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Problem Definition: Unoccupied waiting feels longer than it actually is. Service providers operationalize this

psychological principle by offering entertainment options in waiting areas. A service cluster with a common

space provides firms with an opportunity to cooperate in the investment for providing entertainment options

while competing on other service dimensions.

Academic / Practical Relevance: Our paper contributes to the literature by being the first to examine co-

opetition in a service setting, in addition to developing a novel model of waiting-area entertainment. It also

sheds new light on the emerging practice of service clusters and small-footprint retailing.

Methodology: Using a queueing theoretic approach, we develop a parsimonious model of co-opetition in a

service cluster with a common space.

Results: By comparing the case of co-opetition with two benchmarks (monopoly, and duopoly competition),

we demonstrate that a service provider that would otherwise be a local monopolist can achieve higher prof-

itability by joining a service cluster and engaging in co-opetition. Achieving such benefits, however, requires

a cost-allocation scheme that properly addresses an efficiency-fairness tradeoff—the pursuit of fairness may

backfire and lead to even lower profitability than under pure competition.

Managerial Implications: We show that as much as co-opetition facilitates resource sharing in a service clus-

ter, it heightens price competition. Furthermore, as the intensity of price competition increases, surprisingly,

service providers may opt to charge higher service fees, albeit while providing a higher entertainment level.

Key words : service co-opetition; waiting-area entertainment; marketing/operations interfaces; service

clusters; common spaces
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1. Introduction

Seemingly endless waiting “destroys the soul” (Kolbert 2014, p. 19). An extensive literature exam-

ines managing customer waiting, with a focus on managing queueing discipline to ease congestion.

An equally important—though less explored—aspect in service management entails reducing cus-

tomers’ perceived waiting time by operationalizing the principles of “the psychology of waiting

lines” (Maister 1985). One of these principles is that occupied waiting feels shorter than unoccu-

pied waiting. As a case in point, Walt Disney Parks and Resorts famously pioneered the practice

of providing entertainment options (or diversions) for customers waiting for rides, which has been
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widely mimicked across the service industry (Larson 2011). Sewell Mini, a car dealer in Plano,

Texas, “created a waiting area that was four times bigger than the original and includes a quiet

office area with computers, a kids’ play space, and a lounge-type arcade area” (Dizik 2011). As

another example, OTG Management, an operator of airport restaurants, installed 6,000 iPads in

dining and waiting areas at the United Airlines’ terminal in Newark Liberty International Airport

(White 2015). Complementing this practice, the consumer psychology literature (e.g., Kellaris and

Kent 1992; Borges et al. 2015) has explored the role of waiting-area entertainment in reducing

customers’ perceived waiting time and increasing their service satisfaction. Waiting-area entertain-

ment can represent a significant portion of firms’ operational costs, as exemplified by HaiDiLao, a

restaurant chain with a market capitalization of US$18.7 billion as of April 5, 2019, which operates

restaurants with waiting spaces that account for as much as a third of their total spaces (Harvard

Business School 2015).

Clustering, on the other hand, is one of the most intriguing socio-economic phenomena that

has become increasingly prevalent. As a cultural byproduct of the rise of e-commerce sites such

as Amazon, a growing number of brick-and-mortar retailers operate smaller-footprint stores that

depend on the coexistence and usage of common spaces (Florida 2017; Smith 2016).1 Clusters

are “geographic concentrations of interconnected companies and institutions in a particular field”

(Porter 1987). In a service cluster, where multiple firms offer services of a similar nature and share

a common space, an opportunity exists for them to cooperate in the often costly investment needed

to offer and maintain the space. This simultaneously competitive and cooperative relationship

among service providers is known as “co-opetition” (Van Wassenhove 2016). One notable example

of service clustering is “boardwalks”— pedestrian walkways built in tourist destinations that facil-

itate enjoyment for customers waiting for services (e.g., dining and drinking) provided by multiple,

often competing, service providers (e.g., restaurants). As another example, various airports feature

airport car-rental facilities shared by multiple car-rental companies that promise to improve cus-

tomers’ waiting experiences. In 2016, El Paso International Airport (ELP) opened a $46 million

rental car facility, the cost of which is split among car-rental companies through a customer facility

charge of $3.50 per car rental per day and a concessionaire fee of 10% of their car-rental revenues

(Wysocky 2016). When the Miami International Airport levied a $3.25 charge per car rental per

day to fund its “much-needed new car rental facility,” and the Orlando International Airport was

contemplating a similar charge, the car-rental companies actively lobbied the airports to drop or

postpone such charges that “could have a devastating effect on the car rental industry” (Huxley

and Coulter 2004). In both of these instances, the car-rental companies operating at the airport,

1 We thank the Associate Editor for suggesting this explanation for the increasing prevalence of service clusters and
for suggesting the connection of our modeling framework to broadly defined common spaces.
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while welcoming the improved facilities, view these charges as a significant burden on their business

and make them less competitive than those operating off the airport.

Firms in service clusters often experience significant costs of constructing and maintaining com-

mon spaces. A situation where the problem arises is in commercial properties such as shopping

malls and business improvement districts (BIDs). Common-area maintenance (CAM) fees are usu-

ally stipulated in lease contracts, in which the cost-allocation methods are among the key provisions

(Noor and Pitt, 2009). In the US, a typical shopping mall collects yearly CAM fees that account

for 40%-50% of its total operating expenses, more than its property taxes and insurance fees (Lin-

neman 2016). CAM fees are attributed to high operating costs of shopping malls, which affect the

occupancy-cost ratio, an important performance measure considered by Moody’s in evaluating the

credit quality of regional malls (Daniels and McDonnell 2003). The costs incurred from maintain-

ing the common spaces affect tenants’ renting experiences (Halvitigala 2018) and have become

a leading source of tension between landlords and tenants (Mclinden 2017), as exemplified by a

lawsuit filed by Gap Inc. against the high-end-mall operator Westfield over CAM fees (Cherney

2018). In India, high (and uncertain) CAM fees have contributed to conflicts between mall opera-

tors and their tenants (Bailay 2017; Kuruvilla and Ganguli 2008). In addition, as aforementioned,

brick-and-mortar retailers increasingly operate with small footprints and rely on common spaces

(Florida 2017; Smith 2016). For these small-footprint stores, the cost of maintaining such common

spaces can account for a significant proportion of their revenues.

Although the overarching rationale of co-opetition in a service cluster is fairly straightforward,

there is a paucity of analytical models and theory linking the intra-firm service operations and

inter-firm strategic interactions. A particularly interesting setting is one in which the cost of main-

taining common spaces is a strategic decision. This case, which our paper focuses on, requires

more “equitable,” “reasonable” or “good faith” cost-allocation schemes that more closely tie each

tenant’s share to the costs associated with its revenue-generating activities (Boyle and Novack

2015).2 At a more fundamental level, despite the widespread usage of waiting-area entertainment

in the service industry, a more systematic understanding of the practice is called for. To gain a

deep understanding of service clustering with congestion and entertainment options, we model

various market structures; analyzing and comparing these structures provide interesting insights

into managing co-opetition, a dyadic, war-and-peace relationship.

We start with a focused view of the design of entertainment options, through analyzing the

case with a service provider that is a local monopolist. We characterize the service provider’s

2 By contrast, when the total cost of maintaining common areas is exogenous, it has been a common practice to adopt
a simple fixed-share cost-allocation scheme under which each tenant pays a fixed amount or share of the total cost
(Lynn 2010; Nash 2015).
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optimal decisions, and find that as the entertainment options become more effective in alleviating

consumers’ disutility from waiting, the service provider will be able to charge a higher service fee,

but the optimal entertainment level may either increase or decrease, meaning the service provider

chooses a high entertainment level only when the entertainment options are moderately effective.

Furthermore, one may expect that entertainment options and service capacity are substitutes for

each other; that is, the service provider would choose a high entertainment level when building

capacity is costly. By contrast, we show the opposite is true—as expanding capacity becomes

increasingly costly, the arrival rate in equilibrium has to be lower to maintain the waiting-time

standard; the service provider would thus choose a lower entertainment level.

Building on the local monopolist’s problem of determining its entertainment options, we next

analyze the scenario in which the firm joins a service cluster that also consists of a competitor

in the same service category. We compare two situations involving competition and co-opetition,

respectively. The impact of co-opetition on the firm’s service-operations decisions and performance

crucially depends on the way the service providers share the cost for providing and maintaining

entertainment options. We consider a volume-based cost-allocation scheme and show that, if prop-

erly executed, co-opetition can help service providers achieve a profit higher than under monopoly,

demonstrating that a service provider, which would otherwise be a local monopolist, can achieve

higher profitability by joining a service cluster and engaging in co-opetition. Our numerical results

also suggest co-opetition is most lucrative when (i) the market size is small, (ii) the cost of expand-

ing capacity is high, and (iii) consumers are highly sensitive to waiting.

The benefits of co-opetition, however, are not guaranteed. We find the pursuit of fairness in cost

sharing can backfire and completely eliminate the cost-sharing advantage, alluding to a fairness-

efficiency tradeoff that is behind several counterintuitive results. For instance, we find that contrary

to the case of duopoly competition, when price competition becomes more intense, charging higher

service fees might be optimal for co-opeting service providers.

Our paper constitutes an initial attempt to understand how waiting-area entertainment inter-

acts with pricing and capacity decisions in a service setting. Through analyzing the scenarios of

monopoly, competition, and co-opetition, we demonstrate the benefit of co-opetition in service

operations, and provide managerial insights into operational execution and strategic inter-firm

interactions under co-opetition.

1.1. Literature

Our study builds on and advances two streams of literature, namely, competition among service

providers, and co-opetition in manufacturing and supply-chain settings.

The first stream of literature focuses on the effect of competition on service providers’ operational

decisions. To incorporate waiting time as a basis for competition, the literature relies on queueing
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models to account for customers’ “waiting costs;” see Hassin and Haviv (2003) for a comprehensive

survey of the relevant queueing literature, and Allon and Federgruen (2007) for an account of the

prevalence of waiting-time standards in various service industries. Hall and Porteus (2000) consider

a situation in which demand depends solely on waiting time. Ho and Zheng (2004) model the

competition between service providers based on waiting-time announcements, in which demand

is also influenced by service quality. Several studies empirically examine the impact of waiting

time on demand for services. Png and Reitman (1994), for example, study the impact of waiting

time on the demand at gas stations, identifying service time as a key factor in driving consumer

demand. Savva et al. (2018) study a yardstick-competition scheme in which each local monopolist

is compensated by its service performance relative to its peer service providers.

Several papers study competition in terms of price, capacity, and service quality. Li and Lee

(1994) consider price and delivery-time competition between two service providers. Lederer and Li

(1997) investigate competition between two service providers surrounding their pricing and capacity

decisions. In most of these service-competition models, a customer’s choice is based on the full price

of the service, defined as the sum of the service fee and the expected waiting cost. Cachon and

Harker (2002) consider competition between two service providers, where each provider’s demand

depends on its own as well as its competitor’s full prices.

Departing from the aforementioned full-price models, So (2000) develops an attraction model of

the competition based on both prices and waiting-time standards. In his model, each firm has an

attraction value that is a function of its price and waiting-time standard, and its market share is

proportional to that attraction value. Allon and Federgruen (2007, 2008) consider price and service

competition based on a general demand model that is a separable function of price and service

level. Our consumer-demand modeling approach is aligned with these models.

Our paper departs from and contributes to the first stream of literature in that we emphasize

the role of entertainment options in shaping consumer demand and, in turn, the firm’s other

service decisions. In contrast to the service operations literature with quality considerations, where

service quality is directly driven by the service rate or provision of services (see, e.g., Anand et

al. 2011; Dai et al. 2017, 2018; Dai and Singh 2019; Guo et al. 2017; Debo and Veeraraghavan

2014; Veeraraghavan and Debo 2009; Zhan and Ward 2014), in our model, entertainment options

essentially function as an auxiliary service that helps to reduce customers’ psychological anxiety

from waiting. To the best of our knowledge, our paper is the first to analytically study entertainment

options in the service industry.

