptive algorithm were created by morphing the shape,

position, orientation, and/or scale of the ancestor. Each descendant was produced

based on the application of 1-3 morphing operations (here referred to as morphs)

to the ancestor. The number and magnitude of the morphs were probabilistic func-

tions of response rate, to produce more alteration of low response ancestors and less

alteration of high response ancestors.

Figure 2.4 demonstrates some of the morphs applied to an example environment-

scale ancestor shape. The following enumerates the morphs and their probability of

application:

• Scaling: 35%
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• Rotation: 10% (equal probability for x-, y-, and z-axis rotation)

• Latitudinal ring modification:

– Displacement: 5%

– Change in elliptical aspect ratio: 5%

– Change in curvature: 5%

• Surface feature modification:

– Changes to height function of surface distortion: 5%

– Changes to path shape of a surface distortion: 5%

– Changes to position of a surface distortion: 2.5%

– Removal of a surface distortion: 2.5%

• Translation: 10%

• Other morphs:

– depth change: 5% (Closer fixation depths were prohibited when they would

cause the stimulus surface to intersect the surface of the projection plane)

– Longitudinal scaling of the spline grid: 5%

– Global longitudinal curvature: 5%
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The probabilities of specific morphing transformations were heavily weighted to-

ward scaling in order to ensure greater sampling across the object to environment

scale continuum.

2.7.1 Probabilistic selection of morphing operation

magnitude

As mentioned in the previous section, the chosen magnitude of a given morph to

be applied to a selected ancestor was a probabilistic function of the response rate

evoked by that ancestor stimulus. The goal was to bias probabilities to generate

smaller sized morphs for already high response stimuli and larger morphs for low

response stimuli. This was implemented by defining a separate morph-size probability

distribution for each of the 5 response percentile groups (described in section 2.6.1).

Therefore, depending on the percentile group of the ancestor, one of 5 probability

distributions was randomly sampled using an inverse transform method to generate

a value for the size of a morph to be applied to the ancestor.

The probability densities for groups 3, 1 and 5 are shown in figure 2.5. Note that

these probability densities were defined on a bounded range of morph size values nor-

malized to a range of -1 to 1. The sign indicates directionality (e.g whether the change

is a decrease or increase) and the densities are symmetrical about zero. As shown in

figure 2.5(a), for ancestors that fell in group 3 (medium response range), the morph-
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size probability distribution was uniform and therefore all size ranges were equally

probable. For group 1 (lowest response group) stimuli the morph-size probability

distribution was defined such that the largest change had a density value that was

5 times larger than the smallest change. This probability density is shown in figure

2.5(b). Opposite to group1, group 5 (high response stimuli) ancestors were morphed

based on a probability distribution that favored smaller changes (figure 2.5(c)). Dis-

tributions for group 2 and 4 ancestor stimuli were also biased (to a lesser extent than

group 1 and 5) to favor smaller and larger morph changes respectively.
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Chapter 3

Shape scale tuning in IT cortex

The adaptive sampling algorithm was applied to 141 single-units (76 from TEd

and 65 from STSv) across 2 monkeys (M1 = 108 units, M2 = 46 units). For each neu-

ron two lineages of the algorithm progressed simultaneously to test for convergence.

Example neuron data from TEd and STSv will be presented along with analyses that

are subsequently applied to the population data. The main focus of the analysis in

this chapter is on stimulus scale sensitivity. In particular results will be presented

that indicate biases in scale tuning between the STSv and TEd processing channels.

Results were combined across the 2 monkeys since the observed biases in scale-tuning

preference were consistent between them.
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3.1 TEd example neuron

Figures 3.1(a,c) show the top five stimuli that evoked the highest responses in

each lineage for an example neuron in TEd. For this neuron 10 generations of the

adaptive sampling algorithm was performed providing responses to 800 visual stimuli

(400 per lineage). The figure shows that for both lineages, high response stimuli

consist of environment-scale shapes. Figures 3.1(b,d) show scale-tuning plots for each

lineage. The plots were created by binning the scale range into 15 bins and calculating

the average response to stimuli falling into each bin. In both cases responses to

environment-scale (80 deg - 142 deg) shapes were near 50 Hz and fell to near baseline

activity as scale decreased to object-scale levels (4 deg - 22 deg). The scale-tuning

plots were strongly correlated (r = 0.83, p < 0.0002) indicating a convergence of

the adaptive algorithm to shapes of similar scale under different initial conditions. In

order to statistically test for scale preference, a Wilcoxon rank-sum test was performed

between the top 10 environment-scale and top 10 object-scale stimuli. The results

confirmed the strong bias for environment-scale stimuli over object-scale stimuli (p <

0.0001).

