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Abstract 

Classic hand-eye calibration methods have been limited to single robots and sen-

sors. Recently a new calibration formulation for multiple robots has been proposed 

that solves for the extrinsic calibration parameters for each robot simultaneously in-

stead of sequentially. The existing solutions for this new problem required data to 

have correspondence, but Ma, Goh and Chirikjian (MGC) proposed a probabilistic 

method to solve this problem which eliminated the need for correspondence. In this 

thesis, the literature of the various robot-sensor calibration problems and solutions 

are surveyed, and the MGC method is reviewed in detail. Lastly comparison with 

other methods using numerical simulations were carried out to draw some conclusions. 

Primary Reader: Dr. Gregory Chirikjian 

Secondary Reader: Dr. Simon Leonard 
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Chapter 1

Introduction

The proliferation of inexpensive and reliable sensors in the recent decade caused

robotics to take o� not only in corporations and government but also in academia

and the backyard of hobbyists. This can be seen from the burgeoning market of

commercial-o�-the-shelf (COTS) components catering to aerial robots, mobile vehi-

cles and humanoid robots.

1.1 Background and Motivation

Before robots can use data from sensors to perform intelligent tasks, the sensors often

have to be calibrated with the robot, which involves establishing the pose (i.e position

and orientation) between the robot and sensor. Once that is done, the robot can use

data from the sensor to tell where objects are and hence the robot knows where to
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CHAPTER 1. INTRODUCTION

move to reach it. When the sensor is a camera, the calibration solution can also be

used to move the robot, and hence the camera, such that it can capture images for

3D reconstruction of a scene.

In the literature on sensors, the term "calibration" can be used to denote two

di�erent but related processes. A sensor relies on some physical process to sense or

measure the physical world. But in order to give meaningful and accurate measure-

ments, we have to obtain intrinsic parameters that enable the conversion of raw sensor

values to real-world units and this is called "calibration". For instance, a calibrated

camera will give us the dimensions of objects from images in units like meters instead

of in pixels. The second way people talk about "calibration" is obtaining extrinsic

parameters like the relative pose of a sensor with another object, which could be

another sensor or a robotic manipulator. Estimating the pose of the sensor to the

external world is also related to what the computer vision community calls "registra-

tion" which is to obtain the spatial relationship of objects in an image to those in a

reference image. The second meaning is what I will be using in this thesis.

Almost 30 years ago, the problem of estimating the spatial relationship of the

sensor to the tool �ange, known as the hand-eye calibration problem, was �rst for-

mulated for a robot manipulator with a sensor attached to the tool �ange. It was

modeled as a mathematical problem that people over the years solved using many

di�erent techniques depending on the factors under consideration. Then came subse-

quent attempts to expand this formulation to include other types of robotic systems

2



CHAPTER 1. INTRODUCTION

with sensors. One such system, which was proposed two years ago, involves multiple

robots, each with its own attached sensor. This new problem formulation seeks to

solve the hand-eye calibration problem for each robot simultaneously by using the

spatial relationship between any two pairs of robots.

As this problem is fairly new, not much comparison and analysis have been done

for the di�erent methods of solving it. Each method has its strengths and weaknesses

and so this research proposes to collect data to compare and evaluate properties like

robustness, accuracy and ease of use.

1.2 Plan

In this thesis, one such calibration technique will be investigated, which is called the

Ma, Goh and Chirikjian (MGC) method after the authors in [23], and compare it with

the other solutions in the literature. The strengths and limitations of the method will

be evaluated and its performance on simulated data under various conditions will be

collected.

Firstly, the preliminary mathematical content required in Chapter 2 will be listed,

followed by a literature survey of robot and sensor calibration problems and their

solutions in Chapter 3. Then in Chapter 4, the algorithm of the MGC method will

be reviewed and in Chapter 5, it will be compared to other methods. Lastly, results

and insights will be highlighted and new directions for research will be suggested.

3



Chapter 2

Mathematical Background

This chapter, especially Section 2.1 and 2.2, lays down the convention of mathematical

notations used in the literature review chapter but is not meant to provide a primer

on the wide range of topics covered there. Readers who are interested should refer to

each paper for more information. Section 2.3 and 2.4 covers the mathematics required

for the MGC method.

2.1 Notation and Basic Concepts

1. The transpose of a matrix is denoted with the superscript J symbol instead of

the letter T .

2. The matrix of zeros is denoted by Om�n with the subscript indicating the size

of the matrix. And On means that it is a square matrix with dimension n.

4



CHAPTER 2. MATHEMATICAL BACKGROUND

3. The identity matrix of size n is denoted by In.

4. The Kronecker or tensor product of two matrices A,B:

Am�n bBp�q �

���A11B . . . A1nB
...

. . .
...

An1B . . . AmnB

���
mp�nq

5. The vec() operator turns a m� n matrix A to a mn� 1 vector:

vecpAq �

�����������

A11

...

A1n

A21

...

Amn

�����������
6. A rotation matrix R in 3D space is an element of the Lie group SOp3q where

SOp3q :�
 
R P R3�3 | RJR � RRJ � I, detpRq � 1

(
.

7. A homogeneous transformation H in 3D space is a 4� 4 matrix of the form

H �

�
R t

O1�3 1

�
P SEp3q (2.1)

where

SEp3q :�
 
HpR, tq P R4�4 | R P SOp3q, t P R3�1

(
Such a matrix is used to represent rigid body motions in 3D space which are

composed of a rotation (represented by the matrix R) and a translation (repre-

sented by the vector t).

5



CHAPTER 2. MATHEMATICAL BACKGROUND

8. The mapping tR3 Ñ sop3qu of a vector

ω �

���ω1

ω2

ω3

���
to a skew-symmetric matrix is de�ned using the "hat" ^ operator

rωs^ �

��� 0 �ω3 ω2

ω3 0 �ω1

�ω2 ω1 0

��� P sop3q

where sop3q is an example of a Lie algebra, whose matrix exponential gives its

counterpart in the Lie group SOp3q:

exp rωs^ � R P SOp3q

and the matrix logarithm does the inverse:

logR � rωs^ .

Similarly, the mapping tR6 Ñ sep3qu of the vector

h �

���h1

...

h6

��� P R6

to a matrix rhs^ P sep3q is called a twist and is de�ned as

rhs^ �

�����
0 �h3 h2 h4

h3 0 �h1 h5

�h2 h1 0 h6

0 0 0 0

����� P sep3q.

Similarly, the exponential of rhs^ maps to an element in SEp3q.

6



CHAPTER 2. MATHEMATICAL BACKGROUND

9. The "vee" _ operator performs the reverse mapping tsop3q Ñ R3u, so operation

on a skew-symmetric matrix gives��� 0 �ω3 ω2

ω3 0 �ω1

�ω2 ω1 0

���
_

�

���ω1

ω2

ω3

��� .
A summary of the various mappings between Lie algebras and Lie groups is

shown in Table 2.1.

Vector map Lie algebra map Lie group

ω P R3 ^
ÝÑ rωs^ P sop3q

exp
ÝÝÑ exp prωs^q P SOp3q

log_R P R3 _
ÐÝ logR P sop3q

log
ÐÝ R P SOp3q

h P R6 ^
ÝÑ rhs^ P sep3q

exp
ÝÝÑ exp prhs^q P SEp3q

log_H P R6 _
ÐÝ logH P sep3q

log
ÐÝ H P SEp3q

Table 2.1: Summary of the relationships between Lie algebras and Lie groups

10. The Dirac Delta function de�ned on SEp3q is

δpHq �

#
�8, H � I4

0, H � I4

with the constraint

»
SEp3q

δpHq dH � 1

where integraton over SEp3q is de�ned below.

A Dirac Delta function shifted to X P SEp3q is denoted by

δXpHq � δpX�1Hq. (2.2)

7



CHAPTER 2. MATHEMATICAL BACKGROUND

11. Integration on SEp3q is expressed di�erently depending on the parametriza-

tions. For instance, if ZXZ Euler angles are used for a rotation R, then

R � RZpαqRXpβqRZpγq

where Ripφq represents a counterclockwise rotation by φ about axis i. And if

translations are expressed in Cartesian coordinates in the xyz frame, then

t �

���txty
tz

��� .
Hence using these parametrizations of R, t for a homogeneous transformation

H like in (2.1), the integral of a function in SEp3q is

»
SEp3q

fpHq dH �

»
R3

»
SOp3q

fpHpR, tqq dR dt

�

»
R3

»
SOp3q

fpHpR, tqq sin β dαdβdγ dtxdtydtz

[2] where tx, ty, tz P R and pα, β, γq P r0, 2πs � r0, πs � r0, 2πs.

2.2 Quaternions and Dual Quaternions

1. Quaternions q are a generalization of complex numbers with the form

q � q0 � iq1 � jq2 � kq3,

where

i2 � j2 � k2 � ijk � �1.

8



CHAPTER 2. MATHEMATICAL BACKGROUND

It can also be written in vector form as

q �

�����
q0

q1

q2

q3

�����
,/./- ~q

where ~q P R3 is the vector or imaginary part of q and q0 is the real part. If q

is a unit quaternion, it has the property that

}q} �
b
q2

0 � q2
1 � q2

2 � q2
3 � 1.

Unit quaternions are one way to parametrize rotations in SOp3q using 4 param-

eters, other methods include Euler angles and angle-axis parametrizations.

2. Multiplication of two quaternions

p �

�
p0

~p

�
and q �

�
q0

~q

�

is denoted by the symbol � and de�ned as

p � q �

�
p0q0 � ~pJ~q

p0~q � q0~p� ~p� ~q

�
(2.3)

3. Quaternions can also be formulated as 4 � 4 matrices which helps to recast

quaternion multiplication in (2.3) as matrix multiplication, which could be help-

ful to "switch" the order of multiplication so that terms could be factored out.

In the transformation of a quaternion to a matrix, the uppercase letter is used

9



CHAPTER 2. MATHEMATICAL BACKGROUND

and with overhead � and � symbols as de�ned here

p � q �
�

Pq �
�

Qp

where

�

P :�

�����
p0 �p1 �p2 �p3

p1 p0 �p3 p2

p2 p3 p0 �p1

p3 �p2 p1 p0

�����
�

�
p0 �~pJ

~p p0I� r~p s^

� ,

�

Q :�

�����
q0 �q1 �q2 �q3

q1 q0 q3 �q2

q2 �q3 q0 q1

q3 q2 �q1 q0

�����
�

�
q0 �~qJ

~q q0I� r~q s^

� (2.4)

4. The conjugate sq of a quaternion is

sq � �
q0

�~q

�

which represents an inverse rotation of q.

5. Relationship to axis-angle: If a quaternion q represents a rotation by θ P R

about an axis ~k P R3, then it can be written as

q �

�
cos θ

2

~k sin θ
2

�
.

6. Dual quaternions qq are the algebraic counterpart of screws and are denoted by

qq � �qq0q~q
�

where qq0 is a dual number and q~q is a dual vector. Since screws represents rigid

body motion, dual quaternions also contain information about rotation and

10



CHAPTER 2. MATHEMATICAL BACKGROUND

translation, in contrast to quaternions which parameterizes rotations only. A

dual quaternion is made of two ordinary quaternions and can be written as

qq � q� εq1, ε2 � 0 (2.5)

where the quaternion q is the real or rotational part and the quaternion q1 is the

dual or displacement part. The conjugate of a dual quaternion is analagously

denoted as sqq. Multiplication of two dual quaternions is denoted by the d

symbol. The properties of dual quaternions are presented in more detail in [9].

2.3 Probability

1. A Gaussian probability density function (p.d.f) ρp�q on SEp3q is

ρpH;M,Σq �
1

p2πq3
a
| detpΣq|

exp

�
�

1

2
F pM�1Hq

�

where


 H P SEp3q is a homogeneous transformation,


 M P SEp3q is the mean of the p.d.f.,


 Σ P R6�6 is the covariance matrix of the p.d.f. which is positive de�nite,


 F pHq � rplog Hq_s
J

Σ�1 rplog Hq_s.

11



CHAPTER 2. MATHEMATICAL BACKGROUND

2. Given a probability density function fpHq, the mean M satis�es

»
SEp3q

log
�
M�1H

�
fpHq dH � O4, (2.6)

and in turn, the covariance Σ is de�ned by

Σ :�

»
SEp3q

�
logpM�1Hq

�_ �
plogpM�1Hqq_

�J
fpHq dH (2.7)

3. The convolution (denoted by �) of two probability density functions f1, f2 on

SEp3q is de�ned as

pf1 � f2qpHq �

»
SEp3q

f1pKqf2pK
�1Hq dK

where K P SEp3q is a dummy integration variable. Convolution of a prob-

ability density function f with a Dirac Delta function δ is analagous to the

one-dimensional case:

pf � δqpHq �

»
SEp3q

fpKqδpK�1Hq dK � fpHq (2.8)

4. The property of bilinearity for the convolution of two probability density func-

tions f � a1f1 � a2f2 and g � b1g1 � b2g2 means that

pa1f1 � a2f2q � g � a1pf1 � gq � a2pf2 � gq

and

f � pb1g1 � b2g2q � a1pf � g1q � b1pf � g2q

12
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where a1, a2, b1, b2 P R.

5. A probability density function fpHq on SEp3q is said to be highly "focused" or

"concentrated" when the norm of its covariance Σ satis�es

}Σ}2 ! 1, (2.9)

where the induced 2-norm of a matrix A P Rm�n is de�ned as

}A}2 :� max
}x}�0

}Ax}2

}x}2

and the usual Euclidean norm for vectors x,Ax P Rn is meant. This condi-

tion involves mainly the rotation component of Σ and hence the spread in the

orientations of f P SEp3q has to be small.

6. Given two highly focused probability density functions f1, f2 on SEp3q, the

mean of their convolution pf1 � f2qpHq is

M1�2 �M1M2 (2.10)

and the covariance is

Σ1�2 � Ad
�
M�1

2

�
Σ1 Ad

J
�
M�1

2

�
� Σ2 (2.11)

where the Adjoint operator on H P SEp3q is de�ned as

AdpHq :�

�
R O3

rts^R R

�
. (2.12)

13
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Furthermore, the following approximation holds for probability density func-

tions that are highly focused:

ņ

i�1

f
piq
1 f

piq
2 �

�
ņ

i�1

f
piq
1

��
ņ

i�1

f
piq
2

�
. (2.13)

2.4 Distance metrics

We now brie�y mention distance metrics because it allows for a comparison of two

objects, which in this context are translation vectors, rotation matrices and homoge-

neous matrices. In layman terms, a metric is simply a way of expressing how "near"

or "far" apart two objects are. For points in 3D space, the most intuitive and com-

mon measure of distance between two points is the Euclidean norm or straight line

distance. But this metric would not be easy for comparison because it depends on

the units of length used. Hence given two translation vectors tA, tB P R3, if we want

to compare the distance of tA relative to tB, we divide by the Euclidean norm of tB

to give the relative translation which is a unitless value:

dptA, tBq �
}tA � tB}2

}tB}2

. (2.14)

For rotations in 3D space, an intuitive metric is the smallest angle θA,B between

the two orientations RA, RB P SOp3q which can be computed as such:

dpRA, RBq � |θA,B| � ‖log_pRJ
ARBq‖2. (2.15)

14



Chapter 3

Literature Review

This is a literature review of hand-eye calibration in robotics throughout its ap-

proximately 25 year history and the related problems of hand-eye/robot-world and

multi-robot/sensor calibration. First I give an overview of the various calibration

problems in Section 3.1, then I highlight the common methods used to solve the var-

ious problems in Section 3.2. This review does not include current techniques that

apply only when the sensor to be calibrated is a camera. Such methods usually in-

volve computer vision concepts like structure-from-motion or image projection using

a pinhole camera model. I have chosen not to include them because when modeling

the problem, they usually make assumptions that cause the methods to be narrowly

focused only on speci�c robotic systems.

15



CHAPTER 3. LITERATURE REVIEW

3.1 Calibration problems

3.1.1 Hand-eye calibration

The basic hand-eye calibration problem seeks to identify the position and orientation

between the frame of the a robot's �ange (hand) and the frame of a sensor (eye)

mounted on the �ange, hence the term "eye-in-hand" is also used to describe this sys-

tem. The data that we collect are relative transformations that can be computed using

absolute transformations from the robot and sensor, as seen in Figure 3.1. The robot

moves to di�erent positions and uses its sensor to locate the same target or marker

(that remains stationary when the robot is moving). The relative transformation of

the �ange between poses, A, can then be obtained from the forward kinematics of the

robot in each pose, and the relative transformation of the sensor between poses, B,

can be computed from the poses of the marker as located by the sensor at each robot

position. This problem is commonly formulated as a matrix equation of homogeneous

transformation matrices:

AX � XB (3.1)

where X is the transformation of the sensor frame relative to the robot frame which

we seek to solve for, given the relative transformations A and B [30]. A related robot

system is when the sensor is stationary while the marker is attached to the robot

�ange. The robot can only move to positions where the sensor can locate the marker,

but otherwise the same matrix equation (3.1) can still be formulated although the
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relationships that A and B represent may be di�erent.

X
X

A

B

Robot base frame

Sensor frame

Flange frame

Robot in pose 1
Robot in pose 2

Marker

Figure 3.1: Hand-eye calibration formulated as AX � XB.

