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Abstract 

 Chromosomes are organized in a complex manner within the nucleus. 

Their localization relative to activating and repressing nuclear compartments and 

to other chromosomes can have major effects on gene expression. One 

important aspect of nuclear architecture involves the physical colocalization, or 

“pairing” of different alleles of the same gene. Pairing is involved in mammalian 

processes including genomic imprinting and X-inactivation, but the most well-

studied example occurs in Drosophila melanogaster, where homologous 

chromosomes are paired along their entire lengths throughout interphase. 

Homologous chromosome pairing in fruit flies facilitates a gene-regulatory 

phenomenon known as transvection, in which DNA elements on one mutant 

allele of a gene act between chromosomes on another mutant allele to rescue 

expression. While homologous chromosome pairing and transvection were first 

described over 60 years ago, the mechanisms that drive homologous 

chromosome pairing and transvection across the genome are still unclear. Here, 

we develop a DNA FISH-based approach to identify button regions across the fly 

genome that drive pairing. These buttons allow “reconstitution” of genes that are 

split apart by chromosome rearrangements, suggesting that buttons play a role in 

maintaining the structural integrity of the genome. Buttons are enriched for 

topologically associated domains (TADs), indicating that TADs are responsible 

for homologous chromosome interactions. Using the stochastically expressed 

spineless (ss) locus as a paradigm, we gain deeper insight into the mechanisms 

that control transvection. We find that pairing is necessary but not sufficient for 
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transvection, and that pairing and transvection are cell-type specific. We also 

identify the DNA elements required for the separable mechanisms of activation 

and repression between chromosomes. Furthermore, we find a biological role for 

transvection in regulating the expression of naturally occurring ss alleles to 

control photoreceptor patterning. Our work suggests a model in which 

specialized TADs drive homologous chromosome pairing to facilitate cell-type-

specific interchromosomal gene regulation. This work has important implications 

for our understanding of nuclear architecture-linked diseases including Prader-

Willi and Angelman syndromes, breast, renal, and pancreatic cancers, and limb 

malformations.  
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Chapter 1: Probing chromosome pairing and transvection to 

understand nuclear organization 

1.1: Abstract 

The organization of chromosomes within the nucleus is a major factor 

regulating gene expression. At the genome-wide level, chromosomes localize to 

specific domains known as chromosome territories. At the individual 

chromosome level, chromosomes fold into regions known as topologically 

associated domains (TADs), regions of close self-association that are 

hypothesized to isolate genes into regulatory domains. While a handful of studies 

have indicated that disruption of TADs and localization of genes to improper 

regions of the nucleus can have major effects on gene expression, it is unclear 

how nuclear architecture in general is regulated to maintain transcriptional states. 

One important aspect of nuclear organization involves long-distance interactions 

between different regions of the genome, which is observed in processes 

including compartmentalization, X-inactivation, and genomic imprinting. One of 

the most well-studied examples of interchromosomal interactions is the 

phenomenon of homologous chromosome pairing in Drosophila melanogaster. 

Homologous chromosome pairing facilitates an interchromosomal gene-

regulatory process known as transvection, in which two mutant alleles of a gene 

interact between chromosomes to rescue gene expression. While homologous 

chromosome pairing and transvection have been studied for decades, much 

remains unknown about the mechanisms facilitating these processes. Here, we 

discuss recent developments in our understanding of homologous chromosome 
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pairing and transvection and their relevance to similar phenomena in mammalian 

systems. These classical Drosophila processes offer an excellent paradigm for 

understanding the role of nuclear architecture in regulating gene expression 

across organisms. 

1.2: Introduction 

Chromosomes are organized non-randomly within the 3D space of the 

nucleus. In metazoans, chromosomes occupy distinct regions of the nucleus 

known as chromosome territories (Fig. 1A)(1). While the localization of 

chromosome territories varies widely from cell to cell, larger chromosomes and 

gene-poor chromosomes tend to localize near the nuclear periphery, whereas 

smaller chromosomes and gene-rich chromosomes tend to localize to the 

nuclear interior (Fig. 1A)(1-4). Regions along chromosomes interact to form 

compartments, which are segregated into A (active) and B (repressive) 

categories based on gene expression states (Fig. 1B)(5-8). Individual 

chromosomes are organized further into topologically associated domains 

(TADs), regions of close self-association that are hypothesized to isolate genes 

into regulatory domains and ensure their activation by the appropriate cis-

regulatory elements (Fig. 1C)(6, 9-13).  

More locally, targeting of individual genes to different nuclear 

subcompartments can have major effects on gene expression. For example, a 

number of yeast and Drosophila genes localize to the nuclear pore complex 

(NPC) upon activation, and their retention at the NPC is essential in establishing 
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an epigenetic “memory” of their active state (14-16). In Drosophila neuroblast 

development, the hunchback locus moves from the activating nuclear interior to 

the repressive nuclear periphery, ending the competence window for the 

generation of early-born neurons (17). Similarly, in human lymphocyte 

development, the IgH and Igk loci localize to the nuclear periphery in 

hematopoietic progenitor cells and pro-T cells, where they are not expressed 

(18). In pro-B cells, these loci localize to the nuclear interior, likely allowing their 

activation and recombination (18).  

Disruptions of TADs and targeting of loci to improper regions of the 

nucleus can have major effects on gene expression and is associated with limb 

malformations, cancer, Rett syndrome, Prader-Willi syndrome, Angelman 

syndrome, autism, and gliosis (13, 19-26). However, we do not have a clear 

understanding of how the precise folding and localization of chromosomes and 

genes within the nucleus works to maintain proper gene expression. 

Chromosomes are segregated non-randomly into territories, but we understand 

little about how interchromosomal interactions between chromosome territories 

affect gene expression. While there are many examples of individual loci whose 

expression is disrupted by changes in nuclear localization and chromosome 

conformation, dissolution of mammalian TADs has minimal effects on 

transcription genome-wide (27-29). TAD organization is largely conserved 

between cell types and even between organisms (10, 30), but gene expression 

varies widely between cells to ensure the development of distinct cell fates. What 

is the function of TADs? What drives interactions between chromosomes, and 

3



how do interchromosomal interactions affect gene expression? In this review, we 

discuss how the Drosophila phenomena of homologous chromosome pairing and 

transvection can help us to answer these fundamental questions.  

1.3: Interchromosomal interactions and their role in gene expression  

Chromosomes are organized into discrete territories within the nucleus, 

but what effect do interactions between territories have on gene expression? 

Interchromosomal associations are involved in a variety of developmental and 

gene-regulatory processes, including co-regulation of genes with similar 

expression profiles, imprinting, and X-inactivation. These associations can be 

divided into two categories: interactions between heterologous chromosomes, 

and interactions between homologous chromosomes.  

Heterologous chromosome interactions 

Frequently, interchromosomal interactions between non-homologous loci 

provide a means of regulating multiple genes simultaneously. One way this 

occurs is through the interaction of shared regulatory elements with multiple loci. 

For example, in murine CD4+ T cells, immune response genes on chromosomes 

10 and 11 form a complex with a shared locus control region, poising them for 

activation (31, 32). In mouse olfactory neurons, olfactory receptor enhancers 

drive interactions between olfactory receptor genes located on 18 different 

chromosomes, forming a super enhancer that drives olfactory receptor gene 

expression (33).  
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The regulation of multiple genes at once also occurs through gene 

clustering. In mouse olfactory neurons, silent olfactory receptor genes from 

multiple chromosomes interact in heterochromatic foci to ensure exclusive 

expression of a single olfactory gene per neuron (34). More generally, gene 

clustering allows the concentration of transcription factors or chromatin proteins 

at a single site, allowing more efficient gene activation or repression. Active 

genes colocalize at subnuclear regions called transcription factories, where high 

concentrations of RNA polymerase allow coordination of gene expression within 

a single structure (35-37). Transcription factories also contain high 

concentrations of the insulator protein CTCF, supporting a role for this protein in 

driving interchromosomal interactions (38). Conversely, repressed genes 

containing Polycomb Response Elements (PREs) come together in Polycomb 

bodies, which contain a high concentration of the repressive Polycomb Group 

complex (35, 39, 40). Thus, interchromosomal interactions between non-

homologous loci facilitate the proper expression of multiple genes 

simultaneously. 

Homologous chromosome interactions 

Interactions between identical sequences located on homologous 

chromosomes represent another important aspect of nuclear organization. Unlike 

interactions between heterologous chromosomes, which simply require targeting 

to a similar area of the nucleus, homologous chromosome interactions require a 

sequence to find a single unique partner within the entire nuclear volume. The cis 
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and trans factors required for the co-localization, or pairing, of homologous 

sequences are less well understood than for interchromosomal heterologous 

clustering.  

Homologous pairing is important for a number of cellular processes 

(reviewed in (41)), including mammalian X-inactivation and imprinting. Through 

X-inactivation, one copy of the X chromosome is repressed in females to ensure

a similar gene dosage between males and females (reviewed in (42)). A region 

known as the X inactivation center (Xic) counts the number of X chromosomes 

present in a cell and determines which copy of the X chromosome to inactivate 

(43, 44). At the onset of X-inactivation, the two copies of the Xic transiently pair 

(45, 46). Deletion of Xic disrupts pairing and abolishes X-inactivation, suggesting 

that Xic-driven pairing is required for X-inactivation (45, 46). Small fragments of a 

15-kb region within the Xic are sufficient to drive pairing (47, 48). These

fragments bind to CTCF and the transcription factor Oct4, both of which are 

required for pairing (47, 49). 

Genomic imprinting is an epigenetic phenomenon in which either the 

maternal or paternal allele of a gene is heritably silenced (50)(reviewed in (51)). 

In certain cases, imprinting appears to require transient homologous pairing 

between the two copies of the imprinted locus. For example, the imprinted 

human 15q11-q13 locus is paired in 58% of wild type lymphocyte nuclei during 

late S-phase (52). This association is lost in cells taken from patients with 

imprinting-related Prader-Willi, Rett, and Angelman syndromes (26, 52). 

Knockdown of the gene MECP2 causes decreased pairing, suggesting that 
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MECP2-mediated pairing allows proper imprinting at this region (26). 

Homologous pairing of imprinted sites has also been observed at the human H19 

locus and the distal region of mouse chromosome 7 (52, 53), suggesting that 

pairing may be a more general mechanism regulating genomic imprinting. 

While interchromosomal interactions are essential for a number of 

mammalian processes, these interactions typically occur transiently or in a low 

frequency of cells (45, 52). As we describe below, Drosophila homologous 

chromosome pairing occurs stably and at a high frequency, providing an ideal 

paradigm for the study of interactions between chromosomes. 

1.4: Homologous chromosome pairing in Drosophila provides insight into 

nuclear organization  

One of the most well-studied examples of pairing occurs in Drosophila, 

where homologous chromosome pairing occurs throughout interphase in nearly 

all somatic cells (54). This stable pairing provides an excellent paradigm to study 

interchromosomal interactions. Drosophila pairing was first described over a 

century ago by Nettie Stevens (54), but the mechanisms driving the 

colocalization of homologous chromosomes have remained unclear. Recently, a 

number of studies have shed light on this long-standing mystery in the field by 

identifying chromosome structures and trans factors involved in bringing 

homologous chromosomes together.  
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Models for pairing initiation 

Two main models have been proposed to describe the initiation of 

homologous chromosome pairing. Classical studies of pairing hypothesized a 

“zipper” model (Fig. 2A), in which chromosomes pair sequentially along their 

entire lengths, beginning at the centromere and proceeding distally to the 

telomere (55, 56). Supporting this model, chromosome rearrangements with 

breakpoints proximal to a gene disrupt pairing-dependent gene regulation 

between chromosomes (see below), whereas rearrangements distal to a specific 

gene do not (55, 56). This model predicts that pairing is based solely on DNA 

sequence homology, so all regions of the genome have an equal ability to initiate 

homologous chromosome pairing.  

More recent studies of pairing initiation during embryonic development 

suggest an alternative to the zipper model (57-59). Fung and colleagues used 

DNA fluorescence in situ hybridization (FISH) to examine the pairing of 11 sites 

along chromosome 2L and found that pairing initiated independently at discrete 

sites, rather than progressing sequentially from the centromere to the telomere 

as the zipper model predicted (58). This work and other related studies (57, 59) 

proposed a “button” model, in which specific regions interspersed along 

chromosome arms drive pairing at a higher affinity than surrounding regions (Fig. 

2A).   

8



Trans factors and chromosome structural features involved in homologous 

chromosome pairing 

 Chromosome pairing initiates at specific buttons, but what unique features 

of buttons allow them to find their homologous partners in the nucleus? RNAi 

knockdown of topoisomerase II, slmb, zelda, and certain mitotic genes (60-64) 

decreases homologous chromosome pairing. The binding of insulator proteins 

including CTCF and Cp190 has also been linked to homologous pairing (65). 

Additionally, button regions are correlated with active chromatin, A 

compartments, and high levels of transcription (62). It is unlikely that 

transcriptional status or the binding of a single protein alone could provide the 

specificity required for a button to identify its unique homologous partner within 

the nucleus. However, a gene’s transcriptional status might target it to a specific 

nuclear compartment, decreasing the search space for a button to find its partner 

(Fig. 2B). Within this decreased search space, binding of unique combinations of 

these pairing-promoting proteins to each button might provide the specificity 

required for a button to find its unique homologue (Fig. 2C).  

 The condensin II complex is an “anti-pairer”: overexpression of condensin 

II subunits decreases pairing, while knockout of condensin II subunits increases 

pairing (60, 66). A low level of condensin II binding at buttons may also give them 

a higher pairing affinity than surrounding regions. 

 A number of small DNA sequence elements have also been linked to 

homologous chromosome pairing. The gypsy retrotransposon and a handful of 

specific insulator and Polycomb Response Elements (PREs), including the Fab-
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7, Mcp, and TMR regions of the Abd-B locus, drive pairing between identical 

homologous sequences on different chromosomes (65, 67-71). However, these 

short sequences are unique to specific loci and cannot account for the pairing 

that is observed genome-wide.  

 It is thus likely that a larger chromosome structural feature is required to 

provide the specificity necessary for buttons to drive pairing genome-wide. 

Recent work supports a model in which a subset of TADs form buttons and drive 

pairing initiation (72). Transgenes containing TADs selected from chromosomes 

X, 2L, 2R, and 3R drive pairing with their endogenous sites from multiple 

locations in the genome (72). This TAD-driven pairing occurs independently of A 

and B compartments, transcriptional activity, and Polycomb Group Complex 

binding (72). However, clusters of insulator protein binding sites are associated 

with pairing (72). Together, this evidence suggests that buttons are defined by 

specialized TADs. Supporting this conclusion, visualization of TADs using super 

resolution microscopy indicates that homologous TADs are often closely 

associated (73).   

 The mechanism by which TADs initiate homologous chromosome pairing 

is still unclear. Transgenes that only cover a portion of a TAD do not drive 

pairing, suggesting that an entire intact TAD, rather than individual elements 

contained within a TAD, is required for pairing (72). Evidence from haplotype-

resolved HiC studies suggests that TAD boundaries are more tightly paired than 

TAD interiors (62, 63). Furthermore, insulator proteins, which have been linked to 

homologous chromosome pairing, are enriched at TAD boundaries (11, 65). 
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Therefore, TAD boundaries may drive pairing, after which the interiors of TADs 

associate with each other (Fig. 3A). Alternatively, each TAD may have a unique 

“code” of insulator proteins bound across the TAD region that allows it to find its 

homologue within the nucleus and initiate chromosome pairing (Fig. 3B). It is 

also possible that TADs take on unique chromatin conformations to create 

nuclear microcompartments that enable homologous TAD association and 

pairing (Fig. 3C).  

 

Homologous chromosome pairing varies over developmental time and between 

cell types 

 The frequency of chromosome pairing varies widely between 

developmental stages and between cell types. Notably, only 15-30% of nuclei in 

the early embryo exhibit homologous chromosome pairing (57-59, 74). Pairing 

increases over developmental time, reaching a maximum level of 90-95% by the 

third instar larval stage (57-59, 74). In addition to its variability across 

developmental stages, pairing differs widely between cell types. Two copies of a 

transgene containing the Mcp element pair in >90% of larval eye disc nuclei but 

only 20-60% of larval wing disc and brain cells, and Mcp transgene pairing is not 

observed in polytene nuclei or early spermatocytes (71). Similarly, transgenes 

encompassing entire TAD buttons drive pairing with their endogenous loci in the 

larval eye disc but not in the larval antennal disc (72). Intriguingly, pairing 

between endogenous homologous loci occurs at similar rates in the larval eye 

and antennal disc (72). These studies support a model in which certain tissues, 

11



especially the eye disc, are more amenable to pairing than others. Intact 

homologous chromosomes can likely drive pairing in both strong and weak 

pairing cell types because they have a large number of buttons interspersed 

along their entire lengths that work together to bring the chromosomes into 

proximity (Fig. 4A-B). Transgene studies provide a sensitized system for 

examining variation in pairing levels between cell types: transgenes only 

encompass a single button, and therefore may only drive pairing efficiently in 

strong pairing cell types (Fig. 4A-B).  

 A number of factors may contribute to differences in pairing levels 

between cell types. It is possible that mitotic state plays a role in pairing 

efficiency; pairing occurs at a much higher level in post-mitotic larval 

photoreceptors than in the actively dividing antennal disc and embryo (57-59, 72, 

74). Additionally, differences in TAD formation between cell types may contribute 

to cell-type-specific pairing; TAD boundaries or entire TADs might be more 

strongly defined in tissues where pairing occurs more efficiently. Differences in 

trans factor expression between cell types may also contribute to cell-type-

specific pairing. Comparison of RNA-seq data between cell types such as the 

eye and antennal disc could provide candidate trans factors that contribute to the 

stronger pairing observed in the eye disc. The advent of single-cell HiC and 

single-cell RNA-seq offer the opportunity for a more precise comparison of the 

cell-to-cell differences that contribute to variation in pairing levels.  
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1.5: Homologous chromosome interactions facilitate interchromosomal 

gene regulation 

 In addition to physical colocalization, interactions between chromosomes 

frequently involve regulatory crosstalk between different alleles of the same 

gene. Often, chromosome pairing is a prerequisite for this interchromosomal 

gene regulation. Interactions between different alleles of the same gene can be 

divided into two main categories, heritable and non-heritable, as discussed 

below.  

 

Paramutation involves heritable interactions between chromosomes  

 One major category of interchromosomal gene regulation involves the 

phenomenon of paramutation, in which interactions between different alleles of 

the same gene lead to heritable changes in gene expression. Paramutation was 

first described in maize by Alexander Brink, and has since been identified in a 

number of other systems, including mice, worms, and potentially humans 

(75)(reviewed in (76)). The phenomenon is defined by three main features: 1) an 

allele’s new expression state is transmitted to future generations even though the 

allele that originally transmitted the change in expression state is not passed on; 

2) the inherited altered allele is subsequently able to transmit expression 

changes to homologous sequences; and 3) there are no sequence changes in 

the altered allele, indicating that the change in expression is regulated 

epigenetically (77). The prevailing model in the field suggests that paramutation 

is mediated by small RNAs, which are transcribed by one allele to direct the 
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epigenetic modification of another allele, typically through DNA methylation (76). 

This DNA methylation is then passed on to the next generation and is to new 

alleles through the same mechanism (76). 

 A well-studied example of paramutation occurs in maize at the b1 locus, 

which is involved in the production of purple anthocyanin pigments. Through 

paramutation, the B’ allele of the b1 locus, which is weakly transcribed, converts 

the B-I allele, which is more strongly transcribed, to a B’ state, leading to a lighter 

pigmentation (Fig. 5A)(78). The newly converted allele can transmit the B’ state 

to subsequent generations (78). b1 expression is controlled by a long-distance 

enhancer consisting of seven tandem repeats of an ~850 bp sequence (79-81). 

As in many cases of maize paramutation, transcription of siRNAs from tandem 

repeats is required for the B’ allele to silence the B-1 allele (79, 82, 83). 

 Paramutation has also been described in mammals. In mice, animals that 

are heterozygous for the Kittm1Alf allele of the Kit gene have white tails and feet 

and display reduced Kit mRNA levels (84). When Kittm1Alf /+ mice are crossed with 

Kit+/+ mice, many of their genetically wild type progeny continue to display the 

Kittm1Alf phenotype and can transmit the phenotype to subsequent generations 

(Fig. 5B) (84). Injection of wild type one-cell embryos with RNAs isolated from 

Kittm1Alf /+ sperm and brain heritably decreases Kit expression, indicating that Kit 

paramutation involves siRNA transmission in the germline (84).  

 Large-cohort diabetes studies have raised the possibility that paramutation 

also occurs in humans. Class I alleles of the insulin (INS) gene have 25-63 5’ 

tandem repeats and cause a predisposition to type I diabetes, while Class III INS 
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alleles, which have 140-200 5’ tandem repeats, do not cause a diabetes 

predisposition (85). When a father is heterozygous for the Class I INS-814 allele 

and a Class III allele, offspring who inherit the INS-814 allele do not have an 

increased risk for diabetes (Fig. 5C)(85). This work suggests that paramutation 

between Class III and Class I alleles alters the heritable traits of Class I alleles. 

This paramutation may be mediated by tandem repeats, as is observed in maize 

(76, 85). Thus, paramutation is a conserved mechanism of interchromosomal 

gene regulation. 

 

Non-heritable interactions between chromosomes through trans-activation and 

trans-repression  

 Another category of interchromosomal gene regulation involves non-

heritable interactions mediated by the phenomenon of transvection. Via 

transvection, DNA elements on one copy of a gene act between chromosomes 

on another copy of a gene to increase (trans-activation) or decrease (trans-

repression) gene expression (Fig. 6B)(55). Unlike paramutation, transvection-

related changes in gene expression are not passed on to subsequent 

generations; once two interacting alleles are segregated away from each other, 

their expression levels return to their original states. Additionally, rather than an 

siRNA-based mechanism, transvection typically involves physical interactions 

between alleles on different chromosomes, mediated by homologous pairing 

(Fig. 6A-B)(55). 
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 Transvection has been most thoroughly studied in flies (see below), but 

examples of tran-activation and trans-repression have also been described in 

other organisms. In the fungus Neurospora crassa, trans-activation controls the 

expression of the gene Asm-1+, which is involved in female structure formation 

and ascospore maturation (86). Fungi that are hemizygous for Asm-1+ have no 

gene function, and inserting an additional copy of the gene at an ectopic location 

does not rescue gene expression (86). However, when Asm-1+ hemizygotes 

have two additional copies of Asm-1+ at the same ectopic location (one on each 

copy of the chromosome), Asm-1+ expression is rescued, suggesting that two 

copies of Asm-1+ must be in the same genomic location and homologously pair 

to activate Asm-1+ expression (86). Trans-activation has also been observed in 

human lymphoma and myeloma cell lines (87). In these cell lines, translocations 

of the IgH locus cause the IgH enhancer to incorrectly interact with the CCND1 

gene, leading to pairing of CCND1 and changes in its DNA methylation state 

(87).  

 In Antirrhinum majus (snapdragon), trans-repression occurs between 

different alleles of the nivea gene. The mutant allele niv-525, which contains a 

duplicated promoter region, acts between chromosomes on the wild type nivea 

locus to decrease expression four- to five-fold (88, 89). This repression is likely 

pairing-dependent, and may be due to the extra copy of the promoter present on 

the niv-525 locus titrating away transcription factors from the wild type allele (89). 

Together, these studies indicate that pairing-dependent communication between 

alleles occurs across organisms to regulate gene expression.  
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Transvection in Drosophila: a paradigm for interchromosomal gene regulation 

 Transvection was first discovered by Ed Lewis in Drosophila (55), and has 

since been described for a large number of fly genes (90). Studies of 

transvection in fruit flies have provided an in-depth understanding of the DNA 

elements involved in this phenomenon. These studies have provided the 

following general “rules” for transvection, which apply to the majority, though not 

all, of transvecting genes.  

 

Rule 1: Transvection involves two mutant copies of a gene: In the majority of 

cases, neither copy of a transvecting gene can produce functional protein on its 

own (Fig. 4B)(55, 90). DNA elements on one mutant allele act between 

chromosomes on the other mutant allele to restore normal gene expression (Fig. 

4B).  

 

Rule 2: Transvection is more efficient without a promoter in cis: Transvection 

often involves the enhancer of one mutant allele activating the promtoer of the 

other mutant allele (90)(Fig. 6B). In many cases, enhancer action between 

chromosomes is more efficient in the absence of a promoter in cis (90). This 

improved enhancer efficiency has been observed at the Abd-b, yellow, apterous, 

and Ubx loci (91-95).  

 

Rule 3: Chromosome pairing is required for transvection: In nearly all described 

cases, chromosome rearrangements that disrupt homologous chromosome 
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pairing also ablate transvection (55, 90). Therefore, intact homologous 

chromosomes that are properly aligned along their entire lengths are typically 

necessary for transvection. One likely model to explain this requirement is that 

homologous pairing brings two alleles of a gene close enough together within the 

nucleus that their regulatory elements can act between chromosomes (Fig. 6A-

B).  

 

The transvection “rule-breakers” 

 Certain cases of transvection do not follow the rules described above. 

These “rule-breakers” provide important insight into the mechanisms controlling 

nuclear organization, homologous chromosome pairing, and interchromosomal 

gene regulation.  

 Unlike the large majority of transvection-competent genes, transvection at 

the Abd-b and ss loci is not disrupted by chromosome rearrangements (59, 72, 

91, 96, 97). Interestingly, both loci overlap with button TADs (72). This evidence 

suggests a general model in which buttons hold homologous chromosomes 

together at specific sites to facilitate transvection (Fig. 6C). In most cases, 

chromosome rearrangements would disrupt transvection by breaking buttons in 

half or relocating buttons far away from transvecting loci, preventing those loci 

from pairing and interacting (Fig. 6D-E). Because Abd-b and ss encompass 

buttons, only rearrangements with breakpoints within the genes themselves 

would be predicted to disrupt their pairing and transvection (Fig. 6E). In the case 

of ss, two additional buttons lie directly downstream of the locus and can mediate 
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pairing and transvection even when ss itself is split between two chromosomes 

(Fig. 6E)(72, 98). Therefore, the presence of buttons maintains nuclear 

organization and keeps gene expression robust in the presence of drastic 

chromosomal aberrations.  

 Studies of transvection at the ss locus also suggest an important feature 

of the relationship between homologous pairing and transvection. While copies of 

ss must be in close physical proximity to perform transvection, pairing alone is 

not sufficient for interchromosomal gene regulation (72, 98). An intact insulator 

element is required on both ss copies for trans-activation and trans-repression 

between alleles (72, 98). This work suggests that pairing is necessary but not 

sufficient for transvection.  

 The ss locus breaks the typical rules of transvection in additional ways. 

Unlike the enhancers of many other transvection-competent loci, the ss 

enhancers cannot perform transvection in the absence of a promoter in cis (98). 

These data suggest that there may be two classes of transvection-competent 

genes: one in which transvection is more efficient in the absence of a promoter 

in cis, and one in which transvection is less efficient in the absence of a promoter 

in cis.  

Furthermore, transvection at ss occurs between wild-type alleles. The ss 

gene is typically expressed in 67% of R7 photoreceptors in the fly retina to drive 

expression of UV-detecting photopigments (99). However, ss expression 

frequency varies widely across wild-derived Drosophila alleles (100, 101). When 

an allele with an expression frequency above 67% is crossed with an allele with 
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an expression frequency below 67%, the resulting progeny display an 

intermediate expression frequency, in between that of either parent (98). Thus, 

communication between ss copies to control proper photoreceptor patterning 

provides one of the first examples of transvection in a wild type context (98). 

   

Trans-activation versus trans-repression 

 Transvection can be divided into two phenomena: trans-activation, in 

which alleles interact to increase gene expression, and trans-repression, in which 

alleles interact to decrease gene expression. Trans-activation typically involves 

an enhancer acting between chromosomes on a promoter, as described above 

(90-95). Insulator elements have also been implicated in trans-activation. At the 

ss locus, an insulator on both copies of the gene is required to activate gene 

expression between chromosomes (72). Similarly, the Homie and Nhomie 

insulators of the gene eve allow trans-activation of Homie- and Nhomie-

containing transgenes by the eve enhancer (102, 103), and an insulator is 

required for trans-activation between transgenes containing the snail enhancer 

and the even skipped promoter (104). 

 Trans-repression has also been described for a number of loci, and 

includes the phenomena of brown trans-inactivation, the zeste-white interaction, 

and pairing-sensitive silencing. Brown (bw) trans-inactivation involves the brown-

dominant (bwD) allele, in which a chromosome rearrangement brings centromeric 

heterochromatin into close proximity with the bw locus, leading to position-effect 

variegation and silencing of bw (Fig. 7A)(105). When crossed with a wild-type bw 
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allele, bwD asserts a dominant effect, leading to heterochromatinization and 

silencing of the wild-type allele in trans (Fig. 7A)(105). Certain chromosome 

rearrangements disrupt this process, suggesting that brown trans-inactivation is 

pairing-dependent (105).  

 In the zeste-white interaction, the neomorphic z1 allele of the gene zeste 

(z) represses expression of the white (w) locus (106). w repression by z1 only 

occurs in flies in which two copies of w are present at the same genomic location, 

indicating that the zeste-white interaction is pairing-dependent (Fig. 7B)(106). 

The z1 mutant protein self-associates to form aggregates with a higher DNA 

affinity, and z1 overexpression can repress w that is present in a single copy, 

suggesting that pairing of w alleles is required to concentrate a high enough level 

of z1 protein in the vicinity to overcome a minimum threshold for repression (107).  

 Pairing-sensitive silencing (PSS) (reviewed in (108)) involves interactions 

between Polycomb response elements (PREs), which bind to the repressive 

Polycomb Group Complex. PSS is typically identified by its effects on a white (w) 

reporter transgene. If a sequence of interest does not contain a PRE, then a 

transgene containing the sequence and the w reporter will cause darker eye 

pigmentation in flies homozygous for the transgene than in flies heterozygous for 

the transgene due to dosage of the w gene (Fig. 7C). If a sequence of interest 

does contain a PRE, then flies homozygous for the transgene will have lighter 

eye pigmentation than flies heterozygous for the transgene, as the two copies of 

the PRE will interact with each other between chromosomes to repress w 

expression (Fig. 7C). PSS has been described for many PREs across the 
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genome, including elements in the engrailed, escargot, polyhomeotic, even 

skipped, sex combs reduced, proboscipedia, Abd-a, and Abd-b loci (67, 109-

115). 

 ss is one of the only a few for which both trans-activation and trans-

repression phenomena have been described. Two PREs within an upstream 

silencer can act between chromosomes to repress other copies of ss, even in the 

presence of chromosome rearrangements with breakpoints that lie within the ss 

locus (98). Like ss trans-activation, ss trans-repression requires an intact 

insulator on each allele (98).  

 In summary, transvection can be separated into activating and repressing 

functions. While these functions are well-understood in Drosophila, further 

investigation is required to determine whether similar DNA elements are involved 

in cases of interchromosomal gene regulation in other organisms.  

 

1.6: Conclusions 

 The study of homologous chromosome pairing and transvection provides 

insight into the general mechanisms that drive nuclear organization across 

organisms. Major outstanding questions in the field involve the biological purpose 

of TADs and the structures driving interchromosomal interactions. Examination of 

the features that bring homologous chromosomes together suggests a novel role 

for TADs in driving interactions between chromosomes, in addition to their 

hypothesized function in isolating transcriptional units. In flies, these interactions 

between TADs allow homologous sequences to interact and cross-regulate gene 
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expression. In mammals, TAD interactions may account for the 

interchromosomal contacts observed in processes such as imprinting and X-

inactivation. It is also possible that mammalian TADs have been adapted to 

interact with heterologous sequences, potentially assisting in the formation of 

segregated chromosome territories. Thus, TADs may serve a structural role in 

organizing chromatin in addition to their role in controlling gene expression.  

 The study of transvection provides insight into the biological function of 

interchromosomal contacts. In Drosophila, these contacts maintain gene 

expression in the presence of mutations, often through enhancer action between 

chromosomes. Instances of enhancer action between chromosomes also exist in 

mammals, such as in the mouse olfactory system, where multiple enhancers on 

different chromosomes act in tandem to regulate a single olfactory receptor gene 

(33). Examples from mammals suggest that interchromosomal contacts have 

evolved from more simple instances of a single enhancer acting in trans on a 

specific gene to complex cases in which multiple enhancers act together 

between chromosomes to regulate of multiple genes simultaneously. The ability 

of enhancers to act between chromosomes suggests the intriguing hypothesis 

that spatially separated chromosome territories evolved to prevent improper 

interchromosomal action of DNA regulatory elements.  

 Even as we begin to elucidate the mechanisms controlling pairing and 

transvection, many questions remain. The biological role of homologous 

chromosome pairing remains unclear. We propose that button-driven pairing 

allows the genome to remain robust to chromosome rearrangements by 
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“reconstituting” genes that are split by rearrangement breakpoints (Fig. 6C-

D)(98). Additionally, by facilitating transvection, pairing allows the rescue of gene 

expression from mutant alleles. However, if pairing serves such a beneficial 

biological role, it is difficult to explain why this phenomenon does not occur more 

broadly across organisms. It has previously been proposed that chromosome 

pairing represents a balancing act between pairing and anti-pairing factors, with 

the scales tipped towards pairing in Drosophila and towards anti-pairing in 

mammals (41). Improper homologous pairing in mammals is associated with 

deleterious effects including loss of heterozygosity, imprinting defects, and the 

development of cancer (22, 23, 26, 41, 52). Therefore, one hypothesis in the field 

is that mammals favor anti-pairing to avoid the disadvantages of homologous 

chromosome interactions, while Drosophila take advantage of the positive 

consequences of pairing and have evolved mechanisms to mitigate its negative 

effects (41).  

 Another outstanding question involves the role of transvection in the wild. 

While transvection between mutant alleles has been described at many 

Drosophila loci, very few studies have focused on the role of transvection 

between wild-type alleles. In many cases, enhancers act more efficiently 

between chromosomes in the absence of a promoter in cis, suggesting that some 

instances of transvection may only occur in mutant backgrounds. However, the 

recent discovery that the enhancer of ss only performs transvection in the 

presence of a promoter in cis (98) indicates that certain transvection-competent 

genes can perform transvection without DNA regulatory element deletions. The 
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action of enhancers, silencers, and other regulatory elements between wild-type 

loci may allow the fine-tuning of expression levels between wild-type alleles, 

preventing excessive or insufficient levels of transcription.  

 How widespread is transvection? The phenomenon has been described 

for approximately 15-20 Drosophila genes (55, 56, 70, 91, 93, 96, 105, 106, 116-

139), but transgene studies suggest that the ability to act between chromosomes 

may be a general feature of Drosophila enhancers (140, 141). Certain genes 

may have a greater capacity for transvection due to their proximity to buttons; 

genes located at a significant distance from buttons may have weaker pairing, 

preventing communication between chromosomes. Outside of flies, transvection 

has only been detected at a handful of loci. The application of new technologies 

such as haplotype-resolved HiC (62, 63) to mammalian systems will facilitate the 

identification of new candidate loci whose close colocalization might allow 

transvection.  

 Our understanding of homologous chromosome pairing and nuclear 

architecture has grown enormously in recent years with the assistance of assays 

including next-generation sequencing, HiC, and high-throughput FISH 

technologies. Investigating the links between chromosome organization, gene 

expression, and disease should ultimately provide a comprehensive map of the 

localization of each gene in the genome over developmental time, along with 

functional information about how each gene’s localization affects its expression. 

An understanding of the detailed organization of the genome across 

development will provide a means of disease diagnosis through detection of 
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changes in chromosome architecture, with the ultimate goal of manipulating 

nuclear organization and therefore gene expression to treat disease phenotypes.  
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Figure 1: Chromosome territories, compartments, and TADs organize the 

nucleus.  

A. Chromosomes segregate into individual chromosome territories. Larger 

chromosomes and gene-poor chromosomes tend to localize near the nuclear 

periphery, while smaller chromosomes and gene-rich chromosomes tend to 

localize to the nuclear interior.  

B. Regions along chromosomes interact to form compartments, which are 

segregated by gene expression state. The A compartment corresponds to active 

genes, and the B compartment corresponds to inactive genes.  

C. Chromosomes are further organized into topologically associated domains 

(TADs), regions of close self-association that are hypothesized to isolate genes 

from activation by incorrect DNA regulatory elements.  

 

28



Figure 2
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Figure 2: Buttons drive homologous chromosome pairing.  

A. Two main models have been proposed to describe the initiation of 

homologous chromosome pairing. The zipper model proposes that chromosomes 

pair evenly along their entire lengths, with synapsis beginning at the centromere 

and proceeding to the telomeres. The more recent button model, which is now 

favored by the field, hypothesizes that button loci interspersed across 

chromosome arms drive pairing at a higher affinity than their surrounding 

regions. Orange boxes: buttons.  

B. To facilitate pairing, each allele of a gene may be targeted to the same 

nuclear subcompartment based on transcriptional status, providing a button with 

a decreased search volume in which to find its homologue. Orange boxes: 

buttons, orange oval: nuclear subcompartment.  

C. After targeting to a nuclear subcompartment, the binding of unique proteins in 

a specific order and at specific intervals may provide a button with a unique 

“code,” allowing it to precisely pair with its homologous partner. Orange 

rectangle: button, orange oval: nuclear subcompartment, blue ovals, purple 

diamonds, and pink hexagons: unique protein code.  
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Figure 3
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Figure 3: Models for TAD-driven pairing.  

A. The boundaries of TADs drive pairing, after which TAD interiors associate with 

each other. Black ovals indicate the locations of TAD boundaries.  

B. The binding of unique combinations of insulator proteins at a precise spacing 

within each TAD region provides an “insulator code” that allows a TAD to pair 

with its homologue. Blue ovals and triangles, green hexagons and rounded 

rectangles, purple ovals, and orange diamonds: insulators.  

C. The unique chromosome conformation of each TAD allows it to create a 

microcompartment within the nucleus and associate with its unique homologue to 

initiate pairing.  
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Figure 4
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Figure 4: Transgenes provide a sensitized system to compare pairing 

between cell types.  

A. In a strong pairing cell type, which provides an environment conducive to 

pairing, both transgenes, which encompass a single button, and whole 

chromosomes, which encompass many buttons, are able to pair. Orange boxes: 

buttons, large black arrows: strong pairing.  

B. In a weak pairing cell type, which does not provide an environment conducive 

to pairing, transgenes that encompass a single button do not have the pairing 

strength required to find their homologous sequence. The strength of a large 

number of buttons combined over the length of a whole chromosome allows 

intact chromosomes to successfully pair in this cell type. Orange boxes: buttons, 

small black arrows: weak pairing.  
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Figure 5
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Figure 5: Paramutation occurs in maize, mice, and humans.  

A. Paramutation at the b1 locus in maize. * indicates paramutated allele.  

B. Paramutation at the Kit locus in mice. * indicates paramutated allele. 

C. Paramutation at the insulin	locus in humans. * indicates paramutated allele. 
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Figure 6
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Figure 6: Buttons maintain transvection and pairing in the presence of 

chromosome rearrangements.  

A. Pairing brings different alleles of the same gene into close physical proximity, 

allowing transvection to occur.  

B. In the gene-regulatory process of transvection, DNA regulatory elements act 

between chromosomes to increase (trans-activation) or decrease (trans-

repression) gene expression between chromosomes. Under trans-activation, 

green rectangle: active enhancer, green bent arrow: activated promoter, blue 

rectangles: protein coding region, gray rectangle with red “X”: mutated enhancer, 

gray bent arrow with red “X”: mutated promoter. Green arrow between active 

enhancer and promoter indicates that the enhancer is acting between 

chromosomes to rescue gene expression. Under trans-repression, red box: 

functional silencer, black bent arrows: promoter, blue rectangles: protein coding 

region, gray rectangle with red “X”: mutated silencer. Red flat arrow between 

functional silencer and promoter indicates that the silencer is acting between 

chromosomes to repress gene expression.  

C-E: Models indicating how buttons in different locations (near a gene, within a 

gene, or both near and within a gene) maintain pairing in the presence of 

chromosome rearrangements. Orange boxes: buttons, gray arrows: promoters, 

blue rectangles: protein coding regions. Black arrows indicate locations where 

buttons are driving pairing. 

C. Potential button pairing states in a wild-type background. Pairing will occur for 

all three button locations.  
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D. Potential button pairing states when there is a rearrangement breakpoint 

outside of a gene. When there is a button near a gene, the button is rearranged 

to a location far away from the gene and no longer drives pairing between the 

gene and its homologue. When there is a button within the gene, the 

rearrangement has no effect on button location and pairing still occurs. When 

there are buttons near and within a gene, the button near the gene is rearranged 

to a location far away from the gene and no longer drives pairing between the 

gene and its homologue, but the button within the gene, whose location is not 

affected by the rearrangement, ensures that pairing between the gene and its 

homologue is maintained. Black zig-zag lines: rearrangement breakpoints.  

E. Potential button pairing states when there is a rearrangement breakpoint 

within a gene. When there is a button near a gene, it brings the rearranged 

portion of the gene back into proximity with the wild-type copy of the gene, 

maintaining pairing. When there is a button within a gene, the button is split in 

half by the rearrangement and cannot drive pairing. When there are buttons near 

and within a gene, the button within the gene is split by the rearrangement and 

cannot pair, but the button near the gene brings the rearranged portion of the 

gene back into proximity with the wild-type copy of the gene, maintaining pairing. 

Black zig-zag lines: rearrangement breakpoints. 
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Figure 7
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Figure 7: Examples of trans-repression in Drosophila.  

A. Brown-dominant trans-inactivation. Green arrow: active promoter, gray 

arrows: inactive promoter, brown rectangles: protein-coding region, loops: 

repressive heterochromatin. Red flattened arrow indicates that bwD is acting 

between chromosomes on wild type bw to repress gene expression.  

B. The zeste-white interaction. Green arrow: active promoter, gray arrows: 

inactive promoter, white rectangle: protein coding region, orange oval: 

neomorphic zeste protein. Red flattened arrows indicate that z1 protein represses 

gene expression when w is homozygous.  

C. Pairing-sensitive silencing. Green arrows: active promoter, gray arrows: 

inactive promoter, white rectangle: w protein coding region, purple diamond: 

PRE. Red flat arrows indicate that PREs are acting between transgenes to 

repress w expression.  
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Across  the  animal  kingdom,  visual  systems  have  evolved  to  be  uniquely  suited
to the  environments  and  behavioral  patterns  of  different  species.  Visual  acuity
and color  perception  depend  on  the  distribution  of  photoreceptor  (PR)  subtypes
within  the  retina.  Retinal  mosaics  can  be  organized  into  three  broad  categories:
stochastic/regionalized, regionalized,  and  ordered.  We  describe  here  the  retinal
mosaics of  flies, zebrafish, chickens,  mice,  and  humans,  and  the  gene  regula-
tory networks  controlling  proper  PR  specification  in  each.  By  drawing  parallels
in eye  development  between  these  divergent  species,  we  identify  a  set  of
conserved organizing  principles  and  transcriptional  networks  that  govern  PR
subtype  differentiation.

Retinas Are  Patterned  in  Stochastic/Regionalized,  Regionalized,  and  Ordered
Mosaics
Evolution  has produced  highly tuned  opsin proteins that  enable organisms to  detect wave-
lengths of  light  specific to  their  environments.  For instance, humans  can differentiate colors
most precisely in  the yellow to  red range  of  the  color spectrum, which corresponds  to  the colors
of  ripening fruit  [1–3],  while  flies are sensitive to  polarized  light,  which assists in navigation  during
flight [4–6].  In  this  review we  describe  the patterns  of  PR  mosaics  and the gene regulatory
networks that  lead to  diverse  PR  subtype fates across  several  commonly  studied organisms:
fruit  flies, zebrafish, chickens, mice, and humans.  The retinal mosaics of  these organisms  can
be  grouped  into  three classes:  stochastic/regionalized,  regionalized,  and ordered. These
species share  numerous similarities  in  retinal development, revealing surprising conservation
in  the  gene regulatory mechanisms and developmental patterns  that  form diverse visual
systems.

The Stochastic/Regionalized  Mosaic  of  the  Drosophila  melanogaster  Retina
The D.  melanogaster  (fruit  fly)  retina  is  composed  of  approximately  800  ommatidia  (i.e.,  unit  eyes)
each of  which  contains  eight  PRs,  R1–R8 (Figure  1A2).  These  PRs  can  be  divided  into  two
groups:  the  outer  PRs,  R1–R6, and  the  inner  PRs,  R7  and  R8.  The  outer  PRs  encircle  the  inner
PRs,  and  the  R7  is  located  above  the  R8  relative  to  the  apical  surface  of  the  retina  (Figure  1A2)
[7]. A  rhabdomere,  a  series  of  thousands  of  microvilli  containing  a  high  concentration  of
photopigment,  extends  the  full  length  of  each  PR  cell  body  (Figure  1A2)  [8,9].

All  outer  PRs  express  the  motion-detecting  photopigment  Rhodopsin  1  (Rh1)  (Figures  1A3–1A6,
1A8) [10,11].  Expression  of  different  Rhodopsins  in  the  inner  PRs  defines  four  subtypes  of
ommatidia:  pale  (Figure  1A3),  yellow  (Figure  1A4),  dorsal  third  yellow  (Figure  1A5),  and  dorsal  rim
(Figure  1A6)  [4,12–20]. In  pale  ommatidia,  pR7s  express  UV-detecting  Rhodopsin  3  (Rh3)  and
pR8s  express  blue-detecting  Rhodopsin  5  (Rh5)  (Figures  1A3,  1A9,  1A10)  [12,13].  In  yellow
ommatidia,  yR7s  express  UV-detecting  Rhodopsin  4  (Rh4)  and  yR8s  express  green-detecting
638  Trends in Genetics, October 2016, Vol. 32, No. 10 http://dx.doi.org/10.1016/j.tig.2016.07.004
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Rhodopsin  6  (Rh6)  [12,13]  (Figures  1A4,  1A9,  1A10).  PRs  in  the  ventral  two-thirds  of  the  retina
are  arranged  in  a  stochastic  mosaic:  pale  and  yellow  ommatidia  in  this  region  are  randomly
patterned  in  a  ratio  of  35:65  [12]  (Figures  1A1,  1A7).  Specialized  ommatidial  subtypes  occur  in
the  dorsal  region  of  the  retina.  In  the  dorsal  third  of  the  retina,  Rh3  is  coexpressed  with  Rh4  in
stochastically  distributed  yR7s  [4]  (Figures  1A1,  1A5,  1A11).  Dorsal  rim  ommatidia  are  found  only
at  the  extreme  dorsal  edge  of  the  retina  and  express  Rh3  in  both  R7s  and  R8s  (Figures  1A1,  1A6,
1A12) [20].

An  Ordered  Array  of  Cones  and  Rods  in  the  Retina  of  Danio  rerio
As in  flies,  D.  rerio  (zebrafish) PRs  contain  a  ciliated  region  with  a  high  concentration  of
photopigment  (Figure  1B2)  [21,22].  In  zebrafish,  this  region  is  known  as  the  outer  segment
and  is  located  at  the  apical  end  of  the  PR  (Figure  1B2).  Outer  segments  connect  to  the  ellipsoid,
which refracts  light  onto  the  outer  segment  (Figure  1B2)  [21,23–26]. The  ellipsoid  is  joined  to  the
myoid  region,  which  contracts  to  extend  and  retract  PRs  in  response  to  changes  in  light
(Figure  1B2)  [27–29]. Below  the  myoid  lies  the  cell  soma  which  contains  the  nucleus
(Figure  1B2)  [21,23].

Zebrafish retinas  contain  four  PR  classes:  rods,  which  express  motion-detecting  Rhodopsin
(RH1);  short  single  cones,  which  express  UV  opsin  (Short-Wavelength  Sensitive  1;  SWS1);  long
single  cones,  which  express  blue  opsin  (Short-Wavelength  Sensitive  2;  SWS2);  and  double  cone
pairs,  in  which  one  cone  expresses  red  opsin  (Long-Wavelength  Sensitive;  LWS)  and  the  other
cone expresses  green  opsin  (Rhodopsin-like;  RH2)  (Figure  1B2)  [30–33]. Zebrafish PRs  are
arranged  in  a  repetitive  pattern  throughout  the  retina  [21]. Rows  of  double  cones  alternate  with
rows  of  interdigitated  UV  and  blue  cones  (Figures  1B1,  1B4).  Within  double  cone  rows,  each
red–green  pair  is  turned  1808 with  respect  to  the  previous  double  cone  (Figures  1B1,  1B4).  Each
row  of  double  cones  is  shifted  one  half  cycle  with  respect  to  the  previous  row  such  that  each  UV
cone  is  flanked  by  two  green  cones  and  each  blue  cone  is  flanked  by  two  red  cones  (Figures
1B1,  1B4).  Rods  are  interspersed  evenly  between  the  rows  of  cones,  forming  a  square  pattern
around UV  cones  (Figures  1B1,  1B5)  [22,33–37].

Within this  highly  ordered  mosaic,  regionalized  expression  of  two  subtypes  of  LWS  (LWS-1  and
LWS-2)  and  four  subtypes  of  RH2  (RH2-1,  RH2-2,  RH2-3,  and  RH2-4)  in  double  cones  defines
distinct  areas  of  the  zebrafish  retina.  In  the  inner  central/dorsal  area,  double  cones  expressing
LWS-2  and  RH2-1  are  interspersed  with  double  cones  expressing  LWS-2  and  RH2-2
(Figure  1B3).  The  outer  central/dorsal  area  surrounds  the  inner  central/dorsal  area,  and  all
double cones  in  this  region  express  LWS-2  and  RH2-2  (Figure  1B3).  The  next  ring  of  expression,
the  inner  periphery/ventral  area,  contains  double  cones  expressing  LWS-1  and  RH2-3
(Figure  1B3).  Finally,  double  cones  in  the  outer  periphery/ventral  area  express  LWS-1  and
RH2-4  (Figure  1B3)  [38,39].

Overlapping Regular  Spacing  of  PR  Subtypes  Forms  a  Semi-Random  Mosaic  in  the  Gallus
gallus domesticus  Retina
Similarly  to  zebrafish, the G.  g.  domesticus  (chicken) retina  contains Rh1-expressing rods,
specialized for  night  vision,  and multiple  single  and double  cone types. The four single cone
types  in  the chicken retina are sensitive to  red, green, blue,  and  violet  wavelengths of  light
(expressing LWS,  Rh2, SWS2,  and SWS1 opsins respectively) (Figure  1C2) [40,41]. These
cone types  have  been  identified chiefly  by  differently colored  oil droplets located between the
inner and  outer segments,  which may act as a  filter  for specific wavelengths of  light, as well as
focusing photons  onto  the outer  segment [42–45]  (Figure 1C2). Two morphologically different
sets of  double  cones  in  chickens  are sensitive to  long wavelengths of  light  [46]. In the  more
common  double  cone pair, both cones have an  oil  droplet [46,47]  (Figure  1C2, Type  B).  In  the
other pair,  only the larger (primary)  cone contains an  oil  droplet (Figure 1C2, Type  A)  [44,46].
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These double cones  may  be  specialized for motion  detection rather than  for color  vision
because they  appear  to  contain the same photopigments  and synapse  onto one another
[3,48,49].

Double  cones  cover  about  40%  of  the  chicken  retina,  with  the  majority  positioned  ventrally  [43].
Green  and  red  single  cones  each  comprise  about  20%  of  total  cone  cells.  Blue  and  violet  cones
make  up  the  remaining  12%  and  8%,  respectively,  and  are  more  abundant  dorsally  [43]. Each
cone  in  the  chicken  retina  is  positioned  at  a  regular  distance  from  other  cones  of  the  same
subtype  (e.g.,  each  red  cone  is  at  a  specific distance  from  its  neighboring  red  cone  cell)  [43].
However,  the  relative  positions  of  different  cone  cell  subtypes  (e.g.,  red  vs  green)  are  not  regular.
Thus, the  final retinal  pattern  in  chickens  is  semi-random  (Figures  1C1,  1C3,  4D) rather  than  the
perfectly  ordered  pattern  seen  in  zebrafish  (Figure  1B1)  [43].

Chickens and  other  birds  have  an  afoveate  structure,  meaning  the  most  central  part  of  the  retina
is densely  packed  with  cones  and  lacks  rods  [40,50]  (area  centralis,  Figure  1C1).  Further  from
the  foveal  center,  cone  packing  becomes  less  dense  [43,45,51,52]. In  addition  to  the  area
centralis, rod  numbers  are  reduced  in  a  lateral  stripe  through  the  center  of  the  retina  [40]  and  in
the  dorsal  retina  (central  meridian  and  dorsal  rod  free  zone,  Figure  1C1).  The  rod  population  has
a  pattern  distinct  from  cones,  forming  a  ventral  to  dorsal  gradient  [40]  (dorsal  rod  zone  and
ventral  rod-rich zone,  Figure  1C1).

Regionalized  Patterning  of  Cones  in  the  Retina  of  Mus  musculus
The  M.  musculus  (mouse)  retina  has  fewer  PR  types  than  zebrafish  and  chickens,  containing
motion-detecting  rods  that  express  rhodopsin  and  three  subtypes  of  color-detecting  cones  that
express S-opsin  (UV-detecting),  M-opsin  (green-detecting),  or  both  S-  and  M-opsins
(Figures  1D2–1D5). These  PRs  are  patterned  in  a  regionalized  mosaic,  with  cones  being
arranged  in  opposing  dorsal  to  ventral  gradients  (Figures  1D1,  1D6).  M-opsin  is  expressed
most highly  in  the  dorsal  third,  and  S-opsin  is  expressed  in  the  ventral  two-thirds  [53,54]
(Figures  1D1,  1D6).  In  the  region  in  which  these  opposing  gradients  meet,  single  cone  cells
have  varying  levels  of  M-  and  S-opsin  coexpression  [54,55]  (Figures  1D1,  1D6).  A  subset  of  S-
opsin-expressing  cones  appear  to  be  stochastically  arranged  throughout  the  retina  [56]
(Figure  1D1).  These  cones  may  be  part  of  a  primordial  S-cone  color  system  that  synapses
onto a  dedicated  population  of  bipolar  cells  [57].  Rods  are  evenly  interspersed  throughout  the
retina  and  vastly  outnumber  cones,  making  up  about  97%  of  the  PR  population  [58]
(Figures  1D1,  1D7).

Stochastic/Regionalized  Patterning  of  Cones  and  Rods  in  the  Homo  sapiens  Retina
The  human  retinal  mosaic contains four types  of  PRs: rods  for night  vision,  and blue (S-opsin),
red  (L-opsin), and green  (M-opsin) cones  for color and daytime vision [59–63]  (Figures  1E2–
1E5).  Human retinal patterning  is  mostly random,  with  a  few  areas of organization. Similarly  to
chickens,  the central  area of the  human  retina is  densely  packed  with  cones  [64]  (Figure  1E1).
This area can be  divided  into three regions:  the foveola,  the fovea,  and the macula
(Figure 1E1). The foveola contains only L- and M-opsin-expressing cones arranged  in  a
stochastic  pattern [65,66]  (Figure  1E1).  S-cones become integrated  into  the  mosaic  outside
the  foveola  within the fovea  and the macula (Figures 1E1, 1E6) [67]. It  is  unclear whether  the  S-
cone mosaic is  also  random [67] or  if it  is  distributed  in  a  lattice pattern  separate from the  L/M-
cone cell pattern [67–69].  Cones in  the foveola  and fovea are smaller than  those found in  the
macula and in  the  posterior  pole [70]  (Figure 1E1). Rods  are integrated into  the  mosaic starting
in  the  macula region  [67]  (Figure  1E1). The posterior  pole of  the retina  is  rod-dominated, with  a
random  pattern  of  L-, M-,  and S-cones  scattered  throughout [71]  (Figures  1E1, 1E7). One
other densely  packed  cone region  exists  along the peripheral  rim of  the retina [72]
(Figure 1E1).
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L-  and  M-cones  are  very  similar,  and  until  recently  it  was  almost  impossible  to  distinguish
between  the  two  [65,66,71,73–77]. It  is  widely  believed  that  the  only  difference  between  L-  and
M-cones  is  the  type  of  opsin  expressed.  However,  evidence  from  monkeys  suggests  that  the
two  populations  have  different  numbers  of  synapses  between  the  cone  and  the  midget  bipolar
cell  [78]. S-cones  are  easily  distinguished  by  their  short,  stubby  outer  segments,  while  L/M-
cones  produce  long,  skinny  outer  segments  [67,68,79,80]. S-  and  L/M-cones  also  have  distinct
patterns  of  connectivity  with  other  retinal  cell  types  [68].

The  Unique  Retinal  Patterning  of  Different  Organisms  Has  Evolved  To  Suit
their  Environments  and  Behaviors
Evolution  has  optimized  stochastic/regionalized,  regionalized,  and  ordered  retinal  patterns  to  fit
the  needs  of  diverse  organisms.  For  example,  regionalization  of  specialized  ommatidia  within  an
overall stochastic  mosaic  provides  the  fly  with  the  optimal  light-detecting  abilities  to  respond  to
its environment.  The  dorsal  rim  ommatidia  detect  polarized  light  to  allow  proper  navigation  during
flight,  while  the  coexpression  of  Rh3  and  Rh4  in  dorsal  third  yR7s  may  assist  in  detecting  the
location  of  the  sun  [4–6].  The  evolutionary  advantage  of  a  stochastic  rather  than  patterned
distribution  of  PRs  remains  unclear.  Random  placement  of  yellow  and  pale  ommatidia  that
results in  similar  65:35  ratios  throughout  the  eye  may  be  the  simplest  evolutionary  mechanism  to
ensure that  all  regions  of  the  retina  detect  multiple  wavelengths  of  light  with  the  same  efficiency.

