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Abstract

This dissertation is a record of the paper [19] by the author. We study the problem to find strictly

locally convex hypersurfaces in Rn+1 with prescribed curvature and boundary. The main result is

that if the given data admits a strictly locally convex radial graph as a subsolution, we can find

a radial graph realizing the prescribed curvature and boundary. As an application we show if a

disjoint collection of smooth, closed, embedded, codimension 2 submanifolds in Rn+1 can bound a

convex hypersurface, which is a subsolution for the given curvature data and lies strictly on one

side of every tangent hyperplane at the boundary, it can also bound a convex hypersurface realizing

the given curvature data. We also show any smooth domain on the boundary of a compact strictly

convex body can be deformed to a smooth hypersurface with the same boundary (inside the convex

body) and realizing any prescribed curvature function smaller than the curvature of the body.

READERS: Professor Joel Spruck (Advisor) and Professor Jacob Bernstein

ii



Acknowledgments

I want to thank Johns Hopkins University and its Department of Mathematics. Johns Hopkins

University and its Department of Mathematics offered me a full tuition fellowship and teaching

assistantship for six years, without which I can not afford studying in United States. JHU has a

very open atmosphere for students to extend their study. I benefited a lot from this since in my

last two years I was also studying in the MSE program in the Department of Computer Science.

The experience in both mathematics and computer science will definitely help me a lot in my later

career.

I want to show gratitude to my PHD advisor Professor Joel Spruck. The work of this dissertation

was completed under the guidance of Professor Spruck. Professor Spruck gave helpful suggestion

while I was working on this work and then offered a firm support for its publication. Later Professor

Spruck also gave me a lot of freedom and support so that I could extend my study to computer

science.

I also want to thank all the other faculty who were in the Department of Mathematics during

the last six years. I learned a lot from their lectures and gained valuable experiences while working

as TA for some of them.

During all my time as a PHD student and later a MSE student here, I got to know lots of fellow

students in the Department of Mathematics and classmates in the Department of Computer Science.

I have had a lot of good time with their company. My classmates in computer science helped me a

lot whenever I was in trouble with my homework. I truly appreciate the time we spent together.

Finally I want to thank the staff in the Department of Mathematics and Department of Computer

Science. Their staff have offered me countless useful information and professional help during our

contact. They must have also put a lot of effort handling all those administrative things related to

me.

iii



Dedication

I dedicate this work to my parents Jiayin Su and Yan Fan.

iv



Contents

Abstract ii

Acknowledgments iii

Dedication iv

1 Introduction 1

2 Background 5

3 Preliminaries and defining the equations 10

4 A priori estimates 14

4.1 Bound for |∇2u| on ∂Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Global bound for |∇2u| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Existence 28

Curriculum Vitae 37

v



1

Introduction

In this work we study a classical problem in differential geometry: given a collection Γ = (Γ1, . . . ,Γk)

of embedded codimension 2 submanifolds of Rn+1, find a hypersurface Σ with prescribed curvature

and boundary data. That is, we seek to solve

f(κ1(Σ), . . . , κn(Σ)) = ψ(X), ∂Σ = Γ , (1.0.1)

where X is the position vector of Σ.

The solvability of the problem in this generality still remains quite open. However if we confine

ourselves to strictly locally convex hypersurfaces, i.e., oriented hypersurfaces with positive principal

curvatures everywhere, the theory of fully nonlinear elliptic PDE becomes a powerful tool to study

the solvability of this geometric problem. However, even in the strictly locally convex case, we still

have to deal with the geometric nature of this problem carefully. The geometry of the prescribed

boundary plays a crucial role in the solvability. For a K-surface (surface of constant Gauss curvature

K in R3), an obvious necessary condition for the solvability is that the boundary curve cannot have

inflection point. In higher dimension, this corresponds to the condition that the second fundamental

form of the boundary is nondegenerate everywhere. These conditions are very far from being suffi-

cient as there are subtle obstructions to solvability; for more discussion, see [12], [15] and [5]. One

method to avoid the obstructions of the boundary comes from a PDE point of view. In [8] and [7],

Guan and Spruck (extending the work of Caffarelli, Nirenberg and Spruck [1]) proved the existence

of a smooth solution for general Monge-Ampère equations on smooth domains with multiple bound-

ary components and arbitrary geometry, if there exists a subsolution. The authors also proved the

same theorem for radial graphs over a domain in Sn. With the help of Perron Method, in [9], [20],
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[10], [17], [3] and [18] the authors further extended these results to its full parametric generality for

strictly locally convex hypersurfaces of constant curvature.

In this work we continue the study of the locally convex case. We extend the work in [8] from

Gauss curvature case to generalized curvature function and allowing variable prescribed curvature.

Let Ω be a smooth domain in Sn with boundary ∂Ω (which may have multiple components), ψ a

positive smooth function on the cone Λ =

X ∈ Rn+1| X

∥X∥ ∈ Ω̄


and φ a positive smooth function

on ∂Ω. We seek a smooth, strictly locally convex hypersurface Σ that can be represented as a radial

graph

X(x) = ρ(x)x, ρ > 0, x ∈ Ω̄, (1.0.2)

with prescribed curvature

f(κΣ[X]) = ψ(X), (1.0.3)

and boundary values

X(x) = φ(x)x, x ∈ ∂Ω, (1.0.4)

where κΣ[X] = (κ1, ..., κn) denotes the principal curvatures of Σ at X with respect to the inward unit

normal. The curvature function f(λ) is a positive smooth symmetric function defined on the convex

cone Γ+
n ≡ {λ ∈ Rn : each component λi > 0} satisfying the fundamental structure conditions

fi(λ) ≡
∂f(λ)

∂λi
> 0 in Γ+

n , 1 ≤ i ≤ n, (1.0.5)

and

f is a concave function. (1.0.6)

In addition, f is assumed to satisfy

f = 0 on ∂Γ+
n , (1.0.7)


fi(λ)λi ≥ σ0 on {λ ∈ Γ+

n : ψ0 ≤ f(λ) ≤ ψ1}, (1.0.8)

for any ψ1 > ψ0 > 0, where σ0 is a positive constant depending on ψ0 and ψ1. In addition we will

need the following more technical assumption: for every C > 0 and every compact set E in Γ+
n ,

there exists R = R(E,C) > 0 such that

f(λ1, ..., λn−1, λn +R) ≥ C for all λ ∈ E. (1.0.9)
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Curvature functions satisfying (1.0.5)-(1.0.9) include a large family of examples, which can be found

in [10]. However we shall point out the curvature quotient S
1

n−k

n,k = (Sn/Sk)
1

n−k (Sk is the k-th

elementary symmetric polynomial) does not satisfy (1.0.9). We will also assume that

Ω does not contain any hemisphere (1.0.10)

and there exists a smooth, strictly locally convex radial graph Σ′: X̄(x) = ρ̄(x)x over Ω̄ satisfying

f(κΣ′ [X̄]) > ψ(X̄) onΩ,

ρ̄ = φ on ∂Ω.

(1.0.11)

Our main theorem is stated as follows:

Theorem 1. Under conditions (1.0.5)-(1.0.11) there exists a smooth, strictly locally convex hyper-

surface Σ which is a radial graph X(x) = ρ(x)x, with ρ ≤ ρ̄, satisfying equations (1.0.3)-(1.0.4).

Moreover, c < ρ < ρ̄ in Ω and the principal curvatures κi of Σ satisfies C−1 < κi < C, where c, C

are both uniform positive constants.

We can apply Theorem 1 to some more geometric settings.

Theorem 2. Let ψ be a smooth positive function on Rn+1, f be the same as in Theorem 1. Γ =

{Γ1,Γ2, ...,Γm} is a disjoint collection of smooth, closed, embedded, codimension 2 submanifolds

in Rn+1. Suppose Γ bounds a smooth convex hypersurface Σ′ satisfying f(κΣ′ [X]) > ψ(X) for all

X ∈ Σ′, and Σ′ lies strictly on one side of every tangent hyperplane of Σ′ at Γ. Then Γ bounds a

smooth convex hypersurface Σ satisfying f(κΣ[X]) = ψ(X) for all X ∈ Σ.

