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Abstract

The goal of community detection is to identify clusters and groups of vertices that share

common properties or play similar roles in a graph, using only the information encoded

in the graph. Our work analyzes two methods of identifying an anomalous community

in temporal graphs and another method of identifying active communities in a static

massive graph. All methods are based on locality statistics.

In [50], an anomalous community is detected that shows growing connectivities in a time

series of graphs. We formulate the task as a hypothesis-testing problem in stochastic

block model time series. We derive the limiting properties and power characteristics

of two competing test statistics built on distinct underlying locality statistics. In addi-

tion, we provide applicable implementations of two competing test statistics and detailed

experimental results for a neural imaging application in [36].

In [51], active communities are detected in a static massive graph on which many com-

munity detection algorithms scale poorly. We propose a novel framework for detecting

active communities that consist of the most active vertices. Our framework utilizes a

parallelizable trimming algorithm based on a locality statistic to filter out inactive ver-

tices, and then clusters the remaining active vertices via spectral decomposition of their
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similarity matrix. The framework is applicable to graphs consisting of billions of vertices

and hundreds of billions of edges.

In summary, this work provides developments in community detection, in both temporal

graphs and static massive graphs, by employing locality statistics.

iii



ABSTRACT

Advisor: Carey E. Priebe

Primary Reader: Carey E. Priebe

Secondary Reader: Amitabh Basu

iv



Acknowledgments

I would never have been able to finish my Ph.D. journey without the guidance of my

advisor, help from research collaborators, and support from my family and friends.

First, it is my pleasure to sincerely thank my advisor, Carey E. Priebe, for his support,

caring, and excellent guidance during my graduate studies. He introduced me to this

fascinating topic, encouraged me to explore methodologies in the field, and also mentored

me to become an independent researcher. In the past five years, Dr. Priebe has not only

provided insightful suggestions to help me increase expertise on this research topic but

also continued to support my personal progress from all sides. For everything you have

done for me, I truly appreciate all of it. As an old Chinese saying says: “One day as your

teacher, like a father for a lifetime.”

I would also like to acknowledge Dr. Youngser Park, Dr. Minh Tang, and Da Zheng

for their guidance and help in my research. As collaborators and friends, they always

enthusiastic about helping me develop computational skills, presentation skills, critical

thinking, and other computer science domain knowledge. Special thanks to Dr. Basu,

who agreed to be on my final defense committee and gave valuable comments regarding

my dissertation thesis as well. My research would not have been possible without their

v



ACKNOWLEDGMENTS

help.

Finally, I want to thank my parents, my girlfriend, and all my soccer teammates. Their

encouragement and love have made my Ph.D. life full of enjoyable, memorable, and

pleasant moments.

vi



Contents

Abstract ii

Acknowledgments v

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Graph Preliminary and Notation . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Graph Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Technological Networks . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Biological Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Information Networks . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Random Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Latent Position Model . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Random Dot Product Model . . . . . . . . . . . . . . . . . . . . . 14

1.4.3 Stochastic Block Model . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



CONTENTS

1.5 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Anomalous Community Detection in a Time Series of Graphs 18

2.1 Time Series of Random Graphs from Stochastic Block Model . . . . . . . 21

2.2 Anomalous Community Detection Problem In Stochastic Block Model For-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Locality Statistics and Scan Statistics . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Locality Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Temporally-normalized statistics . . . . . . . . . . . . . . . . . . . 28

2.3.3 Anomalous Community Identification . . . . . . . . . . . . . . . . 31

2.4 Limiting properties and Power characteristics of Scan Statistics . . . . . 34

2.4.1 Power Estimate of Sτ=1,`=0,k=0(t; ·) . . . . . . . . . . . . . . . . . 34

2.4.2 Power Estimate of Sτ=1,`=0,k=1(t; ·) . . . . . . . . . . . . . . . . . 47

3 Applications 59

3.1 Code Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Generating Time Series of Graphs with Change-point under SBM 60

3.1.2 Two Locality Statistics and local.scan in igraph . . . . . . . 63

3.1.3 Temporally-normalization Implementation . . . . . . . . . . . . . 66

3.2 Enron Emails dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Zebrafish dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.2 Construction of Time Series of Association Graphs . . . . . . . . 78

3.3.3 Scan Statistics and Anomalous Community Identification . . . . . 79

3.3.4 Detection Persistence Analysis . . . . . . . . . . . . . . . . . . . . 80

viii



CONTENTS

4 Active Community Detection in Massive Graphs 92

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Locality Statistic Ψk(v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Detection Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Framework Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 Trimming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Shared-memory Parallel Implementation . . . . . . . . . . . . . . 106

4.4.3 External-memory implementation . . . . . . . . . . . . . . . . . . 108

4.5 Validation on Synthetic Graphs . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Active Communities of Hyperlink Graph . . . . . . . . . . . . . . 116

4.6.2 Time-saving Trimming Algorithm . . . . . . . . . . . . . . . . . . 120

5 Conclusions and Discussion 122

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 Weighted Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.2 Streaming Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.3 Beyond Stochastic Block Model Graphs . . . . . . . . . . . . . . . 130

5.2.4 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 134

Vita 142

ix



List of Tables

1.1 Summary of basic concepts based on the toy example graph Gtoy in Figure
1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Decomposition of the covariance terms in cov(Φ̃t;1,1(u), Φ̃t;1,1(v)) . . . . . 54

3.1 Summary results of anomaly detection on {Gt}Tt=1 by employing Sτ,`,1(t; ·).
Anomaly is indicated if Sτ,`,1(t; ·) > 10. ’X’ and ’×’ denote the success
and failure of detection, respectively. NA is applicable in the case that
t? ≤ τ + `, while {Gt}τ+`

t=1 are truncated for vertex standardization and
temporal normalization. The last column N1[v?;Gt? ; Ψ] = N1[v?;Gt? ; Φ]
tests if identified anomalous communities are the same when using different
underlying locality statistic Ψ and Φ. . . . . . . . . . . . . . . . . . . . . 83

4.1 Table of selected URLs from active communities in Hyperlink Graph pro-
vided by our detection framework. URLs of similar topics are clustered
in the same active communities. Community 1 are URLs maintained and
developed by networkmedia company; Communities 2 and 5 are collec-
tions of adult websites; Community 3 consists of popular social media sites.
Community 4 is composed of online shopping sites. . . . . . . . . . . . . 118

5.1 The optimal τ and ` in an experiment comparing the statistical power
of Sτ,`,k for k = 0, 1 and locality statistics Φ and Ψ. We vary τ, ` ∈
{0, 1, . . . , 10} and compare the statistical power for each choice of τ and `
through a Monte Carlo experiment with 2, 000 replicates. . . . . . . . . . 132

x



List of Figures

1.1 A toy example graph Gtoy to illustrate basic concepts and notation . . . 7

2.1 Notional depiction of P0 and corresponding PA. P0: all vertices connect
with probability p except that the self-connectivity probability of [n2] is
h; PA: the self-connectivity probability of [n3] transitions from p to p+ δ
while [n2] retains its previous behavior. . . . . . . . . . . . . . . . . . . . 26

2.2 Temporal standardization: when testing for change at time t, the recent
past graphs Gt, Gt−1, . . . are used to standardize the invariants. . . . . . 29

2.3 An example to differentiate the calculation of J̃t∗;τ,k(v) with varying un-
derlying statistics (Ψt;k or Φt,t′;k) and order distances (k = 0 or k = 1). In
the right graph Gt∗ , note that the red edges are E(Ω(Nk=0[e;Gt∗ ], Gt∗));
the red and blue edges are E(Ω(Nk=1[e;Gt∗ ], Gt∗)); the red, blue, and
green edges are E(Ω(Nk=2[e;Gt∗ ], Gt∗)). For instance, the magenta-marked
number 3 is Ψt∗−1;0 where Ψt∗−1;0(e) = |E(Ω(N0(e;Gt∗−1);Gt∗−1))| and
E(Ω(N0(e;Gt∗−1);Gt∗−1)) = {e ∼ c, e ∼ f, e ∼ i} in Gt∗−1.; the orange-
marked number 4 is Φt∗,t∗−1;1(e) where Φt∗,t∗−1;1(e) = |E(Ω(N1(e;Gt∗);Gt∗−1))|;
and E(Ω(N1(e;Gt∗);Gt∗−1)) = {h ∼ k, b ∼ h, e ∼ i, e ∼ f} in Gt∗−1. . . . 32

2.4 A comparison using the limiting properties of S1,0,0(t; Ψ) and S1,0,0(t; Φ), of
βΨ−βΦ for different null and alternative hypotheses pairs as parameterized
by h and q(= p + δ). The blue-colored region corresponds to values of h
and q(= p+δ) for which βΨ < βΦ, while the red-colored region corresponds
to values of h and p+ δ with βΨ > βΦ. . . . . . . . . . . . . . . . . . . . 45

2.5 Power estimates βΨ against βΦ using Monte Carlo simulation on random
graphs from the stochastic blockmodel, Monte Carlo simulation on ran-
dom graphs from the random dot product model, and large-sample ap-
proximation for the stochastic blockmodel. r is the concentration param-
eter. Dashed blue line: power estimate of large-sample approximation to
S0,0,0(t; Ψ); dotted blue line: power estimate of SBM Monte Carlo simula-
tion to S0,0,0(t; Ψ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 A generated time series of graphs under SBM with change-point at t =
20. V is partitioned into three blocks where black vertices are from [n1],
yellow from [n2], and red from [n3]. The subgroup [n3] exhibits the change
of community frequency at the pre-determined change-point and hence
becomes the target community for detection. . . . . . . . . . . . . . . . . 62

xi



LIST OF FIGURES

3.2 Induced subgraph Ω(Nk=1(v = O;Gt=20);Gt=20) of the last graph G20 from
v = O with k = 1 order neighborhood. . . . . . . . . . . . . . . . . . . . 64

3.3 The left figure is the graph Gt′=19, i.e., the graph at time stamp 19 in
the generated time series of graphs. The right figure is Ω(Nk=1[v =
O;Gt=20], Gt′=19), i.e., induced subgraph in Gt′=19 by vertex set Nk=1[v =
O;Gt=20] where Nk=1[v = O;Gt=20] is shown in Figure 3.2. . . . . . . . . 65

3.4 Sτ,`,k(t; Ψ)(sea green) and Sτ,`,k(t; Φ)(orange), the temporally-normalized
standardized scan statistics using τ = 4, ` = 3 in time series of graphs.
Top: k = 0; Middle: k = 1; Bottom: k = 2. . . . . . . . . . . . . . . . . 72

3.5 Sτ,`,k(t; Ψ)(sea green) and Sτ,`,k(t; Φ)(orange), the temporally-normalized
standardized scan statistics using τ = ` = 20, in time series of Enron
email-graphs from August 1999 to June 2002. Top: k = 0; Middle: k = 1;
Bottom: k = 2. In the case k = 0, both S20,20,0(t; Ψ) and S20,20,0(t; Φ) show
detections (Sτ,`,k(t; ·) > 5) at observation mark (1) and (2); in the case
k = 1, both S20,20,1(tΨ) and S20,20,1(t; Φ) show detections at observation
mark (1), S20,20,1(t; Ψ) also indicates an anomaly at observation mark (2);
in the case k = 2, S20,20,2(t; Ψ) detects anomalies at observation mark (2)
and (3), but S20,20,2(t; Φ) captures anomalies at observation mark (1) and
(4). Detailed analyses on each observation [(1) - (4)] are provided in §3.2
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Sτ,`,k(t; Ψ)(sea green) and Sτ,`,k(t; Φ)(orange), the temporally-normalized
standardized scan statistics using (τ, `, θ) = (10, 10, 0.8), in time series
of zebrafish association-graphs across 250 seconds. Anomaly detection
is indicated if Sτ,`,k(t; ·) > 10 (blue dashed line). t = 59th, 78th, 218th
seconds are underlying change-points caused by zebrafish eye movement
or tail movements. A summary of selected change-points (pink-marked
with arrows) is provided in Table 3.1 and identifications of anomalous
communities at selected change-points are provided in Figures 3.8 and 3.9. 81

3.7 Sτ,`,k(t; Ψ)(sea green) and Sτ,`,k(t; Φ)(orange), the temporally-normalized
standardized scan statistics using (τ, `, θ) = (5, 5, 0.8), in time series of
zebrafish association-graphs across 250 seconds. Anomaly detection is in-
dicated if Sτ,`,k(t; ·) > 10 (blue dashed line). t = 16th second is an under-
lying change-point at which the zebrafish is given a odor stimulus, and this
stimulus lasts for 2 seconds. t = 59th, 78th, 218th seconds are underlying
change-points caused by zebrafish eye movement or tail movements. The
Summary of selected change-points (pink-marked with arrows) is provided
in Table 3.1, and identifications of anomalous communities at selected
change-points are provided in Figures 3.8 and 3.9. . . . . . . . . . . . . . 82

3.8 For each t? ∈ {16, 44, 59, 78, 129, 218, 238}, the members of anomalous
community N1[v?;Gt? ] are visualized in red when Sτ,`,1(t; Ψ) is employed
for detection with (τ, `, θ) = (5, 5, 0.8). All neurons are spatially located ac-

cording to their (x,y) coordinates. “+” denotes v? = arg maxv(J̃t?,τ ;k(v)),
the center of the anomalous community. “|N |” denotes the cardinality
of N1[v?;Gt? ]. For example, when t? = 59, there are |N | = 330 neurons
in N1[v?;Gt? ]. For comparison, N1[v?;Gt?−1] and N1[v?;Gt?+1] are also
included at the left and right of each row. . . . . . . . . . . . . . . . . . 85

xii



LIST OF FIGURES

3.9 For each t? ∈ {16, 44, 59, 78, 129, 218, 238}, the members of anomalous
community N1[v?;Gt? ] are visualized in red when Sτ,`,1(t; Φ) is employed for
detection with (τ, `, θ) = (5, 5, 0.8). All neurons are spatially located ac-

cording to their (x,y) coordinates. “+” denotes v? = arg maxv(J̃t?,τ ;k(v)),
the center of the anomalous community. “|N |” denotes the cardinality
of N1[v?;Gt? ]. For example, when t? = 59, there are |N | = 330 neurons
in N1[v?;Gt? ]. For comparison, N1[v?;Gt?−1] and N1[v?;Gt?+1] are also
included at the left and right of each row. . . . . . . . . . . . . . . . . . 86

3.10 Persistent plot with respect to θ by fixing (τ, `) = (5, 5) and allowing θ
to range from 0.5 to 0.9 with step size 0.01. Upper and lower subfig-
ures correspond to the test statistics used, Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ), re-
spectively. Besides four time stamps t? = {16, 59, 78, 218} having ground
truths (eye/tail movements), other top 8 persistent detections are also
blue-marked at the top time axis. Values of Sτ,`,k(t; ·) at all entries are
quantitatively displayed by colors in legend. . . . . . . . . . . . . . . . . 87

3.11 Persistent plot with respect to τ by fixing (θ, `) = (0.8, 2)(upper), (θ, `) =
(0.8, 5)(middle), (θ, `) = (0.8, 10)(lower) and allowing τ to range from 2 to
10 with step size 1. The test statistic used is Sτ,`,k(t; Ψ). Besides four time
stamps t? = {16, 59, 78, 218} having ground truths (eye/tail movements),
other top 8 persistent detections are also blue-marked at the top time axis.
Values of Sτ,`,k(t; ·) at all entries are quantitatively displayed by colors in
legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.12 Persistent plot with respect to τ by fixing (θ, `) = (0.8, 2)(upper), (θ, `) =
(0.8, 5)(middle), (θ, `) = (0.8, 10)(lower) and allowing τ to range from 2 to
10 with step size 1. The test statistic used is Sτ,`,k(t; Φ). Besides four time
stamps t? = {16, 59, 78, 218} having ground truths (eye/tail movements),
other top 8 persistent detections are also blue-marked at the top time axis.
Values of Sτ,`,k(t; ·) at all entries are quantitatively displayed by colors in
legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.13 Persistent plot with respect to ` by fixing (θ, τ) = (0.8, 2)(upper), (θ, τ) =
(0.8, 5)(middle), (θ, τ) = (0.8, 10)(lower) and allowing ` to range from 2 to
10 with step size 1. The test statistic used is Sτ,`,k(t; Ψ). Besides four time
stamps t? = {16, 59, 78, 218} having ground truths (eye/tail movements),
other top 8 persistent detections are also blue-marked at the top time axis.
Values of Sτ,`,k(t; ·) at all entries are quantitatively displayed by colors in
legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.14 Persistent plot with respect to ` by fixing (θ, τ) = (0.8, 2)(upper), (θ, τ) =
(0.8, 5)(middle), (θ, τ) = (0.8, 10)(lower) and allowing ` to range from 2 to
10 with step size 1. The test statistic used is Sτ,`,k(t; Φ). Besides four time
stamps t? = {16, 59, 78, 218} having ground truths (eye/tail movements),
other top 8 persistent detections are also blue-marked at the top time axis.
Values of Sτ,`,k(t; ·) at all entries are quantitatively displayed by colors in
legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 A toy example to illustrate calculations of Ψk(a) with various k = 0, 1, 2, 3,
on the directed G. For example, if k = 2, N2[a] = {u ∈ V : d(u, a) ≤
2} = {a, b, c, d, e, f}, and thus E(Ω(N2[a], G)) contains edges colored in
red, blue, and green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xiii



LIST OF FIGURES

4.2 local stat(v) computes Ψ1(v). S[e] denotes the source vertex of an edge e
and D[e] denotes the destination vertex of an edge e. . . . . . . . . . . . 102

4.3 est lstat1(v) and est lstat2(v) compute the upper bound of Ψ1(v). est lstat2(v)
computes a much tighter upper bound but requires more expensive com-
putation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 top lstat computes the largest locality statistic among a set of vertices V . 104
4.5 topQ lstat finds the vertices of Q largest locality statistic values among V . 105
4.6 The adjacency matrix configuration of one sampled graph G generated

through the Stochastic Block Model. The SBM parameters are: B =
4, n1 = 940, n2 = n3 = n4 = 20, and block connectivity matrix is given
in P. Three blocks [n2], [n3], [n4] at the bottom right, having significantly
higher intensities, are three unknown but true active communities. . . . . 111

4.7 One sample graph G with n = 1000,m = 10358. One-tenth of uni-
formly sampled edges are incorporated in the figure. White (no label),
yellow (label 2), red (label 3), and green (label 4) clusters represent blocks
[n1], [n2], [n3], and [n4], respectively. Sizes of all vertices are proportional
to locality statistic {Ψk=1(v)}nv=1. . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Receiver operating characteristic (ROC) mean curves and corresponding
Area Under Curves (AUCs) of classifying active vertices using Q-th largest
Ψk(v) as decision boundary. The curve is built on 4,000 Monte Carlo
simulations where each run generates an stochastic block model graph and
calculate one discrete ROC curve by enlarging Q to increase false positive
rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.9 Adjusted Rand Index curves against Q, based on 4, 000 Monte Carlo sim-
ulations, between spectral clustering results and true clusterings of top Q
vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.10 Five active communities in HyperLink graph. Top Q = 2, 000 vertices
projected into first two dimensions of classic multidimensional scaling of S.
5 communities are colored separately where community index is consistent
with Table 4.1. The sizes of Active community 1 to 5 are n1 = 35, n2 =
1603, n3 = 199, n4 = 42, and n5 = 121, respectively. . . . . . . . . . . . . 117

4.11 Log-log plot of time consumption and the number of locality statistic-
computed vertices against Q of trimming algorithm. The log base is 10,
and Q ranges from 1 to n. In the Hyperlink graph, the running time of
trimming algorithm T (Q) = O(

√
Q) and computing top Q = 104 locality

statistic values only takes 3.7% time consumption on all locality statistic
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 A two-step time series of weighted digraphs. left: G1, right: G2 . . . . . 126
5.2 Fast update rules for {Ψt,k=1(w)}nw=1 in a data stream of edge insertions

and deletions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiv



Chapter 1

Introduction

1.1 Problems

In the analysis of network graphs, community detection often refers to identifying, in

an unsupervised fashion, a subset of vertices that have excessive “cohesiveness” among

themselves, and at the same time are relatively well separated from the remaining vertices.

Interest in community detection has increased because communities in a large graph often

imply noteworthy group structures in a graph-represented real system. For example, as

summarized in [10], in a World Wide Web graph, communities are more likely to be

groups of web pages associated with similar topics; in a protein-protein interaction graph,

communities are formed by proteins having the same functionality within a cell; in a

scientific citation graph, communities are identified as research collaborators or potential

collaborators. These valuable findings could further lead to concrete applications in

business insights, security enhancement, recommendation systems, and so on.

1



CHAPTER 1. INTRODUCTION

In this work, we conduct community detection in two specific scenarios. In the first sce-

nario, we assume that the network is temporal, and the objective is to find the emergence

of an anomalous community in a time series of networks. The anomalous community

is a local region in the network with a significantly growing number of communications

occurring at some unknown time stamp. This time stamp is also called the change-point

in a time series of graphs. In the second scenario, we consider a static massive graph

where the number of vertices and edges is on the scale of a billion. This is an interesting

situation because such a graph is too large to be processed using its full topology. The

goal is to detect potential communities consisting of the most active vertices in a net-

work by ignoring insignificant vertices of a network. The communities we obtain in this

scenario are called active communities.

First, we discuss previous work done in the area of the change-point detection prob-

lem. The change-point detection problem in a dynamic network is becoming increasingly

prevalent in many applications of the emerging discipline of dynamic graph mining. Dy-

namic network data are often readily observed, with vertices denoting entities and time-

evolving edges signifying relationships between entities, and thus considered as a time

series of graphs, which is a natural framework for investigation. An anomalous signal

is broadly interpreted as constituting a deviation from some normal network pattern,

e.g., a model-based characterization such as large scan statistics [38] or non-model-based

notions such as a community structure change, while a change-point is the time window

during which the anomaly appears.

Recently, many tailor-made approaches based on different models, aiming for change-

point detection in graphs, have been proposed in a growing body of literature. In [17],

2
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a two-stage Bayesian anomaly detection method for social dynamic graphs is designed.

Both its model and parallelization in computation are built on the assumption that the

communication between each pair of individuals independently follows a counting pro-

cess. In [30], an algorithm called NetSpot was created to find arbitrary but evolutionary

anomalies that are maintained over a spatial or time window; i.e., the anomalous signal

does not appear and then disappears instantaneously. In [49], the subgraph anomaly

detection problem in graphs was analyzed through likelihood ratio tests under a Poisson

random graph model. Finally, in [29], the L1 norm of the eigenvectors of the modularity

matrix was used to detect an (anomalous) small dense subgraph embedded inside a large,

sparser graph.

Second, we review varied algorithms proposed to locate communities in massive graphs.

Let n denote the number of vertices of a graph and m denote the number of edges. A

traditional graph partitioning approach, the Kernighan-Lin algorithm [21], is still widely

used today and has a complexity of O(n2 log n) and O(n2) on sparse graphs. A hierar-

chically agglomerative clustering approach, embedding all vertices in space to employ a

similarity measure, results in a complexity of O(n2) for single linkage and O(n2 log n) for

a complete and average linkage scheme [10]. A hierarchically divisive clustering algorithm

proposed by Girvan and Newman [14] [33] iteratively partitions a graph by removing edges

with low similarity, takes O(nm2), and gains popularity in countless applications [10]. In

contrast, spectral clustering such as that used in [8] and [53] has a much lower asymptotic

computational complexity. Their most expensive cost is the computation of the dominant

Laplacian eigenvectors, which has a complexity of O(m) in each iteration but may require

a large number of iterations [5].

3



CHAPTER 1. INTRODUCTION

Another prominent approach is a group of modularity-based methods, developed from

the stopping criterion of the Girvan and Newman algorithm in [14]. A greedy modularity

optimization algorithm [6] allows the analysis of large graphs with up to n = 106 vertices

and a running time O(n log2 n) and is improved by [46] to handle graphs of up to n = 107.

In the past few years, the modularity-based technique [4] known as Louvain clustering

has been in vogue because it can analyze graph sizes of up to m = 109 in a reasonable

time. The phase of attaining local modularity maxima in Louvain clustering requires

multiple iterations, and each iteration has a complexity of O(m). The downside is that

the number of iterations is unknown and the convergence speed is influenced by the order

of sequential sweeps over all vertices.