The  ordered  distribution  of  zebrafish  cones  is  uniquely  suited  to  its  aquatic  environment,
preventing  under-  or  over-sampling  of  specific  light  wavelengths  in  different  areas  of  the  retina
[37].  The  ability  to  detect  such  a  broad  spectrum  of  wavelengths  may  allow  the  zebrafish  to  see
efficiently  when  light  conditions  vary  as  a  result  of  water  turbidity,  seasonal  changes,  or
fluctuations in  water  microorganism  and  mineral  content  [23].

The  semi-random  mosaic  of  the  chicken  retina  is  tuned  to  perceive  many  wavelengths  of  light
with  high  visual  acuity.  The  chicken's  cone-rich  retina  and  densely  packed  area  centralis,
which  also  has  a  greater  ganglion  cell  density  [81,82],  likely  provides  high-acuity  color  vision
in daylight  to  allow  identification of  prey  and  predators.  Different  bird  species  display  different
ratios  of  cone  subtypes.  For  example,  sea  birds  generally  have  fewer  long-wavelength  opsin
cones  compared  to  blue  and  green,  possibly  because  long  wavelengths  are  filtered  out  by  water
[44,83].  This  implies  that  genetic  mechanisms  governing  cone  subtype  specification  are  highly
tunable  to  the  environmental  niche  that  an  avian  species  inhabits.

Because  the  regionalized  mouse  retina  contains  two  color-detecting  opsins  that  are  mostly
separated  into  the  dorsal  third  and  ventral  retina,  mouse  vision  is  believed  to  be  largely
monochromatic.  Ventral  expression  of  S-opsin  and  dorsal  expression  of  M-opsin  allows  the
mouse  to  maximize  sampling  of  UV  (sky)  and  terrestrial  light  sources  with  the  most  appropriate
PRs. In  the  center  of  the  retina,  where  S-  and  M-opsin  expression  converge,  differing  levels  of
opsin  coexpression  between  neighboring  cells  may  give  the  mouse  dichromatic  vision  [84,85].

The  random  distribution  of  the  three  human  cone  types  allows  efficient  spectral  sampling  of  the
visual  field  and  maximizes  contrast  sensitivity  [1–3]. The  dense  packing  of  cones  in  the  fovea
provides  maximal  visual  acuity  in  daylight,  and  the  rod-dominated  retina  outside  of  the  macula
allows  efficient  night  vision.

The  Gene  Regulatory  Networks  Controlling  PR  Specification Share
Functional and  Sequence-Level  Homologs
The  gene regulatory  networks  controlling PR  specification  are  extremely  complex and  in  many
cases are  still  being  elucidated.  We  provide here  simplified networks  to  highlight  the  proteins  that
play  conserved  roles  in  PR  fate  at  either  the  functional  or  sequence  level,  focusing  mainly  on  flies,
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zebrafish,  and  mice,  whose  gene regulatory  networks  are  better  characterized  than  those  of
chickens  and  humans.  PR  differentiation  occurs  in  four  basic  decision  steps  (Figure 2A): (Step  1)
PR  versus  non-PR  fate,  (Step  2)  rod versus  cone fate,  (Step  3)  cone subtype,  and  (Step  4)  opsin
subtype.

Step 1:  PR  Versus  Non-PR  Fate  Choice
Step  1  of  PR  specification involves  the  expression  of  factors  that  distinguish  differentiating  PRs
from  other  cell  fates.  In  flies,  the  zinc-finger  transcription  factor  Glass  plays  this  role  [86]
(Figure  2B,  Step  1).  Vertebrate  PR  differentiation  involves  a  core  set  of  conserved  transcription
factors, including  Cone-rod  homeobox  (Crx),  the  Orthodenticle  homeobox  proteins  (Otx2  and
Otx5),  and  the  Retinal  homeobox  proteins  (Rx1,  RaxL,  Rax)  [87–118] (Figures  2C–E,  and
Figure  S1  in  the  supplemental  information  online,  Step  1).  Species-specific  inputs  have  emerged
to  regulate  these  conserved  factors.  In  zebrafish,  the  Hippo  pathway  transcriptional  activator
Yes-associated  protein  (Yap)  represses  these  core  transcription  factors  (Figure  2C,  Step  1)
while,  in  mice,  the  Notch-1  transmembrane  receptor  plays  this  role  (Figure  2D,  Step  1)  [119–
121]. The  core  PR  factors  are  also  activated  by  species-specific  inputs:  in  zebrafish,  the  signaling
molecule  Sonic  hedgehog  (Shh)  and  the  transcription  cofactor  Lbh-like  activate  Rx1  and  Otx2,
respectively  (Figure  2C,  Step  1)  [87,122].  The  network  topology  between  these  conserved
factors  varies  between  organisms;  in  mice,  Rax  activates  Otx2  [92]  (Figure  2D,  Step  1),  while  in
zebrafish  no  link  between  Rx1  and  Otx2  has  been  established  (Figure  2C,  Step  1)  [87,89–
92,100].  In  both  mice  and  zebrafish,  Otx2  likely  activates  Crx  (Figure  2C,D,  Step  1)  [87,101].
Other  regulators  complement  these  core  factors:  for  example,  in  zebrafish  Crx  activates  the
species-specific  Otx  homolog  Otx5  to  drive  PR  fate  (Figure  2C,  Step  1)  [97–99,119].

Step  2:  Rod  Versus  Cone  Fate  Choice
In  Step  2,  PR  precursors  select  either  rod  or  cone  fate.  In  Drosophila, outer  PRs  (rods)  are
specified  by  the  presence  of  the  homeodomain  protein  Defective  Proventriculus  (Dve),  which
represses the  expression  of  color-detecting  Rhodopsins  (Figure  2B,  Step  2)  [123]. In  zebrafish,
mice,  and  humans,  the  bZIP  transcription  factor  Neural  retina  leucine  zipper  protein  (Nrl)  and  the
orphan  nuclear  receptor  Nuclear  Receptor  Subfamily  2  Group  E  Member  3  (Nr2e3)  play
important  roles  in  rod  fate  (Figure  2C–E, Step  2)  [88,98,124–142]. Nrl  activates  Nr2e3  in  mice
and may  play  a  similar  role  in  humans  and  zebrafish  (Figure  2C–E, Step  2)  [143,144]. In  zebrafish
and  possibly  chickens,  retinoic  acid  (RA)  signaling  is  also  involved  in  rod  development
(Figures  2C,  S1,  Step  2);  in  zebrafish, RA  signals  through  the  RAR/b receptor  and  possibly
the RXRga receptor  to  specify  rods  (Figure  2C,  Step  2)  [145,146]. In  addition,  the  growth  factor
glial  cell  line-derived  neurotrophic  factor  (GDNF)  is  expressed  specifically  in  rods  in  both  chickens
and  mice,  and  may  also  play  a  role  in  zebrafish  (Figures  2D,  S1,  Step  2)  [147–151]. Two  non-
conserved  factors,  the  SUMO-E3  ligase/transcription  factor  Pias3  and  the  orphan  nuclear
receptor  RORb,  are  also  involved  in  rod  fate  in  mice  (Figure  2D,  Step  2)  [132,152–154]. Recent
evolutionary  studies  suggest  that  mammalian  S-cone  and  rod  PRs  may  have  similar  lineages,
and  may  temporally  switch  from  S-cone  precursors  to  rods  [155].

In  Drosophila, the  zinc-finger  transcription  factor  Spalt  (Sal)  drives  inner  PR  (‘cone’) fate  by
repressing  Dve  (Figure  2B,  Step  2)  [123].  In  an  additional  step,  not  conserved  in  higher
organisms,  inner  PR  ‘cones’ differentiate  further  into  two  types:  R7s,  specified  by  the  homeo-
domain  transcription  factor  Prospero  (Pros)  and  the  transcription  factor  subunit  Nf-yc,  and  R8s,
specified  by  the  zinc-finger  transcription  factor  Senseless  (Sens)  (Figure  2B,  Step  2)  [156–158].

In zebrafish,  the  BMP  family  ligand  Gdf6a  induces  the  transcription  factor  Tbx2b  to  repress  rod
fate  and  allow  cone  development  (Figure  2C,  Step  2)  [159–161]. Tbx2b  does  not  appear  to  play
a  conserved  role  in  cone  specification;  it  is  involved  in  dorsal–ventral retinal  development  in
chickens,  mice,  and  humans,  but  its  expression  is  not  restricted  to  cones  [162,163]. In  chickens
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and  mice,  RA  signaling  through  the  RXRg  receptor  may  be  important  for  cone  fate  (Figures  2D,
S1,  Step  2)  [164–167]. In  addition,  the  Thrb2  receptor  plays  a  role  in  cone  specification  in
chickens,  mice,  and  humans  (Figures  2D,  2E,  S1,  Step  2)  [163,168–179].

Step 3:  Cone  Subtype  Choice
In Step  3,  cone precursors are specified into  subtypes, marked  by  the expression  of  specific
color-detecting  opsins. Interestingly,  several  of  the proteins required  for cone subtype selection
in  flies are conserved in  vertebrate PRs, although  they  have  been  adapted  to  play  different  roles.
Selection between yellow  and  pale ommatidial  subtypes  in  Drosophila is  based on  the
stochastic  expression  of  the PAS-bHLH transcription  factor  Spineless  (Ss) in 65%  of  R7s
[180].  In  yR7s, Ss  activates the expression  of  Rh4 and Dve, which  represses Rh3  (Figure  2B,
Step 3)  [123,180].  In  pR7s lacking Ss, Rh4 and  Dve are not expressed,  leading  to  activation of
Rh3  by  Sal and Orthodenticle  (Otd),  a  homolog  of  vertebrate Crx, Otx2,  and  Otx5  (Figure  2B,
Step 3)  [180,181]. Intriguingly,  the mammalian  homolog  of  Sal, Sall3,  has been conserved  at
both  the sequence  and  functional levels;  it also  activates opsins  in  mice (Figure  2D, Step  3)
[182].

In yR7s,  Ss  represses  an  unknown  signal  to  R8s  (Figure  2B,  Step  3).  In  the  absence  of  this  signal,
the  Warts  (Wts)  serine/threonine  kinase  is  activated,  causing  repression  of  the  transcriptional
coactivator  Yorkie  (Yki),  a  homolog  of  zebrafish  Yap,  in  yR8s  (Figure  2B,  Step  3).  Repression  of
Yki  induces  the  activation  of  Rh6  and  loss  of  Rh5  (Figure  2B,  Step  3)  [13,14,180,183,184].  In
pR7s,  the  unknown  signal  activates  the  PH  domain-containing  protein  Melted  (Melt),  which
represses Wts  to  allow  Yki  activation  and  Rh5  expression  in  pR8s  (Figure  2B,  Step  3)  [183,184].
In  addition,  Otd  acts  permissively  in  pR8s  to  activate  Rh5  (Figure  2B,  Step  3)  [123].

In  dorsal  third  yR7s,  reduced  Ss  and  Dve  levels,  combined  with  activation  by  the  Iroquois
complex  of  transcription  factors  (IroC),  induces  coexpression  of  Rh3  with  Rh4  (Figure  2B,  Step  3)
[4,123,185]. In  the  dorsal  rim,  high  local  concentrations  of  the  diffusible  morphogen  Wingless
(Wg)  act  with  IroC  to  drive  the  expression  of  the  homeodomain  transcription  factor  Homothorax
(Hth)  in  R7s  and  R8s  (Figure  2B,  Step  3,  and  Figure  3A)  [19,20].  Hth  represses  Ss  in  R7s,  and
Rh5,  Rh6,  and  Sens  in  R8s,  causing  Rh3  expression  in  R7s  and  R8s  (Figure  2B,  Step  3)
[19,20,186].

In  zebrafish,  mice,  and  humans,  T3  thyroid  hormone  signals  through  the  trb2/Thrb2  receptor  to
drive expression  of  specific  opsins.  In  zebrafish,  T3  activates  LWS  opsin,  in  mice,  it  activates  M-
opsin  and  represses  S-opsin,  and  in  humans,  it  may  select  L/M-opsins  over  S-opsin  (Figure  2C–
E,  Step  3)  [163,168–179,187]. RA  signaling  through  the  RXRga/RXRg receptor  also  controls
opsin  expression  in  vertebrates;  in  zebrafish, RA  signaling  activates  LWS  opsin  and  represses
SWS1  and  SWS2  opsins,  while  in  mice  it  may  repress  S-opsin  (Figure  2C,D,  Step  3)
[166,188,189].

Because  T3  and  RA  are  also  involved  in  earlier  steps  of  PR  specification,  additional  factors  likely
work with  them  to  specify  cone  subtypes.  In  mice,  Pias3,  BMP,  and  COUP-TFII  work  in  addition
to  T3  to  activate  M-opsin  (Figure  2D,  Step  3)  [152,170,190]. BMP  and  COUP-TFII  may  also
assist  RA  and  T3  in  repressing  mouse  S-opsin  (Figure  2D,  Step  3)  [190].

Additional  factors  have  been  implicated  in  vertebrate  opsin  expression,  although  it  is  currently
unclear  if  they  are  conserved  between  species.  In  zebrafish,  Gdf6a  drives  SWS2  expression  and
works  in  combination  with  Tbx2b  to  activate  SWS1  (Figure  2C,  Step  3)  [159–161]. In  addition,
the  fish-specific transcription  factor  Sine  oculis  homeobox  homolog  7  (Six7)  drives  activation  of
RH2  (Figure  2C,  Step  3)  [191]. In  mice,  Shh  signaling  may  activate  Sall3,  which  acts  with  RORb
to activate  S-opsin  (Figure  2D,  Step  3)  [182,192,193].
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St e p  4:  O p si n  S u bt y p e  C h oi c e

I n z e br a fi s h  a n d  h u m a n s,  a  fi n al  c h oi c e  f urt h er diff er e nti at e s  c o n e  s u bt y p e s  b a s e d  o n  o p si n

s u bt y p e  e x pr e s si o n  (Fi g ur e  2 C, E,  St e p  4).  Z e br a fi s h  r e d- a n d  gr e e n- d et e cti n g  c o n e s  s el e ct

b et w e e n  m ulti pl e  L W S  a n d  R H 2  o p si n  s u bt y p e s,  r e s p e cti v el y (Fi g ur e  5 B)  [ 1 9 4– 1 9 6] . R A,

p ot e nti all y  a cti n g  t hr o u g h R X R g a,  dir e ct s  t h e e x pr e s si o n  of  L W S- 1  o v er  L W S- 2  (Fi g ur e  5 B)

[ 1 8 9]. H u m a n  L/ M  c o n e s  s el e ct  b et w e e n  t h e cl o s el y  r el at e d L-  a n d  M- o p si n s  (Fi g ur e  5 C)  [ 1 9 7]. I n
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Table  2.  PR  Proteins  with  Sequence-Level,  But  Not  Functional,  Homology

Protein Fly Zebrafish  Chicken Mouse Human

Otd/Otx2/Otx5  Opsin choice PR fate PR fate PR fate Retinal cell fate

Yki/Yap  Opsin choice PR fate repression N/A N/A N/A

Shh  N/A PR fate N/A Retinal regionalization N/A

Table  1.  PR  Proteins  with  Functional,  But  Not  Sequence-Level,  Homology

Function Fly Zebrafish  Mouse

PR  fate Glass Lbh-like N/A

Rod  fate Dve N/A Pias3, RORb

Cone  fate Pros, Nf-yc, Sens Tbx2b, Gdf6a N/A

Opsin  choice Ss, Dve, IroC, Wg, Hth Gdf6a, Tbx2b, Six7 COUP-TFII, Pias3, BMP, RORb

Table  3.  PR  Proteins  with  Functional  and  Sequence-Level  Homology

Protein Fly Zebrafish Chicken Mouse Human

Crx N/A PR fate PR fate PR fate PR fate

Otx2/Otx5 N/A PR fate PR fate PR fate N/A

Rx1/RaxL/Rax  N/A PR fate PR fate PR fate N/A

Nrl N/A Rod fate N/A Rod fate Rod fate

Nr2e3 N/A Rod fate N/A Rod fate Rod fate

RA N/A Rod fate,
opsin  choice,
opsin subtype choice

Rod  fate,
cone  fate

Cone fate,
opsin  choice

N/A

GDNF N/A Rod fate (?) Rod fate Rod fate N/A

Sal/Sall3 Cone fate,
opsin  choice

N/A  N/A Opsin choice N/A

trb2/Thrb2 N/A Opsin choice Cone fate Cone fate,
opsin  choice

Cone  fate,
opsin  choice
both  zebrafish  and  humans,  locus  control  regions  (LCRs)  have  evolved  to  regulate  opsin  subtype
choice  at  the  cis  level  (see  below;  Figure  5)  [194–196].

Functional and  Sequence-Level  Homology
The proteins  controlling  PR  specification  can  be  divided  into  three  main  categories  based  on
their  functional  and/or  sequence-level  homology.  The  first category  involves  factors  that  serve
similar developmental  roles  but  share  no  sequence  homology  (Table  1).  A  second  category
includes  factors  that  are  conserved  on  the  sequence  level  but  perform  unique  roles  in  different
organisms  (Table  2).  The  third  category  contains  factors  with  functional  and  sequence-level
homology  (Table  3).  In  some  cases,  factors  in  this  category  may  drive  further,  species-specific
processes  in  addition  to  their  conserved  role.

Gradients  of  Signaling  Molecules  Determine  Regionalized  Retinal
Development
In  addition  to  conserved  gene  regulatory  networks,  diverse  organisms  share  a  common
mechanism  for  delineating  retinal  regions,  involving  gradients  of  signaling  molecules.  There
are  two  models  for  how  such  gradients  are  established.  The  first,  more  traditional  model
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suggests  that  gradients  arise  from  diffusion  of  signaling  molecules  from  a  specific  source.  This
occurs  in  Drosophila,  where  Wg  is  secreted  from  a  stripe  called  the  dorsal  margin  to  create  a
dorsal-to-ventral  gradient  in  the  larval  eye-antennal  disc  that  specifies  the  location  of  dorsal  rim
ommatidia  in  adults  (Figure  3A)  [19,198].

An  alternative  ‘gradient-free’ model  proposes  that  enzymes  that  produce  or  degrade  signaling
molecules  are  expressed  in  a  regionalized  pattern,  and  thereby  regulate  local  levels  of  small
molecules  to  create  a  gradient  throughout  the  tissue  [199]. This  gradient-free  mechanism  may
establish  ventral  to  dorsal  gradients  of  RA  involved  in  retinal  development  and  patterning  in
zebrafish,  chickens,  and  mice  [40,145,146,170,188,200–202]. In  the  developing  chicken  and
mouse  retina,  the  dorsally  expressed  aldehyde  dehydrogenase  AHD2  produces  low  RA,  and  the
ventrally  expressed  aldehyde  dehydrogenase  V1  produces  high  RA,  creating  regional  ‘gra-
dients’  of  RA  in  the  retina  (Figure  3B,C)  [200,201,203–205]. In  the  chick,  the  ventral-to-dorsal
gradient  of  RA  mirrors  the  rod  gradient,  suggesting  that  regionalized  RA  processing  enzymes
drive  gradients  of  PR  subtypes  (Figure  3C)  [200,206,207]. In  the  mouse,  an  additional  enzyme,
the  oxidase  CYP26,  causes  RA  degradation  and  a  potential  breakdown  in  the  gradient  in  the
central  retina  (Figure  3B)  [200,208].  Together,  these  conserved  patterns  delineate  different
retinal  regions  during  development.

Interestingly,  in  the  adult  retinas  of  both  chick  and  mouse,  ventral  V1  dehydrogenase  expression  is
lost, leaving  dorsal  AHD2  as  the  only  RA  synthesizing  enzyme  and  causing  a  reversal  of  the  gradient
to  higher  RA  levels  in  the  dorsal  retina  (Figure 3B,C) [200,201]. In  mice,  this  reversal  may  promote
dorsal  S-opsin  repression  after  postnatal  day  8  by  activation  of  RXRg (Figure 3B) [166,200,209].
In  the  chicken, it  is  unclear  how  this  reversal  affects  PR  fate  specification  (Figure 3C).

Deiodinases  play  a  similar  role  in  thyroid  hormone  gradient  formation.  They  are  expressed  in
regionalized  areas  and/or  at  different  timepoints  in  the  chick  [169],  mouse  [210,211],  and
zebrafish  retinas  [212–214]. In  mice,  Deiodinase  2  (Dio2),  which  converts  thyroid  hormone
from  the  inactive  T4  to  the  active  T3  form,  is  expressed  at  higher  levels  in  the  dorsal  retina
[210,215]  and  likely  establishes  a  T3  gradient  [216]  (Figure  3B).  High  dorsal  T3  signaling
promotes  expression  of  M-opsin  and  repression  of  S-opsin  [152,166,170,171,217]
(Figure  3B).  Low  T3  signaling  in  the  ventral  retina  allows  expression  of  S-opsin  (Figure  3B)  [170].

Dorsal–ventral BMP  gradients  and  ventral–dorsal Shh  gradients  in  the  mouse  retina  activate  M-
and  S-opsin,  respectively,  but  the  sources  of  these  gradients  remain  unclear  (Figure  3B)
[182,190,192,218].

Retinal  Development  Proceeds  Through Waves  of  Differentiation
Despite  significant  differences  in  morphology,  regionalization,  and  sensitivity  between  organ-
isms, retinal  development  in  many  species  involves  waves  of  differentiation.  Within  the  devel-
oping  fly  eye-antennal  disc,  a  wave  of  differentiation  known  as  the  morphogenetic  furrow  moves
from the  posterior  to  the  anterior  of  the  retina  (Figure  4A),  driven  partially  by  the  signaling
molecule  Hedgehog  (Hh)  and  the  bHLH  transcription  factor  Atonal  (Ato)  [7,219–223]. Undiffer-
entiated PR  precursors  lie  anterior  to  the  furrow  whereas,  posterior  to  the  furrow,  PRs  differen-
tiate  in  a  specific  order  (Figure  4A)  [7,219].  The  R8  PR  serves  as  a  ‘founder’ cell,  recruiting
undifferentiated  PR  precursors  and  driving  their  stepwise  differentiation  into  a  complete  omma-
tidium via  multiple  signaling  pathways  (well-reviewed  in  [9,224–230]). The  initial  differentiation  of
R2,  R5,  R3,  and  R4  is  followed  by  the  second  mitotic  wave  (Figure  4A),  after  which  R1,  R6,  and
R7  sequentially  differentiate  [7,219,226].

Despite their  separation  by  over  800  million  years  of  evolution,  zebrafish  retinal  differentiation
shares  much  in  common  with  the  processes  observed  in  flies.  As  in  flies,  a  wave  of  neural
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Figure 4. Retinal Development Proceeds Through Waves of Differentiation. (A) In Drosophila, waves of differ-

entiation and mitosis move from posterior to anterior. (B) In zebrafish, differentiation proceeds from ventral–nasal to dorsal–

temporal in a wave resembling an opening fan. (C) In chickens, mice, and humans, differentiation begins in the center of the

retina and expands towards the periphery. (D) Chicken retinal development also involves a temporal wave of cone

maturation. Green and red cones are the earliest to mature, followed by blue and violet cones. (E) A ventral-to-dorsal

wave of differentiation patterns rods in the chicken retina in a density gradient, excluding the area centralis. Abbreviations; A,

anterior, D, dorsal; N, nasal; P, posterior; T, temporal; V, ventral.
differentiation driven in part by Hedgehog signaling and ath5, a zebrafish homolog of Ato, spreads

across the developing retina (Figure 4B) [231,232]. In zebrafish, PRs differentiate from an initial

patch [233–235]. Cones spread from this patch in a wave resembling an opening fan, with

differentiation sweeping from ventral–nasal to dorsal–temporal [21,233,234] (Figure 4B). A mitotic

wave follows the initial fan gradient to complete cone differentiation [233,235]. Early-differentiating

red cones may act similarly to R8 PRs in Drosophila, functioning as ‘founders’ to recruit
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undifferentiated  cone  precursors  and  drive  their  differentiation  [21].  While  rods  are  also  found
initially in  the  ventral  patch,  they  differentiate  separately  from  cones.  Clusters  of  rod precursors
scattered  throughout  the  retina  undergo  multiple  rounds  of  mitosis  before  differentiating  into  rods
and  migrating  to  their  final  positions  around  UV  cones  [37,233,234,236].

The  chicken retina is  similar  to  that of  zebrafish in  that  differentiation begins  at a  central patch,
the  area centralis [40,46,169]. Sequential waves of  transcription  factor  expression  emanate
from  the center  to  the  periphery  to  drive cell differentiation  and  retinal patterning (Figure  4C).
First, a  wave  of  cone precursor transcription factors  is  expressed,  including  Thrb2 and Otx2
[169].  Individual  cone subtypes  then  express opsins in  temporal waves. Green and red opsins
are expressed  first, followed  by  blue  and  violet  [40]  (Figure 4D). An  additional  wave  of
differentiation  sweeps linearly  across the  retina from the ventral to  dorsal region  to  pattern
rods  (Figure 4E) [40].

Although  mice  do  not  have  a  fovea,  retinal  differentiation  follows  the  same  central-to-peripheral
pattern  that  is  seen  in  chickens  (Figure  4C)  [237,238]. Generation  of  different  retinal  cell  types  is
coincident  with  temporal  waves,  and  this  phenomenon  has  been  used  to  identify  important
factors  in  retinal  generation  [239].

The  developmental  pattern  of  the  human  and  other  primate  retinas  closely  resembles  the  chick
and  mouse  retina,  with  differentiation  following  sequential  waves  emanating  from  the  optic  disc,
near  the  fovea,  outward  [240–242] (Figure  4C).  S-cones  are  seen  first  in  the  foveal  area,  followed
by  L/M-cones.  Rods  are  seen  later  outside  the  fovea  [242,243].  The  fetal  fovea  is  not  packed  as
tightly  as  the  adult  fovea  [64],  suggesting  that  differentiated  cones  migrate  toward  the  central
fovea later  in  development  to  create  a  densely  packed  array  [69,244,245].

Looping  of  DNA  Elements  Regulates  Cone  Subtypes
Beyond  retina-wide  signaling  gradients  and  waves  of  differentiation,  conserved  mechanisms
control  retinal  development  at  an  individual  PR  level.  Looping  of  regulatory  DNA  elements  plays  a
crucial  role  in  opsin  choice  across  organisms.  In  Drosophila, DNA  looping  may  regulate  the
stochastic  expression  of  spineless  (ss),  the  key  determinant  of  R7  (‘cone’)  subtype  fate. The  ss
locus  contains  an  enhancer,  which  activates  ss  in  100%  of  R7s,  and  two  silencers,  which
randomly repress  ss  in  35%  of  R7s  (Figure  5A)  [246].  Because  the  two  silencers  are  located  at  a
significant  distance  from  the  ss  promoter,  it  is  likely  that  they  regulate  ss  through  a  looping-based
mechanism.  An  enticing  hypothesis  is  that  the  enhancer  and  silencers  compete  for  looping  to  the
ss  promoter,  resulting  in  activation  or  repression  of  ss  and  regulation  of  downstream
Rhodopsins  (Figure  5A).

In a  striking  example  of  convergent  evolution  between  zebrafish  and  humans,  DNA  elements
known  as  locus  control  regions  (LCRs)  likely  regulate  opsin  expression  through  looping-based
mechanisms.  In  both  cases,  ancestral  enhancers  that  regulated  the  expression  of  a  single  opsin
gene  were  adapted  in  response  to  an  opsin  gene  duplication  [62,194–196,247–250].

Zebrafish opsin  genes  are  regulated  by  two  LCRs,  one  that  selects  between  LWS  subtypes  and
one  that  selects  between  RH2  subtypes  (Figure  5B)  [194–196]. LCR-mediated  regulation  of
opsin  subtypes  is  controlled  in  a  temporal  progression  [39,194,195].  RH2-1,  RH2-2,  and  LWS-2
are expressed  earliest  and  are  present  in  the  central  and  dorsal  regions  of  the  zebrafish  retina,
which  develop  first (Figures  1B3,  5B)  [39]. RH2-3,  RH2-4,  and  LWS-1  are  expressed  later  and
thus  localize  to  the  later-developing  retinal  periphery  (Figures  1B3,  5B)  [39].

Human  opsin  genes  are  regulated  by  one  LCR  that  selects  between  L-  and  M-opsin  expression
(Figure  5C) [251].  It  is  hypothesized  that  the  LCR  loops  randomly  to  the  promoter  of  either  the  L-  or
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M- o p si n  g e n e  t o dri v e  o p si n  e x pr e s si o n  [ 6 3, 2 5 2, 2 5 3]. Alt er n ati v el y,  t h e h u m a n  L C R  mi g ht  a cti v at e

o p si n s  i n a  t e m p or al pr o gr e s si o n,  aft er  w hi c h  L-  a n d  M- o p si n- e x pr e s si n g  c o n e s  mi g ht  mi gr at e  t o

t h eir fi n al,  r a n d o m p o siti o n s  i n t h e h u m a n  r eti n a [ 2 4 4, 2 4 5].

T h e  z e br a fi s h  a n d  h u m a n  L C R s  ar e  all  a b o ut  0. 5  k b  i n si z e,  p er h a p s  r efl e cti n g  a  c o m m o n

s e q u e n c e  l e n gt h t h at i s r e q uir e d f or r o b u st a cti v ati o n  of  o p si n  e x pr e s si o n  [ 1 9 4, 1 9 5, 2 5 1, 2 5 2].

D e s pit e  t h eir c o m m o n  si z e s,  t h e R H 2,  L W S,  a n d  h u m a n  L C R s  h a v e  littl e s e q u e n c e  si mil arit y

ot h er  t h a n s h ar e d  bi n di n g  sit e s  f or t h e tr a n s cri pti o n f a ct or Cr x  [ 1 9 4, 1 9 5].

C o n cl u di n g  R e m ar k s
M a n y  q u e sti o n s  a b o ut  t h e g e n e  r e g ul at or y a n d  e v ol uti o n ar y  m e c h a ni s m s  g o v er ni n g

r eti n al d e v el o p m e nt  r e m ai n u n a n s w er e d  ( s e e O ut st a n di n g  Q u e sti o n s).  F urt h er  st u d y  of  P R

O ut st a n di n g  Q u e sti o n s
W h at  ar e  t h e f u n cti o n al r ol e s of  st o-

c h a sti c/r e gi o n ali z e d,  r e gi o n ali z e d, a n d

or d er e d  r eti n al m o s ai c s ?

W h at  ar e  t h e mi s si n g  r e g ul at or y n o d e s

c o ntr olli n g  P R  f at e ?

W h at  ar e  t h e m e c h a ni s m s  c o ntr olli n g

st o c h a sti c  c ell  f at e s p e ci fi c ati o n ?

W h at  si g n ali n g  or  mi gr ati o n  m e c h a-

ni s m s  d et er mi n e  t h e or d er e d  p att er n

of  P R s  i n t h e fi s h  e y e ?

H o w  ar e  m ulti pl e  gr a di e nt s  i nt e gr at e d

t o di ct at e  r e gi o n ali z e d P R  p att er n s ?

H o w  d o  f u n cti o n all y h o m ol o g o u s  g e n e

n et w or k s  e v ol v e  t o c o ntr ol  si mil ar  P R

s p e ci fi c ati o n  pr o c e s s e s ?

( C) H o m o s a pi e n s

( B) D a ni o r eri o

( A) Dr o s o p hil a m el a n o g a st er

or

Pr o gr e s si o n o v er d e v el o p m e nt al m e

Sil 1 s s E n h  Sil 2

P al e 

ors s

L W S

R H 2

L / M

R e n oi c a ci d

R X R γ a( ?)

L C R  L W S- 1  L W S- 2

E arl y
d e v el o p m e nt

R H 2- L C R  R H 2- 1  R H 2- 2 R H 2- 3  R H 2- 4

1 2
3 4

R e n oi c a ci d

R X R γ a( ?)

L C R  L W S- 1  L W S- 2

L at e
d e v el o p m e nt
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Sil 1  E n h s s Sil 2

Y ell o w
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Fi g ur e  5.  L o o pi n g  of  D N A  El e m e nt s  R e g ul at e s  C o n e  S u bt y p e s.  ( A) I n Dr o s o p hil a , l o o pi n g of  r e g ul at or y el e m e nt s

m a y  c a u s e  a cti v ati o n  or  r e pr e s si o n of  s s , t h e k e y  d et er mi n a nt  of  R 7  s u bt y p e  f at e. ( B) R A  si g n ali n g  a n d  L C R  l o o pi n g s el e ct

b et w e e n  o p si n  s u bt y p e s  i n z e br a fi s h.  N u m b er s  i n t h e R H 2  b o x  i n di c at e t h e t e m p or al or d er  of  R H 2  s u bt y p e  e x pr e s si o n.  ( C)

L C R  l o o pi n g s el e ct s  b et w e e n  L-  a n d  M- o p si n  f or e x pr e s si o n  i n h u m a n  L/ M- c o n e s.  A b br e vi ati o n s:  E n h,  e n h a n c er;  L C R,

l o c u s c o ntr ol  r e gi o n; L W S,  L o n g- W a v el e n gt h  S e n siti v e;  R A,  r eti n oi c a ci d;  R H 1,  R h o d o p si n;  R H 2,  R h o d o p si n-li k e;  Sil  1,

sil e n c er  1;  Sil  2,  sil e n c er  2;  s s , Dr o s o p hil a  s pi n el e s s ; S W S 1/ 2,  S h ort- W a v el e n gt h  S e n siti v e  1/ 2.
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development  and  maintenance  will  provide  insight  into  the  evolutionary  advantages  of  different
retinal  mosaics  and  uncover  additional  conserved  and  species-specific  gene  regulatory  net-
works  required  for  retinal  patterning.  A  deeper  understanding  of  these  mechanisms  may
ultimately  lead  to  new  treatments  for  many  developmental  disorders  of  the  visual  system
and  the  development  of  effective  PR  regenerative  therapies.
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Supplemental Figure 1: The gene-regulatory network controlling PR 

specification in Gallus gallus domesticus. The gene-regulatory network has 

been simplified to emphasize PR factors that are conserved between species. 

Arrows within gene networks solely represent our current understanding of 

network relationships and do not imply genetic mechanisms such as direct or 

indirect transcriptional regulation.  
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Chapter 3: TADs pair homologous chromosomes to 

promote interchromosomal gene regulation  

3.1: Abstract 

Homologous chromosomes colocalize to regulate gene expression in 

processes including genomic imprinting and X-inactivation, but the mechanisms 

driving these interactions are poorly understood. In Drosophila, homologous 

chromosomes pair throughout development, promoting an interchromosomal 

gene regulatory mechanism called transvection. Despite over a century of study, 

the molecular features that facilitate chromosome-wide pairing are unknown. The 

“button” model of pairing proposes that specific regions along chromosomes pair 

with a higher affinity than their surrounding regions, but only a handful of DNA 

elements that drive homologous pairing between chromosomes have been 

described. Here, we identify button loci interspersed across the fly genome that 

have the ability to pair with their homologous sequences. Buttons are 

characterized by topologically associated domains (TADs), which drive pairing 

with their endogenous loci from multiple locations in the genome. Fragments of 

TADs do not pair, suggesting a model in which combinations of elements 

interspersed along the full length of a TAD are required for pairing. Though DNA-

binding insulator proteins are not associated with pairing, buttons are enriched 

for insulator cofactors, suggesting that these proteins may mediate higher order 

interactions between homologous TADs. Using a TAD spanning the spineless 

gene as a paradigm, we find that pairing is necessary but not sufficient for 

transvection. spineless pairing and transvection are cell-type-specific, suggesting 
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that local buttoning and unbuttoning regulates transvection efficiency between 

cell types. Together, our data support a model in which specialized TADs button 

homologous chromosomes together to facilitate cell-type-specific 

interchromosomal gene regulation.  

 

3.2: Introduction  

Chromosomes are organized in a complex manner in the nucleus. In 

higher organisms, they localize to distinct territories (142). Regions of 

chromosomes interact to form compartments, which are segregated based on 

gene expression states (143). Chromosomes are further organized into TADs, 

regions of self-association that are hypothesized to isolate genes into regulatory 

domains and ensure their activation by the correct cis-regulatory elements (143). 

TADs vary in size from ~100 kb in Drosophila melanogaster to ~1 Mb in 

mammals (11, 143). Disruptions of nuclear organization, such as alteration of 

TAD structure and localization of genes to incorrect nuclear compartments, have 

major effects on gene expression (13, 19, 20, 34). However, it is unclear how 

elements within the genome interact between chromosomes to organize 

chromatin and regulate gene expression.  

 One key aspect of nuclear architecture involves the tight colocalization, or 

“pairing,” of homologous chromosomes to facilitate regulatory interactions 

between different alleles of the same gene (41). In Drosophila melanogaster, 

homologous chromosomes are paired throughout interphase in somatic cells 
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(54). This stable pairing provides an excellent paradigm to study the mechanisms 

driving interactions between chromosomes.  

Despite over a century of study, it is poorly understood how homologous 

chromosomes come into close physical proximity. Classical studies of pairing 

proposed a “zipper” model, in which all regions of the genome have an equal 

ability to pair based on sequence homology, and chromosome pairing begins at 

the centromere and proceeds distally to the telomeres (55, 56). Studies of 

chromosome pairing initiation during development led to a shift in thinking 

towards the “button” model, which proposes that regions of high pairing affinity 

are interspersed along chromosome arms and come together through a random 

walk to initiate pairing (Fig. 1A) (57-59).  

The nature of the high-affinity “buttons” that bring homologous 

chromosomes together is still unclear. Many elements, including insulators, 

Polycomb Response Elements (PREs), and heterochromatic repeats, drive 

looping interactions in cis along the same chromosome arm or clustering 

between non-homologous sequences on different chromosomes (65, 69, 74, 

102, 103, 144). However, only a handful of small DNA elements, including the 

gypsy retrotransposon and the Fab-7, Mcp, and TMR regions of the Abd-B locus, 

are known to drive pairing between identical homologous sequences on different 

chromosomes (65, 67-71). As three of these elements are within the same locus, 

the sequence and structural features that contribute to genome-wide homologous 

chromosome pairing are unknown. The scarcity of small DNA elements that are 

known to drive interchromosomal homologous pairing suggests that 
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combinations of elements and/or higher order chromatin structures are required 

to button homologous chromosomes together. 

Pairing of homologous chromosomes facilitates a gene-regulatory 

mechanism known as transvection, in which two different mutant alleles interact 

between chromosomes to rescue gene expression (Fig. 1B) (55). Transvection 

has been described for a number of Drosophila genes (90). With the exceptions 

of Abd-B and certain transgenes containing the Homie, gypsy, Mcp, TMR, and 

Fab7 sequences, transvection requires homologous chromosome pairing and is 

disrupted by chromosome rearrangements (55, 59, 67, 69, 71, 90, 91, 96, 102, 

127, 145-147). DNA elements such as insulators and PREs contribute to 

transvection and similar phenomena at many loci across the genome (67, 69, 71, 

102, 103, 109-115, 127, 145-147), but it is unclear if the same DNA elements are 

always involved in both homologous chromosome pairing and transvection or if 

pairing and transvection are mechanistically separable. 

Homologous chromosome pairing occurs more strongly in some cell types 

than in others. Pairing occurs in 15-30% of nuclei in the early embryo, gradually 

increases throughout embryonic development, and reaches a peak of 90-95% by 

the third instar larval stage (57-59, 74). Similarly, transvection efficiency varies 

widely between cell types (109, 140, 141, 148). However, a direct link between 

the level of pairing in a given cell type and the strength of transvection in that cell 

type has not been established.   

Here, we develop a method to screen for DNA elements that pair and 

identify multiple button sites interspersed across the Drosophila genome, 
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allowing us to examine the features that determine button activity. We find that a 

subset of TADs are associated with buttons and can drive pairing from different 

positions in the genome. By testing mutant alleles and transgenes of the 

spineless gene, we find that pairing and transvection are mechanistically 

separable and cell-type-specific. Together, our data suggest that TADs are one 

key feature of buttons that drive homologous chromosome pairing to promote 

cell-type-specific interchromosomal gene regulation.  

 

3.3: Results 

Identification of new button loci interspersed across the fly genome 

Only a few elements are known to drive homologous pairing, and a 

majority of these elements are located within the Abd-B locus (65, 67-71), limiting 

the identification of general features that drive pairing throughout the genome. To 

look more broadly for elements that bring homologous chromosomes together, 

we selected transgenes from multiple locations in the genome, inserted them on 

heterologous chromosomes, and tested if they drove pairing with their 

endogenous loci. This assay provided a sensitized system for identifying regions 

of the genome that have an especially high affinity for homologous sequences, 

since it detected DNA sequences that pair outside of the context of chromosome-

wide pairing.  

We first screened a set of ~80-110 kb transgenes tiling a ~1 Mb region on 

chromosome 3R (Fig. 2E). We inserted individual transgenes into a site on 

chromosome 2L (site 1; Fig. 2A) and visualized their nuclear position using 
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Oligopaints DNA FISH (149). As the endogenous and transgenic sequences 

were identical, we distinguished between them by labeling the sequence 

neighboring the endogenous locus with red probes and the sequence 

neighboring the transgene insertion site with green probes (“2 color 

strategy”)(Fig. 2A). We examined pairing in post-mitotic larval photoreceptors to 

avoid disruptions caused by cell division.  

To determine whether a transgene drove pairing, we compared the 3-D 

distance between the transgene and its endogenous site to the 3-D distance of a 

negative control. If the distance between the insertion site and the endogenous 

site was significantly lower with a transgene present than in the negative control, 

then the transgene drove pairing (Fig. 2A). The negative control measured the 

distance between the transgene insertion site on chromosome 2L and a site on 

chromosome 3R in a wild type background. Since different loci along a 

chromosome arm might vary in their distance from other chromosomes, we 

examined additional negative controls in multiple cell types and observed no 

statistical differences (Fig. S1A). Thus, for all transgene pairing experiments 

described in this paper, we used single negative controls for each chromosome 

arm tested.  

To determine the statistical significance of transgene pairing relative to a 

control, we first tested each transgene dataset for a Gaussian distribution. In 

instances where transgene distance distributions were non-Gaussian, we tested 

for statistical significance by comparing the median of each transgene distribution 

to the negative control (Fig. 2F). Gaussian transgene distance distributions were 
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tested for significance using a t-test to compare means. In all cases where more 

than one transgene was compared to a control, we corrected for multiple 

comparisons. 

Only a subset (5/17) of transgenes (“pairers”) in our initial screen drove 

pairing between chromosomes 2L and 3R in our initial screen, bringing the 

distances between the red and green FISH signals significantly closer than in the 

negative control (Fig. 2B-C, F; Fig. S2A). The red and green signals did not 

completely overlap, likely because they did not directly label the paired sites (Fig. 

S3A-C). For the remaining 12/17 transgenes (“non-pairers”), the distances 

between the red and green signals were not significantly different from the 

negative control, indicating that they did not drive pairing (Fig. 2B, D, F; Fig. 

S2B).  

To confirm our assignment of pairers vs. non-pairers, we used maximum 

likelihood estimation to fit our transgene data to single or double Gaussian 

distributions. 4/5 pairers fit a double Gaussian distribution, indicating a split 

between paired and unpaired populations of nuclei. The remaining pairer, 

Transgene E, fit a single Gaussian distribution, but the mean of the Transgene E 

distribution was significantly lower than the mean of the negative control 

distribution, indicating a high degree of pairing (Fig. S1B). Conversely, only 2/12 

non-pairers (Transgenes L and N) fit a double Gaussian distribution. Since the 

median distances for Transgenes L and N were not significantly different from the 

negative control (Fig. 2F), these transgenes may drive “weak” pairing at a level 

significantly lower than the other pairers we identified. The remaining 10/12 non-
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pairers fit a single Gaussian distribution, and their means did not significantly 

differ from the negative control (Fig. S1B). Thus, our screen identified multiple 

new button elements. 

The pairing observed between transgenes on chromosome 2L and 

endogenous sequences on chromosome 3R could be affected by the transgene 

insertion site. To test the position independence of button pairing, we inserted 

Transgene E onto chromosome 3L (site 3; Fig. S4A) and found that it paired with 

its homologous endogenous locus on chromosome 3R (Fig. S4B-D), showing 

that buttons can drive pairing from different sites in the genome.  

Thus, we identified multiple button loci along chromosome 3R that 

overcome endogenous nuclear architecture to drive pairing between non-

homologous chromosomes.  

 

TADs are features of buttons 

We next sought to determine common features between the new buttons 

we identified, focusing first on chromatin structure. We examined 14 publicly 

available Hi-C datasets to determine the relationship between buttons and 

topologically associated domains (TADs), genomic regions of self-association. 

We defined TADs using directionality indices, which measure the bias of a 

genomic region towards upstream or downstream interactions along the 

chromosome (10). TADs on a directionality index are read from the beginning of 

a positive peak, which indicates downstream interactions, to the end of a 
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negative peak, which indicates upstream interactions (Fig. S5A; Fig. S6A-E; 

Fig. S7A-E).  

We found that 60% of pairers encompassed a complete TAD, including 

both TAD boundaries, compared to only 8% of non-pairers (Fig. 2F; Fig. S5A; 

Fig. S8A-B), suggesting that specific TADs contribute to button function. To test 

the hypothesis that TADs are a feature of buttons, we selected six transgenes 

encompassing entire TADs on chromosomes X, 2L, 2R, and 3R (Fig. 3E; Fig. 

S6A-E; Fig. S7C; Fig. S8A) and compared them to four transgenes that did not 

encompass entire TADs, taken from chromosomes X, 2L, and 3R (Fig. 3E; Fig. 

S2E; Fig. S7A-B, D-E; Fig. S8B). Based on the availability of Oligopaints 

probes, we used an alternative FISH strategy for a subset of these transgenes, in 

which the identical transgene and endogenous sequences were labeled with the 

same red fluorescent probes (Fig. 3A). With this 1-color strategy, FISH punctae 

£0.4 µm apart could not be distinguished as separate and were assigned a 

distance of 0.4 µm apart (see Materials and Methods). 

5/6 transgenes that spanned entire TADs drove pairing, while 0/4 

transgenes that did not span a TAD drove pairing (Fig. 3B-E; Fig. S2C-E), 

further supporting the importance of TADs for button activity. In total for all 

transgenes tested in Fig. 2F, Fig. 3E, and Fig. S2E, 80% of pairers spanned a 

TAD (8/10) while only 12% of non-pairers spanned a TAD (2/17) (Fig 3F), 

indicating that specific TADs contribute to button activity and drive pairing. 

Transgenes of near identical lengths had different pairing abilities, further 
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suggesting that the content of a transgene (i.e. TADs) determines pairing (Fig. 

3G). 

 The ~80-110 kb size limitation of publicly available transgenes prevented 

testing larger TADs for pairing with our transgene assay. Transgenes that 

covered only parts of a large TAD on chromosome 3R did not drive pairing (Fig. 

S9A). To test this large TAD for pairing, we utilized a 460-kb duplication of 

chromosome 3R onto chromosome 2R (Fig. S9B), which encompassed the 

entire TAD (Fig. S5A; Fig. S9A). We found that the duplication drove pairing with 

its homologous endogenous site (Fig. S9C-E), further supporting a role for TADs 

in pairing.  

Entire TADs could drive pairing, or smaller elements contained within 

TADs could bring homologous regions together. We therefore examined the 

effects of “splitting” a TAD, focusing on the TAD spanned by Transgene E. 

Transgene D, which covers the 5’ end of Transgene E, did not drive pairing (Fig. 

3H-I; Fig. S2B). Transgenes G and S, which cover the 3’ end of Transgene E, 

also did not drive pairing (Fig. 3H-I; Fig. S2B). Because there is a ~19 kb gap 

between Transgenes D and G, we hypothesized that this 19 kb region might 

contain an element required for pairing. However, Transgenes F and R, which 

both contained this 19 kb region, did not drive pairing. Thus, on their own, the 5’, 

middle, or 3’ regions of the Transgene E TAD are not sufficient to drive pairing. 

Together, these observations suggest that a combination of elements 

interspersed across the complete Transgene E TAD drive pairing.  
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Examining the relationship between pairing, chromatin factors, and gene 

expression state 

We next examined other features that could contribute to homologous 

chromosome pairing. As insulators have been linked to long-distance 

chromosome interactions(65, 69, 74, 102, 103, 144, 150), we tested whether the 

number of binding sites for individual Drosophila insulator proteins was higher in 

pairers than in non-pairers. Using previously published ChIP-chip and ChIP-seq 

data(151-155), we found no association between pairing and any of the DNA-

binding insulator proteins (BEAF, Su(Hw), CTCF, and GAF)(Fig. 4A-D), 

suggesting that complex combinations of bound insulators, rather than individual 

proteins, might contribute to homologous pairing or stabilize interactions between 

already paired TADs(104). Intriguingly, both Cp190 and Mod(mdg4), insulator co-

factors that do not directly bind to DNA, were associated with pairing (Fig. 4E-F). 

These proteins may mediate interactions between complex clusters of DNA-

binding insulator proteins or play additional roles independent of insulator 

function to bring homologous chromosomes together. 

We next investigated the relationship between pairing and insulator 

clustering, defining a cluster as any region bound by ³4 unique insulator proteins, 

and observed no association with pairing (Fig. 4G-H). As Drosophila TAD 

boundaries are enriched for CTCF, BEAF, and Cp190 (11), we examined the 

association between pairers and clusters of these insulators. Again, we observed 

no relationship with pairing (Fig. 4I), suggesting that a complete TAD, rather than 

the insulators clustered at its boundaries, is needed for pairing. Thus, we do not 
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find a strong relationship between insulators and pairing. However, it is possible 

that even larger clusters of insulators, in combination with other architectural 

proteins, mediate pairing between TADs, or that each button has a unique “code” 

of insulators bound across the entire TAD region that assist in driving pairing.  

Because the small DNA elements Mcp, Fab-7, and TMR drive pairing 

between homologous chromosomes (65, 67, 69-71), we next examined whether 

these elements drove pairing in our assay. Unexpectedly, Transgene M, which 

contained Mcp, and Transgene N, which contained Fab-7 and TMR, were both 

non-pairers (Fig. 2E-F; Fig. S2B), suggesting that pairing driven by these 

elements may be context-specific, or that these elements drive pairing at a low 

level that cannot be distinguished by this assay. 

To investigate additional elements that contribute to pairing, we examined 

modENCODE ChIP data and found no association between pairing and 

Polycomb Group (PcG) binding sites, repressing epigenetic marks, or non-coding 

RNAs (ncRNAs)(Fig. S10A-F). 

Gene activity plays a critical role in nuclear architecture: individual TADs 

interact with each other in compartments, which are partitioned by expression 

state(143). The pairing we observe between transgenes and their endogenous 

loci might simply be a result of segregation of the genome into active (A) and 

repressed (B) compartments. We hypothesized that if compartmentalization 

alone drives pairing, then the distance between any two active regions or any two 

repressed regions should be less than the distance between an active region and 

a repressed region. To test this hypothesis, we performed RNA-seq on larval eye 
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discs, the tissue we used in our pairing experiments, to identify active or 

repressed regions. We selected two loci on different chromosomes that were 

highly expressed (A1 and A2; Fig. S11A, C), and two loci that were expressed at 

low levels (B1 and B2; Fig. S11B-C). The level of A1-A2 and B1-B2 interaction 

did not differ from a negative control or from the level of A1-B2 interactions (Fig. 

S11D-H). Moreover, we found no association between pairing and active 

transcription (Fig. S11I-J). Our data suggest that pairing is driven by specific 

interactions between homologous TADs, rather than general interactions based 

on expression state alone. 

 

Pairing and transvection occur despite chromosomal rearrangements 

We next interrogated the relationship between pairing and the gene 

regulatory process of transvection. Chromosomal rearrangements have been 

shown to disrupt pairing of genes located near rearrangement breakpoints (55, 

90). However, we observed pairing of ~100 kb transgenes with their endogenous 

loci, suggesting that intact homologous chromosomes are not required for pairing 

and that pairing driven by TADs tolerates nearby breakpoints. Supporting our 

observations, the Abd-B locus pairs in the presence of chromosomal 

rearrangements (59, 91, 96). We therefore reexamined how rearrangements 

affect pairing, focusing on a button defined by a TAD spanning the spineless (ss) 

locus (“ss button”; Fig. 5A).  

To assess the effects of local rearrangements on ss button pairing, we 

examined a naturally occurring chromosomal inversion with a breakpoint 
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immediately upstream of ss (ssinversion) and a duplication with a breakpoint 

immediately downstream of ss (Fig. 5E). Both ssinversion and the duplication paired 

with endogenous ss (Fig. S9C-E; Fig. S12A-B), showing that ss button pairing 

occurs despite chromosomal rearrangements. Consistent with these findings, 

pairing also occurred at the ss locus in flies with balancer chromosomes 

containing numerous large inversions and rearrangements (Fig. S12F-J). Thus, 

similar to Abd-B, pairing of ss occurs despite chromosomal rearrangements, 

consistent with a model in which homologous TADs find each other in the 

nucleus independent of chromosome-wide homology. 

Pairing is required for the genetic phenomenon of transvection, in which 

DNA elements on a mutant allele of a gene act between chromosomes to rescue 

expression of a different mutant allele (Fig. 1B). In cases where chromosomal 

rearrangements perturb pairing, transvection is also disrupted (55, 90). Since 

chromosomal rearrangements did not ablate pairing at the ss button, we 

hypothesized that transvection would occur at the ss locus in these genetic 

conditions.   

In the fly eye, Ss is normally expressed in ~70% of R7 photoreceptors to 

activate expression of Rhodopsin 4 (Rh4) and repress Rhodopsin 3 (Rh3; Fig. 

5B-D). Ss is absent in the remaining 30% of R7s, allowing Rh3 expression (Fig. 

5B-D) (99). Regulatory mutations in the ss gene cause decreases or increases in 

the ratio of SsON: SsOFF cells. When two ss alleles with different ratios are 

heterozygous, transvection between chromosomes (also known as 

Interchromosomal Communication) determines the final ratio of SsON: SsOFF R7s 
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(97). Thus, the SsON: SsOFF ratio is a phenotype that allows for quantitative 

assessment of transvection. Throughout our ss transvection experiments, we 

evaluated Rh3 and Rh4 expression, as they faithfully report Ss expression in R7s 

(i.e. SsON = Rh4; SsOFF = Rh3). We previously observed transvection at the ss 

locus for the duplication and balancer chromosome alleles (97). We similarly 

observed transvection at the ss locus for the ssinversion allele (Fig. S12C-E). 

Together, these data suggested that buttons can drive pairing and transvection 

despite chromosomal rearrangements. 

 

Pairing is necessary but not sufficient for transvection 

As chromosomal rearrangements did not impair ss pairing or transvection, 

we further investigated the relationship between pairing and transvection using 

ss transgenes. Both Transgene S and Transgene T are expressed in 100% of 

R7s because they lack a silencer DNA element, but do not produce functional Ss 

protein because they lack critical coding exons (Fig. 5E; Fig. S13A-J)(97). 

Transgene T differs from Transgene S in that it lacks 6 kb at its 5’ end (Fig. 5E). 

We predicted that if Transgenes S and T performed transvection, they would 

upregulate expression of endogenous ss.  

When inserted onto chromosomes 2L or 3L (sites 1 and 3; Fig. 5F; Fig. 

S14A), Transgenes S and T did not drive pairing with the endogenous ss locus 

on chromosome 3R (Fig. 5G-I; Fig. S14B-C, E, Q). At these sites, Transgenes S 

and T did not upregulate ss expression, indicating that they could not perform 

transvection when unpaired (Fig. 5J-L; Fig. S14D, F).  
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We next wondered whether Transgenes S and T could perform 

transvection if we mimicked pairing by forcing them into close physical proximity 

with endogenous ss. We performed a FISH screen to identify genomic sites that 

naturally loop to endogenous ss (Fig. 5M) and identified three such sites, located 

4.8 Mb upstream of ss, 0.4 Mb upstream of ss, and 4.6 Mb downstream of ss 

(sites 2, 4, and 5; Fig. 5M-O; Fig. S14G-H, M-N, Q).  

When we inserted Transgene S at these sites, it was forced into close 

proximity with endogenous ss (Fig. 5P; Fig. S14I, O, Q) and upregulated Ss 

(Rh4) into nearly 100% of R7s (Fig. 5R-S; Fig. S14J, P)(97). Thus, natural 

chromosome looping can force loci into proximity and, like pairing, facilitate 

transvection. In contrast, when we forced Transgene T into close proximity with 

endogenous ss (Fig. 5Q; Fig. S14K, Q), it did not upregulate Ss (Rh4) 

expression (Fig. 5T; Fig. S14L), indicating that it could not perform transvection 

even when paired. Thus, pairing is necessary but not sufficient for transvection. 

We compared the DNA sequence of Transgene T, which does not perform 

transvection, to Transgene S, the ssinversion, and the duplication, which perform 

transvection. An upstream region of ~1.6 kb is present in Transgene S, the 

ssinversion, and the duplication, but missing from Transgene T, suggesting that this 

region contains a critical element for transvection (Fig. 5E). ModENCODE ChIP 

data showed that this region was bound by the Drosophila insulator proteins 

CTCF, BEAF, Mod(Mdg4), and Cp190. Additionally, this DNA sequence 

performed P-element homing (97), an indicator of insulator activity. Together, 

83



these data suggested that the DNA element required for transvection is an 

insulator.  

To further test whether this insulator was required for transvection, we 

examined Transgene E, which drove pairing and contained the complete ss 

locus, except for the insulator element (Fig. 2F; Fig. 5E; Fig. S2A; Fig. S4B-D). 

