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Abstract

Speech production is one of the most intricate yet natural human behaviors

and is most keenly appreciated when it becomes difficult or impossible; as is

the case for patients suffering from locked-in syndrome. Burgeoning under-

standing of the various cortical representations of language has brought into

question the viability of a speech neuroprosthesis using implanted electrodes.

The temporal resolution of intracranial electrophysiological recordings, fre-

quently billed as a great asset of electrocorticography (ECoG), has actually

been a hindrance as speech decoders have struggled to take advantage of this

timing information. There have been few demonstrations of how well a speech

neuroprosthesis will realistically generalize across contexts when constructed

using causal feature extraction and language models that can be applied and

adapted in real-time. The research detailed in this dissertation aims primarily

to characterize the spatiotemporal relationships of high frequency activity

across ECoG arrays during word production. Once identified, these rela-

tionships map to motor and semantic representations of speech through the

use of algorithms and classifiers that rapidly quantify these relationships

in single-trials. The primary hypothesis put forward by this dissertation is

that the temporal profile of high frequency activity in ECoG recordings is
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a useful feature for speech decoding. These features have rarely been used

in state-of-the-art speech decoders, which tend to produce output from in-

stantaneous high frequency power across cortical sites, or rely upon precise

behavioral time-locking to take advantage of high frequency activity at several

time-points relative to behavioral onset times. This hypothesis was examined

in three separate studies. First, software was created that rapidly characterizes

spatiotemporal relationships of neural features. Second, semantic representa-

tions of speech were examined using these spatiotemporal features. Finally,

utterances were discriminated in single-trials with low latency and high ac-

curacy using spatiotemporal matched filters in a neural keyword-spotting

paradigm. Outcomes from this dissertation inform implant placement for

a human speech prosthesis and provide the scientific and methodological

basis to motivate further research of an implant specifically for speech-based

brain-computer-interfaces.
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The left-most panel shows the electrodes highlighted in red and

blue that were used to discriminate syllables. Only electrodes

highlighted in red were used to perform VAD. The center panel

shows the VAD performance in sensitivity (percentage of utter-

ance timings correctly identified) against the number of false

detections per utterance for various VAD thresholds. The right-

most panel shows ROC curves for all twelve keyword detectors.

ROC curves with AUC values were significant at the 95% con-

fidence interval are highlighted in red. The keyword detector

that produced the highest AUC is highlighted in bold-red and

indicated via annotation under the curves, followed by aster-

isks indicating significance at the p < 0.05 (*), p < 0.01 (**)

and the p < 0.001 (***) level with respect to the distribution of

maximum AUC models. . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Simulated VAD and KWS performance on the testing dataset.

On the left, the percentage of utterances correctly detected by

neural VAD is plotted against the number of false utterance de-

tections for all subjects in the study. On the right, performance

for all twelve keyword spotters from each patient are plotted. 129

xxv



6.6 High-gamma single-trial rasters for Subject 1. High-gamma

single-trial rasters across the reading task from four manually

selected electrodes in Subject 1. Trials, plotted along the Y axis,

were sorted first by the place of articulation for the consonant,
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onset time set to 0 seconds, denoted by a black vertical line

at the center of each raster. Color denotes the high-gamma

feature z-score normalized to a pooled pre-trial baseline period.

Activity in electrode a appears to represent a bilabial place of

articulation, whereas activity in electrode b appears to indi-

cate an alveolar place of articulation. Timing differences of

high-gamma activity relative to the voice onset time encoded
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Electrode c exhibited consistent high-gamma amplitude and

timing for all utterances; informing neural VAD but less useful
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6.7 Vowel-specific high gamma activity. Vowel-specific high gamma
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Chapter 1

Introduction

1.1 Overview

There are few behaviors more fundamental to our daily lives than speech;

we use the spoken word to communicate ideas and needs, and speech pro-

duction/perception is the communication channel with the highest bit rate

for information transfer. Word production has been investigated extensively

using non-invasive neural recording modalities, and speech decoding using

intracranial electrophysiology has shown great promise. Our burgeoning

understanding of the various cortical representations of language motivates

an investigation into the viability of a speech neuroprosthesis using implanted

electrodes.

Speech involves very temporally restricted processes that are difficult to

characterize in non-invasive recording modalities. The temporal resolution

of intracranial electrophysiological recordings, frequently billed as a great

asset of the modality, has been difficult to take advantage of using traditional

decoding approaches. Observation and quantification of language processes
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in streaming recordings with low latency and high specificity is a requirement

for cortical speech decoding. Prior studies that suggest development of a

real-time speech neuroprosthesis have relied upon non-causal methodology

and high trial counts to achieve statistically significant speech decoding, but

there have been few demonstrations of how well a speech neuroprosthesis

will realistically generalize across contexts when constructed using causal

feature extraction and language models that can be applied and adapted in

real-time.

To address this gap in knowledge and prepare for/inform an eventual neu-

ral implant targeting speech neuroprosthesis, this research aims primarily to

characterize the spatiotemporal relationships of high frequency activity across

electrocorticographic (ECoG) arrays. Once identified, these relationships

will be leveraged to understand both motor and semantic representations

of speech through the use of algorithms and classifiers that rapidly quantify

these relationships in single-trials. This approach is motivated primarily by

the dynamics of articulation, suggesting neural representations with intricate

temporal evolution patterns across spatially distributed articulator represen-

tations. The onset, duration and temporal profile of high frequency activity

in ECoG recordings is a useful feature that has seen little application in state-

of-the-art decoders, which tend to produce output from instantaneous high

frequency power across cortical sites, or rely upon precise temporal locking to

take advantage of high frequency activity at several post-stimulus time-points.

This research demonstrates that simply characterizing spatiotemporal relation-

ships of high frequency activity allows for the creation of clinically-relevant
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maps of language cortex, to the benefit of neurosurgical patient populations.

The research described in this dissertation further reveals that taking advan-

tage of these spatiotemporal relationships can yield a better understanding of

visual object semantics, and methodology that quantifies these relationships

within streaming ECoG recordings can be used to deploy a high sensitivi-

ty/specificity, low-latency neural keyword-spotting system.

1.2 Specific Aims

Aim 1: To determine how behavioral events are encoded by spatial and tem-

poral patterns of high frequency neural activity. This was accomplished

via the development of a signal processing system capable of performing

spatiotemporal functional mapping using causal methods amenable to real-time

computation. By modernizing aspects of BCI2000, a research and develop-

ment platform for brain-computer interfaces, experimental data collection was

standardized and functional maps were generated for clinical and research

purposes. This engineering effort resulted in clinically useful cortical mapping

software that was deployed across two medical institutions that was used to

create over 200 clinically useful cortical maps. The underlying framework that

supports this functional mapping software has been downloaded over 1300

times to date, and enables rapid development and iteration of brain-computer-

interfaces that are capable of taking advantage of state-of-the-art visualization

technologies.

Aim 2: To map visual semantic attributes of object to spatiotemporal fea-

tures of high frequency neural activity. Non-invasive neuroimaging studies
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have shown that semantic category and attribute information are encoded

in neural population activity. Electrocorticography (ECoG) offers several ad-

vantages over non-invasive approaches, but the degree to which semantic

attribute information is encoded in ECoG responses is not known. Using

semantic attribute encoding models, untrained objects were decoded with ac-

curacies comparable to whole-brain functional Magnetic Resonance Imaging

(fMRI), and we observed that high frequency activity at basal occipitotempo-

ral electrodes was associated with specific semantic dimensions (manmade-

animate, canonically large-small, and places-tools). Individual patient results

were in close agreement with reports from other imaging modalities on the

time course and functional organization of semantic processing along the

ventral visual pathway during object recognition. Temporal envelopes of high

frequency activity in ventral visual pathway were assessed for stability across

object representations and a neurosemantic decoder facilitating a speech neu-

roprosthesis was prototyped; demonstrating that while real-time decoding of

semantic representations is possible, additional representations of language

are necessary to provide a usable communication channel.

Aim 3: To discriminate speech using spatiotemporal matched filter tem-

plates in single-trials. As demonstration of a speech-based brain-computer-

interface (BCI), a two-step approach to perform neural keyword spotting was

evaluated. Neural spatiotemporal matched filters were created from mono-

syllabic (consonant-vowel, CV) keyword utterances: one keyword utterance,

and eleven similar non-keyword utterances. These filters were used in an

analog to the acoustic keyword spotting problem, applied for the first time to
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neural data. The filter templates were cross-correlated with the neural signal,

capturing temporal dynamics of neural activation across recorded cortical

sites. Neural vocal activity detection (VAD) was used to identify utterance

times and a discriminative classifier was used to determine if these utterances

were the keyword or non-keyword speech. Model performance appeared to

be highly related to electrode placement and spatial density. Vowel height (/a/

vs /i/) was poorly discriminated in recordings from sensorimotor cortex, but

was highly discriminable using neural features from superior temporal gyrus

during self-monitoring. The best performing neural keyword detection (5 key-

word detections with two false-positives across 60 utterances) and neural VAD

(100% sensitivity, 1 false detection per ten utterances) came from high-density

(2 mm electrode diameter and 5 mm pitch) recordings from ventral senso-

rimotor cortex, suggesting the spatial resolution and extent of high-density

ECoG arrays may be sufficient for the purpose of speech-based BCIs. The

causal, low-complexity algorithms that perform this keyword-spotting utilize

spatiotemporal relationships to extract discriminative temporal information

in single trials.

1.3 Organization

Chapter 2 of this thesis covers basic background information relevant to dis-

cussion of speech decoding from electrocorticographic recordings. Chapter 3

explains relevant methodology and algorithms, as well as details regarding

data collection. Chapter 4 explores the development of BCI2000Web and
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WebFM as a means of performing real-time spatiotemporal functional map-

ping. Chapter 5 details a study of semantic representations of visual object

naming in addition to a follow-up study of the stability of spatiotemporal

encoding between line-drawings and full-color image stimuli. Chapter 6

demonstrates keyword-spotting from neural recordings and how spatiotem-

poral relationships can be used to perform utterance spotting and keyword

discrimination in single trials. Chapter 7 discusses general conclusions and

the impact, novelty, and innovation of the work described herein. Appendix

A contains software descriptions and algorithm listings from Chapter 3 and 4,

and Appendix B contains supplemental figures for Chapter 5 and 6.
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Chapter 2

Background

Generation of speech from concept to motor coordination of the articulators

is thought to be primarily represented in the cortex of the brain (Indefrey

and Levelt, 2004). Semantic, lexical, pre-motor, and auditory representations

of speech are activated before the onset of acoustic speech, followed by the

generation of motor output for actuating the muscles of speech in the lips,

jaw, larynx, and tongue (Indefrey, 2011; Bouchard et al., 2013). The act of

recording biosignals from these cortical representations of speech for the

purpose of controlling a computer/voice synthesizer, or text transcription for

speech synthesis is referred to as a speech-based brain-computer-interface

(BCI), referred to as a “speech BCI” throughout this dissertation.

2.1 Motivation for Speech BCI

There are many applications for streaming decode of cortical speech repre-

sentations. Degeneration of the neural connections between the brain and

the muscles of articulation, particularly when caused by amyotrophic lateral
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sclerosis (ALS), can result in the complete inability to communicate, let alone

produce speech. This disease eventually leads to a “locked-in” state where

an alive and very conscious person is trapped in their own body; one that no

longer responds to volitional commands to move. Restoration of autonomous

communication for these individuals would lead to a dramatic increase in

their quality of life. Patient populations with an inability to speak due to

other causes may also be able to take advantage of a speech BCI to re-enable

speech-based communication.

In order for a speech BCI to have utility for these patient populations, it

must be more usable than existing alternatives. Eye-tracking technology can

enable a useful communication channel through the use of on-screen key-

boards or communication-panels, provided the user has volitional control of

their gaze direction. With coarse control of gaze direction, locked-in patients

can communicate through their caretakers using communication boards; the

caretaker sequentially points to responses on a grid and the patient can look

away from the board when the caretaker is pointing at the intended response.

Existing BCI technology such as the P300 speller, the mu-rhythm cursor con-

trol paradigm, and SSVEP interfaces enable a low-bandwidth autonomous

communication channel, with a record information transfer rate (ITR) of 5.3

bps (Chen et al., 2015), as opposed to the 50-60 bps ITR of natural speech

(Reed and Durlach, 1998).

There are also prospects for speech BCI beyond disabled patient popula-

tions. Automatic speech recognition (ASR) that functions with high accuracy

in the presence of acoustic masking would be useful for applications with loud
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background noise, particularly in space and military contexts. The presence of

subvocal EMG in the muscles of speech suggests that covert speech activates

these cortical motor representations similarly during overt and covert speech

(Mendes et al., 2008). As such, the ability to communicate using a brain-to-text

system could allow for covert conversation.

2.2 Functional Magnetic Resonance Imaging and
Optical Techniques

Speech and language neuroscience must be performed in humans, as there

are few comparative animal models of speech. As such, non-invasive neu-

ral recording modalities are typically employed as they allow a researcher

to recruit enough subjects to achieve statistical power. Functional Magnetic

Resonance Imaging, (fMRI) permits spatial sampling of the cortical surface at

millimeter accuracy, and shows neural activation as a function of blood-flow; a

feature known as Blood-oxygen-level dependent imaging (BOLD). As neurons

fire action potentials, their metabolic needs are facilitated through changes

in blood flow and blood oxygenation – of which BOLD is a direct measure.

BOLD tends to modulate slowly; most recordings are done with temporal sam-

pling around once per second. Optical techniques like functional near-infrared

spectroscopy (fNIRS) similarly measure this secondary metabolic signal using

photon absorption and reflectance without the need for an expensive MRI

setup. While these metabolic features can measure neural modulation corre-

lated with particular language processes or even articulation, and they were

used to identify areas and representations of interest to the studies in this
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dissertation, they do not modulate at rates compatible with real-time speech

decoding, limiting their applicability as a target neural recording modality for

this research.

2.3 Electrophysiology

Electrophysiology is the act of recording bio-electrical potentials that reflect

some underlying physiological process. Electroencephalography (EEG), there-

fore is the act of recording electrical potentials from the cephalon (the head).

The vertebrate nervous system uses electrical potentials to trigger cellular

mechanisms that perform computations, relay information, or regulate bodily

functions. The central nervous system is responsible for the majority of this

computation and coordination. Most importantly, the brain is the origin of

neural processing related to speech and word production. The history of

electrophysiological approaches to the study of the brain is far more exhaus-

tive than can be addressed in this dissertation, but a few electrophysiological

recording techniques are relevant for the development of speech BCI. These

techniques differ in the number of neurons they record from and the relevant

features that can be extracted.

In brief, when a neuron fires an action potential, the flow of positive ions

into the cell causes the extracellular space to be relatively negatively charged.

When a population of neurons is firing, these charge gradients are additive

and cause larger localized fluctuations in electrical potential. These electrical

potentials propagate with a finite velocity through an electrolytic medium

consisting of brain tissue, bone, muscle and skin to an electrode where they can
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be measured relative to a reference electrode. Electrophysiology is typically

amplified using operational amplifiers and digitized using an analog-to-digital

converter, also known as an ADC, which samples the amplified analog signal

at a regular rate. The potential at each electrode is measured relative to the

reference electrode and digitized into a frame; one sample for every electrode.

A minimal representation of an EEG recording is an array of unsigned integers

with the size (channels ∗ time) containing a time-series of EEG frames at a

specific sampling rate in ADC units. Useful metadata includes a vector of

integer offset values and a vector of floating point gain values used to convert

the ADC units into microvolts, a list of channel names corresponding to the

channels axis, and a sampling rate.

2.3.1 Scalp EEG

Scalp EEG is a non-invasive method of collecting neural electrophysiology.

Electrodes placed on the scalp in standard locations are used to measure

electric potentials, typically with respect to a mastoid or earlobe reference.

The international 10-20 system is used to reference the locations of these

electrodes with a standardized name. The spatial filtering properties of the

skull limits the channel counts of scalp EEG to 64 channels before approaching

spatial supersampling (Lantz et al., 2003). High density scalp EEG has shown

promise for source localization (Lantz et al., 2003), but the act of applying

conduction gel to more than 64 channels limits the utility and deployability

of such systems. These recordings are typically sampled at around 256 Hz

due to the fact that the skull and scalp filters the biopotential with a low
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pass characteristic, typically putting frequency features above 60 Hz below

recording threshold. Evoked responses can be localized roughly to specific

lobes of the brain using scalp EEG, and can be recorded with a sufficient

signal-to-noise ratio so as to permit ERP-based BCI like the P300 speller and

SSVEP-based interfaces (Lotte, Bougrain, and Clerc, 2015). Low-frequency

rhythms like the alpha or mu rhythm can be observed in scalp recordings from

occipital and motor areas, providing some spectral-based BCI functionality as

well (Pfurtscheller and Silva, 1999).

2.3.2 Spike and Multi-unit Recording Devices

Implanted and invasive electroencephalography can take many forms. His-

torically intracranial recordings had an emphasis on recording spikes from

single-unit or multi-unit-activity; extracellular recordings in close proximity

to a few neurons (“units”). A recent device that has been used to record multi-

unit activity is the cortex-penetrating micro-electrode array (MEA) known as

the “Utah” array (Maynard, Nordhausen, and Normann, 1997); a device that

stabilizes and facilitates acquisition of spike-recordings for BCI purposes as a

replacement for traditional microwire recordings. Spike detection/sorting can

extract neural firing rates from these time-series recordings; a useful feature

with high time precision and behavioral sensitivity. The spatial extent of these

recordings are typically limited, which is not a problem with highly localized

neural activity relating to hand and arm movements (Hochberg et al., 2006).

Speech and language representations tend to have a much larger spatial extent,

covering several lobes, limiting the application of these techniques for speech
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decoding.

2.3.3 Electrocorticography (ECoG)

ECoG is realized by placing an array of non-penetrating electrodes on the

surface of the brain, typically subdurally using a craniotomy. There are two

primary factors that are varied in electrocorticography – the exposed electrode

area is directly related to the size of the neural population recorded, and

the electrode pitch is related to the spatial sampling frequency. Standard

ECoG array implants consist of a 64 channel grid of electrodes with 2 mm

exposed diameter and 1 cm pitch. Recently, increasing channel counts and

an interest in higher spatial sampling has led to the development of a 128

channel grid of electrodes with 1 mm exposed electrode diameter and 5 or

3 mm pitch (also known as high-density “HD” ECoG). These high density

arrays sample with much higher spatial resolution and capture neural activity

that would exist between recording sites on a standard ECoG array. Micro-

ECoG arrays consisting of 16 surface microwires with 75 um diameter and

1mm pitch have also been investigated throughout this research – a recording

modality with limited spatial extent, but spatial resolution that approaches

spatial supersampling at the cortical level (Slutzky et al., 2010).

ECoG – even at the micro-ECoG scale – does not capture spiking activity;

the signals are more closely related to “local field potentials” as recorded by

microwire recordings (Kellis et al., 2010). The population activity in ECoG

recordings contains the frequency-specific features of scalp EEG with ad-

ditional frequency resolution to observe high frequency (70+ Hz) activity.
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Modulation in high frequency activity, also called “high gamma activity” is

correlated with neural firing rates in the underlying cortex (Ray et al., 2008),

and modulation of high gamma power (70-110 Hz), z-scored to a resting base-

line period tends to be used as the neural feature of choice in these recordings.

2.3.4 Neural Features

Traditionally, time-series electrophysiology was used as the input feature to

models; repeated averaging across trials of the raw EEG yields a temporal

waveform referred to as an evoked response potential, or ERP. Components

of these evoked responses including their amplitude, and timing of their

peaks has been used to evaluate models and test hypotheses about speech

and language, with a well constructed paradigm. These ERPs are easy to

measure using scalp recordings because the dominant features of an ERP are

primarily low-frequency in nature. Frequency features are most-commonly

used in ECoG recordings. Isolation of high gamma activity in particular has

repeatedly appeared as the most useful feature, even in studies where other

frequencies have been investigated.

2.4 Cortical Representations of Speech/Language

Indefrey, 2011 performed a meta-study on a large number of studies pertaining

to picture-naming tasks. They characterized the cortical process of speech

output from picture input as several processes that occur within specific time

ranges relative to picture onset, in particular cortical locations (Indefrey, 2011).

Semantic, auditory and motor representations are of great interest to the
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research discussed in this dissertation.

2.4.1 Semantic

Within the context of Indefrey, 2011, a semantic representation is present

shortly after picture presentation. The cortical representation of this seman-

tic access has been well investigated in FMRI by two high-impact studies.

Mitchell et al., 2008 presented line drawings from twelve categories to subjects

during a fMRI imaging sequence during which they were asked to rehearse

mental imagery for several seconds. Nouns were transformed into their vec-

tor representation within a 218 dimensional semantic space, and a mapping

between BOLD values in voxels and semantic dimensions was regressed. The

model showed statistically significant generalization to held out objects in

rank-accuracy statistics, indicating that the semantic space captures some

aspect of neural semantic dimensions, and that the regressed model can be

used to transform neural representations into a semantic representation. This

particular work was foundational to the second aim of this thesis; which

aimed to perform the same study using the temporal resolution of ECoG as a

trade-off for the spatial resolution of fMRI.

Huth et al., 2016 investigated neural activation with significant correlation

to semantically loaded stories. They did this by first replaying two hours of

stories to subjects in an fMRI scanner. They calculated co-occurrences between

semantically loaded words within the story and 1000 manually selected words.

BOLD was regressed onto these time-varying word-loadings, forming an en-

coding model capable of predicting BOLD activity given a semantic vector.
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Time-varying semantic loadings were generated from a held-out test story

and used to predict bold activity. The correlation between these sequences

was used to map areas of the brain where semantic activity can be used to

statistically significantly predict neural features. This influential research

indicated wide-spread semantic representations, and decomposed these se-

mantic loadings into interpretable principle components of neural semantic

activations.

Targeting a semantic representation of language for real-time decoding

is difficult for several important reasons. It may not be possible to perform

a linear transformation of a neural feature vector into a semantic manifold

unless the semantic space used for the regression captures what is neurally

relevant for a semantic representation. There have only been attempts to

map neural activation to semantic spaces based on intuition or text corpora; a

neural semantic space has not been investigated, and is unlikely to generalize

across subjects. Furthermore, imaging studies indicate the representation

of semantics is broadly spread throughout the cortex bilaterally (Huth et

al., 2016), and with ECoG we tend to only sample a small portion of one

hemisphere. The temporal encoding of semantics in ECoG recordings is yet

unknown, which is explicitly addressed in a study described in Chapter 5.

Assuming a decoder can actually produce meaningful semantic informa-

tion from single trials of ECoG data, it stands to reason that this content is

only encoding the semantic loading of a thought, or a portion thereof, and

cannot be sequenced into a meaningful sentence without syntax and noun-

verb relationships; thought to be calculated temporally later and in a different
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cortical location. Furthermore, it has not yet been shown that these semantic

representations exist outside the context of extrinsic stimulation - all studies

of semantic representations to date have addressed the concept of receptive

semantics, and have not probed semantic representations in produced speech.

Semantic representations have not even been shown to be modality indepen-

dent; that is to say that a picture of a dog may evoke an orthogonal semantic

representation to the word dog, either visually or aurally presented.

Semantic decoding using electrocorticography has been approached in a

few existing studies. Liu et al., 2009 investigated visual object recognition,

showing that object category information could be decoded from single trials

of ECoG recordings from temporal and occipital lobe, suggesting the presence

of visual-semantic integration in these areas is tied to semantic-category recog-

nition. Wang et al., 2011 confirmed this result by predicting object category

from single trials using response-locked high gamma activity in left inferior

frontal gyrus and posterior STG. Chen et al., 2015 observed that stimulus-

locked activity in ventral temporal lobe encodes semantic representations

that are uncorrelated to the visual similarity of the images presented, while

simultaneously controlling for the phonological similarity of the names of

the objects shown. These studies were motivation for an investigation for a

speech-BCI based on semantic representations, detailed further in Chapter 5.

2.4.2 Motor

Motor representations of speech are a bit more concrete. Sensorimotor cortex,

consisting of M1 located in precentral gyrus and S1 located in postcentral
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gyrus consist of neural populations whose firing rates correspond to activity

in individual muscles, and sensory afferents, respectively. The most ventral

aspect of sensorimotor cortex, vSMC, encodes sensory and motor represen-

tations of speech articulators and the vocal tract. Activity in this part of the

brain directly corresponds to movement and sensation within the vocal tract

and speech decoding from neural features in area alone has been shown to be

possible.

Bouchard et al., 2013 investigated this area in a 2013 study using high

density ECoG arrays, showing that the neural representation of articulators is

present in motor cortex at a fine-scale, and principle components of this activity

can be decoded into a neural state-space that directly encodes consonant-

vowel syllable gestures. Mugler et al., 2014 first classified all english phonemes

from vSMC, then in a follow-up study, suggested that although neural activity

in this area of the brain is correlated with discrete aspects of articulation

such as phonemes, the actual encoding is more related to the trajectory of

articulators – such as the aperture of the vocal tract and the tongue height,

etc (Mugler et al., 2015). This prior work strongly suggests that if vSMC is

spatially sampled at a sufficient resolution, it may be possible to decode speech.

This said, there have been very few studies that explore speech decoding in

single-trials - instead showing that neural features averaged across repeated

words can be used to discriminate articulations with statistical significance.

18



2.4.3 Auditory

Auditory research has a richer tradition in neuroscience with more animal

models and basic science that has informed and characterized the low level

aspects of audition through primary auditory cortex. It is non-intuitive that

auditory representations are even relevant for decoding speech production –

a significant part of producing speech involves self-monitoring and feedback-

based control. It has repeatedly been shown that distorting or changing

auditory feedback during speech can involuntarily alter speech production

(Houde and Jordan, 1998). In fact, the dynamics of speech production are so

rapid that the sensory processing streams responsible for monitoring these

dynamics are simply not fast enough to form a stable control system without

some form of forward modeling (Houde and Jordan, 1998). The existence of

an auditory efference copy is actually the topic of active research and may

in-fact form the basis of internal monologue or covert speech.

Hickok and Poeppel, 2007 have thoroughly reviewed the auditory litera-

ture for speech processing in humans. The dual-stream model they propose

and characterize is the result of a comprehensive meta-analysis of decades

of research in auditory neuroscience. Mesgarani et al., 2014 was the first

to explore the phonemic representation of perceived speech along superior

temporal gyrus using ECoG. These representations are thought to be intact for

self-audition, though they may be repressed slightly in a phenomenon known

as speech-induced suppression, or SIS. It may be necessary to decode auditory

representations of speech during self-audition in order to produce a usable

speech BCI. Unfortunately, they are not typically selective for self-monitoring
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of speech, and will also be active for perception of extrinsic speech.

Several ECoG studies have detailed auditory representations of speech are

captured by the population-level activity resolved by ECoG. These studies

observed that the STG exhibits a distributed population response in the high

gamma band (70 – 150 Hz) to continuously perceived speech with a robust

anterior-posterior spatial distribution of spectrotemporal tuning encoding

acoustic cues in a nonlinear fashion and a combination of cues (Mesgarani

et al., 2014; Hullett et al., 2016). In particular, the posterior STG is more highly

tuned for temporally-fast-varying speech sounds with relatively constant

energy across the frequency axis (i.e., low spectral modulation), whereas the

anterior STG is more highly tuned for temporally-slow-varying speech sounds

with a high degree of spectral variation across the frequency axis (i.e., high

spectral modulation)(Hullett et al., 2016). Together, these studies suggest

that ECoG adequately captures spectrotemporal tuning of the STG to speech

organized by acoustic features rather than by discrete phoneme categories.

2.5 Speech Decoding

Attempts to decode speech from streaming neural recordings are few and

far inbetween. Guenther et al., 2009 was one of the first to control a real-

time speech synthesizer to select vowels using an invasive glass neurotrophic

electrode. They were able to increase the subject’s accuracy by 25% (from

45% to 70%) and decrease his average endpoint error in a block paradigm

by 46% using auditory feedback from the decoded sound, suggesting that

feedback may be key to successful speech BCI training. Brumberg et al.,
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2011 demonstrated this interface works similarly with “intended speech” in a

follow-up study by providing basic speech control to a subject with locked-in-

syndrome.

The Herff et al., 2015 “Brain-to-Text” system was the first demonstration

of statistically significant ECoG-based speech decoding, by transcribing overt

speech production from widely distributed brain areas directly into text with

word and phone error rates ranging 25 to 60% and 50 to 80% for vocabularies

ranging 10 to 100 words respectively (all significantly above chance). Though

the performance was modest, this study served as a useful benchmark to

understand how performance might scale with increasing vocabularies. Ad-

ditionally, follow-up analysis demonstrates that these above-chance results

extend to decoding using only pre-phonatory activity, a rough analog for

decoding covert speech intention (Herff et al., 2017). The distinction between

covert and overt representations of speech are still debated with many ongoing

studies attempting to address these differences.

2.6 Covert and Overt Speech

Several ECoG studies explicitly study the relationship between overt and

covert speech. Magrassi et al., 2015 observed highly correlated high frequency

neural activity present prior to articulation in both overt and covert reading,

while Brumberg et al., 2016 observed that this activity progresses from the

speech motor areas in ventral precentral gyrus and Broca’s area to auditory

speech areas in the middle temporal gyrus (MTG) and middle and posterior
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STG (including the A1 and Wernicke’s area) during both conditions. Addi-

tionally, Martin et al., 2014 observed that a model built to reconstruct auditory

speech features in overt speech could reconstruct these same features in covert

speech. These results suggest a shared auditory and articulatory substrate

between overt and covert speech with a spatiotemporal progression of activity

aligned to speech production.

However, further studies suggest a differential contribution of auditory

and articulatory areas to overt and covert speech production over time. In an

MEG study by Tian and Poeppel, 2010, it was observed that overt and covert

speech articulation are fundamentally different but that overt and covert per-

ception are highly similar. Specifically, they observed that activation during

covert articulation extends to posterior parietal areas rather than the motor cor-

tex, as in overt articulation, but that auditory activation in bilateral temporal

areas is present during both overt and covert speech perception. Interestingly,

covert speech articulation also displays an “auditory-like” response following

articulation highly similar to that observed during hearing, suggesting the

presence of an “efference copy,” a feed-forward prediction of the perceptual

outcome of an action.

These findings were supported in ECoG studies by Pei et al., 2011b and

Leuthardt et al., 2012, in which both overt and covert repetition tasks using

both auditory and visual cues (4 combinations) were performed. In these

studies, areas within the STG, including the planum temporale within the A1

(BA41/42) and Wernicke’s area (BA22), showed more pronounced activation

during covert speech than in the M1, with some disagreement about the
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premotor cortex. However, the disagreement about the premotor cortex was

elucidated in ECoG studies by Pei et al., 2011a and Ikeda et al., 2014 wherein

phonemes were studied in isolation. High gamma activity (70 – 110 Hz) in the

premotor cortex and the STG contributed most to decoding performance for

covert speech.
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Chapter 3

Common Methodology and Data
Recording

This chapter details some of the methodology and aspects of signal processing

that are common to ECoG recordings throughout this dissertation; some of

these methods are referenced in later chapters. This chapter first describes

technical details of electrophysiological data recording and the hardware/-

software used to acquire usable data. Methodology for localizing cortical

electrode locations is discussed, as well as some of its limitations. A break-

down of state-of-the-art ECoG pre-processing and feature extraction concludes

this section.

