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Abstract

Globally, mental health is a growing socio-economic burden and leads to

negative ramifications including mortality and poor quality of life. Successful

early detection of mental illness will make a significant, positive economic

and societal impact. Social robots show potential to be integrated as tools for

psychological therapy and early detection. This thesis seeks to design and

develop social robots for early detection of mental illness.

I explore how multi-modal inputs can be used to infer user's mental state

and to direct appropriate robot behaviour. I have employed an iterative

design process for the design of robot morphology, personality, and behaviour.

Design 1 is a social robot with 6 DOF and exhibits non-verbal behaviours. In

this design, I explore audio, video, and haptic inputs to detect user's emotional

state. Design 2 is an interactive device that aims to collect audio data for the

detection of early signs of depression. In this design, acoustic features are

explored for depression detection, and the device uses audio and LEDs to

communicate it's internal state. Finally, I have conducted a pilot experiment

to investigate how the users interact with the robot. This thesis informs the

design of future robots that aim to support early detection of mental illnesses.
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Chapter 1

Introduction

Mental health is a growing concern in both the developed and the developing

countries. Around 1-in-6 people globally (15-20%) have one or more mental

illnesses (Ritchie and Roser, 2018). Globally, this means over one billion people

in 2016 experienced mental illness. In the United States, approximately 1 in

5 adults (46.6 million) experienced mental illness in 2017 (National Institute

of Mental Health, 2017) and over one-third (37%) of students aged 14-21

suffer from a mental health condition (Education, 2013). Financial burden

associated with mental illness is substantial and costs America approximately

$193.2 billion per year (Insel, 2008). Mental illness includes many different

conditions, such as Autism Spectrum Disorder, Schizophrenia, Dementia,

Depression Disorder, and Anxiety Disorder, that vary in degree of severity

and affect wide demographic populations. Individuals living with serious

mental illness face an increased risk of having chronic medical conditions

(Colton and Manderscheid, 2006). Recent research has reported that adults

with serious mental illness die on average 10 years earlier than others with

similar treatable medical conditions (Walker, McGee, and Druss, 2015). Mental
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illness also leads to other complications including suicide (Isometsä, 2001),

dropout from school (Education, 2013), violence towards other, indulgence in

antisocial activities, and smoking (Lasser et al., 2000). Research has also shown

prolonged hospitalization and delayed recovery due to negative psychological

consequences throughout recovery.

Despite being critical to overall well-being and physical health, diagnoses

and treatment of mental illnesses remain low. It is identified that only 40%

of the affected population receive treatment (National Institute of Mental

Health, 2019). Successful early identification of mental health conditions will

make a significant, positive economic and societal impact. Emerging research

indicates that intervening early can interrupt the negative course of some

mental illnesses and may, in some cases, lessen long-term disability (American

Mental Health Councillors Association, 2011).

With the advent of technology, researchers have explored a variety of

technologies including mobile and computer technologies (Callan et al., 2017)

and robots (Robinson, MacDonald, and Broadbent, 2014) for use in mental

health care. The use of robot technology in mental health care is nascent,

but represents a potentially useful tool in the professional's toolbox. Robots

afford appealing characteristics such as embodiment, tangibility and inter-

activity that are conductive for psychological therapy (Deng, Mutlu, and

Mataric, 2019). These features make them better suited for therapy compared

to mobile and web-based interventions. Such robots that provide assistance to

human users through social, rather than physical interaction are called Socially

Assistive Robots or SARs (Matarić and Scassellati, 2016). Researchers have
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investigated robots as mental health care therapy tools for Autism (Scassellati,

Admoni, and Matarić, 2012), Dementia (Mordoch et al., 2013), Alzheimer’s,

Depression (Chen, Jones, and Moyle, 2018) and Distress (Trost et al., 2019).

These studies often report increased engagement, increased levels of attention

(Ricks and Colton, 2010) and novel social behaviors such as joint attention

(Scassellati et al., 2018), spontaneous imitation when robots are part of the

interaction (Scassellati, 2007), increased communication with other humans

and improved sleep patterns (Tapus, Maja, and Scassellatti, 2007). Almost

all of the SARs developed and used thus far focused on the intervention for

mental illnesses. Little prior research has explored the use of SARs for early

detection of mental illness.

The central aim of this thesis is to explore the design space of social robot

for early detection of mental illnesses. To this end, I have undertaken iterative

design of the robot morphology, features and behaviour inspired by (Arsand

and Demiris, 2008). My design explored multi-modal inputs and interactive

nonverbal behaviors. The first prototype is a social robot with 6 DOF capable

of proactive and reactive non-verbal behaviours. In this prototype, I have

explored audio, video, and haptic input channels to help the robot understand

its environment and interpret the user's emotional state. To understand how

the user will interact with the robot, I conducted a preliminary study guided

by prior research on psychological therapy. Further, I have designed the

second prototype, a device for collecting audio information for early detection

of depression. In this design, I focus on the use of acoustic features for early

detection of depression, and LEDs are used to communicate internal state of
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the device. I hope that findings of this research would inform future research

in improving people's quality of life in addition to providing companionship.

The rest of this thesis is organized as follows. Chapter 2 provides back-

ground knowledge on SARs, current state of the art in health care robotics

and outlines the barriers that are central to the SARs in mental health care.

Chapter 3 presents the two prototypes I developed for detection of mental

states. Design 1 explores multi-modal information, robot embodiment and

personality with an acute focus on haptics, a novel approach to detect emo-

tions. Design 2 has been developed for collecting audio data for detecting

depression and explores an audio based interactive design. In Chapter 4, I

discuss findings found in and lessons learned from the study. I also discuss

limitations of this research that motivates future research. Finally, this thesis

is concluded with it's contributions in Chapter 5.
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Chapter 2

Background

2.1 Socially Assistive Robots

There is no formal definition of assistive robotics (Bemelmans et al., 2012),

but Feil-Seifer and Matarić (Feil-Seifer and Matarić, 2005) describe socially

assistive robots as the meeting point of assistive robots and socially interactive

robots, and further stated that this kind of robots have the purpose of aiding

humans by emphasizing the importance of social interactions. Assistive robots

can be broadly categorized into two groups. First, rehabilitation robots; these

robots focus on physical assistive technology features and are principally not

communicative, such as smart wheelchairs (Gomi and Griffith, 1998) and

exoskeletons (Kazerooni, 2005). Second, assistive social robots are subgrouped

into service and companion robots. Service robots are used to support basic

tasks of independent living, such as eating and bathing; mobility and naviga-

tion, or monitoring (e.g., Graf, Hans, and Schraft, 2004). Companion robots

aim to enhance the health and psychological well-being of human users. Fong

et al. (Fong, Nourbakhsh, and Dautenhahn, 2003) emphasized the critical role
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of social interaction and used the term ”socially interactive robots.” Any robot

developed to have the ability to interact and possibly able to communicate

with users falls into the category of socially interactive robot.

2.2 Socially Assistive Robots in Mental Health Care

Compelling opportunities for social robots in the context of health care in-

clude their ability to educate, to enhance people's communication and social

connection with others, to collect data to augment clinician’s understanding

of patient 's mental condition, to help in cognitive and behavioural therapy,

and to assist with adherence to care regimen through social support.