Proof. Since Σ′ is convex and satisfies f(κΣ′ [X]) > ψ(X) > 0, from condition (1.0.7) we see Σ′ is

also strictly locally convex. From Theorem 1.2.5 in [5], we see that Σ′ can be extended to an ovaloid

O. Choose a point A ∈ O \Σ′ as the new origin. Then Σ′ is a radial graph over a smooth domain Ω

in Sn. Moreover, Ω is a proper subset of a hemisphere of Sn. To see this, we just need to note that

Σ′ stays strictly on one side of the tangent hyperplane of O at A. Therefore, we can apply Theorem

1 to construct Σ. The hypersurface Σ is convex as well as strictly locally convex. We can glue O \Σ′

and Σ together to get a closed hypersurface O′, though nonsmooth. O′ is locally convex in the sense

that for every point in O′ there exists an open neighborhood staying on the boundary of a convex

body. In [11] Van Heijenoort proved in the generalized sense a complete locally convex hypersurface

in Rn+1 which is absolutely convex at least at one point is the boundary of an n+1-dimensional
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convex set. Here O′ clearly satisfies all the assumptions. Therefore Σ, which is part of O′, is a

convex hypersurface.

Similarly, we can give a different version of Theorem 2 which generalizes the results in [8] and

[3].

Theorem 3. In Rn+1 let B be an n+1-dimensional compact convex body with a smooth boundary

∂B, ψ and f the same as in Theorem 2. Suppose f(κ∂B [X]) > ψ(X) for all X ∈ ∂B. Then for

every smooth subdomain D of ∂B with nontrivial boundary Γ, Γ bounds a strictly locally convex

hypersurface Σ inside B which satisfies f(κΣ[X]) = ψ(X) for all X ∈ Σ. Moreover, the set bounded

inside Σ ∪ (∂B \D) is also a convex body.

The proof of Theorem 3 is the same as Theorem 2.

The proof of Theorem 1 is organized as follows. In Section 2 we give some related background

in the theory of elliptic partial differential equations. In Section 3 we introduce some preliminary

results and define two elliptic operators to express (1.0.3). One of these is to be used in Section 4

to derive a priori C2 estimates for the solution. We use this in Section 5 and work with the other

operator, applying the continuity method and degree theory to prove the existence of solution.
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2

Background

In this section we give some background from the theory of second order elliptic partial differential

equations. We follow the definitions in the book [6].

We first introduce the definitions for linear elliptic differential operators of the form

Lu = aij(x)Diju+ bi(x)Diu+ c(x)u, aij = aji, (2.0.1)

where x = (x1, ..., xn) lies in a domain Ω of Rn, n ≥ 2. It will be assumed, unless otherwise stated,

that u belongs to C2(Ω). The summation convention that repeated indices indicate summation from

1 to n is followed here.

L is elliptic at a point x ∈ Ω if the coefficient matrix [aij(x)] is positive; that is, if λ(x), Λ(x)

denote respectively the minimum and maximum eigenvalues of [aij(x)], then

0 < λ(x)|ξ|2 ≤ aij(x)ξiξj ≤ Λ(x)|ξ|2 (2.0.2)

for all ξ = (ξ1, ..., ξn) ∈ Rn − {0}. If λ > 0 in Ω, then L is elliptic in Ω, and strictly elliptic if

λ ≥ λ0 > 0 for some constant λ0. If Λ/λ is bounded in Ω, we shall call L uniformly elliptic in Ω.

In this work we consider the solvability of the classical Dirichlet problem for certain types of fully

nonlinear elliptic equations; that is, nonlinear elliptic equations that are not quasilinear. A general

second-order equation, on a domain Ω in Rn, can be written in the form,

F [u] = F (x, u,Du,D2u) = 0, (2.0.3)
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where F is a real function on the set Γ = Ω× R× Rn × Rn×n, where Rn×n denotes the n(n+ 1)/2

dimensional space of real symmetric n×nmatrices. We denote points in Γ typically by γ = (x, z, p, r)

where x ∈ Ω, z ∈ R, p ∈ Rn and r ∈ Rn×n. When F is an affine function of the r variables, the

equation (2.0.3) is called quasilinear; otherwise, it is called fully nonlinear. When F is differentiable

with respect to the r variables, we can extend the definitions of ellipticity as follows:

The operator F is elliptic in a subset U of Γ if the matrix [Fij(γ)], given by

Fij(γ) =
∂F

∂rij
(γ), i, j = 1, ..., n, (2.0.4)

is positive for all γ = (x, z, p, r) ∈ U . Letting λ(γ), Λ(γ) denote, respectively, the minimum and

maximum eigenvalues of [Fij(γ)], we call F uniformly elliptic (strictly elliptic) in U , if Λ/λ (1/λ)

is bounded in U . If F is elliptic (uniformly elliptic, strictly elliptic) in the whole set Γ, then we

simply say that F is elliptic (uniformly elliptic, strictly elliptic) in Ω. If u ∈ C2(Ω) and F is elliptic

(uniformly elliptic, strictly elliptic) on the range of the mapping x →→ (x, u(x), Du(x), D2u(x)), we

say that F is elliptic (uniformly elliptic, strictly elliptic) with respect to u. F is a concave operator

if F is a concave function on the range of D2u.

Next we introduce a special fully nonlinear elliptic operator arising from F (A) = f(λ(A)), which

is studied in this work. Here A is a real symmetric n×n matrix and λ(A) are the n real eigenvalues

of A. Here we focus on the case where A is positive definite. Then f is a positive smooth symmetric

function defined on the positive cone Γ+
n ≡ {λ ∈ Rn : each component λi > 0}. Some famous

examples of this type of elliptic operator are Monge-Ampère Equation:

F (D2u) = detD2u = ψ(x), (2.0.5)

where in this case f(λ1, λ2, ..., λn) = λ1λ2...λn, and more generally:

F (D2u) = f(λ(D2u)) = ψ(x), (2.0.6)

which was studied in [2]. In [2] the authors established some fundamental structured conditions for

f , which was also included in this work (see Section 1), to study (2.0.6). Here we will include some

proofs as background to illustrate how these structure conditions are related to some important

properties of F which will be introduced in Section 3.

In the following proofs, we assume F (A) = f(λ(A)), where F is defined on the set of n × n

positive definite symmetric matrices and f is a positive smooth symmetric function defined on the
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positive cone Γ+
n ≡ {λ ∈ Rn : each component λi > 0} satisfying (1.0.5) and (1.0.6). We use the

notation F ij(A) = ∂F
∂aij

(A) and fi(λ) =
∂f(λ)
∂λi

.

Proposition 1. The symmetric matrices [F ij(A)] and A can be orthogonally diagonalized simulta-

neously.

Proof. We shall first note to compute F ij(A), we need to extend the domain of F to non-symmetric

matrices by defining F (A) = F ( 12 (A+AT )). Then it is obvious that [F ij(A)] is a symmetric matrix.

Since A is a symmetric matrix, we can choose an orthogonal matrix P to diagonalize A, i.e.,

PTAP = diag{λ1, λ2, ..., λn}, (2.0.7)

where λ1, λ2, ..., λn are the eigenvalues of A. By the definition, we have

F (PTAP ) = f(λ1, λ2, ..., λn) = F (A). (2.0.8)

By differentiating (2.0.8), we have

PT [F ij(A)]P = [F ij(PTAP )] = [F ij(diag{λ1, λ2, ..., λn})]. (2.0.9)

Therefore we just need show [F ij(diag{λ1, λ2, ..., λn})] is a diagonal matrix. In fact, we can show

[F ij(diag{λ1, λ2, ..., λn})] = diag{f1, f2, ..., fn}, (2.0.10)

which will also help with the proof of next proposition. We first show F ii(diag{λ1, λ2, ..., λn}) =

fi(λ1, λ2, ..., λn). Namely, by definition we compute

F ii(diag{λ1, λ2, ..., λn})

= lim
ϵ→0

F (diag{λ1, ..., λi + ϵ, ..., λn})− F (diag{λ1, ..., λi, ..., λn})
ϵ

= lim
ϵ→0

f(λ1, ..., λi + ϵ, ..., λn)− f(λ1, ..., λi, ..., λn)

ϵ

=fi(λ1, λ2, ..., λn).

(2.0.11)

We second show F ij(diag{λ1, λ2, ..., λn}) = 0 for i ̸= j. Without loss of generality, we just show
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Fn−1,n(diag{λ1, λ2, ..., λn}) = 0. Again we compute by definition

Fn−1,n(diag{λ1, λ2, ..., λn})

= lim
ϵ→0

F (diag{λ1, ..., λn−2, T})− F (diag{λ1, λ2, ..., λn})
ϵ

,

(2.0.12)

where T is a 2× 2 symmetric matrix

λn−1
1
2ϵ

1
2ϵ λn

. We can compute the eigenvalues of T as

λ̃n−1 =
λn−1 + λn +


(λn−1 − λn)2 + ϵ2

2
, (2.0.13)

λ̃n =
λn−1 + λn −


(λn−1 − λn)2 + ϵ2

2
. (2.0.14)

Combining (2.0.12), (2.0.13) and (2.0.14), we see

Fn−1,n(diag{λ1, λ2, ..., λn})

= lim
ϵ→0

f(λ1, ..., λn−2, λ̃n−1, λ̃n)− f(λ1, ..., λn−2, λn−1, λn)

ϵ

=fn−1(λ1, ..., λn) lim
ϵ→0

λ̃n−1 − λn−1

ϵ
+ fn(λ1, ..., λn) lim

ϵ→0

λ̃n − λn
ϵ

=fn−1 × 0 + fn × 0

=0.

