
Structured Dictionary Learning and its applications in

Neural Recording

by

Yuanming Suo

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

July, 2015

c© Yuanming Suo 2015

All rights reserved

Abstract

Widely utilized in the field of neuroscience, implantable neural recording devices

could capture neuron activities with an acquisition rate on the order of megabytes

per second. In order to efficiently transmit neural signals through wireless chan-

nels, these devices require compression methods that reduce power consumption. Al-

though recent Compressed Sensing (CS) approaches have successfully demonstrated

their power, their full potential is yet to be explored, particularly towards exploring

a more efficient representation of the neural signals. As a promising solution, sparse

representation not only provides better signal compression for bandwidth/storage ef-

ficiency, but also leads to faster processing algorithms as well as more effective signal

separation for classification purpose. However, current sparsity-based approaches for

neural recording are limited due to several critical drawbacks: (i) the lack of an effi-

cient data-driven representation to fully capture the characteristics of specific neural

signal; (ii) most existing methods do not fully explore the prior knowledge of neural

signals (e.g., labels), while such information is often known; and (iii) discriminative

information is not encoded into the representation to promote classification.

ii

ABSTRACT

Using neural recording as a case study, this dissertation presents new theoretical

understandings and mathematical frameworks on structured dictionary learning with

applications in compression and classification. We begin by showing that using a data

dictionary can significantly compress the neural data thanks to its self-similarity. Un-

der a single task setup, we provide theoretical proofs to show the benefits of using

structured sparsity in dictionary learning. We provide various models for the repre-

sentation of a single measurement and multiple measurements, where signals exhibit

both with-in class similarity as well as with-in class difference. Under the assumption

that the label information of the neural signal is known, the proposed models mini-

mize the data fidelity terms together with structured sparsity terms to yield a more

discriminative representation. We demonstrate that this is particularly essential in

neural recording since it can improve the compression ratio, classification accuracy

and help deal with non-ideal scenarios such as co-occurrences of neuron firings. Fast

and efficient algorithms based on Bayesian inference and alternative direction method

are proposed. Extensive experiments are conducted on both neural recording appli-

cations as well as other classification task, such as face recognition.

Primary Reader: Professor Trac D. Tran

Secondary Reader: Professor Ralph Etienne-Cummings

iii

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Trac D. Tran who

has always been a wise advisor, a caring mentor, and a dearest friend throughout my

entire PhD program. He led me to explore interesting mathematical concepts, gave

me great freedom in choosing research topics and shared with me so much of his life

wisdom to help me live up to my potential. This thesis would never have been done

without his guidance, support, and encouragement.

I thank my dissertation committee members Prof. Ralph Etienne-Cummings and

Prof. Mark A. Foster for their time, interest, and constructive suggestions to this

dissertation. I also thank Prof. Sang Peter Chin from the Boston University for

his insightful research advice, and Prof. Vishal Monga, Dr. Umamahesh Srinivas

and Hojjat Seyed Mousavi at the Penn State University for fruitful discussions on

structured dictionary learning methods. I would like to show my sincere and genuine

gratitude to Prof. Larry D. Carey and Prof. Reza Adhami, my advisors during my

master’s program at the University of Alabama in Huntsville. They directed me to

the right path, and helped me develop good habits and skills.

iv

ACKNOWLEDGMENTS

It has been a great pleasure to be a member of the DSP lab. I would like to thank

all of the following lab members for their help and numerous exciting discussions: Dr.

Dzung T. Nguyen, Dr. Nam H. Nguyen, Dr. Yi Chen, Dr. Minh D. Dao, Dung Tran,

Qing Qu, Xiaoxia Sun, Sonia Joy, Tao Xiong, Xiang Xiang, Luoluo Liu and Akshay

Rangamani. I am also grateful to have the opportunities to work with passionate

and intelligent collaborators at the Johns Hopkins University: Dr. Emi Z. Murano,

Dr. Jonghye Woo, Prof. Maureen Stone, Prof. Jerry L. Prince, and Dr. Garrick

Orchard. I want to give special thanks to Jie Zhang, with whom I started developing

cool ideas around neural recording and compressive video camera. I am also grateful

to my friends who share my joy and help me tremendously through the hard time.

They are the greatest treasure I have ever had.

I gratefully acknowledge the funding sources that made my Ph.D. work possible:

the Electrical and Computer Engineering department at JHU, the National Science

Foundation, and the Army Research Office.

I owe my deepest gratitude to my parents for their unconditional love and support

in all my pursuits. They give me the ultimate freedom to choose the path I want

and always believe that one day I can fulfill my dream. Finally, I want to thank

Qiuyuan Liu, my fiancee, who has always been there cheering me up and standing

by me through the good times and bad. My greatest achievement during the Ph.D.

years is learning the meaning of true love together with you.

v

Contents

Abstract ii

Acknowledgments iv

List of Tables x

List of Figures xi

1 Introduction 1

2 Background 6

2.1 Sparse Representation . 7

2.2 Compressed Sensing . 8

2.3 Dictionary Learning . 11

2.4 Notation . 12

3 Energy-Efficient Multi-Mode Compressed Sensing System for Im-

plantable Neural Recordings 14

vi

CONTENTS

3.1 Prior Works and our Contribution . 15

3.2 Our CS framework . 20

3.2.1 Our Sparsifying Dictionary . 20

3.2.2 Our Sensing Matrix . 21

3.2.2.1 On-chip Sensing . 21

3.2.2.2 Off-chip Sensing . 23

3.2.3 Restoration from Spike Segments 25

3.2.3.1 Spike Restoration Mode 26

3.2.3.2 Spike CS + Restoration Mode 27

3.2.4 Recovery Algorithm . 28

3.3 Experiment validation . 32

3.3.1 Performance of the Proposed Dictionary 33

3.3.2 Performance of the Proposed Two-Stage Sensing 34

3.3.3 Restoration from Spike Segments 34

3.3.4 Performance of Overall Framework for Single Electrode 37

3.3.5 Tetrode CS . 38

4 Structured Dictionary Learning for Classification 51

4.1 Introduction . 51

4.1.1 Dictionary Learning for Reconstruction 52

4.1.2 Dictionary Learning for Classification 53

4.1.3 Our Contributions . 55

vii

CONTENTS

4.2 Hierarchical and Group Structured Dirty Dictionary Learning For Clas-

sification . 56

4.2.1 Motivation from a Coding Perspective 56

4.2.2 Hierarchical Dictionary Learning (HiDL) 60

4.2.2.1 Extending HiDL to Learn from Compressed Data (HiDL-

CS) . 61

4.2.3 Group Structured Dirty Dictionary Learning (GDDL) 63

4.2.4 Classification approach . 71

4.3 Theoretical Analysis . 73

4.3.1 Performance Analysis . 75

4.3.2 Proof Proof for Support Recovery Property 77

4.3.3 Proof for Subspace Consistency Property 82

4.3.4 Remark . 83

5 Experimental Validation of Structured Dictionary Learning Meth-

ods 87

5.1 Parameter Selection . 89

5.2 Synthetic Dataset . 94

5.3 Neural Recording . 99

5.3.1 Performance of HiDL . 99

5.3.2 Performance of HiDL-CS . 101

5.3.3 Performance of GDDL for Spike Co-occurrence case 104

viii

CONTENTS

5.4 Object Classification . 105

5.5 Face Recognition . 107

6 Summary and Future Work 111

Bibliography 114

Vita 130

ix

List of Tables

3.1 Performance of the Proposed Spike Restoration Mode and Spike CS +
Restoration Mode in SNDR. 35

5.1 Objective functions of DL and classifiers used for different methods.
Note that the last term in BGSC-ICS is an intra-block coherence sup-
pression term and Q used in LC-KSVD is an ideal discriminative sparse
code. For more details, readers could refer to the original papers. . . 88

5.2 Comparison of proposed GDDL and other state-of-art DL methods for
spike mixing case. The best results are achieved by GDDL and bolded. 105

5.3 Comparison of proposed HiDL and GDDL and other state-of-art DL
methods using Caltech 101 dataset. The dictionary size of each class
is the same as the training samples per class. The best results are
achieved by HiDL and bolded. 107

5.4 Comparison of proposed HiDL and GDDL with other state-of-art DL
methods on face recognition tasks. All methods use the same dictionary
size. The best results are achieved by proposed HiDL and GDDL. . . 109

x

List of Figures

3.1 Comparison of our previous design and the three working modes of the
proposed system. The new design elements are highlighted in red. . . 40

3.2 Architecture of our CS circuit. 41
3.3 Comparison between the proposed two-stage sensing method and other

sensing methods . 42
3.4 The signal model for Spike Restoration mode. The black dotted line

represents the time stamps of the spike segment. Although the spike
segment is truncated from the full signal, it can still be captured by a
sparse representation with respect to the truncated dictionary. 43

3.5 The underlying joint sparsity model for Tetrode CS. Notice that the
support of the sparse coefficients for different channels are the same
given that the dictionary atoms for different electrodes are aligned in
time. 44

3.6 Comparison of different sparsifying dictionaries. 45
3.7 Comparison of different sensing matrices. 46
3.8 Example results of Spike Restoration mode and Spike CS Recovery

+ Restoration mode for same neural signal from Leicester - Easy2
dataset. Red indicates the reconstruction results and blue represents
the ground truth. The corresponding SNDRs for this specific signal
are also included. 47

3.9 Temporal views of the test signal(left column), recovery SNDR (mid-
dle column) and classification accuracy (right column) comparison of
on-chip DWT (dark green triangulated traces), Spike Detection (red
traces), DWT-CS (green dotted traces), SDNCS (blue traces), our Full
CS mode (purple trace), our Spike Restoration mode (black trace) and
our Spike CS + Restoration mode (cyan trace). In the plot of recovery
SNDR, the window is set to display values in the range of 0 to 26 dB. In
the plot of classification accuracy, the window is set to display values
in the range of 20% to 100%. 48

xi

LIST OF FIGURES

3.10 An example of the reconstruction results on hc-1 dataset. Blue repre-
sents the original signal and red indicates the reconstruction results by
each approach. 49

3.11 Comparisons of Tetrode CS recovery using single electrode approach
versus joint sparsity approach, and data dictionary versus Gabor dic-
tionary. 50

4.1 A schematic of using DL for classification. 54
4.2 Comparison of proposed HiDL and GDDL approaches with other meth-

ods. Data matrix X are represented by grey circles and squares, corre-
sponding to two different classes. The dictionary D lies on an oblique
manifold.1 Green and purple indicates selected dictionary atoms from
different classes. Red dotted curve represents the boundary that sep-
arates sub-dictionaries of different classes. In (a), `1-norm based DL
maps the data to a few dictionary atoms without limitation on their
locations. In (b), the input is mapped to a few dictionary atoms in
a certain neighborhood by locality constraint. However, data close to
the class boundary could still be mapped to the dictionary atoms from
wrong classes. In (c), HiDL forces the data to use a few atoms from
same sub-dictionary (same class). In (d), GDDL separates the chosen
atoms with the same label to two sub-groups: shared dictionary atoms
(solid colored circle and square) and unique dictionary atoms (dashed
colored circle and square). 85

4.3 Comparison between the signal models of the Dirty Model and GSDM.
Data X belongs to the same class. For the Dirty Model, the dictionary
D only contains atoms for the same class while that of GSDM uses
sub-dictionaries for four different classes, i.e., D1, ...,D4. The sparse
coefficients A and B for GSDM are forced to capture the shared sup-
ports (dark blue) and unique supports (light blue) within the group
boundary (red line), while the Dirty Model does not impose such con-
straint. 86

5.1 Effect of dictionary size on classification performance of different DL
methods. For Caltech 101 dataset, the size of training samples per
class is fixed to 30. The dictionary atoms per class is varied from 10 to
30. As can be seen, HiDL, GDDL and LC-KSVD outperforms SRC, K-
SVD and D-KSVD. GDDL does not perform as well as HiDL because
of the nature of the dataset. The benefit of adding hierarchical sparsity
is especially helpful when the dictionary size is small. 89

xii

LIST OF FIGURES

5.2 Convergence of GDDL using the Extended Yale B dataset. The con-
vergence of total objective function, the data fidelity term ||X−DA+
B)||2F , the regularization on A

(∑C
c=1(λ1||Ac||1,2 +λ3

∑
g∈G ||Ac,[g]||F)

)
and the regularization on B

(∑C
c=1(λ2||Bc||1,1 + λ4

∑
g∈G ||Bc,[g]||F)

)
are shown in (a), (b), (c) and (d), respectively. 91

5.3 Comparison of block coherence using dictionaries learned from different
approaches. Under different SNRs and sparsity ratios, the dictionaries
generated by both HiDL and GDDL are more discriminative than K-
SVD separate. 92

5.4 Comparison of SDI using different dictionaries and sparse coding ap-
proaches. Under different SNRs and sparsity ratios, the sparse codes
generated by both HiDL + HiLasso and GDDL + GSDM are more dis-
criminative than that of K-SVD separate + OMP and K-SVD separate
+ HiLasso. 93

5.5 Performance comparison between proposed HiDL and other CS ap-
proaches. 100

5.6 Recovery results of a single spike using different dictionary choices at
different CRs. The recovery results are measured using SNDR (dB).
The groundtruth is plotted in blue and the recovered signal is plotted
in red. 102

5.7 Performance comparison between proposed HiDL-CS and other dictio-
nary learning approaches. 103

5.8 Examples of categories in Caltech 101 that achieve 100% classification
accuracy by HiDL. 106

5.9 The learned dictionary and the sparse coefficient of training data using
K-SVD and GDDL. The sparse codes for all training data in the same
class are ploted in the bottom. It can be observed that the labels
of dictionary atoms learned by GDDL are consistent while K-SVD
can mix the similar faces (red dotted figures). The sparse code for
training data indicates that the proposed method can strictly enforce
the correct group be chosen while K-SVD fails to do so. Moreover,
the dictionary atoms corresponding to the GDDL’s shared supports
(green dotted figures) capture the similarity between data in the same
class while those corresponding to unique supports (un-dotted figures)
indicate the within-class variation. 110

xiii

Chapter 1

Introduction

Implantable neural recording devices, such as Multi-electrode arrays (MEA), have

been widely used by neuroscientists to monitor the neural activities within designated

brain areas. With bandwidths up to 10 kHz, these neural signals are often sampled

at a frequency above 20 kHz as mandated by the Nyquist sampling theorem. Since

the signal usually takes a resolution above 10 bits, the acquisition rate of an MEA

with hundreds of electrodes (i.e., a Utah array) is on the order of megabytes per

second. This high acquisition rate poses a significant challenge for transmitting the

signal off-chip, especially using wireless communications, where the induced power

consumption is in the mW range for traditional approaches.2 Thus, most MEAs are

only utilized in a highly restricted experimental setup, in which either the number of

electrodes is limited or wired communication is employed.

To tackle the challenges faced by the neural recording devices, we proposed new

1

CHAPTER 1. INTRODUCTION

mathematical models and algorithms to enforce various structured sparsity constraints

in a dictionary learning framework. To illustrate its benefits for neural signal com-

pression and classification, we organize the dissertation as follows:

Chapter 1 presents an overview of our contributions.

Chapter 2 introduces mathematical concepts of sparse representation, compressed

sensing and dictionary learning. We also specify the notations used throughout the

dissertation.

Chapter 3 presents our first attempt to use data-driven dictionary in conjunction

with compressed sensing for implantable neural recordings. Our approach includes

designing of the sparsifying dictionary, a two-layer sensing strategy as well as a sparse

recovery method using Spike and Slab prior.

