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Abstract

My thesis work focuses on developing reliable and innovative statistical

methods for improving analyses of biomedical data. I address two types of

questions: improving precision of randomized clinical trials and identifying

brain networks using brain imaging. For randomized clinical trials, we proved

the statistical validity of two commonly used methods to improve precision

while being robust to misspecification of models used in the analysis. We

demonstrated our results by re-analyzing completed randomized trials and

showed that substantial precision gain can be achieved by these two meth-

ods. For brain imaging, we proposed a consistent estimator for the brain net-

works that are common across people. Applied to a motor-task functional mag-

netic resonance imaging data set, our estimator identifies meaningful brain

networks that are consistent with current scientific understandings of motor

networks.

Primary Readers: Ramin Mojtabai, Bryan Lau, Xi Luo, Brian Caffo (Co-
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Chapter 1

Introduction

My thesis research lies in two areas: (1) causal inference for clinical trials

and (2) statistical modeling for brain imaging. In causal inference for clinical

trials, the open question I address is how to perform model-robust inference,

i.e. valid inference without requiring a correct model, and how to improve pre-

cision when estimating a treatment effect. In the analysis of brain imaging

data, I study the identification of brain networks that are common among peo-

ple. These two areas of my research differ substantially. However, a common

component of my research is that the proposed statistical methods improve the

existing methods both empirically (via simulation and real data analysis) and

theoretically (by asymptotic results, i.e., consistency and asymptotic variance).

In addition, both areas have connections to what is classically called “adjust-

ment”. In the randomized trial setting, we seek robust and theoretically valid

1



CHAPTER 1. INTRODUCTION

forms of adjustment. In brain imaging we exploit parsimony.

Chapter 2 focuses on ANCOVA in randomized clinical trials. ANCOVA in-

volves fitting a linear regression model for the primary outcome on intercept,

treatment allocation and baseline variables. The estimated regression coeffi-

cient of the treatment allocation term is the ANCOVA estimator of the average

treatment effect (Yang and Tsiatis, 2001). According to two surveys (Pocock

et al., 2002; Austin et al., 2010), there is confusion regarding the statistical va-

lidity of ANCOVA when the linear model is misspecified. This is an important

question, because model misspecification is almost unavoidable in practice. We

clarify this issue by proving that the ANCOVA estimator is robust to arbitrary

model misspecification and explain how ANCOVA can reduce variance. Our

results apply to analyses of phase 2 or 3 trials and can help reduce the re-

quired sample size to achieve a desired power. Applied to randomized trials

for mild cognitive impairment, schizophrenia, and depression, we demonstrate

that ANCOVA brings a 4% to 32% precision gain.

Chapter 3 concerns stratified randomization and covariate adjustment, which

are two commonly used methods for improving precision and power in clinical

trials. Stratified randomization refers to a randomization procedure that, by

design, attempts to create balance across study arms in strata of baseline vari-

ables. Covariate adjustment means adjusting for baseline variables in estima-

tion at the end of the trial (or at interim analyses). According to a survey by

2



CHAPTER 1. INTRODUCTION

Kahan and Morris (2012), many trials do not fully capture the combined preci-

sion gain from these two methods, which may lead to increased sample size or

prolonged trial duration. We derive consistency and asymptotic normality for

a large class of estimators that involves stratified randomization and covariate

adjustment. We show that these two methods can lead to substantial gains

in precision and power by re-analyzing three trials of substance use disorder

treatments, where the variance reduction due to stratified randomization and

covariate adjustment ranges from 1% to 36%. Our results are most useful in

improving precision of phase 2 or 3 trials and can handle a variety of outcome

types, repeated measures outcomes and missing outcome data.

Chapter 4 considers a problem of jointly modeling multiple covariance ma-

trices, assuming a proportion of eigenvectors to be shared across while the

rest are individual-specific. This problem is motivated by functional magnetic

resonance imaging (fMRI) data, where correlations among brain regions form

covariance matrices, and our goal is to identify common brain networks (i.e.

shared eigenvectors), which represent correlations in functional brain mea-

sures consistent across subjects. We solve this problem by proposing consistent

estimators of the shared eigenvectors and the number of the shared eigenvec-

tors. In a data set of motor-task fMRI, our estimator identifies meaningful

brain networks that are consistent with current scientific understandings of

motor networks during a motor paradigm. In general, our proposed estimator

3



CHAPTER 1. INTRODUCTION

can help better understand brain functions and is also applicable to similar

questions in other areas, such as genomics and economics.

Chapter 5 discusses future directions of Chapters 2-4.

4



Chapter 2

Analysis of Covariance

(ANCOVA) in Randomized Trials:

More Precision and Valid

Confidence Intervals, Without

Model Assumptions

The content of this chapter is reproduced from Wang et al. (2019) available

at https://doi.org/10.1111/biom.13062.
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CHAPTER 2. ANCOVA ROBUSTNESS AND PRECISION GAIN IN
RANDOMIZED TRIALS

2.1 Introduction

Pocock et al. (2002), in a survey of 50 randomized trial reports, found that 36

used covariate adjustment, but only 12 emphasized adjusted over unadjusted

estimators. They stated that “the statistical properties of covariate-adjustment

are quite complex and often poorly understood, and there remains confusion as

to what is an appropriate statistical strategy.” Austin et al. (2010), in a paper

titled “A substantial and confusing variation exists in handling of baseline co-

variates in randomized controlled trials: a review of trials published in leading

medical journals”, surveyed 114 randomized trial articles and found that only

39 of them presented an adjusted analysis.

We focus on the analysis of covariance (ANCOVA) estimator, referred to as

“ANCOVA I” by Yang and Tsiatis (2001). It involves fitting a linear regression

model for the primary outcome with intercept and main terms for the treat-

ment assignment and baseline variables. For trials with continuous-valued

or change score outcomes, covariate adjustment often involves the ANCOVA

estimator. We use the term “covariate adjustment” to refer to the ANCOVA

estimator.

Concerns have been raised about the validity of ANCOVA for analyzing ran-

domized trial data when the linear model is misspecified. For example, Krae-

mer (2015) states “The linear model used for covariate adjusting (e.g., analysis

6



CHAPTER 2. ANCOVA ROBUSTNESS AND PRECISION GAIN IN
RANDOMIZED TRIALS

of covariance) assumes ... that there is no interaction between the covariates

and the treatment effect.” and “Given these risks for bias, ANCOVA should

not generally be used for such adjustment.” Ludvigsson et al. (2008) and Mon-

talban et al. (2017) both checked whether data is normally distributed before

applying ANCOVA and Ludvigsson et al. (2008) state that “ANCOVA involves

the assumption of normally distributed response data and homogeneity of vari-

ances.” These authors are wise to have the general concern about model mis-

specification, since in many contexts it can lead to biased or uninterpretable

analyses. However, when the ANCOVA estimator is used to analyze random-

ized trial data, it has special robustness properties that obviate the above con-

cerns.

Yang and Tsiatis (2001) proved that the ANCOVA estimator is consistent

under arbitrary misspecification of the linear model. We build on this result by

proving that the standard error, computed as if the linear model were correct,

is also consistent. Therefore, not only estimates but also confidence intervals

and hypothesis tests conducted as if the linear model were correct are asymp-

totically valid even when the linear model is arbitrarily misspecified, e.g., when

the true relationships between variables are non-linear, and/or when there is

treatment effect heterogeneity. This is important since it is not possible to rule

out all types of model misspecification.

We attempt to provide intuition behind the precision gains from covariate

7



CHAPTER 2. ANCOVA ROBUSTNESS AND PRECISION GAIN IN
RANDOMIZED TRIALS

adjustment by showing a direct analogy to ordinary least squares linear re-

gression. We prove that the asymptotic variance reduction (i.e., precision gain)

due to covariate adjustment equals the fraction of variance in the primary out-

come explained by the baseline variables, beyond what is already explained by

the main effect of treatment. This holds under arbitrary model misspecifica-

tion and leads to a simple formula for estimating the variance reduction due to

ANCOVA. This variance reduction is important since it equals the reduction in

the required sample size to achieve a desired power.

The above results build on key ideas from Tsiatis et al. (2008); Rubin and

van der Laan (2008); Moore and van der Laan (2009a); Moore et al. (2011);

Rubin and van der Laan (2011); Jiang et al. (2018); Tian et al. (2019). As in

their work, our results are asymptotic, i.e., they hold in the limit as sample size

grows to infinity while the set of covariates is fixed. A special case of the results

of Bugni et al. (2018) coincides with a special case of our result in Section 4.2

(explained in that section).

We present data analyses based on three completed randomized clinical tri-

als for treatment of mild cognitive impairment (MCI) (Petersen et al., 2005),

schizophrenia (Jarskog et al., 2013), and depression (Treatment for Adoles-

cents With Depression Study (TADS) Team, 2004), respectively. By analyzing

these data sets, we demonstrate how covariate adjustment can reduce vari-

ance, have greater added value in large trials in terms of reducing the re-

8
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RANDOMIZED TRIALS

quired sample size to achieve a desired power, and increase power even when

by chance there is perfect or near-perfect balance across arms in the baseline

variables (due to the ANCOVA estimator’s smaller standard error).

In the next section, we describe the three trials. In Section 2.3, we define

the unadjusted estimator, ANCOVA estimator, and covariate imbalance. In

Section 2.4, we present our main results. Illustrations are provided in Sec-

tion 2.5, where trial analyses are presented. Some practical recommendations

for applying covariate adjustment are given in Section 2.6.

2.2 Three Completed Randomized Clin-

ical Trials

2.2.1 Mild Cognitive Impairment (MCI) Trial

The “Vitamin E and Donepezil for the Treatment of Mild Cognitive Impair-

ment” (MCI) phase 3 randomized trial was completed in 2004 (Petersen et al.,

2005). The goal was to estimate the effect of a drug treatment on preventing

progression from MCI to Alzheimer’s disease. Participants were randomized to

three arms: the drug Donepezil, Vitamin E, and placebo control. We compare

the Donepezil arm (253 participants, 33% missing outcomes) to the placebo

arm (259 participants, 28% missing outcomes). The primary outcome was time

9
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to progression to Alzheimer’s disease. In order to apply the ANCOVA estima-

tor, which requires a continuous or change score outcome, we instead use the

change in Clinical Dementia Rating-sums of boxes score (CDR-SB) between

baseline and 18 months. We use the following baseline variables for adjust-

ment: age, gender, Alzheimer’s Disease Assessment Scale (ADAS)-cognitive

score, Mini–Mental State Examination (MMSE) score, Activities of Daily Liv-

ing total score, Global Deterioration scale, and CDR-SB.

2.2.2 Metformin for Weight Loss (METS) Trial

The “Metformin for weight loss and metabolic control in overweight out-

patients with schizophrenia and schizoaffective disorder” trial, referred to as

“METS”, is a phase 4 randomized trial completed in 2010 (Jarskog et al., 2013).

Participants were randomly assigned to two arms: Metformin (treatment, 75

participants, 15% missing outcomes) and placebo (control, 71 participants, 14%

missing outcomes). The primary outcome was weight loss over 16 weeks. We

use this outcome and the following baseline variables: age, gender, Clinical

Global Impressions (CGI) severity rating score, tobacco use, illicit drug use,

alcohol use, weight and body mass index (BMI).

10
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2.2.3 Treatment for Adolescents with Depression

Study (TADS)

The “Treatment for Adolescents with Depression Study” (TADS) is a phase

3, four-arm, randomized trial completed in 2003 (Treatment for Adolescents

With Depression Study (TADS) Team, 2004). The goal was to evaluate cognitive-

behavioral therapy (CBT) and Fluoxetine (FLX), each alone and combined (CMB),

for treating major depressive disorder in adolescents (age 12–17). Participants

were randomized to four arms: FLX only (109 participants, 15% missing out-

comes), CBT only (111 participants, 29% missing outcomes), combined (CMB,

107 participants, 16% missing outcomes), and placebo (112 participants, 20%

missing outcomes). The co-primary outcomes were the change in Children’s

Depression Rating Scale-Revised (CDRS-R) score and improvement of Clinical

Global Impressions (CGI) severity rating score at 12 weeks. We focus on the

former outcome and adjust for the following baseline variables: age, gender,

CDRS-R score, CGI severity rating score, Children’s Global Assessment Scale

score (CGAS), Reynolds Adolescent Depression Scale total score (RADS), sui-

cide ideation score, current major depressive episode duration, and comorbidity

(indicator of any other psychiatric disorder except dysthymia).

11
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2.3 Definitions

2.3.1 Estimators of Average Treatment Effect

We focus on randomized clinical trials where each participant contributes

the generic data vector (W , A, Y ), where W is a k × 1 column vector of prede-

fined baseline variables, A is the study arm assignment, and Y is the outcome.

We assume that Y is continuous or a change score (difference between a score

measured at follow-up and baseline). We assume the study arm assignment

indicator A is binary (A = 1 for treatment and A = 0 for control). For trials

with more than 1 treatment (e.g., TADS), we consider each treatment arm vs.

control comparison separately.

The components of the baseline vectorW can be continuous, binary, ordinal

and/or categorical. All variables are assumed to be bounded. We assume that

the components of (1,W t) are linearly independent, i.e., no component is a lin-

ear combination of the others; otherwise at least one component is redundant

and can be dropped from the corresponding design matrix.

For each participant i = 1, . . . , n, we observe the data vector (Wi, Ai, Yi),

which we assume to be an independent, identically distributed draw from the

unknown, joint distribution on the generic data vector (W , A, Y ). The only as-

sumption that we make about the joint distribution is that the study arm A

is randomly assigned with equal probability to treatment or control indepen-

12
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dent of the baseline variables W . This holds by design in trials using simple

randomization with equal probability of assignment to each study arm, which

is the type of trial design that we consider throughout. The assumptions in

this paragraph do not hold in trials that use stratified block randomization or

covariate-adaptive randomization, which are discussed in Section 2.6.

The goal is to estimate the population average treatment effect ∆ = E[Y |A =

1] − E[Y |A = 0], i.e., the difference between population means if everyone in

the study population had been assigned to treatment versus control. We fo-

cus throughout on estimating the average treatment effect ∆, since that is the

principal quantity of interest in the primary efficacy analysis of randomized

trials (Tsiatis et al., 2008). An estimator of the average treatment effect ∆ is

called robust to arbitrary model misspecification if it is consistent under the

aforementioned assumptions. These assumptions do not put any restrictions

on the joint distribution ofW , A, Y other than A being randomly assigned with

equal probability to each arm independent of the baseline variables W . E.g.,

the baseline variables can be correlated with each other and the treatment

can be more/less effective for different subpopulations defined by the baseline

variables.

Denote the unadjusted estimator (which ignores baseline variables) of the

13
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average treatment effect ∆ by

∆̂unadj =

∑n
i=1 YiAi∑n
i=1Ai

−
∑n

i=1 Yi(1− Ai)∑n
i=1(1− Ai)

.

The unadjusted estimator is consistent, i.e., converges to ∆ as the sample size

goes to infinity.

The ANCOVA estimator of the average treatment effect ∆ adjusts for chance

imbalance between study arms in W . It is computed by fitting the following

linear regression model

E[Y |A,W ] = β0 + βAA+ βtWW , (2.1)

using ordinary least squares (OLS). Denote the estimated coefficients by

β̂0, β̂A, β̂W . The ANCOVA estimator ∆̂ancova of the average treatment effect ∆ is

the estimated coefficient β̂A.

According to Huitema (2011), the ANCOVA model assumes: (i) a linear re-

lationship between the outcome and the other variables, i.e., Y = β0 + βAA +

βtWW + ε, where ε is the error term, and (ii) the distribution of the error ε

is normal with mean 0 conditional on A and W . These assumptions may fail

to hold if there is an interaction between treatment and covariate (Kraemer,

2015), if there are unmeasured prognostic covariates that are correlated with

W (Austin et al., 2010), or if the outcome is non-linearly related to the covari-

14
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ates. Fortuitously, the key statistical properties of ANCOVA (consistency of

the point estimate and standard error) hold under any of these types of model

misspecification.

Yang and Tsiatis (2001) proved that the ANCOVA estimator is consistent

for ∆, i.e., β̂A converges to ∆ in probability, even under arbitrary misspecifica-

tion of the linear model (2.1). Furthermore, the ANCOVA estimator is asymp-

totically normal and we denote its asymptotic variance as V ar∗(∆̂ancova), i.e.,

n1/2(∆̂ancova −∆) converges to a normal distribution with mean 0 and variance

V ar∗(∆̂ancova). Yang and Tsiatis (2001) also proved that when the probability of

being randomized to each study arm is equal (as assumed here), the ANCOVA

estimator has asymptotic variance at most that of the unadjusted estimator; if

any baseline variable is correlated with the outcome, then ANCOVA is strictly

more precise.

