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ABSTRACT 

 Colloidal suspensions consisting of particles undergoing Brownian motion are 

ubiquitous in scientific research and emerging technologies. Longstanding challenges in 

strategic control of complex colloidal systems are to investigate the principle of optimal 

control, overcome the curse of dimensionality, design efficient algorithms, and develop 

generalizable control strategies. In the first part of this dissertation, we present methods 

and results from three case studies to illustrate how these challenges are addressed from 

the perspectives of modeling and optimal control.  

Single-agent optimal navigation in complex mazes. We investigate the optimal 

navigation principle of a self-propelled colloidal particle in complex mazes. We construct 

approximate Markov chain model and use the Markov decision process framework to 

obtain the general principle of optimal navigation. 

Multiple-agent cooperation and coordination for colloidal machines. Using self-

propelled Janus motors as the model system, we illustrate a new paradigm for cargo capture 

and transport based on multiple-agent feedback control. The control algorithm can 

coordinate multiple motors to cooperate on forming a reconfigurable machine for cargo 

capture and transport.  

Low-dimensional modeling and ensemble control. Optimal control in a high 

dimensional self-assembly processes with limited actuations presents a challenge in both 

modelling and controller design. We use colloidal crystallization in an electric field as a 

model system to illustrate the methodologies of low-dimensional modeling and control for 

self-assembly processes. We use a nonlinear machine learning algorithm to characterize 

the dimensionality and parametrize the low-dimension manifold on which the system 
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evolves. A low-dimensional Smoluchowski model is constructed and calibrated to 

illustrate the dynamic pathways of the assembly process. The resulting model is further 

leveraged to perform optimal control of the assembly process.  

 In the second part of dissertation, we report three additional relevant research 

projects on colloidal interaction, dynamics, and control. The first project extends ensemble 

control from finite-size systems to infinite-size systems using feedback control in 

sedimentation. The second project develops a computational method to model depletion 

interactions between general geometric objects The third project develops modified 

Stokesian dynamics methods to investigate the colloidal rod motion near a planar wall with 

hydrodynamic interactions.  
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1 INTRODUCTION 

 

1.1 Significance and objective 

Colloidal systems consisting of nano- or micro-sized particles have been 

extensively researched in the recent decades. 2,3 4 Such systems have been  used as a model 

to investigate various fundamental issues in science and emerging technologies: (1) used 

as ‘big atom’ system to investigate fundamental structural and dynamical properties during 

phase transitions such as melting and nucleation;5-7 (2) used as model system to investigate 

self-assembly theory and engineering strategies;8,9 (3) used as the building blocks for 

colloidal crystals with applications in Photonic bandgap materials due to their lattice 

parameter being in the length scale of visible light;10 (4) used to prototype micro-robotics 

and micro-machine to operate on micro-scale structural microenvironment for chemical, 

environment, and biomedical applications.11-16 

This dissertation is devoted to several scientific and engineering aspects of colloidal 

self-assembly processes that are closed related colloidal crystal fabrication and colloidal 

robotics and machines. Colloidal self-assembly processes generally refer to the dynamical 

processes where colloidal particles spontaneously organize into ordered structures. Self-

assembly is considered as a key bottom-up approach to fabricate novel micro- and nano-

scale materials.17-19 Currently, however, self-assembly processes have limited applications 

from several aspects. First,  self-assembly processes driven by external force fields, such 

as gravity field20, electric field,21 strong attraction interaction,22 and shear fluids,23 often 

resulted in irreversible processes and cannot correct defects. Second, modeling studies of 

self-assembly generally focus on predicting the thermal equilibrium or steady-state 
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structures as a function of particle interactions, particle shapes, temperature, and 

concentration;24,25 while development principled methods to quantify and predict the 

kinetic processes has rarely been addressed. In addition, there is limited research on 

conjugating with self-assembly processes with optimal control methodology to engineer 

the kinetic pathways of self-assembly processes. Moreover, most of self-assembly 

processes are limited to equilibrium thermodynamic systems, while optimal controlled 

self-assembly within far-from-equilibrium systems, which might be a potential tools for 

assembling microscale devices and machines, has rarely been explored.  

This dissertation is aimed at addressing these challenges and filling the gaps 

mentioned above. Our approaches are mainly computational and theoretical, as stated as 

follows. First, we will develop low dimensional dynamical Smoluchowski equation 

formulism to model colloidal self-assembly processes, in which thermodynamics and 

kinetics are being modeled consistently. Colloidal systems consisting of hundreds particles 

will cause curse of dimensionality in the dynamic model construction; and we will use 

machine learning algorithms to help reduce the dimensionality and find out order 

parameters to parameterize the Smoluchowski model.  Second, we will conjugate dynamic 

optimal feedback control methods with the low dimensional dynamical model to design 

feedback controller for self-assembly systems. From the perspective of material 

engineering, controlling self-assembly processes with feedback will provide a robust and 

error-correcting approach to create complicated microstructure.  Third, we will explore 

principles and methods to harness far-from-equilibrium phenomenon and thermodynamics, 

which enables creation of structures not permitted in equilibrium thermodynamics. In 

particular, we will use self-propelled colloidal particles system26 as a model to develop 
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algorithms for optimal positioning and navigation in complex microstructured 

environments and explore new paradigms for cargo capture and transport. In addition, we 

will develop advanced computational method to model hydrodynamics and tunable entropy 

interactions in colloidal systems.  

 

1.2 Background 

1.2.1 Self-propelled colloidal systems and optimal control 

Bacteria and sperm are examples of natural micro-swimmers that take in 

environmental energy and turn into mechanical work.  Recently, numerous man-made 

micro-swimmers had been created in various forms, such as bimetal nano-rods and Janus 

spheres, and function on different mechanism, such as catalysis of chemical fuels27 and 

mimicking natural swimmers28. A collection of self-propelled colloidal particles is also 

known as active matter, because of their non-equilibrium thermodynamic nature governing 

its kinetics.29 One classic model for a single self-propelled particle is a particle with its 

orientation undergoes Brownian rotation, and the self-propulsion is restricted to the 

orientation. Proof-of-concept applications of these man-made swimmers are emerging in a 

broad range of areas. For example, biomedical applications includes using self-propelled 

“micro-device” to capture and isolate of cancer cells,30 navigate and deliver drugs13,31; 

environment applications include polluted water pollution cleaning using self-propelled 

micro-motors;12 material engineering applications include fabrication of novel structures 

based on active interactions.26,32 



4 

Without strategic control, most of self-propelled system cannot produce useful 

work in the long run since their propulsion directions are purely random. If we can control 

the self-propulsion based on the system state, then we can control them to perform tasks 

by designing control policy on the self-propulsions. For example, self-propelled particles 

are viewed to possess tremendous potentials of being an intelligent agent33 to localize and 

deliver nanoscopic object in complex environments (e.g., tumors, porous media)14,15,34,35. 

A first step to achieve this goal is to establish a principle to reliably and precisely control 

their positions towards prescribed targets in complex environments.  

Controlling multiple self-propelled colloidal particles present both substantial 

opportunities for potential applications and challenges in control strategy design. Examples 

of significant biomedical applications include cargo manipulation(e.g. capture and 

delivery), capture and isolation of cancer cells,30 targeted drug delivery, and diagnosis. The 

challenges lying on the computational side include designing efficient algorithms to 

compute optimal control strategy for this high dimensional nonlinear system. 

1.2.2 Low dimensional modeling and control of self-assembly processes  

Self-assembly are dynamical processes where multiple predefined components 

spontaneously organize into ordered structures. Modeling a self-assembly process is 

inherently challenging because of the high dimensionality of the system and the 

requirement of the interpretability of the model.  

In general, we require dynamic models to contain information about metastable 

states and the expected times for transitions between these states. Classic modelling tools 

include  master equation,36 Fokker Planck equation,37 and Smoluchowski equation,38 which 
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use partial differential equation to capture the system evolution in the probabilistic point 

of view. To achieve interpretability and the predictability in the long time scale, the 

dynamic model is usually parameterized low-dimensional physical meaningful reaction 

coordinates instead of the full 3N particle coordinates.  

Another requirement of low dimensional dynamic model is from the optimal 

control point of view.  Even though self-assembly is considered as a fundamental bottom-

up approach to fabricate micro- and nano-scale materials, 17-19 most of these processes take 

place at a fixed thermodynamic condition. As a consequence, these uncontrolled self-

assembly processes often end up in undesired metastable states, instead of its global 

equilibrium state,  and impose great limitations on the self-assembly methods for material 

engineering. Model based optimal control provides a route to overcome the hurdle. One of 

key challenges in model based optimal control is to construct model with relatively small 

dimensionality since optimal control algorithms usually have computational costs increase 

exponentially with the dimensionality of the model. Ideally, construction of such dynamic 

models at different thermodynamic conditions can enable designing control strategies of 

temporal switching thermodynamic conditions during the processes to achieve desired 

states.9,39,40 

A typical feedback control system usually consists of functionalities of: (1) sensing 

the system state, (2) actuating particle via change thermodynamic conditions; and (3) 

closing the loop to assign actuator settings based on sensor readings (via an optimal policy). 

This approach adds robustness and self-correction machinery into the self-assembly 

process, therefore can be used to correct defects in real-time to produce perfect crystals.  
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1.2.3 Depletion in colloidal systems 

Depletion interactions are ubiquitous in colloidal mixture systems. They arise when 

species of smaller particles excluded from gaps between larger colloid particles and 

surfaces. The exclusion creates the concentration difference of smaller particles inside the 

gap and outside the gap, thus causing an effective attraction among larger colloidal 

particles or surfaces. Typical colloidal mixture systems are monodisperse colloidal particle 

mixed with smaller particles from polymers, micelles, hydrogel particles, and 

nanoparticles.41 

With an understanding of the mechanism of depletion attraction, we can engineer 

such potentials by manipulating either the osmotic pressure or the excluded volume. For 

example, using thermosensitive micelles,42 hydrogel particles,43,44 and polymer chains45  as 

depletants enables changing the osmotic pressure and the excluded volume via 

temperature. For another example, by designing surface features,46 researcher have created 

templates for crystallization,47,48 and lock-and-key colloids (i.e., local curvature).49  

1.2.4 Hydrodynamics in colloidal rod systems 

Hydrodynamic interaction are long range interactions between colloidal particles 

suspended in liquids. They arise either when the motion of one particle generates a velocity 

field in the fluid affecting the motion of nearby particles or when the velocity field is near 

a general no-slip boundary surface50. Hydrodynamics is essential in mediating the hindered 

diffusion when particle approaching no-slip surface51 and generating couplings in some 

self-assembly systems consisting of self-spinning particles.52   Even though the 

hydrodynamics of spherical system has been extensively researched in the past decades,53 
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there is still limited understanding on how hydrodynamics affects rod motion near a planar 

substrate. We are particularly interested in the hydrodynamics of colloidal rods, because 

they appear in a wide variety of areas, ranging from biological macromolecules54 to novel 

building blocks in materials engineering.55  

The diffusion behavior of individual rod in the suspension is fully determined by 

its 6 by 6 diffusivity tensor, D. A colloidal rod in the bulk will have different translational 

and rotational diffusion coefficients in directions along and perpendicular to its long axis;56 

its diffusivity tensor D will only have diagonal terms in its own body frame(i.e., no 

couplings between different modes of motion). However, when a colloidal rod is near a no-

slip planar wall, the bounding surface will make self-diffusion coefficients (i.e., diagonal 

terms in D) of the rod be a function of its intrinsic geometry(i.e. length and aspect ratio), 

and other external parameters (e.g., elevation and orientation). Moreover, additional 

couplings among translations and rotations appear; the off-diagonal terms in D will contain 

non-zero entries. 

1.3 Summary and dissertation outline 

This dissertation is organized as follows:  Chapter 2 describes general theory for 

(i) colloid and surface interactions, (ii) order parameters for colloidal assembly, (iii) 

stochastic process theory, and (iv) optimal control theory for stochastic systems.   Chapter 

3 describes common methods used in the dissertation, including parameter estimations in 

stochastic systems, and computational methods for stochastic optimal control. Chapters 4-

10 describes the major results of the PhD research. Chapter 4 develops the single agent 

stochastic optimal algorithm for single colloidal self-propelled rod and its direct application 

in maze navigation. This algorithm enables calculation of optimal strategy of applying self-
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propulsion velocity given real-time system states such that the rod can arrive prescribed 

target in minimum time.  Chapter 5 extends the single agent stochastic optimal control to 

multiple agent stochastic optimal algorithm, which enables optimal control of multiple 

agents, i.e., self-propelled colloids, to multiple prescribed targets. This multiple agent 

optimal control algorithm is used as the building blocks for constructing cargo capture and 

transport algorithms. The working mechanism of cargo capture and transport is analyzed 

in details to reveal the fundamental design principles for micro-machines.  Chapter 6-8 

combines low dimensional modeling method and optimal control theory to examines 

issues: (1) grain boundary formation and dynamics using low dimensional model; (2) 

optimal strategy to assemble perfect colloidal crystal using electric field mediated 

interactions. The low dimensional model describes the system’s  evolution of 

crystallization microstructures in terms of global ordering and condensation.  Chapter 9 

describes a method to continuously grow ordered colloidal crystal using feedback 

controller, which is an extension of chapter 9 to scalable fabrication of colloidal crystals. 

Chapter 10 describes a generic computational modeling approach for depletion mediated 

colloidal assembly on topographic patterns. Chapter 11 investigate the colloidal rod motion 

near a planar wall. Using a modified Stokesian dynamic simulation method, the diffusivity 

tensor of a colloid rod as a function of its configuration is obtained. A set of trajectory 

analysis methods were developed to extract dynamical and equilibrium properties from rod 

motion trajectories. Chapter 12 summarizes the conclusions from these chapters.  Finally, 

Chapter 13 presents some preliminary results on ongoing research projects and author’s 

views on future directions related to this dissertation. 
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2 THEORY 

 

2.1 Colloidal and surface interactions 

2.1.1 Net potential energy interactions 

Throughout this dissertation, we usually consider a system of N spherical particles 

experiencing forces due to interaction from different sources, including gravity, electric 

field, electrostatic repulsion with underlying substrate, depletion interactions and 

electrostatic repulsion with nearby particles. The net potential ui of a single particle i can 

be written as the sum of potentials from individual sources, given as 

 
, , ,

pf pf pw pp pp pp

i G DE E E ij DD ij D ij

j i j i j i

u u u u u u u
  

          (2.1) 

where the subscripts refer to interactions of: (G) gravitational, (DE) induced-dipole-electric 

field, (E) electrostatic repulsion, (D) depletion, and (DD) induced-dipole-induced-dipole; 

superscripts refer to interactions of: (pf) particle-field, (pw) particle-wall, and (pp) particle-

particle. ui will usually be a function of positions of all the particles. The resulting force 

acting on the particle i is simply given as 

 i iF u    (2.2) 

where the gradient is taken with respect to the position of particle i.   

2.1.2 Gravitational interactions 

The gravitational potential energy for each colloidal particle is given as 

      3( ) 4 3 ( )pf

G p fu z Gh mg z a a g z a         (2.3) 

where G is the buoyant weight, g is the gravitational acceleration, a is the radius of the 

particle,   p and f are the particle and fluid densities, respectively. 
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2.1.3 Electrostatic interactions 

When suspended in an aqueous solution, a charged surface will induced a cloud of 

counterions, whose density distribution is governed by Poisson-Boltzmann equation. The 

density profile of the counterions will be a function of distance to surface and will decay 

exponentially with characteristic length , given as 

  
1 2

2 22 b me Z n kT    (2.4) 

where Z is the electrolyte valence, m is the solvent dielectric constant, k is Boltzmann's 

constant, T is absolute temperature, e is the elemental charge and nb is the bulk number 

concentration of ions.  For a 1:1 monovalent electrolyte, b An N C , where C is the 

electrolyte molarity and NA is Avogadro's number. When two surfaces with the same 

charge approach each other, the overlapping the counterions will induce a repulsive force, 

known as double layer electrostatic repulsion.  When athe electrostatic repulsion 

between a colloidal spherical particle and its underlying charged planar substrate is given 

as  

 

   
2

1 2

2 exp

32 tanh tanh
4 4

pw

E

m

u z B z a

e ekT
B a

e kT kT



 


    

    
      

     

 (2.5) 

where 1 and 2 are surface potentials on the two interacting surfaces and z is the distance 

between the center of sphere to the planar wall. Similarly, the electrostatic repulsion 

between two colloidal particles i and j is given as 

    , exp 2pp

E ij ij iju r B r a   
 

 (2.6) 

where rij is the distances between the centers of the particles i and j. 
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2.1.4 Depletion potentials 

In a binary mixture of colloidal particles of two different sizes, there exists an 

entropy effect that induce an attraction between the large particles and between large 

particle and the underlying planar substrate. When two large particles are approaching each 

other such that the gap in between cannot fit the small particles, the osmotic pressure of 

small particles has a larger value outside the gap (i.e., the bulk solution) than inside gap. 

As a consequence of this imbalance, the osmotic pressure will push the two large particle 

to get closer, appearing as an attraction, known as depletion attraction, between the large 

particles.   Such  depletion attraction was first modeled by Asakura and Oosawa (AO), and 

further improved as,57   

 
 

 

( )

( )

pp pp

D

pw pw

D

u r V r

u z V z

  

  
 (2.7) 

where Vpp and Vpw.are the excluded volume(the volume between the gap where the 

depletent cannot fit in), and  is the osmotic pressure of the depletants.  The excluded 

volume terms is a function of separation, which can be obtained from geometric 

considerations given by,2,58,59 

 

             

 
   

      

3 1 33

3 2

2 2 3

4 3 1 3 4 1 16

4 3 4 4

1 3

pp

pw

V r a L r a L r a L

L L a La z a
V z

a z a L z a z a





       
 

   
 
       

 (2.8) 

where L is the depletant radius, p is the center-center distance, and z is the center to surface 

distance.    
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2.1.5 Induced-dipole interactions 

In a non-uniform AC electric field, a colloidal particle will be induced an effective 

dipole due to the distortion of counterions distribution surrounding the particle by the 

electric field. The induced effective dipole will have the general form as 

 p E   (2.9) 

where  is the effective permittivity and E is the electric field vector. This induced effective 

dipole will contribute two additional interactions to the system: the particle-field 

interaction known as induced-dipole-electric-field interaction and the particle-particle 

interaction known as induced-dipole-induced-dipole interactions.  The induced-dipole-

electric-field interaction with a potential given by,60 

    
21 *2pf

DE i E cm iu r kT f E r    (2.10) 

where ri is the position vector for particle i, E* is the normalized electridc field magnitude 

profile function,  E0 is the characteristic electric field magnitude used as the normalizing 

constant, the non-dimensional parameter E is given as 

  
23

0E m cma f E kT   (2.11) 

and fcm is the Clausius-Mosotti factor given as,  

    Re 2cm p m p mf       
   (2.12) 

Here  m and  p are complex medium and particle permitivities of the form,  =-i/, 

where σ is the conductivity, and ω is the angular frequency.   

Similarly, the induced-dipole-induced-dipole interaction potential is given as 

       
3 2*

, 2, , cos 2pp

DD ij ij ij E ij iju r R kT P a r E R     (2.13) 
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where rij is the center-to-center distance between particles i and j, ij is the angle formed 

between induced dipole direction of particles i and j, and P2(cos ij) is the second order 

Legendre polynomial. 

2.2 Common order parameters for colloidal assembly 

To monitor the structural evolution of the colloidal assembly process, it is important 

to define some order parameters, which are the functions of the particle configuration, to 

characterize the structural properties of the particle configurations.  

2.2.1 Radius of gyration 

The degree of condensation of a set of n colloidal particles is captured using the 

radius of gyration, Rg, which is defined as,  

 
0.5

2
10.5g i jR n r r   
    (2.14) 

where ri is the position vector of particle i. Rg will take larger values for configurations that 

are less compact.   

2.2.2 Global and local order parameters 

The degree of global order in particle configurations is defined as,61-63 

 6 6,

1
j

jj
    (2.15) 

where 6,j is the six-fold bond orientational order parameter of particle j, defined as 

 
,

6

6,

1,

1 C j

jk

n
i

j

kC j

e
n






   (2.16) 
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where nC,j is the number of neighbors within the first coordinate shell of particle j, jk is the 

angle of the vector joining particle i and j. 6 produces values between 0 and 1, with 0 

indicates 0 crystallinity and 1 indicate perfect crystal crystalline.  

The degree of local order of a given particle configuration can be defined as 

 6 6,

1

1 n

i

i

C C
n 

   (2.17) 

where the local crystallinity C6,j, for particle j, counting the number of  crystalline nearest 

neighbors, is defined as 

 
6,

6,

1 6,

1 0.32

0 0.32

jnc
j

j

k j

C




 
  

  
  (2.18) 

where 
6, j is known as the connectivity between crystalline particles, given by,  

 

*

6, 6,

6, *

6, 6,

Re j k

j

j k

 


 

  
  (2.19) 

2.3 Stochastic process theory 

2.3.1 Ito stochastic differential equation 

Colloidal particles experience Brownian motion due to imbalanced molecular 

collision and drift due to potential energy gradients. Let x(t) be the 1D position of a 

colloidal particle, then x(t) is stochastic process, and it is governed by the  Ito stochastic 

differential equation given as 

 ( ) ( ( ), ) ( ( ), ) ( )dx t m x t t dt x t t dw t    (2.20) 

where m is the drift coefficient,  is the variance coefficient, and w(t) is the standard Wiener 

process satisfying64 
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 ( ) 0, ( ) ( ) ( )w t w t w s t t s     (2.21) 

To simulate a stochastic process governed by Eq. (2.20), we can use the following 

discretized form as 

     ( ( ), ) ( ( ), )x t t x t m x t t t x t t        (2.22) 

where t is the integration time step, and  is the normal random variable with zero mean 

and variance t. 

The drift coefficient m and the variance coefficient   are related to the physical 

property of the system as  

 , 2 ( )
D dW dD

m D x
kT dx dx

      (2.23) 

where D(x) is the diffusivity landscape (DL), W(x) is the free energy landscape (FEL), k is 

the Boltzmann’s constant and T is the absolute temperature.  The gradient term dD/dx is 

known as spurious drift.65 

Similarly, a colloidal particle undergoing multiple dimensional drift and diffusion 

can be modeled by multiple dimension Ito stochastic differential equation, given as 

 ( ) ( ) 2 ( )d t W dt d t
kT

     
D

x D D w   (2.24) 

where x R3, D(x) is the 3 diffusivity landscape, and W(x) is the 3D free energy 

landscape, and w(t) is the 3D wiener process satisfying  

  ( ) 0, ( ) ( ) ( ), , 1,2,3i i j ijw t w t w s t t s i j       (2.25) 

where the subscript denote the component of wiener process.  
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2.3.2 Fokker-planck equation 

The Fokker-Planck equation is a partial differential equation governing the 

evolution the probability density of a stochastic process. Formally, let x(t) be the stochastic 

process governed by Ito stochastic differential equation(Eq. (2.24)) given by  

 ( ) ( ) 2 ( )d t W dt d t
kT

     
D

x D D w   (2.26) 

Then the corresponding Fokker-Planck equation is given as37 
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,

( ( ), )
( ( )) ij

i j i j

p t t
p W D p

t kT x x

 
   

  


x D
D   (2.27) 

where p(x(t),t) is the probability density function for the random variable x(t) at time t.  

2.3.3 Smoluchowski equation 

 The Smoluchowki equation is a special form of the Fokker-Planck equation, 

usually, it is written as 

 
3

,

( ( ), )
( ) ij

i j i j

p t t
p W D p

t kT x x

  
  

  


x D
  (2.28) 

which can be obtained by directly expand the second term of the right-hand side of Eq. 

(2.27). We can also write Eq. (2.28) in a more compact vector form as 

 
( ( ), )

( ) ( )
p t t

p W p
t kT


    



x D
D   (2.29) 

The equilibrium solution to Eq. (2.28) as tis given as 
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( )

( ) exp( )eq W
p

kT
 

x
x   (2.30) 

which can be obtained from Eq. (2.29) by setting the left-hand side to be zero. 

 

2.4 Stochastic optimal control theory 

Consider a dynamic model represented by a set of finite state Markov chains 

parameterized by finite actions a from action space A on state space S, given as 

 1 1( ) ( | , ) ( ),n n n np s P s s a p s a A     (2.31) 

We can further associate with each state with a cost, i.e., via a cost function C: SR. The 

optimal control problem can be formulated as the optimization as 

 
0

min ( )n

n

n

C s







 
 
 
   (2.32) 

where : S  A is a function, known as the control policy,  we are optimizing over, and 

[0,1) is the discount factor with larger value putting larger weights on future cost.  The 

cost function can associate large cost with the undesired state and smaller cost with desired 

state such that the optimal policy * will try to avoid undesired states and prefer to stay in 

desired state.  

 The optimization problem in Eq. (2.32) can be solved using dynamic programming 

principles, as we will discuss in the next chapter.  

With a control policy  (optimal or non-optimal), the probability evolution of the 

system state can be obtained by iterating the Markov chain, given as 
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P s I s



 






  (2.33) 

where sinit is the system’s initial state, Ix(y) is the indicator function that equals 1 only if 

x=y. 
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3 METHODS 

 

3.1 Parameter estimation in multi-dimensional smoluchcowski equation 

 

Consider an m dimensional Smoluchowski equation given as 

 
( ( ), )

( ) ( )
p t t

p W p
t kT


    



x D
D   (3.1) 

where x  Rm and D  Rmm. Our goal is to estimate the parameter D and W from the 

trajectories. This Smoluchowski equation has the associated Fokker-Planck equation and 

Ito stochastic differential equation given as 
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( ( )) ij
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p t t
p W D p
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x D
D   (3.2) 

 ( ) ( ) 2 ( )d t W dt d t
kT

     
D

x D D w   (3.3) 

We can define drift coefficient and diffusion coefficient in terms of the trajectory statistics 

as 

  
       1
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1
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   xD x   (3.4) 
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1
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2
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          x xD x   (3.5) 

where D(1) is the drift vector field, D(2) is the diffusivity tensor, the brackets represent an 

ensemble average. Then from Eq. (3.3), we have 

 
   1

( )i W
kT

   
D

D x D   (3.6) 
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The free energy landscape, W(x), can be obtained from D(1) and D(2) via integration as, 

 
2

1

(2) 1 (1) (2)2 1( ) ( )
( ) ( )

W W
d

kT


   

x

x

x x
D D D x   (3.8) 

where the integral can be evaluated from an arbitrary path from x1 to x2.  

3.2 Value iteration method for infinite horizon optimal control 

 

In the stochastic optimal control using Markov decision process framework for 

infinite horizon, we usually need to solve the following optimization problem 

 0

1 1

min [ ( )],

( ) ( | , ) ( )

n

n

n

n n n n

C s

P s P s s a P s








 

E
  (3.9) 

where [0,1) is the discount factor,  C is the cost function depend on the system state 

sn S (n is the time step, S is the state space), and the system model is descriped by a 

finite state Markov chain parameterized by the finite actions aA (A is the action space) 

as P(sn|sn-1,a) , and the goal is to seek an policy : SA such that the objective function 

is minimized.   

To solve this optimization problem, we can define a cost-to-go function under 

policy  as 

 
0

0

( ) [ ( )]n

n

n

J s C s 




 E   (3.10) 

where the cost-to-go function J only depends the control policy  and the initial state s0. 

We can defined value function as 

 0 0( ) min ( )V s J s


   (3.11) 
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Using the dynamical programming principle, we have the following 

relationship,66 

 
1

0 0 1 0 1( ) ( ) min ( | , ) ( )
a

s S

V s C s P s s a V s


     (3.12) 

Furthermore,  (1) we can equip the space of all value function with an 2-norm and 

therefore convert the space of all value function into a normed vector space ; (2) we 

define an normed vector space an operator T map from the value function space to the 

value function space as 

 minTV C VP

    (3.13) 

It can be showed that the operator T is a contraction mapping; therefore, there exists an 

unique value function V* as the fixed point of the operator (which is also the minimum 

value of objective function in (3.9)).66,67 As a consequence, we can start with an initial 

guess of V0 and iterate until convergence using the following iteration formula, given as 

 1n nV TV    (3.14) 
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4 OPTIMAL NAVIGATION OF SELF-PROPELLED COLLOIDAL 

RODS IN MAZES 

 

4.1 Abstract 

Controlling navigation of self-propelled microscopic ‘robots’ subject to random 

Brownian motion in complex microstructured environments (e.g., porous media, tumor 

vasculature) is important to many emerging applications (e.g., enhanced oil recovery, drug 

delivery). In this work, we design an optimal feedback policy to navigate an activatible 

self-propelled colloidal rod in complex mazes. Actuation of the rods is modeled based on 

a light-controlled osmotic flow mechanism, which produces different propulsion velocities 

along the rod’s long axis. Actuation-parameterized Langevin equations, with soft rod-

obstacle repulsive interactions, are developed to describe the system dynamics. A Markov 

decision process (MDP) framework is used for optimal policy calculations with design 

goals of colloidal rods reaching target end points in minimum time. Simulations show that 

optimal MDP-based policies are able to control rod trajectories to target regions 

successively in mazes with increasing complexities. The structure of the optimal control 

policy demonstrates the general principle of navigation: globally following the geometric 

paths and locally utilizing  Maxwell’s demon-like strategy. 

4.2 Introduction 

Inspired by the natural micro-swimmers, such as bacteria and sperm, numerous 

man-made micro-swimmers/robotics has been created in the most recently years.27 These 

swimmers take various forms, such as bimetal nano-rods and Janus spheres, and function 

on different strategies, such as catalysis of chemical fuels27 and mimicking natural 
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swimmers28. Proof-of-concept applications of these man-made swimmers have been 

investigated in a broad range of areas. For example, biomedical applications includes using 

self-propelled “micro-device” to capture and isolate of cancer cells,30 navigate and deliver 

drugs13,31; environment applications include using self-propelled micro-motors to clean 

polluted water.12 In particular, it is anticipated that such micro-swimmers possess 

tremendous potentials of being an intelligent agent33 to localize and deliver nanoscopic 

object in complex environments (e.g., tumors, porous media) , and further being the 

building blocks of nano and micro functional machines14,15,34,35. Broadly relevant research 

includes the behavior of micro-swimmer in homogenous and inhomogeneous 

environments with random or patterned obstacles,68 thermodynamics of active matter 

system69, and assembly of cluster and crystalline structures with self-propelled particles. 

26,32 

Consider a self-propelled colloidal rod (Fig. 1A) as a representative model for a 

broad range of micron sized devices, particles, and objects that can make fast deterministic 

movements along its axis via propulsion.  A first step towards fully unleash the potential 

of these self-propelled rods is to establish a principle to reliably and precisely control the 

rod’s position towards prescribed targets in complex environments. More precisely, 

navigation of a self-propelled rod involves guiding it to follow a certain geometric path 

towards the target and then maintains it around the target. The navigation process is against 

the Brownian motion of the rod itself, which drives the rod to uniformly sample all possible 

positions and orientations available to the system as required by entropy maximization. 

Therefore, to fight against Brownian motion, an effective navigation usually requires 

actuators, such as tunable propulsion, to make the system controllable. Recently, simple 
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feedback control rule to position a self-propelled particle to prescribed location in free 

space has been investigated experimentally using photo nudging.70,71 However, 

considering complex environment containing obstacles and dead-ends, the principle for 

optimal navigation remains unclear. Moreover, questions like the minimal requirement and 

the limitation for optimal navigation, which will be ultimately connected to the design the 

self-propelled systems, have not been addressed.  The goal of this work is to study the 

principle of optimal navigation, and its generalizations and limitations. Ultimately, 

understanding the optimal control principle for the single rod task will provide insight to 

solving more challenging control tasks, such as multi-agent control. From a more general 

perspective, the controlled navigation of self-propelled rods can also be viewed as 

navigation the system through an entropy landscapes parameterized by the positions. 

Relevant theoretical and practical aspects of modeling and navigation through landscapes 

have been investigated extensively in our previous research.9,72 

Here we use computer simulation and optimal control algorithms to study the 

optimal navigation of the self-propelled micro-motors in mazes of increasing complexity 

and the underlying principles for optimal navigation. We consider a simple binary actuation 

system with feedback control (Fig. 1). This feedback control system consists of: (1) a 

sensor (e.g. microscope) sensing the system state, i.e., the rod’s position and orientation, 

(2) a actuator (e.g. a tunable lighting device) actuating ON or OFF of the propulsion, and 

(3) closing the loop to assign actuation based on system state sensor readings (via an 

optimal policy).  A discrete Markov chain model is used to obtain a probabilistic 

description of the system evolution under different actuations. A Markov decision process 

framework, using the Markov chain model as an input, is used to calculate the optimal 
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control strategy under various circumstances ranging from free space, simple mazes to 

complex mazes. We first consider concrete examples of optimal navigation, and then we 

generalize our optimal navigation principle to various settings. The ultimate goal of this 

research is to apply such feedback control scheme into real-time experiments, in which the 

theoretical and practical aspects have been addressed in our previous feedback controlled 

colloidal crystallization studies. 9,73,74 

4.3 Methods 

4.3.1 Equation of motion 

The equation of motion of a self-propelled rod subject to Brownian motion in 2D 

can be modeled as  
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where v is the propulsion speed as the control input (concrete realization of the propulsion 

velocity might depend on the specific mechanism and application, here we assume it is 

using light activation mechanism75), r is the position vector of the rod, ∆t is the integration 

time step, k is the Boltzmann’s constant, T is the temperature. Dt is the diffusivity tensor 

(in the lab frame), which can be obtained via
,|| ,( )t t tD D   D nn I nn , where I is the 

indentity tensor, n is the orientation vector n = (cos(),sin()), 
,||tD  and 

,tD 
 are the 

translational diffusivity coefficients parallel and perpendicular to its long axis, and dyadic 

product is applied on product nn. Dr is the rotation diffusion coefficient.  Brownian 

translational and rotational displacement vectors 
Br   and 

Rr  obey 
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where the superscript ‘’’ denotes transpose operation. The force F and torque T resulting 

from interactions between the rod and the obstacles are documented in Methods. 

One important characteristic of this model is that the orientation, i.e., the direction 

of the propulsion, cannot be directly controlled. When there is nonzero propulsion velocity, 

i.e., v > 0, directed motion can be observed in the short time scale(observation time t << 

1/Dr), whereas random motion will be observed on a longer time scale(observation time t 

>> 1/Dr). 

 

Figure 1 | Schematics of navigating self-propelled rod in a maze with feedback control. 

(A) The imaging system feed the state information (x, y, ) into the controller (here 

represented by a Maxwell demon), which decides turning on or off the stimulating light. 

The stimulating light will enable the rod to generate self-propulsion along its long axis. (B) 

The coordinate system used to measure the position and orientation of the rod. The self-

propelled rod has a length of L, and diameter of 2a, and it will propel itself along its long 

axis with speed v as function of light intensity I.  
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4.3.2 Optimal control framework & probability evolution 

With a set of realizable propulsion speeds, an optimal control policy in the 

navigation task is a set of rules specifying which velocity to use when given the 

instantaneous system state characterized by (x, y, ) such that the rod can reach prescribed 

target at some minimum cost (e.g., time, energy consumption etc.). We use Markov 

decision process framework(MDP) to calculate the optimal control policy. 76  This 

framework has greater generalization and flexibility to deal with stochastic nonlinear effect 

due to the nonlinear coupling of Brownian rotation to the self-propulsion compared to 

classical linear Gaussian controllers.77 In this framework, a discrete-time Markov chain 

model is first built to model the probability transition under propulsions, and then an 

optimal control policy is obtained that minimize the custom defined cost function 

associated with a Markov process characterized by the Markov chain model.   

As showed in Fig. 2A, an MDP is characterized by parameters (S, P, A, C): (1) S, 

known as state space, is a finite set consisting of elements s that describe possible states 

the system; (2) A, known as action space, is a small set of possible actions or decisions 

allowed to control the system; (3) C is one-discrete-time-step, or simply one-step, cost 

function that specifies the cost of being in a state (and possibly performing some action); 

(4) P(sn+1|sn,an) is the one-step transition probability specifying the probability of its next 

state sn+1  S if the rod is starting at state sn  S and taking action an  A during this time 

step(Here the subscript n is used to index the time step).  Note that in our current study of 

rod navigation in different environments, S is simply the collection of discretized states (x, 

y, ϕ) excluding those overlapping with obstacles; P is essentially a Markov chain model 

that describes the system dynamics using transition probabilities, which can usually be 
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estimated from the simulated or experimental data; A will only have two elements ON and 

OFF, representing propulsion is on or off. In general, A might depend on the state the 

system (in cases where some action is restricted), and can be written as A(s). 

We formulate the optimal navigation policy as a policy enable the system to reach 

our prescribed target state with minimum (time) cost starting from arbitrary initial state s0 

as:76 
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where  is the expectation with respect to probability distribution of the trajectories under 

control policy, π:SA that maps a state to an action, sn is the system state at time step n, T 

is the time horizon (i.e., number of steps) for the planning, and the cost function C 

essentially says a cost of 1 will be incurred if the system is not reside in the target states 

Starget, a subset of S. Note: the cost value 1 can be other positive scalar and will not affecting 

the solution; such formulation is commonly used in motion planning of robotic system; 78 

the argument  of the objective function is implicitly included in the expectation operator 

since  affects the future state probability distribution (See Eq. (4.3) third line).  We put 

the details of numerical solution of Eq. (4.3) in methods. The feedback control system used 

throughout this manuscript is showed in Fig. 2B: a sensor(i.e., a microscope) that reads the 

the state s=(x, y, ϕ)  of the system; then the policy π  will map the state s to certain action, 
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i.e., propulsion speed; then the corresponding propulsion speed is appied onto the system 

for a period of update time tc. 

With a control policy  (optimal or non-optimal), the probability evolution of the 

system state under the action of the optimal control can be obtained by iterating the Markov 

chain, given as 
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where sinit is the system’s initial state, Ix(y) is the indicator function that equals 1 only if 

x=y. 

Based on Eq. (4.4), mean first passage time distribution predicted from the Markov 

chain model can be calculated as 
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where Eq.(4.5) is a discrete time version of 
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continuous system.37 
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4.4 Results & discussion 

4.4.1 Transition probability in free space 

 As a demonstration of optimal control principle, we first consider concrete 

examples of optimal navigation and then generalize the principle later. We select a rod of 

length 1um, the available control contains an OFF mode with propulsion speed 0um/s and 

an ON mode with propulsion speed 4.5um/s, and the control update time tc = 1s. Other 

details related to the simulation are included in Methods. The MDP framework requires a 

Markov chain model to approximate the system dynamics, which is described by the 

transition probability 1( | , )n nP s s a (each time step is tc = 1s). Fig. 2 shows the transition 

probability of the rod under different actuations a for one discrete time step tc = 1s with 

starting state (x, y, )=(0, 0, 0). The position (x, y) distribution after one t under OFF mode 

(v=0um/s) gives a Gaussian shape with mean position located at (0, 0) (Fig. 2A), whereas 

the distribution becomes a strong distorted ‘Gaussian’ with mean position located at ~(4.5 

 

Figure 2 | Schematics of calculating optimal control policy using Markov decision 

process framework offline and execute optimal control plan online. (A) Markov 

decision process framework takes state space S, action space A, state transition probability 

P and a cost function C as input, and produce an optimal control policy. (B) Execute the 

optimal policy using feedback loop with every 1s control interval. The current state (x, y, ) 

is feed back to update the current control action. 

Markov decision 
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um, 0) under the ON mode (v=4.5um/s) as a result of  the propulsion (Fig. 2B). The angular 

displacement distribution (Fig. 2C) is Gaussian with zero mean and standard deviation of 

2 2 rD t    ~60 degrees and does not depend on the propulsion velocity. This 

relatively large standard deviation in angular displacement is consistent with the large 

spread in the position probability distribution in the ON mode (Fig. 2B). 

4.4.2 Rod navigation in free space 

Using the transition probability as input, we can numerically calculate optimal 

control policy for different navigation task. The optimal navigation of self-propelled rods 

in free space towards a specified target is showed in Fig. 4. Fig. 4A shows a representative 

optimally navigated trajectory starting with initial state (x, y, ) = (30,30,0) and the target 

position (x, y) = (0,0). The optimal control policy as a function of state (x, y,) specifies 

which propulsion speed v to use when the system is at state (x, y,) (Fig. 4B). The policies 

at different orientations are differed simply by a rotation around the target position (in here, 

the origin) due to the symmetry of free space. The optimal control policy is to minimize 

 

Figure 3 | Plot of transition probability p(sn+1|sn,a) under different actions a with 

discrete time step 1s  starting from initial state (0, 0, 0). (A)(B) Probability distribution 

of position (x, y) after one discrete time step under actions of off mode (A) and on mode(C). 

(D) Probability distribution of angular displacement after one discrete time step. Note that 

the choice of action will not affect this angular distribution.   

A B C
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the mean deviation of position to the target at the next time step with given choices of 

velocities. The intuition picture underlying the control policy is that when the target is in 

the front and relatively far away, propulsion will be turned ON to reduce the mean distance 

to the target, whereas if the target is in the back or nearby, OFF mode with zero propulsion 

should be used, since using faster propulsion will tend to overshoot rather than decrease 

the mean distance to the target. If we denote the projection of target-rod distance vector 

onto the long axis of the rod as dn, then the policy can be more compactly expressed as:  

 
ON,   2.3

OFF,otherwise

nd um
a


 


  (4.6) 

Note that this policy resembles with Maxwell’s demon79 that only acts when the proper 

system state appears due to thermal fluctuations, or more generally uses information to 

drive an entropy-decreasing process.   

 We use the first passage time distribution of rod to the target (here we define arrival 

at target position as the distance to the target smaller than 2um) to evaluate the performance 

of using control vs. without control (i.e. using a single speed constantly). The first passage 

time is defined as the time taken by the rod to reach the target position from the initial 

position. The key result for free space navigation is that optimal control case can achieve 

finite first passage time with the mean of ~60s, whereas the mean first passage time for 

random walker (in the long time scale, uncontrolled fast, slow and diffusion mode can be 

all treated as random walker with effective diffusivity80 given as 
2 / 4eff tD D v Dr  ) to is 

unbounded.81,82 The asymptotic distribution of the first passage time82 (i.e. the distribution 

as t goes to infinity) goes like 21/ ln ( )t t , which agrees with our simulation results.   
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The evolution of probability distribution of the rod’s position under optimal control 

can be obtained by iterating Eq.(4.4). The resulting probability evolution (in Fig. 4D) 

provides the statistical viewpoint of how a rod is optimally navigated to the specified target 

as a function of time. The probability distribution maintains a compact shape towards to 

targeted origin at around 60s following a straight line (i.e., the shortest geometric path); in 

contrast, the evolution probability distribution of a random walker will be a spreading 

Gaussian shape. 
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4.4.3 Rod navigation in simple mazes 

Fig. 5 shows the result of the optimal navigation towards target position (x, y)=(2, 

25) in a simple maze. Fig. 5A displays a typical trajectory navigating towards target under 

optimal control with starting state (x, y, )=(3, 3, 0). The optimal control policy (Fig. 5B) 

 

Figure 4 | Optimal navigation of self-propelled rod in free space. (A) Simulated 

optimally controlled trajectory of 200s with starting state (x, y,)=(30, 30, 0) and target 

position (x, y) = (0, 0) (B) Optimal control policy calculated using Eq. (4.3) as a function 

of discretized state (x, y,). 8 subplots corresponds to states with angles falling into 8 

different angular intervals [-/8, /8], [/8, 3/8], [3/8, 5/8], [5/8, 7/8], [7/8, 9/8], 

[9/8, 11/8], [11/8, 13/8], [13/8, 15/8]. (C) First passage time distribution obtained 

from simulation trajectory statistics (symbols) and theoretical predictions from Eq. (4.5) 

(solid lines): optimal control (black), off mode (red), and on mode (blue). Dash line is the 

asymptotic distribution of  21/ ln ( )t t  (D) Theoretical probability evolution from Eq. (4.4) 

under optimal control as function of time. 
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essentially has a global structure and a local structure. Globally, the control policy is trying 

to steer the rod to follow the shortest geometry path from an arbitrary initial state towards 

the target; locally, the control policy is seeking to actuate the rod with different propulsion 

in order to follow such a path based on a Maxwell demon-like strategy: Turn ON to follow 

a “path” leading to the target if the rod’s orientation is “correct”; otherwise, turn OFF to 

wait for the “correct” orientation to appear in the Brownian rotation process.  