3.1 Electrodes and ECoG Arrays

A great deal of innovation in the configuration and density of cortical electro-

physiology has occurred throughout this thesis work. Electrocorticographic

recording devices consist of an arrangement of platinum-iridium electrodes
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embedded in a flexible medical-grade silicone rubber, or “silastic”. Platinum-

iridium is chosen as the electrode metal of choice due to its ability to facilitate

electrical stimulation without deposition of biologically toxic ions into the

underlying neural tissue. The exposed electrode area and inter-electrode spac-

ing are under a great deal of variability in current devices. Exposed electrode

area is directly related to the size of the neural population sampled by the

electrode, with larger electrodes recruiting responses from larger amounts

of neural units. Decreasing the inter-electrode spacing increases the spatial

density of sampling in the array, but decreases the extent of coverage. Striking

an optimal balance of spatial density and extent is key to observing neural

signals of interest, especially when it comes to the widespread activation

during speech and language.

3.2 Data Recording

Acquisition of electrophysiological data was performed by the signal-source

module of BCI2000. The two amplifiers used throughout this work were not

natively supported by the BCI2000 software at the time, so custom acquisition

code had to be written to interact with these amplifiers. The relevant code is

provided in Appendix A.

3.2.1 Blackrock Neuroport

The Blackrock Neuroport System (Blackrock Microsystems, Salt Lake City, UT)

is a 128 channel amplifier with 16 bit ADCs and a native 30 kHz sampling rate.

The system consists of a front-end amplifier which is powered separately from
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a neural-signal-processor (NSP) with which it communicates via a full-duplex

fiber optic link. The front-end amplifier digitizes the analog recordings and

transmits raw data to the NSP for downsampling and filtering prior to UDP

multicast broadcast to an acquisition PC. The acquisition PC runs a software

called Central that is capable of communicating to the NSPs over an ethernet-

based network interface for configuration, acquisition, spike processing, and

data recording. Blackrock provides a C/C++ API called “cbsdk” that was used

to communicate to the Central software using a shared-memory interface for

acquisition of the raw electrophysiology. An acquisition module was written

that uses this API to acquire data in a real-time compatible way from the

Blackrock hardware/software; reproduced in its entirety in Appendix A, but

also released as part of the BCI2000 project as a signal source contribution.

This amplifier supports a number of sampling rates, but most recordings from

this amplifier utilized the 1000 Hz sampling group.

Recent EMU patients have had more than 128 electrodes implanted, so

a second neuroport was used to acquire additional synchronized data, for a

total of 256 channels. A buffered signal splitter was used to split the signal

from the clinical acquisition system and route it into the Blackrock system

without affecting the clinical data. ECoG micro-arrays required high input

impedance to minimize signal distortion; the Blackrock system has a 10 GΩ

input impedance, as opposed to the 200 MΩ input impedance of the clinical

system, so these electrodes were not split, and were instead directly acquired

by the Blackrock system. This system was used solely for research purposes,

and did not affect clinical data collection.
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3.2.2 Nihon Kohden Neurofax EEG-1200

The EEG-1200 (Nihon Kohden, Tomioka, Japan), is an electrophysiological

recording system; the included JE-120-256 amplifier has 16 bit ADCs and

a native 10 kHz sampling rate. The amplifier streams digitized samples

using a proprietary network protocol over ethernet to a recording computer

running the Neuroworkbench software. Although this system was installed

as the clinical recording system, a read-only data stream was also made

available at a 2 kHz sampling rate. This “research stream” can be acquired in

real-time using a shared-memory interface through the use of a proprietary

dynamic-link library. A source module for acquisition from this interface was

written for BCI2000 and has been reproduced in its entirety in Appendix A,

but also has been released as part of the BCI2000 project as a signal source

contribution. As mentioned previously, this amplifier was deployed as the

clinical recording system. A buffered splitter box connection terminal was

used to electrically split the analog signal into the Blackrock neuroport system

for research purposes.

3.2.3 Practical Considerations and Limitations

Both of these amplifiers were recording AC-coupled signals with a high pass

characteristic around 0.5 Hz. Although DC coupled recordings could be use-

ful for characterizing absolute voltage differences, most clinical amplifiers

do not perform DC recordings to avoid clipping signals with large DC off-

sets. Another important consideration is that these amplifiers tend to reserve

around six bits of recording headroom to avoid saturating the ADCs and
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clipping during large spiking events. As such, these recordings tend to be

captured with about 10 bits of resolution. The “pink noise” nature of biological

recordings leads to a falloff of signal amplitude with respect to the inverse

of its frequency; also known as a “1/ f ” characteristic (Bédard, Kröger, and

Destexhe, 2006). The amplitude of “high gamma” signals between 70 and

110 Hz within these recordings tends fluctuate with around 5 bits of resolu-

tion in these recordings, which is sufficient for observing modulation of high

frequency amplitude changes, but our ability to resolve high frequency sig-

nals reaches a so-called “noise-floor” around 250 Hz in recordings from these

amplifiers. Higher frequency signals could exist in these recordings, but our

ability to resolve these phenomena is limited given the circumstances. In an

effort to conserve space and decrease processing time in accordance with the

aforementioned considerations, recordings were temporally downsampled to

1 kHz prior to prior to logging in a data file.

3.3 Electrode Localization

Electrodes were localized to cortical locations by co-registration of a pre-

operative nuclear magnetic resonance image (MRI) with a post-operative

computed tomography (CT) scan. The pre-operative MRI captures the undis-

turbed cortical anatomy with great detail and high resolution, free of imaging

artifact from implanted metal electrodes. The postoperative CT is a high

resolution scan with the same anatomical landmarks as the preoperative MRI,

but with high resolution detail of the electrode locations. A linear transfor-

mation from the post-operative space to the preoperative space can map the
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electrode positions to the preoperative MRI space for visualization on a skull-

stripped MRI. This process is mostly automated and was carried out using

two purpose-built software packages; Bioimage Suite (Papademetris et al.,

2006) and Freesurfer (Fischl, 2012). Bioimage Suite works primarily with

volumetric images whereas Freesurfer performs a meshing operation on the

cortical surface, creating a triangularized mesh for efficient rendering. This

method of capturing brain anatomy is less optimal for visualizing electrodes

implanted within the brain, but is sufficient for localizing which region of in-

terest an electrode may be recording from. Reconstructions in this dissertation

were performed using volumetric imaging methodology from Bioimage Suite,

primarily for clinical reasons.

3.4 Signal Processing

Common signal processing and filtering of intracranial EEG is detailed below.

These methods are used throughout the studies detailed in this dissertation,

but should not be considered as the standard methodologies for feature ex-

traction in ECoG.

3.4.1 Preprocessing

After electrodes are implanted, there are typically a number of electrodes

that contain significant noise or do not produce usable electrophysiology.

There are a variety of physiological and engineering reasons why this can

happen, including: placement of an electrode over a blood vessel; distance

between the electrode and the cortex occupied by cerebral-spinal fluid, blood,
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or air; mechanical failure of the wire connecting the electrode to the amplifier;

placement over ictal cortex with repeated spiking behavior; and many other

less common occurrences. The recorded signals are typically inspected by a

neurologist and channels containing artifact or noisy signals are identified as

“bad” channels, and excluded from further analysis.

3.4.1.1 Common Average Reference

Voltage potentials are recorded as a differential measurement between two

electrodes. Traditionally a DC recording measures the potential difference

between the electrode of interest and a ground electrode which is defined

to be 0 volts. AC coupled recordings tend to make measurements relative

to a reference electrode. In ECoG recordings, this reference electrode can be

chosen as any other ECoG electrode or an external reference. In many of the

recordings used in this dissertation, a skull-facing strip of four electrodes

was implanted, and one of the electrodes on that strip was used as a refer-

ence. Another common choice for a reference electrode is a “silent, distant”

electrode, typically located on a strip in non-primary cortex. Any artifact or

neurophysiological change that causes a disturbance at the reference electrode

will be observed in all channels that are referenced to it. A “common average

reference” or CAR spatial filter is typically applied to remove common-mode

noise across a collection of channels. This simple spatial filter is simply a

subtraction of the mean signal, or the “common signal” from a group of chan-

nels. Typically, channels are split into a number of subgroups or “CAR blocks”

relating to the underlying reference configuration or signal quality, and bad

channels are excluded from these blocks. Design of a CAR filter is not always
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straightforward and draws upon experience and a good understanding of

electrophysiology.

3.4.2 Feature Extraction

Although evoked response potentials and other time-domain features can

be extracted from ECoG signals, spectral features tend to be used frequently.

Feature extraction in ECoG recordings typically involves short-time extraction

of 70+ Hz bandpower. Modulation of this feature during behavioral periods

is typically z-scored with respect to a baseline period. The most popular

methods for extraction of spectral content have different parameters, even

though they are mathematically equivalent (Bruns, 2004).

3.4.2.1 Discrete Fourier Transform

The discrete fourier transform is a simple and effective method for decompos-

ing a “stationary” signal into its spectrum. The fast fourier transform is an

efficient implementation of the discrete fourier transform. While the nature

of electrophysiological recordings is anything but stationary, the method can

be applied over short windows wherein stationarity is assumed. Shifting this

window in time and recalculating a new spectrum results in a “spectrogram”

which is a measure of the frequency content in the signal over time. The length

of the window input to the FFT is directly related to the frequency resolution

and the temporal shift of said window controls the temporal resolution.
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3.4.2.2 Hilbert Spectral Analysis

Another way to determine the amplitude of high frequency power is to esti-

mate a projection of the real-valued signal into its complex-valued analytic

representation (which cannot be observed) and then calculate the instanta-

neous magnitude of that signal. The hilbert transform is a way to create an

analytic signal that can be decomposed into instantaneous magnitude and

phase for the purpose of characterizing band power in the native time-base

of the input signal. This is accomplished in practice by applying the fast

fourier transform to a filtered time-series with limited bandwidth, setting all

negative frequency coefficients to zero, then performing an inverse fast-fourier

transform. This method is used frequently to extract high gamma activity

from ECoG recordings because it generates neural features with the native

time-base of the input ECoG data, with associated phase values from which

an instantaneous frequency can be calculated, with seemingly no parameters

to tune.

Methodologically, there are a few considerations when applying the hilbert

transform to ECoG data. Firstly, the hilbert transform is typically imple-

mented with an FFT over the entire time-series, typically spanning several

high frequency events, which violates the stationarity assumptions FFT makes

about its input. Second, the there are infinite analytic representations of any

particular real-valued signal. The hilbert transform generates a non-unique

analytic signal which may not accurately portray the underlying phenomena

that generated the observed signal. Finally, and most importantly, the com-

monly held belief that this method has no parameters is strictly untrue, as
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the temporal evolution of the resulting amplitude is directly related to the

bandwidth of the input; the higher the bandwidth of the input signal, the

faster the amplitude modulates. This result is particularly problematic for

phase-amplitude-coupling research that uses this method for extracting low

frequency phase and high frequency amplitude.

3.4.3 Segmentation and Baseline

Synchronized behavioral data are recorded with the electrophysiology and are

typically used to align behavioral events with neural features. “Baseline” mod-

ulation distributions can be calculated from periods where the subject is awake

and not moving, speaking, or thinking about anything. Spectral log-power

features are typically z-scored to this baseline distribution per-frequency and

electrode. This log-transform changes the distribution of power values into a

more gaussian distribution which better matches the assumptions of statistical

tests. Frequency features within the high gamma band are then averaged to-

gether to produce one time-varying neural activation vector for each channel

across time. Microphone input, typically sampled synchronously with the

electrophysiology, can be thresholded for voice-onset timings. BCI2000 injects

digital time-markers into the recorded files for when stimuli appear on-screen.

This information can be used to segment trial and response periods for the

creation of spatiotemporal maps; a process which is described in detail in

Chapter 4.
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Chapter 4

Characterization of Spatiotemporal
Relationships in Real-Time

This chapter was submitted as a technical communication to a special issue of

Frontiers in Neuroscience on electrocorticographic brain-computer-interfaces,

and as of the time of writing this dissertation, is still under review.

4.1 Introduction

A brain-computer interface (BCI) is a system that translates brain activity into

control signals for a computer. Modern incarnations of BCIs rely on rapid and

low-latency brain signal acquisition, preprocessing, feature extraction, clas-

sification and/or regression, and frequently, postprocessing of the resultant

control signal. In the case of closed-loop BCI, some form of visual or auditory

feedback is given to the user to inform them of their control performance,

typically requiring a low round-trip latency from signal acquisition to output.

BCI development typically requires performant implementations of data ac-

quisition and signal processing algorithms, high precision synchronization of
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external device telemetry, and typically, control of external software, requiring

inter-process control or device input emulation.

These technical requirements make the development of software for this

purpose extremely challenging; however, there are a number of existing soft-

ware platforms that bootstrap this development endeavor. BCI2000 (Schalk

et al., 2004) has been a standardized research platform for BCI development

for the last 15 years; it has been used by over 400 labs, and has been cited in

nearly 2,000 publications as of the time of writing this article. OpenViBE is

another platform that has been developed to support real-time BCI research,

offering a graphical programming language for signal processing and visual-

ization (Renard et al., 2010). Additionally, a low-level communication protocol

supporting signal acquisition and synchronization, called LabStreamingLayer,

allows for TCP network streaming and synchronization of multi-modal data

streams (Kothe, 2016) and could form the foundation of a BCI platform.

Simultaneous to the development of the aforementioned software, web-

based applications have become increasingly prevalent, with browser software

serving as a universal platform for execution. Web browsers—which have

seen remarkable technological advancements in the last decade—are gaining

adoption across all device classes because they enable interaction with content

that has been authored using uniform standards for delivery and functional-

ity. The demand for web apps that are capable of advanced rendering and

computational feats is growing, and browsers are becoming increasingly pow-

erful to meet this demand. Recent advancements in browser technology and

standards have even opened up direct access to low-level system resources
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such as graphics hardware and accelerometry/system sensors. Application

programming interfaces (APIs) have exposed this hardware and software func-

tionality via easy-to-use yet powerful and performant Javascript packages.

Network-enabled services also implement publicly available APIs that allow

developers to call upon remote computational resources, such as Amazon

web services (AWS), or to query information from vast databases of indexed

knowledge, such as Wikipedia and Google Image Search. Moreover, many

libraries supporting visual presentation of user interfaces and data visualiza-

tions have been developed. For example, d3.js (Bostock, 2012) has been used

to power interactive data visualizations with impressive performance and an

expressive yet functional API.

Many of the technologies readily available in the modern web browser

would be useful to have available for the development of a modern BCI—for

example, the ability to tag data in real-time with a speech transcription, or the

ability to present stimuli in 3D using a virtual reality headset. Existing BCI soft-

ware suites generally provide some amount of interprocess communication,

typically exposed via user datagram protocol (UDP) or shared memory. How-

ever, browsers do not typically allow web apps to access UDP natively due

to security concerns; further, existing communication schemes like BCI2000’s

AppConnector interface do not scale well to high data volumes, like those

required to transmit human electrocorticography (ECoG) signals. Modern

browsers implement a protocol built on top of TCP called WebSocket (Fette,

2011) that allows an HTTP client to escalate an existing connection to a gen-

eral purpose real-time bidirectional binary/ASCII communication interface.
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WebSockets are perfectly situated to facilitate the transfer of raw brain signals,

extracted neural features, and processed control signals from a BCI software

suite to a web app on a browser-enabled device, as well as the transfer of

auxiliary sensor information from the web app back to the native software

suite, all in real time.

In this article, we present an implementation of the aforementioned in-

terface on top of the BCI2000 ecosystem. We demonstrate the utility of this

new interface with an example application that shares many technical require-

ments with a BCI: a cloud-based ECoG functional mapping tool capable of

visualizing cortical activation in real-time at the bedside or in the operating

room, and of storing the results from multiple centers in a centrally-hosted

repository for review.

4.2 Design and Implementation

We chose to build our BCI WebSocket interface on top of BCI2000 as opposed

to the other aforementioned technologies for many reasons, including support

for acquisition devices in common use within epilepsy monitoring units and

EEG research lab settings, high performance spectral extraction implemen-

tations, pedigree within the research community, highly accurate stimulus

presentation capabilities, comprehensive documentation, and its ability to

replay experimental sessions post hoc easily and accurately.

The BCI2000 environment is a general-purpose computational framework,

typically used to construct BCIs, built upon four binary executables: the signal

source module, which acquires electrophysiology from a supported amplifier;
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the signal processing module, which extracts neural features and transforms

those features into control signals; an application module, which reacts to

those control signals and provides feedback to the subject; and an Operator

module, which orchestrates the behavior of all three functional submodules

of the system (see Figure 4.1). Signals propagate from the source module

to the processing module to the application module, with interconnections

facilitated by a network-based protocol (in older versions of BCI2000) or a

shared memory interface (in more recent iterations). Each of the modules

consists of a series of signal “filters”, which accept an incoming signal (as

a channels-by-elements array) and output a derived signal, potentially of

different dimensionality. A built-in Operator scripting language allows for

setup and configuration of filters within an experimental session to occur

automatically, and a Telnet interface exists in the Operator module, capable of

accepting textual commands in the Operator scripting language from outside

BCI2000.

BCI2000Web is a module that accepts Operator scripting language com-

mands via WebSocket and transmits them to the Operator executable via

Telnet, returning system output back to the client. It is primarily used to

control data acquisition and signal processing parameters remotely via a con-

nected WebSocket-enabled client, typically a browser. BCI2000Web has been

developed as a service that runs within the Node.js runtime. Upon starting,

it opens a Telnet connection to the Operator module and also functions as a

basic HTTP server. While BCI2000’s Telnet implementation only supports one

client sending one set of instructions that are executed serially, BCI2000Web
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Figure 4.1: BCI2000Web System Diagram. A full BCI2000 stack including a Signal
Source, Signal Processing, Application, and Operator module communicates with
BCI2000Web, implemented as a Node.js module, via Telnet. Browser-based remote
control software and visualization tools interact with BCI2000Web, and receive raw
and processed neural signals directly from the BCI2000 system modules, via Web-
Sockets, while the application module presents stimuli to the patient, in this case, the
word stimulus “HEALTH” for a word reading paradigm.
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provides an interface that allows multiple clients to send commands to the Op-

erator module; these commands are queued and executed sequentially, with

responses sent back to the appropriate client asynchronously. BCI2000Web

is capable of interfacing with an unmodified BCI2000 distribution and auto-

mates system configuration without any further software or modifications to

BCI2000 modules.

The raw and processed signal is never sent directly to the Operator module,

so the signal can only be transmitted to a browser by compiling secondary

WebSocket servers into the existing modules at desired locations within the

filter chain. This modification has been realized in our implementation as a

generic “WSIOFilter” (WebSocket Input/Output GenericFilter) that can be

instantiated multiple times into the BCI2000 filter chain. Each WSIOFilter

defines a parameter specifying the address and port its WebSocket server

is hosted on. Once an incoming connection is escalated to a WebSocket,

this filter sends packets to the client in the BCI2000 binary format, first de-

scribing the dimensionality of the signal and the system state vector via a

“SignalProperties” and “StateList” packet, then a “GenericSignal” and

“StateVector” packet for the current system signal and state vector once per

sample block. These filters can be instantiated several times in the signal pro-

cessing chain for any particular signal processing module. This filter has also

been included as a source module extension that enables transmission of the

raw signal in all signal source modules, and an application module extension

that enables transmission of the application module input—identical to the

signal processing output—in all application modules.
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A WebSocket-enabled client is unlikely to natively understand the format

of the incoming/outgoing messages on any of the aforementioned connec-

tions: our implementation of BCI2000Web adds some decorators to Oper-

ator scripting commands and Operator outputs to handle multiple clients,

and the WSIOFilter output is implemented in the BCI2000 binary protocol.

A JavaScript library, bci2k.js—available as a package on the Node package

manager (NPM) registry—contains functions that manage the BCI2000 Web-

Socket connections and translate the binary BCI2000 format into readily usable

data structures within a JavaScript context. Non-browser WebSocket-enabled

clients will need to implement this functionality in order to communicate

using these interfaces.

4.3 Application: ECoG Functional Mapping with
WebFM

About a third of patients with epilepsy have seizures that are resistant to

medication therapy. In many of these patients, seizures arise from a focal

brain area, and if this area can be safely removed, seizure control can be

achieved. When non-invasive testing cannot reliably identify the seizure

onset zone as distinct from brain regions needed for normal neurological

function, clinicians may choose to surgically implant electrodes in the depths

of the brain (stereo-EEG) or on its surface (electrocorticography, or ECoG).

These intracranial electrodes may be implanted for a week or more in order

to reliably localize the onset of seizures. These electrodes also facilitate the

identification of eloquent cortex—i.e., regions that are implicated in speech
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and language, as well as perception, movement, and other important brain

functions. A technique called electrocortical stimulation mapping (ESM) is

typically used to map these regions. During ESM, pulse-trains of electrical

current are passed between pairs of the implanted electrodes to temporarily

disable a small patch of cortex while the patient performs a simple language

or motor task. A behavioral change elicited by this temporary lesion indicates

that the stimulated area of the brain is necessary for task completion (Ojemann

et al., 1989). This testing procedure is time-consuming and uncomfortable

for the patient, sometimes eliciting after-discharges (Lesser et al., 1984); these

after-discharges can also evolve into seizures, which can be of questionable

utility for diagnosing ictal cortex (Hamberger, 2007).

The limitations of ESM have motivated a complementary mapping tech-

nique based upon estimates of task-related changes in the power spectra,

especially in high frequencies, of passive recordings of ECoG or stereo-EEG

during behavioral tasks. This mapping technique, hereafter referred to as

ECoG functional mapping, produces maps of task-related cortical activation,

which may include cortex that is recruited by a task but not critical to task per-

formance. In contrast, ESM uses a temporary electrophysiological disruption

of cortical function to simulate the acute behavioral effects of tissue resection,

and is presumed to be specific to areas critical to task performance. Neverthe-

less, a number of clinical studies have demonstrated good correspondence

between ECoG functional mapping and ESM (Brunner et al., 2009; Wang et al.,

2016). Moreover, several studies have shown that ECoG functional mapping

can be used to predict post-resection neurological impairments, and in some
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cases it has predicted impairments that were not predicted by ESM (Wang

et al., 2016). For these reasons, some epilepsy surgery centers have begun to

use ECoG functional mapping as a complement to ESM, sometimes providing

a preliminary map of cortical function that guides the use of ESM. However,

most epilepsy centers have not yet adopted ECoG functional mapping because

of the lack of technical resources, especially software that can be used with

their clinical EEG monitoring systems.

Several ECoG functional mapping packages have been developed in re-

cent years. For example, SIGFRIED acquires a large baseline distribution of

neural activity in a calibration block, then rapidly accumulates estimates of

cortical activation by averaging neural activity evoked by behavior in blocks

of time (Brunner et al., 2009). A commercial product called cortiQ (Prueckl

et al., 2013) is capable of performing this block-based mapping paradigm,

which makes it possible for minimally trained clinical professionals to per-

form passive ECoG mapping. Both SIGFRIED and cortiQ are built using the

BCI2000 framework and take advantage of the extensive optimizations and

development legacy of the platform. A more nuanced mapping technique,

termed spatial-temporal functional mapping (STFM), provides time-resolved,

trial-locked results during a specific task by collecting a pooled baseline ac-

tivity from a pre-defined ∼1 second period before the onset of a trial, then

performs a statistical test on each time/channel bin in a window of interest

relative to trial onset (Wang et al., 2016). Though the results of STFM are more

complicated and require more expertise to interpret than the block-based

mapping used by SIGFRIED or cortIQ, they provide a more detailed map
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of the spatial-temporal evolution of task-related activation, which can help

clarify the role of different areas activated by a given task, of clear utility in

cognitive neuroscience research and of potential clinical utility in planning

surgical resections.

ECoG functional mapping relies on high performance signal processing

and sophisticated real-time visualization, making it a suitable application

example for BCI2000 and BCI2000Web. We saw an opportunity to build an

easy-to-deploy-and-use tool for both researchers and clinicians that delivers

the time-resolved, trial-locked results of STFM at the bedside in a web applica-

tion, using BCI2000Web as the underlying communication technology to drive

a browser-based interactive visualization. Below we present WebFM, a soft-

ware suite built on top of Node.js and BCI2000Web for performing real-time

functional mapping in a web browser.

4.3.1 Methods

An electrophysiological amplifier is typically used to collect data from im-

planted electrodes. In ECoG recordings, spectral power in the frequency band

between 70 and 110 Hz (high gamma) is highly correlated with firing rates in

the population of neurons directly under the recording electrode (Ray et al.,

2008); hence, an increase in high gamma power is typically interpreted as

an increase in neural activation in that area. The electrophysiological system

theoretically needs to be sampling at a minimum of of 220 Hz to capture this

activity, but in practice, most acquisition systems apply anti-aliasing low pass

filters with cutoff frequencies at a quarter of the sampling rate. Because of this,
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ECoG is typically sampled at 1000-2000 Hz across most systems, to ensure

that the full high gamma band is captured after hardware filtering.

The signal processing module used in the system in the Johns Hopkins

Epilepsy Monitoring Unit is a modification of the BCI2000 spectral signal

processing module. This signal processing module consists of a chain of filters,

the first of which is a spatial filter capable of applying a common average

reference, a frequently used spatial filter for ECoG recordings (Liu et al., 2015).

This is followed by a series of IIR Butterworth filters, including a fourth order

low pass at 110 Hz, followed by a second order high pass at 70 Hz and a

4th order notch filter at 60 Hz. After the signal is downsampled to 500 Hz

from the native sampling rate, it is passed through a spectral estimator filter,

which generates an autoregressive model on a window of filtered data; the

coefficients of this model are used to form an estimate of the signal’s power

spectrum. A WSIOFilter is instantiated at this point in the filter chain, capable

of streaming this estimated spectral content of the neural signals in real-time.

A browser is used to communicate to the bedside data-collection and stimulus-

presentation machine, and to set up the system parameterization. A monitor

and speaker connected to the bedside computer is set up in front of the patient,

and a microphone is connected to the auxiliary analog inputs provided by the

acquisition system, to be digitized synchronously with the electrophysiology.

A system diagram and description of the full system topology is detailed in

Figure 4.1.

A language or motor task is parameterized as a BCI2000 .prm file and

a collection of audio-visual stimuli in a git repository hosted on GitHub.
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Figure 4.2: The BCI2000 Remote Control Interface. A screenshot of the BCI2000
remote control interface. The paradigm index is hosted by BCI2000Web over HTTP.
This page is populated by the experimental paradigms present on the host machine
(center) with buttons to start sub-tasks and specific blocks (right). A pane in the top
left reads out the current BCI2000 system state, in addition to a system reset button.
In the bottom left, a link to the system replay menu allows for recorded BCI2000 .dat
file playback for system testing and offline mapping.

Any number of these tasks can be checked out into the BCI2000Web distri-

bution, and the server will automatically present them as startup options

within the built-in BCI2000Web browser interface, shown and described

in Figure 4.2. These paradigms typically specify a parameterization for

StimulusPresentation.exe, a BCI2000 application module capable of pre-

senting audio-visual stimuli to the patient with high-precision timing and

sequence control.

The BCI2000Web system currently supports more than 20 possible exper-

imental paradigms, including a task battery used for clinical assessment of

functional localization.
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4.3.1.1 Patients and Electrode Localization

Before mapping, a post-operative computed tomography scan containing

electrode locations is co-registered to a pre-operative magnetic resonance

imaging scan of sufficient resolution (typically with voxel dimensions of 1

mm or less) to render the patient’s cortical surface anatomy in high detail,

using Freesurfer (Fischl, 2012) or Bioimage Suite (Papademetris et al., 2006).

These electrode locations are overlaid on a 2D rendering of the cortical surface.

An image file depicting this cortical anatomy and electrode layout, as well

as a comma-separated value (.csv) file containing the normalized image

coordinates of each electrode, is uploaded to the WebFM server via controls

within the WebFM browser interface. This layout doesn’t typically change

during a patient’s EMU stay, and it is referenced and retrieved through APIs

in the WebFM sfotware using a subject identification code, effectively de-

identifying the reconstruction for research purposes.

4.3.1.2 Software

During an ECoG functional mapping session, a browser running on the visu-

alization device contacts the WebFM server and queries the bedside machine

for the subject’s identification code and what task is currently running. The

WebFM server then serves the corresponding cortical reconstruction image

and sensor location file in addition to a bolus of JavaScript code that is capable

of opening WebSockets to the BCI2000Web server and WSIOFilters running

on the bedside machine. The browser then opens these data streaming Web-

Sockets and performs the mapping without further contacting the WebFM
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server. After each trial of the task, the visualization is updated and once a

full task run has been collected, the resulting map can be saved back to the

WebFM server for indexing and post-hoc inspection; these maps are made

available on the WebFM Landing page, as shown in Figure 4.3.

The statistics and visualization for WebFM are based on the techniques and

methods described in Wang et. al (Wang et al., 2016). The baseline window

for the tasks is defined as a configurable period from 1000 to 200 ms before the

trial onset and a baseline distribution is formed per channel from the pooled

high gamma power values during this period. A two-way t-test is performed

between the distribution for each time-channel bin and that channel’s baseline

distribution. The resulting p-values are corrected for multiple comparisons

using the Benjamini-Hochberg (BH) procedure, controlling the false discovery

rate at 0.05 (Benjamini and Hochberg, 1995). This correction is used to thresh-

old the results displayed in the WebFM raster and spatial plots: time-channel

bins that did not survive the BH correction are hidden from view. Any indi-

vidual time point in this raster can be dynamically selected and visualized by

“scrubbing” the mouse cursor over the raster display; this yields circles drawn

on a two dimensional representation of the electrode montage, highlighting

which cortical locations were active during that particular time-point across

trials. An options dialog allows users to change baseline periods, modify

visualization timing parameters and amplitudes, as well as make comparisons

across task conditions and contrasts. The visualization is available as a live

demo at www.webfm.io and is shown and further described in Figure 4.4.

