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ABSTRACT

Anthropogenic-driven climate change has and will continue to influence Earth’s
ecosystems and environments. Major regional and global climate events have been
observed throughout the geological record. We need to determine how natural systems
responded to climate in the past and the possible interactions between mammalian
species, including humans, and their environment, if we are to have perspective on how
natural systems will respond to changes in climate both currently and in the future.
Evaluating past climate and environment can be a useful way to evaluate if and how past
landscapes, ecosystems and animal-environment interactions may have been influenced
by climatic change.

Archeological and paleontological sites along the coastal region of southwestern
South Africa preserve fossils and artifacts dating to the Pliocene and Pleistocene (within
the last 5 million years). These materials indicate that southwestern South Africa was
once home to large herbivorous mammalian communities and that hominins lived here
since the mid-Pleistocene, at ca. 1 million years ago. However, this region is currently hot
and dry and within a cool growing season. Furthermore, this region is within the fynbos
biome, a biome with species that date to before the Pliocene, and is today mostly
composed of woody, nutrient-poor shrub land. It is unknown how animals survived in the
region during the Pliocene and Pleistocene or the composition of past vegetation and its
distribution.

Here I present an evaluation of animal diet and the climate and environment of

southwestern South Africa over the last 5 million years using the carbon (8"°C values)

and oxygen (8'°O values) isotopic composition of fossil teeth. I then evaluate the
il



movement of animals for food in southwestern South Africa during the mid-Pleistocene
and the distribution of vegetation at this time using strontium isotope ratios (*'Sr/**Sr
ratios) in the fossil tooth enamel preserved at archeological site Elandsfontein. I then
consider the use of triple oxygen isotopes (A'’0) in the fossil record as a way to improve
upon the current 8'*0 method to determine past climate and environmental change by
presenting and characterizing A'’O in modern tooth enamel.

I found that herbivores ate vegetation characteristic of a cool growing season
during the Pliocene and Pleistocene, therefore southwestern South Africa was within a
winter rainfall zone since at least 5 million years ago. The ecosystem and environment of
southwestern South Africa would have had to support the annual growth of grass if large
mammalian herbivores (specifically grazers) could have survived in this region. Deposits
indicative of fluvial environments (during the Pliocene) and spring-fed environments
(during the Pleistocene) are preserved at fossil sites in the region. These environments
would have been extremely important for the survival of animals in southwestern South
Africa. The *’Sr/**Sr ratios of fossil teeth from mid-Pleistocene Elandsfontein suggest
that large herbivores not only stayed within southwestern South Africa for food, but that
they did not necessarily leave the area surrounding the fossil site.

The A'7O values of modern tooth enamel samples cover a greater span and
include more negative values in arid environments than in humid environments,
regardless of the oxygen isotopic composition of meteoric water and latitude. This record
indicates the future potential of applying triple oxygen isotopes to the fossil record for

reconstructing aridity, atmospheric pCO, and diagenesis.
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CHAPTER 1
1. Introduction

A major field in Earth Sciences is evaluating how climate change affected
organisms, landscapes and environments in the past. The effects and imminent
consequences of anthropogenic-driven climate change on ecosystems and environments
have become of immediate concern and these appear to be caused largely by the
increased burning of fossil fuels resulting in increasing atmospheric pCO, and in turn
increasing global temperatures. However, both regional and global climates have
fluctuated substantially throughout Earth’s history (e.g., Marlow et al., 2000; Zachos,
2001). Reconstructions of past climate provide perspective on how natural systems will
respond to present and future climate change; this includes the interactions between
animals and environments as well interactions between the human species and
environment.

Materials from marine and terrestrial systems can be influenced by different
aspects of climate. When these materials are preserved in the geological record they can
hold a signal of some aspect of the climate for times in the past, such as temperature or
atmospheric pCO, (e.g., Tipple et al., 2010). Marine sediment cores can preserve
terrestrial materials (e.g., pollen, leaf wax, sediments) that are used to capture aspects of
past terrestrial climate and environment, such as vegetation type (deMenocal, 2004;
Dupont et al, 2013). These cores also preserve material originating in the marine system
itself that is used for evaluating ocean circulation and sea surface temperature change in
relation to regional and global climate change (Marlow et al., 2000). Marine-based

terrestrial records can have high temporal resolution, however these records are not local
1



to one region and instead combine materials that can span subcontinental spatial scales;
furthermore, the origin of the terrestrial materials in marine sediment cores is dependent
upon the direction of atmospheric and oceanic currents and so material may travel long
distances before being deposited. Terrestrial-based records provide a more local
perspective of the hydrological setting, vegetation and climate of a landscape across a
region or site, but these records are seldom continuous and can have low temporal
resolution (Cerling et al., 2013; Levin et al., 2015). It is important, however, to analyze
terrestrial-based climate and environment proxy records to understand how both
landscape and associated organisms responded to climate change. These terrestrial
records can be then used in tandem with marine records to evaluate if and how regional
and global climatic change resulted in terrestrial climate and environmental change and in
turn how these changes influenced organisms within the region.

Various materials preserved at the landscape surface, including soils, sediments
and fossils, can be used to evaluate the past terrestrial climate and environment of a
region or site. These materials preserve information about the past climate on different
time scales. For example, fossils can represent precise periods of time (i.e., the life span
of an animal) while other records average climate and environment over 100s to >
100,000s of years, and even longer (e.g., the formation of soil and the deposition of
sediments on a landscape).

Records of fossil mammals preserve information about an animal’s diet and have
been used to indicate environment and climate during the time they were alive (Luyt et
al., 2000; Franz-Odendaal et al., 2002; Braun et al., 2010; Patterson et al., 2016). These

records represent a snapshot in time on a specific landscape (i.e., at longest, the period of
2



time an animal was alive). The type of vegetation consumed by animals can be evaluated
using both the morphology of a tooth which is used to understand the vegetation type an
herbivore had evolved to consume, and the scrapes and scratches on the chewing surface
of teeth, which is indicative of the dietary behavior of an animal in a region, irrespective
of tooth morphology (e.g., Stynder, 2011). Isotope ratios in bones and teeth record the
type of vegetation an animal consumed (using carbon isotopes), whether an animal
traveled away from where the fossil was found for food (using strontium isotopes) and
information about the water an animal consumed (using oxygen isotopes) (e.g., Luyt et
al., 2000; Hoppe et al., 2006; Levin et al., 2006; Copeland et al., 2016).

The composition of vegetation in a region can be dependent upon climate. If we
are to understand how organisms respond to climate change, then it is important to
understand how animals utilized their landscape for food and in turn what their diets
suggest about the distribution of vegetation and the environmental context of a region. In
addition, in order to build and expand the tool kit for paleoclimate research, and
understanding how landscapes and organisms respond to climate change, we need to
develop relevant datasets from modern analogs to understand how these proxies work.
This thesis addresses these concepts in detail using different isotopic systems preserved
in fossil and modern teeth.

The isotopic compositions of elements in organic and inorganic carbonates (e.g.,
soil carbonate, tooth enamel, shells) are frequently used to reconstruct the terrestrial
ecosystem response to climate change. It has long been known that that heavy and the
light isotopes of a given element respond differently to various mass-dependent factors

(i.e., kinetic and equilibrium effects), and therefore these isotopic effects can cause
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fractionation between heavy and light isotopes. The ratio of isotopes is measurable via
analysis of a molecular gas derived from a sample in a mass spectrometer. Of interest to
this thesis are the distributions of carbon, oxygen and strontium isotope ratios in teeth to
reconstruct terrestrial ecosystems and climate change. The 8'°C value (ratios of *C/"*C
of'a sample compared to that of a standard) of tooth enamel reflects the proportion of Cs
and C, plants in an animal diet, which can be used to determine the presence or the
absence of C3 and C4 plants in the past, which in turn reflects the seasonality of rainfall
(i.e., C; grasses occur where there is a cool growing season, while C4 grasses grow in
regions with a warm growing season) (e.g., Luyt et al., 2000). Strontium isotope ratios
(*’St/**Sr) can vary according to the mineralogical composition of a substratum, and this
ratio is preserved in soils, plants and the teeth and bones of animals eating those plants,
with insignificant fractionation of the strontium isotopes (e.g., Bentley, 1996). Enamel
¥7S1/*°Sr ratios can be used as a geochemical proxy for substrate and is often used to
determine land use among mammals, including hominids, because the 87Sr/*Sr ratio from
different geologic materials, or substrates, are preserved in bones and teeth. The 8'°0
(ratios of '*0/'°0) value of tooth enamel is affected by a number of factors including the
8'%0 value of ingested water, which is influenced by the 8'*0 values of precipitation,
surface and plant water and also animal physiology and behavior. Generally, animals tend
to have higher 8'*0 values of enamel in more arid environments (e.g., Hoppe et al.,
2006). The aridity of terrestrial ecosystems has been evaluated using the 8'*O values of
enamel through the comparison of §'*0 values of enamel from animals that are obligate

drinkers and non-obligate drinkers (Levin et al., 2006).



The §'®0 system cannot separate the environmental effects that influence
fractionation of '°O and '®0, therefore the application of the 8'*0 system to fossil teeth
and bones (and in the fossil record in general) can not always provide a satisfying
interpretation of climate and environment. For example, when considering the 8'*0 value
of tooth enamel, the influence of evaporation on 8'*O value of the water an animal
consumes cannot be separated from the influence of the original source water 8'°O value
on ingested water. Specifically, kinetic and equilibrium isotopic fractionation effects on
oxygen isotopes cannot be separated. Additionally, influencing factors on water §'°O
values are often interrelated. Nevertheless, while not ideal, the 8'%0 values of fossil teeth
and of other terrestrial carbonates have been used to define foundational environmental
and climatic proxy records by which many other paleorecords are compared and that
Earth scientists use to interpret major changes to the Earth’s surface over time (e.g.,
Zachos et al., 2001; Rowley and Currie, 2006). In the evaluation past terrestrial climates
and environments, another metric is needed, one that can constrain the 8'*0 system by
separating kinetic and equilibrium oxygen isotopic effects.

Triple oxygen isotope analysis (A'’O) is a method that utilizes both the '*0/'°0
and '70/'°O ratios in a material to distinguish between kinetic and equilibrium isotope
effects on the oxygen isotopic composition of enamel. A'’O reflects water availability,
which cannot be distinguished by measuring 8'*O values alone, and therefore has the
potential to be an extremely useful way to determine past environmental aridity (as
reviewed in Passey et al., 2014). Water availability is an important parameter for

understanding how environments and organisms responded to climate change. In



addition, the A'’O values of fossil teeth have the potential to help constrain atmospheric
pCO; across the fossil record and also to be utilized as a method by which to evaluate
whether the primary oxygen isotopes in a sample have been preserved (Gehler et al.,
2011; Pack et al., 2013; Gehler et al., 2016). However, it is extremely important to first
understand how A'’O in tooth enamel relates to geographic, biological, and
environmental parameters today before we use this method for understanding climate and
environment in the past.

The southwestern coast of South Africa has a complex and unique ecosystem and
little is known about the regional environment and vegetation prior to the Last Glacial
Maximum or how this region responded to global climate change over the last 5 million
years, a period of major climatic change. Fossils are preserved in this region and indicate
the presence of mammalian communities composed of extinct and extant animals across
this time (Stynder, 2001; Klein et al., 2007). Technologically-advanced stone tools
produced by hominins are preserved at the archeological site Elandsfontein in
southwestern South Africa and date to ~ 1 million years ago (Braun et al., 2013). These
tools point to a period of behavioral change at ~ Imillion years ago and make this region
a hotspot for the history of human evolution. Hominins living in southwestern South
Africa would have had to contend with the surrounding environments and any changes to
these environments during the Pliocene and Pleistocene. Therefore, evaluating past
environment and the composition of vegetation in southwestern South Africa is
particularly relevant to understanding present and future climate change because it helps
build perspective for future human-environment interactions (Braun et al., 2013). It is,

however, unknown how hominins and other mammals could have survived in
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southwestern South Africa in the past and what the environment conditions would have
been during the mid-Pleistocene at Elandsfontein. There is no modern anolog of the
paleoenvironment at Elandsfontein; instead southwestern South Africa is today a dry and
hostile environment in which the animal communities that once occupied the region
could not possibly survive.

Fossil teeth preserved in sedimentary strata from known Pliocene and Pleistocene
fossil sites in southwestern South Africa have the potential to provide evidence for the
local environmental response to climate change. Records of enamel 8'°C values and 8'*0
values as well as the enamel *’Sr/**Sr ratios from these fossil teeth are used in this
dissertation to reconstruct the complex ways that terrestrial systems respond to climate
change both on different spatial scales and over time.

In the following chapters I present three studies that take advantage of different
isotope records (*C/"*C, '*0/'°0, 70/"°0 and *’'Sr/*°Sr) that have been preserved in tooth
enamel carbonate and discuss how these records can contribute to understanding past
climate and environment. In this thesis, I consider the changes in environment and
landscape of southwestern South Africa since 5 million years ago and how these changes
may have related to global and regional climate. In Chapter 2, I present carbon and
oxygen isotope data from fossil teeth from the mid-Pleistocene in southwestern South
Africa and compare these records to other environment and climate proxy records from
southern Africa that represent times within the last 5 million years. In Chapter 3, I
consider how mammalian herbivores from mid-Pleistocene Elandsfontein moved around
the region to find resources (i.e. food and water). The movement of animals can help

understand the variation of vegetation in a region and help to determine whether the
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proposed features of vegetation and environment at Elandsfontein, as described in
Chapter 2 and that were derived from analysis of the teeth obtained at Elandsfontein, are
plausible. Here I have sampled the enamel of several large herbivore teeth (animals that
have the potential to migrate for food) along their tooth growth axis and analyzed their
strontium isotope composition to determine if there was any indication of a change in the
substrates on which they browsed and grazed. If the strontium isotope (*'Sr/*Sr) ratios of
these teeth were characteristic of the marine sands at Elandsfontein then it is likely that,
1) these animals did not travel to other locations in the region for food because there were
adequate resources at Elandsfontein and 2) that at ~ 1 million years ago the landscape and
spring-fed environment at Elandsfontein would have provided the conditions that
supported the annual growth of C; grasses within a winter rainfall zone.

The studies presented in Chapter 2 and Chapter 3 have expanded upon previous
interpretations of climate, environment and landscape change in southwestern South
Africa at times since ~ 5 Ma. In these studies, I paint a picture of the regional variation of
vegetation during the mid-Pleistocene, a time when hominins lived in this region, and
proposed that animals and hominins were drawn to Elandsfontein because this site had
enough vegetation of sufficient quality to feed diverse populations of large mammalian
herbivores. I attribute the vegetative composition at and around Elandsfontein ~ 1 million
years ago to a spring-fed environment as indicated by ancient spring deposits preserved at
the site. The presence of springs would have provided standing water throughout the year
within a region when there was only winter rain. While southwestern South Africa is

considered to have become more arid since the Pliocene based on marine-based climate



and vegetation proxies, the '*0/'°0 ratios of fossil teeth from Elandsfontein can not be
used to determine changes in aridity compared with other environmental changes.

In Chapter 4, I consider the limitations of the conventional oxygen isotope record
in biominerals (e.g., teeth, bone and eggshells) for understanding past climate and
environment. [ discuss the importance of utilizing all three oxygen isotopes preserved in a
biomineral (where the rare isotope '’O is measured along with '°0 and '*0) as a way to
distinguish between different factors that influence the oxygen isotope record, constrain
past pCO,, evaluate aridity and assess diagenesis of the primary oxygen isotope
composition in teeth. In addition, I present the modern range of triple oxygen isotope
values of enamel from different animal species that come from various latitudes and
environments and have a variety of dietary behaviors. The data provide a record of tooth
enamel A'’O values that are linked to known climatic and environmental parameters.

The A'7O values of fossil teeth could be valuable for evaluating the effects of
diagenesis on the fossil tooth oxygen isotope records, adding to the suite of information
about diagenesis based on '*0/'°O ratios of fossil teeth. In addition, evaluating the change
in aridity during the mid-Pleistocene could provide a new perspective about aridity in the
region, where aridity represents water balance and water balance is an important element
to understand how landscapes respond to climate change.

By understanding the broader context of climate change and resource availability
in the southwestern coastal region of South Africa during the mid-Pleistocene, it might be
possible to understand why Elandsfontein attracted large herbivores and at the same time
start to characterize how vegetation on the western coast reflected or responded to

changes in regional ocean circulation and global climate change.
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CHAPTER 2: Stable isotopic composition of fossil mammal teeth and
environmental change in southwestern South Africa during the Pliocene and
Pleistocene

ABSTRACT

The past 5 million years mark a global change from the warmer, more stable
climate of the Pliocene to the initiation of glacial-interglacial cycles during the
Pleistocene. Marine core sediment records located off the coast of southwestern Africa
indicate aridification and intensified upwelling in the Benguela Current over the Pliocene
and Pleistocene. However, few terrestrial records document environmental change in
southwestern Africa over this time interval. Here we synthesize new and published
carbon and oxygen isotope data of the teeth from large mammals (>6 kg) at
Langebaanweg (~5 million years ago, Ma), Elandsfontein (1.0 — 0.6 Ma), and
Hoedjiespunt (0.35 — 0.20 Ma), to evaluate environmental change in southwestern Africa
between the Pliocene and Pleistocene. The majority of browsing and grazing herbivores
from these sites yield enamel §'°C values within the range expected for animals with a
pure Cs diet, however some taxa have enamel 8'"°C values that suggest the presence of
small amounts C4 grasses at times during the Pleistocene. Considering that significant
amounts of C4 grasses require a warm growing season, these results indicate that the
winter rainfall zone, characteristic of the region today, could have been in place for the
past 5 million years. The average 8'°O value of the herbivore teeth increases ~4.4%o
between Langebaanweg and Elandsfontein for all taxa except suids. This increase may
solely be a function of a change in hydrology between the fluvial system at

10



Langebaanweg and the spring-fed environments at Elandsfontein, or a combination of
factors that include depositional context, regional circulation and global climate.
However, an increase in regional aridity or global cooling between the early Pliocene and
mid-Pleistocene cannot explain the entire increase in enamel 8'*O values. Spring-fed
environments like those at Elandsfontein may have provided critical resources for
mammalian fauna in the mid-Pleistocene within an increasingly arid southwestern Africa

ecosystem.
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2.1. Introduction

The Pliocene-Pleistocene climatic transition is marked by a global shift from
relatively warm and stable climate conditions in the Pliocene to colder and more variable
conditions in the Pleistocene (Imbrie et al., 1992; Zachos et al., 2001). Over the course of
this transition African landscapes are considered to have become more arid (e.g.,
deMenocal, 2004; Dupont et al., 2013). In southwestern Africa, intensified upwelling of
cold bottom waters in the Benguela Current System has been linked with increased
regional aridity and the onset, expansion and speciation of the endemic Cape flora since
the Miocene (Marlow et al., 2000; Dupont et al., 2005; 2011; Etourneau et al., 2009).
While marine-based records indicate major changes in vegetation and climate in southern
Africa, terrestrial-based records could provide a more local perspective of the
hydrological setting, vegetation and climate of southwestern South Africa since the
Pliocene; currently there are few archives of environmental change in this region during
the last 5 million years (myr) (Roberts et al., 2011; Eze and Meadows, 2014).

Sedimentary strata from known Pliocene and Pleistocene fossil sites in
southwestern South Africa have the potential to provide direct evidence for the local
environmental response to climate change (Table 2.1). Sedimentary records indicate a
transition from fluvial to spring-fed and eolian deposition in southwestern South Africa
(Roberts et al., 2011; Eze and Meadows, 2014). Data from pre-Holocene mammalian
fossils suggest the presence of significant amounts of surface water and a vegetated
landscape composed of a fynbos shrubland and grassland mosaic, interspersed with trees

and broad-leafed bush, which contrasts the dry, eolian landscapes that are prevalent in
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southwestern South Africa today (e.g., Luyt et al., 2000; Franz-Odendaal et al., 2002;
Stynder, 2009; 2011; Braun et al., 2013).

Here we use the carbon and oxygen isotopic composition of fossil herbivore tooth
enamel obtained from paleontological and archaeological sites in southwestern South
Africa to investigate trends in regional climate and hydrology, vegetation and animal diet
between the Pliocene and Pleistocene. Together with marine archives off the coast of
southern Africa that record broader, regional-scale climate and vegetation, we use these
terrestrial-based data to improve upon the understanding of how environments in
southwestern South Africa responded to global climatic changes during the Pliocene and

Pleistocene.

2.2. Background
2.2.1. South African climate and vegetation

South Africa is predominantly semiarid with three distinct rainfall zones and
corresponding vegetation zones (Fig. 2.1; Cowling et al., 2002). The winter rainfall zone
of western South Africa encompasses an area of ~200-km? where ~65% of mean annual
precipitation (MAP) occurs between April and September. The summer rainfall zone is
affected by the warm Agulhas Current that flows along the eastern coast of South Africa.
At the intersection of these two major meteorological zones, situated along the South
Coast of South Africa, there is a region that receives rainfall during both the summer and

winter. This annual rainfall zone spans from the southern coast of the Eastern Cape
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Province of South Africa into the Western Cape Province (e.g., Chase and Meadows,

2007).

33°S 4's
© fossil sites
®Berg River headwaters
34°S 0 study area

"reastern extent of
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western extent of
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Figure 2.1: Marine currents, climate zones, and southwestern South African fossil sites discussed in text.
A) A map of southern Africa indicating the location of the study area with a schematic of the present day
extent of the winter and summer rainfall zones and the Benguela and Agulhas Currents and present-day
political boundaries (Chase and Meadows, 2007). B) A map of the study area denoting the fossil localities
discussed in text (yellow circles), Cape Town, the Cape Fold Mountains, and the headwaters of the Berg
River. The color base maps indicating topography were generated using Global Multi Resolution
Topography from http://www.geomapapp.org (Ryan et al., 2009).

Rainfall zones in South Africa partition zones of vegetation, which can be seen
through the spatial distribution of the frequency of the three main photosynthetic
pathways: Cs, C4, and Crassulacean Acid Metabolism (CAM). The distribution of these

pathways is largely determined by environmental factors (Farquhar et al., 1989). C4

plants thrive in environments with a warm growing season while Cs plants grow primarily
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in cool growing seasons. CAM plants, such as cacti and succulents, are often found in
semiarid to arid environments. The distribution of grass type is related to the seasonality
of rainfall in South Africa; C4 grasses mostly grow in regions with summer rainfall, C;
grasses grow where there is winter rainfall, and both C; and C4 grasses grow in the
annual rainfall zone (Vogel et al., 1978; Cowling et al., 2002; Bar-Matthews et al., 2010).
Increased upwelling and the latitudinal movement of the Benguela Current may modify
the movement of warm waters along the coast of South Africa and this could impact the
distribution of the rainfall zones (Chase and Meadows, 2007). The positions of the
rainfall and vegetation zones are hypothesized to have shifted during the late Quaternary
in response to the position and upwelling intensity of the Benguela Current (Lee-Thorp
and Beaumont, 1995), however it is unclear whether they were stable in the Pliocene and
mid-Pleistocene.

The paleontological and archaeological sites that are the focus of this paper are
within southwestern South Africa, west of the Cape Fold Mountains and stretch across 40
kms of the coastal plain. These sites, Langebaanweg (~5 million years ago (Ma), early
Pliocene), Elandsfontein (1.0 — 0.6 Ma, mid-Pleistocene) and Hoedjiespunt (0.35 — 0.20
Ma, late Pleistocene), are within the winter rainfall zone (Fig. 2.1). Regionally the area is
known as Strandveld (literally ‘beach vegetation’) and geomorphologically is dominated
by a coastal plain variably covered by marine sands (Mabbutt, 1955; Roberts et al., 2012).
Limited outcrops of granite to the south and west interrupt Cenozoic-aged eolian deposits
that blanket much of the region. The western portion of the area is underlain by shales of
the Malmesbury Group leading up to the Paloezoic sandstones of the Cape Supergroup

(Besaans, 1972; Roberts et al., 2009). The contemporary vegetation in the study area is
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primarily composed of small-leafed, nutrient-poor taxa of the strandveld and fynbos
families. C; grasses and trees are scarce in this area because of the nutrient-poor soils. It
has generally been presumed that C4 grasses are limited in the southwestern Cape by the
long, hot and dry summers, however C4 grasses are able to grow in areas that are well

watered throughout the year (e.g., Cowling et al., 2002; 2005).

2.2.2. Pliocene and Pleistocene climate and vegetation in western South Africa

2.2.2.1. Marine records

Marine sediment records from cores off the coast of southwestern Africa span the
past 4.5 myr and provide information about terrestrial responses to global climate change
and the degree of ocean upwelling (Marlow et al., 2000; Dupont, 2005; Etourneau et al.,
2009). Charcoal and plant waxes preserved offshore show that there was an increase in
aridity, seasonality and fires to the north of the study area during the Miocene and
Pliocene (Hoetzel et al., 2013). The drying trend continued across the
Pliocene-Pleistocene climatic transition; offshore pollen records indicate a reduction in
grass and an increased occurrence of fynbos and semi-desert vegetation (e.g., Dupont et

al., 2005).

2.2.2.2. Terrestrial records
In contrast to the high-resolution, marine-based proxy records that extend into the
Miocene, there are no terrestrial-based proxy records with a similar time span or
resolution. However the numerous archives of eolian and riverine sedimentary sequences

on the coastal plains of southwestern South Africa provide some details of late Cenozoic
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environments. There have been numerous studies of ancient environments in this region
based on these records (e.g., Klein, 1978; 1982; 1983; 1991; Klein and Cruz-Uribe, 1991;
February, 1992; Meadows et al., 1996). However, the vast majority of these studies have
focused on environments since the Last Interglacial (0.125 Ma). Langebaanweg,
Elandsfontein and Hoedjiespunt are paleontological and archeological sites within the
study area that date to within the last ~5 myr. These sites are well known for their
contribution to our understanding of faunal change and human evolution in South Africa
(e.g., Hendey, 1976; Klein, 1978; Berger and Parkington, 1995; Stynder, 1997; Stynder et
al., 2001; Klein et al., 2007; Braun et al., 2013). The flora, fauna and sediment records at
these sites provide a record of environmental change in the area from the Pliocene and
Pleistocene (Luyt et al., 2000; Franz-Odendaal et al., 2002; Stynder, 2009; Roberts et al.,
2011; Stynder, 2011; Braun et al., 2013; Hare and Sealy, 2013; Eze and Meadows, 2014).
While these sites have been the focus of a variety of paleoecological studies (Table 2.1),
currently there is no detailed, integrated record of the hydrological, ecological and

climatic changes in southwestern South Africa over the past 5 myr.

2.2.3. Carbon and oxygen isotope composition of herbivore tooth enamel
Cs, C4 and CAM plants have distinct stable carbon isotope values primarily due to
different physiologies of the different photosynthetic pathways (e.g., Farquhar et al.,

1989). Carbon isotope data of plants are traditionally presented using 6-notation, where

standard

R
o= (ﬂ-l) *1000 in per mil (%o) units and Rgampie and Rgandara are the ratios of heavy

to light isotopes (in this case, °C and '>C) of the sample and standard, respectively. §'°C
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values are reported relative to Vienna Pee Dee Belemnite (VPDB). The 8"°C values of Cs
plants globally range from ~ -31.7%o to ~ -23.1%o (Kohn et al., 2010). The 8"°C values C4
plants range from ~ -14.0%o and ~ -10.0%o (Hattersley, 1982). In southwestern South

Africa the average 8'°C value of Cy plants is -12.8 + 1.3%o (Radloff, 2008), whereas §'°C

values of CAM plants range from ~ -24%eo to ~ -16%0 (Boom et al., 2014).

Table 2.1: A summary of the terrestrial records of climate, vegetation and depositional environment from
southwestern South Africa.

Age Locality Depositional Substrate Vegetation Climate Data sets References
environment
late Hoedjiespunt Coastal Sands Shrubs and  Glacial Taxonomy®  Klein,
Pleistocene widespread Stable 1983
(0.35-0.25 grasslands isotopes” Stynder,
Ma) 1997
Hare and
Sealy,
2013
mid-Pleistoc  Elandsfontein Spring-fed Eolian and marine ~ Trees, Glacial Taxonomy®  Butzer,
ene and eolian sands, shrubs, and  and/or Stable 1973
(~1.0-0.6 carbonate-leached seasonal Interglac  isotopes” Klein,
Ma) sediments, grasses ial Microwear® 1978
pedogenicaly Sediment Luyt et
modified sands al., 2000
Stynder,
2009
Braun et
al., 2013
Pliocene Langebaanweg Fluvial and Floodplain, Trees, Warm Taxonomy®  Franz-Od
(~5 Ma) deltaic marsh, and r shrubs, and  and wet Stable endaal et
iver channel seasonal isotopes” al., 2002
deposits grasses Mesowear®  Roberts et

Microwear®  al., 2011
Sediment Stynder,
2011

* Datasets that apply to teeth.

The 8" Cenamel value reflects the proportion of Cs and Cy4 plants in an animal’s diet

such that the &' Cenamel Values of fossil herbivore teeth can be used to determine the

18



presence or absence of Cs and Cy4 grasses in the past. There is a +14.1%o dictary
enrichment of 8"°C values between the diet of large herbivorous mammals (> 6 kg) and
their enamel (Cerling et al., 1999) and as such the 8"°C value of tooth enamel (8" Cename)
reflects the isotopic composition of an animal’s diet (see Kohn and Cerling, 2002 for
review). Here we define large mammals as > 6 kg because the smallest mammal included
in this category is the grysbok, which is ~ 10 kg, whereas we refer to the mammals from
Elandsfontein with body weights < 6 kg as small mammals, which includes the rodent
genera Bathyergus and Otomys. For fossil sites, in southern Africa, the presence or
absence of Cs and C4 grasses in mammalian diet has been presumed to reflect the
presence or absence of winter and summer rainfall (Luyt et al., 2000; Franz-Odendaal et
al., 2002; Hare and Sealy, 2013). Within a C;-dominated ecosystem, the isotopic
composition of tooth enamel from large herbivores can be used to tease apart subtleties in
the distribution of vegetation (e.g., Luyt et al., 2000; Franz-Odendaal et al., 2002; Hare
and Sealy, 2013). For example, Hare and Sealy (2013) suggest that there was some Cy4
grass in Cs-dominated grasslands in southwestern South Africa during the late
Pleistocene because the 8'°Cepamer values of grazers were more enriched in 8" Cenamel
values than what is expected for a grazer consuming purely C; vegetation. CAM plants
are not considered to have greatly influenced the 8> Cenamel values because they do not
comprise a major proportion of large mammalian herbivore diets (Cerling et al., 2003)
and therefore they will not be further considered in this study.

The stable oxygen isotope composition of the carbonate component of herbivore

tooth enamel is affected by a number of factors including the 8'*0 value of ingested
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water, which is influenced by the 8'®0 values of precipitation, surface and plant water, as
well as animal physiology and behavior (as reviewed in Kohn and Cerling, 2002). All of
these factors generally contribute to higher 8'*0 values of enamel in more arid
environments. The comparison of enamel 8'°0 values between obligate drinkers and
non-obligate drinkers has been specifically used for evaluating relative aridity in
terrestrial ecosystems (e.g., Levin et al., 2006).

The oxygen isotopic composition of enamel phosphate has also been used as a
proxy for paleoclimate and is considered to be less susceptible to alteration than the
oxygen isotope composition of the carbonate component of enamel because oxygen in the
phosphate component is more tightly bound than in the carbonate component of enamel
(Chenery et al., 2012). The offset between §'°O values of the carbonate and phosphate
components of enamel ranges from 7.2%o to 10.6%o in well-preserved teeth and has been
used as a means to evaluate diagenetic modification of the 8'*0 values of fossil teeth

(e.g., lacumin et al., 1996).

2.3. Materials and Methods
2.3.1. Fossil enamel samples

We sampled mid-Pleistocene fossil teeth from two separate faunal collections at
Elandsfontein. The first collection is housed at the Iziko South African Museums in Cape
Town, South Africa. This faunal sample, known as Elandsfontein Main (EFTM), was

predominantly collected from surface deposits over the course of several decades as
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described in Klein et al. (2007). The second collection derives from recent fieldwork
conducted by the West Coast Research Project (WCRP) between 2008 and 2014. These
materials are archived at the Archaeology Department, University of Cape Town and
include both surface samples and excavated teeth. All fossils that we sampled from the
WCRP collection derive from the Upper Pedogenic Sand lithological unit that is part of
the Langebaan Formation (Braun et al., 2013). We also sampled Pliocene teeth (n = 10)
from the Varswater Formation at the Langebaanweg paleontological locality, which were
obtained from the West Coast Fossil Park (Roberts et al., 2011). The teeth from
Langebaanweg were sampled to provide a point of comparison in the evaluation of the
diagenetic alteration of oxygen isotopes in tooth enamel from Elandsfontein. All tooth
enamel was sampled with a diamond drill bit along the tooth growth axis. When possible,
third molars were sampled. New data were compiled with previously published carbon
and oxygen isotope tooth enamel data from the region, including 64 teeth from
Langebaanweg (Franz-Odendaal et al., 2002), 18 teeth from Elandsfontein (Luyt et al.,
2000), and 39 teeth from Hoedjiespunt (Hare and Sealy, 2013). This compilation does not
include the isotope data of the fossil teeth from the “Bone Circle” at Elandsfontein that
Luyt et al. (2000) published because we are uncertain of their context and relationship to

the other fossils from Elandsfontein (Braun et al., 2013).

2.3.2. Isotopic measurements
We measured 8" Cenamel values and 8'%0 values of both the carbonate and

phosphate components of fossil tooth enamel. We also measured 'O and 8’H values of
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surface and ground waters in the immediate vicinity of Elandsfontein and in the general

Langebaan-Hopefield region.

