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Abstract

Off-the-shelf ML libraries combined with accessible scientific computing

infrastructures continue to find new avenues for automation and augmen-

tation of researcher work in the lab. Widely applicable pre-trained neural

networks have greatly reduced the barrier of entry toward applying clas-

sification models, leaving the main challenge to be the translation of do-

main expert knowledge into machine intelligence. I have developed sev-

eral specialized models solving specific lab problems with minimal train-

ing regimens by building atop published general-purpose frameworks. Ap-

plications include reinforcement-guided molecular dynamics simulations,

human reaction-based dataset navigation through machine-readable P300

brain waves, and floating-zone furnace user guidance through classification

of live boron-carbide crystal growth video feed. Evaluation of these purpose-

built models constructed with limited, expensive training data is achieved

in a combination of the established domain metrics with statistical tech-

niques.
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Chapter 1

Data Navigation

Rapid expanse of AI applications combined with wide-spread access to

demographic and consumer data streams have revolutionized world-wide

business practices. Similar opportunity has been realized in some scien-

tific areas like astronomy and mapping the human genome, but hindered in

others due to a lack of or inaccessibility to large amounts of pertinent data.

Indeed, machine learning specifically has been widely touted as central to

harnessing the data revolution (HDR) [1], but ML augmentation of work-

loads have not yet been realized in many wider scientific fields. In order

to spread the data revolution, the tenets outlined in the National Science

Foundation HDR initiative must be addressed and translated into solutions

that show attainable advances in disciplines where tradition and working

culture may block the availability of necessary resources for general ML
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CHAPTER 1. DATA NAVIGATION

augmentation in the lab.

This dissertation focuses on interdisciplinary applications from materi-

als sciences, molecular dynamics, distributed algorithms and human-computer

interaction to develop methodologies bridging the ML-human gap, allowing

rapid applied science advances by efficient use of limited data resources.

Each chapter shows an example of a data navigation process; data is col-

lected, stored, and linked to a computational analysis shown to a user whose

feedback directs the next exploratory iteration. The work in this thesis

seeks to accelerate the exploration loop and provide navigational tools to

assist the user in finding relevant data views.

The solutions and models I’ve developed were largely platformed on com-

mon consumer hardware paired with freely available, generally applicable

online computing frameworks. When first applying models, the procure-

ment, development, and evaluation of training datasets specific to the task

at hand is the most expensive and time-consuming process involved. Collec-

tion of relevant training data is particularly difficult when lab equipment

access is restricted or expensive. While much of the libraries and hard-

ware I used to develop ML solutions were off-the-shelf and freely available,

the gathering of quantities of exemplar data from a floating zone furnace

or a medical-grade electroencephalogram (EEG) headset had to be sched-

uled, organized, and linked with computing infrastructure. I developed dis-

2



CHAPTER 1. DATA NAVIGATION

tributed systems and interfaced libraries in order to collect, store, and anal-

yse the data from these sensors. A central finding is the power of utilizing

published datasets and publicly available generalized pre-trained models to

greatly reduce training needs when adapting prototype models to new pur-

pose, lowering the barrier-of-entry and raising the potential for automation.

Chapters 4 and 5 are examples of work that would prove to be prohibitively

expensive without the use of such pre-trained models.

With the exception of Chapter 2, the work in this dissertation was de-

veloped and prototyped on the SciServer [2] scientific computing platform,

which was created as a part of the NSF Data Infrastructure Building Blocks

[3] program. The SciServer infrastructure combines database, file storage,

as well as collaborative scripting and computing resources under a single

interface accessible through the browser. Software are container-ized, fa-

cilitating the configuration of libraries and the reproduction of computing

environments. Most importantly, when applied to lab solutions SciServer

provides an effective platform for realizing the NSF HDR objectives.

My work on the Materials in Extreme Dynamic Environments Data Sci-

ence Cloud (MEDE-DSC) [4], built on top of SciServer, is one such exam-

ple of tools built for harnessing the data revolution in new fields. MEDE-

DSC combines data-science tools with collaborative data sharing, specifi-

cally tailored for the needs of the Materials Domain while addressing the

3



CHAPTER 1. DATA NAVIGATION

strategic goals of the Materials Genome Initiative [5]. As a part of MEDE-

DSC, I developed a computing environment hosted in SciServer consisting

of pre-installed data science tools combined with software popular among

the interviewed materials scientists at JHU’s HEMI and MEDE organiza-

tions. [6] Intended to bypass the set-up and configuration work inherent in

employing data science tools in materials research, the MEDE-DSC plat-

form eventually served as a springboard for prototyping the floating-zone

furnace user-guidance model detailed in Chapter 4.

In summary, this thesis investigates methods meant to bring new, rel-

evant data perspectives to analysts. Chapter 2 describes a molecular dy-

namics simulation platform, where the user is guided towards interesting

protein interactions by the reinforcement learner managing the simulation.

Chapter 3 details an extreme value summary statistics approach to a dis-

tributed top-k elements algorithm. These first two chapters contain dis-

tributed systems built to assist users searching a data field, while the final

two chapters are focused on classifiers directly engaged in data exploration

and navigation. Chapter 4 is an overview of a floating zone furnace clas-

sifier, directing the furnace operator in achieving a stable crystal growth.

Finally, Chapter 5 explains a prototype brain-computer interface system

for navigation of datasets based on human reactions.

4



Chapter 2

Adaptive Exploration for

Large-Scale Protein Analysis in

the Molecular Dynamics

Database

2.1 Abstract

Molecular dynamics (MD) simulations generate detailed time-series data

of all-atom motions. These simulations are leading users of the worlds most

powerful supercomputers, and are standard bearers for a wide range of high

performance computing (HPC) methods. However, MD data exploration

5



CHAPTER 2. MDDB

and analysis is in its infancy in terms of scalability, ease-of-use, and ulti-

mately its ability to answer grand challenge science questions. This demon-

stration introduces the Molecular Dynamics Database (MDDB) project at

Johns Hopkins, to study the co-design of database methods for deep on-the-

fly exploratory MD analyses with HPC simulations. Data exploration in

MD suffers from a human bottleneck, where the laborious administration

of simulations leaves little room for domain experts to focus on tackling sci-

ence questions. MDDB exploits the data-rich nature of MD simulations to

provide adaptive control of the exploration process with machine learning

techniques, specifically reinforcement learning (RL). We present MDDBs

data and queries, architecture, and its use of RL methods. Our audience

will cooperate with our steering algorithm and science partners, and wit-

ness MDDBs abilities to signicantly reduce exploration times and direct

computation resources to where they best address science questions.

2.2 Introduction

Molecular dynamics (MD) simulation [7] is a powerful instrument for

generating a detailed description of biomolecules (e.g., proteins, lipids, nu-

cleic acids). MD uses a computationally intensive numerical integration in

small femtosecond-scale steps to produce spatio-temporal (x,y,z) trajectories

6



CHAPTER 2. MDDB

of atoms positions. Trajectories are analyzed as a high-dimensional dataset

in terms of the possible conformations (i.e., shapes and poses) that a protein

may form.

MD trajectories present a challenging data management problem in that

their processing and analysis pipelines are both I/O and CPU intensive.

Modern MD simulators are amongst the leading GPU applications and can

yield a throughput of 0.1 - 0.3 GB/s per GPU. The ensuing peta-scale dataset

is then analyzed with machine learning techniques (e.g., specialized sam-

pling, graphical models, SVMs, etc) to fit a high-dimensional function de-

scribing protein energetics. For a large 1-million atom protein system, MD

simulations and analyses can take months to years of supercomputer time

to generate a rich dataset for a large protein. Despite their cost, trajectory

data remains extremely valuable for the simulation scientist. All of the

most important biological connections, e.g. drug design, genetics, cancer

screening, relate back to protein shapes and kinetics.

We are developing the Molecular Dynamics Database (MDDB) at JHU

to provide scalable storage and indexing, parallel and incremental query

processing, and rich in-database analysis of MD trajectories. MDDB will

provide a public analysis service for the biophysics and biochemistry com-

munities, and will require novel database methods for its users to ingest,

explore, and extract insights from peta-scale trajectories. In addition to core

7
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database design, our initial efforts on MDDB include multi-scale database

view management [8,9], and as the focus of this demonstration, data-driven

control and scheduling of expensive MD simulations for a closed-loop data

exploration process.

MD simulations sample a proteins possible shapes (or conformations) by

solving a set of dierential equations governing atom motions. Conforma-

tions are associated with free energies in an energy landscape which can be

viewed as a probability distribution over conformations. Thus MD simula-

tion can be seen as a computationally expensive sampling algorithm that

can only be evaluated in batch sequential form. The ensuing probability

distributions are extremely high-dimensional, sparse, and dicult to use in

higher-level analyses such as protein-protein interactions.

A central biophysics task is to derive a Markov chain that compactly

represents a proteins energy landscape and the probability distribution it

denes. This task is solved by an iterative sampling and energy landscape

exploration process. Each iteration consists of a trajectory production step,

and trajectory analysis to both revise the Markov chain and to determine

simulation parameters to perform further sampling and exploration. Tra-

ditionally in MD this is a low frequency, human-in-the-loop iteration. Sim-

ulations are run at long timescales that take weeks or months, and are

followed by equally long manual analyses by domain experts with small-

8
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scale scripting languages, and statistical packages designed for gigabyte-

scale datasets.

MDDB provides a closed-loop in-database control abstraction for high-

frequency iterative exploration that reduces the computational overheads of

costly MD simulations and the experiment management burden. Our focus

is on leveraging query processing techniques to best exploit large multi-

terabyte trajectory datasets in controlling a sampling algorithm, guiding

it to run only interesting simulations in goal-driven fashion. Our adaptive

sampling rapidly constructs a Markov chain that can reproduce an energy

landscape, and our abstraction empowers domain experts to specify data-

driven simulation control mechanisms as queries.

Our adaptive control framework is based on reinforcement learning meth-

ods that learn control policies from a large dataset that is continually up-

dated by short simulation runs. Our novel contributions include incorpo-

rating incremental ETL (Extract-Transform-Load) [10] and query process-

ing methods for efficient data ingestion and scalable policy evaluation over

large numbers of environment states and actions. We will showcase MDDBs

highly adaptive and responsive MD controller and its greatly accelerated

exploration of a complex high-dimensional space of protein structures.

9



CHAPTER 2. MDDB

2.3 MDDB Overview

2.3.1 Trajectory Datasets

MD trajectories are currently represented in two forms in MDDB. First,

as described in the introduction, a trajectory can simply be stored as a time-

series of 3D-coordinates for efficient ingestion. This format matches the

direct outputs of MD simulators, providing a high data loading through-

put. Our second format is analysis-oriented, where we store protein shapes

(called conformations) as a sequence of phi-psi dihedral angles describing

the protein backbone. Figure 1 illustrates a conformation of the alanine

dipeptide protein described using two dihedral angles (φ, ψ). For biological

reasons, dihedral angles marked (*) need not be stored.

Phi-psi sequences are considerably more compact than the raw format.

Furthermore, we can exploit their translation and rotation invariant prop-

erties for query processing. Indeed, phi-psi sequences are popular low-level

features when applying machine learning techniques to molecular datasets.

