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Abstract 
 

 Inflammatory Bowel Diseases (IBDs) are chronic diseases characterized by 

aberrant inflammation in the gastrointestinal tract. They result in a significant reduction 

in the quality of life for 1.3 million Americans every year and are implicated in more 

severe pathologies like colorectal cancer. While knowledge of the gastrointestinal 

immune system has vastly improved recently, the etiology of IBDs like Crohn’s disease 

and ulcerative colitis remain largely unknown. What is known, though, is that the 

maintenance of the epithelial layer and immunoregulatory mechanisms are pivotal toward 

the treatment and prevention of these diseases. Interleukin-10 (IL-10) plays an important 

role in immunoregulation and the induction of tolerance in the gastrointestinal tract, and 

has been previously shown by our lab to be constitutively expressed in intestinal 

epithelial cells. In order to elucidate the role of this epithelial-derived IL-10 in 

gastrointestinal health and the development of IBD a two-pronged approach was taken. 

First, an examination of how certain microbial species in the gastrointestinal tract affect 

IL-10 expression was performed. Then, an examination of how IL-10 signaling in 

intestinal epithelial cells affects the disease phenotype in a model of acute colitis was 

performed. It was found that the presence of bacteria in the gastrointestinal tract was 

important for the expression of IL-10 in both the lamina propria and epithelial layer, but 

the results were unable to determine whether certain species are more inclined to induce 

this expression than others. It was also observed that mice with impaired IL-10 signaling 

in their intestinal epithelial cells exhibited a less severe acute colitis phenotype when 

treated with dextran sulfate sodium. 
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Introduction 
 

The gastrointestinal (GI) tract serves one of the most basic mammalian functions 

in the absorption of nutrients and the elimination of waste. Due to the nature of the GI 

tract, being one of the main sites of contact with the external environment, it is constantly 

exposed to foreign macromolecules such as proteins and lipids, or “antigens”; not only 

from pathogens like bacteria, protozoa, fungi, and viruses, but also antigens from food 

and the natural microbiota. This creates a complex problem for the mucosal immune 

system in the gut, that it must tolerate these constitutive challenges. In the gut, these 

challenges are primarily dealt with through anatomical sequestration between the immune 

system and antigens in the lumen, as well as through degradation of these antigens by a 

broad spectrum of enzymes. In addition, pathogenic and nonpathogenic microorganisms 

are kept at bay by antibodies and antimicrobial peptides released into the mucosal layer. 

When this initial barrier breaks down, the immune system can come in contact with these 

antigens. The immune system is primed to react to foreign antigens in order to protect the 

host from infection, but for many antigens this reaction is unnecessary and potentially 

damaging. So the immune system must learn not to react to certain foreign antigens that 

break through the mucosal barrier. This hyporesponsiveness is known as tolerance. The 

GI tract, while performing the vital function of providing nutrients and eliminating waste, 

must also perform a balancing act known as homeostasis. This protects humans from 

harmful pathogens while tolerating antigens from food and commensal flora. 

Being bathed in exogenous antigens with the goal of homeostasis requires a 

complex immune system with a massive amount of regulatory mechanisms. Indeed, 

almost 70% of the human immune system, known as the gut-associated lymphoid tissue 
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(GALT), resides in the GI tract for just this purpose (1). In the presence of this large 

portion of the immune system, the microbiota perform vital functions like digesting 

carbohydrates and producing vitamins. In addition to these microbes, food serves the 

obvious function of providing nutrients. In order for these three components—food, 

commensal bacteria, and the immune system—to function properly, co-evolution has 

resulted in the development of mechanisms for immune tolerance to many exogenous 

antigens (2). At the same time, in order to protect against pathogens, there remains a 

tightly regulated, effective inflammatory response.  

Being exposed to the external environment also makes the GI tract a common 

entry point for many pathogens. Everything from common bacterial pathogens like E. 

coli and Salmonella, to more serious, life-threatening pathogens like V. cholera require 

an adequate inflammatory response. When the immune system’s inflammatory response 

does its job and the infection is resolved, this inflammation must be subsequently 

controlled in order to avoid further collateral damage. The ability to regulate the 

inflammation caused by infection is another function of the same immunoregulatory 

mechanisms involved in the maintenance of tolerance. When inflammation is not 

properly regulated, whether it be in the steady state response to the microbiota or in the 

resolution of an inflammatory response to an infection, pathologies can occur caused by 

the immune system; a large subset of these pathologies that are specifically directed 

against self antigens are referred to as autoimmune diseases.  

Aberrant inflammation, not sufficiently regulated and/or directed toward 

commensal antigens, is a hallmark of inflammatory bowel diseases (IBD) such as 

Crohn’s disease and ulcerative colitis (UC). These disorders have a major impact on the 
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quality of life in the patients they affect. They are characterized by chronic, relapsing 

inflammatory responses, which damage the GI tract causing severe diarrhea, pain, 

fatigue, and weight loss, sometimes life-threatening. Currently, in the United States, 

about 1-1.3 million people suffer from an IBD (3). Researchers still do not know the 

exact etiology of these diseases, and treatment options are lacking. Furthermore, this 

aberrant inflammation has been shown to enhance the risk for the development of 

colorectal cancer (CRC); inflammation is known to cause DNA damage, while the repair 

responses to the overall pathology provides a favorable environment for cancer cell 

proliferation (4). This is reflected in the fact that UC patients have an 18% chance of 

developing CRC within 30 years after their diagnosis (5). So this problem is not only 

limited to the immediate quality of life in patients suffering from IBD, but there are 

significant long-term issues that arise from unregulated inflammation. Therefore, 

understanding the complex mucosal immune system in the gut, how homeostasis is 

maintained, and what factors lead to the perturbation of this homeostasis, remains one of 

the most important questions in public health. 

 

The Microbiome 

Commensal’s contribution to homeostasis 

The GI tract is colonized by more than 100 trillion microorganisms (2), with at 

least 150 times more genetic information than their human host (6). These bacteria, fungi, 

parasites, and viruses, the majority being bacteria, are collectively known as the 

“microbiota.” While the microbiota was once thought only to contribute to pathology, in 

recent years this community of microorganisms has become the focus of many research 
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teams attempting to elucidate how this population is shaped, what role it plays in disease, 

and how it contributes to the host’s physiology. Each person’s unique microbiome plays 

an intricate part in a vast range of physiological processes. From the surprising influences 

on the endocrine and nervous systems (6), to the expected effects on host metabolism (7), 

the microbiota’s influence is far reaching and significant. It is important, then, to fully 

appreciate the symbiotic relationship between the microbiota and their human host, while 

also investigating the role it may play in disease. 

The human microbiota is central to the digestion food and absorption of nutrients. 

From the fermentation of carbohydrates, to the production of vitamins, these organisms 

are able to carry out certain metabolic processes that their hosts are not (8). This has been 

shown in mouse models in which antibiotics were used to reduce the intestinal bacterial 

load, which was found to inhibit the production of key metabolites (9). On top of the 

presence of a microbiota being necessary, the composition of the microbiota has a 

profound impact on the host’s metabolism and overall health. The use of high-throughput 

sequencing has allowed researchers to analyze the microbiome and determine its unique 

composition down to the species level; the types of bacteria that make up the microbiome 

are not trivial. In fact, certain perturbations in what would be considered a normal 

microbiota have been implicated in conditions like obesity and cancer (10). The 

development of intestinal tumors can even be transferred into a healthy mouse when the 

microbiome from a mouse with intestinal cancer on a high fat diet replaces that of the 

healthy mouse through a fecal transplant (11). Whether a change in the microbiome 

causes these conditions, or these conditions cause a change in the microbiome, is not yet 
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clear; neither is it clear what exactly makes a healthy microbiome in the first place. What 

is clear is the importance of the composition of this community of microorganisms. 

In addition to the metabolic functions, the immune system in the GI tract requires 

the presence of a microbiome in order to fully develop and mature. Studies in germ-free 

mice, mice that have not been exposed to any microorganisms and do not possess a 

microbiota, show underdeveloped secondary lymphoid tissue in the gut and throughout 

the body (12). Beyond overall development of the GALT, specific types of bacteria have 

been implicated in the development of specific types of immune cells (13). This shows 

how the ontogeny of the microbiome and the functional immune system go hand in hand. 