(2.0.15)

Above all we showed (2.0.10), and thus PT [F ij(A)]P is a diagonal matrix, which completes the

proof.

Proposition 2. The matrix [F ij(A)] has eigenvalues f1, ..., fn. Consequently, [F ij(A)] is positive

definite and we have

F ij(A)aij =


fiλi. (2.0.16)

Proof. In the proof of Proposition 1, we already showed that

PT [F ij(A)]P = diag{f1, f2, ..., fn}, (2.0.17)

which implies the eigenvalues of [F ij(A)] are f1, f2, ..., fn. By the condition (1.0.5), we see [F ij(A)] is

positive definite. To show (2.0.16), we pick P in Proposition 1 which can simultaneously orthogonally
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diagonalize A and F ij(A). We compute

F ij(A)aij

=tr([F ij(A)]A)

=tr(PT [F ij(A)]AP )

=tr(PT [F ij(A)]PPTAP )

=tr(diag{f1, f2, ..., fn}diag{λ1, λ2, ..., λn})

=


fiλi.

(2.0.18)

Proposition 3. F is a concave function on the set of all n×n positive definite symmetric matrices.

Proof. The proof was given in [2]. We recall it here.

Let λ1(U) ≤ λ2(U) ≤ ... ≤ λn(U) be the eigenvalues of the n × n symmetric matrix U with

corresponding eigenvectors u1, ..., un. By the min-max characterization of λ1, λ1(U) is clearly a

concave function of U . More generally, from U we construct the self-adjoint operator

U [k] =

k
i=1

1⊗ ...⊗ U
i
⊗ ...⊗ 1 (2.0.19)

acting on the exterior powers Λk by

U [k]ω1 ∧ ... ∧ ωk =

k
i=1

ω1 ∧ ... ∧ Uωi ∧ ... ∧ ωk (2.0.20)

with eigenvalues λi1 + ...+ λik and eigenvectors ui1 ∧ ... ∧ uik , i1 < i2 < ... < ik. Then λ1 + ...+ λk

is a concave function of U .

Now f(λ) is the infimum of linear functions of the form

µjλj + µ0, with µj ≥ 0, j ≥ 0. By

the symmetry of f we may take the µj decreasing for j > 0 (see Lemma 6.2 in [2]). Then


µjλj + µ0 =

n−1
1

(µj − µj+1)(λ1 + ...+ λj) + µn(λ1 + ...+ λn) + µ0 (2.0.21)

is a concave function of U so F (U) = f(λ(U)) is a concave function of U .
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3

Preliminaries and defining the

equations

Consider the radial graph Σ: X(x) = ρ(x)x, x ∈ Ω ⊂ Sn. We set u = 1
ρ . Let e1, ..., en be a

smooth orthonormal frame field on Ω. {ei} will be pushed forward to a frame field {τi} on Σ, where

τi = −∇iu
u2 x + 1

uei. Here ∇ is the Riemannian connection on Sn and ∇̃ is the connection in Rn+1.

We adopt the notation ∇iu, ∇iju = ∇i∇ju, ∇ijku = ∇i∇j∇ku etc for the covariant derivatives of

a function. The metric of the radial graph Σ can be given in terms of u by

gij = ⟨τi, τj⟩ =
1

u2
δij +

1

u4
∇iu∇ju, (3.0.1)

where ⟨·, ·⟩ denotes the standard inner product in Rn+1. The inward unit normal to Σ is

ν =
−∇u− ux

w
, (3.0.2)

where ∇u = gradu, w =

u2 + |∇u|2. The second fundamental form of Σ is

hij =
1

uw
(uδij +∇iju). (3.0.3)

Therefore Σ is strictly locally convex if and only if the matrix

[uδij +∇iju] is positive definite at any point. (3.0.4)
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Later for convenience we may just say a function is strictly locally convex without specifying what

we really mean is that the corresponding radial graph is strictly locally convex, e.g., when we say u

is strictly locally convex, that means (3.0.4) holds. The principal curvatures of Σ are the eigenvalues

of hikg
kj , which is similar to the symmetric matrix [aij ] := [gij ]

1
2 [hij ][g

ij ]
1
2 . [gij ]

1
2 can be written as

u[γij ], where [γij ] and its inverse matrix [γij ] are given by

γij = δij −
∇iu∇ju

w(u+ w)
, γij = δij +

∇iu∇ju

u(u+ w)
. (3.0.5)

Therefore

aij =
u

w
γik(uδkl +∇klu)γ

lj , (3.0.6)

and its eigenvalues are the principal curvatures of Σ.

Now we do a reformulation of equation (1.0.3) in the form

G(∇2u,∇u, u) = ψ(X(x)). (3.0.7)

Let S be the set of n × n symmetric matrices and S+ = {A ∈ S : A > 0}, i.e., the set of positive

definite symmetric matrices. With the function F defined by

F (A) = f(λ(A)), A ∈ S+, (3.0.8)

where λ(A) denotes the eigenvalues of A, equation (1.0.3) thus can be written in the form

F ([aij ]) = ψ(X(x)). (3.0.9)

Therefore, the function G in (3.0.7) is defined by

G(∇2u,∇u, u) = F ([aij ]). (3.0.10)

Then equations (1.0.3)-(1.0.4) can be rewritten as

G(∇2u,∇u, u) = ψ(X(x)) in Ω,

u = ϕ on ∂Ω,

(3.0.11)

where ϕ = 1
φ .
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We next recall some properties of F and G (see [2], [10]). We will use the notation

F ij(A) =
∂F

∂aij
(A). (3.0.12)

The matrix [F ij(A)] is symmetric and has eigenvalues f1, ..., fn. By assumption (1.0.5), [F ij(A)]

is therefore positive definite for A ∈ S+, while (1.0.6) implies that F is a concave function in S+.

[F ij(A)] and A can be orthogonally diagonalized simultaneously. Consequently, we have

F ij(A)aij =


fiλi. (3.0.13)

For equation (3.0.11), we have

Gij =
∂G

∂∇iju
=
u

w
F klγikγlj . (3.0.14)

So equation (3.0.11) is elliptic if (3.0.4) holds. The concavity of F implies that G is concave with

respect to ∇iju. From the assumption (1.0.11), the function u = 1
ρ̄ is a subsolution of equation

(3.0.11), i.e.,

G(∇2u,∇u, u) = ψ(x) > ψ(X̄(x)) in Ω̄,

u = ϕ on ∂Ω.

(3.0.15)

Here we chose u = 1
ρ to set up equation (3.0.11) because it turns out the operator G works very

well for deriving a priori estimates. However, when it comes to applying the continuity method and

degree theory to prove the existence of the solution, we find (3.0.11) is not the right equation to

work with. The trouble mainly comes from, as our computation will show later, the fact that Gu is

positive and can not be bounded easily. So here it is necessary for us to express (1.0.3)-(1.0.4) in a

different form. We set v = − ln ρ = lnu. Then [aij ] can be written in terms of v, that is,

aij =
ev

w
(δij + γik∇klvγ

lj), (3.0.16)

where

w =

1 + |∇v|2, γij = δij −

∇iv∇jv

w(1 + w)
. (3.0.17)

Then equation (3.0.11) becomes

H(∇2v,∇v, v) = F ([aij ]) = ψ(X(x)) in Ω,

v = lnϕ on ∂Ω.

(3.0.18)
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Here we shall note equations (3.0.11) and (3.0.18) will appear in different sections. So the ambiguous

notations w and γij shall not cause any confusion. Correspondingly v = lnu is the subsolution with

respect to (3.0.18). We call v strictly locally convex if

[δij +∇iv∇jv +∇ijv] > 0 in Ω̄. (3.0.19)

H is elliptic for strictly locally convex functions v and is concave with respect to ∇ijv.
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4

A priori estimates

In this section we derive the a priori C2 estimates for locally strictly convex solutions u of equation

(3.0.11) with u ≥ u. The C1 bound follows from the convexity of the radial graph, which is

established in [8]. We recall the results here.

Theorem 4. Let u ≥ u be a strictly locally convex function with u = u on ∂Ω. Then we have the

estimates

K−1 ≤ u ≤ K, |∇u| ≤ C in Ω̄, (4.0.1)

where K depends on Ω, sup∂Ω u, infΩ u and C depends in addition on ∥u∥C2(Ω̄).