The second stream of relevant literature involves co-opetition in manufacturing and supply-

chain settings. Venkatesh et al. (2006) consider a manufacturer of proprietary component brands

in the end-product market, and show the manufacturer may benefit from being a “co-optor,”
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that is, a component supplier for another brand as well as a producer of its own branded end-

product. Gurnani et al. (2007) model co-opetition between a supplier and a buyer under demand

uncertainty, where the supplier decides the product quality and the wholesale price and the buyer

decides the retail price and the demand-boosting selling effort before the demand uncertainty is

resolved. Nagarajan and Sošić (2007) model coalition formation among competitors who set prices,

and characterize the equilibrium behavior of the resultant strategic alliances. Casadesus-Masanell

and Yoffie (2007) model the simultaneously competitive and cooperative relationship between two

manufacturers of complementary products, such as Intel and Microsoft, on their R&D investment,

in addition to the pricing and timing of new product releases. Bakshi and Kleindorfer (2009)

model co-opetition between a supplier and a retailer in investment decisions to mitigate the losses

from supply chain disruptions, where the level of vulnerability to disruptions of the supplier is

private information. Chen and Roma (2011) consider co-opetition between two retailers procuring

from a common manufacturer. The two retailers compete for the market size through setting their

retail prices. At the same time, they may cooperate in ordering decisions to take advantage of

the manufacturer’s quantity-discount scheme. Huang et al. (2015) study the formation of alliances

among upstream suppliers serving the same downstream manufacturer. They show coalitions help

soften competition, but the competition-reduction effect itself does not facilitate the formation

of large coalitions. Mantovani and Ruiz-Aliseda (2015) consider a scenario in which competing

manufacturers are engaged in co-building an ecosystem of innovation. Guo and Wu (2018) study

the co-opetition between two manufacturing firms that share their production capacity through a

randomized-rationing rule.

Our paper advances the second stream of literature in that it is the first to study co-opetition

in a service (as opposed to manufacturing and supply-chain) setting. Cooperation is “vertical” in

a supply-chain setting yet “horizontal” in the service context we study in this paper. The service

setting presents a vastly different set of operational challenges, including, for example, the need

to enforce a waiting-time standard that is instrumental in influencing demand. These differences

allow us to generate novel insights that have not been reported in the literature. For example, we

show that as price competition becomes more intense, under co-opetition, the service providers

may charge higher, instead of lower, prices. Additionally, our work highlights how co-opetition

impacts price competition, and how their compound effect drives the results. Thus, our research

significantly expands the breadth and depth of the literature on co-opetition.

Lastly, the marketing literature has examined how co-opetition, for example, in sharing the same

advertising agency (Villas-Boas 1994), shapes a firm’s competitive landscape. A recent study by Lu

and Shin (2016) examines the problem of marketing a new product category for which the market

does not yet exist and educating consumers and gathering consumer demand can be costly. Lu
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and Shin (2016) show that a firm may benefit from cooperating with its competitors by disclosing

its key innovations and inducing others to exert demand-sided effort. Our paper shares the co-

opetition aspect but focuses on the design of service operations with consumers who are sensitive

to waiting times, leading to a distinctive set of managerial implications.

The rest of the paper is organized as follows. In §2, we analyze a scenario with a monopoly

service provider. In §3, we analyze a scenario with two service providers competing with each other.

Building on these benchmarks, in §4, we study the full scenario in which two competing service

providers cooperate on entertainment options. In §5, we compare the three scenarios and generate

managerial insights. In §6, we examine a benchmark without queueing considerations, and use it

to shed light on the effect of queueing considerations. In §7, we consider several extensions of our

main model to explore the boundary of our main model. We conclude the paper and discuss future

research opportunities in §8. All technical proofs are relegated to the appendix.

2. Local Monopolist: Service Design with Waiting-Area Entertainment

We start with the case of a service provider being a local monopolist and not part of a service

cluster. This case provides a focused view of the decision on the entertainment options and how it

interacts with other service decisions.

With a waiting-time standard w, service fee p, and the level of entertainment options α, the

service provider faces a customer arrival rate of

λ(p,α;w) =B−hwe−δα−β0p, (1)

where B is the maximum demand rate, β0 measures a customer’s price sensitivity, and h is the

waiting cost per unit of waiting time, which captures customers’ aversion to waiting.3 Note this type

of demand function is along the line of Allon and Federgruen’s (2007, 2008) and has been commonly

used in the literature. As reflected in the customer arrival rate, the entertainment options reduce

customers’ disutility from waiting such that each customer has an effective waiting-cost rate of

he−δα, where δ > 0 measures the effectiveness of the entertainment options. In §7.1, we extend the

above demand function (1) by replacing the term hwe−δα with a general function E(w,δ,α). In

providing an entertainment level of α, the service provider incurs a cost of C(α), which is assumed

to be convex increasing in α, as is consistent with the notion of diseconomies of scale arising in

cases where technology of production is non-scalable (Anand and Mendelson 1997). Without loss

of generality, we assume C(α) = 1
2
cα2, where c is a positive constant.

3 Broadly speaking, the above demand system also applies to a more generic scenario in which the service provider
invests and maintains a “common space” to improve customers’ service experiences. In that case, one may interpret
w is the total time spent in the system, and α is the intensity of investment in the common space.
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The service provider builds its capacity (i.e., service rate) µ at a marginal cost of γ. For simplicity

of representation, we assume customer arrivals follow a Poisson process, and each customer’s service

time is exponentially distributed. The service process is therefore an M/M/1 queue. Our key

findings extend to alternative queueing disciplines (e.g., M/G/1 and G/G/1). To maintain an

expected waiting time of w, the service provider sets the service rate at

µ= λ(p,α;w) + 1/w.

This service rate is referred to as the system’s volume-based capacity, a term coined by Allon and

Federgruen (2007). It ensures a steady-state expected waiting time of w = 1/(µ− λ(p,α;w)) in

equilibrium.

Figure 1 Entrance of Pappas’ Famous Crab Cake in Baltimore, Maryland, displaying its waiting-time standard.

For simplicity of analysis, we assume w is exogenous, consistent with the commonly observed

phenomenon of service providers announcing their waiting-time standards; Figure 1 shows an

example of such an announcement. We relax this assumption in §7.5 by allowing such a waiting-

time standard to be endogenous. The service provider’s problem consists of choosing the service

fee p and the level of entertainment options α to maximize its expected profit represented by

Π = p ·λ(p,α;w)−C(α)− γµ,

or, equivalently,

Π = (p− γ)
(
B−hwe−δα−β0p

)
− 1

2
cα2− γ

w
.
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We assume 2β0c− δ2(B − β0γ)2 ≥ 0 to ensure the profit function is jointly concave in p ≥ γ and

α≥ 0; this assumption means the effectiveness of entertainment options (δ) cannot be overly large.

We use the superscript M (short for “monopoly”) to denote the decisions and performance under

this setting. We present the service provider’s optimal decision in the following proposition.

Proposition 1. Given the announced waiting-time standard w, the optimal entertainment level

αM uniquely satisfies

δhw(B−hwe−δα−β0γ)− 2β0cαe
δα = 0 at α= αM , (2)

and the optimal service fee is pM = (B−hwe−δαM +β0γ)/(2β0).

Building on Proposition 1, we examine the impact of the effectiveness of entertainment options.

Corollary 1. For a monopoly service provider, as the entertainment options become more

effective (i.e., as δ increases), the optimal service fee pM always increases, but the optimal enter-

tainment level αM first increases and then decreases.

As δ increases, the entertainment options become more effective in reducing customers’ disutility

from waiting; the service provider in turn can market the service at a higher price. The impact of δ

on αM , however, is non-monotone. Specifically, if δ is small, offering a high entertainment level in

the hope of attracting a high demand is not cost-effective for the service provider; thus, the service

provider will choose a low entertainment level. As δ increases, the service provider will increase the

entertainment level. Once δ becomes sufficiently large, the entertainment options are so effective

that even a moderate entertainment level would lead to a boost in the arrival rate. The service

provider will respond to an increasing δ by curbing its entertainment offerings. Figure 2 illustrates

the impact of δ on αM and pM .

Corollary 2 below shows the impact of the unit capacity cost γ. To guarantee pM ≥ γ for any

α≥ 0, we assume that the cost of capacity (γ) is not overly high; that is, γ ≤ (B−hw)/β0.

Corollary 2. (i) αM monotonically decreases in γ.

(ii) If δ2h2w2 < β0c, p
M monotonically increases in γ; otherwise, a unique γc exists such that

pM increases in γ when γ < γc, and decreases in γ if γ ≥ γc.

(iii) ΠM monotonically decreases in γ.

One may expect that entertainment options and service capacity are substitutes for each other

such that as expanding capacity becomes more costly, the service provider would choose a higher

entertainment level. On the contrary, Corollary 2(i) states the optimal level of entertainment

options decreases in γ. To understand the basic intuition behind this result, note that as capacity-

expanding becomes more costly, the service provider would respond by choosing a low capacity.
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Figure 2 The impact of δ on αM . Parameters: B = 10, γ = 1, β0 = 1, c= 10, h= 5, w= 0.2.

To maintain its waiting-time standard, the service provider has to serve a lower demand rate at

equilibrium. Thus, the service provider serves a lower demand rate, which sustains even under

relatively limited entertainment options.

Another result one might expect is “cost externalizing;” that is, as expanding capacity becomes

more costly, the service provider would pass the cost on to consumers by charging a higher service

fee. Corollary 2(ii) suggests it is not necessarily the case. In response to a more costly capac-

ity, the service provider may opt for a lower service fee. This counter-intuitive result comes from

the interaction among the service provider’s decisions on its entertainment level, service fee, and

capacity. According to Proposition 1, the service provider’s optimal service fee is pM = (B −

hwe−δα
M

)/(2β0) + γ/2, which is driven by (1) the margin-compensation effect—a larger γ reduces

the profit margin from offering the service and thus calls for a higher fee to compensate for it,

and (2) the demand-requirement effect—as γ increases, a decreased demand due to a smaller αM

requires a lower price through the term (B− hwe−δαM )/(2β0). When γ is small such that γ ≤ γc,

the margin-compensation effect dominates, which leads to a higher price as γ increases. When γ

increases beyond γc, the entertainment level αM becomes sufficiently low such that the demand-

requirement effect will dominate, leading to a decreased service charge as γ increases. Figure 3

illustrates the impact of γ on αM and pM .

Lastly, we characterize the effect of a waiting-time standard on the optimal entertainment level.

Corollary 3. Under the monopoly setting, assuming w ∈ [w, w̄] and B − β0γ ≥ hw̄, as the

waiting-time standard increases, the optimal entertainment level may either monotonically increase,

or first increase and then decrease.

Corollary 3 indicates the effect of the waiting-time standard on the optimal entertainment level

is non-monotone. The non-monotonicity alludes to a low entertainment level when the waiting-time
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Figure 3 The impact of γ on pM , where γc is calculated as 5.5691. Parameters: B = 10, β0 = 1, c= 7, h= 4, w=

1, δ= 1 and γ ∈ [0, γ̄], where γ̄ = (B−hw)/β0 = 6.

standard is either very large or very small, and a high entertainment level when the waiting-time

standard is intermediate. We provide some intuition for this result. The impact of entertainment

on the arrival rate and the profit depends on the waiting-time standard, w, through the term

hwe−δα in the arrival-rate function. When the waiting-time standard is small, the marginal benefit

of providing entertainment options is low, which has a limited demand-inducing effect. Thus, the

service provider has little incentive to provide a high entertainment level. As w increases, the

service provider will counteract long waiting times by providing richer entertainment options. When

the waiting-time standard becomes sufficiently large, however, further enriching the entertainment

offering is no longer cost effective. The service provider therefore chooses to compensate customers’

disutility by reducing the service fee. Figure 4 illustrates the non-monotone case in Corollary 3.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

w

0

0.1

0.2

0.3

0.4

0.5

0.6

M

M

Figure 4 The impact of w on αM . Parameters used: B = 10, γ = 1, β0 = 1, c= 10, h= 5, δ= 0.5, w= 0.1, w̄= 1.8.
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The insights from Corollaries 1–3, albeit derived from the case of monopoly, qualitatively carry

over after we have incorporated competition (in §3) and co-opetition (in §4). For conciseness of

exposition, in the rest of the paper, we refrain from restating results similar to these corollaries, and

instead focus on examining the strategic interactions (i.e., competition and cooperation) between

firms in a service cluster.