Fig. 5C shows the first passage time distribution of navigating the rod using optimal 

control vs. uncontrolled. The distributions generated from simulation and theoretical 

prediction agree well, and they indicate that optimal control can achieve target ~10X faster 

than OFF mode control, i.e., diffusion. The ON mode is comparable to optimal control due 

to the simple geometry of the maze, i.e., fast random exploration can enable the rod to 

arrive the target fast. However, the optimal navigation policy will maintain the rod’s 

position close to the target, whereas the constant ON mode fails to do so.  

The probability evolution of position at different time steps under the optimal is 

shown in Fig. 5D. Compared to optimal navigation in free space, one interesting feature is 

that during the probability evolution process, some fraction of the probability will 

accumulate near the inlet(not the outlet) of the long and narrow channel; this is, an barrier 

is imposed near the inlet. The physical interpretation is that rate of rod leaving the channel 

is faster than rate entering the channel. The wide opening allows the Brownian rotation to 

deviate the direct motion due to fast motion, slowing the rate of passing the channel, while 

inside the channel, the confinement will help the rod maintain the directed motion and thus 

leave the channel with fast propulsion.  
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4.4.4 Rod navigation in complex mazes  

We can extend similar approach for more complex mazes, as showed in Fig. 6A, 

which can be viewed as enlarged mazes with repeating of local geometry patterns of the 

simple maze (Figure 5A). A representative trajectory shown in Figure 6A starting with (4, 

4, 0) navigated towards target position (67,5). Locally, the optimal control policy (Fig 6B) 

shows similar patterns with the policy in the simple maze (Fig. 6B), whereas globally 

 

Figure 5 | Optimal navigation of self-propelled rod in a simple maze. (A) Simulated 

optimally controlled trajectory of 200s with starting state (x, y,)=(3, 3, 0) and target 

position (x, y) = (3, 25) (B) Optimal control policy calculated using Eq. (4.3) as a function 

of discretized state (x, y,). 8 subplots corresponds to angles falling into 8 different angular 

intervals [-/8, /8], [/8, 3/8], [3/8, 5/8], [5/8, 7/8], [7/8, 9/8], [9/8, 11/8], 

[11/8, 13/8], [13/8, 15/8]. (C) First passage time distribution obtained from 

simulation trajectory statistics (symbols) and theoretical predictions from Eq. (4.5) (solid 

lines): optimal control (black), off mode (red), and on mode (blue). (D) Theoretical 

probability evolution from Eq. (4.4) under optimal control as function of time.  
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following geometry path that depends on the maze global geometry.  In the first passage 

time analysis, the optimal control can now achieve 3X faster than the ON mode of fast 

random exploration, and ~100X faster than the OFF mode diffusion. The probability 

evolution further demonstrates the success and effectives of optimal control; and note that 

the accumulation of probability in the inlet of channels appears as the simple maze example.  

 The above analysis procedure can be applied in the most complex maze, as showed 

in Fig. 6(C)(D)(E)(F). Built on the previous basic cases, the result is straightforward 

understood.  As the maze become larger and complex, the advantages of the optimal control 

compared to fast random exploration will be more pronounced. The optimal control 

outperforms the ON mode about 80X and OFF mode diffusion about 8000X. 
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Figure 6 | Optimal navigation of self-propelled rod in a complex mazes (A)(B)(C)(D) 

and (E)(F)(G)(H), with the same descriptions as in Figure 5.  
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4.4.5 Scaling of performance 

Practical application usually involves navigation task of large scales, therefore it is 

important to investigate how the optimal navigation performance changes with traveling 

distance in navigation tasks. We consider the scaling in two types of navigations: (1) 

navigations in free space with increasing Euclidian distance between the target and starting 

point in free space; (2)  navigations in mazes with similar local geometry patterns and 

increasing travel distance (in terms of shortest geometry path, shown in Fig. 7A).  Fig. 7B 

shows the mean first passage time under optimal control varies linearly with the path length 

in both free space and mazes. The free space optimal navigation is more time costly because 

the existence of regular geometry obstacles (lines) can enhance the directed motion, i.e., 

increasing the persistence length of propulsion motion.  As a comparison, the mean first 

passage time for the uncontrolled cases either remains infinitely large in free space travel, 

or increase dramatically as the maze size increases in mazes.  

We found that the dramatic improvement in navigation performance in optimal 

control compared with uncontrolled can be summarized by power law given as: t ~ LM for 

optimal control, and t~LM
2.8 for uncontrolled case. The power law is obtained using the 

following arguments: For optimal control case, we approximate as d~LM, which gives 

optimal control scaling of t~LM; For uncontrolled case, we use the result characterizing the 

scaling of mean first passage time via random exploration between two points in bounded 

porous media environment with Euclidian distance r given by83,  

 
/w fd d

freet A r    (4.7) 
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where df is the fractal dimension of free space of porous media, dw is the fractal dimension 

the random walk, the Afree is the free space in the bounded mazes. Let r ~ LM, Afree ~ df

ML  

(df <=2), we obtain an approximate model as t 
Mt L by lumping all the exponents 

together to , where  is fitted to be ~2.8.   

 

Figure 7 | Scaling analysis for mean first passage time for rod navigation under 

different strategies in mazes of increasing length scales. (A) Mazes of increasing sizes, 

starting point and ending points are marked by cross symbol and pentagram. Shortest 

geometric path are plotted as solid lines. (B) The mean first passage for rod under optimal 

control is linear with the shortest path length. (C) Approximate scaling relationship 

between mean first passage time and maze length scale for rod under different control 

strategies. 
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4.4.6 Generalization of optimal control principle 

Our previous concrete example demonstrate the superior navigation performance 

of the optimal navigation in free space and mazes. Now we are in the position to generalize 

the optimal navigation and investigate the limitation of this optimal navigation principle.  

We address these issue by investigating how positioning accuracy and arrival time 

performance depends on control parameters. We first introduce revolution number71 and 

Peclet number84 as 
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       (4.8) 

where revolution number characterize the amount of the rotation within a time interval tc, 

Peclet number characterize the ratio of persistence length over the diffusion distance on the 

characteristic time scale τ. We characterize the positioning accuracy using positioning error 

defined as 

 
2

2 2 *(Pe, )

target target( ,Pe) (( ) ( ) ) ( , )x x y y p x y dxdy      
R

  (4.9) 

where *(Pe, )p   is the steady state distribution of the positions resulting from using optimal 

policy *(,Pe). A typical distribution is showed in SI Fig. 1(A).  

Fig. 8(A) show the positioning error as a function of parameter  and Pe. It is 

generally beneficial to use smaller  since more frequent feedback will not decrease 

positioning accuracy(if the system is deviating from the target, faster feedback rate will 

enable earlier correction). It is also found that the positioning error will continuously 

decrease as we increase and Pe while decrease  cooperatively in the same time. The 
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interpretation is that faster speed with faster control update will reduce the position error, 

i.e. better control of its position; however, simply varying  or Pe while keeps the other 

fixed will increase the position error. It should be note that continuously decreasing  while 

increasing Pe, cannot completely eliminate the position error. This uneliminable position 

error is intrinsic, and can be mathematically defined as 

 ,

0

min ( , ) lim ( , )in Pe
Pe

Pe Pe



    



    (4.10) 

Note that the intrinsic error should only depends on the intrinsic properties of the system, 

i.e. Dt and Dr. Fig. 8(C) shows the intrinsic position error as a function of Dr and Dt. Note 

that we found that ~ /in t rD D  . 

As for the influence of control parameter on the arrival time performance, we 

consider different navigation tasks to examine how the navigation performance depends 

on  and Pe. The navigation tasks are navigation in free space and navigation around 

different sizes of obstacles (Fig. 8(C)), which is a generation of various scenarios common 

in navigation in complex environments. We can further define a geometric constant 

/obsL L  , which is the characteristic length scale for the maze over the length of the rod. 

For free space navigation, we define   .  

The performance plot in Fig. 8D show the influence of  and Pe on mean first 

passage time in navigation tasks characterized by various. Similar to the positioning 

accuracy, it is generally beneficial to use smaller  since more frequent feedback will not 

decrease performance(if the system is doing good, then just maintain the previous decision; 



43 

if the system is doing bad, faster feedback rate will enable earlier correction). In actual 

experiments, the choice of  is dependent on the imaging system, memory requirement of 

the algorithm. Smaller time will require higher spatial resolution.  

Similar to the positioning accuracy, with a fixed, there is an optimal Pe; and the 

optimal Pe will increase as  decreases. An analog to understand this is a driver drive in 

higher speed requires faster reaction time, otherwise too large speed (i.e. large Pe)  will 

tend to overshoot and too small speed simply reduce the performance. The optimal Pe at 

fixed  also slightly increase with geometric constant  of the task. This is because smaller 

 requires finer control on the distance, therefore small Pe is preferred. Note that Pe = 0 or 

 =  will reduce the system to a purely diffusion or an unattended random walker, which 

will lead to unbounded in the mean first passage time, as we investigated previously.82  

We can conclude from above observation that positioning accuracy and arrival 

performance are closed connected, since navigation through a path can be viewed be a 

series of positioning subtasks along the path. The position error further reflects the 

uncontrollable components in the feedback control system, which gives insight on the 

limitation of our control algorithm: a system with larger intrinsic positioning error, 

characterized by  ~ /in t rD D  can not be efficiently navigated. This insight will enable 

us to make better design on the geometry and mechanism of self-propelled system, which 

will ultimately affect Dt and Dr. 
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4.5 Conclusion & outlook 

We have demonstrated the application of Markov decision framework to construct 

an optimal control policy in navigation task in free space and complex mazes. The optimal 

control policy can achieve orders-of-magnitude faster in first passage time in navigation 

 

Figure 8 | Generalization of optimal control. (A) Positioning error (/L) as a function of 

 and Pe. The contour line with triangle symbols denotes the isoline with /L=10. The 

black dash line passes through the minimum point on each contour line, indicating the 

optimal choice of Pe (in terms of minimizing positioning error) at different value of . (B) 

Intrinsic position error as a function of Dr and Dt. The contour line with triangle symbols 

denotes the isoline with /L=10. (A) Schematics for different navigation tasks 

characterized by geometric parameter . (B) Summary of mean first passage time under 

optimal strategies in different navigation tasks as a function of control system setting Pe 

and . The black dash line passes through the minimum point on each contour line, 

indicating the optimal choice of Pe (in terms of minimizing navigation time cost) at 

different value of . 
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tasks compared to uncontrolled random explorations. The performance under optimal 

control can linearly scale up with length of the shortest path connecting the initial position 

and final position. We identify non-dimension parameters in the control system, and we 

generalize the optimal control by investigating how these non-dimensional parameters 

affect the positioning error and first passage time performance.   The optimal control 

framework will find potential application in employing self-propelled devices performing 

tasks, such as cargo transport in complex environments. Generalization the optimal control 

framework to 3D is straightforward. The MDP framework remains the same except that 

the system state is defined as s=(x, y, z, , ), where  is the polar angle and  is the azimuth 

angle.  

 

  



46 

5 CARGO CAPTURE AND TRANSPORT VIA OPTIMALLY 

CONTROLLED SELF-PROPELLED COLLOIDAL MOTORS  

 

5.1 Abstract 

Using strategic control,  stochastic systems consisting of a group of self-propelled 

microscopic ‘robots’ with Brownian motion can be harnessed to perform work not allowed 

in equilibrium thermodynamics. Using self-propelled Janus motors as the model system, 

we demonstrate a new paradigm for cargo capture and transport based on multiple-agent 

feedback control. The control algorithm is able to coordinate multiple motors to cooperate 

on forming a reconfigurable vehicle for cargo transport with Pareto optimality. The 

underlying physical principles on structure control and momentum transfer of this system 

are investigated. The design space on how to improve device efficiency are explored. 

5.2 Introduction 

The last decade has witnessed an emergence of research interests in self-propelled 

microscopic systems, which consist of micro-scaled natural or man-made objects that are 

able to propel themselves by consuming external environmental energy. Examples include 

bacterial85 and chemical catalytic systems.27  Such system is also known as active matter, 

for their contrasting differences in the non-equilibrium nature and the underlying physical 

laws governing its kinetics. The research focus on its scientific principles covers 

thermodynamics,29,86 emerging macroscopic motion87, stress distribution,88 

hydrodynamics,89 and ultimately their connections to the physics of life.90 The 

understanding of its scientific principles are motivating various engineering applications 

to harness the non-equilibrium properties to perform tasks not permitted in scenarios 
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governed by equilibrium thermodynamics. Proof-of-concept applications of these systems 

are spaning a broad range of areas. For example, using self-propelled “micro-device” 

navigate and deliver drugs13,31 in biomedical applications; water pollution cleaning in 

environmental applications12; mechanical device can perform work via rotating gears in 

the active bath; and creation of novel structures based on active interactions.26,32 

Conjugating active systems with strategic control can enable more efficient and broad 

applications. Successful examples include: colloid delivery via constant feedback control 

enabled by properly designed three-dimensional microstructures,11 the formation of active 

rectification devices by controlling spatial light intensity on a light-activated active 

system,15 and feedback Light-activated navigation on free spaces and complex mazes.  

Among all these potential applications, cargo manipulation(e.g. capture and 

delivery) are of particular interest as motivated by their potential significance to biomedical 

applications; for example, capture and isolation of cancer cells,30 targeted drug delivery, 

and diagnosis. These cargo related tasks have been accomplished via man-made micro-

machines by attaching cargo via magnetic, electrostatic interactions, and bio-chemical 

interactions.30 These designs might have the drawbacks of: (1) the limited interactions can 

be exploited; and (2) not being robust due to the lack of error-correcting machinery. To 

overcome these inherent limitations, here we demonstrate a new paradigm for cargo 

capture and transport based on multi-agent feedback control of active system. Our design 

consists of a number of self-propelled Janus motors conjugated with a feedback control 

system. The strategy for cargo capture and transport process are summarized as (Fig. 1B) 

steering each motors to form a stable packing structure around the cargo and then move 

the ‘locked’ cargo by properly transporting momentums. The realization of such strategy 
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relies on the feedback control system to have real-time capabilities of: (1) sensing the 

system state, i.e., the positions and orientations of motors and the position of the cargo; (2) 

a decision making module that calculating optimal actuation strategy based on the system 

state; (3) actuation module that actuates each motor individually. Compared to 

conventional cargo delivery strategies, such design offers the following advantages: (1) 

large design space to perform different types of cargo capture and transport task (2) robust 

via feedback control; (3) real-time programming and multitask all-in-one. 

Our study is structured as follows. We first illustrate an optimal control algorithm 

in steering multiple motors to arrive at multiple assigned targets. The application of this 

algorithm to cargo capture, isolation, and transport are then illustrated. We explore the 

design space and investigate the underlying physical principles on structure control and 

momentum transport during capturing and transporting process. Ultimately, even though 

our demonstration is limited to cargo manipulation, our strategy and method in navigation, 

structure control, and momentum transport can be generalize to applications of active 

system in different domains, such as self-organizing reconfigurable machines and devices, 

active assembly of topological structure, etc.. Finally, because of the advancement of 

optical manipulation techniques enable fine control on the spatial lightning.91, such multi-

agent control system will hold promise in the future.    
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5.3 Theory 

5.3.1 Equation of motion for motors 

We model the equation of motions of our self-propelled micro-motors indexed by 

IM={1,2,…,p} as 
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where i IM, vi is the propulsion speed of the motor i as the control input (concrete 

 

Figure. 1. Schematics of navigating self-propelled rod in a maze with feedback control. 

(A) The imaging system feed the information of system state S=(x, y, ) containing 

positions and orientation of the motor and the positions of the target into the online control 

policy module, which outputs velocities to use for the motors. The control policy is 

executed by the actuator module containing the illuminator(light bulb) and a selective 

phone mask such that each motor can be tuned to desired velocities. This feedback control 

procedure will loop at every interval of tc. (B) Schemes of using optimal controlled 

colloidal motors to perform cargo capture and transport. Targets are designed to 

dynamically located around the cargo. And optimally controlled motors are controlled 

using feedback system in (A) to track these targets. When motors are localized to their 

target sites via optimal controlled, the cargo will be caged, and hence captured. After the 

cargo are captured, the controller will maintain the motor to the target sites and selectively 

activate motors in the transport direction (the dash black arrow) such that the motors will 

move with the cargo in the transport direction. 
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realization of the propulsion velocity might depend on the specific mechanism and 

application, here we assume it is using light activation mechanism75), ri =(x, y) is the 

position vector of the motor i, ni is the orientation of motor i, given as ni =(cos(i),sin(i)), 

∆t is the integration time step, k is the Boltzmann’s constant, and T is the temperature. Dt 

=kT/6a is the translation diffusivity, with  as the visocity, and Dr = kT/6a3 is the 

rotational diffusivity.  The Brownian translational and rotational displacement 
B

ir   and 

B

i  both have mean 0 and variances of 2Dtt and 2Drt respectively. Fi is the forces due 

to interactions of electrostatic repulsion2 and depletion attractions92 between motors, given 

as 
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where Bpp is the pre-factor for electrostatic interactions, -1 is the Debye length, L is the 

depletant radius. The depletion attraction is written as the product of osmotic pressure,, 

and excluded volume, Vex.  

5.3.2 Optimal multi-agent control framework   

The central optimal control task throughout this work is to optimally control a set 

of motors to track a set of moving targets. More specifically, we are seeking an optimal 

control policy, or a set of rules, specifying which self-propulsion velocity to use when 

given the instantaneous system state characterized by motors’ position and orientation (x, 

y, ) and targets’ position (x, y) such that the distances between motors and targets are 
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minimized as the system evolves. We first define notations to formalize our methods of 

obtaining optimal control policy. Let IM=1,2,…,p index motors and let IT=1,2,3,…p index 

the targets. A system state s is defined as the concatenation of state vector of each 

individual motor as s = (s1,s2,…,sp),si = (ri, i), ri=(x, y), i IM. The state space S is the set 

containing all possible value of s. The state space S can be viewed as the product of state 

spaces of individual motors, i.e., S=S1 S2Sp.  An action u is defined as the 

concatenation of individual velocity as u=(v1, v2,…,vp). The action space U is the set 

containing all admissible value of u. The action space U can be viewed as the product of 

action spaces of individual motors, i.e., U=U1 U2Up, with Ui={v: 0v vmax}.  

In the multi-agent control framework, we will assign different motors to track 

different target. Because IM and IT are of the same size, an assignment from IM to IT  is a 

permutation on the set IM.  We further define G as the set of all admissible assignment, 

then G contains q! all possible permutations of IM. Finally, we defined a control policy  

is a mapping from S to V. A policy  can also be viewed as the concatenation of individual 

policies,  = (1, 2,…, p), i: SiUi, in which each i specifies vi to use when motor i is 

at state si .  

The objective of finding an optimal instantaneous policy at time t with system state 

s (i.e. propulsion velocities) to track targets can be mathematically formulated as: 
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where tc is the control update interval, rt,g(i)(t),g(i)IT  is the position vector of target 

assigned to motor i(represented by g(i)), < > is taking expectation with respect to joint 
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probability distribution of ri and rt at time  t + tc. Essentially, we are optimizing over all 

possible admissible assignments and velocity specification such that we can steer our 

motors to their assigned targets closer in future time t + tc such that the mean squared 

error is minimized. However, the above optimization problem is difficult to solve since it 

is a mixed programming involves integer programming and continuous programming 

under constraints. We approximate the optimal solution using the following two sub-steps: 

solve g* first and then solve  whiling fixing g*. The procedure can be formulated as 
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The optimization of Eq. (5.37) can be solved using Hungarian algorithm in combinatory 

optimization.93 The optimization of Eq. (5.5)can be decomposed into optimization problem 

for each motor, which is also trackable.   

5.3.3 The cargo capture and transport algorithm 

We list the cargo capture and transport algorithm as follows. The cargo capture 

algorithm can be viewed as a special case of multiple motors to multiple targets algorithm, 

in which the target sites are prescribed to surround the moving cargo. The cargo transport 

algorithm will select a subset of motors as transporters satisfying a distance criterion and 

orientation criterion. These transporters will turn on their maximum speed to contribute 
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momentum to the system. The rest of the motors will execute speed to steer themselves to 

the target sites, thus maintaining the caging structure.  

 

Cargo capture algorithm 

1 Construct the lattice target sites around the cargo 

2 Loop with frequency tc: 

3     Calculate the optimal velocities from Eq. (5.37). 

4     Update the position of motors and cargo within tc using Equations of motion. 

5     Reconstruct the target sites around the cargo. 

6 End Loop 

 

Cargo transport in  direction algorithm 

  1 Construct the target sites around the cargo 

  2 Loop with frequency tc: 

  3    Calculate the optimal velocities for all motors from Eq. (5.37). 

  4    For each motor i: 

  5        If |i - | < c and ||ri – rt,g(i)||< a 

  6            Set the self-propulsion velocity for motor i to be maximum velocity. 

  7        End If 

  8    End For 

  9    Update the position of motors and cargo within tc using Equations of motion. 

10    Reconstruct the target sites around the cargo. 

11 End Loop 

5.3.4 Measuring tracking performance 

We measure the performance of motors tracking targets by first passage time. We 

first define the first passage time for a motor i to reach a target j as 
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Then the definition of first passage time for p motors to p targets can be defined as  

 ,max
Mm i I m i    (5.7) 
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which is the last first passage time of all the motors.  

5.3.5 Capture characterization 

The dynamical process of cargo capture can be monitored by the mean deviation of 

motors from their assigned targets, defined as  
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and the deviation of the cargo to the mass center of the motors, defined as 
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We further assess the capture quality via the normalized deviation of the cargo by the 

capture span ST associated with targets sites, given as 
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The normalized deviation  quantifies how tight the cargo is being caged by the 

motors.  greater than 1 suggests that motors fails to maintain the cargo inside their capture 

span;  much smaller than 1 suggests that cargo is being tightly captured. Intuitively, the 

more motor we have, the larger ST, and the easier the cargo being expected to be captured.  

5.3.6 Governing equation on steady state structures 

 In the steady state during the capture and transport processes, the steady state 

structure should satisfy the force balance between the osmotic pressure and the active force 
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generated by propulsion. By assuming the equilibrium structure is close to circular shape, 

we have force balance in the radial direction given as88 

 ( ) ( )os
act

dP
R F R

dR
    (5.11) 

where Pos(R) is the pressure at distance R from the mass center of the configuration, and 

(R)  is the density profile at distance R from the mass center. The macroscopic balance 

equation will generally hold for length scales larger than radius a.94 By assuming the 

system reach thermodynamic equilibrium, the pressure can be expanded as Pos(R)= 

(R)kTZ, where Z is the compressibility factor. Fact(R) is the mean active forces in the radial 

direction, which can be written as  
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where the <> means time average in the steady state process,  di is the unit vector of the 

inward radial direction, rc(t)is the instantaneous average position(mass center) of all motors, 

cv  is the average velocity of the whole cluster system,  is the Dirac delta function, and N 

is the number of motors. 

5.3.7 Conservation of momentum and transport speed  

 When all the cargo, including the cargo, (N+1 particles) are moving collectively 

with average velocity cv , the whole cluster will experience a total hydrodynamic friction 

force Ffri, given as,  
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 ( 1)6fri cF N av    (5.13) 

Then, the balance (in the steady state sense) of the total friction force Ffri and total active 

forces given by 6avini enable us to establish an equality between  transport velocity of 

the cluster as a whole as 
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where the <> means time average in the steady state process. By arranging terms we have 

the average transport velocity given as 
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5.3.8 Theoretical maximum velocity  

Consider N motors transporting a single spherical cargo, the theoretical maximum 

velocity ,maxcv from (5.15) using equilibrium uniform probability distribution on n is given 

as  
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where c is the threshold angle for transport activation in the cargo transport algorithm. 
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5.4 Methods 

5.4.1 Simulated experiments  

In this work, we perform BD simulations to verify the efficacy of optimal control 

policy. The integration time step is 0.1ms. The simulation parameters used are listed in 

table 1. The control update interval tc is 0.1s. Parameters used in the simulation are listed 

in the following table. 

Table 1 

Parameter Equation value 

a(nm)a (5.2) 1000 

Bpp (a/kT) (5.2) 2.2974 

-1 (nm)c (5.2) 10 

Dt(m
2/s) (5.1) 5.13e-13 

Dr(rad2/s) (5.1) 0.55 

v(m/s) (5.1) [0,5e-6] 

 

All the optimal control simulations except for transport in this manuscript are 

performed using the following procedure repeated with interval tc: first sense the state of 

all motor and positions of targets, and then calculate the optimal control policy using Eq. 

(5.3) and execute the policy vi = *i (si). 

5.4.2 Construction of first passage time from simulation 

In construction of first passage time distribution on different control strategies, we 

run our simulation with specified initial state and calculate the first passage time as defined 

in Eq.(5.7). About 1000 trajectories are used to construct the first passage time distribution. 

Usually, the wider the distribution, the more trajectories are needed.  
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5.4.3 Transport speed measurement 

During the cargo transport process, the average transport speed is obtained by 

dividing the horizontal traveling distance by the time interval during a 2000s transport 

process. 

5.4.4 Statistics for active velocity, density, and area fraction 

The spatial distribution of active velocities, density, and area fraction is obtained 

from simulation data using histogram method averaged over snapshots as the system reach 

steady state. The snapshots are taken very 0.5s and usually 10000 snapshots are used for 

constructing statistics. The spatial resolutions are 0.25aa for 2D space, and 2a for 1D 

space. 

5.5 Results & discussion 

5.5.1 Capture time characterization 

We start with the case of single motor tracking single target subject to Brownian 

motion. Fig. 2A shows the optimal control policy that specifies the choice of propulsion 

speed given the target’s position respective to the motor’s position and orientation. The 

optimal control policy is obtained as the approximate solution to the one-step look-ahead 

optimization problem given as 
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where the bar means expectation. The optimization can be intuitively interpreted as seeking 

the optimal speed such that we have the minimum distance between the mean position of 

the motor and the target in the next time step. The details about solving this problem are 
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documented in supporting information. The optimal control policy can also be written 

compactly as 
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where d is the projection the vector connecting motor center onto the direction vector n1, 

and tc is the control time interval.  
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A typical trajectory of the motor under such control strategy is showed in Fig 2B. 

The efficiency of the target tracking process can be characterized by the first passage time 

distribution. The significance of the optimal control can also be viewed from the fact that 

 

Figure. 2. (A) Optimal control policy for motors under speed constraint v  [0, 5 a/s]. The 

optimal control policy specifies the self-propulsion speed v to be used given target position 

(x, y) with respect to the local coordinate system, which is centered on the motor center 

and has its y axis aligning with the motor’s orientation vector n (the arrow). (B) 

Representative trajectory (blue solid line) of an optimally controlled motor (starting with 

initial state (x, y, )=(30,30,0)) tracking a target (initially located at position (0,0) ) 

undergoing Brownian motion with the black solid line as the trajectory. The black dashed 

line around the target represents the target region used to calculate first passage time. (C) 

The distribution of first passage time  for an optimally controlled single motor tracking a 

Brownian moving target as described in (B). (D) Design of target sites (dashed circles) for 

multiple motors to capture and transport cargo. Five different design schemes for different 

number of motors are demonstrated. Target sites are dynamically placed around the cargo 

such that when motors are perfectly localized at the target sites, cargo will be caged, 

therefore captured. (E) The representative trajectories of 6 optimally controlled motors 

tracking 6 dynamic targets moving simultaneous with the Brownian cargo. The cargo 

(yellow circle) is initially located at position (0, 0). The motors are initially equally spaced 

on a circle (dash blue) with radial distance 30a to the cargo. The targets are drawn as 

dashed circles around the cargo. Solid lines are trajectories of motors and the cargo. (F) 

The distribution of first passage time  for a N motor tracking N dynamic targets (initially 

located at position (0,0)) with initial distance of 300a . From left to right are N=1, 6, 18, 

36, 60, 90. 

N=6 N=18 N=36

N=60 N=90

V / (a/s)A B C

D E F
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the any uncontrolled system tracking a target requires an infinite mean time to get to the 

target. 82 

5.5.2 Multiple particle tracking multiple targets 

In the experiment of multiple particle tracking multiple targets, by design 

surrounding target sites dynamically surrounding (the target sites will move around with 

the cargo) the cargo(Fig. 2D), such that when motors arriving at the target sites, they will 

form a ‘cage’ to capture cargo. The target sites are designed to have multiple shells such 

that the cargo will be more stably caged inside. Fig. 2E show the trajectories of controlling 

6 particle to track the 6 targets surrounding a Brownian cargo particle. Fig. 2F shows the 

first passage time distribution of control 6, 18, 36, 60, and 90 motors to track the 6,18,36,60, 

and 90 targets around the cargo respectively. The first passage time of all the motors 

arriving at their assigned targets is simply the time cost for a cargo to be captured. Note 

that the mean first passage time will increase as the number of motors increase since it 

require more time to put more particles into their target sites. 

5.5.3 Transient process in capture 

Figure 3 shows the trajectories of 90 motors executing the algorithms cargo 

capture(0~300s) and transport (300s~1300s), as Fig. 1. BCD schematics shows. During 

capture process 0~300s, all motors are approaching their optimally assigned target sites 

quickly under optimal control. As a consequence, the distance of each motor to its 

optimally assigned target decrease dramatically initially (Fig. 3B).  Similarly, the distance 

between the mass center of motor and the cargo also decrease dramatically initially (Fig. 

3C). During the later stage of the capture process (200s~300s), the system enter into the 

steady state with the values of these two distance metrics remaining relatively constant. 
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The transport process starts from 300s to 1500s, where all motors with the caged cargo 

move collectively horizontally to the right with constant speed of 0.7um/s, as showed in 

Fig. 3D.  Note that the transport process does not experience any noticeable initial transient 

stage and quickly enter into a steady state. During the whole transport process, the 

deviation of the motors and cargo will remain at the relatively larger values than in the 

steady state of the capture process. 
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5.5.4 Steady state structure during capture 

The resulting steady state structure from capture process will depend on the motor 

number and the interactions between motors. As a coarse first-step analysis, we assess how 

the capture quality will depend on the motor number and the motor interactions. The 

 

Figure. 3. Trajectory for capture and transport process. Cargo initially located at (0,0), 

after 1300s, cargo is transported to position at (90,0) (A) The black solid line represents 

the cargo. The color spectrum from blue to red represents the time scale. Other solid lines 

denote the trajectories of the motors. (B) The distance of each motor to its optimally 

assigned target position surrounding the cargo as a function of time. Each red line 

represents one motor. The black denotes the mean value. 0 to 300 s is the capture process, 

and 300s – 1500s is the transport process. The left part of the arrow is capture process and 

the right part is the transport process. (C) The distance of cargo to the mass center of all 

motors as a function of time. (D) The cargo’s position in the x axis as a function of time.  

A

B C

D
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capture quality is characterized by the normalized cargo deviation (Eq. (5.10)). It is found 

that increasing motor number and attraction strength will reduce the normalized deviation, 

indicating more stable and robust capture. For the case of cargo capture using only 6 motors, 

these motors fail to maintain the cargo around their center of mass. The steady state 

structures can be more accurately characterized by the 2d motor position distribution with 

respect to the cargo position, as showed in Figure 4B. As the attractions between motors 

increase, the steady state structure will become more and more condensed and compact. In 

particular, at zero attraction case, the position distribution profile can spread out to 20a, 

with large amount of fluid-like motors in the periphery. As we increase the attraction 

strength to 5.3kT, the steady state structure is similar to crystalline lattice structure, with 

lattice point coincide with the target sites. The active forces exerted by the optimally 

controlled motors play a fundamental role in determining the steady structure. To illustrate 

this, we decompose the active forces acting on every particle into the radial direction (with 

the mass center being the origin) and tangential direction (i.e. perpendicular to radial 

direction). The radial active forces for N=90 system with different motor attractions are 

showed in the Fig. 4B. In all attraction strengths, there are always positive radial forces 

acting inward directions, thus balancing the osmotic pressure that drives the system to 

expand outward. Moreover, the radial active forces resulting from the optimal controller is 

behaving adaptively. That is, the radial active forces will decrease as attraction increase, 

because stronger attractions between motors will help hold the dense structure; as a 

consequence, smaller radial active forces are needed to maintain the structure. It is also 

found that the active forces in the tangent direction are order-of-magnitude smaller than 

the radial forces. The balance between the osmotic pressure and active forces can be more 
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accurately described as Eq. (5.11). Note that we can use sedimentation method to estimate 

the equation of the state used for calculate the osmotic pressure. Fig. 3C shows the 

comparison of osmotic pressure in the radial direction vs. the integrated active forces in 

the radial direction. 

5.5.5 Steady state structure during transport 

Fig. 5A (first column) show the 2D density profile of 90 motors with different 

attraction strength respect to a moving cargo center in the steady state of the transport 

process. Similar to the steady state structure in capture process, the stronger the attraction, 

 

 

Figure. 4. (A) The normalized mean deviation of cargo to the mass center of motor as a 

number of number of motors N (from top to bottom: N=6, 18, 36, 60, 90) and attraction 

strength Uatt between motors. (B) (upper row)2D steady state position distribution of 90 

motors tracking 90 targets sites surrounding a Brownian moving cargo and (lower row) the 

steady state active force distribution in radial direction distribution. The coordinate in the 

2D plot is with respect to a local coordinate system centering on the mass center of the 

system. Interactions between motors are: (left) 0 kT attraction, (middle) 3.2 kT attraction, 

and (right) 5.3 kT attraction. (C) The pressure estimated from the integrated active force in 

1D radial direction (Eq. (5.11)) for N=90 motor system. Different colors represent motor 

interactions of: (black) 0 kT attraction, (red) 1.8 kT attraction, (green) 3.2 kT attraction, 

and (blue) 5.3 kT attraction. 

C

A B
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the more compact it will be.  Compared with capture process, there are two contrasting 

characteristics of the steady state structure density profiles in the transport process: (1) the 

structure is relatively more expanded, especially at low attraction cases; (2) the resulting 

density profile is asymmetric 2D.  

During transport process, the active forces play two essential roles: providing the 

momentum for transport and balancing the osmotic pressure to maintain the caging 

structure. The active forces acting on each motor in the horizontal direction is showed in 

Fig. 5A(second column). For the zero attraction case, the 2D horizontal forces distribution 

resembles a bi-polar structure, with the left part being dominantly positive and the right 

part dominantly negative. Note that the appearance of the bipolar force distribution is due 

to the transport algorithm’s requirement to maintain the caging structure during the whole 

transport process via the active forces. As a consequence, the overall structure is squeezed 

by the active forces to maintain the caging structure. Moreover, the negative and positive 

forces are not perfectly cancelled out, with the positives forces exceeds the negative forces 

(note that there are some positive forces sparsely distributed on the right). The summation 

of the horizontal forces gives a positive value, indicating that there is a net total force in 

the horizontal direction to provide the momentum to move. As we increase the attraction 

strength to 3.2kT, the horizontal force distribution is similar to 0kT case, except that the 

positive-direction forces dominates more the negative-direction forces, giving a more 

positive net total force. When the attraction strength is 5.3kT, the force distribution is 

dominantly positive, thus providing the strongest driving force for the caging structure to 

collectively translate. Note that the net total active forces in the vertical direction are found 

to be order-of-magnitude smaller than the horizontal forces. In the 5.3kT attraction case, 
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the attraction itself is able to maintain the structure; therefore, active forces are mainly 

contribute the momentum. 

To clearly demonstrate the role played by active forces in maintaining the structure, 

we first obtain the net forces used to maintain the structure by subtracting the original active 

forces by the frictional forces experienced due to the translation. The projection of these 

net structure maintaining forces onto the radial direction is showed in Fig. 5A(third 

column). The distribution profile is similar to the cases in capture steady state. There exist 

active forces in the radial direction to maintain the structure by balancing with the osmotic 

pressure. Similar to steady state structure during capture, such balance can be approximated 

described by Eq.(5.11). And the comparison of the osmotic pressure and active forces 

suggests the existence of such balance, as showed in Fig. 5B.  

The amount of momentums transfer from the active forces to the caging structure 

is reflected on the difference in the transport speeds. Fig 5C shows the transport speeds as 

a functions of motor numbers and attraction strength between motors. The average 

transport speed is measured from simulation using travel distance divided by travel time 

interval. The measured speeds agree with the prediction from Eq. (5.15) based on 

momentum conservation. It is found that stronger the attraction and larger number of 

motors, the faster of the transport. This is because when motors have stronger attractions, 

more active forces are used in the transport to generate faster speeds, as we discuss in the 

analysis of horizontal active forces. Note that the maximum transport speed can be reached 

is nearly independent of the motor number at large N, as showed in Eq. (5.16).  
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Figure. 5. (A) 2D steady state position distribution of 90 motors tracking 90 targets sites 

surrounding a Brownian moving cargo, (middle column) the steady state active force 

distribution in positive horizontal direction distribution, and (right column) the steady state 

residual active force distribution in radial direction distribution. The coordinate in the 2D 

plot is with respect to a local coordinate system centering on the mass center of the system. 

Interactions between motors are: (top) 0 kT attraction, (middle) 3.2 kT attraction, and 

(bottom) 5.3 kT attraction. (B) The pressure estimated from the integrated active force in 

1D radial direction (Eq.(5.11)) for N=90 motor system. Different colors represent motor 

interactions of: (black) 0 kT attraction, (green) 3.2 kT attraction, and (blue) 5.3 kT 

attraction. (C) Transport speed as a function of number of motors and attraction between motors. 

The dash line is the theoretical maximum transport velocity. 

B C

A
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5.6 Conclusion 

In this paper, we developed the optimal control algorithm can steer multiple motors 

to multiple targets. This algorithm was then used to implement a new paradigm design for 

cargo capture and transport. The steady structures during the capture and transport process 

are found to depend on the pair attraction between motors and number of motors. We found 

that active forces resulting from self-propulsion is essential in maintaining the caging 

structure during the cargo capture, and play two roles during the cargo transport: both 

maintaining the structure by balancing the osmotic pressure and providing the transport 

momentum for the system. The interplay of these two roles can be affected by the 

interactions between the motors and the number of motors; further, it determines the 

amount of the active forces used to transport the cargo, and thus affecting the transport 

speed.  

5.7 Supplemental methods & theory 

5.7.1 Brownian dynamics of colloidal motors and cargos 

We model the equation of motions of the self-propelled colloidal motors indexed 

by IM={1,2,…,N} as 

   (5.19) 

where i IM, vi is the propulsion speed as the control input (concrete realization of the 

propulsion velocity might depend on the specific mechanism and application, here we 

assume it is using light activation mechanism75), ri =(x, y) is the position vector of the 

( ) ( ) ( )
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motor, ni is the orientation of motor i, given as ni =(cos(i),sin(i)), ∆t is the integration 

time step, k is the Boltzmann’s constant, T is the temperature. Dt =kT/6a is the translation 

diffusivity, with  as the visocity, and Dr = kT/6a3 is the rotational diffusivity.  The 

Brownian translational and rotational displacement 
B

ir   and 
B

i  both have mean 0 and 

variances of 2Dtt and 2Drt respectively. Fi is the forces due to interactions (details in the 

following section) with motors and the cargo. 

We model the equation of motion of the cargo as 

 ( ) ( ) Bt
c c c i

D
r t t r t F t r

kT
        (5.20) 

where parameters Dt, k, T, 
B

ir  and ∆t are the same as the parameters in the motor’s 

simulations, and Fc is the force due to interactions with motors.  

We model the equation of motion of a Brownian target as 

 ( ) ( ) B

t t ir t t r t r       (5.21) 

where same parameter of 
B

ir  and ∆t are used. Note that the Brownian target will not 

interact with any other objects. 

5.7.1.1 Colloidal interactions 

The motors’ interactions consist of electrostatic repulsion2 and depletion 

attractions92 between motor i and motor j, given as 
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where Bpp is the pre-factor for electrostatic interactions, -1 is the Debye length, L is the 

depletant radius, rij is the distance between centers of motor i and j. The depletion attraction 

is written as the product of osmotic pressure,, and excluded volume, Vex.  

The interaction between motors and the cargo only include electrostatic interactions 

given as 

    , , ,exp 2c i c i pp c iu r B r a      (5.23) 

where the parameters Bpp and -1 are the same as parameters in motors’ interactions, and 

rc,i is the distance between the centers of the cargo and the motor i.  

 With these interaction potentials, we can calculate the force terms in Eq. (4.1)

(5.20) as 

 

   

 

, ,

,

c, ,

( )
M

M

i c i ij i j ij

j i j I

c j c j

j I

F u r u r

F u r

 



    

 




 (5.24) 

5.7.2 Calculation of optimal control policy 

With a set of realizable propulsion speeds, an optimal control policy in the cargo 

capture and transport tasks is a set of rules  specifying which velocity to use when given 

the instantaneous system state characterized by motors’ position and orientation (x, y, ) 

and assigned targets’ position in order to accomplish specific task under optimality 
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criterion.  

The central optimal control task throughout this work is to optimally control a set 

of motors to track a set of moving targets. We first define notations to formalize our 

methods of obtaining optimal control policy. Let IM={1,2,…,N} index motors and let 

IT={1,2,3,…,N} index the targets, where N is the number of motors and targets. A system 

state s is defined as the concatenation of state vector of each individual motor as s = 

(s1,s2,…,sN),si = (ri, i), ri=(x, y), i IM. The state space S is the set containing all possible 

value of s. The state space S can be viewed as the product of state spaces of individual 

motors, i.e., S=S1 S2SN.  An action u is defined as the concatenation of individual 

velocity as u=(v1, v2,…,vN). The action space U is the set containing all admissible value 

of u. The action space U can be viewed as the product of action spaces of individual motors, 

i.e., U=U1 U2UN, with Ui={v: 0v vmax}.  