We use the ANCOVA estimator ∆̂ancova = β̂A to estimate the average (also

called marginal) treatment effect ∆ = E[Y |A = 1]−E[Y |A = 0], which is not as-

sumed to be constant across strata ofW . We emphasize this to avoid confusion,

since the conventional interpretation of the estimated coefficient β̂A is the con-

ditional treatment effect. That interpretation does not apply when the model

is misspecified. For example, when the treatment effect differs within strata of

W , then the conditional treatment effect is not a single number but instead is

a function mapping each stratum of W to the corresponding effect. Though it
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is of independent interest to estimate the conditional treatment effect, this is

often much more challenging and requires more assumptions than estimating

the marginal treatment effect ∆ (since it involves estimating a function rather

than a single number). The reason for considering baseline variables at all

when estimating the marginal treatment effect ∆ is that this can improve pre-

cision and power by accounting for chance imbalances across study arms (Yang

and Tsiatis, 2001).

The imbalance I between study arms in the baseline variables W , called

chance imbalance or covariate imbalance, is the difference between sample

means ofW comparing treatment versus control arms: I =
∑n

i=1 AiWi /
∑n

i=1 Ai−∑n
i=1(1 − Ai)Wi /

∑n
i=1(1− Ai). Although A is independent of W by design, in

any realization the baseline variables can be imbalanced.

2.3.2 ANCOVA Variance Decomposition and Def-

inition of R2
Y−∆A∼W

We review properties of OLS regression and define a quantity (R2
Y−∆A∼W )

that plays a key role in our main results in Section 2.4. All results below hold

under arbitrary model misspecification.

Consider regressing a generic response variable Z on a covariate vector X

using the linear model E[Z|X] = β0 + βtXX. We assume that all variables are
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bounded and the components of (1,X t) are linearly independent. If the model

is misspecified, i.e., if for every possible β0,βX we have E[Z|X] 6= β0 + βtXX,

then the OLS estimator β̂0, β̂X (based on independent, identically distributed

vectors (Xi, Zi) : i = 1, . . . , n) still converges to a limit, denoted β0,βX . The

variance of Z decomposes as V ar(Z) = V ar(β0 + βtXX) + V ar(Z − β0 − βtXX),

where β0 + βtXX is the predicted response and Z − β0 − βtXX is the residual.

In other words, the response variance is the sum of the prediction variance and

residual variance. The fraction of the variance of Z explained by covariates

X, denoted R2
Z∼X , is defined as 1− V ar(Z − βtXX)/V ar(Z) (where we omit the

intercept β0 here and below since it does not impact the variance).

We apply the above variance decomposition to the linear regression model

(2.1) that is used in computing the ANCOVA estimator. Let (βA,βW ) denote

the limit in probability of the OLS estimator (β̂A, β̂W ) for the linear model (2.1)

as sample size n goes to infinity. Our interest is in the variance in the out-

come Y explained by baseline variables W , beyond what is already explained

by treatment A. Therefore, we set the response to be Z = Y − βAA and re-

gressor to be X = W . The following variance decomposition, analogous to the

decomposition of V ar(Z) above, is proved in the Supporting Information:

V ar(Y − βAA) = V ar(βtWW ) + V ar(Y − βAA− βtWW ). (2.2)
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The corresponding fraction of the variance in the outcome Y explained by the

baseline variables W , beyond what is already explained by (the main effect of)

treatment A, is denoted by

R2
Y−∆A∼W = 1− V ar(Y − βAA− βtWW )/V ar(Y − βAA). (2.3)

The subscript in R2
Y−∆A∼W is to indicate that this R-squared represents the

fraction of variance of Y −∆A explained byW , where we made the substitution

βA = ∆ on the right side of (2.3), which holds by the consistency result of Yang

and Tsiatis (2001).

The importance of R2
Y−∆A∼W is that, as we show below, it is identical to the

asymptotic variance reduction (equivalently, the sample size reduction) com-

paring the ANCOVA estimator to the unadjusted estimator, and that this holds

under arbitrary misspecification of (2.1). This result builds on fundamental

ideas from Rubin and van der Laan (2008); Moore and van der Laan (2009a) as

described below.
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2.4 R2
Y−∆A∼W and the Relationship Among

Unadjusted Estimator, ANCOVA Es-

timator, and Covariate Imbalance,

Under Model Misspecification

All results below hold under arbitrary model misspecification. Our first re-

sult, in Section 2.4.1, is an equivalence between the ordinary least squares

variance decomposition (2.2) and a variance decomposition relating the un-

adjusted estimator, ANCOVA estimator, and covariate imbalance. Second, in

Section 2.4.2, we show that the variance estimator for ANCOVA computed by

standard statistical software is consistent. Our third result, in Section 2.4.3,

is a simple formula for the variance reduction (equivalently, the sample size

reduction) due to covariate adjustment. These results build on ideas from prior

work as described below.
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2.4.1 Connecting OLS Regression to the Rela-

tionship Among Unadjusted Estimator, AN-

COVA Estimator, and Covariate Imbalance

Jiang et al. (2018) proved the following relationship among the unadjusted

estimator ∆̂unadj, ANCOVA estimator ∆̂ancova, and chance imbalance I:

∆̂unadj ≈ βtW I + ∆̂ancova. (2.4)

(Formally, the difference between the left and right sides of the above display,

after multiplying by n1/2, converges to 0 in probability.) They also showed the

following variance decomposition:

V ar∗(∆̂unadj) = V ar∗(βtW I) + V ar∗(∆̂ancova), (2.5)

where V ar∗ denotes asymptotic (i.e., large sample) variance.

We show that the above variance decomposition among the unadjusted es-

timator, chance imbalance, and ANCOVA estimator is identical to the variance

decomposition (2.2) for OLS, under arbitrary model misspecification. Specifi-

cally, we prove in the Supporting Information that each term in (2.5) equals

4 times the corresponding term in (2.2), i.e., V ar∗(∆̂unadj) = 4V ar(Y − βAA),
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V ar∗(βtW I) = 4V ar(βtWW ), and V ar∗(∆̂ancova) = 4V ar(Y − βAA− βtWW ). This

is summarized in Figure 2.1, where the first row is the variance decomposition

in OLS, the second row is the variance decomposition of ∆̂unadj from Jiang et al.

(2018), and our contribution is to connect them by proving equality of quan-

tities in the same column. When model (2.3.1) is misspecified, all equalities

in Figure 2.1 still hold. These relationships are used to prove the results in

Sections 2.4.2 and 2.4.3.

2.4.2 Robustness of the ANCOVA Variance Esti-

mator to Arbitrary Model Misspecification

Consider the ANCOVA model-based variance estimator for ∆̂ancova that is

output by standard statistical software such as ‘summary.lm’ in R or ‘proc reg’

in SAS, which we denote by V̂ ar(∆̂ancova). The formula for V̂ ar(∆̂ancova) is

V̂ ar(∆̂ancova) =
V̂ ar(Y − β̂0 − β̂AA− β̂tWW )

(n− 1)[V̂ ar(A)− Ĉov(W , A)tV̂ ar(W )−1Ĉov(W , A)]
(2.6)

where on the right side V̂ ar, Ĉov are the sample variance and sample covari-

ance, respectively, where degrees of freedom are taken into account. (See the

Supporting Information for precise definitions of these.) The following theorem

shows that the above variance estimator is robust to arbitrary model misspec-
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ification. (See the Supporting Information for proof.)

Theorem 1. Given the assumptions in Section 2.3.1, which do not assume

that the linear model (2.1) is correctly specified, n times the estimated variance

V̂ ar(∆̂ancova) converges in probability to the true asymptotic variance V ar∗(∆̂ancova)

of the ANCOVA estimator ∆̂ancova.

The above theorem implies that confidence intervals and Wald-type hypothe-

sis tests conducted as if the linear model were correct are asymptotically valid

even when the linear model is arbitrarily misspecified. The 1 − α confidence

interval for the coefficient on the A term in (2.1) that is output by the afore-

mentioned, standard linear regression software is

(
∆̂ancova − tn−p,α/2

√
V̂ ar(∆̂ancova), ∆̂ancova + tn−p,α/2

√
V̂ ar(∆̂ancova)

)
, (2.7)

where tn−p,α/2 is the α/2-quantile of the t-distribution with n − p degrees of

freedom where p is the number of coefficients in the linear model (2.1). For

large n and fixed p, the quantile tn−p,α/2 is approximately the α/2-quantile of

the standard normal distribution. It follows from the above theorem that the

above display is an asymptotically valid confidence interval for the average

treatment effect ∆, under arbitrary model misspecification.

Bugni et al. (2018) focused on trials using covariate-adaptive randomiza-

tion, but their results also have implications for simple randomization as con-
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sidered here. In particular, the special case of the above theorem where W is a

single, categorical variable follows from Theorem 4.3 and Remark 4.6 of Bugni

et al. (2018).

2.4.3 R2
Y−∆A∼W Equals Precision Gain (and Sam-

ple Size Reduction) Due to Adjustment, Even

Under Arbitrary Model Misspecification

Borm et al. (2007) and Rubin and van der Laan (2008) connect the R-

squared from regressing Y on W to the variance reduction due to ANCOVA,

while Moore and van der Laan (2009a) and Moore et al. (2011) make a similar

connection in the context of binary outcomes and estimators based on logistic

regression models. Each of the aforementioned approaches requires conditions

(such as the linear model being correctly specified or that ∆ = 0) or requires

additional factors to connect the R-squared to the variance reduction due to co-

variate adjustment. (See the Supporting Information for more details.) Build-

ing on key ideas from their approaches, we prove that the R-squared R2
Y−∆A∼W

equals the variance reduction due to ANCOVA without requiring these condi-

tions or extra factors; this R-squared (which differs from the prior work above

by incorporating A) is robust to arbitrary model misspecification.

It follows from the relationships in Figure 2.1 that the fraction R2
Y−∆A∼W of
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the variance in the outcome Y explained by the baseline variables W , beyond

what is explained by the treatmentA, equals the asymptotic variance reduction

due to ANCOVA, i.e.,

R2
Y−∆A∼W = 1− V ar(Y − βAA− βW tW )

V ar(Y − βAA)
= 1− V ar∗(∆̂ancova)

V ar∗(∆̂unadj)
. (2.8)

The first equality is the definition of R2
Y−∆A∼W , and the second shows that

R2
Y−∆A∼W equals the variance reduction due to ANCOVA (expression on the

right). The rightmost expression, by definition, equals one minus the asymp-

totic relative efficiency (also called Pitman efficiency) comparing the unad-

justed to the ANCOVA estimator.

In practice, R2
Y−∆A∼W can be estimated by

R̂2
Y−∆A∼W = 1− V̂ ar(∆̂ancova)/V̂ ar(∆̂unadj), where V̂ ar(∆̂ancova) is the variance of

the ANCOVA estimator output by standard statistical software as in (2.6), and

V̂ ar(∆̂unadj) is the variance of the unadjusted estimator estimated analogously

(by regressing Y on A and an intercept).

The variance reduction (2.8) due to ANCOVA is important since it equals

the fractional sample size reduction that can be achieved through covariate

adjustment when holding the desired power fixed, asymptotically. A variance

reduction of p% means that the sample size required to achieve a desired power

is also reduced by p%. Therefore, R̂2
Y−∆A∼W can be used to estimate the bene-
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fits of covariate adjustment in terms of sample size reduction. The R̂2
Y−∆A∼W

values from our data sets range from 4% to 32%, which can be translated into

4% to 32% sample size reductions.

Figure 2.1: Variance decomposition equivalence between linear regression
and estimators of average treatment effect. The variance decomposition in
the first row is a result of OLS linear regression. The second row gives the
asymptotic variance decomposition of the unadjusted estimator, which is a mi-
nor extension of key results from Jiang et al., 2018; Tian et al., 2019. Our
contribution is to connect the two variance decompositions by showing their
equivalence, i.e., quantities in the same column are equal, under arbitrary
model misspecification.

2.5 Clinical Trial Applications

Our data analyses for each application (MCI, METS, TADS) are summa-

rized in Table 2.1 and described below. All baseline variables were standard-

ized and missing baseline values were imputed by the median for continuous
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variables and the mode for binary and categorical variables. All participants

with missing outcomes were removed from the analysis, for simplicity; in prac-

tice, missing outcome data would be handled as described in Section 2.6. Point

estimates and standard errors are rounded to the nearest 0.01. “Confidence

Interval” is abbreviated as “CI”.

Table 2.1: Summary of clinical trial data analyses: unadjusted estimator for
average treatment effect, adjusted estimator (ANCOVA) for average treatment
effect, 95% confidence intervals (CI), and estimated variance reduction due to
adjustment. Negative (positive) estimates are in the direction of clinical benefit
(harm).

Trial
Name

Unadjusted
Estimator (95% CI)

ANCOVA
Estimator (95% CI)

Variance
Reduction (R̂2

Y−∆A∼W )
MCI -0.19(-0.49, 0.11) -0.18(-0.45, 0.08) 25%

METS -3.66(-6.83, -0.49) -3.60(-6.71, -0.50) 4%
TADS(FLX) -1.44(-6.02, 3.15) -4.36(-8.14, -0.58) 32%
TADS(CBT) 2.22(-1.93, 6.38) 0.50(-3.20, 4.20) 21%
TADS(CMB) -6.64(-10.97, -2.32) -7.65(-11.28, -4.03) 30%

For the MCI trial, the unadjusted treatment effect estimate was ∆̂unadj =

−0.19 CDR-SB points with standard error 0.15 and 95% CI (−0.49, 0.11), and

the ANCOVA estimate was ∆̂ancova = −0.18 CDR-SB points with standard er-

ror 0.13 and 95% CI (−0.45, 0.08). Compared to the unadjusted estimator, the

ANCOVA estimator has a 14% narrower confidence interval and 25% smaller

variance, indicating that researchers planning to perform an adjusted analy-

sis could achieve the same precision as the unadjusted analysis with approxi-

mately 25% fewer participants.

For the METS trial, the unadjusted treatment effect estimate is ∆̂unadj =
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−3.66 kg of weight change with standard error 1.62 and 95% CI (−6.83,−0.49),

and the ANCOVA estimate is ∆̂ancova = −3.60 with standard error 1.58 and 95%

CI (−6.71,−0.50). Adjustment resulted in a 4% variance reduction.

For the TADS trial, as shown in Table 2.1, covariate adjustment results in

substantial variance reduction for all three treatment arms. This stands out

for the Fluoxetine arm, where we estimated that covariate adjustment reduced

asymptotic variance by 32%. The ANCOVA estimator, unlike the unadjusted

estimator, leads to a statistically significant treatment effect −4.36 CDRS-R

points (p-value 0.01); the 95% CI of the ANCOVA estimator (−8.14,−0.58) ex-

cludes zero, but that of the unadjusted estimator (−6.02, 3.15) does not.

2.6 Practical Recommendations

Consider the case where the primary outcome Y is a change score (differ-

ence between final score and baseline score). In some cases, adjusting for the

baseline score alone brings substantial variance reduction. For example, for

TADS(FLX) and TADS(CMB), adjusting for only the baseline CDRS-R score

gives a similar variance reduction as adjusting for all of the baseline covariates.

In other cases, the baseline score can have negligible impact while the other

covariates provide substantial variance reduction. E.g., in the MCI trial the

baseline score provided approximately 0% variance reduction while the other
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covariates led to an estimated 25% variance reduction. It is fine to adjust for

correlated baseline variables as long as each adds some new prognostic infor-

mation for the primary outcome.

When the trial has missing outcomes, under the assumption of missing

at random (that the outcome distribution is the same for those with missing

outcomes as for those with observed outcomes, conditional on treatment as-

signment and baseline covariates), the unadjusted estimator may no longer be

consistent. This can happen if, e.g., participants who benefit more from treat-

ment are more likely to drop out than those who benefit less. The ANCOVA

estimator remains consistent under missing at random if the ANCOVA model

is correctly specified. To add robustness to model misspecification, one can

use a propensity score model for missing outcomes (modeling the probability of

missingness given treatment assignment and covariates with, e.g., a logistic re-

gression model) as the inverse weight when fitting the ANCOVA model among

those with observed outcomes. According to Robins et al. (2007), this estimator

due to Marshall Joffe is doubly-robust, i.e., consistent as long as one of the two

models (propensity score model or ANCOVA model) is correctly specified, under

the missing at random assumption. For the three trial examples in this paper,

the ANCOVA estimator (which does not incorporate information from partici-

pants with missing outcomes) and the aforementioned doubly-robust extension

(which incorporates information from all participants) gave similar estimates
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and confidence intervals. See the Supporting Information for details.