MDDB represents phi-psi sequences, and their concatenation into tra-

jectories as columnar relations. We currently store all trajectories across

multiple proteins in a single columnar relation, with selective decomposi-

tion into a feature-oriented star schema that stores information across all

trajectories for a specic protein phi-psi sequence. MDDB can apply a wide

10



CHAPTER 2. MDDB

Figure 2.1: Protein conformations in phi-psi space.
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range of analyses on phi-psi values, for example Figure 1 shows analyses

that: (i) identify energy wells by clustering conformations frequently as-

sumed by the protein; (ii) identify pathways (transitions) between these

energy wells; (iii) empirically construct and evaluate Markov chains that

encode transition probability distributions of protein conformations.

2.3.2 Query Workload

MDDB supports two substantially different categories of query work-

loads, one a natural fit for DBMS and a second that requires coupling in-

database functionality with a range of external software components. The

rst category consists of query templates that capture domain-specific ad-hoc

and exploratory science questions, as used in traditional interactive sam-

pling algorithms. These templates compose SPJAG queries, frequently ap-

ply geometric computations, and exhibit varying join degrees and nesting

depth in terms of correlated subqueries. The second workload arises from

data-dependent iterative algorithms that produce substantial quantities of

derived and intermediate data while solving search problems, or in converg-

ing to a fixpoint or termination condition. Adaptive control and its use of

reinforcement learning matches this workload pattern, as well as several

analysis algorithms used internally in MDDB, such as k-means clustering,

MCMC inference and replica exchange (a form of parallel tempering).

12
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Figure 2.2: MDDB system architecture

2.3.3 System Architecture

MDDB uses off-the-shelf software and hardware components to mini-

mize prototyping times through extensive software reuse, and to enable

other bio-physics groups to easily reproduce our setup. MDDB can run

on the PostgreSQL and Greenplum DBMS, with basic processing on pro-

tein systems provided by the MDAnalysis package [11] developed by the

Woolf Lab, and data analysis from the MADLib library. MDAnalysis cru-

cially provides data import and export functionality from the majority of

the popular MD codes, and we use six major MD simulators in-house in our

own trajectory production (CHARMM, Amber, NAMD, Gromacs, LAMMPS,

Desmond). MDDB integrates with job scheduling software, specically Gear-

man, to manage trajectory production and to support highly dynamic de-

grees of parallelism in our iterative algorithms.
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Figure 2 illustrates the setup of our MDDB instance, and its deploy-

ment on our 10 node commodity cluster with approximately 150 cores, 700

GB RAM and 100TB storage capacity. MDDB couples its DBMS with HPC

resources for large-scale trajectory production, and a web application soft-

ware stack to expose a biophysics web service and visualization capabili-

ties. MDDB uses institution-level and national leadership-class computing

resources for trajectory production, including JHUs DataScope system, as

well as XSEDE and PSCs Anton resources. Our DataScope system pro-

vides a substantial oating point capability, with 90 nodes providing Tesla-

class GPUs and SSD storage for pipelined simulation and ingestion. Cur-

rently, we transfer datasets from supercomputer resources synchronously

after simulations, and we are exploring bulk network transfer techniques

to maximize data ingestion efficiency for MDDB from wide-area sources.

2.4 Adaptive Control Framework

MDDB uses reinforcement learning (RL) techniques to control and im-

plement a continuous, adaptive sampling algorithm. Figure 3 illustrates

our adaptive controller as a learning agent which: (i) observes the state of

the environment(e.g., the data collected so far) in order to come up with

an appropriate simulation setup; (ii) interacts with the environment by

14
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Figure 2.3: Adaptive simulation control as a reinforcement learning prob-
lem.

executing different simulations; (iii) observes the reward associated with

performing this action at the current state and the new state; (iv) starts

over. As learning progresses, the agent tries to find an action policy which

maps each state of the environment to the best action available through

statistical prediction and inference on the rewards obtained by performing

different actions at different states. The goal of the adaptive controller is to

maximize the total reward obtained from a sequence of actions over a long

period of time.

2.4.1 Database Support for Reinforcement Learn-

ing

RL problems face several scalability challenges that can naturally be

encoded as and overlap with DBMS challenges. RL scenarios typically op-

erate in environments consisting of an extremely large number of states,
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with unknown stochastic reward and state transition distributions. Thus

RL algorithms often have to memoize and keep statistics over the combina-

tions of states, actions, and rewards encountered in order to support policy

evaluation, improvement and both value function and action-value function

approximation.

DBMS encodings of RL algorithms can benet in the following ways. First,

the RL environment and its states are often dened in terms of transforma-

tions of observations, and are thus derived data. These transformations can

often easily and naturally be expressed through SQL queries. Next, the in-

termediate data and state in RL algorithms can be sizeable, and can benet

from the scalable query processing and indexing provided by DBMS. We be-

lieve this is especially the case for a wide range of policy evaluation and

improvement, many of which can be represented as iterative aggregation

queries. Finally, we can bring to bear a wide range of incremental process-

ing techniques, including advanced view maintenance methods [12] along-

side query processing, to support the online execution of RL algorithms.

This can be particularly fruitful for MCMC-based policy rollout [13] as well

as gradient-based methods [14].

In the remainder of this section we will describe how the MD sampling

and exploration (MDex) problem is dened as an RL problem with an envi-

ronment, actions, and rewards.
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Figure 2.4: Transition between two environment states St and St + 1.

2.4.2 MDex Environment: Conformation Dis-

tribution

We dene the MDex environment as a set of states where each state repre-

sents the data distribution of conformations in phi-psi space. We use sum-

marization of the conformation distribution to manage and to reduce the

complexity of the state space. Specically, we use a histogram to maintain

the visit counts of different regions in the phi-psi space. The current MDex

environment state is simply represented using the histogram as shown in

Figure 4. Our summary data structure is only used internally within the

adaptive sampling algorithm. Up on convergence, we construct a Markov

chain via post-processing of the complete trajectory dataset.
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2.4.3 MDex Actions: Simulation Restart Deci-

sions

For our set of actions, we consider two alternatives that influence the

choice of our learning algorithm and the complexity of the learning process.

Actions span the methods we can apply to select the starting points of MD

simulations in terms of phi-psi values amongst other domain-specific sim-

ulation parameters and inputs (e.g., boundary conditions). For the former,

examples include starting from an energy well, a sparsely populated re-

gion, or a randomly chosen point in the phi-psi space. Our two alternatives

present the exibility of investigating reinforcement learning for MD under

a discrete set of actions, and also a continuous-valued set of actions. Our

actions are implemented as database queries that submit new jobs to our

scheduling software.

2.4.4 MDex Rewards: Quality Improvement of

the Data Obtained After Performing an

Action

The reward after performing an action indicates how much the new tra-

jectory data obtained from the action improves the accuracy of the Markov
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chain in capturing the probability distribution represented by the energy

landscape, and correspondingly the dynamics of the protein. This is done

by measuring how close an MD output trajectory is to a random walk on a

flat energy surface when using an MD simulator with an inverted energy

landscape constructed using obtained trajectory data. The reward of the ac-

tion performed at time t is the accuracy improvement in the Markov chain

between the histogram summary at step t + 1 and step t.

2.4.5 MDex Policy: Solving for the Optimal Ac-

tion Policy

We consider two families of RL algorithms, namely temporal difference

(TD) learning and policy gradient methods. These methods reflect contrast-

ing efficiency and flexibility in their usage, to allow us to investigate the

suitability of RL in controlling sampling. TD learning concentrates on ef-

ficient, low overhead incremental learning and can readily be combined

with prediction function approximation, and we view it as the low-cost

method. Policy gradients present a generalized solution that can apply in

both discrete and continuous scenarios, but involve more heavyweight gra-

dient computations and ensure that actions are chosen within a local neigh-

borhood of prior action. We implement these RL algorithms as user-dened
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functions, with the policy itself implemented as a parameterized query.

2.5 Demonstration Scenario

2.5.1 Demo Setup

Figure 2 illustrates an example setup for our system which handles sim-

ulation jobs, data analysis, control and a web frontend. We plan to show

that our system is capable of delegating computationally intensive tasks

in the pipeline, such as MD simulations and analyses, to other machines.

Specifically, we plan to use JHUs DataScope [15] for simulations and data

analysis tasks. In addition, we will show the use of MDDB with an Anton

machine [16] at the Pittsburgh Supercomputer Center. This is a massively

parallel supercomputer for MD simulations of macro-molecules.

2.5.2 Web Frontend

We will also provide a web frontend interface (similar to the screenshot

in Figure 5) to allow a user to interact with MDDB and monitor the progress

of the adaptive control loop. The user will be able to interact with MDDB by

choosing a protein system from a library of drug design targets, specifying

the number of parallel simulation jobs, and then starting MD simulations.
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Figure 2.5: Web frontend. (A) Protein selection and MD worker allocation.
(B) Progress visualization (density histogram and transition graph). (C)
User mode and starting-point heuristic selection. (D) Environment state
history. (E) Learning history in terms of states, actions, and rewards. (F)
Starting point input.
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Figure 2.6: Generator runs protein simulation programs like Charmm or
Amber. The database stores summarized data-stream generated by MD
simulations. The Reinforcement Learning module examines current sim-
ulation results and redirects simulators toward interesting unencountered
protein states

The progress of the adaptive control loop is shown as a density histogram

and a transition graph. The density histogram discretizes the phi-psi space

into histogram regions and maintains the visit counts for each region across

all MD trajectories. When the dimensionality (the number of phi-psi angles)

is greater than 2, the interface will provide options for the user to choose a

combination of two phi-psi angles from which to plot a density histogram.

The transition graph shows the transition probability distribution for each

energy well discovered so far and the stability of each transition probability

(i.e.,the percentage change in transition probabilities).
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Figure 2.7: Feature Selection User Interface
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Figure 2.8: Goal of MD job is to find stable Markov chain representation
of all protein states and transitions. This is an effective summary of pro-
tein behavior. Also shown is a heatmap/histogram representation of protein
state energy landscape where hotspots are energy wells (low energy states)
that proteins are most likely to reside in.
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2.5.3 Audience Interactions

As a demonstration, our system will provide a rich interactive experience

and allows for different levels of interactions which exposes the internal

logic of the system at multiple levels. The user will be able to interact with

the system in three different user modes.

• Automatic: This mode requires limited involvement from the user

side. In the automatic mode, the adaptive controller learns the best

starting-points heuristic in different situations. Users can monitor

the progress through the density histogram and transition graph.

• Semi-automatic: This mode requires the user to specify the heuristic

for choosing starting points to change it as they see fit by observing the

distribution of the data collected so far using the density histogram

and transition graph. The user will be able to compare their action to

the one that would have been chosen by the adaptive controller in the

automatic mode.

• Manual: This mode requires the user to act as a starting point heuris-

tic by specifying a set of starting points. The system will keep sam-

pling around these starting points until they are replaced by other

points.

To showcase the effectiveness of adaptive control, we will compare the
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Figure 2.9: Web interface allows users to easily start new protein simula-
tions. Ongoing and past simulations’ progress and hardware impact mon-
itored in real-time. Colored bars represent protein simulation execution.
Between each iteration, adaptive control or reinforcement learning module
assesses best way to guide simulation

cumulative reward obtained across user modes.

