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Abstract

In this dissertation, we study whether individuals with differing interests are

able to achieve a socially efficient outcome in the presence of incomplete in-

formation about the others. Unlike the case of complete information, an indi-

vidual’s decision may reveal his private information, thereby impinging on the

others’ decisions. This signaling aspect of one’s decision would force a decision

maker to take account of what others would come to know about his private

information. Studying this feature leads us to a rigorous examination, first of

all, of how the notion of information ought to be understood and thus to be

mathematically formulated; and secondly, of how this signaling aspect reduces

the range of achievable efficient decision rules relative to the case of complete

information.

In the first chapter titled “Formalization of Information: Knowledge and

Belief”, we engage in the first task by studying the issue Billingsley (1995)

and Dubra and Echenique (2004) raise about the use of σ-algebra to model

information. They provide an example to show that the formalization of in-

formation by σ-algebras and by partitions need not be equivalent. Although

Hervés-Beloso and Monteiro (2013) provide a method to generate a σ-algebra

from a partition and another method for going in the opposite direction, we

show that their two methods are in fact based on two different notions of infor-

mation: (i) information as belief, (ii) information as knowledge. If information

is conceived to allow for falsehood, case (i) above, the equivalence between σ-

algebras and partitions holds after applying the notion of posterior-completion

suggested by Brandenburger and Dekel (1987). If information is conceived not
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to allow for falsehood, case (ii) above, the equivalence holds only for measurable

partitions and countably-generated σ-algebras.

In the second chapter titled “Common Knowledge and Efficiency with In-

complete Information”, we engage in the second task. Holmström and Myerson

(1983) show that we need only check for efficiency on common knowledge events

to determine that an incentive compatible decision rule is efficient. By a sharper

notion of common knowledge, based on the notion of posterior-completion de-

scribed in the first chapter, we show that we need only check for efficiency in

a strict subset of common knowledge events known as self-evident events and

furthermore, that this is the minimal class of events that one needs to check.

In the third chapter titled “Mediator Selection in International Conflict:

Bias, Effectiveness, and Incidence”, we adapt the question of achieving effi-

ciency to the context of international conflicts and mediation. As war incurs a

cost, an efficient outcome is thus a peaceful one in this context. We allow for

disputants to make a joint decision whether to accept a potentially biased me-

diator who would communicate with them and propose a decision rule on their

behalf. This extends the mechanism design problem of Hörner et al. (2015) to

allow for mediator bias and its endogenous determination. Our main finding is

that both disputants would accept a biased mediator if war is highly likely to

occur in a conflict and the mediator’s bias is moderate. More importantly, once

a mediator has been accepted, the probability of attaining peace is independent

of the intensity of her bias: because war is inefficient, the interest of the medi-

ator’s favored disputant is best served by promoting peace.

Advisors: Ying Chen, M. Ali Khan
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Chapter 1

Formalization of Information:

Knowledge and Belief

1.1 Introduction

In any model that deals with a decision maker (henceforth DM) facing uncer-

tainty, the DM’s information is often described by either a signal (equivalently,

a random variable), a partition or a σ-algebra. Specifically, one signal is more

informative than another if it is sufficient in Blackwell’s sense for another; one

partition is more informative than another if it is finer; a σ-algebra is more infor-

mative than another if it is larger.1 A natural question is whether all these three

orderings can be equivalently used to represent information. In other words, it

is to ask whether there is a mapping from one category of representation to

another while preserving the ordering in the two categories that are being used.

The answer to this question had been understood to be positive. Nevertheless,

as we shall see below, the understanding is far from complete.

1For a pair of partitions, the strictly finer partition distinguishes more elements, implying
that a DM can say more accurately about the true state (the state in which she lies). For a
pair of σ-algebras, the larger one contains more sets. For larger number of sets, a DM is able
to say whether it contains the true state or not, thus having more information.
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Billingsley (1995) raises concerns that partitions and σ-algebras may not

always be equivalently used by presenting a simple but powerful example: a

unit interval is given as the state space equipped with the Lebesgue measure.

A partition that consists of every singleton indicates that the DM knows ex-

actly in which state she lies. On the contrary, the smallest σ-algebra generated

by the partition implies that the DM is totally ignorant, for it contains count-

able or co-countable sets that are of Lebesgue measure zero.2 In addition,

Dubra and Echenique (2004) highlight Billingsley’s concern by embedding his

example in the context of a decision problem. They consider another partition

that contains only two cells. This partition is obviously less informative than

the partition in Billingsley’s example. However, if one compares the expected

utility values conditional on the smallest σ-algebras generated by those parti-

tions, the value based on the two-cell partition is larger. That is, the σ-algebra

generated by the two-cell partition is more informative.

In response to these cautionary warnings, Hervés-Beloso and Monteiro (2013)

(henceforth HM) argue that one may disregard them. By taking a partition as a

primitive representation of information, they introduce a notion of an informed

set which corresponds to a (possibly uncountable) union of partition cells. The

collection of all informed sets is indeed a σ-algebra. If one generates σ-algebras

in this way, a strictly finer partition always yields a larger σ-algebra. Arguably,

the collection of informed sets represents the informational content of a given

partition. To establish the equivalence between partitions and σ-algebras, they

also suggest another method of deriving a partition from a given σ-algebra.

2By the smallest σ-algebra generated by the partition, we mean that the σ-algebra contains
all the complements and the countable unions of partition cells.
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Given a measure space equipped with a strongly-Blackwell σ-algebra, HM sug-

gest to form a partition by collecting atoms of a σ-algebra if it is countably-

generated.3 If not, they suggest to consider a countably-generated σ-algebra

that differs from the given σ-algebra by null sets.4 This implies, although HM

do not so explicitly argue, that the informational content of a σ-algebra is cap-

tured by the corresponding countably-generated σ-algebra.

In this paper, our primary goal is to show that HM leave unsettled the follow-

ing question, “What is the information (equivalently, the informational content)

preserved when one generates a σ-algebra from a partition or when one goes in

the opposite direction?” HM claim that it is the collection of informed sets, and

they interpret the notion of an informed set to denote the set of which occurrence

(or non-occurrence) a DM knows. This naturally leads one to ask a question

about the difference between what one merely knows and what one is informed

of. Unfortunately, however, HM are silent on this question. In addition, the in-

formational content, as HM claim, is also captured by the countably-generated

σ-algebra that differs from a σ-algebra by null sets. This implies that if both a

partition and a σ-algebra contain the same informational content, the collection

of informed sets of the partition must be countably-generated. We present a

counterexample in which this is not the case (Example 5). Furthermore, the col-

lection of informed sets of a partition may contain non-measurable sets, because

the informed sets do not depend on a given measurable space. We show that

3A countably generated σ-algebra is the smallest σ-algebra generated by a collection of
countably many subsets of the state space.

4A null set is a set to which a DM ascribes zero probability. HM refers to it as a negligible
set of states.
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this indeed happens in Billingsley’s example (Example 4). This poses a tech-

nical impossibility of defining a probability measure on the non-measurable set

when computing the expected utility value as in Dubra and Echenique (2004),

not to mention a conceptual difficulty of how to understand that a DM is in-

formed about a set lying outside the event space.5 More importantly, HM’s

treatment provides a contradictory answer about whether a probability mea-

sure conveys any informational content or not. As noted, informed sets of a

partition is invariant to any choice of a measure space and a measure defined on

it. This suggests that a probability measure does not convey any information.

Contradictorily, a probability measure conveys information if one considers the

informational content embodied in a σ-algebra, as it is unique up to null sets.

The secondary goal of this paper is to tackle these issues and to establish

an equivalence relationship between a partition and a σ-algebra in representing

information. Our innovation is to bring out with especial salience the two

distinct notions of information, knowledge and belief, that are well-recognized

among researchers working in epistemic logic and game theory.6 The distinction

lies in whether information is conceived to be factual or not. To elaborate, if one

insists that information cannot be false in order to distinguish it from a rumor,

then he conceives information to arise from knowledge. On the contrary, if one

allows for the possibility that information may turn out to be false, then he

conceives information to arise from belief.
5The existence of non-measurable sets can be addressed by Theorem 4 and the following

Remark 3 in HM. However, the notion of an informed set, as it is defined in HM, fails to
accommodate this: the collection of informed sets in Billingsley’s example, according to HM,
is the power set even when the underlying σ-algebra is strongly Blackwell (See Example 4 in
HM). In fact, we propose the notion of an informed event to accommodate Theorem 4 and
Remark 3 in HM.

6See, for example, Aumann (1999a,b), Maschler et al. (2013), and Meyer (2003).

4



The advantage of bringing out these two notions of information is that each

notion, either knowledge or belief, is formally defined as an operator from a mea-

surable space (or, equivalently, an event space) to itself that satisfies a certain

set of axioms (Definition 4, 5). One can thus see easily whether a mathematical

object such as a partition and a σ-algebra qualifies for being a formalization

of information (as knowledge/belief), by inspecting the relationship between

a knowledge/belief operator to the mathematical object of one’s interest. By

taking advantage of the two notions, we resolve the issues that HM leave open.

Firstly, we show that the notion of an informed event imposes a counterfactual

restriction on that of knowledge/belief. To be specific, we define a K-informed

event for information as knowledge, and a B-informed event for information as

belief. An informed event requires that if one knows/believes whether an event

occurs or not at one state, then he must know/believe it even in a hypothetical

situation that he lies at other states (Example 3). Secondly, we show that the

collection of K-informed events is the restriction of the collection of informed

sets (defined by HM) to a measurable space, thereby resolving the issue regard-

ing the presence of non-measurable set (Lemma 3). This is immediate from the

definition of knowledge/belief being an operator from a measurable space to

itself.

Turning to the remaining issues, we show that if one conceives information

as knowledge, measurable partitions and countably-generated σ-algebras can be

used interchangeably to formalize information (Theorem 4). This implies that

the preserved informational contents are the K-informed events of measurable

partitions. Moreover, it also reveals that probability does not convey any infor-

mation, for the K-informed event is invariant to a specific choice of a probability
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measure.

A further question is whether we need restrict the use of partitions or σ-

algebras only to the case where partitions are measurable or σ-algebras are

countably-generated. We argue that if one conceives information as belief, we do

not need such a restriction. By adopting the technique of posterior-completion7

proposed by Brandenburger and Dekel (1987), we show that if the posterior-

completion of a σ-algebra is larger then the posterior-completion of a partition

is strictly finer, and vice versa. Then, what is the informational content in this

case? We argue that the informational content is indeed the collection of B-

informed events, and it depends on a specific choice of a probability measure.

Specifically, a proper regular conditional probability (either directly from a σ-

algebra or from the smallest σ-algebra generated by a partition) captures the

notion of belief. More importantly, the collection of B-informed events is the

posterior-completion of a given σ-algebra. Since B-informed events are defined

in relation to a given probability measure, probability conveys information.

The paper is structured as follows: we present preliminary definitions in-

cluding the notions of knowledge and belief in Section 2. In Section 3, under

the conception of information as knowledge, we establish an equivalence be-

tween measurable partitions and countably-generated σ-algebras in formalizing

information. Moreover, we discuss the issues regarding the notion of informed

sets as formalized by HM. Section 4 consists of an equivalence result under the

conception of information as belief. Then, we conclude in Section 5.

7The posterior-completion of a σ-algebra is to create the smallest σ-algebra by adding
events that are either measure zero or one with a proper regular conditional probability
measure, into a given σ-algebra. The posterior-completion of a partition is to add in those
events to the partition.
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1.2 Preliminaries

Partitions and σ-algebras Let (Ω,F) be a measurable space, where Ω is a

nonempty set of states endowed with a σ-algebra F , so-called the event space.

Measurable sets of the σ-algebra F are called events. We assume that Ω is a

complete separable metric space, and the event space F is a strongly Blackwell

σ-algebra.8 The complement of an event E is denoted by ¬E.

Definition 1. Let X and Y be partially ordered sets (posets) with the partial

orderings �X and �Y . A mapping Φ : X → Y is an order isomorphism if Φ

is bijective and preserves order in the following sense: x �X x′ ⇐⇒ Φ(x) �Y

Φ(x′). If such an order-isomorphism exists, X and Y are said to be order-

isomorphic.

Definition 2 (Partition). Let (Ω,F) be given. A collection of nonempty events

is called a partition and denoted by Π if it satisfies the following:

(1) ∪{E|E ∈ Π} = Ω;

(2) If E,F ∈ Π and E 6= F , then E ∩ F = ∅.

Note that we define a partition to be a collection of events (or, equivalently,

measurable sets). Let Πω denote an element of Π containing a state ω, and it

is unique. For two partitions Π and Π′, we say that Π is finer than Π′, denoted

by Π �P Π′, if for each ω ∈ Ω, Πω ⊆ Π′ω. Let P be a collection of all partitions

of Ω. Then, �P is a partial ordering on P and (P,�P ) is a partially ordered set

(poset).

8A σ-algebra is a strongly Blackwell σ-algebra if it is separable and every two countably
generated sub-σ-algebras with the same atom coincide.
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Definition 3 (Sub-σ-algebra). Let (Ω,F) be given. A sub-σ-algebra G is a

sub-collection of events satisfying the following two properties:

(1) Closed under complements: for any E ∈ G, ¬E ∈ G.

(2) Closed under countable unions: for any countable number of events {Ei}i∈I
with Ei ∈ G, ∪i∈IEi ∈ G.

For a σ-algebra G and a state ω ∈ Ω, an atom A(ω,G) = ∩{G ∈ G|ω ∈ G}

is the smallest set containing ω in a σ-algebra G. Whenever G is obvious, we

simply denote it by Aω.

Let Σ be a collection of all sub-σ-algebras of Ω. A sub-σ-algebra G is larger

than H if for every E ∈ H, E ∈ G. This naturally defines a partial ordering �σ

on Σ such that for two sub-σ-algebras G and H, G �σ H if G is larger than H.

Then, (Σ,�σ) is a poset.

For the two posets (P,�P ) and (Σ,�σ), define a mapping F : (P,�P ) →

(Σ,�σ) such that for Π ∈ P , F (Π) is the smallest σ-algebra generated by the

partition cells of Π. Then, as the following example from Billingsley (1995)

shows, F is not an (order) isomorphism.

Example 1 (Billingsley). Let Ω = [0, 1] ⊂ R endowed with a Borel σ-algebra

F . Let Π = {{ω}|ω ∈ Ω} and Π′ = {
[
0, 1

2

)
,
[

1
2
, 1
]
}. Then, F (Π) = {E ∈

F| either E or ¬E is countable} and F (Π′) = {∅,
[
0, 1

2

)
,
[

1
2
, 1
]
,Ω}. Clearly, Π

is finer than Π′ (Π �P Π′). However, neither σ-algebra is larger than the other:

neither F (Π) �σ F (Π′) nor F (Π′) �σ F (Π).

Belief and Knowledge The following definitions are standard in the litera-

ture on epistemic logic and game theory. For example, see Aumann (1999a,b),
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Maschler et al. (2013), and Meyer (2003).

Definition 4 (Belief). Let (Ω,F) be given. An operator B : F −→ F is said

to be a belief if B satisfies the following axioms:

A1 Conjunction: For any countable index set I and events {Ei}i∈I with

∩i∈IEi ∈ F , ∩i∈IB(Ei) = B(∩i∈IEi).

A2 Consistency: B(E) ∩B(¬E) = ∅.

A3 Positive introspection: B(E) ⊆ B(B(E)) for E ∈ F .

A4 Negative introspection: ¬B(E) ⊆ B(¬B(E)) for E ∈ F .

For ω ∈ Ω and E ∈ F , ω ∈ B(E) is read as “A DM believes an event E at a

state ω.” Therefore, for an event E, B(E) is an event that whenever it occurs,

the DM believes that the event E occurs. In this sense, B(E) is the event that

is an evidence based on which the DM believes E.

Definition 5 (Knowledge). Let (Ω,F) be given. An operator K : F −→ F

is said to be knowledge if it satisfies the axioms of a belief operator and the

following additional axiom:

A5 Non-delusion: K(E) ⊆ E for E ∈ F .

Note that a knowledge operator K is also a belief operator, but the converse

does not hold in general. In what follows, we shall use B to denote a belief

operator and K a knowledge operator. Similarly to the case of belief, we say

that the DM knows at ω that the event E occurs, or simply that the DM knows

E at ω if ω ∈ K(E).

Any belief operator B satisfies the following properties:

9



A6 Necessitation: B(∅) = ∅.

A7 Monotonicity: E ⊆ F implies B(E) ⊆ B(F ).

The proof is easy, so we omit it.9 Given a belief operator, one can completely

describe what the DM believes at each state, or his doxastic status. Similarly, a

knowledge operator specifies what the DM knows at each state, or his epistemic

status. If one chooses a different belief (or knowledge) operator, it indicates

a different doxastic (or epistemic) status as it is illustrated in the following

example.

Example 2. Let Ω = {ω1, ω2} and F = 2Ω. Consider two knowledge operators,

K and K ′ such that K({ω}) = {ω} for ω ∈ Ω, and K ′({ω}) = ∅. Let ω be

the true state. For any event E with ω ∈ E, ω ∈ K(E) but ω 6∈ K ′(E) unless

E = Ω. The knowledge operator K thus implies that a DM knows all the events

that actually occur at the true state. On the contrary, K ′ indicates that the

DM does not know any event that occurs, except for that the state space Ω

itself occurs.

Note that the notion of belief and thus of knowledge rely on the event space

F . Although the definitions given in this paper are standard in the literature

on epistemic logic and game theory, this reliance may raise an issue about why

some sets of states, if they lie outside the event space, are precluded from being

the subjects of belief and knowledge. This issue becomes trivial if the event

space is given as the powerset. Hence, we shall focus on the case where the

event space is strictly smaller than the powerset. Then, a natural question

arises. What is the meaning of an event if it does not merely mean a set

9Interested readers may see, for example, Bacharach (1985).
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of states? Before answering this, one cannot understand why the set of states

being an event is essential in defining the notion of belief and thus of knowledge.

Unfortunately, however, there is no consensus about why some sets of states are

not events. Savage (1972) thus insists the event space to be the powerset, but for

a technical need to define a countably additive probability measure, the event

space is required to be smaller as in Arrow (1966). Shafer (1986) interprets this

restriction as complexity of describing states, thus of comparing acts. Villegas

(1964), implicit though, takes this point by taking events to be a primitive of

uncertainty. Taking Shafer’s point of view, we interpret the event space to be

the collection of sets of states which the DM is able to recognize.10 Accordingly,

sets of states lying outside the event space are not recognizable to the DM. As

the DM cannot believe/know those that he cannot recognize, we may preclude

those sets of states from being the subjects of belief and thus of knowledge.

Now, we define an informed event.

Definition 6 (Informed event). For a belief operator B : F −→ F , an event

E ∈ F is an B-informed event if B(E)∪B(¬E) = Ω. Similarly, for a knowledge

operator K, an event E ∈ F is said to be K-informed event. A DM is said to be

B-informed (K-informed, resp.) about an event E at ω if E is an B-informed

(K-informed, resp.) event and ω ∈ B(E) (ω ∈ K(E), resp.).