For large trials, e.g., with total sample size at least 500, adjusting for prog-

nostic baseline variables (if there are any) is highly recommended since it re-

duces the required sample size to achieve a desired power (EMA, 2015). This

is counter to the (false) intuition that in large trials there is little to gain from

covariate adjustment since randomization will likely leave little imbalance to

adjust for. Adjustment can still be useful at large sample sizes, and arguably

can be more useful since it leads to greater absolute reductions in the required

sample size. For example, the METS trial involved 146 participants and our

estimate of R2
Y−∆A∼W is 4%. If this were the true value of R2

Y−∆A∼W , it would

mean about 6 fewer participants required to achieve the same power as the

unadjusted estimator; if this trial were 10 times larger, i.e., 1460 participants,

then covariate adjustment would lead to a sample size reduction of approxi-

mately 60 participants.

Even when a randomized trial ends up having negligible imbalance, covari-

ate adjustment can still increase power when the hypothesis test is based on

dividing the estimator by its standard error and rejecting the null hypothesis

when this ratio exceeds a threshold. This results from the fact that power is

related to the variance through the standard error in the denominator of the

test statistic. For example, even though the MCI trial is well balanced, there

is still an estimated 25% variance reduction from adjustment. When there
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are prognostic baseline variables, we recommend that covariate adjustment be

preplanned as the primary efficacy analysis.

If the outcome is binary, count, ordinal or time-to-event, then covariate ad-

justment can be done using estimators of, e.g., Moore and van der Laan (2009a),

Lu and Tsiatis (2011), Howard et al. (2012) and Dı́az et al. (2018). However,

robust variance estimators typically must be used, e.g., when constructing con-

fidence intervals or conducting hypothesis tests. The sandwich estimator could

be used as described by Tsiatis et al. (2008); alternatively, the nonparametric

bootstrap could be used. Because of these results for other outcome types, it

was surprising that when using ANCOVA it is unnecessary to use these robust

variance estimators (since as proved in Section 2.4.2 the standard, model-based

variance estimator for ANCOVA is already robust to arbitrary model misspec-

ification).

We assumed equal randomization probabilities to the two trial arms. If

unequal probabilities are used, then a robust variance estimator is needed for

ANCOVA.

We also assumed that the data vector for each participant is an indepen-

dent, identically distributed draw from an unknown distribution. This as-

sumption does not hold if stratified randomization or covariate-adaptive ran-

domization is used. For stratified randomization and some types of covariate-

adaptive randomization, Bugni et al. (2018) showed that if the covariates in

30



CHAPTER 2. ANCOVA ROBUSTNESS AND PRECISION GAIN IN
RANDOMIZED TRIALS

the ANCOVA model are the indicators of the strata used in the randomization

procedure, then the ANCOVA estimator is consistent; furthermore, its model-

based variance estimator is consistent if the limiting probability of assignment

to each arm is 1/2 within each stratum. The previous sentence holds regard-

less of whether the true data generating distribution satisfies any of the AN-

COVA model assumptions. In general, adjusting for stratification variables is

recommended when using stratified randomization or covariate-adaptive ran-

domization (Lachin et al., 1988; Kahan and Morris, 2012; EMA, 2015). It is an

open question, to the best of our knowledge, as to what happens when more

variables than the stratification indicators are included in the ANCOVA model

under such randomization schemes, in terms of consistency of the ANCOVA

estimator and how to compute its asymptotic variance under arbitrary model

misspecification.

How to best pick the set of covariates to use in an adjusted estimator is a

challenging problem. The methods of Moore and van der Laan (2009a) and

Moore et al. (2011) use cross-validation, Bloniarz et al. (2016) and Tian et al.

(2019) use LASSO, and Wager et al. (2016) use a combination of regression and

cross-validation. All aspects of the covariate adjustment method need to be

prespecified in the study protocol (FDA and EMA, 1998).
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Chapter 3

Model-Robust Inference for

Clinical Trials that Improve

Precision by Stratified

Randomization and Covariate

Adjustment

The content of this chapter is reproduced from Wang et al. (2019) available

at https://arxiv.org/abs/1910.13954 and has been submitted to Jour-

nal of American Statistical Association for consideration.
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CHAPTER 3. MODEL-ROBUST INFERENCE UNDER STRATIFIED
RANDOMIZATION AND COVARIATE ADJUSTMENT

3.1 Introduction

A joint guidance document from the U.S. Food and Drug Administration

and the European Medicines Agency (FDA and EMA, 1998) states that “Pre-

trial deliberations should identify those covariates and factors expected to have

an important influence on the primary variable(s), and should consider how

to account for these in the analysis to improve precision and to compensate

for any lack of balance between treatment groups.” More recent regulatory

guidance documents also encourage consideration of baseline variables in or-

der to improve precision in randomized trials (EMA, 2015; FDA, 2019, 2020).

Though there is a rich statistical literature on model-robust methods to adjust

for baseline variables in randomized trials that use simple randomization, less

is known for trials that use other forms of randomization. This is a practi-

cal concern since, as discussed below, many clinical trials use other forms of

randomization.

“Covariate-adaptive randomization” refers to randomization procedures that

take baseline variables into account when assigning participants to study arms.

The goal is to achieve better balance across study arms in preselected strata of

the baseline variables compared to simple randomization (which ignores base-

line variables). E.g., balance on disease severity, a genetic marker, or another

variable thought to be correlated with the primary outcome could be sought.
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The simplest and most commonly used type of covariate-adaptive randomiza-

tion is stratified permuted block randomization (Zelen, 1974), referred to as

“stratified randomization” throughout, for conciseness.

Compared with simple randomization, covariate-adaptive randomization

can be advantageous in minimizing imbalance and improving efficiency (Efron,

1971; Pocock and Simon, 1975; Wei, 1978). Due to these benefits, covariate-

adaptive randomization has become a popular approach in clinical trials. Ac-

cording to a survey by Lin et al. (2015), 183 out of their sample of 224 ran-

domized clinical trials published in 2014 in leading medical journals used some

form of covariate-adaptive randomization. Stratified randomization was imple-

mented by 70% of trials in this survey. Another method for covariate-adaptive

randomization is the biased-coin design by Efron (1971), which we call “biased-

coin randomization” throughout. Other examples include Wei’s urn design

(Wei, 1978) and rerandomization (Morgan and Rubin, 2012). We only con-

sider the following two types of covariate-adaptive randomization: stratified

randomization and biased-coin randomization.

Concerns have been raised regarding how to perform valid statistical anal-

yses at the end of trials that use covariate-adaptive randomization. Adjusting

for stratification variables is recommended (Lachin et al., 1988; Kahan and

Morris, 2012; EMA, 2015). However, this recommendation is not reliably car-

ried out. Kahan and Morris (2012) sampled 65 published trials from major
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medical journals from March to May 2010 and found that 41 implemented

covariate-adaptive randomization (among which 29 used stratified randomiza-

tion), but only 14 adjusted in the primary analysis for the variables used in the

randomization procedure. Furthermore, many results on how to conduct the

primary efficacy analysis in trials that use stratified randomization require

one to assume a correctly specified regression model, e.g., Shao et al. (2010);

Shao and Yu (2013); Ma et al. (2015, 2018); Yang et al. (2020). Our focus is on

model-robust estimators, i.e., estimators that do not require such an assump-

tion when there is no missing data or when outcome data are missing com-

pletely at random; when censoring depends on baseline variables, additional

assumptions are generally required.

Yang and Tsiatis (2001) showed that the analysis of covariance (ANCOVA)

estimator is consistent and asymptotically normal under simple randomiza-

tion, and that this holds under arbitrary misspecification of the linear regres-

sion model used to construct the estimator. Analogous results for the ANCOVA

estimator were shown by Bugni et al. (2018) under a variety of covariate-

adaptive randomization procedures that include stratified and biased-coin ran-

domization; however, their results only allow adjustment for the variables used

in the randomization procedure. The proofs of our results build on key ideas

from their work as described below. The results of Li and Ding (2020) and Liu

and Yang (2020) for the ANCOVA estimator are robust to arbitrary misspec-
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ification of the linear regression model; however, they use the randomization

inference framework while many clinical trials are analyzed using the super-

population inference framework (as done here); see Robins (2002) for a com-

parison of these frameworks. All of the results in this paragraph are for the

ANCOVA estimator, and so do not apply to logistic regression models for bi-

nary outcomes nor to commonly used models for time-to-event outcomes. Ye

and Shao (2020) derived asymptotic distributions for log-rank and score tests

in survival analysis under covariate-adaptive randomization; however, estima-

tion was not addressed.

For trials using stratified or biased-coin randomization, to the best of our

knowledge, it was an open problem to determine (in the commonly used su-

perpopulation inference framework and without making parametric model as-

sumptions) the large sample properties of estimators that involve any of the

following features: binary or time-to-event outcomes, adjustment for baseline

variables in addition to those in the randomization procedure, and missing data

under the missing at random assumption. This is the problem that we address,

and we think that each of the above features can be important in the analysis of

clinical trials. For example, binary and time-to-event outcomes are commonly

used in clinical trials. According to a survey by Austin et al. (2010) on trials

published in leading medical journals in 2007, 74 out of 114 trials involved bi-

nary or time-to-event outcomes. As we show in our data analyses, the addition

36



CHAPTER 3. MODEL-ROBUST INFERENCE UNDER STRATIFIED
RANDOMIZATION AND COVARIATE ADJUSTMENT

of baseline variables beyond those used for stratified randomization can lead to

substantial precision gains. Handling missing data is also important in order

to avoid bias in treatment effect estimation.

Under regularity conditions, we prove that a large class of estimators is con-

sistent and asymptotically normally distributed in randomized trials that use

stratified or biased-coin randomization, and we give a formula for computing

their asymptotic variance. This class of estimators consists of all M-estimators

that are consistent under simple randomization. Examples are listed in Sec-

tion 3.4. We prove analogous results for the Kaplan-Meier (K-M) estimator

(Kaplan and Meier, 1958) of the survival function. Underlying these results is

our general technique for characterizing the large sample behavior of asymp-

totically linear estimators under stratified or biased-coin randomization, de-

scribed in Section 3.7.

Our theorems imply that under standard regularity conditions, whenever

an estimator in our class is consistent and asymptotically normally distributed

under simple randomization, then it is consistent and asymptotically normally

distributed under stratified (or biased-coin) randomization. Also, its influence

function is the same regardless of whether data is generated under simple,

stratified or biased-coin randomization. This can be advantageous since for

many estimators used to analyze randomized trials, their influence functions

have already been derived under simple randomization. An estimator’s in-
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fluence function can be input into our formula (3.5) to produce a consistent

variance estimator under stratified and biased-coin randomization.

As in the aforementioned work, we assume that the randomization proce-

dure and analysis method have been completely specified before the trial starts,

as is typically required by regulators (FDA and EMA, 1998; EMA, 2015; FDA,

2019, 2020).

In the next section, we describe three trial examples to which we apply our

methods. In Section 3.3, we describe our setup, notation and assumptions. We

present our main results in Section 3.4. In Section 3.5, we give example esti-

mators for continuous and binary outcomes to which our general results apply.

In Section 3.6, we present asymptotic results for the Kaplan-Meier estima-

tor for time-to-event outcomes. Trial applications are provided in Section 3.7.

Practical recommendations and future directions are discussed in Section 3.8.

3.2 Three completed trials that used strat-

ified randomization

In some cases, the outcomes in our analyses differ from the primary out-

comes in the corresponding trials. This is because we wanted similar outcomes

across trials for illustration.
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3.2.1 Buprenorphine tapering and illicit opioid

use (NIDA-CTN-0003)

The trial of “Buprenorphine tapering schedule and illicit opioid use” in the

National Drug Abuse Treatment Clinical Trials Network (NIDA-CTN-0003), is

a phase-3 randomized trial completed in 2005 (Ling et al., 2009). The goal was

to compare the effects of a short or long taper schedule after buprenorphine

stabilization of patients with opioid use disorder. Patients were randomized

into two arms: 28-day taper (control, 259 patients, 36% missing outcomes)

and 7-day taper (treatment, 252 patients, 21% missing outcomes), stratified

by maintenance dose (3 levels) measured at randomization. The outcome of in-

terest is a binary indicator of whether a participant’s urine tested at the end of

the study is opioid-free. In addition to the stratification variable, we adjust for

the following baseline variables: sex, opioid urine toxicology results, the Ad-

jective Rating Scale for Withdrawal (ARSW), the Clinical Opiate Withdrawal

Scale (COWS) and the Visual Analog Scale (VAS).
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3.2.2 Prescription opioid addiction treatment (NIDA-

CTN-0030)

The “Prescription Opioid Addiction Treatment Study” (NIDA-CTN-0030) is

a phase-3 randomized trial completed in 2013 (Weiss et al., 2011). The goal was

to determine whether adding individual drug counseling to the prescription of

buprenorphine/naloxone would improve outcomes for patients with prescrip-

tion opioid use disorder. Though this study adopted a 2-phase adaptive design,

we focus on the first phase, in which patients were randomized into standard

medical management (control, 330 patients, 10% missing outcomes) or stan-

dard medical management plus drug counseling (treatment, 335 patients, 13%

missing outcomes). Randomization was stratified by the presence or absence

of (i) a history of heroin use and (ii) current chronic pain, resulting in 4 strata.

The outcome of interest is the proportion of negative urine laboratory results

among all tests (treated as a continuous outcome between 0 and 1). Among all

5 urine laboratory tests during the first 4 weeks of phase I, if a patient missed

two consecutive visits, then the outcome is regarded as missing. We included

the following baseline variables in the analysis: randomization stratum, age,

sex and urine laboratory results.
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3.2.3 Internet-delivered treatment for substance

abuse (NIDA-CTN-0044)

The phase-3 randomized trial “Internet-delivered treatment for substance

abuse” (NIDA-CTN-0044) was completed in 2012 (Campbell et al., 2014). The

goal was to evaluate the effectiveness of a web-delivered behavioral interven-

tion, Therapeutic Education System (TES), in the treatment of substance abuse.

Participants were randomly assigned to two arms: treatment as usual (control,

252 participants, 19% missing outcomes) and treatment as usual plus TES

(treatment, 255 participants, 18% missing outcomes).

Randomization was stratified by site, patient’s primary substance of abuse

(stimulant or non-stimulant) and abstinence status at baseline. Unfortunately,

the available data set for this trial did not include the site variable. Our analy-

ses and claims in Section 3.7 assume that the only randomization strata are the

patient’s primary substance of abuse and abstinence status at baseline (4 levels

overall). Our theorems imply that ignoring one or more randomization stratum

variables leads to conservative variance estimates when using our variance for-

mulas, as explained in Section 3.8.

After randomization, each participant was followed for 12 weeks with 2

urine laboratory tests per week. The outcome of interest is the proportion of

negative urine lab results among all tests (treated as a continuous outcome
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between 0 and 1). If a participant missed visits of more than 6 weeks, the

outcome is regarded as missing. We adjust for randomization stratum and the

following additional baseline variables: age, sex and urine laboratory result.

We also analyze a second outcome: time to abstinence, defined as the time

to first two consecutive negative urine tests during the study. Censoring time

is defined as the first missing visit. We used the data from the first 6 weeks of

follow-up in our data analysis of this time-to-event outcome, during which 99%

of the events occurred.

3.3 Definitions and assumptions

3.3.1 Data generating distributions

We focus on two-arm randomized trials that use simple, stratified or biased-

coin randomization. Let n denote the sample size. For each participant i =

1, . . . , n, let Yi denote the primary outcome, Mi denote whether Yi is observed

(Mi = 1) or missing (Mi = 0), Ai denote study arm assignment (Ai = 1 if as-

signed to treatment and Ai = 0 if assigned to control), and Xi denote a vector

of baseline covariates. This notation is for real-valued outcomes, e.g. contin-

uous or binary outcomes. Modified definitions, assumptions, and results for

time-to-event outcomes are in Section 3.6.
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We use the Neyman-Rubin potential outcomes framework (Neyman et al.,

1990), which assumes the existence of potential outcomes Yi(0) and Yi(1) for

each participant i. These represent the outcome that would be observed under

assignment to study arm 0 or 1, respectively. Though using potential outcomes

introduces additional notation, it is needed in order to rigorously define the

data generating distributions under the different randomization procedures

that we consider. We make the following consistency assumption linking the

observed outcome Yi to the potential outcomes: Yi = Yi(Ai) = Yi(1)Ai + Yi(0)(1−

Ai) for each participant i. Also, letMi(a) be the indicator of whether participant

i would have a non-missing outcome if they get assigned to study arm a ∈

{0, 1}. We assume, analogous to the consistency assumption above, that Mi =

Mi(Ai) = Mi(1)Ai +Mi(0)(1− Ai).

