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Abstract 
 

Nature utilizes self-assembly to create structures at a range of length scales. In 

addition, a variety of biological nanostructures such as viruses have polyhedral 

geometries and are formed using highly parallel assembly processes. In contrast, it is 

very challenging to assemble synthetic polyhedra with patterned surfaces at sub-

millimeter scales using conventional engineering practices. Inspired by natural 

fabrication, this thesis is focused on understanding how to assemble such patterned 

micropolyhedra using both modeling and experiments.   

 

Specifically, my work is focused on the development of model polyhedral 

systems using lithography and self-assembly techniques, demonstrating material 

versatility and uncovering underlying geometric design rules using mathematical 

tools. I have investigated an algorithmic approach to self-assemble complex 

polyhedra such as truncated octahedra. Here, new geometric design rules related to 

compactness of the precursor nets and pathways were uncovered. I also have studied 

the influence of pathways and degrees of freedom of intermediates in the assembly of 

polyhedral isomers and these findings have been compared to geometric models of 

molecular isomers notably cyclohexane.  

 

In addition to a fundamental understanding of self-assembly of polyhedra, I 

have also explored applications of micropolyhedra. Importantly, I studied a molding 

process to enhance material versatility and fabricate soft-polyhedra composed of gels 
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and polymers of importance in tissue engineering and biomaterials science. I also 

describe an approach to use polyhedra patterned with circuits and semiconductor 

chips to create 3D computational devices by aggregation.  

 

In summary, the thesis provides new insight and a robust engineering strategy 

to mass produce patterned micropolyhedra in a cost-effective manner with material 

versatility and high yield. In addition to demonstrated applications, we anticipate that 

these micro polyhedra will offer new capabilities in optics, electronics, robotics, 

materials science and biomedical engineering.  
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1. Introduction 

 

 Polyhedra are most fundamental shapes widely observed in nature from pollen grains 

on the millimeter scale to viruses on the nanoscale. Considering structural and functional 

versatility of natural systems, with the recent developments of engineering and technology one 

of the important goals has been to develop biologically inspired materials and devices by 

understanding and mimicking the mechanism of formation of naturally existing systems. In 

nature, biological molecules such as viruses with polyhedral geometry are formed in a highly 

parallel assembly process. However, the parallel synthetic fabrication of such precisely 

patterned three dimensional structures which could provide significant value in 

biomanufacturing, drug delivery, aggregative self-assembly and the colloidal sciences is 

challenging. Developing 3D microstructures with high yields using self-assembly techniques 

wherein physical forces derived from surface tension fold 2D templates into 3D shapes could 

enable tremendous advancement in various fields in science and engineering, there is a need to 

uncover underlying geometric design rules that govern the self-assembly processes both in 

natural self-assembly, such as polyhedral virus assembly and synthetic self-assembly systems 

such as surface tension driven self-assembly of  polyhedra. 

 

1.1 A brief history of polyhedra 

 

Polyhedra have been studied since the days of Plato over 2000 years ago. One of the 

earliest discussions on polyhedra is found in Plato’s dialogues- Timaeus, in which he 
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explained the structure of matter and proposed that the universe is made up of four 

fundamental elements--fire, earth, air and water and these fundamental elements are solids 

bounded by plane surface and composed of triangles.1, 2 Thus, in his discussions, fire, earth, 

air and water were represented by tetrahedron, cube, octahedron and icosahedron (Figure 

1.1). The universe made of these four elements was represented by dodecahedron. In addition 

to describing the structure of matter, Plato also tried to explain the formation of different 

substances as a result of interaction of these four fundamental elements and how one 

substance can be transformed into another substance. For example, he explained when water 

(icosahedron, 20 triangles) is heated by fire (tetrahedron, 4 triangles), the sharp corners of fire 

(tetrahedron) element break down the water element into their 20 constituent triangles and 

these  triangles recombine to produce 2 air particles (octahedron) and one fire particle 

(tetrahedron).  To arrive at this conclusion, Plato balanced number of constituent triangular 

faces both the sides as follows: 

 

 

 

In Plato’s description, water represented liquids and air represented gases. It is 

important to note that Plato’s approach of understanding nature by representing fundamental 

elements with polyhedral shapes and using mathematics to explain phase transformation from 

liquid to gas has had far-reaching consequences. In fact, with the help of geometry and 

mathematics Plato sought a kind of ‘physical chemistry’ to explain how fundamental particles 

(fire, earth, air and water) interact.1 The five regular polyhedra-tetrahedron, cube, octahedron, 

dodecahedron and icosahedron were named as Platonic polyhedra.  

< water > 
Icosahedron 

20 faces 

2< air > 
2x Octahedron 

2x8 faces 

< fire > 
Tetrahedron 

4 faces 
 

+ 
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1.2 Naturally occurring polyhedra 

 

 Polyhedral shapes are widely observed in nature such as organic and inorganic 

molecules, crystals, pollen grains, honeycomb cells and polyhedral viruses.3, 4 Several organic 

and inorganic molecules, such as bucky ball, fullerene chromium hexacarbonyls, transition 

metal hexafluorides and silicon clusters have predominantly polyhedral geometry.5-8 

 

 Polyhedral shapes appear in biology as well. An important example of natural 

polyhedral system is biological self-assembly of bacteriophage viruses such as T4 and MS2. 

Early crystallographic studies of viruses in the 1940s and 1950s, found that many viruses 

possess either helical or icosahedral symmetry.9, 10  A T4 bacteriophage consists of a double 

stranded DNA genome enclosed in an icosahedral head also known as a capsid, a cylindrical 

tail sheath, and six legs which are geometrical assemblies of DNA and a hundreds of protein 

molecules. When T4 infects a bacterium it hijacks the cellular machinery of the host 

bacterium and utilizes to synthesize copies of these components in large numbers inside the 

host and then self-assemble to form the final polyhedral structure of the virus. Similarly, the 

MS2 capsid consists of 180 copies of the coat protein and one unit of the maturation protein 

which serves as a terminal point. The units of the coat protein are arranged in a manner that 

has rotational icosahedral symmetry. 
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1.3 Role of polyhedral shapes in Chemistry  

 

 Polyhedral geometries are not new to Chemistry. In fact, Jacobus van’t Hoff was the 

first to suggest that molecules have three dimensional spatial structures assuming that the 

chemical bonds between carbon atoms and their neighbor atoms were directed toward corners 

of a regular tetrahedron with the sp3 carbon atom at the center. He used cardboard models to 

represent tartaric acid, malic acid, and succinic acid (Figure 1.2).11 Also, the first studies of 

conformational changes in cyclohexane were illustrated by Hermann Sachse (1890) by folding 

planar nets into polyhedra.12 He folded paper models of ideal chair and boat conformations of 

cyclohexane to demonstrate the fact that allowing carbon atoms to lie outside the plane could 

alleviate the angle strain in cyclohexane molecules and thus proposed the existence of chair 

and boat conformations of cyclohexane (Figure 1.3). Later Ernst Wilhelm Max Mohr 

elaborated on the Sachse concept of strainless, 6-membered rings, but made his point more 

clearly with illustrations of ball-and-stick models (rather than solid tetrahedral).13 Thus, 

polyhedral models were the first of the molecular models utilized to study molecular 

structures although these polyhedral models were not actual visualization of molecular 

structure rather they were used as didactic tools to explain interatomic bonding and molecular 

structures. 
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1.4 Synthetic polyhedra  

  

With growing interest with micro and nanotechnology, researchers have tried to go 

beyond simple geometries such as cylinders, rods, spheres and have been able to synthesize 

polyhedral shapes successfully. Such examples include polyhedral shapes made of organic 

molecules, nucleotides, protein molecules, semiconductors, polymers and metals. These 

polyhedral shapes have been used for biotechnology, electronics, drug delivery, chemical 

reaction diffusion systems and shown that polyhedral shapes have certain advantages, such as 

anisotropy, surface interaction, precise patterning, over spherical shapes where sphere do not 

exhibit these properties.  

 

1.4.1 Polyhedral hydrocarbons 

  

Polyhedral hydrocarbons are synthetic organic molecules that have the shapes 

of platonic solid geometries with carbon atoms as the vertices and chemical bonds as the 

edges.  Polyhedral hydrocarbons have been synthesized in both Platonic and Archimedian 

shapes.  

 

 Among Platonic polyhedral hydrocarbons, synthesis of only cubane, and 

dodecahedrane has been reported (Figure 1.4).14-16 The fact that a carbon atom is tetravalent, 

the synthesis of icosahedrane is not possible because in icosahedron each vertex is bonded 

with five edges. Similarly, since dihedral angle in octahedral shape is 109.50 which is same as 

the bond angle for sp3 carbon atoms, it is not likely for a hydrocarbon to exist as the 
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octahedrane. In an octahedron, there are 6 vertices that are connected to 4 edges each. In case 

of octahedrane there would be no hydrogen atoms and the valency of each carbon atom will 

be satisfied through c-c bondings. Thus this hypothetical octahedral molecule would not be a 

hydrocarbon but just an allotrope of elemental carbon C6. Existence of octhaedrane cannot be 

ruled out completely but theoretical modeling suggests it is very unlikely. However, both 

octahedral and icosahedral compounds have been observed for boron compounds.17 

 

 Although tetrahedrane derivatives have been synthezied but the synthesis of 

tetrahedrane has not been reported yet but the calculations show it will be kinetically stable in 

spite of the acute bond angle and consequent angle strain.18 As the number of carbon atoms 

increases the polyhedral geometry more closely approximates to a sphere. Bucyballs or 

spherical fullerene consists of 60 carbon atoms (C60) and has a shape of truncated icosahedron, 

an Archimedian polyhedron.  