2.5.4 Demo Takeaways

Our demo will introduce MDDB to the database community, and in ad-

dition to the adaptive control mechanism shown here, will raise awareness

of a large open science dataset (currently at 25TB and growing) that will be

made available for DBMS research at the time of the demo.
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Figure 2.10: MD simulation with reinforcement learning more fully ex-
plores protein state space.
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Extreme Value Summary

Statistics in a Distributed

Top-K Algorithm

Extremely large (peta-scale) data collections are generally partitioned

into millions of containers (disks/volumes/files) which are essentially un-

movable due to their aggregate size. They are stored over a large distributed

cloud of machines, with computing co-located with the data. Given this data

layout, even simple tasks are difficult to perform and naive algorithms can

easily become quite expensive. We present a one pass, communications-

efficient technique useful for both estimating upper order quantiles and se-

lecting the largest k elements across a highly distributed dataset or stream.
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Our novel approach draws its foundations from Extreme Value Statistics

(EVS) to reason about the statistical relationships between the tail distri-

butions of dataset partitions. The tail of each partition is fitted by the Gen-

eralized Pareto Distribution, which captures threshold exceedances. The

obtained parameters are communicated to a central coordinator and used

to estimate quantiles, or solve for a threshold above which there are approx-

imately k elements. We discuss the computational and bandwidth costs of

the algorithm, and demonstrate the accuracy of the method on both a vari-

ety of synthetic datasets and a PageRank dataset.

3.1 Introduction

We present DOT-K, a new communication-efficient algorithm for solving

a two common tasks in distributed data management: (a) estimating the kth

largest element of a data set split over many partitions and (b) subsequently

retrieving the largest k elements. More formally, given any real-valued xr =

f(Ar) function defined on (one or more) attributes Ar of row r in the dataset

Di of partition i, our objective is to accurately estimate the kth largest value

f(k) over all r ∈ D the entire collection of partitions such that the size of the
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result set is equal to a given k,

∣∣f(Ar) : f(Ar) > f(k)
∣∣ = k. (3.1)

Top-k and quantile queries are relevant to a variety of applications, in-

cluding outlier detection and general data exploration. Top-k queries are

commonly executed in all sorts of database environments, many of which

are sensitive to different bottlenecks. The scope of top-k query processing is

reflected in the amount of solutions that cater to specific problem environ-

ment requirements [17]. The Threshold Algorithm (TA), developed by [18]

[19] [20], is a well understood and efficient method of finding the top-k val-

ues of a monotonic aggregation function over row attributes; in the TA set-

ting, the top-k query result will be the largest valued outputs from a scoring

function that takes several row object attributes as input. The TA-style top-

k query has received much attention and has successfully been adapted to a

distributed environment by algorithms such as KLEE and TPUT [21] [22].

Distributed TA-style algorithms are appropriate for a column-partitioned

database where a single object’s attributes may be spread across multiple

partitions, such as a heterogeneous multimedia database where a row ob-

ject’s video data is stored at a different node than its associated image or

text data. In contrast, we examine the top-k query in a highly distributed,
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row-partitioned database system; DOT-K assumes that the data objects

over which a top-k query is made are represented in full at their respec-

tive partitions. Applications where a single, homogeneous dataset must be

split between many parallel nodes are an appropriate use case for DOT-K.

An enterprise network tap, in which logs of company net activity are col-

lected and stored at many distributed locations, would be an ideal setting.

Another example is a top-k query over a scientific dataset row-partitioned

across a large cluster of machines, at a scale where minimizing communi-

cations costs between machines becomes a priority.

We focus on consuming minimal network resources when solving top-

k queries in a highly distributed environment. Let P be the amount of a

dataset containers, or partitions. A naive distributed top-k query would ask

each machine to forward their local partition’s largest k values and subse-

quently sort the P lists to find the global top-k result. The naive solution

is completely acceptable when P or k is small; however, at a large, data-

center scale the network cost of communicating the P local top-k lists and

the computation cost of sorting those lists becomes prohibitive. In DOT-K,

we address these costs by summarizing the tail of each dataset partition

using an Extreme Value Statistics distribution. Instead of communicating

P sets of local top-k lists, each partition forwards the EVS distribution pa-

rameters that describe the local top-k values. The central query coordinator
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then relates the tail distributions of each partition and calculates an esti-

mate for the global dataset’s kth order statistic. Finally, the estimate for

the kth largest value is communicated to all dataset partitions and all val-

ues greater than the kth order statistic estimate are sent back to the query

coordinator.

DOT-K is also communications-efficient at estimating many high-order

quantiles in one query. While not applicable to answering medians or any

quantile query across the board as in Greenwald-style quantile estimation

algorithms, such as those given by Zhang and Wang [23] [24], depending

on the DOT-K implementation choice of local EVS distribution parameter

estimators, the DOT-K method can achieve similar memory and compute

costs as sketch-based quantile estimation algorithms as detailed in Section

3.2.

In Section 2 we examine the necessary Extreme Value Statistics per-

tinent to DOT-K. In Section 3, we present the DOT-K algorithm and our

Threshold Equation. Section 4 outlines our experimental communications

and accuracy evaluations of DOT-K, and we conclude with possible improve-

ments in Section 5.
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3.2 Extreme Values

Extreme Value Statistics (EVS) is concerned with characterizing the tail

distributions, or extreme values, of random variables. EVS has tradition-

ally been used to model extreme environmental phenomena, such as sea

levels or wind speeds, as well as weakest-links in reliability modeling [25].

An area of interest in EVS is modeling a distribution’s random variables

which exceed a threshold. As a top-k query is concerned with the k data ele-

ments which exceed the kth order statistic threshold, points-over-threshold

EVS has a natural application to top-k query processing. An EVS theroem

developed by Pickands, Balkema and de Haan states that the distribu-

tion of threshold exceedences of a sequence of independent and identically-

distributed random variables with a common continuous underlying dis-

tribution function is approximated by the Generalized Pareto Distribution,

and that the approximation converges as the tail threshold rises [26] [27]

[25]. Therefore, for a large class of common data distributions, the k largest

values may be well approximated by a Generalized Pareto Distribution if

the kth order statistic is an appropriately high enough threshold. Picking

a threshold that defines the tail can be a delicate choice; due to a bias-

variance trade-off, a lower threshold results in a worse GPD approximation

while a higher threshold limits the amount of available threshold excee-
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dences leading to greater parameter estimation uncertainty [28]. However

this property bodes well for larger datasets, and benefits DOT-K at extreme

scales. The true dataset tail grows with the dataset size, which affords a

more accurate tail summarization.

In a distributed query setting, we summarize the extreme values, or the

tail, of each partition in order to attain minimal communication costs while

still relate data across distributed nodes. Rather than sending samples of

tail data, the partitions describe their local largest k values by fitting a GPD

and communicating the GPD parameters to the central query coordinator.

The probability distribution function of the Generalized Pareto Distribu-

tion

p(x|ξ, σ, µ) = 1

σ

[
1 + ξ ·

(
x−µ
σ

)]− 1
ξ

(3.2)

is defined by three parameters: the threshold µ, the shape ξ, and the scale

σ. There are several methods for estimating the GPD parameters that best

model a given set of threshold exceedences. A survey of these methods along

with their respective strengths and weaknesses is not within the scope of

this paper. Many authors have approached the subject of GPD parameter

estimation including Pickands [26], Hosking and Wallis [29], Castillo and

Hadi [30], Zhang [31], and Husler [32]. In our experimental implementa-

tion of DOT-K, we use a Maximum Likelihood Estimator based approach

to fit a GPD to each dataset partition’s extreme values. The accuracy of a
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DOT-K query result is entirely based upon the accuracy of the GPD sum-

marizations of each dataset partition tail. We assume an extremely large

distributed dataset with at least thousands of extreme values within each

dataset partition. When fitting 500 or more data elements an MLE-based

method is a proven GPD parameter estimation technique [29].

For a given GPD, one can calculate the threshold level xm that is ex-

ceeded on average once every m observations in the underlying dataset [25].

The threshold level is useful when estimating dataset quantiles. By relat-

ing m to the dataset size, we can solve for order statistics. Coles [25] gives

the formula to solve for the m-observation return level

ζµ

[
1 + ξ ·

(
xm−µ
σ

)]− 1
ξ

=
1

m
(3.3)

where ζµ is the probability of an observation exceeding the GPD threshold

parameter µ, which is estimated by

ζ̂µ =
Nµ

N
(3.4)

where N is the dataset size and Nµ is the number of elements greater

than the GPD threshold µ. Since DOT-K fits each partition’s local largest

k values to a GPD, then the value of ζµ is calculated with Nu = k and N =

ni where ni is the local partition set size. We expand on these ideas and
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generalize them to partitioned datasets.

3.3 DOT-K Algorithm

Our goal is to first estimate the kth largest element of the entire data col-

lection D and subsequently retrieve all elements greater than the estimate.

This is achieved in the following steps:

1. Model the tail distribution of the quantity of interest in each partition

and communicate the results to a central coordinator

2. Using the GPD fits from all partitions, solve for a global threshold that

is expected to yield the largest k elements

3. Query the partitions with a global threshold and return all elements

that exceed the limit

The rest of this section is concerned with obtaining the global threshold,

the local strategies and analysing the communication requirements of the

algorithm.

3.3.1 Global Threshold

For each partition i, the coordinator knows not only the GPD parameters

but also the number of elements {ni} with which in hand, it can estimate
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the tail distribution of the entire collection, D=∪Di. For that we obtain the

m-observation exceedance equation

p∑
i=1

ni ζµi

[
1 + ξi ·

(
xm−µi
σi

)]− 1
ξi

= k (3.5)

which simply states that the total estimated number of exceedances above

the global threshold xm is equal to the requested number of elements, k,

cf. Eq. (3.3). This one-dimensional equation can be solved numerically using

standard off-the-shelf procedures. We note that the interval on which xm

is defined is determined from individual fits that each limit the possible

values. Depending on the shape parameters the contraints can bound from

both sides. In practice, this is not a limitation but a way to better initialize

the numerical solvers.

It is worth pointing out that if any one of the nodes fail to deliver their

estimates due to a temporary outage, the coordinator can obtain a global

threshold by simply ignoring the missing partitions. This estimate will be

more generous than the true solution would have been in the sense that

using the obtained threshold on the entire collection would simply return

more than the expected number of elements. If the failed partition comes

back online for the second pass when the actual selection is performed, the

result of the query is still going to be correct at the expense of a few more
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communicated data elements.

3.3.2 Quantile Estimation

DOT-K is easily adapted to high order quantile estimation. Once the lo-

cal GPD parameters are collected at the central coordinator, Eq.(3.5) may be

used to estimate order statistics greater than the original kth order statis-

tic by varying k in the equation, at no additional communications cost for

queries concerned with the state of the dataset at the time of local GPD

parameter collection. Further queries on a stream with an updated un-

derlying dataset require a refresh of the local GPD parameters and a new

round of communications.

Quantile DOT-K, if implemented with the more inaccurate but compu-

tationally light Method of Moments [33] GPD parameter estimation al-

gorithm, need only track local dataset mean, variance, and size at each

distributed partition or stream. While local partition compute and mem-

ory cost associated with maintaining these basic statistics would be sig-

nificantly less than a summary data structure based quantile algorithm,

DOT-K query error would undoubtedly increase from the worse Method of

Moments technique [33]. Future work includes further experiments with

different GPD parameter estimation techniques in order to optimize DOT-

K’s local compute and memory costs while maintaining query accuracy.
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3.3.3 Local Strategies

Like several other distributed top-k algorithms, at each node DOT-K as-

sumes either sorted access to the local partition data [17]. If sorted access

is unavailable, a linear scan is performed to find each partition’s local top-k

values.

