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Abstract 

Centrioles are microtubule-based structures that are important for forming the mitotic 

spindle and nucleating cilia. Cycling cells contain exactly two centrosomes, each 

consisting of two centrioles at their core, in order to form a bipolar spindle in mitosis for 

proper chromosome segregation. Abnormalities in centriole number are commonly 

observed in human cancers, and it has long been debated whether increases in centriole 

number occur as a passenger event in malignant cellular transformation, or whether extra 

centrioles contribute to tumorigenesis. In the first part of my thesis work, I sought to 

tackle this question using a mouse model in which extra centrioles can be created at will 

across a range of different tissues. Using this model, I demonstrate that centriole 

amplification can play a causative role in tumorigenesis. 

 

In the second part of my thesis work, I examined how centrioles are normally amplified 

in terminally differentiated multiciliated epithelial cells. Multiciliated cells line the 

epithelial surfaces of the brain ventricles, respiratory tract, and oviducts and require extra 
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centrioles for their proper function. One centriole nucleates each cilium, and the cell must 

create hundreds of centrioles to have as many motile cilia to produce fluid flow. The 

process of multiciliogenesis has long been thought to require the deuterosome, a 

specialized structure upon which multiple new centrioles can form simultaneously. I used 

a mouse model to test the requirement of deuterosomes for centriole amplification and 

showed that, surprisingly, this structure is dispensable for multiciliogenesis.  

 

Lastly, my work sought to determine whether centriole amplification plays a contributing 

role in kidney cystogenesis. Autosomal Dominant Polycystic Kidney Disease (ADPKD) 

affects about 1 in 500 people and manifests as large kidneys with fluid-filled cysts. 

Although the two genes involved in ADPKD were identified over three decades ago, the 

molecular mechanism underlying ADPKD is not well understood. It is known that 

defects in cilia number, length, or function can cause cystogenesis and centriole 

amplification has been observed in the cyst of ADPKD patients. Therefore, I tested 

whether extra centrioles could contribute to kidney cystogenesis, and found that they 

could not. In summary, by studying centriole biogenesis in different cellular contexts in 

vivo, we now have better understanding of the role of centriole amplification in health 

and disease.  
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Chapter 1 

Introduction 

1.1 The functions of centrosomes in proliferating cells 

Centrosomes are the microtubule nucleation hubs of animal cells. At their core exists a 

pair of centrioles, or microtubule-based structures, that aid with the recruitment and 

organization of hundreds of proteins that form the pericentriolar material (PCM). 

Pericentriolar proteins anchor the minus ends of microtubules. This stabilization endows 

centrosomes with the ability to be microtubule nucleation centers (Conduit et al. 2015). 

In interphase, centrosomes are responsible for organizing the microtubule cytoskeleton 

for maintenance of cellular architecture. In mitosis, each centrosome helps build the 

bipolar spindle apparatus by nucleating spindle microtubules. These microtubules attach 

to chromosomes via a protein structure know as a kinetochore, to allow the sister 

chromatids can be equally distributed into each daughter cell (Figure 1A). Since each 
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daughter cell inherits one centrosome, a cell must duplicate its centrosome before entry 

into the next mitosis. This duplication begins at the start of S-phase and is controlled by 

the master regulator, Polo-like Kinase 4 (Plk4) (Bettencourt-Dias et al. 2005; Habedanck 

et al. 2005). Plk4 is a dose-dependent regulator of centriole number: modest 

overexpression of Plk4 causes extra centrosomes to form, known as centrosome 

amplification, whereas knockdown of Plk4 leads to centrosome duplication failure 

(Holland et al. 2010a).  Control of the activity and abundance of Plk4 is tightly regulated 

so that centriole biogenesis occurs with precise spatiotemporal and numerical control 

(Holland et al. 2010b; Holland et al. 2012b; Moyer et al. 2015). The correct number of 

centrosomes is key to cellular homeostasis, as the incorrect number can lead to 

chromosome missegregation and aneuploidy, which is discussed in the next section. 

 

1.2 Centrosome amplification can cause mitotic errors and 

aneuploidy 

Supernumerary centrosomes are a common feature of human cancers and can arise 

through several different pathways including a cell division failure, cell fusion and 

centrosome overduplication (Chan 2011a; Nigg and Holland 2018). The presence of extra 

centrosomes leads to the formation of a multipolar mitotic spindle, which if not corrected 

prior to anaphase, results in the segregation of chromosomes into more than two daughter 
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cells. Live-cell imaging has revealed that the progeny of multi-polar divisions are 

frequently inviable, since daughter cells are unlikely to inherit a full complement of 

chromosomes (Ganem et al. 2009). The best-characterized mechanism for dealing with 

this burden is the clustering of extra centrosomes to form a pseudo-bipolar spindle 

(Quintyne et al. 2005; Basto et al. 2008; Kwon et al. 2008; Leber et al. 2010).  

 

Efficient centrosome clustering is required for the survival of cancer cells with extra 

centrosomes (Kwon et al. 2008). While the coalescence of centrosomes in a multi-polar 

spindle provides a pathway to avoid lethal divisions, it also promotes the formation of 

incorrect kinetochore-microtubule attachments where a single kinetochore becomes 

bound to microtubules anchored at both spindle poles (Figure 1B). These attachments can 

go unrecognized by the spindle assembly checkpoint, leading to lagging anaphase 

chromosomes (Ganem et al. 2009; Silkworth et al. 2009). These tardy chromosomes can 

be missegregated to produce aneuploid daughter cells (Cimini et al. 2001; Cimini et al. 

2003). More frequently, however, lagging chromosomes are segregated to the correct 

daughter cell but fail to reach the main chromosome mass prior to nuclear envelope 

reassembly and are partitioned into a micronucleus (Thompson and Compton 2011). 

DNA trapped within micronuclei undergoes extensive DNA damage that can lead to 

chromosome rearrangements (Zhang et al. 2015). Centrosome amplification is thus likely 
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to be a major source of genetic instability in human tumors. This provides an explanation 

for the association of centrosome amplification with aneuploidy and CIN.  

 

1.3 Centrosome amplification and tumorigenesis 

Faithful control of centrosome number is deregulated in a wide range of solid and blood-

borne cancers, leading to the acquisition of extra copies of centrosomes, a feature known 

as centrosome amplification (Chan 2011b). Supernumerary centrosomes are observed 

early in the development of many tumors and often correlate with advanced tumor grade 

and poor clinical outcome (Nigg 2006; Nigg and Raff 2009; Godinho and Pellman 2014). 

In cultured cells, centrosome amplification causes mitotic errors that can lead to 

chromosome missegregation (Ganem et al. 2009; Silkworth et al. 2009) and 

chromosomal rearrangements (Janssen et al. 2011; Crasta et al. 2012; Ganem and 

Pellman 2012). Moreover, extra centrosomes can promote invasive phenotypes in a 3D 

culture model (Godinho et al. 2014). These observations suggest that centrosome 

amplification could promote the initial stages of tumor development, but definitive 

evidence for this proposal is still lacking.  

 

To examine the consequences of centrosome amplification in vivo, considerable attention 

has been focused on Plk4, a key regulator of centrosome duplication (Bettencourt-Dias et 
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al. 2005; Habedanck et al. 2005). Overexpression of this kinase increases centrosome 

number in the absence of direct effects on cellular ploidy or oncogenes and tumor 

suppressor genes and provides an excellent experimental tool to study the long-term 

consequence of having cells with excess centrosomes. However, studies in animal models 

have so far provided contradictory views on the specific contribution of centrosome 

amplification to tumor development. Experiments in flies have shown that larval brain 

and wing disk tissues with supernumerary centrosomes are able to initiate tumors in 

transplantation assays (Basto et al. 2008; Castellanos et al. 2008; Sabino et al. 2015). In 

mammals, however, centrosome amplification in embryonic neural progenitors results in 

aneuploidy, cell death and microcephaly, but does not promote tumorigenesis (Marthiens 

et al. 2013). In addition, increasing centrosome number in the skin of mice failed to 

promote formation of spontaneous, or carcinogen-induced, skin tumors (Kulukian et al. 

2015; Vitre et al. 2015). By contrast, centrosome amplification—either globally or in the 

skin—accelerates the onset of tumors caused by loss of p53 (Coelho et al. 2015; Sercin et 

al. 2016). Thus, while centrosome amplification can modify tumor outcome in a p53-null 

background, the interpretation is complicated by the fact that loss of p53 is associated 

with increased numbers of centrosomes in some contexts (Fukasawa et al. 1996). 

Furthermore, it remains unclear if centrosome amplification can trigger tumor formation 

in the absence of direct effects on the p53 tumor suppressor pathway. Therefore, our lab 
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developed a doxycycline-inducible mouse model in which the levels of Plk4 can be 

increased to promote widespread and chronic centrosome amplification in vivo. This 

model allowed us to rigorously assess the long-term consequences of having cells with 

too many centrosomes and their contribution to tumor initiation. 

 

1.4 The role of centrioles and deuterosomes in multiciliated 

cells 

Cilia are microtubule-based organelles that project from the surface of cells. Most cells 

elaborate a single non-motile primary cilium that serves a critical role in sensing 

mechanical and chemical stimuli. However, specialized multiciliated cells (MCCs) exist 

in the respiratory tract, brain, and oviducts that contain hundreds of motile cilia that beat 

in a coordinated manner to drive fluid flow across epithelial surfaces. Defects in motile 

cilia formation or beating in mice lead to fluid buildup in the brain (hydrocephaly), 

increased respiratory tract infections, and, in some cases, infertility (Song et al. 2014; 

Funk et al. 2015; Nemajerova et al. 2016; Terre et al. 2016; Siller et al. 2017). 

Furthermore, mutations in multiciliated cell differentiation factors lead to hydrocephaly 

and respiratory symptoms in human patients (Boon et al. 2014; Wallmeier et al. 2014). 
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A centriole, or basal body, forms the base of each cilium and serves as a template for the 

cilium axoneme. In cycling cells, centriole formation is tightly controlled so that a single 

new procentriole forms adjacent to each of the two parent centrioles (Nigg and Raff 

2009; Levine and Holland 2018). However, MCCs deviate from this centriolar pathway 

in that these post-mitotic cells produce hundreds of centrioles to serve as the foundation 

for producing as many motile cilia (Figure 1C). It has long been appreciated that the 

production of new centrioles in MCCs utilizes a unique structure, known as a 

deuterosome (Sorokin 1968; Brenner 1969; Anderson and Brenner 1971). Soon after 

differentiation begins, tens of deuterosomes form, starting as electron-dense foci of ~200 

nm in diameter and maturing to form ~350 nm toroidal structures (Zhao et al. 2013). 

Deuterosomes can be nucleated by the daughter centriole (Al Jord et al. 2014) or form 

spontaneously in the cytoplasm of MCCs (Zhao et al. 2018). Once produced, 

deuterosomes recruit several proteins required for centriole duplication and form 6-8 new 

procentrioles on their surfaces (Zhao et al. 2013). After deuterosome production, multiple 

procentrioles also form around the two parental centrioles via the centriolar pathway. 

These procentrioles grow in length before disengaging simultaneously from the 

deuterosomes and parental centrioles. Finally, the centrioles are trafficked to the apical 

plasma membrane where they dock and serve as basal bodies to nucleate motile cilia.  
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While deuterosomes were identified > 50 years ago, their molecular makeup had long 

remained elusive. Most of the proteins required for centriole amplification in MCCs 

function in both procentriole and deuterosome-dependent centriole amplification. 

Recently, however, Deup1 (gene name: CCDC67) was identified as a specific component 

required for the formation of the deuterosome (Figure 1B). DEUP1 arose from a gene 

duplication event of the centriolar gene, CEP63. This event occurred post-lobe finned 

fish, and tracks with the increase in motile cilia number per cell observed in higher 

eukaryotes. For example, zebrafish do not encode a Deup1 orthologue and average ~ 20 

cilia per kidney epithelial cell (Liu et al. 2007). By comparison, mammalian tracheal 

epithelial cells contain upwards of 300 motile cilia per cell. Given that deuterosomes 

have not been found in organisms lacking Deup1, the current evidence suggests that 

Deup1 evolved to enable the formation of the deuterosome and allow the generation of 

increased numbers of cilia per cell in higher eukaryotes. In accord with this proposal, 

Deup1 knockdown by shRNA prevents the formation of deuterosomes and reduces 

centriole amplification in mouse tracheal epithelial cells (Zhao et al. 2013). Indeed, it has 

been estimated the deuterosome-dependent centriole amplification pathway contributed 

~95% of the procentrioles needed for mammalian MCCs (Sorokin 1968). 
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Although deuterosomes are formed uniquely in epithelial cells that undergo massive 

centriole amplification, the requirement of the deuterosome for centriole amplification in 

vivo has not been explored. In this thesis, I interrogate the in vivo function of the 

deuterosome using a Deup1-/- mouse model. 

  

1.5 The role of centrosomes and cilia in kidney cystogenesis 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disease that 

affects about 1 in 500 people and is characterized by the progressive development of 

fluid-filled cysts in the kidneys that can eventually cause end stage renal failure (Ong et 

al. 2015). Currently, there are very few therapeutic options for these patients, and they 

often require lifelong dialysis or kidney transplantation. Mutations in one of two genes—

PKD1 and PKD2—have been identified as causative of ADPKD. These genes encode 

polycystin 1 (PC1) and polycystin 2 (PC2), which are transmembrane proteins localized 

on primary cilia that act as a complex to help regulate calcium influx and signaling (Zhou 

and Li 2015). Despite the identification of these causative genes over 30 years ago, the 

molecular mechanism behind ADPKD is still unknown.  