Built upon our on-chip compressed sensing implementation, we propose an energy

efficient multi-mode CS framework that focuses on improving the off-chip components

of neural recording device, including (i) a two-stage sensing strategy, (ii) a sparsifying

dictionary directly using data, (iii) enhanced compression performance from Full

Signal CS mode to Spike CS + Restoration mode and; (iv) extension of our framework

to the Tetrode CS recovery using joint sparsity. This new framework achieves energy

efficiency, implementation simplicity and system flexibility simultaneously. Extensive

experiments are performed on simulation and real datasets. For our Spike CS +

Restoration mode, we achieve a compression ratio of 6% with a reconstruction SNDR

> 10dB and a classification accuracy > 95% for synthetic datasets. For real datasets,

2

CHAPTER 1. INTRODUCTION

we get a 10% compression ratio with ∼ 10dB for Spike CS + Restoration mode.

Chapter 4 introduces our structured dictionary learning framework, including both

Hierarchical Dictionary Learning (HiDL) for a single task setup and Group Structured

Dirty Dictionary Learning (GDDL) for an multi-task scenario. We further demon-

strate the superiority of using structured sparsity for classification through theoretical

analysis of its performance.

In many areas of science and engineering beyond neural recording, researchers

are dealing with signals that are often inherently sparse with respect to a certain

dictionary (also called basis or transform). The seminal paper by neuroscientists

Olshausen and Field3 points out that the receptive fields in human being’s visual cor-

tex utilize sparse coding to extract meaningful information from images. To better

capture the data characteristics, various dictionary learning methods have been pro-

posed for both reconstruction and classification tasks. For classification particularly,

most approaches proposed so far have focused on designing explicit constraints on

the sparse code to improve classification accuracy while simply adopting `0-norm or

`1-norm for sparsity regularization. Motivated by the success of structured sparsity in

the area of Compressed Sensing, we propose Hierarchical Dictionary Learning (HiDL)

and generalize it to Group Structured Dirty Dictionary Learning (GDDL). The latter

incorporates the structure information on both group and task levels in the learning

process. Its benefits are two-fold: (i) the label consistency between dictionary atoms

and training data is implicitly enforced, and (ii) the classification performance is more

3

CHAPTER 1. INTRODUCTION

robust than other techniques in the case of a small dictionary size or limited training

data. Using the subspace model, we derive the conditions for HiDL to guarantee

the performance and show theoretically that using structured sparsity is superior to

`0-norm or `1-norm regularized dictionary learning for classification.

Chapter 5 includes extensive experiment results of using HiDL and GDDL on syn-

thetic simulation, neural recording, face recognition and object classification datasets.

After developing the theoretical frameworks and algorithms of HiDL and GDDL,

we apply these approaches to synthetic simulations, neural recording, and other real-

world applications, such as face recognition and object classification, to demonstrate

the validity of the proposed DL framework. Through extensive experiment results

on neural recording, we show that using HiDL can improve the recovery performance

while significantly boosting classification performance when the compression ratio is

very low (e.g., 5%). Moreover, to suit for the situation that dictionary needs to be

learned directly from the compressed measurements rather than the original signal,

we develop an extension of HiDL – HiDL-CS. HiDL-CS could learn a dictionary from

the randomly compressed measurements as long as the compression ratio is not too

low. Meanwhile, the structured information incorporated in the sparse coefficients

allows HiDL-CS to yield comparable classification accuracy to HiDL even when its

recovery performance might not be as good. This provides an alternative approach for

learning the dictionary without interrupting compression. Finally, we demonstrate

that GDDL could be used to address the non-ideal situation of the co-occurrences

4

CHAPTER 1. INTRODUCTION

of the neuron firings. In this case, a signal frame may contain two or more spikes

and they might be super-positioned on top of each other. GDDL could effectively

separate the consistent neuron firings (the with-in class similarity) from the sparsely

firing of arbitrary neurons (the with-in class difference). Thus, we could use the

clean dictionary of the desired neurons to accurately classify the signal with high

recovery performance. Besides the case of neural recording, we also demonstrate the

classification performance of the proposed HiDL and GDDL in synthetic and real

datasets.

Chapter 6 concludes the dissertation with a discussion of ongoing work and future

directions.

5

Chapter 2

Background

According to The Economist, the global digital information is projected to be more

than 34.6 Zettabytes in 2020, three times more than the projected storage capacity.

More than 90% of this Big Data is unstructured with a very large portion contributed

by the wearable sensors. By 2020, it is projected that every human being will con-

tribute 1,000 Gigabytes of the sensor data individually. These sensors include but not

limited to GPS, accelerometer, gyroscope, microphone, camera, all kinds of biomed-

ical signal sensors, etc. Beyond the domain of monitoring human activity, sensor

data processing has been an active research topic within the context of numerous

practical applications, such as medical image analysis, remote sensing, and military

target/threat detection.

One powerful tool to tackle these critical Big Data problems is signal-processing

techniques based on sparse representation.4 A sparse representation not only provides

6

CHAPTER 2. BACKGROUND

better signal compression for bandwidth/storage efficiency, but also leads to faster

processing algorithms as well as more effective signal separation for detection, clas-

sification and recognition purposes because it focuses on the most intrinsic property

of the data. Sparse signal representation allows us to capture the hidden simplified

structure present in the data jungle, and thus minimizes the harmful effects of noise

in practical settings.

2.1 Sparse Representation

Sparse representation (SR) has been rigorously studied over the past few years as

a powerful signal processing paradigm. According to the SR theory, a signal x ∈ RN

can be represented using an s-sparse coefficient vector a? ∈ RK with respect to a

dictionary matrix D of size N×K, where s-sparse means that the number of non-zero

coefficients of a? is no more than s. To reconstruct a?, the following `1-minimization

problem (or Lasso) is proposed:5–7

Noiseless: min
a
‖a‖1 s.t. x = Da. (2.1.1)

To handle the noisy case with imperfect representations contaminated by bounded

Gaussian noise, the formulation becomes:

Noisy: min
a
‖a‖1 s.t. ‖x−Da‖2 ≤ σ, (2.1.2)

7

CHAPTER 2. BACKGROUND

where σ is the standard deviation of the zero mean Gaussian noise.

Structured sparse representation (SSR) could yield better results than using `1-

norm as in (2.1.1) and (2.1.2) for applications with additional prior information. With

known hierarchical structure, Group Lasso8,9 penalizes the group level sparsity. How-

ever, Group Lasso tends to produces results that are dense inside each group. Thus,

Hierarchical Lasso (HiLasso) is proposed to regualize both the group sparsity and

in-group sparsity.10 And its multi-task version Collaborative HiLasso (C-HiLasso)

takes into account of both the group structure in each task and block struture across

multiple tasks. In the case of multiple measurements X = [x1, ..., xT] capturing sim-

ilar events, the correlation between observations in the sparse representation can be

reinforced by joint sparsity, which imposes the same sparsity patterns on the sparse

coefficients:11

Joint Sparsity: min
A
||A||12 s.t. X = DA, (2.1.3)

where A = [a1, ..., aT] and the norm ||A||12 is defined as the sum of the `2-norm of

different rows of A.

2.2 Compressed Sensing

Compressed sensing (CS) introduces a theoretical framework regarding the exact

recovery of a signal x from its compressed measurement vector y ∈ RM under the

assumption that x is s-sparse (where s < M << N). Given that a sensing matrix S

8

CHAPTER 2. BACKGROUND

satisfying the Restricted Isometry Property (RIP) and M ∼ s log(N
s

),5,6 the s-sparse

vector x can be recovered with high probability by solving the following `1-norm

minimization problem:

min
x
||x||1 s.t. ||y − Sx||2 ≤ σ, (2.2.1)

where S ∈ RM×N is the sensing matrix. Random Gaussian and random Bernoulli

matrices have been shown to satisfy RIP with very small M regardless of the choice

of the sparsifying dictionary. Variants of Bernoulli, such as punctured Bernoulli

circulant matrix, are proposed to further reduce the hardware complexity.12 Most

often, the signal is not sparse in time domain (i.e., image and video) but with respect

to some basis D as pointed out in previous section. Then the optimization problem

becomes:

min
a
||a||1 s.t. ||y − SDa||2 ≤ σ, (2.2.2)

where we replace the original signal x with its sparse representation Da and σ con-

trols the quality of approximation. After recovering the s-sparse signal a ∈ RK , the

estimate of signal x can be recovered by:

x̂ = Da. (2.2.3)

The recovery performance of CS is strongly related to the design of sensing matrix

9

CHAPTER 2. BACKGROUND

and sparsifying dictionary. It has been shown in13 that mutual-coherence can be

used to compare different sensing matrices using the same dictionary. The mutual-

coherence µ(S,D) is defined as the largest absolute value of the normalized inner

products between different columns of the design matrix E = SD, which can be

formally written as:

µ(S,D) = max
1≤i,j≤K,i6=j

|eTi ej|
||ei|| · ||ej||

, (2.2.4)

where ei is the i-th column of E. In general for a given dictionary, the matrix S

that attains a smaller mutual-coherence can achieve the same reconstruction per-

formance with a smaller measurement number M . However, minimizing mutual-

coherence involves calculating all pair-wise inner products and is computationally

expensive. Thus, Elad14 proposed to optimize the sensing matrix S by iteratively re-

ducing the t-averaged mutual-coherence, which minimizes the correlation larger than

certain threshold. In,15 Sapiro et al. proposed to optimize S by reducing the av-

erage mutual-coherence and is shown to achieve better performance than.14 Both

of these approaches perform better than random Bernoulli matrix. However, using

them as the alternative on-chip sensing matrix will increase the complexity for circuit

implementations because of their fractional values.

10

CHAPTER 2. BACKGROUND

2.3 Dictionary Learning

The assumption for using SR is that the signal is sparse with respect to a cer-

tain deterministic dictionary. Traditionally, dictionaries are designed to incorporate

desired properties in time/space or frequency domains, or a mixture of both such

as wavelets. Recently, a different methodology is explored to learn the dictionary

directly from the data to better capture its characteristics. Initially, the dictionary

learning (DL) method is designed primarily for reconstruction:

DL for Reconstruction: min
D,A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1||ai||q). (2.3.1)

Given the training data xi ∈ RN (i = 1, ..., I), a dictionary D ∈ RN×K and the

corresponding sparse coefficients ai are learned. The regularizer `q-norm is used to

promote sparsity, which could be `0-norm,16,17 `1-norm,18–20 `2-norm with locality

constraint,21 structured sparsity,22,23 or sparsity promoting prior.24

DL could also be interpreted as a mapping between the low dimensional signal

x and its high dimensional sparse feature a. Thus, it has also been employed for

discriminative tasks, such as classification. To design the dictionary and sparse code

with discriminating properties, extra constraints fA(·) and fD(·) are enforced, leading

11

CHAPTER 2. BACKGROUND

to:

DL for Discrimination: min
D,A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1||ai||q) + λ2fA(A) + λ3fD(D).

(2.3.2)

The candidates for function fA(·) could be logistic functions,25,26 linear classifier,27

label consistency,28 or Fisher discrimination criterion.29 An example of fD(·) is to

force the dictionaries of different classes to be as incoherent as possible.30 The clas-

sification decision could be obtained from residue with respect to the sub-dictionary

of each class,30 a linear classifier27,28 or a logistic function.25,26

2.4 Notation

In this section, we introduce notations that will be used throughout the article.

We use bold lower-case letters such as x to represent vectors, bold upper-case letters

such as D to represent matrices, and bold lower-case letter with subscript such as dj

to represent a column of a matrix. The dimensions of vectors and matrices are often

clear from the context.

For any vector a, we use ||a||q to denote its `q-norm (0 ≤ q ≤ ∞).

For any matrix A, we use ||A||1,1, ||A||1,2 and ||A||1,∞ to denote its `1,1-norm,

`1,2-norm10 and `1,∞-norm,31 respectively. We also use Prox(·) to denote proximal

operators, which will be explained in details in Chapter 4. A group g is a subset of

indices in {1, ..., K}. A group structure G denotes a pre-defined set of non-overlapping

12

CHAPTER 2. BACKGROUND

groups. We use ρ(·), tr(·), rank(·), dim(·), and svd(·) to denote spectral norm, trace,

rank of the matrix, dimension of the subspace, and singular value decomposition,

respectively.

13

Chapter 3

Energy-Efficient Multi-Mode

Compressed Sensing System for

Implantable Neural Recordings

Implantable neural recording devices, such as Multi-electrode arrays (MEA), have

been widely used by neuroscientists to monitor the neural activities within a desig-

nated brain area. With bandwidths up to 10 kHz, these neural signals are often

sampled at a frequency above 20 kHz as mandated by the Nyquist sampling theorem.

Since the signal usually takes a resolution above 10 bits, the acquisition rate of a

MEA with hundreds of electrodes (i.e., a Utah array) is on the order of megabytes

per second. This high acquisition rate poses a significant challenge for transmitting

the signal off-chip, especially using wireless communications, where the induced power

14

CHAPTER 3.

consumption is in the mW range for traditional approaches.2 Thus, most MEAs are

only utilized in a highly restricted experimental setup, in which either the number of

electrodes is limited or wired communication is employed.

3.1 Prior Works and our Contribution

To release the full potential of MEAs, a straightforward strategy is to reduce

the high acquisition rate or to compress the data on-chip before transmission. Cur-

rently, there are three categories of lossy compression approaches utilized for MEAs:

event-based approaches, transformation-based approaches, and Compressed Sensing

approaches. Among them, event-based approaches have the simplest implementation.

An example of event based approaches is spike detection.32–36 The spikes are first de-

tected in the neural signal using threshold crossing, then only the small segments con-

taining the spikes are transmitted. This mechanism could be implemented using only

a few circuit components, resulting in a small layout area and low power consump-

tion. No off-chip processing is carried out to further process the signal. Therefore,

its disadvantage is obvious since the information contained in the segments without

spikes, which would be useful for signal analysis, can never be recovered.

If the whole signal is required, a transformation-based approach is usually chosen.

A well-known candidate for this category is the on-chip wavelet transform, which

yields high compression ratio and good reconstruction quality.37,38 This approach

15

CHAPTER 3.

takes advantage of the fact that the neural signal can be sparsely represented or

approximated with respect to a wavelet dictionary. Therefore, only a small fraction

of its significant wavelet coefficients, instead of the neural signal, are transmitted.

The off-chip algorithm then takes the inverse wavelet transform to approximate the

original signal. However, an ASIC implementation of the required on-chip wavelet

transform demands large dedicated DSPs and memory operating above the Nyquist

rate of the spikes (> 20 kHz). Moreover, its power consumption is not tunable

because the entire wavelet transform always needs to be carried out, hence reducing

the flexibility of the system.

Recently, the field of Compressed Sensing (CS) has shown potential in achieving

compression and reconstruction performance comparable to the transformation-based

approach but with a much simpler circuitry.2,39–43 The CS approach is based on the

same sparsity assumption as the transformation-based approach, but it does not spar-

sify the signal on-chip, and therefore, avoids the needs of dedicated DSPs. Instead,

CS approach acquires a set of the random measurements of the original signal and

leaves most of the computational burden to off-chip processing. It is theoretically

proven that CS-based systems can perfectly reconstruct a signal using only a small

fraction of its noiseless random measurements. Even in the case of small Gaussian

noise, the recovered signal is guaranteed to be within a bounded neighborhood of the

original signal. The recovery quality and power consumption of CS-based systems

are closely related to its compression ratio, thus users could adjust the amount of

16

CHAPTER 3.

measurements to be collected to meet requirements of different applications. Never-

theless, two challenges still remain. First, there is a trade-off between the complexity

of the sensing circuit and its compression capability. Second, a careful design of the

sparsifying dictionary is needed to guarantee the compression performance.44

In summary, we identify three key factors to consider when designing an efficient

compression approach for implantable neural recordings:

(i) Energy Efficiency: A system should have a high compression ratio with good

reconstruction performance. This could significantly reduce the power consumption.