3.2 STSv example neuron

The results for an example neuron in STSv are shown in figure 3.2. Six generations

of the adaptive algorithm involving 480 stimuli were performed. Here, in contrast to
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the TEd example, high response stimuli are object-scale shapes (<22 degrees). This

is consistent with previous studies of object coding in STSv. Scale-tuning plots for

each lineage show that responses are high in the object-scale range and decrease to

baseline levels for environment-scale stimuli. The scale-tuning pattern between the

lineages was highly correlated (r = 0.96, p < 0.0001) confirming a consistent evolution

of the algorithm under different initial conditions. The bias towards object-scale over

environment-scale stimuli was highly significant (p < 0.0001, rank-sum test).

3.3 Differential selectivity for shape scale

between STSv and TEd

Analysis of results at the population level confirmed differential responses to

object-scale and environment-scale stimuli between STSv and TEd. Figure 3.3 de-

picts scale-tuning for each neuron in the population. The vertical axis indicates shape

scale, increasing in magnitude from bottom to top as demonstrated by the example

stimuli on the side. Scale-tuning for each neuron is displayed as a vertical colored

strip where positions along this strip, that is along the scale axis, are assigned a color

and brightness. The color is a redundant cue for scale, from red to green, indicat-

ing progression from object-scale to environment-scale stimuli. The brightness of the

color indicates the average normalized response strength of the neuron to stimuli at

that particular scale, where brighter colors indicate higher response strengths. There-
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fore bright green indicates high average responses to environment-scale stimuli and

bright red indicates high average responses to object-scale stimuli. The ordering of

these colored strips along the horizontal axis is based on the location of the recorded

neuron as shown by the coronal MRI images. Strips to the left of the white vertical

gap identify neurons recorded in STSv, arranged in a medial to lateral direction from

left to right. Strips to the right of the white line belong to neurons recorded in TEd,

arranged in a lateral to medial direction from left to right. This figure shows a clear

segregation in shape-scale preference between STSv and TEd consistent with the ex-

ample cell results. High response object-scale stimuli predominate in STSv whereas

high responses to environment-scale stimuli are more prevalent in TEd.

3.3.1 Shape scale bias: statistical significance

In order to confirm the statistical significance of this trend, figure 3.4(b) shows the

results of rank-sum tests for all the neurons in the population. As explained for the

example neurons, rank-sum tests were performed between the top 10 environment-

scale and top 10 object-scale stimuli for every neuron. The value of this test statistic

is being plotted against the y-axis. The circular data-points identify each neuron in

the population and the arrangement along the x-axis exactly matches the anatomical

ordering in the scale-tuning plot (3.4(a)) replicated here from the previous figure

3.3 for clarity. The horizontal dotted lines in the plot 3.4(b) indicate the lower and

upper critical values of this test at a significance value of 0.05 (two-tailed). Green
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upper critical value (132) indicate significant preference for environment-scale shapes.
Points falling in this range have been filled green to match the color scheme in panel
A. Rank-sum values below the lower critical-value (78) indicate significant preference
for object-scale shapes and points in this region have been filled red. Data points
falling between the two threshold show no statistically significant preference for either
category (points are unfilled).
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data points identify neurons with significant preference for environment-scale stimuli

(above the upper critical value), red data points identify neurons with significant

preference for object-scale stimuli (below the lower critical value) and unfilled data

points are neurons that did not a show statistically significant preference for either

scale (intermediate rank-sum values). The majority of STSv neurons (49/65; 75%)

were significantly more responsive to object stimuli. Only 8 STSv neurons were

significantly more responsive to environmental stimuli. In contrast, most TEd neurons

(50/76; 66%) were significantly more responsive to environmental stimuli and only

16 TEd neurons were significantly more responsive to object stimuli. A chi-squared

test of independence between recording channel (STSv or TEd) and scale-tuning

preference (object, environment or non-significant) was performed. The result ( chi-

squared (2, N = 141) = 46.8, p < 0.0001 ) rejects the null hypothesis that recording

location and stimulus scale preference are independent.

3.3.2 Shape scale bias: algorithm convergence

It is critical to test whether the adaptive sampling algorithm will under different

initial conditions produce consistent scale-tuning patterns. As explained earlier, 2

lineages of the adaptive algorithm that were initialized with completely different ran-

dom shapes were used and evolved independently. Correlation analysis was performed

between the lineage specific scale-tuning functions of every neuron. The distribution

of these Pearson correlation values is shown in figure 3.5 for the STSv and TEd
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populations separately. As shown the correlation values were strongly positive and

significant (filled bars) for both populations. This shows that the observed biases

in shape-scale preference are reproducible under different initial conditions in the

sampling algorithm.