In this dissertation, we will investigate the above two community detection problems by

making use of a locality statistic. The locality statistic is a foundation for the work in

this dissertation. In Chapter 2, we approach the dynamic anomalous community/change-

point detection problem through the use of locality-based scan statistics. In Chapter 3,

we propose an active community detection framework through the use of a locality-based

trimming algorithm.
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1.2 Graph Preliminary and Notation

The term “network” often refers to a collection of individuals and inter-relations among

these individuals. Its mathematical structure can be well-represented by terminologies

from a subfield of mathematics – graph theory. Specifically, vertices denote individuals in

a network, and edges denote interactions between individuals. In this section, we review

some basic concepts from graph theory and introduce the corresponding notation that

will be used throughout the dissertation.

Generally, a graph is denoted by G = (V,E), with the vertex set V = V (G) and edge

set E = E(G). The number of vertices of a graph is usually denoted by n (or |V |),

and the number of edges is denoted by m (or |E|). They are also sometimes called the

order and size of the graph G, respectively. We denote by A the adjacency matrix of a

finite graph G where A is an n × n matrix such that Au,v is the number of edges (edge

weight) from vertex u to vertex v in an unweighted (weighted) graph. For a graph G on

n vertices, the vertex set is usually taken to correspond to the set [n] = {v1, v2, . . . , vn}.

In our subsequent discussion, we might also partition V into subsets, or blocks. If V

is partitioned into B blocks of size n1, n2, . . . , nB vertices, then, with a slight abuse of

notation, we shall denote by [ni] the vertices in block i.

Let G be a graph. For any u, v ∈ V , we write (u, v) if there exists an edge between u

and v in G. A vertex v ∈ V is incident on an edge e ∈ E if v is one of the end points

of e. The list of incident edges of a vertex v is denoted by E[v]. A graph G is directed

if each edge in E has an ordering to its vertices such that (u, v) is different from (v, u)

for u, v ∈ V . We write d(u, v) for the shortest path distance between u and v in G if
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G is undirected. If G is directed, with abuse of notation, d(u, v) stands for the shortest

path distance between u and v on the underlying undirected graph of G by removing

orientations of all edges. A graph is weighted if the strength of relations between vertices,

i.e., edge weights, are considered in the model. Note that in the next two chapters, we

consider only unweighted graphs without self-loops. Some extensions to weighted graphs

are discussed in Chapter 4.

A graph G′ = (V ′, E ′) is a subgraph of another graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

For V ′ ⊂ V , G′ = (V ′, E ′) is an induced subgraph of G = (V,E) by V ′ if E ′ is a collection

of edges in E, both of whose end points are in V ′. For v ∈ V , we denote by Nk[v;G] the

set of vertices u at a distance of at most k from v, i.e., Nk[v;G] = {u ∈ V : d(u, v) ≤ k}

and denote by Ω(V ′, G) the subgraph of G induced by V ′. Thus, Ω(Nk[v;G], G) is the

subgraph of G induced by vertices at a distance of at most k from v.

As an example to illustrate the above concepts and notation, we consider a simple and

small simulated graph below. Figure 1.1 is an unweighted and directed graph Gtoy =

(V,E) with n = 10 and m = 26. Based on this small graph, in Table 1.1, we summarize

the above concepts, their corresponding notation, and example quantity values in Gtoy to

improve the reader’s understanding of these concepts.
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C

G
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T

Figure 1.1: A toy example graph Gtoy to illustrate basic concepts and notation

1.3 Graph Data

In this section, we briefly examine some contexts in which networks arise so that we can

establish an initial sense of how the graphs of interest are constructed according to data

from the real world. By following [22] and [32], we categorize most networks familiar to us

into four classes: technological, social, biological, and informational. This classification is

not strict, and it is not uncommon for many networks to fall into more than one category.

More specifically, we briefly present in this section three fascinating datasets that will be

used in the following chapters for real data experiments. As we will see, each of the three

datasets belongs to at least two of the above categories.
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Notation Concept Value in Figure 1.1

n (or |V |) order (i.e., the number of vertices) 10

m (or |E|) size (i.e., the number of edges) 26

B number of blocks or partitions e.g., 2

[ni] vertices in block i e.g., [n1] = {C,G,H, J, T},

[n2] = {K,L,M,N,O}

(u, v) an edge from u to v e.g., (H,O)

E[v] incident edges of v e.g., E[J ] = {(H,J), (J,O), (G, J)}

d(u, v) shortest path distance between u and v e.g., d(G,N) = 2

Nk[v;G] set of vertices at a distance of at most k from v e.g., N1[J ;Gtoy] = {G,H, J,O}

Ω(Nk[v;G], G) subgraph of G induced by Nk[v;G] e.g., Ω(N1[J ;Gtoy], Gtoy) = (V ′, E′) where

V ′ = {G,H, J,O} and

E′ = {(H,O), (H,J), (J,O), (G,O), (G, J)}

Table 1.1: Summary of basic concepts based on the toy example graph Gtoy in Figure
1.1.

1.3.1 Technological Networks

A technological network is often a network of human-made systems that functions collec-

tively to produce flows of products and services between entities. To represent a techno-

logical network in the form of a graph, we let each entity play the role of a vertex and each

flow of products and services play the role of a single (weighted) edge. For example, the

airplane network can be a graph in which vertices are airport sites and edges are airline

routes between pairs of sites. In the Internet network, individual digital devices (e.g.,

personal laptops) communicate over wired and wireless connections using Internet traffic

8



CHAPTER 1. INTRODUCTION

packets. Currently, there are over 3 × 109 Internet users per day across the world, and

a massive global Internet graph can be created if we map digital devices to vertices and

Internet traffic flows to edges. In general, the topologies of many technological networks

are available to us, such as highways between two cities and wireless connections between

cell phones and local switches. Thus, for such networks, many investigations have focused

on the optimization of flows to accommodate limited physical resources or financial profit

maximization.

1.3.2 Social Networks

Social networks link people or groups of people. The vertices of social graphs typically

consist of humans, and edges are social interactions among people. Examples of social

interactions include friendships among people, personal contacts in a social group, and

cooperation to reach a common objective. Traditionally, collecting social network data

has been difficult, requiring extensive surveys in the social group being studied. However,

the merging of technological networks and social networks presently enables us to quantify

interactions in an online setting. Celebrated social sites such as Facebook, LinkedIn, and

YouTube are recording the net surfing behaviors of their users at any time. Interactions

can now be observed and quantified at different levels of scale and resolution.

Using graph analysis, one typical aim in social network mining is to model social struc-

tures, monitor possible structure changes, and unearth hidden social interactions that

drive structural change. One of the questions of interest in this dissertation is whether

there is an emergence of anomalous subgroups of social actors showing excessive so-
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cial interactions among themselves in a dynamic network. We will use an Enron email

dataset [39] in Chapter 2 as an example. Email communication networks fall into both the

technological network and social network categories. This dataset consists of |V | = 184

unique email users at Enron Company and the collection of their emails over a period

of 189 weeks from 1998 to 2002. For each week t = 1, . . . , 189, there is a directed graph

Gt = (V,Et) where (u, v) ∈ Et denotes that u sends at least one email to v during the

t-th week. Investigating the time series of graphs {Gt}184
t=1, we will show in Chapter 2 the

emergence of an anomalous community of users and how change points indicated by our

methodology are related to the timeline of Enron scandal news.

1.3.3 Biological Networks

A biological network is any network that applies to biological systems. Not surprisingly,

the graph data collected on biological networks and the manner in which they are gen-

erated and analyzed vary widely with the nature of underlying biological systems. For

instance, protein-protein interaction networks are represented by graphs in which pro-

teins are vertices and their interactions are edges. A food web is a graph in which living

species, i.e., vertices of the network, are connected to each other through predator-prey

interactions. Additionally, there is another rule for graph edge construction such that

two vertices are connected if they achieve a sufficient level of “associations”. This type

of graph construction is called an association network and is frequently used in biologi-

cal networks. There are, of course, a number of choices for mathematical definitions of

“association” in practice, such as Pearson correlation, partial correlation, etc. According

to different definitions of “association”, different graph models have been proposed, such
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as correlation graphs, partial correlation graphs, Gaussian graphical model graphs, and

others.

In Chapter 2, we also apply our anomalous community detection methodology on a

time series of association networks of zebrafish neuronal activity. The raw dataset is a

D = n×T multiple time series where n(= 5, 379) is the number of zebrafish neurons and

T (= 5, 000) is the number of total time steps. Di,t records the activity level of neuron

i at time stamp t. After data munging and aggregation, we discretize the data into 99

time chunks and construct a thresholded correlation graph in each time chunk. Details

about the construction of graphs is also given in [36]. For this time series of Pearson

correlation graphs, it is of interest to see whether the alarmed detection time provided

by our methodology matches well with the time of the real olfactoric stimulus given by

the lab scientist.

1.3.4 Information Networks

Information networks are networks describing relationships among elements of informa-

tion. The relationship between elements of information includes citations between aca-

demic publications, co-authorships between academic researchers, and so on. The most

celebrated example is the World Wide Web, which can be seen as a graph by repre-

senting web pages as vertices and the referencing of one page by another page as edges.

Community detection on web graphs is of interest for many purposes. One goal is to

identify clusters created by link farms, discouraging unfair competition on search engine

ranks [10].
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However, most community detection algorithms scale poorly on massive web graphs,

particularly given the billions of vertices and edges characteristic of modern systems.

In Chapter 3, we will introduce an active community detection framework by focusing

only on significant web pages and communities formed by significant web pages. To

demonstrate the practicality and efficiency of our method, we will conduct experiments

on the largest public real-world hyperlink graph to date [28]. The page-level hyperlink

graph covers 3.5 billion web pages and 128 billion hyperlinks between pages. According

to our findings, we can answer questions such as “How does the content of important web

pages induce clustering on the WWW?” and “Is any suspicious link farm found on the

WWW?”. To the best of our knowledge, this is the first community detection algorithm

applied to a real information network dataset at this scale.
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1.4 Random Graph Models

A random graph is a graph with |V | fixed vertices and |E| edges generated at random,

where the edge set E satisfies some distribution over all possible edge sets. Mathemati-

cally, a random graph A : Ω 7→ A is a map from the probability sample space to the space

of all adjacency matrices on n vertices. Different random graph models produce differ-

ent probability distributions on graphs. For instance, the most well-known is the Erdős

Rényi graph, denoted by G(n, p), in which every possible edge occurs independently with

a probability of 0 < p < 1. That is, for any realized A? ∈ A and given p,

P [A = A?] =
∏
u<v

pA
?
u,v(1− p)(1−A?u,v).

In this section, we briefly summarize several generalized models of the Erdős Rényi graph:

the latent position model of [18], the dot product model of [54], and the stochastic

blockmodel of [19] and [52]. This is because, in Chapter 2, we formulate anomalous

community/change-point detection as a hypothesis testing problem in terms of a gener-

ative latent position model, focusing on the special case of the stochastic block model

time series, and in Chapter 3, we demonstrate the validity of our method with synthetic

stochastic block model graphs. Note that we consider only undirected graphs for the

introduction of these models below.

1.4.1 Latent Position Model

The latent position model (LPM) is motivated by the assumption that each vertex v

is associated with a K-dimensional latent random vector Xv. For any pair of vertices
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u and v, conditioned on the two latent positions Xu and Xv, the existence of an edge

between u and v is independently determined by a Bernoulli trial with a probability

of f(Xu, Xv) where f is a symmetric kernel function f : RK × RK → [0, 1]. Namely,

Au,v|(Xu, Xv)
ind∼ Bernoulli(f(Xu, Xv)). Thus, for any latent position graph with latent

positions {Xv}v∈V , kernel function f , and realized A? ∈ A, we have

P [A = A?|{Xi}i∈V ] =
∏
u<v

f(Xu, Xv)
A?u,v(1− f(Xu, Xv))

(1−A?u,v).

1.4.2 Random Dot Product Model

The random dot product graph model (RDPM) [54] is a special case of the latent position

model. In the random dot product graph model, the kernel function f is specified as the

Euclidean inner product, i.e., f(Xu, Xv) = 〈Xu, Xv〉. In addition, for each vertex v, the

latent random vector Xv takes its values in the unit simplex S so that 0 ≤ 〈Xu, Xv〉 ≤ 1

where S = {x ∈ [0, 1]K :
∑K

k=1 xk ≤ 1}. Thus, for any latent position graph with latent

positions {Xv}v∈V ∈ S and realized A? ∈ A, we have

P [A = A?|{Xi}i∈V ] =
∏
u<v

< Xu, Xv >
A?u,v (1− < Xu, Xv >)(1−A?u,v).

Hence, X = (X1, X2, . . . , X|V |) parametrizes the random dot product model. In this case,

an adjacency matrix A ∼ RDPM(X).

1.4.3 Stochastic Block Model

The stochastic block model (SBM) of [19,52] is a random graph model in which each vertex

is randomly assigned a block membership among {1, . . . , B}, according to a membership
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assignment function κ : [n] 7→ {1, . . . , B}, where B is the number of blocks. Given block

memberships, the connectivity probabilities among all vertices are characterized by a

B×B symmetric block connectivity matrix P where Pj,k denotes the block connectivity

probability between blocks j and k. Namely, Au,v
ind∼ Bernoulli(Pj,k) given u ∈ [nj] and

v ∈ [nk]. Thus, for any stochastic block model with a block membership function κ, a

block connectivity probability matrix B, and a realized A? ∈ A, we have

P [A = A?|P] =
∏
u<v

P
A?u,v
κ(u),κ(v)(1−Pκ(u),κ(v))

(1−A?u,v).

In the latent position model setting, if we add a block membership function κ : [n] 7→

{1, . . . , B} and {ξi}Bi=1 ∈ X such that, for any v ∈ V , there exists ξκ(v) ∈ {ξ1, . . . , ξB}

with Xv = ξκ(v), the model is then accommodated to a stochastic block model with

Au,v
ind∼ Bernoulli(Pj,k) where Pj,k = f(ξκ(u), ξκ(v)). Similarly, under the same setting, a

random dot product model can be represented as a stochastic block model with Au,v
ind∼

Bernoulli(Pj,k) where Pj,k =< ξκ(u), ξκ(v) >.

In the next chapter, we will assume that the time series of random graphs {Gt} are

generated according to a stochastic block model where the block membership of the

vertices are randomly assigned at the initial time t0. Then, at each subsequent time,

Gt follows a SBM with a B × B probability matrix Pt, conditioned on the initial block

membership at time t0. Under this model, the graphs are conditionally independent over

time, the conditioning being on the block membership of the vertices. This assumption

leads to a time series of graphs where the graphs are “weakly” dependent; i.e., they are

dependent only on the block membership of the vertices at the initial time t0.
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1.5 Overview of Contributions

In summary, this dissertation contributes by presenting the following two research devel-

opments of community detection using locality statistics.

1. Using locality statistics, we can perform anomalous community detection in a time

series of graphs. We formulate the task as a hypothesis-testing problem in terms

of a generative latent position model, focusing on the special case of the stochastic

block model time series. We analyze two classes of scan statistics, based on distinct

underlying locality statistics presented in the literature. Our main contribution is

the derivation of the limiting properties and power characteristics of the competing

scan statistics. Performance is compared theoretically and on synthetic data. We

demonstrate that both statistics are admissible in one simple setting, while one

of the statistics is inadmissible in a second setting. In addition, practicality is

demonstrated via application on an Enron email corpus dataset and a zebrafish

neuronal activity dataset.

2. Using locality statistics, we can perform active community detection on a static

but massive graph on which many community detection algorithms scale poorly.

We propose a novel framework for detecting active communities that consist of the

most active vertices in massive graphs. This framework is applicable to graphs

consisting of billions of vertices and hundreds of billions of edges. Our framework

utilizes a parallelizable trimming algorithm based on a locality statistic to filter out

inactive vertices, and then clusters the remaining active vertices via spectral de-

composition on their similarity matrix. We demonstrate the validity of our method
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with synthetic stochastic block model graphs, using the Adjusted Rand Index as

the performance metric. We further demonstrate its practicality and efficiency on a

real-world hyperlink web graph consisting of over 3.5 billion vertices and 128 billion

edges.
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Chapter 2

Anomalous Community Detection in

a Time Series of Graphs

In this chapter, we approach the dynamic anomalous community/change-point detection

problem through the use of locality-based scan statistics. Scan statistics are commonly

used in signal processing to detect a local signal in an instantiation of some random

field [15, 23]. The idea is to scan over a small time or spatial window of the data and

calculate some locality statistic for each window. The maximum of these locality statistics

is known as the scan statistic. Large values of the scan statistic suggests the existence

of non-homogeneity, such as a local region with significantly excessive communications.

We refer to this local region as a anomalous community at the change-point. Under

some homogeneity hypothesis, change-point detection can then be reduced to statistical

hypotheses testing (c.f. § 2.2) using scan statistics. For example, [1] built a simple testing

framework with the null hypothesis being Erdös-Rényi and the alternative hypothesis

being a graph containing an unusually dense subgraph. In the static graph setting,
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detection boundaries and conditions are given in [1] such that the scan statistics they

specified for the testing were non-negligibly powerful. To capture anomalies (e.g., hacker

attacks) in computer networks, [31] employed scan statistics through two shapes of locality

statistics: ‘star’ and ‘k-path’. The power properties of ’star’ as a locality measure will be

further explored in § 2.4.1 here.

In this chapter, we identify excessive communication activity in an anomalous commu-

nity of a dynamic network by employing the scan statistics Sτ,`,k(t; ·) defined in § 2.3,

with τ denoting the number of vertex-standardization steps, ` denoting the number of

temporal-normalization steps, and k denoting local neighborhood distance. We consider

two variations of Sτ,`,k(t; ·), namely Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ), where Ψ and Φ are two

related but distinct locality statistics. The use of the locality statistics Ψ and Φ is based

upon earlier the work of [38] and [48]. In particular, Ψ was introduced in [38] to detect

the emergence of local excessive activities in a time series of Enron graphs whereas Φ was

proposed in [48] to detect communication pattern changes in their departmental email

network. Using the locality statistic Ψ, [35] constructed fusion statistics of graphs for

anomaly detection, while [40] presented an analysis of the Enron data-set to illustrate sta-

tistical inference for attributed random graphs. However, all these cited works are mostly

empirical in nature and do not provide much theoretical analysis of these locality-based

scan statistics. Under the assumption that the time series of graphs is stationary before

a change point, we demonstrate in the following that, for τ = 1 and ` = 0, the limiting

Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) are the maximum of random variables which, under proper nor-

malizations, follow a standard Gumbel G(0, 1) distribution in the limit. Through these

limiting properties, a comparative power analysis between Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) for

τ = 1 and ` = 0 is performed. We demonstrate that both Ψ and Φ are admissible if
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k = 0, while Ψ is inadmissible if k = 1.

This chapter is structured as follows. We discuss a generative model for a time series of

graphs in § 2.1. The problem of anomalous community change-point detection is formu-

lated in § 2.2. The formulation associates a change-point in the time series with changes

in the underlying generative model. We introduce in § 2.3 two closely related notions

of the locality statistic, Ψ and Φ, and their corresponding scan statistics Sτ,`,k(t; Ψ) and

Sτ,`,k(t; Φ). Note that the two proposed scan statistics are motivated by our change-point

problem formulation, but not limited to use under the model in § 2.1. In fact, prac-

titioners can utilize the scan statistics in § 2.3 to detect the emergence of a “chatty”

subgroup in any time series of graphs, not necessarily having to model the time series

of graphs into a stochastic block model beforehand. As a side product of the proposed

scan statistics, we then present how to locate the anomalous community by employing

scan statistics at the change-point. As a key contribution in this dissertation, under the

model in § 2.1, the limiting properties and power characteristics for some representative

instances of Sτ,`,k(t; ·) are given in § 2.4.1 and 2.4.2, while some experimental results

regarding locality-based statistics on synthetic data are also included.
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2.1 Time Series of Random Graphs from

Stochastic Block Model

In this section, we discuss a generative model, based on stochastic block partitioning,

for time series of graphs. We shall assume that the time series of random graphs {Gt}

are generated according to a stochastic block model where the block membership of the

vertices are fixed across time while the connectivity probabilities matrix P = Pt may

vary with time (c.f. our formulation of the change-point detection problem in § 2.2).

That is to say, at some initial time, say t0 = 0, we randomly assign each vertex to

a block membership among {1, 2, . . . , B}. Then at each subsequent time t ≥ t0, Gt

follows a SBM with a B × B probability matrix Pt, conditioned on the initial block

membership at time t0. Under this model, the graphs are conditionally independent over

time, the conditioning being on the block membership of the vertices. This assumption

on the generative model for the {Gt} leads to a time series of graphs where the graphs

are “weakly” dependent, i.e., they are dependent only on the block membership of the

vertices at the initial time t0. If, instead, for each time t, we resample the vertices’ block

membership for Gt then the resulting time series of graphs is independent.

Our construction of a time series of graphs in terms of the SBM as outlined above is a

limiting case of the following model constructed using the random dot product graphs1 .

1The Dirichlet distribution is a multivariate generalization of the beta distribution and corre-
sponds to a distribution of points in the unit simplex. The Dirichlet distribution, Dirichlet(~α),

~α = (α1, . . . , αK), αj > 0, 1 ≤ j ≤ K, has density f~α(x1, . . . , xK) =
Γ(
∑K
j=1 αj)∏K

j=1 Γ(αj)

∏K
j=1 x

αj−1
j , 0 <

xj < 1,
∑K
j=1 xj = 1.
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1. For each v ∈ [n] and t ∈ N,

Xv(t) ∼ Dirichlet(rv~αv +~1).

2. For each t ∈ N and pair of vertices (u, v),

P (Au,v = 1|X(t)) = 〈Xu(t), Xv(t)〉.

where ~αv ∈ S is a fixed location parameter for the Dirichlet distribution and rv is the

concentration parameter that will be explained now.

It is worthwhile to note that rv = 0 for all v ∈ [n] means all vertices follow the same

probabilistic behavior (uniform on the simplex) and minv∈V rv → ∞ implies that Xv(t)

has a point mass distribution at ~αv for each vertex. In the case minv∈V rv → ∞, the

random dot product model can be further reduced to the stochastic block model (SBM)

by letting vertices sharing the same ~αv share the same block membership. Next, we re-

denote by ~αi the common Dirichlet location parameter corresponding to block [ni] and

V is partitioned into B distinct blocks [n1], . . . , [nB] if there are B distinct ~αi’s in total.

Accordingly, as min ri →∞, P (Au,v = 1|u ∈ [nj], v ∈ [nk])→ 〈~αj, ~αk〉. We note that the

above Dirichlet can be viewed as generating a time-series of graphs where the graphs are

also “weakly” dependent, e.g., dependency between graphs at time t and t′ being on the

location and concentration parameters {(αv, rv)} for the vertices. Other generalizations

of the above construction for generating time series of graphs are also possible. See,

e.g., [24, 25] for examples of constructions where the time series of graphs depends on

some underlying latent stochastic processes.
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2.2 Anomalous Community Detection Prob-

lem In Stochastic Block Model Formu-

lation

An important inference task in time series analysis is the problem of anomaly or change-

point detection. An anomaly is broadly interpreted to mean deviation from a “normal”

pattern and a change-point is the time-window during which the anomalous deviation

occurs. For example, in social networks, we usually represent a time-evolving collection

of emails, phone calls, web pages visits, etc. as a time series of graphs {Gt} and we

want to infer, from {Gt}, if there exists anomalous activities e.g., excessive phone calls

among a subgroup in the network. After identifying a change-point, we will locate the

anomalous subgroup having excessive communications at the change-point. We refer to

the subgroup as an anomalous community at the change-point. In the detection problem

described below in § 2.2 and its theoretical analysis presented in § 2.4.1 and § 2.4.2, we

shall implicitly assume, for ease of exposition, that the {Gt} are independent. As we

pointed out in our discussion of the generative model for time-series of graphs in § 2.1,

this independence corresponds to conditioning on the right parameters. In the setup of

our theoretical analysis in this chapter, this corresponds to conditioning on the block

membership of the vertices, which are fixed in time. Related discussions in the context

of the latent process models of [24,25] are given in § 5.

Statistically speaking, we want to test, for an unknown but non-random t ∈ N, the null

hypothesis H0 that t is not a change-point against the alternative hypothesis HA that
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t is a change-point. There are many different ways to formulate the notion that t is a

change-point. The following formulation, in the context of our discussion, is reasonable

and sufficiently general and forms the basis of our subsequent investigation.