Since A,X,B are homogeneous transformations, the matrix equation AX � XB

can be written as

Ahkkkkkikkkkkj�
RA tA

O1�3 1

� Xhkkkkkkikkkkkkj�
RX tX

O1�3 1

�
�

Xhkkkkkkikkkkkkj�
RX tX

O1�3 1

� Bhkkkkkkikkkkkkj�
RB tB

O1�3 1

�
�
RARX RAtX � tA

O1�3 1

�
�

�
RXRB RXtB � tX

O1�3 1

�

and hence the rotation can be obtained by solving [30]

RARX � RXRB (3.2)

and the translation by solving

RAtX � tA � RXtB � tX (3.3)

Solving (3.1) in this way is known as a sequential method because it involves
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solving for RX and tX sequentially. One disadvantage of sequential type solutions was

that any error obtained in the calculation of the rotation RX would be propagated

to the computation of the translation tX . Simultaneous type methods solved for the

rotation and translation at the same time and could eliminate such sources of error

propagation. However for such methods, the results could be sensitive to the units

of translation, whether it is millimeters or inches. This is because they give equal

weight to the rotation and translation components of X during the estimation. An

overview of solutions to (3.1) is given in [22, 29].

It has been shown [30] that in the absence of noise, only two sets of A and B are

necessary to obtain a unique X but the two sets must be nondegenerate. This means

that there must be at least three poses of the robot to obtain two sets of A and B.

Additional considerations when solving such a system are accounting for noisy data

and when the Ai and Bi data may not be in sync.

3.1.2 Hand-eye/Robot-world calibration

If the robot-world relationship needs to be obtained together with the hand-eye rela-

tionship X, then the matrix equation to be solved is

AX � Y B (3.4)

where Y is the pose of the robot base frame to the world frame (see Figure 3.2).

In this system, the robot still moves to di�erent poses so that the sensor locates
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the same marker at di�erent positions. Here, A and B are absolute, not relative,

transformations; A is the transformation of the �ange from the robot base and is

obtained using forward kinematics, while B is the pose of the marker as seen by the

sensor. As in hand-eye calibration, the sensor and marker for this system can be

swapped and we can still formulate the same matrix equation (3.4).

X

Y

A

B

Robot base frame

Sensor frame

Flange frame

World frame

Marker

Figure 3.2: Hand-eye/robot-world calibration formulated as AX � Y B

Similar to the AX � XB case, the matrix equation AX � Y B can be written as�
RA tA

O1�3 1

��
RX tX

O1�3 1

�
�

�
RY tY

O1�3 1

��
RB tB

O1�3 1

�
�
RARX RAtX � tA

O1�3 1

�
�

�
RYRB RY tB � tY

O1�3 1

�

and hence the rotation can be obtained by solving

RARX � RYRB (3.5)
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and the translation can then be obtained by solving

RAtX � tA � RY tB � tY (3.6)

It has been shown [41] that in the absence of noise, only three nondegenerate sets of

A and B are necessary to obtain a unique X and Y . This means that there must

be at least three poses of the robot to obtain three sets of A and B, since for the

AX � Y B problem, A and B are not relative transformations like in the AX � XB

problem. An overview of solutions to (3.4) can be found in [29].

3.1.3 Multi-robot/sensor calibration

When multiple robots are involved and the pose between each robot needs to be

calibrated, then the matrix equation to be solved can be formulated as [34]

AXB � Y CZ (3.7)

where the transformations represent di�erent relationships depending on the robotic

system. One such robotic system is shown in Figure 3.3 which shows three mobile

robots each mounted with a camera that looks at another robot's marker to form a

chain. Here A,B,C are the marker-camera transformations between di�erent robots,

while X, Y, Z are the marker-camera transformations within the same robot. More

details of this and other relevant robotic systems are given in Section 4.1.
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A

X B

Y

C

Z

Figure 3.3: Top-down view of a team of mobile robots with the unknown calibrations
formulated as AXB � Y CZ

To solve (3.7) sequentially, write it as�
RA tA

O1�3 1

��
RX tX

O1�3 1

��
RB tB

O1�3 1

�
�

�
RY tY

O1�3 1

��
RC tC

O1�3 1

��
RZ tZ

O1�3 1

�
�
RARXRB RARXtB �RAtX � tA

O1�3 1

�
�

�
RYRCRZ RYRCtZ �RY tC � tY

O1�3 1

�

and hence the rotation can be obtained by solving

RARXRB � RYRCRZ (3.8)

and the translation can then be obtained by solving

RARXtB �RAtX � tA � RYRCtZ �RY tC � tY (3.9)
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3.2 Current methods

The techniques in the literature for solving calibration problems (3.1), (3.4) and (3.7)

are categorized as shown in Table 3.1. The methods are �rst classi�ed within three

main categories depending on the type of algorithm: closed-form, iterative or batch.

They are then further subdivided depending on the type of mathematical tool used.

The categories will be described in more detail in the following sub-sections.

3.2.1 Transform to Linear System

These methods typically set up a homogeneous linear equation of the form

Γξ � γ

where Γ P Rp�q, ξ P Rq, γ P Rp. This can then be solved using the normal equations

to give

ξ �
�
ΓJΓ

��1
ΓJγ

as the least squares solution. In the presence of noisy data, Γ is formed by stacking

the quantities from n measurements of Ai, Bi. The resulting linear system is overde-

termined and hence the "best �t" solution is taken to be the least squares solution.
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Method AX � XB AX � Y B AXB � Y CZ

Closed-form: Linear System

3.2.1.1 Angle-axis [30], [32], [33], [40]

3.2.1.2 Quaternion [8], [21], [41], [39] [36]

3.2.1.3 Dual Quaternion [9] [18]

3.2.1.4 Lie Group [26]

3.2.1.5 Kronecker Product [5], [6], [20], [4] [18], [28], [11] [37]

Closed-form: Nonlinear System

3.2.2.1 Constrained Optimization [16] [10]

Iterative

3.2.3.1 Nonlinear least squares [42], [16], [12] [10], [13] [37]

3.2.3.2 Convex Optimization [38]

3.2.3.3 Global Optimization [14],[27] [14]

3.2.3.4 Stochastic Optimization [13]

3.2.3.5 Jacobian Optimization [25]

3.2.3.6 Quaternion [15]

3.2.3.7 Lie Group [3]

3.2.3.8 Linear Approximation [34, 36]

3.2.3.9 Statistical Model [31], [1] [31]

Batch

3.2.4.1 Probabilistic [2], [24] [19] [23]

Table 3.1: Categories of methods for solving the three di�erent types of calibration
problems. The section numbers and citations link to the corresponding subsections
in the electronic document.

3.2.1.1 Angle-axis

1. The earliest solutions to (3.1) were of the sequential type, with Shiu and Ahmad

[30] being the �rst authors who provided a complete solution. They represented

rotations using an angle-axis parametrization, which allowed them to recast the

rotation component equation (3.2) as a system of linear equations

Γ9n�4nξ4n�1 � γ9n�1 (3.10)
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where Γ and γ were comprised of the axes of rotation of RAi
and RBi

, while ξ

was comprised of cosines and sines of the angles of rotation. After obtaining

the rotation RX from ξ, they then reformulated (3.3) as another linear system���RA1 � I3

...

RAn � I3

��� tX �

���RXtB1 � tA1

...

RXtBn � tAn

��� (3.11)

whose least squares solution gave the translation tX . The authors also proved

that at least 2 relative rotations (i.e. Ai, Bi, i � 1, 2) are needed in order for a

unique solution in the noiseless case, and the rotation axes of A1, B1 cannot be

parallel or antiparallel to that of A2, B2 respectively.

2. Soon after [30] was published, Tsai and Lenz [32] came up with a sequential

method that also used an angle-axis formulation. They converted rotation ma-

trices, RH , into angle-axis representations, Rotp~nH , θHq, where ~nH and θH is

the axis and angle of rotation of RH respectively. (Here and in other places in

this chapter, H represents the transformation A or B unless otherwise stated.)

They then de�ned ~kH :� 2~nH sin θH
2
to form the system of linear equations�����

�
~kA1 �

~kB1

�^
...�

~kAn � ~kBn

�^
�����
�� 1b

4� }~kX}2

~kX

��
loooooooooomoooooooooon

ξ3�1

�

���
~kB1 �

~kA1

...
~kBn � ~kAn

��� (3.12)

which could be solved using a least squares solution to recover RX while the

translation tX was obtained by solving (3.11). They claimed their method was

easier to formulate and faster to computer than Shiu and Ahmad's solution
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because Shiu and Ahmad's solution solved (3.10) for ξ whose dimension in-

creased with the number of measurements n. But in Tsai and Lenz's method

formulation in (3.12), the number of unknowns in ξ remains constant at 3.

3. Zhuang and Roth [40] improved on Shiu and Ahmad's method of obtaining the

rotation RX for the hand-eye calibration problem by using quaternion algebra

to obtain a relationship between the axes and angle of rotation of RA and RB.

This was then used to form a linear systems of equations���rkA1 � kB1s
^

...

rkAn � kBns
^

����
tan

�
ω
2

�
kX

�
�

���kB1 � kA1

...

kBn � kAn

���
where kA, kB, kX P R3 were the axes of rotation for RA, RB, RX respectively and

ω is the angle of rotation for RX . From the least squares solution z P R3 of this

system (assuming }z} � 0), they recovered RX with

kX �
z

}z}
,

ω � 2 arctan

�
max tz1, z2, z3u

max tkX,1, kX,2, kX,3u




where the vectors z �
�
z1 z2 z3

�J
and kX �

�
kX,1 kX,2 kX,3

�J
were written

in their components. As opposed to Shiu and Ahmad's, their method allowed

the rotation axes of A1, B1 and A2, B2 to be antiparallel.

4. Wang [33] provided sequential solutions to the rotation and translation of (3.1)

in his Class B calibration procedure. He used the angle-axis representation
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to list the possible relationships between the rotational data tRAi
u and tRBi

u,

and provided closed-form solutions for each case. The translation was obtained

by using the normal equations to solve (3.11). He also computed covariances

of the rotation and translation estimates as a measure of accuracy, and did a

sensitivity analysis of the resulting X. He compared his method with that of

Shiu [30] and Tsai [32] and found that the Tsai method was the most accurate

and e�cient, followed by his method and then Shiu's.

3.2.1.2 Quaternion

1. Chou and Kamel [8] used quaternions to transform (3.2) into a homogeneous

system of linear equations��������
0 �pkA1 � kB1q

J

kA1 � kB1 rkA1s
^ � rkB1s

^

...
...

0 �pkAn � kBnq
J

kAn � kBn rkAns
^ � rkBns

^

��������
looooooooooooooooooomooooooooooooooooooon

Γ4n�4

qX � O4n�1

where kA, kB were the rotation axes that could be computed from the vector

part ~qA, ~qB of quaternions for A and B respectively. The SVD of Γ was then

used to solve for the rotation RX . To obtain the translation tX , another set of
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linear equations

���rkA1s
^

...

rkAns
^

��� tX �

�����
1

2 sinp 1
2
θA1q

pRXtB1 � tA1q

...
1

2 sinp 1
2
θAnq

pRXtBn � tAnq

�����
was solved using SVD where pkAi

, θAi
q was the angle-axis representation of RAi

.

2. Then Lu and Chou [21] presented another method that they called the "eight

space method", which solved for the rotation and translation of the hand-eye

calibration problem simultaneously. Using (2.4), they reformulated the problem

using quaternion algebra into an overdetermined linear system�������������

�

QB1

�
�

TA1 �
�

TB1



�

QA1
�

�

QB1

�

QA1
�

�

QB1
O4

...
...

�

QBn

�
�

TAn �
�

TBn



�

QAn
�

�

QBn

�

QAn
�

�

QBn
O4

�������������looooooooooooooooooooooomooooooooooooooooooooooon
Γ8n�8

�
qX

�

QXtX

�
looomooon
ξ8�1

� O8n�1

where
�

QH is formed from the rotation of H P tA,B,Xu that was parametrized

as a quaternion, and
�

TH comes from the translation of H that is represented

only in the vector part of a quaternion tH with the scalar part being 0. For

instance, tX �
�
0 ~t JX

�J
where the vector ~tX is the same as tX which was a

notation used earlier but now written with an arrowhead notation to emphasize

that it is a 3�1 vector and avoid confusion with scalar quantities in this context.

They then formed the normal equations ΓJΓξ � O which gave a least squares
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solution by �nding the eigenvector vmin �
�
v1 . . . vn

�J
corresponding to the

minimum eigenvalue of ΓJΓ. vmin then had to be normalized using its �rst four

components to give ξ

ξ �
1a

v2
1 � � � � � v2

4

vmin

and hence retrieve X. They also provided another closed-form least squares

solution that can handle noisy data. They achieved this by dividing ΓJΓ into

block matrices via the Schur decomposition and using SVD subsequently.

3. For the hand-eye/robot-world problem, Zhuang et al [41] used quaternions to

formulate a sequential type solution and converted the rotation part (3.5) into

a linear homogeneous system�����
a01I3 � r~a1s

^ � 1
a01
~a1~a

J
1 �b01I3 �

�
~b1

�^
� 1

a01
~a1
~bJ1

...
...

a0nI3 � r~ans
^ � 1

a0n
~an~a

J
n �b0nI3 �

�
~bn

�^
� 1

a0n
~an~b

J
n

�����loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
Γ3n�6

�
1
y0
~x

1
y0
~y

�
�

����
~b1 �

b01
a01
~a1

...
~bn �

b0n
a0n
~an

����

where RAi
, RBi

, RX , RY were represented as quaternions

�
a0i

~ai

�
,

�
b0i

~bi

�
,

�
x0

~x

�
,�

y0

~y

�
respectively over i � 1, ..., n measurements. But this conversion was

only valid if the rotation angles were not π when RA, RY were converted into

the angle-axis representation. They then used SVD and the unit quaternion

constraint to solve for x0, ~x and y0, ~y. To get the translation, they formulated
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(3.6) as a linear system���RA1 �I3

...
...

RAn �I3

����
tX

tY

�
�

���RY tB1 � tA1

...

RY tBn � tAn

��� (3.13)

which they also solved using SVD. The authors also proved that a minimum of

3 measurements are required for a unique solution of X and Y , and the axes

of rotation must not be parallel or antiparallel and the relative rotation angles

between poses must not be 0 or π.

4. Zhao and Liu [39] obtained the rotation and translation simultaneously for the

hand-eye calibration problem (3.1) by forming the linear system��������

~kA1 �
~kB1 r~kA1 �

~kB1s
^ O3�1 O3�1

~cA1 � ~cB1 r~cA1 � ~cB1s
^ O3�1 �UA1

...
...

...
...

~kAn � ~kBn r~kAn � ~kBns
^ O3�1 O3�1

~cAn � ~cBn r~cAn � ~cBns
^ O3�n �UAn

��������
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Γ6n�8

�
qX

tX � qX

�
looooomooooon

ξ8�1

� O6n�1

where ~cAi
,~cBi

were points on the rotation axes ~kAi
, ~kBi

, and UAi
was composed

of the components of ~kAi
. They then used SVD on Γ to �nd the two smallest

singular values and their corresponding right singular vectors. The value of ξ

was then given by a linear combination of these two vectors.

5. Wu et al [36] provided a closed-form solution to the multi-robot/sensor calibra-

tion problem (3.7) that solved only for the rotational components of X, Y, Z
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simultaneously. They formed the linear system�����
�

QB1

�

QA1
�WC1

...
...

�

QBn

�

QAn
�WCn

�����loooooooooooomoooooooooooon
Γ4n�20

�
qX

qY b qZ

�
looooomooooon

ξ20�1

� O4n�1

whereWCi
P R4�16 was obtained using

�

QZ

�

QY qCi
�WCi

pqY b qZq. They then

solved for ξ using the eigenvector corresponding to the minimum eigenvalue of

ΓJΓ. But because of the ambiguous transformation between rotation matrices

and quaternions, there were two possibilities for Γ. Computing both of them

was only feasible when the number of measurements n was small, and hence the

algorithm's e�ciency decreased exponentially with n and its use was limited to

obtaining an initial estimate of X, Y, Z that could be input into their iterative

method mentioned in Section 3.2.3.8.

3.2.1.3 Dual Quaternion

1. Daniilidis [9] solved (3.1) by introducing dual quaternions qqAi
, qqBi

, qqX to rep-

resent Ai, Bi, X respectively. As indicated in (2.5), the dual quaternions can be

written as a sum of real and dual parts qqAi
� a � εa1, qqBi

� b � εb1, qqX �
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qX � εq1X . The linear system������������

~a1 �~b1

�
~a1 �~b1

�^
O3�1 O3�3

~a 11 �
~b 11

�
~a 11 �

~b 11

�^
~a1 �~b1

�
~a1 �~b1

�^
...

...
...

...

~an �~bn

�
~an �~bn

�^
O3�1 O3�3

~a 1n �
~b 1n

�
~a 1n �

~b 1n

�^
~an �~bn

�
~an �~bn

�^

������������looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
Γ6n�8

�
qX

q1X

�
� O6n�1. (3.14)

was solved using SVD to get the rotation and translation of X simultaneously.

RX can be obtained from qX while tX is contained in q1X :� 1
2
tX � qX . In this

formulation, the scalar parts of the quaternions were not used.

2. Li et al [18] applied dual quaternions to the hand-eye/robot-world calibration

problem (3.4) to solve for the rotation and translation simultaneously. They

used the matrix representations in (2.4) for the real and dual parts of qqAi
, qqBi

and this is denoted by the non-primed and primed uppercase letters. Their

linear system was formulated as�����������

�

A1 O4�4

�

B1 O4�4
�

A1
1

�

A1

�

B1
1

�

B1

...
...

...
...

�

An O4�4

�

Bn O4�4
�

A1
n

�

An

�

B1
n

�

Bn

�����������
looooooooooooooomooooooooooooooon

Γ8n�16

�����
qX

q1X

qY

q1Y

����� � O8n�1

which was solved using SVD. The solution for qX ,qY gave the rotations RX , RY

while the translations tX , tY were recovered using q1X � 1
2
tX � qX and q1Y �
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1
2
tY � qY .

3.2.1.4 Lie Group

1. Park and Martin [26] used Lie groups to form linear systems from (3.2) and

(3.3) which were then solved using the standard least squares method for the

rotation and translation sequentially. First they obtained the rotation using

RX �
�
MJM

�� 1
2 MJ

where M is de�ned using the rotation axes of A and B

M �
ņ

i�1

kBi
kJAi

Then the translation tX was computed using the rotation by solving the linear

equation (3.11) using the standard least squares method.

