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Abstract

This thesis reports novel theoretical and experimental results addressing two increas-

ingly important problems in underwater robotics: model-based cooperative acoustic navi-

gation for underwater vehicles (UVs) lacking a Doppler velocity log (DVL) and dynamic-

model parameter estimation for underactuated UVs, such as the now-ubiquitous class of

torpedo-shaped UVs. This thesis reports an extension of a method to identify simultane-

ously UV dynamical plant model parameters (parameters for critical terms such as mass,

added mass, hydrodynamic drag, and buoyancy) and control-actuator parameters (control-

surface models and thruster model) in 6 degree of freedom (DOF) to tolerate simulated sen-

sor measurement noise representative of representative of real-world sensor data, as well as

extensive numerical simulations to evaluate the sensitivity of the approach to sensor noise.

The current state-of-the-art in one-way travel-time combined acoustic communication

and navigation (cooperative acoustic navigation) is to utilize purely kinematic, constant-

velocity plant process models together with an on-board bottom-lock DVL to provide

frequent, high-accuracy velocity corrections. However, DVLs are expensive, power con-

sumers, physically large, and limited to acoustic bottom-lock range, which restricts their

use toO(10−100m) above the sea floor or beneath surface ice. Simulation and experimen-

tal results reported herein indicate the submerged UV position estimate from cooperative

acoustic navigation with a kinematic model is poor and even unstable in the absence of
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DVL velocity observations. These simulation and experimental results also show that co-

operative acoustic navigation with a dynamic plant model performs well without a DVL and

outperforms DVL-based dead reckoning, at least in the situation presented herein where the

magnitude of the ambient water-current velocity is small.

The performance of the UV dynamic model, i.e., its ability to predict the vehicle’s state,

depends primarily on the accuracy of the model structure and model parameters. Accurate

estimates of these parameters are also required for model-based control, fault detection,

and simulation of UVs. While the general form of dynamical plant models for UVs is well

understood, accurate values for dynamic-model parameters are impossible to determine an-

alytically, are not provided by UV manufacturers, and can only be determined experimen-

tally. Moreover, oceanographic UVs are subject to frequent changes in physical configu-

ration, including changes in ballasting and trim, on-board equipment, and instrumentation

(both external and internal), which may significantly affect the vehicle dynamics. Plant-

model parameter estimation is generally more difficult for underactuated, torpedo-shaped

UVs than for fully actuated UVs with thrusters because: 1) the reduced actuation avail-

able on underactuated UVs limits the plant excitation that can be induced from the control

inputs, and 2) torpedo-shaped vehicles are often actuated with control surfaces (e.g., fins,

wings, rudders, etc), which are difficult to characterize independently of the plant-model

parameters. For these reasons, we seek an approach to parameter estimation for underac-

tuated UVs in 6 DOF that simultaneously estimates plant and actuator parameters and can

be performed routinely in the field with minimal time and effort by the vehicle operator.

The goals of this thesis are to advance the state-of-the-art of (1) model-based state esti-

mation for cooperative acoustic navigation of UVs and (2) dynamic plant-model parameter

identification for underactuated UVs. The first goal is addressed with the evaluation of a

dynamic UV plant model in cooperative acoustic navigation and a comparative analysis
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of the dynamic UV model and kinematic UV model without a DVL. The second goal

is addressed in a collaborative effort comprising: (1) the development of the nullspace-

based least squares (NBLS) algorithm for underactuated UV plant-parameter and actuator-

parameter estimation in 6 DOF, and (2) the extension of an adaptive identification (AID)

algorithm, and corresponding stability proof, to estimate simultaneously plant-model and

actuator parameters for underactuated UV with diagonal mass and drag matrices in 6 DOF

with realistic sensor measurement noise. These capabilities were verified by in situ vehicle

experiments with the JHU Iver3 autonomus underwater vehicle (AUV) and by simulation

studies.
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Chapter 1

Introduction

1.1 Motivation

The operational horizons and opportunities of scientific exploration of the world’s oceans

are being dramatically expanded by the increasing capabilities of underwater vehicles (UVs)

which enable scientists to access previously unexplored areas to conduct oceanographic

surveys, collect physical samples, and deploy and recover instruments. The accuracy of

scientific surveys conducted with UVs is limited by the geodetic accuracy of the vehicle’s

navigation.

The goal of this thesis is to improve geodetic localization capabilities for UVs by ad-

vancing the state-of-the-art of model-based navigation and dynamic plant-model parameter

identification for the now-ubiquitous class of underactuated, torpedo-shaped UVs. In cer-

tain cases, such as hydrography surveys, one may perform a bundle adjustment to improve
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the navigation solution and resulting map; however, improving the UV’s navigational ac-

curacy generally results in more accurate bathymetric map products.

1.1.1 Cooperative Acoustic Navigation

Navigation methods for underwater vehicles utilizing velocity signals (e.g., dead-reckoning

navigation and Doppler sonar navigation) or acceleration signals (e.g., inertial navigation)

accumulate errors that grow unbounded with time and with distance traveled, and thus re-

quire independent observations of position to correct the drift accumulated in the navigation

estimate.

For land and air vehicle navigation, the global positioning system (GPS) provides a

readily available independent source of position corrections for acceleration-based and

velocity-based navigation systems [16], but GPS is unavailable to submerged UVs. Bottom-

lock Doppler-sonar velocity measurements are an excellent correction source for velocity

estimates, and pressure depth sensor measurements are an excellent correction source for

the depth (only) of velocity-based and acceleration-based position estimates. However,

absolute XY position corrections are still required for bounded-error position estimation.

This thesis reports results for synchronous-clock, one-way travel-time combined acous-

tic communication and ranging (cooperative acoustic navigation) between acoustic modems

for position measurements. Cooperative acoustic navigation is explained in detail in Sec-

tion 2.1. Specifically, this thesis addresses the navigation problem of a submerged UV

1. operating in concert with a surface ship equipped with an acoustic modem and a
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GPS,

2. equipped with an attitude sensor, depth sensor, and an acoustic modem, and

3. not equipped with a DVL or operating beyond DVL acoustic bottom-lock range.

The case of UV navigation without a DVL is relevant because DVLs may not be avail-

able on the small, low-cost UVs that are becoming increasingly popular and an increasing

number of UVs are being operated in the mid-water column, far above the ocean floor or

below surface ice, beyond the DVLs acoustic bottom-lock range, e.g., [90]. Both of these

use-cases are areas of ongoing and expanding oceanographic research. Low-cost UVs are

reducing the financial barrier to conducting oceanographic research, enabling smaller uni-

versities and laboratories to collect real data. And even for institutions that have access

to full-scale ocean-going UVs with a full sensor suite including a DVL, there has been a

push to explore the region of the ocean from 200m-1000m deep, known as the mid-water

column, twilight zone, or mesopelagic zone where DVLs are unable to provide a useful

signal. Preliminary studies show this region of the ocean may contain more biomass than

the rest of the ocean combined and is largely unexplored [1].

1.1.1.1 First-Order Kinematic UV Process Models

First-order kinematic process models are models of UV motion that model the geometry

of UV motion but do not account for externally applied forces/moments or control-actuator

forces/moments acting on the UV. The most common assumption for kinematic process
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models in cooperative navigation is that the vehicle moves at a constant velocity.

Kinematic process models are simple to implement because they require little specific

information about the UV, and they perform well in cooperative acoustic navigation with

an attitude sensor when the vehicle has access to frequent velocity corrections, such as

from a DVL. A kinematic process model with a DVL is the current state-of-the-art for

cooperative acoustic navigation.

1.1.1.2 Second-Order Dynamic UV Process Models

Second-order dynamic process models are models of UV motion that model external

forces acting on the vehicle—forces such as hydrodynamic lift and drag, and control-

actuator forces and torques. Second-order dynamic UV process models appear to provide

little benefit in cooperative acoustic navigation when the UV has access to attitude mea-

surements and high-accuracy, frequent velocity measurements, as is the case with a DVL

in bottom-lock range, because the velocity measurements from most DVLs have a lower

covariance than the dynamic model’s process noise. However, as shown in Chapter 3 of

this thesis, second-order dynamic process models may significantly improve the coopera-

tive acoustic navigation solution when the UV is not equipped with a DVL or is beyond

DVL acoustic bottom-lock range.

Note that the utility of a second-order dynamic model in cooperative acoustic naviga-

tion depends entirely on the model’s ability to predict accurately the UV state. Because the

general structure of second-order dynamic models of UV motion is well known, the accu-
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racy of the model in predicting the true vehicle state depends principally on the parameters

used in the model. For this reason, it is impossible to separate the usefulness of dynamic

UV models from the problem of identifying the parameters used in the dynamical model.

1.1.2 Parameter Identification of Nonlinear UV Plant Dy-

namics

We argue that model-based approaches to navigation, control, and fault detection that

utilize precise nonlinear models of UV dynamics will enable more precise control and nav-

igation, higher levels of autonomy, and more complex missions for UVs. For example, pre-

viously reported studies have shown that nonlinear adaptive model-based control (AMBC)

can outperform proportional derivative control (PDC) in trajectory tracking for fully actu-

ated UVs [53].

However, approaches to model-based navigation, model-based control, and model-

based fault detection for UVs are limited by the accuracy of the plant parameters used

in the dynamic model. While the general form of UV dynamical plant models has been un-

derstood since the 1950s [72], the dynamic-model parameters—i.e., parameters for terms

including mass, added mass, hydrodynamic drag, buoyancy, and control actuators—are im-

possible to determine analytically and are not provided by UV manufacturers. An added

difficulty is the real-world fact that UVs are subject to frequent changes in physical con-

figuration that may significantly affect the vehicle dynamics. Such changes may include
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but are not limited to: lengthening or shortening the vehicle to accommodate different pay-

loads, variation in ballasting and trim conditions, and changes to on-board equipment and

instrumentation (both external and internal), and they all require the model parameters be

re-estimated whenever the vehicle’s configuration is significantly altered.

The three most common approaches to parameter estimation are:

1. utilizing data obtained in captive-motion experiments (e.g., towing a vehicle in a

hydrodynamic test tank),

2. computational fluid dynamics (CFD), or

3. utilizing data obtained in full-scale experimental trials of an UV in controlled free

motion (e.g., under open or closed loop control).

Captive-motion experiments are time consuming, expensive, and difficult to perform

properly. Further, the results are valid only for the specific vehicle configuration tested,

and it is often impractical to repeat the experiments for every possible configuration of the

UV. Typically, the experimental setup involves either rotating-arm experiments or planar

motion mechanism (PMM) experiments, such as towing a vehicle on a carriage with a load

cell at a fixed velocity in a hydrodynamic test facility. Captive-motion experiments can be

quite accurate in certain DOF, but these experiments often require decoupling the DOF,

which can lead to model inaccuracies. Typically, separate tests are run with and without

the control surfaces (fins) installed in order to isolate the fin drag from the body drag.

Additionally, separate test facilities are often required to characterize the fin lift and drag
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as a function of the angle of attack. More typically, the fin lift and drag as a function of the

angle of attack are not experimentally characterized.

Parameter estimation based on computational fluid dynamics uses numerical models

of fluid flow around the vehicle to simulate virtual PMM tests. CFD-based approaches

to model identification vary widely in accuracy, time, and cost. Additionally, CFD-based

approaches require detailed computer aided design (CAD) models of the UV, which are

difficult or impossible to obtain from commerical off-the-shelf (COTS) UV manufacturers.

On the other hand, a main advantage of CFD-based parameter estimation is the ability to

inform design choices during the preliminary vehicle design process.

While these approaches have advantages, both captive-motion experiments and CFD-

based approaches are often infeasible for many UV users for reasons of cost, time, and

practicality.

Parameter identification based on data collected in full-scale experimental trials of UVs

in controlled free motion has several advantages over captive-motion experiments and CFD.

First, the approach is accessible to any end user who can deploy an existing UV. Addition-

ally, though beyond the scope of this thesis, an approach that utilizing full-scale experi-

mental data can be extended to run in real-time during UV missions, which paves the way

for online model-based fault detection. Parameter-identification methods from full-scale

experimental trials largely fall into one of the following categories: least squares iden-

tification (LS), adaptive identification (AID), Kalman filter (KF) variants, and machine

learning (ML) and neural network (NN) techniques. This thesis reports two novel algo-
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rithms for UV plant parameter identification from free-motion experiments, one based on

least-squares regression analysis and one based on nonlinear adaptive estimation.

The near-ubiquitous class of torpedo-shaped AUV are underactuated in forward motion—

they typically have only 3 or 5 control inputs (4 fin angles and 1 main propulsor), fewer

than the UV’s 6 DOF, and thus the control actuators cannot impart arbitrary forces and mo-

ments on the vehicle. This is significantly different from the case of fully-thruster-actuated

ROVs where the thrusters are often capable of exerting arbitrary forces and moments on the

vehicle. Torpedo-shaped UVs are controllable only when in forward motion, are incapable

of hovering, and are physically unable to track general 6 DOF reference trajectories. This

class of underactuated UVs presents real theoretical and practical challenges to the problem

of experimentally estimating model parameters for the commonly accepted second-order

nonlinear dynamics plant models. Specifically, the question arises if the control actua-

tors have sufficient control authority to excite the plant sufficiently so that the plant model

parameters are observable.

Additionally, torpedo-shaped UVs are often actuated with control surfaces (e.g., fins,

wings, rudders, etc), the hydrodynamic parameters of which are difficult to characterize

independently of the plant-model parameters. Remotely operated vehicles (ROVs), in con-

trast, are typically actuated by thrusters with a high jet velocity compared to the vehicle’s

advance velocity. This is an important distinction because thrusters with a low advance

velocity that can be physically removed from the UV can typically be characterized in a

bollard pull test, which is relatively straightforward to perform in a small tank with a load
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cell, while propellers with a high advance velocity through the water typically must be char-

acterized in a hydrodynamic towing tank facility. To the best of our knowledge, with the

exception of [58], upon which this work is based, there are no previously reported studies

for parameter identification of underactuated UVs that simultaneously identify plant-model

parameters and actuation parameters in 6 DOF utilizing simulated data from a UV in con-

trolled free motion with realistic sensor measurement noise.

With the exception of the work by McFarland [52], many previously reported AID

methods require on model-based adaptive tracking controllers and are not applicable when

the UV is operating under any control law other than a specific adaptive tracking controller.

On commercially available UVs, the user is often limited to using the proprietary controller

provided by the manufacturer, and the user cannot replace the manufacturer’s proprietary

controller with an adaptive tracking controller. The AID approach reported herein works

for UV operating under any known control inputs, and it is, therefore, applicable in the

common situation of a UV operating on an unspecified, manufacturer-provided controller

or in open-loop control.

1.2 Thesis Outline and Contributions

Chapter 2 - Cooperative Acoustic Navigation with a Kinematic Process Model:

This chapter reviews the most common approach to cooperative acoustic navigation of

underwater vehicles (UVs), specifically the centralized extended Kalman filter (CEKF)
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formulation of one-way travel-time (OWTT) combined acoustic navigation and communi-

cation (cooperative acoustic navigation), and examines the feasibility of employing co-

operative acoustic navigation to provide both position and velocity corrections for UV

navigation. The examination of acoustic range-rate observations in addition to acoustic

range observations is motivated by the fact that most underwater acoustic modems com-

pute a range rate as part of the acoustic receptions processing of each incoming acoustic

data packet, yet no previous cooperative acoustic navigation studies report utilizing these

velocity data.

Simulation results are reported utilizing a kinematic model with and without a DVL.

These results show that the addition of acoustic range-rate observations does not appear

to offer significant advantages for UVs navigation when the acoustic range measurements

are good and the vehicle has access to DVL observations. The addition of range-rate mea-

surements may improve navigation accuracy over the case of range-only observations in

limited circumstances, such as poor acoustic-range accuracy.

In anecdotal simulation results, we observed poor performance and even instability of

the CEKF solution in certain geometries between the ship and submerged vehicle when

using a kinematic model without velocity corrections from a DVL, and hypothesized that a

dynamic model would be better suited to acoustic navigation without a DVL.

Chapter 3 - Cooperative Acoustic Navigation with a Dynamic Process Model: This

chapter reports the development and evaluation of a second-order, nonlinear dynamic pro-

cess model for a UV within the framework of OWTT cooperative acoustic navigation.
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Simulation and experimental results are reported using John Hopkins University’s L3

Ocean Server Iver3 AUV (L3 OceanServer, Fall River, MA, USA) carried out in the Chesa-

peake Bay. The reported results suggest that the cooperative navigation algorithm utilizing

a dynamical UV process model may offer a significant advantage over the purely kinematic

model in the absence of frequent, high-accuracy velocity observations, as is the case when

the UV does not have access to DVL measurements. Further, the results suggest that coop-

erative acoustic navigation with a dynamic model and no DVL may outperform DVL-based

dead reckoning when the magnitude of the ambient water-current velocity is small. As a

measure of validity, there appears to be good agreement between the simulated results and

the experimental results.

Chapter 4 - Parameter Identification of Underactuated Underwater Vehicles: This

chapter reports two novel algorithms for identifying the plant parameters (hydrodynamic

mass, quadratic drag, gravitational force, and buoyancy parameters) and the actuator pa-

rameters (propeller coefficient and fin hydrodynamic lift and drag as a function of the com-

manded angle) for second-order, underactuated, rigid-body UV plants in 6 DOF.

The first algorithm is based on least-squares regression analysis. We formulate the least-

squares problem to solve for a parameter vector in the nullspace of the regressor matrix,

which allows us to estimate the plant parameters and actuator parameters simultaneously.

We call this approach nullspace-based least squares (NBLS). NBLS requires signals of

body orientation, linear body velocity, angular body velocity, linear body acceleration, and

angular body acceleration. With low sensor noise, NBLS can uniquely identify the param-
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eters for an uncoupled model, demonstrating an underactuated UV has sufficient excitation

in the uncontrolled DOF. Simulation results from using the identified plant model in the

framework of model-based OWTT cooperative acoustic navigation are also presented. This

work was first published in [31]. Coauthor Tyler Paine collaborated on the mathematical

formulation of the NBLS algorithm, and he took the lead on coding the NBLS algorithm.

A noise sensitivity analysis is reported herein that shows NBLS is sensitive to noise in the

measured translational body velocity signal.

The second algorithm is based on nonlinear adaptive systems theory, henceforth called

adaptive identification (AID). The AID approach requires signals of body orientation,

translational body velocity, and angular body velocity but not linear body acceleration or

angular body acceleration. A Lyapunov function and corresponding stability proof are pro-

vided.

The AID approach for UVs in 6 DOF was developed by Christopher McFarland with

the assumption that the control actuator parameters were known [52]. The AID algorithm

reported by McFarland was extended by Tyler Paine to include the control-actuator param-

eters as part of the AID state [58]. An analytical stability proof of this extension to estimate

simultaneously the plant-model parameters and control-actuator parameters in 6 DOF was

reported in Paine’s masters thesis utilizing scalar gains [58]. Paine and Harris contributed

equally to the publication of this AID extension to estimate simultaneously the plant and

control parameters with an analytic stability proof using scalar gains and a preliminary sim-

ulation effort conducted with the forward simulation and AID done in a loop [77]. How-
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ever, preliminary anecdotal simulation efforts in post-processing the simulated data by the

author indicated poor parameter convergence with scalar gains. This thesis extends Paine’s

stability proof to utilize diagonal gain matrices rather than scalar gains. This thesis also

reports simulation results in 6 DOF with realistic sensor noise, as well as a measurement-

noise sensitivity analysis. The simulation results corroborate the analytic stability analysis,

showing that the adaptively estimated plant parameters are stable and converge to values

that provide plant-model input-output behavior closely approximating the true input-output

behavior.

To the best of our knowledge, this thesis reports the first method to identify decoupled

UV dynamical process model parameters and actuator parameters (control-surface models

and thruster model) in 6 DOF with realistic simulated sensor noise.

This approach to nonlinear model identification of UVs is evaluated in simulation stud-

ies. The resulting identified UV plant models are evaluated in simulation studies of coop-

erative navigation.

Chapter 5 - Combined Control and Navigation without a DVL: This chapter re-

ports simulation results for combined control and navigation without a DVL in real time.

This chapter is an extension to Chapter 3, which addresses only the solution to the acoustic

navigation problem in post processing utilizing a dynamic UV model and no DVL and is

agnostic to the controller used. This chapter examines the feasibility of using the coop-

erative acoustic navigation with a dynamic UV process model and no DVL as an input to

the UV controller in real time. We report results with both proportional derivative (PD)
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and linear-quadratic regulator (LQR) controllers. We conclude that it is feasible to utilize

the state estimate from the CEKF formulation of cooperative acoustic navigation utilizing

a dynamic model without a DVL as an input to a control system.

14



Chapter 2

Cooperative Acoustic Navigation with a

Kinematic UV Process Model

This chapter reviews cooperative acoustic navigation, providing the necessary back-

ground information on the centralized extended Kalman filter formulation. The principal

original contribution in this chapter is an observation model for acoustic range-rate mea-

surements and simulation and experimental results investigating the effect of adding acous-

tic range-rate measurements to acoustic range measurements. This chapter is organized as

follows:

Section 2.1 overviews combined acoustic communication and navigation (cooperative

acoustic navigation).