The visualization APIs exposed by WebFM can be used to implement a
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Figure 4.3: The landing page for WebFM. A pane in the top left shows system state
and houses buttons that start trial-based functional mapping paradigms and a “live”
mode that visualizes neural activity on the brain in real-time, as visualized in prior
studies (Lachaux et al., 2007). A list of subject identifiers on the bottom left pane
enables users to pull up previous/current subjects; a list of saved maps for the selected
subject appears in the “Records” pane on the bottom right. The “+” in the top left
of the “Subjects” pane allows operators to add new subjects to the database, and
the “Metadata” pane at the top right allows operators to upload brain reconstruction
images and normalized electrode locations for displaying functional mapping results.
The brain images used for mapping are often overlaid with information about seizures
and/or ESM results, so that functional activation can be easily visually compared
with these data; the image shown in the center includes colored circles depicting the
hypothesized spread of ictal activity during the subject’s seizures.
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Figure 4.4: WebFM visualization description. An example of WebFM results for an
image naming task in a subject with high density (5-mm spacing) temporal-parietal-
occipital electrode coverage. A horizon raster Heer, Kong, and Agrawala, 2009 to the
left shows a time (x-axis) by channels (y-axis) plot of trial-averaged task-modulated
high gamma power, thresholded for statistical significance with BH correction for a
FDR of less than 0.05. Warm colors represent a statistically significant increase in task-
modulated high gamma power, while cool colors indicate a statistically significant
decrease in task-modulated high gamma power. The left black vertical bar within the
raster indicates the trial-start (t = 0s) where StimulusCode transitioned from zero to a
non-zero value, indicating that a stimulus was being displayed.
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number of other visualizations as well. One mode of WebFM provides a

visualization of raw high gamma activation in real time, as in Lachaux et.

al (Lachaux et al., 2007); other modifications have also been used to visualize

the propagation of interictal spiking and seizure propagation across cortex.

4.3.2 Deployment and Results

As of the time of writing, the WebFM system has been deployed at two sites:

the Johns Hopkins Hospital and the University of Pittsburgh Medical Center.

Across these sites, WebFM has been used with three acquisition devices: the

NeuroPort system (Blackrock Microsystems, Salt Lake City, UT), a Grapevine

system (Ripple, Salt Lake City, UT), and the EEG1200 system (Nihon Kohden,

Tomioka, Japan). Between these sites and amplifiers, WebFM has been used

to create over 200 functional maps across 33 subjects. The majority of these

subjects (19) were hospital inpatients undergoing epilepsy monitoring prior to

resective surgery. Clinical staff in the Johns Hopkins Epilepsy Monitoring Unit

have a link to the WebFM portal on their desktop machines and frequently

reference the passive ECoG mapping results when discussing surgical plans.

The remaining 14 subjects were temporarily implanted with a 64-channel high

density ECoG strip during lead implantation for deep brain stimulation; for

these subjects, WebFM was used to map sensorimotor cortex in the operating

room.
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4.4 Discussion

BCI2000Web and WebFM take advantage of several recent technological de-

velopments. First and foremost, these packages capitalize on advancements

in the modern web browser, which is quickly becoming a platform capable

of general purpose computing. With a focus on frontend user interaction,

many packages have been written in JavaScript that support the rapid imple-

mentation of interactive applications and visualizations. WebFM makes use

of d3.js (Bostock, 2012) to provide a high-quality interactive visualization of

trial-averaged high gamma modulation directly on the brain.

The key to taking advantage of these web-based technologies is the im-

plementation of BCI2000Web, which utilizes the WebSocket API to transmit

binary-formatted brain data directly to the browser over TCP/HTTP, allow-

ing direct communication to and from BCI2000. While the experimental

paradigms presented in conjunction with WebFM utilized the native BCI2000

stimulus presentation module to interact with the subject, the general-purpose

access to Operator scripting over WebSockets provided by BCI2000Web easily

lends itself to a different system architecture, in which a browser application

itself is responsible for interacting with the subject and providing experi-

mental markers sent via WebSocket; this topology is depicted in Figure 4.5.

Several paradigm packages for BCI2000Web leveraging this architecture have

been authored to date; one makes use of the WebSpeech API (Shires and

Wennborg, 2012) to do real-time speech tagging and segmentation for tasks

involving freely generated speech, and another uses the WebMIDI and We-

bAudio APIs (Wyse and Subramanian, 2013) to register subject input on
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musical peripheral devices, and performs high-performance audio synthesis

in response. Public JavaScript APIs allow for rich BCI interactions, and ex-

perimental paradigms can pull upon web resources such as Google Image

search for providing varied and tailored stimuli at run-time. Extending this

idea, it is easy to envision a system architecture in which users’ neural data

are sent to a browser application that communicates with a server backend in

real-time, allowing cloud-based services to apply sophisticated machine learn-

ing techniques that wouldn’t be computationally feasible on the client-side.

Even further, one could develop a browser-based application that transmits

multiple users’ neural data to each other’s clients, facilitating brain-based

communication.

Cross-device compatibility is another advantage to using the browser as

a visualization and stimulus presentation platform. Any browser-enabled

device (smartphone, tablet, PC, or even game console) can be used to present

stimuli or visualize output. Because of this “write-once, run-anywhere” devel-

opment process, WebFM can be used by clinicians to view mapping results in

real-time on their smartphones from outside the patient’s room while ECoG

functional mapping is running.

4.4.1 Drawbacks and Caveats

The rationale behind the division of processing using native binaries and

visualization using browser-interpreted javascript is due to current limita-

tions inherent to browsers. Browser-hosted JavaScript is rapidly advancing
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Figure 4.5: A BCI2000Web Browser-based Paradigm. A system diagram depicting
an experiment implemented in browser JavaScript running on an independent mobile
device. The mobile device is running an experimenter-implemented web-page in
fullscreen mode which communicates directly with BCI2000Web for event logging
as well as the Signal Processing module for receiving extracted neural control sig-
nals. A JavaScript package, bci2k.js, manages websocket connections that handle
transmission of operator scripting language commands and decodes neural control
signals from a binary format. The mobile device is running a word reading paradigm
(with the stimulus “HEALTH” currently presented) that has defined asynchronous
experimental states including markers for automated vocal transcription onsets using
the WebSpeech API. A query for system state is also relayed by the BCI2000Web
server. The benefit of such an architecture is that the patient interface is separated
from the bedside clinical acquisition machine and can be left with the patient without
concern of the patient manipulating the clinical datastream.
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as a next-generation efficient computational platform with the advent of We-

bAssembly and ASM.js (Herman, Wagner, and Zakai, 2014), but at the time of

writing it is still too computationally demanding to perform real-time feature

extraction and signal processing in the browser. Furthermore, browser access

to low level computer hardware and connected USB devices is only in the

early development stages. Given these limitations, BCI2000Web was designed

to take advantage of the device driver access and computational efficiency of

the C++ code base that powers BCI2000 for acquisition device abstraction and

signal processing/feature extraction. This architecture frees frontend develop-

ers from dealing with complicated signal processing code in JavaScript, and

instead enables them to focus on user experience and design. In the future, a

full-stack BCI2000 analog could be implemented directly within the browser,

and BCI2000Web is a glimpse of what that software could empower for web

developers with access to neural features.

A significant amount of the development effort for BCI2000 has been spent

on implementing high-performance signal processing and stimulus presen-

tation software. Delivering audio-visual stimuli to subjects with a consistent

yet minimal latency is a nontrivial task that BCI2000 has accomplished by

interfacing with low-level graphics drivers in a nuanced way. Operating

system version, bit-width (32 vs 64), driver versions, compiler optimizations,

and varying hardware capabilities collude to make this stimulus presentation

problem a fragmented and moving target; one which BCI2000 has historically

hit with surprising accuracy, achieving visual presentation latency on the

order of one to two frames at a 60 Hz monitor refresh rate and audio latencies
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on par with modern audio production software (Wilson et al., 2010). The

BCI2000 core team encourage developers to implement custom signal process-

ing and stimulus presentation paradigms within this BCI2000 environment

using documented C++ code templates in order to benefit from these opti-

mizations. That said, so long as tasks are designed properly and ground truth

stimulus and response signals are collected (i.e. screen mounted photodiodes

and patient facing microphones connected directly to auxiliary inputs on the

amplifier), it is still possible to collect data of high scientific quality using the

browser as the primary stimulus presentation software even if its stimulus

display and communication latency are in question.

We benchmarked the visual timing performance of a system with and

without BCI2000Web modifications using the procedure in (Wilson et al.,

2010) on a platform comprising Windows 7 64 bit with BCI2000 r5688, Google

Chrome 67.0.3396.99, and a 256 channel 1000 Hz recording from a Blackrock

NeuroPort running with a 20 ms sample-block size. An unmodified BCI2000

distribution on this system exhibits a visual latency (t3v as expressed in (Wilson

et al., 2010)) of 52 ms with a standard deviation of 8.0 ms. With BCI2000Web

sending neural signals to a browser via WebSocket on the same acquisition

machine, a mean visual latency of 60 ms with a standard deviation 9.4 ms

was observed. Using a hospital wireless network to send neural signals via

WebSocket to a tablet PC running Windows 10 and the same version of Chrome

results in a visual latency of 62 ms with a standard deviation of 13.4 ms.

These latency metrics indicate a minimal impact to timing performance when

using BCI2000Web. In many real-time BCI implementations, spectral feature
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extraction occurs in windows of 128–256 ms with a slide of 16–32ms, and

single-trial visual timing differences fall well within one windowing period.

BCIs reliant upon time-domain features—in particular those that perform

trial-averaging of evoked response potentials—will be more sensitive to these

latency differences, and it is critically important to run timing benchmarks for

specific hardware/software/network configurations in these circumstances.

4.5 Conclusions

The development of a communication protocol that connects one of the most

widely adopted BCI research and development suites with the power of mod-

ern browser technologies is expected to accelerate the pace of development

for BCI technologies. Newer software developers, primarily taught using

these modern software development paradigms, can now develop new BCI

applications and neural signal visualizations while leveraging the legacy and

performance of native BCI2000 modules. We have developed and presented a

web-based ECoG functional brain mapping tool using this technology, and

we have successfully deployed it at two sites with a cohort of 33 patients over

two years. BCI2000Web and WebFM together utilize the relative strengths

of a highly optimized C++ code base in BCI2000 and the high level visual-

ization libraries within modern browsers to demonstrate a clinically useful

and modern functional mapping tool. We have also used BCI2000Web for

ongoing, albeit unpublished, BCI research projects, and we describe herein the

advantages and potential uses of BCI2000Web in future BCI applications. This

software is documented and released under permissive free and open source
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software licenses, and is put forward by the authors for use in the research

and development of brain computer interfaces and multi-site studies on the

clinical efficacy of ECoG functional mapping.

Data Availability Statement

A standalone distribution of BCI2000Web is available on GitHub

(github.com/cronelab/bci2000web). The bci2k.js package can be installed

with NPM (node install bci2k); its codebase is available on GitHub

(github.com/cronelab/bci2k.js). WebFM can also be found on GitHub

(github.com/cronelab/webfm).

The data used in the live demo at www.webfm.io is available via the WebFM

API: the subject’s brain image, base-64 encoded, is located at

www.webfm.io/api/brain/PY17N009; the subject’s sensor geometry is located,

in JSON format, at

www.webfm.io/api/geometry/PY17N009; the high gamma activation data for

the presented task (syllable reading) is located at

www.webfm.io/api/data/PY17N009/SyllableReading.
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Chapter 5

Mapping of Visual Semantic
Attributes to Spatiotemporal
Features of Neural Recordings

This chapter was published as an article in NeuroImage (Rupp et al., 2017)

5.1 Background and Motivation

The view that objects are encoded according to their semantic attributes or

features, while not new, has become quite practical. Under an attribute-based

view, a concept can be encoded over a large set of meaningful attributes,

with each attribute assigned a value or set of values related to its probability,

weight, or importance (Rosch, 1978). For example, the encoding of the concept

“bird” assigns high probabilities to attributes typical of birds (has beak, flies,

etc.) and low or zero probabilities to attributes atypical of birds (has four legs,

manmade, etc). Substantial work has been done to catalogue the attributes and

weights associated with different concepts, and attribute ratings can account

for a host of human judgments about the relationships between concepts
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and the organization of categories (Binder et al., 2016; Cree and McRae, 2003;

Garrard et al., 2001; Ruts et al., 2004). In related work on vector space models

of semantics, automated methods can be used in place of human annotators

to learn latent semantic features from the statistical properties of words and

phrases in large text corpora (Deerwester et al., 1990; Mikolov et al., 2013;

Pennington, Socher, and Manning, 2014), and these latent features are similarly

useful in accounting for human judgments (Pereira et al., 2016).

Efforts to decompose concepts into their constituent attributes or features

have been used to great effect in the study of knowledge representation in the

human brain. Following methods pioneered by Mitchell et al., 2008 to learn

relationships between individual semantic features and the neural activity

patterns they evoke, subjects perform tasks that require semantic processing –

viewing or naming objects (Clarke et al., 2015), reading words or sentences

(Wehbe et al., 2014), considering semantic attributes (Sudre et al., 2012), gener-

ating category exemplars (Simanova et al., 2014b), watching movies (Huth et

al., 2012), or listening to stories (Huth et al., 2016) – while neural responses are

recorded with functional magnetic resonance imaging (fMRI) or magnetoen-

cephalography (MEG). Because stimuli can be represented in terms of their

constituent semantic attributes or features, a mapping can be learned between

each semantic feature and its associated neural responses (i.e. voxel intensities,

MEG sensor amplitudes), typically through linear regression. These encoding

models project semantic features into a neural feature space, and similarly,

decoding models can be used to project recorded neural activity patterns into

a semantic feature space.
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The resulting neurosemantic models have provided new insights into

conceptual knowledge representation in the mind and brain. The fact that

neurosemantic models can be used to successfully learn mappings between

semantic and neural features suggests that the brain’s representation of objects

involves decomposition into semantic features. This paradigm also provides

a framework for testing theories about what specific semantic features are

represented in the human brain (Just et al., 2010), how they are encoded in

neural activity (Huth et al., 2016), and how cognitive processes modulate

neurosemantic representations (Çukur et al., 2013). Likewise, from a decoding

perspective, decompositional neurosemantic models are very powerful in that

they can interpret neural activity from concept classes they have not been

trained on in a process termed zero-shot learning (Palatucci et al., 2009).

The impact of this approach, though, is limited by the quality and quantity

of available neural data. Non-invasive neuroimaging methods are subject

to lower signal-to-noise ratios, trade-offs between temporal and spatial res-

olution, and indirect estimates of neural activity. Invasive alternatives like

electrocorticography (ECoG) can only be used in the relatively rare clinical

setting when implanting electrodes on the surface of the cortex is a clinical

necessity. As a result, spatial coverage is determined solely by clinical consid-

erations, which leads to varied anatomical sampling across patients. At the

same time, ECoG offers high temporal resolution, a high signal-to-noise ratio

due to direct contact between electrodes and the cortical surface, and more di-

rect observations of neural processing. Evidence of this can be found in studies

showing that ECoG responses correlate well with spiking activity (Manning et
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al., 2009; Ray et al., 2008), and hemodynamic responses (Logothetis et al., 2001;

Niessing et al., 2005), with activity in high-gamma frequencies (e.g. 70–110

Hz) serving as a particularly good index of underlying neural processing.

Despite the potential advantages, there have been relatively few studies

of semantic attribute representation using ECoG. The few attempts to use

ECoG for semantic decoding have relied on discriminative approaches over

a small number of trained classes or categories (Liu et al., 2009; Wang et al.,

2011). In one of the only published examples of semantic decoding from

ECoG, Wang et al., 2011 asked patients to perform several different tasks that

activated representations of semantic properties (e.g. visual object naming),

and then trained Support Vector Machine (SVM) and Gaussian Naïve Bayes

(GNB) classifiers to decode the evoked responses to one of the three possible

target categories (i.e. foods, tools, and body parts). Performance varied across

subjects, tasks, and classifier types, with mean classification rates of approxi-

mately 56% correct and a range from approximately 40% to 74% (where 33%

is chance), indicating that substantial category information can be extracted

from ECoG. While encouraging, conclusions drawn from a very restricted

number of classes (e.g. foods, tools, and body parts) or dimensions of variation

(e.g. living vs. non-living, large vs. small) may be partially confounded by

expectation and perceptual set effects that cause subjects to artificially attend

to and process these dimensions.

Chen et al., 2016 recently extended the ECoG-based study of semantic

representations to 100 objects across a range of semantic categories and at-

tributes. They adapted the searchlight-based Representational Similarity
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Analysis (RSA) typically used in fMRI to assess where and when semantic

information was encoded in ECoG responses during a picture naming task.

The technique assumes that semantic information is represented as complex

spatiotemporal patterns detectable by ECoG, and looks for spatiotemporal

structure in the neural responses that correlate with the structure inherent in

semantic representations. Using RSA, the authors found evidence of semantic

encoding in the ventral pathway from basal occipital-temporal to anterior

temporal lobe regions, but these results were primarily accounted for by a

simple binary semantic model that coded items as either living or non-living

(stimuli were evenly split between these two categories).

ECoG research in other language domains like speech perception (Pasley

et al., 2012) and speech production (Mugler et al., 2014) have used genera-

tive encoding and decoding approaches to study language processing as it

naturally varies across a range of stimuli and dimensions, but these methods

have yet to be applied to semantics. In the current report, we adapted the

decompositional semantic encoding approach previously used with fMRI and

MEG data for ECoG (as summarized in Figure 5.1) to assess the degree to

which semantic attributes are encoded in the ECoG signal. To do this, we

recorded ECoG while patients named objects from 12 different semantic cate-

gories. Using these responses, high-dimensional semantic attribute encoding

models were trained to decode objects unseen during model training. The

trained models were then analysed in terms of which semantic dimensions

were reliably encoded across different electrodes, time points, and frequency

bands.

72



Figure 5.1: Training and testing encoding models from ECoG. (A) Patients named
objects and spectral estimation was performed on their neural signals to produce
mean power over a variety of frequency bands and temporal windows (only high-
gamma shown here). A subset of neural features (particular frequency bands at
particular time windows at particular electrodes) was selected for use in the encoding
model. (B) Linear ridge regression was used to learn a neural encoding model β,
which maps from semantic attribute ratings S to neural feature values N. To decode
a new neural activity pattern n̄ generated by an untrained object, n̄ is compared via
cosine distance to a set of predicted neural activity patterns generated by applying β
to a catalogue of possible objects and their semantic attributes.

73



5.2 Materials and Methods

5.2.1 Data

5.2.1.1 Subjects

Electrocorticography was recorded from 9 patients with intractable epilepsy

(2 female, 31–44 years old) during in-patient monitoring for pre-surgical

localization of their ictal onset zone and eloquent cortex. All patients provided

informed consent according to a protocol approved by the Johns Hopkins

Medicine Institutional Review Boards.

5.2.1.2 Paradigm

Patients performed a standard visual object naming task with the same 60

line drawings used by Mitchell et al., 2008. Briefly, white line drawings

were presented on a black background, with a centered white fixation cross

present during inter-stimulus intervals. Drawings were shown for 1 s, with

an inter-stimulus interval varying randomly between 3.5 and 4.5 s. Patients

were instructed to name the pictured object as soon as it came to mind, or

to say “pass” when they could not immediately answer. Four patients were

familiarized with the stimuli beforehand using one of two procedures: two

patients were simply shown the stimuli with labels and instructed to learn

them, and two patients were asked to provide a verbal description for each

object. The remaining five patients were not exposed to the stimuli prior to

the naming task.

The 60-item stimulus set consisted of 5 different objects from each of 12
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different categories (animals, body parts, buildings, building parts, clothing,

furniture, insects, kitchen utensils, man-made objects, tools, vegetables, and

vehicles. For each patient, six blocks of data were collected. All 60 objects were

shown in each block in a pseudorandom order. Both the behavioral paradigm

and the ECoG data recording were implemented with BCI2000 (Schalk et

al., 2004). Verbal responses and stimulus onset were both recorded through

the analog input bank using a microphone and photodiode, respectively.

Behavioral performance was overall very good for all patients (See Table 5.1).

Occasional naming errors were not excluded from ECoG analysis.

5.2.1.3 ECoG Recordings

Data analyzed from patients P2 through P9 were collected with standard ECoG

grids and strips, each of which contained electrodes with 4 mm diameter and

10 mm spacing. For one patient, P1, a subset of analyzed electrodes was part

of a high-density grid with 2 mm diameter and 5 mm spacing. Additional

depth and micro-ECoG electrode arrays were implanted in a subset of patients

but were not analyzed. Electrode placements were determined by clinical

criteria and varied widely across patients (See Table 5.1).

5.2.1.4 Signal Processing

ECoG signals were sampled at 1000 Hz, digitized, and recorded using the

BlackRock Neuroport system. Recordings were made with a referential mon-

tage in which the reference was a contact on a 4-electrode strip that had been

implanted for this purpose facing the dura mater, or in which the reference

was a cortical contact chosen because of its greater distance from most other
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Sex Age LD Electrode placement (#) Naming

P1 F 37 L
Left temporal HD grid,
left fronto-parietal grid,
basal strips

153 89%

P2 M 39 L

Left fronto-temporal grid,
superior frontal grid,
inferior frontal strip,
basal strips

87 96%

P3 M 31 L Left temporal grid,
basal grid 36 89%

P4 M 37 L Right fronto-temporal grid,
basal strips 72 96%

P5 M 44 L Bilateral strips 86 74%

P6 M 37 L

Right fronto-temporal grid,
basal strips,
frontal strops,
occipito-parietal strip

82 97%

P7 M 37 L
Right parietal grid,
frontal strip,
posterior basal strips

80 93%

P8 M 33 R
Left occipital grid,
temporal grid and strips,
basal strips

95 89%

P9 F 35 L Bilateral strips 106 98%

Table 5.1: Patient Demographics. Summary of patient demographics, electrode
placement, and task performance. Hemispheric language dominance (abbreviated
here as LD) was verified in all patients by intracarotid amobarbital testing, fMRI,
and/or electrocortical stimulation mapping.
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recording contacts and because of its low likelihood of functional responses.

Channels were visually inspected and those identified as containing excessive

noise were discarded. A common average reference, where each electrode

was referenced to the grid or strip to which it belonged, was used to minimize

spatial bias from the reference electrode. Signals were low-pass filtered to

prevent aliasing, resampled to 256 Hz, and epoched by clipping from 250 ms

before stimulus onset to 4000 ms post stimulus onset.

Spectral power was extracted using one of two different techniques, autore-

gressive estimation or the Hilbert transform, depending on the goal. Autore-

gressive estimation permitted the extraction of a broad range of frequencies

at the cost of temporal resolution. Models that used all extracted frequency

bands were trained and tested, as were models that used high-gamma features

only. While models using all frequency bands achieved the best performance,

models using high-gamma only performed nearly as well, and thus subse-

quent analyses explored models using only high-gamma features. Once we

made this determination, Hilbert estimation was used to extract high-gamma

features with higher time resolution, permitting analyses on the timing and

cortical locations related to semantic processing (Buck, 1999).

Autoregressive spectral estimation was performed using the Burg method

(Kay, 1999) with 500 ms windows and a 250 ms overlap. The log of the

spectral power values were averaged over multiple frequency bins. Frequency

bins consisted of delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (15–30

Hz), gamma (30–50 Hz), and high-gamma (70–110 Hz). The autoregressive

filter order was set to 26, and spectral estimation was performed with a
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frequency resolution of 2 Hz. To estimate high-gamma features using the

Hilbert transform data was first forward and backward filtered to a passband

of 70–110 Hz using a 3rd order Butterworth filter. The Hilbert transform was

used to generate the analytic signal, and the magnitude of this signal was

squared to calculate signal power. Features were then calculated by averaging

over 250 ms windows, sliding every 31.25 ms.

5.2.2 Encoding Model

Linear ridge regression was used to learn the encoding model parameters

(Chen et al., 2014; Hastie, Tibshirani, and Friedman, 2009) relating semantic

attribute ratings (Section 5.2.2.2) to neural activity features (Section 5.2.2.1).

Linear ridge regression is a least-squares technique that employs regular-

ization via an l2-norm penalty, where this penalty effectively biases coeffi-

cients toward zero in exchange for reducing the variance on their estimates.

Regularization is usually necessary in regression problems involving high-

dimensional data as a safeguard against over-fitting. Our encoding model

predicted neural features from semantic features by linear weighting:

nm = sTbm + ϵm

Where nm was the mth neural feature, s was a vector of semantic features

associated with the stimulus, bm was a vector of weights, and ϵm was an error

term. The ridge regression solution for determining the weights was given by

bm = argmin
bm

|Sbm − nm|22 +λ |bm|22

=
(
STS + λI

)−1 STnm

where nm was a vector of mth neural features for a set of trials, S was
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a J×K matrix of K=218 semantic features for J=354 trials (J=354 rather than

360 because six trials for a held-out object are not used when training the

model), and λ was the regularization parameter. The semantic feature matrix

may contain row vectors for repeated trials. Neural feature vectors, nm, were

normalized to zero mean and unit variance over all trials. Initial testing using

a leave-one-out cross-validation to optimize λ from seven logarithmically-

spaced values between 1 and 1000 often produced λ=3.16, and so this value

was adopted for all models. This determination was made in initial testing

of data from P2 using earlier versions of the encoding model and was not

specifically optimized to any models or results reported here. Fitting patient-

specific λ values might have improved overall performance of the encoding

models slightly.

5.2.2.1 Neural Features

Each neural feature used by the encoding model can be described as the

signal power from a specific electrode in a specific frequency band during

a specific time window. To limit the inclusion of neural features to those

primarily associated with semantic processing, neural features were restricted

to times 0–750 ms post stimulus onset. To determine the degree to which

neural features may have been associated with spoken responses, additional

analyses compared the timing of spoken responses with the semantic decoding

performance over time. We found that peak decoding tended to occur before

the vast majority of spoken response onsets (see Section 5.3.3 in Results).
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Neural features were selected for their stability over stimulus presenta-

tions, similar to correlation-based stability measures used with fMRI to select

voxels (Mitchell et al., 2008; Shinkareva et al., 2008). This approach was cho-

sen because it is computationally straightforward and is commonly used in

similar studies. In this procedure, neural features are selected that have stable

response profiles across repeated presentations of the same item. Correlation

stability was calculated for a neural feature by averaging all pairwise Pearson

correlations between responses in blocks of trials. For example, for a data set

with 60 objects and six blocks of object presentations, the correlation stability

of a neural feature is produced by calculating the correlation between the 60

responses in block i to the 60 responses in block j and averaging correlation co-

efficients for all possible i, j pairs (15 in total). The most stable neural features

were selected for use in the encoding model, up to 200 features. Features were

always selected on training data as part of a nested cross-validation process.

5.2.2.2 Semantic Features

Encoding models used semantic features from the human218 semantic knowl-

edge base (Palatucci et al., 2009; Sudre et al., 2012) consisting of 218 inter-

pretable semantic attributes. This semantic model was chosen because the 218

meaningful dimensions facilitated analysis of semantic dimension encoding at

specific cortical sites (see Section 5.2.3.2). Attribute ratings were collected by

Palatucci et al., 2009 by asking a series of 218 questions to a group of Amazon

Mechanical Turk users about 1000 different nouns, including the 60 objects

included in this study. Questions probed a variety of semantic properties,

including size, usage, composition, and category, with answers on an ordinal
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scale from 1 to 5 (definitely not to definitely yes), and then rescaled to a range

of -1 to 1. Lastly, the 218-element vector for each object was scaled to unity

length. Each object was represented in this 218-dimensional semantic space in

subsequent analyses.

5.2.2.3 Model Validation

For each model, performance was assessed via rank accuracy for decoding

held-out objects. To decode a held-out neural activity pattern n̄ generated by

an untrained object, n̄ was compared via cosine distance to a set of predicted

neural activity patterns generated by applying encoding model β to the se-

mantic attribute vectors for the 60 objects. These distances determined the

relative ranks of the 60 objects, and rank accuracy for the correct object ranked

ith among 60 objects was computed as 100*(60-i)/59. Within-category rank

accuracies were also computed by limiting the possible objects to the correct

object and the remaining four objects falling in the same semantic category as

the held-out object. Rank accuracy is one of several possible metrics for assess-

ing encoding model performance; qualitatively similar results were achieved

using alternative metrics (e.g. leave-two-out PairedPerf, as in Mitchell et al.,

2008).

Training and testing of encoding models consisted of three phases: feature

selection, model training, and model testing. Model training, i.e. estimation

of model weights, was always performed using individual trials, rather than

aggregating the six presentations to produce a single neural activity pattern

for an object. Feature selection and model testing were performed using one of
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four different conditions: (1) responses averaged over all six presentations and

from all frequency bands, (2) responses averaged over all six presentations and

from high-gamma only, (3) single-trial responses from all frequency bands, and

(4) single-trial responses from high-gamma only. The testing for the response-

averaged condition involved calculating rank accuracies by comparing 60

predicted neural activity patterns to a neural activity pattern averaged over six

recordings, while the testing for the single-trial condition compared predicted

neural activity patterns to a single recording six times.

Features were selected via cross-validation to either optimize the single-

trial rank or the response-averaged rank accuracy. A nested leave-one-object-

out cross-validation procedure was used for all model validation. The 60-fold

outer loop of the procedure was used to iterate over each of the 60 objects as

the held-out object. For each of these folds, a 59-fold inner loop was used to

select the optimal neural feature set for the held-out object. For a given fold of

the outer loop, the correlation stability was calculated for each neural feature.

Then, for each fold of the corresponding inner loop, mean rank accuracy

(MRA) was calculated for encoding models using between 1 and 200 of the

features with the highest correlation stability (logarithmically spaced). The

MRA curves were averaged across folds of the inner loop, and the number of

features that produced the maximum MRA was adopted for that outer fold.

Rank accuracy results were statistically thresholded using a Monte Carlo

procedure. A null model was trained for each patient and for each testing

condition by permuting the rows of the semantic attribute matrix, effectively

shuffling the noun labels. All model estimation and validation procedures
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were replicated, and in each case, the procedure was repeated 50,000 times

to produce a null probability distribution. P-values were calculated for each

patient and decoding condition by computing the fraction of null distribution

values that were greater than the actual MRA (while adding 1 to both the

numerator and denominator to prevent p=0). An analogous procedure was

performed to determine within-category rank accuracy thresholds, but for

this Monte Carlo procedure, shuffling was done within categories rather than

across all noun labels.

5.2.3 Feature Analyses

5.2.3.1 Informative Time Points

To assess the time course of semantic attribute information in the ECoG signal

relative to spoken responses, models were trained and tested for neural fea-

tures restricted to individual temporal windows. Only high-gamma features

calculated using the Hilbert transform were considered, because models using

only high-gamma features performed substantially better across subjects than

models restricted to any other single frequency band (see Supplementary Fig-

ure A.1B). Additionally, given the goal of identifying the temporal windows

with the most semantic content, the Hilbert transform method allowed for

higher temporal resolution in our neural features, and high-gamma features

intrinsically have a higher temporal resolution than lower frequency features.

A sliding window of 250 ms and a step size of 31.25 ms was adopted, and

the timing of the onset of significant rank accuracy as well as the peak was
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recorded for high-gamma that was time-locked to stimulus onsets. We per-

formed a similar analysis on high-gamma locked to spoken response onsets.