3.2.1.5 Kronecker Product

1. Andre� et al [5, 6] used the Kronecker product to formulate (3.1) as a linear

system that solved for the rotation and translation simultaneously:��������
I9 �RA1 bRB1 O9�3

I3 b tJB1
I3 �RA1

...
...

I9 �RAn bRBn O9�3

I3 b tJBn
I3 �RAn

��������
�
vecpRXq

tX

�
�

��������
O9�1

tA1

...

O9�1

tAn

�������� (3.15)
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They also provided algebraic analysis on what can be recovered depending on

the type of motions of the camera. They also found that in the presence of

noise, the solution obtained for RX may not be orthogonal. Hence the problem

had to be recast as a sequential one where the rotation was solved �rst using:���I9 �RA1 bRB1

...

I9 �RAn bRBn

��� vecpRXq � O9n�1

and then orthogonalizing the resulting RX before using it to obtain the trans-

lation by solving (3.11).

2. Liang and Mao [20] also used the Kronecker product to obtain a linear system

that solved the rotation �rst:���RA1 b I3 � I3 bRJ
B1

...

RAn b I3 � I3 bRJ
Bn

���
loooooooooooooomoooooooooooooon

Γ

vecpRXq � O9n�1 (3.16)

by computing the SVD of Γ, which say was UΓΣΓV
J

Γ . Then the solution to

vecpRXq is given by the columns of VΓ. But RX had to be orthogonalized by

computing its SVD
�
UXΣXV

J
X

�
to obtain the nearest orthogonal matrix UXV

J
X .

The translation tX was found using (3.11) and then applying QR factorization.

3. Ackerman et al [4] solved the hand-eye calibration problem (3.1) for the case

where a priori correspondence between the measurements Ai, Bi were not given.

They �rst recovered the correspondence using four invariants of SEp3q under

conjugation. Then they formed the linear system (3.15) to solve for the rota-
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tion and translation simultaneously. The obtained rotation RX might not be

orthogonal so there was a need to project it onto SOp3q.

4. Li et al [18] also provided a second solution to the hand-eye/robot-world cal-

ibration problem (3.4) but solved the rotation and translation simultaneously

(in contrast to Shah's method � see item 5). Their linear system to be solved

was ��������
RA1 b I3 �I3 bRJ

B1
O9�3 O9�3

O3�9 I3 b tJB1
�RA1 I3

...
...

...
...

RAn b I3 �I3 bRJ
Bn

O9�3 O9�3

O3�9 I3 b tJBn
�RAn I3

��������
�����
vecpRXq

vecpRY q

tX

tY

����� �

��������
O9�1

tA1

...

O9�1

tAn

��������
and in the presence of noise, they used Rodrigues' rotation formula to make

RX , RY orthogonal.

5. Shah [28] solved (3.4) sequentially using the Kronecker product by transforming

(3.5) into ���RB1 bRA1 �I9

...
...

RBn bRAn �I9

���
looooooooooomooooooooooon

Γ9n�18

�
vecpRXq

vecpRY q

�
� O9n�1

and computing ΓJΓ to give�������
nI9 �

ņ

i�1

RJ
Bi
bRJ

Ai

�
ņ

i�1

RBi
bRAilooooooomooooooon

K

nI9

������� .
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vecpRXq and vecpRY q were then proportional to the right and left singular vector

of K respectively that correspond to the singular value n. The proportionality

constants are determined by enforcing RX , RY to have a determinant of �1.

Because of noise, the computed matrices had to be re-orthogonalized so that

they remained in SOp3q. To get the translations tX , tY , she used the same

method as Zhuang et al and solved the linear system (3.13).

6. Ernst et al [11] used the Kronecker product to solve (3.4) although they did

not explicitly mention that term. They proposed a simultaneous solution that

formed the linear system:���������

RJ
B1
bRA1 O9�3

tJB1
bRA1 RA1

�I12

...
...

RJ
Bn
bRAn O9�3

tJBn
bRAn RAn

�I12

���������looooooooooooooooomooooooooooooooooon
Γ12n�24

�����
vecpRXq

tX

vecpRY q

tY

�����
looooomooooon

ξ24�1

�

��������
O9�1

�tA1

...

O9�1

�tAn

��������
looomooon
γ12n�1

and solved it using QR factorization. Since the computed RX , RY were not or-

thogonal, they were decomposed using SVD. For instance if RX was decomposed

into UΣV J, then the "closest" orthogonal matrix would be

RX � UV J.

7. Yan et al [37] solved the calibration problem (3.7) for a hybrid robot which con-

sists of a parallel manipulator mounted on the tool �ange of a serial manipulator.
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See Figure 4.3 for an illustration, bearing in mind that the transformations may

represent di�erent relationships when compared to [34]. This robot system will

be described further in Section 4.1.3 and hence we only state their methods

here. Their �rst method (called the "Degradation-Kronecker" method) split

the problem into two AX � Y B subproblems by making B or C constant and

only varying the other two matrices to collect measurements. That is, by �xing

B, (3.7) can be reduced to

A rX � Y C (3.17)

where

rX � XBZ�1 (3.18)

Similarly by �xing C, (3.7) can be reduced to

AX � rY B�1 (3.19)

where

rY � Y CZ (3.20)

(3.17) and (3.19) were then solved using the Kronecker product method in [18]

to obtain X, Y , rX and rY . They then used SVD to enforce the orthogonality of

RX and RY and �nally obtained Z by solving (3.18) and (3.20) and choosing

the Z with smaller errors. This method only applied if �xing B was feasible.
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This method gave a closed-form solution which was fast but was not as accurate

in the presence of noise. See A.3 for the MATLAB code.

3.2.2 Transform to Nonlinear System

3.2.2.1 Constrained Optimization

1. Horaud and Dornaika [16] presented one hand-eye calibration method to (3.1)

using quaternions, and it was a sequential method that found the rotation by

solving a contrained minimization problem

min
q

#
qJ

�
ņ

i�1

�
�

VAi
�

�

VBi


J��

VAi
�

�

VBi


�
q

+
, such that qJq � 1

using Lagrange multipliers. If the eigenvectors of RAi
, RBi

corresponding to

the eigenvalue 1 are ~vAi
, ~vBi

respectively, then
�

VAi
,
�

VBi
are the matrices corre-

sponding to the quaternions qAi
�
�
0 ~vJAi

�J
and qBi

�
�
0 ~vJBi

�J
respectively.

They then obtained the translation tX by minimizing

min
R,t

ņ

i�1

‖RXtBi
� pRAi

� IqtX � tAi
‖2,

which is just solving a linear least squares problem.

2. Dornaika and Horaud [10] presented a similar Lagrange multiplier method to

hand-eye/robot-world calibration (3.4) that formulated the rotation portion

(3.5) as a constrained optimization problem that could be solved using Lagrange

37



CHAPTER 3. LITERATURE REVIEW

multipliers in closed-form. The objective function is a positive semi-de�nite

quadratic form

min
qX ,qY

pqX � qY q
JSpqX � qY q, such that qJXqX � 1, qJY qY � 1.

where S is a 8� 8 positive semi-de�nite symmetric matrix

S �

�����
nI4

ņ

i�1

�
�

Q
J

Ai

�

QBi

ņ

i�1

�
�

Q
J

Bi

�

QAi
nI4

����� .
To get the translation tX , tY , they solved (3.13) using linear least squares.

3.2.3 Iterative Methods

An iterative method usually solves the problem by approximating the solution using

optimization techiniques.

3.2.3.1 Nonlinear least squares

1. Zhuang and Shiu [42] presented an iterative algorithm that solved for the rota-

tion and translation simultaneously for hand-eye calibration. They �rst de�ned

Zi :� AiX �XBi, i � 1, ..., n

where n is the number of measurements, and then they solve the problem

arg min
X

ņ

i�1

vecpZiq
JvecpZiq.
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This nonlinear least squares problem could then be solved using the Gauss-

Newton or Levenberg-Marquardt methods. Their algorithm could also handle

the case when the orientation of the sensor is not known. It was also more

accurate in most cases except when the position data is much noisier than the

orientation data.

2. Horaud and Dornaika [16] presented another technique to solve (3.1), in addition

to the one in Section 3.2.2. This method solved for the rotation RX and trans-

lation tX simultaneously by forming a nonlinear sum of squares optimization

problem

arg min
q,t

#
ņ

i�1

}vAi
� q � vBi

� sq}2 �

ņ

i�1

}= pq � tBi
� sqq � pRAi

� Iq t� tAi
}2 �

λ
�
1� qJq

�2

+

where λ is a Lagrange multiplier to enforce unit quaternions and vAi
,vBi

are the

quaternions (with real part zero) corresponding to the eigenvectors of RAi
, RBi

that are associated with the unit eigenvalue. The term = p�q refers to the imagi-

nary or vector part of the quaternion. This problem could then be solved using

nonlinear least squares methods like Levenberg-Marquardt or be simpli�ed fur-

ther to be amenable to constrained step methods like trust-region.

3. Dornaika and Horaud [10] proposed a second solution to the hand-eye/robot-
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world calibration problem (3.4) using a nonlinear least-squares constrained min-

imization approach. They minimzed the error function

min
x

" ņ

i�1

}RAi
RX �RBi

RY }
2

�
ņ

i�1

}RAi
tX � tAi

�RY tBi
� tY }

2

�λ1

��RJ
XRX � I

��2

�λ2

��RJ
YRY � I

��2
*

over x where x P R24 consisted of the elements in the rotation matrices and

translation vectors RX , tX , RY , tY . The solution to this problem was obtained

using the Levenberg-Marquardt algorithm.

4. Fassi and Legani [12] gave a geometric interpretation for (3.1) using screw the-

ory. They provided a closed-form algorithm to determine the unique solution

using two sets of measurements that were not degenerate. For a set of n mea-

surements, they formed the minimization problem

min
ξ

ņ

i�1

}AiXpξq �XpξqBi}

where ξ consists of the rotation axis, rotation angle, point on the rotation axis

and amount of translation along the axis. Two measurements were chosen to

compute an initial value of X using the closed-form algorithm that that was

then passed into an iterative optimization method to obtain the solution.
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5. The �rst solution in Ha et al [13] used geometric optimization to solve the

hand-eye/robot-world calibration problem (3.4). They formed the optimization

problem

min
RX ,RY

1

2

18̧

i�1

λi rtrpPiRXq � trpQiRY qs
2 � trpP0RXq � trpQ0RY q � c (3.21)

where Pi, Qi P R3�3, i � 0, . . . , 18 and λi, c P R were computed from the eigen-

value analysis of the objective function. They also showed how to compute the

initial estimate and the step size for gradient descent and Newton's method to

�nd the optimal RX , RY .

6. The second solution proposed by Yan et al [37] to solve (3.7) (called the "purely

nonlinear" method) solved for X, Y, Z simultaneously using nonlinear minimiza-

tion of the error in rotation and translation. That is, they formed:

arg min
X,Y,Z

12̧

j�1

f 2
j

where fj is an element of the vector f P R12

f �

�
vec pRARXRB �RYRCRZq

RARXtB �RAtX � tA � pRYRCtZ �RY tC � tY q

�

which was obtained by manipulating (3.8) and (3.9). This nonlinear least

squares problem was then solved using the Levenberg-Marquardt algorithm,

and used random X, Y, Z as initial estimates. The method was sensitive to the

initial estimates and hence it might need multiple executions to �nd the opti-
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mal solution. In my implementation (see A.4) with random initial estimates, it

typically needed about 5 executions to get back the original X, Y, Z in the no

noise case.

3.2.3.2 Convex Optimization

1. Zhao [38] used convex optimization to solve (3.1) without the need for an initial

value. He formulated the problem by representing rotations as orthonormal

matrices and quaternions and applying the L8 norm. For orthonormal matrices

by representing the one matrix and two vectors in the equation (3.15) as Cx � d,

he transformed it into the equivalent problem

min
δ,x

δ such that }Cix� di}2 ¤ δ for i � 1, ..., n

which could be solved using second-order cone programming (SOCP).

For dual quaternions, Zhao represented the one matrix and one vector in

(3.14) as Cix � 0 and hence converted it into the following SOCP optimization

problem

min
δ,x

δ such that }Cix}2 ¤ δ for i � 1, ..., n with

Dx ¥ f

where Dx ¥ f represents the constraint to avoid the trivial solution x � 0.
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3.2.3.3 Global Optimization

1. Heller et al [14] proposed three parametrizations to (3.1) and (3.4) that used

polynomial optimization over semi-algebraic sets with linear matrix inequality

(LMI) relaxations. The �rst two used the orthonormal and quaternion param-

eterization for rotations and (3.1) became

min
ξ

ņ

i�1

}AiXpξq �XpξqBi}
2, such that gpξq ¥ 0

where the variables ξ to be minimized over and the constraints gpξq di�ered

depending on the orthonormal or quaternion case. The norm used here is the

Frobenius norm. The third parameterization used dual quaternions to form

min
qq

ņ

i�1

}qai � qqX � qqX � qbi}2, such that gpqqq ¥ 0.

All these polynomial objective functions were then relaxed using LMIs and

solved via semide�nite programming (SDP). Similar formulations and solutions

were stated for the hand-eye/robot-world problem (3.4).

2. Ruland et al [27] formulated (3.1) as a nonconvex global optimization problem

that separates the estimation of the rotation and translation. They represented

rotations using angle-axis and then applied the branch-and-bound algorithm to

solve the optimization problem.
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3.2.3.4 Stochastic Optimization

1. For the hand-eye/robot-world calibration problem (3.4), Ha et al [13] also pro-

posed a two-phase stochastic optimization algorithm for the objective function

(3.21). This involved uniform random sampling on SOp3q, applying local search

on those samples using their �rst algorithm (refer to Section 3.2.3.1 item 5) and

then checking optimal Bayesian stopping rules.

3.2.3.5 Jacobian Optimization

1. Mao et al [25] proposed solving (3.1) for the rotation and translation simulta-

neously using Jacobians of the objective function. They formed the problem

min
X

ņ

i�1

�
}Fi}

2 � }Gi}
2
�loooooooomoooooooon

H

(3.22)

where Fi came from (3.16) and Gi came from (3.3):

Fi �
�
RAi

b I3 � I3 bRJ
Bi

�
vecpRXq

Gi � pRAi
� I3q tX �RXtBi

� tAi

They required initial estimates which could be computed by their earlier method

[20] that was a closed-form solution using the Kronecker product (see item 2 in
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section 3.2.1). The Jacobian J for (3.22) was computed to be

Ji �

����
dFi
d~rJ

dFi

d~tJ

dGi

d~rJ
dGi

d~tJ

����
where ~r was the vector of Euler angles for RX and ~t :� tX . This was used to

compute the update step ∆χ for the iterative algorithm in this way:

J∆χ � �H.

3.2.3.6 Quaternion

1. Hirsh et al [15] proposed an iterative algorithm to the hand-eye/robot-world

problem (3.4) by averaging quaternions and vectors. From some initial esti-

mate of Y , they used three measurements each of RA, RB to compute three

estimates of RX using (3.5). These estimates were then converted to quater-

nions and averaged to get the "best" estimate of RX . This average was then

used to compute 3 estimates of RY , which was again averaged after conversion to

quaternions. This cycle then continued until the estimates of RX , RY converged

to a speci�ed tolerance. With these values, the translation was then computed

using the same idea: update the estimates tX , tY using (3.4) and carry out the

averaging on only the translation vector part of the homogeneous matrix.
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3.2.3.7 Lie Group

1. Ackerman et al [3] solved (3.1) by formulating the optimization problem

min
X

}AX �XB}2
W

where the weighted Frobenius norm was used. To solve this problem, they

applied gradient descent on the Euclidean group SEp3q using the update step

gs�1 � gse
∆t vg

over a small time step ∆t where g P SEp3q and vg � g�1
9g is the rigid body

velocity. They also provided four conditions that could �lter out those Ai, Bi

measurements which were too noisy.

3.2.3.8 Linear Approximation

1. For the multi-robot/sensor calibration problem (3.7), Wang et al [34] solved

for X, Y , Z simultaneously but the rotational and translational components

were handled sequentially. Hence this would be a sequential method and their

algorithm required at least 3 sets of data. They solved approximately for the

rotational components using a linear iterative method by applying Taylor's ex-

pansion of the exponential map to form a linear system. This system can then

be solved for the change in rotation using the normal equations. The transla-

tional components were obtained by a linear least squares method by rewriting
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(3.9) and stacking n measurements to obtain���RA1 �I �RYRC1

...
...

...

RAn �I �RYRCn

���
loooooooooooooomoooooooooooooon

J3n�9

���tXtY
tZ

��� �

���RY tC1 � tA1 �RA1RXtB1

...

RY tCn � tAn �RAnRXtBn

���
loooooooooooooooooomoooooooooooooooooon

p3n�1

which could be solved using standard linear least squares. In a subsequent

journal paper, Wu et al [36] proposed a closed-form solution (reviewed in Sec-

tion 3.2.1.2 item 5) to obtain an initial estimate of X, Y, Z that could be input

into their iterative method. Refer to Listing A.2 for the MATLAB code.

3.2.3.9 Statistical Model

1. Strobl and Hirzinger [31] proposed a new metric for the error in rotation and

translation that was used to form an optimization problem for hand-eye (3.1)

or hand-eye/robot-world (3.4) calibration. Their formulation used Gaussian

distributions for the rotation and translation error, and could automatically

compute the optimal weights for the rotation and translation components to

improve accuracy. Numerical optimization algorithms could then be applied to

obtain the rotation and translation simultaneously.

