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Abstract

Classic hand-eye calibration methods have been limited to single robots and sen-
sors. Recently a new calibration formulation for multiple robots has been proposed
that solves for the extrinsic calibration parameters for each robot simultaneously in-
stead of sequentially. The existing solutions for this new problem required data to
have correspondence, but Ma, Goh and Chirikjian (MGC) proposed a probabilistic
method to solve this problem which eliminated the need for correspondence. In this
thesis, the literature of the various robot-sensor calibration problems and solutions
are surveyed, and the MGC method is reviewed in detail. Lastly comparison with

other methods using numerical simulations were carried out to draw some conclusions.
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Chapter 1

Introduction

The proliferation of inexpensive and reliable sensors in the recent decade caused
robotics to take off not only in corporations and government but also in academia
and the backyard of hobbyists. This can be seen from the burgeoning market of
commercial-off-the-shelf (COTS) components catering to aerial robots, mobile vehi-

cles and humanoid robots.

1.1 Background and Motivation

Before robots can use data from sensors to perform intelligent tasks, the sensors often
have to be calibrated with the robot, which involves establishing the pose (i.e position
and orientation) between the robot and sensor. Once that is done, the robot can use

data from the sensor to tell where objects are and hence the robot knows where to
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move to reach it. When the sensor is a camera, the calibration solution can also be
used to move the robot, and hence the camera, such that it can capture images for
3D reconstruction of a scene.

In the literature on sensors, the term "calibration" can be used to denote two
different but related processes. A sensor relies on some physical process to sense or
measure the physical world. But in order to give meaningful and accurate measure-
ments, we have to obtain intrinsic parameters that enable the conversion of raw sensor
values to real-world units and this is called "calibration". For instance, a calibrated
camera will give us the dimensions of objects from images in units like meters instead
of in pixels. The second way people talk about "calibration" is obtaining extrinsic
parameters like the relative pose of a sensor with another object, which could be
another sensor or a robotic manipulator. Estimating the pose of the sensor to the
external world is also related to what the computer vision community calls "registra-
tion" which is to obtain the spatial relationship of objects in an image to those in a
reference image. The second meaning is what I will be using in this thesis.

Almost 30 years ago, the problem of estimating the spatial relationship of the
sensor to the tool flange, known as the hand-eye calibration problem, was first for-
mulated for a robot manipulator with a sensor attached to the tool flange. It was
modeled as a mathematical problem that people over the years solved using many
different techniques depending on the factors under consideration. Then came subse-

quent attempts to expand this formulation to include other types of robotic systems
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with sensors. One such system, which was proposed two years ago, involves multiple
robots, each with its own attached sensor. This new problem formulation seeks to
solve the hand-eye calibration problem for each robot simultaneously by using the
spatial relationship between any two pairs of robots.

As this problem is fairly new, not much comparison and analysis have been done
for the different methods of solving it. Each method has its strengths and weaknesses
and so this research proposes to collect data to compare and evaluate properties like

robustness, accuracy and ease of use.

1.2 Plan

In this thesis, one such calibration technique will be investigated, which is called the
Ma, Goh and Chirikjian (MGC) method after the authors in [23], and compare it with
the other solutions in the literature. The strengths and limitations of the method will
be evaluated and its performance on simulated data under various conditions will be
collected.

Firstly, the preliminary mathematical content required in Chapter 2 will be listed,
followed by a literature survey of robot and sensor calibration problems and their
solutions in Chapter 3. Then in Chapter 4, the algorithm of the MGC method will
be reviewed and in Chapter 5, it will be compared to other methods. Lastly, results

and insights will be highlighted and new directions for research will be suggested.



Chapter 2

Mathematical Background

This chapter, especially Section 2.1 and 2.2, lays down the convention of mathematical
notations used in the literature review chapter but is not meant to provide a primer
on the wide range of topics covered there. Readers who are interested should refer to
each paper for more information. Section 2.3 and 2.4 covers the mathematics required

for the MGC method.

2.1 Notation and Basic Concepts

1. The transpose of a matrix is denoted with the superscript T symbol instead of

the letter 7.

2. The matrix of zeros is denoted by O),,«, with the subscript indicating the size

of the matrix. And O,, means that it is a square matrix with dimension n.
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3. The identity matrix of size n is denoted by [,,.

4. The Kronecker or tensor product of two matrices A, B:

AnB ... AyB
Amxn®Bp><q =
AnB ... A.B

mpxng

5. The vec() operator turns a m x n matrix A to a mn x 1 vector:

vec(A) =

6. A rotation matrix R in 3D space is an element of the Lie group SO(3) where
SO@3):={ReR*>*® | R'"R=RR' =1,det(R) = 1}.

7. A homogeneous transformation H in 3D space is a 4 x 4 matrix of the form

Rt
@1><3

H = e SE(3) (2.1)

where

SE(3):={H(R,t) e R"* | Re SO(3),t e R**'}

Such a matrix is used to represent rigid body motions in 3D space which are
composed of a rotation (represented by the matrix R) and a translation (repre-

sented by the vector t).
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8. The mapping {R® — s0(3)} of a vector

w1
W = | w2

w3

to a skew-symmetric matrix is defined using the "hat" A operator

0 —Ws3 Wa
W= ws 0 —w|eso(3)
—Wy w1 0

where s0(3) is an example of a Lie algebra, whose matrix exponential gives its

counterpart in the Lie group SO(3):

exp [w]* = R e SO(3)

and the matrix logarithm does the inverse:

log R = [w]".

Similarly, the mapping {R® — se(3)} of the vector

hy
h=1]:]eR"
he

to a matrix [h]" € se(3) is called a twist and is defined as

0 —hs hy hy
h 0 —hy h

=1 " b e se(3).
—hy M 0 he

0 0 0 0

Similarly, the exponential of [h]" maps to an element in SE(3).
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9. The "vee" v operator performs the reverse mapping {s0(3) — R3}, so operation

on a skew-symmetric matrix gives

v

0 —W3 Wa w1
w3 0 —W1 = | W2
—W9 w1 0 W3

A summary of the various mappings between Lie algebras and Lie groups is

shown in Table 2.1.

Vector map Lie algebra  map Lie group

weR3 s [w]heso(3) B exp([w]h) € SO(3)

log" ReR3 <~ logReso(3) <& Re SO(3)

h e RS s [h]) ese3) I exp([h]t) € SE(3)
log" HeRS « logH ese(3) <= H e SE(3)

Table 2.1: Summary of the relationships between Lie algebras and Lie groups

10. The Dirac Delta function defined on SE(3) is

() = {+oo, H=1,

0, H #1,

with the constraint

j SCH) dH — 1
SE(3)
where integraton over SE(3) is defined below.

A Dirac Delta function shifted to X € SE(3) is denoted by

Sx(H) = §(X'H). (2.2)
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11. Integration on SFE(3) is expressed differently depending on the parametriza-

tions. For instance, if ZX Z Fuler angles are used for a rotation R, then

R = Rz(a)Rx(B)Rz(7)
where R;(¢) represents a counterclockwise rotation by ¢ about axis i. And if

translations are expressed in Cartesian coordinates in the xyz frame, then

Hence using these parametrizations of R,t for a homogeneous transformation

H like in (2.1), the integral of a function in SFE(3) is
f f(H)dH = f f f(H(R,t)) dR dt
SE(3) R3 JSO(3)
= f f f(H(R, 1)) sin B dadBdy dt,dt,dt.
R3 J50(3)

[2] where t,,t,,t, € R and («a, 3,7) € [0,27] x [0, 7] x [0, 27].

2.2 Quaternions and Dual Quaternions
1. Quaternions q are a generalization of complex numbers with the form

q=qo +1iq1 + jg2 + kgs,

where
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It can also be written in vector form as

do
q1
q2
as

y

where ¢ € R? is the vector or imaginary part of q and ¢q is the real part. If q

is a unit quaternion, it has the property that

lal =\/q§+Q%+Q§+Q§=1-

Unit quaternions are one way to parametrize rotations in SO(3) using 4 param-

eters, other methods include Euler angles and angle-axis parametrizations.

2. Multiplication of two quaternions

DPo qo
p=|_ and q=|"

is denoted by the symbol * and defined as

—T —

Poqo —P g

Pp*xq= 5 R, (2.3)
Pog + qop +p X q

3. Quaternions can also be formulated as 4 x 4 matrices which helps to recast
quaternion multiplication in (2.3) as matrix multiplication, which could be help-

ful to "switch" the order of multiplication so that terms could be factored out.

In the transformation of a quaternion to a matrix, the uppercase letter is used
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and with overhead + and — symbols as defined here

+ —
p*xq=Pq=Qp

where

Po —P1 —P2 —DP3 Go —q¢1 —q2 —Qq3

+ — M) — . _

P — P11 Do P3 D2 Q= q1 4o q3 q2
P2 P3 Po —P 92 —43 Qo q1

, (2.4)
P33 —P2 D1 Do 93 42 —q1 Qo
_ Po —ﬁT _ qo —CTT

7 pol + [p]" 7 ql—|q]"

4. The conjugate q of a quaternion is

which represents an inverse rotation of q.

5. Relationship to axis-angle: If a quaternion q represents a rotation by 6 € R

about an axis k € R3, then it can be written as

cos ¢
q=|- 2 .
[k:sing]

6. Dual quaternions q are the algebraic counterpart of screws and are denoted by

. |
qa=1 =

where ¢ is a dual number and ¢ is a dual vector. Since screws represents rigid

body motion, dual quaternions also contain information about rotation and

10
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translation, in contrast to quaternions which parameterizes rotations only. A

dual quaternion is made of two ordinary quaternions and can be written as
d=q+eq, =0 (2.5)

where the quaternion q is the real or rotational part and the quaternion g’ is the
dual or displacement part. The conjugate of a dual quaternion is analagously
denoted as q. Multiplication of two dual quaternions is denoted by the ®

symbol. The properties of dual quaternions are presented in more detail in [9].

2.3 Probability

1. A Gaussian probability density function (p.d.f) p(-) on SE(3) is

1

(27)% /[ det(2)]

p(H: M) = exp [—%F(MlH)]

where

e H e SE(3) is a homogeneous transformation,
e M € SE(3) is the mean of the p.d.f.,
o ¥ € R6%6 ig the covariance matrix of the p.d.f. which is positive definite,

o F(H)={[(log H)*]" £ ' [(log H)"].

11
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2. Given a probability density function f(H), the mean M satisfies

J log (M™'H) f(H)dH = Oy, (2.6)
SE(3)

and in turn, the covariance ¥ is defined by
_ \ _ v1T
Y= L o (log(M"H)) " [(log(M"H))¥| f(H)dH (2.7)
E(3

3. The convolution (denoted by =) of two probability density functions fi, fo on

SE(3) is defined as

(fy + fo)(H) = f FL(E) oK H) dIS

SE(3)
where K € SE(3) is a dummy integration variable. Convolution of a prob-
ability density function f with a Dirac Delta function ¢ is analagous to the

one-dimensional case:

(f » 6)(H) = f U)KV H) dE = f(1) (2.8)

SE(3)

4. The property of bilinearity for the convolution of two probability density func-

tions f = ayf1 + asfo and g = b1g; + bago means that

(arfi +azfe) » g = ar(f1 * g) + aa(fa * g)

and

J#(b1g1 + b2g2) = ay(f * g1) + bi(f * g2)

12
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where ai, as, bl, bg e R.

5. A probability density function f(H) on SE(3) is said to be highly "focused" or

"concentrated" when the norm of its covariance X satisfies
|X]2 « 1, (2.9)

where the induced 2-norm of a matrix A € R™*" is defined as

A
4]y := mex 2212

lzl#0 |2

and the usual Euclidean norm for vectors x, Ax € R" is meant. This condi-
tion involves mainly the rotation component of ¥ and hence the spread in the

orientations of f € SE(3) has to be small.

6. Given two highly focused probability density functions fi, fo on SE(3), the

mean of their convolution (f; = fo)(H) is

Mo = M1 M, (2.10)
and the covariance is

Siae = Ad (M; 1) 1 AdT (M) + 3, (2.11)

where the Adjoint operator on H € SE(3) is defined as

R O

iR | (2.12)

Ad(H) := [

13
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Furthermore, the following approximation holds for probability density func-
tions that are highly focused:

iff’ QRS (2 ff”) (2 fé“) - (2.13)

i=1

2.4 Distance metrics

We now briefly mention distance metrics because it allows for a comparison of two
objects, which in this context are translation vectors, rotation matrices and homoge-
neous matrices. In layman terms, a metric is simply a way of expressing how "near"
or "far" apart two objects are. For points in 3D space, the most intuitive and com-
mon measure of distance between two points is the Euclidean norm or straight line
distance. But this metric would not be easy for comparison because it depends on
the units of length used. Hence given two translation vectors t4,tp € R3, if we want
to compare the distance of t4 relative to tg, we divide by the Euclidean norm of ¢z

to give the relative translation which is a unitless value:

dtaty) = La=tsle (2.14)

52
For rotations in 3D space, an intuitive metric is the smallest angle 04 p between

the two orientations R4, Rp € SO(3) which can be computed as such:

d(Ra, Rp) = 048] = |log” (R)R5)|>- (2.15)

14



Chapter 3

Literature Review

This is a literature review of hand-eye calibration in robotics throughout its ap-
proximately 25 year history and the related problems of hand-eye/robot-world and
multi-robot/sensor calibration. First I give an overview of the various calibration
problems in Section 3.1, then I highlight the common methods used to solve the var-
ious problems in Section 3.2. This review does not include current techniques that
apply only when the sensor to be calibrated is a camera. Such methods usually in-
volve computer vision concepts like structure-from-motion or image projection using
a pinhole camera model. I have chosen not to include them because when modeling
the problem, they usually make assumptions that cause the methods to be narrowly

focused only on specific robotic systems.

15
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3.1 Calibration problems

3.1.1 Hand-eye calibration

The basic hand-eye calibration problem seeks to identify the position and orientation
between the frame of the a robot’s flange (hand) and the frame of a sensor (eye)
mounted on the flange, hence the term "eye-in-hand" is also used to describe this sys-
tem. The data that we collect are relative transformations that can be computed using
absolute transformations from the robot and sensor, as seen in Figure 3.1. The robot
moves to different positions and uses its sensor to locate the same target or marker
(that remains stationary when the robot is moving). The relative transformation of
the flange between poses, A, can then be obtained from the forward kinematics of the
robot in each pose, and the relative transformation of the sensor between poses, B,
can be computed from the poses of the marker as located by the sensor at each robot
position. This problem is commonly formulated as a matrix equation of homogeneous

transformation matrices:

AX = XB (3.1)

where X is the transformation of the sensor frame relative to the robot frame which
we seek to solve for, given the relative transformations A and B [30]. A related robot
system is when the sensor is stationary while the marker is attached to the robot
flange. The robot can only move to positions where the sensor can locate the marker,

but otherwise the same matrix equation (3.1) can still be formulated although the

16
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relationships that A and B represent may be different.

Marker

Sensor frame

Flange frame

Robot in pose 2

/ Robot base frame

Figure 3.1: Hand-eye calibration formulated as AX = X B.

Robot in pose 1

Since A, X, B are homogeneous transformations, the matrix equation AX = XB

can be written as

A X X B
Ra ta|| Rx tx| | Bx tx|| Bs ts
©1><3 1 @1><3 1 @1><3 1 ©1><3 1

RaRx Ratx+ta| |BRxRs Rxtp+tx

@1><3 1 @1><3 1

and hence the rotation can be obtained by solving [30]

RaRx = RxRp (3.2)

and the translation by solving

Ruitx +t4 = Rxtp +tx (33)

Solving (3.1) in this way is known as a sequential method because it involves

17
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solving for Rx and tx sequentially. One disadvantage of sequential type solutions was
that any error obtained in the calculation of the rotation Rx would be propagated
to the computation of the translation tyx. Simultaneous type methods solved for the
rotation and translation at the same time and could eliminate such sources of error
propagation. However for such methods, the results could be sensitive to the units
of translation, whether it is millimeters or inches. This is because they give equal
weight to the rotation and translation components of X during the estimation. An
overview of solutions to (3.1) is given in [22, 29].

It has been shown [30] that in the absence of noise, only two sets of A and B are
necessary to obtain a unique X but the two sets must be nondegenerate. This means
that there must be at least three poses of the robot to obtain two sets of A and B.
Additional considerations when solving such a system are accounting for noisy data

and when the A; and B; data may not be in sync.

3.1.2 Hand-eye/Robot-world calibration

If the robot-world relationship needs to be obtained together with the hand-eye rela-

tionship X, then the matrix equation to be solved is
AX =YB (3.4)

where Y is the pose of the robot base frame to the world frame (see Figure 3.2).

