
Grid-based Finite Elements System for Solving

Laplace-Beltrami Equations on 2-Manifolds

by

Ming Chuang

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2013

© Ming Chuang 2013

All rights reserved



Abstract

Solving the Poisson equation has numerous important applications. On a Rie-

mannian 2-manifold, the task is most often formulated in terms of finite elements and

two challenges commonly arise: discretizing the space of functions and solving the

resulting system of equations.

In this thesis, we describe a finite elements system that simultaneously addresses

both aspects. The idea is to define a space of functions in 3D and then restrict the

3D functions to the mesh. Unlike traditional approaches, the discretized function

space is defined without having to depend on the tessellation of the surface. Also

importantly, the regularity and nesting structure of the function space supports an

efficient, parallel multigrid solver.

A straightforward implementation of our approach works effectively when the

surface embedding remains static. However, it is not well-suited to evolving domains,

as the system needs to be set up repeatedly when embeddings change. We show

that by tracking the metric structure, a large portion of the computational effort

can be amortized and reused, avoiding a costly initialization of multigrid hierarchies

ii



ABSTRACT

at the beginning of each time-step. This idea of decoupling the metric structure

from the initial embedding not only enables our system to support efficient surface

evolution, but also provides a flexible means for interactively adjusting the anisotropy

of diffusion-like processes, supporting real-time anisotropic signal processing.

Perhaps the most distinguishing characteristic of our approach is the use of an

extrinsic function space. While this is different from the traditional approach and

imbues our system with the much desired regularity, it also raises the concern that it

could lead to embedding-dependent artifacts. Indeed, by using 3D functions defined in

Euclidean space instead of functions defined over the manifold, we inherently supplant

geodesic distances with Euclidean ones. As a result, points adjacent in 3D will have

similar function values even if they are geodesically distant. To address the concern,

we propose an extension to our system that enriches the function space by splitting

existing functions as necessary. The extension, together with the metric tracking for

evolving surfaces, complements our framework by making the function space behave

like an intrinsic one.

We conduct numerous experiments to evaluate our framework. These include

spectral analyses revealing the embedding-invariant robustness of our discretization,

and convergence/performance analyses revealing the competitiveness of our approach

against state-of-the-art methods. We also apply our work to various geometry-

processing applications. Using curvature flows, we demonstrate that we can support

efficient surface evolution where embeddings change with time. Formulating surface

iii



ABSTRACT

filtering as a solution to the screened-Poisson equation, we demonstrate that we can

support an anisotropic editing system for surface details that processes high resolution

meshes in real time.

Primary Reader: Michael Kazhdan

Secondary Readers: Szymon Rusinkiewicz and Randal Burns

iv



Acknowledgments

Thank you Misha; you are my mentor, my guide, and my inspiration; you are the

role model whom I strive to be. Thank you Mom and Dad; you are my cheerleaders,

my supporters, and my advocates; you are the reason that I have so much passion in

my heart. Most importantly, thank you Huan; you are my light, my strength, and

my song; you are my everything.

v



Contents

Abstract ii

Acknowledgments v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9

2.1 The Poisson Equation in Graphics . . . . . . . . . . . . . . . . . . . . 9

2.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Finite-Elements, B-splines, and Multigrid 14

vi



CONTENTS

3.1 Finite-Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Grid-based Finite Elements System 25

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Changing Metric 58

5.1 Metric Tracking for Surface Evolution . . . . . . . . . . . . . . . . . . 59

5.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Anisotropic Geometry Processing . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Connectivity Awareness 77

6.1 Enriched Function Space . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.3 Surface Flow Application . . . . . . . . . . . . . . . . . . . . . 87

vii



CONTENTS

7 Conclusion and Future Work 95

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 100

Vita 113

viii



List of Tables

4.1 Algorithm for computing the system matrices. . . . . . . . . . . . . . 32
4.2 Algorithm for computing the constraint vectors. . . . . . . . . . . . . 32
4.3 Dimensions of the Laplace-Beltrami operators defined for the different

tessellations of the models in Figure 4.6. . . . . . . . . . . . . . . . . 44
4.4 Running time of the multigrid solvers. Here we break down the timing

into individual stages. The input mesh is subdivided using a simple
mid-point subdivision algorithm. Apart from the multigrids, a direct
CHOLMOD solver is also benchmarked for the purpose of reference. 51

5.1 Algorithm for computing the system matrices with a time-varying em-
bedding. The embedding coefficients ~x are given at each timestep t. . 64

5.2 Algorithm for computing the constraint vectors with a time-varying
embedding. The embedding coefficients ~x are given at each timestep t. 64

5.3 Algorithm for computing the differential of the embedding. . . . . . . 64
5.4 Running time of our system performing MCF. Note that Setup Time

indicates what would have taken to rebuild the system at each time-
step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Performance Summary: Statistics of the geometric complexity, num-
bers of degrees of freedom, and frame-rate. . . . . . . . . . . . . . . 75

6.1 Algorithm for adaptively setting up test functions. . . . . . . . . . . . 81
6.2 Statistics for the different configurations, giving the system dimension,

the number of non-zero entries, the average time spent for each time
step (including the time for updating the system/solver and the time
for solving the system), the total number of steps, and the temporal
step size δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



List of Figures

1.1 Panorama image stitching of 643 input photographs with differing ex-
posures (image courtesy of [1]). While a direct composition of images
results in visible discontinuities across image boundaries (top), solv-
ing the Poisson equation for the gradient field gives a seamless result
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Color reconstruction of the rooster model from 3D scans (left). Due to
the lighting variation across scans, directly pulling color values from
the closest scans results in visible discontinuities at scan transitions
(middle). Taking color gradients from the closest scans instead and
solving the Poisson equation gives a seamless stitching result (right). 3

1.3 Gradient-domain geometry filtering. Setting the surface embedding as
the signal to be processed (center) and solving a Poisson equation, we
can perform operations like geometry smoothing (right) and sharpening
(left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 A mesh embedded in a regular voxel grid within which first-order B-
splines are uniformly centered at grid corners. . . . . . . . . . . . . . 6

4.1 Each B-spline is supported within eight adjacent cells (orange and red
regions). Each cell is in the support of the B-splines located at its
corners (green region). B-splines whose support does not overlap the
geometry do not contribute to the system and therefore are discarded
(white dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Indexing B-splines by octree nodes. Each octree node (blue outlined)
indexes the B-spline (whose support is colored light gray) centered
at its back, bottom, left corner (left). Note that this support covers
the supports of the B-splines (colored dark gray) indexed by the child
nodes (middle to right). Thus, if a child node indexes a B-spline whose
support intersects the mesh, so do its ancestors. . . . . . . . . . . . 30

x



LIST OF FIGURES

4.3 Parallelization of Gauss-Seidel Relaxation. By decomposing the solu-
tion coefficients into overlapping blocks and shrinking the vertical ex-
tent of relaxed coefficients on subsequent updates, threads can perform
multiple updates in parallel, without having to synchronize coefficient
values between passes. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Stability of polynomial integrators. We compute the spectrum of the
Laplace-Beltrami operator estimated using different integrators. Note
that our 3-point integrator produces an identical spectrum as other
(more expensive) integrators. The input mesh consists of 6624 triangles
(28776 after the mesh is clipped). . . . . . . . . . . . . . . . . . . . 41

4.5 Isometry invariance of the estimated Laplace-Beltrami operator. We
randomly rotate and translate the model within the voxel grid (left).
Even though each (rigidly) transformed surface intersects the voxels
differently and thus defines a different linear system, the resulting spec-
tra are (almost) identical. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Spectrum comparison to the cotangent-weight Laplace-Beltrami oper-
ator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting a color function on the mesh. As a standalone
solver, we compare our grid-based multigrid against Aksoylu et al.’s
geometric multigrids [2] and the algebraic multigrids (AMGs) [3, 4].
The finest-level linear system is defined using the hat basis. . . . . . 45

4.8 Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting a color function on the mesh. As a standalone
solver, we compare our grid-based multigrid against the algebraic multi-
grids (AMGs) [3,4]. The finest-level linear system is defined using the
grid-based basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9 Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting the function consisting of the first hundred eigen-
functions of the Laplacian. As a standalone solver, we compare our
grid-based multigrid against Aksoylu et al.’s geometric multigrids [2]
and the algebraic multigrids (AMGs) [3,4]. The finest-level linear sys-
tem is defined using the hat basis. . . . . . . . . . . . . . . . . . . . 47

4.10 The frequency distribution of the errors. Setting the fitted function to
be the summation of the first hundred eigenfunctions of the Laplacian,
we visualize the frequency coefficients of the errors by projecting the
errors onto the eigenfunctions. Note that our multigrid solver more
effectively reduces errors from various frequencies. . . . . . . . . . . 49

xi



LIST OF FIGURES

4.11 Convergence of ill-conditioned systems. The color fitting problem is
repeatedly solved over an axis-aligned cube rotated around the (1, 1, 1)
vector. The finest-level linear system is defined using the grid-based
basis. The residuals are plotted as a function of degrees by which the
cube is rotated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Correctness of the correction term from the lower resolution system,
solved accurately using a direct solver (left). Note that the system
is corrected by the same amount regardless the degrees of rotation,
but the smoother works more effectively when the system is better
conditioned. We have also found that the performance of the smoother
correlates with the degree of non-diagonal dominance(right). . . . . . 54

4.13 Visual comparison of the ground truth solution (left) and our solution
obtained after one W-cycle (right). The cube is rotated by one degree
around the axis (1, 1, 1). The L1 norms of the errors, scaled up by 100,
reveal that high frequency errors persist in our solution (bottom). . . 57

5.1 A 2D raptor model undergoing a “swirl” deformation (top). Com-
puting a quadtree independently for each deformation, we obtain a
temporally-varying spatial indexing structure (middle). Tracking the
quadtree with the deformed surface, the indexing structure remains
constant, allowing us to reuse information from frame to frame (bot-
tom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Mean-curvature flow of the Isidore Horse after 0, 5, 25, 50, 100, and
200 iterations with step-size δ = 1× 10−5. . . . . . . . . . . . . . . . 65

5.3 Mean-curvature flow of Neptune after 0, 5, 10, 20, 40, and 80 iterations
with step-size δ = 1× 5× 10−4. . . . . . . . . . . . . . . . . . . . . . 65

5.4 Accuracy of the metric tracking method performing MCF. We evolve
the Bimba model using both the tracking (top) and non-tracking (bot-
tom) approaches. Here we show the results after one, ten, and one
hundreds time-steps of MCF with step-size δ = 1 × 10−5. The maxi-
mum (dashed line) and RMS (sold lines) errors are plotted as a function
of time-steps (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Anisotropic detail sharpening: Starting with an initial model (a), global
sharpening is applied to the geometry to enhance the detail (b). By
adapting the direction of sharpening to the curvature in different ways,
a rich space of geometry-aware sharpening filters are realized (c-e).
Though the model consists of almost one million vertices and a new
system is constructed and solved each time the filter is changed, our
method still supports geometry processing at interactive rates. . . . 73

xii



LIST OF FIGURES

5.6 Anisotropic detail smoothing: Examples of geometric effects obtained
by adapting the Riemannian metric to the curvature. Starting with the
original model (left), global smoothing constraints were applied. The
surfaces, from left to right, are obtained by amplifying the fidelity term
(λ) in directions of: large negative curvature, large positive curvature,
large absolute curvature. . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Selective detail enhancement: Starting with the original model (a), a
user applies global smoothing by specifying that all gradients should be
dampened (b). The user then specifies that the top face of the tablet
should be sharpened by selectively amplifying gradients in that area
(c-d). The final results accentuates the floor plan in the Forma Urbis
fragment and hides detail in the fracture region (e). . . . . . . . . . 75

6.1 Adaptive splitting of test functions. In the original approach, the test
functions are chosen independent of the mesh, possibly resulting in
disconnected components in their supports (left). In contrast, the al-
ternate approach refers to mesh connectivity and assigns a separate
test function to each component (middle and right). . . . . . . . . . 79

6.2 Increased richness of the proposed function space. A “knot” model
with a stripe texture (left) is projected onto the original function space
(middle) and the adaptive function space (right). Due to the cou-
pling of function values, the non-adaptive approach fails to reproduce
the correct texture when points are close in Euclidean space but are
geodesically distant. By designing the new function space to be aware
of local connectivity, we can fit the geodesically distant patches inde-
pendently, resulting in an accurate reproduction of the original texture. 82

6.3 Stability of the spectrum of the Laplace-Beltrami operators estimated
using the non-adaptive and adaptive function spaces. We compute the
spectra of the non-adaptive operator (left) and the adaptive operator
(right) at various grid resolutions for the pulley model. As the res-
olution increases, the adaptive spectra more quickly converge to the
ground-truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Isometry-invariance of the estimated Laplace-Beltrami operator. We
compute the spectra of the non-adaptive operator (top and middle) and
the adaptive operator (bottom) for the different rotations of the pulley
model. The zoom-ins accentuate the superior stability of the adaptive
operator (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Color fitting of a 3D checker-board texture on the model consisting of
equidistantly-spaced 6× 6× 6 unit-cubes (left). The screened-Poisson
equation with a screening weight λ = 0.01 is solved using a grid of
depth 5. The coefficients of the initial guess are generated randomly
with values between 0 and 1. . . . . . . . . . . . . . . . . . . . . . . 85

xiii



LIST OF FIGURES

6.6 Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting the color function on the unit-cubes (Figure 6.5,
left). We compare the convergence rates of the multigrid methods
defined using the adaptive and non-adaptive bases. As the splitting
operation is not needed at the finest grid resolution, the two bases
define the same fine-level linear system (and thus the residuals are
comparable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 Convergence of the multigrid solvers. Here we use the knot model
(Figure 6.2, left) as the input. The finest-level linear system is defined
using the Hat-basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.8 Conformalized Mean-Curvature Flow applied to the Armadillo Man.
From left to right, we show the 0th, 1st, 3rd, 5th, 10th and 30th steps
of the flow. Note that the flow conformally evolves the mesh to a sphere
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.9 Error comparison of the different approaches performing cMCF on a
brain model consisting of 1.4 million vertices. The RMS error is plotted
as a function of evolution time. The ground truth is simulated using
CHOLMOD to solve the hat-basis system taking a tiny stepsize δ =
0.01. The computational budget is fixed at one hundred seconds, so
that the number of steps (visualized by the tick marks) is determined
by the efficiency of the solver. . . . . . . . . . . . . . . . . . . . . . . 91

6.10 Error visualization of cMCF at t = 50. Renderings show L2 distance
to the ground truth. Note that for the non-adaptive systems, errors
accumulate around “pinched” regions. . . . . . . . . . . . . . . . . . 92

6.11 The brain undergoing cMCF with the non-adaptive (top) and adap-
tive (bottom) function spaces used to define the system for the input
mesh (left). The two systems have about the same dimension and are
both solved using multigrid. Here we show the evolved surfaces at
t = 10, t = 25, and t = 50 (middle). The zoom-ins highlight the
benefit of using the adaptive, connectivity-aware system, which is able
to decouple the function values at points that are close in Euclidean
space, allowing them to flow independently (right). . . . . . . . . . . 93

6.12 Value coupling within a connected component near a high curvature
region of the brain (left). When we define our system using a lower
resolution grid, there are basis functions supported on two parallel
patches. Rendering the support from different perspectives, we observe
that the function cannot be split because the two patches are connected
at the corner (middle). As a result, performing cMCF using this low
resolution system yields high errors (right, drawn as in Figure 6.10). 93

xiv



Chapter 1

Introduction

In the past decade, the graphics community has developed a number of exciting

applications relating to the Poisson equation. Important examples include Poisson

Image Editing [5], Laplacian Surface Editing [6], and Poisson Surface Reconstruc-

tion [7]. In these cases, solving the Poisson equation provides a natural means for

integrating local constraints into a smooth, global solution. Specifically, the system is

often constrained by prescribed gradients (i.e. targeted local differences), and then

the solution with best matching gradients in the least-square sense is computed.

Due to its broad utility in simulation and modeling, being able to solve the Pois-

son equation efficiently has become an important topic. The goal of this thesis is

to develop an effective numerical framework for solving Poisson-type problems that

addresses various issues with previous methods.

We will particularly focus on the context of Riemannian surfaces (e.g., triangle

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Panorama image stitching of 643 input photographs with differing expo-
sures (image courtesy of [1]). While a direct composition of images results in visible
discontinuities across image boundaries (top), solving the Poisson equation for the
gradient field gives a seamless result (bottom).

meshes in 3D) where the inner product on tangent spaces is defined everywhere.

Unlike in the context of regular grids (e.g., images), where the Fourier and multi-

grid techniques are readily available, solving the Poisson equation on surfaces is a

non-trivial task: the discretization must take into account the metric and, since the

resulting system of equations is often derived from an unstructured parameter do-

main, it is more difficult to develop an efficient numerical solver.