In an online distributed stream setting, DOT-K requires summary statis-

tics maintained over the local streams in order to keep up-to-date GPD

parameters describing the local tail. For the more accurate but computa-

tionally expensive parameter estimators, such as Maximum Likelihood, a

length k priority queue data structure maintaining each local stream’s top

data elements is needed in order to obtain accurate GPD parameters at the

time of a top-k query.

However, there may be ways to estimate the GPD fit in each partition

using approximate sub-linear algorithms. Wu and Jermaine have discussed

an approximate Bayesian method to predict the extreme values [34]. The

method is based on the observation that the expected value of the k-th

ranked element out of N samples is the (k)-th value out of n sub-samples,

where k/N = k/n. One can generalize this technique to compute the GPD

fit from a small subset of the approximate top ranked (e.g. k = 10, 50, 100)

elements. One can also include a few extra elements for redundancy and

validation of the fit. This can provide an additional speedup of the other-
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wise liner scan of the partition data. We need to explore further that given

a sub-sampling rate what subset of the ranks is optimal for the estimating

the GPD parameters.

3.4 Experiments and Discussion

We run and discuss two separate sets of experiments in order to evaluate

the performance of DOT-K. Our first experiment investigates the commu-

nication costs and overhead incurred by DOT-K in a distributed computing

environment; the second experiment gauges the quality and accuracy of

DOT-K queries at scale over a variety of datasets in a pseudo-distributed

environment.

3.4.1 Communication Overhead

DOT-K exhibits minimal communication costs. There are four series of

messages between the query coordinator and the dataset partitions. DOT-

K starts with a message from the coordinator to the partitions containing

the query details, namely, the value for k. After the P partitions calculate

the local top-k values and the GPD fits, each partition communicates the

three GPD parameters and local partition size to the coordinator. Next,

the coordinator forwards the kth order statistic estimate to the partitions,
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and finally the partitions send the estimate exceedances to the coordina-

tor. Therefore, there are a total of 4P messages with a total of 6P + k̂ real

values transmitted, where k̂ is the count of estimated kth order statistic

exceedances.

When used to estimate high-order quantiles, DOT-K requires even less

communications between nodes. The query starts with a request from the

coordinator to the distributed partitions, and communications are finished

when the partitions forward the locally fitted GPD parameters back to the

coordinator. With a total of 2P messages containing a few real values each,

the coordinator may estimate any order statistic greater than the kth order

statistic.

3.4.1.1 Message Count Experiment Setup

The goal of this experiment is to empirically evaluate our predicted com-

munication costs of DOT-K, for both computing a quantile and a top-k query

over a partitioned dataset. We implement DOT-K on Apache Storm [35], an

open source distributed stream processing engine currently in use by many

industry members including Twitter [36]. Storm treats a distributed pro-

gram as a directed graph, with computation happening at graph nodes and

data transfer along graph edges. DOT-K is ideally mapped to the Storm

distributed computing model: there is a node for each distributed dataset
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partition, or incoming stream, and there is a central coordinator node that

receives the partition summaries, then estimates the kth order statistic and

broadcasts that threshold back to the partition nodes. Each Storm node logs

whenever it emits or receives messages to and from other nodes; from these

logs we recreate all node-to-node messages, and quantify the communica-

tions costs incurred by DOT-K.

We deploy eighty Storm workers, or computation nodes, spread over

twenty Amazon AWS EC2 ’m1.medium’ instances. We simulate a streaming

environment by randomly scattering the dataset among the nodes and con-

structing a Storm ’spout’ to emit the data values one by one. Each node runs

a Storm computation ’bolt’ that maintains a priority queue of the largest-

valued data elements emitted from the stream and estimates local GPD pa-

rameters with data held in the priority queue. Note that even if two nodes

reside on the same instance, they still communicate using the Storm mes-

sage service and the communication will be logged and counted in our eval-

uation. The experiment records the total number of individual messages

sent between computation nodes during the course of both DOT-K quantile

and top-k queries executed at scale varying between ten and eighty nodes.

Figure 3.1 shows the global message count associated with executing DOT-

K at a given parallel scale.
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Figure 3.1: Machine-to-machine communications sent during DOT-K
query executions

3.4.1.2 Message Count Discussion

Shown in Figure 3.1, it is clear that total message count per query grows

linearly with parallelization, or partition count. In the previous section, we

calculated that there would be one round of messages, or 2P necessary mes-

sages, in order to estimate high order quantiles and two rounds of commu-

nication, or 4P necessary messages, in order to obtain a top-k query result.

However, the experiment shows a slightly higher message count than what

was estimated; upon inspection of message contents, we found the extra few

communications to be overhead incurred by Storm’s fault tolerance and reli-

ability features. Had we disabled the guaranteed message passing features
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or not counted them in the total message count, the results would match

our predictions more exactly. Regardless, we show DOT-K communication

cost trends to be minimal for distributed quantile and top-k queries.

Note that the size of the contents of each message is less than a dozen

real-valued numbers, with the exception of the final batch of messages dur-

ing a top-k query in which each dataset partition sends the data elements

greater than the kth order statistic back to the coordinator to form the top-k

result; these messages contain, on average, k/P data elements.

3.4.2 Query Accuracy Evaluation

Our experimental goal is to discover any error trends and determine the

practicality of scaling DOT-K on a variety of datasets. While the Pickands-

Balkema-de Haan theorem states that the GPD is a good approximation of

threshold exceedances, it is important to show the accuracy of this summa-

rization method in practice. We implemented a pseudo-distributed version

of DOT-K to evaluate the quality of top-k query results.

Our experiments show the relative error of DOT-K as we increase the

number of dataset partitions. The number of elements of each partition is

constant; as we increase partition count, the global dataset size grows as

well. If we had kept global dataset size constant while increasing partition

count, GPD approximation of partition tails would become worse as parti-
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tion size decreased and we would be unable to show how partition count

alone affects DOT-K accuracy.

We demonstrate DOT-K on datasets with several different partitioning

strategies. While some databases are partitioned randomly, many applica-

tions partition datasets on some criterion and it is restricting to assume ev-

ery dataset will have identically and independently distributed data across

partitions.

The relative error metric we use is described in equation 3.6. k̂ is the

top-k query result from DOT-K, and is the set of dataset values that exceed

the estimated kth order statistic.

δk =

∣∣∣∣∣k − k̂k
∣∣∣∣∣ (3.6)

3.4.2.1 Synthetic Datasets

We evaluate DOT-K on synthetic datasets consisting of real-valued ran-

dom variables drawn from a randomly partitioned exponentially distributed

synthetic dataset. DOT-K relative error results were obtained from the av-

erage of twenty executions on datasets generated with the same distribu-

tion parameters but different random seeds. For these experiments, k is

1,000, partition size is fixed to 300,000 data elements, and the partition

count ranges from 1,000 to 10,000.
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Figure 3.2: Relative error at large scale on a randomly partitioned expo-
nentially distributed synthetic dataset.

Figure 3.2 shows DOT-K relative accuracy at high scale with partition

counts from 1,000 to 10,000.

3.4.2.2 Berkeley PageRank Dataset

We evaluated DOT-K on the Berkeley Amplab Big Data Benchmark PageR-

ank dataset [37] in order to test our method on a somewhat common ap-

plication: finding the k highest ranked websites. The Berkeley PageRank

dataset is based on the distributed system analysis benchmark work done

by Pavlo et al [38] and consists of approximately 90 million URLs associ-

ated with their respective rank. For these experiments, k is set to 1,000,

the amount of partitions ranges from 100 to 1,000, and the partition size is

set to 90,000 URL-PageRank pairs. We run accuracy experiments on two
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versions of this dataset: randomly partitioned and biased partitioned. For

the randomly partitioned PageRank dataset we shuffled the data elements

randomly over each partition. The biased partitioning scheme consists of

simply ordering the data elements as we obtained them from the Berkeley

Benchmark download; upon inspection, it is clear that chunking the original

dataset, in order, produces partitions with very different tails. This unde-

fined, but clearly biased, partitioning scheme is useful in simulating a real

world practical query, as data is not always independently and identically

distributed.

We ran experiments on two partitioning schemes of the PageRank dataset.

Figure 3.3 shows average relative error of running DOT-K over twenty dif-

ferent random partitionings of the PageRank dataset. In this experiment,

the data across partitions is independent and identically distributed.

Figure 3.4 shows the relative error of DOT-K executed on the PageRank

dataset in the same state in which we obtained it; that is, partition data

is differently distributed between partitions and there is a clear bias of ex-

treme values concentrated in a few partitions. This experiment shows the

result of one execution of DOT-K over a single PageRank dataset with a

biased partitioning scheme.
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Figure 3.3: Relative DOT-K Error on a PageRank dataset with a random
paritioning scheme.

Figure 3.4: Relative DOT-K Error on a PageRank dataset in which extreme
values are concentrated in few partitions.
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3.4.2.3 Accuracy Discussion

DOT-K exhibits two trends between error and partition count. The error

on the PageRank and exponentially distributed datasets either tails off to

a limit or is too low to show any certain trends. However, error generally

rises with partition count, likely due to the rising cumulative GPD fit uncer-

tainty. Each GPD fit to local partition data has at least some small amount

of error in its description of the real data; as partition count rises and more

GPD parameter sets are involved in the DOT-K estimate of the global kth

order statistic, there is both a greater cumulative amount of GPD fit error

and a greater kth order statistic estimate error.

Surprisingly, DOT-K showed less overall error on the biased partitioned

PageRank dataset than the randomly partitioned PageRank datasets. DOT-

K executed on the biased partitioned PageRank data resulted in error too

small to show any real trend. The nature of the biased partitioning may

have aided DOT-K; in the unaltered PageRank dataset, URLs with outlier

ranks were concentrated to few partitions. The DOT-K global threshold

equation estimates that the many partitions with lesser tail distributions

would not contribute any elements to the top-k query result. Partitions

with maximum data values less than the largest threshold GPD parameter

will not be represented in the global top-k query result, and may be pruned

away. Therefore, DOT-K only needed to relate few partitions, meaning less
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cumulative GPD fit error represented in the kth order statistic estimate.

This property benefits applications in which the data is not randomly parti-

tioned; DOT-K error scales with the amount of partitions that are estimated

to contain elements belonging to the query result.

3.5 Conclusion

DOT-K shows promise as a communications efficient distributed top-k

elements algorithm. By summarizing the tail distributions of dataset parti-

tions, DOT-K pushes computation out to distributed nodes in order to con-

serve bandwidth usage; only the query, GPD parameters, kth order statistic

estimate, and global top-k elements are communicated. Due to Pickands-

Balkema-de Haan Theorem, the Generalized Pareto Extreme Value Distri-

bution becomes more effective at describing dataset tails as the dataset size

increases. DOT-K will become more useful as datasets grow larger and the

desired k largest values are numerous enough to otherwise incur substan-

tial bandwidth and sorting cost.

There are several improvements to be made to the DOT-K algorithm.

Firstly, the accuracy of the entire method rests on the quality of the GPD

parameter estimation at each of the dataset partitions. Numerous publica-

tions examine the quality of GPD parameter estimators, and several new
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methods given by Zhang [31] and Husler, Li, and Raschke [32] combine

the favorable qualities of different estimators. Performance would benefit if

these methods provide a better or faster GPD fit. Secondly, we would like

to experiment with different methods of reasoning about the relative tail

distributions of the dataset partitions. Pruning away partitions estimated

to not contribute to the top-k result is a start, but further inferences on the

relationships between partition tail data may be possible. Finally, we would

like to experiment with sublinear sampling techniques when fitting GPDs

to partition tails. Currently DOT-K requires each partition to perform a

linear scan to find the local top-k values; if a GPD could describe a sample

of a partition tail without a significant loss of overall accuracy, the overall

performance of DOT-K would benefit.