Response onsets and offsets were determined manually by listening to the

spoken responses and using simultaneous visual inspection of the speech

recording’s spectrotemporal content. Time points were conservatively chosen

to ensure articulation was entirely captured. Significance was determined by

performing a single-tailed rank-sum test to compare rank accuracies at each

time window to baseline, which was defined as time points between -1000

and -125 ms relative to stimulus onset (because of the 250 ms window, base-

line actually contained information from -1125 to 0 ms). Bonferroni multiple

comparisons corrections were applied individually for each patient across all

time points.

For each window, the top 200 features were selected using correlation

stability with proper cross-validation. Within temporal window analyses,

the number of neural features was not selected within cross-validation, due

to computational cost; rather, models were trained and tested with varying

numbers of neural features, and the maximum MRA was chosen. Due to

non-causality of spectral estimation (250/2=125 ms from windowing during

Hilbert feature extraction), a given temporal window could have contained

some information from future temporal windows. To account for this, results

are also reported with respect to the leading edge of the extraction window

(Table 5.3).
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5.2.3.2 Informative Electrodes

To determine where evoked responses were well-predicted by semantic at-

tributes, we estimated encoding models that mapped semantic attributes to

high-gamma responses at individual electrodes. This analysis focused on the

three patients with the highest performing encoding models and was restricted

to the high-gamma features from the 250 ms time window with the highest

MRA for each patient. Cross-validation was used to estimate separate encod-

ing models for each individual electrode, and predicted high-gamma values

were calculated for each object. For each channel, we calculated Pearson corre-

lations between the set of 360 actual high-gamma values (six presentations of

60 objects) and the set of 60 predicted high-gamma values (replicated six times

to match the set of actual neural features). For a given channel, the resulting

correlation coefficient indexed the degree to which high-gamma variance at

that channel was accounted for by semantic attributes. Finally, p-values for

correlation coefficients were calculated through Monte Carlo simulations for

each patient that replicated the sensitivity analysis procedure with 10,000 null

semantic attribute matrices (formed through row shuffling). P-values were

identified as significant using FDR correction (α = .05) across all electrodes

for all three patients.

To assess what semantic information was reliably encoded in the ECoG sig-

nal, we examined the correlations between a reduced set of semantic features

and the high-gamma features recorded at the reliably informative electrodes.

We used the high-gamma features directly (rather than the model weights)

to eliminate the impact of specific choices for regularization. The human218
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semantic attributes are highly redundant, so to reduce the number of infor-

mative attributes, we applied principal component analysis (PCA) on the

full semantic matrix (218 semantic dimensions by 1000 nouns), and mapped

the 60 nouns from the original human218 semantic attributes to PC semantic

attributes. PCA was applied to the normalized human218 vectors, and the

resulting PC semantic vectors were also normalized to unity length. Based

on fraction of variance explained, 14 of the 218 PC attributes or dimensions

were significant (p<0.05) when thresholding using 1000 iterations of a Monte

Carlo simulation comparing the PC attributes to PCs found with null semantic

attribute matrices (shuffled across nouns and attributes). Semantic attributes

will be provided upon request.

Visual inspection of the significant PCs revealed that the first four com-

ponents (fraction of variance explained: 16.5%, 12.5%, 6.3%, and 3.6%) were

readily interpretable. For each of these four PCs, we listed the nouns with

the largest and smallest (most negative) values for the PC, as well as the hu-

man218 attributes with the largest and smallest projections onto the PC (inner

products). Based on this information, these PCs or semantic dimensions were

subjectively labeled man-made, large, manipulable, and edible respectively

(see Table 5.2). Note that these labels reflected the positive values of the PCs.

In some cases, negative values of a PC indicated a semantic meaning that

was intuitively opposite of the label (e.g., an intuitive opposite of man-made

is alive), whereas for other PCs, the meaning of negative values was less

clear (e.g., an intuitive opposite of edible might be inedible, but based on the

attribute and object lists, this might be better labeled threatening).
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PC1: Manmade PC2: Large
Nouns Attributes Nouns Attributes

High tray manmade train bigger than microwave oven
clipboard manufactured factory bigger than loaf of bread
frame invented hotel bigger than bed
box can use it museum taller than person
magnet has corners capitol bigger than car

Low antelope has a face grape can be easily moved
raccoon conscious cinnamon lightweight
deer once alive kernel can pick it up
ape alive raisins can hold it
hyena grows spice can hold it in one hand
PC3: Manipulable PC4: Edible
Nouns Attributes Nouns Attributes

High ipod has a front and back fruit used during meals
toy can be easily moved watermelon edible
laptop manufactured pineapple has internal structure
guitar can pick it up tomato goes in mouth
phone can hold it grapefruit tasty

Low puddle vegetable or plant rust silver
fog part of something larger dandruff hard to catch
hill bigger than house measles can cause you pain
medow bigger than bed dent dangerous
valley bigger than car spark avoid touching it

Table 5.2: Top four Principal Components (PC) from Human218. For each PC, the
5 objects with the highest values and the 5 objects with the lowest values for that
component are listed, along with the 5 human218 attributes with the largest and
smallest projections (i.e. inner products) on to that PC.

Correlation coefficients were computed between these four PCs and the re-

sponses from the informative high-gamma features using Pearson correlation.

Coefficients were computed using all 60 objects and all six presentations for a

total of 360 PC-feature pairs for each PC. Correlation p-values were calculated

under a Gaussian distribution assumption.
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5.3 Results

Zero-shot object decoding using a model trained to encode 218 semantic

attributes as neural activity features was significantly better than chance for all

nine patients, for nearly all decoding conditions (Figure 5.2). FDR correction

(α = .05) was applied across all 9 patients and 4 decoding conditions. The

subjects (P1–P9) were arranged in decreasing order of MRA. Using recorded

signals from all frequency bands aggregated across six presentations per

object (to improve SNR), MRA across patients for held-out objects was 76%

and ranged from 65% (P9) to 91% (P1), where chance rank accuracy is 50%.
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Figure 5.2: Zero-shot mean rank accuracy decoding performance by patient. Rank
accuracies are reported for four encoding models: a full model that is trained and
tested using all six presentations or trials of each object and all recorded frequency
ranges, a high-gamma model that is trained and tested on all presentations of each
object and only the high-gamma range, and restricted data versions of these models
that are trained on all repetitions of objects in the training set, but tested using single
presentations only. Accuracies were produced through leave-one-object-out cross-
validation. Monte Carlo significance test procedures were used to calculate p-values
for each condition, and FDR correction (α = .05) was applied to correct for multiple
comparisons. Asterisks (*) denote significant results.
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Performance remained significantly better than chance for 8 of 9 patients

when encoding models used high-gamma activity only (70–110 Hz) and tri-

als were aggregated across presentations, and high-gamma models for all 9

patients were significant when decoding from individual trial responses. Com-

pared to models using all frequency bands, high-gamma model mean rank ac-

curacy across patients fell only slightly to 73% with a range of 58% (P9) to 88%

(P1). Semantic information was still extractable under low SNR, high variabil-

ity conditions of single trial testing, but mean rank accuracy fell substantially

(mean=67%, range=56–82%; high-gamma mean 66%, range=59–81%). Still,

rank accuracy from the patient with the best performing encoding models (P1)

remained remarkably high for single-trial decoding (82%).

We also calculated winner-take-all accuracy where classifications are scored

as correct only when the target object occupies the top overall rank. These

results can be found in Supplementary Figure A.2.

5.3.1 Semantic Resolution of the Encoding Model

To assess whether the learned models encoded semantic detail beyond the

basic semantic category associated with each object, we calculated within-

category rank accuracies for all patients and for all objects. For example, when

decoding the left-out neural activity pattern evoked by the item butterfly,

we rank ordered only the five objects from the stimulus set from the insect

category (ant, bee, beetle, butterfly, and fly), rather than the entire set of 60

objects. Within-category rank accuracies that are reliably higher than chance

(i.e. 50%) would therefore indicate that the model was encoding semantic
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detail of a finer grain than category identity.

We restricted our analysis to conditions where neural responses were aggre-

gated across 6 presentations for both all-frequency and high-gamma models.

Results were mixed (see Supplementary Figure A.3), with mean rank accuracy

(MRA) ranging across patients from 38% to 66% using all frequencies and

from 39% to 67% using high-gamma alone. Within-category rank accuracies

using all frequencies were significantly better than chance in 4 patients: P1

(61%), P2 (63%), P3 (66%), and P4 (65%). Using high-gamma encoding models,

within-category rank accuracies were significantly better than chance in two

patients: P1 (67%) and P3 (65%). Significance was determined by applying

FDR correction (α = .05) across all 9 patients and both decoding conditions.

These results suggest that under some circumstances, object-specific semantic

information beyond category-level semantics is extractable from ECoG.

5.3.2 Informative Time Points

Semantic processing during visual object naming has been demonstrated

as early as 110 ms after stimulus onset (Clarke et al., 2015), and has been

shown to continue through the spoken response (Chen et al., 2016). To give

encoding models access to the full time course of semantic processing, while

at the same time limiting access to spoken output processing, decoding results

reported thus far were limited to neural features starting at stimulus onset

and ending at 750 ms. To better measure the time course of semantic activity

and its relation to spoken responses, a sliding window decoding approach

was also tested. Because the temporal resolution of power estimates in the
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high-gamma frequency range is intrinsically better than that of estimates in

lower frequencies, we focused our analysis on decoding accuracies using

high-gamma frequencies only.

In all patients except P7, high-gamma encoding model performance from

at least one individual window performed significantly better than chance

(Figure 5.3). Significance was determined by comparing each individual time

point to the baseline (pre-stimulus) distribution and applying a Bonferroni

correction across all time points for a single subject. Onset of significant MRA

ranged from 94 ms (P2 and P3) to 1156 ms (P8), with a median of 235 ms. Peak

MRA ranged from 313 ms (P1 and P2) to 1156 ms (P8) with a median of 407 ms.

Out of 8 subjects with significant MRAs, 5 patients (P1-4, P6) had MRA peak

accuracies that occurred before any spoken responses. Even when accounting

for the non-causality of spectral estimation (Table 5.3), 3 patients (P1-2, P6)

had MRA peaks that preceded the earliest spoken response. We also explored

response-locked MRA, and found that 6 out of 9 subjects had MRAs that were

significantly better than chance (see Supplementary Figure A.4). The onset of

significance for these results preceded speech onset for 5 of these 6 subjects.

5.3.3 Informative Electrodes

For the three patients with the highest performing encoding models (P1, P2,

and P3), high-gamma activity from individual electrodes was analyzed for

semantic attribute information. For each patient, the 250 ms window with

the maximum overall MRA was selected for further analysis: 188–438 ms

(centered at 313 ms) for P1 and P2, and 219–469 ms (centered at 344 ms)
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Figure 5.3: Decoding accuracies for sliding windows time-locked to stimulus on-
sets. Bar graphs are histograms of speech onset times. MRA traces were calculated
using a sliding window of 250 ms and a step size of 31.25 ms. The plotted times
correspond to the center of the extraction window, and thus may contain information
spanning -125 to +125 ms about the center. Dashed lines represent patient-specific
chance performance, calculated as the mean MRA during the baseline period. Black
lines above each trace indicate windows where MRA was significantly greater than
baseline.

for P3. For all three patients analyzed, high-gamma responses during the

optimal decoding windows reliably encoded semantic attribute information

along the left (dominant) ventral visual pathway (Figure 5.4). Responses

from the left fusiform (P1, P2, P3), inferior temporal gyrus (P1, P2), and the

parahippocampal gyrus (P1, P3) were significantly predicted by the semantic

attribute encoding models. While there was less agreement across patients

beyond the ventral visual pathway, high-gamma responses reliably encoded

semantic attribute information at middle and superior temporal electrodes
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Significant
windows (ms) Speech onsets (ms) Speech onsets

before peak (%)
Patient Onset Peak Earliest Median Uncorrected Corrected
P1 125 313 499 792 0.0% 0.0%
P2 94 313 486 816 0.0% 0.0%
P3 94 344 423 835 0.0% 0.0%
P4 250 469 494 833 0.0% 0.3%
P5 406 625 462 942 4.1% 18.4%
P6 219 313 573 991 0.0% 0.0%
P7 N/A N/A 560 1005 N/A N/A
P8 1156 1156 436 805 78.70% 84%
P9 500 500 392 855 29.30% 53.60%

Table 5.3: Peak decoding performance compared to speech onset times. The timing
of significant decoding windows (both onset and peak) corresponds to the center of
the 250 ms window used to estimate the high-gamma. The last column in this table
accounts for this non-causality by adding 125 ms to the peak MRA time, and then
calculating the fraction of speech onsets that occur before this adjusted time point.

as well as supramarginal electrodes in P1, and from several inferior frontal

electrodes in P2.

Finally, we examined the semantic profiles of each of the significant elec-

trodes in basal occipito-temporal cortex by calculating the correlation between

the high-gamma responses during optimal decoding windows and each of

the four top semantic PCs (in decreasing order: manmade, large, manipulable,

and edible). For all three patients, high-gamma responses at multiple sites in

basal occipitotemporal cortex were significantly correlated with the semantic

dimensions associated with manmade/living and size distinctions (See Fig-

ure 5.3b). In all electrodes where the manmade dimension was significant,

the size dimension was also significant. Furthermore, the signs of these two

correlations were always matched, i.e. electrodes with positive manmade

correlations also had positive correlations with the size dimension and vice
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Figure 5.4: Significant electrode locations and semantic dimensions encoded in
high-gamma activity for P1, P2, and P3. A) Encoding models were built for the top
3 patients that mapped from the semantic space to the high-gamma responses for
each electrode. The red color scale represents the p-value of the correlation between
predicted and observed high-gamma, with significant electrodes (FDR-corrected
across all electrodes and subjects, α = 0.05) indicated with a yellow ring. B) Bar
plots report correlation coefficients (absolute value, with the sign of the correlation
displayed above each bar) for each of the four identified semantic dimensions (i.e.
PCs), for each of the significant electrodes along the basal occipitotemporal cortex.
Asterisks (*) denote significant correlations (FDR-corrected across all significant
electrodes and PCs, α = .05).

versa. Note that nouns with negative loadings on the manmade dimension

can readily be interpreted as living (see Table 5.2). All electrodes with positive

correlations on the manmade and large dimensions are located medially on

the basal occipito-temporal surface (P1: a and b; P3: a, b, c, and d). Conversely,

electrodes with negative correlations on these two dimensions are located

more laterally on the basal cortex (P1: c and d; P2: a, b, and c). Following

these results, larger and manmade things evoke more high-gamma activity
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medially and smaller and living things evoke more high-gamma activity later-

ally. Significant negative correlations with the manipulable dimension were

observed in medial regions in or near the parahippocampal gyrus (P1: e, f,

and g; P3: a and d). Nouns that loaded negatively on this dimension can be

categorized as scenes and places (or in the specific case of our stimulus set,

buildings, and to a lesser extent, building parts). A single basal electrode (g

in P1) showed a positive correlation with the edible dimension. Lastly, we

investigated the significant electrodes on the lateral surface of the brain in P1

and P2 (see Supplementary Figure A.5), though few patterns were discernible.

5.4 Discussion

Studies in other domains have shown that ECoG responses contain detailed

information about a variety of representations, and that these responses can

be used for decoding with varying degrees of performance (see Gunduz et

al., 2012 for spatial attention; Hotson et al., 2016 for motor control; Martin

et al., 2016 for speech production; Pasley et al., 2012 for speech perception).

The series of results presented in the current study demonstrate that ECoG

responses recorded during visual object naming are semantically rich, and

untrained objects can be accurately decoded from these responses at rates

equivalent to whole-brain fMRI in healthy subjects (despite variability in elec-

trode placement and the presence of lesions in some patients). Beyond high

rates of decoding accuracy, we observed that high-gamma activity recorded

approximately 200–500 ms after stimulus onset was associated with specific

semantic dimensions for a subset of patients with basal occipitotemporal
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electrode coverage.

5.4.1 Frequency Encoding of Semantic Attributes

Semantic attribute information was consistently found in high-gamma band

activity, and the addition of other frequency bands yielded only slight im-

provements to the trained encoding models. Oscillatory activity and syn-

chronization in the gamma range (25–128 Hz) and especially the high-gamma

range (defined as 70–110 Hz in the current report) appears to be critical for neu-

ral computation and communication (Fries, 2009). Activity in this frequency

band has been strongly linked to different representations and processes, from

low-level perceptual features to abstract conceptual features during visual

processing (Jacobs and Kahana, 2009), voluntary motor commands (Cheyne

et al., 2008), as well as language processing (Crone, Sinai, and Korzeniewska,

2006) where very accurate language mapping for neurosurgical patients has

been demonstrated from high-gamma activity (Babajani-Feremi et al., 2016).

5.4.2 Timing of Semantic Attribute Information

The time course of semantic processing during object recognition can be esti-

mated by tracking encoding model performance over time. The best semantic

encoding models (i.e. for P1, P2, and P3) began performing significantly better

than chance at a mean of 104 ms post stimulus onset, with accuracies peaking

at a mean of 323 ms (using 250 ms windows centered at the reported times).

Comparable results in visual object recognition have been reported with EEG

(VanRullen and Thorpe, 2001; Simanova et al., 2010; Chan et al., 2011a), MEG
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(Clarke et al., 2015; Cichy, Pantazis, and Oliva, 2016), and ECoG (Vidal et al.,

2010; Chan et al., 2011b). Moreover, size and position-invariant visual object

representations begin to emerge at 125 ms and 150 ms respectively (Isik et al.,

2013), and more abstract semantic category or attribute information becomes

available between 200 and 500 ms (Clarke et al., 2015).

5.4.3 Semantic Encoding in Basal Occipitotemporal Cortex

For the visual object naming task reported here, high-gamma responses from

left basal occipitotemporal cortex were well predicted by our semantic at-

tribute encoding models. Electrode placement and encoding model perfor-

mance varied across patients, but the patients with the best performing en-

coding models all had electrode strips covering the left language-dominant

fusiform gyrus. For all three of these patients, high-gamma activity recorded

at fusiform electrodes 200–500 ms post-stimulus onset was significantly pre-

dicted by the semantic attributes of the named object. High-gamma activity

from neighboring electrodes over inferior temporal and parahippocampal

gyri were also significantly predicted in a subset of these patients.

These results appear to be in close agreement, both spatially and tem-

porally, with other studies relating semantic attributes to neural responses

(Chen et al., 2016; Sudre et al., 2012). Left fusiform involvement is commonly

reported during visual semantic tasks like naming, reading, and categoriza-

tion. While the region is perhaps most associated with visual word forms and

orthographic processing (Tsapkini, Vindiola, and Rapp, 2011), findings that

different semantic categories like animals and tools differentially activate the
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fusiform gyrus are well-established (Simanova et al., 2014a; Ishibashi et al.,

2016). It appears that this region links visual form to meaning in hierarchical

processing stages from occipital cortex to the medial and anterior temporal

lobe (Patterson, Nestor, and Rogers, 2007; Rogers et al., 2006; Starrfelt and Ger-

lach, 2007), and projects to distributed semantic representations throughout

cortex (Binder and Desai, 2011).

5.4.4 Semantic Dimensions

Moving beyond strict categorical distinctions, our results show that informa-

tion along particular semantic dimensions is encoded in basal occipitotem-

poral ECoG responses. While our encoding models used 218 attributes to

predict ECoG responses, semantic dimensionality reduction was necessary to

interpret the observed encoding patterns. PCA on the human218 database

indicated that semantic variability could be mostly captured by four semantic

dimensions: the degrees to which an object is manmade, large, manipulable,

and edible. We used this semantic dimensionality reduction to interpret activ-

ity at the electrodes that were significantly predicted by the encoding model.

Results showed that basal occipitotemporal responses in the high-gamma

range were closely associated with the first three of these four dimensions,

though responses from one anterior fusiform electrode for one patient was

significantly correlated with values along the edible dimension.

For the dimensions labeled manmade and large, a medial to lateral func-

tional organization was observed along basal occipitotemporal cortex. Values

along these two dimensions positively correlated with high-gamma responses
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from medial electrodes, and negatively correlated with responses from lateral

electrodes. As an illustration of this organization, an airplane (with high

values on the manmade and large dimensions) elicits more high-gamma ac-

tivity in medial electrodes as compared to lateral electrodes, an ant (with

low values on the manmade and large dimensions) elicits more high-gamma

activity in lateral as compared to medial electrodes, and items that are split

on these dimensions (e.g. a relatively small but manmade object like a spoon)

elicit moderate high-gamma activity medially and laterally (on average). This

pattern was fully observed in subject P1; subject P2 had only lateral coverage

(with negative correlations for these dimensions); subject P3 had only medial

coverage (with positive correlations for these dimensions).

Interestingly, the parcellation of fusiform gyrus into ventromedial and

ventrolateral regions as suggested by these results is supported by indepen-

dent functional and anatomical connectivity analyses (Zhang et al., 2016), as

well as task-based fMRI results. The medial-to-lateral organization of ventral

temporal cortex for the manmade/living or animate/inanimate distinction

has been well studied (Chao, Haxby, and Martin, 1999; Downing et al., 2006;

Bell et al., 2009; Wiggett, Pritchard, and Downing, 2009), and in other work,

the large-to-small organization has also been observed along this axis (Konkle

and Oliva, 2012). Konkle and Caramazza, 2013 varied animacy and size si-

multaneously across a large set of animals and objects, and found that medial

regions preferentially responded to large objects (congruent with our results),

while lateral regions preferentially responded to animals regardless of size

(partially congruent with our results). There are many factors to consider
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when resolving these results with the current report: relative to Konkle and

Caramazza, animate items may have been under-represented in our stimulus

set; many continuous dimensions were simultaneously varied here while

animacy and size were treated as binary variables by Konkle and Caramazza;

there may be individual differences in this organization that are not captured

by our small patient group.

The semantic dimension labeled manipulable also correlated with high-

gamma activity from multiple electrodes. Significant negative correlations for

this dimension were largely observed at medial basal temporal sites, including

parahippocampal cortex. Importantly, negative loadings on this dimension

corresponded to places and geographic features in the data set used to gen-

erated the semantic dimensions, and primarily buildings and building parts

within the 60 experimental stimuli. The parahippocampal place area is in-

volved in processing place and scene information (Aguirre et al., 1996; Epstein

and Kanwisher, 1998), consistent with our results.

5.4.5 Perceptual Features of Semantic Attributes?

Sensitivity to semantic attributes and categories in basal occipitotemporal

cortex may be partially accounted for by differences or confounds in low-level

visual features that exist between semantic categories. Indeed, the dimensions

focused on here (e.g. animate-inanimate, large-small, and tools-places) can

be associated with both visual and semantic concepts. For example, the

animate-inanimate dimension may relate to visual features in that several of

the semantic attributes that had the highest projections on to this dimension
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had to do with visual structure and form (e.g. has corners, has flat or straight

sides, has a face). Canonical size is another feature that has both semantic and

perceptual interpretations: surprisingly, it was recently shown that canonical

size information can be recovered from primary visual responses during a

reading task (Borghesani et al., 2016), blurring the line between traditional

distinctions of perceptual and semantic features.

While low-level features were not strictly controlled for or modeled in

the current study, some studies of semantic decoding have attempted to ac-

count for low-level visual differences by including perceptual features in their

models (Sudre et al., 2012; Clarke et al., 2015; Borghesani et al., 2016). These

studies found posterior to anterior gradients from perceptual to conceptual

representation such that posterior regions of basal occipitotemporal cortex

contained information related to perceptual features, while regions just ante-

rior contained information related to semantic features. Other studies have

shown evidence for semantic representation in fusiform responses through

semantic priming of words (Gold et al., 2006) and cross-modal generaliza-

tion, where classifiers trained to discriminate animals from tools from left

fusiform responses to one stimulus class (i.e. spoken names, written names,

photographs, and natural sounds) can discriminate animals from tools using

responses evoked by a different stimulus class (Simanova et al., 2014b). Most

of these results come from fMRI; the only other study to date to analyze ECoG

responses for semantic attribute information reported that semantic attribute

models were much more predictive of neural responses than basic visual or

phonological feature models, particularly in more anterior aspects of basal
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temporal cortex (Chen et al., 2016).

5.4.6 Limitations of the Model

Very accurate decoding performance was achieved for untrained objects in a

subset of patients, but our model was very modest in terms of the semantic

embedding space, the neural features, and the statistical learning methods

used to relate the two. Several different semantic embedding spaces have

been used for predicting and interpreting neural data: those based on corpus

statistics, those based on human judgments, and those that attempt to use

neural responses themselves to define or optimize the embedding space for

neural decoding (Fyshe et al., 2014). Different semantic embeddings are likely

to be better matched for different recording modalities and paradigms, but

whether there is substantial room for improvement beyond current results is

unclear given the SNR and resolution achievable with today’s neuroimaging

tools (Bullinaria and Levy, 2013). In this work, we focused on a very limited set

of concrete objects, but training encoding models for more complex concepts

will require embeddings that can support more abstract concepts and concept

compositionality.

5.5 Conclusion

Responses recorded with ECoG during visual object naming contain rich

semantic attribute information that can be used to both decode untrained

objects at very high levels of performance and study semantic encodings
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within individual subjects. For a subset of patients with basal occipitotem-

poral electrode coverage, we observed that high-gamma activity recorded

approximately 200–500 ms after stimulus onset was associated with specific

semantic dimensions: manmade-animate, canonically large-small, and places-

tools. Individual patient results were in surprisingly close agreement with

reports from other modalities on the functional organization of semantic in-

formation in ventral temporal cortex during object recognition. Semantic

attribute encoding models are powerful tools that are critical for both gener-

alizing outside the training set as well as for allowing the study of semantic

encodings among large sets of diverse categories.
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Chapter 6

Discrimination of Utterances using
Spatiotemporal Matched Filter
Templates in Single-trials

This chapter was submitted as an article to a special issue of Frontiers in

Neuroscience on electrocorticographic brain-computer-interfaces, and as of

the time of writing this dissertation, is still under review.

6.1 Introduction

Keyword spotting (KWS) has recently come to the forefront of human-computer-

interaction with the advent of voice-assist technologies such as Amazon Alexa,

Apple’s Siri, and Google’s Assistant. All of these systems employ local, low-

resource acoustic keyword search in real-time to detect a “wake word” that

activates server-side speech recognition for interaction with an intelligent

agent. These systems have been commercially successful and lauded for their

ease of use. There are scenarios where voice-activated system interaction is

suboptimal, especially when many speaking voices make the acoustic speech
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recognition less reliable and socially awkward to use. The ability to trigger

an intelligent agent or perform menu selections with low latency and high

specificity using neural control is of great practical interest.

A number of studies of neural speech decoding motivate the selection of

electrocorticography (ECoG) for neural keyword spotting. Bouchard et al.,

2013 were the first to examine the organization of articulation in ventral sen-

sorimotor cortex (vSMC) using high-density ECoG recordings. Their study

revealed that high frequency activity in the high-gamma range (70-110 Hz)

encodes precise movements of speech articulators with a high degree of tem-

poral specificity. Mugler et al., 2014; Mugler et al., 2015 similarly characterized

the articulatory representation in this area and further showed that this activ-

ity is more related to the gestural trajectories of specific muscles in the vocal

tract than it is related to the specific keywords or phonemes articulated. Kanas

et al., 2014 used high frequency content of speech-active areas of the brain

to perform voice-activity-detection, or VAD – segmenting periods of speech

from non-speech periods. Moreover, high-gamma activity from ECoG arrays

was used as input to a language model and a small-vocabulary continuous

speech recognition from neural signals was created in a study by Herff et al.,

2015. Decoding of phonemic (Bouchard and Chang, 2014; Pei et al., 2011a) and

gestural (Mugler et al., 2015; Lotte et al., 2015) content from vSMC has repeat-

edly been shown as well. These studies provide evidence that the dynamics

of speech require the spatiotemporal resolution of intracortical electrophys-

iological recordings; features derived from non-invasive modalities do not

modulate at rates necessary to make short-time inferences about articulatory
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processes. This study employs subdural ECoG recordings to determine the

feasibility of neural keyword spotting using high quality neural recordings as

a proof of concept.

In building a neural keyword spotter, we were inspired by acoustic key-

word spotting, where this has been accomplished in a variety of ways. Hid-

den Markov Models (HMM) have been applied to this problem extensively.

HMM based real-time keyword spotting tends to use a silent state, a key-

word state (or series of states) and a set of “garbage” states that capture

typical non-keyword speech. In “whole-word” approaches, each state of the

HMM represents an entire word (Rahim, Lee, and Juang, 1997; Rohlicek et al.,

1989), whereas phonetic-based approaches (Manos and Zue, 1997; Bourlard,

D’hoore, and Boite, 1994; Rohlicek et al., 1993) break down the keyword and

non-keyword utterances into sequences of phoneme sub-models. A keyword

has been identified in the window of interest if the state sequence prediction

proceeds through a keyword state (for whole-word modeling) or sequence of

phonetic states corresponding to a keyword. Using a phonetic-based model to

perform neural keyword spotting is risky: according to Mugler et al., 2014, a

full set of American English phonemes has only been decoded at 36% accuracy

from implanted ECoG arrays, motivating a whole-word approach.

Keshet, Grangier, and Bengio, 2009 suggested a low-latency acoustic key-

word spotting using a discriminative approach rather than a HMM-based

probabilistic model. In this approach, a linear classifier is trained to maximize

the margin between acoustic feature sequences containing keywords and

others that don’t. As detailed in the aforementioned study, this approach does
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not rely on computationally intensive Viterbi decoding and achieves higher

keyword spotting performance than HMM-based systems.

We have chosen to use a neural voice-activity detection combined with an

adaptation of the aforementioned discriminative (non-HMM-based) approach

to perform neural keyword spotting. A flowchart that describes the signal

processing chain and two-step discriminative decoding pipeline is described in

Figure 6.1. Application of neural features to existing acoustic KWS approaches

requires a few modifications. For example, mel-frequency cepstral coefficients

derived from a single spectrally-rich microphone recording are sufficient to

perform acoustic keyword recognition; by contrast, there are many electrodes

in an ECoG recording, each with a single time-varying “activation” signal,

corresponding to changes in neural population firing rates, in turn indexed by

changes in high frequency activity. These activations capture neural processes

necessary to sequence, control, and monitor the production of speech, as

opposed to acoustic features that capture discriminable aspects of spoken

acoustic waveforms. The motor representations of speech that capture the

dynamics of articulators, and the auditory representations of speech that

capture phonetic content during self-monitoring but also activate during

perceived speech, are of particular interest to a neural keyword spotting

system.