 

1.4.2 Biomolecular polyhedra 

 

DNA hybridization offers assembly of nucleotides due to base pairing into complex 

polyhedral structure in a high through put programmable and precise manner. Multiple DNA 

strands with complimentary sequences are when annealed in presence of polymerase enzymes, 

double stranded architectures are formed. In terms of achieving a rational design and 

predictability of the final 3D architecture, in silico approaches can easily be used to design 

nucleotide sequence in such a way that final desired 3D architectures are formed.  
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 In 1991 Nadrian Seeman synthesized a cube made up of single stranded DNA 

molecules, the first synthetic three-dimensional nucleic acid nanostructure.19 This followed 

synthesis of other complex polyhedral structures such as truncated octahedron, and 

icosahedron.20, 21 But it was soon realized that these polyhedral structures were not rigid 

enough to sustain shapes of more complex higher order polyhedral shapes. In order to increase 

rigidity of DNA structures, Paul Rothemund utilized DNA origami approach to form 

programmable DNA structures. The technique involves hybridization of long DNA strands 

and shorter segments where longer strands form scaffold and shorter segment help them fold 

at specific positions. Using origami approach, synthesis of a DNA cube with controllable lid 

was successfully demonstrated (Figure 1.5).22 

 

1.4.3 Nano and microscale polyhedral shapes by surface forces  

 

 Surface tension and intrinsic stress driven self-assembly technique offers an approach 

to fabricate polyhedral structures at nanoscale. In this approach, 2D nets of a desired 

polyhedron are lithographically defined on a silicon substrate and developed with thermal 

evaporation or sputtering of metals or dielectrics such as nickel and alumina, the hinge gaps 

are made of tin. When these 2D nets are subjected to reactive ion etching, underlying silicon 

layers is etched off, thus heat generated melts Sn and causes self-folding into nanoscale 

shapes. 
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Figure 1.1 Platonic polyhedra representing fire (tetrahedron), earth (cube), air (octahedron), 
water (icosahedron) and the universe (dodecahedron). Printed with permission from Ref1 © 
Cambridge University Press, 1997. 
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Figure 1.2 van’t Hoff polyhedral models of organic molecules. Reprinted with permission 
from Ref11 Photo: Deutsches Museum. 
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Figure 1.3 Sachse’s polyhedral model of cyclohexane. (a) shows the 2D net that generates 
chair conformation of cyclohexane when folded along the edges bc, cd, de, ef, fg and the 
edges ab and gh are glued together; and van’t Hoff tetrahedra are attached on the dark 
triangles. The center of each van’t Hoff tetrahedron represents carbon atom. (b) top and (c) 
side views of Sachse’s paper model of chair form of cyclohexane; (d) the two nets shown are 
when folded along the edges and the vertices a, b, c are glued together and van’t Hoff 
tetrahedron is attached on each dark triangle, generate boat form of cyclohexane. (e) and (f) 
are top and side views of Sachse’s paper model of boat conformation of cyclohexane. 
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Figure 1.4 Synthesis of Platonic hydrocarbons (a) synthesis scheme of cubane. Reprinted with 
permission from Ref14 © American Chemical Society, 1982. (b) synthesis scheme of 
dodecaehdrane. Reprinted with permission from Ref16 ©American Chemical Society, 1982. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

b 
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Figure 1.5 Three dimensional DNA polyhedron (a) Nucleotide template and (b) 3dimensional 
lid controlled cubic structure. Reprinted with permission from Ref22 © Mcmillan Publishers 
Ltd (Nature Publishing Group), 2009. 
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2. Thesis overview 

 

 The body of work presented in this thesis is focused on following: 

 

1. Uncovering geometric design rules of self-assembly with theory and experiments: 

Model polyhedral systems dodecahedra, truncated octahedra and icosahedra have been 

utilized for understanding self-assembly process in a synthetic system and underlying 

geometric rules have been investigated. Findings reported have been contrasted with 

biomolecular self-assembly systems such as protein folding and virus capsid assembly. 

 

2. Formation of structural isomers in a synthetic self-assembly: A mesoscale 

polyhedral model has been investigated for the formation of octahedral isomers. In this 

part of work, the roles of assembly pathways and degrees of freedom of intermediates 

have been studied to show how the formation of one isomer over the other can be 

enriched by engineering assembly pathways via manipulation of degrees of freedom of 

initial precursors. Also, the findings have been contrasted with polyhedral models of 

chair and boat conformations of cyclohexane. 

 
 

3. Fabrication of soft polyhedra by folding and molding: In this part of thesis a 

process combining surface tension driven self-assembly and molding methods to 

create micropolyhedral structures with precise surface morphologies has been 
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discussed. A method to create cell-laden bio-blocks and its potential application in 

tissue engineering has been discussed. Also, it has been shown how mechanical 

strength of building blocks can be controlled via engineering shapes of building 

blocks. 

 

4. Three dimensional computational devices using polyhedral electronic blocks (E-

blocks): In this part of the thesis, an approach for building three dimensional computer 

architecture using polyhedral E-blocks has been discussed. The approach presents an 

approach of utilizing the third dimensions for integration of electronic elements such 

by self-assembly techniques. 
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3. Surface tension driven self-assembly of micropolyhedra∗ 

 

 There are numerous techniques such as photolithography, electron-beam lithography 

and soft-lithography that can be used to precisely pattern two dimensional (2D) structures. 

These technologies are mature, offer high precision and many of them can be implemented in 

a high-throughput manner but the advantages of planar lithography can be leveraged and 

combined with self-folding methods23-31wherein physical forces derived from surface tension 

are used to curve or fold planar structures into three dimensional (3D) structures. In doing so, 

it is possible to mass produce precisely patterned static and reconfigurable particles that are 

challenging to synthesize. 

 

 In this chapter method to create patterned micropolyhedra, notably, permanently 

bonded, hollow, polyhedra that self-assemble and self-seal due to the minimization of surface 

energy of liquefied hinges32-34has been detailed. These methods can be used to create 

micropolyhedra with overall sizes ranging from the micrometer to the centimeter length 

scales. Further, arbitrary patterns can be defined on the surfaces of the polyhedra of 

importance in colloidal science, electronics, optics and medicine. More generally, the concept 

of self-assembling mechanically rigid polyhedra with self-sealing hinges is applicable, with 

some process modifications, to the creation of polyhedral structures at even smaller, 100 nm 

length scales33, 35and with a range of materials including metals32, semiconductors28 and 

polymers36.  

                                                           
∗Parts of this chapter have been adapted from Pandey S., Gultepe E. and Gracias D.H. “Origami inspired 
self-assembly of patterned and reconfigurable particles” J. Vis. Exp. 72, e50022 (2013). 
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3.1 Fabrication details 

 

 For surface tension driven assembly, the polyhedra can be fabricated in a high 

throughput manner in which prepatterned 2D nets of a desired shape self-fold and self-seal 

into closed polyhedra due to minimization of surface energy of the molten hinges.36, 37 First, at 

least two mask sets are needed, one for regions that do not bend or curve (rigid panels) and the 

other for regions that bend, curve or seal (hinges). Additional masks can be utilized to define 

surface patterns of pores, molecular patches, optical or electronic elements. Masks are 

designed using a variety of two dimensional vector graphics software programs such as 

AutoCAD, L-Edit or Adobe Illustrator and then printed on transparency film to make 

photomasks.  Using these photomasks lithography, electroplating and wet etching techniques 

are utilized to pattern 2D panels and solder hinges. The materials for the panels and hinges 

should be chosen so that the hinge material has a lower melting point than the panels and 

hence the panels remain rigid while the hinges are melted. Assembly occurs when the 

templates (hinges panels) are released from the substrate by dissolving sacrificial layer and 

heated above the melting point of the hinge material. For example, in case of metallic particles 

with Ni panels, Pb-Sn solder is deposited on the hinges which melts at ~200 °C and prompts 

the folding. Similarly, in the case of polymeric particles with SU8 panels, polycaprolactone 

hinges can be deposited which assemble at ~58 °C on heating in water. 31, 34-37 The process 

works best when the hinge material is pinned within the hinge region during reflow; i.e. it 

does not spread all over the panels and does not completely dewet from the panel. This 

pinning can be achieved by the selection of materials with appropriate wetting characteristics 

and viscosity. A schematic illustration of self-folding process is shown in Figure 3.1. 
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3.2 Design rules 

 

 Empirical studies suggest the following optimal design rules for generating masks that 

can be used for the surface tension driven folding of a polyhedron of side length L.(1) For a 

particular polyhedral geometry, the number of panels first needs to be determined. For 

example, a cube has six square panels while a dodecahedron has twelve pentagonal panels. (2) 

The high-yielding two dimensional arrangement of panels, also called a net needs to be 

figured out. (3) In the panel mask, the panels of the polyhedra should be drawn as nets and the 

adjacent panels should be spaced by a gap of width that is approximately 0.1L. Registry marks 

are needed for subsequent alignment with the hinge mask. 

 

 In the hinge mask, both folding hinges (in between the panels) and locking or sealing 

hinges (at the edges of the panels) must be defined. Folding hinges should have lengths of 

0.8L and widths of 0.2L while sealing hinges at the periphery of the panels should have 

lengths of 0.8L and widths of 0.1L with an overhang of 0.05L (Figure 3.2). Special care must 

be taken to ensure that the panel and hinge masks overlay, with registry. With this design rule, 

we have been able to synthesize particles with sizes ranging from 15 μm to 2.5 cm. 