For each participant i, we define the full data vector (including potential

outcomes, some of which are not observed) Wi = (Yi(1), Yi(0),Mi(1),Mi(0),Xi)

and the observed data vector Oi = (Ai,Xi, YiMi,Mi). The reason that the prod-

uct YiMi appears in the observed data vector Oi is to encode that whenever

the outcome is missing (Mi = 0), the outcome value Yi is not available in Oi

(since YiMi = 0). The data available to the analyst at the end of the trial are

O1, . . . ,On.

We make the following assumptions on the distribution of {W1, . . . ,Wn}:

Assumption 1.
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(i) Wi, i = 1, . . . , n are independent, identically distributed samples from an

unknown joint distribution P on W = (Y (1), Y (0),M(1),M(0),X).

(ii) Missing at random: M(a)⊥⊥Y (a)|X for each arm a ∈ {0, 1}, where ⊥⊥ de-

notes independence.

Throughout, we use E to denote the expectation with respect to distribution

P .

3.3.2 Randomization procedures: simple, strat-

ified, and biased-coin

First consider simple randomization, which assigns study arms A1, . . . , An

by independent Bernoulli draws each with fixed probability π of being 1, e.g.,

using a random number generator. By design, the draws are independent of

each other and of all participant characteristics measured before randomiza-

tion or not impacted by randomization. Therefore, we have that (A1, . . . , An) is

independent of (W1, . . . ,Wn), and that the observed data O1, . . . ,On are inde-

pendent, identically distributed.

Next consider stratified or biased-coin randomization, where treatment al-

location depends on predefined baseline strata, such as gender, age, site, dis-

ease severity, or combinations of these. We refer to the baseline strata that are

used in the randomization procedure as “randomization strata”. The baseline
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stratum of participant i is denoted by the single, categorical variable Si tak-

ing K possible values. For example, if randomization strata are defined by 4

sites and a binary indicator of high disease severity, then S has K = 8 pos-

sible values. Let Si denote the stratification variable for participant i and let

S = {1, . . . , K} denote the set of all K randomization strata. The goal of strati-

fied or biased-coin randomization is to achieve balance in each stratum; that is,

the proportion of participants assigned to the treatment arm is targeted to the

prespecified proportion π ∈ (0, 1), e.g. π = 0.5. Throughout, the stratification

variable S is encoded in the baseline covariate vector X using K − 1 dummy

variables that make up the first K − 1 components of X (which can include

additional baseline variables).

Stratified randomization uses permuted blocks to assign treatment. For

each randomization stratum, a randomly permuted block with fraction π 1’s

(representing treatment) and (1 − π) 0’s (representing control) is used for se-

quential allocation. When a block is exhausted, a new block is used.

Biased-coin randomization can be applied when π = 0.5 and it allocates
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participants sequentially by the following rule for k = 1, . . . , n:

P (Ak = 1|S1, . . . , Sk, A1, . . . , Ak−1) =



0.5, if
∑k−1

i=1 (Ai − 0.5)I{Si = Sk} = 0

λ, if
∑k−1

i=1 (Ai − 0.5)I{Si = Sk} < 0

1− λ, if
∑k−1

i=1 (Ai − 0.5)I{Si = Sk} > 0

where λ ∈ (0.5, 1], I{Z} is the indicator function that has value 1 if Z is true and

0 otherwise, and by convention the first participant is assigned with probability

0.5 to each arm. Our results for biased-coin randomization assume that π = 0.5.

When comparing the three types of randomization procedures (simple, strat-

ified, or biased-coin), we assume that all use the same value of π. For the strati-

fied randomization and biased-coin designs, it follows by construction (and was

shown by Bugni et al., 2018) that the study arm assignments (A1, . . . , An) are

conditionally independent of the participant baseline variables and potential

outcomes (W1, . . . ,Wn) given the randomization strata (S1, . . . , Sn). Intuitively,

this is because the study arm assignment procedure only has access to the par-

ticipants’ randomization strata. Under stratified or biased-coin randomization,

the observed data vectors O1, . . . ,On are not independent.

Under any of the three randomization procedures, the observed data vec-

tors O1, . . . ,On are identically distributed; that is, the distribution of O1 is the
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same as that of O2, etc. Let P ∗ denote this distribution, i.e., the distribution

of a generic, observed data vector O = (A,X, Y M,M). This distribution is the

same for each of the three randomization procedures, and is that induced by

first drawing a single realizationW = (Y (1), Y (0),M(1),M(0),X) from the dis-

tribution P (see Assumption 1), then drawing A as an independent Bernoulli

draw with probability π of being 1, and lastly applying the consistency assump-

tions Y = Y (1)A + Y (0)(1 − A) and M = M(1)A + M(0)(1 − A) to construct Y ,

the (non)-missingness indicator M , and their product YM . The corresponding

expectation with respect to P ∗ is denoted E∗, which is used below. The claims

in this paragraph are proved in the Supplementary Material.

3.3.3 Targets of inference (estimands) and esti-

mators

For continuous and binary outcomes, our goal is to estimate a population

parameter ∆∗, which is a contrast between the marginal distributions of Y (1)

and Y (0). For example, ∆∗ can be defined as the population average treatment

effect E[Y (1)]− E[Y (0)].

We consider M-estimators of ∆∗ (van der Vaart, 1998, Ch. 5). Let θ =

(∆,βt)t denote a column vector of p+ 1 parameters where ∆ ∈ R is the param-

eter of interest and β ∈ Rp is a column vector of p nuisance parameters. We
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define the M-estimator θ̂ = (∆̂, β̂t)t to be the solution to the following estimat-

ing equations:
n∑
i=1

ψ(Ai,Xi, Yi,Mi;θ) = 0, (3.1)

where ψ is a column vector (with p + 1 components) of known functions. We

define ∆̂ to be the estimator of ∆∗. We assume that ψ(A,X, Y,M ;θ) does not

depend on the outcome Y when M = 0 (since then Y is missing). Many esti-

mators used in clinical trials, including all estimators defined in Section 3.5.1,

can be expressed as solutions to estimating equations (3.1) for an appropriately

chosen estimating function ψ.

For time-to-event outcomes, the K-M estimator of the survival curve is com-

monly used. Since it is not an M-estimator, our general result (Theorem 2) for

M-estimators below does not apply. We separately prove analogous results for

the K-M estimator; see Section 3.6.

We assume regularity conditions similar to the classical conditions that are

used for proving consistency and asymptotic linearity of M-estimators for inde-

pendent, identically distributed data, as given in Section 5.3 of van der Vaart

(1998). One of the conditions is that the expectation of the estimating equa-

tions

E∗[ψ(A,X, Y,M ;θ)] = 0, (3.2)

has a unique solution in θ, which is denoted as θ = (∆,βt)t. The other regular-
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ity conditions are given in the Supplementary Material.

We assume that the estimating equations ψ were chosen to ensure that the

property ∆∗ = ∆ holds. This property is generally needed to show consistency

of the M-estimator ∆̂ for ∆∗ under simple randomization, and has previously

been proved for all of the estimators in Section 3.5.1. In general, whether

the property ∆∗ = ∆ holds does not depend on the randomization procedure

(simple, stratified, or biased-coin randomization); this is because the property

depends only on ψ, P and P ∗.

Results in Section 5.3 of van der Vaart (1998) imply that under simple ran-

domization, given Assumption 1 and the regularity conditions in the Supple-

mentary Material, ∆̂ converges in probability to ∆ and is asymptotically nor-

mally distributed with asymptotic variance that we denote by Ṽ . We focus

on determining what happens under stratified or biased-coin randomization,

where our main result (Section 3.4) is that consistency and asymptotic nor-

mality still hold but the asymptotic variance may be smaller (and a consistent

variance estimator is given).

3.4 Main result for M-estimators

Consider the setup in Section 3.3.3, where the M-estimator ∆̂ is defined.

The proof of the following theorem (and all results in the paper) is given in the
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Supplementary Material:

Theorem 2. Assume the regularity conditions in the Supplementary Material,

∆∗ = ∆, and Assumption 1. Then under simple, stratified, or biased-coin ran-

domization, we have consistency, i.e., ∆̂ → ∆∗ in probability, and asymptotic

linearity, i.e.,

√
n(∆̂−∆∗) =

1√
n

n∑
i=1

IF (Ai,Xi, Yi,Mi) + op(1), (3.3)

where the influence function IF (A,X, Y,M) is the first entry of

−B−1ψ(A,X, Y,M ;θ) for B = E∗
[
∂
∂θ
ψ(A,X, Y,M ;θ)

∣∣∣
θ=θ

]
.

For stratified and biased-coin randomization,
√
n(∆̂−∆∗)

d−→ N(0, V ) for

V = Ṽ − 1

π(1− π)
E∗
[
E∗ {(A− π)IF (A,X, Y,M)|S}2] , (3.4)

where Ṽ = E∗{IF (A,X, Y,M)2} is the asymptotic variance under simple ran-

domization. The asymptotic variance V can be consistently estimated by for-

mula (3.5) below.

Theorem 2 implies that whenever an M-estimator ∆̂ is consistent and asymp-

totically normally distributed under simple randomization, then it is consistent

and asymptotically normally distributed under stratified (or biased-coin) ran-

domization with equal or smaller asymptotic variance. Also, its influence func-
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tion is the same regardless of whether data is generated under simple, strat-

ified, or biased-coin randomization. This can be advantageous since for many

estimators used to analyze randomized trials, their influence functions have al-

ready been derived under simple randomization; the last display in Theorem 2

gives a formula for calculating the asymptotic variances for these estimators

under the other two randomization procedures, in terms of the influence func-

tion.

For the unadjusted estimator ∆̂ =
∑n

i=1 YiAi/
∑n

i=1Ai−
∑n

i=1 Yi(1−Ai)/
∑n

i=1(1−

Ai), our Theorem 2 is equivalent to Theorem 4.1 of Bugni et al. (2018) un-

der stratified or biased-coin randomization. In the special case of continuous

outcomes, if the ANCOVA estimator is used with X = S, then Theorem 2 is

equivalent to the result in section 4.2 of Bugni et al. (2018) under stratified

or biased-coin randomization, though their results also handle other types of

covariate-adaptive randomization.

Theorem 2 above extends the results of Bugni et al. (2018) to handle the

class of M-estimators, that is, estimators calculated by solving estimating equa-

tions (3.1). This includes, for example, the ANCOVA estimator that adjusts

for baseline covariates in addition to those used in the randomization proce-

dure (Example 1 of Section 3.5.1 below), the standardized logistic regression

estimator for binary outcomes (Example 2 of Section 3.5.1), and the DR-WLS

estimator (Example 3 of Section 3.5.1). This class of estimators also includes
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the inverse-probability-weighted estimator (IPW, Robins et al., 1994), the aug-

mented inverse probability weighted estimator (AIPW, Robins et al., 1994;

Scharfstein et al., 1999), the Mixed-effects Model for Repeated Measures es-

timator (MMRM, Mallinckrodt et al., 2003; Siddiqui et al., 2009; EMA, 2019),

and targeted maximum likelihood estimators (TMLE) that converge in 1-step

(van der Laan and Gruber, 2012), among others. Thus, Theorem 2 covers esti-

mators that handle various outcome types, repeated measures outcomes, miss-

ing outcome data, and covariate adjustment. Our proof relies on key ideas from

Lemmas B.1 and B.3 in the Supplement of Bugni et al. (2018).

We prove consistency of the following estimator for the asymptotic variance

V , which is the following empirical counterpart of the right side of (3.4):

V̂ = Ṽn −
1

π(1− π)
En
[
En{(A− π)IF (A,X, Y,M)|S}2

]
, (3.5)

where Ṽn is the sandwich variance estimator of ∆̂ (Section 3.2 of Tsiatis, 2007),

defined as the first-row first-column entry of

1

n

{
En

[
∂

∂θ
ψ(A,X, Y,M ;θ)

∣∣∣∣
θ=θ̂

]}−1 {
En

[
ψ(A,X, Y,M ; θ̂)ψ(A,X, Y,M ; θ̂)t

]}
{
En

[
∂

∂θ
ψ(A,X, Y,M ;θ)

∣∣∣∣
θ=θ̂

]}−1,t

,

and En denotes expectation with respect to the empirical distribution of the
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observed data O1, . . . ,On.

3.5 Example estimators for continuous

and binary outcomes

3.5.1 ANCOVA, standardized logistic regression,

and DR-WLS

We give several examples of estimators that Theorem 2 applies to. For esti-

mators defined in Examples 1-3, the parameter of interest, i.e. ∆∗, is the aver-

age treatment effect defined as E[Y (1)]−E[Y (0)], and we denoteZ = (1, A,X t)t.

In Examples 1 and 2, we assume no missing data and we do not assume that

the working models, i.e., the linear regression model in Example 1 and the

logistic regression model in Example 2, are correctly specified.

Example 1. For continuous outcomes, the ANCOVA estimator ∆̂ancova for ∆∗

involves first fitting a linear regression working model E[Y |A,X] = β0 + ∆A +

βtXX using ordinary least squares and then letting ∆̂ancova be the estimate of ∆.

The ANCOVA estimator can be equivalently calculated by solving estimating
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equations (3.1) letting

ψ(A,X, Y,M ;θ) = {Y − (β0 + ∆A+ βtXX)}Z.

Example 2. For binary outcomes, the standardized logistic regression esti-

mator ∆̂logistic is calculated by first fitting a working model: P (Y = 1|A,X) =

expit(β0 +βAA+βtXX), where expit(x) = 1/(1+e−x), and getting the maximum

likelihood estimates (β̂0, β̂A, β̂
t
X)t. Then define ∆̂logistic = 1

n

∑n
i=1{expit(β̂0 + β̂A +

β̂tXXi)− expit(β̂0 + β̂tXXi)}. Equivalently, the estimator ∆̂logistic is the solution

to estimating equations (3.1) letting

ψ(A,X, Y,M ;θ) =

 expit(β0 + βA + βtXX)− expit(β0 + βtXX)−∆

{Y − expit(β0 + βAA+ βtXX)}Z

 .

This estimator is mentioned as potentially useful in COVID-19 treatment and

prevention trials in a recent FDA guidance (FDA, 2020).

Example 3. When some outcomes are missing, then one can estimate ∆∗ by

the DR-WLS estimator, which generalizes the estimators in Examples 1 and 2.

However, due to missing data this estimator requires additional assumptions

(as is true for all estimators) described below. The DR-WLS estimator can be

used with binary or continuous outcomes. The estimator is calculated by first
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fitting the logistic regression working model:

P (M = 1|A,X) = expit(α0 + αAA+αtXX) (3.6)

and getting the maximum likelihood estimates (α̂0, α̂A, α̂
t
X)t of parameters

(α0, αA,α
t
X)t. Next, fit the following working model for the outcome given study

arm and baseline variables (from the generalized linear model family):

E[Y |A,X] = g−1(β0 + βAA+ βtXX), (3.7)

with weights 1/expit(α̂0 + α̂AAi + α̂
t
XXi) using only the data with Mi = 1. Here

the inverse link function is g−1(x) = x for continuous outcomes and g−1(x) =

expit(x) for binary outcomes. Third, the DR-WLS estimator is

∆̂DR−WLS =
1

n

n∑
i=1

{g−1(β̂0 + β̂A + β̂tXX)− g−1(β̂0 + β̂tXX)}.

The DR-WLS estimator can be expressed as the solution to estimating equa-

tions (given in the Supplementary Material) of the general form (3.1). For the

DR-WLS estimator, we assume that at least one of the two working models

(3.6) and (3.7) is correctly specified, and inf(a,x)∈(A,X ) P (M = 1|a,x) > 0, where

(A,X ) is the support of (A,X).

The ANCOVA estimator and the standardized logistic regression estimator

55



CHAPTER 3. MODEL-ROBUST INFERENCE UNDER STRATIFIED
RANDOMIZATION AND COVARIATE ADJUSTMENT

are special cases of the DR-WLS estimator. If there are no missing data, which

means Mi = 1 for i = 1, . . . , n, and the regression weights used to fit (3.7)

are constant, then ∆̂DR−WLS reduces to ∆̂ancova for continuous outcomes and

to ∆̂logistic for binary outcomes. The DR-WLS estimator can be generalized to

allow the addition of interaction terms in the model (3.7).