The above definition draws a distinction between what one knows/believes and

what one is informed about. Although he knows/believes the event, he may

not be informed about it. For him to be informed, he must know either the

10This interpretation is similar to the view in Heifetz et al. (2006). They consider events
to be “those that can be “known” or be the object of awareness.” For more discussion about
the conception of an event, see Al-Najjar (2009).
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event occurs or not at any state. This requires that the DM has counterfactual

knowledge/belief about the event. To illustrate this possibilities, consider a

variant of Example 2.3 in Halpern (1999).

Example 3. Bob is in a room with the light on. The door is painted either

red or blue, and he can tell which color. However, he might not have distin-

guished the colors, had the room been dark. Formally, there are four states,

{(red, off), (blue, off), (red, on), (blue, on)}, where (red, off) denotes a state

in which the door is red and the light is off, and the other states can be similarly

interpreted. Let RED, BLUE, ON, and OFF be the events that the door is red,

the door is blue, the light is on, and the light is off. Let K be the knowledge

operator describing Bob’s knowledge. Then, K(ON) = ON , K(OFF ) = OFF ,

K(RED) = {(red, on)}, and K(BLUE) = {(blue, on)}. Suppose that only the

event RED is of an agent’s interest, and the realized state is (red, on). As a

consequence, Bob knows that the event RED occurs. Were the realized state to

be (red, off), however, he would have not known that RED occurs, nor does

BLUE = ¬RED occur. For K(RED) ∪K(¬RED) = ON 6= Ω, RED is not

an informed event. Therefore, Bob is not informed of the event RED.

In this example, an event ON is a K-informed event. At the state (red, on), an

agent knows that the light is on. In addition, he would know whether the light

is on or off, even in his imagination that any other state might have occurred.

The following lemma shows that a K-informed event is sufficient for a DM

to know itself. In this sense, a K-informed event represents information.

Lemma 1. Let E be a K-informed event. Then, E is self-evident11: E = K(E).

11This term originates in Aumann (1999a). Whenever a self-evident event occurs, it informs
the DM of its occurrence. The self-evident event, therefore, is the knowledge about itself.
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Proof. Suppose that E is a K-informed event, i.e. K(E)∪K(¬E) = Ω. By A5,

K(E) ⊆ E, so it suffices to show that E ⊆ K(E). By A2, K(E) ∩K(¬E) = ∅

and thus ¬K(E) = K(¬E). Again by A5, ¬K(E) = K(¬E) ⊆ ¬E. Thus,

E ⊆ K(E).

By definition of knowledge and belief, it is easy to see that a K-informed event

is a B-informed event, but not every B-informed event is a K-informed event.

Moreover, a B-informed event is not necessarily self-evident.

1.3 Representation of Information as Knowl-

edge

We first present a well-known result on the relationship between a partition and

a knowledge operator.

Lemma 2. For a partition Π ∈ P , define KΠ(E) = {ω|Π(ω) ⊆ E} for each

E ∈ F . Then, KΠ satisfies A1-A5. For an operator K : F → F satisfying

A1-A5, define a partition ΠK = {ΠK(ω)|ω ∈ Ω}, where ΠK(ω) = ∩{E ∈

F|ω ∈ K(E)}. Then, Π = ΠKΠ
.

For the proof, see Aumann (1999a). According to the above lemma, a K-

informed event can be defined with respect to a partition in the following way:

E is a K-informed event with respect to a partition Π if E = KΠ(E). By

adapting the notion of a K-informed event to a partition, we can compare our

notion of a K-informed event directly with HM’s notion of an informed set. For

comparison, we present HM’s notion of an informed set.

Definition 7 (Informed set in HM). A set E ⊆ Ω is an informed set defined
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by a partition Π if for every F ∈ Π, either F ⊆ E or F ⊆ ¬E. The collection

of informed sets of Π is denoted by IΠ.

The definition of an informed set by HM is related to ours by the following

lemma. Let FΠ denote the collection of K-informed events adapted to a parti-

tion Π.

Lemma 3. Let (Ω,F) be given. For a partition Π, let IΠ denote a collection

of its informed sets defined by HM, and let FΠ denote a collection of its K-

informed events. Then, FΠ = IΠ ∩ F . Moreover, FΠ is a sub-σ-algebra of

F .

The collection of informed sets by HM does not have to be a sub-σ-algebra.

That is, there may exist an informed set that is non-measurable.

Example 4. Let Ω = [0, 1] equipped with a Borel σ-algebra, and let µ be the

Borel measure defined on it. Let Π = {{ω}|ω ∈ Ω} be a partition that contains

all singletons. Then, the collection of its informed sets IΠ is the powerset.

Obviously, this is larger than the Borel σ-algebra, and contains a well-known

non-measurable set, so-called Vitali set. See Royden (1988) for its definition.

Now, we investigate the relationship between a knowledge operator and a σ-

algebra. From the discussion on partitions, one can easily see that a knowledge

operator defines a σ-algebra. What is not clear is whether a σ-algebra may

define a knowledge operator. For our purpose, we need the following definition.

Definition 8 (Countably generated σ-algebra). A sub-σ-algebra G is countably

generated if there is a collection of countably many events U = {Ei|i ∈ N} such

that G is the smallest σ-algebra containing U.
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We show that a countably-generated σ-algebra also represents information

as knowledge.

Lemma 4. Let G be a countably-generated sub-σ-algebra. Define for an event

E ∈ F ,

K(E) = ∪{G ∈ G|G ⊆ E}.

Then, K is indeed a knowledge operator. Moreover, every event in G is a K-

informed event, i.e. K(G) = G for every G ∈ G.

Proof. To show that K is a knowledge operator, it suffices to show A1,A4 and

A5, because they implies the rest (Bacharach, 1985). For A1, let (Ei)i∈I be

given for a countable index set I. Then, ∩i∈IK(Ei) = ∪{∩i∈IGi ∈ G|Gi ⊆

Ei,∀i ∈ I} = ∪{∩i∈IGi ∈ G| ∩i∈I Gi ⊆ ∩i∈IEi} = K(∩i∈IEi). For A4, since

a countably-generated σ-algebra G is a sub-σ-algebra of a strongly Blackwell

σ-algebra F , it is closed under complements and arbitrary unions, and thus

¬K(E) ∈ G holds. Then, K(¬K(E)) = ∪{G ∈ G|G ⊆ ¬K(E)} = ¬K(E).

Lastly, A5 and the last claim that K(G) = G for G ∈ G trivially follow from

the definition of K.

As both partitions and countably-generated σ-algebras represent information

as knowledge, one may wonder whether they can be always equivalently used.

Unfortunately, however, this is not true.

Example 5. Let Ω = [0, 1] endowed with a Borel σ-algebra F . Let µ be the

Borel measure. Define a mapping φ : [0, 1] → [0, 1] such that for ω ∈ [0, 1],

φ(ω) = ω + α if ω + α ≤ 1 and φ(ω) = ω + α − 1 if ω + α > 1, where α is an

irrational number. Let ω ∼ ω′ be an equivalence relation on [0, 1] so that ω ∼ ω′
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if and only if φn(ω) = ω′ for some n ∈ N. Then, Π(ω) = {ω′|ω′ ∼ ω} is countable

and dense in [0, 1]. Moreover, the collection of these subsets Π = {Π(ω)|ω ∈

[0, 1]} is a partition of Ω. The informed events of this partition are well-known

to be φ-invariant measurable subsets of Ω and they have either measure 0 or

measure 1 (Cornfeld et al., 2012).12 Then, the collection of informed events FΠ

contains an atom of measure 1, which cannot be an element of Π, and thus it is

not countably-generated. Moreover, a partition Π′ generated by FΠ is not the

same as the partition Π.

The above example illustrates that if the collection of K-informed events from

a partition is not countably-generated, the partition generated by such a σ-

algebra does not preserve K-informed events when one goes from a σ-algebra to

a partition. Therefore, we restrict our attention to partitions whose collections

of K-informed events are countably-generated σ-algebras.

Definition 9. A partition Π is said to be measurable if FΠ is countably-

generated.

Let Σc be a sub-collection of Σ such that it contains all countably-generated

sub-σ-algebras. We naturally endow Σc with the partial ordering �σ restricted

to Σc. With a slight abuse of notations, write it also as �σ. Then, (Σc,�σ) is

a poset. Let PM denote a collection of all measurable partitions of Ω, endowed

with a partial ordering �P restricted to PM . Then, (PM ,�P ) is a poset. Now,

we have our first main result as follows:

12The collection of informed sets suggested by HM consists of φ-invariant subsets of Ω. The
collection includes non-measurable subsets, and the collection of informed events excludes
those non-measurable subsets as it is obvious from Lemma 3.

16



Theorem 1. The collection of measurable partitions (PM ,�P ) and the collec-

tion of countably-generated sub-σ-algebras (Σc,�σ) are order-isomorphic: De-

fine Φ : (PM ,�P ) → (Σc,�σ) such that for Π ∈ P , Φ(Π) = FΠ is a collection

of informed events. Define Ψ : (Σc,�σ)→ (PM ,�P ) such that for a countably-

generated sub-σ-algebra G ∈ Σc, Ψ(G) = {A(ω,G)|ω ∈ Ω} is a partition that

contains atoms of G. Then, the following properties hold.

(1) Φ is injective and order-preserving.

(2) Ψ is injective and order-preserving.

(3) Φ◦Ψ = IΣc and Ψ◦Φ = IPM , where IΣc and IPM are the identity functions

defined on Σc and PM , respectively.

Moreover, the informational content of a measurable partition Π or a countably-

generated sub-σ-algebra G is the collection of K-informed events, and a K-

informed set is defined by a knowledge operator K deriving from Π or G.

Remark 1. Note that an atom A(ω,G) of a countably-generated sub-σ-algebra

is an event (a measurable set) because a countably-generated sub-σ-algebra of a

strongly Blackwell σ-algebra F is closed under arbitrary unions as long as it is

measurable with respect to a larger σ-algebra. See Remark 3 of HM.

For comparison, we restate the result of HM in the following.

Lemma 5. Let (P,�P ), (Σ,�σ), and (Σc,�σ) be given. Define Φ : (P,�P

)→ (Σ,�σ) such that for Π ∈ P , Φ(Π) = FΠ is a collection of informed events.

Define Ψ : (Σc,�σ)→ (P,�P ) such that for a countably-generated sub-σ-algebra

G, Ψ(G) = {A(ω,G)|ω ∈ Ω} is a partition that contains atoms of G. Then, the

following holds.
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(1) Φ is injective and order-preserving.

(2) Ψ is injective and order-preserving.

(3) For G ∈ Σc, (Φ ◦ Ψ)(G) = G, i.e. Φ ◦ Ψ = IΣc, where IΣc is the identity

function defined on Σc.

For proof of Theorem 4, see HM.

Remark 2. Note that the codomain of Φ is Σ, not Σc. Due to the existence

of non-measurable partition, as we show in Example 5, Ψ ◦ Φ = IP does not

hold. That is, Φ cannot have Ψ as its inverse, thus (P,�P ) and (Σ,�σ) are

not order-isomorphic. The proof of Theorem 4 follows naturally from the above

lemma and the definition of a measurable partition.

We are concluding this section by showing how our result addresses the

problem identified in Billingsley’s example.

Example 6. Recall that in Billingsley’s example, Ω = [0, 1] endowed with a

Borel σ-algebra F . Let Π be the partition that contains every singleton. Then,

the collection of K-informed events corresponding to Π consists of every event

in F . As the measurable space (Ω,F) is assumed to be a complete separable

metric space, F is countably-generated. Therefore, the partition Π′ generated

from F by collecting all of its atoms is indeed the same as Π.

1.4 Representation of Information as Belief

In this section, we fix (Ω,F , µ), and we additionally assume that F is a Borel

σ-algebra. We first argue that the generical equivalence of σ-algebras as it is
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defined in HM indeed represents information as belief, not as knowledge. For

this purpose, we present some definitions.

Definition 10 (Generical Equivalence of σ-algebra). Any two sub-σ-algebras

G and H are generically equivalent with respect to a probability measure µ if

(1) for every G ∈ G, there is H ∈ H such that µ(G4H) = 0, and

(2) for every H ∈ H, there is G ∈ G such that µ(G4H) = 0.

Definition 11 (Proper Regular Conditional Probability). Let (Ω,F , µ) and

let G be a sub-σ-algebra. Then, a regular conditional probability is a function

Q : F × Ω→ [0, 1] satisfying the following:

(1) for each ω ∈ Ω, Q(·, ω) is a probability measure on F .

(2) for each E ∈ F , Q(E, ·) is a version of p(E|G) such that p(E|G) is G-

measurable and integrable, and
∫
G
p(F |G)dµ = µ(F ∩G) for all G ∈ G.

Moreover, the regular conditional probability Q is said to be proper if Q(E,ω) =

1E(ω) for each E ∈ G, where 1E(ω) = 1 if ω ∈ E, and 0 otherwise.

By our assumption on the measurable space (Ω,F), a proper regular conditional

probability exists (Blackwell and Ryll-Nardzewski, 1963).13 Now, we show that

one can define a belief operator by a proper regular conditional probability.

Lemma 6. Let G be a sub-σ-algebra, and let Q(E,ω) be a proper regular condi-

tional probability derived from the probability space (Ω,F , µ) and G. Define an

13This reveals why we need to restrict F to be a Borel σ-algebra, instead of being a strongly
Blackwell σ-algebra in this subsection. If F is not a Borel σ-algebra, a proper regular condi-
tional probability may not exist. See Shortt (1984).
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operator B : F → F such that for each event E ∈ F ,

B(E) = {ω ∈ Ω|Qω(E) = 1}.

Then, B satisfies A1-A4. That is, B is a belief operator.

For the proof, see Brandenburger and Dekel (1987). In the above lemma, G can

be any σ-algebra which, for example, can be the smallest σ-algebra generated

by a partition. Therefore, one can always define a belief operator regardless of

whether one starts from a partition or from a σ-algebra. Similarly to the case

of knowledge, we consider a collection of all B-informed events and denote it by

FQ
In general, B does not satisfy A5, i.e. B(E) ⊆ E does not necessarily hold.

Therefore, B is not a knowledge operator. Moreover, note that for each ω ∈ Ω,

Qω is not a complete measure on G as the following example illustrates.

Example 7. Let Ω = {ω1, ω2, ω3}, F = 2Ω, and a sub-σ-algebra G = {∅, {ω1, ω2}, {ω3},Ω}.

The probability measure µ is given as µ({ω1}) = µ({ω3}) = 0.5. Let E = {ω2}

and F = {ω1, ω2}. The posterior beliefs for E and F at ω3 can be calculated

as Q(F, ω3) = Q(E,ω3) = 0. On the measurable space (Ω,G), Qω3 is not a

complete measure, for E 6∈ G.

Motivated by this observation, Brandenburger and Dekel (1987) propose the

following:

Definition 12 (Posterior Completion). The posterior completion of a σ-algebra

G is the σ-algebra Ĝ generated by G and the class of sets {G ∈ G|Q(G,ω) =

0 for every ω ∈ Ω}. That is, Ĝ = {G ∈ G|Q(G,ω) = 0 or 1 for every ω ∈ Ω}

and it is said to be the posterior-completed σ-algebra.
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Although the definition takes a sub-σ-algebra as primitive, one can take a par-

tition as primitive as well by the following procedure: For a given partition Π,

generate the smallest σ-algebra containing the partition cells, say H, and then

apply the procedure described in the above definition to obtain the posterior-

completed σ-algebra Ĥ. Then, the posterior-completed partition Π̂ is the col-

lection of the atoms of Ĥ. As a matter of fact, the posterior completion of a

partition is to add in B-informed events. All these imply that the posterior-

completed σ-algebra is indeed a collection of all B-informed events. .

Lemma 7. Let G be a sub-σ-algebra, and let B be the resulting belief operator

(by Lemma 6). The posterior-completed σ-algebra of G is indeed a collection of

B-informed events:

Ĝ = {E ∈ F|B(E) ∪B(¬E) = Ω}.

By definition of the posterior-completed σ-algebra, the proof is obvious. In

Example 7, the posterior-completion leads to the powerset.

Define a binary relation ∼ such that for all two sub-σ-algebras G and H,

G ∼ H if Ĝ = Ĥ. It is not hard to see that this relation is an equivalence

relation. That is, the two sub-σ-algebras are considered to be equivalent if their

posterior-completed σ-algebras are identical. Now, we connect the notion of

generical equivalence to the notion of a posterior-completion.

Lemma 8. Any sub-σ-algebra is generically equivalent to its posterior-completion

with respect to the proper regular conditional probability measure Q.

Proof. Let G be a sub-σ-algebra, and let Ĝ be its posterior-completed σ-algebra

with respect to a proper regular conditional probability Q. Clearly, G ⊆ Ĝ. Take
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any event E ∈ Ĝ. If E ∈ G, it is trivial. Suppose that E 6∈ G. Then, for any

ω ∈ E, either Q(E,ω) = 0 or 1. If Q(E,ω) = 0, trivially there exists an empty

set in G satisfying Q(E4∅, ω) = 0. Otherwise if Q(E,ω) = 1, there exists an

event F ∈ G such that E ⊂ F and thus Q(F, ω) = 1. Hence, Q(E4F, ω) =

Q(F \ E,ω) = 0.

We are concluding this section by presenting our second main result that

establishes an equivalence between partitions and σ-algebras for representing

information as belief. Let P pc = P/∼ denote a collection of all posterior-

completion of partitions of Ω, endowed with a partial ordering �P restricted to

P pc.14 Then, (P pc,�P ) is a poset. Similarly, let Σpc = Σ/∼ denote a collection

of all posterior-completion of sub-σ-algebras, endowed with a partial ordering

�σ restricted to Σpc. Then, (Σpc,�σ) is a poset.

Theorem 2. The collection of all posterior-completed partitions (P pc,�P ) and

the collection of all posterior-completed sub-σ-algebras (Σpc,�σ) are order-isomorphic:

Define Φ : (P pc,�P ) → (Σpc,�σ) such that for Π ∈ P , Φ(Π) = FΠ is a col-

lection of B-informed events. Define Ψ : (Σpc,�σ) → (P pc,�P ) such that for

a posterior-completed sub-σ-algebra G ∈ Σpc, Ψ(G) = {A(ω,G)|ω ∈ Ω} is a

partition that contains atoms of G. Then, the following properties hold.

(1) Φ is injective and order-preserving.

(2) Ψ is injective and order-preserving.

(3) Φ ◦ Ψ = IΣpc and Ψ ◦ Φ = IP pc, where IΣpc and IP pc are the identity

14The equivalence relation ∼ between any two partitions Π and Π′ is defined so that the
smallest σ-algebras generated by these partitions, denoted by σ(Π) and σ(Π′), have the same
posterior-completed σ-algebra, i.e. σ(Π) ∼ σ(Π′).
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functions defined on Σpc and P pc, respectively.

Moreover, the informational content of a posterior-completed partition Π or a

posterior-completed sub-σ-algebra G is the collection of B-informed events, and

a B-informed set is defined by a belief operator B deriving from Π or G through

a proper regular conditional probability.

Proof. (1) is trivial, for the posterior-completed σ-algebra is the collection of all

B-informed events of the posterior-completed partition. For (2), suppose that G

and G ′ are two different posterior-completed σ-algebras such that G ⊆ G ′. The

corresponding partitions are Π = {A(ω,G)|ω ∈ Ω} and Π′ = {A(ω,G ′)|ω ∈ Ω}.