Hello, here is some text without a meaning. This text should show what

a printed text will look like at this place. If you read this text, you will

get no information. Really? Is there no information? Is there a difference

between this text and some nonsense like “Huardest gefburn”? Kjift – not

at all! A blind text like this gives you information about the selected font,

how the letters are written and an impression of the look. This text should

contain all letters of the alphabet and it should be written in of the original

language. There is no need for special content, but the length of words

should match the language.
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Chapter 4

Real-Time Floating-Zone

Furnace User Guidance via

Image Segmentation and Object

Classification

The optical floating zone technique is widely used to prepare high purity

materials in single-crystal form, helping enable fields ranging from quan-

tum materials to modern electronics and optical devices. Here we demon-

strate that machine learning methods, specifically deep neural networks,

can be used to efficiently, and in real time, segment video frames during

growth, identify the size and shape of the molten zone, and classify its
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stability. Transfer learning enables rapid, effective model training to dis-

criminate between three common zone stability modes with under 1000

manually labeled training artifacts. Sustained drops in model confidence

effectively indicate transitions between modes and enable operator inter-

vention to restabilize the growth. Further, we demonstrate that this model,

trained on labeled images from one materials family, effectively identifies

zone transitions during growths of a second, distinct class of materials, i.e.

the ML/AI methods obviate the need for per-material training. Our results

pave the way to effective acceleration and automation of the synthesis of

new, functional materials by the widely used floating-zone method.

4.1 Introduction

Science and engineering research and applications depend on a wide

range of data. Recent advances in machine learning (ML/AI) provide multi-

ple methods to accelerate reduction and use of image information (e.g. [39]

[40]). Fast ML/AI models hold particular promise for providing real-time

feedback, optimization, and instrument control during complex experimen-

tal processes. Instance segmentation, the process of correctly detecting and

precisely identifying different objects within an image, is a critical step in

advanced analysis of image data, but is often complicated by the lack of
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suitable quality and quantity of application-specific training data. In this

report we provide both the trained ML model and open release of the asso-

ciated dataset as components of materials data infrastructure required for

data-driven materials science (c.f. [41] [42]).

The optical floating zone (FZ) technique is widely used in the prepa-

ration of functional materials. It is a specific instantiation of directional

solidification, in which material crystallization occurs in one direction at a

well-defined solid liquid interface. As a crucible-less technique, FZ methods

are known for the ability to prepare materials of exceptional purity and uni-

formity that when combined with traveling-solvent methods are applicable

to a wide range of inorganic solid state materials [43]. With this versatility,

however, comes significant complexity; the attributes of the grown material

depend not just on the input chemical stoichiometry and general thermody-

namic conditions (e.g. temperature, pressure, gas fugacity), but on kinetic

factors, including mass transport and fluid flows in the molten material,

driven by a combination of instrument controls, pressure/temperature gra-

dients, and physical properties (e.g. thermal conductivity) of the growing

material itself. This complexity, combined with the opaque interdependence

of control variables, has impeded both the broader use in growing new ma-

terials and automation of growth of known materials except in cases where

the same material is being grown many times, at scale, when the benefit of
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automation can finally outweigh the significant costs.

The FZ technique, therefore, provides an important application of re-

cent advances in machine learning to accelerating scientific discovery. Here

we report the development of a robust, instance-segmentation model for

molten-zone geometry in a laser-diode, floating zone furnace. This model

provides a route to real-time modeling of the synthesis of single crystals

central to the development and production of novel electronic and optical

materials. Modern instance segmentation, such as Faster R-CNN, relies

on composite systems linking a region-position network with an object de-

tection network [44]. In this study, we utilize the state-of-the-art Mask

R-CNN system that adds predictive segmentation masking on each region-

of-interest by implementing a fully convolutional network in parallel with

Faster R-CNN’s classification branch and bounding-box regression [45]. Au-

tomated and robust instance segmentation opens up not only the possibility

of accelerated and partially automated FZ growth of new materials, but also

provides a foundation on which to develop techniques to extract chemically

meaningful information from optical imagery data.
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4.2 Results

The top row of Figure 4.1 shows representative images of the three

molten-zone classes identified for segmentation in this study. In each class,

the molten-zone is the white and gray shaded region between the pink and

orange. The molten zone is suspended between the varicolored feed rod

above and the crystallized seed below. From left to right these molten zones

are classed as a steady-state, stable growth (”stable melt”), a progressively

unstable melt due to excess seeding rate from crystal rod extraction (”fast

bottom”), and a progressively unstable melt due to excess feeding rate (”fast

top”). The lower row of Figure 4.1 shows three similar molten zones with

the region of interest outlined in a green dashed line and the mask in red

as identified by our deployed ML model. We use the traditional model con-

fidence ranking of He, et al. [45] which purports to be a measure of class

match quality, but as such also incorporates aspects of mask fit quality. Note

how closely masks fit the molten zone for these examples with model confi-

dences ranging from 0.65 to 1, this despite the realization that in some ap-

plications the mask fit is poorly measured by these confidence rankings [46].

For comparison, Figure 4.2 shows an example of a labeled training image

where the mask was created by manually marking coordinates along the

outer edge of the molten zone. Masks, including those in Figure 4.1, are

56



CHAPTER 4. PARADIM

Figure 4.1: The top row are examples of the three boron carbide floating
zone classes used to train the Mask R-CNN model. From left to right, ”sta-
ble melt,” ”fast bottom,” and ”fast top.” The bottom row shows regions of
interest (dashed green rectangles) with model confidences noted and masks
(red highlight) identified by the model for representatives of each class.

created by the trained model in under one second when deployed on CPU

architecture and approximately 15 times faster with a single GPU.

4.2.1 Training Regimen Comparisons

Training configuration details have a direct effect on model performance.

First-order hyper-parameter and model pre-training were tested to balance

training efficiency with model accuracy and precision given the inherently

small training set available.

In the Matterport Mask-RCNN implementation used in this study, train-

ing length comprises of the number of epochs multiplied by the number of
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Figure 4.2: Typical training image with a manually outlined molten-zone
mask and identified class for the ”fast bottom” class. 990 floating zone im-
ages were labeled for the training

steps per epoch [47]. Typically, one epoch is considered one full iteration

over the entire training set, with steps per epoch being equal to the num-

ber of training set elements. However, to shorten training, one may set

the steps per epoch to less than the size of the training set and randomly

sample members of the set when training. Figure 4.3 shows the results of

increasing training steps when using eight training epochs. Note that even

for the short training regimens in this example we see the start of model

convergence and diminishing returns on training beyond 200 steps. For

this reason we limited further model development to 200 steps per epoch.

Figure 4.4 compares training of the entire network to only updating

trained weights in the first layer (commonly referred to as training the net-

work heads) all while training atop pre-trained networks. Figure 4.4 also

shows the the sensitivity of observed model convergence to the number of
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Figure 4.3: Training steps per epoch on model average precision. Each
data point is the average performance of ten models, one model for each fold
of the 10-fold cross validation split of the training data. The error bar rep-
resents one standard deviation in each direction of the ten models’ Average
Precision score when applied to the separate test set. AP50 is the average
precision with a mask Intersection-over-Union threshold of .5, AP75 is the
same with a IoU threshold of .75, and AP50:.05:.95 is the average of the all
AP scores taken with IoU thresholds from .5 to .95 in .05 increments. As
we take more steps for training, our models not only score better but are
more consistent between cross-validation folds. No evidence of over-fitting
is shown yet at these training lengths, however AP performance does start
to plateau starting at 200 steps per training epoch as the models start to
converge.
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training epochs. We note that a single 200-step training epoch of updating

network heads took approximately 3 minutes compared to a 5 minute epoch

when updating the entire network. More importantly, training the entire

network leads to only marginally improved model convergence. Given the

extra time cost and statistically insignificant benefit, it is clearly valuable

to train only the network heads and employ transfer learning when us-

ing small, sub-thousand-element training sets, as commonly encountered

in the materials sciences where the cost per labeled training artifact is non-

negligible.

In Table 4.1 we report performance differences found between the two

pre-trained network weights utilized in this study, the ImageNet Large

Scale Hierarchical Image Database [48] and the COCO, Common Objects in

Context large-scale, object detection, segmentation, and captioning dataset

[49]. Both COCO and ImageNet are integrated within the Matterport Mask-

RCNN implementation [47]. Note that each AP score reported in Table 4.1,

along with every AP score reported in this study, consists of the average

scores of 10 models each trained on a different cross-validation fold of our

floating zone dataset. We also report one standard deviation of the AP per-

formance of those 10 models. We found that with identical training con-

figurations the COCO pre-trained network consistently scored a few points

better than the ImageNet weights, although the performances are within a
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Figure 4.4: Comparison of model training of only first-layer weights (net-
work heads) of the R-CNN or additional training to update weights of the
entire network. In each result presented here transfer learning is employed
and derived from pre-training. Not shown in this figure is the additional
training time cost of allowing updates to the entire network; on average,
training just the network heads took 58% as long as training the entire net-
work. Similar to the results shown in Figure 4.3 there is a decrease in model
variance and a slight increase in average precision as the number of train-
ing epochs increases. Full network training gives only marginal benefit in
performance and variance compared to training only the network heads.
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Table 4.1: ImageNet vs COCO Pre-Trained Networks Effect on Average
Precision

Network/Epochs AP50:.05:.95 AP75

ImageNet/12 0.53 ±0.13 0.52 ±0.09
COCO/12 0.54 ±0.07 0.52 ±0.08
ImageNet/16 0.57 ±0.11 0.55 ±0.09
COCO/16 0.58 ±0.09 0.58 ±0.07
ImageNet/20 0.56 ±0.12 0.57 ±0.08
COCO/20 0.59 ±0.08 0.56 ±0.05

standard deviation of one another. The variance of the COCO scores is also

slightly lower, however, suggesting a faster model convergence.

All of our evaluations consistently show significantly higher AP50 scores

relative to AP75 and AP50:.05:.95 scores. The difference in scores is due to

the model-produced mask quality relative to the ground truth annotations;

strong AP50 scores indicate that the floating zone ”stable melt,” ”fast top,”

and ”fast bottom” classifications are accurate, but raising Intersection-over-

Union thresholds from 0.5 to a more stringent 0.75 results in a portion of

AP50 True Positives being counted as AP75 False Positives. Therefore in

order to improve AP75 and AP50:.05:.95 scores relative to AP50, one must focus

on actual improvements by tuning mask quality.

4.2.2 Model Usage in Practice

The speed of our model facilitates deployment in two, distinct applica-

tions: 1) classification of archived floating zone data, and 2) real-time clas-
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sification of current floating zone melts in the PARADIM streaming-data

platform [50].

Figure 4.5 shows application of the model to video data spanning 3 months

of work and including over 825,000 frames on the laser-diode furnace. Fig-

ure 4.5 depicts molten-zone classifications, but also contains blank areas

representing clusters of frames that the model was unable to classify; many

of these blank sections are expected since the archived video includes warm-

up and spin-down portions of experiments which either lack molten zones

or include geometries outside our currently trained classes. Classifications

with confidence scores below 0.3 are considered as non-classified or unrec-

ognized frames and so dropped from the plot.