Having an effective framework for solving the Poisson equation on surfaces enables

numerous applications. We can extend a large class of gradient-domain techniques

designed for image processing to surfaces. For example, in the classical image stitching

2



CHAPTER 1. INTRODUCTION

Figure 1.2: Color reconstruction of the rooster model from 3D scans (left). Due to
the lighting variation across scans, directly pulling color values from the closest scans
results in visible discontinuities at scan transitions (middle). Taking color gradients
from the closest scans instead and solving the Poisson equation gives a seamless
stitching result (right).

problem (Figure 1.1), visible discontinuities across image boundaries can be removed

by solving a Poisson system. Shifting the domain to surfaces, one can stitch color scans

using a similar approach. As shown in Figure 1.2, due to lighting variation simply

mosaicing scans over the surface results in artifacts at scan boundaries. Instead,

pulling color gradients from scans, setting seam-crossing gradients to zero, and solving

for the best-fitting color field, one obtains a seamless texture.

Perhaps more interestingly, these gradient-domain techniques can further be ex-

tended to edit the geometry itself. While this is not interesting in the context of

images (where the domain is planar), in the context of surfaces it provides a versatile

tool for surface editing. As an example, using the embedding itself as the signal to

be processed, we can smooth or sharpen the geometry as shown in Figure 1.3.

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Gradient-domain geometry filtering. Setting the surface embedding as
the signal to be processed (center) and solving a Poisson equation, we can perform
operations like geometry smoothing (right) and sharpening (left).

1.1 Problem Statement

In solving partial differential equations, the finite elements method (FEM) has

emerged as a popular numerical technique over the past half century. FEM discretizes

a continuous system by using a finite-dimensional function space. In particular, this

is done by first choosing a finite set of test functions and then searching the best

solution within the span of these functions.

On a tessellated surface, the common strategy for choosing test functions is to use

shifts of a kernel (e.g., hat functions) centered at mesh vertices. The resulting linear

system is most often solved by a “black-box” solver, such as the (iterative) conjugate-

gradients solver [8] and the (direct) Cholesky-factorization solver [9]. Unfortunately,

there are several drawbacks in this configuration:

1. Tessellation dependence. As the discretization of the problem depends on

the tessellation, so does the numerical stability. Desirable properties of tessel-

lation include uniform distribution of vertices and well-shaped elements (e.g.,

4



CHAPTER 1. INTRODUCTION

equilateral triangles). Poor tessellation quality often leads to an ill-conditioned

system that is difficult to solve robustly and efficiently.

2. No control of complexity. The size of the system is determined by the

number of mesh vertices. As a result, we have no choice but to solve an expensive

system when the mesh is high resolution, even if the function of interest only

has low frequency content.

3. No multi-resolution structure. A priori, such a function space is not

equipped with a multi-resolution structure. As a result, it is difficult to im-

plement a multi-level solver for fast approximation of the solution. In practice,

non-hierarchical iterative solvers are too slow on their own. Direct solvers can be

faster, but they do not support real-time applications on large scale problems.

Additionally, they have a superlinear complexity in both time and space [10].

4. Not parallelization/streaming friendly. The lack of regularity in unstruc-

tured tessellation makes streaming/parallel implementation difficult. This makes

it hard to take full advantages of many-core/multi-core hardware and also makes

it challenging to solve out-of-core problems.

The goal of this work is to develop a numerical framework addressing these issues.

5



CHAPTER 1. INTRODUCTION

Figure 1.4: A mesh embedded in a regular voxel grid within which first-order B-splines
are uniformly centered at grid corners.

1.2 General Approach

Looking at the list in the previous section, we observe that the main cause of

the problems comes from the fact that the choice of test functions is coupled to the

tessellation. Hence, our key idea is to decouple this relationship.

In particular, instead of defining an intrinsic function space based on the tessella-

tion of the mesh, we define an extrinsic function space over the embedded manifold.

We start by embedding the mesh within a regular voxel grid where test functions are

centered at grid corners. We then restrict these 3D functions to the mesh. Figure 1.4

demonstrates the idea using a 2D example.

There are several advantages to this formulation: The function space defined in

this way does not depend on tessellation; We have control over the system complexity

by changing grid resolution; Using refinable functions as explained in later chapters,

we obtain a multi-resolution structure supporting multi-level solvers; And finally,

6



CHAPTER 1. INTRODUCTION

the regularity of the grid structure makes parallel/streaming implementations of our

system feasible.

Extending to Evolving Embeddings

In applications like surface flow and mesh editing, where the embedding evolves

with time, using our approach may seem impractical. A straightforward implemen-

tation of our approach would require re-embedding the surface within a voxel grid,

setting up a new set of test functions and computing a new multi-resolution hierarchy

at each time-step. Nevertheless, as we will show in this thesis, by tracking the evolv-

ing metric structure, we can evolve the test functions with the surface. As a result,

the same multi-resolution hierarchy can be reused over time, significantly improving

the performance of our system.

Extending to Anisotropy

The idea of decoupling the metric structure from the embedding is powerful: it

allows us to anisotropically (and inhomogeneously) re-scale a gradient field by chang-

ing metric tensors, adjusting the system and/or constraints as needed. In particular,

for gradient-domain signal processing techniques, this allows us to adaptively weight

the fit of a candidate solution. As an example, in the application of surface filtering,

scaling up distances across the feature lines of the mesh makes the filtering become

edge-aware.

7



CHAPTER 1. INTRODUCTION

Extending to connectivity awareness

By using 3D test functions, we supplant geodesic distances with Euclidean ones.

As a result, points adjacent in 3D will have similar function values even if they are

geodesically distant. The problem becomes even more prominent when the mesh self-

intersects, as by construction, points mapping to the same 3D location have to take

on the same function values. To address this concern, we propose another extension

to our approach that splits functions as necessary, so that the resulting function space

becomes connectivity-aware. This final extension consolidates our framework and, to

a large degree, makes our approach robust to the choice of embedding.

1.3 Organization

The rest of the thesis is organized as follows. We start with a brief literature survey

in Chapter 2. We then review the relevant background for the finite elements method,

B-splines, and multigrid in Chapter 3. We formally introduce our grid-based finite

elements system and describe the implementation in Chapter 4. We then describe

how modifying the metric enables efficient surface evolution and anisotropic signal

processing in Chapter 5. We describe the extension of our approach that makes

the function space connectivity-aware in Chapter 6. And finally, we conclude by

summarizing our work and discussing directions for future research in Chapter 7.

8



Chapter 2

Related Work

Solving the Poisson equation has widespread applications in scientific and engi-

neering fields. In this chapter, we focus on a survey of its uses in image processing and

geometry processing (Section 2.1), and numerical strategies for solving the resulting

systems (Section 2.2).

2.1 The Poisson Equation in Graphics

Many gradient-domain techniques require solving the energy minimization prob-

lem:

min
u

∫
||∇u− ~s||2 (2.1)

That is, given the vector-valued function, ~s, describing a gradient field, we want to find

the scalar field, u, whose gradients best fit ~s. Using the Euler-Lagrange formulation,

9



CHAPTER 2. RELATED WORK

one can show that the minimizer to 2.1 needs to satisfy the Poisson equation:

∆u = ∇ · ~s

In many applications, solving the Poisson equation provides a convenient way for

integrating desired local differences into a smooth global solution.

Image Processing

Recently, gradient-domain techniques have been extensively used for various image

processing purposes. The common workflow consists of extracting gradients from

images(s), compositing/processing extracted gradients, and then solving the Poisson

equation for the image whose gradients best fit the prescribed field.

Based on this idea, numerous applications have been developed. Shadows and

lighting in images can be removed by dampening or selecting appropriate gradi-

ents [11–13]. High dynamic range (HDR) images can be tone-mapped to low dynamic

range representations by attenuating strong gradients [14]. Visible discontinuities in

panoramic image stitching can be removed by zeroing or blending color gradients

across patch boundaries [1, 15], and similar approaches have been used for object

cloning [5], texture transferring [5], photomontaging [16], and image matting [17].

Apart from synthesizing plausible images, the Poisson equation has also been used

for stylization and content creation. Color images can be converted into grayscale

images in a saliency-preserving fashion by fusing chrominance and luminance gradi-

ents [18]. Colorization and tone adjustment can be done by propagating sparse user

10



CHAPTER 2. RELATED WORK

edits [19,20]. Non-photorealistic and abstract rendition of images can also be achieved

by edge-aware gradient flattening [20, 21]. Interactive image painting systems that

operate directly on the gradient domain have also been developed [22,23].

Geometry Processing

Due to its close relationship with the heat equation, earlier applications of the

Poisson equation to geometry-processing focused on surface fairing [24–26]. As shown

in [26], geometry smoothing can be formulated as a process of heat diffusion. The

idea is extended in later works which make this process more feature-aware. These

include techniques for anisotropic diffusion that redefine inner-products on tangent

spaces using curvature information [27–30], and techniques based on optimization

frameworks leveraging feature points from the original geometry to “anchor” the

smoothing process [31–33].

As in image processing, the Poisson equation has also become a key component

in mesh editing systems. Geometric details can be transferred between meshes by

blending differential coordinates [34]. Sparse local edits of geometry can be adapted

and propagated smoothly to the whole surface by solving the Poisson equation for

new coordinate functions [6, 35–39]. We refer readers to [40] for an extensive survey

of the subject.

The Laplace-Beltrami operator has been widely used in shape analysis. Using the

analogy between the eigenvectors of Laplacian and the Fourier basis, one can real-

11



CHAPTER 2. RELATED WORK

ize frequency-based signal processing on meshes [24, 41]. Leveraging the eigenvalues

and/or eigenvectors of the operator, isometry-invariant shape descriptors can be de-

fined [42,43]. Embedding the mesh into a high-dimensional space using the spectrum

of the operator [43], one can identify intrinsic symmetries of a shape [44]. Drawing

on the relationship with heat diffusion, point-based signatures of geometry [45] and

various shape-aware distances [46,47] have also been formulated.

2.2 Numerical Methods

As mentioned previously, solving the Poisson equation on meshes requires a dis-

crete/discretized definition of the Laplace-Beltrami operator. The topic has at-

tracted a great deal of research in the computer graphics community. Graph-based,

combinatorial operators have the advantages of simplicity and efficiency [24, 48].

Geometry-driven operators taking angles and areas into account give rise the ubiq-

uitous cotangent-weight Laplacian for triangle meshes [49, 50] and its extension to

general polygon tessellations [51]. Recently, an operator based on intrinsic Delaunay

triangulation has been proposed that addresses the problem of non-convex weight-

ing [52, 53]. We refer readers to [54] for a study of the tradeoffs between different

operators.

Apart from a robust numerical discretization, efficiently solving the arising system

of equations is also of essential importance for many applications. As Poisson-like

12



CHAPTER 2. RELATED WORK

systems are usually sparse, direct sparse solvers have been a popular choice [55–57]. In

particular, when the system is symmetric and positive-definite, Cholesky factorization

is often favored due to its numerical stability and efficiency [58]. Furthermore, when

the system is fixed but needs to be solved repeatedly for a constraint that varies over

the course of an application, the factorization cost can be amortized, making these

sparse factorization techniques an appealing option [6].

Multigrid methods have also been used [59]. Their low memory usage and ability

to dampen low-frequency errors efficiently make them preferable to direct solvers

when the problem size is exceedingly large and/or the exact solution is not necessary.

To define the hierarchical structure on unstructured domains, “black-box” algebraic

multigrid methods [3] that rely solely on information encoded in matrices have been

studied [60–62]. Additionally, more geometry-driven approaches that rely on the

design of mesh hierarchies have also appeared in geometry-processing applications

[2, 27, 38,63–66].

13



Chapter 3

Finite-Elements, B-splines, and

Multigrid

Given a Riemannian 2-manifold (M, g), consider a generic case where we want to

fit a function u such that the following energy is minimized:

∫
M
λ(u− f)2 + ‖∇gu− ~s‖2

g dµg (3.1)

Here, ~s is a (tangent) vector field guiding the gradient of u, and f is a real valued

function constraining the values of u. The constant, λ, controls the tradeoff between

the gradient and value constraints. We use the metric tensor, g, to define the gradient

operator ∇g in the tangent space, the norm ‖ · ‖g of tangent vectors, and the area

measure dµg onM.

We will assume that eitherM is closed or u satisfies appropriate boundary condi-

tions (see below). Applying Stokes’ theorem, one obtains the Euler-Lagrange formu-

14



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

lation giving the minimizer of Equation 3.1, known as the solution to the screened-

Poisson equation:

(λ−∆g)u = f −∇g · ~s (3.2)

where ∇g· is the divergence operator on (M, g), and ∆g := ∇g · ∇g is the Laplace-

Beltrami operator: the generalization of the Laplace operator ∆ := ∇ · ∇ to (M, g).

Our goal is to develop a numerical framework for solving Equation 3.2 efficiently.

Note that Equation 3.2 has been central to numerous geometry-processing applica-

tions, as it can be used for general-purpose gradient fitting (as in mesh editing, tex-

ture stitching, and parameterization) and, due to the close relationship between the

Laplace operator and the heat equation, it can be used to perform time-integration

in diffusion processes (as in curvature flow and mesh fairing).

In this chapter, we review the mathematical background relevant to the devel-

opment of our framework. This helps set up the context facilitating our discussion

in the following chapters. In particular, we review the finite elements discretization

for Poisson-like problems (Section 3.1), refinable B-splines for constructing multi-

resolution function spaces (Section 3.2), and the multigrid method for solving linear

systems (Section 3.3).

15



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

3.1 Finite-Elements

The finite elements method (FEM) is a commonly used technique for solving

partial differential equations. In this section, we review the FEM discretization in

the context of solving Poisson-like systems on meshes (i.e., Equation 3.2).

In general, we assume that the solution to the screened-Poisson equation resides in

the space of twice differentiable functions onM. Since C2(M) is infinite-dimensional,

the problem is made tractable by first choosing a finite-dimensional subspace F ⊂

C2(M) and then searching for the closest solution within F . Under this setting,

Equation 3.2 needs to be projected onto F . To do this, we first define the projection

operator, π : C2(M)→ F , such that for f ∈ C2(M)

〈
π(f) , b

〉
=
〈
f , b

〉
, ∀b ∈ F

where the inner-product, 〈·, ·〉 : C2(M) × C2(M) → R, on a compact Riemannian

manifold (M, g) is most naturally defined by

〈
a , b

〉
=
∫
M
a · b dµg.

Applying π to Equation 3.2, one obtains π
(
(λ−∆g)u

)
= π

(
f−∇g ·~s

)
, or equivalently

〈
(λ−∆g)u , b

〉
=
〈
f −∇g · ~s , b

〉
, ∀b ∈ F (3.3)

When F is the span of functions {b1, . . . , bn}, in order to satisfy Equation 3.3 it is

sufficient to have:

〈
(λ−∆g)u , bi

〉
=
〈
f −∇g · ~s , bi

〉
, ∀i ∈ {1, . . . , n}

16



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

At this point, the challenge of solving Poisson-like systems has been reduced to solving

an n× n linear system for the coefficient vector, u = [u1, . . . , un]†, such that

(λM + L)u = f + s (3.4)

with M the mass matrix

Mij =
∫
M
bi · bj dµg , (3.5)

L the stiffness matrix (where g(·, ·) is the inner-product defined by g)

Lij = −
∫
M

∆gbi · bj dµg =
∫
M

g
(
∇gbi,∇gbj

)
dµg , (3.6)

f the projected value constraint

fi =
∫
M
f · bi dµg , (3.7)

and s the projected gradient constraint

si = −
∫
M

(∇g · ~s) · bi dµg =
∫
M

g
(
~s,∇gbi

)
dµg (3.8)

Here we make a few remarks about the mass and stiffness matrices:

• The second equality in Equation 3.6 (and similarly Equation 3.8) is commonly

referred to as the weak formulation of the Laplacian and only requires square

integrable first-order derivatives. It is derived from Stokes’ theorem and holds

whenM is closed, or when either the test functions or their normal derivatives

vanish at boundaries. Interestingly though, for many gradient-domain applica-

17



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

tions, we do not really require these conditions for obtaining the minimizer of

Equation 3.1. 1

• When the functions in the spanning set {b1, . . . , bn} are linearly independent, the

mass matrix is positive definite and the stiffness matrix is positive semi-definite.

To see this, first note that any coefficient vector u represents a function u ∈ F

by u = ∑ uibi. If u is not a zero vector, then u†Mu =
∫
M(u)2dµg must be

positive and u†Lu = −
∫
M ‖∇gu‖2

gdµg must be non-negative (it is zero when u

is constant on each connected component ofM).

• Since the matrices are both symmetric, when the mass matrix is positive-

definite, solving the generalized eigenvalue problem, Lv = αMv, gives real

eigenvalue/eigenvector pairs (αi,vi), with the eigenvectors {v1, . . . ,vn} form-

ing an orthonormal basis w.r.t. the inner product defined by the mass matrix.

This basis provides a “natural” frequency decomposition of functions defined

over meshes [24], analogous to the Fourier basis defined over regular domains.

Example

In the case of triangle meshes, the common choice for test functions bi are “tent”

functions centered at the mesh vertices and supported within each vertex’s incident

triangles [49]. This configuration results in the area-weight formula for the mass
1The minimizer of Equation 3.1 was obtained by integrating the inner-product of gradients,

rather than the product of functions and Laplacians. The condition was later turned into the
screened-Poisson equation using Stokes’ theorem. Here the weak formulation effectively “reverts”
the application of Stokes’ theorem.