In this system, the robot still moves to different poses so that the sensor locates

18
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the same marker at different positions. Here, A and B are absolute, not relative,
transformations; A is the transformation of the flange from the robot base and is
obtained using forward kinematics, while B is the pose of the marker as seen by the
sensor. As in hand-eye calibration, the sensor and marker for this system can be

swapped and we can still formulate the same matrix equation (3.4).

Sensor frame

Marker

Robot base frame World frame

Figure 3.2: Hand-eye/robot-world calibration formulated as AX =Y B

Similar to the AX = X B case, the matrix equation AX = Y B can be written as

Ra ta|[ Rx tx| [ B &|] Rs ts
<O)1><3 1 @lx?; 1 @1><3 1 @1X3 1
RaRx Ratx +ta| |RyRp Rytp+ity
@1x3 1 @1><3 1
and hence the rotation can be obtained by solving
RsRx = RyRp (3.5)

19
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and the translation can then be obtained by solving
Rytx +t4 = Ryt +ty (36)

It has been shown [41] that in the absence of noise, only three nondegenerate sets of
A and B are necessary to obtain a unique X and Y. This means that there must
be at least three poses of the robot to obtain three sets of A and B, since for the
AX =Y B problem, A and B are not relative transformations like in the AX = XB

problem. An overview of solutions to (3.4) can be found in [29].

3.1.3 Multi-robot /sensor calibration

When multiple robots are involved and the pose between each robot needs to be

calibrated, then the matrix equation to be solved can be formulated as |34]
AXB=YCZ (3.7)

where the transformations represent different relationships depending on the robotic
system. One such robotic system is shown in Figure 3.3 which shows three mobile
robots each mounted with a camera that looks at another robot’s marker to form a
chain. Here A, B, C' are the marker-camera transformations between different robots,
while XY, Z are the marker-camera transformations within the same robot. More

details of this and other relevant robotic systems are given in Section 4.1.

20



CHAPTER 3. LITERATURE REVIEW

Figure 3.3: Top-down view of a team of mobile robots with the unknown calibrations

formulated as AXB=YCZ

To solve (3.7) sequentially, write it as

Ry ta|l| Bx x| Bs ts| [Ry t|| Ro to|| Rz s

©1><3 1 @1><3 1 ©1><3 1 @1><3 1 ©1><3 1 ©1><3 1

(RiRxRp RaRxtp+ Ratx +ta| |RyRoRz RyRots + Ryto +ty
©1><3 1 @1><3 1

and hence the rotation can be obtained by solving

RAR)(RB = RYRCRZ

and the translation can then be obtained by solving

RyRxtg + Ratx +ta = RyRctz + Ryto + ty

21

(3.8)
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3.2 Current methods

The techniques in the literature for solving calibration problems (3.1), (3.4) and (3.7)
are categorized as shown in Table 3.1. The methods are first classified within three
main categories depending on the type of algorithm: closed-form, iterative or batch.
They are then further subdivided depending on the type of mathematical tool used.

The categories will be described in more detail in the following sub-sections.

3.2.1 Transform to Linear System

These methods typically set up a homogeneous linear equation of the form

[¢=x
where I' € RP*9 ¢ € R?, v € RP. This can then be solved using the normal equations
to give

=) 1Ty

as the least squares solution. In the presence of noisy data, I' is formed by stacking
the quantities from n measurements of A;, B;. The resulting linear system is overde-

termined and hence the "best fit" solution is taken to be the least squares solution.
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Method AX =XB AX =YD AXB=YCZ
Closed-form: Linear System

3.2.1.1 Angle-axis [30], [32], [33], [40]

3.2.1.2 Quaternion 18], 121], [41], |39] [36]
3.2.1.3 Dual Quaternion 9] [18]

3.2.1.4 Lie Group [26]

3.2.1.5 Kronecker Product [5], 16], [20], |4] [18], 28], [11] | [37]
Closed-form: Nonlinear System

3.2.2.1 Constrained Optimization | [16] [10]

Iterative

3.2.3.1 Nonlinear least squares [42], [16], [12] [10], |13] 137
3.2.3.2 Convex Optimization [38]

3.2.3.3 Global Optimization [14].]27] [14]

3.2.3.4 Stochastic Optimization [13]

3.2.3.5 Jacobian Optimization [25]

3.2.3.6 Quaternion [15]

3.2.3.7 Lie Group 3]

3.2.3.8 Linear Approximation [34, 36|
3.2.3.9 Statistical Model [31], [1] [31]

Batch

3.2.4.1 Probabilistic [2], [24] [19] [23]

Table 3.1: Categories of methods for solving the three different types of calibration
problems. The section numbers and citations link to the corresponding subsections
in the electronic document.

3.2.1.1 Angle-axis

1. The earliest solutions to (3.1) were of the sequential type, with Shiu and Ahmad
|30] being the first authors who provided a complete solution. They represented
rotations using an angle-axis parametrization, which allowed them to recast the

rotation component equation (3.2) as a system of linear equations

F9n><4n§4n><1 = Y9nx1 (310)
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where I' and  were comprised of the axes of rotation of R4, and Rp,, while
was comprised of cosines and sines of the angles of rotation. After obtaining

the rotation Rx from ¢, they then reformulated (3.3) as another linear system

Ra, — 13 Rxtp, —ta,
: ty = : (3.11)
Ry, — 13 Rxtp, —ta,

whose least squares solution gave the translation tx. The authors also proved
that at least 2 relative rotations (i.e. A;, B;,i = 1,2) are needed in order for a
unique solution in the noiseless case, and the rotation axes of Ay, B; cannot be

parallel or antiparallel to that of Ay, B, respectively.

2. Soon after |30] was published, Tsai and Lenz [32] came up with a sequential
method that also used an angle-axis formulation. They converted rotation ma-
trices, Ry, into angle-axis representations, Rot(7iy,0y), where iy and 6y is
the axis and angle of rotation of Ry respectively. (Here and in other places in
this chapter, H represents the transformation A or B unless otherwise stated.)

They then defined kg i= 2y sin %H to form the system of linear equations

[k}Al + k:Bl] , ]ZBl _ EAl
: kx| = : (3.12)
- — A — 2 — —
2 I IV R A LA
€3><1

which could be solved using a least squares solution to recover Rx while the
translation ¢x was obtained by solving (3.11). They claimed their method was
easier to formulate and faster to computer than Shiu and Ahmad’s solution
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because Shiu and Ahmad’s solution solved (3.10) for ¢ whose dimension in-
creased with the number of measurements n. But in Tsai and Lenz’s method

formulation in (3.12), the number of unknowns in £ remains constant at 3.

3. Zhuang and Roth [40] improved on Shiu and Ahmad’s method of obtaining the
rotation Ry for the hand-eye calibration problem by using quaternion algebra
to obtain a relationship between the axes and angle of rotation of R4 and Rp.

This was then used to form a linear systems of equations

[k/h + kB1]A kB1 - kAl

[tan (%) kX] =

[k, + kp,]" kp, — ka,
where k4, kg, kx € R3 were the axes of rotation for Ry, R, Rx respectively and
w is the angle of rotation for Rx. From the least squares solution z € R3 of this

system (assuming [|z| # 0), they recovered Rx with

hy = ——
2]
max {21, 22, 23} )
w = 2arctan
(max {kx1, kx2, kx 3}

T T
where the vectors z = [zl 2 23] and ky = [k;XJ kxo kX’3:| were written

in their components. As opposed to Shiu and Ahmad’s, their method allowed

the rotation axes of A;, By and Ay, By to be antiparallel.

4. Wang |33] provided sequential solutions to the rotation and translation of (3.1)

in his Class B calibration procedure. He used the angle-axis representation
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to list the possible relationships between the rotational data {R4,} and {Rp,},
and provided closed-form solutions for each case. The translation was obtained
by using the normal equations to solve (3.11). He also computed covariances
of the rotation and translation estimates as a measure of accuracy, and did a
sensitivity analysis of the resulting X. He compared his method with that of
Shiu [30] and Tsai [32] and found that the Tsai method was the most accurate

and efficient, followed by his method and then Shiu’s.

3.2.1.2 Quaternion

1. Chou and Kamel [8] used quaternions to transform (3.2) into a homogeneous

system of linear equations

0 —(ka, —kp,)" |
ka, — kg, [ka,]” + kB, ]"
: : dx = Oupnx1
0 —(ka, —kg,)"
| ka, — kg, [ka]" + [kp,]" ]

. J
g

I_‘4n><4

where k4, kp were the rotation axes that could be computed from the vector
part ¢a,qp of quaternions for A and B respectively. The SVD of I' was then

used to solve for the rotation Ry. To obtain the translation ¢y, another set of
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linear equations

[k a,]" m (Rxtp, —ta,)
: lx = :
[kAn] A m (RXtBn - tAn)

was solved using SVD where (k4,,04,) was the angle-axis representation of Ry, .

2. Then Lu and Chou [21] presented another method that they called the "eight
space method", which solved for the rotation and translation of the hand-eye
calibration problem simultaneously. Using (2.4), they reformulated the problem

using quaternion algebra into an overdetermined linear system

- . B N R
QB1 (TAI - TB1> QAl - QBl
+ —
Q4 —Qp, 04
. . dx
: : [— = ®8n><1
_ -+ — =+ — QXtX
Qp, (TAn - TBn> Qs —Qp, |
n _ €8><1
| QATL o QBn (0)4 n
F8n><8

£
where Q is formed from the rotation of H € {A, B, X} that was parametrized
+
as a quaternion, and Ty comes from the translation of H that is represented
only in the vector part of a quaternion ty with the scalar part being 0. For
— T —
instance, txy = [0 t;] where the vector tx is the same as tx which was a
notation used earlier but now written with an arrowhead notation to emphasize
that it is a 3 x 1 vector and avoid confusion with scalar quantities in this context.

They then formed the normal equations I''T¢ = Q which gave a least squares
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-
solution by finding the eigenvector vy, = [vl . vn] corresponding to the
minimum eigenvalue of I''T. vy, then had to be normalized using its first four

components to give &

1
f: 5 QUmin
Vi + -+ U

and hence retrieve X. They also provided another closed-form least squares
solution that can handle noisy data. They achieved this by dividing I''T" into

block matrices via the Schur decomposition and using SVD subsequently.

3. For the hand-eye/robot-world problem, Zhuang et al [41] used quaternions to
formulate a sequential type solution and converted the rotation part (3.5) into

a linear homogeneous system

A
- A 1 = =T 7 1 = 7T bo; -
aol]lg + [al] + Ealal —b01]13 + |:bl:| — Ealbl [ - by — ﬁal
—X
Yo _
1 —
A _y]
— 1 = =T T 1 = 7T Yo bo,, —
&Qnﬂg + [an]/\ + Eanan —bonl[g + [bn] — Ean n bn aoz n
- ~/
Y
F3n><6

ao, bo, x
where R4, Rp,, Rx, Ry were represented as quaternions [_?1], 150117 [ B],

a; T
[yi)] respectively over ¢ = 1,...,n measurements. But this conversion was
only valid if the rotation angles were not m when R4, Ry were converted into

the angle-axis representation. They then used SVD and the unit quaternion

constraint to solve for xg, ¥ and yg,y. To get the translation, they formulated
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(3.6) as a linear system

Rytp, —ta,
= : (3.13)

Rytp, —ta,

R;% —ﬁ:s
which they also solved using SVD. The authors also proved that a minimum of
3 measurements are required for a unique solution of X and Y, and the axes
of rotation must not be parallel or antiparallel and the relative rotation angles

between poses must not be 0 or 7.

4. Zhao and Liu [39] obtained the rotation and translation simultaneously for the

hand-eye calibration problem (3.1) by forming the linear system

ka, — kg, [ka, + kB, ]" Ozx1 Ozsq |
EA1 - 531 [5141 + 531]/\ @3><1 _UA1
. . q
: X = ©6n><1
- - - o tx xqy
ka, — kg, |ka, +kB,]" Osx1 Osgx1 | —n—=
| Ga, — @B, [Can +C8,]" Osen —Ua,| S8x1
F67’L><8

where C4,, Cp, were points on the rotation axes EAi, EBi, and Uy, was composed
of the components of k4,. They then used SVD on T' to find the two smallest
singular values and their corresponding right singular vectors. The value of &

was then given by a linear combination of these two vectors.

5. Wu et al |[36] provided a closed-form solution to the multi-robot/sensor calibra-

tion problem (3.7) that solved only for the rotational components of XY, 7
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simultaneously. They formed the linear system

"
Qp,Qs —We q
. . X
: : = ®4n><1
~ 4 dy ®qz
Qp,Q4, —We, | =
. -~ > Saoxa

F4n x 20

where W, € R**16 was obtained using Qzéchi = W, (qy ® qz). They then
solved for £ using the eigenvector corresponding to the minimum eigenvalue of
I''T. But because of the ambiguous transformation between rotation matrices
and quaternions, there were two possibilities for I'. Computing both of them
was only feasible when the number of measurements n was small, and hence the
algorithm’s efficiency decreased exponentially with n and its use was limited to
obtaining an initial estimate of X,Y, Z that could be input into their iterative

method mentioned in Section 3.2.3.8.

3.2.1.3 Dual Quaternion

1. Daniilidis 9] solved (3.1) by introducing dual quaternions qu,,qs,, dx to rep-
resent A;, B;, X respectively. As indicated in (2.5), the dual quaternions can be

written as a sum of real and dual parts q4, = a+¢a’, qp, = b +¢b’, qx =
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qx + eq’y. The linear system

_ ~ B A _
ay—by |dy+0b O3x1 Os3x3
— [ - AN — — A
- |a+u] @i |@+b]
. ) . . . q
: : : : [ ,X = Ognx1- (3.14)
— ' _—»\ - 1” qX
ap — bn an + bn @3><1 @3><3
—y 1 :H/ _'/: ny 7 — > 1"
n bn ay, + bn ap — bn [an + bn]
F6n><8

was solved using SVD to get the rotation and translation of X simultaneously.
Rx can be obtained from qx while tx is contained in ¢y := %tX * qx. In this

formulation, the scalar parts of the quaternions were not used.

. Li et al [18] applied dual quaternions to the hand-eye/robot-world calibration
problem (3.4) to solve for the rotation and translation simultaneously. They
used the matrix representations in (2.4) for the real and dual parts of qa,,qs,
and this is denoted by the non-primed and primed uppercase letters. Their

linear system was formulated as

- _ _
Al ©>4><4 Bl @4><4
N T o/ - dx
. . . . dx = Qg1
n - dy
A, Osa B, Oypps ay
+ + — -
A’ A, B, B, |
F8n><16

which was solved using SVD. The solution for qy, qy gave the rotations Ry, Ry

while the translations tx,ty were recovered using q’y = %tX *xqx and g}y =
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%ty * Qy .

3.2.1.4 Lie Group

1. Park and Martin [26] used Lie groups to form linear systems from (3.2) and
(3.3) which were then solved using the standard least squares method for the

rotation and translation sequentially. First they obtained the rotation using
Tan\"3 g7
Ry = (M M ) *M
where M is defined using the rotation axes of A and B
n
M = kpkj,
i=1
Then the translation tx was computed using the rotation by solving the linear

equation (3.11) using the standard least squares method.

3.2.1.5 Kronecker Product

1. Andreff et al [5, 6] used the Kronecker product to formulate (3.1) as a linear

system that solved for the rotation and translation simultaneously:
[ Iy — R4, ® Rp,  QOgyz | [ Qg1 |
It I3 — Ry, ta,

' R
: : [VGC( X)] —| (3.15)
Iy — Ra, ® Rp,  Ogys Ogx1
Lt] I3 — Ry, | ta,
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They also provided algebraic analysis on what can be recovered depending on
the type of motions of the camera. They also found that in the presence of
noise, the solution obtained for Ry may not be orthogonal. Hence the problem

had to be recast as a sequential one where the rotation was solved first using:

]IQ - RAl ® RBl
: vec(Rx) = Ogpx1
Iy — R4, ® Rp,

and then orthogonalizing the resulting Ry before using it to obtain the trans-

lation by solving (3.11).

2. Liang and Mao [20] also used the Kronecker product to obtain a linear system

that solved the rotation first:
R, ®TI3—I3Q Rj,
VeC(Rx) = @anl (316)
R, @I —I3® R}
r

J

by computing the SVD of I', which say was UrXrVy . Then the solution to
vec(Rx) is given by the columns of Vr. But Rx had to be orthogonalized by
computing its SVD (UxXyVy) to obtain the nearest orthogonal matrix Ux V.