3.3.3 Shape scale bias: non-linear tuning

The scale-tuning functions of the example neurons shown in figures 3.1 and 3.2

appears to be mostly linear. This, in fact, was atypical as most neurons had fairly

steep sigmoidal responses as a function of scale. Figure 3.6 shows the average popu-

lation response function for STSv and TEd neurons. The response function for TEd

is almost step-like with an inflection point at about 80 degrees. This is roughly the

scale at which stimuli began to exceed the boundaries of the display system (77 de-

grees), forming unbounded environment-like shapes. On the other hand, the average

response function of STSv neurons reached its minimum at this scale. These results

show that scale-tuning functions were on average strongly non-linear and therefore at

the population level can provide categorical (object versus environment) information

about the observed stimulus.
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significant posterior-anterior (TEd: r = -0.12, p = 0.31; STSv: r = -0.04, p = 0.75)

or medio-lateral trends (TEd: r = -0.075, p = 0.52; STSv: r = -0.10, p =0.43) in

scale-tuning in either STS or TEd. This figure also highlights the fact that recording

mostly spared the lip of the superior temporal sulcus where the anterior-lateral (AL)

face patch has been discovered (Freiwald and Tsao, 2010). In figure 3.7 the lip of the

sulcus is approximately delineated by the area between the solid and dashed black

lines in each plot. The AL face patch is located at around +12mm and, as shown, at

most two neurons were sampled from this region. Both of these neurons were selective

for object-scale stimuli, which is consistent with the description of this region as a

face patch. Therefore, recording regions in STSv and TEd did not overlap the AL

face patch for most neurons.
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3.5 Response selectivity based on sparse-

ness analysis

Most neurons in both STSv and TEd had highly selective visual responses. Strong

responses were evoked for only a small percentage of the total number of random

stimuli tested indicating fairly high sparseness. Figures 3.8(a,b) show the response

distribution across random stimuli for the example neurons of TEd and and STSv, re-

spectively. As shown, for both neurons most random stimuli had responses in the low

range and there were only a few stimuli that evoked particularly strong responses. In

order to quantify sparseness, the following standard measure of response distribution

density (RD) was used (Rolls and Tovee (1995); Vinje and Gallant (2000)):

RD =

(
1
n

∑n
i=1 Ri

)2
1
n

∑n
i=1R

2
i

sparseness =
1 −RD

1 − 1
n

Ri is the base-line subtracted response of the neuron under consideration to its

i’th stimulus (resulting negative responses are clipped to zero). The value of RD can

achieve a minimum of 1
n

and a maximum of 1 where n is the total number of visual

stimuli used to probe the neuron. Sparseness is defined as 1 −RD and is normalized

by 1 − 1
n

to force a maximum value of 1 (when RD is at its minimum). A sparseness

value of 1 indicates a ’grandmother’ cell, which has a non-zero response to only one of
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the stimuli tested. A sparseness value of 0 indicates a perfectly uniform response to

all stimuli. The computed sparseness values for the response distribution of the TEd

and STSv examples are 0.56 and 0.55, respectively. The distribution of sparseness

values for neurons in the 2 regions is shown in figures 3.8(c,d). Average sparseness

for TEd (0.63) and STSv (0.69) were not significantly different (t-test, p = 0.12).

3.6 Temporal response profiles

In the preceding analyses the response rates used for stimuli were calculated aver-

ages over a 750 ms presentation period. For a group of TEd neurons, figure 3.9 shows

PSTHs computed for the top stimulus (5 repetitions) of each of the neurons. As

shown the preferred stimuli are environment-scale and evoke high phasic responses.

The time-course of responses was used to compute the time at which selectivity for

objects and environments emerged.

Figure 3.10(a) shows the population averaged temporal response profiles for the

STSv and TEd populations. Note, for the STSv population, only cells that were

selective for object-scale stimuli (based on rank-sum test) were used in the compu-

tation of the response profiles. Analogously, for TEd, only cells that were selective

for environment-scale stimuli were used. For each population (STSv or TEd), a sepa-

rate response profile was computed for object-scale (red trace) and environment-scale

(green trace) stimuli. For example, to compute the ’object’ temporal response pro-
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file for STSv, for each neuron in the STSv population, a response density was first

computed for every object-scale stimulus (based on 5 repetitions and a Gaussian

smoothing of 5 ms standard deviation). Next, these computed response densities

were averaged to produce a temporal response profile of one neuron for its object-

scale stimuli. These response profiles were then averaged across neurons in the STSv

population to produce the red trace shown in figure 3.10(a) for STSv.

Figure 3.10(b) shows the distribution of scale-tuning onsets for the STSv and

TEd populations. Scale-tuning onset of a given neuron refers to the time at which its

stimulus-scale preference for either objects or environment stimuli became differenti-

ated. This was computed by finding the first time bin (1 ms) at which the response

profiles for the object and environment stimuli became significant different from one

another (t-test , p < 0.05) and remained significantly different for all subsequent time

bins in the stimulus presentation period. The distribution of these scale-tuning on-

sets for both STSv and TEd is fairly broad. However, the average scale-tuning onset

in STSv of 113.6 +/- 6.4 ms is significantly smaller than the average scale-tuning

onset in TEd of 132.5 +/- 6.2 ms (t(97) = -2.13, p < 0.05). The slower emergence of

environment-scale selectivity could reflect the large visual region over which environ-

mental stimuli must be integrated or the lower acuity of peripheral visual processing

needed in environment shape perception. There were no significant trends in scale-

tuning onset in either the anterior-posterior direction (STSv object-selective neurons:

r = -0.085, p = 0.57; TEd environment-selective neurons: r = -0.020, p = 0.89) or
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the medio-lateral direction (STSv object-selective neurons: r = 0.11, p = 0.46; TEd

environment-selective neurons: r = -0.078, p = 0.59).