Both transformation-based and CS approaches share this feature.

(ii) Implementation Simplicity: An ideal system should have simple realization

of on-chip compression module and efficient off-chip reconstruction algorithms. How-

ever, trade-off always exists between complexity of the system and its performance.

Both event-based and CS approaches may have simple on-chip implementations while

CS approaches require complicated off-chip algorithms to gain better recovery per-

formance (i.e., dictionary learning algorithm in43).

(iii) System Flexibility: All aforementioned approaches either provide an estimate

of the full signal or the spike segments. It would be ideal if a single system can have

multiple working modes providing both full signal and spikes that could be used for

different experiment configurations.

Our previous design43 focused on a simple on-chip implementation of random

Bernoulli matrix for the sensing matrix. For off-chip reconstruction, we adopted dic-

17

CHAPTER 3.

tionary learning to train the sparsifying dictionary and then relied on greedy methods

to reconstruct the signal (as in Fig. 3.1(a)). Driven by the aforementioned key fac-

tors, we propose an energy-efficient multi-mode extension of our CS system. With

the same on-chip sensing matrix implementation as in,43 we focus on the following

components of the off-chip design:

(i) Two-stage sensing approach: To address the trade-off between complexity of

the sensing matrix and its compression performance, we propose a two-stage CS

approach for implantable neural recordings as illustrated in Fig. 3.1(b). Besides

the on-chip Bernoulli sensing matrix S, we add a second stage of off-chip sensing

using Puffer Transformation P to further boost the compression performance, and

ultimately, the power efficiency.

(ii) Data dictionary : Different from all previously mentioned techniques, we pro-

pose to use data directly as the sparsifying dictionary D in Fig. 3.1(b-d), which is

inspired by.45 As shown later, the data dictionary provides comparable performance

to the signal dependent dictionary, but without extra computation of dictionary learn-

ing. Moreover, both the off-chip sensing matrix P and the dictionary D can be up-

dated incrementally with low computational complexity. This helps us improve the

implementation simplicity and enables an efficient neural signal processing system.

(iii) Three working modes : Different from our previous work that compressed

the full signal, our new design allows the users to switch between three working

modes: (1) the full signal going through on-chip CS and off-chip reconstruction as in

18

CHAPTER 3.

Fig. 3.1(b); (2) the spike detection followed with off-chip restoration to the full signal

as in Fig. 3.1(c); and finally (3) the spike detection with on-chip CS and off-chip CS

recovery plus restoration to the full signal as in Fig. 3.1(d). As a combination of the

first two modes, the last Spike CS + Restoration mode is unique for two reasons,

(1) it achieves enhanced compression performance because only spike segment rather

than full signal is compressed and, (2) given CS measurements of only spike segments,

the whole signal is recovered to provide information on the non-spike segment as well.

The three working modes also give users an all-in-one system with the flexibility to

choose the desired mode they need.

(iv) Tetrode CS recovery : All components mentioned above are geared towards

a single electrode CS system. Here, we also provide a sparse recovery algorithm

using Spike and Slab priors and joint sparsity for the simultaneous CS recovery of

the multi-electrode neural signal recording (i.e., Tetrode). We have shown that our

system could be easily extended to the Tetrode application with an improved compres-

sion performance comparing to the case of performing CS recovery on each electrode

independently.

19

CHAPTER 3.

3.2 Our CS framework

3.2.1 Our Sparsifying Dictionary

Physiological recordings suggest that shapes of the spikes are quite reproducible

for each neuron over time (as shown in left column of Fig. 3.9). Based on this

observation, neuroscientists are able to distinguish multi-neuron activities using spike

sorting techniques.46,47 Therefore, the inherent dimension of the neural signal is

much smaller than its ambient dimension. Inspired by this observation, we adopt

the concept of self-expressiveness from.45,48 This property assumes that each data

point can be sparsely represented as a linear combination of other points in the same

subspace, which can be formally written as:

di = Dai s.t. ||ai||0 ≤ s, ai,i = 0, ∀ i, (3.2.1)

where di is the i-th column of D, ai is the corresponding sparse coefficients, and

the i-th coefficient of ai is zero so di will not be used to represent itself. For our

framework, we take advantage of the similarity of the spikes, and use pre-acquired

full signal data as the dictionary D to represent the other newly acquired full signal

in the same subspace. Its benefit is obvious because the intense computation needed

by dictionary learning can be waived. Instead, the dictionary D is built by either

periodic acquisition at Nyquist rate or the recovered spikes. In our case, we choose

20

CHAPTER 3.

the first one because it takes very short time to acquire and update the dictionary. In

the case of sparsely firing neurons (no prior existence in the dictionary), we trigger the

full Nyquist acquisition to update dictionary when the reconstruction performance is

not good enough.

3.2.2 Our Sensing Matrix

Different from other CS-based approaches, we propose a two-stage sensing scheme,

which includes an on-chip sensing stage with S and an off-chip sensing stage with P.

The optimization problem now becomes:

argmin
a
||a||1 s.t. ||z−PSDa||2 ≤ σ, (3.2.2)

where P ∈ RM×M is the off-chip sensing matrix and z = Py ∈ RM is the measurement

after second sensing stage.

3.2.2.1 On-chip Sensing

For on-chip sensing matrix S, we choose a digital implementation of Random

Bernoulli Matrix containing values of either 1 or -1 at every entry. Sensing using

Random Bernoulli matrix can be implemented using several area and power efficient

digital accumulators operating at signal Nyquist rate.2,43 This implementation is

more power and area efficient than the implementation of the Random Gaussian

21

CHAPTER 3.

matrices or Optimized matrices,14,15 whose implementations require either multi-bit

digital multipliers or implementation of multiple DACs and analog integrators.49

Fig. 3.2 shows our on-chip sensing implementation in the TSMC 180nm process.

The CS circuit for each electrode contains 26 accumulator shift-registers (ASR). The

accumulations are clocked at signal Nyquist rate of 20 KHz (C20K). The Matrix

block, shared across all the channels, contains 26 registers to hold one row of a

random Bernoulli matrix. Their values are updated at every Nyquist period. The

ASRs and the matrix block implement matrix multiplication between a signal vector

of length N (i.e., N = 128) and a Bernoulli matrix having a dimension of N by M

(i.e., M ≤ 26). Depending on the value of a particular matrix entry (either 1 or

0), the corresponding ASR either adds or subtracts the current digitized signal from

the accumulated value. To avoid the need of extra registers for buffering the data

for transmission, a 4 MHz (C4M) clock is used to shift the data from the ASR to

the output pin near the end of accumulation cycle. Each ASR can be disabled by

applying clock gating to control the compression ratio. The CS circuit also contains

a spike detection block, implemented using a 10-bit full adder, whose output can

either be transmitted off-chip or through CS circuit.43 The On-Chip Sensing blocks

function with VDD of 0.53V without performance degradation. The CS block uses

0.11 mm2 area and 0.83 uW (digital) power per electrode when compressing the signal

at a compression ratio of 10%. Since this paper focuses on the off-chip components

of our CS framework (i.e., dictionary, off-chip sensing and recovery), more details of

22

CHAPTER 3.

the design and specifications of our chip will be presented in a separate paper.

3.2.2.2 Off-chip Sensing

For the off-chip sensing stage, we adopt the concept of Puffer Transformation from

the field of Statistics.50 Given a design matrix E = SD, the corresponding Puffer

Transformation P inflates its smallest non-zero singular values, therefore improves the

irrepresentable condition, which is related to mutual-coherence. Intuitively, the Puffer

Transformation maintains the dimension of the on-chip measurement, but adjusts the

radius of the `2-norm ball (data fidelity term) to become a sphere so that the `1-norm

regularized problem is more likely to find the correct solution. Interested readers can

refer to50,51 for more theoretical analysis. If we define the singular value decomposition

(SVD) of SD = UΣΣΣV>, the corresponding off-chip sensing matrix P will then be:

P = UΣΣΣ−1U>. (3.2.3)

Note that if the i-th singular value ΣΣΣi,i is zero, then we define ΣΣΣ−1
i,i to be zero as well.

To understand the effect of the second stage off-chip sensing P on the average

mutual-coherence, we generate a simulated dataset with D as random Gaussian matrix

of size 100 × 1000 and the sensing matrix S of size 20 × 100. We compare the

proposed two-stage CS approach (on-chip Bernoulli and off-chip P) with random

Bernoulli, random Gaussian and Sapiro’s optimized sensing matrix approach. The

23

CHAPTER 3.

distribution of the normalized pairwise correlation between columns of E is shown in

Fig. 3.3. We use the same Bernoulli sensing matrix for our two-stage sensing approach

and the approach with only on-chip Bernoulli sensing to show the effect of having

an additional off-chip sensing step. For our approach, the correlation is calculated

for the columns of matrix product PSD rather than SD for other approaches. We

can see that the distributions of both the proposed approach and Sapiro’s approach

skew towards zero, therefore can achieve a smaller average mutual-coherence than

that of random Gaussian and random Bernoulli. Thus, they can further improve the

CS reconstruction performance. However, the proposed two-stage sensing approach

has the advantage of a much simpler circuit implementation (with on-chip Bernoulli)

compared to Sapiro’s approach as explained previously.

Algorithm 1: Incremental Update of Off-chip Sensing Matrix P

Input: S, Dnew and U, ΣΣΣ from the SVD of SD
Output: The updated sensing matrix P

1 D̃new ← orth(SDnew −UU>SDnew)

2 R←
[

ΣΣΣ U>SDnew

0 D̃new(SDnew−UU>SDnew)

]
3 Ũ, Σ̃ΣΣ← svd(R)

4 Unew = [U D̃new]Ũ

5 ΣΣΣnew = Σ̃ΣΣ
6 return P = UnewΣΣΣ−1

newU>new

In some applications, neuroscientists need to perform longitudinal analysis to ex-

plicitly deal with slow changes of spike shapes.52 In other cases, the sparsely firing

neurons need special attentions.53 Both circumstances require an update of the dic-

tionary D and the corresponding off-chip sensing matrix P in our framework. The

24

CHAPTER 3.

dictionary update in our approach is simply concatenation, which gives [D Dnew],

where Dnew ∈ RN×Knew is the new full acquisition of the neural signal. Since the

off-chip sensing matrix P is related to the SVD of SD by (3.2.3), we can leverage the

incremental PCA scheme54 to update it efficiently. Our algorithm for the incremen-

tal update of sensing matrix P is presented in Algorithm 1. Here, orth(·) performs

orthogonalization via QR and svd(·) performs SVD. The proposed algorithm has a

computational complexity of O(NK2
new), versus O(N(K + Knew)2) for recomputing

the SVD using the whole new dictionary. Moreover, the total storage required reduces

to O(N(K + Knew)), down from O(N(K + Knew)2). To remove the old data from

the dictionary and avoid the dictionary from growing too large, we use a forgetting

factor to gradually remove them.

3.2.3 Restoration from Spike Segments

The spike detection devices only transmit the signal segments with spikes.32–36

Our system includes a spike detection module, which was used in our previous work43

to provide prior to guide the CS recovery of the full signal. In this section, we will

show that using the spike detection module, we could have two new working modes, (i)

spike detection with off-chip restoration to the full signal (Spike Restoration mode);

and (ii) spike detection with on-chip CS and off-chip restoration to the full signal

(Spike CS + Restoration mode). This enhances the flexibility of the system to obtain

an all-in-one device. Moreover, the Spike CS + Restoration mode is the combination

25

CHAPTER 3.

of traditional Full Signal CS mode and Spike Restoration mode and can provide more

aggressive compression performance.

3.2.3.1 Spike Restoration Mode

In this mode, only the spike segment xΩ is transmitted, where Ω indicates the

time stamps of the spike segment. This changes our noiseless signal model into:

xΩ = DΩa, (3.2.4)

where DΩ is the sub-matrix built by extracting the corresponding rows in Ω from D.

This signal model is elaborated in Fig. 3.4. It is straightforward to see that if the full

signal x could be sparsely represented by a few full dictionary atoms, so is its spike

segment, but with the truncated dictionary atoms. Thus, if only the spike segment

xΩ is transmitted off-chip, the full signal could be restored by first finding a with:

Noisy: min
a
‖a‖1 s.t. ‖xΩ −DΩa‖2 ≤ σ. (3.2.5)

After we figure out the sparse coefficients, the estimate of the full signal could be cal-

culated by (2.2.3). Using only spike segment for sparse recovery does lead to inevitable

loss of information and the sparse coefficient solution a could be different from the

result using full signal. However, in practice, we could achieve good performance as

shown later.

26

CHAPTER 3.

3.2.3.2 Spike CS + Restoration Mode

Built upon our Full Signal CS mode and the Spike Restoration mode, we would

like to further explore the performance of the proposed CS-based design on spike

segments. This mode could potentially lead to an even higher compression ratio than

any other design because it essentially combines three compression elements into one

framework − spike detection, on-chip CS and off-chip Puffer Transformation. In this

case, we treat the spike segment as the signal and the measurement signal after the

off-chip sensing stage becomes:

z = PSxΩ = PSDΩa. (3.2.6)

Notice that the number of columns in the sensing matrix S is no longer equal to the

length of the full signal, but the size of spike segment. Similarly, the off-chip sensing

matrix P is found using DΩ instead of D. Here we still use the same notations for

simplicity. The sparse coefficients are found by:

Noisy: min
a
‖a‖1 s.t. ‖z−PSDΩa‖2 ≤ σ, (3.2.7)

and the full signal is again restored using (2.2.3). Here, another benefit for Spike

CS + Restoration mode is that even though we only take CS measurements of spike

segments, the recovery results are the entire global signal containing the non-spike

27

CHAPTER 3.

segments as well.

3.2.4 Recovery Algorithm

In this section, we will present our CS recovery algorithm in the Tetrode system

setup. Multi-channel recording systems leveraging the joint sparsity concept have

been explored previously.55–58 Our underlying joint sparsity model for Tetrode CS

system is shown in Fig. 3.5. For each channel of Tetrode, we use different sparsifying

dictionaries D (color coded in Fig. 3.5) to indicate differences in the shapes of the

captured neural signal. However, since all four channels pick up the activity from

the same neuron at the same time, there exists a strict matching between the four

channels, which is the type of neurons detected. To capture this correlation, we

enforce the corresponding sparse coefficients to choose the same support locations

under the assumption that the atoms of four sparsifying dictionaries also align in

time. For our data dictionary, we guarantee this alignment by choosing the pre-

acquired data of different electrodes with the same time stamp and placing them into

the same columns of the dictionaries for these electrodes.

This joint sparsity problem could be solved by greedy methods, optimization-based

approaches or Bayesian inference techniques. For our framework, we use Bayesian in-

ference for sparse modeling and choose the Spike and Slab prior,59 which is a mixture

of Gaussian distribution and direc delta function. Our previous work60 have illus-

trated how to use the Spike and Slab model for hierarchical sparse modeling. Here,

28

CHAPTER 3.

we follow a similar methodology to develop the model for joint sparsity problem in

(2.1.3). After incorporating our two-stage sensing process, the likelihood function for

the joint sparsity model is as follows:

Likelihood: Z|Pt,St,Dt,A, σ
2 ∼

T∏
t=1

N
(
PtStDtat, σ

2I
)
. (3.2.8)

Here Z and A are the concatenation of zt and at, where t = 1, ..., T represents each

of the electrodes. For the case of Tetrodes, T is equal to 4, while T = 1 indicates

a single electrode setup. For the Tetrode case, the dictionary for each electrode is

unique, therefore the corresponding off-chip sensing matrix is also unique because of

(3.2.3). The parameter σ is the noise standard deviation for the Gaussian likelihood.