 

One theory of cystogenesis is that defective primary cilia on renal tubule epithelial cells 

affects cell signaling, which leads to increased proliferation. This aberrant proliferation 
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can create polycystic kidneys, as evidenced by mouse models of defective cilia length, 

number, or composition (Park et al. 2015). Other pieces of evidence to support this 

proposal are that extra centrioles, which nucleate cilia, and altered cilia formation have 

been observed in kidneys of ADPKD patients (Battini et al. 2008; Park et al. 2015). 

Furthermore, extra centrioles have been proposed to increase cilia number and perturb 

signaling in cultured cells (Mahjoub and Stearns 2012). In this thesis, we test whether 

extra centrioles are sufficient to promote kidney cystogenesis in vivo.  
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Figure 1. Centriole biogenesis in cycling and multiciliated cells  

(A) After mitosis, each daughter cell inherits one centrosome consisting of two centrioles. 

New centriole production occurs on the side of pre-existing centrioles in S-phase of the 

cell cycle, so that cells contain two centrosomes each with two centrioles upon entry into 

mitosis. (B) Extra centrosomes are clustered and create a pseudo-bipolar spindle, which 

causes increased merotelic attachments. The incorrectly attached chromosome can lag in 

the middle of the dividing cell and have one of four fates: the resulting cells can be 

diploid, they can be diploid with a micronucleus forming around the lagging chromosome, 

they can both be aneuploid or they can be aneuploid with a micronucleus. Therefore, 

extra centrosomes can frequently cause mitotic errors and aneuploidy. 

(C) Centriole biogenesis in multiciliated cells occurs on structures known as 

deuterosomes. The deuterosome forms off the side of the daughter centriole or in the 

cytoplasm and acts as a hub for procentriole creation and growth. Each cell produces tens 

of deuterosomes on which 6-8 centrioles can amplify, so that hundreds of centrioles can 

grow, disengage, and migrate to the apical cell surface to nucleate axonemes of cilia. 
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Chapter 2 

Centrosome amplification is 
sufficient to promote 
spontaneous tumorigenesis in 
mammals 
 

Modified from: Levine MS, Bakker B, Boeckx B, Moyett J, Lu J, Vitre B, Spierings DC, 
Lansdorp PM, Cleveland DW, Lambrechts D, Foijer F, Holland AJ. 
Dev Cell. 2017 Feb 6;40(3):313-322.e5. doi: 10.1016/j.devcel.2016.12.022. Epub 2017 
Jan 26. 
 
Data generated by Michelle Levine: All figures, except Figures 7B-7C, 10D-10G, and 
11G-I 
 
2.1 Plk4 overexpression drives centrosome amplification in 

vitro 
 
To drive centrosome amplification in a temporally-controlled manner in vivo, we 

developed a mouse model in which increased synthesis of Plk4 can be induced by 



	
  

	
  

14	
  

addition of doxycycline. We integrated a single-copy Plk4-EYFP transgene, driven by a 

doxycycline-regulatable promoter, downstream of the Col1a1 locus in ES cells. Targeted 

ES cells were then used to produce the Plk4-EYFP transgenic mice, which were crossed 

with mice expressing the reverse tetracycline transactivator (rtTA) to allow doxycycline-

inducible expression of Plk4-EYFP (Figure 2A). Mice and cells that harbor homozygous 

copies of the Plk4-EYFP and rtTA transgenes (Plk4-EYFPhom; rtTAhom) are referred to 

hereafter as Plk4Dox.  

 

To characterize the effect of Plk4 overexpression in vitro, we derived primary mouse 

embryonic fibroblasts (MEFs) from control and Plk4Dox embryos. In doxycycline-treated 

Plk4Dox MEFs, Plk4 mRNA levels rose ~6-fold (Figure 3A) and the level of Plk4 protein 

at the centrosome increased ~2-fold (Figure 2B and Figure 3B and 3C). This modest 

elevation in the level of Plk4 induced substantial centrosome amplification; after 3 and 5 

days the number of cells with increased centrosome amplification rose to 69% and 79%, 

respectively (Figure 2C and 2D and Figure 3D). As expected, centrosome amplification 

was not observed in doxycycline-treated MEFs that carried either the Plk4-EYFP or rtTA 

transgene alone (Figure 3E). 

 

Cells that enter mitosis with centrosome amplification can either undergo multipolar 
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divisions or cluster their centrosomes prior to division (Ring et al. 1982; Quintyne et al. 

2005; Basto et al. 2008). Examination of mitotic figures revealed that Plk4Dox MEFs 

avoided lethal multipolar divisions by clustering extra centrosomes into pseudo-bipolar 

spindles with high efficiency (Figure 2E). Consistent with previous reports (Ganem et al. 

2009; Silkworth et al. 2009), centrosome clustering significantly increased the frequency 

of mitotic errors (Figure 2F). Although aneuploidy increased in primary MEFs with 

repeated passages in culture (Hao and Greider 2004; Weaver et al. 2007), cells with 

supernumerary centrosomes were more aneuploid than wildtype MEFs at both time 

points (as determined with fluorescence in situ hybridization for chromosome 15 or 16) 

(Figure 2G and 2H). Importantly, supernumerary centrosomes did not lead to an increase 

in DNA damage or tetraploidization (Figure 3F-I).  

 

Previously, we showed that centrosome amplification elicits a durable p53-dependent 

proliferative arrest in non-transformed human cells (Holland et al. 2012a). Consistently, 

supernumerary centrosomes prevented the proliferation of primary MEFs (Figure 2I), and 

knocking out p53 alleviated this block (Figure 2J). The fraction of cells with 5 or more 

centrosomes declined in Plk4Dox MEFs after 5 days of doxycycline treatment, but 

continued to increase in cells lacking p53 (Figure 3D and Figure 3J-K). This suggests that 

cells with high levels of centrosome amplification are outcompeted in a p53-dependent 
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manner in vitro. Together, our data demonstrate that modest overexpression of Plk4 in 

vitro drives centrosome amplification, mitotic errors and a p53-dependent cell cycle 

arrest.  

 

2.2 Elevated Plk4 expression promotes formation of 

supernumerary centrosomes in tissues 

To determine the effect of Plk4 overexpression on centrosome number in vivo, we treated 

Plk4Dox and control animals with doxycycline for 1 or 8 months and sacrificed animals to 

analyze centrosome number in tissues. With the exception of the brain (see below), there 

was an increase in Plk4 mRNA levels in all tissues analyzed in Plk4Dox mice (Figure 3A 

and Figure 4A). In line with the prior results in MEFs, we observed a modest (<2-fold) 

increase in Plk4 protein levels at the centrosome in the thymus of Plk4Dox mice (Figure 

4B). Consistent with increased Plk4, we observed a chronic increase in centrosome 

number in the skin, spleen, intestine, thymus, liver, pancreas and stomach of Plk4-

overexpressing mice (Figure 3B-C and Figure 4C). In almost every case where an 

increase in centrosome number was observed, cells contained at most three extra 

centrosomes (Figure 3D and 3E and Figure 4D). By contrast, there was no increase in 
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centrosome amplification in the lung and kidney, despite the 11 and 338-fold increase in 

Plk4 mRNA levels in these tissues, respectively (Figure 4A and 4C).  

 

To determine whether the lack of centrosome amplification in the lung and kidney was 

caused by the death of cells with extra centrosomes, we assessed the expression of active 

caspase 3 and used TUNEL staining in tissues from Plk4Dox animals that were treated for 

1 month with doxycycline. There was no significant increase in active caspase 3 or 

TUNEL staining in any of the tissues examined, suggesting that cells with extra 

centrosomes are not eliminated by cell death (Figure 3F and 3G). Plk4 overexpression 

does not promote centrosome amplification in quiescent cells (data not shown), 

suggesting that differences in proliferation rates could contribute to tissue specific 

differences in centrosome amplification in response to Plk4 overexpression. 

Concordantly, analysis of Ki67 staining in tissues revealed high rates of proliferation in 

the skin, intestine, spleen and thymus, where robust centrosome amplification was 

observed, and low turnover rates in the lung and kidney, where there was no increase in 

centrosome number (Figure 3B, 3H and 4C). Nevertheless, the liver, pancreas and 

stomach showed a significant increase in centrosome amplification despite a very small 

fraction of proliferating cells (Figure 3H and 4C). This suggests additional tissue-specific 

factors likely influence the relationship between Plk4 overexpression and centrosome 
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amplification.  Surprisingly, increased centrosome numbers correlated with 

hyperproliferation of cells in the thymus and decreased proliferation in the kidney (Figure 

3H). These differences in cell proliferation highlight tissue specific differences in the 

response to centrosome amplification and may arise from alterations in growth signaling 

as a result of changes in centrosome or cilia number (Arquint et al. 2014). 

 

Overexpression of Plk4 in the brain of mice has been reported to cause microcephaly and 

behavioral defects (Marthiens et al. 2013; Coelho et al. 2015). However, transgenes 

integrated downstream of the Col1a1 locus are not expressed in major cells types of the 

brain (Hochedlinger et al. 2005) (Figure 4E). Consistently, there was no increase in Plk4 

RNA levels or centrosome amplification in the brain of doxycycline-treated Plk4Dox mice 

(Figure 5A and 5C). Moreover, Plk4-overexpressing animals did not show behavioral 

deficits or alterations in brain size (Data not shown and Figure 6A).  

 

2.3 Centrosome amplification impairs epidermal architecture 

A striking feature in mice overexpressing Plk4 was progressive hair loss that continued 

throughout the life of the animal and led to almost complete balding in one-year-old mice 

(Figure 6B). Consistent with previous reports in mice exhibiting centrosome 

amplification in the skin (Coelho et al. 2015; Sercin et al. 2016), mice overexpressing 



	
  

	
  

19	
  

Plk4 exhibited a thickened epidermis and disrupted hair follicle morphology. Systematic 

histological examination of other tissues from Plk4-overexpressing mice revealed no 

major pathology (Figure 6C and 6D). We conclude that, with the notable exception of the 

skin, centrosome amplification is tolerated in many tissues in vivo.  

 

2.4 Centrosome amplification causes aneuploidy in vivo 

To evaluate whether centrosome amplification leads to aneuploidy in vivo, we assessed 

chromosome number in splenocytes from mice treated with doxycycline for 1 or 8 

months. Centrosome amplification increased the fraction of aneuploid splenocytes at both 

time points (Figure 7A and Figure 8A and 8B), but did not promote cytokinesis failure or 

polyploidization (Figure 8C). To investigate whether extra centrosomes lead to the 

accumulation of aneuploid cells in aged mice, we isolated epidermal cells from 12-21 

month old mice and determined their karyotype by low coverage genomic copy number 

analysis in single-cells. Analysis of 99 cells from 3 mice with centrosome amplification 

revealed 23 of the cells to be aneuploid (average of 23%), whereas 0 aneuploid cells were 

identified in the 78 single cells sequenced from two control animals (Figure 7B-C). In 

summary, supernumerary centrosomes promote chromosome segregation errors and 

aneuploidy, in the absence of polyploidization, in tissues.  

 



	
  

	
  

20	
  

2.5 Centrosome amplification increases the initiation of 

intestinal tumors 

To test whether centrosome amplification is able to influence tumorigenesis, we first used 

a mouse model of intestinal neoplasia (Moser et al. 1990; Su et al. 1992). Mice that 

express a single truncated allele of the adenomatous polyposis coli (APC) tumor 

suppressor (APCMin) develop early onset adenomatous intestinal tumors with complete 

penetrance. To evaluate the effect of Plk4 overexpression on centrosome number in 

APCMin/+ cells, we derived MEFs from APCMin/+;Plk4Dox embryos. Doxycycline addition 

drove increased levels of Plk4 expression leading to sustained centrosome amplification, 

with 55% and 89% of APCMin/+;Plk4Dox cells containing extra centrosomes at day 3 and 

day 14 after doxycycline addition, respectively (Figure 8D and Figure 9A). As expected, 

extra centrosomes increased the frequency of chromosome segregation errors and 

micronuclei formation in APCMin/+;Plk4Dox MEFs and led to a cell cycle arrest in vitro 

(Figure 8E and 9B-C).  

 

Next, we examined the size and number of tumors formed in the intestine of APCMin/+ 

and APCMin/+;Plk4Dox animals. Once again, centrosome number was significantly 

increased in both the normal intestine and in intestinal tumors from doxycycline-treated 

APCMin/+;Plk4Dox mice (Figure 9D-F). Importantly, tumor number was significantly 
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increased in mice with centrosome amplification (average of 69 tumors in APCMin/+ 

animals compared to 129 tumors in APCMin/+;Plk4Dox mice; Figure 9G and 9I). However, 

tumor size remained unchanged (Figure 9H and 9I). Consistent with prior reports 

(Luongo et al. 1994), we observed that intestinal APCMin/+ and APCMin/+;Plk4Dox tumors 

showed a reduced abundance of  the wildtype allele of APC (Figure 8F). These data 

demonstrate that, in this context, centrosome amplification promotes the initiation, but 

not progression, of intestinal tumors.  

 

2.6 Centrosome amplification drives spontaneous 

tumorigenesis 

Despite the fact that centrosome amplification is a common feature of many cancer cells, 

it remains untested whether chronic centrosome amplification is sufficient to initiate 

tumorigenesis in mammals. To address this question, we aged cohorts of Plk4Dox and 

control mice that were fed doxycycline starting from 1-2 months of age. Strikingly, 

Plk4Dox mice succumbed to the development of spontaneous tumors starting at 36 weeks 

(median tumor-free survival of 55 weeks) (Figure 10A). Specifically, Plk4-

overexpressing mice developed lymphomas, squamous cell carcinomas and sarcomas, 

whilst spontaneous tumors were not observed in Plk4-EYFP, rtTA or wild-type mice 
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treated with doxycycline (Figure 10A and 10C). In contrast to lymphomas that developed 

in mice lacking p53, tumors from Plk4-overexpressing mice exhibited high levels of 

centrosome amplification (average of 44% amplification in lymphomas and squamous 

cell carcinomas in Plk4Dox mice) (Figure 10B). The vast majority of the tumor cells 

exhibiting centrosome amplification contained just one or two extra centrosomes (Figure 

11A). Two of the lymphomas that developed in mice with centrosome amplification 

exhibited acute tumor lysis syndrome, a feature that was not observed in lymphomas that 

developed in p53-null animals (Figure 11B).  