18



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

matrix

Mij =



|T 1
ij |+|T

2
ij |

12 if j ∈ N(i)

∑
k∈N(i) Mik if j = i

0 otherwise

(3.9)

and the cotangent-weight formula for the stiffness matrix

Lij =



− cotβ1
ij+cotβ2

ij

2 if j ∈ N(i)

−∑k∈N(i) Lik if j = i

0 otherwise

(3.10)

where N(i) are the vertices adjacent to vertex i, |T 1
ij| and |T 2

ij| are the areas of the two

triangles sharing edge (i, j), and β1
ij and β2

ij are the two angles opposite edge (i, j).

3.2 B-splines

In computer graphics, B-splines have been important for approximation, modeling,

and signal analysis. In this section, we focus our review on the uniform B-splines in

Euclidean space, as their refinability will be a cornerstone of the construction of our

multi-resolution function spaces.

Definition

In 1D, a B-spline bn(x) of degree n is defined by convolving a characteristic function

b0(x) with itself n times [67]:

bn(x) =
∫ x

x−1
bn−1(p)dp

19



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

where

b0(x) =


1 if x = [0, 1)

0 otherwise

Using translated and scaled copies of bn(x), we can define a family of vector spaces,

indexed by width h and spanned by:

bn,hi (x) = bn
(
x

h
− i

)
(3.11)

In this setting, h can be thought of as the width of a regular 1D grid partitioning the

parameter domain into uniform intervals, and i is the offset. We will denote by V n,h

the space of functions that are representable using a grid of resolution h:

V n,h :=
{
f(x) | f(x) =

∑
i∈Z

ui · bn,hi (x)
}

(3.12)

Note that each basis function here has local support and that the formulation guar-

antees Cn−1 continuity. Moreover, the n-th order derivatives exist almost everywhere

and are square integrable, meaning that V n,h is in the n-th order Sobolev space.

Nesting Structure

Apart from being smooth and having compact support, an important property of

B-splines is that they are refinable . That is,

bn(x) =
∑
k∈Z

P n(k) · bn(2x− k) (3.13)

with the prolongation stencil

P n(k) =


2−n

(
n+ 1
k

)
if 0 ≤ k ≤ n+ 1,

0 otherwise
(3.14)

20



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

Plugging this back to Equation 3.11, we observe that the spaces of functions defined

earlier are nested: V n,2h ⊂ V n,h. Hence, any function in V n,2h can be expressed as a

linear combination of functions in V n,h.

Extending to Higher Dimensions

B-splines can be extended to N dimensions by considering the product of N

univariate B-splines (here we overload bn : RN → R):

bn
(
x1, · · · , xN

)
=

N∏
i=0

bn(xi)

Similarly, the function spaces can be extended to higher dimensions:

V n,h
N :=

{
f(x) | f(x) =

∑
i∈ZN

ui · bn,hi (x)
}

Finally, using Equation 3.13 and 3.14 the refinability of N -dimensional B-splines can

be expressed by:

bn(x) =
∑
k∈ZN

P n
N(k) · bn

(
2x− k

)
(3.15)

where k is now a coordinate offset in N dimensions, and the prolongation stencil is

obtained by taking a tensor-product of 1D stencils:

P n
N(k) =

N∏
i=0

P n(ki) (3.16)

As with the 1D case, this results in nesting V n,2h
N ⊂ V n,h

N

21



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

3.3 Multigrid

Multigrid methods are an important family of numerical methods for solving both

linear and nonlinear problems. In this chapter, we review the multigrid method for

solving linear systems resulting from elliptic PDEs.

In solving linear systems, iterative methods are known to be memory efficient

and easy to implement. Unfortunately, without proper preconditioning, the methods

converge too slowly on their own. Via a spectral analysis, one can show that many

iterative methods such as Jacobi and Gauss-Seidel relaxations dampen high frequency

errors faster than they dampen low frequency errors [59]. Hence, the idea of the

multigrid method is to downsample the residual to a lower resolution domain without

losing too much information, so that the errors appear as higher frequency content in

the new system (restriction). The solution obtained from the lower resolution system

is then upsampled to “correct” low frequency errors of the solution at the original

resolution (prolongation).

Formally, given a system Ahuh = fh defined on a grid Ωh of resolution h, the

standard 2-level (V-cycle) multigrid is implemented as follows:

• Relax the current solution uh (using, e.g., Gauss-Seidel iterations).

• Compute the residual: rh = fh − Auh.

• Downsample rh to the coarser Ω2h using the restriction stencil: r2h = R2h
h rh.

• Solve for the correction, ũ2h, such that A2hũ2h = r2h.

22



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

• Upsample ũ2h back to Ωh using the prolongation stencil: ũh = P h
2hũ2h.

• Update the solution: uh ← uh + ũh.

• Relax the solution uh again.

Notice that the above algorithm is general. The main challenge in using it is

defining the lower resolution system, A2h, and the operators for performing restric-

tion/prolongation, R2h
h / P h

2h.

Restriction and Prolongation

While there is no specific procedure for defining a lower resolution system, in

general the two variational properties should be satisfied, to ensure good convergence

rates of the solver [59]:

• A2h = R2h
h · Ah · P h

2h

• R2h
h = (P h

2h)†

The first property is commonly referred to as the Galerkin Condition that constrains

the definition of coarser systems, while the second property states that the restriction

and prolongation operators should be transposes of each other.

Example

On a regular domain (e.g., images), a common practice for solving the Pois-

son equation is to use uniform B-splines to define a multi-resolution function space,

23



CHAPTER 3. FINITE-ELEMENTS, B-SPLINES, AND MULTIGRID

{V n,h
N }, and then solve the resulting linear system (Equation 3.4) using the multi-

grid method. Under this setting, the prolongation matrix is defined in terms of the

coefficient stencil (Equation 3.16) and the restriction matrix is its transpose. In par-

ticular, one can show that the lower resolution system defined using the coarser grid

automatically satisfies the Galerkin Condition.

24



Chapter 4

Grid-based Finite Elements System

In this chapter, we introduce our grid-based finite elements system for solving

Poisson-like problems on meshes using a multigrid solver. We will describe the general

approach (Section 4.1), present implementation details (Section 4.2), and show the

results of several experiments (Section 4.3).

4.1 Approach

Using finite elements to formulate a Poisson-like problem requires choosing a finite-

dimensional function space (Chapter 3). For triangle meshes, this is often done by

defining the spanning functions to be the tent functions over the mesh vertices. These

functions are piecewise linear and are supported within the one-ring of each vertex.

Using Equation 3.5 and 3.6, one obtains the area-weight formula for the mass matrix

25



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

and the cotangent-weight formula for the stiffness matrix [49]. Although the functions

adapt to the sizes of the triangles, the linear system is tied to the tessellation of the

mesh and the function space does not come equipped with a multigrid structure.

In this work, we pursue an alternate approach in which 3D test functions are

chosen independent of the mesh. In particular, we start with the multi-resolution

function space, V n,h
3 , described in Chapter 3, and then consider its restriction to the

mesh to obtain the function space V n,h
3,M. That is, a function f is within V n,h

3,M if and

only if there exists a function g within V n,h
3 , such that the two functions take identical

values onM:

f ∈ V n,h
3,M ⇐⇒ ∃g ∈ V n,h

3 s.t. g(p) = f(p) ∀p ∈M.

Note that our function space V n,h
3,M (defined on meshes) has a nesting structure directly

inherited from the function space V n,h
3 (defined on R3). To see this, consider a function

f ∈ V n,2h
3,M : There exists a function g ∈ V n,2h

3 that is equal to f on M. Since

V n,2h
3 ⊂ V n,h

3 , g must also be in V n,h
3 . It follows that f is in V n,h

3,M as well.

As a result, we obtain a family of function spaces on meshes that do not depend

on mesh tessellation and are equipped with a multi-resolution structure.

Restriction and Prolongation

Let {bn,h1 , . . . , bn,hm } be a basis for V n,h
3 and let φ : V n,h

3 → V n,h
3,M be the linear

operator taking functions from V n,h
3 to functions in V n,h

3,M, such that φ(g) = f if

and only if g(p) = f(p) ∀p ∈ M. Thus, {φ(bn,h1 ), . . . , φ(bn,hm )} is a set of functions

26



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

spanning V n,h
3,M. Note that this is not a basis of V n,h

3,M since the functions may be linearly

dependent (e.g., when the support of bn,hi does not overlapM then φ(bn,hi ) = 0 as a

function onM).

We observe that the same prolongation/restriction stencil used for performing the

refinement/coarsening of {bn,h1 , . . . , bn,hm } in the regular 3D case can still be used for

performing the refinement/coarsening of {φ(bn,h1 ), . . . , φ(bn,hm )}. To see this, consider a

function f ∈ V n,2h
3,M : It can be expressed (possibly not uniquely) as a linear combination

of {φ(bn,2h1 ), . . . , φ(bn,2hm )} and each φ(bn,2hi ) can be prolonged to V n,h
3,M by

φ(bn,2hi ) = φ

(∑
k

Pi(k) · bn,hi
)

=
∑
k

Pi(k) · φ
(
bn,hi

)

where Pi is the ordinary stencil for prolonging bn,2hi .

4.2 Implementation

In this section, we describe how the approach is implemented in practice. We will

explain the setup of our test functions, the approach for computing system integrals,

the approach for efficiently downsampling/upsampling the system, and a parallel

implementation of the multigrid solver.

Choosing Test Functions

Independent of the input mesh, we first set up a regular voxel grid partitioning

the Euclidean 3-space into voxels of width h = 1/2d. (We will refer to such grid as a

27



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

voxel grid of depth d.) First-order, tensor-product, 3D B-splines are then centered at

each grid corner and are scaled so that they are supported within the eight adjacent

voxels.

Next, we embed the mesh within the voxel grid by translating and scaling the

mesh so that it fits into the unit cube [0, 1]× [0, 1]× [0, 1] ⊂ R3 (the resolution of the

function space is therefore made independent of the scale of the mesh, though we do

maintain the translation and scales so that subsequent computation can be adjusted

to be in the original coordinate frame.). Using grids of successively finer resolutions

and restricting B-splines as described in Section 4.1, we obtain a multi-resolution

hierarchy of function spaces on the mesh.

Note that, though we could use all of the grid corners to define test functions,

only the B-splines whose support overlaps the mesh contribute to the system. Thus,

to reduce the linear dependence (and the dimension) of our spanning set, we discard

the grid corners defining B-splines not supported on the mesh (see Figure 4.1). To

this end, we build an adaptive octree around the mesh and only consider the corners

of the octree cells.

Finally, for building and solving the linear system in the later stages, we need

a way to track and index the B-splines. We do this by leveraging the octree data

structure. As an octree indexes grid cells rather than corners, we associate each B-

spline with the octree cell in the front, top, right of its support (Figure 4.2, left).

Since such cells do not necessarily exist (because the octree cells were only created

28



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.1: Each B-spline is supported within eight adjacent cells (orange and red
regions). Each cell is in the support of the B-splines located at its corners (green
region). B-splines whose support does not overlap the geometry do not contribute to
the system and therefore are discarded (white dots).

when they intersected the mesh), we pad the missing cells into the current octree so

that all supported B-splines can be properly indexed.

Here we make two observations. First, if a node cl at depth l has to exist, so

does its parent node cl−1 at depth l − 1. This is because the support of the B-spline

indexed by cl must be a subset of the support of the B-spline indexed by cl−1 (see

Figure 4.2). Second, within a cell c all points p ∈ c ∩M are contained within the

support of exactly eight B-splines. This regularity facilitates vectorizing/parallelizing

the computation.

Computing Integrals

Having set up the test functions, we need to compute the coefficients defining

the Poisson system (Equations 3.5 through 3.8). To this end, we use a quadrature

29



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.2: Indexing B-splines by octree nodes. Each octree node (blue outlined)
indexes the B-spline (whose support is colored light gray) centered at its back, bottom,
left corner (left). Note that this support covers the supports of the B-splines (colored
dark gray) indexed by the child nodes (middle to right). Thus, if a child node indexes
a B-spline whose support intersects the mesh, so do its ancestors.

approach summing up integral contributions from appropriate sampling positions:

∫
M
f(p) dp ≈

∑
p∈P

f(p) w(p)

where P ⊂ M is the set of quadrature points and w : P → R gives the associated

quadrature weights.

To obtain P and ω, we observe that the B-splines are strictly polynomial within

each octree cell. Thus, we clip the triangles of the embedded mesh by the faces of the

octree cells, so that each triangle of the clipped mesh is fully contained within one

(finest resolution) octree cell. This ensures that the B-splines are polynomial on each

triangle and hence a simple quadrature formula can be used for defining P and ω.

Using this approach, we compute the system coefficients by summing up integral

30



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

contribution from grid cells:

Mij =
∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

bi(p) · bj(p) · ω(p) (4.1)

Lij =
∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

g
(
∇gbi(p),∇gbj(p)

)
· ω(p) (4.2)

fi =
∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

f(p) · bi(p) · ω(p) (4.3)

si =
∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

g
(
~s(p),∇gbi(p)

)
· ω(p) (4.4)

where C stands for the collection of all grid cells, T (c) returns the triangles contained

within cell c, and P(t) is the set of quadrature points associated with triangle t.

(Note that, in practice, the summation only needs to be taken over the subset of

grid cells contained in the support of bi and bj.) We summarize the algorithm in

Algorithm 4.1 and 4.2, where NeighborCorner(p) returns the eight octree cells whose

associated B-splines contain p within their support. Here, ∇gbi(p) is computed by

projecting ∇bi(p) onto the subspace of R3 that coincides with the tangent space of

the embeddedM. That is, ∇gbi(p) ≡ ∇bi(p)−〈n(p),∇bi(p)〉 ·n(p), where n(p) is the

surface normal at p.

In theory, we would need to use quadrature formulae designed for sixth degree

polynomials (since each entry in the mass matrix is obtained by multiplying two

trilinear functions). This, however, requires using at least 11 cubature points per

triangle [68], posing a significant cost for high resolution meshes.

31



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

In practice, we have found that using an approximate for-

mula is sufficient and does not lead to perceptible errors. In

our applications, we use the 3-point formula [69] that places

three equally weighted samples on the mid-points of the line segments connecting the

vertices of a triangle to its centroid, as visualized by the green dots in the inset.

Algorithm I: SetSystemMatrices()
M , L← 0
for c ∈ C , t ∈ T (c) , p ∈ P (t)
for i ∈ NeighborCorner(p)
for j ∈ NeighborCorner(p)
Mij ←Mij + bi(p) · bj(p) · w(p)
Lij ← Lij + g(∇gbi(p),∇gbj(p)) · w(p)

return ( M , L )

Algorithm 4.1: Algorithm for computing the system matrices.

Algorithm II: SetConstraintVectors()
f , s← 0
for c ∈ C , t ∈ T (c) , p ∈ P (t)
for i ∈ NeighborCorner(p)

fi ← fi + f(p) · bi(p) · w(p)
si ← si + g(~s(p),∇gbi(p)) · w(p)

return ( f , s )

Algorithm 4.2: Algorithm for computing the constraint vectors.

32



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Downsampling the System

To obtain coarser systems, one can carry out integration repeatedly at different

grid resolutions. However, this can be inefficient because the cost of integration

depends only on the number of quadrature points assigned (since each quadrature

point is in the support of eight basis functions and hence contributes to exactly 64

matrix coefficients, regardless of the resolution of the function space).

Instead, one could leverage the fact that the system satisfies the Galerkin condi-

tion, Ll−1 = (P l
l−1)† · Ll · (P l

l−1), with P l
l−1 the prolongation matrix defined using the

prolongation stencil (Chapter 3). As a result, downsampling the linear system can

be implemented using two matrix-matrix multiplications. Although the matrices are

sparse, the number of non-zero entries in each row is not uniform, ranging between 8

and 27 (depending on how the surface passes through the nearby voxels). In practice,

we have found that such an approach is neither cache nor parallelization friendly.

For better efficiency, we leverage the regularity of the grid structure in our imple-

mentation, using the fact that the system coefficients can be computed by summing

up integral contribution from voxels (a process commonly referred to as finite ele-

ments assembly). In particular, we iteratively downsample the per-voxel integrals to

the coarser levels and then assemble the systems from the downsampled integrals.

The advantage of the approach, as also observed by [70], is that each integral at

coarse levels can be computed (in parallel) with a cache friendly memory access pat-

tern, because the computation within each parent cell can be performed by regularly

33



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

accessing integrals from 2× 2× 2 child voxels.