5.7.2.1 Single motor optimal control to track Brownian target 

The single motor optimal control problem is the special case of N=1. The 

objective of finding an optimal instantaneous policy (i.e. propulsion speed) for the motor 

such that the motor can get to the target in minimum time formulated as: 

 
2*

1 ,1
( , )

( , ) arg min ( ) ( )c t
s t U

s t r t t r t





     (5.25) 

where tc is the control update interval, rt,1(t)  is the position vector of target, r1(t) is the 

position vector of motor i, < > is taking expectation with respect to joint probability 

distribution of r1(t+tc) and rt,1(t). And the r1(t+tc) under velocity v is given by 

integration of (4.1) from t to t+tc as 
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In the short time scale tc << 1/Dr, the probability density of r1(t+tc) and rt,1(t+tc) will 

highly concentrated around their mean value. And we will seek an approximate solution 

to (5.25) as 
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      (5.27) 

where the bar over r1(t+tc) and rt,1(t+tc) denotes the mean values. Note that such 

approximation is well-grounded because short tc is used throughout this paper and 

necessary since fast calculation is required for both on-line policy calculation and multi-

motor control. 

The mean position of rt,1(t+tc) is simply rt,1(t) from basic property of Brownian 

motion. The mean position can be showed to be  

 1 1 1( ) ( )c c cr t t r t t v t      n   (5.28) 

using tools from stochastic process on Lie group. We document the procedures in the next 

section since this part is highly technical, and reader can skip it without losing continuity. 

With the mean position formulated, the optimal speed as the solution to Eq. (5.27) 

can be written as 
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min( , ), 0
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d
v d

tv
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5.7.2.2 Probability distribution using Lie group theory 

(This section closely follows the reference.95)The equation of motion of a single 

self-propelled motor is given by the following Ito stochastic differential equation as 

1

2

3

2 cos 2 sin 0cos

sin 2 sin 2 cos 0

0 0 0 1

t t

t t

D Ddx v dw

dy v dt D D dw

d dw

 

  



      
      

        
             

  

Consider an element in lie algebra se(2) given by x=(v1, v2, ), it has an equivalent matrix 

form given by  
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x X x   (5.30) 

where we used the wedge operator to convert a vector to associated matrix form. The 

elements in lie algebra se(2) is associated to elements in the Lie group SO(2) via matrix 

exponential, given as 
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where  
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Consider a rigid body whose position and orientation given by g(t), the spatial 

velocity in the body frame is given as 

 1

1 2

' '
' ,

0 0

TR R Rt
g g



 
  
 

  (5.33) 

where 
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Converting matrix form to vector form, we have 
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This linear constant coefficient stochastic differential equation will have a Gaussian 

distribution, with mean value given as  
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and covariance matrix given as 
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In other words, the distribution of g at time t has the following density function 

1 1 11
( | , ) exp( (log( g) ) (log( g) ))
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The interpretation of the  gives that mean position is vt.  

5.7.2.3 Multiple motor optimal control 

In the multi-agent control framework, we will assign different motors to track 

different target. We define an assignment as a mapping g from IM to IT. Such assignment 

can be mathematically defined as a mapping g from IM to IT. We further define G as the set 

of all admissible mappings. The constraints on G will depend on specific tasks, e.g., if p=q, 

we will restrict G as the all possible bijective mapping from IM to IT, indicating that each 

motor will trace a distinct target. Finally, we defined a control policy  is a mapping from 
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S to V. A policy  can also be viewed as the concatenation of individual policies,  = (1, 

2,…, p), i: SiUi, in which each i specifies vi to use when motor i is at state si .  

The objective of finding an optimal instantaneous policy (i.e. propulsion velocities) 

to track targets can be mathematically formulated as: 
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     (5.36) 

where tc is the control update interval, rt,g(i)(t),g(i)IT  is the position vector of target 

assigned to motor i(represented by g(i)), < > is taking expectation with respect to 

probability distribution of ri at time  t + tc. Essentially, we are optimizing over all possible 

admissible assignments and velocity specification such that we can steer our motors to their 

assigned targets closer in future time t + tc in the mean squared error sense. However, the 

above optimization problem is difficult to solve since it is a mixed programming involves 

integer programming and continuous programming under constraints. We approximate the 

optimal solution using the following two sub-steps: solve g first and then solve  whiling 

fixing g. The procedure can be formulated as 
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The optimization of Eq. (5.37) can be solved using Hungarian algorithm in 

combinatory optimization.93 The optimization of Eq. (5.38) can be decomposed into 

optimization problem for each motor, which is also trackable.   

5.7.3 Sedimentation equilibrium 

In order the estimate the equation of state for 2D colloidal system with various 

interactions, we design sedimentation equilibrium method to construct the equation of 

state. Similar approach has also been applied in elsewhere.96 

The simulation box has periodic boundary condition in the horizontal direction(x 

direction). Monte carlo simulation using Metropolis algorithm was used. The system is 

initialized from a perfect lattice state and let it melt to equilibrium. When the system 

reaches equilibrium, particle coordinates are collected every 1000 steps and total 10000 

samples are collected.  

The density profile (h) in the vertical direction (h direction) is estimated by 

constructing a normalized histogram on the h coordinates of each particle. The local area 

fraction  is calculated as =a2.  

Assuming force balance hold locally, then we have pressure at specified h, denoted 

as p(h), is balanced with weight above, mathematically, we have 

 ( ) ( )
h

p h L h Gdh


    (39) 

In addition, the pressure is connected to the equation of state as 
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where Z is the compressibility as a function of area fraction. From Eq.(39)(40), we are 

able to calculate p() as a function of local area fraction for systems of different colloidal 

interactions. 
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6 COLLOIDAL CRYSTAL GRAIN BOUNDARY FORMATION 

AND MOTION* 

 

6.1 Abstract 

The ability to assemble nano- and micro- sized colloidal components into highly 

ordered configurations is often cited as the basis for developing advanced materials. 

However, the dynamics of stochastic grain boundary formation and motion have not been 

quantified, which limits the ability to control and anneal polycrystallinity in colloidal based 

materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new 

dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed 

within inhomogeneous AC electric fields. We introduce “low-dimensional” models using 

reaction coordinates for condensation and global order that capture first passage times 

between critical configurations at each applied voltage. The resulting models reveal that 

equal sized domains at a maximum misorientation angle show relaxation dominated by 

friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains 

with less misorientation display much faster grain boundary migration due to significant 

thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), 

kinetic bottlenecks associated with slow grain boundary relaxation are understood, which 

can be used to guide the temporal assembly of defect-free single domain colloidal crystals. 

                                                 

* Reprinted with permission from “"Colloidal crystal grain boundary formation and motion." Scientific 

reports 4 (2014). By Edwards, Tara D., Yuguang Yang, Daniel J. Beltran-Villegas, and Michael A. Bevan. 

Copyright © 2014 Nature Publisher Group 
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6.2 Introduction 

Photonic and meta- materials provide examples where ordered particles on length 

scales comparable to electromagnetic wavelengths produce exotic emergent properties97. 

Colloidal crystallization provides a potential route to self-assemble such materials via 

processes amenable to scalable manufacturing; however, robust schemes have yet to be 

identified to obtain the necessary low defect densities. From a broader perspective, 

obtaining perfect crystals on any length scale remains more art than science (e.g., atoms, 

molecules, macromolecules)98,99. To design robust crystal growth, recrystallization, and 

annealing schemes to minimize defects, it is necessary to know the basic mechanisms of 

defect formation and motion. 

Although three-dimensional configurations of complex particles are the ultimate 

goal of self-assembly schemes17,24, here we investigate a relatively simple problem that is 

still not well understood: how grain boundaries form and move during quasi two-

dimensional (2D) crystallization of spherical colloids. Quasi-2D colloidal crystals have 

been used in studies of melting100, nucleation42, point defect diffusion101, and grain 

boundary fluctuations102. Other relevant studies include 2D analyses of colloidal crystals 

to investigate impurity mediated growth103, particle motion within grain boundaries104, and 

grain boundary pre-melting105. Despite these extensive studies, fundamental understanding 

of grain boundary formation and motion remains rudimentary106 in all but the most model 

simulation studies107. 2D crystals are also of interest based on their relevance to thin 

films108, bubble rafts109, and graphene110. Understanding how grain boundary motion 

enables relaxation of multi-domain crystals into defect-free crystals is therefore 

scientifically and technologically interesting. 
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Figure 1. Reaction coordinates for grain boundary formation and motion can be 

computed from image analysis of optical microscopy images of electric field mediated 

colloidal crystallization. (a) Raw images show representative configurations of 210 ~3 µm 

silica colloids in fluid, bicrystal, and single crystal configurations observed over ~7.5 min 

following a quench (step voltage change) to V*=0.57 (see main text and Supplementary 

Methods for definition). Snapshot times are shown by solid black lines in Fig. 1e. Computed 

reaction coordinates shown by colored particle centers on 8-bit intensity scale for the (b) 

radius of gyration, Rg, (c) local hexagonal order, C6, (d) global hexagonal order, 6, and 

time dependent traces for (e) a single voltage quench and (f) ten consecutive cycles 

(numbered vertical black lines indicate representative images included in Supplementary 

Fig. 2).
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6.3 Results 

In this work, we employ real-time microscopy to observe grain boundary formation 

and motion in a quasi-2D colloidal crystal containing ~200 colloidal particles (Fig. 1a, 

Supplementary Videos 1-4). Aqueous ~3 micron SiO2 charged colloids crystallize in a 

quadrupole electrode in MHz AC electric fields (see Methods, Supplementary 

Information)111, where field-mediated compression of induced dipoles is balanced by the 

quasi-2D colloid osmotic pressure (i.e., effective hard disk). The electric field amplitude 

(i.e., applied voltage) is effectively a surrogate for pressure and hence acts as a global 

thermodynamic variable that determines the relative free energy of all particle 

configurations for fixed voltage, number, and temperature. In the following, we report non-

dimensional voltages, where V*=1 is the voltage required for N particles to produce a 

hexagonal close packed crystal with hexagonal morphology (as demonstrated in previous 

work with agreement between microscopy experiments, MC simulations, and perturbation 

theory112, see Supplemental Information for additional details).  

Our previous characterization of electric field mediated colloidal interactions and 

assembly has yielded kT-scale potentials113,114, feedback control over system size111, and 

conditions to crystallize N particles112. Based on these findings, we set N=210 in Fig. 1, 

which routinely forms bicrystals (i.e., 1 grain boundary between 2 domains) in contrast to 

single domains in smaller systems and >2 domains in larger systems. As shown in Fig. 1, 

step-quenches to V*=0.57 cause an initially dilute fluid phase to first rapidly condense, 

then form grain boundaries via coalescence of local domains, and finally display grain 

boundary motion as bicrystals relax to single crystals. Reversibility allows repeated 

quenches between fluid and crystal states to probe the stochastic dynamics of grain 
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boundary formation, diffusion (i.e., random motion), and migration (i.e., drift). We first 

focus on the V*=0.57 case, but later (in Fig. 4) investigate step-changes to both lower and 

higher values of V*. 

To interpret and model these measurements, we aim to develop a “low-dimensional 

model” that quantitatively captures the observed dynamics using “reaction coordinates”115 

  

Figure 2. “Two dimensional” trajectories (i.e., two reaction coordinates) capture 

coalescence of local domains during fast condensation processes to produce bicrystals 

that relax to single crystals via grain boundary motion over a broad range of 

timescales. Microscopy images from Figs. 1a with particle centers colored using RGB 

(Red/Green/Blue) mixing rules for colors represented by two reaction coordinates 

including (a) 6 and C6 and (b)6 and Rg to visualize how global order emerges from 

local order and during condensation. Ten trajectories following quenches to V*=0.57 with 

time represented by a 256-color scale (inset scale bar) for (c) (6, C6) and (d) (6, Rg) 

reaction coordinate pairs with inset plots of single trajectories from Fig. 1e. 
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(rather than enumerating all 2N translational degrees of freedom)38,116. The use of the term 

“low-dimensional” here does not refer to the Euclidian spatial dimension (i.e., x and y 

particle center coordinates), which is effectively quasi-two dimensional, but rather, 

“dimensionality” refers to the number of reaction coordinates necessary to capture the 

stochastic dynamics of grain boundary formation. It is “low dimensional” because we 

expect the number of reaction coordinates to be considerably less than the 2  (N=210) = 

420 dimensions that would be necessary to uniquely specific all possible two-dimensional 

configurations of 210 particles. Although the term “low-dimensional” may be unfamiliar 

to some readers, other synonymous terms such as “coarse-grained models” could also be 

confusing based on an unfortunate overlap of terms relevant to the application of interest 

in this work. 

Candidate reaction coordinates are computed from particle centers and used to color 

code images (Figs. 1b-f) including: the radius of gyration, Rg
111, to capture condensation 

from fluid to crystal states, average local hexagonal order, C6
43, to capture the onset of 

crystallization, and global hexagonal order, 6
117, to capture the degree of polycrystallinity. 

Rg and C6 are normalized by their N particle single crystal values (see Supplementary 

Methods), so that C6 goes from 0-1 for fluids to complete locally ordered states, and Rg 

decreases from arbitrarily high numbers to 1 for complete condensation112. 6 is 0 for fluids 

and 1 for single-domain crystals like C6, but in contrast, depends strongly on relative 

domain size and misorientation (e.g., 6=0 for bicrystals of identically sized 111 domains 

with 30° misorientation). 

The reaction coordinates trajectories following a single voltage quench (Fig. 1e) 
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show initially decreasing Rg and increasing C6 occur in unison (i.e., Rg
-1≈C6), which 

demonstrates a close coupling between condensation and local ordering. As Rg and C6 

plateau, indicating an overall condensed configuration with all particles contained in 

locally crystalline domains, 6≈0, indicating a bicrystal. For t>100 s, Rg and C6 remain 

essentially unchanged while 6 rises from 0 to ~0.8, which clearly corresponds to grain 

boundary motion from the bicrystal interior to the periphery where it vanishes (Fig. 1c, 

Supplementary Video 1). 

Ten successive voltage quenches from initial fluid states (Fig. 1f) demonstrate the 

stochastic nature of the grain boundary dynamics, which is expected from the underlying 

probabilistic colloidal motion. While Rg and C6 reveal condensation and local order 

emerge in a similar manner for each cycle, the 6 trajectories can be categorized into 

several cases: (1) 6 tracks C6 indicating the simultaneous emergence of local and global 

order, (2) 6 becomes localized at intermediate values for varying time periods before 

again increasing, (3) 6 becomes arrested for the duration of the observation time, and (4) 

in one case, 6 initially increases but then vanishes. The stochastic nature of the observed 

grain boundary dynamics apparent in an ensemble of trajectories is an important aspect to 

capture in a quantitative model. 

To develop a low-dimensional model of grain boundary formation and motion, it is 

necessary to determine the number and type of reaction coordinates. For example, it could 

be speculated that 6 is all that is required to track grain boundaries since it visually tracks 

polycrystallinity in Fig. 1. However, simply tracking 6 does not capture how parallel 

processes of local condensation and crystallization determine the formation and motion of 
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grains of different sizes, shapes, and orientations, which ultimately determine the 

mechanisms of polycrystals relaxing to single crystals. In addition, 6 does not uniquely 

identify some configurations; for example, fluid configurations and maximally misaligned 

bicrystals both have 6=0. 

To illustrate how reaction coordinate pairs capture additional information, 

experimental configurations are colored using two coordinates (Figs. 2a, b) and 2D 

trajectories of (6, C6) (Fig. 2c) or (6, Rg) (Fig. 2d) vs. time, where time is indicated by 

a 256-color scale. We do not plot (Rg, C6) since these coordinates are highly correlated in 

Fig. 1, although such a pair could be useful to distinguish condensed amorphous 

microstructures (i.e., glasses/gels). Such 2D plots immediately address one issue; plotting 

6 against either Rg or C6 distinguishes fluid and bicrystal configurations (e.g., high Rg, 

low 6 vs. low Rg, low 6). These trajectories also show how local ordering (i.e., increasing 

C6) and condensation (i.e., decreasing Rg) influence the emergence of polycrystallinity 

and subsequent grain boundary motion. Trajectories starting at lower 6 tend to become 

localized at lower 6 after condensation, whereas trajectories with initially higher 6 tend 

to rapidly form single crystals. 

Although tools exist to identify the minimum dimensionality (i.e., number of 

reaction coordinates) from observed dynamics (e.g., diffusion mapping118-120), such 

methods are not currently able to predict physically meaningful reaction coordinates115. 

Ultimately, the number and types of reaction coordinates can be determined empirically by 

finding what is necessary to produce a quantitative stochastic dynamic model. Because the 

measured trajectories display both drift and diffusion along reaction coordinates, which 
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appear to be mediated by free energy gradients (i.e., driving forces) and 

fluctuations/friction (i.e., randomness/resistance), it is assumed that such processes can be 

captured by a low-dimensional Smoluchowski equation given by121, 
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where p(x, t) is the probability density of finding the system at coordinate x at time, t, W(x) 

is the free energy landscape, kT is thermal energy, and D(x) is the diffusivity landscape, 

which can be related in the usual way to mobility, m(x), and friction, (x), landscapes as 

D(x) = m(x)kT = (x)-1kT. The variable x is a vector of reaction coordinates where the 

number of coordinates is the model “dimension.” The Smoluchowski equation is a special 

case of the Fokker-Planck equation that also satisfies the fluctuation-dissipation theorem 

and leads to Boltzmann sampling at equilibrium (i.e., p(x)=exp[-W(x)/kT])38,121. In more 

descriptive terms, W(x) is the free energy change associated with moving from one particle 

configuration to another (or one reaction coordinate to another; (e.g., x1=(6,1, Rg,1) to 

x2=(6,2, Rg,2)), and D(x) captures the associated configuration dependent changes in 

diffusion and friction (i.e., fluctuations and dissipation). 

To obtain W(x) and D(x) in Eq. (6.1) from trajectories like those in Figs. 1 and 2, 

we analyzed Brownian Dynamic (BD) simulations that were matched to experiments (by 

capturing all equilibrium and dynamic properties of the quadrupole experiment on the 

particle scale112-114, see Supplementary Methods). This approach was used because 

statistics on the particle scale are easily obtained to match experiments and simulations, 

but BD simulations are better suited to generating large numbers of grain boundary 

trajectories (e.g., each experimental grain boundary trajectory in Fig. 1 is acquired for ~10 
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min.). 

To provide more details of the matching process and trajectory analysis, inverse 

Monte Carlo was used to obtain interaction potentials that capture all equilibrium 

properties (i.e., radial distribution functions), which were then employed in BD simulations 

that captured all dynamic properties (i.e., particle scale diffusion, reaction coordinate 

trajectories). It is important to note that it was necessary to include concentration dependent 

hydrodynamic interactions in the BD simulations to produce agreement with experiments. 

Statistical methods reported in the literature38, and further developed by us for application 

to colloidal assembly122, were used to analyze large numbers of BD simulated trajectories 

to construct W(x) and D(x) (see more details in Supplementary Methods and our previous 

work120,122). In brief, the displacement and mean squared displacement of reaction 

coordinate vs. time trajectories can be used to measure drift and diffusion at each value of 

x, which ultimately yield W(x) and D(x).  

To assess the quantitative accuracy of candidate low-dimensional dynamic models, 

we compared first passage time distributions for ensembles of trajectories between 

different starting and ending states from particle-scale BD simulations and low-

dimensional Langevin dynamic (LDLD) simulations. The LDLD simulations are based on 

a Langevin equation given as, 

              
1 21

( ) 2t t t t kT W t t t t t t


                         x x D x x D x D x Γ

 (6.2) 

where the coefficients are the same as in Eq. (6.1), t is the integration time step, 

and (t) is a noise variable. A successful LDLD model will accurately reproduce first 
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passage time distributions obtained from high 2N-dimensional particle-scale BD 

simulations, and hence the experimental trajectories that were quantitatively matched to 

the BD simulations. The only quantitatively accurate model to emerge from candidate 1D 

and 2D models was one based on (6, Rg) (so higher dimensional models were not 

considered). Fig. 3a shows the W(x) that quantifies the relative free energy of every 

configuration and the free energy gradients that drive motion. The global free energy 

minimum at x=(6, Rg)≈(0.8, 1.14) indicates a single domain crystal (with a thin fluid 

envelope at its periphery) is the thermodynamically favored configuration (image VI in 

Fig. 3c).  

The diffusivity landscape, D(x), in Eqs. (6.1) and (2) is a 2  2 tensor; it has 

diagonal components that capture how friction/mobility in each reaction coordinate 

mediate drift due to free energy gradients in the same coordinate (D66, DRgRg), and cross-

terms that capture how friction/mobility mediate drift due to free energy gradients in 

orthogonal coordinates (D6Rg, DRg6). Fig. 3b shows D66/kT, which captures how 

friction mediates drift and diffusion in 6 due to free energy gradients in 6. The other 

components of D(x) are reported in Supplementary Fig. 5. DRgRg shares similar features 

with D66. The cross-terms (D6Rg, DRg6) indicate a weak coupling between driving 

forces and drift/diffusion (i.e., friction increases as free energy increases) along orthogonal 

coordinates for 6≳0.5, although this is relatively minor compared to the diagonal terms. 
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Figure 3. Free energy and friction landscapes obtained by fitting trajectories to 

Smoluchowski equation (equation 1) that quantitatively capture grain boundary 

diffusion and migration vs. relative domain sizes and misorientation angles. (a) W(6, 

Rg)/kT with inset scale bar and two trajectories obtained from the experiments in Figs. 1 and 

2. (b) D66/(kT∙s) with inset scale bar with the same trajectories as in (a). (c) Representative 

configurations from microscopy images and simulated renderings for coordinates marked 

along trajectories in (a) and (b). Labeled misorientation angles shown by red lines and 

particle centers are colored according to the RGB composite convention in Fig. 2. First 

passage time distributions for BD (red) and LDLD (black) trajectories projected onto (d) 

the 6-axis between 0.47-0.66 (,), 0.38-0.56 (▲,▲), 0.28-0.47 (,), 0.19-

0.38 (,) and (e) Rg-axis between 1.27-1.25 (,),1.25-1.23(▲,▲), 1.23-1.21 (,), 

1.21-1.19 (,), 1.21-1.19 (,), 1.19-1.17 (▼,▼), and (f) for trajectories between a 

sink at (6=0.8 Rg=1.14) (i.e., global minimum) and sources at (6=0.38 Rg=1.15) (,). 

and (6=0.65 Rg=1.16) (▲,▲). 
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Representative configurations (Fig. 3c) and first passage time distributions (Fig. 

3d-f) show the resulting low dimensional 6, Rg model quantitatively captures the 

measured grain boundary dynamics. The agreement between the BD and LDLD 

simulations is excellent (Fig. 3d-f), demonstrating that Eqs. (6.1) and (6.2) with the W(6, 

Rg) and D(6, Rg) in Fig. 3 provide accurate low dimensional dynamic models of the 

experiments in Figs. 1 and 2. 

6.4 Discussion 

To aid discussion of how features on W(6, Rg) and D(6, Rg) are connected to 

microscopic mechanisms, two limiting trajectories are shown on these landscapes; one 

where a grain boundary forms between two domains and does not move out of the crystal 

on the ~10 min observation time [trajectory 1 (T1): I-II-IV-V], and one where two domains 

form but the grain boundary quickly moves to the crystal periphery in <1 min to produce a 

single domain crystal [trajectory (T2): I-III-VI]. Both trajectories are consistent with 

expectations by showing drift (i.e., migration) along free energy gradients and 

superimposed stochastic motion (i.e., diffusion) that is most evident where free energy 

gradients are minimal. The dramatic difference between these two trajectories is most 

evident as they approach the global minimum (Fig. 3f) (as quantified between “sources” at 

III and IV and a “sink” at VI). An order of magnitude difference is observed in the most 

probable first passage times with ~20 s for III-VI and ~200 s for IV-VI; the latter distribution 

also shows a much longer asymmetric tail with some trajectories taking >1,000 s to traverse 

the W(6, Rg) plateau at low Rg. 

The T1 trajectory corresponds to rapid condensation along a steep free energy 
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gradient where two locally ordered domains coalesce into a bicrystal with a near maximum 

30° misorientation angle. At point IV on T1, the grain boundary randomly diffuses on a 

free energy plateau with a minimal free-energy gradient (i.e., driving force) to drive 

migration of the grain boundary to the crystal edge; the trajectory is localized between IV-

V for ~10 min. In addition to vanishing free energy gradients, the friction in the vicinity of 

IV-V is increased ~6 compared to uncondensed states. Multi-body hydrodynamic 

interactions (i.e., near-field lubrication and far-field flow within the particle structure123) 

increase particle-scale friction during condensation, which is consistent with the increased 

friction for trajectories at low Rg on D(6, Rg) (Fig. 3b). Although first passage times vary 

linearly with frictional changes compared to an exponential dependence for free energy 

changes124,125, diffusion mediated by friction is the rate determining process in the presence 

of vanishing free energy gradients (plateau of Fig. 3a). 

In contrast to T1, the T2 trajectory is initiated with higher global order before 

moving down the free energy gradient and rapidly continuing towards the global free 

energy minimum single crystal. Although T2 passes close to T1, low friction at high Rg 

allows sufficient diffusion towards higher 6, As a result, T2 bypasses the free energy 

plateau region at low Rg to avoid slow diffusion like T1, and instead shows much faster 

grain boundary migration. Friction uniformly increases with decreasing Rg (due to 

hydrodynamic interactions), and has almost no dependence on 6, so there is no path of 

least resistance on D(6, Rg). In short, the fastest trajectories are ones that bypass the free 

energy plateau region. 

The microscopic mechanisms associated with these different trajectories can be 

understood from the images/renderings (Fig 3c) and the physical meaning of the reaction 
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coordinates. Rg clearly captures condensation as shown by large free-energy gradients on 

W(6, Rg) and increasing resistance to configurational changes on D(6, Rg) as the result 

of multi-body hydrodynamic interactions. At this point, we can speculate why C6 was not 

part of a successful dynamic model; it is an indirect measure of condensation, and thus not 

as good as Rg, and it is the emergence of global order, captured by 6, that is most important 

to track grain boundaries. 

The 6 dependence of W(6, Rg) indicates that domains coalescing with minimal 

misorientation produce higher global order from the outset, which also translates to faster 

grain boundary migration (via free-energy gradients) from the crystal interior to the 

periphery. Practically, low misorientation angles produce smaller energy barriers to 

particle-scale motion (in full 2N-dimensional particle-scale space) within (e.g., string-like 

motion) and across (e.g., cooperative motion) grain boundaries126. In contrast, domains that 

coalesce near the maximum 30° misorientation display low initial global order that 

translates into slow grain boundary diffusion on a W(6, Rg) plateau. Such bicrystals 

represent an unstable equilibrium where the energy (e.g., energy/atom, interfacial 

energies)108 of the two sides balance, however, the lower free energy state single crystal 

(~10kT) is achieved by fluctuations that eventually allow one grain to increase at the 

expense of the other grain decreasing. 

Because 6 does not resolve different combinations of domain size and 

misorientation, but accurately captures the dynamics, it appears that all such configurations 

relax in an indistinguishable manner. In particular, greater misorientations between 

dissimilar sized grains produces relaxation rates equivalent to cases where domains have 

less misorientation but are of similar size. This finding shows how using 6 as a reaction 
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coordinate indicates an aspect of grain boundary motion that would not be easily 

discovered from tracking particle-scale motion alone. Because grain boundary motion 

involves many particles rearranging in a cooperative fashion based on relative domain sizes 

and orientations, it is useful to have a global parameter that captures configurational 

changes of the entire particle ensemble, and therefore naturally captures cooperative 

phenomena. 

The approaches used to measure and model grain boundary motion for V*=0.57 in 

Figs. 1-3 can be applied at other V*. Using the same BD simulations and non-equilibrium 

analyses, W(6, Rg) were constructed in the range V*=0.31-0.69 (Fig. 4a-d) along with 

representative trajectories and global minimum configurations. At the lowest V*, particles 

are weakly confined in concentrated fluid configurations without crystal grains or 

boundaries, which produces a relatively featureless W(6, Rg). At the highest V*, W(6, 

Rg) is qualitatively similar to Fig. 3a, but the plateau stretches from very low to high 6 

with an even shallower gradient and deeper global minimum at 6→1. At intermediate V*, 

the W(6, Rg) show a continuously shifting global minimum towards lower Rg and higher 

6 and a stretching plateau corresponding to slower grain boundary migration. D(x) vs. V* 

are not reported here, but the general trend with increasing voltage is a decreasing 

magnitude (i.e., decreasing mobility, increasing friction), which is consistent with more 

condensed configurations hindering particle motion and hence motion along both reaction 

coordinates. In short, with increasing compression, once grain boundaries form, they 

experience slower migration and diffusion, and the single perfect crystal clearly emerges 

as the global free energy minimum configuration. 
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The results show voltage cannot simply be increased to increase order, since in 

general this produces increasingly arrested polycrystalline states. It is interesting to 

consider how grain boundary formation and motion might be manipulated by “switching” 

  

Figure 4. Free energy landscapes based on 6, Rg reaction coordinate pair capture 

dynamics at all V* to provide quantitative models of grain boundary formation and 

motion. W(6, Rg)/kT at (a) V*=0.31, (b) V*=0.44, (c) V*=0.57, and (d) V*=0.69 with 

inset renderings of global minimum configuration and representative trajectories from BD 

simulations that were matched to the experiments (see Supplementary Methods). The free 

energy scale is indicated by the inset in (a).  

 

V*=0.31

V*=0.69

V*=0.57

V*=0.44
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between W(6, Rg) at different V*. If V* is increased very slowly, it would be possible to 

remain in the global free energy minimum configuration at all voltages; this is the 

thermodynamic equilibrium limit and a known strategy to make single crystals. However, 

faster schemes are generally desirable. The optimal control policy127 to achieve a single 

perfect crystal in minimal time could employ the quantitative non-equilibrium dynamic 

models in Eqs. (6.1) and (6.2) to switch between W(6, Rg) at different V* in an automated, 

informed manner using feedback control73. In particular, monitoring reaction coordinates 

in real-time could identify slowly relaxing polycrystalline configurations (i.e., due to 

vanishing free-energy gradients and high friction), and then V* could be tuned to “land” 

on another W(6, Rg) at the same coordinates where faster relaxation occurs. 

In summary, we report agreement between optical microscopy measurements, 

Brownian Dynamic simulations, and low-dimensional models of stochastic grain boundary 

formation and motion in quasi-2D colloidal bicrystals. Our results show that two reaction 

coordinates, one for condensation and one for global order, are sufficient to quantitatively 

capture first passage times between critical configurations at each applied voltage. Free 

energy and diffusivity landscapes show that the relative misorientation angles and domain 

sizes formed during condensation determine the subsequent grain boundary motion. 

Bicrystals with similar sized domains and a near 30° maximum misorientation angle relax 

via slow grain boundary diffusion mediated by high friction and vanishing free energy 

gradients, whereas bicrystals with asymmetrically sized and/or less misoriented domains 

relax via much faster grain boundary migration due to greater thermodynamic driving 

forces. By quantifying such dynamics as a function of voltage, ongoing work is developing 

optimal control algorithms to dynamically tune voltages to avoid kinetic bottlenecks 



98 

associated with slow grain boundary dynamics. Future work will extend the approaches 

reported here for bicrystals to many-domain crystals, where different reaction coordinates 

might be required to track the how polycrystallinity evolves at stages well before a single 

domain emerges. 

6.5 Methods 

Coplanar gold thin film quadrupole electrodes were patterned on glass microscope 

coverslips by spin coating photoresist and physical vapor deposition of a 15 nm chromium 

layer and a 35 nm gold layer. Nominal 3.13 μm diameter SiO2 colloids with ~50 mV zeta 

potentials were fractionated in DI water and centrifuged/redispersed five times in 0.1 mM 

NaOH. PDMS o-rings were coated with vacuum grease and sealed between a coverslip 

with the patterned quadrupole electrode before it was connected in series with a function 

generator. Microscopy was performed on an inverted optical microscope with a 63 

objective and a 12-bit CCD camera that captured 336 pixel  256 pixel (81 µm  62 µm) 

digital images at rate of 8 frames/s. Video capture and image manipulation were performed 

using algorithms in MATLAB. 

BD simulations in the canonical ensemble were performed for 210 colloidal 

particles at constant voltage using numerical methods described in previous papers122,128-

131. A 0.1 ms time step was used for at least 2×107 steps, and reaction coordinates were 

stored every 1250 steps for subsequent analysis. Particles in simulations were confined 

within 2D planes. Inverse Monte Carlo methods (including image resolution limiting 

effects)132-134 were used to match measured and simulated radial distribution functions to 

determine parameters in interactions potentials. The diffusivity was matched by comparing 

measured and simulated mean square displacements. Parameters used in the BD 
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simulations are reported in the Supplementary Information. 

6.6 Supplementary materials 

Materials: Coplanar quadrupole gold thin film electrodes were patterned on glass 

microscope coverslips (Corning) that were sonicated in acetone for 30 min, sonicated in 

isopropanol (IPA) for 30 min, rinsed with copious amounts of deionized (DI) water, soaked 

in Nochromix (Godax) for 1 h, again rinsed with copious amounts of DI water, sonicated 

in 0.1 M KOH for 30 min, again rinsed with copious amounts of DI water, and dried with 

N2 prior to patterning. The quadrupole electrodes were fabricated by spin coating 

photoresist (S1813, Shipley) onto microscope cover slips, UV exposure through a chrome 

photomask, and physical vapor deposition of a 10 nm chromium adhesive layer and a 40 

nm gold layer. The photoresist liftoff was accomplished with agitation in 1165 Remover 

(Shipley). The electrode tips are separated by ~100 m. Prior to experimentation, the 

coverslips with patterned quadrupole electrodes were again sonicated in acetone for 15 

min, sonicated in IPA for 15 min, rinsed with copious amounts of DI water, and dried with 

N2.  

Sedimentation Fractionation of SiO2 Colloids: Nominal 3.13 μm diameter SiO2 colloids 

(Bangs Laboratories) were fractionated in DI water to minimize colloidal particle size 

polydispersity in experiments. One mL of as-received stock SiO2 particles was added to a 

glass test tube containing ~33 mL of DI water.  The test tube was sealed and sonicated for 

10 min to disperse and suspend the colloidal particles.  Particles were then allowed to 

sediment ~6 h until the colloidal sedimentation line fell approximately half way down the 

test tube.  One aliquot of the sedimented particle dispersion was then removed using a 9” 

glass Pasteur pipette (Fisher Scientific) approximately one third of the distance from the 
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top of the colloidal sedimentation line.  The removed particle dispersion aliquot was 

dispensed into and stored in a second glass test tube.  The removed volume of sedimented 

particle dispersion was replaced with DI water.  Unless all the particles in the colloidal 

dispersion are of identical size, it is possible to obtain a monodisperse colloidal dispersion 

by repeating this procedure and removing an aliquot of sedimented particles from the same 

location each time.  This procedure was repeated until the second test tube was 

approximately half full with the colloidal dispersion removed from the first test tube.  At 

this point, the remaining volume of the second test tube was topped off with DI water.  The 

procedure used for the first and second test tubes was repeated using the second and a third 

test tubes.  The fractionated 3.13 m SiO2 particles were stored at 2-8 C. Prior to each 

experiment, the fractionated colloidal particles in DI water were centrifuged and 

redispersed in 0.1 mM NaOH five times. 

Quadrupole Electrode: Supplementary Fig. 1 displays the quadrupole electrode device 

set-up. Experiments were performed in batch cells consisting of Sylgard 

polydimethylsiloxane (PDMS, Dow Corning). Prior to experimentation the o-rings were 

sonicated in IPA for 15 min, rinsed with IPA, and dried with lens paper (Fisher Scientific). 

To construct batch cells, PDMS o-rings were coated with vacuum grease (Dow Corning) 

and sealed between the coverslip with the patterned quadrupole electrode and a glass 

coverslip (Corning). 90 L of the colloidal particle dispersion was dispensed into the batch 

cell and allowed to sediment for 5 min prior to sealing to obtain approximately 210 particles 

in the quadrupole. 22 gauge magnet wires were attached to the coplanar electrode using 

conductive carbon tape (Ted Pella). The coplanar electrode was then connected in series 

with a function generator (Agilent) with one lead attached to the north-south poles and 
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another to the east-west poles. 

Microscopy: Microscopy was performed on an inverted optical microscope (Axio 

Observer A1, Zeiss) with a 63 Zeiss air objective lens (0.6 numerical aperture) at 1.6 

magnification. A 12-bit CCD camera (ORCA-ER, Hamamatsu) captured 336 pixel  256 

pixel (81 µm  62 µm) digital images at rate of 8 frames/s. Video capture and image 

manipulation were performed using the MATLAB Image Processing and Image 

Acquisition Toolboxes. Image analysis algorithms coded in MATLAB were used to 

 

Supplementary Figure 1. Co-planar thin gold film quadrupole electrode on a cover 

slip. (a) Top view of device showing connections to function generator. (b) Schematic 

rendering of device. (c) Nominal 3 m silica colloids in the quadrupole electrode center at 

the electric field minimum (particles provide internal scale bar). (d) Contour plot of 

electric field with linear spectrum scale from E/E0=0-7, where E0 is the nominal electric 

field magnitude. 

Supplementary Figures 1a and b: “Electric field mediated assembly of three dimensional 

equilibrium colloidal crystals” Juarez, J.J.; Feicht, S; Bevan, M.A. 2012, Soft Matter 8, 94-

103. Reproduced by permission of The Royal Society of Chemistry. 

http://dx.doi.org/10.1039/C1SM06414B 

Supplementary Figures 1c and d: “Size dependent thermodynamics and kinetics in electric 

field mediated colloidal crystal assembly” Edwards, T.D.; Beltran-Villegas, D.J.; Bevan, 

M.A. 2013, Soft Matter 9, 9208-9218. Adapted by permission of The Royal Society of 

Chemistry. http://dx.doi.org/10.1039/C3SM50809A 
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simultaneously locate and track particle centers, as well as, compute local and global order 

parameters in real time73,111. Instantaneous values of voltage, frequency, and order 

parameter values were written to ASCII text files, and images were written to TIFF stacks 

for creating movies. 

 

 

 

Supplementary Figure 2. Hexagonally closed packed array of particles confined to (A) hexagon 

and (B) square morphologies with colors indicating the number of hexagonal close packed 

neighbors as C6 = 6, blue; C6 = 5, black; C6 = 4, green; C6 = 3, red; C6 = 2, yellow. 

“Multiple electrokinetic actuators for feedback control of colloidal crystal size” Juarez, J.J.; 

Mathai, P.P.; Liddle, A.J.; Bevan, M.A. 2012, Lab on a Chip 12, 4063-4070. Reproduced by 

permission of The Royal Society of Chemistry. http://dx.doi.org/10.1039/C2LC40692F 
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Supplementary Figure 3. Representative images and reaction coordinate trajectories for ten 

consecutive voltage quenches from 0.2 V to 1.2 V. (a) Processed images where particles are 

painted based on normalized local, C6, and global, 6, order reaction coordinates. Color scheme 

is identical to Fig. 2a and Supplementary Videos 1 and 2. (b) C6 and 6 vs. time, t, with location 

of extracted images in a. (c) and (d) show same information as a and b except for (6, Rg) reaction 

coordinate pair. 
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The electric field amplitude and frequency were controlled via the function 

generator using a device driver written in the MATLAB Instrument Control Toolbox. A 

sinusoidal voltage with a 1 MHz frequency was cycled ten times (see Supplementary Fig. 

3) between 0.2 V and 1.2 V every 1,000 frames. From our previous work,112 V(N, -1) is 

the voltage at which all particles crystallize in a system of N particles and is dependent 

upon the electrostatic repulsion between particles as given by112, 
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 (6.3) 

where -1 is the Debye length. The value of V*=V/V(N, -1) , is the experimental applied 

voltage, V, normalized by the expression in equation (8.2). 

 Reaction Coordinates: Supplementary Fig. 2 shows how reaction coordinates are 

computed for different system sizes to include edge effects, and Supplementary Fig. 3 

shows reaction coordinate computed from particle centers in real-time for ten voltage 

cycles. The degree of condensation of our colloidal particles was captured using a 

normalized radius of gyration, Rg, given as,  
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where Rg,HEX, the radius of gyration for two dimensional (2D) hexagonally close packed 

(hcp) particles within regular polygon morphologies given by111, 

 
0.5 1 0.5

, 5 3g HEXR aN  (6.5) 



105 

where a is the particle radius. 

The global six-fold bond orientational order, 6, of particle configurations is given 

by43,44,117, 

 6 6,
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1 N

j
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   (6.6) 

where N is the total number of particles in the ensemble, and 6,j is the local six-fold bond 

orientation order of particle j given as43,44,117, 
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where 6,j is the six-fold bond orientation order parameter of particle j, NC,j is the number 

of neighbors within the first g(r) peak (coordination radius) of particle j, and jk is the angle 

between particle j and each neighboring particle k with an arbitrary reference direction. 

Connectivity between crystalline particles, 6, jk , is given by,  
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where 
*

6, j  is the complex conjugate of 6, j . This is used to compute the local order 

parameter for six-fold connectivity, C6,j, which produces integer values between zero and 

six. The number of crystalline nearest neighbors, C6,j, for particle j is determined using the 

criterion135,  
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where C6 is the average normalized local six-fold connectivity order, normalized by 

C6HEX, the six-fold connectivity order for 2D hcp particles with a hexagonal morphology 

given by111, 
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Particle Scale Brownian Dynamics Simulations: Brownian Dynamics (BD) simulations 

in the canonical ensemble were performed for 210 colloidal particles at constant voltage 

using numerical methods described in our previous papers122,128-131. A 0.1 ms time step was 

used for at least 2×107 steps, and reaction coordinates were stored every 1250 steps for 

subsequent analysis. Particles in simulations were confined within 2D planes. In the 

following sections, we provide additional details of the BD simulations, as well as, the 

models for the conservative forces based on potentials measured in our previous 

work113,114,136. All parameters used in the BD simulations are reported in Table 1. 

Supplementary Table 1. Parameters for BD simulations and experiments. a, colloidal 

particle size137, b, Debye screening length, c, particle and wall Stern potential137, d peak 

voltage applied to electrodes, e, Clausius-Mosotti factor for an AC field frequency at 1 

MHz114, f,  medium dielectric permittivity, h electrode spacing138. 

Variable Theory/Simulation Experiment 

2a/nma 2,870 2,800-2,900 
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T/K 293 293 

-1/nmb 30 30 

/mVc -50.0 -50.0 

Vpp/V
d 0.65,0.92,1.2,1.45 1.2 

V* 0.31, 0.44, 0.57, 0.69 0.57 

fcm
e -0.4667 -0.4667 

m
f 78 78 

dg/mh 91 ~100 

The BD simulations were based on a Langevin equation as, 

H P Bd
m

dt
  

U
F F F  (6.13) 

where m is the particle buoyant mass, U is a velocity vector, and the force vector has three 

parts including dissipative hydrodynamic forces, FH, conservative forces due to potential 

fields, FP, and stochastic Brownian forces, FB. By letting FH=-kT(D-1)U, integrating Eq. 