One of the promising applications of SARs is use in Autism therapy (Scas-

sellati, Admoni, and Matarić, 2012). Studies report positive effects of robot

presence on attention and engagement in therapy-like scenarios (Dautenhahn

et al., 2009), spontaneous joint attention behaviours (Kozima, Nakagawa, and

Yasuda, 2007), and sharing and turn taking which are usually difficult for

children with autism. SAR systems for autism have had success as social

mediators and embodiments that elicit social interactions between people

(Scassellati et al., 2018).

Another area of health care where social robots have been predominantly

used is for Dementia therapy. A variety of robots including PARO (Wada

et al., 2008), AIBO (Kramer, Friedmann, and Bernstein, 2009), Keepon and Nao

(Shamsuddin et al., 2012) have been used in intervention for dementia. Results

of the studies indicated enjoyment, acceptance of the robot, increased socially

interactive behavior, reduced sadness scores (Moyle et al., 2017), improved
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stress recovery, maximize the user’s task performance in the cognitive game

(Tapus, Tapus, and Mataric, 2009), increased social network density (Wada

and Shibata, 2007), and improved sleep patterns.

Social robots have also been studied for intervention of depression and

stress. Study by Jøranson et al. shows significant reduction of depression

and agitation among participants from baseline to followup (Jøranson et al.,

2015). Similarly, a control trial for 10 weeks reported decrease in depression

and blood pressure and an increase in cognitive activity (Thodberg et al., 2016)

among participants in robot-assisted group activity. Robot therapy has shown

to improve distress among children getting flu vaccinations (Beran et al., 2013).

Robots have played an instrumental role in developing emotional security

and reducing anxiety levels among adopted children (Trujillo, 2010).

Thus, the ability to capture physiologic data in an disencumbering way

using robots has great potential for improving health assessment, diagnosis,

and treatment. The promise of SARs for use in mental health care has been

uncovered and developments are in progress.

2.3 Barriers for SAR in Mental Health Care

While there are exciting advances in health care robotics, it is important to

carefully consider some of the challenges inherent in health care robotics. One

of the major challenges is that user's perspective are often excluded from the

robot design process, which leads to unusable and unsuitable technology.

Robots that have a high degree of freedom and sophisticated features require

a high level of cognitive function to control (Tsui et al., 2011). However,
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many people needing such robots often have co-morbidities, which can make

complex interaction an exhausting process. Thus the challenge is developing

functionally simple and transparent robots.

The next underlined challenge is creating organisational therapy sessions

and environments in which the robots and human can interact effectively

(Lee et al., 2017). Considering that the robots in mental health care interact

with mentally unstable people, the properties of interactions will vary dras-

tically. Hence the challenge is developing robots that are intuitive yet have

the computational ability to respond in unexpected situations. Another factor

is the special knowledge required to operate the robot that pose a challenge

for caregivers and clinicians (Lluch, 2011). This combined with the lack of

evidence-based clinical effectiveness leads to clinical resistance and ignorance

of the technology. Further, acceptability is an important barrier for health

care robots. When a user uses a robot in public, they are immediately calling

attention to their disability, disorder, or illness. Hence the robot morphology

and behaviour must not embarrass the users. The stigma around technology,

fear of leak of classified health information, and loss of privacy are huge

setbacks from both users and clinicians perspective.

Lack of research on safe cognitive levels of human-robot interaction also

contributes to the barriers of use of SARs in mental heath care. When used

in mental health care, most users will not have the sufficient cognitive ability

for limited dependence thus resulting in a closed relationship between the

robot and user and avoidance of real interactions with others outside. Lastly,

the cost associated with buying a robot also is a contributing barrier. There is
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no guidance available on what robot to buy and the different robot features

required for effective therapy of mental conditions preventing people from

investing in the technology.
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Chapter 3

Designing Social Robots for
Mental Health Care

In this chapter, I summarize the required robot features based on the current

state of the art of robots used in mental health care and the barriers discussed

in Chapter 2. I then describe the two robots designed and developed for

investigating the use of social robots for early detection of mental conditions.

Design 1 explores multi-modal inputs and non-verbal interactions of social

robot for detection of user's emotional state. Design 2 focuses on the collection

of data for using acoustic features for detection of depression. In addition to

the designs, I explore a pilot experiment to understand how the user's interact

with the robot.

3.1 Robot Requirements

A key difference between conventional and social robots is that the way in

which a human perceives a robot establishes expectations that guide his inter-

action with it (Fong, Nourbakhsh, and Dautenhahn, 2003). The appearance of

10



a robot is important because it helps establish social expectations. Physical ap-

pearance guides interaction. A relative familiarity of a robot's morphology can

have profound effects on its accessibility, desirability, and expressiveness. In

addition, since most of the target population might lack physical strength, the

design must be relatively light in weight. Hygiene is a predominant concern

in hospital and care environments. The robot must be easily sterilize-able.

A robot's morphology must match its intended function (DiSalvo et al.,

2002). Since peer interaction is important in psychological therapy, the robot

must project an amount of ”humanness” so that the user will feel comfortable

in socially engaging the robot. At the same time, however, a robot's design

needs to reflect an amount of ”robotness”. This is needed so that the user does

not develop false expectations of the robot's capabilities.

A therapy robot must proficiently perceive and interpret human behavior.

This includes detecting and recognizing gestures, monitoring and classifying

activity, detecting intent and social cues. A social therapy robot must send

signals to the human in order to provide feedback of its internal state and

allow human to interact in a facile, and transparent manner. Emotions play a

significant role in human behavior, communication and interaction. Artificial

emotions helps facilitate believable human-robot interaction (Cañamero and

Fredslund, 2001). Artificial emotion can also provide feedback to the user, such

as indicating the robot's internal state and intentions (Fong, Nourbakhsh, and

Dautenhahn, 2003; Breazeal, 1998). To achieve this, the robot must manifest

believable behavior through the use of natural cues (gaze, gestures, etc.) and

it must follow social convention and norms.
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In order to be successfully employed in therapy sessions, the robots need

to exhibit a certain degree of adaptability and flexibility to pro-actively encour-

age social interaction. This can be achieved by developing deep models of

human interaction. These robots would be used by doctors, nurses, therapists,

caregivers, and volunteers. Hence, it is important that the robots are de-

signed in such a manner that anyone can operate them and that no specialized

knowledge is required to do so.

With these design requirements in mind, I have developed two prototypes

that are discussed in Sections 3.2 and 3.3.

3.2 Robot Design 1: DOT

Design 1 focuses on developing a social robot that perceives and interprets hu-

man emotional state and provides artificial emotion support. First, I describe

the iterative design process that guided the robot design (Section 3.2.1). I then

present the hardware and software of the robot that I developed (Sections 3.2.2

and 3.2.4). The developed robot is called DOT and is capable of emotional

support and empathetic interactions. Haptics has been explored for detecting

emotional state and generating responses. The haptic guesture processing

framework and visual examples are included in Section 3.2.3. Finally, a pilot

experimental study is presented to examine the effect of robot on human users

(Section 3.2.5).
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3.2.1 Design Iterations

The design process started with an iterative development of the robot's mor-

phology and nonverbal behavior (NVB). An iterative process involving sketch-

ing, 3D modeling, and rapid prototyping, inspired by the movement-centric

design approach introduced in (Hoffman and Ju, 2014) was followed to design

the appearance of the robot. A story-boading approach was followed for

designing the robot's character and behaviours.