3. Service Clustering with Competition

In the previous section, we study a local monopolist’s service-design problem. We now examine

the case in which the firm joins a service cluster with competition only. Specifically, we model

the duopoly competition between firms offering the same type of service. Each firm determines its

own entertainment options dedicated solely to its own customers. Note that competition within a

service cluster is not uncommon.

Without loss of generality, we assume the two service providers are symmetric: Each of the two

service providers, indexed as i= 1,2, has the same potential market size, denoted by B, and follows

an industry-wide waiting-time standard w. The demand rate of service provider i, given the price

charged by the other service provider, pj, is given by

λi =B−hwe−δαi −β0pi + θ(pj − pi), (3)

where θ ≥ 0 captures the price-competition intensity such that a larger θ indicates more intense

price competition. In §7.3, we generalize the above demand system by allowing the competition

between service providers to depend on both their service fees and entertainment levels.

For ease of exposition, we write Pi = pi − γ and A = B − β0γ. In addition, we write D(α) =

A− hwe−δα and β = β0 + θ. Given the pre-announced waiting-time standard, w, we represent the

demand and profit rates of service provider i, i= 1,2 as

λi =D(αi)−βPi + θPj and Πi = Piλi−C(αi)− γ/w.

We focus on the case in which each service provider determines its own service fee and entertain-

ment level simultaneously. The key results (especially those vis-à-vis the co-opetition case in §4)

hold qualitatively under alternative decision sequences. We assume 2β0c− δ2(B+ θpM −β0γ)2 ≥ 0

such that both service providers’ objective functions are jointly concave in α≥ 0 and γ ≤ p≤ pM

for any θ≥ 0, where pM is the optimal price in the monopoly case. The assumption resembles that

for Proposition 1 and means the effectiveness of entertainment options is not overly large. (Note

we can prove that under duopoly competition, a dominated strategy is for a service provider to set

its service fee above pM .) In Proposition 2, we use the superscript C (short for “competition”) to

denote the decisions and performance under this setting, and characterize the equilibrium of the

duopoly-competition scenario. We define each service provider’s utilization rate as the ratio of its

arrival rate to its service rate.
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Proposition 2. (i) In the case of duopoly competition, a unique equilibrium exists in which

each service provider chooses an entertainment level αC that uniquely satisfies

δhwD(α)− (2β0 + θ)cαeδα = 0 at α= αC ,

and charges a service fee pC =D(αC)/(2β0 + θ) + γ.

(ii) In equilibrium, each service provider’s arrival rate, utilization level, and expected profit are

λC = (β0 + θ)D(αC)/(2β0 + θ), ρC = 1−1/(wλC + 1), and ΠC = PCλC−C(αC)−γ/w, respectively.

We now investigate the impact of price-competition intensity (θ) on the equilibrium entertain-

ment and pricing decisions, and state the result in Corollary 4 below.

Corollary 4. Under the duopoly-competition setting, as the intensity of price competition θ

increases, each service provider chooses a lower entertainment level and a lower service fee, leading

to a lower profit.

As price competition becomes more intense, entertainment options become less effective in boost-

ing demand. As one would expect, both service providers respond by charging higher service fees

and curbing the entertainment offerings, leading to a lower profit. Later, in the case of co-opetition,

we present a contrasting result (Proposition 5).

In the corollary below, we compare and contrast the cases of monopoly and duopoly competition.

Corollary 5. Compared to the case of monopoly, under duopoly competition,

(i) each service provider chooses a lower service fee and a lower level of entertainment options;

that is, pC ≤ pM and αC ≤ αM ;

(ii) each service provider has a lower expected profit: ΠC ≤ΠM ;

(iii) each service provider has a higher utilization if (αC + (β0 + θ)(1 +αCδ) · ∂αC/∂θ)≥ 0, and

a lower utilization otherwise.

Parts (i) and (ii) of Corollary 5 follow from Corollary 4 and suggest that due to competition, the

service providers must charge lower prices and provide a lower entertainment level, leading to lower

profits. Furthermore, Corollary 5(iii) states that each service provider may experience a higher

utilization level than in the monopoly case, which occurs when the optimal entertainment level is

sufficiently high. From consumers’ perspective, the net effect of the service providers’ decisions is

that they are now facing lower full prices. Thus, both the demand rate and the system utilization

increase. Taken together, Corollary 5 shows that competition among service providers discourages

the use of entertainment options, leading to lower profits and higher utilization levels.
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4. Service Clustering with Co-opetition

In this section, we continue to examine a service-cluster setting, albeit in this case under co-

opetition; that is, firms cooperate on providing entertainment options. We characterize the equi-

librium and analyze the firm-level performance, which sheds light on the design of cost-allocation

schemes for co-opetition.

Under co-opetition, firms jointly decide the entertainment level (α), with a total cost of C(α) =

1
2
cα2 that is shared between the service providers. We focus on the case in which the cost of

providing the same level of waiting-area entertainment options does not significantly increase when

different service providers share the entertainment options. For example, the entertainment may be

provided by a piano player, a live music group, or a line-dancing demonstration. In such cases, the

cost is largely independent of audience size. Our key insights on service design still apply to the case

in which the cost increases in the audience size. As in §3, we continue to focus on the symmetric

scenario. Each service provider i’s demand rate λi is D(α)− βPi + θ(Pj −Pi), for i, j ∈ {1,2} and

i 6= j, where the first term captures the demand-inducing effect of the entertainment options, and

the second and third terms capture the effect of price competition.

Because the entertainment options are shared among all the customers, one commonly used

method to finance the entertainment options is to divide the cost between the service providers

based on their respective market sizes. As such, we focus on a linear cost-sharing scheme, in which

the total cost of providing entertainment options is split between the service providers according

to their demand rates such that service provider i is responsible for a cost share of

φ(λi, λj) =
1

2
+ 2t

(
λi−

λ1 +λ2

2

)
=

1

2
+ t · λi−λj

2
,

where i, j ∈ {1,2}, i 6= j, and t ≥ 0. We refer to t as the cost-sharing factor, which measures the

sensitivity of each service provider’s share of the total cost to its realized demand. At t= 0, the cost

for providing entertainment options is evenly split, and each service provider’s share is independent

of its actual market size. A larger t implies each service provider’s share increasingly depends on

its actual market size relative to the other service provider. This type of linear cost-allocation

scheme, resembling the idea of “yardstick competition” (Savva et al. 2018) and satisfying the

axioms of demand monotonicity (DM) and upper bound for homogeneous goods (UBH) proposed

by Friedman and Moulin (1999), is quite simple to implement in practice. Later, in §7.4, we show

our main findings qualitatively hold under an alternative volume-based cost-allocation scheme in

which each service provider’s cost share is the same as its customer share.
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Because both service providers jointly determine the entertainment level, anti-trust considera-

tions preclude each service provider from deciding its entertainment level and service fee simul-

taneously. We assume each service provider first sets its own service fee, and then both service

providers jointly decide on entertainment level; under an alternative sequence of events in which

the entertainment decisions are made before prices are set, we can numerically show our key results

hold qualitatively. The profit function for service provider i can be written as follows:

Πi = π(α,Pi, Pj) = Piλi−φ(λi, λj)C(α)− γ/w for i= 1,2.

In deriving the optimal solution, we first derive the entertainment level that maximizes the

joint profit of the two service providers, Π1 + Π2, for a given pair (P1, P2). With the optimal

solution α(P1, P2), we then identify the equilibrium service fees. Proposition 3 below provides the

optimal service prices and entertainment levels for both service providers. We use the superscript

O (indicating “co-opetition”) to denote the decisions and performance under this setting.

Proposition 3. (i) In the case of co-opetition, the optimal entertainment level αO satisfies

2 (D(α) + t(β0 + 2θ)C(α))hwδ− (2β0 + θ)cαeδα = 0 at α= αO,

and the equilibrium price is pO = PO + γ, where PO = D(αO)+t(β0+2θ)C(αO)

2β0+θ
.

(ii) The equilibrium arrival rate for each service provider is λO = (β0+θ)D(αO)−tβ0(β0+2θ)C(αO)

2β0+θ
.

The profit and the utilization of each service provider are ΠO = POλO − C(αO)/2 − γ/w, and

ρO = 1− 1/(wλO + 1), respectively. In equilibrium, each service provider’s optimal cost share is 1
2
.

Proposition 3 states that each of the two symmetric service providers has a cost share of 1
2
,

regardless of the value of t. Nevertheless, t influences each service provider’s cost through influencing

its service and pricing decision. We first examine the effect of the cost-sharing factor t on the

optimal decisions, αO and PO. Corollary 6 illustrates our findings.

Corollary 6. In the case of co-opetition, both the optimal entertainment level αO and each

firm’s optimal service fee PO increase in the cost-sharing factor t.

Corollary 6 suggests that under co-opetition, a larger cost-sharing factor induces better waiting-

area entertainment and more expensive service charges. Under the volume-based cost-allocation

scheme, two effects drive the service providers’ decisions about the entertainment level and service

fees. On the one hand, the price-competition effect induces a service provider to charge a lower

price. On the other hand, driven by the tension between value creation and value division often

associated with a co-opetitive relationship (Brandenburger and Nalebuff 1997), a service provider

is incentivized to charge a higher fee to lower its own demand rate and to increase its competi-

tor’s demand rate, in order to have a smaller market share and thus a smaller proportion of the
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entertainment cost. We refer to this effect as a cost-sharing effect. When the cost-sharing factor t

is large, the cost-sharing effect becomes more significant and the optimal price is higher, calling

for richer entertainment options.

Proposition 4 below demonstrates the role of the cost-sharing parameter t in driving the equi-

librium profit ΠO.

Proposition 4. In the case of co-opetition, the optimal cost-sharing factor t∗ and the optimal

entertainment level αO satisfy

θD(α) = 2tβ0(β0 + 2θ)C(α) and 2δhw (D(α) + θD(α)/(2β0)) = (2β0 + θ)cαeδα

at (t,α) = (t∗, αO). Furthermore, ΠO increases in t if 0≤ t≤ t∗, and decreases in t if t > t∗.

Proposition 4 suggests a service provider’s profit increases in the cost-sharing factor (t) when t

is small, and decreases in it when t is sufficiently large. The underlying intuition is that under a

large t (i.e., t > t∗), each service provider’s incentive to charge a higher fee to avoid a large share

of the cost of providing entertainment options can reduce demand to such an extent that it hurts

its bottom line. This result alludes to a caveat to pursuing fairness in designing the cost-allocation

scheme.

Recall from Corollary 4 that in the case of duopoly competition, both the equilibrium price and

the entertainment level decrease in the price-competition intensity, θ. However, under co-opetition,

this result no longer holds, as demonstrated in Proposition 5 below.

Proposition 5. Under co-opetition, a threshold t̂= eδα
O
/(2hwδαO) exists such that when t≥ t̂,

both the equilibrium price pO and entertainment level αO increase in θ; the opposite holds when

t < t̂. Furthermore, t̂≥ t∗.

Proposition 5 suggests both the service fee and entertainment level may increase in θ if t≥ t̂≥ t∗.

This result is rather surprising, because one might expect the firms to charge a lower price as the

price-competition level (θ) increases, as is the case under the competition setting. To understand

the intuition behind this result, note that when t is sufficiently large, due to the cost-sharing effect,

a firm responding to a higher θ by reducing the service fee will incur a larger share of the total

cost for entertainment options. This increase in cost-sharing can more than offset the benefit of

a higher demand induced by the lower service fee. As such, increasing the service fee becomes a

more lucrative option for each service provider.

Proposition 5 also states that t̂≥ t∗, meaning the service fee increases in θ only when t is larger

than the optimal cost-sharing factor t∗. This result suggests a high cost-sharing factor may induce

a type of nonintuitive competitive behavior.
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5. Comparison across Scenarios

In this section, we compare across the three scenarios—monopoly (§2), competition (§3), and co-

opetition (§4). We begin by comparing the service providers’ optimal decisions and profits under

the competition and co-opetition settings, and present the results in Proposition 6.

Proposition 6. All else being equal,

(i) the equilibrium price and entertainment level under co-opetition are always higher than under

competition; that is, pO ≥ pC and αO ≥ αC;

(ii) a threshold tc > 0 exists such that when 0 ≤ t < tc, the profit under co-opetition is greater

than under competition; that is, ΠO >ΠC; otherwise, the opposite holds; that is, ΠO ≤ΠC.