3.7 Chapter conclusion

The analysis presented in this chapter shows that there exist differential responses

to shapes of different scales between STSv and TEd. Consistent with previous re-

sults STSv neurons were found to be selective for stimuli in the object-scale range

(4 - 22 deg). The novel finding presented here is that effective stimuli for a large

proportion of TEd neurons were large-scale shapes (80 - 142). Neurons were found

to be highly selective as demonstrated by sparseness of their response distributions.

Scale-tuning functions were found to be non-linear and in the case of TEd the aver-

age scale tuning function was sigmoidal with high steepness at the transition point

between large bounded objects (visible borders) and large unbounded environment-

like stimuli. This study provides the first quantitative analysis of 3D shape scale

sensitivity encompassing the large domain of objects and environments as well as

intermediate-scale shapes.
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Chapter 4

TEd selectivity for shape-in-depth

In this chapter, results from a series of auxiliary tests will be presented. These were

controls designed to test whether various low-level stimulus factors such as spatial fre-

quency of texture pattern, peripheral receptive field stimulation or lighting direction

can account for the observed (see chapter 3) selective responses to environment-scale

shapes in TEd. The tests were performed at the end of the main adaptive sampling

experiment whenever recording time permitted. The stimuli used in these control

tests were the optimal environment-scale shapes found from the adaptive sampling

algorithm.
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4.1 2D versus 3D

As explained in chapter 2, stimuli in the main test were rendered in 3D using

stereo, texture and shading cues. Potentially, neurons in TEd may not be sensitive

to shape-in-depth information and would be equally selective for large 2D shapes or

large 2D texture patterns. This result would argue against the interpretation that

TEd neurons are selective for environments. The large-scale stimuli shown in figure 2.2

resemble landscapes and interiors because they contain shape-in-depth information

associated with these natural environments. In the case of STSv, results from a

previous study (Yamane et al., 2008) have already shown that neurons selective for

object-like shapes are very sensitive to 3D shape information. The study showed that

selective responses for optimal object-scale stimuli were largely abolished when a 2D

silhouette version of the original stimulus is displayed. A similar test was performed

in this study, to see whether TEd neurons that show selectivity for environment-scale

stimuli actually care about shape-in-depth information. Responses were obtained

to 2D equivalent versions of the preferred environment-scale stimuli that lacked 3D

depth cues.

Figure 4.1(a) shows the preferred environment-scale stimulus (labeled 3D) of an

example TEd neuron, and next to it are five associated 2D conditions for which re-

sponses were obtained. These are a simple 2D silhouette of the original stimulus

without texture, 2D versions where the texture pattern was flattened onto the pro-

jection plane at 2 different spatial frequencies, and 2D versions where the orientation
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of the texture lines were randomized, again at 2 different spatial frequencies. Note

that stereo and shading were removed for all these five 2D conditions. In this test, in

addition to 2D versions of the preferred environment-scale stimulus, responses to 2D

versions of a non-preferred environment-scale stimulus were also obtained. This non-

preferred stimulus was chosen from the low-response range of the neuron’s response

distribution.

The goal was to quantify the degree to which stimulus selectivity for the preferred

shape is affected by removal of 3D cues. To quantify stimulus selectivity, the follow-

ing measure of response modulation strength (ModS) was computed for 3D and 2D

conditions:

ModS =
RprefStim −RnonPrefStim

Rmax

In the 3D case modulation strength was computed as the response difference be-

tween the preferred and non-preferred environment-scale stimuli shown in 3D divided

by the maximum responses of the neuron. In the 2D case, since there are 5 different

2D versions (silhouette, 2 fronto-parallel texture, 2 randomized texture), a separate

modulation strength was computed for each of the 5 conditions. In each case the mod-

ulation strength was the response difference between the preferred and non-preferred

environment-scale stimuli shown in the particular 2D condition under consideration

divided by the maximum response of the neuron. The largest value out of the 5 mea-

sures was selected to represent 2D modulation strength in order to report the largest
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amount of selectivity that can be explained under 2D conditions.

The plot in figure 4.1(b) compares 2D (y-axis) and 3D (x-axis) modulation strengths

for 27 TEd neurons that according to the rank-sum (3.4) test were selective for

environment-scale stimuli. The data-point in cyan identifies the example neuron that

was tested with stimuli shown in figure 4.1(a). As shown, 3D modulation strengths

are mostly clustered around the maximum value of 1 indicating high selectivity. The

average 3D modulation strength was 0.86. Critically, the corresponding 2D modula-

tion strength (average = -0.041) falls to near zero and in some cases becomes slightly

negative indicating a reversal of the stimulus preference (paired t-test, p < 0.0001).