(6.13) and using the mid-point algorithm, an equation of motion for particle displacements 

is obtained as139,140, 

      
10 0 0 ,0 ,0P Bt kT t


       r r D D F F  (6.14) 

where the superscript “0” indicates quantities computed at the beginning of the time 

interval.  Specific details of implementing Eq. (6.14) in dynamic simulations are described 

in previous publications128,129.  The Brownian force FB
 is characterized by a mean and 

variance given by, 
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D in Eqs. (6.14) and (6.15) was computed using the methods for finite numbers of 

particles above a no-slip plane using the methods of Brady and co-workers. D is related to 

the resistance tensor, R, through the generalized Stokes-Einstein relation, D=kTR-1. Here 

R is computed to include hydrodynamic interactions, which are separated into far-field, 

multi-body and a near-field, lubrication contributions as141-146, 

  
1

2 2B B


   R M R R  (6.16) 

where M is the far-field mobility tensor constructed in a pairwise manner.  The inverse of 

M is a true multi-body, far-field approximation to the resistance tensor.  Lubrication is 

included by adding the exact two-body resistance tensor 142,145,146, R2B, and subtracting the 

two-body, far-field resistance tensor, R2B
, to avoid double counting. To specify an 

approximate configuration-dependent D to reduce computational cost, the diagonal 

elements of D (without cross terms) are parameterized in a look up table as a function of 

the ensemble Rg and the distance, Ri, of particle i from the configuration center of mass 

(Supplementary Fig. 3b). 

The interaction energy between colloids within the quadrupole electrode is modeled 

as the superposition of electrostatic double layer repulsion, dipole-field interactions, and 

dipole-dipole interactions. The net conservative forces, FP, in Eq. (6.14) are calculated 

based on the total conservative force acting on particle i as, 

  , , , , ,i

P pf pp pp

i r de i e i j dd i j

j i

u u u


 
    

 
F   (6.17) 

where the electrostatic potential between particles i and j, upp
e,i,j(r), is given by2,  
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e kT


 

               
 (6.18) 

where -1 is the Debye screening length, where rij is the center-to-center distance between 

particles, mis the medium dielectric constant, k is Boltzmann's constant, T is absolute 

temperature, e is the elemental charge, and  is the colloid surface potential. Dipole-field 

interactions can be described by,113  
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E
   

   
 

r
r  (6.19) 

where ri is the position of particle i relative to the center of the quadrupole electrode, fcm is 

the Clausius-Mosotti factor, =ma3(fcmE0)
2/kT, E(ri) is the electric field, and E0=8-

0.5Vpp/dg, where Vpp is the peak-to-peak AC voltage and dg is the gap width between 

opposite electrodes. Dipolar interactions between particles i and j are given by114,  
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r
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where P2(cosij) is the second Legendre polynomial and ij is the angle between the line 

that connects the two particle centers and the electric field. The quadrupole electric field is 

given by an approximate expression147 corrected to fit numerical COMSOL results as, 

 
  7 4 9 3

5 2 5
0

2.081 10 1.539 104

8.341 10 1.961 10 1.028g

L LE L L

E d L L

 

 

    
  

    
 (6.21) 

where x and y are Cartesian coordinates with origin at the quadrupole center, and 

L=(x2+y2)0.5. 
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Matching Microscopy Experiments and Brownian Dynamics Simulations: Inverse 

Monte Carlo methods (including image resolution limiting effects)132-134 were used to 

match measured and simulated radial distribution functions to determine parameters in 

interactions potentials (Supplementary Fig. 4a). The particle radius and electrode gap were 

adjusted in Eqs. (6.18)-(6.21) from initial estimates based on independent characterization. 

The diffusivity in Eqs. (6.14)-(6.15) was matched by comparing measured and BD 

simulated mean square displacements (Supplementary Figs. 4c, 4d) (using the potentials 

from the inverse MC analysis) and adjusting the distance between the underlying substrate 

 
Supplementary Figure 4. Matching Brownian Dynamics simulations to microscopy 

experiments. (a) radial distribution function calculated from equilibrium configurations in 

experiments () and simulations () at V*=0.57. (b) Parameterized diffusivities from Eq. 

(6.16). (c) Mean squared displacement averaged over all particles from experiments and 

Brownian Dynamic simulations at Rg values of: 1.28 (), 1.25(), 1.20(), 1.17(), 

1.14(▲). (d) Diffusivities at different Rg from the first five points in c () and BD ().  
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and the 2D plane containing the particles when computing D via Eq. (6.16). The final 

values of D(Rg, Ri) are shown in Fig. 4b. 

Analysis to obtain Smoluchowski equation coefficients: Methods to fit the 

Smoluchowski equation coefficients are described in detail in our previous 

manuscripts120,122,131. Here we describe in brief the linear fitting method. The local drift 

and diffusion coefficients can be obtained through the formulas121, 

        1
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where D(1) is the drift vector field, D(2) is the diffusivity tensor,  is a particular realization 

of x, the brackets represent an ensemble average, and the right hand side provides compact 

notation based on the definition of a derivative and traditional symbols of statistics (i.e., 

mean, variance, covariance). D(2) is the same as D(x) in Eqs. (1) and (2) in the manuscript 

text, where we drop the superscript ‘(2)’ for convenience. The free energy landscape, W(x), 

can be obtained from D(1) and D(2) via integration as, 
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1

(2) 1 (1) (2)2 1( ) ( )
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W W

kT


   

x

x

x x
D D D   (6.24) 

 
 

Supplementary Figure 5. Diffusivity landscape components as a function of Rg and 6 for 

V*=0.57. All four diffusivity landscape components: (a) D66(kT∙s)-1, (b) D6Rg/(D66DRgRg)
0.5, 

(c) DRg6/(D66DRgRg)
0.5, (d) DRgRg(kT∙s)-1. The inset color scheme is rescaled for each case. The 

diagonal elements are reported with units, and the cross terms are normalized by the square root 

of the product of the diagonal terms to check their correlation. 

c d
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In the present study, x=(6, Rg) trajectories for input into Eqs. (6.22) and (6.23) 

were generated from a total of 6535 BD simulations initiated from a library of experimental 

fluid and polycrystalline configurations. Trajectories were analyzed based on 839 different 

(6, Rg) grid points with at least 400 trajectories passing through each grid point. The 

resolution for the Rg and 6 coordinates were 0.0032 and 0.025. All W(x) are reported in 

the main text, and all components of D(x) for V*=0.57 are shown in Supplementary Fig. 5. 

Low Dimensional Langevin Dynamics (LDLD) simulations: In order to verify the low-

dimensional model based on D(x) and W(x) obtained from Eqs. (6.23) and (6.24), LDLD 

simulations were performed based on an equation of motion (also reported as Eq. (2) in the 

main text),  

              
1 21

( ) 2t t t t kT W t t t t t t


                         x x D x x D x D x Γ

 (6.25) 

where t=0.125 s is the integration time step, and (t) is a noise variable with zero mean 

and unity variance based on the Ito convention148.  

BD and LDLD simulations were compared based on first passage time distributions 

reported in Fig. 3 of the main text. The same BD trajectory data used to obtain the 

Smoluchowski coefficients was used to construct first passage time distributions. For 

LDLD simulation results, statistics were first collected from 4,000 trajectories initiated in 

fluid and polycrystalline states (from 40 grid points with 100 different random number 

generator seeds). After initial sampling, another 4,000 simulations were performed for 

states with insufficient sampling. These 8,000 dynamic trajectories were used to construct 

first passage time distributions between different states.  
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7 DYNAMIC COLLOIDAL ASSEMBLY PATHWAYS VIA LOW 

DIMENSIONAL MODELS† 

 

7.1 Abstract 

Here we construct a low-dimensional Smoluchowski model for electric field 

mediated colloidal crystallization using Brownian Dynamic simulations, which were 

previously matched to experiments. Diffusion mapping is used to infer dimensionality and 

confirm the use of two order parameters, once for degree of condensation and one for global 

crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a 

low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of 

microstructure evolution. The resulting low-dimensional model quantitatively captures the 

dynamics of different assembly pathways between fluid, polycrystal, and single crystals 

states, in agreement with the full N-dimensional data as characterized by first passage time 

distributions. Numerical solution of the low-dimensional Smoluchowski equation reveal 

statistical properties of the dynamic evolution of states vs. applied field amplitude and 

system size. The low-dimensional Smoluchowski equation and associated landscapes 

calculated here can serve as models for predictive control of electric field mediated 

assembly of colloidal ensembles into two-dimensional crystalline objects. 

7.2 Introduction 

Self-assembly refers to dynamical processes where predefined components 

                                                 

†  Reprinted with permission from "Dynamic colloidal assembly pathways via low dimensional 

models." The Journal of chemical physics 20 (2016): 204904. by Yang, Yuguang, Raghuram 

Thyagarajan, David M. Ford, and Michael A. Bevan. © 2016 American Institute of Physics.  



115 

spontaneously organize into ordered structures. Self-assembly is considered as a key 

bottom-up approach to fabricate novel nano- and micro- and nano-scale materials.17-19 

Modeling studies of self-assembly generally focus on predicting the resulting equilibrium 

or steady-state structures as a function of particle interactions, particle shapes, temperature, 

and concentration.24,25 Such equilibrium information is important for yielding design rules 

for building blocks capable of assembling into complex structures. However, the existence 

of metastable states, kinetic bottlenecks, and competing pathways during dynamical 

assembly processes can prevent self-assembling systems from reaching 

thermodynamically stable states on experimentally accessible time scales.149,150 

In addition to understanding the thermodynamics of self-assembly, it is beneficial 

to uncover the underlying driving forces and dynamics governing self-assembly processes. 

In general, dynamic models should contain information about the existence of metastable 

states as well as the expected times for transitions between states. Ideally, construction of 

such dynamic models at different thermodynamic conditions can enable the rational design 

of optimal kinetic pathways to achieve desired states by performing state-dependent 

temporal actuation of the system.9,39,40 The evolution of stochastic dynamical self-

assembling systems can be formulated using for example a master equation,36 Fokker 

Planck equation,37 or Smoluchowski equation.38  

The Smoluchowski equation (SE) is suitable to describe Markovian stochastic 

processes for thermally equilibrated systems. The SE contains thermodynamic and kinetic 

information in its coefficients and has been applied to complex systems involving protein 

folding,151 colloidal assembly,122 and micellization.38 In such complex systems, the SE is 

usually not parameterized by 3N particle coordinates, but instead by low-dimensional 
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coordinates capturing the collective behavior of the system. The procedure to obtain a 

suitable SE can be briefly described as: (1) identifying the dimensionality of the dynamics 

(i.e., number of slow modes of collective motion) via trajectory analysis (e.g., principal 

component analysis,152 diffusion mapping153,154), (2) finding a suitable set of coordinates, 

which are often scalar functions of the 3N particle coordinates, to capture the slow modes 

(usually heuristically chosen based on coarse grained physics), and (3) obtaining 

coefficients for the SE in the low dimensional coordinates via fitting schemes (e.g., local 

linear fitting,155 global Bayesian inference120). The SE coefficients include the free energy 

landscape, W, which reflects free energy differences between different configurations, and 

the diffusivity landscape, D, which captures the mobility of trajectories in configuration 

space. The SE solution describes the probability distribution of states as a function of time, 

thus providing a dynamic statistical model for assembly processes. We have previously 

applied these tools to develop dynamic models of depletion attraction mediated colloidal 

cluster crystallization,120,122 which we applied in subsequent studies focused on optimal 

control of such systems.9,40 

In this work, we present a systematic framework for building a low-dimensional 

model to capture the assembly of finite sized quasi-2D colloidal crystals using Brownian 

Dynamic (BD) simulations matched to our previous experiments.112 The experiment 

involves using an electric field to compress colloids in the center of a quadrupole (Fig. 1). 

This simple assembly problem demonstrates the basic features of competing pathways, 

metastable states, and relaxation from metastable state, and we have quantified the 

interactions potentials,113,114,136 system size dependent thermodynamics and kinetics,112 and 

grain boundary formation.150 As such, it serves as a well characterized and understood test 
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case for a general low-dimensional modeling method. From an application standpoint, it is 

interesting in its own right for reconfigurable colloidal materials and devices,156,157 which 

we have demonstrated in circuit elements,158 feedback controlled colloidal crystal 

assembly,39,111 and in the formation of three dimensional crystals.138 Assembly trajectories 

in candidate order parameters (Fig. 1C) help to show the general approach investigated in 

this work, where parameters that quantify condensation and order together capture the 

relevant states and dynamics as particles moves from fluid to polycrystal to single crystal 

states (Fig. 1D). Our results demonstrate the ability to fit a low-dimensional SE to a large 

number of BD simulations to obtain the W and D coefficients, which we relate to physical 

states and dynamic processes associated with colloidal crystal assembly vs. applied field 

amplitude and system size (number of particles). Our modeling efforts in this work include 

dimensionality reduction, order parameter estimation, model validation, and physical 

interpretation of the dynamic model.  
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7.3 Theory 

7.3.1 Interaction potentials 

In this paper, we model electric field mediated quasi-2D colloidal assembly in a 

quadrupole electrode using previously measured potentials.113,114,136 In brief, colloidal 

 

 

Figure. 1. (A) Top view of simulated experiment of quasi-2D configuration of N=210 

colloidal particles (2a=3 μm) compressed within a quadrupolar electrode (with electrode 

gap of dg=100 μm. (B) Electric field magnitude contour plot within quadrupole electrode 

center with arrows indicating relative magnitude and direction of force due to dipole-field 

interactions (Eqs. (7.2), (7.7)) that concentrates particles in quadrupole center. (C) Typical 

colloidal assembly trajectories in the order parameter pair (ψ6, Rg) for a system size of N = 

210 at voltages of (see definition of nondimensional V* in Eq. (7.21) where V*=1 

corresponds to thermodynamic condition for perfect crystal as free energy minimum 

configuration112): V*=0.42 (blue), V*=0.5 (green), V*=0.57 (black), V*=0.80 (pink), and 

V*=0.80 (red). Representative states in part C are marked as (rendered in part D with 

exceptions noted): I (initial fluid state, part A), II (crystal configuration coexisting with 

peripheral fluid particles), III (low order bicrystal), IV (higher order bicrystal), and V 

(single crystal with a few particles still experiencing thermal motion at crystal periphery). 

I

I

II

III IV V

II              III

IV             V

A                                  B
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particles interact via electrostatic double layer repulsion, dipole-field potentials, and 

dipole-dipole potentials. The electrostatic repulsion between particle i and j is given as,159 

    , , exp 2pp pp

e i j ij iju r B r a   
 

  (7.1) 

where rij is center-to-center distance between particles, a is particle radius, and Bpp is the 

pre-factor for pair electrostatic repulsion between colloidal particles.159 The dipole-field 

potential for particle i in a spatially varying electric field is given as,113 
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where ri is the position of particle i, k is Boltzmann's constant, T is temperature, fcm is the 

Clausius-Mossotti factor,  is a non-dimensional amplitude, m is the medium dielectric 

constant, E(ri) is the local electric field peak magnitude at the particle position, and E0 is 

given by, 

  0.5

0 8 p gpE V d   (7.3) 

where Vpp is the peak-to-peak voltage and dg is the electrode gap. The dipole-dipole 

interaction potential between particles i and j is given by,114 

       
3 2
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dd i j ij ij ij iu kT P a r E E     r r   (7.4) 

where P2(cosij) is the second Legendre polynomial and ij is the angle between the line 

connecting particle centers and the electric field line direction. The electric field in the 

quadrupole center is approximated as,39,111,138 
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where r=(x2+y2)0.5, and x and y are Cartesian coordinates with origin at the quadrupole 
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center.  

7.3.2 Colloidal particle dynamics 

Particle dynamics in quasi-2D configurations near a planar surface are modelled 

using previously reported methods129 with several modifications. The equation of motion 

for Brownian particles is given as,139 
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where r is the 2N dimensional position vector, FB is the Brownian force vector, and FP is 

the total conservative force vector, and the superscript T denotes transpose. The 

components of FP describing the conservative force acting on particle i are given as, 
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and DP is the diffusivity tensor, related to grand resistance tensor RP via Stokes-Einstein 

relation DP=kT(RP)-1, where RP is given by,141  

  
-1

2 2

P

B B

 R = M + R R   (7.8) 

which includes pair-wise lubrication interactions, 2BR , and many-bodied far-field 

interactions, 
1

2( ) B

  M R , above a no-slip plane.160,161 

7.3.3 Diffusion mapping 

From a set of particle configurations (i.e., snapshots), we compute a Markov 

probability matrix, M, whose elements Mij are a measure of the probability of hopping 
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between the snapshots i and j. We denote each snapshot as a set X composed of the 

coordinate vectors of all particles (i.e., X = (x1, x2,…, xN). To construct M, a measure of 

the distance between snapshots is required that resides in a 2N dimensional space. First, it 

is necessary to calculate a distance matrix, , whose elements ij are the distance metric 

between two snapshots Xi and Xj. In this work, the distance metric is a weighted 

combination of the Hausdorff distance matrix, H,120 and a local orientation distance matrix, 

O, given as, 
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where ||||F denotes the Frobenius norm, and hi() is the normalized bonding angle 

histogram for snapshot i, where t is the offset in order to achieve the global optimal 

alignment. The geometric average of H and O is motivated by considering the norm of a 

two-component vector. Hausdorff distance is the greatest of all distances from a particle in 

one snapshot to the closest particle in another snapshot and has been used previously in 

systems of unlabeled particles.120,154 The bonding angle is the angle of the vector (xi - xj) 

joining neighboring particles i, j with respect to the x-axis. We then define the kernel matrix 

using Kij = exp(-ij
2/22), with  being the parameter that sets the correlation length in the 

system. The parameter  is chosen using a technique outlined elsewhere.162,163 Each row of 

the kernel matrix K is normalized to obtain M as, 
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where the solution of the right eigenvalue problem, 

  M   (7.11) 

produces an eigenvalue spectrum, n, and corresponding set of eigenvectors, . The 

eigenvalue spectrum provides insight on the number of dimensions required to describe the 

process dynamics. The corresponding eigenvectors provide a low dimensional embedding 

of the 2N dimensional configurations in the data set. In this work, the eigenvectors are not 

used directly as order parameters but are correlated against candidate coarse variables to 

identify a suitable set of order parameters. 

7.3.4 Order parameters 

Following procedures similar to our previous study,120 here we define two order 

parameters, Rg and ψ6, as order parameters ultimately to be employed in a low-dimensional 

dynamic model (in the results and discussion section we provide justification for their use 

based on diffusion mapping). The degree of condensation of colloidal particles is captured 

using the radius of gyration, Rg, which is given as,  
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which is a measure of the root mean square distance between particles within an ensemble 

normalized by a factor Rg,HEX. This factor is the radius of gyration for 2D HCP particles 

within regular polygon morphologies given by,39 
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where a is the particle radius and N is the particle number in the system. The degree of 

global orientational order in particle configurations obtained from particle coordinates 
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using,164 
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where 6,j is the local six-fold bond orientation order parameter of particle j, NC,j is the 

number of neighbors within the first g(r) peak (coordination radius) of particle j, jk is the 

angle between particle j and each neighboring particle with an arbitrary reference direction, 

and 6 is the global bond orientation order determined by averaging over all particles, 

which produces values between 0 for disordered fluids and perfect bicrystals (i.e., crystal 

with equal sized domains misoriented by 30 degrees) and 1 for defect-free, single domain 

hexagonal packed lattices.  

7.3.5 Low-dimensional smoluchowski & langevin equations 

Colloidal assembly trajectories are modeled using a low-dimensional 

Smoluchowski Equation (SE) parameterized by order parameter coordinates given 

as,120,122,150 
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where p(x, t| x0, 0) is the probability density for system to be at a state characterized by the 

coordinate x=(6, Rg) at time t given that the system starts at x0 at t=0. The coefficient, 

D(x), which is a symmetric tensor, is the diffusivity landscape (DL) consisting of two 

diagonal terms D66, DRgRg, and two off-diagonal terms D6Rg and DRg6. The coefficient 
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W(x) is the free energy landscape (W), which captures the free energy of every 

configuration based on its coordinate x=(6, Rg). The SE describes the probability density 

evolution in the order parameter space given the initial probability distribution. The 

evolution is determined by the right hand side propagator, which contains D(x) and W(x) 

that dictate the kinetic and thermodynamic aspects of the system. Our assumption implies 

that the stationary distribution from Eq. (7.16) is the thermodynamic equilibrium 

probability distribution p(x)=exp[-W(x)/kT], which can be obtained by setting the right-

hand-side to be zero. 

The coefficients D(x) and W(x) in Eq. (7.16) can be extracted from assembly 

trajectories using a linear fitting procedure.120,122,150 In brief, the initial slope of the mean 

displacement vs. time and mean displacement variance vs. time (i.e., mean squared 

displacement, covariance matrix) at each local coordinate can be used to evaluate drift, 

v(x), and diffusivity tensor, D(x), as, 
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where  is the instantaneous order parameter coordinate x, and the bracket indicates the 

average of all trajectories sampling each coordinate. The free energy landscape, W(x), is 

related to the drift as (by expanding the derivative of Eq. (7.16) and comparing with the 

Fokker-Planck equation37), 
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where the first term on the left has the typical form of mobility coefficient multiplied by 

the gradient of the energy, and the second term is the noise-induced drift.37,165 This 

expression can be integrated to obtain, 

 
2

1

1

2 1( ) ( ) ( ) ( )W W     
x

x

x x D v D   (7.19) 

The coefficients D(x) and W(x) can also be used to produce a low dimensional 

Langevin dynamic (LDLD) equation given by, 
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where ζ is a vector of Gaussian random numbers with zero mean and unity variance based 

on the Ito convention.148 The LDLD equation can be used to directly generate trajectories 

in the low-dimensional order parameter space. 

7.4 Methods 

7.4.1 Brownian & langevin dynamic simulations 

Particle scale dynamics were simulated in the canonical ensemble using Brownian 

Dynamics (BD) via Eq. (7.6). In particular, ~2000-4000 BD simulations were performed 

for different system sizes (N=110, 210, 300), different applied electric fields, and from 

many different initial configurations spanning dilute fluid to crystalline states. The initial 

configurations used to launch simulations were chosen adaptively to ensure every point in 

the order parameter space has ~200 samplings to reduce variance in subsequent analyses. 

This This single large set of BD simulations was used for extracting SE coefficients (Figs. 

3, 4, 7) and first passage time characterization (Fig. 5). Simulation parameters are reported 
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in Table 1. The electric field in each simulation is normalized as, 

 pp xtal*V V V   (7.21) 
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where Vpp is the peak-to-peak applied voltage, and Vxtal is the lowest voltage to crystalize 

all particles based on system size and Debye length, -1, as reported in our previous work.112 

For each simulation, a 0.1 ms integration time step was used for at least 1.5×107 steps (so 

that each simulation reaches equilibrium). Particle coordinates were stored every 125 ms 

for calculation of ψ6 and Rg. Particles in BD simulations were fixed within a 2D plane. To 

reduce computational cost in the BD simulations, hydrodynamic interactions were 

approximated by the diagonal elements of DP computed using Eq. (7.8), which were 

parameterized in a look-up table vs. the configuration Rg and the distance of particle i to 

the configuration center of mass (see previous work for details150). Low Dimensional 

Langevin Dynamics (LDLD) for the first passage time characterization (Fig. 5) were 

simulated via the equation of motion in Eq. (7.20) using the W(x) and D(x) obtained from 

Eqs. (7.17) and (7.19) using an integration time step of t=0.125 s. 

7.4.2 Diffusion mapping 

For the diffusion mapping analysis, a large number of configurations (snapshots) 

were generated using BD simulations for a system size of N=210 with V*=0.80. The data 

set contained ~8000 configurations covering all of configuration space including fluid, 

polycrystalline, and crystalline states. Each configuration snapshot in the data set was 
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processed to remove the translational degrees of freedom by setting the configuration 

origin as the center-of-mass as, 
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where the translated coordinates form a data matrix, X=[x’1,x’2,…x’N], which can be used 

to find the eigenvector n1 of matrix XXT as principle angle with the x-axis as, =cos-1(n1∙e1). 

This angle is used to remove rotational degrees of freedom using a rotational 

transformation given as, 
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where the position vectors x” is used as the input to the diffusion mapping analysis, so as 

to not include dynamics in these additional degrees of freedom, but instead capture 

microstructural dynamic processes. The bonding angle histogram is discretized into 128 

bins from - to . 

7.4.3 Smoluchowski equation solution 

The coefficients D(x) and W(x) in Eq. (7.16) can be extracted from assembly 

trajectories using the linear fitting procedure120,122,150 described in Eqs. (7.17)-(7.19). In 

this work, Rg and 6 coordinates are discretized with a resolution of 0.0032 and 0.025. 

After the coefficients are obtained, the resulting SE (Eq. (7.16)) can be numerically solved 

to obtain the probability evolution p(x, Δt | x0, 0) at different observation times, Δt, for 

given initial conditions. In this work, the SE is solved using explicit upwind differentiation 

for parabolic partial differential equations with reflective boundary conditions.166 The 
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discrete version of Eq. (7.16) is given as, 
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where the subscripts indicate order parameter grid points, the superscript, n, on p denotes 

the time step, the superscript order parameter on v denotes the drift component from Eq. 

(7.17), and the superscripts in D denotes the diagonal components in D from Eq. (7.17). 

The off-diagonal components of D are ignored in this work for simplicity and because they 

are relatively small compared to the diagonal terms. One constraint on the set of equations 

given by Eq. (7.25) is that the sum of the right-hand-side of all equations must be zero via 

the conservation of probability. Eq. (7.25) is discretized with a resolution of ψ6 = 0.032, 

Rg = 0.0025, and t = 0.01s. 

7.4.4 First passage time distributions 

To verify the extracted coefficients in Eq. (7.17), we compare BD (Eq. (7.6)) and 

LDLD (Eq. (7.20)) simulations based on first passage time distributions between different 

states. These different states are chosen to capture the condensation process (fluid to 

polycrystal), grain boundary migration process (polycrystal to single domain crystal), as 

well as the combination of the two (fluid to single domain crystal). The first passage time 

distributions are constructed by counting the arrival time to specified ending states of 
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trajectories starting from the same initial state. The same BD trajectory data used to obtain 

the SE coefficients was used to construct first passage time distributions. For LDLD 

simulation results, statistics were first collected from 4,000 trajectories initiated in fluid 

and polycrystalline states (from 40 grid points with 100 different random number generator 

seeds). After initial sampling, another 4,000 simulations were performed for states with 

insufficient sampling. These 8,000 dynamic trajectories in low dimensional space via 

LDLD were used to construct first passage time distributions between different states. 

7.5 Results & discussion 

7.5.1 Dimensionality from diffusion mapping 

The first step towards building a low dimensional Smoluchowski model is to 

identify the number and the appropriate choice of order parameters. To this end, we have 

used a machine learning technique, called diffusion mapping, which identifies the intrinsic 

manifold of a large data set and provides a suitable low dimensional representation.154 We 

have applied the diffusion maps technique to smaller systems in our earlier work to build 

low dimensional models.120 In the current implementation of diffusion mapping, we use a 

new composite distance metric () based in complementary metrics for both condensation 

(H) and ordering (O) processes important to colloidal crystallization. We apply to the 

analysis to simulation data that was previously matched to experiments, which enables high 

spatial and temporal resolution and statistical sampling to avoid some issues133,167 when 

working directly with experimental microscopy data (which can be overcome when treated 

carefully168). 

Fig. 2 shows results of a diffusion mapping118 analysis of a large number of 
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Brownian Dynamic (BD) simulations of the assembly of N=210 particles into quasi-2D 

colloidal crystals in a quadrupolar electric field. The BD simulations were matched to 

experiments in previous work.113,114,136,150 Fig. 2A shows the eigenvalue spectrum obtained 

from the diffusion mapping analysis. A large spectral gap after the first non-trivial 

eigenvalue, 2, and smaller gaps after the third and fourth eigenvalues, 3 and 4, suggest 

a one-dimensional nature to the data but two additional dimensions need to be considered. 

When plotting the data in the space of the first three eigenvectors (2, 3, and 4) (Figs. 2C, 

D), the data points are seen to lie on a 2D surface in the 3D space, indicating that the 

dynamical system is effectively two-dimensional and described primarily by the 

coordinates 2 and 3. The 4 values are highly correlated with the values of 2; such 

dependencies indicate multiple eigenvectors characterizing the same dynamic pathway.163 

We also studied how the eigenvectors correlate with physically meaningful 

candidate order parameters40,43,44,112,120,122,150,169 by coloring the data in Fig. 2. Although 

eigenvectors from diffusion mapping can be used directly as order parameters170 or for 

high-throughput screening of candidate order parameters,171,172 such methods are 

computationally expensive and were not explored in this work. Fig. 2C shows the data 

colored by values of Rg. Rg is highly correlated with 2, as indicated by the continuous 

spectrum of color vs. that coordinate. Fig. 2D shows the data colored by values of 6. It is 

found that 6 is highly correlated with a combination of 2 and 3. The data points plotted 

in (6, Rg) space in Fig. 2B shows that the data span the regions of interest in the 

configuration space (based on the candidate order parameters) and is well correlated with 

the top non-trivial eigenvector, 2. Therefore, it appears that Rg and 6 are able to 

parameterize data embedded in the 2 significant coordinates identified by the diffusion 
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mapping analysis. We will use these variables to build a low dimensional model of quasi-

2D colloidal crystallization in electric fields. 

7.5.2 Smoluchowski analysis of assembly trajectories 

Fig. 3 shows examples of dynamic quantities obtained by analyzing a large set of 

6, Rg coordinates generated from BD simulated trajectories. Results in Fig. 3 are for 

 

 

 

Figure. 2. (A) Eigenvalue spectrum obtained from diffusion mapping (Eqs. (7.9)) the 

process of electric field mediated colloidal assembly in a quadrupole electrode (see Fig. 1) 

for a system size of N=210 and a non-dimensional applied voltage of V*=0.8. (B) Plot of 

~8000 configurations sampled in BD simulations plotted in (ψ6, Rg) space and colored by 

values of first non-trivial eigenvector, 2, shows good sampling of final order parameters. 

Bottom two plots show points indicating values of the top three non-trivial eigenvector 

coordinates (2, 3, 4) for the same ~8000 configurations shown in (B) but now colored 

by their values of (C) the order parameter Rg (Eq. (7.12)) and (D) the order parameter ψ6 

(Eq. (7.15)). 

Rg
ψ6

v2A                                            B

C                                      D
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N=210 particles with the following combinations of starting coordinates and applied non-

dimensional voltages: (6, Rg) = (0.138, 1.15), V* =0.80 (example of fluid condensation); 

(6, Rg) = (0.3875, 1.146), V* = 0.57, (example of grain boundary motion); and (6, Rg) = 

(0.7125, 1.125), V* = 0.5 (example of melting). Figs. 3A, B show the ensemble average of 

displacement vs. time for each starting coordinate. Positive slopes indicate the existence of 

driving force to increase 6 (i.e. ordering) or Rg (i.e. expansion), whereas negative slopes 

indicate driving forces to decrease these quantities. The steepness of the slope characterizes 

the magnitude of the driving force (i.e., Eqs. (7.17)-(7.19)). The slopes of each curve are 

qualitatively consistent with expectations for condensation (6, Rg) and melting 

(6, Rg), and the shallow slope associated with grain boundary motion shows the 

weak driving force for this process. 

Figs. 3C-F show the ensemble average of the four components in covariance matrix 

as a function of time for the same initial coordinates and applied voltage as in Figs. 3A,B. 

As shown in the theory section (Eq. (7.17)), the initial slopes are proportional to the 

magnitude of the four components of the diffusivity tensor of the low-dimensional 

Smoluchowski equation (Eq. (7.16)). The cross terms in the diffusivities tensor reflect the 

coupling between both drift and diffusion along the 6 and Rg coordinates. Deviations of 

slopes at longer times from the initial short time slopes indicate effects of drift due to the 

underlying landscape (that can either produce migration or localization of trajectories). 

Most of the fitted initial slopes via Eq. (7.17) have relative uncertainties (i.e. the standard 

value of the fitted value divided by the value itself) on the order of ~2% or smaller, which 

cause the resulting free energy landscape via Eq. (7.19) and propagation of error to have 

relative uncertainties of ~4%. 



133 

7.5.3 Field dependent landscapes (for fixed system size) 

By performing the analysis illustrated in Fig. 3 at many grid points in the order 

parameter space, it is possible to construct coordinate dependent W and D (i.e., 

“landscapes”) for fixed thermodynamic conditions. For the example in the present study, 

the voltage, V, determines the magnitude of the electric field compressing induced dipoles, 

and therefore acts as a global thermodynamic variable. As such, for each V*, the relative 

free energy and diffusivity of each configuration can be determined to construct W and D 

for all possible configurations. Fig. 4 shows the landscapes of W and D for several values 

of increasing V* for a system size of N=210. 

At the lowest voltage, V*=0.42 (Fig. 4A), the global minimum of W is located at 

6, Rg  0.25, 1.18; the structure is a dense fluid consisting of several small ordered clusters 

(rendering I) but lacks global orientational order due to minimal coalescence in the 

presence of weak compression of dipoles. Fig. 4A shows a single example trajectory 

plotted on W, which illustrates compression of an expanded fluid configuration (i.e. low 

6,  high Rg) towards the global minimum with a relatively small free energy change (~15 

kT) where it then diffuses locally. 

The four diffusivity components are shown in middle column of Fig. 4A. The D66 

component (upper left) has relatively larger values in the vicinity of 6≈0.2-0.3, which is 

consistent with grain boundary motion in polycrystalline structures that produces larger 

fluctuations in 6. D66 decreases only slightly as Rg decreases due to hydrodynamic 

hindrance in compact configurations. Large regions of the diffusivity landscape cross-

terms, D6Rg and DRg6, have values near zero, except for slightly negative values 
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encountered in the vicinity of 6, Rg  (0.4, 1.18). These negative values in the cross-terms 

indicate a weak correlation between decreasing Rg and increasing 6, which is consistent 

with condensation being correlated with ordering. Given the different relative magnitudes 

of 6 and Rg, the relative importance of the cross terms can also be interpreted using a 

correlation coefficients defined as, = D6Rg/(D66DRgRg)
0.5. In all cases, this correlation 

coefficients is less than 5%, suggesting very little correlation between Rg and 6 such that 

the cross terms are negligible. This finding is supported by comparing BD and LDLD 

simulations with and without the cross terms, which are quantitatively indistinguishable. 

As V* increases to 0.5, the global minimum in W (Fig. 4B) shifts to 6, Rg  (0.6, 

1.14), indicating both increased condensation and global ordering compared to V*=0.42. 

The equilibrium structure (rendering III) is characterized has a single central hexagonal 

close packed core with small number of peripheral fluid-like particles. While the free 

energy gradient in the Rg coordinate increases when increasing V* from 0.42 to 0.5, the 

free energy gradient in the 6 direction is shallow. For example, bi-domain crystals formed 

in the vicinity of Rg ≈1.14-1.16,6≈0-0.3 (i.e. low 6, low Rg) (rendering II) have 

misorientation angles close to 30 degrees, which are metastable structures with minimal 

driving force for grain boundary migration. As for the diffusivity landscape at V*=0.5, 

D66 and DRgRg decreases as Rg become smaller, which is due to the increased hindrance 

at denser configuration slows down the particle arrangement behavior. At V*=0.57 (Fig. 

4C), the global minimum in W now shifts to 6, Rg(0.6, 1.14), with more ordered and 

condensed equilibrium structure (rendering VI). The diffusivity landscape components 

share similar features with the other voltages. At this voltage, the free energy plateau region 

on W (with a minimal free energy gradient) shifts and stretches to coordinates in the range 
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around Rg ≈ 1.12-1.13,6≈0-0.5. 

7.5.4 Field dependent assembly pathways 

On the landscapes in Fig. 4C, there are two typical assembly kinetic pathways, as 

exemplified by the trajectories T1 and T2 plotted on W. The T1 trajectory corresponds to 

rapid condensation along a steep free energy gradient where two locally ordered domains 

coalesce into a bi-crystal with a near maximum 30° misorientation angle. From V to VI, 

 

 

Figure. 3. Representative local order parameter trajectories used to obtain Smoluchowski 

equation coefficients. Results are shown for a system size of N=210. Plots show ensemble 

average: displacement vs. time for (A) 6 and (B) Rg; displacement variance vs. time in 

(C) and (F); displacement covariance in (D) and (E). Representative data are shown for 

several different combinations of starting configurations and applied voltages including: 

(G) (black circles) (6, Rg)=(0.1375, 1.146) V*=0.80; (H) (red triangles) (6, Rg)=(0.3875, 

1.146) V*=0.57; (I) (cyan squares) (6, Rg)=(0.7125, 1.125) V*=0.50. Linear fits to the 

initial slopes (illustrated by dashed lines) of the data in each plot are used in Eqs. (7.17)-

(7.19) to obtain D(x) and W(x) in Figs. 4 and 7. 
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the bi-crystal relaxes into a single domain as one grain grows at the expense of the other. 

In contrast to T1, the T2 trajectory develops higher global order via initial stochastic 

motion before it moves down the free energy gradient and is rapidly funneled towards the 

global free energy minimum. The intermediate microstructure (rendering IV) is typically 

characterized by domains with similar orientation (i.e. small misorientation angle). 

Domains with small misorientation angles easily relax during coalescence and 

condensation, which is consistent with a smaller free energy barrier to grain boundary 

motion. As a result, T2 is able to bypass the free energy plateau at low Rg to avoid the slow 

diffusion process encountered in the T1 trajectory, which results in much faster 

equilibration the global free energy minimum single crystal. For all voltages, all diffusivity 

components uniformly decreases with decreasing Rg, so that paths T1 and T2 do not 

experience significantly different levels of friction as part of determining the total time to 

produce single perfect crystals. 



137 

 

 

Figure. 4. Free energy and diffusivity landscapes obtained by fitting trajectories to 

Smoluchowski equation to BD trajectories for N=210 and applied voltages of (top-to-

bottom): (A) V*=0.42, (B) V*=0.50, (C) V*=0.57. Plots show (left) free energy landscapes, 

W(6, Rg)/kT (Eq. (7.19)), with trajectories, marked coordinates of interest, and inset scale 

bars, and (middle) four components of diffusivity tensor, D/(kT∙s) (Eq. (7.17)), with inset 

scale bar and same axes as W plots (left-to-right, top-to-bottom): D66, D6Rg, DRg6, and 

DRgRg. T1 and T2 in the left most column of part (C) denote two representative trajectories 

following different pathways. (D) Renderings in column on far right show representative 

configurations for coordinates marked on W plots. 
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7.5.4.1 Assembly Pathway Times 

The low dimensional models based on the landscapes shown in Fig. 4 not only 

provide qualitative information about the assembly process but also quantitatively capture 

assembly dynamics. By evaluating statistical properties of trajectories from the full N-

dimensional BD simulations and low-dimensional Langevin dynamic (LDLD) simulations, 

such as the first passage times for transitions from one state to another state, it is possible 

to evaluate the accuracy of the LDLD model.120,150 Fig 5 compares first passage time 

distributions from BD and LDLD simulations at V*=0.57 for N=210. First passage time 

distributions show histograms of the times it takes to pass for the first time between initial 

states end states characterized by (6, Rg) coordinates on the W. The first passage time is a 

distribution due to the stochastic nature of the assembly dynamics. 

As depicted in Fig. 5A, we simplify the presentation of first passage time 

distributions by comparing assembly processes characterized by either (1) condensation 

along the steep W gradient parallel to the Rg axis (plotted in Fig. 5B), or (2) grain boundary 

relaxation along the W plateau parallel to the 6 axis (plotted in Fig. 5C). For 

predominantly condensation processes, Fig. 5B shows a set of first passage time 

distributions for assembly trajectories between initial and final Rg coordinates specified in 

the figure caption. These distributions are obtained by averaging over all 6 coordinates 

sampled during condensation. In the case of trajectories dominated by grain boundary 

relaxation, Fig. 5C shows first passage time distributions for trajectories between initial 

and final 6 coordinates, which are averaged over all Rg coordinates. It is interesting to 

note the order of magnitude greater first passage time for grain boundary motion compared 

to condensation. Good agreement between N-dimensional BD simulations and the LDLD 
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simulations is observed, indicating the accuracy of the W and D from the Smoluchowski 

analysis. 

Although the first passage time distributions projected onto the Rg and 6 axes show 

the full N-dimensional BD and LDLD models agree quantitatively, they don’t tell the 

 

Figure. 5. First passage time distributions (FPTD) for BD (black) and LDLD (red) 

trajectories during processes of condensation and grain boundary migration for system size 

of N=210 at applied voltage of V*=0.57. (A) Schematics for the process of condensation 

(vertical arrow along the steep W gradient at Rg direction) and the process of grain boundary 

migration (horizontal arrow along the W plateau at 6 direction). (B) FPTD during the 

condensation process measured from trajectories from starting points to end points on the 

Rg-axis between (top to bottom): (1.24, 1.22), (1.22, 1.20), (1.20, 1.18), (1.18, 1.16), and 

(1.16, 1.14). (C) FPTD during grain boundary migration process measured by tracking 

trajectories from starting points to end points on the 6 -axis between (top to bottom): (0.4, 

0.6), (0.3, 0.5), and (0.2, 0.4). (D) FPTD corresponding to T1 and T2 in Fig. 4C between a 

sink at (6=0.7 Rg=1.18) (i.e., global minimum) and sources at (6=0.15 Rg=1.13) (circles) 

and (6=0.5 Rg=1.14) (triangles). 
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whole story in terms of the assembly dynamics. It is still essential to use the two dimensions 

to characterize first passage times for different assembly pathways. For example, Fig. 5D 

shows first passage time distributions roughly corresponding to trajectories T1 and T2 in 

Fig. 4C (i.e., one starts at (6=0.38 Rg=1.15) and the other one starts at (6=0.65 Rg=1.16); 

both terminate at the global minimum). The fast T2 trajectory makes it to the global free 

energy minimum single crystal nearly two orders of magnitude faster than the slow T2 

trajectory that is detained on the free energy plateau corresponding to grain boundary 

diffusion. This large difference in first passage times is not capture by projecting to the 2D 

trajectories to onto either the 6 or Rg axes as shown by the first passage times in Figs. 

5B,C. 

After showing the accuracy of the LDLD model via first passage time distributions, 

it is possible to more completely explore the dynamic evolution of the system using the 

low dimensional W and D in Fig. 4 to numerically solve the SE (Eq.(7.16)). This provides 

more complete information on the time evolution of states during stochastic assembly 

processes (e.g., compared to first passage times alone). Fig. 6 shows the solution of SE (i.e. 

p(x,t)) for N=210 at different voltages and observation times, Δt, with given initial 

conditions, p(x,0)=(x-x0), x0=(0.025, 1.22), which corresponds to a starting fluid 

configuration.  