The translation tx was found using (3.11) and then applying QR factorization.

3. Ackerman et al [4] solved the hand-eye calibration problem (3.1) for the case
where a priori correspondence between the measurements A;, B; were not given.
They first recovered the correspondence using four invariants of SE(3) under
conjugation. Then they formed the linear system (3.15) to solve for the rota-
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tion and translation simultaneously. The obtained rotation Rx might not be

orthogonal so there was a need to project it onto SO(3).

4. Li et al [18] also provided a second solution to the hand-eye/robot-world cal-
ibration problem (3.4) but solved the rotation and translation simultaneously

(in contrast to Shah’s method — see item 5). Their linear system to be solved

was
[ RA, @3 —I3®RL Ogyz Ogys | R [ Qg1 |
Os3x9 I;®th  —Ra I vec(Fx) ta,
. . . . vec(Ry ) _
: - : : b :
Ry, @Iz —I3® Rp  Ogyxz Ogys ty O9x1
O350 &ty  —Ra, I3 | | ta, |

and in the presence of noise, they used Rodrigues’ rotation formula to make

Rx, Ry orthogonal.

5. Shah [28] solved (3.4) sequentially using the Kronecker product by transforming

(3.5) into
Rp, ® R —1I
o , = , ’ vec(Rx)
: : = @9n><1
vec(Ry)
Rp, ® Ra, I
Ij9n><18
and computing I''T" to give
nl — Y R, ®R},
i=1
- Z Rp, ® Ry, nlly
=1
| K _
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vec(Ryx) and vec( Ry ) were then proportional to the right and left singular vector
of K respectively that correspond to the singular value n. The proportionality
constants are determined by enforcing Ry, Ry to have a determinant of +1.
Because of noise, the computed matrices had to be re-orthogonalized so that
they remained in SO(3). To get the translations tx,ty, she used the same

method as Zhuang et al and solved the linear system (3.13).

6. Ernst et al [11] used the Kronecker product to solve (3.4) although they did
not explicitly mention that term. They proposed a simultaneous solution that

formed the linear system:

_Rgl ® Ra, Ogys [ Q1
—Iis R )
th ® Ra, Ra, Vect( x) —ta,
. X B .
: vec(Ry) '
Rgn ® RAn ©9><3 I tY ©9><1
hooks, R e 2 [t
~ ~ —~  auxi1 —
[Monxo4 T12nx1

and solved it using QR factorization. Since the computed Ry, Ry were not or-
thogonal, they were decomposed using SVD. For instance if Ry was decomposed

into ULV'", then the "closest" orthogonal matrix would be

Ry =UV'.

7. Yan et al [37] solved the calibration problem (3.7) for a hybrid robot which con-

sists of a parallel manipulator mounted on the tool flange of a serial manipulator.
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See Figure 4.3 for an illustration, bearing in mind that the transformations may
represent different relationships when compared to [34]. This robot system will
be described further in Section 4.1.3 and hence we only state their methods
here. Their first method (called the "Degradation-Kronecker" method) split
the problem into two AX = Y B subproblems by making B or C' constant and
only varying the other two matrices to collect measurements. That is, by fixing

B, (3.7) can be reduced to
AX =YC (3.17)
where
X =XBz™! (3.18)
Similarly by fixing C, (3.7) can be reduced to
AX =YB™! (3.19)
where
Y=vCZ (3.20)

(3.17) and (3.19) were then solved using the Kronecker product method in [18]
to obtain X, Y, X and Y. They then used SVD to enforce the orthogonality of
Rx and Ry and finally obtained Z by solving (3.18) and (3.20) and choosing

the Z with smaller errors. This method only applied if fixing B was feasible.
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This method gave a closed-form solution which was fast but was not as accurate

in the presence of noise. See A.3 for the MATLAB code.

3.2.2 Transform to Nonlinear System

3.2.2.1 Constrained Optimization

1. Horaud and Dornaika [16] presented one hand-eye calibration method to (3.1)
using quaternions, and it was a sequential method that found the rotation by
solving a contrained minimization problem
n + - T + -
min<{ q' Z (VAi — VBi) <VA7; — V&;) qy, suchthat q'q=1
q :

i=1

using Lagrange multipliers. If the eigenvectors of R4, Rp, corresponding to

+ p—
the eigenvalue 1 are U4,, Up, respectively, then V 4., V. are the matrices corre-
T T
sponding to the quaternions qu, = [0 ﬁATi] and qp, = [O UE] respectively.

They then obtained the translation ¢x by minimizing
i Rxtn — (R4 — Dty —tal?
H}gtﬂi;!\ xtp, — (Ra, — Ditx —ta, |7,
which is just solving a linear least squares problem.

2. Dornaika and Horaud [10] presented a similar Lagrange multiplier method to
hand-eye/robot-world calibration (3.4) that formulated the rotation portion

(3.5) as a constrained optimization problem that could be solved using Lagrange

37



CHAPTER 3. LITERATURE REVIEW

multipliers in closed-form. The objective function is a positive semi-definite

quadratic form

Juin (g * ay) S(ay *ay), suchthat qkqy =1, qyqy = 1.
X 1Y

where S is a 8 x 8 positive semi-definite symmetric matrix

LT
nly Z_QAiQBZ-
_ i=1
S=1. _7.
Z_QBiQAi nly
i=1

To get the translation tx,ty, they solved (3.13) using linear least squares.

3.2.3 Iterative Methods

An iterative method usually solves the problem by approximating the solution using

optimization techiniques.

3.2.3.1 Nonlinear least squares

1. Zhuang and Shiu [42] presented an iterative algorithm that solved for the rota-

tion and translation simultaneously for hand-eye calibration. They first defined
Zi = AZX—XBZ, izl,...,n
where n is the number of measurements, and then they solve the problem

arg min Z vec(Z;) Tvec(Z;).

X =
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This nonlinear least squares problem could then be solved using the Gauss-
Newton or Levenberg-Marquardt methods. Their algorithm could also handle
the case when the orientation of the sensor is not known. It was also more
accurate in most cases except when the position data is much noisier than the

orientation data.

2. Horaud and Dornaika [16] presented another technique to solve (3.1), in addition
to the one in Section 3.2.2. This method solved for the rotation Rx and trans-
lation tx simultaneously by forming a nonlinear sum of squares optimization

problem

2

n
arg min { Z [va, —a*vgp, *q|* +

q,t

—_

IS (axtp *@) — (Ba, — Dt —ta "+

n

(2

A(1—01T<41)2}

—_

where )\ is a Lagrange multiplier to enforce unit quaternions and v4,, v, are the
quaternions (with real part zero) corresponding to the eigenvectors of R4, Rp,
that are associated with the unit eigenvalue. The term S () refers to the imagi-
nary or vector part of the quaternion. This problem could then be solved using
nonlinear least squares methods like Levenberg-Marquardt or be simplified fur-

ther to be amenable to constrained step methods like trust-region.

3. Dornaika and Horaud [10] proposed a second solution to the hand-eye/robot-
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world calibration problem (3.4) using a nonlinear least-squares constrained min-

imization approach. They minimzed the error function

min {Z |RaRx — Ry, Ry

T
=1

+ > |Ratx +ta, — Rytp, —ty|”
=1

+A1 |[RY Ry — 1|

2 |RIRy — ]1\2}

over x where x € R?** consisted of the elements in the rotation matrices and
translation vectors Rx,tx, Ry,ty. The solution to this problem was obtained

using the Levenberg-Marquardt algorithm.

4. Fassi and Legani [12] gave a geometric interpretation for (3.1) using screw the-
ory. They provided a closed-form algorithm to determine the unique solution
using two sets of measurements that were not degenerate. For a set of n mea-

surements, they formed the minimization problem

mginz 1A X (§) — X (&) Bi]

where ¢ consists of the rotation axis, rotation angle, point on the rotation axis
and amount of translation along the axis. Two measurements were chosen to
compute an initial value of X using the closed-form algorithm that that was

then passed into an iterative optimization method to obtain the solution.
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5. The first solution in Ha et al [13] used geometric optimization to solve the

hand-eye/robot-world calibration problem (3.4). They formed the optimization

problem
1 &8
min = >\ [tr(PiRx) + tr(QiRy)]” + tr(PoRx) + tr(QoRy) + ¢ (3.21)
Rx,Ry 2 P
where P;, Q; € R¥3, i =0,...,18 and \;, c € R were computed from the eigen-

value analysis of the objective function. They also showed how to compute the
initial estimate and the step size for gradient descent and Newton’s method to

find the optimal Ry, Ry.

6. The second solution proposed by Yan et al |[37] to solve (3.7) (called the "purely
nonlinear" method) solved for XY, Z simultaneously using nonlinear minimiza-

tion of the error in rotation and translation. That is, they formed:

12
: 2

arg min Z J;
XYz i3

where f; is an element of the vector f e R'2

. vec (RAR)(RB — RyRch)
RiRxtp + Ratx +t4 — (RyRth + Rytc + ty)

f
which was obtained by manipulating (3.8) and (3.9). This nonlinear least
squares problem was then solved using the Levenberg-Marquardt algorithm,

and used random X,Y, Z as initial estimates. The method was sensitive to the

initial estimates and hence it might need multiple executions to find the opti-
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mal solution. In my implementation (see A.4) with random initial estimates, it
typically needed about 5 executions to get back the original X,Y, Z in the no

noise case.

3.2.3.2 Convex Optimization

1. Zhao [38] used convex optimization to solve (3.1) without the need for an initial
value. He formulated the problem by representing rotations as orthonormal
matrices and quaternions and applying the L, norm. For orthonormal matrices
by representing the one matrix and two vectors in the equation (3.15) as Cz = d,

he transformed it into the equivalent problem

miné such that [|Cix —d;|s <6  fori=1,..,n

o,x
which could be solved using second-order cone programming (SOCP).

For dual quaternions, Zhao represented the one matrix and one vector in
(3.14) as C;z = 0 and hence converted it into the following SOCP optimization

problem

mind such that ||Cizlls <d§  fori=1,...,n with
7 Dx > f

where Dx > f represents the constraint to avoid the trivial solution x = 0.
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3.2.3.3 Global Optimization

1. Heller et al [14] proposed three parametrizations to (3.1) and (3.4) that used
polynomial optimization over semi-algebraic sets with linear matrix inequality
(LMI) relaxations. The first two used the orthonormal and quaternion param-

eterization for rotations and (3.1) became

min Y 1AX () - X(OBI, such that g(6) =0
=1

where the variables ¢ to be minimized over and the constraints g(§) differed
depending on the orthonormal or quaternion case. The norm used here is the
Frobenius norm. The third parameterization used dual quaternions to form

n ~

min ) |8+ dx — Gy » bil, such that g(d) > 0.

i=1
All these polynomial objective functions were then relaxed using LMIs and
solved via semidefinite programming (SDP). Similar formulations and solutions

were stated for the hand-eye/robot-world problem (3.4).

2. Ruland et al [27] formulated (3.1) as a nonconvex global optimization problem
that separates the estimation of the rotation and translation. They represented
rotations using angle-axis and then applied the branch-and-bound algorithm to

solve the optimization problem.
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3.2.3.4 Stochastic Optimization

1. For the hand-eye/robot-world calibration problem (3.4), Ha et al [13] also pro-
posed a two-phase stochastic optimization algorithm for the objective function
(3.21). This involved uniform random sampling on SO(3), applying local search
on those samples using their first algorithm (refer to Section 3.2.3.1 item 5) and

then checking optimal Bayesian stopping rules.

3.2.3.5 Jacobian Optimization

1. Mao et al [25] proposed solving (3.1) for the rotation and translation simulta-

neously using Jacobians of the objective function. They formed the problem

min | [|FJ* + | Gil?] (3.22)
i=1 —
H

where F; came from (3.16) and G; came from (3.3):

F; = (Ra,®13 — I3® R} ) vec(Rx)

Gi = (RAz — Hg) tx — RXtBi + tAi

They required initial estimates which could be computed by their earlier method

|20] that was a closed-form solution using the Kronecker product (see item 2 in
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section 3.2.1). The Jacobian J for (3.22) was computed to be

dF;, dF,
g | it
‘ dG; dG,

drt diT

where 7 was the vector of Euler angles for Ry and = tx. This was used to

compute the update step Ay for the iterative algorithm in this way:

JAx = —H.

3.2.3.6 Quaternion

1. Hirsh et al [15| proposed an iterative algorithm to the hand-eye/robot-world
problem (3.4) by averaging quaternions and vectors. From some initial esti-
mate of Y, they used three measurements each of R4, Rg to compute three
estimates of Rx using (3.5). These estimates were then converted to quater-
nions and averaged to get the "best" estimate of Ryx. This average was then
used to compute 3 estimates of Ry, which was again averaged after conversion to
quaternions. This cycle then continued until the estimates of Ry, Ry converged
to a specified tolerance. With these values, the translation was then computed
using the same idea: update the estimates tx,ty using (3.4) and carry out the

averaging on only the translation vector part of the homogeneous matrix.

45



CHAPTER 3. LITERATURE REVIEW

3.2.3.7 Lie Group

1. Ackerman et al [3] solved (3.1) by formulating the optimization problem
min [AX — X B,

where the weighted Frobenius norm was used. To solve this problem, they

applied gradient descent on the Euclidean group SF(3) using the update step

~ Atwv
gs+1 =~ gs€ g

over a small time step At where g € SE(3) and v, = g~'¢ is the rigid body
velocity. They also provided four conditions that could filter out those A;, B;

measurements which were too noisy.

3.2.3.8 Linear Approximation

1. For the multi-robot/sensor calibration problem (3.7), Wang et al [34] solved
for X, Y, Z simultaneously but the rotational and translational components
were handled sequentially. Hence this would be a sequential method and their
algorithm required at least 3 sets of data. They solved approximately for the
rotational components using a linear iterative method by applying Taylor’s ex-
pansion of the exponential map to form a linear system. This system can then
be solved for the change in rotation using the normal equations. The transla-

tional components were obtained by a linear least squares method by rewriting
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(3.9) and stacking n measurements to obtain

RA1 —I —RyRCl tX Rytcl — tAl — RAlRXtBl
: : I ly | = :
RA,,, —I —RyRC" 2fZ Rytcn — tA,,, — RAnRXtBn
J3:><9 p3::><1

which could be solved using standard linear least squares. In a subsequent
journal paper, Wu et al [36] proposed a closed-form solution (reviewed in Sec-
tion 3.2.1.2 item 5) to obtain an initial estimate of XY, Z that could be input

into their iterative method. Refer to Listing A.2 for the MATLAB code.

3.2.3.9 Statistical Model

1. Strobl and Hirzinger [31] proposed a new metric for the error in rotation and
translation that was used to form an optimization problem for hand-eye (3.1)
or hand-eye/robot-world (3.4) calibration. Their formulation used Gaussian
distributions for the rotation and translation error, and could automatically
compute the optimal weights for the rotation and translation components to
improve accuracy. Numerical optimization algorithms could then be applied to

obtain the rotation and translation simultaneously.

2. Ackerman et al [1] provided two information theoretic approaches to the hand-
eye calibration problem (3.1) by viewing the A;, B;, X as probability density

functions on SE(3). They formed constraints on X so that it was parametrized
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by two parameters

X(¢,5) = H ((R(ka, kg)R(kp, ®),t(s))

where (¢, s) € [0, 27) xR. Their two methods solved the respective minimization

problems
win [Ad (X(6,5)™") £~ S AdT(X (¢, )|+
Igin tr{X,"Ad(X (¢, s)) Sp Ad"(X(4,5))}
using a closed form expression by noticing that the cost function was quadratic

in s. The solution for s was then substituted back to solve for ¢ which was just

a one dimensional search.

3.2.4 Batch Methods

3.2.4.1 Probabilistic

This section introduces a method that have been applied to all three calibration prob-
lems in Section 3.1. The strength of this method is that the measurements {A;, B;} or
{A;, B;, C;} (depending on the problem) did not need a priori correspondence, unlike
other methods. The loss of correspondence could be because the measurements were
not taken synchronously so there was a temporal shift between the data. Another

reason could be that the data within each pair or triplet was shifted by a different
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value from the other pairs or triplets, which produced "scrambled data". The main

theory for such probabilistic batch methods can be found in [7, 35].