This results shows that when 3D cues conveying shape-in-depth information are

removed, differential responses to environment scale stimuli are largely abolished.

Therefore, the presence of large 2D shapes or textures do not account for the observed

selectivity for environment-scale shapes. In addition, the results argue against a

possible explanation of the results based on stimulation of peripheral parts of the

visual field since the 2D shapes were just as large. Even though a large receptive field

is necessary for sensitivity to large-scale shapes, these results indicate that peripheral

stimulation in this large receptive field using 2D shapes is not sufficient to explain

high responses to environmental stimuli. This point was further tested in section 4.2.
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for environmental stimuli, one high-response and one low-response environmental
stimulus were selected from the adaptation experiment. Modulation strength is the
response difference divided by the maximum. 3D modulation strength (x-axis) is
based on the original stimuli with all depth cues. 2D modulation strength (y-axis)
was based on one of the 5 different 2D conditions, whichever produced the highest
modulation value. The cyan data point identifies the neuron with stimuli shown in
panel A.
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Figure 4.2 shows the modulation results for a group of neurons in STSv. In this

case modulations were computed as a response difference between a preferred and

non-preferred object-scale stimulus divided by the maximum response of the cell. As

in figure 4.1(b) for TEd, removal of 3D cues largely abolishes differential responses

indicated by the near zero values for 2D modulation strength (average 2D modulation

= 0.095). The average 3D modulation strength was 0.87 (paired t-test, p < 0.0001).

These results confirm previous findings (Yamane et al., 2008; Janssen et al., 2000)

that STSv is sensitive to 3D shape-in-depth information and also shows comparable

sensitivity to shape-in-depth observed for TEd neurons.

4.2 Peripheral receptive field test

Since environment-like stimuli were large-scale, covering more than 70 degrees

of visual angle, they provided visual stimulation of the peripheral field which was

absent for object-scale stimuli presented centrally. It may be the case that neurons

in TEd have more peripheral receptive fields compared to STSv and therefore object-

scale stimuli presented in the periphery might be just as effective in eliciting high

responses compared to environment-scale stimuli. This possibility was tested in a

control where optimized object-scale stimuli from the adaptive sampling algorithm

were displayed at various peripheral locations. Specifically, responses were obtained

at 9 positions on a 3 by 3 square grid centered at the central fixation point with 30
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degree spacing in the horizontal and vertical direction. Figure 4.3 shows the results

for 8 neurons in TEd by comparing responses to the preferred environment-scale

stimulus and the highest response elicited by one of the peripheral object conditions.

As shown, responses to the environment-scale stimulus are significantly larger than

responses to the peripheral object stimulus for all neurons. Therefore, peripheral

stimulation alone using optimized object stimuli does not fully account for the high

responses to environment-scale shapes.

4.3 Comparison of 3D depth cues: tex-

ture, shading and stereo

Section 4.1 established that 3D cues are critical for TEd responses. The relative

importance of the specific cues consisting of shading, stereo and texture was the focus

of this auxiliary test. A full factorial test where each cue was a factor was performed

on the preferred environment-scale stimulus of 22 TEd neurons. The level of each

factor was binary indicating the presence or absence of that particular depth cue

in the rendered stimulus. Figure 4.4 shows multiple scatter plots where each plot

compares the responses to the environment-scale stimulus with all depth cues present

(plotted against x-axis) versus one of the conditions of the factorial test (plotted

against y-axis) consisting of no depth cues, individual depth cues and combinations

of depth cues. To analyze these results a full model 3-way repeated measures ANOVA
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was performed. The results show a strong significant main effect for texture (F(1,21)

= 16.8; p < 0.002), a significant main effect for shading (F(1,21) = 10.4; p < 0.005)

and no significant main effect for stereo (F(1,21) = 1,8; p = 0.194). Interaction terms

consisting of combinations of depth cues did not show a significant effect. The finding

that stereoscopic depth cues do not contribute to responses for environment-scale

stimuli is consistent with that fact binocular disparity differences become negligible

at far depths present in environments.

4.4 Texture spatial frequency test

A potential low-level stimulus property that might account for selectivity of TEd

neurons for environment-scale stimuli might be tuning for a specific spatial frequency

range contained in the texture pattern. A previous study (Rajimehr et al., 2011)

argued that selectivity for natural images of scenes can be explained away based

on sensitivity for high-spatial frequencies. In order to evaluate sensitivity to spatial

frequency content, responses of 17 TEd neurons were obtained to their preferred

environment-scale stimulus with texture patterns that were either halved or doubled

in density. Figure 4.5 compares responses to the original environment-scale stimulus

(plotted against y-axis) with versions containing texture patterns with halved or

doubled densities (plotted against x-axis). The data points shown in cyan identify

the neurons with the stimuli shown near the plot axes. As the scatter plots show
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the majority of points are located nearer the diagonal indicating that changes in

the texture spatial frequency do not affect responses. A one-way repeated measures

ANOVA confirmed that there is no statistically significant effect of texture density

(F(2,32) = 0.16; p = 0.85).