At the lowest V*, Figs. 6A,B show the evolution of p(x, Δt) is characterized by slow 

drift and diffusion of the initial delta function towards the new equilibrium state, which is 

a broader distribution of configurations centered on a more condensed fluid state. 

Convergence to the equilibrium Boltzmann distribution is observed to occur within ~200s 

(most easily seen from blue and cyan curves in Fig. 6B). At the intermediate V*, Figs. 6C,D 
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show how p(x, Δt) more rapidly drifts towards more condensed and ordered states before 

a new most probable loosely packed crystal state emerges between 100-200s and the 

equilibrium distribution is reached within ~400s. At the highest V*, which corresponds to 

conditions when a single crystal is expected as the global free energy minimum 

configuration, Figs. 6E,F show how p(x, Δt) drifts even more rapidly toward evolving 

ordered configurations that once again reach the equilibrium distribution in ~400s. The 

results in Fig. 6 show how the low dimensional model captures the stochastic evolution of 

the probability density of states at different thermodynamic conditions, which captures all 

dynamic information necessary to design, control, and optimize colloidal assembly 

schemes in this system. 
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7.5.5 System size dependent assembly pathways 

Because the results in Figs. 1-6 are for a single system size of N=210, we now 

 

Figure. 6. Numerical solution of Smoluchowski equation to compute p(x,t) at observations 

times of Δt=10s, 50s, 100s, 200s, and 400s for a system size of N=210 at applied voltages 

of: (A, B) V*=0.42, (C, D) V*=0.50, and (E, F) V*=0.57. The initial condition in all cases 

is p(x,0)=(x-x0) where x0=(ψ60, Rg0)=(0.025, 1.22). The left hand plots are two 

dimensional contour plots of probability density with an inset scale bar in part A. The right 

hand plots are one dimensional projections of the two dimensional probability density onto 

the ψ6 coordinate for: Δt=10s (black), 50s (red), 100s (green), 200s (blue), and 400s (cyan). 
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explore different systems sizes and voltages to see how the low dimensional model and 

assembly behavior changes. Fig. 7 shows W and D for N=110, 210, and 300 at voltages 

that produce equilibrium structures of comparable global order and degree of condensation 

(i.e. similar equilibrium 6 and Rg; see Fig. 7 caption for details). All W and D share similar 

qualitative features (e.g., a steep free energy gradient followed by a plateau) and 

corresponding microstructures at the plateau region (i.e., bicrystals at low 6 and single 

crystals at high 6) marked on the landscapes and shown in the right column of Fig. 7. 

Quantitative differences with increasing system size include a shift of the global minimum 

on each W towards somewhat higher Rg and lower 6, which is due to the smaller number 

of particles packing more densely and being more easily ordered. Increasing system size 

also produces a systematic decrease in the diagonal terms of D (i.e., D66, DRgRg), which 

is most likely due to increasing hydrodynamics hindrance and associated resistance to 

rearrangement with increasing crowding. 
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Using the W and D from Fig. 7, quantitative differences in the assembly kinetics 

can be examined by numerically solving the SEs for the three system sizes in Fig. 8 (using 

the same procedure and formatting as Fig. 6). Fig. 8 shows the solution of SE from initial 

 

 

Figure. 7. Free energy and diffusivity landscapes with same formatting and procedure to 

obtain plots in Fig. 4 (see Fig. 4 caption), except results are now shown for different 

systems sizes (and applied voltages) of (top-to-bottom): (A) N=110 (at V*=0.85), (B) 

N=210 (at V*=0.80), and (C) N=300 (at V*=0.75). (D) Renderings in column on far right 

show representative configurations for coordinates marked on W plots. 
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conditions of p(x,0)=(x-x0), x0=(0.025, 1.18) for N=110, 210, and 300 for Δt=10s, 50s, 

100s, 200s, and 400s. Within the first ~100s, the distributions in all cases show rapid 

condensation along the Rg direction (i.e. Rg decreases) towards the W plateau near Rg≈1.09 

with p(x, t) spanning all 6 coordinates. At longer times, the probability density is depleted 

at the low 6 region and simultaneously accumulates towards the high 6 region. 

The general trend in these data vs. system size is that smaller systems more rapidly 

approach the global free energy minimum ordered state compared to larger systems sizes. 

Specifically, for the N=110 system at Δt=100s, around half of all trajectories have already 

reached the general vicinity of equilibrium (i.e., area under the curve at high 6) whereas 

the rest are trapped in the plateau regions of the Ws shown in Fig. 7. From Δt>100s, most 

trajectories relax towards the equilibrium ordered state except for a small persistent portion 

in the vicinity of 6≈0.1. The microstructures in the region of low Rg and 6≈0.1 

correspond to nearly perfect bi-crystals, which are metastable with essentially no free 

energy gradient to drive relaxation (which only occurs when stochastic fluctuations initiate 

an imbalance that causes one domain to grow at the expense of the other150). 

With increasing system size, and particularly for the largest system here of N=300, 

at Δt=100-200s, nearly all the trajectories are trapped on the W plateau, and their 

subsequent relaxation towards the perfect crystal state are significantly slowed compared 

to the N=110 system. This slowing down with increasing system size can be attributed to 

the differences in the absolute values of the diffusivity landscapes in the region of 

configuration space corresponding to polycrystal relaxation towards single crystals states. 

Because all system sizes have plateaus on W in this region, there is little to no 

thermodynamic driving force all cases, so the kinetics is governed by diffusion and 
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resistance in the 6 direction. The relatively larger diffusivities in the 6 coordinate for 

smaller systems allow trajectories to ‘fluctuate’ more as part of relaxing towards the single 

crystal in the global free energy well. This system size dependent behavior has been 

observed in our previous experiments,112 which indicates the validity of the low 

dimensional models developed in this work. Extension of the approach here to larger 

system sizes could eventually slow dynamics to the point that assumptions underlying the 

analysis and interpretation in the present study (i.e., ergodicity, detailed balance, 

thermodynamic equilibrium) could eventually be called into question. There are no 

signatures of non-Markovian behavior to indicate any issues with the validity of these 

assumptions in the present work (all properties are independent of path and initial 

conditions in order parameter space). 
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7.6 Conclusions 

We reported the development of a low-dimensional Smoluchowski equation to 

 

Figure. 8. Numerical solution of Smoluchowski equation to compute p(x,t) at observations 

times of Δt=10s, 50s, 100s, 200s, and 400s for different systems sizes (and applied voltages) 

of (top-to-bottom): (A, B) N=110 (at V*=0.85), (C, D) N=210 (at V*=0.80), and (D, E) 

N=300 (at V*=0.75). The initial condition in all cases is p(x,0)=(x-x0) where x0=(ψ60, 

Rg0)=(0.025, 1.18). The left hand plots are two dimensional contour plots of probability 

density with an inset scale bar in part A. The right hand plots are one dimensional 

projections of the two dimensional probability density onto the ψ6 coordinate for: Δt=10s 

(black), 50s (red), 100s (green), 200s (blue), and 400s (cyan). 
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quantify the thermodynamics and kinetics of colloidal crystal assembly in electric fields. 

The dimensionality and order parameter choice was supported by a diffusion mapping 

analysis. Order parameters describing global order, 6, and degree of condensation, Rg, 

were found to yield a low-dimensional model that quantitatively captured assembly 

dynamics as determined by first passage times in agreement with N-dimensional dynamic 

data. The free energy and diffusivity landscapes from the Smoluchowski model revealed 

two types of kinetic pathways; one where condensation and global order emerge 

simultaneously to rapidly yield single domain crystals, and another one where fast 

condensation with local ordering, but not global ordering, results in polycrystal formation. 

Numerical solution of the low-dimensional Smoluchowski equation shows the temporal 

evolution of the probability of states for different voltages and system sizes, which 

quantifies how these two variables determine the evolution of order in electric field 

mediated quasi-2D crystallization. Ultimately, the low dimensional model quantitatively 

captures slow grain boundary dynamics in the presence of vanishing free energy gradients, 

where friction associated with configurational rearrangements determines the relaxation 

rate for polycrystals to form single crystals via grain boundary motion. These low-

dimensional models are currently being used to design optimal control policies for closed 

loop and open loop control of colloidal assembly processes designed to form single crystal 

structures. 

Tables 

Table 1. Parameters for simulations of colloidal particles in a quadrupole electrode:  (a) 

number of particles, (b) particle size, (c) Debye screening length, (d) electrostatic potential 

pre-factor, (e) Clausius-Mossotti factor for 1 MHz AC field, (f) medium permittivity, (g) 
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electrode spacing, (h) temperature, (i) radius of gyration for 2D HCP particles within 

regular hexagon morphologies, (j) lowest voltage to crystallize system, (k) applied voltage, 

(l) normalized voltage, (m) non-dimensional field strength. 

Variable Value 

Na 110,210,300 

a (nm)b 1400 

-1 (nm)c 10 

Bpp(kT)d 3206 

fcm
e -0.4667 

m/0
f 78 

dg (m)g 100 

T (C)h 20 

Rg,HEX(nm)i 15122(N=210); 10944(N=110); 18074(N=300) 

Vxtal(volt)j 1.89(N=210); 2.71(N=110); 1.43(N=300) 

V(Volts) k 
0.8, 0.94, 1.07, 1.51(N=210); 2.3(N=110); 1.07 

(N=300) 

V*(Volts)l 
(0.42, 0.5, 0.57, 0.80) (N=210); 0.85(N=110); 

0.75(N=300) 

m 2.5, 3.5, 4.5, 9(N=210); 21 (N=110); 4.5(N=300) 
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8 OPTIMAL FEEDBACK CONTROLLED ASSEMBLY OF 

PERFECT CRYSTALS‡ 

 

8.1 Abstract 

Perfectly ordered states are targets in diverse molecular to microscale systems 

involving for example atomic clusters, protein folding, protein crystallization, nanoparticle 

superlattices, colloidal crystals, etc. However, there is no obvious approach to control the 

assembly of perfectly ordered global free energy minimum structures; near-equilibrium 

assembly is impractically slow, and faster out-of-equilibrium processes generally terminate 

in defective states. Here, we demonstrate the rapid and robust assembly of perfect crystals 

by navigating kinetic bottlenecks using closed-loop control of electric field mediated 

crystallization of colloidal particles. An optimal policy is computed with dynamic 

programming using a reaction coordinate based dynamic model. By tracking real-time 

stochastic particle configurations and adjusting applied fields via feedback, the evolution 

of unassembled particles is guided through polycrystalline states into single domain 

crystals. This approach to controlling the assembly of a target structure is based on general 

principles that make it applicable to a broad range of processes from nano- to micro- scales 

(where tuning a global thermodynamic variable yields temporal control over thermal 

sampling of different states via their relative free energies).   

                                                 

‡  Reprinted with permission from “Optimal Feedback Controlled Assembly of Perfect Crystals." ACS 

nano  7 (2016): 6791-6798 by Tang, Xun, Bradley Rupp, Yuguang Yang, Tara D. Edwards, Martha A. 

Grover, and Michael A. Bevan. Copyright © 2016 American Chemical Society.  
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8.2 Introduction 

Assembling colloidal nano- and micro- particle components into perfectly ordered 

configurations could enable metamaterials with exotic properties that are otherwise 

unattainable.97,173-175 Obtaining perfect structures is non-trivial at any scale (e.g., atomic 

clusters, nanoparticle superlattices, folded proteins). Limited successful examples of 

perfect crystals on molecular scales include monocrystalline silicon for microelectronics 

via near-equilibrium directional growth from a seed crystal, and single small protein 

crystals for x-ray crystallography via combinatorial screening. Such perfect atomic and 

molecular crystals are often obtained using open-loop control at near equilibrium 

conditions; i.e., recipes based on slow nucleation, growth, and annealing to allow 

constituents to gradually assemble and relax into global free energy minimum perfect 

crystals. Like molecular crystallization, the capability to tune colloidal nano- and micro- 

particle crystallization has been shown in a number of studies;42,176-187 however, the 

controlled assembly of perfect thermodynamically stable colloidal crystals has not yet been 

demonstrated. 

Crystallization kinetics depend on how constituents collectively assemble via 

diffusion. Molecular diffusion rates allow crystal growth near equilibrium to occur on 

timescales that are economically viable for manufacturing of high value-added materials. 

Colloidal nano- to micro- scale components, by virtue of their size, diffuse orders of 

magnitude more slowly than molecules, and hence colloidal assembly at near equilibrium 

conditions is impractical. The alternative, rapid out-of-equilibrium assembly, leads to 

defects (e.g., polycrystals) and often arrested amorphous states. There appears to be an 

insurmountable gap between the limits of assembling perfect crystals via excessively long 
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equilibrium processes and rapidly producing defective structures. 

Here, we overcome the inherent drawbacks of open-loop controlled colloidal 

particle assembly processes by demonstrating rapid assembly of perfect crystals with 

closed-loop (“feedback”) control based on a microscopic dynamic model. Practically, the 

experiment involves compressing charged colloids within a quadrupolar electric field (Fig. 

1). This is a self-assembly process in which a global thermodynamic variable (i.e., electric 

field) changes the relative free energy of all configurations, causing particles to assemble 

via thermal motion to minimize their free energy. To enable feedback control, essential 

real-time capabilities require: (1) sensing the system state (via image analysis), (2) 

actuating particle interactions to navigate energy landscapes (via field mediated potentials), 

and (3) closing the loop to assign actuator settings based on sensor readings (via an optimal 

policy). This approach corrects defects in real-time to produce perfect crystals. While 

feedback control has been explored in microscopic systems including single particles,188 

colloidal assembly,39 shear induced transitions,189 nanostructure morphology,190 and 

maximizing crystallinity,191 none have produced perfect crystals using real-time defect 

correction.  

Ultimately, this study is a proof-of-principle demonstration of controlling the 

navigation between two states in free energy space,192 which we practically implement to 

create perfect 2D colloidal crystals. However, this approach could be used to navigate 

between any states including other colloidal microstructures (e.g., gels, glasses, chains, 

clusters etc.) Because colloidal particles thermally sample different configurations via 

diffusion based on their relative free energies, and as such are often considered as models 

of atoms193-195 (often in connection to the thermodynamics and kinetics of 
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crystallization),101,105,196-198 the physics underlying our approach is general across a range 

of length scales including molecular and nano- scales. As such, if correctly adapted 

(including appropriate methods to tune interactions176-180 and to sense states, e.g., via 

diffraction,199,200 optical Fourier transforms,201 super-resolution microscopy,202,203 liquid 

cell electron microscopy204), the approach outlined in this work could be used to control 

states in systems of atoms, molecules, macromolecules, and nanoparticles. In addition to 

enabling the assembly of static, equilibrium target states, the ability to actively control 

particle ensembles between different non-equilibrium states could enable reconfigurable 

metamaterials (i.e., metadevices).205 

8.3 Methods 

Sample preparation. Coplanar quadrupole Au thin film electrodes were patterned 

on glass microscope coverslips that were sonicated in acetone for 30 min, sonicated in 

isopropanol (IPA) for 30 min, rinsed with deionized (DI) water, soaked in Nochromix 

(Godax) for 1 h, rinsed with DI water, sonicated in 0.1 M KOH for 30 min, rinsed with DI 

water, and dried with N2. The electrodes were fabricated by spin coating photoresist 

(S1813, Shipley) onto microscope cover slips, UV exposure through a chrome photomask, 

and physical vapor deposition of a 15 nm chromium adhesive layer and a 35 nm gold layer. 

The photoresist liftoff was accomplished with agitation in 1165 Remover (Shipley). The 

electrode tips are separated by ~100 m. Prior to experimentation, the coverslips with 

patterned quadrupole electrodes were sonicated in IPA for 30 min, acetone for 30 min, IPA 

for 30 min, rinsed in DI water, then suspended in Nochromix for 20 min, rinsed with DI 

water, and dried with N2. 

Experiments were performed in batch cells consisting of Viton O-rings. To 
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construct batch cells, O-rings were coated with vacuum grease and sealed between the 

coverslip with the electrode and a glass coverslip. 100 L of the colloidal particle 

dispersion was dispensed into the batch cell and allowed to sediment for 5 min prior to 

sealing with a coverslip to obtain approximately 300 particles in the quadrupole. 22 gauge 

copper wires were attached to the electrode using conductive carbon tape. The electrode 

was then connected in series with a function generator (Agilent 33220a) with one lead 

attached to the north-south poles and another to the east-west poles. 

 

 

Figure 1 | Quasi-2D colloidal crystal assembly in electric fields. (a) Microfabricated 

quadrupole electrode. (b) Optical microscopy image of particles within quadrupole. (c) 

Single particle-field potential (blue-red scale: 0-100 kT).  Images of 300 particles with 

centers colored to visualize reaction coordinates for local hexagonal order, C6, and global 

hexagonal order, 6, at electric field amplitudes of λ = (d) 0.2, (e) 0.9, (f) 2.0, and (g, h, i) 

19.7. Representative microstructures include bicrystals with (g) large grain boundary 

(similar sized domains near max misorientation angle), (h) small grain boundary (dissimilar 

sized domains with smaller misorientation angle), (i) no grain boundary i.e., perfect crystal. 

2.8 m particles provide internal scale bar. 
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Microscopy. Microscopy was performed on an inverted optical microscope with a 63 

Zeiss air objective lens (0.6 numerical aperture) at 1.25 magnification. A 12-bit CCD 

camera captured 336 pixel  256 pixel (104 µm  79 µm) digital images at rate of 10 

frames/s. Image capture and analysis were performed using MATLAB Image Processing 

and Image Acquisition Toolboxes. Image analysis algorithms coded in MATLAB were 

used to simultaneously locate and track particle centers, as well as, compute local and 

global order parameters in real time,39 Experimental values of ψ6 and C6 were normalized 

by constants ψ6,max = 0.8 and C6,max = 0.95 to account for particle tracking errors. 

Feedback Control. The electric field amplitude and frequency were controlled via the 

function generator using a device driver written in the MATLAB Instrument Control 

Toolbox. A sinusoidal voltage with a 1 MHz frequency was varied between λ = 0.2, 0.9, 

2.0, and 19.7 for controlled cycles and held at a constant λ = 19.7 for uncontrolled cycles. 

The value of λ is related to the electric field and peak to peak voltage as, 
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where λ has the same definition as the main manuscript, dg is the electrode gap, and Vpp is 

the peak-to-peak voltage set in the function generator. For dg = 100 μm in this and previous 

work, the value of Vpp at which all particles crystallize in a system of N particles was 

determined to be,  
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where -1 is the Debye length. Values of Vpp and λ used in this work are reported in 
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Supplementary Table 1.  

Several properties could change in the course of a ~31 hour experiment, such as 

particle stability, solvent conditions, and evaporation, etc. However, there is no evidence 

that any of these factors changed the experimental conditions by plotting any measured 

quantity vs. time. This is shown by the fact that the probability that an uncontrolled cycle 

would form a perfect crystal remains for all practical purposes constant for the experiment 

duration. 

The radius of gyration, Rg, was used to measure the degree of melting between 

individual cycles. After a perfect crystal was obtained or 1000s had elapsed, the system 

was melted at λ = 0.2 until Rg = 25.5µm, at which point the next crystallization cycle was 

started. Rg is given by, 
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where Rg,HEX is the radius of gyration for two dimensional hexagonally close packed 

particles with regular polygon morphologies given by, 
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Reaction Coordinates: Reaction coordinates are computed for different system sizes to 

include edge effects. The global six-fold bond orientational order, 6, is given by,43,44,117 
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where N is the total number of particles in the ensemble, and 6,j is the local six-fold bond 

orientation order of particle j given as,  
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where NC,j is the number of neighbors within the first g(r) peak (coordination radius) of 

particle j, and θjk is the angle between particle j and each neighboring particle k with an 

arbitrary reference direction. Connectivity between crystalline particles, χ 6,jk, is given by,  
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where ψ *
6,j is the complex conjugate of ψ6,j. This is used to compute the local order 

parameter for six-fold connectivity, C6,j, which produces integer values between zero and 

six. The number of crystalline nearest neighbors, C6,j, for particle j is determined using the 

criterion,135 
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where C6 is the average normalized local six-fold connectivity, normalized by C6HEX, 

the C6 value for 2D hexagonal close packed particles with a hexagonal morphology given 

by,39 
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Markov State Model Construction: A Markov state model (MSM)206 is 

characterized by a set of discretized states S, and a probability transition matrix P() for 

each input . P() is composed of transition probability P()ij, which denotes the 

probability of the system to be in state j, after a transition time of t, given the current state 

as i, under an input . The state space is defined by the reaction coordinates (ψ6, C6). The 
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discretization is fine enough to distinguish configurations that lead to different dynamics, 

but not too fine to lead to sampling issues in building the transition matrix and 

computational issues in solving for the control policy.207 We discretized the reaction 

coordinate 6 into 50 intervals and C6 into 120 intervals after trial-and-error inspection. A 

total of 6000 discrete states were defined. 

We generated sample data from the BD simulations to build four MSM for each of 

our four input levels: λ = 0.2, 0.9, 2.0, 19.7. For each model, BD simulations are initialized 

in different discrete states to cover a commonly visited region of the state space. The 

simulations were repeated to ensure the important states have enough samples to account 

for stochastic effects. Simulations were conducted under both constant and time-varying 

inputs to enrich sampling, with voltage switching at intervals of t = 100 s, corresponding 

to the transition time used in the MSM. To preserve the Markovity of the system, a large 

transition time t is desired for better accuracy,207-209 but at the cost of intermediate 

information loss. After an investigation over a range of transition times on the model 

accuracy, the transition time t = 100s was chosen to balance the MSM accuracy with the 

ability to actuate at useful time intervals (see main text for discussion of inherent system 

response time). 

Markov Decision Process Based Optimal Control Policy Calculation: A 

Markov decision process (MDP) is composed of a MSM, a set t of discrete time epoch i, 

and a set A of discrete actions λ.210,211 If t is a finite set, the MDP is called finite-horizon 

MDP, and it is called infinite-horizon MDP if t is an infinite set. An optimal control policy 

associated with an infinite-horizon MDP is a time-independent policy, i.e., the control 

policy is stationary at each update interval. Considering the convenience in practical use as 
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well as its ability for visualization and understanding, we investigated the infinite-horizon 

MDP based optimization problem to solve for a stationary optimal control policy. In the 

infinite-horizon MDP, the optimization is achieved over an infinite number of time steps, 

i, and the objective function is defined as,  
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where X is the expectation operator, π : S → A, is a feasible policy composed of control 

actions λi  A, xi  S is the discrete state, i is the discrete time instant, and γ  (0,1) is the 

discount factor introduced to ensure the convergence to optimality in dynamic 

programming. R(xi, λi) : S  A → R is the one-stage reward function obtained when the 

system is in state x, and a control action λ is taken. The optimal value function J* and the 

optimal policy π* are defined in Equation (13), where “sup” indicates the supremum, and 

Пs is the set of all feasible control policies, 

 

 

*

* *

( ) sup ( )

( ) arg sup ( ) arg ( )

s

s

J J

J J

















 

x x

x x x
 (8.13) 

In our particular calculation, the one-stage reward function is defined as R(xi, λi) = 

ψ6
2, with a discount factor of γ = 0.99. With a discount factor so close to 1, the future values 

of the reward are nearly as important as the initial reward, over the ten control intervals 

considered here. The objective function was selected to achieve the highest possible ψ6 

value, which corresponds to a highly ordered, single domain crystalline state of the system. 

C6 is not included explicitly in the objective function, but a high ψ6 value state 
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automatically requires a high C6 value due to physical constraints. The optimal control 

policy was solved with dynamic programming in the MDP framework, using a policy 

iteration algorithm embedded in the MDP Toolbox from MATLAB central distribution.212 

8.4 Results and discussion 

8.4.1 Stochastic polycrystal assembly 

Assembly is performed with 300 SiO2 colloids (radius, a = 1.4 m) confined by 

gravity into a quasi-2D layer within a quadrupole electrode (Fig. 1a, see Methods & 

Supplementary Information (SI)). A function generator controls the amplitude of a 1 MHz 

AC field, which determines the degree of localization of colloids at the field minimum in 

the quadrupole center (Figs. 1b). The dipole-field potential characterizing the potential 

energy associated with confining particles is (Fig. 1c),114 
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where λ= πma3(fCME0)
2/kT characterizes how strongly the radially varying field, E(r)/E0, 

confines particles relative to thermal energy, kT, and fCM depends on the particle, εp, and 

medium, εm, dielectric properties (see Methods & SI).213 A balance of the field confinement 

against the quasi-2D dispersion osmotic pressure determines, for a given particle number, 

whether a fluid or solid phase will form versus λ (Fig. 1d-i).112 As system size increases, 

polycrystallinity (i.e., misoriented crystal domains with grain boundaries, Fig. 1g,h) 

becomes increasingly prevalent; this is the defect we aim to repair via feedback control. 

To develop a sensor and model for grain boundary formation and motion, we 

employ a reaction coordinate based dynamic model.214 Two reaction coordinates are 
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necessary to quantify polycrystallinity: the degrees of global order, ψ6, and local order, C6. 

Values of ψ6 and C6 are computed in real-time from particle centers obtained via 

microscopy and image analysis (see Methods & SI). To briefly describe how reaction 

coordinates capture different states, ψ6 ≈ 0 for amorphous states (Fig. 1d) and polycrystals 

(Fig. 1g), whereas ψ6 ≈ 1 for perfect crystals (Fig. 1h). C6 captures emergence of 

crystallinity during condensation and distinguishes amorphous (low C6) and 

polycrystalline (high C6) states (that both have 6 ≈ 0). 

8.4.2 Polycrystallinity versus uncontrolled ramp rate 

We illustrate the need for feedback control by first showing examples without 

feedback control that demonstrate the trade-off between generating perfect crystals via 

slow, near-equilibrium ramps versus polycrystals via ramps too fast for relaxation into 

single crystals (Fig. 2). Assembly trajectories are reported for N=300 particles in Brownian 

Dynamic (BD) simulations matched to experiments214 for several orders of magnitude in 

field ramp time. Non-equilibrium ψ6 and C6 trajectories averaged over 100 simulations for 

ramp times of 0, 1x103, 2x103, 5x103, and 104 s are shown alongside equilibrium ψ6 (i.e., 

free energy minima values at each λ, see SI). As expected, local ordering always precedes 

global ordering. The key result is that a > 104 s ramp is required to achieve 100% perfect 

crystals in the near-equilibrium limit (i.e., ramped ψ6 passes through equilibrium ψ6 values 

at long times). Faster ramps produce non-equilibrium polycrystals that do not relax to 

single crystals in the allotted times. 



162 

8.4.3 Feedback controlled navigation of energy landscapes 

The (ψ6, C6) coordinates quantitatively capture non-equilibrium stochastic 

trajectories between states, which provides a dynamic model to close the loop between 

sensing (determining the current state) and actuation (specifying λ to achieve a new state). 

A (ψ6, C6) based model quantifies field mediated crystallization dynamics via a 

Smoluchowski equation given as,214 
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Figure 2 | Ramping electric field at different rates without feedback control to 

understand effect of quench-rate on crystal assembly. Electric field amplitude,  (long-

dash gray), ramped from 0.2 to 19.7 over (a) 0 s (blue), (b) 1x103 s (cyan), (c) 2x103 s 

(red), (d) 5x103 s (green), and (e) 104 s (black). Local order, C6 (dotted lines), emerges 

before global order, 6 (solid lines). Equilibrium 6 values (open circles) vs. λ approach 

6 ramp trajectories only for 104 s ramp. 
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where p is probability, x = (ψ6, C6), D is a diffusivity landscape, and W is a free energy 

landscape. The dynamic model encapsulated in Eq. (6.1) enables formulating an optimal 

control scheme based on free energy gradients in W and hydrodynamic mediated friction 

in D.214 

Controlling crystallization is conceptually the navigation of free energy landscapes, 

W, at each electric field amplitude, λ (Fig. 3a). The equilibrium ramp (Fig. 2e) corresponds 

to slowly increasing λ(t) so the configuration resides near the free energy minimum on each 

W. Faster ramps (Fig. 2a-d) in λ(t) cause sampling of non-equilibrium polycrystalline states 

on each W where vanishing gradients provide minimal driving force for relaxation.214 The 

more sophisticated approach here is to determine the optimal λ(t) based on current (ψ6, C6) 

coordinates to maximize the probability of moving from the initial fluid to the perfect 

crystal. Because the particle and grain boundary motion are stochastic, each process is 

unique, so no one λ(t) is best every time; instead closed-loop control is required to obtain 

the optimal actuation. 

To determine how to change the electric field versus time (i.e., λ(t)) to best navigate 

the free energy landscapes, W, we use a Markov decision process based policy using 

dynamic programming.210 This framework requires a discretized version of Eq. (6.1), 

known as a Markov state model,206 which consists of a “probability transition matrix” to 

quantify the transition probability between all states during a time step, Δt, at each λ. The 

resulting policy, π, provides a mapping from the current measured state, x, to the next 

action, λ, to be taken. Mathematically, λi+1 = π(xi), where i is the time step.  The optimal 

policy at each state x maximizes the objective function Jπ,215 
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where X is the expectation operator and R(xi, λi) is the reward function at time step i.  In 

this work R = ψ6
2, such that a high global crystallinity is “rewarded.” The discount factor 

γ ensures convergence of the policy calculation, and here is set to 0.99 (see Methods for 

details). The Markov decision process calculation provides the optimal policy (Fig. 3b) in 

the form of a look-up table, indicating the λ to use when assembly trajectories pass through 

each (ψ6, C6) coordinate. 

A typical single experimental trajectory (Fig. 3a,b) illustrates how the control 

policy is implemented. Practically, the feedback control is achieved in real-time via the 

followings steps: (1) image analysis is used to locate particle centers and compute updated 

(ψ6, C6) coordinates every 100 ms, which are plotted as trajectories on the W at each λ (Fig. 

3a); (2) the current values of the (ψ6, C6) coordinates are found in the optimal control policy 

look-up table (Fig. 3b); and (3) the new value of the quadrupole voltage (λ) found in the 

look-up table is updated every 100 s, which is shown by the trajectories jumping between 

the W in Fig. 3a every time the λ value is changed. The policy update time of Δt = 100 s 

was determined by considering actuation times comparable to the inherent system response 

time. 

The policy update time and inherent system response time depends on the 

cooperative short-range motion of particles necessary for grain boundary motion,216,217 

which can be estimated from the long time self-diffusivity as, DS
L = DS

S[1+2g(2a)]-1, 

where DS
S is the short time self-diffusivity,  is the particle area fraction, and g(2a) is the 

radial distribution function contact value within the quasi-2D colloidal monolayer.129 
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Using DS
S =0.5D0 (D0 is the Stokes-Einstein value) to account for particle-wall 

hydrodynamics,146 and the hard disk fluid radial distribution function for g(2a),218 the time 

for particles to diffuse over a distance comparable to their own radius is, = a2/DS
L ≈ 100s 

at low concentrations. By considering how the soft electrostatic repulsion between particles 

significantly decrease g(2a),129 DS
L becomes a weak function of , and as such,  ≈ 100s 

captures the characteristic structure relaxation time scale for all configurations and . 

Estimating DS
L based on dense fluid properties can be rationalized since motion within 

grain boundaries has been compared to concentrated melt dynamics.105,219,220 In addition, 

the  different  values in conjunction with the inhomogeneous field cause the dynamics to 

vary significantly from the concentrated interior of the particle ensemble to the vanishing 

density at its periphery.112 Practically, the 100s update time worked better than faster or 

slower times, consistent with the above analysis. 

Movies (Movie S1) and images of particle configurations (Figs. 3c-h) at start, end, 

and policy update points (Fig 3b) show the policy uses: (1) the highest field (λ = 19.7) for 

rapid initial assembly and to quench the final perfect crystal, (2) the lowest field (λ = 0.2) 

to partially disassemble large grain boundaries, and (3) intermediate field amplitudes (λ = 

0.9, λ = 2.0) to assist relaxation of smaller grain boundaries. The control policy at most 

times drives rapid assembly at the highest field setting and is only reduced occasionally to 

eliminate defects without completely disassembling structures and restarting assembly. 
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8.4.4 Controlled versus uncontrolled assembly 

Because colloidal assembly trajectories are stochastic, it is essential to collect 

 

Figure 3 | Assembly trajectory on energy landscapes under control (see Movie S1). (a) 

Free energy landscapes of 300 particles at the four λ’s in policy. Example trajectory (black) 

with coordinates on policy (b) and corresponding images (c-h). (b) Optimal policy 

calculated using Markov decision process. Images showing representative configurations 

(same coloring scheme as Figs. 1d-i) at: (c) λ = 0.2 before compression, (d) first 

compression to λ = 19.7 with grain boundary, (e) relaxation at λ = 0.9, (f) re-compression 

at λ = 19.7 with new grain boundary, (g) relaxation at λ = 2.0, (h) perfect crystal at λ = 

19.7.  
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sufficient statistics for a fair comparison of uncontrolled and controlled processes; to 

address this issue, 200 alternating uncontrolled and controlled cycles were obtained in a 

fully automated experiment over > 31 hr (see Methods & SI, Fig. 4). Each cycle used 

feedback control to: (1) ensure initial disassembly, (2) followed by either a step-quench 

without intervention or 100 s control updates, and (3) termination after either obtaining a 

perfect crystal or 103 s. The first 10 cycles illustrate several scenarios (Movie S2, Fig. 4a) 

including trajectories that: (1) quickly relax for small grain boundaries (#3, #7, #9); (2) 

slowly relax to form a perfect crystal < 1000 s (#1); (3) form metastable crystals that never 

relax (#5); (4) always form perfect crystals either without (#4, #10) or with (#2, #6, #8) 

several feedback corrections. 

Analysis of all 200 ψ6 versus time trajectories (Fig. 4b) and # of perfect crystals 

versus time (Fig. 4c) show key quantities to assess the controller’s success at producing 

perfect crystals. A handful of perfect crystals form immediately during coalescence without 

grain boundaries (17 uncontrolled vs. 19 controlled) by bypassing slow grain boundary 

motion on free energy plateaus (W at λ = 19.7 in Fig. 3a).214 The remaining ~160 

trajectories illustrate how control removes grain boundaries by choosing lower λ. When 

removing small grain boundaries, perfect crystals are obtained in 100% (52/52) of 

trajectories after 1-2 corrective steps, whereas 78% (37/47) of small grain boundary 

bicrystals relax to perfect crystals without control. The ultimate test of the controller is for 

large grain boundaries; 93% (27/29) of controlled trajectories produce perfect crystals after 

3-4 corrective steps vs. 18% (6/34) of uncontrolled processes. In the final accounting, 

controlled processes produced perfect crystals 98% of the time while uncontrolled 

processes were 60% successful. 
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8.5 Conclusions & outlook 

Our results demonstrate optimal feedback control to robustly assemble perfect 

colloidal crystals orders of magnitude faster than a slow quasi-equilibrium ramp and much 

more reliably than rapid quenches. An optimal policy is computed with dynamic 

programming based on a low-dimensional reaction coordinate dynamic model. By tracking 

real-time stochastic particle configurations and employing the optimal policy to adjust 

 

 

Figure 4 | Controlled vs. uncontrolled crystal assembly processes. 100 uncontrolled and 

100 controlled trajectories shown as: (a) first 10 cycles with C6 (blue), 6 (red), λ (black) 

vs. time, (b) 6 vs. time for 103 s for all experiments colored to indicate ensemble average 

(bold red), no grain boundary (red: 6 > 0.7, C6 > 0.95), small grain boundary (orange: 0.7 

>6 > 0.4, C6 > 0.95), large grain boundary (peach: 0.4 >6, C6  > 0.95), (c) perfect crystals 

vs. time as cumulative number (dark red) and instantaneous number (bars) with same color 

scheme as (b). 

 a 

b 

c 
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applied electric fields via feedback, the evolution of unassembled particles is guided 

through polycrystal states into single domain crystals.  

There are a number of ways this approach could be adapted and extended. For 

example, our approach could be implemented to constructively employ multiple 

complementary actuators (e.g., magnetic fields to exert torques,221 tunable depletion 

attraction to quench final states)43 or be combined with other methods such as templated 

self-assembly (either unactuated48,222 or actuatable223). Based on our prior work on 

nanoparticle assembly,158 system size effects,112 and three dimensional assembly in 

electric138 and gravitational fields,224 our approach can also be adapted to: (1) smaller 

nanoparticles (with different sensors; e.g., attenuation based imaging,158,224 

scattering/diffraction),199 (2) larger systems either through continuous processing (rather 

than batch processing; e.g., a microfluidic device), parallelization (e.g., electrode 

arrays),225 or informing open-loop schemes (e.g., toggling),186  and (3) 3d crystals in thin 

films and possibly bulk crystals. 

Further extensions of the methods and analyses developed in this work could be 

applied to other nano- and micro- scale processes involving: anisotropic particles or multi-

component mixtures (with more states and bottlenecks), dynamical steady-states and out-

of-equilibrium end points (where a Fokker-Planck equation describes the dynamics rather 

than a Smoluchowski equation), active micromachines and reconfigurable device elements 

(rather than static targets), and even synthetic materials systems that mimic basic control 

elements in biological systems (e.g., chaperone control of protein folding and 

aggregation).226 Our approach is based on first-principle concepts that are general to any 

molecular, nano-, or micro- scale assembly process where components thermally sample 
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different configurations based on their relative free energies, states can be measured in real-

time, an actuation mechanism exists to alter driving forces, and a dynamic model connects 

system responses to actuator settings. 

8.6 Supplementary materials 

Materials: Coplanar quadrupole Au thin film electrodes were patterned on glass 

microscope coverslips (Corning) that were sonicated in acetone for 30 min, sonicated in 

isopropanol (IPA) for 30 min, rinsed with deionized (DI) water, soaked in Nochromix 

(Godax) for 1 h, rinsed with DI water, sonicated in 0.1 M KOH for 30 min, rinsed with DI 

water, and dried with N2. The electrodes were fabricated by spin coating photoresist 

(S1813, Shipley) onto microscope cover slips, UV exposure through a chrome photomask, 

and physical vapor deposition of a 15 nm chromium adhesive layer and a 35 nm gold layer. 

The photoresist liftoff was accomplished with agitation in 1165 Remover (Shipley). The 

electrode tips are separated by ~100 m. Prior to experimentation, the coverslips with 

patterned quadrupole electrodes were sonicated in IPA for 30 min, acetone for 30 min, IPA 

for 30 min, rinsed in DI water, then suspended in Nochromix for 20 min, rinsed with DI 

water, and dried with N2. 

Quadrupole Electrode: Experiments were performed in batch cells consisting of Viton 

O-rings. To construct batch cells, O-rings were coated with vacuum grease (Dow Corning) 

and sealed between the coverslip with the electrode and a glass coverslip (Corning). 100 

L of the colloidal particle dispersion was dispensed into the batch cell and allowed to 

sediment for 5 min prior to sealing with a coverslip to obtain approximately 300 particles 

in the quadrupole. 22 gauge magnet wires were attached to the electrode using conductive 

carbon tape (Ted Pella). The electrode was then connected in series with a function 
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generator (Agilent 33220a) with one lead attached to the north-south poles and another to 

the east-west poles. 

Microscopy: Microscopy was performed on an inverted optical microscope (Axio 

Observer A1, Zeiss) with a 63 Zeiss air objective lens (0.6 numerical aperture) at 1.25 

magnification. A 12-bit CCD camera (ORCA-ER, Hamamatsu) captured 336 pixel  256 

pixel (104 µm  79 µm) digital images at rate of 10 frames/s. Image capture and analysis 

were performed using MATLAB Image Processing and Image Acquisition Toolboxes. 

Image analysis algorithms coded in MATLAB were used to simultaneously locate and 

track particle centers, as well as, compute local and global order parameters in real 

time.39,111 Experimental values of ψ6 and C6 were normalized by constants ψ6,max = 0.8 and 

C6,max = 0.95 to account for particle tracking errors. 

Feedback Control: The electric field amplitude and frequency were controlled via the 

function generator using a device driver written in the MATLAB Instrument Control 

Toolbox. A sinusoidal voltage with a 1 MHz frequency was varied between λ = 0.2, 0.9, 

2.0, and 19.7 for controlled cycles and held at a constant λ = 19.7 for uncontrolled cycles. 

The value of is related to the electric field and peak to peak voltage as, 
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where  has the same definition as the main manuscript, dg is the electrode gap, and Vpp is 

the peak-to-peak voltage set in the function generator. For dg = 100 m in this and previous 

work, the value of Vpp at which all particles crystallize in a system of N particles was 

determined to be,  
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where -1 is the Debye length. Values of Vpp and  used in this work are reported in 

Supplementary Table 1.  

Several properties could change in the course of a ~31 hour experiment, such as particle 

stability, solvent conditions, and evaporation, etc. However, there is no evidence that any 

of these factors changed the experimental conditions by plotting any measured quantity vs. 

time. This is shown by the fact that the probability that an uncontrolled cycle would form 

a perfect crystal remains for all practical purposes constant for the experiment duration. 

Supplementary Table 1. Parameters for experiments and simulations. a. particle 

diameter,137 b. Debye screening length, c. particle and wall Stern potential137, d. applied 

peak-to-peak voltage, e. dimensionless electric field strengths used for policy control, f. 

Clausius-Mossotti factor for an AC field frequency at 1 MHz,114 g. medium dielectric 

permittivity, h. electrode spacing.138 

Variable Theory/Simulation Experiment 

2a/nma 2870 2870 

T/K 293 293 

-1/nmb 10 10 

/mVc -50.0 -50.0 

Vpp/V
d 0.2, 0.4, 0.6, 1.9 0.2, 0.4, 0.6, 1.9 

λe 0.2, 0.9, 2.0, 19.7 0.2, 0.9, 2.0, 19.7 

fCM
f -0.4667 -0.4667 
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m
g 78 78 

dg/mh 96 96 

 

The radius of gyration, Rg, was used to measure the degree of melting between individual 

cycles. After a perfect crystal was obtained or 1000s had elapsed, the system was melted 

at λ = 0.2 until Rg = 25.5µm, at which point the next crystallization cycle was started. Rg 

is given by, 
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where Rg,HEX is the radius of gyration for two dimensional hexagonally close packed 

particles with regular polygon morphologies given by, 
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Reaction Coordinates: Reaction coordinates are computed for different system sizes to 

include edge effects. The global six-fold bond orientational order, 6, is given by,43,44,117 
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where N is the total number of particles in the ensemble, and 6,j is the local six-fold bond 

orientation order of particle j given as,  

 
,

6

6,

1,

1 C j

jk

N
i

j

kC j

e
N






   (8.22) 

where NC,j is the number of neighbors within the first g(r) peak (coordination radius) of 

particle j, and jk is the angle between particle j and each neighboring particle k with an 

arbitrary reference direction. Connectivity between crystalline particles, 6,jk, is given by,  
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where *
6,j is the complex conjugate of 6,j. This is used to compute the local order 

parameter for six-fold connectivity, C6,j, which produces integer values between zero and 

six. The number of crystalline nearest neighbors, C6,j, for particle j is determined using the 

criterion,135  
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where C6 is the average normalized local six-fold connectivity, normalized by C6HEX, the 

C6 value for 2D hexagonal close packed particles with a hexagonal morphology given 

by,111 
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Brownian Dynamics Simulations: Brownian Dynamics (BD) simulations in the canonical 

ensemble were performed for 300 colloidal particles using numerical methods described in 

our previous papers.122,128,129,131,227 A 0.1 ms time step was used for at least 2×107 steps, 

and reaction coordinates were stored every 1250 steps for subsequent analysis. Particles in 

simulations were confined within 2D planes. In the following sections, we provide 
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additional details of the BD simulations, as well as, the models for the conservative forces 

based on potentials measured in our previous work.113,114,136 All parameters used in the BD 

simulations are reported in Supplementary Table 1. The BD simulations were based on a 

Langevin equation as, 

 H P Bd
m

dt
  

U
F F F  (8.28) 

where m is the particle buoyant mass, U is a velocity vector, and the force vector has three 

parts including dissipative hydrodynamic forces, FH, conservative forces due to potential 

fields, FP, and stochastic Brownian forces, FB. By letting FH=-kT(D-1)U, integrating Eq. 