3.5.2 Asymptotic Results for Estimators in Ex-

amples 1-3

Under simple randomization and assuming that ∆∗ = ∆, consistency and

asymptotic normality for the estimators in Examples 1-3 have been proved by

Yang and Tsiatis (2001); Scharfstein et al. (1999); Robins et al. (2007), respec-

tively. Under stratified or biased-coin randomization, Theorem 2 applies to

these estimators since each is an M-estimator. In particular, under the condi-

tions in the theorem, each of the three estimators is consistent and asymptoti-

cally normal with asymptotic variance that is consistently estimated by (3.5).

Under the additional conditions (a)-(c) listed in the corollary below, for each

estimator in Examples 1-3, its asymptotic variance is the same regardless

of whether simple, stratified, or biased-coin randomization is used; also, the

asymptotic variance is consistently estimated by the sandwich variance esti-

mator Ṽn. Under such conditions, the estimators and their corresponding sand-
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wich variance estimators can be used to perform hypothesis tests and construct

confidence intervals that are asymptotically correct.

Recall that we assume throughout that S is encoded by dummy variables in

X.

Corollary 1. Assume that ∆∗ = ∆, the regularity conditions in the Supple-

mentary Material, and Assumption 1. Consider the ANCOVA estimator or the

standardized logistic regression estimator. If any of the conditions (a)-(c) below

holds, then under simple, stratified, or biased-coin randomization, the estimator

is consistent and asymptotically normally distributed with asymptotic variance

V = Ṽ ; furthermore, the sandwich variance estimator is consistent. Conditions:

(a) π = 0.5;

(b) the outcome regression model (3.7) includes indicators for the randomiza-

tion strata and also treatment-by-randomization-strata interaction terms;

(c) the outcome regression model (3.7) is correctly specified.

For the special case of the ANCOVA estimator with X = S, Corollary 1 with

condition (a) or (b) was proved by Bugni et al. (2018). The claims in Corollary 1

also hold for the the DR-WLS estimator if at least one of the two working mod-

els (3.6) and (3.7) is correctly specified and inf(a,x)∈(A,X ) P (M = 1|a,x) > 0, where

(A,X ) is the support of (A,X).
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3.6 Estimators involving time-to-event

outcomes

3.6.1 Notation and Assumptions

For time to event outcomes, we use slightly modified notation and assump-

tions compared to above. We assume that the outcome is right-censored. Let

Yi denote the failure time and Mi denote the censoring time. Other variables

including Ai,Xi and the potential outcomes Yi(a),Mi(a) for a = 0, 1 are defined

analogously as in Section 3.3. For each participant i ∈ {1, . . . , n}, we observe

(Ai,Xi, Ui, δi), where Ui = min{Yi,Mi} and δi = I{Yi ≤ Mi}. We further de-

fine a restriction time τ such that the time window t ∈ [0, τ ] is of interest. We

define P ∗ and E∗ analogously as in Section 3.3.2, except here they represent

the distribution and expectation, respectively, for a single observed data vector

(A,X, U, δ).

The following assumption is made in place of Assumption 1:

Assumption 1’.

(i) Wi, i = 1, . . . , n are independent, identically distributed samples from an

unknown joint distribution P on W = (Y (1), Y (0),M(1),M(0),X).

(ii) Censoring completely at random: M(a)⊥⊥Y (a) for each arm a ∈ {0, 1}.

58



CHAPTER 3. MODEL-ROBUST INFERENCE UNDER STRATIFIED
RANDOMIZATION AND COVARIATE ADJUSTMENT

(iii) P (min{Y (a),M(a)} > τ) > 0 for each a = 0, 1.

Compared with Assumption 1, Assumption 1’(i) is the same as Assumption

1(i), and Assumption 1’(ii) assumes censoring completely at random instead of

missing at random. This modification of the assumption on missing data is

because we consider the K-M estimator and its consistency generally requires

Assumption 1’(ii). Assumption 1’(iii) is often made in survival analysis, which

states that there is a positive probability that both the failure time and censor-

ing time occur after τ (under each study arm assignment).

3.6.2 Kaplan-Meier estimator under simple, strat-

ified, and biased-coin randomization

One commonly-used method for survival analysis is the K-M estimator. The

goal is to estimate the survival curve {S(a)
0 (t) : t ∈ [0, τ ]} for each a = 0, 1, where

S
(a)
0 (t) = P (Y (a) > t). This represents the survival curve if everyone in the

study population were assigned to study arm a. The K-M estimator is defined

as

Ŝ(a)
n (t) =

∏
j:Tj≤t

(
1−

∑n
i=1 δiI{Ai = a}I{Ui = Tj}∑n
i=1 I{Ai = a}I{Ui ≥ Tj}

)
,

where {Tj, j = 1, . . . ,mn} is the list of unique observed failure times.

While the K-M estimator does not adjust for any baseline variable, its vari-

ance under simple randomization is typically different than under stratified or
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biased-coin randomization, and this is not accounted for by standard methods

for estimating its variance. Specifically, the standard method for variance esti-

mation will typically overestimate the K-M variance under stratified or biased-

coin randomization, leading to wasted power. Our variance estimator below

avoids this problem. Since the K-M estimator estimates a survival function

rather than a real number or a vector, our Theorem 2 on M-estimators does

not apply. The following theorem gives the asymptotic distribution of the K-M

estimator under our three different types of randomization. It involves the in-

fluence function IF (a)(Ai, Ui, δi; t) for the K-M estimator under simple random-

ization (Kosorok, 2008, Section 4.2), which is also given in the Supplementary

Material.

Theorem 3. Given Assumption 1’, under simple, stratified, or biased-coin ran-

domization, we have for each t ∈ [0, τ ] that

√
n(Ŝ(a)

n (t)− S(a)
0 (t)) =

1√
n

n∑
i=1

IF (a)(Ai, Ui, δi; t) + op∗(1), (3.8)

where op∗(1) represents a sequence of random variables converging to 0 in prob-

ability uniformly over t ∈ [0, τ ].

For stratified and biased-coin randomization, the process

{
√
n(Ŝ

(a)
n (t) − S(a)

0 (t)) : t ∈ [0, τ ]} converges weakly to a mean 0, tight Gaussian

process with covariance function V (a)(t, t′) defined in the Supplementary Mate-
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rial, which has the following property: for any t ≤ τ ,

V (a)(t, t) = Ṽ (a)(t, t)− 1

π(1− π)
E∗
[
E∗
{

(A− π)IF (a)(A,U, δ; t)|S
}2
]
, (3.9)

where Ṽ (a)(t, t) is the asymptotic variance under simple randomization. V (a)(t, t)

can be consistently estimated as described in the Supplementary Material.

Analogous to Theorem 2, Theorem 3 implies that the influence function of

the K-M estimator is the same under simple, stratified, and biased-coin ran-

domization. The above theorem implies that under stratified or biased-coin

randomization, the K-M estimator is consistent and asymptotically normally

distributed with equal or smaller asymptotic variance than under simple ran-

domization. The asymptotic covariance function of the K-M estimator under

stratified or biased-coin randomization is given in Appendix C of the Supple-

mentary Material. It can be used to construct pointwise confidence intervals

and a simultaneous confidence band.

The challenge in proving Theorem 3 is that the traditional tool for deriv-

ing asymptotic normality in survival analysis, i.e., martingale central limit

theorems such as Theorem II.5.1 of Andersen et al. (2012) or Theorem 5.1.1

of Fleming and Harrington (2011), is not applicable here because of the depen-

dence among data points introduced by stratified or biased-coin randomization.

To overcome the above difficulty, in the proof of Theorem 3 we first developed a
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central limit theorem for sums of random functions under stratified randomiza-

tion (Lemma 5 in the Supplementary Material) based on the empirical process

results of Shorack and Wellner (2009) combined with generalizations of the

techniques from Bugni et al. (2018). We then proved Theorem 3 by generaliz-

ing the arguments in our proof of Theorem 2 to handle random functions. We

conjecture that, using our central limit theorem, Theorem 3 can be general-

ized to apply to other estimators of survival functions, such as the covariate-

adjusted estimators proposed by Lu and Tsiatis (2011); Zhang (2015), which

may improve precision even further.

3.6.3 Other estimators for time-to-event outcomes

Another parameter of interest is the restricted mean survival time, defined

as ∆∗ = E[min{Y (1), τ}−min{Y (0), τ}]. One covariate adjusted estimator of the

restricted mean survival time is the augmented inverse probability weighted

(AIPW) estimator of Moore and van der Laan (2009b). This estimator is an

M-estimator, to which our Theorem 2 applies. When the survival probability at

a given time point is the parameter of interest, one can use the K-M estimator

or the method from Moore and van der Laan (2009b).
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3.7 Clinical trial applications

3.7.1 Binary and continuous outcomes

Table 3.1 summarizes our data analyses involving binary and continuous

outcomes. The outcome is binary for NIDA-CTN-0003 and is continuous for

NIDA-CTN-0030 and NIDA-CTN-0044. In all cases, the target of inference is

the average treatment effect defined as E[Y (1)]− E[Y (0)].

All missing baseline values were imputed by the median for continuous

variables and mode for binary or categorical variables. The only estimator in

Table 3.1 that adjusts for missing outcomes is the DR-WLS estimator; all other

estimators omit data from the participants with missing outcomes. Negative

(positive) estimates are in the direction of clinical benefit (harm). For all esti-

mators presented in Table 3.1, the 95% confidence interval (CI) is constructed

using the normal approximation with variance calculated from formula (3.5).

For NIDA-CTN-0003, the outcome is binary and “adjusted estimator” in

Table 1 refers to the standardized logistic regression estimator. The unad-

justed point estimate is −0.104 with 95% CI (−0.204,−0.004). If randomization

strata and additional baseline variables are adjusted for (as in the row “Ad-

justed estimator (X)” in Table 1), the point estimate is unchanged but the 95%

CI (−0.184,−0.024) is substantially smaller. The corresponding variance reduc-

tion due to covariate adjustment, defined as one minus the variance ratio of
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Table 3.1: Summary of clinical trial data analyses with each cell giving the
point estimate and 95% CI of an estimator. Each row is for a different estima-
tor. “Adjusted estimator” refers to the standardized logistic estimator for the
trial with binary outcome (column 2) and to the ANCOVA estimator for the tri-
als with continuous outcomes (columns 3 and 4). The variable in parentheses
after the estimator name indicates which variables (if any) are adjusted for,
with S denoting the randomization strata only andX denoting the randomiza-
tion strata and additional baseline variables.

Clinical Trial:
NIDA-CTN-0003 NIDA-CTN-0030 NIDA-CTN-0044

Unadjusted estimator -0.104(-0.204, -0.004) 0.015(-0.023, 0.052) -0.093(-0.149, -0.038)
Adjusted estimator (S) -0.110(-0.209, -0.009) 0.015(-0.022, 0.052) -0.089(-0.145, -0.033)
Adjusted estimator (X) -0.104(-0.184, -0.024) 0.012(-0.022, 0.046) -0.087(-0.142, -0.032)
DR-WLS estimator (X) -0.099(-0.180, -0.019) 0.012(-0.022, 0.045) -0.091(-0.148, -0.035)

“Adjusted estimator (X)” to the unadjusted estimator, is 36%. This is equiv-

alent to needing 36% fewer participants to achieve the same power as a trial

that uses the unadjusted estimator, asymptotically.

NIDA-CTN-0030 and NIDA-CTN-0044 had continuous-valued outcomes and

“Adjusted estimator” in Table 1 refers to the ANCOVA estimator. Covariate

adjustment brings 17% and 3% variance reduction for NIDA-CTN-0030 and

NIDA-CTN-0044, respectively, compared to the unadjusted estimator. In all

cases, the variance reduction from covariate adjustment is larger when the

baseline variables are more strongly prognostic for (i.e., more strongly corre-

lated with) the outcome.

In all three trials, the variance reduction due to adjusting for baseline vari-

ables beyond S, defined by one minus the variance ratio of “adjusted estimator

(X)” and “adjusted estimator (S)”, is the same (to the nearest percent) as the

64



CHAPTER 3. MODEL-ROBUST INFERENCE UNDER STRATIFIED
RANDOMIZATION AND COVARIATE ADJUSTMENT

corresponding variance reduction comparing “adjusted estimator (X)” to the

unadjusted estimator. This is expected for the ANCOVA estimator since Bugni

et al. (2018) showed that “adjusted estimator (S)” and the unadjusted estima-

tor are asymptotically equivalent when the randomization probability π = 0.5.

Also, in all three trials, the “DR-WLS estimator (X)”, which handles missing

outcomes under the missing at random assumption, has a similar point esti-

mate and 95% CI compared to “adjusted estimator (X)”, which omits missing

outcomes. We recommend using the DR-WLS estimator in practice since it

is consistent under weaker assumptions than the other estimators considered

here.

We next compare the estimated variance (and resulting confidence inter-

vals) based on the sandwich variance estimator versus the variance estimator

(3.5). For the unadjusted estimator, using the sandwich variance estimator in-

stead of formula (3.5) may lead to conservative variance estimates, as implied

by Theorem 2. For example, for NIDA-CTN-0044, the 95% CI of the unadjusted

estimator constructed by formula (3.5) is (−0.149,−0.038), while the 95% CI

calculated using the sandwich variance formula is (−0.162,−0.025), which is

23% wider. The former 95% CI is asymptotically correct assuming outcomes

are missing completely at random, an assumption that is generally needed for

the the unadjusted estimator to be consistent. Furthermore, the variance of

the unadjusted estimator calculated by formula (3.5) (which is consistent) is
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34% smaller than the variance calculated by the sandwich variance estimator

(which is conservative). In contrast, for the adjusted estimator or the DR-WLS

estimator, since all three trials have randomization probabillity π = 0.5, the

sandwich variance estimator is not conservative; this follows from Corollary 1.

3.7.2 Time-to-event outcome

Figure 3.1 presents the K-M estimator for time-to-abstinence in the treat-

ment group as defined in Section 3.2.3 for study NIDA-CTN-0044. We esti-

mated the variance of the K-M estimator in two different ways: one ignored the

stratification variable and was the estimated variance returned by the “surv-

fit” function in R; the other used our proposed variance formula that takes the

stratification into account. For each of the two variance estimators, we con-

structed corresponding point-wise confidence intervals for the K-M estimator.

While Figure 3.1 shows that confidence intervals based on different vari-

ance estimators are very close to each other, there are variance reductions due

to accounting for stratification, which can be translated into sample size re-

duction needed to achieve the desired power. The variance reduction ranges

from 1% to 12% as we consider the survival function at different time points.

Among all time points, the first time point (one week after randomization) has

the greatest variance reduction. The variance formula (3.9) from Theorem 3 ac-

counts for the improved precision due to stratified randomization (unlike stan-
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Figure 3.1: The K-M estimator of survival function for NIDA-CTN-0044 treat-
ment group. The solid line is the estimated survival function. Dashed and
dotted lines, respectively, represent confidence intervals using the standard
method and confidence intervals accounting for randomization strata using
(3.9); the dashed and dotted lines are very similar and almost coincide. “Vari-
ance Reduction” and the associated percentages represent the variance reduc-
tion due to accounting for stratified randomization using (3.9).

dard methods that ignore stratification variables); this can be used to construct

more powerful hypothesis tests based on the K-M estimator divided by its stan-

dard error. The corresponding figure and results for the control group are given

in the Supplementary Material and are qualitatively similar to those described

above for the treatment group.
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3.8 Discussion

The primary efficacy analysis in confirmatory randomized trials is typically

based on a treatment effect estimator that is asymptotically linear under sim-

ple randomization; i.e., for an appropriately chosen influence function IF , the

estimator has the form (3.3) when estimating a scalar/vector or (3.8) when es-

timating a function such as a survival curve. All estimators in this paper have

this property, and we proved for each estimator covered by Theorems 2-3 that

under stratified and biased-coin randomization, it is asymptotically linear with

the same influence function as under simple randomization. We then gave for-

mulas (3.4) and (3.9) for the asymptotic variance under stratified (and biased-

coin) randomization in terms of the influence function.