1. Ackerman and Chirikjian |2| first applied the properties of probability distri-
butions on SE(3) (covered in Section 2.3) to solve the hand-eye calibration
problem (3.1). Since the data H € {A;, B;} were discrete, they defined the
discrete version of the mean H and covariance Xy for a p.d.f. fy, where the

continuous version was defined in (2.6) and (2.7) respectively. Hence
D log (H'H;) == Oy (3.23)
i=1
defined the mean, and the corresponding covariance was
Y= Z]logv (H_IH,») [logV (H‘lHi)T] .
i—1
Hence (3.1) produced

AX = XB (3.24)

Ad (XY SAAdT(XTY) =g (3.25)

where A, B were the mean of {A;}, {B;}. This produced a set of 4 possibilities

for Rx and the correct one could be determined by solving
argmin |k; — Rxkz|
X

where ky was the screw axis of H. After getting Ry, the translation ¢ty was
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then obtained using (3.25).

2. Li et al [19] used a similar probabilistic method to perform batch optimiza-
tion for the hand-eye/robot-world problem (3.4). The main advantage of their
method was the ability to recover X and Y despite a constant shift in time be-
tween the corresponding {A;}, {B;} data. They formed the following covariance

relationships out of the first two blocks of (3.25):

2V = RIxsWRy (3.26)
2% = RyxY Ry [R¥tx]" + RYSY Rx. (3.27)

From (3.24), (3.26) and (3.27), they obtained 8 candidates pairs for (X, Y;), k =
1,...,8. To pick an optimal pair, the obtained the time shift (to recover the cor-
respondence) by solving an optimization problem using the correlation function
between {A;} and {B;}. With the correspondence between the measurements

{A;, B;} restored, the optimal pair could now be determined by solving

.1 ¢
(X,)Y) = argmln—z [”9141' — QEiH + ||da, — d];,iH] (3.28)

XV Mo
where Ez = X,;lYkBi, and 0, d are screw parameters. Then an optimal X can
be obtained from (3.28) using Euclidean group invariants for the AX = XB

case and subsequently obtain the optimal Y.

3. Ma et al [24] adopted a similar method to Ackerman in |2] for (3.1) but used

a different definition of the mean and covariance on SE(3) which improved the
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accuracy of the recovered X provided the distributions of A;, B; satisfied some
conditions. They used the first-order and second-order approximations of (3.23)
to derive two new means for their batch methods which they call "Batch1" and
"Batch2". In closed-form, the mean of A; for Batchl is

Rz %thAi

o' 1

ABatchl =

with a similar form for B;. The mean for Batch2 could not be written in closed-
form as it was an iterative solution to an optimization problem. This method
works on scrambled data and hence did not need to recover the correspondence

between pairs of A; and B;.

4. Ma et al [23]| applied a similar batch method to the multi-robot/sensor cali-
bration problem formulated using (3.7). This method is reviewed in detail in

Chapter 4.
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Chapter 4

Review of the MGC method

This chapter contains a detailed review of the MGC method [23] for solving the multi-

robot /sensor calibration problem that has been formulated as the matrix equation

where we are given {A;, B;, C;} to solve for the unknowns X, Y, Z.

This method can solve (4.1) under two types of formulations, which Ma et al
called "frameworks". The first framework solves for X,Y, Z simultaneously under
certain conditions and is a sequential type method, i.e. it solves for Rx, Ry, Ry first
and then uses that to obtain tx,ty,tz. The second framework solves for X and
Z simultaneously and uses them to solve for Y next, and is also a sequential type

method.
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Sensor frame Marker frame

Flangg 1 frame Flange 2 frame

A C

bot 1 base fi
Robo ase frame Robot 2 base frame

Figure 4.1: Dual-arm robot-sensor calibration formulated as AXB =Y CZ.

4.1 Applications to Robotic Systems

The MGC method can be applied to calibrate multiple robot systems that can be

represented by (4.1). Here are three such systems:

4.1.1 Mobile robots

Figure 3.3 shows three mobile robots with cameras and targets mounted on them.
For each robot, we are interested to find out the relative position and orientation of
the target and camera, which can be represented by homogeneous matrices X, Y, Z.
When each robot points its camera at the target of another robot in a chain as shown
in Figure 3.3, the position and orientation of a target relative to the camera that is
looking at it can be represented by the matrices A, B, C. Hence we can formulate the

calibration problem for this robotic system using (4.1).
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4.1.2 Dual serial manipulator

Another applicable system has two robot manipulators fixed to the ground as shown
in Figure 4.1. One robot has a sensor mounted on it and the other robot has a
marker mounted on it. For one robot, we want to calculate the flange to sensor trans-
formation, X, while for the other robot, we want to compute the flange to marker
transformation, Z. The remaining unknown is the base-to-base transformation, Y.
The data that can be collected are the base-to-flange transformation for each robot,
A, C, which can be computed using the forward kinematics. The relative transfor-
mation, B, between the camera and target is collected as well, but the robots have
to move in such a way that at every robot pose, the target is visible in the camera’s
field-of-view.

A variation of this system is to have two manipulators, each with a sensor mounted
on it, looking at a common target (see Figure 4.2 for the diagram where the target
is a checkerboard pattern). Here the data {B;} is obtained indirectly as B = BB, ",
using the transformations in each sensor frame B;, Bs. A naive approach to solve
(3.7) is to do two hand-eye calibrations for each robot separately and then calibrate
the base-to-base transformation Y. But this three step method has error propagation

so Y will be more inaccurate compared to X or Z.
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Sensor 1 frame Sensor 2 frame

Flange 2 frame

fi
Robot 1 base frame Robot 2 base frame

Figure 4.2: System of two manipulators with cameras looking at a common target

4.1.3 Hybrid (serial-parallel) robot

Yan et al [37] introduced a hybrid robot system that can be calibrated by modeling
the system using (4.1). As seen in Figure 4.3, this hybrid robot consists of a parallel
manipulator mounted on the flange of a serial manipulator robot, and there is a
stationary camera looking at a marker on the tool of the parallel robot. The unknowns
in this system are the transformation between the flange of the serial robot and base
of the parallel robot, X, the transformation between the base of the serial robot
and the camera frame, Y, and the transformation between the base of the marker
and the flange of the parallel robot, Z. We can compute the serial robot’s and the
parallel robot’s base-flange transformation (A, B respectively) using their forward
kinematics. The camera captures images of the marker and provides the camera-tool
transformation, C. When calibrated, the camera can track the position of the marker

which can in turn guide the movements of the robot.
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Serial robot flange frame

Sensor frame

Serial robot base frame

Figure 4.3: Serial-parallel arm hybrid robot calibration formulated as AXB =YCZ

4.2 Mathematical Framework

In order for the MGC method to work, the initial step is to collect data in such
a way where the user can fix any one of A, B, or C' while varying the other two
transformations. This is certainly possible in the mobile robot system mentioned
in Section 4.1.1 where any two mobile robots are stationary and the third robot
is roaming around. For systems in Figures 4.1, 4.2 and 4.3, fixing A or C' means
not moving one manipulator while moving the other. But fixing B and varying A, C'
means that the sensor frame to marker frame transformation (for Figures 4.1 and 4.3)
or transformation between two sensor frames (for Figure 4.2) has to be fixed while
moving the manipulators around. In such systems, this is not feasible as it would not
be easy to move the two manipulators such that the relative transformation computed

by the sensor is kept constant.
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Two variations of the same basic method were proposed to handle systems where
A, B or C can be fixed, and systems where only A or C' (but not B) can be fixed. The
first framework (which Ma et al calls "Prob2") is meant for systems like the mobile
robot system that is described in Section 4.2.1. The second framework (which Ma et
al calls "Prob1") works for systems like the dual manipulators and hybrid robot and

is described in Section 4.2.2.

4.2.1 Prob2: Fix Aor B or C

Each homogeneous transformation in (4.1) can be represented as a Dirac delta func-
tion in SE(3). Hence each of the n equations can be transformed into convolutions
of Dirac delta functions using the shifted Dirac delta function property (2.2) and the

convolution property (2.8), and so

(04, * 0x * 0p,) (K) = (dy * 0¢; * 07) (K)

where the variable K € SFE(3). Since there are n sets of {A;, B;, C;}, we can "sum"

over the index 7 to get
D (84, 6x + 0p,) (K 2 (8y = 0¢, * 64) (K). (4.2)

i=1

If we now define probability density functions fy where H € {A, B, C} as
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which are all highly focused, then we can use (2.13) to get the approximation
(fa=ox = [B)(K) = (Oy * fc * 02)(K). (4.3)
Let H be the mean of fg and using (2.10), we can transform (4.3) into
AXB=YCZ. (4.4)

Similarly, let ¥y be the covariances of fy. Using (2.11), we obtain the following

relationship for the covariances of fy:
Ad(BYAd(X ) SAAd (X YA (BT) +Sp = Ad(Z7 1) ScAdT(Z27)  (4.5)

where the adjoint of the inverse of a homogeneous transformation can be derived from
(2.12) and is

Ad(H™') = Ad™'(H) =

RT 05
—[R"#]*R" R'

Since the definition of adjoint operator in (2.12) is in block matrix form, this motivates

us to write the covariances Yy in a similar way:

1 2

S = 25—1) Eg-l) RGXG

H= 1s0) @€
H H

where B e R33 j = 1,2,3.4.

Then we can write (4.5) in block matrix form and for the top left element, we get
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this matrix approximation
RLRSWRyRy + 38 ~ RIxWR,. (4.6)

The bottom right block matrix gives

BERSL (LI RERY + REIIRY) + RERYSD R Ry + ) .
~ RISVR,[t]T + RSP Ry |
Note that (4.6) allows us to solve for the rotations Ry and Rz, while (4.7) involves
the translations ¢y and tz. Hence we can first solve (4.6) to get rotations and then
use (4.7) to get the translations. Notice that Y has disappeared in (4.5) so there is
no way to recover it from (4.6) and (4.7).
However we can permute the order of the homogeneous matrices in (3.7). For
instance, premultiplying (3.7) by A~! and postmultiplying by Z~! on both sides of
the equation gives

XBz'=A"'YC (4.8)

which is a different "representation" of (3.7). We can do another permutation by
premultiplying (4.8) by X! and postmultiplying by C! to get another representa-
tion. For each of the 6 permutations, the corresponding approximations for rotations,

analgous to (4.6), are listed as follows:

1. AXB=YCZ:

RERLSVR Ry + 30 ~ RISWR, (4.9)

29



CHAPTER 4. REVIEW OF THE MGC METHOD
2. A'YC = XBZ™\:
RLRYSY Ry Re + 389 ~ R S0 R, (4.10)
3. BZ7\C~1 = X~1A-lY:
RLA R, S Ry Ro + 350, ~ RISY Ry (4.11)
4. BTIXTIA = Zz-lcly L
Ry RS0 Ry-1Ry + 200, ~ RL 50, Ry (4.12)
5. CZB™! = Y~LAX:
Ry RyEW R Rp + 30, ~ RS Ry (4.13)
6. C-lY 1A =ZB XL
RiRy S0 Ry 1Ry + 3 ~ R X0 Ry (4.14)
Fixing A, B or C means that
S4=0, $3=0, Sc=0

respectively and this is denoted as the zero-covariance constraint. This constraint
enables us to simplify the approximations (4.9), (4.10), (4.12), (4.13), (4.11) and

(4.14) into the form shown in Table 4.1. By fixing A, it turns out that the covariance
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equations for representation 1 and 2 have the same simplifed form. Furthermore, the
approximations become equations because when A is fixed, the summation in (4.2)

passes through to B and instead of (4.3), we get

(04 0x = fB)(K) = (0y * fo * 62)(K).

A similar argument holds when B or C' is fixed.

No. Representation Fixing Simplified Form Eq. number

AXB=YCZ
AYYC =XBZ!

; A 3W=R;sYR,  (415)
5 Bzl =X'ATly

4

5

BlX1A-1 =7 1C-1y-! B Z(Cl’21 - R}—EESLRY (4.16)

CZB ' =Y~ 1AX
6 CYWlA=7ZB1'X!

¢ =W = RISVRy (4.17)

B-1 ™

Table 4.1: The simplified equations for covariances of rotations after fixing A, B or
C in turn

Hence by fixing A and varying B and C, we can solve (4.15) for Rz. To do this,
we note that there is a similarity transformation between Eg) and 28) since for a
rotation matrix R' = R~!. Hence they share the same three eigenvalues that are
then used to form the diagonal elements of the 3 x 3 diagonal matrix A;. Then we

compute their eigendecomposition as

25 = QsMQp (4.18)
20 = QM QY (4.19)
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where the columns of g, Q¢ are the eigenvectors of 259”,28) respectively. Note
that g, Q¢ are orthogonal because the covariance matrices Xy are constructed to
be symmetric and hence the top left block is also symmetric. Substitute (4.18) and

(4.19) into (4.15):

QBAlQ; = R; (QCAng) Ry

A = QLRLQc MQLR,Qp
S
1

= 51/\151T
where
Sy = QpR,Qc. (4.20)

If @p and Q¢ are further constrained to be rotation matrices, then according to [2],

the possible solutions of Sy for an equation with such structure are

100 -1 0 0 -1 0 0 1 0 0
o10(,{]0 -1 0,0 1 O0{,{0 =1 0 [. (4.21)
0 01 0 0 1 0 0 -1 0 0 -1

Substituting each of these 4 solutions into (4.20) produces 4 solutions for Ry

Rz = QcS1Q%

where we used the fact that S; = S
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We can also simplify (4.7) using the zero-covariance constraint ¥4 = O to get
2?2 = RISY R[] + RSP R, (4.22)

Then using each possible value of Rz, a value of t; can be computed by rearranging

the terms of 4.22:
T -1 v
ty = [(25? - R}E(C?)RZ) R} (229) RZ] (4.23)

where we used the facts that Zg) is symmetric and (H )T = (H")™! for a square
matrix H.
By fixing B and varying A, C, the same steps as the above are used for solving

.16). Hence we compute the eigendecomposition o 2, an 21,
4.16). H he eigend ition of X, and

Qo-182Q0-1 = Ry (Qa-1A2Q 1) Ry

Ay = QL Ry Q-1 AQ )1 Ry Qo
S.
2

= S5A,S;)
where
Sy 1= QL1 Ry Q a1, (4.24)

and A, is the diagonal matrix made of the common eigenvalues of Z(AIL and E(CIL.
Since (4.20) has the same structure as (4.24), the solutions of Sy are also one of the

4 matrices in (4.21). Hence the 4 possible solutions of Ry can be computed using
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(4.24):

Ry ~ QA—152Q271-

For each solution of Ry, we can compute a possible ¢ty using the zero-covariance
constraint on the counterpart equation to (4.22). This produces a corresponding
equation for ty similar to (4.23).

Lastly, we can also fix C' and vary A, B to solve (4.17). We carry out the same

process with zgll and E(Al) to get

Ay = Qp1RyQa A3Q 1 RxQp
S,
3

= 5’3/\353T
where

Sz = Qp-1RyQa, (4.25)

and Aj is the diagonal matrix made of the common eigenvalues of ES) and Zg)_l. The
4 possible solutions of S5 are also in (4.21) and hence the 4 possible solutions of Ry

can be computed using (4.25):

Ry = QaS3Q5 1.
Then the corresponding 4 solutions for tx can be computed using the analagous
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equation to (4.23).

With the 4 possible solutions of Ry, we obtained 4 possible solutions of tx and

similarly for Ry,ty, Rz, tz. Since Rx, Ry, R; were solved independently, there are

a total of 4 x 4 x 4 = 64 possible combinations of the homogeneous transformations

{X;,Y}, Zi}. In order to identify the correct set that solves (4.1), we form an optimiza-

tion problem by minimizing the errors of the rotation and translation components.

By fixing A, we can define two expressions which are essentially the left and right

hand side of (4.1):

A= AX;B, i=1,...

.Ajkiz YjC’Zk, j=1,...

Similarly, fixing B allows us to define:

B :=AX;B, i=1,...

Bjk = }/jC'Zk, j=1,...

and fixing C' gives us:

4
4, k=1,
4

4 k=1,
4 k=1

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Note that the transformations in script font are also homogeneous matrices, and hence

they have rotation and translation components too. The optimization problem seeks
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to minimize the errors in rotation and translation between the left and right hand sides
using the metrics stated in (2.15) and (2.14). It also has a weighting factor w that
can be tweaked depending on the required amount of translational error compared to

the rotational error. Since this minimization problem

afgigin[lllogv (R4 Baye )|y + [[log” (Bs,Bs,,) |, + [[log” (Re,Be,) |, +
i (4.32)

wlita, = taglle + wlits, — ta,ll2 + wite, ~ te,, I
is discrete, the solution just involves iterating over the 7, j, k indices and finding the
set of indices that minimizes the objective function. The returned i, j, k values will
then correspond to a set of {X;,Y;, Z;} that is the solution to (4.1) returned by the

algorithm.