Sketching - The designing started with freehand sketches exploring widely

varying shapes based on animated and Disney-inspired designs (Sten and

Walsh, 2006). Since children usually get attracted to warm squishy animals,

one of the initial designs was modelled after a squirrel. Figure 3.1 shows CAD

model and 3.2 shows the 3D printed prototype of the design.

Figure 3.1: CAD model of an early
design variation: the squirrel

Figure 3.2: 3D printed prototype of an
early design variation: the squirrel
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However, a quick survey with eight participants selected through convenience

sampling informed that a few people had inherent repulsion to some animals.

Another key finding was that people had lower trust and expectation of robots

designed after animals.

Thus, the subsequent robot models were designed to have unique identity

and personality and not bear similarities to any animals or existing characters.

Our methodology led us to a robot design inspired by simple geometric

shapes. Some key morphology and interaction ideas related to our design

goals emerged at the sketching stage: (a) The robot structure must consist of

two independent geometric structures, relatively fastened to each other in

order to express a rich set of NVBs efficiently. (b) The robot must have high

degree of freedom for the head and eyes to exhibit social cues. (c) The robot

structure must support easy change of external appearance without affecting

the robot internal design. This is motivated by two factors: ease of identity

change depending on the user and easy sterilisation in hospital environment.

(d) The robot must be capable of table and lap interactions and hence have

a robust and solid base to sit on. Figure 3.3 was one of the early designs

considered for the robot but was later disregarded due to structural instability.

Figure 3.3: An example design from the iterative design process followed for the
design of robot

14



Figure 3.4: An example sketch from the iterative character design approach (Credits:
Erica Huang)

Figure 3.5: An example design from the iterative design process followed where the
tail of robot and handling mechanism were explored (Credits: Erica Huang)

The robot's external appearance (artificial fur covering) was also designed

through an interactive process. Different colours and accessories like the

bow-tie, spectacles, eye aspect ratio, nose, mouth and tail were explored to

design the robot's personality. Figure 3.4 shows the different facial features

explored and the personality perceived due to appearance. Similarly, Figure

15



Figure 3.6: An example sketch from the iterative design approach followed that
shows an interaction situation simulated (Credits: Erica Huang)

3.5 shows the different lengths of the tails explored and the simulated robot

handling mechanism in presence of a tail.

The robot’s movements and behavior were developed in parallel to robot’s

morphology. In order to understand when social relationships are needed in

human-robot interaction or when the perception of such relationships need to

be changed, social relations were modeled. Various scenarios and robot be-

haviours were designed using free hand sketching before implementation on
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Figure 3.7: An example sketch from the iterative design process that shows the robot
behaviour design for idle state (Credits: Erica Huang)

the actual robot platform. Figure 3.6 shows a developed interaction between

the robot and human where the person is displaying affection by hugging the

robot. Figure 3.7 shows the sequence of behaviours the robot exhibits during

idle state.

3.2.2 Robot Hardware

This sections describes the developed hardware of the robot. The target

population is older adults and children and the robot has been developed for

lap, handheld and table interactions. The maximum height of the robot is 1

feet which allows it to be carried around and manipulated easily. The physical

dimensions of the robot are 17x15x30 cms and weighs about 2.36 lbs. The

robot has 6 DOF, eye-lids open and closing mechanism (2 DOF), eyeballs pan
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and tilt mechanism (2 DOF) and neck rotation similar to human head (2 DOF).

The entire robot is covered with artificial fur to encourage the users to make

physical contact with the robot.

The robot skeleton is composed of two main parts: the Head and the

Thorax, both connected by a neck. The thorax houses the actuation mechanism

for the neck movements and the controllers of the robot. The head houses

the actuation mechanism and mechanics for the eyeballs and eye-lids motion.

The robot design in adapted from the open source robot Maki 1. The original

design was modified to accommodate speakers, improve fluidity between

moving parts and to reduce the weight of the robot. In addition, the shape of

the thorax was redesigned for better robot handling and aesthetics. All parts

of the robot were 3D printed. The skeleton of the robot can be seen in figure

3.8 and figure 3.9 shows the robot in its artificial fur covering.

A newly-developed fabric tactile sensor is inserted between the hard inner

skeleton and the fur to facilitate haptic iterations. The tactile sensor array

covers the head and thorax regions with about 320 contact points. DOT is

equipped with the four primary senses; sight(camera), auditory(microphone),

balance(Inertial Measurement Unit or IMU) and the above-stated tactile sense.

The robot is equipped with a two layer control architecture. The high-level

controller (Raspberri pi 3) supports speech and video processing, determining

robot’s internal state and generating high-level response to environment stim-

ulus. There are low-level controllers: an Arduino Uno that processes the input

1https://www.kickstarter.com/projects/391398742/maki-a-3d-printable-humanoid-robot/
posts
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Figure 3.8: Picture of 3D printed robot
prototype

Figure 3.9: A picture of the robot prototype
with its artificial fur covering

from tactile sensors and IMU. An Arbotix-m controller that generates joint-

level response gestures and commands the motors to generate movement.

Both the controller layers interact via serial communication. Individual joints

are actuated using the Dynamixel motors. Thus the robot totally consists 6

motors connected in series and commanded by the Arbotix-m controller. The

robot controller programs, haptic and emotion recognition are available in

github repository 2.

3.2.3 Haptic and Posture gestures

The differentiating feature of DOT from other social robots is its ability to

recognise haptic cues. The input from tactile sensors is used to infer the

gestures mentioned in table 3.1. Further, posture analysis is performed from

the data received from the IMU to inform the robot about its surrounding

2https://github.com/akrishn9/Robot-for-emotional-support
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and its position relative to the user. This gesture information helps the robot

understand better about the environment and the user.

Gestures Identification Pattern
Stroke move fingers over the creature

Contact touch any part of the robot
Hug contact multiple sensor locations

Hold make contact with both hands on robot
Rub move hands over the stomach repeatedly
Pat repeated taping gesture over the head/body

Squeeze high contact force on robot
Poke single point high pressure activation

Lift lift the robot from rest position
Toss throw the device off its standing position

Rock move robot repeatedly front and back/side to side

Table 3.1: Summary of the haptic and posture gestures that the robot can interpret

Posture of the robot is achieved by using the 6 DOF IMU. The gyroscope

is used to measure the robot's angular velocity and the accelerometer is em-

ployed to measure the external specific force acting on the robot. Since the

accelerometer is a good indicator of orientation in static conditions and gy-

roscope is a good indicator of tilt in dynamic conditions, the accelerometer

Figure 3.10: The robot is capable of detecting various postures by processing the IMU
data: (a) stand position; (b) tilted position; (c) fallen pose which calls for help
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signals are passed through a low-pass filter and the gyroscope signals through

a high-pass filter and combined to obtain the final orientation (yaw, pitch,

roll) of the robot. These values are compared with a base value to detect

the posture. Figure 3.10 shows the different postures of the robot that can

be detected using IMU data. These postures when repeated in sequence as

described in Table 3.1 will be interpreted as gestures.