2.3.2.1. Analysis of the enamel carbonate component

Fossil enamel was powdered, treated with 3% H,0O, to remove organic material
and rinsed three times with deionized water. The resultant powder was rinsed with 0.1 M
buffered acetic acid to remove secondary carbonate, rinsed three times with deionized
water and dried overnight at 60°C. Approximately 500 to 800 pg of each powdered
sample were placed in a silver capsule then digested under vacuum in a common bath of
100% phosphoric acid at 90°C and the resultant CO, was purified using a custom-built
automated device (Passey et al., 2010). The CO, was analyzed for *C/"*C and '*0/'°0
ratios using a dual inlet system on a Thermo MAT253 isotope ratio mass spectrometer in
the Department of Earth and Planetary Sciences, Johns Hopkins University. The isotopic
composition of the resultant CO, was determined with respect to a working CO,
reference, calibrated using NBS-19, and monitored using working references of calcite
and enamel. The precision of the working carbonate enamel standards over the course of
the analyses made for this study was 0.4%o and 0.2%o for 3'"°C and §'*0, respectively. An
acid fractionation factor of 1.00725 was used for determining 8'*O values of the
carbonate component of fossil enamel digested at 90°C (Passey et al., 2007). All "°C
values are reported relative to VPDB (Vienna Pee Dee Belemnite) and §'°0 values are

reported relative to VSMOW (Vienna Standard Mean Ocean Water).
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2.3.2.2. Analysis of the 5'°0 values of enamel phosphate

Forty-eight fossil teeth from Langebaanweg and Elandsfontein were analyzed for
the 8'*0 values of enamel phosphate, in addition to carbon and oxygen isotope analyses
of enamel carbonate mentioned above. Samples were drilled and pretreated in the manner
described above (Section 3.2.1). Phosphate-bound oxygen was isolated and extracted
from enamel using a modified version of the batch Ag;PO, precipitation method of
O’Neil et al. (1994) followed by &'*0 analysis of approximately 400 ug of Ags;PO, via
high temperature pyrolysis to CO (TC/EA) on a continuous flow Delta Plus XL isotope
ratio mass spectrometer at the Department of Geosciences, Princeton University.

Long-term performance (precision of the isotope ratio mass spectroscopy
measurement and wet chemistry conversion from hydroxyapatite to Ag;PO4) was
confirmed by repeat analysis of NBS120c, a phosphate rock with certified metal oxide
abundances and distributed by the National Institute of Standards and Technology and the
de facto standard for 8'°0 in phosphate, with 8'%0 values ranging from 21.3 to 22.6%o
VSMOW (e.g., Vennemann et al., 2002; Halas et al., 2011). Although precipitation yield
varied using the modified O’Neil et al. (1994) batch precipitation method (52+22 %),
repeat analysis of the NBS120c phosphate standard over 18 months averaged
22.36+0.48%o and showed no dependence of measured 'O values on precipitation yield,

with the average value aligning well with published 5'*O values.

2.3.2.3. Analysis of the 5'°0 values of water
Samples of standing water and ground water (n = 3) were collected from a series

of active springs in the vicinity (within a ~3 km to ~17 km radius) of the Quaternary
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deposits at Elandsfontein where fossil teeth were collected. Tap water from The Western
Cape Fossil Park (which is in the general proximity of the study area) was also collected
(n=1). Samples were passed through a 0.45-um filter in the field and sealed in a glass
bottles with polycone seal lids and wrapped in parafilm to prevent evaporation. Samples
were cleaned with activated charcoal to remove organics, filtered again and then analyzed
by laser absorption spectroscopy on a Los Gatos Research Liquid-Water Isotope
Analyzer at the Department of Earth and Planetary Sciences, Johns Hopkins University.
The precision of the working water standard USGS48 over the course of the water
analyses was 0.03%o and 0.1%o for 8'°0 and §°H respectively. The 8'*0 and &°H values of
water samples are reported relative to the VSMOW-SLAP scale, where SLAP is Standard

Light Antarctic Precipitation.

2.3.3. Interpretation of stable isotope results

2.3.3.1. Influence of 8" C values of atmospheric CO;

The 8"C value of atmospheric CO, has decreased over the past 5 myr (Tipple et
al., 2010) and this decrease needs to be considered when using 8'"*Cenamel values to
determine the proportion of C3 and C4 plants in an animal’s diet. The 8'"°C value of
atmospheric CO, will influence the 8'°C values of C3 and C, plants and as a consequence
will influence 8" Cenamel values of the tissues of the animals that eat these plants. We
calculated the ranges in 8'°C values that we expect for C; and Cy plants at the time
periods representative of Langebaanweg (~5 Ma), Elandsfontein (1.0 — 0.6 Ma) and
Hoedjiespunt (0.35 — 0.20 Ma) to better determine what herbivore 8'"*Cename values may
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indicate about the distribution of C3 and C4 plants in the study area, considering the §'"°C
values of atmospheric CO; reconstructed from benthic foraminifera (Tipple et al., 2010;
see Table S2.1 for details). Given changes in the §'°C value of atmospheric CO,, the
maximum 8" Cepamer values for large mammals with a pure C; diet are -7.6%o for
Langebaanweg and -8.4%o for both Elandsfontein and Hoedjiespunt (Table S2.1). If the
8"3Cenamel value of a grazer is higher than the reconstructed maximum 8" Cenamel value for
an animal eating a pure C; diet, then it implies the presence of C4 grass in the animal’s
diet and, in turn, the growth of C4 plants in the otherwise dry summer months in
southwestern South Africa. As mentioned earlier, the presence of Cy4 grass in
southwestern South Africa is interpreted as the inclusion of rainfall during the summer
months in this ecosystem. Alternatively, large mammals may be feeding around

permanent water sources such as springs and rivers where C,4 plants may have grown.

2.3.3.2. Analysis of the 5'°0 values of enamel phosphate

Low carbonate content of fossils, bones and sediments at Elandsfontein have led
to hypotheses that carbonate has been leached from the fossil deposits at the
Elandsfontein archeological site since initial deposition and burial (Luyt et al., 2000).
This is in contrast to fossils from the sites Langebaanweg and Hoedjiespunt, which have
been recovered from carbonate-rich sediments (Stynder, 1997; Roberts et al., 2013). To
evaluate the potential influence of leaching on the §'*0 values of the carbonate
component of tooth enamel at Elandsfontein and whether or not these 5'°O values can be
used as indicators of paleoclimate, we compared the offsets in 5'*O values of the

carbonate and phosphate of fossil teeth from Elandsfontein to those from Langebaanweg.
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Oxygen in enamel phosphate is more strongly bound and more resistant to
diagenetic alteration than in enamel carbonate. There is a consistent enrichment between
the 8'°0 value in enamel phosphate and carbonate and as such 8'*O values of the oxygen
in the phosphate and carbonate component of tooth enamel are strongly correlated for
modern and unaltered fossil enamel (Bryant et al., 1996; lacumin et al., 1996; Martin et

al., 2008). This enrichment, or epsilon

1000 +6"0,

ic., ¢ 6"50up where£d™0, , = |-t Da
(Lew & 0 7Onp where£0™Ous = 19000 4 670,

]x 1000 and where in this case A=

COsand B=POy), ranges from 7.2 to 10.6%o for enamel that has not experienced
significant diagenesis (Bryant et al., 1996; lacumin et al., 1996; Martin et al., 2008). The
8" 0c03-r04 has been used to determine if the oxygen isotopic composition of the
carbonate in bioapatite has been diagenetically altered (Iacumin et al., 1996). We
compared £5'*Oco3.po4 values of teeth at Elandsfontein to those from Langebaanweg and
from compilations of modern teeth to evaluate the integrity of the 'O values of the
carbonate component of teeth from Elandsfontein. If the £5'*Oco3.po4 values at
Langebaanweg and Elandsfontein are similar to one another and within the range
expected for unaltered teeth, then the 3'°0 values of the carbonate component of enamel

from Elandsfontein can be used to reconstruct paleoenvironment.

2.3.3.3. Statistical comparison of isotopic values
All comparisons of isotope data from fossil teeth were performed using the JIMP

11, a statistical analytical software program developed by the SAS Institute and evaluated
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using the Tukey-Kramer HSD test. The + symbol is used throughout this paper to

represent one standard deviation from the mean.

2.4. Results
2.4.1. Isotopic composition of fossil enamel carbonate from Elandsfontein

The compiled dataset for carbon and oxygen isotope data (carbonate component
only) for large mammalian teeth from Elandsfontein is comprised of two collections that
represent the mid-Pleistocene, EFTM (n = 71; Luyt et al., 2000; this study) and WCRP
(n = 123; this study). The EFTM and WCRP collections include fossil teeth from seven
herbivore families: Bovidae, Elephantidae, Equidae, Giraffidae, Hippopotamidae,
Rhinocerotidae and Suidae, in addition to a single tooth from the primate family,
Cercopithecidae (see Table 2.2 and Table S2.2). These samples likely all belong to the
same stratigraphic unit, the mid-Pleistocene Upper Pedogenic Sand in the Langebaan
Formation (Braun et al., 2013). The main difference between these collections is that
fossils in the EFTM collection were collected from surface finds over decades (Klein et
al., 2007), whereas the WCRP collection includes a combination of fossils recovered

from surface surveys and excavations made with careful attention to stratigraphic context

(Braun et al., 2013).
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Table 2.2: 3"°C and 5"°0 values of fossil tooth enamel from sites in southwestern South
Africa, averaged by family and bovid tribe.

13 18
0 Cenamel 0 Oenamel Number

Taxon (family or tribe) bD;flt:vrif)rb (% VPDBxlo) (% VSMOW+le) a“‘:;l o
Hoedjiespunt (0.35 - 0.25 Ma)
Alcelaphini grazer -9.8+1.3 31£1.5 16
Bovini grazer -7.1+1.3 32.9+0.6 2
Reduncini grazer -10.2+2.3 32.7£2.0 2
Antelopini mixed feeder -9.6%1.1 31.2+42.1 5
Neotragini mixed feeder -8.4+2.5 32.2+1.3 3
Cephalophini browser -10.4+0.6 31.1£1.5 3
Tragelaphini browser -9.5+1.3 31.2+1.2 8
All Bovidae - -9.5£1.5 31.4+£1.5 39
Elandsfontein (~1.0 - 0.6 Ma)
Alcelaphini grazer -10.3+1.2 32.6%1.9 19
Bovini grazer -10.3+0.8 33.8+1.6 18
Reduncini grazer -9.6+0.7 33.3+£2.7 9
Hippotragini mixed feeder -10.3+1.3 31.3£1.9 4
Neotragini browser -12.3+1.4 32.6+0.7 2
Tragelaphini browser -11.8+0.5 34.6+1.4 8
All Bovidae - -10.0+1.3 33.2+2.0 123
Elephantidae grazer -8.5 30.8 1
Cercopithecidae - -10.2 31.2 1
Equidae grazer -9.840.7 32.7+1.0 32
Giraffidae browser -11.0+1.3 32.5+2.0 7
Hippopotamidae semi-aquatic -12.3+1.1 29.7+1.5 9
Suidae grazer -9.9+1.4 28.0+3.1 8
Rhinocerotidae grazer and

browser -11.0+0.8 31.6%1.8 13
Langebaanweg (~5 Ma)

browser to
Alcelaphini grazer -10.8+1.0 27.5¢1.5 7
Reduncini - -10.7+0.0 28.0+2.1 2
All Bovidae - -10.7£0.8 28.7+2.8 11
Equidae grazer -10.7x1.4 28.1+2.4 8
Giraffidae browser -11.4+1.2 28.4+2.0 29
Suidae - -11.8+1.0 27.7+0.9 4
Rhinocerotidae grazer -10.9+0.7 26.2+1.4 4
Hippopotamidae semi-aquatic -11.9+1.5 25.4+1.7 18

*In addition to the new isotopic data, the isotopic data from previously published papers
are included to determine the average 813Cenamel and 618Oenamel data for mammalian families
and bovid tribes at each fossil site (Luyt et al., 2000; Franz-Odendaal et al., 2002; Hare and
Sealy, 2013). See Table S2.2 for the compilation of data from individual teeth and the

corresponding references.

® References for the classification of dietary behavior are provided in Table S2.2.
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There are no differences in either the 8'°C values (p > 0.9) or 5'*0 values
(p > 0.2) of enamel carbonate, grouped by taxonomic family, from the EFTM collection
data reported by Luyt et al. (2000) and the new EFTM data that we report in this study.
When the isotopic data from teeth in the combined EFTM dataset (Luyt et al., 2000; this
study) are compared to the isotopic data from fossils in the WCRP collection (this study

only), we do not find any differences in 8'"°C and 8'*0 values of fossil teeth from like
families except for 8'°0 values (enamel carbonate) of the suids (EFTM, n =5,
26.3+2.6%0; WCRP, n =3, 32.1+£0.6%o0, p = 0.004). We note that the sample size is small
for several of the families analyzed at Elandsfontein (see Table 2.2 and Table S2.2).
From here on out, we discuss the isotope data from both the EFTM and WCRP
collections together and refer to them as all from Elandsfontein, unless otherwise noted.
We classified the dietary behavior (i.e., grazer, browser or mixed feeder) of 104
teeth from the compiled collections for Elandsfontein using a combination of approaches,
including mesowear, microwear and taxonomic analogy (Fig. 2.2; Table S2.2; Stynder,
2009; 2011). The individual teeth fall into three groups: browsers (n = 20), mixed feeders
(n=4) and grazers (n = 71). Theropithecus at Elandsfontein has not yet been analyzed
using mesowear or microwear to determine diet so we do not place it in one of these
categories. We consider hippopotamids apart from the other taxa that we sampled and
classify it as semi-aquatic because in modern African ecosystems Hippopotamus
amphibious spends a significant amount of time immersed in water, unlike the other taxa
in this dataset (e.g., Bocherens et al., 1996; Cerling et al., 2008). The 8" Cenamel values of

browsers, mixed feeders and grazers average -11.6+0.8%o (n = 20), -10.3%£1.1%0 (n = 4)

29



and -10.11.0%o (n = 71), respectively. The average 8" Cename value of hippopotamids
from Elandsfontein is -12.3+1.1%o (7 = 9). The 6'°O values of the carbonate component
of enamel of browsers, mixed feeders, grazers and hippopotamids are 33.1+1.9%o,

31.3+1.6%0, 32.4+2.5%0 and 29.7+1.5%o, respectively. Hippopotamid 8'*O values of

enamel carbonate are significantly lower than 8'*O values of browsers (p = 0.002) and

grazers (p = 0.005).
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Figure 2.2: The 6 °C and § '®O values of the carbonate component of fossil mammalian tooth enamel
from the Elandsfontein collections EFTM and WCRP (Luyt et al., 2000; this study). A) Histogram of § °C
values of teeth that can be categorized as browser (n = 20), grazer (n = 71), mixed feeder (n = 4) and
semi-aquatic hippopotamid (n = 9) (Table S2.2). The smaller plot above the histogram provides a guide for
interpreting & '*C values in terms of animal diet (pure C; and C,4 vegetation, gray bars). B) The 6 "°C and
& "0 values of the carbonate component of tooth enamel are plotted for each fossil tooth, grouped by
family.
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2.4.2. Comparison of oxygen isotopic values between enamel carbonate and enamel
phosphate

We analyzed the oxygen isotope composition of both the carbonate and phosphate
components of a subset of tooth enamel from Elandsfontein and Langebaanweg to
evaluate whether the 8'°0 value of the carbonate component of enamel from fossil teeth
at Elandsfontein is well enough preserved that it can be used as a proxy for conditions
during the animal’s life. The average £8"80c03.p04 values of enamel are 9.240.7%o
(n=138) and 8.2+0.7%o (n = 10) for Elandsfontein and Langebaanweg, respectively; these
values fit within the range observed for well-preserved teeth (7.2 — 10.6%o) (Bryant et al.,
1996; lacumin et al., 1996 and Martin et al., 2008; Fig. 2.3; Table S2.3). Based on the
similarities in these offsets to what has been measured in well-preserved enamel, we
consider the 8'°0 values of the carbonate component of tooth enamel from Elandsfontein
to be unaltered and to reflect the environmental and physiological conditions experienced
by an animal during tooth formation.

Further data to support this conclusion comes from interspecific comparisons of
8'%0 values of enamel carbonate. Numerous fossil and modern localities have
documented that 8'*0 values of hippopotamid enamel carbonate are lower than the 8'*0
values of coeval taxa because they would be eating plants close to water and drinking
water (e.g., Bocherens et al., 1996; Levin et al., 2006). Similar taxonomic distinctions
found between ancient taxa in the Elandsfontein collection indicate that the unaltered

biogenic signal of isotopic values is preserved in these specimens (Fig. 2.2b). Henceforth,
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we only discuss the 8'°0 values from the carbonate component of tooth enamel and refer

to them as 8" Oenamel values.
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Figure 2.3: Box plot of the offset of § *O values of enamel carbonate and enamel phosphate (¢ &

"0 co3.pos) for fossil enamel from Langebaanweg and Elandsfontein (closed symbols) and modern enamel
from published studies (open symbols). The ends of the boxes represent the quartile values and the
horizontal line within is the median, horizontal lines outside of the box indicate the range, and the outliers
are plotted as circles. The gray bar denotes the maximum and minimum ¢ § 180C03_p04 values measured
for modern teeth (Bryant et al., 1996; Tacumin et al., 1996; Zazzo, 2001; Martin et al., 2008).

2.4.3. Trends in 8" Copgmer and 85 Oopamer values from southwestern South Africa since 5
Ma

We compiled the new carbon and oxygen isotope data from tooth enamel
produced in this study from Elandsfontein and Langebaanweg with the published data
from Langebaanweg (Franz-Odendaal et al., 2002), Elandsfontein (Luyt et al., 2000) and

Hoedjiespunt (Hare and Sealy, 2013) to examine environmental and climatic changes in
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southwestern South Africa over the past ~5 myr. We used mesowear, microwear and
taxonomic analogy to classify the dietary behavior of taxa for samples from
Langebaanweg and Elandsfontein (Sponheimer et al., 2001; Franz-Odendaal et al., 2004;
Stynder, 2009; 2011). Dietary behaviors of Hoedjiespunt bovids are discussed in Hare
and Sealy (2013). These data are compiled in Table S2.2.

The 8'°Cepamer values of fossil teeth average -11.3+1.3%o (n = 74) at
Langebaanweg, -10.6+1.3%o (n = 194) at Elandsfontein and -9.5+1.5%o (n = 39) at
Hoedjiespunt. The average 8" Cenamer value of large mammals (> 6 kg) at each site fall
within the range of the 8"3Cepamer values expected for animals with diets comprised of
purely C; vegetation (Fig. 2.4).

Comparisons of 8" 0cnamel values from each family from Langebaanweg and
Elandsfontein indicate significant differences for like taxa (p < 0.001), where the
8" Ocnamel Values for teeth from Elandsfontein are typically ~4.5%o more positive than
those from Langebaanweg (Table 2.2; Table S2.2, Fig. 2.4b). This distinction holds for
8" Ocnamer Values of all taxa sampled from the two sites except for suids for which there is
no difference in 8'*Ocpamer values for Elandsfontein (28.0:3.1%o) and Langebaanweg
(27.74£0.9%0) (Fig. 2.4b). However, we do observe a ~4.4%o increase in suid 8'*Ocpame
values between Langebaanweg and Elandsfontein when we only consider the suid
8"® Ocnamel values from the WCRP collection at Elandsfontein (32.10.6%o, n =3) and
exclude the suid 8"*Ocnamer values from EFTM from Luyt et al. (2000). The Hoedjiespunt
enamel samples are limited to bovids and the comparison of 8"80¢namel values for fossil

bovids from the three fossil sites are distinct from one another (p < 0.001). Bovid
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8" 0unamel values average 28.7+£2.8%o at Langebaanweg, 33.2+2.0%o at Elandsfontein, and

Hoedjiespunt
0.30-0.25Ma

Elandsfontein

1.0-0.6 Ma

Langebaanweg

~5Ma

31.4+1.5%o0 at Hoedjiespunt.
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Figure 2.4: Box plot of the compiled § ">C values (A) and § '*O values (B) of the carbonate component of
tooth enamel data from this study and of published records of Pliocene and Pleistocene fossil teeth from
southwestern South Africa (Luyt et al., 2000; Franz Odendaal et al., 2002; Hare and Sealy, 2013; this
study). Data are divided by family and bovid tribe. The number of individual analyses for each category is
indicated in parentheses and when there are fewer than three isotopic values, analyses are presented as
points. The dietary behaviors of bovids are divided into browsers, mixed feeders and grazers. See Table
S2.2 for the compilation of isotope data and source for dietary behaviors. A vertical line within the box
marks median values. The ends of the boxes represent the quartile values, horizontal lines indicate the
range, and the outliers are plotted as circles. The maximum § *C value of herbivores with a pure C; diet
are represented by a vertical dotted black line (Langebaanweg) and a vertical dashed black line
(Elandsfontein and Hoedjiespunt). These values are based on reconstructed 8 *C values of CO, (Tipple et
al., 2010) in Table S2.1.
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2.5. Discussion
2.5.1. Vegetation trends in southwestern South Africa

Mammalian faunal and offshore pollen records indicate that the ecosystem of
southwestern South Africa was different in the Pliocene and Pleistocene from today and
that C; grasses were an important component of the physiognomic structure of these
ecosystems at times during the last 5 myr (e.g., Dupont et al., 2005; Faith, 2011; Hare and
Sealy, 2013). Today the vegetation community is composed of mostly woody, fynbos
shrubs. Although rare in southwestern South Africa, grasses are more common inland
where they grow on shale substrate, than they are on the marine sands typically found in
the study area (Cowling, 1992).

The 8'°Cepamel values of large mammals from Langebaanweg, Elandsfontein and
Hoedjiespunt show that herbivores had diets composed largely of C; vegetation (Luyt et
al., 2000; Franz-Odendaal et al., 2002; Hare and Sealy, 2013; this study). Specifically, the
8" Cepamer values of grazers indicate that the majority of the grasses consumed were C;
grasses. Although the presence of C4 vegetation cannot be totally discounted at
Elandsfontein and Hoedjiespunt (Luyt et al., 2000; Hare and Sealy, 2013; Patterson et al.,
in revision), the 8"Cenamer data presented here indicate that it was a relatively small
component of the diets of large herbivores (Fig. 2.4).

The bovids at Elandsfontein are diverse and have a range of dietary behaviors
such that the variation in the isotopic composition of bovid teeth may be used to develop
a more detailed understanding of the nature of vegetation in the C;-dominated ecosystem

of southwestern South Africa. For this reason, we compared the 8" Cenamel and 8" Oename
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values among different bovid tribes, classifying them as browsers, grazers or mixed
feeders (see Table 2.2 and Fig. 2.4).

When split by tribe there are no distinctions among the 8" Cenamel values of bovids
from the other grazing and browsing taxa at Langebaanweg (p > 0.8). The 8" Cenamel
values of all fossil teeth at Langebaanweg (browsers, grazers and mixed feeders) are
> 2%o more negative than the cutoff value for animals with a diet that includes any Cy4
vegetation (-7.6%o, refer to Section 2.3.3.1), indicating that all of the animals we sampled
had diets composed of solely Cs vegetation. At Elandsfontein, the 8"*Cepame values of
browsing taxa (Tragelaphini, Neotragini and giraffid) are significantly more negative
than those of grazing taxa (Alcelaphini, Bovini, Reduncini and equid) (p = 0.005). In
comparison, at Hoedjiespunt the 8" Cenamel values of browsing and grazing bovids are not
statistically different from one another (p = 0.97). In addition, we find that 8"*Cnamel
values of browsing bovid tribes at Hoedjiespunt are ~4%o more positive than those of the
browsers at Elandsfontein (Fig. 2.4), whereas the 8" Cenamel values of grazing bovids at
Elandsfontein and Hoedjiespunt are not significantly different from one another in
(p = 0.2). This might indicate that the browse vegetation at Elandsfontein was different
from that at Hoedjiespunt, which could be related to a drier or less dense mosaic
landscape (Kohn, 2010) at Hoedjiespunt compared with Elandsfontein. There are no clear
trends that distinguish the 8" 0cnamel values among different bovid tribes at either
Elandsfontein or Hoedjiespunt. There are some indications of C4 vegetation in the diets of
both browsers and grazers at Hoedjiespunt and of grazers at Elandsfontein, however there

are no indications of C4 in the diet among browsers at Elandsfontein and any of the
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herbivores at Langebaanweg. There are no distinctions in 8'*Cenamet O 8" *Ocnamel Values
among the bovids that were sampled and identified to tribe (Acelaphini and Reduncini) at
Langebaanweg (p = 1.0).

The 8" Cenamel values of grazers at Elandsfontein and Hoedjiespunt that are more
positive than what is expected for a pure Cs diet (-8.4%o, refer to Section 2.3.3.1) could
indicate the presence of some Cy4 grasses, either in some seasons or on specific points on
the landscape, like well-watered areas such as springs which is consistent with results
from Patterson et al. (in revision). Hare and Sealy (2013) also suggest that the presence of
some Cy4 vegetation in the diets of grazing bovids from Hoedjiespunt might reflect the
ability for C4 plants to grow within a winter rainfall zone during low pCO, conditions
that are characteristic of glacial intervals. Although low pCO; conditions might account
for the presence of some Cy4 vegetation in the diets of grazers at Elandsfontein, the dating
of the deposits at Elandsfontein precludes us from assigning it to either a glacial or
interglacial period (Braun et al., 2013).

The survival of large herbivores in southwestern South Africa would have
required access to resources throughout the year. It is possible that there was an extended
rainy season and that abundant food resources grew on nutrient-rich calcareous soils,
which are no longer present at the fossil sites (Luyt et al., 2000). A year-round supply of
palatable browse and graze would have required sufficient surface water and at

Elansfontein, this likely included springs (Braun et al., 2013).
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2.5.2. Oxygen isotope record

The ~4.5%o increase in 8'*Ouname values between the Langebaanweg and
Elandsfontein fossil localities (from ~5 to 1.0 — 0.6 Ma) occurs across a time of global
cooling and aridification (Marlow et al., 2000; Etourneau et al., 2009). 8'*Ocnamel values
can be influenced by a combination of factors including the §'*0 value of surface water,
aridity and animal physiology (Kohn and Cerling, 2002). We do not think that
physiological changes are responsible for the increase in 8'*Oeamel values as we observe
it among multiple herbivore families and consider it unlikely that multiple disparately
related herbivore families would converge upon identical physiological changes across
this time span. Consequently, we must consider the influence of changes in the §'*0
value of surface water and changes in aridity on the observed increase in &' *Ocpamel values

between the fossil teeth at Langebaanweg and Elandsfontein.

2.5.2.1. Oxygen isotopic composition of reconstructed surface water

In modern ecosystems 8'*Ocnamel values of hippopotamids closely track the 8'°0
values of meteoric water (Bocherens et al., 1996) and as such, fossil hippopotamid
8" Ocnamel Values can be used to reconstruct the §'*0 values of meteoric waters (Levin et
al., 2006). We used hippopotamid 8'*Oeame values from Langebaanweg (n = 18) and
Elandsfontein (n = 9) to estimate the 8'*0 values of the surface waters in which these
hippopotamids lived, which would reflect a combination of the §'*0O value of regional
precipitation and the hydrological condition of the local surface waters. We were not able
to estimate the 8'*0 values of the surface waters at Hoedjiespunt because there are no
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hippopotamid teeth preserved at the site (Stynder, 1997). We estimated 8'*0 values of
local surface waters from the hippopotamid 8'*Ocnamel values by considering both the
5.4+1.3%o enrichment in 8'*0 between local surface water and hippopotamid body water
reported by Levin et al. (2006) for modern hippopotamids and the carbonate-water
80/'°0 fractionation relationship reported by Kim and O’Neil (2005), assuming that
tooth formation formed at typical mammalian body temperatures of 37°C.

Using this approach, we reconstruct the average 8'*0 values of local surface
water to -3.9+1.6%o at Langebaanweg and -0.3+£1.5%o at Elandsfontein. For comparison,
spring, tap and standing water nearby modern springs exhibit a mean 8'*O value
of -1.7+2.2%o (n = 4) (Table S2.4). The similarity between the §'°O values of the
reconstructed mid-Pleistocene water and that of modern waters within the Elandsfontein
vicinity indicate that hydrological conditions of waters near spring systems in the region
may not have not changed greatly since the mid-Pleistocene. However, the 3.6+1.8%o
increase in reconstructed surface water 8'*O values between Langebaanweg and
Elandsfontein requires further explanation. The possible explanations for this ~4%o
increase include 1) a change in regional precipitation patterns as a result of changes in
global climatic patterns that would affect precipitation §'®O values and 2) a change in the
type of surface waters (rivers vs. springs) that the hippopotamids were living in during
the early Pliocene vs. the mid-Pleistocene. Here we review the potential roles of climate
change and hydrological setting on the increase in 8'*O values of surface waters in

southwestern South African between the early Pliocene and the mid-Pleistocene.
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2.5.2.2. Global cooling

Decreased global temperatures and increased ice volume affected §'°0 values of
precipitation globally between the Pliocene and Pleistocene with the onset of glacial and
interglacial cycles (Zachos et al., 2001) but it is not clear how these oscillations affected
880 values of precipitation in southern Africa. A study of 8'*O values from speleothem
carbonate from Buffalo Cave in South Africa (Hopley et al., 2007) that dates to the
Pliocene/early Pleistocene (1.99 to 1.52 Ma) can provide perspective on the amplitude of
change in the 8'%0 values of meteoric water that we would expect between glacial and
interglacial periods in southern Africa. Hopley et al. (2007) determine that there may be a
~2%o increase in 8'*0 values of regional precipitation between interglacials and glacials
based on a combination of temperature and ice-volume effects. Despite some work that
attributes the fossils at Elandsfontein to an interglacial interval based on the size of fossil
carnivores (Klein et al., 2007), this assignment is less certain from more recent work at
Elandsfontein (Braun et al., 2013). Regardless of whether the Elandsfontein fossils
represent an interglacial or glacial interval, the maximum amount of change in §'*0
values of precipitation that we would expect between glacials and interglaicals is ~2%o,
which is not enough to explain a ~4%. difference in 8'°0 values of surface water between

the early Pliocene and mid-Pleistocene.

2.5.2.3. Rainfall amount
The negative correlation between rainfall amount and the 8'*0 value of rain is

termed the “amount effect” (Dansgaard, 1964). This effect must be considered in the
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interpretation of the ~4%o increase in 8'°0 values of reconstructed surface waters. If
southwestern South Africa became more arid between the early Pliocene and the
mid-Pleistocene, as indicated by offshore archives (e.g., Marlow et al., 2010; Dupont et
al., 2013), then we might expect to see indications of less rainfall in the reconstructed
surface water 8'°0 values. Modern precipitation data from Cape Town indicate that the
“amount effect” is limited in southwestern South Africa (Midgley and Scott, 2004; Harris
et al., 2010; West et al., 2014); it is equivalent to -10mm/1%eo d"%0 for monthly winter
rainfall (based on 8'*O values of monthly rainfall reported in Harris et al. (2010)) and
thus very little of the variation in '®O values of precipitation in modern southwestern
South Africa can be explained by amount rainfall. In comparison, Panama (WGS-84
Lat/Long: 9.00970, -79.60324) has a strong “amount effect” with -35 mm rainfall for
every 1%o increase in the 8'*O value of rainfall (Higgins and MacFadden, 2004).

In addition, we do not expect to observe an “amount effect” in southwestern
South Africa because this oxygen isotopic effect mostly occurs where temperatures are
> 20°C and where there is high humidity or significant rainfall (e.g., Rozanski et al.,
1993), a pattern seen at collection sites globally (IAEA/WMO, 2001). The majority of
rain in this region falls in the winter and it is associated with cold, westerly fronts; it is
unlikely that average winter temperatures were > 20°C. If temperatures during the rainy
season were > 20°C during the Pliocene and Pleistocene, then it could have been warm
enough for the growth of C4 grass. The 8"°C values of fossil enamel from grazers,

however, suggest that there was little C4 grass in this region.
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Although a change in the §'*0O values of rainfall related to moisture source may
contribute to the increase in the 8'*0 values of rainfall, it is unlikely that this would
represent a substantial contribution to the full ~4%o increase documented between the
Pliocene and mid-Pleistocene. If there had been a change in the rainfall related moisture
source from the east (i.e., contribution of summer rainfall), then we would expect to see
the 8" Cenamel values of some large mammalian herbivores to be more positive than what
is calculated for a pure Cs diet because they would be incorporating C, grasses that grow
during the summer months into their diet. We find that the majority of 8'°Cenamel values
are within the range expected for animals with pure Cs diets and no change in 8" Cenamel
values between the fossil herbivores at Langebaaweg and Elandsfontein (Fig. 2.4).
Furthermore, models of regional climate indicate that the source of atmospheric moisture,
Atlantic water off the coast of southwestern South Africa, would have been constrained
by relatively stable regional meteorological factors (e.g. ICTZ, Agulhas Current,
Subtropical convergence zone and Benguela Current; McClymont et al., 2005) and thus

would not have drastically changed between the early Pliocene and mid-Pleistocene.