 

p53 has been shown to suppress the proliferation of cells with extra centrosomes in cell 

culture (Holland et al. 2012a). To examine whether spontaneous tumors that develop in 

mice with centrosome amplification exhibit inactivation of the p53 pathway, we analyzed 

the expression level of p53 target genes in thymic lymphomas that developed in p53-/- 

and Plk4Dox mice.  As expected, p53-/- tumors had low expression of p53 and p53 

transcriptional target genes (FAS, BCL2, BAX and PUMA) (Figure 11C). By contrast, 

thymic lymphomas that developed in Plk4Dox animals had a wide variation in the level 

of p53 expression. Despite the variation in p53 levels, the thymic tumors from Plk4Dox 

mice showed an overall reduction in the expression of p53 target genes, indicating the 

p53 pathway is at least partly comprised in spontaneous tumors that develop as a result of 



	
  

	
  

23	
  

centrosome amplification (Figure 11C). Together, these data suggest that the p53 

pathway acts as a barrier to the continued growth of cells with supernumerary 

centrosomes in vivo.  

 

Since chronic increases in Plk4 could have consequences independent of centrosome 

amplification, we also tested whether a transient increase in Plk4 levels could trigger 

spontaneous tumor development. Remarkably, treatment with doxycycline for one month 

led to an increase in centrosome number in the spleen, intestine, liver and pancreas of 16-

18 month old Plk4Dox mice (Figure 11D). Centrosome amplification can therefore 

persist in some tissues for long periods of time after transient Plk4 overexpression. 

Consistent with the observations in chronically-treated mice, Plk4Dox animals treated 

with doxycycline for one month also developed lymphomas, squamous cell carcinomas 

and sarcomas (Figure 11E). Moreover, tumors from these animals displayed high levels 

of centrosome amplification (Figure 11F). Together, these data establish a direct causal 

relationship between increased Plk4 levels, centrosome amplification and spontaneous 

tumor development. 

 

2.7 Centrosome amplification promotes the development of 

aneuploid tumors 



	
  

	
  

24	
  

In human tumors, centrosome amplification strongly correlates with genomic instability. 

To evaluate the degree of aneuploidy and genome instability in tumors caused by 

centrosome amplification, we performed whole genome sequencing of tumor DNA 

isolated from three spontaneous T-cell lymphomas, two B-cell lymphomas, five 

squamous cell carcinomas and one sarcoma from doxycycline-treated Plk4Dox mice. All 

tumors showed evidence of aneuploidy, and each tumor type showed evidence of clonal 

selection for recurring chromosomal abnormalities. In particular, gains of chromosome 2, 

5 and 17 were observed in squamous cell carcinomas, while T and B cell lymphomas 

showed recurrent gains of chromosome 14 and 15 (Figure 10D-H and Figure 11G-I). 

Notably, chromosome 15 carries the Myc proto-oncogene and is frequently gained in 

murine blood cancers (Bakker et al. 2016). To examine the extent of tumor heterogeneity, 

we performed whole genome sequencing of single cells isolated from a thymic and a 

splenic lymphoma that developed in two mice chronically overexpressing Plk4. In the T-

cell lymphoma, 12 aneuploid cells were sequenced and many showed gains of 

chromosomes 1, 11, 15 as well as segments of chromosomes 4 and 10. 32 aneuploid cells 

were sequenced in the splenic lymphoma, with most cells having gains of chromosomes 

14, 15 and 17 (Figure 10G and 10H). Importantly, while both of the tumor samples 

contained recurrent chromosomal alterations, these tumors also exhibited karyotypic 

diversity, with some cells in each tumor exhibiting different gains and losses of whole 
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chromosomes. These data suggest ongoing chromosome segregation errors in tumors 

with extra centrosomes.  
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Figure 2. A modest increase in Plk4 promotes centrosome amplification and 

aneuploidy in vitro 

(A) System used for doxycycline-inducible expression of Plk4. 

(B) Quantification of the level of centrosomal Plk4 in Plk4Dox MEFs. N = 3, >150 

centrosomes per experiment. 

(C) Quantification of the level of centrosome amplification in Plk4Dox MEFs. N = 3, >150 

cells per experiment. 

(D) Immunofluorescent images of centrosomes in Plk4Dox MEFs. 

(E) Quantification of anaphase phenotypes in Plk4Dox MEFs. N = 3, >150 cells per 

experiment. 

(F) Quantification of anaphase lagging chromosomes in Plk4Dox MEFs. N = 3, >150 cells 

per experiment.  

(G) Quantification of the fraction of cells having <2 or >2 copies of chromosome 15 or 

16. N = 3, >150 cells per experiment. 

(H) Immunofluorescent images of FISH performed on Plk4Dox MEFs using probes 

against chromosome 15 and 16. Arrowheads mark each copy of Chr15 or Chr16. 

(I) Graph showing the fold increase in cell number for Plk4Dox MEFs. N = 3, performed 

in triplicate. 
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(J) Graph showing the fold increase in cell number for Plk4Dox MEFs expressing SpCas9 

and an sgRNA against p53. N = 3, performed in triplicate.	
  

All data represent the means ±SEM. ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001; two-tailed 

Student’s t-test. Scale bars represent 10 µm. 
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Figure 3. Centrosome amplification does not promote DNA damage or cytokinesis 

failure 

(A) Quantification of the level of Plk4 mRNA in Plk4Dox MEFs at different times after 

doxycycline treatment. Data are means ±SEM (N = 3, performed in triplicate). 

(B) Quantification of the level of centrosomal Plk4 at different times after doxycycline 

treatment. Data are means ±SEM from two different Plk4 antibodies (Plk4 ab #1 and #3) 

(N = 3, >150 centrosomes per experiment). 

(C) Representative immunofluorescent images of centrosomal Plk4 in Plk4Dox MEFs. 

(D) Quantification of centrosome number in Plk4Dox MEFs at different times after 

doxycycline treatment. Data are means ±SEM (N = 3, >150 cells per experiment). 

(E) Quantification of the level of centrosome amplification in Plk4-EYFP, rtTA and 

Plk4Dox MEFs at two days after doxycycline addition. Data are means ±SEM (N = 3, 

>150 cells per experiment). 

(F) Quantification of DNA damage foci in Plk4Dox MEFs at different times after 

doxycycline treatment. Doxorubicin treatment (Doxo.) is shown as a control. Data are 

means ±SEM (N = 3, >150 cells per experiment). 

(G) Quantification of the fraction of binuclear Plk4Dox MEFs at different times after 

doxycycline treatment. Data are means ±SEM (N = 3, >135 cells per experiment). 
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(H) Quantification of the fraction of Plk4Dox MEFs with >4N DNA content at different 

times after doxycycline treatment. Data are means ±SEM (N = 3, 10,000 cells per 

experiment). 

(I) Representative flow cytometry profiles show cell cycle analysis in Plk4Dox MEFs. 

(J) Quantification of the level of centrosome amplification in Plk4Dox; p53-/- MEFs at 

different times after doxycycline addition. Data are means ±SEM (N = 3, >150 cells per 

experiment). 

(K) Quantification of centrosome number in Plk4Dox; p53-/- MEFs at different times after 

doxycycline treatment. Data are means ±SEM (N = 3, >150 cells per experiment). 

∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.005 and NS (not significant) indicates P > 0.05; two-

tailed Student’s t-test.   
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Figure 4. Increased Plk4 levels promote chronic centrosome amplification in 

multiple tissues 

(A) Fold increase in Plk4 mRNA in tissues from Plk4Dox mice treated with doxycycline 

for 1 month. N = 3, performed in triplicate. 

(B and C) Quantification of the level of centrosome amplification in tissues from Plk4Dox 

mice treated with doxycycline for 1 or 8 month. N ≥ 4. 

(D) Quantification of centrosome number in tissues from Plk4Dox mice treated with 

doxycycline for 8 months. N = 4. 

(E) Representative images of centrosomes in tissues from doxycycline treated Plk4Dox or 

control animals.  

(F-H) Quantification of the fraction of cleaved caspase 3, TUNEL, or Ki67 positive cells 

in tissues from Plk4Dox mice treated with doxycycline for 1 month. Data are means ±SEM 

(N = ≥4). 

All data represent the means ±SEM. ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001; two-tailed 

Student’s t-test. Scale bars represent 10 µm.  
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Figure 5. There is no Plk4 overexpression or centrosome amplification in the brain 

of doxycycline-treated Plk4Dox mice 

(A) Graph showing the fold increase in Plk4 mRNA in tissues from Plk4Dox mice treated 

with doxycycline for 1 month. Data are means ±SEM (N = 3, performed in triplicate). 

(B) Quantification of the level of centrosomal Plk4 in tissues from Plk4Dox mice treated 

with doxycycline for 1 month. Representative immunofluorescent images show 

centrosomal Plk4 in tissue sections. Data are means ±SEM (N = 3). Scale bar represents 

10 µm. 

(C) Quantification of the level of centrosome amplification in tissues from Plk4Dox mice 

treated with doxycycline for 8 months. Data are means ±SEM (N = 4). 

(D) Quantification of centrosome number in tissues from Plk4Dox mice treated with 

doxycycline for 1 month. Data are means ±SEM (N = ≥4). 

(E) Images of tissue sections taken from Histone H2B-mCherry;rtTA mice treated with 

doxycycline for 1 month. The Histone H2B-mCherry expression construct was integrated 

at the same location as the Plk4-EYFP transgene. This reporter showed widespread 

doxycycline-inducible expression, but was undetectable in the brain. Scale bar represents 

200 µm.  

∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.005 and NS (not significant) indicates P > 0.05; two-

tailed Student’s t-test.  
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Figure 6. Centrosome amplification leads to progressive hair loss. 

 
(A) Quantification of cortex thickness measured in four-month old control or Plk4Dox 

animals treated with doxycycline for 3 months (N = 3). Images show the cerebral cortex 

in control and Plk4Dox mice. Scale bar represents 200 µm. 

(B) Images show hair loss in eight-month old Plk4Dox animals fed doxycycline 

chronically from one week of age. 

(C) Pathology report from eight-month old Plk4Dox animals fed doxycycline chronically 

from one week of age. Tissues analyzed by a veterinary pathologist (N = 4 for control 

and Plk4Dox mice). 

(D) Images show hematoxylin and eosin stained tissue sections from eight-month old 

control and Plk4Dox mice fed doxycycline chronically from one week of age. Scale bars 

represent 200 µm.  
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Figure 7. Centrosome amplification drives aneuploidy in vivo 

(A) Proportion of severely aneuploid (4N ± > 2 chromosomes) splenocytes from control 

and Plk4Dox mice treated with doxycycline for 1 or 8 months. N = 3, > 120 cells per 

experiment. 

(B) Table shows the fraction of aneuploid cells determined by single cell sequencing of 

epidermal cells from doxycycline-treated control or Plk4Dox mice.  

(C) Genome-wide copy number plots of aneuploid single cells sequenced from the 

epidermis of 3 Plk4Dox mice treated with doxycycline for 12-18.5 months. Individual cells 

are represented in rows with copy number states indicated in colors. 

All data represent the means ±SEM. ∗P < 0.05; two-tailed Student’s t-test. Scale bars 

represent 10 µm. 
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Figure 8. Centrosome amplification leads to aneuploidy in the spleen of aged mice 

(A and B) Fraction of splenocytes with the indicated number of chromosomes. Cells were 

derived from control and Plk4Dox mice treated with doxycycline for either 1 or 8 months. 

Data are means ±SEM (N = 3, 50 cells per experiment).  

(C) Quantification of the fraction of Plk4Dox or control splenocytes with >4N DNA 

content at different times after doxycycline treatment. Data are means ±SEM (N = 3, 

10,000 cells per experiment). Representative flow cytometry profiles show cell cycle 

analysis in Plk4Dox and control splenocytes.  

(D) Quantification of the level of Plk4 mRNA in APCMin/+; Plk4Dox MEFs at different 

times after doxycycline treatment. Data are means ±SEM (N = 3, performed in triplicate). 

(E) Graph showing the fold increase in cell number for APCMin/+; Plk4Dox MEFs grown in 

the presence and absence of doxycycline. Data are means ±SEM (N = 5, in triplicate). 

(F) Graph showing the APC+ to APCMin PCR ratios generated from intestinal adenomas 

(Polyp) and normal intestine (Int.) from APCMin/+ and APCMin/+; Plk4Dox mice. The mean 

APC+/APCMin value for adenomas from APCMin and APCMin;Plk4Dox mice is reduced 

compared to normal tissue from these animals, indicating partial loss of the APC+ allele. 

Data are means ±SEM (N = ≥2, performed in duplicate). 

∗∗P < 0.01, ∗∗∗P < 0.001 and n.s. (not significant) indicates P > 0.05; two-tailed 

Student’s t-test.  
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Figure 9. Centrosome amplification promotes tumor initiation 

(A) Quantification of the level of centrosome amplification in APCMin/+; Plk4Dox MEFs. 

N = 3, >150 cells per experiment. 

(B) Quantification of anaphase lagging chromosomes in APCMin/+; Plk4Dox MEFs. N = 3, 

>84 cells per experiment. Scale bar represents 10 µm.  

(C) Frequency of micronuclei observed in APCMin/+; Plk4Dox MEFs. N = 3, >50 cells per 

experiment. 