Figure 3.11: The robot is capable of detecting haptic gestures: (a) Stroke gesture
sequence; (b) Pat gesture sequence; (c) Hold gesture; (d) Squeeze gesture; (e) Hug
gesture; and (f) Poke gesture

A fabric tactile sensor, formed by sandwiching a resistive fabric between

two conductive fabrics resulting in a matrix of mxn contact points, is used for

obtaining tactile information. Due to contact, the contact pressure increases

and the pressure at each point is derived by measuring the potential difference

across it. This is performed by activating each column n with a digital high

signal (5V TTL) while deactivating other rows with a digital low. This con-

struction allows for about 320 contact points on the robot’s body. The contact
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regions in combination with previous contact history are used to classify the

tactile input into one of the haptic gestures.

The different haptic gestures and visuals of the sequence of actions to

determine the gestures can be found in Figure 3.11. The gesture recognition

is performed by the low-level controller and transmitted to the high-level

controller which then triggers appropriate responses.

3.2.4 Robot Software

This section describes the software framework that generates robot behaviours

based on multi-modal inputs. DOT has two layers to generate its proactive

behavior: a behavior-planning layer and a behavior-generation layer. Depend-

ing on its internal states DOT generates behavior. However, the internal state

of the robot is influenced by the users mood and emotions. The behaviour-

planning layer takes input from the face tracking and emotion frameworks

and generates robot 's internal state. This layer then decides a particular

response from a pool of predefined responses and sends basic behavioral

patterns to the behavior-generation layer. The behavior-generation layer gen-

erates control references for each actuator to perform the determined behavior.

The behavior-generation layer adjusts parameters of priority of behaviors

based on the internal states. This creates lifelike behavior that the user will be

able to interpret. Figure 3.12 shows the behavior generation system of DOT.
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Figure 3.12: The software architecture of the robot for emotion recognition and
response generation

3.2.4.1 Face Tracking Module

The face tracking module is designed to track the user across a room. This is

accomplished by moving the head of the robot to maintain the person’s face at

the centre of image plane. The maximum head tilts are limited to 140deg along

z axis and 170deg along x axis. Initially the face is detected using single short

multibox detector and visual servoing is used to accomplish the tracking.

• Face Detection Module

The Single Short MultiBox detector(SSD) based on (Liu et al., 2016) is used

for real-time detecting of faces. This architecture achieves high accuracy in

general object detection task together with real-time run-time performance

(59FPS). The initial part of the network is based on YOLO base architec-

ture(truncated before classification layers) unlike as proposed in the paper.

Convolutional feature layers which decrease in size progressively and allow

predictions of detection at multiple scales are added to the truncated base
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Figure 3.13: Single Short Detector Network for face detection (Liu et al., 2016)

network as shown in Figure 3.13. A set of default bounding boxes are

associated with each feature map cell, for multiple feature maps at the top

of the network. Specifically, for each box out of k at a given location, c class

scores and the four offsets relative to the original default box shape are

computed. This results in a total of (c + 4)kmn outputs for a mxn feature

map.

The network was trained on both FER2013 (Carrier and Courville, 2013)

and IMDB (Rothe, Timofte, and Gool, 2015) data sets. In case of training

SSD, the ground truth information needs to be assigned to specific outputs

in the fixed set of detector outputs. To begin with, each ground truth box is

matched to the default box with the best Jaccard overlap (higher than 0.6

threshold). The overall objective loss function as measured using Eqn. 3.1 is

a weighted sum of the localization loss (loc) and the confidence loss (conf):

L(x, c, l, g) =
1
N
(Lcon f (x, c) + αLloc f (x, l, g)) (3.1)

where N is the number of matched default boxes, and the localization loss

is the Smooth L1 loss between the predicted box (l) and the ground truth
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box(g) parameters.

To enable specific feature maps to be responsive to particular scales of the

objects, the default boxes were tilted. The scale of the default boxes for each

feature map is computed according to the measure in Eqn. 3.2:

sk = smin +
smax − smin

m − 1
(k − 1), k ∈ [1, m] (3.2)

where smin and smax values were empirically chosen to be 0.3 and 0.85

respectively. A diverse set of predictions, covering various input object

sizes and shapes is obtained by combining predictions for all default boxes.

After the matching step, most of the default boxes are negatives. In order to

avoid imbalance, the default boxes are sorted using the highest confidence

loss so that the ratio between the negatives and positives is around 2:1. Data

augmentation was not performed.

• Tracking Module

The purpose of tracking is to keep the face at the center of the image plane

by controlling the head position. The camera(robot head) remains static

until the a person is detected, the person’s location is simply determined by

difference between two successive images. However, because of noise in

the images, a threshold difference between two successive averaged images

is considered. The center of gravity of the detected face gives the initial

position to be zero.

The desired position s* of any measured value s = (x,y) is the centre of image

(i.e. s* = (0,0)) and s is view as the error vector. The aim then is to minimize

25



the error vector by controlling the head movements. Since in this case, only

the translation along the x and z axis is considered, a linear rotation at the

neck is made to minimize the error vector. The linear rotation is performed

to maintain the face at the centre of image using the control law in Eqn. 3.3.

ṡ = [tx, tz]
T +

∂s
∂t

(3.3)

3.2.4.2 Emotion Recognition Module

The emotion recognition framework is implemented to take the sensor(camera,

microphone, and tactile) inputs and interpret the emotional state of the robot.

I first obtain the audio signal into segments and then the DNN computes the

emotion state distribution for each segment. The frames of video obtained

from the camera is fed through the mini-Xception network to obtain the

confusion matrix. In order to synchronize the audio and video frames, a time

stamp is attached to each video frame and audio segment and the average

emotion of all the frames corresponding to an audio segment is used for

prediction of emotion. Finally the two probabilities are combined to obtain an

emotional state.

• Video-based Emotion Recognition Module

The deep network used for emotion classification is a fully-convolutional

neural network that contains four residual depth-wise separable convolu-

tions where each convolution is followed by a batch normalization opera-

tion and a ReLU activation function as described in Arriaga, Valdenegro-

Toro, and Plöger, 2017. The last layer applies a global average pooling
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Figure 3.14: Network architecture for emotion and gender classification (Arriaga,
Valdenegro-Toro, and Plöger, 2017)

and a soft-max activation function to produce a prediction. The different

emotions classified are happy, amusement, surprise , sad, angry, fear and

neutral.

The benefit of adding the residual modules is that they modify the desired

mapping between two subsequent layers, so that the learned features be-

come the difference of the original feature map and the desired features.

The Depth-wise separable convolutions included in the deepnet help re-

duce the computation and are composed of two different layers: depth-wise

and point-wise convolutions. These layers first applying a DxD filter on

every M input channels and then apply N1x1xM convolution filters to com-

bine the M input channels into N output channels thereby separating the
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spatial cross-correlations from the channel cross-correlations. Further, ap-

plying 1x1xM convolutions combines each value in the feature map without

considering their spatial relation within a channel.

This architecture is called the mini-Xception and is shown in Figure 3.14.

It has approximately 60,000 parameters; which corresponds to a reduction

of 80x parameters compared to the original CNN. Emotion classification is

trained using FER-2013 emotion dataset. The emotion classification module

achieves 82.6% accuracy on the testing data of the FER-2013 dataset. The

top 3 accurate emotion classes are happy, surprise and neutral. This is

reasonable because there are very obvious facial cues when these emotions

are shown on peoples face while emotions like fear and sad can be more

subtle and harder to tell.