2.5.2.4. Depositional mode and surface water

A change in the local hydrology and 8'®O value of surface water might be
responsible for the increase 8" 0cnamel values between Langebaanweg and Elandsfontein.
Today much of the coastal plain of southwestern South Africa is fed by ground water and
many areas have standing water associated with artesian wells. The depositional

environments of the Varswater Formation (i.e., the Langebaanweg fossil site) indicate the
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presence of fluvial and estuarine waters (Roberts et al., 2011). Various sedimentological
studies indicate that the paleo-Berg River in the early Pliocene had a southerly trajectory
and emptied into the embayment which is today the Saldanha Bay as opposed to
emptying into the Atlantic Ocean in St. Helena Bay as the Berg River does today (e.g.,
Roberts et al., 2011; Fig.1). Although a previous study of Elandsfontein suggested the
presence of fluvial activity (Butzer, 1973), recent investigations document the complete
lack of any sedimentary structures that would support a fluvial explanation for the
sediments in which fossils at Elandsfontein have been found (Braun et al., 2013).
Geomorphological reviews emphasize that large Cenozoic eolianites as well as granite
outcrops act as barriers for any fluvial systems west of the Salt River and south of the
Berg River (Mabbutt, 1952). As a result the main source of surface water in the region is
provided by springs fed by the large underground Elandsfontyn and Langebaan Road
aquifers (Brumfitt et al., 2013). Thus the 8'°0O values of the enamel from large,
mid-Pleistocene mammals at Elandsfontein likely reflect the §'®O values of isolated
springs distributed around the landscape. The waters from the Berg River headwaters
have 8'°0 values today that range from -6.0%o to -4.0%o (Weaver and Telma, 2005; West
et al., 2014), whereas 8'°0 values of spring and tap waters surrounding the Elandsfontein
vicinity today range from -3.6 to -1.9%o (Table S2.4; Midgley and Scott, 1994; West et
al., 2014; this study). There is a 0.4 to 4.1%o difference in 8"%0 values between surface
waters sourced from the Berg River compared with waters from springs near
Elandsfontein. Standing spring water at Elandsfontein has been evaporated and yields

880 value of 1.5%o. Furthermore, the average 8'*0 value of reconstructed surface water
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at Elandsfontein (-0.3+1.5%o) sits within the expected range of water near the
Elandsfontein locality today. If offsets between 8'*O values of waters from the Berg
River and from springs in the study area were consistent over the last 5 myr, then the
~4%o increase in reconstructed surface water §'°O values from tooth enamel between
Langebaanweg and Elandsfontein fossil sites can be explained solely by a difference in
local hydrology. At Langebaanweg, hippopotamids likely spent much of their time in
waters that derived from the paleo-Berg River, whereas some four million years later, the
hippopotamids from the Elandsfontein fossil deposits likely spent much of their time in
water bodies that were fed by springs. The differences in the enamel §'*O values of these
two hippopotamid populations may be best explained by these local differences types of

water bodies in which they wallowed.

2.5.2.5. Aridity

Aridity can have an effect on 8"80namel values in multiple ways. Aridity can be
the result of decreased rainfall amount which will affect 8'*Oepamel values due to a change
in 8'%0 values of precipitation that then contributes to the water that animals ingest.
However, the degree of aridity may influence 8" 0cnamel values independent of any
changes in the 8'®O values of precipitation via the ingestion of leaf water, which becomes
greatly enriched in '*O relative to '°0 in arid climates (Levin et al., 2006). The 8"*Ocnamei
values of animals that are not obligate drinkers (e.g., giraffes and oryx) are sensitive to
aridity in part because a large fraction of their body water may come from leaf water. The

strong relationship between aridity and 8"80cnamel values of these Evaporation Sensitive
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(ES) animals, taxa whose body water is derived largely from leaf water, today can be
used to evaluate aridity in the past by comparing 8'*Ocnamel Values of ES animals to those
from Evaporation Insensitive (EI) animals, taxa whose body water is derived largely from
ingested surface water (e.g., hippopotamids and elephantids). The 8'*Ocpamer values of EI
taxa do not vary with aridity and can be used to control for changes in meteoric water
880 values (Levin et al., 2006). The egs-g between 8"80namel values of ES and EI taxa is
greater in more arid environments than in less arid environments (Levin et al., 2006).

We evaluated whether increased aridity could explain the ~4%o increase in enamel
8'%0 values between the early Pliocene and mid-Pleistocene by comparing the egs_g; of
8" Ocnamer Values of individual teeth from Langebaanweg (1 = 47) and Elandsfontein
(n = 16), where hippopotamids (i.e., Hippopotamus) are the representative EI taxa and
giraffids (i.e., Sivatherium) are the representative ES taxa. Calculated egs.g1 values are
+3.04£1.9%0 and +2.7+1.9%0 for Langebaanweg and Elandsfontein, respectively. There is
no large difference between the egs.g values for the two populations, suggesting no
change in aridity between the Pliocene and mid-Pleistocene environments in
southwestern South Africa. However, we cannot simply evaluate aridity as outlined
above if 1) there were changes in 8'°O values of surface water due to the differences in
depositional setting between Langebaanweg and Elandsfontein and 2) if the behavior of
EI and ES taxa was different during the Pleistocene and the Pliocene. First, 8" Oenamel
values from hippopotamids might not be closely tracking precipitation 8'*0O values during
the mid-Pleistocene in the same way as in the early Pliocene if hippopotamids from

Elandsfontein wallowed in pools of evaporated spring water, whereas hippopotamids
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from the Langebaanweg collection spent time immersed in river waters. Our compilation
of 8'*0 values from modern waters in the region indicates that spring-based water
sources have more positive ' *O values than that of river waters (Table S2.4). Second, it
is important to note that in this analysis we use the genus Sivatherium rather than Giraffa
as the ES taxon. Although these two taxa are within the family Giraffidae, isotopic
studies from eastern Africa indicate that Sivatherium underwent a major transition during
the Pliocene and Pleistocene to incorporate more graze into their diet, while Giraffa did
not (Cerling et al., 2015). Thus, it is feasible that sensitivity to aridity was different
between these two taxa such that Sivatherium might not be an appropriate ES taxon to
use in the 8'* Oename-based aridity index proposed by Levin et al. (2006).

While we cannot rule out the effects of evaporation on surface water 8'°0 values,
we do not think that aridity is the primary driver of the ~4%o increase in reconstructed
surface water 8'°0 values between the early Pliocene and the mid-Pleistocene. It is
unlikely that we would observe a uniform increase in the average 8'*Ocpamer values of
herbivore families from Langebaanweg and Elandsfontein because hippopotamids would
have remained in the water, somewhat buffered from increased aridity, resulting in a
smaller shift for hippopotamids than for other herbivore families. Furthermore, the ~4%o
increase in reconstructed surface water 8'*O values between fossil sites can be explained
solely by a shift from riverine water to groundwater-fed springs as discussed in Section
5.2.4. Given the present data, we view this as the simplest way to explain the trends in the

. 1
fossil 8" Oenamel values we observe.
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2.5.3. Theropithecus diet at Elandsfontein

The diet of fossil Theropithecus species from southern and eastern Africa have
been evaluated to determine the partitioning of resources between primates and other
mammalian species as well as to better define the influences that contributed to the
success of Homo (e.g., Lee-Thorp et al., 1989; Codron et al., 2005; Cerling et al., 2013;
Levin et al., 2015). A single Theropithecus mandible was excavated from Elandsfontein
(WCRP collection) and this specimen has a 83 Cenamel value of -10.2%o, which is
indicative of a diet composed of C; vegetation (Fig. 2.4; Table S2.2). This is the only
8" Cenamel value of T heropithecus from Pleistocene southwestern South Africa.
Contemporaneous Theropithecus 8" Cepamel values from eastern Africa and in other
locations in South Africa indicate that Theropithecus consumed Cy4 graze (e.g., Codron et
al., 2005; Cerling et al., 2013). The addition of carbon isotope data from Theropithecus at
Elandsfontein shows that Theropithecus was able to survive on diets composed Cs
vegetation during the Pleistocene (whether it was browse or graze) if it lived in
environments where Cs vegetation was dominant, as with the modern gelada baboon

(Levin et al., 2008).

2.5.4. Hominin paleoenvironment at mid-Pleistocene Elandsfontein

The sedimentary record at Elandsfontein provides unique insights into the ecology
of southwestern South Africa during the mid-Pleistocene, which is not well documented
elsewhere in southern Africa (Klein et al., 2007; Braun et al., 2013). The archives at
Elandsfontein also provide evidence for some of the earliest hominin behavior in a winter

rainfall zone in southern Africa. The association of the fossil fauna with Acheulean stone
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tools (i.e., hominin technology that indicate behavioral advances intersecting with the
biological change) in an excavated context at Elandsfontein allows us to use inferences
about paleoclimate from 8" Cenamet and 8'¥Ocpamel values to develop an understanding of
hominin ecology. This is especially important because of the age of this locality (1.0 —
0.6 Ma) situates the site around the time of the mid-Pleistocene transition in climate
dynamics (McClymont et al., 2005). Large mammalian remains at Elandsfontein indicate
that there were both large browsing and grazing herbivore communities, suggesting that
the landscape would have had sufficient resources to assure the survival of these animals,
in stark contrast to the modern ecosystems in this area. This ancient landscape clearly
was a draw for hominins, as indicated by the thousands of stone tools recovered from this
locality (Singer and Wymer, 1968; Klein, 1983; Braun et al., 2013) as well as fossil
remains of early humans (Drennan, 1953). The springs at Elandsfontein (Braun et al.,
2013) would have been a resource-rich environment for early humans, if Elandsfontein
had been buffered from the regional aridification during the mid-Pleistocene. This is
consistent with studies of Pleistocene archaeological sites where springs and
groundwater-fed areas have been considered to be important resource for hominins (e.g.,

Cuthbert and Ashley, 2014).

2.6. Conclusions
The results of this study add to a growing body of work, from both terrestrial- and
marine-based archives, on how climate and vegetation in southwestern South Africa have

changed over the last 5 myr (Fig. 2.5). The main conclusions from this study are:
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1) The 8"3Cenamel values of fossil teeth from southwestern South Africa indicate
that both browsing and grazing herbivores had diets dominated by Cs
vegetation, which suggests the dominance of the winter rainfall season during
the time intervals of fossil deposition at Langebaanweg, Elandsfontein and
Hoedjiespunt. We can not, however, totally discount the presence of C4 grasses
during the mid-Pleistocene and late Pleistocene.

2) There is an increase in reconstructed surface water 8'O values from
southwestern South Africa between the early Pliocene and mid-Pleistocene of
~4%o. We attribute the increase in 8'°0 values of surface waters primarily to a
shift in hydrology and depositional environments along the coastal plain of
southwestern South Africa. The major source of water for animals during the
Pliocene appears to have been a fluvial system whereas springs were likely the
dominant surface waters in the mid-Pleistocene.

3) While increased aridity in southwestern Africa is indicated both by the
marine- and terrestrial-based proxy records compiled in this study, it is not
clearly evident in the isotopic record of large mammals presented here. The
Elandsfontein archaeological site may have been buffered from regional
mid-Pleistocene aridification as a result of the available surface water indicated
by ancient spring deposits. If springs were annually active, then water and
other resources associated with springs would have been available to
mammals, such that the area may have served as an oasis of sorts within a

relatively drier landscape.
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4) This study highlights the importance of considering depositional environment
and the local environmental setting when understanding how specific terrestrial

environments responded to regional climate and environmental change.

| Marine Record | [ TerestralRecors |

0 —— S——
= | 5 !ncrealsed Fluxing SSTs | & /\ )
i —— - : || lce volume = oedjiespunt f
- = =g S 1l SST crash E c . .':‘ Paludal
' Increased £ 2 F : @ c
4 :ll ice volume Increased SST 5, 8l = ! 2 -% E
—_— ) e = = -1
5, 11 More intensq variabllity | 5| E T |E b ol &
= 5|1 glaciations Prolonged | £ 5 E £ E gl || E|w
. «|'1 Onset North cooling g ol g o= glf2l8
£ <|1| Hemisphere = 21 E e, | 8 ~ ©
£ 3 glacial cycles{ [ Sharp cooling | § ol = T |E B 2|2
= 3 gl = S al [ | £]5
- ; = ] m 3 LJ"u g |
2 I ' 5112]°
4 ol Increased WarmSsT @ : @
; Antarctic (~26°C) g : o
J ot glaciation -4 Langebasnweg Fluvial
2 8 |
5 T I T | T |
2 3 4 5
60 of marine Global climate  Marine events Marine-based  Terrestrial record Study region
benthic foraminifera  and cycles offsouthwestern  terrestial of climate depositional

(%0 VSMOW) Africa climate and vegetation setting

(A 8 0] [E] F]

Figure 2.5: A summary of Pliocene and Pleistocene records of global, regional, marine, and terrestrial
changes relevant to southwestern Africa. A) The global benthic foraminifera § '*O curve (Zachos et al.,
2001) and B) a summary of major change in global climate (composite record based on data from
Ruddiman et al., 1989; Shackleton et al., 1990; 1995). C) Summary of results from mid latitude marine
sediment cores off the southwestern Africa (Marlow et al., 2000; Dupont et al., 2005; Etourneau et al.,
2009). D) Summary of data from terrestrial records including & °C and 6 'O values from fossil teeth and
soil geochemistry from southwestern South Africa (Eze and Meadows, 2014; this study). E) Summary of
depositional environments based on sedimentological data from Langebaanweg and Elandsfontein (Butzer,
1973; Roberts et al., 2011; Braun et al., 2013).
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CHAPTER 3: Environmental and ecological implications of strontium ratios in

mid-Pleistocene fossil teeth from Elandsfontein in southwestern South Africa

ABSTRACT

The mid-Pleistocene site of Elandsfontein has yielded fossil fauna and artifacts
dating to ca. 0.6 to 1 million years ago, as well as the Saldanha, or Hopefield, hominin
calvarium. This site is located within the Greater Cape Floristic Region (GCFR), in an
area that is dry and hot, blanketed by marine-derived sand dunes, and primarily vegetated
by woody shrubs and sedges of the fynbos biome with minimal amounts of grass growing
on nutrient-poor soils. This region does not support communities of large mammalian
herbivores. In contrast, the mid-Pleistocene faunal assemblage is rich in mammalian
herbivores, suggesting that the environment and ecology at that time could support such
communities. However, it is unknown whether browsing and grazing herbivores survived
on local vegetation or if they migrated to more distant, nutrient-rich areas to obtain food,
such as to shale substrates ~ 20 to 30 km inland from Elandsfontein where palatable grass
and shrubs grow today. We measured strontium isotope ratios (*'Sr/**Sr ratio) in
fossilized teeth from Elandsfontein and compared these ratios to the bioavailable *'Sr/*°Sr
ratios from the major substrates in the region to determine if large mammalian herbivores
were able to obtain sufficient resources locally (i.e., if teeth had signature of local
¥7S1/*°Sr ratio) or whether they also ranged across other geological substrates. The
bioavailable *’Sr/**Sr ratios from marine sands from Elandsfontein range from 0.709380

to 0.711690 and are distinct from the bioavailable *’Sr/**Sr ratios for granite, sandstone
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and shale substrates in the region. The *’Sr/**Sr ratios of fossil teeth of carnivores, large
herbivores and rodents from Elandsfontein range from 0.709254 to 0.711171, values
within the range of the marine sands *’Sr/*®Sr ratios. These data suggest that during the
mid-Pleistocene the vegetation growing on coastal marine sands in southwestern South
Africa was adequate to support large herbivores and that these animals remained within
the coastal area, and therefore did not need to migrate away from the coastal area of the
reigon for resources. These data, along with the evidence of ancient spring-fed
environments suggest that the mid-Pleistocene environment at Elandsfontein, unlike
today, provided sufficient resources for rich and diverse communities of large animals. It
is possible that this environment is what attracted hominins to Elandsfontein and that it

served as a refuge for animals in a region that was becoming increasingly arid.
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3.1. Introduction

The southwestern coast of South Africa is located within the Greater Cape
Floristic Region (GCFR). The endemic fynbos vegetation constitutes one of the most
diverse and variable biomes in the world, dating to before the Pliocene (e.g., Dupont et
al., 2011). While the fynbos ecosystem is thought to have drastically evolved since its
emplacement, little is actually known about the variability of vegetation in southwestern
South Africa or about its faunal associations before the Last Glacial Maximum (LGM),
~21,000 years ago (Stynder, 2009; Rossouw et al., 2009). Terrestrial-based proxies of
climate and vegetation are important for evaluating the history and composition of the
fynbos biome, however it is uncommon to find an open air site (as opposed to cavernous
sites) that preserves artifacts and fossils within the original depositional setting and that
dates to before the LGM anywhere within southern Africa (Braun et al., 2013).

Elandsfontein is an open-air archeological and paleontological site that dates to
within the mid-Pleistocene (~ 1.0 to 0.6 million years ago; Ma) and where artifacts and
fossils co-occur on a buried paleolandscape (e.g., Klein and Cruz-Uribe, 1991; Braun et
al., 2013). Sediments and the faunal assemblage at Elandsfontein indicate that the
mid-Pleistocene landscape of southwestern South Africa was composed of shrub land and
grassland (Luyt et al., 2002; Stynder, 2009; Thesis Chapter 2; Patterson et al., 2016). The
regional vegetation during the mid-Pleistocene would have had to have supported a
community of large herbivorous mammals, both browsers and grazers, including species
within the Bovidae, Rhinocerotidae, Hippopotamidae, Giraffidae, Elephantidae, Equidae
and Suidae families (Thesis Chapter 2). The preservation of ancient spring deposits and

the presence of Hippopotamidae at Elandsfontein suggest the presence of standing water
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and that this location may have been a spring-fed environment (e.g., Braun et al., 2013;
Lehmann et al., 2016; Patterson et al., 2016). Stone tools from the Acheulean Industry,
the first example of standardized artifact manufacturing and considered to have
developed alongside major behavioral and biological changes in human evolution, are
found at Elandsfontein and indicate that the environment at this location was utilized by
hominins (e.g., Braun et al., 2013).

In contrast to the environment of the mid-Pleistocene, contemporary southwestern
South Africa is an arid shrub land and is mostly vegetated by woody, low-nutrient fynbos
vegetation growing on marine-derived sands (Rebelo et al., 2006). There is minimal
surface water and the minor amounts of grass in the region grows primarily on shale ~ 20
km east of Elandsfontein but the grass is likely not of sufficient quantities to feed large
mammalian grazers (Rebelo et al., 2006). The carbon isotopic composition of fossil teeth
(8"C values) from mid-Pleistocene Elandsfontein indicate that, like today, this area was
within a winter rainfall zone, dominated by C; vegetation adapted to grow during the
cool, wet season (Luyt et al., 2000; Thesis Chapter 2). Large mammalian herbivores from
the mid-Pleistocene would have found survival difficult to impossible given the current
composition of vegetation and lack of water at Elandsfontein.

Climatic and environmental proxies from marine sediment records and paleosols
indicate that this region may have experienced aridification since the Pliocene in
association with increased upwelling of the Benguela Current (e.g., Marlow et al., 2000;
Eze and Meadows, 2013). While it is known that the environment and faunal composition
of southwestern South Africa were different in the mid-Pleistocene than they are today,

there is no modern analog for the ancient ecosystems and environments (Braun et al.,
54



2013). Little is understood about the ecological composition and vegetative diversity of
the fynbos in southwestern South Africa during the mid-Pleistocene or about how
animals would have survived in the region.

Modern vegetation in southwestern South Africa varies by rock type, where
woody fynbos shrubs grow on sandstone and marine-derived sands, the substrate found at
Elandsfontein. More palatable shrubs and grasses, representing vegetation suitable for
browsers and grazers, grow on shale and on granite (Sealy et al., 1991; Rebelo et al.,
2006). Sealy et al. (1991) have shown that the substrates in the region differ in *’Sr/*°Sr
ratio values and that they can be divided into the categories of coastal sands and more
inland shales and sandstones (Fig. 3.1; Table 3.1). The *’Sr/*Sr ratio of herbivore tissues
(e.g., bone and tooth enamel) is the same as the *’Sr/**Sr ratio of ingested plants, which in
turn is determined by the bioavailable *’Sr/*®Sr ratio of the soil or rock substrate on which
these plants grew (i.e., the *’St/**Sr ratio of the strontium in a rock or soil that can be
taken up by biological organisms) (e.g., Bentley, 1996; Sillen et al., 1998). The *’Sr/*°Sr
ratio range of bioavailable strontium can differ from that of the bulk substrate, because
different minerals (with different *’St/*°Sr) physically and chemically weather at different

rates.
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Table 3.1: Summary of the compiled bioavailable *’St/**Sr ratios for major substrates in
southwestern South Africa from Sealy et al. (1991) and this study based on modern bone,
enamel and plant samples. See Table S3.1 for details.

YSr/*Sr ratio ¥Sr/*Sr ratio range

Location n
Average  Stdev® Minimum  Maximum

Substrate

Pleistocene marine sands 0.710377 0.000786 0.709380 0.711690 8
Mixed granite and marine sands  0.710617  0.001908  0.709575 0.714741

Cape Granite suite 0.717491 0.004166 0.711421 0.723563 12
Table Mountain Sandstone 0.716704 0.001802 0.714092 0.718546 12
Malmesbury shale 0.718064 0.001632 0.715332 0.720390 6

* standard deviation is + 1o from average
® number of individual samples compiled for each substrate and region
Here we utilize and expand upon existing studies on the variation in *'Sr/*Sr

ratios from the four major substrates in southwestern South Africa to determine whether
or not mid-Pleistocene mammals from Elandsfontein traveled to other areas in
southwestern South Africa for food or if they found resources in the coastal area and/or
around Elandsfontein. In the case of migrating animals, such as large herbivores, there
may be situations where vegetation is obtained at one site for part of a year (e.g., season),
and in another location during a different part of the year, or season. We investigated this
possibility for fossil herbivores preserved at Elandsfontein, by analyzing the *’Sr/*®Sr
ratios along the tooth growth axis of browsing and grazing mammals, since these ratios
should change if animals consumed foods from distinct substrates at different stages of
tooth formation (Balasse et al., 2002; Copeland et al., 2016). If animals from
Elandsfontein did not travel to find food, their enamel ®’Sr/*®Sr ratios should be the same
as the bioavailable *’Sr/**Sr ratios of the marine sands found at Elandsfontein. In this case

it is likely that the environment at Elandsfontein provided sufficient food for the large
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mammalian herbivore community that lived in this region during the mid-Pleistocene. If,
however, the ¥’St/*°Sr ratios of enamel indicate that herbivores traveled to other
substrates in the region for food, then it is likely that animals could not have survived
solely on the vegetation that grew at Elandsfontein during the mid-Pleistocene. By
combining existing faunal and sediment records of climate and environment from
Elandsfontein with ®’Sr/**Sr of fossil teeth, we can improve our understanding of how the
broader regional vegetation and environment may have changed since the
mid-Pleistocene and how animals and hominins may have utilized the southwestern
South African region.

The first steps to determining whether animals moved for food are to 1) develop a
map of bioavailable *’Sr/**Sr for each major substrate in the region and 2) perform a
control using fossil and modern enamel to determine whether or not the *’Sr/*Sr ratios of
mid-Pleistocene teeth are primary or if they have been subjected to diagenesis, as well as
to determine the ideal pretreatment needed to remove secondary strontium, if present, for
this particular study. Only then can we then considered the movement of herbivore for
food during the mid-Pleistocene by comparing their enamel *’St/*°Sr ratios with the
bioavailable *’Sr/**Sr ratios of substrates in the region. Once we understood if and how
herbivores used the land for food, we could then evaluate the distribution of vegetation in
the region and the ecological and environmental context of mid-Pleistocene

Elandsfontein.
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Cape Town
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Figure 3.1: Map of southwestern South Africa outlining the locations of the major substrates in the region
and indicating the location of Elandsfontein (black circle). Letters A through H denote the sampling
locations of plants, modern bone and enamel used to determine the range of bioavailable *’Sr/**Sr ratios for
each substrate (see Table S3.1 for the corresponding sample location and sample information). The range in
bioavailable *’Sr/**Sr ratios for each major substrate is reported in the legend and in Table 3.1. These ratios
are based on both the newly analyzed bone and teeth (this study) and from the bioavailable *’Sr/*Sr ratios
of substrates in the region that are reported in Sealy et al. (1991). The location of the study region is
denoted by a red rectangle on the continent of Africa. The base map with outlines the major geologic
substrates is based on Sealy et al. (1991).
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3.2. Background
3.2.1. Study Region

3.2.1.1. Elandsfontein

Initial surveys of fossil and artifacts in the 1950s yielded a hominin calvarium,
known as the Saldanha specimen, and excavations in the 1960s recovered stone tools in
association with large mammalian fossils (e.g., Drennan, 1953; Singer and Wymer, 1968;
Deacon, 1998). It was not until more than 50 years later that in situ materials were found
again and it was determined only at this time that large mammalian fossils and artifacts
were located on a buried landscape across a > 11 km” area of the archeological site
Elandsfontein (Braun et al., 2013). Fossils from Elandsfontein have a low carbonate
content (Luyt et al., 2000; Thesis Chapter 2) and excavations have shown extensive
leaching zones in some sediment profiles that contain fossils and artifacts, though

leaching is not homogeneous across the region (Braun et al., 2013).

3.2.1.2. Climate and vegetation

The region of southwestern South Africa is on the western coast of South Africa
and within the winter rainfall zone, a climatic zone encompassing ~ 200 km® that receives
~ 65% of its annual precipitation between April and September (Chase and Meadows,
2007). This climatic zone is distinct from the climate for the rest of South Africa. East of
the study region, rainfall mostly occurs year round or during the summer months (> 66%
of mean annual precipitation between October and March). Each climatic zone is
associated with distinct vegetation; for example, grasses that grow within southwestern

South Africa consist mainly of species that only grow during the wet, winter months,
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however, C4 species can be locally quite abundant and are found, such as on shales (e.g.,

Cowling and Lombard, 2002).

3.2.1.3. Regional geology

The coastal plain of southwestern South Africa is covered by what were originally
marine sands containing shell fragments and which date to the Pliocene and Pleistocene.
About 12 granitic plutons outcrop in southwestern South Africa and these are associated
with orogenic events related to the convergence of South American and Namibian cratons
during the Precambrian (Rozendaal et al., 1999; Belcher and Kisters, 2003). These
granites are scattered throughout the study region and form what is called the Cape
Granite suite (Fig. 3.1). Granites of the Cape Granite suite can be defined and
distinguished from one another by mineralogical and geochemical composition. The most
dominant granite types are found in the area surrounding Elandsfontein and along the
southwestern South African coast (e.g., the Darling batholith and the Saldania pluton)
(Scheepers, 1995). Inland from the marine sands and coastal granites, older substrates
dominate. These substrates are the Precambrian to Cambrian Malmesbury shales and
Cape Fold Mountain Belt complex sandstones and quartzites (i.e., Table Mountain/

Witteberg/ Bokkeveld series) (Fig. 3.1).

3.2.1.4. Relationship between geology and composition of vegetation
The composition of vegetation in southwestern South Africa varies across the
landscape as a function of geological substrate because the mineralogical composition of

a substrate dictates the minerals/nutrients available for plants (Cowling, 1997; Cowling et
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al., 2002). Today, southwestern South Africa is dominated by nutrient-poor, though
diverse fynbos shrub land that grows on coastal sands as well as on sandstones and
quartzite (Rebelo et al., 2006). In contrast, where present, shales support more
nutrient-rich fynbos species as well as the nutrient-rich renosterveld grasses and
evergreen asteracerous shrubs that would be palatable to the large herbivorous mammals
that lived in the region during the mid-Pleistocene. These latter plant types are only a
minor component of the current regional vegetation and likely can not produce the
quantity of vegetation necessary to feed a large community of browsing and grazing
herbivores (Rebelo et al., 2006). Granites produce richer soils than marine sands and
today the majority of the Western Cape’s vineyards are found on granite-derived soils.
Large mammalian herbivore communities existed at Elandsfontein during the
mid-Pleistocene (taxa ranged from Hippopotamidae to Bovidae and Giraffidae) would
have needed substantial and nutrient-rich vegetation, both browse and graze (Klein et al.,
2007; Braun et al., 2013). In the contemporary setting, we expect that these animals
would have to travel inland from Elandsfontein to find palatable food resources, such as
the grasses that can grow on the soils derived from nutrient-rich shales. However, as
stated earlier, grass is a minor component of the current regional ecology, primarily
growing in small quantities on shale substrate during the winter months (Rebelo et al.,

2006).
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3.2.2. ¥Sr/*Sr isotope ratio of bioapatite and the determination of animal migration and
regional vegetation

The *’St/*®Sr ratio in bioapatite, where bioapatite refers to enamel and bone, can
be used as a geochemical fingerprint of the substrates on which animals lived, because
the *’St/*®Sr ratio from different substrates is preserved in plants and also the teeth and
bones of animals eating the plants (e.g., Bentley, 2006; Copeland et al., 2011). The
following subsection discusses how the ¥'Sr/*Sr ratios of fossil enamel can be applied to
evaluating regional migration for food and how the differences in the bioavailable
#7S1/*°Sr ratios of substrates and the ecology associated with these substrates (i.e., food
resources for herbivores) can be used in tandem to determine 1) the locations of food
resources for large mammalian herbivores preserved at Elandsfontein and 2) the ecology
and environments of southwestern South Africa and Elandsontein. We also assess the
role of diagenesis on the *’Sr/*Sr ratios in teeth preserved at Elandsfontein, which is of
concern because a number of fossils and sediments at Elandsfontein have been leached,
thus some of the original carbonate content has been removed (Luyt et al., 2000; Braun et

al., 2013; Thesis Chapter 2).

3.2.2.1. Regional substrate bioavailable *'Sr/*°Sr ratios

Bioapatite *’Sr/**Sr ratios can provide information about the type of vegetation
available in a region during that animal’s life, which in turn can be useful when
evaluating the ecology of an ancient environment (e.g., Copeland et al., 2016). For

example, if grazers within an herbivore community have enamel *'Sr/**Sr ratios
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characteristic of Area A but not of Area B, then we would deduce that the Area A had
plentiful grass for the grazers to eat.

Three of the four major substrates in the southwestern South Africa have been
approximately characterized in terms of their range in bioavailable *’Sr/**Sr ratios
through the analysis of modern animal *’Sr/*Sr ratios (Sealy et al., 1991). Shales and
sandstones (substrates that are older and generally occur further inland than
marine-derived sands) have bioavailable *’Sr/*Sr ratios that have been reported to range
from 0.71777 t0 0.71794 (n = 2) and from 0.71543 to 0.71746 (n = 2), respectively. The
Pleistocene marine-derived sands in the region have bioavailable *’Sr/*®Sr ratios that
range from 0.70938 to 0.71169 (n = 6) (Sealy et al., 1991; Fig. 3.1). The bioavailable
87S1/*Sr ratios of shales and sandstones that make up this dataset cannot be distinguished
with the Sealy et al. (1991) dataset, but they are distinct from those of the marine sand
substrate. There are currently no published bioavailable *’Sr/**Sr ratios of granites and
therefore it is unknown whether or not the bioavailable *’Sr/**Sr ratios of granites are
distinct from the bioavailable *’Sr/*Sr ratio ranges of the other major substrates in this
region or if specific granitic outcrops can be distinguished from one another. The new
data presented in this paper will expand on the bioavailable *’St/*®Sr ratios of the
substrates in the region.

Previous studies show that it is possible to exploit the ranges in the bioavailable
87Sr/*°Sr ratios from substrates to determine resource- and landscape-use among
herbivores in the region (Besaan, 1972; Sealy et al., 1991; Radloff et al., 2010). This is
the result of two interconnected aspects to the study region, 1) the bioavailable *’Sr/*°Sr

ratios of coastal marine sands are distinct from that of the shales and sandstones which
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are found further inland along the coast and 2) the composition of vegetation in this

region varies according to substrate (Rebelo et al., 2006; Cowling and Lombard, 2002).

3.2.2.2. Tooth enamel formation and the factors determining %’ Sr/*°Sr ratio of
bioapatite

In determining the movement of an animal for food and in the application of these
data to evaluate ecology, it is important to remember that in the case of large mammalian
herbivores, the enamel of a single tooth can take > 8 months to fully mineralize (as
reviewed in Kohn and Cerling, 2002). As a result, each sampled portion of enamel from a
tooth represents a period of time as opposed to a split moment of time, such as a single
meal or single day in the life of an animal. Tooth enamel is oldest at the crown and
youngest at the cervix and enamel incorporates the *’Sr/**Sr ratios of the resources
consumed over the period of time it took for the enamel to mineralize. Once formed,
enamel is not remodeled or added to. By serial sampling along the tooth growth axis, it is
possible to determine if and where animals traveled for food over time.

The primary *’St/*®Sr ratio of a material can be altered after deposition via
removal or addition of secondary, diagenetic strontium (e.g., Bentley, 2006). The
presence of diagenetic strontium can mask the primary *’Sr/**Sr ratio and it is necessary
to assess whether or not a material preserves its primary *'Sr/**Sr ratio (e.g., Sealy et al.,
1991; Hoppe et al., 2003; Bentley, 2006). Secondary structural and nonstructural
diagenetic strontium is more heavily substituted in bioapatite than primary, biogenic
strontium, therefore diagenetic strontium in bioapatite tends to be more soluble (Sillen,

1986; Tuross et al., 1989). When bioapatite is bathed in a weak acid, the secondary
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strontium will dissolve and become part of the supernatant more readily than will the
primary, biogenic strontium over a series during rinses, which is called a solubility
profile (e.g., Sealy et al., 1991). If the supernatant ®’Sr/**Sr ratio changes in the course of
the solubility profile, and/or is different from the cleaned enamel powder *’Sr/*Sr ratio,
then the primary 'Sr/*Sr ratio of the enamel has been altered (Fig. 3.3.4A; Sealy et al.,
1991). This assessment is particularly important when measuring the *’Sr/**Sr ratio of
buried bone because it is porous and can accumulate material (Lee-Thorp, 2008). On the
other hand, enamel is an example of a material that is more resistant to strontium isotope
alteration because it is not as porous as bone. While it is important to determine the
presence of secondary strontium, diagenetic strontium can often be removed from
bioapatite by rinsing a powdered sample in a weak acid and then the rinsed bioapatite can
be analyzed for the primary, biogenic *’Sr/*Sr ratio (e.g., Sealy et al., 1991). Each
sample set, however, needs to be evaluated on an individual basis to determine the
number of rinses needed (Sillen and LeGeros, 1982; Sealy et al., 1991). We report on

such control studies for the fossil enamel samples studied herein.

3.3. Methods
3.3.1. Sample collection

We collected samples for three different purposes: refining the regional map of
bioavailable *’Sr/**Sr ratios of the major substrates in southwestern South Africa,

assessing diagenetic alteration in fossil enamel from Elandsfontein and evaluating
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whether or not mid-Pleistocene herbivores had sufficient resources at Elandsfontein to
survive or if they had to travel to other substrates in the region to find food.