To aid implementation, the steps of Prob2 as described in Section 4.2.1 are explicitly
listed here. Before this algorithm can be used, the data has to be in the form in
Table 4.2. Hence for data set A, we fix A and in the mobile robot system, this means
two mobile robots are stationary. Then by moving the third mobile robot, we can
collect n sets of B and C measurements. This is indicated in the table by showing the
fixed variable as repeated without subscripts, and the varied variables with subscripts
1 to n. The same process is done when fixing B or C' and varying the other two.
Hence in total, there should be 3n sets of measurement "triples" {A, B,C} in all of
A, B and C. Also note that the sizes of A, B, C need not be equal, although they are

shown to be the same in Table 4.2.
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Label of set Pose being fixed Measurement data Mean

A,... A A
A A Bi,....B, B
Ci,....C, C
Ay, A A
B B B,....B B
Ci,...,C, c
Ay, .. LA, A
C C B.,....B, B
c,...C C

Table 4.2: The data sets obtained after fixing A, B or C'

In the algorithm described below, any operation performed on the transformation

H applies to A,B and C.

Step1 After collecting data sets A, B, C, compute the mean H of each transforma-

tion {A;}, {B;}, {C;} that was varied in each set according to the definition:
Z log (EilHi) = 0y
i=1

where the subscript H represents A, B or C. Practically, H can be calculated

using an iterative formula [35]
s = yesp | 2N hog (71, 1)
nia
where a possible initial estimate is
i LS g i
= eX — (0] il -
0 p n & g
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Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

For the transformations that were fixed, the mean is just that homogeneous
matrix. Hence for data set A there should be only three transformations at
the end of this step: A, B and C, as shown in the last column of Table 4.2.

The same applies for data sets B and C.

After getting the means H, the covariance of each set is computed using the

definition:

Y= ZzlogV (Fl_lHi) (logv (H_IHZ-))T.
i=1

For each X, extract the top-left and top-right 3 x 3 block matrices which

we call Z%) and Zg) respectively.

Invert all the transformations in {4;},{B;},{C;}. Then compute the mean

and covariance as in Step 1 and Step 2 to get H~! and X -1 respectively.

As in Step 3, extract the top-left and top-right blocks of every ¥ -1, which

will be ESL and Zg),l respectively.

Compute the eigendecomposition of every ES) and Eg)_l to get the three cor-

responding eigenvectors. Use these three eigenvectors to form the columns

of a new matrix Qg and Qp-1.

Then the 4 possible solutions of Rx, Ry, Rz can be computed as shown in

Table 4.3 where S is one of the 4 matrices in (4.21).

Using the computed rotations, the 4 possible solutions of tx can be found
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using (4.23). The respective formulas for ¢y and ty are

T —1 v
by = [(zgl -’ Ry) R (2D) Ry] . (433)
T -1 v
tx = [(zgll —R}ES?RX) RY (zﬁj)) RX] . (4.34)
Label of set Rotation Translation Homoegeneous matrix
A Ry = QCSQE (4.23) Ze, k=1,...4
B Ry = QA—ISQg_l (4.33) Y;,j=1,...4
C Rx = QASQg_l (4.34) X, i=1,...4

Table 4.3: The formulas for getting Ry, Ry, Rz, tx,ty,tz

Step9 Form the possible homogeneous matrices H; using the computed values of

Ry and ty and we should have 64 sets of {X;, Y}, Zx}.

Step 10 For each set of {X,,Y}, Z;}, compute the transformations with the formulas

(4.26),(4.28),(4.30),(4.27),(4.29),(4.31).

Step 11 Then extract out the rotational and translational components of these trans-
formations and determine the values of 7, j, k that give the minimum of the
objective function in (4.32). The corresponding X;,Y; and Zj is then the

solution to the calibration problem (4.1).
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4.2.2 Probl: Fix A or C only

In the case where B cannot be fixed while varying A or C', we can only obtain data
sets A and C. Consequently, the method is almost similar except for fixing B and
obtaining Ry using (4.16), we obtain Ry using the mean equation (4.4). First we
need to compute Ry,ty and Ry, 1y as described for Prob2 in Section 4.2.1 by fixing
A and C respectively. By fixing A (i.e. A = A), there are 4 values each for X and Z,

which when substituted into (4.4) gives 16 possibilities for Y:
Y = AXBZ'C.

Fixing C so that C' = C also gives us another 16 possibilities for Y
Y = AXBzZ7'C™!

Hence there are a total of 4 x 4 x (16 + 16) = 512 sets of {X;, Y}, Z} from which we
must find the optimal one. We then form a discrete minimization problem similar to

(4.32) (which in this case does not involve data set B):

argmin| [[log” (R}, Ra,)|, + [log” (RERe,,) |, +
bk (4.35)

wlta, = a2 + wlte, ~ te,, I
and can be solved as well to give the optimal {X;, Y}, Z;}. Here the weight w has the

same function as in (4.32) but its ideal value may be different.
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Simulations

Presently there are three other methods that solve the AXB = Y(CZ type problem
as stated in the literature review (Chapter 3). We will call the method in [36], "Wu"
and the two methods in [37], "DK" and "PN". The theory in Chapter 4 indicated

that the strengths of the MGC method compared to these existing solutions are

1. the ability to handle loss of correspondence between the {A;}, {B;}, {C;} data,

and
2. the ability to not require initial estimates in order to compute the solution,
while its weaknesses are that
1. it does not handle noisy data very well, and

2. sometimes it returns a non-optimal X, Y, Z depending on the objective function.

71



CHAPTER 5. SIMULATIONS

This chapter describes simulations that were carried out to verify and evaluate
the strengths and weaknesses of this method that have predicted by the theory. Data
were collected during numerical simulations where some condition was varied while
keeping the other conditions constant.

Section 5.1 lists the procedure that was used to carry out the simulation, including
the parameters that were varied or kept constant. Section 5.2 shows the results by
plotting them on line graphs. Lastly, interpretaion and discussion of the results are

in Section 5.3.

5.1 Procedure

The simulations in this chapter were carried out using MATLAB 2016a. The following

parameters were kept constant across simulations.

1. Number of measurement data, n, every time A, B or C' was fixed. This is the

same n shown in Table 4.2.

2. Number of trials, /N, is the number of times the algorithms executes, each
time with a different set of measurement data {A;, B;, C;} that was generated
randomly using MATLAB’s randn function. The purpose of running multiple

executions was to be able to take the average of the results.

3. The value of w in the objective functions (4.32) and (4.35).
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For each simulation, the following parameters were varied one at a time, i.e. if

one parameter was varied the others were kept constant:

1. Scrambling rate r,
2. Standard deviation of the noise applied to the data, oyige,

3. Standard deviation of the data, oqata,

Using the above conditions and n = 100, N = 10 and w = 1.5, the simulations

were executed using the following steps:

Step1l XYZ Generation: Transformations for X, Y, Z were selected by generat-
ing a normally distributed random vector ¢ € se(3) using MATLAB’s randn

function

¢~ N (Opx1, 1g) -

Then the corresponding SFE(3) transformation was obtained using the ma-

trix exponential function expm in MATLAB:

H =exp([¢]")

where H € {X,Y, Z}.

Step2 ABC Generation: The initial transformation for each of A, B, C' was gen-
erated using the kinematics of the Puma 560 serial manipulator. The 6 joint
angles of the manipulator that were used to generate the initial transforma-
tions are shown in Table 5.1.
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Transformation J1 J2 J3 J4 J5 J6

7 ™ 7 7 7

7 T 7 U 7

7 ﬂ' 7 7 7 ‘ '
Cnit &4 3 3 6 1

Table 5.1: The Puma’s joint angles (rad) that were used to generate the initial

transformations for A, B, C
Then the initial transformations was perturbed by the standard deviation
of the data for the current trial, og,,, to obtain the data sets A, B and C
for i = 1,...100 in Table 4.2. For instance, to generate the data set A A
was fixed, and hence A, was repeated so that {A} had the same number
of elements as {B;} and {C;}. Then randn was used to generate a vector
J; € se(3)

5i ~ N (©6><1» O-data]l6)

and that was used to perturb {B;} as follows:

B; = exp ([@]A) Binit.

The corresponding C; was then computed using (4.1):

C,=Y YA, XB;Z "

After doing similar operations, data sets B and C were obtained. The norm
of the covariances, X4, || X5], [Xc|, were also computed for the generated

data to verify that they satisfied the highly focused assumption (2.9) for the
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Step 3

Step 4

values of 04.t, that was chosen.

Scramble Data: Next the correspondences between {A;}, {B;} and {C;}
were scrambled. Depending on the desired scrambling rate r, 7% of the n
data triples (A;, B;, C;) in A were randomly selected and the order switched.
Since all the A; data in A are identical, this essentially switched the B; and
C; pairs. For data sets B and C, another r% was selected randomly and the

process was similar.

Add Noise: Following [36], noise was applied to the rotations, using the
angle-axis parameterization where 6 (in degrees) was the angle about a ran-
dom unit vector k£ that each rotational component in the scrambled data

sets A, B and C would be perturbed. Hence

RS = RyRot(k, 0)

where H represents A, B, C. The translational component was shifted e mm

in the direction of a random unit vector p. Thus

noise
tH

=1ty + €p.
The values of 6§ and € were taken from a continuous uniform distribution:
0 ~ u(_emaxv +9max)

€ ~ u(_emaxv +€max)
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Step 5

Step 6

The applied noise was varied by changing 6,,. and €,. The randn function
was used to obtain the random unit vectors k and p by generating a random

3 x 1 vector and dividing it by its norm.

Input into Method: Now the data sets A, B,C have some level of noise
applied. Then the data sets were passed to each method according to
Table 5.2. Each method then returned a set of homogeneous matrices

Xsolveda Ysolved7 Zsolved which solved (37)

Method Data sets

Prob?2 A,B.C

Probl A, C
Wu A B.C
DK A,C
PN A, B,C

Table 5.2: The data sets that were passed into each method

Compute Errors: By comparing the solved values with the true values
in Step 1, the rotational and translational errors of X,Y, Z were computed

separately using the metrics in (2.15) and (2.14) as such:

Error(Ry) = [|log” (RsTolvethrue) |

t —1
EI‘I‘OI‘(tH) _ ” solved true”

[Zirue

The values of Error(Rp) and Error(ty) for H € {X,Y, Z} were then plotted

as line plots in Section 5.2.
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The above procedure is shown in Appendix A Listing A.1. Note that the MATLAB
code assumes that Peter Corke’s Robotics Toolbox v9.9 has been installed. It also

requires the following toolboxes from MATLAB:

1. Statistics and Machine Learning,

2. Optimization.

5.2 Results

This sections states the results from numerical simulations in MATLAB. The prob-
abilistic algorithms, Probl and Prob2, and the non-probabilistic "traditional" algo-
rithms, Wu, DK and PN, were executed under the various conditions listed in Ta-
ble 5.3. The noise level values for 0.« and €.,,x were chosen to mirror the accuracies

of most modern industrial manipulators.

Simulation Vary Constant
I Scrambling rate [emax] _ [8} Gana = 0.02
r € {0, 20, 40, 60, 80, 100} Emax
Noise Level

I1 =0, 0qata = 0.02
Omax] - {107 [0.05] [0.1770.5][1 P Odu
emax | S 1IO]7 101 [2]05]] 1 (]2

111 Std Dev of Data r=0, [(Zmax] _ [8]

Odata € {0.02,0.04,0.06,0.08,0.10}

Table 5.3: The conditions for each simulation

Figure 5.1 shows the results of Simulation I by varying the scrambling rate applied
to the {A4;}, {B;}, {C;} data without applying noise and keeping dga, = 0.02. Because
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the magnitude of the errors of the probabilistic and traditional methods had a large

difference, we used the logarithmic scale for the y-axis to show the differences on the

same plot.
o Error in Rx o Error in tx
10 ——a " s 10 R
g % 5 4 —& —4 ¢
10 10
10-10 10-10
10-15 10-15°
10'20 it it it it 1 10'20 1 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
Scrambling rate r % Scrambling rate r %
Error in Ry Error in ty
1 00 5 b +: 4P = 1 00 j.' ok 56 P ]
0% ——— 2 10" ¢ + ¢ 4 4
10-10
10-15
‘ ‘ ‘ ‘ . 10-20 ‘ ‘ ‘ ‘ .
0 20 40 60 80 100 0 20 40 60 80 100
Scrambling rate r % —6— Prob1 Scrambling rate r %
—¥— Prob2
——Wu
—+—DK
. Error in Ry PN 5 Error in ¢,
10 @ 5 & 0 10 Bs $—o—————@ )
. ——— % —
10 10
10-15 10-15
10-20 ‘ ‘ ‘ ‘ 10-20 ‘ ‘ ‘ ‘ .
0 20 40 60 80 100 0 20 40 60 80 100
Scrambling rate r % Scrambling rate r %

Figure 5.1: Varying scrambling rate while keeping ogaia = 0.02 and (6 = 0,¢ = 0)

Figure 5.2 shows the results of Simulation II by varying the noise applied to the
{A;},{B;},{C;} data while scrambling 0% of them and keeping ogaa = 0.02. The
horizontal axis indicates the maximum perturbation in orientation 0, (in deg) and
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position €y, (in mm) of the applied noise.

. Error in Rx . Error in tx
b+ ————1 "‘ﬁi 7**t',** T ———
107 ’ 107 ’
10-10 10-10
10715 10-15’
1020 ‘ ‘ ‘ 1020 ‘ ‘ ‘ .
0 0.05 0.1 0.5 1° 0 0.05 0.1 0.5 1°
0 0.1 0.5 1 2mm 0 0.1 0.5 1 2mm
Omax, €max of noise fmax, emax of noise
o Error in Ry o Error in ty
10 10
) - - 10°
10710
10"5T/
10720 ‘ ‘ ‘ 10720 ‘ ‘ ‘ .
0.05 0.1 0.5 1° 0 0.05 0.1 0.5 1°
0 0.1 0.5 1 2m 0 0.1 0.5 1 2mm
0 f 10i —0— Prob1 9 £ noi
max, €max Ol noise —¥— Prob2 max, €max Ol noise
——Wu
——DK
. Error in Ry F’y Error in ¢4
i — ¢ o ’» —
10 10 g
10-10 10-10
10-15 10-15
10720 ‘ ‘ ‘ 10720 ‘ ‘ ‘ .
0.05 0.1 0.5 1° 0 0.05 0.1 0.5 1°
0 0.1 0.5 1 2mm 0 0.1 0.5 1 2mm
Hmax, €max of noise Hmax, €max of noise

Figure 5.2: Varying noise level while keeping o4aia = 0.02 and r = 0%

Figure 5.3 shows the results of Simulation IIT by varying the standard deviation

of the {A;}, {B;},{C:} data with 0% of them scrambled and without applying noise.
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Error in Rx

Error in tx

10% 10° —4 %
10° —$ ¢ 107
——p—— = o .\
1 0-20% — 5 X © 1020 . . . .
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
9data Odata
Error in Ry Error in ty
100L At - 10° —————4 —
10 20f " 10-20T~ : N .
0.02 0.04 0.06 0. 08 0.1—9— 0.02 0.04 0.06 0.08 0.1
o Prob1 o
data —%— Prob2 data
—6—Wu
——DK
Error in Ry PN Error in ¢,
10%° 10° —4
e ¢ 1010
—— )
10 20% . h 10_20 ) ‘ ‘ ‘
0.02 0. 04 0. 06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
9data data
Figure 5.3: Varying data standard deviation while keeping (0 = 0,¢ = 0) and

r = 0%

5.3 Discussion

From the graphs in Section 5.2 the following observations can be made:

1. From Figure 5.1, when there is perfect correspondence and no noise in the data,

the traditional methods have a lower error than the probabilistic ones. However
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when the scrambling rate increases, the errors from Probl and Prob2 remains
fairly constant while Wu and DK increases exponentially (since a straight line
in a log plot indicates an exponential relationship). It was expected that the
probabilistic methods would outperform the non-probabilistic ones when the

data had a loss of correspondence and these simulations proved the theory.

Within each class of methods — probabilistic and non-probabilistic — the dif-
ferences in errors are not significant. This is expected because any method either
handles scrambled data well or not, and hence each class reacts to scrambled

data in a similar way.

2. Since Probl and Prob2 are sequential methods, any error in computing the
rotational component will be propagated to the translational component. The
error propagation property also holds for the Wu method. Although DK and
PN are simultaneous solvers, the absence of error propagation in these solvers
compared to the others is not noticeable from the plots since other factors have
a larger influence on the final errors of X, Y, and Z. Also it is not meaningful
to compare the magnitutes of the rotational vs translational errors, and hence

it is hard to quantify the amount of error propagation in sequential methods.