The microbiota is also important to the proper function of the GALT, and the 

ability of the GI tract to resist colonization by pathogens. Commensal bacteria work with 

their host to prevent pathogens from expanding and inducing an inflammatory response 

that damages the intestinal tissue. One way this is done is through direct competition for 

nutrients. Commensal strains with certain metabolic profiles are able to directly compete 

for nutrients with pathogens that contain similar metabolic profiles, and in doing so 

prevent the pathogen from colonizing the gut (2). Another way commensals contribute to 

the host’s immune defense is by producing anti-microbial compounds directed against 

certain pathogens. Products like short chain fatty acids, a byproduct of bacterial 

carbohydrate fermentation, have been shown to be produced by commensal strains like 

Bifidobacterium and to mitigate infections from pathogens like E. coli O157:H7 (14). All 

of these beneficial properties highlight the microbiome’s importance to the overall 

function of the gut, but when certain perturbations occur in this delicate ecosystem the 

microbiota can actually contribute to disease. 
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Perturbations in the microbiota and contributions to disease 

The microbiota is a delicate ecosystem that can be easily disturbed. It is important 

to distinguish between acute disruptions of the microbiota and general shifts in the 

composition of a healthy microbiota. Studies show everything from one’s age and diet to 

an individual’s sleep schedule can have an impact on the composition of the gut 

microbiota (15,16). While these general shifts have been implicated in certain conditions, 

the more severe, acute perturbations in the microbial composition of the gut, like those 

caused by the use of antibiotics or infections, are much better understood. One of the 

most common side effects resulting from the use of antibiotics is Clostridium difficile 

infection. A recently developed treatment for this infection involves reconstituting the 

microbiome with a fecal transplant from a healthy individual (17). Due to the mounting 

evidence that disruptions in these populations significantly impact one’s health, the 

impact of the microbiome on IBDs cannot be ignored. 

The interplay between the immune system and microbiome suggests that the 

microbiome plays a role in IBD, and many studies have confirmed this. One example is 

in the Toll-Like Receptors (TLRs) of mice, receptors designed to sense and respond to 

stimuli from conserved antigens on microbes. The ability of mice to sense bacteria that 

breach the mucosal barrier through these receptors can protect against the induction of 

colitis (18). These results imply that the sensing of commensals in the gut plays an 

important role in the development of aberrant inflammation in IBD. Another factor 

involves dysbiosis in the microbiota, an abnormal accumulation of certain microbial 

populations that are normally in a very low abundance in the healthy microbiome. These 

strains of bacteria are referred to as pathobionts, and their role in the development of IBD 
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can be seen in the induction of colitis when they are purposefully colonized in immune 

compromised mice (2).  

The presence of commensals in the gut is important for the proper development 

and function of the GI tract. There is a mutualistic relationship in that the commensals 

provide their host with proper nutrients and protect them from pathogens, while the host 

develops a state of tolerance that maintains a favorable environment for the commensals 

to colonize. In the maintenance of homeostasis it is important that the immune system 

develop a very specific, regulated inflammatory response, while maintaining a state of 

tolerance with the commensals that make up the healthy microbiome. 

 

 

Gastrointestinal Mucosal Immune System 

To maintain homeostasis in the complex environment of the gut, it is important to 

prevent aberrant inflammation while retaining the ability to respond to challenges when 

necessary. As mentioned earlier, inflammation can cause damage to the epithelial layer of 

the gut, pathology commonly seen in IBDs, as well as promote the development of 

cancer. The inflammatory response can be pathological, but it is are also a necessary part 

of the immune system’s ability to protect the host from harmful pathogens. Maintaining 

homeostasis between the inflammatory and regulatory arms of the mucosal immune 

system is pivotal, and the GI tract has multiple unique anatomical and immunological 

mechanisms that help achieve this. 
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Mucosal Barrier & Anatomy 

The mucosal barrier in the gut is divided into distinct subsets: the mucosal 

environment in direct contact with the lumen, the epithelial layer directly beneath the 

mucosa, and the lamina propria layer present just below the epithelial layer with a vast 

lymphatic system draining into the mesenteric lymph nodes (MLN). The epithelial layer 

consists largely of different types of epithelial cells, with immune effector and antigen 

presenting cells dispersed in between (Figure 1). The lamina propria is made of 

connective tissue that forms a scaffolding for immune cell trafficking and to support 

structures such as the epithelial cell layer, blood supply, lymph vessels, and nervous 

tissue (19). These two layers are separated by a thin basement membrane, forming 

distinct immunological compartments. Immune cells are able to travel between the 

epithelial layer, lamina propria, and MLNs when necessary (20). 
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Figure 1: The intestinal epithelial layer containing enterocytes and specialized epithelial cells—M cells, 

goblet cells, Paneth cells, stem cells—as well as Peyer’s patches rich in immunoglobulin secreting B-cells. 

Also shown is the difference in anatomy between the mucosal layers of the small and large intestine (21).  

Much of the mucosal immune system’s function relies on non-hematopoietic 

cells. The intestinal barrier is made of a monolayer of epithelial cells, or enterocytes, 

separated from the lumen of the gut by a thin mucosal layer. These cells form tight 

junctions with one another that seal off the subepithelial tissue and paracellular spaces 

from the outside environment. Their apical surface is coated with mucins and 

antimicrobial molecules that are secreted by special types of epithelial cells called goblet 

and Paneth cells, respectively. These cells, along with the mucosal layer, work in concert 

to prevent direct contact between the contents of the lumen and the large amount of 

immune effector cells in the sub-epithelial space (20). Recently, research has shown that 
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intestinal epithelial cells (IECs) do much more than simply separate immune effector 

cells from antigens in the lumen. IECs have been shown to express and respond to 

cytokines—the hormones of the immune system—directly (22). While it is not exactly 

clear how crucial this is to the development of immune tolerance, it is an area of ongoing 

research and a major focus of this thesis. 

There are also stark differences between the large and small intestine, 

immunologically and physiologically (Figure 1). For example, a defining feature of the 

small intestine are finger-like projections extending into the lumen of the gut known as 

villi. This is in contrast with the colon, where the luminal surface is relatively flat. 

Another difference is in Paneth cells, which are mostly found in the small intestine, and 

goblet cells, which progressively increase in number from the small to the large intestine 

(19).  

The focus of this thesis is the large intestine where the majority of the microbiota 

resides and where the IL-10 phenotype is best characterized. Though these differences 

may not necessarily be a focus of some studies of GI tract, it is important to keep in mind 

the heterogeneity of the gut from the stomach to the anus. 

Innate Immune Response in the GI Tract 

The first line of defense against commensals and pathogens that may make it past 

the mucosal layer is the innate immune system. It is here, where myeloid cells like 

macrophages and dendritic cells (DCs) rapidly phagocytize microorganisms, that the first 

level of regulation is seen. Intestinal macrophages, unlike most macrophages in other 

organ systems, do not function primarily as antigen presenting cells (APCs) to prime the 

adaptive arm of the immune system, but they contain greater phagocytic and bactericidal 
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capabilities to clear low-level challenges before adaptive responses are required (20). 

These tissue macrophages specific to the GI tract also show reduced expression of co-

stimulatory molecules on their surface, reduced secretion of pro-inflammatory cytokines, 

and a propensity to express the anti-inflammatory cytokine IL-10 upon phagocytosis of 

apoptotic cells (20); all of these characteristics are important examples of the innate 

immune system’s contribution to gut homeostasis.  

In the same vein, lamina propria DCs, innate immune cells that are able to extend 

their dendrites into the lumen of the gut to sample antigens, preferentially activate a 

tolerogenic and anti-inflammatory immune response (23). Like macrophages, the 

decreased expression of costimulatory molecules and propensity to induce the expression 

of IL-10 shapes a tolerogenic response when presenting to effector cells of the adaptive 

immune response in the draining lymph nodes and lamina propria. The DC’s ability to 

sample antigens in the gut and subsequently induce tolerance in effector cells plays a 

major role in the development of tolerance to food and commensal antigens. In total, 

these modifications to the function of the innate immune system in the gut allow for a 

tight regulation of the adaptive immune response.  

Adaptive Immune Response in the GI Tract 

In addition to the innate immune system, the adaptive immune system provides an 

extra layer of regulation and effector responses that further cultivate the balance between 

tolerance and inflammation. From B-cells and their secreted immunoglobulins (Ig) to T-

cells and their inflammatory or anti-inflammatory responses, the adaptive immune 

response is the central pillar of gut homeostasis. 
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B-cells are responsible for the production of immunoglobulin, proteins also 

known as antibodies that neutralize microorganisms and other foreign antigens by 

binding to certain epitopes on these antigens. In the gut, these B-cells work in 

collaboration with secretory IECs to transport IgA, the dominant type of Ig in the gut, 

into the lumen to bind foreign antigens and debris. When binding to microorganisms, IgA 

reduces their motility and adhesive properties, limiting their ability to penetrate the 

mucosa (2). Because of the antigen load in the gut, massive amounts of IgA are secreted 

into the lumen constantly. More than 80% of human and mouse plasma cells, B-cells that 

specialize in the constant secretion of Ig, are located in the lamina propria of the GI tract 

(20). 