The prior distribution using Spike and Slab is:

Prior: A|σ2
a, γγγ ∼

T∏
t=1

K∏
i=1

γiN (0, σ2
a) + (1− γi)δ, (3.2.9)

where γγγ is the latent variable indicating the active support of sparse coefficients, and

σa denotes the spread of the Slab part. It can seen that for Spike and Slab prior,

the desired degree of sparsity is directly related to the weight γγγ assigned to the Slab

part. We enforce measurements from different electrodes to share the same γγγ, so that

they will have the desired joint sparsity structure in the coefficient matrix A. We

have also shown in our previous work that Spike and Slab prior has a close connec-

tion with Elastic Net formulation,61 resulting in a sparser solution while maintaining

29

CHAPTER 3.

the grouping characteristic. The interested reader could refer to60 for more details.

Finally, the hyperprior for the latent variable γγγ is:

Hyperprior: γγγ|κ ∼
K∏
i=1

Bernoulli(κ), (3.2.10)

where κ controls the sparsity. In all our experiments, we fix the parameters σ, σa to

be 1 and κ to be 0.1. Our results are not sensitive to the choice of these parameters.

Algorithm 2: EP algorithm of joint sparsity using Spike and Slab

Input: Pt, St, Dt (t = 1, ..., T), σ, σa and κ
Output: The sparse coefficient matrix A

1 Initialize all f̃c terms (for c = 1, 2, 3) and Q to be non-informative.

2 while any of the f̃c terms does not converge do

3 To refine each f̃c term, first find Qc by dividing Q with f̃c.

4 Minimize DKL(fcQc||f̃cQc) to modify each of mc
i,t, v

c
i,t, and pci (for

i = 1, ..., K, t = 1, ..., T and c = 1, 2, 3).
5 Find Q as the product of the new f̃c and Qc to update mi,t, vi,t and pi (for

i = 1, ..., K and t = 1, ..., T).

Bayesian inference could be computationally demanding when using Spike and

Slab priors. Thus, we choose an approximation method − expectation propagation

(EP)62 because our modeling only involves distributions from the exponential family

and only the moments need to be updated. We represent the likelihood function

(3.2.8), the prior for sparse coefficients (3.2.9) and the hyperprior for the latent vari-

able (3.2.10) as different terms f1, f2 and f3. Thus, the joint posterior distribution

P(A, γγγ,Z|Pt,St,Dt) can be written as the product of these terms. We approximate

30

CHAPTER 3.

the posterior with following exponential family distribution:

Q =
T∏
t=1

K∏
i=1

N (ai,t|mi,t, vi,t)Bernoulli(γi|pi) (3.2.11)

where mi,t, vi,t (for i = 1, ..., K and t = 1, ..., T) and pi (for i = 1, ..., K) are the

parameters to infer and will be our estimate of the mean and variance for sparse

coefficients Ai,t (i, t-th element of A) and mean for the latent variable γγγ, respectively.

Note that mi,t, vi,t is specific for each Ai,t, while pi is the same for each row of A

to favor the joint sparsity. The function f1, f2 and f3 are also approximated with

exponential family distributions as:

f̃1 = z1

T∏
t=1

K∏
i=1

N (ai,t|m1
i,t, v

1
i,t) (3.2.12)

f̃2 = z2

T∏
t=1

K∏
i=1

N (ai,t|m2
i,t, v

2
i,t)Bernoulli(γi|p2

i) (3.2.13)

f̃3 = z3

K∏
i=1

Bernoulli(γi|p3
i). (3.2.14)

Here m1
i,t, v

1
i,t, m

2
i,t, v

2
i,t (for i = 1, ..., K and t = 1, ..., T) and p2

i and p3
i (for i =

1, ..., K) are the intermediate parameters to be updated in each EP update, whereas

z1, z2 and z3 are normalization parameters. The complete EP procedure is shown

in Algorithm 2. This algorihm could be applied to both the case of single electrode

and Tetrode. For the detailed update procedures for the moments of the exponential

31

CHAPTER 3.

family distributions, readers can refer to.62

3.3 Experiment validation

In this section, we first demonstrate the recovery performances of the proposed

dictionary, two-stage sensing method, and our approaches of restoring full signal from

spike segments as well as CS of spike segments. Next, we demonstrate the advantage of

our whole framework in terms of both reconstruction and classification performances.

Finally, we show results of our Tetrode CS recovery versus recovering each electrode

individually. The recovery results are based on MATLAB simulation. Since the CS

circuits are implemented using digital circuits which does not add additional noise to

the signal, its behavior can be precisely modeled using MATLAB simulation.

Both synthetic and real datasets are employed in various experiments. We use

the Leicester neural signal database,47 which contains 20 simulation datasets. Each

dataset contains spikes from three different types of neurons with different noise

levels. The datasets are named by the difficulty to perform spike sorting, such as

Leicester Difficult1, Difficult2, Easy1, and Easy2. We also carry out benchmarking

on the publicly available dataset hc-1,63 which is the recording from nearby neurons

in the hippocampus of an anesthetized rat. We take 128 and 64 samples around each

spike to form the signal frame for Leicester datasets and hc-1 dataset, respectively. To

simplify the comparison, we retain the signal containing only one spike, while the case

32

CHAPTER 3.

with multiple spikes in one frame is addressed in our previous work.43 All experiments

are ran 10 times with average results being reported. Our result is consistent among

both synthetic and real datasets.

3.3.1 Performance of the Proposed Dictionary

Under different compression ratios CR = M
N

, we compare four different choices

of dictionaries in the CS framework, including the proposed data dictionary, trained

dictionary,43 wavelet dictionary,2 and Gabor dictionary.58 We also include the spike

detection34 for comparison. We choose random Bernoulli matrix for all CS-based

approaches. To accommodate the need for training, we randomly split the data into

two halves with equal sizes, with one part for training and the other part for testing.

The parameters for dictionary learning is the same as in.43 The result is found in

term of Signal to Noise and Distortion Ratio (SNDR),2 which is defined as:

SNDR = 20 log
||x||2
||x− x̂||2

. (3.3.1)

We employ Algorithm 2 to solve (2.1.2) and recover the signal x̂ by (2.2.3). The

results for datasets Leicester - Difficult1 and Leicester - Easy1 with 0.005 noise std

are shown in Fig. 3.6. We can see that the proposed approach using data as the

dictionary works comparably as using the trained dictionary and far better than

other approaches. Compared to the trained dictionary, the proposed data dictionary

33

CHAPTER 3.

is much simpler to update, hence more suitable for large scale monitoring applications.

3.3.2 Performance of the Proposed Two-Stage Sens-

ing

Under different compression ratios CR, we also compare four different choices of

sensing matrices S in the CS framework, including the proposed two-stage sensing,

Sapiro’s approach,15 random Bernoulli matrix43 and random Gaussian matrix. For

a fair comparison, we use data dictionary for all methods. Each time, the data is

randomly splitted into two halves with one for training and the other for testing. The

rest of the experiment setup is the same as in previous section. The results for datasets

Leicester - Difficult2 and Leicester - Easy2 are shown in Fig. 3.7. As expected, the

proposed two-stage sensing approach is worse than the Sapiro’s approach, but it has

the strength of an efficient circuit implementation. Meanwhile, the proposed two-

stage CS approach is more than 2dB better than random matrices when CR is above

15%, which we use as the empirical threshold. Note that we only perform two-stage

sensing when the CR is above this threshold to achieve the overall best performance.

3.3.3 Restoration from Spike Segments

We use Leicester - Difficult1, Difficult2, Easy1 and Easy2 datasets to demonstrate

the performance of our proposed approaches of restoring full signal from spike seg-

34

CHAPTER 3.

Table 3.1: Performance of the Proposed Spike Restoration Mode and Spike CS +
Restoration Mode in SNDR.

Spike Restoration with Spike Size of 13

Datasets Easy1 Easy2 Difficult1 Difficult2

Effective CR = 10% 11.3 11.4 10.7 10.9

Spike CS Recovery + Restoration with Spike Size of 13

Datasets Easy1 Easy2 Difficult1 Difficult2

Effective CR = 2% 9.6 9.8 7.8 9.6

Effective CR = 4% 10.8 10.8 10.0 10.3

Effective CR = 6% 11.0 11.0 10.3 10.6

ment. The size of the spike segment is fixed to 13, corresponding to a CR of 10%.

The data is also randomly divided into two equal sets for training and testing, respec-

tively. We keep the full signal for training data while truncating the test data by spike

detection algorithm. We then test the Spike Restoration Mode by just transmitting

the spike segments and use the trained dictionary to solve (3.2.5) and (2.2.3) with

the results shown in Table 3.1. The proposed method could achieve a SNDR above

10dB at the CR of 10%.

Next, we fix the size of the spike segment to 13, and test the performance of our

proposed approach of restoring full signal from CS measurements of spike segment.

We vary the CR of spike segments between 20%, 40% and 60%, which gives an effec-

tive CR of 2%, 4%, and 6%, respectively. Then we test the Spike CS + Restoration

Mode by transmitting the CS measurements of spike segments and use the trained

dictionary to solve (3.2.7) and (2.2.3). The reconstruction performance of the same

35

CHAPTER 3.

datasets are shown in Table 3.1. Surprisingly, we could achive almost 10dB SNDR for

all datasets at an effective CR of merely 2%. There is an inevitable loss of SNDR for

Spike CS mode due to the lossy nature of CS, but the degradation level is negligible.

Even though we further reduce the number of measurements (effective CR from 6%

to 2%), the recovery performance is not changing much. This confirms our hypoth-

esis that the neural signal can be very sparsely represented using the proposed data

dictionary meaning that the number of measurements M required could be reduced

significantly.

To understand the results more intuitively, two examples of the reconstruction of

the same signal for Spike Restoration mode (CR = 10%) and Spike CS Recovery +

Restoration mode (CR = 2%) are shown in Fig. 3.8. For Spike Restoration mode, we

can get the perfect alignment of the spike segment while it is slightly mis-aligned in

the Spike CS Recovery + Restoration mode due to the CS compression. However, we

can see that as long as we capture the spike segment of neural signal, we could capture

the main features of the data and therefore achieve a much higher compression ratio

than CS of the full signal.

36

CHAPTER 3.

3.3.4 Performance of Overall Framework for Sin-

gle Electrode

Now we are ready to compare the overall framework, including the Full Signal

CS mode, Spike Restoration Mode and Spike CS + Restoration mode with Signal

Dependent Neural Compressed Sensing Method (SDNCS),43 DWT based CS method

(DWT-CS),2 Transformation based method (on-chip DWT),37 and Spike detection

method.34 We randomly split the data into 20% for training and 80% for testing.

The reconstruction and classification results for Leicester - Difficult1 and Easy2 with

0.005 noise std are shown in Fig. 3.9. We use the same wavelet based classifier

(WLC) as in.43 It can be seen that our proposed Full Signal CS mode consistently

yields approximately 5dB gain than SDNCS because our Bayesian inference algorithm

and the two-stage sensing approach are more effective in regularizing the optimiza-

tion problem. Our Spike Restoration Mode and Spike CS + Restoration mode also

outperforms spike detection method significantly for both reconstruction and classifi-

cation. All three modes of our system can achieve above 95% classification accuracy

at the CR around 6%. Notice that our three working modes outperform the on-

chip DWT approach when the measurement number M is smaller than 8 (CR <

6%), so it provides a better solution which yields better reconstruction and classi-

fication performance with much simpler on-chip implementation. Interestingly, the

Spike Restoration Mode and Spike CS + Restoration mode can achieve higher clas-

37

CHAPTER 3.

sification accuracy than our Full Signal CS mode. This is because CS is essentially

a lossy compression method and the information loss in the CS compression is more

significant for full signal than the spike component because the CR has to be higher

to achieve the same number of measurements. Although we lose the information on

the non-spike segment for Spike Restoration Mode and Spike CS + Restoration mode,

this is in some extent compensated by our full signal dictionary.

We also use hc-1 dataset to compare different approaches. The size of the spike

segment is chosen to be 13 for a signal length of 64. For Spike CS + Restoration

mode, we further compress the spike segment to a measurement of size 6, which

yields an effective CR to be 10%. An example of the reconstructed signal by different

approaches are shown in Fig. 3.10 together with the corresponding SNDR. Our new

framework of Full Signal CS mode outperforms our previous design −− SDNCS. And

the two modes based on spike segments could achieve a SNDR around 10dB with 10%

CR. Notice that the performance comparison of the two modes using spike segment

is related to the size of the spike segments and the characteristics of the sparsifying

dictionary after truncation, thus it is hard to tell which one could give better results

in general.

3.3.5 Tetrode CS

Previous experiments only consider the single electrode setup, while our proposed

algorithm could take into account the correlation between four electrodes for Tetrode

38

CHAPTER 3.

monitoring. Using hc-1 dataset, we compare the performance of Tetrode CS recon-

struction using joint sparsity versus reconstructing each electrode independently. We

also compare using data dictionary with Gabor dictionary.58 To emphasize the main

factors of joint sparsity and choices of dictionary, we use our Bayesian inference al-

gorithm for all cases with the only difference in T , which will enforce joint sparsity

when there are multiple electrodes. After pre-processing (i.e., bandpass filter), we

divide the hc-1 dataset using a frame size of 64 (N = 64). Half of the dataset for each

electrode is used as the data dictionary and the remaining for testing. Note that the

time stamps of the signal used for training are the same for all electrodes, which is

the key assumption for using joint sparsity in Tetrode CS. The experiment is again

performed 10 times with different random partition each time and the average result

is reported as in Fig. 3.11. We could see that the proposed Tetrode CS technique

using joint sparsity and data dictionary consistently outperforms the individual CS

reconstruction using data dictionary by about 1dB. Meanwhile, the approaches using

data dictionary consistently outperform ones using Gabor dictionary, which is similar

as the results in Fig. 3.9.

39

CHAPTER 3.

(a) Our previous design43

(b) Proposed system - Full Signal CS mode

(c) Proposed system - Spike Restoration mode

(d) Proposed system - Spike CS + Restoration mode

Figure 3.1: Comparison of our previous design and the three working modes of the
proposed system. The new design elements are highlighted in red.

40

CHAPTER 3.

Figure 3.2: Architecture of our CS circuit.

41

CHAPTER 3.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

The normalized pair−wise correlation

C
ou

nt
in

g
#

Gaussian
Bernoulli
Sapiro’s approach
Proposed two−stage sensing

Figure 3.3: Comparison between the proposed two-stage sensing method and other
sensing methods

42

CHAPTER 3.

Figure 3.4: The signal model for Spike Restoration mode. The black dotted line
represents the time stamps of the spike segment. Although the spike segment is
truncated from the full signal, it can still be captured by a sparse representation with
respect to the truncated dictionary.

43

CHAPTER 3.

Figure 3.5: The underlying joint sparsity model for Tetrode CS. Notice that the
support of the sparse coefficients for different channels are the same given that the
dictionary atoms for different electrodes are aligned in time.

44

CHAPTER 3.

0.05 0.1 0.15 0.2 0.25 0.3

−20

−10

0

10

20

CR

S
N

D
R

 (d
B

)

Proposed Data Dictionary
Dictionary Training
Spike Detection
Wavelet Dictionary
Gabor Dictionary

(a) Leicester - Difficult1 dataset

0.05 0.1 0.15 0.2 0.25 0.3

−20

−10

0

10

20

CR

(b) Leicester - Easy1 dataset

Figure 3.6: Comparison of different sparsifying dictionaries.

45

CHAPTER 3.