We collected plant samples and the bones and teeth of contemporary small
herbivores with small ranges (e.g., rodents and tortoises) from each major substrate in our
study area. Herbivore tissues provide the best estimate of the bioavailable *’Sr/*Sr ratio
of a substrate (Bentley, 2006). We avoided cultivated areas because the *’Sr/**Sr ratios of
fertilizers can mask the primary bioavailable *’St/*Sr ratio of the substrate, plant, bone
and teeth. The bioavailable *’Sr/*®Sr ratios are shown (Table 3.1; Table S3.1). Granites
that comprise the Cape Granite suite are different in age and mineralogical composition
and may also differ in 87Sr/%%Sr ratios (Rozendaal et al., 1999; Belcher and Kisters, 2003).
We therefore collected samples from different granitic outcrops. New 'Sr/*°Sr data from
this study were then compiled with previously published data from Sealy et al. (1991) to
determine if the major substrates in southwestern South Africa could be distinguished
from one another using their bioavailable *’Sr/*Sr ratios.

The fossil teeth from Elandsfontein were collected as both surface and excavated
finds by members of the West Coast Research Project between 2008 and 2014 (Braun et
al., 2013), and are archived at The Archaeology Department, University of Cape Town.
We sampled 25 teeth from the mammalian herbivore families Bovidae (n = 18), Equidae
(n=1) and Elephantidae (n = 2), rodent families Bathyergidae (n = 1) and Hystricidae (n
= 1), and the carnivore family Hyaenidae (n = 2) (Table 3.2; Table S3.2). We preferred to
sample the third molars of browsing and grazing herbivore taxa that were potentially
migratory and may have traveled for food (Stynder, 2009; Copeland et al., 2016). We

selected teeth that were unworn or lightly worn because they preserve more of the tooth
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enamel growth than a worn tooth and are more likely to capture variations in *’St/*®Sr

ratios along the length of the tooth growth axis. In addition, we sampled teeth of

mid-Pleistocene animals that were likely local to Elandsfontein, such as rodents. These

would not have strayed from the Elandsfontein area. Two carnivores, both the brown

hyena, could have traveled long distances in search for food (Klein et al., 2007). We also

targeted a subset of modern tooth enamel (r» = 2) and fossil tooth enamel fragments (n =

8) with a range of preservation states to assess the degree of alteration of the primary

87Sr/%%Sr ratio of fossil teeth at Elandsfontein.

Table 3.2: Diet and migratory behavior of the mid-Pleistocene mammalian herbivores and carnivores from
Elandsfontein analyzed for enamel *’Sr/*Sr ratios.

?:;I;;nalian Taxon Common name bDeiflt:\?(;r Inclination to migrate
Bovidae Tragelaphus strepsiceros ~ Greater kudu Browser Potentially migratory
Bovidae Alcelaphini sp. indet. - Grazer Potentially migratory
Bovidae Syncerus antiquus Giant buffalo Grazer Potentially migratory
Bovidae Bovid indent. - - -

Equidae Equus capensis Cape zebra Grazer Potentially migratory
Elephantidae Loxodonta africana African elephant ~ Grazer Potentially migratory
Bathyergidae Bathyergus suillus Dune mole rat Mixed Not migratory
Hystricidae Hystrix africaeaustralis Porcupine Mixed Not migratory
Hyaenidae Hyaena brunnea Brown hyena Carnivore  Can travel long distances

3.3.2. Sample preparation and analysis

3.3.2.1. Sample preparation

Modern enamel, bone and plants used to determine bioavailable *’Sr/**Sr were

placed in porcelain crucibles with lid and then organic materials were removed by ashing

the samples in a muffle furnace (500°C, overnight) at the Department of Archaeology,
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University of Cape Town. Each fossil tooth was cleaned of the outermost, exposed
enamel and then serially sampled with a diamond-tip drill bit by taking samples of
enamel (~ 10 mg) in a series of approximately horizontal lines from the base of the tooth
to the occlusal surface. Care was taken to sample as closely as possible without overlap.
We sampled between 40 and 50 mg of each tooth fragment used to determine diagenesis
of the primary *’St/**Sr ratios of fossil teeth.

Enamel samples were either prepared for solution analysis by powdering the
enamel or for in situ analysis by clearing the enamel surface. The enamel powder (< 10
mg; both modern and fossil enamel) were prepared and analyzed in the Department of
Geological Sciences at the University of Cape Town. Enamel samples were rinsed five
times in 1 ml of buffered nitric acid (100 mM, pH 4.5) to remove strontium from the
surrounding environment from enamel powder and then dried. Powder was then digested
in 2 ml of 2.0 M HNO:s in a closed Teflon beaker, heated at 140°C for one hour and dried.
The remaining material was then dissolved in 1.5 ml 2.0 M HNOs for strontium
separation chemistry. Between 25 and 50 mg of plants and soils were digested to make a
solution for strontium separation chemistry using the method outlined in Copeland et al.
(2016). The strontium separation chemistry for every sample was done following the
method of Pin et al. (1994). The strontium fraction of each sample was then dried,

dissolved in 2 ml 0.2% HNOs3 and then diluted to a concentration of 200 ppb Sr.

3.3.2.2. Sample analysis
The *’St/*®Sr ratios of modern and fossil samples were analyzed using either laser

ablation inductively-coupled plasma mass spectroscopy (LA-ICP-MS) or solution
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ICP-MS. There are strengths and limitations to each of these techniques. Briefly,
measuring *’Sr/**Sr ratios using solution ICP-MS requires that the sample is dissolved
and concentrated before analysis. This method is time consuming and is destructive
which can be problematic, especially when there are multiple samples needed (e.g., serial
sampling a tooth), however it produces data that is ten times more precise than analysis
via LA-ICP-MS, 0.000001 and 0.00001, respectively (Copeland et al., 2010). Analysis
using LA-ICP-MS is much faster than solution ICP-MS as teeth or enamel fragments are
merely abraded at the surface to remove dirt and secondary strontium. LA-ICP-MS
allows for in situ analysis of *’Sr/*Sr ratios of a material. Materials can be serial sampled
using laser ablation, which is particularly useful when determining intra-tooth *’Sr/**Sr
ratio variation.

The majority of samples were analyzed for their ®’Sr/**Sr ratio in solution using
high-resolution multicollector inductively-coupled plasma mass spectroscopy
(HR-MC-ICP-MS) using a Nu Instruments NuPlasma instrument (University of Cape
Town). Almost every fossil and modern tooth and tooth fragment was too large to fit into
the standard 2.5-cm x 2.5-cm cylinder chamber currently available at the University of
Cape Town for LA-ICP-MS. Fossil teeth from Elandsfontein do not all have pristine
enamel and some have even been subjected to carbonate leaching. Therefore, even if the
fossil teeth did fit within the chamber used for LA-ICP-MS analysis, each fossil sample
needed to be pretreated to remove diagenetic material and we were concerned that light
abrasion of the tooth surface would not have been sufficient to remove secondary
strontium. We considered solution ICP-MS to be the most reliable method for producing

¥7S1/*°Sr data that reflected the primary *'Sr/*Sr ratios of the fossil enamel.
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The international standard, NIST SRM987 (*’Sr/**Sr ratio = 0.710255), was
analyzed intermittently between unknown samples. The in-house carbonate standard,
NMO95, was measured during each run of unknowns and agreed with the long-term
average obtained in this laboratory of 0.708907 with two standard deviation (i.e., 20) of
0.000031 (n = 24). Unknown samples were analyzed once to determine *’Sr/**Sr ratio of

a solution and the error is reported as 2 internal error.

3.3.3. Determining the presence of diagenetic strontium

To determine if the *’Sr/*®Sr ratio of fossil teeth had been significantly changed
by environmental strontium after deposition, we analyzed the *’Sr/**Sr ratio of modern
enamel and fossil tooth fragments that ranged in quality of preservation (i.e., from well-
preserved enamel to enamel that had likely experienced carbonate leaching and alteration
of the primary *’St/*®Sr ratio). Enamel samples were ground into a powder using a mortar
and pestle. Our method for evaluating the presence of diagenetic strontium in an enamel
sample (i.e., *’Sr/*®Sr ratios that are different from the primary value) and removal of the
secondary strontium was based on the evaluation of diagenetic strontium in Sealy et al.
(1991), in which solubility profiles, or the *’St/**Sr ratios from a series of weak acid
baths and the remaining, cleaned bone powder were analyzed, to determine the presence
and subsequent removal of diagenetic strontium in samples from a specific site.
Powdered enamel samples were then rinsed 24 to 26 times in the buffered nitric acid
solution (100 mM, pH 4.5) as described in the above in Section 3.3.2.1. Supernatants
from every fourth or fifth rinse and the remaining powdered enamel were prepared for

solution analysis of *’Sr/**Sr ratios using HR-MC-ICP-MS.
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3.3.4. Statistical comparison of ¥’ Sr/*°Sr ratio values

Comparisons of the *’Sr/*Sr ratios of materials were performed using JMP 11
software, a statistical analytical program developed by the SAS Institute. We used the
Tukey-Kramer HSD test for these comparisons and we use the £ symbol throughout the

paper to represent one standard deviation from the mean, unless otherwise noted.

3.4. Results
3.4.1. Mapping of bioavailable ¥ Sr/*°Sr ratios

Modern bones (n = 15) and teeth (n = 3) from individual animals and nine plant
samples were collected from the dominant substrates in the region. Their *’Sr/**Sr ratios
were compiled with those of modern bone samples (n = 10) reported in Sealy et al.
(1991) (data compiled in Table S3.1 and summarized in Table 3.1). We have included
solution and laser ablation-based data; the difference between the ®’Sr/*°Sr ratios of the
sample modern enamel samples determined using these two methods is <+ 0.000150 (n
=3).

The bioavailable *’St/**Sr ratios of Pleistocene marine sands range from 0.709388
to 0.711690 (Fig. 3.2; Table S3.1). The bioavailable *’Sr/**Sr ratios of the Table
Mountain sandstone complex and the Malmesbury Shale have values that overlap and
together these samples range from 0.714092 to 0.720390 (Fig. 3.2; Table 3.1; Table
S3.1). The new 'Sr/*Sr data presented here have expanded upon the range of ®’Sr/**Sr
ratios for shale and sandstone complexes presented in Sealy et al. (1991) and these data

confirm that the two substrates are not distinct in terms of strontium isotope composition.
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We have added ¥'Sr/*Sr ratio data for Cape Granites to the map of bioavailable *’Sr/**Sr
ratios of the major substrates in the region and find that the Cape Granite *'Sr/*°Sr ratios
have a wide spread, ranging from 0.711421 to 0.723563 (Table 3.1; Table S3.1; Fig. 3.1;

Fig. 3.2).

3.4.2. Assessment of diagenesis in fossil teeth

We measured the ¥'Sr/*Sr ratios of modern (n = 2) and fossil (n = 8) enamel
fragments and that of the weak nitric acid supernatant from a series of enamel rinses to
evaluate possible diagenesis of the primary isotopic composition of elemental strontium.
Fossil fragments are from Bovidae and Equidae families and also from unidentified large
mammalian herbivores. We did not observe differences > 0.0006 in *’Sr/**Sr ratios over
the series of rinses for any of the sample solubility profiles (Fig. 3.3; Table S3.3). The
enamel ¥'Sr/*Sr ratios from the fossil teeth at Elandsfontein (all rinses and the enamel
powder remaining at the end of the process) ranged from 0.709366 to 0.710679: these
values are within the range of marine-derived sand *’Sr/**Sr ratios (Fig. 3.3). The two
modern enamel samples have a span of *'Sr/*Sr ratios of 0.0004 and 0.0006 (for all
rinses and the enamel powder remaining at the end of the process), which overlaps with
the span of *’Sr/**Sr ratios of fossil enamel and their supernatants over a series of ~ 25
rinses (0.00008 to 0.00050). For both of the modern samples, Rinse 1 had noticeably
lower ®’Sr/**Sr ratios than the rest of the rinses and the residue enamel powder; the fossil
samples do not show this pattern. It is possible that there is some labile strontium
component that the modern samples are picking up soon after deposition where as

fossilized enamel samples are in some way stabilized. Modern samples are collected from
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the surface and are from animals that have died and sat out on the surface long enough to

be completely cleared of soft tissue and hair.

Range of bioavailable Averaged #’Srf¢Sr ratios of
87Sr/°Sr ratios from individual fossil tooth enamel from
each major substrate mid-Pleistocene Elandsfontein
0.726
| Substrate
0.724 - : [CIMalmesbury shale
° | [l Table Mountain
P [ Sandstone
0.722 : [[] Cape Granite suite ||~
| O Marine sands
| [ Mixed granite and
0 0.720+ : | marine sands B
=
© ! Dietary behavior
« 0.7184 ° ! B. Browser L
(/)] [} ! G. Grazer
a : M. Mixed feeder
‘B 0.716 1 o : C. Carnivore -
& I
0.714 5 I =
|
» I
0.712 | _
o | |
|
0.710 4 I % @ o
8 © o O AV %
0.708 B G G. G G G. M M. C
@ F W LW
N PN R A SR N
& P E P TP o
\'bé\ ‘&\‘
?XOQ 'S

Figure 3.2: Ranges of bioavailable *’Sr/*Sr ratios for the major substrates (and mixed marine sands and
granite) in southwestern South Africa compared with the average *’Sr/**Sr ratio for each mid-Pleistocene
mammalian tooth from Elandsfontein. The black dots represent both the new and previously published
bioavailable *’Sr/*Sr ratios from each major substrate (Sealy et al., 1991; this study). Materials analyzed
are bone, enamel and plants (Table S3.1). The range of substrate bioavailable *’Sr/*Sr ratios is
encompassed within a vertical rectangle. The *’Sr/*Sr ratio for each sample used to determine the range of
bioavailable *’Sr/**Sr ratios of substrates can be found in Table S3.1 and the ranges of these data are
presented in Table 3.1. The average *’Sr/*°Sr ratios of individual fossil teeth are presented by taxon. Fossil
enamel samples are from the following mammalian families and represent a single tooth: Bovidae (<),

Equidae (O), Elephantidae (0), the rodent families Bathyergidae (A) and Hystricidae (V) and feliform

family Hyaenidae (x). Probable dietary behavior of animals are indicated by letters and are based on the
findings of Stynder (2009) and Klein et al. (2007). Symbols are defined in the legend.
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Figure 3.3: ¥St/*Sr ratios of the supernatants from a series of rinses of modern and fossil tooth enamel
powder bathed in in weak nitric acid (gray symbols) and the remaining enamel powder (black circle). When
taxon is not indicated after the sample ID, it is because the herbivore taxon is unknown. The *’St/**Sr ratios
from modern enamel and the supernatants from their acid baths were analyzed so that any trends in the
supernatant *’Sr/*°Sr ratios of fossil enamel could be compared with that of modern, pristine enamel. The
smaller plot in the upper right hand corner of the figure outlines the range of bioavailable strontium
¥7S1/*Sr ratios of the major substrates in southwestern South Africa in comparison with the range of
¥7S1/*Sr ratios for the series of supernatants and the remaining powder of enamel samples.
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We assessed the presence of diagenetic strontium in fossil samples by comparing
the *’St/*°Sr ratios of a powdered enamel sample after pretreating samples and also the
supernatant from each rinse in weak nitric acid. We compared the ®’Sr/**Sr ratios of both
modern and fossil enamel with that of the supernatants after powdered enamel samples
were bathed in weak acid to see if there were substantial differences between the enamel
¥7S1/*°Sr ratios of pristine, modern enamel and the buried fossil enamel from
Elandsfontein (Fig. 3.3). The change in *’St/*®Sr ratios of supernatants over a series of
~ 25 rinses was small (~ 0.0004) relative to the range of *’Sr/**Sr ratios for each substrate
(> 0.002). The majority of change in supernatant *’Sr/**Sr ratio for each enamel fragment
occurred within the first five rinses (Fig. 3.3; Table S3.3). Figure 3.4A shows possible
scenarios for how the *’Sr/**Sr ratio of supernatant of powdered enamel bathed in weak
acid could change with successive rinses for the fossil samples at Elandsfontein.

We rinsed each sample of fossil enamel powder five times before analyzing the
¥7S1/*°Sr ratio of the enamel powder because, although the total change was small
(< 0.0006), the majority of change in the solubility profile occurred within the first rinse.
Regardless of fossil enamel condition, the ¥ Sr/**Sr ratios of the fossil enamel samples
and all of the supernatants analyzed to determine strontium diagenesis remained within
the range of bioavailable *’Sr/**Sr ratios from marine sands, which is the geologic

substrate at Elandsfontein.
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Figure 3.4: Scenarios outlining the expected trends of *’Sr/**Sr ratios over a series of supernatants
remaining after enamel powder is bathed in weak nitric acid to remove secondary strontium and that of the
cleaned enamel (A). Scenarios A and D are the expected trends in *’Sr/*°Sr ratios over a series of rinses
when there has only been minor alteration of the primary *’Sr/**Sr ratio of a sample. Scenarios B and E
indicate the expected trend in the *’Sr/**Sr ratio of supernatants and the remaining enamel when the enamel
has not experienced measurable alteration of the primary *’Sr/**Sr ratio. Scenario C indicates significant
alteration of a primary enamel ' Sr/**Sr ratio, by which the primary *’Sr/*°Sr ratio (which reflects Table
Mountain Sandstone) is completely masked by the *’Sr/**Sr ratio of the secondary strontium (*’Sr/**Sr ratio
reflecting marine sands).
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We used the linear mixing model described in Copeland et al. (2010) to evaluate
how the primary ¥’Sr/*Sr ratio of an enamel sample would change with the addition of
secondary strontium, when secondary strontium composed 10%, 25%, 50%, 75% and
100% of the total strontium in a sample (Fig. 3.4B and 4C). Mean values for the
bioavailable ®’Sr/*®Sr ratios of the marine sands, shales and sandstones in southwestern
South Africa were used in our calculations, as these are three of the four main substrates
in the region. We did not include granites in this study since the bioavailable *’Sr/**Sr
ratios in the suite of Cape Granites must be better defined before the Copeland et al.
(2010) model can be applied to them. As expected, when secondary strontium from a
substrate that is not the same in *’Sr/*®Sr ratio as the primary substrate replaces the
primary strontium, then the enamel *’Sr/*Sr ratio moves further from the primary enamel

¥7S1/*°Sr ratio and closer to that of the secondary strontium (Fig. 3.4B and 4C).

3.4.3. ¥Sr/*Sr ratios of fossil mammalian teeth from Elandsfontein

Fossil mammalian tooth enamel from mid-Pleistocene Elandsfontein have been
serially-sampled along the tooth growth axis whenever possible. The averaged *’Sr/*°Sr
ratio from the serial samples (n = 156) of 22 individual teeth is 0.710013 + 0.000470 and
ranges from 0.709255 to 0.711171. We did not observe any significant differences in the
87Sr/*Sr ratios for different herbivore taxa. Carnivores (n = 2) were not distinct from
other taxa and were within the range of the bioavailable *’Sr/**Sr of marine-derived sands
(0.709507 = 0.000160; Fig. 3.2). All data points from the Elandsfontein fossil teeth have
¥7S1/*°Sr ratios equivalent to bioavailable *’Sr/*Sr ratios of marine-derived sands and

were not within the ratio range of any other substrate. We found that there were slight
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differences in ®’Sr/*°Sr ratios for each serial sample within an individually sampled tooth,
where intra-tooth ratios have differences between 0.000049 and 0.001249 (Table S3.2).
In addition we observed no behavioral difference between the *’Sr/*°Sr ratios of enamel

along the tooth growth axis of fossil teeth, regardless of the animal species.

3.5. Discussion
3.5.1. Distribution of the ¥’ Sr/*’Sr ratios of regional substrates and determining
herbivore migration for food

Determining the distribution of bioavailable *’Sr/**Sr ratios for substrates in
southwestern South Africa provided the foundation for understanding how animals
utilized their landscape in the mid-Pleistocene. In addition, this has also provided the
foundation for future studies of animal and human mobility in this region since
deposition of marine sands (i.e., since the Pliocene) in the area.

Values for bioavailable *’Sr/**Sr measured in bone and tooth enamel in this study
are consistent with those of Sealy et al. (1991), but extend that work substantially by
adding data to each of the major substrates (i.e., shale, sandstone and marine sand) (Table
S3.1). The sandstone and shale bioavailable *’Sr/**Sr ratio ranges are similar to one
another but they are distinct from, and are more positive than those of marine sands
(Table 3.1; Fig. 3.2). The range of bioavailable *’Sr/**Sr ratios of Cape Granites in
southwestern South Africa is based on modern animal bones that lived on different Cape
Granite outcrops and plants that grew on these granites (Table 1; Table S1). The range in

bioavailable *’Sr/**Sr ratios from the granites encompasses the *'Sr/*Sr ratio range of
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sandstone and shale, substrates that are more positive than that of marine sands. This is in
agreement with Sealy et al. (1991). The range of bioavailable *’Sr/*Sr ratios from marine
sands are mostly distinct from that of granites, but the lowermost granite *'Sr/**Sr ratio
overlaps with the two most positive *’Sr/*®Sr ratios of marine sands, though this should
be studied in more detail (Table 3.1; Fig. 3.2).

The bioavailable *’St/**Sr ratios from the Cape Granites in southwestern South
Africa currently have a wide span and this range overlaps with the other substrate
bioavailable *’Sr/**Sr ratios. Age and mineralogy are the two primary factors that directly
influence the *’Sr/*°Sr ratio of a rock (e.g., Bentley, 1996). It is possible that these
different granitic bodies that are part of the suite of Cape Granites can be distinguished
from one another using *'Sr/**Sr ratios because, 1) granites within the suite vary in age
(within the Precambrian) and 2) they have unique mineralogical compositions (Sheepers,
1995; Rozendaal et al., 1999; Belcher and Kisters, 2003). To better determine if there are
differences between the bioavailable *’Sr/*°Sr ratios of the granitic intrusions that belong
to the Cape Granite suite and in turn if animals traveled to specific granitic outcrops for
food, multiple plants and or bones and teeth from the distinct granitic bodies would need
to be collected and analyzed. In particular, the granites in the area surrounding
Elandsfontein should be targeted because these are the most likely (i.e., most convenient)
granitic outcrops that herbivores could have traveled to for food.

Given that the bioavailable *’Sr/**Sr ratios of the marine sands are distinct from
that of sands and shales, we propose the following framework for using *’Sr/**Sr ratios of
teeth to study resource use by animals that lived in areas within the region (such as

animals from Elandsfontein) where marine sands are the main substrate. There are two
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basic scenarios for how the *’Sr/**Sr data for fossil teeth from Elandsfontein can be
interpreted: 1) the animals from Elandsfontein with tooth *’Sr/*®Sr ratios similar to the
bioavailable *’Sr/**Sr ratios for marine sands were able to subsist on food found at
Elandsfontein and in the surrounding, coastal location, and 2) the animals with tooth
¥7S1/*°Sr ratios similar to the bioavailable *’Sr/*°Sr ratios of shales and sandstones would

have needed to travel inland for food.

3.5.2. Diagenesis of primary *’Sr/*°Sr ratios and pretreatment procedure

Possible diagenesis of the strontium of fossil tooth enamel was tested by
analyzing *’Sr/**Sr ratios in solubility profiles (i.e., the supernatants of enamel bathed in
weak acid and the enamel after a series of ~25 baths) from several tooth enamel
fragments spanning a range of preservations. The *’Sr/**Sr ratios along the solubility
profile remain within the range of bioavailable *’Sr/**Sr ratios of marine sands in the
region (See Fig. 3.3 and Fig. 3.4). Based on the consistency of *'Sr/*Sr ratios along the
solubility profile, there was no significant diagenesis of the enamel in any of the
specimens studied.

The finding that the primary *’Sr/**Sr ratios of the fossil teeth have been
preserved is consistent with a previous study that showed that the oxygen isotopic
composition (i.e., 8'*0 value) of fossil tooth enamel from Elandsfontein were unaltered.
This assessment was based on the fact that, first, the relative oxygen isotopic
compositions of different taxa from Elandsfontein are preserved, for example

hippopotamids are more negative in their oxygen isotopic composition than are the other
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taxa. Second, the offset between the 8'%0 value of enamel carbonate and that of enamel
phosphate for each sample is as expected from pristine enamel (see Chapter 2).

Based on these results we consider the *’Sr/**Sr ratios of fossil teeth at
Elandsfontein to be unaltered and representative of the substrate on which the animal ate.
Therefore, each enamel sample used to analyze diet and vegetation at Elandsfontein was

pretreated in a standard manner (i.e., rinsed five times in weak nitric acid).

3.5.3. Herbivore migration and environment at Elandsfontein during mid-Pleistocene
The ¥'Sr/*Sr ratios of fossil teeth from Elandsfontein lie within the range of
¥7S1/*°Sr ratios expected for animals that obtain their food from the marine sand
substrates that are local to Elandsfontein. These data indicate that the browsing and
grazing herbivores, rodents and carnivores at Elandsfontein consistently consumed
resources on the marine-derived sand substrate (Fig. 3.2; Table 3.3; Table S3.2). We did
not observe any patterns in the *’Sr/*°Sr ratios of the fossil teeth that we sampled serially

along the tooth growth axis (Table S3.2).

Table 3.3: Average 87S1/%Sr ratios of fossil mammals from mid-Pleistocene Elandsfontein.

87Sr/*Sr ratio 87Sr/*Sr ratio
Sample ID Taxon Inclination  Dietary b
to migrate®  behavior® Average Stdev Min Max n

Bovidae

WCRP 20443 Tragelaphus Potentially =~ Browser 0.709384  0.000031 0.709330  0.709428
strepsiceros migratory

WCRP 36612 Tragelaphus Potentially =~ Browser 0.709721  0.000046  0.709671  0.709780
strepsiceros migratory

WCRP 9386 Tragelaphus Potentially =~ Browser 0.709689  0.000071 0.709546  0.709754 10
strepsiceros (?)  migratory

WCRP 1358 Alcelaphini sp. Potentially =~ Grazer 0.709843  0.000058 0.709770 0.709980 12
indet. migratory

WCRP 36309 Syncerus Potentially =~ Grazer 0.711010 0.000154 0.710710 0.711120
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WCRP 9043
WCRP 1666
WCRP 36309
WCRP 8787
WCRP 9046
WCRP 9944
WCRP 46245
WCRP 46251
WCRP 46245
WCRP 46225

WCRP 32386
WCRP 46257
WCRP 1468

Equidea
WCRP 2048

Elephantidae
WCRP 12298

WCRP 6088

Bathyergidae
WCRP 32007

Hystricidae
WCRP 32012

Hyaenidae
WCRP 32121

WCRP 32442

antiquus

Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Syncerus
antiquus
Bovid

Bovid

Bovid indent.

Equus capensis

Loxodonta
africana
Loxodonta
africana

Bathyergus
suillus

Hystrix
africaeaustralis

Hyaena brunnea

Hyaena brunnea

migratory

Potentially
migratory
Potentially
migratory
Potentially
migratory
Potentially
migratory
Potentially
migratory
Potentially
migratory
Potentially
migratory
Potentially
migratory
Potentially
migratory
Potentially
migratory

Potentially
migratory

Potentially
migratory
Potentially
migratory

Not
migratory

Not
migratory

Potentially
migratory
Potentially
migratory

Grazer

Grazer

Grazer

Grazer

Grazer

Grazer

Grazer

Grazer

Grazer

Grazer

Grazer
? Grazer

? Grazer

Grazer

Grazer

Grazer

Mixed
feeder

Mixed
feeder

Carnivore

Carnivore

0.710293

0.709641

0.710431

0.711047

0.710496

0.709855

0.709876

0.709474

0.709802

0.709640

0.710320
0.709428
0.710090

0.709705

0.710071

0.710547

0.709392

0.709476

0.709393

0.709620

0.000058

0.000241

0.000053

0.000144

0.000142

0.000056

0.000194

0.000022

0.000433

0.000080

0.000083

0.000066

0.710130

0.709255

0.710351

0.710889

0.710327

0.709771

0.709324

0.709609

0.709856

0.709976

0.709275

0.709423

0.710570

0.710078

0.710488

0.711171

0.710835

0.709888

0.710141

0.709658

0.711105

0.710181

0.709489

0.709587

* migratory inclination and dietary behavior information from Copeland et al. (2016) and coauthor Deano Stynder in

2014 to 2016

® standard deviation is + 1o from the average
 number of individual serial samples from an individual tooth that have been averaged
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Herbivores ate vegetation growing on marine sands. We used the linear mixing
model that was used to evaluate mixing of primary and secondary strontium as an
approach for determining the percentage of total food an animal could have consumed
from shale in the region and still have retained a *’Sr/**Sr ratio within the range of
bioavailable *’Sr/**Sr ratios for marine sands (Fig. 3.4). We find that vegetation growing
on shale could have contributed ~10% of the total food consumed by an animal living
mainly on the marine sands (Fig. 3.4) without registering a significant change in the
enamel *’Sr/*°Sr ratio (i.e., the *’Sr/**Sr ratio remains within the range of bioavailable
%7S1/*®Sr ratios for the marine sands). Animals would need to eat ~ 25% of their total food
from the vegetation growing on shale before their enamel *’Sr/*Sr ratios would
necessarily become more positive than the range of bioavailable *’Sr/**Sr ratios for
marine sands. However, there are no fossil enamel *’Sr/*°Sr ratios that are more positive
than the bioavailable *'Sr/**Sr ratios for marine sands (Fig. 3.2).

We also produced carbon isotope datasets for serial samples of teeth (one tooth
from each taxon) from three large grazing mammals (Equus capensis, Connochaetes
gnou and Syncerus antiquus) at Elandsfontein that might have migrated for food (Thesis
Chapter 2). Each of these fossil teeth (n = 3) had intra-tooth variation of < 1 %o in 8"°C.
Mean §'°C values were -9.9 + 0.6%o (13 serial samples averaged), -9.4 + 0.5%o (12 serial
samples averaged) and -9.7 & 1.0%o (8 serial samples averaged) for Equus capensis,
Connochaetes gnou and Syncerus antiquus, respectively. These data indicate that these
grazers consumed diets that consisted overwhelmingly of C; grasses characteristic of the
winter rainfall zone, and the isotopic composition of their diets did not vary in the early

years of their lifetimes when their teeth mineralized. The sum of these data are published
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in Lehmann et al. (2016), indicate that the mid Pleistocene environment at Elandsfontein
supported large grazing mammals who were able to subsist wholly on the grasses that
grew in the coastal regions of the winter rainfall zone where there must have been a

year-round supply of grass.

3.5.4. Environments at Elandsfontein and southwestern South Africa during
mid-Pleistocene

The *’St/*®Sr ratios of fossil teeth from Elandsfontein suggest that
mid-Pleistocene mammals did not need to travel from the coast to find food. Mesowear
and microwear records from mid-Pleistocene Bovidae teeth indicate that these animals
had access to both browse and graze at Elandsfontein and in the surrounding area and that
the presence of grassland in this area would have provided food resources for grazing
herbivores during the mid-Pleistocene (Stynder, 2009). Fossil enamel from herbivores at
Elandsfontein have carbon isotopic compositions indicating that grazers ate grass adapted
to a winter rainfall zone. Southwestern South Africa was within a winter rainfall zone
during the mid-Pleistocene, as it is today (Luyt et al., 2000; Hare and Sealy, 2013;
Lehmann et al., 2016).

During the mid-Pleistocene herbivores did not spend a significant time outside of
the winter rainfall zone nor did they spend a significant amount of time eating on the
major regional substrates other than marine-derived sands on the coast of southwestern
South Africa. Elandsfontein appears to have provided both palatable browse and graze
vegetation during the mid-Pleistocene. Together these data suggest that the fossil

herbivores that have been found at Elandsfontein could access enough food and water in
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the area around Elandsfontein and also could have acquired their food resources along the
coast; suggesting an environment and ecological setting that is nothing like those seen
today.

This suggestion of a mid-Pleistocene environment with grasses and adequate
vegetation to feed both browsers and grazers has also been suggested by Luyt et al.
(2000) and Stynder (2009). Spring sediments preserved at Elandsfontein suggest the
presence of surface water during the mid-Pleistocene (e.g., Braun et al., 2013). Standing
water could have provided enough water to support the growth of grass year round as
well as other vegetation like trees, shrubs and sedges, all within a winter rainfall zone.
Overall it would be quite unrecognizable in the current landscape, environment and
ecology. At some point between the mid-Pleistocene and today, southwestern South
Africa changed from a lush environment with a diverse animal community to an
environment that is hot, dry and hostile to the communities that existed during the

mid-Pleistocene.

3.6. Conclusion
1) Enamel ¥'Sr/*Sr ratios indicate that herbivores did not migrate from coastal
region suggesting that there was enough nutritious vegetation to feed both
browsers and grazers on the coast of southwestern South Africa without animals
having to move inland.
2) These data indicate the presence of browse and graze on what is now fynbos

shrub land suggests the presence of water resources, which supports the idea of
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3)

4)

the EFT region having springs during the mid-Pleistocene, and proposes an
environment and large mammal community at Elandsfontein and in the study
region that is fundamentally different from the low carrying capacity environment
that there is today.

These results do not support the hypothesis that large herbivores in coastal regions
during the Pleistocene undertook long-distance migrations for food or other
resources.