4.5 Effect of lighting direction

In the main test stimuli were rendered using a frontal lighting direction. Neurons

in TEd might be sensitive to the specific contrast pattern in environment-scale stimuli

produced by this particular lighting direction. A previous study (Yamane et al.,

2008) demonstrated that IT neurons selective for object-scale stimuli are invariant

to changes in lighting direction. The effect of lighting direction on responses to

environment-scale stimuli was investigated in this control test for 22 TEd neurons.

Four additional lighting directions consisting of top, bottom, left and right were tested

on the preferred environment-scale stimulus of each neuron. The scatter plots in figure

4.6 show the results as comparisons between responses to the original frontal lighting

direction (plotted against y-axis) and the other 4 lighting directions (plotted against

x-axis). The responses appear invariant to changes in lighting direction, as confirmed

statistically by a one-way repeated measures ANOVA that did not show a main effect

for lighting (F(4,84) = 0.64, p = 0.64). As before the data points in cyan identify the

neuron with the stimuli shown next to the axes.
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4.6 Scale tuning test for single shapes

As described in section 2.7 scaling morphs were applied at a high probability in

the adaptive algorithm and therefore stimuli of various shapes were extensively tested

across the scale range as the algorithm evolved. However, it is conceivable that there

may have been high response shapes that by chance only evolved within a limited scale

range. For example, a high response object-scale shape that is selected to produce

morphed descendants may by chance never receive a scaling morph large enough to

produce descendants in the environment-scale range. These hypothetical descendants

may actually evoke high responses comparable to the object-scale ancestor given that

IT responses are known to show some size-invariance (Ito et al., 1995). Therefore, in

this example the results may be biased in showing object-scale selectivity due to a

lack of broader sampling in the scale range for the preferred shape.

In order to identify whether such biases occur 2 separate runs of the adaptive algo-

rithm are performed and, as shown in figure 3.5, for the majority of cases (131/141)

there were strong significant correlations between the lineage-specific scale tuning

functions. The consistency in scale-tuning patterns between 2 different runs of the

algorithm makes it less likely that the observed shape scale preference are the result

of a high response stimulus that by chance only evolved within a limited scale range.

As an additional test to address this concern, for some neurons in both STSv

and TEd responses to their most effective stimulus from the main test were obtained

across a large portion of the scale range. Figure 4.7 shows the responses of an example
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TEd neuron to a single preferred environment-scale shape at 6 different scales. The

original stimulus from the main adaptive algorithm is the large-scale stimulus at the

far-right. Responses are much stronger at large scales in the environment-scale range.

For this neuron the rank-sum test described in section 3.3.1 had shown selectivity for

environment scale stimuli consistent with the responses observed here.

Figure 4.8 shows results of this test for other neurons in TEd. In each plot the

black line indicates responses to the optimal environment stimulus shape chosen from

the main test shown at different scales. For each neuron, as scale decreases to the

object-scale range responses to this optimal shape also decreases to near baseline level

showing consistent scale-tuning compared to the results of the main test. For some

of these neurons, responses to their most effective object stimulus shape (sub-optimal

compared to the best environment) was also tested at different scales (shown in blue).

In this case responses remained low even at larger-scales indicating that these neurons

are selective for shape as well as scale.

Figure 4.9 shows the results of similar tests for some neurons in STSv. For these

neurons, the responses (shown in black) to their optimal object-scale stimulus shape

decreases as scale increased to environment-scale range. Some neurons were also

tested with their most effective environment stimulus shapes (sub-optimal compared

to the best object). In this case (shown in blue) responses remain low even at scales

in the object-scale range indicating that there is selectivity for shape as well as scale.
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4.7 Chapter conclusion

The analysis in this chapter confirms that the strong selectivity for environment-

scale shapes reported in TEd (see chapter 3) cannot be explained based on associ-

ated low-level stimulus properties. Firstly, TEd responses are critically dependent

on shape-in-depth information conveyed by 3D depth cues. An interesting finding

reported in this chapter is that non-stereoscopic cues, especially texture, serve as

the important cues for shape-in-depth information contained in environment-scale

shapes. Auxiliary tests presented here show that responses are invariant to changes

in lighting direction and spatial frequency. Finally, additional tests for scale sensitiv-

ity applied to a single shapes showed consistent biases in tuning between STSv and

TEd compared to the results of the main test presented in chapter 3.
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Chapter 5

Discussion

5.1 Selectivity for environmental visual stim-

uli in anterior IT

The presence of such strong sensitivity for 3D environment-like visual stimuli in

anterior IT (TE) is very surprising. For a long time this region has been exclusively

regarded as a high-level visual area for object perception (Desimone et al., 1984;

Mishkin et al., 1983; Tanaka, 1996). Consistent with these previous studies 21% of

the 76 neurons recorded from TEd were selective for object stimuli. However, a much

larger proportion (66%) of neurons were found to be selective for environments. Pre-

vious studies in the macaque have reported environment selectivity in more posterior

regions of the ventral pathway, located near TEO (Rajimehr et al., 2011) and anterior
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V4 (Kornblith et al., 2013). The results presented here indicate that processing for

environments extends anteriorly all the way to TE. These areas may potentially form

a processing network analogous to the multiple face processing modules that also have

posterior and anterior components (Tsao et al., 2003).