Take any ω ∈ Ω. Then, A(ω,G ′) = ∩{G ∈ G ′|ω ∈ G} = ∩{G ∈ G ∪ H|ω ∈

G} ⊆ ∩{G ∈ G|ω ∈ G} = A(ω,G). As to (3), it is easy to see that two different

posterior-completed partitions cannot yield the same σ-algebra. Therefore, it

suffices to show that two different posterior-completed σ-algebras generate two

different partitions. Suppose that G and G ′ are two different posterior-completed

σ-algebras. Assume without loss of generality that there exists an event E ∈ G

but E 6∈ G ′. Suppose to the contrary that the corresponding partitions are

the same, i.e. Π = {A(ω,G)|ω ∈ Ω} = {A(ω,G ′)|ω ∈ Ω}. Since Π is the

posterior-completed partition, there exists ω′ ∈ Ω and Π′(ω′) ⊆ E such that

Q′(Π′(ω′), ω′) = 1 whereQ′ is the proper regular conditional probability measure

defined by G ′ together with µ. Then, Q′(E,ω′) = 1 because Π′(ω′) ⊆ E. This

implies that E ∈ G ′, for G ′ contains every event F such that Q′(F, ω′) = 1. This

contradicts to the assumption that E 6∈ G ′.

The above theorem shows that after completing each σ-algebra G with respect

to a proper regular conditional probability measure Q (defined jointly by G and
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µ), the σ-algebra G uniquely determines a partition Π.

Our result, which is based on the technique of posterior-completion, provide

a different result from HM regarding what is a partition that preserves the

informational content of the sub-σ-algebra in Billingsley’s example.

Example 8. Consider the following σ-algebra G in Billingsley’s example:

G = {E ∈ F| either E or ¬E is countable}.

The posterior-completion of G is thus F which is the Borel σ-algebra. The

partition generated from this posterior-completed σ-algebra F is the partition

that contains every singleton. This is, in fact, the partition that generates G.

Remark 3. Recall that in HM, the partition claimed to have the same infor-

mational content as G is the coarsest partition Π′ = {Ω}. Notice that G is the

smallest σ-algebra generated by the finest partition Π = {{ω}|ω ∈ Ω}. As G

contains every singleton, a DM can distinguish each state from the other. This

is the information that G inherits from the partition Π. However, HM’s treat-

ment of G ignores this information, while focusing solely on the information

provided by the uniform probability distribution. On the other hand, our treat-

ment requires the informational content of G to come from both the partition

Π and the uniform probability distribution conditioned on Π, as one usually

defines a conditional probability. The information contained in Π is not lost,

thus implying that the DM is fully informed of which state occurs. Hence, the

informational content of G must be equal to the underlying event space, which

is the Borel σ-algebra F .
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1.5 Conclusion

In this paper, we establish an equivalent relationship between partitions and

σ-algebras as formalizations of information, and equip the notion of an infor-

mational content with a precise and intuitive meaning by viewing it through

the two different but related notions of knowledge and belief. Although both

a partition and a σ-algebra have been prevalently used to formally represent

information, there has only been a vague understanding about the relationship

between the two. However, Billingsley (1995) and Dubra and Echenique (2004)

raise a concern about the use of σ-algebra by coming up with an example in

which a partition and the σ-algebra generated by it fail to contain the same

informational content.

Hervés-Beloso and Monteiro (2013) engage this example and elaborate on

the meaning of information. They provide a notion of an informed set, and

suggest the two alternative methods: one for generating a σ-algebra from a par-

tition and the other for going in the opposite direction. However, we find out

that their suggestion still leaves the meaning of information ambiguous. When

it comes to a partition, the information content captured by the notion of an

informed set depends neither on a given measurable space nor on a probability

measure. On the other hand, for a given σ-algebra, the informational content,

in general, relies on a specific choice of a probability measure. Even when infor-

mation content is captured by a countably-generated σ-algebra, HM are silent

about whether or not it is a collection of all informed sets for some partition.

By separating the notion of information into the two notions of knowledge
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and belief, we elaborate on the meaning of information in relation to a proba-

bility measure. The two notions are distinct regarding whether the concept of

information is required to satisfy the truthfulness or not. If one allows for fal-

sity, the notion one works with is that of belief. We show that a proper regular

conditional probability, and the posterior completion of a partition/a σ-algebra

correspond to this conception of information. Specifically, the presence of null

events captures the possible falsity of information. Based on the conception of

information as belief, we show that partitions and σ-algebras can be equiva-

lently used after applying the technique of the posterior-completion proposed

by Brandenburger and Dekel (1987). The idea behind posterior completion is

to add in null events to a partition (or a σ-algebra) to generate a new partition

(a new σ-algebra) that allows a DM to incorporate the possibility of falsity in

his information. On the other hand, if the concept of information is based on

knowledge, information must be independent of one’s belief (which is captured

by a probability measure). In this case, we show that only measurable partitions

and countably-generated σ-algebras can be equivalently used.

We conclude that although the distinction between knowledge and belief

matters for the equivalence between partitions and σ-algebras when formalizing

information either by a partition or by a σ-algebra, one can safely assume infor-

mation as belief in a practical sense. In almost all economic models, a partition

or a σ-algebra is equipped with a probability measure to formalize information

of a DM. Therefore, the only thing one needs to make sure is to apply posterior

completion before using a partition or a σ-algebra to analyze the problem in his

hand.
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Chapter 2

Common Knowledge and

Efficiency with Incomplete

Information

2.1 Introduction

The question of whether individuals are able to achieve an efficient allocation

has been central in economics. With complete information, the answer is likely

to be positive. If a currently given allocation, the so-called status quo alloca-

tion, is inefficient, some individual may propose another allocation that would

make him better off without making others worse off. As Coase (1960) argues,

other individuals would accept the proposal unless the cost of bargaining is

substantial.

In an economy with incomplete information, the conclusion is less likely to

be true. Even when the proposed allocation leads to a Pareto improvement,

individuals may reject the proposal. Behind this seemingly puzzling argument

lies the possibility that the act of proposing itself reveals the proposer’s private

information, and thus reverses the preferences of individuals. Noticing this
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possibility, Wilson (1978) proposes two notions of efficiency in economies with

incomplete information by requiring both notions to satisfy no revelation of

private information. That is, an allocation is efficient unless there exists a

common knowledge event on which another allocation Pareto-dominates it.

Holmström and Myerson (1983) (henceforth, HM) elaborate on Wilson’s no-

tions further by identifying three different issues embedded in them: one about

defining the notion of efficiency in the presence of privation information, another

about whether each individual would follow a decision rule sincerely, so-called

incentive compatibility, and the last one about the condition under which an

incentive compatible and efficient (in short, incentive efficient) decision rule1

would be implemented without revealing any private information of individu-

als.

Using this tripartite separation, HM define the notion of efficiency analo-

gously to the case with complete information. A decision rule is efficient if

there is no other decision rule that every individual, conditional on her private

information, prefers to it. Accordingly, to ask whether a decision rule is in-

centive efficient is not the same as to ask whether such a decision rule can be

implemented without the possibility of information revelation. In other words,

there may exist an incentive efficient decision rule that is implementable through

some information revelation.

Surprisingly, however, HM show that an incentive compatible decision rule

is incentive efficient if and only if there does not exist any common knowledge

event that such a decision rule is dominated by another incentive compatible

1In the interim stage, each individual does not know the others’ information, thus what
an individual proposes is not merely an allocation, rather a decision rule that specifies an
allocation for each state of information that all individuals might have privately.

28



decision rule2. This implies that checking for efficiency on common knowledge

events is sufficient to determine an incentive efficient decision rule. This saves

one the effort of considering all possible events. Due to this advantage, it has

been widely utilized in various contexts. For example, Vohra (1999) states the

following:

“...it is enough for the objecting coalition to be able to improve

upon the status-quo over a discernible event3. For the grand coali-

tion,...The argument follows from Theorem 1 of Holmström and Myerson

(1983).4”

In this paper, we find that the definition of common knowledge event,

which HM use to prove their result, is unnecessarily restrictive in light of

the standard definition originating in Aumann (1976). Specifically, by apply-

ing Brandenburger and Dekel (1987) (henceforth BD)’s definition of common

knowledge events5, we show that there are more common knowledge events

that are not accounted for in HM’s definition. The class of common knowledge

events is larger with BD’s definition than with HM’s. This naturally leads to a

question whether the assertion in Theorem 1 of HM still holds if BD’s definition

of common knowledge events applies. We argue that the answer is positive.

Replacing HM’s definition of common knowledge events by BD’s may raise

2This is the statement of Theorem 1 of HM.
3A discernible event in Vohra (1999) is equivalent to a common knowledge event in

Holmström and Myerson (1983).
4Vohra (1999), p.130
5Our specific choice of BD’s definition comes out of our concerns that Aumann’s definition

does not admit a direct comparison with HM’s definition. The latter depends on a probability
measure, while the former does not. BD extend Aumann’s definition to accounts for a proba-
bility measure, thus addressing our concerns. Due to its dependence on a probability measure,
BD’s definition is often referred to as common belief with probability 1 to differentiate it from
Aumann’s definition.
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concerns that it actually weakens HM’s result by increasing the burden of check-

ing for efficiency. However, we argue that such apparent burdens can be safely

disregarded. We need only check for efficiency in a strict subset of common

knowledge events known as self-evident events. Furthermore, the class of self-

evident events is the minimal class of events that one needs to check. When

applying BD’s definition to HM’s model of an economy with incomplete infor-

mation (which we refer to as HM economy), a self-evident event is the small-

est event among all the common knowledge events containing a set of non-null

states. This implies that any common knowledge event larger than a self-evident

event necessarily contains a null state. If one individual proposes a change from

the status quo decision rule to an incentive compatible decision rule that makes

himself better off without hurting the others at such a null state, then the other

individuals would come to know the proposer’s type immediately.

This paper is organized as follows. In Section 2, we begin with a descrip-

tion of the economy with incomplete information as suggested by HM. We also

present BD’s definition of common knowledge events, and in Section 3, by ap-

plying it to HM economy, we compare HM’s definition with BD’s. In Section 4,

we present our main result. Finally in Section 5, we conclude.

2.2 Preliminaries

2.2.1 Environment

In this section, we present the description of an economy with incomplete infor-

mation and the notion of an incentive efficient decision rule with the relevant

definitions by closely following HM.
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Economy Let I = {1, 2, ..., N} be a nonempty finite set of agents. Each

agent i has private information, type which takes a value from a finite set Ti.

An information state (or simply a state) is thus a type profile t ∈ T =
∏

i∈I Ti.

Let T−i be a set defined by T−i =
∏

j 6=i Tj. Let F be a σ-algebra on T , which we

refer to as an event space, and let pi be a prior probability measure associated

with agent i. Then, pi(E) denotes the prior belief of agent i about an event

E ∈ F . For notational convenience, we shall write pi(t) to mean pi({t}). We

assume that all the agents agree on events with zero prior probability: For every

agent i and an event E ∈ F , pi(E) = 0 implies that pj(E) = 0 for all j 6= i.

Therefore, we shall refer to an event that occurs with zero probability as a null

event.

For a type profile t = (ti, t−i) ∈ T , agent i cannot distinguish type profiles

t̂ = (ti, t̂−i). We thus define agent i’s information partition P i = {P i(t)|t ∈ T}

such that P i(t) = {t̂ ∈ T : t̂ = (ti, t̂−i)}. The partition cell P i(t) is the set

of states indistinguishable to agent i. In other words, the agent at least knows

that the true state does not lie outside P i(t).

Let F i be the smallest σ-algebra generated by P i, and qi : F ×T → [0, 1] be

a conditional probability measure. Then, qi(E, t) denote agent i’s interim belief

about how likely an event E is to occur at a state t, and this can be calculated

by Bayes’ rule whenever applicable: qi(E, t) = pi(P
i(t)∩E)

pi(P i(t))
if pi(P

i(t)) 6= 0.

Note that qi(E, t) can be an arbitrary number in [0, 1] if pi(P
i(t)) = 0, i.e.

prior belief about agent i’s type being ti is zero. However, there are cases where

assigning an arbitrary number is somewhat counterintuitive. Consider a case

where P i(t) ⊆ E. Once agent i’s type is realized to be ti, the agent knows for

sure that the event E occurs. Naturally, this intuition tells that qi(E, t) = 1.
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Moreover, if P i(t) lies outside E, then it seems that we must specify qi(E, t) = 0

because if the state t were to realize, the agent would know for sure that E does

not occur. Therefore, we formally impose the following property on qi(E, t):

Assumption 1. A conditional probability qi of an agent i is proper: for each

t ∈ T , qi(E, t) = 1E(t) for each E ∈ F i, where 1E(t) = 1 if t ∈ E and 0

otherwise.

For notational convenience, we denote pi(t̂−i|ti) to be the proper conditional

probability that i would assign to a singleton event t̂ = (ti, t̂−i) if her own type

is ti and the realized state is t, i.e. pi(t̂−i|ti) = qi({t̂}, t)6.

Let D0 be a finite set of feasible decisions, and let D be the set of probability

distributions over D0. The preference of each agent i ∈ I is given by von

Neumann-Morgenstein utility function ui(·, t) : D −→ R. Then, the economy is

completely specified by a list (I,D0, {Ti}i∈I , {pi}i∈I , {ui}i∈I).

Incentive efficient decision rule Let δ : T −→ D be a decision rule, and let

∆ be a collection of decision rule. Then, the payoff of an agent i of type ti under

a decision rule δ is defined as Ui(δ|ti) =
∑

t−i∈T−i pi(t−i|ti)ui(δ(t), t). We first

introduce the following: A decision rule γ dominates δ at t if Ui(γ|ti) ≥ Ui(γ|ti)

for all i ∈ I and Uj(γ|tj) ≥ Uj(γ|tj) for some j at t. Moreover, for a nonempty

event R ⊆ T , γ dominates δ within R if it dominates at every t ∈ R. If R = T ,

we say simply that γ dominates δ. Given the notion of dominance, one may

define interim efficiency simply by a undominated decision rule as in the case of

complete information. For convenience, we shall drop the term ‘interim’ unless

it is necessary in all what follows.

6One may take pi(t̂−i|ti) as primitive, and define qi(E, t) =
∑

t̂−i∈E∩P i(t) pi(t̂−i|ti).
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Definition 13 (Efficiency). A decision rule δ is efficient (in the interim sense)

if there is no decision rule γ that dominates δ.

Definition 14 (Incentive Compatibility). A decision rule δ is said to be incen-

tive compatible for i if

Ui(δ|ti) ≥ Ui(δ, t̂i|ti) ≡
∑

t−i∈T−i

pi(t−i|ti)ui(δ(t−i, t̂i), t) for ∀ti ∈ Ti,∀t̂i ∈ Ti.

Moreover, a decision rule δ is incentive compatible if δ is incentive compatible

for all i ∈ I.

For later use, we shall denote the set of incentive compatible decision rules

by ∆∗ ⊂ ∆.

Definition 15 (Interim Efficient Decision Rule). A decision rule δ is incentive

efficient if δ is incentive compatible and efficient.

2.2.2 Knowledge, Common Knowledge, and Self-Evident
Event

In this subsection, we introduce essential concepts regarding a common knowl-

edge event following mainly Brandenburger and Dekel (1987). Before we begin,

recall that we are given a measurable space (T,F) equipped with each agent i’s

(prior) probability measure pi. The information structure of an agent i is given

by a partition P i or, equivalently, by the smallest σ-algebra F i by the partition.

Moreover, we denote a proper regular conditional probability by qi.

Consider an event E ∈ F and a state t ∈ T . We shall formalize a sentence

like “An agent i knows E at t” by qi(E, t) = 1. We wish to emphasize that the

presence of null events may cause a trouble in appropriately defining the notion
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of an common knowledge event. This is exactly the concern Brandenburger-

Dekel address. They argue that one need to add in events that are null in

the sense of proper regular conditional probability, to the information partition

or the corresponding σ-algebra. This requirement is often called as posterior

completion. We formally state it as follows:

Definition 16 (posterior completion). The posterior completion of a σ-algebra

F i is a σ-algebra generated by F i and the class of events {G ∈ F|qi(G, t) =

0 for every t ∈ T}. The resulting σ-algebra is said to be the posterior-completed

σ-algebra, and denoted by F̂ i.

One may define the posterior completion of a partition as follows: Let P i

be a partition, which is the collection of atoms of a σ-algebra F i. Then, the

posterior completion of P i is simply the collection of atoms of the posterior

completed σ-algebra F̂ i, and denoted by P̂ i.

Definition 17 (Knowledge). For a probability space (T,F , pi), define a function

Ki : F −→ F̂ i such that for every event E ∈ F ,

Ki(E) = {t|qi(E, t) = 1}.

Then, Ki is said to be a knowledge function. Moreover, an agent i ∈ I is said

to know that an event E occurs at a state t if t ∈ Ki(E).

We say that an event F ∈ F is non-null in a posterior sense if for an agent

i, qi(F, t) > 0 for every t ∈ T .

Definition 18 (self-evident event and common knowledge event). An event

F ∈ F is said to be self-evident if Ki(F ) = F for all i ∈ I. That is, F is a
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non-null (in a posterior sense) member of ∩iF̂ i. For t ∈ T , an event E is a

common knowledge event at a state t if there is a self-evident event F such that

t ∈ F and F ⊆ E7.

We may state the above definition in terms of partitions. To do this, we

define the following: A partition P is a coarsening of a partition P ′ (or P ′ is

a refinement of P) if for each Pk ∈ P , there exists a set κ ⊆ {1, 2, ....} such

that {P ′m}m∈κ constitutes a partition of Pk. The join is the coarsest common

refinement of partitions {P i}i∈I , and denoted by ∨i∈IP i. The meet is the finest

common coarsening of partitions {P i}i∈I , and denoted by ∧i∈IP i.

Lemma 9. An event F ∈ F is self-evident if and only if it is a non-null (in a

posterior sense) member of the meet ∧i∈IP̂ i.

The proof is trivial by the relationship between a posterior-completed par-

tition and a posterior-completed σ-algebra.

2.3 Characterization of Common Knowledge Event

In an economy E , characterizing self-evident events and common knowledge

events according to the definitions in the previous section is cumbersome. We

thus characterize them in terms of pi(t̂−i|ti) for direct comparison with HM.

Lemma 10. An event F is a self-evident event if and only if for any t =

(ti, t−i) ∈ F and any i ∈ I, F satisfies the following:

7In the original definition by BD that also allows for an infinite (possibly uncountable)
number of states, the self-evident event F needs to be contained in the event E almost surely,
i.e. qi(F \ E, t) = 0. However, in the HM economy where the state space is finite, this
condition is equivalent to the condition that the self-evident F is a subset of E.
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1. Posterior beliefs are zero outside F : pi(t̂−i|ti) = 0 for ∀t̂ = (ti, t̂−i) 6∈ F ,

and

2. Posterior beliefs are non-zero within F : pi(t̃−i|ti) > 0 for ∀t̃ = (ti, t̃−i) ∈

F .

E is a common knowledge event at a state t if and only if there is a self-evident

event F such that t ∈ F and F ⊆ E. Moreover, we say that E is a common

knowledge event if there exists t ∈ E at which it is a common knowledge event.

Proof. If there exists no null events, it is trivial. Hence, suppose that there

exists a null event, i.e. there exists a state t ∈ T such that pi(t) = 0 for

all i. Take any t ∈ F and any i ∈ I. Suppose that both conditions hold.