• Audio-based Emotion Recognition Module

The entire audio track is broken into segments and the size of the segment

level feature is set to 25 frames. The input signal is sampled at 16 kHz and

converted into frames using a 25-ms window sliding at 10-ms each time. So

the total length of a segment is 10ms x 25 + (25-10)ms= 265ms. The emotion

recognition form the audio input is achieved by using a DNN network

(Han, Yu, and Tashev, 2014). The segment-level DNN unlike as proposed

in paper was identified to have 770-unit input layer corresponding to the

dimensions of the feature vector. The DNN contains three hidden layers

and each hidden layer has 256 rectified linear hidden units. Mini-batch

gradient descend method is used to learn the weights in DNN and the

objective function is cross-entropy.
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The different features used include Mel-frequency cepstral coefficients(MFCC)

features, spectral roll-off, pitch-based features and their delta feature across

time frames. The Spectral Rolloff is the point where it is in the 85th per-

centile of the power spectral distribution. A function W(ω) is said to be in

the 85th percentile if satisfies Eqn. 3.4.

|W(ω)| < M
wn+1

f orallω > ω0 (3.4)

where ω0 is the reading at any time.

MFCC are coefficients that represent sound as a short-term power spectrum.

The process for generating them is as follows:

1. Segment the audio signal into short frames.

2. For each frame calculate the Discrete Fourier Transform and periodogram-

based power spectral estimate of the power spectrum.

3. Apply the mel filter bank to the power spectra and sum the total energy

in each filter.

4. Take the log of all filter bank energies.

5. Take the Discrete Cosine Transform of the log filter bank energies and

coefficients 2-13.

The pitch-based features include pitch period and the harmonics-to-noise

ratio(HNR). The segment-level feature vectors are formed by stacking fea-

tures in the neighboring frames according to Eqn. 3.5.

x(m) = [z(m − w), ..., z(m), ..., z(m + w)] (3.5)
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where w is the window size on each side.

• Combined Emotion Recognition Module

The output from both the audio and video based networks is used to

predict the final emotion. Song et al., 2004 had used a tripled hidden

Markov model(THMM) for emotion recognition. For combining the audio

and video based emotion, I have used a modified version of the THMM

which uses a combination of two HMMs, one for each data stream. It can

be used to compute the joint likelihood of the two sequences. The choice

of the initial parameters is critical as the maximum likelihood estimation

of the parameters only converges to a local optimum. Hence, a method

for the initialization of the maximum likelihood training that uses Viterbi

algorithm modified from the algorithm described in the paper is used

to derive the double HMM. The combined(audio and video) accuracy of

emotion classification module is 92.3%.

3.2.5 Pilot Experiment

To study the effectiveness of the robot an experiment was conducted. During

the experiment, artificial emotions were simulated and the interaction between

the robot and user under different emotions was observed. Two participants,

both female (M=23 yrs) who had neither previously interacted with DOT

nor familiar with the research work were recruited for the study through

convenience sampling.

The study took place in a controlled lab environment which was set like a

home-theatre with a comfortable chair and side table. The schematic of the top
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view of room setting is as shown in Figure 3.15. Prior to the study, the partici-

pants were introduced to DOT and various features of DOT were explained.

During the study, artificial emotions were simulated in the participants. This

was achieved by the participant watching a video for 22 mins which was cre-

ated using the ravdness (Eerola and Vuoskoski, 2011) and International Affect

Picture System (Lang, Bradley, and Cuthbert, 1997) data-sets. This protocol

has been successfully used in prior research for generating emotions. The

different emotions triggered were happiness, fear, sadness, anger, amusement,

disgust and calmness. The participants were allowed to interact with the robot

without any restrictions. After the study, participants were interviewed in

addition to filling a questionnaire.

Figure 3.15: Top view of the setting used for pilot study

The questionnaire was a 7-point Likert scale measuring the acceptance of

the robot. Regarding the relationship with DOT, people were interviewed

along the following questions: i) Did you speak to and touch the robot? ii)

Was it comfortable holding the robot? iii) How often do you play with the
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robot? iv) What do you call the robot? v) What is the robot to you? In order

to objectively investigate the interaction of the participants with DOT, the

activities of the participants during the study was recorded.

3.2.6 Preliminary Observations

• Interactions between the participants and DOT:

The participants were excited to meet DOT and greeted it like a friend or a

new person during the introduction. The participants interacted with DOT

willingly from the beginning, speaking to it, stroking and hugging it. Dur-

ing the study, though they watched a video, the participants continuously

held the robot on their lap and kept stroking or patting. During the study,

one of the participants felt protective over DOT and covered its eye and

ears during simulated fear emotion. The interactions between the partici-

pant and DOT during study can be seen in Figures 3.16 and 3.17. During

interview, while referring to the robot, both the participants personified the

robot. It was also noticed that both the participants associated male gender

to the robot and referred to the robot as ”him” or ”he”.

Figure 3.16: Sequence of interaction between the participant and robot during pilot
study
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Figure 3.17: Interaction between the participant and user during pilot during which
the participant protects the robot

• Results of Video analysis:

The recorded video was analysed to validate the effectiveness of the exper-

imental video in simulating emotions and to understand the interaction

between the participants and DOT. The result showed that the emotions

felt by the participants was in line with the ones attempted to simulated

through the short film. Analysis of the video showed that the participants

continuously interacted with DOT. It was also observed that both partici-

pants held the robot facing away from them and towards the TV for most

parts of the experiment. Further, it was observed that the users turned the

robot to face them at points when they were talk to the robot or checking

on the robot. Apart from this, I was not able to detect common interactions

or behaviours between the robot and the user.

• Results of Questionnaire:

The results of the questionnaire showed that the participants positively

rated the robot behaviour and appearance. Both participants answered

that they wanted the robot to exhibit nonverbal behaviour. Further, the

participants rated strongly positive for question if they would like to interact

with the robot in the future.
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3.2.7 Discussion

The experimental study provided insight on the interactions between the robot

and the user and, also provided feedback on the capabilities of the developed

system. As mentioned in the results, it was observed that the participants

held the robot facing away from them and in the direction they were focused.

Due to this, the camera located in the robot 's eye was not able to track the

user or detect emotions. The behaviour that both participants exhibited while

interacting with the robot suggests that they were considering the robot as a

person (maybe a child or pet) who needed protection.

Even though the emotion recognition module performed well on the data-

sets, the performance of the module in the wild was limited. In order to

improve the accuracy of the deepnets, it is mandatory to train the network

on actual demographic population. The use of haptics for the detection of

emotional state is a new and open challenge. Due to the limited sampling

frequency of the low-level controller, the haptic module was unable to detect

contacts that were established for very small duration (typically less than

2sec). As a result, the gestures were mis-classified. Another challenge is the

absence of baseline for haptic data. Contact pressure varies widely depending

on the person and this contributed to wrong classification of gestures. In order

to train the haptic emotion recognition module, meaningful data needs to be

collected.

The developed robot prototype focused on nonverbal behaviours to dis-

play social cues and internal state of the robot. Although studies show that

nonverbal behaviour is irrepressibly impactful (DePaulo, 1992), the intention
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to produce a particular nonverbal expression for self-presentational purposes

cannot always be successfully interpreted as that emotion by the observer.

Hence to make more transparent robots, verbal behaviours need to be ex-

plored.

The focus of this robot prototype is to interpret the emotional state of

the user and direct robot responses. Studies have shown that the mental

illnesses have an effect on the emotional state of the person (Mayo Clinic,

2015). Thus, the developed prototype is an initial design exploration towards

the development of robots for detection of mental conditions.