We remark here that getting the upper bound of u is the only place we need condition (1.0.10).

From now on we fix K as above. Later when we use K, it always means the same constant. We

define ΛK := {X ∈ Λ|K−1 ≤ ∥X∥ ≤ K}.

Therefore we devote the rest of this section to deriving bounds for ∇2u. In the rest of this

section, u will be a smooth strictly locally convex solution of (3.0.11) with u ≥ u. We shall remark

here later for the proof of existence, we will work on auxiliary forms of equation (3.0.11), i.e., we will

change ψ to some other functions. So in this section the reader shall think ψ as a general positive

smooth function on Λ, not just only the prescribed curvature function in (1.0.3).

4.1 Bound for |∇2u| on ∂Ω

Given a point x0 ∈ ∂Ω, let e1, ..., en be a local orthonormal frame field on Sn around x0, obtained

by parallel translation of a local orthonormal frame field on ∂Ω and the interior, unit, normal vector
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field to ∂Ω, along the geodesic perpendicular to ∂Ω on Sn. en is the parallel translation of the unit

normal field on ∂Ω.

On ∂Ω we have u− u = 0 so that

∇α(u− u) = 0, ∇α(∇β(u− u)) = 0 for α, β < n, (4.1.1)

and hence

∇αβ(u− u) = ∇α(∇β(u− u))−

i

⟨∇αeβ , ei⟩∇i(u− u)

= −Bαβ∇n(u− u) for α, β < n,

(4.1.2)

where Bαβ = ⟨∇αeβ , en⟩ is the second fundamental form of ∂Ω. It follows that

|∇αβu(x0)| ≤ C, α, β < n, (4.1.3)

where C depends on Ω, infΩ u and ∥u∥C2(Ω̄).

We now proceed to estimate the mixed, normal, tangential derivatives ∇nαu(x0), α < n. We

need some properties of the linearized operator

L = Gij∇ij +Gs∇s, (4.1.4)

where Gs ≡ ∂G
∂∇su

. We also denote ∂G
∂u by Gu.

Lemma 1. For some constant C > 0 depending on Ω, infΩ u, ∥u∥C2(Ω̄) and supΛK
ψ, we have


|Gs| ≤ C, (4.1.5)

|Gu| ≤ C(1 +


Gii). (4.1.6)

Proof. (4.1.5) and (4.1.6) follow from straightforward computation. SinceG(∇2u,∇u, u) = F ([ uwγ
ik(uδkl+

∇klu)γ
lj ]),

Gs = F iju(uδkl +∇klu)
∂

∂∇su


1

w
γikγlj


= −∇su

w2
F ijaij + 2F ij

u

w
(uδkl +∇klu)γ

ik ∂γ
lj

∂∇su
.

(4.1.7)

Since aij =
u
wγ

ik(uδkl +∇klu)γ
lj ,

u

w
γik(uδkl +∇klu) = aikγkl. (4.1.8)
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We also compute

∂γlj

∂∇su
=
u∇lu∇ju∇su

w3(u+ w)2
− ∇juγ

ls

w(u+ w)
− ∇luγ

js

w(u+ w)
. (4.1.9)

Then

γkl
∂γlj

∂∇su
= − ∇juγ

ks

w(u+ w)
− ∇kuγ

js

u(u+ w)
(4.1.10)

since γkl∇lu = w
u∇ku, γklγ

ls = δks. From (4.1.7), (4.1.8), (4.1.10), and we also notice [F ij ][aij ] =

[aij ][F
ij ] since [F ij ] and [aij ] can be diagonalized simultaneously, we finally get

Gs = −∇su

w2
F ijaij − 2F ijaik

∇juγ
ks

uw
. (4.1.11)

From the established C1 bound (4.0.1) and (3.0.13), conditions (1.0.5)-(1.0.7) and the fact that [F ij ]

and [aij ] can be diagonalized simultaneously, we get


|Gs| ≤ C


fiκi ≤ Cf(κ1, ..., κn) = Cψ ≤ C. (4.1.12)

(4.1.5) is established.

For Gu, we do same kind of computation,

Gu = F ij


1

w
γik(uδkl +∇klu)γ

lj − u

w2
γik(uδkl +∇klu)γ

lj ∂w

∂u

+
u

w
(uδkl +∇klu)

∂(γikγlj)

∂u
+
u

w
γikγljδkl



= F ij

1

u
aij −

u

w2
aij + 2aikγkl

∂γlj

∂u
+
u

w
γikγkj


,

(4.1.13)

and

∂γlj

∂u
=

∇lu∇ju

w3
, (4.1.14)

γikγkj = δij −
∇iu∇ju

w2
. (4.1.15)

Combining (4.1.13)-(4.1.15), we get

Gu =


1

u
− u

w2


F ijaij + 2F ijaik

∇ju∇ku

uw2
+
u

w
F ij


δij −

∇iu∇ju

w2


. (4.1.16)

Similarly as (4.1.5) and also by (3.0.14) and the fact that [F ij ] and [Gij ] are positive definite, we

get (4.1.6).
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Lemma 2. For some positive constants t and δ sufficiently small and N sufficiently large depending

on Ω, infΩ u, ∥u∥C2(Ω̄), supΛK
ψ and convexity of u, the function v = u− u+ td−Nd2 satisfies


Lv ≤ −1− β


Gii in Ω ∩Bδ

v ≥ 0 on ∂(Ω ∩Bδ),
(4.1.17)

where β > 0 depends only on the convexity of u, d is the distance function to ∂Ω and Bδ is a ball of

radius δ centered at a point on ∂Ω.

Proof. By the convexity of the surface X̄ = 1
ux, we can find β > 0 such that

[uδij +∇iju] ≥ 4βI on Ω̄. (4.1.18)

Thus

λ(uδij +∇iju− 3βδij) lies in a compact set of Γ+
n . (4.1.19)

Since |∇d| = 1 and −C1I ≤ [∇ijd] ≤ C1I where C1 only depends on the geometry of ∂Ω, we have

Ld = Gij∇ijd+Gi∇id ≤ C


Gii +


|Gi| in Ω ∩Bδ (4.1.20)

and

λ(∇iju+ uδij +N∇ijd
2 − 2βδij) ≥ λ(∇iju+ uδij + 2N∇id∇jd− 3βδij) in Ω ∩Bδ (4.1.21)

when we make 2Nδ < β
C1

.

Next, from the concavity of F and the fact that u ≥ u,

F
 u
w
γik(uδkl +∇klu+N∇kld

2 − 2βδkl)γ
lj


− ψ(X(x))

= F
 u
w
γik(uδkl +∇klu+N∇kld

2 − 2βδkl)γ
lj


− F
 u
w
γik(uδkl +∇klu)γ

lj


≤ u

w
F ijγikγlj(uδkl +∇klu+N∇kld

2 − 2βδkl − uδkl −∇klu)

= Gkl∇kl(u− u+Nd2) + (u− u)


Gii − 2β


Gii

≤ Gkl∇kl(u− u+Nd2)− 2β


Gii.

(4.1.22)
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L(u− u+ td−Nd2)

= Gij∇ij(u− u−Nd2) + t(Gij∇ijd+Gi∇id) +Gi∇i(u− u)− 2NdGi∇id.

(4.1.23)

Now combine (4.1.20)-(4.1.23) and the established C1 bound, we get

L(u− u+ td−Nd2)

≤ ψ(X(x))− F
 u
w
γik(uδkl +∇klu− 3βδkl + 2N∇kd∇ld)γ

lj


+ (Ct− 2β)


Gii + (C + 2Nd+ t)


|Gi|

= ψ(X(x))− f


λ


u

w
γik(uδkl +∇klu− 3βδkl)γ

lj +
2Nu

w
γik∇kd∇ldγ

lj


+ (Ct− 2β)


Gii + (C + 2Nd+ t)


|Gi|.

(4.1.24)

By (4.1.19) and the established C1 bound, there exists a uniform positive constant λ0 such that

 u
w
γik(uδkl +∇klu− 3βδkl)γ

lj

≥ λ0I. (4.1.25)

We use an orthogonal matrix P to diagonalize [ 2uw γ
ik∇kd∇ldγ

lj ] to be diag{0, 0, ..., µ}, where by

the C1 bound µ ≥ µ0 for some uniform positive constant µ0. Therefore

PT
 u
w
γik(uδkl +∇klu− 3βδkl)γ

lj

P +Ndiag{0, 0, ..., µ}

≥diag{λ0, λ0, ..., λ0 +Nµ0}.
(4.1.26)

So by the Minimax Characterization Theorem and (1.0.5), (1.0.9), we get

f


λ


u

w
γik(uδkl +∇klu− 3βδkl)γ

lj +
2Nu

w
γik∇kd∇ldγ

lj


= f


λ


PT

u

w
γik(uδkl +∇klu− 3βδkl)γ

lj +
2Nu

w
γik∇kd∇ldγ

lj


P


≥ f(λ0, λ0, ..., λ0 +Nµ0) → +∞ as N → +∞.