Then, qi(F, t) > 0 by the second condition. Moreover, qi(F, t) = 1 by the first

condition. Hence, F is a non-null member of the meet,i.e., self-evident event.

For the other direction, suppose that F is a self-evident event. Take any t ∈ F

and any i ∈ I. Then, qi(F, t) = 1. Take any t̃ = (ti, t̃−i) ∈ F . Then, t̃ ∈ P̂ i(t),

which implies the second condition. Take any t̂ = (ti, t̂−i) 6∈ F . t̂ ∈ P i(t) implies

that qi({t̂}, t) = 0. This satisfies the first condition. The characterization of a

common knowledge event is obvious by its definition.

One should be cautious that a common knowledge event E may not be a

common knowledge event at some state t ∈ E.

Corollary 1. Let t ∈ T be given, and let E be a common knowledge event.

Then, the event E is a common knowledge event at t if and only if t ∈ F for

some self-evident event F ⊆ E. That is, if the state lies outside any self-evident

events, the event E is not a common knowledge event at such a state t.
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Proof. By definition of a common knowledge event, “If ” part is trivial. For

the other direction, suppose that the state t does not belong to any self-evident

event F contained in E, i.e. t 6∈ F for all F ⊆ E. Suppose further to the

contrary that E is a common knowledge event at t. Then, by Lemma 10 above,

there exists a self-evident event F ′ such that t ∈ F ′ and F ′ ⊆ E. This leads to

a contradiction that t does not belong to any self-evident event.

The above corollary implies that a self-evident event contains all the infor-

mation required to determine a common knowledge event.

Now, we compare our characterization with the one proposed by HM. For

this purpose, we present HM’s characterization of common knowledge events

(Lemma 1 of HM) in the name of HM common knowledge to avoid the confusion

with ours.

Definition 19 (HM Common Knowledge Event). An E is a common knowledge

event in the sense of HM, or simply HM common knowledge event, if and only

if E is of the form E =
∏

i∈I Ei, where each Ei ⊆ Ti, and

pi(t̂−i|ti) = 0 for ∀ti,∀t̂ = (ti, t̂−i) 6∈ E,∀i.

The above condition implies that a HM common knowledge event E is a

rectangular event satisfying that the conditional probability is degenerate on

for every event F such that F ∩E = ∅ and Fi = Ei for some i ∈ I. Notice that

it requires no condition inside the event.

It is immediate that if an event is a HM common knowledge event, then it is

a common knowledge event. However, the converse does not hold. We provide

an example showing that there exists a common knowledge event that is not

rectangular.
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Example 9. Consider the case where there are two agents and two types for

each agent. Then, T = {11, 12, 21, 22} where mn = (tm1 , t
n
2 ). Let the prior

probabilities for each agent be pi({22}) = 0 for all i = 1, 2. Then, the partitions

of agents are given as P1 = {{11, 12}, {21, 22}} and P2 = {{11, 21}, {12, 22}}.

By posterior completion, {22} should be added in to both agents’ partitions.

Then, the posterior-completed partitions and their meet are the followings:

P̂1 = {{11, 12}, {21}, {22}}, P̂2 = {{11, 21}, {12}, {22}}, and P̂1 ∧ P̂2 = {{11, 12, 21}, {22}}

{11, 12, 21} is a non-null (in a posterior sense) member of the meet and thus a

self-evident event. Denote this event by E = {11, 12, 21}. Then, E is a common

knowledge event at t = 11. However, it is not a HM common knowledge event:

There is no Ei ⊆ Ti for i = 1, 2 such that E = E1 × E2.

In relation to a self-evident event, we can also see easily that if an event is a

self-evident event, then it is a HM common knowledge event, but the converse

does not hold.

Example 10. Consider the same setting as Example 9 except that pi({t}) = 0

for all t = 12, 21, 22 and for all i = 1, 2. The properness of the posterior

probability requires q1({21, 22}, t) = 1 for t = 21, 22 and q2({12, 22}, t) = 1 for

t = 12, 22. Note that neither agent 1’s posterior beliefs for any singleton event

in {21, 22} nor agent 2’s posterior beliefs for any singleton event in {12, 22} can

be calculated by Bayes’ rule. Hence, those posterior beliefs can be determined

in an arbitrary manner. Assume that q1({21}, t) = 0.5 for t = 21, 22 and

q2({12}, t) = 0.5 for t = 12, 22. In other words, p1(t2 = 1|t1 = 2) = 0.5 and

p2(t1 = 1|t2 = 2) = 0.5. Then, {12} should be added in to agent 1’s partition
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while {21} should be added in to agent 2’s partition. Then, the posterior-

completed partitions and their meet are the followings:

P̂1 = {{11}, {12}, {21, 22}}, P̂2 = {{11}, {21}, {12, 22}}, and P̂1 ∧ P̂2 = {{11}, {12, 21, 22}}

{11} is a non-null (in a posterior sense) member of the meet and then a self-

evident event. Let E = {11, 12}. E is clearly a HM common knowledge event.

However, it is not a self-evident event.

We shall simply summarize the result by the following lemma.

Lemma 11. Let S, HM, and C be the collection of all self-evident events, all

HM common knowledge events, and all common knowledge events, respectively.

Then, we have the following:

(a) S ⊂ HM ⊂ C

(b) S = HM = C = F if and only if pi(t) > 0 for all i ∈ I and all t ∈ T , i.e.

there exists no null event.

The proof is obvious by Lemma 10 and Definition 19.

2.4 Common Knowledge and Incentive Efficient

Decision Rule

HM in Theorem 1 of their work shows that one needs to inspect HM common

knowledge events to find out an incentive efficient decision rule. This is indeed a

powerful result for it actually reduces the number of incentive compatible deci-

sion rules to consider. Specifically, suppose that we are considering an incentive

compatible decision rule δ as a candidate for an incentive efficient decision rule.
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By the result proved by HM, it is not necessary to consider an incentive com-

patible decision rule γ that dominates δ outside common knowledge events. By

Lemma 11, we see that this does not work if there exists no null event. In what

follows, we thus assume the following:

Assumption 2. There exists a null event E ∈ F such that pi(E) = 0 for all i.

Now, we recast Theorem 1 of HM to see how it reduces the number of events

to consider to find out an incentive efficient decision rule.

For simplicity of presentation, we shall define the following notation: For an

incentive compatible decision rule δ ∈ ∆∗ and an event E ∈ F , let ∆∗(δ, E) ⊂

∆∗ to denote the set of all incentive compatible decision rules that dominates δ

within the event E:

∆∗(δ, E) = {γ ∈ ∆∗|γ 6= δ and γ dominates δ within E}

Then, it satisfies the following properties: For E,F ∈ F

• ∆∗(δ, E ∪ F ) = ∆∗(δ, E) ∩∆∗(δ, F )

• E ⊆ F implies ∆∗(δ, F ) ⊆ ∆∗(δ, E)

Theorem 3 (HM Theorem 1). An incentive compatible decision rule δ is in-

terim incentive efficient if and only if there does not exist any HM common

knowledge event E such that δ is interim dominated within E by another incentive-

compatible decision rule:

∆∗(δ, T ) = ∅ ⇐⇒ ∩{∆∗(δ, E)|E ∈ HM} = ∅
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One can clearly see that ∩{∆∗(δ, E)|E ∈ HM} ⊂ ∆∗(δ, T ) because HM ⊂

F . As we argued in the previous section, HM’s result is based on a somewhat ar-

bitrarily restrictive definition of common knowledge events. A natural question

is whether the same result holds if we replace HM definition with our definition

in Lemma 10. The answer is positive.

Theorem 4. An incentive compatible decision rule δ is interim incentive effi-

cient if and only if there does not exist any common knowledge event E such

that δ is interim dominated within E by another incentive-compatible decision

rule:

∆∗(δ, T ) = ∅ ⇐⇒ ∩{∆∗(δ, E)|E ∈ C} = ∅

The proof is trivial, for T itself is a common knowledge event. Therefore,

the above theorem does not reduce the number of events we need to check for

efficiency to determine an incentive efficient decision rule.

Is there any way to reduce the number of events further than to consider

HM common knowledge events? The answer is positive as illustrated by the

following example:

Example 11. Consider the same setting as in Example 10. Let E = {11, 12}.

Then, E is a HM common knowledge event. Moreover, it is a common knowledge

event only at t = 11. Suppose that there are only two incentive compatible

decision rules, ∆∗ = {δ, γ}, such that Ui(γ(11), 11) = Ui(δ(11), 11) for all i =

1, 2, U1(γ|t1 = 2) < U1(δ|t1 = 2), U2(γ|t2 = 2) > U2(δ|t2 = 2), U2(γ(12), 12) <

U2(δ(12), 12) and U2(γ(22), 22) > U2(δ(22), 22). We first argue that within a
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HM common knowledge event E, γ dominates δ because

U1(γ|t1 = 1) = U1(δ|t1 = 1), U1(γ|t1 = 2) < U1(δ|t1 = 2),

U2(γ|t2 = 1) = U1(δ|t2 = 1), U2(γ|t2 = 2) > U2(δ|t2 = 2).

However, it suffices to consider F = {11}. At state t = 12, it is not common

knowledge that γ dominates δ. Specifically, suppose that the two agents are

considering a change from δ to γ. By the specification of the utility function,

both agents would gain by agree with the change. Note, however, that E is

not a common knowledge event at t = 12. Then, if both agents were to agree

with the change, agent 2 would know that the agent 1’s type is t1 = 1 because if

agent 1 with t1 = 2 would have objected the change. Now, p2(t1 = 1|t2 = 2) = 1

and agent 2 would want to repeal her consent to the change. Hence, in fear of

this, the agent 1 would object to the change when asked for a consent. That is,

γ will not be chosen over δ even though the former dominates the latter on E.

To reiterate, it suffices to consider F = {11}.

In the above example, even when E is a HM common knowledge event, it

suffices to check for efficiency on a smaller event F to see that γ is incentive

efficient. This shows that if there exists a null state t ∈ E such that E is not

a common knowledge event at t, then there is always a room for the possibility

that an agent’s proposal would reveal his information.

We thus argue that one may determine an incentive efficient decision rule

only by checking for efficiency on the self-evident events. Moreover, this is the

maximum extent to which one may reduce the number of events for the job of

finding out an incentive efficient decision rule.
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Theorem 5. An incentive compatible decision rule δ is interim incentive effi-

cient if and only if there does not exist any self-evident event E such that δ is

interim dominated within E by another incentive-compatible decision rule:

∆∗(δ, T ) = ∅ ⇐⇒ ∩{∆∗(δ, E)|E ∈ S} = ∅.

Proof. By ∩{∆∗(δ, E)|E ∈ S} ⊂ ∆∗(δ, T ), “only if ” part is trivial. For the

other direction, suppose that ∩{∆∗(δ, E)|E ∈ S} = ∅ but ∆∗(δ, T ) 6= ∅. Then,

there exists γ ∈ ∆∗(δ, T ), i.e γ dominates δ. For any self-evident event E,

∆∗(δ, E) = ∅: there exists no incentive compatible decision rule that dom-

inates δ within every self-evident event E. Hence, γ does not dominate δ

within ∪{E|E ∈ S}. Then, there exists an agent j ∈ I and a state t 6∈

∪{E|E ∈ S} such that Uj(γ|tj) > Uj(δ|tj). Since the state t lies outside ev-

ery self-evident event, the posterior probability must be degenerate at t. That

is, pj(t−j|tj) = 0. This implies that Uj(γ|tj) = pj(t−j|tj)uj(γ(t), t) = 0 =

Uj(δ|tj) = pj(t−j|tj)uj(δ(t), t), which is a contradiction.

Corollary 2. The class of self-evident events S is the minimal class of events

among the classes of events G satisfying the following condition:

∆∗(δ, T ) = ∅ ⇐⇒ ∩{∆∗(δ, E)|E ∈ G} = ∅.

Proof. Suppose that there exists a class of events G ⊂ S satisfying ∆∗(δ, T ) =

∅ ⇐⇒ ∩{∆∗(δ, E)|E ∈ G} = ∅, i.e. δ is incentive efficient if and only if

there exists no other incentive compatible decision rule that dominates δ within

any event E ∈ G. Then, there exists a self-evident event F ∈ S such that

F 6∈ G. Suppose that ∆∗(δ, F ) 6= ∅. This implies that there exists an incentive

compatible decision rule γ that dominates δ in F . Since F is a self-evident
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event, it is also a common knowledge event that γ dominates δ at every t ∈ F .

This leads to a contradiction, because δ is not incentive efficient.

2.5 Conclusion

In this paper, we investigate the idea originating in Wilson (1978) that in order

to determine whether an incentive compatible decision rule is efficient or not,

one need only check whether it is common knowledge that there exists another

incentive compatible decision rule that dominates it. HM show that this idea

is indeed valid. By giving a close examination, however, we find that their

definition of common knowledge is arbitrarily restrictive, when comparing it

with the standard definition of Brandenburger and Dekel (1987). There are

more common knowledge events that are not accounted for in HM’s definition.

This weakens HM’s result by increasing the number of events on which we need

to check for efficiency in order to determine an incentive compatible and efficient

decision rule. However, we argue that HM’s result can actually be strengthened.

We argue that it is sufficient to consider a strict subset of a common knowledge

event, known as self-evident events. Moreover, this is the minimal class of events

one need to check. As every self-evident event consists of non-null states, our

result suggests that one may safely assume that every state is non-null in a

finite state space model (like HM economy), when working with the purpose of

studying an incentive compatible and efficient decision rule.
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Chapter 3

Mediator Selection in

International Conflict: Bias,

Effectiveness, and Incidence

3.1 Introduction

Third-party mediation is one of the most commonly used technique for resolv-

ing international conflicts (Bercovitch and Gartner, 2008, p.5). In particular,

it has become commonplace since the end of World War II (Frazier and Dixon,

2006, p.395)1. Growing reliance on mediation as a mean for conflict resolution

naturally raises a question of what makes for a successful mediation. Particu-

larly, third party’s impartiality, or “even-handedness” has been emphasized to

1Although the number varies across the databases, the incidence of the third-party media-
tion (or simply mediation) accounts for about a 30 to 40 percent rate. The variation depends
on the definition of conflicts as well as the time periods considered in databases. For example,
the International Crisis Behavior(ICB) database defines a conflict broadly as a situation in
which there exists only some perceived threat of increased hostilities. In the ICB database,
out of the 434 conflicts that occurred between 1918 and 2001, only 128 conflicts (30 per-
cents) experienced the third-party mediation. The International Conflict Management(ICM)
database, however, defines a conflict in a more restrictive sense: it must involve a significant
use of force and/or some fatalities. According to the ICM database that identifies 104 bilateral
interstate conflicts between 1965 and 1995, the mediation occurred in 40 conflicts.
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be crucial by scholars and practitioners2: A disputant, facing a mediator who

is biased against him, would be less willing to accept the mediator’s recom-

mendation. Even worse, anticipating such a circumstance, he would not agree

to initiate mediation in the first place. Nonetheless, mediators are often bi-

ased: The United States in the Falkland island war and the Soviet Union in the

Vietnam war are just two of many available examples.

The literature on this subject provides an explanation by arguing either

that a biased mediator may resolve conflicts better than a unbiased one (Kydd,

2003), or that there is a shortage of unbiased third parties (Beardsley, 2006;

Beber, 2012). Nevertheless, the literature is silent as to why a disputant ac-

cepts a biased mediator in the first place, and behind this silence lies a naive

understanding that a disputant would accept mediation if it is likely to be ef-

fective. However, peace is not the end itself for a disputant, but merely a mean

to increase his own welfare.

The purpose of this paper is to address this issue by answering the following

questions: “Why, and under which circumstances would disputants accept a

biased mediator? If accepted, is such a mediator as effective in promoting

peace as an unbiased one?” To this end, we build a simple model of mediator

selection where each disputant, facing a potentially biased mediator, makes a

decision to accept mediation or not. If both disputants agree, such a mediator

would make a recommendation, as a mechanism designer, to disputants about

2For example, the United Nations single out impartiality as a corner-
stone of mediation, without which any meaningful resolution of the conflict
is hampered. See United Nations, Guidance for Effective Mediation (2012),
http://www.un.org/wcm/webdav/site/undpa/shared/undpa/pdf/UN%20Guidance%20for
%20Effective%20Mediation.pdf. Moreover, even when individual nations are involved, they
usually issue public avowals of impartiality as the United States in the Middle East and in
the Falkland Islands Crisis of 1982 (Smith, 1985).
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which action to take and how to divide the contested resources between the

two parties. Otherwise, disputants are engaged in a situation in which each

disputant chooses whether to start a war or not. In either case, each disputant’s

decision may reveal his private information.

The novelty of our model is to introduce mediator bias. Unlike the case of

mechanism design problems that assume a unbiased mediator whose sole pur-

pose is to promote peace (Fey and Ramsay, 2010; Hörner et al., 2015) (hence-

forth HMS), an optimal mechanism does not treat disputants symmetrically.

Therefore, one cannot simply restrict his attention to the type-dependent con-

straints by ignoring the identities of each disputant. Specifically, when it comes

to a disputant favored by a mediator, it is not easy to figure out whether a

participation constraint or an incentive compatibility constraint does or does

not bind at the optimum.

We begin our analysis by revealing how an optimal mechanism, if proposed

by a biased mediator, differs from the one by an unbiased mediator. We find

that a biased mediator allocates more resources to her ally, while giving the

opponent more chances to enjoy a peaceful outcome (Corollary 3). This differ-

ential treatment arises, for a biased mediator must give an information rent to

the disfavored party. There are two options: to raise the peace probabilities or

to raise the share for the disfavored party. These two options affect the welfare

of the favored party differently. The former benefits both parties by saving the

resources that might have been wasted under war. The latter, however, does

harm to the favored party. The biased mediator would then choose the cheaper

way of allocating more peace probabilities to the disfavored party.

When turning to the occurrence of mediation, we find that if the likelihood
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of peace is low in a conflict, a biased mediator is accepted by disputants as long

as her bias is moderate (Theorem 7). As a conflict is less likely to end up with

a peaceful outcome, disputants are willing to accept a mediator with a more

extreme level of bias. This is because a weak disputant has a stronger incentive

to pretend to be strong in order to induce his opponent not to attack him.

This, in turn, increases the amount of an informational rent a biased mediator

must provide to the disfavored party under mediation. As mediation is now

more attractive, the disfavored party would accept mediation even when the

mediator’s bias is more extreme.

More importantly, we argue that a biased mediator, accepted by both dis-

putants, is equally effective as an unbiased one (Theorem 6). An immediate

implication is that if accepted, the peace probability attained by such a media-

tor is independent of the intensity of her bias. This is striking because a biased

mediator is not interested in the peaceful resolution of a conflict per se unlike an

unbiased one. Then, how does a biased mediator end up with achieving peace

as effectively as unbiased one? A biased mediator may gain from promoting

peace. By saving the resources that might have been wasted under war, she can

allocate more resources to the favored party under peace. However, the gains

from promoting peace is necessarily followed by the cost of providing a larger

amount of the informational rent to the disfavored party. If moderately biased,

a mediator finds the cost negligible. Consequently, she ends up with promoting

peace as an unbiased mediator does.