0.05 0.1 0.15 0.2 0.25 0.35

10

15

20

25

30

CR

S
N

D
R

 (d
B

)

Two stage sensing
Sapiro’s approach
Bernoulli
Gaussian

(a) Leicester - Difficult2 dataset

0.05 0.1 0.15 0.2 0.25 0.35

10

15

20

25

30

35

CR

S
N

D
R

 (d
B

)

(b) Leicester - Easy2 dataset

Figure 3.7: Comparison of different sensing matrices.

46

CHAPTER 3.

(a) Spike Restoration mode

(b) Spike CS Recovery + Restoration mode

Figure 3.8: Example results of Spike Restoration mode and Spike CS Recovery +
Restoration mode for same neural signal from Leicester - Easy2 dataset. Red indicates
the reconstruction results and blue represents the ground truth. The corresponding
SNDRs for this specific signal are also included.

47

CHAPTER 3.

Figure 3.9: Temporal views of the test signal(left column), recovery SNDR (mid-
dle column) and classification accuracy (right column) comparison of on-chip DWT
(dark green triangulated traces), Spike Detection (red traces), DWT-CS (green dotted
traces), SDNCS (blue traces), our Full CS mode (purple trace), our Spike Restoration
mode (black trace) and our Spike CS + Restoration mode (cyan trace). In the plot
of recovery SNDR, the window is set to display values in the range of 0 to 26 dB. In
the plot of classification accuracy, the window is set to display values in the range of
20% to 100%.

48

CHAPTER 3.

(a) Our previous design43 with CR of 20%

(b) Proposed system - Full Signal CS mode with CR of 20%

(c) Proposed system - Spike Restoration mode with CR of 10%

(d) Proposed system - Spike CS + Restoration mode with CR of 10%

Figure 3.10: An example of the reconstruction results on hc-1 dataset. Blue repre-
sents the original signal and red indicates the reconstruction results by each approach.

49

CHAPTER 3.

0.05 0.1 0.15 0.2 0.25 0.3
−10

−5

0

5

10

15

20

25

30

35

40

CR

S
N

D
R

 (d
B

)

Single Electrode & Data Dictionary
Single Electrode & Gabor Dictionary
Tetrode CS & Data Dictionary
Tetrode CS & Gabor Dictionary

Figure 3.11: Comparisons of Tetrode CS recovery using single electrode approach
versus joint sparsity approach, and data dictionary versus Gabor dictionary.

50

Chapter 4

Structured Dictionary Learning for

Classification

4.1 Introduction

Traditionally, dictionaries are designed for desired properties in spatial or fre-

quency domain or both.4 Recently, a different methodology to learn the dictionary

from data is shown to capture data characteristics better. There are two directions

for designing such a signal dependent dictionary:

(i) Using data directly as the dictionary: Wright et al.48 proposed a sparse representation-

based classifier (SRC) that concatenates the training data from different classes into

a single dictionary and uses class-specific residue for face recognition. Besides super-

vised tasks, a data dictionary is also utilized to cluster the high dimensional data by

51

CHAPTER 4.

finding intrinsic low-dimensional structures with respect to itself.64

(ii) Training a dictionary using data: Training a dictionary such that the data could

be sparsely represented with has demonstrated its advantages in image processing

tasks.16,65,66 Yu et al.21 justified that encoding data with dictionary atoms in its

neighborhood can guarantee a nonlinear function of the data (i.e., a Lipschitz smooth

function as defined in21) to be well approximated by a linear function with this local

coordinate coding.

In contrast to the former approach, the learned dictionary in the latter approach

removes the redundant information in the learning process, therefore the size of the

dictionary does not grow with the size of the data. In this paper, we will focus on

the latter approach. Moreover, we assume that the data has been properly aligned,

although data alignment67,68 is another active research area with growing interests.

4.1.1 Dictionary Learning for Reconstruction

Dictionary learning (DL) is first attempted for the purpose of reconstruction. The

learning process can be described by the following optimization problem:

min
D,A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1||ai||q).

Given training data xi ∈ RM (i = 1, ..., N), the dictionary D ∈ RM×K and corre-

sponding sparse coefficients A ∈ RK×N are both learned. Each column of D and A

52

CHAPTER 4.

are denoted as dj (j = 1, ..., K) and ai (i = 1, ..., N), respectively. The dictionary

size K is typically larger than signal dimension M . The `q-norm is chosen to promote

sparsity while the trade-off between data fidelity and the sparsity regularization is

balanced by tuning the parameter λ1.

This non-convex optimization problem is usually solved by iterating between

sparse coding and dictionary updating. In the sparse coding stage, the sparse co-

efficient ai is found with respect to a fixed dictionary D. This can be carried out

by greedy pursuit enforcing constraints on `0-norm,16 convex optimization target-

ing `1-norm,19,20 `2-norm minimization with locality constraint,21 structured sparsity

optimization22,23 or Bayesian methods.24 In the dictionary updating stage, each dic-

tionary atom dj is updated using only data with non-zero sparse coefficients on index

j. This sub-problem can be solved by either block coordinate descent19 or singular

value decomposition.16 Desirable features, such as multi-resolution69 and transforma-

tion invariant,70 could also be integrated to further improve performances in specific

applications. All the dictionary atoms have same unit `2-norms to prevent some

sparse coefficients from having very large or small values.

4.1.2 Dictionary Learning for Classification

We could treat sparse coefficients as features. In early works, dictionaries are

learned in a reconstructive setup and then the corresponding sparse coefficients are

used for classification tasks.71,72 Recently, researchers start to explore ways to cus-

53

CHAPTER 4.

Figure 4.1: A schematic of using DL for classification.

tomize DL for classification. A general framework for this purpose is illustrated in

Fig 4.1. The low dimensional signal x is mapped to its high dimensional feature

(sparse coefficient) a using a learned dictionary D, which could make the hidden pat-

terns more prominent to capture. A classifier W is then utilized to predict the label

vector l. The key here is to promote D and A to be discriminative by adding extra

constraints fA(·) and fD(·). Now the optimization problem becomes:

min
D,A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1||ai||q) + λ2fA(A) + λ3fD(D).

The function fA(·) could be a logistic function,26 a linear classifier,27,73 a label con-

sistency term,28,74 a low rank constraint75 or Fisher discrimination criterion.29 The

choices of fD(·) could be to force either the sub-dictionaries for different classes,30,76

or the atoms in each sub-dictionary to be as incoherent as possible.77 The label can

be assigned using class-specific residue30 or linear classification.28

54

CHAPTER 4.

4.1.3 Our Contributions

Most methods mentioned in Section 4.1.2 adopt `0-norm or `1-norm based spar-

sity regularization, and add explicit constraints like a linear classifier into the DL

formulation. This consolidation of DL and classifier into one objective function limits

the freedom of choosing different classifiers and could complicate the optimization

procedure of DL.29 Different from these approaches, we improve the intrinsic discrim-

inative properties of the dictionary by exploiting structured sparsity regularization.

We introduce Hierarchical Dictionary Learning (HiDL) and Group Structured Dirty

Dictionary Learning framework (GDDL) that incorporate structured sparsity on dif-

ferent levels. Our specific contributions are listed below.

• Different from approaches using group sparsity,77 structured low rank75 and hi-

erarchical tree sparsity constraints22 in DL, we propose to use hierarchical group

sparsity in conjunction with the Dirty Model.31 This way we can uniquely incor-

porate sparsity, group structure and locality in a single formulation, which are

all desired features for an ideal dictionary to be used in classification. In con-

trast to the approaches that add extra constraints,27,28 our formulation does not

increase the size of the problem because the regularization is enforced implicitly.

• We show theoretically that our HiDL approach (GDDL in a single task setup)

guarantees a perfect block structure of the sparse coefficients at the cost of a

stricter condition, which is desired for classification problems. We also point

55

CHAPTER 4.

out that the condition is more likely to be satisfied when the dictionary size is

smaller, thus making our method more favorable than `1-norm based DL.

• We employ both synthetic and real-world datasets to illustrate the superior

performances of the proposed HiDL and GDDL. Meanwhile, we also point out

scenarios where limitations still exist.

The chapter is organized as follows. In Section 4.2, we present our HiDL ap-

proach, extend it to learn dictionary from compressed measurements −− HiDL-CS,

and generalize it to a multi-task setup −− GDDL. In Section 4.3, we use HiDL to

derive conditions to guarantee its classification performance in a noiseless model.

4.2 Hierarchical and Group Structured Dirty

Dictionary Learning For Classification

4.2.1 Motivation from a Coding Perspective

The coding stage in the DL process typically adopts `0- or `1-norm to encourage

sparsity (the latter one is also referred as Lasso7). Its formulation is

min
A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1||ai||1). (4.2.1)

56

CHAPTER 4.

The corresponding prior distribution for Lasso is a multivariate Laplacian distribution

with the independence assumption. Thus, the support is chosen largely dependent

on the algorithm and the regularization parameter.

Since sparsity alone could not regulate the support location, locality-constrained

linear coding (LLC)78 is proposed to enforce locality instead of sparsity. The objective

function of LLC is defined as:

min
A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1||ei � ai||22), (4.2.2)

where � denotes the element-wise multiplication, and ei ∈ RK is a weight vector

indicating the similarity between signal and dictionary atoms. Locality constraint

could lead to sparsity by controlling the size of the neighborhood. Conceptually, LLC

endorses the local structure but loses the global perspective. For instance, the data

lying on the class boundary could be coded with dictionary atoms from either side or

both sides, creating ambiguity for classification tasks.

To promote both sparsity and group structure, Hierarchical Lasso (HiLasso)10 is

proposed as:

min
A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1

∑
g∈G

||ai,[g]||2 + λ2||ai||1), (4.2.3)

where G is a predefined group structure, and ai,[g] is the sub-vector extracted from ai

using indices in group g. The group structure of HiLasso yields locality because similar

57

CHAPTER 4.

tasks xi will select dictionary atoms corresponding to the same group g. Therefore

for classification tasks, every group of dictionary atoms naturally inherits the label of

the corresponding training data. In other words, the dictionary D can be regarded as

the concatenation of sub-dictionaries D1, ...,DC belonging to different classes, where

C is the total number of classes and Dc has size Kc. In contrast to LLC, HiLasso

captures the global information embedded in the group structure.

In the multi-task setup, different tasks are forced to share the same sets of dic-

tionary atoms, which leads to a variant of HiLasso, called Collaborative HiLasso

(C-HiLasso).10 Although C-HiLasso captures the group correlation, it does not re-

veal explicitly if any atoms are shared by all tasks (within-class similarity) or uniquely

utilized by individual task (within-class variation). The within-class variation makes

the data clusters less compact and harder to classify. Therefore, it will be beneficial

to separate it from the within-class similarity component to better capture the core

essence of the data for discriminative applications. A mixture of coefficients model is

proposed to carry out this decomposition, which is termed the Dirty Model:31

min
A,B

1

2
||X−D(A + B)||2F + λ1||A||1,∞ + λ2||B||1,1, (4.2.4)

where ||·||F denotes the Frobenius norm, `1,∞-norm encourages the block sparsity and

`1,1-norm promotes sparsity. The Dirty model addresses the drawback of C-HiLasso

because A points out dictionary atoms that are shared across all tasks (similarity) and

58

CHAPTER 4.

B captures those that are uniquely utilized by individual task (difference). However,

it assumes no label differences between dictionary atoms. Thus, it lacks the group

information that indicates sub-dictionaries for different classes.

In summary, there are three key factors one could consider when designing DL

methods for classification: sparsity, group structure and if possible, within-group

similarity. Sparsity makes it easier to interpret the data and brings in the possibility

of identifying the difference in a high-dimensional feature space. Group structure

naturally coincides with the label information in the classification problem. It enforces

the labels implicitly, thus will not increase the size of the problem. Within-group

similarity can be used to further refine the group structure by finding a smaller set

of dictionary atoms in each group that can resemble all the data in each class.

Inspired by these observations, we first propose Hierarchical Dictionary Learning

(HiDL) as in Fig 4.2. Different from sparsity or locality driven DL approaches, HiDL

strictly enforces the group boundary between different classes, thus works better

when the data is close to the class boundary. We generalize HiDL to the scenario

when multiple training data samples are correlated (also called multi-task learning

for classification problems26). We call this generalization Group Structured Dirty

Dictionary Learning (GDDL), which combines the group structure with the Dirty

Model and find the shared atoms as well as unique atoms in each class. This could

further strengthen the locality within each group since the shared dictionary atoms

will be more compact in a small neighborhood as in Fig 4.2(d). Notice that constraint

59

CHAPTER 4.

functions fA(·) and fD(·) mentioned in Section 4.1 could also be integrated into HiDL

and GDDL. However, we adhere to a simple formulation to better understand the

principles that matter in following sections.

4.2.2 Hierarchical Dictionary Learning (HiDL)

When training data has large within-class variability, there exists less similarity

among the data from the same class. A properly structured mapping enforced by Hi-

Lasso (4.2.3) in DL process can guarantee that dictionary atoms are only updated by

training data from the same class. This implicit label consistency between dictionary

atoms and data cannot be enforced by either Lasso or LLC. Thus, we propose the

Hierarchical Dictionary Learning (HiDL), whose objective function is

min
D,A

N∑
i=1

(
1

2
||xi −Dai||22 + λ1

∑
g∈G

||ai,[g]||2 + λ2||ai||1), (4.2.5)

essentially incorporating HiLasso into the DL process. Similar to other methods,

HiDL iterates between sparse coding and dictionary update. For sparse coding, we

are solving HiLasso problem with a predefined group structure. Optimization based

approaches10,79 or Bayesian approach using structured Spike and Slab prior60 can be

adopted for this purpose.

60

CHAPTER 4.

4.2.2.1 Extending HiDL to Learn from Compressed Data

(HiDL-CS)

As pointed out by,80 sometimes we do not have the luxury to get our hands on data

in its original size, but rather in its compressed format (e.g., CS measurements). The

high cost of acquiring each signal in its full length motivates us to consider learning

a discriminative dictionary from a few CS measurements that not only represents

the data well, but also has discriminative power as HiDL. Thus, we propose the

Compressed Sensing Hierarchical Dictionary Learning (HiDL-CS), whose objective

function is modified to

min
D,A

N∑
i=1

(
1

2
||yi − SiDai||22 + λ1

∑
g∈G

||ai,[g]||2 + λ2||ai||1), (4.2.6)

Note that we adopt different sensing matrices Si for different training data, so that

we would not lose information when projecting the training signals onto one low

dimensional subspace.

Dictionary Update: Since the sparse coding step could be simply modified by

changing the dictionary D to SD, we just need to derive a dictionary update scheme

for HiDL-CS. Here we rewrite the objective function for dictionary update as

min
D

N∑
i=1

(
1

2
||yi − Si

K∑
k=1

dkai,k||22), (4.2.7)

61

CHAPTER 4.

where dk is the k-th dictionary atom of D and ai,k is the k-th value of the sparse

coefficient vector ai. As pointed out in,80 we could rewrite the objective function to

be,

min
D

N∑
i=1

(
1

2
||ŷki − Sidkai,k||22), (4.2.8)

where ŷki = yi − Si
∑

j 6=k djai,j. Thus, we could set the partial derivative of the new

objective function to zero, which makes,

N∑
i=1

(|ai,k|2S>i Sid̂k − ai,kS>i ŷki) = 0, (4.2.9)

which yields each dictionary atom (before normalization) as,

d̂k = (
N∑
i=1

|ai,k|2S>i Si)
†

N∑
i=1

ai,kSiŷki . (4.2.10)

Taking normalization, we could get the learned dictionary atom as,

dk = d̂k/||d̂k||2. (4.2.11)

62

CHAPTER 4.