(4.1.27)

Therefore by (4.1.5), (4.1.24) and (4.1.27), we can choose t small enough such that Ct ≤ β and N
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large enough such that

L(u− u+ td−Nd2)

≤ ψ(X(x))− f


λ


u

w
γik(uδkl +∇klu− 3βδkl)γ

lj +
2Nu

w
γik∇kd∇ldγ

lj


+ (Ct− 2β)


Gii + (C + 2Nd+ t)


|Gi|

≤ −1− β


Gii.

(4.1.28)

Finally we can make δ even smaller, that is, δ ≤ t
N . Then u− u+ td−Nd2 ≥ 0 on ∂(Ω ∩Bδ).

Now consider Av + Bρ2, where v is as in Lemma 2, ρ as the distance function to x0 and A, B

are large positive constants to be determined. We compute

L∇αu = Gij∇ijαu+Gs∇sαu

= Gij(∇αiju+ δij∇αu− δαj∇iu) +Gs∇αsu

= ∇αG(∇2u,∇u, u)−Gu∇αu+∇αu


Gii −Giα∇iu

= ∇αψ(X(x))−Gu∇αu+∇αu


Gii −Giα∇iu

= ⟨−∇αu

u2
x+

1

u
eα, ∇̃ψ⟩ −Gu∇αu+∇αu


Gii −Giα∇iu,

(4.1.29)

where the standard formula for commuting the order of covariant derivatives on Sn is applied. Then

by the established C1 bound, (4.1.6) and the fact that u ∈ C∞(Ω̄),

|L∇α(u− u)| ≤ C

1 +


Gii

. (4.1.30)

Therefore we can first pick B large enough to ensure Av+Bρ2 ≥ ±∇α(u−u) on ∂(Ω∩Bδ(x0)). Then

by (4.1.17) and (4.1.30), we can pick A≫ B to ensure L(Av+Bρ2 ±∇α(u−u)) ≤ 0 in Ω∩Bδ(x0).

By maximum principle, Av + Bρ2 ≥ ±∇α(u− u) in Ω ∩ Bδ(x0). We also notice (Av + Bρ2)(x0) =

∇α(u − u)(x0) = 0. Thus ∇n(−Av − Bρ2)(x0) ≤ ∇nα(u − u)(x0) ≤ ∇n(Av + Bρ2)(x0), which

implies |∇nαu(x0)| ≤ C, where C depends on Ω, infΩ u, ∥u∥C3(Ω̄), ∥ψ∥C1(ΛK) and the convexity of

u. The mixed, normal, tangential derivatives bound on the boundary is established.

Now we move on to the pure normal derivative bound. First we prove

M ≡ min
x∈∂Ω

min
ξ∈Tx(∂Ω), |ξ|=1

(u+∇ξξu) ≥ c0 (4.1.31)

for some uniform c0 > 0, where Tx(∂Ω) denotes the tangent space of ∂Ω at x ∈ ∂Ω.
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Following the idea of [10], let σ be a smooth defining function of Ω, that is, σ is defined in a

neighborhood of Ω satisfying

Ω = {σ < 0}, ∂Ω = {σ = 0}, and |∇σ| = 1 on ∂Ω. (4.1.32)

Note that ∇σ = −n on ∂Ω where n is the interior unit normal to ∂Ω and

∇ξξu = ∇ξξu− n(u− u)∇ξξσ on ∂Ω (4.1.33)

for any ξ tangent to ∂Ω.

SupposeM is achieved at x0 ∈ ∂Ω with ξ ∈ Tx0
(∂Ω). Same as in the beginning of this subsection,

we construct a local orthonormal frame field e1, ..., en around x0 and make e1(x0) = ξ. Then by

(4.1.33)

M = u(x0) +∇11u(x0) = u(x0) +∇11u(x0)− n(u− u)(x0)∇11σ(x0). (4.1.34)

We may assume

n(u− u)(x0)∇11σ(x0) >
1

2
(u(x0) +∇11u(x0)), (4.1.35)

for otherwise we are done because of the strictly local convexity of the graph X̄.

Let ζ = (ζ1, ..., ζn) be defined as

ζ1 = −∇nσ

(∇1σ)

2 + (∇nσ)
2
−1/2

,

ζj = 0, 2 ≤ j ≤ n− 1,

ζn = ∇1σ

(∇1σ)

2 + (∇nσ)
2
−1/2

,

(4.1.36)

in Ω̄ ∩ Bδ(x0). Notice the well-definedness of ζ is ensured by (4.1.32) and a sufficiently small δ.

From (4.1.35) and since ∇ijσζiζj is continuous and 0 ≤ n(u − u) ≤ C on ∂Ω, there exists c1 > 0

and δ > 0 (which may be even smaller) such that

∇ijσζiζj(x) ≥
1

2
∇ijσζiζj(x0) =

∇11σ(x0)

2
>
u(x0) +∇11u(x0)

4n(u− u)(x0)
≥ c1 in Ω ∩Bδ(x0). (4.1.37)

Thus the function Φ :=
u+∇ijuζiζj−M

∇ijσζiζj
is smooth and bounded in Ω∩Bδ(x0). Note on the boundary
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ζ = (1, 0, ..., 0) and by (4.1.33),

u+∇ijuζiζj + (∇(u− u) · ∇σ)∇ijσζiζj = u+∇11u = u+∇11u ≥M on ∂Ω ∩Bδ(x0). (4.1.38)

Therefore

Φ +∇(u− u) · ∇σ ≥ 0 on ∂Ω ∩Bδ(x0). (4.1.39)

Next we apply the linearized operator L = Gij∇ij +Gs∇s again,

L(Φ +∇(u− u) · ∇σ)

= Gij∇ijΦ+Gs∇sΦ+Gij∇ij(∇u · ∇σ)−Gij∇ij(∇u · ∇σ)

+Gs∇s(∇u · ∇σ)−Gs∇s(∇u · ∇σ),

(4.1.40)

where the terms |Gij∇ijΦ|, |Gs∇sΦ|, |Gij∇ij(∇u · ∇σ)| and |Gs∇s(∇u · ∇σ)| are clearly controlled

by C(1 +

Gii). We only need to compute

Gij∇ij(∇u · ∇σ) +Gs∇s(∇u · ∇σ)

= Gij∇ij(∇ku∇kσ) +Gs∇s(∇ku∇kσ)

= Gij(∇ijku∇kσ +∇ku∇ijkσ + 2∇iku∇jkσ) +Gs∇sku∇kσ +Gs∇ku∇skσ

= ∇kσ(G
ij∇ijku+Gs∇sku) + 2Gij∇iku∇jkσ +∇ku(G

ij∇ijkσ +Gs∇skσ),

(4.1.41)

where |∇ku(G
ij∇ijkσ +Gs∇skσ)| is controlled by C(1 +


Gii). Same as (4.1.29),

Gij∇ijku+Gs∇sku = ⟨−∇ku

u2
x+

1

u
ek, ∇̃ψ⟩ −Gu∇ku+∇ku


Gii −Gik∇iu, (4.1.42)

so |∇kσ(G
ij∇ijku + Gs∇sku)| is controlled by C(1 +


Gii). The last term to be controlled is

2Gij∇iku∇jkσ. But we notice by (3.0.6)

∇klu =
w

u
γkiaijγjl − uδkl, (4.1.43)

so

Gij∇iku = Gij
w
u
γklalsγsi − uδki


= F siγijγklals − uGkj . (4.1.44)

Therefore |2Gij∇iku∇jkσ| is also controlled by C(1+

Gii), and thus |Gij∇ij(∇u·∇σ)+Gs∇s(∇u·
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∇σ)| is controlled by C(1 +

Gii). Above all,

L(Φ +∇(u− u) · ∇σ) ≤ C

1 +


Gii


in Ω ∩Bδ(x0). (4.1.45)

Now we can apply Lemma 2 to construct the barrier Av + Bρ2 as before. Choose A ≫ B ≫ 1

so that

L(Av +Bρ2 +Φ+∇(u− u) · ∇σ) ≤ 0 in Ω ∩Bδ(x0),

Av +Bρ2 +Φ+∇(u− u) · ∇σ ≥ 0 on ∂(Ω ∩Bδ(x0)).
(4.1.46)

Then by the maximum principle and the fact that Av +Bρ2 +Φ+∇(u− u) · ∇σ = 0 at x0, we get

A∇nv(x0) +∇nΦ(x0)−∇nn(u− u)(x0) +∇n(u− u)(x0)∇nnσ(x0) ≥ 0, (4.1.47)

which implies ∇nnu(x0) ≤ C. We thus have established |∇2u| ≤ C at x0. Then the principal

curvatures of Σ at X(x0), which are the eigenvalues of [ uwγ
ik(uδkl +∇klu)γ

lj ], also have an upper

bound. By the compactness argument and condition (1.0.7), we get that the principal curvatures at

X(x0) also have a uniform positive lower bound, which in turn gives a uniform positive lower bound

of the eigenvalues of [uδkl+∇klu] at x0. Therefore (4.1.31) is established. So now for every x ∈ ∂Ω,

the eigenvalues of [uδαβ+∇αβu]α,β≤n−1 have an uniform positive lower bound, which finally implies

an upper bound for u+∇nnu. |∇nnu| ≤ C on ∂Ω is established and hence the bound for |∇2u| on

∂Ω, which depends on Ω, infΩ u, ∥u∥C4(Ω̄), ∥ψ∥C1(ΛK), infΛK
ψ and the convexity of u.