Section 2.2 reviews the relevant literature for cooperative acoustic navigation.

Section 2.3 reviews the centralized extended Kalman filter (CEKF) formulation, first
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reported in by Webster et al [81–84], including the vehicle state description (2.3.2).

Section 2.4 reviews the purely kinematic constant-velocity process model traditionally

used in cooperative acoustic navigation.

Section 2.5 reviews the acoustic range observation model (again first reported in [84])

and reports a novel observation model for acoustic range-rate measurements.

Section 2.6 reports simulation results for a kinematic model in synchronous OWTT co-

operative acoustic navigation utilizing acoustic range and acoustic range-rate observations

with a DVL (2.6.1) and without a DVL (2.6.2).

2.1 Overview

Navigation methods for underwater vehicles utilizing velocity signals (e.g., dead-reckoning

navigation and Doppler sonar navigation) or acceleration signals (e.g., inertial navigation)

accumulate errors that grow unbounded with time and distance traveled, and thus require

independent observations of absolute position or velocity to correct the drift accumulated

in the navigation estimate.

For land and air vehicle navigation, the global positioning system (GPS) provides an

ideal independent source of position corrections for acceleration and velocity-based naviga-

tion systems [16], but GPS is unavailable to submerged UVs. Bottom-lock Doppler-sonar

velocity measurements are an excellent correction source for velocity estimates. Pres-

sure depth sensor measurements are an excellent correction source for the depth (only)
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of velocity-based and acceleration-based position estimates.

For submerged underwater vehicles (for which GPS is unavailable), few methods cur-

rently exist for absolute XY position corrections. The most common XY position correc-

tion methods are time-of-flight acoustic navigation systems, such as long-baseline (LBL)

and ultra-short baseline (USBL) acoustic navigation [36, 41, 55]. Range-only OWTT co-

operative underwater navigation uses ranges estimated from the acoustic time-of-flight be-

tween subsea nodes, e.g., between two vehicles, or between a client vehicle and a server

reference beacon of known (fixed or moving) location. When all vehicles and beacons

(nodes) are equipped with precision clocks, each node’s acoustic data transmission can

be received by multiple receiving nodes—enabling all nodes within acoustic range to si-

multaneously (a) measure range to the transmitting node from the measured time-of-flight

and (b) decode the data encoded in the acoustic data packet. This method provides both

bounded-error position estimates and long-range capabilities with reduced need for multi-

ple costly fixed beacons, as is the case with most LBL systems. Unlike traditional two-way

travel-time (TWTT) ranging, in which a single TWTT range can serve only one client,

OWTT ranging offers the advantage that a single OWTT range can serve many clients.

This is called synchronous OWTT cooperative acoustic navigation. If the server reference

beacon (e.g., ship, buoy, etc) is equipped with a GPS receiver and encodes its position into

the acoustic data packet, synchronous OWTT cooperative acoustic navigation provides a

geodetic navigation solution, as shown in Figure 2.1. In practice, the synchronous-clock

OWTT measurement is simply the time of flight of the acoustic data packet. If the speed of
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sound in water is known, a range is computed from the OWTT time-of-flight measurement.

into a range. With a range, the UV’s position is bounded to be on a hemisphere centered

at the ship. If the UV is equipped with a pressure-depth sensor, the hemisphere becomes

a circle of possible positions, as shown in Figure 2.1. An extended Kalman filter (EKF) is

used to estimate the UV’s location on the circle. OWTT navigation also provides scalability

by allowing all vehicles within acoustic range to simultaneously use the same acoustic data

packet broadcast independent of the number of vehicles. Additionally, OWTT navigation

requires multiple acoustic fixes for the position covariance to decrease.

Figure 2.1: Graphical depiction of one-way travel-time (OWTT) cooperative acoustic nav-
igation. A range is computed from the OWTT time of flight of the acoustic data packet
using the speed of sound. This range bounds the UV’s position to a hemisphere centered
at the ship. When the UV is equipped with a depth sensor, the position is bounded to on a
circle centered at the ship. An extended Kalman filter (EKF) is used to estimate the UV’s
location on the circle.
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2.2 Literature Review

Radio-frequency (RF) telemetry is the preferred telemetry method for land, air, and

space, but is not useful for underwater telemetry because the ocean is opaque to high-

frequency RF telemetry. Even extremely low frequency RF telemetry can penetrate sea-

water only to tens or hundreds of feet [59]. The development of underwater acoustic

modems, however, has enabled underwater data telemetry at ranges up to tens of kilo-

meters [15, 40, 69]. The propagation delay of acoustic telemetry in seawater is about 1.5

km per second, and the data bandwidth varies with range, carrier frequency, and encoding

(modulation) method.

2.2.1 Range-Only Underwater Navigation

To the best of our knowledge, the earliest reported comprehensive study of underwater-

vehicle navigation using acoustic ranging was conducted by Spindell et al. [36] in which

they reported full-scale experimental evaluation of an acoustic approach to underwater-

vehicle navigation in which a single underwater vehicle could detect range from a set

of fixed acoustic navigation transponders whose location was known a priori—a method

that has since been widely practiced and is now commonly known as long-baseline (LBL)

acoustic navigation.

Previous results by the authors and others [9, 61, 80, 83, 85] have shown the effective-

ness of position corrections for Doppler and inertial navigation with range-only OWTT
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underwater navigation using ranges estimated from the acoustic time-of-flight of acoustic

data packets between subsea nodes, e.g., between two vehicles or between a vehicle and a

reference beacon of known (fixed or moving) location.

Studies by the authors and others report the development and at-sea experimental eval-

uation of OWTT systems (including hardware and software) for the navigation of underwa-

ter vehicles using maximum-likelihood estimation [21,22], the EKF [83], and the extended

information filter (EIF) [85, 86].

Several authors have reported least-squares methods for single-beacon range-only nav-

igation [33, 44, 54, 67]. Range-only target tracking has been addressed using EKFs and

maximum-likelihood estimators (MLE) [3,64,73]. The use of EKFs for homing and single-

beacon navigation is reported in [5, 6, 45, 46, 78].

Recently, [17] reported the comparison of a particle filter and CEKF for OWTT navi-

gation in post-processing on real-world data. The authors compare model-aided odometry,

in the form of a water-velocity bias estimator, to DVL-aided odometry and conclude the PF

slightly outperforms the CEKF. In both cases, a kinematic process model was used.

Most recently, [39] reported experimental results with OWTT acoustic navigation with

a MEMS inertial measurement unit (IMU) and no DVL. The EKF utilizes a constant-

acceleration process model with an accelerometer-bias model. The authors conclude the

accuracy their approach is comparable to existing methods.

20



CHAPTER 2. COOPERATIVE ACOUSTIC NAVIGATION WITH A KINEMATIC UV
PROCESS MODEL

2.2.1.1 Observability of Single-Beacon Range-Based UV Navigation

The observability of single-beacon range-based UV navigation has been studied fairly

extensively. Generally, previously reported studies have shown that the state of the sub-

merged UV is observable provided there is sufficient richness and variability in the geom-

etry of the ranges between the UV and single acoustic beacon.

In [67], Scherbatyuk reports a UV positioning method in the context of Long Baseline

(LBL) acoustic positioning systems with on-board attitude sensor and velocity sensor based

on least squares. Monte Carlo simulation results are presented to corroborate the analysis.

In [73], Song presents necessary and sufficient conditions for local observability in the

context of two-dimensional maneuvering with range measurements from a single beacon.

The approach taken in this paper utilizes the Fisher information matrix developed from the

analytical treatment of system dynamics and noisy measurement equations established in a

modified polar coordinate system. Numerical simulation results are presented to corrobo-

rate the analytical results.

In [64], Ristic et al. address the problem of target motion tracking from the range

and range-rate measurements. A theoretical Cramer–Rao bound for the performance of an

unbiased range-only tracking algorithm is derived, and three algorithms for target motion

analysis are developed and compared to the theoretical performance bound. The three

algorithms are: the maximum likelihood estimator, the EKF, and the regularized particle

filter. Experimental validation of the theory is also presented.

Several studies addressed the observability of single-beacon range-only navigation with
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EKF estimation approaches [25–28, 49]. In [65], the authors report a nonlinear observabil-

ity analysis, identifying conditions under which the system is locally weakly observable.

In [37], the authors report employ nonlinear differential algebraic methods to derive condi-

tions for observability.

In her 2006 doctoral thesis [43], LaPointe reports a single-beacon navigation approach

in the form of a “virtual” LBL system (VLBL). The UV position is determined by ad-

vancing multiple ranges from a single transponder along the UV’s dead reckoning track.

The UV position is then triangulated using these successive ranges in a manner analogous

to a “running fix” in surface ship navigation. Simulation results for the Woods Hole Au-

tonomous Benthic Explorer (ABE) UV are presented.

In [12] Batista et al. addresses the observability for UVs localization based on the range

to a single beacon where the vehicle is equipped with an IMU and range measurements to

a single source, in addition to angular velocity readings. The paper develops the necessary

and sufficient conditions for observability for use in motion planning and control for an UV

equipped with an IMU providing angular position and velocity measurements and range

measurements to a single transducer. An Kalman filter (KF) is applied for body-frame state

estimation, and simulation results are reported. In [13], the authors extend their previous

work [12] to address the necessary and sufficient conditions for observability of an mobile

agent based on the based on the range to a single source, in addition to relative velocity

readings (range-rate observations).

In [18], Crasta et al. address observability of an UV moving in two dimensions using
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acoustic range to a single beacon at a known location with a nonlinear, kinematic model. In

the presence of known ocean currents, the system is found to be globally observable in the

sense of Herman and Krener for a constant relative course and constant (nonzero) relative

course rate inputs. On the other hand, with unknown ocean currents the system fails to

be locally weakly observable with constant relative course but the authors characterize the

set of indistinguishable states from a given initial position and ocean current configuration

and note that observability can be achieved with constant (nonzero) relative course rate in

the presence of unknown, constant ocean currents. In [19], the authors extend the results

of [18] to address observability of an UV moving in three dimensions in the presence of

ocean currents, under the assumption that the vehicle can only measure its acoustic range

to a fixed transponder. A nonlinear, kinematic model is used and the UV can undergo any

maneuvers that are completely parameterized by the body velocity, a constant flight path

angle, and a constant yaw rate. In the presence of known, constant ocean currents, the 3D

kinematic model of the AUV that corresponds to trajectories with nonzero flight path angle

and yaw rate is observable. When the latter conditions fail, the authors give a complete

characterization of the sets of states that are indistinguishable from a given initial state.

In the case of unknown constant ocean currents, the model is shown to be locally weakly

observable for nonzero yaw rate.

In [62], Quenzer and Morgansen explore control approaches to improve localization

performance of UVs deployed in survey missions. The authors propose two methods for

local observability measures to determine the immediate action (control) for a UV. Simula-
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tion studies are presented to validate and compare both methods. The authors conclude that

the first proposed method has comparable or better performance than an existing maximum

information gain method in a lawn mower style survey mission.

In [4], Arrichiello et al. address observability of single and multiple UVs localization

using acoustic range measurements with on-board sensors, including depth, velocity, and

acceleration sensors. The paper examines the cases of a single UV ranging off a single

transponder and multiple UV using inter-vehicle ranges. The paper shows that both the

problems of absolute localization of a single vehicle and the relative localization of multiple

vehicles may be treated using the same mathematical framework. Tailoring concepts of

observability derived for nonlinear systems, the authors analyze how the performance in

localization depends on the types of motion imparted to the UV. They propose a well-

defined observability metric and report simulation and experimental validation with an EKF

state observer. They conclude that performance depends on the UV’s motion.

In [60], Parlangeli and Indiveri address observability in the context of single-beacon

ranges with a kinematic UV model. Their paper extends previous results building on an

augmented state technique allowing to reformulate the nonlinear observability problem in

terms of a linear time varying (LTV) one. Globally unobservable motions are characterized

in terms of initial conditions and commanded velocity signals. An underactuated model

is considered, and a numerical simulation study is presented to demonstrate certain cases

where the system is unobservable.

In [20], De Palma et al. address observability for the single beacon localization problem
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of an UV using a nonlinear, kinematic “double integrator” model with acceleration as the

model input and range to a stationary beacon as the output. The observability analysis

addresses two complementary issues: the local weak observability for the nonlinear system,

and, similar to [60], the global observability for a LTV representation of the system derived

through a state augmentation method. The proposed methods for observability analysis are

discussed in different case studies (e.g. 2D/3D, absence/presence of current, and presence

of additional sensors like a DVL and a depth sensor). A numerical simulation study is

presented to corroborate the analytical observability results.

Additionally, several authors have addressed OWTT navigation of surface and under-

water vehicles in a simultaneous localization and mapping (SLAM) framework using dis-

tributed estimators [7–10, 23].

2.2.2 Acoustic Range Rate

To the best of our knowledge, the earliest study of underwater-vehicle navigation em-

ploying acoustic detection of both range and range rate was the 1978 study by Spindell et

al. [74], which extended the approach reported in [36] by reporting a full-scale experimen-

tal evaluation of an approach to underwater-vehicle navigation in which a single underwater

vehicle could detect both range and range rate from a set of fixed navigation transponders

whose location was known a priori.

In [47,48], the author, apparently unaware of [36,74], reported the notion of employing

acoustic range rate in addition to acoustic range for LBL navigation but did not report
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specific navigation algorithms for employing range rate nor any experimental evaluation.

In [30], the author reports the notion of an underwater acoustic modem estimating and

compensating for the Doppler shift of a received acoustic data packet transmission but

does not address how a Doppler estimate might be used for navigation.

In [14], the author reported the experimental evaluation of algorithms for acoustically

determining the relative position of two marine vehicles by employing measurement of

acoustic range and acoustic range rate with specific focus on estimating relative positioning

conditions, such as the closest-point-of-approach (CPA) of two vessels for the purpose of

collision-avoidance.

2.3 Extended Kalman Filter

This section briefly describes the centralized extended Kalman filter (CEKF) and as-

sociated process model and observation models used. The primary original contribution

reported in this section is the acoustic range-rate observation model (Section 2.5.1.1).

2.3.1 EKF Formulation and Implementation

The extended Kalman filter is a non-optimal extension of the KF to nonlinear plants and

observations by linearizing about the time-varying estimated state. A full derivation and

formulation of the EKF is available in many texts and is beyond the scope of this thesis,

see [11, 75, 81].
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The equations for a general nonlinear plant model in continuous time and general non-

linear observation model in discrete time are:

ẋ =f
(
x(t), u(t)

)
+G(t)w(t) (2.1)

zk =h
(
x(tk)

)
+ vk ∀k = 1, 2, ... (2.2)

where f is the general nonlinear plant model, h is the general nonlinear observation model,

x(t) is the continuous-time state, u(t) is the continuous-time control signal, and zk is a

general measurement at time tk. vk ∼ N (0, Q(t)) is the zero-mean Gaussian process

noise, and vk ∼ N (0, Rk) is the zero-mean Gaussian measurement noise. Note that, in

practice, we utilize several observation models reporting data asynchronously.

We linearize the nonlinear process model about the state at time t = tk with a first-order

Taylor series expansion and discretize using zero-order hold. Mathematically,

ẋ =f
(
x(t), u(t)

)
+G(t)w(t) (2.3)

=f
(
x(tk), u(tk)

)
+ Fx

(
x(t)− x(tk)

)
+ Fu

(
u(t)− u(tk)

)
+HOT +G(t)w(t) (2.4)

=Fxx(t) + f
(
x(tk), u(tk)

)
− Fx(tk) + Fu

(
u(t)− u(tk)

)
+HOT +G(t)w(t), (2.5)

where HOT is the higher order terms, Fx is the Jacobian with respect to x, and Fu is the

Jacobian with respect to the control, i.e.,

Fx =
∂f(x(t), u(t))

∂x

∣∣∣∣∣
x=x(tk)

(2.6)

Fu =
∂f(x(t), u(t))

∂u

∣∣∣∣∣
u=u(tk)

. (2.7)
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We note that the UV plant kinematic model (2.23) does not have control inputs, so Fu = 0;

for the UV plant dynamic model (3.2), we assume the input is piecewise constant over the

time step, so u(t)− u(tk) = 0. For the linear approximation, we drop the HOT , and (2.5)

simplifies to

ẋ =Fxx(t) + f
(
x(tk), u(tk)

)
− Fx(tk)︸ ︷︷ ︸

ū(tk)

+G(t)w(t) (2.8)

=Fxx(t) + ū(tk) +G(t)w(t), (2.9)

where ū(tk) = f
(
x(tk), u(tk)

)
− Fx(tk) is treated as a constant pseudo-input term. Note

that (2.9) is in the standard state-space form,

ẋ = Ax(t) +Bu(t) +Gwk (2.10)

with A = Fk and B = I. Thus, we can discretize using zero-order hold, a standard method

of discretization, the details of which are available in several references, e.g., [81], and will

not be repeated here. The end result after discretizing is the standard state-space discrete-

time linear system

xk+1 = Fkxk +Bkuk + wk, (2.11)

where Fk is the discrete-time linear state transition matrix, Bk = I is the discrete-time

linear input matrix, and uk is the piecewise-constant input, all at time step tk.

The EKF process prediction equations are

µk+1|k =Fkµk|k +Bkuk (2.12)

Σk+1|k =FkΣk|kF
T
k +Qk (2.13)
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where µi|j is the estimate of the state at time step ti given the estimate at time step tj , and

Qk is the discrete-time measurement error covariance.

The EKF measurement update equations are

µk|k =µk|k +Kk

(
zk − h(µk|k−1)

)
(2.14)

Σk|k =Σk|k−1 −KkHkΣk|k−1, (2.15)

where Hk is the Jacobian of the nonlinear observation model h at time tk,

Hk =
∂h
(
x(tk)

)
∂x(tk)

∣∣∣∣∣
x(tk)=µk|k−1

, (2.16)

and Kk is the Kalman gain at time tk,

Kk = Σk|k−1H
T
k

(
HkΣk|k−1H

T
k +Rk

)−1

. (2.17)

2.3.1.1 Implementation for Cooperative Acoustic Navigation

A discrete-time, delayed-state EKF was implemented to fuse depth, gyrocompass, and

DVL measurements (when applicable) from the vehicle, GPS measurements from the ship,

and acoustic range and range-rate measurements between the vehicle and the ship. We

utilize the centralized extended Kalman filter (CEKF) variant, which assumes simultane-

ous access to vehicle and ship sensor data simultaneously. As a centralized algorithm, the

CEKF is suitable for post-processing simulated and experimental data. Previous results

have shown that the centralized approach can be extended exactly to a decentralized ex-

tended information filter (DEIF) form, and at OWTT measurement updates, the CEKF is
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analytically and experimentally identical to its decentralized counterpart, the DEIF, as re-

ported in [85]. Additionally, the reader is referred to [83] for the subtleties of the modified

process prediction, which occurs when the state augmentation is performed in concert with

the process-prediction step.

2.3.1.2 EKF Initialization

In practice, the CEKF position is initialized from the last valid GPS fix of the UV

before it submerges, and the velocity is initialized to the DVL reading at that same time or

the UV’s commanded forward velocity in the case of no DVL.

2.3.2 State Description

As is typical for the CEKF cooperative navigation algorithm [81–84], we define the

state vector, x, as the composite of the current vehicle state, current ship state, and n de-

layed states. Delayed states are required for causal processing because the range mea-

surement occurs between the ship at time-of-launch (TOL) and the vehicle at time-of-

arrival (TOA). The state vector used in the CEKF is

x =

∣∣∣∣ xTv xTs xTv−1 xTs−1 . . . xTv−n xTs−n

∣∣∣∣T , (2.18)

where the current ship state xs is a 6-DOF vector containing the XY -position and heading

and their respective velocities

xs =

∣∣∣∣ x y ψ ẋ ẏ ψ̇

∣∣∣∣T , (2.19)
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and the current vehicle state xv is a 12-DOF vector containing the local-level pose and

body-frame velocities

xv =

∣∣∣∣sT ϕT νT ωT

∣∣∣∣T (2.20)

s =

∣∣∣∣∣∣∣∣∣∣∣∣

x

y

z

∣∣∣∣∣∣∣∣∣∣∣∣
ϕ =

∣∣∣∣∣∣∣∣∣∣∣∣

φ

θ

ψ

∣∣∣∣∣∣∣∣∣∣∣∣
ν =

∣∣∣∣∣∣∣∣∣∣∣∣

u

v

w

∣∣∣∣∣∣∣∣∣∣∣∣
ω =

∣∣∣∣∣∣∣∣∣∣∣∣

p

q

r

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.21)

where s is the local-level position, ϕ is the local-level attitude, ν is the body-frame linear

velocity, and ω is the body-frame angular velocity. For convenience, we also define

η =

∣∣∣∣sT ϕT

∣∣∣∣T v =

∣∣∣∣νT ωT

∣∣∣∣T . (2.22)

2.4 Kinematic Process Model

In this chapter, we utilize a kinematic, nonlinear process model for both the vehicle

and the ship, identical to the one reported in [83]. Unlike the dynamic model reported

later in this thesis (Section 3.1), this process model is a purely kinematic, constant-velocity

second-order plant with process noise. The process model for the vehicle is linearized and

discretized for use in the EKF standard methods [11].