There is a clear relationship between time and molten zone class shown

by grouping of colors, supporting the validity of our trained model. Within

those groupings are multiple ’V’-like patterns associated with transitions

between molten zone classes. These patterns are drops in model confidence

during transitions caused by a lack of transitional melt-geometry classes.

While improving recognition of geometries during transitions would be pos-

sible with appropriate training, the current model’s sustained drop in con-

fidence is itself an effective alert to developing changes in molten zone-

geometry state.

Towards the end of each chunk of classified frames there are sudden
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drops in confidence and consistent recognition of non-stable melt classes.

These sections are the end of individual growth sessions where the growth

becomes unstable and separates. Our model is able to recognize these shifts

as the furnace is spooled down.

Further, all materials represented in these historical data are chemically

distinct from that used in the model training. This demonstrates one of the

most important benefits of ML/AI over other automation techniques: gen-

erality, without needing per-material training, and, indeed, without even

knowledge of what material is being grown.

Additionally, application of our trained model creates value from archival

data by producing insights that the data was not originally collected to pro-

vide. Specifically, figure 4.5 includes 240,000 ’stable melt’ classifications

with an average confidence score of 0.65, 40,000 ’fast bottom’ classifications

with average confidence of 0.6, and 12,000 ’fast top’ classifications with av-

erage confidence of 0.5. These data give a previously unknown overview

showing that working in collaboration with FZ specialists is highly effec-

tive as ∼82% of growth time operates in a stable molten zone mode. It also

shows that times of unstable melts are dominated by over-rotation of the

growing crystal (∼14% of all experiment time classed) and over-rotation of

the feed rod is uncommon (∼4% of experiment time).

In addition to retrospective insights, the model is also usable to guide
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and accelerate identification of optimal growth conditions. Figure 4.7 is a

screenshot of a user dashboard used during FZ sessions and an example of

this second application. On the left side of the dashboard is a display of live

video frames from the furnace with overlays of molten zone masks created

by our deployed model. On the right side a scrolling plot of model-confidence

versus time is colored by object class providing the experimentalist with

up-to-the-second feedback on melt condition. These plots alert the experi-

mentalist of a need to modify furnace parameters when model confidence in

classification dips.

4.2.3 Labeled Training Data

An important outcome of this study is production and publication of a

labeled training set for those seeking to reproduce or create their own mod-

els. To train our model we produced a dataset of 990 class-labeled, polygon-

annotated images with 330 examples per class. In the dataset, each image

is: 576x432 pixels, with a size of 729 Kb. Every training image has a paired

.json file containing the pixel coordinates of the labeled molten zone polygon

created. The dataset is published [51] and freely available with the public

DOI: https://doi.org/10.34863/41cn-4361.
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Figure 4.5: Classifications and confidence scores of 825,000 archived float-
ing zone frames. Blue denotes frames classified as ”stable melts,” red are
”fast bottoms,” and orange are ”fast tops.” Blank areas represent model-
unrecognizable frames. The frames are ordered sequentially by time stamp,
however this large dataset encompasses numerous growth sessions stitched
together. These data represent multiple growth attempts for three materi-
als, all of which are distinct from the material utilized during model train-
ing.
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Figure 4.6: A detailed view of one of the growth sessions depicted in Figure
4.5. Note the dip in model confidence as the growth transitions between
states. At the end of the session the melt becomes unstable and disconnects;
the model recognizes the start of this event as unstable states.
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Figure 4.7: Screenshot of the live online dashboard prototype. Updating
once per second, the dashboard displays the current growth state with a
classifier-produced mask on top. Also displayed is a graph showing the re-
cent (1 hour) history of the current session, with the y axis being classifier
confidence and the color being the classifier-detected class of the growth.
Depicted on the right is the history of a user manipulating the growth
into a different state, with the classifier recognizing this transition between
classes over time as the color (class) of the live updates change from blue to
orange (”stable melt” to ”fast top”)
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4.2.4 Conclusions and Future Work

Development and training of a deep neural net in instance segmenta-

tion of FZ molten zone geometry provides unprecedented speed and accu-

racy to evaluate and classify experiment state. Application of the model

provides immediate feedback to experimentalists charged with producing

high-quality single crystals during time-limited usage of PARADIM facili-

ties. The model is an effective means to derive insight from the complexly

encoded Big Data comprising years of archived video of FZ synthesis. The

model is a foundation for future work to deconvolve the high-latency re-

lationships between furnace parameters and molten zone geometry as a

basis for developing automated synthesis and perhaps optimization of crys-

tal quality. Even though we demonstrate that an effective model may be

constructed with small amounts of training data, we do not discount the

value of expanding the training dataset. Driving down the cost of creat-

ing more training data is essential, and making use of technology such as

Google’s Fluid Annotation [52] could dramatically reduce such labor costs.

We are currently expanding our training set, applying the technique to the

full wealth of historical data from expert and non-expert growths, and ex-

ploring hyper-spectral imaging to improve model performance and capabil-

ity.
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4.3 Methods

The model was trained on data collected from boron carbide single crys-

tal growths as described by Straker et al. [53]. The historical data of figure

4.5 corresponds to data collected during growths between November 2019

and February 2020. All image data were collected from PARADIM’s tilting

laser diode floating zone (TiltLDFZ) furnace (Crystal Systems Inc FD-FZ-5-

200-VPO-PC) with 5 200 W GaAs lasers (976 nm), utilizing the real-time

data pipeline built on custom-built, open sourced tools [54]. A notch fil-

ter to suppress laser contamination of image data was used. Frames were

cropped before labeling or classification. Instance segmentation utilized the

Mask R-CNN framework [45] trained using the manually labeled dataset

described below. Mask R-CNN is a deep neural net that extends Faster

R-CNN by incorporating a branch for predicting segmentation masks on

each region of interest (RoI) in parallel with the existing branch for clas-

sification and bounding-box regression. The mask branch is a small, fully

convolutional network which when applied to each RoI predicts pixel-by-

pixel masks. This mask branch adds a small overhead, but Mask R-CNN

remains similar in implementation and training to the widely used Faster

R-CNN framework [45]. For this study, we utilized the freely available Mat-

terport implementation of Mask R-CNN [47]
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4.3.1 Dataset

With the goal of recognizing awry floating zone states, we created a

training dataset for the Mask R-CNN learner. Building a Mask R-CNN

model to identify new objects, or classes of objects, requires training and

tuning with annotated image examples of each new object. For the reported

model, we identify three basic classes of molten zone: ”stable melt,” ”fast

bottom,” and ”fast top”. The ”stable melt” class refers to a stable molten

zone geometry capable of sustaining growth without modification. Classes

labeled ”fast bottom” and ”fast top” embody unstable molten-zone shapes

that occur when the top or bottom shafts of the furnace translate too quickly.

When recognized, these unstable states can be converted to stable geome-

tries by small corrections of shaft speeds. Our study focused on training

using data from the synthesis of large, single-crystal boron carbide [53] in

a laser-diode furnace where only these three classes dominated states.

To create an effective training set, we recorded live footage of the molten

zone while manipulating the furnace to evoke the three class states. In the

floating zone training experiment, we collected 600 frames ( 10 minutes) of

each class as an expert operator alternated from stable to unstable states.

Video clips were sliced into JPEG frames at 2 second intervals and sorted

into classes by PARADIM experts. Images were ”landmarked” with pixel

coordinates outlining the relevant molten-zone using LabelMe [55,56].
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4.3.2 Training Methods

Prototype models showed some success at classifying molten zone states,

but suggested training regimen and model evaluation experiments to relate

performance data to model accuracy. Here we report method details and

explain concepts fundamental in training and measuring performance.

4.3.2.0.1 HYPER-PARAMETER TUNING

The Mask R-CNN framework provides a number of options that con-

dition the effectiveness of the trained model. Variation of these hyper-

parameters, within the Config class of the Matterport implementation [47],

can lead to significantly different model performance despite training on

the same dataset. Many of these hyper-parameters are straighforward op-

tions determined by the properties of the training data, but some train-

ing parameters benefit from tuning in an experimental fashion. We evalu-

ated hyper-parameter tuning of the number of training epochs, number of

training steps taken per epoch, training network heads versus training the

entire network, and making use of pre-training with either the ImageNet

Large Scale Hierarchical Image Database [48, 57] or the COCO, Common

Objects in Context large-scale, object detection, segmentation, and caption-

ing dataset [49].
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4.3.2.0.2 TRANSFER LEARNING

Our molten zone learner utilized pre-trained network weights from the

COCO and ImageNet datasets provided in the Matterport implementation

[47]. This transfer learning pre-encoded general object recognition into the

network to compensate the small size of our training dataset and reduce

the number of required training epochs. This provided a substantial speed

gain compared to training a bare model. He et al. [45], for example, needed

over 44 hours of training on eight GPUs for a dataset of 120,000 images. In

contrast, our training regimen is two orders of magnitude less time inten-

sive while run on a single GPU. Recently, He et al. have evaluated the value

of pre-training in instance segmentation and recommend it when working

with a dataset less than 10,000 elements. [58]

4.3.2.0.3 k-FOLD CROSS-VALIDATION

Cross validation is a method of resampling training data to reduce bias.

The method also maximizes the size of the training while still reserving

a validation set from the complete training set. We specifically apply k-

fold cross-validation to more accurately show the effect of the Mask R-CNN

hyper-parameters on the trained model fitness. [59]

In k-fold cross-validation, one partitions the labeled training data into k

subsets of equal size. For each subset, a model is trained with that subset
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serving as the validation set and the rest of the labeled data as the training

set. Each of the k models are evaluated for fitness and their resulting scores

are averaged together. The advantage of this method of cross validation is

each piece of labeled data equally serves as validation data exactly once and

as training data k − 1 times.

For our evaluations we use 10-fold cross-validation; each of the 10 folds

of our dataset reserves 810 labeled images as training data and 90 as valida-

tion. Our test set is separate from the cross-validation training/validation

sets and consists of 90 images.

4.3.3 Evaluation Method

Given a hyper-parameter selection, we train a separate model for each

of the 10 folds of our 10-fold cross validation split of our dataset. Follow-

ing training, each of the 10 models are tasked with classifying the 90 im-

ages of the test set. We then report the average and standard deviation of

the Average Precision measurements of the ten models relative to different

hyper-parameter selections.

Following the PASCAL Visual Object Classes (VOC) 2007 challenge [60],

the ”average precision” (AP) [61] metric became the standard for image ob-

ject segmentation evaluation. The COCO image segmentation challenge

expanded upon the VOC AP metric to include Average Precision at several
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mask Intersection-over-Union (IoU) thresholds. [49] The standard COCO

metrics that we use to evaluate our model include AP50, AP75, and AP50:.05:.95.

AP50 is the average precision measured with an IoU threshold of .5, AP75 is

the same but with an IoU threshold of .75, andAP50:.05:.95 is the average of

AP measurements taken at all IoU thresholds between .5 and .95 in .05

increments.

Average precision summarises the shape of the precision-recall curve of

a model’s performance when executed on a given test set. After the model

performs classification, each element in the test set is either a True Positive,

False Positive, or False Negative. There are no True Negatives since each

test set element has an object to classify within the image. A False Negative

is when the model detects nothing. A False Positive denotes an incorrect

classification; for example, in our case a False Positive would be when the

model identifies a molten zone as the wrong class. Finally, a True Positive

is a correct classification. Precision and recall are derived from the number

of True Positives, False Positives and False Negatives:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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4.3.3.0.1 INTERSECTION-OVER-UNION

(IoU) threshold is an additional criteria for a classification to be consid-

ered a True Positive. Meant to quantify the quality of a model-produced

mask, IoU is the intersection of the model mask pixels with the ground-

truth label pixels divided by the union of the mask and ground truth pixels.