We utilized genetic backgrounds in which Transgene E was the only source of Ss 

protein, so that any changes in Ss (Rh4) expression would indicate transvection 

effects on Transgene E. As a control, we examined Transgene E expression 

when the endogenous ss locus was hemizygous for a protein null allele (ssprotein 

null) that did not perform transvection (Fig. S15A-B). In this background, 

Transgene E expressed Ss in 52% of R7s (Fig. S15A-B). We next tested 

Transgene E for transvection with a high-frequency protein null allele (sshigh freq 

null), which can perform transvection to increase ss expression (97). When the 

endogenous ss locus was hemizygous for the sshigh freq null, we observed no 

increase in Transgene E expression, indicating that it did not perform 

transvection (51% Ss (Rh4); Fig. S15A, C). Moreover, Transgene E did not 

perform transvection in other genetic conditions (Fig. S15D-E). Thus, Transgene 

E paired with the endogenous ss locus but failed to perform transvection. These 

data show that an insulator is required for transvection but not for pairing, 

indicating that ss transvection and pairing are mechanistically separable. 
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ss pairing and transvection are cell-type-specific 

It is poorly understood how pairing impacts transvection in a cell-type-

specific manner. We propose two models: constitutive and cell-type-specific 

buttoning. In the constitutive model, all buttons drive pairing in all cell types, and 

differences in transvection would occur due to variation in transcription factor 

binding or chromatin state between cell types (Fig. 6A). In the cell-type-specific 

model, different buttons drive pairing in each cell type, bringing different regions 

into physical proximity to control transvection efficiency (Fig. 6A). 

 We tested these models by investigating pairing and transvection of ss in 

two different tissues. In addition to its role in R7 photoreceptors, ss is required for 

the development of the arista, a structure on the antenna (Fig. 6D-E) (99, 156). 

Transgene E, which contains the ss button, drove pairing in the eye but not the 

antenna from two different insertion sites (sites 1 and 3; Fig. 6B-C; Fig. S4A-D; 

Fig. S16A-F), suggesting that button pairing is cell-type-specific. 

As pairing is required for transvection and the ss button pairs in a cell-

type-specific manner, we hypothesized that transvection at the ss locus is cell-

type-specific. To test this hypothesis, we examined an allele of ss that specifically 

affects arista development (ssarista 1) (Fig. 6H; Fig. S17A-F). In flies 

transheterozygous for ssarista 1 and a ss deficiency (ssdef), aristae were 

transformed into legs (i.e. aristapedia) (Fig. 6H-I; Fig. S17A, C). Aristapedia was 

also observed for ssprotein null / ssdef flies (Fig. 6F-G). In the eye, ssprotein null 

performed transvection to rescue ss expression (Fig. S18A-D). However, the 

aristapedia mutant phenotype persisted in ssarista 1 / ssprotein null flies (Fig. 6J-K; 
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Fig. S17D, F), suggesting that, unlike in the eye, transvection does not rescue ss 

expression in the arista. Cell-type-specific transvection of the ss gene in the eye 

but not the arista was also observed in other genetic conditions (Fig. S17G-L; 

S19A-L). 

As ss button pairing and transvection are cell-type-specific and pairing is 

required for transvection, our data support the cell-type-specific model, in which 

local buttoning and unbuttoning occur in a cell-type-specific manner to determine 

transvection efficiency (Fig. 6A).  

 

3.4: Discussion 

Despite the discovery of homologous chromosome pairing in flies over 

100 years ago (54), the mechanisms that facilitate pairing have remained 

unclear. We identified multiple button loci interspersed across the genome that 

drive pairing with their homologous sequences. Specific TADs are responsible for 

button activity and can pair from multiple locations in the genome. Consistent 

with our findings, homologous TADs have been observed to interact between 

paired chromosomes using super resolution microscopy (73). Additionally, 

homologous chromosome pairing initiates at the same embryonic stage as TAD 

formation (57-59, 74, 157), consistent with a model in which TADs drive 

homologous chromosomes together.  

Our data suggest that complete TADs are sufficient to drive pairing, and 

that in general, smaller DNA elements such as single insulators do not have 

strong pairing activity. We propose a model in which complex networks of 
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insulator elements work within the context of a TAD, allowing the domain to take 

on unique chromatin conformations or bind specific combinations of insulator 

proteins to create nuclear microcompartments that enable homologous TAD 

association and pairing. 

While TADs are strongly associated with pairing (Fig. 3F), a small subset 

of pairers do not span a TAD (Transgenes A and O; Fig. 2F; Fig. S2A; Fig. 

S5A), raising the possibility that additional mechanisms work in tandem with 

TADs to drive homologous chromosomes together(62, 63). Additionally, certain 

transgenes that span TADs do not pair (Transgenes P and BB; Fig. 2F; Fig. 3E; 

Fig. S2B-C; Fig. S5A; Fig. S7C). These transgenes might span TADs that drive 

cell-type-specific pairing in non-retinal cell types, similar to Transgene E, which 

drives pairing in photoreceptors but not the antennal disc (Fig. 6B-C; Fig. S4A-

D; Fig. S16A-F). Alternatively, a subset of TADs may not drive pairing in any cell 

type. 

Our data indicate that pairing and transvection are mechanistically 

separable: TADs facilitate pairing, while an insulator element facilitates 

transvection to the endogenous spineless locus. Consistent with our findings 

using endogenous alleles, an insulator is required for transvection but not pairing 

between transgenes containing the snail enhancer and the eve promoter (104).  

 We find that the ss locus drives pairing and performs transvection in the 

eye but not in the antenna. Our results support a model in which different buttons 

drive pairing in different cell types. In this model, local buttoning or unbuttoning at 

a specific gene determines its transvection efficiency in a given cell type. 
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Variation in levels of pairing or transvection across cell types has been observed 

for a number of loci (58, 59, 141), suggesting that differences in pairing between 

cell types may be a general mechanism regulating gene expression. 

The mechanisms driving chromosome pairing and transvection have 

remained a mystery of fly genetics since their initial discoveries by Nettie Stevens 

and Ed Lewis (54, 55). Our results provide strong support for the button model of 

pairing initiation and offer the first evidence of a general feature, specialized 

TADs, that drives homologous chromosomes together. Furthermore, we find that 

pairing is necessary but not sufficient for transvection and that distinct elements 

are required for these processes. Both pairing and transvection are cell-type-

specific, suggesting that tighter pairing in a given cell type enables more efficient 

transvection in that cell type. Our findings suggest a general mechanism in which 

TADs drive homologous chromosome pairing and interchromosomal gene 

regulation across organisms to facilitate processes including X-inactivation and 

imprinting. 

 
3.5: Materials and Methods 
 
Drosophila lines 

Flies were raised on standard cornmeal-molasses-agar medium and grown at 

25° C.  
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Table 1: Genotypes of Drosophila lines 
 

Fly line Full genotype Source Figures 
wild type control yw; +; +  or 

yw; pm181>Gal4, 
UAS>mcd8GFP/CyO; + or yw; 
sp/CyO; + 

(158) 2B, F; 3B, E, I; 5G, J, O, R; 
6C-E; S1A-B; S2C-E; S4B-
D; S9C-E; S11D-H; S12B, 
F-G, J; S14B, H, N, Q; 
S16A-B, D, F 

Transgene B site 
1 

yw; pBac{CH321-
38G20}VK00037; + 

(159)* 2C, E-F; 3F, G; 4A-I; S5A; 
S8A; S10A-F; S11I-J 

Transgene D site 
1 

yw; pBac{CH321-
25M02}VK00037; + 

(159)* 2D-F; 3F-I; 4A-I; S1B; S5A; 
S8B; S10A-F; S11I-J 

Transgene A site 
1 

yw; pBac{CH321-
94A21}VK00037; + 

(159)* 2E-F, 3F-G; 4A-I; S2A; 
S5A; S8A; S10A-F; S11I-J 

Transgene C site 
1 

yw; pBac{CH321-86F17}VK00037; 
+ 

(159)* 2E-F; 3F-G; 4A-I; S2A; 
S5A; S8A; S10A-F; S11I-J 

Transgene E site 
1 

yw; pBac{CH321-28L15}VK00037; 
+ 

(97, 159) 2E-F; 3F-I; 4A-I; 5E; 6B-C; 
S1B; S2A; S5A; S8A; 
S10A-F; S11I-J 

Transgene F site 
1 

yw; pBac{CH321-
23C04}VK00037; + 

(159)* 2E-F; 3F-I; 4A-I; S1B; S2B; 
S5A; S8B; S10A-F; S11I-J 

Transgene G 
site 1 

yw; pBAC{CH321-
02A24}VK00037; +  

(159)* 2E-F; 3F-I; 4A-I; S1B; S2B; 
S5A; S8B; S10A-F; S11I-J 

Transgene H site 
1 

yw; pBAC{CH321-
92J22}VK00037; + 

(159)* 2E-F; 3F-G; 4A-I; S1B; 
S2B; S5A; S8B; S9A; 
S10A-F; S11I-J 

Transgene I site 
1 

yw; pBAC{CH321-
95F12}VK00037; + 

(159)* 2E-F; 3F-G; 4A-I; S1B; 
S2B; S5A; S8B; S9A; 
S10A-F; S11I-J 

Transgene J site 
1 

yw; pBAC{CH321-
71G17}VK00037; + 

(159)* 2E-F; 3F-G; 4A-I; S1B; 
S2B; S5A; S8B; S9A; 
S10A-F; S11I-J 

Transgene K site 
1 

yw; pBAC{CH321-
50E16}VK00037; + 

(159)* 2E-F; 3F-G; 4A-I; S1B; 
S2B; S5A; S8B; S9A; 
S10A-F; S11I-J 

Transgene L site 
1 

yw; pBAC{CH321-
60D22}VK00037; + 

(159)* 2E-F; 3F-G; 4A-I; S2B; 
S5A; S8B; S10A-F; S11I-J 

Transgene M 
site 1 

yw; pBAC{CH321-58G7}VK00037; 
+ 

(159)* 2E-F; 3F-G; 4A-I; S1B; 
S2B; S5A; S8B; S10A-F; 
S11I-J 

Transgene N site 
1 

yw; pBAC{CH321-
96A10}VK00037/+; + 

(159)* 2E-F; 3F-G; 4A-I; S2B; 
S5A; S8B; S10A-F; S11I-J 

Transgene O 
site 1 

yw; pBAC{CH321-
45F07}VK00037; + 

(159)* 2E-F; 3F-G; 4A-I; S2A; 
S5A; S8A; S10A-F; S11I-J 

Transgene P site 
1 

yw; pBAC{CH321-
58J11}VK00037; + 

(159)* 2E-F; 3F-G; 4A-I; S1B; 
S2B; S5A; S8B; S10A-F; 
S11I-J 

Transgene Q 
site 1 

yw; pBAC{CH321-
52D18}VK00037/+; + 

(159)* 2E-F; 3F-G; 4A-I; S1B; 
S2B; S5A; S8B; S10A-F; 
S11I-J 

Transgene Y site 
1 

yw; pBAC{CH321-
47D18}VK00037; + 

(159)* 3C, E-G; 4A-I; S6E; S8A; 
S10A-F; S11I-J 
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Transgene Z site 
1 

w118; 
PBac{y[+mDint2]w[+mc]=pros-
GFP.FPTB}VK00037; + 

Bloomington, 
(159) 

3D-G; 4A-I; S3B; S7A; 
S8B; S10A-F; S11I-J 

Transgene U site 
3 

w118; +; Dp(1;3)DC212, 
PBac{y[+mDint2]w[+mC]=DC212} 
VK00033 

Bloomington, 
(160) 

3E-G; 4A-I; S2C; S6A; 
S8A; S10A-F; S11I-J 

Transgene V site 
3 

w118; +; Dp(1;3)DC550, 
PBac{y[+mDint2]w[+mC]=DC550} 
VK00033 

Bloomington, 
(160) 

3E-G; 4A-I; S2C; S6B; 
S8A; S10A-F; S11I-J 

Transgene W 
site 3 

w118; +; Dp(1;3)DC305, 
PBac{y[+mDint2]w[+mC]=DC305} 
VK00033 

Bloomington, 
(160) 

3E-G; 4A-I; S2C; S6C; 
S8A; S10A-F; S11I-J 

Transgene X site 
3 

yw; +; pBAC{CH321-
43H12}VK00033 

(159)* 3E-G; 4A-I; S2C; S6D; 
S8A; S10A-F; S11I-J 

Transgene AA 
site 3 

yw; +; pBAC{CH321-
16A21}VK00033 

(159)* 3E-G; 4A-I; S2C; S7B; 
S8B; S10A-F; S11I-J 

Transgene BB 
site 3 

yw; +; pBAC{CH321-
68L02}VK00033 

(159)* 3E-G; 4A-I; S2C; S7C; 
S8B; S10A-F; S11I-J 

Transgene CC 
site 3 

w118; +; Dp(1;3)DC129, 
PBac{y[+mDint2]w[+mC]=DC129} 
VK00033 

Bloomington, 
(160) 

3F-G; 4A-I; S2D-E; S7D; 
S8B; S10A-F; S11I-J 

Transgene DD 
site 3 

w118; +; Dp(1;3)DC372, 
PBac{y[+mDint2]w[+mC]=DC372} 
VK00033 

Bloomington, 
(160) 

3F-G; 4A-I; S2D-E; S7E; 
S8B; S10A-F; S11I-J 

Transgene R site 
1 

yw; pBAC{CH321-
48C04}VK00037; + 

(159)* 3H-I; S2B 

Transgene S site 
1 

yw; pBAC{pBJ250}VK00037; + (97)+ 3H-I; 5E, H, K; S13B; 
S14Q 

Transgene T site 
1 

yw; pBAC{pBJ205}VK00037; + (97)+ 5E, I, L; S13G; S14Q 

duplication yw; Dp(3;2)P10/CyO; + Bloomington, 
(161) 

5E; S5A; S9A-B, D-E 

ssinversion/ +  yw; +/CyO; In(3R)P/+ Bloomington, 
(162) 

5E; S12A-C 

sshigh freq null/ 
ssinversion 

yw; +; ss52/In(3R)P Bloomington, 
(97, 162) 

5E; S12D 

Transgene S-
ssdef/ 
ssinversion 

yw; +; pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330/In(3R)P 

Bloomington,  
(97, 162, 163) 

5E; S12E 

Transgene S site 
2 

yw; +; pBAC{pBJ250}VK00027 (97)+ 5E, P-S; S13C; S14Q 

Transgene T site 
2 for third instar 
larvae 

yw; pm181>Gal4, 
UAS>mcd8GFP/CyO; 
pBAC{pBJ205}VK00027/TM6B 

(97, 158)+ 5E, Q; S14Q 

Transgene T site 
2 for pupae and 
adults 

yw; +; pBAC{pBJ205}VK00027 (97)+ 5E, T; S13H 

Transgene E site 
3 

yw; +; pBac{CH321-
28L15}VK00033 

(159)* 5E; S4A, C-D; S16C, E-G 

Transgene S site 
3 

yw; +; pBac{pBJ250}VK00033 (97)+ 5E; S13D; S14C-D, Q 

Transgene S site 
4 for pupae and 
adults 

yw; +; pBAC{pBJ250}ZH-86Fb (97)+ 5E; S13E; S14J 
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Transgene S site 
5 

yw; +; pBAC{pBJ250}VK00028 (97)+ 5E; S13F; S14O-Q 

Transgene T site 
3 

yw; +; pBAC{pBJ205}VK00033 (97)+ 5E; S13I; S14E-F, Q 

Transgene T site 
4 

yw; +; pBAC{pBJ205}ZH-86Fb (97) 5E; S13J; S14K-L, Q 

Transgene S site 
4 for third instar 
larvae 

yw; pm181>Gal4, 
UAS>mcd8GFP/CyO; 
pBAC{pBJ250}ZH-86Fb/TM6B 

(97, 158) 5E; S14I, Q 

Transgene E+ 
ssprotein null 

yw; pBAC{CH321-
28L15}VK0037/+; 
ssd115.7/Df(3R)Exel7330 

Bloomington,  
(159, 163-165) 

5E; S15A-B 

Transgene E+ 
sshigh freq null 

yw; pBAC{CH321-
28L15}VK0037/+; 
ss52/Df(3R)Exel7330 

Bloomington, 
(97, 159, 163, 

164) 

5E; S15A, C 

Transgene E+ 
Transgene S-
ssdef/ 
ssprotein null 

yw; pBAC{CH321-
28L15}VK00037/CyO; 
pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330/ 
ssd115.7 

Bloomington,  
(97, 159, 163, 

164) 

5E; S15D-E 

Transgene S-
ssdef/ssupstream del 

yw; +; pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330/ssupstream deletion 

Bloomington, 
(97, 163) 

5E; S19D-F 

Transgene S-
ssdef/ssarista 1 

yw; +; pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330/ssa 

Bloomington,  
(97, 156, 163, 

166) 

5E; S19G-I 

Transgene S-
ssdef/ssarista 2 

yw; +; pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330/ssa40a 

Bloomington, 
(97, 163, 166) 

5E; S19J-L 

ssprotein null/ssdef yw; +; ssd115.7/Df(3R)Exel6269 Bloomington, 
(163, 164) 

6F-G 

ssarista 1/ssdef yw; +; ssa/Df(3R)Exel6269 Bloomington, 
(156, 163, 166) 

6H-I; S17A-C 

ssarista 1/ssprotein null yw; +; ssa/ssd115.7 Bloomington, 
(156, 164, 166) 

6J-K; S17D-F 

rearrangements yw; +; TM2/TM6B N/A S12H-J 
ssarista 2/ssdef yw; +; ssa40a/Df(3R)Exel6269 Bloomington, 

(163, 166) 
S17G-I 

ssarista 2/ssprotein null yw; +; ssa40a/ssd115.7 Bloomington, 
(164, 166) 

S17J-L 

ssenh del/ssdef yw; +; ssenhancer 

deletion/Df(3R)Exel6269 
Bloomington, 

(163) 
S18A-B 

ssenh del /ssprotein 

null 
yw; +; ssenhancer deletion/ssd115.7 (164) S18C-D 

ssupstream del / ssdef yw; +; ssupstream deletion/ 
Df(3R)Exel6269 

Bloomington, 
(163) 

S19A-C 

 
*Constructs were purchased from the CHORI Drosophila melanogaster BAC 

library collection (159) and sent to BestGene Inc. (Chino Hills, CA) or Rainbow 

Transgenic Flies, Inc. (Camarillo, CA) for injection.  
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+Constructs were generated in (97) and sent to BestGene Inc. (Chino Hills, CA) 

or Rainbow Transgenic Flies, Inc. (Camarillo, CA) for injection.  

 

Constructs were inserted via PhiC31 integration at the following landing sites:  

 

Table 2: Transgene landing site coordinates 
Landing site Cytological coordinates Genome coordinates 

site 1 (VK00037) 22A3 2L: 1,582,820 
site 2 (VK00027) 89E11 3R: 17,052,863 
site 3 (VK00033) 65B2 3L: 6,442,676 
site 4 (ZH-86Fb) 86F8 3R: 11,808,607 
site 5 (VK00028) 92F1 3R: 20,549,650 

  
Oligopaints probe libraries  

Table 3: Genome coordinates targeted by Oligopaints probe libraries 

Probe set Oligopaints library 
name 

Genome 
coordinates 

targeted 

Conjugated 
fluorophore 

Figures 

site 1 neighboring 
sequence 

right of 2L>22A3 
transgene insertion 
site 

2L: 1,582,821-
1,642,821 
 

Cy5 2B-D; 3B; 
5G-I; S2A-B; 
S3B; S16A-B 

ss old ss 90K library  3R: 16,374,660-
16,430,430 

Cy3 2B; 3B; 5G; 
6B; S12A, G, 
I; S16A-B 

Transgene B 
neighboring 
endogenous 
sequence 

downstream of 38G20 3R: 16,263,284-
16,313,284 

Cy3 
 

2C 

Transgene D 
neighboring 
endogenous 
sequence 

downstream of 25M02 3R: 16,381,436-
16,431,436 
 

Cy3 2D 

Transgene Y bicoid 25-kb left 
extension+bicoid 
DNA+bicoid 25-kb 
right extension 

3R: 6,729,194-
6,787,593 

Cy3 3C 

Transgene Z prospero DNA 3R: 11,246,862-
11,407,918 

Cy3 3D; S3B 

upstream of 
Transgenes S and T 

upstream of pBJ250 
and pBJ205 

3R: 16,340,760-
16,390,760 
 

Cy3 5H-I, O-P 

site 2 neighboring 
sequence 

pBJ250>3R(89E11) 
insertion site 

3R: 16,992,863-
17,052,863 

Cy5 5O, P, Q 
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upstream of ss  spineless 50-kb 
extension (left) 

3R: 16,320,533-
16,370,533 

Cy3 5Q; S9C-D; 
S14H-I, K, N-
O 

downstream of ss spineless 50-kb 
extension (right) 

3R: 16,435,681-
16,485,681 

Cy3 S2A; S4B-C; 
S11D; S14B-
C, E; S16D-E 

Transgene A 
neighboring 
endogenous 
sequence 

downstream of 94A21 3R: 16,240,324-
16,290,324 

Cy3 
 

S2A 

Transgene C 
neighboring 
endogenous 
sequence 

downstream of 86F17 3R: 16,324,960-
16,374,960 
 

Cy3 S2A 

Transgene O 
neighboring 
endogenous 
sequence 

downstream of 45F07 3R: 17,026,709-
17,076,709 
 

Cy3 S2A 

Transgene F 
neighboring 
endogenous 
sequence 

downstream of 23C04 3R: 16,455,152-
16,505,152 
 

Cy3 S2B 

Transgene G 
neighboring 
endogenous 
sequence 

upstream of 02A24 3R: 16,350,218-
16,400,218 
 

Cy3 S2B 

Transgene H 
neighboring 
endogenous 
sequence 

upstream of 92J22 3R: 16,390,309-
16,440,309	
 

Cy3 S2B 

Transgene I 
neighboring 
endogenous 
sequence 

upstream of 95F12 3R: 16,459,720-
16,509,720 
 

Cy3 S2B 

Transgene J 
neighboring 
endogenous 
sequence 

upstream of 71G17 3R: 16,511,320-
16,561,320 
 

Cy3 S2B 

Transgene K 
neighboring 
endogenous 
sequence 

downstream of 50E16 3R:16,691,689-
16,741,689 

Cy3 S2B 

Transgene L 
neighboring 
endogenous 
sequence 

downstream of 60D22 3R: 16,844,756-
16,894,756 
 

Cy3 S2B 

Transgene M 
neighboring 
endogenous 
sequence 

upstream of 58G07 3R: 16,739,235-
16,789,235 
 

Cy3 S2B; S11F-G 

Transgene N 
neighboring 
endogenous 
sequence 

upstream of 96A10 3R: 16,844,621-
16,894,621 
 

Cy3 S2B 
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Transgene P 
neighboring 
endogenous 
sequence 

upstream of 58J11 3R: 16,967,427-
17,017,427 
 

Cy3 S2B 

Transgene Q 
neighboring 
endogenous 
sequence 

upstream of 52D18 3R: 17,043,366-
17,093,366 
 

Cy3 S2B 

Transgene R 
neighboring 
endogenous 
sequence 

downstream of 48C04 3R: 16,424,440-
16,474,440	
 

Cy3 S2B 

site 3 neighboring 
sequence 

pBJ250>3L(65B2) 
insertion site 
 

3L: 6,442,676-
6,502,676 

Cy5 S2C-D; S4B-
C; S11D; 
S14B-C, E; 
S16D-E 

3L-2R control probe egfr DNA 2R: 21,520,393-
21,560,246	

Cy3 S2C 

Transgene U sp1 DNA X: 9,697,559-
9,778,741 

Cy3 S2C-D 

Transgene V merlin 25-kb left 
extension+merlin 
DNA+merlin 25-kb 
right extension 

X: 19,663,948-
19,718,977 

Cy3 S2C 

Transgene W scalloped 25-kb left 
extension+scalloped 
DNA 

X: 15,778,880-
15,827,986 

Cy3 S2C; S11E, 
G 

Transgene X yki 25-kb left 
extension+yki 
DNA+yki 25-kb right 
extension 

2R: 24,040,405-
24,093,757 

Cy3 S2C; S11E 

Transgene AA upstream of clamp 
DNA 

2L: 22,115,720-
22,165,720 

Cy3 S2C 

Transgene BB downstream of smo 
DNA 

2L: 282,167-332,167	
 

Cy3 S2C 

Transgene CC CG15930 25-kb left 
extension+CG15930 
DNA+CG15930 25-kb 
right extension 

X: 5,288,125-
5,342,409 

Cy3 S2D; S11F 

Transgene DD phf7 25-kb left 
extension+phf7 
DNA+phf7 25-kb right 
extension 

X: 20,134,872-
20,191,696 

Cy3 S2D 

neighboring 
duplication 
breakpoint 

spineless duplication 
onto chromosome 2 

2R: 14,522,912-
14,582,912 

Cy5 S9C-D 

site 4 neighboring 
sequence 

pBJ250>J36 insertion 
site 

3R: 11,748,607-
11,808,607	

Cy5 S14H-I, K 

site 5 neighboring 
sequence 

downstream of 92F1 
insertion site 

3R: 20,549,650-
20,599,650 

Cy5 S14N-O 

secondary sequence 
1 

sec 1 N/A Cy3 Targets all 
Cy3-
conjugated 
probes 
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secondary sequence 
2 

sec 2 N/A Cy5 Targets all 
Cy5-
conjugated 
probes 

 

Pairing controls 

Table 4: Controls used for FISH experiments. PRs: photoreceptors. 

Control Transgene 
insertion site 
chromosome 

Endogenous 
site 

chromosome 

Cell 
type 

FISH 
assay 

Probe sets used Figures 

2L-3R (2-
color) 

2L 3R PRs 2-color site 1 neighboring 
sequence and ss 

2B, F; 3I; 
5G; S1A-B; 
S14Q 

3L-X (1-
color) 

3L X PRs 1-color site 3 neighboring 
sequence and 
Transgene U  

3E; S1A; 
S2C 

3L-2R 3L 2R PRs 1-color and site 3 
neighboring 
sequence and 3L-
2R control probe 

3E; S1A; 
S2C 

2L-3R (1-
color) 

2L 3R PRs 1-color site 1 neighboring 
sequence and ss 

3B, E; 6C; 
S1A; S12J; 
S16A 

3L-2L 3L 2L PRs 1-color site 3 neighboring 
sequence and 
Transgene AA 

3E; S1A; 
S2C 

site 2 3R  3R PRs 2-color site 2 neighboring 
sequence and 
upstream of 
Transgenes S and 
T 

5O; S14Q 

3L-3R 3L 3R PRs 2-color site 3 neighboring 
sequence and 
downstream of ss 

S1A; S4B-
D; S11D, H 

site 4  3R 3R PRs 2-color site 4 neighboring 
sequence and 
upstream of ss 

S14H, Q 

site 5  3R 3R PRs 2-color site 5 neighboring 
sequence and 
upstream of ss 

S14N, Q 

2L-3R 
(antenna) 

2L 3R antenna 1-color site 1 neighboring 
sequence and ss 

6C; S1A; 
S16B 

3L-X (2-
color) 

3L X PRs 2-color site 3 neighboring 
sequence and 
Transgene U 

S1A; S2D-
E 

duplication 2R 3R PRs 2-color neighboring 
duplication 
breakpoint and 
upstream of ss 

S9C, E 
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3L-3R 
(antenna) 

3L 3R antenna 2-color site 3 neighboring 
sequence and 
downstream of ss 

S1A; 
S16D, F 

 
Compartments 

Table 5: Loci examined in compartmentalization experiments 

Compartment Chromosome Genes in locus Probe set used 
A1 X CG8191, CG12379, MagR, Arp6, CG11679, 

CG8206, CCT6, CG8239, Graf, CG8260, 
CG17209, CG8952, CG33172, CG43673, 
Efhc1.1, Paf-AHalpha, mRpS30, Rhp, 
CR44383, CG32581, CG15602, PGRP-LE, 
CR44384, CG8944, mRpL3, CG43672, 
CG8974, sd, CG8509 

Transgene W 

A2 2R IntS1, tsr, gammaSnap1, ppk29, CG13563, 
eEF5, CR44814, RpL12, RpL39, Rap2l, 
CG3209, Mlp60A, CG10339, CG13564, 
snama, gek, CG4049, CG3253, CG43775, 
CG43776, CG43777, tamo, Zfrp8, CG4065, 
CR44826, sei, yki, CG16786, enok, Dat, 
CG3257 

Transgene X 

B1 X CG42749, CG3323, CG15465, rg 
 

Transgene CC 

B2 3R CG31275, CR44945, Glut3, CR45750, 
lncRNA:TS16, bxd, abd-A, iab-8 

Transgene M 
neighboring 
endogenous 
sequence 

 
Antibodies 

Antibodies and dilutions were as follows: mouse anti-Lamin B (DSHB 

ADL67.10 and ADL84.12), 1:100; rabbit anti-GFP (Invitrogen), 1:500; rabbit anti-

Rh4 (gift from C. Zuker, Columbia University), 1:50; mouse anti-Rh3 (gift from S. 

Britt, University of Texas at Austin), 1:50; mouse anti-Prospero (DSHB MR1A), 

1:10; rat anti-Elav (DSHB 7E8A10), 1:50; guinea pig anti-Ss (gift from Y.N. Jan, 

University of California, San Francisco), 1:500. All secondary antibodies 

(Molecular Probes) were Alexa Fluor-conjugated and used at a dilution of 1:400.  
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Antibody staining (pupal and adult eyes) 

Dissections were performed as described in references (165, 167-169). 

Eyes were dissected and fixed at room temperature for 15 minutes in 4% 

formaldehyde diluted in 1X PBX (PBS+0.3% Triton-X), then washed three times 

in 1X PBX. Eyes were incubated overnight at room temperature in primary 

antibody diluted in 1X PBX, then washed three times in 1X PBX and incubated in 

PBX at room temperature for ³3 hours. Secondary antibody diluted in 1X PBX 

was added and incubated overnight at room temperature. Eyes were then 

washed three times in 1X PBX and incubated in PBX at room temperature for ³2 

hours. Adult eyes were mounted in SlowFade Gold (Invitrogen), and pupal eyes 

were mounted in Vectashield (Vector Laboratories, Inc.). Images were acquired 

on a Zeiss LSM700 confocal microscope.  

 The adult eye dissection protocol was used for Fig. 5D, J-L, R-T; Fig. 

S12C-E; Fig. S14D, F, J, L, P; Fig. S15B-C, E; Fig. S17B, E, H, K; Fig. S18B, 

D; and Fig. S19B, E, H, K. The pupal dissection protocol was used for Fig. 5C 

and Fig. S13B-J. 

 

Oligopaints probe design 

Probes for DNA FISH were designed using the Oligopaints technique 

(149, 170). Target sequences were run through the bioinformatics pipeline 

available at http://genetics.med.harvard.edu/oligopaints/ to identify sets of 42-bp 

(for old ss 90K probes) or 50-bp (for all other probes) optimized probe sequences 

(i.e. “libraries”) tiled across the DNA sequence of interest. Five 19-bp barcoding 
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primers, gene F and R; universal (univ) F and R, and either sublibrary (sub) F or 

random (rando) R, were appended to the 5’ and 3’ ends of each probe sequence 

(Fig. S20A-B). To ensure that all probes were the same length, an additional 8-

bp random sequence was added to the 3’ end of the old ss 90K probes. The 

gene F and R primers allowed PCR amplification of a probe library of interest out 

of the total oligo pool, and the univ F and R primers allowed conjugation of 

fluorophores, generation of single-stranded DNA probes, and PCR addition of 

secondary sequences to amplify probe signal. The ss 50-kb left and right 

extension libraries had a sub F primer between the gene and universal forward 

primers to allow PCR amplification of probes targeting a specific sub-region of 

the locus of interest (Fig. S20A). All other probe libraries had a rando R primer 

appended at the 3’ end to maintain a constant sequence length between all 

probes (Fig. S20B).  

Barcoding primer sequences were taken from a set of 240,000 randomly 

generated, orthogonal 25-bp sequences (171) and run through a custom script to 

select 19-bp sequences with £15-bp homology to the Drosophila genome. 

Primers were appended to probe sequences using the orderFile.py script 

available at http://genetics.med.harvard.edu/oligopaints/. Completed probe 

libraries were synthesized as custom oligo pools by Custom Array, Inc. (Bothell, 

WA), and fluorescent FISH probes were generated as described in references 

(149, 170). 
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DNA FISH 

DNA FISH was performed using modified versions of the protocols 

described in references (149, 170). 20-50 eye-antennal discs attached to mouth 

hooks from third instar larvae were collected on ice and fixed in 129 µL ultrapure 

water, 20 µL 10X PBS, 1 µL Tergitol NP-40, 600 µL heptane, and 50 µL fresh 

16% formaldehyde. Tubes containing the fixative and eye discs were shaken 

vigorously by hand, then fixed for 10 minutes at room temperature with nutation. 

Eye discs were then given three quick washes in 1X PBX, followed by three five-

minute washes in PBX at room temperature with nutation. Eye discs were then 

removed from the mouth hooks and blocked for 1 hour in 1X PBX+1% BSA at 

room temperature with nutation. They were then incubated in primary antibody 

diluted in 1X PBX overnight at 4°C with nutation. Next, eye discs were washed 

three times in 1X PBX for 20 minutes and incubated in secondary antibody 

diluted in 1X PBX for two hours at room temperature with nutation. Eye discs 

were then washed two times for 20 minutes in 1X PBX, followed by a 20-minute 

wash in 1X PBS. Next, discs were given one 10-minute wash in 20% 

formamide+2X SSCT (2X SSC+.001% Tween-20), one 10-minute wash in 40% 

formamide+2X SSCT, and two 10-minute washes in 50% formamide+2X SSCT. 

Discs were then predenatured by incubating for four hours at 37°C, three minutes 

at 92°C, and 20 minutes at 60°C. Primary probes were added in 45 µL 

hybridization buffer consisting of 50% formamide+2X SSCT+2% dextran sulfate 

(w/v), + 1 µL RNAse A. All probes were added at a concentration of ³5 pmol 

fluorophore/µL. For FISH experiments in which a single probe was used, 4 µL of 
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probe was added. For FISH experiments in which two probes were used, 2 µL of 

each probe was added. After addition of probes, eye discs were incubated at 

91°C for three minutes and at 37°C for 16-20 hours with shaking. Eye discs were 

then washed for 1 hour at 37°C with shaking in 50% formamide+2X SSCT. 1 µL 

of each secondary probe was added at a concentration of 100 pmol/µL in 50 µL 

of 50% formamide+2X SSCT. Secondary probes were hybridized for 1 hour at 

37°C with shaking. Eye discs were then washed twice for 30 minutes in 50% 

formamide+2X SSCT at 37°C with shaking, followed by three 10-minute washes 

at room temperature in 20% formamide+2X SSCT, 2X SSCT, and 2X SSC with 

nutation. Discs were mounted in SlowFade Gold immediately after the final 2X 

SSC wash, and imaged using a Zeiss LSM700 confocal microscope. 

 

Generation of CRISPR lines  

CRISPR lines were generated as described in references (101, 172-174). 

For both ssenh del and ssupstream del, sense and antisense DNA oligos for the 

forward and reverse strands of four gRNAs were designed to generate BbsI 

restriction site overhangs. The oligos were annealed and cloned into the pCFD3 

cloning vector (Addgene, Cambridge, MA). A single-stranded DNA homology 

bridge was generated with 60-bp homologous regions flanking each side of the 

predicted cleavage site and an EcoRI (for ssenh del) or NaeI (for ssupstream del) 

restriction site to aid in genotyping. The gRNA constructs (125 ng/µl) and 

homologous bridge oligo (100 ng/µl) were injected into Drosophila embryos 

(BestGene, Inc., Chino Hills, CA). Single males were crossed with a balancer 

100



stock (yw; +; TM2/TM6B), and F1 female progeny were screened for the insertion 

via PCR, restriction digest, and sequencing. Single F1 males whose siblings 

were positive for the deletion were crossed to the balancer stock (yw; +; 

TM2/TM6B), and the F2 progeny were screened for the deletion via PCR, 

restriction digest, and sequencing. Deletion-positive flies from multiple founders 

were used to establish independent stable stocks.  

 

The following oligos were used for the ssenh del CRISPR:  

Table 6: Oligos used for ssenh del CRISPR 

Oligo 
name 

Sequence 

Homolog
ous 
bridge 

CAATTTAATTGAGCTCCCAAGTGCTGGGAAGCAGCTGCCCTTTGAATTGGGC
TTCTCACCGAATTC 
TGGCCTGGCTTTGGAGCTCCTTTTGGTGAGAGACCAAAAGAGATTCCGCTGC
GCGAATCG 

gRNA 1F GTCGTAATATTCGCTAGGACCTA 
gRNA 1R AAACTAGGTCCTAGCGAATATTAC 
gRNA 2F GTCGAATTGGGCTTCTCACCCCT 
gRNA 2R AAACAGGGGTGAGAAGCCCAATTC 
gRNA 3F GTCGCCAGGCCATGTGGGCATTT 
gRNA 3R AAACAAATGCCCACATGGCCTGGC 
gRNA 4F GTCGCTCCAAAGCCAGGCCATGT 
gRNA 4R AAACACATGGCCTGGCTTTGGAGC 
genotype 
F 

CTTAGCTTCAAGCGGCTCCG 

genotype 
R 

GAATAACGTCAACTGTGCCA 

 
The following oligos were used for the ssupstream del CRISPR: 

Table 7: Oligos used for ssupstream del CRISPR 

Oligo 
name 

Sequence 

Homolog
ous 
bridge 

TGAGTTGATTGAAGGCTGTAAGAGCAGATTACAGTGGGGCGGAGGCCCAAG
TCTGGATCT 
GCCGGCCTCTGGGTATTCATTTTTTTCGACTTGGCAATTGCAAATGCAAAACC
ATTTCATTTGCCG 

gRNA 1F GTCGTCGTCTAGCCTAGAAGCGTT 
gRNA 1R AAACAACGCTTCTAGGCTAGACGA 
gRNA 2F GTCGGGCCCAAGTCTGGATCTCCC 
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gRNA 2R AAACGGGAGATCCAGACTTGGGCC 
gRNA 3F GTCGCAAAACAATATGAGGTCTAA 
gRNA 3R AAACTTAGACCTCATATTGTTTTGC 
gRNA 4F GTCGAAGTGGCCTGGGCTTATCTC 
gRNA 4R AAACGAGATAAGCCCAGGCCACTT 
genotype 
F 

GACCATTTAAGCGGCTACAAA 

genotype 
R 

GGTGGTCAGTCGGCAAATGAA 

 
Scanning electron microscopy 

Adult Drosophila heads were removed and immediately mounted on a pin 

stub without fixation or sputtering. Heads were imaged at high vacuum at a 

voltage of 1.5 kV. All SEM was performed on a FEI Quanta ESEM 200 scanning 

electron microscope. SEM was used for Fig. 6E, G, I, K; Fig. S17C, F, I, L; and 

Fig. S19C, F, I, L. 

 

Pairing quantifications 

All quantifications were performed in 3D on z-stacks with a slice thickness 

of 0.2 µm. Quantifications were performed manually using Fiji (175, 176). To 

chart the z position of each FISH dot, a line was drawn through the dot and the 

Plot Profile tool was used to assess the stack in which the dot was brightest. To 

determine the x-y distance between the two FISH dots, a line was drawn from the 

center of one dot to the center of the other dot and the length of the line was 

measured with the Plot Profile tool. The distance between the FISH dots was 

then calculated in 3D. A total of 50 nuclei from three eye discs were quantified for 

each genotype (i.e. N=3, n=50).  

For experiments in which the transgene and endogenous site were both 

labeled with red fluorescent probes, FISH punctae £0.4 µm apart could not be 
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distinguished as separate and were assigned a distance of 0.4 µm apart. For all 

controls in Fig. 3E, 6C, and S12J, green probes labeling the transgene insertion 

site were pseudocolored red and data were quantified in the same way as 

experiments in which the transgene and endogenous site were both labeled with 

red probes. 3L-X control data in Fig. 3E are taken from the same experiment as 

in Fig. S2E, but the data were re-quantified with the green probes pseudocolored 

red. Similarly, 2L-3R eye control data in Fig. 3E, 6C, and S12J are taken from 

the same experiment as in Fig. 2F, 3I, S1A-B, and S14Q, but the data were re-

quantified with the green probes pseudocolored red. 

  

Adult eye quantifications 

The frequencies of Rh4- and Rh3-expressing R7s were scored manually 

for at least eight eyes per genotype. R7s co-expressing Rh3 and Rh4 were 

scored as Rh4-positive. 100 or more R7s were scored for each eye. For Fig. 

S19E, H, and K, only the ventral half of each eye was scored. 

 

Hi-C mapping and TAD calling 

Directionality index scores were calculated across 15-kb windows, 

stepping every 5 kb, by finding the log2 transform of the difference in the ratios of 

downstream versus upstream summed observed over expected interactions 

ranging from 15 kb to 100 kb in size. The expected value of a bin was defined as 

the sum of the product of fragment corrections for each valid fragment pair with 

both interaction fragments falling within the bin. 
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 Directionality indices were generated using 14 published Hi-C datasets 

(177-180):  

 

Table 8: NCBI accession numbers for analyzed HiC datasets 
Dataset NCBI Accession Number 

1 GSE38468 
2 GSE38468 
3 GSE61471 
4 GSE61471 
5 GSE61471 
6 GSE63515 
7 GSE63515 
8 GSM2679637 
9 GSM2679640 

10 GSM2679641 
11 GSM2679642 
12 GSM2679643 
13 GSM2679644 
14 GSM2679645 

 

TADs were read from the beginning of a positive directionality index peak to the 

end of a negative directionality index peak. Parameters for calling a TAD were as 

follows: 1) The positive peak must have a signal of ³0.8; 2) The negative peak 

must have a signal of £-0.8; and 3) The TAD must be present in at least two 

datasets. Any transgene covering ³95% of a TAD was considered to span a 

TAD. 

 

mRNA sequencing and analysis 

RNA-seq was performed on three biological replicates, each consisting of 

30 third instar larval eye discs. Eye discs were dissected in 1X PBS, separated 

from the mouth hooks and antennal discs, and placed directly into 300 µL of 

Trizol. RNA was purified using a Zymo Direct-zol RNA MicroPrep kit (catalog 
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number R2062). mRNA libraries were prepared using an Illumina TruSeq 

Stranded mRNA LT Sample Prep Kit (catalog number RS-122-2101). 

Sequencing was performed using an Illumina NextSeq 500 (75 bp, paired end). 

Sequencing returned an average of 23,048,349 reads per replicate. 	

 The following pipeline was used for mRNA-sequencing analysis: 1) 

FASTQ sequencing datasets were assessed for quality using FastQC; 2) 

Pseudoalignment with the Drosophila dm6 transcriptome and read quantifications 

were performed using kallisto (181); 3) Transcript abundance files generated by 

kallisto were joined to a file containing the genomic coordinates of all Drosophila 

mRNA transcripts (dmel-all-r6.20.gtf, available from Flybase); 4) The joined 

transcript coordinate file was compared to a file containing the coordinates of all 

tested transgenes using the bedtools intersect tool 

(http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html)(182). The 

output file contained a list of all TPMs for each gene contained in each 

transgene. 

 

Assessment of chromatin marks and ncRNA, Polycomb Group Complex, and 

insulator density 

ncRNA content of transgenes was assessed manually using the GBrowse 

tool on FlyBase. tRNAs, miRNAs, snoRNAs, and lncRNAs were included in the 

analysis of ncRNA content. 

Transgenes were evaluated for insulator binding sites, Polycomb Group 

Complex binding sites, and the presence of chromatin marks using publicly 
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available ChIP-chip and ChIP-seq datasets(151-155). The following datasets 

were used for this analysis: 

 

Table 9: modENCODE and NCBI accession number information for analyzed 

ChIP data 

Protein/chromatin mark modENCODE dataset ID(s) NCBI Accession 
Number(s) 

BEAF-32 21 GSM762845 
Su(Hw) 27, 901, 4104, 4105 GSM762839, 

GSM1015406 
 

CTCF 769, 770, 908, 2638, 2639 GSM762842, 
GSM1015410 

Cp190 22 GSM762836, 
GSM1015404, 
GSM1261702 

Mod(Mdg4) 24, 4094 GSM892322, 
GSM1015408 

GAF 23, 2568, 3238, 3245, 3397, 3814, 
3830, 5028 

N/A 

Pcl 3237, 3813, 3816, 3960 N/A 
Pc 325, 326, 816, 948, 3791, 3957, 

5064 
N/A 

dRING 927, 928, 3750, 5071, 5255 N/A 
Pho 3894 N/A 
H3K27me3 346, 767, 869, 919 N/A 

 
To ensure a higher likelihood of selecting true ChIP peaks rather than 

false positives, only those insulators present in data from multiple cell types were 

considered when assessing the number of insulator sites per transgene. .bed 

files containing the genomic coordinates of all ChIP peaks in each dataset were 

downloaded and classified by cell type. All datasets from the same cell type were 

merged into one file using the bedtools merge tool 

(http://bedtools.readthedocs.io/en/latest/content/tools/merge.html)(182). Insulator 

ChIP peaks present in more than one cell type were identified using the bedtools 

multiIntersectBed tool(182). The coordinates of insulator ChIP peaks present in 
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multiple cell types were compared to a .bed file containing the genomic 

coordinates of all transgenes using the bedtools intersect tool 

(http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html)(182). This 

pipeline output the number of insulator ChIP peaks contained in each transgene.   

To identify clusters of insulators, files containing the ChIP peak 

coordinates for each insulator were compared using the the bedtools 

multiIntersectBed tool(182), which output a .bed file listing all of the locations of 

overlap between insulator binding sites. Insulators were considered to cluster if 

their binding site coordinates overlapped or were directly adjacent to each other. 

The coordinates of clusters containing specific numbers or combinations of 

insulators were selected from the intersected .bed file and compared to a .bed 

file containing the genomic coordinates of all transgenes using the bedtools 

intersect tool 

(http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html)(182). This 

pipeline output the number of insulator clusters contained in each transgene.  

For Polycomb Group Complex proteins and chromatin marks, .bed files 

containing the genomic coordinates of all ChIP peaks in each dataset were 

downloaded and merged into one file using the bedtools merge tool 

(http://bedtools.readthedocs.io/en/latest/content/tools/merge.html)(182). The 

merged file was compared to a .bed file containing the genomic coordinates of all 

transgenes using the bedtools intersect tool 

(http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html)(182). This 
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pipeline output the number of protein or chromatin mark ChIP peaks contained in 

each transgene.   

 

Statistical analysis  

All datasets were tested for a Gaussian distribution using a D’Agostino 

and Pearson omnibus normality test and a Shapiro-Wilk normality test. If either 

test indicated a non-Gaussian distribution for any of the datasets in an 

experiment, datasets were tested for statistical significance using a Wilcoxon 

rank-sum test (for single comparisons) or a one-way ANOVA on ranks with 

Dunn’s multiple comparisons test (for multiple comparisons). If both the 

D’Agostino and Pearson and the Shapiro-Wilk tests indicated a Gaussian 

distribution for all datasets in an experiment, datasets were tested for statistical 

significance using an unpaired t-test with Welch’s correction (for single 

comparisons) or an ordinary one-way ANOVA with Dunnett’s multiple 

comparisons test (for multiple comparisons).  

Maximum likelihood calculations: Parameters for either a single or double 

Gaussian distribution were estimated using maximum likelihood, and model 

selection was subsequently performed using the Bayesian Information Criterion 

(BIC). For the double Gaussian, parameters were estimated using a nonlinear 

recursion (Levenberg-Marquardt) algorithm to maximize the log likelihood of the 

distribution. 

Maximum likelihood calculations were performed for all transgenes tested 

in Fig. 2F. Maximum likelihood estimation was not possible for transgenes in Fig. 
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3E, as the 0.4 µm distance cutoff for 1-color FISH was too high to allow 

separation of paired and unpaired distributions into two Gaussian distributions. 
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Figure 1: Homologous chromosomes “button” together to facilitate 

transvection.  

A. Button model of chromosome pairing. Yellow squares: button loci (high pairing 

affinity). 

B. During transvection, two different mutant alleles interact between 

chromosomes to rescue gene expression. Green box: functional enhancer. Gray 

box with red X: mutated enhancer. Green arrow: functional promoter. Gray arrow 

with red X: mutated promoter. 
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Figure 2
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Figure 2: A screen for pairing elements identifies buttons interspersed 

along chromosome 3R.   

A. Two-color DNA FISH strategy. In controls, red and green FISH punctae on 

heterologous chromosomes are far apart in the nucleus. If a transgene drives 

pairing, red and green FISH punctae are close together in the nucleus. If a 

transgene does not drive pairing, red and green FISH punctae are far apart in the 

nucleus, similar to a control.  

B-D. Control, pairer, and non-pairer examples. Image for 2L-3R control is from 

the same experiment as in Fig. 3B, 5G, and S16A. Scale bars=1 µm. White: 

Lamin B, red: probes neighboring endogenous sequence, green: probes 

neighboring transgene insertion site. 

E. ~1 Mb region of chromosome 3R used for pairing screen. Orange boxes 

indicate locations of the major developmental genes spineless (ss), ultrabithorax 

(ubx), Abdominal-A (Abd-A), and Abdominal-B (Abd-B). Black lines indicate the 

locations of the pairing elements Mcp, Fab-7, and TMR. 

F. Quantifications for all transgenes from the initial screen. Black: control, blue: 

pairers, gray: non-pairers. T: contains a TAD. Control data are the same as in 

Fig. 3E (2L-3R control), 3I, 6C (2L-3R eye control), S1A-B, S12J, and S14Q (2L-

3R control). Transgene D-G data are the same as in Fig. 3I and S1B. Transgene 

H-K, M, P, Q data are the same as in Fig. S1B. ****=p<0.0001, ***=p<0.001, 

**=p<0.005, *=p<0.05, ns=p>0.05, one-way ANOVA on ranks with Dunn’s 

multiple comparisons test.  
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Figure 3
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Figure 3: Specialized TADs contribute to button activity and drive pairing. 

A. One-color DNA FISH strategy: In controls, two red FISH punctae on 

heterologous chromosomes are far apart in the nucleus. If a transgene drives 

pairing, the two red FISH punctae are close together in the nucleus and 

indistinguishable as separate dots. If a transgene does not drive pairing, the two 

red FISH punctae are far apart in the nucleus, similar to a control. 

B-D. Control, pairer, and non-pairer examples. Scale bars=1 µm. White: Lamin 

B, red: probes against endogenous sequence and transgene. Image for 2L-3R 

control is from the same experiment as Fig. 2B, 5G, and S16A. Image for 

Transgene Z is from the same experiment as Fig. S3B.  

E. Quantifications for additional transgenes. T: contains a TAD. Black: controls, 

blue: pairers, gray: non-pairers. ***=p<0.001, **=p<0.005, *=p<0.05, ns=p>0.05, 

one-way ANOVA on ranks with Dunn’s multiple comparisons test (for 

Transgenes U-W, Y-Z, AA-BB) or Wilcoxon rank-sum test (for Transgene X). 3L-

X control data are the same as in Fig. S1A-B and S2E. 3L-2R control data and 

3L-2L control data are the same as in Fig. S1A. 2L-3R control data are the same 

as in Fig. 2F, 3I, 6C (2L-3R eye control), S1A-B, S12J, and S14Q (2L-3R 

control). Controls were imaged in two colors, then pseudocolored red and re-

scored in one color. 

F. Number of pairers vs. non-pairers spanning TADs. Blue: spans a TAD. Gray: 

does not span a TAD. ***=p<0.001, Fisher’s exact test.  
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G. Comparison of length for all pairers vs. non-pairers tested in Fig. 2F, 3E, and 

S2E. Blue: pairers, gray: non-pairers. ns=p>0.05, Wilcoxon rank-sum test. Black 

lines indicate medians.  

H. Representative Hi-C heat map and directionality index (NCBI GSE38468) 

showing TADs in the region covered by Transgenes D-G. Dotted lines: TAD 

boundaries. Black bars: TADs. Red lines indicate a directionality index signal of 

0.8 or -0.8, the cutoff for a TAD. See Fig. S5A for TAD assessment. 

I. Quantifications for transgenes that “split” the TAD covered by Transgene E in 

Fig. 3H. Black: control, blue: pairers, gray: non-pairers. *=p<0.05, ns=p>0.05, 

one-way ANOVA on ranks with Dunn’s multiple comparisons test. Control data 

are the same as in Fig. 2F, 3E (2L-3R control), 6C (2L-3R eye control), S1A-B, 

S12J, and S14Q (2L-3R control). Transgene D, F, and G data are the same as in 

Fig. 2F and S1B. Transgene E data are the same as in Fig. 2F and S1B. 

Transgene S data are the same as in Fig. S14Q (Transgene S site 1).   
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Figure 4
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Figure 4: Examining the relationship between insulator binding sites and 

pairing.  

A-I. Quantifications for pairers and non-pairers tested in Fig. 2F, 3E, and S2E. 

**=p<0.01, ns=p>0.05, Wilcoxon rank-sum test (A, D-F), unpaired t-test with 

Welch’s correction (B-C, G, I), or Fisher’s exact test (H). The Wilcoxon rank-sum 

test compares medians, while the unpaired t-test with Welch’s correction 

compares means. Therefore, the black lines in A, D-F indicate medians, and the 

black lines in B-C, G, I indicate means.  

A-G, I: Blue: pairers, gray: non-pairers. 

A. BEAF ChIP peaks. 

B. Su(Hw) ChIP peaks. 

C. CTCF ChIP peaks. 

D. GAF ChIP peaks. 

E. Cp190 ChIP peaks. 

F. Mod(mdg4) ChIP peaks. 

G. Number of clusters of ³4 insulators. 

H. Number of pairers vs. non-pairers with >1 or £1 cluster of 4 insulators. Blue: 

>1 cluster, gray: £1 cluster.  

I. Number of clusters containing any combination of BEAF, CTCF, and Cp190.  
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Figure 5

sil 2 sil 1enh Pairing Transvectionins
Yes YesEndogenous ss 

No YesTransgene S

No NoTransgene T

E

Transgene E

10 kb

Yes No

Spineless

Rh3 Rh4
Spineless

Rh3 Rh4

D Rh4
Rh3

Ss
R7s

C

A B

ss

20 kb

ss button

duplication Yes Yes

Yes Yesssinversion

F

ss

2L

3L

2R

3R

site 1

neighboring sequence

neighboring sequence

transgene

?

M

N

3R
ss

site 2
neighboring sequence

neighboring sequence

3L 3R

transgene

Natural looping

?

Pairing

Transvection

No effect

G H

K

No effect

Transgene Scontrol

si
te

 1

J

I

L

Transgene T

si
te

 2

O Q
Transgene T

P
Transgene Scontrol

S

Increased
Ss (Rh4)

T

No effect

R

Pairing

Transvection

120



Figure 5: Pairing is necessary but not sufficient for transvection. 

A. Representative directionality index (NCBI GSE38468) showing the TAD that 

defines the ss button. Black bar: TAD. See Fig. S5A for TAD assessment.  

B. Spineless (Ss) activates Rh4 and represses Rh3.  

C. Ss is expressed in ~70% of R7s. Green: Ss, red: Prospero (R7 marker), white 

circles: Ss-expressing R7s. 

D. Rh3 (blue) and Rh4 (red) expression in wild type R7s.  

E. ss alleles and transgenes. ins: insulator, sil 1: silencer 1, enh: enhancer, sil 2: 

silencer 2. Smaller black arrows: transcription start sites. Gray rectangles: exons. 

Dotted gray lines: region required for transvection. 

F. Strategy used to assess pairing and transvection from site 1 in Fig. 5G-L. 

Gray arrow with “?” indicates that Transgenes S and T were tested for 

transvection. 

G-I, O-Q. Scale bars= 1 µm. White: Lamin B, red: probes neighboring 

endogenous sequence, green: probes neighboring transgene insertion site.  

J-L, R-T. Red: Rh4, blue: Rh3. 

G-I. Pairing assay images of 2L-3R control, Transgene S site 1, and Transgene T 

site 1. See Fig. S14Q for quantifications. Image for 2L-3R control is from the 

same experiment as Fig. 2B, 3B, and S16A.  

J-L. Rh3 and Rh4 expression in wild type control (Ss(Rh4)=70%), Transgene S 

site 1 (Ss(Rh4)=57%), and Transgene T site 1 (Ss(Rh4)=55%). The slight 

decrease in Rh4 frequency for Transgene S site 1 and Transgene T site 1 is 

likely due to background genetic effects.  
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M. Natural chromosome looping forces transgenes into close proximity with 

endogenous ss, mimicking pairing and facilitating transvection. Gray arrow with 

“?” indicates that Transgenes S and T were tested for transvection.   

N. Strategy used to assess pairing and transvection from site 2 in Fig. 5O-T.  

O-Q. Pairing assay images of site 2 control, Transgene S site 2, and Transgene 

T site 2. See Fig. S14Q for quantifications. 

R-T. Rh3 and Rh4 expression in wild type control (Ss(Rh4)=70%), Transgene S 

site 2 (Ss(Rh4)=98%) and Transgene T site 2 (Ss(Rh4)=78%). 
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Figure 6
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Figure 6: ss pairing and transvection are cell-type-specific.  

A. Constitutive vs. cell-type-specific pairing models.  

B. Third instar larval eye-antennal disc. The ss button drove pairing in the larval 

eye but not the larval antenna. Scale bars=1 µm. White: Lamin B, red: probes 

against endogenous ss and Transgene E. 

C. Quantifications for Fig. 6B. Black: control, blue: pairer, gray: non-pairer. 

***=p<0.05, Wilcoxon rank-sum test; ns=p>0.05, unpaired t-test with Welch’s 

correction. Data for 2L-3R eye control are the same as in Fig. 2F, 3E (2L-3R 

control), 3I, S1A-B, S12J, and S14Q. Data for 2L-3R antenna control are the 

same as in Fig. S1A (2L-3R antenna control). Controls were imaged in two 

colors, then pseudocolored red and scored in one color.  

D, F, H, J. Genotypes tested for transvection. Gray rectangles: exons. Smaller 

black arrows: transcription start sites. Red X indicates an uncharacterized 

mutation in the ssarista 1 sequence. Red X over gray arrow indicates an absence of 

transvection between alleles in the arista. 

E, G, I, K. Arista phenotype. Scale bars=50 µm. White arrows indicate arista. 

Image for Fig. 6I is from the same experiment as Fig. S17C.  
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Supplemental Fig. 1
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Supplemental Figure 1: Comparisons between pairing controls and 

additional statistical tests confirm identification of pairers. 