As an example, consider the computation of the mass matrix (Equation 4.1). Each

entry is computed by summing up contribution from individual octree cells:

Mij =
∑
c

IntM(c, i, j) (4.5)

where IntM(c, i, j) is the contribution of cell c to the value of the integral Mij,

IntM(c, i, j) =
∑
t∈T (c)

∑
p∈P (t)

bi(p) · bj(p) · w(p)

Now, observe that IntM(c, i, j) can also be computed by downsampling the integral

contribution from c’s 2× 2× 2 child voxels {c′}

IntM(c, i, j) =
∑
c′⊂c

∑
t∈T (c′)

∑
p∈P (t)

(∑
i′
Pi(i′) · bi′(p)

)∑
j′
Pj(j′) · bj′(p)

ω(p)

=
∑

c′⊂c,i′,j′
Pi(i′) · Pi(j′) ·

 ∑
t∈T (c′)

∑
p∈P (t)

bi′(p) · bj′(p) · ω(p)


=
∑

c′⊂c,i′,j′
Pi(i′) · Pi(j′) · IntM(c′, i′, j′) (4.6)

As each cell is in the support of exactly eight test functions, in our implementation

we first compute the element matrix

Emn =

 IntM
(
bm/8c, idx(m), idx(n)

)
if bm/8c = bn/8c

0 otherwise

where idx(m) returns the index of the B-spline centered at the (m mod 8)-th corner

of cell bm/8c. (Note that E is a block diagonal matrix where each block corresponds

to one cell and consists of 8 × 8 non-zero entries.) Coarse element matrices are

then computed by downsampling element matrices from finer levels using the stencil

34



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

described by Equation 4.6. The computation of each coarse entry is performed in

parallel as a value gathering process, regularly accessing entries from 2 × 2 × 2 finer

cells. The memory access pattern is optimized because A) entries from one cell are

grouped into a block, and B) the blocks are sorted by the z-curve order of their

corresponding cells when we construct the element matrix.

Finally, to assemble the system coefficients from the element matrix, another value

gathering process is performed. This is implemented in parallel for all rows of the

matrix. For each row i, we first pre-allocate a table of size 3 × 3 × 3, equal to the

maximum number of non-zero entries per row. Next, we walk through the voxels in

the support of bi (there are at most 2× 2× 2 such voxels existing in the octree), and

accumulate the entries associated with bi into the pre-allocated table. The table is

then collapsed into a compact list by getting rid of zero entries. 1

Solver Parallelization

We now describe the parallel implementation of our multigrid solver. Looking at

the standard V-cycle algorithm reviewed in Section 3.3, we observe that four kinds

of operations are needed in order to implement a multigrid solver:

• Computing residuals (matrix-vector multiplication).

• Constructing coarser systems (previously discussed).
1We use a common “list of lists” data structure for storing sparse matrices, where each row is

stored as a list of entries, and each entry consists a column index and a non-zero value.

35



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

• Restricting/prolonging residuals/coefficients (matrix-vector multiplication).

• Relaxing coefficients (?).

As matrix-vector multiplication is easily parallelizable and construction of lower res-

olution systems has already been discussed, we now focus on the parallelization of

relaxation.

In this work, we implement the Gauss-Seidel iteration in parallel by leveraging

the regularity of the grid structure. The idea is inspired by the work on domain

decomposition for parallel multilevel methods [71].

We first partition the test functions into 2d + 1 horizontal slices, so that test

functions in slice z are centered at grid corners of height z/2d. Given the number

of threads, k, we further decompose these slices into k groups 0 = z0 < z1 < · · · <

zk−1 < zk = 2d so that the number of test functions belonging to slices [zi, zi+1) is as

uniform as possible.

Note that since we use first-order B-splines as test functions, as long as two threads

are not simultaneously processing slices that are adjacent to each other, no memory

conflict can occur. Thus, for a single Gauss-Seidel iteration, we let thread k relax

coefficients of test functions belonging to slices [zk, zk+1 − 1) independently. Then,

only after a call that synchronizes all threads, we let each thread proceed to relax

coefficients of test functions belonging to slices zk.

It is also possible to perform multiple Gauss-Seidel iterations in parallel. To do

this, we expand the span of slices assigned to each thread (so the domains partially

36



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.3: Parallelization of Gauss-Seidel Relaxation. By decomposing the solution
coefficients into overlapping blocks and shrinking the vertical extent of relaxed co-
efficients on subsequent updates, threads can perform multiple updates in parallel,
without having to synchronize coefficient values between passes.

overlap each other at boundaries) and shrink the span at the end of each iteration.

Consider the case where we want to perform I Gauss-Seidel iterations: At iteration

i, each thread is restricted to operate on slices [zk − I + i, zk+1 + I − i), while always

keeping slices [zk− I, zk+1 + I) in the local memory of each thread. The arrangement

ensures that when we want to update a coefficient for the i-th time, all its neighbors

will have been updated at least i − 1 times, resulting in a valid implementation

of Gauss-Seidel iterations. A visualization of the approach is shown in Figure 4.3,

where three Gauss-Seidel iterations are performed in parallel without synchronization

between iterations.

37



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Function Evaluation

After solving for the coefficient vector, u = [u1, . . . , un]†, one needs to evaluate

the resulting function. This is most naturally done by sampling the function value fi

at each vertex i of the input mesh (i.e., fi = ∑
j ujbj(xi) with xi the vertex position).

The computation can be formulated as a matrix-vector multiplication f = Eu, where

Eij = bj(xi) is the evaluation matrix. As each vertex supports exactly eight basis

functions, E is a sparse matrix where each row consists of exactly eight non-zero

entries. This regular structure is parallelization friendly and, as we will discuss in the

next chapter, can easily be relegated to GPU.

Hat-Basis Incorporation

So far, our discussion has focused on the use of the grid-based system as a stand-

alone Poisson solver. However, it is also possible to use it in conjunction with the

popular, piecewise linear, hat-basis system (resulting in the linear system defined

by Equations 3.9 and 3.10). As a majority of graphics applications are developed

using the hat-basis for function representation, being able to work with the hat-basis

facilitates the integration of our multigrid solver into those applications.

To do this, we first define the finest-level linear system using the hat-basis. Then,

on the top of the original grid-based multigrid, an extra restriction operator, Rg
h, is

defined in order to transform the constraint from the hat-basis system to the grid-

based system; the transpose of Rg
h is used to prolong the solution from the grid-based

38



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

system to the hat-basis system. Specifically, the modified multigrid solver proceeds

as follows:

• Perform a few iterations of Gauss-Seidel relaxation on the hat-basis system.

• Compute the hat-basis residual and transform it into a constraint for the grid-

based system using Rg
h.

• Perform a grid-based multigrid solve on the transformed constraint.

• Transform the grid-based solution back to the hat-basis system using (Rg
h)
†, in

order to correct the hat-basis solution.

• Perform a few iterations of Gauss-Seidel relaxation on the hat-basis system.

Perhaps the most natural choice of Rg
h is to use the transpose of the evaluation

matrix (as the coefficients of the hat-basis equal the function values at the mesh

vertices). This works when the grid is coarse compared to the input mesh. However,

when the grid resolution becomes higher, there will be restricted B-splines whose

supports do not contain any vertices, and hence do not receive any residual constraint.

To address this, we propose the use of a pseudo-Evaluation matrix that transforms

the residual with respect to the hat-basis system defined on the input mesh, to a

residual with respect to the hat-basis system defined on the clipped mesh, and then

to a residual with respect to the Grid-based system:

Here, Mc is the lumped mass matrix (obtained by lumping the rows of the original

mass matrix to the diagonal) defined using the hat-basis on the input mesh, Mf

39



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

is the lumped mass matrix defined using the hat-basis on the clipped mesh, P f
c is

the prolongation matrix turning the vertex values of the input mesh into the vertex

values of the (refined) clipped mesh, and finally, E†f is the transpose of the ordinary

evaluation matrix of the input mesh described in the previous section. (Note that,

compared to the standard mass matrix, the lumped matrix is efficient to construct

and invert.) Since every B-spline has at least one vertex of the clipped mesh on

its support, the use of the pseudo-Evaluation matrix helps distribute residuals more

evenly.

4.3 Results

In this section, we conduct several experiments evaluating our grid-based finite-

element system. We start with a spectral analysis that validates the stability and cor-

rectness of our system. We then examine the convergence rate of our multigrid solver

and benchmark our performance against other state-of-the-art multigrid solvers.

40



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.4: Stability of polynomial integrators. We compute the spectrum of the
Laplace-Beltrami operator estimated using different integrators. Note that our 3-
point integrator produces an identical spectrum as other (more expensive) integrators.
The input mesh consists of 6624 triangles (28776 after the mesh is clipped).

4.3.1 Spectral Analysis

The spectral decomposition of the Laplace-Beltrami operator characterizes the

frequencies of functions on the surface and has been widely used for analyzing and

processing signals on meshes [24, 41], supporting applications such as surface fair-

ing [24], shape matching [42], and mesh editing [41].

In this section, we use spectral analysis as a tool to study the correctness of our

finite elements formulation, and to validate the correctness of our implementation. In

particular, we solve the generalized eigenvalue problem:

Lx = λMx

where λ and x are the eigenvalues and corresponding eigenvectors. As reviewed in

Chapter 3, the positive (semi-)definiteness of L and M guarantees that λ/x are real

valued. We use ARPACK [72] to compute the first hundred (smallest) eigenpairs.

41



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.5: Isometry invariance of the estimated Laplace-Beltrami operator. We
randomly rotate and translate the model within the voxel grid (left). Even though
each (rigidly) transformed surface intersects the voxels differently and thus defines a
different linear system, the resulting spectra are (almost) identical.

We first analyze the stability of our 3-point polynomial integrator, by comparing

the spectrum with the spectra obtained using higher degree integrators. As shown in

Figure 4.4, the results are indistinguishable even at the higher frequencies, suggesting

a sufficient approximation of the chosen integrator.

Next, we verify that isometry-invariance of the Laplacian is preserved in our sys-

tem. In particular, we randomly rotate and translate the model within the voxel grid

of a fixed resolution (depth 7) and compute the spectrum of each resulting system. As

shown in Figure 4.5, the resulting spectra are almost identical. We believe that the

slight discrepancy at higher frequencies is due to the facts that: A) As the transformed

surfaces intersect the voxels differently, they define systems of different resolutions.

B) Using the restriction of 3D B-splines to the surface as test functions improperly

couples some function values on disconnected surface regions (we will come back to

this issue in Chapter 6).

42



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.6: Spectrum comparison to the cotangent-weight Laplace-Beltrami operator.

43



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Cotangent-weight Grid-based (depth 5)
Model Low Mid High Low/Mid/High
Sphere 9,662 38,922 156,242 9,532
Lion 5,720 22,874 91,490 5,528
Rocker Arm 3,312 13,248 52,992 3,226
Genus-3 5,846 23,396 93,596 5,819
Pulley 6,600 26,400 105,600 6,570

Table 4.3: Dimensions of the Laplace-Beltrami operators defined for the different
tessellations of the models in Figure 4.6.

Finally, to evaluate the robustness of our finite elements formulation, we compare

the spectra obtained from our grid-based Laplacian with those obtained from the

cotangent-weight Laplacian. As the dimension of the cotangent-weight system is

equal to the number of mesh vertices, we start with meshes whose vertex count

matches the dimension of the grid-based system. These meshes are then subdivided

to obtain higher resolution cotangent systems defining more faithful spectra.

The results of the experiment are shown in Figure 4.6, with the dimensions of

the systems given in Table 4.3. Note that the cotangent-weight systems are sensitive

to tessellation: its spectrum converges to the true spectrum when the resolution is

increased and the tessellation becomes more regular. In contrast, our grid-based

system is agnostic to the tessellation and only considers the surface geometry. More

importantly, as indicated in most plots, we are able to estimate the true spectrum

more robustly than the cotangent-weight system at the same resolution.

The exception here is the pulley model that consists of narrow cross-sections in

3D, resulting in improper coupling of function values on (geodesically) distant regions

44



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.7: Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting a color function on the mesh. As a standalone solver, we compare
our grid-based multigrid against Aksoylu et al.’s geometric multigrids [2] and the
algebraic multigrids (AMGs) [3,4]. The finest-level linear system is defined using the
hat basis.

on the surface. We will investigate this issue more carefully and propose a solution

in Chapter 6.

4.3.2 Performance

We now investigate the performance of our multigrid solver. In particular, we

compare the convergence rate of our grid-based multigrid to Aksoylu et al.’s geometric

multigrid [2] and to two implementations of algebraic multigrids (AMGs) [3, 4].

For Aksoylu et al.’s multigrid, we use our own implementation, first defining the

system using the per-vertex, hat basis functions [49] and then recursively removing

45



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.8: Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting a color function on the mesh. As a standalone solver, we compare
our grid-based multigrid against the algebraic multigrids (AMGs) [3, 4]. The finest-
level linear system is defined using the grid-based basis.

a maximal independent set of vertices (Aksoylu #2). Note that for high resolution

meshes, this coarsening process often results in a large number of levels (as each

iteration of coarsening only reduces the degree of freedom by a factor of 3/4). Thus,

we also consider the configuration (Aksoylu #1) that defines restriction/prolongation

operators as the composition of successive restriction operators from the original

hierarchy, so that the resulting number of levels matches those of the other multigrid

implementations used in our experiment.

For the algebraic multigrids, we leverage a modern implementation [73] along

with the suggested parameters. In particular, we consider the smoothed-aggregation

multigrid [4] (AMG #1), which is a popular choice due to its memory efficiency and

46



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.9: Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting the function consisting of the first hundred eigenfunctions of the
Laplacian. As a standalone solver, we compare our grid-based multigrid against
Aksoylu et al.’s geometric multigrids [2] and the algebraic multigrids (AMGs) [3, 4].
The finest-level linear system is defined using the hat basis.

ease of setup, and the classical Ruge-Stüben AMG [3] (AMG #2), which is known to

be less aggressive in term of coarsening than the smoothed-aggregation AMG (i.e.,

resulting in more multigrids levels) and often demonstrates a better convergence rate.

Here we solve a simple function-fitting problem:

Given the mesh (see the inset) colored by the function

f : M → [0, 1]3, we set f as the value constraint

and ~s = ∇f as the gradient constraint. In all the

experiments, we use Gauss-Seidel relaxation as the

smoother (10 iterations at each level) and a zero vector as the initial guess. To obtain

47



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

the multigrid hierarchy, we let each coarsening scheme recursively downsample the

system matrix until its dimension is smaller than one hundred. A direct solve was

performed at the coarsest level.

Note that Aksoylu et al.’s multigrid cannot be applied to the system defined using

the grid-based basis. We thus apply our grid-based multigrid over the hat-basis system

using the pseudo-evaluation matrix described in the previous section. The results of

the experiment are presented in Figure 4.7, where we plot the decay of residual norms

within the first 30 W-cycles, with multigrid used as standalone solver. As the plots

indicate, overall our grid-based multigrid demonstrates a superior convergence rate,

consistently reaching the true solution within the first 10 W-cycles. (Note that as λ

approaches infinity, the system is dominated by the mass matrix and becomes strongly

diagonal dominant, so that the Gauss-Seidel smoother is capable of converging quickly

on its own.)

We next evaluate the convergence of our multigrid, as a standalone solver, oper-

ating directly on the grid-based function space (Aksoylu et al.’s multigrids are thus

precluded from the comparison). The results of the experiment are shown in Fig-

ure 4.8, where our multigrid outperforms the competing methods, though not as

dramatically as in the previous experiments. (The 5 × 10−5 residual in our solution

leads to an error no greater than 5×10−4 in the reconstructed per-vertex colors, which

is well below the displayable resolution and should be acceptable in many graphics

applications.)

48



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.10: The frequency distribution of the errors. Setting the fitted function to be
the summation of the first hundred eigenfunctions of the Laplacian, we visualize the
frequency coefficients of the errors by projecting the errors onto the eigenfunctions.
Note that our multigrid solver more effectively reduces errors from various frequencies.

Finally, we perform one more experiment to help un-

derstand the behavior of our multigrid solver in the fre-

quency domain. We use the rocker-arm model and set the

fitted values f to be the summation of the first hundred

eigenvectors {xi} of the Laplacian, as visualized in the in-

set (here the values are translated and scaled for the purpose of visualization). The

advantage of having this setup is that, given reconstructed per-vertex values f̃ , we

49



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

can observe the frequency distribution of the error, e = f − f̃ , by computing the

projections of e onto the {xi}: e†Mxi (that is, the frequency coefficients with respect

to the Laplacian eigenbasis).

Figure 4.10 gives the frequency distribution of the errors after one, five, and ten W-

cycles. As indicated by the plots, our grid-based multigrid more evenly and effectively

suppresses errors across various frequencies, while other configurations suppress low

frequency errors less effectively.

Solver Efficiency

Lastly, we investigate the efficiency of our multigrid solver. In Table 4.4, we

break down the running time into individual stages. In particular, we observe the

time needed for setting up the octree (including mesh clipping), computing the lin-

ear system, acquiring the restriction/prolongation operators, setting the evaluation

matrix, and performing one W-cycle. As a reference, we also benchmark the running

time of the state-of-the-art CHOLMOD solver (compiled by the Intel Math Kernel

Library [74] for best performance). To observe the scalability of each method, the

experiment is repeated on different resolutions of the dinosaur mesh.2

Looking at the results, we see that our grid-based multigrid is comparable to

other state-of-the-art methods. Note that, though we have shown in the previous

section that we have a better convergence, the time we spend on the initial set-up is

significant. As a result, when only solving a static linear system once, the traditional
2The higher resolution meshes are obtained by planar 1-to-4 subdivision of the original.