T-cells can be categorized into two major phenotypes: CD8+ T-cells and CD4+ T-

cells—CD4 and CD8 being co-receptors along with the T-cell receptor that recognizes 

antigens in the context of a major histocompatibility complex (MHC). CD8+ T-cells 

recognize antigens in the binding cleft of MHC class I molecules present on all cell types, 

and are called cytotoxic T-cells because their main function is to destroy infected cells. 

The CD4+ T-cells recognize antigens in the context of MHC class II molecules found 

only on APCs. CD4+ T-cells can be further divided into: those responsible for supporting 

a more inflammatory, cytotoxic Th1 response; those responsible for a more 

immunoregulatory, tolerance-inducing Th2 response; and those responsible for an 

antimicrobial Th17 response. T cells control the development of these responses using 

cytokines to signal between many different immune cell types, and are controlled 

themselves by the cytokines in the microenvironment in which they are activated. The 

distinction between these responses is important. The balance between inflammation and 
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tolerance in the gut can largely be represented as a balance between the Th1, Th17, and 

Th2 responses. The disturbance of this balance is thought to be a main driver in the 

development of IBD (24).  

As mentioned earlier, T-cells can be dispersed within the epithelial layer as intra-

epithelial lymphocytes (IELs), or located in the lamina propria as lamina propria 

lymphocytes (LPLs). IELs are thought to be predominantly involved in local immune 

surveillance in the small intestine. They are phenotypically distinct from their systemic 

counterparts, and knowledge of their exact function remains unclear (19). During active 

IBD, CD8+ cytotoxic T-cell levels in the epithelial layer are elevated, but in some models 

of colitis these CD8+ T-cells are largely absent (20); so their exact function as it relates to 

IBD is largely enigmatic.  

In contrast to the IEL CD8+ cytotoxic T-cells, CD4+ T-cells are present in very 

low levels in the epithelial layer throughout the GI tract (20). The opposite is true in the 

lamina propria, where CD4+ T-cells play a large role in three major capacities: Th2 T-

cells characterized by their secretion of anti-inflammatory cytokines like IL-4 and IL-10, 

Th1 T-cells characterized by their induction of a CD8+ T-cell-mediated immune response 

and secretion of inflammatory cytokines like IFNγ and TNF, or Th17 T-cells 

characterized by their antibacterial response and secretion of IL-17 and IL-22 (24). 

During the Th2 response, an important CD4+ T-cell subset called CD4+Foxp3+ regulatory 

T-cells or Tregs are crucial in the development of tolerance. Defects in the Treg 

population is a hallmark of colitis. 

The CD4+ T-cells in the lamina propria are often presented antigens from 

commensals in the lumen, but due to the local secretion of anti-inflammatory cytokines 
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like IL-10 and TGFβ, and the lack of costimulatory molecules on the APCs presenting 

these antigens, their proliferation is controlled and tolerance is induced. This mechanism 

has been seen to be a central pillar of homeostasis in the gut, and disturbing any facet of 

this regulatory control can result in disease. The best evidence for this is in mice who are 

genetically engineered to knockout their IL-10 gene, a well-known anti-inflammatory 

cytokine. These mice spontaneously develop colitis and experience an abnormally high 

Th1 and Th17 response in the colon (25). Though this may seem like a straightforward 

phenotype resulting from the lack of a key regulatory cytokine, IL-10’s effects are 

pleiotropic, differing in the induced phenotype depending on the cell type in which it is 

expressed. Elucidating how each cell type expressing and responding to IL-10 affects the 

immune response in the gut is important in understanding the development and treatment 

of inflammatory bowel diseases. 

 

Interleukin-10 

IL-10 is a class II cytokine, and the founding member of the IL-10 family of 

cytokines. The IL-10 protein is a homodimer that signals through a heterodimeric cell 

surface complex consisting of the subunits IL-10Rα and IL-10Rβ. While IL-10Rα is 

specific only for IL-10, IL-10Rβ can be shared with other members of the IL-10 family 

and is expressed on almost all cell types. IL-10 signals through the IL-10R complex, 

activating Janus Kinase 1 (JAK1) and tyrosine kinase 2 (Tyk2). These proteins self-

phosphorylate then recruit and phosphorylate signal transducer and activator of 

transcription 3 (STAT3), which is then translocated to the nucleus to activate target 

genes. 
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What distinguishes IL-10 from other class II cytokines is its function as a potent 

anti-inflammatory mediator. IL-10 controls inflammation primarily by inhibiting the 

production of inflammatory cytokines like IFN-γ, TNF-α, IL-1β, IL-6, and IL-12, as well 

as through the downregulation of MHC and costimulatory molecules that are important 

for activation of a cell-mediated immunity. As mentioned earlier, IL-10’s effects can be 

pleiotropic. IL-10 is able to stimulate IFN-γ expression in CD8+ T-cells, and can serve as 

a growth factor for B-cells, mast cells, and thymocytes. This involves increased MHC 

class II expression on B-cells along with an increase in Ig production. So while IL-10 is 

the prototypical anti-inflammatory cytokine, it is important to keep in mind the cell types 

involved and the environment these cells are in. 

Importance in gut homeostasis 

IL-10 plays an essential role in the maintenance of gut homeostasis. IL-10 

knockout mice develop spontaneous colitis (25), and, in humans, polymorphisms in the 

IL-10 and IL-10R genes are associated with susceptibility to IBD (26). Most 

hematopoietic-derived cells are able to produce IL-10, and in the GI tract some non-

hematopoietic cells express IL-10, like the enterocytes lining the lumen. Studies 

associating IL-10 with IBD in humans, and multiple mouse models of IBD, all suggest an 

importance of IL-10 in the maintenance of GI homeostasis. More is known about the 

contribution of leukocyte-derived IL-10, while the exact role of epithelial-derived IL-10 

remains elusive. 

While many studies in mice have shown promising results for the use of IL-10 as 

a therapeutic for IBDs (27), these results have not been echoed in human clinical trials 

(28). This is due to a heterogeneity in the etiology of IBD, as well as the signal 
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transduction pathway in response to IL-10 signaling. IL-10 supplementation works best 

in those patients who have an IL-10 deficiency, while most patients who have normal IL-

10 levels don’t respond to treatment (28). The genes that are activated by STAT3 also 

complicate the picture regarding IL-10 in IBD, with studies showing that STAT3 can 

have both a pathogenic and regulatory role depending on the context in which it is 

activated (29).  

The dynamic interaction between the different cell sources of IL-10 and the 

different responsive cells is important to the etiology of IBD. In T-cells, selective 

deletion of IL-10 expression from Tregs can lead to colitis (30). Selective deletion of the 

IL-10R in macrophages also exacerbates colitis, leading to a pathologic Th17 response 

(25). In addition to these immune cell populations, IECs have a role in IL-10 signaling in 

the gut. IECs can express MHC class II, allowing the epithelial cells to serve as APCs 

able to deliver signal one to the adaptive immune system. This IEC signaling lacks the 

additional costimulatory molecules, meaning IECs are able induce tolerance in 

potentially pathogenic T cells. Inflammatory cytokines like IFN-γ inhibit MHC class II 

expression in IECs, and this inhibition can be blocked through IL-10 signaling (31). 

Furthermore, IECs constitutively express IL-10 themselves (31). 

In the chapters that follow, an attempt will be made to expand on the role of IL-10 

signaling in intestinal epithelial cells. Experiments were designed to elucidate how 

certain microbes may affect IL-10 expression, and how a deficiency in epithelial-derived 

IL-10 affects a model of acute colitis. It was hypothesized that the colonization of 

microbes in the GI tract would induce IL-10 expression in the colonic epithelium and 

lamina propria. It was also hypothesized that enterocyte-derived IL-10 would play a 
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protective role in the development of colitis. All of this was done to further the 

understanding of cell-specific IL-10 expression in the GI tract, and its impact on a 

debilitating disease. 
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CHAPTER 2 

INDUCTION OF IL-10 IN COLONIC TISSUE OF GERM-FREE MICE 
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Introduction 

The first objective was to tease apart the relationship between the microbiota and 

the innate sources of IL-10 in the gut. There are many reasons to think that the immune 

response to microbes in the gut begins with the epithelial cells. Beyond providing the 

physical barrier between the microbiota and the mucosal immune system, these cells are 

able to sense and respond to microbial stimuli. IECs express receptors that are specific 

for conserved microbial antigens called pattern-recognition receptors (PRRs), such as 

Toll-like receptor (TLR), NOD-like receptor (NLR), and RIG-I-like receptor families. 

Evidence points toward these receptors being crucial to the maintenance of homeostasis. 