By sharing the cost of providing waiting-area entertainment, the two service providers can co-

invest in a higher entertainment level, which allows them to charge a higher price without compro-

mising on the demand rate. Cost sharing, however, is a double-edged sword. On the one hand, it

helps the service providers offer a high entertainment level that they would otherwise not be able

to afford individually. On the other hand, the cost-sharing scheme can induce the service providers

to charge a high service fee when t is large, in order to avoid a significantly higher entertainment

cost. This strategic response can in turn hurt their profitability, and makes co-opetition even less

desirable than under competition. Specifically, a threshold cost-sharing factor exists above which

the benefit from co-opetition disappears.

The implication drawn from our above analysis is that in designing a cost-allocation scheme for

co-opetition, the service providers need to carefully weigh a fairness-efficiency tradeoff. The pursuit

of fairness, through increasing the cost-sharing factor t, may backfire and completely eliminate the

benefit from resource sharing such that neither service provider benefits from co-opetition. This

perhaps explains why shared entertainment options are not as prevalent as one would expect.

Note that Proposition 6 is based on a setting in which both service providers share the same

waiting-time standards. If the service providers possess different waiting-time standards, we can

show the proposition holds. However, the asymmetric setting yields several different results. For

example, we can show that in the case of service clustering with competition, the profit of the

firm with a higher waiting-time standard may increase in the price-competition intensity when the

price-competition intensity is low, and then decrease if price competition becomes more intense.

The intuition is that the firm with a lower waiting-time standard can charge a higher price than

that of the competitor with a higher wait-time standard. When the price-competition intensity is

low, as it increases, the firm with a higher waiting-time standard, due to its low service fee, can

benefit from an increased demand despite its lower service fee. As the price-competition intensity
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becomes sufficiently large, however, both firms will suffer from a decreased margin due to reduced

service fees.

Proposition 7 below compares the entertainment levels and profits under the co-opetition and

monopoly settings when the entertainment cost is split evenly.

Proposition 7. Suppose t= 0 (i.e., when the entertainment cost is split evenly between the two

service providers).

(i) Both αO and pO as well as ΠO decrease in θ.

(ii) A threshold θc exists such that if θ≤ θc, then ΠO ≥ΠM ; that is, the profit under co-opetition

is higher than that under monopoly, and the opposite holds if θ > θc.

When t = 0, the price-competition effect dominates the cost-sharing effect, so we expect the

equilibrium service fees to decrease in the intensity of competition θ. This decrease alleviates

the need to offer a high entertainment level. Furthermore, when θ is low, the benefit of a high

entertainment level can more than offset the profit loss from competition, leading to a performance

superior to the case of monopoly.

Proposition 8. Given t ≥ 0, if θ ∈ [0,2β0], the equilibrium entertainment level under co-

opetition is larger than the monopoly decision; that is, αO ≥ αM . The opposite holds when θ ∈

(2β0,∞). Furthermore, given θ ≥ 0, a threshold tm(θ) may exist such that if t ∈ [0, tm(θ)], then

ΠO ≥ΠM , whereas if t > tm(θ), ΠO <ΠM .

When the intensity of price competition, θ, is low, high equilibrium service fees call for a high

entertainment level to reduce customers’ disutility from waiting, and cost sharing is likely to drive

the optimal entertainment level higher than under monopoly. Proposition 8 also shows that if the

cost-sharing factor is properly specified, co-opetition can benefit the competing service providers

and help restore their monopoly profit levels. This result, together with Propositions 6 and 7,

formally establish the benefit of co-opetition.

Numerical Study. To gain an overall sense of the improvement achieved through co-opetition, we

conduct a numerical study with the following combinations of parameters: w ∈ {0.3,0.5,0.7}, B ∈

{8,10,12}, γ ∈ {0.5,1,1.5}, β0 ∈ {0.8,1,1.2}, δ ∈ {0.3,0.5,0.7}, c∈ {8,10,12}, and θ ∈ {0.3,0.5,0.7}.

For each of these parameters, we refer to the three possible values as “low value,” “medium value,”

and “high value,” respectively. In this study, h = 5 and u = 0.5. As such, this setup provides

37 = 2,187 instances. After dropping 180 instances with parameters violating our assumptions, we

have 2,007 instances.

For each instance, we identify the optimal cost-sharing factor t∗ and calculate the service

providers’ profits. Table 1 summarizes the statistics on the profit gain of co-opetition over monopoly.
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We observe that compared to the monopoly case, a service provider under co-opetition can gain

a profit that is 7.65% higher on average, with a maximum of 77.40%. Furthermore, in 92.92% of

the instances, co-opetition outperforms monopoly, leading to a service provider gaining a profit

that is 8.23% higher on average. Although not presented in the table, we also find that each ser-

vice provider’s profit under co-opetition is always higher than under duopoly competition, with an

average profit gain of 14.95% and a maximum of 98.14%.

Table 1 Summary of the instances.

Sample Number mean, % median, % std. dev, % min, % max, %

All instances 2007 7.65 5.42 9.75 -19.59 77.40
Instances with positive gains 1865 8.45 5.86 9.62 0.02 77.40
Instances with negative gains 142 -2.86 -2.05 3.01 -19.59 -0.01

As Figure 5 illustrates, our numerical study further shows co-opetition is the most lucrative

when (i) the market size is small, (ii) the cost of building capacity is high, (iii) consumers’ price-

sensitivity is medium, (iv) the cost of providing entertainment options is low, (v) entertainment

options are highly effective in alleviating consumers’ pain from waiting, (vi) price competition is

low, and (vii) consumers are highly sensitive to waiting.

Average Profit Gain under Different Parameters
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15%

B  γ c δ θ w
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Figure 5 Profit gain of co-opetition relative to monopoly with respect to parameters.

6. Effect of Queueing Considerations

So far, in this paper, we have focused on a service setting in which queueing considerations are

instrumental. In this section, we develop a benchmark without queueing considerations. For ease

of comparison, we choose a setup and notation system in a way that is as close to our main model
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as possible. In this benchmark, entertainment options help directly boost demand without through

reducing customer disutility from waiting. Then, comparing the results from such a benchmark

with those from our main model helps us understand the effect of queueing considerations. Corre-

sponding to our main model, we analyze three scenarios of this benchmark, concerning (1) a local

monopolist, (2) service clustering with competition, and (3) service clustering with co-opetition,

in §§6.1–6.3, respectively.

6.1. Local Monopolist: Service Design with Waiting-Area Entertainment

We first consider a local monopolist who faces a demand system given by

λ=B+ δα−β0p,

where α denotes the entertainment level provided by the firm, and δ≥ 0 captures the effectiveness

of entertainment options in boosting demand. As in our main model, the cost of providing enter-

tainment is C(α) = 1
2
cα2. In this setup, the service provider’s expected profit is π = p(B + δα−

β0p)− 1
2
cα2. We assume β0c ≥ δ2 so that the profit function is jointly concave in p and α. The

following proposition provides the service provider’s optimal service fee and entertainment level.

Proposition 9. Without queueing considerations, in the case of a local monopolist, the optimal

price, denoted as pM , and entertainment level, denoted as αM , are given by

αM =
δB

2β0c− δ2
and pM =

cB

2β0c− δ2
.

Proposition 9 implies, among other findings, that as entertainment options become more effective

(i.e., as δ increases), both the optimal service fee and entertainment level increase. Comparing this

result with that in our main model, particularly Corollary 1, gives the following observation: With

the queueing effect, pM always increases in δ, but αM first increases and then decreases in δ; without

the queueing effect, however, both αM and pM monotonically increase in δ. Thus, incorporating

queueing considerations leads to a non-monotone impact of the effectiveness of entertainment

options on the optimal entertainment level.

6.2. Service Clustering with Competition

Next, mirroring §3, we consider two competing service providers in the same service cluster. For

each firm i, given its own price pi and entertainment level αi, as well as its competitor’s price pj, the

demand function is given by λi =B+δαi−β0pi+θ(pj−pi). Each service provider’s expected profit

function can be expressed as πi = pi(B+ δαi−β0pi + θ(pj − pi))− 1
2
cα2

i . The following proposition

gives each service provider’s service fee and entertainment level in equilibrium.
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Proposition 10. Without queueing considerations, in the case of service clustering with com-

petition, each service provider chooses the following equilibrium price (pC) and an entertainment

level (αC):

αC =
δB[2(β0 + θ)c− δ2 + θ]

[2(β0 + θ)c− δ2]2− cθ2
and pC =

cB[2(β0 + θ)c− δ2 + θ]

[2(β0 + θ)c− δ2]2− cθ2
.

We arrange the expression of pC in Proposition 10 as

pC =
cB

[2β0c− δ2 + cθ] + (c−1)
1
θ+

1
(2(β0+θ)c−δ2)

.

We observe from the above expression that both the optimal service fee pC and the optimal enter-

tainment level αC decrease in θ. In addition, similar to the case of a local monopolist in §6.1, both

pC and αC decrease in δ.

Compared to the result from our main model (especially Corollary 4), we see that with and

without the queueing effect, both pC and αC always decrease in θ. A key difference is that without

queueing considerations, both pC and αC decrease in δ. By contrast, with queueing considerations,

pC decreases in δ, but αC first increases and then decreases in δ (a result not reported in §3 for

conciseness). Thus, incorporating queueing considerations leads to non-monotonicity of the optimal

entertainment level in terms of the effectiveness of entertainment options.

6.3. Service Clustering with Co-opetition

We now consider the case of service clustering with co-opetition. For each firm i, given its own

price pi, the jointly determined entertainment level α, and the competitor’s price pj, each service

provider’s demand is λi =B+ δα−β0pi+ θ(pj−pi). We use the same piecewise linear cost-sharing

function as in §4. The cost-sharing function can be reformulated in terms of the prices, denoted as

φ(pi, pj) (see the proof of Proposition 3). The profit function of each service provider i is given by

πi = pi(B+ δα−β0pi + θ(pj − pi))−φ(pi, pj)C(α).

Given pi and pj, the two firms jointly determine the entertainment level, denoted as α(pi, pj), to

maximize the joint profit. By the first-order condition, given pi and pj, the optimal entertainment

level satisfies (pi + pj)δ− cα= 0, which gives α=
(pi+pj)δ

c
. Thus, we have

α′i =
∂α

∂pi
=
δ

c
=
∂α

∂pj
= α′j.

We assume β0c≥ δ2 to guarantee the concavity of the profit function πi in pj: On the one hand, if

φ(pi, pj) = 1, it is straightforward to show β0c≥ δ2 guarantees the concavity of the profit function.

On the other hand, if φ(pi, pj) = 0, again, we can show β0c ≥ δ2 guarantees the concavity of the

profit function. Because 0≤ φ(pi, pj)≤ 1, the condition β0c≥ δ2 suffices to guarantee the concavity

of the profit function.
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Proposition 11. Without queueing considerations, in the case of service clustering with coope-

tition, in equilibrium, each service provider chooses an entertainment level (αO) that satisfies

B+

(
δ− (2β0 + θ)c

2δ

)
α+

1

2
cα2t(β0 + 2θ) = 0 at α= αO,

and a service fee of pO = cαO

2δ
.

The optimal entertainment level αO can be solved as below:

αO =

(
(2β0+θ)c

2δ
− δ
)
−
√(

δ− (2β0+θ)c

2δ

)2

− 2Bct(β0 + 2θ)

2ct(β0 + 2θ)
, (4)

where (2β0 + θ)c > 2δ2 holds because β0c ≥ δ2. In addition, the upper bound of the cost-sharing

factor t, denoted as t̄, is calculated as

t̄=

(
δ− (2β0+θ)c

2δ

)2

2Bc(β0 + 2θ)
. (5)

Denote the condition in Proposition 11 as

F (α, t, θ) =B+

(
δ− (2β0 + θ)c

2δ

)
α+

1

2
cα2t(β0 + 2θ),

with F (αO, t, θ) = 0, and by the concavity of the profit function

Fα =
∂F (α, t, θ)

∂α

∣∣∣
α=αO

< 0.

Thus, αO increases in t followed by

Ft =
∂F (α, t, θ)

∂t
> 0,

∂αO

∂t
=− Ft

Fα

∣∣∣
α=αO

> 0.

The equilibrium price pO also increases in t.

Corollary 7. In the case of co-opetition, both the optimal entertainment level αO and the

optimal price pO in equilibrium increase with the cost-sharing factor t.