4.2.3 Group Structured Dirty Dictionary Learning

(GDDL)

HiDL makes the assumption that different tasks are independent on how they

select dictionary atoms, therefore the sparse coding step for each task is carried out

separately. In some applications, training data in each class is tightly clustered,

indicating a large within-class similarity. For instance, pictures of the same person

taken under different illumination conditions in face recognition tasks can still be

visually identified to belong to the same class. Such correlation among training data

with the same label is not properly captured by HiDL. Therefore, we generalize HiDL

for a multi-task problem and get Group Structured Dirty Model Dictionary Learning

(GDDL) as below:

min
D,A,B

C∑
c=1

(
1

2
||Xc −D(Ac + Bc)||2F + λ1||Ac||1,2 + λ2||Bc||1,1

+ λ3

∑
g∈G

||Ac,[g]||F + λ4

∑
g∈G

||Bc,[g]||F), (4.2.12)

where Xc is all training data from c-th class, while Ac and Bc are the sub-matrices

in A and B consisting of columns for class c, respectively. Furthermore, Ac,[g] and

Bc,[g] are the sub-matrices by extracting rows with indices in group g from Ac and Bc,

respectively. The first three terms impose the Dirty Model with `1,2-norm and `1,1-

norm for promoting row sparsity and sparsity, respectively. Since the dictionary D

63

CHAPTER 4.

contains sub-dictionaries from all classes, extra constraints are needed to guarantee

the active rows from Ac and active indices from Bc fall into the same group, re-

spectively. Inspired by C-HiLasso, we use the collaborative Group Lasso regularizers∑
g∈G ||Ac,[g]||F and

∑
g∈G ||Bc,[g]||F to force the group boundary.

Sparse coding by Group Structured Dirty Model: We call the sparse coding

step of GDDL −− Group Structured Dirty Model (GSDM). It can also be interpreted

as a generalization of C-HiLasso and the Dirty Model. When different tasks do not

have to share atoms, the sparse coding step of (4.2.12) turns into

min
B

1

2
||Xc −DBc||2F + λ2||Bc||1,1 + λ4

∑
g∈G

||Bc,[g]||F , ∀ c, (4.2.13)

which is exactly C-HiLasso enforcing both group sparsity and within-group sparsity.

When there is no label difference between dictionary atoms (no group structure), the

sparse coding step of (4.2.12) becomes

min
A,B

1

2
||Xc −D(Ac + Bc)||2F + λ1||Ac||1,2 + λ2||Bc||1,1,∀ c, (4.2.14)

which is the Dirty Model with decomposition of row sparsity (replacing `1,∞-norm

with `1,2-norm) and sparsity terms.

Nevertheless, there are three key differences between GSDM and the Dirty model.

First, GSDM extends the Dirty model by adding another layer of group sparsity,

which is illustrated in Fig 4.3. Different from the Dirty Model, GSDM enforces all

64

CHAPTER 4.

the activate supports to stay within the same group corresponding to the desired

class. It is the same as why HiDL generates more discriminative dictionary than

simply concatenating K-SVD dictionaries for each class. As we will show later using

experiments, this group structure constraint encourages the dictionary atoms from

different classes to compete for being selected in sparse coding. Therefore, dictionary

as well as sparse coefficient become more discriminative. Second, the sparse codes are

further decomposed into two parts within the group, one with supports shared across

tasks and one with unique supports associated with different tasks. Correspondingly,

the shared dictionary atoms captures the similarity among tasks. Finally, the Dirty

Model is oriented from a reconstruction perspective while the GSDM brings in the

group structure for classification. In short, GSDM could uniquely combine sparsity,

group structure and within-group similarity (or locality) in a single formulation.

Optimization Approach for GSDM: The Group Structured Dirty Model prob-

lem can be reformulated as follows:

min
A,B
||Ac||1,2 + λ2||Bc||1,1 + λ3

∑
g∈G

||Ac,[g]||F + λ4

∑
g∈G

||Bc,[g]||F

s.t. Xc −D(Ac + Bc) = 0,∀ c, (4.2.15)

with the re-scaled regularization parameters (which will not affect the results). We

choose the alternating direction method of multipliers (ADMM) as the optimization

approach because of its simplicity, efficiency and robustness.81,82 By introducing two

65

CHAPTER 4.

auxiliary variables U ∈ RK×N and V ∈ RK×N , this problem can be reformulated as:

min
A,B,U,V

||Uc||1,2 + λ2||Vc||1,1

+
∑
g∈G

(λ3||Uc,[g]||F + λ4||Vc,[g]||F)

s.t. Ac −Uc = 0, Bc −Vc = 0,

Xc −D(Ac + Bc) = 0,∀ c. (4.2.16)

Therefore, the augmented Lagrangian function with respect to A, B, U, and V can

be formed as:

Lµ(A,B,U,V) =
C∑
c=1

(
||Uc||1,2 + λ2||Vc||1,1

+λ3

∑
g∈G

||Uc,[g]||F + λ4

∑
g∈G

||Vc,[g]||F
)

+tr(Ŷ1,A−U) + tr(Ŷ2,B−V)

+tr(Ŷ3,X−D(A + B))

+
µ

2

(
||A−U||2F + ||B−V||2F

+||X−D(A + B)||2F
)

(4.2.17)

where Ŷ1, Ŷ2, Ŷ3 are the Lagrangian multipliers for equality constraints and µ > 0 is

a penalty parameter. The augmented Lagrangian function (4.2.17) can be minimized

over A, B, U, and V iteratively by fixing one variable at a time and updating the

66

CHAPTER 4.

others. The entire algorithm is summarized in Algorithm 3, where we let Y1 = Ŷ1

µ
,

Y2 = Ŷ2

µ
, Y3 = Ŷ3

µ
. And Y1,c, Y2,c and Y3,c are the submatrices with columns

corresponding to c-th class in Y1, Y2 and Y3, respectively.

Deriving the Proximal Operators for GSDM: The key steps in Algorithm 3

are Step 4 and 6. Because GSDM could be regarded as an generalization of C-HiLasso

as pointed out by (4.2.15), Step 6 can also be solved using the same operator as for

C-HiLasso ((III.14),10), which is derived using proximal methods.83,84 The key step of

using proximal methods to solve GSDM is the computation of the proximal operator,

that can be solved exactly with a complexity linear, or close to linear, in the number

of dictionary elements.

First, we will introduce the proximal operators that encourage row sparsity, component-

wise sparsity and group sparsity.85 Inside each group, the proximal operator Proxκ2,Ω1,2

that encourages row sparsity is:

Proxκ2,Ω1,2(v(j,:)) =

(
1− κ2

||v(j,:)||2

)
+

v(j,:) (4.2.18)

where v(j,:) is defined as j-th row of V and (x)+ := max(x, 0). So it will zero out

rows with l2-norms below the threshold κ2. The proximal operator Proxκ4,Ω1,1 for

component-wise sparsity is:

Proxκ4,Ω1,1(vj,i) =

(
1− κ4

|vj,i|

)
+

vj,i (4.2.19)

67

CHAPTER 4.

Algorithm 3: Solving Group Structured Dirty Model Problem with ADMM

Input: Training data X, learned dictionary D, group structure G, scalar
ρ = 1.1, and regularization parameters λ2,λ3,λ4;

Output: Sparse codes A and B;
1 Initializing A0 = 0, B0 = 0, Y0

1 = 0, Y0
2 = 0, Y0

3 = 0, µ = 1, µmax = 106,
k = 0;

2 for c = 1, ..., C do
3 while not converged do
4 Fix Ac, Bc, Vc and update Uc by:

Uk+1
c = arg minLµ(Ak

c ,B
k
c ,Uc,V

k
c)

= ProxΩG,(1,2)(A
k
c + Yk

1,c)

5 Fix Bc, Uc, Vc and update Ac by:

Ak+1
c = arg minLµ(Ac,B

k
c ,U

k+1
c ,Vk

c)

= (D>D + I)−1

[D>(Xc + Yk
3,c −DBk

c) + Uk+1
c −Yk

1,c]

6 Fix Ac, Bc, Uc and update Vc by:

Vk+1
c = arg minLµ(Ak+1

c ,Bk
c ,U

k+1
c ,Vc)

= ProxΩG,(1,1)(B
k
c + Yk

2,c)

7 Fix Ac, Uc, Vc and update Bc by:

Bk+1
c = arg minLµ(Ak+1

c ,Bc,U
k+1
c ,Vk+1

c)

= (D>D + I)−1

[D>(Xc + Yk
3,c −DAk+1

c) + Vk+1
c −Yk

2,c]

8 Update Lagrange multipliers Y1,c, Y2,c, Y3,c:

Yk+1
1,c = Yk

1,c + Ak+1
c −Uk+1

c

Yk+1
2,c = Yk

2,c + Bk+1
c −Vk+1

c

Yk+1
3,c = Yk

3,c + Xc −D(Ak+1
c + Bk+1

c)

9 Update penalty parameter µ = min(µmax, ρµ)
10 Increment k.

11 return Estimated sparse codes A and B.

68

CHAPTER 4.

where vj,i is the value of V at the coordinate [j, i]. Finally, the proximal operator for

group sparsity is:

Proxκ1,ΩG(V[g]) =

(
1− κ1

||V[g]||F

)
+

V[g] (4.2.20)

where V[g] is the sub-matrix with rows indexed by group g. It has the effect of zeroing

or keeping coefficients in the same group all together.

In our case, the GSDM contains group sparsity structure and row sparsity struc-

ture for Ac and it contains group sparsity structure and element-wise sparsity struc-

ture for Bc. Both can be interpreted as composite norm in a hierarchical sparse

coding procedure. As pointed out in,86 the proximal operators associated with the

composite norm in hierarchical sparse coding can be obtained by the composition of

the proximal operators as long as the sparsity structures follow the right order. This

order is termed as a total order relationship or tree-structured sets of groups (Defi-

nition 1,22), which requires that the two groups are either disjoint or one is included

in the other. Both cases in GSDM satisfy the total order relationship because either

the individual index or the individual row is included in groups as clearly shown in

Fig 4.3(b). After establishing the total order relationship, the proximal operators for

composite norm could be constructed by applying the proximal operators for smaller

groups first, followed by the ones for larger groups. Therefore, the corresponding

operators for Step 4 and 6 in Algorithm 3 can be derived as below:

ProxΩG,(1,2) = Proxκ1,ΩG ◦ Proxκ2,Ω1,2 (4.2.21)

69

CHAPTER 4.

and

ProxΩG,(1,1) = Proxκ3,ΩG ◦ Proxκ4,Ω1,1 (4.2.22)

where Proxκ1,ΩG and Proxκ3,ΩG are the proximal operators for group sparsity, whereas

Proxκ2,Ω1,2 and Proxκ4,Ω1,1 promotes the selection of only a few non-zero rows and

elements, respectively. So ProxΩG,(1,2) for Step 4 can be readily computed by applying

first the proximal operator associated with the `1,2-norm (row-wise soft-thresholding)

and then the one associated with group sparsity Proxκ1,ΩG . Similarly, the C-HiLasso

operator ProxΩG,(1,1) for Step 6 is just applying the element-wise soft-thresholding and

then the group thresholding, which is same as in.10 Here, we have κ1 = λ3
µ
, κ2 =

1
µ
, κ3 = λ4

µ
, κ4 = λ2

µ
. Note that GSDM separates the sparse code into shared indices

Ac and unique indices Bc, thus the selected group in Ac could be different from

that in Bc. To avoid such situation, we enforce the same group selection by always

using the group selected by row-sparsity term, because it is a stronger constraint than

sparsity.

Dictionary Update: We adopt the method of block coordinate descent with

a warm start to update one dictionary atom at a time.19 Other methods such as

Singular Value Decomposition (SVD)16 or Method of Optimal Directions (MOD)65

could also be used and yield similar results. Meanwhile, we choose block coordinate

descent method to show in Section III that under certain conditions this approach

forces the dictionary atoms to be updated in the same subspace. Using the facts

that ||X − DA||2F = tr[(X − DA)(X − DA)>] and trace is invariant under cyclic

70

CHAPTER 4.

permutations, the objective function of the dictionary update step can be changed

to:

min
D

1

2
tr(D>DΨ)− tr(D>Φ) (4.2.23)

where

Ψ =
N∑
i=1

aia
>
i , Φ =

N∑
i=1

xia
>
i .

Taking the derivative and set it to zero, we obtain the dictionary update procedure

as follow:

d̂← 1

Ψj,j

(φj −Dψj) + dtj, dt+1
j ← 1

max(||d̂||2, 1)
d̂, (4.2.24)

where Ψj,j is the value of Ψ at coordinate [j, j] with dtj and dt+1
j being the j-th

atom at t-th and t+ 1-th iterations, respectively. The last step in (4.2.24) guarantees

all dictionary atoms to have unit norms. The dictionary is initialized with random

sampling of training data and the motivation will be explained in Section 4.3 from a

theoretical standpoint.

Putting together the sparse coding and dictionary update processes, we complete

the algorithm for GDDL as presented in Algorithm 4.

4.2.4 Classification approach

For classification, we choose a linear classifier for its simplicity and the purpose

of fair comparison with results of other techniques, although advanced classification

71

CHAPTER 4.

Algorithm 4: Group Structured Dirty Dictionary Learning (GDDL)

Input: Labeled training data xi, i = 1, .., N , the group structure G, scalar
ρ = 1.1, and regularization parameters λ1 and λ2;

Output: Dictionary D and sparse code A and B;
1 Initializing D0 by random sampling from training data of each class and t = 0;
2 while not converged do
3 Fix Dt and update At+1 and Bt+1 using Algorithm 1. (For HiDL, use

convex optimization to solve HiLasso10 instead.)
4 Fix At+1 as well as Bt+1 and update Dt+1 using (4.2.22) (or (4.2.8) for

learning from CS measurements).
5 Increment t.

6 return dictionary D and sparse code A and B.

techniques (i.e., SRC48) could potentially lead to better performances. The linear

classifier W ∈ RC×K is found by:

W> = (AA> + ηI)
−1

AL> (4.2.25)

where A is the learned sparse codes for training data from either HiDL or GDDL. The

matrix L ∈ RC×N provides the label information for training data. If training data xi

belongs to the c-th class, then Lc,i is one and all other elements in the same column

are zero. The parameter η controls the trade-off between the classification accuracy

and the smoothness of the classifier. Because we enforce group structure in HiDL

and GDDL, the sparse coefficient of training data A has a block diagonal structure.

It also makes our linear classifier W form a block diagonal structure. Therefore, the

non-zero sparse coefficients on undesired support of test data could be zeroed out by

this block diagonal classifier. We will further explore the condition for A to have the

72

CHAPTER 4.

block diagonal structure in Section 4.3. For each test data x, we find its sparse code

by solving HiLasso with the learned dictionary D, then apply the classifier W to get

the label vector lest. The test data is then assigned to the class c = arg maxc lest.

For GDDL, we only use the shared sparse coefficient A to train the classifier. This

has the benefit of making the sparse coefficients more discriminative because they are

mapped to the dictionary atoms that are around the center of the cluster. Therefore

we could increase the between-class distance among the sparse codes of different

classes. For the subsequent classification step, we only feed the shared sparse code a

into the classifier.

4.3 Theoretical Analysis

In this section, we will use HiDL to investigate its theoretical guarantees, then

justify the benefit and tradeoff of using structured sparsity in DL for classification.

Currently, most of the theoretical analysis of DL focused on the properties of the

learned dictionary from a reconstruction perspective. It has been shown that given

enough noiseless or small Gaussian noise contaminated training data, using `1-or `0-

norm regularization in DL leads to a dictionary D, which is a local minimum around

the groundtruth with high probability.87–89 However, little theoretical effort is focused

on analyzing the discrimination power of the learned dictionary, which we will explore

in this section.

73

CHAPTER 4.