A. Quantifications for all negative controls used to assess pairing between a 

transgene and its endogenous site in this study. PRs: photoreceptors, ant: 

antenna. ns=p>0.05, one-way ANOVA on ranks with Dunn’s multiple 

comparisons test. Data for 2L-3R PRs 2-color control are the same as in Fig. 2F, 

3I, S1B, and S14Q (2L-3R control). Data for 3L-X 1-color control are the same as 

in Fig. 3E (3L-X control). Data for 3L-2R control are the same as in Fig. 3E (3L-

2R control). Data for 2L-3R PRs 1-color control are the same as in Fig. 3E (2L-

3R control), 6C (2L-3R eye control), and S12J. Data for 3L-2L control are the 

same as in Fig. 3E (3L-2L control). Data for 3L-X 2-color control are the same as 

in Fig. S2E. Data for 3L-3R control are the same as in Fig. S4D, S11H, S14Q 

(3L-3R control). Data for 2L-3R antenna control are the same as in Fig. 6C (2L-

3R antenna control). Data for 3L-3R antenna are the same as in S16F. All 1-color 

controls were imaged in two colors, then pseudocolored red and scored in one 

color.  

B. Comparison of the means for all datasets in Fig. 2F fit to a single Gaussian 

distribution by maximum likelihood estimation. Black: control, blue: pairers, gray: 

non-pairers. *=p<0.05, ns=p>0.05, ordinary one-way ANOVA with Dunnett’s 

multiple comparisons test. Data for 2L-3R control are the same as in Fig. 2F, 3E 

(2L-3R control), 6C (2L-3R eye control), S1A, S12J, and S14Q (2L-3R control). 

Data for Transgene D-G are the same as in Fig. 2A and 3I. Data for Transgene 

H-K, M, P, and Q are the same as in Fig. 2A. 
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Supplemental Fig. 2
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Supplemental Figure 2: A subset of transgenes interspersed across the 

genome drive pairing.  

A-B. Pairer and non-pairer transgenes from the initial screen of a ~1 Mb region of 

chromosome 3R. Scale bars=1 µm. White: Lamin B, red: probes neighboring 

endogenous sequence, green: probes neighboring transgene insertion site.  

C. Additional transgenes taken from chromosomes X (Transgenes U-W), 2R 

(Transgene X), and 2L (Transgenes AA and BB) and inserted at site 3 on Chr 3L. 

3L-X control image is from the same experiment as Fig. S2D control.  

D. Additional transgenes taken from chromosome X and inserted at site 3. 

Pairing was assessed with a two-color FISH strategy. Scale bars=1 µm. White: 

Lamin B, red: probes neighboring endogenous sequence, green: probes 

neighboring transgene insertion site. Control image is from the same experiment 

as Fig. S2C (3L-X control).  

E. Quantifications for transgenes in Fig. S2D. Neither transgene contained a 

TAD. Black: control, gray: non-pairers. ns=p>0.05, one way ANOVA on ranks 

with Dunn’s multiple comparisons test. Control data are the same as in Fig. 3E 

(3L-X control) and S1A.  
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Supplemental Fig. 3
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Supplemental Figure 3: Probes neighboring paired sequences give offset 

probe signals.  

A. Schematic of FISH strategy used to label transgene and endogenous 

sequences and the region directly neighboring the transgene insertion site.  

B. Probes directly neighboring the transgene insertion site could be distinguished 

from probes labeling the transgene sequence itself, despite being immediately 

downstream on the DNA. Image is from the same experiment as Fig. 3D.  

C. When a transgene drives pairing with its endogenous site, the two copies of 

the transgene are paired with each other and the two copies of the endogenous 

site are paired with each other due to homologous chromosome pairing. 

Therefore, one green FISH puncta (neighboring the transgene insertion site) and 

one red FISH puncta (neighboring the endogenous site) are observed.  

The experiment in Fig. S3B showed that two sets of probes targeting 

neighboring regions on the DNA could be distinguished from each other. As the 

red and green probes in Fig. S3C are neighboring the paired sites, not directly 

targeting the paired sites, it is therefore feasible that their signals do not 

completely overlap, despite being close in 3D space. 
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Supplemental Fig. 4
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Supplemental Figure 4: Buttons drive pairing in a position-independent 

manner. 

A. DNA FISH strategy used to assess pairing of Transgene E inserted at site 3 

with its endogenous locus.  

B-C. Control and Transgene E at site 3. Scale bars=1 µm. White: Lamin B, red: 

probes neighboring endogenous sequence, green: probes neighboring transgene 

insertion site. Image for S4B is from the same experiment as in S11D and S14B.  

D. Quantifications for Fig. S4B-C. Black: control, blue: pairer. *=p<0.05, 

Wilcoxon rank-sum test. Data for control are the same as in Fig. S1A (3L-3R 

control), S11H, and S14Q (3L-3R control).  
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Supplemental Figure 5: TAD calls across 14 Hi-C datasets for the region on 

chromosome 3R used for the initial pairing screen.  

A. Red lines indicate a directionality index signal of 0.8 or -0.8, the cutoff for a 

TAD. Black bars indicate TAD calls.  

 

134



Transgene U

0

2.01381

-1.13522

Dataset 1

2.04789

-1.00332
0

Dataset 2

1.58055

-1.58055

0Dataset 3

1.60298

-1.60298

0Dataset 4

1.55485

-1.55485

0Dataset 5

2.07849

-2.07849

0Dataset 8

1.77316

-1.77316

0Dataset 9

1.74219

-1.62046

0Dataset 10

1.25464

-1.43533

0Dataset 11

1.33549

-1.49596

0Dataset 12

1.47141

-1.61397

0Dataset 13

1.58445

-1.58445

0Dataset 14

1.38495

-1.38495

0Dataset 6

-1.3725

1.3725

0Dataset 7

0.922608

-1.4587

0

Transgene V

1.12366

-1.14873

0

0.952584

-1.3269

0

0.84334

-1.33773

0

1.0233

-1.33614

0

0.887984

-0.937355

0

0.728544

-1.01376

0
0.093647

-2.07849

0.34623

-1.77316

0

0.554587

-1.74219

0

0.302003

-1.37647

0

0.116225

-1.35663

0

0.145545

-1.61397

0

0
0.192

-1.58445

Transgene W
0.613128

-1.75024

0

0.610331

-1.49152

0

0.850301

-1.2285

0

0.846158

-1.24303

0

0.88314

-1.2136

0

0.813385

-1.31762

0

0.800832

-1.17948

0

1.05982

-1.59803

0

0.978403

-1.28801

0

1.07207

-1.3316

0

0.990236

-1.12601

0

0.767

-1.17009

0

1.05295

-1.19736

0

0.926244

-1.20601

0

Supplemental Fig. 6

Transgene X

-1.23766

0

1.92594

1.56624

-1.3269

0

0.825467

-0.860805

0

0.782767

-0.869969

0

0.864701

-0.847978

0

1.1863

-0.794442

0

-0.783402

1.079

0

1.10227

-0.925979

0

0.957111

-0.702971

0

0.998415

-0.327327
0

0

0.66474

-0.640054

0

0.688423

-0.536943

0.849999

-0.632752

0

0.831012

-0.651147

0

Transgene Y
A B C D E

1.38865

-1.01807

0

1.05495

-1.07129

0

-1.0003

1.02204

0

-1.04489

1.06538

0

0.995673

0

-0.965102

0

0.66329

-0.923591

0

0.625385

-0.890238

2.00585

-2.00585

0

1.80971

-1.80971

0

1.74714

-1.74714

0

0

1.47081

-1.47081

1.51173

-1.51173

0

-1.58928

1.58928

0

1.5469

-1.5469

0

135



Supplemental Figure 6: TAD calls across 14 Hi-C datasets for Transgenes 

U-Y.   

A-E. Red lines indicate a directionality index signal of 0.8 or -0.8, the cutoff for a 

TAD. Black bars indicate TAD calls. Directionality indices are shown for the entire 

region spanned by each transgene. 
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Supplemental Fig. 7
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Supplemental Figure 7: TAD calls across 14 Hi-C datasets for Transgenes 

Z-DD.    

A-E. Red lines indicate a directionality index signal of 0.8 or -0.8, the cutoff for a 

TAD. Black bars indicate TAD calls. Directionality indices are shown for the entire 

region spanned by each transgene. 
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Supplemental Fig. 8
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Supplemental Figure 8: A higher percentage of pairers encompass entire 

TADs than non-pairers.  

A. Representative directionality indices showing the percentage of a TAD 

covered by each pairing transgene. Black bars indicate consensus TAD calls 

generated from analysis of 14 Hi-C datasets (177-180). Representative 

directionality indices are from NCBI accession numbers GSE38468 (Transgenes 

C, U), GSE61471 (Transgenes A, B, E, O, W, X), GSM2679637 (Transgene Y), 

and GSE63515 (Transgene V). Directionality indices are shown for the entire 

region spanned by each transgene. 

B. Representative directionality indices showing the percentage of a TAD 

covered by each non-pairing transgene. Black bars indicate consensus TAD calls 

generated from analysis of 14 Hi-C datasets(177-180). Representative 

directionality indices are from NCBI accession numbers GSE38468 (Transgenes 

G, H, N, P), GSE61471 (Transgenes D, F, I, J, K, L, M, Z, BB, CC), GSE63515 

(Transgene DD), GSM2679644 (Transgene Q), and GSM2679637 (Transgene 

AA). Directionality indices are shown for the entire region spanned by each 

transgene. 
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Supplemental Fig. 9
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Supplemental Figure 9: A 460-kb duplication encompassing a TAD drives 

pairing.  

A. Representative HiC heat map and directionality index (NCBI GSE38468) 

showing large TAD covered by the duplication. Dotted lines: TAD boundaries. 

Black bar: TAD. See Fig. S5A for TAD assessment. 

B. DNA FISH strategy used to assess pairing of the duplication with its 

endogenous locus.  

C-D. Control and duplication. Scale bars=1 µm. White: Lamin B, red: probes 

neighboring endogenous locus, green: probes neighboring duplication 

breakpoint.  

E. Quantifications for Fig. S9C-D. Black: control, blue: pairer. *=p<0.05, Wilcoxon 

rank-sum test.  
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Supplemental Fig. 10
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Supplemental Figure 10: Polycomb Group Complex binding sites, 

repressive chromatin marks, and ncRNAs do not account for pairing.  

A-F. Graphs showing the number of Polycomb Group Complex or H3K27me3 

ChIP peaks or the number of ncRNAs per transgene for all pairers and non-

pairers tested in Fig. 2F, 3E, and S2E. Blue: pairers, gray: non-pairers. 

ns=p>0.05, Wilcoxon rank-sum test. Black lines indicate medians. 
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Supplemental Fig. 11
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Supplemental Figure 11: Compartmentalization and gene expression state 

do not account for pairing.  

A-B. Schematics indicating genomic locations of high-expressing loci A1 and A2 

(A) and low-expressing loci B1 and B2 (B).  

C. TPM+1 values for A and B compartment regions tested for interactions.  

D-G. Example images for 3L-3R control, A1-A2, B1-B2, and A1-B2 compartment 

experiments. Scale bars=1 µm. White: Lamin B, red: probes against transgene 

insertion site and endogenous site (D) or two compartment sites (E-G). 3L-3R 

control image is from the same experiment as in Fig. S4B and S14D.  

H. Quantifications for S11D-G. Black: control, gray: non-pairers. ns=p>0.05, one 

way ANOVA on ranks with Dunn’s multiple comparisons test. 3L-3R control data 

are the same as in Fig. S1A (3L-3R control), S4D, and S14Q (3L-3R control). 

I-J. ns=p>0.05, Wilcoxon rank-sum test. Black lines indicate medians. 

I. Total TPM+1 per transgene.  

J. Average TPM+1/gene for each transgene. 
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Supplemental Fig. 12
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Supplemental Figure 12: The ss button drives pairing and transvection 

despite chromosome rearrangements.  

A. ssinversion / + example. Scale bar=1 µm. White: Lamin B, red: probes against 

endogenous ss.  

B. Quantification of Fig. S12A. ns=p>0.05, Wilcoxon rank-sum test. Data for wild 

type are the same as in Fig. S12J. Blue: pairers. 

C. Schematic and representative image of ssinversion / + adult R7s. Ss(Rh4)=63%. 

ssinversion / + had no effect on the normal Rh3:Rh4 ratio. ins: insulator, sil 1: 

silencer 1, enh: enhancer, sil 2: silencer 2. Smaller black arrows: transcription 

start sites. Red: Rh4, blue: Rh3. 

D. Schematic and representative image of ssinversion / sshigh freq null adult R7s. 

Ss(Rh4)=80%. sshigh freq null produces no functional Ss protein, but it performs 

transvection to increase the expression frequency of ss on other chromosomes 

(97). sshigh freq null upregulated expression frequency from ssinversion, indicating that 

ssinversion performed transvection. Black X indicates that there is a mutation in the 

second silencer of ss that disrupts the protein coding sequence of sshigh freq null. 

Smaller black arrows: transcription start sites. Green arrow indicates upregulation 

of ss between chromosomes. Red: Rh4, blue: Rh3. 

E. Schematic and representative image of Transgene S-ssdef / ssinversion adult 

R7s. Ss(Rh4)=99%. Transgene S was recombined onto a chromosome with a ss 

deficiency to examine Transgene S transvection with mutant ss alleles. 

Transgene S performs transvection to upregulate expression of wild type, 

endogenous ss (97). Transgene S upregulated expression of ss on the ssinversion 
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allele, indicating that ssinversion performed transvection. Red: Rh4, blue: Rh3. 

Green arrow indicates upregulation of ss between chromosomes. 

F&H. DNA FISH strategies used to assess endogenous ss pairing in wild type 

and chromosome rearrangement backgrounds. 

G&I. Wild type and chromosome rearrangement examples. Scale bars=1 µm. 

White: pm181 (R7 marker)>GFP in G, Lamin B in I. Red: probes against 

endogenous ss. 

J. Quantifications for Fig. S12G, I. ****=p<0.0001, one-way ANOVA on ranks 

with Dunn’s multiple comparisons test. 2L-3R control data are the same as in 

Fig. 2F, 3E (2L-3R control), 3I, 6C (2L-3R eye control), S1A-B, S14Q (2L-3R 

control). Data for wild type are the same as in Fig. S11B. Black: control, blue: 

pairers. 
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Supplemental Fig. 13
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Supplemental Figure 13: Transgenes S and T are expressed in 100% of R7 

photoreceptors at all insertion sites.  

A. Schematic of Transgenes S and T with GFP tags. ins: insulator, sil1: silencer, 

enh: enhancer. Black arrows: transcription start sites.  

B-F. Representative images of Transgene S>GFP expression in mid-pupal R7 

photoreceptors for all insertion sites. Red: Elav (photoreceptors), blue: Prospero 

(R7s), green: Transgene S>GFP. White circles indicate representative R7s.  

G-J. Representative images of Transgene T>GFP expression in mid-pupal R7 

photoreceptors for all insertion sites. Red: Elav (photoreceptors), blue: Prospero 

(R7s), green: Transgene T>GFP. White circles indicate representative R7s.   
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Supplemental Fig. 14
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Supplemental Figure 14: Pairing is necessary but not sufficient for ss 

transvection.  

A, G, M. DNA FISH strategies used to test pairing and transvection of 

Transgenes S and T at each insertion site. Gray arrow with “?” indicates that 

Transgenes S and T were tested for transvection. 

B-C, E, H-I, K, N-O. DNA FISH examples for control, Transgene S, and 

Transgene T at each insertion site. Scale bars=1 µm. White: Lamin B, red: 

probes neighboring endogenous sequence, green: probes neighboring transgene 

insertion site. Image for site 3 control is from the same experiment as in S4B and 

S11D.  

D, F, J, L, P. Representative images of adult eyes for Transgene S and 

Transgene T at each insertion site. Red: Rh4, blue: Rh3. 

D. Ss(Rh4)=71% 

F. Ss(Rh4)=76% 

J. Ss(Rh4)=98% 

L. Ss(Rh4)=74%  

P. Ss(Rh4)=98% 

Q. Quantifications for controls, Transgene S, and Transgene T at each insertion 

site. Black: control, gray: non-pairer. ***=p<0.0005, ns=p>0.05, ordinary one-way 

ANOVA with Dunnett’s multiple comparisons test (Transgenes S and T site 1 vs. 

2L-3R ctrl, Transgenes S and T site 3 vs. 3L-3R ctrl), one-way ANOVA on ranks 

with Dunn’s multiple comparisons test (Transgenes S and T site 2  vs. site 2 

control; Transgenes S and T site 4 vs. site 4 control; site 2 control, Transgenes S 
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and T site 2 vs. 2L-3R control and vs. 3L-3R control; site 4 control, Transgene S 

and T site 4 vs. 2L-3R control and 3L-3R control; site 5 control and Transgene S 

site 5 vs. 2L-3R control and 3L-3R control), or unpaired t-test with Welch’s 

correction (Transgene S site 5). Data for 2L-3R control are the same as in Fig. 

2F, 3E (2L-3R control), 3I, 6C (2L-3R eye control), S1A-B, and S12J. Data for 

site 3 control are the same as in Fig. S4D and S11H. Data for Transgene S site 1 

are the same as in Fig. 3I.  
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Supplemental Fig. 15
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Supplemental Figure 15: Transgene E does not perform transvection.  

A. Transvection assay to test whether mutant ss alleles alter expression from 

Transgene E.  

Red X indicates ss mutant allele, which is ssprotein null from Fig. S15B or sshigh freq 

null from Fig. S15C. Gray arrow with “?” indicates that Transgene E was tested for 

transvection. 

B-C. Rh3 and Rh4 expression in Transgene E + ssprotein null / ssdef (Ss(Rh4)=52%) 

and Transgene E + sshigh freq null / ssdef (Ss(Rh4)=51%). 

D. Schematic of Transgene E + Transgene S-ssdef / ssprotein null genotype. 

Transgene S was recombined onto a chromosome with a ss deficiency to 

examine Transgene S transvection with mutant ss alleles. Transgene S 

performed transvection to upregulate expression of wild type, endogenous ss 

(97). In the Transgene E + Transgene S-ssdef / ssprotein null genotype, the 

endogenous ss locus was hemizygous for a protein coding null allele of ss, which 

produced no functional Ss protein. Therefore, any functional Ss protein in this 

genotype was produced by Transgene E, and an increase in Ss (Rh4) 

expression frequency indicated that Transgene S was performing transvection to 

upregulate Ss expression from Transgene E. Red X over the ss locus indicates 

that the ss allele is a protein coding null. Gray arrow with “?” indicates that 

Transgene E was tested for transvection. 

E. Adult eye for the Transgene E + Transgene S-ssdef / ssprotein null genotype. ss 

expression frequency was not upregulated (Ss(Rh4)=53%), indicating that 
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Transgene S did not perform transvection with Transgene E. Red: Rh4, blue: 

Rh3.   
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Supplemental Fig. 16
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Supplemental Figure 16: Pairing driven by the ss button is cell-type 

specific.  

A-B. Site 1 control images in the eye and antenna. Scale bars=1 µm. White: 

Lamin B, red: probes against endogenous ss and site 1 insertion site. Site 1 

probes were pseudocolored red to allow direct comparison with single-color FISH 

experiments.  

C. DNA FISH strategy used to assess pairing of Transgene E at site 3 with its 

endogenous locus in the larval antenna.  

D-E. Site 3 control and Transgene E site 3 examples in the larval antenna. Scale 

bar=1 µm. White: Lamin B, red: probes neighboring endogenous sequence, 

green: probes neighboring transgene insertion site.  

F. Quantifications for Fig. S16B-C. ns=p>0.05, unpaired t-test with Welch’s 

correction. 
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Supplemental Figure 17: ss mutant alleles with arista-specific phenotypes 

do not perform transvection in the arista.  

A, D, G, J. Genotypes tested for transvection. Gray rectangles: exons. Smaller 

black arrows: transcription start sites. Red X indicates an uncharacterized 

mutation in the ssarista 1 or ssarista 2 sequence. Red X over gray arrow indicates an 

absence of transvection between alleles in the arista. 

B. ssarista 1 / ssdef adult eye. ssarista 1 / ssdef had no effect on eye development. Red: 

Rh4, blue: Rh3. Ss(Rh4)=53%. 

C. ssarista 1 / ssdef arista. ssarista 1 / ssdef caused aristapedia. Scale bar= 50 µm. 

White arrow indicates arista. Image is from the same experiment as in Fig. 6I.  

E. ssarista 1 / ssprotein null adult eye. ssarista 1 / ssprotein null had no effect on eye 

development. Red: Rh4, blue: Rh3. Ss(Rh4)=53%. 

F. ssarista 1 / ssprotein null arista. ssarista 1 / ssprotein null had aristapedia, indicating that 

transvection did not occur to rescue the mutant ss phenotype. Scale bar= 50 µm. 

White arrow indicates arista. 

H. ssarista 2 / ssdef adult eye. ssarista 2 / ssdef had no effect on eye development. Red: 

Rh4, blue: Rh3. Ss(Rh4)=60%.  

I. ssarista 2 / ssdef arista. ssarista 2 / ssdef caused aristapedia. Scale bar= 50 µm. White 

arrow indicates arista.  

K. ssarista 2 / ssprotein null adult eye. ssarista 2 / ssprotein null had no effect on eye 

development. Red: Rh4, blue: Rh3. Ss(Rh4)=62%. 

161



L. ssarista 2 / ssprotein null arista. ssarista 2 / ssprotein null had aristapedia, indicating that 

transvection did not occur to rescue the mutant ss phenotype. Scale bar= 50 µm. 

White arrow indicates arista. 
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Supplemental Fig. 18
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Supplemental Figure 18: ssprotein null performs transvection in the eye.  

A. Schematic of ss enhancer deletion (ssenh del) allele over a ss deficiency (ssdef). 

Gray rectangles: exons. Smaller black arrow: transcription start site.  

B. ssenh del / ssdef adult eye. ssenh del / ssdef caused a near complete loss of Ss/Rh4 

expression. Red: Rh4, blue: Rh3. Ss(Rh4)=0.1%. 

C. Schematic of ssenh del over ssprotein null. Through transvection, the functional 

enhancer of ssprotein null acted on the functional protein coding region of ssenh del to 

rescue Ss expression (green arrow). Enh: enhancer, gray rectangles: exons. 

Smaller black arrows: transcription start sites.  

D. ssenh del / ssprotein null adult eye. ssprotein null rescued Ss expression from the ssenh 

del allele. Red: Rh4, blue: Rh3. Ss(Rh4)=59%.  
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Supplemental Fig. 19
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Supplemental Figure 19: Transgene S performs transvection in the eye but 

not in the arista.  

A. Schematic of the ssupstream del allele over the ssdef allele. ssupstream del is a 

CRISPR allele in which 12.7 kb of the upstream regulatory regions of ss are 

deleted. Red X indicates the deletion of regulatory regions directly upstream of 

the ss locus.  

B. ssupstream del / ssdef adult eye. ssupstream del displayed Ss(Rh4) expression in 85% 

of R7s. Red: Rh4, blue: Rh3.  

C. ssupstream del / ssdef arista. ssupstream del caused aristapedia. Scale bar= 50 µm. 

White arrow indicates arista. 

D. Schematic of the Transgene S-ssdef allele over the ssupstream del allele. 

Transgene S was recombined onto a chromosome with a ss deficiency to 

examine Transgene S transvection with mutant ss alleles. Red X indicates the 

deletion of regulatory regions directly upstream of the ss locus. Gray arrow with a 

“?” indicates that Transgene S was tested for transvection with the ssupstream del 

allele.  

E. Transgene S-ssdef / ssupstream del adult eye. Transgene S-ssdef upregulated 

Ss(Rh4) expression from the ssupstream del allele into 100% of R7s, indicating that 

Transgene S performed transvection with ss upstream del in the eye. Red: Rh4, blue: 

Rh3.  

F. Transgene S-ssdef / ssupstream del arista. Transgene S-ssdef / ssupstream del had 

aristapedia, indicating that Transgene S did not perform transvection to rescue 
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ssupstream del expression in the arista. Scale bar= 50 µm. White arrow indicates 

arista. 

G. Schematic of the Transgene S-ssdef allele over the ssarista 1 allele. Red X 

indicates an uncharacterized mutation in the ssarista 1 allele. Gray arrow with “?” 

indicates that Transgene S was tested for transvection with the ssarista 1 allele.  

H. Transgene S-ssdef / ssarista 1 adult eye. Transgene S-ssdef upregulated Ss(Rh4) 

expression from the ssarista 1 allele into 99% of R7s, indicating that Transgene S 

performed transvection with ssarista 1 in the eye. Red: Rh4, blue: Rh3.  

I. Transgene S-ssdef / ssarista 1 arista. Transgene S-ssdef / ssarista 1 had aristapedia, 

indicating that Transgene S did not perform transvection to rescue ssarista 1 

expression in the arista. Scale bar= 50 µm. White arrow indicates arista. 

J. Schematic of the Transgene S-ssdef allele over the ssarista 2 allele. Red X 

indicates an uncharacterized mutation in the ssarista 2 allele. Gray arrow with “?” 

indicates that Transgene S was tested for transvection with the ssarista 2 allele.  

K. Transgene S-ssdef / ssarista 2 adult eye. Transgene S-ssdef upregulated Ss(Rh4) 

expression from the ssarista 2 allele into 100% of R7s, indicating that Transgene S 

performed transvection with ssarista 2 in the eye. Red: Rh4, blue: Rh3.  

L. Transgene S-ssdef / ssarista 2 arista. Transgene S-ssdef / ssarista 2 had aristapedia, 

indicating that Transgene S did not perform transvection to rescue ssarista 2 

expression in the arista. Scale bar= 50 µm. White arrow indicates arista. 
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Supplemental Fig. 20
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Supplemental Figure 20: Barcoding primer scheme for DNA Oligopaints 

FISH probes. 

A. Schematic of barcoding primer scheme for Oligopaints probe libraries 

containing sublibraries. univ: universal primer, sub: sublibrary primer.  

B. Schematic of barcoding primer scheme for Oligopaints probe libraries without 

sublibraries. univ: universal primer, rando: random primer.  

 

 

169



Chapter 4: Activating and repressing stochastic gene 

expression between chromosomes 

4.1: Abstract 

DNA elements act across long genomic distances to regulate gene 

expression in processes including enhancer-promoter interactions and genetic 

imprinting. In the Drosophila gene-regulatory phenomenon of transvection, DNA 

elements on one allele of a gene act between chromosomes on another allele of 

the gene to increase or decrease expression. Despite the discovery of 

transvection over 60 years ago, little is known about its biological role. 

Furthermore, it is unclear whether separable DNA elements contribute to 

activating or repressing transvection at a single locus. Here, we use the 

spineless (ss) locus as a paradigm to study gene activation and repression 

between chromosomes. We find a biological role for transvection in controlling 

the stochastic expression of naturally occurring ss alleles in the fly retina. 

Additionally, we use CRISPR deletions of sequences across the ss locus to 

determine the DNA elements required for activating and repressing transvection. 

We find that separable mechanisms control activation and repression of ss 

between chromosomes: activation requires an intact enhancer and promoter in 

cis, while repression requires two Polycomb Response Elements and an 

insulator element. Finally, we find that ss silencer 1 can repress ss between 

chromosomes even when translocated to other regions of the genome. The 

translocated silencer 1 may require high-affinity button sequences to bring it in to 

proximity with the ss locus. Our findings provide mechanistic insight into how 
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DNA elements regulate stochastic gene expression between chromosomes, and 

suggest a model in which button regions “reconstitute” genes to maintain proper 

expression in the presence of chromosome rearrangements. 

 

4.2: Introduction 

Long-distance interactions between DNA regulatory elements are an 

essential mechanism controlling gene expression. One well-studied example of 

DNA element action at a distance involves enhancer-promoter interactions, 

which in cases such as the sonic hedgehog, Hoxb, and Hoxd loci in mammals 

can occur at distances of up to 1 Mb (183-185). In addition to long-range 

interactions along a single chromosome, DNA elements can act between 

chromosomes. For example, olfactory receptor enhancers in mice interact 

between chromosomes to form a super-enhancer that interacts with an active 

olfactory receptor gene (33). Furthermore, mammalian imprinting control regions 

act between chromosomes to ensure proper expression of maternal or paternal 

alleles (75, 186). Aberrant action of DNA elements between chromosomes is 

observed in cases of lymphoma and myeloma, where translocations of the IgH 

enhancer to chromosome 14 incorrectly activate the CCND1 locus on the 

homologous chromosome (87). However, little is known about the mechanisms 

controlling the action of DNA elements between chromosomes. 

The most well-studied example of interchromosomal DNA element 

interactions occurs in the Drosophila melanogaster phenomenon of transvection, 

where the regulatory elements of a gene on one chromosome control expression 
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of the same gene on a homologous chromosome. Transvection was originally 

discovered over 60 years ago by Ed Lewis at the ubx locus (55), and has 

subsequently been described for a large number of Drosophila genes (90, 97). 

Transvection is facilitated by the colocalization, or “pairing,” of homologous 

chromosomes, which occurs in Drosophila in nearly all somatic cells throughout 

development (54). Homologous chromosome pairing is driven by “button” 

elements, regions of high pairing affinity that are interspersed along chromosome 

arms (57-59, 72). With the exceptions of the Abd-b and spineless (ss) loci, 

pairing and transvection are typically disrupted by chromosome rearrangements 

(55, 59, 72, 90, 91, 96, 97). 

In most cases, transvection involves interactions between two paired 

mutant alleles. DNA elements on each allele act between chromosomes to 

rescue gene expression. Often, the enhancer of one mutant allele acts on the 

promoter of the other mutant allele to activate gene expression (90). Enhancer 

action between chromosomes is often more efficient in the absence of a 

promoter in cis (90-95). Insulator elements, which are involved in DNA looping 

interactions (187), have also been linked to activating transvection (72, 102, 104, 

147).  

Transvection-related phenomena can also repress genes between 

chromosomes, in processes including brown dominant silencing, zeste-white 

silencing, and pairing-sensitive silencing (105, 106, 108, 124, 133, 188). DNA 

elements such as insulators and Polycomb Response Elements (PREs) have 

been linked to repressing transvection at many loci across the genome (67, 69, 
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108, 111-115, 145, 146). However, very little work has focused on separating the 

DNA elements that specifically contribute to activating and repressing 

transvection to control gene expression at a single locus. The advent of CRISPR 

provides the unique opportunity to examine the contribution of specific DNA 

elements to transvection through the precise deletion of regions of interest.  

Because transvection has largely been studied in the context of mutant 

alleles, the biological role of transvection between wild-type alleles is unclear. It 

has been proposed that transvection ensures proper gene expression by 

enhancing the level of transcription between paired alleles (189). However, a role 

for transvection between naturally occurring alleles has yet to be experimentally 

demonstrated. 

Here, we use transvection between alleles of ss as a model to study 

activation and repression between chromosomes. We find a biological role for 

transvection in “averaging” the expression frequencies of naturally occurring ss 

alleles. Using CRISPR to precisely delete DNA elements across the ss locus, we 

dissect the elements required for transvection between ss alleles, and separate 

the activating and repressing functions of ss transvection. Activation of ss 

between chromosomes requires an intact enhancer and promoter in cis, while 

repression of ss between chromosomes requires an insulator element and two 

PREs. Finally, we observe ss pairing and transvection in the presence of 

dramatic chromosomal rearrangements, showing that pairing of homologous 

regions can “reconstitute” genes between chromosomes to maintain proper gene 

expression. 
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4.3: Results 

Transvection “averages” expression of wild-derived alleles 

 While transvection between mutant alleles is well-studied, the role of 

transvection in regulating the expression of functional, naturally occurring alleles 

is poorly understood. To investigate the biological role of transvection, we used 

the ss locus as a paradigm. In the fly retina, Ss is expressed stochastically in 

~67% of R7 photoreceptors to activate expression of the photopigment 

Rhodopsin 4 (Rh4) and repress expression of Rhodopsin 3 (Rh3)(Fig. 1A-B). In 

R7s lacking Ss, Rh3 is expressed (Fig. 1A). Therefore, Rh4 and Rh3 can be 

used as a readout for Ss expression. 

Mutant alleles of ss with expression frequencies that vary from the wild-

type 67% communicate via transvection (also known as Interchromosomal 

Communication)(97) to determine a final, intermediate SsON:SsOFF ratio. For 

example, when a “high-frequency” allele of ss that is expressed in 100% of R7s 

is crossed with a protein coding null allele of ss that is expressed in 0% of R7s, 

the resulting progeny express Ss/Rh4 in 90% of R7s, a frequency between that 

of the high- and low-expressing alleles (Fig. 1C)(97). Therefore, transvection 

between ss alleles can be measured quantitatively by assessing changes in the 

Rh3:Rh4 ratio.  

 Naturally occurring alleles of ss from the Drosophila Genome Resource 

Panel (DGRP) display wide variation in expression frequencies (100, 101). To 

investigate whether these wild-derived ss alleles could perform transvection, we 

examined crosses between DGRP alleles with Ss/Rh4 expression frequencies 
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ranging from 41% to 74%. If the two DGRP alleles did not perform transvection, 

we hypothesized that their progeny would exhibit a Ss/Rh4 expression frequency 

higher than either of the parents due to independent expression of each parental 

allele. We hypothesized that if the two DGRP alleles performed transvection, 

then their progeny would exhibit an intermediate Rh3:Rh4 ratio between the 

ratios of the two parents.  

 We examined four categories of crosses. In Group 1, the Rh3:Rh4 

expression ratios of both parents and their progeny were not statistically different 

(Fig. 1D). In Groups 2-4, the parents had statistically different Rh3:Rh4 

expression ratios (Fig. 1E-G). The Rh3:Rh4 ratio of Group 2 progeny was not 

statistically different from either parent (Fig. 1E), the Rh3:Rh4 ratio of Group 3 

progeny was statistically different from one parent (Fig. 1F), and the Rh3:Rh4 

ratio of Group 4 progeny was statistically different from both parents (Fig. 1G). In 

all cases, cross progeny had a Ss/Rh4 expression frequency that fell between 

the frequencies of the parents, rather than an expression frequency higher than 

either parent (Fig. 1D-G). Thus, wild-derived alleles of ss performed transvection 

to “average” the expression frequencies of high and low alleles. 

 To further investigate transvection between wild-derived alleles, we 

examined a ss allele containing a naturally occurring insertion known as sin 

(101). Fly lines that are homozygous for sin display a decreased Ss expression 

frequency, with only 50% of R7s expressing Ss/Rh4, while wild-type flies lacking 

sin express Ss/Rh4 in 67% of R7s (Fig. 1H)(101). In a sin / + background, 
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Ss/Rh4 was again expressed at an intermediate expression frequency (60%) 

between the Rh3:Rh4 ratio of either parent (Fig. 1H). 

 Together, these data suggest a biological role for transvection in 

patterning the Drosophila retina. By roughly “averaging” the expression 

frequencies of variant alleles, ss transvection may ensure that ratios of Rh4- and 

Rh3-expressing R7s are kept within a certain acceptable range for normal color 

vision.  

 

An enhancer and promoter in cis are required for gene activation between 

chromosomes 

 ss transvection upregulates and downregulates expression between 

chromosomes to generate intermediate transvection frequencies. While many 

studies have focused on the DNA elements required for trans-activation or trans-

silencing (67, 69, 72, 90, 92, 102, 104, 108, 111-115, 145-147), it remains 

unclear how activating and repressing elements work cooperatively to regulate 

the expression of a single gene between chromosomes. To separate the 

activating and repressing functions of ss transvection, we generated CRISPR 

deletions of DNA elements within the ss locus and tested their effects on ss 

transvection. 

 The ss locus contains two enhancers (early enhancer and late enhancer) 

and a promoter (ss promoter) that regulate its expression (Fig. 2A). When 

hemizygous with a ss deficiency (ss def), wild-type ss is expressed in 56% of 

R7s (Fig. 2A)(97). CRISPR deletion of either enhancer or the promoter (early 
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enhD, late enhD, and promD) caused a complete loss of Ss/Rh4 expression when 

placed over a ss deficiency (ss def)(Fig. 2A). A protein coding null of ss (prot 

null), which contains intact cis regulatory elements, also resulted in 0% Ss/Rh4 

expression when placed over ss def (Fig. 2A).   

 To test these CRISPR deletions for transvection, we first crossed them 

with the prot null. early enhD / prot null and late enhD / prot null both had near-

wild type Ss/Rh4 expression frequencies (Fig. 2B-C), indicating that the intact 

enhancers on the prot null allele were performing transvection on the enhD 

alleles to drive Ss expression. promD / prot null displayed 0% Ss/Rh4 expression 

(Fig. S1A-B); although the enhancers of the promD allele could theoretically act 

on the intact promoter of the prot null allele, mutations in the coding regions of 

the prot null allele prevented the production of any functional Ss protein.  

 To further test the ability of these alleles to perform transvection, we 

utilized Transgene A, which contains the first 46 kb of the ss locus, including the 

early enhancer, late enhancer, and ss promoter (Fig. S2A). Because Transgene 

A lacks the last five exons of ss, it does not produce functional Ss protein. 

However, it drives GFP expression in 100% of R7s (72). Additionally, Transgene 

A performs transvection on wild-type alleles of ss to upregulate Ss/Rh4 into 

100% of R7s (72, 97). We recombined Transgene A onto the ss def allele to test 

its effects on the early enhD and late enhD alleles (Fig. S2A). We hypothesized 

that if Transgene A could perform transvection with the enhD alleles, then Ss/Rh4 

expression frequency would increase to nearly 100%, similar to the effects of 

Transgene A on a wild type control (Fig. S2C). If Transgene A could not perform 
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transvection with the enhD alleles, we expected to observe a 0% Ss/Rh4 

expression frequency, similar to early enhD / ss def and late enhD / ss def (Fig. 

S2B). Transgene A upregulated Ss expression of early enhD and late enhD into 

nearly 100% of R7s (Fig. S2D-E), supporting the conclusion that the intact early 

enhancer and late enhancer can act between chromosomes on the promoters of 

the early enhD and late enhD alleles to drive Ss expression.  

 In many cases, enhancer action between chromosomes is more efficient 

in the absence of a promoter in cis (9, 17-21). We therefore hypothesized that if 

we crossed early enhD and late enhD with promD, the intact enhancer of promD 

would act on the intact promoter of early or late enhD to restore Ss/Rh4 

expression frequency to wild type. Surprisingly, early enhD / promD exhibited only 

partial rescue of Ss/Rh4 frequency (Ss/Rh4=27%; Fig. 2D), while late enhD / 

promD had no rescue (Ss/Rh4 = 2%; Fig. 2E), suggesting that early enhancer 

and late enhancer require a promoter in cis to work efficiently between 

chromosomes. 

 To test the hypothesis that the ss enhancers require an intact promoter in 

cis to perform transvection, we examined flies that were transheterozygous for 

early enhD / late enhD, so that each allele contained an intact promoter and one 

intact enhancer. These flies expressed Ss/Rh4 in 53% of R7s (Fig. 2F). 

Therefore, activating transvection at the ss locus requires an intact enhancer and 

promoter in cis to drive expression between chromosomes.  
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Two PREs and an insulator element are required for gene repression between 

chromosomes 

 To investigate the elements required for repressive transvection between 

ss alleles, we examined a silencer element at the 5’ end of the ss locus (silencer 

1). This silencer contains an insulator element (72) and two putative Polycomb 

Response Elements (PREs), which bind the repressive Polycomb Group 

Complex (Fig. 3A). In flies homozygous for a complete silencer 1 deletion 

(silencer 1D), Ss/Rh4 expression frequency increases to 99% of R7s (Fig. 

3B)(97). Over ss def, an allele of ss in which both PREs are deleted (PRE12D) 

causes upregulation of Ss/Rh4 into 85% of R7s (Fig. 3C)(72).  

 To test whether the PREs within silencer 1 could repress Ss/Rh4 

expression frequency, we crossed PRE12D with prot null, which has an intact 

silencer 1 but mutated protein coding region. We predicted that if the PREs can 

act between chromosomes to repress expression, then the Ss/Rh4 expression 

frequency of PRE12D / prot null would decrease compared to the Ss/Rh4 

expression frequency of PRE12D / ss def. PRE12D / prot null flies had a 62% 

Ss/Rh4 expression frequency (Fig. 3D), indicating that the PREs on the prot null 

allele could act between chromosomes to repress PRE12D expression. 

 To further test the ability of the ss PREs to repress expression between 

chromosomes, we next examined silencer 1D / prot null. We hypothesized that 

the PREs on the prot null allele would act between chromosomes to repress 

expression from the silencer 1D allele. Surprisingly, silencer 1D / prot null 

remained at a 99% Ss/Rh4 expression frequency (Fig. 3E)(97), indicating that 
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the PREs on prot null could not repress expression of the silencer 1D allele. An 

insulator element is present in PRE12D but absent in silencer 1D (Fig. 3B-C), 

suggesting that an intact insulator on both ss alleles is required for the PREs to 

act between chromosomes and repress Ss expression. 

Because both ss enhancers require the ss promoter in cis to perform 

transvection, we next tested whether the ss PREs also require the ss promoter to 

act between chromosomes by examining PRE12D / promD. We hypothesized 

that if the PREs require the ss promoter to act between chromosomes, then a 

loss of PRE repression in PRE12D / promD would cause Ss/Rh4 expression in 

~85% of R7s, similar to PRE12D / ss def. If the PREs do not require the ss 

promoter to act between chromosomes, we predicted that Ss/Rh4 expression in 

PRE12D / promD would be similar to wild type expression frequency, because 

the PREs would act effectively between chromosomes to decrease Ss 

expression. We observed 57% Ss/Rh4 expression frequency in the PRE12D / 

promD background (Fig. S3A-B), indicating that the ss PREs do not require the 

ss promoter to repress ss expression between chromosomes.  

 

Silencer 1 performs transvection between rearranged chromosomes 

 Classical transvection is disrupted by chromosome rearrangements (55). 

However, chromosome rearrangements do not disrupt ss transvection (72, 97). 

To further investigate the mechanisms that facilitate transvection between 

rearranged copies of ss, we examined the sstranslocation and ssinversion alleles. The 

sstranslocation allele contains a translocation between the X chromosome and 
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chromosome 3, with a breakpoint directly downstream of silencer 1 (Fig. 4A-E). 

The ssinversion allele has a breakpoint immediately downstream of silencer 1, 

which moves the coding region of ss 12 Mb away from silencer 1 (Fig. S4A-E). 

sstranslocation / ss def caused an increase in ss expression frequency to 100% 

Ss/Rh4 (Fig. 4A), indicating that the translocated silencer 1 was not acting 

between chromosomes on the ss coding regions to repress Ss expression. 

However, sstranslocation / + and sstranslocation / prot null returned Ss/Rh4 expression 

frequency to near-wild-type levels (Ss/Rh4=73%; Fig. 4B-C), providing additional 

support for the conclusion that 2 insulator copies are required for the ss PREs to 

repress between chromosomes.  

To further test the hypothesis that an insulator on both alleles is required 

for repressing transvection between copies of ss, we crossed sstranslocation with 

PRE12D, which contains the insulator, and silencer 1D, which lacks the insulator. 

sstranslocation / PRE12D decreased Ss/Rh4 expression frequency to 73% (Fig. 4D), 

while sstranslocation / silencer 1D Ss/Rh4 expression frequency remained at 99% 

(Fig. 4E). Together, these data indicated that the ss PREs require the presence 

of an insulator on both alleles to repress ss expression between chromosomes.  

 In the sstranslocation / + background, either silencer 1 on sstranslocation  or 

silencer 1 on the wild type ss allele could be repressing Ss expression between 

chromosomes. However, in a sstranslocation / PRE12D background, the only intact 

copy of silencer 1 is on the sstranslocation allele (Fig. 4D). Since Ss/Rh4 expression 

frequency is 73% rather than 100% in this background (Fig. 4D), we concluded 
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that silencer 1 on the sstranslocation allele was responsible for repressive 

transvection.  

To further investigate the mechanisms that facilitate PRE-driven 

repression in trans, we examined ssinversion (Fig. S4A-E). Similar to sstranslocation / 

ss def, ssinversion / ss def, where only one copy of the insulator was present, 

increased Ss/Rh4 expression frequency to 100% (Fig. S4A)(97). In ssinversion / + 

and ssinversion / prot null backgrounds, where two copies of the insulator were 

present, Ss/Rh4 expression frequency decreased to 84% and 90%, respectively 

(Fig. S4B-C)(97), These data again suggested that the presence of an insulator 

on each allele allows the ss PREs to act across long distances and repress Ss.  

 Together, these data suggest that silencer 1 can repress expression 

between chromosomes in the presence of significant chromosomal aberrations. 

 

A template ss copy is not required for silencer 1 colocalization with the remainder 

of ss 

 The PREs on sstranslocation and ssinversion do not repress ss between 

chromosomes when crossed with ss def (Fig. 4A; Fig. S4A), but they can 

repress ss when crossed with wild type ss, prot null, or PRE12D (Fig. 4B-D; Fig. 

S4B-C). We hypothesized that a two-step mechanism might facilitate interactions 

between the translocated PREs and the intact ss locus. In step 1, the additional 

copy of ss might act as a “template” for homologous pairing, bringing the PREs of 

sstranslocation and ssinversion into close proximity with the ss coding region (Fig. 5A). 

In step 2, the two copies of the insulator might allow the PREs to repress ss 
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across long distances (Fig. 5B). We predicted that if interactions between the ss 

PREs and the ss coding region require a template, then silencer 1 of sstranslocation 

and ssinversion would be in closer physical proximity to the remainder of the ss 

locus over a wild type allele than over ss def.  

 To test this hypothesis, we used DNA Oligopaints FISH (149, 170) to 

visualize the localization of silencer 1 and the rest of the ss locus for the ssinversion 

allele. We targeted the region immediately downstream of the proximal inversion 

breakpoint with green probes and the region immediately upstream of the distal 

inversion breakpoint with red probes (Fig. 5C-D). We hypothesized that if 

silencer 1 of ssinversion was interacting with the rest of the ss locus, then we would 

observe a green puncta close to a red puncta in the nucleus (Fig. 5F), whereas if 

silencer 1 of ssinversion was not interacting with the rest of the ss locus, then the 

green and red puncta would be far apart in the nucleus (Fig. 5G), similar to a 

wild-type control (Fig. 5E). In a wild-type control, the red and green punctae were 

far apart in the nucleus (Fig. 5H, K). As we hypothesized, the red and green 

punctae were significantly closer together in the ssinversion / + background (Fig. 5I, 

K), indicating that silencer 1 of ssinversion was interacting with the remainder of the 

ss locus. Intriguingly, despite the absence of a template copy of ss, the red and 

green punctae were also close together in the ssinversion / ss def background (Fig. 

5J-K). Together, these data suggest that a template copy of ss is not required for 

silencer 1 to colocalize with the remainder of the ss locus.  

We therefore propose that other sequences near the ss locus mediate 

interactions between silencer 1 and the ss protein coding region. Drosophila 
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chromosomes contain a large number of high-affinity “button” sequences, which 

bring homologous sequences together across the genome. Two buttons (Button 

1 and Button 2), located 20 kb and 60 kb downstream of endogenous ss, are 

present in ssinversion and ss def (72). We hypothesize that these buttons facilitate 

interactions between the different portions of the ss locus, allowing 

“reconstitution” of the gene and maintenance of proper expression in the 

presence of chromosome rearrangements. 

  

4.4: Discussion 

 Despite the discovery of transvection over 60 years ago (55), the 

biological role of transvection has remained elusive. We find that transvection 

occurs between naturally derived, wild-type alleles of the ss gene. When flies 

homozygous for a high-frequency ss allele are crossed with flies homozygous for 

a low-frequency ss allele, their progeny have an intermediate Ss/Rh4 expression 

frequency between that of the higher and lower alleles (Fig. 1C-H). Our data 

suggest a biological role for transvection in preventing extremely high or low Rh4 

expression frequency. The “averaging” of ss alleles may keep Rh4:Rh3 

expression ratios within a certain range required for proper color vision. 

Supporting this idea, the naturally occurring insertion sin causes a decreased 

Rh4:Rh3 expression ratio and shifts innate color preference from green to blue 

(101), indicating that maintenance of proper ss expression frequency is important 

for normal vision.  
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 While there is a large body of work examining the DNA elements involved 

in gene activation between chromosomes (72, 90-95, 102, 104, 147) or gene 

repression between chromosomes (67, 69, 108, 111-115, 145, 146), few studies 

have elucidated the complete networks of activating and repressing elements 

that work together between different alleles of the same gene to control overall 

gene expression. Using precise CRISPR deletions of DNA elements across the 

ss locus, we have identified a complex combination of DNA regulatory elements 

that governs ss transvection. Two ss enhancers and the ss promoter activate ss 

expression between chromosomes (Fig. 2B-F), while two PREs and an insulator 

repress ss expression between chromosomes (Fig. 3; Fig. 4; Fig. S4). Thus, our 

findings indicate that activating and repressing transvection are separable 

mechanisms.  

 The loss of a promoter in cis can increase the ability of an enhancer to act 

between chromosomes (90-95). However, the ss enhancers require a promoter 

in cis in order to activate expression between chromosomes (Fig. 2D-F). This 

finding raises the possibility there are two distinct classes of transvection-

competent genes, one in which the transvecting enhancer works more efficiently 

in the absence of a promoter in cis, and one in which the transvecting enhancer 

requires a promoter in cis. As promoter requirements have only been 

investigated for a subset of transvection-competent genes, including yellow, 

apterous, Abd-b, and Ubx (90-95), it is possible that many less well-characterized 

genes fall into the ss transvection category.  
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While ss represents a potential new class of transvection-competent 

genes that require an enhancer and promoter in cis, it is unclear how these 

enhancer-promoter interactions facilitate activation between chromosomes. We 

propose three models: 1. The enhancer simultaneously loops to the cis and trans 

promoter to activate gene expression from both alleles (simultaneous looping; 

Fig. 6A) 2. The enhancer loops to the promoter in cis, and the resulting 

transcription initiation complex allows the enhancer-promoter complex to activate 

the copy of the promoter on the other chromosome (enhancer-promoter complex; 

Fig. 6B) 3. Because the two alleles of ss are paired, enhancer looping to the 

promoter in cis causes simultaneous looping of the other ss allele, resulting in an 

open conformation that allows gene expression (looping to active conformation; 

Fig. 6C).  

 While chromosome rearrangements often disrupt transvection (55, 90), ss 

transvection occurs in the presence of rearrangements, even when 

rearrangement breakpoints lie within the gene locus itself (Fig. 4; Fig. S4). The 

robustness of ss transvection in the presence of chromosome rearrangements is 

likely due to the fact that the ss locus encompasses a “button” element, which is 

sufficient to drive pairing between non-homologous chromosomes (72). Two 

additional button elements lie immediately downstream of the ss locus (72) and 

may facilitate interactions between copies of ss in cases where rearrangement 

breakpoints lie within the ss locus. Supporting the conclusion that button 

elements allow transvection in the presence of chromosome rearrangements, 

186



transvection at the Abd-B locus, which overlaps a button (72), is not disrupted by 

rearrangements (59, 91, 96). 

 In the presence of major chromosome rearrangements such as the the 

ssinversion allele, ss silencer 1 still interacts with the remainder of the ss locus. In a 

ssinversion / ss def background, silencer 1 remains in close physical proximity with 

the protein-coding regions of ss (Fig. 5J-K). This physical proximity is potentially 

mediated by two button elements immediately downstream of the ss locus (72), 

which are present on both the ssinversion and ss def alleles. Despite being in close 

physical proximity with the remainder of the ss locus, silencer 1 does not repress 

ss expression in a a ssinversion / ss def background (Fig. S4A), indicating that 

physical interaction between silencer 1 and the ss protein coding region is not 

sufficient for silencer 1-mediated repression. Rather, an insulator on both ss 

alleles is required for silencer 1 repression between chromosomes (Fig. 3; Fig. 

4; Fig. S4).  

 The ability of buttons to “reconstitute” ss suggests a genome-wide 

mechanism that maintains proper gene expression in the presence of 

chromosome aberrations. As this mechanism allows the genome to be robust to 

rearrangements, it may also have implications for the evolution of long-range 

gene regulation. In cases where inversions and translocations separate an 

enhancer from its promoter by distances of 1 Mb or more, nearby buttons might 

allow a distant enhancer to loop back to its promoter and drive normal gene 

expression. Over time, this novel enhancer location might evolve to be the 

endogenous enhancer site. Requirements for long-distance DNA element action 
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observed at the ss locus, such as a promoter in cis or two copies of an insulator, 

might be lost over time, allowing efficient enhancer action at a distance 

independent of other DNA elements. Together, our findings suggest an essential 

role for DNA element action between chromosomes in maintaining proper 

genome organization and gene expression. 

 

4.5: Materials and Methods 

Antibodies 

Antibodies were used at the following dilutions: mouse anti-Lamin B (DSHB 

ADL67.10 and ADL84.12), 1:100; mouse anti-Rh3 (1:100) (gift from S. Britt, 

University of Colorado), rabbit anti-Rh4 (1:100) (gift from C. Zuker, Columbia 

University), and Alexa 488 Phalloidin (1:80) (Invitrogen, Thermo Fisher Scientific, 

Waltham, MA, USA). All secondary antibodies were Alexa Fluor-conjugated 

(1:400) and made in donkey (Molecular Probes). 

 

Antibody Staining 

Adult were dissected as described (169) and fixed for 15 min with 4% 

formaldehyde at room temperature. Retinas were washed three times in PBS 

plus 0.3% Triton X-100 (PBX), then incubated with primary antibodies diluted in 

PBX overnight at room temperature. Next, retinas were washed three times in 

PBX and incubated in PBX for >4 hr. Retinas were then incubated with 

secondary antibodies diluted in PBX overnight at room temperature. Finally, 

retinas were rinsed three times in PBX and incubated in PBX for >2 hr. Retinas 

188



were mounted in SlowFade Gold Antifade Reagent (Invitrogen). Images were 

acquired using a Zeiss LSM 700 confocal microscope. 

 

Quantification of Rh3:Rh4 expression frequencies 

Frequency of Rh3 (SsOFF) and Rh4 (SsON) expression in R7s was scored in 

adults. Six or more retinas were scored for each genotype (N). 100 or more R7s 

were scored for each retina (n). Frequency was assessed using custom semi-

automated software (see below) or manually. 

 

Image processing 

Image analysis was performed as described in (101). Briefly, we employed a 

custom algorithm to identify the positions of individual R7 photoreceptors within 

an image of the fly retina. First, individual fluorescence images from each 

wavelength channel were denoised using a homomorphic filter(190) and 

Gaussian blur. Next, R7 boundaries were located using the Canny edge 

detection method (191). Cells were then roughly segmented using the convex 

hull algorithm (192). Active contouring (193) was used to refine the segments to 

fit the R7s more closely. Finally, a watershed transform was applied to the image, 

dividing it into regions that each contain a single R7. Regions were excluded by 

size or distance from the center to prevent artifacts due to the curvature of the fly 

retina. For the remaining regions, normalized intensities from the Rh3 and Rh4 

channels were compared in order to assign each region a label, indicating that its 

R7# is stained with Rh3 or Rh4. A MATLAB (The MathWorks, Inc.) script that 
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implements our algorithm is available at 

https://app.assembla.com/spaces/roberts-lab-public/wiki/Fly_Retina_Analysis.  

 

Generation of CRISPR lines 

CRISPR lines were generated as described in references (101, 172-174). sslate 

enh del and ssPRE12 deletion were generated in reference (72) using methods and 

oligos detailed in references (72, 101, 172-174). For each CRISPR deletion, 

sense and antisense DNA oligos for the forward and reverse strands of four 

gRNAs were designed to generate BbsI restriction site overhangs. The oligos 

were annealed and cloned into the pCFD3 cloning vector (Addgene, Cambridge, 

MA). A single-stranded DNA homology bridge was generated with 60-bp 

homologous regions flanking each side of the predicted cleavage site and an 

EcoRI restriction site to aid in genotyping. The gRNA constructs (125 ng/µl) and 

homologous bridge oligo (100 ng/µl) were injected into Drosophila embryos 

(BestGene, Inc., Chino Hills, CA). Single males were crossed with a balancer 

stock (yw; +; TM2/TM6B), and F1 female progeny were screened for the insertion 

via PCR, restriction digest, and sequencing. Single F1 males whose siblings 

were positive for the deletion were crossed to the balancer stock (yw; +; 

TM2/TM6B), and the F2 progeny were screened for the deletion via PCR, 

restriction digest, and sequencing. Deletion-positive flies from multiple founders 

were used to establish independent stable stocks.  

 

The following oligos were used for the ssearly enh del CRISPR:  
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Table 1: Oligos used for ssearly enh del CRISPR 

Oligo 
name 

Sequence 

Homolog
ous 
bridge 

AAATAGATGGCTATTAACTATAGTTATTGAAGTGGGTCCATCAATCCATCTTCT
CCATTAGAATTCCT 
CATAAGAATCTTAAAAATGATAAAGATATTTTCTTCGATAGCTTTATTTCAGATA
TCA 

gRNA 1F GTCGCAAAACAATATGAGGTCTAA 
gRNA 1R AAACTTAGACCTCATATTGTTTTGC 
gRNA 2F GTCGAAGTGGCCTGGGCTTATCTC 
gRNA 2R AAACGAGATAAGCCCAGGCCACTT 
gRNA 3F GTCGTTTAAGATTCTTATGAGATG 
gRNA 3R AAACCATCTCATAAGAATCTTAAA 
gRNA 4F GTCGTATAATTGCGGCTACTTATC 
gRNA 4R AAACGATAAGTAGCCGCAATTATA 
genotype 
F 

GCTCCGACTAATTGCAGACAG 

genotype 
R 

CCCTTACAAACGAAAAGATCA 

 
 

The following oligos were used for the ssprom del CRISPR:  

 

Table 2: Oligos used for ssprom del CRISPR 

 
Oligo 
name 

Sequence 

Homolog
ous 
bridge 

CTTCCACTTTGCTACACTTCACTCCACTCCACTCGACTCAGCTCACTTATTAG
TGCCACCGAATTC 
GATAAACCAGAGCCCACGAGCAACAACACTACCAACACAAACGGCAAAAGTG
CAAGTGA 

gRNA 1F GTCGAAATCTCGCTGCGTAAACTA 
gRNA 1R AAACTAGTTTACGCAGCGAGATTT 
gRNA 2F GTCGAGGCAGCGCATGTCAATCGG 
gRNA 2R AAACCCGATTGACATGCGCTGCCT 
gRNA 3F GTCGCAAAAGCGCTAACGCAAGAA 
gRNA 3R AAACTTCTTGCGTTAGCGCTTTTG 
gRNA 4F GTCGCGTGGGCTCTGGTTTATCAA 
gRNA 4R AAACTTGATAAACCAGAGCCCACG 
genotype 
F 

CAAGAAGAGGAAAGGCAGTGC 

genotype 
R 

TTT GAT TCG AGT GGC TGC GAT  
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Drosophila lines 

Flies were raised on standard cornmeal-molasses-agar medium and grown at 

25° C. 