The optimal cost-sharing factor t is given by the following result:

Corollary 8. In the case of co-opetition, the optimal cost-sharing factor t∗ is

t∗ =
(2 + 2δ2− (2β0 + θ)c)(β0c− δ2)

cδ2B(β0 + 2θ)
.

We next consider the impact of θ on αO and pO. If t= 0, then αO = 2δB
(2β0+θ)c−2δ2

, which serves as

the lower bound, and we can see αO decreases in θ. For t > 0, we have

Fθ =
∂F (α, t, θ)

∂θ
=
cα

2δ
(2δαt− 1).
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Thus, if 2δαOt≤ 1, then αO decreases in θ as

∂αO

∂θ
=−Fθ

Fα

∣∣∣
α=αO

≤ 0,

and vice versa. By Corollary 7, αO increases in t, where we conclude t̂ exists such that if t∈ [0, t̂],

then 2δαOt≤ 1, implying both αO and pO decrease in θ. On the other hand, if t > t̂, both αO and

pO increase in θ.

We next show the condition 2δαOt > 1 can never hold: By (4), we can calculate

2δαOt = δ

(
(2β0+θ)c

2δ
− δ
)
−
√(

δ− (2β0+θ)c

2δ

)2

− 2Bct(β0 + 2θ)

c(β0 + 2θ)

≤ δ

(
(2β0+θ)c

2δ
− δ
)

c(β0 + 2θ)
=

(2β0 + θ)c− 2δ2

2c(β0 + 2θ)
< 1. (6)

Based on the assumption β0c≥ δ2, the following result summarizes the above discussion,

Corollary 9. Without queueing considerations, in the case of service clustering with co-

opetition, in equilibrium, both the service fee and the entertainment level decrease in t.

Compared to the result from our main model, one key differentiating result is that without

queueing considerations, both the entertainment level and the service fee (weakly) decrease in the

intensity of price competition θ; with queueing considerations, both the entertainment level and

the service fee can increase in the intensity of price competition θ. This comparison demonstrates

that our finding from Proposition 5 that the service fee may increase in the intensity of price

comparison is a differentiating result due to queueing considerations. In other words, incorporating

queueing considerations leads to the counterintuitive finding that the service fee may increase in

the intensity of price comparison.

7. Extensions

In this section, we discuss several extensions to our main model to explore its boundary. In §7.1, we

analyze the case with a general demand function. In §7.2, we consider an alternative formulation

reflecting the effect of customer waiting on the firm’s objective. In §7.3, we generalize our model of

service clustering with competition by allowing customers to use both the service fee and entertain-

ment options in choosing a service provider. In §7.4, we consider an alternative cost-sharing scheme

in which each service provider’s cost share is identical to its market share. In §7.5, we numerically

examine the case in which the waiting-time standard is endogenous.



24 Yuan et al.: Co-opetition in Service Clusters with Waiting-Area Entertainment

7.1. General Demand Function

In the case of a monopolist service provider, for simplicity of analysis, we assume a specific form of

demand function, that is, λ(p,α;w) =B− hwe−δα− β0p. We now consider a more general setting

in which

λ=B−E(w,δ,α)−β0p,

where E(w,δ,α) captures the impact of the announced waiting-time standard w, the entertainment

level α, and the entertainment discount factor δ on the arrival rate. We assume E(w,δ,α) increases

in w, whereas it decreases and is convex in δ and α; that is, Ew > 0, Eδ < 0, Eα < 0, Eδδ > 0, and

Eαα > 0. In other words, waiting-area entertainment helps reduce the disutility from waiting but

has a declining marginal effect. In addition, for a given w, we assume Eαδ(w,δ,α)> 0; that is, the

effectiveness of entertainment options (δ) and the entertainment level (α) are substitutes.

Under the general demand function, we can characterize the optimal service fee and optimal

entertainment level in the proposition that follows. We assume B−E(w,δ,0)−β0γ > 0 to maintain

a positive demand in the case in which no entertainment option is offered (i.e., α= 0) and the price

is set as low as the marginal capacity cost (i.e., p = γ). Given the waiting-time standard w, the

optimal entertainment level uniquely satisfies

(B−β0γ−E(w,δ,α))Eα(w,δ,α) + 2β0cα= 0,at α= αM .

The optimal price is given by pM = (B−E(w,δ,αM) +β0γ)/(2β0).

We can verify that all our main findings from §2 (i.e., Corollaries 1–3) continue to hold. Addi-

tionally, our key findings from the settings in §§3–5 hold qualitatively.

7.2. An Alternative Approach to Modeling the Effect of Waiting

In our main model, we consider the case in which the waiting time is reflected in the customer

arrival rate. An alternative approach to modeling the effect of the waiting is to incorporate waiting

time as a cost term in the service provider’s objective function. In the case of the service provider

being a local monopolist, it solves the following problem:

max
0≤λ<µ,α≥0

Π = pλ−C(α)− γµ−hwe−δαλ

s.t. λ=B−β0p, (7)

w=
1

µ−λ
.

In the above formulation, the firm charges a net price of p̂, p−hwe−δα. After substituting its two

constraints into the objective function, we can rewrite (7) as

max
p≥0,α≥0

Π = (p̂− γ)[B−β0(p̂+hwe−δα)]−C(α)− γ

w
. (8)
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Assuming 2c− β0h
2δ2w2 ≥ 0, the profit function is jointly concave in p and α. By the first-order

condition, the optimal net price p̂M is

p̂M = (B−β0hwe
−δαM +β0γ)/(2β0),

and the optimal entertainment level αM satisfies

hwδ
(
B−β0hwe

−δα−β0γ
)
− 2cαeδα = 0, at α= αM . (9)

Note the above two equations resemble those in Proposition 1. Indeed, we can proceed to show the

above modeling approach and our approach in the main model are roughly equivalent in that they

lead to qualitatively equivalent results.

7.3. Competition Based on Both Price and Entertainment Level

In our model of the scenario of service clustering with competition in §3, we consider a demand

system, represented by (3), that only reflects price competition. As an additional practical consid-

eration, the relative magnitude of entertainment levels across service providers may also play a role

in influencing consumer demand. Accordingly, we now extend our main model by considering a

demand system reflecting the competition based on both the service fees and entertainment levels

chosen by the two service providers.

Specifically, we consider the following demand system:

D(αi, αj) =A−hwe−δαi + d
(
eκ(αi−αj)− 1

)
, (10)

where κ> 0 captures the effect of the entertainment competition, which functions similarly as the

price-competition intensity θ. The parameter d≥ 0 captures how the cross-provider difference in

waiting-area entertainment drives the competition. For example, if αi >αj, firm i will attract more

demand while firm j will lose demand, compared to the case without the entertainment-competition

effect (i.e., κ= 0 or d= 0).

Given αj, we assume D(αi, αj) is concave increasing in αi ≥ 0. The concavity assumption in

αi ≥ 0 ensures a unique pair of optimal entertainment level and service fee exists given the other

firm’s entertainment level and price decisions. Under this duopoly-competition setting, we can show

a unique equilibrium entertainment level αC exists that satisfies

(
δhwe−δα + dκ

)
D(α,α)− (2β0 + θ)cα= 0, at α= αC ,

and the unique price in equilibrium is pC =D(αC , αC)/(2β0 + θ) +γ, where D(α,α) =A−hwe−δα.

The above result gives the following corollary:
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Corollary 10. Under the duopoly competition, the impacts of the price and entertainment

competition on the equilibrium entertainment level and the price as well as the profit are given as

follows:

(i) Both the entertainment level and the price in equilibrium increase in κ≥ 0; the equilibrium

profit also increases in κ≥ 0.

(ii) Both the entertainment level and the price in equilibrium decrease in θ≥ 0; the equilibrium

profit also decreases in θ≥ 0.

The results in Corollary 10 are consistent with those in §3. Note that because the new demand

system (10) is irrelevant to the case of a local monopolist (§2) or service clustering with co-opetition

(§4), it suffices to check that our key insights hold in the case of duopoly competition.

7.4. An Alternative Volume-Based Cost-Sharing Scheme

In our main analysis of the case of co-opetition, we examine a case in which the two service

providers use a linear transfer payment scheme to determine their shares of the cost of providing

waiting-area entertainment. We now extend the model to an alternative volume-based cost-sharing

scheme, under which service provider i’s share of the cost is given by

φ(λi, λj) =
λi

λi +λj

for i, j ∈ {1,2}, i 6= j.

We assume the service providers first set the service fees individually, and then jointly determine

the entertainment level. Given Pi and Pj, the entertainment is determined at the level that maxi-

mizes the joint profit of the two service providers. Specifically, the entertainment level is solved by

the following:

max
α≥0

π(α,Pi, Pj) = Pi(D(α)−βPi + θPj) +Pj(D(α)−βPj + θPi)−C(α)− 2γ

w
,

where the optimal entertainment level, denoted as αO = α(Pi, Pj), satisfies the first-order condition

(Pi +Pj)hwδe
−δαO − cαO = 0. (11)

We observe from (11) that αO increases in both Pi and Pj.

Next, each service provider determines the optimal service fee. Given Pj, the optimal price Pi

can be solved by the following pogram:

max
Pi

π(Pi, Pj) = Pi(D(αO)−βPi + θPj)−
λi

λi +λj
C(αO)− γ

w
(12)

s.t. (Pi +Pj)hwδe
−δαO − cαO = 0

λi =D(αO)−βPi + θPj

λj =D(αO)−βPj + θPi.
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In the case of co-opetition, we show the optimal entertainment level αO satisfies

2hwδD(αO)− (2β0 + θ)cαOeδα
O

+ (2hwδ)2
(β0 + 2θ)C(αO)

4(2hwδD(αO)−β0cαOeδα
O)

= 0, at α= αO,

and the equilibrium price is pO = PO + γ, where PO satisfies

D(αO)− (2β0 + θ)PO +
(β0 + 2θ)

4(D(αO)−β0PO)
C(αO) = 0.

We can proceed to show our main findings in the case of service clustering with co-opetition,

as presented in §§4–5, hold. For example, we can show scenarios exist in which the equilibrium

entertainment level and the price in the co-opetition case may increase in the price-competition

intensity. In addition, we can show our main findings carry over to an alternative decision sequence

whereby the two service providers first decide the entertainment level α, and then each service

provider individually makes its pricing decision.

7.5. Endogenous Waiting-Time Standard

So far, we have focused on the setting with exogenous waiting-time standards, which is a realistic

assumption in many scenarios where service providers often share the same industry-wide standard

for customer waiting times. As a robustness check, we relax this assumption, considering the case in

which the waiting-time standard is endogenous, for all three cases (monopoly, duopoly competition,

and co-opetition). We can numerically show all our findings extend to the case with an endogenous

waiting-time standard.

8. Concluding Remarks

In the service industry, firms commonly use entertainment to reduce customers’ disutility from

waiting. In a service cluster with a common space, an opportunity exists for service providers to

cooperate with each other in providing waiting-area entertainment. Whereas the service operations

literature has extensively examined service decisions under competition, the scenario in which

service providers cooperate in providing entertainment options while competing with each other

has not been previously studied. Likewise, co-opetition has been studied in the manufacturing and

supply-chain settings, but not in a service setting. Several research questions naturally arise, with

no immediately clear answers at hand: (1) Can service providers benefit from co-opetition? (2)

How should service providers share the cost of providing entertainment options? (3) How does the

intensity of price competition affect service providers’ pricing behavior in equilibrium?

To answer these questions, we first analyze a benchmark with a local monopolist deciding on its

entertainment level, service fee, and capacity. This benchmark helps us understand how various

factors drive a service provider’s entertainment-level decision. In another benchmark, we consider
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two firms in the same service cluster competing for customers and independently making price,

capacity, and entertainment-level decisions. Jointly, these two benchmarks show that intense com-

petition among service providers necessitates heavy investment in entertainment options and erodes

firm profits. We then build a full model in which two service providers compete for customers but

cooperate in providing entertainment options. We show co-opetition may help service providers

obtain higher profits than under a monopoly.