When one of the major downstream transcription factor of these receptors nuclear factor-

κB (NF-κB) is inhibited, colitis is exacerbated (32,33). These cells being so close in 

proximity to the microbiota and having the ability to sense them requires that they 

maintain a hyporesponsiveness to microbes in the lumen. Indeed, it has been shown that 

activation of PRRs on the apical surface of these cells, the surface facing the lumen, 

induces tolerance, whereas basolateral exposure to these antigens results in the activation 

of inflammatory pathways (34). In addition to this mechanism for IECs inducing a 

tolerogenic response to commensals, our lab has previously shown that these cells 

constitutively express IL-10. 

As previously discussed, IL-10 is crucial to the maintenance of gut homeostasis. 

In addition to constitutive IL-10 expression, certain signaling pathways in response to 

microbes and inflammatory mediators have been seen to upregulate IL-10 expression in 

IECs. Signaling through CD1d, a surface receptor on IECs that presents microbial lipid 

antigens to natural killer T (NKT) cells, results in an increased production of IL-10 (35). 
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IFN-γ signaling in IECs has also been seen to induce IL-10 expression and subsequent 

barrier restitution (36). In the same vein, because APCs are constantly taking up antigens 

in the gut and inducing tolerance to these antigens, it would be expected that these innate 

cells induce IL-10 as part of this mechanism of tolerance.  

The first aim of this experiment was to deduce whether IL-10 expression from 

IECs and APCs in the lamina propria was dependent on the presence of microbes. The 

second aim was to determine whether certain species of bacteria selectively induce IL-10 

expression in IECs and/or APCs in the lamina propria. The first hypothesis was that the 

colonization of microbes in the GI tract of mice induces IL-10 expression in both IECs 

and APCs. The second hypothesis was that this induction of IL-10 is not specific to any 

of the strains of bacteria used, but that IL-10 induction would be seen across all strains. 

In order to look only at innate sources of IL-10, adaptive immune cell sources 

were excluded. This was done using Rag-/- mice who were devoid of any B-cells or T-

cells. This means that when a gene expression analysis was performed on the epithelial 

layer, IL-10 expressed by IELs was not included in the analysis. Similarly, in the lamina 

propria, LPL-derived IL-10 was not present, and the IL-10 expression that was present 

was primarily from APCs. 
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Materials and Methods 

Monocolonization of Mice and Isolation of Intestinal Epithelial Cells and Lamina 

Propria Tissue 

In collaboration with Dr. Daniel Peterson at the Johns Hopkins School of 

Medicine, male Rag-/- mice on a C57Bl/6J background were obtained from Dr. Peterson 

and maintained in germ-free housing under maintenance conditions set by the Peterson 

Lab. The mice were placed in individual cages, three mice per cage, within the same 

germ free isolator to ensure that there was no cross-contamination between mice 

inoculated with different strains of bacteria. The mice in each cage were then inoculated 

with a specific strain of bacteria, both human and mouse isolates, chosen for their known 

effects on the immune system in the gut. The strains used, their mouse or human origin, 

the amount of bacteria inoculated, and the inoculation method can all be seen in Table 1. 

Exposure to the bacteria was done by isolating bacterial colonies on agar plates, picking 

them with a sterile inoculation loop, and rubbing the loop on the mouse’s fur. This 

exposure was used for all but one strain, C. symbiosum. For this strain an oral gavage was 

used to introduce the bacteria directly into the GI tract because it is anaerobic and 

exposure to oxygen while on the fur would kill the bacteria and lead to an unsuccessful 

inoculation. 
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Table 1: The monocolonization of each experimental group of mice. Three mice per strain of bacteria were 

used. 

RNA Isolation and Real-Time PCR 

The mice were sacrificed 48 hours after exposure to allow for sufficient 

colonization of their GI tract. After the mice were sacrificed, their colons were harvested 

and subjected to lamina propria preparation methods according to the lab of Dr. Peterson. 

Briefly, a midline incision was performed, the colon was removed, feces were removed, 

the colon was cut longitudinally, and the epithelial layer was scraped off with a sterile 

blade. During this prep the IECs and the lamina propria tissue were each separated into 

different 50ml conical tubes, and kept at -80°C in Trizol in order to preserve the RNA.  

These samples, along with a sample of murine brain tissue, were then subject to 

RNA isolation and RT-PCR. The RNA isolation was done using a chloroform extraction 

followed by an isopropanol extraction in order to isolate nucleic acids (RNA and DNA). 

For this, 200 µl of chloroform was added per 1 ml of Trizol the samples were kept in. 
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This mixture was incubated at room temperature for 10 minutes, centrifuged at 13200 

rpm for 15 minutes at 4°C, and the top layer was carefully transferred into a fresh 

Eppendorf tube. 500 µl of isopropanol per 1 ml of Trizol was then added to this tube and 

then mixed by inversion. This solution was incubated at room temperature for 10 

minutes, centrifuged at 13200 rpm for 15 minutes at 4°C, and the supernatant was 

aspirated. The pellet was then resuspended in 1 ml of 75% ethanol and mixed via 

inversion. This suspension was centrifuged at 13200 rpm for 15 minutes at 4°C, the 

supernatant was aspirated, and the pellet was allowed to air dry for ~10 minutes at room 

temperature. The dried pellet was then dissolved in a small amount of DEPC-treated 

water, and the RNA was then quantified and assessed for purity using a Nanodrop from 

Thermo Scientific.  

The samples were then subject to DNAse treatment to remove the DNA, leaving 

pure RNA samples. All of this was done at an RNA concentration of 2000 ng/µl, and a 

total solution volume of 16 µl. All reagents were obtained from Invitrogen. 2 µl of 

DNAseI buffer and 2 µl of DNAse I was added to the RNA solution and incubated for 15 

minutes at room temperature. The reaction was then terminated by adding 2 µl of 25 mM 

EDTA to each sample and heating the mixture to 65°C for 10 minutes. 

Reverse transcription was then used to amplify the RNA in each sample. cDNA 

was generated using a first-strand cDNA synthesis kit obtained from Roche. First, 2 µl of 

random hexamers and 2 µl of 10 mM dNTPs were added to each sample of DNAse-

treated RNA and incubated at 65°C for 5 minutes. The samples were chilled on ice for 1 

minute and then 18 µl of a master mix containing 4 µl of 10x RT buffer, 8 µl of 25 mM 

MgCl2, 4 µl of 0.1 M DTT, and 2 µl of RNAse out was added to each sample. This 
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mixture was incubated at room temperature for 2 minutes, then 2 µl of ssII RT at 50 

units/µl was added to each sample. The samples were vortexed for 5 seconds, spun down, 

and incubated at room temperature for 10 minutes. Then each sample underwent a series 

of incubations at 42°C for 50 minutes and 70°C for 15 minutes. The samples were then 

chilled on ice, 2 µl of RNAseH was added, and then they were incubated for 20 minutes 

at 37°C. 

After purification and reverse transcription, primers for IL-10 and β2-

microglobulin were added, a RT-PCR was ran using Sybr Green, and the gene expression 

of each sample was assessed. IL-10 expression in each sample was normalized to the 

expression of the baseline gene β2-microglobulin. Two levels of analysis were 

performed. First, levels of IL-10 in each sample were compared to levels in the brain 

tissue sample in order to assess total IL-10 mRNA expression. Second, each 

monocolonized mouse LP or IEC sample was compared to the LP or IEC sample from 

the germ free mice to quantify the level IL-10 induction in response to bacteria 

colonization.  

 

Results 

 In order to assess total IL-10 mRNA expression in each of the samples, a 

comparison to IL-10 mRNA expression in a brain tissue sample was performed. The 

brain tissue was used because IL-10 expression in the brain is very low, and therefore 

able to serve as reliable means to determine relative baseline levels of IL-10 mRNA in 

gut tissues. It was important to assess the presence of overall IL-10 mRNA this way as a 

quality control for our samples. The levels of IL-10 expression in each the LP and IECs 
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should be considerably higher than in the brain. If IL-10 mRNA levels in the LP or IEC 

samples were not higher than in the brain tissue sample, then something was wrong with 

the preparation and/or RT-PCR of the samples.  
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Figure 2: Levels of mRNA expression in comparison to brain tissue. Each strain is represented as the fold 

expression of IL-10 mRNA over brain IL-10 mRNA expression. 

The results of this assessment can be seen in Figure 2. In all samples, both in the 

LP and IECs, the IL-10 expression was higher than in the brain. The same brain sample 

was used as a reference for the analysis of all LP and IEC samples. This confirms that IL-

10 mRNA was able to be retrieved from the isolated tissues. This IL-10 expression did 

not seem to depend on the presence of microbes in the gut, as IL-10 levels in germ-free 

mice were similar to mice whose GI tract was colonized with bacteria. 

