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ABSTRACT 
 

The fourth-generation risk-need assessment instruments such as Correctional Offender 

Management Profiling for Alternative Sanctions (COMPAS) have opened the 

opportunities for the use of big data analytics to assist judicial decision-making across the 

criminal justice system in U.S. While the COMPAS system becomes increasingly 

popular in supporting correctional professionals’ judgement on an offender’s risk of 

committing future crime, little research has been published to investigate the potential 

systematic bias encoded in the algorithms behind these assessment tools that could 

possibly work against certain ethnic or gender groups. This paper uses two-sample t-test 

and ordinary least-square regression model to demonstrate that COMPAS algorithms 

systemically generates a higher risk score for African-American and male offenders in 

terms of the risk of failure to appear, risk of recidivism, and risk of violence. Although 

race was explicitly excluded when the COMPAS algorithms were developed, the results 

showed that such an analytic model still systematically discriminates against African- 

American offenders. This paper introduced the importance of examining algorithmic 

fairness in big data analytic applications and offers the methodology as well as tools to 

investigate systematic bias encoded in machine leaning algorithms. Additionally, the 

implications of this paper also suggest that simply removing the protected variable in a 

big data algorithm could not be sufficient to eliminate the systematic bias that can still 

affect the protected groups, and that further research is needed for solutions to thoroughly 

address the algorithmic bias in big data analytics. 
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INTRODUCTION 

 
Big data analytics are becoming increasingly popular as a quantitative tool in both 

public and private sector. Centers for Medicare and Medicaid Services (CMS) has 

developed a predictive analytics system for Medicare fraud prevention, Amazon relies on 

algorithms to prioritize the targeted geographies to expand its Prime services, law 

enforcement departments are testing predictive policing to fight against crimes, along 

with many others. While data analytics open new opportunities in a variety of domains, 

research and government reports have discussed the possibility of systematic 

discrimination encoded in big data algorithms that could reinforce the inequality in 

certain social groups, raising a critical concern regarding the reliance of using big data 

algorithms for our decision making without fully vetting the algorithmic fairness. 

In particular, correctional professionals and judiciary officers in U.S. justice 

system are increasingly utilizing the fourth-generation risk-need assessment instruments 

that potentially are the best risk assessment instruments currently available for criminal 

justice since these tools not only incorporate multi-theoretical criminal risk factors, but 

also are designed to be integrated into the “selection of intervention modes and targets for 

treatment.1 Correctional Offender Management Profiling for Alternative Sanctions 

(COMPAS) is one of the most popular assessment tools used in nationwide criminal 

justice system2, producing quantitative evaluations towards the offenders based on the 

 
 

 

1 Blomberg, Thomas, William Bales, Karen Mann, Ryan Meldrum, and Joe Nedelec. "Validation of the 
COMPAS Risk Assessment Classification Instrument." College of Criminology and Criminal Justice, 
Florida State University, Tallahassee, FL (2010) 
2 Larson, Jeff, Surya Mattu, Lauren Kirchner, and Julia Angwin. "How We Analyzed the COMPAS 
Recidivism Algorithm." ProPublica (5 2016). 
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offender’s characteristics as an important component of judicial supervision and 

intervention. Using empirically based evidence and big data analytics algorithms, these 

risk assessment tools predict each offender’s likelihood of committing wrong-doings in 

the future, aiming to provide an “objective” evaluation on which the judiciary officers  

can rely for sentencing, deciding probation, and other decision-making. There is no doubt 

that judicial fairness is one of the core principals in the U.S. justice system. With the new 

strategy of using algorithm-based assessment tools, there is a need to investigate the 

fairness at these predictive risk scores among different social groups in order to ensure 

the assessments that are produced by algorithms are based on the offender’s criminal 

factors instead of his/her race or gender. 

This paper examined the risk scores for 13,186 offenders in Broward County 

Florida, who were assessed by the COMPAS system between 2013 and 2014. The results 

of the statistical analyses demonstrate that the COMPAS algorithm systematically 

predicts a higher risk score towards African-American offenders and male offenders. On 

average, the system is expected to produce at least 0.20-point higher COMPAS score for 

African-American offenders as well as for male offenders in terms of risk of failure to 

appear. In addition, an African-American is expected to receive an approximately 1.0- 

point higher score from the COMPAS assessment in terms of risk of recidivism and risk 

of violence; while the COMPAS scores of male offenders are statistically significantly 

higher than the risk scores of female offenders by 0.2-point higher in terms of risk of 

recidivism and by 0.7-point in terms of violence. 