Table 3: Genotypes of Drosophila lines 
Fly line Full genotype Source Figures 

Wild type 
yw; +;+ or yw; sp/CyO;+ N/A 1B, H; 3A; 

5A, D, G 

DGRP Cross 1 Parent 1 
yw; Sp/CyO; DGRP57 

Bloomington, 
(100) 

1D 

DGRP Cross 1 Parent 2 
yw; Sp/CyO; DGRP228 Bloomington, 

(100) 
1D 

DGRP Cross 1 progeny 
yw; Sp/CyO; 
DGRP57/DGRP228 

Bloomington, 
(100) 

1D 

DGRP Cross 2 Parent 1 
yw; Sp/CyO; DGRP57 Bloomington, 

(100) 
1D 

DGRP Cross 2 Parent 2 
yw; Sp/CyO; DGRP352 Bloomington, 

(100) 
1D 

DGRP Cross 2 progeny 
yw; Sp/CyO; 
DGRP57/DGRP352 

Bloomington, 
(100) 

1D 

DGRP Cross 3 Parent 1 
yw; Sp/CyO; DGRP338 

Bloomington, 
(100) 

1D 

DGRP Cross 3 Parent 2 
yw; Sp/CyO; DGRP379 Bloomington, 

(100) 
1D 

DGRP Cross 3 progeny 
yw; Sp/CyO; 
DGRP338/DGRP379 

Bloomington, 
(100) 

1D 

DGRP Cross 4 Parent 1 
yw; Sp/CyO; DGRP379 Bloomington, 

(100) 
1D 

DGRP Cross 4 Parent 2 
yw; Sp/CyO; DGRP802 Bloomington, 

(100) 
1D 

DGRP Cross 4 progeny 
yw; Sp/CyO; 
DGRP379/DGRP802 Bloomington, 

(100) 

1D 

DGRP Cross 5 Parent 1 
yw; Sp/CyO; DGRP338 

Bloomington, 
(100) 

1D 

DGRP Cross 5 Parent 2 
yw; Sp/CyO; DGRP802 

Bloomington, 
(100) 

1D 

DGRP Cross 5 progeny 
yw; Sp/CyO; 
DGRP338/DGRP802 Bloomington, 

(100) 

1D 

DGRP Cross 6 Parent 1 
yw; Sp/CyO; DGRP40 

Bloomington, 
(100) 

1E 

DGRP Cross 6 Parent 2 
yw; Sp/CyO; DGRP228 

Bloomington, 
(100) 

1E 
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DGRP Cross 6 progeny 
yw; Sp/CyO; 
DGRP40/DGRP228 Bloomington, 

(100) 

1E 

DGRP Cross 7 Parent 1 
yw; Sp/CyO; DGRP40 

Bloomington, 
(100) 

1E 

DGRP Cross 7 Parent 2 
yw; Sp/CyO; DGRP352 

Bloomington, 
(100) 

1E 

DGRP Cross 7 progeny 
yw; Sp/CyO; 
DGRP40/DGRP352 Bloomington, 

(100) 

1E 

DGRP Cross 8 Parent 1 
yw; Sp/CyO; DGRP352 

Bloomington, 
(100) 

1E 

DGRP Cross 8 Parent 2 
yw; Sp/CyO; DGRP379 

Bloomington, 
(100) 

1E 

DGRP Cross 8 progeny 
yw; Sp/CyO; 
DGRP352/DGRP379 Bloomington, 

(100) 

1E 

DGRP Cross 9 Parent 1 
yw; Sp/CyO; DGRP352 
 Bloomington, 

(100) 

1E 

DGRP Cross 9 Parent 2 
yw; Sp/CyO; DGRP338 
 Bloomington, 

(100) 

1E 

DGRP Cross 9 progeny 
yw; Sp/CyO; 
DGRP352/DGRP338 Bloomington, 

(100) 

1E 

DGRP Cross 10 Parent 1 
yw; Sp/CyO; DGRP40 

Bloomington, 
(100) 

1F 

DGRP Cross 10 Parent 2 
yw; Sp/CyO; DGRP379 

Bloomington, 
(100) 

1F 

DGRP Cross 10 progeny 
yw; Sp/CyO; 
DGRP40/DGRP379 Bloomington, 

(100) 

1F 

DGRP Cross 11 Parent 1 
yw; Sp/CyO; DGRP57 

Bloomington, 
(100) 

1F 

DGRP Cross 11 Parent 2 
yw; Sp/CyO; DGRP379 

Bloomington, 
(100) 

1F 

DGRP Cross 11 progeny 
yw; Sp/CyO; 
DGRP57/DGRP379 Bloomington, 

(100) 

1F 

DGRP Cross 12 Parent 1 
yw; Sp/CyO; DGRP57 

Bloomington, 
(100) 

1F 

DGRP Cross 12 Parent 2 
yw; Sp/CyO; DGRP802 

Bloomington, 
(100) 

1F 

DGRP Cross 12 progeny 
yw; Sp/CyO; 
DGRP57/DGRP802 Bloomington, 

(100) 

1F 

DGRP Cross 13 Parent 1 
yw; Sp/CyO; DGRP228 

Bloomington, 
(100) 

1F 
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DGRP Cross 13 Parent 2 
yw; Sp/CyO; DGRP802 

Bloomington, 
(100) 

1F 

DGRP Cross 13 progeny 
yw; Sp/CyO; 
DGRP228/DGRP802 Bloomington, 

(100) 

1F 

DGRP Cross 14 Parent 1 
yw; Sp/CyO; DGRP379 

Bloomington, 
(100) 

1F 

DGRP Cross 14 Parent 2 
yw; Sp/CyO; DGRP195 

Bloomington, 
(100) 

1F 

DGRP Cross 14 progeny 
yw; Sp/CyO; 
DGRP379/DGRP195 Bloomington, 

(100) 

1F 

DGRP Cross 15 Parent 1 
yw; Sp/CyO; DGRP40 

Bloomington, 
(100) 

1G 

DGRP Cross 15 Parent 2 
yw; Sp/CyO; DGRP195 

Bloomington, 
(100) 

1G 

DGRP Cross 15 progeny 
yw; Sp/CyO; 
DGRP40/DGRP195 
 

Bloomington, 
(100) 

1G 

DGRP Cross 16 Parent 1 
yw; Sp/CyO; DGRP57 

Bloomington, 
(100) 

1G 

DGRP Cross 16 Parent 2 
yw; Sp/CyO; DGRP338 
 Bloomington, 

(100) 

1G 

DGRP Cross 16 progeny 
yw; Sp/CyO; 
DGRP57/DGRP338 Bloomington, 

(100) 

1G 

DGRP Cross 17 Parent 1 
yw; Sp/CyO; DGRP57 

Bloomington, 
(100) 

1G 

DGRP Cross 17 Parent 2 
yw; Sp/CyO; DGRP195 

Bloomington, 
(100) 

1G 

DGRP Cross 17 progeny 
yw; Sp/CyO; 
DGRP57/DGRP195 Bloomington, 

(100) 

1G 

DGRP Cross 18 Parent 1 
yw; Sp/CyO; DGRP352 
 Bloomington, 

(100) 

1G 

DGRP Cross 18 Parent 2 
yw; Sp/CyO; DGRP195 

Bloomington, 
(100) 

1G 

DGRP Cross 18 progeny 
yw; Sp/CyO; 
DGRP352/DGRP195 Bloomington, 

(100) 

1G 

DGRP Cross 19 Parent 1 
yw; Sp/CyO; DGRP228 

Bloomington, 
(100) 

1G 

DGRP Cross 19 Parent 2 
yw; Sp/CyO; DGRP338  

Bloomington, 
(100) 

1G 

DGRP Cross 19 progeny 
yw; Sp/CyO; 
DGRP228/DGRP338 Bloomington, 

(100) 

1G 
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sssin / sssin 
yw; +; sssin / sssin 

(101) 
1H 

sssin / wild type 
yw; +; sssin / + 

(101) 
1H 

wild type / ss def 
yw; +; + / Df(3R)Exel7330 

Bloomington, 
(163) 

2A; S1B 

protein null / ss def 
yw; +; ssD115.7 / 
Df(3R)Exel7330 Bloomington, 

(163, 164) 

2A 

promoter D / ss def 
yw; +; sspromoter D /  
Df(3R)Exel7330 Bloomington, 

(163) 

2A; S1B 

early enhancer D / ss def  
yw; +; ssearly enhancer D / 
Df(3R)Exel7330 Bloomington, 

(163) 

2A; S1B 

late enhancer D / ss def 
yw; +; ssenhancer deletion / 
Df(3R)Exel7330 Bloomington, 

(72, 163) 

2A; S1B 

early enhancer D / protein 
null 

yw; +; ssearly enhancer D / ssD115.7 
(164) 

2B 

late enhancer D / protein 
null 

yw; +; ssenhancer deletion / ssD115.7 
(72, 164) 

2C 

early enhancer D / promoter 
D 

yw; +; ssearly enhancer D / sspromoter 

D N/A 
2D 

late enhancer D / promoter 
D 

yw; +; ssenhancer deletion / sspromoter 

D (72) 
2E 

early enhancer D / late 
enhancer D 

yw; +; ssearly enhancer D / ssenhancer 

deletion (72) 
2F 

PRE12D / ss def 
yw; +; ssPRE12 deletion / 
Df(3R)Exel6269 Bloomington, 

(72, 163) 

3B 

sil1D / sil1D 
yw; +; ssRS6279exc44 

(167) 
3C 

PRE12D / protein null 
yw; +; ssPRE12 deletion / 
Df(3R)Exel7330 Bloomington, 

(72, 163) 

3D 

sil1D / protein null 
yw; +; ssRS6279exc44 / ssD115.7 

(164, 167) 
3E 

sstranslocation / PRE12D 
T(1;3)ssD114.3/ +; +; ssPRE12 

deletion / T(1;3)ssD114.3 
 

(72, 164) 
3F 

sstranslocation / sil1D 
T(1;3)ssD114.3/ +; +; 
T(1;3)ssD114.3 / ssRS6279exc44 
 

(164, 167) 
3G 
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PRE12D / promoter D 
yw; +; ssPRE12 deletion / sspromoter D 

(72) 
3H 

sstranslocation / ss def 
T(1;3)ssD114.3/ +; +; 
T(1;3)ssD114.3 / Df(3R)Exel6269 
 

Bloomington, 
(163, 164)  

4A 

sstranslocation / wild type 
T(1;3)ssD114.3/ +; +; 
T(1;3)ssD114.3 / + (164) 

4B 

sstranslocation / protein null 
T(1;3)ssD114.3/ +; +; 
T(1;3)ssD114.3 / ssD115.7 (164) 

4C 

ssinversion / ss def 
yw; +; ssGS2553exc80 / 
Df(3R)Exel7330 Bloomington, 

(163, 167) 

4D; 5C, F-H 

ssinversion / wild type 
yw; +; ssGS2553exc80 / +  

(167) 
4E; 5B, E, G, 
I 

ssinversion / protein null 
yw; +; ssGS2553exc80 / ssD115.7 

(164, 167) 
4F 

wild type/ Transgene A 
yw; +/ CyO; +/ 
pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330   

Bloomington, 
(97, 163) 

S1C 

early enhancer D / 
Transgene A 

yw; +/ CyO; ssearly enhancer D ; 
pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330   

Bloomington, 
(97, 163) 

S1D 

late enhancer D / 
Transgene A 

yw; +/ CyO; ssenhancer deletion; 
pBAC{pBJ250}ZH-86Fb, 
Df(3R)Exel7330   

Bloomington, 
(72, 97, 163) 

S1E 

 
Oligopaints probe libraries  
 
Table 4: Genome coordinates targeted by Oligopaints probe libraries 

Probe set Oligopaints 
library name 

Genome 
coordinates 

targeted 

Conjugated 
fluorophore 

Figures 

ssinversion Probe 
1 

high freq library 1 3R: 4,183,722-
4,243,722 
 

Cy5 5D-F 

ssinversion Probe 
2 

high freq library 2 3R: 16,404,001-
16,464,001 

 

Cy3 5D-F 

 
FISH distance quantifications 
 
Quantifications were performed as described in (72). All quantifications were 

performed in 3D on z-stacks with a slice thickness of 0.2 µm. Quantifications 

were performed manually using Fiji (175, 176). To chart the z position of each 
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FISH dot, a line was drawn through the dot and the Plot Profile tool was used to 

assess the stack in which the dot was brightest. To determine the x-y distance 

between the two FISH dots, a line was drawn from the center of one dot to the 

center of the other dot and the length of the line was measured with the Plot 

Profile tool. The distance between the FISH dots was then calculated in 3D. A 

total of 50 nuclei from three eye discs were quantified for each genotype (i.e. 

N=3, n=50).  

 

Oligopaints probe design 

Probes for DNA FISH were designed using the Oligopaints technique (149, 170), 

as described in (72). Target sequences were run through the bioinformatics 

pipeline available at http://genetics.med.harvard.edu/oligopaints/ to identify sets 

of 50-bp optimized probe sequences (i.e. “libraries”) tiled across the DNA 

sequence of interest. Five 19-bp barcoding primers, gene F and R, universal 

(univ) F and R, and random (rando) R, were appended to the 5’ and 3’ ends of 

each probe sequence. The gene F and R primers allowed PCR amplification of a 

probe library of interest out of the total oligo pool, and the univ F and R primers 

allowed conjugation of fluorophores, generation of single-stranded DNA probes, 

and PCR addition of secondary sequences to amplify probe signal. The rando R 

primer was appended at the 3’ end to maintain a constant sequence length 

between all probes that were synthesized in the custom oligo pool.  
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Barcoding primer sequences were taken from a set of 240,000 randomly 

generated, orthogonal 25-bp sequences (171) and run through a custom script to 

select 19-bp sequences with £15-bp homology to the Drosophila genome. 

Primers were appended to probe sequences using the orderFile.py script 

available at http://genetics.med.harvard.edu/oligopaints/. Completed probe 

libraries were synthesized as custom oligo pools by Custom Array, Inc. (Bothell, 

WA). 

 

DNA FISH 

DNA FISH was performed as described in (72). 20-50 eye-antennal discs 

attached to mouth hooks from third instar larvae were collected on ice and fixed 

in 129 µL ultrapure water, 20 µL 10X PBS, 1 µL Tergitol NP-40, 600 µL heptane, 

and 50 µL fresh 16% formaldehyde. Tubes containing the fixative and eye discs 

were shaken vigorously by hand, then fixed for 10 minutes at room temperature 

with nutation. Eye discs were then given three quick washes in 1X PBX, followed 

by three five-minute washes in PBX at room temperature with nutation. Eye discs 

were then removed from the mouth hooks and blocked for 1 hour in 1X PBX+1% 

BSA at room temperature with nutation. They were then incubated in primary 

antibody diluted in 1X PBX overnight at 4°C with nutation. Next, eye discs were 

washed three times in 1X PBX for 20 minutes and incubated in secondary 

antibody diluted in 1X PBX for two hours at room temperature with nutation. Eye 

discs were then washed two times for 20 minutes in 1X PBX, followed by a 20-

minute wash in 1X PBS. Next, discs were given one 10-minute wash in 20% 
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formamide+2X SSCT (2X SSC+.001% Tween-20), one 10-minute wash in 40% 

formamide+2X SSCT, and two 10-minute washes in 50% formamide+2X SSCT. 

Discs were then predenatured by incubating for four hours at 37°C, three minutes 

at 92°C, and 20 minutes at 60°C. Primary probes were added in 45 µL 

hybridization buffer consisting of 50% formamide+2X SSCT+2% dextran sulfate 

(w/v), + 1 µL RNAse A. All probes were added at a concentration of ³5 pmol 

fluorophore/µL. For FISH experiments in which a single probe was used, 4 µL of 

probe was added. For FISH experiments in which two probes were used, 2 µL of 

each probe was added. After addition of probes, eye discs were incubated at 

91°C for three minutes and at 37°C for 16-20 hours with shaking. Eye discs were 

then washed for 1 hour at 37°C with shaking in 50% formamide+2X SSCT. 1 µL 

of each secondary probe was added at a concentration of 100 pmol/µL in 50 µL 

of 50% formamide+2X SSCT. Secondary probes were hybridized for 1 hour at 

37°C with shaking. Eye discs were then washed twice for 30 minutes in 50% 

formamide+2X SSCT at 37°C with shaking, followed by three 10-minute washes 

at room temperature in 20% formamide+2X SSCT, 2X SSCT, and 2X SSC with 

nutation. Discs were mounted in SlowFade Gold immediately after the final 2X 

SSC wash, and imaged using a Zeiss LSM700 confocal microscope. 

 

Statistical analysis for FISH 

FISH datasets were tested for a Gaussian distribution using a D’Agostino and 

Pearson omnibus normality test and a Shapiro-Wilk normality test. These tests 

indicated a non-Gaussian distribution for the wild type control and for ssinversion / 
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WT, so datasets were tested for statistical significance using a one-way ANOVA 

on ranks with Dunn’s multiple comparisons test. 

 

 
 
 

200



4.6: Author Contributions 

The author list for this article was as follows: Kayla Viets, Chaim Chernoff, 

Elizabeth Urban, Jeong Han, Adrienne Chen, Caitlin Anderson, Sang Tran, 

Daniel Konzman, and Robert J. Johnston Jr. I was a co-first author on this 

publication with Chaim Chernoff and Elizabeth Urban. I was responsible for 

conceiving experiments, guiding other authors in completion of experiments, 

analyzing data, writing and editing the text, and performing the experiments in 

Figure 1D-G. Chaim Chernoff was responsible for conceiving experiments, 

analyzing data, editing the text, and performing the experiments in Figures 3-5 

and Supplemental Figures 1-3. Elizabeth Urban was responsible for conceiving 

experiments, guiding other authors in completion of experiments, analyzing data, 

editing the text, and performing the experiments in Figure 2. Jeong Han was 

responsible for performing the experiments in Supplemental Figure 4. Adrienne 

Chen assisted with fly crosses and data analysis. Caitlin Anderson generated 

CRISPR alleles and performed the experiments for Figure 1H. Sang Tran 

generated CRISPR alleles. Daniel Konzman performed preliminary experiments 

examining nuclear localization of the sstranslocation allele. Robert J. Johnston was 

the corresponding author and was responsible for conceiving experiments and 

editing the text.  

201



Figure 1

ss prot null

0% Ss (Rh4)

ss def

100% Ss (Rh4)

ss def

ss high freq ss high freq

ss prot null

90% Ss (Rh4)

C

A

Ss (Rh4)
Rh3

Spineless

Rh4Rh3

Spineless

Rh4Rh3

B

67% Ss (Rh4)

sssin

50% Ss (Rh4)

sin

sssin

67% Ss (Rh4)

wild type

wild type

sssin
sin

wild type

60% Ss (Rh4)

H

0
20
40
60
80

100

%
 S

s 
(R

h4
)

Group 1

0
20
40
60
80

100

%
 S

s 
(R

h4
)

*** **
** ***

Group 2
D E

Parent 1 / Parent 1
Parent 2 / Parent 2
Parent 1 / Parent 2

1 2 3 4 5
Cross

6 7 8 9
Cross

0
20
40
60
80

100

%
 S

s 
(R

h4
)

Group 3

****
****

****
****

****
****

****
*** ****

****

0
20
40
60
80

100

%
 S

s 
(R

h4
)

Group 4

****
****
****

****
****
****

****
***
****

****
**
**

****
*
**

F G

10 11 12 13 14
Cross

15 16 17 18 19
Cross

202



Figure 1: ss transvection “averages” the expression frequencies of 

naturally derived alleles. 

A. Spineless (Ss) activates Rh4 and represses Rh3.

B. Ss is expressed in ~67% of R7s. Red: Ss (Rh4), blue: Rh3.

C. A cross between flies containing the low-frequency ss prot null allele and flies

containing the high-frequency ss high freq allele results in progeny with an 

intermediate Ss (Rh4) expression frequency. Red “X” indicates a mutation in 

exon 4 of ss prot null that prevents the production of a functional protein product. 

Green “+” indicates a mutation that causes upregulation of ss high freq. Green 

and gray arrows indicate transcription start site. Orange box indicates ss protein 

coding region. 

D-G. Graphs of Ss (Rh4) expression for DGRP cross Groups 1-4. ****=p<0.0001,

***=p<0.001, **=p<0.005, *=p<0.05, unpaired t-test. 

D. Group 1: Ss (Rh4) frequencies of parents and progeny not statistically

different. 

E. Group 2: Ss (Rh4) frequencies of parents statistically different, Ss (Rh4)

frequency of progeny not statistically different from either parent. 

F. Group 3: Ss (Rh4) frequencies of parents statistically different, Ss (Rh4)

frequency of progeny statistically different from one parent. 

G. Group 4: Ss (Rh4) frequencies of parents statistically different, Ss (Rh4)

frequency of progeny statistically different from both parents. 

H. A cross between flies homozygous for sssin and flies homozygous for wild type

ss results in progeny with an intermediate Ss (Rh4) expression frequency. Green 
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arrow indicates transcription start site. Orange box indicates ss protein coding 

region. 
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Figure 2
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Figure 2: Activating ss transvection requires an enhancer and promoter in 

cis.  

A. Schematics of the wild type, promoter D, early enhancer D, late enhancer D, 

and protein null alleles. Ss (Rh4) percentages indicate the expression frequency 

for each allele over ss def. sil 1: silencer 1, early enh: early enhancer, late enh: 

late enhancer, sil 2: silencer. Gray ovals: exons, black arrow: promoter.  

B-F. Schematics and representative images of Ss (Rh4) expression frequency 

for early enhancer D / protein null, late enhancer D / protein null, early enhancer D 

/ promoter D, late enhancer D / promoter D, and early enhancer D / late enhancer 

D.  

B-C, F. Large green arrow indicates that activating transvection is occurring 

between ss alleles.  

D. Small green arrow indicates that activating transvection is occurring between 

ss alleles, but at a weaker level than in wild-type flies.  

E. Green arrow with red “X” indicates that activating transvection is not occurring 

between ss alleles.  
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Figure 3
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Figure 3: Repressing ss transvection requires two PREs and an insulator 

element.  

A. Schematic of the wild-type ss locus with an expanded view of silencer 1, 

which contains two PREs and an insulator. sil 1: silencer 1, early enh: early 

enhancer, late enh: late enhancer, sil 2: silencer. Gray ovals: exons, black arrow: 

promoter. 

B-E. Schematics and representative images of Ss (Rh4) expression frequency 

for silencer1D / silencer1D, PRE12D / ss def, PRE12D / protein null, and silencer 

1D / protein null. Purple oval: insulator, orange diamonds: PREs.  

D. Red flat arrow indicates that silencer 1 on protein null is performing repressing 

transvection on PRE12D. 

E. Dotted red flat arrow with black “X” indicates that silencer 1 on protein null is 

not performing repressing transvection on silencer 1D.  
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Figure 4
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Figure 4: Silencer 1 repressing transvection on sstranslocation requires two 

copies of an insulator. 

A-E: Schematics and representative images of Ss (Rh4) expression frequency 

for sstranslocation / ss def, sstranslocation / wild type, sstranslocation / protein null, 

sstranslocation / PRE12D, and sstranslocation / silencer 1D. Red boxes: silencers 1 and 

2, green boxes: early enhancer and late enhancer, gray ovals: exons, black 

arrow: promoter, blue lines: X chromosome, black lines: Chr 3.  

B. Red flat arrows with a “?” indicate that it is unclear which copy of silencer 1 is 

repressing Ss (Rh4) expression frequency in the sstranslocation / wild type 

background.  

C. Red flat arrows with a “?” indicate that it is unclear which copy of silencer 1 is 

repressing Ss (Rh4) expression frequency in the sstranslocation / protein null 

background. 

D. Red flat arrows indicate that silencer 1 on sstranslocation is performing repressing 

transvection on PRE12D and on the protein coding region of sstranslocation. 

E. Dotted red flat arrows with black “X” indicate that silencer 1 on sstranslocation is 

not performing repressing transvection on silencer 1D or on the protein coding 

region of sstranslocation. 
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Figure 5
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Figure 5: The inverted ss silencer 1 colocalizes with the ss protein coding 

region independent of a template allele.  

A. Schematic showing a possible chromatin conformation for step 1 of our 

hypothesized repressive transvection mechanism. The wild type allele of ss acts 

as a template for homologous pairing, allowing the protein coding region of 

ssinversion to loop back and interact with silencer 1 of ssinversion.  Red boxes: 

silencers 1 and 2, green boxes: early enhancer and late enhancer, gray ovals: 

exons, black arrow: promoter. Dotted lines indicate the 12-Mb region that 

separates silencer 1 and the ss protein coding region on the ssinversion allele.  

B. Schematic of step 2 of our hypothesized repressive transvection mechanism. 

Two copies of the insulator allow silencer 1 of ssinversion to repress the protein 

coding region of ssinversion. Green arrows indicate an interaction between the two 

copies of the insulator. Red flat arrow indicates that silencer 1 of ssinversion is 

performing repressive transvection on the protein coding region of ssinversion. Red 

boxes: silencers 1 and 2, green boxes: early enhancer and late enhancer, gray 

ovals: exons, black arrow: promoter, purple ovals: insulator. Dotted lines indicate 

the 12-Mb region that separates silencer 1 and the ss protein coding region on 

the ssinversion allele. 

C-D. Schematics indicating the locations on a wild-type ss allele and on ssinversion 

targeted by probe sets 1 and 2. Red boxes: silencers 1 and 2, green boxes: early 

enhancer and late enhancer, gray ovals: exons, black arrow: promoter. 

E-G. Schematics of nuclear localization of probe sets 1 and 2 in a wild type 

control, a nucleus where silencer 1 of ssinversion is not interacting with the protein 
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coding region of ssinversion, and a nucleus where silencer 1 of ssinversion is 

interacting with the protein coding region of ssinversion.  

H-J. Representative DNA FISH images of wild type control, ssinversion / wild type, 

and ssinversion / ss def. Green: probe set 1, red: probe set 2, white: Lamin B 

(nuclear marker). Scale bars=1 µm.  

K. Quantification of 5H-J. Black: control, blue: experimental lines. ****=p<0.0001, 

one-way ANOVA on ranks with Dunn’s multiple comparisons test.  
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Figure 6

Simultaneous looping

A

preinitation complex

Enhancer-promoter complex

B

Looping to active conformation

C

214



Figure 6: Models for the mechanism of ss activating transvection.  

A-C. Red boxes: silencers 1 and 2, green boxes: early enhancer and late 

enhancer, gray ovals: exons. 

A. Simultaneous looping. Green arrows indicate that the enhancer is activating 

expression from both ss alleles. Black arrows: promoter. 

B. Enhancer-promoter complex. Green arrows indicate that the enhancer is 

activating the promoter in cis, and that together the enhancer and promoter in cis 

activate the promoter in trans. Black arrows: promoter.  

C. Looping to active conformation. Green arrows indicate that both alleles are 

expressed due to an activating looping conformation. 
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Supplemental Figure 1: promoter D does not perform transvection with 

protein null. 

A. Schematic of promoter D / protein null. Red boxes: silencers 1 and 2, green 

boxes: early enhancer and late enhancer, black arrow: promoter, gray ovals: 

exons. 

B. Representative image of promoter D / protein null. 
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Supplemental Fig 2
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Supplemental Figure 2: late enhancer D and early enhancer D are 

competent to perform transvection with Transgene A. 

A. Schematic of the Transgene A allele, in which Transgene A is recombined 

with ss def, with an expanded view of Transgene A, which contains the cis 

regulatory regions and first three exons of ss and is marked with a GFP tag. Red 

box: silencer 1, green boxes: early enhancer and late enhancer, black arrow: 

promoter, gray ovals: exons. 

B. Schematics of the wild type, early enhancer D, and late enhancer D alleles. Ss 

(Rh4) percentages indicate the expression frequency for each allele over ss def. 

sil 1: silencer 1, early enh: early enhancer, late enh: late enhancer, sil 2: silencer. 

Gray ovals: exons, black arrow: promoter. 

C-E. Schematics and representative images of Ss (Rh4) expression frequency 

for wild type / Transgene A, early enhancer D / Transgene A, and late enhancer D 

/ Transgene A. Green arrows indicate that Transgene A is performing activating 

transvection.  
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Supplemental Figure 3: The PREs of promoter D are competent to perform 

repressing transvection on PRE12D.  

A. Schematic of PRE12D / promoter D. Red boxes: silencers 1 and 2, green 

boxes: early enhancer and late enhancer, black arrow: promoter, gray ovals: 

exons, orange diamonds: PREs, purple ovals: insulators. Red flat arrow indicates 

that silencer 1 on promoter D is performing repressing transvection on PRE12D.  

B. Representative image of PRE12D / promoter D. 
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Supplemental Fig. 4
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Supplemental Figure 4: Silencer 1 repressing transvection on ssinversion 

requires two copies of an insulator. 

A-C. Schematics and representative images of ssinversion / ss def, ssinversion / wild 

type, ssinversion / protein null, ssinversion / PRE12D, and ssinversion / silencer 1D. Red 

boxes: silencers 1 and 2, green boxes: early enhancer and late enhancer, black 

arrow: promoter, gray ovals: exons, purple ovals: insulators. 

B. Red flat arrows with a “?” indicate that it is unclear which copy of silencer 1 is 

repressing Ss (Rh4) expression frequency in the ssinversion / wild type background.  

C. Red flat arrows with a “?” indicate that it is unclear which copy of silencer 1 is 

repressing Ss (Rh4) expression frequency in the ssinversion / protein null 

background. 
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Chapter 5: Unpublished Data 

5.1: Button pairing is position-independent 

 Transgene E, a “pairer” transgene that spans a button on chromosome 

3R, drives pairing with endogenous ss when inserted on chromosome 2L and on 

chromosome 3L (72), suggesting that buttons drive pairing with their homologous 

sequences independent of their location in the genome. To test this hypothesis, 

we examined an additional 3R button transgene, Transgene A, which drives 

pairing when inserted on chromosome 2L (72). We inserted Transgene A onto 

chromosome 3L and tested whether it drove pairing with its endogenous locus on 

chromosome 3R using DNA Oligopaints FISH (Fig. 1A)(149, 170). As the 

endogenous and transgenic sequences were identical, we distinguished between 

them using a two-color FISH strategy, labeling the sequence neighboring the 

endogenous locus with red probes and the sequence neighboring the transgene 

insertion site with green probes (Fig. 1A). Similar to Transgene E, Transgene A 

drove pairing with its endogenous locus when inserted onto chromosome 3L 

(Fig. 1B-C, E), indicating that buttons drive pairing regardless of their genomic 

location.  

 Transgenes that do not encompass entire buttons do not drive pairing with 

their endogenous loci (“non-pairers”)(72). To test whether this inability to drive 

pairing was affected by transgene insertion site, we examined Transgene L, 

which does not drive pairing with its endogenous locus on 3R when inserted onto 

chromosome 2L (72). We inserted Transgene L onto chromosome 3L and tested 

its ability to drive pairing using a two-color FISH strategy (Fig. 1A). Transgene L 
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did not drive pairing with its endogenous locus from chromosome 3L (Fig. 1B, D-

E), suggesting that non-pairer transgenes cannot drive pairing from any location 

in the genome.  

 

5.2: Identification of additional buttons across the Drosophila genome 

 We previously identified button sequences located on chromosomes X, 

2L, 2R, and 3R (72). TADs are a feature of buttons: out of all transgenes tested, 

80% of pairers span a complete TAD, while only 12% of non-pairers span a 

complete TAD (72). To further test the hypothesis that TADs drive pairing, we 

selected two transgenes encompassing entire TADs on chromosomes 3L and 3R 

(Transgenes EE and GG; Fig. 2E, K) and one transgene that did not encompass 

an entire TAD, taken from chromosome 3L (Transgene FF; Fig. 2F). We inserted 

each transgene at the same site on chromosome 2L and tested whether they 

could drive pairing with their endogenous locus using a one-color FISH strategy, 

in which the identical transgene and endogenous sequences were labeled with 

the same red fluorescent probes (Fig. 2A, H). With this 1-color strategy, FISH 

punctae £0.4 µm apart could not be distinguished as separate and were 

assigned a distance of 0.4 µm apart. Transgenes EE and GG drove pairing (Fig. 

2B-C, G, I-J, L), while Transgene FF did not drive pairing (Fig. 2B, D, G), further 

indicating that TADs drive pairing. 

 We have identified button TADs on chromosomes X, 2L, 2R, 3L, and 3R, 

strongly supporting the conclusion that specialized TADs interspersed across the 

Drosophila genome are responsible for bringing homologous chromosomes 
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together. Drosophila chromosome 4 also pairs, but its TADs are less well-defined 

than the other Drosophila chromosomes (11). We hypothesized that weaker 

TADs on chromosome 4 might drive the homologous pairing of this chromosome. 

Therefore, we adjusted our TAD-calling parameters to identify TADs on 

chromosome 4. Unlike for the other chromosomes, where we used a 

directionality index score of 0.8 or higher to call a TAD, we called a TAD on 

chromosome 4 if there was any positive directionality index peak followed by a 

negative directionality index peak. Using these parameters, we identified a TAD 

near the dati locus on chromosome 4 (Fig. 2P). We inserted Transgene HH, 

which spans this TAD, onto chromosome 2L and tested whether it could drive 

pairing with its endogenous locus on chromosome 4 (Fig. 2M). Similar to 

transgenes spanning TADs taken from other chromosomes, Transgene HH 

drove pairing with its endogenous locus (Fig. 2N-O, Q). Together, our data 

suggest that TADs drive homologous chromosome pairing between all of the 

Drosophila chromosomes.  

 

5.3: Polycomb mutations affect pairing between copies of ss 

 TADs are an important contributor to homologous chromosome pairing, 

but we were curious whether trans factors are also involved in driving pairing 

between transgenes and their homologous endogenous loci. Previous studies 

have identified the Polycomb Group Complex as an important factor in both 

homologous pairing and interchromosomal clustering of heterologous sequences 

(67, 70, 71). We therefore tested the effects of the Polycomb mutant alleles Pc4 
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and Pcxt on pairing between Transgene E on chromosome 2L and its 

endogenous locus on chromosome 3R (Fig. 3A, F). Both Polycomb mutant 

alleles caused a reduction in pairing compared to a wild type control (Fig. 3A-J), 

indicating that Polycomb contributes to homologous chromosome pairing.  

 

5.4: Investigating the effects of condensin mutations on pairing between ss 

copies 

 The condensin II protein complex has been previously identified as an 

“anti-pairer”; overexpression of condensin proteins causes a loss of pairing, while 

knockdown of condensin proteins increases pairing (60, 66). We used alleles of 

CapH2, a component of the condensin complex, to investigate the role of 

condensin II in pairing of Transgene E on chromosome 2L with its endogenous 

site on chromosome 3R (Fig. 3A). We hypothesized that CapH2 overexpression 

would cause decreased pairing, while CapH2 mutants would cause increased 

pairing. Using a one-color FISH strategy, we found that overexpressing CapH2 in 

our cells of interest (larval photoreceptors) using an eyeless driver did not affect 

Transgene E pairing (Fig. 3K, O). Surprisingly, one of the three CapH2 mutants 

(Mutant 1) we examined caused a decrease in pairing between Transgene E and 

its endogenous site (Fig. 3L, O). Mutants 2 and 3 had no effect on Transgene E 

pairing (Fig. 3M-O). Thus, further investigation with additional condensin II 

mutants and with stronger drivers of CapH2 overexpression is required to 

determine the role of condensin in transgene-driven pairing. 
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5.5: Individual DNA element deletions do not affect ss pairing 

 CRISPR deletions of DNA elements within the spineless (ss) locus, 

including the promoter and PREs (Fig. 4A), reduce transvection between alleles 

of ss (98). To test whether this loss of transvection is due to a loss of 

homologous pairing between ss copies, we examined the effects of CRISPR 

deletions on pairing between endogenous ss and Transgene E, which contains 

the ss locus. We used a one-color FISH strategy to test whether Transgene E 

could drive pairing with alleles of ss containing CRISPR deletions of the promoter 

(promD) or PREs (PRE12D)(Fig. 4A-B). Transgene E drove pairing with both 

promD and PRE12D, indicating that deletions of small DNA elements within the 

ss locus do not affect homologous pairing between copies of ss (Fig. 4C-F, H). 

These data further support our earlier conclusion that homologous chromosome 

pairing is necessary but not sufficient for transvection: while these CRISPR 

alleles are still competent to pair, they cannot perform transvection. 

 

5.6: Deletion of the interior of the ss TAD reduces pairing between copies 

of ss  

 TADs drive homologous pairing, but what features of TADs allow them to 

find their homologues within the nucleus? Studies using haplotype-resolved HiC 

suggest that TAD boundaries may be responsible for pairing (62, 63). Supporting 

this hypothesis, insulators have been previously linked to pairing and are 

enriched at TAD boundaries (11, 69). To examine whether TAD boundaries 

alone are sufficient to drive pairing, we generated a CRISPR allele in which the 
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entire ss locus is deleted, removing a large portion of the interior of the TAD that 

contains ss (ss fullD; Fig. 4A). We then tested Transgene E, which contains the 

ss locus, for pairing with this allele using a one-color FISH strategy (Fig. 4B). 

Transgene E did not drive pairing with ss full D (Fig. 4C, G-H), supporting a 

model in which TAD interiors work with TAD boundaries to drive homologous 

chromosome pairing.  

 

5.7: ss nuclear localization changes with ss expression state 

 The localization of a relative to various nuclear subcompartments can 

have major effects on its expression (14-19). For example, active genes are often 

targeted to the interior of the nucleus (Fig. 5A), while inactive genes are often 

localized near the repressive nuclear lamina at the nuclear periphery (Fig. 

5B)(14-19). To investigate the relationship between ss nuclear localization and 

ss expression state, we examined ss localization in three cell types: 1. R7 larval 

photoreceptors, where Ss is expressed in 67% of cells; 2. The larval eye disc 

peripodial membrane, where Ss is not expressed; and 3. The larval antennal 

disc, where Ss is expressed in 100% of cells.  

 We used DNA Oligopaints FISH probes to fluorescently label the ss locus 

and visualize is location within the nucleus. To quantify ss nuclear localization in 

each cell type, we measured the shortest distance from the ss FISH puncta to 

the nuclear lamina in 3D. To account for variation in nuclear size, we normalized 

all distance measurements by dividing them by the diameter of the nucleus. We 

then sorted the distance measurements into five bins and determined the 
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percentage of nuclei for each cell type that fell into each bin (Fig. 5C). We 

hypothesized that in the peripodial membrane, where Ss is off, ss would localize 

near the nuclear lamina. In the antennal disc, where Ss is on, we hypothesized 

that ss would localize to the nuclear interior. In R7s, where Ss is expressed in a 

subset of cells, we hypothesized that ss localization would vary between the 

nuclear lamina and nuclear interior. 

 As we hypothesized, ss localization was biased towards the interior of the 

nucleus in the antennal disc, where Ss is expressed (Fig. 5C). Unexpectedly, ss 

localization was biased towards the nuclear periphery in R7s, where Ss is 

expressed in 67% of cells (Fig. 5C). In the peripodial membrane, where Ss is not 

expressed, ss localization was broadly distributed between the nuclear periphery 

and nuclear interior (Fig. 5C).  

These data are consistent with a model in which ss is targeted to different 

activating or repressing compartments in each cell type. While the nuclear 

periphery is typically a repressive environment, active genes often localize to the 

nuclear pore complex (NPC)(14-16). In R7s, ss may localize to the NPC in the 

67% of cells where it is active, and to the nuclear lamina in the 33% of R7s 

where it is repressed (Fig. 5D). A change in localization from the lamina to the 

NPC upon expression might require less drastic rearrangement of nuclear 

architecture than a change from the nuclear periphery to the nuclear interior, 

allowing easier control of ss expression in this variable cell type. In the peripodial 

membrane, where ss is repressed, ss nuclear localization may be more random 

because this cell type does not require precise regulation of ss for its 
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development (Fig. 5E). Additional regulatory mechanisms, such as epigenetic 

state and repressive trans factors, may contribute to ss repression in this cell 

type. In the antennal disc, where ss is ubiquitously expressed, ss may target to 

the nuclear interior to ensure its robust and consistent expression (Fig. 5F).  

 

5.8: Materials and Methods 

Generation of CRISPR lines 

promD and PRE12D CRISPR lines were generated in references (72, 98) using 

methods and oligos detailed in references (72, 98, 101, 172-174). ss fullD was 

generated as described in references (72, 98, 101, 172-174). For ss fullD, sense 

and antisense DNA oligos for the forward and reverse strands of four gRNAs 

were designed to generate BbsI restriction site overhangs. The oligos were 

annealed and cloned into the pCFD3 cloning vector (Addgene, Cambridge, MA). 

A single-stranded DNA homology bridge was generated with 60-bp homologous 

regions flanking each side of the predicted cleavage site. The gRNA constructs 

(125 ng/µl) and homologous bridge oligo (100 ng/µl) were injected into 

Drosophila embryos (BestGene, Inc., Chino Hills, CA). Single males were 

crossed with a balancer stock (yw; +; TM2/TM6B), and F1 female progeny were 

screened for the insertion via PCR, restriction digest, and sequencing. Single F1 

males whose siblings were positive for the deletion were crossed to the balancer 

stock (yw; +; TM2/TM6B), and the F2 progeny were screened for the deletion via 

PCR, restriction digest, and sequencing. Deletion-positive flies from multiple 

founders were used to establish independent stable stocks. 
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The following oligos were used for the ss fullD CRISPR:  

Table 1: Oligos used for ss fullD CRISPR 

Oligo 
name 

Sequence 

Homologo
us bridge 

AGACAAACTGTCTGCAGGTCCTGTTCCTCCTGCTCCTTCTGCTCCTCCTGCA
GGCCATAT 
CTGTGGTCGAGTGTTGTTGGCGCTAAGATTGACCTTAAAATCGGATTTTTTG
TTTTTTTT 

gRNA 1F GTCGATCGTCTATCTGGGCGCGTG 
gRNA 1R AAACCACGCGCCCAGATAGACGAT 
gRNA 2F GTCGTCAGCCTCGCAGATTGGATA 
gRNA 2R AAACTATCCAATCTGCGAGGCTGA 
gRNA 3F GTCGTGATTGCGAGTCTTGAGCTG 
gRNA 3R AAACCAGCTCAAGACTCGCAATCA 
gRNA 4F GTCGGATGGCGCGAGCAAGGTTTT 
gRNA 4R AAACAAAACCTTGCTCGCGCCATC 
genotype 
F 

GCTGCTTGTGTTGTTGTCGTC 

genotype 
R 

CGTGCATCAGTGTGTGAGTT 

 

Drosophila lines 

Flies were raised on standard cornmeal-molasses-agar medium and grown at 

25° C. 

Table 2: Genotypes of Drosophila lines 
Fly line Full genotype Source Figures 

Wild type 
yw; +; + or  
yw; pm181>Gal4, 
UAS>mcd8GFP/CyO; + 

(158) 1B, E; 2B, G, I, L, 
N, Q; 3A, D-E, M; 
4C, H; 5A-C  

Transgene A 3L 
yw; +; pBAC{CH321-
94A21}VK00033 

(159)* 1C, E 

Transgene L 3L  
yw; +; pBAC{CH321-
65B2}VK00033 

(159)* 1D-E 

Transgene EE 
yw; pBac{CH321-
88G14}VK00037; + 

(159)* 2C, E, G 

Transgene FF 
yw; pBAC{CH321-
92P24}VK00037; + 

(159)* 2D, F-G 

Transgene GG 
yw; pBAC{CH321-
32O17}VK00037, +/SM5-TM6B 

(159)* 2J-L 

Transgene HH 
yw; pBac{CH321-86F02}VK00037; 
+ 

(159)* 2O-Q 

WT+E 
yw; pBac{CH321-
28L15}VK00037/+; + 

(97, 159) 3B, D, F, H, M; 
4D, H 

232



Pc4 + E 
yw; pBac{CH321-
28L15}VK00037/CyO; Pc4/TM6B 

(159, 194) 3C-D 

Pcxt + E 
yw; pBac{CH321-28L15}/+; Pcxt/+ (159, 195) 3G-H 

CapH2 OE + E 
yw; pBac{CH321-
28L15}VK00037/CyO; P{ey1x-
GAL4.Exel}3/UAS>CapH2  

Bloomington, 
(66, 159)  

3I, M 

CapH2 Mutant 1 + 
E 

yw; pBac{CH321-
28L15}VK00037/CyO; 
CapH2eo3210/ Df(3R)Exel6159 

(66, 159, 
163)  

3J, M 

CapH2 Mutant 2 + 
E 

yw; pBac{CH321-
28L15}VK00037/CyO; CapH2eo3210 

(66, 159)  3K, M 

CapH2 Mutant 3 + 
E 

yw; pBac{CH321-
28L15}VK00037/CyO; CapH2z3-

0019/ Df(3R)Exel6159 

(66, 159, 
163) 

3L-M 

promD + E 
yw; pBac{CH321-
28L15}VK00037/CyO; ss promD/ 
Df(3R)Exel6269 

(98, 159, 
163)  

4A, E, H 

PRE12D + E 
yw; pBac{CH321-
28L15}VK00037/CyO; ssPRE12D 

(72, 159) 4A, F, H 

ss fullD + E 
yw; pBac{CH321-
28L15}VK00037/CyO; ssfull deletion 

(159) 4A, G-H 

 
*Constructs were purchased from the CHORI Drosophila melanogaster BAC 

library collection (159) and sent to Rainbow Transgenic Flies, Inc. (Camarillo, 

CA) for injection.  

 

Antibodies 

Mouse anti-Lamin B (DSHB ADL67.10 and ADL84.12) antibody was used at a 

dilution of 1:100. Secondary antibody (Molecular Probes, 488 donkey anti-

mouse) was Alexa Fluor-conjugated and used at a dilution of 1:400. 

Oligopaints probe libraries 

 
Table 3: Genome coordinates targeted by Oligopaints probe libraries 

Probe set Oligopaints library 
name 

Genome 
coordinates 

targeted 

Conjugated 
fluorophore 

Figures 

Neighboring 3L 
insertion site 

pBJ250>3L(65B2) 
insertion site 

3L: 6,442,676-
6,502,676 

Cy5 1B-D; 2B 
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3L-3R control 
sequence 

spineless 50-kb 
extension (left) 

3R: 16,320,533-
16,370,533 

Cy3 1B 

Transgene A 
neighboring 

endogenous sequence  

downstream of 94A21 3R: 16,240,324-
16,290,324 

Cy3 
 

1C 

Transgene L 
neighboring 

endogenous sequence 

downstream of 60D22 3R: 16,844,756-
16,894,756 

 

Cy3 1D 

2L-3L control 
sequence 

upstream of clamp 
DNA 

2L: 22,115,720-
22,165,720 

Cy3 2B 

Transgene EE Nf-YA 25-kb left 
extension+Nf-YA 

DNA+Nf-YA 25-kb 
right extension 

3L: 9,414,490-
9,468,232 

Cy3 2C 

Transgene FF caup DNA 
3L: 12,596,018-
12,693,639 

Cy3 2D 

Neighboring 2L 
insertion site 

right of 2L>22A3 
transgene insertion 

site 

2L: 1,582,821-
1,642,821 

 

Cy5 2I, N; 3A, E-
G; 4C 

endogenous ss old ss 90K library  3R: 16,374,660-
16,430,430 

Cy3 2I; 3A-C, E, 
I-L; 4C-G; 

5A-B 
Transgene GG downstream of 38G20 3R: 16,263,284-

16,313,284 
Cy3 

 
2J 

Transgene HH dati DNA 4: 375,555-436,956 Cy3 2N-O 
WT+E 2-color probe spineless 50-kb 

extension (right) 
3R: 16,435,681-

16,485,681 
Cy3 3F-G 

Oligopaints probe design 

Probes were designed as described in references (72, 98). 

  

DNA FISH 

FISH was performed using the protocol described in references (72, 98).  

 

Pairing quantifications 

Quantifications were performed as described in references (72, 98). 50 total 

nuclei across three eye/antennal discs were quantified for each dataset (i.e. N=3, 

n=50).  
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HiC mapping and TAD calling 

HiC analysis was performed as described in (72). 

Statistical analysis 

All datasets were tested for a Gaussian distribution using a D’Agostino 

and Pearson omnibus normality test and a Shapiro-Wilk normality test. If either 

test indicated a non-Gaussian distribution for any of the datasets in an 

experiment, datasets were tested for statistical significance using a Wilcoxon 

rank-sum test (for single comparisons) or a one-way ANOVA on ranks with 

Dunn’s multiple comparisons test (for multiple comparisons). If both the 

D’Agostino and Pearson and the Shapiro-Wilk tests indicated a Gaussian 

distribution for all datasets in an experiment, datasets were tested for statistical 

significance using an unpaired t-test with Welch’s correction (for single 

comparisons) or an ordinary one-way ANOVA with Dunnett’s multiple 

comparisons test (for multiple comparisons). 
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Figure 1: Buttons drive pairing independent of their localization in the 

genome.  

A. Schematic indicating the locations targeted by FISH probes in our two-color

FISH strategy. 

B-D. Representative images for 3L-3R control, Transgene A 3L, and Transgene

L 3L. White: Lamin B, green: probes neighboring transgene insertion site, red: 

probes neighboring endogenous site. Scale bars=1 µm.  

E. Quantification of 1B-D. **=p<0.005, ns=p>0.05, one-way ANOVA on ranks

with Dunn’s multiple comparisons test.  
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Figure 2: Identification of additional buttons across the Drosophila 

genome.  

A, H, M. Schematics indicating the locations targeted by FISH probes in our one-

color FISH strategy.  

B-D, I-J, N-O. Representative images for 2L-3L control, Transgene EE,

Transgene FF, 2L-3R control, Transgene GG, 2L-4 control, and Transgene HH. 

White: Lamin B, red: probes labeling the transgene and endogenous sequences. 

Scale bars=1 µm.  

E-F, K. Representative directionality indices showing TAD coverage of each

transgene, based on consensus TAD calls generated from the analysis of 14 Hi-

C datasets (177-180). Red lines indicate a directionality index signal of 0.8 or -

0.8, the cutoff for a TAD. Representative directionality indices are from NCBI 

accession numbers GSE63515 (Transgene EE) and GSE38468 (Transgenes FF 

and GG). Directionality indices are shown for the entire region spanned by each 

transgene. 

G. Quantification of 2B-D. *=p<0.05, ns=p>0.05, one-way ANOVA on ranks with

Dunn’s multiple comparisons test. Black: control, blue: pairer, gray: non-pairer. 

L. Quantification of 2I-J. **=p<0.005, Wilcoxon rank-sum test. Black: control,

blue: pairer. 

P. Representative directionality index showing TAD coverage of Transgene HH,

based on consensus TAD calls generated from the analysis of 14 Hi-C datasets 

(177-180). Representative directionality index is from NCBI accession number 
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GSE63515. Directionality index is shown for the entire region spanned by 

Transgene HH. 

Q. Quantification of 2N-O. ***=p<0.001, Wilcoxon rank-sum test. Black: control,

blue: pairer. 
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Figure 3: Examining the effects of trans factor mutations on ss pairing. 

A. Schematic indicating the locations targeted by FISH probes in our one-color

FISH strategy. 

B-D. Representative images for one-color 2L-3R control, one-color WT+E, and

Pc4+E. White: Lamin B, red: probes labeling the endogenous ss and Transgene 

E sequences. Scale bars=1 µm. 

E. Quantification of 3B-D. **=p<0.005, *=p<0.05, one-way ANOVA on ranks with

Dunn’s multiple comparisons test. Black: control, blue: pairer. 

F. Schematic indicating the locations targeted by FISH probes in our two-color

FISH strategy. 

G-I. Representative images for two-color 2L-3R control, two-color WT+E, and

Pcxt+E. White: Lamin B, green: probes neighboring Transgene E insertion site, 

red: probes neighboring endogenous ss. Scale bars=1 µm. 

J. Quantification of 3G-I. **=p<0.005, ns=p>0.05, one-way ANOVA on ranks with

Dunn’s multiple comparisons test. Black: control, blue: pairer, gray: non-pairer. 

K-N. Representative images for CapH2 OE+E, CapH2 Mutant 1+E, CapH2

Mutant 2+E, and CapH2 Mutant 3+E. White: Lamin B, red: probes labeling the 

endogenous ss and Transgene E sequences. Scale bars=1 µm. 

O. Quantification of 3K-N. ****=p<0.0001, ***=p<0.001, *=p<0.05, ns=p>0.05,

one-way ANOVA on ranks with Dunn’s multiple comparisons test. Black: control, 

blue: pairer, gray: non-pairer. 
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Figure 4: Examining the effects of DNA element CRISPR deletions on ss 

pairing.  

A. Schematic of wild type ss, the promD, PRE12D, and ss fullD CRISPR alleles,

and Transgene E. Sil 1: silencer 1, early enh: early enhancer, late enh: late 

enhancer, sil 2: silencer 2, gray ovals: exons, black arrow: transcription start site. 

B. Schematic indicating the locations targeted by FISH probes in our one-color

FISH strategy. 

C-G. Representative images for 2L-3R control, WT+E, promD+E, PRE12D+E,

and ss fullD+E. White: Lamin B, red: probes labeling the endogenous ss and 

Transgene E sequences. Scale bars=1 µm. 

H. Quantification of 4C-G. *=p<0.05, ns=p>0.05, one-way ANOVA on ranks with

Dunn’s multiple comparisons test. Black: control, blue: pairer, gray: non-pairer. 
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Figure 5: The nuclear localization of ss varies with ss expression state. 

A-B. Representative images of ss localization to the nuclear interior vs. the

nuclear periphery. Red: FISH probes targeting endogenous ss, white: Lamin B. 

Scale bars=1 µm. 

C. Quantifications of the normalized distance of ss from the nuclear periphery in

R7s, peripodial membrane cells, and antennal disc cells. 

D-F. Models for the localization of ss in R7s, peripodial membrane cells, and

antennal disc cells. Red circle: ss locus.  

D. NPC=Nuclear pore complex.

246



Chapter 6: Conclusions and Future Directions 

6.1: The study of pairing and transvection provides insights into nuclear 

organization  

Nuclear organization is an important factor controlling gene expression, 

but many questions remain unanswered in the field. What is the biological role of 

TADs? What are the cis and trans factors that drive interactions between 

chromosomes? How do these interactions between chromosomes affect gene 

expression? How reproducible are these interactions between cell types?  

Using Drosophila homologous chromosome pairing and transvection as a 

paradigm, this work begins to answer some of these fundamental questions. We 

find that specialized TADs drive pairing between transgenes and their 

homologous endogenous sequences, providing the first evidence of a general 

feature that contributes to homologous chromosome pairing genome-wide. 

Furthermore, our data suggest a biological role for TADs in driving 

interchromosomal interactions.  

In addition to TADs, we find that insulators and Polycomb Group Complex 

proteins may also contribute to homologous pairing. Clusters of insulators, 

Polycomb proteins, and additional chromatin and architectural proteins may bind 

to TAD regions at specific intervals and in specific combinations, providing each 

TAD with a unique “code” that allows it to pair with its homologue. Thus, we 

propose a model in which specialized TADs bound by complex combinations of 

proteins act as the buttons that bring homologous chromosomes together. These 

buttons appear to play an essential role in the structural integrity of the genome: 
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when chromosome rearrangement breakpoints lie within a gene, buttons 

“reconstitute” the gene by bringing regulatory elements back into close physical 

proximity with the correct protein coding region, ensuring that proper gene 

expression is maintained. While chromosome-wide pairing is not conserved in 

mammals, buttons may still serve a similar purpose by driving pairing in 

processes including genomic imprinting and X-inactivation. 

Homologous chromosome pairing facilitates gene-regulatory interactions 

between chromosomes through the phenomenon of transvection. Our studies 

provide deeper insight into the mechanisms of transvection, its biological role, 

and the DNA elements that are involved in this process, contributing the following 

significant findings to the field:   

1) Homologous chromosome pairing is necessary but not sufficient for

transvection.

2) Pairing and transvection are cell-type-specific, suggesting that the

level of pairing in a given cell type affects the efficiency of

transvection in that cell type.

3) Transvection controls photoreceptor patterning by averaging the

expression frequencies of naturally-occurring ss alleles. This is one

of the first examples of a biological role for transvection between

wild-type alleles.

4) Trans-activation and trans-repression are separable mechanisms

that act simultaneously at the same locus to control gene

expression between chromosomes. Trans-activation at the ss locus
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requires a promoter in cis to the enhancer, while trans-repression at 

the ss locus requires an insulator and two PREs.   

Our data have broad implications for our understanding of 

interchromosomal gene regulation across organisms. Determining the role of 

interactions between chromosomes and the DNA elements that are involved can 

provide insight into mammalian mechanisms such as long-distance enhancer 

action, nuclear compartmentalization, and chromosome kissing.   