In previous macaque fMRI studies that have tried to find scene selective regions,

anterior IT (e.g TEd) has not been reported to show significant selective activity based

on standard scene localizers.(Kornblith et al., 2013; Rajimehr et al., 2011). These

studies have identified discrete selectivity in posterior IT and ventral V4. There is

however some evidence from one fMRI study in macaques (Nasr et al., 2011) showing

a broader swath of activity that extends from TEO into anterior IT. An imaging

study in humans (Stansbury et al., 2013) based on high-resolution fMRI has also

shown the presence of some environment-related activation in more anterior regions

of the ventral pathway. It may be the case that low signal-to-noise issues due to

interference from the ear canal contributed to the detection failure in some of these

previous studies. The study by (Kornblith et al., 2013) provides a precedent in which

neural recording in the medial place patch revealed selectivity for scenes even in the

absence of activations based on standard fMRI place localizers. Another possibil-

ity for the lack of reported activity in previous studies might be due to a difference

in the visual stimulus type. Unlike the present study which uses abstract stimuli

defined purely by their structural information, these previous fMRI studies use pho-

tographic images of natural scenes that contain strong semantic-level information.
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Since semantic/categorical representations in the brain can be independent of struc-

tural measures including scale (Konkle and Oliva, 2012), scene localizers based on

natural images might have a greater tendency to identify areas with stronger sensi-

tivity to semantic-level representation of environments.

5.2 TEd selectivity for 3D environmental

shape relies on non-stereo cues

An important finding based on the results of chapter 4 was that TEd neurons are

especially sensitive to shape-in-depth information provided by texture cues. A previ-

ous recording study (Janssen et al., 2000) in TEd based on a limited set of object-scale

shapes defined stereoscopically reported that neurons in this region, unlike STSv, are

not sensitive to stereo depth cues. The authors concluded that TEd is selective for

2D shapes. The results presented here encompass these findings by showing that

stereo depth cues have little effect on TEd responses; however the neurons display

strong selectivity for 3D environment-scale stimuli defined by shading and texture

depth cues. This result is highly consistent with the fact that binocular disparity

changes become negligible at far depths found in environments, providing little infor-

mation about shape-in-depth. Auxiliary tests confirmed that differential responses

of TEd neurons are largely abolished when 3D cues are removed, similar to cells in

STSv. Therefore, TEd neurons are in fact very strongly sensitive to 3D shape that
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is defined by non-stereoscopic cues, especially texture. These results are consistent

with texture-based modulation of responses to natural scene images observed in a

posterior environment-selective regions (Kornblith et al., 2013).

A potential low-level explanation of the texture cue effect based on high spatial

frequency (Rajimehr et al., 2011) is dispelled in control tests that show little effect on

responses due to changes in the texture density. Likewise, the contribution of shading

cues cannot be explained by sensitivity to particular contrast patterns since changes

in lighting direction had no significant effect on environment selective responses.

5.3 Anatomically distinct processing for

objects and environments

Importantly, the results here indicate there is a segregation of object and envi-

ronment processing along STSv and TEd, respectively. Based on neuroanatomical

evidence STSv and TEd have been characterized as parts of separate processing chan-

nels in the inferotemporal cortex (Kravitz et al., 2013). STSv provides most of the

IT input to ventrolateral prefrontal areas involved in object working memory (Saleem

et al., 2008). STSv, unlike TEd, provides inputs to the orbitofrontal cortex which is

implicated in processing object value (Webster et al., 1994). These distinct output

targets are consistent with the observed stronger selectivity for object stimuli in STSv

compared to TEd.
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The segregated processing of object and environment information is another ex-

ample of modularity in the ventral pathway. Previous studies relating to face (Moeller

et al., 2008) and color (Lafer-Sousa and Conway, 2013) processing have revealed dis-

crete processing centers for each attribute along the inferior temporal lobe. The

neuron sampling presented in this study overlaps in the posterior-anterior range with

the AL face patch. However, the majority of recordings were outside of this face

patch, which is located at the lip of the superior temporal sulcus. Therefore, the

results expand on the existing modularity previously described in IT.