 

 The volume of the hinge controls the folding angles, and for a given hinge width, finite 

element modeling is required to determine the necessary thickness of the hinge.37-40 (Figure 

3.3). However, the attractive feature of this approach is the use of locking or sealing hinges 

which provide considerable error-tolerance during self-assembly process. Hence, when sealing 

hinges are used, the assembly process is tolerant to deviations in hinge volumes, allowing 
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them to be only approximately targeted. Due to significant cooperativity during self-assembly, 

complex shape polyhedra such as dodecahedra or truncated octahedral can be mass produced. 

 

3.3 Mechanism of surface tension driven self-assembly 

 

 In the self-assembly experiments reported in thesis the size of polyhedral range from 

300 µm to 2 mm; the hinges are made of Sn-Pb solder. In order to understand the mechanism 

surface tension driven assembly, it is important to contrast the relative magnitude of 

capillarity and thermal fluctuations. For a polyhedron with side length of 300μm, the sides of 

hinges are in the range 30μm–60μm, so the area of the solder is on the order of 10-8m2. A 

typical value of the surface tension of solder is 0.5N/m. Thus, an approximate scale of the 

capillarity is 10−8J. The temperature of the solvent is ~ 200oC = 473K, which gives typical 

thermal energy kT = 6.5 × 10−21J. Thus, capillarity strongly outweighs thermal fluctuations. 

 

 In order to model the hinge, the dynamics, gravity and three dimensional effects can be 

neglected. In static equilibrium, the Young-Laplace law tells that the interface of the solder 

droplet is a circular arc that meets the panel at the wetting angle. The experimental setup 

determines the area of the solder droplet and the wetting angle. These two variables then 

determine the angle of hinge rotation. There are three cases, as shown in Figure 3.4. The 

crucial assumption is that molten solder does not wet the adjacent parts of the panels thus 

remains pinned in the hinge area on melting. This implies 𝜋
2

< 𝛽 < 𝜋. Let L denote the length 

of the segments AP and BP. With some basic trigonometry the area of the droplet 𝐴(∅) can be 

calculated as:  
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 In this regime, the area strictly decreases with ∅ and can be inverted to yield ∅(𝛽,𝐴). 

Thus, the amount of solder deposited controls the angle of rotation of the hinge. When the 

droplet wets the panel 𝛽 ∈ �0, 𝜋
2
�, the area is not a monotonically decreasing function of A 

when the droplet wets the panel 𝛽 ∈ (0,𝜋)   and there can be two positions of static 

equilibrium for a given area. To summarize, it is necessary that the panels are not wet by the 

solder. A schematic of surface tension driven folding is shown in Figure 3.5. 

 

3.4 Versatility of the self-assembly process  

 

 The origami-inspired surface tension driven self-assembly process is versatile and can 

be used for synthesizing a variety of 3D static and reconfigurable particles with a wide range 

of materials, shapes and sizes (Figure 3.6). Further, the ability to precisely pattern sensors and 

electronic modules on these particles is important for optics and electronics. In contrast to 

patchy particles formed by alternate methods, where patterns are relatively imprecise, this 

methodology provides a means to synthesize precisely patterned particles. In surface tension 

based assembly, the use of liquefying sealing hinges ensures that the particles are well sealed 

and mechanically rigid after assembly (on cooling). Previously, we have observed that the 

seams are leakproof even for small molecules.41, 42 
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3.5 Conclusions 

 

In summary, the surface tension driven self-assembly process is highly parallel and 3D 

structures can be fabricated and triggered simultaneously. Additionally, precise patterns as 

exemplified by square or triangular pores can be defined in all three dimensions, and on 

selected faces if needed. 
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Figure 3.1 Schematic illustration of the important fabrication steps for the surface tension 
driven assembly a cube shaped polyhedron. 
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Figure 3.2. Mask design rules for self-assembled micropolyhedra: (a) Schematic of the panel 
mask for a polyhedron of side length L, (b) schematic of the hinge mask featuring folding (0.2 
L x 0.8 L) and locking or sealing (0.1 L x 0.8 L) hinges, and (c) schematic of the overlaid 2D 
precursor or net showing hinges panels. 
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Figure 3.3 Simulation results showing the dependence of fold angle on solder volume for self-
assembly of a 200 µm size cube. Reprinted with permission from Ref.37 © 2007, American 
Chemical Society 
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Figure 3.4 Mechanism of surface tension driven self-assembly. Shaded area represents molten 
solder droplet, β is the wetting angle and 2∅ is the angle of rotation of the hinge. (a) Wetting 
and a concave interface, 0 < 𝛽 < ∅; (b) Wetting and a convex interface  ∅ < 𝛽 < 𝜋/2 ; (c) 
Non-wetting and a convex interface, 𝜋

2
< 𝛽 < 𝜋. 
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Figure 3.5 Surface tension powered rotation of panels. When the meltable pad melts, the 
panel rotates to the equilibrium condition. Reprinted with permission from Ref.29 © 2003, 
IEEE. 
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Figure 3.6 Images of origami inspired self-assembled patterned micropolyhedra. (a) Optical 
image of self-assembled particles in a variety of shapes. (b-e) SEM images of a (b) self-
assembled porous cube, (c) pyramid, (d) truncated octahedron and (e) dodecahedron. 
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4. The role of compactness for polyhedral self-assembly∗  

 Self-assembly has emerged as a paradigm for highly parallel fabrication of complex 

three-dimensional structures. However, there are few principles that guide a priori design, 

yield, and defect tolerance of self-assembling structures. In this chapter, self-assembly 

experiments and theory of the geometric principles that underlie self-assembly of polyhedra 

from two-dimensional nets have been detailed.  For any given polyhedron, polygonal panels 

can be arranged in many ways thus there is a large number of nets that can be used for self-

assembly of polyhedral from 2D nets; e.g. the six panels of a cube can be arranged in eleven 

ways that fold into a cube, thus the cube has 11 nets. Similarly the dodecahedron and 

icosahedron have 43,380 nets each, and 14 faced truncated octahedron has 2.3 million nets of 

which only some are favor a high yield of self-folded structures. As the number of panels 

increase, there is a combinatorial explosion for the number of nets. Hence there was a need to 

develop a net search algorithmic approach that could be used to find best nets based on 

arrangement of panels on 2D, which consequently result into high yield. With experiments 

and theory the geometric principles that govern self-assembly of polyhedra from two-

dimensional nets were examined. In particular, an algorithm to find the optimum nets for 

self-folding of a given polyhedron was developed and then validated experimentally. The 

findings reported in this chapter reveal design rules based on geometric considerations 

similar to hydrophobic zipper hypothesis in protein folding; and the stabilizing role of 

distinguished intermediates in folding pathways as in the assembly of viral capsids.  

 
                                                           
∗ Parts of this chapter have been adapted from Pandey S., Ewing M., Kunas A., Nguyen N., Gracias D.H. 
and Menon G. “Algorithmic design of self-folding polyhedra”, Proc. Nat. Acad. Sci, 108 (50), 19885-19890 
(2011). 
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4.1 Motivation from biomolecular assembly  

 

 Nature uses hierarchical assembly to construct essential biomolecules such as proteins 

and nucleic acids and biological containers such as viral capsids. Increased understanding of 

biological systems has inspired several synthetic methods of self-assembly.43 Conversely, 

part of the promise of synthetic self-assembly has been that it may yield essential insights 

into the formation of biological structure. In order to realize these ambitions, it is necessary to 

develop model experimental systems and theoretical analyses that make precise the analogies 

between natural and synthetic self-assembly. Abstraction of the essentials of complex 

biochemical processes is an important step in this process, and perhaps the simplest 

abstraction is of the geometric form of a biological structure. Two such abstractions are the 

Caspar– Klug (CK) theory of viral structure and hydrophobic-polar (HP) lattice models for 

protein folding.44, 45  The consequences of geometry alone can be striking in such models: 

The CK theory provides a valuable classification of virus shapes by T number, and much of 

the detailed architecture of compact proteins such as helices, and antiparallel and parallel 

sheets emerges from purely steric restrictions on long chain molecules.46, 47 Building such 

geometric models is, of course, part of a long tradition in biochemistry. What is now striking 

is the ability to build basic geometric structures such as polyhedra in laboratory self-assembly 

experiments using molecules such as DNA or 100-nm to 1-mm scale lithographically 

interconnected panels.37, 48-51 A comparison of self-assembly models such as protein folding, 

viral capsid assembly is shown in Figure 4.1. 
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4.2 Geometric considerations for the algorithmic design 

 

 Nets have traditionally been used to build models of polyhedra from a stiff material 

such as cardboard. They first appear explicitly in Dürer’s work in the 15th century and have 

been used to build a complete set of Archimedean and Platonic solids.52 It is not known if 

every convex polyhedron has a net nor are there systematic estimates of the number of nets 

for a given polyhedron, though the number is known for Platonic solids.53, 54 As mentioned 

earlier tetrahedron has two nets, the cube and octahedron have 11 nets each, and the 

dodecahedron and icosahedron have 43,380 nets each. Interestingly the truncated octahedron 

has approximately 2.3 million nets. Such a combinatorial explosion creates an interesting 

conundrum for engineering design: What criteria determine self-folding with high yield? 

How to search efficiently for the “best” net within such a large set? In order to consider 

geometric design rules based on arrangement of panels in 2D, it is important to consider both 

metric and topological measures. 