The vehicle kinematics are

η̇ = K(ϕ)v, (2.23)
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where

K(ϕ) =

R(ϕ) 0

0 L(ϕ)

 (2.24)

is the kinematics matrix. R(ϕ) is the transformation between inertial and body-frame lin-

ear velocities, and L(ϕ) is the transformation between inertial and body-frame angular

velocities. Explicitly,

R(ϕ) = Rz(ψ)TRy(θ)
TRx(φ)T , (2.25)

where

Rz(ψ) =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 , (2.26)

Ry(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 , (2.27)

Rx(φ) =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 , (2.28)
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and

ω =e1φ̇+Rx(φ)e2θ̇ +Rx(φ)Ry(θ)ψ̇ (2.29)

=


1 0 − sin(θ)

0 cos(θ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)


︸ ︷︷ ︸

L(ϕ)−1

, (2.30)

where e1 = |1 0 0|T ∈ R3, e2 = |0 1 0|T ∈ R3, and e3 = |0 0 1|T ∈ R3. Thus,

L(ϕ) =


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)

 . (2.31)

We re-write (2.23) in state-space representation with the full 12 DOF vehicle state for

use in the CEKF

ẋv =



0 0 R(ϕ) 0

0 0 0 L(ϕ)

0 0 0 0

0 0 0 0


xv +



0 0

0 0

I 0

0 I


wv (2.32)

ẋs =

 0 I

0 0

xs +

 0

I

ws, (2.33)

where wv ∼ N (0, Qv) and ws ∼ N (0, Qs) are zero-mean Gaussian process noise terms.

Positions are represented in inertial world coordiates. Vehicle velocities are represented in
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body-coordinates, and ship velocities are represented in world-coordinates. The process

model for the vehicle is linearized and discretized using standard methods [11]. The reader

is referred to [83] for a full description and derivation, including the linearized discrete-

time process model and the subtleties of the modified process prediction, which occurs at

the top of the second when the state augmentation is performed in concert with the process-

prediction step.

2.5 Observation Models

The range and range-rate observation models are nonlinear functions of the vehicle state

at TOA and the ship state at TOL. Observation models of the additional sensors, including

the DVL, GPS, depth sensor, and gyrocompass, are detailed in [81].

2.5.1 Range Observation Model

As reported in [83], the range observation model can be written in matrix notation as

zrng =
(
xTATAx

) 1
2 + vrng, (2.34)

where vrng ∼ N (0, Rrng) and

A =

∣∣∣∣−Jv 0 . . . 0 Js 0 . . . 0

∣∣∣∣T , (2.35)
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with Jv and Js defined such that

Jv xv =

∣∣∣∣x y z

∣∣∣∣T (2.36)

Js xs =

∣∣∣∣xs ys 0

∣∣∣∣T . (2.37)

The measurement covariance, Rrng, represents the noise of the range measurement. The

Jacobian of the range measurement with respect to the full state, x, is

Hk =
∂ zrng(x)

∂ x

∣∣∣∣
x=µk|k−1

=
(
µTk|k−1A

TAµk|k−1

)− 1
2 µTk|k−1A

TA. (2.38)

2.5.1.1 Range-Rate Observation Model

As reported in [32], the range-rate observation model is the time derivative of (2.34).

Explicitly,

zrr =
(
xTATAx

)− 1
2 xTAT Âx + vrr, (2.39)

where vrr ∼ N (0, Rrr) and

Â =

∣∣∣∣−Ĵv 0 . . . 0 Ĵs 0 . . . 0

∣∣∣∣T , (2.40)

with Ĵv and Ĵs defined such that

ĴvR(ϕ)xv =

∣∣∣∣ẋ ẏ ż

∣∣∣∣T (2.41)

Ĵs xs =

∣∣∣∣ẋs ẏs 0

∣∣∣∣T . (2.42)
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The Jacobian of (2.39) with respect to the full state, x, is

Hk =
∂ zrr(x)

∂ x

∣∣∣∣
x=µk|k−1

=−
(
µTk|k−1A

TAµk|k−1

)− 3
2

(
µTk|k−1A

TA
) (
µTk|k−1A

T Âµk|k−1

)
+(

µTk|k−1A
TAµk|k−1

)− 1
2

µTk|k−1

(
AT Â+ ÂTA

)
, (2.43)

where µk|k−1 is the estimated mean of the world-frame position.

2.6 Simulation Results

This section is outlined as follows:

Section 2.6.1 reports simulation results of cooperative acoustic navigation utilizing a

kinematic model with a DVL comparing acoustic range-only observations to acoustic range

and acoustic range-rate observations.

Section 2.6.2 reports simulation results of cooperative acoustic navigation utilizing a

kinematic model without a DVL comparing acoustic range-only observations to acoustic

range and acoustic range-rate observations.

36



CHAPTER 2. COOPERATIVE ACOUSTIC NAVIGATION WITH A KINEMATIC UV
PROCESS MODEL

2.6.1 Results utilizing a DVL

We conducted numerical simulations to investigate the effect of range-rate observations

on the performance of the CEKF cooperative navigation algorithm described in Section 2.3.

We computed a true simulated vehicle path and simulated data for each of the navigation

sensors by generating simulated measurements with the measurement-noise characteristics

given in Table 2.1. In the simulation presented here, the vehicle conducted a simulated

survey mission of ten 1 km track lines spaced 100 m apart with a vehicle advance velocity

of 2 knots and a depth of 3 m. The ship circled continuously on a 300 m radius at a velocity

of 1.5 knots broadcasting acoustic packets every minute. The speed of sound was assumed

constant at 1500 m/s throughout the simulation.

Figure 2.2 shows the true and estimated XY vehicle position from the CEKF utilizing

acoustic range observations with the filter’s covariance plotted at 60 s intervals. Figure 2.3

shows the true and estimated XY vehicle position estimate from the CEKF utilizing acous-

tic range and range-rate observations with the filter’s covariance plotted at 60 s intervals.

In both figures, the arrows point from the vehicle to the ship along acoustic path with the

length scaled by the angle from vertical.

Figures 2.4 and 2.5 shows histograms of the error in the X- and Y-directions, with

acoustic range and acoustic range and range-rate observations, respectively. These his-

tograms indicate the noise statistics may not be unimodal in X-direction and may not be

zero-mean in the Y-direction. However, the variability of the simulation noise in disparate
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Table 2.1: Vehicle state measurement sources, resolutions, and accuracies

Measurement

State Source Update Rate Std Dev

XY Trans modem 60 s 1m (range)

0.1m/s (range rate)

Z Trans Paroscientific 7 Hz 6 cm

Heading OCTANS 3 Hz 0.10◦

Pitch, Roll OCTANS 3 Hz 0.05◦

Trans 300 kHz 5 Hz 0.01 m/s

Velocity RDI DVL

Ang Vel OCTANS 3 Hz 0.4-0.6◦/s
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Figure 2.2: Vehicle XY position estimate from the CEKF cooperative acoustic navigation
on simulated data with acoustic range observations. The true position is plotted as a solid
blue line, the CEKF position estimate is plotted as a dashed blue line with covariance
ellipses plotted at acoustic TOA with an arrow pointing along the acoustic path.
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Figure 2.3: Vehicle XY position estimate from the CEKF cooperative acoustic navigation
on simulated data with acoustic range and acoustic range-rate observations. The true po-
sition is plotted as a solid blue line, the CEKF position estimate is plotted as a dashed
blue line with covariance ellipses plotted at acoustic TOA with an arrow pointing along the
acoustic path.
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realizations prevents us from drawing broad conclusions based on these results alone.

Figure 2.4: Error histogram in the X- and Y-directions from the CEKF in simulation using
the kinematic model and DVL with acoustic range observations. The figure indicates the
noise statistics may not be unimodal in the X direction and may not be zero-mean in the Y
direction.

Figure 2.6 shows the XY error magnitude, i.e., the magnitude of the difference be-

tween the EKF-estimated and true XY position, for both range-only and combined range

and range-rate observations. It should be noted that all other simulated measurements were

held constant during this comparison; the only change was the addition of range-rate ob-

servations.
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Figure 2.5: Error histogram in the X- and Y-directions from the CEKF in simulation using
the kinematic model with DVL with acoustic range and acoustic range-rate observations.
The figure indicates the noise statistics may not be unimodal in the X direction and may
not be zero-mean in the Y direction, and that the addition of range-rate observations does
not appear to impact the error histogram.
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Figure 2.6: XY error magnitude versus mission time from the CEKF on simulated data
with the kinematic model and a DVL. The navigation error from the CEKF using acoustic
range-only observations is plotted in black, and the navigation error from the CEKF using
acoustic range and acoustic range-rate observations is plotted in blue. This figure indicates
that the addition of acoustic range-rate observations to acoustic range observations may not
offer a significant advantage to the performance of the CEKF using a kinematic model with
a DVL.
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For the kinematic process model described in Section 2.4 and the observation models

described in Section 2.5, the addition of range-rate observations does not appear to offer

a significant improvement in CEKF performance with a DVL on this simulated survey

mission when utilizing high-accuracy velocity and attitude sensors and reasonable range

and range-rate noise statistics.

2.6.2 Results without utilizing a DVL

In this preliminary study, we utilized numerical simulations to investigate the effect of

the range-rate observation on the performance of the centralized extended Kalman filter

(CEKF) cooperative navigation algorithm described in Section 2.3.

We computed simulated vehicle and ship trajectories and simulated sensor data for each

of the navigation sensors by generating simulated measurements with the measurement-

noise characteristics outlined in Table 2.2. As discussed later in this section, the sensor

for attitude and angular rate reported in Table 2.2 and used in these simulation results is

unrealistically accurate, and the navigation performance of the CEKF using the kinematic

model without a DVL appears to depend on the accuracy of the attitude sensor.

In the simulation presented here, the vehicle conducts a simulated survey mission of

ten 1 km track lines spaced 100 m apart at a velocity of 1 m/s and a depth of 3 m. The ship

circles continuously on a 800 m radius at a velocity of 2 m/s broadcasting acoustic packets

every 10 seconds. The speed of sound was assumed constant at 1500 m/s.

Figure 2.7 shows the true and estimated XY vehicle position from the CEKF utilizing
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Table 2.2: Vehicle state measurement sources, resolutions, and accuracies

Measurement

State Source Update Rate Std Dev

XY Trans modem 10 s variable (range)

0.1m/s (range rate)

Z Trans Paroscientific 7 Hz 6 cm

Heading OCTANS 3 Hz 0.10◦

Pitch, Roll OCTANS 3 Hz 0.05◦

Ang Vel OCTANS 3 Hz 0.4-0.6◦/s

acoustic range measurements with the filter’s covariance plotted every 60 s. Figure 2.8

shows the true and estimated two-dimensional vehicle position from the CEKF utilizing

acoustic range and range-rate measurements with the filter’s covariance plotted every 60 s.

In both figures, the arrows point from the vehicle to the ship with the length scaled by the

angle of the acoustic path from vertical.

Figures 2.9 and 2.10 show histograms of the estimation error (i.e., the difference be-

tween the estimated vehicle position and the true vehicle position) in the X- and Y-directions.

These histograms indicate the X- and Y- estimation errors of the CEKF are approximately

zero-mean and Gaussian.

Figure 2.11 shows the XY error magnitude, i.e., the magnitude of the difference be-

tween the EKF-estimated and true XY position, for both range-only and combined range
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Figure 2.7: XY vehicle position estimate from the CEKF on simulated data using the kine-
matic model and no DVL with a high-accuracy attitude and angular-rate sensor using acous-
tic range only observations. The CEKF using a kinematic model without a DVL exhibits
poor performance and even instability in simulation when the vehicle is equipped with an
attitude sensor typical of low-cost UVs.
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Figure 2.8: XY vehicle position estimate from the CEKF on simulated data using the
kinematic model and no DVL with a high-accuracy attitude and angular-rate sensor using
acoustic range and acoustic range-rate observations. This figure indicates that the addition
of range-rate observations may not significantly improve the performance of the CEKF.
As with the previous figure, the CEKF using a kinematic model without a DVL exhibits
poor performance and even instability in simulation when the vehicle is equipped with an
attitude sensor typical of low-cost UVs.
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Figure 2.9: Error histogram in the X- and Y-directions from the CEKF using kinematic
model without DVL and high-end attitude and angular-rate sensor with acoustic range-only
observations. This figure indicates that the error statistics are approximately zero-mean and
Gaussian.
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Figure 2.10: Error histogram in the X- and Y-directions from the CEKF using kinematic
model without DVL and high-end attitude and angular-rate sensor with acoustic range and
acoustic range-rate observations. This figure indicates that the error statistics are approxi-
mately zero-mean and Gaussian.
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and range-rate observations. It should be noted that all other simulated measurements were

held constant during this comparison; the only change was the addition of range-rate ob-

servations.

For the kinematic process model described in Section 2.4 and the observation models

described in Section 2.5, the addition of range-rate observations does not appear to offer a

significant improvement in CEKF performance in the absence of a DVL on this simulated

survey mission when utilizing high-accuracy attitude and depth sensors with reasonable

range and range-rate noise statistics.

We investigated in simulation the performance of this cooperative navigation approach

for the case when the underwater vehicle has degraded range measurements. Poor acoustic

range measurements could be caused by inaccuracies in the speed of sound characteriza-

tion, timing errors in the precision clocks, or the lack of precision clocks altogether. Figure

2.12 shows the XY error magnitude for both range-only and combined range and range-rate

observations for noisy range measurements. For the noise statistics and geometry reported

here, the addition of range-rate observations appears to offer modest improvements in the

steady-state response and a significantly smaller error in the transient response of CEKF

compared to range-only navigation.

Additionally, we considered the situation where the CEKF was subject to an initializa-

tion error on the order of 150 m. For the cases we examined, the addition of range-rate

observations did not appear to significantly improve the convergence time, transient re-

sponse, or steady-state error of the CEKF.
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Figure 2.11: XY error magnitude of the CEKF on simulated data using the kinematic model
and a high-accuracy attitude and angular-rate sensor without a DVL with acoustic range-
only and acoustic range-rate observations as a function of mission time. The navigation
error of the CEKF using range-only observations is plotted in black, and the navigation er-
ror of the CEKF using range-only observations is plotted in blue. As noted previously, the
CEKF goes unstable with a kinematic model and no DVL when the UV is equipped with an
attitude sensor typically available on a low-cost UV, and these results are only valid when
using a high-end attitude and angular-rate sensor that would typically be too large and ex-
pensive for a low-cost UV operating without a DVL. The noise statistics for the acoustic
measurements used in this figure are σrng = 1 m and σRR = 0.1 m/s, which represents the
typical accuracy of these measurements. This figure indicates that the addition of acous-
tic range-rate observations to acoustic range observations does not appear to significantly
improve the performance of the CEKF utilizing a kinematic model with a high-accuracy
attitude and angular-rate sensor without a DVL.
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Figure 2.12: XY error magnitude of the CEKF on simulated data using the kinematic model
and a high-accuracy attitude and angular-rate sensor without a DVL with acoustic range-
only and acoustic range-rate observations as a function of mission time. The navigation
error of the CEKF using range-only observations is plotted in black, and the navigation er-
ror of the CEKF using range-only observations is plotted in blue. As noted previously, the
CEKF goes unstable with a kinematic model and no DVL when the UV is equipped with an
attitude sensor typically available on a low-cost UV, and these results are only valid when
using a high-end attitude and angular-rate sensor that would typically be too large and ex-
pensive for a low-cost UV operating without a DVL. The noise statistics for the acoustic
measurements used in this figure are σrng = 20 m and σRR = 0.1 m/s, which represent
poor acoustic range measurements and accurate acoustic range-rate measurements. There
are several realistic scenarios that could result in poor range measurements without affect-
ing the range-rate measurements, such as inaccurate or poorly synchronized clocks or bad
estimates of the speed of sound in water. This figure indicates that the addition of acous-
tic range-rate observations to acoustic range observations may improve the convergence
time of the CEKF algorithm utilizing a kinematic model with a high-accuracy attitude and
angular-rate sensor without a DVL when the acoustic range measurements are poor.
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Note that these results are for a UV equipped with a high-end fiber optic gyrocompass

(FOG), which is exceptionally accurate, as shown in Table 2.2. However, such an instru-

ment would be unreasonable to install on a low-cost, torpedo-shaped UV for reasons of

cost, size, and power.

We attempted to investigate the situation when the UV was not equipped with a high-

end gyroscope providing extremely accurate attitude and angular-rate measurements, but

instead equipped with a low-end 3-axis compass providing attitude measurements with a

standard deviation of 1◦ in roll, pitch, and heading. However, we discovered the CEKF

utilizing a kinematic model and a low-end compass can go unstable in the absence of DVL

measurements. This instability and poor performance of the CEKF utilizing a kinematic

model with a low-end compass and no DVL are shown in the numerical simulation and

experimental results reported in Chapter 3, specifically Figure 3.1 and Figure 3.5. We con-

jecture this instability is caused by the constant-velocity kinematic process model. The

problem of cooperative acoustic navigation of low-cost UVs without a DVL using a dy-

namic process model is the subject of Chapter 3.

2.7 Summary

This chapter reviews the CEKF formulation of cooperative acoustic navigation, first

presented in [84], including the state description, kinematic process models, and observa-

tion models. An observation model for acoustic range-rate measurements was developed.
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The results presented in Section 2.6 show that the addition of range-rate observations

to acoustic range observations does not appear to significantly improve the convergence

time, transient response, or steady-state error of the CEKF with or without a DVL. We

investigated the situation when the acoustic range measurements are poor but the acoustic

range-rate measurements are still valid and concluded that range-rate observations may

offer modest improvements in the steady-state response and a significantly smaller error in

the transient response of CEKF compared to range-only navigation in this scenario.

We also observed instability of the CEKF when utilizing the kinematic UV process

model with a low-end attitude sensor and no DVL. We conjecture this instability is caused

by the constant-velocity kinematic process model, motivating the use of a dynamic UV

process model in the CEKF, which is reported in Chapter 3.
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Chapter 3

Cooperative Acoustic Navigation with a

Dynamic UV Process Model

This chapter reports the development and simulation plus experimental evaluation of a

6 DOF, second-order nonlinear dynamic UV model for use in the CEKF without a Doppler

velocity log. We used JHU’s Ocean Server Iver3 AUV (L3 OceanServer, Fall River, MA,

USA) to conduct the experimental evaluation.

The idea of using a dynamic process model was motivated by the results in Section

2.6 where we observed poor performance and even instability of the CEKF simulation in

certain geometries between the ship and submerged vehicle when using a kinematic model

with a low-accuracy attitude sensor without velocity corrections from a DVL.

This chapter is organized as follows:

Section 3.1 details a commonly-used dynamic model for UV motion and describes the
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particular structure of the parameters used in the results section.

Section 3.2 reports simulation results (3.2.1) and experimental results (3.2.2). Exper-

imental data were collected with the JHU Iver3 AUV deployed in the Chesapeake Bay.

There appears to be good agreement between simulation and experimental data, which

provides some level of validation of the simulation results.

3.1 Dynamic Model

This section reports the second-order dynamic process model used for cooperative

acoustic navigation with out a DVL. The dynamical process model described herein is

for a generic UV with diagonal mass and drag matrices; for the control inputs described

in 3.1.2.1, we assume the vehicle is torpedo-shaped AUV with a propeller and control

surfaces at the aft end. We chose to use diagonal mass and drag matrices because the JHU

Iver3 AUV is roughly symmetric about each of the principal axes; the force (hydrodynamic

lift and drag) from the fins and propeller are modeled separately so their effect should not

considered in the mass or drag matrices.

Additionally, the Iver3 AUV is a torpedo-shaped vehicle and therefore experiences min-

imal coupling between DOF during forward flight.

The dynamic model of submerged UV motion presented herein applies only when the

UV is fully submerged; the model does not account for effects caused by the water’s free

surface.
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3.1.1 State Description

We utilize the same state description detailed in Section 2.3.2, with the addition of ξ as

the vector of UV control inputs. For a torpedo-shaped vehicle with k propellers and i aft

control surfaces, this is

ξ =

∣∣∣∣∣∣∣∣
ωpk

δi

∣∣∣∣∣∣∣∣ ∈ Rk+i, (3.1)

where ωpk is angular velocity of the kth propeller and δi is the commanded angle of the ith

fin.

3.1.2 Dynamic Process Model

The form of the second-order, nonlinear dynamics for an UV is well understood and

has been since the 1950s [72]. Several sources develop the equations from first principles,

including [24, 58].