In investigating the co-opetition case, we analyze a linear-type cost-allocation scheme, and

demonstrate the crucial role of a parameter, namely, the cost-sharing factor. The cost-sharing fac-

tor indicates how sensitive each service provider’s proportion of cost sharing is to its ex-post market

size. A larger cost-sharing factor would seem to be fairer, because it requires service providers to

contribute to the total cost based on the benefit they receive from the entertainment options. As

a result, one may expect that a higher cost-sharing factor is beneficial to the co-opetiting service

providers. Our analysis reveals, surprisingly, the opposite may be true. Specifically, a threshold

cost-sharing factor exists above which both service providers may suffer from co-opetition. One

key insight from our analysis is that in designing cost-sharing contracts for co-opetition, a fairness-

efficiency tradeoff occurs that must be carefully incorporated—the pursuit of fairness may backfire

and completely eliminate the benefit from resource sharing.

Due to the fairness-efficiency tradeoff characterized in our paper, we also find that as price

competition becomes more intense, under a high cost-sharing factor, service providers may choose

higher—not lower, as one would expect—service fees. This result is counterintuitive and does not

arise in the absence of co-opetition.

Our paper is the first to study co-opetition in a service setting with entertainment options that

help relieve customers of their pain from unoccupied waiting. Our paper highlights the strategic

interactions among service providers engaged in a simultaneously competitive and cooperative

relationship, leading to a novel characterization of the fairness-efficiency tradeoff that is essential

in guiding the design of a cost-allocation scheme for co-opetition.

Rather than providing an exhaustive analysis of co-opetition in any service setting, this work is

the first step toward understanding co-opetition in a uniquely compelling scenario—service cluster-

ing with waiting-area entertainment. Our research can be extended in a number of directions. For

instance, in practice, co-opetition may occur among more than two adjacent service providers. An

examination of whether the results continue to hold as we move to oligopolies could help shed light

on whether co-opetition works better as the number of competitors increases. Another direction

for future research would be to examine the case with asymmetric service providers. We expect

our key insights to hold directionally, but the asymmetry in service parameters itself may lead to
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interesting implications. Lastly, our key findings from the paper, especially those relevant to the

co-opetition setting, may be tested in a laboratory or in the field.

Acknowledgments

The authors appreciate Morris Cohen, the Associate Editor, and two anonymous reviewers for their con-

structive and helpful reviews. The authors thank Gad Allon, Nitin Bakshi, Maxime Cohen, Maqbool Dada,

Jim Dai, Haresh Gurnani, Ming Hu, Xinxin Hu, Nicos Savva, Jiwoong Shin, Zhibin Yang, Yong-Pin Zhou,

and seminar participants at City University of New York, Baruch College; Cornell University, Johnson

Graduate School of Management; Eindhoven University of Technology, Department of Industrial Engineer-

ing & Innovation Sciences; London Business School; University of Mannheim, Mannheim Business School;

Massachusetts Institute of Technology, Sloan School of Management; New York University, Stern School of

Business; University of North Carolina at Chapel Hill, Department of Statistics & Operations Research;

University of California San Diego, Rady School of Management; University of Oklahoma, Price College of

Business; University of Rochester, Simon Business School; and Yokohama National University, Institute of

Advanced Sciences for their helpful comments.

References

Allon, G., A. Federgruen. 2007. Competition in service industries. Oper. Res. 55(1) 37–55.

Allon, G., A. Federgruen. 2008. Service competition with general queueing facilities. Oper. Res. 56(4) 827–

849.

Anand, K. S., H. Mendelson. 1997. Information and organization for horizontal multimarket coordination.

Management Sci. 43(12) 1609–1627.

Anand, K. S., M. F. Paç, S. K. Veeraraghavan. 2011. Quality-speed conundrum: tradeoffs in customer-

intensive services. Management Sci. 57(1) 40–56.

Bailay, R. 2017 Mall operators, shop owners fight over maintenance charge. The Economic

Times (February 7) https://economictimes.indiatimes.com/industry/services/retail/

mall-operators-shop-owners-fight-over-maintenance-charge/articleshow/57009731.cms

Accessed April 5, 2019.

Bakshi, N., P. Kleindorfer. 2009. Co-opetition and investment for supply-chain resilience. Production Oper.

Management 18(6) 583–603.

Borges, A., M. M. Herter, J. Chebat. 2015. “It was not that long!”: The effects of the in-store TV screen

content and consumers emotions on consumer waiting perception. J. Retailing Consumer Services 22

96–106.

Boyle, K. D., M. C. Novack. 2015. Everyone into the pool: Allocating expenses among diverse occupants

of mixed use projects. Proceedings of 2015 U.S. Shopping Center Law Conference, Phoenix, Arizona

(October 28-31).

https://economictimes.indiatimes.com/industry/services/retail/mall-operators-shop-owners-fight-over-maintenance-charge/articleshow/57009731.cms
https://economictimes.indiatimes.com/industry/services/retail/mall-operators-shop-owners-fight-over-maintenance-charge/articleshow/57009731.cms


30 Yuan et al.: Co-opetition in Service Clusters with Waiting-Area Entertainment

Brandenburger, A., B. Nalebuff. 1997. Co-Opetition. Currency Doubleday, New York, New York.

Cachon, G. P., P. T. Harker. 2002. Competition and outsourcing with scale economies. Management Sci.

48(10) 1314–1333.

Casadesus-Masanell, R., D. B. Yoffie. 2007. Wintel: Cooperation and conflict. Management Sci. 53(4) 584–

598.

Chen, R. R., P. Roma. 2011. Group buying of competing retailers. Production Oper. Management 20(2)

181–197.

Cherney, M. 2018 Gap sues Westfield over mall expenses as tensions rise in

retail world. Wall Street Journal (July 17) https://www.wsj.com/articles/

gap-sues-westfield-over-mall-expenses-as-tensions-rise-in-retail-world-1531835153

Accessed April 5, 2019.

Dai, T., M. Akan, S. Tayur. 2017. Imaging room and beyond: the underlying economics behind physicians’

test-ordering behavior in outpatient services. Manufacturing Service Oper. Management 19(1) 99–113.

Dai, T., S. Singh. 2019. Conspicuous by its absence: Diagnostic expert testing under uncertainty. Johns

Hopkins University Working Paper.

Dai, T., R. Zheng, K. Sycara. 2018. Jumping the line, charitably: Analysis and remedy of donor-priority

rule. Management Sci. Forthcoming.

Daniels, A., P. McDonnell. 2003. A guide to occupancy costs. National Real Estate Investor (May 1) https:

//www.nreionline.com/financeampinvestment/guideoccupancycosts. Accessed April 5, 2019.

Debo, L., S. Veeraraghavan. 2014. Equilibrium in queues under unknown service times and service value.

Oper. Res. 62(1) 38–57.

Dizik, A. 2011. Fun for the whole family: the long wait in line. Wall Street Journal (August 10).

Florida, R. The upside of the “retail apocalypse.” CityLab. https://www.citylab.com/design/2017/12/

the-great-retail-retrofit/548753/. Accessed April 5, 2019.

Friedman, E., H. Moulin. 1999. Three methods to share joint costs or surplus. J. Econom. Theory 87(2)

275–312.

Gaur, V., Y. H. Park. 2007. Asymmetric consumer learning and inventory competition. Management Sci.

53(2) 227-240.

Guo, L., X. Wu. 2018. Capacity sharing between competitors. Management Sci. 64(8) 3469–3970.

Guo, P., C. S. Tang, Y. Wang, M. Zhao. 2017. The impact of reimbursement policy on social welfare, revisit

rate and waiting time in a public healthcare system: fee-for-service vs. bundled payment. Manufacturing

Service Oper. Management. Forthcoming.

Gurnani, H., M. Erkoc, Y. Luo. 2007. Impact of product pricing and timing of investment decisions on supply

chain co-opetition. Euro. J. Oper. Res. 180(1) 228–248.

https://www.wsj.com/articles/gap-sues-westfield-over-mall-expenses-as-tensions-rise-in-retail-world-1531835153
https://www.wsj.com/articles/gap-sues-westfield-over-mall-expenses-as-tensions-rise-in-retail-world-1531835153
https://www.nreionline.com/finance‐amp‐investment/guide‐occupancy‐costs
https://www.nreionline.com/finance‐amp‐investment/guide‐occupancy‐costs
https://www.citylab.com/design/2017/12/the-great-retail-retrofit/548753/
https://www.citylab.com/design/2017/12/the-great-retail-retrofit/548753/


Yuan et al.: Co-opetition in Service Clusters with Waiting-Area Entertainment 31

Hall, J., E. Porteus. 2000. Customer service competition in capacitated systems. Manufacturing Service Oper.

Management 2(2) 144–165.

Halvitigala, D. (2018). The effect of service charge responsibilities on tenants’ leasing experience and satis-

faction: a New Zealand perspective. J. Corporate Real Estate 20(1) 41–55.

Harvard Business School. 2015. Hai Di Lao: Service Beyond Imaginations. Technol-

ogy and Operations Management Assignments. https://rctom.hbs.org/submission/

hai-di-lao-service-beyond-imaginations/ Accessed April 5, 2019.

Hassin, R., M. Haviv. 2003. To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer

Academic Publishers, Boston, Massachusetts.

Ho, T. H., Y. S. Zheng. 2004. Setting customer expectation in service delivery: An integrated marketing-

operations perspective. Management Sci. 50(4) 479–488.
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Proof of Proposition 1. For ease of presentation, we write F (α) = δhw(B−hwe−δα−β0γ)−2β0cαe
δα. Given

w, the first-order conditions with respect to p and α are B−hwe−δα−2β0p+β0γ = 0 and δhw(p−γ)e−δα−

cα= 0, respectively, which may be rewritten as F (α) = δhw(B−hwe−δα−β0γ)− 2β0cαe
δα = 0. Denote the

optimal decisions as pM and αM . If the profit function π(p,α;w) is jointly concave at (pM , αM), the first-order

conditions are sufficient and necessary for the optimality of p and α. The profit function is concave in p and

α, respectively, with the second-order derivatives in terms of p and α as

πpp =−2β0, παα =−δ2hw(p− γ)e−δα− c,

and the cross derivative, πpα = δhwe−δα > 0. We have φ(α) = πppπαα − π2
pα = 2β0(δ2hw(p− γ)e−δα + c)−

δ2h2w2e−2δα, which is reduced as φ(αM) = 2β0(δcαM + c) − δ2h2w2e−2δαM at (pM , αM). Clearly, φ(αM)

is increasing in αM . Therefore, if αM ≥ αc, such that φ(αc) = 2β0(δcαc + c) − δ2h2w2e−2δαc = 0, then

φ(αM) ≥ 0, which indicates π(p,α;w) is jointly concave at (pM , αM). Clearly, F (α) is concave in α, with

Fα = δ2h2w2e−δα − 2β0ce
δα − 2β0cαδe

δα and Fαα =−δ3h2w2e−δα − 4β0cδe
δα − 2β0cαδ

2eδα < 0, and F (0) =

δhw(B−hw−β0γ)> 0, Fα|α=αc = 0. Because F (αM) = 0, we have αc <αM . Thus, φ(αM)> 0, which implies

π(p,α;w) is jointly concave at (pM , αM) and Fα|α=αM < 0. Therefore, the first-order conditions, thus F (α) = 0,

are sufficient and necessary for the optimality of pM and αM . Furthermore, αM is the unique solution to

F (α) = 0. Q.E.D.

Proof of Corollary 1. Given α, the first-order derivative of F (α) with respect to δ as Fδ = hw(B−hwe−δα−

β0γ) + αδh2w2e−δα − 2β0cα
2eδα with limδ→0Fδ = hw(B − hw − β0γ) ≥ 0 and limδ→∞Fδ = hw(B − β0γ)−

2β0cα
2eδα < 0. Therefore, by the derivative of αM with respect to δ, denoted as α′δ, we have α′δ =− Fδ

Fα
≥ 0

if δ→ 0 and α′δ = − Fδ
Fα

< 0 if δ→∞, implying a critical δ-value denoted as δc exists such that if δ ≤ δc,

αM is increasing in δ, whereas if δ > δc, αM is decreasing in δ. Mathematically, δc satisfies F (α) = 0 and

Fδ(α) = 0. The derivative of pM with respect to δ, is denoted as p′δ =
hwe−δα(α+δα′δ)

2β0
|α=αM , where we have

α+ δα′δ = −2β0cαe
δα−δhw(B−hwe−δα−β0γ)

Fα
> 0, implying p′δ > 0. Therefore, pM is always increasing in δ. By the

envelop theorem, the profit πM is always increasing in δ because the derivative of πM with respect to δ is

π′δ = (pM − γ)hwαMe−δα
M
> 0. Q.E.D.