3.3 Robot Design 2: Melo

Mental illnesses include many different conditions and developing technology

for mental heath care is a rich problem space. To design robot for a specific

mental condition, it was decided that the robot would be designed to detect

early signs of depression. Thus, prototype 2 was designed to collect audio

data to predict early stage depression. Hence in this section I first introduce

the problem of depression to motivate the research.

According to the World Health organisation, about 322 million people

around the world suffer from depression (Geneva:WHO, 2017). However,

it is estimated that only 3% of the affected population receive treatment for

depression (Olfson and Pincus, 1996). Earlier, treatment of depression was

almost exclusively medication or cognitive therapy or a combination of both

(McLean, 1981). With the advent of technology, mobile and computer based

therapy programs have been explored to improve the care. Though these
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technologies have shown some positive results, there is still a need for early

detection of depression (not based on self reported questionnaires).

Symptoms of Depression include loss of pleasure, suicidal intentions,

feeling of guilt and insomnia (Palagini et al., 2013). Physical symptoms include

loss of energy and fatigue. All of these symptoms bear reflections in the speech

of a person. The aim of this prototype is to leverage audio acoustics for early

detection of depression.

The developed prototype is an interactive device that will leverage an

intensive longitudinal research methodology called Experience Sampling

to collect audio data to train a network for early detection of depression.

Experience Sampling also known as Ecological Momentary Assessment is

fine-grained way of measuring the mental state of a patient in context and

over time, via questions posed to the patient (Mikus et al., 2018). In the

subsequent sections, I summarise the design iterations undertaken and the

final prototype. I then describe the software framework implemented and

propose an experiment for data collection. In this design, only the acoustic

features of speech have been explored for the detection of depression. The

actual speech content will not be analysed for detection. The various acoustic

features that could be explored are also detailed. Finally I talk about the

digitisation of the Geriatric Depression Scale developed for user study.

3.3.1 Design Iterations

The design process started with an iterative development of the device's

structure and interaction cues. An iterative process involving sketching, 3D
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modeling, and rapid prototyping was followed to design the morphology of

the robot.

Figure 3.18: An example design from the iterative design process followed for the
design of interactive device (Credits: Erica Huang)

Figure 3.19: An example design from the iterative design process followed for the
design of interactive device (Credits: Erica Huang)

Firstly, the design needs to be warm and friendly as it is designed for
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interactions. Hence shapes that do not blend into the background were chosen.

An early design developed to stand out of the background is shown in Figure

3.18. Further, designs that are overly complicated need to be avoided in

order to facilitate easy assembly of the device. Since the component houses

electronics a sturdy base was required. The above mentioned criteria lead to

two more design aspects: (1) Designs must be easy to grip and not slip easily.

(2) A wide flat base to make sure it does not fall over. (3) Air pockets to allow

high quality audio input. The design in Figure 3.19 was developed based on a

cat model to invite people to interact.

3.3.2 Device Hardware

The final design is a rectangular doom shaped structure consisting of 2 individ-

ual parts. The upper, a dome structure and the base, are coupled using screws.

The outed structure was 3D printed. The device consists of a Raspberri pi3

and is called the ”Melo”. It is equipped with speakers and a USB microphone

for audio data collection. The Raspberri pi receives audio readings from mic

attached to it. The CAD model of the individual parts is shown in Figure 3.20

and Figure 3.21 shows the 3D printed final prototype. The final prototype

and previous CAD models have been made open source and can be found in

github 3.

The raspberri pi is power by cables connected to the socket. In order to

display the device 's internal state, LEDs are actuated in certain patterns. This

design uses acoustics and LEDs to display proactive behaviour and is inspired

3https://github.com/akrishn9/Melo-Design
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Figure 3.20: 3D CAD models of the
two individual parts in Melo

Figure 3.21: A picture of the device proto-
type that was 3D printed and assembled

by ”Amazon Echo”.

3.3.3 Device Software

The software module is designed to interact with the user multiple times a

day and collect the responses. It consists of 3 major modules: Audio recording

module for voice activity detection and audio recording, Depression detection

framework that will detect the users depression from the recorded audio

and finally the interaction module which will trigger questions to collect

information. The project files can be found at site 4. The time of interaction

and the questions will be randomly selected each day.

3.3.3.1 Audio Recording Framework

The audio module is designed to record and pre-process the audio input.

Since the device on all the time, storing the complete audio information will

4https://github.com/akrishn9/Social-robot-for-depression-detection
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consume a large amount of space. In order to avoid this, the voice activity is

detected and only audio frames that have speech signals are recorded and

processed. This is achieved by converting the stereo to mono audio lines and

moving the windows of 20ms along the audio data. The ratio between energy

of speech band and total energy for window is computed and ratios above

a threshold (0.6) is labelled as speech and recorded in 4sec frames. Prior to

recording, median filter with length of 0.5s is applied to smooth detected

speech regions.

3.3.3.2 Features for depression detection

In order to avoid cultural barriers, our framework uses only the audio acous-

tics for detection of depression. The proposed framework in the modeling

and classification of the depressed speech is illustrated in Figure 3.22.

Grouping of acoustic features into categories and subcategories that are

closely related to the human speech production model is proposed as in

Moore II et al., 2008 and Low et al., 2011. In the study, the acoustic features

Figure 3.22: Network for modelling and classification of depression
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are grouped into five main categories: TEO-based, cepstral (C), prosodic (P),

spectral (S), and glottal (G) features. The acoustic features are briefly discussed

in the following paragraphs.

1) TEO-based features: TEO-based features have shown good perfor-

mances in stress recognition (Zhou, Hansen, and Kaiser, 2001). During stress,

fast air flow causes vortices located near the false vocal folds, which provide

additional excitation signals other than the usual speech pitch. Teager (Teager,

1980) proposed an energy operator called the TEO to model the time-varying

vortex. Several TEO-based features have been proposed in the literature.

TEO-critical-band-based autocorrelation envelope (TEO-CB-Auto-Env) fea-

ture, based on the method discussed in (Zhou, Hansen, and Kaiser, 2001) is

proposed.

2) Cepstral feature: Similar to the emotion recognition module, the MFCC

can be effectively used in speech content characterization.

3) Prosodic features:The Prosodic features are described below

• Fundamental frequency: The auto-correlation method was chosen for

the full dataset to compute the fundamental frequency. The values of F0

can be determined on a frame-by-frame basis by finding the maximum

values of the auto-correlation function.

• Log energy: To determine the changes in speaking behavior in response

to factors relating to depression the LogE of the speech time waveform

can be calculated as in (J. R. Deller, 1999).

• Jitter: Jitter refers to the cycle-to-cycle fluctuations in pitch. It is obtained
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by measuring the fundamental frequency (F0) of each cycle of vibration,

subtracting it from the previous F0 values, and dividing it by the average

of F0.

• Shimmer: Shimmer is calculated in similar fashion to jitters. However,

the period-to-period variability of the signal peak-to-peak amplitude is

calculated instead.

• Formants (FMTS) and formant bandwidths (FBWS): A 13th-order LP

filter is proposed to calculate the formant frequencies. Only values of

the first three formants (FMT 1-FMT 3 ) and formant bandwidths (FBW

1-FBW 3 ) below its Nyquist frequency needs to be taken.