Mv̇ + C(v)v +D(v)v + G(ϕ) = τ(ϕ, v, ξ), (3.2)

where v ∈ IR6 is a vector containing the linear and angular body velocity, v = |v1v2v3v4v5v6|T .

For convenience, we define the body linear velocity ν = |v1v2v3|T ∈ IR3 and the body an-

gular velocity ω = |v4v5v6|T ∈ IR3. v̇ ∈ IR6 is the time derivative of body velocity,

v̇ = |v̇1v̇2v̇3v̇4v̇5v̇6|T . The vector ϕ is the body attitude vector.

We combine the kinematics, (2.23) and (3.2) in state-space representation for use in the
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CEKF

ẋv =

0 K(ϕ)

0 −M−1
(
D(xv) + C(M,xv)

)
xv +

∣∣∣∣∣∣∣∣
0

M−1
(
τ(xv, ξ)− G(xv)

)
∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
0

I

∣∣∣∣∣∣∣∣wv,
(3.3)

where

• K(ϕ) : R3 → R6×6 is the kinematics matrix, as defined in Section 2.4,

• M ∈ R6×6 is the positive definite symmetric (PDS) inertia matrix,

• D(xv) : R6 → R6×6 is the negative definite symmetric (NDS) hydrodynamic drag

matrix,

• C(xv) : R6 → R6×6 is the centripetal and Coriolis matrix,

• τ(xv, ξ) : R6 × Rk+i → R6 is a vector of the forces and moments from the control

inputs,

• G(ϕ) : R3 → R6 is a vector of restoring forces and moments, and

• wv ∼ N (0, Qv) and ws ∼ N (0, Qs) are zero-mean Gaussian process noise terms.

The inertia matrix, M , is a positive definite symmetric (PDS) matrix composed of the

58



CHAPTER 3. COOPERATIVE ACOUSTIC NAVIGATION WITH A DYNAMIC UV
PROCESS MODEL

sum of the rigid-body inertia and added inertia.

M = MRB +MA =

M11 M12

M21 M22

 (3.4)

= diag(m,m,m, Ixx, Iyy, Izz) + diag(Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ) (3.5)

= diag(m11,m22,m33,m44,m55,m66) (3.6)

The drag matrix, D(xv), is a negative definite symmetric (NDS) matrix composed of

the product of the quadratic drag coefficients and their respective velocities, i.e.,

D(xv) =− diag(Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p|p|,Mq|q|q|, Nr|r|r|)

= diag(|v|) diag
(

[d11, d22, d33, d44, d55, d66]
)

(3.7)

In constructing this drag matrix, we assume that there is no coupling between DOFs, that

the vehicle is symmetric about the x, y, and z axes, and that linear drag terms have a

small effect compared to their quadratic counterparts, which is discussed in [51]. Note that

the drag matrix inherently captures the effects of what many authors refer to as body lift.

The diagonal terms d22 and d33 correspond to a body lift force in the y and z directions,

respectively.

We parameterize the Coriolis matrix C(M, v) from M as

C(M, v) =

 0 −J (M11ν +M12ω)

−J (M11ν +M12ω) −J (M21ν +M22ω)

 (3.8)

where J() is the skew-symmetric operator.
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The buoyancy vector, G(ϕ), is defined as

G(ϕ) =

∣∣∣∣∣∣∣∣
RT (ϕ)e3gcg

−J(b)RT (ϕ)ρ∇gc,

∣∣∣∣∣∣∣∣ (3.9)

where e3 =

∣∣∣∣0 0 1

∣∣∣∣T ∈ R3, gc ∈ R3 is the gravitational acceleration scalar with units of

m/s2, g = (m− ρ∇) ∈ R3 is the net buoyancy (i.e., wet weight) in kilograms, and b ∈ R3

is the vector from the center of buoyancy to the center of gravity in meters.

3.1.2.1 Control Inputs

We must define the nonlinear function that maps the vehicle’s control inputs, ξ, into

forces and moments on the vehicle. To start, we define the following frames for each fin:

• V – Vehicle frame

• F – Fin frame at commanded angle, δ, with the x-axis along the chord line of the fin

and the y-axis pointing away from the center line of the vehicle

• F0 – Fin Frame at δ = 0

• W – Frame corresponding to flow across the fin

Note that the commanded fin angle, δ, is not necessarily the fin’s angle of attack to

incident flow, α, so the F and W frames are generally not coincident. The position of the

center of pressure (CP) of the ith fin in the vehicle frame is Vpi ∈ R3 is the vector from the

vehicle’s center of gravity (CG) to the CP of the ith fin, and Vφi ∈ R is the angular position
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of the ith fin in the vehicle frame. We define the transformations between coordinate frames

of each fin as

V
FRi = V

F0
Ri

F0
F Ri ∈ R3×3 (3.10)

V
WRi = V

FRi
F
WR ∈ R3×3 (3.11)

where V
FRi is the transformation from the fin frame to the vehicle frame and V

FRi is the

transformation from the flow frame to the vehicle frame. The individual transformations

are defined as

V
F0
Ri =Rx(

Vφi) (3.12)

F0
F Ri =Ry(δi) (3.13)

F
WRi =RT

y (αi), (3.14)

where (3.12) is assumed because, for the vehicle used in Section 3.2 (and many other UVs),

the x-axis of the fin frame aligns with the x axis of the vehicle frame. The velocity of the

ith fin through the water at the fin CP in vehicle coordinates is

Vṗi = v + J(ω) Vpi. (3.15)

Next, we rotate the velocity into the fin frame F

Fṗi = V
FR

T
i
Vṗi. (3.16)

Assuming flow along the span of the airfoil does not affect the lift or drag, we use a projec-
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tion matrix to find the flow along the x and z axes

F ṗxzi =


1 0 0

0 0 0

0 0 1


F ṗi, (3.17)

from which we can find the angle of attack, α, as

αi = atan2
(
−F ṗzi
F ṗxi

)
, (3.18)

where atan2 is the four-quadrant arctangent function. The lift and drag coefficients, CL(αi)

and CD(αi), respectively, are a function of the angle of attack. We then compute the hy-

drodynamic lift and drag force

L(αi) =
1

2
ρACL(αi)||F ṗxzi||2 (3.19)

D(αi) =
1

2
ρACD(αi)||F ṗxzi||2, (3.20)

where A is the surface area of the fin. The force vector in the flow frame, W , is W f =

−
∣∣∣∣D 0 L

∣∣∣∣T . Thus, the force vector from the ith fin in the vehicle frame is

V fi = V
WRi

Wfi , (3.21)

and the force and moment vector from is

τi =

∣∣∣∣∣∣∣∣
V fi

J(Vri)
V fi

∣∣∣∣∣∣∣∣ . (3.22)

The total force and moment vector on the vehicle with a total of N control surfaces is thus

τ =
N∑
i

τi +

∣∣∣∣βpω2
p 01×5

∣∣∣∣T , (3.23)
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where βp is the propeller thrust coefficient such that

T = βpω
2
p (3.24)

is the axial thrust of the propeller. This simplified thruster model is a reasonable assump-

tion because we are modeling a ducted propeller with a high jet velocity compared to the

advance velocity of the vehicle.

3.1.3 Trackline-Following Controller

For UVs performing large-area survey missions, it is common for the operator to specify

in advance an XY “lawnmower pattern” of survey lines for the vehicle to follow while

maintaining constant depth or terrain-following in the Z-dimension. Moreover, survey-

class underwater vehicles are often underactuated and must vary their pitch and heading,

respectively, to achieve a desired depth or translational position. Thus, this problem is

not the conventional robotics trajectory-tracking problem in which the desired position

and velocity is completely parametrized a-priori as a function of time. In the simulations,

we implemented a commonly employed approach to trackline following: a proportional

controller to compute the forward thrust and a proportional derivative (PD) controller to

compute the fin angles required to follow the trackline. In the experimental data, JHU’s

Ocean Server Iver3 AUV used a proprietary controller provided by the manufacturer, with

the recorded propeller speed and four fin position.
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3.1.3.1 Error Coordinates

We define the error coordinates as

e = se − sd (3.25)

ė = ṡe − ṡd = R(ϕe)νe −R(ϕd)νd, (3.26)

where s ∈ R3 is the 3 DOF position (as defined in Section 2.3.2) and the subscript e

denotes the value estimated by the CEKF and the subscript d denotes the value desired by

the trajectory-generation algorithm.

Next, we find the unit vector along the direction of the trackline and use a projection

matrix to obtain the direction perpendicular to the trackline

uct =


0 −1 0

1 0 0

0 0 0


ṡd
||ṡd||2

. (3.27)

The crosstrack error is the inner product of the crosstrack and alongtrack unit vectors,

respectively, and the error is

dct = uTcte (3.28)

dz =

∣∣∣∣0 0 1

∣∣∣∣T e. (3.29)
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3.1.3.2 PD Controller

We use Dana Yoerger’s kappa algorithm to compute the reference pitch and heading.

ψr = ψd − κψdct (3.30)

θr = θd − κθdz, (3.31)

where κ, i.e., the angle at which the vehicle drives towards the track line, is saturated in

pitch and heading at ±30◦ and ±45◦, respectively. The rate of change of the reference

heading, ψ̇r, and the reference pitch, θ̇r, are both assumed zero.

We used a PD control law to compute desired pitch moment and yaw moment, respec-

tively

Myd = Kpy (θr − θe) +Kdy

(
θ̇r − qe

)
(3.32)

Mzd = Kp (ψr − ψe) +Kd

(
ψ̇r − re

)
(3.33)

where, as defined in Section 2.3.2, θ is the pitch, ψ is the heading, p and r are the

vehicle’s heading and pitch rate, respectively, in body coordinates, Kp is the proportional

gain, and Kd is the derivative gain.

To compute the desired thrust, we used a proportional control law on the difference

between the desired and estimated velocity, and we feed forward the total drag on the

vehicle in the x-direction, which yields

Fxd =Kp (ud − ue)−

∣∣∣∣∣∣∣∣
1

05×1

∣∣∣∣∣∣∣∣
T [(

C(v) +D(v)
)
v −

N∑
i=1

τi

]
, (3.34)
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where, again as defined in Section 2.3.2, u is the body velocity in the x direction and τi is

the sum of the fin forces, as defined in (3.22).

3.1.4 Fin Allocation Algorithm

To find the desired angle for each fin, we used a nonlinear constrained optimization

algorithm to minimize the difference between the actual and desired moment on the vehi-

cle. For simplicity, we assumed the desired pitch and yaw moments were decoupled from

roll, i.e., that the vertical fins influence only the yaw moment and the horizontal fins influ-

ence only the pitch moment. Note that this assumption was only used for determining the

desired fin angles; the achieved fin moment was computed for each fin individually using

the current state, as described in Section 3.1.2.1. This simple algorithm has the obvious

disadvantage that if the vehicle is substantially rolled while turning, the horizontal fins will

contribute to the yaw moment, but the fin allocation algorithm will not use them to achieve

the desired yaw moment. We did implement and evaluate an algorithm for fin allocation

in 6 DOF, but we found there is a substantial penalty in computational efficiency. The

run time for simulations with 6 DOF fin allocation was 2-10x longer with only marginally

better performance than the decoupled approach described previously. For this reason, we

chose to employ the decoupled approach in the simulation results reports in Section 3.2.1.
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3.2 Results for Cooperative Acoustic Navigation

with a Dynamic UV Model

This section reports results from a numerical simulation and experimental data col-

lected with the JHU Iver3 AUV operating in the Chesapeake Bay. The centralized ex-

tended Kalman filter (CEKF) formulation of cooperative acoustic navigation was used to

post-process the simulated and experimental data. Comparisons between the kinematic

plant-process model and dynamic plant-process model without a DVL are drawn.

3.2.1 Simulation Results: Cooperative Acoustic Naviga-

tion with a Dynamic UV Process Model Utilizing Acous-

tic Range Only Observations

First, we utilized a numerical simulation to investigate the effect of the dynamic model

on the performance of the CEKF formulation of cooperative navigation algorithm described

in Section 2.3. We simulated a submerged vehicle with feedback control following a con-

tinuous reference trajectory. We generated simulated sensor data for each of the navigation

sensors with the measurement-noise characteristics outlined in Table 3.1. These simulated

data were then post-processed with a CEKF to compare the kinematic and dynamic process

models.
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Table 3.1: Simulation measurement sources, resolutions, and accuracies for use in cooper-
ative acoustic navigation simulations

Measurement

State Source Update Rate Std Dev

XY Trans modem 30 s 1 m (range)

0.1m/s (range rate)

Z Trans Paroscientific 7 Hz 6 cm

Heading, Pitch, Roll Iver3 compass 3 Hz 1◦

Trans 300 kHz 5 Hz 0.01 m/s

Velocity RDI DVL (when used) (when used)

In the simulation presented here, the vehicle conducted a simulated survey mission of

ten 1 km tracklines spaced 100 m apart at a velocity of 1 m/s and a constant depth of 3 m.

The ship circled continuously on a 600 m radius at a velocity of 2 m/s broadcasting the

first acoustic packet after 60 s, and then regularly at 30 s intervals. The speed of sound was

assumed constant at 1500 m/s.

Figures 3.1 and 3.2 show the true and estimated XY vehicle position with the kinematic

model and the dynamic model, respectively, with the filter’s covariance plotted at every

acoustic update. The arrows point from the vehicle to the ship along acoustic path with the

length scaled by the angle from vertical.

Fig. 3.3 shows the XY error magnitude, i.e., the magnitude of the difference between

the EKF-estimated and true position, for the dynamic model without the DVL, the kine-
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Figure 3.1: Vehicle XY Position from CEKF cooperative acoustic navigation algorithm
using the kinematic model without a DVL and noise sensors similar to that of the JHU
Iver3 AUV. Note that the position estimate is very poor with the kinematic model and no
DVL when using an attitude sensor typically available on low-cost UVs.
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Figure 3.2: Vehicle XY Position from CEKF cooperative acoustic navigation algorithm
using the dynamic model without a DVL and noise sensors similar to that of the JHU
Iver3 AUV. When the vehicle does not have access to a DVL and is using an attitude sensor
typically available on low-cost UVs, the CEKF with the dynamic model performs quite well
and does not exhibit the instabilities seen with the CEKF utilizing the kinematic model.
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matic model without the DVL, the kinematic model with the DVL, and the vehicle dead

reckoning (DR) with the compass and DVL. All initial conditions and simulated measure-

ments, when used, were held constant in this comparison.

For the noise statistics and geometry reported herein, and the observation models de-

scribed in Section 2.5, the dynamic UV model appears to offer a significant improvement

in CEKF navigation performance in the absence of a DVL on this simulated survey mission

when utilizing attitude and depth sensors with realistic noise statistics. In fact, the simula-

tion suggested that the navigational accuracy of the CEKF with dynamic model may even

perform on par with that of the CEKF with kinematic model and DVL in the absence of

ambient water currents. However, the simulation does not account for various real-world

phenomena, so we validated the simulation by collecting experimental data.
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Figure 3.3: Simulated XY Error magnitude versus mission time. The error with the kine-
matic model with the DVL and the dynamic model without the DVL is quite small in
comparison, less than 5 meters, so it is hard to see those two signals. We conclude that
the dynamic model without a DVL offers a significant advantage over the kinematic model
without a DVL and it may outperform the DR solution, especially as mission length in-
creases. Note that this simulation was conducted without environmental disturbances, such
as water currents.
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3.2.2 Experimental Results: Cooperative Acoustic Navi-

gation with a Dynamic UV Process Model Utilizing

Acoustic Range Only Observations

Following the encouraging results of the simulation, we conducted a set of preliminary

experiments to evaluate this navigation approach in actual practice with JHU’s Iver3 AUV

(L3 OceanServer, Fall River, MA, USA), shown in Fig. 3.4, in the Chesapeake Bay.

This section reports experimental results for cooperative acoustic navigation comparing

the navigation performance of the CEKF utilizing a dynamic UV process model without a

DVL to the kinematic process model with and without a DVL.

OceanServer

OPTIONAL SENSORS & ACCESSORIES

Sonar side scan Edgetech 2205: Dual-frequency 400/900 kHz or 600/1600 kHz

Klein UUV-3500: Dual-frequency 455/900 kHz 

Tritech Starfi sh: Single-frequency 450 kHz

Interferometric 
co-registered sonar

Edgetech 2205B: Swath bathymetry 600 kHz

Klein UUV-3500B: Swath bathymetry 455 kHz

Inertial Navigation System
(INS)

INS based on iXBlue PHINS Compact C3 fi ber-optic gyroscope

CT sensor Conductivity and temperature (NBOSI)

SVP sensor Sound velocity probe (AML)

Communications Surface: 2.4 GHz telemetry radio for handheld remote and/or Iridium with cloud-based tracking software

Subsurface: Acoustic modem: (Benthos or WHOI)

Topside deck box Surface equipment for subsurface comms with Benthos Acoustic Modem option

Handheld remote 
controller

Touch screen based remote with joystick for surface control (300 + meter range)

GoPro-based camera 
system

Still or video; includes LED lighting and processing software

Acoustic pinger Underwater locater beacon

Rugged transit case With custom foam inserts for Iver3, includes collapsible AUV fi eld stand

Magnetometer Support for towed Marine Magnetics Explorer

Field Rugged Operator 
Console

Getac for mission planning, operating and data viewing

GPS compass stand High-accuracy, land-based AUV calibration tool

Object avoidance 
sounder

Imagenex 852 forward-looking echo sounder in AUV bow

Launch & recovery device Capture cocoon

Other options Iver3 spares kit, swappable battery section with tail

IVER3

L3 OceanServer

275 Martine Street

Fall River, MA 02723

Tel: 508.678.0550

Email: sales@ocean-server.com

www.iver-auv.com

www.L3T.com

SVP – Additional 
Sensors

External Charge Port with 
USB 2.0 Data Support 

Magnetic Seal Swappable 
Battery Section

Side Scan and 
Interferometric Bathy

DVL/ADCP Object 
Avoidance

GPS/Wi-Fi, LEDs 

This document consists of basic marketing information that is not defi ned as controlled technology under EAR Part 772. Specifi cations subject to change without notice. Call for latest revision. All brand names 

and product names referenced are trademarks, registered trademarks, or trade names of their respective holders.

AP_003

(a) Iver3 general diagram (Image Credit: L3

OceanServer).

(b) JHU Iver3-3026 about to be deployed from a small

boat.

Figure 3.4: The Iver3 AUV is an underactuated AUV whose control authority is provided
by the commanded rotational speed of its ducted propellor and commanded angles for the
four red/yellow fins, all located at the stern of the vehicle. The 100 m depth-rated Iver3
is one of a number of commercially available small AUVs designed for oceanographic
survey operations including biological, physical-oceanographic, and hydrographic survey
missions.
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3.2.2.1 Experiment Particulars

Table 3.2 lists the noise characteristics of the sensors on board the JHU Iver3 AUV.

We also used the Iver3-reported commanded motor speed and commanded fin angles in

the model described in Section 3.1. For this experiment, the Iver3 was programmed to

run a lawnmower pattern with six 300 m legs spaced 50 m at a 2.5 m depth traveling at

an advance velocity of 1.3 m/s. The surface ship and the Iver3 AUV were each equipped

with 25 kHz WHOI Micromodems [70], each equipped with precision Microsemi Quantum

chip-scale atomic clocks (Microsemi Corporation, Aliso Viejo, CA, USA) and a precision-

timing GPS units to synchronize the clocks to GPS UTC time. Vehicle and ship modems

were programmed to repeat the 30-second time-division multiple access (TDMA) cycle

listed in Table 3.3. The realtime location of the surface ship’s modem transducer was

instrumented with a GPS unit located vertically above the acoustic modem’s transducer.

Table 3.2: JHU Iver3 measurement sources, resolutions, and accuracies used in the CEKF
post-processing of experimental data

Measurement

State Source Update Rate Std Dev

XY Trans modem 60 s 1 m

Z Trans OceanServer 1 Hz 0.1 m

Hdg, Pitch, Roll OceanServer 1 Hz 1◦

Trans 300 kHz 5 Hz 0.01 m/s

Velocity RDI DVL (when used) (when used)
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Table 3.3: Acoustic Modem TDMA Cycle

Time Action

00 s OWTT data packet+range uplink AUV to Ship

05 s OWTT data packet+range downlink Ship to AUV

10 s OWTT data packet+range downlink Ship to AUV

15 s OWTT data packet+range downlink Ship to AUV

20 s TWTT range ping AUV to Ship, with Ship to AUV reply

30 s Begin new TDMA cycle

3.2.3 Dynamic Model Parameters

We tuned the parameters for the dynamic model by hand so the translational velocities

of the model would match the translational velocities reported by the DVL, especially in the

x-direction. We report principled methods for estimating the dynamic-model parameters in

Chapter 4.