Although the differences in risk scores among the two ethnic and gender groups 

are not substantially significant but rather statistically significant, the implication of this 
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paper raise an important concern of the potential algorithmic discrimination encoded in 

the COMPAS data analytics model. 

LITERATURE REVIEW 
 

Existing academic studies have revealed the possibility that systematic 

discrimination against certain protected groups could be encoded in data analytics 

algorithms. While acknowledging that machine learning, a common use of big data 

analytics, could improve predictions in domains such as employment, education, and 

even criminal justice, Hardt et al. pointed out that “its effect on existing biases is not well 

understood.” 3 In addition, the Big Data Working Group in Obama’s Administration in 

May 2014 released a report noting that algorithmic bias can sometimes even “be the 

inadvertent outcome of the way big data technologies are structured and used” due to the 

“encoding discrimination in automated decisions.4” Furthermore, using case studies in a 

variety of practices of big data analytics, Obama’s Administration published a report in 

May 2016 that has explicitly acknowledged the challenges raised by algorithmic systems 

that can “perpetuate, exacerbate, or mask harmful discrimination.” 5 

DISCRIMINATION ENCODED IN BIG DATA ALGORITHMS 

In a recent statement, the Association for Computing Machinery argued that 

automated decision–making, powered by big data algorithms, can cause “harmful 

 
 
 
 
 

 

3 Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of Opportunity in Supervised Learning." In 
Advances in Neural Information Processing Systems, pp. 3315-3323. 2016. 
4 United States. Executive Office of the President, and John Podesta. Big Data: Seizing Opportunities, 
Preserving Values. 2014. 
5 Munoz, Cecilia, Megan Smith, and D. J. Patil. "Big Data: A Report on Algorithmic Systems, Opportunity, 
and Civil Rights." Executive Office of the President (2016). 
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discrimination” on disadvantaged individuals6. For example, researchers found that target 

ads that are produced by big data algorithms would discriminate against low-income 

consumers7. These individuals that could otherwise eligible for better offers (such as 

lower interest for personal loans) may never receive the information as the result of the 

algorithmic selection for the ad targeting. 

Existing literature has also discussed reasons that could potentially cause 

algorithmic bias in the practice of big data analytics, even sometimes without any human 

errors. One argument maintains that the learning algorithms can capture the stereotypes 

and biases from input data and generate algorithmically-biased outcomes8. Barocas and 

Selbst also noted that big data analytics “can reproduce existing patterns of 

discrimination” and reinforce the “existing inequalities by suggesting that historically 

disadvantaged groups actually deserve less favorable treatment.9” In addition, since 

algorithms are defined by humans, they could inadvertently inhere the human biases that 

are incorporated at the programming of the algorithms10. For instance, a study on 

statistical discrimination in labor economics found that employers would have incentives 

to “easily use observable characteristic such as sex and race” as the proxy to predict the 

productivity of the workers based on the gender and racial group that they belong to, and 

therefore workers of the discriminatory group who are as equally productive as workers 

 
 

6 ACM U.S. Public Policy Council. “Statement on Algorithmic Transparency and Accountability.” January 
2017.      https://www.acm.org/binaries/content/assets/public-policy/2017_usacm_statement_algorithms.pdf 
7 Federal Trade Commission. “Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues.” 
January 2016 
8 Bolukbasi, Tolga, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. "Quantifying and 
Reducing Stereotypes in Word Embedding." arXiv Preprint arXiv:1606.06121 (2016) 
9 Barocas, Solon, and Selbst, Andrew D.. "Big Data's Disparate Impact." (2016). 
10 Kirkpatrick, Keith. "Battling Algorithmic Bias: How Do We Ensure Algorithms Treat Us Fairly?." 
Communications of the ACM 59, no. 10 (2016): 16-17. 