3. Probl uses X and Z to compute Y, and hence error from the former gets
propagated to the latter. The same is true for DK. Hence Prob2 is expected to

have lower error than Probl although this cannot be clearly seen from the plots.
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4. The highly focused assumption needed for the approximations in Probl and
Prob2 to be valid meant that the standard deviation of the data had to be
small. Table 5.4 shows the average values of the covariance norms for each g4,
and it shows that they satisfy (2.9). As seen from Figure 5.3 the errors of Probl
and Prob2 increased as og4a, increased which is expected. Notice also that the
plots for the non-probabilistic methods are clearly lower than the probabilistic
ones over the entire range of 04,:a, and this is also expected when the data
are not scrambled (i.e. perfect correspondence). In fact, the non-probabilistic
methods would have lower error as oga,, increased and this is also seen in their

plots which have a slight downward slope.

This requirement of a small spread of the data is interesting and counter-
intuitive because having a small spread makes the data susceptible to be degen-
erate and any noise in the data will have a huge impact on the result. However,
the requirement for highly focused data makes it easier and faster to collect
data on a real system because less time and effort will be needed to move the

robots or sensors around.

Gaara[Zal X8l 2|

0.02 0.0023 0.0021 0.0043
0.04 0.0043 0.0040 0.0043
0.06 0.0069 0.0059 0.0130
0.08 0.0098 0.0078 0.0184
0.10 0.0172 0.0102 0.0293

Table 5.4: The average values of |X| based on data generated from o4, compared
with experimental data
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5. Because of the need for highly focused data, even a small amount of noise added
to the data magnifies the error and so it does not perform well. This is evident
from Figure 5.2 where the errors of Probl and Prob2 increased as the noise
increased, while Wu, DK and PN had errors that were also increasing (at about
the same rate) but were lower than the probabilistic ones across rotation and

translation.

6. The choice of objective functions in (4.32) and (4.35) turned out to be critical
for Probl and Prob2 to return the optimal solution. The role of the objective
functions is to select the optimal {X,Y, Z} from a set of 512 and 64 candidates
for Prob1 and Prob2 respectively. If the functions returned non-optimal solutions

for some of the trials, the average error would be increased by these outliers.

7. Wu and PN are iterative optimization methods and require reasonably good
initial guesses in order to reach a global minimum. In contrast, Probl and
Prob2 do not need initial guesses, and likewise DK. The price to pay for this
is that the data sets have to be constructed by fixing either A or C. In [36],
Wu et al used a closed form solution to obtain an initial estimate but Yan et al
[37] did not provide an alternative than using random transformations as the
estimates. To mitigate the effect of non-global optimum solutions when a bad
initial estimate was generated, in Section 5.1 Step 5 only PN was executed 10

times with the same set of data but with different random initial estimates. The
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errors from the 10 executions were computed in Step 6 and the minimum error

was used as the final result for that set of data.

To determine which method is the best when solving (3.7), the following recom-
mendations can be made depending on the application and the most important factor

for the user:

1. When correspondence between data will be lost: if the data lacks full orrespon-

dence, the probabilistic methods should be used;

2. If rotational accuracy is more important than translational accuracy for that
application, then sequential methods like Wu can be used. Otherwise, simulta-

neous methods like PN should be applied instead;

3. If the variation in the A, B and C data fulfils the highly focused assumption,

then the probabilistic methods should be applied;

4. If initial estimates of X,Y,Z are easily obtainable and are accurate enough,
then the iterative solutions like PN and Wu should be used. Otherwise methods
which do not require initial estimates should be used, namely Probl, Prob2 and

DK;

)

5. If the B transformation can be fixed in the robotic system, Prob2 should be

used instead of Probl because it produces lower errors in general.
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6. If the noise level in the data is expected to be high, the non-probabilistic meth-

ods should be used.

Hence the choice of the most appropriate method comes down to prioritizing each

factor so as to take into account the strengths and weaknesses of each method.
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Conclusion

My thesis surveyed the literature regarding three main types of calibration problems

relating to sensors and robots:
1. hand-eye calibration formulated as AX = X B,
2. hand-eye/robot-world calibration formulated as AX = Y B, and
3. multi-robot and sensor calibration formulated as AXB =Y(CZ.

All the methods were classified based on the approach taken to solve the relevant
matrix equation. When the problems were new, most of the proposed solutions were
in closed-form. But with the recent rise of faster computing in smaller packages, more
iterative solutions have come out.

The motivation for solving the AXB = Y(CZ calibration problem instead of

solving two AX = X B problems separtely is to avoid error in the computation of
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X or Z propagating to Y. In particular, I have reviewed in detail the MGC method
for solving AXB = Y(CZ. The MGC method contains two related probabilistic
approaches that are applicable to different robot systems. For systems that allow
either A, B or C' measurements to be fixed, the Prob2 method can be used, while
Probl can only be used for systems where only A or C can be fixed. I also compared
its performance with other solutions by running simulations that varied the amount
of scrambling, noise and spread in the data. The advantage of the MGC method is
most clearly seen when the correspondence between the data triplets are lost. And
by fixing one transformation A, B or C', the MGC method does not require initial
estimates for obtaining XY, 7. However the other methods like Wu, DK and PN

perform better when the data has perfect correspondence but is noisy.

6.1 Future Work

1. Obtaining the robot-sensor transformation simultaneously for a fleet of robots
would be quicker and avoid error propagation issues compared to doing it sep-
arately for each robot. However the AXB = Y(CZ formulation extends to
only a maximum of three robots. As swarm robotics becomes more common, it
remains to be seen if there is a similar generalization for calibrating N robots si-
multaneously. It may be that as N becomes very large, the calibration problem

becomes intractable.
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2. Ma et al [24] proposed two new definitions of the mean of distributions on SE(3)
for the hand-eye calibration problem that would replace (2.6). They found that
was smaller error in X with the new definitions. Hence it would be interesting

to see if there are similar results when applied to the AXB = YCZ problem.

3. The results show that the MGC method does not handle noise very well. If
the method could be adapted to handle a reasonable amount of noise, then this

probabilistic approach could be used on real-world data.

4. In the last step of the MGC method, optimization problems 4.32 and (4.35) had
to be solved to obtain the solutions to X, Y and Z. However the solutions were
not always globally optimal and hence further investigation can be conducted

for better cost functions.

5. There have been theoretical results on the minimum number of data required
for solving (3.1) and (3.4) uniquely without noise. It would be interesting if a

corresponding result could be obtained for (3.7).

In conclusion, the calibration problem for multi-robot systems is just starting and
new approaches will be expected in the future. This is especially as researchers are
working more and more with multiple robots that cooperate to perform tasks. The
Holy Grail method that can calibrate all robots simultaneously, be robust to noise

and non-corresponding data might well be within reach.
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Code implementation for

AXB = Y(CZ methods

This appendix contains the MATLAB code for generating the plots in Chapter 5

and the functions for the AXB = Y(CZ algorithms in Wu et al [36] and Yan et al

37].

%% Main program for ZG thesis simulations

clear all

close all

% clc

warning(’off’,
eigenvalues

warning(’off’>, ’MATLAB
so warning appears

"MATLAB

thg:DiceyTransformMatrix?)

hh

fprintf (’Execution started at ¥%s\n’,
MMM-y HH:mm:ss Z’))

tic;

(NOT for RSS paper)

:logm:nonPosRealEig’) Ysupress warnings about nonpositive

% det of RX,RY,RZ not 1 within eps

datetime(’now’,’TimeZone’,’local’,’Format’,’d-

rng default % for reproducibility when calling mvg in ABC_Generate (remove after

testing)

%% Set parameters for the experiment
% what to vary:

% 1: scrambling rate from 0 to 100%, std dev of data=0.02,
% 2: std dev of data from 0.02 to 0.1, scrambling rate=1%,
% 3: std dev of noise from O to 0.01, scrambling rate=1%,
% 4: std dev of mnoise from O to 0.01, scrambling rate=10%,
varywhat = 2;

removeQutliers = false;
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APPENDIX A. CODE IMPLEMENTATION FOR AXB =Y(CZ METHODS

% keep these 2 constant

numTrials = 10; % number of simulations

numData = 100; % number of data/measurements per family of A,B,C (depending on
% whether A, B or C is kept constant and the other 2 varied

% what to plot
tfplots = false; 7/ should display graphs of X,Y,Z 3D plots?
lineplot = true;

fprintf (’Experiment conditions:\m----------coommommm oo \n’);
fprintf(’ Num of trials: %d\n’, numTrials);
fprintf(’> Num of measurements per family of A,B,C: %d\n’, numData);
if removeQutliers
fprintf(’> Removing outliers\n’);
else
fprintf(’> Not removing outliers\n’);
end

% decide what methods to execute - useful for debugging each method without long
execution times

% order of binary switches are : Probl, Prob2, Wang, DK, PN

methodNames = {’Probl’, ’Prob2’, ’Wu’, ’DK’, ’PN’};

methods2run = [1 1 1 1 1];

% scrambling rate
scramRate = 0:20:100;

% weighting factor in objective function of Probl and Prob2 (not useful for
% evaluating other methods)
weight = 0.2:0.2:2.0;

meanD = [0; O; 0; O; O ;0]; % mean for generating data A, B, C
Cov = eye(8,6); % cov for generating A, B, C. Will be multiplied by sigD later.
sigD = 0.02:0.02:0.1; 9% std dev for gemnerating A, B, C

% mean and cov for noise (affects both rot and trans)

% meanN = [0;0;0;0;0;0]; %Gaussian Noise Mean

% sigN = 0.000:0.002:0.01; %Gaussian Noise standard deviation Range

% rep rot and trans noise as cell array of 1x2 matrices which rep noise values
% [ rotation noise (deg), translation noise (mm) ]

sigh = { [0,0], [0.05, ©0.1], [0.1, 0.5], [0.5, 11, [1, 2 1 };

%% generate random X, Y and Z
ran = 1;
[XActual ,YActual ,ZActual] = generateXYZ(ran);

%% vary conditions and generate A, B, C data
switch varywhat
case 1 Y vary scrambling rate, fix data std dev = 0.02 and noise std dev = 0
sigD = sigD(1); % take first element of range as the constant value
sigN = sighi(1);
% variable only used for printing to terminal
variable = [’scrambling rate and sigma for data=’, num2str(sigD), ’ & noise=
num2str (sigN{1})];

case 2 Y vary data std dev, fix scrambling rate = 1% and noise std dev = 0
sigh = sigh(1);
scramRate = scramRate (1);
variable = [’data std dev with scram-rate=’, num2str(scramRate), ’ & sigma for

noise=’, num2str(sigh{1})]1;

case 3 Y vary noise std dev, fix scrambling rate = 1% and data std dev = 0.02
sigD = sigD(1);
scramRate = scramRate (1);
variable = [’noise std dev with scram-rate=’, num2str(scramRate), ’ & sigma for

data=’, num2str(sigD) 1;

case 4 Y vary noise std dev, fix scrambling rate = 10} and data std dev = 0.02
sigD = sigD(1);
scramRate = 10;
variable = [’noise std dev with scram-rate=’, num2str(scramRate), ’ & sigma for

data=’, num2str(sigD) 1;

case 5 J vary weighting factor (reuse variable sigN, i.e. as if varying noise)
sigD = sigD(1);
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scramRate = scramRate (1) ;
sigN = weight;
variable = [’weight with scram-rate=’, num2str(scramRate), ’ & sigma for data=’,
num2str(sigD) 1;
end

fprintf(’> Varying only %s\n’, variable);

% Allocated sizes of arrays to store error data

Errl = zeros(length(scramRate), length(sigD), length(siglN), 6, numTrials); %3rd dim=6
because we store err for each of 6 DOF

Err2 = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);

ErrWang = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);

ErrDK = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);

ErrPN = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);

% allocated arrays for storing norms of covariances of B1,C1,43,C3,A42,B2 data over
all trials
normCov = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);

counter = 0;
for sr = 1:length(scramRate) % vary the scrambling rate
for sD = 1:length(sigD) % vary the std dev of data generated
for sN = 1:length(sigN) % vary the std dev of noise generated

% zg+ Plot the actual X, Y, Z in red

if tfplots
counter = counter + 1;
ftr = figure(counter);
ftr.Name = [’Probl when std dev of A, B, C data is ’ num2str(sigD(sD)) ’ and

noise is ’ num2str(sigN(sN)) J;
subplot (1,3,1);
trplot (XActual(:,:), ’color’, ’r’, ’length’, 0.08, ’thick’, 1.5, ’text_opts’,
{’FontSize’,10, ’Interpreter’,’latex’});
hold on
subplot (1,3,2);
trplot (YActual(:,:), ’color’, ’r’, ’length’, 0.08, ’thick’, 1.5, ’text_opts’,
{’FontSize’,10, ’Interpreter’,’latex’});
hold on
subplot(1,3,3);
trplot (ZActual(:,:), ’color’, ’r’, ’length’, 0.08, ’thick’, 1.5, ’text_opts’,
{’FontSize’,10, ’Interpreter’,’latex’});
end
hzg-
for sim = 1l:numTrials
fprintf(’Elapsed time at sr=%d, sD=%d, sN=%d, sim=%d: %0.3fsec\n’, sr,sD,sN,
sim,toc );

%% Generate constant Al, free Bl and C1

opt = ;
[A1, B1, C1] = ABC_Generate(numData, opt, meanD, sigD(sD)*Cov, XActual,
YActual, ZActual);
% [ 41, B1, C1 ] scrambleCorrspondence( scramRate(sr), A1, Bi1, C1l );

[ A1, B1, C1 ] jumbleCorrspondence( scramRate(sr), A1, Bi1, Cl );
% compute norm of covariance of generated data, except for the constant
matrices

[m1, m2, m3] size(B1); % dimensions should be the same for A, B, C

[ 7, Sigh1l 1] distibutionPropsMex_mex(reshape(Al, ml, m2*m3)); % Sighl
should be zero matrix
[ 7, SigBl ] = distibutionPropsMex_mex(reshape(B1l, ml, m2*m3));
[ ¥, sigCl ] = distibutionPropsMex_mex(reshape(Cl, ml, m2*m3));
normCov(sr,sD,sN,1,sim) = norm(SigB1);
normCov{(sr,sD,sN,2,sim) = norm(SigC1l);
% fprintf (’norm of covariance of Al: %.4f, Bl: %.4f, Cil: %.4f\n’, norm(Sighl)

, norm(SigB1), norm(SigCl) )

%% Generate constant B3, free A3 and C3
opt = 2;
[A3, B3, C3] = ABC_Generate(numData, opt, meanD, sigD(sD)#*Cov, XActual,
YActual, ZActual);
% compute norm of covariance of generated data
[ , Sigh3 ] distibutionPropsMex_mex(reshape (A3, ml, m2*m3));

[ =, sigC3 ] distibutionPropsMex_mex(reshape(C3, ml, m2*m3));
normCov(sr,sD,sN,3,sim) = norm(Sigl3);
normCov (sr,sD,sN,4,sim) = norm(SigC3);
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%

% [ B3, A3, €3 ] = scrambleCorrspondence( scramRate(sr), B3, A3, C3 )
[ B3, A3, €3 ] = jumbleCorrspondence( scramRate(sr), B3, A3, C3 );
Generate constant C2, free A2 and B2

opt = 3;
[A2, B2, C2] = ABC_Generate(numData, opt, meanD, sigD(sD)*Cov, XActual,

YActual, ZActual);

B2n,

% compute norm of covariance of generated data

[ 7, Sigh2 ] = distibutionPropsMex_mex(reshape (A2, ml, m2*m3));
[ ¥, SigB2 ] = distibutionPropsMex_mex(reshape(B2, ml, m2*m3));
normCov(sr,sD,sN,5,sim) = norm(Sigh2);
normCov(sr,sD,sN,6,sim) = norm(SigB2);

[ C2, A2, B2 ] = scrambleCorrspondence( scramRate(sr), C2, A2, B2 );
[ €2, A2, B2 ] = jumbleCorrspondence( scramRate(sr), C2, A2, B2 );