3.2.3.1 Experimental Results

Fig. 3.6 shows the vehicle and ship position estimates from the CEKF algorithm with

the dynamic UV process model without the DVL. Fig. 3.5 shows the vehicle and ship posi-

tion estimates from the CEKF algorithm with the purely kinematic process model without
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the DVL. Fig. 3.7 shows the estimated vehicle and ship position for the “gold standard”

case of a vehicle equipped with DVL and where the CEKF employed a kinematic process

model. For these three plots, the solid line is the waypoint trackline the vehicle attempted

to follow, the dashed line is the CEKF position estimate of the Iver3 AUV, the dotted line

is the CEKF position estimate of the surface ship, and the red triangle is the first valid GPS

fix after the vehicle surfaced.

The vehicle position estimate arising from the kinematic process model without a DVL

is extremely poor, while the position estimate utilizing the dynamic process model without

a DVL is similar to the position estimate obtained by the “gold standard” approach of

employing a DVL and a kinematic process model.

We note that the CEKF estimate of the submerged vehicle’s position using utilizing

either the kinematic process model with DVL and dynamic process model without the DVL

diverges from the trackline. We believe this divergence occurs because the vehicle’s true

position diverges from the trackline, as evidenced by the position of the CEKF estimate

being coincident with the first valid GPS fix, shown in Fig. 3.7.

Given that this is an actual experiment with a submerged vehicle (no GPS), we do not

have access to the true vehicle positions and are therefore unable to compare the naviga-

tion error—i.e., the difference between the true XY position of the vehicle and the CEKF

estimate—of the kinematic model with DVL to that of the dynamic model without the

DVL. Fig. 3.8 shows the magnitude of the difference of the XY position between the

CEKF utilizing the dynamic model without a DVL and the CEKF utilizing the kinematic

76



CHAPTER 3. COOPERATIVE ACOUSTIC NAVIGATION WITH A DYNAMIC UV
PROCESS MODEL

1400 1500 1600 1700 1800 1900 2000

East [m]

1350

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

N
o
rt

h
 [
m

]

Wpt Track

EKF Est

Ship Est

Final GPS

Figure 3.5: Ship and Vehicle XY position estimate from the CEKF without a DVL using
the kinematic process model on experimental data collected with the JHU Iver3 AUV in
the Chesapeake Bay. The dotted black line is the CEKF estimate of the ship track using
GPS, and the dashed blue line is the CEKF estimate in post-processing. The Iver3 AUV
attempted to follow a waypoint track, plotted as a solid black line, using its internal DR
position estimate and a proprietary closed-loop controller. We conclude that the CEKF
goes unstable with a kinematic model in the absence of frequent, high-accuracy velocity
observations from a DVL when the vehicle is equipped with an attitude sensor typical of
low-cost UVs such as the Iver3 AUV.
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Figure 3.6: Ship and Vehicle XY Position Estimate from the CEKF without a DVL using
the dynamic process model on experimental data collected with the JHU Iver3 AUV in
the Chesapeake Bay. The dotted black line is the CEKF estimate of the ship track using
GPS, and the dashed blue line is the CEKF estimate in post-processing. The Iver3 AUV
attempted to follow a waypoint track, plotted as a solid black line, using its internal DR
position estimate and a proprietary closed-loop controller. The first valid GPS fix upon
surfacing is plotted as a red triangle. When the vehicle is equipped with sensors typical of
low-cost UVs such as the Iver3 AUV, the CEKF estimate using a dynamic model without
a DVL offers a stable position estimate, in contrast to the kinematic model without a DVL.
The true position track is not the solid line, and we believe the vehicle’s actual location was
not on the trackline. As a measure of validity, the CEKF position estimate is coincident
with the Iver3 AUV GPS fix upon surfacing.
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model with a DVL, as well as the magnitude of the difference of the XY position between

the Iver3-reported dead-reckoned (DR) track and the CEKF utilizing the kinematic model

with a DVL. We omitted the CEKF estimate using kinematic model without a DVL for

reasons of plot scale and readability.

3.2.4 Experimental Results: Cooperative Acoustic Navi-

gation with a Dynamic UV Process Model Utilizing

Acoustic Range and Acoustic Range-Rate Observa-

tions

In Section 2.6, we concluded that the addition of range-rate observations to acoustic

range observations does not significantly improve the accuracy of the CEKF algorithm

with a kinematic process model, either with a DVL (2.6.1) or without a DVL (2.6.2). In this

section, we revisit the effect of adding acoustic range-rate observations to acoustic range

observations on the navigation solution of the CEKF algorithm with a dynamic process

model without a DVL.

As in Section 3.2.2, because this is an actual experiment with a submerged vehicle (no

GPS), we do not have access to the true vehicle positions via a separate external positioning

system, such as LBL, so we are unable to calculate the actual navigation error (i.e., the

magnitude of the distance to the true XY vehicle position) of the CEKF. Instead, we use
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Figure 3.7: Ship and Vehicle XY Position Estimate from the CEKF with a DVL using
the kinematic process model on experimental data collected with the JHU Iver3 AUV in
the Chesapeake Bay. The dotted black line is the CEKF estimate of the ship track using
GPS, and the dashed blue line is the CEKF estimate in post-processing. The Iver3 AUV
attempted to follow a waypoint track, plotted as a solid black line, using its internal DR
position estimate and a proprietary closed-loop controller. The first valid GPS fix upon
surfacing is plotted as a red triangle. When the vehicle is equipped with sensors typical of
low-cost UVs such as the Iver3 AUV, the CEKF estimate using a dynamic model without
a DVL offers a stable position estimate, in contrast to the kinematic model without a DVL.
The true position track is not the solid line, and we believe the vehicle’s actual location was
not on the trackline. As a measure of validity, the CEKF position estimate is coincident
with the Iver3 AUV GPS fix upon surfacing.
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Figure 3.8: XY Position Error Magnitude from CEKF with kinematic model and DVL.
We do not have access to true position underwater, so we use the difference from the pre-
vious gold standard which is the CEKF estimate using the kinematic model with the DVL.
For scale and readability reasons, the unstable CEKF estimate using the kinematic model
without the DVL is omitted from the figure. This figure shows that the CEKF position
estimate with a dynamic model without a DVL performs quite well and stays within 8 m of
the CEKF position estimate using the kinematic model with a DVL. The figure also illus-
trates the advantage of cooperative acoustic navigation in providing bounded-error position
estimates, even without a DVL, compared to dead reckoning.

81



CHAPTER 3. COOPERATIVE ACOUSTIC NAVIGATION WITH A DYNAMIC UV
PROCESS MODEL

the previous “gold standard” of the CEKF utilizing the kinematic model with a DVL as the

“truth” because it is the closest signal we have to truth and it is independent of the dynamic

model; henceforth all mentions of navigation error are relative to this standard.

Fig. 3.9 compares the navigation error of the CEKF utilizing the dynamic model with-

out a DVL with and without the range-rate observations. Fig. 3.9 indicates that the addition

of range-rate observations adds little value in the presence of accurate range observations

and a dynamic process model with accurate model coefficients, low process noise, and

minimal external disturbances, namely water currents.

Similar results are achieved with variations on the process noise and model parameters.

Fig. 3.10 reports the error with the process noise doubled, and Fig. 3.11 reports the error

with the mass and quadratic drag coefficients accurate to within 95% of the original val-

ues. Note that the magnitude of the ambient water-current velocity was small during these

reported experiments.

We note the following observations:

First, the CEKF covariance associated with the ship velocity must be lower than the

UV’s velocity covariance, otherwise the relative-velocity correction is applied to the surface

vessel’s velocity, rather than the submerged vehicle’s velocity.

Second, and perhaps most importantly, the velocity covariance of a purely kinematic

model will, in absence of observations to correct position and/or velocity errors, grow un-

bounded with time, but the velocity covariance of a dynamical model with quadratic drag,

(3.2), will converge to a steady-state value that depends on the process noise. Infrequent
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Figure 3.9: XY Position Error Magnitude from the CEKF with dynamic model and no
DVL using experimental data collected with the Iver3 AUV. The purpose of this graph
is to compare the position estimate using acoustic range and range-rate to the CEKF us-
ing acoustic range-only observations. The two signals are indistinguishable, indicating the
addition of acoustic range-rate observations to acoustic range observations does not sig-
nificantly improve the navigation solution from the CEKF with a dynamic model without
velocity observations from a DVL.
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Figure 3.10: XY Position Error Magnitude from the CEKF with dynamic model utilizing
high process noise and no DVL using experimental data collected with the Iver3 AUV. The
purpose of this graph is to compare the position estimate using acoustic range and range-
rate to thta using acoustic range-only observations in the context of high process noise in the
CEKF. The two signals are indistinguishable, indicating the addition of acoustic range-rate
observations to acoustic range observations does not significantly improve the navigation
solution from the CEKF with a dynamic model using a high process-noise value without
velocity observations from a DVL.
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Figure 3.11: XY Position Error Magnitude from the CEKF with dynamic model with
model coefficients that have a random error with a standard deviation of 5% of the
true model-parameter value and no DVL using experimental data collected with the Iver3
AUV. The purpose of this graph is to compare the position estimate using acoustic range
and range-rate to the CEKF using acoustic range-only observations in the context of high
process noise in the CEKF. The two signals are indistinguishable, indicating the addition
of acoustic range-rate observations to acoustic range observations does not significantly
improve the navigation solution from the CEKF with a dynamic model using degraded
model coefficients without velocity observations from a DVL. A second key point is how
poor the error is with minor model inaccuracies.
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velocity corrections will have little net effect—velocity observations with a measurement

covariance lower than the velocity covariance that are applied infrequently will shrink the

covariance at instant the measurement is applied but the velocity covariance rapidly returns

to its steady-state value. However, when operating in areas with high ambient water cur-

rents, it is possible that range-rate observations may help with the estimation of a velocity-

bias term, if such a term were included in the CEKF state. Estimating ambient water

currents as a bias term included in the CEKF state is a potential area for future research.

3.3 Summary

This chapter detailed a second-order nonlinear dynamical model of UVs, including a

development of the nonlinear actuation function to map the commanded fin angle and pro-

peller speed to an overall force-moment vector on the UV, for use in cooperative acoustic

navigation of UVs without a DVL.

Simulation and experimental results were reported utilizing the JHU Iver3 AUV. The

results suggest that a dynamic model without a DVL outperforms a kinematic model with-

out a DVL and may outperform DVL-based dead reckoning when the magnitude of the

water-current velocity is small. The experimental results appear to corroborate the simula-

tion effort, lending validity to the simulation for future research.

We note, however, that the accuracy of the CEKF navigation solution utilizing the dy-

namic UV model without a DVL depends entirely on the accuracy of the dynamical model
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to estimate the vehicle’s velocity, particularly in the forward direction. In the absence of

external velocity corrections from a DVL, the CEKF relies entirely on the dynamic UV

model for velocity predictions. The ability of the dynamic process model to predict the

vehicle’s velocity depends entirely on the model structure and model parameters. Chapter

4 details two novel approaches to parameter estimation for UV dynamical process models.

Finally, we reported an experimental evaluation of the effect of adding (relative) veloc-

ity corrections in the form of acoustic range-rate observations to the CEKF when utilizing

a dynamic model without a DVL. We concluded that the addition of infrequent velocity

observations, such as those provided by acoustic range rate, does not appear to improve the

performance of the CEKF algorithm with a dynamic model.
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Chapter 4

Parameter Identification of Dynamic

Process Models for Underactuated UVs

Current approaches to model-based navigation, model-based control, and model-based

fault detection for UVs are limited by accurate knowledge of the parameters for the dy-

namic process model employed by the model-based algorithms. While the general form

of UV dynamical plant models has been understood since the 1950s [72], the dynamic-

model parameters—i.e., parameters for terms including mass, added mass, hydrodynamic

drag, buoyancy, and control actuators—are impossible to determine analytically and are

not provided by UV manufacturers. Thus, these terms must be determined experimentally.

Our goal is a low-cost, low-effort approach to parameter estimation that can be applied

whenever the vehicle configuration is substantially modified. Thus, we attempt to estimate

UV parameters from data obtained in full-scale experimental trials of UVs in controlled
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motion.

Identifying dynamic-model parameters from data obtained in controlled free motion

trials requires the UV operate under a control law: either open-loop control or closed-loop

control. Closed-loop control has the advantage that the UV will not go unstable (e.g.,

tumble) and operates in a known trajectory, but 1) it requires a closed-loop controller to be

implemented, 2) the UV motion is more gentle, which may not be sufficiently exciting in

all DOF, and 3) the control inputs may be saturated, which can indirectly cause problems

for the parameter identification algorithms.

Open-loop control, such as a fin angles that are sum of sinusoids utilized here in simu-

lation, has the advantage that more UV motion can be generated, which can be helpful for

parameter estimation, and the control inputs are smooth, but has the disadvantage that the

vehicle might tumble, run aground, or breach the surface.

For experimental work, which is beyond the scope of this thesis, we would start with

the JHU Iver3 AUV using the manufacturer’s proprietary closed-loop controller from the

frontseat CPU. If there was insufficient motion for the parameters to be uniquely observ-

able, we would try open-loop control by commanding fin angles and propeller rotational

speed from the backseat CPU.

Specifically, this chapter addresses parameter identification for UV plants of the form

3.2 rewritten as

0 = Mv̇ + C(v)v +D(v)v + G(ϕ)− τ(ϕ, v, ξ), (4.1)

This chapter is organized as follows:
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Section 4.1 reviews the literature on parameter identification of UV in controlled free

motion.

Section 4.2 reports noise statistics on the instruments available on the JHU Iver3 AUV.

Section 4.3 reports a novel least-squares based algorithm, termed nullspace-based least

squares (NBLS), for identifying simultaneously the plant parameters and the actuator pa-

rameters for second-order, underactuated, rigid-body UV plants in 6 DOF. Simulation

results, including a noise sensitivity analysis, are reported. Anecdotal simulation results ap-

plying an estimated parameter vector to cooperative acoustic navigation are also included.

This work was first published in [31]. Coauthor Tyler Paine contributed to the develop-

ment of the NBLS algorithm. We collaborated on the mathematical formulation of the

NBLS algorithm, and he took the lead on coding the NBLS algorithm, utilized to obtain

the simulation results reported in [31].

Section 4.4 reports an extension to the AID algorithm for identifying simultaneously the

plant parameters and the actuator parameters for second-order, underactuated, rigid-body

UV plants in 6 DOF.

The AID approach for UVs in 6 DOF was developed by Christopher McFarland with

the assumption that the control actuator parameters were known [52]. The AID algorithm

reported by McFarland was extended by Tyler Paine to include the control-actuator pa-

rameters as part of the AID state [58]. An analytical stability proof of this extension to

estimate simultaneously the plant-model parameters and control-actuator parameters in 6

DOF was reported in Paine’s masters thesis utilizing scalar gains [58]. Paine and Harris
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contributed equally to the publication of this AID extension to estimate simultaneously

the plant and control parameters with an analytic stability proof using scalar gains and a

preliminary simulation effort conducted with the forward simulation and AID done in a

loop [77]. However, preliminary anecdotal simulation efforts in post-processing the sim-

ulated data by the author indicated poor parameter convergence with scalar gains. This

thesis extends Paine’s stability proof to utilize diagonal gain matrices rather than scalar

gains. This thesis also reports simulation results in 6 DOF with realistic sensor noise, as

well as a measurement-noise sensitivity analysis.

4.1 Literature Review

Several types of identification methods for UV model parameters have been reported.

Identification methods largely fall into one of the following categories: least squares, adap-

tive estimation, Kalman filter (KF) variants, and machine learning (ML) or neural network

(NN) techniques.

Hegrenaes et al. report a constrained least-squares method in [34] for 3 DOF parameter

identification of an underactuated UV. The method simultaneously identifies the model

parameters and the control-surface parameters as defined in [72]. The authors report a

cross validation with experimental results.

Experimental parameter identification for underactuated gliders are reported by Graver

et al. in [29], but only parameters that are observable in steady glide are estimated, eliminat-
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ing the need for body-acceleration signals. Least-squares parameter identification methods

for fully actuated UVs were studied extensively in [50] and [56]. Martin and Whitcomb

in [50] report experimental identification and validation of a fully coupled 6 DOF model

of a fully actuated UV using both total least squares and ordinary least squares, but this

method requires prior knowledge of the thruster dynamics. Ridao et al. in [63] compares

experimental identification of a fully actuated, decoupled 3 DOF vehicle parameters using

least squares and a second method which involves numerical integration to avoid differen-

tiating the body velocities. However, with a sufficiently small time step, the two reported

methods appear to be mathematically equivalent and subject to the same noise and numer-

ical inaccuracies [58].

AIDs for fully-actuated multi-DOF UV plant models were first reported by Smallwood

and Whitcomb in [71], but this AID was limited to fully diagonal plant models in which the

dynamics of each degree of freedom is fully decoupled and independent from the dynamics

of other degrees of freedom. McFarland and Whitcomb in [52] report an AID for fully

coupled, fully actuated 6 DOF UV plant models which is the foundation for the extension

reported in this thesis. Neither AID requires body acceleration signals which may offer an

advantage over other parameter estimation methods such as LS approaches, all of which

require linear and angular acceleration signals. Both papers provide Lyapunov stability

proofs, and experimental results for a fully actuated UV are compared with those from the

LS method. In [57], Paine and Whitcomb reported an extension of the AID reported in [71]

to 3 DOF underactuated UV plant models, including a simulation study with Gaussian
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noise.

UV parameter identification using Kalman Filter and its variants are reported in [76]

and [66]. [76] reports an extended Kalman filter (EKF) estimation of 1 DOF dynamics

of an underactuated, torpedo-shaped body using experimental data. In [66] Sabet et al.

identify some dynamical model parameters of a 6 DOF torpedo-shaped UVs in simulation

using the cubature Kalman filter and the transformed unscented Kalman filter. The authors

estimate control-input coefficients for the control surfaces as formulated in [72] but assume

the thrust coefficient and mass terms are known.

ML and NN based identification methods have been recently reported for UVs in

[38,68,79,87–89]. In [87], Wehbe et al. reports a study of several ML methods for identify-

ing the decoupled drag in the sway and yaw DOF of a torpedo shaped UV. They conclude

that kernel-based nonlinear estimators yield better estimations for hydrodynamic damping

terms of UV than NN or least squares approaches. Wehbe and Krell in [88] report a method

that uses support vector regression to model the non-linear dynamical UV plant with only

control inputs and observed state outputs. They report experimental results in 3 DOF and

compare performance with two least squares approaches. [79] reports a neural network aug-

mented identification of the coupled damping matrix that is robust to noise and correctly

adapts to time-varying drag dynamics with online learning. The authors report a simula-

tion, but no experimental data. Wu et al. in [89] report a symbolic regression method based

on a genetic algorithm for UV parameters. Using simulated 6 DOF data, the authors com-

pare identification using a symbolic regression and Levenberg-Marquardt least squares.
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Another genetic algorithm is reported in [68] and simulation results are reported for a 3

DOF UV (pitch, yaw, and roll). Online reinforcement learning is proposed by Karras et al.

in [38] to identify the parameters of an underactuated UV. The method is derivative-free,

and 4 DOF (x, y, z, heading) experimental results are reported. All ML/NN approaches

reviewed assume knowledge of thruster and control-input models except for [88], where

their ML algorithm learns an unknown nonlinear multivariate that maps body velocity and

raw actuator inputs to vehicle body accelerations. Additionally, in most cases, significant

computational time and training data are needed to complete estimates using ML and NN

methods.

4.2 Iver3 Measurement Sources and

Noise Statistics

The goal of this chapter is parameter estimation for underactuated, torpedo-shaped UVs

in 6 DOF with realistic sensor noise. As a test platform, we utilized the JHU Iver3 AUV,

which is a typical low-cost, torpedo-shaped commerical off-the-shelf (COTS) autonomus

underwater vehicle (AUV) with a standard sensor suite. Because the sensors onboard the

JHU Iver3 AUV are standard COTS sensors, we believe these sensors represent a standard

sensor suite on a COTS torpedo-shaped AUV. Table 4.1 lists the measured signals and

sources available on the JHU Iver3 AUV.

Note that we have two separate ways to measure the vehicle’s linear acceleration: 1)
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Table 4.1: Signals and Sources

DOF Measured Signal Source

Attitude rph ∈ R3 Iver compass

Linear Vel bvdvl ∈ R3 RDI Explorer DVL

Angular Vel mωm ∈ R3 Microstrain 3DM-GX-25

Linear Accel mam ∈ R3 Microstrain 3DM-GX-25

Linear Accel bv̇dvl ∈ R3 DVL (differentiated)

Angular Accel mω̇m ∈ R3 Microstrain (differentiated)

differentiate the DVL body velocity signal and 2) transform the Microstrain linear accel-

eration signal (which includes the gravity vector) from instrument frame to body frame.

This acceleration transformation is discussed in Section 4.2.2. In practice, we chose to

differentiate and low-pass filter the DVL data to obtain the acceleration signal, for reasons

discussed in 4.2.2.