A recent study by Ramsey et al., 2017 has significantly influenced the

approach we’ve developed to capture the spatiotemporal dynamics of neural

features for the purpose of informing keyword discrimination. In the study,

Ramsey discriminated phonemes from high density ECoG recordings of vSMC
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Figure 6.1: A flowchart representation of the keyword-spotting signal processing
pipeline. Training and testing were split between two separate but related tasks. Red
arrows indicate flow of data through the pipeline. Dotted lines with circles indicate
models that were trained on the training dataset are used in this step for both the
training and testing data. Training is performed using a visually presented keyword
reading paradigm, and testing occurs across an auditory keyword repetition task.
This study implements a two-stage detector; one neural VAD template is correlated
across the testing dataset, and peak-picking indicates a detected utterance. When an
utterance is detected, a discriminative classifier is used to decide if the utterance was a
keyword or non-keyword speech. Channel downselection, normalization parameters,
neural templates, feature dimensionality reduction, and classifiers are all trained on
the reading (training) task and applied to the repetition (testing) task to simulate how
keyword spotting would realistically perform in a separate recording session.
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using the correlation of spatiotemporal matched filters as a means of identi-

fying when the spatiotemporal pattern of high frequency activity matched

stereotyped patterns for articulations (or gestural sequence of articulations).

This method achieved 75% accuracy in a four-class phoneme discrimination

problem, and highlighted the importance of including temporal relationships

of high frequency activity between cortical sites in decoding models. We

extend this methodology here to the creation of maximally discriminative

“neural templates” to identify consonant-vowel “keyword” utterances instead

of single phonemes.

“Wake-words” for voice-assist technologies are typically chosen to be low-

frequency and phonetically complex to reduce the number of spontaneous

detections. To simplify the problem of producing a more neurally detectable

keyword, we examine monosyllabic, “consonant-vowel” keywords, varying

the place of articulation, the consonant voicing, and the vowel height during

phonation. We have chosen to examine keyword detection accuracy with

respect to non-keyword speech and silence, as opposed to a multi-keyword

decode to further simplify the problem and performance metrics. We will

also limit ourselves to causal methods of feature extraction and classification

for this study to realize how neural keyword detection would perform if

deployed in a low-resource real-time scenario.
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6.2 Materials and Methods

6.2.1 Data Collection

Subdural electrocorticographic recordings were made in eight subjects un-

dergoing intracranial monitoring prior to resective surgery for drug-resistant

epilepsy. Electrocorticographic (ECoG) arrays of platinum electrodes with

varying exposed area and spatial density were placed for a one-to-two week

period according to clinical requirements. Subjects performed both syllable-

reading and syllable-repetition paradigms as part of a protocol approved

by the Johns Hopkins University Institutional Review Board. All subjects

gave written informed consent in accordance with the Declaration of Helsinki.

Electrode localization was performed by aligning electrode locations from a

post-operative computed tomography image with a pre-operative magnetic

resonance image using Bioimage Suite (Papademetris et al., 2006). Neuroimag-

ing and electrode locations are shown in Figure 6.2.

Subjects performed two tasks wherein they were asked to overtly produce

consonant-vowel (CV) syllable utterances. In the (syllable) reading task, a

textual representation of the utterance was visually presented for 1 second

(see Table 6.2 for details) followed by an intertrial interval of 2-3 seconds

during which the subject was instructed to fixate on a visible fixation cross.

The (syllable) repetition paradigm was identical, except that the fixation cross

remained on screen throughout the task and the utterance was aurally cued us-

ing a speaker. In both tasks, the subject was instructed to speak the prompted

syllable aloud after stimulus delivery, and a microphone was used to record
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Figure 6.2: Neuroimaging and electrode localization for eight subjects implanted
with subdural electrode arrays. Electrodes positioned over sensorimotor cortex are
highlighted in red and electrodes over superior temporal gyrus are highlighted blue.
Biographical and experimental details for these subjects can be found in Table 6.1.
Subject 1 had a large lesion within pre-central gyrus, from which very little high
frequency activity was recorded. Subject 3 had an ictal locus very near sensorimotor
cortex with substantial inter-ictal activity that limited observation of neural features
in this area. Subject 8 had a lesion in the right supramarginal gyrus.

the subject’s responses to a high quality digital audio file. A monitor-output

cable connected the microphone recording device to an auxiliary analog input

on the electrophysiological amplifier (Neuroport, Blackrock Microsystems,

Salt Lake City, UT; and EEG1200, Nihon Kohden, Tomioka, Japan), recording a

lower-resolution version of the subject’s speech synchronized with the ECoG

data at 1000 samples per second. BCI2000 (Mellinger and Schalk, 2007) was

used to present stimuli and record the data from the amplifier into a standard-

ized format for offline analysis. Data was collected in blocks of 60 trials; 5 trials

per utterance for all 12 syllables in a randomized order. The paradigm was

split across two blocks of reading and two blocks of repetition for each subject,

but time and clinical constraints limited collection to one-block of the tasks

for some subjects. Details of data collection for each subject is documented in
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Table 6.1.

6.2.2 Preprocessing and Segmentation

Noisy channels, identified via visual inspection of the raw ECoG signals, were

removed from further analysis. Spatial filters were applied to re-reference

recordings to the common-average of the included channels. Trial markers

from BCI2000 that designated stimulus presentation (auditory or visual) were

used to define the trial onset points. The 250-450 Hz band-power in the

synchronized low-fidelity microphone recording captured the first formant

of speech in each subject, and was thresholded to detect the utterance onset

time for each trial. These threshold crossings tend to be associated with the

voice-onset-time in CV keywords containing a voiced consonant and the

plosive release in CV keywords containing an unvoiced consonant, due to the

silent nature of consonant articulation. Templates were generated from a one-

second “response” period centered around this threshold crossing to capture

differences in the timing of neural features relative to the response onset

(Ramsey et al., 2017; Mugler et al., 2014; Jiang et al., 2016). Neural features were

normalized within each task individually to a pooled “baseline” period which

was created from a one-second period prior to stimulus presentation across

all trials within a single task. All trials from the reading dataset were used

for training templates and classifiers that were applied across the repetition

dataset. In this way, the training data were entirely separate from the testing

data, and the templates generalized feature extraction across tasks.
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ID Side Age Sex Read Rep Grid Specifications

1 R 17 M 120 60*
vSMC: 85 (85 HD-5)
STG: 2 (2 HD-5)
Total: 87

2 L 37 F 60 120
vSMC: 36 (32 µ, 4 SD)
STG: 57 (57 HD-5)
Total: 93

3 L 25 M 105** 120
vSMC: 30 (30 HD-5)
STG: 32 (16 µ, 16 SD)
Total: 62

4 L 39 M 120 120
vSMC: 14 (14 SD)
STG: 48 (32 µ, 16 SD)
Total: 62

5 L 40 M 120 120
vSMC: 13 (13 SD)
STG: 9 (9 SD)
Total: 22

6 L 40 F 60 120
vSMC: 4 (4 SD)
STG: 87 (81 HD-3, 6 SD)
Total: 91

7 R 27 M 120 60
vSMC: 5 (5 SD)
STG: 12 (12 SD)
Total: 17

8 R 19 M 120 120
vSMC: 52 (43 HD-5, 9 SD)
STG: 19 (HD-5)
Total: 71

Table 6.1: Biographical and experimental details for subjects. The implant hemi-
sphere (side), age, sex, number of reading/repetition trials, and grid specifications for
all eight subjects in the study are listed here. Associated neuroimaging and electrode
localization can be found in Figure 6.2. Channels are delineated by region of interest,
and further by the diameter of the electrode’s exposed area, then by the inter-electrode
spacing. SD: Standard macro-array (2 mm diameter, 1 cm pitch). HD-5: High density
array (2 mm diameter, 5 mm pitch). HD-3: High density array (1 mm diameter, 3
mm pitch). µ: Micro-ECoG array (75 µm diameter, 1 mm pitch). (*120 trials were
recorded, but the synchronized microphone recording failed for the second set of 60
trials. Neural keyword spotting can be applied to this second block, but ground truth
timing metrics are unavailable.) (**Recording session ended early.)
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/IPA/ (“Stim”) Bilabial Alveolar Velar

Voiced /ba/ (“BAH”) /da/ (“DAH”) /ga/ (“GAH”)

Unvoiced /pa/ (“PAH”) /ta/ (“TAH”) /ka/ (“KAH”)

/IPA/ (“Stim”) Bilabial Alveolar Velar

Voiced /bi/ (“BEE”) /di/ (“DEE”) /gi/ (“GEE”)

Unvoiced /pi/ (“PEE”) /ti/ (“TEE”) /ki/ (“KEE”)

Table 6.2: Keyword utterances and associated axes of articulation. Keyword utter-
ances vary on three axes; three places of articulation, two ways of consonant voicing,
and two vowel heights. Utterances are shown with their IPA notation as well as the
visual text prompt as shown in the reading paradigm. "GEE" would typically be
pronounced /Ãi/ but subjects were instructed to respond with /gi/ instead.

6.2.3 Feature Extraction and Electrode Downselection

Electrodes over sensorimotor cortex and superior temporal gyrus were manu-

ally identified by a neurologist; see Figure 6.2 for a summary. Electrodes lying

outside these areas were excluded from further analysis. A 128 ms window

sliding by 16 ms increments was used to perform spectral decomposition via

the fast Fourier transform. Spectral power was log-transformed and z-scored

to the baseline period, per-frequency. Frequency bins between 70 and 110 Hz

were averaged together to form a time-varying feature capturing the band

power modulations in the “high-gamma” range, a frequency range highly

correlated with the firing of local neural populations (Ray et al., 2008). This

feature was then re-normalized to the baseline period per-electrode.
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6.2.4 Template Generation and Voice Activity Detection

Previous studies indicate that the timing of high gamma activity contributes

significantly to decoding of speech from vSMC (Ramsey et al., 2017; Jiang et al.,

2016). Neural templates were trained to capture spatiotemporal relationships

of high gamma activity in an efficient, but causal representation. A “response

template” was created by calculating the mean of the neural responses from all

trials (N = 60-120) in the training dataset. A “keyword template” for each key-

word was also created by calculating the mean of the neural responses for each

of the keywords individually (5-10 trials). We additionally took advantage

of our keyword design to create neural templates composed of higher trial

counts across axes of articulation, as described in Table 6.2. The response tem-

plate was then subtracted from each of these keyword templates, the resulting

“discrimination template” captured spatiotemporal relationships that differed

from the mean neural responses in the response template. A significance

mask was created by z-scoring the condition mean (prior to subtraction of

the response template) relative to the baseline period. A temporal smoothing

kernel (hamming, 0.1 sec) was applied to reduce noise in the template before

the significance mask was applied; elements with a z-score of less than 3.0

were set to zero to further reduce noise. The smoothed and regularized dis-

crimination templates were correlated with the corresponding high-gamma

features in both testing and training datasets – these features were further

smoothed (hamming, 0.25 sec) to reduce the influence that slight timing mis-

matches could have on keyword discrimination. An example visualization

of the generation of a discrimination template for bilabial keywords can be
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found in Figure 6.3A. A principal component analysis (PCA) was trained to

identify linear combinations of template output features that accounted for 90

percent of the variance across the entire reading task. Principle components of

template outputs were calculated for both the reading and repetition datasets,

reducing covariance in the template outputs and creating neural features

which can be used for keyword discrimination.

Electrodes from STG were excluded from the response template; the result-

ing template was used as the neural VAD template. Auditory representations

of speech in STG tend to have less specificity to self-generated speech and their

inclusion in the VAD model can result in false-positive detections coincident

with the perception of utterances, whether or not they are being produced.

Neural VAD was calculated as the squared temporal correlation between the

VAD template and the normalized high-gamma power. VAD output was

further smoothed using a temporal smoothing kernel (hamming, 1.0 sec). A

causal peak-picking algorithm was applied to identify utterance onset times –

the derivative of the neural VAD signal was thresholded and the zero-crossing

that follows a threshold crossing was chosen as the utterance detection time.

Example templates and their corresponding correlational output are shown

in Figure 6.3. Application of these templates to live neural features results in

exactly one second of latency for neural VAD and keyword discrimination.

6.2.5 Discriminative Classification

A discriminative classifier similar to SVM, as described in great mathematical

detail by Keshet, Grangier, and Bengio, 2009, was trained on the reading
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Figure 6.3: Example neural templates and utterance discrimination in Subject 1.
(A) From left to right: the response spatiotemporal matched filter; an average of all
keyword utterances, the bilabial spatiotemporal matched filter (STMF); an average
of just keyword utterances with a bilabial place of articulation, the difference tem-
plate; the subtraction of the response spatiotemporal matched filter from the bilabial
spatiotemporal matched filter, and the discrimination template; the regularized and
smoothed/denoised discrimination template for bilabial keywords. (B) Neural tem-
plates are shown for the four electrodes (a, b, c, and d) depicted in Figure 6.6. The
VAD template, shown at the bottom, is the mean across all 120 trials in the task. The
correlation of these templates with the high-gamma activity in the same task is shown
in the plot to the right of the templates for a contiguous period of ~95 seconds to ~125
seconds into the reading task. Vertical grey lines in this plot indicate ground truth
utterance times as recorded by a microphone. Peaks of the neural VAD output closely
matched the utterance times. (C) The values of these template features reduced to
two dimensions using MDS.
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dataset. In broad strokes, the training step attempted to designate a linear

discrimination boundary that maintains a constant margin of separation be-

tween pairs of feature-vectors corresponding to keyword and non-keyword

utterances. For each pair, the training step searched for the feature-vector

within +/- 100 ms of the alignment time for the non-keyword utterance that

looked maximally “keyword-like”, given the current discrimination boundary.

The learning step adjusted the discrimination boundary using the difference

between that maximized non-keyword feature-vector and the ground-truth

keyword feature-vector. A significant advantage of this classifier is that it can

be trained online as new observations become available.

Pairs of feature-vectors associated with keyword and non-keyword utter-

ances were assigned within stimulus blocks. Additionally, feature-vectors

associated with keyword utterances were paired with feature-vectors corre-

sponding to silent periods (1.0 sec before stimulus onset) to adapt the classifier

boundary to VAD false-detections during silent periods. In Figure 6.4, classi-

fier output was calculated using ground-truth utterance detections derived

from the microphone. During simulated testing, results of which are shown

in Figure 6.5, the classifier output was calculated at times when the neural

VAD model identified an utterance. The slight temporal misalignments be-

tween neural VAD and microphone-derived timing accounts for the different

classifier performances between these figures.
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Figure 6.4: Isolated VAD and keyword discriminability for two subjects. The left-
most panel shows the electrodes highlighted in red and blue that were used to
discriminate syllables. Only electrodes highlighted in red were used to perform
VAD. The center panel shows the VAD performance in sensitivity (percentage of
utterance timings correctly identified) against the number of false detections per
utterance for various VAD thresholds. The right-most panel shows ROC curves for
all twelve keyword detectors. ROC curves with AUC values were significant at the
95% confidence interval are highlighted in red. The keyword detector that produced
the highest AUC is highlighted in bold-red and indicated via annotation under the
curves, followed by asterisks indicating significance at the p < 0.05 (*), p < 0.01
(**) and the p < 0.001 (***) level with respect to the distribution of maximum AUC
models.
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Figure 6.5: Simulated VAD and KWS performance on the testing dataset. On the
left, the percentage of utterances correctly detected by neural VAD is plotted against
the number of false utterance detections for all subjects in the study. On the right,
performance for all twelve keyword spotters from each patient are plotted.

6.2.6 Testing and Performance Metrics

The templates, principle components, and discriminative classifiers were

trained on all trials of the reading task. Testing and performance metrics

were calculated from the application of these models to the repetition task.

A VAD performance metric was calculated by sweeping the aforementioned

VAD threshold value from 0 to 20 standard deviations (relative to baseline

periods) and comparing the utterance detection times to the ground-truth

microphone threshold crossings. An utterance detection within +/-100ms of a

microphone event was classified as a true-positive, but subsequent detections

for that utterance were considered false-positives.

An ROC curve was created for each of the keyword classifiers using

129



microphone-derived voice onsets in the repetition task. A classifier threshold

was swept from -10 to 10 and the resulting keyword detections and false-

positives were used to create an ROC curve and derive area-under-curve

(AUC) metrics for each keyword classifier. Significance of the AUC statistic

was calculated by scrambling the ground-truth utterance labels while training

keyword detectors. A bootstrapped null-distribution of 1000 AUC metrics

was generated for each keyword classifier, from which statistical significance

thresholds for the metric were calculated. Keyword spotting performance us-

ing neural VAD times was also calculated for each classifier using a threshold

that was chosen to maximize sensitivity while minimizing false detections—in

particular, equalizing the error rates for false-negatives and false-positives, the

so-called “equal error rate” condition (Motlicek, Valente, and Szoke, 2012)—on

the training dataset.

6.3 Results

Within the context of this methodology, discrimination between keyword and

non-keyword speech relies upon differences in timing and/or amplitude of

high-gamma activity. Differences in high-gamma amplitude across keywords

are useful in traditional decoding approaches where only single time-points

of high-gamma activity are used to make classification decisions. Single-trial

plots, as seen in Figure 6.6, suggest high-gamma amplitude in vSMC can

be sufficient to decide the place-of-articulation for an utterance. Consonant

voicing appears to be encoded in the timing of high-gamma activity relative to

voice onset time. The sensation of pressure build-up in the vocal tract prior to
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Figure 6.6: High-gamma single-trial rasters for Subject 1. High-gamma single-trial
rasters across the reading task from four manually selected electrodes in Subject 1.
Trials, plotted along the Y axis, were sorted first by the place of articulation for the
consonant, then by consonant voicing. Trials were aligned with response-onset time
set to 0 seconds, denoted by a black vertical line at the center of each raster. Color
denotes the high-gamma feature z-score normalized to a pooled pre-trial baseline
period. Activity in electrode a appears to represent a bilabial place of articulation,
whereas activity in electrode b appears to indicate an alveolar place of articulation.
Timing differences of high-gamma activity relative to the voice onset time encoded
the voicing of bilabial and alveolar consonants in these areas. Electrode c exhibited
consistent high-gamma amplitude and timing for all utterances; informing neural
VAD but less useful for keyword discrimination. Electrode d appeared to encode
consonant voicing across all places of articulation. No clear patterns emerged if the
trials were sorted by vowel height (/a/ vs /i/) for any electrodes in Subject 1.

plosive release is a plausible explanation for the timing of this discriminable

neural activation in electrodes a and b, especially given the placement of these

electrodes in postcentral gyrus; an area typically associated with sensation.

The correlation of neural templates with high-gamma activity created

high-level features that appeared to be useful for clustering utterances using

these spatiotemporal relationships, as shown in Figure 6.3. The discriminative

quality of a neural template appeared to rely primarily upon the number of

trials used to create it; a decrease in the template noise was associated with a
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higher number of trials. A neural template for a particular contrast highlights

the difference from the mean template, which can be a problem if there is no

discriminable difference between the contrasts. As seen in Figure 6.3, Subject

1 had very little discriminable activity within the vowel height condition (/a/

vs /i/), meaning the trial average across the ‘/a/’ condition and the ‘/i/’

condition were very similar to the trial grand-average. Subtracting the trial-

average from the two condition averages resulted in a template that introduced

significant noise to the feature set. The inclusion of these templates was less of

a problem due to the following decomposition of these features into principal

components; the noisy template outputs tended to be de-emphasized as they

did not explain much of the variance of the features across time. Noting that

template output appeared to fluctuate around neural VAD timings, temporal

alignment was absolutely critical when interpreting these features.

Neural VAD and keyword discriminability appeared to be somewhat

decoupled; several subjects showed consistent high-gamma modulation across

utterances that was useful for performing VAD, but these features were less

useful for keyword discrimination, as shown in Figure 6.4. Subject 1 exhibited

exceptional VAD with highly significant discrimination of several keywords.

Subject 2 showed similar VAD performance, but demonstrated relatively poor

keyword discrimination. Classifiers in Subject 1 leveraged neural features that

discriminated consonants well (shown in Figure 6.6), whereas classifiers from

Subject 2 were only informed by features that discriminated vowel height

and alveolar place of articulation, shown in Figure 6.7. VAD and keyword

discrimination results for all subjects are shown in supplemental material.
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Figure 6.7: Vowel-specific high gamma activity. Vowel-specific high gamma activity
from Subject 2 (top) and Subject 6 (bottom). Single-trial high-gamma rasters to the
left are sorted first by place of articulation, then by vowel height. Electrode d and h
appear to encode vowel height, in similar areas of STG. Electrode a and b are micro-
ECoG electrodes over vSMC that appear to encode place of articulation. Electrodes c,
f, and g appear to modulate consistently with all utterances and are more useful for
VAD, but provide little discriminative information.
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6.4 Discussion

This study is the first to examine keyword spotting with ECoG for the pur-

pose of BCI control. These results were obtained by performing a two-step

classification procedure involving neural VAD and keyword vs non-keyword-

speech classification. As mentioned previously, neural voice activity detection

has been performed before using spectral decomposition techniques and a

discriminative classifier by Kanas et al., 2014. Performing VAD using this

method of template-based “matched filtering” has a number of benefits over

this prior work. Due to the fact that all utterances are roughly the same length

and surrounded by silence, cross correlation with the neural VAD template

actually provides a good alignment point for the application of a discrimina-

tive classifier. Furthermore, the cross correlation is computationally efficient

and only relies on a peak-picking implementation to find utterances. The

second-stage discriminative classifier tends to classify VAD false detections as

“non-keyword utterances”, and serves as a secondary filter before detecting

keyword events.

Acoustic “wake word” spotting typically relies on keywords that are low

frequency and dissimilar from typical non-keyword utterances, the most pop-

ular wake words being words/phrases like “Alexa”, “Hey Siri”, and “Okay

Google”. In this study, monosyllabic keywords were chosen to examine

what makes keywords more distinguishable neurally as opposed to acous-

tically. The utterances used in our experiment were exceptionally similar to

each-other, varying only by 1-3 distinctive articulatory features. Indeed, a

particularly important feature – keyword length – was the same across all
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utterances, making the keyword detection problem significantly more diffi-

cult. The simulated keyword spotting performance for all keyword spotters

in Subject 1 is shown in supplemental figures, and the simulated keyword

spotting summary performance metrics are shown for all subjects in Figure 6.5.

While this performance is not comparable with the current state of the art in

acoustic keyword spotting, neural VAD alone appears to provide a temporally

precise 1-bit (silent vs speech) BCI and the addition of keyword discrimination

would allow the user to trigger the BCI while not restricting speech between

intended triggerings.

The most striking finding from this study was that vowel height was

poorly represented in vSMC. This is consistent with the findings of Bouchard

et al., 2013 in which syllable discrimination using a high-density grid in vSMC

achieved lower cluster separability of vowel height than manner of consonant

articulation. This result also corroborates a finding from Ramsey et al., 2017

that vowels are the least distinguishable phonemes in their test set; the authors

speculated that lacking plosives, vowels differ only in lip positions, which may

not be well represented in this area. Our findings suggest that vowel height is

well represented in auditory association cortex areas STG, presumably due to

self-monitoring, shown in Figure 6.7.

None of the subjects in the study exhibited high gamma activity that sig-

nificantly encoded vowel height within vSMC. Many studies indicate vowel

phones may be decoded from vSMC (Ramsey et al., 2017; Mugler et al., 2014;

Bouchard and Chang, 2014; Pei et al., 2011a), although some studies also note

that decoding accuracy is generally worse than consonant phones (Ramsey
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et al., 2017; Mugler et al., 2014). None of the aforementioned studies report

a failure to decode vowel phones from vSMC, which is contrary to our find-

ings. This may be due to the fact that the vowels chosen for this study, /a/

and /i/, result from a slight variation in tongue height and do not involve

differential activation of the lips, such as with the vowel contrasts selected

for the aforementioned studies, /a/ and /u/, which can recruit sensorimotor

areas related to the face. This said, STG has been shown to consistently modu-

late with differences in vowel height (Mesgarani et al., 2014) during audition

and self monitoring. Practically, our results suggest that discrimination of

vowels during keyword spotting with a neural interface may be improved by

including auditory representations from STG with sensorimotor representa-

tions from vSMC. This finding also suggests that modulation and control of

vowel height relies on interactions between auditory areas and motor areas

more than consonant articulation which seems to be well represented in just

suprasylvian cortex.

The subject with electrode coverage most analogous to the implant detailed

in Bouchard et al., 2013 had a high-density grid with 2-mm electrode diameter

and 5-mm interelectrode distance over somatosensory cortex. Although we

showed no significant neural differences between low and high vowel height

with this grid placement, the grid in Bouchard et. al. had a slightly smaller

pitch and this higher resolution may have captured more information about

vowel height than we observed. Similarly, we showed significantly worse

performance with lower density coverage of vSMC, demonstrated by sub-

jects with only standard-density (2 mm electrode diameter and 1 cm pitch)
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coverage, indicating that standard ECoG arrays are likely insufficient for a

comprehensive speech neuroprosthesis. Some subjects were also implanted

with microelectrode array grommets (75 µm electrode diameter and 1 mm

pitch); these arrays have a sensor density similar to what is thought to be the

spatial limit of subdural neural recordings (Slutzky et al., 2010). Micro-ECoG

was useful in discriminating place of articulation for utterances from Subject

2, but its utility was greatly dependent on placement due to its limited spatial

extent. An ideal ECoG array would probably cover all of vSMC with the same

1 mm pitch, but this is not yet technically feasible with clinically approved

ECoG electrodes and their connectors. Although our best results came from a

subject with a high density grid over vSMC, our inability to observe neural

activity associated with velar syllables indicates that even these high den-

sity arrays do not capture sufficient detail to distinguish all articulators (and

hence, all phones) necessary for a speech neuroprosthesis. Further research

into recording devices that cover a similar spatial extent but with higher sen-

sor density and channel counts might be fruitful, but our results indicate that

neural features recorded from high density ECoG arrays can, at a minimum,

produce a usable neural interface for whole-word keyword spotting in overt

speech.

Correlating spatiotemporal templates with streaming high gamma features

was primarily motivated by existing keyword search methodology, as well as

a recent study by Ramsey et al., 2017. The temporal encoding of consonant

voicing in Subject 1 (see Figure 6.6) further motivated the application of

spatiotemporal template methodology. To evaluate the contribution of neural
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Figure 6.8: Decoupled Performance Plots. Keyword discrimination ROC curves for
Subject 1 before (to the left) and after (to the right) replacement of neural templates
with rectangular smoothing windows. Keyword discrimination performance dropped
across all models suggesting inclusion of spatiotemporal relationships using neural
templates aids keyword discrimination.

templates to keyword discrimination, the templates were replaced with a

rectangular window of the same size, resulting in smoothing of the high

gamma features on the same order as that of the templates. After making this

change, we observed a marked drop in keyword discrimination, highlighted

in Figure 6.8, suggesting that temporal relationships between high-gamma

events provide information useful for discriminating keywords, and that these

templates are an effective way of quantifying these relationships in single

trials.

6.5 Conclusions

This study suggests that a high-sensitivity/specificity one-bit neural keyword

spotting BCI can be created using ECoG recordings from vSMC and STG.

Neural signals capturing speech motor representations from vSMC appear

to be useful for low-latency (~1 second) and high-specificity VAD, while a
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combination of neural signals from vSMC and auditory representations from

STG may be useful for discriminating keyword utterances from non-keyword

speech. Spatiotemporal relationships of high gamma activity across elec-

trodes, captured and efficiently quantified using a method of neural template

correlation, appear to be instrumental for keyword discrimination. In this

study, keyword-spotting performance depended on several factors including

electrode density and the number of electrodes within vSMC and STG. Our

results suggest that high-density ECoG grids may be necessary and sufficient

for capturing the spatial layout of cortical speech representations needed for a

keyword-spotting neural interface. Neural features that provide information

about consonant articulation appear to be best represented in vSMC, with

place of articulation primarily encoded by the spatial location of high-gamma

activity and consonant voicing encoded by the temporal dynamics of this

activity. Vowel height during overt speech appeared to be poorly encoded

by vSMC, but better represented in traditionally auditory areas along STG

during self-monitoring. Although we did not test whether neural activity in

STG during covert speech was sufficient for decoding vowel height, other

studies have indicated that this may be possible (Pei et al., 2011b; Leuthardt

et al., 2012). Together with these and other studies, our findings support

the feasibility of keyword spotting with an ECoG BCI provided that relevant

cortical areas are recorded with sufficient spatial sampling and that keywords

are composed of neurally discriminable articulatory gestures.
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Data Availability Statement

The datasets generated and analyzed for this study, analysis code, and latex

source files for this paper can be found in the gigantum project located at

gigantum.com/griffinmilsap/ecog-keyword-spotting.
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Chapter 7

Conclusions and Future Work

The research detailed in this dissertation described software and methodology

that will make a significant contribution to the next generation of neural speech

decoders. WebFM permits mapping of eloquent cortex that is easier to perform

and distinguishes between cortical representations of speech using timing

information. Since publication, this software has been iterated to include 3D

visualization for stereotactic EEG electrodes as well as the capability to render

cortico-cortical evoked potentials for mapping sub-threshold stimulation-

based effective connectivity. WebFM could be the basis of a multi-site study

on functional mapping of eloquent cortex using ECoG recordings; a study

that could turn passive ECoG mapping into a clinically accepted standard.

BCI2000Web, on the other hand, enables developers to make web-enabled

BCIs, and could be the underlying framework for a brain-controlled browser

extension, or a web-based neural communication platform.

Methodology detailed in this dissertation can help identify spatiotemporal

signatures of high frequency neural activity for the generation of correlational

matched filters. As described previously, this methodology can be applied to
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identify behavioral event onset times using only neural data. Initial research

suggests this method can also be used to identify neural sub-processes without

overt behavioral output to synchronize to. Matched filtering methodology was

used for whole-word identification in the keyword spotting study described

in Chapter 6, but could easily be applied to perform phone-modeling for a

phoneme-based neural ASR approach. This methodology can also be extended

to the creation of subspace manifolds for the visualization of neural encoding

axes using multidimensional scaling (Milsap et al., 2017); research that could

prove fruitful for functional anatomic atlassing and representational similarity

analyses in ECoG.

Speech BCI could eventually be a useful means of human-computer-

interaction in general use. Eyetracking combined with a covert speech-based

neural click could be a useful means of interacting with augmented or virtual

reality situations. Neural keyword spotting interfaces could allow for covert

interaction with artificial intelligence agents. Neural speech recognition may

benefit from the neural articulatory representations that encode speech dif-

ferently; succeeding where acoustic speech recognition fails. Furthermore,

if semantic representations of speech are more thoroughly understood, we

may be able to use a neural semantic decoder for direct communication of

high level thoughts without need to break thoughts down into a syntax and

language for communication; drastically increasing the bandwidth of human

communication.