6.2: Perspectives and future work 

This work suggests a number of exciting potential avenues for future 

research. Our identification of the features of buttons, including TAD content and 

enrichment for certain insulators, provides the opportunity to predict additional 

button elements based on HiC and insulator ChIP-seq data and test them for 

their ability to drive pairing. As complementary work suggests a role for active 

transcription in pairing (62, 63), RNA-seq data could be used alongside these 

analyses to assist in button prediction, with the ultimate goal of identifying all of 

the buttons that initiate pairing across the fly genome. Once an effective method 

for predicting buttons is developed in Drosophila, a similar approach could be 

applied to find regions that interact between chromosomes in mammals. Such an 

approach could allow identification of regions whose interactions change in 

disease states, providing new candidates for targeted disease treatments.   

Our finding that TADs drive interactions between chromosomes suggests 

that TADs play a structural role in organizing the nucleus beyond their role in 
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controlling gene expression. In mammals, knockdown of cohesin causes a loss 

of TADs but has surprisingly minimal effects on gene expression (27-29). It is 

possible that the loss of TADs affects interchromosomal interactions but not gene 

expression in mammalian cells. Performing similar experiments in Drosophila to 

examine the effects of TAD dissolution on homologous chromosome pairing will 

provide important insight into the role of TADs in organizing the nucleus.  

 The mechanisms that allow TADs to interact between chromosomes 

remain unclear. While two recent studies suggest that TAD boundaries are more 

tightly paired than TAD interiors (62, 63), our data suggest that TAD boundaries 

alone are not sufficient to drive pairing. Transgene E, which contains the ss 

locus, does not pair with a CRISPR allele in which the interior of the ss TAD is 

deleted (Chapter 5, Fig. 4G-H). Generating CRISPR knockouts of other TAD 

interiors and testing their effects on pairing will clarify the roles of TAD interiors 

and boundaries in this process. It is also possible that other mechanisms 

contribute to TAD interactions. We find that insulators and the Polycomb Group 

Complex may be involved in pairing, suggesting that each TAD might bind a 

unique combination of proteins, allowing it to find its homologue in the nucleus. A 

screen for factors that affect transgene pairing with its endogenous site could 

identify additional proteins involved in this process. Alternatively, the specific 

folding confirmation of a TAD may allow it to pair with its unique partner.  

A transgene pairing with its endogenous locus represents a novel 

interchromosomal interaction that does not occur in wild type nuclei. Such an 

interaction may have major effects on chromosome territory organization, as it 
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involves physical colocalization between two sequences on heterologous 

chromosomes. The disruption of chromosome territories and resulting changes in 

gene expression may explain why novel interactions between homologous 

sequences are often linked to disease in mammals (22, 23, 26, 41, 52).Thus, 

understanding how aberrant homologous pairing affects chromosome 

organization could have major implications for the treatment of disease. Future 

studies could perform DNA FISH against whole chromosomes to investigate 

chromosome territory organization in the presence and absence of transgene 

pairing. Any identified changes in nuclear architecture could be confirmed using 

HiC, and RNA-seq on cells with or without the transgene would provide 

information on any changes in gene expression resulting from the disruption of 

chromosome territories.  

Finally, our observation that pairing and transvection occur in the larval 

eye disc but not the antennal disc suggests a model in which the level of pairing 

in a tissue controls the efficiency of transvection in that tissue. One prediction of 

this model is that forcing pairing in a weak-pairing cell type would improve 

transvection efficiency. To test this prediction, the same forced pairing system we 

developed in the eye disc (Chapter 3, Fig. 5M-T) could be used to identify 

regions along chromosome 3R that naturally loop to endogenous ss in the 

antennal disc. We could insert the transvection-competent Transgene S 

(Chapter 3, Fig. 5E, O-S) at these looped sites to test its ability to perform 

transvection with endogenous ss in the antennal disc, providing insights into the 

link between pairing and transvection in diverse cell types.   
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Disruption of nuclear architecture is linked to a large number of human 

diseases (13, 20-25). Further work investigating the role of TADs and trans 

factors in driving physical interactions between chromosomes and identifying the 

DNA elements responsible for interchromosomal gene regulation will provide 

insight into the mechanisms that contribute to these diseases. Ultimately, a fuller 

understanding of nuclear organization and its effects on gene expression over 

the course of development will enable improved diagnosis and treatment of 

diseases including limb malformations, Angelman and Prader Willi syndromes, 

and cancer.
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Appendix 1: The mir-279/996 cluster represses receptor tyrosine 

kinase signaling to determine cell fates in the Drosophila eye 
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RESEARCH ARTICLE

The mir-279/996 cluster represses receptor tyrosine kinase
signaling to determine cell fates in the Drosophila eye
Hong Duan1,*, Luis F. de Navas1,*, Fuqu Hu1, Kailiang Sun1,2, Yannis E. Mavromatakis3, Kayla Viets4,
Cyrus Zhou4, Joshua Kavaler5, Robert J. Johnston4, Andrew Tomlinson3 and Eric C. Lai1,‡

ABSTRACT
Photoreceptors in the crystalline Drosophila eye are recruited by
receptor tyrosine kinase (RTK)/Ras signaling mediated by Epidermal
growth factor receptor (EGFR) and the Sevenless (Sev) receptor.
Analyses of an allelic deletion series of the mir-279/996 locus, along
with a panel of modified genomic rescue transgenes, show that
Drosophila eye patterning depends on both miRNAs. Transcriptional
reporter and activity sensor transgenes reveal expression and
function of miR-279/996 in non-neural cells of the developing eye.
Moreover, mir-279/996 mutants exhibit substantial numbers of
ectopic photoreceptors, particularly of R7, and cone cell loss.
These miRNAs restrict RTK signaling in the eye, since mir-279/996
nulls are dominantly suppressed by positive components of the
EGFR pathway and enhanced by heterozygosity for an EGFR
repressor. miR-279/996 limit photoreceptor recruitment by targeting
multiple positive RTK/Ras signaling components that promote
photoreceptor/R7 specification. Strikingly, deletion of mir-279/996
sufficiently derepresses RTK/Ras signaling so as to rescue a
population of R7 cells in R7-specific RTK null mutants boss and
sev, which otherwise completely lack this cell fate. Altogether, we
reveal a rare setting of developmental cell specification that involves
substantial miRNA control.

KEY WORDS: Drosophila, R7 photoreceptor, RTK signaling,
MicroRNA

INTRODUCTION
The Drosophila eye is a choice model system for studying cell fate
specification owing to its highly stereotyped array of pattern
elements. Each eye consists of ∼800 ommatidial units, each of
which contains eight photoreceptors of distinct identities, four cone
cells, and about eight pigment cells; a mechanosensory bristle organ
develops at alternate ommatidial vertices. The orderly acquisition of
cell fates during eye development is coordinated by multiple
signaling pathways and transcription factors (Kumar, 2012).
Initially, a proneural zone defined by the basic helix-loop-helix

activator Atonal is resolved into single R8 photoreceptors by Notch

pathway signaling. Each R8 nucleates a developing ommatidium,
and a stepwise set of events mediated by Epidermal growth factor
receptor (EGFR) and receptor tyrosine kinase (RTK) signaling
progressively recruit the R2/5, R3/R4, R1/6 and R7 photoreceptors
to each ommatidial cluster (Freeman, 1996). A specialized RTK
signal transduced by the Sevenless (Sev) receptor specifies the final
photoreceptor, R7. In parallel to EGFR and Sev signaling, Notch
signaling defines photoreceptor subtypes (Cagan and Ready, 1989).
Further non-sensory cell fates are subsequently recruited to each
ommatidial cluster, including cone cells followed by primary and
secondary pigment cells.

The existence of extensive regulatory networks mediated by
microRNAs (miRNAs) suggests broad possibilities for their
requirement during development or physiology (Flynt and Lai,
2008; Sun and Lai, 2013). As is true for most tissues, loss of core
miRNA biogenesis factors such as Dicer-1 or Pasha causes
substantial defects in the developing Drosophila eye (Lee et al.,
2004; Smibert et al., 2011). Beyond the general requirement for
miRNA biogenesis in this tissue, some individual miRNAs and
miRNA sites influence eye development. For example, studies of
the hypermorphic Enhancer of split m8D [E(spl)m8D] allele
revealed its post-transcriptional repression by K box motifs (Lai
et al., 1998) – indeed long before these were recognized as binding
sites for K box family miRNAs (Lai, 2002; Lai et al., 2005).
Specific mutation of K boxes from an E(spl)m8 genomic transgene
sensitizes the Notchsplit background, yielding a synthetic, smaller
rough eye (Lai et al., 1998). The bantam miRNA is required for the
growth and proliferation of all imaginal discs; thus, loss of bantam
reduces eye tissue and increases apoptosis (Brennecke et al., 2003;
Hipfner et al., 2002). The mir-263a/b loci are essential for
development of eye interommatidial bristles, and protect the shaft
cells of these sensory organs from apoptosis (Hardiman et al., 2002;
Hilgers et al., 2010).

By contrast, many other Drosophila miRNAs connected to eye
development lack substantial defects when mutated on their own,
but are sensitive to genetic background or environmental stress. For
example, miR-7 positively regulates photoreceptor specification by
repressing the neural inhibitor yan (aop), a transcriptional repressor
in the EGFR pathway (Li and Carthew, 2005). Although deletion of
mir-7 alone has only minor effects on eye development, its deletion
sensitizes the eye to alteration in EGFR signaling (Li and Carthew,
2005) or temperature fluctuation (Li et al., 2009). Similarly, deletion
of mir-11, located in the intron of E2f1, does not have substantial
effects by itself, but this condition renders the eye sensitive to E2F1-
dependent, DNA damage-induced apoptosis (Truscott et al., 2011).
These and other examples have led to the notion that miRNAs are
primarily important for robustness, but are individually mostly
dispensable for normal developmental programs.

In this study, we elucidate crucial roles for the mir-279/996 locus
during Drosophila eye development. These seed-related miRNAsReceived 5 September 2017; Accepted 28 February 2018

1Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave,
Box 252, New York, NY 10065, USA. 2Program in Neuroscience, Weill Cornell
Medical College, New York, NY 10065, USA. 3Department of Genetics and
Development, College of Physicians and Surgeons, Columbia University, 701 West
168th Street, New York, NY 10032, USA. 4Department of Biology, Johns Hopkins
University, 3400 N. Charles Street, Baltimore, MD 21218, USA. 5Department of
Biology, Colby College, Waterville, ME 04901, USA.
*These authors contributed equally to this work

‡Author for correspondence (laie@mskcc.org)

E.C.L., 0000-0002-8432-5851

1

© 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev159053. doi:10.1242/dev.159053

D
E
V
E
LO

P
M

E
N
T

254



are expressed from an operon and are functionally equivalent in
several neural settings (Sun et al., 2015), including during
suppression of CO2 neurons (Cayirlioglu et al., 2008; Hartl et al.,
2011), control of circadian behavior (Luo and Sehgal, 2012), and
control of mechanosensory organ development (Kavaler et al.,
2018). We now show that these miRNAs are deployed in non-
neuronal cells of the developing eye, and their deletion strongly
alters eye cell fates, yielding ectopic photoreceptors and loss of cone
cells. Focusing on ectopic R7 photoreceptors, we use genetic
interactions to demonstrate that miR-279/996 restrict RTK/Ras
signaling, which normally promotes R7 specification. This is
attributable to their direct repression of multiple positive
components of RTK signaling pathways. Strikingly, the efficacy
of endogenous mir-279/996 in restricting RTK/Ras signaling is
substantial enough that deletion of these miRNAs can rescue a
population of R7 photoreceptors in the absence of the Boss ligand or
the Sev receptor.
These findings highlight how a single miRNA locus can exert

phenotypically substantial, and not merely fine-tuning, roles in
multiple biological settings. Moreover, these miRNAs achieve
similar functional roles (neural repression) through mechanistically
distinct strategies (i.e. by repressing RTK/Ras components in the
eye, by repressing a Notch inhibitor in mechanosensory organs, or
by repressing transcription factors in the olfactory system).

RESULTS
The mir-279/996 locus is essential for normal eye
development
The seed-related mir-279 and mir-996 were previously considered
to be expressed from independent transcription units, with mir-279
being solely required in various developmental settings (Cayirlioglu
et al., 2008; Luo and Sehgal, 2012; Yoon et al., 2011). However, we
recently clarified that these miRNAs are functionally overlapping
and co-expressed as an operon, and that ‘mir-279-specific’ deletions
also impair the expression of miR-996 (Sun et al., 2015). Our key
genetic reagents include hypomorphic and null alleles of the mir-
279/996 operon, and wild-type and modified genomic transgenes
expressing only miR-279 or miR-996 (Fig. 1A).
In our search for novel mir-279/996 functions, we observed that

our mutants exhibit defects in the normally crystalline adult eye
(Fig. 1B). Taking advantage of our allelic series, we found that the
severity of eye roughening is exacerbated by decreasing dosage of
mir-279/996 (Fig. 1C-F). The phenotypes of mir-279/996[15C/
15C] double-deletion homozygotes were rescued by a 16.6 kb
mir-279/996 genomic transgene, demonstrating that the eye defects
are due to loss of this miRNA locus (Fig. 1G). Moreover, sole
expression of either miR-279 or miR-996 from the same genomic
context restored normal adult eyes to [15C/15C] null animals
(Fig. 1H,I). Thus, these miRNAs exhibit substantial functional
redundancy across diverse in vivo settings (Sun et al., 2015).
To gain initial insight into underlying defects caused by lack of

miR-279/996, we sectioned adult eyes of various heteroallelelic
mutants. Normal eyes exhibit seven of the eight photoreceptor
rhabdomeres in a given section (Fig. 1J), arranged as six large outer
photoreceptors (R1-6) surrounding a small inner photoreceptor (R7/
8, depending on the apical-basal position of the section). Notably,
all three mutant combinations examined showed ectopic outer and
inner photoreceptors (Fig. 1K-M). Based on the position and
morphology of the latter, the ectopic inner photoreceptors were
preferentially R7.We annotated representative sections according to
the key in Fig. 1, with circles of different colors indicating
ommatidia with one or more outer R cells, and arrowheads

designating ectopic R7 cells. Fig. 1N-R shows magnifications of
individual normal and mutant ommatidia, and highlights the variety
of abnormal photoreceptor combinations present in mir-279/996
heteroallelic eyes. Quantification revealed that the strong mutant
combination ex36/15C exhibited stronger defects than either
hypomorphic combination examined, and >21% of ommatidia in
ex36/15C exhibited ectopic photoreceptors (Fig. 1S). Notably,
although there are eight photoreceptor subtypes, these quantitative
analyses indicate that a majority of mutant ommatidia in all three
transheterozygous backgrounds examined exhibit ectopic R7 cells.
Thus, specification of the R7 photoreceptor appears particularly
sensitive to the miRNAs.

Overall, these data reveal that defective allocation of cell fates
contributes to eye roughening inmir-279/996mutants, and that both
miRNAs are required for normal eye development. We note that
although the eye is sensitive in revealing developmental
abnormalities, it is actually rare for miRNA mutants to exhibit
retinal phenotypes. Indeed, in a recent survey of new deletion alleles
covering ∼100 Drosophila miRNAs, including most operons
analyzed as cluster knockouts, only one novel locus (mir-92a)
affected eye morphology and barely any others discernibly affected
external development (Chen et al., 2014). Therefore, these eye
specification defects in mir-279/996 mutants represent some of the
most overt developmental phenotypes detected among miRNA
mutants.

Transcriptional activity of mir-279/996 in the pupal eye
We examined the spatial expression of miR-279/996 in the
developing eye. We generated a transcriptional reporter in which
cytoplasmic GFP was knocked into a 16.6 kb genomic fragment
that extends into the flanking upstream and downstream protein-
coding genes (Fig. 2A). This genomic fragment provides full rescue
of mir-279/996 function in multiple settings (Sun et al., 2015),
including during eye development (Fig. 1G-I), indicating that it
contains all relevant cis-regulatory information.

In eyes staged at 45 h after puparium formation (APF), the
differentiation of all ommatidial cell types has occurred, and they
have adopted their appropriate relative positions in the mature unit
eye. The nuclei of the different cell types adopt characteristic
locations along this axis, and can be divided into four layers
(Fig. 2B). Most apically lie the quartet of cone cell nuclei, below
which are the nuclei of the paired primary pigment cells. The third
level is made from the eight photoreceptor nuclei, and most basally
lie the nuclei of the secondary/tertiary pigment cells and the bristle
cells. The mir-279/996-GFP reporter is expressed throughout the
cone and primary pigment cell layer [as marked by expression of
nuclear DPax2 (Shaven), Fig. 2C], as well as in the accessory
pigment and bristle cells, but is clearly excluded from
photoreceptors (as marked by nuclear Elav, Fig. 2D,E). Therefore,
this miRNA locus is deployed in multiple non-neuronal eye cell
types, but is excluded from photoreceptors.

Endogenous activity ofmiR-279/996 in non-neural cells of the
pupal eye
As some miRNAs are regulated post-transcriptionally, patterned
expression of the mir-279/996-GFP reporter does not necessarily
equate to their spatial activity. We therefore generated a miRNA
activity sensor, composed of a ubiquitously expressed GFP reporter
bearing two sequences complementary to miR-279 (Fig. 2A). In
theory, this tub-GFP-miR-279 transgene should be repressed by
both miR-279 (via RNAi) and miR-996 (via miRNA seed
matching). Interestingly, expression of the tub-GFP-miR-279
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Fig. 1.mir-279/996 alleles and corresponding adult Drosophila eye phenotypes. (A) The Drosophila mir-279/996 genomic region, along with three deletion
alleles and three rescue transgenes built into a 16.6 kb genomic backbone. (B-I) Adult Drosophila eyes analyzed by scanning electron microscopy. (B) The wild-
type eye exhibits a regular, crystalline organization. (C) A hypomorphic condition that is deleted for mir-279 and is impaired for miR-996 biogenesis appears
externally normal, whereas genotypes that progressively remove miR-279/996 activity exhibit overt roughening and ommatidial disorganization (D-F). (G-I) The
exterior eye phenotype caused by deletion of both mir-279 and mir-996 (in [15C] homozygotes) can be rescued by supplying both miRNAs (G), only mir-279
(H) or only mir-996 (I). (J-M) Plastic sections through adult eyes of wild type (J) and three heteroallelic mir-279/996 combinations (K-M). Normal ommatidia
exhibit six large outer photoreceptor rhabdomeres (R1-6) surrounding a smaller inner photoreceptor rhabdomere (R7 or R8, depending on the apical-basal
position). All of the transheterozygousmir-279/996mutants exhibit populations of ommatidia with ectopic outer and/or inner photoreceptors, as annotated in the
key to the left. Based on their position and morphology, the ectopic inner photoreceptors are predominantly R7. Some ommatidia can contain both ectopic
outer and R7 photoreceptors, and the frequency of mutant ommatidia is noticeably higher in the strongest mutant transheterozygote ex36/15C (M).
(N-R) Magnifications of individual ommatidia highlighting normal and different combinations of mutant photoreceptor identities. (S) Quantification of photoreceptor
subtypes in the three heteroallelic mir-279/996 mutants examined. R7 is the predominant photoreceptor subtype affected in all genotypes.
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sensor was complementary to that of the transcriptional reporter;
sensor GFP expression was robust in photoreceptor cells, but absent
in cone cells, pigment cells and the non-neuronal cells of

interommatidial bristle organs (Fig. 2F,G,I). The non-neuronal
activity of miR-279/996 was particularly apparent at higher
magnification of photoreceptor and primary pigment cells, since

Fig. 2. See next page for legend.
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GFP was specifically absent from DPax2+ primary pigment cells
that are directly adjacent to Elav+ photoreceptors (Fig. 2J).
If the non-uniform expression of the tub-GFP-miR-279 sensor

is truly imposed by these miRNAs, its spatial activity should
become equalized in mir-279/996 mutants. Indeed, expression of
the tub-GFP-miR-279 sensor became uniform throughout the
cone cells (Fig. 2H) and the pigment and bristle cells (Fig. 2K) of
mir-279/996[15C/15C] eyes. We conclude that the mir-279/996
locus is not only transcriptionally active, but also mediates strong
functional repression within diverse non-neuronal cells of the
developing eye.

miR-279/996 are required for normal specification of
ommatidial cell fates
We characterized the cellular bases of adult eye patterning defects in
mir-279/996 mutants (Fig. 1), which were already becoming
evident during the course of our expression pattern studies
(Fig. 2). We initially used antibodies to the adherens junctions
component Armadillo (Arm). Arm stains throughout the apical
surface of photoreceptor cells at 36 h APF, but becomes restricted to
zonula adherens junctions by 45 h APF (Zelhof and Hardy, 2004).
At the latter time point, Arm staining at the z-level in which the
photoreceptor apices are well separated reveals seven structures, as
R8 resides basally to the others (Fig. 3A). Deletion of mir-279/996
increased the number of Arm+ photoreceptors observed in single
confocal sections (Fig. 3B). These phenotypes were rescued by
presence of the wild-type transgene, indicating that they result from
the loss of mir-279/996 (Fig. 3C). Defects were also evident at the
cone cell layer, where Arm staining normally outlines the four cone
cells in each ommatidia. By contrast, mir-279/996 mutant
ommatidia frequently contained only three cone cells, a
phenotype that was also rescued by the wild-type transgene
(Fig. 3D-F).
Although the distribution of abnormal ommatidia could be

stronger in certain areas of a given eye, there did not appear to be a
reproducible spatial preference (e.g. dorsal/ventral or central/
peripheral) of phenotypes among eyes. Therefore, to quantify
these defects, we utilized all available tissue from all pupal eye
preparations. We note that occasional ommatidia exhibited six
photoreceptors in a section; however, this did not prove to genuinely
reflect photoreceptor loss. Careful examination in confocal stacks

revealed these to be due to disturbed cell arrangements, since other
photoreceptor apices could be found at other z-levels (Fig. S1).
Overall, ∼20% of ommatidia have one or two extra photoreceptors
in mir-279/996[15C/15C] (Fig. 3G), which corresponds to the
quantifications from adult sections (Fig. 1). In addition, ∼25% of
ommatidia were missing one or two cone cells (Fig. 3H), with a very
minor frequency (0.68%) exhibiting five cone cells. The wild-type
genomic transgene fully rescued both the ectopic photoreceptor and
missing cone cell phenotypes.

We confirmed the cone cell and photoreceptor defects using other
markers. We used Discs large (Dlg, or Dlg1) to label cell
membranes and DPax2 to label cone cells, and confirmed a
substantial population of three-cone ommatidia; these defects were
rescuable (Fig. 3I-K). We then analyzed the general neuronal
marker Elav to assess over-recruitment of R cells. Although
quantification of Elav is challenging due to its diffuse
immunoreactivity and the fact that photoreceptor nuclei do not all
reside at the same z-level at mid-pupal stages, we clearly observed
ommatidia with ectopic Elav+ cells in mir-279/996 mutants
(Fig. 3L-N). By carefully examining cells along the z-axis in
confocal stacks, we confirmed that wild-type ommatidia are
associated with eight DAPI-stained Elav+ photoreceptor nuclei,
while all ommatidia exhibiting supernumerary photoreceptors with
Arm staining carried a correlating increase of DAPI-stained Elav+

nuclei (Fig. S1). This excludes the possibility that ectopic Arm+

structures simply reflect mispositioning of R8, and demonstrates
that the miRNA mutants develop ectopic photoreceptors.

Finally, we examined the effects of ectopically expressing mir-
279/996 in the photoreceptors. We first used GMR-Gal4 to drive
expression of UAS-DsRed-mir-279 in all cells of the developing
retina. This treatment strongly disrupted the retina, making it
challenging to monitor any cell fate changes. We therefore used the
more restricted driver sev-Gal4, which is active in R3/R4, R1/R6,
R7 and cone cells. Adult eyes of sev-Gal4; UAS-DsRed-mir-279
showed a selective effect in the R3/4 photoreceptors, which were
often degenerate with missing or vestigial rhabdomeres (Fig. S2).
Although it is unclear why R3/4 are preferentially sensitive to
ectopic mir-279, this result suggests that elevated miR-279 can
interfere with photoreceptor formation.

miR-279/996 are predominantly required to restrict R7
photoreceptor fate
To gain insight into the identity of ectopic photoreceptors inmir-279/
996 null mutants, we examined a panel of cell-specific markers. At
45 hAPF, we observed two classes of supernumerary photoreceptors.
Staining for Sens (R8) and BarH1 (R1/6) revealed a low frequency of
photoreceptors of heterogeneous fate (Fig. S3). By contrast, staining
for the R7marker Prospero (Pros) revealed a substantial population of
ommatidiawith two, and sometimes three, Pros+ cells; thesewere fully
suppressed by the genomicmir-279/996 transgene (Fig. 3O-Q). These
cells colabeled with Elav, indicating that they are photoreceptors.
Some retinal regions showed much higher densities of the ectopic
Pros+ cells than others (Fig. 3R). However, aswe could not assign any
specific area of the retina that was consistently more affected, our
quantifications utilized all available tissue across samples. This
revealed that∼10%of45 hAPFommatidia bear supernumeraryPros+

cells (Fig. 3S), confirming that R7 comprises a dominant subclass of
the ectopic photoreceptors induced by the loss of mir-279/996. This
supports our morphological classifications and quantifications from
adult sections (Fig. 1J-S).

To determinewhethermid-pupal cells that ectopically express Pros
indeed differentiate as R7s, we stained for theR7-specific rhodopsins

Fig. 2. Expression and activity ofmir-279/996 in the developing pupal eye.
(A) Transgenes to detect transcriptional activity or functional repression bymir-
279/996; the former is a positive readout of miRNA expression, whereas the
latter is a negative sensor of miRNA activity. (B) Schematic of ommatidial
nuclei in the fly eye. Cone cell (CC) nuclei are located most apically, primary
pigment cells and photoreceptors reside medially, and secondary and tertiary
pigment cells and interommatidial bristle nuclei are located basally.
(C-E″) Expression of the 16.6 kb mir-279/996-GFP transgene is readily
detected throughout the cone cell layer as marked by DPax2 (C) and in the
pigment cells and bristle cells (D), but is excluded from Elav+ photoreceptor
neurons. (E) Magnification of the boxed region in D, highlighting exclusion of
mir-279/996-GFP activity from Elav+ cells. (F-K‴) Functional repression
detected by the tub-GFP-miR-279 sensor. Note that this is a cytoplasmic
sensor, whereas the cell-specific markers are nuclear. (F) The tub-GFP-miR-
279 sensor is largely excluded from the cone cell layer. (G) Magnified view of
the boxed region in F. (H) The tub-GFP-miR-279 sensor is reactivated in cone
cells when placed in themir-279/996[ex36/ex36] background. (I) The tub-GFP-
miR-279 sensor is coincident with Elav+ photoreceptors but is excluded from
pigment cells. (J-J‴′′) Higher magnification view emphasizing the on and off
spatial pattern of the miR-279 sensor in adjacent Elav+ and DPax2+ cells,
respectively. (K-K‴) The tub-GFP-miR-279 sensor is reactivated in non-neuronal
cells within the photoreceptor plane of mir-279/996[ex36/ex36] mutants.
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Rh3 and Rh4 in adult eyes. Their expression is stochastic, but
mutually exclusive, within mature R7 neurons and thus defines two
functional subclasses (Fig. 3T,U). We observed ∼12.7% of
ommatidia with ectopic Rh3 and/or Rh4 staining (Fig. 3V,W),
concordant with the results of ectopic Pros reactivity at 45 hAPF.We
further analyzed Pros expression in the genetic combinations mir-
279/996[15C/ex36] and [ex117/ex117] (Fig. 1A). These exhibited
8.8% and 1.7% of ommatidia with ectopic Pros+ cells, respectively,

consistent with the fact that these differentmir-279 deletions express
lower and higher levels of miR-996, respectively (Sun et al., 2015).
Finally, rescue experiments with mir-279-only and mir-996-only
genomic transgenes showed that both could completely rescue
ommatidial cellular organization in the 15C null homozygotes,
including full suppression of ectopic Pros+ cells (Fig. S4).

Overall, these cytological tests validate observations from the
adult that defective mutant eye phenotypes are a direct consequence

Fig. 3. Cell specification defects inmir-279/996mutant eyes. Stainings and quantifications in A-S were from ∼45 h APF pupal eyes, while stainings in T-W were
from adult eyes. (A-F) Arm labels the zonula adherens of apically constricted photoreceptors. (A) Seven of the eight neurons are labeled by Arm in a single optical
section at the z-level in which the photoreceptor apices are well separated. (B) 15C homozygotes frequently have supernumerary photoreceptors, with ommatidia
bearingeightArm+photoreceptors ina singleoptical section (greencircles), andoccasionallymore (theyellowcircle indicatesanommatidiumwithnineorpossibly ten
photoreceptors). (C) These defects were suppressed by a 16.6 kbmir-279/996 genomic transgene. (A′-C′) Higher magnifications of individual ommatidial groups
(boxed regions in A-C) with photoreceptors labeled. A potential tenth photoreceptor in B′ is indicated with an asterisk. (D) In the cone cell layer, Arm labels groups of
four cones in each wild-type ommatidium. (E)mir-279/996[15C/15C]mutants frequently have only three (or even two) cone cells (circles); very rarely, five cone cell
clustersareseen (yellowcircle). (F)Conecell defectsare fully rescuedby thegenomic transgene. (D′-F′)Highermagnificationsof individual ommatidialgroups (boxed
regions inD-F)with cone cells labeled. (G,H)Quantification of ommatidiawith aberrant photoreceptor number (G) or cone cell number (H) inmir-279/996mutants and
rescues. Error bars indicate s.d. ****P<0.0001, one-way ANOVAwith Tukey’s HSD post-hoc test. (I-K″) Co-staining for Dlg (green, cell membranes) and DPax2 (red,
conecell nuclei). (I) The regular patternof fourconecells perommatidium isseen inwild type (wt). (J)mir-279/996[15C/15C]mutants frequentlyexhibit threeconecells
per ommatidium, which is rescued by a genomic transgene (K). (L-N) Staining for the neuronal marker Elav demonstrates mutant ommatidia with ectopic
photoreceptors (asterisks). (O-Q) Co-staining for Elav and Pros shows that many ectopic photoreceptors are R7 cells. (R,R′) Region ofmir-279/996mutant eye that
shows an especially high frequency of ectopic Pros photoreceptors (asterisks). (S) Quantification of ommatidia with ectopic Pros+ R7 cells. Error bars indicate s.d.
****P<0.0001,one-wayANOVAwithTukey’sHSDpost-hoc test. (T-W)Staining for rhodopsinsselectivelyexpressed in terminally differentiatedR7cells:Rh3 (T,V)and
Rh4 (U,W).mir-279/996mutant ommatidia are labeled; white circles indicate two R7 cells and yellow circles indicate three R7 cells.
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of miRNA loss, and that both miR-279 and miR-996 can direct
normal eye patterning and neuronal suppression.

miR-279/996 repress multiple positive RTK/Ras signaling
factors
Supernumerary photoreceptors typically result from ectopic
activation of RTK/Ras signaling. As the photoreceptor subtype
most sensitive to endogenous mir-279/996 was R7, we focused our
efforts on understanding its specification. Two RTKs are active in
Drosophila eye development: EGFR and the Sev receptor (Hafen
et al., 1987; Schejter and Shilo, 1989). Ectopic activation of either
RTK, or their downstream pathways, will trigger cone cell
precursors to adopt the R7 fate (Basler et al., 1991). Strikingly,
multiple positive core components of the EGFR and Sev signaling
pathways bear highly conserved miR-279/996 seed matches in their
3′UTRs (Fig. 4A). These include rhomboid (rho) and roughoid (ru,
also known as rho3), which encode two serine-type endopeptidases
that generate active EGFR ligands, and bride of sevenless (boss),
which encodes the ligand for the Sev receptor. The sites in ru and
boss are optimal ‘8mer’ sites, whereas the site in rho is a 7mer-1A
site (Lewis et al., 2005). All of these sites are conserved in all
sequenced drosophilids, indicating that they are under strong
selective constraint (Fig. 4A,B).

We used luciferase sensor assays in cultured cells (Sun et al.,
2015) to demonstrate that the 3′ UTRs of RTK pathway factors can
be repressed by miR-279 and miR-996. We first tested a validated
sensor for the key miR-279 target nerfin-1 (Cayirlioglu et al., 2008)
and observed nearly 90% reduction.We show here that miR-996 has
similar activity to miR-279 (Fig. 4C). nerfin-1 is an unusually strong
miRNA target due to five conserved matches to the same miRNA
seed, a number that few fly mRNAs bear. By comparison, we
observed reduction by half to two-thirds in the levels of the rho, ru
and boss 3′ UTR sensors (Fig. 4C), which is comparable to more
‘typical’ miRNA targets. To demonstrate direct regulation, we
mutated the cognate binding sites. This abrogated the response of
the rho, ru and boss 3′ UTR sensors, indicating that regulation is
mediated directly via individual miR-279/996 seed matches
(Fig. 4C).

We next generated tubulin-GFP transgenes to the full 3′UTRs of
these RTK signaling genes and examined their regulation in the fly.
When a control transgene was crossed into a background expressing
UAS-DsRed-mir-279 using ptc-Gal4, the expression of the miRNA
can be marked in DsRed+ cells, which do not alter GFP expression
(Fig. 4D). However, when the three RTK pathway sensor transgenes
were assayed, all three were cell-autonomously suppressed in the
miRNA-expressing domain (Fig. 4E-G). Therefore, rho, ru and

Fig. 4. miR-279/996 directly repress multiple positive
components of RTK/Ras pathways. (A) Among 3′ UTRs
bearing target sites for the shared miR-279/996 seed
sequence, three (ru, rho, boss) are positive components of
RTK/Ras that promote photoreceptor/R7 specification. rho
bears a 7mer-1A site, whereas boss and ru both contain
high-affinity 8mer sites. (B) All of these sites are conserved
across the 12 sequenced Drosophila genomes, as
exemplified for ru. (C) Luciferase sensor assays
demonstrate target 3′UTR repression bymiR-279 andmiR-
996.Hairless (H ) is used as a negative control, while nerfin-
1 is a positive control that is exceptionally well repressed by
both miRNAs. rho, ru and boss are repressed 2- to 3-fold by
ectopic miR-279/996 in a seed-dependent manner. Error
bars indicate s.d. (D-G″) Evidence that miR-279 represses
Ras pathway 3′ UTRs in vivo. Shown are the central
portions of wing imaginal discs that express GFP
ubiquitously (tub-GFP-3′ UTR sensors), in a genetic
background in which miR-279 is ectopically expressed in a
central stripe labeled by DsRed. (D) miR-279 does not
affect a control GFP sensor, but induces cell-autonomous
repression of GFP sensors linked to ru (E), rho (F) and boss
(G) 3′ UTRs.
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boss are bona fide targets of these miRNAs. These results provide
in vitro and in vivo evidence for post-transcriptional regulation of
multiple positive components of RTK/Ras signaling by miR-279/
996.

miR-279/996 represses RTK/Ras signaling during eye
development
We sought to connect the action of the miRNAs on RTK signaling
to the phenotypes observed inmir-279/996mutant eyes by assaying
for dominant genetic interactions. Even though miRNAs typically
have large cohorts of conserved targets (at least 130 Drosophila
genes bear conserved 3′UTR seed matches for miR-279/996, http://
www.targetscan.org), at least some miRNA mutant phenotypes are
highly dose sensitive on the level of individual targets. This
implies that particular genes or pathways, out of the entire target
network, may drive a particular miRNA mutant phenotype (Dai
et al., 2012).
Both Nerfin-1 and Escargot (Esg) are key miR-279 targets, and

their heterozygosity can suppress the specification of ectopic CO2-
sensing neurons in the miRNA mutants (Cayirlioglu et al., 2008;
Hartl et al., 2011). However, heterozygosity for neither nerfin-1 nor
esg modulated the eye roughening of mir-279/996[15C]
homozygous eyes; in fact, double heterozygosity for these target
genes did not suppress eye roughening of the miRNA deletion
(Fig. 5A-C). This suggests that the miR-279/996 target cohort that is
crucial in olfactory system development is not substantially required
during eye development.
Since the ectopic R7s likely resulted from ectopic activation of the

RTK pathway, and many RTK-associated genes are functionally
targeted by miR-279/996, we next examined genetic interactions
with genes associated with RTK activation. Notably, heterozygosity
for Egfr, ru, rho, and the nuclear effector phyllopod ( phyl), each
yielded detectable dominant suppression of overall adult eye
roughness (Fig. 5D-F). The strongest individual suppression was
observed with heterozygosity for phyl, which was not predicted as a
direct miR-279/996 target. However, as a nuclear component of the
RTK/Ras pathway, Phyl integrates signaling from both EGFR and
Sev signaling, and was previously isolated by virtue of its strong
dominant suppression of an activated Ras phenotype (Chang et al.,
1995; Dickson et al., 1995). Nevertheless, to test whether combined
loss of direct targets could produce greater suppression,we generated
a ru, rho, 15C recombinant chromosome and backcrossed this to
mir-279/996[15C]. Double heterozygosity for ru and rho strongly
rescued the regularity of [15C/15C] external eyes (Fig. 5G).
We examined the cellular basis of these morphological rescues.

Arm staining at 45 h APF served as a convenient readout of
photoreceptor numbers. Indeed, multiple components of the EGFR/
Ras pathway dominantly suppressed the frequency of ommatidia
with ectopic photoreceptors (Fig. 5H-L). We extended these
interaction tests by examining the secreted EGFR inhibitor Argos
(Freeman et al., 1992; Schweitzer et al., 1995). Whereas argos
heterozygotes (argos/+) were normal in an otherwise wild-type
background, argos/+ enhanced ectopic photoreceptors in mir-279/
996[15C] mutants (Fig. 5M).
We recapitulated these findings by specific analysis of R7 cells. In

particular, double heterozygosity of nerfin-1 and esg did not modify
the number of Pros+ cells (Fig. 5N), further indicating that dominant
phenotypic suppression is not a trivial genetic outcome, even among
demonstrated ‘crucial’ miRNA targets. On the other hand,
heterozygosity for multiple positive EGFR/Ras pathway components
(e.g. ru, rho and phyl) each reduced R7 cell numbers (Fig. 5O-R),
whereas heterozygosity forargos strongly increasedR7 cells (Fig. 5S).

We quantified the nature of these genetic interactions at the level
of cell fate readouts. Analyses of photoreceptor numbers (Arm+

cells, Fig. 5T) and R7 photoreceptors (Pros+/Elav+ cells, Fig. 5U)
validated the magnitude and directionality of these phenotypic
modifications, and provide further evidence that miR-279/996
endogenously suppress Ras/RTK signaling during eye
development. Importantly, assignment of miRNA control of R7
specification extended to terminal differentiation. Supernumerary
R7 photoreceptors expressing Rh3 or Rh4 were reduced to <2% in
ru, rho double heterozygotes, and to ∼0.5% in phyl heterozygotes.
Reciprocally, whereas argos heterozygotes did not exhibit ectopic
R7 cells (Fig. 5U), argos dominantly enhanced their presence in 15C
homozygotes (Fig. 5V). Even with the caveat that the morphological
aberration of some rhabdomeres interfered with assignment of
photoreceptor subtype, at least 31.6% of ommatidia in argos/+, mir-
279/996[15C/15C] eyes carried an unambiguously ectopic R7 cell.

Finally, we examined interactions with boss. Although the R7
phenotypes we observed could relate to the activities of either EGFR
or Sev, and boss is a functional miR-279/996 target, we did not
detect substantial genetic interactions of boss heterozygotes with
mir-279/996[15C] homozygotes (Fig. 5U). Failure to observe a
dominant effect does not rule out the involvement of Boss/Sev
signaling. Nevertheless, the strong genetic interactions of mir-279/
996mutants with positive and negative Ras pathway factors suggest
that the phenotype preferentially relates to secretion and antagonism
of the EGFR ligand.

Deletion of mir-279/996 partially bypasses Boss and Sev for
R7 specification
The R7 precursor is unusual in that it requires potent activation of
the RTK/Ras pathway, an activation level that EGFR alone cannot
supply (Tomlinson et al., 2011). Instead, activation of both EGFR
and Sev is required, and if Sev alone is removed all ommatidia lack
R7s, as this cell transforms into an equatorial cone cell (Tomlinson
and Ready, 1986) (Fig. 6A,B). We therefore extended the previous
heterozygote experiments by investigating the effect of full mir-
279/996 loss-of-function in the sev null background. In particular,
we were interested whether EGFR pathway activation caused by
lack of mir-279/996 might restore R7 differentiation in the absence
of Sev.

We sectioned adult eyes of mir-279/996[15C/ex36]
transheterozygotes in a sev[d2] background. Whereas sev[d2]
does not differentiate any R7s, concomitant loss of mir-279/996
yielded a striking population of rescued R7s (Fig. 6C). We note that
in sev mutant ommatidia the R8 cell can migrate into the apical
regions and present a central rhabdomere that can be mistaken for an
R7. To ensure that the rescued cells were bona fide R7s, we
examined the basal regions of the R7-bearing ommatidia in
adjacent sections, and confirmed the presence of the endogenous
R8 (Fig. 6C′). Since the rescued R7s reside in the appropriate
position, the simplest scenario is that the equatorial cone cell has
been transformed into R7, as opposed to one of the other three cone
cell types.

We next examined sev and sev; mir-279/996 double-mutant eyes
in 45 h pupae. As expected, sev mutants completely lack Pros+ R7
cells (Fig. 6D). We were able to confirm that the antibody staining
was successful since the Pros+ sheath cells of the interommatidial
bristle sensory organs were labeled. Sheath cells do not express Elav
and are thus distinct from the Elav+ neurons of these bristle organs
(Fig. 6D′,D″). By contrast, sev; mir-279/996 double mutants
differentiated a population of Pros+ R7 cells, which were confirmed
as photoreceptors since they colabeled with Elav (Fig. 6E).
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Similar to sev mutants, loss of boss function ablates R7
specification (Fig. 6F). By contrast, boss[1], mir-279/996[15C]
double homozygotes displayed clear rescue of a population of
Pros+ photoreceptors in R7 positions (Fig. 6G). We quantified the
restoration of Pros+ R7 cells to sev and boss mutants by

concomitant loss of mir-279/996 (Fig. 6H). Overall, these data
provide striking evidence for endogenous restriction of EGFR
pathway activity by these miRNAs, which constitute novel
crucial players in one of the classic paradigms of cell fate
specification.

Fig. 5. mir-279/996mutant phenotypes are due to elevated Ras pathway activity. Except for the wild-type eye (A), all other adult and pupal eye samples are
homozygous formir-279/996[15C], with other heterozygous mutations as indicated. (A-G) Scanning electron microscopy of adult eyes. (A) Normal regular
arrangement of wild-type ommatidia. The rough eye of the mir-279/996[15C] homozygote (B) is not modified by double heterozygosity for nerfin-1 and esg (C), but
is partially suppressed by Egfr/+ (D) and ru/+ (E), and strongly suppressed by phyl/+ (F) and ru, rho/+, + (G). (H-S′) 45 h APF eyes stained for the indicated markers.
(H-M) Arm staining focused on photoreceptor apices. Mutant ommatidia with ectopic photoreceptors (eight in one optical section) are circled; the inset (H) shows
examples of ommatidia with seven and eight photoreceptors at higher magnification. The phenotype of [15C/15C] (H) is dominantly suppressed by heterozygosity
for positive Ras pathway components (I-L) and dominantly enhanced by argos, a Ras pathway inhibitor (M). (N-S) Pros (green) and Elav (red) staining to detect R7
cells. The phenotype of [15C/15C] is not substantially modified by double heterozygosity for nerfin-1 and esg (N), but is dominantly suppressed by heterozygosity
for positiveRaspathway components (O-R) anddominantlyenhanced byargos (S). (T,U)Quantificationof ectopic photoreceptor (T) andectopicR7 (U) phenotypes in
various genotypes. Error bars indicate s.d. **P<0.01, ***P<0.001, one-way ANOVAwith Tukey’s post-hoc test. (V) Retinal section of argos, 15C/15C adult eye
illustrates a high frequency of ectopic R7 cells (arrowheads), which can be identified based on their central position within the circled ommatidia.
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DISCUSSION
miR-279/996 and eye development
During Drosophila eye development, the level of RTK pathway
activation determines whether a cell can adopt the photoreceptor
fate. Multiple mechanisms, including activation of Notch

(Tomlinson et al., 2011) and release of Argos (Freeman et al.,
1992), ensure that the pathway is activated only in presumptive
photoreceptors. Here, we presented molecular and genetic evidence
indicating that miR-279/996 suppress RTK activation in non-
photoreceptor cells during eye development. Of note, the fact that

Fig. 6. Deletion ofmir-279/996 partially rescues R7 cells in sev
and boss mutants. (A-C) Plastic sections of adult eyes.
(A) Section of Canton S at the R7 cell level shows the
characteristic trapezoidal arrangement of seven photoreceptor
rhabdomeres in each ommatidia. (B) Section of sev[d2] mutant
shows only six photoreceptors, with the centrally located R7
absent. (C) Example of rescued R7 cell in sev[d2]; mir-279/
996[ex36/15C] eye; an adjacent section from theR8 level confirms
the presence of R8 (C′), demonstrating that the cell assigned as
R7 is not a misplaced R8. (D-G″) Double staining for Pros (green)
and Elav (red) at 45 h APF. (D) sev mutant eye lacks Pros+

photoreceptors. Proper staining is confirmed by including a
section that overlaps the interommatidial bristle (IOB) layer, where
adjacent pairs of Pros+ sheath (S) and Elav+ neuronal (N) cells are
present in each IOB organ. (E) sev; mir-279/996 double-mutant
eye shows presence of Pros+ (R7) cells; their identity as
photoreceptors is evidenced by colabeling for Elav (circled in E″).
(F) boss mutant eye lacks Pros+ photoreceptors. (G) boss, mir-
279/996 double-mutant eye exhibits rescue of a population of R7
cells (circled in G″). (H) Quantification of R7 rescue in sev and
boss mutants by concomitant deletion of mir-279/996. Error bars
indicate s.d. ****P<0.0001, one-way ANOVA with Tukey’s post-
hoc test.
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mir-279/996 mutants exhibit a rich set of reciprocal genetic
interactions with positive and negative Ras pathway factors
suggests that this locus might have unknowingly been hit in
previous large-scale dominant modifier screens in the Drosophila
eye used to isolate components of the RTK pathway (Karim et al.,
1996; Simon et al., 1991).
Supernumerary photoreceptors typically result from ectopic

activation of RTK/Ras signaling in either of two groups of cells
that are not normally destined to become photoreceptors (Basler
et al., 1991). Mystery cells are constituents of the early ommatidia
that are subsequently lost from the structure (Tomlinson and Ready,
1987). However, if their RTK/Ras pathway is activated, they can
generate supernumerary photoreceptors of the R1-6 class (with
large rhabdomeres). Cone cells are added to developing ommatidia
after the photoreceptors. If RTK/Ras signaling is inappropriately
activated in these cells, they generate photoreceptors of the R7 class
(with small rhabdomeres) (Basler et al., 1991). As we observe
substantial populations of excess photoreceptors with large as
well as small rhabdomeres in mir-279/996 mutants, our data
are consistent with the occurrence of both mystery cell
transformations and cone cell transformations, although we have
focused on the latter as the inferred source of ectopic R7 cells.
Further studies are needed to characterize the basis and subtypes of
other photoreceptor transformations in mir-279/996 mutants.
The two RTKs active in Drosophila eye development, Sev and

EGFR, share intracellular transduction pathways but differ
markedly in their ligands. Boss is the ligand for Sev and is an
integral plasma membrane protein, whereas Spitz, the ligand for
EGFR, is a diffusible peptide released by a subset of differentiating
photoreceptors. Although we identify boss as a conserved and
functional miR-279/996 target, our genetic experiments do not yet
implicate miR-279/996 as restricting Boss/Sev signaling. Instead,
the data are consistent with the scenario that miR-279/996 may
regulate the presentation of ligands to EGFR. In particular, genes
that positively regulate EGFR ligands (ru and rho) are both
conserved targets and dominant suppressors of mir-279/996mutant
eye phenotypes.
One of the most striking phenotypic readouts in mir-279/996

mutants is the fact that a subset of R7 cells can be rescued by
deletion of the miRNA locus in boss or sev mutants. It is well
documented that directed misexpression of activated Ras pathway
components can rescue R7 cells in Sev pathway mutants (Basler
et al., 1991; Fortini et al., 1992). However, there are very few loss-
of-function mutants that can rescue R7 cells in boss or sev mutants.
Mutations of the Ras target gene inhibitor Yan (Lai and Rubin,
1992) and the neural inhibitor Ttk (Lai et al., 1996; Xiong and
Montell, 1993) can induce R7 photoreceptors in sev mutants, but
mutation of the Ras pathway inhibitor Argos does not (Freeman
et al., 1992). Of note, the H214 enhancer trap (Mlodzik et al., 1992)
is selectively active in R7 precursors and not other photoreceptors.
In the absence of sev, the R7 precursor transforms into a cone cell
precursor and yet retains H214 expression. This was the first
evidence that the R7 precursor could receive positional information
independently of Sev. Whether H214 expression relates to miR-
279/996 activity, and whether it responds to the Notch signals that
the R7 precursor receives, remains to be investigated.
Overall, the endogenous impact of miR-279/996 in the eye is

more profound than the typical view of ‘fine-tuning’ regulation
attributed to most miRNAs. Indeed, the eye phenotypes of mir-279/
996 mutants place it among a small cohort of miRNA mutants in
any species that, when deleted, have overt consequences on external
morphology and assignment of cell fate. Although the miR-279

family is not found in chordates (Mohammed et al., 2014), its
genetic attributes might have relevance to cancer mechanisms. The
setting-specific nature of mir-279/996 mutant phenotypes provides
precedent that potential human miRNA deletions that unleash Ras
signaling in disease and cancer might await genetic discovery.

Multiple developmental roles for miR-279/996
A striking dichotomy has emerged from the genetic analysis of
miRNA biology (Lai, 2015). The founding miRNAs and even
miRNA target sites were identified from genetic aberrations of
miRNA loci and 3′ UTRs that yielded highly penetrant
morphological defects. Alongside bioinformatic and molecular
evidence that miRNAs target a majority of animal transcriptomes, it
is widely considered that miRNAs have broad impacts on gene
expression. On the other hand, systematic collections of miRNA
deletions demonstrate that the vast majority do not cause seemingly
overt phenotypes (Chen et al., 2014; Miska et al., 2007). Thus,
miRNA loci were probably historically undersampled not on
account of the small mutational target size of mature miRNAs, but
rather because they only rarely exhibit notable phenotypes that
would have permitted their isolation from forward genetic screens.

This dichotomy is intensified by the fact that among the minority
of miRNAs with overt phenotypic impacts, several are involved in
distinct biological processes, often via different target outputs
(Smibert and Lai, 2010). In this regard, mir-279/996 is an exemplar
of a highly pleiotropic miRNA locus. Forward genetic screening
originally identified a crucial role for miR-279, later extended to
miR-996, in preventing CO2-sensing olfactory neuron development
from maxillary palps (Cayirlioglu et al., 2008; Sun et al., 2015). In
this setting, the miRNAs repress neural transcription factors
encoded by nerfin-1 and esg to restrict CO2-responsive neurons
(Cayirlioglu et al., 2008; Hartl et al., 2011). Additional studies
revealed that these miRNAs control different aspects of JAK-STAT
signaling. In the CNS, repression of the JAK-STAT ligand Unpaired
is important for circadian behavior (Luo and Sehgal, 2012), whereas
regulation of the STAT transcription factor influences ovarian
border cell dynamics (Monahan and Starz-Gaiano, 2013; Yoon
et al., 2011). Most recently, we found that miR-279/996 suppress
neuronal specification in the mechanosensory lineage by repressing
the Notch inhibitor Insensible (Kavaler et al., 2018). Here, we
extend the role of miR-279/996 to suppressing photoreceptor
specification by limiting EGFR/Ras signaling. Notably, the ectopic
neuron phenotypes in the olfactory lineage, mechanosensory
lineage, and the eye are genetically dose sensitive to distinct
target cohorts, and might thus represent convergent ‘anti-neural’
outputs for this miRNA operon.

MATERIALS AND METHODS
Drosophila strains
We used our published mir-279/996 alleles [ex117], [ex36] and [15C], the
genomic 16.6 kb transgenes of mir-279/996, mir-279-2x and mir-996-2x
(Sun et al., 2015), and UAS-DsRed-mir-279 (Bejarano et al., 2012). Other
alleles and stocks utilized were: ru[1] (BDSC #575), rho[ve-1] (BDSC
#628), su(ve)[1] ru[1] rho[ve-1] h[1] th[1] (BDSC #617), argos[rlt]
(BDSC #7336), phyl[2245]-SR2-3 (G. Rubin, Janelia Farm, VA, USA),
Egfr[f24] (A. Simcox, Ohio State University, OH, USA), boss[1] (H.
Kramer, UT Southwestern, TX, USA), nerfin-1[54] (W. Odenwald, NIH,
Washington DC, USA) and sev[d2] (A. Tomlinson, Columbia University,
NY, USA). Appropriate recombinants were constructed to assay genetic
interactions with mir-279/996 alleles.
To generate the mir-279-GFP transgene, we used recombineering to

retrieve genomic fragments of 11.8 kb upstream and of 4.7 kb downstream
of the mir-279 hairpin from the BAC CH322-35G11 (BACPAC Resources)
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and cloned them between the AscI and NotI sites of attB-P[acman]-AmpR

(H. Bellen, Baylor College of Medicine, TX, USA). hsp70-GFP-SV40 was
PCR cloned from the pEGFP vector (Brennecke et al., 2003) and inserted
into the 5′ end of the 4.7 kb genomic fragment, then the resultant EGFP
+4.7 kb piece was digested out and ligated with the 11.8 kb upstream
sequence to generate the 16.6 kb mir-279-GFP construct. Transgenic flies
were generated using the PhiC31 system (BestGene).
We generated transgenic sensors by cloning two complementary

sequences to miR-279, or the 3′ UTRs of rho, ru, boss and neur,
downstream of tub-GFP. The 3′ UTRs were amplified from genomic DNA
using the primers listed in Table S1, and cloned into the XbaI/XhoI sites of
tub-GFP. Transgenic animals were generated by co-injection with Δ2-3
helper plasmid (gift of G. Rubin).

Immunohistochemistry
We used a standard protocol for immunostaining of imaginal discs (Lai and
Rubin, 2001). Primary antibodies were rat anti-Elav (1:30, 7E8A10,
DSHB), mouse anti-Cut (1:25, 2B10, DSHB), mouse anti-Prospero (1:20,
MR1A, DSHB), mouse anti-Dlg (1:100, 4F3, DSHB), rabbit anti-DPax2
[1:2000; gift of J. Kavaler (Kavaler et al., 2018)], rabbit anti-GFP (1:1250,
A-11122, Invitrogen), chicken anti-GFP (1:1000, ab13970, Abcam), mouse
anti-Rh3 (1:10; gift of S. Britt, University of Colorado), rabbit anti-Rh4
(1:100; gift of C. Zuker, Columbia University), rabbit anti-BarH1 (1:500;
gift of Kwang-Wook Choi, KAIST South Korea) and guinea pig anti-
Senseless (1:2500; gift of Hugo Bellen, Baylor College of Medicine). We
used appropriate secondary antibodies conjugated to Alexa 488, 568 and
647 (1:500, Molecular Probes).

Luciferase sensor assays
We used previously described luciferase 3′ UTR sensors in the psiCheck2
backbone for nerfin-1, ru, rho and boss (Sun et al., 2015). Point mutations in
miR-279/996 seed matches were introduced by site-directed mutagenesis
with the oligonucleotides listed in Table S1 and confirmed by sequencing.
S2 cells were plated in 96-well plates and transfected with 12.5 ng/well

either UAS-DsRed empty vector or UAS-DsRed-miRNA constructs,
12.5 ng/well psiCheck2 plasmid and 6.25 ng/well ub-Gal4. Transfections
were performed using Effectene Transfection Reagent (Qiagen) according
to the manufacturer’s instructions. Luciferase values were measured 3 days
after transfection. We normalized transfection efficiencies using control
firefly luciferase carried within psiCheck2, and fold repression was
normalized against empty UAS-DsRed and empty psiCheck2 plasmid.
We present representative data from quadruplicate sensor assays, for which
each set was performed at least three times and found to yield qualitatively
similar results. The S2 cells were recently authenticated as being male cells
based on expression of the male Sxl transcript isoform but were not tested for
other contamination.
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Supplementary Figure 1. Correspondence of Arm+ constrictions with Elav+ photoreceptors. 

Shown are illustrative ommatidia from mir-279/996[15C/15C] eyes, with Arm stained in green and Elav in 
red. There are normally eight photoreceptors in an ommatidium, but their nuclei do not usually lie in a 
single plane, and the region where the apical zonula adherens labeled by Arm usually present only 7 
constrictions. Therefore, the correspondence of Arm and Elav staining usually requires examination of 
staining along the Z-axis. (A) Example showing how a 6 dot ommatidia has 8 photoreceptors. (B) Example 
showing how a 7 dot ommatidia has 8 photoreceptors. (C) Example showing how an 8 dot ommatidia has 
9 photoreceptors. (D) Example of an ommatidia with 10 Elav+ photoreceptors, all located in the same 
plane.
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Supplementary Figure 2. Adult retinal sections in mir-279/996 gain-of-function conditions. 

sev-Gal4>UAS-DsRed-mir-279 eye shows severe disruption of normal ommatidial patterning. sev-Gal4 
is expressed in R3/R4, R1/R6, R7, and cone cells. Dotted white circle highlights an ommatidia with the 
normal 7 rhabdomeres. Asterisks indicate absent R3/4 rhabdomeres, while yellow arrows indicate 
rudimentary/degenerated rhabdomeres.
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Supplementary Figure 3. Analysis of photoreceptor subtype-specific markers in mir-279/996 mutants.