4.2 Global bound for |∇2u|

In this subsection we derive the global C2 bound. It suffices to estimate maxκi, the maximum of

the principal curvatures of Σ.

Choose a local orthonormal frame {τ1, τ2, ..., τn} on Σ. ν is the inward unit normal. ∇̃ is the

connection of the Euclidean Space Rn+1. ∇̄ is the induced Riemannian connection on Σ. h is the

second fundamental form of Σ. hij = h(τi, τj) = ⟨∇̃τiτj , ν⟩ = −⟨τj , ∇̃τiν⟩. We adopt the notation

hijk = ∇̄khij , hijkl = ∇̄klhij = ∇̄l∇̄khij , etc. For a function v defined on Σ, we write vi = ∇̄iv,

vij = ∇̄ijv.

First we need the standard formulas for commuting the order of covariant derivatives of second
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fundamental form. Since Σ stays in Rn+1, we have the following formulas (see [16]),

hijk = hikj , (4.2.1)

hiijj − hjjii = hjj

m

h2im − hii

m

h2jm. (4.2.2)

Next we need to differentiate two important quantities on Σ. ρ is the standard Euclidean distance

to the origin, and set

β(X) = −1

ρ
⟨ν,X⟩, X ∈ Σ. (4.2.3)

By (3.0.2), we get

β =
∇u+ ux

w
· x =

u

w
, (4.2.4)

which has both a positive upper bound and positive lower bound by previous estimates. We have

2(ρiρj + ρρij) = ∇̄ijρ
2 = ∇̄ij⟨X,X⟩ = τjτi⟨X,X⟩ − ∇̄τjτi⟨X,X⟩

= 2τj⟨τi, X⟩ − 2⟨∇̄τjτi, X⟩ = 2⟨∇̃τjτi, X⟩+ 2⟨τi, τj⟩ − 2⟨∇̄τjτi, X⟩

= 2⟨∇̃τjτi − ∇̄τjτi, X⟩+ 2δij = 2⟨hijν,X⟩+ 2δij

= −2ρβhij + 2δij .

(4.2.5)

Therefore

ρij =
1

ρ
δij − βhij −

1

ρ
ρiρj . (4.2.6)

By (4.2.3) we have ρβ = −⟨ν,X⟩. Therefore

ρiβ + ρβi = ∇̄i(ρβ) = −τi⟨ν,X⟩ = −⟨∇̃τiν,X⟩ − ⟨ν, τi⟩

= ⟨

j

hijτj , X⟩ =

j

hij⟨τj , ρ∇̃ρ⟩

=

j

hij⟨τj , ρ(∇̄ρ+ ⟨∇̃ρ, ν⟩ν)⟩ =

j

hij⟨τj , ρ∇̄ρ⟩

= ρ

j

hijρj .

(4.2.7)

Therefore

βi =

j

hijρj −
β

ρ
ρi. (4.2.8)
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Differentiate (4.2.8) again, we get

βij = ∇̄j


k

hikρk −
β

ρ
ρi



=

k

hikjρk + hikρkj −
1

ρ
βjρi +

β

ρ2
ρiρj −

β

ρ
ρij .

(4.2.9)

Plug (4.2.1), (4.2.6) and (4.2.8) into (4.2.9), we get

βij =

k

hijkρk −
1

ρ
ρiρkhjk −

1

ρ
ρjρkhik +

3β

ρ2
ρiρj +

1 + β2

ρ
hij − β


k

hikhkj −
β

ρ2
δij . (4.2.10)

Now we are ready to derive a bound for principal curvatures. Set

M := max
Σ

κmax(X)

1− e−Aβ(X)
, (4.2.11)

where κmax(X) means the largest principal curvature of Σ at X and A is a positive constant to be

chosen later. It suffices to derive a bound for M . If M is achieved on ∂Σ, by the established C2

bound on the boundary we are done.

Therefore we just assume M is achieved at an interior point X0 ∈ Σ. We choose the local

orthonormal frame {τ1, τ2, ..., τn} around X0 such that hij is diagonal at X0, i.e., hij(X0) = κiδij ,

and h11(X0) = κ1 is the largest principal curvature at X0. Then we shall note at X0 the formulas

(4.2.2), (4.2.8) and (4.2.10) can be simplified as follows,

hiijj − hjjii = (κi − κj)κiκj , (4.2.12)

βi = κiρi −
β

ρ
ρi, (4.2.13)

βii =

k

hiikρk +
3β

ρ2
ρ2i −

β

ρ2
+

1 + β2

ρ
κi −

2

ρ
ρ2iκi − βκ2i . (4.2.14)

In the rest of this subsection all the computations are calculated at X0. By our assumption the

function ln


h11

1−e−Aβ


achieves its local maximum at X0. Therefore we have

0 = ∇̄i ln


h11

1− e−Aβ


=
h11i
h11

− Aβi
eAβ − 1

, (4.2.15)

0 ≥ ∇̄ii ln


h11

1− e−Aβ


=
h11ii
h11

− h211i
h211

− Aβii
eAβ − 1

+
A2eAββ2

i

(eAβ − 1)2
. (4.2.16)
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We plug (4.2.12)-(4.2.15) into (4.2.16). Then we can get

hii11 ≤κ2iκ1 − κ21κi +
Aκ1

eAβ − 1


k

hiikρk +
3β

ρ2
ρ2i −

β

ρ2
+

1 + β2

ρ
κi −

2

ρ
ρ2iκi − βκ2i



− A2κ1
eAβ − 1


κ2i ρ

2
i +

β2

ρ2
ρ2i −

2β

ρ
κiρ

2
i


.

(4.2.17)

Next we shall differentiate the equation

F ([hij ]) = ψ, (4.2.18)

where F is defined as in (3.0.8). We get


i,j

F ijhijk = ψk. (4.2.19)

Choose k = 1 in (4.2.19) and differentiate it again by τ1, we get


i,j,k,l

F ij,klhkl1hij1 +

i,j

F ijhij11 = ψ11. (4.2.20)

Since at X0 hij is diagonal, F ij is also diagonal and F ij = fiδij . We also note that F is concave.

Therefore (4.2.19) and (4.2.20) can be simplified as


i

fihiik = ψk, (4.2.21)

ψ11 ≤

i

fihii11. (4.2.22)

Combining (4.2.17) and (4.2.22), we get

ψ11 ≤κ1

i

fiκ
2
i − κ21


i

fiκi +
Aκ1

eAβ − 1


i,k

fihiikρk

+
Aκ1

eAβ − 1


i


3β

ρ2
fiρ

2
i −

β

ρ2
fi +

1 + β2

ρ
fiκi −

2

ρ
fiκiρ

2
i − βfiκ

2
i


− A2κ1
eAβ − 1


i


fiκ

2
i ρ

2
i +

β2

ρ2
fiρ

2
i −

2β

ρ
fiκiρ

2
i


.

(4.2.23)

From (4.2.21) we see the term

i,k

fihiikρk in (4.2.23) can be replaced by

k

ψkρk. Rearranging
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terms in (4.2.23) we get

ψ11 ≤

κ1 −

Aβκ1
eAβ − 1


i

fiκ
2
i − κ21


i

fiκi +
(1 + β2)Aκ1
ρ (eAβ − 1)


i

fiκi

+
Aκ1

eAβ − 1


k

ψkρk −
Aβκ1

ρ2 (eAβ − 1)


i

fi +
Aβκ1(3−Aβ)

ρ2 (eAβ − 1)


i

fiρ
2
i

+
2Aκ1(Aβ − 1)

ρ (eAβ − 1)


i

fiκiρ
2
i −

A2κ1
eAβ − 1


i

fiκ
2
i ρ

2
i .