4.2.1 Measurement Noise Statistics

This section reports noise statistics for the instruments mounted in the Iver3 AUV col-

lected with a static test with the Iver3 sitting stationary on the bench.
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4.2.1.1 Iver3 Compass

Table 4.2 shows the measured noise statistics for the magnetic compass on board the

JHU Iver3 AUV in a static bench-top test. Figure 4.1 shows the measured signals of roll,

pitch, and heading of the magnetic compass on board the JHU Iver3 AUV. Figure 4.2 show

a histogram of the measured roll, pitch, and heading precision.

The heading accuracy of the Iver3 compass is typically 5◦-10◦ root mean square error

(RMS) before calibrating the compass; after hard-iron and soft-iron calibration, the error is

approximately 1◦-2◦ RMS, but it is difficult to evaluate the calibrated heading accuracy.

Table 4.2: Iver3 Compass Measured Noise Statistics

DOF Standard Deviation

Roll 0.0555◦

Pitch 0.0503◦

Heading 0.1488◦

4.2.1.2 Teledyne RDI Explorer DVL

We recorded velocity measurements with the Teledyne RDI Explorer 600 kHz phased-

array DVL installed on the JHU Iver3 AUV with the vehicle suspended stationary in a

still tank. The sensor readings were identically zero mean and zero standard deviation.

Correspondence with Teledyne RDI engineering support team confirmed these results are
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Figure 4.1: Iver3 Compass Static Angular Position. Note that the this is a static benchtop
test for precision of a calibrated compass, but we do not attempt to determine the true
accuracy or bias of the compass, especially in the heading DOF.

Figure 4.2: Iver3 Compass Static Benchtop Test Attitude Histogram
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expected in a completely stationary test. We were referred to the specifications sheet for

the sensor measurement-noise statistics as a function of advance velocity.

As per the specifications sheet provided by Teledyne RDI, the Explorer phased-array

DVL has the precision in bottom tracking mode as listed in Table 4.3.

Table 4.3: Teledyne RDI Explorer DVL Precision in Single-Ping Bottom Lock, per the
Manufacturer Specification Sheet

Advance Velocity Standard Deviation

1 m/s 1 cm/s

3 m/s 1.8 cm/s

5 m/s 2.6 cm/s

4.2.1.3 Microstrain

We recorded angular velocity and linear acceleration measurements using a Micros-

train 3DM-GX-25 attitude and heading reference sensor (AHRS) mounted in the nose cone

of the Iver AUV. The sensor is rated to the standard angular-rate range (±300◦/s) and

translational-acceleration range (±8g). Also note that the noise statistics depend on the

sampling rate; we set the sensor sampling rate to 10Hz.

Table 4.4 reports the standard deviation of the Microstrain mounted in the Iver3 during

a static benchtop test. Figure 4.3 shows the angular-rate signals recorded by the Micros-

train 3DM-GX-25 during the benchtop test. Figure 4.5 shows the translational-acceleration

signals recorded by the Microstrain 3DM-GX-25 during the benchtop test.
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Figure 4.4 and Figure 4.6 show histograms of the noise statistics for the Microstrain

angular velocity and linear acceleration measurements, respectively.

Table 4.4: Microstrain 3DM-GX-25 Measured Noise Statistics

DOF Mean Standard Deviation

ωx −0.0664◦ 0.0094◦/s

ωy 0.0343◦ 0.0090◦/s

ωz −0.0023◦ 0.0090◦/s

Surge Acceleration −0.0936 m/s 0.4445 mm/s2

Sway Acceleration −0.1024m/s 0.5275 mm/s2

Heave Acceleration −9.8059m/s 0.4803 mm/s2

4.2.2 Linear Acceleration Coordinate Transformation

The Microstrain AHRS is mounted in the nose cone of the Iver3 AUV, and as shown in

Figure 4.5, the Microstrain’s measured translational acceleration includes acceleration due

to gravity. Thus, to utilize the Microstrain’s measurement of translational acceleration, we

must transform the acceleration from the Microstrain instrument frame to the Iver3 body

frame and remove the acceleration due to gravity.

Table 4.5 defines the frames used in this derivation.
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Figure 4.3: Microstrain 3DM-GX-25 AHRS Static Angular Velocity. Note that this figure
is during a static test. We expect that the noise statistics will be worse when the instrument
is subject to dynamic motion, such as during UV missions.

Figure 4.4: Microstrain 3DM-GX-25 AHRS Static Angular Velocity Histogram Note that
these noise statistics are in a static benchtop test. We expect that the noise statistics will be
worse when the instrument is subject to dynamic motion, such as during UV missions.
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Figure 4.5: Microstrain 3DM-GX-25 AHRS Static Translational Acceleration Measured
Data. Note that these noise statistics are in a static benchtop test. We expect that the noise
statistics will be worse when the instrument is subject to dynamic motion, such as during
UV missions.

Figure 4.6: Microstrain 3DM-GX-25 AHRS Static Linear Acceleration Histogram. Note
that these noise statistics are in a static benchtop test. We expect that the noise statistics will
be worse when the instrument is subject to dynamic motion, such as during UV missions.
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Table 4.5: Frame Definition

frame Source

b body frame

w world frame

m microstrain frame

r vector from cg to microstrain

x vector from dvl to microstrain

The angular velocity is defined

bωb = b
mR

mωm, (4.2)

where b
mR = Rx(0)Ry(0)Rz(π) is the constant rotation matrix from body frame to micros-

train frame. We compute the linear body acceleration as the time derivative of the linear

body velocity as

wvb =wvm − wωb × wr (4.3)

b
wR(t)wvb = b

wR(t) (wvm −w ωb × wr) (4.4)

b
wR(t)wvb = b

wR(t)wvm − b
wR(t) (wωb × wr) (4.5)

b
wR(t)wvb︸ ︷︷ ︸

bvb

= b
wR(t)wvm −

b
wR(t)wωb︸ ︷︷ ︸

bω

× b
wR(t)wr︸ ︷︷ ︸

br

 (4.6)

bvb = b
wR(t)wvm −

(
bω × br

)
, (4.7)

where b
wR(t) = Rx

(
ϕ(t)

)
Ry

(
θ(t)

)
Rz

(
ψ(t)

)
is the rotation from world to body frame.
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Rx

(
ϕ(t)

)
is the rotation about the body x axis by the roll angle, ϕ(t). Ry

(
θ(t)

)
is the

rotation about the body y axis by the pitch angle, θ(t). Rz

(
ψ(t)

)
is the rotation about the

body z axis by the heading angle, ψ(t). Differentiating with respect to time yields

d

dt

[
bvb

]
=
d

dt

[
b
wR(t)wvm −

(
bω × br

) ]
(4.8)

bv̇b =b
wṘ(t)wvm +b

w R(t)wv̇m −
d

dt

[
bω̂ br

]
(4.9)

= bω × b
wR(t) wvm + b

wR(t) wv̇m − bω̇ × br (4.10)

= bω × b
wR(t) wvm + b

wR(t)wv̇m − bω̇ × br (4.11)

=
(
bω × bvm

)
+ b

wR(t)wv̇m −
(
bω̇ × br

)
. (4.12)

The acceleration is

wam =wv̇m + wg (4.13)

mam =m
wR(t) [wv̇m + wgm] (4.14)

wv̇m =w
mR(t)mam − wgm, (4.15)

where mam is the linear acceleration measured by the Microstrain and

wgm =

∣∣∣∣0 0 9.81

∣∣∣∣T . Thus,

bv̇b =
(
bω × bvm

)
+ b

wR(t) (wmR(t)mam − wgm)−
(
bω̇ × br

)
(4.16)

=
(
bω × bvm

)
+ b

mR
mam − b

wR(t) wgm −
(
bω̇ × br

)
, (4.17)

where

bvm = bω × bx+ bvdvl, (4.18)
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and thus,

bv̇b = bω ×
((

bω × bx
)

+ bvdvl

)
+ b

mR
mam − b

wR(t) wgm −
(
bω̇ × br

)
(4.19)

= bω ×
(
bω × bx

)
+
(
bω × bvdvl

)
+ b

mR
mam − b

wR(t) wgm−(
bω̇ × br

)
= bω

(
bωT bx

)
− bx

(
bωT bω

)
+
(
bω × bvdvl

)
+ b

mR
mam − b

wR(t) wgm−(
bω̇ × br

)
= bω

(
bωT bx

)
− bx bω2 +

(
bω × bvdvl

)
+ b

mR
mam − b

wR(t) wgm−(
bω̇ × br

)
(4.20)

The measured total acceleration from the Microstrain sensor is the sum of gravity (1g)

and the vehicle acceleration relative to a north-east-down (NED) local reference frame.

The signal of vehicle acceleration is roughly an order of magnitude smaller than the grav-

ity vector—meaning the total measured acceleration signal reported by the Microstrain is

dominated by the acceleration due to gravity. As shown in (4.20), removing the gravity

signal from the measured vehicle’s acceleration signal requires accurate attitude measure-

ments. Thus, it is effectively impossible to isolate the UV motion from the gravitation

acceleration with the compass on board the Iver3 AUV. For this reason, we chose to dif-

ferentiate and then low-pass filter the DVL-reported velocity wherever the signal of vehicle

linear acceleration was required.
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4.3 Nullspace-Based Least Squares

This section reports a novel approach to solving the parameter-estimation problem for

UV plants of the form (4.1) based on least-squares regression analysis. To the best of our

knowledge, the nullspace-based least squares (NBLS) algorithm, first reported in [31],

is the first reported method to identify simultaneously the plant-model parameters and the

control-actuator parameters. This section was coauthored with Tyler Paine, who assisted in

the mathematical development of the NBLS algorithm and took the lead on coding the first

implementation of the NBLS algorithm.

4.3.1 Iver3 UV Plant and Actuator Model

We utilize a nonlinear dynamic process model for the vehicle (4.1), with terms defined

as in (3.1), with the exception of the drag matrix. For the NBLS algorithm, we chose to

include four additional off-diagonal quadratic drag terms in the diagonal quadratic drag

matrix:
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D(ν) =



d11|u| 0 0 0 0 0

0 d22|v| 0 0 0 d26|c|

0 0 d33|w| 0 d35|b| 0

0 0 0 d44|a| 0 0

0 0 d53|w| 0 d55|b| 0

0 d62|v| 0 0 0 d66|c|



(4.21)

Exploiting port-starboard symmetry, we set d35 = d53 and d26 = d62. The off-diagonal

entries correspond to a moment on the UV, which occurs because the vehicle’s CP is not

coincident with the CG. We chose to include off-diagonal drag terms to avoid potential

issues with un-modeled dynamics when identifying parameters in experimental data for

the Iver3 AUV. In anecdotal simulation results, the NBLS approach performs equally as

well with the off-diagonal drag terms set to zero.

4.3.1.1 Parameter Vector

As is typical for the least-squares approach to parameter estimation, we define a vector

of model parameters that enter linearly into (4.1). The parameter vector, θp, is defined as

θp =

∣∣∣∣mT
p d

T
p m7 m8 β1 β2 β3 β4 β5

∣∣∣∣T∈ R21 (4.22)
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where the mass and quadratic drag parameters are

mp =

∣∣∣∣m11 m22 m33 m44 m55 m66

∣∣∣∣T ∈ R6 (4.23)

dp =

∣∣∣∣d11 d22 d33 d44 d55 d66 d26 d35

∣∣∣∣T ∈ R8. (4.24)

Note that the parameters m7 and m8 have physical significance: gm7 = g(m− ρ5) is the

net buoyant force in Newtons, and gm8 = g(zbρ5) is the net restoring moment in Newton-

meters. Here zb is the vertical distance, in meters, between the vehicle’s CG, the reference

frame for all our derivations, and the center of buoyancy (CB).

Lift and drag coefficients of symmetric airfoils, like the control fins on the JHU Iver3

AUV, are well established in aerodynamics literature [2]. In general, CL(α) is experimen-

tally found to be an odd function and CD(α) an even function with a positive intercept.

Thus, we use a simple parameterization of CL(α) and CD(α)

CL(α) = β3α + β4α
3 (4.25)

CD(α) = β1 + β2α
2. (4.26)

Lastly, the propeller coefficient β5 is defined such that

T = β5ω
2
p. (4.27)
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4.3.1.2 NBLS Algorithm

Because all of the parameters in θp enter into (4.1) linearly, we can write

0 =
∂

∂θp

(
Mν̇ + (D(ν) +C(ν))ν + g(ϕ)− τ (ν, ξ)

)
θp (4.28)

0 =W(ν̇,ν,ϕ, ξ)θp, (4.29)

where

W(ν̇,ν,ϕ, ξ) ∈ R6×21 (4.30)

is a matrix-valued function commonly termed the regressor matrix. During an experiment

(or simulated experiment), we observe the vehicle’s body velocity ν(ti), body acceleration

ν̇(ti), body attitude ϕ(ti), and control inputs ξ(ti) at time ti ∈ [t1, tn]. Let Wti be the

regressor matrix computed using experimental data observed at time ti. Each Wti matrix is

appended to the end of a composite matrix, W,

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wt0

Wt1

...

Wti

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∈ R6n×21 ∀ti ∈ [t1, tn]. (4.31)

We can solve for θp using the following properties of linear algebra:

Proposition: θp ∈ ker(WTW)

Proof: By definition of the kernel, (4.29) means θp ∈ ker (Wti). Note that

WTW =
n∑
i=0

WT
ti
Wti , (4.32)
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meaning

WTWθp =
[ n∑
i=0

WT
ti
Wti

]
θp (4.33)

=
n∑
i=0

[
WT

ti
Wtiθp

]
(4.34)

= 0. (4.35)

Thus θp ∈ ker(WTW). Also θp 6= 0 because the vehicle parameters are not all zero,

meaning WTW is rank deficient. This analytical result holds for perfectly modeled, finite-

dimensional systems without noise and forms a theoretical basis for applications on real

UV parameter identification. In practice, sensor noise, unmodeled system dynamics, and

numerical precision will add more variability to the data, which will artificially reduce

the dimension of ker(WTW) to be numerically zero and thus WTW will have full rank.

Consequently, we use the following solution to the classic least squares problem:

min
θp

{
||Wθp||2 : ||θp||2 = 1

}
, (4.36)

where || ∗ ||2 is the `2-norm. Note that this minimization problem may be rewritten as

min
θp 6=0

{
θTpW

TWθp
θTp θp

}
. (4.37)

WTW is Hermitian, so, by the Rayleigh-Ritz inequality [35], (4.37) is bounded from

below by the smallest eigenvalue of WTW, with equality achieved when θp is the eigen-

vector corresponding to the minimum eigenvalue of WTW. If more than one eigenvalue of

WTW is zero, then the solution is any vector in the kernel of WTW.
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Note that solutions for θp of this form are only defined up to scale. In practice, we

chose scale the vector by a known parameter, such as the net buoyant force of the vehicle.

4.3.2 NBLS Results

This section reports simulation results with the NBLS algorithm. First, we report anec-

dotal simulation results with additive Gaussian noise to ensure there is sufficient motion

for the parameter vector defined above to be observable. We also examine the feasibility

of utilizing the NBLS-identified parameters in cooperative acoustic navigation without a

DVL. These results were first reported in [31]. Anecdotally, we observe the NBLS algo-

rithm is relatively sensitive to measurement noise, especially in translational velocity and

translational acceleration. Section 4.3.2.3 reports a noise sensitivity analysis conducted

by varying translational velocity noise, and, as mentioned above, differentiating the trans-

lational velocity and then low-pass filtering the differentiated signal to obtain translational

acceleration. The noise sensitivity analysis indicates it may be infeasible to identify param-

eters with free-motion experimental trials collected by instruments on board in the Iver3

AUV using the NBLS algorithm, which confirms numerous failed attempts by the authors

to use NBLS for parameter identification with real data.

4.3.2.1 Initial NBLS UV Parameter Identification Results

We performed a simulation study to evaluate the feasibility of using the NBLS algo-

rithm described in Section 4.3.1 for parameter estimation of an underactuated, torpedo-
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shaped AUV in 6 DOF, similar to JHU’s OceanServer Iver3 AUV (L3 OceanServer, Fall

River, MA, USA). Two simulations of vehicle motion were conducted: the first simulation

was used to identify parameters (hereafter referred to as the IDSIM) and the second was

used to verify the results using cross-validation (hereafter referred to as the CROSSIM).

In the IDSIM, the simulated vehicle was subject to closed-loop control of forward

thrust, pitch, and heading. Trajectory-tracking proportional derivative control (PDC) was

used for each of forward thrust, pitch, and heading to track reference trajectories reported

in Table 4.6. The total simulated mission time was approximately 30 minutes.

Gaussian noise was added to the true state variables from the forward simulation to

emulate sensor noise. Table 4.7 reports the the standard deviation, σ, of the zero-mean

Gaussian noise added to each signal. Each signal was then low-pass filtered, acausally to

ensure zero phase change. A parameter vector was computed with NBLS, as described in

Section 4.3.1.2.

To evaluate the performance of the model with the identified parameters from the ID-

SIM, we employed the same cross-validation approach as in [52]. In the CROSSIM the

identified model was subject to a trackline-following controller with waypoints arranged

in a “lawnmower” pattern. This was done intentionally to evaluate the performance of the

identified model in a simulation with different trajectories and control types. State estimates

of the identified model during the CROSSIM were computed using the CEKF formulation

of cooperative acoustic navigation utilizing the dynamic model identified using NBLS. The

MAE of the CROSSIM is reported in Table 4.8.
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Table 4.6: Sinusoidal Reference Trajectories for IDSIM

Angular

DOF Amplitude Frequency Offset

Surge 0.2 m/s 0.40 (rad/s) 1 m/s

Pitch -30◦ 0.30 (rad/s)

Heading 30◦ 0.35 (rad/s)

Table 4.7: Standard Deviation σ of Added Noise

Signal σ Signal σ Signal σ

x(t) u(t) u̇(t)

y(t) 0 m v(t) 0.05
m

s
v̇(t) 0.001

m
s2

z(t) w(t) ẇ(t)

φ(t) p(t) ṗ(t)

θ(t) 0.1 deg q(t) 0.36
deg

s
q̇(t) 0.05

deg
s2

ψ(t) r(t) ṙ(t)
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Table 4.8: Mean Absolute Error Values for Cross-Validation

DOF MAE DOF MAE

u 0.0074 m/s p 1.3e-6 ◦/s

v 1.6e-5 m/s q 1.8e-4 ◦/s

w 4.5e-4 m/s r 1.2e-5 ◦/s

4.3.2.2 Effect on Cooperative Navigation

To evaluate the feasibility of using the NBLS-identified parameters in the dynamic UV

process model for cooperative acoustic navigation without a DVL, we conducted a prelim-

inary simulation study wherein we used the CEKF version of cooperative acoustic naviga-

tion for lawnmower survey at constant altitude with OWTT acoustic updates every 30s. The

measurement noise statistics used in the study are listed in Table 4.9. A sample trackline

result is shown in Fig 4.7.

We examined CEKF performance with various parameter vectors, including a param-

eter vector artificially degraded by adding a randomly signed 10% error of the true value

to each parameter. The results are plotted in Figure 4.8. The estimated parameter vector

performs on par with the true parameter vector, both of which are considerably better than

the parameter vector that is accurate to within 10% of the true parameter vector.
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Table 4.9: Simulation measurement sources, resolutions, and accuracies

Measurement

State Source Update Rate Std Dev

XY Trans modem 30 s 1 m (range)

0.1m/s (range rate)

Z Trans Paroscientific 7 Hz 6 cm

Heading OCTANS 3 Hz 0.10◦

Pitch, Roll OCTANS 3 Hz 0.05◦

Trans 300 kHz 5 Hz 0.01 m/s

Velocity RDI DVL (when used) (when used)

Ang Vel OCTANS 3 Hz 0.4-0.6◦/s
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Figure 4.7: Vehicle XY position from the CEKF on simulated data using dynamic model
with the NBLS-estimated parameter vector and no DVL. This figure indicates it may be fea-
sible to utilize a parameter vector where both the plant-model parameters and the control-
actuator parameters were identified simultaneously using the NBLS algorithm in coopera-
tive acoustic navigation.

115



CHAPTER 4. PARAMETER IDENTIFICATION OF DYNAMIC PROCESS MODELS
FOR UNDERACTUATED UVs

Figure 4.8: Vehicle XY position error magnitude (i.e., the magnitude of the difference be-
tween the estimated and true simulated values) from the CEKF on simulated data using
dynamic model with the NBLS-estimated parameter vector and no DVL as a function of
mission time. This figure indicates that the CEKF utilizing an NBLS-identified parameter
vector performs slightly worse than the true parameter vector for the noise statistics re-
ported in 4.9 and significantly better than a parameter vector with a random error with 1σ
of 10% of the true values.
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4.3.2.3 NBLS Noise Sensitivity Analysis

The results from a preliminary 1 DOF pilot study suggest the NBLS approach performs

similarly to total least squares (TLS) and superior to ordinary least squares (OLS) under

similar general noise characteristics. Given the success of TLS for model identification

of fully actuated remotely operated vehicles (ROVs) with known actuator parameters, as

reported in [50] we were hopeful NBLS would achieve adequate results for underactuated

unmanned underwater vehicles (UUVs) with unknown actuator parameters.