The DL problem is non-convex, making the direct analysis of its solution not triv-

ial. Inspired by the connection between K-SVD and K-means, we interpret the sparse

coding stage as analogous to sparse subspace clustering (SSC),64 and the dictionary

learning step is essentially a way of learning the basis for different subspaces. How-

ever, there are two key differences between HiDL and SSC.

(i) HiDL is proposed for supervised learning and SSC is developed for unsupervised

learning, thus the first difference is the availability of the group structure (label) in-

formation. In HiDL, different groups correspond to different subspaces (labels). This

in turn leads to the enforcement of group structure sparsity rather than `1-norm,

which is later shown to make the condition for perfect sparse decomposition stricter.

However, this price is paid to make the sparse code more discriminative by guaran-

teeing perfect block structure to separate different classes;

(ii) To represent the subspaces, HiDL uses learned dictionary atoms while SSC uses

data directly. Therefore, the success of SSC only depends on the success recovery

of sparse coding step since subspace representation (data) is fixed. While for HiDL,

dictionary atoms are updated in every iteration so we also need to demonstrate that

the dictionary update will not jeopardize the representation of the subspaces. This

motivates us to take an inductive approach for analysis.

In this section, we assume that the sparse decomposition is exact so all training

data have a perfect decomposition xi = Dai. Scalings of λ1 and λ2 do not affect the

optimal solution, so we replace them by a single parameter λ. Now the sparse coding

74

CHAPTER 4.

step of HiDL could be re-written as:

min
A

λ
∑
g∈G

||ai,[g]||2 + (1− λ)||ai||1 s.t. xi = Dai ,∀i (4.3.1)

Then, we borrow the concepts of independent and disjoint subspaces from SSC frame-

work64 as below.

Definition 1: Given a collection of subspaces {Sc}Cc=1. If dim(⊕Cc=1Sc) =
∑C

c=1 dim(Sc),

then {Sc}Cc=1 is independent where ⊕ denotes the direct sum operator. If every pair

of subspaces intersect only at the origin, then {Sc}Cc=1 is disjoint.

The index of subspaces (c = 1, ..., C) is purposely chosen to be same as the class

labels to emphasize the correspondence between sub-dictionary Dc and subspace Sc

(class label). To characterize two disjoint subspaces,64 also defined an important

notion: the smallest principal angle.

Definition 2: The smallest principle angle θc1,c2 between two disjoint subspaces Sc1

and Sc2 is:

cos(θc1,c2) = max
vc1∈Sc1 ,vc2∈Sc2

v>c1vc2
||vc1||2||vc2||2

which gives cos(θc1,c2) ∈ [0, 1).

4.3.1 Performance Analysis

With the aforementioned notations, we use an induction approach to show the

following results.

75

CHAPTER 4.

Theorem 1: Given enough noiseless training data points spanning all C subspaces

{Sc}Cc=1 of dimension {rc}Cc=1. If we train the dictionary using HiDL, and both Lemma

1 and Lemma 2 are satisfied, the noiseless test data from the same C subspaces will

have a perfect block sparse representation with respect to the trained dictionary.

To be more specific, we will show two properties for the sparse coding and dictio-

nary update stages hold under certain conditions.

(i) Support recovery property: starting in the sparse coding stage, the sparse code a

for training data x of c-th class will have a perfect block structure such that ac 6= 0

and a−c = 0, where ac and a−c indicate the sub-vectors corresponding to the subspace

Sc and all other subspaces except Sc;

(ii) Subspace consistency property: then in the dictionary learning stage, the dictio-

nary update procedure (4.2.24) guarantees the dictionary atoms to be updated in the

same subspace.

Support recovery property: Similar to Theorem 1 in,64 it is straightforward

to see the support recovery property holds for the case of independent subspace. We

can show that the support recovery property also holds for the disjoint subspace case

as long as the following Lemma 1 holds.

Lemma 1: (Disjoint Subspace Case) Consider a collection of data points drawn from

C disjoint subspaces {Sc}Cc=1 of dimension {rc}Cc=1. If the condition

σmin(Dc1) >

(
λ+ (1− λ)

√
Kc1

)
maxc1 6=c2 cos(θc1,c2)

λ√
K−c1

+ (1− λ)
(4.3.2)

76

CHAPTER 4.

is satisfied, then for every nonzero input x ∈ Sc, (4.3.1) recovers a perfect subspace

sparse structure, i.e., ac 6= 0 and a−c = 0. Note that Kc1 and K−c1 are the size of

Dc1 and D−c1, respectively. And σmin(Dc1) is the smallest singular value of Dc1.

From Lemma 1, we can see that the condition for a perfect block structure recovery

is more likely to be satisfied if the dictionary size is smaller, the smallest principle

angle between two disjoint subspace is larger or the smallest singular value of Dc1 is

larger.

Subspace consistency property: We then show that dictionary update proce-

dure (4.2.24) gives us Lemma 2 as below.

Lemma 2: Suppose the training data x belongs to the c-th class. Assume that each

sub-dictionary is full-rank. At the t-th iteration, if the dictionary atom dt−1
j ∈ Sc and

sparse coefficient at from the previous sparse coding stage has a block structure such

that atc 6= 0 and at−c = 0, then the updated dictionary atom dtj ∈ Sc.

This indicates that if the sparse coding step generates a sparse coefficient a with

a perfect block structure, then the dictionary update will guarantee the dictionary

atoms to be updated in the same subspace. This in turn will reinforce the disjoint

subspace condition required for sparse coding step of next iteration (Lemma 1).

4.3.2 Proof Proof for Support Recovery Property

Similar to Theorem 1 in,64 it is straightforward to see the support recovery prop-

erty holds for the case of independent subspace as in following Lemma.

77

CHAPTER 4.

Lemma: (Independent Subspace Case) Suppose the data are drawn from C subspaces

{Sc}Cc=1 of dimension {rc}Cc=1. Let Dc denotes the sub-dictionary for subspace Sc

and D−c denotes the sub-dictionary for all other subspaces except Sc. Assume that

every sub-dictionary Dc is full column rank. If these subspaces are independent, then

for every input x ∈ Sc, (4.3.1) recovers a perfect subspace-sparse structure, i.e., the

resulting solutions have a∗c 6= 0 and a∗−c = 0.

For the disjoint subspace case, we define zc1 and z−c1 as below:

zc1 = arg minλ
∑
g∈G

||z[g]||2 + (1− λ)||z||1 s.t. x = Dc1z

and

z−c1 = arg minλ
∑
g∈G

||z[g]||2 + (1− λ)||z||1 s.t. x = D−c1z.

Then, we could derive following Lemma for the disjoint subspace case.

Lemma: (Disjoint Subspace Case) Given the same data and dictionary as in the

independent subspace case above. If these subspaces are disjoint, then (4.3.1) recovers

a perfect subspace sparse structure if and only if for all nonzero x ∈ Sc1 ∩ ⊕c2 6=c1Sc2,

λ
∑
g∈G

||zc1,[g]||2 + (1− λ)||zc1||1 < λ
∑
g∈G

||z−c1,[g]||2 + (1− λ)||z−c1||1.

Note that zc1,[g] and z−c1,[g] are the sub-vectors of zc1 and z−c1 defined by group g.

78

CHAPTER 4.

The condition for the disjoint subspace case in previous Lemma is related to the

sparse coefficients of the data, which is largely dependent on the algorithm. To be

more intuitive, it is thus better to directly relate these requirements to either the

dictionary or the data, which gives the following Lemma 1.

Lemma 1: (Disjoint Subspace Case) Consider a collection of data points drawn from

C disjoint subspaces {Sc}Cc=1 of dimension {rc}Cc=1. If the condition

σmin(Dc1) >

(
λ+ (1− λ)

√
Kc1

)
maxc1 6=c2 cos(θc1,c2)

λ√
K−c1

+ (1− λ)
(4.3.3)

is satisfied, then for every nonzero input x ∈ Sc, (4.3.1) recovers a perfect subspace

sparse structure, i.e., ac 6= 0 and a−c = 0. Note that Kc1 and K−c1 are the size of

Dc1 and D−c1, respectively. And σmin(Dc1) is the smallest singular value of Dc1.

Proof:

Step 1: First, we will find the upper bound βc1 for the left side of the original

condition in Lemma 2, λ
∑

g∈G ||zc1,[g]||2+(1−λ)||zc1||1. Since data x ∈ Sc1∩⊕c2 6=c1Sc2

and Dc1 is full column rank, we have,

x = Dc1zc1 ⇒ zc1 = (D>c1Dc1)
−1D>c1x (4.3.4)

79

CHAPTER 4.

Since the subspace structure matches the group structure, we have

λ
∑
g∈G

||zc1,[g]||2 + (1− λ)||zc1||1 = λ||zc1||2 + (1− λ)||zc1||1.

Applying the vector norm property yields

λ||zc1||2 + (1− λ)||zc1||1 ≤ λ||zc1||2 + (1− λ)
√
Kc1 ||zc1||2

where Kc1 is the size of sub-dictionary Dc1 . Next, applying (4.3.4) and the matrix

norm properties (||Ax||2 ≤ ||A||2,2||x||2 and ||A−1||2,2 = 1
σmin(A)

) , we have

(
λ+ (1− λ)

√
Kc1

)
||zc||2 =

(
λ+ (1− λ)

√
Kc1

)
||(D>c1Dc1)

−1D>c1x||2

≤
(
λ+ (1− λ)

√
Kc1

)
||(D>c1Dc1)

−1D>c1 ||2,2||x||2 =
λ+ (1− λ)

√
Kc1

σmin(Dc1)
||x||2 = βc1

Thus, we have derived the upper bound βc1 for the left side of the condition.

Step 2: We will now show the lower bound β−c1 for the right side of the condition

λ
∑

g∈G ||z−c1,[g]||2 + (1− λ)||z−c1||1. Notice that we have

λ
∑
g∈G

||z−c1,[g]||2 + (1− λ)||z−c1 ||1 = λ
∑

c2∈G\c1

||zc2||2 + (1− λ)||z−c1||1

where we have abused the notation c2 ∈ G\c1 to mean all the groups excluding the

80

CHAPTER 4.

one corresponding to the class c1. Because

λ
∑

c2∈G\c1

||zc2||2 + (1− λ)||z−c1||1 ≥ λ||z−c1||2 + (1− λ)||z−c1 ||1,

we can instead find the lower bound for the simplified condition λ||z−c1||2 + (1 −

λ)||z−c1 ||1. Based on the definition of z−c1 , we have

||x||22 = x>x = x>D−c1z−c1 .

Using the Holder’s inequalities (|u>v| ≤ ||u||∞||v||1 and |u>v| ≤ ||u||2||v||2) , we

obtain

||x||22 = x>D−c1z−c1 ≤ ||D>−c1x||∞||z−c1||1

and

||x||22 = x>D−c1z−c1 ≤ ||D>−c1x||2||z−c1||2.

With the definition of smallest principle angle and the vector norm inequality, we can

write

||x||22 ≤ max
c2 6=c1

cos(θc1,c2)||D−c1 ||max,2||x||2||z−c1||1

and

||x||22 ≤
√
K−c1 max

c2 6=c1
cos(θc1,c2)||D−c1||max,2||x||2||z−c1 ||2

where we use ||D−c1||max,2 to denote the largest `2-norm of the columns of D−c1 ,

81

CHAPTER 4.

which is 1 because we restrict the dictionary atoms in a convex set D to have unit

norm. Therefore, the lower bound for the right side can be shown to be

β−c1 =
λ||x||2√

K−c1 maxc1 6=c2 cos(θc1,c2)
+

(1− λ)||x||2
maxc1 6=c2 cos(θc1,c2)

.

Step 3: Combining the lower bound in Step 2 together with the upper bound found

in Step 1 gives

λ+ (1− λ)
√
Kc1

σmin(Dc1)
||x||2 <

λ||x||2√
K−c1 maxc1 6=c2 cos(θc1,c2)

+
(1− λ)||x||2

maxc1 6=c2 cos(θc1,c2)

which can be simplified to,

σmin(Dc1) >

(
λ+ (1− λ)

√
Kc1

)
maxc1 6=c2 cos(θc1,c2)

λ√
K−c1

+ (1− λ)
. �

4.3.3 Proof for Subspace Consistency Property

Lemma 2: Suppose the training data x belongs to the c-th class. Assume that each

sub-dictionary is full-rank. At the t-th iteration, if the dictionary atom dt−1
j ∈ Sc and

sparse coefficient at from the previous sparse coding stage has a block structure such

that atc 6= 0 and at−c = 0, then the updated dictionary atom dtj ∈ Sc.

Proof:

Based on the properties of subspace, it suffices to show instead that φj−Dψj ∈ Sc.

82

CHAPTER 4.

Notice that if atc 6= 0 and at−c = 0, then Ψ will be block diagonal with block structures

matching the subspace alignments. Therefore, ψc 6= 0 and ψ−c = 0, i.e. Dψj ∈ Sc.

Also notice that Φ =
∑N

i=1 xia
t
i
>

= D(
∑N

i=1 a∗ia
t
i
>

), where a∗i represents the true

sparse code for xi that has same block structure. Therefore,
∑N

i=1 a∗ia
t
i
>

has the same

block diagonal structure matching the subspace alignments, i.e. φj ∈ Sc. Therefore,

dtj ∈ Sc. �

4.3.4 Remark

When λ = 0, the condition (4.3.2) becomes

σmin(Dc1) >
√
Kc1 max

c1 6=c2
cos(θc1,c2)

which is exactly the condition derived in Theorem 3 of64 with the given dictionary

having unit norm columns. Moreover, because Kc1 is almost always smaller than

K−c1 , the condition for HiDL is stricter, which means that the requirement for using

structured sparsity is stricter than using `1-norm. This is the tradeoff paid to recover

the sparse code with the right block structure in contrast to no constraints whatsoever

on the support by `1-norm. However, this also gives the benefit of the group structure,

which is especially helpful for classification as illustrated in Fig 4.2. Taking a closer

look at the condition in (4.3.2), on the left side, the smallest non-zero singular value

of the dictionary is bounded from below, yielding a similar effect as the restricted

83

CHAPTER 4.

isometry property (RIP),5 forcing the transformation between signal domain and

coefficient domain to preserve the distance.

The condition in (4.3.2) relates to the size of the dictionary such that the smaller

the dictionary size (or indirectly the subspace dimension because the sub-dictionary is

full rank), the more likely the condition can be satisfied. When the intrinsic dimension

of the signal or the dictionary size is small, it is favorable to choose HiDL. Compared

to `0-norm or `1-norm regularized DL, HiDL is more likely to recover the perfect

block structure, thus could lead to better classification performance. It also suggests

that there is a trade-off between using a large dictionary to encode general data

distributions versus a small dictionary to ensure its discriminative power.

In short, HiDL has been theoretically shown to be more favorable than the `0-

or `1-norm guided DL for the task of classification for two reasons: (i) it gives a

perfect block structured sparse code at the expense of a stricter condition; and (ii) it

could lead to potentially better performance when the dictionary size or the intrinsic

dimension of data is small. Note that we have assumed a noiseless condition, which

will be extended to the case of Gaussian noise in future work. We have also taken an

inductive approach for analysis rather than analyzing the solution of the algorithm.

In next section, we will demonstrate the performance of HiDL and GDDL using

empirical results.

84

CHAPTER 4.

(a) �1-norm based DL (b) locality based DL

(c) proposed HiDL (d) proposed GDDL

Figure 4.2: Comparison of proposed HiDL and GDDL approaches with other meth-
ods. Data matrix X are represented by grey circles and squares, corresponding to
two different classes. The dictionary D lies on an oblique manifold.1 Green and
purple indicates selected dictionary atoms from different classes. Red dotted curve
represents the boundary that separates sub-dictionaries of different classes. In (a),
�1-norm based DL maps the data to a few dictionary atoms without limitation on
their locations. In (b), the input is mapped to a few dictionary atoms in a certain
neighborhood by locality constraint. However, data close to the class boundary could
still be mapped to the dictionary atoms from wrong classes. In (c), HiDL forces
the data to use a few atoms from same sub-dictionary (same class). In (d), GDDL
separates the chosen atoms with the same label to two sub-groups: shared dictionary
atoms (solid colored circle and square) and unique dictionary atoms (dashed colored
circle and square).