4) Spectral features: Below are some of the spectral features used for

depression detection.

• Spectral centroid: Center of a signal's spectrum power distribution is the

Spectral centroid. It is the calculated as the weighted mean of frequencies

present in the signal as in Eqn. 3.6.

SC =
∑M

n=1 f (n)X(n)

∑M
n=1 X(n)

(3.6)

where X(n) represents the magnitude of frequency bin number n, f (n)

represents the center frequency bin, and M is the total number of fre-

quency bins.

• Spectral flux: Spectral flux is the measure of how quickly the power

spectrum of a signal is changing and it can be calculated by relative

comparison of the power spectrum for one frame against the previous.
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• Spectral roll-off: Spectral roll-off is the point, where the frequency that is

below some percentile.

• Power spectral density: Using a 4096-point fast Fourier transform with a

5-ms nonoverlapping hamming window size, the one-sided PSD can be

computed.The PSD have been effectively used to discriminate between

speech of control and depressed adults (France et al., 2000).

5) Glottal features: The glottal pulse and shape have been documented

to play an important role in the analysis of speech in clinical depression

(Moore II et al., 2008). Quantitative analysis of the glottal flow pulses can be

performed in the time and frequency domains. It should be noted that glottal

waveform extraction is still a matter of study and accurate representations are

still difficult to determine and verify. The glottal flow can be divided into the

opening phase (OP), closing phase (CP), and closed phased (C). Once these

instances are acquired, several timing and frequency parameters can be easily

calculated and used for training.

3.3.4 Proposed experiment

The experiment will closely follow the protocol used by Silk et al. for studying

the emotional dynamics in depressed youth (Silk et al., 2011). Participants will

be requested to complete a preliminary questionnaire to gather information

such as average hours spent at home, details for installation of device and

demographics. The participants will also be asked to answer questionnaires to

understand their depression, and cognitive levels which will serve as baseline.

Big-Five personality test will also be included to explore the personality of
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the individual (Goldberg, 1992). Before the experiment, the devices will be

installed at the participants homes.

A four week field study will follow during which the device will be trig-

gered multiples times a day and information will be collected. Once a week,

the participants will be asked to answer the Geriatric Depression Scale(GDS)

(Yesavage et al., 1982), a well used scale in research for the measurement of

depression. The data will be labelled based on the results of the scale and

used for training the network

3.3.5 Digitization of Scale

Digitization is the process of conversion of an item in printed text, manuscript,

image or sound, film and video recording from into digital form (Devi and

A.V. Murthy, 2005). For the experiments, a digitized version of the GDS scale

will be used for depression level measurement. The need arose cause, in case

of digitised scales, the data can be collected and monitored remotely without

having to trouble the participant or the researcher. Another reason was the

ease of data access over distributed research team. This way, we will be able

to collect data from participants regularly without visiting their homes. Most

of our material is of a sensitive nature, including many personal information

and digitization would allow us to restrict access to this fragile resources.

The GDS was digitised using the PyQt software. A interactive 5 window

navigable GUI was created to collect mood data and personal information.

Two windows for the GDS questions, 1 for the personal information and an

introductory and a debriefing window. Link to the Big-Five personality test
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Figure 3.23: An example screen from the developed interactive digital version of the
Depression Scale

was included in the personal information section. The GUI is designed in such

a manner that it does not allow the user to navigate to the next screen without

answering all question in a given screen. An interactive dialog box shows

up if the user tries to change his initial choice for a particular question. This

information was then logged to the database. Figure 3.23 shows a screen from

the GUI. The tick marks are displayed as a marker to help user's identify the

unanswered sections of the questionnaire.
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Chapter 4

General Discussion

In this chapter, I provide discussions on the lessons I learned from the re-

search undertaken (Section 4.1), limitations of this research (Section 4.2), and

directions for future work (Section 4.3).

4.1 Lessons Learned

Robotics in mental heath care is a rich problem space. As mentioned earlier,

the illnesses vary in condition and severity and affect wide demographics.

The symptoms that an individual shows to any particular mental condition is

not the same as another individual. For example, Cauffman et al., 2007 show

the difference in symptoms based on gender. Similarly, Weissman et al., 1977

have identified difference in symptoms of depression across demographics.

It is therefore important to approach a specific and defined problem while

designing robots for mental health care.

Detection of symptoms is a multi-faceted problem. The robot must be
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aware of its surroundings and the user's intentions, be able to recognise be-

havioural changes, must be able to maintain a long-term relationship with

the user and finally collect useful data for interpretation of mental conditions.

To facilitate this, the robot must be quipped with muti-sensor input and be

capable of processing this information in real time. The different inputs ex-

plored in this research are audio, visual, haptic and orientation(IMU). Though

multi-modal inputs increase the detection compared to individual sensor

inputs, there is still scope for improvements. One avenue is better data for

training the detection networks. Most of the data sets available currently are

not designed for a particular demographic or any particular mental condition.

Thus networks trained using the data have low prediction accuracy. More

specific data will help in better detection of mental conditions. Another area

of potential improvement is modelling the proactive behaviour of the robot

to fully explore the potential of it's features (Huang and Mutlu, 2014; Huang

and Mutlu, 2012). The robot behaviors could be modelled based on a clinician

to improve the detection. However, the robot must be autonomous and intelli-

gent to respond to uncertain situations which can be common when dealing

with people with mental conditions.

4.2 Limitations

Limitations of this research are discussed to provide directions for future

research. Firstly, the research approach employed in this thesis does not

involve the patients to inform the design of robot. This research explores

an iterative design approach and multi-modal sensing methods to infer the
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emotional state of the person. However, it imposes limitations on how effective

these features are when interaction with the users. Another limitation is

the sensors itself. The tactile sensor input was not always reliable and in

certain condition led to misjudgment of haptic gestures. This was because, the

controller took minimum time to loop through all the 320 contact points and

contacts for very short time were not recorded during this interval.

In addition to the design limitation, only a pilot study was conducted in

this research. Complete, rigorous HRI evaluations are required to study the

evident-based effectiveness of robot in therapy. Additionally, observations

conducted in this research involved one-time short-period interactions. Such

short exposure to the robot and the experimental manipulations might yield

results different from those obtained through long-term interactions. To realize

natural, effective human-robot interaction, future research is necessary to

study long-term deployment of robots in natural human environments and

explore how those robots might be integrated into human daily activities and

therapy sessions.

Lastly, contextual factors, such as cultural background, personal disposi-

tion, and gender, were not explicitly taken into account in developing the deep

networks for emotion recognition and the robot behaviour. Prior research has

shown how these contextual factors might influence ways in which people

perceive and express behaviors. For example, Triandis describes how cultural

factors shape the private, public and collective behaviour of a person (Triandis

and Charalambos, 1994). Robot trust, likability and engagement and response

are influenced by the culutural achground (Li, Rau, and Li, 2010). Future
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research is needed to explore how robots might take these factors into account

when engaging human users.

4.3 Future Directions

To ultimately enable robots therapy and to enable robots detect mental illness,

we need a better understanding of how people with mental conditions live in

their natural environments and how robots might be integrated. To gain such

understanding, field deployment of robots in hospitals and individual homes

is necessary. Such inclusion of field studies bridges the gap between controlled

laboratories and real-world environments. Further, such experiments will

increase the trust and acceptance of therapy robot amidst both clinicians and

users.