Tooth enamel from Elandsfontein was shown to retain effectively unaltered

biogenic ¥'Sr/*Sr ratios as well as biogenic '*0/'°O values.
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CHAPTER 4: Triple oxygen isotope distributions in tooth enamel of extant

mammals and potential geologic applications

ABSTRACT

The fractionation of the heavier oxygen isotope '*O relative to '°0 is broadly used
to study the hydrological and carbon cycles today and in the Earth’s past. The extensive
applications of "*0/'°O ratios stem from its sensitivity to a range of environmental and
geographic parameters (e.g., temperature, relative humidity, latitude), however the
relationships among these parameters also limit its utility for probing the Earth system.
The triple oxygen isotopic composition (A'’O) of a material, which includes the rare
isotope '’O in addition to the more common '°0 and '*0O, can be used to distinguish
processes influenced by mass-dependent fractionation from those influenced by
mass-independent fractionation. A'’O can also be used to determine the influence of
equilibrium and kinetic isotope effects during processes involving mass-dependent
fractionation. There is an emerging literature that shows the potential utility of A'’O
measurements in bones, tooth enamel and eggshells for studies of hydroclimate, pCO,,
pO; and diagenesis in the fossil record. However, in order to evaluate the potential of
using A'’O compositions of fossilized materials, we need a better understanding of the
range of A'’O values in the modern enamel of animals with a variety of behaviors and
from a different environments as to provide a baseline to which fossil datasets can be
compared. Here we present the A'’O values from 50 teeth of extant large mammalian

herbivores. Teeth were obtained from several species with a range of behaviors and from
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a broad range of environments and latitudes (0° to 68°). The range of A'’O values for
tooth enamel is -291 to -137 per meg (161 per meg; 1 per meg is 0.001%o). The range in
enamel A'’O values appears sensitive to aridity, contrasting the 3'*O values that vary
with both latitude and the 'O of local meteoric water. Our results provide a baseline for
the expected range of A'’O values in contemporary bones and teeth that can be applied in
studies using fossilized samples. We argue that the A'’O values of enamel have strong
potential as a tool to evaluate past aridity, in addition to their utility in evaluating oxygen

isotope diagenesis of a material and past atmospheric pCO..
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4.1. Introduction and Background

Oxygen isotopes in marine and terrestrial carbonates have long been used to
reconstruct Earth's climate and environmental conditions across geological time (e.g.,
Rowley and Currie, 2006; Hopley et al., 2007; Zachos et al., 2001). These records which

180/160 sample
180/160 standard

rely on 80/'°0 ratios of carbonates, or 8'*0 values, where § '°0 = (

1) %x1000, have defined our current understanding of major aspects of Earth history

ranging from the history of mountain uplift, global temperature changes, and
aridification. However 8'*O-based paleoclimate reconstructions are inherently limited
because there are multiple factors that can influence 8'°O values of carbonates and the
waters from which they form, which can include geographic location (e.g., elevation),
temperature and evaporation. These factors influence 8'°O values of water through
processes involving a combination of equilibrium and kinetic isotopic fractionation
effects that cannot be distinguished using 8'*0 alone. In order to constrain the potential
influences on 8'*0 values and to use 8'*O carbonate records to reconstruct past climate
and environment with more confidence, we need an additional tool that allows us to
evaluate the influencing factors on the 8'*0 of a carbonate and the water from which it
forms.

0 is the least common stable isotope of oxygen as it comprises only 0.038% of
the total amount of oxygen. It has long been recognized that '*0/'°0 and '"0/'°O have

different fractionation factors (), where * & = *Rsample/ *Rstandard, Where X is either 18 or

17 and indicates if the isotopic ratio, R, is "*0/'°O or '70/'°0, respectively (Matsuhisa et
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al., 1978; Barkan and Luz, 2005). For the majority of Earth surface processes, oxygen
isotope fractionation is largely mass-dependent, such that '®o and "o vary in predictable
ways relative to one another as a function of their mass; these relationships are

characterized by the triple oxygen isotope exponent, 6 , where '’ a =" ? (e.g., Young

et al. 2002). This exponent is generally greater for processes involving equilibrium
fractionation (e.g., phase changes) than for processes involving kinetic fractionation (e.g.,
diffusion), such that we can use the combination of '*0 and 8'’O values to understand
the influences of equilibrium and kinetic processes on the oxygen isotopic composition of
materials (Matsuhisa et al. 1978; Young et al., 2002).

The measure of 'O in addition to '*O and '°O, triple oxygen isotopes, is defined

as A0, where A0 = 8170 - Agpr x 8°1%0, and 1 is the slope of the reference line

(REF) and is dependent upon the reference frame used for the measurements in a given
study (Miller, 2002; Pack and Herwartz, 2014). 8*O = In(Rsample/Rstandara) (Hulston and
Thode, 1965). The delta prime notation, >0, is used so the relationship between 5'’O
and 8'0 values can be viewed linearly and where the slope of plots of §°'*0 and §°'’0
values can be expressed as A. A is the mathematical equivalent of as 0, but instead of
dealing with one fractionation process, A is used to describe oxygen isotope fractionation
when several processes are combined as is likely processes that involve multiple phases
and steps such as carbonate formation (Passey et al., 2014). We present isotopic data
using 8-values and &’-values in units of per mil (%) and A'’O values in units of in per

meg, where 1%o = 1000 per meg.
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For the triple oxygen isotope data that we discuss below we define A'’O values
using Argr as 0.528, which is the slope that characterizes the distribution of global
meteoric waters on a 8’'*0-8’""0 plot and is similar to the theoretical exponent for
processes involving equilibrium fractionation (Meijer and Li, 1998; Luz and Barkan,
2010). This reference line has been used in A'’O studies of meteoric water, terrestrial
carbonates and silica because it is serves as a model for §'*0 and 8”70 values if
mass-dependent equilibrium processes are the sole drivers of isotopic fractionation in a
system (Barkan and Luz, 2005; Luz and Barkan, 2010; Passey et al., 2014; Li et al., 2015;
Sharp et al., 2016). Any material that has experienced a kinetic fractionation process (e.g.
evaporation of water) will have §°'*0 and §°'7O values that will have lower A'’O values
than the initial water (e.g., Young et al., 2002; Barkan and Luz, 2005; Landais et al.,
2006).

While there is enormous potential for the use of A'’O values of terrestrial
materials to better understand factors influencing the water from which a material derived
and thereby expand the utility of carbonate 8'*0 paleoclimate records, the use of triple
oxygen isotopes have primarily been limited to studies of systems where there is a
relatively large range in A'’O values, such as meteorites, atmospheric chemistry and of
Precambrian paleoclimate (e.g., Franchi et al. 1999; Boering et al. 2004; Bao et al. 2008).
However, it is now possible to use triple oxygen isotopes to understand processes
involving mass-dependent fractionation that are common on the Earth’s surface in part
because 1) meaningful mass-dependent variation in A'’O in Earth surface processes is

now recognized and 2) analytical advances make it possible to measure the small
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differences in A'’O value in materials (e.g., water, carbonate) that are products of these
processes.

We consider the evaluation of A'’O values in terrestrial carbonates to be a viable
way to address the limitations of the 5'*0 record. However, before we can address the
fossil record we must first understand the modern framework and the primary influences

of A0 values of carbonates and the waters from which they derived.

4.1.1. Current understanding of the A" O values of terrestrial materials

In the following paragraphs we briefly review the A'’O values of
meteoric-derived waters and the water from which bioapatites and biocarbonates (i.e.,
bones, tooth enamel and eggshells) precipitate. We report the A'’O values of animal body
water and of bones, teeth and eggshells and then consider the major influences on the
A"0 values of these materials. We then discuss the potential for using the A'’O values of
bioapatite and biocarbonate in the fossil record to evaluate paleoclimate and
paloenvironment.

Meteoric water that has not experienced significant evaporation on average falls
along a slope of 0.528 with an intercept of 33 per meg (Luz and Barkan, 2010). In
contrast, precipitation and surface water from dry, continental settings can be subject to
extensive evaporation, yielding A'’O values as low as -60 per meg (e.g., Li et al., 2015;
Surma et al., 2015; Fig 4.1). Plant water is derived from meteoric water and is highly
susceptible to kinetic isotopic effects (i.e., diffusion/evaporation). With increased aridity,
kinetic isotope effects more strongly influence the oxygen isotopic composition of plant

water and there is further deviation from the reference line. Thus, with increasing aridity,
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the A'’O value of plant water becomes increasingly negative (Landais et al., 2006). Plant
water A'’O values, specifically leaf water, can be < -300 per meg (Fig. 4.1).

The A'7O values of bones, teeth and eggshells are directly related to the A'’O
values of animal body water from which these minerals have formed and have been
measured in several studies. When Aggr = 0.528, animal body water A'’O values vary and
can be more negative than ca. -200 per meg (Passey et al., 2014). There is only a ca. 20
per meg overlap of body water A'’O values with the meteoric water A'’O values (Fig.
4.4.1A). Analyzed eggshells have A'’O values that are as negative as ca. -200 per meg
(Passey et al., 2014). Enamel A'’O values have a similar range in values to that of body
water, but can be more negative than -280 per meg (Fig. 4.4.1B; Passey et al., 2014).

The primary factors influencing animal body water A'’O values and the A'’O
values of bioapatites and biocarbonates are 1) the A'’O values of ingested water from
food and drinking water and 2) the A'’O value of inhaled atmospheric O, (Pack et al.,
2013). Herbivore body water and the minerals that precipitate from body water are
thought to have A'’O values strongly influenced by the A'’O value of ingested leaf water
and the A'’O value water that they drink. The A'’O value of contemporary atmospheric
0, is depleted in '"O (-500 per meg) relative to meteoric waters and plant waters as the
result of mass-independent fractionation from photochemical reactions in the atmosphere
and stratosphere (Bao et al., 2008). It is inhaled and incorporated into the animal body
water and results in body water and bioapatite and biocarbonate A'’O values that are
more negative then the global meteoric water line. Inhaled atmospheric O, could
represent up to 40% of the total oxygen in body water (Kohn, 1996; Gehler et al., 2011;

Pack et al., 2013; Passey et al., 2014).
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4.1.2. Using A" O values of bioapatite in the fossil record

A"0 values of bioapatite and biocarbonate have been proposed as useful in
geological studies to understand aridity, pCO; (concentration of CO; in the atmosphere)
and diagenesis (e.g., Pack et al., 2013; Gehler et al., 2011; Passey et al., 2014; Gehler et
al., 2016). These applications are based on the different processes of mass-dependent and
mass-independent fractionation that influence the A'’O value of body water and in turn,
the A'’O values of biocarbonates and bioapatites (e.g., Hu et al., in prep). Part of the
utility of these A'’O-based approaches is that they can be applied to any materials in the
fossil record that contain oxygen.

The A'7O values of biologically precipitated apatites and carbonates (i.e.,
bioapatites and biocarbonates) of large herbivore communities could be a proxy for
aridity because animals incorporate evaporated leaf water into their diet and thus it is
incorporated into bioapatite and carbonate (Hu et al., in prep). An animal that gets a large
proportion of its water from leaf water (which can have more negative A'’O values than
that of meteoric water, see Fig 4.1) will have a body water A'’O value substantially lower
than that of an animal that drinks a large proportion of the water it ingests because the
A0 values of leaf water become more negative with increased evaporation (Hu et al., in
prep). With increased aridity, A'’O values of leaf water will be more negative such that
the animals that get their water from leaves will have A'’O values of bioapatite and
biocarbonate that are more negative than they would in more humid environments
(reviewed in Passey et al., 2014). However, the range in A'’O values of bioapatites and
biocarbonates in various environments is unexplored such that we do not know if it

would be useful for constraining paleoaridity.
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Changes in the A'’O value of inhaled atmospheric O can also affect the A'’O of
bioapatite and biocarbonate as it can be a substantial portion of total balance of oxygen in
a mammal’s body water as stated above. The A'’O value of atmospheric O, is in part a
function of atmospheric pCO, due to mass-independent fractionation of oxygen isotopes
within the stratosphere; the A'’O of atmospheric O, becomes more negative as pCO,
increases. This relationship has been applied to the study of past pCO, using terrestrial
materials such as sulfates whose oxygen isotope composition is influenced primarily by
the oxygen isotopes of atmospheric O,, and not water (e.g., Bao et al, 2008). There is
potential to use fossil tooth enamel A'’O values to determine or constrain past pCO, and
this has been attempted in studies using fossil rodent tooth enamel (Gehler et al., 2016),
however if this method for pCO; reconstruction is to gain traction, we need to develop a
better understanding for the range in A'’O values of bioapatites and biocarbonates that
exist when pCO; is relatively constant.

Another potential geologic application for A'’O in bioapatites and biocarbonates
is for assessing the influence of diagenesis on 8'*O carbonate records. The oxygen
composition of bioapatite and biocarbonate is prone to diagenesis, however determining
whether the material has experienced isotopic alteration is not always straightforward.
The A'7O of bioapatite has been proposed as a direct chemical proxy for isotopic
diagenesis of oxygen (Gehler et al., 2011) based on the premise that bioapatite A'’O
values are more negative than those of meteoric waters or even of a mixture of meteoric
water and plant water (Fig. 4.4.1). The diagenetic fluid that would alter the oxygen

isotopic composition of bioapatite and carbonate is meteoric water, with A'’O values
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more positive than that of animal body water (Gehler et al., 2011). Thus, if the A'”’O
value of a bioapatite was found to be within the realm of the expected range of the A'’O
values of meteoric waters, then it is likely that the oxygen isotopes in the bioapatite have
been altered from their primary composition and that the oxygen isotopes should not be

considered in the evaluation of past Earth conditions and processes.
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Figure 4.1: A"0 and 8'0 values of marine- and meteoric- derived waters, plant water, atmospheric O,
and reconstructed water and body water (A). Marine- and meteoric derived carbonates and enamel A'’O
and §'%0 values with vertical bars indicating the range in A'’O values for marine- and meteoric-derived
carbonates and for tooth enamel carbonate under current atmospheric pCO, (B). Data point are from
Landais et al. (2006), Bao et al. (2008), Luz and Barkan (2010), Landais et al. (2010), Passey et al. (2014),
Liet al. (2015), Hu et al. (in prep) and this study. Vertical bars are also used to represent the theoretical
range of tooth enamel A'’O values for enamel that has experienced alteration of O, by diagenetic
meteoric- and marine- derived fluids based on carbontes from Passey et al. (2014) and enamel samples
from this study (i.e., new data, Passey et al. (2014), Hu et al. (in prep), and for enamel from animals that
lived during a period of elevated atmospheric pCO, (generalized from Pack et al., (2012) and Gehlers et al.,
(2016)).

There is great potential for using A'’O in enamel and other biominerals to address

questions about paleoaridity, diagenesis and pCO,, but we need to understand how A'’O
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values of biominerals vary in modern system before we can begin to apply A'’O to the

fossil record and to geological and paleoecological questions.

4.1.3. Study layout

We analyzed the triple oxygen isotope composition of pristine, modern tooth
enamel from mammalian herbivores that span various taxa, environments, locations and
8'%0 values of local water (n = 45, Table 4.1; Table S4.1). In combination with the two
published A0 values of enamel from large herbivore teeth (Passey et al. 2014) and three
teeth from Hu et al. (in prep), we used these data to evaluate the influences on the A'’O
values of enamel carbonate. We then consider this dataset in terms of its application to
the geological record in three ways: 1) as an aridity index, 2) to constrain past pCO, and

3) to evaluate the role of diagenesis on the oxygen isotopic composition of enamel.

Table 4.1: Taxa, location, and triple oxygen isotopic values of enamel samples. Measured isotopic compositions
of enamel and calculated isotopic compositions of parent waters of the enamel. Values are given in units of per
mil (%o) or per meg (%o x 1000) relative to the VSMOW-SLAP scale of Schoenemann et al. (2013), with
reference line A = 0.528.

Calculated
, body water
Enamel triple oxygen f
, . b triple oxygen
isotopic values , !
isotopic
values*
6180 A17O 8180 AI7O
Analytical c (per c d (per
1D Zv]og) * meg)® o ;%Og) meg)®
(first # of a Common Family Genus and av av
serics) name species 4 g Reference
East Africa
JHU-170-  Okapi Bovidae Oryx gazella 443 03 -235 4 2 10.74 -157  this study
2057 beisa
JHU-170-  Elephant Elephantidae Loxodonta 454 0.0 -184 5 2 11.83 -109 this study
2059 africana
africana
JHU-170-  Elephant Elephantidae Loxodonta 450 0.5 -187 1 2 11.40 -111 this study
2154 africana
africana
JHU-170-  Elephant Elephantidae Loxodonta 40.1 03 -178 2 2 6.64 91 this study
2156 africana
africana
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bison
Bison bison
bison

Odocoileus
virginianus
virginianus

Rangifer
tarandus
Odocoileus
virginianus
virginianus

Castor fiber

Odocoileus
virginianus
virginianus
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this study

this study

this study
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JHU-170-  White-tail ~ Cervidae Odocoileus 326 02 -204 5 2 -0.54 -25 this study
2345 ed deer virginianus
virginianus

JHU-170-  White-tail ~ Cervidae Odocoileus 322 0.7 -184 7 2 -0.96 -91 this study
2526 ed deer virginianus
virginianus

JHU-170-  Moose Cervidae Alces alces 26.6 - -161 - 1 -6.40 -73 this study
2541

* More information about climate can be found in Table S4.1

®3'%0, 8'70 and A'’O values normalized to VSMOW-SLAP scale, as per Schoenemann et al. (2013), and normalized to known
3'%0(C0,/CaCOs) values, as described in the Methods Section, where the reference slope of A = 0.528

¢ Where =+ is used to indicated standard deviation of 1o

¢ Number of analyses, where each analysis involves extraction of CO, from enamel carbonate, reduction and fluorination of CO, to
0,, and analysis on the Thermo MAT 253 mass spectrometer over seven acquisitions of ten cycles each, where each cycle has a 26 s
ion counting time (=1820 s total counting time)

¢ Body water triple oxygen isotope values were calculated using an animal body temperature of (T°C = 38°) based on general
temperatures from Passey et al. (2014) and the fractionation factor between enamel and water is ("*a = 1.0332) based on Lécuyer et
al. (2010)

" Calculated using body water A0 = A" Opamer + 10°In"8cacos-mzo (0.528 — Acacos-iz0), Where ** cicacosno is 1.0332 for tooth
enamel samples, and Acacos-mo is 0.5245 for all samples

¢ Where per meg is %o x 1000.

4.2. Materials and Methods
4.2.1. Nomenclature and notation

Oxygen isotope measurements are described using 8*O and A'’O notation, where x is
17 or 18. Material type is indicated in subscript after the 5O and A'’O notation (e.g.,
A Oepamer and A Ometeoric water). We also apply this nomenclature when describing
fractionation factors between parent waters and the bioapatite and carbonate precipitated

from these parent waters.

4.2.2. Sample selection
Sample selection was designed to evaluate the full range in A'’Ocpamer that exists in
extant mammalian herbivores and how it varies with geographic and environmental

parameters in order to fully explore its utility in geologic applications. The total number of
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teeth we analyzed was limited by the long analytical times associated with A'’O
measurements of bioapatites (> 5 hours/sample for A'’O vs. 35 minutes/sample for §'*0).
We used teeth from East Africa and South Africa that had been collected over the
past five decades and for which many had been used in previous studies of the stable
isotopic composition of teeth (Cerling et al., 1999; 2003; 2004; 2008; 2010; 2015; Passey
and Cerling, 2006; Levin et al., 2008; Passey et al., 2007; 2014; Blumenthal et al., in prep.).
Teeth from Finland were from the Finnish Museum of National History in Helsinki and
teeth from the United States were provided by state parks or by individual researchers. We
analyzed 50 teeth in total coming from hippopotamids (n = 4), elephantids (n = 9), bovids (n
=9), castorids (rn = 2), cervids (n = 15) and giraffids (n = 5). These data have been
combined with the isotopic data of a hippopotamid and rhinocerotid from Passey et al.
(2014) and hipppotamid, giraffid (n = 2), bovid and cervid from Hu et al. (in prep.). The
combined isotopic data are presented in Table S4.2. Samples were specifically chosen to
span a range of environments, local 8" 0 \meteoric water values, latitudes, taxa and animal water
use strategies. Samples represent mainly water-dependent and water-independent taxa from

humid to arid regions located at both mid and high latitudes.

4.2.3. Locations and climate

The geographical and climatic information for sample sites are listed in Table S4.1.
Geographic information (latitude, longitude and elevation) were obtained from Cerling et al.
(2015) for East African samples. The locations of all other samples were determined using

Satellite Imagery. Climate parameters for each location are modeled from University of East
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Anglia, Climate Research Unit (CRU) data from 1961 to 1990 and is based on mean climate

grids of 10-minute latitudinal/longitudinal global land areas (New et al., 2002).

4.2.3.1 Characterization of environmental aridity and relative humidity

We use both relative humidity (RH) and the Aridity Index (MAP:PET) to
understand the distribution of A’ Ouyamel values and we have tabulated this information
for every site from which we have A'’O data in Table 4.1 and Table S4.1. RH helps us
connect the A7 Oepamer to the process influencing the water from which enamel forms (i.e.,
animal body water) whereas the Aridity Index helps us to connect A'’O values to actual
environments (i.e., identifying the climate in which animals lived). The Aridity Index is
defined here as the ratio of mean annual precipitation and mean annual potential
evapotranspiration (MAP:PET) as this definition is widely used way to characterize
aridity (e.g., UNESCO, 1979).

Aridity Index values were determined for all sites using precipitation from the
CRU dataset model output and PET calculated for each site (Table S4.1). We also
compiled RH values (% daily average RH) from the CRU dataset model output and for
locations where we have actual measurements of RH, we find that the RH from the CRU

dataset is within £ 15% of the measured values.

4.2.4. Preparation of tooth enamel powder for isotopic analysis
Enamel was removed along the tooth growth axis using a diamond saw blade,

cleared of dentine and any dirt, and ground into a homogenized powder using a mortar and
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pestle. Enamel powder was treated with 3% H,O; to remove any organic material, rinsed
three times with deionized water, treated with 0.1 M buffered acetic acid to remove any
secondary carbonate and rinsed three times with deionized water before being dried

overnight at 60°C.

4.2.5. Triple oxygen isotope analysis and normalization

4.2.5.1. Triple oxygen isotope analysis

Analysis of triple oxygen isotopes of tooth enamel followed the methods outlined in
Passey et al. (2014). For each analysis, 140 - 200 mg of tooth enamel powder was placed in
silver capsules and reacted under vacuum in 100% phosphoric acid at 90°C to extract CO,,
which was then reduced to H,O in the presence of a catalyst (Fe powder heated to 560°C)
for 20 minutes (Passey et al., 2014). The resulting H,O was fluorinated at 370°C using a
cobalt trifluoride reactor to produce O, that was then analyzed by duel inlet isotope ratio
mass spectroscopy on a Thermo Scientific MAT 253 gas-sourced isotope ratio mass
spectrometer at the Johns Hopkins University, Department of Earth and Planetary Sciences
(Passey et al., 2014; Li et al., 2015). Water standards SLAP2 and VSMOW?2 (3 ul) were
directly injected into the cobalt trifluoride reactor to produce O, gas. All samples were
analyzed in duplicate.

We evaluated the performance of the triple oxygen isotope measurements of
carbonates external standards, both international standards carbonates (NBS18 and NBS19)
and an in-house carbonate (102-GC-AZ01), as well as a CO; gas standard (Tank#2 CO,).
The mean external precision (1o) for the reference carbonates and CO, was 8'°0 of 0.7%o

and A'’O of 10 per meg.
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4.2.5.2. Triple oxygen isotope normalization

All unknown and known waters and carbonates were fluorinated to produce O, using
the in-house fluorination line before being analyzed for the triple oxygen isotope
composition. Thus, it was possible to normalize the triple oxygen isotope data from
carbonate O, directly with the triple oxygen isotope data from the O, of international water

standards, VSMOW?2 and SLAP2. Raw triple oxygen isotope data of known and unknown

carbonates were normalized to international water standards VSMOW?2 (8'*0 = 0%o and
8'"0 = 0 per meg) and scaled to SLAP2 (8'°0 = -55.5%0). We use the reference frame
where A'"Ogpp2 is set to 0 per meg, thus 8'"Os ap2 = -29.6986490%0 when

8" OsLap2 = -55.5%0 and A = 0.528 (Schoenemann et al., 2013). The reference line A = 0.528

(8'70-8"0 meteoric water line) has also been used in the determination of A'’O of other
natural waters (Landais et al., 2006; Barkan and Luz, 2007; Luz and Barkan, 2010; Li et al.,
2015) and for terrestrial materials formed from natural waters, such as organic and inorganic
carbonates (Passey et al., 2014).

A secondary normalization step was performed on carbonates to correct for slopes of
< 1 for regressions between the measured and known values of '*0. See Section 2.3 in
Passey et al. (2014) for a detailed description of the data normalization of carbonates. We
then compared our carbonate standard data to those from Passey et al. (2014) and adjusted
the corrected A'’O values of carbonate standards and unknown enamels when the offset was
> 0.013%o. All data and calculations pertaining to each run (i.e., standards, unknown

samples and corrections) are detailed in Table S4.5.
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4.2.6. Statistical analysis
All comparisons of isotopic data were evaluated using the statistical analytical
software JMP 11 produced by the SAS Institute using the Tukey-Kramer HSD test and

linear regressions. We use the + symbol to report one standard deviation from the mean.

4.3. Results
Here we review all of the available triple oxygen isotope data from modern

mammal teeth from this study (rz = 45) and those published previously (n = 5) (Passey et
al. 2014; Hu et al., in preparation) (Table 4.1). These data are from seven mammalian
families that come from three continents. The sample sites span ~70° in latitude and arid
to humid environments (aridity index 0.2 to 2.4) (Tables S4.1 and S4.2). The 8"*Ocname
values of these teeth yield a mean value of 37.6 & 6.6%o and range from 25.3 to 48.6%o
(Fig. 4.2; Table S4.2). The A" Ocnamel values average -186 + 37%o and range from -291
to -137 per meg. In the following sections we explore the variation in these data in terms

of the geography (latitude), environment (aridity) and taxonomy (animal type).

105



880 carbonate (%o VSMOW-SLAP)

380 carbonate (%o VSMOW-SLAP)

& &

(.Q\b QX\O((.\\/%~6

5 N ® £ X
. 1 1 .

A * el !

45+ s . ’
c o !

40+ ‘00 ©

° 1

$ Se® o4

35 B3] [

- O oo

o [
30 o ' ' '

Elh:l gO X .

D 1 1 1
251 o8
20 . . —

2.5 2.0 1.5 1.0 0.5 0.0
Aridity index (E:P)
increasing aridity
50
A A
Ic R
45 EA o %
A <o
40 m
[ ]
& B ® O
354 o O

4 D D D
30 - M

7 [m}

1o o o9
25 U pge
20 T T T T

25 2.0 1.5 1.0 0.5 0.0

Aridity index (E:P)

increasing aridity

AY0 carbonate (per meg SMOW-SLAP)

AY0 carbonate (per meg SMOW-SLAP)

Aridity index (E:P)

increasing aridity

QO
> & qi\‘b
& o &
N NN
100 Q D
B Lo 70
' ' ' 60
o ‘e 50
-150 ° IEI. Dl:i : I, ggAbsolute Latitude
O e @ ® . 20
000
Og o e, t 10
] 1 0
O ° ' | ;
-200 4 h o Africa
= @ e a o® = USA/Euro
° Vo
e, @O
-250 4 ' ' '
B
D9
1 1 Q
-300 T T T T T -
25 2.0 1.5 1.0 0.5 0.0
Aridity index (E:P)
A
increasing aridity
-100
Famil
D
1 < Bovidae
|1P L4 O Castoridae
-150 O B % O Cervidae
0o p o .
o.< D. O Elephantidae
1 [m] < <>|:| A Giraffidae
O~ A @ Hippopotamidae
-200
] g] A 8 <>Q D> Rhinocerotidae
A
A ¢
-250 o
-300 T T T T
25 2.0 15 1.0 0.5 0.0

Figure 4.2: A'’0 and §'°0 values of tooth enamel carbonate across a range of environments and Aridity
Index values by absolute latitude and region (A and B) and by mammalian families (C and D).
Environmental zones are based on UNESCO (1979) and indicated by vertical dashed lines.

4.3.1. Variation by latitude, aridity and region

4.3.1.1. Latitudinal variation

8" Ocnamer values decrease with increasing absolute latitude (R* = 0.67) and show

distinctions between samples from low latitudes (0 — 24°, n = 24) and those from mid

latitudes (24 — 66°, n = 21) and high-latitudes (> 66°, n = 3) (p < 0.0001). The lack of
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obvious differences in the 8'*Ocnamel values from mid and high latitudes (p = 0.09) may be
an artifact of the small number of samples from high latitudes (» = 3) (Fig. 4.4.2A-B). In
contrast to the 8" Oenamel data, there is no trend in A" Oepamel values with latitude
(R*=0.04); A" Ocnamel values are similar to each other when sampling locations are
binned by low, mid and high latitudes (p > 0.23). Notably, the A"’ Ocnamel values at low
latitudes and mid latitudes have similar ranges, -283 to -137 per meg and -291 to -140 per
meg, respectively. The A'"Ocpamer values from high latitude sampling locations in Finland
and Alaska overlap with those from low and mid latitudes but have a smaller range, -171

to -143 per meg, which may simply reflect the small sample size (n = 3).

4.3.1.2. Environmental variation

The teeth in this dataset come from environments that exhibit a range in Aridity
Index values (0.2 to 2.4). These environments include the hot, arid environments in the
Turkana and Kgalagadi regions of Kenya and South Africa (Aridity Index 0.20 and 0.22,
respectively), mid latitude semi-arid regions of Utah (0.99) and high latitude, cold Alaska
(1.1), as well as moist highlands in Kenya (2.12) and cool, humid Finland (> 1.14), where
values in parentheses are Aridity Index values for each site.

The teeth for which we have A'’O data can be divided into four environmental
groups by using the Aridity Index value for each sample location. These environmental
groups are humid (> 0.75, n = 30), sub-humid (0.5 — 0.75, n = 9), semi-arid (0.2 — 0.5, n =

2) and arid (< 0.2, n = 9) (UNESCO, 1979; Fig. 4.2). The 8 "*Ocnamel values from arid

environments are significantly higher than those from humid, sub-humid environments
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(p < 0.002), but there are no distinctions between § '*O values from semi-arid and humid
environments (p = 0.19) or between sub-humid climates (p = 0.34) (Fig. 4.2). The
distribution of A'"Ocpamer values follow a distinct wedge-shaped pattern when plotted with
Aridity Index; the range in observed AYOepamel values (from 84 per meg in humid
environments to 154 per meg in arid environments) increases with greater aridity (lower
Aridity Index values) and the minimum A'’O value decreases such that A'’Ocpamel values

from arid settings are significantly more variable and lower than those from humid

settings (p < 0.04) (Fig. 4.3B).

4.3.1.3. Regional variation (Africa compared with North America and Europe)
When considering the teeth from Africa (7 = 27), we found 8'*Oenamel values that
ranged from 36.2 to 48.6%o and averaged 42.4 + 3.6%o. The AYOepamel values ranged
from -291 to -137 per meg with a mean of -193 + 43 per meg (Fig. 4.2). Samples from
North America and Europe (7 = 23) had 8'*Ocpame values that ranged from 25.3 to 37.8%o
and averaged 31.8 + 4.2%o, with corresponding A'’Ocnamel Values ranging from -255
to -140 per meg with a mean of -178 + 29 per meg (Fig. 4.3). While the 8'*Ocpamer values
from Africa are significantly greater than those from North America and Europe
(p > 0.0001), the regional A"’ Ocnamer values (Africa vs. North America and Europe)

cannot be distinguished (p = 0.14).
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4.3.2. Variation by taxon

Here we consider the variation in triple oxygen isotope data as a function of the
different herbivore families that we sampled. We pool data from regions with similar
taxonomic distributions and consider them in two groups, those from Africa and those

from North America and Europe.

4.3.2.1. African taxa

The African dataset includes teeth from giraffids (n = 7), bovids (n =5), a
rhinocerotid (r = 1), elephantids (n = 9) and hippopotamids (rn = 5) from South Africa,
Kenya, Uganda and the Democratic Republic of the Congo (Table 4.2, Fig. 4.3). The
distribution of 8"®Oepamer values from these taxa mostly overlap with one another except
for those from giraffids which are significantly higher than 88 0cnamel values of both
hippopotamids and elephantids (p < 0.02). The correlations between &' *Ocpamel values and
aridity for some of the taxa sampled (hippopotamids R = 0.50; elephantids R* = 0.23;
bovids R* = 0.35; giraffids, R’ = 0.31) vary.

The distribution of A"’ Oenamer values varies for each family (Fig. 4.3B). The
A"Ocnamel values of hippopotamids are significantly higher than that of giraffids (p =
0.0004) and bovids (p = 0.0018). Giraffid and bovid A'’Ocnamel values are similar to one
another (p = 0.999) and they both exhibit large ranges in A"’ Ocname (> 100 per meg). In
both these groups, there is a strong, negative correlation between A'’Ocpame and Aridity
Index (bovids, R* = 0.65; giraffids, R’ = 0.87). In contrast, both elephantids and

hippopotamids exhibit a narrow range in A'’Ocpamer values (< 35 per meg). Although the
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A" Ocnamel values from the elephantids are lower than those measured for hippopotamids,

these differences are not significant (p = 0.6).

4.3.2.2. North American and European taxa

The dataset from North America (United States) and Europe (Finland) includes
teeth from bovids (rn = 5), castorids (n = 2) and cervids (n = 16) (Table 4.2; Fig. 4.3C-D).
The distributions of 8'*Ocnamel values of cervids and bovids are similar to one another (p =
0.51), which is notable because the cervids that we sampled originate from a wider range
of environments (Aridity Index = 0.77 to 2.41) than the bovids (Aridity Index = 0.73 to
0.98) (Fig 3C). The A" Oename values of cervids average -185 + 31 per meg and range
from -255 to -143 per meg, whereas bovids and castorids A Onamel values represent a
much tighter range of -177 to -140 per meg, averaging -160 + 14 per meg.