We say that t∗ is a change-point for {Gt} if there exists distinct choices of P0, PA

independent of t such that

HA : Gt ∼


SBM(P0, {[ni]}) for t ≤ t∗ − 1

SBM(PA, {[ni]}) for t ≥ t∗

,

where SBM(P, {[ni]}) denote the stochastic blockmodel with block connectivity proba-

bilities P and unknown, but fixed in time, block memberships {[ni]}. In contrast, the

null hypothesis, i.e., the nonexistence of change-point, is

H0 : Gt ∼ SBM(P0, {[ni]}) for all t.

That is to say, under the alternative, at time t∗, a subset of the vertices change their

behavior. The vertices whose behavior changes correspond to the vertices with block

memberships whose corresponding rows in the connectivity matrix changes, i.e., from P0

to PA. As permutation of the vertex block labels does not affect our subsequent analysis,

we will refer to (t∗, {[ni]},P0,PA) as the change parameters. As a convention, if t∗ =∞,

we assume all vertices follow their original dynamics for all t.

In the following, we discuss a specific form for P0 and PA, illustrating, albeit in an exag-

gerated manner, the chatter anomaly, i.e., a subset of vertices with altered communication

behavior in an otherwise stationary setting.
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P0 =



p1 p1,2 . . . . . . p1,B

p2,1 h2
. . .

...

...
. . . . . . . . .

...

...
. . . hB−1 pB−1,B

pB,1 . . . . . . pB,B−1 pB



, (2.2.1)

PA =



p1 p1,2 . . . . . . p1,B

p2,1 h2
. . .

...

...
. . . . . . . . .

...

...
. . . hB−1 pB−1,B

pB,1 . . . . . . pB,B−1 pB + δ



, (2.2.2)

for some δ > 0, with n1, n2, . . . , nB being of size

(n1, n2, . . . , nB) = (Θ(n), O(n), . . . , O(n)).

For this form of P0 and PA, the blocks have their own (possibly distinct) self-connectivity

probabilities which are diagonal entries of matrices. In other words, before the change-

point, each of the blocks i = 2 up to B−1 have self-connectivity probability hi. The block

i = 1 is of size Θ(n) with self-connectivity probability p1, representing the probabilistic

behaviors of the vast majority of actors in a very large network. The case where h2 >

p1, . . . , hB−1 > p1 is of interest because we can consider each of the [ni] as representing

a “chatty” group for time t ≤ t∗ − 1, and at t∗, the previously non-chatty group [nB]

becomes chatty if pB = p1, or the previously chatty group [nB] becomes even more chatty

if pB > p1. See Figure 2.1 for a notional depiction of P0 and PA for the case of B = 3
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blocks with p1 = p3 = p1,2 = p1,3 = p2,3 = p. The detection of this transition for

the vertices in [nB] is one of the main reasons behind the locality statistics that will be

introduced in § 2.3.

Figure 2.1: Notional depiction of P0 and corresponding PA. P0: all vertices connect
with probability p except that the self-connectivity probability of [n2] is h; PA: the self-
connectivity probability of [n3] transitions from p to p+ δ while [n2] retains its previous
behavior.
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2.3 Locality Statistics and Scan Statistics

In this section, we introduce two closely related notions of locality statistic, Ψ and Φ,

and their corresponding scan statistics Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ). Large values of the

smoothed scan statistic indicates a change-point where there is an excessive increase in

communications among an anomalous community. By employing values of scan statis-

tics at the identified change-point, we then present the way to locate the anomalous

community.

2.3.1 Locality Statistics

Suppose we are given a time series of graphs {Gt}t≥1 where V (Gt) is independent of t,

i.e., the graphs Gt are constructed on the same vertex set V . We now define two different

but related locality statistics on {Gt}. For a given t, let Ψt;k(v) be defined for all k ≥ 1

and v ∈ V by

Ψt;k(v) = |E(Ω(Nk(v;Gt);Gt))|. (2.3.1)

Ψt;k(v) counts the number of edges in the subgraph of Gt induced by Nk(v;Gt), the set

of vertices u at a distance at most k from v in Gt. In a slight abuse of notation, we let

Ψt;0(v) denote the degree of v in Gt. The statistic Ψt was first introduced in [38]. [39]

investigated the use of Ψt in analyzing the Enron data corpus.

Let t and t′ be given, with t′ ≤ t. Now define Φt,t′;k(v) for all k ≥ 1 and v ∈ V by

Φt,t′;k(v) = |E(Ω(Nk(v;Gt);Gt′))|. (2.3.2)

The statistic Φt,t′;k(v) counts the number of edges in the subgraph of Gt′ induced by
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Nk(v;Gt).

Once again, with a slight abuse of notation, we let Φt,t′;0(v) denote the degree of v in

Gt∩Gt′ , where G∩G′ for G and G′ with V (G) = V (G′) denotes the graph (V (G), E(G)∩

E(G′)). The statistic Φt,t′;k(v) is motivated by a statistic named the permanent window

metric introduced in [47]. The permanent window metric was meant to capture events

involving not just a single individual but the whole community. As the community

at time t is assumed to be approximated by Nk(v;Gt), the statistic Φt,t′;k(v) uses the

community structure at time t in its computation of the locality statistic at time t′ ≤ t.

Through this measure, a community structure shift of v can be captured even when the

connectivity level of v remains unchanged across time, i.e., when the Ψt stays mostly

constant as t changes in some interval. With the purpose of determining whether t is a

change-point, two kinds of normalizations based on past Ψ and Φ locality statistics and

their corresponding normalized scan statistics are introduced in the next subsection.

2.3.2 Temporally-normalized statistics

Let Jt,t′;k be either the locality statistic Ψt′;k in Eq. (2.3.1) or Φt,t′;k in Eq. (2.3.2), where

for ease of exposition the index t is a dummy index when Jt,t′;k = Ψt′;k. We now define

two normalized statistics for Jt,t′;k, a vertex-dependent normalization and a temporal

normalization. These normalizations and their use in the change-point detection problem

are depicted in Figure 2.2.

For a given integer τ ≥ 0 and v ∈ V , we define the vertex-dependent normalization
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Figure 2.2: Temporal standardization: when testing for change at time t, the recent past
graphs Gt, Gt−1, . . . are used to standardize the invariants.

J̃t,τ ;k(v) of Jt,t′;k(v) by

J̃t;τ,k(v) =



Jt,t;k(v) τ = 0

Jt,t;k(v)− µ̂t;τ,k(v) τ = 1

(Jt,t;k(v)− µ̂t;τ,k(v))/σ̂t;τ,k τ > 1

, (2.3.3)

where µt;τ,k and σt;τ,k are defined as

µ̂t;τ,k(v) =
1

τ

τ∑
s=1

Jt,t−s;k(v), (2.3.4)

σ̂t;τ,k(v) =

√√√√ 1

τ − 1

τ∑
s=1

(Jt,t−s;k(v)− µ̂t;τ,k(v))2. (2.3.5)

We then consider the maximum of these vertex-dependent normalizations for all v ∈ V ,

i.e., we define a Mτ,k(t) by

Mτ,k(t) = max
v

(J̃t,τ ;k(v)). (2.3.6)

We shall refer to Mτ,0(t) as the standardized max-degree and to Mτ,1 as the standardized

scan statistics. From Eq. (2.3.3), we see that the motivation behind vertex-dependent

normalization is to standardize the scales of the raw locality statistics Jt,t′;k(v). Otherwise,
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in Eq. (2.3.6), a noiseless vertex in the past who has dramatically increasing communica-

tions at the current time t would be inconspicuous because there might exist a talkative

vertex who keeps an even higher but unchanged communication level throughout time.

Finally, for a given integer ` ≥ 0, we define the temporal normalization of Mτ,k(t) by

Sτ,`,k(t) =



Mτ,k(t) ` = 0

Mτ,k(t)− µ̃τ,`,k(t) ` = 1

(Mτ,k(t)− µ̃τ,`,k(t))/σ̃τ,`,k(t) ` > 1

, (2.3.7)

where µ̃τ,`,k and σ̃τ,`,k are defined as

µ̃τ,`,k(t) =
1

`

∑̀
s=1

Mτ,k(t− s), (2.3.8)

σ̃τ,`,k(t) =

√√√√ 1

`− 1

∑̀
s=1

(Mτ,k(t− s)− µ̃τ,`,k(t))2. (2.3.9)

The motivation behind temporal normalization, based on recent ` time steps, is to perform

smoothing for the statistics Mτ,k, similar to how smoothing is performed in time series

analysis. Large values of the smoothed statistic indicates an anomaly where there is an

excessive increase in communications among a subset of vertices. We will use these Sτ,`,k

as the test statistics for the change-point detection problem described in § 2.2.

We note that because Ψt;k(v) = Φt,t;k(v) for Mτ,k when τ = 0, the choice of locality

statistic for Jt,t′;k does not matter when τ = 0. For convenience of notation, since Sτ,`,k(t)

is essentially a function of the Jt,t′;k, we denote by Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) the Sτ,`,k(t)

when the underlying statistic Jt,t′;k is Ψt′;k and Φt,t′;k, respectively.

After the above introduction of the temporally-normalized statistics Sτ,`,k(t; ·) with three

parameters τ, `, k , we now present a simple toy example to illustrate a key step in the
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calculation of Sτ,`,k(t; ·), namely the calculation of the vertex-dependent normalization

J̃t;τ,k(v) presented in Eq. (2.3.3). In Figure 2.3, the second table calculates J̃t∗;τ,k(v),

when τ = 1 and v = e, for different underlying statistics Jt,t′;k and different values of k.

More concretely, because τ = 1, J̃t∗;1,k(e) = Ψt∗;k(e)−Ψt∗−1;k(e) if the underlying statistic

is Ψt;k(e) and J̃t∗;1,k(e) = Φt∗,t∗;k(e)− Φt∗,t∗−1;k(e) if the underlying statistic is Φt,t′;k(e).

2.3.3 Anomalous Community Identification

This section presents procedures to identify the anomalous community, according to

a change-point t? and scan statistics. Since Sτ,`,k(t; ·) is the running test statistic,

{Sτ,`,k(t; ·)}∞t=1 is going to be a univariate time series recorded by the anomaly moni-

toring system. The system captures t? as a change-point if Sτ,`,k(t
?; ·) has a significant

increment. After identifying the change-point t?, we return to Eq.(2.3.6), determining

that

v? = arg max
v

(J̃t?,τ ;k(v)). (2.3.10)

Through the motivation behind the construction of temporally-normalized statistics, we

know that a significant increase of Sτ,`,k(t
?; ·) foreshadows a dramatic rise of the raw

locality statistic value of Jt?,t?;k(v
?). v? is the center of an anomalous subgroup of vertices,

Nk[v
?;Gt? ], that shows an excessive increase in communications at the change-point t?.

In other words, it is the dramatic increase of communications in Nk[v
?;Gt] that gives

rise to the upsurge of Sτ,`,k(t; ·) at t? regardless of the selection of an underlying locality

statistic. Thus, Nk[v
?;Gt? ] is identified as an anomalous community in our detection

framework.
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Ψt∗−1;k(e) Ψt∗;k (e) Φt∗,t∗−1;k(e)

k = 0 3 5 2

k = 1 3 7 4

k = 2 5 5 9

Jk
t∗,t∗(e) μ̂k

t∗,τ (e) J̃k
t∗,τ (e)

k = 0 k = 1 k = 0 k = 1 k = 0 k = 1

Ψt′;k 5 7 3 3 2 4

Φt,t′;k 5 7 2 4 3 3

Figure 2.3: An example to differentiate the calculation of J̃t∗;τ,k(v) with varying un-
derlying statistics (Ψt;k or Φt,t′;k) and order distances (k = 0 or k = 1). In
the right graph Gt∗ , note that the red edges are E(Ω(Nk=0[e;Gt∗ ], Gt∗)); the red
and blue edges are E(Ω(Nk=1[e;Gt∗ ], Gt∗)); the red, blue, and green edges are
E(Ω(Nk=2[e;Gt∗ ], Gt∗)). For instance, the magenta-marked number 3 is Ψt∗−1;0 where
Ψt∗−1;0(e) = |E(Ω(N0(e;Gt∗−1);Gt∗−1))| and E(Ω(N0(e;Gt∗−1);Gt∗−1)) = {e ∼ c, e ∼
f, e ∼ i} in Gt∗−1.; the orange-marked number 4 is Φt∗,t∗−1;1(e) where Φt∗,t∗−1;1(e) =
|E(Ω(N1(e;Gt∗);Gt∗−1))|; and E(Ω(N1(e;Gt∗);Gt∗−1)) = {h ∼ k, b ∼ h, e ∼ i, e ∼ f} in
Gt∗−1.
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In summary, to capture an anomalous community in a time series of graphs {Gt}Tt=1, we

should follow the four steps below:

(i) Select an underlying locality statistic (Ψ or Φ) and parameters τ, `, k.

(ii) Employ locality-based scan statistics Sτ,`,k(t
?; ·) to detect a change-point t? of {Gt}Tt=1.

(iii) Determine v? = arg maxv(J̃t?,τ ;k(v)).

(iv) Identify the anomalous community Nk[v
?;Gt? ].
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2.4 Limiting properties and Power charac-

teristics of Scan Statistics

2.4.1 Power Estimate of Sτ=1,`=0,k=0(t; ·)

For algebraic simplicity, in Section 2.4.1 and 2.4.2, we consider a particularly simple form

of P0 and PA where

P0 =



p p . . . . . . p

p h2
. . .

...

...
. . . . . . . . .

...

...
. . . hB−1 p

p . . . . . . p p



, (2.4.1)

PA =



p p . . . . . . p

p h2
. . .

...

...
. . . . . . . . .

...

...
. . . hB−1 p

p . . . . . . p p+ δ



. (2.4.2)

With above form of P0 and PA, in this section, we will derive the limiting properties of

S1,0,0(t; Ψ) and S1,0,0(t; Φ) where S1,0,0(t; Ψ) = maxv(Ψt;0(v)−Ψt−1;0(v)) and S1,0,0(t; Φ) =

maxv(Φt,t;0(v) − Φt,t−1;0(v)). Theorem 1 below shows that in the limit Sτ,`,k(t; ·) is the

maximum of random variables that converge to the standard Gumbel distributions G(0, 1)

under proper normalizations.
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Theorem 1. Let {Gt} be a time series of random graphs according to the alternative

HA detailed in § 2.2. In particular, Gt ∼ SBM(P0, {[ni]}Bi=1) for t ≤ t∗ − 1 and Gt ∼

SBM(PA, {[ni]}Bi=1) for t ≥ t∗ with P0 and PA being of the form in Eq. (2.4.1) and

Eq. (2.4.2), respectively. Let S1,0,0(t; Ψ) denote the statistic Sτ,l,k(t; Ψ) with τ = 1, l = 0,

and k = 0. Let G(α, γ) denote the Gumbel distribution with location parameter α and

scale parameter γ. For a given n ∈ N, let an and bn be given by

an =
√

2 log n
(

1− log log n+ log 4π

4 log n

)
,

bn =
1√

2 log n
.

Then as n =
∑
ni →∞, S1,0,0(t; Ψ) has following properties:

S1,0,0(t; Ψ) = max
1≤i≤B

W0(ni; Ψ) t < t∗, (2.4.3)

S1,0,0(t; Ψ) = max
1≤i≤B

WA(ni; Ψ) t = t∗, (2.4.4)

where

W0(ni; Ψ)− µ0(ni; Ψ)

γ0(ni; Ψ)

d→ G(0, 1)

WA(ni; Ψ)− µA(ni; Ψ)

γA(ni; Ψ)

d→ G(0, 1)

and the µ0, µA, γ0, γA are given by

µ0(ni; Ψ) = ani
√
Cnp(1− p)

γ0(ni; Ψ) = bni
√
Cnp(1− p)

µA(ni; Ψ) = µ0(ni; Ψ) + 1{i=B}nBδ

γA(ni; Ψ) = γ0(ni; Ψ).
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C is some explicit, computable constant.

Similarly, let S1,0,0(t; Φ) denote Sτ,l,k(t; Φ) with τ = 1, l = 0, and k = 0. Then as

n =
∑
ni →∞,

S1,0,0(t; Φ) = max
1≤i≤B

W0(ni; Φ) t < t∗, (2.4.5)

S1,0,0(t; Φ) = max
1≤i≤B

WA(ni; Φ) t = t∗, (2.4.6)

where

W0(ni; Φ)− µ0(ni; Φ)

γ0(ni; Φ)

d→ G(0, 1)

WA(ni; Φ)− µA(ni; Φ)

γA(ni; Φ)

d→ G(0, 1)

and the µ0, µA, γ0, γA in this case are

κ(p) = p(1− p)(1− p(1− p))

ξ0(ni; Φ) = 1{i/∈{1,B}}ni(hi(1− hi)− p(1− p))

µ0(ni; Φ) = ani
√
Cnκ(p) + np(1− p) + ξ0(ni; Φ)

γ0(ni; Φ) = bni
√
Cnκ(p)

µA(ni; Φ) = µ0(ni; Φ) + 1{i=B}nBδ(1− p)

γA(ni; Φ) = γ0(ni; Φ).

Proof. Firstly, we investigate the case that the underlying locality statistic is Ψ. We will

derive the limiting property of S1,0,0(t; Ψ) for t = t∗ in some detail. The property of

S1,0,0(t; Ψ) when t < t∗ can be derived in a similar manner.

As τ = 1 and ` = 0, for any t, we have Ψ̃t;1,0(v) = Ψt;0(v) − Ψt−1;0(v) from Eq. (2.3.3)
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and Eq. (2.3.4). Without loss of generality, let us assume v ∈ [ni] and divide Ψt;0(v) into

two parts with t = t∗ and t = t∗ − 1:

Ψt∗;0(v) = X1 +X2

where X1 ∼ Bin(n− ni, p), X2 ∼ Bin(ni − 1,PA
i,i);

Ψt∗−1;0(v) = X3 +X4

where X3 ∼ Bin(n− ni, p), X4 ∼ Bin(ni − 1,P0
i,i).

Since Gt∗−1 and Gt∗ are independent, we have

Ψ̃t∗;1,0(v)− (ni − 1)(PA
i,i −P0

i,i)√
np(1− p)

=
Ψt∗;0(v)− [(n− ni)p+ (ni − 1)PA

i,i]√
np(1− p)

−
Ψt∗−1;0(v)− [(n− ni)p+ (ni − 1)P0

i,i]√
np(1− p)

=
X1 − (n− ni)p√
(n− ni)p(1− p)

·
√

(n− ni)p(1− p)√
np(1− p)

− X3 − (n− ni)p√
(n− ni)p(1− p)

·
√

(n− ni)p(1− p)√
np(1− p)

+
X2 − (ni − 1)PA

i,i√
(ni − 1)PA

i,i(1−PA
i,i)
·

√
(ni − 1)PA

i,i(1−PA
i,i)√

np(1− p)

−
X4 − (ni − 1)P0

i,i√
(ni − 1)P0

i,i(1−P0
i,i)
·

√
(ni − 1)P0

i,i(1−P0
i,i)√

np(1− p)

d−→ N (0, 1) · C1 −N (0, 1) · C2 +N (0, 1) · C3 −N (0, 1) · C4

d−→ N (0, C)

(2.4.7)
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where

C1 = C2 = lim
n→∞

√
n− ni
n

,

C3 =

√
(ni − 1)PA

i,i(1−PA
i,i)√

np(1− p)
,

C4 =

√
(ni − 1)P0

i,i(1−P0
i,i)√

np(1− p)
,

C =
i=4∑
i=1

C2
i

Next, plug in PA
i,i and P0

i,i into Eq. (2.4.7), we obtain

Ψ̃t∗;1,0(v)− 1{i=B}nBδ√
Cnp(1− p)

d−→ N (0, 1), v ∈ [ni]

We can show that the dependency among the{Ψ̃t∗;1,0(v)}v∈V (Gt) is negligible by showing

that the correlation between any two of the Ψ̃t∗;1,0(v) goes to 0 sufficiently fast as n→∞.

For u and v in block [ni],

corr(Ψ̃t∗;1,0(u), Ψ̃t∗;1,0(v)) ≤ 1

Cnp(1− p)
= O(

1

n
)

Hence, the sample maximum of {Yv}v∈[ni] converges to the sample maximum of ni i.i.d

N (0, 1) random variables where Yv =
Ψ̃t∗;1,0(v)− 1{i=B}nBδ√

Cnp(1− p)
( [3], Theorem 3.1). Also,

it is known that the sample maximum of i.i.d N (0, 1) random variables weakly converges

to the Gumbel distribution ( [12], § 2.3). One then verifies that the composition of above

weak convergences still holds (see e.g., proof of Proposition 5 in [45]) and we thus have

WA(ni; Ψ)− µA(ni; Ψ)

γA(ni; Ψ)

d→ G(0, 1).

Eq.(2.3.6) and Eq. (2.3.7) then implies that

S1,0,0(t∗; Ψ) = max
v∈[n]

Ψ̃t∗;1,0(v) = max
1≤i≤B

{WA(ni; Ψ)}.
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That is, the maximum of Ψ̃t∗;1,0(v) over all n vertices is equivalent to the maximum of

WA(ni; Ψ) over all B blocks where WA(ni; Ψ) converges to G(0, 1) under proper normal-

ization.

Similarly, the case when t < t∗ can be derived through the same approaches above. The

limiting property of S1,0,0(t; Ψ) with t < t∗ then has the form in Eq. (2.4.3) with variations

of µ0(ni; Ψ) and γ0(ni; Ψ) for the normalization of W0(ni; Ψ).

We now consider the case where the underlying locality statistic being Φ. The derivation

of limiting property of S1,0,0(t; Φ) for t = t∗ is given below. The derivation of the limiting

property of S1,0,0(t; Φ) for t < t∗ is similar and can be obtained with minor changes.

Let’s assume v ∈ [ni], from Eq.(2.3.2) to (2.3.4),

Φt∗,t∗;0(v) = X1 +X2

where X1 ∼ Bin(n− ni, p), X2 ∼ Bin(ni − 1,PA
i,i) and

Φt∗,t∗−1;0(v)|Gt∗ = X3 +X4

where X3 ∼ Bin(X1, p), X4 ∼ Bin(X2,P
0
i,i).

Because Φ̃t∗;1,0(v) = Φt∗,t∗;0(v) − Φt∗,t∗−1;0(v), Φ̃t∗;1,0(v) counts the number of edges, for

vertex v, appearing in Gt∗ but disappearing in Gt∗−1. Accordingly, the edge is indepen-

dently counted with probability PA
i,i(1−P0

i,i) to neighbors in [ni] and p(1−p) to neighbors

in [n]\[ni] respectively. That is,

Φ̃t∗;1,0(v) = B3 +B4

where B3 ∼ Bin(n− ni, p(1− p)), B4 ∼ Bin(ni − 1,PA
i,i(1−P0

i,i)).
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By the central limit theorem, we have

Φ̃t∗;1,0(v)− [(n− ni)p(1− p) + (ni − 1)PA
i,i(1−P0

i,i)]√
np(1− p)[1− p(1− p)]

=
B3 − (n− ni)p(1− p)√

(n− ni)p(1− p)[1− p(1− p)]
·
√

(n− ni)p(1− p)[1− p(1− p)]√
np(1− p)[1− p(1− p)]

+
B4 − (ni − 1)PA

i,i(1−P0
i,i)√

(ni − 1)PA
i,i(1−P0

i,i)[1−PA
i,i(1−P0

i,i)]

·

√
(ni − 1)PA

i,i(1−P0
i,i)[1−PA

i,i(1−P0
i,i)]√

np(1− p)[1− p(1− p)]

d−→N (0, 1) · C1 +N (0, 1) · C2

d−→ N (0, C)

(2.4.8)

where

C1 = lim
n→∞

√
n− ni
n

,

C2 = lim
n→∞

√
(ni − 1)PA

i,i(1−P0
i,i)[1−PA

i,i(1−P0
i,i)]√

np(1− p)[1− p(1− p)]
,

C =
i=2∑
i=1

C2
i .

Similarly, after plugging P0
i,i and PA

i,i into Eq. (2.4.8), we obtain

Φ̃t∗;1,0(v)− np(1− p)− ξ0(ni; Φ)− 1{i=B}nBδ(1− p)√
Cnp(1− p)[1− p(1− p)]

d−→ N (0, 1).