We contribute to the literature on mediator bias by showing that mediator

bias is not harmful in achieving peace, if one considers the endogenous selection

of a mediator by disputants. Although Kydd (2003) reach the similar conclusion,
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his result requires that the mediator possesses information that is not available

to the disputants3. More importantly, Kydd considers a model in which a

mediator is exogenously given. Contrarily, our result holds without assuming the

private information that a mediator possesses about the disputants. Moreover,

as it is highlighted, we contribute to the literature by studying the demand side

of mediation that has been largely conceived to play a little role in explaining

why a biased third party acts as a mediator.

In relation to the literature that adopts a mechanism-design theoretic ap-

proach to mediation, we contribute by investigating how an optimal mechanism

changes when the mediator (or the mechanism designer) is biased in favor of one

disputant. The literature assumes a unbiased mediator who seeks to maximize

the peace probability. As we discussed, the optimal mechanism offered by a

biased mediator is qualitatively different from the one by an unbiased mediator.

Moreover, we contribute by dealing with the technical challenge as to whether

a participation constraint or an incentive compatibility constraint does or does

not bind at the optimum, when it comes to a disputant favored by a mediator.

To be specific, the difficulty of solving for an optimal mechanism in our

model can be easily seen by comparing the technique used in HMS under the

assumption of an unbiased mediator. Our model extends their mechanism de-

sign problem by allowing for mediator bias, and thus admits a direct comparison

with HMS. By utilizing the unbiasedness of a mediator, HMS imposes symmetry

3Kydd challenge the negative view about mediator bias by arguing that if a mediator
has a privileged access to the information that one disputant is weaker than his opponent,
she may persuade the weaker disputant to make a concession to the opponent by providing
such information more credibly when she is biased in favor of the weaker disputant than
when she is unbiased. This argument initially comes from Touval (1975), and Kydd formalize
the argument by highlighting the role of a mediator in providing information. For more
discussions, see Smith (1985), Touval (1975), and Favretto (2009)
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on the choice variables while specifying a value to some choice variables through

an educated guess. They thus simplify the problem into a linear programming

problem in one variable. This technique does not work for our model.

We thus proceed by simplifying the problem into a linear programming prob-

lem in four variables that are related only to the peace probabilities. We then

treat the problem as if one disputant’s type is known, and solve for the two vari-

ables as expressions of the other two variables. The expressions are piecewise

linear in the two probability variables, and we solve for an optimal mechanism

by depicting them geometrically on the space of the two probability variables.

Although our model concerns a mediation problem in the context of interna-

tional conflict, it may also apply to a various bargaining problem with incom-

plete information that arises in, for example, trade disputes and litigation cases.

Therefore, our technique may apply to analyze these problems when the medi-

ator is potentially biased toward one party.

This paper is organized in the following order. Section 2 formally introduces

a model of mediator selection. Section 3 presents an optimal mechanism, reveal-

ing how differently a biased mediator mediates from an unbiased one. Section

4 , concludes the paper by discussing implications of the main result and po-

tential directions of the future research. Most of the proofs can be found in the

Appendix.
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3.2 A Model

3.2.1 A Model of Conflict: War-and-Peace game

This subsection presents a simple model of international conflicts, so-called War-

and-Peace game, following the setup suggested by HMS(2015). Two countries

or disputants i = 1, 2 are in conflict with each other over a pie of which size is

normalized to one. In peace, each disputant owns the half of the pie. Each dis-

putant may take an action among the two alternatives, attacking his opponent,

‘Attack’ and staying in peace, ‘Stay’. Let ai ∈ {S,A} denote an action taken by

disputant i, where A denotes ‘Attack’ and S denotes ‘Stay’. If either disputant

chooses to attack his opponent, war breaks out between the two disputants and

the size of pie shrinks to θ < 1. Otherwise, both disputants stay in peace thus

the size of the pie remains the same.

When war breaks out, its outcome (and how the two disputants share the pie)

depends on both disputants’ overall strength that reflects comprehensively their

military powers, their diplomatic ability, or the aggressiveness of their leaders

and citizens. We assume that each disputant i’s overall strength is his private

information, which we capture by his type, τi ∈ {H,L} where H (high) means

that disputant i’s overall strength is high, and L (low) means that disputant

i’s overall strength is low. Each disputant is likely to be of high (H) type with

probability q ∈ (0, 1). If both disputants are of the same type, then the war

ends in a tie and the countries share the pie of size θ equally, i.e. θ/2. When

types are asymmetric, high-type disputant wins and low-type disputant loses.

The winner gets the larger share p > 1/2 of the pie, while L-type obtains the

rest. The corresponding payoffs are pθ and (1 − p)θ. We assume that H-type
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has an incentive to wage a war against low-type: pθ > 1/2. To sum up, the

situation is described by the following:

S A
S 1/2, 1/2 θ/2, θ/2
A θ/2, θ/2 θ/2, θ/2

(a) Identical Types

S A
S 1/2, 1/2 pθ, (1− p)θ
A pθ, (1− p)θ pθ, (1− p)θ

(b) Different Types: 1 is H, 2 is L

Figure 3.1: Conflict Situation: War-and-Peace Game

Let γ = q
1−q denote the likelihood of a disputant believes his opponent to be

H-type, and let δ = pθ−1/2
(1−θ)/2 . As it is common in the simultaneous-move games,

this War-and-Peace game also has multiple equilibria. We assume that both

disputants play according to the following equilibrium strategy profile: L-type

chooses to stay, and H-type chooses to attack if γ < δ and to stay otherwise4.

In other words, L-type disputant always prefers peace to war because he has

no chance to win. H-type disputant, on the other hand, prefers peace to war

if and only if he is more likely to meet the same high type opponent (γ < δ).

Specifically, the condition implies that the expected payoff under war is larger

than the expected payoff under peace: γ < δ ⇐⇒ q(θ/2) + (1− q)pθ > 1/2.

The rationale behind our choice of a specific equilibrium is that it is a weakly

dominant strategy for L-type to stay, and that an equilibrium strategy profile in

which H-type chooses to stay if γ < δ Pareto-dominates all the other equilibria.

To make the conflict situation non-trivial, we assume that γ < δ in what follows.

Then, war breaks out with probability 1−(1−q)2 and peace is attained with the

remaining probability. The resulting equilibrium payoff for H-type disputant

is his expected payoff under war, q
(
θ
2

)
+ (1 − q)pθ. For L-type, his payoff is

4For the detailed analysis of War-and-Peace game under arbitrary (possibly asymmetric)
beliefs, see Appendix.
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q(1− p)θ+ (1− q)
(

1
2

)
. Notice that the equilibrium payoff for L-type disputant

is different from his expected payoff under war, for he enjoys the peaceful payoff

(1/2) when facing the same L-type with probability 1− q.

3.2.2 A Model with Mediator Selection

To improve on a given conflict situation, both parties may initiate a mediation.

A mediator has no direct interest in a specific allocation of the pie and thus

wants to maximize the overall utilitarian welfare. However, the mediator may

not be impartial: she is interested in conferring advantages to one disputant. Let

λ ∈ [0, 1] measure the degree by which the mediator is biased towards disputant

1. For example, λ = 1
2

indicates an unbiased mediator. As λ increases, a

mediator’s bias toward disputant 1 gets more extreme. We thus define the

payoff of a mediator whose bias is λ as

wλ = λU1 + (1− λ)U2

where U1 and U2 are payoffs for disputant 1 and 2. That is, a mediator is

identified by her bias toward disputant 1, and the unit interval [0, 1] from which

λ takes its value is thus the set of (potential) mediators.

Our model of mediator selection consists of the two stages: the selection

stage and the mediation stage.

Selection Stage Nature chooses randomly a potential mediator λ from [0, 1].

This potential mediator makes a mediation offer to both disputants. Given

the offer, both disputants (after learning their types) simultaneously makes a

decision of whether to accept the mediation offer or not. Formally, an acceptance
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strategy of disputant i of type τi ∈ {H,L} is vi : {H,L} → {0, 1}, where 1

denotes “accept” and 0 denotes “reject”. If both disputants agree to accept the

offer (v1
τ1

= v2
τ2

= 1 for some (τ1, τ2) ∈ {H,L}2, then the selection stage is said

to be successful, and the mediation stage begins. Otherwise, both disputants

play the War-and-Peace game.

In either case, both disputants as well as the mediator observe the choice

made by each disputant when the selection stage is over. As each disputant

chooses a strategy after learning his type, his private information may be re-

vealed to both his opponent and the mediator. Let qi denote the posterior belief

about disputant i = 1, 2 being H-type, and it becomes a common knowledge.

Mediation Stage Once the mediator with bias λ is accepted, each disputant

privately sends a report m ∈ {H,L} to the mediator. Given the report m,

the mediator makes a recommendation (or a mechanism) in order to maxi-

mize her expected payoff. We assume that the mediator commits herself to the

mechanism. By applying the revelation principle, we consider only the direct

mechanisms. The mechanism thus consists of a type-dependent recommenda-

tion to each disputant about which action to take, either “Stay” or “Attack”,

and about how to split the pie conditional on the event that peace is achieved.

Without loss of generality, a direct mechanism proposed by the mediator with

her bias λ and her beliefs about disputants q1 and q2, can be summarized as

the tuple M ≡ M(λ, q1, q2) = (pτ , bτ )τ∈{H,L}2 where pτ is the probability of

peace and bτ is the share of the pie allocated to disputant 1 when the reported

type profile is τ ∈ {H,L}25. Given the mechanism M(λ, q1, q2) proposed by

5This formulation of a direct mechanism utilizes the following facts: (i) the sum of the
shares is one under peace, and (ii) a war breaks out unilaterally (i.e. if one disputant is
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the mediator, each disputant makes a decision whether to accept the proposed

mechanism or not. We assume that if either disputant rejects the mechanism,

war breaks out surely. Moreover, again by invoking the revelation principle, we

consider only the direct mechanisms in which each disputant reports his type

truthfully. To be specific, the incentive compatibility constraints for disputant

1 of each type are stated as follows:

(IC1H) q2

[
pHHbHH + (1− pHH)

(
θ

2

)]
+ (1− q2) [pHLbHL + (1− pHL)pθ]

≥ q2

[
pLHbLH + (1− pLH)

(
θ

2

)]
+ (1− q2) [pLLbLL + (1− pLL)pθ]

(IC1L) q2 [pLHbLH + (1− pLH)(1− p)θ] + (1− q2)

[
pLLbLL + (1− pLL)

(
θ

2

)]

≥ q2 [pHHbHH + (1− pHH)(1− p)θ] + (1− q2)

[
pHLbHL + (1− pHL)

(
θ

2

)]
The left-hand side of (IC1H) is the interim payoff of disputant 1 of H-type

when he truthfully reports his type. When facing H-type with probability q2,

peace is achieved with probability pHH and the share bHH is allocated. With

the remaining probability 1 − pHH , the mediation fails and war thus breaks

out. However, H-type does not win the war and obtain θ
2
. Facing L-type with

probability 1− q2, peace is achieved with probability pHL and the share bHL is

allocated. When the mediation fails, war breaks out. Then, H-type wins and

thus obtains θ
2

+ (1− θ). The right-hand side is the interim payoff when H-type

lies by reporting his type as L-type. In addition, the incentive compatibility

constraint for disputant 1 of L-type can also be interpreted in a similar way.

recommended to attack, then war breaks out regardless of the other disputant’s action). For
details, see Appendix.
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The participation constraints for disputant 1 of high type and low type are:

(PC1H) q2

[
pHHbHH + (1− pHH)

(
θ

2

)]
+ (1− q2) [pHLbHL + (1− pHL)pθ]

≥ q2

(
θ

2

)
+ (1− q2)pθ

(PC1L) q2 [pLHbLH + (1− pLH)(1− p)θ] + (1− q2)

[
pLLbLL + (1− pLL)

(
θ

2

)]

≥ q2(1− p)θ + (1− q2)

(
θ

2

)
Since the rejection of the proposed mechanism leads to war, the right-hand

sides are the interim payoffs under war. Similar to the case of disputant 1,

the incentive compatibility constraints and the participation constraints for dis-

putant 2 of each type can be formulated as follows:

(IC2H) q1

[
pHH(1− bHH) + (1− pHH)

(
θ
2

)]
+ (1− q1) [pLH(1− bLH) + (1− pLH)pθ]

≥ q1

[
pHL(1− bHL) + (1− pHL)

(
θ
2

)]
+ (1− q1) [pLL(1− bLL) + (1− pLL)pθ]

(IC2L) q1 [pHL(1− bHL) + (1− pHL)(1− p)θ] + (1− q1)
[
pLL(1− bLL) + (1− pLL)

(
θ
2

)]
≥ q1 [pHL(1− bHL) + (1− pHL)(1− p)θ] + (1− q1)

[
pLH(1− bLH) + (1− pLH)

(
θ
2

)]
(PC2H) q1

[
pHH(1− bHH) + (1− pHH)

(
θ
2

)]
+ (1− q1) [pLH(1− bLH) + (1− pLH)pθ]

≥ q1

(
θ
2

)
+ (1− q1)pθ

(PC2L) q1 [pHL(1− bHL) + (1− pHL)(1− p)θ] + (1− q1)
[
pLL(1− bLL) + (1− pLL)

(
θ
2

)]
≥ q1(1− p)θ + (1− q1)

(
θ
2

)
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As the mediator’s expected payoff is the average of the payoffs of disputants

weighted by the bias λ, it can be formulated as follows:

Wλ

(
pτ , bτ )τ∈{H,L}2

)
= Eτ [λ(pτb

1
τ + (1− pτ )d1

τ ) + (1− λ)(pτb
2
τ + (1− pτ )d2

τ )]

= (2λ− 1)Eτ [pτ (b
1
τ − d1

τ )] + (1− λ)(1− θ)Eτpτ + constant terms

or, equivalently,

= (1− 2λ)Eτ [pτ (b
2
τ − d2

τ )] + λ(1− θ)Eτpτ + constant terms,

where biτ and diτ are the shares of disputant i under peace and under war,

respectively. Specifically, b1
τ = 1 − b2

τ = bτ , d
1
HH = d1

LL = θ/2, d1
HL = pθ,

d1
LH = (1− p)θ such that d1

τ + d2
τ = θ.

Remark 4. The expected payoff of the mediator Wλ consists of two distinct

components: The first component weighted by (2λ − 1) is the ex-ante expected

gain of disputant 1 relative to his payoff under war, and the second component

weighted by (1− λ)(1− θ) is the ex-ante expected probability of peace. Suppose

that the mediator is extremely biased toward disputant 1, i.e. λ = 1. Then,

the mediator coincides completely with the ex-ante gain of disputant 1. If the

chosen mediator is impartial, i.e. λ = 1
2
, then the mediator only cares about

the expected peace probability without any concern for a specific allocation of the

pie under peace. Lastly, suppose that the mediator is completely on the side of

disputant 2, i.e. λ = 0. Then, the resulting expression can be shown to be the

ex-ante gain of disputant 2. We relegate this to the Appendix.
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Explicitly, we may express the mediator’s payoff from the viewpoint of dis-

putant 1 as follows:

Wλ

(
pτ , bτ )τ∈{H,L}2

)
= (2λ− 1)

[
q1q2pHH

(
bHH −

θ

2

)
+ q1(1− q2)pHL (bHL − pθ)

]

+(2λ− 1)

[
q2(1− q1)pLH {bLH − (1− p)θ}+ (1− q1)(1− q2)pLL

(
bLL −

θ

2

)]
+(1− λ)(1− θ) [q1q2pHH + q1(1− q2)pHL + (1− q1)q2pLH + (1− q1)(1− q2)pLL]

+constant terms,

Hence, the optimal mediation programme (P) for the mediator is to deter-

mine pτ and bτ for each τ ∈ {H,L}2 to maximize the expected payoff of the

mediator6:

(P) max
(pτ ,bτ )τ∈{H,L}2

Wλ

(
pτ , bτ )τ∈{H,L}2

)
subject to the interim incentive compatibility constraints and the interim par-

ticipation constraints for both disputants: (IC1H), (IC1L), (PC1H), (PC1L),

(IC2H), (IC2L), (PC2H), and (PC2L).

Equilibrium Definition To define an equilibrium, we first define the payoff

of each disputant. For a strategy profile (v1
H , v

1
L, v

2
H , v

2
L), the posterior beliefs q1

and q2 are calculated via Bayes’ rule whenever it is applicable. Define γi = qi
1−qi

for i = 1, 2. For any type profile τ = (τ1, τ2) ∈ {H,L}2 such that a mediator

is rejected, i.e. v1
τ1
6= v2

τ2
, each disputant’s payoff is his equilibrium payoff in

War-and-Peace game. Specifically, if γ1 ≤ δ or γ2 ≤ δ, the payoff for disputant

i of L-type is qj(1− p)θ+ (1− qj)(1/2), and for H-type it is qj
(
θ
2

)
+ (1− qj)pθ

6For the derivation of the expected payoff of the mediator, see Appendix.
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for i’s opponent j, j 6= i. Otherwise, if γ1 > δ and γ2 > δ, disputant i’s payoff

is 1/2 for both types.

Let E(q1, q2) be the set of equilibria in War-and-Peace game with the beliefs

q1 and q2. Whenever a mediator is accepted, i.e. for some type profile τ =

(τ1, τ2) ∈ {H,L}2 such that v1
τ1

= v2
τ2

= 1, the payoffs are determined by the

optimal mediation mechanism M(λ, q1, q2).

The solution concept we use is Perfect Bayesian equilibrium. An equilibrium

is a strategy profile (v1
H , v

1
L, v

2
H , v

2
L) satisfying the following:

• For his opponent’s nomination strategy (vjH , v
j
L), a mechanismM(λ, q1, q2),

and an equilibrium of War-and-Peace game E(q1, q2), disputant i of type

τ ∈ {H,L} maximizes his expected payoff.

• For the mediator’s bias λ and the posterior beliefs q1 and q2, the optimal

mechanism M(λ, q1, q2) solves (P).

• Given a strategy profile (v1
H , v

1
L, v

2
H , v

2
L), the posterior belief q1 and q2 are

determined by Bayes’ rule whenever it is applicable.

The whole structure of the model, somewhat complicated though, is depicted

in Figure 3.2

3.3 Optimal Mechanism

In analyzing the model, we shall focus on pure strategy equilibria. That is,

we shall analyze the following cases: (i) viH = viL, which we refer to as pooling

strategy, and (ii) viH 6= viL, so-called separating strategy, for i = 1, 2. Therefore,

we shall describe the features of an optimal mechanism in each case. Proofs are
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mediator

Mediation Conflict situation

Disputant 1 Disputant 2

Both Accept?

Disputants

Disputant 1 Disputant 2

Yes No

accept

(peace prob, allocation)

Attack by either party?

PeaceWar
reject

Mediator’s Recommendation
is implemented

Selection

Yes No

Nature Mediator offers mediation

Figure 3.2: War-and-Peace Game with Mediator Selection

relegated to the Appendix. For more parsimonious analysis, we shall work with

the following notation: Let γi = qi
1−qi denote the likelihood of disputant i being

H-type. We thus denote the mechanism as M(λ, γ1, γ2).