http://www.acm.org/binaries/content/assets/public-policy/2017_usacm_statement_algorithms.pdf
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of the non-discriminatory group can experience differences in wage.11 Moreover, even 

without absorbing the biases from the input data or the human developers, due to the 

biases of omission, big data analytics could still produce biased classifications and 

decisions “because the data is implicitly biased by virtue of who is represented and who 

is omitted.” 12
 

Empirical studies have discovered a variety of algorithmic biases in the real-world 

applications of big data analytics in both public and private sector. In a study from a 

Harvard researcher, she found that Google’s online advertising algorithm would be 25% 

more likely to deliver an ad suggestive of an arrest record when the input queries are 

identified as the names associated with African-Americans13. In addition, a study in 2015 

also discovered that the online advertising platform in Google systematically displayed 

fewer target ads for high paying jobs to female users than it did to male users14. In 2016, 

Bolukasi et al conducted a research of an analogy puzzle15 that analyzed a dataset of 3 
 

million words trained on a corpus of text from Google News, and concluded that the 

algorithm returns “ASSAULTED” as the closest word to the query “BLACK MALE” while 

the responses to “WHITE MALE” is “ENTITLED TO”.16 These studies produced evidence 

 
 
 
 

 

11 Romei, Andrea, and Salvatore Ruggieri. "A Multidisciplinary Survey on Discrimination Analysis." The 
Knowledge Engineering Review 29, no. 05 (2014): 582-638. 
12 Lipton, Zachary. “The Foundations of Algorithmic Bias.” (2016) 
13 Sweeney, Latanya. "Discrimination in Online Ad Delivery." Queue 11, no. 3 (2013): 10. 
14 Datta, Amit, Michael Carl Tschantz, and Anupam Datta. "Automated Experiments on Ad Privacy 
Settings." Proceedings on Privacy Enhancing Technologies 2015, no. 1 (2015): 92-112. 
15 An analogy puzzle (in the format of a:b :: c:d) is a data analytic model that selects the most appropriate d 
(which is the dependent variable) given the a, b, and c (the independent variables). 
16 Bolukbasi, Tolga, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. "Quantifying and 
Reducing Stereotypes in Word Embeddings." arXiv Preprint arXiv:1606.06121 (2016). 
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of the notion that data mining can reinforce the biases that inherits the prejudice of the 

existing data17. 

In recent years, scholars refined the definition of non-discrimination (or fairness) 

in the context of big data analytics. One aspect of the algorithmic fairness is introduced 

by Dwork et al as the notion of “individual-based fairness,” arguing that similar 

individuals in terms of the non-protected characteristics should be treated similarly by the 

big data analytics models18. In addition, Zliobaite points out the other aspect of the 

fairness for machine-learning is to avoid “redlining”, which refers the different 

predictions among different groups of individuals “can only be as large as justified by the 

non-protected characteristics.” 19 These two aspects cover the conditions of algorithmic 

fairness from individual level to the group level. 

ALGORITHMIC FAIRNESS IN U.S. JUSTICE SYSTEM 
 

Data analytics have also been widely used in support of the decision making in 
 

U.S. judiciary system in the past two decades. Scholars have acknowledged the 

increasing importance as well as popularity of using actuarial, objective, risk-need 

assessments in the field of criminal justice.20 Using data modeling and empirical risk 

factors, these tools are developed and designed to predict the offender’s likelihood of 

recidivism, thereby assisting judicial agencies to decide the level of sentencing 

 
 

 

17 Barocas, Solon, and Selbst, Andrew D.. "Big Data's Disparate Impact." (2016). 
18 Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. "Fairness through 
Awareness." In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214- 
226. ACM, 2012. 
19 Zliobaite, Indre. "A Survey on Measuring Indirect Discrimination in Machine Learning." arXiv Preprint 
arXiv:1511.00148  (2015). 
20 Holsinger, Alexander M., Christopher T. Lowenkamp, and Edward J. Latessa. "Ethnicity, Gender, and 
the Level of Service Inventory-Revised." Journal of Criminal Justice 31, no. 4 (2003): 309-320. 
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accordingly21. Over the past few years, the empirically based risk assessment instruments 

such as Level of Service Inventory-Revised (LSI-R) model and the Correctional Offender 