Speech BCI will only make this level of impact after the development of
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a new modality for neural recording; one that is capable of recording non-

invasive neural signals comparable to ECoG. Many would argue that it is

ethically dubious to perform risky brain surgery on healthy subjects for the

augmentation of a speech neuroprosthesis. A headband or minimally invasive

dermal implant that enables a speech BCI capable of even half the aforemen-

tioned functionality would likely see widespread adoption amongst healthy

users. The future of human-computer-interaction may have a neural compo-

nent, but not before significant advancement in neural recording modalities,

neural signal processing methodology, and our understanding of the cortical

representations of speech.
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A.1 Supplemental Figures: Mapping of Visual Se-
mantic Attributes to Spatiotemporal Features
of Neural Recordings

This appendix contains supplemental figures for Chapter 5.
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Figure A.1: Comparison of individual frequency bands. (A) Mean rank accuracy
(MRA) calculated for each patient and each individual frequency band. All models
used neural data averaged across all 6 presentations of an object. The dashed line
represents chance performance. Higher frequency bands perform substantially better
than low frequency bands. (B) The ratio of single-frequency-band MRA to full-model
(all frequencies) MRA, averaged across all patients. Chance accuracy of 50% was
subtracted from both MRAs before the ratio was calculated. Standard error bars are
shown. The five lowest frequency bands perform about half as well as the full model,
while high-gamma, 70-110 Hz, performs substantially better (about 85% of the full
model performance)
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Figure A.2: Winner-take-all accuracy. This metric is calculated as the fraction of trials
where the target object was ranked first out of the 60 possible objects. Chance accuracy
is shown with a dashed line at 1.7%. Notably, when averaging across presentations
and including all frequency bands, P1 had a success rate of 22%. In other words,
the target object was ranked first in 13 out of 60 trials. Permutation tests, using
shuffling of the noun labels in the semantic attribute matrix, were used to generate
the significance results. FDR correction (α = .05) was applied across all 9 patients and
4 decoding conditions.
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Figure A.3: Within-category MRA For the top 4 patients, models are able to dis-
criminate between objects of the same category above chance levels. FDR-correction
(α = .05) was applied across all 9 patients and 2 decoding conditions. The dashed
line represents chance performance.
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Figure A.4: Sliding window decoding analysis on speech-aligned data. The solid
vertical line represents speech onset, and the dashed vertical line represents the
median stimulus onset relative to the spoken response. Dashed lines represent
patient-specific chance performance, calculated as the mean MRA during the base-
line period. Notably, 6 subjects had decoding results that exceeded baseline, and
the onset of significant decoding occurred before stimulus onset for 5 of these sub-
jects. Significance was determined via rank-sum tests at each individual time point,
Bonferroni-corrected over all time points for each individual patient. Baselines for
each patient were identical to those used in the stimulus-aligned analysis (Figure 5.3).
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Figure A.5: Correlation of semantic PCs with high-gamma for significant lateral
electrodes. Analysis was restricted to those electrodes that were well-predicted by
the encoding model (Figure 5.4) and are represented with thick black or yellow rings.
The color inside the rings represents the signed correlation values, with yellow rings
denoting statistical significance with FDR-correction across all 21 electrodes and
four PCs (α = .05). In P1, the anterior superior and posterior middle temporal gyri
both have pairs of electrodes where high-gamma correlated positively with the size
dimension, representing nouns that have large canonical size.
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A.2 Supplemental Figures: Discrimination of Ut-
terances using Spatiotemporal Matched Filter
Templates in Single-trials

This appendix contains supplemental figures for Chapter 6.

Figure A.6: Isolated VAD and keyword ROCs for all subjects. The left-most panel
shows the electrodes highlighted in red and blue that were used to discriminate
syllables. Only electrodes highlighted in red were used to perform VAD. The center
panel shows the VAD performance in sensitivity (percentage of utterance timings
correctly identified) against the number false detections per utterance for various
VAD thresholds. The right-most panel shows ROC curves for all twelve keyword
detectors. ROC curves with AUC values were significant at the 95% confidence
interval are highlighted in red. The keyword detector that produced the highest AUC
is highlighted in bold-red and indicated via annotation under the curves, followed by
asterisks indicating significance at the p < 0.05 (*), p < 0.01 (**) and the p < 0.001
(***) level with respect to the distribution of maximum AUC models.
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Figure A.7: Simulated real-time performance for Subject 1 across the repetition
task. Performance for models trained to identify one keyword vs non-keyword
speech is visualized for every one of the twelve keyword models. Ground truth
utterances are denoted by vertical lines, and utterances that the model should identify
as “keyword” utterances are highlighted in bold red. Times during which the VAD
model identified utterances are indicated with black dots, the Y-value of these dots
indicates a unit-less classifier output from the features at the time of the detection;
higher placement indicates a more “keyword-like” utterance. Each keyword spotter
has had a threshold of discrimination set at 0.75 the equal error rate, so as to promote
higher sensitivity at the expense of more false-detections. Super-threshold classifier
output is highlighted with a red dot rather than a black one, indicating the detection
of a keyword.
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Appendix B

Software Listings

B.1 bci2k.js

1 // ======================================================================== //
2 //
3 // bci2k.js
4 // A javascript connector for BCI2000
5 //
6 // ======================================================================== //
7

8

9 // REQUIRES
10 import $ from 'jquery '
11

12 // Needed to allow operation in Node outside of a browser
13 var WebSocket = WebSocket || require( 'websocket ' ).w3cwebsocket;
14

15

16 export class BCI2K_Connection{
17 constructor (){
18 this.onconnect = function( event ) {};
19 this.ondisconnect = function( event ) {};
20

21 this._socket = null;
22 this._execid = 0;
23 this._exec = {}
24 };
25

26

27 connect( address ) {
28

29 var connection = this;
30

31 return new Promise( function( resolve , reject ) {
32

33 if ( address === undefined )
34 // TODO Browser -dependent
35 address = window.location.host;
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36 connection.address = address;
37

38 connection._socket = new WebSocket( 'ws://' + connection.address );
39

40 connection._socket.onerror = function( error ) {
41 // This will only execute if we err before connecting , since
42 // Promises can only get triggered once
43 reject( 'Error connecting to BCI2000 at ' + connection.address );
44 }
45

46 connection._socket.onopen = function( event ) {
47 connection.onconnect( event );
48 resolve( event );
49 }
50

51 connection._socket.onclose = function( event ) {
52 connection.ondisconnect( event );
53 }
54

55 connection._socket.onmessage = function( event ) {
56 connection._handleMessageEvent( event );
57 }
58

59 } );
60

61 };
62

63 _handleMessageEvent( event ) {
64 var arr = event.data.split( ' ' );
65

66 var opcode = arr [0];
67 var id = arr [1];
68 var msg = arr.slice( 2 ).join(' ');
69

70 switch( opcode ) {
71 case 'S': // START: Starting to execute command
72 if( this._exec[ id ]. onstart )
73 this._exec[ id ]. onstart( this._exec[ id ] );
74 break;
75 case 'O': // OUTPUT: Received output from command
76 this._exec[ id ]. output += msg + ' \n';
77 if( this._exec[ id ]. onoutput )
78 this._exec[ id ]. onoutput( this._exec[ id ] );
79 break;
80 case 'D': // DONE: Done executing command
81 this._exec[ id ]. exitcode = parseInt( msg );
82 if( this._exec[ id ]. ondone )
83 this._exec[ id ]. ondone( this._exec[ id ] );
84 delete this._exec[ id ];
85 break;
86 default:
87 break;
88 }
89 };
90

91 tap( location , onSuccess , onFailure ) {
92

93 var connection = this;
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94

95 var locationParameter = "WS" + location + "Server";
96

97 return this.execute( 'Get Parameter ' + locationParameter )
98 .then( function( location ) {
99

100 if ( location.indexOf( 'does not exist' ) >= 0 ) {
101 return Promise.reject( 'Location parameter does not

exist ' );
102 }
103

104 if ( location === '' ) {
105 return Promise.reject( 'Location parameter not set' );
106 }
107

108 var dataConnection = new BCI2K_DataConnection ();
109

110 // TODO We used to "resolve" here , before doiing the
111 // actual connecting bit , but I think it makes much
112 // more sense to have tap "success" be actually
113 // connecting to the source , rather than just getting
114 // a sensical address
115

116 // Use our address plus the port from the result
117 return dataConnection.connect( connection.address + ':' +

location.split( ':' )[1] )
118 .then( function( event ) {
119 // To keep with our old API ,

we actually want to wrap the
120 // dataConnection , and not the

connection event
121 // TODO This means we can't

get the connection event!
122 return dataConnection;
123 } );
124

125 } );
126

127 };
128

129 connected () {
130 return ( this._socket !== null && this._socket.readyState === WebSocket.

OPEN );
131 };
132

133 execute( instruction , ondone , onstart , onoutput ) {
134

135 var connection = this;
136

137 if ( this.connected () ) {
138

139 return new Promise( function( resolve , reject ) {
140

141 var id = ( ++( connection._execid ) ).toString ();
142

143 // TODO Properly handle errors from BCI2000
144 connection._exec[ id ] = {
145 onstart: onstart ,
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146 onoutput: onoutput ,
147 ondone: function( exec ) {
148 if ( ondone ) {
149 ondone( exec );
150 }
151 resolve( exec.output ); // TODO Should pass whole

thing?
152 },
153 output: '',
154 exitcode: null
155 };
156

157 var msg = 'E ' + id + ' ' + instruction;
158 connection._socket.send( msg );
159

160 } );
161

162 }
163

164 // Cannot execute if not connected
165 return Promise.reject( 'Cannot execute instruction: not connected to

BCI2000 ' );
166

167 };
168

169 getVersion( fn ) {
170 this.execute( "Version", function( exec ) {
171 fn( exec.output.split(' ')[1] );
172 } );
173 };
174

175 showWindow () {
176 return this.execute( "Show Window" );
177 };
178

179 hideWindow () {
180 return this.execute( "Hide Window" );
181 };
182

183 setWatch(state , ip, port) {
184 return this.execute( "Add watch " + state + " at " + ip + ":" + port );
185 };
186

187 resetSystem () {
188 return this.execute( "Reset System" );
189 };
190

191 // TODO Is argument necessary now with Promise API?
192 setConfig( fn ) {
193 return this.execute( "Set Config", fn );
194 };
195

196 start() {
197 return this.execute( "Start" );
198 };
199

200 stop() {
201 return this.execute( "Stop" );
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202 };
203

204 kill() {
205 return this.execute( "Exit" );
206 };
207 }
208

209

210 export class BCI2K_DataConnection{
211 constructor (){
212 this._socket = null;
213

214 this.onconnect = function( event ) {};
215 this.onGenericSignal = function( data ) {};
216 this.onStateVector = function( data ) {};
217 this.onSignalProperties = function( data ) {};
218 this.onStateFormat = function( data ) {};
219 this.ondisconnect = function( event ) {};
220

221 this.signalProperties = null;
222 this.stateFormat = null;
223 this.stateVecOrder = null;
224 }
225

226

227 connect( address ) {
228

229 var connection = this;
230

231 return new Promise( function( resolve , reject ) {
232

233 connection._socket = new WebSocket( "ws://" + address );
234

235 connection._socket.onerror = function( event ) {
236 // This will only execute if we err before connecting , since
237 // Promises can only get triggered once
238 reject( 'Error connecting to data source at ' + connection.address

);
239 };
240

241 connection._socket.onopen = function( event ) {
242 connection.onconnect( event );
243 resolve( event );
244 };
245

246 connection._socket.onclose = function( event ) {
247 connection.ondisconnect( event );
248 };
249

250 connection._socket.onmessage = function( event ) {
251 connection._handleMessageEvent( event );
252 };
253

254 } );
255

256 };
257

258 _handleMessageEvent( event ) {
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259

260 var connection = this;
261

262 var messageInterpreter = new FileReader ();
263 messageInterpreter.onload = function( e ) {
264 connection._decodeMessage( e.target.result );
265 };
266 messageInterpreter.readAsArrayBuffer( event.data );
267

268 };
269

270 connected () {
271 return ( this._socket != null && this._socket.readyState === WebSocket.

OPEN );
272 };
273

274 SignalType: {
275 INT16 : 0,
276 FLOAT24 : 1,
277 FLOAT32 : 2,
278 INT32 : 3
279 }
280

281 _decodeMessage( data ) {
282

283 // var dv = new BCI2K_DataView( data , 0, data.byteLength , true );
284 var dv = new DataView(data ,0,data.byteLength ,true)
285 dv.getNullTermString = function () {
286 var val = "";
287 while ( this._offset < this.byteLength ) {
288 var v = this.getUint8 ();
289 if( v === 0 ) break;
290 val += String.fromCharCode( v );
291 }
292 return val;
293 };
294 var descriptor = dv.getUint8 ();
295

296 switch ( descriptor ) {
297

298 case 3:
299 this._decodeStateFormat( dv ); break;
300

301 case 4:
302 var supplement = dv.getUint8 ();
303

304 switch ( supplement ) {
305 case 1:
306 this._decodeGenericSignal( dv ); break;
307 case 3:
308 this._decodeSignalProperties( dv ); break;
309 default:
310 console.error( "Unsupported Supplement: " + supplement.

toString () );
311 break;
312 } break;
313

314 case 5:
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315 this._decodeStateVector( dv ); break;
316

317 default:
318 console.error( "Unsupported Descriptor: " + descriptor.toString ()

); break;
319

320 }
321

322 };
323

324 _decodePhysicalUnits( unitstr ) {
325 var units = {};
326 var unit = unitstr.split( ' ' );
327 var idx = 0;
328 units.offset = Number( unit[ idx++ ] );
329 units.gain = Number( unit[ idx++ ] );
330 units.symbol = unit[ idx++ ];
331 units.vmin = Number( unit[ idx++ ] );
332 units.vmax = Number( unit[ idx++ ] );
333 return units;
334 };
335

336 _decodeSignalProperties( dv ) {
337 var propstr = dv.getNullTermString ();
338

339 // Bugfix: There seems to not always be spaces after '{' characters
340 propstr = propstr.replace( /{/g, ' { ' );
341 propstr = propstr.replace( /}/g, ' } ' );
342

343 this.signalProperties = {};
344 var prop_tokens = propstr.split( ' ' );
345 var props = [];
346 for( var i = 0; i < prop_tokens.length; i++ ) {
347 if( $.trim( prop_tokens[i] ) === "" ) continue;
348 props.push( prop_tokens[i] );
349 }
350

351 var pidx = 0;
352 this.signalProperties.name = props[ pidx++ ];
353

354 this.signalProperties.channels = [];
355 if( props[ pidx ] === '{' ) {
356 while( props[ ++pidx ] !== '}' )
357 this.signalProperties.channels.push( props[ pidx ] );
358 pidx ++; // }
359 } else {
360 let numChannels = parseInt( props[ pidx++ ] );
361 for( let i = 0; i < numChannels; i++ )
362 this.signalProperties.channels.push( ( i + 1 ).toString () );
363 }
364

365 this.signalProperties.elements = [];
366 if( props[ pidx ] === '{' ) {
367 while( props[ ++pidx ] !== '}' )
368 this.signalProperties.elements.push( props[ pidx ] );
369 pidx ++; // }
370 } else {
371 let numElements = parseInt( props[ pidx++ ] );
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372 for( let i = 0; i < numElements; i++ )
373 this.signalProperties.elements.push( ( i + 1 ).toString () );
374 }
375

376 // Backward Compatibility
377 this.signalProperties.numelements = this.signalProperties.elements.length;
378 this.signalProperties.signaltype = props[ pidx++ ];
379 this.signalProperties.channelunit = this._decodePhysicalUnits(
380 props.slice( pidx , pidx += 5 ).join( ' ' )
381 );
382

383 this.signalProperties.elementunit = this._decodePhysicalUnits(
384 props.slice( pidx , pidx += 5 ).join( ' ' )
385 );
386

387 pidx ++; // '{'
388

389 this.signalProperties.valueunits = []
390 for( let i = 0; i < this.signalProperties.channels.length; i++ )
391 this.signalProperties.valueunits.push(
392 this._decodePhysicalUnits(
393 props.slice( pidx , pidx += 5 ).join( ' ' )
394 )
395 );
396

397 pidx ++; // '}'
398

399 this.onSignalProperties( this.signalProperties );
400 };
401

402 _decodeStateFormat( dv ) {
403 this.stateFormat = {};
404 let formatStr = dv.getNullTermString ();
405

406 let lines = formatStr.split( '\n' );
407 for( let lineIdx = 0; lineIdx < lines.length; lineIdx ++ ){
408 if( $.trim( lines[ lineIdx ] ).length === 0 ) continue;
409 let stateline = lines[ lineIdx ].split( ' ' );
410 let name = stateline [0];
411 this.stateFormat[ name ] = {};
412 this.stateFormat[ name ]. bitWidth = parseInt( stateline [1] );
413 this.stateFormat[ name ]. defaultValue = parseInt( stateline [2] );
414 this.stateFormat[ name ]. byteLocation = parseInt( stateline [3] );
415 this.stateFormat[ name ]. bitLocation = parseInt( stateline [4] );
416 }
417

418 let vecOrder = []
419 for( let state in this.stateFormat ) {
420 let loc = this.stateFormat[ state ]. byteLocation * 8;
421 loc += this.stateFormat[ state ]. bitLocation
422 vecOrder.push( [ state , loc ] );
423 }
424

425 // Sort by bit location
426 vecOrder.sort( function( a, b ) {
427 return a[1] < b[1] ? -1 : ( a[1] > b[1] ? 1 : 0 );
428 } );
429
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430 // Create a list of ( state , bitwidth ) for decoding state vectors
431 this.stateVecOrder = [];
432 for( let i = 0; i < vecOrder.length; i++ ) {
433 let state = vecOrder[i][0]
434 this.stateVecOrder.push( [ state , this.stateFormat[ state ]. bitWidth ]

);
435 }
436

437 this.onStateFormat( this.stateFormat );
438 };
439

440 _decodeGenericSignal( dv ) {
441

442 let signalType = dv.getUint8 ();
443 let nChannels = dv.getLengthField( 2 );
444 let nElements = dv.getLengthField( 2 );
445

446 let signal = [];
447 for( let ch = 0; ch < nChannels; ++ch ) {
448 signal.push( [] );
449 for( let el = 0; el < nElements; ++el ) {
450 switch( signalType ) {
451

452 case this.SignalType.INT16:
453 signal[ ch ].push( dv.getInt16 () );
454 break;
455

456 case this.SignalType.FLOAT32:
457 signal[ ch ].push( dv.getFloat32 () );
458 break;
459

460 case this.SignalType.INT32:
461 signal[ ch ].push( dv.getInt32 () );
462 break;
463

464 case this.SignalType.FLOAT24:
465 // TODO: Currently Unsupported
466 signal[ ch ].push( 0.0 );
467 break;
468 default:
469 break;
470 }
471 }
472 }
473

474 this.onGenericSignal( signal );
475 };
476

477 _decodeStateVector( dv ) {
478 if( this.stateVecOrder == null ) return;
479

480 // Currently , states are maximum 32 bit unsigned integers
481 // BitLocation 0 refers to the least significant bit of a byte in the

packet
482 // ByteLocation 0 refers to the first byte in the sequence.
483 // Bits must be populated in increasing significance
484

485 var stateVectorLength = parseInt( dv.getNullTermString () );
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486 var numVectors = parseInt( dv.getNullTermString () );
487

488 // var vecOff = dv.tell();
489

490 var states = {};
491 for( var state in this.stateFormat )
492 states[ state ] = Array( numVectors ).fill( this.stateFormat[ state ].

defaultValue ) ;
493

494 for( var vecIdx = 0; vecIdx < numVectors; vecIdx ++ ) {
495 var vec = dv.getBytes( stateVectorLength , dv.tell(), true , false );
496 var bits = [];
497 for( var byteIdx = 0; byteIdx < vec.length; byteIdx ++ ) {
498 bits.push( ( vec[ byteIdx ] & 0x01 ) !== 0 ? 1 : 0 );
499 bits.push( ( vec[ byteIdx ] & 0x02 ) !== 0 ? 1 : 0 );
500 bits.push( ( vec[ byteIdx ] & 0x04 ) !== 0 ? 1 : 0 );
501 bits.push( ( vec[ byteIdx ] & 0x08 ) !== 0 ? 1 : 0 );
502 bits.push( ( vec[ byteIdx ] & 0x10 ) !== 0 ? 1 : 0 );
503 bits.push( ( vec[ byteIdx ] & 0x20 ) !== 0 ? 1 : 0 );
504 bits.push( ( vec[ byteIdx ] & 0x40 ) !== 0 ? 1 : 0 );
505 bits.push( ( vec[ byteIdx ] & 0x80 ) !== 0 ? 1 : 0 );
506 }
507

508 for( var stateIdx = 0; stateIdx < this.stateVecOrder.length;
stateIdx ++ ) {

509 var fmt = this.stateFormat[ this.stateVecOrder[ stateIdx ][ 0 ] ];
510 var offset = fmt.byteLocation * 8 + fmt.bitLocation;
511 var val = 0; var mask = 0x01;
512 for( var bIdx = 0; bIdx < fmt.bitWidth; bIdx++ ) {
513 if( bits[ offset + bIdx ] ) val = ( val | mask ) >>> 0;
514 mask = ( mask << 1 ) >>> 0;
515 }
516 states[ this.stateVecOrder[ stateIdx ][0] ][ vecIdx ] = val;
517 }
518 }
519 this.onStateVector( states );
520 };
521 }
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B.2 WSIOFilter.cpp/h

1 // //////////////////////////////////////////////////////////////////////////////
2 // $Id: $
3 // Author: griffin.milsap@gmail.com
4 // Description: A filter that sends/receives states and signals over a
5 // TCP facilitated WebSocket (RFC6455) connection. Can be instantiated
6 // several times using subclasses
7 //
8 // $BEGIN_BCI2000_LICENSE$
9 //

10 // This file is part of BCI2000 , a platform for real -time bio -signal research.
11 // [ Copyright (C) 2000 -2012: BCI2000 team and many external contributors ]
12 //
13 // BCI2000 is free software: you can redistribute it and/or modify it under the
14 // terms of the GNU General Public License as published by the Free Software
15 // Foundation , either version 3 of the License , or (at your option) any later
16 // version.
17 //
18 // BCI2000 is distributed in the hope that it will be useful , but
19 // WITHOUT ANY WARRANTY
20 // - without even the implied warranty of MERCHANTABILITY or FITNESS FOR
21 // A PARTICULAR PURPOSE. See the GNU General Public License for more details.
22 //
23 // You should have received a copy of the GNU General Public License along with
24 // this program. If not , see <http ://www.gnu.org/licenses/>.
25 //
26 // $END_BCI2000_LICENSE$
27 // //////////////////////////////////////////////////////////////////////////////
28 #ifndef WSIO_FILTER_H
29 #define WSIO_FILTER_H
30

31 #include "GenericFilter.h"
32

33 #include "Sockets.h"
34 #include "Lockable.h"
35 #include "Thread.h"
36

37 #include <iostream >
38 #include <list >
39

40 class WSIOFilter : public GenericFilter , public Thread
41 {
42 public:
43 WSIOFilter( std:: string section , std:: string name , uint16_t default_port

);
44 virtual ~WSIOFilter ();
45 virtual void Preflight( const SignalProperties&, SignalProperties& ) const;
46 virtual void Initialize( const SignalProperties&, const SignalProperties& );
47 virtual void Halt();
48 virtual void StartRun ();
49 virtual void StopRun ();
50 virtual void Process( const GenericSignal&, GenericSignal& );
51 virtual bool AllowsVisualization () const { return false; }
52

53 protected:
54 int OnExecute ();
55

168



56 private:
57 void DeleteServers ();
58

59 std:: string mStateVectorFormat;
60 SignalProperties mProperties;
61 std:: string mAddressPrm;
62 ServerTCPSocket mListeningSocket;
63 std:: string mWebRoot;
64

65 class Connection;
66 friend class Connection;
67 struct : std::list <Connection*>, Lockable <NonrecursiveSpinLock > {} mConnections;
68 };
69 #endif // WSIO_FILTER_H
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1 // //////////////////////////////////////////////////////////////////////////////
2 // $Id: $
3 // Author: griffin.milsap@gmail.com
4 // Description: A filter that sends/receives states and signals over a
5 // TCP facilitated WebSocket (RFC6455) connection. Can be instantiated
6 // several times using subclasses
7 //
8 // $BEGIN_BCI2000_LICENSE$
9 //

10 // This file is part of BCI2000 , a platform for real -time bio -signal research.
11 // [ Copyright (C) 2000 -2012: BCI2000 team and many external contributors ]
12 //
13 // BCI2000 is free software: you can redistribute it and/or modify it under the
14 // terms of the GNU General Public License as published by the Free Software
15 // Foundation , either version 3 of the License , or (at your option) any later
16 // version.
17 //
18 // BCI2000 is distributed in the hope that it will be useful , but
19 // WITHOUT ANY WARRANTY
20 // - without even the implied warranty of MERCHANTABILITY or FITNESS FOR
21 // A PARTICULAR PURPOSE. See the GNU General Public License for more details.
22 //
23 // You should have received a copy of the GNU General Public License along with
24 // this program. If not , see <http ://www.gnu.org/licenses/>.
25 //
26 // $END_BCI2000_LICENSE$
27 // //////////////////////////////////////////////////////////////////////////////
28 #include "PCHIncludes.h"
29 #pragma hdrstop
30

31 #include "WSIOFilter.h"
32 #include "HTTPInterpreter.h"
33 #include "WebSocketInterpreter.h"
34 #include "Streambuf.h"
35 #include "BCIException.h"
36 #include "FileUtils.h"
37

38 #include <string >
39 #include <sstream >
40 #include <fstream >
41

42 using namespace std;
43 using namespace bci;
44

45 class WSIOFilter :: Connection : public Environment , private Thread , private
WebSocketInterpreter , private HTTPInterpreter

46 {
47 public:
48 Connection( WSIOFilter* parent );
49

50 // Thread Interface
51 int OnExecute ();
52

53 // HTTPInterpreter interface
54 bool OnRequest( const HTTPMessage& );
55

56 void OnConnect ();
57 void WriteMessages( const GenericSignal &signal );
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58 void Abort();
59

60 private:
61 ~Connection ();
62 Synchronized <WSIOFilter*> mpParent;
63

64 TCPSocket mSocket;
65 BufferedIO mBuffer;
66 iostream mStream;
67

68 Lockable < Mutex > mWriteLock;
69

70 friend class HTTPInterpreter;
71 friend class WebSocketInterpreter;
72

73 };
74

75

76 WSIOFilter :: WSIOFilter( string section , string name , uint16_t default_port )
77 {
78 mAddressPrm = "WS" + name + "Server";
79

80 ostringstream ss;
81 ss << section << " string " << mAddressPrm << "= % localhost:" << default_port

<< " % % ";
82 ss << "// IP address/port to host a WebSocketServer on, e.g. localhost:" <<

default_port;
83 BEGIN_PARAMETER_DEFINITIONS
84 ss.str().c_str(),
85 END_PARAMETER_DEFINITIONS
86 }
87

88 WSIOFilter ::~ WSIOFilter ()
89 {
90 Halt();
91 }
92

93 void
94 WSIOFilter :: Preflight( const SignalProperties& inSignalProperties ,
95 SignalProperties& outSignalProperties ) const
96 {
97 string address = string( Parameter( mAddressPrm ) );
98 if( address != "" )
99 {

100 ServerTCPSocket preflightSocket;
101 preflightSocket.Open( address );
102 if( !preflightSocket.IsOpen () )
103 bcierr << "Could not start server on " << address << endl;
104 preflightSocket.Close();
105 }
106

107 // Pre -flight access each state in the list.
108 for( int state = 0; state < States ->Size(); ++state )
109 State( ( *States )[ state ].Name() );
110

111 outSignalProperties = inSignalProperties;
112 }
113
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114 void
115 WSIOFilter :: Initialize( const SignalProperties&, const SignalProperties& Output )
116 {
117 string connectorAddress = string( Parameter( mAddressPrm ) );
118 mProperties = Output;
119 stringstream sStateFormat;
120 States ->InsertInto( sStateFormat );
121 mStateVectorFormat = sStateFormat.str();
122

123 if( connectorAddress != "" )
124 {
125 mListeningSocket.SetTCPNodelay( true );
126 mListeningSocket.Open( connectorAddress );
127 if( !mListeningSocket.IsOpen () )
128 throw bciexception << "Cannot listen at " << connectorAddress;
129 Thread ::Start();
130 }
131 }
132

133 void
134 WSIOFilter ::Halt()
135 {
136 if( mListeningSocket.IsOpen () )
137 mListeningSocket.Close();
138 list <Connection*> c;
139 WithLock( mConnections )
140 c = mConnections;
141 for( list <Connection *>:: iterator i = c.begin(); i != c.end(); ++i )
142 (*i)->Abort();
143 if( Thread :: Running () )
144 Thread :: TerminateAndWait ();
145 }
146

147 int
148 WSIOFilter :: OnExecute ()
149 {
150 while( mListeningSocket.Wait() )
151 new Connection( this );
152 return 0;
153 }
154

155 void
156 WSIOFilter :: StartRun ()
157 {
158

159 }
160

161 void
162 WSIOFilter :: StopRun ()
163 {
164

165 }
166

167 void
168 WSIOFilter :: Process( const GenericSignal& Input , GenericSignal& Output )
169 {
170 Output = Input;
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171 for( list < Connection* >::iterator i = mConnections.begin(); i != mConnections.
end(); ++i )

172 ( *i )->WriteMessages( Input );
173 bcidbg << "Running Process" <<endl;
174 }
175

176 WSIOFilter :: Connection :: Connection( WSIOFilter* pParent ) :
177 Thread( true ),
178 mpParent( pParent ),
179 mStream( &mBuffer )
180 {
181 mBuffer.SetIO( &mSocket );
182 WithLock( mpParent ->mConnections )
183 mpParent ->mConnections.push_back( this );
184 mpParent ->mListeningSocket.WaitForAccept( mSocket , 0 );
185 Thread ::Start();
186 }
187

188 WSIOFilter :: Connection ::~ Connection ()
189 {
190 WithLock( mpParent ->mConnections )
191 mpParent ->mConnections.remove( this );
192 }
193

194 void
195 WSIOFilter :: Connection ::Abort()
196 {
197 Thread :: TerminateAndWait ();
198 }
199

200 int
201 WSIOFilter :: Connection :: OnExecute ()
202 {
203 HTTPInterpreter :: HTTPListen( this , mSocket , mStream );
204 return 0;
205 }
206

207 bool
208 WSIOFilter :: Connection :: OnRequest( const HTTPInterpreter :: HTTPMessage& msg )
209 {
210 if( msg.command == "GET" )
211 {
212 Header :: const_iterator upgrade = msg.header.find( "upgrade" );
213 if( upgrade != msg.header.end() && (
214 upgrade ->second.find( "websocket" ) != string ::npos ||
215 upgrade ->second.find( "WebSocket" ) != string ::npos ) )
216 {
217 // Upgrade connection to websocket protocol
218 Header :: const_iterator key = msg.header.find( "sec -websocket -key" );
219 if( key == msg.header.end() ) return false;
220 WebSocketInterpreter :: Listen( this , mSocket , mStream , key ->second );
221 } else HTTPRespond( mStream , 404 );
222 return false;
223

224 } else {
225

226 // This interface only supports GET requests for websockets
227 HTTPRespond( mStream , 500 );
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228 return false;
229 }
230