First of all, we consider an optimal mechanism under pooling strategy. If

the nomination stage is successful, no information is revealed in the nomination

stage. The posterior belief shared by the mediator and both disputants is thus

identical to the initial belief: γ1 = γ2 = γ < 1.
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In presenting the optimal mechanism, we shall report only the peace prob-

abilities and the rent obtained by each disputant7. Specifically, let duiτi de-

note the (informational) rent of disputant i = 1, 2 of type τi ∈ {H,L} after

normalizing by (1 − θ)(1 − q). That is, the disputant i’s interim payoff is

duiτi(1 − θ)(1 − q) + disputant i’s war payoff. Hence, we shall present pτ and

duiτi for τ = (τ1, τ2) ∈ {H,L}2.

When the mediator is unbiased (λ = 1/2), HMS solve for an optimal mecha-

nism by naturally assuming values of some choice variables by imposing symme-

try: pHL = pLH , bHL = bLH , and bHH = bLL = 1/2. This leads one to consider

constraints without identifying individual disputants. The details about the

solution and the approach for the optimal mechanism for a unbiased mediator

can be found in HMS(2015).

Lemma 12 (Optimal Mechanism under Pooling Strategy with Unbiased Me-

diator, HMS(2015)). Suppose that the mediator is unbiased
(
λ = 1

2

)
. Then, the

optimal mechanism M(1/2, γ, γ) satisfies the following:

• The incentive compatibility constraints of L-type and the participation con-

straints of H-type bind, and the others do not.

• For γ ≤ δ
2
, L-type dyads (L,L) do not fight (pLL = 1), asymmetric dyads

(H,L) and (L,H) enjoy peace with probability pHL = pLH = 1
1+δ−2γ

∈

(0, 1), H-type dyads (H,H) always fight (pHH = 0). The resulting interim

payoffs that disputants of each type obtain in addition to their payoff under

war, are 0 for H-type and
(

1
1+δ−γ

) (
1+δ

2

)
for L-type.

7We do not report the optimal split of the pie for each type profile under the mechanism.
For our analysis, only the rent obtained by each disputant under mechanism is relevant.
Moreover, the optimal split of the pie is indeterminate as there are multiple optima.
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• For γ > δ
2
, L-type dyads and asymmetric dyads do not fight (pLL = pHL =

pLH = 1) and H-type dyads fight with probability pHH = 2γ−δ
γ(1+δ−γ)

∈ (0, 1).

The resulting rents are 0 for H-type and
(

γ+1
1+δ−γ

) (
1+δ

2

)
for L-type.

When the mediator is biased (λ 6= 1/2), it is actually not easy to figure out

an optimal mechanism. Unlike the case of an unbiased mediator, the optimal

mechanism proposed by a biased one treats disputants differently depending

on the direction of a mediator’s bias. Moreover, when it comes to a disputant

favored by the mediator, it is not easy to see whether a participation constraint

or an incentive compatibility constraint does or does not bind at the optimum.

We relegate the detailed description of how we resolve these difficulties and the

relevant proofs to the Appendix. In presenting the optimal mechanism for a

biased mediator, we shall only report the case where the mediator is biased in

favor of disputant 1 (λ > 1/2). This is without loss of generality because one

can easily obtain the optimal mechanism by exchanging the roles of disputants.

Lemma 13 (Optimal Mechanism under Pooling Strategy with biased Media-

tor). Suppose that the mediator is biased in favor of disputant 1
(
λ > 1

2

)
. Let

λ > λ̂ ≡ 1+δ
2(1+δ−γ)

. Then, the optimal mechanism M(λ, γ, γ) determines the

peace probabilities and each disputant’s rent (pτ and duiτi for τ = (τ1, τ2) ∈

{H,L}2) as follows:

(1) When the mediator is extremely biased toward disputant 1 (λ > λ̂), the

incentive compatibility constraints of both disputants of L-type, disputant

1 of H-type, and the participation constraints of disputant 2 of H-type

bind, i.e. (IC1L), (IC2L), (IC1H), and (PC2H) bind. Peace is attained

when the opponent, disputant 2, is of L-type: pLL = pHL = 1. In the
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remaining cases, war breaks out: pHH = pLH = 0. Disputant 1’s rent is

du1H = 1 − 1+δ
2(1+γ)

for H-type, and du1L = 1 − γ(1+δ)
2(1+γ)

for L-type. The

opponent, disputant 2, obtains his expected payoff under war regardless of

its type, i.e. du2H = du2L = 0.

(2) When the mediator is moderately biased
(
λ ∈

(
1
2
, λ̂
])

, the participation

constraints of H-type and the incentive compatibility constraints of L-type

bind and the others do not. That is, (IC1L), (IC2L), (PC1H), and (PC2H)

bind.

(a) For γ > δ/2, every dyad except for the H-type dyad (H,H) does not

fight (pLL = pHL = pLH = 1). The H-type dyad fight with probability

pHH = 2γ−δ
γ(1+δ−γ)

∈ (0, 1). For both disputants, H-types obtain its

expected payoff under war: du1H = du2H = 0. L-types enjoy the rent

du1L = du2L =
(

γ+1
1+δ−γ

) (
1+δ

2

)
.

(b) For γ ≤ δ/2, dyads when disputant 2 is L-type do not fight (pLL =

pHL = 1). For the H-type dyad, war always breaks out, pHH =

0. The remaining dyad (L,H) enjoys peace with probability pLH =

1−δ+2γ
1+δ−2γ

∈ (0, 1). Disputant 1 of L-type, toward which the mediator

is biased, enjoys the informational rent of du1L = 1+δ
2

. Disputant 2

of L-type also enjoys the less amount of informational rent du2L =(
1−δ+2γ
1+δ−2γ

) (
1+δ

2

)
< du1L. For both disputants, H-types obtain their

expected payoffs under war, i.e. du1H = du2H = 0.

Notice that with a biased mediator, the peace probabilities for the asymmet-

ric dyads and the rents for L-type disputants are disproportionately allocated
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across disputants. To be specific, the biased mediators allocates more resources

to the L-type disputant they favor, while allowing the opponent of L-type enjoy

peace with certainty. This does not seem intuitive at first sight: Why does the

mediator give a favor to the disputant in her opposition in terms of peace prob-

ability rather than to the disputant she favors? To understand this, suppose

that the mediator is biased in favor of disputant 1. In order to provide the

truth-telling incentive for disputant 2 of L-type, the mediator must give away

some informational rent. This can be done by raising peace probability pHL to

disputant 2 of L-type or, alternatively, by raising the share 1 − bHL allocated

to it under peace. They affect the payoff of disputant 1 differently: The former

also benefits disputant 1 of H-type, but the latter does only harm to disputant

1 of either type. Consequently, the mediator chooses the cheaper way, thus

guaranteeing peace to disputant 2 of L-type.

Corollary 3. Suppose that a mediator is biased in favor of one disputant, say

disputant 1. An optimal mechanism exhibits the following features:

• Disputant 2 of L-type enjoys no less chance of peace than disputant 1 of

the same type, i.e. pHL = pLL = 1 ≥ pLH .

• Disputant 1 of L-type obtains the information rent no less than disputant

2 of the same type: du1L ≥ du2L.

• A strict inequality holds for both in the above, if the mediator is either

moderately biased with γ ≤ δ/2, or extremely biased.

That is, the optimal mechanism allocates more shares of the pie to the favored

party while guaranteeing more peace probabilities to the disfavored party.
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Now, turning to the expected peace probability achieved under an optimal

mechanism, we show that a biased mediator, even with the bias, does not nec-

essarily perform worse than a unbiased one if her bias is not severe.

Theorem 6. In an optimal mechanism under pooling strategy, a biased mediator

achieves the same expected peace probability as an unbiased one if and only

if the mediator has a moderate level of bias, λ ∈
(

1− λ̂, 1
2

)
∪
(

1
2
, λ̂
)

, where

λ̂ = 1+δ
2(1+δ−γ)

.

Proof. It is easy to see that an extremely biased mediator achieves a lower

expected peace probability than an unbiased one. For the other direction, if

γ > δ/2, then it is obvious because the peace probabilities are identical for

both a moderately biased mediator and a unbiased one. For γ ≤ δ/2, the

peace probabilities under a moderately biased mediator differ from those under

a unbiased one only for asymmetric dyads. However, the expected peace prob-

ability assigned for asymmetric dyads are the same: q(1 − q)
(

1 + 1−δ+γ
1+δ−2γ

)
=

2q(1− q)
(

1
1+δ−γ

)
.

This is striking because the biased mediator does not care about achieving

peace per se. The crucial factor that lies behind this result is the fact that

war is costly: If war breaks out, some proportion (1 − θ) of the pie is lost.

By achieving peace, a mediator may offer more shares to her ally by using this

resource that would have been lost under war. However, the mediator’s incentive

to attain peace is limited by the informational rent that must be given to the

opponent of L-type for providing him with the truth-telling incentive. As long

as she is not extremely biased, the mediator does not find this informational

rent costly. Therefore, the moderately biased mediator happens to maximize the
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peace probability as the unbiased mediator does. If the mediator is extremely

biased, however, the mediator would find the informational rent given to the

opponent too costly. Accordingly, she chooses to give no informational rent to

her opponent by reducing the peace probability.

Now, we consider an optimal mechanism when disputants fully reveal their

private information during the nomination stage. That is, v1
H 6= v1

L and v2
H 6= v2

L.

As both disputants’ types become common knowledge, the optimal mechanism

and the resulting payoff of each disputant are simply computed as follows:

Lemma 14 (Optimal Mechanism under Separating Strategy). The optimal

mechanism under separating strategy achieves peace with certainty. In addition,

a biased mediator allocates the share to the opponent (the disputant against

whom she is against) only to make the opponent accept the mechanism. Specif-

ically, the following hold:

(a) If the mediator is unbiased (λ = 1/2), the disputant 1’s share under peace

is bHH = bLL = 1/2, bHL = pθ + 1−θ
2

, and bLH = (1− p)θ + 1−θ
2

.

(b) If the mediator is biased toward disputant 1
(
λ > 1

2

)
, then bHH = bLL =

1− θ
2
, bHL = 1− (1− p)θ, bLH = 1− pθ.

(ii) If the mediator is biased against disputant 1
(
λ < 1

2

)
, then the disputant

1’s share under peace is as follows: bHH = bLL = θ
2
, bHL = pθ, and

bLH = (1− p)θ, and bLL = θ
2
.
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3.4 Equilibria: Incidence of Biased Mediators

As we noted in the previous section, we focus on the pure strategy equilibria.

For the pooling-strategy equilibria, we have the following result:

Theorem 7. Suppose that disputants employ pooling strategies. Let λ̂ = 1+δ
2(1+δ−γ)

.

Then, the following:

• Suppose that disputants are more likely to face H-type
(
γ ≥ δ(1+δ)

2(2+δ)

)
.

(a) For λ ∈ (1− λ̂, λ̂), a strategy profile (v1
H , v

1
L, v

2
H , v

2
L) satisfying v1

H =

v1
L = v2

H = v2
L = 1 is a pooling-strategy equilibrium.

(b) All pooling-strategy equilibria within λ ∈ (1− λ̂, 1/2) are all outcome-

equivalent. Moreover, so are all pooling-strategy equilibria within λ ∈

(1/2, λ̂).

• Suppose that disputants are less likely to face H-type
(
γ < δ(1+δ)

2(2+δ)

)
. Then,

there is a unique pooling-strategy equilibrium in which only the unbiased

mediator (λ = 1/2) is accepted.

The above theorem tells that a disputant would agree to accept the mediator

biased in favor of his opponent if he is likely to face the H-type opponent.

Otherwise, the disputant would not accept a mediator unless the mediator is

impartial. If a disputant anticipates that there are more to lose than to gain

in the conflict situation, he would rather to be engaged in a mediation, even

when he expects the mediator to be biased against him. This simple intuition,

however, does not provide an explanation why the disputant would gain under

mediation, despite the fact that the mediator stands on the opposite side of

him. Figure 3.3 illustrates this idea.

67



γ

biased mediators
acceptable to disputant 2

γ̂ = δ(1+δ)
2(2+δ)

λ = 1+δ
2(1+δ−γ)

Disputant 1

1

1
2

δ

Bias toward

(λ)

Figure 3.3: Incidence of a Biased Mediator: λ ≥ 1/2

It is the informational rent that provides an answer. For illustration, sup-

pose that the mediator is biased in favor of disputant 1. Recall that under

mediation, disputant 2 of H-type’s participation constraint holds with equality.

In other words, he is indifferent between engaging in mediation and continuing

the conflict. For the disputant 2 of L-type, he has an incentive for pretending to

be H-type. To prevent this, the mediator needs to give the informational rent,

even though the mediator wishes to allocate more shares to her ally. Therefore,

even when the mediator is biased against him, disputant 2 would gain under

mediation.

Focusing on separating-strategy equilibria (v1H �= v1L and v2H �= v2L). We

obtain the following result:

Theorem 8. Suppose that disputants employ separating strategies. There ex-

ists a unique equilibrium in which L-type dyad (L,L) accepts only an unbiased

mediator (v1L = v2L = 1) and H-type dyad (H,H) rejects on such a mediator

(v1H = v2H = 0).
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The intuition behind this result is rather simple. As there is always an in-

centive for L-type to mimic H-type, L-type would deviate to accept, whenever

there is a mediation for an asymmetric dyad, say (H,L) or (L,H). Similarly,

there exists no equilibrium where the H-type dyad successfully agree on a biased

mediator. Moreover, it is not an equilibrium that the H-type dyad successfully

agree on a unbiased mediator. By deviating to match with L-type under no

mediation, H-type obtains pθ which is larger than his payoff of 1/2 under medi-

ation. When L-type dyad (L,L) successfully selects a biased mediator, H-type

would deviate for his payoff of 1/2 is smaller than the deviation payoff of 1−θ/2.

When L-type dyad (L,L) agrees on the unbiased mediator, the resulting split

would be (1/2, 1/2). H-type has no incentive to deviate, for this is equal to

H-type’s payoff under no mediation. Moreover, L-type also would not deviate

to match with H-type under no mediation, for the deviation payoff of (1− p)θ

is smaller than the equilibrium payoff of 1/2.

Notice that at the separating-strategy equilibrium, the ex-ante peace prob-

ability is the same as the one in the War-and-Peace game. In addition, it is less

than the one at any pooling-strategy equilibria. That is, the separating-strategy

equilibrium is Pareto-dominated by any pooling-strategy equilibria. Therefore,

we restrict our attention to the pooling-strategy equilibria.

3.5 Effectiveness of Biased Mediators

From the results in the previous section, we are now able to discuss the issue

regarding the effectiveness of biased mediators. As it is demonstrated in The-

orem 6, in general, a biased mediator performs worse than a unbiased one, for
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those mediator with the extreme level of bias achieves the lower expected peace

probability. This stands by a general concern about the mediator’s bias.

Nevertheless, Theorem 7 reveals that one may disregard such a concern.

Although extremely biased mediators are not equally effective as the unbiased

one, these mediators would never be chosen in equilibrium. In other words,

if one observes that a biased third party acts as a mediator, such a mediator

would have a moderate level of bias, and more importantly, she would be equally

effective as a unbiased mediator.

Corollary 4. In any equilibria where a biased mediator is accepted, such a

mediator is equally effective as an unbiased one in resolving a conflict.

By looking at the above corollary, one may wonder about the connection

between the effectiveness of a mediator and the demand of disputants for the

mediator. As we argue earlier in the introduction, for the disputants, peace is

not the end itself. Each disputant cares only about how much he would gain

from the likely outcome of mediation, while comparing with the outcome from

an ongoing conflict. However, our result shows that only the effective mediators

are selected by disputants. Does this mean that disputants demand a mediator

who is likely to be effective? We argue that our result does not allow such an

interpretation. Extremely biased mediators, although they achieve a higher ex-

pected peace probability than the disputants may achieve in a conflict situation

(War-and-Peace game), fail to be selected in equilibrium due to the objection

by one party. Then, why do we see a connection between the effectiveness and

the mediation incidence?

The connection lies in how the mediator’s bias affects the allocation of the
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informational rent and the peace probability between the two parties. According

to our results, we may classify all mediators according to the mediation outcome

they propose into the following three categories: unbiased, moderately biased,

and extremely biased8. The unbiased mediator allocates the peace probability

and the informational rent equally across disputants. On the other hand, the

biased mediators tend to allocate more informational rent to her ally, while

allocating more peace probabilities to the opposite party.

What distinguishes the extremely biased ones from the moderately biased

ones is that for the former, no informational rent is allocated to the party whom

the mediator is biased against. As we discussed earlier in the section on the

optimal mechanism, this is due to the trade-off faced by the biased mediator. To

reiterate, maximizing the expected peace probability would be beneficial to the

mediator by allowing her to allocate more resources to the disputant whom she is

biased in favor of without wasting them in war. However, achieving peace incurs

a cost to the mediator. She needs to provide the informational rent, especially

even to the disputant she is not favor of. If her bias is not extreme, this cost

does not constrain the mediator’s willingness to promote peace. Otherwise, the

mediator would give no rent to the opposite party by compromising her benefit

from achieving peace.

A disputant, when making his decision in the nomination stage, would con-

sider this likely outcome of mediation under a mediator who is extremely biased

in favor of his opponent. Especially, when he is L-type, he would see that the

likely outcome, even under mediation, is indifferent to the outcome under war.

8Although a biased mediator in favor of disputant 1 makes a different recommendation
from one in favor of disputant 2, we include them into one category, for the recommendations
they propose exhibits symmetry.
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As he may enjoy a peaceful outcome with some positive probability in a given

conflict situation, he would rather to take a bet by refusing any mediation by

an extremely biased third party.

3.6 Conclusion

In this paper, we study how mediator bias affects the initiation as well as the

effectiveness of mediation. Specifically, we investigate two different but closely

related issues: (i) why, and under which circumstances a disputant is willing

to accept a mediator who is biased in favor of his opponent, and (ii) whether

such a biased mediator, if accepted, is equally effective as an unbiased one in

promoting peace.

To this end, we construct a simple model in which disputants make a joint

decision of whether to accept a third-party who is potentially biased in favor of

one party as their mediator. Our model adds a novel feature of mediator bias to

the previous mechanism design approach to mediation (Fey and Ramsay, 2010;

Hörner et al., 2015). This leads to the optimal mechanism that is qualitatively

different from the one assuming the mediator’s impartiality. Specifically, the

biased mediator allocates the peace probabilities and the share of the pie un-

der peace differently across disputants: the favored party enjoys more interim

payoffs, while the disfavored party, in return, is guaranteed more peace proba-

bilities.

From this investigation of an optimal mechanism under a biased mediator,

we show that if a conflict is less likely to end up with a peaceful outcome, dis-

putants would accept a biased mediator. This result relies on the presence of
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private information. To elicit a disputant’s private information during the medi-

ation process, a mediator has to provide an informational rent to the disputant

even when she is biased against him. Hence, the disputant would be willing to

accept mediation if the alternative (conflict) is likely to ends up with war. This

is consistent with an empirical finding by Melin et al. (2013).

A novel result we find out, in relation to the effectiveness of a biased media-

tor, is that if accepted, a biased mediator achieves peace equally as an unbiased

one. This implies that accounting for an endogenous selection, a mediator’s

bias is independent of her effectiveness in resolving a conflict. This relies on the

fact that when the mediator is moderately biased, promoting peace as much as

possible is beneficial to her. To be specific, as war is socially wasteful, promot-

ing peace would allow a mediator to serve her ally’s interest. This, however,

increases the need for the mediator to give more informational rent to the disfa-

vored party. As long as the level of bias is moderate, providing an informational

rent does not compromise the benefit of promoting peace to the mediator.
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Appendix A

Appendix for Chapter 3

A.1 War-and-Peace Game with Arbitrary Be-

liefs

In this section, we analyze the game described as the environment by allowing

the probability of disputant i being H-type to differ. That is, disputant 1 is of

H-type with probability q1, and disputant 2 is of H-type with probability q2.