Management Profiling for Alternative Sanctions (COMPAS) model are becoming “an 

integral part” of the judicial system in U.S.22
 

LSI-R is a third-generation assessment model that evaluates the characteristics of 

offenders including: criminal history, education/employment, finances, marital status, 

accommodations, recreation preferences, social companions, alcohol/drug, 

emotional/personal status, and attitude orientation.23 With these static and dynamic 

factors, LSI-R provides an assessment regarding the offender’s likelihood of re-offending 

a crime in the future in order to assist the correctional officers in making decision such as 

sentencing, levels of supervision, and release from institutional custody.24
 

Although race is explicitly excluded as an input in the LSI-R model, a variety of 

scholars have conducted studies to investigate the ethnic bias encoded in the LSI-R 

predictive classification on the offenders’ “risk scores” of recidivism. Whiteacre’s study 

in 2006 found that the LSI-R classification system has a tendency towards more errors of 

over-classification (false positives) for African American offenders than either 

Caucasians or Hispanics offenders.25 Holsinger et al also discovered that the LSI-R is 
 
 

 

21 Flores, Anthony W., Christopher T. Lowenkamp, Alexander M. Holsinger, and Edward J. Latessa. 
"Predicting Outcome with the Level of Service Inventory-Revised: The Importance of Implementation 
Integrity." Journal of Criminal Justice 34, no. 5 (2006): 523-529. 
22 Fass, Tracy L., Kirk Heilbrun, David DeMatteo, and Ralph Fretz. "The LSI-R and the COMPAS: 
Validation Data on Two Risk-Needs Tools." Criminal Justice and Behavior (2008). 
23 Andrews, D. A., & Bonta, J. “Level of Service Inventory–Revised (LSI-R): User’s Manual.” North 
Tonawanda, NY: Multi-Health Systems (2001). 
24 Kroner, Daryl G., and Jeremy F. Mills. "The Accuracy of Five Risk Appraisal Instruments in Predicting 
Institutional Misconduct and New Convictions." Criminal Justice and Behavior 28, no. 4 (2001): 471-489. 
25 Whiteacre, Kevin W. "Testing the Level of Service Inventory–Revised (LSI-R) for Racial/Ethnic 
Bias." Criminal Justice Policy Review 17, no. 3 (2006): 330-342. 
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likely to predict “significantly higher scores” to Native Americans (non-White 

individuals) than to Non-Native Americans on the likelihood of recidivism.26
 

COMPAS, developed by Northpointe Inc. (a private company now called 

Equivant), is one of the “best known” fourth generation systems27 that predict offenders’ 

likelihood of re-offending to assist judicial decision making in U.S. Instead of simply 

providing one risk score toward each offender (like the conventional risk assessment 

systems), COMPAS generates separate risk predictions, ranging from 1 (very low risk) to 

10 (very high risk), in terms of violence, recidivism, failure to appear, and community 

failure.28 Several published data and literature have discussed the predictive validity of 

the COMPAS assessment tool. Northpointe Inc. has conducted a few internal studies to 

illustrate the validity of the COMPAS, such as the report by Brennan et al in 2008 

arguing the predictions produced by COMPAS recidivism risk model are “equal [to] or 

exceed similar” fourth generation judicial assessment instruments.29 However, a study in 

University of California, in contrast, found little evidence on “interrater reliability, 

predictive utility, and construct validity” in the COMPAS’s prediction on recidivism.30
 

 
 
 
 
 

 

26 Holsinger, Alexander M., Christopher T. Lowenkamp, and Edward J. Latessa. "Ethnicity, Gender, and 
the Level of Service Inventory-Revised." Journal of Criminal Justice 31, no. 4 (2003): 309-320. 
27 Andrews, Don A., James Bonta, and J. Stephen Wormith. "The Recent Past and Near Future of Risk 
and/or Need Assessment." Crime & Delinquency 52, no. 1 (2006): 7-27. 
28 Fass, Tracy L., Kirk Heilbrun, David DeMatteo, and Ralph Fretz. "The LSI-R and the COMPAS: 
Validation Data on Two Risk-Needs Tools." Criminal Justice and Behavior (2008). 
29 Brennan, Tim, William Dieterich, and Beate Ehret. "Evaluating the Predictive Validity of the COMPAS 
Risk and Needs Assessment System." Criminal Justice and Behavior 36, no. 1 (2009): 21-40. 
30 Skeem, J., and J. Eno Louden. "Assessment of Evidence on the Quality of the Correctional Offender 
Management Profiling for Alternative Sanctions (COMPAS)." Unpublished Report Prepared for the 
California Department of Corrections and Rehabilitation. Available at: https://webfiles. uci. 
edu/skeem/Downloads. html (2007). 
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Furthermore, less research has been conducted to investigate the ethnic and/or 