(6.13) and using the mid-point algorithm, an equation of motion for particle displacements 

is obtained as,139,140 
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where the superscript “0” indicates quantities computed at the beginning of the time 

interval. Specific details of implementing Eq. (6.14) in dynamic simulations are described 

in previous publications.128,129 The Brownian force FB
 is characterized by a mean and 

variance given by, 
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D in Eqs. (6.14) and (6.15) is a diffusivity tensor for finite numbers of particles above a 

no-slip plane computed using the methods of Brady and co-workers. D is related to the 

resistance tensor, R, through the generalized Stokes-Einstein relation, D=kTR-1. Here R is 

computed to include hydrodynamic interactions, which are separated into far-field, multi-
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body, and near-field lubrication contributions as,161  
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   R M R R  (8.31) 

where M is the far-field mobility tensor constructed in a pairwise manner. The inverse of 

M is a true multi-body, far-field approximation to the resistance tensor. Lubrication is 

included by adding the exact two-body resistance tensor,145,146,160 R2B, and subtracting the 

two-body, far-field resistance tensor, R2B
, to avoid double counting. To specify an 

approximate configuration-dependent D to reduce computational cost, the diagonal 

elements of D (without cross terms) are parameterized in a look up table as a function of 

the ensemble Rg and the distance, Ri, of particle i from the configuration center of mass.  

The interaction energy between colloids within the quadrupole electrode is modeled as the 

superposition of electrostatic double layer repulsion, dipole-field interactions, and dipole-

dipole interactions. The net conservative forces, FP, in Eq. (6.14) are calculated based on 

the total conservative force acting on particle i as, 
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where the electrostatic potential between particles i and j, upp
e,i,j(r), is given by,2 
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where rij is the particle center-to-center distance, e is the elemental charge, and  is the 

colloid surface potential. Dipole-field interactions can be described by,113  
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where ri is the position of particle i relative to the center of the quadrupole electrode and 

E(ri) is the electric field. Dipolar interactions between particles i and j are given by,114 

    
 

3 2

, , 2

0

2
cospp i

dd i j ij

ij

Ea
u kT P

r E
 

   
      

  

r
r  (8.35) 

where P2(cosij) is the second Legendre polynomial and ij is the angle between the line 

that connects the two particle centers and the electric field. The quadrupole electric field is 

given by an approximate expression228 corrected to fit numerical COMSOL results as, 
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where x and y are Cartesian coordinates with origin at the quadrupole center, and 

L=(x2+y2)0.5. 

Equilibrated 6 values: Equilibrium 6 values in Fig. 2 were obtained from BD 

simulations using the following procedure: (1) simulations at each  were initiated from 

fluid-like configurations to construct free energy landscapes by fitting the Smoluchowski 

equation coefficients (described below), (2) equilibrated 6 values at each were obtained 

as the global free energy minimum on each landscape. 

Smoluchowski equation coefficients: Methods to fit the Smoluchowski equation 

coefficients are described in detail in our previous manuscripts.120,122,131 Here we describe 

in brief the linear fitting method. The local drift and diffusion coefficients are obtained 

using,121 
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where D(1) is the drift vector field, D(2) is the diffusivity tensor,  is a particular realization 

of x, the brackets represent an ensemble average, and the right hand side provides compact 

notation based on the definition of a derivative and traditional symbols of statistics (i.e., 

mean, variance, covariance). The free energy landscape, W(x), is obtained from D(1) and 

D(2) as, 
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Here, x = (6, C6) trajectories for input into Eqs. (6.22) and (6.23) were generated from > 

3000 simulations initiated from a library of experimental fluid and polycrystalline 

configurations. Trajectories were analyzed on (6, C6) grid points with at least 4200 

trajectories passing through each grid point. The resolution for the C6 and 6 coordinates 

were 0.025 and 0.025. 

Markov State Model Construction: A Markov state model (MSM)206 is characterized by 

a set of discretized states S, and a probability transition matrix P(a) for each input a. P(a) 

is composed of transition probability P(a)ij, which denotes the probability of the system to 

be in state j, after a transition time of t, given the current state as i, under an input a. The 

state space is defined by the reaction coordinates (6, C6). The discretization is fine enough 

to distinguish configurations that lead to different dynamics, but not too fine to lead to 

sampling issues in building the transition matrix and computational issues in solving for 

the control policy.207 We discretized the reaction coordinate 6 into 50 intervals and C6 
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into 120 intervals after trial-and-error inspection. A total of 6000 discrete states were 

defined. 

We generated sample data from the BD simulations to build four MSM for each of 

our four input levels:  = 0.2, 0.9, 2.0, 19.7. For each model, BD simulations are initialized 

in different discrete states to cover a commonly visited region of the state space. The 

simulations were repeated to ensure the important states have enough samples to account 

for stochastic effects. Simulations were conducted under both constant and time-varying 

inputs to enrich sampling, with voltage switching at intervals of t = 100 s, corresponding 

to the transition time used in the MSM. To preserve the Markovity of the system, a large 

transition time t is desired for better accuracy,207,209,229 but at the cost of intermediate 

information loss. After an investigation over a range of transition times on the model 

accuracy, the transition time t = 100s was chosen to balance the MSM accuracy with the 

ability to actuate at useful time intervals.  

Markov Decision Process Based Optimal Control Policy Calculation: A 

Markov decision process (MDP) is composed of a MSM, a set  of discrete time epoch i, 

and a set A of discrete actions, .210,211 If  is a finite set, the MDP is called finite-horizon 

MDP, and it is called infinite-horizon MDP if  is an infinite set. An optimal control policy 

associated with an infinite-horizon MDP is a time-independent policy, i.e., the control 

policy is stationary at each update interval. Considering the convenience in practical use as 

well as its ability for visualization and understanding, we investigated the infinite-horizon 

MDP based optimization problem to solve for a stationary optimal control policy. In the 

infinite-horizon MDP, the optimization is achieved over an infinite number of time steps, 

i, and the objective function is defined as,  



180 

 
0

( ) ( , )i

i i

i

J X R 




 
  

 
x x  (8.40) 

where X is the expectation operator,   A is the control action, x  S is the discrete state, 

i   is the discrete time instant, and   (0,1) is the discount factor introduced to ensure 

the convergence of the optimality in dynamic programming. R(x, ) : S  A → R is the 

one-stage reward function obtained when the system is in state, x, and a control action, , 

is taken. The optimal value function and the optimal policy *  A are defined as, 
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In our particular calculation, the one-stage reward function is defined as R(xi, i) = 

6
2, with a discount factor of  = 0.99. With a discount factor so close to 1, the future values 

of the reward are nearly as important as the initial reward over the ten control intervals. 

The objective function was selected to achieve the highest possible 6 value, which 

corresponds to a highly ordered, single domain crystalline state of the system. C6 is not 

included explicitly in the objective function, but a high 6 value state automatically 

requires a high C6 value in that state due to physical constraints. The optimal control policy 

was solved with dynamic programming in the MDP framework, using a policy iteration 

algorithm embedded in the MDP Toolbox from MATLAB central distribution.212  
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9 CONTROLLED FINITE-SIZED COLLOIDAL 

CRYSTALLIZATION IN SEDIMENTATION WITH TUNABLE 

ATTRACTIONS 

 

9.1 Abstract 

We demonstrate a feedback control algorithm to control the growth of a colloidal 

crystal from a (100) template in a model sedimentation system with tunable, kT-scale 

depletion attractions. We first investigate the equilibrium sedimentation for a fixed number 

of particles at different amounts of attraction. A set of status parameters, crystallinity, C 

the number of crystalline layers, Nc, and layer-wise particle mobility L are developed to 

characterize the equilibrium and dynamical properties of the sedimentation process. A 

quench-relax cyclic feedback controller, with Nc and L as the ‘detectors’, and depletion 

attraction as the ‘actuator’, are then designed to detect and prevent/remove local defects 

and obtain a low-defect crystal in a batch-growth system. The controller efficiency at 

different quench depths is discussed.   

9.2 Introduction 

Colloidal crystallization can be viewed as one example of self-assembly in that 

individual colloidal particles spontaneously organize into ordered crystalline 

structures230,231. Even though the ordered crystalline state is the free energy global 

minimum, kinetic limitations, which manifest as point defects, grain boundaries, or far 

from equilibrium structures like glasses and gels, often frustrate the crystallization process.  

These kinetic traps arise due to strong thermodynamic driving forces (e.g., fast 

condensation and strong particle attraction) that irreversibly quench the system into non-
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equilibrium structures.  Since colloidal crystals with low defects are associated with many 

emerging technological areas, such as the photonics232, a robust crystal growth method 

must be developed to achieve scalable manufacturing. 

In colloidal systems, sedimentation serves as an extremely simple and widely used 

method to grow crystals233. Particles sedimenting due to gravity concentrate at lower 

elevations. This leads to a fluid-solid phase transition (e.g., crystallization) as the pressure 

exceeds the freezing pressure of the colloidal spheres234. However, in a colloidal system 

undergoing sedimentation, metastable hexagonally-close-packed (HCP) structures 

typically form over more thermodynamically favorable, and  thus, stable face-centered-

cubic (FCC) crystals despite a 10-3 kT per particle free energy difference in these ordered 

structures235, indicating a need to the control the microstructure that forms using this 

method. Even though the use of (110) templates can greatly reduce the formation of HCP 

structures236, the crystal growth process is still highly uncontrollable in that there is no 

means of removing defects or dynamically arrested structures that form during the 

sedimentation process.  

Recent advancements on tuning colloidal phase behavior via external fields168, such as 

temperature61,237,238 and electric138,200,239 or magnetic fields240, open up new possibilities 

for producing equilibrium colloidal structures. In these approaches to colloidal assembly, 

the evolution of the colloidal microstructure is governed by a thermodynamic driving force 

arising from either particle-field interactions or field mediated particle-particle 

interactions. In particular, we are interested in methods involving energy on the kT-scale. 

Weak colloidal interactions that fall on this thermal energy scale can be tuned to provide 

reversibility in colloidal assembly for structural defect removal231. For example, reversible 
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colloidal melting and crystallization in a colloid-polymer binary system has been realized 

by temperature controlled colloidal particle attraction61. Other fields, such as electric239 and 

magnetic fields240, can serve as immediate actuators in ordered colloidal systems to tune 

particle interactions and control particle microstructures. The principles governing these 

tunable and controllable colloidal self-assembly processes can be applied to control 

colloidal crystallization via sedimentation—through tunable inter-particle attraction, the 

freezing pressure of colloidal spheres can be tuned to control phase transitions near the 

fluid-solid interface. 

Beyond simply initiating the self-assembly process at fixed external field 

conditions and waiting for equilibrium, the kinetics can be optimized by tuning external 

fields as a function of time to further improve colloidal crystallization16,17.  At different 

stages of a self-assembly process, the thermodynamic driving force may need to be 

increased to aid the system in overcoming energy barriers (e.g., nucleation) or be delicately 

tuned to circumvent kinetic traps or remove undesired structures. To achieve an effective 

control strategy, there are several requirements: 1) some order parameters/state variables 

that distinguish the structural (e.g., fluid or solid) and kinetic (e.g., arrested or not) features 

of the particle configuration; 2) a model parameterized by order parameters/state variables 

to describe the response of the system to the varying external fields. 3) a controller 

integrating the order parameters/state variables as sensors, tunable external fields as 

actuators and the model as the ‘roadmap’ to actuate the system towards the targeted state. 

Recently, we have successfully applied such a control scheme to control the microstructure 

and morphology of a quasi-two dimensional (2D) colloidal cluster assembled via electric 

field mediated interactions73,111. However, the extension of this control scheme to scalable 
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2D/three dimensional (3D) crystal growth is not readily available for several reasons: First, 

the previous actuators73,111 (i.e., microelectrodes) are spatially fixed and thus limit the size 

of crystal that can be grown. Second, a 3D system generally has more kinetic barriers and 

traps compared to 2D system, and a new controller with the capability to detect and repair 

defects is needed.    

In this work, we study the control of 3D colloidal crystal growth in a sedimentation 

system with tunable pair attraction using computer simulations. As a proof of concept, we 

limit our problem to a system of finite size and one dimensional (1D) growth. Despite the 

simplicity, it contains the essential issues we need to address in scalable, controlled growth. 

The manuscript is organized as follows:  We first explore the equilibrium and dynamic 

properties of a finite-sized sedimentation system and identify order parameters/state 

variables to characterize the structural and kinetic features of the system with different 

amounts of depletion attraction. We then integrate these quantities into the design of a 

feedback controller. The success and efficiency of the controller is examined and discussed 

by applying the control scheme to 3D crystal growth from an initial fluid configuration. 

Finally, we discuss how to extend this controller to continuous 1D growth. 

 

9.3 Equilibrium sedimentation model 

9.3.1 Interaction potentials and Brownian dynamics (bd) simulation 

We consider a sedimentation experiment carried out with an (100) FCC template at 

the bottom of a container. The net potential energy, Ui(ri), for a colloidal particle i includes 

the sum of pairwise colloidal potentials, upp(r), and external gravitational potential 

contributions, (z), given as, 
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where ri is the position vector of particle i,  r is the center-to-center separation between 

particles, G is the particle buoyant weight, and zi is the center-to-wall surface separation 

for particle i. The particle-template interaction is modeled as particle interacting with each 

particle composing the template. The particle pair interactions contain double layer 

electrostatic repulsion241 and a tunable deletion attraction237, given by,  
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where 2a=2000 nm is the diameter of the particle, Bpp= 2297.4kT, -1=10 nm is the Debye 

length, and 2L=200 nm is the depletant diameter. The depletion attraction is written as the 

product of osmotic pressure,, and excluded volume, ∆V. In simulations, the depletion 

attraction is tuned by simply changing the   term.   

 The equation of motion in BD simulations is given as, 

 ( ) ( ) ( )
i

B

i i r i i

D
t t t U t

kT
       r r r   (9.3) 

where t is time, ∆t is the integration time, k is the Boltzmann’s constant, T is the 

temperature, and D is the Stokes-Einstein diffusivity. The Brownian displacement vector 

obeys 0, 2B B B

i i i D t     r r r I , where I is the unit tensor. 

9.3.2 Colloidal sedimentation equilibrium 

At isothermal sedimentation equilibrium, the balance of pressure and gravitation 
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force leads to,  

  
( )P z

G z
z




 


  (9.4) 

where P(z) is the pressure at elevation z and (z) is the colloidal density profile in the z 

direction. The macroscopic balance equation will generally hold for length scales larger 

than radius a94. It can also be written in terms of the ‘local’ volume fraction via (z)=Vpρ(z), 

where Vp=4/3πa3 is the volume of the particle, as 
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The integral form of Eq. Error! Reference source not found. is  
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which indicates that, at equilibrium, the pressure at height z is equal to the bearing weight 

above z. 

 

9.3.3 Sediment structure order parameters 

 The order parameter, Rz, as a condensation metric is defined as the mean value of 

the elevation of all particles, given by,  
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where N is the total number of particles in the system, zi is the elevation of particle i.  

 A layer-based four-fold bond orientation order for particle i is obtained via 
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where Nb,j is the number of neighbors for particle i within a 2D projected coordination 

radius dc=2.3a. hc=0.5 is vertical distance criterion for particles i and j in the same layer. 

θij is the 2D projected orientation angle of the bond joining particles i and  j. dij is the 2D 

projected distance between particles i and j. 

 The crystallinity of the system can be then calculated as 
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where Ci=1 if particle i has four neighbors in the same layer and ψ4,i>0.95 and otherwise 

Ci=0. 

 The number of crystalline layers, Nc, is also an order parameter of interest since the 

crystal grows in a layer-by-layer manner in the sedimentation model. A crystalline layer is 

identified as at least 63 particles in the x-y plane (tolerating one vacancy per layer) withψ4,L 

>0.99 for the layer, where ψ4,L  is obtained by averaging ψ4,i  for particle within the same 

layer, given as 
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9.3.4 Sedimentation equilibrium simulation 

We first study a sedimentation system of 512 particles (i.e., an 8 layer FCC crystal) 

in the NVT ensemble using BD simulation. Particles sediment onto an 8  8 squared lattice 

surface template (100 face of FCC crystal) with lattice constant L=2.125a. Periodic 

boundary conditions are applied in lateral x-y direction. Sedimentation equilibrium is 
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achieved by melting an 8 layer FCC crystal in a simulation for at least 20 characteristic 

diffusion time (a2/D), with integration time step 4.310-5 a2/D. 

In an equilibrated sedimentation system, solid-liquid co-existing pressure supports 

the total buoyant weight above the solid-liquid interface macroscopically (Eq. (9.6)). If we 

perturb the system by adding attraction between particles to lower the co-existing 

pressure242, a certain number of particles above the interface will convert to solid-state 

particles to re-establish the equilibrium, as required by the force balance at the interface. 

This principle allows crystalline layers to be built by simply adding attraction, as illustrated 

in Fig. 1 with sedimentation equilibrium density profiles for different amounts of attraction.  

Fig. 1a shows the equilibrium microstructure, the volume fraction profile, and 

representative renderings with at four different ε* (i.e., four different amounts of 

attraction). Here ε* is the normalized attraction strength, with ε*=1 corresponding to 

~2.9kT of attraction resulting in a completely crystalline structure. For the case of ε*=0 

(i.e. no attraction), the coloring scheme based on ψ4,i  indicates that there is barely any 

crystalline bonding in this system, and that there are no crystalline layers formed. The 

volume fraction profile, (z), shows oscillating peaks with decreasing magnitude for the 

initial several layers, which corresponds to layered liquid structures near the template at 

the bottom. ψ4,L at these layer positions shows a decrease from ~0.7 to ~0.4 for the first 

several structured layers  and goes to 0 far from the surface where the particles are in a 

fluid configuration.  At ε*=0.34 (i.e., ~1 kT attraction), two crystalline layers start to form 

above the template. Similar layered structures can be found above the topmost crystalline 

layer, as indicated by (z). ψ4,L is ~1 for the first two crystalline layers, ~0.8 for the third 

layer, and drops to 0 far from the surface where the particles are still fluid. As we further 
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increase ε*, more crystalline layers with similar interfacial structures form. By tuning up 

the attraction, ε*, from 0 to 1, colloidal sediments with no crystalline layers to completely 

crystalline structures can be produced, as shown in Fig. 1b. Meanwhile, the equilibrium 

structure will become more and more compact (i.e., Rz decreases). 

 

 

Figure 1.  Equilibrium sedimentation model system at different ε*: (A) sedimentation 

equilibrium profile of (z) and ψ4,L, and representative equilibrium configuration at four 

different ε*=0, 0.34, 0.52, 0.69. (B) Most probable Rz, Nc, C as a function of ε*for 9 

different ε* ranging from 0 to 1. Nc ranges from 0 to 8. 



190 

9.3.5 Dynamics and microstructure near the growth front 

In our sedimentation model, we identify the growth front as the layer position just 

above the topmost crystalline layer. Dynamics and microstructures near the growth front 

are of particular importance because they determine the sediment structure formed as 

colloidal particles transform from fluid to solid configurations. We use a Lindemann-like 

parameter,  given by243,  
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to quantify the layer-based particle mobility near the growth front, where rrel,i(0) is the 

initial distance of particle i to its neighbors. and rrel,i(t) is the distance at time t for the same 

initial particle neighbor pair. The bracket indicates that the average was taken for the 

particles located at similar elevations z). Distance between neighboring particles vs. 

absolute displacements244 were used to later avoid error due to particle collective drift when 

varying ε* in controlled crystal growth. In the dilute or short time limit, L will increase 

linearly with time, since particles perform random walks (i.e., diffusion) without 

interacting with each other. In contrast, L will vanish or reach a finite plateau for an arrested 

structure (i.e., solid state including crystalline and other arrested structures).  

Fig. 2 shows L(t) for ε*=0.34 at three specific layer positions, the layer below growth 

front(gf-), the growth front layer(gf), and the layer above growth front(gf+). These L curves 

all show an initial increase because of the short-time diffusion within “cages” formed by 

its neighbors. The slope of L will decrease to a smaller values at longer times depending 

on the local particle concentration at different elevations. For the layer below growth 

front(i.e., second layer), L basically remains at 0 because particles are ‘fixed’ within the 
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crystalline layer, as showed by the microstructure rendering in Fig. 2B. At the growth front 

(i.e., third layer), only half particles are in the crystalline state, and particles experience 

less confinement in the z direction. Correspondingly, L displays a finite slope, which 

indicates that particles can move around lattice sites formed by the underlying crystalline 

layer at longer times. For the layer above growth front (i.e., fourth layer), the mobility of 

the particles at longer times monotonically increases since particles are less confined at 

higher elevations.  

We further define a one observation time, Lc, as L(tc), where tc=a2/D, for use in real-

time controlled simulations. Lc is expected to be a complex function of the particle 

interactions and interfacial concentrations. We calculated the Lc below, at, and above the 

growth front (i.e., Lc,gf- ,Lc,gf and Lc,gf+ ) at different ε*, as showed in Fig. 2b. Lc,gf- value are 

generally smaller than 0.02. Lc,gf+ values at layers above the growth front are generally 

greater than 0.3. Lc,gf+ values fall in the range of 0.16 to 0.20 except for the case that ε*=0.9, 

where particles are very attractive to each other. The general features of Lc are used as a 

dynamic criterion to detect arrested structures in the control simulations, as we will show 

later. 
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9.4 Controller design 

9.4.1 Defective structures in direct deep quench  

Before proceeding to the design of a controller, we first demonstrate the necessity 

of control in the attraction mediated crystal growth process. We examine the example in 

which we direct quench the system at ε*=1 (The free energy minimum state at ε*=1  is the 

 

Figure 2.  Dynamic properties of equilibrium sedimentation model near growth front. 

(A) L vs. t for particles at different layer positions of below growth front (gf-), growth front 

(gf) and above growth front (gf+). (B)  Lc .vs. ε* at gf-, gf and gf+ (C) Oblique view and 

top view rendering of layer structure at gf-, gf and gf+ for ε*=0.34. 
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fully crystalline structure.)from an initial fluid-like structure. Without loss of generality, 

the equilibrium fluid structure obtained at ε*=0 is used as the initial configuration. As 

showed in Fig. 3a, upon turning on the attraction at t=0, Rz demonstrates a fast decrease 

from 0-100 s and a slow decrease at later times to Rz~8.2. C experiences a fast initial 

increase from 0-50 s, and then slowly levels off to C~0.4. The final configuration shows 

that two highly ordered layers formed at the bottom, followed by an arrested disordered 

structure at higher elevations. The volume fraction profile (Fig. 3B) indicates the existence 

of interlayer peaks starting from the third layer and ψ4,L drops from ~1 from the third layers. 

Structures with different degrees of structural defects at different elevations are found, as 

shown Fig. 3C.  For example, two point defects exist in the first two highly ordered layers 

(i.e., z=4a), while at higher elevations (i.e., z=8a and 11a) different crystalline domains 

and dislocations can be identified. Lc values for these arrested structures all take values of 

~0.01. The initial liquid structure configuration with layer liqure structure at the bottom is 

expected to enhance the formation of the ordered layers at the bottom. Initially disordered 

liquid-like particles at higher elevations fail to rearrange themselves into an ordered crystal 

during the fast condensation process state and arrested structures containing defects result.  
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9.4.2 Quench-relax controller for crystal growth 

Results above show that (1) increasing attraction can grow crystals and (2) deep 

quenching with lots of attraction can produce undesired, arrested structures containing 

defects. Here we propose a real-time feedback quench-relax controller with components: 

(1) Nc and Lc  as sensors to detect structural and kinetic properties, (2) ε* as an actuator to 

control Nc and (3) a thermodynamic model that relates ε* to equilibrium Nc. In this 

controller, as demonstrated in Fig. 5, Nc and Lc characterize the real-time structural and 

dynamic properties of the sedimentation process, and ε* controls the crystal growth in a 

 

Figure 3. Crystallization via direct quench at ε*=1. (A) Rz  and C  as a function of 

time. (B) profile of (z)  and ψ4,L,  for the final sediment. Renderings of initial 

configuration, final configuration, and layer structures at z=4a, 8a, 11a are shown on the 

right-hand side. 
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layer-by-layer fashion based on the thermodynamic model. Starting with an initial 

configuration, Nc and Lc are calculated at a time interval, tc, to decide whether to quench 

(i.e., use high ε*) or relax (i.e., use low ε*) the system. Briefly, if the system is arrested 

above the growth front, smaller ε* is used to relax/melt the arrested structure Otherwise, a 

larger ε* is used to grow more layers. Note that we based our decision making on the 

dynamic feature at the layer position above the growth front rather than the growth front. 

When a non-crystalline growth front layer is buried below an arrested layer, it cannot relax 

to a crystalline layer. By implementing our control scheme based on the layer above the 

growth front,…Formation and relaxation of arrested structures are identified by Lc,gf+. 

Specifically, when a system is in a ‘quenching’ stage, Lc,gf+ <0.03 is used to detect arrested 

structures, while when a system in the ‘relaxing’ stage, Lc,gf+ >0.3 is used to check the 

elimination of the arrested structure. These two criteria to distinguish disordered colloidal 

configurations as arrested vs. fluidare based on our findings from Fig. 2.  
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For simplicity, we employed a Boolean type variable QR as a status indicator, with 

QR=1 referring to a ‘quench’ stage and QR=0 referring to ‘relax’ stage.  The value of ε* 

used at the quenching stage is specified by the control parameter ∆Nc. For example, ∆Nc = 

1 means that the ε* used will grow one more crystalline layer when equilibrium is 

established. In the relaxation stage, ε* has a value that maintains the current Nc value when 

equilibrated, and consequently, the arrested layer above the growth front is eliminated.  The 

relation between ε* and the resulting equilibrium Nc is directly determined from Fig. 1b. 

The control process ends when the set-point crystalline layer number, Nc,SP,  is reached.  

The performance of the controller with different ∆Nc is plotted in Fig. 5. In all cases, the 

initial configuration is a fluid-like equilibrium configuration at ε*=0 with Nc=1, and Nc,SP 

is set to 7. For ∆Nc =1, as shown in Fig. 5a, the actuator gradually takes higher ε* as C 

 

Figure. 4.  Schematic of quench-relax controller 
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and Nc increase and Rz decreases. We also observe Lc,gf+ fluctuating around 0.2 with no 

arrested structure above the growth front detected throughout the process (some 

realizations may have one chance to have Lc,gf+<0.03 when Nc=6, ε*=0.86 and particle-

particle attraction is strong). This is not surprising since the ε* at ∆Nc =1 only provides a 

driving force strong enough to only crystallize/freeze the growth front layer and notthe 

layer above. It also confirms that the arrested criterion Lc,gf+ <0.03 is reasonable. Note that 

there are also some switches (say at t=200 s) between neighboring ε* values and the Nc 

values, which is due to the fluctuation of ψ4,L around the criterion value for judging whether 

a layer is crystalline or not. For ∆Nc =2, as shown in Fig. 4b, arrested layers above the 

growth front are detected by Lc,gf+ <0.03 at t=120-140 s, t=195-205 s and t=300-400 s.  

During the relxation stage, ε* will take a smaller value to melt the arrested layer, as 

indicated by the increase of Rz due to melting and expansion and the decrease of C due 

to melting of the partially crystalline structure. Nc,bat generally follows a gradual increase  

in value since the existing crystalline layer will not be melted during the relaxation process.  

At t=300-400s, there are several quenching and relaxing alternating attempts, because 

particles are very attracted to each other at ε*=1. For ∆Nc=3, dynamic arrest is more often 

encountered since the system is driven further from equilibrium using larger ε*. The 

frequent alternation between quenching and relaxing will generally lower the efficiency of 

the controller in growing crystalline. 
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The efficiency of the controller for growing crystalline layers at different ∆Nc is 

analyzed by calculating the average time required to build each layer. Fig. 6 illustrates the 

results from averaging 120 realizations for each case. We found that using ∆Nc=2 or 3 is 

efficient for building the first 5 or 3 layers because of the large driving force, but the 

advantage will be cancelled out in building the last several layers due to the large amount 

of attraction between particles. The total time for growing crystal layers vs. ∆Nc shows 

(figure inset) that ∆Nc=2 is the most efficient, demonstrating that efficiently growing low 

defect colloidal crystals requires balance between the thermodynamic driving force and the 

kinetic accessibility245,246. At ∆Nc=1, the system has good kinetic accessibility, but the 

 

 

Figure 5. Results of controlled crystal growth using feed-back controller at (left) ∆Nc 

=1, (middle) ∆Nc =2, and (right) ∆Nc =3. 
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thermodynamic driving force is small. At Nc=2 or 3, the system has a greater 

thermodynamic driving force, but the kinetic accessibility is poor. It is quite 

straightforward that the controller can be further improved by using different ∆Nc when 

growing different layers: for example, the first five layers could be grown using ∆Nc=2 and 

last two layers could be grown using ∆Nc=1. 

 

9.5 Conclusion and outlook 

The results presented in this study demonstrate that by tuning attraction in a colloidal 

sedimentation system via feed-back control, layer-by-layer controlled crystallization can 

be realized. In a finite system with different inter-particle attractions, equilibrium sediment 

structures, including dense fluid, inhomogeneous fluid-solid, and completely crystalline 

configurations can be achieved. Using a Lindemann-like parameter, Lc, to investigate the 

 

Fig. 6.  Analysis of controller efficiency for ∆Nc =1, 2, 3: average time for building each 

layer and cumulative time (inset).   
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particle mobility near the growth front at equilibrium allows criteria to be established to 

detect dynamic arrested structures. A controller using Lc and Nc as sensors, and tunable 

attraction as an actuatoris been demonstrated to effectively control the crystallization 

process based on a simple thermodynamic model. The performance of the controller shows 

that a fast, low defect crystallization process requires a balance between the strength of 

thermodynamic driving force and the kinetic accessibility23,24.  

In this controller model, the tunable attraction may be realized by temperature 

dependent depletion attractions61 (though this is not an immediate actuator due to finite 

time heat transfer), or electric or magnetic field mediated interactions168 (which are 

immediate actuators but both require complex set-ups). To extend the system to controlled 

continuous crystal growth, a particle feeding system can be added.  The key issue that still 

needs to be addressed in continuous colloidal growth is that particle transport kinetics 

strongly affect the concentration near growth front, thus increasing the factors governing 

particle crystallization. This issue might be addressed by employing a dynamical density 

functional approach247 to capture the density variation due to transport with a low-

dimensional dynamic model248 to capture the crystallization kinetics at the growth front.  
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10 MODELING DEPLETION MEDIATED COLLOIDAL 

ASSEMBLY ON TOPOGRAPHICAL PATTERNS§ 

 

10.1 Abstract 

This work reports a model and Monte Carlo simulations of excluded volume 

mediated interactions between colloids and topographically patterned substrates in the 

presence of thermosensitive depletants. The model is matched to experiments to yield 

density, free energy, and potential energy landscapes that quantitatively capture particle 

microstructures varying from immobilized non-close packed configurations to random 

fluid states. A numerical model of local excluded volume affects is developed to enable 

computation of local depletion attraction in the presence of arbitrary geometries. Our 

findings demonstrate a quantitative modeling method to interpret and predict how surface 

patterns mediate local depletion interactions, which enables the design of colloidal based 

materials and devices. 

keywords: tunable depletion attraction, patterned excluded volume, reconfigurable 

colloidal assembly, Monte Carlo simulations, non-close packed structures 

10.2 Introduction 

Depletion interactions arise between colloids and surfaces from “solute particles” 

being depleted, or excluded, from the gap between two interacting objects.249 When this 

occurs, pure solvent in the excluded volume has a different chemical potential from the 

                                                 

§  Reprinted with permission from ”Modeling depletion mediated colloidal assembly on topographical 

patterns." Journal of colloid and interface science 449 (2015): 270-278.” by Yang, Yuguang, Tara D. 

Edwards, and Michael A. Bevan. Copyright © 2015 Elsevier  
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solution outside the excluded volume. This produces an attraction between particles and 

surfaces with a potential that is the product of osmotic pressure and the excluded volume. 

Although the depletion interaction can become more complicated based on how solute 

particles interact with each other and surfaces,250 the basic picture presented above 

qualitatively captures the mechanism of colloidal depletion attraction for diverse solutes 

including polymers, micelles, hydrogel particles, and nanoparticles.41 Because depletion 

interactions can occur in any mixture when a solute is excluded between two surfaces, such 

interactions are expected to be ubiquitous in complex industrial formulations as well as 

biological systems.251 

By understanding the mechanism of depletion attraction, there is an opportunity to 

engineer such potentials by either controlling the osmotic pressure or designing the 

excluded volume. Examples of tuning the depletant osmotic pressure have included 

thermosensitive micelles,42 hydrogel particles,43,44 and polymer chains.45 However, in each 

of these examples, the osmotic pressure changes because the depletant size changes, which 

also means the excluded volume changes (which depends on relative depletant and colloid 

dimensions). Beyond tuning depletant dimensions, exclude volume has been manipulated 

via surface geometries in several key examples including confining surfaces,252,253 surface 

features,46 templates for crystallization,47,48 surface roughness,254,255 and lock-and-key 

colloids (i.e., local curvature).49 Although such studies demonstrate clever examples of 

tuning depletion interactions to affect colloidal assembly, accurate models have not been 

sufficiently developed to allow for systematic design and control of surface geometries that 

mediate local depletion potentials in colloidal materials and devices. 

Here we report the development of a new method to compute local excluded 
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volume and depletion interactions between particles and physically patterned surfaces. 

This method is used to analyze measurements of temperature dependent particle 

configurations on microfabricated surface topographies in the presence of thermosensitive 

depletants. Specifically, we analyze particles interacting with arrays of circles with sloping 

walls that produce additional local excluded volume (left side of Fig 1, experiments 

reported elsewhere256). These measurements, and the new model reported here, are distinct 

from our prior study of patterned depletion mediated colloidal crystallization on an 

underlying gravitational energy landscape.44 The present work is both scientifically and 

technologically novel by exploiting local excluded volume effects in conjunction with 

thermosensitive depletants to create non-close-packed reconfigurable structures. Such non-

close-packed structures with length scales comparable to electromagnetic radiation have 

important applications as metamaterials and their reconfigurability can allow such systems 

to be used as static materials or programmable devices.97 Ultimately, our findings 

demonstrate a quantitative modeling tool to interpret and predict how local surface 

geometries alter local depletion interactions, which can enable new colloidal based 

materials and devices. 
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Figure 1. Experimental images (A,C,E)  and simulation renderings (B,D,F) of charged 

~2µm SiO2 colloids at 0.18 area fraction experiencing depletion attraction with each other 

and a topographically patterned (well depth H=285nm) glass microscope slide surface. The 

depletion potential is tuned by the depletant size, 2L, at 25C, 2L=113nm  (A,B), 35C, 

2L=107nm  (C,D), 37C, 2L=53nm (E,F). 

C D

A                                  B
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10.3 Theory  

10.3.1 Net interaction potential 

The net potential energy for colloidal particles interacting with each other, an 

underlying surface, and gravity (see Fig. 2) can be modeled as the superposition of 

independent potentials. For a charged colloidal particle i with radius, a, in the presence of 

non-adsorbing depletant particles, the net interaction potential is given by, 

            pw pw pf pp pp

i i D i E i G i D ij E ij

j i

u u u u z u r u r


     
 r r r  (10.1) 

where ri=(xi, yi, zi) is position vector of particle i, zi is the particle center-to-surface 

elevation relative to the underlying surface, and rij is center-to-center separation between 

particles i and j. Subscripts refer to: (E) electrostatic, (G) gravitational, and (D) depletion, 

and superscripts refer to: (pp) particle-particle, (pw) particle-wall, and (pf) particle-field. 

The range of electrostatic repulsion in this work is sufficient so that van der Waals 

interactions van be neglected. 

10.3.2 Gravitational potential 

The gravitational potential energy of each particle depends on its elevation above 

the reference surface multiplied by its buoyant weight, G, given by, 

   3( ) 4 3 ( )pf

G p fu z Gz a gz      (10.2) 

where g is acceleration due to gravity, and p and f are the particle and fluid densities. 

10.3.3 Electrostatic interaction potentials 

The colloidal particles are electrostatically stabilized against aggregation and 
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deposition due to van der Waals attraction. The interaction between electrostatic double 

layers on adjacent particle and  planar wall surfaces are given by,159  
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  (10.3) 

where  is the inverse Debye length,  is the solvent dielectric constant, k is Boltzmann's 

constant, T is absolute temperature, C is the 1:1 monovalent electrolyte molarity, NA is 

Avogadro's number, e is the elemental charge, and 1 and 2 are the surface potentials.  

10.3.4 AO depletion potentials 

The depletion attraction between particles and underlying substrate surface can be 

given by a modified form of the usual AO depletion potential as,249 

  ( )pp pp

D EXu r V r   (10.4) 

  ( )pw pw

D EXu V r r  (10.5) 

where  is the depletant osmotic pressure, and Vpp
EX(r, L) and Vpw

EX(r, L) are the excluded 

volume (see Fig. 1(b)) for particle-particle and particle-planar wall geometries given 

as,2,59,257 

              3 1 334 3 1 3 4 1 16pp

EXV r a L r a L r a L
       

 
 (10.6) 
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where L is the depletant radius. For particles in the vicinity of a topographical pattern 

feature, the form of Eq. (10.5) remains the same in that the magnitude is determined by the 

depletant osmotic pressure, but the excluded volume term is computed numerically as 

described in the methods section of this paper. The numerical method is validated by 

producing the correct excluded volume terms given for particle-particle and particle-wall 

geometries in Eqs. (10.6) and (10.7). 

 

 

Figure. 2. Schematics of substrate geometry. (A) Snapshot (top views) of simulation 

rendering and magnified view of particles at pattern edge. (B) Cross sectional view of 

particles at pattern edge. Green and gray spheres are depletants and colloids. Red band 

(light) surrounding the gray sphere and the gray substrate is excluded volume 

(approximated via hard sphere repulsion).  

C

Vpw



208 

10.3.5 Quasi-two dimensional models 

In this paper, we perform quasi-2D measurements, simulations, and analyses of 

particles on patterned surfaces. The particles are assigned to a most probable elevation, zM, 

above the substrate, which is the location of the net potential energy profile minimum 

normal to the substrate where the sum of the forces on the particle equal zero. This value 

can be determined as the value of z where the gradient of the net potential energy (z-

dependent potentials in Eq. (10.1)) equals zero as given by, 

       0pf pw pw

G D Eu z u z u z
z


    

 (10.8) 

This approach allows the position dependent elevation of each particle, z(ri), to be 

given as the sum of the local physical topography and the most probable height above the 

surface as, 

    , ,i i i M i iz x y z z x y   (10.9) 

which gives the net quasi-two dimensional potential energy (including a quasi-2D 

gravitational potential energy landscape44,258) for each particle as, 

          pw pp pp

i i M i D i E ij D ij

j i

u Gz u u r u r


    
 r r r  (10.10) 

The goal of this work is to understand how particles sample the 2D energy 

landscape in the presence of gravity, depletion forces, and multi-particle packing effects. 

It has been shown that single particles (or sufficiently dilute to only interact with surface 

but not each other) will sample the landscape in Eq. (10.10) via a Boltzmann relation (and 

its algebraic inverse) given by, 
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where u(r) is the potential energy landscape in Eq. (10.10), and ref and uref are the 

reference density and potential at a given state and location in the in the system (e.g., single 

particle at the center of a pattern feature without any depletion attraction). For example, in 

the absence of particle-particle interactions or particle-wall depletion attraction, the 

potential energy landscape depends only on gravity and the height as, 

    , ,ref refu x y u G z x y z       (10.12) 

where href is a reference height (e.g., lowest or highest elevation on a surface). As particles 

begin to interact with each other and the underlying surface at finite concentration, the 

distribution of particles is related to the free energy landscape, w(r), (and its algebraic 

inverse) given by, 
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where ref and wref are again a reference density and potential at a given location (spatial 

position) and state (i.e., global thermodynamic variables). 

10.4 Methods 

10.4.1 Excluded volume calculation 

Considering the large ratio of the well diameter (2R) to the colloidal sphere 

diameter (2a), we approximate well slope in Fig. 2 (RiRo section) as a flat plane. The 

calculation of excluded volume is the intersection of colloidal particle excluded volume 
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with the excluded volume from the three planes (<Ri, RiRo, >Ro sections). The excluded 

volume of sphere and substrate are discretized with resolution 0.025a for each dimension 

(x,y,z), and then the volume elements inside the shaded region are added to obtain the 

overlap volume for the particle at each position (x,y,z). The accuracy of this method was 

validated by reproducing the particle-particle (Eq. (10.6)) and particle-wall (Eq. (10.7)) 

excluded volumes to <1% error. 

10.4.2 Monte carlo simulations 

Quasi-2D experiments are modeled in 2D Monte Carlo (MC) simulations where 

colloids samples landscapes determine by gravity and substrate topography mediated 

depletion potentials. In 2D MC simulations, trial moves in x and y directions are accepted 

or rejected using the energy function Eq. (10.10). In the implementation, real-time 

calculation of the excluded volume for every particle position would be computationally 

prohibitive. However, exploiting the natural system symmetry and periodicity (see Fig. 1), 

the particle position [x,y,z(x,y)] is converted to [R,z(R)], where R is the radial distance to 

the nearest well center. The excluded volume is then pre-calculated in a look-up table for 

use in the simulation. The MC simulations are performed at three different temperatures 

with all parameters listed in the Table 1. Initial configurations for simulations were 

obtained from experimental images. Each MC simulation was performed for 2.5x106 steps 

with particle positions stored every 250 steps after an initial 106 step equilibration. 
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10.5 Results & discussion 

10.5.1 2d density landscapes 

In our experiment reported elsewhere256,  temperature sensitive poly-N-

isoproplyacrylamide hydrogel(PNIPAM) were used as depletants to induce depletion 

attraction between silica particles. The temperature dependent depletant size can produce 

tunable excluded volumes and depletant osmotic pressures to tune the net depletion 

potential, leading to tunable colloidal phase behavior on topological surface, as shown in 

Figure 1 left column.We first compare time-averaged equilibrium configurations from 

microscopy experiments and MC simulations for the three temperatures reported in Fig. 1. 