The next step was to assess the induction of IL-10 as a result of bacterial 

colonization (Figure 3). The results shown are the levels of IL-10 mRNA expression 
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above that of the germ free mice, the reference level being the average of the three germ 

free samples. Though the results suggest that most of the bacteria strains were inducing 

IL-10 expression above the levels in the germ free mice, high intra-strain variation and 

low sample sizes led to these differences not being significant. 
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Figure 3: Levels of mRNA induction in monocolonized mice. Each strain is represented as the fold 

expression of IL-10 mRNA over that of the germ free mice. 

 The results in Figure 3, where the levels of IL-10 mRNA in germ-free mice were 

used as a reference, also contradict those seen in Figure 2, where the levels of IL-10 

mRNA in the brain were used as a reference. This was likely due to multiple technical 

difficulties in the lamina propria and epithelial layer isolations, which led to 

heterogeneity in the quality of each tissue sample. Some samples contained a very small 

amount of tissue, while others contained large chunks of bulk tissue. Furthermore, due to 

the high volume of samples and limited lab personnel, some tissues were preserved in 
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Trizol quicker than others. All of these factors played a role in the large amount of 

variation seen in each experimental group. 

 

Discussion 

 This experiment was done as a pilot study to address two questions: do epithelial 

cells and/or APCs express IL-10 in the absence of microbes, and do specific strains of 

bacteria induce IL-10 more than others. While the results were promising in that the 

methodology was able to assess IL-10 expression in each the lamina propria and 

epithelial layer, the results were not able to assess IL-10 induction as a result of bacterial 

colonization.  

 By comparing the IL-10 mRNA levels to the brain it was shown that the tissue 

was able to successfully be isolated and the gene expression was able to successfully be 

evaluated. On the other hand, when attempting to assess levels of IL-10 induction as a 

result of bacterial colonization, technical difficulties were encountered that hampered the 

ability to interpret the data and achieve significant results. The first problem came in the 

lack of an adequate sample size in each group. Due to germ free isolator availability, and 

because this was a pilot study, only three mice were used in each group. Furthermore, 

because of the nature of the LP prep and IEC isolation, some tissues were not able to 

have RNA recovered from them at all. This is evident in the fact that the sample size for 

IECs of C. symbiosum was only one.  

The second problem was high variation within each experimental group, which 

may be the result of multiple factors. First, the mice may have been contaminated with 
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other bacteria. While the germ free facility is adequate for raising germ free mice, the 

successful monocolonization of each mouse was not confirmed. In order to do this a 

metagenomic analysis of the GI tract of each mouse should be performed before the 

tissue is isolated, during the 48 hour colonization period. The second possibly may have 

to do with the tissue isolation. RNA degrades quickly, so it is imperative that tissues be 

homogenized and frozen in Trizol as soon as possible. The tissue samples arrived from 

Dr. Peterson’s lab largely as bulk tissue in Trizol, meaning that the lack of 

homogenization would leave the inner cells of each clump not exposed to the RNA-

preserving solution. Because of this the integrity of the RNA was likely compromised in 

some samples with larger chunks of tissue. 

On the other hand, some aspects of the data were consistent enough to draw some 

preliminary conclusions. For example, in some of the experimental groups, such as those 

mice colonized with B. caccae, it is evident that less IL-10 is induced compared to other 

bacterial strains. This may be important as some species of Bacteroides have been shown 

to protect against colitis in certain mouse models (37). Further assessment of the effect 

these bacterial strains have on IL-10 expression may be important toward elucidating 

another important mechanism in maintaining gut homeostasis. 

 In the future this experiment should be performed with a few changes to the 

protocol. First, an assessment of the microbiota in each mouse must be done in order to 

illuminate or eliminate any confounding microbes that may be present. Second, as the 

tissue is harvested it should be homogenized immediately to preserve the integrity of the 

RNA. Lastly, a larger sample size should be used in each experimental group. The 

differences in induction of IL-10 between each bacterial strain is most likely to be low, as 
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shown in Figure 3, and because of this any differences in induction may need a large 

sample size in order to obtain significant results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

 

 

CHAPTER 3 

INTESTINAL EPITHELIAL CELL IL-10 SIGNALING IN COLITIS 
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Introduction 

 To further examine the role of IL-10 signaling in gut epithelial cells, a controlled 

model of inflammation and acute colitis was used. By using this model, the importance of 

IL-10 signaling in a disease state and the role IL-10 plays when the epithelial layer is 

compromised, could be evaluated. It is important to note that one common pathology 

associated with inflammation of the GI tract is a disruption of the epithelial layer. 

Epithelial apoptosis has been shown to be a major factor in acute inflammatory bowel 

diseases, and there are certain models that specifically take advantage of disrupting the 

epithelial layer in order to induce colitis. 

Dextran Sulfate Sodium Model of Colitis 

 Some models of colitis take advantage of genetic mechanisms, like IL-10 

knockout models, and some use certain chemicals in order to induce colitis. Dextran 

sulfate sodium, or DSS, is a chemically-induced model of colitis. DSS is a water-soluble, 

sulfated polysaccharide with anticoagulant properties. The DSS model is one of the most 

widely-used models of colitis because it is simple to employ, easily reproducible, and the 

course of the colitis, from acute disease to recovery, is short (38). Another convenient 

property is the ease with which the model can be modified. Simply by changing the 

concentration of DSS administered, severe or mild colitis can be induced. In addition to 

modifying the severity of colitis, chronic colitis can be induced that lasts long after the 

DSS has been removed using a cyclical administration schedule (38). This allows 

researchers to tailor the model to the question being asked.  

Of course, this does not mean that DSS is a perfect model. One weakness is in the 

fact that, unlike most human IBDs, T-cells and B-cells are not required for the induction 
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of colitis (38). This must be kept in mind when drawing conclusions about the role of the 

adaptive immune system in the gut during DSS-induced colitis. However, this adds 

another advantage in that the model may be used in Rag-/-- mice who are devoid of B-cells 

and T-cells, making investigation of the innate immune response possible. Like in any 

model of disease, the exact mechanism in which the disease is induced should be taken 

into account when drawing any conclusions. 

The exact mechanism that makes DSS a colitogen is not known, but is suspected 

to be a result of disrupting the epithelial layer, inducing epithelial apoptosis and the 

release of damage signals and pro-inflammatory intestinal contents (38). Studies have 

shown that apoptosis-inducing proteins like the p53-upregulated modulator of apoptosis 

(PUMA) are not only upregulated in UC patient’s IECs, but also induced in murine IECs 

as a result of DSS treatment (39). Other cellular factors that may contribute to the 

cytotoxicity of DSS include: the loss of tight junction protein ZO-1, which may facilitate 

the increase in intestinal permeability (40); a disturbance in phospholipid metabolism, 

which may contribute to a loss in cell membrane integrity; and a reduction in the levels of 

nucleotide synthesis, which may cause decreased IEC proliferation (41). 

Another mechanism of DSS-induced colitis may be in the modulation of 

interactions between IELs, IECs, and the extracellular matrix (ECM). Lymphocytes in the 

gut get there through the expression of specific integrins, and perturbations in the 

expression of these integrins caused by DSS may contribute to an exaggerated immune 

response through the aggregation of intestinal lymphocytes (42).  DSS also induces 

inflammation through modulation of the NF-κB signaling pathway and NLRP3 

inflammasome. Finally, DSS has been shown to upregulate inhibitors of epithelial cell 
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proliferation (43). All of these results point toward DSS inducing colitis through the 

increase in intestinal permeability, the inhibition of IEC proliferation, and the 

upregulation of IEC apoptosis. Simultaneously, DSS induces inflammation through the 

aggregation of lymphocytes, the expression of pro-inflammatory cytokines, and the 

inhibition of anti-inflammatory cytokines.  

Villin-Cre System 

 In order to investigate the role of IL-10 signaling solely in IECs, an intestinal 

epithelial cell-specific deletion of IL-10 and IL-10Rα was used. This means that, in these 

knockout mice, IL-10 or IL-10R function was normal throughout the mice, but was 

disrupted solely in the enterocytes of the GI tract. By doing this, the DSS model of colitis 

was able to be used in mice with either deletion and in control mice. An investigation 

could then be made into whether colitis was ameliorated or exacerbated by the absence of 

IL-10 signaling in IECs. This genetic deletion was accomplished through the use of the 

Villin-Cre system. 