gender bias encoded in the COMPAS analytics model. In 2016, a study by ProPublica 

analyzed the predictive risk scores generated by the COMPAS model for 7,000 offenders 

in Florida, and found that African-Americans who were “labeled as higher risk” (risk 

score of 8-10) but did not actually reoffend are twice as likely as White individuals31. 

Northpointe Inc., subsequently published their own study32 to counter ProPublica’s 
 

conclusions on the racial bias encoded in COMPAS and criticize the statistical 

methodology that Angwin et al utilized at ProPublica’s report. 

PURPOSE OF THIS STUDY 
 

In the context of the judicial system, algorithm bias from data analytics would 

present a statistical inference that is misleading and can eventually hinder the fair 

judgement in criminal sentencing33 against the disadvantaged groups. Moreover, although 

the fourth-generation risk assessment instruments (like COMPAS) are increasingly 

common in courtrooms across the nation34, a limited amount of research has been 

published that examines any systematic bias against minority groups in the predictions 

generated by these big data analytic algorithms. The main goal of this study is to 

investigate whether there is any systematic discrimination in the risk scores produced by 

the COMPAS model towards African Americans and/or female offenders. 

 
 

 

31 Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. "Machine Bias." Pro Publica (2016). 
32 Dieterich, William, Christina Mendoza, and Tim Brennan. COMPAS Risk Scales: Demonstrating 
Accuracy Equity and Predictive Parity. Technical report, Northpointe, July 2016. http://www. 
northpointeinc.  com/northpointe-analysis,  2016. 
33 Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. "Machine bias." Pro Publica (2016). 
34 Dieterich, William, Christina Mendoza, and Tim Brennan. COMPAS risk scales: Demonstrating 
Accuracy Equity and Predictive Parity. Technical report, Northpointe, July 2016. http://www. 
northpointeinc.  com/northpointe-analysis,  2016. 

http://www/
http://www/
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DATA AND METHODS 
 

This paper analyzes the original dataset that Larson et al received via the Freedom 

of Information Act (FOIA) from the Broward County Sheriff’s Office in Florida and used 

at their study35 at ProPublica on the algorithmic bias in the COMPAS system. The dataset 

consists of 18,610 individual offenders in Broward County, Florida, who were assessed 

by the COMPAS system in 2013 and 2014. According to Larson et al, Broward County is 

“a large jurisdiction using the COMPAS tool” in its criminal justice system and has a 

strong open-records law, it is reasonable to serve as the data sample geography for the 

research topic at this paper. 

Based on the dataset, the COMPAS algorithm produced three risk scores for each 

defendant in terms of “Risk of Recidivism”, “Risk of Violence” and “Risk of Failure to 

Appear.” The COMPAS scores for each individual, which is the dependent variable of 

this study, are from 1 (the lowest risk) to 10 (the highest risk). In addition, the dataset 

also includes the independent variables of interest such as the defendant’s ethnic and 

gender as well as the potential controlling variables such as the offender’s age when the 

screening was performed, marital status, and legal status. 

Among the 18,610 offenders at the raw dataset, 2,373 (or 12.8%) of them are 

classified as the races (Hispanic, Asian, etc.) other than African-Americans or 

Caucasians. In addition, after removing the individuals who either have an invalid 

COMPAS score or have a marital status classified as “other” in the dataset, a total of 

13,186 offenders remain as a valid data sample for the statistical analyses. 

 
 

 

35 Larson, Jeff, Surya Mattu, Lauren Kirchner, and Julia Angwin. "How We Analyzed the COMPAS 
Recidivism Algorithm." ProPublica (5 2016) (2016). 