For locality statistic Φ, the dependency among {Φ̃t∗;1,0(v)}v∈[n] is also negligible because

corr(Φ̃t∗;1,0(u), Φ̃t∗;1,0(v)) =
cov(Φ̃t∗;1,0(u), Φ̃t∗;1,0(v))

Cnp(1− p)[1− p(1− p)]
≤ 1

Cnp(1− p)[1− p(1− p)]
= O(

1

n
)

Therefore by following the same procedures of reasoning the limiting distribution of

WA(ni; Ψ), we can also obtain

WA(ni; Φ)− µA(ni; Φ)

γA(ni; Φ)

d→ G(0, 1)
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where WA(ni; Φ) = maxv∈[ni] Φ̃t∗;1,0(v).

Thus, S1,0,0(t∗; Φ) is the maximum of WA(ni; Φ) over B blocks as desired.

We note the following corollary to Theorem 1 for the case of B = 3 blocks.

Corollary 2. Assume the setting in Theorem 1 with B = 3. Let α > 0 be given. Let βΦ

be the power of the test statistic S1,0,0(t; Φ) when t = t∗ for testing the hypothesis that t

is a change point at a significance level of α. Similarly, let βΨ be the power of the test

statistic S1,0,0(t; Ψ) when t = t∗ for testing the same hypothesis at the same significance

level of α. Then, as (n1, n2, n3) = (Θ(n), O(n), O(n)), βΦ, βΨ and α have the following

relationship 2:

1. n3 = o(
√
n) implies βΦ = α, βΨ = α.

2. n3 = Ω(
√
n) implies βΨ > α.

3. n3 = Θ(
√
n) = Θ(n2) implies βΦ > α.

4. n3 = ω(
√
n) = Θ(n2) implies

βΦ = α if lim
n→∞

n2(h(1−h)−p(1−p))
n3δ(1−p) > 1,

βΦ > α if lim
n→∞

n2(h(1−h)−p(1−p))
n3δ(1−p) ≤ 1.

5. n3 = Ω(
√
n) = ω(n2) implies βΦ > α.

2the significance level α in Corollary 2 and Proposition 4 represents the Type I error rate of the
hypothesis testing. It is the probability of incorrectly rejecting the nonexistence of change-point.
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6. n3 = Ω(
√
n) = o(n2) implies

βΦ = α if h+ p < 1,

βΦ > α if h+ p ≥ 1.

Proof. The limiting distributions of Ψ̃t∗−1;1,0(v) and Ψ̃t∗;1,0(v) derived in the proof The-

orem 1 provides that, under H0,

Ψ̃t∗−1;1,0(v)− 0√
Cnp(1− p)

d−→ N (0, 1), v ∈ [ni]

and, under HA,

Ψ̃t∗;1,0(v)− 1{i=3}n3δ√
Cnp(1− p)

d−→ N (0, 1), v ∈ [ni]

Accordingly, the ratio of the shift in the mean, from null to alternative, over the standard

deviation of Ψ̃t;1,0(v) for each vertex would be
1{i=3}n3δ√
Cnp(1− p)

. We obtain two relationships

between βΨ and α on the basis of the order of n3:

1. if n3 = o(
√
n), the ratio approaches to 0 and thus implies βΨ = α.

2. if n3 = Ω(
√
n), then ∃k > 0 such that

1{i=3}n3δ√
Cnp(1− p)

≥ k > 0 as n → ∞ which

implies βΨ > α.

Likewise, from Theorem 1, the limiting distributions of Φ̃t;1,0(v) under null and alter-

native respectively are

Φ̃t∗−1;1,0(v)− np(1− p)− ξ0(ni; Φ)√
Cnp(1− p)[1− p(1− p)]

d−→ N (0, 1).

Φ̃t∗;1,0(v)− np(1− p)− ξ0(ni; Φ)− 1{i=3}n3δ(1− p)√
Cnp(1− p)[1− p(1− p)]

d−→ N (0, 1).
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The relationship between βΦ and α is more involved when ξ0(n2; Φ) are included. In order

to clarify the order dominance relationship between ξ0(n2; Φ) and n3δ(1 − p), there are

five separate cases to be considered:

1. if n3 = o(
√
n), as n → ∞, Φ̃t;1,0(v) share the same mean and variance under both

H0 and HA, thus βΦ = α.

2. if n3 = Θ(
√
n) = Θ(n2),

n3δ(1− p)√
Cnp(1− p)[1− p(1− p)]

and
ξ0(n2; Φ)√

Cnp(1− p)[1− p(1− p)]

have the same order Θ(1) so that the increment,
n3δ(1− p)√

Cnp(1− p)[1− p(1− p)]
=

Θ(1), is not negligible and implies βΦ > α.

3. if n3 = ω(
√
n) = Θ(n2), whether βΦ > α is determined by if P (arg max Φ̃t;1,0(v) ∈

[n3]) underHA is larger than underH0. In fact, if
ξ0(n2; Φ)

n3δ(1− p)
> 1, P (arg max Φ̃t;1,0(v) ∈

[n2]) = 1 as n→∞ under both H0 and HA, hence βΦ = α. Otherwise, n3δ(1− p)

in [n3] contributes to the power increment.

4. if n3 = Ω(
√
n) = ω(n2), n3δ(1 − p) dominates ξ0(n2; Φ) in the limit thereby the

location shift in block [n3] results in P (arg max Φ̃t∗;1,0(v) ∈ [n3]) = 1 and thus

βΦ > α.

5. if n3 = Ω(
√
n) = o(n2), whether n3δ(1 − p) leads to a power increment de-

pends on the sign of ξ0(n2; Φ). If h + p < 1 such that ξ0(n2; Φ) being positive,

P (arg max Φ̃t;1,0(v) ∈ [n2]) = 1 under both H0 and HA as n → ∞ because n3 =

o(n2). On the contrary, if h+p ≥ 1, ξ0(n2; Φ) < 0 enables P (arg max Φ̃t;1,0(v) ∈ [n3])

to increase from H0 to HA. Thus, we have βΦ = α if h+ p < 1; βΦ > α if h+ p ≥ 1.
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From Corollary 2, an unanswered question is whether there exists a dominance between

S1,0,0(t; Ψ) and S1,0,0(t; Φ). By using Theorem 1, we now present an example to show that

both statistics are admissible if we restrict the test statistic space to only two elements-

S1,0,0(t; Ψ) and S1,0,0(t; Φ). That is, neither statistic has a statistical power dominance.

Our setup is as follows. Let p = 0.43. For each pair (h, p + δ) satisfying p < h < 1 and

p < p + δ < 1, we generate a null and alternative hypothesis pair H0 and HA according

to the model in § 2.2 with B = 3 blocks, i.e.,

P0 =



0.43 0.43 0.43

0.43 h 0.43

0.43 0.43 0.43


,PA =



0.43 0.43 0.43

0.43 h 0.43

0.43 0.43 p+ δ


.

with n = n1 + n2 + n3 = 1000 and n1, n2, n3 being functions of n, h and δ (n2 = n3 =

cp,h,δ
√
n log n where the constant cp,h,δ is dependent on p, h and δ). In order to compare

sensitivities of S1,0,0(t; Ψ) and S1,0,0(t; Φ) in detection, we then calculate βΨ − βΦ by

deriving the limiting property of S1,0,0(t; Ψ) using Eqs. (2.4.3) and (2.4.4) and the limiting

property of S1,0,0(t; Φ) using Eqs. (2.4.5) and (2.4.6). The result is illustrated in Figure 2.4

where we have plotted βΨ−βΦ for different combinations of h and q(= p+ δ). Figure 2.4

indicates that the two statistics S1,0,0(·; Ψ) and S1,0,0(·; Φ) are both admissible because

S1,0,0(t; Φ) achieves a larger statistical power in the blue-colored region but a smaller

power in the red-colored region.

We now analyze the use of Theorem 1 as a large-sample approximation to S1,0,0(t; Φ) and

S1,0,0(t; Ψ). From Figure 2.4 with p = 0.43, we choose a (h, p+δ) pair, with βΨ−βΦ > 0.05,

namely h = 0.95 and p + δ = 0.98. We then estimate the power of βΦ and βΨ by

repeated sampling of graphs from stochastic blockmodel with parameters, (P0, n1, n2, n3)
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Figure 2.4: A comparison using the limiting properties of S1,0,0(t; Ψ) and S1,0,0(t; Φ), of
βΨ − βΦ for different null and alternative hypotheses pairs as parameterized by h and
q(= p+ δ). The blue-colored region corresponds to values of h and q(= p+ δ) for which
βΨ < βΦ, while the red-colored region corresponds to values of h and p+ δ with βΨ > βΦ.
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Figure 2.5: Power estimates βΨ against βΦ using Monte Carlo simulation on random
graphs from the stochastic blockmodel, Monte Carlo simulation on random graphs from
the random dot product model, and large-sample approximation for the stochastic block-
model. r is the concentration parameter. Dashed blue line: power estimate of large-
sample approximation to S0,0,0(t; Ψ); dotted blue line: power estimate of SBM Monte
Carlo simulation to S0,0,0(t; Ψ).

for the null distribution and (PA, n1, n2, n3) for the alternative distribution. The result

is presented in Figure 2.5.

We see that the large-sample approximation obtained via Theorem 1 matches well with

sampling from the stochastic blockmodel (SBM). Figure 2.5 also includes power estimates

for the random dot product model (RDPM) with varying concentration parameter r

and predetermined location parameters 	α1, 	α2, 	α3. Specifically, 	α1, 	α2, 	α3 are carefully

chosen such that their Euclidean inner products match corresponding block connectivity
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probabilities i.e., (p, h, q) specified above. We see that, as r increases, the power estimates

for the random dot product model matches well with those of the stochastic blockmodel

and large-sample approximation. Finally Figure 2.5 also includes power estimates for the

locality statistics based on Φ and Ψ for τ = 0, i.e., no vertex-dependent normalization

and is equivalent to the use of the max degree statistic to test H0 against HA. These are

represented as dashed and dot blue lines, corresponding to large-sample approximation

and Monte Carlo simulations, respectively. Clearly, vertex-dependent normalization leads

to better performance for this H0 and HA pair.

2.4.2 Power Estimate of Sτ=1,`=0,k=1(t; ·)

In this section, we provide investigations of Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) with a larger scale

parameter k = 1 instead of k = 0. We keep τ = 1 and ` = 0 the same as before and derive

the limiting properties of maxv(Ψt;1(v)−Ψt−1;1(v)) and maxv(Φt,t;1(v)− Φt,t−1;1(v)). To

make conclusions concise and presentable, firstly, we delve into the limiting properties in

the model presented in § 2.2 with number of blocks B = 3.

Proposition 3. Assume the same setting in Theorem 1 with B = 3. As (n1, n2, n3) =

(Θ(n), o(n), o(n)) and n→∞, S1,0,1(t; Ψ) has the following properties:

S1,0,1(t; Ψ) = max
1≤i≤3

W ′
0(ni; Ψ) t < t∗,

S1,0,1(t; Ψ) = max
1≤i≤3

W ′
A(ni; Ψ) t = t∗,

where

W ′
0(ni; Ψ)− µ′0(ni; Ψ)

γ′0(ni; Ψ)

d→ G(0, 1)

W ′
A(ni; Ψ)− µ′A(ni; Ψ)

γ′A(ni; Ψ)

d→ G(0, 1)
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and the µ′0, µ
′
A, γ

′
0, γ
′
A are given by

κ′(n, p, n2, h, i) = np2 + 1 + 1{i=2}n2p(h− p)

µ′0(ni; Ψ) = µ0(ni; Ψ)κ′(n, p, n2, h, i)

γ′0(ni; Ψ) = γ0(ni; Ψ)κ′(n, p, n2, h, i)

ζ(n3, p, δ, i) =
δ

2
[n2

3(1{i6=3}p
2 + 1{i=3}(p+ δ)2) + n3(1{i6=3}p(1− p) + 1{i=3}(p+ δ)(1− p− δ))]

µ′A(ni; Ψ) = µA(ni; Ψ)[κ′(n, p, n2, h, i) +
1{i=3}n3pδ

2
] + ζ(n3, p, δ, i)

γ′A(ni; Ψ) = γA(ni; Ψ)[κ′(n, p, n2, h, i) +
1{i=3}n3pδ

2
].

Likewise,

S1,0,1(t; Φ) = max
1≤i≤3

W ′
0(ni; Φ) t < t∗,

S1,0,1(t; Φ) = max
1≤i≤3

W ′
A(ni; Φ) t = t∗,

where

W ′
0(ni; Φ)− µ′0(ni; Φ)

γ′0(ni; Φ)

d→ G(0, 1)

W ′
A(ni; Φ)− µ′A(ni; Φ)

γ′A(ni; Φ)

d→ G(0, 1)

and the µ′0, µ
′
A, γ

′
0, γ
′
A are given by

η(p) = p3(1− p)

ξ0(ni; Φ) = 1{i=2}n2(h(1− h)− p(1− p))

µ′0(ni; Φ) = ani
√
Cn2η(p) + np(1− p) + ξ0(ni; Φ)

γ′0(ni; Φ) = bni
√
Cn2η(p)

48



CHAPTER 2. ANOMALOUS COMMUNITY DETECTION IN A TIME SERIES OF
GRAPHS

ζ(n3, p, δ, i) =
δ

2
[n2

3(1{i6=3}p
2 + 1{i=3}(p+ δ)2) + n3(1{i6=3}p(1− p) + 1{i=3}(p+ δ)(1− p− δ))]

µ′A(ni; Φ) = µ′0(ni; Φ) + 1{i=3}n3δ(1− p) + ζ(n3, p, δ, i)

γ′A(ni; Φ) = γ′0(ni; Φ)

Proof. We present a sketch of the proof based on arguments from [42] for the case where

the underlying locality statistic is Ψ. The case where the underlying locality statistic is

Φ follows from the proof of Theorem 5.

Let v ∈ [ni](i ∈ {1, 2, 3}), locality statistics Ψt∗,t∗;1(v) and Ψt∗,t∗−1;1(v) are respectively

decomposed as follows

Ψt∗,t∗;1(v) = Xi +
∑
j 6=i

Xj +
3∑
j=1

Yj +
3∑

1≤j<k≤3

Zjk, v ∈ [ni]

where

Xi ∼ Bin(ni − 1,PA
i,i),

Xj ∼ Bin(nj,P
A
i,j),

Yj|Xj ∼ Bin(

(
Xj

2

)
,PA

j,j),

Zjk|Xj, Xk ∼ Bin(XjXk,P
A
j,k).

and

Ψt∗,t∗−1;1(v) = X ′i +
∑
j 6=i

X ′j +
3∑
j=1

Y ′j +
3∑

1≤j<k≤3

Z ′jk, v ∈ [ni]
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where

X ′i ∼ Bin(ni − 1,P0
i,i),

X ′j ∼ Bin(nj,P
0
i,j),

Y ′j |X ′j ∼ Bin(

(
X ′j
2

)
,P0

j,j),

Z ′jk|X ′j, X ′k ∼ Bin(X ′jX
′
k,P

0
j,k).

Hence, when P0 and PA are substituted, we have

Ψ̃t∗;1,1(v)

=Ψt∗,t∗;1(v)−Ψt∗,t∗−1;1(v)

=[(Xi +
∑
j 6=i

Xj)− (X ′i +
∑
j 6=i

X ′j)] + [(
3∑
j=1

Yj +
3∑

1≤j<k≤3

Zjk)− (
3∑
j=1

Y ′j +
3∑

1≤j<k≤3

Z ′jk)]

=[(Xi +
∑
j 6=i

Xj)− (X ′i +
∑
j 6=i

X ′j)] ·
[
1 +

p

2
[(X ′i +

∑
j 6=i

X ′j) + (Xi +
∑
j 6=i

Xj)]
]

+
h− p

2
(X2

2 −X ′2
2
) +

δ

2
X2

3

=Ψ̃t∗;1,0(v) ·
[
1 +

p

2
[(X ′i +

∑
j 6=i

X ′j) + (Xi +
∑
j 6=i

Xj)]
]

+
h− p

2
(X2

2 −X ′2
2
) +

δ

2
X2

3

Thus, by using similar approaches given in the proof of lemma 3.2 and lemma 3.3 from [42],

we obtain, as n→∞,

argmaxv∈[ni]Ψ̃t∗;1,0(v) = argmaxv∈[ni]Ψ̃t∗;1,1(v)

and

limP (W ′
A(ni; Ψ) > µ′A(ni; Ψ)) = limP (WA(ni; Ψ) > µA(ni; Ψ))

where W ′
A(ni; Ψ) = maxv∈[ni] Ψ̃t∗;1,1(v) and WA(ni; Ψ) = maxv∈[ni] Ψ̃t∗;1,0(v). This leads

to the fact that (W ′
A(ni; Ψ)−µ′A(ni; Ψ))/β′A(ni; Ψ) follows standard Gumbel distribution
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G(0, 1) and S1,0,1(t∗; Φ) = max1≤i≤3W
′
A(ni; Φ). Similar arguments apply to S1,0,1(t∗ −

1; Ψ).

Naturally, the limiting properties of S1,0,1(t; Ψ) and S1,0,1(t; Φ) as given above offer the

following power comparison result.

Proposition 4. In the model shown in Figure2.1, Let α > 0 be given, β′Φ be the power of

the test statistic S1,0,1(t; Φ) when t = t∗ for testing the hypothesis that t is change point at

a significance level of α and β′Ψ be the power of the test statistic S1,0,1(t; Ψ) when t = t∗

for testing the same hypothesis at the same significance level of α. As n → ∞, β′Φ, β
′
Ψ

and α have the following relationship:

1. n3 = o(
√
n) implies β′Φ = β′Ψ = α.

2. n3 = Ω(
√
n) implies β′Φ ≥ β′Ψ > α.

Consequently, Proposition 4 leads to the conclusion that the performance of S1,0,1(t; Φ)

dominates S1,0,1(t; Ψ) in the 3-block model. Moreover, this superiority can be generalized

to the case with any given number of blocks B ≥ 3. This is because each block [ni] with

1 < i < B in B-blocks model follows a similar probabilistic behavior as block [n2] in 3-

blocks model while the power of hypothesis testing is otherwise determined by the change

of probabilistic behavior of block [nB]. In the limiting condition with n → ∞, both β′Φ

and β′Ψ in B-blocks model can be characterized as a function of p, δ, nB only. In other

words, though h2 > p, . . . , hB−1 > p, the ”chatty” groups [n2], . . . , [nB−1] do not make

any contribution on β′Φ or β′Ψ. Hence, the number of ”chatty groups”, namely B − 2, is

independent of the fact of dominance of S1,0,1(t; Φ). Due to the superiority of S1,0,1(t; Φ),

only the limiting properties of S1,0,1(t; Φ) in the general B-block model is given below.
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Theorem 5. Let {Gt} be a time series of random graphs according to the alternative

HA detailed in § 2.2. In particular, Gt ∼ SBM(P0, {[ni]Bi=1}) for t < t∗ and Gt ∼

SBM(PA, {[ni]Bi=1}) for t ≥ t∗ with P0 and PA being of the form in Eq. (2.2.1) and

Eq. (2.2.2), respectively. Let S1,0,1(t; Φ) denote the statistic Sτ,l,k(t; Φ) with τ = 1, l = 0,

and k = 1.

Then as n =
∑
ni →∞, S1,0,1(t; Φ) has the following properties:

S1,0,1(t; Φ) = max
1≤i≤B

W ′
0(ni; Φ) t < t∗,

S1,0,1(t; Φ) = max
1≤i≤B

W ′
A(ni; Φ) t = t∗,

where

W ′
0(ni; Φ)− µ′0(ni; Φ)

γ′0(ni; Φ)

d→ G(0, 1)

W ′
A(ni; Φ)− µ′A(ni; Φ)

γ′A(ni; Φ)

d→ G(0, 1)

and the µ′0, µ
′
A, γ

′
0, γ
′
A are given by

η(p) = p3(1− p)

ξ0(ni; Φ) = 1{i/∈{1,B}}ni(hi(1− hi)− p(1− p))

µ′0(ni; Φ) = ani
√
Cn2η(p) + np(1− p) + ξ0(ni; Φ)

γ′0(ni; Φ) = bni
√
Cn2η(p)

ζ(nB, p, δ, i) =
δ

2
[n2
B(1{i6=B}p

2 + 1{i=B}(p+ δ)2) + nB(1{i6=B}p(1− p) + 1{i=B}(p+ δ)(1− p− δ))]

µ′A(ni; Φ) = µ′0(ni; Φ) + 1{i=B}nBδ(1− p) + ζ(nB, p, δ, i)

γ′A(ni; Φ) = γ′0(ni; Φ)
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Before proving Theorem 5, we state and prove a technical lemma on the correlations

among the {Φ̃t;1,1(v)}.

Lemma 6. Let Gt−1 and Gt be two independent Erdös-Rényi graphs with connectivity

probability p, i.e., Gt−1 ∼ G(n, p) and Gt ∼ G(n, p). For each v, Φ̃t;1,1(v) is defined

according to Eq. (2.3.3). Then for any pair of vertices u and v, the correlation between

Φ̃t;1,1(u) and Φ̃t;1,1(v) is of order O( 1
n
) for n→∞.

Proof. From Eq. (2.3.3) and (2.3.4), for any pair of vertices (u, v),

cov(Φ̃t;1,1(u), Φ̃t;1,1(v))

=cov(Φt,t;1(u),Φt,t;1(v))− cov(Φt,t;1(u),Φt,t−1;1(v))−

cov(Φt,t−1;1(u),Φt,t;1(v)) + cov(Φt,t−1;1(u),Φt,t−1;1(v))

(2.4.9)

We then consider to decompose Φt,t;1(u) into two parts representing the cardinalities of

two disjoint sets of edges.

Φt,t;1(u) = Xt(u) + Yt(u)

where the intuitive interpretations behind two terms are listed below:

Xt(u) =|{(u,w) : (u,w) ∈ E(Gt) and w ∈ N1(u;Gt)\{u}}|

Yt(u) =|{(w1, w2) : (w1, w2) ∈ E(Gt), w1 < w2 and w1, w2 ∈ N1(u;Gt)\{u}}|

Also, Φt,t−1;1(u) is decomposed into two terms as well.

Φt,t−1;1(u) = Xt−1(u) + Yt−1(u)

where the intuitive interpretations behind two terms are listed below:

Xt−1(u) =|{(u,w) : (u,w) ∈ E(Gt) ∩ E(Gt−1) and w ∈ N1(u;Gt)\{u}|

Yt−1(u) =|{(w1, w2) : (w1, w2) ∈ E(Gt−1), w1 < w2 and w1, w2 ∈ N1(u;Gt)\{u}}|
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Table 2.1: Decomposition of the covariance terms in cov(Φ̃t;1,1(u), Φ̃t;1,1(v))

cov(·, ·) Xt(v) Xt−1(v) Yt(v) Yt−1(v)

Xt(u) + − + −

Xt−1(u) − + − +

Yt(u) +† −‡ +
 −

Yt−1(u) −† +‡ −
 +

Similarly, Φt,t;1(v) and Φt,t−1;1(v) are decomposed with the same structure. By expanding

above decompositions into Eq. (2.4.9), we have the following Table 2.1 recording 16 terms

and their signs in (2.4.9).

Given Table 2.1, we have that all off-diagonal terms earning the same color (blue,

green or magenta) and same positive/negative sign are symmetric. Additionally, the

terms having the same mark (†, ‡ or �) are canceled out due to the fact Yt(·)|Xt(·) iid∼

Yt−1(·)|Xt(·). More concretely, for example, for four terms marked by blue, we have

cov(Xt(u), Yt(v)) = cov(Yt(u), Xt(v)) = cov(Yt−1(u), Xt(v)) = cov(Xt(u), Yt−1(v)). The

first and third equality are guaranteed by symmetry property. The second equality

holds because Yt(u) and Yt−1(u) share the same conditional distribution, Bin(
(
Xt(u)

2

)
, p),

given Xt(u). That is, cov(Yt(u), Xt(v)|Xt(u)) = cov(Yt−1(u), Xt(v)|Xt(u)) and hence

cov(Yt(u), Xt(v)) = cov(Yt−1(u), Xt(v)) with application of law of total covariance.

We now return to Eq. (2.4.9). The above reasoning gives

cov(Φ̃t;1,1(u), Φ̃t;1,1(v))

=cov(Xt(u), Xt(v))− cov(Xt(u), Xt−1(v))− cov(Xt−1(u), Xt(v)) + cov(Xt−1(u), Xt−1(v))

=O(n).
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The last equality holds because the Cauchy-Schwarz inequality guarantees each of fours

term are O(n) where Xt(·) ∼ Bin(n− 1, p) and Xt−1(·) ∼ Bin(n− 1, p2).