(4.2.24)

Since β has a positive lower bound, we can choose A large enough to ensure 3 − Aβ < 0. Then in

(4.2.24) we throw away some negative terms in the right hand side of the inequality, which are the

5th, 6th and 8th terms, getting

κ21

i

fiκi +


Aβ

eAβ − 1
− 1


κ1

i

fiκ
2
i

≤− ψ11 +


A(1 + β2)

ρ(eAβ − 1)


i

fiκi +
A

eAβ − 1


k

ψkρk +
2A(Aβ − 1)

ρ(eAβ − 1)


i

fiκiρ
2
i


κ1.

(4.2.25)

Since κ1 is the largest principal curvature at X0, we have κ1

i

fiκ
2
i ≤ κ21


i

fiκi. We shall also

note that Aβ
eAβ−1

− 1 ≤ 0. Therefore


Aβ

eAβ − 1
− 1


κ1

i

fiκ
2
i ≥


Aβ

eAβ − 1
− 1


κ21

i

fiκi. (4.2.26)

Combining (4.2.25) and (4.2.26), we get


Aβ

eAβ − 1


i

fiκi


κ21

≤− ψ11 +


A(1 + β2)

ρ(eAβ − 1)


i

fiκi +
A

eAβ − 1


k

ψkρk +
2A(Aβ − 1)

ρ(eAβ − 1)


i

fiκiρ
2
i


κ1.

(4.2.27)

From condition (1.0.6), (1.0.7) and (1.0.8),

σ0 ≤

i

fiκi ≤ f(κ1, ..., κn) = ψ ≤ C, (4.2.28)

where σ0 and C are uniform positive constants. It is also straight forward to see that

∇̃11ψ − ∇̄11ψ = −(∇̃τ1τ1 − ∇̄τ1τ1)ψ = −h11ν(ψ) = −κ1ν(ψ). (4.2.29)

Therefore from the smoothness of ψ we see that |ψ11| is controlled by C(1 + κ1). As for the second
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long term in the right hand side of (4.2.27), since ρ, β are all well controlled terms by previous

estimates, and it is easily seen that |ψi| < C, |ρi| ≤ |∇̃ρ| = 1, combining with (4.2.28) we see that

it is controlled by Cκ1. Recall the definition (4.2.11) of M , then (4.2.27) implies

c0M
2 ≤ C(1 +M) (4.2.30)

for some uniform positive constants c0 and C, which yields an upper bound for M . As we said at

the beginning of this subsection, this gives an upper bound for principal curvatures, and hence |∇2u|

in Ω. The global C2 bound is established. We also note by compactness argument the upper bound

for principal curvatures implies a positive lower bound for principal curvatures, which will also be

used when we prove the existence. We combine all these estimates in the following theorem.

Theorem 5. Let u ≥ u be a strictly locally convex solution of (3.0.11) and Σ: X = 1
ux the

corresponding radial graph. κi is the principal curvature of Σ. Then we have the following estimates:

∥u∥C2(Ω̄) ≤ C, C−1 ≤ κi ≤ C, (4.2.31)

where C is a positive constant depending on Ω, infΩ u, ∥u∥C4(Ω̄), ∥ψ∥C2(ΛK), infΛK
ψ and the con-

vexity of u.
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5

Existence

In this section we apply the classical method of continuity (see [6]) and the degree theory in [14]

developed by Y.Y. Li to establish the existence of solution of (1.0.3)-(1.0.4). As noted at the end of

Section 3, we shall work on equation (3.0.18). Precisely, we work on two auxiliary forms of (3.0.18),

that is,

H(∇2v,∇v, v) =

tϵ+ (1− t)

ψ(x)

e2v


e2v in Ω,

v = v on ∂Ω

(5.0.1)

and

H(∇2v,∇v, v) = tψ(X(x)) + (1− t)ϵe2v in Ω,

v = v on ∂Ω,

(5.0.2)

where t ∈ [0, 1] and ϵ is a fixed small number such that

ψ(x) > ψ(X̄(x)) + ϵK2 in Ω̄. (5.0.3)

Before going to the proof of existence, we need some preparation. We first introduce an important

property of the operator H in (3.0.18), which, compared with (4.1.6) and (4.1.16), explains why we

use H instead of G.

Lemma 3. Let v be a strictly locally convex solution of H(∇2v,∇v, v) = ψ, then Hv :=
∂H
∂v ≤ ψ.

Proof. From (3.0.16)-(3.0.18), it is easily seen that

Hv = F ijaij . (5.0.4)
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Recall the properties of F introduced in Section 3 and the concavity of f , we get

Hv = fiκi ≤ f(κ1, κ2, ..., κn) = ψ. (5.0.5)

Lemma 4. For any t ∈ [0, 1], (5.0.1) has at most one strictly locally convex solution v, and v ≥ v.

Proof. We just give the proof that v ≥ v. The uniqueness follows almost the same argument.

Suppose not, then v − v achieves positive maximum in some interior point x0 ∈ Ω. We have

v(x0) > v(x0), ∇v(x0) = ∇v(x0), ∇2v(x0) ≤ ∇2v(x0). (5.0.6)

Consider the deformation sv + (1− s)v near x0,

δij +∇i (sv + (1− s)v)∇j (sv + (1− s)v) +∇ij (sv + (1− s)v) |x0

=δij +∇iv∇jv +∇ijv + (1− s)∇ij(v − v)|x0

>0 ∀s ∈ [0, 1].

(5.0.7)

So we can define a differentiable function on [0, 1],

a(s) :=H

∇2 (sv + (1− s)v) ,∇ (sv + (1− s)v) , sv + (1− s)v


(x0)

−

tϵ+ (1− t)

ψ(x0)

e2v(x0)


e2(sv(x0)+(1−s)v(x0)).

(5.0.8)

Note

a(0) = H(∇2v,∇v, v)(x0)−

tϵ+ (1− t)

ψ(x0)

e2v(x0)


e2v(x0)

= 0,

a(1) = H(∇2v,∇v, v)(x0)−

tϵ+ (1− t)

ψ(x0)

e2v(x0)


e2v(x0)

= ψ(x0)−

ϵte2v(x0) + (1− t)ψ(x0)


= t


ψ(x0)− ϵe2v(x0)


≥ 0.

(5.0.9)
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Then there exists s0 ∈ [0, 1] such that a(s0) = 0, a′(s0) ≥ 0, that is,

H

∇2 (s0v + (1− s0)v) ,∇ (s0v + (1− s0)v) , s0v + (1− s0)v


(x0)

=


tϵ+ (1− t)

ψ(x0)

e2v(x0)


e2(s0v(x0)+(1−s0)v(x0)),

(5.0.10)

Hij |s0v(x0)+(1−s0)v(x0)∇ij(v − v)(x0) +Hi|s0v(x0)+(1−s0)v(x0)∇i(v − v)(x0)

+


Hv|s0v(x0)+(1−s0)v(x0) − 2


tϵ+ (1− t)

ψ(x0)

e2v(x0)


e2(s0v(x0)+(1−s0)v(x0))


(v − v)(x0) ≥ 0.

(5.0.11)

But Lemma 3 and (5.0.10) imply

Hv|s0v(x0)+(1−s0)v(x0) ≤

tϵ+ (1− t)

ψ(x0)

e2v(x0)


e2(s0v(x0)+(1−s0)v(x0)). (5.0.12)

Combining with (5.0.6) and the ellipticity of H, we can see in the left hand side of (5.0.11) the first

term is nonpositive, the second term 0 and the last term negative. Thus the left hand side is strictly

less than 0, which is a contradiction.

Lemma 5. Let v ≥ v be a strictly locally convex solution of (5.0.2), then v > v in Ω, n(v − v) > 0

on ∂Ω, where n is the interior unit normal of ∂Ω.

Proof. We show both parts by contradiction. Suppose v = v at some point x0 ∈ Ω, then x0 is a

local minimum of v − v. So we have

v(x0) = v(x0), ∇v(x0) = ∇v(x0), ∇2v(x0) ≥ ∇2v(x0). (5.0.13)

Then by the formula (3.0.16) for [aij ], clearly

aij [v](x0) ≥ aij [v](x0). (5.0.14)

So

H(∇2v,∇v, v)(x0) = F (aij [v](x0)) ≥ F (aij [v](x0)) = H(∇2v,∇v, v)(x0). (5.0.15)
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However, by the choice of ϵ in (5.0.3), we can see

H(∇2v,∇v, v)(x0)

=tψ(X(x0)) + (1− t)ϵe2v(x0)

=tψ(X̄(x0)) + (1− t)ϵe2v(x0)

<ψ(x0)

=H(∇2v,∇v, v)(x0),

(5.0.16)

which is a contradiction.