(D and E) APCMin and APCMin/+; Plk4Dox mice were treated with doxycycline from 10 

days of age and sacrificed at 90 days old. Quantification shows the level of centrosome 

amplification in the intestines or intestinal polyps of APCMin and APCMin/+; Plk4Dox mice. 

N = 3, >150 cells per experiment. 

(F) (Left) Immunofluorescence staining of an intestinal polyp and (Right) a magnified 

view of centrosomes in this tumor. Scale bars represent 200 µm (left) and 10µm (right). 

(G and H) Quantification of tumor number (G) or size (H) in 90 day old APCMin and 

APCMin/+; Plk4Dox mice. 

(I) Images show intestinal polyps in an APCMin and APCMin/+; Plk4Dox mouse. 

All data represent the means ±SEM. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and NS (not 

significant) indicates P > 0.05; two-tailed Student’s t-test.  
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Figure 10. Centrosome amplification promotes spontaneous tumorigenesis 

(A) Kaplan-Meier survival analysis of Plk4Dox and control (C57BL/6J) mice chronically 

fed doxycycline from 1-2 months of age. P value was calculated using the Log-rank test. 

(B) Quantification of the level of centrosome amplification in tumors from Plk4Dox and 

p53-/- mice. Horizontal lines represent the mean and bars represent ±SEM. 

(C) Representative examples of the different tumor types that develop in doxycycline-

treated Plk4Dox mice.  

(D and E) GISTIC analysis of low-coverage whole-genome sequencing of Squamous 

Cell Carcinomas (SCCs) and lymphomas from doxycycline-treated Plk4Dox mice shows 

gains of specific chromosomes. Scale represents Q values. 

(F) Low-coverage whole-genome sequencing (WGS) plots for a Sarcoma and a 

Squamous Cell Carcinoma derived from Plk4Dox mice. 

(G) (Top) WGS plots from a T-Cell Lymphoma derived from doxycycline-treated 

Plk4Dox mice. (Bottom) Genome-wide copy number plots of aneuploid single cells 

sequenced from the same T-cell lymphoma. 12/39 sequenced cells showed evidence of 

aneuploidy. Individual cells are represented in rows with copy number indicated in colors.    

(H) (Top) WGS plots from a B-Cell Lymphoma derived from doxycycline-treated 

Plk4Dox mice. (Bottom) Genome-wide copy number plots of aneuploid single cells from 

the same B-cell lymphoma. 32/47 sequenced cells showed evidence of aneuploidy. 
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Figure 11. Transient Plk4 overexpression triggers spontaneous tumor development 

 
(A) Quantification of centrosome number in tumors that arise in Plk4Dox mice chronically 

fed doxycycline. Data are means ±SEM. (N = ≥4). 

(B) Quantification of the fraction of cleaved caspase 3 positive cells in tumors from 

Plk4Dox and p53-/- mice. Data are means ±SEM. (N = ≤4, with each data point 

representing a single tumor). 

(C) Graph showing the expression level of p53 target genes in tumors formed in Plk4Dox 

and p53-/- mice.  

(D) Quantification of the level of centrosome amplification in tissues from 16-18 month 

old Plk4Dox mice treated with doxycycline for 1 month. Data are means ±SEM (N = ≥3). 

(E) Kaplan-Meier survival analysis of Plk4Dox and control (C57BL/6J) mice fed dox at 1 

month of age for one month. P value was calculated using the Log-rank test. 

(F) Quantification of the level of centrosome amplification in tumors from Plk4Dox mice 

fed doxycycline for one month. Each point represents a single tumor and horizontal lines 

represent the mean.  

(G) Low-coverage whole-genome sequencing (WGS) plots for a B-cell Lymphoma 

derived from Plk4Dox mice fed doxycycline for one month.	
  

(H-I) Low-coverage whole-genome sequencing plots of two T-Cell Lymphomas and four 

Squamous Cell Carcinomas (SCC) from Plk4Dox mice chronically treated with dox. 
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Chapter 3 

Deuterosomes are dispensable 
for multiciliogenesis  
 

In preparation: Levine, MS,* Mercey, O*, Meunier, A and Holland, AJ. 

 
Data generated by Michelle Levine: All, except data shown in Figure 14 and Figure 17 
(generated by Olivier Mercey, Meunier laboratory, Ecole Normale Supérieure) 
 

3.1 Creation of a Deup1-/- mouse 

To examine the role of the deuterosome in multiciliogenesis, a Deup1 knockout mouse 

was created by replacing exons 2-7 of the Deup1 gene with a LacZ reporter followed by a 

polyA sequence (Figure 12A). To observe the process of multiciliogenesis ex vivo, we 

utilized two different cell culture systems: mouse tracheal epithelial cells (mTECs) and 

ependymal cells. Cells are isolated from the adult trachea or newborn mouse brains and 

grown to confluence then serum-starved, and in the case of mTECs, exposed to an air-
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liquid interface (ALI), which induces differentiation (You and Brody 2013; Delgehyr et 

al. 2015). These systems mimic the in vivo process that occurs late in embryonic 

development in the trachea and in the brains of developing mouse pups (Stockinger and 

Cireli 1965; Spassky et al. 2005). To evaluate whether Deup1 expression was abolished, 

Deup1 mRNA expression levels were measured by qPCR. In the brain, tracheal epithelial 

cells, and testis, Deup1 mRNA levels were reduced by > 40 fold in the Deup1 knockout 

compared to control mice (Figure 12B, 12C and Figure 13A). Furthermore, at ALI d3 we 

observed several Deup1 foci form in control cells, but no signal was detectable in the 

Deup1-/- mTECs (Figure 13B).  

 

As expected, full-length DEUP1 protein was undetectable in multiciliating Deup1-/- 

mouse tracheal epithelial cells and ependymal cells via immunoblot (Figure 12D). It is 

plausible that a DEUP1 protein fragment could be expressed from an in-frame ATG 

present near the start of exon 8 in our Deup1-/- animals. To confirm that the absence of 

detectable protein was not due to an inability of our antibody to detect this DEUP1 

protein fragment, we created DLD-1 cell lines that could inducibly express either full-

length DEUP1 or HEK293FT cells that overexpress full-length DEUP1 or exons 8-12 of 

DEUP1 fused to a C-terminal Myc tag. Our DEUP1 antibody detected both full-length 

Deup1 and the DEUP1 exons 8-12 protein fragment (Figure 13C-D). Given that neither 
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protein species were detectable in lysates from Deup1-/- mouse tracheal epithelial cells, 

we conclude that Deup1-/- mice are complete knockouts for the DEUP1 protein.  

 

3.2 Deup1-/- mice lack deuterosomes 

To determine whether Deup1-/- MCCs lacked deuterosomes, we used serial transmission 

electron microscopy (sTEM) through the volume of wild-type and Deup1-/- ependymal 

cells. While deuterosomes were clearly observed in the control ependymal cells, Deup1-/- 

ependymal cells did not contain deuterosomes (Figure 14A and 14B). These data confirm 

the previous findings that DEUP1 is the main structural component of the deuterosome 

(Zhao et al., 2013).  

 

3.3 Deuterosomes are dispensable for multiciliogenesis 

To establish the requirement of deuterosomes for centriole amplification in MCCs, we 

examined centriole number in MCCs from Deup1-/- mice compared with controls. 

Ependymal cells from control mice create on average 250 ±71.58 centrioles and similarly 

Deup1-/- ependymal cells create 250 ±82 centrioles (Figure 15A and 15B). Furthermore, 

control mTECs create a mean of 82 ±14 centrioles, while Deup1-/- create 75 ±16 

centrioles (Figure 15C and 15D). To confirm these findings in vivo, we quantified 

centrioles in multiciliated ependymal cells in the brains of mice. Consentient with our 
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results in vitro, there was no difference in the number of centrioles generated in 

ependymal cells in the brain of control and Deup1-/- mice (Figure 15E and 15F). 

Furthermore, scanning electron microcopy of mouse trachea revealed no obvious 

differences in cilia number or morphology in Deup1-/- animals compared with control 

(Figure 16). Together, these data show that deuterosomes are not required for generating 

the correct number of basal bodies in multiciliated cells.   

 

To characterize how centriole amplification occurs in the absence of deuterosomes, we 

followed differentiating ependymal cells using live cell imaging. In normal centriole 

amplification in MCCs, centrioles can be observed amplifying in large clusters indicating 

nucleation from deuterosome structures as well as procentriole formation from being 

born off the sides of the preexisting centrioles (data not shown). Using transgenic mice 

expressing a GFP-tagged version of the centriole protein Centrin 2, we observed that 

centrioles are amplifying as singlets and doublets (Figure 17). In addition, at 

disengagement, many more procentrioles detach from the preexisting centriolar space 

than would allow, based on the circumference of the preexisting centrioles. This suggests 

that procentrioles are created on and in proximity to the preexisting centrioles (Figure 17). 

These observations as well as the sTEM data (Figure 14) suggest that centrioles are 
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created on, and in proximity to, the parental centrioles in a differentiating cell without 

deuterosomes. 

 

3.4 Cep63 does not compensate for Deup1 loss 

Deup1 and Cep63 are paralogs that are 37% identical at the amino acid level (Zhao et al. 

2013). It is therefore possible that the loss of DEUP1 is compensated for, in part, by 

CEP63. To address this, we obtained Cep63T/T mice that have the Cep63 gene disrupted 

with a gene-trap insertion (Brown et al. 2013; Marjanovic et al. 2015). As expected, 

Cep63T/T mice showed a > 20 fold reduction in Cep63 mRNA levels in both mouse testes 

and mTECs (Figure 19A and 19B). Loss of Cep63 expression by itself did not alter 

centriole or cilia number in mTECs or ependymal cells in culture or in vivo (Figure 18A-

F).  Furthermore, knockout of both Cep63 and Deup1 did not reduce centriole numbers in 

these cells, indicating that Cep63 does not compensate for Deup1 loss (Figure 18A-F and 

Figure 19C). In addition, Deup1-/- mTECs did not show increased levels of Cep63 further 

confirming that Cep63 does not compensate for Deup1 loss (Figure 19D).  
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Figure 12. Deup1 knockout mice do not express Deup1 mRNA or DEUP1 protein.  

(A) Schematic representation of the Deup1 gene and mRNA structures (top) and the 

portion deleted in the Deup1-/- mouse (bottom).  

(B) qPCR analysis of Deup1 mRNA levels in control and Deup1-/- post-natal day 5 brain 

tissue using two different primer sets corresponding to the Deup1 transcript. Deleted 

(Del.) exons denote primers designed to amplify exons 2-3, and act as a negative control. 

(C) qPCR analysis of Deup1-/- mouse tracheal epithelial cells (mTECs). Control mTEC 

levels of Deup1 were normalized to 1, and the values shown are relative to control. 

(D) Western blot of lysates from mTECs differentiated at air-liquid interface (ALI) for 3 

and 5 days, and two different ependymal cell cultures differentiated for 8 days. An 

antibody raised against full-length Deup1 was used to determine expression of Deup1 in 

knockouts (-/-) compared to controls (+/+). α-Tubulin was used as a normalization 

control. 
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Figure 13. DEUP1 antibodies can recognize protein produced from full-length and 

exons 8-12 of Deup1. 

(A) qPCR analysis of Deup1 gene expression in control and Deup1-/- mouse testes using 

3 different primer sets. 

(B) Immunofluorescent images of control and Deup1-/- mTECs at ALI d3 showing 

multiciliating cells that lack Deup1 signal in knockouts compared with multiple Deup1 

foci in controls. 

(C) An isogenic DLD-1 cell line was created with an integrated copy of mus musculus 

Deup1 cDNA with a C-terminal myc tag under the control of a doxycycline (dox)-

inducible promoter. Immunoblot of protein lysates using an antibody recognizing Deup1 

or myc. Arrow denotes band of interest. Astrisk denotes endogenous myc in these cell 

lines. 

(D) Immunoblot of HEK293 cells expressing either full-length (F.L.) or exons 8-12 (Ex 

8-12) of DEUP1 with or without the proteasome inhibitor, MG132. Membranes were 

probed with antibodies against Deup1 or Myc. α-tubulin was used as a loading control.  

  



56

  



57

Figure 14. Deup1 knockout mice do not contain deuterosomes. 

(A) Serial transmission electron microscopy through the volume of a Deup1 knockout 

cell reveals that centriole amplification occurs in the absence of deuterosomes, and 

instead occurs on or proximal to the preexisting centrioles. 

(B) Schematic representing the location of the procentrioles relative to the preexisting 

centrioles (green and orange).
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Figure 15. Deuterosomes are not required for proper centriole number. 

(A) Quantification of basal body number in control or Deup1-/- ependymal cells. n=3 

mice/genotype; >40 cells/mouse 

(B) Representative images of mature centrioles using an antibody against Cep164 in 

control or Deup1-/- ependymal cells.  

(C) Quantification of basal body number in control or Deup1-/- mouse tracheal epithelial 

cells (mTECs). n=3 mice/genotype; >40 cells/mouse 

(D) Representative images of centrioles using an antibody against Cep164. 

(E) Quantification of centriole number in brain sections of control or Deup1-/- mice. n=3 

mice/genotype; >40 cells/mouse. 

(F) Representative images of ependymal cells in brain sections from control or Deup1-/- 

mice. DAPI marks the nuclei, ZO-1 is a tight junction marker and Cep164 stains mature 

centrioles. 

Scale bar represents 10µm. n.s.=not statistically significant (p>0.05) 
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Figure 16. Deuterosomes are not required for multiciliogenesis in vivo 

Scanning electron microscopy (SEM) images of tracheas from control or Deup1-/- mice.  
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Figure 17. Live-imaging of differentiating Deup1-/- ependymal cells reveals 

deuterosome-independent centriole amplification. 