 Cre-Lox recombination is a widely used technique to carry out specific deletions 

and insertions of genes. What this system does is take advantage of a Cre recombinase 

protein, which recombines two LoxP sequences in a genome (44). In order to carry out 

deletions, these LoxP sequences can be inserted into the genome flanking whatever the 

target gene may be. Then, when the Cre recombinase is expressed, the pair of LoxP 

sequences is recombined, cutting out the gene in between them (Figure 4). This system 

can be used for deletions under the control of specific promoters, allowing for cell-

specific deletions. In the mice used in this experiment, whose deletions occurred only in 

the enterocytes of the GI tract, Cre recombinase expression was under the control of a 
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regulatory region of the Villin gene, hence the name “Villin-Cre.” The Villin gene has 

been shown to be expressed homogeneously throughout the small and large intestine in 

only enterocytes. By placing the gene for the Cre recombinase under the control of the 

Villin gene’s promoter, expression of the Cre recombinase occurs solely in the 

enterocytes of the GI tract (44).  

 

Figure 4: Cre-LoxP system. LoxP sites flanking the gene of choice are recombined, excising that gene. 

 The control mice used for the experiments outlined below had LoxP sequences 

flanking the IL-10 gene but were negative for the Cre recombinase; so the LoxP 

sequences were not actually recombined, leaving the target gene intact. These mice were 

used as opposed to simple wild-type mice in order to control for any extraneous effects 

the LoxP sequences may have on gene expression. The control mice were termed IL-10fl/fl 

for mice that did not express the Cre recombinase and whose target gene was intact, and 
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IL-10ΔIS or IL-10RαΔIS for mice that expressed the Cre recombinase and had an intestine-

specific gene deletion of IL-10 or IL-10Rα, respectively. 

 

Materials and Methods 

Generation of Mice 

C57Bl/6 IL-10fl and IL-10Rαfl mice were obtained from Dr. Werner Muller at 

the University of Manchester, and were crossed with C57Bl/6 Villin-Cre+ mice for two 

generations until IL-10ΔIS and IL-10RαΔIS mice were created. Mice were maintained 

through hemizygous breeding with Villin-Cre+ and Villin-Cre- mice. Wild-type mice 

were purchased from the Jackson Laboratory (Bar harbor, ME). Male mice were used in 

all experiments. Maintenance conditions—humidity, temperature, light and dark cycles, 

feeding and water conditions—were set by the Johns Hopkins Broadway Research 

Building Animal Care Facility. All experimental procedures were approved by the Johns 

Hopkins Animal Care and Use Committee. 

Induction of Colitis by DSS 

 DSS (MW 36,000-50,000) was mixed into DI water in order to obtain the desired 

concentration (%w/v), filtered, and then given to the mice through their drinking water. 

In the Johns Hopkins Broadway Research Building Animal Facility the central water feed 

was stopped using a plug obtained from the facility, and the DSS solution was placed in 

water bottles in the cage. The DSS water was given to the mice for 7 days, followed by a 

recovery period of 9 days in which they received water from the facility’s central feed. 

Each day the mice were weighed, and disease severity was assessed based on weight loss, 

splenic weight, and colon length. 
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Lamina Propria Lymphocyte and Intraepithelial Lymphocyte Isolation 

 After a 16-day course of DSS the mice were euthanized via CO2 asphyxiation. A 

midline incision was performed and the skin was retracted. The spleen was removed, 

along with the mesenteric lymph nodes (MLN) and intestines. The small intestine and 

colon were separated through a cut just above the cecum, and they were placed in 

separate petri dishes containing ice cold FBS-containing media, as were the spleens and 

MLNs. The colons were then measured, the feces were removed from the small and large 

intestine using tweezers to gently push the feces out, and the intestines were cut 

longitudinally with fine scissors. The intestines were then washed three times in petri 

dishes containing fresh, ice cold FBS-containing media. They were then cut into 

approximately 1 cm long pieces and placed in an Erlenmeyer flask containing a solution 

of 40 ml of FBS, 500 µl of 0.5 M EDTA, and 40 µl of DTT at a final concentration of 

0.145 mg/ml solution. The solution containing the 1 cm pieces of intestine was then 

placed on a shaker in a warm room (37°C) for 20 minutes. 

 After incubation in the warm room (37°C), the contents of each Erlenmeyer flask 

were strained through a sterile kitchen strainer into a 500 ml beaker held on ice. The 

tissue left in the strainer was then placed in a 50 ml conical containing 15 ml of a pre-

digestion media initially made using 45 ml of FBS-free media and 180 µl of 0.5 M 

EDTA. The solution was then shaken vigorously for 30 seconds and strained again. This 

process was repeated for each sample three times. The solution in the 500 ml beaker 

contained the epithelial layer. 

 After the pre-digestion was completed, the tissue pieces in the strainer were 

placed in a 200 ml beaker containing 15 ml of a digestion media that was initially made 
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using 25 ml FBS-free media, 2.5 mg of Liberase TL, and 12.5 mg of DNAse I. These 

chunks of tissue were minced using scissors in the 200 ml beaker, then each beaker was 

covered with parafilm and placed in the warm room on a shaker for 25 minutes. After 25 

minutes, 10 ml of digestion media was added to each beaker and the warm room 

incubation continued for 25 additional minutes. 

 Meanwhile, the 500 ml beakers containing the epithelial layer was processed for 

isolation of IELs. The contents of each beaker were placed in separate 50 ml conicals and 

centrifuged at 1600 RPM for 10 minutes. After aspirating the supernatant, the pellet was 

suspended in 28 ml of FBS-free media and 12 ml of Percoll. The tube was then inverted 

multiple times and centrifuged at 1600 RPM for 20 minutes at room temperature. After 

this centrifugation the supernatant was aspirated, the pellet was resuspended in FBS-

containing media, and the cells were counted. The IELs were cultured in a 6-well plate at 

a concentration of 3x106 cells/ml. Half of the wells in each plate were stimulated with 50 

ng/ml of Ionomycin and 20 ng/ml of PMA in the presence of Brefeldin A, while the other 

half remaining unstimulated. The stimulated and unstimulated cells were then incubated 

for 4 hours at 37°C. 

 After incubation of the LPLs with liberase, the tissue pieces were almost fully 

degraded, and 10 ml of FBS-containing media was added to the beaker to stop the 

reaction. The contents of each beaker were then strained through a 70 µm cell strainer 

into a 50 ml conical, centrifuged at 1600 RPM for 10 minutes, and resuspended in 10 ml 

of FBS-containing media. The cells were then counted, passed through a 40 µm cell 

strainer, centrifuged and the supernatant aspirated, and then cultured in a 6-well plate at a 

concentration of 3x106 cell/ml. Like the IELs, half of the cells were stimulated with PMA 
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and Ionomycin, while the other half remained unstimulated as outlined above. The 

stimulated and unstimulated cells were then incubated for 4 hours at 37°C. 

 

Results 

DSS Dosing 

 The effects of DSS treatment are dose-dependent and can vary between facilities. 

Dosing studies in wild-type mice were first conducted in order to determine the optimal 

concentration that would induce moderate colitis. This was done through two consecutive 

experiments. The first used solutions of 1%, 2%, and 3% DSS in 15 week old C57Bl/6 

mice, based on previous literature (38,41,42,43). It was found that the 1% solution was 

unable to induce colitis, the 2% solution was able to induce significant weight loss, and 

the 3% solution killed the mice at day 6 (data not shown). The second experiment used 

1.5%, 2.0%, and 2.5% solutions to try narrow down the ideal DSS concentration (Figure 

5). The 1.5% DSS solution led to no weight loss, while the 2.0% and 2.5% solutions lead 

to moderate and severe weight loss, respectively. It was decided that the 2.0% solution 

was more likely to allow for the distinguishing between more subtle changes in disease 

severity that may result from the genetic deletion of IL-10 or IL-10Rα in IECs. 
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Figure 5: DSS dosing carried out in 3 groups (n=3) of WT-mice. DSS was given through the mice’s 

drinking water for a period of 7 days, followed by a 7 day recovery period. The mice given the 2.0% DSS 

solution showed the ideal phenotype of moderate colitis, making that the concentration used in future 

rounds of DSS colitis. 

DSS-induced Acute Colitis in IL-10ΔIS and IL-10RαΔIS Mice 

 In order to examine the role of IL-10 expression and IL-10R signaling in IECs, 

the phenotype of each experimental group treated with DSS was examined. This 

phenotype was quantified using weight loss, colon length, and splenic weight. Weight 

loss (Figure 6) was significantly lower in the IL-10ΔIS and IL-10RαΔIS mice compared to 

the control IL-10fl/fl mice. This difference in weight loss was statistically significant for 

the IL-10ΔIS compared to the control mice on day 11, 12, 13, 15, and 16, and statistically 

significant for the IL-10RαΔIS compared to the control mice on day 12 only.   
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Figure 6: DSS colitis induced in the IL-10fl/fl, IL-10ΔIS, and IL-10RαΔIS mice (n=5). IL-10ΔIS mice showed 

significantly less weight loss than the control IL-10fl/fl mice on days 11, 12, 13, 15, and 16, while the IL-

10RαΔIS mice showed significantly less weight loss only on day 12. 