The anatomically distinct selectivity for object- and environment-scale visual stim-

uli in anterior IT might originate from retinotopic biases propagated from earlier

visual areas (Kravitz et al., 2013). In both humans (Levy et al., 2001) and mon-

keys (Lafer-Sousa and Conway, 2013), there is evidence for eccentricity biases that

are in close association with face (overlap with central field bias) and place (overlap

with peripheral field bias) selective regions. Therefore, the relatively ventral location

of environment-selective TEd compared to object-selective STSv might reflect the

ventral origin of peripheral upper field inputs from early visual cortex. In natural

conditions, where objects in the near vicinity are foveated at ground level, the upper

field periphery is likely going to contain the most information about background envi-

ronment structure. In a control test, TEd neurons were tested for explicit retinotopy

by showing optimized objects at various peripheral locations. The failure of these

tests to evoke strong responses comparable to those observed for environment stim-
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uli argues against explicit retinotopic representations. As suggested by (Lafer-Sousa

and Conway, 2013), retinotopically biased inputs from earlier visual areas are not

just extended to anterior regions but have adopted functional specializations asso-

ciated with object/face processing requiring high-acuity central representations and

environment/place processing involving peripheral representations.

5.4 Connection to human imaging studies

The segregation of object and environment information found here might be re-

lated to a recent human fMRI study reporting anatomically separate activation for

objects of different size (Konkle and Oliva, 2012). It was reported that smaller objects

maximally activate regions in the superior/lateral ventral regions and larger objects

maximally activate regions in the inferior/medial regions of the ventral pathway.

This organization roughly parallels the findings here, where selectivity for large-scale

shapes resembling environments is common in the inferior channel (TEd) and selec-

tivity for smaller-scale shapes resembling objects is common in the superior channel

(STSv). However, in the human fMRI study the discovered size-based organization

depended on the real-world size knowledge of the stimuli and not on their retinal

size. It would be interesting to test TEd responses for environment-like stimuli that

actually subtend a limited angular size. However, since the experiment here is per-

formed on monkeys it is difficult to assess whether ’real-world’ knowledge of stimuli

78



is consistent with humans.

5.5 Potential functional roles of TEd

Given that IT is known to be important in form discrimination, TEd may represent

spatial information needed for recognition of familiar environments independent of

object content. It may also be the case that TEd has a more advanced role in which it

performs integration of environmental spatial information coming from more posterior

modules (Kornblith et al., 2013) with object information from the STSv channel to

create a holistic representation of a scene. The connections from STSv may provide

the object information and as reported earlier the study here did find object-selective

cells in TEd. The idea of an advanced role for TEd in environment processing would

also be consistent with a human imaging study that showed LOC (homologous to

macaque IT) appears to combine information about scene and scene-related object

information (MacEvoy and Epstein, 2011).

5.6 Future directions

The analysis presented here has focused on stimulus scale sensitivity differences

between the STSv and TEd channels of anterior IT. Given previous studies that

specifically looked at shape tuning in the object domain (Yamane et al., 2008; Carl-

son et al., 2011; Hung et al., 2012), similar shape focused analyses may reveal the
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presence of neural representation of structural information for environments. Po-

tentially, model-free spike-triggered analyses can be used to test whether there exist

population biases in terms of structural measures such as curvature or orientation

that are related to natural image statistics. For example, a prediction for an area

that represents landscape environments would be a bias in the preference of the neu-

ral population for surface orientations that point upward. In contrast, areas that

represent interior environments are not expected to show a bias in surface orientation

preference, as interiors contain a more complete sampling of the orientation domain.

It has been shown previously that object sensitive areas show a bias in preference for

surface orientations in the visible hemisphere as opposed to the self-occluded hemi-

sphere (Yamane et al., 2008). In terms of curvature, objects and environments contain

surface curvatures that overall are more in the convex range. In contrast, interior en-

vironments are more globally concave. These biased curvature distributions might be

reflected in the curvature sensitivity of STSv and TEd populations.

Model-based analyses performed for every neuron incorporating explicit structural

information allow for more precise characterization of shape tuning (Hung et al.,

2012; Yamane et al., 2008). Models that characterize stimulus shapes based on a

configuration of local surface patches described by their curvature, orientation and

position values have previously been successful in modeling STSv neural responses

to object-like stimuli (Yamane et al., 2008). Similar model-based characterizations

can be applied to environment-scale stimuli used in this study to demonstrate ex-
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plicit coding for surface shape. A potentially interesting model comparison would

be between models describing position information based on a stimulus-define refer-

ence frame versus models based on an egocentric representation. Representations of

environment structure for the purpose of navigation might require a more egocentric-

coding of environment-structure. The successful use of models to characterize neural

responses requires dense sampling in the response region of the neuron to constrain

multi-parameter mathematical models. Given that this experiment encompasses a

much larger space covering both objects and environments, low-sample counts may

place a limitation on the use of modeling analyses.

Finally, in order to directly relate the reported results in TEd to natural images

of environment, future experiments need to be performed involving a large set of nat-

ural images or possibly an innovative combination of natural images and ’equivalent’

abstract shapes that just capture the structural information. These experiments will

allow a comparison of the observed results in this study with previous work based on

photographic natural images of environments (Kornblith et al., 2013).
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