Still images from a time-lapse movie using a Centrin-GFP transgenic mouse, in a Deup1-

/- background, in order to track centriole biogenesis. Control movies show centrioles 

budding from the preexisting centrioles (data not shown). Centrin foci appear large and 

bright as they cluster around deuterosomes. Individual centrioles are hard to resolve when 

they are on the deuterosome, but during the disengagement stage individual centrioles 

can be seen detaching from deuterosomes. In the Deup1-/- mouse (shown), centrioles 

form in singlets and doublets and never localize in large clusters, as they would if a 

deuterosome were present. Tens of centrioles disengage from the preexisting parental 

centrioles (green arrowheads), and join the singlets and doublets in the cytoplasm.  
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Figure 18. Cep63 does not compensate for Deup1 loss. 

(A) Quantification of basal bodies in ependymal cells grown in vitro from Cep63T/T, 

Deup1-/-, Deup1-/-;Cep63T/T and control mice. Data from Deup1-/- mice is also shown in 

Figure 2. n=3 mice/genotype; >40 cells/mouse. 

(B) Representative images of centrioles (Cep164) and tight junctions (ZO-1) from 

Cep63T/T, Deup1-/-;Cep63T/T or control mTECs.  

(C) Quantification of basal bodies in mTECs from Cep63T/T, Deup1-/-, Deup1-/-;Cep63T/T 

and control mice. Data from Deup1-/- mice is also shown in Figure 2. n=3 mice/genotype; 

>40 cells/mouse. 

(D) Representative images of mature centrioles and tight junctions using antibodies 

against acetylated-tubulin (AcTub) and ZO-1 from Cep63T/T, Deup1-/-;Cep63T/T or control 

mTECs. CEP164 marks the distal appendages on membrane docked basal bodies at the 

base of cilia. 

(E) Quantification of centrioles in ependymal cells in vivo from Cep63T/T, Deup1-/-, 

Deup1-/-;Cep63T/T and control mice. Data from Deup1-/- mice is also shown in Figure 

2.n=3 mice/genotype; >40 cells/mouse. (F) Representative images of centrioles (Cep164) 

in brain ependymal cells in vivo.  

Scale bar represents 10µm. n.s.=not statistically significant (p>0.05) 
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Figure 19. Cep63 knockout animals and Deup1; Cep63 double-knockout animals do 

not exhibit defects in multiciliogenesis in vitro or in vivo. 

(A) qPCR analysis of Cep63 expression levels in the testes of control and Cep63T/T mice 

Analysis was performed with two different primer sets corresponding to mmCep63 

mRNA.  

(B) qPCR analysis of Cep63 expression levels in mouse tracheal epithelial cells (mTECs) 

from control and Cep63T/T mice. Analysis was performed with two different primer sets 

corresponding to mmCep63 mRNA.  

(C) Scanning electron micrographs (SEM) of trachea from control or Deup1-/-;Cep63T/T 

animals. 

(D) qPCR analysis of Cep63 expression levels in control and Deup1-/- mice. Cep63 is not 

elevated in Deup1-/- mice.  
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Chapter 4 

The Role of Extra Centrioles in 
Kidney Cystogenesis 
 

Data generated by Michelle Levine: All data; ischemia-reperfusion injury surgery was 
performed by Dr. Sul Lee (Rabb laboratory, JHUSOM) 
 

4.1 A mouse model to create extra centrosomes in the kidney 

To test whether extra centrioles are sufficient to promote kidney cystogenesis, we 

overexpressed Plk4 specifically in the mouse kidney. We crossed our doxycycline-

inducible Plk4 overexpression mouse to a Pax8 promoter-driven reverse tetracycline 

transactivator (rtTA) mouse, which drives expression in the renal tubule epithelial cells 

(Traykova-Brauch et al. 2008; Levine et al. 2017). These mice are hereafter referred to as 

Plk4Dox. First, to observe whether the Pax8-rtTA could drive expression of the Plk4 

transgene at the Col1A1 locus, we crossed the Pax8-rtTA mice to a mCherry-H2B 

reporter mouse (Egli et al. 2007). We dosed mice throughout gestation with doxycycline, 
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and analyzed 1 week old mouse kidneys. Pax8-rtTA drives robust expression in the 

kidney as evidenced by red fluorescent nuclei throughout the kidney of Plk4Dox mice 

(Figure 20A).  

 

4.2 Plk4 overexpression induces centrosome amplification 

but does not alter cilia number 

To determine the degree of centrosome amplification in the kidney, we examined cohorts 

of mice at E15.5, 1 week, 4 weeks, and 14 weeks of age. Robust centrosome 

amplification was observed at all time points examined, with an increasing trend over 

time (Figure 20B and 20C). To confirm that extra centrioles did not disrupt normal 

kidney development or homeostasis, we measured cell proliferation and death in these 

tissues. None of the Plk4Dox animals analyzed exhibited statistically significant 

differences in cell proliferation or cell death compared with controls (Figure 20D and 

20E). The only phenotype observed was that 1 week old Plk4Dox kidneys were slightly 

smaller than controls, but the 4 week and 14 week old Plk4Dox kidneys no longer exhibit 

this effect. Furthermore, histology and weights of 14 week old kidneys revealed that 

Plk4Dox kidneys were indistinguishable from controls (Figure 21A-C). To understand 

whether extra centrosomes alter cilia number, we co-stained kidneys with centrosome and 
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cilia markers and quantified numbers of both structures. Despite increases in the number 

of extra centrosomes, cilia number remained unchanged (Figure 20F and 20G).  

 

4.3 Extra centrosomes are not sufficient to promote kidney 

cystogenesis  

To address the role of extra centrosomes in the pathogenesis of polycystic kidney disease, 

we evaluated the impact of centrosome amplification on kidney cystogenesis. We aged a 

cohort of control and Plk4Dox animals, which had been dosed on dox throughout gestation 

and adulthood. Overall survival was unaffected in Plk4Dox animals, and they never 

developed cystic kidneys, showing that extra centrosomes are not sufficient to promote 

cystogenesis (Figure 22A-C). Previous work has shown that acute renal injury can 

promote cytogenesis (Kurbegovic and Trudel 2016). In collaboration with the Rabb 

laboratory (JHMI), we then asked whether extra centrosomes could cooperate with an 

injury model to promote increased cystogenesis. We used a unilateral ischemia-

reperfusion injury system, in which 1 kidney was deprived of blood for 30 minutes, then 

the blood was allowed to perfuse back into the kidney and animals were sacrificed 6 

weeks later for analysis (Figure 23A). While injured kidney weights were increased in 

Plk4Dox animals compared with controls, we did not observe increased cystogenesis 
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(Figure 23B-D). Taken together, extra centrosomes are neither sufficient nor cooperate 

with injury to promote cystogenesis. 
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Figure 20. Centrosome amplification does not alter cilia number, cell death or 

proliferation in mouse kidneys. 

(A) Representative images from p7 kidneys of reporter mice, in which tet-on mCherry-

H2B expression was induced by a Pax8 promoter-driven rtTA. Mice were dosed with 

doxycycline throughout gestation.  

 (B) Quantification of the level of centrosome amplification in Plk4Dox mouse kidneys 

compared with controls at multiple ages. 50 cells/mouse; n=3 mice/condition/age 

(C) Representative images of mouse kidney tissue sections used for quantification, 

stained with the centrosome marker γ-Tubulin and the nuclear stain DAPI. 

(D) Quantification of the fraction of Ki67+ cells per field of view.   

(E) Quantification of the fraction of Cleaved Caspase 3+ cells per field of view.   

(F) Quantification of cilia number in cells with normal and supernumerary centorsomes.  

(G) Representative images of cilia in mouse kidneys stained with Acetylated tubulin 

(AcTub) to mark cilia, γ-Tubulin for centrosomes, and DAPI. 
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Figure 21. Centrosome amplification in adult animals does not affect kidney 

histology or size 

(A) Representative Hematoxylin & Eosin stained images of kidneys from 14-week old 

animals. 

(B) Average kidney weight/body weight ratios for control and Plk4Dox animals at 

different time points. 

(C) Representative images of fixed kidneys used for weighing in (B). 
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Figure 22. Centrosome amplification is not sufficient to promote cystogenesis 

(A) Overall survival of aged cohort of control and Plk4Dox mice. 

(B) Representative H&E images showing lack of cysts in control and Plk4Dox mice. 

(C) Average kidney weight to body weight ratios for aged cohort. 
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Figure 23. Centrosome amplification does not cooperate with injury to promote 

kidney cystogenesis 

(A) Schematic of ischemia-reperfusion injury model system. Blood supply was clamped 

off to the kidney for 30 minutes then removed. Mice were euthanized 6 weeks later and 

kidneys were analyzed by weight, immunofluorescence (IF) microscopy, and 

hematoxylin & eosin (H&E) staining.  

(B) Average kidney weight/body weight ratios for injured and uninjured kidneys of 

control and Plk4Dox animals. 

(C) Quantification of cyst diameters in control and Plk4Dox animals. 

(D) Representative images of H&E stained kidneys from control and Plk4Dox mice. White 

box indicates area zoomed in on for the inset image.  
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Chapter 5 

Discussion 

5.1 Centrosome amplification is sufficient to promote 

tumorigenesis  

A causal association between centrosome amplification and tumorigenesis was originally 

proposed by Boveri over a century ago, but has yet to be firmly established (Boveri 1914). 

Here, we have examined the long-term consequence of supernumerary centrosomes in 

mice. We demonstrate that centrosome amplification can increase tumor initiation events 

in a mouse model of intestinal cancer. Most importantly, we show that extra centrosomes 

cause aneuploidy and trigger spontaneous tumorigenesis in multiple tissues. We conclude 

that centrosome amplification is sufficient to promote tumorigenesis in mammals. 

 

In our experiments, we used Plk4 overexpression as a tool to drive centrosome 
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amplification in vivo. While roles of Plk4 outside of centrosome biogenesis have been 

proposed (Martindill et al. 2007; Rosario et al. 2010; Rosario et al. 2015), multiple lines 

of evidence argue that centrosome amplification is responsible for triggering spontaneous 

tumorigenesis in mice that overexpress Plk4. First, modest increases in Plk4 protein are 

sufficient to promote persistent centrosome amplification and spontaneous tumor 

development. Second, centrosome number is elevated in all three tissues that exhibit a 

predisposition to tumor development; conversely, tissues with high levels of Plk4 

expression, but no increase in centrosome amplification, do not show an increase in 

tumorigenesis. Third, tumors that develop in Plk4-overexpressing mice generally show 

higher levels of centrosome amplification than in the normal tissue from which they 

developed. Finally, even a transient increase in Plk4 promotes persistent centrosome 

amplification and tumorigenesis. Therefore, although we cannot formally exclude that the 

effects we observe reflect roles of Plk4 outside of centrosome duplication, our evidence 

firmly argues that increases in centrosome number drive the effects we observe in vivo. 

 

To our knowledge, our study provides the first demonstration that centrosome 

amplification is sufficient to drive aneuploidy in tissues with wildtype p53. However, the 

role of centrosomes are not restricted to mitosis and extra copies of centrosomes have 

been shown to disrupt cilia signaling (Mahjoub and Stearns 2012) and promote 
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alterations in the interphase cytoskeleton that could facilitate invasion (Godinho et al. 

2014). Since hematopoietic lineages lack primary cilia, alterations in ciliary signaling are 

unlikely to underlie lymphomagenesis in cells with supernumerary centrosomes (Finetti 

et al. 2011). Instead, our study demonstrates that tumors with extra centrosomes exhibit 

recurrent aneuploidies. In addition, we show that centrosome amplification increases 

tumor initiation in the APCMin/+ mouse model. Since tumors in this model are proposed to 

be driven by loss of the wildtype allele of APC, we propose that centrosome 

amplification increases tumor initiation by facilitating the loss of the copy of 

chromosome 18 containing the wildtype APC allele (Luongo et al. 1994). Therefore, 

while further studies will be required to determine the precise mechanism by which extra 

centrosomes promote tumorigenesis, our data is consistent with a model in which 

centrosome amplification drives aneuploidy that promotes tumor development.  

 

A central question that arises is why have other studies that employed Plk4 

overexpression not reported spontaneous tumorigenesis (Marthiens et al. 2013; Coelho et 

al. 2015; Kulukian et al. 2015; Vitre et al. 2015; Sercin et al. 2016)? A key difference in 

the mouse model that we report here is that we use a single copy Plk4 transgene knocked 

into the Col1a1 locus to achieve a modest increase in Plk4 levels that typically leads to 

the creation of just one or two extra centrosomes per cell. This is similar to the extent of 
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centrosome amplification observed in human tumors (Kayser et al. 2005; Denu et al. 

2016). We propose that small increases in centrosome number are permissive for tumor 

development. By contrast, large numbers of extra centrosomes are likely to be 

detrimental to cell viability because they are clustered inefficiently prior to division and 

lead to an increase in the frequency of lethal multipolar divisions. Mouse models that are 

created by the random integration of Cre-inducible, Plk4 transgenes may express the 

kinase at higher levels than achieved in our animal model (Kulukian et al. 2015; Vitre et 

al. 2015; Sercin et al. 2016). We predict that high levels of Plk4 overexpression, and thus 

larger increases in the number of centrosomes per cell, will be detrimental to long-term 

cell survival. This could explain silencing of Plk4 transgene expression that has been 

reported in the skin of one mouse model (Sercin et al. 2016), and also why global 

overexpression of Plk4 in another mouse model did not achieve centrosome amplification 

in the majority of tissues without the removal of p53 (Vitre et al. 2015). Finally, we note 

that a previous study that drove Plk4 overexpression using a single-copy transgene at the 

ROSA26 locus did not follow survival to the point at which we observe the development 

of spontaneous tumors in mice with centrosome amplification (Coelho et al. 2015). 