In the following, to compute var(Φ̃t;1,1(u)), Φ̃t;1,1(u) is decomposed as

Φ̃t;1,1(u) = Xt + Yt −Xt−1 − Yt−1

where

Xt ∼ Bin(n− 1, p),

Yt|Xt ∼ Bin(

(
Xt

2

)
, p),

Xt−1|Xt ∼ Bin(Xt, p),

Yt−1|Xt ∼ Bin(

(
Xt

2

)
, p),

Yt|Xt ⊥ Yt−1|Xt.

By applying law of total variance, we reach the following variance order estimation

var(Φ̃t;1,1(u))

=Θ(var(Yt − Yt−1))

=Θ(E[var(Yt − Yt−1|Xt)] + var[E(Yt − Yt−1|Xt)])

=Θ(E[2

(
Xt

2

)
p(1− p)] + var[0])

=Θ(n2p3(1− p))

Therefore, it follows that

corr(Φ̃t;1,1(u), Φ̃t;1,1(v)) = O(
1

n
)

as desired.

Now we can prove Theorem 5 with aid of the above lemma.
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Proof(Theorem5). Again, to avoid redundant arguments, we only provide derivations of

limiting distribution of Φ̃t∗;1,1(v) and the case t < t∗ can be achieved in the same approach.

Let v ∈ [ni], locality statistics Φt∗,t∗;1(v) and Φt∗,t∗−1;1(v) are respectively decomposed as

follows:

Φt∗,t∗;1(v) = Xi +
∑
j 6=i

Xj +
B∑
j=1

Yj +
B∑

1≤j<k≤B

Zjk, v ∈ [ni] (2.4.10)

where

Xi ∼ Bin(ni − 1,PA
i,i),

Xj ∼ Bin(nj,P
A
i,j),

Yj|Xj ∼ Bin(

(
Xj

2

)
,PA

j,j),

Zjk|Xj, Xk ∼ Bin(XjXk,P
A
j,k).

and

Φt∗,t∗−1;1(v) = X ′i +
∑
j 6=i

X ′j +
B∑
j=1

Y ′j +
B∑

1≤j<k≤B

Z ′jk, v ∈ [ni] (2.4.11)

where

X ′i|Xi ∼ Bin(Xi,P
0
i,i),

X ′j|Xj ∼ Bin(Xj,P
0
i,j),

Y ′j |Xj ∼ Bin(

(
Xj

2

)
,P0

j,j),

Zjk|Xj, Xk ∼ Bin(XjXk,P
0
j,k).
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Accordingly, the mean of Φ̃t∗;1,1(v) is estimated as follows

E(Φ̃t∗;1,1(v))

=E(Φt∗,t∗;1(v)− Φt∗,t∗−1;1(v))

=E(Xi +
∑
j 6=i

Xj −X ′i −
∑
j 6=i

X ′j) + E(
B∑
j=1

Yj +
B∑

1≤j<k≤B

Zjk −
B∑
j=1

Y ′j −
B∑

1≤j<k≤B

Z ′jk)

=E(Φ̃t∗;1,0(v)) + E(
B∑
j=1

Yj +
B∑

1≤j<k≤B

Zjk −
B∑
j=1

Y ′j −
B∑

1≤j<k≤B

Z ′jk)

=E(Φ̃t∗;1,0(v)) + E(YB − Y ′B) + o(n)

=np(1− p) + ξ0(ni; Φ) + 1{i=B}nBδ(1− p) + ζ(ni, p, δ, i) + o(n).

Under our setting of P0 and PA, the penultimate equality is obtained easily because Zjk

and Z ′jk share the same distribution and Yj share the same distribution with Y ′j except

j = B.

Now let’s consider the estimation of var(Φ̃t∗;1,1(v)) since the exact derivation of var(Φ̃t∗;1,1(v)),

through the use of law of total variance, is tedious. Due to the assumption [n1, n2, . . . , nB] =

[Θ(n), o(n), . . . , o(n)] and decompositions in Eq.(2.4.10) and Eq.(2.4.11), instead we ex-

press variance of Φ̃t∗;1,1(v) as

var(Φ̃t∗;1,1(v)) = var(Φt∗,t∗;1(v)− Φt∗,t∗−1;1(v))

=var(Y1 − Y ′1) +O(n2−ε) = Cn2p3(1− p) +O(n2−ε)

Thus, the central limit theorem leads to

Φ̃t∗;1,1(v)− E(Φ̃t∗;1,1(v))√
Cn2p3(1− p)

d−→ N (0, 1)

According to Lemma 6, dependencies among {Φ̃t∗;1,1(v)}v∈[ni] are negligible and thus

maxv∈[ni]Φ̃t∗;1,1(v)− µ′A(ni; Φ)

γ′A(ni; Φ)
=
W ′
A(ni; Φ)− µ′A(ni; Φ)

γ′A(ni; Φ)

d−→ G(0, 1).

Through similar arguments as in Theorem 1, we can show that S1,0,1(t∗; Φ) = max1≤i≤BW
′
A(ni; Φ).
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Corollary 7. Assume the setting in Theorem 5. Let β′Φ be the power of the test statistic

S1,0,1(t; Φ) for t = t∗ and β′Ψ be the power of the test statistic S1,0,1(t; Ψ) for t = t∗. Then,

as (n1, n2, . . . , nB) = (Θ(n), o(n), . . . , o(n)) and n→∞, β′Φ ≥ β′Ψ and thus S1,0,1(t; Ψ) is

inadmissible.

Proof. This corollary is a generalization of Proposition 3 and Proposition 4. The under-

lying idea is as follows. In the model presented at the beginnning of § 2.4.1, the variation

of number of chatty blocks before t∗−1 makes no difference on the sensitivity of statistics

S1,0,1(t; Ψ) and S1,0,1(t; Φ) as long as the orders of chatty blocks are o(n). Namely, in the

limiting case β′Φ and β′Ψ are functions of nB and independent of {n2, n3, . . . nB−1}. We

can then extend the power comparison conclusion from Proposition 4 for B = 3 to the

general case. The details are somewhat tedious and are omitted.
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Applications

In this section, for interested practitioners and engineers, § 3.1 provides implementations

of two scan statistics in language R and a hands-on example for illustration. Next, § 3.2

presents applications of two locality-based scan statistics on Enron email corpus dataset

and Zebrafish neuronal activities dataset [36].
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3.1 Code Implementation

In this section, we present implementations of above detection procedures using R and

its igraph package. Firstly, we generate a time series of graphs with a change-point as a

running example, generated from Stochastic Block Model introduced in § 2.2. Secondly,

we introduce the implementation of two locality statistics, i.e., local.scan, in igraph

package and implementations of temporal normalization steps. Lastly, we demonstrate

the potency of our detection methodology introduced in § 2.3 by showing that the change-

point reported by proposed procedures matches well with the underlying change-point of

synthetic data.

3.1.1 Generating Time Series of Graphs with Change-

point under SBM

To provide a running example, we first create an artificial time series of graphs {Gt}20
t=1,

each sampled from a stochastic block model with |V | = 20, B = 3. The block membership

of the vertices is fixed over time while the connectivity probabilities matrix P = Pt

changes in the last time step, i.e., Pt = P0 for t = 1, . . . , 19,and P20 = PA, where

P0 6= PA

P0 =



p p p

p h p

p p p


, PA =



p p p

p h p

p p q


(3.1.1)

The blocks contain [n1, n2, n3] = [10, 5, 5] vertices and [p, h, q] = [0.2, 0.5, 0.8].
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# Generate a time series of graphs under SBM
# Input parameters:maxTime=20, [n1,n2,n3]=[10,5,5],
# change-point-time=20, [p,h,q]=[0.2,0.5,0.8]
library(igraph)
library(Matrix)
set.seed(123456) # set seed to make tsg reproducible
maxTime <- 20 # number of total time steps
n1 <- 10; n2 <- 5; n3 <- 5 # number of vertices in each block
changingTime <- 20 # change point time stamp
p <- 0.2; h <- 0.5; q <- 0.8 # distinct elements in block matrices

# construct P0 and PA
P0 <- matrix(p,3,3)
P0[2,2] <- h
PA <- P0
PA[3,3] <- q
nVertex <- n1+n2+n3

# create graph time series before changeTime with P0
tsg_normal <- lapply(1:(changingTime-1), function(x) {

g <- sbm.game(nVertex,P0,c(n1,n2,n3),
directed=T);

V(g)$name <- LETTERS[1:20];
V(g)$label <- V(g)$name; return(g);

})

# create graph time series at changeTime with PA
tsg_anomaly <- lapply(changingTime:maxTime, function(x) {

g <- sbm.game(nVertex,PA,c(n1,n2,n3),
directed=T);

V(g)$name <- LETTERS[1:20];
V(g)$label <- V(g)$name; return(g);

})

igraph_tsg <- c(tsg_normal, tsg_anomaly)

Let’s plot in Figure 3.1 the graphs at most recent four timestamps of igraph_tsg

and peek the existence of anomolous (red) community at change-point, that is, t = 20

whose excessive communications is new at the change-point. This authenticates that

the time series of graphs igraph_tsg is an well-generated example to motivate our

proposed graph invariants in § 2.3, i.e., scan statistics, though the identities of anomalous

community members are unknown to observers.
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set.seed(123456) # set seed to make plot layout reproducible
layout1 <- layout.fruchterman.reingold(igraph_tsg[[20]])
par(mfrow=c(2,2))
for(i in (maxTime-3):maxTime)
{

g <- igraph_tsg[[i]]
# set distinct vertex colors to diffrent blocks
V(g)$label.color <- c(rep(rgb(0,0,0,1),n1),

rep(rgb(1,1,0,1),n2),
rep(rgb(1,0,0,1),n3))

plot(g,layout=layout1,main=paste0(’t=’,i))
}
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Figure 3.1: A generated time series of graphs under SBM with change-point at t = 20.
V is partitioned into three blocks where black vertices are from [n1], yellow from [n2],
and red from [n3]. The subgroup [n3] exhibits the change of community frequency at the
pre-determined change-point and hence becomes the target community for detection.
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3.1.2 Two Locality Statistics and local.scan in igraph

In this section, we look into two proposed locality statistics using the running synthetic

example igraph_tsg and introduce their implementation local.scan function in

igraph package.

Given a generated time series of directed graphs igraph_tsg, firstly, we make an an-

other example to illustrate the concept of locality statistic Ψt;k(v), e.g., Eq, (2.3.1), using

igraph. For instance, we let t = 20, k = 1, v = O and trace k-order neighborhoods

through both directions of edges (argument mode=’all’). As a side note, in a directed

graph, mode=’in’ and mode=’out’ correspond to tracing neighborhoods through

“in-edge” and “out-edge” respectively. We can plot Ω(Nk=1(v = O;Gt=20);Gt=20) in

Figure 3.2 by

par(mfrow=c(1,1))
t <- 20; k <- 1; vertex_name <- ’O’
g <- igraph_tsg[[t]]

# find the subgraph induced by k-hop distance neighborhoods
# from node ’O’
sub_g <- graph.neighborhood(graph=g, order=k,

nodes=vertex_name, mode=’all’)
plot(sub_g[[1]]);

and count the number of edges in the subgraph shown in Figure 3.2

Ψt=20;k=1(v = O) = |E(Ω(Nk=1(v = O;Gt=20);Gt=20))| = 27

by

length(E(sub_g[[1]])) # same as ecount(sub_g[[1]])
[1] 27

Moreover, if we want to calculate {Ψt;k(v)}v∈V over all vertices in a graph, which is a nec-
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Figure 3.2: Induced subgraph Ω(Nk=1(v = O;Gt=20);Gt=20) of the last graph G20 from
v = O with k = 1 order neighborhood.

essary intermediate step of computing scan statistics introduced in § 2.3, local.scan

function in igraph implements these calculations and outputs an |V |-dimensional vector

representing Ψt;k(v) on each vertex. In our previous setting t = 20, k = 1, the whole 20

locality statistics {Ψt;k(v)}′T ′v=′A′ are

local.scan(graph.us = igraph_tsg[[t]], graph.them = NULL,
k = 1, weighted = F, mode = ’all’)

[1] 5 1 9 5 11 3 3 7 3 9 22 26 19 21 27 26 23 21 24 34

Secondly, we take a look at the other locality statistic Φt,t′;k(v) = |E(Ω(Nk(v;Gt);Gt′))|

in Eq. (2.3.2) . Let us get back to our igraph example – the time series of graphs

igraph_tsg. Assume t = 20, t′ = 19, k = 1 and v = O, the single locality statistic

Φt,t′;k(v) is 25 where Figure 3.3 shows Gt′=19 and Ω(Nk=1[v = O;Gt=20], Gt′=19). Note

that Nk=1[v = O;Gt=20] could be found in Figure 3.2.

t <- 20; t_prime <- 19; k <- 1; vertex_name <- ’O’

64



CHAPTER 3. APPLICATIONS

# find the k-hop distance neighborhoods from node ’O’ in graph G_t
nbrs <- unlist(neighborhood(graph=igraph_tsg[[t]], order=k,

nodes=vertex_name,mode=’all’))
# find the induced subgraph with above nbrs in graph G_t’
g <- induced.subgraph(graph = igraph_tsg[[t_prime]], vids = nbrs)
length(E(g))
[1] 25

t=19
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Figure 3.3: The left figure is the graph Gt′=19, i.e., the graph at time stamp 19 in the
generated time series of graphs. The right figure is Ω(Nk=1[v = O;Gt=20], Gt′=19), i.e.,
induced subgraph in Gt′=19 by vertex set Nk=1[v = O;Gt=20] where Nk=1[v = O;Gt=20] is
shown in Figure 3.2.

Likewise, given t, t′, k, if we want to calculate {Φt,t′;k(v)}v∈V over all vertices in a graph,

which is a necessary intermediate step of computing scan statistics introduced in § 2.3,

local.scan function in igraph implements these calculations and outputs an |V |-

dimensional vector representing {Φt,t′;k}|V |v=1 on each vertex. In our previous setting t = 20,

t′ = 19, k = 1, the whole 20 locality statistics {Φt,t′;k(v)}′T ′v=′A′ are

local.scan(graph.us = igraph_tsg[[t]],
graph.them = igraph_tsg[[t_prime]],
k = 1, weighted = F, mode = ’all’)

[1] 1 0 3 2 8 1 1 2 0 3 20 20 20 20 25 5 4 2 1 10
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3.1.3 Temporally-normalization Implementation

Using igraph_tsg as a test example , the eventual goal is to calculate Sτ,`,k(t; Ψ)

(or Sτ,`,k(t; Φ)) on igraph_tsg and uncover whether a significant increment arises at

change-point t = 20. Having the time series tsg,k,tau,ell and the selection of

underlying locality statistic (Ψ or Φ) as input arguments, the main function scanstat

below enables to calculate the Sτ,`,k(t; ·) at all time steps. The function local.scan

introduced in § 3.1.2 is embedded in scanstat. It is worthwhile to note that Sτ,`,k(t; ·)

is only well-defined when t > τ + `. Hence, we leave Sτ,`,k(t; ·) = 0 when 1 ≤ t ≤ τ + `

such that the ouput of function scanstat is a complete 1 × maxTime vector starting

from time stamp 1 and ending at maxTime .

scanstat <- function(tsg, k, tau, ell, locality,mode) {
# determine weighted/unweighed directed/undirected
isWeighted = is.weighted(tsg[[1]])
isDirected = is.directed(tsg[[1]])

# number of time steps and number of vertices
maxTime = length(tsg)
nVertex = vcount(tsg[[1]])

# Underlying locality stat is \Psi
if (locality == ’Psi’) {

lstatPsi <- matrix(0,nrow=nVertex,ncol=maxTime)
for (i in 1:maxTime) {

# graph at time i
g <- tsg[[i]]
# locality statistics \Psi over all vertices
# at t=i in Eq (1)
lstatPsi[,i] <- local.scan(graph.us=g,graph.them=NULL,

k=k,mode=mode,
weighted=isWeighted)

}
lstat <- lstatPsi

}

# Underlying locality stat is \Phi
else if (locality == ’Phi’) {
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lstatPhi <- array(0,dim=c(nVertex,(tau+1),maxTime))
for (i in 1:maxTime) {

if (i>tau) {
# graph to trace k-th order neighborhood
g <- tsg[[i]]
for(j in 0:tau) {
# graph to construct induced subgraph on which
# counting edges
g_prime <- tsg[[i-tau+j]]
# locality statistics \Phi over all vertices
# with t=i and t’=i-tau+j in Eq (2)
lstatPhi[,(j+1),i] <- local.scan(graph.us=g,

graph.them=g_prime,
k=k,mode=mode,
weighted=isWeighted)

}
}

}
lstat <- lstatPhi

}

# vertex-dependent normalization of Eq (3)
nlstat <- vertex.norm(lstat,tau)
# temporal normalization of Eq (7)
scanstat <- temp.norm(nlstat,tau,ell)
(scanstat)

}

where subfunction vertex.norm comprehensively implements Eq. (2.3.3)-(2.3.5)

vertex.norm <-function (input_stat, tau = 1)
{

if (is.matrix(input_stat)) {
n <- nrow(input_stat)
nbins <- ncol(input_stat)
nstat <- matrix(0, n, nbins)
for (i in 1:nbins) {

if (i > tau) {
if (tau==0)

nstat[,i]=input_stat[,i]
else {

muv <- apply(as.matrix(input_stat[,(i-tau):(i-1)]),1,mean)
sdv <- apply(as.matrix(input_stat[,(i-tau):(i-1)]),1,sd)
sdv[is.na(sdv)] <- 1
nstat[, i] <- (input_stat[,i] - muv)/pmax(sdv, 1)

}
}
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}
}
else {

dd <- dim(input_stat)
n <- dd[1]
nbins <- dd[3]
nstat <- matrix(0, n, nbins)
for (i in 1:nbins) {

if (i > tau) {
if (tau==0)
nstat[, i]=input_stat[,(tau+1),i]

else {
muv <- apply(as.matrix(input_stat[,(1:tau),i]),1,mean)
sdv <- apply(as.matrix(input_stat[,(1:tau),i]),1,sd)

sdv[is.na(sdv)] <- 1
nstat[, i] <- (input_stat[,(tau+1),i] - muv)/pmax(sdv, 1)

}
}

}
}
return(nstat)

}

and subfunction temporal.norm comprehensively implements Eq. (2.3.6)-(2.3.9)

temp.norm<-function (stat, tau = 1, ell = 0)
{

maxTime <- ncol(stat)
Mtilde <- apply(stat, 2, max)
argmaxV <- apply(stat, 2, which.max)
if (ell == 0) {

return(list(sstat=Mtilde,argmaxV=argmaxV))
}
else if(ell ==1 ) {

return(list(sstat=Mtilde-c(0,Mtilde[-maxTime]),
argmaxV=argmaxV))

}
else {

muMtilde <- rep(0, maxTime)
sdMtilde <- rep(1, maxTime)
for (i in (ell + 1):maxTime) {

muMtilde[i] <- mean(Mtilde[(i - ell):(i - 1)])
sdMtilde[i] <- sd(Mtilde[(i - ell):(i - 1)])

}
sstat <- (Mtilde - muMtilde)/pmax(sdMtilde, 1)
sstat[1:(tau + ell)] <- 0
argmaxV[1:(tau + ell)] <- NA
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return(list(sstat=sstat, argmaxV=argmaxV))
}

}

After sourcing above three functions into R, we can calculate the final scan statistic

Sτ,`,k(t; Ψ) (or Sτ,`,k(t; Φ)) by calling scanstat(tsg, k, tau, ell, locality,mode).

For instance, if Ψ is selected as the underlying locality statistic, {Sτ,`,k(t; Ψ)}maxTimet=1 of

igraph_tsg is obtained as below.

# set tau, ell, k
tau <- 4; ell <- 3; k <-1;
# calculate scan statistics on igraph_tsg with locality ’Psi’
scanstat(tsg=igraph_tsg, k=k, tau=tau, ell=ell,

locality = ’Psi’, mode= ’all’)

$sstat
[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[6] 0.0000000 0.0000000 -0.4463684 1.7714957 -0.8157701
[11]-0.5724556 -0.2357372 2.5132600 -0.2241908 3.0586020
[16]-1.7545396 -0.5428413 -0.8836799 0.3208085 6.4385630

$argmaxV
[1] NA NA NA NA NA NA NA 7 2 4 19 1 5 7 6 8 20 3 1 16

For igraph_tsg example, we can see that sstat,i.e.,{Sτ,`,k(t; Ψ)}maxTimet=1 , is a

vector of length 20 and first 7 values are 0 due to {Sτ,`,k(t; Ψ) = 0}τ+`
t=1 by our convention.

Furthermore, at the true-but-unknown change-point, changingTime=20, Sτ,`,k(t =

20; Ψ) is significantly larger than {Sτ,`,k(t; Ψ)}19
t=1 of previous time stamps. Thus, the

inconsistency, particularly surprising increment of Sτ,`,k(t = 20; Ψ), implies an emergence

of an anomalous community at time 20. This conjecture matches our expectation well,

foreshadowing correctness and practicality of Sτ,`,k(t; Ψ).

Sometimes observers are also interested in unearthing the center actor of the arising

anomalous community, i.e., v that achieves the maximum in Eq (2.3.6). They can resort
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to the argmaxV whose elements represent arg maxv J̃t,τ ;k(v) at each time point. For

example, in igraph_tsg at t = 20, the center of anomalous community is

V(igraph_tsg[[20]])[16]
Vertex sequence:
[1] "P"

In other words, the vertex P is an individual whose behavior deserves further digging

in the network. Through tracing the k-th order neighborhood of P in Gt=20, we locate

individuals in the community Nk(v = P ;Gt=20) as anomalous group on which more

investigation is to conduct afterwards.

# find the anomalous community by tracing k-th (k=1 in this example)
# order neighborhoods.
V(igraph_tsg[[20]])[neighborhood(igraph_tsg[[20]],1,"P")[[1]]]
Vertex sequence:
[1] "P" "A" "D" "E" "M" "Q" "R" "S" "T"

Similarly, above procedures can be replicated if the underlying locality statistic is Φ and

we obtain

tau <- 4; ell <- 3; k <-1;
# calculate scan statistics on igraph_tsg with locality ’Phi’
scanstat(tsg=igraph_tsg, k=k, tau=tau, ell=ell, locality = ’Phi’,

mode= ’all’)
$sstat
[1] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
[6] 0.000000000 0.000000000 -0.455884852 -0.455884852 0.786908912
[11]0.399728001 -0.005263018 -0.648717474 0.351282526 3.583333333
[16]-0.039193090-0.783523371 -1.22425526 0.000000000 6.387437324

$argmaxV
[1] NA NA NA NA NA NA NA 8 6 19 2 1 3 2 19 8 10 8 3 20

V(igraph_tsg[[20]])[20]
Vertex sequence:
[1] "T"
# find the community by tracing k-th (k=1 in this example)
# order neighborhoods.
V(igraph_tsg[[20]])[neighborhood(igraph_tsg[[20]],1,"T")[[1]]]
Vertex sequence:
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[1] "T" "A" "C" "D" "F" "L" "O" "P" "Q" "R" "S"

It’s trivial to see that both Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) are capable of detecting the latent

change-point for this synthetic example as there exist large deviations from the normal

pattern in time series of scan statistics. Also, both methods report vertices P,Q,R,S,T

to be members of anomalous community. This is consistent with their probabilistic

characterizations in the generating process. In summary, Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) are

connectivity-based graph invariants to track the upsurge of anomalous community and

simultaneously unbury the center of dense community.