Proof of Corollary 2. First, note αM is decreasing in γ: α′γ = β0δhw

Fα
|α=αM < 0 because F (α) is decreasing in

γ. The derivative of pM with respect to γ, is denoted as p′γ =
δhwe−δαα′γ+β0

2β0
|α=αM , where δhwe−δαα′γ + β0 =

β0( δ
2h2w2e−δα

Fα
+1). Because δ2h2w2e−δα+Fα = 2e−δα(δ2h2w2−β0c(e

2δα+αδe2δα)), if δ2h2w2 ≥ β0c, a unique

αo exists such that δ2h2w2 = β0c(e
2δαo +αoδe2δαo). Because αM is decreasing in γ, a unique γc exists such

that at γc, αM = αo. If γ ≤ γc, then p′γ ≥ 0, and thus pM is increasing in γ, whereas if γ > γc, then p′γ < 0, and

thus pM is decreasing in γ. However, holding the other parameters fixed, because γ ∈ [0, B−hw̄
β0

], if γc > B−hw̄
β0

,

pM is always increasing in γ ∈ [0, B−hw̄
β0

]. If δ2h2w2 < β0c, then δ2h2w2e−δα + Fα < 0 for any α ≥ 0, which

implies p′γ > 0 and pM is always increasing in γ. By the envelop theorem, we have that the profit πM is

always decreasing in γ based on the derivative π′γ =−(B−hwe−δαM −β0p
M)− 1

w
< 0. Q.E.D.
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Proof of Corollary 3. By the implicit function theorem, the derivative of αM with respect to w, denoted as

α′w, is given as

α′w =
∂αM

∂w
= −Fw

Fα
=
δh2we−δα− δh(B−hwe−δα−β0γ)

δ2h2w2e−δα− 2β0ceδα− 2β0cαδeδα

∣∣∣∣
α=αM

.

Because Fw is decreasing in w while increasing in α, if Fw|w=w̄(0)≥ 0, that is, 2hw̄≤B−β0γ, then Fw(α)≥ 0

for any w ∈ [w, w̄] and α≥ 0. Therefore, if 2hw̄≤B−β0γ, we have α′w ≥ 0, which implies αM is increasing in

w for any w ∈ [w, w̄]. However, if Fw|w=w̄(0)< 0, that is, hw̄≤B−β0γ < 2hw̄, then a w0 ∈ [ w̄
2
, w̄] exists that

satisfies B−β0γ = 2hw0, such that for w ∈ [w,w0], Fw(w,α)≥ 0 for any α≥ 0, and thus α′w ≥ 0, which implies

αM is increasing in w ∈ [w,w0]. If w ∈ (w0, w̄], a critical α(w)> 0 exists that is increasing in w and satisfying

Fw(α(w)) = 0, such that if α ≤ α(w), then Fw(α) ≤ 0, whereas if α > α(w), Fw(α) > 0. Because for any

w ∈ [w, w̄], a unique αM > 0 exists such that F (αM) = 0 from Proposition 1, if αM ≤ α(w), then Fw(αM)≤ 0,

thus α′w ≤ 0, which implies αM is decreasing in w. If αM >α(w), Fw(αM)> 0, and thus α′w > 0, which implies

αM is increasing in w. Therefore, if a wc ∈ (w0, w̄] exists where F (αM)|w=wc = 0 and Fw(αM)|w=wc = 0, we

conclude that if w >wc, Fw(αM)< 0, and thus α′w < 0; that is, αM is decreasing in w ∈ (wc, w̄]. If w ≤ wc,

Fw(αM) ≥ 0, and thus α′w ≥ 0; that is, αM is increasing in w ∈ [w,wc]. If such wc ∈ (w0, w̄] exists, that is,

wc > w̄, Fw(αM)≥ 0, then αM is always increasing in w ∈ [w, w̄]. Q.E.D.

Proof of Proposition 2. Given service provider j’s price Pj and entertainment level αj , service provider i

maximizes its profit through Pi and αi. Similar to the monopoly case, the optimal entertainment level αi

satisfies the first-order condition,
∂Πi

∂αi
= Pihwδe

−δαi − cαi = 0,

and the best response of price Pi satisfies the following equation:

D(αi)− 2βPi + θPj = 0.

The optimal entertainment level and the best response of price Pj for service provider j given service provider

i′s price Pi and entertainment level αi can be similarly derived. Thus, the equilibrium price and entertainment

level can be solved through the following system of equations:

D(αi)− 2βPi + θPj = 0

D(αj)− 2βPj + θPi = 0

Pihwδe
−δαi − cαi = 0

Pjhwδe
−δαj − cαj = 0,

where we can first solve the equilibrium price as a function of αi and αj as

Pi =
2βD(αi) + θD(αj))

4β2− θ2

and then get the best-response function of αi in terms of αj as

G(αi, αj) = (2βD(αi) + θD(αj))hwδ− (4β2− θ2)cαie
δαi = 0.
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Clearly, given αj ≥ 0, G(αi, αj) is concave in αi, and G(0, αj)> 0. Therefore, a unique αei (αj) exists as the

best response, such that G(αei (αj), αj) = 0, and

∂G(αei (αj), αj)

∂αi
= 2β(hw)2δ2e−δαi − (4β2− θ2)(ceδαi + δcαie

δαi)|αi=αei (αj) < 0.

Because the two service providers are symmetric, in equilibrium, the two service providers must choose the

same price and entertainment level. Denote the equilibrium price and entertainment level as PC and αC ,

respectively. Thus, we have the equilibrium condition G(αC , αC) = 0, which is simplified as

δhw(A−hwe−δαC )− (2β0 + θ)cαCeδα
C

= 0, PC =
D(αC)

2β0 + θ
=
A−hwe−δαC

2β0 + θ
.

Correspondingly, the equilibrium arrival rate is given as λC = D(αC)− βPC + θPC = βPC = (β0+θ)D(αC)

2β0+θ
,

and the utilization is calculated as ρC = 1− 1
wλC+1

. Q.E.D.

Proof of Corollary 4. Because the equilibrium entertainment level αC satisfies the optimality condition

G(αC , αC) = δhwD(αC)− (2β0 + θ)cαCeδα
C

= 0, where G(α,α) = δhwD(α)− (2β0 + θ)cαeδα is concave in α

and G(0,0)> 0, we have G′α = ∂G(α,α)

∂α
|α=αC < 0, and G′θ = ∂G(α,α)

∂θ
|α=αC =−cαCeδαC < 0. Holding β0 fixed,

we have ∂αC

∂θ
= −G′θ

G′α
= cαCeδα

C

δ2(hw)2e−δαC−(2β0+θ)ceδαC (1+δαC)
< 0, which indicates αC is decreasing in θ. Thus,

the equilibrium price PC is also decreasing in θ. The profit of each service provider in the equilibrium is

calculated as ΠC = PC(D(αC)−β0P
C)−C(αC)− γ

w
, with the first-order derivative with respect to θ as

∂ΠC

∂θ
=
∂PC

∂θ
(D(αC)−β0P

C) +PC(hwδe−δα
C ∂αC

∂θ
−β0

∂PC

∂θ
)− cαC ∂α

C

∂θ

=
∂PC

∂θ
(D(αC)− 2β0P

C)≤ 0

because ∂PC

∂θ
< 0 and D(αC)− 2β0P

C = θPC

2β0+θ
≥ 0. Q.E.D.

Proof of Corollary 5. By Corollary 4, in the case of duopoly competition, the equilibrium price, entertainment

level, and profit in equilibrium all decrease in the price-competition intensity θ. Thus, pC ≤ pM , αC ≤ αM ,

and ΠC ≤ΠM . The equilibrium arrival rate is λC = β0+θ
2β0+θ

D(αC), and by the optimality condition of αC , we

have λC = (β0+θ)cαCeδα
C

hwδ
, and the first-order derivative with respect to θ is

∂λC

∂θ
= ceδα

C

(
αC + (β0 + θ)(1 +αCδ)

∂αC

∂θ

)
.

Thus, if
(
αC + (β0 + θ)(1 +αCδ) ∂α

C

∂θ

)
≥ 0, λC increases in θ, and ρC increases in θ; that is, ρC ≥ ρM for

θ≥ 0. Q.E.D.

Proof of Proposition 3. Given the prices of the two service providers, Pi and Pj , under co-opetition, the

optimal entertainment level is determined to maximize the joint profit of the two service providers as

max
α

π(α,Pi, Pj) = Pi(D(α)−βPi + θPj) +Pj(D(α)−βPj + θPi)−C(α)− 2γ

w
,

where the optimal entertainment level, denoted as αO = α(Pi, Pj), satisfies the first-order condition

(Pi +Pj)hwδe
−δαO − cαO = 0,
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where αO is increasing in Pi and Pj . We denote the partial derivative of αO in terms of Pi and Pj as ∂αO

∂P1

and ∂αO

∂P2
, respectively. Clearly,

∂αO

∂P1

=
∂αO

∂P2

=
hwδe−δα

O

(Pi +Pj)hwδ2e−δαO + c
> 0.

Given service provider j’s decision, Pj , the optimal price of service provider i is determined by solving the

following profit-maximizing problem

max
Pi

π(Pi, Pj) = Pi(D(αO)−βPi + θPj)−φ(λi, λj)C(αO)− γ

w

s.t. (Pi +Pj)hwδe
−δαO − cαO = 0

λi =D(αO)−βPi + θPj

λj =D(αO)−βPj + θPi.

Substituting λi and λj , the entertainment cost-sharing function φ(λi, λj) is simplified as φ(λi, λj) = 1
2

+ t(β+

θ)(Pj −Pi). Based on the above reformulation, the optimal price, denoted as P ∗i , as the best response of Pj

satisfies the following first-order condition:

D(α(P ∗i , Pj))− 2βP ∗i + θPj +P ∗i hwδe
−δα(P∗i ,Pj)

∂α(P ∗i , Pj)

∂Pi

+ t(β+ θ)C(α(P ∗i , Pj))−φ(λi, λj)cα(P ∗i , Pj)
∂α(P ∗i , Pj)

∂Pi
= 0.

Similarly, the best response of Pj with respect to Pi satisfies the following first-order condition:

D(α(Pi, P
∗
j ))− 2βP ∗j + θPi +P ∗j hwδe

−δα(Pi,P
∗
j )
∂α(Pi, P

∗
j )

∂Pj

+ t(β+ θ)C(α(Pi, P
∗
j ))−φ(λj , λi)cα(Pi, P

∗
j )
∂α(Pi, P

∗
j )

∂Pj
= 0.

Because the two service providers are identical, in equilibrium, the two service providers will choose the same

price denoted as PO. Thus, adding up the above two first-order conditions, after simplification, we have

D(α(PO, PO))− (2β0 + θ)PO + t(β0 + 2θ)C(α(PO, PO)) = 0,

with 2POhwδe−δα
O

= cαO, implying the following result in terms of the equilibrium price PO and the

entertainment level αO in Model D-SE:

2δhw
(
D(αO) + t(β0 + 2θ)C(αO)

)
− (2β0 + θ)cαOeδα

O

= 0, PO =
D(αO) + t(β0 + 2θ)C(αO)

2β0 + θ
,

where αO = α(PO, PO).

Correspondingly, the arrival rate, the profit, and the utilization of each service provider under co-opetition

are λO = βD(αO)−t(β2−θ2)C(αO)

2β−θ , πO = POλO − 1
2
C(αO)− γ

w
, and ρO = 1− 1

wλO+1
, respectively. Q.E.D.

Proof of Corollary 6. For ease of exposition, we define

V (α) = 2 (D(α) + t(β0 + 2θ)C(α))hwδ− (2β0 + θ)cαeδα. (13)

We have from (13) that ∂V (α)

∂t
> 0. The derivative of V (α) with respect to α is

∂V (α)

∂α
= 2hwδ[hwδe−δα + t(β0 + 2θ)cα]− (2β0 + θ)(ceδα + cαδeδα),
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and with V (0)> 0, we conclude ∂V (α)

∂α
|α=αO ≤ 0. Thus, we have

∂αO

∂t
=− ∂V (α)/∂t

∂V (α)/∂α

∣∣∣
α=αO

≥ 0.

It is straightforward from Proposition 3 that PO also increases in t. Q.E.D.