Colon length has proven to be a useful measurement of colitis (45), and the 

weight loss phenotypes seen were echoed in the measurements of colon length (Figure 

7). Although there was a clear trend for smaller spleens in the IL-10ΔIS and IL-10RαΔIS 

groups, the splenic weights were not statistically different between groups (Figure 8). 

The lack of significance is likely a result of the low sample size, with only three mice in 

each group. The spleens of the IL-10fl/fl mice were observed to be significantly more 

inflamed than the IL-10ΔIS and IL-10RαΔIS mice spleens (data not shown). Overall, these 

gross measurements showed a clear phenotype, where the IL-10fl/fl mice had significantly 

worse colitis than the IL-10ΔIS and IL-10RαΔIS mice. 

**   *    
 

*    * 

* 
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Figure 7: The colon length of mice in each of the experimental groups (n=3). The IL-10fl/fl control mice 

had shorter, more inflamed colons than the IL-10ΔIS and IL-10RαΔIS mice (P < 0.001). 

IL-10
(fl/

fl) IS)
∆

IL-10
(

IS)
∆(α

IL-10
R

0

50

100

150

Sp
le

ni
c 

W
ei

gh
t (

g)

 

Figure 8: Splenic weights of each group of mice (n=3). The splenic weights were not significantly different 

between the groups of mice, though the VC- IL-10(FL) (IL-10fl/fl) mice’s spleens were observed to be 

larger and more inflamed. 

** ** 
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Flow Cytometry 

 To determine whether IL-10 signaling affects the composition of leukocyte 

subsets in the recovery phase of mice treated with DSS, flow cytometry was performed. 

The mice were sacrificed on day 16 relative to the start of DSS treatment. LPLs, IELs, 

and splenocytes were then isolated for immunophenotyping. Because this analysis was 

done on day 16, the phenotypes of these cells pertain mostly to the recovery phase after a 

bout of acute colitis. In the case of the IL-10ΔIS and IL-10RαΔIS mice, this is when the 

inflammation had resolved and the mice had recovered. In the case of the IL-10fl/fl mice, 

this is when residual inflammation was still present and the mice had not yet fully 

recovered. 

 First, the phenotypes of the immune cell populations seen in each the LPLs, IELs, 

and spleen were analyzed. This included: proportion of CD4+ and CD8+ T-cells, B-cells 

(CD19+), and T-regulatory cells (Foxp3+CD4+). In the spleen (Figure 9) similar levels of 

CD4+ T-cells, CD8+ T-cells, T-regulatory cells, and B-cells were seen in each of the three 

groups.  
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Figure 9: Splenic cell populations. (A) Cells were gated on live CD45+, then analyzed for expression of 

CD4, CD8, and Foxp3. (B) Cells were gated on live CD45+, then analyzed for expression of CD19 to 

detect B-cells. 

In the lamina propria (Figure 10) more than twice as many CD4+ and CD8+ T-

cells were seen in the IL-10ΔIS and IL-10RαΔIS mice compared to the IL-10fl/fl mice. On 

the other hand, the proportion of these CD4+ T-cells that were Foxp3+ regulatory T-cells 

were higher in the lamina propria of the IL-10fl/fl mice than the IL-10ΔIS and IL-10RαΔIS 

mice. Out of the CD4+ infiltrate in the lamina propria, 42.9% were T-regulatory cells 

(Foxp3+) in the IL-10fl/fl mice, compared with only 26.5% and 26.0% in the IL-10ΔIS and 
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IL-10RαΔIS mice, respectively. Additionally, the IL-10fl/fl mice had twice as many B-cells 

in their lamina propria compared to the IL-10ΔIS and IL-10RαΔIS mice; though, B-cell 

populations were low in the lamina propria in all three groups. Overall, there was less 

CD4+ and CD8+ T-cell infiltrate in the IL-10fl/fl mice, and a higher proportion of the 

CD4+ T-cells in the IL-10fl/fl mice were Tregs. 

The IEL populations (Figure 11) had a higher percentage of B-cells than both the 

spleen and LPLs, in all three groups. The IL-10fl/fl mice had, like in the lamina propria, 

twice as many B-cells than the IL-10ΔIS and IL-10RαΔIS mice in their intraepithelial layer. 

Levels of CD4+ and CD8+ T-cells in the intraepithelial layer were similar between the IL-

10fl/fl mice and the IL-10ΔIS mice. The IL-10RαΔIS mice had their population skewed 

heavily toward a higher percentage of CD4+ T-cell infiltrate and a lower percentage of 

CD8+ T-cell infiltrate. Out of the CD4+ IELs in these mice, 22.9% were T-regulatory 

cells in the IL-10fl/fl mice, whereas only 11.4% and 12.6% were T-regulatory cells in the 

IL-10ΔIS and IL-10RαΔIS mice, respectively. This proportion of Tregs is similar to the 

proportion seen in the LPL populations. 
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Figure 10: Lamina propria lymphocyte cell populations. (A) Cells were gated on live CD45+, then 

analyzed for expression of CD4, CD8, and Foxp3. (B) Cells were gated on live CD45+, then analyzed for 

expression of CD19 to detect B-cells. 
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Figure 11: Intraepithelial lymphocyte cell populations. (A) Cells were gated on live CD45+, then analyzed 

for expression of CD4, CD8, and Foxp3. (B) Cells were gated on live CD45+, then analyzed for expression 

of CD19 to detect B-cells. 
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To determine the functional characteristics of these T-cell subsets, a cytokine 

expression profile analysis was performed. This analysis included the expression of IL-

10, IL-17, IL-22, and IFN-γ in T-cells in each the lamina propria, intraepithelial layer, 

and spleen. Figure 12 shows the IFN-γ expression in both CD4+ and CD8+ T-cells as a 

percent of the total CD4+ or CD8+ T-cells in each tissue. CD8+ T-cell IFN-γ expression 

was similar across all groups and all tissues. Conversely, the CD4-derived IFN-γ was 

elevated in the IL-10RαΔIS mice compared to the IL-10fl/fl and IL-10ΔIS mice, in all three 

tissues.  

 

Figure 12: IFNγ expression in T-cells. Cells were first gated as live CD45+, then as either CD4+ or CD8+. 

Represented is the proportion (% of total) of either CD4+ or CD8+ cells that expressed IFNγ in each tissue. 

 With respect to CD4+ T-cell-derived IL-17, low percentages of IL-17-expressing 
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lamina propria and intraepithelial layer, similar IL-17 expression patterns in the CD4+ T-

cells were observed. The IL-10ΔIS mice had the lowest level of IL-17 expression in these 

lymphocytes, which would be expected since these mice had the least severe colitis. In 

the same vein, IL-10fl/fl mice, which had the most severe colitis, had twice the CD4+ T-

cell-derived IL-17 in the lamina propria as the IL-10ΔIS mice. Surprisingly, the level of 

CD4+ T-cell-derived IL-17 in the IL-10RαΔIS mice was more than seven times the amount 

of IL-17 in the IL-10fl/fl mice in the lamina propria, and almost four times the amount in 

the intraepithelial layer. 

 
Figure 13: Proportion of IL-17 expressing CD4+ T-cells in each the spleen, IEL, and LPL populations. 

Cells were initially gated on live CD45+, then as CD4+ analyzed as the proportion of these CD4+ cells 

positive for expression of each cytokine 

 IL-22 expression was much lower than both IL-17 and IFN-γ expression in all 

groups and tissues (Figure 14). But, similar to the IL-17 expression pattern, levels were 

elevated in the in the IL-10RαΔIS mice. This increase was much less dramatic than the 

increase in IL-17 expression, and overall IL-22-expressing CD4+ T-cells were sparse. 
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Figure 14: Proportion of IL-22 expressing CD4+ T-cells in each the spleen, IEL, and LPL populations. 

Cells were initially gated on live CD45+, then as CD4+ analyzed as the proportion of these CD4+ cells 

positive for expression of each cytokine 

 The level of IL-10 expression in the CD4+ T-cell populations can be a good 

indicator of the effect IL-10 signaling in IECs has in colitis. IL-10 is able to signal in a 

paracrine and autocrine fashion to induce T-regulatory cells and further the expression of 

IL-10. When the CD4+ T-cells in the lamina propria and intraepithelial layer were 

examined (Figure 15), it was found that the proportion of these cells expressing IL-10 

was significantly increased in the IL-10fl/fl mice. This may be indicative of the importance 

of enterocyte-derived IL-10 in the induction of IL-10 expression in IELs. This may also 

be an artifact of the residual inflammation still present in the IL-10fl/fl mice at day 16 

causing there to be a need for IL-10, while in the other two groups the inflammation had 

already been resolved. 
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Figure 15: Proportion of IL-10 expressing CD4+ T-cells in each the spleen, IEL, and LPL populations. 