36 Zliobaite, Indre. "A Survey on Measuring Indirect Discrimination in Machine Learning." arXiv preprint 
arXiv:1511.00148  (2015). 
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Zliobaite36 provided a theoretical framework with regard to testing discrimination 

in big data predictions using statistical tests, which refers to the hypotheses testing 

models such as the OLS regression and t-tests to measure whether there is a statistically 

significant difference of the means in different groups. Thus, in order to test and measure 

the ethnic and gender bias encoded in the COMPAS algorithms, a variety of statistical 

tests have been conducted at this paper. First, t-tests will be performed to investigate 

whether there is any statistically significant relationship between the means of the 

COMPAS scores by risk category (risk of recidivism, risk of violence, risk of failure to 

appear) and race/gender. Specifically, the following hypotheses will be tested at the t- 

tests: 
 

H01 = There is no difference between the means of COMPAS scores in African 
American defendants and Caucasian defendants 

HA1 = There is difference between the means of COMPAS scores in African 
American defendants and Caucasian defendants 

H02 = There is no difference between the means of COMPAS scores in Female 
defendants and Male defendants 

HA2 = There is difference between the means of COMPAS scores in Female 
defendants and Male defendants 

 
In addition, several ordinary least squares (OLS) regression models with various 

control variables will be used in the second phase to further test the relationship and 

measure the magnitude of the ethnic/gender bias (if any) in COMPAS scores by risk 

category. Specifically, the OLS regression tests will investigate the following hypotheses: 

 
 
 
 

 



37 Zliobaite, Indre. "A Survey on Measuring Indirect Discrimination in Machine Learning." arXiv preprint 
arXiv:1511.00148  (2015). 
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H03 = There is no relationship between the COMPAS scores and the defendant’s 
race (African American versus Caucasian) 

HA3 = There is a relationship between the COMPAS scores and the defendant’s 

race (African American versus Caucasian) 

H04 = There is no relationship between the COMPAS scores and the defendant’s 
gender (male versus female) 

HA5 = There is a relationship between the COMPAS scores and the defendant’s 

gender (male versus female) 
 

Furthermore, this paper will use the raw decile COMPAS scores (ranged from 1 

to 10) as the dependent variable instead of the risk classification level (low, medium, 

high) for all the statistical analyses since the categorical risk classification cannot 

accurately reflect the scale of differences in COMPAS scores. For example, offenders 

with a score of 1 and offenders with a score of 4 would both be classified as “low risk” 

while the difference of their COMPAS scores were 3 points. 

Additionally, the predictive validity of COMPAS is not the primary concentration 

of this study. Hence, the statistical analyses at this paper will not investigate the accuracy 

of the COMPAS scores in comparison to the offender’s actual record of re-arrest by race 

or gender. Instead, the focus of this paper is examining the fairness of the risk scores 

directly generated by the COMPAS algorithms between different ethnic groups and 

gender groups. Based on Zliobaite’s definition of discrimination in machine learning37, if 
 

COMPAS produces fair predictions, offenders that are similar in terms of the “non- 

protected characteristics” (all the risk factors expect race or gender) should receive 

similar predictive risk scores. 
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RESULTS 
 

In general, this paper found that, although COMPAS algorithms have explicitly 

excluded “race” from the questionnaire that collects the offender’s data as the input of its 

modeling, this assessment tool still generates discriminatively higher risk scores for 

African-American defendants in terms of risk of failure to appear, risk of recidivism, and 

risk of violence. Additionally, statistical analyses also indicated that difference of the 

COMPAS scores between male and female offenders cross those three types of risk 

category is also statistically significant. 

RISK OF FAILURE TO APPEAR 
 

Figure 1 presents the six-number summary (minimum, first quartile, median, 

mean, third quartile, maximum) of COMPAS scores in terms of the offender’s risk for 

failure to appear by race (African-American versus Caucasian) and by gender (female 

versus male). The mean and median of COMPAS scores of African-American offenders 

(respectively 3.35 and 3.0) are higher than Caucasian offenders (mean: 3.10; median 2.0). 