 

In summary, we demonstrate that mice with extra centrosomes develop spontaneous 

tumors with high levels of genomic instability. We conclude that extra centrosomes are 
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not bystanders in tumor development, but actively promote tumorigenesis by provoking 

mitotic errors that facilitate the evolution of malignant karyotypes. These findings 

support the therapeutic targeting of cells with extra centrosomes in human tumors. 

 

5.2 Deuterosomes are dispensable for multiciliogenesis  

Using a Deup1-/- mouse, we demonstrated that multiciliated cells do not require the 

deuterosome to amplify the correct number of basal bodies, contrary to what had been 

long proposed. Therefore, the dispensability of the deuterosome for producing proper 

numbers of centrioles in differentiating MCCs begs the question: what is the purpose of a 

deuterosome? One possibility is to allow the centriole amplification process to occur 

rapidly. Since Deup1 arose in organisms transitioning to land, it is interesting to note that 

one of the early organisms to benefit from Deup1 were frogs. Xenopus epidermal and 

tracheal cells undergo multiciliogenesis within 1-2 hours, whereas in higher order 

eukaryotes, such as chicken and mammals, the process occurs over several days 

(Steinman 1968; Kalnins and Porter 1969; Zhao et al. 2013). However, live-cell imaging 

revealed that the kinetics of centriole biogenesis without Deup1 is unchanged (data not 

shown). We can then infer that there is likely to be another role for the deuterosome. 
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Another possible role is that the deuterosome ensures the correct assembly of centriolar 

proteins and centriole stability. Although the centrioles are formed, trafficked to the 

apical plasma membrane, and can nucleate cilia, it is possible that deuterosome help 

ensure the centrioles that are produced are free from structural defects (Garcia and Reiter 

2016). We know that the cilia present (Figure 15-16) in Deup1-/- mice are not completely 

dysfunctional since the mice do not exhibit hydrocephaly (data not shown). However, it 

could be that the cilia beat more slowly, but not enough to cause an overt phenotype. It 

appears that Deup1 may play a role in influencing, most likely indirectly, the cilia beat 

frequency since we observed a slightly slower beating in Deup1-/- cilia (data not shown). 

However, more replicates and quantification will have to be done to confirm these initial 

findings. 

 

A third possibility is that Deup1 loss is compensated for by its paralog, Cep63. These two 

proteins exhibit 37% sequence identity in mouse (Zhao et al. 2013). Expression of Deup1 

alone forms multiple ring structures surrounded by a key centriolar protein Cep152, 

which helps recruit procentriolar proteins. In addition, Deup1 competes with Cep63 for 

binding of Cep152 (Zhao et al. 2013). So it is possible that in the absence of Deup1, 

naturally occurring elevated levels of Cep63 could compensate for Deup1 function by 

interacting with unoccupied molecules of Cep152 and act as a procentriole nucleation 
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hub. However, knockout of both Deup1 and Cep63 in mice did not cause a defect in 

centriole amplification. Therefore, it is possible that there is a yet unidentified 

compensatory factor or that the parental centriolar pathway can compensate fully in a 

way that was not appreciated before.  

 

It could be possible that pericentriolar satellites play a compensatory role in the face of 

deuterosome loss. It is interesting to note that pericentrin, a pericentriolar matrix protein, 

has been reported to recruit the critical centriolar protein SAS6 (Ito et al., BioRXiv, 

2018). Also, without parental centrioles, procentrioles arise from a PCM cloud, 

comprising Pericentrin (Mercey et al., unpublished). Additionally, another pericentrolar 

protein, PCM1, forms granules in ciliating cells (Kubo et al. 1999; Vladar and Stearns 

2007). Therefore, we speculate that pericentriolar material proteins could help provide 

nucleation centers and compensate for Deup1 loss. Thus, it would be interesting to 

examine the effect of depleting pericentriolar components, such as PCM1 or pericentrin, 

on multiciliogenesis in Deup1/- and Deup1-/-; Cep63T/T animals.  

 

5.3 Extra centrioles do not play a role in kidney cystogenesis 

In this work, we have shown that extra centrioles are neither sufficient to induce kidney 

cystogenesis nor cooperate with an ischemia-reperfusion injury model of cystogenesis. 
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However, a recent report claims that extra centrosomes are sufficient to induce kidney 

cystogenesis (Dionne et al. 2018). Yet, the experimental model used by the authors 

induced massive cell death and caused defective kidney development, resulting in 

lethality around two weeks of age. This is unsurprising, as it has been shown that 

increased apoptosis is sufficient to cause polycystic kidneys in mice (Veis et al. 1993; 

Nagata et al. 1996; Sorenson et al. 1996; Moser et al. 1997). More specifically, in mice 

deficient in the antiapoptotic protein Bcl-2, kidneys exhibit a very similar phenotype to 

the mouse model of Plk4 overexpression (Veis et al. 1993; Dionne et al. 2018). In both 

models, kidneys are hypoplastic in the embryonic stage due to excessive apoptosis 

causing a reduction in nephron number and subsequently develop polycystic kidneys 

(Nagata et al. 1996). Here, we were able to create extra centrioles in mouse kidneys 

without increasing cell death in the kidney, and therefore able to test the role of centrioles 

in cystogenesis without this confounding variable.  

 

Furthermore, we found that extra centrioles do not perturb cilia number in the kidney, 

despite conflicting reports previously that extra centrioles could increase cilia in cells or 

decrease cilia number in skin (Mahjoub and Stearns 2012; Coelho et al. 2015). This could 

be explained as a tissue-specific effect, however, our work directly contradicts the recent 

findings in the kidney that show that centrosome amplification causes increased numbers 
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of both aciliated and superciliated cells (Dionne et al. 2018). Disruption to proper tissue 

architecture and necrosis in the kidney has been shown to cause increased cilia length, so 

it is possible that the altered architecture and/or increased death causes alterations in cilia 

number as well (Verghese et al. 2009).  We propose that future studies and potential 

therapeutic approaches for ADPKD should be focused on targeting cilia and not 

centrioles. 
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Materials and Methods 

Generation and husbandry of mouse models 

Plk4Dox and Rosa rtTA mice 

The Plk4Dox mouse line was created using previously described KH2 ES cells (Beard et al. 

2006). KH2 ES cells possess the M2-rtTA gene targeted to the ROSA26 locus under the 

control of the ROSA promoter. In addition, an FRT-flanked PGK-neomycin-resistance 

gene followed by a promoterless, ATG-less hygromycin-resistance is targeted 

downstream of the Col1a1 locus to allow site-specific integration of a single copy 

transgene. To FLP-IN the tetracycline responsive Plk4-EYFP construct into KH2 ES cells, 

the mouse Plk4 ORF C-terminally tagged with EYFP was cloned downstream of the 

tetracycline operator and CMV minimal promoter in the pBS31 FLP-IN vector. KH2 ES 

cells were electroporated with pBS31-Plk4-EYFP and the pCAGGS-FLPe-puro plasmid 

encoding the FLP recombinase. Cells were selected with Hygromycin B and clones were 

amplified and checked by PCR for correct targeting. Blastocysts were injected with the 

targeted KH2 ES cells and chimeric mice identified. Germline transmission was detected 

by polymerase chain reaction analysis of tail DNA obtained at weaning. Plk4-EYFP 
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genotyping was performed with the following primers: ACT GTC GGG CGT ACA CAA 

AT, CAA CCT GGT CCT CCA TGT CT and TGC TCG CAC GTA CTT CAT TC. M2-

rtTA genotyping was performed with the following primers: AAA GTC GCT CTG AGT 

TGT TAT, GCG AAG AGT TTG TCC TCA ACC and GGA GCG GGA GAA ATG 

GAT ATG. Plk4-EYFP; rtTA mice were maintained by mating with C57BL6/N mice. 

EGFP-Centrin mice were as previously described (Hirai et al. 2016). APCMin/+ mice 

were purchased from the Jackson Laboratory (stock 002020) and genotyped using the 

following primers: GCC ATC CCT TCA CGT TAG, TTC CAC TTT GGC ATA AGG C 

and TTC TGA GAA AGA CAG AAG TTA.  

 

Deup1-/- mouse 

Deup1 heterozygous sperm (Deup1tm1.1(KOMP)Vlcg) was obtained from the U.C.-Davis 

Knockout Mouse Phenotyping Consortium (project ID: VG11314). NIH grants to 

Velocigene at Regeneron Inc (U01HG004085) and the CSD Consortium 

(U01HG004080) funded the generation of gene-targeted ES cells for 8500 genes in the 

KOMP Program and archived and distributed by the KOMP Repository at UC Davis and 

CHORI (U42RR024244). Mice were rederived using C57B/L6 mice at the Johns 

Hopkins University, School of Medicine Transgenic Core Laboratory. These animals 

were maintained on a congenic C57BL/6 background. The following primers were used 
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for genotyping: Mut For 5’-ACT TGC TTT AAA AAA CCT CCC ACA-3’, Mut Rev 5’-

GGA AGT AGA CTA ACG TGG AGC AAG C-3’, WT For 5’-TAG GGC ACT GTT 

GGG TAT ATT GG-3’, WT Rev 5’-CCA CAC ATT TCT GCT TCT CC-3’.  

 

Cep63T/T mouse 

Cep63T/T mice were obtained from the laboratory of Travis Stracker from the Institute for 

Research in Biomedicine—Barcelona. The generation of these Cep63 gene-trapped mice 

was described previously (Brown et al. 2013; Marjanovic et al. 2015). Cep63T/T mice 

were maintained on a mixed 129/SvEv-C57Bl/6 background. The same following 

primers were used for genotyping: Cep63-5P2 5’-GTA GGA CCA GGC CTT AGC GTT 

AG-3’, Cep63-3P1a 5’-TAA GTG TAA AAG CCG GGC GTG GT -3’, and MutR (B32) 

5’-CAA GGC GAT TAA GTT GGG TAA CG -3’. 

 

Pax8-rtTA and mCherry-H2B mice 

Plk4Dox and mCherry-Histone H2B mice were generated and genotyped as reported 

previously (Egli et al. 2007; Levine et al. 2017). Pax8-rtTA mice were obtained from the 

Baltimore PKD core center at University of Maryland Medical School (Traykova-Brauch 

et al. 2008). The following genotyping primers were used for Pax8-rtTA: CCA TGT 

CTA GAC TGG ACA AGA and CTC CAG GCC ACA TAT GAT TAG. 
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Embryos and adults from both genders were included in our analysis. Mice were housed 

and cared for in an AAALAC-accredited facility and all animal experiments were 

conducted in accordance with Institute Animal Care and Use Committee approved 

protocols.  

 

Doxycycline Induction 

Mice were fed 1mg/mL doxycycline (RenYoung Pharma) in water supplemented with 25 

mg/mL sucrose (Sigma). Water was changed twice per week for the duration of the 

treatment.  

 

Spontaneous tumorigenesis studies 

Plk4Dox and C57BL6/J animals were dosed chronically with doxycycline from 1 or 2 

months of age. Mice were monitored daily during the course of the study. Mice were 

euthanized when signs of distress or when visible tumors grew to > 2cm in size as per the 

Johns Hopkins University ACUC guidelines. 

 

Kidney cystogenesis studies 
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Plk4Dox and C57BL6/J animals were dosed chronically with doxycycline throughout 

gestation until time of euthanasia.  

 

Ischemia-reperfusion injury system 

Mice were anesthetized with ketamine and surgery was performed on a heating pad. A 

vascular clamp was applied to the left renal pedicle for 30 minutes and then released and 

abdomens were sutured, and mice were analyzed 6 weeks later. 

 

Histological Analysis  

A full necropsy was performed on every Plk4Dox mouse sacrificed. Mouse tissues were 

harvested and fixed overnight in 4% paraformaldehyde at 4°C and then stored in 10% 

Neutral Buffered Formalin. The Johns Hopkins University, School of Medicine 

phenotyping core or the Johns Hopkins Hospital pathology core performed tissue 

processing, paraffin embedding, and Hematoxylin & Eosin staining. All pathology and 

tumors were analyzed by Dr. Cory Brayton, a certified veterinary pathologist.  

 

Intestinal sample collection, tumor counts, and measurements  

Mice were maintained in a C57BL6/J genetic background. Intestines from 90 day old 

mice were collected, opened lengthwise and laid flat on Whatman paper (GE Healthcare 
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Life Sciences).  Intestines were imaged on a Zeiss dissecting microscope with Zen 

imaging software. Polyp number and size was quantified using FIJI. Intestines were fixed 

on Whatman paper in 4% PFA overnight. After fixation, polyps were cut in half and 

processed for histology or immunofluorescence.  

 

APC locus PCR-based assay 

Analysis of the loss of the wildtype APC locus was performed as described using a 

quantitative APC locus PCR assay (Luongo et al. 1994). Briefly, >15 intestinal polyps or 

areas of normal intestine from a single animal were pooled together and DNA extracted 

using the GenElute Mammalian Genomic DNA extraction kit (Sigma) following the 

manufacturer’s instructions.  Each DNA sample was amplified in two separate PCR 

reactions using the following primers: For: TCT CGT TCT GAG AAA GAC AGA AGC 

T and Rev: TGA TAC TTC TTC CAA AGC TTT GGC TAT. The PCR product digested 

overnight with HindIII and then separated on a 3% Agarose gel. The integrated intensity 

of the APC+ and APCMin bands quantified using Fiji. Each band was background 

subtracted and the intensity of the APC+ bands multiplied by 1.17 (144 bp/123 bp) to 

correct for the smaller size, and proportionally reduced incorporation of ethidium 

bromide, in the digested APC+ allele. The mean ratio of the corrected APC+/APCMin 

band intensities was calculated for each sample.  
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Cell culture 

Cell lines 

DLD-1 and HEK293FT cells were grown in DMEM (Corning) containing 10% FB 

Essence  (VWR Life Science Seradigm) and 100U/mL of penicillin and 100U/mL of 

streptomycin. All cells were maintained at 37°C in 5% CO2 and atmospheric oxygen.  