50



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Dinosaur Dinosaur Dinosaur
Solver Computation Original Subdivided Subdivided 2X

213,618 verts. 854,466 verts. 3,417,858 verts.
Octree Setup 1.25 2.71 7.35

Grid Linear System 0.31 0.65 1.65
Hat Linear System 0.21 0.87 3.29

Aksoylu Hat Restriction 3.81 17.67 80.88
#1 Hat W-cycle 4.80 21.90 102.05

Aksoylu Hat Restriction 4.31 19.89 90.14
#2 Hat W-cycle 0.60 2.60 10.53

Grid Restriction 0.16 0.16 0.16
AMG Grid W-cycle 0.65 0.64 0.67
#1 Hat Restriction 0.12 0.48 1.38

Hat W-cycle 0.50 2.09 7.00
Grid Restriction 0.21 0.21 0.21

AMG Grid W-cycle 0.79 0.76 0.72
#2 Hat Restriction 0.20 0.90 4.25

Hat W-cycle 0.75 3.79 18.18

Grid

Grid Restriction 0.08 0.08 0.08
Grid W-cycle 0.66 0.67 0.69

Evaluation Matrix 0.09 0.31 0.97
Hat W-cycle 1.01 2.15 6.37

Cholmod

Grid Factorization 2.03 2.05 2.03
Grid Substitution 0.13 0.12 0.12
Hat Factorization 0.78 3.82 34.22
Hat Substitution 0.15 0.46 1.84

Table 4.4: Running time of the multigrid solvers. Here we break down the timing into
individual stages. The input mesh is subdivided using a simple mid-point subdivision
algorithm. Apart from the multigrids, a direct CHOLMOD solver is also benchmarked
for the purpose of reference.

51



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

AMG methods are preferable.

As we will demonstrate in Chapter 6, our approach extends to the situations

where the linear system is dynamic. While other approaches often need to restart

computation in the dynamic setting, our framework allows relegating a large portion

of computation to a preprocessing stage, providing a low amortized cost that supports

real-time applications.

Discussion and Conclusion

In this chapter, we introduced our grid-based finite elements system. Restricting

regular 3D functions to the surface, we have developed a multigrid solver independent

of mesh tessellation. We have also described an efficient and parallel implementation

of our system. The spectral analysis revealed the correctness of our implementa-

tion. The convergence and efficiency analysis demonstrated the competitiveness of

our approach as compared with state-of-the-art methods.

In doing so, we have endeavored to reduce linear dependency in the system by

adapting an octree so that only the supported B-splines are considered. However,

the linear system can still be semi-definite when: A) the screening weight is zero, or

B) there exists an entirely planar component aligned with one of the axes (i.e., the

surface is not in general position). In the latter case, the linear system is singular

because linear dependency exists between basis functions. For example, given two

basis functions centered at (x1, 0, 0) and (x2, 0, 0) respectively, their values at points

52



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.11: Convergence of ill-conditioned systems. The color fitting problem is
repeatedly solved over an axis-aligned cube rotated around the (1, 1, 1) vector. The
finest-level linear system is defined using the grid-based basis. The residuals are
plotted as a function of degrees by which the cube is rotated.

on the YZ plane, x = x0, will only differ by the constant Bx1 (x0)
Bx2 (x0) , where Bx is the 1-D

B-spline centered at x.

Fortunately, while this is a serious problem for direct solvers like CHOLMOD, it

affects us less significantly because our multigrid solver uses a Gauss-Seidel smoother,

which has been shown to be well-behaved even when the linear system is only semi-

definite [75, 76]. In this case, the error vectors {ei} (here ei := x − xi with xi the

53



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.12: Correctness of the correction term from the lower resolution system,
solved accurately using a direct solver (left). Note that the system is corrected by
the same amount regardless the degrees of rotation, but the smoother works more
effectively when the system is better conditioned. We have also found that the perfor-
mance of the smoother correlates with the degree of non-diagonal dominance(right).

solution at iteration i and x a fixed solution) converge to a vector living in the null

space of the linear system.

In practice, we have found that our solver has more trouble when the surface is

barely in general position. We evaluate this by designing a simple experiment: We

solve the same color-fitting problem as before (here we set λ = 10−2) on a cube. The

cube, initially axis-aligned, is rotated one degree at a time around the vector (1, 1, 1).

Hence, the system starts off at special position, and gets pulled away gradually to

general position.

The results of this experiment are shown in Figure 4.11, where we plot the residuals

after one, five, ten, and thirty W-cycles. As indicated by the plots, our solver behaves

surprisingly well when the system is singular (i.e., when there is no rotation applied).

Unfortunately, when a slight rotation is applied, making the system near-singular

instead, the convergence rate deteriorates noticeably.

54



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

To better pinpoint the cause of this behavior, in Figure 4.12 (left), we consider

only the first two levels of the multigrid hierarchy, where the coarser level is solved

exactly using a direct solver. We notice that, without using any smoother at the finer

level, the residuals are corrected by about the same amount (0.5 for our multigrid and

> 0.75 for the classical AMG) no matter how the cube is rotated. On the other hand,

running the smoother on the systems in general position yields better results. This

implies that the problem is not because multigrid fails to provide good correction for

the finer systems; rather, it is because the smoother performs less effectively when

the mesh is close to special position.

We believe that this inadequate convergence relates to the diagonal dominance

of the linear system. To see this, we first measure the non-diagonal dominance by

setting

ε =
∑
i εi∑

i |Mii|
(4.7)

where

εi =

 −|Mii|+
∑
i6=j |Mij| if ∑i6=j |Mij| > |Mii|,

0 otherwise.
(4.8)

In Figure 4.12 (right), we plot ε as a function of rotation degrees. The results closely

correlate with the observed convergence, suggesting that the Gauss-Seidel smoother,

though proven to converge on symmetric positive definite systems, has trouble con-

verging quickly when the diagonal dominance is weak.

We also evaluate the qualitative implications of convergence by visually inspecting

the results. Looking at Figure 4.13 (top), we see that our solution (after one W-cycle)

55



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

closely approximates the low frequency content when compared to the ground truth

solution. Unfortunately, high frequency errors does appear to arise (Figure 4.13,

bottom), indicating that this is not a negligible issue.

In future work, we would like to explore this problem more carefully, by either

developing effective smoothers tailored to our system or adapting our function space

to make the resulting system more diagonally dominant.

56



CHAPTER 4. GRID-BASED FINITE ELEMENTS SYSTEM

Figure 4.13: Visual comparison of the ground truth solution (left) and our solution
obtained after one W-cycle (right). The cube is rotated by one degree around the axis
(1, 1, 1). The L1 norms of the errors, scaled up by 100, reveal that high frequency
errors persist in our solution (bottom).

57



Chapter 5

Changing Metric

In the previous chapter, we introduced our grid-based finite elements system for

solving the Poisson equation on meshes. In order to compute the mass and stiffness

matrices (by integrating Equation 3.5 and 3.6), we use the metric induced by the

embedding of the mesh.

In this chapter, we will show that this is not the only choice and that decoupling

the metric from the embedding can expand the applicability of our system. As exam-

ples, we will show that this decoupling supports efficient surface evolution (Section

5.1), and enables anisotropic geometry processing (Section 5.2).

58



CHAPTER 5. CHANGING METRIC

5.1 Metric Tracking for Surface Evolution

Our grid-based finite elements system defines a nested hierarchy of functions,

supporting an efficient multigrid framework. However, due to its dependence on the

embedding of the mesh, the overhead of setting up the framework is not negligible, as

it requires constructing an adaptive octree for tracking basis functions, clipping the

mesh by faces of octree cells, populating quadrature points, and then integrating.

As a result, for dynamic applications such as surface evolution where the em-

bedding changes with time, the repeated initialization of the multigrid framework

becomes a significant cost.

To address this concern, we propose an alternate approach that deforms the test

functions with the evolving embedding, thus allowing us to re-use the multigrid frame-

work throughout the application. Figure 5.1 gives a visualization of the approach

using a 2D model undergoing a deformation (top row). Instead of defining a new

hierarchy of test functions at the beginning of each timestep (middle row), we adapt

the hierarchy defined using the initial embedding by evolving the test functions with

the deforming surface (bottom row).

At first glance, the approach may appear impractical due to the complexity of

the deformed test functions. This turns out not to be the case and the approach

can be implemented by slightly adapting the original system. The key idea is to

consistently formulate the integral on the initial manifold, by pulling back the inner

product from the new embedding, allowing much of the computation to be performed

59



CHAPTER 5. CHANGING METRIC

Figure 5.1: A 2D raptor model undergoing a “swirl” deformation (top). Computing a
quadtree independently for each deformation, we obtain a temporally-varying spatial
indexing structure (middle). Tracking the quadtree with the deformed surface, the
indexing structure remains constant, allowing us to reuse information from frame to
frame (bottom).

in a pre-processing stage.

Here, we denote by ∇ the gradient operator, independent of metric, taking func-

tions onM to a section of the cotangent bundle ofM. Note that, for a given metric

g, one can uniquely relate a tangent vector v to a cotangent vector αv by setting

αv(·) = g(v, ·). That is, g can be thought of as a map from the tangent space to its

dual. This allows us to relate a gradient ∇b, as an element of the cotangent space,

to a gradient ∇gb, as an element of the tangent space, by setting ∇gb = g−1∇b. As a

result, given ∇g1b and ∇g2b defined with respect to two different metrics, g1 and g2,

one can relate them by ∇g1b = g−1
1 g2∇g2b.

60



CHAPTER 5. CHANGING METRIC

Now, with a little abuse of notation, we denote by∇t the gradient operator defined

with respect to metric gt (that is, ∇gt), and denote by dµt the area measure defined

with respect to gt. Using this notation, we formulate the mass and stiffness matrices

at an arbitrary time t with respect to the initial Riemannian metric g0 as

M t
ij =

∫
M
bi · bj dµt

=
∫
M
bi · bj ·

√
|g−1
t g0| dµ0 (5.1)

Ltij =
∫
M

gt(∇tbi,∇tbj) dµt

=
∫
M
∇bi(∇tbj) dµt

=
∫
M
∇bi(g−1

t g0∇0bj) ·
√
|g−1
t g0| dµ0

=
∫
M

g0(∇0bi, g−1
t g0∇0bj) ·

√
|g−1
t g0| dµ0 (5.2)

Similarly, the constraint vectors at time t can be formulated as

f ti =
∫
M
f · bi ·

√
|g−1
t g0| dµ0 (5.3)

sti =
∫
M

g0(~s, g−1
t g0∇0bi) ·

√
|g−1
t g0| dµ0 (5.4)

Note that our formulation so far has not involved any coordinate system. If we

choose a frame {v1, v2} on the tangent space that is orthonormal with respect to g0, the

matrix representation of g0 (with respect to this frame) is simply the identity. Also,

given the coefficients ~xt = [xt1, . . . , xtn]† defining the embedding X t(p) = ∑
i x

t
i · bi(p)

at time t, we can obtain the differential of the embedding with respect to {v1, v2} as

dX t|p =
∑
i

xti
( ∂(bi(p))

∂v1

∂(bi(p))
∂v2

)
,

61



CHAPTER 5. CHANGING METRIC

which defines the matrix representation of gt (that is, gt = (dX t)† · dX t).

Implementation

We implement the approach by slightly adapting the algorithms from the previous

chapter (Algorithm 4.1 and 4.2). In particular, we still set up the quadrature points on

the (undeformed) mesh as described in Section 4.2. We then choose an orthonormal

tangent frame {v1(p), v2(p)} for a quadrature point. Using Equations 5.1 through 5.4,

we modify the formulae for computing the contribution from the quadrature points

(with tangent vectors represented with respect to the basis {v1(p), v2(p)}):

M t
ij =

∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

bi(p) · bj(p) ·
√
|gt(p)| · ω(p) (5.5)

Ltij =
∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

(∇0bi(p))† · g−1
t (p) · ∇0bj(p) ·

√
|gt(p)| · ω(p) (5.6)

f ti =
∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

bi(p) · f(p) ·
√
|gt(p)| · ω(p) (5.7)

sti =
∑
c∈C

∑
t∈T (c)

∑
p∈P(t)

(~s(p))† · gt(p) · ∇0bi(p) ·
√
|gt(p)| · ω(p) (5.8)

Note that we as deform the test functions, theoretically the degree of polynomials

increases, and we would need to use high degree integrators for stable integration.

However, in practice, we have found that the 3-point formula remains sufficiently ac-

curate even for long-term evolution (see the next subsection for empirical validation.)

As suggested previously, one major advantage of formulating the integral with

respect to the initial Riemannian metric is that much of the information can be

re-used. This allows us to speed up the computation by computing (and storing) per-

62



CHAPTER 5. CHANGING METRIC

point information in a preprocessing step. The data associated with each quadrature

sample are kept throughout evolution and are used for assembling system coefficients

at run time.

Note that since we use first-order 3D B-splines centered at grid corners as test

functions, each quadrature sample is in the support of exactly eight test functions. We

store the following values for each sample p (the numbers in the parentheses indicate

the numbers of the required floating point values):

• (1) The weight of the sample, with respect to the initial metric: ω(p).

• (8) The values of the eight supported B-splines: bi(p).

• (16) The gradients of the eight supported B-splines expressed as coefficients with

respect to the chosen frame: [∇0bi(p)]v1 and [∇0bi(p)]v2 (i.e., [u]vi
= g0(u, vi)).

This sums to a total of 1 + 8 + 16 = 25 floating point values per quadrature sample1.

Algorithm 5.1 through 5.3 summarize the pseudocode for constructing the system for

an embedding that evolves with time.

5.1.1 Results

To evaluate the approach, we use mean-curvature flow (MCF) to evolve the em-

bedding of the input mesh. In particular, we investigate the stability, accuracy, and

improved efficiency of the proposed tracking approach.
1Depending on applications and forms of constrains, one may also want to store values for f and

~s. This will result in three additional floating point values (i.e., f(p), [~s(p)]v1 , and [~s(p)]v2).

63



CHAPTER 5. CHANGING METRIC

Algorithm III: SetTimeVaryingSystemMatrices( ~x )
M , L← 0
for c ∈ C , t ∈ T (c) , p ∈ P (t)
dX ← ComputeDifferential( p , ~x )
g← dX† · dX
for i ∈ NeighborCorner(p)
for j ∈ NeighborCorner(p)
Mij ←Mij + bi(p) · bj(p) ·

√
|g| · ω(p)

Lij ← Lij +
(
[∇0bi(p)]v1 , [∇0bi(p)]v2

)
g−1

(
[∇0bj(p)]v1 , [∇0bj(p)]v2

)†
·
√
|g| · ω(p)

return ( M , L )

Algorithm 5.1: Algorithm for computing the system matrices with a time-varying
embedding. The embedding coefficients ~x are given at each timestep t.

Algorithm IV: SetTimeVaryingConstraintVectors( ~x )
f , s← 0
for c ∈ C , t ∈ T (c) , p ∈ P (t)
dX ← ComputeDifferential( p , ~x )
g← dX† · dX
for i ∈ NeighborCorner(p)

fi ← fi + f(p) · bi(p) ·
√
|g| · ω(p)

si ← si +
(
[~s(p)]v1 , [~s(p)]v2

)†
g−1

(
[∇0bi(p)]v1 , [∇0bi(p)]v2

)
·
√
|g| · ω(p)

return ( f , s )

Algorithm 5.2: Algorithm for computing the constraint vectors with a time-varying
embedding. The embedding coefficients ~x are given at each timestep t.

Algorithm V: ComputeDifferential( p , ~x )
dX ← 0
for i ∈ NeighborCorner(p)
dX ← dX + xi ·

(
[∇0bi(p)]v1 , [∇0bi(p)]v2

)
return dX

Algorithm 5.3: Algorithm for computing the differential of the embedding.

64



CHAPTER 5. CHANGING METRIC

Figure 5.2: Mean-curvature flow of the Isidore Horse after 0, 5, 25, 50, 100, and 200
iterations with step-size δ = 1× 10−5.

Figure 5.3: Mean-curvature flow of Neptune after 0, 5, 10, 20, 40, and 80 iterations
with step-size δ = 1× 5× 10−4.

Mean-Curvature Flow

MCF is a classical flow that has been widely used to evolve surface geometry,

supporting applications such mesh fairing and editing [24, 26]. Formally, MCF is a

smoothing process that evolves the surface embedding X subject to the differential

equation:
∂

∂t
X = ~Ht = ∆tX (5.9)

where ~Ht is the mean-curvature vector of the embedded surface at time t, which is

also the Laplacian of the embedding.

It is well-known that, unless very small time-steps are taken, explicit integration

of Equation 5.9 results in unwanted negation/amplification of high-frequency content,

65



CHAPTER 5. CHANGING METRIC

making the integration process unstable. Instead, methods such as Desbrunet al.’s

use a semi-implicit integration [26]:

X t+δ −X t

δ
≈ ∆tX

t+δ =⇒ (Id− δ∆t)X t+δ ≈ X t (5.10)

Projecting Equation 5.10 onto {b1, . . . , bn}, one obtains a screened-Poisson equation

with zero-valued gradient constraint:

(
Dt − δ

2L
t
)
~xt+δ = Dt~xt (5.11)

This equation is stable even in the presence of large time-steps, making it more

convenient for simulating large-scale flows in practice.