2. Ackerman et al [1] provided two information theoretic approaches to the hand-

eye calibration problem (3.1) by viewing the Ai, Bi, X as probability density

functions on SEp3q. They formed constraints on X so that it was parametrized
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by two parameters

Xpφ, sq � H ppRpkA, kBqRpkB, φq, tpsqq

where pφ, sq P r0, 2πq�R. Their two methods solved the respective minimization

problems

min
φ,s

��Ad�Xpφ, sq�1
�

ΣA � ΣB Ad
JpXpφ, sqq

��2

F
,

min
φ,s

tr
 
Σ�1
A AdpXpφ, sqqΣB Ad

JpXpφ, sqq
(

using a closed form expression by noticing that the cost function was quadratic

in s. The solution for s was then substituted back to solve for φ which was just

a one dimensional search.

3.2.4 Batch Methods

3.2.4.1 Probabilistic

This section introduces a method that have been applied to all three calibration prob-

lems in Section 3.1. The strength of this method is that the measurements tAi, Biu or

tAi, Bi, Ciu (depending on the problem) did not need a priori correspondence, unlike

other methods. The loss of correspondence could be because the measurements were

not taken synchronously so there was a temporal shift between the data. Another

reason could be that the data within each pair or triplet was shifted by a di�erent
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value from the other pairs or triplets, which produced "scrambled data". The main

theory for such probabilistic batch methods can be found in [7, 35].

1. Ackerman and Chirikjian [2] �rst applied the properties of probability distri-

butions on SEp3q (covered in Section 2.3) to solve the hand-eye calibration

problem (3.1). Since the data H P tAi, Biu were discrete, they de�ned the

discrete version of the mean H̄ and covariance ΣH for a p.d.f. fH , where the

continuous version was de�ned in (2.6) and (2.7) respectively. Hence

ņ

i�1

log
�
H̄�1Hi

�
:� O4 (3.23)

de�ned the mean, and the corresponding covariance was

ΣH :�
ņ

i�1

log_
�
H̄�1Hi

� �
log_

�
H̄�1Hi

�J�
.

Hence (3.1) produced

ĀX � XB̄ (3.24)

Ad
�
X�1

�
ΣAAd

J
�
X�1

�
� ΣB (3.25)

where Ā, B̄ were the mean of tAiu, tBiu. This produced a set of 4 possibilities

for RX and the correct one could be determined by solving

arg min
X

}kĀ �RXkB̄}

where kH was the screw axis of H. After getting RX , the translation tX was
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then obtained using (3.25).

2. Li et al [19] used a similar probabilistic method to perform batch optimiza-

tion for the hand-eye/robot-world problem (3.4). The main advantage of their

method was the ability to recover X and Y despite a constant shift in time be-

tween the corresponding tAiu, tBiu data. They formed the following covariance

relationships out of the �rst two blocks of (3.25):

Σ
p1q
B � RJ

XΣ
p1q
A RX (3.26)

Σ
p2q
B � RJ

XΣ
p1q
A RX

�
RJ
XtX

�^
�RJ

XΣ
p2q
A RX . (3.27)

From (3.24), (3.26) and (3.27), they obtained 8 candidates pairs for pXk, Ykq, k �

1, . . . , 8. To pick an optimal pair, the obtained the time shift (to recover the cor-

respondence) by solving an optimization problem using the correlation function

between tAiu and tBju. With the correspondence between the measurements

tAi, Biu restored, the optimal pair could now be determined by solving

pX, Y q � arg min
Xk,Yk

1

n

ņ

i�1

�
}θAi

� θ
rBi
} � }dAi

� d
rBi
}
�

(3.28)

where rBi � X�1
k YkBi, and θ, d are screw parameters. Then an optimal X can

be obtained from (3.28) using Euclidean group invariants for the AX � XB

case and subsequently obtain the optimal Y .

3. Ma et al [24] adopted a similar method to Ackerman in [2] for (3.1) but used

a di�erent de�nition of the mean and covariance on SEp3q which improved the
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accuracy of the recovered X provided the distributions of Ai, Bi satis�ed some

conditions. They used the �rst-order and second-order approximations of (3.23)

to derive two new means for their batch methods which they call "Batch1" and

"Batch2". In closed-form, the mean of Ai for Batch1 is

ĀBatch1 �

���RĀ

1

n

ņ

i�1

tAi

OJ 1

���
with a similar form for Bi. The mean for Batch2 could not be written in closed-

form as it was an iterative solution to an optimization problem. This method

works on scrambled data and hence did not need to recover the correspondence

between pairs of Ai and Bi.

4. Ma et al [23] applied a similar batch method to the multi-robot/sensor cali-

bration problem formulated using (3.7). This method is reviewed in detail in

Chapter 4.
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Review of the MGC method

This chapter contains a detailed review of the MGC method [23] for solving the multi-

robot/sensor calibration problem that has been formulated as the matrix equation

AiXBi � Y CiZ, i � 1, . . . , n. (4.1)

where we are given tAi, Bi, Ciu to solve for the unknowns X, Y, Z.

This method can solve (4.1) under two types of formulations, which Ma et al

called "frameworks". The �rst framework solves for X, Y, Z simultaneously under

certain conditions and is a sequential type method, i.e. it solves for RX , RY , RZ �rst

and then uses that to obtain tX , tY , tZ . The second framework solves for X and

Z simultaneously and uses them to solve for Y next, and is also a sequential type

method.
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X
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B

Robot 1 base frame

Sensor frame

Flange 1 frame

Robot 2 base frame

Z

C

Flange 2 frame

Marker frame

Figure 4.1: Dual-arm robot-sensor calibration formulated as AXB � Y CZ.

4.1 Applications to Robotic Systems

The MGC method can be applied to calibrate multiple robot systems that can be

represented by (4.1). Here are three such systems:

4.1.1 Mobile robots

Figure 3.3 shows three mobile robots with cameras and targets mounted on them.

For each robot, we are interested to �nd out the relative position and orientation of

the target and camera, which can be represented by homogeneous matrices X, Y, Z.

When each robot points its camera at the target of another robot in a chain as shown

in Figure 3.3, the position and orientation of a target relative to the camera that is

looking at it can be represented by the matrices A,B,C. Hence we can formulate the

calibration problem for this robotic system using (4.1).
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4.1.2 Dual serial manipulator

Another applicable system has two robot manipulators �xed to the ground as shown

in Figure 4.1. One robot has a sensor mounted on it and the other robot has a

marker mounted on it. For one robot, we want to calculate the �ange to sensor trans-

formation, X, while for the other robot, we want to compute the �ange to marker

transformation, Z. The remaining unknown is the base-to-base transformation, Y .

The data that can be collected are the base-to-�ange transformation for each robot,

A,C, which can be computed using the forward kinematics. The relative transfor-

mation, B, between the camera and target is collected as well, but the robots have

to move in such a way that at every robot pose, the target is visible in the camera's

�eld-of-view.

A variation of this system is to have two manipulators, each with a sensor mounted

on it, looking at a common target (see Figure 4.2 for the diagram where the target

is a checkerboard pattern). Here the data tBiu is obtained indirectly as B � B1B
�1
2 ,

using the transformations in each sensor frame B1, B2. A naive approach to solve

(3.7) is to do two hand-eye calibrations for each robot separately and then calibrate

the base-to-base transformation Y . But this three step method has error propagation

so Y will be more inaccurate compared to X or Z.
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Sensor 1 frame

Flange 1 frame

Robot 2 base frame

Z

C

Flange 2 frame

Sensor 2 frame

B1

B2

Figure 4.2: System of two manipulators with cameras looking at a common target

4.1.3 Hybrid (serial-parallel) robot

Yan et al [37] introduced a hybrid robot system that can be calibrated by modeling

the system using (4.1). As seen in Figure 4.3, this hybrid robot consists of a parallel

manipulator mounted on the �ange of a serial manipulator robot, and there is a

stationary camera looking at a marker on the tool of the parallel robot. The unknowns

in this system are the transformation between the �ange of the serial robot and base

of the parallel robot, X, the transformation between the base of the serial robot

and the camera frame, Y , and the transformation between the base of the marker

and the �ange of the parallel robot, Z. We can compute the serial robot's and the

parallel robot's base-�ange transformation (A,B respectively) using their forward

kinematics. The camera captures images of the marker and provides the camera-tool

transformation, C. When calibrated, the camera can track the position of the marker

which can in turn guide the movements of the robot.
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Figure 4.3: Serial-parallel arm hybrid robot calibration formulated as AXB � Y CZ

4.2 Mathematical Framework

In order for the MGC method to work, the initial step is to collect data in such

a way where the user can �x any one of A, B, or C while varying the other two

transformations. This is certainly possible in the mobile robot system mentioned

in Section 4.1.1 where any two mobile robots are stationary and the third robot

is roaming around. For systems in Figures 4.1, 4.2 and 4.3, �xing A or C means

not moving one manipulator while moving the other. But �xing B and varying A,C

means that the sensor frame to marker frame transformation (for Figures 4.1 and 4.3)

or transformation between two sensor frames (for Figure 4.2) has to be �xed while

moving the manipulators around. In such systems, this is not feasible as it would not

be easy to move the two manipulators such that the relative transformation computed

by the sensor is kept constant.
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Two variations of the same basic method were proposed to handle systems where

A,B or C can be �xed, and systems where only A or C (but not B) can be �xed. The

�rst framework (which Ma et al calls "Prob2") is meant for systems like the mobile

robot system that is described in Section 4.2.1. The second framework (which Ma et

al calls "Prob1") works for systems like the dual manipulators and hybrid robot and

is described in Section 4.2.2.

4.2.1 Prob2: Fix A or B or C

Each homogeneous transformation in (4.1) can be represented as a Dirac delta func-

tion in SEp3q. Hence each of the n equations can be transformed into convolutions

of Dirac delta functions using the shifted Dirac delta function property (2.2) and the

convolution property (2.8), and so

pδAi
� δX � δBi

q pKq � pδY � δCi
� δZq pKq

where the variable K P SEp3q. Since there are n sets of tAi, Bi, Ciu, we can "sum"

over the index i to get

ņ

i�1

pδAi
� δX � δBi

q pKq �
ņ

i�1

pδY � δCi
� δZq pKq. (4.2)

If we now de�ne probability density functions fH where H P tA,B,Cu as

fHpKq :�
1

n

ņ

i�1

δHi
pKq �

1

n

ņ

i�1

δ
�
H�1
i K

�
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which are all highly focused, then we can use (2.13) to get the approximation

pfA � δX � fBqpKq � pδY � fC � δZqpKq. (4.3)

Let H̄ be the mean of fH and using (2.10), we can transform (4.3) into

ĀXB̄ � Y C̄Z. (4.4)

Similarly, let ΣH be the covariances of fH . Using (2.11), we obtain the following

relationship for the covariances of fH :

Ad
�
B̄�1

�
Ad

�
X�1

�
ΣAAd

J
�
X�1

�
AdJ

�
B̄�1

�
� ΣB � Ad

�
Z�1

�
ΣC Ad

J
�
Z�1

�
(4.5)

where the adjoint of the inverse of a homogeneous transformation can be derived from

(2.12) and is

Ad
�
H�1

�
� Ad�1pHq �

�
RJ O3

�rRJts^RJ RJ

�
.

Since the de�nition of adjoint operator in (2.12) is in block matrix form, this motivates

us to write the covariances ΣH in a similar way:

ΣH �

�
Σ
p1q
H Σ

p2q
H

Σ
p3q
H Σ

p4q
H

�
P R6�6

where Σ
piq
H P R3�3, i � 1, 2, 3, 4.

Then we can write (4.5) in block matrix form and for the top left element, we get
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this matrix approximation

RJ
BR

J
XΣ

p1q
A RXRB � Σ

p1q
B � RJ

ZΣ
p1q
C RZ . (4.6)

The bottom right block matrix gives

RJ
BR

J
XΣ

p1q
A

�
rt^BsR

J
BR

J
X �RJ

Brt
^
XsR

J
X

�
�RJ

BR
J
XΣ

p2q
A RXRB � Σ

p2q
B

� RJ
ZΣ

p1q
C RZrt

^
Z s
J �RJ

ZΣ
p2q
C RZ .

(4.7)

Note that (4.6) allows us to solve for the rotations RX and RZ , while (4.7) involves

the translations tX and tZ . Hence we can �rst solve (4.6) to get rotations and then

use (4.7) to get the translations. Notice that Y has disappeared in (4.5) so there is

no way to recover it from (4.6) and (4.7).

However we can permute the order of the homogeneous matrices in (3.7). For

instance, premultiplying (3.7) by A�1 and postmultiplying by Z�1 on both sides of

the equation gives

XBZ�1 � A�1Y C (4.8)

which is a di�erent "representation" of (3.7). We can do another permutation by

premultiplying (4.8) by X�1 and postmultiplying by C�1 to get another representa-

tion. For each of the 6 permutations, the corresponding approximations for rotations,

analgous to (4.6), are listed as follows:

1. AXB � Y CZ:

RJ
BR

J
XΣ

p1q
A RXRB � Σ

p1q
B � RJ

ZΣ
p1q
C RZ (4.9)
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2. A�1Y C � XBZ�1:

RJ
CR

J
Y Σ

p1q
A�1RYRC � Σ

p1q
C � RJ

Z�1Σ
p1q
B RZ�1 (4.10)

3. BZ�1C�1 � X�1A�1Y :

RJ
C�1RJ

Z�1Σ
p1q
B RZ�1RC�1 � Σ

p1q
C�1 � RJ

Y Σ
p1q
A�1RY (4.11)

4. B�1X�1A�1 � Z�1C�1Y �1:

RJ
A�1RJ

X�1Σ
p1q
B�1RX�1RA�1 � Σ

p1q
A�1 � RJ

Y �1Σ
p1q
C�1RY �1 (4.12)

5. CZB�1 � Y �1AX:

RJ
B�1RJ

ZΣ
p1q
C RZRB�1 � Σ

p1q
B�1 � RJ

XΣ
p1q
A RX (4.13)

6. C�1Y �1A � ZB�1X�1:

RJ
AR

J
Y �1Σ

p1q
C�1RY �1RA � Σ

p1q
A � RJ

X�1Σ
p1q
B�1RX�1 (4.14)

Fixing A,B or C means that

ΣA � O, ΣB � O, ΣC � O

respectively and this is denoted as the zero-covariance constraint. This constraint

enables us to simplify the approximations (4.9), (4.10), (4.12), (4.13), (4.11) and

(4.14) into the form shown in Table 4.1. By �xing A, it turns out that the covariance
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equations for representation 1 and 2 have the same simplifed form. Furthermore, the

approximations become equations because when A is �xed, the summation in (4.2)

passes through to B and instead of (4.3), we get

pδA � δX � fBqpKq � pδY � fC � δZqpKq.

A similar argument holds when B or C is �xed.

No. Representation Fixing Simpli�ed Form Eq. number

1 AXB � Y CZ
A Σ

p1q
B � RJ

ZΣ
p1q
C RZ (4.15)

2 A�1Y C � XBZ�1

3 BZ�1C�1 � X�1A�1Y
B Σ

p1q
C�1 � RJ

Y Σ
p1q
A�1RY (4.16)

4 B�1X�1A�1 � Z�1C�1Y �1

5 CZB�1 � Y �1AX
C Σ

p1q
B�1 � RJ

XΣ
p1q
A RX (4.17)

6 C�1Y �1A � ZB�1X�1

Table 4.1: The simpli�ed equations for covariances of rotations after �xing A,B or
C in turn

Hence by �xing A and varying B and C, we can solve (4.15) for RZ . To do this,

we note that there is a similarity transformation between Σ
p1q
B and Σ

p1q
C since for a

rotation matrix RJ � R�1. Hence they share the same three eigenvalues that are

then used to form the diagonal elements of the 3 � 3 diagonal matrix Λ1. Then we

compute their eigendecomposition as

Σ
p1q
B � QBΛ1Q

J
B (4.18)

Σ
p1q
C � QCΛ1Q

J
C (4.19)
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where the columns of QB, QC are the eigenvectors of Σ
p1q
B ,Σ

p1q
C respectively. Note

that QB, QC are orthogonal because the covariance matrices ΣH are constructed to

be symmetric and hence the top left block is also symmetric. Substitute (4.18) and

(4.19) into (4.15):

QBΛ1Q
J
B � RJ

Z

�
QCΛ1Q

J
C

�
RZ

Λ1 � QJ
BR

J
ZQCloooomoooon
S1

Λ1Q
J
CRZQB

� S1Λ1S
J
1

where

S1 :� QJ
BR

J
ZQC . (4.20)

If QB and QC are further constrained to be rotation matrices, then according to [2],

the possible solutions of S1 for an equation with such structure are���1 0 0

0 1 0

0 0 1

��� ,
����1 0 0

0 �1 0

0 0 1

��� ,
����1 0 0

0 1 0

0 0 �1

��� ,
���1 0 0

0 �1 0

0 0 �1

��� . (4.21)

Substituting each of these 4 solutions into (4.20) produces 4 solutions for RZ

RZ � QCS1Q
J
B

where we used the fact that S1 � SJ1 .
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We can also simplify (4.7) using the zero-covariance constraint ΣA � O to get

Σ
p2q
B � RJ

ZΣ
p1q
C RZrt

^
Z s
J �RJ

ZΣ
p2q
C RZ . (4.22)

Then using each possible value of RZ , a value of tZ can be computed by rearranging

the terms of 4.22:

tZ �

��
Σ
p2q
B �RJ

ZΣ
p2q
C RZ

	J
RJ
Z

�
Σ
p1q
C

	�1

RZ

�_
(4.23)

where we used the facts that Σ
p1q
C is symmetric and pH�1qJ � pHJq�1 for a square

matrix H.