 

4.2.1 Radius of gyration and vertex connections as design criteria 

 

 Since the nets for a given polyhedron differ in their geometry and 

combinatorial topology, both metric (radius of gyration) and topological (number of vertex 

connections) measures were used in self-assembly studies. These two measures ensure the 

compactness of nets. In case of protein folding due to hydrophobic-hydrophobic 

interactions, two hydrophobic groups that interact are the topological neighbors. Taking the 

analogy from protein folding where most compact amino acid chains fold faster, it was 
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hypothesized that that the most compact 2D nets should give the best yield on self-assembly. 

Thus both the Rg and Vc were considered for compactness of a net.  

Radius of gyration Rg of 2D net is defined as: 

 

Lower value of Rg insures that the panels are not “too spread” in 2D space and thus are 

compact. This compactness criterion based on Rg is metric. 

 

Similarly a topological measure, the number of vertex connections (Vc) was defined 

as, a vertex connection is a vertex that is shared by two panels that do not share any edges. 

The dodecahedron net shown in Figure 4.2 has 10 vertex connections. It is important to note 

that both Rg and Vc are measures of compactness but both are distinct. Considering these 

two parameters the self-assembly experiments were performed.  

 

4.3 Experimental details 

 

 All 43,380 nets for the dodecahedron and icosahedron, and 123,452 nets (of 2.3 

million estimated nets) for the truncated octahedron were tabulated using a Monte Carlo 

scheme. From these nets three nets for each polyhedron: the most compact, the least compact, 

and the median for each of the two compactness criterion were chose for self-assembly 

experiments. Several nets may have the same Vc, so when choosing nets according to Vc the 

following choices were made: Among all maximum Vc nets, choose the net with smallest Rg 
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; among all minimum Vc nets, choose the net with highest Rg; and among all nets with the 

median Vc, choose the net with median Rg. Fifty samples of each of these nets were self-

assembled experimentally with the self-assembly methods detailed in chapter 3.  

 

Briefly, Autodesk AutoCAD was used to draw nets and then printed on transparency 

sheets to make photomasks. Sides of a panel measured 300 μm, with two adjacent panels 

spaced apart by a width equal to 10% of the panel edge length. Optical lithography was used 

to develop features on a silicon wafer, and nickel and solder were electrodeposited on the 

panels and hinges, respectively. All Vc and Rg nets for a polyhedron were processed across 

the same wafer with a uniform random distribution of nets to minimize processing variations 

during lithography, electroplating and etching. The nets were released from the substrate with 

nickel panels connected with Sn-Pb solder hinges and the free-standing structures were 

heated in a high boiling point organic solvent until they assembled. All the nets for fixed 

polyhedra were self-assembled in close proximity in a petri dish in order to minimize the 

effect of variation in temperature and fluidic agitation. After self-folding, the solution was 

allowed to cool down gradually. The molten solder solidified on cooling and the polyhedra 

were held robustly in place. Self-assembled 3D structures realized from each net were 

carefully examined under an optical microscope and graded into three categories—A, B, and 

C. Grade-A polyhedra had no discernible defects when examined under an optical 

microscope. Grade-B polyhedra had the desired shapes but had panels that were misaligned 

with an angle of 20° or less. Samples with defects more severe than 20° misalignment and 

with multiple defects were graded as grade-C polyhedra.  
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4.4 Results and discussion 

 

It was observed that both measures of compactness determine yield for these higher 

order polyhedral (dodecahedra and truncated octahedra) just as for the cube and octahedron. 

However, it was found that of the two measures, Vc is a better predictor than Rg. For the 

dodecahedron, the percentage of A-grade self-assembled polyhedra from nets with the 

maximum Vc is more than five times than that from nets with the lowest Rg, Rg = 693.7 μm. 

In addition, almost 80% of the maximum Vc samples are of grade A and B as compared with 

about 20% for the minimum Rg samples. For the truncated octahedron, the percentage of 

grade-A self-folded polyhedra from nets with the maximum Vc net is two times that of A-

grade samples for  minimum Rg , Rg = 795 μm. Moreover, almost 60% of the maximum Vc 

samples are of grade A and B as compared with about 30% for the minimum Rg samples. In 

contrast with these polyhedra, icosahedra could not be assembled from 2D nets. But it is still 

the case that the more compact nets are less malformed than the others. The representative 

polyhedral and their yields are shown in Figure 4.3 and Figure 4.4. In further experiments 

with self-assembly of dodecaehdra and truncated octahedral with same Vc and varying Rg, 

and it was found that the nets with highest Vc and lowest Rg result the best yields thus 

confirm that the Vc is a better predictor than Rg (Figure 4.5 and 4.6). 

  

 The computation of self-assembly pathways of the cube reveals that the self-assembly 

pathways funnel through some dominant intermediates. As shown in Figure 4.7 the states 1 

and 5 are the most preferred intermediates. The properties of intermediates for higher order 

complex polyhedra such as octaehdra and dodecahedra are investigated in following chapters. 
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4.3 Conclusions 

  

The goal of research work detailed in this chapter was to elucidate the geometric 

principles that underlie self-assembly of polyhedron from 2D nets. It was verified that 

compactness is an effective design criterion for several polyhedra by computationally 

exploring a large set of possible nets and testing selected nets experimentally. Also, a discrete 

configuration space of folding was introduced and found that the geodesic between the 2D 

net and 3D polyhedron is a useful idealization of experimentally observed pathways of self-

assembly of cubes. These findings suggest further studies of self-assembly in order to build 

more complex shapes and to minimize errors through the loss of rigidity. Although the 

number of nets is large for the polyhedra that were considered this study, it was still 

amenable to an exhaustive search, which ceases to be the case for more complex polyhedra 

such as models for viral capsids. In seeking nets for realistic virus shapes, there are polyhedra 

with approximately 1030 spanning trees (a number obtained from Kirchhoff’s matrix tree 

theorem). It is impossible to find an optimal net and geodesics by an exhaustive search for 

such polyhedra, and suitable randomized algorithms must be used instead. On the 

experimental side, the ability to observe pathways provides additional insight into self-

assembly.  In summary, the main findings reported in this chapter are, (1) compactness is a 

simple and effective design principle for maximizing the yield of self-folding polyhedra; and 

(2) shortest paths from 2D nets to 3D polyhedra in the configuration space are important for 

rationalizing experimentally observed folding pathways and (3) self-assembly pathways 

funnel through some preferred intermediates.  
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Figure 4.1 Comparison of the discrete geometry of three self-assembly models. (a) Unfolding 
an HP chain. A compact HP chain on a 2D lattice is unfolded by breaking secondary HH 
bonds between topological neighbors. At each step, secondary bonds break and/or the chain 
reduces its discrete curvature. The compact configuration is chosen from ref. 31. The motion 
of the chain through kink jumps and rigid rotations is adapted from ref. 32. (b–d) Several 
representations of unfolding a cube. At each step, all edges linked at a vertex connection are 
cut so that a face is free to rotate rigidly through the dihedral angle, which gives faces linked 
through vertices but not edges (topological neighbors). (b) A perspective view. (c) A 
convenient schematic for the plan view. (d) Unfolding as two-color evolution on the graph of 
the cube: Cut edges are red and constitute a tree that grows at each step. Unfolding is 
complete when the tree is spanning. (e) Viral capsid assembly. Intermediate stages in the 
formation of a dodecahedral viral capsid following refs. 30 and 33. At each stage, a new face 
is added and congruent arrangements correspond to the same intermediate. 
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Figure 4.2 A schematic illustration of a dodecahedron net showing panels, internal (folding) 
hinges, external (locking or sealing) hinges and vertex connections. The net shown has Vc = 
10. 
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Figure 4.3 Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images 
showing photolithographically fabricated panels connected by solder hinges and the 
corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc =2, 
6, and 10, and Rg = 1102.2, 800.9, and 693.7 μm, respectively. (G–L) Truncated octahedra in 
the order Vc = 2, 7, and 12, and Rg = 1306.3, 912.7, and 795.0 μm, respectively. (M–R) 
Icosahedra in the order Vc = 26, 38, and 50, and Rg = 711.1, 514.6, and 445.4 μm, 
respectively. (Scale bar: 300 μm.) 
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Figure 4.4 Yield measured in self-folding experiments on nets with varying Vc and Rg. (A–F) 
Dodecahedral nets in the order Vc = 2, 6, and 10, and Rg = 1102.2, 800.9, and 693.7 μm, 
respectively. (G–L) Truncated octahedral nets in the order Vc = 2, 7, and 12, and Rg = 1306.3, 
912.7, and 795.0 μm, respectively. 
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Figure 4.5 Self-folding experiments on high Vc nets with varying Rg. Optical and SEM 
images. (A–D) Dodecahedral nets with Vc = 10 and Rg = 810.2, 797.4, 755.4, and 747.7 μm, 
respectively. (E–H) Truncated octahedral nets with Vc = 12 and Rg = 911.6, 870.2, 867.4, and 
852.8 μm, respectively. (Scale bar: 300 μm.) 
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Figure 4.6  Self-folding experiments on high Vc nets with varying Rg. Optical and SEM 
images. (A–D) Dodecahedral nets with Vc = 10 and Rg = 810.2, 797.4, 755.4, and 747.7 μm, 
respectively. (E–H) Truncated octahedral nets with Vc = 12 and Rg = 911.6, 870.2, 867.4, and 
852.8 μm, respectively. (Scale bar: 300 μm.) 
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Figure 4.7 (A) Computed configuration space and folding pathways for the cube. Partially 
folded intermediates and all folding pathways for the cube computed by the gluing at vertex 
connections algorithm. Multiplicity of edges connecting intermediates is not shown. Double 
bars denote vertically stacked faces. (B) Geodesics and dominant intermediates. Geodesic 
pathways between each net and the cube computed using Eq. 1. The dominant intermediates 
are 1 and 5 in the third row. In this discrete model, nets 1, 3, 6, 10, and 11 fold through 
intermediate 1, and nets 2, 4, 5, 7, 8, and 9 fold through intermediate 5. 
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5. The role of pathways on self-assembly∗ 

 

 In previous chapter we noted that the compactness determines the success of self-

assembly. However, in spite of choosing compact icosahedron nets (Vc = 20), it was not 

possible to self-assemble perfect icosahedra successfully. It can be concluded that the criteria 

of compactness alone may not be sufficient for self-assembly. Hence in this chapter, the 

research work aimed to investigate the role of self-assembly pathways and intermediates is 

detailed. 