 

Primary cells 

Mouse embryonic fibroblasts (MEFs) were harvested as previously described (Xu 2005). 

Briefly, embryos were harvested at E13.5 and incubated in trypsin overnight at 4°C. The 

following day, the embryos incubated at 37°C for 30 minutes and cells dissociated by 

pipetting. Cells were plated in DMEM media (Corning Cellgro) supplemented with 10% 

fetal bovine serum (Sigma), 100 U/mL penicillin and 100 U/mL streptomycin. Cells were 

maintained at 37°C in an atmosphere with 5% CO2 and 3% O2. For the growth assays, 2 x 

105 cells/well were plated in 6 well dishes and cells counted every 3 days. Each condition 

was run in triplicate and each growth assay repeated at least 3 times.  MEFs were 

passaged a maximum of 8 times before being discarded. Doxycycline (Sigma) was 

dissolved in H2O and used at a final concentration of 1 µg/ml and doxorubicin (Sigma) 

was dissolved in DMSO and used at 200 ng/ml unless otherwise stated.  
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Mouse tracheal epithelial cell (mTEC) cultures were harvested and grown as previously 

described (You and Brody 2013). Briefly, tracheas were harvested from mice from 3 

weeks to 12 months of age. Tracheas were then incubated in Pronase (Roche) overnight 

at 4 degrees. The following day, tracheal cells were dissociated by enzymatic and 

mechanical digestion. Cells were plated onto 0.4 µm Falcon transwell membranes 

(Transwell, Corning). Once cells were confluent (~proliferation day 5), media from the 

apical chamber was removed and basal media was replaced with low serum (NuSerum) 

media. This timepoint is considered Air-Liquid Interface (ALI) day 0. These cells were 

then allowed to differentiate until needed for analysis (ALI day 3 or day 5).  

 

For mouse ependymal cell cultures, brains were dissected from p0 - p3 mice and 

dissociated and cultured as previously described (Delgehyr et al., 2015). Briefly, brains 

were harvested and digested with papain (Sigma-Aldrich) at 37°C for 1 hour. The 

enzymatic digestion reaction was stopped using a trypsin inhibitor solution. The cells 

were washed then resuspended in DMEM/Glutamax-10% FBS, 1% P/S and plated on 

poly-L-lysine-coated T25 flasks. Once cells became confluent, the T25 flask was left on a 

shaker overnight to remove weakly attached cells and enrich for ependymal progenitor 

cells. The next day, cells were trypsinized and plated onto coverslips in a 24-well plate. 
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The following day, the cells were washed and media was changed to DMEM/Glutamax, 

1% P/S without FBS. Cells were allowed to differentiate on coverslips for 4-8 days and 

then analyzed. 

 

Cloning and transfection 

Deup1 full-length and exons 8-12 

The full-length mouse Deup1 ORF or Deup1 exons 8-12 were cloned into a pcDNA5 

vector, containing an FRT site and tetO, using Gibson cloning. A myc tag was inserted on 

the 3' end of the cDNA sequence using the Gibson primers. The resulting constructs were 

sequence-verified (Genewiz) and transfected into either DLD-1 cells or HEK293FTs. The 

DLD-1 cells used contain an FRT site integrated into a single genomic site and stably 

express the tetracycline repressor protein. Therefore, using these plasmids allows for the 

single-site integration of these transgenes into DLD-1 cells. DLD-1 cells were seeded at 2 

x 105 cells per well in a 6-well plate. The next day a transfection mixture of 100 uL Opti-

MEM (Thermo Fisher Scientific; Cat. # 31985070), 3 uL of X-tremeGene HP (Sigma-

Aldrich, cat. no. 6366236001), 100 ng of pcDNA5 plasmid and 900 ng of POG44 (Flp 

recominase) was prepared and incubated at room temperature for 30 minutes and then 

added drop-wise to each well. Two days later, DLD-1 mmDeup1-myc full-length and 

exons 8-12 were selected with 50ug/mL of Hygromycin B (ThermoFisher, cat. no. 
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10687010). For the HEK293FT transfection, cells were seeded at 6x106 cells in 15cm 

dishes. 

 

shRNAs targeting Puromycin and Deup1 

The GFP ORF from the pLKO.1 DEST GFP (Addgene 32684) was restriction enzyme 

cloned into the pLKO.1 Puro (Addgene 8453) plasmid using SpeI and KpnI restriction 

sites. The following sequences (Integrated DNA Technologies) were used to create 3 

different shRNAs:  

shRNA Deup1 Forward: CCG GAA GCT GAG ATT ACA CCA AAT GCT CGA GCA 

TTT GGT GTA ATC TCA GCT TTT TTT TG,  

shRNA Deup1 Reverse: AAT TCA AAA AAA AGC TGA GAT TAC ACC AAA TGC 

TCG AGC ATT TGG TGT AAT CTC AGC TT,  

shRNA Deup-2 Forward: CCG GGC ATT CAC AGT GCA CAT CAA TCT CGA GAT 

TGA TGT GCA CTG TGA ATG CTT TTT G,  

shRNA Deup-2 Reverse: AAT TCA AAA AGC ATT CAC AGT GCA CAT CAA TCT 

CGA GAT TGA TGT GCA CTG TGA ATG C,  

shRNA Puromycin Forward: CCG GTC CTA AGG TTA AGT CGC CCT CGC TCG 

AGC GAG GGC GAC TTA ACC TTA GGA TTT TTT G,  
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shRNA Puromycin Reverse: AAT TCA AAA AAT CCT AAG GTT AAG TCG CCC 

TCG CTC GAG CGA GGG CGA CTT AAC CTT AGG A.  

Each oligonucleotide set was annealed together then ligated into the pLKO.1 GFP vector, 

which had been linearized using the AgeI and EcoRI sites. The ligation reaction was then 

transformed into competent STBL3 cells. The resulting clones were sequence-verified 

(Genewiz) and used for subsequent experiments.  

 

Lentiviral production 

HEK293FT cells were plated onto poly-D-lysine-coated tissue culture treated dishes at a 

density of 6 x 106 cells/15-cm dish. The next day, cells were transfected with for 

lentiviral prodcution. For each 15-cm dish, the following DNA was diluted in Opti-MEM 

(Thermo Fisher Scientific): 9 µg lentiviral vector, 12 µg psPAX2, and 3 µg pMD2.G 

(12260 and 12259; Addgene). Separately, 72 µl of 1 µg/µl 25-kD polyethylenimine 

(Sigma-Aldrich) was diluted into Opti-MEM, briefly vortexed, and incubated at room 

temperature for 5 min. After incubation, the DNA and polyethylenimine mixtures were 

combined, briefly vortexed, and incubated at room temperature for 20 min. During this 

incubation, the culture media was replaced with 17 ml pre-warmed DMEM with 1% FBS. 

The transfection mixture was then added drop-wise to the 15-cm dish. Viral particles 

were harvested 48 h and 72h after the media change, spun down for 5 minutes at 1500 
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RPM and filtered through a 0.45-µm PVDF syringe filter (Denville Scientific). The viral 

supernatant was then spun down in an ultracentrifuge (Beckman Coulter) using a SW-28 

rotor (Beckman Coulter) at 25,000 RPM for 2 hours at 4°C. The viral pellets were then 

resuspended in PBS overnight at 4°C at a volume equal to 1/500 the original volume. 

 

Antibody production 

Fragments of γ-tubulin (CDEYHAATRPDYISWGTQEQ) or CEP192 (amino acids 1-

211) were cloned into a pET-23b bacterial expression vector (EMD Millipore) containing 

a C-term 6-His tag. Recombinant protein was purified from Escherichia coli using Ni-

NTA beads (QIAGEN) and used for immunization (ProSci Incorporated). Goat immune 

sera were affinity-purified using standard procedures. A custom made Plk4 peptide (aa 

564-580 was synthesized and conjugated to KLH for immunization (ProSci Incorporated). 

Rabbit immune sera were affinity-purified using standard procedures. Affinity-purified 

antibodies were directly conjugated to DyLight 550 and DyLight 650 fluorophores 

(Thermo Fisher Scientific) for use in immunofluorescence. Full-length Deup1 was cloned 

into a pET-28 bacterial expression vector (EMD Millipore) containing a C-term 6-His tag. 

Recombinant protein was purified from Escherichia coli using Ni-NTA beads (QIAGEN) 

and used for immunization (ProSci Incorporated). Rabbit immune sera were affinity-

purified using standard procedures. Purified antibodies were directly conjugated to 
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AlexaFluor 555 and AlexaFluor 650 fluorophores (Thermo Fisher Scientific) for use in 

immunofluorescence. 

 

Immunofluorescence staining and microscopy 

Mouse tissues 

For immunofluorescence in mouse tissues (with the exception of the brain sections for 

Figure S3A), samples were harvested and fixed overnight in 4% paraformaldehyde at 4°C. 

Tissues were washed 3 times for 30 minutes each with 1 x Phosphate Buffered Saline 

(PBS). Tissues were incubated in 30% sucrose overnight, embedded in OCT compound 

(Tissue-Tek) and frozen in a dry ice-ethanol bath cooled to -80°C. Tissues were cut in 12 

µm sections using a Leica cryostat (Leica Biosystems, CM3050) and placed on 

Superfrost Plus treated microscope slides (Fisher Scientific). For staining, slides were 

rehydrated with PBS supplemented with 0.5% Triton X-10 (PBST), and incubated in 

primary antibody diluted in blocking solution (10% donkey serum in PBST) for 2 hours 

at room temperature or overnight at 4°C. Slides were washed 3 times with PBST and 

incubated for 1 hour at room temperature in secondary antibody with 1 µg/ml 4′,6-

diamidino-2-phenylindole (DAPI) diluted in blocking solution. Slides were washed 3 

more times with PBST and mounted in ProLong Gold Antifade (Invitrogen). For brain 

sections (for quantification of cortical thickness in Figure S3A), brains were harvested 
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from 4 month old mice, fixed in 1% PFA overnight and 4°C, washed three times in PBS 

for 30 minutes each, then dehydrated in methanol overnight at -20°C. The next day, 

brains were rehydrated in PBS and embedded in 3% agarose. Once set, brains were cut in 

120 µm sections using a Leica vibratome (Leica Biosystems) and kept in 1x PBS until 

staining. Sections were stained with 1 µg/ml DAPI diluted in PBS for 1 hour at room 

temperature and mounted in Flouromount-G (SouthernBiotech). 

 

Brains for in vivo imaging of ependymal cells 

Mice were perfused with 1% paraformaldehyde (PFA) and dissected brains were post-

fixed in 1% PFA overnight at 4°C. The next day, brains were washed 3x in PBS for 1 

hour at room temperature, then embedded in 3% low-melting point agarose. Brains were 

cut coronally into 100 µm sections, using a vibratome (Leica Biosystems). Brain sections 

were stained overnight at 4°C in primary antibodies diluted in 10% donkey serum (in 

PBST; 1x PBS, 0.5% Triton X-100). The next day sections were washed 3 x with PBST 

at room temperature then incubated in secondary antibodies and 1 µg/ml 40,6-diamidino-

2-phenylindole (DAPI) diluted in 10% donkey serum at 4°C. The following day sections 

were washed 3 x with PBST at room temperature then mounted onto slides with 

Fluoromount G mounting media. (SouthernBiotech).  
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MEFs 

For immunofluorescence, primary MEFs were grown on 18-mm glass coverslips and 

fixed for 10 minutes in 100% ice cold methanol at -20°C for 10 minutes. Cells were 

blocked in 2.5% FBS, 200 mM glycine, and 0.1% Triton X-100 in PBS for 1 hour. 

Primary and secondary antibodies were incubated in the blocking solution for 1 hour at 

room temperature. DNA was stained with DAPI for 1 minute and cells were mounted in 

ProLong Gold Antifade (Invitrogen). 

 

mTEC cultures 

Membranes were incubated in microtubule stabilization buffer (30% glycerol, 100mM 

PIPES, 1mM EGTA, 1mM MgSO4) for 60 seconds, followed by fixation in 4% PFA for 

10 minutes at room temperature. Membranes were washed with PBST (1x PBS, 0.1% 

Triton X-100) 3 x for 5 minutes each. Membranes were then blocked at room temperature 

for an hour. Membranes were then cut into quarters and cut membranes were incubated 

with primary antibodies diluted in blocking buffer for an hour at room temperature. 

Membranes were then washed 3 x in PBST for 5 minutes each. Membranes were then 

incubated with secondary antibodies diluted in blocking buffer for 45 minutes at room 

temperature. Membranes were then incubated with DAPI diluted in PBS for 1 minute at 
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room temperature. Membranes were mounted onto slides with ProLong Gold Antifade 

(Invitrogen) and covered with 18-mm glass coverslips. 

 

Ependymal cells 

Cells were grown on 12-mm glass coverslips and fixed for 10 minutes in either 4% PFA 

at room temperature or 100% ice-cold methanol at -20°C. Coverslips were then stained 

and mounted as noted above.  