By �xing B and varying A,C, the same steps as the above are used for solving

(4.16). Hence we compute the eigendecomposition of Σ
p1q
A�1 and Σ

p1q
C�1 ,

QC�1Λ2Q
J
C�1 � RJ

Y

�
QA�1Λ2Q

J
A�1

�
RY

Λ2 � QJ
C�1RJ

YQA�1looooooomooooooon
S2

Λ2Q
J
A�1RYQC�1

� S2Λ2S
J
2

where

S2 :� QJ
C�1RJ

YQA�1 , (4.24)

and Λ2 is the diagonal matrix made of the common eigenvalues of Σ
p1q
A�1 and Σ

p1q
C�1 .

Since (4.20) has the same structure as (4.24), the solutions of S2 are also one of the

4 matrices in (4.21). Hence the 4 possible solutions of RY can be computed using
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(4.24):

RY � QA�1S2Q
J
C�1 .

For each solution of RY , we can compute a possible tY using the zero-covariance

constraint on the counterpart equation to (4.22). This produces a corresponding

equation for tY similar to (4.23).

Lastly, we can also �x C and vary A,B to solve (4.17). We carry out the same

process with Σ
p1q
B�1 and Σ

p1q
A to get

Λ3 � QJ
B�1RJ

XQAlooooomooooon
S3

Λ3Q
J
ARXQB�1

� S3Λ3S
J
3

where

S3 :� QJ
B�1RJ

XQA, (4.25)

and Λ3 is the diagonal matrix made of the common eigenvalues of Σ
p1q
A and Σ

p1q
B�1 . The

4 possible solutions of S3 are also in (4.21) and hence the 4 possible solutions of RX

can be computed using (4.25):

RX � QAS3Q
J
B�1 .

Then the corresponding 4 solutions for tX can be computed using the analagous
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equation to (4.23).

With the 4 possible solutions of RX , we obtained 4 possible solutions of tX and

similarly for RY , tY , RZ , tZ . Since RX , RY , RZ were solved independently, there are

a total of 4 � 4 � 4 � 64 possible combinations of the homogeneous transformations

tXi, Yj, Zku. In order to identify the correct set that solves (4.1), we form an optimiza-

tion problem by minimizing the errors of the rotation and translation components.

By �xing A, we can de�ne two expressions which are essentially the left and right

hand side of (4.1):

Ai :� AXiB̄, i � 1, . . . , 4 (4.26)

Ajk :� YjC̄Zk, j � 1, . . . 4, k � 1, . . . , 4 (4.27)

Similarly, �xing B allows us to de�ne:

Bi :� ĀXiB, i � 1, . . . , 4 (4.28)

Bjk :� YjC̄Zk, j � 1, . . . 4, k � 1, . . . , 4 (4.29)

and �xing C gives us:

Ci :� ĀXiB̄, i � 1, . . . , 4 (4.30)

Cjk :� YjCZk, j � 1, . . . 4, k � 1, . . . , 4. (4.31)

Note that the transformations in script font are also homogeneous matrices, and hence

they have rotation and translation components too. The optimization problem seeks
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to minimize the errors in rotation and translation between the left and right hand sides

using the metrics stated in (2.15) and (2.14). It also has a weighting factor w that

can be tweaked depending on the required amount of translational error compared to

the rotational error. Since this minimization problem

arg min
i,j,k

�∥∥log_
�
RJ

Ai
RAjk

�∥∥
2
�
∥∥log_

�
RJ

Bi
RBjk

�∥∥
2
�
∥∥log_

�
RJ

CiRCjk
�∥∥

2
�

w‖tAi
� tAjk

‖2 � w‖tBi
� tBjk

‖2 � w‖tCi � tCjk‖2

� (4.32)

is discrete, the solution just involves iterating over the i, j, k indices and �nding the

set of indices that minimizes the objective function. The returned i, j, k values will

then correspond to a set of tXi, Yj, Zku that is the solution to (4.1) returned by the

algorithm.

To aid implementation, the steps of Prob2 as described in Section 4.2.1 are explicitly

listed here. Before this algorithm can be used, the data has to be in the form in

Table 4.2. Hence for data set A, we �x A and in the mobile robot system, this means

two mobile robots are stationary. Then by moving the third mobile robot, we can

collect n sets of B and C measurements. This is indicated in the table by showing the

�xed variable as repeated without subscripts, and the varied variables with subscripts

1 to n. The same process is done when �xing B or C and varying the other two.

Hence in total, there should be 3n sets of measurement "triples" tA,B,Cu in all of

A, B and C. Also note that the sizes of A, B, C need not be equal, although they are

shown to be the same in Table 4.2.
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Label of set Pose being �xed Measurement data Mean

A A

nhkkkikkkj
A, . . . , A A

B1, . . . , Bn B̄

C1, . . . , Cn C̄

B B
A1, . . . , An Ā
B, . . . , B B

C1, . . . , Cn C̄

C C
A1, . . . , An Ā

B1, . . . , Bn B̄
C, . . . , C C

Table 4.2: The data sets obtained after �xing A,B or C

In the algorithm described below, any operation performed on the transformation

H applies to A,B and C.

Step 1 After collecting data sets A,B, C, compute the mean H̄ of each transforma-

tion tAiu, tBiu, tCiu that was varied in each set according to the de�nition:

ņ

i�1

log
�
H̄�1Hi

�
� O4

where the subscriptH represents A,B or C. Practically, H̄ can be calculated

using an iterative formula [35]

H̄k�1 � H̄k exp

�
1

n

ņ

i�1

log
�
H̄�1
k Hi

��

where a possible initial estimate is

H̄0 � exp

�
1

n

ņ

i�1

logHi

�
.

67



CHAPTER 4. REVIEW OF THE MGC METHOD

For the transformations that were �xed, the mean is just that homogeneous

matrix. Hence for data set A there should be only three transformations at

the end of this step: A, B̄ and C̄, as shown in the last column of Table 4.2.

The same applies for data sets B and C.

Step 2 After getting the means H̄, the covariance of each set is computed using the

de�nition:

ΣH �
ņ

i�1

log_
�
H̄�1Hi

� �
log_

�
H̄�1Hi

��J
.

Step 3 For each ΣH , extract the top-left and top-right 3 � 3 block matrices which

we call Σ
p1q
H and Σ

p2q
H respectively.

Step 4 Invert all the transformations in tAiu, tBiu, tCiu. Then compute the mean

and covariance as in Step 1 and Step 2 to get H�1 and ΣH�1 respectively.

Step 5 As in Step 3, extract the top-left and top-right blocks of every ΣH�1 , which

will be Σ
p1q
H�1 and Σ

p2q
H�1 respectively.

Step 6 Compute the eigendecomposition of every Σ
p1q
H and Σ

p1q
H�1 to get the three cor-

responding eigenvectors. Use these three eigenvectors to form the columns

of a new matrix QH and QH�1 .

Step 7 Then the 4 possible solutions of RX , RY , RZ can be computed as shown in

Table 4.3 where S is one of the 4 matrices in (4.21).

Step 8 Using the computed rotations, the 4 possible solutions of tX can be found
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using (4.23). The respective formulas for tY and tX are

tY �

��
Σ
p2q
C�1 �RJ

Y Σ
p2q
A�1RY

	J
RJ
Y

�
Σ
p1q
A�1

	�1

RY

�_
, (4.33)

tX �

��
Σ
p2q
B�1 �RJ

XΣ
p2q
A RX

	J
RJ
X

�
Σ
p1q
A

	�1

RX

�_
. (4.34)

Label of set Rotation Translation Homoegeneous matrix

A RZ � QCSQ
J
B (4.23) Zk, k � 1, . . . 4

B RY � QA�1SQJ
C�1 (4.33) Yj, j � 1, . . . 4

C RX � QASQ
J
B�1 (4.34) Xi, i � 1, . . . 4

Table 4.3: The formulas for getting RX , RY , RZ , tX , tY , tZ

Step 9 Form the possible homogeneous matrices Hi using the computed values of

RH and tH and we should have 64 sets of tXi, Yj, Zku.

Step 10 For each set of tXi, Yj, Zku, compute the transformations with the formulas

(4.26),(4.28),(4.30),(4.27),(4.29),(4.31).

Step 11 Then extract out the rotational and translational components of these trans-

formations and determine the values of i, j, k that give the minimum of the

objective function in (4.32). The corresponding Xi, Yj and Zk is then the

solution to the calibration problem (4.1).
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4.2.2 Prob1: Fix A or C only

In the case where B cannot be �xed while varying A or C, we can only obtain data

sets A and C. Consequently, the method is almost similar except for �xing B and

obtaining RY using (4.16), we obtain RY using the mean equation (4.4). First we

need to compute RX , tX and RZ , tZ as described for Prob2 in Section 4.2.1 by �xing

A and C respectively. By �xing A (i.e. Ā � A), there are 4 values each for X and Z,

which when substituted into (4.4) gives 16 possibilities for Y :

Y � AXB̄Z�1C̄�1.

Fixing C so that C̄ � C also gives us another 16 possibilities for Y :

Y � ĀXB̄Z�1C�1

Hence there are a total of 4� 4� p16� 16q � 512 sets of tXi, Yj, Zku from which we

must �nd the optimal one. We then form a discrete minimization problem similar to

(4.32) (which in this case does not involve data set B):

arg min
i,j,k

�∥∥log_
�
RJ

Ai
RAjk

�∥∥
2
�
∥∥log_

�
RJ

CiRCjk
�∥∥

2
�

w‖tAi
� tAjk

‖2 � w‖tCi � tCjk‖2

� (4.35)

and can be solved as well to give the optimal tXi, Yj, Zku. Here the weight w has the

same function as in (4.32) but its ideal value may be di�erent.
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Simulations

Presently there are three other methods that solve the AXB � Y CZ type problem

as stated in the literature review (Chapter 3). We will call the method in [36], "Wu"

and the two methods in [37], "DK" and "PN". The theory in Chapter 4 indicated

that the strengths of the MGC method compared to these existing solutions are

1. the ability to handle loss of correspondence between the tAiu, tBiu, tCiu data,

and

2. the ability to not require initial estimates in order to compute the solution,

while its weaknesses are that

1. it does not handle noisy data very well, and

2. sometimes it returns a non-optimal X, Y, Z depending on the objective function.
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This chapter describes simulations that were carried out to verify and evaluate

the strengths and weaknesses of this method that have predicted by the theory. Data

were collected during numerical simulations where some condition was varied while

keeping the other conditions constant.

Section 5.1 lists the procedure that was used to carry out the simulation, including

the parameters that were varied or kept constant. Section 5.2 shows the results by

plotting them on line graphs. Lastly, interpretaion and discussion of the results are

in Section 5.3.

5.1 Procedure

The simulations in this chapter were carried out using MATLAB 2016a. The following

parameters were kept constant across simulations.

1. Number of measurement data, n, every time A,B or C was �xed. This is the

same n shown in Table 4.2.

2. Number of trials, N , is the number of times the algorithms executes, each

time with a di�erent set of measurement data tAi, Bi, Ciu that was generated

randomly using MATLAB's randn function. The purpose of running multiple

executions was to be able to take the average of the results.

3. The value of w in the objective functions (4.32) and (4.35).
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For each simulation, the following parameters were varied one at a time, i.e. if

one parameter was varied the others were kept constant:

1. Scrambling rate r,

2. Standard deviation of the noise applied to the data, σnoise,

3. Standard deviation of the data, σdata,

Using the above conditions and n � 100, N � 10 and w � 1.5, the simulations

were executed using the following steps:

Step 1 XYZ Generation: Transformations for X, Y , Z were selected by generat-

ing a normally distributed random vector ζ P sep3q using MATLAB's randn

function

ζ � N pO6�1, I6q .

Then the corresponding SEp3q transformation was obtained using the ma-

trix exponential function expm in MATLAB:

H � exp prζs^q

where H P tX, Y, Zu.

Step 2 ABC Generation: The initial transformation for each of A,B,C was gen-

erated using the kinematics of the Puma 560 serial manipulator. The 6 joint

angles of the manipulator that were used to generate the initial transforma-

tions are shown in Table 5.1.
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Transformation J1 J2 J3 J4 J5 J6

Ainit
π
6

π
3

π
4

π
4

�π
4

0

Binit
π
3

π
4

π
3

�π
4

π
4

0

Cinit
π
4

π
3

π
3

π
6

�π
4

0

Table 5.1: The Puma's joint angles (rad) that were used to generate the initial
transformations for A,B,C

Then the initial transformations was perturbed by the standard deviation

of the data for the current trial, σdata, to obtain the data sets A, B and C

for i � 1, . . . 100 in Table 4.2. For instance, to generate the data set A A

was �xed, and hence Ainit was repeated so that tAu had the same number

of elements as tBiu and tCiu. Then randn was used to generate a vector

δi P sep3q

δi � N pO6�1, σdataI6q

and that was used to perturb tBiu as follows:

Bi � exp prδis
^qBinit.

The corresponding Ci was then computed using (4.1):

Ci � Y �1AinitXBiZ
�1.

After doing similar operations, data sets B and C were obtained. The norm

of the covariances, }ΣA}, }ΣB}, }ΣC}, were also computed for the generated

data to verify that they satis�ed the highly focused assumption (2.9) for the
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values of σdata that was chosen.

Step 3 Scramble Data: Next the correspondences between tAiu, tBiu and tCiu

were scrambled. Depending on the desired scrambling rate r, r% of the n

data triples pAi, Bi, Ciq in A were randomly selected and the order switched.

Since all the Ai data in A are identical, this essentially switched the Bi and

Ci pairs. For data sets B and C, another r% was selected randomly and the

process was similar.

Step 4 Add Noise: Following [36], noise was applied to the rotations, using the

angle-axis parameterization where θ (in degrees) was the angle about a ran-

dom unit vector k that each rotational component in the scrambled data

sets A, B and C would be perturbed. Hence

R noise

H � RHRotpk, θq

where H represents A,B,C. The translational component was shifted ε mm

in the direction of a random unit vector p. Thus

t noiseH � tH � εp.

The values of θ and ε were taken from a continuous uniform distribution:

θ � Up�θmax,�θmaxq

ε � Up�εmax,�εmaxq
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The applied noise was varied by changing θmax and εmax. The randn function

was used to obtain the random unit vectors k and p by generating a random

3� 1 vector and dividing it by its norm.

Step 5 Input into Method: Now the data sets A,B, C have some level of noise

applied. Then the data sets were passed to each method according to

Table 5.2. Each method then returned a set of homogeneous matrices

Xsolved, Ysolved, Zsolved which solved (3.7).

Method Data sets

Prob2 A,B, C
Prob1 A, C
Wu A,B, C
DK A, C
PN A,B, C

Table 5.2: The data sets that were passed into each method

Step 6 Compute Errors: By comparing the solved values with the true values

in Step 1, the rotational and translational errors of X, Y, Z were computed

separately using the metrics in (2.15) and (2.14) as such:

ErrorpRHq � ‖log_pRT
solved

Rtrueq‖

ErrorptHq �
}tsolved � ttrue}

}ttrue}
.

The values of ErrorpRHq and ErrorptHq for H P tX, Y, Zu were then plotted

as line plots in Section 5.2.
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The above procedure is shown in Appendix A Listing A.1. Note that the MATLAB

code assumes that Peter Corke's Robotics Toolbox v9.9 has been installed. It also

requires the following toolboxes from MATLAB:

1. Statistics and Machine Learning,

2. Optimization.

5.2 Results

This sections states the results from numerical simulations in MATLAB. The prob-

abilistic algorithms, Prob1 and Prob2, and the non-probabilistic "traditional" algo-

rithms, Wu, DK and PN, were executed under the various conditions listed in Ta-

ble 5.3. The noise level values for θmax and εmax were chosen to mirror the accuracies

of most modern industrial manipulators.

Simulation Vary Constant

I
Scrambling rate

�
θmax

εmax

�
�
�
0
0

�
, σdata � 0.02

r P t0, 20, 40, 60, 80, 100u

II
Noise Level

r � 0, σdata � 0.02�
θmax

εmax

�
P
!�

0
0

�
,
�
0.05
0.1

�
,
�
0.1
0.5

� �
0.5
1

� �
1
2

�)
III

Std Dev of Data
r � 0,

�
θmax

εmax

�
�
�
0
0

�
σdata P t0.02, 0.04, 0.06, 0.08, 0.10u

Table 5.3: The conditions for each simulation

Figure 5.1 shows the results of Simulation I by varying the scrambling rate applied

to the tAiu, tBiu, tCiu data without applying noise and keeping σdata � 0.02. Because
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the magnitude of the errors of the probabilistic and traditional methods had a large

di�erence, we used the logarithmic scale for the y-axis to show the di�erences on the

same plot.
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Scrambling rate r %

10-20
10-15
10-10
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Error in RX
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Prob2
Wu

PN
DK

Figure 5.1: Varying scrambling rate while keeping σdata � 0.02 and pθ � 0, ε � 0q

Figure 5.2 shows the results of Simulation II by varying the noise applied to the

tAiu, tBiu, tCiu data while scrambling 0% of them and keeping σdata � 0.02. The

horizontal axis indicates the maximum perturbation in orientation θmax (in deg) and
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position εmax (in mm) of the applied noise.
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Figure 5.2: Varying noise level while keeping σdata � 0.02 and r � 0%

Figure 5.3 shows the results of Simulation III by varying the standard deviation

of the tAiu, tBiu, tCiu data with 0% of them scrambled and without applying noise.
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Figure 5.3: Varying data standard deviation while keeping pθ � 0, ε � 0q and
r � 0%

5.3 Discussion

From the graphs in Section 5.2 the following observations can be made:

1. From Figure 5.1, when there is perfect correspondence and no noise in the data,

the traditional methods have a lower error than the probabilistic ones. However
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when the scrambling rate increases, the errors from Prob1 and Prob2 remains

fairly constant while Wu and DK increases exponentially (since a straight line

in a log plot indicates an exponential relationship). It was expected that the

probabilistic methods would outperform the non-probabilistic ones when the

data had a loss of correspondence and these simulations proved the theory.