To achieve a better visualization of Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) of igraph_tsg with

varying k = 0, 1, 2, we plot the Figure 3.4 using the following R snippet

tau <- 4; ell <- 3; tmax <- length(igraph_tsg)
phi0 <- scanstat(igraph_tsg, k=0, tau=tau, ell=ell, ’Phi’, ’all’)
psi0 <- scanstat(igraph_tsg, k=0, tau=tau, ell=ell, ’Psi’, ’all’)
phi1 <- scanstat(igraph_tsg, k=1, tau=tau, ell=ell, ’Phi’, ’all’)
psi1 <- scanstat(igraph_tsg, k=1, tau=tau, ell=ell, ’Psi’, ’all’)
phi2 <- scanstat(igraph_tsg, k=2, tau=tau, ell=ell, ’Phi’, ’all’)
psi2 <- scanstat(igraph_tsg, k=2, tau=tau, ell=ell, ’Psi’, ’all’)
dat2 <- rbind(phi0$sstat,phi1$sstat,phi2$sstat)
dat1 <- rbind(psi0$sstat,psi1$sstat,psi2$sstat)

psd <- 5
pos <- seq((tau+ell+1),tmax,4)
xlabs <- 1:tmax
rownames(dat1) <- c("k=0","k=1","k=2")
rownames(dat2) <- c("k=0","k=1","k=2")

require(ggplot2)
require(reshape2)
require(plyr)
dat3 <- melt(t(dat1))
dat4 <- melt(t(dat2))
dat <- rbind(dat3,dat4)
dat <- cbind(dat,c(rep("Psi",nrow(dat3)),rep("Phi",nrow(dat4))))
colnames(dat) <- c("time","group","stat","method")
dat$sd <- rep(psd,nrow(dat))
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Figure 3.4: Sτ,`,k(t; Ψ)(sea green) and Sτ,`,k(t; Φ)(orange), the temporally-normalized
standardized scan statistics using τ = 4, ` = 3 in time series of graphs. Top: k = 0;
Middle: k = 1; Bottom: k = 2.

fsize <- 15
lsize <- 1.4
csize <- 1.7
p <- ggplot(data=dat, aes(x=time,y=stat))
+ facet_wrap(˜group, nrow=3)
+ geom_line(aes(color=method, linetype=method))
+ geom_point(aes(color=method,shape=method))
+ scale_colour_hue(guide="none")
+ scale_fill_hue(guide="none")
+ geom_hline(aes(yintercept=sd),linetype="dashed")
+ theme_bw()
+ theme(axis.title.x=element_text(size=fsize))
+ theme(axis.title.y=element_text(size=fsize))
+ theme(strip.text=element_text(size=rel(lsize)))
+ ylim(range(dat$stat))
+ theme(legend.position="none")
p

Figure 3.4 depicts Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ), the temporally-normalized standardized

scan statistics for various k = {0, 1, 2} using τ = 4, ` = 3. The horizontal dashed line

indicated 5 standard deviation, so any scan statistic exceeding that threshold can be
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considered as an anomaly. According to different application domains, the criterion of

anomaly alert is determined by the observer. The higher deviation in terms of number

of standard deviations is selected, the lower false positive rate can be achieved; the lower

deviation is selected, the higher true positive rate can be achieved. In this example, both

Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) detect anomaly (t = 20) with k = 1, 2, only Sτ,`,k(t; Φ) detects

anomaly with k = 0.

3.2 Enron Emails dataset

In this section, we apply previously proposed anomalous community detection technique,

for analyzing two real datasets: Enron email dataset and Zebrafish dataset. They are

briefly introduced in § 1.3. For each dataset, we identify change-points and further

investigate anomalous communities by referring real event information associated with

the time-line. Both experiments demonstrate the efficacy of locality-based scan statistics

in practice. We use the Enron email data used in [39] in this experiment. It consists of

time series of graphs {Gt} with |V | = 184 vertices for each week t = 1, . . . , 189, where

we draw an unweighted edge when vertex v sends at least one email to vertex w during

a one week period.

After truncating first 40 weeks for vertex-standardized and temporal normalizations,

Figure 3.5 depicts Sτ,`,k(t; Ψ) (sea-green) and Sτ,`,k(t; Φ) (orange) in the remaining 149

weeks from August 1999 to June 2002. In this experiment, we choose both τ = ` = 20,

used in [39], to keep the comparisons between the two papers meaningful. As indicated

in [39], detections are defined as weeks t such that Sτ,`,k > 5. Hence, from Figure 3.5 we
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Figure3.5: Sτ,,k(t;Ψ)(seagreen)andSτ,,k(t;Φ)(orange),thetemporally-normalized
standardizedscanstatisticsusingτ= =20,intimeseriesofEnronemail-graphs
fromAugust1999toJune2002.Top:k=0;Middle:k=1;Bottom:k=2.Inthecase
k=0,bothS20,20,0(t;Ψ)andS20,20,0(t;Φ)showdetections(Sτ,,k(t;·)>5)atobservation
mark(1)and(2);inthecasek=1,bothS20,20,1(tΨ)andS20,20,1(t;Φ)showdetections
atobservationmark(1),S20,20,1(t;Ψ)alsoindicatesananomalyatobservationmark(2);
inthecasek=2,S20,20,2(t;Ψ)detectsanomaliesatobservationmark(2)and(3),but
S20,20,2(t;Φ)capturesanomaliesatobservationmark(1)and(4). Detailedanalyseson
eachobservation[(1)-(4)]areprovidedin§3.2respectively.

havefollowingobservationsandreasonings.

1.S20,20,0(t;Ψ),S20,20,0(t;Φ),S20,20,1(t;Ψ),S20,20,1(t;Φ)andS20,20,2(t;Φ)indicateaclear

anomalyatt∗=58inDecember1999.ThiscoincideswiththehappeningofEn-

ron’stentativeshamenergydealwith MerrillLynchtomeetprofitexpectations
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and boost stock price [13]. The center of suspicious community-employee v154 is

identified by all five statistics.

2. S20,20,0(t; Ψ), S20,20,0(t; Φ), S20,20,1(t; Ψ) and S20,20,2(t; Ψ) capture an anomaly at t∗ =

146 in the mid-August 2001. This is the period that Enron CEO Skilling made a

resignation announcement when the company was surrounded by public criticisms

shown in [13]. The center of suspicious community-employee v95 is identified by

these four statistics.

3. S20,20,2(t; Ψ) signifies an anomaly at t∗ = 132 in late April 2001 where S20,20,k(t; Φ)

fails to alert for any k ∈ {0, 1, 2}. This phenomenon occurs because S20,20,2(t; Ψ)

captures the employee v90 whose second-order neighborhood N2(v90;G132) contains

116 emails at t∗ = 132 but 0 email in his second-order neighborhoods of previous

20 weeks. That is, the time-dependent second-order neighborhood N2(v90;Gt) had

no communication in the period from t = 112 to t = 131. On the other hand, this

behavior cannot be monitored by S20,20,2(132; Φ) because the change of communi-

cation frequency in a fixed second-order neighborhood N2(v90;G132), measured by

locality statistics Φ, is not so significant. More concretely, the number of emails in

the unchanged N2(v90;G132) has a mean 45.5 and a standard deviation 14.9 from

t = 112 to t = 131. In [13], this anomaly appears after the Enron Quaterly Confer-

ence Call in which a Wall Street analyst Richard Grubman questioned Skilling on

the company’s refusal of releasing balance sheet but then got insulted by Skilling.

4. S20,20,2(t; Φ) shows a detection on v135 at t∗ = 136 before June 2001 over S20,20,2(t; Ψ).

This comes from the fact that the fixed second-order neighborhood of employee v135

at t∗ = 136, i.e., N2(v135;G136), has a small standard deviation 1.08 in previous 20
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weeks while the communications in time-dependent neighborhoods {N2(v90;Gt)}135
t=116

has a large standard deviation 10.04. Practically speaking, in this case, a dramatic

increment of email contacts in the certain community N2(v135;G136) could be cap-

tured by S20,20,2(t; Φ) but ignored by S20,20,2(t; Ψ) because unstable communication

patterns in {N2(v90;Gt)}135
t=116 offsets the sensitivity of signal. According to [13],

this anomaly corresponds to the formal notice of closure and termination of En-

ron’s single largest foreign investment, the Dabhol Power Company in India.

In summary, observations 1 and 2 demonstrate that in some cases both Sτ,`,k(t; Ψ) and

Sτ,`,k(t; Φ) are capable of capturing the same community which has a significant increment

of connectivity. Besides, in some situations shown in observations 3 and 4, Sτ,`,k(t; Ψ)

and Sτ,`,k(t; Φ) achieve different detections due to its adaptability.
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3.3 Zebrafish dataset

3.3.1 Data Description

The original zebrafish dataset is a simultaneous whole-brain neuronal activity data at

near single cell resolution obtained using Light-Field Deconvolution Microscopy (LFDM)

combined with GCaMP as a calcium reporter [37]. The data consist of periods of sponta-

neous neuronal activity and sequences of different types of olfactory stimulations. More

concretely, the raw data set consists of a multivariate time series D of dimension of n×m

where n(= 5, 379) is the number of zebrafish neurons and m(= 5, 000) is the number of

total time frames across 250 seconds. Each single time frame is approximately
1

20
sec-

ond. Di,j records a measure of activity level of the neuron i at time step j by computing

fluorescence traces of spatial filters divided by its mean.

During the data collection process over time, a lab scientist creates an underlying change-

point occuring at the 16th second, by giving an olfactoric stimulus to the zebrafish. This

stimulus lasts about 2 seconds. Additionally, the lab scientist observed that there is an eye

movement of the zebrafish happening at the 59th second, and tentative tail movements of

the zebrafish happening at the 78th and 218th seconds. These four time stamps are the

ground truths of anomalies in this dataset of which we are presently aware. Additionally,

during data preprocessing, some spurious edge neurons were removed. The cleaned data

used in the following experiments is a multivariate time series D where n = 5, 105 and

m = 5, 000.
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3.3.2 Construction of Time Series of Association Graphs

Using the multivariate time series D and two parameters, window size ∆ and edge thresh-

old θ, we construct a time series of unweighted graphs {Gt}Tt=1 with a coarser resolution

by following three steps below:

1. Firstly, we split the data across time into chunks and let each chunk contain data

across ∆ time steps out of m(= 5, 000) steps. Note that we also let adjacent chunks

share overlapping
∆

2
steps so that contiguous chunks are dependent. Hence, there

are t = 1, . . . ,
2m

∆
− 1 chunks in total, and each chunk represents

∆

20
seconds in

real-time duration (i.e., ∆ time steps in the resolution of D). For example, if

∆ = 50, the first chunk is [1, 50], the second chunk is [26, 75], the third chunk

is [51, 100], and so on. The interval of the t-th time chunk can be formulated as

[
(t− 1)∆

2
+ 1,

(t− 1)∆

2
+ ∆] in original m time steps.

2. For each time stamp t, each neuron then has ∆ data samples of measurements of

activity levels between [
(t− 1)∆

2
+ 1,

(t− 1)∆

2
+ ∆] in original D. Based on ∆

samples in [
(t− 1)∆

2
+ 1,

(t− 1)∆

2
+ ∆], we construct an association matrix M (t)

for time stamp t where M
(t)
i,j denotes the absolute value of the sample’s Pearson

correlation coefficient between neuron i and neuron j.

M
(t)
i,j =

|
∑(t−1)∆/2+∆

k=(t−1)∆/2+1(Di,k − D̄i)(Dj,k − D̄j)|√∑(t−1)∆/2+∆
k=(t−1)∆/2+1(Di,k − D̄i)2

√∑(t−1)∆/2+∆
k=(t−1)∆/2+1(Dj,k − D̄j)2

where D̄i =
1

100

∑(t−1)∆/2+∆
k=(t−1)∆/2+1Di,k.

3. So far, {M (t)}Tt=1 can be seen as a time series of weighted adjacency matrices where

T =
2m

∆
− 1. However, we consider only unweighted graphs in this section and
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thus set a threshold θ on all entries of M to convert a weighted adjacency matrix

to an unweighted adjacency matrix. Specifically, for any pairs of vertices u and

v in temporal graphs {Gt}Tt=1, (u, v) is connected if and only if M
(t)
u,v > θ, i.e.,

(u, v) ⇐⇒ M
(t)
u,v > θ.

3.3.3 Scan Statistics and Anomalous Community

Identification

After the construction of temporal graphs {Gt}Tt=1, we are able to apply our anoma-

lous community detection technique on {Gt}Tt=1. The goal is to find change-points

at which a subgroup of neurons show an excessive increase of associations. In

our settings, we need to specify the type of locality statistic and five parameters

(θ, τ, `, k,∆) as inputs of the detection algorithm.

In all experiments below, we select k = 1 because the graph order (n = 5, 105)

is in a moderate scale. Without loss of generality, we also select ∆ = 50, but

all methodologies and analyses below can be trivially adapted to other ∆ values.

After truncating the first τ + ` time steps for vertex-standardized and temporal

normalizations, Figure 3.6 depicts Sτ,`,k(t; Ψ) (sea-green) and Sτ,`,k(t; Φ) (orange)

given (θ, τ, `) = (0.8, 10, 10); and Figure 3.7 depicts Sτ,`,k(t; Ψ) (sea-green) and

Sτ,`,k(t; Φ) (orange) given (θ, τ, `) = (0.8, 5, 5). Based on Figure 3.6 and 3.7, we

select time stamps t? = {16, 44, 59, 78, 129, 218, 238} (seconds), which are alarmed

as change-points and pink-marked with arrows, for further investigations. For each

t?, the anomalous community N1[v?;Gt? ] is plotted in Figure 3.8 when the locality
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statistic is Ψ and in Figure 3.9 when the locality statistic is Φ. For comparison,

N1[v?;Gt?−1] and N1[v?;Gt?+1] are also given to visualize the increment or shift of

neighbors of v?.

According to Figures 3.6, 3.7, 3.8, and 3.9, our findings are summarized in the

following Table 3.1. This table indicates that change-points t? = {78, 129, 218} can

be detected by both Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ). On the other hand, due to the dif-

ference between detection mechanisms using different locality statistics, Sτ,`,k(t; Φ)

is able to detect change-points t? = {44, 238}, while Sτ,`,k(t; Φ) failed; Sτ,`,k(t; Ψ) is

able to detect change-points t? = 59, while Sτ,`,k(t; Φ) failed. Note that four ground

truths of change-points observed by a lab scientist, i.e., t? = {16, 59, 78, 218}, are all

correctly alarmed by either Sτ,`,k(t; Ψ) or Sτ,`,k(t; Φ). This demonstrates the efficacy

and practicality of our methodology. Furthermore, based on the last column of Ta-

ble 3.1, and Figures 3.8 and 3.9, we demonstrate that at all selected change-points

Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) capture different anomalous communities.

3.3.4 Detection Persistence Analysis

In the previous section, both Sτ,`,1(t; Ψ) and Sτ,`,k(t; Φ) performed well on anomaly

detection of neuron associations when (τ, `, θ) = (10, 10, 0.8) or (τ, `, θ) = (5, 5, 0.8).

Under the above two particular settings of (τ, `, θ), the practicality of Sτ,`,1(t; Ψ) and

Sτ,`,1(t; Φ) are validated by ground truths – identified anomalies are in fact triggered

by tentative zebrafish eye or tail movements. However, there is a question remaining

unanswered: How do Sτ,`,1(t; Ψ) and Sτ,`,1(t; Φ) perform with other selections of
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Figure 3.6: Sτ,�,k(t; Ψ)(sea green) and Sτ,�,k(t; Φ)(orange), the temporally-normalized
standardized scan statistics using (τ, �, θ) = (10, 10, 0.8), in time series of zebrafish
association-graphs across 250 seconds. Anomaly detection is indicated if Sτ,�,k(t; ·) > 10
(blue dashed line). t = 59th, 78th, 218th seconds are underlying change-points caused
by zebrafish eye movement or tail movements. A summary of selected change-points
(pink-marked with arrows) is provided in Table 3.1 and identifications of anomalous
communities at selected change-points are provided in Figures 3.8 and 3.9.

(τ, �, θ), and do detections still persist with varying parameters?

In this section, to eliminate the effect of parameter selection on performance evalu-

ation, we investigate the persistence of detections by calculating {Sτ,�,1(t; ·)}Tt=1, fix-

ing all but one parameters and varying the remaining target parameter. A persistent

plot can be obtained where the x- axis is time (in seconds) and the y-axis presents

the continuous values of the target parameter. The darkness/color at (x, y) entry is

proportional to the scale of values of Sτ,�,k(t; ·) with t = x and target parameter = y.

If all values of Sτ,�,k(t; ·) across the target parameter (i.e., y-axis) are large at some

t = t�, we claim that detection at t� is persistent with respect to the target param-

eter when Sτ,�,k(t; ·) is used as test statistic. An ideal scenario would be that all
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Figure 3.7: Sτ,�,k(t; Ψ)(sea green) and Sτ,�,k(t; Φ)(orange), the temporally-normalized
standardized scan statistics using (τ, �, θ) = (5, 5, 0.8), in time series of zebrafish
association-graphs across 250 seconds. Anomaly detection is indicated if Sτ,�,k(t; ·) > 10
(blue dashed line). t = 16th second is an underlying change-point at which the zebrafish
is given a odor stimulus, and this stimulus lasts for 2 seconds. t = 59th, 78th, 218th sec-
onds are underlying change-points caused by zebrafish eye movement or tail movements.
The Summary of selected change-points (pink-marked with arrows) is provided in Table
3.1, and identifications of anomalous communities at selected change-points are provided
in Figures 3.8 and 3.9.

detections alarmed in previous section t� = {16, 44, 59, 78, 129, 218, 238} are persis-

tent with respect to θ, τ and �, respectively.

Figure 3.10 is a persistent plot with respect to θ by fixing (τ, �) = (5, 5) and

letting θ range from 0.5 to 0.9 with step size 0.01. Besides four time stamps

t� = {16, 59, 78, 218} having ground truths, we blue-mark another other top 8

persistent detections at the top time axis. The superiority of persistence at a partic-

ular t� here is quantified by
∑0.9

θ=0.5 1{Sτ=5,�=5,k=1(t=t�;·)>10}, the cumulative counts of
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t? S10,10,1(t; Ψ) S10,10,1(t; Φ) S5,5,1(t; Ψ) S5,5,1(t; Φ) N1[v?;Gt? ; Ψ] = N1[v?;Gt? ; Φ]

16 NA NA × X no

44 × X × X no

59 X × X × no

78 X X X X no

129 X X X X no

218 X X X × no

238 × X × X no

Table 3.1: Summary results of anomaly detection on {Gt}Tt=1 by employing Sτ,`,1(t; ·).
Anomaly is indicated if Sτ,`,1(t; ·) > 10. ’X’ and ’×’ denote the success and failure of
detection, respectively. NA is applicable in the case that t? ≤ τ + `, while {Gt}τ+`

t=1

are truncated for vertex standardization and temporal normalization. The last column
N1[v?;Gt? ; Ψ] = N1[v?;Gt? ; Φ] tests if identified anomalous communities are the same
when using different underlying locality statistic Ψ and Φ.

alarmed detections across varying θ. We can see that, in general, Sτ=5,`=5,k=1(t; Φ)

is more persistent than Sτ=5,`=5,k=1(t?; Ψ) at t? = {16, 45, 238} and achieves ear-

lier detections at t? = 212 instead of t? = 218. However, all other detections at

t? = {59, 78, 129}, discovered in the previous section, show clear persistences with

respect to θ using both underlying locality statistics.

Similarly, Figures 3.11 and 3.12 are persistent plots with respect to τ with un-

derlying scan statistics Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ), respectively. The superiority of

persistence at a particular t? is quantified by
∑10

τ=2 1{Sτ,`,k=1(t=t?;·)>10}, the cumula-

tive counts of alarmed detections across varying τ . We can see that detections at

t? = {78, 129, 218} are persistent with respect to τ regardless of the selections of `

and the type of locality statistic. On the other hand, Sτ,`,k=1(t; Φ) is more persis-

tent than Sτ,`,k=1(t?; Ψ) at t? = {44, 238}, but Sτ,`,k=1(t?; Ψ) is more persistent at
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t? = 59. This finding matches well with our conclusion from Table 3.1.

Figures 3.13 and 3.14 are persistent plots with respect to ` with underlying scan

statistics Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ), respectively. The superiority of persistence at

a particular t? is quantified by
∑10

`=2 1{Sτ,`,k=1(t=t?;·)>10}, the cumulative counts of

alarmed detections across varying τ . Comparing Figures 3.13 and 3.14, we are able

to obtain the same conclusion shown in Figures 3.11 and 3.12. Furthermore, note

that as ` increases, the signal or consistence of detection, quantified through values

of scan statistics Sτ,`,k(t; ·), is often weakened in both Figures 3.13 and 3.14. This is

reasonable because the signal is going to be smoothed out if there is a large number

of temporal normalizations. Thus, this observation will not have influence on our

conclusion about the persistent detections with respect to `.
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Figure 3.8: For each t? ∈ {16, 44, 59, 78, 129, 218, 238}, the members of anomalous com-
munity N1[v?;Gt? ] are visualized in red when Sτ,`,1(t; Ψ) is employed for detection with
(τ, `, θ) = (5, 5, 0.8). All neurons are spatially located according to their (x,y) coordinates.

“+” denotes v? = arg maxv(J̃t?,τ ;k(v)), the center of the anomalous community. “|N |”
denotes the cardinality of N1[v?;Gt? ]. For example, when t? = 59, there are |N | = 330
neurons in N1[v?;Gt? ]. For comparison, N1[v?;Gt?−1] and N1[v?;Gt?+1] are also included
at the left and right of each row.
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Figure 3.9: For each t? ∈ {16, 44, 59, 78, 129, 218, 238}, the members of anomalous com-
munity N1[v?;Gt? ] are visualized in red when Sτ,`,1(t; Φ) is employed for detection with
(τ, `, θ) = (5, 5, 0.8). All neurons are spatially located according to their (x,y) coordinates.

“+” denotes v? = arg maxv(J̃t?,τ ;k(v)), the center of the anomalous community. “|N |”
denotes the cardinality of N1[v?;Gt? ]. For example, when t? = 59, there are |N | = 330
neurons in N1[v?;Gt? ]. For comparison, N1[v?;Gt?−1] and N1[v?;Gt?+1] are also included
at the left and right of each row.
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Ψ

θ

Φ

θ

Figure 3.10: Persistent plot with respect to θ by fixing (τ, �) = (5, 5) and allowing θ to
range from 0.5 to 0.9 with step size 0.01. Upper and lower subfigures correspond to the
test statistics used, Sτ,�,k(t; Ψ) and Sτ,�,k(t; Φ), respectively. Besides four time stamps
t� = {16, 59, 78, 218} having ground truths (eye/tail movements), other top 8 persistent
detections are also blue-marked at the top time axis. Values of Sτ,�,k(t; ·) at all entries
are quantitatively displayed by colors in legend.
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Ψ

τ

Ψ

τ

Ψ

τ

Figure 3.11: Persistent plot with respect to τ by fixing (θ, �) = (0.8, 2)(upper), (θ, �) =
(0.8, 5)(middle), (θ, �) = (0.8, 10)(lower) and allowing τ to range from 2 to 10 with step
size 1. The test statistic used is Sτ,�,k(t; Ψ). Besides four time stamps t� = {16, 59, 78, 218}
having ground truths (eye/tail movements), other top 8 persistent detections are also
blue-marked at the top time axis. Values of Sτ,�,k(t; ·) at all entries are quantitatively
displayed by colors in legend.
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Φ

τ

Φ

τ

Φ

τ

Figure 3.12: Persistent plot with respect to τ by fixing (θ, �) = (0.8, 2)(upper), (θ, �) =
(0.8, 5)(middle), (θ, �) = (0.8, 10)(lower) and allowing τ to range from 2 to 10 with step
size 1. The test statistic used is Sτ,�,k(t; Φ). Besides four time stamps t� = {16, 59, 78, 218}
having ground truths (eye/tail movements), other top 8 persistent detections are also
blue-marked at the top time axis. Values of Sτ,�,k(t; ·) at all entries are quantitatively
displayed by colors in legend.
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Ψ

τ

Ψ

τ

Ψ

τ

Figure 3.13: Persistent plot with respect to � by fixing (θ, τ) = (0.8, 2)(upper), (θ, τ) =
(0.8, 5)(middle), (θ, τ) = (0.8, 10)(lower) and allowing � to range from 2 to 10 with step
size 1. The test statistic used is Sτ,�,k(t; Ψ). Besides four time stamps t� = {16, 59, 78, 218}
having ground truths (eye/tail movements), other top 8 persistent detections are also
blue-marked at the top time axis. Values of Sτ,�,k(t; ·) at all entries are quantitatively
displayed by colors in legend.
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Φ

τ

Φ

τ

Φ

τ

Figure 3.14: Persistent plot with respect to � by fixing (θ, τ) = (0.8, 2)(upper), (θ, τ) =
(0.8, 5)(middle), (θ, τ) = (0.8, 10)(lower) and allowing � to range from 2 to 10 with step
size 1. The test statistic used is Sτ,�,k(t; Φ). Besides four time stamps t� = {16, 59, 78, 218}
having ground truths (eye/tail movements), other top 8 persistent detections are also
blue-marked at the top time axis. Values of Sτ,�,k(t; ·) at all entries are quantitatively
displayed by colors in legend.
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Chapter 4

Active Community Detection in

Massive Graphs

A canonical problem in graph mining is the detection of dense communities. This prob-

lem is exacerbated for a graph with a large order and size - with respect to the number

of vertices and edges - as many community detection algorithms scale poorly. In this

chapter, we propose a novel framework for detecting active communities that consists of

the most active vertices in massive graphs. The framework is applicable to graphs having

billions of vertices and hundreds of billions of edges. Our framework utilizes a paralleliz-

able trimming algorithm based on a locality statistic to filter out inactive vertices, and

then clusters the remaining active vertices via spectral decomposition on their similarity

matrix. We demonstrate the validity of our method with synthetic stochastic block model

graphs, using the Adjusted Rand Index as the performance metric. We further demon-

strate its practicality and efficiency on a real-world hyperlink Web graph consisting of

over 3.5 billion vertices and 128 billion edges.
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An outline of this chapter is given as follows. § 4.1 provides the motivation of our

concentration solely on active members in a massive network and summarizes the main

contributions of our framework. One of the locality statistics proposed in § 2.3 will be

revised in § 4.2 to suit a static graph setting. § 4.3 presents the procedures in our active

community detection algorithm framework. § 4.4 describes a parallelizable trimming

algorithm that cost-effectively skips actual computation on the majority of vertices. In

§ 4.5, our detection algorithm is empirically validated on graphs with true and known

community structures. For the real data experiment in § 4.6, we apply the proposed

algorithm on the massive hyperlink graph collected recently in [28].
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4.1 Motivation

To the best of our knowledge, in the field of community detection on static graphs, almost

all popular partitioning or clustering procedures are computed from the full topology of

a graph and thus have high computation complexity. Their objective function values for

optimizing clusters are determined by cluster labels of all vertices. That is, all vertices are

involved in each step of these clustering algorithms, such as a modularity-based algorithm,

spectral decomposition-based algorithm, etc. The problem is that it is challenging to run

these algorithms on a billion-scale graph. For example, the most recent Hyperlink Graph

has 3.5 billion and 128 billion edges [28], the largest graph available to the public. Even

growing at O(m) in each iteration, Louvain clustering and spectral clustering potentially

require many iterations to converge, which is computationally challenging to work at the

billion scale, let alone algorithms with the complexity of O(n2 log n) or O(nm2) introduced

in § 1.1. Thus, it is important to consider the situation where a graph is too large to be

processed on its full topology.