From the fact v ≥ v we can see n(v−v) ≥ 0 on ∂Ω. Suppose n(v−v) = 0 at some point x0 ∈ ∂Ω.

Then by v = v on ∂Ω we get ∇v(x0) = ∇v(x0). From (5.0.16) we can see aij [v](x0) ≥ aij [v](x0)

can not hold, and thus ∇2v(x0) ≥ ∇2v(x0) can not hold. There exists unit vector ξ ∈ Tx0
Sn such

that ∇ξξv(x0) < ∇ξξv(x0). Again by the fact that v = v on ∂Ω and ∇v(x0) = ∇v(x0), ξ can not

be tangential to ∂Ω at x0. We can assume ξ (or −ξ) pointing to the interior of Ω. Let c(t) be

the normalized geodesic starting at x0 in the direction of ξ. In a short time c stays inside Ω. We

compare v(c(t)) and v(c(t)),

v ◦ c(0) = v ◦ c(0),

(v ◦ c)′(0) = ∇ξv(x0) = ∇ξv(x0) = (v ◦ c)′(0),

(v ◦ c)′′(0) = ∇ξξv(x0) < ∇ξξv(x0) = (v ◦ c)′′(0).

(5.0.17)

Therefore in a short time v(c(t)) < v(c(t)). But it is contradicted with v > v in Ω.

Now we are ready to prove the existence of solution for (5.0.1), and then (5.0.2).

Theorem 6. For any t ∈ [0, 1], (5.0.1) has a unique strictly locally convex solution.

Proof. Uniqueness is already proved in Lemma 4. We just prove the existence, with the standard

continuity method.

We shall first establish a priori estimates for (5.0.1). Since (3.0.11) and (5.0.1) are related by

changing variable u = ev and note that we also have positive lower bound for u, Theorem 5 directly

gives C2 estimates for strictly locally convex solutions v with v ≥ v. The uniform positive upper

and lower bounds for principal curvatures ensure that (5.0.1) is uniformly elliptic for strictly locally

convex solutions v with v ≥ v. We also pointed out H is a concave operator. Then by the Evans-
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Krylov estimates [4] and [13], we get C2,α estimates for some α ∈ (0, 1), that is

∥v∥C2,α(Ω̄) ≤ C. (5.0.18)

Here we shall note C is independent of t.

Let C2,α
0 (Ω̄) be the subspace of C2,α(Ω̄) consisting of functions vanishing on the boundary.

Consider U = {w ∈ C2,α
0 (Ω̄)|w + v is strictly locally convex}, which is open in C2,α

0 (Ω̄). Construct

a map L from U × [0, 1] to Cα(Ω̄) by

L[w, t] = H

∇2(w + v),∇(w + v), w + v


−

tϵ+ (1− t)

ψ(x)

e2v


e2(w+v). (5.0.19)

Set S = {t ∈ [0, 1]|L[w, t] = 0 has a solution in U}.

First, L[0, 0] = 0 since v is clearly a solution of (5.0.1) when t = 0. So 0 ∈ S and S is not empty.

Second, for any t0 ∈ S, there exists w0 ∈ U such that L[w0, t0] = 0. The Fréchet derivative of L

with respect to w at (w0, t0) is a linear elliptic operator from C2,α
0 (Ω̄) to Cα(Ω̄),

Lw|(w0,t0)(h)

=Hij |w0+v∇ijh+Hi|w0+v∇ih+


Hv|w0+v − 2


t0ϵ+ (1− t0)

ψ(x)

e2v


e2(w0+v)


h.

(5.0.20)

By Lemma 3, we can see Hv|w0+v − 2

t0ϵ+ (1− t0)

ψ(x)

e2v


e2(w0+v) < 0. Therefore by standard

elliptic theory Lw|(w0,t0) is invertible. By implicit function theory, a neighbourhood of t0 is contained

in S. S is open in [0, 1].

Third, let ti be a sequence in S converging to t0 ∈ [0, 1] and wi the corresponding solution with

respect to ti. By Lemma 4, wi ≥ 0. Then we can apply estimates (5.0.18) to see vi = wi + v is

a bounded sequence in C2,α(Ω̄). Sending ti to t0, passing to a subsequence if necessary, we get a

limit function v0 which is the solution of (5.0.1) at t0. From the uniform upper and lower bounds

for principal curvature which are independent of t, we can see v0 is strictly locally convex. Above

all, w0 = (v0 − v) ∈ U and L[w0, t0] = 0. So t0 ∈ S and S is closed in [0, 1].

We proved S is a nonempty and both open and closed subset of [0, 1]. Therefore S = [0, 1].

(5.0.1) has a strictly locally convex solution for any t ∈ [0, 1].

Theorem 7. For any t ∈ [0, 1], (5.0.2) has a strictly locally convex solution. In particular, (1.0.3)-

(1.0.4) has a strictly locally convex solution.

Proof. Similarly as in the proof of Theorem 6, we get C2,α estimates for strictly locally convex
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solutions of (5.0.2) with v ≥ v. Then by the standard regularity theory for second order uniformly

elliptic equations, we can get any higher order estimates. Here we need C4,α estimates for applying

the degree theory in [14], that is,

∥v∥C4,α(Ω̄) < C1. (5.0.21)

We also need to describe the uniform bounds for principal curvatures more specifically, that is,

C−1
2 I < [δij +∇iv∇jv +∇ijv] < C2I in Ω̄. (5.0.22)

We shall note that both C1 and C2 are uniformly positive constants which are independent of t.

Let C4,α
0 (Ω̄) be the subspace of C4,α(Ω̄) consisting of functions vanishing on the boundary.

Consider O = {w ∈ C4,α
0 (Ω̄)|w > 0 in Ω, nw > 0 on ∂Ω, C−1

2 I < [δij + ∇i(w + v)∇j(w + v) +

∇ij(w + v)] < C2I in Ω̄, ∥w∥C4,α(Ω̄) < C1 + ∥v∥C4,α(Ω̄)}, where C1 and C2 are as in (5.0.21) and

(5.0.22) and n is the unit interior normal on ∂Ω. O is a bounded open subset of C4,α
0 (Ω̄). Construct

a map from O × [0, 1] to C2,α(Ω̄):

Mt[w] = H

∇2(w + v),∇(w + v), w + v


− tψ(e−(w+v)x)− (1− t)ϵe2(w+v) (5.0.23)

From Theorem 6, let v0 be the unique solution of (5.0.1) at t = 1. Set w0 = v0 − v. By Lemma 4,

w0 ≥ 0. Then by Lemma 5, w0 > 0 in Ω and nw0 > 0 on ∂Ω. Also clearly v0 satisfies (5.0.21) and

(5.0.22). Therefore w0 ∈ O.

It is easy to check that Mt[w] = 0 has no solution on ∂O. Namely, if w with C4,α norm

C1 + ∥v∥C4,α(Ω̄) is a solution, it contradicts with estimate (5.0.21). If w = 0 at some interior point

or nw = 0 at some boundary point, it will contradict with Lemma 5. If [δij +∇i(w+ v)∇j(w+ v)+

∇ij(w + v)] achieves eigenvalue C2 or C−1
2 at some point, it would contradict with the estimates

(5.0.22). Above all, Mt[w] = 0 has no solution on ∂O for any t. We also noteMt is uniformly elliptic

on O, independent of t. Therefore, the degree of Mt on O at 0 deg(Mt,O, 0) is well defined and

independent of t.

Now we compute deg(M0,O, 0). M0[w] = 0 has a unique solution w0 inO. The Fréchet derivative

of M0 at w0 is a linear elliptic operator from C4,α
0 (Ω̄) to C2,α(Ω̄),

M0,w0(h) = Hij |v0∇ijh+Hi|v0∇ih+

Hv|v0 − 2ϵe2v

0

h. (5.0.24)
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By Lemma 3, Hv|v0 − 2ϵe2v
0

< 0. So M0,w0 is invertible. By the theory in [14], we can see

deg(M0,O, 0) = deg(M0,w0 , B1, 0) = ±1 ̸= 0, (5.0.25)

where B1 is the unit ball of C4,α
0 (Ω̄). Therefore

deg(Mt,O, 0) ̸= 0 for all t ∈ [0, 1]. (5.0.26)

(5.0.2) has at least one strictly locally convex solution for any t ∈ [0, 1]. In particular, when t = 1,

it solves (1.0.3)-(1.0.4).
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