Staining for Sens (R8) and BarH1 (R1/6) (in green) reveal sporadic ommatidia with ectopic photoreceptors 
of these subtypes. Identity of cells as photoreceptors is confirmed by co-staining with Elav (in red). Note 
that non-neuronal cells express Sens (e.g., within interommatidial bristles, IOB) and BarH1 (e.g. within 
pigment cells).
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Supplementary Figure 4. Rescue of mir-279/996 deletion mutants by genomic transgenes express-
ing only individual miRNAs. 

Shown are 45 hr pupal eyes stained for the general photoreceptor (R) marker Elav (in red), the R7 
marker Prospero (in green), and the cone cell marker D-Pax2 (in blue). Note that these markers 
also label some additional cell types, which may be variably observed due to the 3D architecture 
and curved structure of the eye. For example, Prospero is also expressed in the sheath cell of 
interommatidial bristles that are located at alternate vertices of ommatidia. Sheath cell nuclei are 
distinguished for R7 cells by their location and by their absence of Elav expression; a subset of 
sheath cells are labeled (S) for clarity. All of the tissues shown are homozygous for the 
mir-279/996[15C] deletion, which normally exhibits highly aberrant eye development (see main 
Figures). Each genotype also bears a 16.6 kb genomic transgene of the mir-279/996 locus (panels 
A-A'''), either fully wildtype or modified so that the mir-279 hairpin replaces the mir-996 hairpin (16.6 
kb 2x-mir-279, panels B-B''') or vice versa (16.6 kb 2x-mir-996, panels C-C'''). Regular organization 
and appropriate cell fate patterning of the eye is observed in mir-279/996[15C/15C] deletion 
mutants bearing any of these genomic rescue transgenes.

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

270



Supplementary Table 1

Primers for amplifying 3'UTRs for wt luciferase and tub-GFP sensors
rho1-3’UTR-for-xba GCTCTAGAgagatcgagagacagagagt
rho1-3’UTR-rev-xho CCGCTCGAGtgtaggggattacgatgctc
ru-3’UTR-for-xba GCTCTAGAgcagcatctgatgaatgacc
ru-3’UTR-rev-xho CCGCTCGAGtaagcctaagtaggcaactc
Boss-3’UTR-for-xba GCTCTAGAatccacaacgtcctccacct
Boss-3’UTR-rev-xho CCGCTCGAGtcttggttcgtcagtgatt
neur-3’UTR-for-xba GCTCTAGActacaccacgtagaaaggtc
neur-3’UTR-rev-xho CCGCTCGAGtccgctttgcttgtccttca

Primers for mutating miR-279/996 on sensors
ru miR-279 site mutation Fwd TGTCTCCTCTTATGCCCTAG AGATCAGT CTAGATTATAAGACTTTTCC
ru miR-279 site mutation Rev GGAAAAGTCTTATAATCTAG ACTGATCT CTAGGGCATAAGAGGAGACA
rho miR-279 site mutation Fwd GTAAATACTATTAAGTCGCACA GATCAGT AACAACAACAACAGCAACAG
rho miR-279 site mutation Rev CTGTTGCTGTTGTTGTTGTT ACTGATC TGTGCGACTTAATAGTATTTAC
boss miR-279 site mutation Fwd CGAGTGTACAATGTGGCACT AGATCAGT  ACGCTCCCAGTACGTGAATTC
boss miR-279 site mutation Rev GAATTCACGTACTGGGAGCGT  ACTGATCT AGTGCCACATTGTACACTCG
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Regulatory logic driving stable levels of defective proventriculus
expression during terminal photoreceptor specification in flies
Jenny Yan1,*, Caitlin Anderson1, Kayla Viets1, Sang Tran1, Gregory Goldberg2,‡, Stephen Small2 and
Robert J. Johnston, Jr1,§

ABSTRACT
How differential levels of gene expression are controlled in post-
mitotic neurons is poorly understood. In the Drosophila retina,
expression of the transcription factor Defective Proventriculus (Dve)
at distinct cell type-specific levels is required for terminal
differentiation of color- and motion-detecting photoreceptors. Here,
we find that the activities of two cis-regulatory enhancers are
coordinated to drive dve expression in the fly eye. Three
transcription factors act on these enhancers to determine cell-type
specificity. Negative autoregulation by Dve maintains expression
from each enhancer at distinct homeostatic levels. One enhancer acts
as an inducible backup (‘dark’ shadow enhancer) that is normally
repressed but becomes active in the absence of the other enhancer.
Thus, two enhancers integrate combinatorial transcription factor
input, feedback and redundancy to generate cell type-specific levels
of dve expression and stable photoreceptor fate. This regulatory logic
may represent a general paradigm for how precise levels of gene
expression are established and maintained in post-mitotic neurons.

KEY WORDS: Defective proventriculus, Shadow enhancer, Dark
shadow enhancer, Rhodopsin, Drosophila retina, Photoreceptor,
Spineless, Orthodenticle, Spalt

INTRODUCTION
Genes are expressed at distinct cell type-specific levels at different
times during development. Expression is often transient, arising for
short periods of time to trigger downstream regulatory pathways.
For example, expression driven by the eve stripe 2 enhancer,
perhaps the best-understood regulatory DNA element, is very short-
lived, persisting for only ∼15 min after the mature stripe is fully
formed during embryonic development in flies (Bothma et al.,
2014). By contrast, gene expression in post-mitotic neurons must be
maintained on long timescales, often for the lifetime of the
organism. Establishing and maintaining distinct levels of
transcription factors is particularly important for neuronal fate and
function across species. For example, in worms, low levels of the
transcription factor MEC-3 specify the elaborate dendritic
patterning of PVD pain-sensing neurons, whereas high MEC-3

determines the simple morphology of AVM and PVM touch
neurons (Smith et al., 2013). Similarly, flies use differences in levels
of the homeodomain transcription factor Cut to control dendritic
branching complexity in sensory neuron subtypes (Grueber et al.,
2003). In mice, the Hox accessory factor FoxP1 acts as a dose-
dependent determinant of motor neuron subtype identity (Dasen
et al., 2008). Beyond these cases, there are numerous examples of
differential transcription factor expression in neuronal subtypes,
such as the unique expression levels of Brn3b in ipRGC subtypes
(Chen et al., 2011).

Establishing and maintaining distinct levels of gene expression
for the lifetime of a neuron presents specific challenges. Regulatory
mechanisms must ensure that expression levels remain within a
narrow range for days and even years while providing robustness
against acute perturbations caused by activity and environment. In
some cases, the transcription factors that dictate cell type-specific
expression levels have been identified (Corty et al., 2016), but how
these regulatory inputs are interpreted by DNA elements has not
been characterized. Furthermore, it is unclear how transcription
factor feedback and cis-regulatory redundancy contribute to
ensuring proper expression levels in neurons.

Expression of transcription factors at cell type-specific levels is
required for the terminal specification of motion- and color-
detecting photoreceptors in the Drosophila retina. The Drosophila
compound eye consists of approximately 800 ommatidia, or unit
eyes, each containing eight photoreceptors (PRs) (Wolff and Ready,
1993) (Fig. 1E). The outer PRs (R1-R6) express the broad spectrum-
sensitive Rhodopsin 1 (Rh1) and detect motion (Hardie, 1985),
whereas the inner PRs (R7 and R8) express color-sensitive
Rhodopsin proteins (Rh3-Rh6) (Gao et al., 2008; Yamaguchi
et al., 2010). Two ommatidial subtypes, pale (p) and yellow (y), are
randomly distributed in the retina at a ratio of 35:65 (Bell et al.,
2007; Franceschini et al., 1981) (Fig. 1A-D). The p subtype
contains UV-sensitive Rh3 in pR7 and blue-sensitive Rh5 in pR8,
whereas the y subtype contains UV-sensitive Rh4 in yR7 and green-
sensitive Rh6 in yR8 (Fig. 1A-C) (Chou et al., 1996; Fortini and
Rubin, 1990; Johnston and Desplan, 2010). The specification of
these photoreceptor subtypes is controlled by a complex network of
transcription factors and other regulators (Hsiao et al., 2013; Jukam
and Desplan, 2011; Jukam et al., 2013, 2016; Mikeladze-Dvali
et al., 2005; Viets et al., 2016; Wernet et al., 2006).

Differential expression of the K50 homeodomain transcription
factor Defective proventriculus (Dve) is crucial for terminal
specification of photoreceptors in the fly eye (Johnston et al., 2011;
Thanawala et al., 2013). Dve is expressed in a unique pattern, with
high levels in the outer PRs, low levels in yR7s and no expression in
pR7s or R8s (Fig. 1K). High Dve in motion-detecting outer PRs
represses expression of color-detecting Rh3, Rh5 and Rh6. Low
levels of Dve in yR7s repress Rh3 tomaintain exclusive expression of
Rh4 in yR7 subtypes in the main ventral region of the retina (Fig. 1L,Received 24 August 2016; Accepted 2 January 2017
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N). In the dorsal third, Dve levels are lowered further in yR7s to allow
co-expression of Rh3 in Rh4-expressing cells (Fig. 1D). The absence
of Dve expression allows expression of Rh3 in pR7s (Fig. 1M-N) and
Rh5 and Rh6 in R8s (Johnston et al., 2011).

Changes in levels of Dve expression have a dramatic impact on
Rhodopsin expression and photoreceptor fate. In dve null mutants,
Rh3 is derepressed in all R7s, and Rh3, Rh5 and Rh6 are variably
expressed in outer PRs (Fig. 1O-Q) (Johnston et al., 2011; Sood
et al., 2012). In dve hypomorphic mutants, where levels of Dve are
lowered but not completely lost, Rh3 is still derepressed in all R7s,
but only Rh6 is expressed in outer PRs (Johnston et al., 2011).
When Dve levels are subtly lowered upon mutation of upstream
regulators, the dorsal region of Rh3 and Rh4 co-expression is
expanded from one-third of the retina to the entire dorsal half
(Thanawala et al., 2013). The misexpression of Rhs in dve mutants
causes defects in low-intensity light discrimination (Johnston et al.,
2011). Deleterious effects are also seen when Dve levels are
increased: raising levels of Dve in yR7s causes loss of Rh3/Rh4 co-
expression in the specialized dorsal third region (Mazzoni et al.,
2008; Thanawala et al., 2013), whereas overexpression in R8s
represses Rh5 and Rh6 completely (Johnston et al., 2011). Thus, the
differential expression of dve in photoreceptors is important for
proper Rh expression and visual function.

Cell type-specific levels of Dve are achieved through regulation by
the K50 homeodomain transcription factor Orthodenticle (Otd), the
zinc-finger transcription factors Spaltmajor and Spalt related [referred
to collectively as Spalt (Sal)], and the PAS-bHLH transcription factor
Spineless (Ss). Otd activates Dve in all PRs (Fig. 1F), Sal represses
Dve in the inner PRs (Fig. 1G-H) and Ss re-activates Dve in yR7s
(Fig. 1I,J) (Johnston, 2013; Johnston et al., 2011).

To determine how these transcription factors dictate cell type-
specific levels ofDve expression, we analyzed the cis-regulatory logic
controlling dve and identified two enhancers, yR7 enh and outer enh,
that together induced expression recapitulating endogenous Dve
expression. yR7 enh is activated by Ss, Sal and Otd in yR7 cells,
whereas outer enh is activated by Otd in all PRs and repressed by Sal
in inner PRs. Negative feedback by Dve onto both enhancers
maintains proper levels of Dve expression. This autoregulation is
particularly important for yR7 enh, which is dramatically upregulated
in yR7s when Dve feedback is ablated. Interestingly, we also
observed derepression of yR7 enh in outer PRs in dve mutants,
suggesting that yR7 enh serves as an inducible backup or ‘dark’
shadowenhancer in these cells. Shadowenhancers are DNA elements
that drive redundant expression patterns and ensure robust gene
expression in cases of genetic and environmental perturbation
(Bothma et al., 2015; Frankel et al., 2010; Hong et al., 2008; Miller
et al., 2014; Nolte et al., 2013; Perry et al., 2010; Wunderlich et al.,
2015). yR7 enh represents an unusual ‘dark’ shadow enhancer as it is
normally repressed and only becomes active when Dve driven by the
primary outer enh is compromised. Together, the yR7 enh and outer
enh integrate combinatorial transcription factor input, negative
feedback and redundancy to ensure distinct cell type-specific levels
of dve expression required for stable photoreceptor specification.

RESULTS
Two enhancers determine yR7- and outer PR-specific
expression of Dve
The dve gene locus is ∼65 kb with two alternative transcriptional
starts driven by the dve-A promoter or dve-B promoter (Fig. 2A).
Deletion of the dve-A promoter caused derepression of Rh3 in yR7s in
the dorsal half of the retina (Fig. S1A,B), while Rh5 and Rh6
expression were unaffected (Fig. S1C). This incomplete dve

Fig. 1. The regulatory logic controlling Dve. (A) Rh3 (blue) and Rh4 (red)
expression in pR7s and yR7s coordinates with Rh5 (green) and Rh6 (orange)
expression in pR8s and yR8s in adults. (B,C) Rh3, Rh4, Rh5 and Rh6 in cross-
sectional view at the levels depicted by the gray dashed lines in A. Images
were taken in adult flies. (D) In the adult fly eye, two ommatidial subtypes, the
Rh3-expressing pR7s (blue circles) and the Rh4-expressing yR7s (red circles),
are randomly distributed in the retina at a ratio of 35:65. This mutual exclusivity
in expression breaks down in the dorsal third region, where Rh3 and Rh4 are
co-expressed in the y subtype (half red/half blue circles). A, anterior; P,
posterior; D, dorsal; V, ventral. (E) Nuclei and rhabdomeres of the 8 PRs (R1-8)
that make up the fly ommatidium. Large outer black circles represent nuclei;
smaller inner circles represent rhabdomeres. (F-J,L,M,O,P) Regulatory logic
governing dve. (Left) Gene network. (Right) Dve expression pattern. Solid
color represents consistent expression. Hatched colors indicate variable
derepressed expression. (F) Otd activates Dve in all PRs. (G) Sal represses
Dve in inner PRs. (H) The absence of Sal allows Dve expression in outer PRs.
(I) Ss activates Dve in yR7s. (J) The absence of Ss prevents Dve expression in
pR7s. (K) The interactions in F-J yield the expression pattern of Dve: high
expression in outer PRs; low expression in yR7s; no expression in pR7s and
R8s in pupae. Yellow circles indicate yR7 nuclei with dve on; solid white circles
indicate pR7 nuclei with dve off; dashed white circles are nuclei of outer PRs
and R8s. (L) Dve represses Rh3 in yR7s. (M) The absence of Dve allows Rh3
expression in pR7s. (N) Rh3 is expressed only in pR7s where Dve is absent in
adults. (O-Q) In dve mutants, Rh3 is expressed in all R7s and variably
derepressed in outer PRs in adults. (N,Q) Yellow circles indicate yR7
rhabdomeres. Solid white circles indicate pR7 rhabdomeres. Dashed white
circles are rhabdomeres of outer PRs.
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phenotype is consistent with a decrease in Dve levels in yR7s
(Thanawala et al., 2013), suggesting that the dve-A promoter is
required for normal Dve expression. To test the role of the dve-B
promoter,we employed a CRISPR strategy to delete a∼1.5 kb region
encompassing the dve-B promoter and first exon. Deletion of the dve-
B promoter did not alter Dve-regulated Rh expression (Fig. S1D-F),
suggesting that the dve-B promoter is not required for Dve expression.
As the dve-A promoter is required for normal Dve expression, we
used this promoter as the minimal promoter in enhancer reporters.
To identify cis-regulatory elements controlling dve expression, we

generated transgenes containing 3-6 kb DNA fragments from the dve
locus and the dve-A promoter driving nuclear GFP (Fig. 2A, dve
enh>GFP). The dve-A promoter alone drove extremely weak GFP
expression in pigment cells and R4 PRs, and therefore did not
recapitulate normalDve expression in all outer PRs and yR7s (Fig. S1H).
Two constructs drove GFP expression that together recapitulated

endogenous Dve expression in midpupation [i.e. ∼48 h after
puparium formation (APF)]. outer enh drove expression in outer
PRs (Fig. 2A,E), and yR7 enh drove expression specifically in a
subset of R7s (Fig. 2A,B). This subset corresponded to yR7 fate, as
68% of R7s had strong GFP expression and perfectly co-expressed
Ss (i.e. yR7s), whereas 32% had weak or no GFP and lacked Ss
(i.e. pR7s) (Fig. 2B-D).
Additionally, weak yR7 enh drove weak expression in yR7s

(Fig. 2A, Fig. S1M-O, described further below), and dorsal R7 enh
drove expression in dorsal posterior R7s (Fig. 2A, Fig. S1P-Q). Four
enhancers drove weak expression in all PRs (all PRs enh 1-4)
(Fig. 2A, Fig. S1I-L).
Janelia Research Campus and the Vienna Drosophila Resource

Center (VDRC) both generated lines that express Gal4 driven by
fragments of the dve locus (Fig. 2A). Expression driven by these
fragments was consistent with results from our dve enh reporter

constructs. GMR40E08, a ∼3 kb fragment that overlaps with outer
enh, drove strong GFP expression in outer PRs, whereas other
constructs that either did not overlap or only partially overlapped with
outer enh or yR7 enh did not show significant expression (Fig. 2A).

As yR7 enh and outer enh recapitulated endogenous Dve
expression, we further characterized the temporal dynamics of these
two enhancers. At midpupation, Dve protein is expressed strongly in
outer PRs and weakly in yR7s (Johnston et al., 2011), similar to GFP
expression driven by yR7 enh and outer enh (Fig. S2B,F,J). In third
instar larvae, analysis of Dve protein expression was obscured by
non-specific antibody staining (Fig. S2A) (Johnston et al., 2011).
Although outer enh was not expressed, yR7 enh was expressed in a
subset of R7s (Fig. S2E,I), suggesting that Dve is expressed in larval
yR7s. In adults, Dve protein is expressed in yR7s and outer PRs
(Fig. S2C,D). Similarly, outer enh drove GFP expression in outer PRs
in adults (Fig. S2K,L). yR7 enh drove expression in all R7s in adults
(Fig. S2G,H), suggesting that additional activators present only in the
adult stage induce yR7 enh expression in all R7s, and that this
enhancer is missing DNA elements that prevent ectopic Dve
expression in adults.

Together, the spatiotemporal dynamics of these enhancers are
consistent with endogenous dve expression. Next, we tested how
upstream transcription factors control expression of these two
enhancers.

yR7 enh is activated by Ss, Sal and Otd
yR7 enh drives expression in yR7 cells (Fig. 3A). Dve is expressed
at lower levels in yR7s in the dorsal third, allowing IroC-induced
activation of Rh3 and co-expression of Rh3 and Rh4 (Johnston
et al., 2011). Similar to endogenous Dve expression, yR7 enh is
expressed at lower levels in dorsal third (DT) yR7s when compared
with the rest of the retina (Fig. 3D).

Fig. 2. Two enhancers recapitulate
Dve expression. (A) The dve locus,
reporter constructs and deletions.
Reporter constructs (dve enh>GFP)
consist of fragments of the dve locus and
the dve-A promoter driving nuclear GFP.
Smaller fragments, denoted with an
asterisk, represent the shortest
truncations generated that recapitulate
the expression level of the original dve
enh>GFP constructs. Janelia Research
Campus and VDRC stocks contain
fragments of the dve locus driving Gal4.
Light green fragments drive strong
expression. Dark green fragments drive
weak expression. Gray fragments did not
drive expression. (B-D) yR7 enh drives
expression in yR7s at mid-pupation; Ss is
a marker for yR7s. Yellow circles indicate
yR7 cells; solid white circles indicate pR7
cells; dashed white circles are outer PRs
and R8s. In schematics, black circles
indicate no GFP expression and green
circles indicate GFP expression.
(E) outer enh constructs drive GFP
expression in outer PRs at mid-pupation.
Dashed white circles indicate outer PRs
and R8s; solid white circle indicates R7.
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Otd is required for Dve expression in yR7s (Johnston et al., 2011).
yR7 enh failed to induce expression in yR7s in otdmutants, suggesting
that Otd is required for activation of this enhancer (Fig. 3B).
Ss induces expression of Dve in yR7s (Johnston et al., 2011).

Expression of yR7 enh was lost in ss mutants (Fig. 3C). Ectopic
expression of Ss in all PRs induced strong yR7 enh expression in all
R7s and weak expression in all other PRs (Fig. 3E), suggesting that
another factor acts with Ss to activate strong yR7 enh expression.
As Sal is important for R7 fate (Mollereau et al., 2001), we posited

that Sal may work with Ss to activate yR7 enh. Expression of yR7 enh
was completely lost in sal mutants (Fig. 3F), whereas ectopic
expression of Sal in all PRs induced yR7 enh expression in a random
subset of R1 and R6 outer PRs (Fig. 3G). We showed previously that
ectopic Sal induced Ss in a random subset of R1 and R6 outer PRs
(Johnston and Desplan, 2014). These data suggest that Ss and Sal
function together to activate expression of yR7 enh.
Supporting our hypothesis, ectopic expression of both Ss and Sal

induced strong yR7 enh expression in all PRs (Fig. 3H), suggesting
that Ss and Sal both activate expression of yR7 enh. As Sal induces
expression of Ss, and Ss together with Sal induces yR7 enh, Ss, Sal
and yR7 enh form a coherent feed-forward loop (Fig. 3I).
To further elucidate these combinatorial regulatory interactions,

we truncated yR7 enh to a 0.8 kb fragment (yR7 enh*) that
recapitulated yR7 expression driven by the entire yR7 enh fragment
(Fig. 2A; Fig. 3J,L, Fig. S3A). Three other truncations that
encompass the 0.8 kb region also recapitulated yR7 expression,
whereas two truncations and four GAL4 lines generated by Janelia
Research Campus and VDRC that excluded yR7 enh* failed to drive
GFP expression, consistent with the role of yR7 enh* in driving yR7
specific expression (Fig. 3J). yR7 enh* contains three conserved
Ss binding sites (called Xenobiotic Response Elements/XREs)
(Fig. 3K), consistent with regulation by Ss.
weak yR7 enh drove weak GFP expression in yR7s, colocalizing

with Ss expression (Fig. S1M-O).weak yR7 enh and yR7 enh* share
a ∼250 bp overlap that contains one of the three Ss XRE binding
sites (Fig. 3J,K), suggesting that while the shared XRE site can drive
GFP in yR7s, strong expression requires the presence of additional
XRE sites. The Janelia enhancer GMR42E10 shares a ∼75 bp
overlap with yR7 enh but does not contain any Ss XRE binding sites
(Fig. 3J,K). This construct failed to drive GFP expression,
suggesting that at least one Ss XRE binding site is required for
yR7-specific expression.
To further test the roles of SsXREbinding sites,we generated a yR7

enh* construct that replaces all GCGTG Ss XRE binding sites with
AAAAA. This construct showed a near complete loss of yR7 GFP
expression, indicating the importance of these sites for Ss activation
(Fig. 3M). Very low-level expression of this reporter suggests the
presence of additional cryptic Ss sites within yR7 enh* (Fig. 3M).
Searching yR7 enh* for low-affinity Ss binding motifs (Zhu et al.,
2011), we identified two putative sites (GTCTGA and GTGTGA),
one of which is conserved (GTCTGA), suggesting that these cryptic/
low-affinity sitesmay drive very low level expression in the absence of
core conserved (GCGTG) sites. Together, these data suggest that Ss
directly binds the XRE sites in yR7 enh* to regulate expression.
However, we cannot rule out possible indirect mechanisms.
Although yR7 enh* has three Ss XRE sites, this enhancer contains

no predicted Sal sites (Barrio et al., 1996; Sanchez et al., 2011),
suggesting that Sal regulates yR7 enh* either directly via binding to
cryptic sites or indirectly through regulation of other intermediary
factors. The longer yR7 enh contains a Sal binding site, which may
contribute to regulation. Genetic epistasis analysis supports an
indirect mode of regulation by Sal (Fig. S4; see below).

yR7 enh* is required for expression of endogenous Dve in yR7s, as
CRISPR-generated deletion of yR7 enh* caused a loss of Dve
expression specifically in R7s (Figs 2A, 3N) and a corresponding
upregulation of Rh3 in all PRs (Fig. 3O). Similarly, the larger dveexel

deletion, covering yR7 enh and the dve-A promoter, also resulted in
Rh3 upregulation in R7s (Fig. 2A, Fig. S1G). Together, these results
suggest that yR7-specfic expression ofDve requires yR7 enh, which is
activated by Ss, Sal and Otd.

Negative feedback onto yR7 enh determines homeostatic
levels
Expression levels of Dve are precisely controlled to determine region-
specific activation or repression of Rh3 in yR7s (Thanawala et al.,
2013) (Fig. 1D). Negative feedback is a mechanism that ensures
precise, homeostatic levels of gene expression. As Dve is a
transcriptional repressor, we hypothesized that Dve feeds back onto
yR7 enh to control expression levels. To test Dve for negative
regulation of yR7 enh, Dve was expressed in all PRs at high levels
causing a complete loss of yR7 enh expression (Fig. 4A). yR7 enhwas
expressed at higher levels in yR7s in dve mutant clones compared
with wild-type clones (Fig. 4B,C,F), suggesting that Dve driven by
yR7 enh feeds back to control levels of expression in yR7s (Fig. 4H).

yR7 enh is a ‘dark’ shadow enhancer for outer PR expression
In addition to yR7s, expression of yR7 enh occurred in outer PRs in
dve mutant clones (Fig. 4D,E,G), suggesting that outer enh induces
Dve expression to completely repress yR7 enh in outer PRs in
normal conditions (Fig. 4I,J). As yR7 enh was never expressed in
pR7s or R8s in wild type or in dve mutants (Fig. 4B-E), yR7 enh is
only competent to drive expression in yR7s and outer PRs, where
Dve is normally expressed.

As outer enh drives expression in outer PRs in normal conditions and
yR7 enh drives expression in outer PRs in dvemutants, we predicted that
deleting outer enh would cause yR7 enh to drive expression of
endogenous dve in outer PRs (Fig. 4I,J). Flies with a CRISPR-mediated
deletion of outer enh displayed expression ofDve in outer PRs (Fig. 4K)
and repression of Rh3, Rh5 andRh6 (i.e. Dve target genes) in outer PRs
in 1-week-old adults (Fig. 4L,N), suggesting that yR7 enh drives
expression in the absence of functional outer enh. Although Rh3
expression remained unchanged (Fig. 4M), variable derepression of
Rh5 and Rh6 occurred in 4-week-old adults (Fig. 4O), suggesting that
expression driven by yR7 enh is not sufficient to completely rescue Dve
expression due to differences in levels or timing.

As yR7 enh can drive expression in outer PRs, yR7 enh is a
shadow enhancer (i.e. redundant regulatory DNA element) for outer
enh, the primary enhancer for outer PR expression. Unlike typical
shadow enhancers, the yR7 enh shadow enhancer is repressed
(‘dark’) in outer PRs under normal conditions due to negative
feedback from the primary enhancer (Fig. 4I). We therefore define
yR7 enh as a ‘dark’ shadow enhancer, as its expression in outer PRs
only occurs when outer enh function is lost (Fig. 4J).

Otd/Dve sites play context-dependent roles in yR7 enh
As Otd activates and Dve represses yR7 enh, we next tested the
regulatory roles of canonical Otd/Dve binding sites (also called K50
sites; TAATCC). yR7 enh* contains two Otd/Dve sites, which are
perfectly conserved across at least five out of sixDrosophila species
(Fig. 3K). Replacing these two sites with AAAAAA caused
increased levels of GFP expression in yR7s (Fig. 4P), suggesting
that these sites mediate repression by Dve but not activation by Otd
in yR7s. As Otd is required for expression of yR7 enh, the
expression of GFP in yR7s in the absence of optimal Otd binding
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Fig. 3. yR7 enh is activated byOtd, Sal and Ss. (A-C,E-H,L-M) Yellow circles indicate yR7s; solid white circles indicate pR7s. Dashed white circles indicate outer
PRs and R8s. Light green in ommatidium schematics indicates strong GFP expression; dark green indicates weak expression; crosshatch indicates variable
expression; black indicates lack of expression. Images were acquired at mid-pupation. (A) yR7 enh is expressed in yR7s. (B) Expression of yR7 enh is lost in otd
mutants. (C) Expression of yR7 enh is lost in ssmutants. (D) Quantification of GFP intensity in R7 cells shows three distinct intensity levels corresponding to pR7
[including pR7 and dorsal third (DT) pR7], yR7 and DT yR7 expression. Data are mean±s.d., n=22 for pR7s, 16 for DT pR7s, 31 for yR7s and 31 for DT yR7s.
****P<0.0001, ns indicates P>0.05 and not significant (unpaired t-test with Welch’s correction). All measurements were internally controlled within a single
mid-pupal retina. (E) yR7 enh is strongly expressed in all R7s and weakly expressed in all PRs when Ss is ectopically expressed in all PRs. (F) Expression of yR7
enh is lost in salmutants (white circle indicates presumptive R7). (G) yR7 enh is expressed in random R1s and R6s when Sal is ectopically expressed in all PRs.
(H) yR7 enh is expressed in all PRs when Ss and Sal are ectopically expressed in all PRs (yellow circle indicates presumptive yR7). (I) The regulatory interactions
governing yR7 enh.Otd, Ss andSal activate yR7 enh, whereas Sal activates stochastic expression of Ss in yR7s (denoted by dashed arrow). (J) A truncated 0.8 kb
fragment of yR7 enh, indicated by yR7 enh*, was sufficient to recapitulateGFPexpression in yR7 cells. Larger truncations encompassing yR7 enh* also expressed
GFP in yR7 cells, while truncations excluding yR7 enh* did not drive GFP expression.weak yR7 enh shares a ∼250 bp overlap with yR7 enh*, including one of the
three Ss XRE binding sites (Fig. 3K). GMR42E10, a construct generated by Janelia that contains a fragment of dve driving Gal4, shares a ∼75 bp overlap with yR7
enh that does not contain any Ss XRE binding sites (Fig. 3K). This construct failed to drive GFP expression in yR7 cells. Light-green fragments drive strong GFP
expression; dark-green fragments drive weak GFP expression; gray fragments do not drive GFP expression. (K) yR7 enh* contains three Ss binding sites and two
Otd/Dve binding sites. Capitalized black text indicates perfect conservation across sixDrosophila species. Capitalized gray indicates conservation across five out of
the six species. Light-green fragments drive strong GFP expression; dark-green fragments drive weak GFP expression; gray fragments do not drive GFP
expression. (L) yR7 enh* is expressed in yR7s, similar to Dve and yR7 enh. (M) Knocking out Ss XRE binding sites in the yR7 enh* construct resulted in a near
complete loss of GFP expression. BS KO, binding site knockout. (N) CRISPR-mediated deletion of yR7 enh from the endogenous dve locus resulted in loss of Dve
specifically in yR7s. Dashed white circles indicate outer PRs and R8s; solid white circles indicate R7s. Red in ommatidium schematic indicates Dve expression.
(O) Loss of Dve in yR7s resulted in derepression of Rh3 in adults. Yellow circles indicate yR7s; white circles indicate pR7s; black circles indicate no expression.
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sites suggests that Otd may act through additional Otd-specific
cryptic sites or that activation is mediated by another activator
downstream of Otd. Mutation of these sites did not cause de-
repression in outer PRs, suggesting that these sites mediate both
repression by Dve and activation by Otd in outer PRs.
To test whether Dve directly binds the two Otd/Dve sites in yR7

enh*, we conducted in vitro electrophoretic mobility shift assays
(EMSAs). Dve bound sequences containing the Otd/Dve sites, and
mutation of these sites dramatically decreased binding (Fig. 4Q),
suggesting that Dve directly binds the two Otd/Dve sites in yR7
enh* to repress expression.
As regulation of yR7 enh* is dependent on Otd/Dve sites, Otd

likely directly binds these sites to regulate expression. However, we
cannot rule out possible indirect mechanisms.

outer enh is activated by Otd and repressed by Sal
We next characterized outer enh, the primary enhancer for Dve
expression in outer PRs (Fig. 5A). The dveexel deletion, which
removes the first exon of dve, the dve-A promoter, and yR7 enh,
showed no derepression of Dve target genes (Rh3, Rh5 and Rh6) in
outer PRs (Fig. 2A, Fig. S1G), suggesting that outer enh is sufficient
to drive Dve expression in outer PRs.

Otd activates Dve expression in all PRs, and Sal represses Dve
expression in inner PRs (Johnston et al., 2011). outer enh expression
was completely lost in otd mutants, consistent with a general
requirement of Otd for dve expression (Fig. 5B). In sal mutants,
outer enh was derepressed in inner PRs (Fig. 5C), suggesting that
Sal represses this element in inner PRs. Ectopic expression of Ss in
all PRs did not affect outer enh expression, consistent with

Fig. 4. See next page for legend.
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regulation of this element independent of Ss (Fig. 5D). Thus,
combinatorial regulation involving activation by Otd in all PRs and
repression by Sal in inner PRs yields the outer PR-specific
expression of outer enh (Fig. 5E).
We truncated outer enh to a 1.3 kb fragment (outer enh*) that

recapitulated the expression of the entire outer enh fragment
(Figs 2A, 5A,F,H, Fig. S3B). Two larger truncations and a Janelia
Gal4 construct (GMR40E08) that encompass this 1.3 kb region also
recapitulated expression, whereas fragments that exclude outer enh*
failed to drive GFP, consistent with the role of outer enh* in driving
outer PR-specific expression (Fig. 5F).
outer enh* has fourK50 homeodomain consensus sites (TAATCC)

for Otd and Dve (Fig. 5G) (Chaney et al., 2005). all PR enh 4 shares a
390 bp overlapwithouter enh*, including one of theOtd/Dve binding
sites, suggesting that its weak expression in all PRs may be due to
the single Otd/Dve binding site functioning independently of the
repressive Sal input that regulates the entire outer enh*.
We generated an outer enh* construct that removes all TAATCC

Otd/Dve binding sites by replacing them with AAAAAA (Fig. 5I).
This construct showed a near complete loss of GFP expression in
outer PRs, consistent with our model that Otd is required for outer

enh activation. As regulation of outer enh* is dependent on Otd/Dve
sites, Otd likely directly binds these sites to regulate expression.
However, we cannot rule out possible indirect mechanisms.

Although outer enh* has four Otd/Dve sites, this enhancer
contains no predicted Sal sites (Barrio et al., 1996; Sanchez et al.,
2011), suggesting that Sal regulates outer enh* either directly via
binding to cryptic sites or indirectly through regulation of other
intermediary factors. The longer outer enh contains a Sal binding
site, which may contribute to regulation.

Feedback onto outer enh determines homeostatic levels
As yR7 enh is controlled by negative autoregulation, we next tested
whether feedback also determines expression levels driven by outer
enh. As outer enh (and Dve) are highly expressed in outer PRs, we
expected that dvemutants may exhibit subtle increases in expression
from outer enh. Indeed, in dve mutant clones, outer enh was
expressed at higher levels in outer PRs compared with wild-type
clones (Fig. 6B-D). To confirm negative feedback onto outer enh,
Dve was ectopically expressed in all PRs at high levels (all
PRs>dve), causing a complete loss of outer enh expression
(Fig. 6A). Thus, Dve driven by outer enh feeds back onto this
enhancer to autoregulate and ensure homeostatic levels of
expression in outer PRs (Fig. 6E).

To test whether Dve directly binds the four Otd/Dve sites in outer
enh*, we conducted EMSAs. Dve bound sequences containing the
Otd/Dve sites, and mutation of these sites dramatically decreased
binding (Fig. 6F), suggesting that Dve directly binds the four Otd/
Dve sites in outer enh* to repress expression.

Sal represses outer enh to allow Ss-mediated activation of
yR7 enh
yR7 enh is highly sensitive to levels of Dve feedback, particularly in
outer PRs where Dve levels are high. Ss alone is sufficient to induce
yR7 enh expression at high levels in all R7s but not outer PRs
(Fig. 3E). Ss and Sal together are sufficient to induce yR7 enh at
high levels in outer PRs (Fig. 3H). As Dve driven by outer enh feeds
back to repress yR7 enh in outer PRs (Fig. 4D,E,I,J) and Sal
represses Dve expression from outer enh (Fig. 5C), Sal may activate
yR7 enh by repressing outer enh.

One prediction of this model is that ectopic Ss should be
sufficient to activate yR7 enh at high levels in outer PRs in the
absence of Dve. Indeed, when Ss is expressed at high levels in all
PRs in otd mutants that lack Dve (Johnston et al., 2011), yR7 enh is
activated in all PRs (Fig. S4A).

This result highlights two facets of yR7 enh regulation. First, Ss
activates yR7 enh, whereas Sal represses outer enh to allow
expression of yR7 enh, suggesting that Sal interacts indirectly with
yR7 enh (Fig. S4B). Second, Ss requires Otd to activate yR7 enh in
wild-type conditions (Fig. 3B) where Ss levels are low, whereas
high levels of Ss are sufficient to override the requirement for Otd
(Fig. S4A).

DISCUSSION
Dve is expressed in an intricate pattern with distinct levels in
different photoreceptors. The regulation required to achieve this
pattern is complex, involving two enhancers controlled by three
main mechanisms: combinatorial transcription factor input,
negative feedback and enhancer redundancy (Fig. 7). PR-specific
Otd, inner PR-specific Sal and yR7-specific Ss work together to
induce expression of yR7 enh in yR7s (Fig. 7A). By contrast, Otd
activates outer enh whereas Sal represses this enhancer to yield Dve
expression in outer photoreceptors (Fig. 7B).

Fig. 4. Dve feeds back to control yR7 enh. (A-E) Expression analysis was
conducted on mid-pupal retinas. (A) Expression of yR7 enh is lost when Dve is
ectopically expressed in all PRs. Dashed white circles indicate outer PRs and
R8s; solid white circle indicates R7. In schematic, black circles indicate noGFP
expression. (B-E) Yellow circles indicate yR7 cells; white circles indicate pR7
cells. Dashed white circles are outer PRs. Solid gray lines represent the
boundary between dve mutant clones (indicated by the absence of RFP) and
wild-type clones (indicated by the presence of RFP). Green in ommatidium
schematic indicates strong GFP expression; crosshatching indicates variable
expression; black indicates lack of expression; red spot indicates RFP
expression. (B,C) In yR7s, yR7 enh is upregulated in dve mutant clones
compared with wild-type clones. (D,E) In outer PRs, yR7 enh is upregulated in
dve mutant clones compared with wild-type clones. (F) Quantification of yR7
GFP intensity in dve mutant and wild-type clones. yR7s in dve mutants show
greater GFP intensity than in wild-type clones. R7 cells that are GFP positive
indicate yR7s. n=37 for wild-type yR7s and n=37 for dve mutant yR7s.
****P<0.0001, unpaired t-test with Welch’s correction. All measurements were
internally controlled within a single mid-pupal retina. (G) Quantification of GFP
intensity of outer PRs in dve mutant and wild-type clones. In wild-type clones,
outer PRs are GFP off, whereas dve mutant clones show a much greater
distribution of GFP expression states. n=84 for wild-type outer PRs and n=54
for dve mutant outer PRs. ****P<0.0001, unpaired t-test with Welch’s
correction. All measurements were internally controlled within a single mid-
pupal retina. (H) yR7 enh induces Dve expression that negatively feeds back
onto yR7 enh to maintain homeostatic Dve levels in yR7 cells. (I) outer enh
induces Dve expression that negatively feeds back onto yR7 enh to completely
repress yR7 expression in outer PRs. (J) When outer enh function is impaired,
yR7 enh is derepressed in outer PRs. (K) Dve remains expressed in outer PRs
upon deletion of outer enh. Dashed white circles indicate outer PRs.
(L,N) Expression of downstreamDve targets (Rh3, Rh5 and Rh6) is unaffected
in outer enh deletion mutants in 1-week-old adults. Dashed white circles
indicate outer PRs. (M,O) Variable derepression of Rh5 and Rh6 in outer PRs
is observed in outer enh deletion mutants in 4-week-old adults. Expression of
Rh3 is unaffected in outer enh deletion mutants in 4-week-old adults. Dashed
white circles indicate outer PRs. (P) Knocking out Otd/Dve K50 binding sites
resulted in an increased level of GFP in yR7s, suggesting that these sites
mediate repression by Dve but not activation by Otd in yR7s. Solid yellow
circles indicate yR7s that expressGFP; solid white circles indicate pR7s that do
not express GFP; dashed white circles indicate outer PRs and R8s. BS KO,
binding site knockout. (Q) EMSAs illustrating that the binding of Dve is
dependent on K50 Otd/Dve sites in yR7 enh. WT, wild-type sequence; M,
mutation of K50 Otd/Dve site. Arrows indicate the bands shifted upon Dve
binding. Multiple bands are observed likely due to the presence of multiple
functional DNA binding domains within Dve (Johnston et al., 2011), yielding
higher-order DNA/protein structures.
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Once these cell type-specific patterns are set, negative feedback
by Dve maintains expression of the two enhancers at distinct
levels important for regulation of downstream rhodopsin genes
(Fig. 7C,D). This negative feedback appears especially crucial for
the yR7 enh, the expression levels of which determine activation or
repression of Rh3 in different regions of the retina. Gene regulatory
network motifs involving negative feedback minimize variation in
expression levels. With negative feedback, high concentrations of a
regulator repress its expression, whereas low levels allow its
activation. Negative feedback thus ensures homeostatic levels of
expression (Alon, 2007; Becskei and Serrano, 2000; Irvine et al.,
1993; Stewart et al., 2013).
As an additional layer of regulation, outer enh drives high levels

of Dve that repress yR7 enh in outer PRs (Fig. 7E). When outer enh
function is lost, yR7 enh becomes active in outer PRs, functioning as
a shadow enhancer to provide redundancy and robustness to
expression (Fig. 7F). Complexmulti-enhancer systems enable genes
to integrate multiple regulatory inputs, yielding intricate expression
patterns. Although some enhancers account for distinct aspects of
regulation, others drive overlapping patterns. Shadow enhancers can
compensate for removal of a primary enhancer, resulting in mostly
unaltered gene expression (Hong et al., 2008; Miller et al., 2014;

Nolte et al., 2013; Perry et al., 2012). These shadow enhancers
provide reliability and robustness in pattern formation, allowing
crucial patterning genes to be buffered against environmental and
genetic variation (Barolo, 2012; Bothma et al., 2015; Frankel et al.,
2010; Perry et al., 2010).

We define yR7 enh as a dark shadow enhancer, as it is normally
repressed in outer PRs but becomes active when the function of the
primary enhancer is impaired. We were able to identify the yR7 enh
dark shadow enhancer because we were characterizing how a
complex pattern was controlled by combinatorial transcription
factor input and feedback acting on two enhancers. Similar to the
generality of shadow enhancers (Cannavo et al., 2016), dark shadow
enhancers may be a common mechanism to ensure gene expression.
However, they would be challenging to identify as they are active
only upon genetic or possibly environmental perturbation.

Dve is a transcriptional repressor (Johnston et al., 2011) that
acts directly on yR7 enh in outer PRs to repress expression
(Fig. 4Q). Generally, transcriptional repressors would likely act
directly on dark shadow enhancers to repress them, poising them
as backup systems. For transcriptional activators, more complex
indirect mechanisms would be required. For example, the primary
enhancer could induce the activator to activate expression of a

Fig. 5. outer enh is regulated by Otd and Sal. (A-D,H,I) Dashed white circles indicate outer PRs and R8s; solid white circles indicate R7s that do not express
GFP; solid yellow circles indicate presumptive R7s expressing GFP. In schematics: light green circles indicate strong GFP expression; dark green circles indicate
weak GFP expression; black circles indicate no GFP expression. Expression analysis was conducted on mid-pupal retinas. (A) outer enh is expressed in outer
PRs. (B) Expression of outer enh is lost in otdmutants. (C) outer enh is expressed in all PRs in salmutants. (D) Expression of outer enh is unaffected by ectopic
expression of Ss in all PRs. (E) Otd activates outer enh and Sal represses outer enh. (F) A truncated 1.3 kb fragment of outer enh, denoted outer enh*, was
sufficient to recapitulate GFP expression in outer PRs. Larger fragments encompassing outer enh* also expressed GFP in outer PRs, as did the Janelia reporter
GMR40E04. Light green fragments drive strongGFPexpression; dark green fragments driveweakGFPexpression; gray fragments did not driveGFPexpression.
(G) outer enh* contains three conserved Otd/Dve binding sites. Capitalized black text indicates perfect conservation across six Drosophila species. Lowercase
gray text indicates that more than one species shows variation at the site. (H) outer enh* is expressed in outer PRs, similar to Dve and outer enh. (I) Mutating Otd/
Dve binding sites in outer enh* resulted in a loss of expression of GFP. BS KO, binding site knockout.
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transcriptional repressor, which in turn could repress the dark
shadow enhancer. As dark shadow enhancers require feedback,
they would likely only be found in genes encoding regulatory
factors.

A key aspect of regulation by primary enhancers and dark shadow
enhancers is their differential responsiveness to repression. For
outer enh, normal Dve levels induce a slight decrease in expression.
However, for yR7 enh, these same levels completely turn off

Fig. 6. Dve feeds back to control outer enh.
(A-C) Dashed white circles indicate outer PRs
and R8s; solid white circles indicate R7s.
Expression analysis was conducted onmid-pupal
retinas. In schematics: green circles indicate GFP
expression; black circles indicate no GFP
expression; red spots indicate RFP expression.
(B,C) Solid gray line represents boundary
between dve mutant clones (indicated by
absence of RFP) and wild-type clones (indicated
by presence of RFP). (A) Expression of outer enh
is lost when Dve is ectopically expressed in all
PRs. (B,C) Autoregulatory feedback: in outer
PRs, outer enh is upregulated in dve mutant
clones compared with wild-type clones.
(D) Quantification of outer PR GFP expression of
outer enh in dve mutant clones compared with
wild-type clones. n=72 for wild-type outer PRs;
n=67 for dve mutant outer PRs. ****P<0.0001,
unpaired t-test with Welch’s correction. All
measurements were internally controlled within a
single mid-pupal retina. (E) outer enh induces
Dve expression that negatively feeds back onto
outer enh to maintain homeostatic levels in outer
PRs. (F) EMSAs illustrating that the binding of
Dve is dependent on K50 Otd/Dve sites in outer
enh.WT, wild-type sequence; M, mutation of K50
Otd/Dve site. Arrows indicate the bands shifted
upon Dve binding. Multiple bands are observed
likely due to the presence of multiple functional
DNA binding domains within Dve (Johnston et al.,
2011), yielding higher-order DNA/protein
structures.

Fig. 7. Combinatorial transcription
factor input, feedback and
redundancy govern dve expression.
(A) In yR7 cells, yR7 enh is activated by
Otd and Ss, while outer enh is
repressed by Sal. (B) In outer PRs, Otd
activates outer enh. (C) In yR7 cells,
yR7 enh induces Dve expression that
negatively feeds back onto yR7 enh to
maintain homeostatic levels. (D) In
outer PRs, outer enh induces Dve
expression that negatively feeds back
onto outer enh to maintain homeostatic
levels. (E) In wild-type outer PRs, outer
enh induces Dve expression that
negatively feeds back onto yR7 enh to
completely repress expression.
(F) Upon loss of outer enh function, yR7
enh is derepressed and drives
expression in outer PRs.
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expression in outer PRs. The difference may lie in activation by Otd:
outer enh contains four Otd/Dve sites, whereas yR7 enh contains
two (Figs 3K, 5G). As these sites mediate both activation by Otd and
repression by Dve, cooperative action by the four sites in outer enh
may drive stronger expression and prevent repression. Generally, the
primary enhancer is expressed and must be significantly less
susceptible to repression than the dark shadow enhancer, which is
off.
Expression of Dve in outer PRs is seen in the mosquitos

Anopheles gambiae and Aedes aegypti (Johnston et al., 2011),
suggesting a conserved role in Rh regulation that has been
maintained over 250 million years of evolution. However,
expression of Rhs in R7s of mosquito species is regionalized in
contrast to the stochastic pattern in Drosophila (Hu and Castelli-
Gair, 1999), suggesting that different mechanisms have arisen to
regulate Dve and Rh expression in R7s. Dark shadow enhancers
may be an ancestral mechanism to ensure gene expression despite
evolutionary changes. Furthermore, they may allow the evolution of
new functions such as the expression of yR7 enh in R7s.
Dark shadow enhancers appear to provide robustness to gene

expression and may act as additional mechanisms of canalization
(i.e. the ability for individuals in a population to produce similar
phenotypes regardless of environmental or genetic perturbation)
(Waddington, 1942). Buffering of gene expression occurs at the
levels of cis-regulatory logic (Dunipace et al., 2013; Frankel et al.,
2010; Hong et al., 2008; Staller et al., 2015;Wunderlich et al., 2015)
and gene networks (Cassidy et al., 2013; Lott et al., 2007; Manu
et al., 2009). Dark shadow enhancers are an interesting integration
of these mechanisms, whereby a primary enhancer induces
expression of a factor that feeds back to repress a dark shadow
enhancer. When expression from the primary enhancer is perturbed,
this feedback is broken and the dark shadow enhancer becomes
active. Thus, dark shadow enhancers are poised as backup
mechanisms for proper gene regulation. As our understanding of
complex multi-enhancer systems increases, it will be interesting to
see the generality of dark shadow enhancers.
In conclusion, our studies show how two enhancers integrate

combinatorial transcription factor input, negative autoregulation
and redundancy in cis-regulatory elements to determine robust
levels of gene expression in photoreceptor neurons. These
mechanisms likely play roles in the establishment and
maintenance of gene expression levels in other neuronal subtypes.

MATERIALS AND METHODS
Generating dve enh>GFP constructs
Fragments (3-6kb; Fig. 2A) were cloned into GFP reporter constructs and
injected into flies. Transgenic flies were isolated and stocks were generated
(see supplementary Materials and Methods and Table S1).

Drosophila strains
Flies were raised on standard cornmeal medium and grown at room
temperature (25oC) (see supplementary Materials and Methods and Tables
S2-S4 for complete descriptions of Drosophila genotypes).

CRISPR-generated deletions
dve-B promoter, outer enh and yR7 enh deletions were generated using
CRISPR (see supplementary Materials and Methods and Table S5 for
further details).

Otd/Dve binding site knockout
Otd/Dve binding site knockouts for outer enh and yR7 enh were generated
using site-directed mutagenesis (see supplementary Materials and Methods
for further details).

Electrophoretic mobility shift assay
Binding assays were performed as described previously (Johnston et al.,
2011; Li-Kroeger et al., 2008) (see supplementary Materials and Methods
for further details).

Antibodies
Antibodies and dilutions used were as follows: mouse anti-prospero (1:10,
DSHB), rat anti-Elav (1:50, DSHB), sheep anti-GFP (1:500, Bio-Rad,
4745-1051), mouse anti-Rh3 (1:100; a gift from S. Britt, University of
Colorado, Boulder, CO, USA), rabbit anti-Rh4 (1:100; a gift from C. Zuker,
Columbia University, New York, USA), mouse anti-Rh5 (1:2000; Tahayato
et al., 2003), rabbit anti-Rh6 (1:2000; Tahayato et al., 2003), guinea pig anti-
Ss (1:200; a gift from Y. N. Jan, University of California, San Francisco,
CA, USA) and rabbit anti-Dve (1:500; Nakagoshi et al., 1998). All
secondary antibodies were Alexa-conjugated (1:400; Molecular Probes).

Retina dissection and immunohistochemistry
Retinas were dissected and stained as described previously (Hsiao et al.,
2012) (see supplementary Materials and Methods for further details)

Quantification
Fluorescence intensity of nuclear GFP expression of single retinas was
quantified using the ImageJ processing program. A small region in the
center of each nucleus was selected for fluorescence intensity measurement.
Images were taken under subsaturating conditions and comparisons of GFP
intensity were drawn between cells of the same retina. Column scatterplots
were generated using Graphpad Prism.
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Figure S1. dve enh>GFP constructs and dve-A and dve-B promoter 

deletions 

A-C. dve-A promoter deletion resulted in upregulation of Rh3 in all R7s in the 

dorsal half of the retina. Dve targets Rh5 and Rh6 displayed wild type 

expression. 

D-F. dve-B promoter deletion displayed wild type expression of Dve targets (Rh3, 

Rh5, and Rh6). 

G. dveexel deletion, covering yR7 enh and the dve-A promoter, resulted in Rh3 

upregulation in R7s. 

H. dve-A min prom drove weak expression in R4s (denoted by ^) and pigment 

cells (denoted by <). Dashed white circles represent outer PRs and R8s; solid 

white circle indicates R7. 

I-L. Four enhancers (all PR enh 1-4) drove weak GFP expression in all PRs. 

Dashed white circles represent PRs. Yellow circles denote GFP-expressing R7s. 

M-O. weak yR7 enh displayed weak GFP expression in yR7s; Ss is a marker for 

yR7s. Dashed white circles represent outer PRs and R8s, solid white circles 

denote pR7s, and solid yellow circles denote yR7s. 

P-Q. dorsal R7 enh drove expression in R7s in the dorsal posterior (DP) region of 

the retina. Dashed white circles represent PRs. Yellow circles indicate GFP-

expressing R7; solid white circle indicates non-expressing R7. 
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Figure S2. Differential expression of Dve throughout development 

For A-L, in schematics, red circles indicate endogenous Dve expression, green 

circles indicate GFP expression, black circles indicate no expression 

(endogenous Dve or GFP), and gray circles indicate indeterminate expression. 
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For B-D, yellow circles indicate yR7 cells. Solid white circles indicate pR7 

 cells. Dashed white circles are outer PRs and R8s. 

For E-H, yellow circles indicate yR7 cells. Solid white circles indicate pR7 cells. 

Dashed white circles are outer PRs and R8s. 

For J-L, dashed white circles represent outer PRs; solid white circles indicate 

R7s. 

A. Antibody staining for Dve is nonspecific in larvae. 

B-D. Dve is highly expressed in outer PRs and weakly expressed in yR7s in 

pupae and adults. 

E-F. yR7 enh is expressed in yR7s in larvae and pupae. 

G-H. yR7 enh is expressed in all R7 cells in the adult but is not expressed in 

outer photoreceptors. 

I. outer enh is not expressed in larvae. 

J-L. outer enh drives expression in outer PRs in pupae and adults, but is not 

expressed in R7s. 
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Figure S3. Restriction enzyme sites used to generate dve enh truncations 

A. Schematic of the yR7 enh and the restriction enzyme sites used to generate 

the yR7 enh* and other truncations. 

B. Schematic of the outer enh and the restriction enzyme sites used to generate 

the outer enh* and other truncations. 
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Figure S4. Sal activates yR7 enh by repressing Dve 

A. In otd mutants, in which Dve is not expressed, ectopic Ss induces yR7 enh in 

all PRs. 

B. The regulatory interactions governing yR7 enh. Otd and Ss activate yR7 enh, 

while Dve represses yR7 enh. Sal activates stochastic expression of Ss (denoted 

by dashed arrow) in yR7s and represses Dve. 
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Supplementary Materials and Methods 

Generating dve enh>GFP constructs  

3-6kb fragments (Fig. 2A) were amplified using DNA isolated from yw67 flies 

and ligated into the pGEM-T easy vector. The 699 bp dve minimal promoter was 

subcloned into a pJR16 nGFPcDNA reporter vector containing a w+ marker, 

generating the pGG14 vector. Other fragments of the dve locus were subcloned into 

pGG14 before microinjection into fly embryos. Constructs were then integrated into 

the genome via the attP/B system, and injected flies were crossed with a balancer 

stock with the genotype y-w-; +/+; Tm2/Tm6b. Red-eyed offspring were isolated, and 

transgenes were balanced over Tm6b. Primers and restriction enzymes used to 

generate each dve enhancer construct are shown in Table S1. 

Enhancer constructs yR7 enh>GFP and outer enh>GFP were further 

truncated using restriction enzymes and blunt end ligation (Fig. S3A,B). Reporter 

vectors were microinjected into fly embryos, and transgenic lines were established 

using the same methods as above.  

Drosophila strains 

 Flies were raised on standard cornmeal medium and grown at room 

temperature (25oC). Transgenic lines used include dve enhancer gene constructs 

generated for this project, as well as the reagents in Table S2.  

The GAL4-UAS system was used to ectopically express Sal, Ss, and Dve 

(Brand and Perrimon, 1993), while the FLP-FRT system was used to create sal and 

dve mutant phenotypes (O'Gorman et al., 1991). Shortened and complete genotypes 

of flies examined are found in Table S3. 

Janelia and VDRC Stock Centers generated transgenic lines that express 

GAL4 driven by flanking non-coding or intronic regions of various genes. GAL4 lines 
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associated with dve yR7 and dve outer enhancer elements were crossed with UAS-

nlsGFP. See Table S4.  

CRISPR-generated deletions 

 dve-B promoter, outer enh, and yR7 enh deletions were generated using 

CRISPR. We designed four gRNAs per deletion, two flanking either side of the 

deletion. Forward and reverse strands of gRNAs were designed and annealed 

together to have BbsI restriction site overhangs. gRNAs were then cloned into the 

pCDF3 cloning vector. Single stranded homologous bridges were generated with 80 

bp homologous regions flanking each side of the deletion. An AscI restriction cut site 

was incorporated into the homologous bridge to facilitate screening. For every 

deletion, all four gRNAs were injected into Drosophila embryos at 125ng/ul each for 

a total of 500ng, along with 100ng/ul of homologous bridge oligos. Single adult males 

were then crossed with balancer stocks (yw ; if / cyo ; +), and the progeny were 

screened for the deletion via PCR. Homologous bridges, gRNAs, and PCR 

screening primers are shown in Table S5. 

Otd/Dve binding site knockout 

 Otd/Dve binding site knockouts for outer enh and yR7 enh were generated 

using site-directed mutagenesis, where the K50 homeodomain consensus sites 

(TAATCC) were replaced with AAAAAA. Constructs were integrated into the genome 

and Drosophila strains were established using the same methods as described 

above. 

Electrophoretic Mobility Shift Assay 

Binding assays were performed as previously described (Johnston et al., 

2011; Li-Kroeger et al., 2008). 