Moreover, sometimes it is only dense and comparatively active groups of vertices that we

are concerned with in graph analysis. Dense clusters consisting of only inactive vertices

in a giant network, e.g., small cliques incorporating only insignificant websites in the

Hyperlink Graph, are unimportant for observers. In this scenario, investigations solely

on active vertices are sufficient to detect potential communities consisting of the most

active vertices. In this work, we propose to use a locality statistic [50] to measure the

activity level of a vertex. The communities that consist of the most active vertices are

referred to as “active communities”. For example, some link farms in web graphs are

“active communities”.
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The contribution mainly has two facets. Firstly, we propose an alternative community

detection framework because it is unattainable to cluster on an entire massive graph due

to the large graph order or size and it is only active vertices that are important in many

networks. The framework identifies the most active vertices, i.e., the ones of the largest

locality statistic values, builds a smaller graph over active vertices and then assigns the

most active vertices into communities through typical clustering methods. Secondly, to

unearth the most active vertices in a network, we provide a highly parallelizable trimming

algorithm to screen out inactive vertices. The number of discovered active vertices is

much smaller than graph order n. We apply our methodology on the famous Hyperlink

Graph [28] to identify active communities. To the best our knowledge, this is the first

community detection algorithm applied to a real graph dataset at this scale. As a note,

in this chapter we consider only directed and unweighted graphs without self-loops. All

procedures can be easily adapted to undirected or weighted graphs if necessary (§ 5)
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4.2 Locality Statistic Ψk(v)

The locality statistic Ψt;k(v) has been introduced in § 2.3 Eq.(2.3.1), used in temporal

graph mining to detect a local region in the graph with significantly excessive intra-region

connections [50]. If t is fixed, the locality statistic Ψt;k(v) is the number of edges within

the k-th order neighborhood of v in Gt. In a massive graph, k can be seen as the implicit

and limited horizon that a vertex often reaches within the network. A vertex has a limited

horizon because it is more likely to only interact with a subset of vertices in a massive

graph and knows nothing about other parts of the graph [10]. As we know, a large locality

statistic Ψt;k(v) foreshadows the existence of a dense k-th order neighborhood centering

at v. Hence, the locality statistic Ψt;k(v) becomes a measure of activity level of the vertex

v in the network Gt. Since our focus is a static directed graph below, we naturally refine

Ψt;k(v) to be Ψk(v) by dropping unnecessary time information t.

Formally, let G be a graph. The locality statistic Ψk(v) for all k ≥ 1 and v ∈ V on G is

defined as

Ψk(v) = |E(Ω(Nk[v;G], G))|. (4.2.1)

For simplification, we re-denote Nk[v;G] as Nk[v] here because there is only a single G

to consider in this chapter. Since G is unweighted, Ψk(v) counts the number of edges

in the subgraph of G induced by Nk[v] = {u ∈ V : d(u, v) ≤ k}, a local territory of v

where all elements are at a distance at most k from v in G. Note that, in a directed

graph G, d(u, v) stands for the shortest path distance between u and v on the underlying

undirected graph of G by removing orientations of all edges.

More specifically, if k = 1, the case thoroughly investigated below, Ψ1(v) counts the
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Figure 4.1: A toy example to illustrate calculations of Ψk(a) with various k = 0, 1, 2, 3,
on the directed G. For example, if k = 2, N2[a] = {u ∈ V : d(u, a) ≤ 2} = {a, b, c, d, e, f},
and thus E(Ω(N2[a], G)) contains edges colored in red, blue, and green.

number of edges either incident to v or involved in triangles containing v. Large locality

statistic implies a dense region whose members are all inclined to be “friends” with each

other, and such a region is not necessarily limited to a clique. If we use a clique to locate

a dense region, a subgraph Nk[v] such as the one with all possible internal links except

one is undervalued even though it is an extremely cohesive region. In a slight abuse of

notation, we let Ψ0(v) be the sum of in-degree and out-degree of v. A simple toy example

(Figure 4.1) illustrates calculations of Ψk(a) with k = 0, 1, 2, 3, on the directed graph G.
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4.3 Detection Framework

The proposed detection framework is mainly composed of three steps and the first step

is novel. We elaborate the rational behind each step. Given a graph, our detection

framework is summarized as follows:

(i) Find the set of the top Q most active vertices C, i.e., the ones of the Q largest

locality statistic values Ψk(v); we re-denote them as C = {v1, v2, . . . , vQ}.

(ii) Construct a similarity matrix S for vertices in C. S is a Q × Q matrix where Si,j

measures similarity between vertex vi and vj.

(iii) Run a clustering algorithm on the similarity matrix S and report clusters as active

communities.

Step (i) employs the locality statistic as a quantity to identify the Q largest hubs in a net-

work whose activity level is evaluated in the k-th order neighborhood. Similar criteria of

defining local activity level are proposed in [2] [9]: [2] uses the L shell method to agglom-

eratively find a community for each vertex, which has extremely heavy computational

burden in large graphs; [9] distinguishes vertices based on high clustering coefficients,

which may trigger false alarms on small cliques such as triangles in our problem. It is

computationally expensive to compute locality statistic on all vertices. For example, if

k = 1, the computation on all vertices has an equivalent complexity of triangle counting

in the same graph [44]. The complexity is O(mdmax) where dmax is the largest vertex

degree in the graph. Thus, we deploy a trimming algorithm to obtain the top Q largest

locality statistic values, shown in § 4.4 for the case k = 1. As Q is a user-defined input, it
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determines the computational burden of Step (i) and is explored in §4.5. Also, note that

in certain applications some of the most active vertices might be considered as outliers

if they are not connected to the rest of top Q vertices. These outliers are unnecessarily

taken into account for community identification. In that case, a larger Q should be used

and the largest outlying vertices should be trimmed. We do not use this assumption in

this work but all methodologies and arguments can be easily adapted for this assumption.

After identifying the most active vertices, our framework uses the spectral clustering

approach instead of popular modularity-based methods for several reasons. First of all,

modularity optimization requires information of the whole graph so that information

extracted solely from active vertices is less likely to be applicable to modularity-based

methods. Furthermore, modularity maximum does not necessarily mean that a graph

has a community structure and also high proximate modularities can fail to be similar

partitions [10]. These reasons lead us to construct a similarity matrix on {v1, . . . , vQ}.

In Step (ii), the problem of quantifying similarities between active vertices has received

significant attention. Two main types of similarities have been studied in a large number

of application domains: vertex feature based and network structure based. The former

quantifies similarities resting on attribute values of each vertex such as [54]. The latter

focuses only on graph topologies: a pair of vertices achieve a high degree of similarity if

they share many neighbors. Some classic measures can be used, such as Jaccard Index

Sij =
|Nk[vi] ∩Nk[vj]|
|Nk[vi] ∪Nk[vj]|

where Nk[v] is the set of vertices at distance at most k from v in original graph G,

Cosine Similarity [43]

Sij =
|Nk[vi] ∩Nk[vj]|
|Nk[vi]||Nk[vj]|
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where Nk[v] is the set of vertices at distance at most k from v in original graph G,

and another normalized overlap [41]

Sij =
|Nk[vi] ∩Nk[vj]|

min(|Nk[vi]|, |Nk[vj]|)
.

Alternatively, an algebraic approach of iteratively making use of the adjacency matrix is

also proposed in [26] to construct a similarity matrix. Assessment of similarities between

active vertices {v1, v2, . . . , vQ} is not the main aim of this work. Whether to select a

feature based or network structure based approach or which classic measure to be used

is application domain dependent.

Once the similarity matrix S is available, we can cluster the Q vertices through a large

number of standard clustering algorithms such as Hierarchical Clustering, Gaussian Mix-

ture Model Clustering, Self-organizing maps, Graph Spectral Clustering, etc. In our

approach, we prefer to cluster the Q vertices, in a space obtained from eigenvectors,

through spectral clustering [34] on S because the representation induced by eigenvectors

enables the clustering distinctness of initial data points to be more evident [10]. With

the spectral decomposition above, the large gaps between consecutive eigenvalues suggest

the number of clusters in a graph. Additionally, if the computation of all Q eigenvectors,

whose complexity grows at O(Q3), is unattainable, the Lanczos algorithm [5] is recom-

mended to compute leading eigenvectors of S as a few leading eigenvectors suffice to

achieve good partitions.
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4.4 Framework Implementation

As a key distribution, this section presents a trimming algorithm (§ 4.4.1) that efficiently

identifies the most active vertices in a graph. Its implementation is discussed in § 4.4.2

and § 4.4.3 from both shared memory and external memory prospectives respectively.

4.4.1 Trimming Algorithm

In the first step of our framework, we need to identify the vertices of the largest lo-

cality statistic values in a massive graph. It is inefficient to compute locality statis-

tic values of all vertices, while we only need to identify the largest ones. As shown

by local stat in Figure 4.2, Ψ1(v) counts the number of edges, of which adjacent ver-

tices are both in N1[v], in the collection of incident edges of vertices in N1[v]. That

is, Ψ1(v) =
1

2

∑
u∈N1[v]

∑
e∈E[u] 1{S[e]∈N1[v]∧D[e]∈N1[v]}, where 1{·} is an indicator function.

The complexity of computing Ψ1(v) of all vertices is O(mdmax) and becomes especially

intensive if v has more than millions of neighbors..

Therefore, we deploy a cost-effective trimming algorithm to safely skip the computation

of Ψ1(v) on the vertices with small locality statistic, while still being able to identify the

vertices with the Q largest locality statistic values. The trimming algorithm skips the

wasteful computation based on the upper bound of the locality statistic of a vertex. The

tighter upper bound we achieve, the more vertices on which we can skip computation.

The procedures in the rest of the section describe the trimming algorithm that works for

the first-order neighborhood.
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1: function local stat(v)

2: lstat← 0

3: for all u ∈ N1[v] do

4: for all e ∈ E[u] do

5: if S[e] ∈ N1[v] and D[e] ∈ N1[v] then

6: lstat← lstat+ 1

7: return lstat/2

Figure 4.2: local stat(v) computes Ψ1(v). S[e] denotes the source vertex of an edge e
and D[e] denotes the destination vertex of an edge e.

We develop two upper bounds of Ψ1(v) in our trimming optimization, shown by est lstat1(v)

and est lstat2(v) in Figure 4.3. est lstat1(v) = Ψ0(v)2 + Ψ0(v), is a very loose but com-

putationally efficient upper bound. Because v has at most Ψ0(v) neighbors, Ψ1(v) ≤

Ψ0(v)2 + Ψ0(v) and the equality holds when all neighbors of v are fully connected.

est lstat2(v) computes a much tighter upper bound and is also more computationally

expensive. We denote by contrv(u) the amount of potential contribution of u ∈ N1[v]

to Ψ1(v). The amount of contribution of u is measured by the number of edges incident

to u and also counted in Ψ1(v). Ψ1(v) is upper bounded by the sum of contrv(u) over

all neighbors in N1[v], i.e., Ψ1(v) ≤
∑

u∈N1[v] contrv(u). contrv(u) meets two inequalities:

contrv(u) ≤ Ψ0(u) and contrv(u) ≤ 2 × |N1[v]|, because the number of distinct directed

triangles incorporating both u and v is upper bounded by Ψ0(u) and 2|N1[v]|. Since∑
u∈N1[v] contrv(u) counts each potential edge twice, we divide the sum by two. Although

1

2

∑
u∈N1[v] min(Ψ0(u), |N1[v]| × 2) is not the tightest bound, it is sufficiently accurate to

eliminate computation of locality statistic on most vertices.

Having upper bounds est lstat1 and est lstat2, we now describe our procedure of finding
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1: function est lstat1(v)

2: return Ψ0(v)2 + Ψ0(v)

1: function est lstat2(v)

2: est← 0

3: for all u ∈ N1[v] do

4: est← est+min(Ψ0(u), |N1[v]| × 2)

5: return est/2

Figure 4.3: est lstat1(v) and est lstat2(v) compute the upper bound of Ψ1(v).
est lstat2(v) computes a much tighter upper bound but requires more expensive
computation.

arg maxv∈V Ψ1(v) over any set of vertices V , illustrated by top lstat in Figure 4.4. The

idea is to maintain the largest locality statistic discovered so far (curr max) and skip

expensive computation on the vertices whose upper bound of locality statistic is smaller

than curr max. Since est lstat2 requires more computation than est lstat1, we compute

est lstat1 first and only compute est lstat2 if est lstat1 is greater than curr max. To

reach arg maxv∈V Ψ1(v) early, the procedure starts from the vertices with the largest de-

gree with an assumption that a larger-degree vertex is more likely to have a larger locality

statistic. To accelerate finding top Q vertices, top lstat returns not only arg maxv∈V Ψ1(v)

but also all of the vertices whose locality statistic has been computed during the process

of finding arg maxv∈V Ψ1(v).

By utilizing top lstat, topQ lstat (Figure 4.5) finds vertices with the Q largest locality

statistic values. topQ lstat takes two stages to look for vertices with the largest locality

statistic. In the first stage, we find at least Q vertices of large locality statistic by repeat-

edly invoking top lstat on the remaining vertices in the graph whose locality statistic is
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1: function top lstat(V , curr max)

2: sort V s.t. degree(V) in DESC

3: V ′ ← {}

4: for all v ∈ V do

5: est← est lstat1(v)

6: if est ≥ curr max then

7: est← est lstat2(v)

8: if est ≥ curr max then

9: lstat← local stat(v)

10: V ′ ← V ′ ∪ {v}

11: curr max← max(lstat, curr max)

12: return V ′

Figure 4.4: top lstat computes the largest locality statistic among a set of vertices V .
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1: function topQ lstat(V,Q)

2: curr max← 0

3: knownV ← {}

4: while |knownV | < Q do

5: V ′ ← top lstat(V, 0)

6: V ← V \ V ′

7: knownV ← knownV ∪ V ′

8: sort knownV s.t. local stat(V ) in DESC

9: kth lstat← 0

10: while kth lstat 6= local stat(knownV [Q]) do

11: kth lstat← local stat(knownV [Q])

12: V ′ ← top lstat(V, kth lstat)

13: V ← V \ V ′

14: knownV ← knownV ∪ V ′

15: sort knownV s.t. local stat(V ) in DESC

Figure 4.5: topQ lstat finds the vertices of Q largest locality statistic values among V .

unknown. In the second stage, we use top lstat to continue searching for vertices with

the largest locality statistic among the remaining vertices in the graph whose locality

statistic is unknown. The procedure stops when top lstat can no longer discover a vertex

whose locality statistic is larger than the current Qth largest locality statistic.

The complexity of computing top Q locality statistic values depends on both graph struc-

tures and the parameter Q. Theoretically, a very loose upper bound of the complexity

is O(mdmax), the complexity of computing locality statistic on all vertices. However, its
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complexity in practice is much smaller when Q� n because the trimming algorithm skips

computation on the majority of the vertices in a graph. For example, if Q = 100, 000, our

algorithm only needs to compute locality statistic on 163, 409 vertices in the Hyperlink

graph, which account for 0.0047% of vertices in the graph. The complexity of running

est lstat1 on all vertices is O(n) and running est lstat2 on all vertices is O(m). Therefore,

the complexity of the trimming algorithm throughout the entire computation is between

O(n) and O(m) where the constant factor here is 1.

4.4.2 Shared-memory Parallel Implementation

In this section, we describe the parallel implementation of our algorithm in shared mem-

ory. Although trimming skips unnecessary computation on many vertices to speed up

computation, a parallel implementation is still necessary for a graph with billions of

vertices, especially in the era of multi-core processors. We implement our algorithm in

FlashGraph [57], a programming framework for large-scale graph analysis. The imple-

mentation is written in C++.

We parallelize our implementation by parallelizing the function top lstat since its com-

putation on each vertex is independent. We split the vertices in a graph into multiple

partitions and create a thread for each partition to process the vertices in the input set

of top lstat in parallel. Once a thread completes all vertices in its own partition, it steals

vertices from other partitions and processes these stolen vertices.

However, a naive parallel implementation of the algorithm may have highly skewed work-

loads among threads due to the power-law distribution of vertex degree in many real-world

106



CHAPTER 4. ACTIVE COMMUNITY DETECTION IN MASSIVE GRAPHS

graphs. Our algorithm only needs to perform intensive computation (local stat in Figure

4.2) on few vertices, which dominates the entire computation in top lstat. Furthermore,

the time of computing local stat on different vertices varies significantly. Therefore, the

naive load balancing scheme, which moves the computation of an entire vertex to another

thread, is insufficient to evenly distribute the most intensive computation among threads.

Therefore, we further split computation of Ψ1(v) for better load balancing by splitting

N1[v] into j parts N1,1[v], N1,2[v], ..., N1,j[v]. Each part N1,i[v] is only responsible for

computing the contribution to Ψ1(v) from its own part, i.e., computing the cardinality of

the intersection of N1[v] and N1[u], for all u ∈ N1,i[v]. When load balancing is triggered,

the computation of N1,i[v] can be moved to another thread. Since there are many splits,

each of which contains a small amount of computation, it is much easier to distribute

computation evenly among threads.

An additional issue in the parallel implementation is to maintain the maximal locality

statistic discovered currently in top lstat without much locking overhead. Given the fact

that the maximal locality statistic is updated very infrequently and the value increases

monotonically, we always compare a new locality statistic with the current maximal value

without locking before updating the maximal value with locking. As such, we avoid most

locking for updating the maximal locality statistic. We do not lock when we read the

maximal locality statistic. Even though we might read a stale value in a very rare case,

it does not affect the correctness of our implementation. The worst case is that we need

to compute locality statistic on slightly more vertices.
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4.4.3 External-memory implementation

Given a graph with billions of vertices and hundreds of billions of edges, we can no longer

store the entire graph in RAM in a single machine. With the advance of solid state drives

(SSD) in hardware [11] and software [56], SSDs can now perform over one million I/Os

per second. This makes SSDs a natural extension of RAM in large-scale data analysis,

as illustrated by FlashGraph [57]. FlashGraph stores algorithmic vertex state in RAM

and edge lists on SSDs. In order to scale, FlashGraph requires the size of vertex state to

be a small constant.

We use a very compact data structure for our algorithm to store vertex state, which only

occupies eight bytes per vertex. The eight bytes can be used to store the locality statistic

of a vertex, the upper bound of the locality statistic, or a pointer to the neighbor list

of a vertex. We keep the neighbor list of a vertex in memory only when we perform

the expensive computation local stat on the vertex. Therefore, we only maintain a small

number of neighbor lists in RAM at a time. Furthermore, we read the edge lists of

neighbor vertices from SSDs only when they are required. As a result, our implementation

has a small memory footprint, compared with the graph storage size, which allows us to

process graphs with billions of vertices in a single commodity machine.
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4.5 Validation on Synthetic Graphs

This section looks into the performance of our active community detection methodology

on a synthetic graph whose underlying probabilistic behaviors of network participants

and true active community structures are known. To test the proposed framework on the

synthetic graph, the behavior of Receiver Operating Characteristic (ROC) and Adjusted

Rand Index(ARI) [27] [55] [10] are observed under three scenarios, where k = 0, 1, 2, to

quantitatively evaluate how similar the partitions delivered by the framework are to the

true partitions.

The performance of our detection framework is evaluated through synthetic experiments

because the underlying randomness that governs a real network is usually unknown. The

artificial graphs used in the synthetic experiments are generated from Stochastic Block

Model (SBM) introduced in § 2.1. Note that SBM, a more generic version of Planted

Partition Model [16] [7], is widely used as a testbed for community detection algorithms

today [20] [10] [55] and gains the reputation of a standard benchmark. In a stochastic

block model containing blocks {1, . . . , B}, V is randomly partitioned into B distinct

blocks [n1], . . . [nB], where [ni] denotes the vertices in block i. That is, each vertex is

associated with one block membership between 1 to B. The connectivity probabilities

among all vertices are characterized by a B×B symmetric Bernoulli rate matrix P, where

Pi,j denotes the block connectivity probability between blocks i and j.

In order to preserve sparsity, degree heterogeneity and built-in active community struc-

tures in a SBM graph, we select the following SBM parameter settings:

B = 4, n1 = 940, n2 = n3 = n4 = 20
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and

P =



0.01 0.01 0.01 0.01

0.01 0.2 0.01 0.01

0.01 0.01 0.3 0.01

0.01 0.01 0.01 0.4


,

Given the parameters above, G is a graph having 4 blocks where the majority block [n1]

involves 94% actors of the network. All actors in [n1] connects with any other actor

with success probability 0.01. Other blocks have their own distinct self-connectivity

probabilities which are diagonal entries of matrix P. Each of the blocks i = 2 up to B

has self-connectivity probability Pi,i = 0.1× i. The case where P4,4 > P3,3 > P2,2 � P1,1

is of interest because we can consider [n2], [n3], [n4] as three built-in active communities

whose inner connectivity level is anomalously high.

Figure 4.6 is a sample plot of graph adjacency matrix generated by using above setting

in which black dots represent established edges. The three grids, 20 × 20 of each, with

high intensities at the right bottom serve as three active communities to detect.