Though our theorems cover a variety of estimators used to analyze random-

ized trials, they do not handle every estimator. However, our results point to

a general approach for deriving the asymptotic behavior under stratified and

biased-coin randomization of any estimator that is known to be asymptotically

linear under simple randomization. The approach is to (a) conjecture that un-

der stratified and biased-coin randomization it is asymptotically linear with the

same influence function as under simple randomization; (b) prove this, which

may need to be tailored to the estimator, e.g., using techniques as shown in the

Supplementary Material for M-estimators and the K-M estimator; (c) apply re-
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sults from the Supplementary Material (Proposition 1 or Lemma 5) to show

that the asymptotic variance is given by (3.4) for scalar/vector parameters or

by (3.9) for functions. An area of future research is to apply this approach to

the estimators of Lu and Tsiatis (2011); Zhang (2015) that use covariate ad-

justment to improve precision of the K-M estimator.

Our asymptotic results, just as many asymptotic results under the com-

monly used superpopulation inference framework for randomized trials, as-

sume that the number of randomization strata is fixed and the number of

participants in each stratum goes to infinity. This may be a reasonable ap-

proximation when no stratum has a small number of participants. In our data

examples, the smallest stratum has 49 participants. An area of future research

is to consider cases where some randomization strata have few participants.

In our data analyses of NIDA-CTN-0044, the stratification variable “site”

was not available in our data set. It was therefore neither used in the esti-

mators nor in the corresponding variance estimates. The variance formulas

(3.4) and (3.9) in this case are asymptotically conservative. This is because

the outer expectation in the rightmost terms of these formulas are unchanged

or decreased if S is replaced by a coarsening of S (defined as merging sev-

eral randomization strata together in a preplanned way, in the analysis); this

follows from the conditional Jensen’s inequality. This result may be useful

more generally, e.g., when some strata are so small compared to the sample
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size that stratum-specific evaluation of the empirical means En in (3.5) and

the corresponding estimator for (3.9) cannot be reliably done. In such cases

a pre-planned, coarsened stratum indicator could be used and the resulting

hypothesis test would still control Type I error, asymptotically.

Stratified randomization is related to stratified sampling designs, also called

“two-phase sampling” (Sen, 1988; Breslow and Wellner, 2007; Bai et al., 2013).

To the best of our knowledge, asymptotic results for these designs do not di-

rectly apply to our problem; a key difference is that asymptotic results for

stratified sampling designs often involve finite population inference (commonly

used in survey sampling), while here we use superpopulation inference (com-

monly used in analyzing randomized trials).

We provide R functions to calculate the variance for estimators including

those in Examples 1-3 and the K-M estimator.
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Chapter 4

Semiparametric Partial Common

Principal Component Analysis

for Covariance Matrices

The content of this chapter is reproduced from Wang et al. (2020) available

at https://doi.org/10.1111/biom.13369.

4.1 Introduction

Common principal component analysis (CPCA) is an approach that simul-

taneously models multiple covariance matrices. It extends the idea of principal

component analysis by assuming all covariance matrices share the same set of
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eigenvectors. Since it was first introduced by Flury (1984), CPCA has been ex-

tensively applied in various fields including statistics (Gu, 2016; Pepler et al.,

2016), finance (Goyal et al., 2008; Xu et al., 2019), and computer science (Ye

et al., 2012; Hadjipantelis et al., 2015).

Extensions of CPCA have been investigated from multiple angles. Flury

(1987) proposed partial common principal component analysis (PCPCA), where

only a proportion of the eigenvectors was assumed to be shared across covari-

ance matrices and the rest to be individual-specific. Another direction relaxed

the Gaussianity assumption in CPCA, resulting in asymptotic theory for non-

Gaussian distributions (Boik, 2002; Hallin et al., 2010). Other extensions in-

clude Bayesian approaches (Hoff, 2009), algorithm acceleration (Browne and

McNicholas, 2014) and modifications for high-dimensional data (Franks and

Hoff, 2019). Among these extensions of CPCA, PCPCA continues to be appeal-

ing, as it relaxes the assumption of a completely common eigenspace across

matrices while partially preserving the straightforward interpretation of com-

mon eigenvectors, i.e., eigenvectors shared across matrices. Related work on

this topic includes Krzanowski (1984), Schott (1999), Boik (2002), Lock et al.

(2013) and Pepler et al. (2016).

In spite of these extensions, some questions related to PCPCA remain unan-

swered. Given the number of common eigenvectors, how one can identify the

common eigenvectors from a pool of eigenvectors requires further investiga-
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tion. Flury (1987) assumed that “some order of the common components is

defined”. Some of the literature assumed that the common eigenvectors are

those associated with the largest eigenvalues across all covariance matrices

(Schott, 1999; Crainiceanu et al., 2011). However, common eigenvectors may

be associated with small eigenvalues, or the corresponding eigenvalue of a com-

mon eigenvector ranks differently across matrices. This question becomes more

challenging if the number of common eigenvectors is unknown or the data is

not Gaussian distributed. Regarding these points, Pepler et al. (2016) devel-

oped a non-parametric method to select the common eigenvectors in the special

case of two covariance matrices. With multiple asymmetric matrices as the re-

sponse, Lock et al. (2013) proposed a linear model to identify latent factors that

explain the joint and individual data variation (JIVE) and Zhou et al. (2016)

generalized JIVE to a common and individual feature extraction (CIFE) frame-

work. None of these methods, however, studied the asymptotic properties.

In this paper, we propose a semiparametric PCPCA approach, which can

consistently estimate the common eigenvectors, without making any assump-

tions on the ranks of eigenvalues that are associated with common eigenvec-

tors. Our method builds on an idea from Krzanowski (1984), where a semipara-

metric approach was proposed in the context of CPCA. We extend this idea to

semiparametric PCPCA and provide asymptotic results for our methods as the

number of matrices, or the number of samples to estimate each matrix, goes to
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infinity (both with fixed dimension). If the number of samples goes to infinity,

our results do not require the data to be Gaussian distributed. When the num-

ber of common eigenvectors is unknown, we develop a sequential testing proce-

dure, which effectively controls the type I error for Gaussian distributed data.

As shown in the simulation study, our method outperforms existing methods

in estimating the common eigenvectors in a variety of scenarios.

In the next section, we introduce PCPCA. In Section 4.3, we present our pro-

posed semiparametric method to identify the common eigenvectors. We eval-

uate the performance of our proposed method through simulation studies in

Section 4.4. An application to an fMRI data set is provided in Section 4.5.

Section 4.6 summarises this paper and discusses future directions.

4.2 Model and assumptions

We consider a data set, {yit}, for t ∈ {1, . . . , T} and i ∈ {1, . . . , n}, where

yit ∈ Rp are independent and identically distributed random samples from a

p-dimensional distribution with mean zero and covariance matrix Σi. In our

application example, yit is a sample of brain fMRI measurements of p regions

from subject i at time point t. We assume that Σi satisfies the following partial
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common principal component (PCPC) model:

Σi =
k∑
j=1

λijγjγ
>
j +

p−k∑
l=1

λi(l+k)rilr
>
il , (4.1)

where {λij}pj=1 are the eigenvalues of covariance matrix Σi and k is the largest

integer such that formulation 4.1 holds. The γj, for j = 1, . . . , k, are the

unit-length common eigenvectors across subjects. Let Γ = (γ1, . . . ,γk) ∈ Rp×k

(k ≤ p) be the orthonormal matrix of the common eigenvectors. The ril, for

l = 1, . . . , p− k, are unit-length individual-specific eigenvectors of subject i. Let

Ri = (ri1, . . . , ri,p−k) ∈ Rp×(p−k) be the orthonormal matrix of the individual-

specific eigenvectors. We assume that Ri is orthogonal to Γ, i.e., Γ>Ri = 0. Let

Λi = diag{λi1, . . . , λik} and Ψi =
∑p−k

l=1 λi(l+k)rilr
>
il . Then, the PCPC model (4.1)

can be reformulated as:

Σi = ΓΛiΓ
> + Ψi. (4.2)

First proposed by Flury (1987), the PCPC model has an interpretation anal-

ogous to CPCA. A CPC, defined by γjγ>j for j = 1, . . . , k, is shared across all

matrices. We emphasize that our definition of CPC is different from Flury

(1984) (or the principal component in PCA) where a CPC is defined as γ>j yit,

since we focus on the shared covariance structure across matrices instead of

individual-specific eigenvalues. For example, in our application, a CPC repre-

sents a functional brain network in the sense that it represents correlations in
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functional brain measures consistent across subjects. The corresponding diag-

onal entry of Λi is interpreted as the variation of the CPC in subject i. On the

other hand, Ψi is the individual-specific model component, which varies across

subjects. A toy example of the PCPC model with p = 4 and k = 2 is shown in

Figure 4.1.

Figure 4.1: An example of the PCPC model. Each covariance matrix consists
of two CPCs and an individual structure. Each CPC has rank 1 and norm 1.

Our goal is to both find k and estimate Γ consistently, as either n → ∞ or

T → ∞, with p fixed. When estimating Γ, existing methods, such as Schott

(1999) and Crainiceanu et al. (2011), assumed that CPCs are associated with

the largest eigenvalues across all covariance matrices. This is a restrictive as-

sumption, since the corresponding eigenvalue of a CPC may rank consistently

low or differently across matrices. For instance, our toy example in Figure 4.1

shows that CPCs are associated with small eigenvalues in matrices 1 and 2, but
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with large eigenvalues in matrix n. In addition, in many scientific applications,

there is no priori reason to assume that the variation explained by the common

components dominates the variation explained by the individual-specific com-

ponents. For this reason, we do not make any assumptions regarding the rank

of CPC-related eigenvalues.

The PCPC model shares some common features with existing partial infor-

mation decomposition methods, but there exist major differences. Crainiceanu

et al. (2011) provided a population value decomposition (PVD) model where

common eigenvectors are extracted from concatenated individual eigenvectors.

This procedure presumes that common inter-subject components are associ-

ated with the largest individual eigenvalues. Moreover, the approach does not

consider group level diagonalization as a goal. Lock et al. (2013) introduced

the JIVE model, which decomposes information from multiple data sources

into common components and individual components. Zhou et al. (2016) gen-

eralized the JIVE model by a CIFE framework, which has the same objective

function as JIVE. Unlike the PCPC model, the common components identified

by JIVE and CIFE are not unique, which can make them hard to interpret in

practice. Furthermore, PVD, JIVE and CIFE are empirical methods with no

asymptotic guarantees.

More recently, Wang et al. (2019) proposed a common reducing subspace

model, which assumes Σi = ΓΩ0Γ
> + Γ̃ΩiΓ̃

>, where (Γ, Γ̃) ∈ Rp×p forms an
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eigenbasis and Ω0 ∈ Rk×k,Ωi ∈ R(p−k)×(p−k), i = 1, . . . , n are positive definite

matrices. This model can be reformulated as Σi = ΓΛΓ> + Ψi, where Λ ∈ Rk×k

is a positive definite diagonal matrix shared across i and Ψi ∈ Rp×p is a positive

semi-definite matrix orthogonal to Γ with rank p−k. Compared with the PCPC

model (4.1), this model requires Λi ≡ Λ, and is hence a special case of the PCPC

model.

To achieve the identifiability of Γ and the consistency of our proposed esti-

mator, for the PCPC model (4.1), we impose the following assumptions for the

asymptotics when n→∞.

Assumption A (for n→∞):

1. T and p are fixed with T > 0 and p > 1.

2. Each (λi1, . . . , λik), i ∈ {1, . . . , n}, is an independent and identically dis-

tributed random sample from a distribution with finite mean (λ∗1, . . . , λ
∗
k)

and finite variance. Furthermore, elements of (λi1, . . . , λik) are indepen-

dent of each other.

3. Each Ψi, i ∈ {1, . . . , n}, is an independent and identically distributed ran-

dom sample from a distribution with finite mean Ψ∗ and finite second-

order moment. Both Ψi and Ψ∗ are symmetric positive semi-definite ma-

trices with rank p− k and are orthogonal to Γ.

4. The matrix ΓΛ∗Γ>+Ψ∗ has distinct eigenvalues, where Λ∗ = diag{λ∗1, . . . , λ∗k}.
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5. For each i ∈ {1, . . . , n}, yit is normally distributed given Σi.

To the best of our knowledge, we are the first to provide asymptotic results

as the number of matrices goes to infinity. Different from the literature where

n is fixed (Flury, 1987; Boik, 2002; Pepler et al., 2016; Wang et al., 2019), As-

sumptions A (2) and (3) assume (λi1, . . . , λik) and Ψi are random variables in-

stead of fixed parameters, since otherwise, the number of parameters would

explode as n increases. Assumption A (4) is required for identifiability of Γ

in matrix perturbation theory. The Gaussian assumption in Assumption A (5)

is made for convenience and is stronger than required for our results. For the

proof, we only need the fourth-order moment of yit to be the same as the fourth-

order moment of a Gaussian distribution, with mean 0 and covariance Σi.

In some cases, n is small but T is large. For example, in fMRI data analysis,

the number of subjects may be small, but subjects may have long fMRI scans.

In other measures with rapid sampling, such as electroencephalograms, this is

frequently the case. For such data sets, we prove a similar asymptotic theory

as T → ∞ with n and p fixed. This asymptotic theory requires the following

assumptions.

Assumption B (for T →∞):

1. n and p are fixed with n > 1 and p > 1.

2. For each i ∈ {1, . . . , n}, (λi1, . . . , λik) and Ψi are fixed.
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3. The eigenvalues of
∑n

i=1 Σi/n are distinct.

4. The fourth-order moment of yit is bounded for i = 1, . . . , n.

Assumption B (2) implies that the asymptotics are conditional on Σi, i =

1, . . . , n. The reason to pursue conditional asymptotics is that n is fixed and

inference on these specific n distributions is of interest. Unlike Assumption

A where a Gaussian distribution is assumed, Assumption B is semiparamet-

ric, since it does not put constraints on higher-order moments, except that the

fourth-order moment is bounded. Compared with existing asymptotic results

for T → ∞, Assumption B is weaker. Flury (1987) and Schott (1999) both as-

sumed that {yit} are normally distributed. Boik (2002) provided asymptotic

results for non-normal data, but modeled eigenvalues as known smooth func-

tions of parameters. Though Pepler et al. (2016) and Hallin et al. (2010) relaxed

Assumptions B (3) and (4), the former work only focused on the case when n = 2

and the latter was for CPCA.

In addition to Assumption A or Assumption B, we also assume that {yit}, t =

1, . . . , T are independent of each other. However, in many real-world appli-

cations, such as our fMRI data example, {yit} can be temporarily correlated.

We consider a generic constraint on the temporal correlation that, for t′ < t,

E[yity
>
it′ ] = Dt−t′ where Dt−t′ is a diagonal matrix and Dt−t′ = 0 if t > t′ + c

for some constant c. This assumed constraint is satisfied for many time series

models, including Bickel and Gel (2011) and Guo et al. (2016), and approxi-
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mately satisfied under the auto-regressive model. Under this assumption, our

theoretical results for n→∞ still hold. Alternatively, when T →∞, under the

same assumption, one can adopt an auto-regressive moving-average (ARMA)

model for pre-whitening {yit} to remove temporal dependence, which is com-

monly used in fMRI data analysis (Lindquist et al., 2008; Olszowy et al., 2019).

4.3 Estimation

In this section, we introduce our estimation procedure under two scenarios:

(1) the number of CPCs is known and (2) the number of CPCs is unknown.

When the number of CPCs is known, we prove that our proposed estimator of

the common eigenvectors is consistent. When the number of CPCs is unknown,

the estimation procedure has two steps: we first use a sequential testing pro-

cedure to estimate the number of CPCs, and then calculate our proposed esti-

mator using the estimated number of CPCs.

4.3.1 The number of CPCs is known

When the number of CPCs is known, we propose to estimate Γ in two steps:

first getting p CPC candidates for Γ, denoted as Γ̂candi ∈ Rp×p, and then selecting

k columns from Γ̂candi as Γ̂ ∈ Rp×k.

In the first step, Γ̂candi is calculated as the eigenvectors of S =
∑n

i=1 Si/n,
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where Si =
∑T

t=1 yity
>
it/T is the sample covariance matrix of subject i. The

columns of Γ̂candi are ordered in a way that the corresponding eigenvalue of

each eigenvector is decreasing. We first define the consistency of an eigenvector

estimator.

Definition 1. Let {xs : s = 1, 2, . . . } denote a series of random vectors in Rp

with `2-norm 1; that is ‖xs‖2 = 1 for all s. Let x be a vector in Rp such that

‖x‖2 = 1. As s → ∞, xs is consistent to x if |〈xs,x〉|
P−→ 1, where 〈·, ·〉 is the

inner product defined in Rp and P−→ denotes convergence in probability.