%% ZG+ add noise to A, B, C

if varywhat == 5 ) only for Probl and Prob2 methods
wt = weight (sN);
Aln = Al1; Biln = B1l; Cin = C1;
A2n = A2; B2n = B2; C2n = C2;
A3n = A3; B3n = B3; C3n = C3;
else

wt = 1.5; % used only by Probl and Prob2 methods

Aln = addNoise(Al, sigN{sN}(1), sigN{sN}(2) );
Bin = addNoise(B1l, sigN{sN}(1), sigN{sN}(2) );
Cin = addNoise(Cl, sigN{sN}(1), sigN{sN}(2) );
A2n = addNoise (A2, sigN{sN}(1), sigN{sN}(2) );
B2n = addNoise (B2, sigN{sN}(1), sigN{sN}(2) );
C2n = addNoise(C2, sigN{sN}(1), sigN{sN}(2) );
A3n = addNoise (A3, sigN{sN}(1), sigN{sN}(2) );
B3n = addNoise (B3, sigN{sN}(1), sigN{sN}(2) );
C3n = addNoise(C3, sigN{sN}(1), sigN{sN}(2) );
end

%% run each method depending on demand
if methods2run(l) == 1 % i.e. run Probl

[X_final_1, Y_final_ 1, Z_final_1] = axbyczProbl(Ain(:,:,1), Bin, Ciln, A2n,
C2n(:,:,1), wt);

Erri(sr,sD,sN,:,sim) = rottran_error(X_final_1,Y_final_1,Z_final_1,XActual,

YActual,ZActual);

B2n,

end

if methods2run(2) == 1 % i.e. run Prob2

[X_final_2, Y_final_ 2, Z_final_2] = axbyczProb2(Ailn(:,:,1), Bin, Cin, A2n,
¢2n(:,:,1), A3n, B3n(:,:,1), C3n, wt);

Err2(sr,sD,sN,:,sim) rottran_error(X_final_2,Y_final_2,Z_final_2,XActual,

YActual ,ZActual);

prob

end

% stack all relevant data for non-probablisitic methods only (needed because
% input arguments for the methods were coded differently from the

abilistic methods)

A_perm = cat(3, Aln, A2n, A3mn);

B_perm = cat(3, Biln, B2n, B3n);

C_perm = cat(3, Cin, C2n, C3n);

if methods2run(3) == 1 % i.e. run Wu
[X_wang, Y_wang, Z_wang ] = Wang2014_AXBYCZ( A_perm, B_perm, C_perm,

XActual, YActual, ZActual);

C2n (

ZAct

[X_wang, Y_wang, Z_wang ] = Wu2016_AXBYCZ( A_perm, B_perm, C_perm );

ErrWang(sr,sD,sN,:,sim) = rottran_error(X_wang,Y_wang,Z_wang, XActual,
YActual,ZActual);

end
if methods2run(4) == 1 % i.e. run DK

[X_DK, Y_DK, Z_DK ] = Yan_AXBYCZ_DK( Ain(:,:,1), Bin, Cin, A2n, B2n,
t,1,1) )5

ErrDK(sr,sD,sN,:,sim) = rottran_error (X_DK,Y_DK,Z_DK, XActual,YActual,
ual);
end
if methods2run(5) == 1 % i.e. run PN - uses perturbation of actual value mnot
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random initial estimates

% [X_PN, Y_PN, Z_PN 1 = Yan_AXBYCZ_PN( A_perm, B_perm, C_perm, XActual,
YActual, ZActual);
% ErrPN(sr,sD,sN,:,sim) = rottran_error (X_PN,Y_PN,Z_PN, XActual,YActual,
ZActual) ;
Err_random_initial = zeros(10,6); ) store errors over 10 sub-trials

for kk=1:10 % run 10 times with different initial guesses each time and get
one with min err
[X_PN, Y_PN, Z_PN ] = Yan_AXBYCZ_PN( A_perm, B_perm, C_perm, XActual,
YActual, ZActual);
Err_random_initial(kk,:) = rottran_error (X_PN,Y_PN,Z_PN, XActual,YActual,

ZActual);
end
ErrPN(sr,sD,sN,:,sim) = min(Err_random_initial,[],1);
end
hh ------ plot X and Y and Z as 3D transformations------

if tfplots
subplot (1,3,1);
if methods2run (1) == 1
hold on
trplot (X_final_1,’color’,’k’, ’text_opts’, {’FontSize’,10, ’Interpreter
> ,’latex’});
end
if methods2run(2) == 1
hold on
trplot (X_final_2,’color’,’g’, ’text_opts’, {’FontSize’,10, ’Interpreter
Y,%latex’});

end
if methods2run(3) == 1
hold on
trplot (X_wang,’color?’,’b’, ’text_opts’, {’FontSize’,10, ’Interpreter’,’
latex?’});
end
if methods2run(4) == 1
hold on
trplot (X_DK,’color?,’m’, ’text_opts’, {’FontSize’,10, ’Interpreter’,’
latex?’});
end
if methods2run(b) == 1
hold on
trplot (X_PN,’color?,’c?, ’text_opts’, {’FontSize’,10, ’Interpreter’,’
latex’});

text( X_PN(1,4),X_PN(2,4),X_PN(3,4), num2str(sim) ,’Color’,’c’, °?
FontSize?’,14, ’FontWeight’, ’bold?’);
end
axis auto
title(’Estimated X7)

hold on
subplot (1,3,2);
if methods2run (1) == 1
hold on
trplot(Y_final_1(:,:),’color’,’k?, ’text_opts’, {’FontSize’,10, °?
Interpreter’,’latex’});
end
if methods2run(2) == 1
hold on
trplot (Y_final_2(:,:),’color’,’g?, ’text_opts’, {’FontSize’,10, °’
Interpreter’,’latex’});
end
if methods2run(3) == 1
hold on
trplot (Y_wang(:,:),’color’,’b’, ’text_opts’, {’FontSize’,10, °
Interpreter’,’latex’});
end
if methods2run(4) == 1
hold on
trplot (Y_DK(:,:),’color’,’m’, ’text_opts’, {’FontSize’,10, ’Interpreter
>,’latex’});
end
if methods2run(b) == 1
hold on
trplot (Y_PN(:,:),’color’,’c?’, ’text_opts’, {’FontSize’,10, ’Interpreter
Y,%latex’});
text( Y_PN(1,4),Y_PN(2,4),Y_PN(3,4), num2str(sim) ,’Color’,’c’,
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FontSize’,14, ’FontWeight’, ’bold?’);
end
axis auto
title(’Estimated Y?’)

hold on
subplot (1,3,3);
if methods2run(l) == 1
hold on
trplot(Z_final_1(:,:),’color’,’k’, ’text_opts’, {’FontSize’,10, °?
Interpreter’,’latex’});
end
if methods2run(2) == 1
hold on
trplot (Z_final_2(:,:),’color?’,’g?, ’text_opts’, {’FontSize’,10, °’
Interpreter’,’latex’});
end
if methods2run(3) == 1
hold on
trplot (Z_wang(:,:),’color’,’b’, ’text_opts’, {’FontSize’,10, °
Interpreter’,’latex’});
end
if methods2run(4) == 1
hold on
trplot (Z_DK(:,:),’color’,’m’, ’text_opts’, {’FontSize’,10, ’Interpreter
> ,%latex’});
end
if methods2run(b) == 1
hold on
trplot (Z_PN(:,:),’color’,’c’, ’text_opts’, {’FontSize’,10, ’Interpreter
Y,%latex’});
text( Z_PN(1,4),Z_PN(2,4),Z_PN(3,4), num2str(sim) ,’Color’,’c’,
FontSize?’,14, ’FontWeight’, ’bold?’);
end
axis auto
title(’Estimated Z’)
end
end %for varying number of trials
end %for varying std dev of noise
end %for varying std dev of data
end % for varying scrambling rate
toc
[ e B o B vl G e e i \n?)

% compute norm of covariances to see if << 1

norm_Avg mean (normCov, 5);

norm_Avg reshape (norm_Avg, [length(scramRate)*length(sigD)*length(sigN) 61);
normd = (norm_Avg(:,3) + norm_Avg(:,5)) ./ 2

normB (norm_Avg(:,1) + norm_Avg(:,6)) ./ 2

normC (norm_Avg(:,2) + norm_Avg(:,4)) ./ 2

%% compute averages of the errors with and without outliers
% after reshape, the row ordering is varying over dSig first then nSig
if methods2run(l) == 1 % i.e. run Probl
if removeOutliers
Erri_Avg = meanWithoutOutliers(Errl);
else % includes outliers
Erri_Avg = mean(Errl, 5);
end
Erri_Avg = reshape(Erril_Avg, [length(scramRate)*length(sigD)*length(sigN) 6])
end

if methods2run(2) == 1 9 i.e. run Prob2
if removeOutliers
Err2_Avg = meanWithoutOutliers(Err2);
else
Err2_Avg = mean(Err2, 5);
end
Err2_Avg = reshape(Err2_Avg, [length(scramRate)*length(sigD)*length(sigN) 6])
end

if methods2run(3) == 1 I Wang/Wu method
if removelOutliers
ErrWu_Avg = meanWithoutOutliers (ErrWang);
else
ErrWu_Avg = mean(ErrWang, 5);
end
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356 ErrWu_Avg = reshape(ErrWu_Avg, [length(scramRate)*length(sigD)*length(sigN) 6])
357 | end

3590 | if methods2run(4) == 1

360 if removeQutliers

361 ErrDK_Avg = meanWithoutOutliers (ErrDK);
362 else

363 ErrDK_Avg = mean(ErrDK, 5);

364 end

365 ErrDK_Avg = reshape (ErrDK_Avg, [length(scramRate)*length(sigD)*length(sigN) 6])
366 | end

368 | if methods2run(5) == 1 % PN method not stable, might sometimes give the wrong result
369 | % ErrPN

370 if removeQutliers

371 | % figure, boxplot( permute(ErrPN, [ 5412 3]) );

372 ErrPN_Avg = meanWithoutOutliers (ErrPN);

373 else

374 ErrPN_Avg = mean(ErrPN, 5);

375 end

376 ErrPN_Avg = reshape(ErrPN_Avg, [length(scramRate)*length(sigD)*length(sigN) 6])
377 | end

378 | %hzg-

379 | % end

380

381 | %% Plot graphs

382 | if lineplot

383 f1 = figure(’Name’, ’Errors for X,Y,Z rotation and translation separately’);

384 | % set(f1,’units’,’normalized’,’outerposition’,[0 0 1 0.5])

385 set (£f1,’units’,’normalized’,’outerposition’,[0 0 0.5 1]) % make fig fill screen

width but only 0.8 of screen height

switch varywhat

case 1 % vary scrambling rate, fix data std dev = 0.02 and noise std dev = 0
x_axis = scramBRate;
x_label = ’$\textrm{Scrambling rate}\ r\ \%$’;

case 2 } vary data std dev, fix scrambling rate = 0 and noise std dev = 0
Xx_axis = sigD;
x_label = ’$\sigma_{\textrm{datal}}$’;

case 3 7 vary noise std dev, fix scrambling rate = 0 and data std dev = 0.02

x_axis = 1:length(sigN);
x_label = ’$\theta_{\textrm{maxl}},\epsilon_{\textrm{max}}\textrm{ of noisel}$’;

case 4 ¥ vary noise std dev, fix scrambling rate = 10 and data std dev = 0.02
x_axis = 1:length(sigN);
x_label = ’$\theta_{\textrm{maxl}},\epsilon_{\textrm{max}}\textrm{ of noisel}$’;

case 5 ) vary noise std dev, fix scrambling rate = 0 and data std dev = 0.02
x_axis = weight;
x_label = ’$\textrm{weight}$’;
404 end
105
406 labels = {’$R_X$’, *$R_Y$’, ’$R_Z$’, ’*$t_X$’>, ’$t_Y$’>, *$t_Z$’};
107 % use file exchange function "panel" instead of subplot in order to remove white
space
408 p = panel(’no-manage-font’);
409 p.pack(3,2);
410 p.margin = [20 33 8 15]; Yleft bottom right top (space for ticks and labels)
411
412 for ii = 1:6
413 [i,j] = ind2sub([3,2], ii);% swap indices because linear indexing moves down the

row first then col
14 p(i,j).select();

1

415 if methods2run(l) == 1

116 plot(x_axis, Erril_Avg(:,ii), ’r-d’, ’LineWidth’, 2 ); %Probl

117 | % semilogy(x_axis, Erril_Avg(:,ii), ’r-d’, ’LineWidth’, 1.1 );
118 hold on

419 end

120 if methods2run(2) == 1

421 plot(x_axis, Err2_Avg(:,ii), ’g-*’, ’LineWidth’, 1.5 ); %Prob2
122 hold on

423 end

124 if methods2run(3) == 1

425 plot(x_axis, ErrWu_Avg(:,ii), °’b-o’, ’LineWidth’, 0.7 ); Y%Wang
426 | % plot(x_axis, ErrWang_Avg(:,ii), ’b-o’, ’LineWidth’, 1.5 ); YWang
427 hold on

428 end

129 if methods2run(4) == 1

430 plot(x_axis, ErrDK_Avg(:,ii), °’m-+’, ’LineWidth’, 1.5 ); %DK
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hold on
end
if methods2run(5) == 1
plot(x_axis, ErrPN_Avg(:,ii), ’c-x’, ’LineWidth’, 1.5 ); %PN
hold on
end
xlabel(x_label, ’Interpreter’,’latex’, ’FontSize’, 12);
ax = gca;
ax.XTick = x_axis;
ax.YScale = ’log’;
% ylim = ax.YLim;
% ax.YLim = [ylim(1), ylim(2)1];
% if logl0(ylim(2)/ylim(1)) > 5
% numYTicks = 1/4%(logl0(ylim(2)/ylim(1))+1);
% else
% numYTicks = logl0(ylim(2))-loglO(ylim(1))+1;
% end
% ax.Y¥Tick = logspace(logl0(ylim(1)),1l0og10(ylim(2)), numYTicks );%add max of 5
ticks
ax.FontSize = 12;
if varywhat == 3 || varywhat == 4
noise_param = { sprintf(’%.2g\\newline’.2g’, sigN{1}(1), sigN{1}(2)) };
noise_param = [ noise_param, sprintf(’%.2g\\newline%.2g’, sigN{2}(1), sigN
{2} (2) ) 1;
noise_param = [ noise_param, sprintf(’%.2g\\newline%.2g’, sigN{3}(1), sigN
{3¥(2) ) 1;
noise_param = [ noise_param, sprintf(’%.2g\\newline%.2g’, sigN{4}(1), sigN
{4}¥(2) ) 1;
noise_param = [ noise_param, sprintf(’%.2g%c\\newline%.2gmm’, sigN{5}(1), char
(176), sigN{5}(2)) 1;
ax.XTickLabel = noise_param;
ax.TickLabelInterpreter = ’tex’;
end
% y_label = sprintf (’$\\textrm{error in }%s$’, labels{iil} );
% ylabel (’Error’,’FontSize’,14,’ Interpreter >, ’latex ’) ;
title(sprintf (’Error in %s’, labels{ii} ), ’FontSize’,15,’Interpreter’,’latex’,’
FontWeight’,’bold’)
if ii == 6 % only show legend on last plot (i.e. for tZ)
lgd = {};
for jj = 1l:numel(methodNames)
if methods2run(jj) == 1
lgd = [1gd{:} methodNames(jj) 1;
end
end
legend(lgd, ’FontSize’,10, ’Location’,’best’);
end
end
end
Listing A.1: Main program for the simulations
function [ X, Y, Z ] = Wu2016_AXBYCZ( A, B, C )
% Implements the algorithm in Wu et al (2016) - same as Wang2014 except
% that it uses a closed form solution for obtaining initial estimate.

%

%
)
%

In

Solves for X, Y, Z in the matrix equation AXB=YCZ given A, B, C

put: A, B, C are 4 x 4 x n homogeneous matrices
Xact, Yact, Zact are used to get a good initial estimate

Qutput: X, Y, Z are 4 x 4 homogeneous matrices

num

= size(A, 3); % number of measurements

%% Get rotation and translation components of A, B, C

RA
RB
RC
TA
TB

A(C1:3, 1:3, :); % 3x3xnum

B(1:3, 1:3, :);

C(1:3, 1:3, :);

A(1:3, 4, :); % 3xlxnum
B(1:3, 4, :);
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%% ============ Solve for RX, RY, RZ first ==============

% Closed form solution to get an initial estimate of rotations from a subset of data

[RX_init, RY_init, RZ_init] = Wu2016_closedForm( RA, RB, RC );

% figure
% trplot(RY_init, ’color?, ’b’);

% hold on

% trplot (Yact(1:3,1:3), ’color’, ’r?);

% fprintf (’Err in initial guess: RX = %.5f, RY = %.5f, RZ = %.5f\n’,...

% roterror( RX_init, Xact(1:3,1:3) ), .

% roterror( RY_init, Yact(1:3,1:3) ),..