Cells were initially gated on live CD45+, then as CD4+ analyzed as the proportion of these CD4+ cells 

positive for expression of each cytokine 

T-regulatory cell-derived IL-17 can be a good indicator of these cells’ ability to 

regulate inflammation. Previous research has shown a degree of plasticity between the 

Th17 and Foxp3+ T-regulatory cell lineages, with IL-17 expression in CD4+Foxp3+ T-

cells being indicative of decreased regulatory function (46). IL-10 and IL-17 expression 

in CD4+Foxp3+ T-cell populations was analyzed to determine if IEC-derived IL-10 had 

any effect on the ability of these Tregs to be efficient regulators of inflammation (Figure 

16). The results showed that, in the lamina propria, a significantly lower proportion of the 

T-regulatory cells in the IL-10ΔIS mice expressed IL-10, compared with the IL-10fl/fl and 

IL-10RαΔIS mice. This may be indicative of the necessity of IEC-derived IL-10 in 

inducing efficient T-regulatory cells. The IL-10RαΔIS mice showed a higher proportion of 

IL-10-expressing CD4+Foxp3+ T-cells, as well a higher proportion of IL-17 expressing 

CD4+Foxp3+ T-cells. In the lamina propria, the IL-10ΔIS mice had the lowest proportion 

of IL-17-expressing Tregs. 
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Figure 16: Proportion of CD4+Foxp3+ T-cells expressing IL-10 and/or IL-17 in each the spleen, LPL, and 

IEL populations. Cells were first gated as live CD45+ lymphocytes, then as CD4+Foxp3+ double positive 

cells. IL-10ΔIS and IL-10RαΔIS LPL populations showed a higher ratio of IL-17 expressing CD4+Foxp3+ T-

cells to IL-10 expressing CD4+Foxp3+ T-cells. 
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Discussion 

 Gastrointestinal health is one of the most rapidly advancing frontiers in medical 

research, and gastrointestinal diseases represent some of the largest public health issues 

in the world. Beyond the debilitating symptoms IBDs like Crohn’s and ulcerative colitis 

can have on those they affect, the GI tract is central to controlling obesity, one’s 

hormones, and even one’s neurological health. At the center of this physiological mission 

control is a complex interface where foreign microbes are as important as one’s own 

cells, and central to the maintenance of this interface is the limitation of the human 

body’s own defense against these microbes. The immune system in the gut must tolerate 

these foreign bodies and treat them as self, while remaining vigilant in the defense 

against infection. Epithelial cells are the first line of this defense, not only protecting the 

host from foreign microbes, but defending the gut microbiota from the host’s immune 

system. In order to coordinate the tolerance of gut microbes, cytokines like IL-10 are 

used to inhibit the immune system’s inflammatory response. Therefore, the issue of how 

epithelial cells might use IL-10 to maintain a healthy GI tract was addressed. 

The epithelial layer has been shown to be a target of inflammation, by both 

expressing and responding to cytokines. Previous studies have shown IL-10R signaling 

on IECs to have an antagonistic effect to IFN-γ signaling by blocking the ability of IFN-γ 

to inhibit IEC recovery and viability. This IL-10R signaling also blocks the upregulation 

of MHC class II expression caused by IFNγ signaling (47). Epithelial cells are also able 

to stimulate both CD4+ and CD8+ T-cells in the gut, but they lack the necessary co-

stimulatory molecules B7-1 and B7-2 (22). Findings like these have led to the 

development of the concept that IECs are important inducers of suppressor cells in the 
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tolerogenic response in the gut. Along with studies that show IL-10 is able to inhibit 

inflammatory responses of the IECs themselves, IL-10 is a well-known inhibitor of the 

inflammatory response in lymphocytes. Furthermore, IL-10 signaling is crucial to 

inhibiting the development of IBD. It is curious, then, that these results showed a 

reduction in the intensity of DSS-induced colitis in the absence of IL-10 expressing or 

responding IECs.   

When looking at the cell populations in the guts of these mice, the results suggest 

an important role for IEC-derived IL-10 in the induction of T-regulatory cells. This is 

seen in that a significantly higher proportion of CD4+ T-cells were Foxp3+ in the IL-10fl/fl 

mice. While these results echo previous studies on the role of IEC-derived IL-10 in the 

induction of Tregs (48), this may also be an artifact of the residual inflammation in the 

gut in the IL-10fl/fl mice. The residual inflammation being the driver of this population of 

cells at the point in time in which they were analyzed, instead of the presence of 

enterocyte-derived IL-10.  

In addition to the high proportion of Tregs, the IL-10fl/fl mice had a significantly 

lower overall CD4+ and CD8+ T-cell infiltrate in the lamina propria. This is likely due to 

the higher proportion of Tregs in these mice. Tregs have been shown to suppress the 

proliferation of immune effector cells, and IL-10 plays a key role in their ability to 

suppress inflammation. One important next step would be to analyze this cell population 

kinetically throughout the 16-day model, looking at LPL and IEL phenotypes at multiple 

time points.  

The inflammation induced in IL-10 KO models of colitis is mediated by 

inflammatory Th1 and Th17 CD4+ T cells (25,24,42). Conversely, the mice in this 
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experiment with less severe colitis had a greater CD4+ T-cell infiltrate. In analyzing the 

cytokine expression profiles of these lymphocytes, CD4+ T-cells from IL-10RαΔIS mice 

had significantly higher IL-17 and IFN-γ production, while the difference between IL-

10fl/fl and IL-10ΔIS mice was negligible. IL-10RαΔIS  mice also had a higher proportion of 

IL-17+Foxp3+ double positive T-cells, which have been implicated in IBD (46). This is 

interesting as the IL-10R gene has been found to be a susceptibility locus for IBD 

(26,25,49,50).  

Previous studies have shown that the IL-10R signaling in intestinal macrophages 

is important in limiting the colonic Th17 response, and thus limiting the severity of colitis 

(25). The cytokine profiles in the CD4+ T-cells of the IL-10RαΔIS mice suggest that IL-

10R signaling in IECs may play a similar role, but the less severe disease phenotype in 

these mice contradicts this conclusion. It is well known that IL-10 signaling is important, 

but what exact cells express and respond to IL-10, and which ones are driving the 

phenotypes seen, is the question that this experiment attempted to answer. IL-10R 

signaling in epithelial cells may play a significant role in the development of aberrant 

inflammation in the GI tract, but the contradictions between the lymphocyte cytokine 

profiles and disease phenotypes seen should be further investigated. 

DSS causes colitis through direct interaction with IECs. IL-10 expression in these 

cells may make them more susceptible to DSS itself. When DSS damages IECs it 

activates the NLRP3 inflammasome and releases IL-18, which then signals through 

MYD88 on myeloid cells in the lamina propria to induce tissue repair and IEC 

proliferation (51). If there is an inhibition of this mechanism, greater bacterial infiltrate 

into the submucosa and persistent tissue damage is observed, which then stimulates an 
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inflammatory response and exacerbates disease (51). IL-18 also has inflammatory effects 

in the production of chemoattractants and pro-inflammatory cytokines. Previous research 

in arthritis has shown IL-10 to be a negative regulator of the NLRP3 inflammasome (52). 

Furthermore, persistent activation of the NLRP3 inflammasome has been implicated in 

the induction of colitis in IL-10 KO mice. It is possible, then, that autocrine IL-10 

signaling in IECs regulates the NLRP3 inflammasome to delay this reaction. This would 

inhibit the ability of myeloid-derived IL-18 to induce IEC proliferation and repair. This 

mechanism would also explain the fact that the IL-10ΔIS and IL-10RαΔIS mice had greater 

T-cell infiltrate in the lamina propria, as IL-18 also induces immune cell recruitment. 

The experimental approach and results shown, though preliminary, may provide 

important clues to the etiology of gut inflammatory diseases. Almost all cell types are 

able to make and respond to IL-10, and different IL-10-expressing cell types can have 

distinct roles in the pathogenesis of disease. This is well defined in disease models like 

LPS toxicity, Leishmania infection, and toxoplasma infection, but has yet to be clearly 

defined in the gut. In IBD it is important that the inflammation be resolved, and IL-10 is 

an important regulator of inflammation. It may be, though, that the pleiotropic effects of 

the cytokine make the needed IL-10 response different in certain cell types in the gut.  
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