231 // Should never get here , something bad happened
232 return false;
233

234

235 }
236

237 void
238 WSIOFilter :: Connection :: OnConnect ()
239 {
240 // Serialize the StateFormat
241 stringstream sStateFormat;
242 sStateFormat << uint8_t( 0x03 ) << mpParent ->mStateVectorFormat;
243 WriteMessage( mStream , Opcode ::Binary , sStateFormat.str() );
244

245 // Serialize the SignalProperties
246 stringstream sSignalProperties;
247 sSignalProperties << uint8_t( 0x04 ) << uint8_t( 0x03 );
248 mpParent ->mProperties.InsertInto( sSignalProperties );
249 WriteMessage( mStream , Opcode ::Binary , sSignalProperties.str() );
250 }
251

252 void
253 WSIOFilter :: Connection :: WriteMessages( const GenericSignal& signal )
254 {
255 WriteMessage(mStream , Ping , "A");
256

257 if( Connected () && Listening ())
258 {
259

260 // Serialize the GenericSignal
261 stringstream ssSignal;
262 ssSignal << uint8_t( 0x04 ) << uint8_t( 0x01 );
263 signal.Serialize( ssSignal );
264 WriteMessage( mStream , Opcode ::Binary , ssSignal.str() );
265

266 // Serialize the State Vector
267 stringstream ssStates;
268 ssStates << uint8_t( 0x05 );
269 Statevector ->Serialize( ssStates );
270 WriteMessage( mStream , Opcode ::Binary , ssStates.str() );
271

272 mListening = false;
273 }
274 }
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B.3 BlackrockADC.cpp/h

1 // //////////////////////////////////////////////////////////////////////////////
2 // $Id$
3 // Authors: griffin.milsap@gmail.com
4 // Description: Implementation of a source module for Blackrock systems
5 //
6 // $BEGIN_BCI2000_LICENSE$
7 //
8 // This file is part of BCI2000 , a platform for real -time bio -signal research.
9 // [ Copyright (C) 2000 -2012: BCI2000 team and many external contributors ]

10 //
11 // BCI2000 is free software: you can redistribute it and/or modify it under the
12 // terms of the GNU General Public License as published by the Free Software
13 // Foundation , either version 3 of the License , or (at your option) any later
14 // version.
15 //
16 // BCI2000 is distributed in the hope that it will be useful , but
17 // WITHOUT ANY WARRANTY
18 // - without even the implied warranty of MERCHANTABILITY or FITNESS FOR
19 // A PARTICULAR PURPOSE. See the GNU General Public License for more details.
20 //
21 // You should have received a copy of the GNU General Public License along with
22 // this program. If not , see <http ://www.gnu.org/licenses/>.
23 //
24 // $END_BCI2000_LICENSE$
25 // //////////////////////////////////////////////////////////////////////////////
26

27 #ifndef INCLUDED_BLACKROCKADC_H
28 #define INCLUDED_BLACKROCKADC_H
29

30 #include "BufferedADC.h"
31 #include "PrecisionTime.h"
32 #include "OSMutex.h"
33 #include "Expression.h"
34

35 #include "cbsdk.imports.h"
36

37 #include <vector >
38 #include <queue >
39

40 class BlackrockADC : public BufferedADC
41 {
42 public:
43 BlackrockADC ();
44 virtual ~BlackrockADC ();
45 virtual void OnAutoConfig ();
46 virtual void OnHalt ();
47 virtual void OnPreflight( SignalProperties& Output ) const;
48 virtual void OnInitialize( const SignalProperties& Output );
49 virtual void OnProcess ();
50 virtual void StartRun ();
51 virtual void OnStartAcquisition ();
52 virtual void DoAcquire( GenericSignal& Output );
53 virtual void OnStopAcquisition ();
54 virtual void StopRun ();
55

56 // Bit of a hack necessary for digital output based on expressions
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57 virtual void Process( const GenericSignal& Input , GenericSignal& Output );
58

59 private:
60 struct ChanInfo
61 {
62 unsigned int inst;
63 unsigned int idx;
64 double gain;
65 double offset;
66 std:: string label;
67 };
68

69 bool Connect( int nInstances = 1 ) const;
70 void Disconnect( int nInstances = 1 ) const;
71 bool GetChannelConfig( int iNumInstances , int iGroup ,
72 std::vector < ChanInfo > &oChanConfig ,
73 std::vector < int > &oSyncChans ) const;
74 static void DataCallback( UINT32 iInstance , const cbSdkPktType iType , const void

* iData , void* iBlackrockADC );
75 static bool CereLinkError( cbSdkResult res );
76 int GetRequestedSampleGroup () const;
77 double ScalingToGain( cbSCALING scaling ) const;
78

79 // Debug Functionality
80 void OutputChannelDebugInfo( int nInstances ) const;
81

82 OSMutex mDataMutex , mCommandMutex;
83 std::vector < std::queue < std::vector < INT16 > > > mDataPacketBuffers;
84 std::vector < ChanInfo > mChannelConfig;
85 std::vector < int > mSyncChans;
86 int mSampleGroup;
87 unsigned int mNSPInstances;
88 unsigned int mSampleBlockSize;
89 bool mSyncEnabled , mPauseForSync;
90

91 struct DigitalOutputExpression
92 {
93 unsigned int inst;
94 unsigned int dout;
95 Expression exp;
96 };
97 std::vector < DigitalOutputExpression > mDigitalOutputEx;
98

99 };
100

101 #endif // INCLUDED_BLACKROCKADC_H
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1 // //////////////////////////////////////////////////////////////////////////////
2 // $Id$
3 // Authors: griffin.milsap@gmail.com
4 // Description: Implementation of a source module for Blackrock systems
5 //
6 // This module works in a slightly nonstandard way. The Blackrock NSP is very
7 // configurable using the Central application. The initial version of this
8 // source module was originally intended to configure the NSP entirely
9 // from BCI2000 , but the device is SOOO configurable (even to the extent of

10 // being able to set different sampling rates for individual channels), it
11 // became infeasable. As such , this module will simply query the current
12 // channel configuration from the device and work with that. This module is
13 // no longer capable of changing the Blackrock configuration; all configuration
14 // changes must be made in Central.
15 //
16 // The only really configurable parameter is the SamplingRate parameter which
17 // decides a sampling group to record from. Because the device can record
18 // individual channels at different sampling rates , you must choose the sampling
19 // rate of the system , and channels that are currently being sampled at that rate
20 // are recorded into the BCI2000 data stream. BCI2000 does not support per -

channel
21 // sampling rates , so all channels must be configured to sample at the same rate.
22 // That is, you can still have some channels sampled at a different rate , but
23 // BCI2000 will ignore them.
24 //
25 // See more documentation on the BCI2000 WIKI.
26 //
27 // $BEGIN_BCI2000_LICENSE$
28 //
29 // This file is part of BCI2000 , a platform for real -time bio -signal research.
30 // [ Copyright (C) 2000 -2012: BCI2000 team and many external contributors ]
31 //
32 // BCI2000 is free software: you can redistribute it and/or modify it under the
33 // terms of the GNU General Public License as published by the Free Software
34 // Foundation , either version 3 of the License , or (at your option) any later
35 // version.
36 //
37 // BCI2000 is distributed in the hope that it will be useful , but
38 // WITHOUT ANY WARRANTY
39 // - without even the implied warranty of MERCHANTABILITY or FITNESS FOR
40 // A PARTICULAR PURPOSE. See the GNU General Public License for more details.
41 //
42 // You should have received a copy of the GNU General Public License along with
43 // this program. If not , see <http ://www.gnu.org/licenses/>.
44 //
45 // $END_BCI2000_LICENSE$
46 // //////////////////////////////////////////////////////////////////////////////
47 #include "BlackrockADC.h"
48 #include "BCIStream.h"
49

50 using namespace std;
51

52 // This list should REALLY be included in the CBSDK library somewhere
53 // There are a maximum of 8 sample groups. When you query sample groups
54 // from the API , they are 1-indexed (hence , GroupRates [0] = 0). These
55 // sample groups correspond to the output NSx files. NS2 files are sampled
56 // at 1k, ns4 at 10k, etc. The raw sample group is cbRAWGROUP (6) and is
57 // also sampled at 30k. Currently , there is no way to query this information
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58 // from the CBSDK API , but may change in the future.
59 int gGroupRates [] = { 0, 500, 1000, 2000, 10000, 30000 }; // samples per second
60 int gBlockSizes [] = { 0, 10, 20, 40, 200, 600 }; // samples per block (50

Hz)
61

62 // IT IS CRUCIAL THAT THE SYSTEM IS NOT RUN THROUGH MORE THAN ONE SWITCH!
63 // IF IT ISN'T, THERE WILL VERY LIKELY BE DROPPED PACKETS DURING THE
64 // CONFIGURATION PROCESS AND CBSDK HAS UNDEFINED BEHAVIOR.
65 string gPktErrMsg =
66 "This error suggests an incomplete system configuration due to dropped "
67 "packets early in the connection process. Please ensure that this machine "
68 "is connected to the NSP through a SINGLE switch of high commercial quality.";
69

70 // Multi -NSP Synchronization Channels
71 // Connect the output sync channel on ONE amp to the input sync channel on all

amps.
72 // The analog sync input channels on all amps will be monitored and delays will be

adjusted
73 #define NSP_SYNC_OUTPUT_CHANNEL cbFIRST_DIGOUT_CHAN + 1 // Digital Output 1 (153)
74 #define NSP_SYNC_INPUT_CHANNEL cbFIRST_ANAIN_CHAN + cbNUM_ANAIN_CHANS // Analog

Input 16 (144)
75 #define NSP_SYNC_THRESHOLD 1000 // Threshold for sync pulse from Digital Output 1
76

77 RegisterFilter( BlackrockADC , 1 );
78

79 BlackrockADC :: BlackrockADC ()
80 {
81 BEGIN_PARAMETER_DEFINITIONS
82

83 "Source:Signal %20 Properties float SamplingRate= 10000Hz "
84 "10000Hz 1000 30000 // sample rate",
85

86 // Although you CAN specify these , it'd be best if you let the module
87 // autoconfigure them individually based on the SamplingRate.
88 "Source auto SourceCh= auto ",
89 "Source auto SampleBlockSize= auto ",
90 "Source auto ChannelNames= auto ",
91 "Source auto SourceChOffset= auto ",
92 "Source auto SourceChGain= auto ",
93

94 // Experimental Multi -NSP support
95 "Source:Blackrock int NSPInstances= 1 "
96 "1 1 4 // Number of synchronized NSPs to record from",
97

98 // Digital Output expressions
99 "Source:Blackrock matrix DigitalOutput= 1 { Instance Output Expression } % % %

"
100 "% % % // Expressions to control the digital outputs"
101

102 END_PARAMETER_DEFINITIONS
103

104 BEGIN_STREAM_DEFINITIONS
105 "NSPSyncState 2 0 0 0",
106 END_STREAM_DEFINITIONS
107 }
108

109 BlackrockADC ::~ BlackrockADC ()
110 {
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111

112 }
113

114 void
115 BlackrockADC :: OnAutoConfig ()
116 {
117 // Attempt autoconfiguration
118 int nInstances = Parameter( "NSPInstances" );
119 if( Connect( nInstances ) ) {
120 int group = 0;
121 if( group = GetRequestedSampleGroup () )
122 {
123 // Suggest a good SampleBlockSize
124 Parameter( "SampleBlockSize" ) = gBlockSizes[ group ];
125

126 // Acquire the channel configuration
127 vector < ChanInfo > chanConfig;
128 vector < int > syncChans;
129 if( GetChannelConfig( nInstances , group , chanConfig , syncChans ) )
130 {
131 // Resize signal source parameters accordingly
132 size_t numChans = chanConfig.size();
133 Parameter( "SourceCh" ) = numChans;
134 Parameter( "SourceChOffset" )->SetNumValues( numChans );
135 Parameter( "SourceChGain" )->SetNumValues( numChans );
136 Parameter( "ChannelNames" )->SetNumValues( numChans );
137

138 // Populate channel information
139 for( unsigned int i = 0; i < numChans; i++ )
140 {
141 Parameter( "SourceChOffset" )( i ) = chanConfig[i]. offset;
142 Parameter( "SourceChGain" )( i ) = chanConfig[i].gain;
143 Parameter( "ChannelNames" )( i ) = chanConfig[i].label;
144 }
145 } else bcierr << "Error acquiring channel configuration from NSP." << endl;
146 } else bcierr << "The requested SamplingRate does not correspond to a valid

NSP SampleGroup." << endl;
147 } else bcierr << "Could not establish connection to cbsdk" << endl;
148

149 Disconnect( nInstances );
150 }
151

152 void
153 BlackrockADC :: OnPreflight( SignalProperties& Output ) const
154 {
155 int nInstances = Parameter( "NSPInstances" );
156 if( Connect( nInstances ) ) {
157 int group = 0;
158 if( group = GetRequestedSampleGroup () )
159 {
160 // Acquire the channel configuration
161 vector < ChanInfo > chanConfig;
162 vector < int > syncChans;
163 if( GetChannelConfig( nInstances , group , chanConfig , syncChans ) )
164 {
165 bool sync_procedure_enabled = true;
166 for( size_t i = 0; i < syncChans.size(); i++ )
167 if( syncChans[ i ] == -1 )
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168 sync_procedure_enabled = false;
169 if( nInstances > 1 && !sync_procedure_enabled )
170 bciwarn << "Multi -NSP synchronization procedure not configured properly.

"
171 << "Please ensure Analog Input 16 on all NSPs is sampled at the

"
172 << "requested sampling rate and that all are connected to "
173 << "Digital Output 1 of any ONE amplifier. PROCEED WITH CAUTION!

";
174

175 int numChans = chanConfig.size();
176

177 bool goodOffsets = true ,
178 goodGains = true ,
179 goodNames = true;
180 string matchMessage = " parameter must match the number of channels"
181 " in the requested sample group";
182

183 // Check the SourceCh parameter
184 if( Parameter( "SourceCh" ) != numChans )
185 bcierr << "The SourceCh "
186 << matchMessage
187 << " (" << numChans << ") ";
188

189 // Check the channel offsets
190 if( Parameter( "SourceChOffset" )->NumValues () != numChans )
191 bcierr << "The number of values in the SourceChOffset"
192 << matchMessage
193 << " (" << numChans << ") ";
194 else
195 for( unsigned int i = 0; i < numChans; ++i )
196 {
197 double chOffset = chanConfig[i]. offset;
198 double prmoffset = Parameter( "SourceChOffset" )( i );
199 bool same = ( 1e-3 > ::fabs( prmoffset - chOffset ) / ( chOffset ?

chOffset : 1.0 ) );
200 goodOffsets &= same;
201

202 if ( !same ) bciwarn << "CBSDK suggests the offset of"
203 << " channel " << i + 1
204 << " is " << chOffset
205 << " whereas the corresponding value in the"
206 << " SourceChOffset parameter is " << prmoffset;
207 }
208

209 if( !goodOffsets )
210 bcierr << "The SourceChOffset values must match the channel "
211 << "resolutions settings in the recording software.";
212

213 // Check gains and ensure they match up with what is reported by cbsdk
214 if( Parameter( "SourceChGain" )->NumValues () != numChans )
215 bcierr << "The number of values in the SourceChGain"
216 << matchMessage
217 << " (" << numChans << ") ";
218 else
219 for( unsigned int i = 0; i < numChans; ++i )
220 {
221 double chGain = chanConfig[i].gain;
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222 double prmgain = Parameter( "SourceChGain" )( i );
223 bool same = ( 1e-3 > ::fabs( prmgain - chGain ) / ( chGain ? chGain :

1.0 ) );
224 goodGains &= same;
225

226 if ( !same ) bciwarn << "CBSDK suggests the gain of"
227 << " channel " << i + 1
228 << " is " << chGain
229 << " whereas the corresponding value in the"
230 << " SourceChGain parameter is " << prmgain;
231 }
232

233 if( !goodGains )
234 bcierr << "The SourceChGain values must match the channel "
235 << "resolutions settings in the recording software.";
236

237 // Check names and ensure they match up with what is reported by cbsdk
238 if( Parameter( "ChannelNames" )->NumValues () != numChans )
239 bcierr << "The number of values in the ChannelNames"
240 << matchMessage
241 << " (" << numChans << ") ";
242 else
243 for( unsigned int i = 0; i < numChans; ++i )
244 {
245 string prmlabel = Parameter( "ChannelNames" )( i );
246 string sdklabel = chanConfig[i].label;
247 bool same = prmlabel == sdklabel;
248 goodNames &= same;
249

250 if( !same ) bciwarn << "The CBSDK says channel " << i + 1
251 << " is labeled " << sdklabel
252 << " whereas the corresponding value in the"
253 << " ChannelNames parameter is " << prmlabel;
254 }
255

256 if( !goodNames )
257 bciwarn << "The ChannelNames values should ideally match the channel "
258 << "labels in Central to avoid confusion later.";
259

260 } else bcierr << "Error acquiring channel configuration from NSP." << endl;
261 } else bcierr << "The requested SamplingRate does not correspond to a valid

NSP SampleGroup." << endl;
262

263 // Check the Digital Output Expressions
264 GenericSignal preflightSignal = GenericSignal( Output );
265 for( int i = 0; i < Parameter( "DigitalOutput" )->NumRows (); i++ )
266 {
267 if( Parameter( "DigitalOutput" )( i, "Instance" ) == "" )
268 continue;
269

270 DigitalOutputExpression exp;
271 exp.inst = Parameter( "DigitalOutput" )( i, "Instance" );
272 exp.dout = Parameter( "DigitalOutput" )( i, "Output" );
273 exp.exp = Expression( Parameter( "DigitalOutput" )( i, "Expression" ) );
274

275 if( exp.inst < 0 || exp.inst >= nInstances )
276 bcierr << "Row " << i + 1 << " of DigitalOutput specifies an invalid NSP

instance (Hint: These are 0 indexed)" << endl;
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277 if( exp.dout <= 0 || exp.dout > cbNUM_DIGOUT_CHANS )
278 bcierr << "Row " << i + 1 << " of DigitalOutput specifies an invalid

Digital Output Channel. "
279 << "Valid digital outputs are 1-" << cbNUM_DIGOUT_CHANS << ")." <<

endl;
280

281 int dig_chan = cbFIRST_DIGOUT_CHAN + exp.dout;
282 if( CereLinkError( cbSdkSetDigitalOutput( exp.inst , dig_chan , 0 ) ) )
283 bcierr << "CBSDK digital output test failed for port " << exp.dout;
284

285 bciout << "Evaluating " << Parameter( "DigitalOutput" )( i, "Expression" );
286 exp.exp.Evaluate( &preflightSignal );
287 }
288

289 } else bcierr << "Could not re-establish connection to cbsdk" << endl;
290

291 Disconnect( nInstances );
292 State( "NSPSyncState" );
293

294 // We will place no limits on SampleBlockSize because cbsdk
295 // receives individual frames from the NSP anyway.
296 int numberOfChannels = Parameter( "SourceCh" );
297 int samplesPerBlock = Parameter( "SampleBlockSize" );
298 SignalType sigType = SignalType ::int16;
299 Output = SignalProperties( numberOfChannels , samplesPerBlock , sigType );
300 }
301

302 void
303 BlackrockADC :: OnInitialize( const SignalProperties& Output )
304 {
305 mSampleGroup = GetRequestedSampleGroup ();
306 mSampleBlockSize = Parameter( "SampleBlockSize" );
307 mNSPInstances = ( unsigned int )Parameter( "NSPInstances" );
308 mDataPacketBuffers.clear();
309 mPauseForSync = false;
310 State( "NSPSyncState" ) = 1;
311

312 // Populate the Digital Output Expressions
313 mDigitalOutputEx.clear();
314 for( int i = 0; i < Parameter( "DigitalOutput" )->NumRows (); i++ )
315 {
316 if( Parameter( "DigitalOutput" )( i, "Instance" ) == "" )
317 continue;
318

319 DigitalOutputExpression exp;
320 exp.inst = Parameter( "DigitalOutput" )( i, "Instance" );
321 exp.dout = Parameter( "DigitalOutput" )( i, "Output" );
322 exp.exp = Expression( Parameter( "DigitalOutput" )( i, "Expression" ) );
323 mDigitalOutputEx.push_back( exp );
324 }
325 }
326

327 void
328 BlackrockADC :: OnStartAcquisition ()
329 {
330 if( Connect( mNSPInstances ) )
331 {
332 // Acquire the channel configuration
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333 if( !GetChannelConfig( mNSPInstances , mSampleGroup , mChannelConfig , mSyncChans
) )

334 bcierr << "Couldn 't acquire channel configuration" << endl;
335

336 // Determine if synchronization is enabled ...
337 mSyncEnabled = true;
338 for( size_t i = 0; i < mSyncChans.size(); i++ )
339 if( mSyncChans[ i ] == -1 )
340 mSyncEnabled = false;
341

342 mDataMutex.Acquire ();
343 for( int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
344 {
345 // Ready a queue for our data packets
346 mDataPacketBuffers.push_back( queue < vector < INT16 > >() );
347

348 // Register data packet callback
349 CereLinkError( cbSdkRegisterCallback( instIdx , CBSDKCALLBACK_CONTINUOUS ,

DataCallback , this ) );
350 }
351 mDataMutex.Release ();
352 }
353 else
354 {
355 // Error and ensure we disconnect from any NSPs we connected to.
356 bcierr << "Could not re-establish connection to cbsdk" << endl;
357 Disconnect( mNSPInstances );
358 }
359 }
360

361 void
362 BlackrockADC :: DoAcquire( GenericSignal& Output )
363 {
364 // Multi -NSP Synchronization Procedure
365 if( mPauseForSync )
366 {
367 // Set the digital output low (is currently high) and collect some data
368 bciout << "Starting Multi -NSP Synchronization Procedure ....";
369 mCommandMutex.Acquire ();
370 for( int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
371 cbSdkSetDigitalOutput( instIdx , NSP_SYNC_OUTPUT_CHANNEL , 0 );
372 mCommandMutex.Release ();
373 ThreadUtils :: SleepForMs( 100 ); // Average Latency is about 20 ms
374

375 // Calculate the delays that exist before the two synchronization input steps.
376 for( int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
377 {
378 int delay = 0;
379 stringstream debugStream;
380 for( int i = 0; i < mDataPacketBuffers[ instIdx ].size(); i++ )
381 {
382 int value = mDataPacketBuffers[ instIdx ].front()[ mSyncChans[ instIdx ]

];
383 debugStream << value << " ";
384 if( value < NSP_SYNC_THRESHOLD ) break; // Falling edge
385 mDataPacketBuffers[ instIdx ].pop();
386 delay ++;
387 }
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388 bcidbg << "DEBUG SYNC: Inst " << instIdx << ": " << debugStream.str();
389 bciout << "Corrected Instance " << instIdx << " by " << delay << " samples."

;
390 }
391

392 bciout << "Synchronization Complete.";
393 mPauseForSync = false;
394 }
395

396 // Wait while there isn't enough data in the queue
397 while( true )
398 {
399 bool dataQueued = true;
400 for( int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
401 dataQueued &= mDataPacketBuffers[ instIdx ].size() >= mSampleBlockSize;
402 if( dataQueued == true ) break;
403

404 ThreadUtils :: SleepForMs( 1 );
405 }
406

407 // Dequeue data into the signal output
408 mDataMutex.Acquire ();
409 for( int fr_idx = 0; fr_idx < Output.Elements (); fr_idx ++ )
410 {
411 for( int ch_idx = 0; ch_idx < Output.Channels (); ch_idx ++ )
412 {
413 int inst = mChannelConfig[ ch_idx ].inst;
414 int idx = mChannelConfig[ ch_idx ].idx;
415 Output( ch_idx , fr_idx ) = mDataPacketBuffers[ inst ].front()[ idx ];
416 }
417

418 // Pop the recorded frame off the buffers
419 for( int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
420 mDataPacketBuffers[ instIdx ].pop();
421 }
422 mDataMutex.Release ();
423 }
424

425 void
426 BlackrockADC :: StartRun ()
427 {
428 }
429

430 void
431 BlackrockADC :: OnProcess ()
432 {
433 // Handle state machine for synchronization procedure
434 if( State( "NSPSyncState" ) == 1 )
435 {
436 mCommandMutex.Acquire ();
437 for( int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
438 cbSdkSetDigitalOutput( instIdx , NSP_SYNC_OUTPUT_CHANNEL , 1 );
439 State( "NSPSyncState" ) = 2;
440 mCommandMutex.Release ();
441 }
442 else if( State( "NSPSyncState" ) == 2 )
443 {
444 mCommandMutex.Acquire ();

184



445 if( mSyncEnabled ) mPauseForSync = true;
446 else for( int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
447 cbSdkSetDigitalOutput( instIdx , NSP_SYNC_OUTPUT_CHANNEL , 0 );
448 State( "NSPSyncState" ) = 0;
449 mCommandMutex.Release ();
450 }
451 }
452

453 void
454 BlackrockADC :: Process( const GenericSignal& Input , GenericSignal& Output )
455 {
456 // Call Superclass!
457 BufferedADC :: Process( Input , Output );
458

459 // Set digital outputs as necessary
460 mCommandMutex.Acquire ();
461 for( size_t i = 0; i < mDigitalOutputEx.size(); i++ )
462 {
463 DigitalOutputExpression ex = mDigitalOutputEx[ i ];
464 int dig_chan = cbFIRST_DIGOUT_CHAN + ex.dout;
465 int value = int( bool( ex.exp.Evaluate( &Output ) ) );
466 cbSdkSetDigitalOutput( ex.inst , dig_chan , value );
467 }
468 mCommandMutex.Release ();
469 }
470

471 void
472 BlackrockADC :: StopRun ()
473 {
474 }
475

476 void
477 BlackrockADC :: OnStopAcquisition ()
478 {
479 Disconnect( mNSPInstances );
480 }
481

482 void
483 BlackrockADC :: OnHalt ()
484 {
485 }
486

487 bool
488 BlackrockADC :: Connect( int nInstances ) const
489 {
490 if( nInstances < 1 ) nInstances = 1;
491 for( int instIdx = 0; instIdx < nInstances; instIdx ++ )
492 {
493 // Open a connection to the SDK
494 cbSdkConnectionType conType = CBSDKCONNECTION_DEFAULT;
495 if( CereLinkError( cbSdkOpen( instIdx , conType , cbSdkConnection () ) ) )
496 {
497 bcierr << "Could not establish connection to cbsdk for instance " << instIdx

<< ". "
498 << "CBSDK may not always connect even if your system is set up

properly. "
499 << "Try to 'ping " << cbNET_UDP_ADDR_CNT << "'" << endl;
500 return false;
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501 }
502

503 // Determine the SDK connection type
504 cbSdkInstrumentType instType;
505 if( CereLinkError( cbSdkGetType( instIdx , &conType , &instType ) ) )
506 {
507 bcierr << "Unable to determine connection type for instance " << instIdx <<

endl;
508 return false;
509 }
510

511 // Get the NSP Version
512 cbSdkVersion ver;
513 if( CereLinkError( cbSdkGetVersion( instIdx , &ver ) ) )
514 {
515 bcierr << "Unable to get NSP version for instance " << instIdx << ". "
516 << "Is device connected and on?" << endl;
517 return false;
518 }
519

520 // Assemble a debug string for the connection information
521 if( conType < 0 || conType > CBSDKCONNECTION_COUNT ) conType =

CBSDKCONNECTION_COUNT;
522 if( instType < 0 || instType > CBSDKINSTRUMENT_COUNT ) instType =

CBSDKINSTRUMENT_COUNT;
523 string strConnection [] = { "Default", "Central", "UDP", "Closed", "Unknown" };
524 string strInstrument [] = { "NSP", "nPlay", "Local NSP", "Remote nPlay", "

Unknown" };
525 bciout << "Instance " << instIdx << ": " << strConnection[ conType ]
526 << " real -time interface to " << strInstrument[ instType ]
527 << "(V" << ver.nspmajor << "." << ver.nspminor << "."
528 << ver.nsprelease << "." << ver.nspbeta << ")";
529 }
530

531 return true;
532 }
533

534 bool
535 BlackrockADC :: GetChannelConfig( int iNumInstances , int iGroup ,
536 vector < ChanInfo > &oChanConfig ,
537 vector < int > &oSyncChans ) const
538 { // BlackrockADC :: Connect must be called first!
539

540 oChanConfig.clear();
541 oSyncChans.clear();
542

543 // Get the total number of channels in this sample group across all instances
544 for( int instIdx = 0; instIdx < iNumInstances; instIdx ++ )
545 {
546 int sync_input_ch = -1;
547

548 // Determine the number of channels in the requested channel group on this
instance.