The 2D density profiles, ρ(x,y), are normalized by the maximum density and are reported 

in Fig 3. The experimental ρ(x,y) were constructed from 50,156 images in 30 minute videos 

as reported in our separate paper on the experiments.256 The vast majority of parameters 

used in the MC simulations were measured independently and reported in Table 1. To 

match experiment and MC simulations for each temperature, the particle-pattern excluded 

volume was computed using the numerical technique described in the methods section, 

which left the PNIPAM osmotic pressure as the sole adjustable parameter. The initial guess 

for the PNIPAM osmotic pressure was based on the Carnahan-Starling equation of state, 

DLS measured PNIPAM sizes, and concentration estimates.43,44 We first fit our model to the 

experiment observation at 25C. Based on initial guess of depletant concentration, the measured 

depletant size, we can calculate the osmotic pressure, which is used as input in the Monte Carlo 

simulation. The concentration of depletant is adjusted until experiment and simulation are matched. 

Then we fixed the concentration, and tune the depletant size fit experiment at 35C, in the fitting 

process, we use Carnahan-Starling equation to calculate the osmotic pressure. At 37C, the osmotic 
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pressure will not influence the net potentials since the depletant size is too small to induce any 

attraction.   

Fig. 3 shows that excellent agreement is observed between experiments and MC 

simulation at each temperature (within the statistical and spatial resolution of the 

 

 

Figure. 3. 2D Density landscapes from experiments (A,C,E) and simulations (B,D,F) at 

25C, 2L=113nm (A,B), 35C, 2L=107nm (C,D), 37C, 2L=53nm(E,F). 
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A                                B
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experiments). Parts A, B in Figs. 1, 3 show that for the largest depletant size (2L=113nm) 

at the lowest temperature (T=25C), particles preferentially stick to pattern feature edge 

where the excluded volume is the greatest. Depending on the number of particles in the 

well, a second ring of particle forms via lateral particle-particle depletion attraction. As 

temperature increases (T=35C) and depletant size slightly decreases (2L=107nm) in parts 

C, D in Figs. 1, 3, particles near the pattern feature display an almost imperceptible increase 

in thermal motion and the second ring of particles now sample the pattern feature interior. 

Both effects show that reduced depletant size weakens the depletion attraction from a 

smaller excluded volume and a smaller depletant osmotic pressure (which scales as 

depletant volume, e.g., second virial coefficient, volume fraction in equations of 

state41,43,44,259,260). 

As the depletant size decreases considerably (2L=53nm) at a slightly higher 

temperature (T=37C) in parts E, F in Figs. 1, 3, depletion attraction between particles with 

each other and all surface locations vanishes, since the excluded volume becomes 

identically zero in all potentials. In this case, particles explore potential energy landscapes 

determined by multi-particle packing effects and gravity (i.e. elevation), similar to our 

previous studies.43,44,258 The depletant size changes continuously vs. temperature, although 

somewhat more steeply in the vicinity of 35-37C, so the excluded volume, depletion 

potentials, and particle configuration on the underlying pattern also change more 

dramatically in this temperature range. 

10.5.2 2d free energy landscapes 

In addition to comparing the experimental and simulated density profiles, Fig. 4 

shows a comparison of free energy landscapes, w(x,y), for the three cases in Figs. 1, 3. The 
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w(x,y) are obtained from a Boltzmann inversion (Eq. (10.13)) of the density profiles in Fig. 

3, which produces energy minima at the highest density positions in Fig. 3. Because (x,y) 

were matched between experiment and simulation in Fig. 3, the w(x,y) also naturally agree. 

For the 25C case in Fig. 4, the particles experience >10kT of depletion attraction with the 

pattern feature compared to all other locations on the surface. Because w(x,y) can only be 

constructed where particles sample, and they do not sample significantly other regions 

beside the pattern feature edge, it is not possible to determine the absolute depth of the 

energy minimum relative to the rest of the surface; it is >10kT, but not clear by how much. 

In short, particles only sample pattern feature edges in wells that are deep enough that they 

do not escape, so they appear to be irreversibly bound on the observation time of our 

experiments. 

As temperature is increased to 35C, the attraction of particles to the pattern feature 

is ~3kT lower energy than the interior of the pattern feature and >5kT lower than outside 

the pattern feature edge. Because particle-particle interactions become weak enough that 

particles can sample the pattern interior, the ~3kT difference is accurately measured. 

However, the depletion attraction between particles and the pattern edge plus the additional 

effect of gravity to escape the lower elevation interior region are too great to obtain 

sufficient statistics from particles outside the pattern feature. Finally, in the absence of 

depletion attraction at 37C, there is no attraction to the pattern feature edge, and the free 

energy difference between the well interior and well exterior is ~4kT, which is close to the 

gravitational potential energy of particles escaping the well. The differences between free 

energy and potential energy landscapes at each temperature are discussed in more detail in 

the followings sections. 
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10.5.3 1d density & free energy landscapes 

To generate more statistics in the experimental density and energy landscapes, and 

to take advantage of the pattern periodicity and circular symmetry, the density profiles in 

Fig. 3 are averaged over: (1) all features, which are considered to be nearly identical within 

 

 

Figure. 4. 2D free energy landscapes from experiments (A,C,E) and simulations (B,D,F) 

at 25C, 2L=113nm (A,B), 35C, 2L=107nm (C,D), 37C, 2L=53nm(E,F). 
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A                                B
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the spatial limits of the microfabrication methods used to generate the pattern, and (2) and 

after converting to polar coordinates, over the angular coordinate, which the density and 

energy are not expected to have any dependence. This yields 1D radial density landscapes 

for each temperature, which are reported on the left hand side of Fig. 5. The 1D radial free 

energy landscapes are obtained from a Boltzmann inversion of the 1D density profiles and 

reported on the right hand side of Fig. 5. These results now show most clearly how the 

temperature dependent particle density and free energy vary relative to the pattern feature 

edge including the inner and outer radius of the sloped region. The oscillations in both 

landscapes clearly capture packing effects. 

These results show at 25C that particles are attracted to the pattern feature edge and 

to each other as evident from the minimum at the pattern periphery and the local minimum 

at ~1.5a away from the edge towards the pattern interior. The diminished single well at 

35C quantifies the strength to which particles are attracted to the feature edge, and the 

absence of another well shows that particle-particle attraction is negligible. In the absence 

of depletion attraction at 37C, particle are no longer preferentially attracted to the pattern 

edge. The free energy landscape depends on the balance of gravity and multi-particle 

packing effects, although the extent of multi-particle packing effects has yet to be 

determined. As a preliminary estimate, Fig. 5F shows the potential energy landscape due 

to single particles on the underlying pattern, which shows how multi-particle packing 

effects alter the interaction compared to single particles sampling. Although multi-particle 

packing effects were demonstrated to “push” particles out of patterned well features in 

more concentrated systems,258 here the effect is less obvious. This effect is explored in 

more detail in the potentials obtained from the inverse MC analysis used to match the 
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images, density landscapes, and free energy landscapes in Figs. 1-5. 

10.5.4 Potential Energy Landscapes 

By matching the experimental and simulated images, density, and free energy 

landscape in Figs. 1, 3-5, all contributing interaction potentials are determined, which 

means these can be discussed in addition to the free energy landscapes reported thus far. 

As described in the theory section, single particles can sample a potential energy landscape, 

u(x,y), mediated by gravitational body forces and electrostatic and depletion colloidal 

forces. As particles become more concentrated, multi-particle packing influences how 

particle sample the underlying surface via a free energy landscape (that also includes an 

“entropy” landscape where w(x,y)=u(x,y)-Ts(x,y)). MC simulations naturally account for 

multi-particle packing effects, so that all particle-particle and particle-substrate interaction 

potentials are obtained unambiguously. 

To understand the relevant potential energy contributions, Fig. 6 shows the radial 

and temperature dependence of: (A) the particle-substrate excluded volume (that 

determines attraction), (B) the particle-substrate potential energy landscape including 

electrostatics, depletion, and gravity (upw and upf in Eq. (10.10), electrostatic upw omitted 

but effectively considered from most probable elevation in Eqs. (10.8)-(10.9)), and (C) the 

net particle-particle separation dependent potential energy including electrostatics and 

depletion (upp in Eq. (10.1)).  
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The results in Fig. 6A report the excluded volume as a difference between the value 

computed from the numerical method and the particle-wall value given in Eq. (10.7). This 

 

 

Figure. 5. 1D density profile (A, C, E) and free energy landscapes (B,D,F) from 

experiments(red line and symbol) and simulations(black line and symbol) at 25C, 

2L=113nm (A,B), 35C, 2L=107nm (C,D), 37C, 2L=53nm(E,F). Blue line in (E) is 

gravitational potential energy landscape. Dash lines show inner (Ri) and outer (Ro) of 

pattern radius.  
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difference is reported as a function of lateral distance to the pattern feature edge for each 

temperature (i.e., different depletant sizes, 2L). When the particle is far away from the 

pattern edge (R<<Ri, R>>Ro), there is no excluded volume difference. At 37C, VEX=0 

everywhere since the 53nm PNIPAM particles are not excluded anywhere between the 

particles and patterned surface. At 35C and 25C, VEX=0 increases with increasing 2L at 

the inner edge of the feature, where the concave surface curvature complements the 

particle, and decreases at the outer edge, where the convex curvature bends away from the 

particle surface. 

Fig, 6B shows a plot of the potential energy landscape vs. the radial pattern feature 

coordinate. Potential energy is plotted related to the energy at the pattern feature center, 

where particle-wall electrostatics, depletion, and gravity balance each other to produce a 

most probable elevation (i.e., Eq. (10.8)). For T=37C, VEX=0 everywhere, and a purely 

gravitational potential energy landscape is obtained due to the elevation change of the 

surface. This explains the higher density of particle inside the pattern features. By 

multiplying the depletant osmotic pressure by VEX at 25C and 35C from Fig. 6A and 

adding it to the gravitational potential energy landscape, it is possible to obtain the potential 

energy landscape due to both contributions. It is now easy to see that single particles 

experience ~10kT of attraction to the concave inner feature edge at 35C and nearly ~20kT 

of attraction at 25C. In addition, the reduced excluded volume at the convex outer edge 

produce ~5kT and ~15kT potential energy barriers to single particles escaping the pattern 

outer edge. Together, the energy minimum at the inner edge and energy maximum at the 

outer edge produce energy changes (minimum depth to barrier maximum) of ~15kT and 

~35kT, which is effective at preventing particle escape immobilizing particles with 
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energies >>kT. 

 Finally, Fig. 6C also shows the pairwise particle-particle depletion attraction that 

contributes to the free energy landscapes in Fig. 5. The ~8kT and ~3kT particle-particle 

attraction at 25C and 35C are consistent with the degree of particle attachment to the first 

layer of particles immobilized at the pattern feature edge. In particular, the second layer of 

particles is completely immobile at 25C, whereas this layer shows intermittent attachment 

and detachment at 35C. At 37C, all depletion attraction vanishes including the particle-

particle, particle-wall, and particle-edge feature attraction. The patterned surface mediated 

potential energy landscapes in combination with particle pair potentials reported in Fig. 6, 

when combined with multi-particle packing effects (i.e., entropic contributions), clearly 

capture the free energy landscapes and density profiles obtained in the experimental studies 

reported in Fig. 1. 

 

 

 

 

Figure. 6. Excluded volume difference (A), theoretical potential energy landscape (B), 

particle pair potential at 25C, 2L=113nm (black), 35C, 2L=107nm (red), 37C, 2L=53nm 

(green). 
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10.6 Conclusions 

Our results demonstrate the ability to accurately interpret and predict excluded 

volume effects between colloids with each other and topographically patterned surfaces in 

the presence of depletants with thermosensitive sizes. A new modeling approach is reported 

to numerically compute the excluded volume between colloids interacting with arbitrary 

surface geometries. This approach enables the computation of depletion attraction with 

local surface pattern features in the presence of depletants with varying dimensions. This 

method is used to match Monte Carlo simulations to experiments to model the temperature 

dependent density, free energy, and potential energy landscapes that determine non-close-

packed colloidal configurations on periodic arrays of circular features. Ultimately, the 

ability to quantitatively understand the interplay of electrostatic, gravitational, and tunable 

depletion interactions on topographically patterned substrates provides a basis to design 

and control colloidal based reconfigurable materials and devices for micro- and nano- 

technologies. 

Tables 

Table 1. Parameters for MC simulations to match with experiments. (a) colloidal particle 

size, (b) Debye screening length, (c) particle and wall electrostatic potential,132,137 (d) 

temperature, (e) patterned circle diameter, (f) center-to-center pattern spacing, (g) patterned 

depth, (h) depletant size, (i) osmotic pressure, (j) most probable height, (k) area fraction, 

(l) number of particles. 

Variable Theory/Simulation 

a/nma 1100 

-1/nmb 9.54 
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/mVc -50 

T/˚Cd 25, 35.0, 37.0 

2R/me 17 

D/mf 21 

H/nmg 285 

2L/nm)h 113, 107, 53 

П/kT (10-6nm-3)i 26, 18, 7.4  

zm/nmj 61, 66, 100 

ϕk 0.178, 0.178, 0.175 

Nl 332, 332, 324 
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11 COLLOIDAL ROD MOTION NEAR A PLANAR WALL: 

TRANSPORT, SIMULATIONS AND TRAJECTORY ANALYSIS 

 

11.1 Abstract 

In this work, we study three closely interrelated aspects of single colloidal rod 

motion near a planar wall based on approaches derived from Stokesian dynamical (SD) 

simulations. Using the sphere-chain model of colloidal rods, we first calculate the 

diffusivity components in the 66 diffusivity tensor when a colloidal rod is in the bulk 

(far from the planar wall) and near the planar wall. By adding constraint forces into the 

Stokesian dynamical simulation, we develop a novel constraint SD that can simulate the 

rod in the bulk and electrostatically levitated above the plane with hydrodynamic 

interaction accounted. We develop an underlying theory for mean squared displacement 

analysis and equilibrium free energy landscape analysis for a single colloidal rod levitated.  

By analyzing the equilibrium distribution of the trajectory, and mean square translational 

displacement (MSTD), mean square angular displacement (MAD), we confirm the 

correctness of the algorithm and obtain insights of how rod moves near a planar wall.  

Key words: hydrodynamics, constraint dynamics simulation, colloidal rod, diffusion 

11.2 Introduction 

Micro- and nano-sized colloidal rod-shaped objects exist in a wide variety of areas, 

ranging from biological macromolecules54 to traditional industrial paints and ceramics,  

and novel building blocks in materials engineering55. When a rod-shaped colloidal particle 

suspended in a viscous fluid, it will undergo Brownian motion, known as diffusion, due to 

thermal agitation from solvent molecules.261 The motion of rod-shaped particles in a fluid 
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is inherently related to many fundamental processes of scientific interest and technological 

importance. In biology, the motion of rigid rod-shaped macromolecules or microorganisms, 

such as DNA, F-action, and Fd virus are essential for biological functionalities53. In 

material engineering, the Brownian motion of building block units, such as carbon 

nanotubes262 and gold nano-rods,263 in complex fluids plays a major role in mediating 

structural evolution. However, compared to the transport dynamics of spherical 

particles,2,168,264 the transport dynamics for rod-shaped particle is still poorly understood. 

Recent research on rod-shaped particle dynamics has focused primarily on single particle 

transport dynamics265,266, as well as the collective dynamic behavior of rod suspensions267, 

such as phase transition268, packing269, aggregation267 and assembly270. Regarding 

individual rod dynamics, the diffusivity tensor, D, play the key role in characterizing both 

the Brownian translational and rotational motion of rods, and its response to the external 

forces and torques. D is also related to the hydrodynamic friction of a moving rod via the 

fluctuation-dissipation theorem,261 given by 1

Bk T D R , where R is the resistance tensor, 

kB is Boltzmann’s constant, and T is temperature. 

Considering a colloidal rod in the bulk, it will have different translational and 

rotational diffusion coefficients in directions along and perpendicular to its long axis due 

to the geometric anisotropy. Efforts to explore the relationship between diffusivity and 

geometry dated back to F. Perrin in 1905,56 and followed by Broersma271,272 in 1960, who 

provided the first calculation of translational and rotational diffusivities for a cylindrical 

rod in the bulk. The slender-body theory,273 which represents a slender body using a line 

distribution of stokeslets,  proved to be valid for calculating the diffusivities of rods with 

large aspect ratios (length over diameter, L/2a >>1) in bulk. During the 1980s, Tirado et al. 
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developed a method to account for the end-correction and calculated the diffusivities of 

short rods with aspect ratios of 2-30. Tirado also found that Broersma’s result is inaccurate 

for cylinders of finite length.274 Tirado’s results have been applied and corroborated in 

experiments.9,10 Other numerical methods, such as the boundary element method275 and 

path integral method,276 are also used to calculate the transport properties of rod-shaped 

particles. The anisotropic aspects of diffusivities coefficients also manifests themselves in 

the diffusive behavior. In the short time scale, the rod exhibits anisotropic diffusion, 

whereas the coupling of rotation to translation will lead to a crossover timescale for 

anisotropic diffusion transitioning to isotropic diffusion in the longer time scale.  Recently, 

the theoretical and experimental investigation of this fundamental property has been 

conducted for a quasi-2D system.265 This anisotropic-to-isotropic diffusion property has 

also been employed in rod-shaped particles sorting via stochastic ratchets.277 However, for 

3D bulk diffusion, there does not yet exist an exact theory to describe this transition in 

dynamics, which limits the interpretation and manipulation of rod particle dynamics in 2D. 

One of the focuses of this work is to obtain such theory.  

When a colloidal  rod is near a no-slip planar wall, the existence of the bounding 

surface introduces additional complexities to its motion. Not only will the self-diffusion 

coefficients (i.e., diagonal terms in D) of the rod be a function of its intrinsic geometry, but 

also depends on a complex function of a number of parameters (e.g., aspect ratio, elevation, 

and orientation). Moreover, the couplings between different modes of motion will become 

subtle. Jeffrey et al.7 derived a friction expression for an infinitely long cylindrical rod 

moving adjacent to a wall. De Mestre and Russell278 obtained the hydrodynamic drag 

between a wall and a rod oriented either parallel or perpendicular to it using slender-body 
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theory valid for separation distances on the order of cylinder length. Recently, Padding et 

al.8 calculated the friction coefficient for a single sphere-chain rod with an aspect ratio of 

10 at varying elevations and orientations above a wall by explicitly simulating the solvent 

molecules. However, this method is subject to error due to the coarse-graining procedure 

used in simulating the solvent molecules.  In general, for a rod of varying length above a 

wall, how the components of the diffusivity tensor D depends on the separation distance, 

aspect ratio, and orientation, is largely unexplored. In additional, the conservative forces, 

i.e., gravitational force and electrostatic repulsion, will impose a further constraint on the 

configuration space of the rod. Being able to simulate and analyze rod motions near a wall 

can give insights on understanding the dynamics.   

Stokesian Dynamics (SD) simulation provides the basis to calculate the diffusivity 

tensor and, and construct a simulation algorithm with hydrodynamics considered. For rod 

motion in the bulk and near a planar wall. The SD simulation53,279 was first developed to 

capture multi-body hydrodynamic interactions for unbounded hard-sphere suspensions 

with low Reynold numbers. In SD, short-time self-diffusivities can be obtained from a 

grand resistance tensor built from particle hydrodynamic interactions, which has been 

showed in good agreement with experimental measurements.280  A linear chain of touching 

spheres (sphere-chain model) has been used in SD to approximate the hydrodynamic drag 

for translating cylinders in the bulk fluid phase, demonstrating good agreement with 

slender-theory.281  Recently, Swan and Brady et al.10–12 adapted the previous SD scheme 

to colloidal suspensions with bounding surfaces (one or two no slip planes) by considering 

the image of a Stokeslet due to a no-slip wall. Even though SD is mainly used for simulating 

spherical colloidal particles with hydrodynamic interaction, we will show that, using the 
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sphere-chain model to approximate a rod, we can develop an algorithm to simulating rods 

with hydrodynamic interactions. To achieve this, we will address one key issue on 

modifying the conservative and dissipative forces in the SD based on a rigid constraint 

strategy282 such that spheres will maintain as the rod shape (i.e., a linear chain structure) 

during the simulation. In this way, we are able to use this Constraint Stokesian Dynamics 

simulations (CSD) to account for both multi-body hydrodynamic dissipative forces and 

conservative forces in bounded and unbounded situations in simulating a rod. There also 

exist other simulation methods for rod suspensions. For example, Brownian Dynamics 

simulations of hard rod systems developed by Lowen serve as a suitable approximation for 

dilute rod suspensions in which hydrodynamics can be safely neglected283. Including 

hydrodynamics in regular Brownian Dynamics simulation can also be achieve via by 

explicitly simulating a coarse-grained solvent via stochastic rotation dynamics.284 

Approximating colloidal rod using spheroid also offers an alternative approach in 

simulating rod motions with hydrodynamics.285 Compared with these simulation methods, 

CSD has several advantages: 1) hydrodynamic interactions are naturally included in the 

grand resistance tensor, thus saving computational costs in simulating solvents; 2) 

Interactions between rods are obtained by summing up interactions between spherical 

beads composing the rod.19  3) CSD can easily be adapted to particles of other shapes, as 

long as the particle shape can be approximated as an assembly of spherical beads. 

We organize the work as follows. We first provide the procedure for the 

construction of a grand resistance tensor and the calculation of the components in D via 

the method in SD. We then report the calculated diffusivities of a sphere-chain rod particle 

in the bulk. We continue by calculating the diffusivities of sphere-chain rods with aspect 



228 

ratios ranging from 2-30 levitated parallel above and at oblique angles to the underlying 

planar no-slip wall. Then, the mid-step algorithm for simulating rigid sphere-chain rod is 

described.  We then apply CSD to two simulated experiments: the diffusion of an isolated 

rod in 1) the bulk and 2) above a planar wall. Simulated trajectories are analyzed and 

compared with theoretical predictions for translational and rotational motions.  

11.3 Theory 

11.3.1 Coordinate system 

We will use two coordinate frames, a lab frame and a body frame, in our following 

sections. As illustrated in Fig 1,  the lab frame is a right-hand Cartesian coordinate system 

with basis vectors e1=(1,0,0), e2=(0,1,0), and e3=(0,0,1), and the body frame is a right-hand 

Cartesian coordinate system with the origin in the mass center of the rod and its axis 

directions given by n||, n1, and n1. Specifically, n|| is the unit vector pointing along the 

long axis of the rod, n1 is the unit vector perpendicular to n|| and parallel to the wall, and 

n1 is the unit vector perpendicular to the wall surface. The body frame is a translated and 

rotated version of the lab frame, with its rotation characterized by polar angle  and azimuth 

angle .   
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11.3.2 Grand resistance and mobility tensor for spheres 

Consider the scenario where N hard spheres of radius a suspended in the unbounded 

impressible Newton flow without ambient flow.  At the zero Reynolds number limit, the 

equation of motion is given by 

 U MF   (11.1) 

where U is the concatenation of translational and rotational velocity vectors of N spheres, 

U= (U(1), U(2),…,Ω(1), Ω(2),…), F is the concatenation of forces and torques acting on the 

spheres, F= (F(1), F(2),…,L(1), L(2),…), where the superscript denotes the index of individual 

spheres.  M is the grand mobility tensor of size 6N  6N. The corresponding resistance 

problem is to calculate the hydrodynamic forces and torques for N sphere moving in a flow 

in absence of ambient flow, formulated as 

 

Figure. 1. Schematics of the sphere-chain model above a planar wall: (A) 3D view (B) side 

view looking along n1. e1, e2 and e3 are unit vectors of Cartesian coordinate of the lab frame, n||, 

n1 and n2  are unit vectors of spherical coordinates of the body frame with its origin located at 

the mass center of the rod. 
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 F RU   (11.2) 

where R is the grand resistance tensor and relates to the grand mobility tensor as  

 
1R M  . (11.3) 

It has been well established that the grand resistance tensor for spheres in bulk53 is 

given as  

  -1

PP 2B 2BR = (M ) + R R  (11.4) 

which includes both the far-field multi-body interaction (i.e.  -1

PP
(M )  )and the near-field 

pair-wise lubrication (i.e. 2B
R ). The far-field pairwise resistance (i.e. 

2B
R ) is subtracted 

since the far-field two-body interaction is already accounted in  -1

PP
(M )  . Please see 

supporting information for details of these expressions. 

The presence of a no-slip surface will significantly modify the flow field generated 

by a stokelet.1 The effect of the no-slip boundary can be accounted by constructing an 

imaging system composed of stokeslet, stokes-doublet, and source-doublet on the other 

side of the surface.1 Then, the Green function for the velocity field at x generated by a unit 

point force at y near a planar no-slip wall located at H with normal unit vector δ3 is given 

as1,286 
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y δ P J x y δ
  (11.5) 

where y’=y-2(y∙δ3H), P=I-2δ3δ3, T indicates transposition, J is the Green function for the 

velocity field at x generated by a unit point force at y when no wall is present, given as 
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The grand resistance tensor for spheres above a planar no-slip wall is given as286 

 ( )

   -1

PW 2B W 2B, W,R = (M ) + R R R R   (11.7) 

which includes both the many-bodied far-field resistance tensor above a no-slip plane (i.e. 

 -1

PW
(M ) ), which is the inversion of many-bodied far-field mobility tensor, and the pair-

wise lubrication interactions. The pair-wise lubrication interaction is obtained by first 

adding two-body particle-particle exact resistance tensor 2B
R  and the particle-wall exact 

resistance tensor WR , and then subtract the far-field resistance tensor 
 2B, W,R R  to 

avoid the double counting of the far-field particle-particle and particle-wall interaction in  

 -1

PW
(M )  and 

2B W
R R . The elements in the 2BR  and 

2B


R  are the same as Eqs. (11.4). 

The explicit expressions for  -1

PW
(M )  can be found in reference286. Please see supporting 

information for details of these expressions. 

11.3.3 Calcuclating diffusivities for sphere-chain rod in bulk and above wall 

We model the rod-like particle as a linear chain of touching spheres, as showed in 

Fig. 1. To model the motion of the rod, the system is constrained to only have six degree 

of freedoms (3 for translation,3 for rotation). The rigid motion of a rod can be further 

decomposed into three translational motions of the mass center and three rotational motions 

about the mass center. Similar to Eq. (11.2), we have  

 
rod rod

rod

rod rod

   
   

   

F U
R

L Ω
 . (11.8) 
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We note here that all the quantities in Eq. (11.8) are calculated and measured in the body 

frame of the rod throughout the paper. Rrod is a 6  6 resistance tensor of for the six degree 

of freedom of a single rod.  The entries in Rrod can be calculated from Eq. (11.2)(11.8) by 

setting appropriate velocities to each sphere composing the rod.  For example, if we set all 

spheres to translate with unit velocity in the n|| direction, then from Eq. (11.2) we can 

calculate the 6N dimensional vector of forces and torques acting at the spheres. Those 

forces and torques can be converted to a 3-dimensional force Frod acting on the mass center 

of the rod as a whole and a 3 dimensional torque Lrod acting on the rod about the mass 

center. Since the rod as a whole is equivalently translating with velocity vector Urod=(1,0,0), 

first row elements in Rrod can be calculated inversely via Eq. (11.8). We can design other 

velocities in the same scheme, as showed in Table 1, and obtain all the elements in Rrod. 

The diffusivity tensor in the body frame of rod Drod is then given by 

 1( )rod B rodk T D R   (11.9) 

For simplicity, we use , , , , , ,

|| 1 2 || 1 2, , , , ,t b t b t b r b r b r bD D D D D D   
 to denote the six diagonal diffusivities 

components in Drod, representing the three bulk translational diffusivities and rotational 

diffusivities in the directions n||, n1 and n2. Similarly, , , , , , ,

|| 1 2 || 1 2, , , , ,t w t w t w r w r w r wD D D D D D   

denote six diffusivities in the presence of a planar wall.  

The presence of a wall introduces extra hydrodynamic drag to spheres composing 

the rod, and consequently slows down the motion. The extra hydrodynamic hindrance 

effect can be captured by using the height-dependent coefficient function, which is defined 

as the ratio of diffusivities above wall over the diffusivities in bulk, given as 
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where ||, ( )t

pf h  approaches 1 as h approaching infinity and approaches 0 when touching the 

wall. Usually, this coefficient function may vary for rods of different p. For practical 

purpose, we provide a rational fit for those functions as  
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  (11.11) 

where ai (i=1,2,..5) are fitting coefficients, which are documented in the supplement 

information.  

Table 1 

We label the N spheres comprising the rod as 1,2,…,N, and set the position vector 

for sphere i as (2ai, 0, h+a), then the velocity for each sphere is specified in the following 

table to calculate the Rrod 

Velocities of spheres in the body 

frame 

Velocities of rod 

Ui,1=1,for i=1,2…N Urod=(1,0,0) 

Ui,2=1,for i=1,2…N Urod=(0,1,0) 

Ui,3=1,for i=1,2…N Urod=(0,0,1) 

Ωi,1=1,for i=1,2…N Ωrod=(1,0,0) 

Ui,2=(i-(N+1)/2),for i=1,2…N Ωrod=(0,1,0) 

Ui,3=(i-(N+1)/2),for i=1,2…N Ωrod=(0,0,1) 
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11.3.4 Mid-step algorithm for equation of motion under constraint 

For N identical particles in the low Reynold number flow with generalized 

coordinates Q=q1, q2,…q6N (including 3N positional coordinates and 3N rotational 

coordinates)under K constraints 

 ( ... ) 0, 1,2,...,1 2 6NC q ,q , ,q K     (11.12) 

the equation of motion is given as  

 
d

dt
  

Q
U M F   (11.13) 

 
P B CF = F + F F   (11.14) 

where U  is a 6N dimensional velocity vector, including 3N translational velocities and 3N 

rotational velocities. F  is a 6N dimensional force vector, including 3N forces and 3N 

torques acting on the center of each bead. M  is a 6N6N grand mobility tensor depending 

on the instantaneous configuration of N particles. The grand mobility tensor relates to grand 

resistance tensor via 
1( )M R  .The procedure to obtain those tensors is discussed in the 

previous section and Supporting materials. Generally, F have contributions from 

conservative forces
P

F , dissipative (Brownian) forces
B

F and constraint forces
C

F . 

The conservative forces on each sphere composing the rod experience electrostatic 

force from wall and gravitation force287: 

 3exp( ( ))p pwB z a m   F = e g   (11.15) 
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In the electrostatic part a is the radius of the sphere,  z is the mass center height of the 

sphere, 𝜅 is the Debye length, Bpw is the pre-factor for electrostatic repulsion between 

colloidal pairs; in the gravitational force part, m is the buoyant sphere mass, g is the 

acceleration due to gravity. The inter-sphere interactions are not considered because they 

are internal forces cancelling out with each other.  

A rod with aspect ratio p can be modeled by p spheres under two types of constraints: 

positional constraints and rotational constraint. The positional constraints are used to 

ensure all the spheres are positioned in one line and each sphere is touching with its 

neighbors. The rotational constraints are that all the spheres can only rotate along the long 

axis of the rod with the same speed. The consequences of these constraints are each 

coordinate qj will experience an extra constraint force given as 282,288 
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Note that the constraint force expression has its roots in the Lagrange multiplier method in 

constraint optimizations. By imposing the condition that the K constraints should always 

be satisfied during the simulation, we have  
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   (11.17) 

Then  in Eq. (11.16)can be solved from Eqs. (11.13)(11.14)(11.16)(11.17). 

The Brownian forces 
B

F is generated from two steps: first generate the regular 

Brownian force according to dissipation-fluctuation theorem following  
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And then project the generated forces 
B'

F  via:  
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F = P F   (11.19) 

such that Brownian forces will be locally tangent to the 6N-K hyper-surface defined by the 

K constraints. Please see the supporting materials for a detailed description.  

With forces calculated, the mid-step algorithm is used to update the coordinate.288 

Specifically, the initial velocity and mid-point coordinate are first calculated: 

 0 0 1 ,0 ,0 ,0( ) )P B C  U R (F + F F   (11.20) 

 01

2
t  * 0

q q U   (11.21) 

Then the intermediate velocity and finial position are calculated:  

 * * 1 ,* ,* ,*( ) )P B C  U R (F + F F   (11.22) 

 0 * t  q q U   (11.23) 

where ∆t is the integration time, and the ‘0’ and the ‘*’ denotes quantity that is calculated 

using the initial and midpoint configuration respectively.  
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11.3.5 Equilibrium and dynamical analysis  

11.3.5.1 Equilibrium distribution for single rod levitated above wall 

For a rod levitated above the wall, we are mainly interested in its position 

characterized by (x, y, z) and its orientation characterized by the polar angle . The potential 

energy for a rod levitated above wall is obtained by summing up the potential energy of 

spheres composing the rod (except for the inter-sphere interaction potentials).  The net 

potential has contributions from gravity and electrostatic repulsion, given by 

 
1

( , ) exp( ( ))
p

pw

rod s i i

i

U z G z B z a 


      (11.24) 

where Gs is the buoyant weight of each sphere, zi is the mass center of particle i composing 

the rod, and can be related to z and 𝜃 by 
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     (11.25) 

For a conservative system conjugate to heat bath, the equilibrium probability density of a 

rod parameterized by (z, θ) is given by Boltzmann distribution: 

 0

( , )
(z, ) sin( )exp( )eq rod

B

U z
N

k T


      (11.26) 

where sin(θ) is the factor accounting for the degeneracy when integrating out the variable 

ϕ, N0 is the normalizing factor to ensure ( , )d d 1eq z z    . The free energy landscape 

can be readily obtained as 
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where C is a constant. 2D free energy landscape can be converted to 1D free energy 

landscape by integrating out one variable, for example 
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11.3.5.2 Mean squared displacement analysis for single rod random walk in bulk 

The anisotropic diffusion behavior of rod-shaped particle can be characterized by 

the time-lapsed mean squared translational displacement (MSTD) along directions parallel 

and perpendicular to the long axis. The displacement vector of the mass center at time t can 

be decomposed into parallel and perpendicular components based on the initial orientation 

of the body frame(Fig. 1). For the MSTD in parallel and perpendicular directions, our 

derivation (See Supporting materials) shows: 
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 (11.29) 

where <> is the ensemble average. Also note that for diffusion in the bulk, 
1 1( ) ( )x t x t    

and 
2 2( ) ( )x t x t    are equivalent. If the MSTD is calculated by averaging over all 

trajectories with different initial orientations, then for all time scales, we have 
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1( ) ( ) 4 2t tx t x t D t D t      (11.30) 

where 2 2 2 2

|| 1 2( ) ( ) ( ) ( )x x x x        . Brownian rotational motion in 3D is usually 

characterized by orientation auto-correlation function, which is connected to the rotational 

diffusivity as289 

 || || 1( ) (0) exp( 2 )rt D t  n n   (11.31) 

where n||(t) is the rod’s orientation vector at lapsed-time t. 

11.3.5.3 2D projected mean squared displacement analysis for single rod levitated above 

a wall 

When a rod is levitated above a wall, 2D projected MSTD and mean squared 

angular displacements (MSAD) are important experimental measurement quantities that 

characterize the motion of a particle in the confining environment. Assuming that the rod 

is moving strictly in 2D, then, for the parallel and perpendicular MSTD, we have265 
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Add Eq. (11.32) together, we then obtain the MSTD for the system averaged over all the 

orientations, 

 || 1( ) ( ) 2( )t tx t x t D D t      (11.33) 
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In a situation where z and θ are not strictly constrained, 2D projected MSTD expression is 

given by replacing diffusivities in Eq. (11.32) with probability-weighted diffusivities54. We 

have 
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where the subscript means taking an average of that variable.  

Diffusion normal to wall 

When a rod is close to a bounding surface (e.g., a wall surface), the diffusion normal 

to the wall has a strong dependence on the separation between the rod and the surface due 

to the hydrodynamic lubrication forces50,51. The diffusion coefficients are connected to the 

normal-to- wall component in the MSTD via 

 2

3 3

1
( ) ( ( , ))

2

t d
D z x z t

dt
    (11.35) 

which can be used to extract the diffusion coefficient from particle diffusion trajectories. 

The diffusion coefficients can also related to diffusion coefficients in the body frame as   

  
2 2

3 || 2( ) ( cos sin ) ( )t t t eqD z D D d       . (11.36) 

11.3.5.4 Simulation Methods 

We implemented CSD for two types of experiments: isolated rod diffusion in bulk 

and above a no-slip planar wall. The forces F are formulated in Supporting materials.  In 

both cases, the radius of the sphere composing the rod is 200nm. In the case that single rod 
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diffuses in bulk, the rod has the aspect ratio of 4 and is only subject to Brownian forces. In 

the case that a rod is levitated above a wall, the rod is subject to gravitational force, 

electrostatic repulsion and Brownian forces. The material properties corresponded to 

gold(Au) nano-rods of different aspect ratio (p=4, 7, 12) in aqueous media with 0.1mM 1:1 

univalent electrolyte (Gs/a=0.297kT ,Bpw=486.6kT and κ-1=30nm). For single rod in bulk, 

the integration time step is 0.5ms.  Mass center and orientation of the rod is recorded every 

50 steps for a total 10000s. For single rod above the wall, the integration time step is 0.2ms. 

Mass center and orientation of the rod is recorded every 50 steps for a total 2000s.    

 We use Boltzmann inversion to construct the free energy landscapes from 

simulation trajectories. We discretize the vertical position z and polar angle θ with a 

resolution of 20 nm and 1 degree respectively. For dynamic analysis, time-resolved MSTD, 

MSAD and orientation auto-correlation function are calculated.  

11.4 Results and discussion 

11.4.1 Diffusivities of rod-shaped particle in bulk  

Fig. 2 depicts the diffusivities for a sphere-chain rod of aspect ratio p=2-30 

calculated via SD method and its comparison with the widely used cylindrical rod results 

from Tirado’s model290.  For a single rod in the bulk, off-diagonal terms of Drod in the body 

frames will vanish since there are no correlations between different types of motion. In the 

bulk, translational and rotational diffusivities in directions n1 and n2 are equivalent, and 

we only plot result in direction n1. In Fig. 2 (A), translational diffusivities (normalized by 

kT/6πμa) in direction n1 in our calculation shows a systematic positive deviation (within 

10%) from the Tirado’s model for p > 3. The positive deviation can be understood through 
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the fact that when a sphere translates through a quiescent flow, it experienced less drag 

than a cylindrical surface of length 2a translating in direction perpendicular to its axis.  For 

translational diffusivity along the axis (in the direction of n||), sphere-chain model yields 

an overall smaller value (within 20%) than results from the cylinder model. In Tirado’s 

method, he used small spherical beads to model the shape of cylinder. The translational 

diffusivity in the parallel direction will decrease when he increase the density of spherical 

beads composing the rod to make the cylinder surface smoother. Therefore, we speculated 

that the difference is due to the finite size effect of the spheres in the sphere-chain rod. The 

sphere-chain surface in is obviously rougher than a cylindrical surface, thus experiencing 

more friction when translates parallel.  

In Fig. 2(B), we observed a close result (within 5%) between rotational diffusivities 

(normalized by kT/8πμa3) in n1 directions in the two models. However, for rotational 

diffusivity in n|| direction (rotation along the axis of the rod), our sphere model shows 

overall larger diffusivities (within 20%). We ascribe this to the same reason that we used 

to explain the perpendicular translation: the rotation of sphere will experience less drag 

than the rotation of a short cylindrical surface of length 2a.  
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11.4.2 Diffusivities of sphere-chain rod particle parallel above a planar wall 

Fig. 3 depicts height-dependent coefficient function of the diffusivities for the 

sphere-chain rod of aspect ratio 7 and 12 parallel above a wall.  These coefficient functions 

f all approach 1 as h approaches infinity and approach 0 when touching the wall. Fig. 3 (A) 

shows that the translational diffusivities coefficients in the three directions have a distinct 

dependence on the elevation and the length of the rod. Specifically, translational diffusivity 

along n|| direction decreases the slowest, while along n2 direction decreases the fastest. 

This is reminiscent of the translational diffusivity of single particle above wall51: diffusivity 

normal to wall drops much faster than diffusivity parallel to the wall when the sphere is 

approaching the wall. And all the diffusivities start to drop even when h/a~50, which 

 

Figure.2. Diffusivities for sphere-chain rod and cylindrical rod of p=2-30 in bulk: (A) 

Translational diffusivities in direction n|| (filled black circle), n1 (filled cyan square), for 

sphere-chain rod from our model and diffusivities in direction n|| (filled green triangle) and 

n1 (filled pink down triangle) for cylindrical rod from Tirado’s model.  (B) Rotational 

diffusivities in direction n|| (filled green down triangle), n1 (filled black circle) for sphere-

chain rod and diffusivities in direction n|| (filled pink square) and n1 (filled red up triangle) 

for cylindrical rod.  
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reflects the far-field nature (scales as O(h/a))of hydrodynamic interactions. Translational 

diffusivities for the sphere-chain rod, analog to the diffusivities of the single sphere above 

the wall, are expected to vanish when it touches the wall. Specifically, diffusivities 

decrease in O(ln(h/a)) manner along n|| and n1, and in O(h/a) manner along n2.  We can 

also observe that the average hydrodynamic hindrance effect due to each sphere will 

increase for longer rods. This is because, for spheres above a no-plane wall, each sphere 

will not only experience drag due to its own image (the effect is experiencing more drag in 

the presence of wall) but also experience drags due to images of its neighboring spheres. 

One thing to note is that this drag increment effect will become smaller as the rod length 

increase above a threshold (p~20), since the drag from the image at the distant neighbors 

will become insignificant. Also this effect is most pronounced at the intermediate range 

(1<h/a<12) In the far-field limit (h/a>12),  each particle only interact with its own image 

and images of its nearby spheres, thus, the length dependence averaged hydrodynamic drag 

will become relatively weaker in the lubrication limit (h/a<<1), the lubrication interaction 

of each sphere with the wall will dominate, therefore the curves will behave asymptotically 

the same.   

The height dependent rotational diffusivities in the three directions are showed in 

Fig. 2 (D)-(F). Rotations in n1 and n2  start to experience evident drag when h is around 

20a and 30a, while rotation along n|| only experience pronounced drag around 5a. Even 

though translation and rotation in n1 and n2  both involve spheres translate in n1 and n2, 

the drag for rotation seems to be short-ranged compared to that for translation. This can be 

understood by considering the wall effect on the collective motion of spheres. Considering 

one sphere translating in bulk and generating a flowing field along the translation direction, 



245 

a nearby sphere will experience a higher mobility when translates in the same direction, 

and a lower mobility when translating reverse.  When the two spheres are near a wall, the 

no-slip boundary will significantly change the flow field. In general, the mobility of 

collective motion will decrease, yet the mobility for relative motion will increase.  This 

hydrodynamic screening effect due to the no-slip boundary has been discussed elsewhere291. 