Tracking Stability

To evaluate the stability of the proposed tracking approach, we repeatedly solve

Equation 5.11 to evolve the surface embedding. The results are shown in Fig-

ures 5.2 and 5.3, where we evolve the Isidore Horse and the Neptune models using

different step-sizes. With smaller time-steps, our approach can stably evolve the mesh

over hundreds of iterations and fair out most surface details (i.e., Isidore Horse). On

the other hand, with larger time-steps (i.e., Neptune), the approach can obtain the

“skeleton” of the mesh, as described in [77]. (In pinching regions, where the metric

becomes singular, we keep the quadrature points from contributing to the integrals,

thus avoiding the problem of having differentials go to infinity. As a result, the asso-

ciated coefficients are not changed by the iterative solver and the surface “locks” as

it approaches the skeleton.)

66



CHAPTER 5. CHANGING METRIC

Figure 5.4: Accuracy of the metric tracking method performing MCF. We evolve the
Bimba model using both the tracking (top) and non-tracking (bottom) approaches.
Here we show the results after one, ten, and one hundreds time-steps of MCF with
step-size δ = 1× 10−5. The maximum (dashed line) and RMS (sold lines) errors are
plotted as a function of time-steps (right).

Accuracy

We evaluate the correctness of our formulation by evolving the model using both

the tracking and non-tracking approaches. Figure 5.4 shows the results for the Bimba

model after one, ten, and one hundred steps of mean-curvature flow with step-size δ =

1×10−5. Visually, the results of the tracking approach (top row) are indistinguishable

from the results of the non-tracking approach (bottom row).

We quantify the errors using the Metro [78] tool, computing the distances from

the results obtained using the grid-based systems, to the results obtained from the

hat-basis system solved precisely by CHOLMOD. In the right of Figure 5.4, we plot

both the maximum (dashed lines) and RMS (solid lines) errors. Note that the errors

are small for both methods. Perhaps a little surprisingly, the tracked system performs

67



CHAPTER 5. CHANGING METRIC

Model Isidore Horse Neptune Bimba
Input Vertices 1.1× 106 5.0× 105 3.0× 105

Clipped Triangles 1.0× 107 4.3× 106 2.7× 106

System Dimensions 1.2× 106 4.7× 105 3.4× 105

Setup Time 26 sec. 11 sec. 7 sec.
Update Time 3.7 sec. 1.3 sec. 0.9 sec.
Solve Time 0.47 sec. 0.20 sec. 0.14 sec.

Table 5.4: Running time of our system performing MCF. Note that Setup Time
indicates what would have taken to rebuild the system at each time-step.

slightly better than the non-tracked one. We believe this is because the tracked system

effectively evolves with the finer, clipped, triangulation, allowing it to capture more

fine-grained properties of the flow.

Improved Efficiency

The performance of our system is summarized in Table 5.4, showing the size of

the input mesh, the size of the clipped mesh, the dimension of the linear system, the

time required for the non-tracking method to rebuild the system at each time-step,

the time required for the tracking method to update the system at each time-step,

and the time required to solve the linear system.

As the table indicates, without having to adapt an octree and re-clipping the input

mesh at the beginning of each time-step, the tracked system obtains a nearly 7-fold

speedup in the processing time, confirming the benefit of using the metric tracking

approach.

68



CHAPTER 5. CHANGING METRIC

5.2 Anisotropic Geometry Processing

In the previous section, we had shown that the metric used for defining the system

does not have to be the metric induced by the embedding. Using the metric pulled

back from an evolving surface, one can adapt the system to support surface evolution

more efficiently. The approach is easy to implement and requires only minimal changes

to the original algorithms.

Indeed, as the system coefficients are obtained by summing up contributions from

quadrature samples, modifying the metric only requires changing the formulae for

computing the per-point contribution. In theory, the framework is general enough to

support arbitrary metrics. Unfortunately, it is difficult to perform such computation

in real-time: When the metric changes, the point-wise integration of the system

coefficients must be computed anew.

Nevertheless, we observe that one can trade a certain degree of flexibility designing

the metric for efficiency. In particular, we restrict ourselves to the subset of metric

tensors that are:

• Diagonalizable with respect to the principal curvature directions (with the di-

agonal entries depending on the curvature value and position), and

• Constant within each grid cell.

We now explain the implications of these restrictions.

69



CHAPTER 5. CHANGING METRIC

Diagonalizability

Our first assumption about the prescribed metric tensor, G, is that if {(κ1, v1),

(κ2, v2)} are the principal curvatures, then G can be diagonalized with respect to the

basis {v1, v2} as

G ≡

 α2
1 0

0 α2
2


with αi defined by αi(p) = α(p, κi(p)) 6= 0. Since α only depends on the position and

the principal curvature, even at umbilic points the metric tensor is well-defined.

The advantage of this assumption is that we can re-use the computation of the

system defined by the initial metric to compute the system defined by the prescribed

metric (much like what we did previously to accelerate surface evolution). Note that,

though the assumption might seem restrictive at first glance, it covers a rich family

of metric tensors and has been successfully applied to design anisotropic geometry

processing systems [27].

Under this assumption, the system matrices can be expressed as

MG
ij =

∫
M
bi · bj dµG

=
∫
M
α1 · α2 · bi · bj dµg (5.12)

LGij =
∫
M
G(∇Gbi,∇Gbj) dµG

=
∫
M

(
[∇gbi]v1 , [∇gbi]v2

)
G−1

(
[∇gbj]v1 , [∇gbj]v2

)†
·
√
|G| dµg

=
∫
M

( α1 · α2

α2
1
· [∇gbi]v1 · [∇gbj]v1 + α1 · α2

α2
2
· [∇gbi]v2 · [∇gbj]v2

)
dµg (5.13)

Intuitively, (α1 · α2) accounts for the area scaling, while 1/α2
1 and 1/α2

2 account for

70



CHAPTER 5. CHANGING METRIC

the fact that scaling a function by α scales its second derivative by 1/α2.

Similarly, the constraint vectors become

fGi =
∫
M
α1 · α2 · f · bi dµg (5.14)

sGi =
∫
M

( α1 · α2

α2
1
· [~s]v1 · [∇gbi]v1 + α1 · α2

α2
2
· [~s]v2 · [∇gbi]v2

)
dµg (5.15)

Constant metric structure

Our second assumption is that α1 and α2 are piecewise constant. This is motivated

by the observation that, in the extreme case, if α1 and α2 are constant everywhere,

one can move their contribution outside the integrals. As a result, given prescribed

metrics, we can efficiently construct new linear systems by rescaling the components

in the original linear system. For example, under this assumption the new stiffness

matrix can be assembled as

Lg = α1 · α2

α2
1

L(v1) + α1 · α2

α2
2

L(v2)

where

L
(v)
ij =

∫
M

[∇gbi]v · [∇gbj]v dµg

This global assumption, however, is too restrictive as it does not allow for a

spatially-varying metric: We would like to speed up the computation without sacri-

ficing the flexibility in designing the metric. In practice, we have found that restrict-

ing prescribed metric tensors to be piecewise constant on grid cells provides a good

trade-off between flexibility and speed. The design decision is well aligned with the

71



CHAPTER 5. CHANGING METRIC

implementation described in Chapter 4, where we compute each system coefficient by

summing integral contributions from individual grid cells.

Implementation

Leveraging the two assumptions regarding the prescribed metric tensor, our im-

plementation of the approach computes the linear system as

MG
ij =

∑
c∈C

α1(c) · α2(c) ·
( ∑
t∈T (c)

∑
p∈P(t)

bi(p) · bj(p) · ω(p)
)

(5.16)

LGij =
∑
c∈C

(
α1(c) · α2(c)

α2
1(c) ·

( ∑
t∈T (c)

∑
p∈P(t)

[∇gbi(p)]v1 · [∇gbj(p)]v1 · ω(p)
)

+

α1(c) · α2(c)
α2

2(c) ·
( ∑
t∈T (c)

∑
p∈P(t)

[∇gbi(p)]v2 · [∇gbj(p)]v2 · ω(p)
) )

(5.17)

fGi =
∑
c∈C

α1(c) · α2(c) ·
( ∑
t∈T (c)

∑
p∈P(t)

f(p) · bi(p) · ω(p)
)

(5.18)

sGi =
∑
c∈C

(
α1(c) · α2(c)

α2
1(c) ·

( ∑
t∈T (c)

∑
p∈P(t)

[~s(p)]v1 · [∇gbi(p)]v1 · ω(p)
)

+

α1(c) · α2(c)
α2

2(c) ·
( ∑
t∈T (c)

∑
p∈P(t)

[~s(p)]v2 · [∇gbj(p)]v2 · ω(p)
) )

(5.19)

where αi(c) is the (constant) value of the function αi on cell c.

In a preprocessing stage, we compute (and store) the components of the per-cell

contribution that are independent of the prescribed metric tensor. Then, at runtime,

the system coefficients are assembled efficiently using the precomputed information.

For example, by precomputing

IntL`(c, i, j) =
∑
t∈T (c)

∑
p∈P(t)

[∇gbi(p)]v`
· [∇gbj(p))]v`

72



CHAPTER 5. CHANGING METRIC

Figure 5.5: Anisotropic detail sharpening: Starting with an initial model (a), global
sharpening is applied to the geometry to enhance the detail (b). By adapting the
direction of sharpening to the curvature in different ways, a rich space of geometry-
aware sharpening filters are realized (c-e). Though the model consists of almost one
million vertices and a new system is constructed and solved each time the filter is
changed, our method still supports geometry processing at interactive rates.

we can assemble the stiffness matrix when the metric is prescribed by setting

Lij =
∑
c∈C

(α1(c) · α2(c)
α2

1(c) IntL1(c, i, j) + α1(c) · α2(c)
α2

2(c) IntL2(c, i, j)
)

5.2.1 Results

To evaluate the approach, we implement a real-time system that performs aniso-

tropic geometry filtering through the solution of a screened-Poisson equation. The

idea is to extend the screened-Poisson formulation of gradient domain image pro-

cessing [20, 79] to meshes. In particular, we set the value constraint f to be the

embedding of the mesh and set the gradient constraint to be ~s = σ∇f . Here, σ ≥ 0

is a user-controlled variable dictating modulation of surface details. (When σ is

bigger/less than one, the gradients are amplified/dampened, and we achieve a sharp-

73



CHAPTER 5. CHANGING METRIC

Figure 5.6: Anisotropic detail smoothing: Examples of geometric effects obtained by
adapting the Riemannian metric to the curvature. Starting with the original model
(left), global smoothing constraints were applied. The surfaces, from left to right, are
obtained by amplifying the fidelity term (λ) in directions of: large negative curvature,
large positive curvature, large absolute curvature.

ening/smoothing effect.) Figure 1.3 gives a snapshot of our system performing the

(isotropic) geometry filtering on the Armadillo Man. We provide a simple slider inter-

face (at the top of the window) for users to adjust σ, and we also support a spraycan

interface to allow users to define a spatially variable σ.

We allow users to interactively adjust the metric by specifying the transfer func-

tion α(κ), which determines the scaling of the inner product in principal curvature

directions with principal curvature value κ:

αi(p) = α(κi(p))

As described in the previous section, in order to speed up the computation, we need α1

and α2 to be piecewise-constant on grid cells. To this end, we associate a minimum and

maximum curvature value with each grid cell, obtained by taking the area-weighted

average of the minimum and maximum curvatures of the triangles contained within

74



CHAPTER 5. CHANGING METRIC

Frames/Seconds
Model Vertices DoFs Solve RHS Matrix
Lucy 2.6× 105 3× 1.5× 105 40 20 8
Buddha 5.4× 105 3× 2.1× 105 31 15 6
Armadillo 1.7× 105 3× 2.6× 105 30 13 5
Dragon 4.4× 105 3× 2.7× 105 27 12 5
Isidore 1.1× 106 3× 2.8× 105 27 12 4
Formaa 1.0× 106 3× 3.2× 105 24 11 4
David 2.0× 106 3× 4.2× 105 20 9 3

Table 5.5: Performance Summary: Statistics of the geometric complexity, numbers
of degrees of freedom, and frame-rate.

Figure 5.7: Selective detail enhancement: Starting with the original model (a), a
user applies global smoothing by specifying that all gradients should be dampened
(b). The user then specifies that the top face of the tablet should be sharpened by
selectively amplifying gradients in that area (c-d). The final results accentuates the
floor plan in the Forma Urbis fragment and hides detail in the fracture region (e).

the cell (curvatures are computed using Trimesh2 [80]). Figures 5.5 and 5.6 give snap-

shots of our system performing anisotropic sharpening/smoothing on meshes. Here

we provide a simple profile-curve interface for users to specify the transfer function.

We test our anisotropic geometry processing system on several input meshes. A

summary of the performance can be seen in Table 5.5. The three running times

correspond to the three states of the system:

75



CHAPTER 5. CHANGING METRIC

1. Solve When the user has not specified any edits, the system performs a multi-

grid solve at each frame and updates the vertex positions.

2. RHS When the user modifies the gradient scales (σ), the right-hand-side of the

system is computed before solving and updating the vertex positions.

3. Matrix When the user modifies the filter by adjusting the metric, both the

system matrices and right-hand-side are computed before solving and updating

the vertex positions.

As the table indicates, even for high resolution meshes, our multigrid solver supports

interactive modification of both the gradient scale and the underlying Riemannian

metric.

76



Chapter 6

Connectivity Awareness

So far we have described our grid-based finite elements system for solving Poisson-

like problems on meshes (Chapter 4). We have also described the extension of the

system that modifies metrics for different applications (Chapter 5). In this chapter,

we describe another important extension of the system that addresses a fundamental

issue with our approach.

Perhaps the most distinct characteristic of our approach is its use of an extrinsic

function space (i.e., the construction of our function space depends on the embedding

of the input mesh). While the use of 3D test functions imbues our system with the

desired regularity, we effectively supplant geodesic distances with the Euclidean ones.

Specifically, function values on locally disconnected components tend to be coupled

when they are close in 3D, with points adjacent in 3D having similar function values

even if they are geodesically distant.

77



CHAPTER 6. CONNECTIVITY AWARENESS

The inset shows a 2D example, where each of the

four B-splines supported on the cell takes similar values

on p and q. Note that this behavior not only diminishes

the richness of our function space, but also affects the

performance of our multigrid solver. This is because

disconnected regions are more likely to support the same basis function at coarser

resolutions. As pointed out in previous work [70], improperly linking basis functions

at coarse resolutions can deteriorate convergence of geometric multigrid solvers.

6.1 Enriched Function Space

Our goal is to address the value coupling issue without sacrificing the regularity

and nesting structure of the original function space. The key idea is to make the

construction of the function space connectivity-aware. In particular, we propose to

enrich the function space by splitting existing functions such that the support of each

new function is connected.

Figure 6.1 demonstrates the idea using a 2D example. In the original framework,

we would have defined a single function supported on both disjoint components. In

the new framework, we use two separate functions instead, which are both derived

from the same 3D function but supported on different components.

Formally, lettingM⋂ supp(bi) = ⋃
mRi,m be a decomposition of the intersection

78



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.1: Adaptive splitting of test functions. In the original approach, the test
functions are chosen independent of the mesh, possibly resulting in disconnected
components in their supports (left). In contrast, the alternate approach refers to
mesh connectivity and assigns a separate test function to each component (middle
and right).

of bi’s support with the mesh into connected components, we define our new test

functions by

b(i,m)(p) = bi(p) · χi,m(p)

with χi,m the indicator function on Ri,m. Thus, b(i,m) is a B-spline centered at corner

i and supported on the m-th component of the support of bi.

Here we make two important observations about the formulation. First, the sum of

the new functions centered at corner i is equivalent to the original function centered at

corner i (that is, bi(p) = ∑
m b(i,m)(p)). Second, if the value of the original prolongation

stencil Pi(i′) (where i′ is a corner index on the finer grid) is not equal to zero, then

one of the following statements is true:

• supp(b(i′,m′))
⋂ supp(b(i,m)) = supp(b(i′,m′))

• supp(b(i′,m′))
⋂ supp(b(i,m)) = ∅

79



CHAPTER 6. CONNECTIVITY AWARENESS

Using these observations, we formulate the nesting of the new function space as

b(i,m)(p) = bi(p) · χi,m(p)

=
(∑

i′
Pi(i′) · bi′(p)

)
· χi,m(p)

=
∑
i′
Pi(i′) ·

∑
m′
b(i′,m′)(p) · χi,m(p)

=
∑
i′,m′

Pi(i′) · I(i, j, i′,m′) · b(i′,m′)(p) (6.1)

where I(i,m, i′,m′) is the function that is one only when the support of b(i,m) contains

the support of b(i′,m′) and is zero otherwise. Equation 6.1 indicates that the new

function space not only preserves the nesting structure, but allows us to use a similar

stencil for system upsampling/downsampling.

Implementation

As the proposed framework still uses regular B-splines centered at grid corners,

most of the implementation remains unchanged, except the setting up of test func-

tions. In order to obtain our test functions, we start by decomposingM into surface

patches S, such that each surface patch s ∈ S is contained entirely within a grid cell.

The test functions are then defined by looking for connected components within the

eight adjacent voxels around each grid corner i: test function b(i,m) is instantiated

using a B-spline centered at i and supported exclusively on the m-th component of

the support of bi. Pseudocode of the process is given in Algorithm 6.1.