Within each class of methods � probabilistic and non-probabilistic � the dif-

ferences in errors are not signi�cant. This is expected because any method either

handles scrambled data well or not, and hence each class reacts to scrambled

data in a similar way.

2. Since Prob1 and Prob2 are sequential methods, any error in computing the

rotational component will be propagated to the translational component. The

error propagation property also holds for the Wu method. Although DK and

PN are simultaneous solvers, the absence of error propagation in these solvers

compared to the others is not noticeable from the plots since other factors have

a larger in�uence on the �nal errors of X, Y , and Z. Also it is not meaningful

to compare the magnitutes of the rotational vs translational errors, and hence

it is hard to quantify the amount of error propagation in sequential methods.

3. Prob1 uses X and Z to compute Y , and hence error from the former gets

propagated to the latter. The same is true for DK. Hence Prob2 is expected to

have lower error than Prob1 although this cannot be clearly seen from the plots.

81



CHAPTER 5. SIMULATIONS

4. The highly focused assumption needed for the approximations in Prob1 and

Prob2 to be valid meant that the standard deviation of the data had to be

small. Table 5.4 shows the average values of the covariance norms for each σdata

and it shows that they satisfy (2.9). As seen from Figure 5.3 the errors of Prob1

and Prob2 increased as σdata increased which is expected. Notice also that the

plots for the non-probabilistic methods are clearly lower than the probabilistic

ones over the entire range of σdata, and this is also expected when the data

are not scrambled (i.e. perfect correspondence). In fact, the non-probabilistic

methods would have lower error as σdata increased and this is also seen in their

plots which have a slight downward slope.

This requirement of a small spread of the data is interesting and counter-

intuitive because having a small spread makes the data susceptible to be degen-

erate and any noise in the data will have a huge impact on the result. However,

the requirement for highly focused data makes it easier and faster to collect

data on a real system because less time and e�ort will be needed to move the

robots or sensors around.

σdata }ΣA} }ΣB} }ΣC}

0.02 0.0023 0.0021 0.0043
0.04 0.0043 0.0040 0.0043
0.06 0.0069 0.0059 0.0130
0.08 0.0098 0.0078 0.0184
0.10 0.0172 0.0102 0.0293

Table 5.4: The average values of }Σ} based on data generated from σdata compared
with experimental data
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5. Because of the need for highly focused data, even a small amount of noise added

to the data magni�es the error and so it does not perform well. This is evident

from Figure 5.2 where the errors of Prob1 and Prob2 increased as the noise

increased, while Wu, DK and PN had errors that were also increasing (at about

the same rate) but were lower than the probabilistic ones across rotation and

translation.

6. The choice of objective functions in (4.32) and (4.35) turned out to be critical

for Prob1 and Prob2 to return the optimal solution. The role of the objective

functions is to select the optimal tX, Y, Zu from a set of 512 and 64 candidates

for Prob1 and Prob2 respectively. If the functions returned non-optimal solutions

for some of the trials, the average error would be increased by these outliers.

7. Wu and PN are iterative optimization methods and require reasonably good

initial guesses in order to reach a global minimum. In contrast, Prob1 and

Prob2 do not need initial guesses, and likewise DK. The price to pay for this

is that the data sets have to be constructed by �xing either A or C. In [36],

Wu et al used a closed form solution to obtain an initial estimate but Yan et al

[37] did not provide an alternative than using random transformations as the

estimates. To mitigate the e�ect of non-global optimum solutions when a bad

initial estimate was generated, in Section 5.1 Step 5 only PN was executed 10

times with the same set of data but with di�erent random initial estimates. The
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errors from the 10 executions were computed in Step 6 and the minimum error

was used as the �nal result for that set of data.

To determine which method is the best when solving (3.7), the following recom-

mendations can be made depending on the application and the most important factor

for the user:

1. When correspondence between data will be lost: if the data lacks full orrespon-

dence, the probabilistic methods should be used;

2. If rotational accuracy is more important than translational accuracy for that

application, then sequential methods like Wu can be used. Otherwise, simulta-

neous methods like PN should be applied instead;

3. If the variation in the A,B and C data ful�ls the highly focused assumption,

then the probabilistic methods should be applied;

4. If initial estimates of X, Y, Z are easily obtainable and are accurate enough,

then the iterative solutions like PN and Wu should be used. Otherwise methods

which do not require initial estimates should be used, namely Prob1, Prob2 and

DK;

5. If the B transformation can be �xed in the robotic system, Prob2 should be

used instead of Prob1 because it produces lower errors in general.
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6. If the noise level in the data is expected to be high, the non-probabilistic meth-

ods should be used.

Hence the choice of the most appropriate method comes down to prioritizing each

factor so as to take into account the strengths and weaknesses of each method.
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Conclusion

My thesis surveyed the literature regarding three main types of calibration problems

relating to sensors and robots:

1. hand-eye calibration formulated as AX � XB,

2. hand-eye/robot-world calibration formulated as AX � Y B, and

3. multi-robot and sensor calibration formulated as AXB � Y CZ.

All the methods were classi�ed based on the approach taken to solve the relevant

matrix equation. When the problems were new, most of the proposed solutions were

in closed-form. But with the recent rise of faster computing in smaller packages, more

iterative solutions have come out.

The motivation for solving the AXB � Y CZ calibration problem instead of

solving two AX � XB problems separtely is to avoid error in the computation of

86



CHAPTER 6. CONCLUSION

X or Z propagating to Y . In particular, I have reviewed in detail the MGC method

for solving AXB � Y CZ. The MGC method contains two related probabilistic

approaches that are applicable to di�erent robot systems. For systems that allow

either A, B or C measurements to be �xed, the Prob2 method can be used, while

Prob1 can only be used for systems where only A or C can be �xed. I also compared

its performance with other solutions by running simulations that varied the amount

of scrambling, noise and spread in the data. The advantage of the MGC method is

most clearly seen when the correspondence between the data triplets are lost. And

by �xing one transformation A,B or C, the MGC method does not require initial

estimates for obtaining X, Y, Z. However the other methods like Wu, DK and PN

perform better when the data has perfect correspondence but is noisy.

6.1 Future Work

1. Obtaining the robot-sensor transformation simultaneously for a �eet of robots

would be quicker and avoid error propagation issues compared to doing it sep-

arately for each robot. However the AXB � Y CZ formulation extends to

only a maximum of three robots. As swarm robotics becomes more common, it

remains to be seen if there is a similar generalization for calibrating N robots si-

multaneously. It may be that as N becomes very large, the calibration problem

becomes intractable.
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2. Ma et al [24] proposed two new de�nitions of the mean of distributions on SEp3q

for the hand-eye calibration problem that would replace (2.6). They found that

was smaller error in X with the new de�nitions. Hence it would be interesting

to see if there are similar results when applied to the AXB � Y CZ problem.

3. The results show that the MGC method does not handle noise very well. If

the method could be adapted to handle a reasonable amount of noise, then this

probabilistic approach could be used on real-world data.

4. In the last step of the MGC method, optimization problems 4.32 and (4.35) had

to be solved to obtain the solutions to X, Y and Z. However the solutions were

not always globally optimal and hence further investigation can be conducted

for better cost functions.

5. There have been theoretical results on the minimum number of data required

for solving (3.1) and (3.4) uniquely without noise. It would be interesting if a

corresponding result could be obtained for (3.7).

In conclusion, the calibration problem for multi-robot systems is just starting and

new approaches will be expected in the future. This is especially as researchers are

working more and more with multiple robots that cooperate to perform tasks. The

Holy Grail method that can calibrate all robots simultaneously, be robust to noise

and non-corresponding data might well be within reach.
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Code implementation for

AXB � Y CZ methods

This appendix contains the MATLAB code for generating the plots in Chapter 5

and the functions for the AXB � Y CZ algorithms in Wu et al [36] and Yan et al

[37].

1 %% Main program for ZG thesis simulations (NOT for RSS paper)
2 clear all
3 close all
4 % clc
5 warning('off', 'MATLAB:logm:nonPosRealEig ') %supress warnings about nonpositive

eigenvalues
6 warning('off', 'MATLAB:hg:DiceyTransformMatrix ') % det of RX,RY ,RZ not 1 within eps

so warning appears
7

8 %%
9 fprintf('Execution started at %s\n', datetime('now','TimeZone ','local','Format ','d-

MMM -y HH:mm:ss Z'))
10 tic;
11

12 rng default % for reproducibility when calling mvg in ABC_Generate (remove after
testing)

13

14 %% Set parameters for the experiment
15 % what to vary:
16 % 1: scrambling rate from 0 to 100%, std dev of data =0.02, no noise
17 % 2: std dev of data from 0.02 to 0.1, scrambling rate=1%, no noise
18 % 3: std dev of noise from 0 to 0.01, scrambling rate=1%, std dev of data =0.02
19 % 4: std dev of noise from 0 to 0.01, scrambling rate =10%, std dev of data =0.02
20 varywhat = 2;
21 removeOutliers = false;
22
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23 % keep these 2 constant
24 numTrials = 10; % number of simulations
25 numData = 100; % number of data/measurements per family of A,B,C (depending on
26 % whether A, B or C is kept constant and the other 2 varied
27

28 % what to plot
29 tfplots = false; % should display graphs of X,Y,Z 3D plots?
30 lineplot = true;
31

32 fprintf('Experiment conditions :\n-------------------------------------\n');
33 fprintf(' Num of trials: %d\n', numTrials);
34 fprintf(' Num of measurements per family of A,B,C: %d\n', numData);
35 if removeOutliers
36 fprintf(' Removing outliers\n');
37 else
38 fprintf(' Not removing outliers\n');
39 end
40

41 % decide what methods to execute - useful for debugging each method without long
execution times

42 % order of binary switches are : Prob1 , Prob2 , Wang , DK, PN
43 methodNames = {'Prob1 ', 'Prob2', 'Wu', 'DK', 'PN'};
44 methods2run = [1 1 1 1 1];
45

46 % scrambling rate
47 scramRate = 0:20:100;
48

49 % weighting factor in objective function of Prob1 and Prob2 (not useful for
50 % evaluating other methods)
51 weight = 0.2:0.2:2.0;
52

53 meanD = [0; 0; 0; 0; 0 ;0]; % mean for generating data A, B, C
54 Cov = eye(6,6); % cov for generating A, B, C. Will be multiplied by sigD later.
55 sigD = 0.02:0.02:0.1; % std dev for generating A, B, C
56

57 % mean and cov for noise (affects both rot and trans)
58 % meanN = [0;0;0;0;0;0]; %Gaussian Noise Mean
59 % sigN = 0.000:0.002:0.01; %Gaussian Noise standard deviation Range
60 % rep rot and trans noise as cell array of 1x2 matrices which rep noise values
61 % [ rotation noise (deg), translation noise (mm) ]
62 sigN = { [0,0], [0.05, 0.1], [0.1, 0.5], [0.5, 1], [1, 2 ] };
63

64

65 %% generate random X, Y and Z
66 ran = 1;
67 [XActual ,YActual ,ZActual] = generateXYZ(ran);
68

69

70 %% vary conditions and generate A, B, C data
71 switch varywhat
72 case 1 % vary scrambling rate , fix data std dev = 0.02 and noise std dev = 0
73 sigD = sigD (1); % take first element of range as the constant value
74 sigN = sigN (1);
75 % variable only used for printing to terminal
76 variable = ['scrambling rate and sigma for data=', num2str(sigD), ' & noise= ',

num2str(sigN {1})];
77

78 case 2 % vary data std dev , fix scrambling rate = 1% and noise std dev = 0
79 sigN = sigN (1);
80 scramRate = scramRate (1);
81 variable = ['data std dev with scram -rate=', num2str(scramRate), ' & sigma for

noise=', num2str(sigN {1})];
82

83 case 3 % vary noise std dev , fix scrambling rate = 1% and data std dev = 0.02
84 sigD = sigD (1);
85 scramRate = scramRate (1);
86 variable = ['noise std dev with scram -rate=', num2str(scramRate), ' & sigma for

data=', num2str(sigD) ];
87

88 case 4 % vary noise std dev , fix scrambling rate = 10% and data std dev = 0.02
89 sigD = sigD (1);
90 scramRate = 10;
91 variable = ['noise std dev with scram -rate=', num2str(scramRate), ' & sigma for

data=', num2str(sigD) ];
92

93 case 5 % vary weighting factor (reuse variable sigN , i.e. as if varying noise)
94 sigD = sigD (1);
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95 scramRate = scramRate (1);
96 sigN = weight;
97 variable = ['weight with scram -rate=', num2str(scramRate), ' & sigma for data=',

num2str(sigD) ];
98 end
99

100 fprintf(' Varying only %s\n', variable);
101

102 % Allocated sizes of arrays to store error data
103 Err1 = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials); %3rd dim=6

because we store err for each of 6 DOF
104 Err2 = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);
105 ErrWang = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);
106 ErrDK = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);
107 ErrPN = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);
108

109 % allocated arrays for storing norms of covariances of B1,C1 ,A3,C3 ,A2,B2 data over
all trials

110 normCov = zeros(length(scramRate), length(sigD), length(sigN), 6, numTrials);
111

112 counter = 0;
113 for sr = 1: length(scramRate) % vary the scrambling rate
114 for sD = 1: length(sigD) % vary the std dev of data generated
115 for sN = 1: length(sigN) % vary the std dev of noise generated
116

117 % zg+ Plot the actual X, Y, Z in red
118 if tfplots
119 counter = counter + 1;
120 ftr = figure(counter);
121 ftr.Name = ['Prob1 when std dev of A, B, C data is ' num2str(sigD(sD)) ' and

noise is ' num2str(sigN(sN)) ];
122 subplot (1,3,1);
123 trplot(XActual (:,:), 'color', 'r', 'length ', 0.08, 'thick', 1.5, 'text_opts ',

{'FontSize ',10, 'Interpreter ','latex '});
124 hold on
125 subplot (1,3,2);
126 trplot(YActual (:,:), 'color', 'r', 'length ', 0.08, 'thick', 1.5, 'text_opts ',

{'FontSize ',10, 'Interpreter ','latex '});
127 hold on
128 subplot (1,3,3);
129 trplot(ZActual (:,:), 'color', 'r', 'length ', 0.08, 'thick', 1.5, 'text_opts ',

{'FontSize ',10, 'Interpreter ','latex '});
130 end
131 %zg -
132

133 for sim = 1: numTrials
134 fprintf('Elapsed time at sr=%d, sD=%d, sN=%d, sim=%d: %0.3 fsec\n', sr,sD ,sN,

sim ,toc );
135

136 %% Generate constant A1 , free B1 and C1
137 opt = 1;
138 [A1 , B1, C1] = ABC_Generate(numData , opt , meanD , sigD(sD)*Cov , XActual ,

YActual , ZActual);
139 % [ A1, B1, C1 ] = scrambleCorrspondence( scramRate(sr), A1, B1, C1 );
140 [ A1, B1, C1 ] = jumbleCorrspondence( scramRate(sr), A1, B1, C1 );
141

142 % compute norm of covariance of generated data , except for the constant
matrices

143 [m1 , m2, m3] = size(B1); % dimensions should be the same for A, B, C
144 [ ~, SigA1 ] = distibutionPropsMex_mex(reshape(A1, m1 , m2*m3)); % SigA1

should be zero matrix
145 [ ~, SigB1 ] = distibutionPropsMex_mex(reshape(B1, m1 , m2*m3));
146 [ ~, SigC1 ] = distibutionPropsMex_mex(reshape(C1, m1 , m2*m3));
147 normCov(sr,sD ,sN ,1,sim) = norm(SigB1);
148 normCov(sr,sD ,sN ,2,sim) = norm(SigC1);
149 % fprintf('norm of covariance of A1: %.4f, B1: %.4f, C1: %.4f\n', norm(SigA1)

, norm(SigB1), norm(SigC1) )
150

151 %% Generate constant B3 , free A3 and C3
152 opt = 2;
153 [A3 , B3, C3] = ABC_Generate(numData , opt , meanD , sigD(sD)*Cov , XActual ,

YActual , ZActual);
154 % compute norm of covariance of generated data
155 [ ~, SigA3 ] = distibutionPropsMex_mex(reshape(A3, m1 , m2*m3));
156 [ ~, SigC3 ] = distibutionPropsMex_mex(reshape(C3, m1 , m2*m3));
157 normCov(sr,sD ,sN ,3,sim) = norm(SigA3);
158 normCov(sr,sD ,sN ,4,sim) = norm(SigC3);
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159

160 % [ B3, A3, C3 ] = scrambleCorrspondence( scramRate(sr), B3, A3, C3 )
;

161 [ B3, A3, C3 ] = jumbleCorrspondence( scramRate(sr), B3, A3, C3 );
162

163 %% Generate constant C2 , free A2 and B2
164 opt = 3;
165 [A2 , B2, C2] = ABC_Generate(numData , opt , meanD , sigD(sD)*Cov , XActual ,

YActual , ZActual);
166 % compute norm of covariance of generated data
167 [ ~, SigA2 ] = distibutionPropsMex_mex(reshape(A2, m1 , m2*m3));
168 [ ~, SigB2 ] = distibutionPropsMex_mex(reshape(B2, m1 , m2*m3));
169 normCov(sr,sD ,sN ,5,sim) = norm(SigA2);
170 normCov(sr,sD ,sN ,6,sim) = norm(SigB2);
171

172 % [ C2, A2, B2 ] = scrambleCorrspondence( scramRate(sr), C2, A2, B2 );
173 [ C2, A2, B2 ] = jumbleCorrspondence( scramRate(sr), C2, A2, B2 );
174