In addition, the mean and median of the male offender’s COMPAS scores (respectively 

3.31 and 3.0) are also both higher than that of female offender’s scores. 
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The results in t-tests (Table 1) show that the average COMPAS score of African- 

American individuals is statistically significantly higher than the score of Caucasian 

individuals in terms of the offender’s risk of failure to appear. Specifically, it’s at 95% 

confidence level that, on average, African-Americans would have a higher COMPAS 

score than Caucasians by 0.16 to 0.32 points. In addition, the difference between male 

offender’s risk of failure to appear score and the female offender’s is also statistically 

significant at the 99% confidence level. 

 
 

The results of the OLS regression models, presented in Table 2, indicate that 

being an African-American would generally results in a 0.24-point higher risk of failure 

to appear score than being a Caucasian. Moreover, the COMPAS algorithm 

systematically produces a higher risk score to male offenders than it does for female 

offenders by 0.3-point in terms of risk of failure to appear. Furthermore, holding the 

individual’s marital status and age constant, the results from the regression model show 

that the COMPAS tool, on average, generates a 0.4-point higher risk of failure to appear 

score to African-Americans and a 0.26-point higher score to male offenders in 

comparison to the risk scores towards Caucasians and female offenders, respectively, at 

greater than 99% confidence level. However, the r-squared value in the multivariate 

regression model is only 0.07, indicating the model is not fully specified. 
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RISK OF RECIDIVISM 
 

The six-number summary at Figure 2 illustrates the mean and median of the 

COMPAS score among African-American offenders (respectively 5.43 and 6.0) are both 

higher than those two statistics of the risk scores among Caucasian offenders (mean: 

3.79; median: 3.0) in terms of the individual’s risk of recidivism. In addition, the 

interquartile rage (IQR) of African-American’s risk scores is also apparently higher than 

the IQR of Caucasian’s COMPAS scores in terms of the offender’s risk of recidivism. In 

contrast, the boxplots at Figure 2 doesn’t show any significant differences of the 

recidivism risk scores between male and female offenders. 
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Furthermore, Table 3 presents that the average level of African-American 

offender’s COMPAS score is statistically significantly higher than Caucasian offender’s 

by 1.56 to 1.74-point at a 95% confidence level in terms of the risk of recidivism. 

Although the mean difference of the risk of recidivism scores between male and female 

offenders is also statistically significant, it’s not substantially significant since the t-test 

shows the difference is between 0.09 to 0.31-point. 

 
 

The OLS regression models (results listed at Table 4) show that, if an offender is 

African-American, he/she is expected to receive a 1.65-point higher risk score in terms of 

recidivism from the COMPAS algorithm than Caucasian offenders. In addition, on 

average, COMPAS systematically generates a 0.20-point higher recidivism risk score to 
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male offenders than it does to female offenders. Moreover, controlling the offender’s 

marital status and age, it’s statistically significant that the COMPAS algorithm still 

produces a 1.17-point higher risk to African-American individuals and a 0.20-point 

higher score to male in terms of the offender’s risk of recidivism. However, the r-squared 

value of the specification #3 at regression model is only 0.23, which is relatively low and 

the model is not fully specified. 

 
 

RISK OF VIOLENCE 
 

In terms of the offender’s risk of violence, Figure 3 demonstrates that the mean 

and median of the COMPAS scores in African-American offenders (respectively 4.3 and 

4.0) are also higher than that in Caucasian offenders (mean: 2.78; median: 2.0); while it 
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also illustrates that the IQR of the male offender’s COMPAS score is apparently wider 

than that of the female offender’s, indicating that the COMPAS scores among male 

offenders have a bigger spread towards a higher risk score. 

 
 

The results of the two-sample t-tests (listed in Table 5) not only show the mean 

difference of the COMPAS scores is statistically significant between the two ethnic 

groups, but also indicate the average risk score in African-Americans is systemically 

higher than that in Caucasians by 1.44 to 1.60-point in terms of the offender’s risk of 

violence. Similar to the risk scores in terms of recidivism, although the t-test proves the 

average level of the COMPAS scores is statistically significantly higher among the male 

offenders (compared to the female offenders), the difference is in the range of 0.65 to 