However, as discussed in Section 4.3.2.3, the NBLS approach to parameter estimation

is sensitive and not robust to noise in linear velocity and linear acceleration. Despite sub-

stantial effort, we were unable to achieve a adequate parameter estimates utilizing data

from the sensors onboard the Iver3 AUV. This section reports a measurement-noise sensi-

tivity analysis, for the purpose of determining whether the NBLS algorithm could work on

real data collected with sensors on board the Iver3 AUV. To achieve the results report in

Sections 4.3.2.1 and 4.3.2.2, we used static Microstrain levels of noise for acceleration, as

noted in Table 4.9. This section attempts to quantify exactly how much sensor noise would

be acceptable for parameter estimation with the NBLS algorithm. We generated the true

simulated values in forward simulation and added noise. However, as noted in Section 4.2,

using the Microstrain measurement of translation acceleration requires accurate knowledge

of pitch and roll. Because the gravity vector is such a dominant signal in Microstrain accel-

eration, simple calculations indicate, the vehicle’s pitch and roll would have to be measured

more accurately than is available on the Iver3 AUV, either from the OceanServer compass
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or the Microstrain’s internal attitude calculation. Therefore, this noise-sensitivity analysis

was conducted with differentiating the DVL velocities and then filtering the differentiated

signal with an acausal, second-order low-pass filter. Anecdotal analysis suggests that the

NBLS is relatively insensitive to noise in angular position and angular velocity, but quite

sensitive to noise in translational velocity.

Table 4.10 reports the MAE and RMS between a simulation using the NBLS-estimated

parameter vector and the true simulated values with zero noise in linear velocity and an

angular-rate noise with a standard deviation of 0.01◦/s. Table 4.11 and Figure 4.9 report

the MAE between a simulation using the NBLS-estimated parameter vector and the true

simulated values with varying noise in linear velocity and an angular-rate standard devi-

ation of 0.01◦/s. Table 4.12 and Figure 4.10 report the RMS between a simulation using

the NBLS-estimated parameter vector and the true simulated values with varying noise in

linear velocity and an angular-rate standard deviation of 0.01◦/s.

As shown in Tables 4.11 and 4.12, the performance of the NBLS algorithm drops off

drastically as a function of noise in translational velocity. These tables are plotted in Fig-

ures 4.10 and 4.9 to show graphically how the error increases nonlinearly as a function of

translational velocity noise.

From this noise-sensitivity analysis, we conclude the NBLS algorithm appears to ex-

hibit a fairly nonlinear response to noise in translational velocity—the algorithm appears

fairly immune to noise until approximately 0.5 cm/s, after which the performance quickly

degrades until a forward cross-validation simulation with a linear velocity noise of 0.7 cm/s
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standard deviation would not complete. For comparison, recall from Section 4.2.1 that the

Teledyne RDI Explorer DVL installed on the Iver3 AUV has an accuracy of approximately

1.2 cm/s. These simulation results confirm our conjectures from unsuccessful attempts to

perform parameter estimation with real data from Iver3 AUV.

Table 4.10: Root Mean Square Error with angular-rate std dev 0.01◦/s

Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

RMS 0.2357 1.5884 0.7634 0.7604 1.4464 0.0059 0.0117 0.0078

MAE 0.1999 1.3712 0.6413 0.6700 1.1838 0.0049 0.0091 0.0069

4.4 Adaptive Identification Algorithm

This section presents an extension of the AID reported in [52] that simultaneously adap-

tively identifies both plant and control parameters of 6 DOF UVs with diagonal mass and

drag matrices. Simulation results with realistic sensor noise are reported, including a noise-

sensitivity analysis.

The AID approach for UVs in 6 DOF was developed by Christopher McFarland with

the assumption that the control actuator parameters were known [52]. The AID algorithm

reported by McFarland was extended by Tyler Paine to include the control-actuator pa-

rameters as part of the AID state [58]. An analytical stability proof of this extension to
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Table 4.11: Mean Absolute Error with angular-rate noise 0.01◦/s

Lin Accel Noise Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

0 cm/s 0.194 1.4579 0.6587 0.7021 1.2128 0.0051 0.0093 0.0071

0.01 cm/s 0.1929 1.4702 0.6600 0.7062 1.2138 0.0051 0.0093 0.0071

0.1 cm/s 0.1973 1.5127 0.6759 0.7237 1.2424 0.0051 0.0095 0.0073

0.2 cm/s 0.2121 1.6935 0.7369 0.7987 1.3553 0.0054 0.0102 0.0078

0.4 cm/s 0.2798 2.6048 1.0286 1.1673 1.841 0.0073 0.0136 0.0105

0.6 cm/s 0.451 6.1012 2.0443 2.4787 3.5204 0.0200 0.0268 0.0211

0.65 cm/s 0.5072 7.8199 2.672 3.0815 4.5428 0.0245 0.0389 0.0267
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Figure 4.9: NBLS Noise Sensitivity Plot at 0.01 deg/s angular velocity noise: mean ab-
solute error (MAE) vs 1 σ Translational Velocity Noise. In this noise-sensitivity study,
the translational velocity was differentiated and then low-pass filtered to obtain the trans-
lational acceleration, and the angular velocity was differentiated and low-pass filtered to
obtain the angular acceleration. Above 0.65 cm/s 1σ noise, a forward simulation ceases to
complete. This figure indicates the NBLS algorithm is sensitive to noise in translational
velocity. Further, the NBLS approach is not robust enough to translational velocity noise to
work with the best commercially available DVL installed on the Iver3 AUV, which reports
translational velocity with a standard deviation of 1.2 cm/s.

121



CHAPTER 4. PARAMETER IDENTIFICATION OF DYNAMIC PROCESS MODELS
FOR UNDERACTUATED UVs

Table 4.12: Root Mean Square Error with angular-rate noise 0.01◦/s

Lin Accel Noise Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

0.0 cm/s 0.2291 1.6806 0.7836 0.7943 1.483 0.0061 0.0120 0.0081

0.01 cm/s 0.2278 1.6934 0.7848 0.7984 1.4844 0.0061 0.0120 0.0081

0.1 cm/s 0.2331 1.7393 0.8029 0.8170 1.5215 0.0061 0.0123 0.0083

0.2 cm/s 0.2502 1.9392 0.8716 0.8980 1.6570 0.0065 0.0132 0.0089

0.4 cm/s 0.3308 2.9462 1.2037 1.2997 2.2472 0.0088 0.0177 0.0122

0.6 cm/s 0.552 6.7923 2.3627 2.7517 4.5598 0.0249 0.0368 0.0249

0.65 cm/s 0.6501 8.6905 3.0596 3.4276 6.5601 0.0298 0.056 0.0316
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Figure 4.10: NBLS Noise Sensitivity Plot at 0.01 deg/s angular velocity noise: RMSE vs
Linear Velocity Noise In this noise-sensitivity study, the translational velocity was differ-
entiated and then low-pass filtered to obtain the translational acceleration, and the angular
velocity was differentiated and low-pass filtered to obtain the angular acceleration. Above
0.65 cm/s 1σ noise, a forward simulation ceases to complete. This figure indicates the
NBLS algorithm is sensitive to noise in translational velocity. Further, the NBLS approach
is not robust enough to translational velocity noise to work with the best commercially
available DVL installed on the Iver3 AUV, which reports translational velocity with a stan-
dard deviation of 1.2 cm/s.
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estimate simultaneously the plant-model parameters and control-actuator parameters in 6

DOF was reported in Paine’s masters thesis utilizing scalar gains [58]. Paine and Harris

contributed equally to the publication of this AID extension to estimate simultaneously

the plant and control parameters with an analytic stability proof using scalar gains and a

preliminary simulation effort conducted with the forward simulation and AID done in a

loop [77]. However, preliminary anecdotal simulation efforts in post-processing the sim-

ulated data by the author indicated poor parameter convergence with scalar gains. This

thesis extends Paine’s stability proof to utilize diagonal gain matrices rather than scalar

gains. This thesis also reports simulation results in 6 DOF with realistic sensor noise, as

well as a measurement-noise sensitivity analysis.

Anecdotal numerical simulations with realistic measurement noise indicated poor pa-

rameter adaptation with scalar gains. Improved performance was achieved by utilizing

diagonal gain matrices, for which we report a novel analytical stability result.

Control of UVs is traditionally achieved using some combination of thrusters and actu-

ated control surfaces. The control actuators or actuation available for many UVs is often

modeled as a function of one or more unknown parameters, such as propeller coefficients

and lift and drag coefficients of control surfaces, which we will refer to as actuation pa-

rameters, and known signals such as angular velocity of propellers, position of control

surfaces, and velocity of vehicle relative to the water. Although the structures of many of

these control functions are well studied and experimentally verified in the literature [72],

the actuation parameters must be determined experimentally for each UV.
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4.4.0.1 Parameter Description

We choose to use the dynamics and parameters described in Section 3.1.2. The vector

of control inputs τ(v, ϕ, ξ) ∈ IR6 is defined as the vector of body-forces that are a result

of body velocity v, attitude of the vehicle ϕ, and p control inputs such as fin angle and

propeller speed denoted as ξ ∈ IRp. If the actuation parameters enter linearly into τ(v, ϕ, ξ),

which they do for the form of τ(v, ϕ, ξ) ∈ IR6 developed explicitly in Section 3.1.2.1 as

shown in Section 4.3.1.1, then we may the control vector such that

τ(v, ϕ, ξ) = Ga(v, ϕ, ξ)θa, (4.38)

where Ga(v, ϕ, ξ) ∈ IR6xn is the (nonlinear) actuator regressor matrix and θa ∈ IRn is

the parameter vector that contains the actuator parameters to be identified. As per Section

4.3.1.1, we model fin drag as a quadratic and fin lift as a cubic, each with two unknown

parameter coefficients. Examples of these terms include lift and drag coefficients of the

control surfaces and propeller coefficients. Substituting (4.38) into (4.1) results in

0 = Mv̇ + C(v)v +D(v)v + G(ϕ)−Ga(v, ϕ, ξ)θa. (4.39)

The following AID can estimate parameters of any vehicle actuation configuration, as

long as two conditions are satisfied:

1. The parameters to be identified which make up θa must enter linearly into τ(v, ϕ, ξ)

2. The function Ga(v, ϕ, ξ) ∈ C1 and is bounded for bounded v, ϕ, and ξ.
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This AID extension comes with an additional caveat. because all terms on both sides of

(4.39) contain parameters to be estimated and these parameters enter linearly, the estimate

of the set of parameters is only defined up to scale. This is analogous to the limitations of

the NBLS parameter-identification method reported in Section 4.3.

Specifically, we attempt to identify the following parameters: m11, m22, m33, m44, m55, m66,

d11, d22, d33, d44, d55, d66, g, b1, b2, b3, θ1, θ2, θ3, θ4, θ5

Because the mass and drag matrices are diagonal, we use the following notation for con-

venience: M = diag ( m11, m22, m33, m44, m55, m66) andD = diag ( d11, d22, d33, d44, d55, d66)

4.4.1 Adaptive Identifier Extension

This section reports an extension to the AID first reported in [58] which itself was

an extension of [52] to estimate plant-model and actuator parameters simultaneously with

scalar gains. The original contribution of this section is the use of diagonal gain matrices

in the stability proof, which preliminary anecdotal simulation studies suggest are required

to achieve parameter convergence in the uncontrolled DOF.

• Plant: The model, of the same form as (3.2), is

Mv̇ = −C(v)v −D(v)v − G(ϕ) +Ga(v, ϕ, ξ)θa (4.40)

• Task: Design parameter update laws for v̂(t), M̂(t), D̂i(t), ĝ(t), b̂(t), and θ̂a(t) such

that limt→∞∆v(t) = ~0, limt→∞
˙̂
M(t) = 06x6, limt→∞

˙̂
Di(t) = 06x6, limt→∞ ˙̂g(t) =

0, limt→∞
˙̂
b(t) = ~0, and limt→∞

˙̂
θa(t) = ~0.
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• Error Coordinates:

} ∆v(t) = v̂(t)− v(t)

} ∆m(t) = m̂(t)−m

} ∆d(t) = d̂ii(t)− dii (i = {1, 2, ..., 6})

} ∆g(t) = ĝ(t)− g

} ∆b(t) = b̂(t)− b

} ∆θa(t) = θ̂a(t)− θa

• Parameter Update Laws:

˙̂v = M̂−1
(
− C(M̂, v)v − D̂(v)v − Ĝ(ϕ) +Ga(v, ϕ, ξ)θ̂a

)
− α∆v (4.41)

˙̂m =Γ1

(
vT diag(ψ1) + ψT2 diag(∆v)

)T (4.42)

˙̂
d =Γ2

(
∆vT diag(|v|) diag(v)

)T (4.43)

˙̂g = Γ3 ∆νTRT (ϕ) e3 (4.44)

˙̂
b = − Γ4J(∆ω)RT (ϕ) e3 (4.45)

˙̂
θa =− Γ5

(
Ga(v, ϕ, ξ)

)T
∆v (4.46)

where

} Ga(v, ϕ, ξ, θ̂a) will be shown to be bounded in consequence of the boundedness

of v, ϕ, ξ, and θ̂a

} ψ1 = ad(v)T∆v
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} ψ2 = ˙̂v + α∆v

} α ∈ R+; Γ1, Γ2, Γ3, Γ4, Γ5 ∈ IR6×6 is diagonal and PDS.

} diag
(
m̂(t0)

)
is PDS, or equivalently all entries in m̂(t0) are positive

} v̂(t0) = v(t0)

For convenience we will define ∆M = diag(∆m) and ∆D = diag(∆d). As in [52], we

develop the velocity error dynamics expression

M∆v̇ =M( ˙̂v − v̇) (4.47)

=αM∆v −∆Mψ2 − ad(v)∆Mv − diag(|v|)∆Dv−

∆G(R(ϕ)) +Ga(v, ϕ, ξ) ∆θa.

Consider the following Lyapunov function candidate

V (t) =
1

2
∆vTM∆v +

1

2
∆mTΓ−1

1 ∆m+
1

2
∆dTΓ−1

2 ∆d+
1

2
Γ−1

3 (∆g)2 (4.48)

+
1

2
∆bTΓ−1

4 ∆b+
1

2
∆θTa Γ−1

5 ∆θa.

It is

• positive definite

• radially unbounded

• equal zero if and only if ∆v = ~0, ∆m = ~0, ∆d = ~0, ∆g = 0, ∆b = ~0, and ∆θa = ~0.
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The time derivative of (4.48) is

V̇ (t) =
1

2

(
∆v̇TM∆v + ∆vTM∆v̇

)
+

1

2

(
∆ṁTΓ−1

1 ∆m + ∆mTΓ−1
1 ∆ṁ

)
+

1

2

(
∆ḋTΓ−1

2 ∆d + ∆dTΓ−1
2 ∆ḋ

)
+ Γ−1

3 ∆ġ∆g +
1

2

(
∆ḃTΓ−1

4 ∆b + ∆bTΓ−1
4 ∆ḃ

)
+

1

2

(
∆θ̇Ta Γ−1

5 ∆θa + ∆θTa Γ−1
5 ∆θ̇a

)
=∆vTM∆v̇ + ∆ṁTΓ−1

1 ∆m + ∆ḋTΓ−1
2 ∆d + Γ−1

3 ∆ġ∆g + ∆ḃTΓ−1
4 ∆b+

∆θ̇Ta Γ−1
5 ∆θa (4.49)

Substituting in (4.47) yields

V̇ (t) =− α∆vTM∆v − 1

2

(
vT∆Mψ1 + ψT2 ∆M∆v

)
− 1

2

(
∆vT∆Mψ2 + ψT1 ∆Mv

)
−

∆vTdiag(|v|)∆Dv −∆vT∆G(R(ϕ))+

∆vTGa(v, ϕ, ξ)∆θa + ∆ṁTΓ−1
1 ∆m + ∆ḋTΓ−1

2 ∆d + Γ−1
3 ∆ġ∆g+

∆ḃTΓ−1
4 ∆b + ∆θ̇Ta Γ−1

5 ∆θa. (4.50)
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Substituting in the parameter update laws (4.42) - (4.46) yields

V̇ (t) =− α∆vTM∆v − 1

2

(
vT∆Mψ1 + ψT2 ∆M∆v

)
− 1

2

(
∆vT∆Mψ2 + ψT1 ∆Mv

)
−∆vTdiag(|v|)∆Dv−

∆vT∆G(R(ϕ)) + ∆vTGa(v, ϕ, ξ)∆θa +(
Γ1

(
vT diag(ψ1) + ψT2 diag(∆v)

)T)T
Γ−1

1 ∆m+(
Γ2

(
∆vT diag(|v|) diag(v)

)T)T
Γ−1

2 ∆d+

Γ−1
3

(
Γ3 ∆νTRT (ϕ) e3

)
∆g +

(
− Γ4J(∆ω)RT (ϕ) e3

)T
Γ−1

4 ∆b+(
− Γ5

(
Ga(v, ϕ, ξ)

)T
∆v

)T
Γ−1

5 ∆θa (4.51)

=− α∆vTM∆v − 1

2

(
vT∆Mψ1 + ψT2 ∆M∆v

)
− 1

2

(
∆vT∆Mψ2 + ψT1 ∆Mv

)
−∆vTdiag(|v|)∆Dv + ∆vTGa(v, ϕ, ξ)∆θa +(
vT diag(ψ1) + ψT2 diag(∆v)

)
Γ1Γ−1

1 ∆m+(
∆vT diag(|v|) diag(v)

)
Γ2Γ−1

2 ∆d −Ga(v, ϕ, ξ)∆vΓ5Γ−1
5 ∆θa, (4.52)

which makes use of the fact that Γi are diagonal matrices so they are symmetric by defi-

nition. Note that for all vectors y1, y2 ∈ IR6, diag(y1)y2 = diag(y2)y1 and yT1 diag(y2) =

yT2 diag(y1). The final simplified expression is

V̇ (t) =− α∆vTM∆v, (4.53)

which is negative definite in ∆v and negative semidefinite in the entire error coordinates

∆v, ∆m, ∆d, ∆g, ∆b, and ∆θa. A proof that the smallest eigenvalue of ∆M̂ is bounded
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away from zero for all time can be found [52].

We note from [52] that with v, ∆v, ∆m, ∆d, ∆g, ∆b, ∆θa, and G(v, ϕ, ξ), bounded

and m, d, g, b, and θa constant, it is implied that v̂, m̂, d̂, ĝ, b̂, and θ̂a are bounded. If

we assume that the smallest eigenvalue of ∆M̂ is bounded away from zero for all time

then ∆M̂−1 is bounded and thus ∆v̇ is bounded. Additionally ∆v ∈ L2 and bounded ∆v̇

implies that limt→∞∆v = ~0

Since the parameter update equation (4.46) is bounded and limt→∞∆v = ~0 this implies

that limt→∞ ˙̂m = ~0, limt→∞ ˙̂m = ~0, limt→∞ ˙̂g = 0, limt→∞
˙̂
b = ~0, and limt→∞

˙̂
θa = ~0.

Thus, the estimator’s angular and linear velocities asymptotically converge to the velocities

of the actual vehicle and all estimated parameters converge to a common scalar multiple of

their constant values [52].

4.4.2 AID Simulation Results

This section reports results utilizing the AID algorithm described in Section 4.4.1 in

post-processing on simulated data with additive Gaussian noise. These simulation results

corroborate the analytical stability analysis

4.4.2.1 Initial Simulation Results

For this feasibility study, 5000 seconds of vehicle motion was simulated for the identifi-

cation process. Note that the adaptive gains determine how quickly the parameters converge

to the true parameters, and the selection of adaptation gains is an open problem in adaptive
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systems theory.

Gaussian noise was added to the attitude and velocity signals to mimic the expected

measurement noise of the JHU Iver3 AUV sensors. All sensors were resampled to 10 Hz,

which is the operating frequency of the Microstrain. The specific noise characteristics used

in the simulation study are provided in Table 4.13. These values are representative of the

measured noise statistics for the Iver3 AUV onboard sensors, detailed in Section 4.2.1.

Table 4.13: Measurement sources and accuracies

Measurement

State Source Std Dev

Attitude Microstrain MSF 0.25◦

Angular Velocity Microstrain MST 0.01◦/s

Trans Velocity RDI 1.3 cm/s

All available control inputs were excited in open loop in an attempt to achieve persistent

excitation. A summary of the inputs is provided in Table 4.14. The velocity error, i.e., the

difference between the true velocity and the AID velocity in CROSSIM is plotting in Figure

4.11.