 

It was shown that the self-assembly of cubes proceeds through some preferred 

intermediates (Figure 4.7). In order to investigate it further, self-assembly pathways of 

dodecahedra formation were studied with theory and experiments. Since the dodecahedron has 

43,380 nets, a much smaller set of nets was considered to obtain a manageable comparison 

with experiment. An exhaustive search through all 43,380 nets reveals that only 21 of these 

nets55 have the maximal number of vertex connections (Vc = 10 in this case). All 

intermediates that originate in these nets were computed to find a poset with 2799 vertices that 

were called the restricted configuration space ℝ.  First, using discretization of intermediate 

states, self-assembly pathways were modeled and then validated experimentally. 

 

 

                                                           
∗Parts of  this chapter have been adapted from Kaplan R.#, Klobusicky J.#, Pandey S.#, Gracias D.H. 
and Menon G. “Building polyhedral by self-assembly: Theory and experiment”, Artificial Life, 20, 4 
(2014).  
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5.1 Modeling self-assembly pathways 

 

 The experimental observations of self-assembly in a discrete folding algorithm were 

termed as gluing at vertex connections.34 A self-assembly pathway was treated as a discrete 

sequence of states p = (S0, S1,. . . Sn ) between a net N = S0 and the convex polyhedron P = Sn. 

While each state Sk is a collection of edges, faces and vertices, it is identified with the closure 

of its embedded image in Euclidean space for simplicity of description. The notion of folding 

and sealing hinges and vertex connections were generalized from the planar net S0 to each 

state Sk: the edges on the boundary of Sk are called as sealing or locking hinges, and other 

edges between two panels as the folding hinges. A vertex on the boundary of Sk is called a 

vertex connection if it is shared by two panels that do not share any edges. The states Sk are 

generated in sequence from the state S0 as follows. For each 𝑘 ≥ 0, a vertex connection vk of 

Sk is chosen, and all locking hinges that meet at vk are glued in pairs to form a state Sk+1. When 

gluing faces at locking hinges, the faces are only allowed to rotate rigidly through the dihedral 

angle about folding hinges that meet at vk. The procedure terminates when the polyhedron is 

formed. This is termed as gluing. Thus all the states Sk obtained in gluing are called 

intermediates and the set of all these intermediates is the configuration space denoted by C. 

 

5.2 Distance functions and intermediates 

  

Since the states in C are embedded in ℝ3, we assigned a cost d(Sk, Sk+1) to each edge 

between neighboring states Sk, Sk+1 ∈ C based on the distance traveled by faces in ℝ3 as the 

polyhedral linkage Sk is transformed into Sk+1 by gluing at a vertex connection.34 It is 
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convenient to informally refer to the cost d(Sk, Sk+1) as the distance between Sk and Sk+1. The 

underlying heuristic idea here is that the energy dissipated when moving a panel scales 

linearly with Euclidean distance in an overdamped flow. Thus, the distance between the net 

and polyhedron serves as an easily computed proxy for the viscous energy dissipated along an 

assembly pathway, which incorporates the kinematic constraints of folding by rigid rotations 

about folding hinges.  

 

 First the distance between two surfaces that differ by a rotation is defined, and then 

extended this formula to a distance between two neighbors in C. Assume given a surface S 

that consists of a collection of polygons, an edge e that separates S into two polygonal surfaces 

Ω1 and Ω2 with common boundary e, and an angle of rotation 𝜃. We define a new surface �̃� by 

rotating Ω1 and Ω2 rigidly about e through 𝜃 (Figure 5.1). In this process, each point on the 

surface Ωi at a distance r from the edge e moves a distance 𝑟𝜃i where 𝜃1+𝜃2=𝜃. The total 

squared distance traveled by surface Ω i is then ∫ (𝑟𝜃𝑖)2 𝑑𝐴 = 𝐼𝑖   𝜃𝑖2  where 𝐼𝑖   is second 

moment of inertia. Then the cost of this move is defined as: 

 

The transformation of a state Sk into a state Sk+1 by gluing all faces at the vertex 

connection vk consists of a number of sub-steps each of which involves a single rotation. The 

distance between Sk and Sk+1 is defined by minimizing the distance over the set of possible 

surfaces between Sk and Sk+1 that differ by the rotation of a single face. On minimization of the 

total distance 𝐼1𝜃12 + 𝐼2𝜃22  subject to the constraint 𝜃 1+ 𝜃 2= 𝜃 , distance between two 
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intermediates I and J is given by: 

 

The above definition of d has the following important intuitive consequence: For 

fixed𝜃, d(S, �̃�) is smaller if  𝐼1   ≪  𝐼2     than if  𝐼1   ≌  𝐼2    . Thus, it costs less to fold a face on 

an extremity of S than to rotate two equally balanced domains 1 and 2. Hence, when 

computing shortest paths from a net to a polyhedron usually it was found that the faces on the 

boundary of S fold first, until no such moves are possible. 

 

5.3 Conclusions 

 

 The results are shown in Figure 5.2 and Figure 5.3 along with a few experimental 

pathways for ease of comparison. From the snapshots of self-assembly process (Figure 5.4) it 

was found that all the greedy paths funnel through states that consist of two half dodecahedra 

linked by a hinge (states 2788, 2791 and 2797). Of these three, 2797 is the most important 

since 16 of the 21 nets funnel through it (Figure 5.5). These three states and 2797 in 

particular, are especially conducive to self-folding with no misfolding: each half-

dodecahedron is rigid and the intermediate has a single rotational degree of freedom about the 

hinge. When the two halves meet, several edges lock into place simultaneously.  

 

When compared with experiments, the greedy paths were found to replicate the 

experimentally observed pathways better (Figure 5.6). These computed pathways are a rough 

approximation of the true continuous pathway, and the experiments do not permit a 
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statistically reliable resolution of fine distinctions such as whether intermediate 2788, 2791 or 

2797 best approximates the observed half-dodecahedra. Nevertheless, the trend towards such 

pathways is clear, as is the fact that the greedy paths are much better approximations to the 

observed pathways than the global geodesics. Thus it is important to note that the role of 

pathways is very important for the high yield of self-assembly. 
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Figure 5.1 Transformation of an octahedron state Sk to Sk+1 by rotating the surfaces Ω1 and Ω2 
by 𝜃1 and 𝜃2 respectively. 
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Figure 5.2 The 21 nets with maximal Vc and self-folded dodecahedra. Nets 1–21 are ranked 
in order of decreasing Rg. In each figure, the image on the left is an optical microscope image 
of the net. On the right is a scanning electron microscope (SEM) image of the self-folded 
dodecahedron. The scale bar is 300μm. 
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Figure 5.3 Yield of self-folded dodecahedra. Each self-folded polyhedron is examined 
visually and sorted into three grades. Grade A polyhedral have no visual flaws; Grade B 
polyhedra allow misfoldings by at most 200; Grade C polyhedra have faces that are misaligned 
by more than 200. Only comparisons that differ by more than 5% are statistically meaningful. 
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Figure 5.4 Snapshots of movies of self-assembly of dodecahedra nets. All 21 nets have same 
number of vertex connections, Vc=10. 
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Figure 5.5 Greedy paths for the dodecahedron and comparison with experiment Upper: net 3; 
Middle: net 17 ; Lower: net 18 . Nets 3,4, and 5 pass through state 2788 (upper). Nets 12 and 
18 pass through state 2791 (lower). All 16 remaining nets pass through state 2797 (middle). 
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Figure 5.6 The 10 most prevalent states for the dodecahedron in decreasing order (2799 
precedes 2788; 2788 precedes 2703).  
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6. Self-assembly of mesoscale isomers: The role of intermediates 

and the degrees of freedom∗ 

 

Structural isomers are an important class of molecules with the same chemical formula 

but varied geometric arrangements of bonds, resulting in different physical and chemical 

properties.56  While it has been empirically established that catalysts can be used to control the 

ratio of formation of different isomers in a chemical reactions57, 58 the role of geometry, steric 

interactions in intermediates and assembly pathways are not very well understood. 

Consequently, mechanisms and rational designs to synthetically enrich one self-assembling 

isomer over the other are limited.  

 

6.1 Formation of self-assembled polyhedral isomers 

 

 In this chapter, the self-assembly of isomers in a mesoscale model system has been 

investigated. Self-assembly is a technique to create higher order complex structures from 

multiple subunits. These subunits can be biomolecules, nanostructures or microscale and 

millimeter scale structures.50, 59-66 Here, the mesoscale model involves the self-assembly of 

300 µm sized polygonal units into polyhedra using surface tension driven forces that both fold 

                                                           
∗ Parts of this chapter have been adapted from Pandey S., Johnson D., Kaplan R., Klobusicky J., Menon G., 
Gracias D.H. “Self-assembly of mesoscale isomers: The role of pathways and degrees of freedom” PLOS 
One (2014). 
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panels and seal edges. It is important to note that this work is focused on the self-assembly of 

an octahedron, a Platonic polyhedron which can be constructed by folding a planar assembly 

of eight triangles termed a net as shown in Figure 6.1. Despite its simplicity, the octahedron 

was chosen for the study, because its nets can also be folded into a second non-convex 

conformation, akin to a boat, as illustrated in Figure 6.1. These two three-dimensional shapes 

have the same precursor, but are formed by different bonding arrangements between edges. 