Let αiτ denote the probability that disputant i of type τ ∈ {H,L} chooses to

stay. Then, the expected payoff of each disputant for a given mixed strategy

profile (α1
H , α

1
L, α

2
H , α

2
L) can be computed as follows:

u1H(α1
H , α

2
H , α

2
L) = q2

(
α1
Hα

2
H

2
+

(1− α1
Hα

2
H)θ

2

)
+ (1− q2)

[
α1
Hα

2
L

2
+ (1− α1

Hα
2
L)pθ

]

u1L(α1
L, α

2
H , α

2
L) = q2

(
α1
Lα

2
H

2
+ (1− α1

Lα
2
H)(1− p)θ

)
+ (1− q2)

[
α1
Lα

2
L

2
+

(1− α1
Lα

2
L)θ

2

]

Disputant 2’s interim expected payoff for each type can be similarly defined

by exchanging the indices in the superscripts and subscripts. Thus, we shall

proceed by focusing on disputant 1. To solve for an equilibrium, we first compute

74



how each type’s payoff changes as his choice changes:

∂u1H

∂α1
H

= q2α
2
H

(
1− θ

2

)
− (1− q2)α2

L

(
pθ − 1

2

)

= (1− q2)

(
1− θ

2

)[
γ2α

2
H − α2

Lδ
]

∂u1L

∂α1
L

= q2α
2
H

(
1

2
− (1− p)θ

)
+ (1− q2)α2

L

(
1− θ

2

)

= (1− q2)

(
1− θ

2

)[
γ2α

2
H(δ + 2) + α2

L

]
As ∂u1L

∂α1
L
≥ 0, it is easy to see that ‘Stay’ (αiL = 1, i = 1, 2) is a weakly

dominant strategy for L-type. For H-type, however, the H-type opponent’s

strategy matters to determine the best response. First of all, we have the

following lemma:

Lemma 15. Suppose that L-type chooses his weakly dominant strategy “stay”.

For disputant i of H-type, if γj ≤ δ for j 6= i, “attack” is a weakly dominant

strategy, i.e. “attack” yields a strictly higher expected payoff than “stay” unless

the other disputant j of H-type chooses peace with probability 1.

Proof. Consider, without loss of generality, disputant 1 of H-type. His expected

utility is

∂u1H

∂α1
H

= (1− q2)

(
1− θ

2

)[
γ2α

2
H − δ

]
≤ (1− q2)

(
1− θ

2

)
γ2

(
α2
H − 1

)
≤ 0

and equality holds if and only if γ2 = δ.
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For γ2 > δ, the best response of the H-type disputant depends the H-type

opponent’s strategy. If the H-type opponent’s strategy is to “Attack” with

probability more than α2
H < δ

γ2
, the best response would be to “Attack” as well.

Based on this one can easily obtain the following:

Proposition 1. The set of undominated Bayesian Nash equilibria of the War-

and-Peace game consists of the following:

(1) γ1 ≤ δ or γ2 ≤ δ: L-type chooses to stay and H-type chooses to attack.

The equilibrium outcome is war with probability (1− q1)(1− q2).

(2) γ1 > δ and γ2 > δ:

(a) L-type chooses to stay and H-type chooses to attack. The equilibrium

outcome is war with probability (1− q1)(1− q2).

(b) Both types chooses to stay. The equilibrium outcome is peace.

(c) (mixed strategy equilibrium) L-type chooses to stay and H-type dis-

putant i chooses to stay with probability δ
γi

. The equilibrium outcome

is peace with probability[
q1

(
1− δ

γ1

)
− 1

] [
q2

(
1− δ

γ2

)
− 1

]
For γ1 > δ and γ2 > δ, the payoff of H-type in each equilibrium is u1H(a) =

u1H(c) = q2

(
θ
2

)
+ (1 − q2)pθ and u1H(b) = 1

2
. The equilibrium (b) yields the

highest payoff: u1H(b) > u1H(a) = u1H(c). For γ1 > δ and γ2 > δ, the equilib-

rium strategy profile in which H-type chooses to “Stay” Pareto-dominates the

other equilibrium strategy profiles. We thus assume that the most efficient equi-

librium is chosen among the multiple undominated Bayesian Nash equilibria.

In all, we have the following:
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Corollary 5. The set of the most efficient undominated Bayesian Nash equi-

libria of the War-and-Peace game consists of the following:

(1) γ1 ≤ δ or γ2 ≤ δ: L-type chooses to stay and H-type chooses to attack.

The equilibrium outcome is war with probability (1 − q1)(1 − q2). The

expected payoff for disputant i of L-type is qj(1 − p)θ + (1 − qj)
(

1
2

)
, and

for H-type the expected payoff is qj
(
θ
2

)
+ (1− qj)pθ for j 6= i.

(2) γ1 > δ and γ2 > δ: Both types chooses to stay. The equilibrium outcome

is peace. The expected payoff for both L-type and H-type is 1
2
.

In short, L-type always chooses to stay, while H-type chooses to stay if and only

if γ > δ.

A.2 Formulation of The Mediation Programme

Formulation of a direct mechanism A direct mechanism consists of the

following two functions:

• an action rule φ : {H,L}2 →4 ({A, S}2) and

• a split rule β : {H,L}2 → ∆ = {(b′i, b′2)|b′1 + b′2 = 1} that specifies the

share b′i of disputant i = 1, 2.

where 4 ({A, S}2) is the set of probability distributions over the set {A, S}2.

Note that an action rule can be shortened to be a rule that assigns peace proba-

bility for each type profile. Specifically, let φ(τ) = (φ(τ)(SS), φ(τ)(SA), φ(τ)(AS), φ(τ)(AA))

for a type profile τ ∈ T = {H,L}. Note that a war may break out unilaterally

and that the payoff relevant information contained in an action rule is whether
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a war breaks out or not. Therefore, one may summarize the action rule by

defining the peace probability as pτ ≡ φ(τ)(SS) and 1 − pτ ≡ φ(τ)(SA) +

φ(τ)(AS) + φ(τ)(AA) for τ ∈ {H,L}2. For a split rule β(τ) = (β1(τ), β2(τ)),

one can consider only the share of disputant 1 because the share of disputant

2 can be computed simply by b′2 = 1 − b′1. Hence, define bτ to denote the

share of disputant 1 under peace. To sum up, a direct mechanism is a tuple

Γ = (pHH , pHL, pLH , pLL, bHH , bHL, bLH , bLL).

Derivation of the expected payoff of the mediator Let bτ and dτ denote

the size of the pie allocated to disputant 1 when the type profile is τ under

peace and under war, respectively. The size of the pie allocated to disputant 2

under peace is thus 1 − bτ , for the size of the pie is one. Similarly, the share

allocated to disputant 2 under war is θ− dτ , for the size of the pie shrinks to θ.

The mediator’s expected payoff, given the type τ of disputant 1, is thus

wλ(τ) = pτ [λ(bτ − dτ ) + (1− λ) {(1− bτ )− (θ − dτ )}]

= [(2λ− 1)pτ (bτ − dτ ) + (1− λ)(1− θ)pτ ]

or, equivalently

= [(1− 2λ)pτ {(1− bτ )− (θ − dτ )}+ λ(1− θ)pτ ]
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Therefore, the ex-ante expected payoff of the mediator for given q1 and q2 is:

Wλ = Eτ [wλ(τ)] = Eτ [pτ [λ(bτ − dτ ) + (1− λ) {(1− bτ )− (θ − dτ )}]]

= (2λ− 1)

[
q1q2pHH

(
bHH −

θ

2

)
+ q1(1− q2)pHL(bHL − pθ)

]

+(2λ− 1)

[
q2(1− q1)pLH(bLH − (1− p)θ) + (1− q1)(1− q2)pLL

(
bLL −

θ

2

)]
+(1− λ)(1− θ) [q1q2pHH + q1(1− q2)pHL + (1− q1)q2pLH + (1− q1)(1− q2)pLL]

or, equivalently,

= (1− 2λ)

[
q1q2pHH

(
1− bHH −

θ

2

)
+ q1(1− q2)pHL(1− bHL − (1− p)θ)

]

+(1− 2λ)

[
q2(1− q1)pLH(1− bLH − pθ) + (1− q1)(1− q2)pLL

(
1− bLL −

θ

2

)]
+λ(1− θ) [q1q2pHH + q1(1− q2)pHL + (1− q1)q2pLH + (1− q1)(1− q2)pLL]

The expression in the main body of the paper is the first one.

Lemma 16. The following statement holds:

(1) If λ = 1
2
, the mediator’s expected payoff is the expected probability of peace

up to a constant.

(2) If λ = 1, the mediator’s expected payoff is the ex-ante expected gain of

disputant 1.

(3) If λ = 0, the mediator’s expected payoff is the ex-ante expected gain of

disputant 2.
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Proof. The statements (2) and (3) are obvious from the expressions. To show

(1), plug λ = 1
2

into the mediator’s expected payoff. Then, we have

W1/2(bH , bL, pH , pL) =
1− θ

2
[q1q2pHH + q1(1− q2)pHL + (1− q1)q2pLH + (1− q1)(1− q2)pLL]

Since the constant multiplicative term does not affect the maximization prob-

lem, we can abstract away to obtain the following: q1q2pHH + q1(1 − q2)pHL +

(1−q1)q2pLH +(1−q1)(1−q2)pLL. This is nothing but the expected probability

of peace.

Reformulation of a mediator’s problem Let Bτ denote the share of (1−θ)

(that would be lost under war) allocated to disputant 1 of type τ ∈ {H,L}

conditional on the event that peace is achieved, i.e. Bτ = bτ−dτ
1−θ where bτ and dτ

are the size of the pie allocated to disputant 1 of type τ under peace and under

war, respectively. Let γi = qi
1−qi be the likelihood of disputant i (i = 1, 2) being

H-type.

The mediation problem by a mediator with the bias λ and the posterior

likelihood γ1 and γ2 about disputant 1 and 2 being H-type, can be reformulated

in the following way:
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max Wλ(BHH , BHL, BLH , BLL, pHH , pHL, pLH , pLL)

= (2λ− 1) [γ1γ2pHHBHH + γ1pHLBHL + γ2pLHBLH + pLLBLL]

+(1− λ) [γ1γ2pHH + γ1pHL + γ2pLH + pLL]

(IC1H) γ2pHHBHH + pHLBHL ≥ γ2pLH
(
BLH − 1+δ

2

)
+ pLL

(
BLL − 1+δ

2

)
(IC1L) γ2pLHBLH + pLLBLL ≥ γ2pHH

(
BHH + 1+δ

2

)
+ pHL

(
BHL + 1+δ

2

)
(PC1H) γ2pHHBHH + pHLBHL ≥ 0

(PC1L) γ2pLHBLH + pLLBLL ≥ 0

(IC2H) γ1pHH (1−BHH) + pLH(1−BLH) ≥ γ1pHL
(
1−BHL − 1+δ

2

)
+ pLL

(
1−BLL − 1+δ

2

)
(IC2L) γ1pHL(1−BHL) + pLL (1−BLL) ≥ γ1pHH

(
1−BHH + 1+δ

2

)
+ pLH

(
1−BLH + 1+δ

2

)
(PC2H) γ1pHH (1−BHH) + pLH(1−BLH) ≥ 0

(PC2L) γ1pHL(1−BHL) + pLL (1−BLL) ≥ 0

Note that since bτ ∈ [0, 1], BHH , BLL ∈
[
−

θ
2

1−θ ,
1− θ

2

1−θ

]
, BHL ∈

[
−1− θ

2

1−θ ,
θ
2

1−θ

]
and BLH ∈

[
1−

θ
2

1−θ , 1 +
1− θ

2

1−θ

]
. (If ex-post participation constraints are consid-

ered, pτBτ ∈ [0, 1] for τ ∈ {HH,HL,LH,LL}.)

One advantage of this reformulation is to make one treat the type-dependent

outside options in the participation constraints as if it is type-independent by

normalizing them to be zero: Notice the right-hand sides of (PCiH) and (PCiL)
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for i = 1, 2 are all zeros. More importantly, with this reformulation, one may

see whether the optimal mediation mechanism is self-enforcing or not by looking

at the additional gain or loss to the payoff under war. If the values of Bτ for

τ ∈ {H,L}2 belong to the unit interval in the optimal mechanism, then the

mechanism is self-enforcing: The mechanism maximizes the mediator’s payoff

by allocating the share (1−θ) while making no disputant worse than its ex-post

payoff under war.

A.3 Optimal Mechanism By a Biased Mediator

under Pooling Strategy

In this section, we analyze the optimal mechanism under pooling strategy, i.e.

γ1 = γ2 = γ < δ. The results in this section indeed constitute the proofs for

Lemma 13, Theorem 6, and Corollary 3.

Lemma 17. The participation constraints for each disputant of L-type, (PCiL),

is non-binding.

Proof. One can easily see that for each disputant i = 1, 2,

• RHS of (ICiL) > LHS of (ICiH) =LHS of (PCiH) and

• RHS of (ICiH) < LHS of (ICiL) =LHS of (PCiL).

By the above inequalities, (ICL) and (PCH) imply (PCL):

LHS(PCiL) = LHS(ICiL) ≥ RHS(ICiL), by (ICiL)

> LHS(ICiH) = LHS(PCiH), by (PCiH)

≥ 0
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When the mediator is biased (λ 6= 1
2
), we may restrict our attention only

to the case in which the mediator is biased toward disputant 1 (λ > 1
2
), for

the other case corresponds to the case where the mediator is biased in favor of

disputant 2.

Lemma 18. The participation constraint for disputant 2 of H-type and the

incentive compatibility constraints of L-type for both disputants are binding at

the optimum. That is, (IC1L), (IC2L), and (PC2H) hold with equality.

Proof. First of all, (PC2H) is binding. If not, raise BHH and BLH simultaneously

in order to keep (IC1L). Specifically, if the RHS is away from the LHS by ∆, then

raise BHH by
(

pLH
pLH+pHH

)
∆ while increasing BLH by

(
pHH

pLH+pHH

)
∆. Both sides

of (IC1L thus increase by the same amount. This procedure leads to the increase

in the value of the objective function without violating the other two constraints.

For (IC2L), if it is not binding, one may raise the value of the objective function

by increasing BHL and BLL simultaneously while keeping (IC1L). Similarly to

the previous case, if the discrepancy between the RHS and the LHS of (IC2L)

is ∆, then raise BLL by
(

pHL
pHL+pLL

)
∆ and BHL by

(
pLL

pHL+pLL

)
∆.

Lastly, (IC1L) is binding at the optimum. Suppose that (IC1L) holds with

strict inequality. Notice first that due to (PC1H), at least one of BHH or BHL is

non-negative. Moreover, (IC2L) implies that either 1−BHL or 1−BLL is non-

negative. If BHL ∈ [0, 1], we may raise pHL and thus the value of Wλ without

violating the other two constraints, (IC2L) and (PC2H). Suppose that BHL > 1.

By (IC2L), either BLL < 0 or BLL ∈ [0, 1]. In the former case, raise pLL. In
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the latter case, one may raise pHL and pLL simultaneously without violating the

other two constraints.

By the previous lemma, the mediation programme can be expressed as fol-

lows:

max λ (γpHL + pLL) +

[
λγ − (2λ− 1)

(
1 + δ

2

)]
(γpHH + pLH)

(IC1H) γpLH + pLL ≥ γpHH + pHL

(PC1H) pLL +
(
γ − 1+δ

2

)
pLH ≥

[(
1+δ

2

)2 −
(

1+δ
2
− γ
)2
]
pHH +

(
1+δ

2
− γ
)
pHL

(IC2H) γpHL + pLL ≥ γpHH + pLH

with the following constraints for Bτ with τ ∈ {H,L}2:

(IC1L) γpLHBLH + pLLBLL = γpHH

(
BHH +

1 + δ

2

)
+ pHL

(
BHH +

1 + δ

2

)

(IC2L) γpHL(1−BHL) + pLL(1−BLL) = (γpHH + pLH)

(
1 + δ

2

)
(PC2H) γpHH(1−BHH) + pLH(1−BLH) = 0

First of all, notice that pLL = 1 at the optimum, for it appears only on the left-

hand side of each constraint. Then, we analyze the programme in two steps: In

the first step, we treat pHH and pLH as fixed and solve for pHL that maximizes

λ (γ1pHL + 1). In the second step, after plugging pLH , we choose pHH and pLH

that maximizes the objective function Wλ.

84



Step 1 : For fixed pHL, pLL, the optimal mechanism solves the following

programme:

(P1) max λ (γpHL + 1)

s.t. (IC1H) 1− pHL ≥ γ(pHH − pLH)

(PC1H) 1−
(

1 + δ

2
− γ
)
pHL ≥ γ(1 + δ − γ)pHH +

(
1 + δ

2
− γ
)
pLH

(PROB) pHL ∈ [0, 1]

If γ ≤ 1+δ
2

, then the feasible set for pHL is identified by the following constraints:

(IC1H) pHL ≤ 1− γ(pHH − pLH)

(PC1H) pHL ≤
1− γ(1 + δ − γ)pHH −

(
1+δ

2
− γ
)
pLH

1+δ
2
− γ

(PROB) pHL ∈ [0, 1]

For the coefficient λγ on pHL is positive, the optimal solution for pHL, if it

exists, is

min

{
1, 1− γ(pHH − pLH),

1− γ(1 + δ − γ)pHH −
(

1+δ
2
− γ
)
pLH

1+δ
2
− γ

}
≥ 0

If γ ∈
(

1+δ
2
, δ
)
, then the feasible set for pHL can be written as the following:

(IC1H) pHL ≤ 1− γ(pHH − pLH)

(PC1H) pHL ≥
1− γ(1 + δ − γ)pHH −

(
1+δ

2
− γ
)
pLH

1+δ
2
− γ

(PROB) pHL ∈ [0, 1]
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or, alternatively, pHL ∈
[
max

{
0,

1−γ(1+δ−γ)pHH−( 1+δ
2
−γ)pLH

1+δ
2
−γ

}
,min{1, 1− γ(pHH − pLH)}

]
.

The optimal solution for pHL, if it exists, thus occurs at the supremum of the

feasible set:

pHL = min{1, 1− γ2(pHH − pLH)}.

Step 2 : Firstly, we remark on the objective function for each values of pHL.

(1) When pHL = 1, the objective function Wλ(pHH , pLH) is written as follows:

W
(1)
λ ≡ λ (γ + 1) + [(1 + δ)/2− λ(1 + δ − γ)] (γpHH + pLH)

Let λ̂ = 1+δ
2(1+δ−γ)

. If λ < λ̂, then the coefficients on pHH and pLH are

positive.

(2) When pHL = 1 − γ(pHH − pLH), the objective function Wλ(pHH , pLH) is

written as follows:

W
(2)
λ ≡ λ(γ+1)−(2λ−1)

(
1 + δ

2

)
γpHH+

[(
1 + δ

2

)
− λ(1 + δ − γ − γ2)

]
pLH

The coefficient on pHH is negative.