Under Definition 1, the following theorem shows that k out of p columns of

Γ̂candi are consistent estimators of the columns of Γ as n or T goes to infinity,

which is a direct generalization of spectral properties of S.

Theorem 4. Assume the PCPC model (4.1) holds.

1. Under Assumption A, for any column γj of Γ (j = 1, . . . , k), there exists a

column of Γ̂candi that is consistent to γj as n → ∞. Explicitly, let el ∈ Rp

denote a p-dimensional vector with the l-th entry one and rest zero, then,

there exists l(j) ∈ {1, . . . , p}, such that

|〈γj, Γ̂candiel(j)〉|
P−→ 1.

2. Under Assumption B, for any column γj of Γ (j = 1, . . . , k), there exists a
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column of Γ̂candi that is consistent to γj as T →∞.

Theorem 4 implies that, by properly ordering the columns of Γ̂candi, we can

achieve that the j-th column of Γ̂candi converges in probability to γj for j =

1, . . . , k. To find this ordering, we define a deviation from commonality metric

for each column of Γ̂candi:

Dev ({yit}, Γ̂candi, j) =
1

n(p− 1)

p∑
l=1,l 6=j

∑n
i=1(γ̂>j Siγ̂l)

2

(γ̂>j Sγ̂j)(γ̂>l Sγ̂l)
, (4.3)

where γ̂j is the j-th column of Γ̂candi.

For the deviation from commonality metric, we expect it to be small if γ̂jγ̂>j

is close to a true CPC and large otherwise. For illustration, we assume T is

large enough such that the sample estimates can be replaced by their pop-

ulation targets; that is, γ̂jγ̂>j = γj̃γ
>
j̃

for some j̃ ∈ {1, . . . , k} and Si = Σi.

Then the PCPC model (4.1) implies that γ̂>j Siγ̂l = 0 for l 6= j and hence

Dev ({yit}, Γ̂candi, j) = 0. If γ̂jγ̂>j and γ̂lγ̂
>
l are not close to any CPC, then

γ̂>j Siγ̂l = γ̂>j Ψiγ̂l 6= 0 for some i and hence Dev ({yit}, Γ̂candi, j) > 0. In gen-

eral, on the right-hand side of Equation (4.3), the numerator captures the sum

of the squared (j, l) element in Γ̂>candiSiΓ̂candi and the denominator is a normaliz-

ing term that eliminates the effect of magnitude difference in the eigenvalues.

The following theorem shows that Dev ({yit}, Γ̂candi, j) can be used to order the

columns of Γ̂candi and estimate Γ.
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Theorem 5. For all j ∈ {1, . . . , k}, let γ̂jn be the estimate of γj in Γ̂candi, where

jn = arg maxl∈{1,...,p} |〈γ̂l,γj〉|. Assume the PCPC model (4.1) holds.

1. Under Assumption A, as n→∞, we have

Dev ({yit}, Γ̂candi, jn)
P−→ 1

T
.

In addition, let Ln = {1, . . . , p} \ {1n, . . . , kn}, then there exists a positive

constant C independent of n, such that, as n→∞,

min
l∈Ln

Dev ({yit}, Γ̂candi, l)
P−→ 1

T
+ C.

2. Under Assumption B, as T →∞, we have

Dev ({yit}, Γ̂candi, jn)
a.s.−→ 0 and min

l∈Ln

Dev ({yit}, Γ̂candi, l)
a.s.−→ C̃,

where C̃ is a positive constant independent of T and a.s.−→ denotes conver-

gence almost surely.

Given Theorem 5, in practice, we can rank the columns of Γ̂candi in increas-

ing order of Dev ({yit}, Γ̂candi, j) for j = 1, . . . , p and select the first k columns as

Γ̂. If γ̂j is selected, we call γ̂j a common eigenvector estimate and γ̂jγ̂>j a CPC

estimate.

In Theorem 5, the asymptotic results of n → ∞ and T → ∞ are different,
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which results from the different assumptions made in the two cases. When

n → ∞, the deviation from commonality metric is related to the fourth-order

moment of yit, which yields a positive probability limit for a CPC estimate.

When T → ∞, we have γ̂>j Siγ̂l
a.s.−−→ 0 for l 6= j if and only if γ̂jγ̂>j is a CPC

estimate, making the deviation from commonality metric converge to 0 only

for a CPC estimate. Despite these differences, CPC estimates in both cases

have the least deviation from commonality metric among all columns of Γ̂candi

asymptotically, which is essential for identifying CPC estimates from Γ̂candi.

When n and T are small, some columns of Γ̂ may have a large deviation

from commonality metric and are not “close” to any CPC. This bias, however,

will disappear as n→∞ or T →∞, as guaranteed by Theorems 4 and 5. While

our theorems hold for all k ∈ {0, 1, . . . , p − 2, p}, the convergence rate can be

faster for larger k. Under Assumption A, when k is large, {yit} for different i

share more in common, which reduces the variability of the eigenvectors of S.

Under Assumption B, as k increases, the number of parameters in the PCPC

model (1) decreases, and the effective sample size to estimate each parameter

increases. We leave the study of the convergence rate as a function of p and k

to future research. The estimating procedure is summarized in Algorithm 1.

With the number of CPCs given, we generalize the results of Flury (1987) in

three directions. First, Algorithm 1 can consistently estimate CPCs as n→∞,

a case Flury (1987) did not cover. Second, when T → ∞, Theorems 4 and 5
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Algorithm 1 An algorithm to estimate CPCs in model (4.1) when k is known.
Input: A Data set {yit}, t = 1, . . . , T , i = 1, . . . , n, and k ∈ {1, . . . , p− 2, p}.

1. Calculate the sample covariance matrix Si =
∑T

t=1 yity
>
it/T for each i.

2. Perform eigendecomposition on S =
∑n

i=1 Si/n and obtain the estimated
eigenvectors denoted as Γ̂candi.

3. Reorder the columns of Γ̂candi such that Dev ({yit}, Γ̂candi, j) is increasing
in j, and let Γ̂ be the first k columns of Γ̂candi.

Output: A p× k orthonormal matrix Γ̂.

relax the Gaussian assumption made by Flury (1987). Third, Theorems 4 and

5 guarantee the identification of the CPCs without making assumptions on the

ranks of CPC-related eigenvalues.

Theorems 1 and 2 allow that p > T when n → ∞. When implementing

Algorithm 1, the only condition is that S is positive definite, which is generally

true if p < nT . However, a large pmay substantially increase the computational

complexity and affect finite-sample accuracy, as discussed in Sections 3.3 and

4, respectively.

4.3.2 The number of CPCs is unknown

Based on the idea of Schott (1999), we use a sequential hypothesis testing

approach to find k. For j = 0, 1, . . . , p− 2, we sequentially perform the following

testings

H0,j : k = j ↔ H1,j : k ≥ j + 1.
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Starting from j = 0, if H0,j is rejected, then we proceed to test H0,j+1; otherwise

we estimate k̂ = j. Before the first test, we order the columns of Γ̂candi such

that Dev ({yit}, Γ̂candi, j) is increasing in j. When testing the j-th hypothesis,

we simulate the distribution of Dev ({yit}, Γ̂candi, j + 1) under H0,j, denoted as

F̂j+1, and reject H0,j if Dev ({yit}, Γ̂candi, j + 1) is smaller than the α-quantile

of F̂j+1. The logic of this rejection rule is that Dev ({yit}, Γ̂candi, j + 1) is small

under H1,j, but the α-quantile of F̂j+1 is generally large, since γ̂j+1 is not a

common eigenvector under the null hypothesis. Adjusting for multiple testing

is unnecessary here, since the family-wise type I error is P(k̂ ≥ k0 + 1|k = k0) =

α, if the truth is k = k0.

Given Γ and {λi1, . . . , λip}ni=1 defined in the PCPC model (4.1), we calcu-

late F̂j+1 by repeating the following steps for m times. In practice, we can

approximate Γ using Γ̂ output in Algorithm 1, estimate {λi1, . . . , λij} by diag-

onal entries of Γ̂SiΓ̂ and estimate {λi(j+1), . . . , λip} by the non-zero eigenvalues

of Si − Γ̂ diag{λi1, . . . , λij}Γ̂>. We emphasize that, different from Algorithm 1,

where p can be larger than T , the above approximations are valid when p ≤ T .

1. For each i = 1, . . . , n, independently and uniformly generate R
(sim)
i from

the sample space {R(sim)
i ∈ Rp×(p−j) : R

(sim)
i

>R
(sim)
i = In−j,R

(sim)
i

>Γ = 0}.

2. Construct Σ
(sim)
i = (Γ,R

(sim)
i ) diag{λi1, . . . , λip}(Γ,R(sim)

i )>. Generate y
(sim)
it ,

t = 1, . . . , T , from multivariate Gaussian distribution with mean 0 and

covariance Σ
(sim)
i .
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3. Given the data set {y(sim)
it }, calculate Γ̂

(sim)
candi as described in Algorithm 1

and output Dev ({y(sim)
it }, Γ̂(sim)

candi, j + 1).

Then F̂j+1 =
∑m

l=1 δl/m, where δl denotes a point mass at Dev ({y(sim)
it }, Γ̂(sim)

candi, j + 1)

output by the l-th simulation. The following theorem shows that the type I er-

ror rate for each test is bounded by α under regularity assumptions.

Theorem 6. Assume the PCPC model (4.1) holds, {yit|Σi} follows a multivari-

ate Gaussian distribution with mean 0 and covariance Σi, and Ri follows a

uniform distribution on its sample space defined in Section 4.2. Then un-

der H0,j, as m → ∞, F̂j+1 converges in distribution to the true distribution of

Dev ({yit}, Γ̂candi, j + 1) given Γ and {λi1, . . . , λip}, i = 1, . . . , n.

A key assumption in Theorem 3 is that data are Gaussian distributed.

When this assumption does not hold, the sequential testing procedure tends

to be conservative, i.e. k̂ < k, since the F̂j+1 is likely to underestimate the

mean and deviation of the distribution of Dev ({yit}, Γ̂candi, j + 1). In practice,

an ad hoc solution is to let k̂ be the smallest j such that Em[F̂j] −
√
V arm(F̂j)

is smaller than Dev ({yit}, Γ̂candi, j), where Em and V arm represent sample av-

erage and variance respectively. This solution shares the central idea of gap

statistics in Tibshirani et al. (2001), which is used to determine the number of

clusters in clustering. The procedure of finding k and estimating Γ is described

in Algorithm 2.
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Another method to find k is to use the hierarchy of partial chi-squared

statistics proposed by Flury (1987, 1988). A nice summary of these statistics

can be found in Pepler et al. (2016). The relevant application of this hierar-

chy in PCPCA is testing k = k1 ↔ k = k2. However, this approach has two

limitations. First, a set of common eigenvector estimates must be prespecified

to implement the test, which is unknown under our setting since CPCs can

rank differently among matrices. Second, the chi-squared test is valid only as

T → ∞, which is a case where our approach also applies. Hence, we do not

consider this method to find k in the simulation studies and data application.

4.3.3 Computational complexity

Given parameters k,m, n, T and p, the computational complexity isO{np2(p+

T )} for Algorithm 1 and O{4k̂mnp2(p + T )} for Algorithm 2, where k̂ is the es-

timate of k by Algorithm 2. It is straightforward to see that the dimension of

matrices p drives the computational complexity at a rate of p3, if T is not too

large. Furthermore, finding k can dramatically increase the run time if k and

m are large.

As a benchmark for actual run time, we set k = p = 20,m = n = T = 100

and ran both algorithms on an Intel I5-8259U 2.3GHz processor in R software

for 10 times. On average, Algorithm 1 took 0.04 seconds and Algorithm 2 took

453.01 seconds, where the difference is the run time due to the iterations for
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Algorithm 2 A two-step algorithm to estimate CPCs in model (4.1) when k is
unknown.
Input: A Data set {yit}, t = 1, . . . , T , i = 1, . . . , n.
Step 1: Get candidates Γ̂candi for Γ.

1. Calculate the sample covariance matrix Si =
∑T

t=1 yity
>
it/T for each i.

2. Perform eigendecomposition on S =
∑n

i=1 Si/n and obtain the estimated
eigenvectors Γ̂candi.

3. Reorder the columns of Γ̂candi such that Dev ({yit}, Γ̂candi, j) is increasing
in j.

Step 2: Identify Γ̂ from Γ̂candi.

1. Initialize k̂ = 0.

2. Test the hypothesis H0,k̂ : k = k̂ ↔ H1,k̂ : k ≥ k̂ + 1 by a simulation
test described in Section 4.3.2 with significance level α = 0.05 and 1,000
simulations.

3. Based on the testing result: if H0,k̂ is not rejected, return k̂ and Γ̂ as the
first k̂ columns of Γ̂candi; if k̂ = p− 2 and H0,k̂ is rejected, return k̂ = p and
Γ̂ = Γ̂candi; otherwise, increase k̂ by 1 and repeat Step 2 (2).

Output: k̂ ∈ {0, 1, . . . , p− 2, p} and a p× k̂ orthonormal matrix Γ̂.
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estimating k. In comparison, Flury’s algorithm (Flury and Gautschi, 1986) for

CPCA, which assumes k is known, took 5.23 seconds under the same setting,

which is roughly 100 times slower than Algorithm 1. In practice, one could

reduce the run time of Algorithm 2 by parallel programming and improving

code efficiency.

4.4 Simulation study

In this section, we perform three simulation studies. The first confirms the

asymptotic results given by Theorem 5. The second tests the performance of

Algorithms 1 and 2 under various settings. The last compares our proposed

method with existing approaches under different scenarios.

4.4.1 Design and data generating mechanism

In the first simulation, we let p = 20 and k = 10. Define λj = e0.5(p−j) for

j = 1, . . . , p, and assume that {yit} follows a multivariate Gaussian distribu-

tion and CPCs rank randomly in each covariance matrix. For the study of the

asymptotics as n → ∞, we set T = 50 and n = 50, 100, 500, 1000; and for the

study of the asymptotics as T →∞, we set n = 50 and T = 50, 100, 500, 1000. For

each combination of n and T , we simulate data and compare the distribution of

the k-th smallest deviation from commonality metric, which is the largest met-
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ric of CPC estimates, with the distribution of the (k + 1)-th smallest deviation

from commonality metric, which is the smallest metric of non-CPC estimates.

The second simulation is the same as the first one, except that we consider

combinations of different settings: (1) n = T = 15, 30, 100, (2) k = 1, 10, 20 and (3)

{yit} follows a multivariate Gaussian distribution versus Gamma distribution.

For each combination, we simulate data for 1000 times, run Algorithm 1 to get

Γ̂, and run Algorithm 2 to get k̂ for each simulated data set. To measure the

performance of Algorithm 1, we define
∑k

j=1 max |γ>j Γ̂|/k as the accuracy metric

of Γ̂. This metric lies in [0, 1] with larger values indicating better accuracy. To

evaluate the sequential testing procedure, we report k̂ and compare it with the

true k.

The last simulation compares our proposed method (with or without k known,

i.e., Algorithm 1 or Algorithm 2) with Flury’s method (Flury, 1987) and the

PVD method (Crainiceanu et al., 2011) through 4 scenarios below. By “Flury’s

method”, we mean first running the algorithm given by Flury and Gautschi

(1986) to estimate Γ̂candi in CPCA and then selecting k columns associated with

the largest eigenvalues of S. Although Flury (1987, 1988) proposed a method to

estimate k in PCPCA, we do not implement it here, because the order of CPCs

is unknown, as discussed in Section 4.3.2. For the PVD, we use the default

setting; that is, first calculating the top k eigenvectors of Si (denoted as Ui)

and then estimating Γ as the top k eigenvectors of U = (U1, . . . ,Un). There
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are other partial information decomposition methods, such as JIVE and CIFE

described in Section 4.2, but they do not have unique CPC estimates, which

makes the comparison with these methods via simulation infeasible.

Scenario 1: {yit} follows a Gaussian distribution with large n and T . CPCs

are associated with the largest eigenvalues in each covariance matrix.

Scenario 2: {yit} follows a Gaussian distribution with large n and T . The

CPC-associated eigenvalues rank randomly in each covariance matrix.

Scenario 3: {yit} follows a Gamma distribution with large n and T . CPCs

are associated with the largest eigenvalues in each covariance matrix.

Scenario 4: {yit} follows a Gaussian distribution with small n and T . CPCs

are associated with the largest eigenvalues in each covariance matrix.