The cervid teeth span a range of environments and can be further evaluated by
considering the three different taxa that we sampled, Alces alces (n = 3), Rangifer
tarandus (n = 3) and Odocoileus virginianus (n = 10). We found that the distribution of
8" 0unamel and A" Oenamel values of A. alces and R. tarandus overlapped with one another
but were distinct from those values of O. virginianus. The latter had higher 8" 0enamel
values (p < 0.01) and lower A"’ Ocpamer values than the A. alces and R. tarandus teeth
(» <0.002). We also noted that the A" Oepamel values of O. virginianus were significantly
lower that the A'"Ocpamer values of all other teeth we sampled from North America and

Europe (p < 0.003), however there was no equivalent distinction in 8'*Ocnamer values.
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4.4. Discussion
. .. . 1
Here we consider the variation of and influences on A Oepamel values, and the

utility of A" Oenamer data in active fields of study that pertain to the fossil record.

4.4.1. Variation in A" Oenamer

4.4.1.1. A" O values of enamel and other terrestrial materials

In our survey of A”Oename] values from extant mammals we observe a 161 per
meg range in A'’O values, which is influenced by a combination of the environmental
context and the taxonomy of the teeth sampled. Notably, A'’Ocpamer values are not
influenced by latitude, elevation, or geographic region, making them distinct from
8" Ocnamer Values for which the influences of latitude, elevation and geographic region can
obscure the influence of changing aridity, as observed both in this study and others (e.g.,
Levin et al., 2006; Thesis Chapter 2). When compared to other kinds of terrestrial
materials, A"’ Ognamer values are lower than those of meteoric carbonates and meteoric
waters, whereas they overlap in distribution of A'’O values of plant waters, even though
the range in A"’ Ocpamer values (-291 to -137 per meg) is smaller than that for plant waters
(-271 to +108 per meg) (Fig. 4.1A).

In order to understand the distribution of A'’Oepamer values in relation to the A'’O
values of other terrestrial materials, we need to consider all of the influencing factors that
contribute to a A"’ Oenamel value (i.e., the environmental and geographic context and the

taxonomy of the animals sampled).
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4.4.1.2. AV O values of reconstructed body water

The oxygen isotopic composition of animal body water is influenced by an
animal’s physiology, behavior and environment. Because enamel precipitates from
animal body water, enamel is in turn influenced by an animal’s physiology, behavior and
environment, as reviewed in Kohn and Cerling (2002). In order to understand the
A" Ocpamer dataset and to put it into a framework of the A0 values of other materials
(e.g., carbonates, waters, air), we need to be able to relate the measured A" Ocpamer values
to animal physiology and behavior and to their environmental context. Furthermore, to
relate the measured A'"Oepamer values to the aforementioned parameters, it is necessary to
understand how the A'’O values of the enamel-derived O, that is measured in the mass
spectrometer relates to the A0 of the tooth enamel itself, and in turn, how the A"’ Ocnamel
values relate to the A'’O values of body water from which the enamel precipitates.

We use the extensive work on 8'*Oenamel (e.g., Bocherens et al., 1996; Kohn, 1996
Levin et al., 2006; Hoppe 2006; Cerling et al., 2008) as a framework for understanding
fractionation in &'’ Oenamel values and thus the variation in A'’Oenamel values. For any
process involving fractionation of '*0/'°O ratios with a characteristic '*a, we can
calculate the corresponding fractionation "o, using an A that is derived both theoretically
or empirically, where A = In(""a))/In(**a). In reconstructing A”Obody water Values from
A" Ocnamel values, we consider the oxygen isotope fractionation that occurs during the
processes of 1) converting tooth enamel to the O, that we analyze for A'’O values and 2)
mineralization of tooth enamel from body water. We determine 8'*0, 8'’0 and A'’O

values of body water from tooth enamel by assuming an '*a = 1.0332 and A = 0.5245,
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which accounts for the 90°C phosphoric acid reaction during analysis and 38°C
mammalian body temperature for enamel mineralization (Lécuyer et al., 2010; Passey et
al., 2014).

Using this approach, reconstructed 818Obody water and A”Obody water Values range
from -7.7%o to +14.9%0 and from -219 to -25 per meg, respectively (Table 4.1).
Reconstructed A”Obody water Values are more negative than A”Ometeoric water Values, but
overlap with A”Op]am water Values and are notably higher than A0 of atmospheric O,
(Fig. 4.1A). Understanding the range in reconstructed A'’Opody water Values and how the
reconstructed A”Obody water Values vary with environment and taxa are only possible by
comparing these data to a model of how we should expect A”Obody water tO Vary given

different physiological, behavioral and environmental influences.

4.4.1.3. A" 0 values of modeled and reconstructed body water

To understand the influences on A"’ Opody water values, and in turn A"’ Oyooth ename
values, we compared our reconstructed A”Obody water data to the A”Obody water Values
predicted by the triple oxygen isotope body water model developed by Hu et al. (in
prep.). The Hu et al. (in prep.) model, where it is described in full, builds on the existing
understanding of the fluxes and the fractionation of oxygen isotopes in mammalian body
water that have been developed for the §'°0 system (Kohn, 1996) and modifies it for the
triple oxygen isotope system. The A'’O body water model incorporates the triple oxygen
isotopic composition of oxygen influxes and effluxes for an animal (e.g., O,, water, food,

sweat, feces), taking into account animal weight, physiology and environment. The most
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important variables in the A'’O body water model for extant animals are 1) the RH of the
environment, 2) the fraction of evaporated water consumed by an animal, and 3) the
water economy index (WEI) of an animal. For fossils of course one has to consider
varying A'’O values of atmospheric O, but we will not consider that in the following,
brief overview.

The fraction of evaporated water consumed by an animal is related to the
proportion of water received from food, both the amount of free water and the amount of
water in a plant relative to the solid leaf material, relative to the proportion of surface
water that an animal drinks (Hu et al., in prep.). Plant water can be more negative in A'’O
than the A'’O of surface water, because plant water is strongly influenced by evaporation
compared to surface water (e.g., as reviewed in Passey et al., 2014). When an animal
drinks a large amount of surface water (less negative and more narrow in range than the
A0 value of plant water), then body water A'’O is heavily influenced by the surface
water A'’O which dilutes the evaporation-sensitive plant water A'’O signal and results in
body water A'’O that does not reflect the environmental context even in arid
environments. In contrast, animals that mostly consume water from plants are more
sensitive to changes in RH because a large portion of body water body water A'’O is
composed of evaporation-sensitive plant water A'’O. The WEI (in ml water/ kJ Energy)
is a measure of the amount of water used by an animal per unit of metabolized energy
and is influential in determining the amount of water an animal needs to consume to
survive (Nagy and Peterson 1988; Nagy, 2004). Animals with a higher WEI are less
efficient in their water use and require a greater intake of water, these animals are more

likely to drink a large proportion of water. The WEI is variable according to taxa,
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reflecting animal behavior and physiology. In addition, the WEI of a species can vary as
a result of different influences including environment and the amount of accessible food
and surface water. If an animal can consume its required water intake from food-derived
water, then it will not need to drink water, these animals have a relatively low WEI (e.g.,
giraffes and white-tailed deer). An animal that cannot reach the required amount water
from food-derived water will drink water; these animals have a relatively high WEI (e.g.,
hippopotamids, elephantids, and castorids/beavers).

We chose input values for the A'’O body water model for the conditions relevant
for the teeth from which we generated A'’O data, using contemporary atmospheric
AY0q, value (-500 per meg), 8" Ormeteoric water Values representative of sampling locations
in North America and Europe (-14%o to -8%o) and in Africa (-5%o to +1%o) (input water
8'%0 values estimate from Bowen, (2016) are combined in model to produce a single
range of input 8'*0 values), RH representative of the sampled environments (30%, 50%
and 80%; Table 4.1 and Table S4.1) and the minimum and maximum WEI values, 0.60
and 0.05, respectively, that are typical of the taxa we sampled and represent taxa with
behaviors that range from animals that receive the majority of their water from food to
animals that receive a large proportion of water from drinking surface water (Table S4.4,
Table S4.5; Hu et al., in prep.). Figure 4 shows the expected A”Obody water Values for these

.. . 1
conditions overlain on the reconstructed A 7Obody water from our analyzed samples.
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Figure 4.4: The oxygen isotopic composition of reconstructed body water based on the enamel data in this
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parameters in Hu et al. (in prep.) (A.). The source water 8'°0 range is the combined range of meteoric
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based on the enamel in this study (B).
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Ranges in modeled A”Obody water fOT the samples (where the 8" O rmeteoric water ranges
from -14%o to +1%o, when all locations are combined) differ as a function of the RH used
in each model iteration (Fig. 4.4A). There is ~112 per meg range in modeled A”Obody water
values for an environment with 80% RH, ~ 165 per meg range for 50% RH, and ~ 188
per meg range for 30% RH. In the minimum modeled A”Obody water Values_at different
RH, are within ~7 per meg of one another for the locations of Africa and North America
and Europe (Table S4.4). The minimum modeled A”Obody water Value becomes
increasingly more negative with decreasing RH (Fig. 4.4).

In general, the modeled and reconstructed A’ Opody water ad 8'*Opody warer data are
similar in their distributions (Fig. 4.4). Modeled and reconstructed A”Obody water Values for
animals with both low and high WEI which originate from a range of RH, follow the
same wedge-shaped pattern, where a greater range in A”Obody water Values correspond with
lower RH. The modeled data are compressed and span a smaller range in A'’O values
relative to what the reconstructed data would predict. For example, reconstructed
A”Obody water Values of animals with the most negative A0 values of body water (in this
case, giraffids) from the Turkana and Kgalagadi (where RH = ~50% based on modeled
CRU data) have A'’O values more similar to the predicted minimum A”Obody water Value
for an environment with a RH of 30%.

The body water model output results confirm what we observed in the measured
A" Ocnamel values: 1) A”Obody water does not vary with 8"*Ometeoric water and is independent of
geographic constraints that influence 8'*Oenamel, 2) there is a strong relationship between

A”Obody water and aridity, where aridity is represented by RH in the model, and 3) the
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behavior and physiology of the animals sampled, as represented by a minimum and
maximum WEI value in the model, play a strong role in the distribution of A”Obody water
values at a single location and across environments. The model output predicts the
general wedge shape of the data on a A”Obody water VS. RH plot and show that when
animals with a range of WEI are sampled, there is a greater range in A'’O values in low
RH environments than in high RH environments and that these patterns are independent
of 8"* Ormetcoric water values (Fig. 4.4). There is some discrepancy between the absolute range
in A”Obody water Values of the model outputs and what we measured (Fig. 4.4), and while
we need to explore the model more to understand what drives this difference, it is outside

the scope of the work that was done for this chapter.

4.4.2. Geological applications using A”Oe,,ame;measurements

Our A Ogpamer data from extant mammalian herbivores show 1) A Oepamel values
are significantly lower than A'’O values of meteoric carbonates, 2) A"’ Oenamel Values
become lower and more varied in more arid environments, 3) animal behavior and
physiology is important in determining A'’Ocnamel, and 4) the influences of aridity and
animal behavior and physiology on A'’Oename values are independent of the §'°0 values
of local waters. In the following sections we review how we can use this information in
geologic applications. We propose ways in which A'’Oepamel values from fossils can be
used as a proxy for paleoaridity, the use of A'’O measurements in identifying the

influence of diagenesis in 8'*0 records, and the importance of considering data from a
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range of taxa when using A'"Ocnamer values to reconstruct concentrations of CO, in Earth’s

ancient atmosphere.

4.4.2.1. Aridity index

The relationship between A Oepamer and aridity, where A" 0 values become lower
and more varied when aridity increases, can be used to evaluate paleoaridity using A'’O
from fossil teeth. The wedge-shaped distribution in Fig. 4.1B shows that there is a greater
range in A'’O values in more arid environments than in humid environments. We can use
these trends as a template to assess the degree of aridity in fossil environments, and
specifically to compare the degree of aridity between fossil sites. This dataset shows that
this is a powerful method to assess relative aridity between sites (sites with a greater
range in A'’O values are more arid than those with a smaller range in A'’O) but we can
also roughly use the distribution of A'’O values to designate a fossil site as humid,
semi-arid or arid. In general we observe a < 85 per meg range in humid environments
(AI=>0.75, n =29 out of 30), a ca. 100 per meg range in sub-humid environments (Al
=0.5-0.75,n=9), and > 130 per meg range in arid environments (Al =< 0.2, n =9),
independent of geographic region (Fig. 4.2). These A'’O values are from the dataset
excluding the sample JHU-170-2061 (deer from Parowan, Utah) because this location
was categorized using the Aridity Index as humid using UNESCO (1979), however this
environment is quite dry. We have not analyzed an adequate number of enamel samples

from sub-humid to distinguish them from the surrounding environments and to determine
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what range we would expect for this environment, however, we would expect a range that
is larger than in humid and smaller than in arid environments.

For this method to be useful for determining paleoenvironments, the sampling
strategy needs to be designed to capture as much variation in A"’ Ocnamer that existed while
the animals lived, which means sampling teeth from taxa with a variety of water use
strategies. Because it is hard to know water use strategies for fossil animals, the best
approach is to sample range of animal types in a fossil assemblage to maximum the
potential to sample the full range of A Onamel values that is reflective of the
environment. Given the intensive nature of producing AYOepamer data and the difficulty in
generating large datasets, we suggest sampling at least two individuals from at least 3
different taxa with hypothesized differences in physiology and water use strategies from
each site that is evaluated (> 6 teeth from each site) to start to assess relative differences
in aridity between sites. By sampling teeth from multiple taxa, it will be possible to
assess the A'’O distributions from a community of animals and increase the potential for
capturing the full range of variation in A Oepamel that is indicative of the aridity of the
environment in which these animals lived. The relationships between Aridity Index and
A" Opamel can be used to place the A Opamel from a fossil assemblage into a climate
classification (e.g., humid, semi-humid, arid) and/or to compare the degree of aridity
between sites. The more teeth that are analyzed, the more robust these comparisons will
become because additional data will help ensure that the full range in variation in
A" Ocnamer that existed in an environment is represented in the dataset. However this

means that any estimate of aridity using this approach is a minimum as additional data
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can only increase the observed range in A Oepamel values from a site. The prospects for
larger datasets will get better as the analytical throughput is increased and the
requirements for sample amounts are minimized.

The main advantages of a paleoaridity proxy using A'’O over the existing
approaches that use 8'*Ocnamer values alone are that 1) the A'’O approach is not dependent
on a priori knowledge of the behavior or physiology of the animals sampled and 2) it is
independent of the influence of meteoric water 8'*O values. These elements expand the
utility of the A'’O approach for evaluating paleoaridity to taxonomic assemblages where
the behavior and physiology of animals is unknown (i.e., most fossil assemblages, except
for very recent fossils for which extant fauna are good analogs). It also makes it possible
to compare the paleoaridity between assemblages with different geographic settings
where 8'%0 of input waters might vary. For these reasons the A'’O enamel paleoaridity
proxy is versatile and has potential to be applied to a range of geologic settings, going
back in time. We should note that if A'’O values of teeth are being compared from time
periods with different atmospheric CO, concentrations, there may be significant
differences in absolute A'’O values that are not due to changes in aridity but due instead
to changes in atmospheric pCO». In these cases the range of enamel A'’O values (instead
of absolute values) from a community of animals at different sites can be compared to

assess relative differences in aridity between the sites.
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4.4.2.2. Indicator of diagenesis

The differences between A'’O values of enamel and meteorically-derived
carbonates (Fig. 4.1) be used to identify diagenesis and reprecipitation of mineral with
meteoric waters (Gehler et al., 2011). Gehler et al. (2011) first presented the concept for
using A'’O values of bioapatite of small mammals (< 1 kg) as a tool for assessing
diagenesis in the fossil record; we build on this concept here by showing that this works
for large mammals (> 1 kg) as well and provide an expanded dataset of A'’O values in
unaltered teeth. A'’O of unaltered enamel can be -291 to -137 per meg which is
significantly lower and more varied than the values that have been measured meteoric
carbonates which range from -138 to -122 per meg (Passey et al. 2014; Fig 4.1). The
restricted range in A'’O values of meteoric carbonates that have been measured to date
(16 per meg span, see Fig. 4.1 and Passey et al. 2014) is likely due to the small amount of
A0 variation in meteoric waters from which carbonates form relative to the variation in
A" Ocnamel values that can be influenced by variation in animal behavior and physiology
and fractionation that can occur within the animal and in ingested water sources (e.g.
leaves).

The best way to use this distinction between A'’O of enamel and meteoric
carbonates in the geologic record is to sample both carbonates (meteoric, marine or
diagenetic in origin) and bioapatite from a fossil site/location. The A'’O values from the
fossil teeth should be significantly lower and more varied than the A'’O of associated
carbonates. If there is significantly overlap in A'’O values between the carbonates and

enamel and the A'’O values of enamel are compressed in distribution (A"’ Ocpamer values
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< -150 per meg, with < 60 per meg range), then the oxygen isotopes of the system have
likely been affected by some post-depositional process and any oxygen isotope data from

the enamel should be treated with caution.

4.4.2.3. pCO; barometer

As reviewed above, the A'’O values of tooth enamel and other forms of bioapatite
have been proposed as a CO; barometer because these values are strongly influenced by
the atmospheric A"00, value, which in turn is sensitive to concentrations of CO, in
Earth’s atmosphere (e.g., Luz et al., 1999; Bao et al., 2008; Gehler et al., 2016).
Measured A'’O values of bioapatite and modeled A'’Opody water Values indicate that
bioapatite can provide constraints to past atmospheric pCO, (Pack et al., 2013; Passey et
al., 2014; Gehler et al., 2016; Hu et al., in prep.). Differences in A'’Ocnamel values of 60
per meg in the fossil record have recently been used to infer changes in pCO; across the
Paleocene-Eocene Thermal Maximum that range from ca. 400 to 1000 ppmv, depending
on the models that are used that relate pCO, to atmospheric O, A'’O and global primary
productivity (Gehler et al. 2016). This approach to estimating pCO; in Earth’s past could
be powerful because bioapatite is abundant in the geologic record. However, the
successful use of any A'’Oenamel based CO, paleobarometer needs to consider the range of
A" Ocnamel that may exist any one time interval, given that we observe a > 160 per meg
range in A" Ocnamer values in extant mammals that represent a time interval when pCO; is

relatively steady (and low).
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Here we propose that fossil enamel A'’O values can be successfully utilized as a
pCO, barometer when a fossil assemblage is sampled using a community approach at
multiple fossil sites. The community approach includes analysis of fossil teeth from any
fossil site that represent a range of species, for the purpose of capturing the full range of
A" Onamel values that existed. This should then be done at multiple sites to capture the
full range in A" Oppamer values due to environmental variation within one set of pCO,
conditions. By sampling teeth at multiple sites using a community approach, one can
account for the influences of animal taxonomy and environment on A'’ Oeamer values
before using them to infer changes in atmospheric pCO,. By sampling in this way, we
expect to see a wholesale shift in the distribution of minimum and maximum A"’ Oepamel

values across multiple sites and taxa if there is a change in pCO,.

4.5. Conclusion

We find that A" Oepamel values from extant mammals range from -291 to -137 per
meg and span 161 per meg. The A"’ Oepamer values from extant mammalian herbivores vary
as a function of taxonomy and environmental aridity, but they are independent of latitude
and 8'°0 values of nearby meteoric waters. In addition, because the A'’Ogpame values are
influenced by different variables than those influencing SISOenamel, A Oepamel adds an
additional perspective on geological problems that cannot be reconciled with §'*0 values
alone. Measurements of A'”Oepamer have the potential to expand our understanding of how

aridity and pCO; has changed through time in any place where fossil teeth are preserved.
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We suggest A'’Ocnamel Values can be utilized in the following ways:

1)

2)

3)

The A" Ocpamel values obtained for large herbivore communities can be used to
provide as an indicator of paleoaridity where A" Oepamel values that have a greater
range and are more negative point to increasingly arid environments.

A0 values can be used to evaluate diagenesis in bioapatite and biocarbonate
880 records by directly targeting the oxygen isotopic composition of these
materials. It is expected that the A'’O values of teeth, bone and eggshells will
have a wider range in A'’O values than inorganic carbonates because they are
influenced by the A'’O values of both plant water and atmospheric O,. Both
values are more negative than the A'’O values of meteoric waters. Bioapatites or
biocarbonates with A'’O that are similar to those of associated meteoric-derived
carbonates have likely experienced diagenesis.

The A'"Ocnamer based paleobarometer for pCO; is only valid if the full range in
A" Ocnamel values for any given time interval is considered. Given the large (>160
per meg) range in A'’Oepamer values for extant mammals that represent conditions
with relative steady pCO,, the most effective way to use the A"’ Ocnamer for
reconstructing pCO; is to sample teeth from multiple taxa from multiple sites to

capture the full range in A" Onamel that existed for each time interval of interest.
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5. Conclusion

I considered several stable isotope geochemical techniques in this thesis to
evaluate past climate and environment. Determining past climate and environment are not
always possible using one proxy record and care must be taken to make interpretations
using only signals that are specifically related to climate and environment. Other signals,
like diagenesis of the primary isotopic composition, can mask the climatic or
environmental signal in a material and potentially lead to invalid conclusions.

A powerful way to evaluate past climate and environment is with the isotope
geochemical compositions of biominerals. This is because animals interact with their
environmental and ecological surrounding, which are directly influenced by regional and
global climate. Changes in the isotopic ratios for certain elements in terrestrial
biominerals, such as oxygen and carbon, are often used as climate and environmental
proxies. The combination of multiple proxy records and analytical techniques can help
add detail to the description of vegetation in an environment and enable a more precise
evaluation of the manner by which the environment of a region change.

[ used the 8"°C, §'%0 and ¥’Sr/*®Sr values of enamel from modern and fossil
herbivores in southwestern South Africa to, 1) evaluate climate and environment in this
region since 5 million years ago (Ma) and 2) characterize the distribution of vegetation of
this region during the mid-Pleistocene, specifically at archeological site, Elandsfontein. I
then presented and characterized the distribution of the A'’O of modern herbivore enamel
and proposed a method for using A'’O values from biominerals to best evaluate aridity,

diagenesis and pCO; in the fossil record.
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In Chapter 2 I presented and discussed the 5"°C and 'O values of tooth enamel
from fossil sites in southwestern South Africa and form a proxy record of terrestrial
environment and vegetation since 5 Ma. The 8'"°C values of enamel indicated that large
mammalian herbivores ate C; vegetation, with little to no C4 vegetation, across the
Pliocene and Pleistocene. Like today, this region was within a winter rainfall zone since 5
Ma. For large mammalian herbivore communities to have had survived in the past, then
this region must have been quite different from the dry and hot environment of today.
The environment would have supported the growth of substantial amounts of vegetation
and the annual growth of Cs grasses. The 8'°0 values of enamel in herbivore families
became more enriched by ~ 5%o between Pliocene fossil site Langebaanweg and
mid-Pleistocene Elandsonftein. Regional aridification has been proposed in others
studies, but this can not be supported by the 5'*0 values of tooth enamel because the
depositional environment at these sites are different, making them incomparable using the
8'%0 enamel aridity index method presented in Levin et al. (2007). Alternatively, the
~ 5%o enrichment of enamel 8'*0 values can be fully explained by an enrichment of the
8'%0 values of source water. The enrichment in the 3'*O values of the source water could
have been related to a change from fluvial to spring-fed water (as a change in the
depositional environment at the fossil sites indicates). This conclusion is supported by
modern 8'®0 values from spring waters around Elandsfontein having values ~ 5%o greater
than river waters in the Western Cape of South Africa (Table S2.4). The dataset presented
in Chapter 2 of this thesis has combined a number of records from southwestern South
Africa and it can be used as a reference paper for researchers studying climate and

vegetation in the region.
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The dataset in Chapter 2 contains samples from three time periods (~ 5 Ma, ~1 to
0.6 Ma, 0.35 to 0.20 Ma) and there are large gaps between the dataset from each fossil.
There is potential to increase the resolution of the stable isotope record of fossil teeth by
analyzing teeth from other Pleistocene fossil sites in the study region. Increasing the
resolution of the record will help us better understand aridity levels, vegetative
composition and seasonality of rainfall and how these features may have changed in
response to global climate change and the effects of upwelling of the Benguela Current
off the western coast of South Africa. Furthermore, a more detailed analysis of the
enamel 8"°C values from known herbivore taxa could potentially provide information
about the distribution of vegetation at the fossil sites, but this study was beyond the scope
of the thesis.

I was particularly interested in the environment and vegetation at Elandsfontein
because this fossil site indicates the presence of hominins. I proposed that Elandsfontein
would have attracted hominins and herbivore communities because there was sustainable
year round vegetation and standing water (See Chapter 2). However, the importance of
Elandsfontein as a location where herbivores and hominins lived within southwestern
South Africa needs to be better understood (i.e., did animals stay at Elandsfontein for
food because it provided vegetation and water or if they moved around the region and
just passed by Elandsfontein). These data could in turn provide information about the
distribution of vegetation in southwestern South Africa at ~ 1 Ma and to better evaluate
the environment and the vegetative composition of Elandsfontein.

Chapter 3 focused on the *’Sr/*Sr ratios in modern teeth from southwestern South

Africa and fossil teeth from mid-Pleistocene mammalian herbivores at Elandsfontein. |
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tested my hypothesis from Chapter 2 (i.e., that herbivores could find enough vegetation at
Elandsfontein) and evaluated the vegetative distribution of southwestern South Africa
using enamel *’Sr/*Sr ratios of the fossil teeth. The *’Sr/*®Sr ratios of fossil teeth were
compared with the newly updated map of the bioavailable *’Sr/*°Sr ratios of the major
regional substrates in southwestern South Africa (Fig. 3.2). The *’Sr/*Sr ratios from
herbivore teeth reflected the bioavailable *’Sr/**Sr ratios range of marine sands, like those
at Elandsfontein.

Overall, the evaluation of *’Sr/*®Sr ratios of tooth enamel, in addition to that of the
8"°C and 8'®0O values of the fossil teeth from Elandsfontein, provided further detail about
the ecological and environmental composition of mid-Pleistocene Elandsfontein. These
results indicated that herbivores, in particular those that could have migrated around the
region for food, did not do so. The landscape at mid-Pleistocene Elandsfontein, which
was within a winter rainfall zone, must have had enough vegetation growing throughout
the year to support the large, diverse mammalian herbivores. Today the landscape is
largely comprised of fynbos shrubs, woody vegetation that is unpalatable and can not
support large, herbivorous mammalian communities. This study has also greatly
increased the number of data points contributing to the map of bioavailable *'Sr/*Sr of
southwestern South Africa (Fig. 3.1; Table 3.1); this updated map can be used in future
studies of the *’Sr/**Sr values in biominerals to determine animal migration and/or past
environment and vegetation.

Additional work could add to the understanding of where within the coastal
region of southwestern South Africa (i.e., on marine sands and or Cape Granites)

herbivores found food resources during the mid-Pleistocene. The ¥'Sr/*Sr ratios of fossil
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teeth confined the movement of herbivorous animals to the coastal region and quite
possibility to the marine sands at Elandsfontein. However, this needs to be studied in
further detail by, 1) determining if and how the coastal marines sands and the various
granitic bodies that make up the Cape Granite suite separate by their bioavailable
¥7S1/*°Sr ratios, and 2) how these then compare with the fossil tooth enamel *'Sr/*Sr
ratios from Elandsfontein.

In Chapter 4 I presented A'’O data from tooth enamel and outlined the A'’O
ranges for various modern environments and locations. This was the first report of a
detailed dataset of mammalian herbivore tooth enamel A'’O values. A'’O values of
mammalian herbivore communities from arid environments have greater range and
include more negative A'’O values than samples from humid areas. The A'’O value of
enamel is not greatly influenced by §'*O value of local meteoric water or by latitude.
Body water A'’O values were reconstructed from the enamel A'’O values and then
compared with modeled body water A'’O values determined using the model presented in
Hu et al. (in prep). In general, the modeled and calculated body water A'’O datasets both
had larger span and incorporated more negative A'’O values with decreasing relative
humidity (RH). This comparison allowed us to connect measurable parameters of
environment with a proxy record of aridity (i.e., Aridity Index). With decreased Aridity
Index, the enamel A'’O values of animal communities yielded lower minima and exhibit
a greater range of values. I proposed that the most efficient way to use A'’O values of
fossil teeth, bone and eggshells for understanding paleoclimate and environment is to
compare fossil data (series of samples from one fossil community) with the modern

dataset presented herein (see Chapter 4). This dataset lays out the ranges in A'’O values
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that would be expected for materials in different environments and for enamel samples
that have not experienced any alteration of their original oxygen isotopic composition.

Adding more samples from different regions and climates, specifically from semi-
arid environments, would form a more detailed dataset by which to compare fossil A'’O
values and in turn to evaluate past environment. The next step in this project is to apply
the proposed A'’O approaches to the fossil record.

This thesis focused on the isotope geochemistry of fossil tooth enamel to
characterize the climate and environment of past terrestrial landscapes. This work
highlighted the value of applying various techniques when evaluating past environments.
The composition of different isotopes in fossil teeth from one site and time can provide
new ways to evaluate past environments, because different isotope systems can capture
unique aspects of past climate and environment across local and regional scales. Based on
the work presented in this thesis, I advocate for the continued development and use of
new isotope geochemical approaches to aid in the evaluation of past climate and
environments because they have the potential of adding new dimensions of understanding
to geological questions. The continued use of known isotope systems in conjunction with
the development and use of new isotope geochemical approaches can provide insight into
previously unanswered hypotheses about the past Earth, the puzzles and the unknowns,
thereby furthering the understanding of past climate and environments. In addition this
aids in the prediction of the changes that we might expect in present and future climates
and ecosystems, and importantly, how we as humans have in the past and also might

expect to interact with our ever-changing Earth system.
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Table S2.1: Estimated §'"°C values for atmospheric CO,, vegetation and herbivore tooth enamel for the time intervals
discussed in the text.

Time Interval (Ma)

Hoedjiespunt Elandsfontein Langebaanweg

13
Presentd°C 5130 (% VPDB)  5°°C (% VPDB)  8°C (%0 VPDB) (~5

(% VPDB) (0.35-0.25 Ma) (~1.0 - 0.6 Ma) Ma)*
Time span from benthic n/a 0.35-0.25 1.0-0.6 5.7-3.33
foraminifera record (Ma)
§"cco,’ -8.0 -7.1 -7.1 6.3
8"C of vegetation (%o VPDB)°
C; (average) -26.1 =253 =253 -24.5
C; minimum -31.7 -30.8 -30.8 -30.0
C; maximum -23.1 -22.2 -22.2 -21.4
C, (average) -11.0 -10.1 -10.1 9.3
C, minimum (mesic) -10.0 -9.1 -9.1 -8.3
C, maximum (xeric) -14.0 -13.2 -13.2 -12.4
8" Cenamer (%0 VPDB)*
C; diet (average) -12.6 -11.5 -11.5 -10.7
C; diet minimum -18.2 -17.1 -17.1 -16.4
C; diet maximum 9.5 -8.4 -8.4 -7.6
C, diet (average) 2.9 3.8 3.8 4.6
C, diet minimum (mesic) 3.9 4.9 4.9 5.7
C, diet maximum (xeric)  -0.2 0.8 0.8 1.6

* Paleo-CO, record is based on the mean benthic foraminifera record with two data points for the Langebaanweg time period that
date to 5.7 Ma and 3.33 Ma (-6.19%o and -6.35%, respectively).

® Foraminifera isotopic data are used to estimate the 8"°C value of atmospheric CO, (Tipple et al., 2010).

¢ The &,umosphere-plant Values were calculated from the modern 5"C values of CO, and the average, minimum and maximum §'"°C
values of C, (Hattersley, 1982) and C; plants (Kohn, 2010). The &,osphere-plant Values and the average reconstructed 3"C values of

CO, for each time period (Tipple et al., 2010) were used to estimate the 5"°C values of C, and C, vegetation in the past.

4 The §"C values of enamel for herbivores with a diet of C; and C, vegetation were calculated using an &;jay.cnamet Of +14.1%o0

(Cerling et al., 1999) and the calculated plant 5"°C values at each time period denoted in this table.
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Table $2.3: The 50 values of the phosphate and carbonate component of tooth enamel from Elandsfontein and Langebaanweg.