Throughout the discussion, it should be clear that enabling effective

human-robot interactions and detection of mental illnesses is an interdis-

ciplinary problem, requiring applications of various techniques, methods, and

theories. This research therefore also motivates future work in related fields,

modelling robot behaviour to individuals and based on situations, data to

identify symptoms, affecting computing and social signal processing. Ad-

vances in social signal processing will allow robots to better understand and

utilize social signals displayed by human for early detection of mental condi-

tions. Similarly, a better interpretation of affect and natural human behaviour

will facilitate building rapport between the person and the robot. Moreover,

data collected from the actual population will lead to creating better detection

models resulting in better and accurate early detection of illnesses.
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Chapter 5

Conclusion

This thesis seeks to explore the use of social robots for early detection of mental

illnesses. To this end, I drew on the mechanisms of artificial emotional support,

natural social interaction, empathy and structures intervention proposed in

psychological science to develop mental therapy robot. My approach followed

an iterative design process to develop a highly suited robot morphology and

behaviour. In the initial part of research, to enable consistent detection of the

user emotional state and help the robot better understand its environment, I

have explored multi-modal inputs. To this end, deep networks for face recog-

nition, emotion recognition using audio and video have been implemented.

To explore the effectiveness of touch, I have proposed a haptic based emotion

recognition and implemented the gesture recognition and reactive responses.

In investigating how to provide artificial emotional support and structured

response, a proactive nonverbal behaviour set has been developed in response

to the user’s actions. Further, I have studied the effectiveness of the robot

through a pilot experiment.
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A second prototype has been developed for the detection of mental con-

ditions. In this prototype, I have explored the rich set of acoustics speech

features for early detection of depression. The prototype developed is for

collecting acoustic data for early detection of mental illnesses. Similar to

the initial process, I have explored designs iteratively and have developed a

device that is capable of communicating it's internal state through audio and

LEDs. Finally, I have proposed an user study experiment for collecting data.

Overall, I present a series of designs to motivate the future design of social

robots for early detection of mental conditions. This thesis informs future

research on the design of robots and motivates the integration of social robots

for early detection of mental illnesses.
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velopment of a next generation robotic home assistant”. In: Autonomous
robots 16.2, pp. 193–205.

Fong, Terrence, Illah Nourbakhsh, and Kerstin Dautenhahn (2003). “A survey
of socially interactive robots”. In: Robotics and autonomous systems 42.3-4,
pp. 143–166.

Dautenhahn, Kerstin, Chrystopher L Nehaniv, Michael L Walters, Ben Robins,
Hatice Kose-Bagci, N Assif Mirza, and Mike Blow (2009). “KASPAR–a min-
imally expressive humanoid robot for human–robot interaction research”.
In: Applied Bionics and Biomechanics 6.3-4, pp. 369–397.

Kozima, Hideki, Cocoro Nakagawa, and Yuriko Yasuda (2007). “Children–
robot interaction: a pilot study in autism therapy”. In: Progress in brain
research 164, pp. 385–400.

Wada, Kazuyoshi, Takanori Shibata, Toshimitsu Musha, and Shin Kimura
(2008). “Robot therapy for elders affected by dementia”. In: IEEE Engineer-
ing in medicine and biology magazine 27.4, pp. 53–60.

Kramer, Stephen C, Erika Friedmann, and Penny L Bernstein (2009). “Com-
parison of the effect of human interaction, animal-assisted therapy, and
AIBO-assisted therapy on long-term care residents with dementia”. In:
Anthrozoös 22.1, pp. 43–57.

Shamsuddin, Syamimi, Hanafiah Yussof, Luthffi Ismail, Fazah Akhtar Hanapiah,
Salina Mohamed, Hanizah Ali Piah, and Nur Ismarrubie Zahari (2012).

54



“Initial response of autistic children in human-robot interaction therapy
with humanoid robot NAO”. In: 2012 IEEE 8th International Colloquium on
Signal Processing and its Applications. IEEE, pp. 188–193.

Moyle, Wendy, Cindy J Jones, Jenny E Murfield, Lukman Thalib, Elizabeth RA
Beattie, David KH Shum, Siobhan T O’Dwyer, M Cindy Mervin, and Brian
M Draper (2017). “Use of a robotic seal as a therapeutic tool to improve
dementia symptoms: A cluster-randomized controlled trial”. In: Journal of
the American Medical Directors Association 18.9, pp. 766–773.

Tapus, Adriana, Cristian Tapus, and Maja J Mataric (2009). “The use of socially
assistive robots in the design of intelligent cognitive therapies for peo-
ple with dementia”. In: 2009 IEEE international conference on rehabilitation
robotics. IEEE, pp. 924–929.

Wada, Kazuyoshi and Takanori Shibata (2007). “Social effects of robot therapy
in a care house-change of social network of the residents for two months”.
In: Proceedings 2007 IEEE International Conference on Robotics and Automation.
IEEE, pp. 1250–1255.

Jøranson, Nina, Ingeborg Pedersen, Anne Marie Mork Rokstad, and Camilla
Ihlebæk (2015). “Effects on symptoms of agitation and depression in
persons with dementia participating in robot-assisted activity: a cluster-
randomized controlled trial”. In: Journal of the American Medical Directors
Association 16.10, pp. 867–873.

Thodberg, Karen, Lisbeth Uhrskov Sørensen, Janne Winther Christensen, Pia
Haun Poulsen, Birthe Houbak, Vibeke Damgaard, Ingrid Keseler, David
Edwards, and Poul B Videbech (2016). “Therapeutic effects of dog visits in
nursing homes for the elderly”. In: Psychogeriatrics 16.5, pp. 289–297.

Beran, Tanya N, Alex Ramirez-Serrano, Otto G Vanderkooi, and Susan Kuhn
(2013). “Reducing children’s pain and distress towards flu vaccinations: A
novel and effective application of humanoid robotics”. In: Vaccine 31.25,
pp. 2772–2777.

Trujillo, Kate (2010). “Developing Emotional Security Among Children Who
Have Been Adopted”. In:

Tsui, Katherine M, Dae-Jin Kim, Aman Behal, David Kontak, and Holly A
Yanco (2011). “”I want that”: Human-in-the-loop control of a wheelchair-
mounted robotic arm”. In: Applied Bionics and Biomechanics 8.1, pp. 127–
147.
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• Automated car assembly line using Siemens PLC which increased the production by 12%.
• Optimized the water leak test of cars resulting in process time reduction by 32 sec (7%).

ACADEMIC PROJECTS:
• Breast lump detection through tactile Imaging; lumps detected with 86% accuracy without any radiation risks.
• Design and Implementation of Empathetic Hand Holding Device; provides comfort for hospitalized people.
• AR presentation; makes remote conference more involving by producing a 3D presenter and video on posters.

SKILLS: ROS, Python, C/C++, Matlab, Java, Android Studio, Autodesk, ANSYS, LabView, Unity.

PUBLICATION: Amrita K., Keerthana S.T., Vasanthakumar M. “Modified Artificial Potential Fields Algorithm for 
Mobile Robot Path Planning”, Journal for Research in Applied Science and Engineering Technology, 2014.
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Executive Head of Students Union (2015-16).
Vice President of IEEE Student Chapter (2015-16) and Treasurer (2014-15).
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