(3) When pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2
−γ)pLH

1+δ
2
−γ , the objective function is thus writ-

ten as follows:

W
(3)
λ ≡

(
1 + δ

2

)[
λ

1+δ
2
− γ +

γpHH
1+δ

2
− γ

{(
1 + δ

2
− γ
)
− λ(1 + δ − γ)

}
+ pLH(1− 2λ)

]
.

For λ ∈ (1/2, 1), both coefficients on pHH and pLH are negative, for

γ
[(

1+δ
2
− γ
)
− λ(1 + δ − γ)

]
= 1+δ

2
(1−2λ)−γ(1−λ) < 0 and 1−2λ < 0.

Now, we analyze the mediation programme for the following cases: (A)

γ ≤ 1+δ
2

and (B) γ ∈
(

1+δ
2
, δ
)
.
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(A) γ ≤ 1+δ
2

: We first characterize the feasible set (conditional on pHL). As

γ < 1+δ
2

, either pHL = 1, pHL = 1−γ2(pHH−pLH), or pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2
−γ)pLH

1+δ
2
−γ .

Then, for pHL = 1, the feasible set for (pHH , pLH) is defined by the following

inequalities:

pLH ≥ pHH

pLH ≤ −
(

2γ(1 + δ − γ)

1 + δ − 2γ

)
pHH +

1− δ + 2γ

1 + δ − 2γ

As for pHL = 1− γ(pHH − pLH), the feasible set is thus characterized by

pLH ≤ pHH

pLH(γ + 1) ≤ −
(

γ(1 + δ)

1 + δ − 2γ

)
pHH +

1− δ + 2γ

1 + δ − 2γ

Lastly, for pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2
−γ)pLH

1+δ
2
−γ , the feasible set is defined by follow-

ing inequalities:

pHL =
2− 2γ(1 + δ − γ)pHH

1 + δ − 2γ
− pLH ≥ 0

pHH , pLH ∈ [0, 1]

pLH ≥ −
(

2γ(1 + δ − γ)

1 + δ − 2γ

)
pHH +

1− δ + 2γ

1 + δ − 2γ

pLH(γ + 1) ≥ −
(

γ(1 + δ)

1 + δ − 2γ

)
pHH +

1− δ + 2γ

1 + δ − 2γ

The feasible set in each case is thus depicted in Figure A.1.

(1) pHL = 1: For λ < λ̂ ≡ 1+δ
2(1+δ−γ)

, both pHH and pLH contribute positively to

the objective function, but they cannot both be one due to the constraint
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pHH

pLH

0

1

11−δ+2γ
2γ(δ−γ)+1+δ

1−δ+2γ
2γ(δ−γ)+1+δ

1−δ+2γ
1+δ−2γ

pHL = 1− γ(pHH − pLH)

pHL = 1

pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2 −γ)pLH
1+δ
2 −γ

(a) γ ≤ δ
2

pLH

pHH1

1

0
1−δ+2γ

2γ(δ−γ)+1+δ

1−δ+2γ
2γ(δ−γ)+1+δ

2γ−δ
γ(1+δ−γ)

pHL = 1

pHL = 1− γ(pHH − pLH)

pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2 −γ)pLH
1+δ
2 −γ

(b) γ > δ
2

Figure A.1: Feasible set for (pHH , pLH): γ ≤ 1+δ
2

(PC1H). As the marginal rate of substitution (MRS) γ is less steeper than

the slope of (PC1H) which is γ(1+δ−γ)
1+δ
2

−γ
, raising pLH always contributes more

to the objective function than raising pHH does. Thus, the optimum occurs

at the point that maximizes pLH in sacrifice of pHH . When γ > δ/2, pLH

cannot be larger than one, and pHH cannot decrease further. Therefore,

pLH = 1 and pHH = 2γ−δ
γ(1+δ−γ)

. On the other hand, if γ ≤ δ/2, (PC1H)

binds and pLH = 1−δ+2γ
1+δ−2γ

while pHH = 0.

If λ ≥ λ̂, then both pHH and pLH contribute negatively to the objective

function. Hence, pHH = pLH = 0 at the optimum, for it is feasible.

(2) pHL = 1− γ(pHH − pLH): If λ ≤ λ̂, then the coefficient on pLH is positive

and larger than the absolute value of the coefficient on pHH :
1+δ
2

− λ(1 +

δ − γ(γ + 1)) > (2λ − 1)γ 1+δ
2
. That is, raising pLH contributes more to

the objective function than reducing pHH . The optimum thus occurs at

pHH = pLH = 1−δ+2γ
2γ(δ−γ)+1+δ

. At the optimum, pHL = 1 and both (PC1H)
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pHH

pLH

0

1

11−δ+2γ
2γ(δ−γ)+1+δ

1−δ+2γ
2γ(δ−γ)+1+δ

1−δ+2γ
1+δ−2γ

pHL = 1

optimum when λ ≤ 1+δ
2(1+δ−γ)

optimum when λ > 1+δ
2(1+δ−γ)

(a) γ ≤ δ
2

pLH

pHH1

1

0
1−δ+2γ

2γ(δ−γ)+1+δ

1−δ+2γ
2γ(δ−γ)+1+δ

2γ−δ
γ(1+δ−γ)

pHL = 1

optimum when λ > 1+δ
2(1+δ−γ)

optimum when λ ≤ 1+δ
2(1+δ−γ)

(b) γ > δ
2

Figure A.2: The optimal values for (pHH , pLH): pHL = 1

and (IC1H) bind. Otherwise, pHH = pLH = 0.

pLH

pHH1

1

0

1−δ+2γ
2γ(δ−γ)+1+δ

pHL = 1− γ(pHH − pLH)pHL = 1− γ(pHH − pLH)

optimum when λ ≤ 1+δ
2(1+δ−γ)

optimum when λ > 1+δ
2(1+δ−γ)

Figure A.3: The optimal values for (pHH , pLH): pHL = 1− γ(pHH − pLH)

(3) pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2
−γ)pLH

1+δ
2

−γ
: Recall that both coefficients are nega-

tive. Thus, decreasing both as much as possible is optimal. Moreover, if

λ > λ̂, the marginal rate of substitution (MRS)
λ(1+δ−γ)−( 1+δ

2
−γ)

1−2λ
is less
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steeper than the slope of (PC1H) which is 1 + δ − γ. Therefore, the op-

timum occurs at pHH = pLH = 1−δ+2γ
2γ(δ−γ)+1+δ

. Otherwise, if λ ≤ λ̂, MRS is

steeper than the slope of (PC1H), thereby the optimum occurs at pLH = 1

and pHH = 2γ−δ
γ(1+δ−γ)

for γ > δ/2, and pLH = 1−δ+2γ
1+δ−2γ

and pHH = 0 for

γ ≤ δ/2.

pHH

pLH

0

1

11−δ+2γ
2γ(δ−γ)+1+δ

1−δ+2γ
1+δ−2γ

pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2 −γ)pLH
1+δ
2 −γ

optimum when λ > 1+δ
2(1+δ−γ)

optimum when λ ≤ 1+δ
2(1+δ−γ)

1−δ+2γ
2γ(δ−γ)+1+δ

(a) γ ≤ δ
2

pLH

pHH1

1

0
1−δ+2γ

2γ(δ−γ)+1+δ
2γ−δ

γ(1+δ−γ)

pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2 −γ)pLH
1+δ
2 −γ

1−δ+2γ
2γ(δ−γ)+1+δ

optimum when λ ≤ 1+δ
2(1+δ−γ)

optimum when λ > 1+δ
2(1+δ−γ)

(b) γ > δ
2

Figure A.4: The optimal values for (pHH , pLH): pHL =
1−γ(1+δ−γ)pHH−( 1+δ

2
−γ)pLH

1+δ
2

−γ

In order to determine the optimal mechanism, we compare the values of the ob-

jective function. When λ ≥ λ̂, all the coefficients on pHH and pLH are negative.

Therefore, pHH = pLH = 0. Indeed, W
(1)
λ = W

(2)
λ ≥ W

(3)
λ . Suppose otherwise

that λ < λ̂. Notice that W
(1)
λ = W

(3)
λ and this value is larger than W

(2)
λ .

In all, the optimal mechanism dictates the following:

(i) For λ ≥ λ̂, pHH = pLH = 0 and pLL = pHL = 1. The interim payoffs

for disputant 1 are as follows: du1H = BHL = 1 − 1+δ
2(1+γ)

, du1L = BLL =

BHL + 1+δ
2

= 1−
(

γ
1+γ

) (
1+δ
2

)
, du2H = γ(1−BHH) + (1−BLH) = 0, and

du2L = 0.
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(ii) For λ < λ̂, pLL = 1 and

(a) if γ > δ
2
, then pLL = pHL = pLH = 1 and pHH = 2γ−δ

γ(1+δ−γ)
. The in-

terim payoffs for disputant 1 are du1H = 0 and du1L = (γpHH + 1)
(

1+δ
2

)
.

For disputant 2, du2H = 0 and du2L = (γpHH + 1)
(

1+δ
2

)
. The alloca-

tion (BHH , BHL, BLH , BLL) is thus determined by the following: du1H =

γpHHBHH + BHL = 0, du1L = γBLH + BLL = (γpHH + 1)
(

1+δ
2

)
=(

1+γ
1+δ−γ

) (
1+δ

2

)
, du2H = γpHH(1 − BHH) + (1 − BLH) = 0, and du2L =

γ(1−BHL) + (1−BLL) = (γpHH + 1)
(

1+δ
2

)
.

(b) if γ ≤ δ
2
, then pHL = 1, pLH = 1−δ+2γ

1+δ−2γ
, and pHH = 0. The interim payoffs

for disputant 1 and disputant 2 as well as the allocation are determined

as follows: du1H = BHL = 0, du1L = γpLH + BLL =
(

1+δ
2

)
, du2H =

pLH(1 − BLH) = 0, and du2L = γ + (1 − BLL) = pLH
(

1+δ
2

)
. That is,

BHL = 0, BLH = 1, BHH = BLL = 1+δ
2
− pLH =

( 1+δ
2 )

2
−γ(γ+1)

1+δ
2
−γ .

(B) γ ∈
(

1+δ
2
, δ
)
: We first characterize the feasible set (conditional on

pHL). As γ1 > 1+δ
2

, either pHL = 1 or pHL = 1 − γ(pHH − pLH) under the

condition that pHL ≥ γ(1+δ−γ)pHH+( 1+δ
2
−γ)pLH−1

γ− 1+δ
2

. Then, for pHL = 1, the feasible

set for (pHH , pLH) is defined by the following inequalities:

pLH ≥ pHH

pLH ≥
(
γ(1 + δ − γ)

γ − 1+δ
2

)
pHH +

1− δ + 2γ

1 + δ − 2γ
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On the other hand, for pHL = 1 − γ2(pHH − pLH), the feasible set is thus

characterized by

pLH ≤ pHH

pLH(γ + 1) ≥
[
γ
(
1+δ
2

)

γ − 1+δ
2

]
pHH +

1− δ + 2γ

1 + δ − 2γ

The feasible set in each case is thus depicted in Figure A.5. The optimum occurs

pLH

pHH1

1

0

pHL = 1− γ(pHH − pLH)

1+2γ−δ
γ(1+δ)

2γ−δ
γ(1+δ−γ)

pHL = 1

1−δ+2γ
2γ(δ−γ)+1+δ

pHL = 1

Figure A.5: Feasible set for (pHH , pLH): γ > 1+δ
2

as in the case of γ > δ/2 in (A)

pLH

pHH1

1

0
2γ−δ

γ(1+δ−γ)

pHL = 1

1−δ+2γ
2γ(δ−γ)+1+δ

pHL = 1 optimum when λ ≤ 1+δ
2(1+δ−γ)

optimum when λ > 1+δ
2(1+δ−γ)

(a) pHL = 1

pLH

pHH1

1

0

pHL = 1− γ(pHH − pLH)

1+2γ−δ
γ(1+δ)

p
1−δ+2γ

2γ(δ−γ)+1+δ

(b) pHL = 1− γ(pHH − pLH)

Figure A.6: The optimal values for (pHH , pLH): γ > 1+δ
2

In all, the optimal mechanism dictates the following:
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(i) For λ ≥ λ̂, pHH = pLH = 0 and pLL = pHL = 1. The interim payoffs

for disputant 1 are as follows: du1H = BHL = 1 − 1+δ
2(1+γ)

, du1L = BLL =

BHL + 1+δ
2

= 1−
(

γ
1+γ

) (
1+δ

2

)
, du2H = γ(1−BHH) + (1−BLH) = 0, and

du2L = 0.

(ii) For λ < λ̂, pLL = pHL = pLH = 1 and pHH = 2γ−δ
γ(1+δ−γ)

. The interim

payoffs for disputant 1 are du1H = 0 and du1L = (γpHH + 1)
(

1+δ
2

)
.

For disputant 2, du2H = 0 and du2L = (γpHH + 1)
(

1+δ
2

)
. The alloca-

tion (BHH , BHL, BLH , BLL) is thus determined by the following: du1H =

γpHHBHH + BHL = 0, du1L = γBLH + BLL = (γpHH + 1)
(

1+δ
2

)
, du2H =

γpHH(1−BHH) + (1−BLH) = 0, and du2L = γ(1−BHL) + (1−BLL) =

(γpHH + 1)
(

1+δ
2

)
.

A.4 Proofs for Theorem 7 and Theorem 8.

Proofs for Pooling-Strategy Equilibria: Theorem 7 Without loss of

generality, we consider a deviation by disputant 1 when λ ≤ 1/2, for it is

symmetric for disputant 2. If deviating, disputant 1’s belief is γ and disputant

2’s belief is γ′, which is arbitrary. Let dudiτi denote the payoff of disputant i of

type τi. Suppose that disputant 1 is H-type. Then, disputant 1H would attack,

and war breaks out unilaterally, regardless of an out-of-equilibrium belief γ′ of

disputant 2. The payoff under deviation is dud1H = 0. On other hand, suppose

that disputant 1 is L-type. Then, the deviation outcome is determined by

disputant 2’s out-of-equilibrium belief γ′. When γ′ ≤ δ, disputant 2H would

attack, and war breaks out with probability q. disputant 1L obtains q(1−p)θ+

(1− q)/2, and thus dud1L = 1/2. For γ′ > δ, disputant 2H would stay, and war
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never breaks out. The resulting payoff for 1L is dud1L = γ(δ + 1) + 1/2.

(i) Suppose that the chosen mediator is moderately biased against disputant

1, i.e. λ ∈
(

1− 1+δ
2(1+δ−γ)

, 1
2

)
. As du1H = 0, disputant 1H does not gain by

deviation. Moreover, for γ > δ/2, the mediation payoff is the same as in the

previous case, and then disputant 1L would not deviate if γ′ ≤ δ. For the

remaining case of γ ≤ δ/2, the mediation payoff is du1L =
(

1−δ+2γ
1+δ−2γ

) (
1+δ

2

)
. For

γ′ ≤ δ, we have

du1L − dud1L ≥ 0 ⇐⇒
(

1− δ + 2γ

1 + δ − 2γ

)(
1 + δ

2

)
− 1

2
≥ 0 ⇐⇒ γ ≥ δ(1 + δ)

2(2 + δ)

If γ′ > δ, du1L − dud1L = − δ2+(δ−2γ)(1+2γ(1+δ))
2(1+δ−2γ)

< 0 Therefore, for γ ≥ δ(1+δ)
2(2+δ)

≥ 0

and γ′ ≤ δ, the deviation is not profitable. Otherwise, disputant 1L would

deviate.

(ii) Suppose that the chosen mediator is unbiased: λ = 1/2. Recall that the

mediation payoffs are the same as those under the moderately biased mediator

if γ > δ/2. We thus consider the case where γ ≤ δ/2. The mediation payoff is

dulL =
(

1
1+δ−γ

) (
1+δ

2

)
and du1H = 0. Obviously, disputant 1H does not have

any incentive to deviate. For disputant 1L, if γ′ ≤ δ, we have du1L − dud1L =

γ
2(1+δ−γ)

> 0, and thus deviation is not profitable. When γ′ > δ, du1L − dud1L =

−γ (1+2δ)+(δ−γ)(1+δ)
2(1+δ−γ)

< 0, i.e. disputant 1L would deviate.

(iii) Suppose that the chosen mediator is extremely biased against disputant

1. That is, λ < 1 − 1+δ
2(1+δ−γ)

. Under mediation, du1H = du1L = 0. Obviously,

disputant 1H has no incentive for deviation. However, disputant 1L would

always deviate because du1L − dud1L = −dud1L < 0.

In all, if γ′ ≤ δ and a disputant would not deviate from the mediator against

him if and only if γ > δ(1+δ)
2(2+δ)

.
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Proofs for Separating Strategy Equilibrium: Theorem 8 The proof

proceeds in the series of the following lemmas.

Lemma 19. There exists no separating-strategy equilibrium in which (H,H)-

dyad selects a mediator

Proof. Suppose not, i.e. v1
H = v2

H = 1 for some λ ∈ [0, 1]. If λ < 1/2 (bias

against 1) is accepted, then disputant 1H obtains θ/2. By deviating to match

with L-type under no mediation , however, disputant 1H would obtain pθ > 1/2.

Symmetrically, for λ > 1/2, disputant 2H has a profitable deviation to no

mediation. Lastly, if λ = 1/2, disputant 1H obtains 1/2. Still, matching with

2L under no mediation is a profitable deviation.

Lemma 20. There exists no separating-strategy equilibrium in which an asym-

metric dyad, (H,L) or (L,H), selects a mediator.

Proof. Consider v1
H = v2

L = 1 and λ > 1/2 (bias toward disputant 1). Disputant

2L obtains (1 − p)θ. By deviating to match with 1L under no mediation, he

would obtain at least 1/2 > (1−p)θ. Similarly, when λ < 1/2 and v1
L = v2

H = 1,

1L would deviate to match with 2L. Lastly, if v1
H = v2

L = 1 and λ = 1/2 (or,

symmetrically, v1
L = v2

H = 1/2), then disputant 1H obtains pθ + 1−θ
2

, which is

larger than any payoff of 1L. Hence, 1L would mimic 1H.

Lemma 21. There exists no separating-strategy equilibrium such that (L,L)-

dyad selects a biased mediator.

Proof. Without loss of generality, suppose that there exists, i.e. v1
L = v2

L = 1

and λ > 1/2. Note that H-type disputants obtains 1/2 under no mediation.
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Disputant 1L obtains 1 − θ
2

which is larger than the payoff of disputant 1H.

Therefore, disputant 1H would deviate to pool himself with 1L.

The only remaining possibility is that L-types succeeds in selecting an un-

biased mediator (v1
L = v2

L = 1 and λ = 1/2) and H-types do not accept the

mediator (v1
H = v2

H = 0). We show that this is indeed a separating equilibrium.

Consider disputant 1 without loss of generality. Disputant 1 of H-type obtains

1/2. If it deviates to mimic L-type, the resulting payoff is 1/2 no larger than

his equilibrium payoff, thus H-type would not deviate. Now, we argue that

L-type does not have any profitable deviation. Suppose that L-type deviates

to no mediation. Then, his payoff facing H-type is (1− p)θ, and this is strictly

smaller than his equilibrium payoff of 1/2.
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