 

Cilia beat frequency  

Cells were seeded onto a 4 well glass bottom slide (Ibidi), and serum-starved for 7 days 

before imaging. Cells were imaged on a 3i Live-Cell Spinning Disk Confocal (Zeiss), 

using at 32x Air objective with 1.6x magnification using widefield light with a 3ms 

exposure time at 330 frames/second for 10 seconds. Number of beats per second were 

measured using previous methods (Mahuzier et al. 2018). Briefly, a 16x16pixel region of 

interest was selected containing a beating cilium, and changes in intensity over time was 

counted using the ImageJ z-axis profile tool. The average beats per second over a 3-5 

second interval were measured for each cell.  
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Antibodies 

Staining was performed with the following primary antibodies: Pericentrin (rabbit, 

Abcam 1:1000), Cleaved Caspase 3 (rabbit, Cell Signaling Technologies, 1:500), p-

Histone H2A.X (Ser139) (rabbit, Cell Signaling Technologies, 1:1000), Centrin (mouse, 

Millipore, 1:1000), CEP192 (rabbit, raised against CEP192 a.a. 1-211, a kind gift from 

Karen Oegema, Ludwig Institute for Cancer Research, 1:1000), Rabbit polyclonal anti-

Cep164 (EMD Millipore, ABE2621, 1:1000), Mouse monoclonal Acetylated-alpha 

tubulin (Cell Signaling Technologies, 12152, 1:1000), and Rat polyclonal anti-ZO-1 

(ThermoFisher Scientific, 14-9776-82, 1:1000). Secondary donkey antibodies were 

conjugated to Alexa Fluor ̀488, 555 or 650 (Life TUNEL staining was performed using 

the in situ cell death detection kit (Sigma) following the manufacturer’s instructions. 

Secondary donkey antibodies were conjugated to Alexa Fluor® 488, 555 or 650 (Life 

Technologies).  

 

Microscopy 

Immunofluorescence images of MEFs, DLD-1s, and ependymal cells were collected 

using a Deltavision Elite system (GE Healthcare) controlling a Scientific CMOS camera 

(pco.edge 5.5). Acquisition parameters were controlled by SoftWoRx suite (GE 

Healthcare). Images were collected at room temperature (25°C) using an Olympus 40x 
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1.35 NA, 60x 1.42 NA or Olympus 100x 1.4 NA oil objective at 0.2 µm z-sections. 

Images were acquired using Applied Precision immersion oil (N=1.516). 

 

Immunofluorescence images of tissues and mTECs were collected using a Zeiss LSM700 

confocal microscope. Acquisition parameters were controlled by ZEN (Zeiss). Images 

were collected at room temperature (25°C) using a Zeiss 63x 1.4 NA oil objective at 0.3 

µm z-sections. Images were acquired using Zeiss immersion oil (N=1.518). 

 

Image Analysis 

Quantification of Plk4 levels at the centrosome was performed as previously described 

(Lambrus et al. 2015). Imaris software (Bitplane) was used to quantify of total number of 

nuclei per field of view in the tissues stained with CC3 or Ki67.  

 

Scanning electron microscopy 

Scanning electron microscopy was performed by the Johns Hopkins microscopy facility. 

Briefly, tracheas were cut open lengthwise and fixed in 2.5% glutaraldehyde, 100 mM 

sodium cacodylate, 3 mM MgCl2 pH 7.2 overnight at 4°C. Following a buffer rinse 

containing 3% sucrose, samples were post-fixed with 2% osmium tetroxide in 100 mM 

cacodylate buffer containing 3 mM MgCl2 for 1.5 hours on ice in the dark. Samples were 
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rinsed in dH2O and dehydrated through a graded series of ethanol to 90%. Dehydration 

was continued through 100% ethanol, then passed through ethanol:HMDS 

(Hexamethyldisiloxazne Polysciences) 1:1 solution followed by pure HMDS. Samples 

were then placed in a desiccator overnight to dry. Tracheal pieces were attached to 

aluminum stubs via carbon sticky tabs (Pella), and coated with 40 nm of AuPd with a 

Denton Vacuum Desk III sputter coater. Stubs were viewed on a Leo 1530 FESEM 

operating at 1 kV and digital images captured with Smart SEM version 5. 

 

Transmission electron microscopy 

Cells on coverslips were washed twice with 1x PBS, and fixed for 2 hours with 2.5% 

glutaraldehyde. They were then washed 3x with 1x PBS and post-fixed with 1% osmium 

tetroxide in PBS for 30 minutes at 4°C in the dark with gentle shaking. Samples were 

then washed twice with PBS for 5 minutes each then dehydrated through a graded series 

of ethanol to 100%. Samples were impregnated with an ethanol/resin mix containing 

Epon, dodecenylsuccinic anhydride, and methyl nadic anhydride.  

 

Western blotting 

For immunoblot analyses, protein samples were collected using 2x sample buffer 

(125mM Tris-HCl, pH 6.8, 20% glycerol, 4% SDS, 0.1% bromophenol blue, 4%  β-
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mercaptoethanol). Samples were then separated by SDS-PAGE, transferred onto 

nitrocellulose membranes with a Trans-Blot Turbo Transfer System (Bio-Rad 

Laboratories) and then blocked in 5% milk for one hour at room temperature, followed 

by 1 hour incubation at room temperature with primary antibodies diluted in 5% milk, 

washed 3 x with TBST (1x TBS/1% Tween-20) then incubated in secondary antibody 

diluted in 5% miik. Blots were washed 3 x in TBST for 5 minutes each. Blots were 

incubated with either SuperSignal West Pico PLUS or Femto enhanced 

chemiluminescent substrate (ThermoFisher Scientific) for 1 minute then imaged using a 

G:Box (SynGene). The following primary antibodies were used: YL1/2 (rat anti–α-

tubulin, 1:3,000; Pierce Antibodies), rabbit anti-Deup1 #38 (custom made against full-

length mmDeup1, ProSci Incorporated). The following secondary antibodies were used: 

anti-rat or anti-rabbit IgG linked to HRP (Cell Signaling Technologies).  

 

Quantitative real time PCR 

Total RNA was isolated from cells or homogenized tissue using Trizol Reagent (Thermo 

Fisher Scientific) and prepared for reverse transcription using SuperScript III/IV Reverse 

transcriptase (Thermo Fisher Scientific). Quantitative real time PCR was performed using 

SYBRGreen qPCR Master Mix (Thermo Fisher Scientific) on iQ5 multicolor real time 

PCR detection system (Bio-Rad). Analysis was performed using iQ5 optical system 
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software (Bio-Rad). Reactions were carried out in triplicate using the following primers: 

Plk4 Fow: 5’-GAA ACA CCC CTC TGT CTT GG-3’ and Rev: 5’-GCA TGA AGT GCC 

TAG CTT CC-3’; p53 Fow: 5’- CCC GAG TAT CTG GAA GAC AG-3’ and Rev: 5’-

ATA GGT CGG CGG TTC ATG CC-3’; FAS Fow: 5’-  GGA AAA GGA GAC AGG 

ATG ACC-3’ and Rev: 5’-CTT CAG CAA TTC TCG GGA TG-3’; BCL2 Fow: 5’-TTC 

GCA GCG ATG TCC AGT CAG CT-3’ and Rev: 5’-TGA AGA GTT CTT CCA CCA 

CCG T-3’; BAX Fow: 5’-ATG CGT CCA CCA AGA AGC TGA-3’ and Rev: 5’-AGC 

AAT CAT CCT CTG CAG CTC C-3’; PUMA Fow: 5’-GCA GCA CTT AGA GTC 

GCC-3’ and Rev: 5’-GTC GAT GCT GCT CTT CTT GT-3’, Deup1 (deleted exons) For: 

5’- GCC AGA TGT AGA CAT TTC TTG GCA TGG -3’, Rev: 5’- CCC ACC TCC 

TGG CCT TT -3’, Deup1 (exons 10-12): For: 5’- TAC GTC TTC CAG AGC CAG C -3’, 

Rev: 5’- CAG GAA GTG CTG TGC AGC -3’, Deup1 (exons 9-10): For: 5’- GAA TTA 

AGC AAG GCT GTG GAC T -3’ Rev: 5’- CTC TGG AAG ACG TAT GCC CC -3’, 

Cep63 (exons 6-8): For: 5’- ATC AGA CCT ACA GTT CTG CC -3’, Rev: 5’- CTG 

ACT TAG AAT CTC CTT ATG CTC -3’, Cep63 (exons 13-14): For: 5’- GCA GGA 

GGA ATT AAG CAG ACT -3’, Rev: 5’- CTG TCG GAA TTC CTC TAT TTT TCC 

AG -3’ and GAPDH For: 5’- AAT GTG TCC GTC GTG GAT CTG A -3’ and Rev: 5’- 

GAT GCC TGC TTC ACC ACC TTC T -3’.  Expression values for p53 target genes 

(Figure S5C) were normalized to GAPDH, amplified with GAPDH Fow: 5’-AAT GTG 
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TCC GTC GTG GAT CTG A-3’ and Rev: 5’-GAT GCC TGC TTC ACC ACC TTC T-3’. 

Plk4 overexpression values in MEFs and tissues (Figure 2A and S1A and S2A) were 

normalized to β-actin, amplified with β-actin Fow: 5’- GGC TGT ATT CCC CTC CAT 

CG-3’ and β-actin Rev: 5’- CCA GTT GGT AAC AAT GCC ATG T-3’ primers, with 

the exception of the APCmin/+ MEF experiment in Figure S4D, which were normalized to 

HPRT, amplified with HPRT Fow: 5’-TGA TCA GTC AAC GGG GGA CA-3’ and 

HPRT Rev: 5’-TTC GAG AGG TCC TTT TCA CCA-3’. The fold changes in mRNA 

expression were calculated using the 2-ΔΔCt method, and expression values were 

expressed as fold increase in the average expression compared with non-transgenic 

tissues.  

 

Metaphase spreads and FISH analysis 

To harvest splenocytes, freshly harvested spleens were minced and filtered through a 40 

µm cell strainer. Cells were resuspended in RPMI media (Corning Cellgro) supplemented 

with 10% fetal bovine serum (Sigma), 100 U/mL penicillin,100 U/mL streptomycin, 1% 

HEPES (Sigma), 1% Sodium Pyruvate (Corning Cellgro), 1% Nonessential amino acids 

(Sigma), 10 U/mL Interleukin-2 (Roche), 5 µg/mL Concanavalin A (Sigma), 10µg/mL 

Lipopolysaccharides (Sigma) and grown overnight at 37°C in an atmosphere of 5% CO2 

and 3% O2. Cell were treated with 100 ng/ml Colcemid (Sigma) for 4 hours, trypsinized 
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and resuspended in 75 mM KCl for 15 minutes at room temperature. Five drops of 

freshly prepared Carnoy’s fixative (75% Methanol: 25% Acetic Acid) was added, the 

cells pelleted and resuspended in fixative overnight at 4°C. Cells were dropped onto 

slides pretreated with acetic acid. Dried slides were incubated with DAPI for 1 minute 

and imaged using a Deltavision Elite system.  

 

Mouse FISH probes for 10 cM loci on chromosome 15 or 16 were purchased from 

Empire Genomics. Cells were fixed with Carnoy’s fixative (75% Methanol: 25% Acetic 

Acid) for 15 minutes at room temperature and stored at -20°C until needed. DNA and 

probes were denatured at 69°C for 2 minutes, and hybridization was performed at 37°C 

overnight. The next day, cells were washed with 0.4x SSC buffer (Sigma) for 2 minutes 

at 72°C, then washed with 2x SSC (0.05% Tween-20) at room temperature for 30 

seconds. Cells were briefly washed with dH2O, air dried and mounted with VectaShield 

containing 150 ng/mL DAPI.  

 

Flow cytometry 

Cell pellets were fixed in cold 70% EtOH for 24 hours, washed once in PBS and 

resuspended in PBS supplemented with 10 µg/ml RNAse A and 50 µg/ml Propidium 
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Iodide (PI). Samples were incubated at room temperature for 30 minutes and analyzed on 

a flow cytometer (FACSCalibur; Becton Dickinson). 

 

Single cell sequencing 

Single cells were isolated from thymic or B-cell lymphomas by dissecting the tumor and 

mincing the tissue through a 70 µm cell strainer. To isolate single epidermal cells, the 

skin was removed and floated on 0.25% trypsin with 1 mM EDTA in DMEM (Gibco) 

overnight at 4°C. The epidermis was scraped off using a scalpel and tissue was 

dissociated into single cells by pipetting. Trypsin was neutralized by addition of 7% FBS 

diluted in PBS. This suspension was then passed through a 70 µm (BD Biosciences) filter 

followed by a 40 µm (BD Biosciences) filter. Isolated single cells from the thymus, 

spleen and epidermis were washed twice in PBS and stored in FBS with 10% DMSO at 

−80 °C until sorted. Single cell karyotype analysis was performed and analyzed as 

previously described (Bakker et al. 2016). 

 

Whole genome sequencing 

Genomic DNA was extracted from tissue samples using the GenElute Mammalian 

Genomic DNA extraction kit (Sigma) following the manufacturer’s instructions. Shallow 

Whole Genome Sequencing (WGS) was performed as previously described (Nassar et al. 
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2015). Briefly, whole-genome DNA libraries were created using the Illumina TruSeq 

DNA sample preparation kit V2 according to the manufacturer's instructions, and 

resulting whole-genome libraries were sequenced at low coverage on a HiSeq2500 

(Illumina) using a V3 flow cell generating 50-bp reads. Raw sequencing reads were 

mapped to the mouse reference genome (GRCm38/mm10) using Burrows-Wheeler 

Aligner (Li and Durbin 2009). We removed PCR duplicates with Picard (v1.32 and 

v1.43) and obtained an average of 7,788,246 unique mapped reads per sample. The 

number of reads was counted in windows of 50 Kb and corrected for the genomic wave. 

Segmentation was performed by the Ascat algorithm (Van Loo et al. 2010). GISTIC 2.0 

(Genomic Identification of Significant Targets in Cancer) (Beroukhim et al. 2007) was 

used to identify recurrent Copy Number Alterations in Figure 4d,e.   

 

Quantification and statistical analysis  

Statistical analysis was performed using GraphPad Prism software. Differences between 

samples were tested using a two-tailed Student’s t-test or a Log-rank test for survival 

analysis. Error bars represent SEM unless otherwise indicated. Please refer to figures and 

figure legends for number of cells or animals used per experiment. 
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