Thus, they are structural isomers.  In what follows, the (convex) octahedron is referred as 

Isomer I and the non-convex ‘boat’ as Isomer II. The formation of these isomers is 

investigated with theory and experiment and the degrees of freedom of intermediate states 

have been analyzed to demonstrate how a precursor can be manipulated to increase the yield 

of formation of Isomer II.  

 

6.2 Experimental details 

 

 Using gluing algorithm as detailed in previous chapters, the configuration space Є of 

self-assembly of all 11 octahedral nets were calculated. As shown in Figure 6.2, intermediate 

states linked with red lines are obtained from gluing at edges that subtend 1200 of angle and 

they all lead to formation of Isomer I, whereas the intermediate states linked with green lines 

obtained by gluing at both exterior angles 1200 and 1800 lead to formation of Isomer II and 

some kinetically trapped states. Kinetically strapped states are the intermediates that are not 

completely closed 3D structures but are assembled in such a way that no further assembly is 

possible. The corresponding shapes are shown in Figure 6.3. Self-assembly experiments 
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(Figure 6.4) were performed and data statistically analyzed. Greedy pathways and geodesics 

were computed using distance functions detailed in Chapter 5. 

 

 

6.2 Properties of intermediates of self-assembly pathways 

 

 It was observed that the self-assembly pathways proceed through certain rigid 

intermediates. Although the hinge material was optimized for formation of Isomer I but it was 

found that Isomer II formed as well. The formation of Isomer II was observed to be mainly 

because formation of a tetrahedral corner due to bonding at 1800. 

 

6.3 Controlling self-assembly pathways to enrich one isomer over the other 

 

 Since it was observed from the self-assembly movie (snapshots are shown in Figure 

6.5) that the partial rigidity of intermediates and the associated pathways were important in 

determining which isomer self-assembled, it was hypothesized that it might be possible to 

selectively enrich the formation of one isomer over the other by manipulating these geometric 

criteria. Importantly, it was observed that Isomer II formed through rigid intermediates formed 

only via 1800 folds, relative formation of isomers from two identical nets (Net 10, Figure 6.6) 

was experimentally compared with just one difference. Essentially, one panel that is important 

in maintaining rigidity of partially folded modules of intermediates via 1200 folds was omitted 

and the self-assembly yields were compared. In essence by removing this panel, it eliminates 

two vertex connections and reduces the degrees of freedom of the partially folded intermediate 
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in the first tier (S1). Consequently, the pathway that occurs during the delay in rotation of the 

outer panel was biased. 

This hypothesis was tested experimentally. After self-assembly of a sample set of 50 

for each of the two nets shown in Figure 6.6, the polyhedra were carefully examined under an 

optical microscope and categorized into three grades: grade A with no defects observed under 

the microscope, grade B with panels misaligned by an angle of 200 or less, and grade C 

includes polyhedra with multiple defects. Remarkably, the fraction of perfect isomeric 

polyhedra was dramatically different for the two cases. Even though the geometric placement 

of the panels in the net is identical, just by removing this one panel, the yield of A grade 

Isomer I decreased by a factor of two and simultaneously the yield of A grade Isomer II 

increased by a factor of six (Figure 6.7). As depicted in this figure, on removal of the panel, 

the pathway with intermediates 30 and 32 is enriched over the pathways with intermediates 

12, 16 and 22. This experiment highlights how the degrees of freedom of intermediates and 

the pathways can be engineered by manipulating the geometric constraints of initial precursors 

to enrich one isomer over another. 

 

6.4 Analogies with chair-boat transition of cyclohexane 

 

Some of the earliest studies directed at explaining the formation of the two isomers of 

cyclohexane used paper origami67. In order to relate this work to this fundamental example in 

stereochemistry, it is important to revisit the conformational analysis of cyclohexane from the 

point of view of the theory of linkages.  Here, two ideal linkages are compared: a polyhedral 
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linkage that can be folded into Isomers I and II as in this model experimental system, and an 

ideal geometric model of cyclohexane. 

Cyclohexane (C6H12) is a molecule composed of six carbon and twelve hydrogen 

atoms. The carbon atoms are connected in a ring with two hydrogen atoms attached to each 

carbon atom. Each carbon has four bonds that energetically prefer spacing at tetrahedral 

angles. While the actual configurations of cyclohexane balance various effects such as 

eclipsing strain, angle and steric crowding, Sachse’s ideal geometric model was used to 

facilitate a comparison with polyhedral linkages. It was found that the chair has zero degrees 

of freedom whereas the boat has one. This means that it is impossible to transform the chair 

into any other configuration without deforming the bond lengths or angles. It should be noted 

that this is a purely kinematic argument for the greater stability of the chair form of 

cyclohexane. However, since the boat has one degree of freedom, it can be deformed 

continuously while keeping the bond lengths and bond angles fixed. Three such intermediate 

configurations are shown in Figure 6.8 (Boat 2, the twist boat and the twist chair).  Of these 

configurations, the twist chair is closest to the chair. In Sachse’s ideal geometric model, the 

chair is rigid; therefore it cannot transition into the boat. In reality, thermal effects allow 

fluctuations in bond lengths. To transition between the chair and boat configuration, the chair 

model must first become a twist chair and then a twist boat before it can finally become boat 1 

or boat 2. Similarly, to transition between two boats, the twist boat intermediate must be 

visited. 
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          For the analogous transformation of the octahedron between Isomer I and Isomer II, it is 

necessary for an edge to break (unfold), the linkage to move, and the edges to refold. This can 

occur along many pathways (Figure 6.2) and one such example is shown in Figure 6.8B. At 

present, the gluing of hinges in this model experiment is irreversible. Nevertheless, the 

analogy between these two polyhedral systems suggests that it is possible for octahedral 

isomers to transition from one to another by choosing appropriate (flexible) hinge materials 

and mechanical agitation.   

 

6.5 Conclusions 

  

A mesoscale experimental model and the theory of polyhedral linkages have been used 

to study the self-assembly of structural isomers, and to design an experiment that 

demonstrates the preferential enrichment of one isomer over the other.  In this chapter an 

important finding of relevance to self-assembly systems has been reported as: the pathways 

that proceed through intermediates with favorable rigidity dominate the self-assembly process. 

It was shown how isomer enrichment can be achieved by manipulation of the degrees of 

freedom of initial precursors using purely geometric criterion to bias specific assembly 

pathways. It was achieved by the removal of a panel and consequently two 120° vertex 

connections so that the rotation sequence of panels could be controlled to follow pathways 

leading to Isomer II. Steric and geometric manipulations of molecules are known to be 

important in molecular catalysis and these ideas are in agreement with findings. These 

findings also suggest that the design of systems that alter the degrees of freedom of precursors 
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and intermediates are important in synthetic self-assembly. The development of approaches to 

search for and design rigid or stable intermediates could prove useful in solving many inverse 

problems in self-assembly.  Consequently, steric hindrances or more rigid geometric additions 

could be included to design synthetic self-assemblies that can be guided to follow a pathway 

to preferentially form a specific outcome out of many possible outcomes; the latter being a 

hallmark of biological and natural self-assembly.  
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Figure 6.1 Schematic illustration of the self-assembly of two different octahedral isomers 
from the same initial precursor or net.  (a) Isomer I is a convex octahedron, while (b) Isomer II 
is a non-convex octahedron. Both form from the same precursor net but when different edge 
pairs denoted by 1, 2, 3, 4, and 5 meet. In Isomer I, each vertex is bonded to four other 
vertices through edge connections whereas in Isomer II, two vertices have four edge 
connections, two have five and the remaining two vertices have three edge connections. 
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Figure 6.2 The extended configuration space Є for the octahedron showing intermediates and 
transition states. The paths in red correspond to states linked by gluing at vertex connections 
with exterior angle 120

0
 (configuration space R) and the paths in green link states obtained by 

gluing at both types of vertex connections. The extended configuration space includes four 
new terminal states: state 84 is the non-convex boat, and states 71, 73 and 80 are kinetically 
trapped states. 
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Figure 6.3 Shapes of all 84 states of configuration space of octahedral assembly. 
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Figure 6.4 Experimental result of self-assembly of octahedra. Optical (left) and scanning 
electron microscopy (right) images of all 11 octahedron nets and their self-assembled isomers; 
Isomer I (83) and Isomer II (84). The scale bar is 300 µm. 
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Figure 6.5 Snapshots of self-assembly of octahedron net 10 into Isomer II. Scale bar: 300 µm. 
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Figure 6.6 Geometric manipulation of identical precursor nets to manipulate pathways to 
enrich an isomer. The net 10 shown in (a) and (b) have identical placement of faces but a 
single face indicated by the dotted line is excluded to enhance pathways which feature a 
propensity for 1800 folds. (c) Experimentally obtained yields showing a dramatic increase in 
Isomer II and decrease in Isomer I for the engineered net. (d) Images of precursor net and 
pathways which feature intermediates (shown in green color) leading to Isomer II, are 
enriched for net b as compared to net a.  
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Figure 6.7 Engineering self-assembly pathways by manipulating design constraints to enrich 
formation of Isomer II. (a) optical image of octahedron net 10 and SEM images of self-
assembled isomers I and II; (b) optical image of an engineered net identical to net 10 but one 
outer panel removed and SEM images of self-assembled isomers I and II. The red triangles 
represent the open face because of the removed panel; (c) relative yields of isomers I and II 
formed from the octahedron nets shown in (a) and (b). The scale bar is 300 µm. 
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Figure 6.8 Analogy between (a) pathways of chair/boat transition of cyclohexane and (b) an 
example of pathways for transition between octahedral isomers I and II.  Boat 1 and Boat 2 
have same geometry but differ by which of the six carbon atoms form front and back tips of 
the cyclohexane ring.                  
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7. Polymeric micropolyhedra by folding and molding∗ 