549 unsigned int nLength = 0;
550 CereLinkError( cbSdkGetSampleGroupList( instIdx , 1, iGroup , &nLength , NULL ) )

;
551 if( nLength <= 0 ) continue;
552
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553 // Get the list of channels in this sample group
554 unsigned int *pGroupList = new unsigned int[ nLength ];
555 CereLinkError( cbSdkGetSampleGroupList( instIdx , 1, iGroup , &nLength ,

pGroupList ) );
556

557 // Populate output structures with information about this channel
558 for( unsigned int i = 0; i < nLength; i++ )
559 {
560 cbPKT_CHANINFO* pChanInfo = new cbPKT_CHANINFO ();
561 if( !CereLinkError( cbSdkGetChannelConfig( instIdx , pGroupList[i], pChanInfo

) ) )
562 {
563 ChanInfo newChan;
564 newChan.offset = 0;
565 newChan.gain = ScalingToGain( pChanInfo ->physcalin );
566 newChan.label = string( pChanInfo ->label );
567 newChan.inst = instIdx;
568 newChan.idx = i;
569 oChanConfig.push_back( newChan );
570 } else bcierr << "Bad Channel Index: " << pGroupList[i] << endl <<

gPktErrMsg;
571 delete pChanInfo;
572

573 // Find the Synchronization input channel index
574 if( pGroupList[i] == NSP_SYNC_INPUT_CHANNEL ) sync_input_ch = i;
575 }
576 delete [] pGroupList;
577 oSyncChans.push_back( sync_input_ch );
578 }
579

580 // Quick sanity check
581 if( oChanConfig.size() == 0 )
582 {
583 bcierr << "There are no channels sampled at the desired SamplingRate." << endl

;
584 return false;
585 }
586

587 return true;
588 }
589

590 void
591 BlackrockADC :: Disconnect( int nInstances ) const
592 {
593 if( nInstances < 1 ) nInstances = 1;
594 for( int instIdx = 0; instIdx < nInstances; instIdx ++ )
595 // Disconnect from the instrument
596 CereLinkError( cbSdkClose( instIdx ) );
597 }
598

599 void BlackrockADC :: DataCallback( UINT32 iInstance , const cbSdkPktType iType , const
void* iData , void* iBlackrockADC )

600 {
601 // Re-establish communication to the class
602 BlackrockADC* bradc = reinterpret_cast < BlackrockADC* >( iBlackrockADC );
603

604 switch( iType )
605 {
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606 case cbSdkPkt_PACKETLOST:
607 bcierr << "Packet loss. Data has been lost. Reduce system load." << endl;
608 break;
609 case cbSdkPkt_CONTINUOUS:
610 if( bradc && iData )
611 {
612 // Grab the packet and ensure that it is the right sample group
613 const cbPKT_GROUP *pPkt = reinterpret_cast < const cbPKT_GROUP* >( iData );
614 if( pPkt ->type != bradc ->mSampleGroup ) break;
615

616 // We'll just queue the data packet
617 bradc ->mDataMutex.Acquire ();
618 size_t pkt_len = sizeof( pPkt ->data ) / sizeof( pPkt ->data [0] );
619 bradc ->mDataPacketBuffers[ iInstance ].push( vector < INT16 >( pPkt ->data ,

pPkt ->data + pkt_len ) );
620 bradc ->mDataMutex.Release ();
621 }
622 break;
623 default:
624 break;
625 }
626 return;
627 }
628

629 // Check the SamplingRate parameter and return a Blackrock group index
630 // If this returns 0, the sampling rate is not a valid rate.
631 int
632 BlackrockADC :: GetRequestedSampleGroup () const
633 {
634 int samplingRate = ( int )Parameter( "SamplingRate" );
635 int num_rates = sizeof( gGroupRates ) / sizeof( int );
636 for( int rate_idx = 0; rate_idx < num_rates; rate_idx ++ )
637 if( samplingRate == gGroupRates[ rate_idx ] )
638 return rate_idx;
639 return 0;
640 }
641

642 // Convert a cbSCALING parameter to a SourceChGain
643 double
644 BlackrockADC :: ScalingToGain( cbSCALING scaling ) const
645 {
646 double anaRange = scaling.anamax - scaling.anamin;
647 double digRange = scaling.digmax - scaling.digmin;
648 return ( anaRange / digRange );
649 }
650

651 // Debug channel configurations
652 void
653 BlackrockADC :: OutputChannelDebugInfo( int nInstances ) const
654 {
655 for( unsigned int instIdx = 0; instIdx < mNSPInstances; instIdx ++ )
656 {
657 for( unsigned int ch = 0; ch < cbMAXCHANS; ch++ )
658 {
659 cbPKT_CHANINFO* pChanInfo = new cbPKT_CHANINFO ();
660 if( !CereLinkError( cbSdkGetChannelConfig( instIdx , ch, pChanInfo ) ) )
661 bciout << pChanInfo ->label << " -- "
662 << "Inst: " << instIdx << ", "
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663 << "Bank: " << pChanInfo ->bank << ", "
664 << "Chan: " << pChanInfo ->chan;
665 delete pChanInfo;
666 }
667 }
668 }
669

670 // Misc Cerelink error checking
671 bool
672 BlackrockADC :: CereLinkError( cbSdkResult res )
673 {
674 cbSdkInstrumentType instType;
675 switch( res )
676 {
677 case CBSDKRESULT_WARNCONVERT:
678 bciwarn << "File conversion is needed ..." << endl;
679 return false;
680 case CBSDKRESULT_WARNCLOSED:
681 bciwarn << "Library is already closed" << endl;
682 return false;
683 case CBSDKRESULT_WARNOPEN:
684 bciwarn << "Library is already opened" << endl;
685 return false;
686 case CBSDKRESULT_SUCCESS:
687 // bcidbg( 0 ) << "Success" << endl;
688 return false;
689 case CBSDKRESULT_NOTIMPLEMENTED:
690 bcierr << "Not implemented" << endl;
691 return true;
692 case CBSDKRESULT_INVALIDPARAM:
693 bcierr << "Invalid parameter" << endl;
694 return true;
695 case CBSDKRESULT_CLOSED:
696 bcierr << "Interface is closed cannot do this operation" << endl;
697 return true;
698 case CBSDKRESULT_OPEN:
699 bcierr << "Interface is open cannot do this operation" << endl;
700 return true;
701 case CBSDKRESULT_NULLPTR:
702 bcierr << "Null pointer" << endl;
703 return true;
704 case CBSDKRESULT_ERROPENCENTRAL:
705 bcierr << "Unable to open Central interface" << endl;
706 return true;
707 case CBSDKRESULT_ERROPENUDP:
708 bcierr << "Unable to open UDP interface (might happen if default)" << endl;
709 return true;
710 case CBSDKRESULT_ERROPENUDPPORT:
711 bcierr << "Unable to open UDP port" << endl;
712 return true;
713 case CBSDKRESULT_ERRMEMORYTRIAL:
714 bcierr << "Unable to allocate RAM for trial cache data" << endl;
715 return true;
716 case CBSDKRESULT_ERROPENUDPTHREAD:
717 bcierr << "Unable to open UDP timer thread" << endl;
718 return true;
719 case CBSDKRESULT_ERROPENCENTRALTHREAD:
720 bcierr << "Unable to open Central communication thread" << endl;
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721 return true;
722 case CBSDKRESULT_INVALIDCHANNEL:
723 bcierr << "Invalid channel number" << endl;
724 return true;
725 case CBSDKRESULT_INVALIDCOMMENT:
726 bcierr << "Comment too long or invalid" << endl;
727 return true;
728 case CBSDKRESULT_INVALIDFILENAME:
729 bcierr << "Filename too long or invalid" << endl;
730 return true;
731 case CBSDKRESULT_INVALIDCALLBACKTYPE:
732 bcierr << "Invalid callback type" << endl;
733 return true;
734 case CBSDKRESULT_CALLBACKREGFAILED:
735 bcierr << "Callback register/unregister failed" << endl;
736 return true;
737 case CBSDKRESULT_ERRCONFIG:
738 bcierr << "Trying to run an unconfigured method" << endl;
739 return true;
740 case CBSDKRESULT_INVALIDTRACKABLE:
741 bcierr << "Invalid trackable id, or trackable not present" << endl;
742 return true;
743 case CBSDKRESULT_INVALIDVIDEOSRC:
744 bcierr << "Invalid video source id, or video source not present" << endl;
745 return true;
746 case CBSDKRESULT_ERROPENFILE:
747 bcierr << "Cannot open file" << endl;
748 return true;
749 case CBSDKRESULT_ERRFORMATFILE:
750 bcierr << "Wrong file format" << endl;
751 return true;
752 case CBSDKRESULT_OPTERRUDP:
753 bcierr << "Socket option error (Possibly permission issue)" << endl;
754 return true;
755 case CBSDKRESULT_MEMERRUDP:
756 bcierr << "Socket memory assignment error" << endl
757 << " Consider using sysctl -w net.core.rmem_max =8388608" << endl
758 << " or sysctl -w kern.ipc.maxsockbuf =8388608" << endl;
759 return true;
760 case CBSDKRESULT_INVALIDINST:
761 bcierr << "Invalid range or instrument address" << endl;
762 return true;
763 case CBSDKRESULT_ERRMEMORY:
764 bcierr << "Library memory allocation error" << endl;
765 return true;
766 case CBSDKRESULT_ERRINIT:
767 bcierr << "Library initialization error" << endl;
768 return true;
769 case CBSDKRESULT_TIMEOUT:
770 bcierr << "Connection timeout error" << endl;
771 return true;
772 case CBSDKRESULT_BUSY:
773 bcierr << "Resource is busy" << endl;
774 return true;
775 case CBSDKRESULT_ERROFFLINE:
776 bcierr << "Instrument is offline" << endl;
777 return true;
778 case CBSDKRESULT_UNKNOWN:
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779 default:
780 bcierr << "Unknown error. Sorry!" << endl;
781 return true;
782 }
783 }
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B.4 NihonKohdenADC.cpp/h

1 // //////////////////////////////////////////////////////////////////////////////
2 // $Id: $
3 // Authors: Kienan Knight -Boehm (kienan {at} kienankb.com)
4 // Description: NihonKohdenADC header
5 //
6 //
7 // $BEGIN_BCI2000_LICENSE$
8 //
9 // This file is part of BCI2000 , a platform for real -time bio -signal research.

10 // [ Copyright (C) 2000 -2012: BCI2000 team and many external contributors ]
11 //
12 // BCI2000 is free software: you can redistribute it and/or modify it under the
13 // terms of the GNU General Public License as published by the Free Software
14 // Foundation , either version 3 of the License , or (at your option) any later
15 // version.
16 //
17 // BCI2000 is distributed in the hope that it will be useful , but
18 // WITHOUT ANY WARRANTY
19 // - without even the implied warranty of MERCHANTABILITY or FITNESS FOR
20 // A PARTICULAR PURPOSE. See the GNU General Public License for more details.
21 //
22 // You should have received a copy of the GNU General Public License along with
23 // this program. If not , see <http ://www.gnu.org/licenses/>.
24 //
25 // $END_BCI2000_LICENSE$
26 // //////////////////////////////////////////////////////////////////////////////
27 #ifndef INCLUDED_NIHONKOHDEN_ADC_H
28 #define INCLUDED_NIHONKOHDEN_ADC_H
29

30 #include "BufferedADC.h"
31 #include "EegDataSource.h"
32

33 class NihonKohdenADC : public BufferedADC
34 {
35 public:
36 NihonKohdenADC ();
37 virtual ~NihonKohdenADC ();
38 virtual void OnPublish ();
39 virtual void OnAutoConfig ();
40 virtual void OnPreflight( SignalProperties& Output ) const;
41 virtual void OnInitialize( const SignalProperties& Output );
42 virtual void OnStartAcquisition ();
43 virtual void DoAcquire( GenericSignal& Output );
44 virtual void OnStopAcquisition ();
45

46 private:
47 static void CALLBACK DataSourceStateChanged( int nState , int nSubState , void *

pAddInfo );
48 bool NKErrorCheck( int val ) const;
49

50 unsigned long Connect( const std:: string &deviceAddress ) const;
51 void Disconnect( unsigned long identifier ) const;
52

53 bool mAutoCh;
54 std::map < int , int > mChannelIndices;
55 unsigned long mIdentifier;
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56 unsigned int mBufferChannels;
57 int mNumberOfSignalChannels;
58 float* mpBuffer;
59 unsigned int mChannelCount;
60

61 };
62

63 #endif // INCLUDED_NIHONKOHDEN_ADC_H
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1 // //////////////////////////////////////////////////////////////////////////////
2 // $Id: $
3 // Authors: Kienan Knight -Boehm (kienan {at} kienankb.com}
4 // Griffin Milsap (griffin.milsap@gmail.com)
5 // Description: NihonKohdenADC implementation
6 //
7 // $BEGIN_BCI2000_LICENSE$
8 //
9 // This file is part of BCI2000 , a platform for real -time bio -signal research.

10 // [ Copyright (C) 2000 -2012: BCI2000 team and many external contributors ]
11 //
12 // BCI2000 is free software: you can redistribute it and/or modify it under the
13 // terms of the GNU General Public License as published by the Free Software
14 // Foundation , either version 3 of the License , or (at your option) any later
15 // version.
16 //
17 // BCI2000 is distributed in the hope that it will be useful , but
18 // WITHOUT ANY WARRANTY
19 // - without even the implied warranty of MERCHANTABILITY or FITNESS FOR
20 // A PARTICULAR PURPOSE. See the GNU General Public License for more details.
21 //
22 // You should have received a copy of the GNU General Public License along with
23 // this program. If not , see <http ://www.gnu.org/licenses/>.
24 //
25 // $END_BCI2000_LICENSE$
26 // //////////////////////////////////////////////////////////////////////////////
27

28 // ?? -- Griff
29 #define _X86_
30

31 #include "NihonKohdenADC.h"
32 #include "BCIStream.h"
33 #include "BCIEvent.h"
34 #include "ThreadUtils.h"
35 #include "StringUtils.h"
36 #include "FilePath.h"
37

38 #include <map >
39 #include <vector >
40

41 using namespace std;
42

43 class Setting
44 {
45 public:
46 Setting( unsigned int sourceCh = 0, int sampleBlockSize = 0 ) :
47 maxSourceCh( sourceCh ),
48 recSampleBlockSize( sampleBlockSize )
49 { }
50

51 unsigned int maxSourceCh;
52 int recSampleBlockSize;
53 };
54

55 typedef map < unsigned int , Setting > SettingMap;
56

57 // Map sampling rate to amp settings
58 SettingMap CreateSettings ()
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59 {
60 SettingMap settings;
61 settings[ 100 ] = Setting( 256, 10 );
62 settings[ 200 ] = Setting( 256, 20 );
63 settings[ 500 ] = Setting( 256, 60 );
64 settings[ 1000 ] = Setting( 256, 100 );
65 settings[ 2000 ] = Setting( 256, 200 );
66 settings[ 5000 ] = Setting( 128, 500 );
67 settings[ 10000 ] = Setting( 64, 1000 );
68 return settings;
69 }
70

71 static SettingMap Settings = CreateSettings ();
72

73 vector < int > CreateEEGIndices ()
74 {
75 vector < int > indices;
76 for( int i = 22; i <= 85; ++i ) // Bank A
77 indices.push_back( i );
78 for( int i = 93; i <= 156; ++i ) // Bank B
79 indices.push_back( i );
80 for( int i = 157; i <= 220; ++i ) // Bank C
81 indices.push_back( i );
82 for( int i = 221; i <= 284; ++i ) // Bank D
83 indices.push_back( i );
84 return indices;
85 }
86

87 static vector < int > EEGIndices = CreateEEGIndices ();
88

89 vector < string > CreateDefaultElectrodeLabels ()
90 {
91 vector < string > labels;
92

93 char banks[] = { 'A', 'B', 'C', 'D' };
94 for( size_t bank_idx = 0; bank_idx < sizeof( banks ) / sizeof( *banks ); ++

bank_idx )
95 for( int ch_idx = 1; ch_idx <= 64; ++ ch_idx )
96 {
97 stringstream ss;
98 ss << banks[ bank_idx ] << ch_idx;
99 labels.push_back( ss.str() );

100 }
101

102 return labels;
103 }
104

105 static vector < string > DefaultElectrodeLabels = CreateDefaultElectrodeLabels ();
106

107 vector < int > CreateDCIndices ()
108 {
109 vector < int > indices;
110 for( int i = 0; i <= 15; ++i ) // DC01 - DC16
111 indices.push_back( i );
112 return indices;
113 }
114

115 static vector < int > DCIndices = CreateDCIndices ();
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116

117 vector < int > CreateAuxIndices ()
118 {
119 vector < int > indices;
120 for( int i = 16; i <= 21; ++i )
121 indices.push_back( i );
122 for( int i = 86; i <= 92; ++i )
123 indices.push_back( i );
124 return indices;
125 }
126

127 static vector < int > AuxIndices = CreateAuxIndices ();
128

129 RegisterFilter( NihonKohdenADC , 1 );
130

131 NihonKohdenADC :: NihonKohdenADC () :
132 mpBuffer( NULL ),
133 mIdentifier( 0 )
134 {
135 }
136

137 NihonKohdenADC ::~ NihonKohdenADC ()
138 {
139 if( mIdentifier != 0 )
140 Disconnect( mIdentifier );
141 delete [] mpBuffer;
142 }
143

144 void
145 NihonKohdenADC :: OnPublish ()
146 {
147 BEGIN_PARAMETER_DEFINITIONS
148 "Source:Signal %20 Properties string DeviceAddress= auto "
149 " // Device IP address",
150

151 "Source:Signal %20 Properties int SourceCh= auto auto 1 %"
152 " // number of digitized and stored channels",
153

154 "Source:Signal %20 Properties int SampleBlockSize= auto auto 1 %"
155 " // number of samples transmitted at a time",
156

157 "Source:Signal %20 Properties float SamplingRate= auto auto 0.0 %"
158 " // sample rate",
159

160 "Source:Signal %20 Properties list SourceChGain= 1 auto "
161 " // physical units per raw A/D unit",
162

163 "Source:Signal %20 Properties list SourceChOffset= 1 auto "
164 " // raw A/D offset to subtract , typically 0",
165

166 "Source:Signal %20 Properties list ChannelNames= 1 auto "
167 " // names of amplifier channels",
168 END_PARAMETER_DEFINITIONS
169

170 char stateDef[ 32 ];
171 for( int i = 0; i < DCIndices.size(); ++i )
172 {
173 sprintf( stateDef , "DC%02d 16 0 0 0", i + 1 );
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174 BEGIN_STREAM_DEFINITIONS
175 stateDef
176 END_STREAM_DEFINITIONS
177 }
178 }
179

180 void CALLBACK
181 NihonKohdenADC :: DataSourceStateChanged( int nState , int nSubState , void * pAddInfo

)
182 {
183 switch( nState ) {
184 case DATASOURCE_DLL_STS_ERR:
185 switch( nSubState ) {
186 case DS_WAVE_RR_TIMEOUT:
187 case DS_CMD_RR_TIMEOUT:
188 case DS_MMFILE_ERR_NEED_RESET:
189 case DS_MMFILE_OVERRUN_READ_OFFSET:
190 case DS_RECEIVE_IRREGULAR_PACKET:
191 case DS_DISCONNECT_SOCKET:
192 // Could attempt reconnection procedure here , but probably best to just
193 // throw an exception especially if we're already recording. -- Griff
194 throw bcierr << "An error occurred , necessitating reset. System shutting

down";
195 }
196 break;
197 case DATASOURCE_DLL_STS_RECONNECT_SUCCESS:
198 // Shouldn 't ever be called; at least right now. -- Griff
199 bciout << "Reconnection succeeded.";
200 default:
201 break;
202 }
203 }
204

205 unsigned long
206 NihonKohdenADC :: Connect( const string &deviceAddress ) const
207 {
208 unsigned long id = InitializeDll( DS_MODE_READER , NULL , NULL , 0 );
209 if( id == 0 ) throw bcierr << "Could not initialize NK DLL";
210

211 READER_MODE_INIT_INFO initInfo;
212

213 if( deviceAddress == "auto" )
214 initInfo.bSelectDataSource = true;
215 else {
216 initInfo.ulIpAddress = htonl( :: inet_addr( deviceAddress.c_str() ) );
217 initInfo.bSelectDataSource = false;
218 }
219

220 if( NKErrorCheck( InitializeReaderMode( id, initInfo , &NihonKohdenADC ::
DataSourceStateChanged ) ) )

221 throw bcierr << "Could not initialize reader mode!";
222 if( NKErrorCheck( ReaderModeConnect( id ) ) )
223 throw bcierr << "Could not connect to device!";
224

225 return id;
226 }
227

228 void
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229 NihonKohdenADC :: Disconnect( unsigned long id ) const
230 {
231 if( NKErrorCheck( ReaderModeClose( id ) ) )
232 bcierr << "Could not close reader mode";
233 if( NKErrorCheck( ReaderModeEnd( id ) ) )
234 bcierr << "Could not close dll";
235 }
236

237 void
238 NihonKohdenADC :: OnAutoConfig ()
239 {
240 mIdentifier = Connect( string( Parameter( "DeviceAddress" ) ) );
241

242 unsigned int samplingRate = 0;
243 if( NKErrorCheck( MMFileGetSamplingRate( mIdentifier , samplingRate ) ) )
244 bciwarn << "Couldn 't get sampling rate";
245 Parameter( "SamplingRate" ) << samplingRate << "Hz";
246

247 // Set a recommended SampleBlockSize
248 Parameter( "SampleBlockSize" ) = Settings[ samplingRate ]. recSampleBlockSize;
249

250 unsigned int channels = 0;
251 if( NKErrorCheck( MMFileGetElectrodeCount( mIdentifier , channels ) ) )
252 bciwarn << "Couldn 't determine electrode count";
253

254 // There appears to be a memory issue with the GetElectrodeName function
255 // Placing the electrodeNames variable in the stack seems to mitigate
256 // this to some extent.
257 MMFILE_ELECTRODE_NAME* electrodeNames = new MMFILE_ELECTRODE_NAME ();
258 if( NKErrorCheck( MMFileGetElectrodeName( mIdentifier , *electrodeNames ) ) )
259 bciwarn << "Couldn 't get electrode names";
260

261 MMFILE_ELECTRODE_CODE electrodeCodes;
262 if( NKErrorCheck( MMFileGetElectrodeCode( mIdentifier , electrodeCodes ) ) )
263 bciwarn << "Couldn 't get electrode codes";
264

265 // Determine how many of the default eeg channels this particular amp supports
266 int numEEGChannels = 0;
267 for( int i = 0; i < EEGIndices.size(); ++i )
268 if( EEGIndices[ i ] < channels )
269 numEEGChannels ++;
270

271 // Determine how many of the channels have non -default labels
272 vector < bool > isDefaultLabel;
273 int numInterestingChannels = 0;
274 for( int i = 0; i < numEEGChannels; ++i )
275 {
276 string chName( electrodeNames ->pszName[ EEGIndices[ i ] ] );
277 isDefaultLabel.push_back( chName == DefaultElectrodeLabels[ i ] );
278 if( !isDefaultLabel.back() ) numInterestingChannels ++;
279 }
280

281 mAutoCh = string( ActualParameter( "SourceCh" ) ) == "auto";
282 Parameter( "SourceCh" ) = ( ( mAutoCh && numInterestingChannels ) ?

numInterestingChannels : numEEGChannels );
283 if( mAutoCh ) Parameter( "SourceCh" ) = int( Parameter( "SourceCh" ) ) +

DCIndices.size();
284 Parameter( "ChannelNames" )->SetNumValues( ActualParameter( "SourceCh" ) );
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285 Parameter( "SourceChGain" )->SetNumValues( ActualParameter( "SourceCh" ) );
286 Parameter( "SourceChOffset" )->SetNumValues( ActualParameter( "SourceCh" ) );
287

288 map < string , bool > name_map;
289 mChannelIndices.clear();
290

291 int ch_idx = 0;
292 for( int i = 0; i < numEEGChannels; ++i )
293 {
294 if( mAutoCh && numInterestingChannels && isDefaultLabel[ i ] ) continue;
295 if( ch_idx >= ActualParameter( "SourceCh" ) - ( ( mAutoCh ) ? DCIndices.size()

: 0 ) ) continue;
296

297 mChannelIndices[ ch_idx ] = i;
298

299 string chName( electrodeNames ->pszName[ EEGIndices[ mChannelIndices[ ch_idx ]
] ] );

300 if( chName == "" || chName == " " ) chName = "EMPTY";
301 if( name_map.find( chName ) == name_map.end() )
302 {
303 name_map[ chName ] = true;
304 Parameter( "ChannelNames" )( ch_idx ) << String () << chName;
305 } else {
306 Parameter( "ChannelNames" )( ch_idx ) << String () << chName << "_" << ch_idx

+ 1;
307 }
308

309 Parameter( "SourceChGain" )( ch_idx ) << 1.0;
310 Parameter( "SourceChOffset" )( ch_idx ) = 0;
311

312 ch_idx ++;
313 }
314

315 // Add the DC channels as signal in addition to adding them as stream , if we are
auto -configuring channels

316 if( mAutoCh )
317 {
318 for( size_t i = 0; i < DCIndices.size(); ++i )
319 {
320 char syncChName[ 16 ];
321 sprintf( syncChName , "DC%02d", i + 1 );
322 Parameter( "ChannelNames" )( ch_idx ) = string( syncChName );
323 Parameter( "SourceChGain" )( ch_idx ) << 1.0;
324 Parameter( "SourceChOffset" )( ch_idx ) = 0;
325 ch_idx ++;
326 }
327 }
328

329 delete electrodeNames;
330 }
331

332 void
333 NihonKohdenADC :: OnPreflight( SignalProperties& Output ) const
334 {
335 unsigned int samplingRate = 0;
336 if( NKErrorCheck( MMFileGetSamplingRate( mIdentifier , samplingRate ) ) )
337 bcierr << "Couldn 't verify sampling rate";
338 if( samplingRate != unsigned int( Parameter( "SamplingRate" ).InHertz () ) )
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339 bcierr << "SamplingRate doesn 't match reported sample rate of " <<
samplingRate;

340

341 if( ( unsigned int( Parameter( "SourceCh" ) ) - ( ( mAutoCh ) ? DCIndices.size()
: 0 ) ) > Settings[ samplingRate ]. maxSourceCh )

342 bcierr << "SamplingRate of " << samplingRate
343 << " does not support recording more than "
344 << Settings[ samplingRate ]. maxSourceCh << " channels. "
345 << "Please adjust SourceCh accordingly.";
346

347 SignalType sigType = SignalType :: float32;
348 int samplesPerBlock = Output.Elements ();
349 int numberOfSignalChannels = Output.Channels ();
350 int outputSize = numberOfSignalChannels + DCIndices.size();
351 Output = SignalProperties( outputSize , samplesPerBlock , sigType );
352

353 Parameter( "DeviceAddress" );
354

355 // Append the streams
356 int chStart = numberOfSignalChannels;
357 for( size_t i = 0; i < DCIndices.size(); ++i )
358 {
359 char syncChName[ 16 ];
360 sprintf( syncChName , "@DC%02d", i + 1 );
361 Output.ChannelLabels ()[ chStart + i ] = string( syncChName );
362 }
363 }
364

365 void
366 NihonKohdenADC :: OnInitialize( const SignalProperties& Output )
367 {
368 mBufferChannels = 0;
369 if( NKErrorCheck( MMFileGetElectrodeCount( mIdentifier , mBufferChannels ) ) )
370 bciwarn << "Couldn 't determine electrode count";
371

372 mNumberOfSignalChannels = Parameter( "SourceCh" );
373

374 // Allocate a sample buffer
375 delete [] mpBuffer;
376 int bufSize = mBufferChannels * Output.Elements ();
377 mpBuffer = new float[ bufSize ];
378 :: memset( mpBuffer , 0, bufSize * sizeof( float ) );
379

380 Disconnect( mIdentifier );
381 mIdentifier = 0;
382 }
383

384 void
385 NihonKohdenADC :: OnStartAcquisition ()
386 {
387 mIdentifier = Connect( string( Parameter( "DeviceAddress" ) ) );
388 }
389

390 void
391 NihonKohdenADC :: DoAcquire( GenericSignal& Output )
392 {
393 unsigned int frameCount = 0;
394 while( frameCount < Output.Elements () )
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395 {
396 if( NKErrorCheck( GetDataFrameCount( mIdentifier , frameCount ) ) )
397 throw bcierr << "Could not get DataFrameCount";
398 ThreadUtils :: SleepForMs( 1 );
399 }
400

401 if( NKErrorCheck( GetFloatData( mIdentifier , Output.Elements (),
402 frameCount , NULL , mpBuffer , NULL , NULL ) ) )
403 throw bcierr << "Could not acquire data";
404 if( frameCount != Output.Elements () )
405 throw bcierr << "Did not get requested amount of data.";
406

407 // Copy values from raw buffer into output signal.
408 for( int ch = 0; ch < mNumberOfSignalChannels - ( ( mAutoCh ) ? DCIndices.size()

: 0 ); ch++ )
409 for( int sample = 0; sample < Output.Elements (); sample ++ )
410 Output( ch, sample ) = mpBuffer[ EEGIndices[ mChannelIndices[ ch ] ] + (

sample * mBufferChannels ) ];
411

412 int chStart = mNumberOfSignalChannels;
413 for( int i = 0; i < DCIndices.size(); i++ )
414 for( int sample = 0; sample < Output.Elements (); sample ++ )
415 {
416 float datum = mpBuffer[ DCIndices[ i ] + ( sample * mBufferChannels ) ];
417 unsigned short dig_datum = int( datum / 366.3 ) + 0x8000;
418 Output( chStart + i, sample ) = dig_datum;
419 if( mAutoCh ) Output( chStart - DCIndices.size() + i, sample ) = dig_datum;
420 }
421 }
422

423 void
424 NihonKohdenADC :: OnStopAcquisition ()
425 {
426 Disconnect( mIdentifier );
427 mIdentifier = 0;
428 }
429

430 bool
431 NihonKohdenADC :: NKErrorCheck( int val ) const
432 {
433 // Throw exception with error text if an error occurred ,
434 // or return false if everything is alright.
435

436 switch( val )
437 {
438 case DS_ALREADY_DONE:
439 bciwarn << "Operation already done";
440 case DS_NO_ERR:
441 return false;
442 case DS_CANCEL_REQUEST:
443 bcierr << "Request is canceled"; break;
444 case DS_MMFILE_OVERRUN_READ_OFFSET:
445 bcierr << "Read pointer over run for memory mapped file."; break;
446 case DS_MMFILE_WRITE_APP_CLOSE:
447 bcierr << "Memory mapped file server is closed."; break;
448 case DS_MMFILE_RESETTING:
449 bcierr << "Resetting the memory mapped file."; break;
450 case DS_APPUDP_RR_TIMEOUT:

201



451 bcierr << "RR time out for application communication."; break;
452 case DS_DISCONNECT_SOCKET:
453 bcierr << "Socket disconnection."; break;
454 case DS_SELECT_DATA_SOURCE_CANCELED:
455 bcierr << "Selecting data source is canceled."; break;
456 case DS_FAIL_TO_OPEN_MMFILE:
457 bcierr << "Failed to open memory mapped file."; break;
458 case DS_RECEIVE_IRREGULAR_PACKET:
459 bcierr << "Received packet is invalid."; break;
460 case DS_WAVE_RR_TIMEOUT:
461 bcierr << "RR time out for collecting waveform."; break;
462 case DS_CMD_RR_TIMEOUT:
463 bcierr << "RR time out for commands."; break;
464 case DS_SEND_CMD_ERR_RETRY_MAX:
465 bcierr << "Retry error of sending commands."; break;
466 case DS_MMFILE_ERR_NEED_RESET:
467 bcierr << "Error which needs the reset of memory mapped file."; break;
468 case DS_MMFILE_ERR:
469 bcierr << "General error for memory mapped file."; break;
470 case DS_FAIL_TO_INIT_SEQUENCE:
471 bcierr << "Failed to initialize the sequence."; break;
472 case DS_FAIL_TO_READ_XML_SETTING_FILE:
473 bcierr << "Error in reading the setting xml file."; break;
474 case DS_FAIL_TO_DECIDE_DEST_IPADDRESS:
475 bcierr << "Could not find destination IP address."; break;
476 case DS_FAIL_TO_CONNECT_SOCKET:
477 bcierr << "Failed to connect socket."; break;
478 case DS_FAIL_TO_CREATE_SOCKET:
479 bcierr << "Failed to create socket."; break;
480 case DS_FAIL_TO_CREATE_SOCKET_INFO:
481 bcierr << "Failed to create destination socket information."; break;
482 case DS_FAIL_TO_CREATE_MMFILE:
483 bcierr << "Failed to carete memory mapped file."; break;
484 case DS_REQ_DIF_MODE:
485 bcierr << "Mode is invalid."; break;
486 case DS_NOT_CONNECTED:
487 bcierr << "Not connected."; break;
488 case DS_NOT_READY:
489 bcierr << "Not ready. "; break;
490 case DS_NO_MEMORY:
491 bcierr << "No enough memory."; break;
492 case DS_INVALID_PARAM:
493 bcierr << "Invalid parameters."; break;
494 case DS_ERR:
495 default:
496 bcierr << "General error."; break;
497 }
498 return true;
499 }
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