175 %% ZG+ add noise to A, B, C
176 if varywhat == 5 % only for Prob1 and Prob2 methods
177 wt = weight(sN);
178 A1n = A1; B1n = B1; C1n = C1;
179 A2n = A2; B2n = B2; C2n = C2;
180 A3n = A3; B3n = B3; C3n = C3;
181 else
182 wt = 1.5; % used only by Prob1 and Prob2 methods
183 A1n = addNoise(A1, sigN{sN}(1), sigN{sN}(2) );
184 B1n = addNoise(B1, sigN{sN}(1), sigN{sN}(2) );
185 C1n = addNoise(C1, sigN{sN}(1), sigN{sN}(2) );
186

187 A2n = addNoise(A2, sigN{sN}(1), sigN{sN}(2) );
188 B2n = addNoise(B2, sigN{sN}(1), sigN{sN}(2) );
189 C2n = addNoise(C2, sigN{sN}(1), sigN{sN}(2) );
190

191 A3n = addNoise(A3, sigN{sN}(1), sigN{sN}(2) );
192 B3n = addNoise(B3, sigN{sN}(1), sigN{sN}(2) );
193 C3n = addNoise(C3, sigN{sN}(1), sigN{sN}(2) );
194 end
195

196 %% run each method depending on demand
197 if methods2run (1) == 1 % i.e. run Prob1
198 [X_final_1 , Y_final_1 , Z_final_1] = axbyczProb1(A1n(:,:,1), B1n , C1n , A2n ,

B2n , C2n(:,:,1), wt);
199 Err1(sr,sD,sN ,:,sim) = rottran_error(X_final_1 ,Y_final_1 ,Z_final_1 ,XActual ,

YActual ,ZActual);
200 end
201

202 if methods2run (2) == 1 % i.e. run Prob2
203 [X_final_2 , Y_final_2 , Z_final_2] = axbyczProb2(A1n(:,:,1), B1n , C1n , A2n ,

B2n , C2n(:,:,1), A3n , B3n(:,:,1), C3n , wt);
204 Err2(sr,sD,sN ,:,sim) = rottran_error(X_final_2 ,Y_final_2 ,Z_final_2 ,XActual ,

YActual ,ZActual);
205 end
206

207 % stack all relevant data for non -probablisitic methods only (needed because
208 % input arguments for the methods were coded differently from the

probabilistic methods)
209 A_perm = cat(3, A1n , A2n , A3n);
210 B_perm = cat(3, B1n , B2n , B3n);
211 C_perm = cat(3, C1n , C2n , C3n);
212

213 if methods2run (3) == 1 % i.e. run Wu
214 % [X_wang , Y_wang , Z_wang ] = Wang2014_AXBYCZ( A_perm , B_perm , C_perm ,

XActual , YActual , ZActual);
215 [X_wang , Y_wang , Z_wang ] = Wu2016_AXBYCZ( A_perm , B_perm , C_perm );
216 ErrWang(sr,sD ,sN ,:,sim) = rottran_error(X_wang ,Y_wang ,Z_wang , XActual ,

YActual ,ZActual);
217 end
218

219 if methods2run (4) == 1 % i.e. run DK
220 [X_DK , Y_DK , Z_DK ] = Yan_AXBYCZ_DK( A1n(:,:,1), B1n , C1n , A2n , B2n ,

C2n(:,:,1) );
221 ErrDK(sr,sD ,sN ,:,sim) = rottran_error(X_DK ,Y_DK ,Z_DK , XActual ,YActual ,

ZActual);
222 end
223

224 if methods2run (5) == 1 % i.e. run PN - uses perturbation of actual value not
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random initial estimates
225 % [X_PN , Y_PN , Z_PN ] = Yan_AXBYCZ_PN( A_perm , B_perm , C_perm , XActual ,

YActual , ZActual);
226 % ErrPN(sr ,sD,sN ,:,sim) = rottran_error(X_PN ,Y_PN ,Z_PN , XActual ,YActual ,

ZActual);
227

228 Err_random_initial = zeros (10 ,6); % store errors over 10 sub -trials
229 for kk=1:10 % run 10 times with different initial guesses each time and get

one with min err
230 [X_PN , Y_PN , Z_PN ] = Yan_AXBYCZ_PN( A_perm , B_perm , C_perm , XActual ,

YActual , ZActual);
231 Err_random_initial(kk ,:) = rottran_error(X_PN ,Y_PN ,Z_PN , XActual ,YActual ,

ZActual);
232 end
233 ErrPN(sr,sD ,sN ,:,sim) = min(Err_random_initial ,[] ,1);
234 end
235

236 %% ------ plot X and Y and Z as 3D transformations ------
237 if tfplots
238 subplot (1,3,1);
239 if methods2run (1) == 1
240 hold on
241 trplot(X_final_1 ,'color','k', 'text_opts ', {'FontSize ',10, 'Interpreter

','latex'});
242 end
243 if methods2run (2) == 1
244 hold on
245 trplot(X_final_2 ,'color','g', 'text_opts ', {'FontSize ',10, 'Interpreter

','latex'});
246 end
247 if methods2run (3) == 1
248 hold on
249 trplot(X_wang ,'color','b', 'text_opts ', {'FontSize ',10, 'Interpreter ','

latex'});
250 end
251 if methods2run (4) == 1
252 hold on
253 trplot(X_DK ,'color','m', 'text_opts ', {'FontSize ',10, 'Interpreter ','

latex'});
254 end
255 if methods2run (5) == 1
256 hold on
257 trplot(X_PN ,'color','c', 'text_opts ', {'FontSize ',10, 'Interpreter ','

latex'});
258 text( X_PN (1,4),X_PN (2,4),X_PN (3,4), num2str(sim) ,'Color','c', '

FontSize ',14, 'FontWeight ', 'bold');
259 end
260 axis auto
261 title('Estimated X')
262

263 hold on
264 subplot (1,3,2);
265 if methods2run (1) == 1
266 hold on
267 trplot(Y_final_1 (:,:),'color','k', 'text_opts ', {'FontSize ',10, '

Interpreter ','latex'});
268 end
269 if methods2run (2) == 1
270 hold on
271 trplot(Y_final_2 (:,:),'color','g', 'text_opts ', {'FontSize ',10, '

Interpreter ','latex'});
272 end
273 if methods2run (3) == 1
274 hold on
275 trplot(Y_wang (:,:),'color','b', 'text_opts ', {'FontSize ',10, '

Interpreter ','latex'});
276 end
277 if methods2run (4) == 1
278 hold on
279 trplot(Y_DK (:,:),'color','m', 'text_opts ', {'FontSize ',10, 'Interpreter

','latex'});
280 end
281 if methods2run (5) == 1
282 hold on
283 trplot(Y_PN (:,:),'color','c', 'text_opts ', {'FontSize ',10, 'Interpreter

','latex'});
284 text( Y_PN (1,4),Y_PN (2,4),Y_PN (3,4), num2str(sim) ,'Color','c', '
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FontSize ',14, 'FontWeight ', 'bold');
285 end
286 axis auto
287 title('Estimated Y')
288

289 hold on
290 subplot (1,3,3);
291 if methods2run (1) == 1
292 hold on
293 trplot(Z_final_1 (:,:),'color','k', 'text_opts ', {'FontSize ',10, '

Interpreter ','latex'});
294 end
295 if methods2run (2) == 1
296 hold on
297 trplot(Z_final_2 (:,:),'color','g', 'text_opts ', {'FontSize ',10, '

Interpreter ','latex'});
298 end
299 if methods2run (3) == 1
300 hold on
301 trplot(Z_wang (:,:),'color','b', 'text_opts ', {'FontSize ',10, '

Interpreter ','latex'});
302 end
303 if methods2run (4) == 1
304 hold on
305 trplot(Z_DK (:,:),'color','m', 'text_opts ', {'FontSize ',10, 'Interpreter

','latex'});
306 end
307 if methods2run (5) == 1
308 hold on
309 trplot(Z_PN (:,:),'color','c', 'text_opts ', {'FontSize ',10, 'Interpreter

','latex'});
310 text( Z_PN (1,4),Z_PN (2,4),Z_PN (3,4), num2str(sim) ,'Color','c', '

FontSize ',14, 'FontWeight ', 'bold');
311 end
312 axis auto
313 title('Estimated Z')
314 end
315 end %for varying number of trials
316 end %for varying std dev of noise
317 end %for varying std dev of data
318 end % for varying scrambling rate
319 toc
320 fprintf('----------------------------------------------------------\n')
321

322 % compute norm of covariances to see if << 1
323 norm_Avg = mean(normCov , 5);
324 norm_Avg = reshape(norm_Avg , [length(scramRate)*length(sigD)*length(sigN) 6]);
325 normA = (norm_Avg (:,3) + norm_Avg (:,5)) ./ 2
326 normB = (norm_Avg (:,1) + norm_Avg (:,6)) ./ 2
327 normC = (norm_Avg (:,2) + norm_Avg (:,4)) ./ 2
328

329

330 %% compute averages of the errors with and without outliers
331 % after reshape , the row ordering is varying over dSig first then nSig
332 if methods2run (1) == 1 % i.e. run Prob1
333 if removeOutliers
334 Err1_Avg = meanWithoutOutliers(Err1);
335 else % includes outliers
336 Err1_Avg = mean(Err1 , 5);
337 end
338 Err1_Avg = reshape(Err1_Avg , [length(scramRate)*length(sigD)*length(sigN) 6])
339 end
340

341 if methods2run (2) == 1 % i.e. run Prob2
342 if removeOutliers
343 Err2_Avg = meanWithoutOutliers(Err2);
344 else
345 Err2_Avg = mean(Err2 , 5);
346 end
347 Err2_Avg = reshape(Err2_Avg , [length(scramRate)*length(sigD)*length(sigN) 6])
348 end
349

350 if methods2run (3) == 1 % Wang/Wu method
351 if removeOutliers
352 ErrWu_Avg = meanWithoutOutliers(ErrWang);
353 else
354 ErrWu_Avg = mean(ErrWang , 5);
355 end
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356 ErrWu_Avg = reshape(ErrWu_Avg , [length(scramRate)*length(sigD)*length(sigN) 6])
357 end
358

359 if methods2run (4) == 1
360 if removeOutliers
361 ErrDK_Avg = meanWithoutOutliers(ErrDK);
362 else
363 ErrDK_Avg = mean(ErrDK , 5);
364 end
365 ErrDK_Avg = reshape(ErrDK_Avg , [length(scramRate)*length(sigD)*length(sigN) 6])
366 end
367

368 if methods2run (5) == 1 % PN method not stable , might sometimes give the wrong result
369 % ErrPN
370 if removeOutliers
371 % figure , boxplot( permute(ErrPN , [ 5 4 1 2 3]) );
372 ErrPN_Avg = meanWithoutOutliers(ErrPN);
373 else
374 ErrPN_Avg = mean(ErrPN , 5);
375 end
376 ErrPN_Avg = reshape(ErrPN_Avg , [length(scramRate)*length(sigD)*length(sigN) 6])
377 end
378 %zg -
379 % end
380

381 %% Plot graphs
382 if lineplot
383 f1 = figure('Name', 'Errors for X,Y,Z rotation and translation separately ');
384 % set(f1,'units ','normalized ','outerposition ',[0 0 1 0.5])
385 set(f1 ,'units ','normalized ','outerposition ' ,[0 0 0.5 1]) % make fig fill screen

width but only 0.8 of screen height
386

387 switch varywhat
388 case 1 % vary scrambling rate , fix data std dev = 0.02 and noise std dev = 0
389 x_axis = scramRate;
390 x_label = '$\textrm{Scrambling rate}\ r\ \%$';
391 case 2 % vary data std dev , fix scrambling rate = 0 and noise std dev = 0
392 x_axis = sigD;
393 x_label = '$\sigma_ {\ textrm{data}}$';
394 case 3 % vary noise std dev , fix scrambling rate = 0 and data std dev = 0.02
395 x_axis = 1: length(sigN);
396 x_label = '$\theta_ {\ textrm{max}},\ epsilon_ {\ textrm{max}}\ textrm{ of noise}$';
397

398 case 4 % vary noise std dev , fix scrambling rate = 10 and data std dev = 0.02
399 x_axis = 1: length(sigN);
400 x_label = '$\theta_ {\ textrm{max}},\ epsilon_ {\ textrm{max}}\ textrm{ of noise}$';
401 case 5 % vary noise std dev , fix scrambling rate = 0 and data std dev = 0.02
402 x_axis = weight;
403 x_label = '$\textrm{weight}$';
404 end
405

406 labels = {'$R_X$', '$R_Y$', '$R_Z$ ', '$t_X$ ', '$t_Y$', '$t_Z$'};
407 % use file exchange function "panel" instead of subplot in order to remove white

space
408 p = panel('no -manage -font');
409 p.pack (3,2);
410 p.margin = [20 33 8 15]; %left bottom right top (space for ticks and labels)
411

412 for ii = 1:6
413 [i,j] = ind2sub ([3,2], ii);% swap indices because linear indexing moves down the

row first then col
414 p(i,j).select ();
415 if methods2run (1) == 1
416 plot(x_axis , Err1_Avg(:,ii), 'r-d', 'LineWidth ', 2 ); %Prob1
417 % semilogy(x_axis , Err1_Avg(:,ii), 'r-d', 'LineWidth ', 1.1 );
418 hold on
419 end
420 if methods2run (2) == 1
421 plot(x_axis , Err2_Avg(:,ii), 'g-*', 'LineWidth ', 1.5 ); %Prob2
422 hold on
423 end
424 if methods2run (3) == 1
425 plot(x_axis , ErrWu_Avg(:,ii), 'b-o', 'LineWidth ', 0.7 ); %Wang
426 % plot(x_axis , ErrWang_Avg (:,ii), 'b-o', 'LineWidth ', 1.5 ); %Wang
427 hold on
428 end
429 if methods2run (4) == 1
430 plot(x_axis , ErrDK_Avg(:,ii), 'm-+', 'LineWidth ', 1.5 ); %DK
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431 hold on
432 end
433 if methods2run (5) == 1
434 plot(x_axis , ErrPN_Avg(:,ii), 'c-x', 'LineWidth ', 1.5 ); %PN
435 hold on
436 end
437

438 xlabel(x_label , 'Interpreter ','latex ', 'FontSize ', 12);
439 ax = gca;
440 ax.XTick = x_axis;
441 ax.YScale = 'log';
442 % ylim = ax.YLim;
443 % ax.YLim = [ylim (1), ylim (2)];
444 % if log10(ylim (2)/ylim (1)) > 5
445 % numYTicks = 1/4*( log10(ylim (2)/ylim (1))+1);
446 % else
447 % numYTicks = log10(ylim (2))-log10(ylim (1))+1;
448 % end
449 % ax.YTick = logspace(log10(ylim (1)),log10(ylim (2)), numYTicks );%add max of 5

ticks
450 ax.FontSize = 12;
451

452 if varywhat == 3 || varywhat == 4
453 noise_param = { sprintf('%.2g\\ newline %.2g', sigN {1}(1) , sigN {1}(2)) };
454 noise_param = [ noise_param , sprintf('%.2g\\ newline %.2g', sigN {2}(1) , sigN

{2}(2) ) ];
455 noise_param = [ noise_param , sprintf('%.2g\\ newline %.2g', sigN {3}(1) , sigN

{3}(2) ) ];
456 noise_param = [ noise_param , sprintf('%.2g\\ newline %.2g', sigN {4}(1) , sigN

{4}(2) ) ];
457 noise_param = [ noise_param , sprintf('%.2g%c\\ newline %.2gmm', sigN {5}(1) , char

(176), sigN {5}(2)) ];
458

459 ax.XTickLabel = noise_param;
460 ax.TickLabelInterpreter = 'tex';
461 end
462

463 % y_label = sprintf ('$\\ textrm{error in }%s$ ', labels{ii} );
464 % ylabel('Error ','FontSize ',14,'Interpreter ','latex ');
465

466 title(sprintf ('Error in %s', labels{ii} ), 'FontSize ',15,'Interpreter ','latex ','
FontWeight ','bold')

467

468 if ii == 6 % only show legend on last plot (i.e. for tZ)
469 lgd = {};
470 for jj = 1:numel(methodNames)
471 if methods2run(jj) == 1
472 lgd = [lgd{:} methodNames(jj) ];
473 end
474 end
475 legend(lgd , 'FontSize ',10, 'Location ','best');
476 end
477 end
478 end

Listing A.1: Main program for the simulations

1 function [ X, Y, Z ] = Wu2016_AXBYCZ( A, B, C )
2 % Implements the algorithm in Wu et al (2016) - same as Wang2014 except
3 % that it uses a closed form solution for obtaining initial estimate.
4 % Solves for X, Y, Z in the matrix equation AXB=YCZ given A, B, C
5

6 % Input: A, B, C are 4 x 4 x n homogeneous matrices
7 % Xact , Yact , Zact are used to get a good initial estimate
8 % Output: X, Y, Z are 4 x 4 homogeneous matrices
9

10 num = size(A, 3); % number of measurements
11

12 %% Get rotation and translation components of A, B, C
13 RA = A(1:3, 1:3, :); % 3x3xnum
14 RB = B(1:3, 1:3, :);
15 RC = C(1:3, 1:3, :);
16 TA = A(1:3, 4, :); % 3x1xnum
17 TB = B(1:3, 4, :);
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18 TC = C(1:3, 4, :);
19

20

21 %% ============ Solve for RX, RY , RZ first ==============
22 % Closed form solution to get an initial estimate of rotations from a subset of data
23 [RX_init , RY_init , RZ_init] = Wu2016_closedForm( RA, RB, RC );
24

25 % figure
26 % trplot(RY_init , 'color ', 'b');
27 % hold on
28 % trplot(Yact (1:3 ,1:3), 'color ', 'r');
29

30 % fprintf('Err in initial guess: RX = %.5f, RY = %.5f, RZ = %.5f\n',...
31 % roterror( RX_init , Xact (1:3 ,1:3) ), ...
32 % roterror( RY_init , Yact (1:3 ,1:3) ) ,...
33 % roterror( RZ_init , Zact (1:3 ,1:3) ) );
34