It is a measure of how similar the mask is to the ground truth annotation of

the molten zone. Given an IoU threshold of .5, a classification is considered

a True Positive only if the associated mask has an IoU over .5; otherwise, it

is considered a False Positive.

IoU =
Mask ∩GroundTruth
Mask ∪GroundTruth

4.3.3.0.2 PRECISION-RECALL CURVE

With precision and recall defined, the next step towards calculating AP

is constructing a precision-recall curve. For each model classification of

the test set sorted by confidence score in descending order, points on the

precision-recall curve are found by determining whether the current classi-

fication is a True Positive or False Positive or False Negative, while plotting

and updating the current precision and recall at each step. Note that the

denominator in each recall calculation is a fixed value representing all rel-

evant documents; in our case, it is the size of the test set.
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4.3.3.0.3 AVERAGE PRECISION

Following the PASCAL VOC 2010 challenge, the average precision mea-

sure was changed to sample the precision-recall curve at all recall values,

rather than sampling precision at 11 fixed recall levels. The PASCAL VOC

2012 Development Kit [62] defines the Average Precision calculation as fol-

lows:

1. Compute a version of the measured precision/recall curve with preci-

sion monotonically decreasing, by setting the precision for recall r to

the maximum precision obtained for any recall r′ ≥ r

2. Compute the AP as the area under this curve by numerical integra-

tion. No approximation is involved since the curve is piecewise con-

stant.

4.3.4 Training Environment

The model was prototyped and trained using the SciServer, NSF DIBB,

cloud platform accessible in a browser [2]. We developed and executed the

Mask R-CNN training code on SciServer Compute, a Docker container host

with a Python Jupyter notebooks interface and bulk file storage. Database

storage for the dataset and training experiment results utilized SciServer

CasJobs. The GPU jobs queue within SciServer Compute provided access to
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Nvidia CUDA and cuDNN libraries to GPU-accelerate training. We scripted

experiment coordinators in SciServer Compute Docker containers to orga-

nize training datasets, schedule training jobs in the GPU jobs queue, and

store results in the CasJobs database for further analysis.

4.3.5 Hardware Performance Notes

We ran the Mask R-CNN classifier on a variety of hardware setups and

have collected some general observations. Matterport’s Mask R-CNN im-

plementation is built using Tensorflow and Keras with Nvidia’s CUDA li-

braries allowing execution on either a CPU or a GPU [47]. Despite our

relatively light regimen of typically a dozen training epochs with 200 steps

per epoch over a 900 image training set, training any of our models using

a CPU took over an hour per epoch. Training on a single Nvidia Tesla K40

GPU averaged three minutes per training epoch for the network heads and

five minutes per epoch when updating the weights of the entire network.

Using a CPU to run an existing Mask R-CNN model in inference mode,

however, was more reasonable. Our initial floating zone live feed classifi-

cation prototype ran on a Tensorflow CPU-build and averaged one-image-

per-second classifications. To compare this to GPU-executed classifier per-

formance, we developed a benchmark test that records the time it takes

the model to classify 900 images. We ran this benchmark with Tensorflow
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running on two, single-GPU platforms. The first utilized an Nvidia Tesla

K40 GPU with 12 GB GDDR5 memory, 2880 CUDA cores and Kepler archi-

tecture. The second platform had a Nvidia Quadro 8000 GPU with 48 GB

GDDR6 memory and 4608 CUDA cores with Turing architecture. The K40

was able to classify the benchmark set in 230 seconds, or 3.9 images per sec-

ond. The Quadro GPU could classify the set in 61 seconds, or 14.75 images

per second or 3.78 times as fast as the K40. We found the performance of

our usage of the Matterport implementation in line with the reported per-

formance of Mask R-CNN on the COCO challenge, which was about 200ms

per frame on a single GPU. [45]
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A Brain Computer Interface for

Human-Machine Co-Learning

Perception and understanding of large scale data (PULSD) in an ex-

ponentially accelerating world is a difficult but important and interesting

challenge. To tackle it, we will have to advance our capabilities on all fronts

from machine learning via data rendering to applied brain sciences. Here

we describe our work revolving around a novel synthesis of the aforemen-

tioned key concepts into a unique framework for cooperative learning: a

visual dataset navigation system where both a search and classification of

the data is directed by an analyst’s real-time interest and subconscious intu-

ition. Both the volume and the dimensionality of todays data are enormous;

hence the efficiency of the interactions becomes a critical issue. We demon-
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strate the power of our initial prototype, a proof-of-concept on a dataset

search using an EEG Brain-Computer Interface and an iterative Rapid Se-

rial Visual Presentation (RSVP) technique, and describe the challenges and

results so far.

5.1 Introduction

Our understanding of our dynamically changing surroundings is increas-

ingly limited by our ability to perceive the available data. When we are

able to identify relevant features and quickly interpret them in their ob-

served contexts, we can achieve the high level of awareness that is required

to take action in case of new events. The same way we navigate when

walking on the street or driving a car, we now need to learn to navigate

in digital data. As we collect exponentially more samples from the phys-

ical and cyber worlds, our chances of keeping up with the data rate are

slimming rapidly. Today, data analysts almost exclusively rely on machine

learning techniques. These applications transform the raw data into fea-

ture spaces that capture different aspects of the input stream. While often

existing methods cannot scale to the current large volumes of data, recent

theoretical advancements of randomized algorithms are enabling approxi-

mate variants to be directly applicable to large-scale data. This, however, is

81



CHAPTER 5. PULSD

not enough! Here we argue that this incremental improvement in machine

learning is only a small step toward the goal of rapid knowledge extraction.

The number of methods available for knowledge extraction has reached

a point where making the correct choice of method by itself becomes a major

issue. Some perform better on certain types of complex problems, while oth-

ers are more robust to omnipresent artifacts. The purpose of these different

low-dimensional embeddings of the raw data is to aid the learning expe-

rience and to speed up discoveries, but the aggregate output of all these

methodologies is again too much for anyone to fully comprehend. Comput-

ers can perform any one of an infinite number of possible projections or non-

linear mappings, but unsupervised programs do not know where to look in

the data, and cannot tell obvious patterns from emerging discoveries. Yet,

analysts must constantly assess the validity, correctness and relevance of

these results, while they attempt to fully understand the situation reflected

in the data. Our goal is to assist such analysts.

We work on a future integrated approach for human-machine co-learning,

where immediate feedback from the operator can drive data rendering by

steering through the parameter space of possible embeddings and features.

Monitoring the analysts behavior and responses will provide invaluable in-

formation about ongoing thought processes. Using eye-tracking and EEG

technology, we capture signals and correlate them with the rendering. Al-
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gorithms can automatically render feature vectors into a familiar environ-

ment, where the analysts will subconsciously make the right choices with-

out effort and without blurring the results with false rationales that may be

based on selective or insufficient facts. In such interactive brain-computer

systems the conversion of data to knowledge will be a natural and optimal

process.

5.2 Background

The field of brain-computer interfaces (BCI) has exploded in the past

decade. The appeal is clear: the process of ingesting, interpreting and re-

porting on a piece of data is limited in many cases by the physical activities

involved, for example, reading words on a computer screen or typing on

a keyboard. In addition, the classic methodology includes several layers of

abstraction and categorizations from thoughts to words to written language

and reverse, all of which add placeholders and thereby reduce the accuracy

of the information. If it were possible to replace the act of reading and typ-

ing with a direct link between ones brain and a computer, an incredible

speedup could be realized.

In fact, we apply practical technologies today to achieve this through

non-invasive neural interfaces such as electroencephalography (EEG). The
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operational principle is simple: conductive electrodes make contact with the

scalp, and pick-up microvolt-scale electrical potentials created by many si-

multaneously active neurons in the cortex. The electrical nature of the EEG

signal allows for high temporal measurement precision. Clever designs for

user interfaces recently transformed EEG to an interactive technology.

A particularly striking example is the paradigm called Rapid Serial Vi-

sual Presentation (RSVP) [63]. A user is presented with a series of images

in rapid succession while their neural activity is monitored. If the user looks

for a particular type of visual content in the image stream, the brain signals

following the matching content will differ from the baseline behavior. This

difference, called P300 due to its positive polarity and 300-millisecond la-

tency, is reliably detected by digital signal processing techniques, and can be

traced back with high precision to the triggering image. Most importantly

for the purposes of BCI, because the P300 is a product of the subconscious

processing of visual content, it is manifested in the absence of any physi-

cal response and can be elicited at image presentation rates far exceeding

those to which a human could normally respond. At a presentation and

processing rate of up to ten images per second, this is approximately ten

times faster than what could be achieved without BCI. Indeed, this capa-

bility has not been ignored within the community; outside of medical fields,

RSVP has largely been employed for image categorization and surveillance
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purposes [64].

It is known that sensory stimuli outside of normal patterns further elic-

its autonomous nervous system responses, e.g., the pupil reflex, the eye lid

reflex and scanning eye movements. These reflexes include electromyogram

(EMG) and electrooculogram (EOG) signals in addition to action poten-

tials of the peripheral portions of the cranial nerves outside the skull, and

these are more easily accessible through skin recordings of bio-potentials. It

may be possible to identify specific composite bio-potential signatures based

on the temporal sequence of discrete responses at the different frequency

bands that are analyzed.

Advanced BCI technology has great significance for interactive data ex-

ploration for several reasons. One is obviously the speedup to be gained by

monitoring event-related evoked potentials, but another is potentially just

as important. We have an opportunity to map independent wave bands in

the alpha and beta ranges to any kind of user action. In other words, we

can practically grow several brainfingers and learn to use them to steer the

visualizations toward interesting features. A subconscious random walk in

several dimensions could map out more details in data than thousands of

mouse clicks. This is high-dimensional navigation without the complication

of the missing human intuition in high dimensions.
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5.3 EEG Signal Processing

As EEG signal responses are collected, they must be related to the im-

age viewed at the time of signal collection and then classified as containing

a P300 wave or not containing a P300. Continuous EEG signal is sliced into

epochs roughly 600ms long and synchronized with the RSVP frequency. Our

system uses LabStreamingLayer (LSL) [65] to coordinate image presenta-

tion with collected EEG signal.

The presence of a P300 wave within an epoch of EEG signal is not easily

discerned. EEG signal is inherently noisy due to the sensitivity of the elec-

trodes. Previous classifiers needed the average of several responses to the

same image, or stimulus, to cancel out the noise clouding the P300 signal.

However, recent advances in convolutional neural network classifiers have

both increased the accuracy of P300 detection and lowered the amount of

training needed for employing the signal classifier. Our system uses the

EEGNet [66] classifier to detect P300 waves, and in practice we have found

it far superior to the traditional Linear Discriminant Analysis (LDA) clas-

sifiers.
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Figure 5.1: An Example of a P300 reaction to a ’target’ stimulus presented
at time 0. Pictured is the raw signal from 16 electrodes averaged together.
Note the positive deflection at 300ms after the stimulus presentation
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5.4 Data Exploration using PULSD Pro-

totype

In this section we introduce how our system will be used by an analyst

to explore a data set. We present the set of problem space assumptions

that indicate if a data set is a good candidate for being explored via the

PULSD prototype, followed by how iterative RSVP can provide a dataset

search solution.