0.83-point, which is not substantially significant. 
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Based on the regression analyses (results listed at Table 6), on average, if the 

offender is an African-American, the COMPAS model is expected to produce a 1.52- 

point higher score in terms of the risk of violence. Moreover, it’s statistically significant 

that male offenders would receive a higher violence risk score by 0.74-point than female 

offenders would do. Additionally, holding the offender’s marital status and age constant, 

the regression model indicates that being an African-American offender, on average, 

would receive a 0.93-point higher COPMAS score; while being a male offender is 

expected to be evaluated as 0.74-point higher risk to conduct violent crime by the 

COMPAS algorithm. All effects of ethnic and gender on COMPAS scores are 

statistically significant in greater than 99% confident level. However, the coefficient for 

being an African-American offender is lower in the multivariate regression model than 

that in the bivariate regression model, indicating part of the violence risk scores are 

explained not by the race variable but rather by the other control variables (including 

marital status and age). Last but not the least, the r-squared value in the multivariate 

regression model is only 0.38, indicating the model is not fully specified. 
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CONCLUSION 
 

Using statistical analyses to examine the fairness of the risk scores generated by 

the COMPAS system towards 13,186 offenders in Broward County FL, this paper found 

that the COMPAS algorithm systematically predicts a higher risk score towards African- 

American and male offenders. As Table 7 illustrates, although the differences in risk 

score between the two race (African-American versus Caucasian) and gender (male 

versus female) groups are all statistically significant in terms of all three types of risk 

category (risk of failure to appear (FTA), risk of recidivism, and risk of violence), the 

scale of the differences in risk scores varies in different type of risk category. 

Overall, the results indicate that the effect of race and gender on the COMPAS 

scores in terms of risk of FTA is relatively low (less than 0.5-point). However, African- 

American offenders are expected to receive generally 1.0-point higher risk scores in 

terms of recidivism and violence; while the risk scores of male offenders are 

approximately 0.7-point higher in terms of these two risk types, raising an important 

concern regarding the algorithmic discrimination towards certain ethnic and gender 

groups encoded in the COMPAS assessment system. 

Since it’s increasingly popular in the U.S. justice system to use these assessment 

instruments that produce a quantitative evaluation based on offender’s empirical 

characteristics as part of the judiciary decision making process, it’s particularly important 

to ensure these assessment tool powered by big data analytics algorithms to generate a 

fair prediction among all social groups that is solely based on the offender’s criminal 

factors instead of his/her race or gender. Without doubt, all judicial decisions have an 

important impact on relevant individual’s personal life as well as the fairness in the 
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justice system, any potential bias encoded in these assessment tools that could 

discriminate against certain ethnic or gender groups must be investigated and addressed 

before any risk scores can be used in the court system to assist the decision making of the 

judicial officers and correctional professionals 

While the findings at this paper are supported by careful designed methodology as 

well as statistical analyses, there are still some limitations and hence can be improved at 

future research. Specifically, the data sample at this paper is just limited to the Broward 

County in Florida so a bigger and more diverse data sample that cover more geographies 

could help further examine the fairness of COMPAS scores towards the two ethnic and 

gender groups. In addition, the r-square values at the regression models are relatively low 

because the control variables used at this paper are limited due to the data availability. 

Future research can employ a dataset that includes more control variables (such as 

education, household income, and more) for the statistical modeling in order to further 

investigate the effect of race and gender on the COMPAS scores while holding more 

potentially related characteristics constant. 

Finally, the implications of this paper indicate the need for future research further 

analyzing the algorithmic discrimination in different big data analytics applications as 

well as the approach to address or even eliminate the bias encoded in the algorithms. This 

paper introduces the methodology and tools to investigate algorithmic bias and can be 

applied to examine the fairness of other big data analytics practices such as fraud 

prevention, recruiting, education admission, predictive policing, and more that utilize 

algorithms to assist human being’s decision-making. Furthermore, although race is 

explicitly excluded as an input variable when the COMPAS algorithm was developed, the 
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results at this paper suggest the system still produces discriminatory results for African- 

American offenders. Thus, simply removing the protected variable in building the 

algorithm is not sufficient to address the potential bias against the protected 

characteristics. Future research is needed to identify feasible approaches to address the 

algorithmic discrimination and provide best practices in big data analytics applications to 

ensure discriminatory bias are either thoroughly disclosed or appropriately justified. 
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