35 % Iterate until norm of delR = [delRX; delRY; delRZ] falls below a predefined
threshold

36 delR = 10000 * ones (9,1); % use a large value initially
37 NumIterations = 0;
38

39 while norm(delR) > 10e-10
40

41 q = zeros(num*9,1); % q_tilde in paper
42 F = zeros(num*9,9); % F_tilde in paper
43

44 for i = 1:num
45 tmp1 = RX_init * RB(:,:,i);
46 tmp2 = RY_init * RC(:,:,i) * RZ_init;
47 qq = -RA(:,:,i) * tmp1 + tmp2;
48 q( (i-1) *9+1:i*9 ) = [qq(:,1); qq(:,2); qq(:,3)]; % 9x1
49

50 F11 = -RA(:,:,i) * so3_vec( tmp1 (:,1) ); % 3x3
51 F21 = -RA(:,:,i) * so3_vec( tmp1 (:,2) );
52 F31 = -RA(:,:,i) * so3_vec( tmp1 (:,3) );
53 F12 = so3_vec( tmp2 (:,1) );
54 F22 = so3_vec( tmp2 (:,2) );
55 F32 = so3_vec( tmp2 (:,3) );
56 F13 = RY_init * RC(:,:,i) * so3_vec( RZ_init (:,1) );
57 F23 = RY_init * RC(:,:,i) * so3_vec( RZ_init (:,2) );
58 F33 = RY_init * RC(:,:,i) * so3_vec( RZ_init (:,3) );
59 F( (i-1) *9+1:i*9, : ) = [ F11 F12 F13;
60 F21 F22 F23;
61 F31 F32 F33 ];
62 end
63

64 delR = (F'*F) \ F' * q; % = inv(F'F)F'q
65 RX_init = expm( so3_vec(delR (1:3)) ) * RX_init;
66 RY_init = expm( so3_vec(delR (4:6)) ) * RY_init;
67 RZ_init = expm( so3_vec(delR (7:9)) ) * RZ_init;
68

69 NumIterations = NumIterations +1;
70 end
71

72 % fprintf('Number of iterations to converge to <10e-10: %d\n', NumIterations);
73

74 %% ============ Solve for TX, TY , TZ next ==============
75 J = zeros (3*num , 9); % J_tilde
76 p = zeros (3*num , 1); % p_tilde
77

78 for i = 1:num
79 J( ((i-1) *3+1):(i*3), : ) = [ RA(:,:,i) -eye(3) -RY_init * RC(:,:,i) ];
80 p( ((i-1) *3+1):(i*3) ) = -TA(:,:,i) - RA(:,:,i)*RX_init*TB(:,:,i) + RY_init*TC(:,:,

i);
81 end
82

83 translation = (J'*J) \ J' * p;
84 tX = translation (1:3);
85 tY = translation (4:6);
86 tZ = translation (7:9);
87

88 %% Form the homogeneous matrices for X, Y, Z
89 X = zeros (4); Y = zeros (4); Z = zeros (4);
90 X(4,4) = 1; Y(4,4) = 1; Z(4,4) = 1;
91 X(1:3 ,1:3) = RX_init;
92 Y(1:3 ,1:3) = RY_init;
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93 Z(1:3 ,1:3) = RZ_init;
94 X(1:3 ,4) = tX;
95 Y(1:3 ,4) = tY;
96 Z(1:3 ,4) = tZ;
97 end
98

99 %% Returns estimate of RX,RY,RZ using closed form solution in Wu et al
100 % Only used for getting initial estimate of data
101 function [RX, RY, RZ] = Wu2016_closedForm( RA, RB, RC )
102 % RA,RB,RC are 3x3xn rotation matrices.
103

104 % use only the first 10 sets or 10% of data whichever is lower
105 n = min( floor (0.1 * size(RA ,3)), 10 );
106

107 % randomly sample n sets - don 't take first n sets because RA is fixed in those sets
108 [RA_sample , idx] = datasample(RA, n, 3, 'Replace ', false);
109 qA = Quaternion( RA_sample ); % datasample () requires Statistics toolbox
110 qB = Quaternion( RB(:,:,idx) ); % use the corresponding data that was sampled from

RA
111 qC = Quaternion( RC(:,:,idx) );
112

113 W_ABC_plus = zeros( 4*n, 20 );
114 W_ABC_minus = zeros( 4*n, 20 );
115 for i=1:n % stack all the measurements
116 [ LQ_A , ~ ] = quaternion_matrix(qA(i).double ());
117 [ ~, RQ_B ] = quaternion_matrix(qB(i).double ());
118

119 c = qC(i).double ();
120 W_C = [ c(1) -c(2) -c(3) -c(4) -c(2) -c(1) c(4) -c(3) -c(3) -c(4) -c(1) c(2) -c(4)

c(3) -c(2) -c(1); % 4x16
121 c(2) c(1) -c(4) c(3) c(1) -c(2) -c(3) -c(4) c(4) -c(3) c(2) c(1) -c(3) -c

(4) -c(1) c(2);
122 c(3) c(4) c(1) -c(2) -c(4) c(3) -c(2) -c(1) c(1) -c(2) -c(3) -c(4) c(2) c

(1) -c(4) c(3);
123 c(4) -c(3) c(2) c(1) c(3) c(4) c(1) -c(2) -c(2) -c(1) c(4) -c(3) c(1) -c(2)

-c(3) -c(4) ];
124 W_ABC_plus( ((i-1) *4+1) :(4*i), : ) = [ RQ_B * LQ_A , W_C ]; % 4x20
125 W_ABC_minus( ((i-1) *4+1) :(4*i), : ) = [ RQ_B * LQ_A , -W_C ]; % 4x20
126 end
127

128 %return the smallest eigenvalue and the corresponding eigenvector from a 20x20
symmetric matrix

129 % [ Vplus , dplus ] = eigs( W_ABC_plus '* W_ABC_plus , 1,'sm '); %using sparse version
130 % [ Vminus , dminus ] = eigs( W_ABC_minus '* W_ABC_minus , 1,'sm ');
131

132 % might be better to use non -sparse version of eig and sort the e-values manually
133 [ Vplus , dplus ] = eig( W_ABC_plus '* W_ABC_plus );
134 [ dplus , I ] = sort( diag(dplus) );
135 Vplus = Vplus(:,I);
136 [ Vminus , dminus ] = eig( W_ABC_minus '* W_ABC_minus );
137 [ dminus , I ] = sort( diag(dminus) );
138 Vminus = Vminus(:,I);
139

140 if dplus (1) < dminus (1) % choose the one whose eigenvalue is smaller
141 V_XYZ = Vplus; % 20x1
142 else
143 V_XYZ = Vminus;
144 end
145

146 qX = Quaternion( V_XYZ (1:4)/norm(V_XYZ (1:4)) );
147 RX = qX.R;
148

149 V_XY = reshape( V_XYZ (5:20)/norm(V_XYZ (5:20)), 4,4 ); % 4x4
150 y0 = sqrt( V_XY (:,1) '*V_XY (:,1) );
151 y1 = sqrt( V_XY (:,2) '*V_XY (:,2) );
152 y2 = sqrt( V_XY (:,3) '*V_XY (:,3) );
153 y3 = sqrt( V_XY (:,4) '*V_XY (:,4) );
154 qY = Quaternion( [y0 y1 y2 y3] );
155 RY = qY.R;
156

157 z0 = sqrt( V_XY (1,:)*V_XY (1,:)' );
158 z1 = sqrt( V_XY (2,:)*V_XY (2,:)' );
159 z2 = sqrt( V_XY (3,:)*V_XY (3,:)' );
160 z3 = sqrt( V_XY (4,:)*V_XY (4,:)' );
161 qZ = Quaternion( [z0 z1 z2 z3] );
162 RZ = qZ.R;
163
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164 end
165

166 %% forms a 4x4 matrix matrix representation of a quaternion
167 function [ LQ, RQ ] = quaternion_matrix(q)
168 % q(0) is the scalar part , [q(1) q(2) q(3)] are the vector part
169 LQ = [ q(1) -q(2) -q(3) -q(4);
170 q(2) q(1) -q(4) q(3);
171 q(3) q(4) q(1) -q(2);
172 q(4) -q(3) q(2) q(1) ];
173

174 RQ = [ q(1) -q(2) -q(3) -q(4);
175 q(2) q(1) q(4) -q(3);
176 q(3) -q(4) q(1) q(2);
177 q(4) q(3) -q(2) q(1) ];
178 end

Listing A.2: MATLAB implementation of Wu et al (2016)

1 function [ X, Y, Z ] = Yan_AXBYCZ_DK( A1, B1, C1, A2, B2, C2 )
2 % Implements the D-K algorithm in Yan et al (2015)
3 % Solves for X, Y, Z in the matrix equation AXB=YCZ given A, B, C
4

5 % Input: A1 and C2 are 4x4 homogeneous matrices since they are fixed
6 % B1,C1, A2,B2 are 4 x 4 x n homogeneous matrices
7 % Output: X, Y, Z are 4 x 4 homogeneous matrices
8

9 num = size(B1, 3); % number of measurements
10 % fprintf('Num of data in Yan_AXBYCZ_DK: %d\n', 2*num);
11

12 %% Solve AX=YB type of equations using Li (2010) method of Kronecker product
13 [Z, Xt] = Li_AXYB_kron( C1, B1 ); % fixing A
14 % [Z, Xt] = li(C1,B1); % use shah 's implementation
15 Binv = zeros(size(B2)); % 4x4xnum
16 for i=1: num
17 Binv(:,:,i) = inv(B2(:,:,i)); % calc the inv of B b4 passing to solver
18 end
19 [X, Zt] = Li_AXYB_kron( A2, Binv ); % fixing C
20 % [X, Zt] = li(A2,Binv); % use shah 's implementation
21

22 %% Enforce orthogonality on rotational part of Xt and Z, X and Zt
23 % by finding the nearest orthogonal matrix using SVD
24 [U,~,V] = svd(Xt(1:3 ,1:3));
25 Xt(1:3 ,1:3) = U*V';
26 [U,~,V] = svd(X(1:3 ,1:3));
27 X(1:3 ,1:3) = U*V';
28 [U,~,V] = svd(Zt(1:3 ,1:3));
29 Zt(1:3 ,1:3) = U*V';
30 [U,~,V] = svd(Z(1:3 ,1:3));
31 Z(1:3 ,1:3) = U*V';
32

33 %% calc the two possibilities of Y and choose the one with the smallest
34 % error
35 Y1 = A1 * X / Xt;
36 Y2 = Zt / Z / C2;
37

38 Err1 = norm( A1*X*B1(:,:,1) - Y1*C1(:,:,i)*Z, 'fro' );
39 Err2 = norm( A2(:,:,1)*X*B2(:,:,1) - Y2*C2*Z, 'fro' );
40 if ( Err1 < Err2 )
41 Y = Y1;
42 else
43 Y = Y2;
44 end
45 end
46

47 %% implements the Kronecker product method in Li et al (2010) paper
48 function [X, Y] = Li_AXYB_kron( A, B )
49

50 num = size(A, 3); % number of measurements
51

52 RA = A(1:3, 1:3, :); % 3x3xnum
53 RB = B(1:3, 1:3, :);
54 TA = A(1:3, 4, :); % 3x1xnum
55 TB = B(1:3, 4, :);
56
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57 K = zeros (12*num , 24);
58 t = zeros (12*num , 1);
59 for i = 1:num
60 K( (i-1) *12+1:(i-1)*12+9, 1:9 ) = kron( RA(:,:,i), eye (3) );
61 K( (i-1) *12+1:(i-1)*12+9, 10:18 ) = -kron( eye(3), RB(:,:,i)' );
62 K( (i-1) *12+10:i*12, 10:18 ) = kron(eye (3), TB(:,:,i)' );
63 K( (i-1) *12+10:i*12, 19:21 ) = -RA(:,:,i);
64 K( (i-1) *12+10:i*12, 22:24 ) = eye (3);
65 t( (i-1) *12+10:i*12 ) = TA(:,:,i);
66 end
67

68 % solve Kv = t using least squares
69 v = pinv(K) * t; % 24x1
70

71 X = zeros (4,4); X(4,4) = 1;
72 Y = zeros (4,4); Y(4,4) = 1;
73

74 % reform the X, Y homogeneous matrices from the vectorized versions
75 X(1:3 ,1:3) = reshape(v(1:9), 3, 3) '; %need transpose because reshape goes down col

first then row
76 Y(1:3 ,1:3) = reshape(v(10:18) , 3, 3) ';
77 X(1:3, 4) = reshape(v(19:21) , 3, 1);
78 Y(1:3, 4) = reshape(v(22:24) , 3, 1);
79 end

Listing A.3: MATLAB implementation of the DK method in Yan et al (2015)

1 function [ X, Y, Z ] = Yan_AXBYCZ_PN( A, B, C, Xact , Yact , Zact)
2 % Implements the D-K algorithm in Yan et al (2015)
3 % Solves for X, Y, Z in the matrix equation AXB=YCZ given A, B, C
4

5 % Input: A1 and C2 are 4x4 homogeneous matrices since they are fixed
6 % B1,C1, A2,B2 are 4 x 4 x n homogeneous matrices
7 % Output: X, Y, Z are 4 x 4 homogeneous matrices
8

9 num = size(A, 3); % number of measurements
10 % fprintf('Num of data in Yan_AXBYCZ_PN: %d\n', num);
11

12 %% Get rotation and translation components of A, B, C
13 RA = A(1:3, 1:3, :); % 3x3xnum
14 RB = B(1:3, 1:3, :);
15 RC = C(1:3, 1:3, :);
16 TA = A(1:3, 4, :); % 3x1xnum
17 TB = B(1:3, 4, :);
18 TC = C(1:3, 4, :);
19

20 %% Form error function - nested because it needs to access some variables above
21 function F = myfun(xyz)
22 % xyz is a 21x1 vector of [qx qy qz tx ty tz]
23 F = zeros(num*12,1);
24

25 qx = Quaternion(xyz (1:4)).unit(); % normalize quaternion
26 RX = qx.R;
27 qy = Quaternion(xyz (5:8)).unit();
28 RY = qy.R;
29 qz = Quaternion(xyz (9:12)).unit();
30 RZ = qz.R;
31 TX = xyz (13:15);
32 TY = xyz (16:18);
33 TZ = xyz (19:21);
34

35 for i = 1:num
36 Rerr = RA(:,:,i)*RX*RB(:,:,i)-RY*RC(:,:,i)*RZ; % 3x3
37 Terr = RA(:,:,i)*RX*TB(:,:,i)+RA(:,:,i)*TX+TA(:,:,i)...
38 - RY*RC(:,:,i)*TZ -RY*TC(:,:,i)-TY; % 3x1
39 F( (i-1) *12+1 : (i-1) *12+9 ) = reshape(Rerr , 9, 1);
40 F( (i-1) *12+10 : (i-1) *12+12 ) = Terr;
41 end
42

43 end
44

45 %% get initial estimate of quaternions and translation
46 opt = 2; % determines how the initial estimate was determined
47
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48 if opt == 1
49 % a) Use perturbation of actual X, Y, Z
50 e = pi/5;
51 RX_init = expm( so3_vec(e*ones (3,1)) ) * Xact (1:3 ,1:3); % 3x3
52 RY_init = expm( so3_vec(e*ones (3,1)) ) * Yact (1:3 ,1:3);
53 RZ_init = expm( so3_vec(e*ones (3,1)) ) * Zact (1:3, 1:3);
54 TX_init = Xact (1:3, 4) + e*ones (3,1); % 3x1xnum
55 TY_init = Yact (1:3, 4) + e*ones (3,1);
56 TZ_init = Zact (1:3, 4) + e*ones (3,1);
57

58 elseif opt == 2
59 % b) Use randomly generated X, Y, Z
60 M = zeros (6,1); %mean
61 Sig = eye(6) *2; %covariance
62 XActual = expm(se3_vec(mvg(M, Sig , 1)));
63 YActual = expm(se3_vec(mvg(M, Sig , 1)));
64 ZActual = expm(se3_vec(mvg(M, Sig , 1)));
65 RX_init = XActual (1:3 ,1:3); % 3x3
66 RY_init = YActual (1:3 ,1:3);
67 RZ_init = ZActual (1:3 ,1:3);
68 TX_init = XActual (1:3 ,4); % 3x1xnum
69 TY_init = YActual (1:3 ,4);
70 TZ_init = ZActual (1:3 ,4);
71 %--------------------------
72 end
73 qx_init = Quaternion(RX_init).double ();
74 qy_init = Quaternion(RY_init).double ();
75 qz_init = Quaternion(RZ_init).double ();
76 x0 = [qx_init '; qy_init '; qz_init '; TX_init; TY_init; TZ_init ];
77

78 %% call lsqnonlin () using Levenberg -Marquardt algorithm
79 % default termination tolerance is 1e-6
80 options = optimoptions(@lsqnonlin ,'Algorithm ','levenberg -marquardt ');
81 [res ,resnorm ,~,~,output] = lsqnonlin(@myfun ,x0 ,[],[], options);
82

83 %% reform X, Y, Z from "res"
84 X = zeros (4); Y = zeros (4); Z = zeros (4);
85 X(4,4) = 1; Y(4,4) = 1; Z(4,4) = 1;
86

87 X(1:3 ,1:3) = Quaternion(res (1:4)).unit().R; %normalize b4 converting to rot matrix
88 Y(1:3 ,1:3) = Quaternion(res (5:8)).unit().R;
89 Z(1:3 ,1:3) = Quaternion(res (9:12)).unit().R;
90 X(1:3 ,4) = res (13:15); % translation components
91 Y(1:3 ,4) = res (16:18);
92 Z(1:3 ,4) = res (19:21);
93 end

Listing A.4: MATLAB implementation of the PN method in Yan et al (2015)
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