5.4.1 Problem Space Assumptions

Suppose an analyst has an arbitrary dataset. Also, suppose that it is

possible to render images of this data set such that human insight may be

gained by quickly viewing them. In the rendering process, lets assume that

an image I, is rendered using some parameters θ (Figure 5.2). For example,

if we have high-dimensional data, we could generate 2D visualizations of

the data by selecting various rotation parameters. In this example, θ would

contain those rotation parameters. In another example using netflow data,

θ could contain binary values indicating if certain types of traffic should be

visible or not. The assumption we are making is that an analyst does not

know the correct set of parameters to investigate the dataset. There may
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Figure 5.2: An Image I is generated using parameters θ

be some anomalous data points or places in the data where some structure

may indicate an event. We also assume that finding an event in the visual-

izations is non-trivial. Furthermore, we assume the parameter space is too

large to investigate all possible combinations of parameters.

Let us also assume that an algorithm cannot find images that contain

something interesting; however, an experienced analyst can. This requires

a human in the loop for the data exploration.

5.4.2 BCI for Data Exploration

The current PULSD system operates in two phases: training and test-

ing. In the training phase, the system learns the subjects P300 response
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Figure 5.3: The PULSD system converts images into scores for ranking
and processing

by recording the EEG signals of both visual ’targets’ and ’distractors’. The

target images are hand selected to be ’interesting’ images, or images that

should generate a P300 response. The distractor images are images that

should not generate a P300 response for the subject. By recording and ag-

gregating the EEG signals from these two classes, PULSD learns the sub-

jects specific P300 response.

Then, during the testing phase, we present images for which we do not

know if the image is a ’target’ or ’distractor.’ PULSD then compares the

subjects EEG response to the learned target and distractor signals. The

system generates a score based on this comparison indicating if the subjects

response to this image is more like a target or a distractor response. In this

way, PULSD can take an image and generate a score, where greater values

indicate that the image is a target and lower values indicate that the image

is a distractor (Figure 5.3).
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Figure 5.4: PULSD ranks the images by the subject’s interest, and gener-
ates more images like the highest ranked images using the θ parameter.

Using this technique, we can present a random set of images to a subject

and rank the images by how interested the subject is in them. PULSD

can then select the top N ranked images and use those to develop a new

set of images for presentation. Because each image in the original set was

generated by a set of parameters θ, we can use an algorithm to generate

similar images, based on θ for each highly ranked image (Figure 5.4).

The new set of images can be mixed in with more randomly generated

images, so as to not limit the data exploration to the initial random set, and

presented to the subject in the system again. This process is free to repeat

as many times as desired or until a stopping criterion is met.
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5.5 Iterative Data Exploration Exper-

iments on Hidden Cube Dataset

The Hidden Cube Dataset is a simulated dataset generated by perform-

ing a high-dimensional rotation on the wireframe of a three-dimensional

cube mixed with noise in the remaining few dimensions. The low-dimensional

cube signal is hidden such that scatter plots of the resulting rotation simply

show a noisy blob. By randomly rotating the simulated dataset, it is possible

to happen upon some of the hidden cubes structure; however, most random

rotations show only noise. The goal of exploring this dataset is to find a

rotation of the simulated dataset that most clearly reveals the hidden cube

structure. For experimental evaluation purposes, we calculate each random

rotations principal angle with respect to the transpose of the rotation ma-

trix initially used to create the simulated dataset. The principal angle is

the minimal angle between two subspaces: the signal and the 2D view. In

a practical sense, the principal angle tells us how close we are to finding

the rotation matrix that reveals the complete hidden cube structure; a rota-

tion with a low principal angle generally creates an image that shows more

of the hidden cube structure while a high principal angle rotation shows

mostly noise, as an example shows in Figure 5.5. We use this principal an-

gle metric to quantify our experiment progress on finding the hidden cube
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structure from iteration to iteration.

We use the results of an RSVP iteration to determine what subsections

of the dataset to explore next, as explained in the previous sections. For the

Hidden Cube Dataset, we randomly perturb the rotation matrices associ-

ated with the triggered images in order to create similar rotations to show

in the next iteration. Some of the randomly similar rotations will show

more structure while some will show less. Our experiment methodology is

as follows:

1. Generate a starting set of 400 rotations with a fixed amount of targets

and distractors. Our control variable is the ratio of targets to distrac-

tors in the starting set of random rotations.

2. Record the average Principal Angle of the current set of rotation im-

ages for this iteration. This is the dependent variable of our experi-

ment.

3. Run an RSVP session and extract the top 20 scored images, where

score denotes the match to the ideal P300 wave identified during train-

ing.

4. Create a new set of 240 images by generating 12 randomly similar

rotations for each of the top 20 scored images. Some of these randomly

similar rotations will show more cube structure and some will show
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Figure 5.5: The top rotation visualization has a principle angle of 0.166
radians with respect to the rotation matrix used to hide the cube, while
the bottom rotation, showing some cubic structure, has an angle of 1.349
radians
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Figure 5.6: The average principal angle in radians of the top 20 scored im-
ages of each search iteration. These top 20 images were used as the basis
for the next iterations set of images; for each top image, twelve similar im-
ages were shown next iteration. Cube Target Probability is the percentage
of images showing some structure in the starting image set.

less.

5. Start next iteration by repeating from Step 2.

Figure 5.6 shows the results of three Hidden Cube search experiments,

each consisting of five iterations of RSVP sessions. Each experiment was

run with a different initial target probability; that is, the Cube Target Prob-

ability represents the ratio of rotations showing some cubic structure to ro-

tations showing only noise in the initial set of images displayed in the first
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RSVP iteration.

5.6 Discussion

The challenge of this experiment is that the subject must raise his or her

P300 trigger threshold between iterations as the experiment progressively

narrows down its search for the cube structure. The properties of the shown

images change between iterations; as the experiment progresses, what may

have been a target in the first iteration could be a distractor in subsequent

iterations. After a couple iterations, it is no longer good enough to simply

distinguish noise from structure. In order to further narrow down on the

cube, the subject must discern between images that show a large amount of

cube structure versus images that only show some basic structure as shown

in Figure 5.7.

Figure 5.6 shows the average principal angle of the top twenty scored im-

ages, where score represents the match between the exhibited P300 wave

during image presentation and the ideal P300 wave. The top twenty images

of one iteration are used to seed the randomly similar images of the next it-

eration. This graph suggests that the human subject was able to adjust his

or her structure threshold between iterations; as the experiment progressed

the subject was able to discriminate between images that showed more
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structure versus images that showed less structure. The human subject

in the loop has had a positive impact on guiding the search for the hidden

cube, even after the initial iteration. However, the experiment with an ini-

tial set target probability of 0.10 appears to have reached a plateau after the

second iteration. This may be a limit imposed by the nature of the Hidden

Cube Dataset; it becomes increasingly hard for the Hidden Cube Dataset

similarity function to produce randomly similar rotations that show even

more structure than an already good rotation. Or, the plateau could be a

result of a subjects inability to discern between more or less cube structure

at a point when all the images in the set show strong structure. Experi-

ments with more iterations will be needed to investigate just how far we

can narrow down the cube structure.

5.7 Conclusion

With this study we demonstrate that the RSVP paradigm, when em-

ployed iteratively, serves as an effective method for human-directed search

over a visual dataset. While RSVP is typically used for image classification

tasks, it can be extended into a steering mechanism when paired with a

’similarity function’ over a particular dataset. Our experiment shows that a

user may dynamically modify his or her search target as the data presented
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Figure 5.7: The top image does show structure and would certainly be a
target in the first search iteration. However, in later iterations, the bottom
image would be a target and the top a distractor. We test whether the
subject can adapt to the change in prevalence of structure as the search
progresses

98



CHAPTER 5. PULSD

to the user changes, thereby narrowing down on a search goal.

In this study we use the HiddenCube dataset with an easily defined ’sim-

ilarity function;’ in order to generate similar data, all that needed to be done

was a slight, random change to the parameters used to generate the origi-

nal triggered-upon image. When generalizing this system to other datasets,

the similarity function will not be so cut-and-dry. However, recent advances

in object recognition and image segmentation algorithms, such as the Mask

R-CNN [45] algorithm, open up wide possibilities for generalizing the sim-

ilarity function to other datasets. For example, when employing RSVP on

natural imagery, an pre-trained ImageNet [57] or COCO [49] object recog-

nition model could detect and recognize the subject of an image that a user

found interesting. Subsequently, the next batch of images shown in itera-

tive RSVP would feature other examples of the object previously identified.

Indeed, the goal of this work is to bring the user closer to data that he or

she finds interesting; while an iterative RSVP search is an essential compo-

nent of this goal, the next steps involve incorporation of generalized, online

machine-learning techniques over user-identified, ’interesting’ data.
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Conclusion

As datasets continue to grow, so must our capability to extract intelli-

gence from them. Each of the chapters in this dissertation show examples

of applied data navigation. While some examples, such as in the distributed

top-k elements algorithm outlined in Chapter 3, depict tools for answering

fundamental data queries over a data-center scale storage system, other

chapters explore techniques for bringing the human user closer to the data

at hand via machine guidance. Data relevance is the goal; in the Chapter 2

Molecular Dynamics Database a reinforcement learner guides the MD sim-

ulation to relevant interactions, while in Chapter 5 we explore the human

definition of relevant data by measuring user reactions to data through a

Brain-Machine Interface (BMI). Each of these projects works towards bridg-

ing the gap between the data, the user, and the machine learning techniques
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in between.

However, there are still significant connections to be made between the

projects outlined in this thesis; while the BMI in Chapter 5 proved to be

successful in directing a search over an experimental dataset, the prototype

remains to be generalized into concrete application. One such application

could be training set refinement of the floating-zone (FZ) furnace crystal

growth classification model detailed in Chapter 4. The next step in im-

proving that model is selecting more training data to include in the next

iteration. The Mask-RCNN model I trained in Chapter 4 was applied to

roughly 800,000 unlabeled historical FZ images. Ideally, one would seek

out images in the historical set that were classified incorrectly but with high

model confidence; labeling and including these images in the next training

set would correct the model where it most needs correction. Yet, at this

scale, finding these ideal corrective images by sorting through them manu-

ally is akin to looking for a needle in a haystack. The BMI for the percep-

tion and understanding of large scale data, shown in Chapter 5, would be

a perfect tool for finding these corrective images and refining the FZ train-

ing set. An expert FZ furnace operator would be shown, via RSVP, a set

of the model-classified historical FZ images identified as belonging to the

same melt class. While the model likely classified the majority correctly,

any mis-classifications would stand out to the user and evoke a P300. The
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BMI would then tag that image as an incorrect classification and endeavor

to include FZ images with similar classification and pixel properties in the

next batch of RSVP, potentially uncovering error trends in the FZ model.

By speeding up the process through which we correct prototype trained

ML-models, iterative RSVP becomes a valuable tool for human-machine co-

learning. While in Chapter 4 I found that labeling training data to be the

slowest roadblock in applying Mask R-CNN to new purpose, there is already

a focus on developing less labor-intensive methods for annotating machine-

readable training data. The Fluid Annotation [52] interface is one such

project that shares similar human-machine collaboration goals. In Fluid

Annotation, a neural network model makes a first pass at annotating an

image while a human user corrects any mistakes. However, as models learn

and make fewer mistakes, our process for finding these mistakes must keep

up. Iterative RSVP and BMIs can continue to accelerate the process for

which we correct and train new models as we close the gap between us and

our machine learners.
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