. 18, 18,
Sample ID Family 8" Ocnamel-phosphate 8" Ocnamel-carbonate £C03-P04

(% VSMOW) Is  n (% VSMOW) Is  n avg (% VSMOW) 1¢°

Elandsfontein

WCRP-1669 Bovidae 23.7 03 3 34.1 06 1 10.2 1.0
EFTM-6177.8 Bovidae 23.5 05 2 32.6 06 1 8.9 1.1
EFTM-8953 Bovidae 23.0 03 4 31.6 06 1 8.4 0.9
WCRP-5043 Bovidae 24.1 02 4 343 06 1 10.0 0.9
EFTM-11908 Bovidae 21.6 02 4 30.7 06 1 8.9 0.9
EFTM-5063 Bovidae 24.0 03 4 332 06 1 9.0 1.0
1Z-7892E Bovidae 232 0.1 4 329 06 1 9.5 0.9
EFTM-5113.6 Bovidae 24.2 04 7 34.4 06 1 10.0 1.0
EFTM-1746 Bovidae 22.6 02 3 31.9 06 1 9.2 0.9
EFTM-1694 Bovidae 25.6 02 4 35.5 06 1 9.6 0.9
EFTM-8657 Bovidae 24.4 03 3 34.8 06 1 10.1 0.9
EFTM-2728 Bovidae 25.7 02 4 36.7 06 1 10.7 0.9
EFTM-2738 Bovidae 25.1 04 4 34.8 06 1 9.4 1.0
WCRP-1666 Bovidae 23.0 01 3 32.7 06 1 9.5 0.8
EFTM-4088 Hippopotamidae ~ 20.3 02 4 29.3 06 1 8.8 0.9
EFTM-4030 Hippopotamidae ~ 21.2 02 3 30.5 06 1 9.1 0.9
EFTM-MSI12699 Hippopotamidae ~ 19.9 04 4 28.7 06 1 8.6 1.0
EFTM-6727 Equidae 22.1 02 4 32.0 06 1 9.7 0.9
EFTM-16660 Equidae 22.8 04 6 32.0 06 1 9.0 1.0
EFTM-2112 Equidae 23.5 01 3 33.9 06 1 10.2 0.9
EFTM-5065 Equidae 23.7 0.1 4 33.1 06 1 9.1 0.9
EFTM-8958A Equidae 22.8 03 3 32.7 06 1 9.7 1.0
WCRP-2103 Equidae 23.1 04 6 323 06 1 8.9 1.0
EFTM-2619 Equidae 223 02 2 31.6 06 1 9.0 0.9
EFTM-1952 Equidae 233 03 4 33.1 06 1 9.6 0.9
EFTM-4028A Giraffidae 24.4 00 3 35.0 06 1 10.3 0.8
EFTM-4031 Giraffidae 23.6 03 2 335 06 2 9.6 0.9
WCRP-8031 Giraffidae 23.1 03 4 32.8 06 1 9.5 0.9
EFTM-20939 Rhinocerotidae 23.6 02 2 322 06 1 8.5 0.9
EFTM-20982D Rhinocerotidae 233 02 4 33.0 06 1 9.4 0.9
EFTM-16617A Rhinocerotidae 24.0 04 4 31.7 06 1 7.4 1.0
EFTM-8700K Rhinocerotidae 233 02 4 31.1 03 2 7.6 0.7
EFTM-3410A Rhinocerotidae 23.8 01 2 323 06 1 8.3 0.9
EFTM-8610B Rhinocerotidae 229 02 3 322 06 1 9.0 0.9
EFTM-93998 Rhinocerotidae 22.5 02 3 313 06 1 8.6 0.9
WCRP-12156 Suidae 225 03 3 323 06 1 9.6 1.0
WCRP-12284 Suidae 22.7 03 4 325 06 1 9.6 1.0
WCRP-6438 Suidae 22.8 03 1 314 06 1 8.4 1.0
Langebaanweg

LBW13G-001 Bovidae 252 02 4 34.6 06 1 9.2 0.9
LBW13G-004 Equidae 22.8 04 6 31.2 06 1 8.2 1.0
LBW13G-006 Hippopotamidae ~ 20.3 0.1 4 28.1 06 1 7.7 0.9
LBW13G-007 Hippopotamidae ~ 19.9 02 4 27.1 06 1 7.0 0.9
LBW13G-008A Hippopotamidae ~ 21.3 07 2 30.3 06 1 8.8 1.2
LBW13G-008B Hippopotamidae ~ 21.2 0.6 2 28.7 06 1 7.4 1.1
LBW13G-008 (A & B) Hippopotamidae  21.3 0.6 4 29.5 1.1 2 8.1 1.3
LBW13G-009 Giraffidae 25.2 0.1 4 34.0 06 1 8.6 0.9
LBW13G-010 Giraffidae 24.0 04 4 333 06 1 9.1 1.0
LBW13G-011 Giraffidae 21.9 02 4 30.3 06 1 8.3 0.9

“ propagated error

. 18 P 18
€ carbonate-phosphate — \/ (standard deviation & Oennmuhphusphnlg)*‘ (standard deviation 6Ot curbonste)
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Table S3.2: *"St/**Sr ratios of the fossil mammals from mid-Pleistocene Elandsfontein.

Sample ID (top to bottom Sr/*Sr ratio

of the tooth) Average Stdev*
Bovidae
Bovid sp., third molar, solution analysis on ICP-MS
1468 1.5 0.710167  0.000014
1468 2.5 0.710181  0.000014
1468 3.5 0.710069  0.000012
1468 4.5 0.710084  0.000017
1468 5.5 0.710169  0.000017
1468 6.5 0.710181  0.000013
1468 7.5 0.710039  0.000014
1468 8.5 0.710049  0.000012
1468 9.5 0.709976  0.000011
1468 10.5 0.709982  0.000013

Alcelaphini sp. indet., potentially migratory, grazer, molar, laser ablation serial sampling on ICP-MS

WCRP-1358A_4 0.709810  0.000080
WCRP-1358A_3 0.709770  0.000080
WCRP-1358A_2 0.709820  0.000090
WCRP-1358A_1 0.709900  0.000080
WCRP-1358B_4 0.709860  0.000090
WCRP-1358B_3 0.709860  0.000100
WCRP-1358B_2 0.709790  0.000110
WCRP-1358B_1bottom 0.709880  0.000100
WCRP-1358C_4 0.709790  0.000070
WCRP-1358C_3 0.709830  0.000100
WCRP-1358C_2 0.709980  0.000100
WCRP-1358C_1worn 0.709820  0.000090

Syncerus antiquus, Giant buffalo (extinct), potentially migratory, grazer, third molar, laser ablation serial sampling

WCRP-36309_1Iroot 0.711120  0.003000
WCRP-36309_2 0.710710  0.000150
WCRP-36309_3 0.711060  0.000120
WCRP-36309_4 0.711050  0.000100
WCRP-36309_5 0.711000  0.000090
WCRP-36309_6 0.711120  0.000090
WCRP-9043_0lroot 0.710140  0.000040
WCRP-9043_02 0.710140  0.000040
WCRP-9043_03 0.710160  0.000040
WCRP-9043_04 0.710130  0.000030
WCRP-9043_05 0.710240  0.000040
WCRP-9043_06 0.710270  0.000050
WCRP-9043_07 0.710260  0.000040
WCRP-9043_08 0.710340  0.000040
WCRP-9043_09 0.710390  0.000040
WCRP-9043_10 0.710460  0.000050
WCRP-9043_11 0.710420  0.000060
WCRP-9043_12 0.710570  0.000040

Syncerus antiquus, Giant buffalo (extinct), potentially migratory, grazer, third molar, solution analysis on ICP-MS

46225.01 0.709656  0.000058
46225.02 0.709658  0.000084
46225.03 0.709657  0.000118
46225.04 0.709640  0.000142
46225.05 0.709617  0.000048
46225.06 0.709609  0.000070
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Table S3.2: *"St/**Sr ratios of the fossil mammals from mid-Pleistocene Elandsfontein.

Sample ID (top to bottom Sr/*Sr ratio

of the tooth) Average Stdev*
46245.01 0.709324  0.000192
46245.02 0.709832  0.000142
46245.03 0.709905  0.000162
46245.04 0.709847  0.000154
46245.05 0.709873  0.000112
46245.06 0.709939  0.000114
46245.07 0.710002  0.000084
46245.08 0.710141  0.000114
46245.09 0.709952  0.000114
46245.10 0.709921  0.000116
46245.11 0.709953  0.000118
46245.12 0.709826  0.000112
1666 1.5 0.709521  0.000020
1666 2.5 0.709528  0.000013
1666 3.5 0.709711  0.000019
1666 4.5 0.709457  0.000023
1666 5.5 0.710078  0.000020
1666 6.5 0.709689  0.000022
1666 7.5 0.709879  0.000019
1666 8.5 0.709656  0.000015
1666 9.5 0.709255  0.000012
36309 1.5 0.710462  0.000025
36309 2.5 0.710442  0.000014
36309 3.5 0.710351  0.000014
36309 4.5 0.710412  0.000016
36309 5.5 0.710488  0.000023
8787 1.5 0.711171  0.000015
87872.5 0.711079  0.000020
87873.5 0.710889  0.000014
9046.1 A.5 0.710693  0.000015
9046.1 B.5 0.710636  0.000016
9046.1 C.5 0.710574  0.000026
9046.1 D.5 0.710554  0.000016
9046.1 E.5 0.710526  0.000015
9046.1 F.5 0.710457  0.000014
9046.2 G.1 0.710428  0.000015
9046.2 H.5 0.710420  0.000015
9046.2 1.5 0.710382  0.000017
9046.2 1.5 0.710407  0.000020
9046.3 K.5 0.710700  0.000016
9046.3 L.5 0.710340  0.000013
9046.3 M.5 0.710327  0.000015
9046.3 N.5 0.710351  0.000015
9046.3 0.5 0.710380  0.000019
9046.3 P.5 0.710360  0.000015
9046.4 Q.5 0.710363  0.000017
9046.4 R.5 0.710492  0.000015
9046.4 S.5 0.710570  0.000014
9046.4 T.5 0.710622  0.000027
9046.4 U.5 0.710835  0.000023
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Table S3.2: *"St/**Sr ratios of the fossil mammals from mid-Pleistocene Elandsfontein.

Sample ID (top to bottom Sr/*Sr ratio

of the tooth) Average Stdev*
99442 A.5 0.709771  0.000028
9944.2 B.5 0.709888  0.000039
99442 C.5 0.709883  0.000032
99442 D.5 0.709877  0.000136

Tragelaphus strepsiceros, Greater kudu, potentially migratory, browser, third molar, solution analysis on ICP-MS

9386 1.5 0.709546  0.000017
9386 2.5 0.709607  0.000013
9386 3.5 0.709648  0.000023
9386 4.5 0.709653  0.000021
9386 5.5 0.709749  0.000021
9386 6.5 0.709754  0.000019
9386 7.5 0.709723  0.000011
9386 8.5 0.709738  0.000015
9386 9.5 0.709741  0.000014
9386 10.5 0.709727  0.000014
36612 1.5 0.709775  0.000012
366122.5 0.709780  0.000015
366123.5 0.709750  0.000014
36612 4.5 0.709693  0.000020
366125.5 0.709685  0.000014
36612 6.5 0.709671  0.000011
366127.5 0.709694  0.000012
20443 1.5 0.709414  0.000018
20443 2.5 0.709354  0.000010
20443 3.5 0.709367  0.000013
20443 4.5 0.709376  0.000013
20443 5.5 0.709382  0.000015
20443 6.5 0.709400  0.000013
20443 7.5 0.709406  0.000013
20443 8.5 0.709428  0.000012
20443 9.5 0.709330  0.000025

Bovid sp., potentially migratory, grazer, molar, solution analysis ICP-MS

32386 1.5 0.710356  0.000012
32386 2.5 0.710495  0.000014
32386 3.5 0.710588  0.000015
32386 4.5 0.711105  0.000011
32386 5.5 0.710982  0.000017
32386 6.5 0.710441  0.000061
32386 7.5 0.710369  0.000013
32386 8.5 0.709993  0.000014
32386 9.5 0.709873  0.000011
32386 10.5 0.709856  0.000017
32386 11.5 0.709863  0.000012
32386 12.5 0.709920  0.000010

Bovid sp., solution analysis ICP-MS

1468 1.5 0.710167  0.000014
1468 2.5 0.710181  0.000014
1468 3.5 0.710069  0.000012
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Table S3.2: *"St/**Sr ratios of the fossil mammals from mid-Pleistocene Elandsfontein.

Sample ID (top to bottom Sr/*Sr ratio

of the tooth) Average Stdev*
1468 4.5 0.710084  0.000017
1468 5.5 0.710169  0.000017
1468 6.5 0.710181  0.000013
1468 7.5 0.710039  0.000014
1468 8.5 0.710049  0.000012
1468 9.5 0.709976  0.000011
1468 10.5 0.709982  0.000013
Elephantidae
Loxodonta afiricana, African elephant, potentially migratory, grazer, molar fragment, solution analysis ICP-MS
WCRP 6088 0.710547  0.000017
WCRP 12298 0.710071  0.000014
Equidae
Equus capensis, Cape zebra, potentially migratory, grazer, third molar, solution analysis ICP-MS
WCRP 2048 0.709705  0.000016
Hystricidae
Hystrix africaeaustralis, Porcupine, not migratory, mixed feeder, third molar, laser ablation serial sampling on ICP-MS
32012.01 0.709587  0.000320
32012.01 0.709428  0.000162
32012.02 0.709552  0.000084
32012.03 0.709470  0.000124
32012.04 0.709446  0.000114
32012.05 0.709423  0.000120
32012.06 0.709429  0.000112
Bathyergidae
Bathyergus suillus, Dune mole rate, not migratory, mixed diet, incisor, laser ablation serieal sampling on ICP-MS
32007.01 0.709348  0.000166
32007.02 0.709275  0.000192
32007.03 0.709349  0.000112
32007.04 0.709489  0.000182
32007.05 0.709414  0.000130
32007.06 0.709476  0.000130
Hyaenidae
Hyaena brunnea, Brown hyena, potentially migratory, carnivore, third molar, solution analysis ICP-MS
WCRP 32121 0.709393  0.000018
WCRP 32442 0.709620  0.000024

* standard deviation is + 26 from the internal standard
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Table S.3.3: Profiles for mid-Pleistocene and modern enamel fragments from Elandsfontein using the *'Sr/*Sr
ratio of rinses and enamel powder after series of rinses.

¥81%S :

Sample description mid-Pleistocene

S: le ID
ample (enamel or rinse #) or modern enamel

Average Stdev*

WCRP 46257 (bovid)

rinse 1 supernatant mid-Pleistocene ~ 0.709570  0.000018
rinse 6 supernatant mid-Pleistocene  0.709481 0.000014
rinse 12 supernatant mid-Pleistocene  0.709448  0.000012
rinse 18 supernatant mid-Pleistocene ~ 0.709449  0.000016
rinse 24 supernatant mid-Pleistocene ~ 0.709405  0.000015
enamel residue enamel powder risidue mid-Pleistocene ~ 0.709428  0.000014
avg * stdev 0.709463 £ 0.000058
range 0.709405 to 0.709570
span 0.000165
WCRP 46251
rinse 1 supernatant mid-Pleistocene ~ 0.709814  0.000014
rinse 6 supernatant mid-Pleistocene  0.709569  0.000019
rinse 12 supernatant mid-Pleistocene ~ 0.709507  0.000018
rinse 18 supernatant mid-Pleistocene  0.709576  0.000016
rinse 24 supernatant mid-Pleistocene  0.709535  0.000015
enamel residue enamel powder risidue mid-Pleistocene  0.709474  0.000012
avg + stdev 0.709579 + 0.000121
range 0.709474 to 0.709814
span 0.000340

WCRP - 46245 (Syncerus i )

rinse 1 supernatant mid-Pleistocene  0.709879  0.000011
rinse 6 supernatant mid-Pleistocene ~ 0.709871  0.000021
rinse 12 supernatant mid-Pleistocene ~ 0.709849  0.000019
rinse 18 supernatant mid-Pleistocene ~ 0.709824  0.000021
rinse 24 supernatant mid-Pleistocene  0.709829  0.000029
enamel residue enamel powder risidue mid-Pleistocene  0.709802  0.000016
avg + stdev 0.709842 + 0.000029
range 0.709802 to 0.709879
span 0.000077
6
rinse 1 supernatant 0.709982  0.000012
rinse 5 supernatant 0.709980  0.000016
rinse 10 supernatant 0.709990  0.000017
rinse 15 supernatant 0.709977  0.000015
rinse 20 supernatant 0.709945  0.000014
rinse 25 supernatant 0.709969  0.000013
enamel residue enamel powder risidue 0.709871  0.000011
avg + stdev 0.709955 £ 0.000044
range 0.709871 to 0.70999
span 0.000119
7
rinse 1 supernatant 0.709649  0.000014
rinse 5 supernatant 0.709400  0.000015
rinse 10 supernatant 0.709366  0.000013
rinse 15 supernatant 0.709402  0.000021
rinse 20 supernatant 0.709383  0.000021
rinse 25 supernatant 0.709401 0.000020
enamel residue enamel powder risidue 0.709411  0.000014
avg + stdev 0.709394 = 0.000016
range 0.709366 to 0.709411
span 0.000045

WCRP 2048 (equid)

rinse 1 supernatant mid-Pleistocene ~ 0.709799  0.000008
rinse 5 supernatant mid-Pleistocene ~ 0.709784  0.000021
rinse 10 supernatant mid-Pleistocene ~ 0.709772  0.000021
rinse 15 supernatant mid-Pleistocene  0.709696  0.000014
rinse 20 supernatant mid-Pleistocene ~ 0.709631  0.000017
rinse 25 supernatant mid-Pleistocene  0.709664  0.000019
enamel residue enamel powder risidue mid-Pleistocene  0.709705  0.000016
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Table S.3.3: Profiles for mid-Pleistocene and modern enamel fragments from Elandsfontein using the *'Sr/*Sr
ratio of rinses and enamel powder after series of rinses.

Sample description

¥81%S :

mid-Pleistocene

Sample ID (enamel or rinse #) or modern enamel Average Stdev*
avg + stdev 0.709709 £ 0.000060
range 0.709631 to 0.709784
span 0.000153

WCRP 6088

rinse 1 supernatant mid-Pleistocene ~ 0.710358  0.000013

rinse 5 supernatant mid-Pleistocene ~ 0.710556  0.000011

rinse 10 supernatant mid-Pleistocene ~ 0.710679  0.000028

rinse 15 supernatant mid-Pleistocene ~ 0.710588  0.000017

rinse 20 supernatant mid-Pleistocene  0.710542  0.000034

rinse 25 supernatant mid-Pleistocene  0.710545  0.000023

enamel residue

WCRP 12298
rinse 1

rinse 5

rinse 10

rinse 15

rinse 20

rinse 25
enamel residue

SAI13M-507 (bovid)
rinse 1

rinse 6

rinse 12

rinse 18

rinse 24

enamel residue

SA13M-011 (juv. Alcelaphine,

rinse 1

rinse 6

rinse 12

rinse 18

rinse 24
enamel residue

enamel powder risidue

supernatant
supernatant
supernatant
supernatant
supernatant
supernatant
enamel powder risidue

supernatant
supernatant
supernatant
supernatant
supernatant
enamel powder risidue

supernatant
supernatant
supernatant
supernatant
supernatant
enamel powder risidue

mid-Pleistocene  0.710547  0.000017

avg * stdev 0.710576 + 0.000053
range 0.710542 t0 0.710679
span 0.000137

mid-Pleistocene ~ 0.709930  0.000013
mid-Pleistocene ~ 0.710085  0.000012
mid-Pleistocene  0.710171 0.000013
mid-Pleistocene  0.710228  0.000013
mid-Pleistocene  0.710247  0.000043
mid-Pleistocene  0.710265  0.000015
mid-Pleistocene  0.710071  0.000014

avg + stdev 0.710178 + 0.000084
range 0.710071 to 0.710265
span 0.000194

mid-Pleistocene  0.709631  0.000014
mid-Pleistocene ~ 0.710104  0.000012
mid-Pleistocene ~ 0.710091  0.000016
mid-Pleistocene ~ 0.710092  0.000019
mid-Pleistocene  0.710099  0.000024
mid-Pleistocene ~ 0.710131  0.000013

avg + stdev 0.710025 + 0.000193
range 0.709631 to 0.710131
span 0.000499

modern 0.713023  0.000013
modern 0.713592  0.000016
modern 0.713603  0.000012
modern 0.713606  0.000013
modern 0.713616  0.000012
modern 0.713633  0.000012
avg * stdev 0.713512 £ 0.000240
range 0.713023 to 0.713633
span 0.000610

“ standard deviation is + 26 from the internal standard
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Table S4.2: Triple oxygen isotope data for enamel samples listed by Analytical ID.

Analytical ID Sample ID Session ID 570 (%) 5'°0 (%s) adjustment A17q (9,) s;LOmeg Reference
JHU-170-2539 AK Caribou #1 Nov 2015  13.47 26.00 -0.171 -171 this study
JHU-170-2540 AK Caribou #1 Nov 2015 1271 24.53 -0.170 -170 this study
JHU-170-2535 ID deer Nov 2015 16.80 32.44 -0.195 -195 this study
JHU-170-2536 ID deer Nov 2015  17.76 3431 -0.212 2212 this study
JHU-170-2520 MD deer #1 Nov 2015 1891 36.46 -0.177 -177 this study
JHU-170-2521 MD deer #1 Nov 2015 19.69 37.98 -0.183 -183 this study
JHU-170-2522 MD deer #2 Nov 2015  18.12 3497 -0.193 -193 this study
JHU-170-2523 MD deer #2 Nov 2015  18.53 35.77 -0.192 -192 this study
JHU-170-2552 ND bison #1 Nov 2015 13.06 25.15 -0.140 -140 this study
JHU-170-2553 ND bison #1 Nov 2015  13.71 26.44 -0.158 -158 this study
JHU-170-2554 ND bison #2 Nov 2015  14.50 27.97 -0.168 -168 this study
JHU-170-2555 ND bison #2 Nov 2015  14.08 27.17 -0.171 -171 this study
JHU-170-2542 OK Bison #1 Nov 2015  18.57 35.76 -0.157 -157 this study
JHU-170-2543 OK Bison #1 Nov 2015  19.54 37.65 -0.158 -158 this study
JHU-170-2556 SD bison #1 Nov 2015  14.17 27.36 -0.177 -177 this study
JHU-170-2557 SD bison #1 Nov 2015  14.81 28.57 -0.168 -168 this study
JHU-170-2526 WI deer Nov 2015 16.95 3271 -0.189 -189 this study
JHU-170-2527 WI deer Nov 2015 1643 31.70 -0.179 -179 this study
JHU-170-2524 WV deer Nov 2015  19.16 37.00 -0.207 -207 this study
JHU-170-2525 WV deer Nov 2015  19.51 37.67 -0.204 -204 this study
JHU-170-2537 WY deer Nov 2015  17.84 34.47 -0.208 -208 this study
JHU-170-2538 WY deer Nov 2015  17.30 33.42 -0.203 -203 this study
JHU-170-2541 WY Yellowstone Moose #1 Nov 2015 13.79 26.59 -0.161 -161 this study
JHU-170-2080 AlJB-B3-T4-DP4 Nov 2014  16.67 32.16 -0.179 -179 Hu et al., in prep.
JHU-170-2081 AlJB-B3-T4-DP4 Nov 2014  16.01 30.89 -0.176 -176 Hu et al., in prep.
JHU-170-2052 CME Nov 2014  19.01 36.62 -0.155 -155 this study
JHU-170-2053 CME Nov 2014 19.34 37.24 -0.152 -152 this study
JHU-170-2054 CME Nov 2014  19.51 37.57 -0.151 -151 this study
JHU-170-2050 ET03-71 Nov 2014 17.74 34.12 -0.129 -129 Hu et al., in prep.
JHU-170-2051 ET03-71 Nov 2014 17.64 33.93 -0.130 -130 Hu et al., in prep.
JHU-170-2059 ET05-MAGO-19 Nov 2014  23.53 45.39 -0.181 -181 this study
JHU-170-2060 ET05-MAGO-19 Nov 2014  23.56 45.46 -0.188 -188 this study
JHU-170-2071 GNP-giraffe2 Nov 2014  23.57 45.52 -0.212 2212 this study
JHU-170-2072 GNP-giraffe2 Nov 2014 24.09 46.53 -0.208 -208 this study
JHU-170-2069 GNP-Hippo Nov 2014 20.02 38.54 -0.146 -146 this study
JHU-170-2070 GNP-Hippo Nov 2014  20.06 38.60 -0.134 -134 this study
JHU-170-2073 Tturi Giraffe Nov 2014 21.84 4213 -0.183 -183 this study
JHU-170-2074 Ituri Giraffe Nov 2014  21.72 41.90 -0.182 -182 this study
JHU-170-2077 KO00-TSV-113 Nov 2014  24.38 47.15 -0.237 -237 this study
JHU-170-2078 K00-TSV-113 Nov 2014 2443 47.24 -0.234 -234 this study
JHU-170-2075 K98-Lai-310 Nov 2014 22.85 44.18 -0.230 -230 this study
JHU-170-2076 K98-Lai-310 Nov 2014 2235 43.18 -0.218 2218 this study
JHU-170-2048 KNO07-112 Nov 2014  22.07 42.53 -0.157 -157 Hu et al., in prep.
JHU-170-2049 KNO7-112 Nov 2014 2233 43.01 -0.150 -150 Hu et al., in prep.
JHU-170-2079 MGL-93-16 Nov 2014  23.10 44.57 -0.187 -187 this study
JHU-170-2057 TMO Nov 2014  22.79 44.08 -0.238 -238 this study
JHU-170-2058 TMO Nov 2014  23.02 44.52 -0.232 -232 this study
JHU-170-2061 UT-deer Nov 2014 18.14 35.13 -0.249 -249 Hu et al., in prep.
JHU-170-2062 UT-deer Nov 2014 18.13 35.13 -0.261 -261 Hu et al., in prep.
JHU-170-2055 KNO07-108 Nov 2014  25.03 48.50 -0.285 -285 Hu et al., in prep.
JHU-170-2056 KNO07-108 Nov 2014  25.18 48.78 -0.281 -281 Hu et al., in prep.
JHU-170-2160 ET05-AWSH-04 June 2015 23.33 45.06 -0.206 -206 this study
JHU-170-2161 ET05-AWSH-04 June 2015  23.68 45.74 -0.209 -209 this study
JHU-170-2151 ET05-AWSH-29 (HIPPO) June 2015 20.66 39.81 -0.166 -166 this study
JHU-170-2152 ET05-AWSH-29 (HIPPO) June 2015  20.64 39.77 -0.164 -164 this study
JHU-170-2154 ET05-MAGO0-10 HIPPO June 2015 23.12 44.61 -0.188 -188 this study
JHU-170-2155 ET05-MAGO-10 HIPPO June 2015 23.50 45.35 -0.186 -186 this study
JHU-170-2158 KNO7-111 June 2015 22.53 43.41 -0.156 -156 this study
JHU-170-2159 KNO7-111 June 2015  22.50 4334 -0.151 -151 this study
JHU-170-2156 MGL-93-06 June 2015  20.88 40.25 -0.177 -177 this study
JHU-170-2157 MGL-93-06 June 2015 20.67 39.87 -0.180 -180 this study
JHU-170-2328 GA Beaver Aug 2015_1 19.38 37.34 -0.158 -158 this study
JHU-170-2329 GA Beaver Aug2015_1 18.41 35.45 -0.152 -152 this study
JHU-170-2354 GA Beaver Aug2015_1 17.55 33.79 -0.150 -150 this study
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Table S4.2: Triple oxygen isotope data for enamel samples listed by Analytical ID.

Additional
CO, .
Analytical ID Sample ID Session ID 570 (%) 5'°0 (%s) adjustment A17q (9,) A"O Reference
amount for per meg
A0 (%o0)
JHU-170-2355 GA Beaver Aug2015_1 17.74 34.15 - -0.147 -147 this study
JHU-170-2347 GA deer 1 Aug2015_1 19.43 37.53 - -0.207 -207 this study
JHU-170-2348 GA deer 1 Aug2015_1 19.74 38.11 - -0.199 -199 this study
JHU-170-2343 GA deer 2 Aug2015_1 19.58 37.81 - -0.210 -210 this study
JHU-170-2344 GA deer 2 Aug2015_1 19.15 36.99 - -0.213 2213 this study
JHU-170-2326 Kidepo buffalo Aug2015_1 21.50 41.49 - -0.195 -195 this study
JHU-170-2327 Kidepo buffalo Aug2015_1 22.34 43.12 - -0.197 -197 this study
JHU-170-2349 Kidepo buffalo Aug2015_1 21.94 4236 - -0.197 -197 this study
JHU-170-2350 Kidepo buffao Aug2015_1 22.19 42.85 - -0.209 -209 this study
JHU-170-2322 MGL-93-10 Shimba Hills elephant Aug 2015_1 19.96 38.47 - -0.163 -163 this study
JHU-170-2323 MGL-93-10 Shimba Hills elephant Aug 2015_1 19.67 37.87 - -0.152 -152 this study
JHU-170-2320 MGL-93-17 Meru elephant Aug2015_1 19.84 38.24 - -0.173 -173 this study
JHU-170-2321 MGL-93-17 Meru elephant Aug 2015_1 20.52 39.58 - -0.184 -184 this study
JHU-170-2315 MGL-93-7 Aberdares elephant Aug2015_1 19.37 37.30 - -0.152 -152 this study
JHU-170-2316 MGL-93-7 Aberdares elephant Aug 2015_1 19.67 37.88 - -0.154 -154 this study
JHU-170-2345 NY deer 1 Aug 2015_1 16.95 3275 - -0.208 -208 this study
JHU-170-2346 NY deer 1 Aug2015_1 16.84 3252 - -0.200 -200 this study
JHU-170-2339 UCT 14223 Kgalagadi giraffe#l ~ Aug 2015_1 22.81 44.20 - -0.285 -285 this study
JHU-170-2340 UCT 14223 Kgalagadi giraffe#1 ~ Aug2015_1 24.38 47.27 - -0.298 -298 this study
JHU-170-2331 UCT 14224 Kalagadi Wildebeest ~ Aug 2015_1 23.85 46.20 - -0.279 -279 this study
JHU-170-2332 UCT 14224 Kalagadi Wildebeest ~Aug2015_1 23.30 45.14 - -0.281 -281 this study
JHU-170-2341 UCT 14285 Addo hartebeest Aug2015_1 21.04 40.66 - -0.220 -220 this study
JHU-170-2342 UCT 14285 Addo hartebeest Aug2015_1 19.89 3841 - -0.208 -208 this study
JHU-170-2324 UCT 1697 Addo elephant Aug2015_1 20.56 39.62 - -0.168 -168 this study
JHU-170-2325 UCT 1697 Addo elephant Aug2015_1 20.94 40.36 - -0.170 -170 this study
JHU-170-2480 AA1 Finland Moose #1 Aug2015_2 15.56 30.02 +0.031  -0.147 -147 this study
JHU-170-2481 AA1 Finland Moose #1 Aug 2015_2 14.97 28.89 +0.031  -0.152 -152 this study
JHU-170-2488 AA2 Finland Moose#2 Aug2015_2 13.41 2591 +0.031  -0.153 -153 this study
JHU-170-2489 AA2 Finland Moose#2 Aug2015_2 13.73 26.51 +0.031  -0.147 -147 this study
JHU-170-2486 CF2 Finland Beaver#2 Aug 2015 2 14.52 28.00 +0.031  -0.139 -139 this study
JHU-170-2487 CF2 Finland Beaver#2 Aug2015_2 15.35 29.62 +0.031  -0.141 -141 this study
JHU-170-2482 FT1 Finland deer#1 Aug 2015_2 14.65 28.27 +0.031  -0.140 -140 this study
JHU-170-2483 FT1 Finland deer#1 Aug 2015 2 1543 29.77 +0.031  -0.150 -150 this study
JHU-170-2484 RT1 Finland deer#3 Aug 2015 2 15.14 29.20 +0.031  -0.143 -143 this study
JHU-170-2485 RT1 Finland deer#3 Aug 2015 2 15.42 29.74 +0.031  -0.142 -142 this study
JHU-170-2300 GNP giraffe #1 July 2015 24.46 47.28 +0.04  -0.188 -188 this study
JHU-170-2301 GNP giraffe #1 July 2015 25.56 49.45 +0.04  -0.204 -204 this study
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Table $4.3: Modeled body water 3"°0 and A7 values at RH of 80%, 50% and 30% for animals with a minimum and maximum WEI resulting from a representative range of "0 values of meteoric water from The