Probes tested were as follows (bold/underline indicates K50 Otd/Dve site or mutated 
K50 Otd/Dve site): 
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yR7 enh 1 5’ –CGTGTTAGCCAAACCTAATCCAGGCTAAACGAGGG- 3’ 
yR7 enh 2 5’ –AAATACGCTTATGTCGGATTATCCCATAATTTATG- 3’ 
yR7 enh mutant 1 5’ –CGTGTTAGCCAAACCTGCGCCAGGCTAAACGAGGG- 3’ 
yR7 enh mutant 2 5’ –AAATACGCTTATGTCGGCGCATCCCATAATTTATG- 3’ 
outer enh 1 5’ –AGCAAACAACAAAAAGGATTAAGTCCAAGACACAC- 3’ 
outer enh 2 5’ –ATACTTATTTCATTAGGATTATTTTTGACTAACAT - 3’ 
outer enh 3 5’ –TCACGGCATTAATTATAATCCGCTTAAAAGTTTCA - 3’ 
outer enh 4 5’ –TCACACAAGGATTCGTAATCCTTGCGAGGGACCCA- 3’ 
outer enh mutant 1 5’ –AGCAAACAACAAAAAGGCGCAAGTCCAAGACACAC- 3’ 
outer enh mutant 2 5’ –ATACTTATTTCATTAGGCGCATTTTTGACTAACAT- 3’ 
outer enh mutant 3 5’ –TCACGGCATTAATTATGCGCCGCTTAAAAGTTTCA- 3’ 
outer enh mutant 4 5’ –TCACACAAGGATTCGTGCGCCTTGCGAGGGACCCA- 3’ 
  

Antibodies 

Antibodies and dilutions used were as follows: mouse anti-prospero 

(1:10)(DSHB), rat anti-Elav (1:50)(DSHB), sheep anti-GFP (1:500), mouse anti-Rh3 

(1:100)(gift from S. Britt, University of Colorado), rabbit anti-Rh4 (1:100)(gift from C. 

Zuker, Columbia University), mouse anti-Rh5 (1:2000)(Tahayato et al., 2003), rabbit 

anti-Rh6 (1:2000)(Tahayato et al., 2003), guinea pig anti-Ss (1:200)(Gift from Y.N. 

Jan, University of California, San Francisco), rabbit anti-Dve (1:500)(Nakagoshi et 

al., 1998). All secondary antibodies were Alexa-conjugated (1:400) (Molecular 

Probes). 

Retina dissection and immunohistochemistry 

 Retinas were dissected and stained as described previously (Hsiao et al., 

2012). Larvae were collected and dissected in ice cold PBS (1x), and retinas were 

isolated using forceps before fixing for 20 minutes in 4% formaldehyde at RT. 

Samples were washed three times with PBX and kept in primary antibodies diluted in 

PBX overnight at 4oC. After three washes with PBX, secondary antibodies diluted in 

PBX were added, and samples were kept at RT for at least 2 hours. After three more 

washes, samples were kept in PBX at room temperature overnight, before being 

mounted flat in Vectashield (Vector Laboratories). 
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 To facilitate pupae collection at the desired mid-pupae stage, flies were raised 

at 25oC in a 12hr light/12hr dark cycle incubator. Pupae heads were dissected in ice 

cold PBS (1x) and eye-brain complexes were extracted via pipetting. Fixing, antibody 

staining and mounting procedures were consistent with those of larvae, but pupal 

retinas were not isolated from the brain until prior to mounting. 

 Adult flies were anesthetized on CO2 pads before their heads were removed 

using forceps. Fly heads were dissected in ice cold PBS (1x), and retinas were 

isolated using forceps. Fixing and antibody staining procedures were consistent with 

those of larvae and pupae, although laminas were not removed until after fixing. 

Retinas were then mounted using SlowFade Gold Reagent (ThermoFisher 

Scientific). 

For all stages of fly development, samples stained with antibodies were 

visualized under a Zeiss LSM 700 confocal microscope.  

Quantification 

Fluorescence intensity of nuclear GFP expression of single retinas was 

quantified using the ImageJ processing program. A small region in the center of each 

nucleus was selected for fluorescence intensity measurement. Images were taken 

under subsaturating conditions and comparisons of GFP intensity were drawn 

between cells of the same retina. Column scatterplots were generated using 

Graphpad Prism. 
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Table S1. dve enh>GFP Constructs and Primers  
Construct Primers Restriction 

sites 
yR7 enh agtcggcgcgcccacaaccatttcactcctgc 

agtcggtacccttctcccagtcttcgaatg 
AscI 
KpnI 

outer enh agtcggcgcgcctcatcctcatccctacctac 
agtcggtaccacaactgcctttgccttgtg 

AscI 
KpnI 

yR7 enh 
extended to 
right 

agtcggcgcgccgcctagctaccgtgatcaac 
agtcggtaccgtttagctcgattacgcttc  

AscI 
KpnI 

dve min 
promotor 

agtcagatcttgatctggctctctggactc 
agtcggatccgtgggaaagtgttggtaagc 

BglII 
BamHI 

weak yR7 enh agtcggcgcgcccggtcagcaggtgagttgag 
agtcggtacctacgatgacaccgataagcg 

AscI 
KpnI 

dorsal R7 enh agtcggcgcgcccataatcacaacacgagtcgg 
agtcggtaccgatggtggcttaactcaatc 

AscI 
KpnI 

all PR enh 1 agtcggcgcgccgcttatctgcggctttgtgg 
agtcggtaccctcgtcttgtcccgattcca 

AscI 
KpnI 

all PR enh 2 agtcggcgcgccgctagcgcatagagcatagatg 
agtcggtaccgttgctggcaccaatacacg 

AscI 
KpnI 

all PR enh 3 agtcggcgcgccgtgctgcctacaagtttgga 
agtcggtaccgccttctgaagactagcac 

AscI 
KpnI 

all PR enh 4 agtcggcgcgcccgaaactcctcgactcacac 
agtcggtaccccaattcgctgattg 

AscI 
KpnI 

dve enh 1 agtcggcgcgcccactgacatcaattcaccgtc 
agtcggtaccaggagaaaggagtgagttcg 

AscI 
KpnI 

dve enh 2 agtcggcgcgccccatcccttagagagctttg 
agtcggtacctgtatctggggaatcggatg 

AscI 
KpnI 

dve enh 3 agtcggcgcgccgccacaatgtcaagcatcaaag 
agtcggtacccactttcccacagtatcatcttg 

AscI 
KpnI 

dve enh 4 agtcggcgcgcccagagctgaactgaacaatc 
agtcggtacccgtgtctctgcgctttgtga 

AscI 
KpnI 

dve enh 5 agtcggcgcgccgtcttagtgcagctactgtt 
agtcggtaccgaaggcttacgaaactaatg 

AscI 
KpnI 

dve enh 6 agtcggcgcgcccagctcgttaagcataagca 
agtcggtacccgttcccaaattaccccatc 

AscI 
KpnI 

dve enh 7 agtcggcgcgcctggtggtggcgattcatttg 
agtcggtaccctaccacaaaactagagcaccc 

AscI 
KpnI 
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Table S2. Drosophila reagent descriptions  
Name Description Source 
otduvi  hypomorphic allele, fails to produce 

protein product in the eye 
(Vandendries et al., 
1996) 

FRT40 salDf(2L)32FP5 a deficiency that removes the sal gene (Barrio et al., 1999) 

FRT42d dve186 Dve protein null mutant (Terriente et al., 2008) 
FRT40 GMR-hid, 
cL 

eye-specific enhancer driving hid, an 
activator of apoptosis 

Bloomington 

FRT42d GMR-RFP eye-specific enhancer driving RFP Bloomington 
ey-FLP eye-specific enhancer driving flippase Bloomington 
ssd115.7 Ss protein null mutant (Duncan et al., 1998) 
ssDf(3R)Exel7330 Deficiency covering the ss locus  Bloomington 
UAS-Sal UAS enhancer driving Sal (Kuhnlein and Schuh, 

1996), (Wernet et al., 
2003) 

UAS-Dve UAS enhancer driving Dve (Nakagoshi et al., 1998) 
UAS-Ss UAS enhancer driving Ss (Duncan et al., 1998) 
lGMR-Gal4 eye-specific enhancer driving Gal4 Bloomington 
dveExel  deletion that removes the first exon of 

dve, dve-A promoter, and dve yR7 
enhancer element  

See footnote* 

dveE181 deletion allele for the dve-A promoter (Nakagawa et al., 2011) 
UAS-nlsGFP UAS driving nuclear GFP Bloomington 
*We generated the dveexel deletion by using hsFLP-mediated recombination between 

two FRT sites, inserted by P-elements P(XP)d05100 and P(XP)d08355. 
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Table S3. Drosophila shortened and complete genotypes 
Shortened Complete genotype Figure 
dve enh>GFP yw ; + ; dve enh>GFP 2B-E, 3A, 

5A, S1H-Q, 
S2E-L 

all PRs>Ss yw ; lGMR>Gal4, UAS>Ss ; dve enh>GFP 3E, 5D 
all PRs>Sal yw, UAS>sal ; lGMR>Gal4 ; dve enh>GFP 3G 
all PRs>Dve yw ; lGMR>Gal4 ; dve enh>GFP/ UAS>dve 4A, 6A 
sal mutant yw ;salDf(2L)32FP5FRT40 GMR>hid FRT40 ; dve 

enh>GFP/ey>Flp 
3F, 5C 

otd mutant otduvi ; + ; dve enh>GFP 3B, 5B 
dve mutant ey>FLP ;FRT42d dve186/ FRT42d GMR>RFP ; 

dve enh>GFP/ + 
4B-E, 6B-C 

ss mutant yw ; + ; dve enh>GFP, ssBL7985def/ ssd115.7 3C 
all PRs>Ss 
and Sal 

yw, UAS>sal ; lGMR>GAL4, UAS>ss ; dve 
enh>GFP  

3H 

otd mutant, all 
PRs>Ss 

otduvi ; lGMR>GAL4, UAS>ss ; dve enh>GFP S4A 

dve-A del yw ; FRT42d dve186 / dveE181 ; + S1A-C 
 
 
 
Table S4. Janelia and VDRC Gal4 stock numbers  
Janelia GMR     
49373 49927 48655 46230 
45702 50133 45682 46238 
45284 46241 50066 48150 
41238    
VDRC Stock    
020724 020725 020737 020739 
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 Table S5. Primers for CRISPR  
dve-B del  
Homologous 
bridge 

ttttatggatcgcttggcattataatgaacagcggcgtcgccggctggccatgggcgcatggcgc
gcccatgggagcaagttggagctgggcaagcccccacatcccatccgcccactgacctaagc
c 

dveBgRNA1 F gtcgctggccatgggcgcataat 
dveBgRNA1 R aaacattatgcgcccatggccagc 
dveBgRNA2 F gtcgggataagtacggtgcatgg 
dveBgRNA2 R aaacccatgcaccgtacttatccc 
dveBgRNA3 F gtcgtcatccttccagtgcccat 
dveBgRNA3 R aaacatgggcactggaaggatgac 
dveBgRNA4 F gtcggtgtctgccactgttgaac 
dveBgRNA4 R aaacgttcaacagtggcagacacc 
DveBscr F gctgttgggagattaagttt 
DveBscr R tgccttctgaagactagcac 
outer enh del  
Homologous 
bridge 

gctgcctgggcgtccttttctcgggcacttgatagaatttgacaaattgaaaatccttttggcgcgcc
gaagcctacttaagtcccttgaaatccttgagattttttgcactggtcaagcaatgataa 

outergRNA1 F gtcggacaaccgctcgccacaaa 
outergRNA1 R aaactttgtggcgagcggttgtcc 
outergRNA2 F gtcgttcaagagtccaggcgacc 
outergRNA2 R aaacggtcgcctggactcttgaac 
outergRNA3 F gtcgaaattaagcaatagtctta 
outergRNA3 R aaactaagactattgcttaatttc 
outergRNA4 F gtcggacttaagtaggcttccca 
outergRNA4 R aaactgggaagcctacttaagtcc 
outer-scr F ccagtgattatgtatggttc 
outer-scr R gagtgatttgggtatttagg 
yR7 enh del  
Homologous 
bridge 

acttgctccccgtccgtcgatcgattcaaattaccagcgatttattggcgatcgccagccggcgcg
ccgctatggcaatgcaaacaggtgagggtgaattacttgtcctagacaactttgcagtcagc 

yR7gRNA1 F gtcgttgatcacggtagctaggc 
yR7gRNA1 R aaacgcctagctaccgtgatcaac 
yR7gRNA2 F gtcgtgttcgcataacgctggtc 
yR7gRNA2 R aaacgaccagcgttatgcgaacac 
yR7gRNA3 F gtcgtttagctcgattacgcttc 
yR7gRNA3 R aaacgaagcgtaatcgagctaaac 
yR7gRNA4 F gtcgtttgcattgccatagctac 
yR7gRNA4 R aaacgtagctatggcaatgcaaac 
yR7-scr F gatggctaatggcgagagga 
yR7-scr R gcaatcttggcactcccgtt 
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RESEARCH ARTICLE

The insulator protein BEAF-32 is required for Hippo pathway
activity in the terminal differentiation of neuronal subtypes
David Jukam1,*, Kayla Viets2, Caitlin Anderson2, Cyrus Zhou2, Peter DeFord2, Jenny Yan2,‡, Jinshuai Cao1 and
Robert J. Johnston, Jr2,§

ABSTRACT
The Hippo pathway is crucial for not only normal growth and
apoptosis but also cell fate specification during development. What
controls Hippo pathway activity during cell fate specification is
incompletely understood. In this article, we identify the insulator
protein BEAF-32 as a regulator of Hippo pathway activity in
Drosophila photoreceptor differentiation. Though morphologically
uniform, the fly eye is composed of two subtypes of R8
photoreceptor neurons defined by expression of light-detecting
Rhodopsin proteins. In one R8 subtype, active Hippo signaling
induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5),
whereas in the other subtype, inactive Hippo signaling induces Rh5
and represses Rh6. The activity state of the Hippo pathway in R8
cells is determined by the expression of warts, a core pathway
kinase, which interacts with the growth regulator melted in a double-
negative feedback loop. We show that BEAF-32 is required for
expression of warts and repression of melted. Furthermore, BEAF-
32 plays a second role downstream of Warts to induce Rh6 and
prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback,
indicating that BEAF-32 differentially regulates warts and
Rhodopsins. Loss of BEAF-32 does not noticeably impair the
functions of the Hippo pathway in eye growth regulation. Our study
identifies a context-specific regulator of Hippo pathway activity in
post-mitotic neuronal fate, and reveals a developmentally specific
role for a broadly expressed insulator protein.

KEY WORDS: Color vision, Photoreceptor, Cell fate, Insulator,
Drosophila retina, RNAi screen, Hippo pathway, Regulatory
networks, Warts tumor suppressor, Rhodopsin

INTRODUCTION
The Hippo signaling pathway is a crucial regulator of growth and
apoptosis in organ size control (Irvine and Harvey, 2015; Yu et al.,
2015; Zhao et al., 2011). However, proliferation-independent roles
for the pathway during animal development have also been
discovered. The identification of the Hippo pathway as a regulator
of R8 photoreceptor subtype specification in Drosophila was
among the first examples of a mitosis-independent role for the

Hippo pathway in determining cell fate (Mikeladze-Dvali et al.,
2005). More recently, the pathway has been shown to regulate
dendritic field tiling in neurons (Emoto et al., 2006), cell
differentiation in pre-implantation embryos (Cockburn et al.,
2013; Nishioka et al., 2009), neuroblast differentiation upon cell
cycle exit (Reddy et al., 2010), and hematopoiesis (Milton et al.,
2014), among others. Because R8 photoreceptors are post-mitotic
neurons and are not competent to divide, they are an excellent
system in which to elucidate context-specific mechanisms of Hippo
pathway function (Hsiao et al., 2013; Jukam and Desplan, 2011;
Jukam et al., 2013). How the Hippo pathway is regulated differently
in division and differentiation is incompletely understood. Here, we
describe the insulator protein BEAF-32 as a regulator of Hippo
pathway activity in cell fate specification in the developing
Drosophila retina.

The fly eye is composed of ∼800 ommatidia (unit eyes); each
ommatidium contains eight photoreceptors named R1-R8 (Hardie,
1985). The outer photoreceptors, R1-R6, express the broad
spectrum-detecting Rhodopsin 1 (Rh1; also known as NinaE) and
function in motion detection (Heisenberg and Buchner, 1977;
Yamaguchi et al., 2008; Wardill et al., 2012). The inner
photoreceptors, R7 and R8, are specialized for color vision,
with some contribution from R1-R6 (Schnaitmann et al., 2013).
Though morphologically uniform, the fly eye is composed of two
main types of ommatidia defined by expression of color-sensing
Rhodopsins (Rhs) in the inner photoreceptors (Rister et al., 2013).
In the ‘pale’ (p) subtype, pR7s express Rhodopsin 3 (Rh3) and
pR8s express Rhodopsin 5 (Rh5) (Fig. 1A). In the ‘yellow’ (y)
subtype, yR7s express Rhodopsin 4 (Rh4) and yR8s express
Rhodopsin 6 (Rh6) (Fig. 1B). The ommatidial subtypes are
stochastically distributed throughout the eye in a p:y ratio of
∼35:65 (Fig. 1C,F).

The specification of ommatidial subtypes is determined in R7s
by the stochastic ON/OFF expression of the PAS-bHLH
transcription factor Spineless (Ss) (Johnston and Desplan, 2014;
Wernet et al., 2006). The ON/OFF state of Ss determines R8
subtype fate through an inductive signal (Chou et al., 1996;
Papatsenko et al., 1997) that results in mutually exclusive R8
expression of the Hippo pathway kinase Warts (Wts) and the
growth regulator Melted (Melt). In pR7s lacking Ss, Rh3 is
expressed in R7s and a signal from R7s triggers activation of melt
and repression of wts, leading to Rh5 expression in pR8s
(Fig. 1A) (Mikeladze-Dvali et al., 2005). In yR7s expressing Ss,
Rh4 is expressed and the signal is repressed, causing the default
state of melt repression and wts activation leading to Rh6
expression (Fig. 1B). The double-negative feedback loop between
wts and melt controls the presence or absence of Wts downstream
of the constitutively active upstream Hippo pathway (Jukam and
Desplan, 2011). Wts negatively regulates Yorkie (Yki), which
acts with a network of photoreceptor-specific transcription factorsReceived 30 December 2015; Accepted 11 May 2016
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to transduce Hippo pathway output into expression of Rh5 or Rh6
(Jukam et al., 2013).

Here, we identify the insulator protein BEAF-32 as a regulator of
Wts and Hippo pathway activity in R8 subtype specification. BEAF-
32 is required for the expression of wts and also functions
downstream of Wts to regulate Rhodopsins, but does not
noticeably affect growth. Finally, we demonstrate that BEAF-32 is
differentially required for Hippo pathway positive feedback and Rh
expression. The role of BEAF-32 in post-mitotic determination of
photoreceptor subtypes suggests that insulators have highly specific
functions in development.

RESULTS AND DISCUSSION
BEAF-32 is a regulator of the Hippo pathway controlling
Rhodopsin expression
To identify transcription factors that regulate the Hippo pathway and
R8 subtype specification, we conducted an in vivo RNAi screen for
genes for which knockdown caused a change in the proportion of
R8s expressing a rh5-LexA, lexAOP-GFP transcriptional reporter
(rh5≫GFP) (Vasiliauskas et al., 2011) (i.e. low Hippo
pathway activity) (Fig. 1D). We screened 652 lines targeting
transcription factor genes, which resulted in 113 lethal phenotypes,
155 eye morphology phenotypes, and one line with a dramatic
increase in Rh5.

In the screen, we identified BEAF-32 as a positive regulator of the
Hippo pathway. RNAi knockdown of BEAF-32 caused a dramatic
increase in the proportion of R8s that express rh5≫GFP (Fig. 1E).
BEAF-32 RNAi also caused an increase in R8s that express Rh5
protein and a decrease in R8s expressing Rh6 protein (Fig. 1G,H,L).

BEAF-32 (Boundary element-associated factor of 32 kD;
hereafter referred to as BEAF) is one of several known
Drosophila insulator proteins, including CTCF, GAGA factor
(also known as Trl), Su(Hw), Zw5 (Dwg), CP190 and Mod(mdg4).
BEAF binds preferentially near promoters at several thousand sites
in the genome (Emberly et al., 2008; Jiang et al., 2009; Negre et al.,
2011; Yang et al., 2012) and generally promotes gene expression.
Two BEAF isoforms, BEAF-32A and BEAF-32B, are identical
except for the 80 amino acid DNA-binding domain; however,
BEAF-32B appears to be the dominant isoform (Jiang et al., 2009;
Roy et al., 2007). Though BEAF binds throughout the genome,
homozygous BEAF mutants, null for both isoforms (BEAFAB-KO),
are viable, suggesting that BEAF is required for specific
developmental processes such as R8 subtype specification.

Similar to BEAFRNAi, homozygous null BEAFmutants (BEAF-
32AB-KO) (Roy et al., 2007) (Fig. 1I,L) and flies with the BEAF null
mutant allele over a 105 kb deficiency completely lacking the BEAF
locus (Fig. 1J,L) displayed an increase in Rh5 and decrease in Rh6
expression. An independent BEAF mutant allele caused by a P-
element insertion (BEAF-32NP6377) placed over the deficiency
showed similar changes in the Rh5:Rh6 ratio (NP/def; Fig. 1L). All
three BEAF mutant conditions and BEAF RNAi displayed
significant increases in Rh5 and decreases in Rh6, and any
phenotypic variability among these is likely due to differences in
genetic background. A genomic fragment containing the BEAF
gene locus (Roy et al., 2007) rescued the mutant phenotype,
restoring the normal Rh5:Rh6 ratio (Fig. 1K,L), indicating that the
Rh phenotype is specifically due to loss of BEAF. RNAi-mediated
knockdown of other insulator genes [CTCF, Cp190,mod(mdg4), su
(Hw) and GAGA factor] did not significantly increase Rh5 in the
retina (Fig. S1). Therefore, the regulation of Rhodopsins in R8s by
insulators is likely to be restricted to BEAF and not a general
property of insulator function.

Fig. 1. BEAF is required for yR8 subtype specification.
(A,B) Schematic showing eight photoreceptors and a cross-section of
their rhabdomeres, the membranous structures containing Rhodopsin
(Rh) proteins, within an ommatidium. Gray indicates cell bodies and
nuclei. White circles with black outlines indicate outer photoreceptor
rhabdomeres. Colored rhabdomeres indicate R7 (top) and R8 (bottom).
Below is the regulatory network controlling Rh expression in R7 (top) and
R8 (bottom). (A) Pale ‘p’ ommatidial subtype. (B) Yellow ‘y’ ommatidial
subtype. (C) Retina showing Rh5 and Rh6 expression in stochastic and
mutually exclusive R8 subsets. R8 subtypes are visualized by Rh5 (pR8,
blue) and Rh6 (yR8, red) antibodies in all panels unless otherwise noted.
(D) rh5≫GFP was expressed in a subset of R8s in RNAi controls.
Visualized by water immersion (see Materials and Methods).
(E) rh5≫GFP was expressed in most R8s when BEAF was knocked down
by RNAi. (F,G) Rh5 and Rh6 were expressed in subsets of R8s in wild-
type (F) or RNAi Gal4 control (G) retinas. (H-J) Most R8s contained Rh5,
and few contained Rh6, in retinas expressing BEAF RNAi (H) or
homozygous mutant for BEAFAB-KO (I) or BEAFAB-K0 over a deficiency
covering the BEAF locus (J). (K) A BEAF genomic fragment restored
normal Rh5 and Rh6 expression in BEAF homozygous null mutants.
(L) Quantification of phenotypes.
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BEAF acts in R8s downstream of R7 signaling to control
Rhodopsins
We next determined the cellular focus of BEAF activity. Consistent
with previous reports that BEAF is expressed in all cells of the fly
(Roy et al., 2007), a 900 bp BEAF promoter drove a BEAF-GFP
transgene in all photoreceptors, including all R8s (Fig. 2A).
Photoreceptor-specific expression of a dominant-negative BEAF
protein lacking the DNA-binding domain and containing only the
protein-binding BED domain (all PRs>dom neg) (Gilbert et al.,
2006) induced an increase in Rh5 and decrease in Rh6 (Fig. 2B,D).
Whole-retina clones of BEAF null or P-element insertion mutants
displayed changes in Rh expression (Fig. 2C,D) similar to those in
viable whole-animal BEAF mutants. BEAF null mutant clones
displayed upregulation of Rh5 and loss of Rh6 compared with wild-
type clones (Fig. 2E,F). Thus, BEAF is required for proper
expression of Rh5 and Rh6 in R8 photoreceptor neurons of the eye.
The most upstream trigger for R8 subtype fate is the stochastic

ON/OFF expression of Ss in R7s. Expression of Ss represses an
unknown signal to R8s, resulting in Wts expression, active Hippo
signaling, and Rh6 expression (Fig. 1B). In the absence of Ss, the
signal induces repression of wts, leading to inactive Hippo signaling
and Rh5 expression (Fig. 1A). Ss was expressed at a similar
frequency in BEAF null mutant clones as in wild-type clones
(Fig. 2G,H), indicating that BEAF is not required for Ss expression.
Rh3 and Rh4, targets of Ss regulation in R7s (Thanawala et al.,
2013; Wernet et al., 2006), were expressed at similar ratios in BEAF
null mutant and wild-type clones (Fig. 2I,J). Thus, BEAF is not
required for Ss expression or R7 subtype specification.
We next showed that BEAF acts downstream of Ss and the signal

to control R8 subtypes. Ectopic expression of Ss in all R7s from a
BAC transgene (Johnston and Desplan, 2014) repressed the signal
to R8s, causing nearly all R8s to adopt yR8 fate and express
Rh6 (Fig. 2K,M,O). Ectopic Ss expression in R7s in BEAF null
mutants displayed increased Rh5 and decreased Rh6 expression
(Fig. 2L,M,P), showing that Ss requires BEAF activity to control R8
subtype. Genetic ablation of R7s in sevenless (sev) mutants removed
the signal from R7s to R8s, causing nearly all R8s to acquire yR8
fate and express Rh6 (Fig. 2Q,S,T). sev; BEAF null double mutant
R8s primarily expressed Rh5 (Fig. 2R,S,U), showing that the
default Hippo activity ON state of R8s requires BEAF to activate
Rh6 and repress Rh5. Altogether, these data indicate that BEAF acts
in R8s downstream of the signal from R7s to control R8 subtype
specification (Fig. 2V).

BEAF binds genes encoding the Hippo pathway members
and melt
To explore how BEAF regulates the R8 regulatory network, we
examined five independent ChIP datasets (four ChIP-chip, one
ChIP-seq) available from the modENCODE consortium (Negre
et al., 2011). We identified strong peaks (Fig. 3A, red diamonds)
that are likely to be direct binding sites for BEAF and weak peaks
(Fig. 3A, unfilled diamonds) that may be the result of DNA
looping and insulator-insulator interaction (Liang et al., 2014).
Strong BEAF binding peaks were present for all the core members
of the Hippo pathway (hpo, sav, mats, wts), upstream regulators
known to function in R8 {kib (kibra), mer, aPKC, lgl [l(2)gl]},
and output regulators (yki, sd) (Fig. 3A). BEAF also bound melt,
part of the melt-wts bistable feedback loop (Fig. 3A). Although
BEAF weakly bound ss, the fate trigger in R7s, and otd (also
known as oc), a general activator of Rh3 and Rh5 and repressor of
Rh6, we did not detect any defects indicative of changes in ss
(Fig. 2G-J) or otd (Fig. 1D-J; Fig. 2E) expression in BEAF

mutants. Additionally, BEAF does not bind at loci of the other
photoreceptor-restricted transcription factors that regulate R8
Rhodopsins (sens, pph13 and tj). The absence of the BEAF
consensus DNA binding sequence (CGATA) in the rh5 and rh6
promoter regions, which are sufficient to induce their subtype
specific expression, is consistent with a model wherein BEAF
does not regulate Rh5 or Rh6 expression through direct binding.
Together, these binding profiles suggest that BEAF could regulate
R8 subtype fate by controlling aspects of the Hippo pathway or
expression of melt and wts.

BEAF is required for repression of melt and activation of wts
Since BEAF bound melt and wts, which are in a transcriptional
double-negative feedback loop crucial for R8 subtype specification,
we examined the role of BEAF in their regulation. In pR8s, melt
represses wts expression to activate Rh5 and repress Rh6 (Fig. 1A)
(Mikeladze-Dvali et al., 2005). In yR8s, wts is expressed to repress
Rh5 and induce Rh6 (Fig. 1B). BEAF null mutants display loss of
Rh6 and gain of Rh5 expression, suggesting thatmelt is upregulated
and wts expression is downregulated. Indeed,melt (melt-lacZ) is de-
repressed (Fig. 3B) and warts expression (warts-lacZ) is lost
(Fig. 3C) in R8s in BEAF null mutant clones, indicating that BEAF
is required for the repression of melt and activation of warts
expression (Fig. 3D).

BEAF is required downstream of Wts and Melt for regulation
of Rhodopsins
The Rh phenotype observed in BEAF mutants could be caused
simply by de-repression of melt and loss of wts expression
(Fig. 3B-D). Alternatively, BEAF could play other roles in the
pathway and the BEAF mutant phenotype could be due to
misregulation of additional downstream genes. In melt mutants,
wts is expressed and the Hippo pathway is active, inducing nearly all
R8s to express Rh6 and lose Rh5 (Fig. 4A,C) (Mikeladze-Dvali
et al., 2005). Removing BEAF in melt mutants caused upregulation
of Rh5 and downregulation of Rh6 (Fig. 4B,C) compared with melt
single mutants, suggesting that BEAF acts downstream of or in
parallel with melt to control Hippo pathway activity and Rh
expression state (Fig. 4F).

We next tested whether wts and the Hippo pathway require
BEAF to regulate Rh expression. Misexpression of Wts and
Salvador (Sav, an upstream positive regulator of Wts) in wild-type
clones (BEAF+) induced Rh6 in all R8s (Fig. 4D,E). BEAF null
mutant clones generated in retinas simultaneously misexpressing
Wts and Sav in all photoreceptors resulted in the upregulation of
Rh5 and loss of Rh6 (Fig. 4D,E). BEAF null mutant clones in
retinas with misexpression of Wts alone displayed similar
phenotypes (data not shown). Thus, BEAF is required for Hippo
pathway activity to promote the Rh6 R8 fate. Altogether, our
epistasis analysis indicates that BEAF acts downstream of or in
parallel to wts and melt to regulate Rh5 and Rh6 expression
(Fig. 4F), as well as upstream of wts and melt to regulate their
expression (Fig. 3D).

Yki but notSd requiresBEAF function to regulateRhodopsins
The transcription factors Yorkie (Yki) and Scalloped (Sd) are
heterodimerization partners that regulate Hippo pathway target
genes downstream of Wts (Goulev et al., 2008; Wu et al., 2008;
Zhang et al., 2008). In pR8s with Hippo pathway OFF, Yki and Sd
are active and induce Rh5 and repress Rh6 (Fig. 1A). In yR8s with
active Hippo signaling, Yki is inactive and Rh6 is expressed,
whereas Rh5 is repressed (Fig. 1B). yki null mutant cells are
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eliminated via apoptosis and cannot be examined in adult eyes, but
strong expression of RNAi can effectively knockdown yki function
in the retina (Jukam et al., 2013). RNAi knockdown of yki caused a

loss of Rh5 and gain of Rh6 in all R8s (Fig. 4G,I). Retinas with
simultaneous RNAi knockdown of yki and BEAF displayed
upregulation of Rh5 and loss of Rh6 (Fig. 4H,I) relative to yki

Fig. 2. BEAF acts in R8s downstream of R7 signaling to control Rhodopsins. (A) BEAF-GFP under control of the BEAF promoter was expressed in both R8
subtypes.Rh5-expressing pR8 (dashedoval); Rh6-expressing yR8 (solid oval). (B) Rh5-expressingR8s increased andRh6-expressingR8s decreasedwhenaBEAF
dominant-negative construct was expressed specifically in photoreceptors. (C) A similar phenotype was observed in whole eye BEAF null mutant clones.
(D) Quantification of the data shown in B,C. (E,F) BEAF null mutant clones (GFP−) contained more R8s expressing Rh5 compared with wild-type or heterozygous
tissue (GFP+). Dashed lines represent clone boundary in all panels unless otherwise noted. (G,H) Sswas expressed stochastically with similar frequency inBEAF null
(GFP−) and control (GFP+) tissue in pupal retinas. R7 cells are circled. Red indicates percentage of R7s expressing Ss; black indicates percentage of R7s
lackingSs. (I,J) TheRh3andRh4expression ratiowas normal inBEAF nullmutant clones (GFP−). (K) EctopicSs expression in all R7s inducedRh6and inhibitedRh5
expression innearlyallR8s. (L)EctopicSsexpression in theabsenceofBEAF resulted in increasedRh5- anddecreasedRh6-expressingR8s. (M)Quantificationof the
data shown in K,L. (N-P) Schematics depicting wild type, K and L. (Q) Genetic ablation of R7s (and hence the signal to R8) in sev mutants caused expression of
Rh6and lossofRh5 innearlyallR8s. (R) sev;BEAFnull doublemutantsdisplayedupregulation ofRh5anddownregulationofRh6. (S)Quantification of thedatashown
in Q,R. (T,U) Schematics describing the observations shown in Q,R. (V) Model for how BEAF acts in R8s, downstream of R7 signaling to control Rhodopsins.
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RNAi alone. With the caveats inherent to RNAi-based epistasis
analysis, we conclude that BEAF is required downstream of or in
parallel with yki to control Rh5 and Rh6 (Fig. 4L).
Sd is present in all R8s and appears to play a permissive role in Rh

regulation. sd mutants display Rh6 in all R8s and completely lose
Rh5 (Jukam et al., 2013). Whereas wild-type clones (sd+) in
homozygous BEAF null mutant tissue upregulated Rh5 and lost
Rh6, sd mutant clones in BEAF mutant tissue expressed Rh6 and
lost Rh5 in most R8s (Fig. 4J,K), suggesting that Sd acts
downstream of BEAF to regulate Rhs. These data are consistent
with a model wherein Yki, but not Sd, requires BEAF to regulate
Rhodopsins, suggesting that Yki and Sd may have separable roles in
R8 subtype specification (Fig. 4L). Given the strong but incomplete
phenotypic suppression in the above epistasis, however, we cannot
exclude more complicated models.

Positive-feedback regulation of wts expression is
independent of BEAF
We next tested BEAF for a role in the positive network-level
feedback that is a feature of the R8 Hippo pathway, but not the
Hippo growth pathway (Jukam et al., 2013). Wts and Yki
cross-regulate in a double-negative feedback loop, in which Wts
phosphorylates Yki to inactivate it in yR8s and Yki downregulates
transcription of wts in pR8s (Fig. 1A,B). Thus, Wts activates its
expression by inhibiting its repressor Yki (Fig. 4O). In wild-type
R8s, wts (i.e. wts-lacZ) is expressed in yR8s to generate an active
Hippo pathway and Rh6 expression. Ectopic expression of wts
(GMR-wts) caused all R8s to express wts (Mikeladze-Dvali et al.,
2005). Since BEAF is required for wts expression in otherwise wild-
type yR8s, we predicted that BEAF would be required for positive-
feedback regulation of wts when wts was ectopically expressed.
However, retinas with ectopic wts expression in BEAF null mutants

displayed wts-lacZ expression in all R8s (Fig. 4M), suggesting that
BEAF is not required for the positive feedback regulation of wts
(Fig. 4O,P). One interpretation of this result is that BEAF is required
only for initiation of wts expression and not its maintenance.
Alternatively, the wild-type wts/yki feedback loop could be near a
threshold that is highly sensitive to BEAF regulation, whereas
ectopic expression of wts biases the regulation strongly towards wts
expression overcoming the absence of BEAF. Consistent with a role
for BEAF downstream of wts and yki to regulate opsins, we still
observe loss of Rh6 inmost BEAFmutant cells that expresswts-lacZ
(Fig. 4M,N).

Conclusions
We have shown that the insulator protein BEAF is required for a
post-mitotic neuronal fate decision in Drosophila photoreceptors.
BEAF regulates Hippo pathway activity to control R8 subtype fate
and Rhodopsin expression (Fig. 4Q). First, BEAF regulates wts and
melt expression by acting upstream. Second, BEAF is required for
the Hippo pathway to promote Rh6 and repress Rh5. We also
demonstrate that BEAF acts downstream of or in parallel with Yki
for regulation of Rhodopsins. Finally, we show that this regulation
of Rhodopsins is independent of wts feedback. It appears likely that
BEAF regulates cell specification by permissively promoting Hippo
pathway activity and wts expression to specify the default yR8 fate.

Despite its role in regulating the Hippo pathway in post-mitotic
neuronal fate, BEAF appears to be dispensable for Hippo growth
signaling in the eye because homozygous null mutants are viable,
exhibit no gross external morphological defects, and show no
dramatic differences in eye clone size or pupal interommatidial cell
number compared with wild-type tissue (Fig. 2E,G,I; Fig. 3B,C;
Fig. 4D; Fig. S2). Additionally, BEAF depletion did not suppress
the under-proliferation in yki-RNAi eyes despite suppressing

Fig. 3. BEAF regulates R8 subtypes by promoting warts
expression and preventing melt expression. (A) Summary of
BEAFmodEncode ChIP binding data at loci of R8 Hippo pathway
genes (left) and non-Hippo R8 subtype regulators (right).
Diamonds are ChIP-chip peak centers (red diamonds are strong
peaks; unfilled diamonds are weak peaks); exons are blue; non-
coding sequence is white. (B) melt-lacZ was upregulated in
BEAF null mutant clones (GFP−) compared with control tissue
(GFP+). (C) wts-lacZ was lost in BEAF null mutant clones
(GFP−) compared with control tissue (GFP+). (D) Model for
BEAF regulation of wts and melt expression. Dashed lines
represent clone boundary.
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Fig. 4. BEAF is essential for Hippo pathway
regulation of Rhodopsins, but not positive
feedback, in R8 subtype specification. (A) melt
mutants contained Rh6 in almost all R8s. (B) Rh5
was upregulated in BEAF; melt null double mutants.
(C) Quantification of the data shown in A,B.
(D) 0GMR-wts+sav induced Rh6 and inhibited Rh5
expression in otherwise wild-type R8s (GFP+).
BEAF null mutant clones (GFP−) in GMR-wts+sav
retinas showed increased Rh5 and decreased Rh6
expression. (E) Quantification of the data shown
in D. (F) Schematic showing how BEAF acts
downstream ofwts andmelt to regulate Rhodopsins.
(G) yki-RNAi retinas displayed Rh6 expression in all
R8s. (H) BEAF-RNAi+yki-RNAi resulted in
upregulation of Rh5 and downregulation of Rh6.
(I) Quantification of the data shown in G,H. (J) sd
mutant clones (GFP−) in whole-eye BEAF null
mutant background (GFP+) showed Rh6 in almost
all R8s. (K) Quantification of the data shown in J.
(L) Model for BEAF regulation of Rhodopsin output
downstream of Yki and upstream of Sd. (M)wts-lacZ
(green) was expressed in all R8s inBEAF null;GMR-
wts retinas. Circle shows Rh6 and wts-lacZ co-
expressed; dotted circle shows R8 expressing wts-
lacZ but not Rh6. Note: R8 nuclei are in a different
cell region than Rh-containing rhabdomeres.
(N) Quantification of the data shown in M. Red
indicates percentage of R8s expressing Rh6; black
indicates percentage of R8s lacking Rh6
(presumably expressing Rh5). (O,P) BEAF is
dispensable for Hippo pathway feedback, but not
Hippo pathway regulation of Rhodopsins.
(Q) Working model for BEAF regulation of R8
subtypes. Arrows indicate genetic regulation.
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yki-RNAi Rhodopsin phenotypes (Fig. 4G,H). This differential
regulation of the Hippo pathway in R8s compared with growth
is consistent with other transcriptional regulators of R8 subtypes
(ewg, tj) having minimal or no proliferation defects (Hsiao et al.,
2013; Jukam et al., 2013). It is possible that BEAF regulates the
Hippo pathway indirectly in R8s, by acting on yet-to-be-discovered
R8-specific Hippo pathway regulators. Alternatively, BEAF may
play a larger role in R8s because of Hippo pathway positive
feedback, and have less effect in Hippo growth signaling where
homeostatic regulation through negative feedback may compensate
for the absence of BEAF. The compensation of ectopic Wts on wts
expression, but not opsin control, in BEAF mutants is consistent
with such a model.
Non-CTCF insulators appear to be restricted to arthropods, and

among several insect species examined (Anopheles gambiae, Apis
mellifera or Tribolium castaneum),BEAFwas present exclusively in
the Drosophila genus (Heger et al., 2013; Schoborg and Labrador,
2010). We speculate that conserved signaling modules of the Hippo
pathway in growth control may be co-opted for cell fate specification
by regulatory factors such as BEAF that are unique to dipterans.
Insulators were classically defined as proteins that bind particular

DNA sequences to either interfere with promoter-enhancer
interactions or prevent chromatin-state position effects from
affecting transgenes (Gaszner and Felsenfeld, 2006). This
definition has expanded to include proteins that mediate
chromosomal interactions to regulate 3D chromatin organization
and global gene expression (Bushey et al., 2009; Phillips-Cremins
and Corces, 2013; Wood et al., 2011). Despite these studies,
surprisingly few roles for insulator proteins in specific biological
processes in flies have been characterized, including the regulation
of oogenesis (Hsu et al., 2015; Roy et al., 2007; Soshnev et al.,
2013) and spermatogenesis (Soltani-Bejnood et al., 2007; Thomas
et al., 2005). Our result that BEAF regulates Hippo pathway activity
for terminal differentiation of R8 neuronal subtypes, but has no
observed effect on general growth control or other photoreceptor
fate, indicates that broadly expressed insulators can have exquisitely
specific functions in development.

MATERIALS AND METHODS
Drosophila genotypes and stocks
See Table S1 for details of Drosophila genotypes and stocks.

Drosophila genetics and transgene descriptions
Flies were raised on corn meal-molasses-agar medium under standard
laboratory conditions. y1, w67;+;+ flies were considered ‘wild type’ and
used as a control for Rhodopsin gene expression. All experiments were
conducted at 25°C unless otherwise noted.
lGMR-Gal4 (long Glass Multiple Reporter) contains a pentamerized

38 bp Glass binding site and is expressed in all photoreceptors and some
other retina cells posterior to the morphogenetic furrow (Wernet et al.,
2003). ey-Gal4 drives transgene expression in eye primordium and eye
imaginal discs. UAS-Dicer2(Dcr2) is co-expressed to increase RNAi
processing efficiency (Dietzl et al., 2007). warts-lacZ contains a P-element
inserted into thewarts locus (Justice et al., 1995).melt-lacZ contains the first
intron ofmelted cloned upstream of nls:lacZ (Mikeladze-Dvali et al., 2005).

BEAF-32AB-KO is semi-viable (Roy et al., 2007). The original BEAF-
32AB-KO stock possibly contained a second-site mutation that caused
rhabdomere defects, and the chromosome was cleaned during
recombination to FRT42D. After recombination, the resulting FRT42D
BEAF-32AB-KO flies contained normal rhabdomeres. BEAF-32NP6377 is a
null allele caused by a P-element insertion (Gurudatta et al., 2012). We also
recombined this allele onto an FRT42D chromosome, which removed the
lethality and growth defects previously described on the chromosome
(Gurudatta et al., 2012). The deficiencyDf(2R)BSC429 (Bloomington stock

#24933) contains a 105 kb FLP/FRT-derived deletion that completely
removes the BEAF coding sequence, in addition to several other genes.
Placing BEAF-32AB-KO trans-heterozygous over a second, ∼250 kb
deficiency (Df(2R)BSC858; stock#27928) gave similar results.
Homozygous mutant adult eyes (whole eye mutant clones) were

generated using the FLP/FRT system (Xu and Rubin, 1993). FLP
recombinase expressed under control of the eyeless (ey) promoter
(ey-FLP) (Newsome et al., 2000) induced recombination of FRT
chromosomes containing a cell lethal mutation and GMR-hid to remove
all non-mutant eye tissue (Stowers et al., 2000). Mutant clones were made
using FRT-FLP-mediated recombination between the mutant chromosome
and an otherwise wild-type chromosome containing P[w+, ubi-GFP].

RNAi screen
Transcription factors were defined according to the FlyTF database (Adryan
and Teichmann, 2006), which includes manual curation from the literature
and computationally generated structure homologies. The data set identifies
1052 candidate DNA-binding proteins, including 753 proposed as
transcription factors (∼450 site specific). Another 299 genes did not meet
their criteria, but had transcription-related Gene Ontology annotations
(Adryan and Teichmann, 2006, 2007).
UAS-RNAi fly lines were obtained from a genome-wide library of

Drosophila RNAi at the Vienna Drosophila RNAi Center (VDRC) (Dietzl
et al., 2007). Each transgenic line contained a 300-500 bp inverted hairpin
construct under the control of a 10× multimerized UAS promoter. We tested
several Gal4 drivers, including lGMR-Gal4 (strongly expressed in all
photoreceptors after the morphogenetic furrow), sens-Gal4 (strongly
expressed in R8 and weakly and variably expressed in other photoreceptors),
and ey-Gal4+lGMR-Gal4 (ey-Gal4 is strongly expressed in the early eye
primordium and disc), with or without co-expression of UAS-Dicer2 (Dcr-2).
Dcr-2 is thought to enhance RNAi-processing efficiency in cell types more
refractory to UAS-RNAi such as adult neurons (Dietzl et al., 2007).
UAS-Dcr2; ey-Gal4, lGMR-Gal4 was determined to be the optimal Gal4

driver because it induced RNAi phenotypes very similar to phenotypes of a
gene’s respective loss-of-function mutant for seven out of seven known R7
and R8 subtype regulators: Rh6 was lost with warts, merlin, mats and sav
RNAi, whereas Rh5 was lost with melt RNAi. spineless RNAi flies had
expansion of Rh3 into all R7 photoreceptors. In addition, dveRNAi resulted
in an increase in Rh5 expression, in the outer photoreceptors. An
independent paper describing a role for Dve in restricting R8 Rhodopsins
from R1-R6 was in preparation during the screen and has since been
published (Johnston et al., 2011). otd RNAi completely removed rh5
expression, consistent with a requirement for Otd for rh5 transcription and
direct binding to the rh5 promoter. These positive controls demonstrate that
expression of UAS-RNAi under control ofUAS-Dcr2; ey-Gal4, lGMR-Gal4
is an effective tool to induce loss-of-function developmental phenotypes
detectable in adult photoreceptors.
The screen was performed by crossing UAS-RNAi males to virgin female

reporter-driver lines. To maximize virgin collection, the female driver stock
contained an hs-hid transgene on the Y chromosome (Dietzl et al., 2007).
We performed two 30 min heat-shocks spaced 8 h apart at 37°C in late larval
and early pupal stages to eliminate males.
R8 subtypes were assessed for defects in F1 progeny by examining for

a change in the proportion of R8s expressing a rh5-LexA::VP16,
lexAOP::GFP (rh5≫GFP) transcriptional reporter. The LexA/lexAOP
binary expression system was used to amplify GFP levels while keeping
the reporter Gal4 independent (Lai and Lee, 2006; Vasiliauskas et al.,
2011).

Water immersion protocol for visualizing rh5≫GFP
GFP was visualized in living adult flies by neutralizing the cornea using
a water immersion technique (Pichaud and Desplan, 2001). Ten to twelve
flies of the appropriate F1 genotype were placed on a streak of clear nail
polish (Wet n Wild) perpendicular to the straight edge with one retina
facing up, in the middle of a 10 cm Petri dish. The dish was placed on
the microscope stage and water added to submerge flies. Images of
rh5≫GFP were taken with a SPOT camera mounted on a fluorescence
microscope with a Nikon Plan Fluor 40× objective lens immersed in
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water. About 30-40 ommatidia are visible in the same focal plane. If
rh5≫GFP appeared in >60% of ommatidia of at least two flies, the
genotype was later dissected and Rh5 and Rh6 visualized with
antibodies. During the pilot screen it was discovered that the ey-Gal4
+lGMR-Gal4 flies exhibited, on occasion, an increase in the Rh6:Rh5
ratio (from 70:30 to 85:15). Therefore we only assayed subtype
phenotypes that increased the Rh5 R8 proportion.

BEAF binding analysis
BEAF-32 ChIP data for Drosophila melanogaster were obtained from
five available studies from modENCODE (http://www.modencode.org).
For the purpose of this analysis, the pre-processed peak calls available in
the modENCODE’s ‘dmel-interpreted-1’ FTP directory were used. The
midpoint of each identified ChIP peak regions was used to annotate the gene
diagrams, based on the FlyBase dm3 gene annotation on the UCSCGenome
Browser (genome.ucsc.edu). Strong peaks were defined as having >2.5-fold
enrichment. Weak peaks were defined as having <2.5-fold enrichment.
The scripts used for analysis can be found at https://github.com/pdeford/
beaf32-hippo-chip.

Antibodies
Antibodies and dilutions were as follows: mouse anti-Rh3 (1:10; gift from
S. Britt, University of Colorado, CO, USA), rabbit anti-Rh4 (1:100; gift
from C. Zuker, Columbia University, NY, USA), mouse anti-Rh5 (1:200;
Chou et al., 1996), rabbit anti-Rh6 (1:2000; Tahayato et al., 2003), guinea
pig anti-Ss 2.21 (1:200; gift from Y.N. Jan, University of California,
San Francisco, CA, USA) (Kim et al., 2006), rat anti-ElaV (1:50;
Developmental Studies Hybridoma Bank), sheep anti-GFP (1:500; AbD
Serotec, 4745-1051), mouse anti-Dlg (1:75; Developmental Studies
Hybridoma Bank) and goat anti-β-gal (1:50; Biogenesis, 4600-1409). All
secondary antibodies were Alexa Fluor 488-, 555- or 647-conjugated
antibodies (1:400) made in donkey (Molecular Probes).

Antibody staining and imaging
Adult or staged pupal retinas were dissected as described (Hsiao et al.,
2012). Briefly, retinas were dissected and immediately fixed for 15 min with
4% paraformaldehyde at room temperature. After lamina removal, retinas
were rinsed twice in PBX (PBS+0.2% Triton X-100) then washed in PBX
for >2 h. Retinas were incubated overnight with primary antibodies diluted
in PBX at room temperature, rinsed twice in PBX and then washed in PBX
for >4 h. Retinas were incubated 4-6 h or overnight with secondary
antibodies diluted in PBX at room temperature, rinsed twice in PBX and
then washed in PBX for >2 h. Adult retinas were mounted in SlowFade
(Molecular Probes) and pupal retinas in Vectashield (Vector Laboratories)
on glass slides with coverslip. Images were acquired using a Leica TCS SP5,
Zeiss 710 or Zeiss 780 confocal microscope. Objectives were 10×, 20× or
60×. Images were processed in Photoshop (Adobe) or ImageJ. Brightness or
contrast adjustments, if any, were simple linear adjustments made to the
entire image, in accordance with journal guidelines. Figures were prepared
using Illustrator (Adobe).

Quantification of photoreceptor subtypes
Confocal images were taken and the number of R8 cells that expressed Rh5,
Rh6, both, or neither were counted. The percentage of R8s expressing Rh5
(%Rh5) was calculated for each retina, and mean %Rh5 of all retinas within
a genotype was used to compare across genotypes. Retinas were scored if
therewere 75 or more ommatidia present in a single focal plane. Most retinas
contained ∼200-300 ommatidia in a single image. For all genotypes,
more retinas were observed than quantified to confirm a particular
phenotype. Means and standard deviations for all experiments can be
found in Table S2.
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Fig. S1. Rh5 is not upregulated upon RNAi knockdown of other insulators 
Rh5 is not dramatically upregulated upon RNAi knockdown of insulators CTCF, Cp190, mod(mdg4), su(Hw), 
or Trl compared to controls. 
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Fig. S2. Pupal interommatidial cell number is unaffected in BEAF mutants  
Pupal interommatidial cell number, marked by Dlg, is similar in BEAF null mutant (GFP-) and wild type 
(GFP+) clones. 
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expand	their	knowledge	of	scientific	problem-solving
• Helped	students	use	STEM	knowledge	to	develop	engineering	projects	to	address

issues	in	their	communities

Northwestern	University	 Evanston,	IL	
Facilitator,	Science	Research	Workshop	 Oct	2011-June	2013	
• Led	weekly	workshops	to	train	fellow	students	in	joining	a	lab,	writing	grants,

obtaining	research	funding,	and	presenting	their	research
• All	students	mentored	received	research	fellowships

REVIEWER	EXPERIENCE	
Peer	reviewer	for:	PLOS	One,	Genetics	

PUBLICATIONS	
Viets,	K.,	Sauria,	M.,	Chernoff,	C.,	Anderson,	C.,	Tran,	S.,	Dove,	A.,	Goyal,	R.,	Voortman,	
L.,	Gordus,	A.,	Taylor,	J.,	and	Johnston,	R.J.,	Jr.	“TADs	pair	homologous	chromosomes	to	
promote	interchromosomal	gene	regulation.”	In	revision	at	Developmental	Cell.	bioRxiv	
doi:	https://doi.org/10.1101/445627		

Viets,	K.*,	Urban,	E.*,	Chernoff,	C.*,	Han,	J.,	Chen,	A.,	Anderson,	C.,	Tran,	S.,	Konzman,	
D.,	and	R.J.	Johnston,	Jr.	“Activating	and	repressing	stochastic	gene	expression	between	
chromosomes.”	Manuscript	in	preparation	for	submission	to	Developmental	Cell.	
*indicates	equal	contribution

Viets,	K.,	and	R.J.	Johnston,	Jr.	“Probing	chromosome	pairing	and	transvection	to	
understand	nuclear	organization.”	Manuscript	in	preparation.	

Duan,	H.,	de	Navas,	L.F.,	Hu,	F.,	Sun,	K.,	Mavromatakis,	Y.E.,	Viets,	K.,	Zhou,	C.,	Kavaler,	
J.,	Johnston,	R.J.,	Tomlinson,	A.,	Lai,	E.C.	“The	mir-279/996	cluster	represses	receptor	
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tyrosine	kinase	signaling	to	determine	cell	fates	in	the	Drosophila	eye.”	2018.	
Development,	145:	doi:	10.1242.	

Yan,	J.,	Anderson,	C.,	Viets,	K.,	Tran,	S.,	Goldberg,	G.,	Small,	S.,	and	Johnston,	R.J.,	Jr.	
“Regulatory	logic	driving	stable	levels	of	defective	proventriculus	expression	during	
terminal	photoreceptor	specification	in	flies.”	2017.	Development,	144:844-855.		

Viets,	K.*,	Eldred,	K.C.*,	and	Johnston,	R.J.,	Jr.	“Mechanisms	of	Photoreceptor	
Patterning	in	Vertebrates	and	Invertebrates.”	2016.	Trends	Genet,	32:	638-659.	
*indicates	equal	contribution

Brickner,	D.G.,	Sood,	V.,	Tutucci,	E.,	Coukos,	R.,	Viets,	K.,	Singer,	R.H.,	and	Brickner,	J.H.	
“Subnuclear	positioning	and	interchromosomal	clustering	of	the	GAL1-10	locus	are	
controlled	by	separable,	interdependent	mechanisms.”	2016.	Mol	Biol	Cell,	27:	2980-
2993.	

Jukam,	D.,	Viets,	K.,	Anderson,	C.,	Zhou,	C.,	DeFord,	P.,	Yan,	J.,	Cao,	J.,	Johnston,	R.J.,	Jr.	
“The	insulator	protein	BEAF-32	is	required	for	Hippo	pathway	activity	in	the	terminal	
differentiation	of	neuronal	subtypes.”	2016.	Development,	143:	2389-2397.	

CONFERENCE	PRESENTATIONS	
Research	Talks	
• Northeast	Regional	Chromosome	Pairing	Conference Oct	2018	

Sudbury,	Ontario,	Canada
• Mid-Atlantic	Regional	Chromosome	Pairing	Conference July	2018	

Philadelphia,	PA	
• CSHL	Nuclear	Organization	and	Function	Meeting May	2018	

Cold	Spring	Harbor,	NY	
• Genetics	Society	of	America	Drosophila	Research	Conference April	2018	

Philadelphia,	PA	
• Northeast	Regional	Chromosome	Pairing	Conference Oct	2017	

Brunswick,	ME	
• Mid-Atlantic	Regional	Chromosome	Pairing	Conference June	2017	

Baltimore,	MD	
• Johns	Hopkins	Chromatin	and	Chromosomes	Workshop June	2017	

Baltimore,	MD	
• Northeast	Regional	Chromosome	Pairing	Conference Oct	2016	

Boston,	MA	
• Mid-Atlantic	Regional	Chromosome	Pairing	Conference June	2016	

Baltimore,	MD	
• Northeast	Regional	Chromosome	Pairing	Conference Oct	2015	

Boston,	MA	
• Northeast	Regional	Chromosome	Pairing	Conference Oct	2014	

Boston,	MA
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Poster	Presentations	
• 82nd	Cold	Spring	Harbor	Laboratory	Symposium	on	Quantitative	Biology:

Chromosome	Segregation	and	Structure	 June	2017	
Cold	Spring	Harbor,	NY	

• Genetics	Society	of	America	Drosophila	Research	Conference April	2017	
San	Diego,	CA	

• Johns	Hopkins	University	Department	of	Biology	Retreat Oct	2016	
Hershey,	PA	

• Genetics	Society	of	America	Allied	Genetics	Conference July	2016	
Orlando,	FL	

• Johns	Hopkins	University	Department	of	Biology	Retreat Oct	2015	
St.	Michaels,	MD	

• Genetics	Society	of	America	Drosophila	Research	Conference Mar	2015	
Chicago,	IL	

• Johns	Hopkins	University	Department	of	Biology	Retreat Oct	2014	
Fairfield,	PA	
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