For translations in n||, n1, n2, spheres are all moving in the same direction; therefore the 

wall will exert a long-range hindrance to these motions. For rotations in n1 and n2, half 

of the spheres composing the rod are moving in the opposite direction of the other half, the 

wall thus exert a relatively weaker and short-ranged hindrance. Note that the above 

argument is based on far-field hydrodynamics, and only applies to explain the different 

initial decreasing trend for rotation when rod is far away (h/a>10). When a rod is 

sufficiently close, the near-field effect will dominate, and the diffusivities will drop 

dramatically. Note that the axial rotation experience a smaller and short-ranged drag from 

the wall compared to other types motion. This is because when h >> a, the rotation of a 

sphere parallel to wall scales as (h/a)3, but the decreases of translation diffusivity of spheres 

scales as (h/a).292 The rotation diffusivity in n1 will decrease much faster than rotation in 

n2, as rotation in n1 involves translation of spheres normal to the wall. In the lubrication 

limit, rotational diffusivities in n|| and n2  directions will vanish as O(ln(h/a)), but will 

vanish as O(h/a) in n1. However, this effect is rather weak for rotation in the n|| direction. 

This is because the rotation of sphere parallel to wall interact with images of its neighbor 

in a fashion of (O(R-3) (R is the distance between the sphere and the image it interacts with), 

while for translation of sphere, the fashion is (O(R-1)).  
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In contrast with diffusion in bulk, there are coupling effect between different types 

of motions in the presence of a wall, which manifest themselves as non-zero terms in the 

off-diagonal entries in the diffusivity tensor. In order to characterize such coupling effect, 

we define the correlation coefficient as: 

 
ij

ij

ii jj

D
Cov

D D
  . (11.37) 

For simplicity, i and j are taking value from 1 to 6, with 1, 2, 3 representing translation in 

directions of  n||, n1, and n2 , and 4,5,6 representing rotation in directions n||, n1 and n2. 

For the configuration that a rod is parallel above a wall, though highly symmetrical, there 

still exist some weak coupling, a rather weak coupling still exists between translation in 

directions n|| and rotation in direction n1.(Supporting information Fig. S1) 
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11.4.3 Diffusivities and couplings of sphere-chain rod particle inclined above a planar 

wall 

We consider the case that a rod p=7 forms a 45 angle to the wall (the angle between 

n|| and e3 is 45). Fig. 4 (A)(B) shows self-diffusivities (i.e. diagonal terms) as a function 

of h. Note here h is defined as the separation distance of the lowest sphere to the plane. 

When the rod is getting closer to the wall, all self-diffusivities will decrease similarly as 

 

Fig.3. Diffusivities for single sphere-chain rods parallel above a wall: (A)(B) height 

dependent coefficients for translational diffusivities as a function of h/a in direction n||, n1, 

n2  for p=7(A), p=12(B);  (C)(D) ) height dependent coefficients for rotational diffusivities 

as a function of h/a in direction n||, n1, n2  for p=7(A), p=12(B). 
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the case that a rod is parallel to the wall. However, the exact coefficient function might 

take different forms. For example, the translational diffusivity decreases much faster than 

the case rod parallel to the wall, because the motion along n|| involves the normal motion 

component to the wall. We are particularly interested in the hydrodynamic couplings 

between different modes of motions. Fig. 4 (C) shows the correlation coefficients (i.e. off-

diagonal/coupling terms) as a function of h for Cov13, Cov15, Cov24 and Cov35 in the 

diffusivity tensor. A translation along n|| direction will induce translation and rotation in 

n2  and n1 (Fig. 4 (E)(F)), with the net effect of aligning itself with and attracting to the 

wall ( i.e. the rod will move less further compared to the case only translation along n|| is 

allowed). This hydrodynamic effect due to the presence of wall is common in micro-objects 

moving close to a wall293. The coupling between translation in n1 and rotation in n2  (Fig. 

4 (G)) is due to the non-uniform drag experienced by the rod: lower end experiences more 

drag than the upper end. When a lateral force applies at n1, the upper end tends to move 

faster than the lower end, and consequently the rod rotates. The same reasoning applies to 

the coupling between translation in n3 and rotation in n1 (Fig. 4 (H)). All these correlation 

coefficients become no longer negligible when the separation height h/a less than 1. We 

also investigate the angle dependence of the correlation coefficients at fixed separation 

h/a=0.05, as showed in Fig. 4(D). The coupling of translation in n|| with translation in n|| 

and rotation in n1 peaks at ~30 and vanishes at both normal and parallel configurations. 

The coupling between translation in n1 and rotation in n3 is monotonically decreasing 

from norm configuration, where the imbalance of the drag between two ends is largest, to 

parallel configuration, where the imbalance disappears. For coupling between translation 

in n2  and rotation in n1 surprisingly peaks at ~80. This is the reverse upwards flow 
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when particles are moving towards a wall that induces strong rotation in n1. Note that due 

to the symmetry of the problem, there is always no coupling between translations in n|| and 

translation in n1, translation in n|| and rotation in n||, translation in n3 and rotation in n||.  

 

Figure 4. Diffusivities for single sphere-chain of aspect ratio 7 oblique to wall (45 

degree polar angle): (A)(B) height dependent coefficients for translational and rotational 

diffusivities as a function of normalized height h/a in direction n||, n1, n2; (C) correlation 

coefficients Cov13, Cov15, Cov24 and Cov35 for diffusivity tensor components as a function 

of normalized height h/a; (D) correlation coefficients Cov13, Cov15, Cov24 and Cov35 as a 

function of θ at h/a=0.05;  Schematics for the correlated motions: (E) translation in n|| and 

translation in n2, (F) translation in n|| and rotation in n1, (G) translation in n1 and rotation 

in n1, (H) translation in n2  and rotation in n1.  
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11.4.4 Dynamic analysis for single rod diffusion in the bulk 

Fig. 5 reports the analysis of diffusion trajectories of a single rod with aspect ratio 

5. CSD was used to produce simulated random walk trajectories including only Brownian 

forces. Fig. 5 (B) depicts the parallel and perpendicular MSTD curves extracted from 

simulation trajectories at different observation times and theoretical predictions from 

Eq.(11.29). Excellent agreement is reached between simulation and theory. The Brownian 

rotation characteristic time τc=1/2Dr characterizes time scale for losing directional memory 

and, therefore, the crossover from anisotropic translational diffusion to isotropic diffusion. 

At the short time limit t  τc, the anisotropic translation diffusion behavior is 

demonstrated by the fast and the slow MSTD curves in parallel and perpendicular 

directions, respectively. As the observation time t exceeds tc, the two curves finally 

converge towards one curve, indicating the transition from anisotropic diffusion to 

isotropic. Fig. 5 (C) shows the orientation auto-correlation function calculated from 

simulation trajectories and theoretical prediction from Eq.(11.31). Excellent agreement is 

reached between simulation and theory. The autocorrelation function curve also confirms 

that the rod will quickly lose correlation in orientation at the characteristic time scale τc, 

leading to the transition from anisotropic diffusion to isotropic diffusion,  
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11.4.5 Single rod levitated above a planar wall: equilibrium configuration and dynamics  

Fig. 6 report equilibrium distributions of rods with aspect ratio 4, 7, 12 levitated 

above a planar wall. In the simulations, rods are subject to gravitational force, electrostatic 

repulsion, and Brownian motion. The balance between gravitational force and electrostatic 

 

 

Figure 5. Mean squared translational displacement (MSTD) and orientation 

autocorrelation function for simulation trajectories of single rod p=5 in bulk: (A) 3D 

sequential snapshots of colloidal rod configuration. Displacement vector ∆x can be 

decomposed into components parallel and perpendicular to its axis (in n|| direction). 

e1=(1,0,0), e2=(0,1,0) and e3=(0,0,1) are unit vectors of the lab frame. (B) Simulation 

extracted and theoretical predicted MSTD curve from Eq.(11.29)(11.30) (black square and 

solid line) and components in parallel direction (red triangle and solid line) and 

perpendicular direction (pink circle and solid line). (C) Orientation autocorrelation function 

from simulation and theoretical prediction from Eq. (11.31) (black triangle and red solid 

line). 
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repulsion confines the rod to the vicinity of the wall. We use free energy landscapes 

parameterized by (z, θ) to characterize the equilibrium distribution of the configuration. As 

shown in Fig. 6 (A)-(F), 2D free energy landscape from theoretical prediction (Eq.(11.27)

(11.28)) and constructed from simulations via Boltzmann inversion are in good agreements 

for rods of three aspect ratios. For rods of different length, the most probable configuration 

is aligning with the wall (i.e. θ=90) from the effect of gravity and the electrostatic 

repulsion from wall. Note that longer rods generally is more constrained in the sampled 

configuration space parameterized by (z, θ). At the same height, longer rods will be more 

constrained in θ due to electrostatic repulsion from the wall, whose total strength 

proportional to length. In addition, longer rods will be more constrained in z due to the 

increased gravity of the longer rods. We also plot the projected one-dimensional free 

energy landscape in z and θ using Eq.(11.28), as shown in Fig. 6 (G)(H). As the aspect ratio 

increases, the frequent sampling region (W<6kT) in height z is reduced from 6a to 2a. 

Regarding orientation, a rod of aspect 4 has a non-vanishing probability to take the stand-

up configuration(i.e. θ=0), yet a rod of aspect 12 can only sample 10 deviation from the 

parallel configuration.   

In experiments of particle tracking near a planar wall, MSTD is often the dynamic 

aspect of interest. Fig. 7 (A) shows the time-lapsed 2D parallel and perpendicular 

components of MSTD from the simulation and the theoretical curves from Eq. 

Error! Reference source not found.(11.34). Similar to the 3D translational Brownian 

motion in bulk, faster diffusion is observed along director direction until the crossover to 

isotropic diffusion occurs at the Brownian rotation time scales. As for the longer time scale 

isotropic diffusion, the longer rod will have a smaller average diffusivity due to the 
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increased length and average lower heighted sampled, as showed in Fig.7 (B). Fig. 7(C) 

shows results on the diffusion dynamics of rod particle (p=7) normal to the underlying wall: 

the z-direction component of MSTD curves show a systematic decreasing as the elevation 

of the rod decreases, which is due to the increasing hydrodynamic hindrance as the rod is 

closer to the wall. The diffusivities extracted from the initial slopes of these curves based 

on Eq. (11.35) have good agreement with theory prediction from Eq. (11.36), as showed in 

Fig. 7(D). The large variation of the diffusivity along the elevation also suggests that we 

treating the diffusivities as a constant might result in significant error.  

 

 

Figure 6. Free energy landscape analysis for single rod electrostatically levitated 

above wall: (A-F) 2D theoretical FEL from (11.27)(top row,(A)(C)(E)) and simulation 

extracted via inverse Boltzmann analysis (bottom row,(B)(D)(F))as a function of z/a and θ 

for rods of aspect ratio 4 7, 12. (G)(H) 1D FEL as a function of z/a and θ for rods of aspect 

ratio 4, 7 and 12. Symbols are results from inverse Boltzmann analysis, solid lines are 

theoretical prediction from Eq.(11.28).   
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11.5 Conclusion 

We present a diffusivity calculation method and simulation method for colloidal 

rods motion near a planar wall. The method is adapted from Stokesian Dynamics method 

by modeling a rod-shape particle as a chain of touching spheres. The calculated 

diffusivities for the sphere-chain rod is compared with the widely used cylindrical result 

from Tirado. A similar trend of diffusivities changing with rod’s aspect ratio is identified.  

In this work, we have developed the CSD algorithm for simulating rod-shaped particle 

suspensions with hydrodynamic interactions. We have simulated and analyzed two 

 

Figure 7. Analysis of trajectories for single rod electrostatically levitated above wall: 

(A) Simulation extracted and theoretical predicted (Eq. (11.32)) MSTD curve and 

components in parallel direction (black circle and solid line) and perpendicular direction 

(red circle and solid line) for a rod with p=4. (B) MSTD as a function of lapsed time from 

simulation and theory on the log-log plot for aspect ratio 4, 7 and 12. Symbols are results 

from simulation data, solid lines are theoretical predictions(Eq. 

Error! Reference source not found.). (C) MSTD curves (from bottom to top) as a 

function of time at elevation of 2.9a, 3.9a, 4.9a, 5.9a, 6.9a; (D) extracted elevation 

dependent diffusivity via Eq. (11.35), and theory predicted values via Eq. (11.36) . 
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experiments: an isolated rod diffuses in bulk and above a planar wall. We have 

demonstrated that this algorithm can produce trajectories matched with an underlying 

theory for dynamic analysis and equilibrium analysis. The analysis procedure for MSTD 

and FEL is of practical importance for research on the experimental measurement of forces 

and motions for isolated  rods.294 Even though we only demonstrated the simulation 

techniques on the single particle level, we can readily extend to multiple rods simulation 

by including extra components of constraints, resistance tensors, and forces.  

11.6 Supplementary materials 

A. Complete description for constructing grand resistance tensor 

Consider the problem where N hard spheres of radius a suspended in the 

impressible Newton unbounded flow without ambient flow at zero Reynolds number limit, 

the equation of motion is 

 
   

   
   

U F
M

Ω L
  (11.38) 

where U and Ω are translational and rotational velocities for N spheres, U= (U(1), U(2),…), 

Ω= (Ω(1), Ω(2),…), F and L are the forces and torques acting on the spheres, F= (F(1), 

F(2),…), L=  (L(1), L(2),…). M is the grand mobility tensor of size 6N by 6N. The 

corresponding resistance problem is to calculate the hydrodynamic forces and torques for 

N sphere moving in a flow without external imposed flow, and can be formulated as 

 
   

   
   

F U
R

L Ω
  (11.39) 

where R is the grand resistance tensor and relates to the grand mobility tensor as  
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1R M  . (11.40) 

Grand resistance tensor for spheres in bulk 

The Faxen’s first law295 relates the velocities of a spherical particle α to force Fα 

and torque Lα on it and the effect of the disturbance flow generated by all the other particles 

as: 
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where μ is the viscosity of the fluid, ui(r
α) is the disturbance velocity field at the position 

of sphere α caused by the motion of all the other particle, given as 
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where J is the green function for the velocity field at x generated by a unit point force at y, 

and is given as 
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where r = x – y. S is stresslet, and 
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We only consider the forces and torques in this paper, which has been shown as a 

good approximation to the original system without imposed shear flow280,281. The far-field 

multi-body interaction then can be expressed in a grand tensorial form as: 

 UF F

pp

UL L

 

 

 



      
        

      

U F FM M
M

Ω L LM M
  (11.46) 

 where ∞ denotes that only far-field interaction is considered. The elements of MUF is 

obtained through assembling N mobility tensor ,UF 


M and N(N1) mobility tensor

,UF 


M , which are given as  
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Similarly, we can construct the MΩF, MUL and MΩL 
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The explicit expressions can be found in the reference281.  

The inversion of M∞ provides an approximation to the resistance tensor R∞ with 

multi-body hydrodynamics in the far-field regime281. However,  the lubrication interaction 

when particles are closed enough to each other is still lacking. A proper account for the 
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near-field interaction in the resistance tensor is by adding the pair-wise resistance tensor to 

R. Then, the grand resistance tensor for spheres in bulk is given as  

  -1

PP 2B 2BR = (M ) + R R  (11.51) 

which includes both the far-field multi-body interaction (i.e.  -1

PP
(M )  )and the near-field 

pair-wise lubrication (i.e. 2B
R ). The far-field pairwise resistance (i.e. 

2B
R ) is subtracted 

since the far-field two-body interaction is already accounted in  -1

PP
(M )  . 

The two-body exact resistance tensor 2B
R is a 6N  6N tensor, which is constructed 

by assembling N(N1) 
2B ,R  tensor (12 by 12) between particle α and β:  
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This resistance tensor contains second-rank 3 by 3 tensors A, B, C. These tensors 

have the following symmetry properties: 
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where ˆ / r r r  is the unit vector joining along the line of centers, and X, Y are 

resistance functions for motions in directions along and perpendicular to axis, respectively. 

Those functions, and errata, are documented elsewhere279,296. Similarly The two-body far 

field resistance tensor 
2B


R is assemblage of N(N1) tensor 2 ,B 


R  (12 by 12), which is 

given as 

 
1

2 , 2 ,( )B B 

  R M  . (11.55) 

The explicit expressions are given in reference281.  

Grand resistance tensor for spheres in near a planar wall 

The presence of a no-slip surface will significantly modify the fluid field of a 

stokelet. The effect of no-slip boundary can be accounted by constructing an image system 

composed of stokeslet, stokes-doublet  and source-doublet on the other side of the surface1. 

Then, the green function for the velocity field at x generated by a unit point force at y near 

a planar no-slip wall located at H with normal unit vector δ3 is given as1,286 
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  (11.56) 

where y’=y-2(y∙δ3H), P=I-2δ3δ3, T indicates transposition.  

The grand resistance tensor for spheres above a planar no-slip wall is given as286 

 ( )

   -1

PW 2B W 2B, W,R = (M ) + R R R R   (11.57) 

which includes both the many-bodied far-field resistance tensor above a no-slip plane (i.e. 

 -1

PW
(M ) ), which is the inversion of many-bodied far-field mobility tensor, and the pair-

wise lubrication interactions. The pair-wise lubrication interaction is obtained by first 
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adding two-body particle-particle exact resistance tensor 2B
R  and the particle-wall exact 

resistance tensor WR , and then subtract the far-field resistance tensor 
 2B, W,R R  to 

avoid the double counting of the far-field particle-particle and particle-wall interaction in  

 -1

PW
(M )  and 

2B W
R R . The elements in the 2BR  and 

2B


R  are the same as Eqs. (11.52)

(11.55), and  -1

PW
(M )  can be obtained similarly through (11.47)-(11.50) but replacing J 

with G. The explicit expressions for  -1

PW
(M )  can be found in reference286. 

The tensor wR  is constructed by assembling N tensors of 
,w R  (6 by 6), which 

consists of the exact resistance function of particle α moving above a planar wall. The 

explicit expression of resistance functions are summarized in references51,297. The tensor 

w


R  is constructed through N tensor ,w 

R  of size 6 by 6, which consists the far-field 

resistance functions of particle α moving above a planar wall. The explicit expression of 

resistance functions are summarized in references51,297. 

Sphere-chain model of rod-shaped particle  

We model the rod-like particle as a linear chain of touching spheres, as showed in 

Fig. 1. In this model, the spheres are only allowed to rotate along the axis of the rod. In 

other words, non-axial rotation (rotation in the direction perpendicular to the rod) will not 

couple with motions of any other types. Therefore, we can set off-diagonal terms that 

coupled with non-axis rotation terms to be 0 in the resistance tensor 2 ,B 


R , 

2 ,B R ,
,w R ,

,w 

R  before adding up to the grand resistance tensor. For the far-field grand mobility tensor 
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M , we first set off diagonal terms involving coupling to non-axis to be zero before we 

inverting the matrix. 

Extra care needs to be taken when calculating the resistance tensor 
2 ,B R for 

neighboring touching sphere, since resistance function 
AX  diverge as O((r-2a)-1) and 

require summation of infinite series when two spheres are close to touching296. Due to the 

axisymmetry of this problem, we could calculate 
AX  by inverting the mobility tensor 

function 
ax , specifically 
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  (11.58) 

where 
ax  values comes from the classic problem of the drag on two sphere following 

each other along their line of centers. From Batchelor’s298 result for touching spheres, we 

have: 
11 12 21 22 0.775a a a ax x x x    . However, the mobility tensor cannot be directly 

inverted since it is a singular matrix. We could slightly perturb the matrix and invert it, and 

the resistance matrix is given as  
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  (11.59) 

where ε is a small number, say 1e-5. The resistance function 
AY  will diverge as O(ln(r-

2a)-1), and we use r=(2+1e-3)a in the calculation. The resistance function of axial rotation 



262 

for nearby spheres is not singular when touching, and is given as 
11 1.052CX  , and 

12 0.15CX   . 

B. Summary of fitting equations for diffusivities 

Diffusivity in bulk for cylindrical rod particle from Tirado’s model290,299,300 
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Diffusivity in bulk for sphere-chain rod particle from our model 
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where 𝜇 is the viscosity of the solvent, 2𝑎 and 𝐿 are the diameter and length of the cylinder, 

𝐿 is the length of the cylinder, p=L/2a is the aspect ratio of the cylinder.  

Analytical result of diffusivities of infinitely long cylindrical rod above wall54,301,302 
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C. Approximate diffusivities for cylindrical rod above wall 

Here we showed that the height dependent coefficients from the chain-sphere rod 

model can be used to approximate the diffusivities of cylinder rod. In the far-field limit, 

the flow field generated by the translating object, irrespective of its shape, can be 
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approximated by the flow field generated by a point force acting on the center of the 

translating object.50 This represents the leading term of the multipole expansion of the flow 

field generated by a force distribution on the translating object. In the far-field limit, the 

hydrodynamic interaction between a cylindrical object and a wall can therefore be 

approximated by the interaction between sphere-chain rod and wall.303 The leading error 

in the approximation is expected not to exceed O((a/(h+a))3). Therefore, at h/a >> 1, the 

height dependent coefficients of the sphere-chain rod model are the asymptote limit of the 

height-dependent coefficients of the cylindrical rod. 

At separations of h/a << 1, the height-dependent coefficient can be approximated 

using the analytical results for infinite cylinders adjacent to a plane. The analytical result 

is another asymptote limit of for the diffusivities of a cylinder. When h is about the 

magnitude of a (radius of the sphere), it is no longer appropriate to approximate the 

cylindrical particle by either method. The coefficient within this range is found by fitting a 

curve that matches the two asymptote limits.  

Below, we summarize the fitted curves that approximate the common height 

dependent diffusivities for cylinder rod with different aspect ratio p parallel above a no-

slip wall: 

i) (the rod close or far away from the wall)h<a or h>10a, 6< p < 30 
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ii) (the rod is in the intermediate distance to the wall)a<h<10a, 6< p < 30 
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where in Eq. (11.77)(11.78)(11.79) we introduce extra correction factor g(p) to correct the 

extra length dependence for diffusivities above wall when h is about the magnitude of a. 

The error for these expressions are generally less than 10%.  

D. Derivation of Time-lapsed mean squared displacement for single rod 

diffusion in the bulk 

The transform matrix from spherical coordinates to Cartesian coordinate is given 

as 
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In the body frame, the translational diffusivity tensor of rod in the body frame is given as  
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In the lab frame, the translational diffusivity tensor can be obtains as 

 ' TD TD T   (11.82) 

where the superscript ‘T ’ denotes the transpose operation. 

For 3D Brownian rotation, the conversation of the probability requires that 
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where 
1

rD
 is the rotational diffusivity, 0 0( , , | , ,0)t      is the conditional probability 

density of observing configuration (θ, ϕ) at time t if initial configuration is (θ0, ϕ0). 

By expanding   in spherical harmonics, we can obtain the general solution of this 

equation as 

 
*

0 0 0 0 1

|m|

( , , | , ,0) ( , ) ( , )exp( ( 1) )r

lm lm

l m

t Y Y l l D t        
 



 

      (11.84) 



267 

where lmY  is the spherical harmonic function of degree l and order m, and ‘*’ denotes 

conjugation. For a single rod particle, with its position characterized by 1 2 3( , , )x x x  in the 

lab frame, the time-lapse displacement covariance matrix component due to the random 

walk is given as 

0 0 0 0 0 0
1 2 1 1 2 1 1, , ,0 0 0

( ) ( ) 2 (t ) ( ) 2 ( ) , , 1,2,3
t t t

i j ij ijx t x t dt dt D t t dt D t i j
     

         

(11.85) 

where the bracket denotes the ensemble average of all possible configurations at time t1 

starting from the initial configuration (θ0, ϕ0) at time 0,given as 
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Expanding(11.82), we have the expressions for configuration dependent diffusivity 

component as a function of rod orientation ( , )   
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Briefly, by noticing that  
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we can write 
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Using the Eq. (11.89) and the orthogonal properties of spherical harmonics, we are 

able to evaluate Eq. (11.86) (Note that we set (θ0, ϕ0)=(0, 0) for no loss of generality )as 
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For parallel and vertical diffusion, combining Eq. (11.85)(11.90), we have 
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For short time limit, we have 
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For long time limit, we have 
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E. Complete description for constraint dynamics 

For N identical particles in the low Reynold number flow with position coordinates 

q1, q2,…q6N  under K constraints 

 ( ... ) 0, 1,2,...,1 2 6NC q ,q , ,q K     (11.94) 

the equation of motion is given as  

  U M F   (11.95) 

 
P B CF = F + F F   (11.96) 

where U  is a 6N dimensional velocity vector, including 3N translational velocities and 3N 

rotational velocities. F  is a 6N dimensional force vector, including 3N forces and 3N 

torques acting on the center of each bead. M  is a 6N6N grand mobility tensor depending 

on the instantaneous configuration of N particles. The grand mobility tensor relates to grand 

resistance tensor via 
1( )M R  .The procedure to obtain those tensors is discussed in the 

previous section and Supporting materials. Generally, F have contributions from 

conservative forces
P

F , dissipative (Brownian) forces
B

F and constraint forces
C

F . 

Conservative forces 

The conservative forces on each sphere composing the rod have three parts287: 

 
p pp pw grav

F = F + F + F   (11.97) 

where 
pp

F is the force due to the particle-particle interaction, 
pw

F  is the force due to 

particle wall interaction, 
grav

F  is gravitational force. When there is only one rod, 
pp

F is the 
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internal force and could be set to be zeros. 
pw

F is the electrostatic repulsion between 

particle and wall due to the double layer overlapping. The electrostatic repulsion force for 

thin electrostatic double layers ( 1)a   is given by2 

 exp( ( ))pw pwF B z a      (11.98) 

where a is the radius of the sphere,  z is the mass center height of the sphere, 𝜅 is the Debye 

length, Bpw is the pre-factor for electrostatic repulsion between colloidal pairs.  

The gravitational body force is given by Fgrav=mg, where m is the buoyant sphere 

mass, g is the acceleration due to gravity. 

General theory of constraint forces 

The constraints on coordinates are equivalent to applying constraint forces onto 

coordinates. The constraint forces from all K constraints conjugate to (i.e. acting on) 

coordinate qj are given by 

 
C

j jF n    (11.99) 

where jn    is given as 

 j

j

C
n

q









  (11.100) 

Summation over repeated indices in implied throughout this section. 

The value of λ1, λ2,…, λK is determined by requiring the constraints hold all the time, which 

is given by 
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Combine the equation of motion ( )P B C U = M F + F F  with Eqs. (11.99)-(11.17), we 

can show that 

 (F F )P B

j ji i iH n M       (11.102) 

where 

 i ij jH n M n     (11.103) 

and λ can be obtained by solving the linear system Eq. (11.102). 

As Hinch and Morse found282,288, a pseudo-force is need to add to the right-hand side of 

Eq. (11.102) to correct the curvature effect of the constraint. The force is given as 

 ln(Det( ))ps

j B

j

F k T
q





G   (11.104) 

where  

 ij ik jkG n n   (11.105) 

and Det is the operation of calculating the determination of the matrix G. 

Brownian forces under rigid constraints 

In the constraint dynamics, the Brownian forces
B

F , termed geometrically 

projected random forces by Morse288, needs to satisfy 
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 0, 1,2, ,B

i iF n K      (11.106) 

which essentially says that the 6N dimensional random force 
B

F  will have zero value on 

the directions normal to the 6N-K dimensional hyper-surfaces specified by the K 

constraints. To construct those projected Brownian forces, we need to first generate un-

projected Brownian forces
B'

F conjugated to 6N coordinates, which are characterized by a 

mean and a variance as  
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Use a geometrical projection operator
1

( )
ij ij i k k j

P n n n n
   




  , termed by Morse, the 

projected random forces 
B

F  is related to 
B'

F  via 

 B B'
F = P F   (11.108) 

then 
B

F will satisfy the condition specified by Eq. (11.106). 

Construction of constraints for sphere-chain of a rod 

A rod with aspect ratio p can be modeled by p spheres under proper appropriate 

constraints. There are two types of constraints: positional constraints and rotational 

constraint. The positional constraints are used to ensure all the spheres are positioned in 

one line and each sphere is touching with its neighbors. If we index the p spheres from 1 

to p, denote ri  as the position vector of sphere i, and ri,j the j component in ri, then the 

positional constraints can be expressed as a set of 3p-1 equations, given as: 
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 1 2p apr - r   (11.109) 
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where a is the sphere radius. Note that there are 3(p-2) equations represented by Eq. 

(11.110) . 

The rotational constraints are placed onto the angular displacement of each sphere 

to ensure that all the spheres can only rotate along the long axis of the rod with the same 

speed. If  Θi,j denotes angular displacement of i sphere in the j direction axis of the lab 

frame, then we have 3(p-1) constraints given as 

 1 1, 1 , , 2,3,j j j i jT T i p       (11.111) 

 2 , 0, 1,2, ,j i jT i p      (11.112) 

 3 , 0, 1,2, ,j i jT i p      (11.113) 

where T is the transformation tensor between lab frame and body frame, and is given as 

Tij=ni∙ej. Eq. (11.111) says all the spheres should rotate in the same speed along the long 

axis of the rod. Eq. (11.112)(11.113) says the angular displacement around axes 

perpendicular to the long axis of the rod should vanish.  

Supplementary figures 
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Figure. S1 (A) the correlation coefficient Cov15 (coupling between translation in direction 

n|| rotation and in direction n1) as a function of p and h. (B) The image system for two 

point forces above the wall. This correlation Cov15 is most pronounced at h/a~1 and p=2(i.e. 

doublet rod). This coupling stems from the fluid velocity field created by the dipoles in 

image system of an array of point force stokelet that sets the rod to rotate, as showed in the 

schematics in Fig. S1 (B).1 For longer rods, the dipole array will cancel each other out in 

the middle part and decrease the coupling strength.  
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12 CONCLUSIONS 

 

This dissertation is mainly aimed at: (1) understanding the principle in harnessing 

non-equilibrium phenomenon in the colloidal system; (2) developing quantitative low 

dimensional dynamic models for colloidal self-assembly processes; (3) developing model-

based optimal control to engineer kinetical pathways in the self-assembly; (4) developing 

Stokesian dynamics tools in modeling hydrodynamic interaction; (5) developing generic 

geometric computational methods in modeling depletion interaction. This section 

summarizes the conclusions drawn from the work presented in this dissertation. 

12.1 Optimal control of self-propelled colloids for maze navigation and machines 

In Chapter 4, we have demonstrated the application of Markov decision framework 

to construct an optimal control policy in navigation task in free space and complex mazes. 

The optimal control policy can achieve orders-of-magnitude faster in first passage time in 

navigation tasks compared to uncontrolled random explorations. The performance under 

optimal control can linearly scale up with length of the shortest path connecting the initial 

position and final position. We identify non-dimension parameters in the control system, 

and we generalize the optimal control by investigating how these non-dimensional 

parameters affect the positioning error and first passage time performance.   The optimal 

control framework will find potential application in employing self-propelled devices 

performing tasks, such as cargo transport in complex environments. Generalization the 

optimal control framework to 3D is straightforward. The MDP framework remains the 

same except that the system state is defined as s=(x, y, z, , ), where  is the polar angle 

and  is the azimuth angle.  
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In Chapter 5, we developed the multiple motor multiple target optimal control 

algorithm. This algorithm is used to implement a new paradigm design for cargo capture 

and transport. The steady structures during the capture and transport process are found to 

depend on the pair attraction between motors and number of motors. We found that active 

forces resulting from self-propulsion to essential maintain the caging structure during the 

cargo capture, and play two roles during the cargo transport: both maintaining the structure 

by balancing with the osmotic pressure and providing the transport momentum for the 

system. 

12.2 Low dimensional modeling and optimal control for colloidal assembly 

In chapter 6, we report agreement between optical microscopy measurements, 

Brownian Dynamic simulations, and low-dimensional models of stochastic grain boundary 

formation and motion in quasi-2D colloidal bicrystals. Our results show that two reaction 

coordinates, one for condensation and one for global order, are sufficient to quantitatively 

capture first passage times between critical configurations at each applied voltage. Free 

energy and diffusivity landscapes show that the relative misorientation angles and domain 

sizes formed during condensation determine the subsequent grain boundary motion. 

Bicrystals with similar sized domains and a near 30° maximum misorientation angle relax 

via slow grain boundary diffusion mediated by high friction and vanishing free energy 

gradients, whereas bicrystals with asymmetrically sized and/or less misoriented domains 

relax via much faster grain boundary migration due to greater thermodynamic driving 

forces. By quantifying such dynamics as a function of voltage, ongoing work is developing 

optimal control algorithms to dynamically tune voltages to avoid kinetic bottlenecks 

associated with slow grain boundary dynamics. Future work will extend the approaches 
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reported here for bicrystals to many-domain crystals, where different reaction coordinates 

might be required to track the how polycrystallinity evolves at stages well before a single 

domain emerges. 

In chapter 7, We reported the development of a low-dimensional Smoluchowski 

equation to quantify the thermodynamics and kinetics of colloidal crystal assembly in 

electric fields. The dimensionality and order parameter choice was supported by a diffusion 

mapping analysis. Order parameters describing global order, 6, and degree of 

condensation, Rg, were found to yield a low-dimensional model that quantitatively captured 

assembly dynamics as determined by first passage times in agreement with N-dimensional 

dynamic data. The free energy and diffusivity landscapes from the Smoluchowski model 

revealed two types of kinetic pathways; one where condensation and global order emerge 

simultaneously to rapidly yield single domain crystals, and another one where fast 

condensation with local ordering, but not global ordering, results in polycrystal formation. 

Numerical solution of the low-dimensional Smoluchowski equation shows the temporal 

evolution of the probability of states for different voltages and system sizes, which 

quantifies how these two variables determine the evolution of order in electric field 

mediated quasi-2D crystallization. Ultimately, the low dimensional model quantitatively 

captures slow grain boundary dynamics in the presence of vanishing free energy gradients, 

where friction associated with configurational rearrangements determines the relaxation 

rate for polycrystals to form single crystals via grain boundary motion. These low-

dimensional models are currently being used to design optimal control policies for closed 

loop and open loop control of colloidal assembly processes designed to form single crystal 

structures. 
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In chapter 8, our results demonstrate optimal feedback control to robustly assemble 

perfect colloidal crystals orders of magnitude faster than a slow quasi-equilibrium ramp 

and much more reliably than rapid quenches. An optimal policy is computed with dynamic 

programming based on a low-dimensional reaction coordinate dynamic model. By tracking 

real-time stochastic particle configurations and employing the optimal policy to adjust 

applied electric fields via feedback, the evolution of unassembled particles is guided 

through polycrystal states into single domain crystals.  

There are a number of ways this approach could be adapted and extended. For 

example, our approach could be implemented to constructively employ multiple 

complementary actuators (e.g., magnetic fields to exert torques,221 tunable depletion 

attraction to quench final states)43 or be combined with other methods such as templated 

self-assembly (either unactuated48,222 or actuatable223). Based on our prior work on 

nanoparticle assembly,158 system size effects,112 and three dimensional assembly in 

electric138 and gravitational fields,224 our approach can also be adapted to: (1) smaller 

nanoparticles (with different sensors; e.g., attenuation based imaging,158,224 

scattering/diffraction),199 (2) larger systems either through continuous processing (rather 

than batch processing; e.g., a microfluidic device), parallelization (e.g., electrode 

arrays),225 or informing open-loop schemes (e.g., toggling),186  and (3) 3d crystals in thin 

films and possibly bulk crystals. 

Further extensions of the methods and analyses developed in this work could be 

applied to other nano- and micro- scale processes involving: anisotropic particles or multi-

component mixtures (with more states and bottlenecks), dynamical steady-states and out-

of-equilibrium end points (where a Fokker-Planck equation describes the dynamics rather 
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than a Smoluchowski equation), active micromachines and reconfigurable device elements 

(rather than static targets), and even synthetic materials systems that mimic basic control 

elements in biological systems (e.g., chaperone control of protein folding and 

aggregation).226 Our approach is based on first-principle concepts that are general to any 

molecular, nano-, or micro- scale assembly process where components thermally sample 

different configurations based on their relative free energies, states can be measured in real-

time, an actuation mechanism exists to alter driving forces, and a dynamic model connects 

system responses to actuator settings. 

In chapter 9, the results presented demonstrate that by tuning attraction in a 

colloidal sedimentation system via feed-back control, layer-by-layer controlled 

crystallization can be realized. In a finite system with different inter-particle attractions, 

equilibrium sediment structures, including dense fluid, inhomogeneous fluid-solid, and 

completely crystalline configurations can be achieved. Using a Lindemann-like parameter, 

Lc, to investigate the particle mobility near the growth front at equilibrium allows criteria 

to be established to detect dynamic arrested structures. A controller using Lc and Nc as 

sensors, and tunable attraction as an actuatoris been demonstrated to effectively control the 

crystallization process based on a simple thermodynamic model. The performance of the 

controller shows that a fast, low defect crystallization process requires a balance between 

the strength of thermodynamic driving force and the kinetic accessibility23,24.  

In this controller model, the tunable attraction may be realized by temperature 

dependent depletion attractions61 (though this is not an immediate actuator due to finite 

time heat transfer), or electric or magnetic field mediated interactions168 (which are 

immediate actuators but both require complex set-ups). To extend the system to controlled 
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continuous crystal growth, a particle feeding system can be added.  The key issue that still 

needs to be addressed in continuous colloidal growth is that particle transport kinetics 

strongly affect the concentration near growth front, thus increasing the factors governing 

particle crystallization. This issue might be addressed by employing a dynamical density 

functional approach247 to capture the density variation due to transport with a low-

dimensional dynamic model248 to capture the crystallization kinetics at the growth front. 

12.3 Advanced stochastic modeling methods 

In chapter 10, our results demonstrate the ability to accurately interpret and predict 

excluded volume effects between colloids with each other and topographically patterned 

surfaces in the presence of depletants with thermosensitive sizes. A new modeling 

approach is reported to numerically compute the excluded volume between colloids 

interacting with arbitrary surface geometries. This approach enables the computation of 

depletion attraction with local surface pattern features in the presence of depletants with 

varying dimensions. This method is used to match Monte Carlo simulations to experiments 

to model the temperature dependent density, free energy, and potential energy landscapes 

that determine non-close-packed colloidal configurations on periodic arrays of circular 

features. Ultimately, the ability to quantitatively understand the interplay of electrostatic, 

gravitational, and tunable depletion interactions on topographically patterned substrates 

provides a basis to design and control colloidal based reconfigurable materials and devices 

for micro- and nano- technologies. 

In chapter 11, we present a diffusivity calculation method and simulation method 

for colloidal rods motion near a planar wall. The method is adapted from Stokesian 

Dynamics method by modeling a rod-shape particle as a chain of touching spheres. The 
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calculated diffusivities for the sphere-chain rod is compared with the widely used 

cylindrical result from Tirado. A similar trend of diffusivities changing with rod’s aspect 

ratio is identified.  In this work, we have developed the CSD algorithm for simulating rod-

shaped particle suspensions with hydrodynamic interactions. We have simulated and 

analyzed two experiments: an isolated rod diffuses in bulk and above a planar wall. We 

have demonstrated that this algorithm can produce trajectories matched with an underlying 

theory for dynamic analysis and equilibrium analysis. The analysis procedure for MSTD 

and FEL is of practical importance for research on the experimental measurement of forces 

and motions for isolated  rods.294 Even though we only demonstrated the simulation 

techniques on the single particle level, we can readily extend to multiple rods simulation 

by including extra components of constraints, resistance tensors, and forces.   
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13 FUTURE DIRECTIONS 

 

This chapter presents several ongoing research projects, which are extensions or 

generalizations of current research projects in the previous chapters.  

13.1 Reinforcement learning for stochastic optimal control 

The dynamical programming principle used in Chapter 4,5,8 has computational 

complexity increasing exponentially with the dimensionality of the state space. Therefore, 

for systems with large state space, the dynamical programming based method will fail due 

to its prohibitive computational cost. In addition, dynamical programming method requires 

a proposed model to be calibrated first from the trajectory data. This requirement imposes 

two potential issues: (1) the real dynamical system might not be well described by the 

proposed model; (2) large amount of data will be needed if the number of model parameters 

are proportional to the size of the state space. Reinforcement learning based optimal control 

is a data-driven and model-free method designed to address issues of ‘curse of 

dimensionality’ and data inefficiency. 

   Using electric field mediated assembly in chapter 8 as the test model, we have 

the following setup: system state: 𝑠 = (𝜓6,  𝑅𝑔), action space: A consisting of low voltage, 

medium voltage and high voltage, and reward function: 𝑅 = −(1 − 𝜓6). The goal is to maximize 

the expected sum of discounted rewards along the whole assembly process by seeking an optimal 

policy  (the optimal policy specifies choosing the optimal action a  A given a system state s), 

given as 

 
0

max [ ( ) ]n

n

n

R s







E   (13.1) 
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 Different from dynamic programming approach, the reinforcement learning using 

a stochastic optimization method to solve Eq. (13.1). The algorithm needs a definition of a 

function Q: SR, given as 

 
'

( , ) ( ) max ( ' | , ) ( , )a

s S

Q s a R s P s s a Q s a


     (13.2) 

The reinforcement learning algorithm is given below as304 

Input:  greedy coefficient, and  learning rate 

Initialize Q(s, a) arbitrarily 

Loop (for each episode): 

Initialze s 

Repeat (for each step in an episode) 

    Choose a given s such that Q(s,a) is maximized with probability 1-  and choose a 

randomly with probability  

    Observe R and s’ from the model 

    Update Q(s,a) via: 

 '( , ) (1 ) ( , ) [ max ( ', ')]aQ s a Q s a R Q s a       (13.3) 

    Set s = s’   

End Repeat 

Until s is terminal 

 

Theoretically, after training infinitely number of episodes, 𝑄(𝑠, 𝑎) converge. Then 

the optimal control policy at s is given as a = argmax Q(s, a).  

Fig. 1 shows the assembly result of 100 trajectories starting from fluid state using 

reinforcement learning control vs. no control. The reinforcement learning algorithm can 
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steer the system around the grain boundary region (small Rg and 6); while the 

uncontrolled self-assembly process will get stuck there with around 30% of chances.  

 

Figure. 1. Optimal control colloidal assembly via reinforcement learning. (A) 100 

trajectories starting at (0.05, 20000) under optimal control via reinforcement learning.  (B) 

100 trajectories starting at (0.05, 20000) under direct deep quench using highest voltages. 

A B
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13.2 Multiple agent control framework for active assembly 

The multiple agent multiple target algorithm developed in Chapter 4 can be used to 

construct a new paradigm for self-assembly into arbitrary pre-designed structures. Fig. 2 

shows the optimal control of 90 self-propelled colloids into the pre-designed squared lattice 

structures. The process starts from initial configuration in Fig. 2A and ends with 

configuration in Fig. 2D. By optimizing over the kinetic pathways, the new assembly 

paradigm via multiple agent control algorithm has the ability to assemble into structure 

highly unlikely via equilibrium thermodynamics.  

  

Figure. 2. Optimal controlled self-propelled colloids for active assembly. (A) Initial 

configuration of self-propelled colloids. (B) Target sites with hexagonal closed packing 

order. (C) Trajectories of self-propelled colloids under multiple agent control. (D) Final 

configuration of self-propelled colloids. 

A B

C D
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