Figure 4.7 shows a sample graph configuration of G where the size of each vertex v is

proportional to underlying Ψk=1(v). For a pleasant visualization, only one-tenth of total

edges are uniformly sampled and incorporated in the figure as m = 10358. Also, White

(no label), yellow (label 2), red (label 3) and green (label 4) clusters stand for blocks

[n1], [n2], [n3] and [n4] respectively. We observe that sizes of vertices belonging to colored

clusters are more likely to be larger than the ones in the majority white block. This

phenomena foreshadows the rationale of using top Q locality statistic values to cut off a

massive number of negligible vertices which are unlikely to be in active communities.
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Figure 4.6: The adjacency matrix configuration of one sampled graph G generated
through the Stochastic Block Model. The SBM parameters are: B = 4, n1 = 940, n2 =
n3 = n4 = 20, and block connectivity matrix is given in P. Three blocks [n2], [n3], [n4]
at the bottom right, having significantly higher intensities, are three unknown but true
active communities.
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Figure 4.7: One sample graph G with n = 1000,m = 10358. One-tenth of uniformly
sampled edges are incorporated in the figure. White (no label), yellow (label 2), red (label
3), and green (label 4) clusters represent blocks [n1], [n2], [n3], and [n4], respectively. Sizes
of all vertices are proportional to locality statistic {Ψk=1(v)}nv=1.
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The performance of separating built-in active vertices from inactive vertices by top Q

locality statistic values in SBM graphs is evaluated as follows. Selection of Q vertices

with the largest locality statistic values to form C = {v1, v2, . . . , vQ} can induce false

alarms because it is likely that only a subset of C are built-in active community members

in SBM random realizations. We can treat the Step (i) as a binary classification task,

where [n2]∪ [n3]∪ [n4] are underlying positive labels and [n1] are negative ones, by using

the Q-th largest locality statistic as a decision boundary. Next, the performance of the

classifier is empirically evaluated through Receiver Operating Characteristic (ROC) curve

and Area Under Curve (AUC). The empirical ROC curve is built through Monte Carlo

simulations. Specifically, we repeatedly generate stochastic block model graphs and run

Step (i) by varying Q from 1 to n for each graph. Accordingly, we calculate true and

false positive rates according to true labels for each Q in each run.

Figure 4.8 shows the ROC mean curve of the classifiers with different k based on 4000

Monte Carlos. All three classifiers achieve AUC over 0.9 in this scenario, which demon-

strates the usefulness of applying theQ-th largest locality statistic as a classifier boundary.

It is also interesting to note that Ψk=1(v) outperforms Ψk=0(v),Ψk=2(v) in this moderate

scale graph. In a graph at this scale, compared with Ψk=0(v), Ψk=1(v) aggregates more

edges in a larger neighborhood to outclass itself from other vertices if v is in an active com-

munity. Compared with Ψk=2(v), Ψk=1(v) dominates in this experiment because N2(v)

are more likely indistinguishable and highly overlapped between vertices from majority

groups and active groups.

Next, after pinning down the Q most active vertices, we construct their similarity matrix

S through the Jaccard Index in § 4.3, and perform a classic spectral clustering algorithm
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Figure 4.8: Receiver operating characteristic (ROC) mean curves and corresponding Area
Under Curves (AUCs) of classifying active vertices using Q-th largest Ψk(v) as decision
boundary. The curve is built on 4,000 Monte Carlo simulations where each run generates
an stochastic block model graph and calculate one discrete ROC curve by enlarging Q to
increase false positive rate.
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with Radial Basis Function (RBF) Kernel on S to cluster the Q vertices. This is a

clustering task so that Adjusted Rand Index (ARI), recommended in [27] [55] [10], is

an appropriate ad-hoc assessment of detection accuracy because the underlying cluster

labels of the Q vertices are known.

Figure 4.9: Adjusted Rand Index curves against Q, based on 4, 000 Monte Carlo simula-
tions, between spectral clustering results and true clusterings of top Q vertices.

Figure 4.9 shows the ARI curves against Q, based on 4000 Monte Carlos, between our

spectral clustering results and true clusterings of the top Q vertices. The horizontal axis

starts from Q = 61 to guarantee that the top Q vertices precisely come from 4 distinct

clusters [n1], [n2], [n3], [n4]. The bold curves are mean values and dot curves are mean

curves plus (or minus) one standard deviation. It is clear that all mean ARI curves are

still greater than 0.5 even when one-fifth of V are classified as active community members

in step (i). In fact, if Q is well specified by a user, e.g., Q < 75, ARI values of clustering

based on all three locality statistics are greater than 0.7. The results here suggest the

satisfying accuracy of our detection framework.
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4.6 Application

In this section, we evaluate our framework on the Hyperlink graph from August 2012

Common Crawl Corpus [28], the largest real-world graph dataset publicly available so

far. The Hyperlink graph provides three different levels of aggregations on the graph. In

this work, we use the Page-level version of the Hyperlink graph, where each vertex is a

single web page, to verify the scalability of our detection framework. The Hyperlink graph

is an unweighted and directed graph with 3, 563, 602, 789 vertices and 128, 736, 914, 167

edges. It is infeasible to perform any community detection algorithms with the complex-

ity of O(nm) or O(n2) on this graph. Furthermore, in the web graph society, a typical

motivation of investigating community detection is to identify link farms which are delib-

erately created to increase search engine ranks [10]. With this motivation, observers are

concerned only with communities consisting of active hyperlinks. These two constraints

are the obstacles of deploying other algorithms but bypassed by our detection framework.

4.6.1 Active Communities of Hyperlink Graph

We run our detection framework on the Hyperlink graph to determine its effectiveness on

the massive graph. In our experiment, we select k = 1 and run the trimming algorithm

to identify the top Q vertices of the largest locality statistic values, where Q = 2000. In

Step (ii) of the detection framework, Jaccard Index is selected to construct the similarity

matrix S among the top 2000 vertices. Next, to cluster pinpointed websites into active

communities, we use the same spectral clustering method with RBF kernel in §4.5. The

number of clusters is suggested by the spectral gaps of S.
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Figure 4.10: Five active communities in HyperLink graph. Top Q = 2, 000 vertices
projected into first two dimensions of classic multidimensional scaling of S. 5 communities
are colored separately where community index is consistent with Table 4.1. The sizes of
Active community 1 to 5 are n1 = 35, n2 = 1603, n3 = 199, n4 = 42, and n5 = 121,
respectively.
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Community Selected URLs

1 http://www.families.com/ , http://www.eromance.com/

http://www.freecoupons.com/ , http://www.networkmedia.com/

http://www.younger.com/ , http://www.familytree.com/

2 all in this pattern:

http://www.alphateenies.com/movies/*

3 http://wordpress.org/ , http://www.youtube.com/

http://www.google.com/ , http://www.flickr.com/

http://www.yahoo.com/ , http://www.facebook.com/

http://twitter.com/

4 http://www.amazon.com/ , http://www.zappos.com/

http://www.abebooks.com/ , http://www.myhabit.com/

http://www.woot.com/ , http://www.fabric.com/

http://www.diapers.com/

5 http://www.acidmovies.com/ , http://www.azimuthmovies.com/

http://www.asteroidmovies.com/ , http://www.croakmovies.com/

http://www.drymovies.com/ , http://www.btwmovies.com/

http://www.finishmovies.com/

Table 4.1: Table of selected URLs from active communities in Hyperlink Graph provided
by our detection framework. URLs of similar topics are clustered in the same active
communities. Community 1 are URLs maintained and developed by networkmedia
company; Communities 2 and 5 are collections of adult websites; Community 3 consists
of popular social media sites. Community 4 is composed of online shopping sites.
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The procedure above detects five colored active communities decomposed from 2000 ver-

tices (Figure 4.10 and Table 4.1). In Figure 4.10, the top 2000 vertices are projected

into a two-dimensional space through classical multidimensional scaling (MDS) on the

similarity matrix S. Five active communities obtained from our detection framework are

colored separately. The sizes of community 1 to 5 are n1 = 35, n2 = 1603, n3 = 199,

n4 = 42 and n5 = 121 respectively. Table 4.1 lists five selected web URLs from each

cluster for further illustration of detected communities.

Out of 2000 vertices, there are 1603 vertices forming the community 2 whose mem-

bers are all hyperlinks extracted from a single Pay-level-domain adult website (i.e.,

http://www.alphateenies.com). Community 1 is a collection of websites that

are all developed, sold or to be sold by an Internet media company networkmedia, such

as http://www.families.com/, http://www.familytree.com/ and http:

//www.freecoupons.com/. Community 4 consists of websites related to online shop-

ping such as the shopping giant Amazon and the bookseller AbeBooks. Community 5

is another collection of 121 adult web pages where each web page comes from a differ-

ent Pay-level-domain in this cluster. In the community 3, most links are social media

websites and often used in our daily life such as WordPress, Facebook, Twitter, Flicker

and Google. In summary, top 5 active communities in the Hyperlink Graph are grouped

with high topical similarities, which is consistent with findings in [10]. Therefore, these

noteworthy clusters produced by our detection framework not only imply its applicability

on a massive graph but also practicality on real World Wide Web graphs.
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Figure4.11: Log-logplotoftimeconsumptionandthenumberoflocalitystatistic-
computedverticesagainstQoftrimmingalgorithm.Thelogbaseis10,andQrangesfrom
1ton.IntheHyperlinkgraph,therunningtimeoftrimmingalgorithmT(Q)=O(

√
Q)

andcomputingtopQ=104localitystatisticvaluesonlytakes3.7%timeconsumption
onalllocalitystatisticvalues

4.6.2 Time-savingTrimmingAlgorithm

Weevaluatethetimesavingachievedbythetrimmingalgorithm(Section §4.4)onthe

massiveHyperlinkgraph.Thecomputingenvironmentofconductingthetrimmingex-

perimentisamachinewithfourIntelXeonE5-4620processors,clockedat2.2GHz,and

512GBmemoryofDDR3-1333. Eachprocessorhaseightcoreswithhyperthreading

enabled,resultingin16logicalcores.ThemachinehasthreeLSISAS9207-8ehostbus

adapters(HBA)connectedtoaSuperMicrostoragechassis,inwhich12OCZVertex4

SSDsareinstalled. Weconductanexperimenttoshowtherelationoftimeconsumption

againstQandthenumberoflocalitystatisticvaluescomputedagainstQintrimming.

Thelog-logplotwithbase10isgiveninFigure4.11.

Thisexperimentdemonstratesthatthetrimmingalgorithmwinnowsactiveverticesef-

ficientlyevenifQislarge.Figure4.11showsthattherunningtimeofcomputingtop
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Q locality statistic values on the Hyperlink graph is sub-linear against Q and could be

upper bounded by T (K) = O(
√
K). For example, the ratio T (Q = 104)/T (Q = n) =

0.03689694 implies that computation on top Q = 104 vertices only takes 3.7% time of

computation on all vertices because our algorithm only needs to compute locality statistic

on 0.00032% vertices in the graph to find top 104 vertices.
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Conclusions and Discussion

This chapter concludes our current work and presents several directions that can be

pursued in future related research.
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5.1 Conclusion

This dissertation has presented methodologies of community detection using locality

statistics in both temporal and static graph settings.

For temporal graphs, this work has summarized a generative latent position model for a

time series of graphs and set up the anomalous community detection problem in a time

series of graphs in terms of stochastic block models. We have proposed a method of han-

dling with anomalous community detection through the use of scan statistics Sτ,`,k(t; Ψ)

and Sτ,`,k(t; Φ) constructed from two different locality statistics, Ψ and Φ, respectively.

We derived the limiting properties for four representative instances of locality-based scan

statistics S1,0,0(t; Ψ), S1,0,0(t; Φ), S1,0,1(t; Ψ), and S1,0,1(t; Φ). The limiting properties were

then used to derive estimates for the power of the tests. The simulation experiments in-

dicate that the analytic power estimates, even when they are limited in scope, are useful

in answering some important questions about the locality statistics. In particular, it was

shown that neither Ψ nor Φ dominates the other when τ = 1; ` = 0; k = 0, while Ψ is

dominated by Φ when τ = 1; ` = 0; k = 1.

For a static massive graph, we propose a novel framework for detecting active communities

that scales to a billion-node graph. Our framework consists of two parts: trimming

of inactive vertices and clustering on selected active vertices. In the trimming step,

we employ the locality statistic Ψ and present a parallelizable algorithm to distribute

computation. In the clustering step, we use the spectral clustering approach, but other

approaches are also applicable based on the context. The results on synthetic SBM graphs

indicate that our framework performs well and yields reasonable active communities. A
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general strength of our method is that, unlike most other approaches, it is scalable to

extremely massive graphs. Its application to the hyperlink graph with billions of vertices

discovers meaningful communities in the real World Wide Web graph dataset.
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5.2 Future Work

Anomaly detection in temporal or massive graphs has applications in diverse areas, e.g.,

predicting the emergence of subgroups within an organization, monitoring disease spread

in public networks, and detecting modules of cancer and metastasis communities in

protein-protein interaction (PPI) networks. We envision that these and many other

applications will benefit from the type of investigation outlined in this work. However,

much remains to be done, both mathematically and computationally. We list here some

future research avenues related to this work that have not been (sufficiently) explored so

far.

5.2.1 Weighted Graphs

In our assumptions in Chapter 2 and 3, we focused only on unweighted graphs where the

locality statistic Ψk(v) (or Φk(v)) counts the number of edges in the induced subgraph.

For future work, if G is weighted, Ψk(v) can be extended to the sum of the edge weights

in the induced subgraph. Specifically, let us denote a time series of weighted digraphs

by {Gt}, the edge from i to j by (i, j), and its corresponding weight by wij. The weight-

included locality statistics Ψw
t;k(v) corresponding to Eq. (2.3.1) (Ψw

k (v) corresponding to

Eq. (4.2.1)) and Φw
t,t′;k(v) corresponding to Eq. (2.3.6) are defined as

Ψw
t;k(v) =

∑
(i,j)

wi,j1{(i,j)∈E(Ω(Nk(v;Gt);Gt))} (5.2.1)

Φw
t,t′;k(v) =

∑
(i,j)

wi,j1{(i,j)∈E(Ω(Nk(v;Gt);Gt′ ))} (5.2.2)
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Figure 5.1: A two-step time series of weighted digraphs. left: G1, right: G2

.

where Nk[v;G] remains as the set of vertices at a distance at most k from v by ignoring

the direction of the edges. It is straightforward to see that the definitions in Eq. (2.3.1)

and (2.3.6) are, respectively, special cases of Eq. (5.2.1) and Eq. (5.2.2) if wi,j = 1 for

any pair of (i, j).

With the aid of Figure 5.1, which shows a two-step time series of graphs {Gt}2
t=1, we

can illustrate the above definitions with a simple example. For instance, let v = 3; then
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Ψw
t=2;k=1(v = 3) is computed as shown below.

Ψw
t=2;k=1(v = 3)

=
∑
(i,j)

wi,j1{(i,j)∈E(Ω(Nk(v;Gt=2);Gt=2))}

=
∑
(i,j)

wi,j1{(i,j)∈E(Ω({1,2,3,4,6,8};G2))}

=
∑
(i,j)

wi,j1{(i,j)∈{(1,6),(1,8),(3,1),(3,6),(3,8),(4,3),(2,3),(4,8),(2,4),(4,2)}}

=1 + 2 + 5 + 6 + 7 + 9 + 3 + 10 + 4 + 8 = 55;

Similarly, if v = 6, then Φw
t=2,t′=1;k=2(v = 6) is computed as shown below.

Φw
t=2,t′=1;k=2(v = 6)

=
∑
(i,j)

wi,j1{(i,j)∈E(Ω(N2(v=6;G2);G1))}

=
∑
(i,j)

wi,j1{(i,j)∈E(Ω({1,2,3,4,6,8};G1))}

=
∑
(i,j)

wi,j1{(i,j)∈{(8,1),(2,6),(3,8),(6,3),(6,8)}}

=14 + 2 + 6 + 7 + 9 = 38

Using new definitions in Eq. (5.2.1) and Eq. (5.2.2) to respectively replace Eq. (2.3.1)(Eq.

(4.2.1) in the static massive graph setting) and Eq. (2.3.6), we can still conduct our pro-

posed community detection methods on weighted graphs. Note that all other procedures

introduced in Chapters 2 and 3 remain unchanged when they are applied to weighted

graphs. However, theoretical investigations, such as limiting properties of scan statistics

when the underlying locality statistic Ψ or Φ is adapted to include edge weights, are

currently unavailable.
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5.2.2 Streaming Graphs

The community detection on streaming graphs is in its infancy because even the optimal

solution of clustering on a single static graph remains controversial. To identify how a

dynamic community emerges, evolves, or dies, researchers often choose to represent time-

stamped graph data in the form of a time series of graphs. This is also the environment

in which our scan statistics perform detections. One drawback of the algorithm is that

it is limited to a time series of static graphs, and is not suitable for streaming graphs,

especially when the underlying locality statistic is Φ. If τ = 1, ` = 0 and k = 1, it is worth

noting that Ψ, compared with Φ, is inadmissible but computationally inexpensive. For

instance, to complete the τ -step vertex-dependent normalization calculation presented in

Eq.(2.3.3), we have to record previous τ -step graphs to calculate Jt,t′;k(v) if the underlying

locality statistic is Φ. This is certainly formidable and undesired in a streaming graph

algorithm. However, if the underlying locality statistic is Ψ, graph storage is not nec-

essary, and recording only the previous τ -step statistics Ψt′;k(v) is sufficient to calculate

Jt,t′;k(v). Locality statistics based on Ψ can be readily computed in a real-time streaming

data environment, in contrast to those based on Φ. Thus, the adaption or approximation

of locality statistics based on Φ for streaming environments is of interest.

Figure 5.2.2 presents a way to maintain {Ψt,k=1(w)}nw=1 in a real-time streaming data

environment. In a data stream at time stamp t, we assume that there is only one edge

(ut, vt) that is either inserted or deleted inGt. The procedures of update {Ψt+1,k=1(w)}nw=1

are given below, and the time cost of updating Ψt,k=1(ut) and Ψt,k=1(vt) is O(|N1[ut;Gt]∩

N1[vt;Gt]|).
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Require: An initial graph G0, a stream of inserted or deleted edges {(ut, vt)}∞t=1 .

Return updated locality statistics {Ψt+1,k=1(w)}nw=1

1: Initialization: record {N1[v]}nv=1, compute {Ψ0,k=1(v)}nv=1

2: while (ut, vt) is inserted or deleted do

3: S ← N1[ut] ∩N1[vt]

4: δ = 1{(ut,vt) is inserted} − 1{(ut,vt) is deleted}

5: if (ut, vt) inserted then

6: N1[ut]← N1[ut] ∪ {vt}; N1[vt]← N1[vt] ∪ {ut};

7: if (ut, vt) deleted then

8: N1[ut]← N1[ut]− {vt}; N1[vt]← N1[vt]− {ut};

9: if |S| = 0 then

10: Ψt+1,k=1(w)← Ψt,k=1(w) + δ w ∈ {ut, vt};

11: else

12: Ψt+1,k=1(w)← Ψt,k=1(w) + δ(1 + |S|) w ∈ {ut, vt};

13: Ψt+1,k=1(w)← Ψt,k=1(w) + δ w ∈ S;

14: Ψt+1,k=1(w)← Ψt,k=1(w) w ∈ [n]− {ut, vt} − S;

Figure 5.2: Fast update rules for {Ψt,k=1(w)}nw=1 in a data stream of edge insertions and
deletions.

129



CHAPTER 5. CONCLUSIONS AND DISCUSSION

5.2.3 Beyond Stochastic Block Model Graphs

The investigations presented in this work do not take into account attributes of the edges.

The incorporation of edge attributes into the current work is, however, straightforward.

For example, [45] handles attributes by linear fusion, and many of the results there can be

adapted. In particular, one can define fused locality statistics for attributed graphs. For

active community detection in massive graphs, we can find active vertices by concentrat-

ing on vertices with large values of fused locality statistics. In the process of constructing

a similarity matrix, similarities between active vertices can be measured based on the at-

tributes of vertices instead of their structural connectivities. For anomalous community

detection in temporal graphs, power estimates for these fused locality statistics can be

derived in a manner similar to those presented in Chapter 2. Other considerations, e.g.,

optimal fusion parameters, can also be investigated. However, the statistics considered

in [45] are only temporally normalized and do not contain a vertex-dependent normaliza-

tion. Thus, the derivation of their limiting properties is much less involved. In addition,

as the experimental results in Figure 2.5 show, the vertex-dependent normalization does

lead to improved statistical power in many situations of interest.

Furthermore, the power estimates in Chapter 2 are also useful for reasoning about the

behavior of more complicated models without the {Gt} independency assumption, such

as the latent process model proposed in [24]. In [24], a latent process model was de-

veloped for a time series of attributed graphs based on a random dot process model.

Having n vertices governed by n individual continuous-time finite-state stochastic pro-

cesses, this model generates a time series of dependent attributed random graphs, or,

equivalently, conditioning on the sample paths of the stochastic processes, the graphs are
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independent. This source also provides two approximations to the exact latent process

model. The first-order approximation is the stochastic block model that gives rise to a

time series of independent random graphs with independent edges. The second-order ap-

proximation corresponds to the random dot product model that gives rise to a time series

of independent random dot product graphs. Both of these approximations are presented

in § 2.1.

5.2.4 Parameter Selection

Another research direction is to study an optimal combination of input parameters for

our proposed algorithms and understand the interplay between them. Ideally, we would

like to determine the best approach to select a combination of (k, τ, `) in Chapter 2 and

a combination of (k,Q, similarity measure, clustering method) in Chapter 3.

In inference of the time series of graphs, we hope that the following experiment will help

to motivate subsequent work in understanding the interplay between locality statistics,

vertex and temporal normalizations, and power estimates. In § 2.4.1 and § 2.4.2, for

simplicity in analytic investigations, we theoretically obtain power estimates of Sτ,`,k(t; Ψ)

and Sτ,`,k(t; Φ) under the restrictions of τ = 1 and ` = 0. In addition to analytic

investigations, we empirically study the power performances of Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ)

with other (τ, `) combinations via Monte Carlo simulations. In this experiment, we let

τ range from 0 to 10 and ` range from 0 to 10. In each Monte Carlo replicate, a time

series of random graphs based on the SBM is considered in §2.4.1, where (n1, n2, n3) =

(870, 65, 65), (p, h, q) = (0.43, 0.95, 0.98), is sampled. Next, Sτ,`,k(t
∗ − 1; Ψ),Sτ,`,k(t

∗ −
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max(τ,`) β (τ ∗, `∗)

Sτ,`,0(t; Ψ) 0.483 (1, 0)

Sτ,`,0(t; Φ) 0.384 (1, 10)

Sτ,`,1(t; Ψ) 0.571 (1,10)

Sτ,`,1(t; Φ) 0.758 (1,9)

Table 5.1: The optimal τ and ` in an experiment comparing the statistical power of Sτ,`,k
for k = 0, 1 and locality statistics Φ and Ψ. We vary τ, ` ∈ {0, 1, . . . , 10} and compare
the statistical power for each choice of τ and ` through a Monte Carlo experiment with
2, 000 replicates.

1; Φ),Sτ,`,k(t
∗; Ψ) and Sτ,`,k(t

∗; Φ) are calculated individually according to specific (τ, `, k).

After 2, 000 replicates, for each test statistic, the largest empirical power (denoted by

max(τ,`) β) and the corresponding optimal choice of (τ, `)(denoted by (τ ∗, `∗)) is obtained

and summarized in Table 5.2.4.

The empirical results in Table 5.2.4 demonstrate the potential value of extending the

theoretical investigations in §2.4.1 and §2.4.2 to cases of τ ≥ 1 and ` ≥ 1, although this

extension appears significantly more challenging than the case (τ, `) = (1, 0). In [45],

Sτ,`,k(t; Ψ) was also investigated for cases of τ = 0, ` → ∞, and k ≤ 1 under the SBM

setting. However, power estimates for other, more complex locality-based scan statistics,

such as Sτ,`,k(t; ·) for 1 < τ <∞, 0 < ` <∞ and k ≥ 2, remain to be investigated.

In active community detection in a massive graph, we notice that Ψk=1(v) outperforms

Ψk=0(v),Ψk=2(v) in a moderate-scale graph in Figure 4.8. In fact, which detector obtains

the dominating performance depends on the graph scale and structure. For instance,

Ψk=0(v) provides even better performance on smaller networks because it is more likely
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that N1[v], let alone N2[v], are indistinguishable and highly overlapped between vertices

from the majority group and the anomalous group. By the same argument, Ψk=2(v)

performs the best on a larger-scale network if v is in an active community since it ag-

gregates a greater number of edges in a larger neighborhood size to outclass itself from

other vertices. Hence, it is reasonable to study the optimal choice of k, as varying k may

yield different trimming results. Moreover, we should also explore the trade-off between

heavier trimming computational burden and trimming performance. Finally, although

our current experiment uses a combination of the Jaccard index and spectral cluster-

ing to perform clustering, it might be interesting to determine whether an alternative

combination dominates our current approach.
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