 

Polymeric microparticles are very important for variety of applications such as drug 

delivery,68-72 cell encapsulation for tissue engineering,73-77 biomaterials for biomedical 

applications 78-80 as well as for the fundamental studies in the fields of microfluidics,81 and 

colloidal self-assembly.82-84 Functional behavior and interparticle interaction between 

polymeric microparticles strongly depend on their sizes and shapes, consequently making 

polyhedral particles attractive for self-assembly applications.85  

 

There are numerous advanced methods such as molding, micromolding in 

capillaries,86, 87 microinjection,88-90 and microfluidic methods,91 to create various types of 

microstructures with sizes ranging from micro to the millimeter length scale but these methods 

are generally limited mostly to simple geometries such as spherical, cylindrical, conical, and 

ellipsoidal shapes.92-97 For example, polymeric particles in spherical shapes are the most 

studied objects for colloids, drug delivery, self-assembly and biomedical applications as the 

spherical shapes can be readily synthesized in a high throughput manner with existing 

methods.98-103 Moreover, there is a need of polymeric microparticles of different polyhedral 

shapes for their use in the studies on phagocytosis,104 drug delivery,105 self-assembly and 

tissue engineering.106 It has been shown that phagocytosis by cells depends on the shape of 

particles where internalization of some shapes are preferred to others.104, 107, 108  

 
                                                           
∗ Parts of this chapter are edited excerpts from Pandey S., Yoon C.K., Kwag H.R., Zhang Z., Gracias 
D.H. “Soft polyhedral by folding and molding”, in preparation. 
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So far most studies on colloidal assemblies have been conducted with spherical 

particles which have the most basic shape.109-113 It is important to note that two spheres can 

interact only at a single point which does not reflect any directionality in orientation, whereas 

polyhedral shapes such as cubes, dodecahedral and octahedral shapes can interact with their 

surfaces. Surface to surface interaction can occur in many ways such as partial overlapping, 

complete overlapping, and angular orientation with different angles of overlapping,114 

resulting different distributions of surface forces which could contribute to different colloidal 

properties. One of the main reasons that the effect of polyhedral shape on colloidal properties 

could not be explored much is because it was not possible to make different shapes using 

existing methods. Synthesis of polymeric polyhedra poses two main challenges: (i) precise 

control of size and shapes, and (ii) mass producibility. It has been previously demonstrated 

that self-folding process can be used to synthesize hollow polyhedra with varying sizes and 

shapes with polymeric materials.36 It is a highly versatile method to create different shapes 

and sizes of micropolyhedra and precise patterns could be defined as well. On the other hand, 

micromolding is a relatively easier process to synthesize microparticles of different 

geometries.  Molding has been very successful for making complex-shaped particles with a 

range of materials at nano and microscale but precise patterning on the surfaces of the 

particles has not been shown previously due to a limitation of transferring the patterns onto the 

inner walls of the mold itself. 

 

Here in this chapter a method has been detailed that combines self-folding 

methodology with existing molding methods to address the need of a mass producible process 

for creation of complex-shaped polyhedral microparticles with precisely patterned surfaces. 
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Self-folding methodology enables us to create large number of metallic or polymeric particles 

with any desired size, geometry and patterns in a parallel process. In this process, the 

patterned 2D templates are heated above the melting temperature of the hinge materials and 

the templates self-fold to form perfectly sealed 3D nano- and microparticles of any size, 

shapes, and patterns with precision.35, 37 These metallic particles are used as master particles to 

prepare PDMS molds where molds have precise patterns on the inner walls. 

 

7.1 Experimental details 

 

This method of combining molding with self-folding process not only enables to make 

complex-shaped microstructures but also makes it possible to transfer arbitrary patterns 

precisely onto the surfaces of the molded particles (Figure 7.1). First, self-folding 

methodology is utilized to create metallic polyhedral structures with precise size, shapes and 

patterns on their surfaces that were used as the master for casting PDMS molds. These 

metallic polyhedral structures can be used repeatedly for casting molds. After casting molds, 

patches patterned on the surfaces of master polyhedra transfer to the interior surface of molds 

prepared with PDMS.  After PDMS has been cured the mold are filled it with different 

photocrosslinkable and chemical crosslinkable polymers and crosslinked them. After 

crosslinking the molded polymeric polyhedral are released from the PDMS molds. A 

schematic illustration of the process is shown in Figure 7.2 and Figure 7.3. The molds 

prepared in PDMS can be used repeatedly over several cycles of molding process. This 

method can be utilized to synthesize different shapes of polyhedral shapes such as tetrahedra, 

cubes, dodecahedra and truncated octahedra with a variety of epoxy polymers and hydrogel 
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materials such as NOA 73, PEGDA, NIPAAM, and iron oxide mixed polymers. Also, 

synthesis of cell laden hydrogel can be used as bioblocks for tissue engineering applications 

where different polyhedral bioblocks can be used to build organized 3D structures. Building 

an organ with microscale and mesoscale blocks using soft lithography and molding has been 

widely reported.115, 116 Here, molded mesoscale polyhedra with beta pancreatic cells 

embedded and molded into the shape of a pancreas has been discussed.  

 

7.1.1 Fabrication of self-folded polyhedral micropolyhedra:  

 

Master polyhedral shapes were synthesized via surface tension driven self-assembly 

method as discussed earlier.  

 

7.1.2 Preparation of PDMS molds:  

 

PDMS elastomer kit (Dow cornings) was used for mold  preparation. First the base 

part and the curing agent  in a 10:1 (w/w) ratio were  mixed vigorously using a plastic spatula. 

This mixing process resulted into a large number of bubbles. To remove the bubbles, the  

mixture was placed in a desiccator for 30 min. After 30 minutes of desiccation all bubbles 

were removed and a thick clear liquid was left.   

 

 The metallic polyhedra were attached onto a double sided tape that was secured to the 

bottom of a petri dish. This prevented the floating of the structures when PDMS were poured 

into the petri dish. The elastomer solution was gently poured into the petri dish until it 
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completely covered the master polyhedra and placed the petri dish  in a desiccator again for 30 

min to remove any bubbles present and cured the elastomer solution at 50 0C for 4 hours. The 

solidified PDMS was gently pealed off the substrate where the metallic polyhedra remain 

attached on the tape thus creating molds with the shape of the structure.   

 

7.1.3 Molding of polyhedra 

 

  Polymeric polyhedral were molded of various shapes made of different materials, e.g. 

NOA73, PEGDA, and PNIPAM.  A variety of molded polyhedral have been shown in Figure 

7.4.The solutions were spread on the molds and since there is a strong interfacial force that 

prevents the liquid from filling the small space, it was placed in a desiccator under vacuum for 

2 hours. This step facilitated the liquid to go into the small molds and also removed any 

bubbles present in the solution. Once the molds were completely filled with the photosensitive 

polymer solution, it was exposed under the UV light for 3 min to crosslink the polymer.  

 

7.1.4 Molding of cell laden polyhedra 

 

 Mouse pancreatic cell β -TC-6 was cultured in complete growth medium containing 

Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum. In the photoencapsulation 

process, first cells were stained with Calcein AM (0.7 ug/mL) in PBS solutions for 30 min in 

the incubato r(37 oC, 5.0% CO2), then  trypsinized and centrifuged at 1200 rpm to form a 

pellet. The pellet was suspended in 1 mL of PBS and 4 mL of PEGDA (700 MW), and 

Irgacure 2100 was added. The cell-PEGDA solution was spread on a sterilized PDMS mold 
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and exposed to UV for 2 minutes. After cross linking pancreatic cell-laden bioblocks of 

different shapes were released from the mold (Figure 7.5). 