Scenario 1 serves as the reference case, where the underlying assumptions

of all 4 methods are satisfied. Different from Scenario 1, Scenario 2 has ran-

domly ranked CPC-associated eigenvalues, Scenario 3 has Gamma data gener-

ating distribution and Scenario 4 has small sample size. For each of the 4 sce-

narios, we consider two cases: p = 20 with k = 10 and p = 100 with k = 20, which

represent small-scale and large-scale problem, respectively. When p = 20, we

set n = T = 100 for Scenarios 1-3 and n = T = 30 for Scenario 4 and define

λj = e0.5(p−j) for j = 1, . . . , p. When p = 100, we set n = T = 1000 for Scenarios

1-3 and n = T = 150 for Scenario 4 and define λj = e0.1(p−j) for j = 1, . . . , p.

Similar to simulation 2, we use
∑k

j=1 max |γ>j Γ̂|/k as the accuracy metric of Γ̂.
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For all simulations, if {yit} follows a Gaussian distribution and CPC-associated

eigenvalues rank randomly, we simulate the data as follows for 1000 repli-

cations. Given p, n, T, k and {λj}pj=1, we sample one Γ from the space {Γ :

Γ>Γ = Ik} as the common eigenvectors, and randomly partition {λj}pj=1 into

two parts: one with k elements as the eigenvalues corresponding to common

eigenvectors (denoted as {λ∗j}kj=1) and the other one consisting of p − k el-

ements (denoted as {λ∗j}
p
j=k+1). For i = 1, . . . , n, we independently sample

λij from a chi-squared distribution with degrees of freedom λ∗j and construct

Ψi = UiDiU
>
i , where Ui is an independent sample from the space {U : U>U =

In−k,U
>Γ = 0(n−k)×k} and Di = diag{λi(k+1), . . . , λip}. Then we construct Σi =

Γ diag{λi1, . . . , λik}Γ> + Ψi and {yit, t = 1, . . . , T} are independently sampled

from N (0,Σi). If {yit} are not Gaussian distributed, we modify the above pro-

cedure by letting yit = Σ
− 1

2
i ỹit, where {ỹit, t = 1, . . . , T} are independently sam-

pled from a multivariate-Gamma distribution with mean 0, variance Ip and

skewness 10Ip. If CPC-associated eigenvalues are the largest k eigenvalues

across matrices, we set {λ∗j}kj=1 to be the largest k numbers in {λj}pj=1.

4.4.2 Simulation results

Simulation results are summarized in Figure 4.2 and Tables 4.1 and 4.2 for

simulations 1, 2 and 3 respectively.

Figure 4.2 shows that the deviation from commonality metric converges to
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its limit when T is fixed and n → ∞, and when n is fixed and T → ∞. This

confirms the results of Theorem 5 and indicates that this metric can be used to

distinguish CPC estimates and non-CPC estimates when either n or T is large.

Table 4.1 displays the performance of Algorithms 1 and 2 under the differ-

ent simulation settings. When data are Gaussian distributed, both algorithms

have high accuracy whenever k, n, T are small, medium or large. As n and T

increases, the performance of both algorithms improves. When the sample size

is small, Algorithm 1 still has a high accuracy in estimating Γ, even under

the non-Gaussian distribution setting. In particular, when n = T = 15 < p,

Algorithm 1 remains valid and has good accuracy, which demonstrates an ad-

vantage with small data. Since implementing Algorithm 2 requires p ≤ T , k̂ is

not estimated when n = T = 15. As k increases, the accuracy of Algorithm 1

slightly increases, which confirms our discussion in Section 4.3.1. Under the

Gamma data generating distribution, the algorithm to find k likely underesti-

mates k when k is large. The reason for this is twofold. First, this algorithm

is conservative for non-Gaussian data (as discussed in Section 4.3.2); second,

when k is large, the number of null hypotheses to reject is large, which reduces

the overall power. As a result, we recommend using Algorithm 2 for Gaussian

distributed data. If k is large, one may not find all CPCs, but the identified

ones are accurate.

Table 4.2 gives the comparison of our proposed method with k known or un-
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known to Flury’s method and PVD. In the first scenario, all methods perform

well, as expected. In the other scenarios, our proposed method performs as

good as or better than Flury’s method and PVD, even when the true number

of CPCs is unknown. In Scenario 2, since both Flury’s method and PVD as-

sume CPCs are associated with the largest eigenvalues for each matrix, their

accuracy is much lower than our proposed method. In Scenario 3, all four meth-

ods have modest accuracy, but our proposed method with k unknown, Flury’s

method and PVD have lower accuracy due to the non-Gaussian distribution.

In contrast, our proposed method with k known remains highly accurate, since

it is semiparametric. In Scenario 4, the size of data is limited compared to the

dimension of matrices, resulting in small accuracy drops of all methods. How-

ever, our proposed method still has the least accuracy drop among all methods.

In all scenarios, our proposed method outperforms Flury’s method and PVD,

even when the true number of CPCs is unknown.

Table 4.1: The accuracy of Algorithm 1 and the sequential testing procedure
under different settings with p = 20.

Average accuracy of Γ̂ Average k̂
Distribution k = 1 k = 10 k = 20 k = 1 k = 10 k = 20

n = T = 15
Gaussian 0.81 0.91 0.93 - - -
Gamma 0.67 0.71 0.83 - - -

n = T = 30
Gaussian 0.95 0.97 0.95 1.20 9.68 18.92
Gamma 0.70 0.86 0.92 0.65 4.04 4.02

n = T = 100
Gaussian 0.98 0.99 0.95 1.26 10.02 20.00
Gamma 0.96 0.98 0.95 1.01 9.50 13.73
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Figure 4.2: Distribution of the “Deviation from commonality” metric (4.3) as
n (left panel) or T (right panel) goes to infinity for the last CPC estimate and
the first non-CPC estimate. The solid line is the probability limit for the CPC
estimate and the dashed line is the probability limit for the non-CPC estimate
calculated from Theorem 5. The left panel demonstrates that the metric con-
verges in probability to its limit, while the right panel shows that the metric
converges almost surely.

Table 4.2: The accuracy of methods in estimating CPC under different scenar-
ios. Semi-1: the proposed semiparametric method with k known. Semi-2: the
proposed semiparametric method with k unknown. Flury: the Flury’s method.
PVD: population value decomposition.

Semi-1 Semi-2 Flury PVD

Scenario 1 p = 20 1.00 1.00 1.00 0.99
p = 100 1.00 1.00 1.00 0.99

Scenario 2 p = 20 0.99 0.96 0.26 0.50
p = 100 0.99 0.93 0.24 0.20

Scenario 3 p = 20 0.98 0.95 0.88 0.94
p = 100 1.00 0.95 0.91 0.95

Scenario 4 p = 20 0.99 0.99 0.99 0.95
p = 100 0.99 0.99 0.97 0.96
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4.5 Task fMRI data example

We apply the proposed semiparametric PCPC method to the Human Con-

nectome Project (HCP) motor-task fMRI data. The HCP project studies the

brain connectome, both structural and functional, of healthy adults. The data

set includes n = 136 healthy young adults from the most recent S1200 re-

lease. Adapted from the experimental design in Buckner et al. (2011) and

Thomas Yeo et al. (2011), the task fMRI consists of ten task blocks includ-

ing two tongue movement blocks, four hand movement blocks (two left and

two right) and four foot movement blocks (two left and two right), as well as

three 15-second fixation blocks. In each movement task block, a three-second

visual cue was first presented followed by a 12-second movement. Partici-

pants were instructed to follow the visual cue to either move their tongue,

or tap their left/right fingers, or squeeze their left/right toes to map the cor-

responding motor areas. The tasks were randomly intermixed. Once the or-

dering was fixed, the task onsets are nearly consistent across participants. We

used the fMRI data collected and minimally pre-processed by the Washington

University-University of Minnesota HCP Consortium (Van Essen et al., 2012).

The HCP pre-processing steps include distortion correction, image alignment,

volume segmentation, Montreal Neurological Institute (MNI) space registra-

tion, and creating various masks and maps for analysis, and these steps were
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described in detail in Glasser et al. (2013). Given the pre-processed data, we

extracted the time courses (T = 284 time points and repetition time = 0.72

seconds) from 264 brain regions (Power et al., 2011), which are averaged sig-

nals over voxels within the 5 mm radius ball from the region center. Motion

correction was conducted to remove the effect due to head movement during

the scan by regressing on the 12 motion parameters and taking the residuals

as the motion-corrected data (Lindquist et al., 2008). Furthermore, we fit an

ARMA(1,1) model (Lindquist et al., 2008) for each brain region to remove tem-

poral correlation. A figure showing the average of the inter-subject and region

estimated autocorrelation function before and after removing temporal corre-

lation is given in the Supporting Information. This plot suggests that auto-

correaltions were mitigated by ARMA(1,1) filtering. Since Flury’s method and

PVD are not able to identify the CPCs associated with small eigenvalues and

require prespecified k, we present the result from the proposed semiparametric

method only. Results of Flury’s method and PVD letting k = p are given in the

Supporting Information, which differ from the results of the semiparametric

method.

We first focused on functional brain regions in the sensorimotor network

(Power et al., 2011) with p = 35, which is directly related to the task design.

According to the Doornik-Hansen test for multivariate normality by Doornik

and Hansen (2008), there is no sufficient evidence to reject the null hypoth-
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esis that data are normally distributed (p-value 0.12). Among 35 CPC candi-

dates, Algorithm 2 identified 30 as CPCs, which explain 80% of the total vari-

ance of the average covariance matrix. Figure 1 in the Supporting Information

summarises the results of sequential testings. To explore the relationship be-

tween the identified CPCs and the motor tasks, we plotted the average time

course of each CPC estimate (i.e.,
∑n

i=1 γ
>
j yit/n for j = 1, . . . , 30) and compared

it with task time bins. We also visualized brain regions with loading magni-

tude greater than 0.15 in a brain map. As a result, at least ten of the identified

CPCs are related to tasks (no statistical test is performed) and a list of identi-

fied brain networks is provided in Table 4.3. Figure 4.3(A) presents an example

of task-related CPC (CPC 18). In Figure 4.3(A), the average time course sug-

gests a brain network of right hand movement and left foot movement, which

is confirmed by the brain map. In this component, brain areas associated with

motor control of the right hand yield high negative loadings (blue regions on the

left hemisphere of the brain in Figure 4.3(A)); and regions associated with mo-

tor control of the left foot yield high positive loadings (red regions on the right

hemisphere of the brain in Figure 4.3(A)). The lateral separation of the brain in

terms of the loading sign suggests that during these motor tasks, the associated

left and right hemispheres are functionally negatively correlated. Figure 4.3(B)

presents an example of the CPC that is not related to the tasks. Even though

the time course does not show a clear pattern, this CPC is concentrated in a
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region of the brain, which is modularized as a tongue region by Power et al.

(2011). For the five components that are not identified as CPCs, two appear

task-related and three do not. Since Algorithm 2 can be conservative when the

true number of CPCs is large and the distribution is non-Gaussian based on

simulation, some of these five CPC candidates may be CPCs. For all 35 CPC

candidates, the average time course and the brain maps are provided in the

Supporting Information.

Besides the analysis of the sensorimotor network, we ran Algorithm 2 on all

brain regions (p = 264) and the Doornik-Hansen test shows that it is marginally

significant for the null hypothesis that the whole-brain data are normally dis-

tributed (p-value 0.47). 190 CPC estimates were identified, which explain 50%

of the total variance of the average covariance matrix. Among the 190 CPC

estimates, 66 are associated with the default mode network, 15 are associated

with the visual network, 12 are associated with the sensorimotor network and,

5 are associated with the frontoparietal network. Here we classify a CPC es-

timate as associated with a brain network if, among the regions with loadings

greater than 0.1 in this CPC estimate, at least 25% come from the correspond-

ing network. To compare the results from the sensorimotor-network analysis

and whole-brain analysis, we extracted loadings corresponding to the sensori-

motor network for each common eigenvector estimate in the whole-brain anal-

ysis. Among 30 CPC estimates of sensorimotor-network analysis, 12 are highly
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correlated (absolute value of inner product larger than 0.7) with some CPC can-

didates of whole-brain analysis, suggesting that the brain networks encoded by

these CPCs retain when taking into account regions outside of the sensorimo-

tor network.

Table 4.3: Task-related brain networks identified by Algorithm 2.

CPC No. Variance explained Brain network
3 2.0% Hands, feet
4 2.2% Feet
5 2.1% Right hand

10 2.3% Right foot
11 2.7% Feet
15 2.0% Hands
16 2.2% Left hand
18 2.1% Right hand, left foot
23 1.8% Tongue, feet
24 2.1% Hands, feet

4.6 Discussion

In this paper, we propose a semiparametric PCPC model and provide algo-

rithms to identify CPCs with or without knowing the true number of CPCs.

Furthermore, we prove the asymptotic consistency of our proposed estimators,

even when the data generating distribution is non-Gaussian. In simulation

studies, our estimator consistently outperforms Flury’s method and PVD and

shows high accuracy if the number of CPCs is known. Applied to fMRI data,

our method identifies meaningful brain networks that match the current find-

102



CHAPTER 4. SEMIPARAMETRIC PCPCA FOR COVARIANCE MATRICES

Figure 4.3: Average time course (left panel) and brain regions (right panel)
of CPC 18 (upper panel) and CPC 9 (lower panel). In the left panel, each bin
represents the time period of a task. In the right panel, each node is a brain
region, with size standing for the absolute loading and color representing the
sign of the loading (blue for negative and red for positive). Brain regions with
absolute loading smaller than 0.1 are not shown in the figure.
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ings.

In PCPCA, a CPC may not be associated with the largest eigenvalues across

all covariance matrices. For this reason, our proposed method allows for an

arbitrary association between CPC and eigenvalues, which makes the model

more flexible. One challenge resulting from this flexibility is to find k, the

number of CPCs, since the signal of CPCs can be weak or inseparable from non-

common principal components. Our proposed algorithm for finding k performs

well under Gaussian distribution, but can be conservative if the underlying

distribution is non-Gaussian or k is large. Furthermore, sequential hypothe-

sis testing usually requires huge computational resources and can be slow for

high-dimensional matrices. Hence, an efficient and robust method for finding

k will be one future direction.

Our proposed method, as well as the literature, assumes p, the dimension

of covariance matrices, is fixed. One exciting future direction could be finding

solutions to handle data with large p but small n and T .
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Discussion

For randomized clinical trials using stratified or biased-coin randomization

and having time-to-event outcomes, an open question is how to derive the

asymptotic distribution of covariate-adjusted estimators, such as estimators

of Zhang (2015) and Lu and Tsiatis (2011) for survival functions. Our conjec-

ture is that results of Chapter 3 can be generalized to handle this question

and stratified randomization will lead to a variance reduction with the same

formula (3.9) as the K-M estimator.

When identifying shared eigenvectors, our proposed estimator in Chapter 4

assumes that each observed data vector is independent of each other. In brain

imaging, however, there is auto-correlation among different brain scans of the

same subject. In our data example presented in Section 4.5, we use a time

series model to remove such correlation, but how to best handle dependency of
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data vectors remain future directions.
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Appendix A

Supporting information to

Chapter 2

Supporting Information, available at https://doi.org/10.1111/biom.

13062, includes the following: (a) definitions of the sample variance and co-

variance used in Section 2.4.2; (b) simulations to generate visualizations of the

relationship among the imbalance, unadjusted estimator, and ANCOVA esti-

mator; (c) proofs of theoretical results; (d) relationship among different types

of R-squared; (e) data analyses accounting for missing data; (f) link to the code

for data analysis; and (g) information monitoring with covariate adjustment.
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Appendix B

Supplementary Material to

Chapter 3

Supplementary Material, available at https://arxiv.org/abs/1910.

13954, includes the following: (a) regularity conditions to Theorem 2; (b) con-

sistent estimators of the asymptotic variance V defined in Theorem 2; (c) asymp-

totic variance V (a)(t, t′), which is described in Theorem 3, and a consistent esti-

mator for V (a)(t, t); (d) proofs of Theorem 1, Corollary 1 and Theorem 2 and (e)

the results of our data analysis for the K-M estimator for the control group of

NIDA-CTN-0044.
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Appendix C

Supporting information to

Chapter 4

Proofs of Theorems 4, 5, 6, and additional results of data application refer-

enced in Section 3.7 are available with this paper at the Biometrics website on

Wiley Online Library https://doi.org/10.1111/biom.13369. The R code

and data to reproduce the simulations and data application are available at

https://github.com/BingkaiWang/Semi-parametric-PCPCA.
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