% roterror( RZ_init, Zact(1:3,1:3) ) );

% Iterate until norm of delR = [delRX; delRY; delRZ] falls below a predefined
threshold

delR = 10000 * omnes(9,1); ¥ use a large value initially

NumIterations = 0;

while norm(delR) > 10e-10

q = zeros(num*9,1); % q_tilde in paper

F zeros (num#*9,9); % F_tilde in paper
for i = 1:num

tmpl = RX_init * RB(:,:,i);

tmp2 = RY_init * RC(:,:,i) * RZ_init;

qq = -RA(:,:,1) * tmpl + tmp2;
qC (i-1)*9+1:i%9 ) = [qq(:,1); qq(:,2); qq(:,3)]; % 9x1

Fi11 = -RA(:,:,1) * so3_vec( tmpl(:,1) ); % 3x3
F21 = -RA(:,:,1i) * so3_vec( tmpl1(:,2) );
F31 = -RA(:,:,1) * so3_vec( tmpl(:,3) );
F12 = so3_vec( tmp2(:,1) );
F22 = so3_vec( tmp2(:,2) );
F32 = so3_vec( tmp2(:,3) );
F13 = RY_init * RC(:,:,i) * so3_vec( RZ_init(:,1) );
F23 = RY_init * RC(:,:,i) * so3_vec( RZ_init(:,2) );
F33 = RY_init * RC(:,:,i) * so3_vec( RZ_init(:,3) );
F( (i-1)%9+1:i%9, : ) = [ Fil F12 F13;
F21 F22 F23;
F31 F32 F33 1;
end
delR = (F’*F) \ F’ * q; % = inv(F’F)F’q
RX_init = expm( so3_vec(delR(1:3)) ) * RX_init;
RY_init = expm( so3_vec(delR(4:6)) ) * RY_init;
RZ_init = expm( so3_vec(delR(7:9)) ) * RZ_init;
NumIterations = NumIterations+1;
end

% fprintf (’Number of iterations to converge to <10e-10: %d\n’, NumIterations);

%% ============ Solve for TX, TY, TZ next ==============
J = zeros(3*num, 9); % J_tilde
p = zeros(3%num, 1); % p_tilde
for i = 1:num
JC ((i-1)#*3+1):(i*3), : ) = [ RA(C:,:,1) -eye (3) -RY_init * RC(:,:,1i) J;
pC ((i-1)*3+1):(i*3) ) = -TA(:,:,1) - RA(:,:,i)*RX_init*TB(:,:,1i) + RY_init*TC(:,:,
i)
end

translation = (J’*J) \ J’ * p;
tX = translation(1:3);
tY = translation(4:6);
tZ = translation(7:9);

%% Form the homogeneous matrices for X, Y, Z
X = zeros(4); Y = zeros(4); Z = zeros(4);

X(4,4) = 1; Y(4,4) = 1; z(4,4) = 1;
X(1:3,1:3) = RX_init;
Y(1:3,1:3) = RY_init;
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Z(1:3,1:3) = RZ_init;

X(1:3,4) = tX;
Y(1:3,4) = tY;
Z(1:3,4) = tZ;
end

%% Returns estimate of RX,RY,RZ using closed form solution in Wu et al
% Only used for getting initial estimate of data

function [RX, RY, RZ] = Wu2016_closedForm( RA, RB, RC )

% RA,RB,RC are 3x3xn rotation matrices.

% use only the first 10 sets or 10% of data whichever is lower
n = min( floor (0.1 * size(RA,3)), 10 );

% randomly sample n sets - don’t take first n sets because RA is fixed in those sets
[RA_sample, idx] = datasample(RA, n, 3, ’Replace’, false);

qA Quaternion( RA_sample ); % datasample() requires Statistics toolbox

qB Quaternion( RB(:,:,idx) ); 7 use the corresponding data that was sampled from

qC = Quaternion( RC(:,:,idx) );

W_ABC_plus = zeros( 4*n, 20 );
W_ABC_minus = zeros( 4%n, 20 );
for i=1:n J stack all the measurements

[ LQ_A, ~ ] = quaternion_matrix(qA(i).double());

[ ™, RQ_LB ] = quaternion_matrix(gB(i).double());

¢ = qC(i).double();

W_C = [ c(1) -¢(2) -¢c(3) -c(4) -c(2) -c(1) c(4) -¢c(3) -¢c(3) -c(4) -c(1) c(2) -c(4)

c(3) -c(2) -c(1); % 4x186

c(2) c(1) -c(4) c(3) c(1) -c(2) -c(3) -c(4) c(4) -c(3) c(2) c(1) -c(3) -c
(4) -c(1) c(2);

c(3) c(4) c(1) -¢c(2) -c(4) c(3) -c(2) -c(1) c(1) -c(2) -¢c(3) -c(4) c(2) ¢
(1) -c(4) c(3);

c(4) -c(3) c(2) c(1) c(3) c(4) c(1) -c(2) -c(2) -c(1) c(4) -c(3) c(1) -c(2)

-c(3) -c(4) 1;
W_ABC_plus( ((i-1)*4+1):(4*i), : ) = [ RQ_B * LQ_A , W_C J; % 4x20
W_ABC_minus( ((i-1)*4+1):(4*i), : ) = [ RQ_B * LQ_A , -W_C 1; % 4x20

end

%return the smallest eigenvalue and the corresponding eigenvector from a 20x20
symmetric matrix

% [ Vplus, dplus ] = eigs( W_ABC_plus’*W_ABC_plus, 1,’sm’); %using sparse version

% [ Vminus, dminus ] = eigs( W_ABC_minus >*W_ABC_minus, 1,’sm’);

% might be better to use non-sparse version of eig and sort the e-values manually
[ Vplus, dplus ] = eig( W_ABC_plus’*W_ABC_plus );

[ dplus, I ] = sort( diag(dplus) );

Vplus = Vplus(:,I);

[ Vminus, dminus ] = eig( W_ABC_minus’*W_ABC_minus );

[ dminus, I ] = sort( diag(dminus) );

Vminus = Vminus(:,I);

if dplus (1) < dminus (1) % choose the one whose eigenvalue is smaller
V_XYZ = Vplus; % 20x1

else
V_XYZ = Vminus;
end
qX = Quaternion( V_XYZ(1:4)/norm(V_XYZ(1:4)) );
RX = gX.R;
V_XY = reshape( V_XYZ(5:20)/norm(V_XYZ(5:20)), 4,4 ); % 4x4
yO = sqrt( V_XY(:,1)*V_XY(:,1) );
yl = sqrt( V_XY(:,2) 2*V_XY(:,2) );
y2 = sqrt( V_XY(:,3)*V_XY(:,3) );
y3 = sqrt( V_XY(:,4)°*V_XY(:,4) );
qY = Quaternion( [y0 y1 y2 y31 );
RY = qY.R;
z0 = sqrt( V_XY(1,:)*V_XY(1,:)’ );
z1l = sqrt( V_XY(2,:)*V_XY(2,:)’ );
z2 = sqrt( V_XY(3,:)*V_XY(3,:)’ );
z3 = sqrt( V_XY(4,:)*V_XY(4,:)’ );
qZ = Quaternion( [z0 z1 z2 z3] );
RZ = qZ.R;
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end

%% forms a 4x4 matrix matrix representation of a quaternion
function [ LQ, RQ ] = quaternion_matrix(q)
% q(0) is the scalar part, [q(1) q(2) q(3)] are the vector part
LQ = [ q(1) -q(2) -q(3) -q(4);
q(2) q(1) -q(4) q(3);

q(3) q(4) q(1) -q(2);
q(4) -q(3) q(2) q(1) 1;
RQ = [ q(1) -q(2) -q(3) -q(4);
q(2) q(1) q(4) -q(3);
q(3) -q(4) q(1) q(2);
q(4) q(3) -q(2) q(1) 1;
end
Listing A.2: MATLAB implementation of Wu et al (2016)
function [ X, Y, Z ] = Yan_AXBYCZ_DK( A1, B1, C1, A2, B2, C2 )
% Implements the D-K algorithm in Yan et al (2015)

% Solves for X, Y, Z in the matrix equation AXB=YCZ given A, B, C

% Input: Al and C2 are 4x4 homogeneous matrices since they are fixed
% B1,C1, A2,B2 are 4 x 4 x n homogeneous matrices
% Output: X, Y, Z are 4 x 4 homogeneous matrices

num = size(B1l, 3); ) number of measurements
% fprintf (’Num of data in Yan_AXBYCZ_DK: %d\n’, 2%num);

%% Solve AX=YB type of equations using Li(2010) method of Kronecker product
[Z, Xt] = Li_AXYB_kron( C1, Bl ); % fixing A
% [Z, Xt] = 1i(C1,B1); % use shah’s implementation

Binv = zeros(size(B2)); % 4x4xnum
for i=1:num

Binv(:,:,1i) = inv(B2(:,:,1i)); % calc the inv of B b4 passing to solver
end

[X, Zt] = Li_AXYB_kron( A2, Binv ); % fixing C
% [X, Zt] = 1i(A2,Binv); % use shah’s implementation

%% Enforce orthogonality on rotational part of Xt and Z, X and Zt
% by finding the nearest orthogonal matrix using SVD

[U,”,V] = svd(Xt(1:3,1:3));

Xt(1:3,1:3) = UxV?;

[U,”,V] = svd(X(1:3,1:3));

X(1:3,1:3) = UxV’;

[U,”,V] = svd(Zt(1:3,1:3));

Zt(1:3,1:3) = UxV’;

[U,”,V] = svd(Z(1:3,1:3));

2(1:3,1:3) = UxV’;

%% calc the two possibilities of Y and choose the one with the smallest
5
% error

Y1 = Al * X / Xt;
Y2 = 7t / Z / C2;
Errl = norm( A1*X*B1(:,:,1) - Y1*xC1(:,:,i)*Z, ’fro’ );
Err2 = norm( A2(:,:,1)*X*B2(:,:,1) - Y2*C2%Z, ’fro’ );
if ( Errl < Err2 )
Y = Y1,
else
Y = Y2,
end
end

%% implements the Kronecker product method in Li et al (2010) paper
function [X, Y] = Li_AXYB_kron( A, B )

num = size(A, 3); % number of measurements
RA = A(1:3, 1:3, :); % 3x3xnum

RB = B(1:3, 1:3, :);

TA = A(1:3, 4, :); % 3xlxnum

TB = B(1:3, 4, :);
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24);
1)

K z

t zeros (12%num,

b i = 1:num
(i-1)*12+1:(i-1)*12+9, 1:9 ) = kron( RA(:,:,1
(i-1)*12+1:(i-1)#*12+9, 10:18 ) = -kron( ey
(i-1)*12+10:i*12, 10:18 ) kron(eye(3), T
(i-1)%12+10:i%12, 19:21 ) = -RA(:,:,1i);
(i-1)*12+10:1i*12, 22:24 ) eye (3);
(i-1)%12+10:i%12 ) = TA(:,:,i);

o
60
61
62
63
64
65
66
67
68 | %
6o | v

RN =HBE 00
NN

®
=
Q.

solve Kv =
pinv (K) =*

t using least squares
t; % 24x1

X
Y

zeros (4,4);
zeros (4,4) ;

X(4,4)
Y(4,4)

414,4
nn

1~
[SIEFTNIURIC I

1;
1;
% reform the X,
X(1:3,1:3) = reshape(v(1:9),
first then row

3,1:3) = reshape(v(10:18),
3, 4) = reshape(v(19:21), 3
3, 4) = reshape(v(22:24), 3

Y homogeneous matrices from the vectorized versions
3, 3)°; Yneed transpose because reshape goes down col

- -

76 | Y(1:
77 | X(1:
Y(1:
end

3, 3)7;
, 1)
78 , 1)

79

Listing A.3: MATLAB implementation of the DK method in Yan et al (2015)

1| function [ X, Z ] = Yan_AXBYCZ_PN( A, B, C, Xact,
2|% Implements the D-K algorithm in Yan et al (2015)
3| % Solves for X, Y, Z in the matrix equation AXB=YCZ given A,

Y, Yact, Zact)

B, C

Al and C2 are 4x4 homogeneous matrices since they are fixed
B1,C1, A2,B2 are 4 x 4 x n homogeneous matrices

X, Y, Z are 4 x 4 homogeneous matrices

o|num = size(A, 3); %
% fprintf (’Num of data in Yan_ AXBYCZ_PN:

% Input:
6 oo

7| % Output:

number of measurements

%d\n’, num);

12 | %% Get rotation and translation components of A, B, C

13|RA = A(1:3, 1:3, :); % 3x3xnum
14|RB = B(1:3, 1:3, :);

15|RC = €C(1:3, 1:3, :);

16| TA = A(C1:3, 4, :); % 3xlxnum
17| TB = B(1:3, 4, :);

18| TC = C(1:3, 4, :);

%% Form error function - nested because it needs to access some variables above
function F = myfun(xyz)
% xyz is a 21x1 vector of [qx qy qz tx ty tz]

29

Wt
Wt

F = zeros(num*12,1);
24
25 gx = Quaternion(xyz(1:4)).unit(); % normalize quaternion
26 RX = agx.R;
27 qy = Quaternion(xyz(5:8)).unit();
28 RY = qy.R;
29 qz = Quaternion(xyz(9:12)).unit();
30 RZ = qz.R;
31 TX = xyz(13:15);
32 TY = xyz(16:18);
33 TZ = xyz(19:21);
34
35 for i = l:num
36 Rerr = RA(:,:,i)*RX*RB(:,:,1i)-RY*RC(:,:,i)*RZ; % 3x3
37 Terr = RA(C:,:,i)*RX*TB(:,:,i)+RAC:,:,i)*TX+TA(:,:,1i)...
38 - RY*RC(:,:,1i)*TZ-RY*TC(:,:,i)-TY; % 3x1
39 F( (i-1)*12+1 (i-1)%*12+9 ) = reshape(Rerr, 9, 1);
40 F(C (i-1)*12+10 (i-1)*12+12 ) = Terr;
41 end
42
43 | end
14
45 | h% get initial estimate of quaternions and translation
16 |opt = 2; ¥ determines how the initial estimate was determined
47
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if opt == 1

% a) Use perturbation of actual X, Y,

e = pi/5;

RX_init = expm( so3_vec(e*ones(3,1)) ) * Xact(1:3,1:3); % 3x3
RY_init = expm( so3_vec(e*ones(3,1)) ) * Yact(1:3,1:3);
RZ_init = expm( so3_vec(e*ones(3,1)) ) * Zact(1:3, 1:3);
TX_init = Xact(1:3, 4) + e*ones(3,1); % 3xilxnum

TY_init = Yact(1:3, 4) + exones(3,1);

TZ_init = Zact(1:3, 4) + exones(3,1);

elseif opt == 2

% b) Use randomly generated X, Y, Z

M = zeros(6,1); %mean

Sig = eye(B8)*2; Y%covariance

XActual = expm(se3_vec(mvg(M, Sig, 1)));

YActual = expm(se3_vec(mvg(M, Sig, 1)));

ZActual = expm(se3_vec(mvg(M, Sig, 1)));

RX_init = XActual(1:3,1:3); % 3x3

RY_init = YActual(1:3,1:3);

RZ_init = ZActual(1:3,1:3);

TX_init = XActual(1:3,4); % 3xilxnum

TY_init = YActual(1:3,4);

TZ_init = ZActual(1:3,4);

Y e D e e memmmmmeio-loo

end

qx_init = Quaternion(RX_init).double();

qy_init = Quaternion(RY_init).double();

qz_init = Quaternion(RZ_init).double();

x0 = [gqx_init?; qy_init’; qz_init?’; TX_init; TY_init; TZ_init];

%% call lsqnonlin() using Levenberg-Marquardt algorithm

% default termination tolerance is 1le-6

options = optimoptions(@lsqnonlin,’Algorithm’,’levenberg-marquardt’);
[res ,resnorm,”,” ,output] = lsqnonlin(@myfun,x0,[],[],options);

%% reform X, Y, Z from "res"

X = zeros(4); Y = zeros(4); Z = zeros(4);

X(4,4) = 1; Y(4,4) = 1; Z(4,4) = 1;

X(1:3,1:3) = Quaternion(res(1:4)).unit().R; %normalize b4 converting to rot matrix
Y(1:3,1:3) = Quaternion(res(5:8)).unit().R;

Z(1:3,1:3) = Quaternion(res(9:12)).unit().R;

X(1:3,4) = res(13:15); % translation components

Y(1:3,4) = res(16:18);

Z(1:3,4) = res(19:21);

end

Listing A.4: MATLAB implementation of the PN method in Yan et al (2015)
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