80



CHAPTER 6. CONNECTIVITY AWARENESS

Algorithm VI: SetConnectivityAwareTestFunctions( )
for each grid corner i
m = 0
Q = {s ∈ S | s resides in i’s adjacent voxels}
while Q 6= ∅
Ri,m ← Q.RemoveOne()
for each s′ ∈ Q adjacent to Ri,m

Ri,m ← Ri,m ∪ s′

Q.Remove(s′)
m← m+ 1
b(i,m) := B-spline centered at i and supported on Ri,m

return {b(i,m)}

Algorithm 6.1: Algorithm for adaptively setting up test functions.

6.2 Results

The increased richness of the new function space is highlighted in Figure 6.2, where

the texture defined on the self-intersecting knot model is projected onto both the

adaptive and non-adaptive bases. For this case, there does not exist any continuous

3D function whose restriction to the mesh can closely represent the texture.

In the rest of the chapter, we further evaluate how this adaptive, connectivity-

aware function space improves the performance of our grid-based finite elements sys-

tem. In particular, we revisit the spectral analysis from Chapter 4, examine the

resulting multigrid convergence, and compare the efficiency of the new solver with

the state-of-the-art CHOLMOD solver [9].

81



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.2: Increased richness of the proposed function space. A “knot” model with
a stripe texture (left) is projected onto the original function space (middle) and the
adaptive function space (right). Due to the coupling of function values, the non-
adaptive approach fails to reproduce the correct texture when points are close in
Euclidean space but are geodesically distant. By designing the new function space
to be aware of local connectivity, we can fit the geodesically distant patches indepen-
dently, resulting in an accurate reproduction of the original texture.

6.2.1 Spectral Analysis

In Chapter 4, we leveraged spectral analysis for evaluating the correctness and

quality of the Laplace-Beltrami operator estimated by our grid-based system. The

results generally showed that our system was robust, with the exception of the pulley

model that consists of narrow cross-sections - precisely where the coupling of values

would occur. In this section, we investigate whether the new function space improves

the spectral behavior.

For both the non-adaptive and adaptive spaces of functions, we compute the

spectrum at increasing grid resolutions. The results are shown in Figure 6.3. As

demonstrated in the plot, the spectra of the new operator quickly converge to the

ground truth, which is estimated using the cotangent-weight operator defined over a

dense tessellation of the mesh.

82



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.3: Stability of the spectrum of the Laplace-Beltrami operators estimated
using the non-adaptive and adaptive function spaces. We compute the spectra of
the non-adaptive operator (left) and the adaptive operator (right) at various grid
resolutions for the pulley model. As the resolution increases, the adaptive spectra
more quickly converge to the ground-truth.

As in Chapter 4, we also verify the isometry-invariance of the Laplacian. We apply

random translations and rotations to the model before computing the spectrum. The

results are shown in Figure 6.4, where the adaptive operator reproduces the spectrum

more consistently than the non-adaptive operator.

6.2.2 Convergence Analysis

Next, we investigate how convergence behavior is improved by our adaptive func-

tion splitting. To make the residuals obtained using the non-adaptive and adaptive

bases comparable, we use an input model (Figure 6.5, left) that does not require any

splitting operation at the finest level of the function space (though it is still neces-

sary at coarser ones). As in Chapter 4, we solve the screened-Poisson equation on

the mesh to fit the color function. This time, we initialize the solution with random

values between zero and one.

83



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.4: Isometry-invariance of the estimated Laplace-Beltrami operator. We
compute the spectra of the non-adaptive operator (top and middle) and the adap-
tive operator (bottom) for the different rotations of the pulley model. The zoom-ins
accentuate the superior stability of the adaptive operator (right).

84



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.5: Color fitting of a 3D checker-board texture on the model consisting of
equidistantly-spaced 6× 6× 6 unit-cubes (left). The screened-Poisson equation with
a screening weight λ = 0.01 is solved using a grid of depth 5. The coefficients of the
initial guess are generated randomly with values between 0 and 1.

Figure 6.6: Convergence of the multigrid solvers. We solve the screened-Poisson
equation for fitting the color function on the unit-cubes (Figure 6.5, left). We compare
the convergence rates of the multigrid methods defined using the adaptive and non-
adaptive bases. As the splitting operation is not needed at the finest grid resolution,
the two bases define the same fine-level linear system (and thus the residuals are
comparable).

85



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.7: Convergence of the multigrid solvers. Here we use the knot model (Fig-
ure 6.2, left) as the input. The finest-level linear system is defined using the Hat-basis.

The visual results obtained using the two approaches are presented in Figure 6.5.

Here, we observe that the non-adaptive solver does not produce a satisfactory solu-

tion, despite the lack of value coupling at the highest resolution. We believe this is

because the coupling at coarser spaces prevents multigrid from generating a mean-

ingful correction term.

More quantitative results of the experiment are presented in Figure 6.6, where we

observe the convergence rates of the two solvers over 30 W-cycles. As expected, the

adaptive solver has a superior convergence rate.

We also repeat the experiment where the hat basis is used to define the finest-

level linear system. This time we use the knot model (Figure 6.2, left) as the input.

(Although for this mesh the two grid-based systems are different at the highest res-

86



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.8: Conformalized Mean-Curvature Flow applied to the Armadillo Man. From
left to right, we show the 0th, 1st, 3rd, 5th, 10th and 30th steps of the flow. Note
that the flow conformally evolves the mesh to a sphere (right).

olution, the use of the same hat-basis to define the finest-level linear system allows

us to compare the residuals.) The results are shown in Figure 6.7, where we again

observe superior performance of the adaptive approach.

6.2.3 Surface Flow Application

As discussed in the previous chapters, the preprocessing time of our grid-based

system is significant compared to the solver time. As a result, the approach is best

suited for dynamic applications where the linear system changes over time. We thus

evaluate the approach in this context.

Conformalized Mean Curvature Flow

In this section, we evaluate the proposed adaptive system using conformalized

mean-curvature flow (cMCF) [81]. This recently proposed flow has been shown to

converge to a conformal parameterization when acting on genus-zero surfaces (see

Figure 6.8 for an example). At each time t, we solve a semi-implicit system as

87



CHAPTER 6. CONNECTIVITY AWARENESS

described in [26]: (
Dt + δ

2L
0
)
~xt+δ = Dt~xt (6.2)

Experiment Setup

When performing surface flow, it is often necessary to consider the tradeoffs be-

tween the computational cost and the solution accuracy. Factors affecting the com-

putational cost include the temporal stepsize (as taking smaller timesteps increases

the temporal resolution but leads to longer running time) and the solver time per step

(as using more accurate solvers increases the accuracy within each timestep but leads

to longer running time). In practice, a natural question to ask is: Given a budgeted

computational cost, what is the best accuracy that can be achieved? To answer the

question, we designed the following experiment.

We first simulate the ground truth cMCF on a high resolution brain model con-

sisting of 1.4 millions vertices (Figure 6.11, left). The evolution time is targeted at

t = 50 and we take a tiny stepsize δ = 10−2 to flow the surface toward the target.

At each time step, we use the hat-basis to define the system, which is then solved

precisely using CHOLMOD. The simulation takes more than ten hours to generate

all the evolved surfaces. Having computed these, we can later generate the ground

truth at arbitrary time τ by linearly interpolating between the vertex positions at

time b τ
δ
cδ and d τ

δ
eδ.

88



CHAPTER 6. CONNECTIVITY AWARENESS

Results

We consider the following configurations of systems and solvers:

• Hat-basis System solved by CHOLMOD

• Hat-basis System solved by AMG

• Non-adaptive grid-based system solved by CHOLMOD

• Non-adaptive grid-based system solved by AMG

• Non-adaptive grid-based system solved by Grid-based Multigrid

• Adaptive grid-based system solved by CHOLMOD

• Adaptive grid-based system solved by AMG

• Adaptive grid-based system solved by Grid-based Multigrid

To ensure the best performance of CHOLMOD, the symbolic factorization is only

performed once in the preprocessing. For AMG, we choose Ruge-Stueben’s classical

AMG [3], as it was shown to have a better convergence rate in Chapter 4. 1 The

tolerance of (relative) residual errors is set to 5× 10−4 for both AMG and grid-based

multigrids.
1We use the implementation of AMG (as stand-alone solvers) from amgcl [73] with the default

parameters.

89



CHAPTER 6. CONNECTIVITY AWARENESS

Configuration
Dim. NNZ Time/Step Steps(System + Solver)

Hat
+ Cholmod

1.38× 106 9.67× 106
3.78 26

+ AMG 3.09 32

Non-adaptive
+ Cholmod

1.21× 106 2.22× 107

11.08 9
+ AMG 5.28 19
+ Grid-MG 1.47 68

Adaptive
+ Cholmod

1.27× 106 2.28× 107

9.26 10
+ AMG 5.02 20
+ Grid-MG 1.52 66

Table 6.2: Statistics for the different configurations, giving the system dimension, the
number of non-zero entries, the average time spent for each time step (including the
time for updating the system/solver and the time for solving the system), the total
number of steps, and the temporal step size δ.

The computational budget of each configuration is one hundred seconds. As the

evolution time is fixed at t = 50, the temporal stepsize δ taken by each configuration

depends on how quickly each spatial system can be solved, as summarized in Table 6.2.

We compare the evolved surfaces obtained from each configuration to the ground

truth. Results are shown in Figure 6.9, where we plot the RMS error (
√∑

i ‖vei − v
g
i ‖2

with ve and vg the evolved and ground truth vertex positions) as a function of evolu-

tion time. The errors at the end of the flow are visualized in Figure 6.10.

Here we make two observations. First, although the direct solver is capable of

computing exact solutions, the expensive cost prevents us from taking small time-

steps and eventually leads to large errors. Second, the non-adaptive and adaptive

systems perform equally well in the beginning (when the flow is essentially smoothing),

90



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.9: Error comparison of the different approaches performing cMCF on a brain
model consisting of 1.4 million vertices. The RMS error is plotted as a function of
evolution time. The ground truth is simulated using CHOLMOD to solve the hat-
basis system taking a tiny stepsize δ = 0.01. The computational budget is fixed at
one hundred seconds, so that the number of steps (visualized by the tick marks) is
determined by the efficiency of the solver.

but then the non-adaptive one deteriorates quickly with time (when the flow tries to

pull apart the two hemispheres of the brain).

In Figure 6.11, we examine the two surfaces resulting from the non-adaptive and

adaptive systems at the end of the flow (both are solved by the grid-based multigrid).

The zoom-ins highlight the problem of the non-adaptive approach, where the values

of the embedding function are coupled across the two hemispheres of the brain and

cannot flow independently.

Discussion

Using the adaptive formulation, we resolve the problem of value coupling across

disconnected components. However, the approach cannot decouple values for points

on the same component. The problem is manifest when one uses a low-resolution grid

91



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.10: Error visualization of cMCF at t = 50. Renderings show L2 distance to
the ground truth. Note that for the non-adaptive systems, errors accumulate around
“pinched” regions.

92



CHAPTER 6. CONNECTIVITY AWARENESS

Figure 6.11: The brain undergoing cMCF with the non-adaptive (top) and adap-
tive (bottom) function spaces used to define the system for the input mesh (left). The
two systems have about the same dimension and are both solved using multigrid. Here
we show the evolved surfaces at t = 10, t = 25, and t = 50 (middle). The zoom-ins
highlight the benefit of using the adaptive, connectivity-aware system, which is able
to decouple the function values at points that are close in Euclidean space, allowing
them to flow independently (right).

Figure 6.12: Value coupling within a connected component near a high curvature
region of the brain (left). When we define our system using a lower resolution grid,
there are basis functions supported on two parallel patches. Rendering the support
from different perspectives, we observe that the function cannot be split because the
two patches are connected at the corner (middle). As a result, performing cMCF
using this low resolution system yields high errors (right, drawn as in Figure 6.10).

93



CHAPTER 6. CONNECTIVITY AWARENESS

to define a linear system over surfaces with high-curvature regions.

As an example, Figure 6.12 visualizes the support of a basis function defined using

a lower resolution grid. The support contains two flat regions that meet near a corner.

Consequently, running cMCF at this low resolution results in pronounced errors in

these regions.

In practice, however, we have only found this to be an issue when very coarse

resolution grids are used. As demonstrated in this chapter, when the resolution of

the grid matches that of the tessellation, our approach is both accurate and efficient.

94



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have presented a novel finite elements system for solving the

Poisson equation on meshes. Defining a function space by restricting regular 3D

functions to the surface, as described in Chapter 4, we address several issues from

previous work. Unlike traditional approaches, our method is tessellation-independent

and gives direct control over system complexity. More importantly, the resulting func-

tion space comes with a multi-resolution structure supporting an efficient multigrid

solver. From an implementation point of view, the regularity of the function space

can be leveraged in parallelizing the computation.

The benefits of our system come with a price though. As the approach requires

adapting an octree and clipping the input mesh, the overhead for setting up the

95



CHAPTER 7. CONCLUSION AND FUTURE WORK

system is not negligible. As a result, for applications where the mesh evolves with

time, a straightforward implementation of the approach would be impractical. As

we have shown in Chapter 5, by tracking the metric structure, one can efficiently

evolve test functions with the mesh. This allows us to amortize and reuse much of

the precomputation, avoiding a costly initialization of the multigrid hierarchy at the

beginning of each time-step.

There has been significant research in the use of anisotropic diffusion for perform-

ing feature-aware surface editing. Such approaches often require modifying metrics

and are difficult to apply in real-time. In this work, we have shown that, by leverag-

ing the regularity of 3D functions and restricting ourselves to a rich subset of metric

tensors, one can significantly speed up the computation and support anisotropic ge-

ometry processing on high resolution meshes in real-time.

Finally, although the use of 3D functions provides our system with the desired

regularity, it limits the richness of our function space because Euclidean distances are

used as a proxy for geodesic proximity. To address this concern, in Chapter 6 we have

proposed enriching the function space by splitting the existing 3D functions so that

the support of each new function is connected. The extension makes our function

space behave like an intrinsic one.

Throughout the thesis, we have conducted a set of experiments demonstrating the

competitiveness of our approach. These include spectral analysis, convergence anal-

ysis, and efficiency analysis. We have shown that, when applied to various geometry-

96



CHAPTER 7. CONCLUSION AND FUTURE WORK

processing tasks, our approach is effective in solving dynamic linear systems and is

well suited for real-time applications.

7.2 Future Work

Our grid-based approach gives rise to a new way of thinking about finite elements

on surfaces. Though we have largely explored the idea in the thesis, there are still

several venues for future research:

Higher-order Functions

In the thesis, we use first-order 3D B-splines as test

functions. The functions have limited supports, resulting

in a very sparse system. However, the C0 nature of test

functions could lead to artifacts when the resolution of the

grid is low. The inset shows an example where we solve

a screened-Poisson equation to dampen the gradients of

the embedding (as in Chapter 5). Using first-order B-

splines (top) results in artifacts at cell boundaries. On

the other hand, using second-order B-splines (bottom) helps alleviate the limitation

by providing C1 continuity. Unfortunately, the use of higher-order B-splines reduces

the sparsity of the system and makes it more expensive to construct and solve. We

are still exploring ways to mitigate the increased cost so that the efficiency of the

97



CHAPTER 7. CONCLUSION AND FUTURE WORK

resulting solver can be practical.

Convergence Improvement

Throughout the thesis, we use Gauss-Seidel as the smoother. Although this works

well in most cases, in Chapter 4, we have shown that the solver can converge slowly

when the linear system is barely in general position and non-diagonally dominant.

In future work, we would like to explore more effective smoothers tailored to our

system. We would also like to consider adjusting our function space so that the

resulting system becomes more diagonally dominant.

Many-core Implementation

In this work, we have chosen to pursue an implementation of the multigrid solver

that is primarily CPU-based. In the future, we would like to consider a GPU-based

implementation leveraging the regularity of the function space. Though conceptually

similar to the volumetric Poisson solver proposed in [82], extending our approach to

the GPU is more challenging, because in the volumetric system the matrix coefficients

depend only on relative cell positions (and thus can be compactly represented by a

stationary stencil). On the other hand, our surface-based Poisson system requires the

explicit computation and storage of matrix coefficients, since their values depend on

how the surface passes through the grid cells and on the spatially-varying anisotropy.

98



CHAPTER 7. CONCLUSION AND FUTURE WORK

Out-of-core Implementation

We would also like to extend our approach to an out-of-core implementation. In

particular, taking as input an out-of-core mesh that has been clipped and stored

in the streaming mesh format [83], the system coefficients can be computed in a

streaming fashion. Because the grid-based system is independent of mesh tessellation,

the computation of the multigrid hierarchy is easier than in previous work [66], as

the complicated analysis of irregular connectivity can be avoided. Having system

coefficients sorted by heights of corresponding basis functions, one can leverage the

our-of-core temporal blocking technique developed for regular domains and perform

k V-cycles in k + 1 streaming passes [1].