4.4.2.2 AID Noise Sensitivity Analysis

This section reports a noise-sensitivity analysis for the AID parameter estimation al-

gorithm, run in post-processing on simulated vehicle data. The purpose of this noise sen-
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Figure 4.11: CROSSIM Velocity Error in simulation with open loop control in all 6 DOF.
This figure indicates that the AID plant velocities are close to the true plant velocities in
most DOF especially the translational DOF. Because the UV is equipped with an attitude
sensor, velocity errors in attitude (roll, pitch, and yaw) will have a smaller effect on the
performance of model-based navigation.
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Table 4.14: Simulated Control Input

Actuator IDSIM CROSSIM

Propeller 8 + 8 * Sin(0.7 t) N 5 + 3 * Sin(0.5t) N

R Fin 5◦+15◦ * Sin(0.4 t) 7◦+5◦ * Sin(0.2 t)

T Fin 15◦ * Sin(0.2 t) 8◦ * Sin(0.4 t)

L Fin 5◦+15◦ * Sin(0.4 t) 7◦+5◦ * Sin(0.2 t)

B Fin 15◦ * Sin(0.2 t) 8◦ * Sin(0.4 t)

sitivity analysis is to determine if it is feasible to utilize the AID approach for parameter

identification with the sensor suite available on board the JHU Iver3 AUV. To do this, we

added noise to angular position, angular velocity, and linear velocity as described below.

Tables 4.16 and 4.17 show the MAE and RMS, respectively, for a noise sensitivity

analysis of the AID algorithm in cross validation with varying amounts of linear-velocity

noise and 0.01◦/s angular-rate noise and 0.25◦ angular position noise in roll and pitch.

Tables 4.18 and 4.19 show the MAE and RMS, respectively, for a noise sensitivity anal-

ysis of the AID algorithm in cross validation with varying amounts of linear-velocity noise

and 0.1◦/s angular-rate noise and 0.25◦ angular position noise in roll and pitch. Figures

4.14 and 4.15 show graphically the MAE and RMS, respectively, corresponding to Tables

4.18 and 4.19.

The velocity error appears to increase slightly as a function of translational velocity

noise, but appears to be relatively insensitive to noise. We believe the anomoly is because
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these error results are for a single run with randomly generated noise, rather than an en-

semble of runs with the error averaged.

Table 4.15: Root Mean Square Error with angular-rate std dev 0.01◦/s

Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

RMS 1.2948 0.6383 0.8643 0.1910 0.1992 0.0065 0.0033 0.0032

MAE 0.7807 0.4312 0.5297 0.1308 0.1502 0.0055 0.0024 0.0022

4.5 Summary

This chapter presents two novel algorithms for identifying simultaneously the plant

parameters—i.e., hydrodynamic mass, quadratic drag, gravitational force and buoyancy

parameters—and the actuator parameters—i.e., propeller coefficient and fin lift and drag as

a function of commanded angle—for second-order, underactuated UV plants in 6 DOF.

The first algorithm, termed nullspace-based least squares, uses a least squares to solve

for a parameter vector in the kernel of the regressor matrix. Simulation results suggest a

torpedo-shaped, underactuated UV can achieve sufficient motion in the uncontrolled DOF

for a minimal parameter set to be observable in the presence of sensor noise. Simulation

results with an application to cooperative acoustic navigation are presented. A noise sensi-

tivity analysis is presented, and we concluded the NBLS approach is not robust enough to
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Table 4.16: Mean Absolute Error with angular-rate noise 0.01◦/s

Lin Accel Noise Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

0 cm/s 0.7512 0.4206 0.5051 0.1253 0.1453 0.0053 0.0023 0.0021

0.1 cm/s 0.7601 0.4177 0.5174 0.1270 0.1458 0.0053 0.0023 0.0021

0.2 cm/s 0.7632 0.4165 0.5174 0.1274 0.1465 0.0053 0.0023 0.0021

0.4 cm/s 0.7592 0.3932 0.5156 0.1269 0.1456 0.0048 0.0024 0.0022

0.6 cm/s 1.1045 0.5917 0.7373 0.1744 0.2079 0.0076 0.0033 0.0029

0.8 cm/s 1.2813 0.7223 0.8317 0.2023 0.2253 0.0073 0.0036 0.0033

1.0 cm/s 1.2147 0.6306 0.8382 0.2174 0.2208 0.0053 0.0035 0.0036

1.2 cm/s 1.0933 0.6693 0.7097 0.2321 0.1744 0.0046 0.0029 0.0035

1.4 cm/s 1.6226 0.9075 1.0580 0.2641 0.2896 0.0076 0.0044 0.0043

136



CHAPTER 4. PARAMETER IDENTIFICATION OF DYNAMIC PROCESS MODELS
FOR UNDERACTUATED UVs

Figure 4.12: AID Noise Sensitivity Plot at 0.01 deg/s angular velocity noise: MAE vs
Linear Velocity Noise In this noise-sensitivity study, the translational velocity was differ-
entiated and then low-pass filtered to obtain the translational acceleration, and the angular
velocity was differentiated and low-pass filtered to obtain the angular acceleration. Un-
like the NBLS sensitivity-analysis plots reported in Section 4.3.2.3, the 1σ translational-
velocity noise extends out to 1.4 cm/s. The commercially available DVL installed on the
Iver3 AUV, which reports translational velocity with a standard deviation of 1.2 cm/s. For
this reason, we believe it may be possible to utilize this AID approach on experimental data
collected by the Iver3 AUV.
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Table 4.17: Root Mean Square Error with angular-rate noise 0.01◦/s

Lin Accel Noise Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

0 cm/s 1.2507 0.6195 0.8277 0.1835 0.1921 0.0063 0.0032 0.0031

0.1 cm/s 1.2616 0.6159 0.8424 0.1864 0.1939 0.0063 0.0032 0.0031

0.2 cm/s 1.2580 0.6108 0.8371 0.1855 0.1943 0.0063 0.0032 0.0031

0.4 cm/s 1.2553 0.5705 0.8419 0.1858 0.1953 0.0058 0.0033 0.0032

0.6 cm/s 1.7289 0.8542 1.1585 0.2505 0.2668 0.0090 0.0044 0.0042

0.8 cm/s 1.8673 0.9955 1.2330 0.2748 0.2834 0.0090 0.0047 0.0047

1.0 cm/s 1.8636 0.8637 1.2696 0.2983 0.3044 0.0064 0.0049 0.0051

1.2 cm/s 1.5355 0.9099 0.9812 0.3057 0.2247 0.0055 0.0038 0.0047

1.4 cm/s 2.2963 1.2176 1.5115 0.3515 0.3585 0.0097 0.0057 0.0060
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Figure 4.13: AID Noise Sensitivity Plot at 0.01 deg/s angular velocity noise: RMSE vs
Linear Velocity Noise In this noise-sensitivity study, the translational velocity was differ-
entiated and then low-pass filtered to obtain the translational acceleration, and the angular
velocity was differentiated and low-pass filtered to obtain the angular acceleration. Un-
like the NBLS sensitivity-analysis plots reported in Section 4.3.2.3, the 1σ translational-
velocity noise extends out to 1.4 cm/s. Additionally, we note that in comparing this figure
to Figure 4.13, increasing the angular-rate noise by an order of magnitude has a small net
effect on the overall error. The commercially available DVL installed on the Iver3 AUV,
which reports translational velocity with a standard deviation of 1.2 cm/s. For this reason,
we believe it may be possible to utilize this AID approach on experimental data collected
by the Iver3 AUV.
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Table 4.18: Mean Absolute Error with angular-rate noise 0.1◦/s

Lin Accel Noise Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

0 cm/s 0.7144 0.3840 0.4848 0.1187 0.1356 0.0048 0.0022 0.0020

0.2 cm/s 0.8555 0.4818 0.5726 0.1419 0.1637 0.0059 0.0026 0.0024

0.4 cm/s 1.0120 0.5661 0.6941 0.1750 0.1865 0.0065 0.0029 0.0028

0.6 cm/s 0.8170 0.4709 0.5185 0.1320 0.1531 0.0054 0.0025 0.0022

0.8 cm/s 1.1792 0.6328 0.8090 0.2011 0.2220 0.0067 0.0035 0.0033

1.0 cm/s 1.5755 0.7916 1.1149 0.2620 0.2972 0.0098 0.0047 0.0043

1.2 cm/s 1.6087 0.7875 1.0985 0.2639 0.2829 0.0082 0.0045 0.0041

1.4 cm/s 1.5427 0.7502 1.0469 0.2594 0.2866 0.0071 0.0046 0.0041
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Figure 4.14: AID Noise Sensitivity Plot at 0.1 deg/s angular velocity noise: MAE vs Linear
Velocity Noise In this noise-sensitivity study, the translational velocity was differentiated
and then low-pass filtered to obtain the translational acceleration, and the angular veloc-
ity was differentiated and low-pass filtered to obtain the angular acceleration. Unlike the
NBLS sensitivity-analysis plots reported in Section 4.3.2.3, the 1σ translational-velocity
noise extends out to 1.4 cm/s. Additionally, we note that in comparing this figure to Fig-
ure 4.12, increasing the angular-rate noise by an order of magnitude has a small net effect
on the overall error. The commercially available DVL installed on the Iver3 AUV, which
reports translational velocity with a standard deviation of 1.2 cm/s. For this reason, we
believe it may be possible to utilize this AID approach on experimental data collected by
the Iver3 AUV.
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Table 4.19: Root Mean Square Error with angular-rate noise 0.1◦/s

Lin Accel Noise Ang Vel, ◦/s Lin Vel, m/s

Roll Pitch x-DOF y-DOF z-DOF x-DOF y-DOF z-DOF

0 cm/s 1.1864 0.5654 0.7911 0.1751 0.1819 0.0057 0.0031 0.0029

0.2 cm/s 1.4142 0.7105 0.9432 0.2078 0.2160 0.0070 0.0036 0.0035

0.4 cm/s 1.6014 0.8046 1.0828 0.2469 0.2502 0.0075 0.0041 0.0041

0.6 cm/s 1.2818 0.6673 0.8193 0.1869 0.1959 0.0065 0.0033 0.0032

0.8 cm/s 1.9151 0.9371 1.3010 0.2886 0.3003 0.0081 0.0049 0.0048

1.0 cm/s 2.5123 1.1577 1.7488 0.3812 0.3964 0.0114 0.0064 0.0063

1.2 cm/s 2.3362 1.0516 1.5909 0.3662 0.3565 0.0099 0.0058 0.0060

1.4 cm/s 2.2552 0.9953 1.5216 0.3586 0.3621 0.0087 0.0059 0.0059
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Figure 4.15: AID Noise Sensitivity Plot at 0.1 deg/s angular velocity noise: RMSE vs
Linear Velocity Noise In this noise-sensitivity study, the translational velocity was differ-
entiated and then low-pass filtered to obtain the translational acceleration, and the angular
velocity was differentiated and low-pass filtered to obtain the angular acceleration. Un-
like the NBLS sensitivity-analysis plots reported in Section 4.3.2.3, the 1σ translational-
velocity noise extends out to 1.4 cm/s. Additionally, we note that in comparing this figure
to Figure 4.13, increasing the angular-rate noise by an order of magnitude has a small net
effect on the overall error. The commercially available DVL installed on the Iver3 AUV,
which reports translational velocity with a standard deviation of 1.2 cm/s. For this reason,
we believe it may be possible to utilize this AID approach on experimental data collected
by the Iver3 AUV.
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noise for parameter estimation with the JHU Iver3 AUV.

The second algorithm is an extension to the AID algorithm reported in [58] to utilize

diagonal gain matrices rather than scalar gains. An analytical stability result using Lya-

punov’s direct method with diagonal gain matrices is reported, and numerical simulation

results in 6 DOF with realistic measurement noise confirm the analytic stability result. A

noise sensitivity analysis is presented, and we concluded the AID approach may work on

real data collected by the sensor suite on board the Iver3 AUV.
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Combined Control and Navigation

without a DVL: A Simulation Study

This chapter presents simulation results on combined control and navigation in a loop

of a torpedo-shaped, underactuated underwater vehicle without a DVL using a feedback

controller to follow a continuous reference trajectory and the CEKF formulation of coop-

erative navigation for position estimation.

We utilized the CEKF formulation of the cooperative acoustic navigation algorithm

described in Chapter 2 and the dynamic plant model described in Chapter 3. To the best

of our knowledge, no previous study has examined the combined control and cooperative

navigation of low-cost underwater vehicles without a DVL utilizing a dynamic model of

the submerged vehicles motion in the cooperative navigation algorithm.
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5.1 Trajectory Generation

Many torpedo-shaped UVs are configured with a single propeller and aft control sur-

faces, i.e., they are underactuated; therefore, generating a feasible trajectory is more dif-

ficult than simply generating waypoints. There are many approaches to motion planning

for underactuated robots. In this thesis, we chose to generate waypoints parameterized

in time and implemented a commonly employed trackline-following algorithm: a propor-

tional controller to compute the forward thrust and proportional derivative control (PDC) to

compute the fin angles required to follow the trackline, as reported in Section 3.1.3. We ran

a forward simulation of the vehicle dynamics and trackline-following PDC in a loop, and

the resulting motion (i.e., the vehicle’s path and corresponding velocities) formed our de-

sired trajectory. This approach, while inefficient for online planning, is simple and ensures

the trajectory is achievable.

5.2 Controller

We used a linear-quadratic regulator (LQR) controller to determine the desired moment

about each axis. A key benefit of an LQR controller over the standard PDC is that the gain

is computed as part of the algorithm—this makes it easier to compare performance across

multiple process models without tuning the gains by hand. A comparison of the dynamic

process model without a DVL to the kinematic process model with and without a DVL

is the subject of future work. The LQR controller is an approach to constrained optimal
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control. Specifically, we seek to minimize the quadratic cost function, J , over u, i.e.,

min
u
J(x, u) = min

u

∫ tk+1

tk

xTQx+ uTRu+ 2xTNu, (5.1)

subject to the continuous-time dynamics

ẋ = Ax+Bu. (5.2)

In the same way that we linearize (3.2) about the current state for the EKF, we linearize

(3.2) about the current state to achieve linear dynamics of the form (5.2). The feedback-

control law that solves the above minimization problem is

u = −Kx, (5.3)

where

K = R−1(BTP (t) +NT ). (5.4)

P (t) is the solution to the continuous-time Riccati ordinary differential equation (ODE).

A full derivation may be found in [42]. Note that the combination of the Kalman filter,

in our case the EKF, and an LQR controller is known as linear-quadratic-Gaussian (LQG)

control.

5.3 Simulation Results

This section reports results from a numerical simulation for a torpedo-shaped, underac-

tuated vehicle.
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Table 5.1: Simulation measurement sources, resolutions, and accuracies

Measurement

State Source Update Rate Std Dev

XY Trans modem 30 s 1 m (range)

0.1m/s (range rate)

Z Trans Paroscientific 7 Hz 6 cm

Heading OCTANS 3 Hz 0.10◦

Pitch, Roll OCTANS 3 Hz 0.05◦

Trans 300 kHz 5 Hz 0.01 m/s

Velocity RDI DVL (when used) (when used)

Ang Vel OCTANS 3 Hz 0.4-0.6◦/s

We utilized a numerical simulation to investigate the feasibility of running the CEKF

with a dynamic model in a loop with an LQR controller on a previously generated trajec-

tory, as described in Section 5.1. We treated the control signal as piecewise-constant across

time-steps and computed a forward simulation of the vehicle dynamics as the “true” state.

From these signals, we generated simulated sensor measurements for each of the navigation

sensors with the noise characteristics outlined in Table 5.1.

In the simulation result presented here, the vehicle conducted a simulated survey mis-

sion of ten 1 km tracklines spaced 100 m apart at a velocity of 1 m/s and a constant depth

of 3 m. The ship circled continuously on a 600 m radius at a velocity of 2 m/s broadcast-
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ing the first acoustic packet after 60 s, and then regularly at 30 s intervals. The speed of

sound was assumed constant at 1500 m/s.

Figure 5.1 shows the true and estimated XY vehicle position with the filter’s covari-

ance plotted at every acoustic update. The arrows point from the vehicle to the ship along

acoustic path with the length scaled by the angle from vertical.

Figure 5.1: Vehicle XY position estimate from the CEKF on simulated data using the
dynamical process model and no DVL with the output of the navigation solution used as
the input to an LQR controller for combined control and navigation. The UVs true position
is plotted in solid blue, the CEKF position estimate is plotted in dashed blue, the tracklines
are plotted in red, and the waypoints are plotted as yellow circles. This figure indicates
it may be feasible to do combined control and cooperative acoustic navigation utilizing a
dynamic UV plant model without a DVL.
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Figure 5.2 shows the XY error magnitude, i.e., the magnitude of the difference between

the true position and the EKF-estimated position using the dynamic model without the

DVL.

Figure 5.2: XY position error magnitude i.e., the magnitude of the difference between the
true position and the CEKF-estimated position using the dynamic model without the DVL
in combined control and acoustic navigation, versus mission time. This figure shows the
error doing combined control and cooperative acoustic navigation utilizing a dynamic UV
plant model without a DVL may be quite low.

As shown by Figures 5.1 and 5.2, our anecdotal results indicate that it may be feasible

to utilize a second-order dynamic model for combined control and cooperative acoustic

navigation without a DVL.
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Conclusion

6.1 Thesis Summary

This thesis reports theoretical and experimental results for model-based navigation for

UVs lacking a DVL and dynamic-model parameter estimation for underactuated UVs, such

as the now-ubiquitous class of torpedo-shaped UVs.

Chapter 2 reviews cooperative acoustic navigation and presents an observation model

for acoustic range-rate observations. Chapter 2 also presents simulation and experimental

results with the JHU Iver3 AUV to evaluate the addition acoustic range rate to acoustic

range in the context of cooperative acoustic navigation. These results indicate that the

addition of range-rate observations to acoustic range observations does not appear to sig-

nificantly improve the convergence time, transient response, or steady-state position error

of the CEKF with or without a DVL utilizing a kinematic model. Additionally, we note
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that the CEKF formulation of cooperative acoustic navigation exhibits poor performance,

and even instability, without a DVL with a low-cost attitude sensor, but appears to provide

acceptable results with simulated data representing a high-accuracy gyroscope, such as an

iXblue OCTANS or PHINS.

Chapter 3 details a second-order nonlinear dynamical model of UVs, including a de-

velopment of the nonlinear actuation function to relate commanded fin angle and propeller

speed to an overall torque on the UV, for use in cooperative acoustic navigation without a

DVL. Simulation and experimental results were reported utilizing the JHU Iver3 AUV. The

reported results suggest a dynamic model without a DVL outperforms a kinematic model

without a DVL and may outperform DVL-based dead reckoning. The experimental results

validate the simulation results. Additionally, an experimental evaluation on the effect of

adding (relative) velocity corrections in the form of acoustic range-rate observations to the

CEKF when utilizing a dynamic model without a DVL was reported. We concluded that

the addition of infrequent velocity observations, such as those provided by acoustic range

rate, does not appear to improve the performance of the CEKF algorithm with a dynamic

model.

Chapter 4 reports a novel nullspace-based least squares (NBLS) algorithm for underac-

tuated UV plant-parameter and actuator-parameter estimation in 6 DOF. NBLS uses least

squares to solve for a parameter vector in the kernel of the regressor matrix. Simulation

results suggest a torpedo-shaped, underactuated UV can achieve sufficient motion in the

uncontrolled DOF for a minimal parameter set to be observable with a small amount of
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sensor noise. Simulation results with an application to cooperative acoustic navigation are

presented. A noise sensitivity analysis is presented, and we conclude the NBLS approach

may be too sensitive to noise in translational velocity and translational acceleration to allow

for parameter estimation on real data collected with the JHU Iver3 AUV.

Chapter 4 also reports an extension to the AID algorithm reported in [58] to utilize diag-

onal gain matrices rather than scalar gains. An analytical stability result using Lyapunov’s

direct method with diagonal gain matrices is reported, and numerical simulation results in

6 DOF with realistic measurement noise corroborate the analytic stability result.

Chapter 5 reports a simulation study to determine the feasibility of doing combined

model-based navigation and control in a loop without a DVL. The reported simulation

results suggest combined navigation and control utilizing a dynamic plant model without a

DVL is feasible.

6.2 Future Work

A first step towards extending the work reported in this thesis would be to implement the

algorithms reported herein to run in real-time on the JHU Iver3 AUV, i.e., implementing the

AID algorithm to run in real time and implementing the DEIF formulation of cooperative

acoustic navigation with a dynamical model (that utilizes AID-estimated parameters) in a

loop with a trackline-following controller.

An extension to DVL-denied cooperative navigation would be to add a velocity-bias
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term to the cooperative navigation state to would enable water-current estimation without

a DVL. In this context, it is possible that acoustic range-rate observations may improve the

navigation solution.

After the AID algorithm is implemented in real-time on the JHU Iver3, parameter adap-

tation could be monitored to automate fault detection. The parameters estimated by the

AID are assumed constant during the course of a mission; thus, changes in parameters may

indicate component failure. Changes to specific parameters might be used to indicate spe-

cific failure modes, e.g., changes in mass parameters may indicate flooded compartments;

changes in drag parameters may indicate entanglement; changes in actuator parameters

may indicate actuator failures, such as a broken fin. A suite of adaptive model-based control

(AMBC) algorithms could then be designed to compensate for specific failure modes. Au-

tomated fault-detection and compensation could enable longer duration missions at higher

levels of autonomy.
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