United States and Finland and from Africa®

United States and Finland meteoric water 5"°0 range: -14%» to -8%

MIN-EVAP model

MAX-EVAP model

MIN-EVAP model

MAX-EVAP model

MIN-EVAP model

MAX-EVAP model

RH = 80% RH = 80% RH = 50% RH = 50% RH =30% RH =30%
"0, (%) 80, (%) A0y, (%) 80y, (%) A0, (%) 8"0,, (%) A0y, (%) 80, (%o) A0, (%0)° 30, (%) A0y, (%0) 80, (%e)° A0, (%0)°
-14 -10.2 -0.001 -5.0 -0.110 9.7 -0.005 27 -0.166 93 -0.008 8.0 -0.189
-13.9 -10.1 -0.001 -5.0 -0.110 9.6 -0.005 28 -0.165 9.2 -0.008 8.1 -0.189
-13.8 -10.0 -0.001 -49 -0.110 9.5 -0.005 29 -0.165 9.1 -0.008 8.2 -0.188
-13.7 9.9 -0.001 -4.8 -0.110 94 -0.005 3.0 -0.165 -9.0 -0.008 83 -0.188
-13.6 -9.8 -0.001 -4.7 -0.110 -9.3 -0.004 3.0 -0.165 -9.0 -0.007 83 -0.188
-13.5 -9.7 0.000 -4.7 -0.110 9.2 -0.004 31 -0.165 -8.9 -0.007 8.4 -0.188
-13.4 -9.7 0.000 -4.6 -0.109 9.1 -0.004 32 -0.165 -8.8 -0.007 8.5 -0.188
-133 -9.6 0.000 -4.5 -0.109 -9.0 -0.004 33 -0.165 -8.7 -0.007 8.6 -0.188
-13.2 -9.5 0.000 -4.4 -0.109 -8.9 -0.004 33 -0.165 -8.6 -0.007 8.6 -0.188
-13.1 -9.4 0.000 -4.4 -0.109 -89 -0.004 3.4 -0.165 -8.5 -0.007 8.7 -0.188
-13 93 0.000 -43 -0.109 -8.8 -0.004 35 -0.165 -84 -0.007 8.8 -0.188
-12.9 9.2 0.000 -4.2 -0.109 -8.7 -0.004 3.6 -0.165 -83 -0.007 8.9 -0.188
-12.8 9.1 0.000 -4.1 -0.109 -8.6 -0.004 3.6 -0.165 -8.2 -0.007 9.0 -0.188
-12.7 -9.0 0.000 -4.1 -0.109 -8.5 -0.004 3.7 -0.165 -8.2 -0.007 9.0 -0.188
-12.6 -8.9 0.000 -4.0 -0.109 -84 -0.004 38 -0.165 -8.1 -0.007 9.1 -0.188
-12.5 -8.9 0.000 -39 -0.109 -8.3 -0.004 39 -0.165 -8.0 -0.007 9.2 -0.188
-12.4 -8.8 0.000 -3.8 -0.108 -8.2 -0.004 3.9 -0.165 -1.9 -0.007 93 -0.188
-123 -8.7 0.000 -3.8 -0.108 -8.2 -0.004 4.0 -0.165 -7.8 -0.006 93 -0.188
-12.2 -8.6 0.001 -3.7 -0.108 -8.1 -0.003 4.1 -0.165 -1.7 -0.006 9.4 -0.188
-12.1 -8.5 0.001 -3.6 -0.108 -8.0 -0.003 4.2 -0.165 -1.6 -0.006 9.5 -0.188
-12 -8.4 0.001 -3.5 -0.108 <19 -0.003 42 -0.165 <15 -0.006 9.6 -0.188
-11.9 -83 0.001 =35 -0.108 -7.8 -0.003 43 -0.164 -7.4 -0.006 9.6 -0.188
-11.8 -82 0.001 -3.4 -0.108 -1.7 -0.003 4.4 -0.164 -7.4 -0.006 9.7 -0.188
-11.7 -8.1 0.001 -33 -0.108 -7.6 -0.003 45 -0.164 <73 -0.006 9.8 -0.188
-11.6 -8.1 0.001 =32 -0.108 <75 -0.003 45 -0.164 <72 -0.006 9.9 -0.188
-11.5 -8.0 0.001 -3.2 -0.108 <14 -0.003 4.6 -0.164 -7.1 -0.006 9.9 -0.188
-11.4 <19 0.001 -3 -0.107 <74 -0.003 4.7 -0.164 -7.0 -0.006 10.0 -0.188
-113 <78 0.001 -3.0 -0.107 <73 -0.003 4.8 -0.164 -6.9 -0.006 10.1 -0.188
-11.2 -1.7 0.001 29 -0.107 <72 -0.003 4.8 -0.164 -6.8 -0.006 10.2 -0.188
-111 -7.6 0.001 29 -0.107 <71 -0.003 4.9 -0.164 -6.7 -0.006 10.2 -0.188
-11 <15 0.001 2.8 -0.107 -7.0 -0.003 5.0 -0.164 -6.7 -0.006 10.3 -0.188
-10.9 -74 0.001 2.7 -0.107 -6.9 -0.002 5.1 -0.164 -6.6 -0.005 10.4 -0.188
-10.8 -74 0.002 -2.6 -0.107 6.1 -0.002 52 -0.164 -6.5 -0.005 10.5 -0.188
-10.7 <73 0.002 -2.6 -0.107 -6.7 -0.002 52 -0.164 -6.4 -0.005 10.5 -0.188
-10.6 <72 0.002 2.5 -0.107 -6.6 -0.002 53 -0.164 -6.3 -0.005 10.6 -0.188
-10.5 -7.1 0.002 24 -0.107 -6.6 -0.002 54 -0.164 -6.2 -0.005 10.7 -0.188
-10.4 -7.0 0.002 23 -0.107 -6.5 -0.002 55 -0.164 -6.1 -0.005 10.8 -0.188
-10.3 -6.9 0.002 23 -0.106 -6.4 -0.002 55 -0.164 -6.0 -0.005 10.8 -0.188
-10.2 -6.8 0.002 22 -0.106 -6.3 -0.002 5.6 -0.164 -5.9 -0.005 10.9 -0.188
-6.7 0.002 221 -0.106 -6.2 -0.002 5.7 -0.164 -5.9 -0.005 11.0 -0.188
-6.6 0.002 -2.0 -0.106 -6.1 -0.002 58 -0.164 -5.8 -0.005 111 -0.188
-6.6 0.002 -2.0 -0.106 -6.0 -0.002 58 -0.164 -5.7 -0.005 1.2 -0.188
-6.5 0.002 -1.9 -0.106 -5.9 -0.002 59 -0.164 -5.6 -0.005 11.2 -0.188
-6.4 0.002 -1.8 -0.106 -5.9 -0.002 6.0 -0.164 =55 -0.005 113 -0.188
-6.3 0.002 -1.7 -0.106 -5.8 -0.002 6.1 -0.164 -54 -0.005 1.4 -0.188
-6.2 0.002 -1.7 -0.106 -5.7 -0.002 6.1 -0.163 -5.3 -0.005 11.5 -0.188
-6.1 0.003 -1.6 -0.106 -5.6 -0.001 6.2 -0.163 -5.2 -0.004 11.5 -0.188
-6.0 0.003 -1.5 -0.106 -5.5 -0.001 6.3 -0.163 -0.004 11.6 -0.188
-5.9 0.003 -1.4 -0.106 -54 -0.001 6.4 -0.163 -5.1 -0.004 1.7 -0.188
-5.8 0.003 -1.4 -0.105 -5.3 -0.001 6.4 -0.163 -5.0 -0.004 11.8 -0.188
-5.8 0.003 -1.3 -0.105 -5.2 -0.001 6.5 -0.163 -4.9 -0.004 11.8 -0.188
-5.7 0.003 -1.2 -0.105 -5.1 -0.001 6.6 -0.163 -4.8 -0.004 11.9 -0.188
-5.6 0.003 -1.1 -0.105 -5.1 -0.001 6.7 -0.163 -4.7 -0.004 12.0 -0.188
-5.5 0.003 -1.1 -0.105 -5.0 -0.001 6.7 -0.163 -4.6 -0.004 12.1 -0.188
-5.4 0.003 -1.0 -0.105 -4.9 -0.001 6.8 -0.163 -4.5 -0.004 12.1 -0.188
-5.3 0.003 -0.9 -0.105 -4.8 -0.001 6.9 -0.163 -4.4 -0.004 12.2 -0.188
-5.2 0.003 -0.8 -0.105 -4.7 -0.001 7.0 -0.163 -4.4 -0.004 12.3 -0.188
5.1 0.003 -0.8 -0.105 -4.6 -0.001 7.0 -0.163 -43 -0.004 124 -0.188
-5.1 0.003 -0.7 -0.105 -4.5 -0.001 7.1 -0.163 -4.2 -0.004 12.4 -0.188
-5.0 0.003 -0.6 -0.105 -4.4 -0.001 72 -0.163 -4.1 -0.004 12.5 -0.188
-4.9 0.003 -0.5 -0.105 -4.3 -0.001 73 -0.163 -4.0 -0.004 12.6 -0.188

Africa meteoric water 50 range: -5%. to +1%o

80, (%0)"

MIN-EVAP model

RH =80%

80y, (%) A0y, (%0)°

MAX-EVAP model

RH = 80%

80y, (%) A0y, (o)

MIN-EVAP model

RH =

"0y, (%) A0y, (%)

50%

MAX-EVAP model

RH = 50%

80, (%0)° A0y, (%)

MIN-EVAP model

RH =30%

80y, (%0)° A0y, (%0)°

MAX-EVAP model

RH =30%

810y, (%60)° A0, (%0)°

222
-2.1
-2.0
-2.0

0.005
0.005
0.005
0.005
0.005
0.006

0.006

1.7
1.8
1.9
2.0
2.0
21
22
23
23
24
25
2.6
2.6
2.7
2.8
2.9
2.9
3.0
3.1
32
32
33
34

-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.102
-0.101
-0.101
-0.101
-0.101
-0.101
-0.101
-0.101

-1.7
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0.001
0.001
0.001
0.001
0.001
0.001

0.002

9.5

9.6

9.7

9.8

9.8

9.9

10.0
10.1
10.1
10.2
10.3
104
104
10.5
10.6
10.7
10.8
10.8
10.9
11.0
111
11.1
112

-0.162
-0.162
-0.162
-0.162

-0.162

-1.3
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.5
-0.4
-03
-0.2
-0.1

-0.002
-0.002
-0.002

-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001

14.9 -0.188
15.0 -0.189
15.0 -0.189
15.1 -0.189
15.2 -0.189
15.3 -0.189
15.3 -0.189
15.4 -0.189
15.5 -0.189
15.6 -0.189
15.6 -0.189
15.7 -0.189
15.8 -0.189
159 -0.189
15.9 -0.189
16.0 -0.189
16.1 -0.189
16.2 -0.189
16.2 -0.189
16.3 -0.189
16.4 -0.189
16.5 -0.189
16.5 -0.189



Table $4.3: Modeled body water 3"°0 and A7 values at RH of 80%, 50% and 30% for animals with a minimum and maximum WEI resulting from a representative range of "0 values of meteoric water from The

United States and Finland and from Africa®

-0.2 0.006 35 -0.101 0.002 11.3 -0.162 0.7 -0.001 16.6 -0.189
-0.1 0.007 35 -0.101 0.002 1.4 -0.162 0.8 -0.001 16.7 -0.189
0.0 0.007 3.6 -0.101 0.002 1.4 -0.162 0.9 -0.001 16.8 -0.189
0.1 0.007 37 -0.101 0.003 11.5 -0.162 1.0 -0.001 16.9 -0.189
02 0.007 38 -0.101 0.003 11.6 -0.162 1.0 0.000 16.9 -0.189
03 0.007 38 -0.101 0.003 1.7 -0.162 1.1 0.000 17.0 -0.189
03 0.007 3.9 -0.101 0.003 11.7 -0.162 12 0.000 17.1 -0.189
04 0.007 4.0 -0.101 0.003 11.8 -0.162 13 0.000 17.2 -0.189
0.5 0.007 4.1 -0.101 0.003 11.9 -0.162 1.4 0.000 17.2 -0.189
0.6 0.007 4.1 -0.101 0.003 12.0 -0.162 15 0.000 17.3 -0.189
0.7 0.007 42 -0.101 0.003 12.0 -0.162 1.6 0.000 17.4 -0.189
0.8 0.007 43 -0.101 0.003 12.1 -0.162 1.7 0.000 17.5 -0.189
0.9 0.007 44 -0.101 0.003 12.2 -0.162 1.8 0.000 17.5 -0.190
1.0 0.007 44 -0.100 0.003 12.3 -0.162 1.8 0.000 17.6 -0.190
1.0 0.007 4.5 -0.100 0.003 12.3 -0.162 1.9 0.000 17.7 -0.190
1.1 0.007 4.6 -0.100 0.003 12.4 -0.162 2.0 0.000 17.8 -0.190
1.2 0.007 4.7 -0.100 0.003 12.5 -0.162 2.1 0.000 17.8 -0.190
13 0.007 4.7 -0.100 0.003 12.6 -0.162 22 0.000 17.9 -0.190
1.4 0.007 4.8 -0.100 0.003 12.6 -0.162 23 0.000 18.0 -0.190
15 0.007 4.9 -0.100 0.003 12.7 -0.162 2.4 0.000 18.1 -0.190
1.6 0.007 5.0 -0.100 0.003 12.8 -0.162 25 0.000 18.1 -0.190
1.7 0.007 5.0 -0.100 0.003 12,9 -0.162 2.6 0.000 18.2 -0.190
1.8 0.007 5.1 -0.100 0.003 12.9 -0.162 2.6 0.000 18.3 -0.190
1.8 0.008 52 -0.100 0.003 13.0 -0.162 2.7 0.000 18.4 -0.190
1.9 0.008 53 -0.100 0.003 13.1 -0.162 2.8 0.000 184 -0.190
2.0 0.008 53 -0.100 0.003 132 -0.162 2.9 0.000 18.5 -0.190
21 0.008 54 -0.100 0.004 133 -0.162 3.0 0.000 18.6 -0.190
22 0.008 55 -0.100 0.004 133 -0.162 3.1 0.001 18.7 -0.190
23 0.008 5.6 -0.100 0.004 13.4 -0.162 32 0.001 18.8 -0.190
24 0.008 5.6 -0.100 0.004 13.5 -0.162 33 0.001 18.8 -0.190
25 0.008 5.7 -0.100 0.004 13.6 -0.162 33 0.001 18.9 -0.190
25 0.008 58 -0.100 0.004 13.6 -0.162 34 0.001 19.0 -0.190
2.6 0.008 59 -0.100 0.004 13.7 -0.162 35 0.001 19.1 -0.190
27 0.008 5.9 -0.100 0.004 13.8 -0.162 3.6 0.001 19.1 -0.190
28 0.008 6.0 -0.100 0.004 13.9 -0.162 3.7 0.001 19.2 -0.190
2.9 0.008 6.1 -0.100 0.004 13.9 -0.162 3.8 0.001 19.3 -0.190
3.0 0.008 6.2 -0.100 0.004 14.0 -0.162 3.9 0.001 19.4 -0.191
31 0.008 6.3 -0.099 0.004 14.1 -0.162 4.0 0.001 19.4 -0.191

* Model outputs for the maximum and minimum animalbody water triple oxygen isotopes are also represented in the Fig. 4 and based on the model parameters from Hu et al. In Prep
* Where mw is meteoric water

“ Where bw is body water
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Table S4.4: Minimum evaporation modeled data for the A'’O values of animals with minimum and

maximum WEI index with i ing Relative Humidity (RH)."
Minimum WEI animal® Maximum WEI animal
Model source water input Model source water input
3"o A0 (% SMOW! 30 G \ig (5o sMOW
(% SMOW) Cho ) SMOW) G )
-7.0 0.035 -7.0 -0.010
Model source body water output Model source body water output
RH (%) "0 0 (% 3" B L0 s
(% SMOW) A0 (% SMOW) SMOW) A0 (% SMOW)
0 2.5 -0.007 21.6 -0.204
1 2.5 -0.007 213 -0.204
2 2.6 -0.007 21.0 -0.204
3 2.6 -0.007 20.7 -0.204
4 -2.6 -0.007 20.4 -0.204
5 -2.6 -0.006 20.2 -0.203
6 -2.6 -0.006 19.9 -0.203
7 -2.6 -0.006 19.6 -0.203
8 2.7 -0.006 19.3 -0.203
9 2.7 -0.006 19.1 -0.202
10 2.7 -0.006 18.8 -0.202
11 2.7 -0.005 18.5 -0.201
12 -2.7 -0.005 18.2 -0.201
13 -2.8 -0.005 18.0 -0.201
14 -2.8 -0.005 17.7 -0.200
15 -2.8 -0.005 17.4 -0.200
16 2.8 -0.005 17.2 -0.199
17 2.8 -0.004 16.9 -0.198
18 2.8 -0.004 16.6 -0.198
19 29 -0.004 16.3 -0.197
20 -2.9 -0.004 16.1 -0.196
21 -29 -0.004 158 -0.196
22 -29 -0.004 155 -0.195
23 -29 -0.004 152 -0.194
24 29 -0.003 15.0 -0.194
25 3.0 -0.003 14.7 -0.193
26 3.0 -0.003 14.4 -0.192
27 3.0 -0.003 14.2 -0.191
28 -3.0 -0.003 13.9 -0.190
29 -3.0 -0.003 13.6 -0.189
30 -3.0 -0.002 13.4 -0.188
31 -3.1 -0.002 13.1 -0.187
32 3.1 -0.002 12.8 -0.186
33 3.1 -0.002 12.6 -0.185
34 3.1 -0.002 123 -0.184
35 3.1 -0.002 12.0 -0.183
36 -3.1 -0.002 11.7 -0.182
37 -32 -0.001 11.5 -0.181
38 =32 -0.001 11.2 -0.179
39 =32 -0.001 10.9 -0.178
40 232 -0.001 10.7 -0.177
41 =32 -0.001 10.4 -0.176
42 3.3 -0.001 10.1 -0.174
43 3.3 0.000 9.9 -0.173
44 -33 0.000 9.6 -0.172
45 -33 0.000 9.3 -0.170
46 -33 0.000 9.1 -0.169
47 -33 0.000 8.8 -0.167
48 3.4 0.000 8.6 -0.166
49 3.4 0.000 83 -0.164
50 34 0.001 8.0 -0.163
51 34 0.001 7.8 -0.161
52 -3.4 0.001 75 -0.160
53 -3.4 0.001 72 -0.158
54 -3.5 0.001 7.0 -0.156
55 -3.5 0.001 6.7 -0.155
56 3.5 0.001 6.4 -0.153
57 3.5 0.001 6.2 -0.151
58 3.5 0.002 59 -0.149
59 3.5 0.002 5.7 -0.148
60 -3.6 0.002 54 -0.146
61 -3.6 0.002 5.1 -0.144
62 -3.6 0.002 4.9 -0.142
63 -3.6 0.002 4.6 -0.140
64 3.6 0.002 4.4 -0.138
65 3.6 0.003 4.1 -0.136
66 -3.7 0.003 38 -0.134
67 3.7 0.003 3.6 -0.132
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Table S4.4: Minimum evaporation modeled data for the A'’O values of animals with minimum and

maximum WEI index with i ing Relative Humidity (RH)."
Minimum WEI animal® Maximum WEI animal
Model source water input Model source water input
3"o A0 (% SMOW! 30 G \ig (5o sMOW
(% SMOW) Cho ) SMOW) G )
-7.0 0.035 -7.0 -0.010
Model source body water output Model source body water output
RH (%) "0 0 (% 3" B L0 s
(% SMOW) A0 (% SMOW) SMOW) A0 (% SMOW)
68 -3.7 0.003 33 -0.130
69 -3.7 0.003 3.1 -0.128
70 3.7 0.003 2.8 -0.126
71 3.7 0.003 25 -0.124
72 -3.8 0.003 23 -0.122
73 -3.8 0.004 2.0 -0.120
74 -3.8 0.004 1.8 -0.118
75 -3.8 0.004 1.5 -0.115
76 -3.8 0.004 1.3 -0.113
77 -39 0.004 1.0 -0.111
78 -39 0.004 0.7 -0.108
79 -39 0.004 0.5 -0.106
80 -39 0.004 0.2 -0.104
81 -39 0.005 0.0 -0.101
82 -39 0.005 -0.3 -0.099
83 -4.0 0.005 -0.5 -0.097
84 -4.0 0.005 -0.8 -0.094
85 -4.0 0.005 -1.0 -0.092
86 -4.0 0.005 -1.3 -0.089
87 -4.0 0.005 -1.6 -0.087
88 -4.0 0.005 -1.8 -0.084
89 -4.1 0.005 -2.1 -0.081
90 -4.1 0.006 =23 -0.079
91 -4.1 0.006 -2.6 -0.076
92 -4.1 0.006 2.8 -0.073
93 -4.1 0.006 3.1 -0.071
94 -4.1 0.006 -33 -0.068
95 -42 0.006 -3.6 -0.065
96 -4.2 0.006 -3.8 -0.063
97 -4.2 0.006 -4.1 -0.060
98 -4.2 0.006 -4.3 -0.057
99 -4.2 0.007 -4.6 -0.054
100 -4.2 0.007 -4.8 -0.051

“ Model outputs for the maximum and minimum animalbody water triple oxygen isotopes are also
represented in the Fig. 4 and based on the model parameters from Hu et al. (in prep).

° Where an animal with a minimum WEI (water economy index) is one that must consume a lot of
water in different environments.

¢ Where an animal with a maximum WEI (water economy index) is one that need not consume a lot of
water in different environments.
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Sophie B. Lehmann

Birth Date: July 16" 1985

Birth Location: Toledo, Ohio, USA

Department of Earth and Planetary Sciences

The Johns Hopkins University, 301 Olin Hall, 3400 N. Charles Street, Baltimore, MD 21218
Phone: 1(419) 260-8866, Email: sophie.b.lehmann@gmail.com

Website: http://sites.krieger.jhu.edu/levin/people/sophie-b-lehmann/

RESEARCH INTERESTS

Evaluation of paleoclimate, paleovegetation and landscape using a multiproxy approach (e.g., isotopes,
sediments, paleosols, mapping). Terrestrial response to global climate change. Development and
application of methods in isotopic geochemistry to address questions about Earth history, including but not
limited to conventional stable isotopes, clumped isotopes, triple oxygen isotopes and utilizing radiogenic
isotopes for addressing questions of dating.

EDUCATION

Ph. D., Earth and Planetary Sciences, Johns Hopkins University, Baltimore Maryland, expected 2016
Thesis topic: Multiproxy reconstructions of Plio-Pleistocene climate, ecology and environment in the
western coast of South Africa and triple oxygen isotopes in tooth enamel.

Advisor: Naomi E. Levin

M. S., Geology, Miami University of Ohio, Oxford Ohio, 2012

Thesis: Climatic and tectonic implications of a mid-Miocene landscape: examination of the Tarapacd
Pediplain, northern Atacama Desert, Chile.

Advisor: Jason A. Rech

B. A., Geology, magna cum laude, The College of Wooster, Wooster Ohio, 2008

Thesis: Shallow marine paleoenvironments and paleocommunities of the Middle Jurassic (Callovian,
Upper Zohar Formation and Lower Matmor Formation) within Hamakhtesh Hagadol in Israel’s Negev
Desert.

Advisor: Mark A. Wilson

Study abroad, Geological Sciences, University of Oxford, UK, 2006 - 2007
Advisors: Hugh Jenkins and Martin Brasier

PROFESSIONAL EXPERIENCE

Research Assistant, Teaching Assistant, 2011 - present
Department of Earth and Planetary Sciences, Johns Hopkins University

Research and Teaching Assistant, 2008 - 2011
Department of Geology, Miami University of Ohio

Student Advisor, Wiles Wooster Tree-Ring Lab, 2007 - 2008

Teaching Assistant, 2007 - 2008
Department of Geology, The College of Wooster
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GRANTS, HONORS AND AWARDS

35th International Geological Congress Students and Early Career Scientists GSA Travel Grant, $3,500,
2016

Palmer Field Fund, Johns Hopkins University, $4,500, field and lab work in South Africa, 2014

Palmer Field Fund, Johns Hopkins University, $2,000, fieldtrip in Patagonia, 2014

Palmer Field Fund, Johns Hopkins University, $3,000, fieldwork in South Africa, 2012

NASA Graduate Fellowship, Sulfate soils and life on Earth and Mars, $90,000, 2011 (declined)

Phi Kappa Phi, Miami University of Ohio Chapter, 2010

Geological Society of America Graduate Grant, $2,690, 2010

Miami University of Ohio, Graduate Student Association, $500, 2009

Geological Society of America, Travel Grant, $600 each year, 2009 & 2010

College of Wooster, Ohio: Geology Departmental Honors & Independent Study Honors, 2008

College of Wooster Copland Fund, Independent Study, $2,000, National History Museum, London, 2008
The Robert W. McDowell Prize in Geology, The College of Wooster, 2008

College of Wooster Copland Fund, Independent Study, $2,000, fieldwork in Negev Desert, Israel, 2007
The Karl Ver Steeg Prize in Geology and Geography, The College of Wooster, 2007

Patricia E. Blosser Scholarship, The College of Wooster, 2005 - 2008

Edward S. Foster Scholarship, The College of Wooster, 2004 - 2008

PUBLICATIONS

Lehmann SB, Braun DR, Dennis KJ, Patterson DB, Stynder DD, Bishop LC, Forrest F, Levin NE, 2016,
Stable isotopic composition of fossil mammal teeth and environmental change in southwestern South
Africa during the Pliocene and Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 457,
396-408

Patterson DB, Lehmann SB, Matthews T, Levin NE, Stynder D, Braun DR, 2016, Stable isotope ecology
of Cape dune mole-rats (Bathyergus suillus) from Elandsfontein, South Africa: implications for

C, vegetation and hominin paleoecology in the Cape Floral Region. Palaecogeography, Palaeoclimatology,
Palaeoecology, 457; 409-421

Braun DR, Levin NE, Stynder D, Herries AIR, Archer W, Forrest F, Roberts DL, Bishop LC, Matthews
T, Lehmann SB, Pickering R, Fitzsimmons KE, 2013, Mid-Pleistocene hominin occupation at
Elandsfontein, Western Cape, South Africa. Quaternary Science Reviews, 82; 145-166.

Kirk-Lawlor NE, Jordan TE, Rech JA, Lehmann SB, 2013, Late Miocene to Early Pliocene
paleohydrology and landscape evolution of northern Chile, 19° to 20° S. Palaeogeography,
Palaeoclimatology, Palaeoecology, 387; 76-90.

Rech JA, Pigati JS, Lehmann SB, McGimpsey CN, Grimley DA, Nekola, JC, 2011, Assessing open-
system behavior in of "*C in terrestrial gastropod shells. Radiocarbon, 53; 325-335.

PUBLICATIONS — in preparation

Lehmann SB, Levin NE, Passey BP, Hu H, Miller JH, Hoppe KA, Arppe L, Hynek S, Cerling TE, in prep,
Triple oxygen isotopes in bioapatite: modern range, primary influences and potential geological
application, Target journals are Earth and Planetary Science Letters or Geology. Plan to submit in Fall
2016.
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Lehmann SB, Braun, DR, Sealy J, le Roux P, Zhu M, Levin NE, in prep, Strontium isotope ratios of fossil
herbivore and carnivore tooth enamel and the environment and ecology of mid-Pleistocene Elandsfontein
and southwestern South Africa. Target journals are Earth and Planetary Science Letters or
Palaeogeography, Palaeoclimatology, Palaeoecology. Plan to submit in Fall 2016.

ON-LINE REPORTS AND CONFERENCE PROCEEDINGS

Kirk-Lawlor NE, Jordan TE, Rech J, and Lehmann SB, 2012, Paleolago Tiliviche y sus relaciones
estratigraficas y paleoclimaticas, Cuenca Pampa del Tamarugal, I Region, Chile. Proceedings 13"
Congreso Geologico Chileno, 631-633.

Lehmann SB, Rech JA, 2009, NSF Vignette Online Contribution- Key Concepts in Geomorphology: Soils,
relict landscapes and paleoclimate in the Atacama Desert, Chile. http://serc.carleton.edu/41080.

PRESENTATIONS - first author only

Lehmann SB, Levin NE, Passey BH, Cerling TE, Hu H, 2016, Evaluating aridity using triple oxygen
isotopes in tooth enamel. 35" International Geological Congress, Cape Town, South Africa, 27 August — 4
September 2016

Lehmann SB, Levin NE, Passey BH, Cerling TE, Hu H, 2015, Triple oxygen isotopes in teeth:
implications for reconstructing paleoaridity. Geological Society of America Annual Meeting, Baltimore,
Maryland, USA, 1-4 November 2015. Geological Society of America Abstracts with Programs. 47(7); 285

Lehmann SB, Levin NE, Braun DR, Dennis KJ, Stynder DD, Bishop LC, Forrest F, 2014, A Plio-
Pleistocene record of vegetation, climate, and hydrology in western South Africa using carbon and oxygen
isotopic composition of fossil tooth enamel. 4” Southern Deserts Conference, Mendoza, Argentina,
November 2014. Program page 17

Lehmann SB, Patterson DB, Braun DR, Stynder DD, Matthews T, Levin NE, 2013, Regional and
landscape-scale Pleistocene paleoecology using carbon and oxygen isotopes from in situ macro- and
micromammal tooth enamel at Elandsfontein, Western Cape, South Africa. Society of Vertebrate
Paleontology Annual Meeting, Los Angeles CA, Oct 30-Nov 2, 2013. Journal of Vertebrate Paleontology
33: Program and Abstracts, p. 161

Lehmann SB, Levin NE, Dennis KJ, Bishop LC, Stynder DD, Braun DR, 2013, Trends in climate and
vegetation of Plio-Pleistocene South Africa: using fossil enamel isotopic data to address questions of
regional environmental change. Geological Society of America Annual Meeting, Denver, CO, October
2013. Abstract 187-15. Geological Society of America Abstracts with Program. 45(7): 458

Lehmann SB, Levin NE, Stynder DD, Bishop LC, Forrest F, Braun DR, 2012, New tooth enamel isotopic
data from the West coast of South Africa and a comparison of terrestrial and marine records of Plio-
Pleistocene climate change. Annual Meeting of the American Geophysical Union, San Francisco CA,
December 2012. Abstract PP51B-2122

Lehmann SB, Rech JA, Currie BS, Jordan TE, Riquelme R, 2010, Climatic and tectonic implications of a
mid Miocene landscape: examination of the Tarapaca Pediplain, northern Atacama Desert, Chile.
Geological Society of America Annual Meeting, Denver CO, October 2010. Abstract 251-6. Geological
Society of America Abstracts with Program 42(5): 597

Lehmann SB, Rech JA, Currie BS, Jordan TE, Riquelme R, 2009, Redefining the Tarapacé Pediplain;
analysis of relict soils in the northern Atacama Desert, Chile. Geological Society of America Annual
Meeting, Denver CO, October 2009. Abstract 244-33. Geological Society of America Abstracts with
Programs 41(7): 624 136



Lehmann SB, Belding E, Wiles GC, Brush N, 2007, Development and climatic analysis of a 465-year tree
ring chronology from northeast Ohio. Geological Society of America Annual Meeting, Denver CO, October
2007. Abstract 237-6. Geological Society of America Abstracts with Program 39(6): 637

Lehmann SB, Wiles GC, Cook ER, 2006, Use of stream flow and precipitation records for validating
dendrochronological findings related to climate in Northeast Ohio. Geological Society of America North-
Central Session, Akron OH, April 2006

Lehmann SB, Wiles GC, Cook ER. 2006. Extending drought-sensitive oak tree-ring chronologies by
dating historical structures in Northeastern Ohio. Geological Society of America North Central Section,
Akron Ohio, April 2006. Abstract 20-5. Geological Society of America Abstracts with Programs, North-
Central Section 38(4): 27

Lehmann SB, Wiles GC, 2005, Dendroarchaeology: tree ring dating of historical structures in
Northeastern Ohio. Midwest Archaeological Conference, Dayton, OH, October 20-23, 2005. Program and
Abstracts page 68. http://www.midwestarchaeology.org/storage/2005Program.pdf

FIELD EXPERIENCE

Elandsfontein, Western Cape, South Africa, 2012 - 2016

Mapping, stratigraphy, and sample collection for isotopic analysis for Pleistocene paleoecology and
various dating techniques

Montana, Wind River and Absaroka ranges, 2010
Miami University of Ohio Field Camp

Tarapacé Pediplain, northern Atacama Desert, Chile, 2008 and 2009
Landscape mapping of relict and buried landscapes, and collection of Neogene paleosol samples for
elemental and isotopic geochemistry, petrography and detrital zircon dating

Negev Desert, Israel, 2007
Stratigraphic mapping and fossil collection for Jurassic shallow marine community ecological and
paleontological analysis

Assynt, Scotland, and Pembrokeshire, Wales, 2006 and 2007
University of Oxford field camp

Glacier Bay National Park, Alaska, 2006
Field collection of subfossil trees for Holocene paleoclimatology and dendrochronology

Northeast and Southwest Ohio, 2006 - 2008
State-wide sampling of Oaks from historical structures and old-growth forests for dendrochronological and
paleoprecipitation studies

Northern Kentucky, 2006
Outcrop collection for paleontological studies of shallow marine systems
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LABORATORY EXPERIENCE

Levin & Passey Stable Isotope Laboratory, Johns Hopkins University, 2011 - 2016

Conventional and high precision stable isotopic measurements and method development, including triple
oxygen isotopes and clumped isotopes of carbonates and bioapatites using a common acid bath peripheral
and dual inlet mass spectrometer, laser ablation GC/IRMS system and cavity ring-down spectroscopy.
Petrographic microscopy of cements and sand for sedimentological description and determination of
environmental processes;, XRD analysis of fossil enamel to determine mineralogical composition and
degree of diagenesis.

Inductively-Coupled Mass Spectrometry (ICP-MS) Facilities, University of Cape Town, 2014
Clean lab sample preparation for *’Sr/*°Sr determination in tooth enamel and rocks

Stable Isotope Ratio Facility for Environmental Research (SIRFER), University of Utah, 2013

Training in sample preparation (leaf water extraction, carbonate sampling, CO; digestion and glass tube
formation), instrument use (IRMS and cavity ring-down mass spectroscopy) and spectrometer peripheral
use (TC/EA, GasBench) for stable isotope research in geology, ecology and environmental science

Rech Geochemistry Laboratory, Miami University of Ohio, 2008 - 2011

Off line extraction of carbonate CO, and preparation of hyperarid paleosol samples for HPLC and direct
current plasma (DCP) analysis

Zoology Microscopy Laboratory, Miami University of Ohio, 2008 - 2011

Electron microscopy (scanning EM: EDAX and BSE), transmission EM, light microscopy sample
preparation and imaging

LaserChron Center, University of Arizona, 2009 & 2010
Zircon grain extraction and LA-ICPMS

Wiles Tree-Ring Laboratory, The College of Wooster, 2005 - 2008
Student manager, tree cross-section and core preparation, measurement and analysis of tree ring width

SERVICE

Student Organizer, Annual Geological Society of America meeting, 2015

Session Co-Chair, Annual Geological Society of America meeting, 2015
Session Title: African environments across space and through time: integrating modern and ancient
climate data for insights into terrestrial ecosystem dynamics.

Department Representative in Graduate Organization, Johns Hopkins University, 2011 - 2016

TEACHING AND MENTORING EXPERIENCE
Preparing for an Academic Career in the Geosciences. Madison, Wisconsin, Summer 2015

Science Education Research Center (Carleton College) workshop on career development and teaching
skills

Johns Hopkins University, Maryland, 2014-2015
Formation of lab course materials and syllabus and attendance at an introductory teaching course
“Introduction to Teaching at the College Level”

Student mentor for undergraduates

Johns Hopkins University, sediment description and preparation, protocol development, 2013 - 2015
Miami University of Ohio, sample preparation, gastropod mineral composition and SEM imaging, 2009
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The College of Wooster, Ohio, 2005 - 2008

Wiles Wooster Tree-Ring Lab Student Advisor for College of Wooster Environmental Analysis and Action
Program and Research Project: Data collection and analysis for dating historical structures in NE and SW
Ohio, trained students and community members basic techniques of dendrochronological collection and
analysis, designed payment structure and wrote reports for clients during an entrepreneurial study and
established a database of tree-ring widths from local Oaks

Teaching Assistant in courses (format is given as Course, the Professor, Date)

Johns Hopkins University, Department of Earth and Planetary Sciences
Introduction to Sustainability, Cindy Parker, Spring 2015

Guided Tour of the Solar System, Bruce Marsh, Spring 2013

Energy Resources in the Modern World, Linda Hinnov, Fall 2012, 2013 and 2014

Miami University of Ohio, Department of Geology
Introduction to Geology, Lab Course, 2009 - 2010
Introduction to Geology, Lecture Course, Brian Currie, 2009 - 2010

College of Wooster, Ohio, Department of Geology

Paleoclimate, Johannes Koch, 2007
Geomorphology and Hydrology, Johannes Koch, 2008
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