Proof of Proposition 4. Denote V (α, t) = 2δhw (D(α) + t(β0 + 2θ)C(α))−(2β0 +θ)cαeδα, and the profit under

co-opetition as ΠO = π(t,αO), which can be rewritten as

π(t,αO) =
(β0 + θ)[D(αO)]2

(2β0 + θ)2
+
κ(t, θ,αO)

(2β0 + θ)2
− 1

2
C(αO)− γ

w
,

where

κ(t, θ,αO) = t(β0 + 2θ)C(αO)
[
θD(αO)− tβ0(β0 + 2θ)C(αO)

]
,

and D(αO) =A−hwe−δαO . Clearly, αO depends on t. Then, the derivative of π(t,αO(t)) with respect to t is

given as
dΠO

dt
=
∂π(t,αO)

∂t
+
∂π(t,αO)

∂α

∂αO

∂t
.

We first argue that αO increases in t. We have V (αO, t) = 0 and V (0, t)> 0. Then, ∂V (α,t)

∂α
|α=αO < 0. By the

implicit function theorem, we have

∂αO

∂t
=− ∂V (α, t)/∂t

∂V (α, t)/∂α
|α=αO > 0,

because ∂V (α,t)

∂t
> 0, which implies

∂αO

∂t
> 0.

We have
∂π(t,αO)

∂t
=

(β0 + 2θ)C(αO) [θD(αO)− 2tβ0(β0 + 2θ)C(αO)]

(2β0 + θ)2

and

∂π(t,αO)

∂α
=

1

(2β0 + θ)2

{
hwδe−δα

O [
2(β0 + θ)D(αO) + θt(β0 + 2θ)C(αO)

]
+ t(β0 + 2θ)cαO

[
θD(αO)− 2tβ0(β0 + 2θ)C(αO)

]}
− 1

2
cαO.

From the optimality condition of αO, we have

2t(β0 + 2θ)C(αO) =
(2β0 + θ)cαOeδα

O − 2δhwD(αO)

δhw
,

which gives

∂π(t,αO)

∂t
=

(β0 + 2θ)C(αO)
[
δhwD(αO)−β0cα

Oeδα
O
]

δhw(2β0 + θ)
,

and

∂π(t,αO)

∂α
=
δhwD(αO)−β0cα

Oeδα
O

(2β0 + θ)

{
e−δα

O

+
(2β0 + θ)cαOeδα

O − 2δhwD(αO)

αOδ2(hw)2

}
.

Thus, if δhwD(αO) − β0cα
Oeδα

O
> 0, then ∂π(t,αO)

∂α
> 0 and ∂π(t,αO)

∂t
> 0, and thus dπ(t,αO)

dt
> 0. That is,

the equilibrium profit under co-opetition increases in t; otherwise, the equilibrium profit under co-opetition

decreases in t.
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To show a unique cost-sharing factor t∗ exists, we proceed as follows. Denote ϕ(α) = δhwD(α)−β0cαe
δα,

with

∂ϕ(α)

∂α
= δ2(hw)2e−δα−β0ce

δα−β0δcαe
δα,

∂2ϕ(α)

∂α2
=−δ3(hw)2e−δα− 2β0δce

δα−β0δ
2cαeδα < 0;

that is, ϕ(α) is concave in α. Because ϕ(0) > 0, a unique α∗ exists such that ϕ(α∗) = 0. By ∂αO

∂t
> 0, we

conclude a unique t∗ exists where

θD(α∗) = 2t∗β0(β0 + 2θ)C(α∗),

such that if t ∈ [0, t∗), αO < αC , implying ϕ(αO) > 0, and if t > t∗, αO > α∗, implying ϕ(αO) < 0. Thus, if

t∈ [0, t∗), πO(t,αO) increases in t, whereas if t > t∗, πO(t,αO) decreases in t, and πO(t,αO) is maximized at

t∗ with αO = α∗. Q.E.D.

Proof of Proposition 5. The derivative of V (α) with respect to θ is given as

∂V (α)

∂θ
= 4hwδtC(α)− cαeδα,

and with ∂V (α)

∂α
, we have

∂αO

∂θ
=− ∂V (α)/∂θ

∂V (α)/∂α

∣∣∣∣
α=αO

=− 4hwδtC(α)− cαeδα

2hwδ[hwδe−δα + t(β0 + 2θ)cα]− (2β0 + θ)(ceδα + cαδeδα)

∣∣∣∣
α=αO

.

Because ∂V (α)

∂α
|α=αO ≤ 0, if 4hwδtC(αO)− cαOeδαO ≥ 0, then ∂αO

∂θ
≥ 0; that is, αO increases in θ. Because

PO = cαOeδα
O

2hwδ
, we have

∂PO

∂θ
=
ceδα

O
+ cαOδeδα

O

2hwδ

∂αO

∂θ
≥ 0,

if ∂αO

∂θ
≥ 0.

From the condition of t∗, we have

2δhwθD(αO)

β0(β0 + 2θ)
= 4δhwt∗C(αO).

By the condition of αO, we have

cαOeδα
O

=
2δhw(D(αO) + t∗(β0 + 2θ)C(αO))

2β0 + θ
,

which implies if θ≤ β0, then

2δhwθD(αO)

β0(β0 + 2θ)
≤ 2δhw(D(αO) + t(β0 + 2θ)C(αO))

2β0 + θ
;

that is, 4δhwt∗C(αO)≤ cαOeδαO , or 2δhwt∗αO − eδαO ≤ 0. Q.E.D.

Proof of Proposition 6. We first prove that given the same θ, PO ≥ PC and αO ≥ αC . Recall the equilibrium

entertainment level in competition αC satisfies

G(αC) = δH(A−hwe−δαC )− (2β0 + θ)cαCeδα
C

= 0,

and the equilibrium entertainment level in co-opetition αO satisfies

V (αO) = 2δhw
(
A−hwe−δαO + t(β0 + 2θ)C(αO)

)
− (2β0 + θ)cαOeδα

O

= 0.
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For any t > 0, we have G(0) < V (0), and for any α ≥ 0, V (α) > G(α) and V ′(α) > G′(α), which indicates

αO >αC . Because PO = D(αO)+t(β0+2θ)C(αO)

2β0+θ
and PC = D(αC)

2β0+θ
, with αO ≥ αC , we have PO >PC .

Based on Proposition 4, we now argue a tc exists in the proposition. If t= 0, that is, each service provider

splits the entertainment cost equally, then the co-opetition case is equivalent to the competition case in

which each service provider’s entertainment cost is only 1
2
C(α), given α. Thus, each service provider’s profit

under co-opetition with t = 0 is always larger than in competition. Because the equilibrium profit under

co-opetition ΠO decreases in t > t∗, a threshold tc exists such that if 0≤ t < tc, ΠO >ΠC , whereas if t≥ tc,

ΠO ≤ΠC . Q.E.D.

Proof of Proposition 7. If t= 0, the equilibrium entertainment level αO under co-opetition satisfies

2δhwD(αO)− (2β0 + θ)cαOeδα
O

= 0,

and the price is PO = D(αO)

2β0+θ
. The profit in equilibrium is

ΠO =
(β0 + θ)[D(αO)]2

(2β0 + θ)2
− 1

2
C(αO)− γ

w
.

Similarly to the proof in Proposition 2, αO, PO and ΠO decrease in θ.

Because when t= 0, ΠO decreases in θ, and when t= 0 and θ = 0, ΠO > πM , a threshold θc exists such

that if θ ∈ [0, θc], ΠO ≥ΠM , whereas if θ > θc, ΠO <ΠM . Q.E.D.

We now present a lemma that will be used for the proof for Proposition 8.

Lemma 1. If θ= 0, a threshold tm exists such that if t > tm, the profit under co-opetition is smaller than

in the monopoly case.

Proof of Lemma 1. If θ= 0, under co-opetition in equilibrium, the entertainment level is solved by

V (αO) = 2
(
D(α) + tβ0C(αO)

)
hwδ− 2β0cα

Oeδα
O

= 0,

and the price and the profit are given as

PO =
D(αO) + t(β0 + 2θ)C(αO)

2β0 + θ
, ΠO =

[D(αO)]2− t2β2
0 [C(αO)]2

4β0

− 1

2
C(αO)− γ

w
.

We denote ΠO = π(t,αO), and its derivative with respect to t is calculated as

dΠO

dt
=
∂π(t,αO)

∂t
+
∂π(t,αO)

∂α

∂αO

∂t
.

In addition,

∂π(t,αO)

∂α
=
e−δα

O

4β0

[
2hwδD(αO)− 2t2β2

0C(αO)cαOeδα
O − 2β0cα

Oeδα
O
]
.

Because αO satisfies V (αO) = 0, we conclude ∂π(t,αO)

∂α
< 0, which, together with ∂π(t,αO)

∂t
< 0, implies dΠO

dt
< 0;

that is, ΠO decreases in t. If t= 0 and θ = 0, ΠO is the optimal profit where two service providers split the

entertainment cost, implying ΠO > πM . Therefore, a threshold tm exists such that if t ∈ [t, tm], ΠO ≥ πM ,

whereas if t > tm, ΠO <πM . Q.E.D.
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Proof of Proposition 8. Using Propositions 1 and 3, we have αM satisfies F (αM) = δhwD(αM) −
2β0cα

Meδα
M

= 0, or F (αM) = δhwD(αM)(1 + θ
2β0

) − (2β0 + θ)cαMeδα
M

= 0; and αO satisfies V (αO) =

2 (D(αO) + t(β0 + 2θ)C(αO))hwδ− (2β0 + θ)cαOeδα
O

= 0. We have

F (αM)−V (αM) =D(αM)(
θ

2β0

− 1)− 2t(β0 + 2θ)C(αM).

Therefore, if θ ≤ 2β0, F (αM) − V (αM) ≤ 0, V (αM) ≥ 0. Because V (αO) = 0 and V (0) > 0, we conclude

αO ≥ αM . Likewise, we can show that if θ > 2β0, αO <αM .

By Proposition 4, given θ, if

θD(αO) = 2t∗β0(β0 + 2θ)C(αO),

ΠO increases in t∈ [0, t∗], and decreases in t > t∗. By Lemma 1, if θ= 0, ΠO decreases in t, and by Proposition

7, if t= 0, ΠO decreases in θ. Obviously, the profit function ΠO is continuous in t or θ. Therefore, we conclude

that given θ, a threshold tm(θ) exists such that if t∈ [0, tm(θ)], the profit in the case of co-opetition is larger

than in the case of monopoly, and vice versa. Q.E.D.

Proof of Proposition 9. Because the profit function is jointly concave in p and α, using the first order condition

∂π

∂p
=B+ δα− 2β0p= 0,

∂π

∂α
= pδ− cα= 0,

the optimal price and entertainment level can be derived as in Proposition 9. Q.E.D.

Proof of Proposition 10. We can obtain the equilibrium service fee and entertainment level by jointly solving

piδ− cαi = 0,

pjδ− cαj = 0,

B+ δαi + θpj − 2(β0 + θ)pi = 0, and

B+ δαj + θpi− 2(β0 + θ)pj = 0.

Hence proposition 10. Q.E.D.

Proof of Proposition 11. The equilibrium price and entertainment level can be solved by the following equation

system:

(pi + pj)δ− cα = 0,

B+ δα+ θpj − 2(β0 + θ)pi + piδα
′
i + t(β0 + 2θ)C(α)−φ(pi, pj)cαα

′
i = 0,

B+ δα+ θpi− 2(β0 + θ)pj + pjδα
′
j + t(β0 + 2θ)C(α)−φ(pj , pi)cαα

′
j = 0,

where the second and the third equations are derived by the first order condition.

Adding up the second and the third equations, with φ(pi, pj)+φ(pj , pi) = 1, in the symmetric equilibrium,

the optimal entertainment level, denoted as αO, satisfies B+δα− cα
2δ

(2β0 +θ)+ 1
2
cα2t(β0 +2θ) = 0, at α= αO.

Q.E.D.

Proof of Corollary 8. In equilibrium, each firm will share half of the entertainment cost, and the profit for

each firm is

πO = pO(B+ δαO −β0p
O)− 1

4
c(αO)2.

By the first-order condition, αO = δB
β0c−δ2

, and substituting αO into the condition in Proposition 11, the

optimal t∗ can be solved. Q.E.D.
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