 

7.2 Conclusion 

 In this chapter a method of synthesis of different polyhedral shapes of different 

polymers was detailed. It was also shown that the method could be used to create variety of 

bio blocks for potential engineering in tissue engineering and organ development. 
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Figure 7.1 Schematic depicting limitations of current molding processes. (a-b) It has been 
shown that molding can be used to fabricate simple shape particles such as cubes, spheres, and 
cylinders at micro and nanoscale with patterns on the surface but it has not been possible to 
mold complex shapes such as dodecahedra and truncated octahedra with precise patterns. (c-d) 
With Our approach of combining self-folding and molding methodologies we can not only 
create complex microparticles of complex shapes (c), we can also define any arbitrary patterns 
precisely on their surface (d). 
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Figure 7.2 Schematic illustration of self-folding and molding processes. (A) Fabrication 
steps of self-folding patterned polyhedra used as master microparticles for making molds; (B) 
preparation of PDMS molds and creating polymeric micropolyhedra by molding.  
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Figure 7.3 Process flow of self-folding combined with molding process. (a-d) Self-folding 
of metallic polyhedra used as master for making molds. Optical micrograph of 
lithographically patterned (a) gold patches, (b) Ni panels on top of the patches, (c) soldered 
panels; (d) SEM micrograph of self-folded pathcy polyhedra; (e) molded polymeric 
micropolyhedra stained with fluorescent dye. Scale bar: 300 microns. 
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Figure 7.4 Mass producibility of complex shape micropolyhedra of different polymers. (a) 
Molded NOA73 tetrahedra with patterns, (b)molded dodecahedra with patterns, (c) molded 
truncated octahedra without patterns, (d) fluorescein stained molded PNIPAM tetrahedra, (e) 
rhodamine stained PEGDA dodecahedra, (f) Magnetic polyhedra by molding iron oxide 
mixed PEGDA hydrogel. 
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Figure 7.5 Molding of cell-laden bioblocks. (a) and (c) are optical images of cell-laden cubic 
and dodecahedral shape respectively and (b) and (d) are corresponding fluorescent images, (e) 
a schematic illustration of the structure of pancreas, (f) fluorescent image of a pancreas by 
self-assembly of dodecahedral bioblocks. Scale bar: 300µm. 
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8. 3D Computational devices by polyhedral E-blocks∗  

 
 Computational elements are inherently in 2D. In order to enhance the computational 

speed of a device, a large number of computing elements are required. However, without 

miniaturizing the components it would not be possible to maintain an appropriate size of the 

device with enhanced computational capacity. With the development of high throughput 

miniaturization techniques now it is possible to fabricate computing componets as small as a 

few nanometers in size but there is a physical limit on it beyond which it is not possible to 

miniaturize these components. In order to make complex network of plaar electronic elements, 

interconnects become larger that results into power loss through interconnecting wire 117, 118.   

There are approaches to make 3D micrhips by stacking such as monolithic technique, wafer-

on-wafer, die-on-wafer and die-on-die stacking technique 119-124.  This stacking method has 

several advantages such as reduction of interconnects, high transistor density, complex 

networking that reduces power consumption and enhances the computational operation speed 

125.But the stacking of several layers poses significant technological challenges in terms of 

precise alignment of layers, excessive heat generation between layers, yield, size effect and 

high cost of patterning. Here, we describe our approach of assembling polyhedral E-blocks in 

a three-dimensional space such that on a given surface we have higher density of computing 

elements. We use polyhedral E-blocks to control assembly into desired cellular architechture. 

Fabrication of 3D devices by self-assembly has been demonstrated for displays, functional 

electrical cirtuits and metamaterials 126-128. Using polyhedral E-blocks is also enables us to 

                                                           
∗ Parts of this chapter are edited excerpts from Pandey S., Macias N., Ciobanu C., Yoon C. K., 
Teuscher C., Gracias D. H. “Assembly of a 3D computer using folded E-blocks”, in preparation. 
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introduce porosity that will minimize the heating of components in the 3D structure. This 

approach involves (a) an algorithmic design of a self-reconfigurable defect tolerant toolchain 

for routing the power and signals, (b) mapping circuit diagram for polyhedral E-blocks from 

3D to 2D and fabrication of E blocks from 2D circuit diagram, and (c) assembly of E-blocks 

to create a cellular architecture in 3D. A schematic illustration has been shown in Figure 8.1.   

 

8.1 Designing 3D cellular architecture  

8.1.1 Implementation of Cell-Matrix toolchain 

 

We extended the concept of Cell-Matrix in 2D and 3D as introduced earlier. Briefly, it 

is a self-reconfigurable, fault tolerant electronic networking that can test the unit E-blocks for 

their functionality and self-reconfigure and self-modify accordingly. The fact that this 

toolchain is easily scalable and can be extended from 2D to 3D is very important in case of 

polyhedral E-blocks. For example, in the case of cubic E-blocks, the units can interact with six 

neighbors whereas in case of dodecahedral E-blocks, one unit can interact with 12 neighbors. 

Thus Cell-Matrix can easily be applied for polyhedral assembly (Figure 8.2). 

 

8.1.2 Fabrication of polyhedral E-blocks 

 

Polyhedral units have been previously used for forming self-assembled functional 

electrical connections, metamaterials and for terahertz applications. Polyhedral building 

blocks have several adtanges such as (a) assembly of units can be made symmetric and 

asymmetric depending on the kind of polyhedral shape we use, (b) porosity in assembly can 
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be included, (c) complexity of network can be controlled by designing the connections 

through faces, (d) E-blocks can be equipped with variety of components such as LEDs, 

sensors and microchips, (e) polyhedral shapes are mass-producible using lithography and self-

folding techniques. Design principle and fabrication methods are as follows: 

 

 Here we focus our study on cube shape E-blocks. In order to fabricate cubic E-blocks, 

first, we mapped each layer of 3D circuitry diagrams (ciruit diagram for power, ground and 

signal as represented by VCC, GND and SIG in Figure 1) and printed on transparency films to 

make photomasks. For each layer of circuitry, we spincoated a photoresist (S1827, Rohm and 

Haas) at 3000 rpm onto a sheet of flexible copper-clad laminate (Pyralux® FR 9110R, Dupont) 

and baked at 115 0C for 1 min. We exposed photoresist coated sheets to UV light (365 nm) at 

~180 mJ/cm2 through respective negative masks with the features of wires and connectors for 

each VCC, GND and SIG layer, developed in a developer (Microposit 351 developer, Rohm 

and Haas) for 30 sec, etched off the exposed copper in an aqueous solution of ferric chloride 

(1.4 g/ml), rinsed the patterned sheets with DI water and dried with N2 gas. Unexposed 

photoresist was removed by acetone. After patterning these circuit layers, we cut them out, 

aligned one on the top of the other, and attached a 4 mm x 4 mm PIC16F1827 microchip and 

folded into a shape of cube. We mounted these folded layers onto the cubes and completed the 

connection (Figure 8.3).  

8.1.3 Computation results by E-blocks 

 

In order to test the E-blocks the experiments required use of a testbed driver, which performs 

three functions: 
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1. it allows a host Linux machine to send 1s and 0s to the C and D inputs of the cells being 

tested, and for outgoing bits (generated by the cells) to be displayed on a series of LEDs; 

2. it also allows the driving program to be disconnect ed, so that external hardware can supply 

the 1s and 0s to the cells being tested; and 

3. It handles the time-multiplexing of D and C inputs and outputs (and clock signals) through 

the single-conductor SIG contact on each face of the e-blocks. 

For a simple test, a single block was configured as a two-input OR gate. The inputs were 

driven by a function generator, and the output observed on an ocilloscope. The two inputs are 

on top (yellow and blue), and the output is on the lower trace (purple). The block performs 

perfectly, implementing the OR and AND functions. For more-complex tests, a logic analyzer 

was used to record multiple outputs under specific combinations of inputs (Figure 8.4). 

A complex hierarchical assembly has been shown in Figure 8.5. 

 

8.2 Conclusions 

 

 In this chapter an approach of building 3D computational devices using folded 

polyhedral E-blocks has been outlined. The initial computational results show that the 

assembly method can be used to manufacture E-blocks of polyhedral shapes with desired 

circuit layers on it and assembled to make a functional device. In this case, although the E-

blocks are of millimeter scale but the self-assembly process explained in this thesis could be 

used to fabricate miniaturized E-blocks. 
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Figure 8.1 Schematic illustrations a self-assembled 3D computational device. (a) Two 
dimensional mapping of the circuitry designed for a three dimensional E-block, (b) folded E 
block monomer and (c) a higher order assembly of E block monomers. 
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Figure 8.2 A scheme of cell-matrix concept. 

 

 

 

 



84 
 

 

Figure 8.3 Fabrication steps of millimeter scale E-blocks. (a) 2D mapping of the circuit 
(signal layer) and connections to the pins of the microchip. Similar mappings were done for 
power and ground circuits, (b) lithographically patterned circuit diagrams on a flexible sheet, 
(c) the 2D maps of the circuits were cutout, folded into 3D and mounted on a cube, (d-f) 
finished E block monomers with connections, (g) a dimer of the E blocks with ‘East’ of one 
monomer connected with the ‘West’ of the other. 
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Figure 8.4 Testing of monomers and dimers of the E-blocks. (a)  An E-block monomer on 
the testing setup, oscilloscope readings showing the output of the monomer configured as OR 
gate (center) and AND gate (right); (b) a dimer on the testbed and oscilloscope readings 
showing the dimer configured as a D latch. 
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Figure 8.5 A higher order assembly of E blocks. (a)  an image of a 2x2 assembly 
and (b) 2x2x2 3D-assembly of E blocks. 
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9. Summary and Future outlook 

 

The work presented in this focused on a detailed study of self-assembly process from 

2D templates to 3D structures and uncovering geometric design rules that govern self-

assembly process. I investigated the formation of different structural isomers in synthetic self-

assembly systems and developed an approach of how the formation of a desired isomer can be 

enriched over the formation of other isomer simply by manipulating geometric design rules. 

This approach presents a new perspective of studying isomeric molecules. 

 

The folding and molding approach to create polymeric micropolyhedra of different 

sizes, shapes and materials presents a methodology that could be useful for tissue engineering 

and organ development applications. Making these polymeric polyhedral smaller would help 

study colloidal behavior of polyhedral microparticles. It should be noted that most of the 

studies on colloidal behavior have been limited to simple shapes such as microsphere, discs, 

and cylinders. 

 

The concept of polyhedral E-blocks discussed in the last chapter of thesis presents a 

novel approach toward building 3D computational architecture. So far, computational 

elements have either been planar or quasi three dimensional. Whereas this method could be 

used to control porosity of architecture, robustness, and packing density that will consequently 

increase computational speed and minimize heating of the elements. 
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