99



Bibliography

[1] M. Kazhdan and H. Hoppe, “Streaming multigrid for gradient-domain

operations on large images,” ACM Transactions on Graphics (SIGGRAPH

’08), vol. 27, no. 3, pp. 21:1–21:10, Aug. 2008. [Online]. Available:

http://doi.acm.org/10.1145/1360612.1360620

[2] B. Aksoylu, A. Khodakovsky, and P. Schröder, “Multilevel solvers for unstruc-

tured surface meshes,” SIAM Journal of Scientific Computing, vol. 26, pp. 1146–

1165, 2005.

[3] J. Ruge and K. Stueben, “Algebraic multigrid,” Frontiers in Applied Mathemat-

ics, vol. 3, pp. 73–130, 1987.

[4] P. Vanek, J. Mandel, and M. Brezina, “Algebraic multigrid by smoothed aggre-

gation for second and fourth order elliptic problems,” COMPUTING, vol. 56,

pp. 179–196, 1996.

[5] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM Transactions

on Graphics (SIGGRAPH ’03), pp. 313–318, 2003.

100



BIBLIOGRAPHY

[6] O. Sorkine, D. Cohen-Or, Y. Lipman, C. Rossl, and H. Seidel, “Laplacian surface

editing,” in Eurographics/ACM SIGGRAPH Symposium on Geometry Process-

ing, 2004, pp. 179–188.

[7] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Pro-

ceedings of the fourth Eurographics Symposium on Geometry processing, ser. SGP

’06. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2006, pp.

61–70. [Online]. Available: http://dl.acm.org/citation.cfm?id=1281957.1281965

[8] LIS V.1.2.52, “Lis: a library of iterative solvers for linear systems,”

http://www.ssisc.org/lis/, 2010.

[9] T. A. Davis, “User guide for CHOLMOD: a sparse

cholesky factorization and modification package,”

http://www.cise.ufl.edu/research/sparse/cholmod/CHOLMOD/Doc/UserGuide.pdf,

2011.

[10] M. Botsch, D. Bommes, and L. Kobbelt, “Efficient linear system solvers for

mesh processing,” in Proceedings of the 11th IMA international conference on

Mathematics of Surfaces. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 62–83.

[11] B. Horn, “Determining lightness from an image,” Computer Graphics and Image

Processing, vol. 3, pp. 277–299, 1974.

101



BIBLIOGRAPHY

[12] Y. Weiss, “Deriving intrinsic images from image sequences,” in International

Conference on Computer Vision, 2001, pp. 68–75.

[13] G. Finlayson, S. Hordley, and M. Drew, “Removing shadows from images,” in

European Conference on Computer Vision, 2002, pp. 129–132.

[14] R. Fattal, D. Lischinksi, and M. Werman, “Gradient domain high dynamic range

compression,” in ACM SIGGRAPH, vol. 21, 2002, pp. 249–256.

[15] A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the

gradient domain,” in European Conference on Computer Vision, 2004, pp. 377–

389.

[16] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B. Curless,

D. Salesin, and M. Cohen, “Interactive digital photomontage,” ACM Transac-

tions on Graphics (SIGGRAPH ’04), pp. 294–302, 2004.

[17] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, “Poisson matting,” ACM

Transactions on Graphics (SIGGRAPH ’04), vol. 23, no. 3, pp. 315–321, Aug.

2004. [Online]. Available: http://doi.acm.org/10.1145/1015706.1015721

[18] A. A. Gooch, S. C. Olsen, J. Tumblin, and B. Gooch, “Color2gray:

salience-preserving color removal,” ACM Transactions on Graphics (SIG-

GRAPH ’05), vol. 24, no. 3, pp. 634–639, Jul. 2005. [Online]. Available:

http://doi.acm.org/10.1145/1073204.1073241

102



BIBLIOGRAPHY

[19] D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski, “Interactive

local adjustment of tonal values,” ACM Transactions on Graphics (SIG-

GRAPH ’06), vol. 25, no. 3, pp. 646–653, Jul. 2006. [Online]. Available:

http://doi.acm.org/10.1145/1141911.1141936

[20] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless, “Gradientshop: A

gradient-domain optimization framework for image and video filtering,” ACM

Trans. Graph., vol. 29, no. 2, pp. 10:1–10:14, Apr. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1731047.1731048

[21] A. Orzan, A. Bousseau, P. Barla, and J. Thollot, “Structure-preserving ma-

nipulation of photographs,” in International Symposium on Non-Photorealistic

Animation and Rendering (NPAR), 2007, pp. 103–110.

[22] J. McCann and N. Pollard, “Real-time gradient-domain painting,” ACM Trans-

actions on Graphics (SIGGRAPH ’08), 2008.

[23] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin,

“Diffusion curves: a vector representation for smooth-shaded images,” ACM

Transactions on Graphics (SIGGRAPH ’08), vol. 27, no. 3, pp. 92:1–92:8, Aug.

2008. [Online]. Available: http://doi.acm.org/10.1145/1360612.1360691

[24] G. Taubin, “A signal processing approach to fair surface design,” in ACM SIG-

GRAPH, 1995, pp. 351–358.

103



BIBLIOGRAPHY

[25] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive multi-

resolution modeling on arbitrary meshes,” in ACM SIGGRAPH, 1998.

[26] M. Desbrun, M. Meyer, P. Schröder, and A. Barr, “Implicit fairing of irregular

meshes using diffusion and curvature flow,” in ACM SIGGRAPH Conference

Proceedings, 1999, pp. 317–324.

[27] U. Clarenz, U. Diewald, and M. Rumpf, “Anisotropic geometric diffusion in sur-

face processing,” in Visualization ’00: Proceedings of the 11th IEEE Visualization

2000 Conference (VIS 2000), 2000, pp. 497–405.

[28] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete differential-

geometry operators for triangulated 2-manifolds,” in Visualization and Mathe-

matics, Berlin, Germany, 2002.

[29] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher, “Geometric

surface smoothing via anisotropic diffusion of normals,” in Proceedings

of the conference on Visualization ’02, ser. VIS ’02. Washington, DC,

USA: IEEE Computer Society, 2002, pp. 125–132. [Online]. Available:

http://dl.acm.org/citation.cfm?id=602099.602117

[30] C. L. Bajaj and G. Xu, “Anisotropic diffusion of surfaces and functions on

surfaces,” ACM Trans. Graph., vol. 22, no. 1, pp. 4–32, Jan. 2003. [Online].

Available: http://doi.acm.org/10.1145/588272.588276

104



BIBLIOGRAPHY

[31] O. Sorkine and D. Cohen-Or, “Least-squares meshes,” in Proceedings of Shape

Modeling International. IEEE Computer Society Press, 2004, pp. 191–199.

[32] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Laplacian mesh optimiza-

tion,” in Proceedings of ACM GRAPHITE, 2006, pp. 381–389.

[33] K. Hildebrandt and K. Polthier, “Constraint-based fairing of surface

meshes,” in Proceedings of the fifth Eurographics Symposium on Ge-

ometry Processing, ser. SGP ’07. Aire-la-Ville, Switzerland, Switzer-

land: Eurographics Association, 2007, pp. 203–212. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1281991.1282019

[34] M. Alexa, “Differential coordinates for local mesh morphing and deformation,”

The Visual Computer, vol. 19, pp. 105–114, 2003.

[35] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel,

“Differential coordinates for interactive mesh editing,” in Shape Modeling Inter-

national, 2004, pp. 181–190.

[36] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum, “Mesh editing

with Poisson-based gradient field manipulation,” ACM Transactions on Graphics

(SIGGRAPH ’04), vol. 23, pp. 644–651, 2004.

[37] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao,

B. Guo, and H.-Y. Shum, “Subspace gradient domain mesh deformation,” ACM

105



BIBLIOGRAPHY

Trans. Graph., vol. 25, no. 3, pp. 1126–1134, Jul. 2006. [Online]. Available:

http://doi.acm.org/10.1145/1141911.1142003

[38] L. Shi, Y. Yu, N. Bell, and W. wen Feng, “A fast multigrid algorithm for mesh

deformation,” ACM Transactions on Graph, vol. 25, no. 3, pp. 1108–1117, 2006.

[39] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in Proceedings

of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing,

2007, pp. 109–116.

[40] M. Botsch and O. Sorkine, “On linear variational surface deformation

methods,” IEEE Transactions on Visualization and Computer Graph-

ics, vol. 14, no. 1, pp. 213–230, Jan. 2008. [Online]. Available:

http://dx.doi.org/10.1109/TVCG.2007.1054

[41] B. Vallet and B. Lévy, “Spectral geometry processing with manifold harmonics,”

Computer Graphics Forum (Eurographics ’08), vol. 2, 2008.

[42] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace-spectra as fingerprints for

shape matching,” in Symposium on Solid and Physical Modeling, 2005, pp. 101–

106.

[43] R. M. Rustamov, “Laplace-beltrami eigenfunctions for deformation invariant

shape representation,” in Symposium on Geometry Processing, 2007, pp. 225–

233.

106



BIBLIOGRAPHY

[44] M. Ovsjanikov, J. Sun, and L. Guibas, “Global intrinsic symmetries of shapes,”

Computer Graphics Forum (SGP ’08), vol. 27, pp. 1341–1348, 2008.

[45] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative

multi-scale signature based on heat diffusion,” in Eurographics Symposium on

Geometry Processing (SGP), 2009.

[46] F. de Goes, S. Goldenstein, and L. Velho, “A hierarchical segmen-

tation of articulated bodies,” in Proceedings of the Symposium on

Geometry Processing, ser. SGP ’08. Aire-la-Ville, Switzerland, Switzer-

land: Eurographics Association, 2008, pp. 1349–1356. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1731309.1731315

[47] Y. Lipman, R. Rustamov, and T. Funkhouser, “Biharmonic distance,” ACM

Transactions on Graphics, vol. 29, no. 3, Jun. 2010.

[48] H. Zhang, “Discrete combinatorial laplacian operators for digital geometry pro-

cessing,” in SIAM Conference on Geometric Design, 2004. Press, 2004, pp.

575–592.

[49] U. Pinkall and K. Polthier, “Computing discrete minimal surfaces and their

conjugates,” Experimental Mathematics, vol. 2, pp. 15–36, 1993.

[50] M. S. Floater, “Mean value coordinates,” Computer Aided Geometric Design,

vol. 20, p. 2003, 2003.

107



BIBLIOGRAPHY

[51] M. Alexa and M. Wardetzky, “Discrete laplacians on general polygonal meshes,”

ACM Trans. Graph., vol. 30, no. 4, pp. 102:1–102:10, Jul. 2011. [Online].

Available: http://doi.acm.org/10.1145/2010324.1964997

[52] M. Fisher, B. Springborn, A. I. Bobenko, and P. Schroder, “An algorithm for

the construction of intrinsic delaunay triangulations with applications to digital

geometry processing,” in ACM SIGGRAPH 2006 Courses, ser. SIGGRAPH ’06,

2006, pp. 69–74.

[53] A. I. Bobenko and B. A. Springborn, “A discrete Laplace-Beltrami operator for

simplicial surfaces,” Discrete Comput. Geom., vol. 38, no. 4, pp. 740–756, Dec.

2007.

[54] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun, “Discrete laplace op-

erators: no free lunch,” in Proceedings of the fifth Eurographics symposium on

Geometry processing, ser. SGP ’07. Eurographics Association, 2007, pp. 33–37.

[55] T. A. Davis and W. W. Hager, “Modifying a sparse cholesky factorization,”

SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 3, pp. 606–627,

1999.

[56] T. A. Davis, “Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern mul-

tifrontal method,” ACM Transactions On Mathematical Software, vol. 30, no. 2,

pp. 196–199, 2004.

108



BIBLIOGRAPHY

[57] X. S. Li, “An overview of SuperLU: Algorithms, implementation, and user inter-

face,” ACM Transactions on Mathematical Software, vol. 31, no. 3, pp. 302–325,

September 2005.

[58] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.). Baltimore,

MD, USA: Johns Hopkins University Press, 1996.

[59] W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial. Society for

Industrial and Applied Mathematics, 2000.

[60] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.

McCormick, G. N. Miranda, and J. W. Ruge, “Robustness and scalability of

algebraic multigrid,” SIAM Journal of Scientific Computing, vol. 21, no. 5, pp.

1886–1908, 2000.

[61] M. Brezina, J. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. Mc-

Cormick, and J. Ruge, “Algebraic multigrid based on element interpolation

(AMGe),” SIAM Journal of Scientific Computing, vol. 22, no. 5, pp. 1570–1592,

2001.

[62] T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick,

J. Ruge, and P. S. Vassilevski, “Spectral AMGe (ρAMGe),” SIAM Journal of

Scientific Computing, vol. 25, no. 1, pp. 1–26, 2003.

[63] L. Kobbelt, S. Campagna, J. Vorsatz, and H. Seidel, “Interactive multi-resolution

109



BIBLIOGRAPHY

modeling on arbitrary meshes,” in SIGGRAPH ’98: Proceedings of the 25th

annual conference on Computer graphics and interactive techniques, 1998, pp.

105–114.

[64] R. Schneider and L. Kobbelt, “Geometric fairing of irregular meshes for free-form

surface design,” Computer Aided Geometric Design, vol. 18, pp. 359–379, 2001.

[65] N. Ray and B. Levy, “Hierarchical least squares conformal map,” in Pacific

Graphics, 2003, p. 263.

[66] X. Shi, H. Bao, and K. Zhou, “Out-of-core multigrid solver for streaming

meshes,” ACM Transactions on Graphics (SIGGRAPH Asia ’09), vol. 28, no. 5,

2009.

[67] K. Höllig, Finite Elements Methods with B-splines. Philadelphia, PA: Society

for Industrial and Applied Mathematics, 2003.

[68] D. Day and M. Taylor, “A new 11 point degree 6 cubature formula for the trian-

gle,” Sixth International Congress on Industrial Applied Mathematics (ICIAM07)

and GAMM Annual Meeting, vol. 7, pp. 1 022 501–1 022 502, 2007.

[69] C. Cowper, “Gaussian quadrature formulas for triangles,” International Journal

of Numerical Methods in Engineering, vol. 7, pp. 405–408, 1973.

[70] C. Dick, J. Georgii, and R. Westermann, “A hexahedral multigrid approach for

110



BIBLIOGRAPHY

simulating cuts in deformable objects,” IEEE Transactions on Visualization and

Computer Graphics, vol. 17, no. 11, pp. 1663–1675, 2011.

[71] B. Smith, Domain Decomposition: Parallel Multilevel Methods for Elliptic Par-

tial Differential Equations. Cambridge University Press, 1996.

[72] T. S. S. I. Project, http://www.caam.rice.edu/software/ARPACK/, 1997.

[73] amgcl, “https://github.com/ddemidov/amgcl,” 2013.

[74] I. Math Kernel Library 10.3, “http://software.intel.com/en-us/articles/intel-

mkl/,” 2012.

[75] H. B. Keller, Journal of the Society for Industrial and Applied Mathematics:

Series B, Numerical Analysis, vol. 2, no. 2, pp. 281–290, 1965.

[76] J. Wu, Y. Lee, J. Xu, and L. Zikatanov, “Convergence analysis of iterative meth-

ods for semidefinite systems.” Journal of Computational Mathematics, vol. 26,

no. 6, pp. 797–815, 2008.

[77] O. Au, C. Tai, H. Chu, D. Cohen-Or, and T. Lee, “Skeleton extraction by mesh

contraction,” ACM Transactions on Graphics (SIGGRAPH ’08), vol. 27, no. 3,

2008.

[78] Metro V.4.07, “http://vcg.soureforge.net/index.php/Metro,” 2007.

[79] P. Bhat, B. Curless, M. Cohen, and L. Zitnick, “Fourier analysis of the 2D

111



BIBLIOGRAPHY

screened Poisson equation for gradient domain problems,” in European Confer-

ence on Computer Vision, 2008, pp. 114–128.

[80] T. . S. Rusinkiewicz), “http://gfx.cs.princeton.edu/proj/trimesh2/,” 2009.

[81] M. Kazhdan, J. Solomon, and M. Ben-Chen, “Can Mean-Curvature Flow be

Modified to be Non-singular?” Computer Graphics Forum (Symposium on Ge-

ometry Processing), 2012.

[82] K. Zhou, M. Gong, X. Huang, and B. Guo, “Data-parallel octrees for

surface reconstruction,” IEEE Transactions on Visualization and Computer

Graphics, vol. 17, no. 5, pp. 669–681, May 2011. [Online]. Available:

http://dx.doi.org/10.1109/TVCG.2010.75

[83] M. Isenburg and P. Lindstrom, “Streaming meshes,” in Proceedings of Visualiza-

tion. IEEE Computer Society, 2005, pp. 231–238.

112



Vita

Ming Chuang was born in Taiwan, August 5, 1982. He received his B.S. degree in

Computer Science and Information Engineering from the National Central University,

Taiwan, in 2004. He was commissioned as a second lieutenant in the ROC Army

from 2004 to 2006. He received his M.S.E. degree in Computer Science from the

Johns Hopkins University in 2008. He joined the Computer Graphics Group at the

Johns Hopkins University in 2008 as a PhD student. His research mainly focused on

digital geometry processing and parallel computing. At Hopkins, he had been a TA

for several classes, including Algorithms and Computer Graphics. From June 2011

to December 2011, he worked for Pixar Animation Studio as a research intern, where

he developed experimental tools for animation artists.

113