85

CHAPTER 4.

(a) Dirty Model

(b) Group Structured Dirty Model (GSDM)

Figure 4.3: Comparison between the signal models of the Dirty Model and GSDM.
Data X belongs to the same class. For the Dirty Model, the dictionary D only
contains atoms for the same class while that of GSDM uses sub-dictionaries for four
different classes, i.e., D1, ...,D4. The sparse coefficients A and B for GSDM are
forced to capture the shared supports (dark blue) and unique supports (light blue)
within the group boundary (red line), while the Dirty Model does not impose such
constraint.

86

Chapter 5

Experimental Validation of

Structured Dictionary Learning

Methods

In this section, we compare the proposed HiDL and GDDL to various existing

dictionary learning methods on synthetic dataset, real datasets for tasks of neural

recording, face recognition, and object classification. The public datasets used in this

section are the Leicester neural signal database,47 Extended Yale B Face Database,90

the AR Face Database,91 and the Caltech101 Dataset.92

For neural recording case, the benchmark approaches are the proposed data dictio-

nary in Chapter 3, trained dictionary,43 wavelet dictionary,2 Signal Dependent Neural

Compressed Sensing Method (SDNCS),43 DWT based CS method (DWT-CS),2 and

87

CHAPTER 5.

Table 5.1: Objective functions of DL and classifiers used for different methods. Note
that the last term in BGSC-ICS is an intra-block coherence suppression term and Q
used in LC-KSVD is an ideal discriminative sparse code. For more details, readers
could refer to the original papers.

Method Objective function for DL Classifier

K-SVD16 minD,A
∑N

i=1
1
2
||xi −Dai||22 s.t. ||ai||0 ≤ k linear

D-KSVD27 minD,A,W
∑N

i=1
1
2
||xi −Dai||22 + γ||L−WA||2F + β||W||2F s.t. ||ai||0 ≤ k linear

SRC48 Using training data directly SRC
LLC78 minD,A

∑N
i=1 (1

2
||xi −Dai||22 + λ1||ei � ai||22) linear SVM

BGSC-ICS77 minD,A
∑N

i=1
1
2
||xi −Dai||22 + λ3

∑
g∈G ||Ac,[g]||F + γ

∑
g∈G(

∑
s,t∈g,s6=t ||d>s dt||22) (4.2.25)

LC-KSVD28 minD,A,W
∑N

i=1
1
2
||xi −Dai||22 + γ||L−WA||2F + β||Q−A||2F s.t. ||ai||0 ≤ k linear

proposed HiDL (4.2.5) (4.2.25)
proposed GDDL (4.2.12) (4.2.25)

Transformation based method (on-chip DWT).37

For image classification cases, the benchmark algorithms are Sparse Representation-

based Classification (SRC),48 K-SVD,16 Dictionary Learning with Structured Inco-

herence (DLSI),30 Discriminative K-SVD (D-KSVD),27 Locality-constrained Linear

Coding (LLC),78 Fisher Discrimination Dictionary Learning (FDDL),29 Block and

Group Regularized Sparse Modeling with Intra-block Coherence Suppression (BGSC-

ICS),77 Label Consistent K-SVD (LC-KSVD),28 K-SVD16 for dictionary learning of

each class and HiLasso10 for sparse coding (K-SVD + HiLasso), and K-SVD16 for dic-

tionary learning of each class and Dirty Model31 for sparse coding (K-SVD + Dirty

Model). A summary of DL objective functions and classifiers used in these benchmark

methods is presented in Table 5.1.

We use SNDR, block coherence,93 sparse code discrimination index (SDI), and

classification accuracy for comparison purposes. The classification accuracy is defined

as the percentage of correctly classified test data.

88

CHAPTER 5.

10 15 20 25 30
58

60

62

64

66

68

70

72

74

dictionary size per class

cl
as

si
fic

at
io

n
ac

cu
ra

cy

SRC
K−SVD
D−KSVD
LC−KSVD
HiDL
GDDL

Figure 5.1: Effect of dictionary size on classification performance of different DL
methods. For Caltech 101 dataset, the size of training samples per class is fixed to 30.
The dictionary atoms per class is varied from 10 to 30. As can be seen, HiDL, GDDL
and LC-KSVD outperforms SRC, K-SVD and D-KSVD. GDDL does not perform as
well as HiDL because of the nature of the dataset. The benefit of adding hierarchical
sparsity is especially helpful when the dictionary size is small.

5.1 Parameter Selection

Dictionary Size: In all experiments, the initial dictionary for both HiDL and

GDDL are random selections from training data. As shown in,28,29 the larger the

dictionary size is, the better classification performance it can generally yield. The

drawback of a large dictionary size is that the size of problem becomes large simulta-

neously. Therefore, the ideal dictionary learning method is the one that can achieve

a certain level of high performance using a small dictionary size. To compare the pro-

89

CHAPTER 5.

posed method with other approaches on this front, we use the Caltech101 Dataset as

an example. For each class, we randomly choose 30 samples for training and the rest

for testing. The number of dictionary atoms for each class varies from 10 to 30. As

shown in Fig 5.1, all DL methods improve when the dictionary size becomes larger.

Also, as proved in the previous section, our proposed HiDL and GDDL are compara-

ble to LC-KSVD and all three methods consistently outperforms other sparsity driven

approaches. This is consistent with our previous theoretical analysis. GDDL does not

perform as well as HiDL for this dataset, probably because the dataset has very large

within-class variability so the group structured dirty model does not fit the nature of

the data. In contrast to other methods, HiDL and GDDL enforces label consistency

implicitly using structured sparsity instead of adding extra constraint fA(·), therefore

controlling the problem size.

Regularization Parameters: The choice of regularization parameters depends

on the application and data. If a Bayesian approach is chosen for the sparse coding

step, it will allow us to understand the connection between regularization parameters

and data characteristics.60 Here we adopt the convex optimization based approach,

and we use 5-fold cross validation on training data to find the parameters that give

the best results.

Stopping rule: The stopping rule for HiDL and GDDL could be such that

either the change of objective function in (4.2.5) and (4.2.12) are small enough or

the maximum iteration number has been reached. The objective function of both

90

CHAPTER 5.

50 100 150 200 250

20

30

40

50

60

iteration number

to
ta

l o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(a) Overall objective function

50 100 150 200 2500

10

20

30

iteration number

va
lu

e
of

 d
at

a
fid

el
ity

 te
rm

(b) Data fidelity term

50 100 150 200 250

800

1000

1200

1400

iteration number

va
lu

e
of

 G
ro

up
 L

as
so

 n
or

m

(c) Regularization on A

50 100 150 200 250
1500

2000

2500

iteration number

va
lu

e
of

 L
1

no
rm

(d) Regularization on B

Figure 5.2: Convergence of GDDL using the Extended Yale B dataset. The con-
vergence of total objective function, the data fidelity term ||X − DA + B)||2F , the
regularization on A

(∑C
c=1(λ1||Ac||1,2 + λ3

∑
g∈G ||Ac,[g]||F)

)
and the regularization

on B
(∑C

c=1(λ2||Bc||1,1 + λ4

∑
g∈G ||Bc,[g]||F)

)
are shown in (a), (b), (c) and (d), re-

spectively.

HiDL and GDDL are non-convex, thus the proposed algorithm cannot find a global

optimal solution. For the `1-norm regularized DL,19 it is shown that a stationary

point could be found if the sufficient condition for the uniqueness of sparse coding

step is satisfied. In,10,94 the authors also prove such condition for the HiLasso norm.

Following similar methodology, we could potentially show that the proposed HiDL

and GDDL do converge to a stationary point. The proof itself is beyond the scope of

91

CHAPTER 5.

0 10 20 30 40 50 60
0.045

0.05

0.055

SNR(dB)

B
lo

ck
 c

oh
er

en
ce

K−SVD separate
HiDL
GDDL

(a) Block coherence for sparsity of 5

0 10 20 30 40 50 60
0.052

0.054

0.056

0.058

0.06

SNR(dB)

B
lo

ck
 c

oh
er

en
ce

(b) Block coherence for sparsity of 25

0 10 20 30 40 50 60
0.05

0.052

0.054

0.056

0.058

0.06

SNR(dB)

B
lo

ck
 c

oh
er

en
ce

(c) Block coherence for sparsity of 40

Figure 5.3: Comparison of block coherence using dictionaries learned from different
approaches. Under different SNRs and sparsity ratios, the dictionaries generated by
both HiDL and GDDL are more discriminative than K-SVD separate.

92

CHAPTER 5.

0 10 20 30 40 50 60
0

1

2

3

4

5

SNR(dB)

S
D

I

K−SVD separate + OMP
K−SVD separate + HiLasso
HiDL + HiLasso
GDDL + GSDM

(a) SDI for sparsity of 5

0 10 20 30 40 50 60
0

10

20

30

40

SNR(dB)

S
D

I

(b) SDI for sparsity of 25

0 10 20 30 40 50 60
0

10

20

30

40

50

60

SNR(dB)

S
D

I

(c) SDI for sparsity of 40

Figure 5.4: Comparison of SDI using different dictionaries and sparse coding ap-
proaches. Under different SNRs and sparsity ratios, the sparse codes generated by
both HiDL + HiLasso and GDDL + GSDM are more discriminative than that of
K-SVD separate + OMP and K-SVD separate + HiLasso.

93

CHAPTER 5.

this paper and will be presented in our future work. Here, we only show empirically

the change of the objective function using Extended Yale B dataset. As shown in

Fig 5.2 for GDDL, the value of the whole objective function in (4.2.12), the data

fidelity term, the `1,2-norm and collaborative Group Lasso norm, and the `1,1-norm

and collaborative Group Lasso norm converge around 100 iterations. The experiment

setup will be described in Section 5.5.

5.2 Synthetic Dataset

Unlike reconstruction-oriented dictionary learning, the GDDL framework is geared

towards the task for classification. The proposed HiDL and GDDL use the group

structure G to enforce the label consistency between sub-dictionaries and training

data. Such mapping could also be realized by training a sub-dictionary Dc (c =

1, ..., C) for each class independently and then concatenating the sub-dictionaries

to build D = [D1, ...,DC]. To understand the benefit of incorporating the struc-

tured sparsity in the DL process, we use block coherence93 to compare the dictionar-

ies learned by HiDL and GDDL with concatenating K-SVD dictionaries of different

classes (as in Fig 5.3). For simplicity, we refer to the latter approach as K-SVD sepa-

rate. We also investigate into the discriminative power of the sparse coefficients (as in

Fig 5.4). Specifically, we compare sparse coefficients of the same dataset generated by

four different approaches: proposed HiDL dictionary with HiLasso sparse coding,10

94

CHAPTER 5.

proposed GDDL with GSDM, K-SVD dictionary with Orthogonal Matching Pursuit

(OMP),95 and K-SVD dictionary with HiLasso sparse coding.10 For simplicity, we

refer to the last two approaches as K-SVD separate + OMP and K-SVD separate +

HiLasso, respectively.

Experiment Setup: We generate the synthetic data under different sparsity

setting and signal-to-noise ratio (SNR) levels. The true sub-dictionaries Dc are gen-

erated for 10 different classes (C = 10). Each sub-dictionary is a 20 by 50 random

Gaussian matrix with unit `2-norm for each column. Therefore, the group struc-

ture G is 10 groups with 50 sub-dictionary atoms in each group. For each class, the

data xi(i = 1, ..., 1500) is a random combination of dictionary atoms from the same

sub-dictionary while the values of ai are drawn from a random Gaussian distribution

with zero mean and unit standard deviation. The sparsity of ai are set to 5, 25 and

40 to simulate different levels of within-group sparsity. When the sparsity is 5, the

within-group variation is more prominent while the within-group similarity is more

significant when sparsity is 40. By concatenating data from all 10 classes, the data

matrix X is of dimension 20 by 15000. Furthermore, zero-mean Gaussian noise is

added to the data so that the SNR ranges from 10 to 50dB. Under each noise level,

the experiment is repeated 10 times and each time the data is randomly splitting into

two halves, training and test set.

The input parameters of sparsity for K-SVD separate are set to the true values.

For HiDL and GDDL, all regularization parameters are set to 0.1, 0.05 and 0.01 for

95

CHAPTER 5.

each of three sparsity levels, respectively.

Criteria: A dictionary is more discriminative if the right atoms are more likely

to be found by sparse coding. According to,93 a smaller block-coherence will lead to

a higher probability for sparse coding to find the right block (sub-dictionary), thus

make the dictionary more discriminative. Therefore, to quantify how discriminative

the trained dictionary is, we adopt the concept of block-coherence from,93 which is,

µB = max
c1,c2∈{1,...,C},c1 6=c2

1

Kc

ρ(D>c1Dc2) (5.2.1)

where sub-dictionaries Dc1 and Dc2 are for class c1 and c2 with equal block size Kc.

The spectral norm ρ(·) of D>c1Dc2 is the square root of the largest eigenvalue of the

matrix product.

A sparse code is more discriminative if the sparse codes for signals of same class

are more similar while that for different classes are more different. Therefore, we use

Fisher discrimination criterion29 to measure the discriminatory power of the sparse

code for both training and test data, which is defined as sparse code discrimination

index (SDI):

SDI =
1

N
[tr(Swithin(A))− tr(Sbetween(A))] . (5.2.2)

The with-in cluster scatter measure Swithin(A) is defined as

Swithin(A) =
C∑
c=1

∑
ai∈Ac

(ai −mc)(ai −mc)
>

96

CHAPTER 5.

where Ac is the sub-matrix formed by extracting the columns in A that corresponds

to the c-th class. Here, mc is the mean column vector of Ac. The between-class

scatter Sbetween(A) can be calculated by:

Sbetween(A) =
C∑
c=1

Nc(mc −m)(mc −m)>

where m is the mean column vector of A and Nc is the number of signal in c-th

class. A smaller SDI indicates a smaller within-class scatter and a larger between-

class scatter, thus corresponding to a more discriminative sparse code. Notice that

for GDDL, we only use the sparse coefficient A corresponding to the shared support

to calculate SDI, which is also what we use for classification.

Remark: The simulation results are shown in Fig 5.3 and Fig 5.4. As can be seen

from Fig 5.3, HiDL and GDDL consistently generate dictionaries with smaller block-

coherence than K-SVD separate. GDDL dictionary has a higher block coherence than

HiDL, except when sparsity is 25. This is probably because when sparsity is 25 (50%

of the sub-dictionary size), the within-group variation and within-group similarity is

balanced and the GDDL model suits the data better than HiDL.

The sparse code of the training data is also found with respect to the learned

dictionary and the corresponding SDI is calculated using (5.2.2). For different in-

group sparsity and SNR levels, the SDI for both HiDL and GDDL are consistently

smaller compared to that of either K-SVD separate + OMP or K-SVD separate +

97

CHAPTER 5.

HiLasso. Notice that the when the sparsity grows, the SDI grows as well. However,

the change of SDI for HiDL, GDDL, and K-SVD separate + HiLasso are not as much

as that of K-SVD separate + OMP, which demonstrates the consistent discriminative

power of structured sparsity. We see that the SDI for K-SVD separate + HiLasso

gets closer to the level of HiDL and GDDL as the sparsity becomes larger. This could

suggests that when the sparsity increases, having a structured dictionary learning

approach is not as important as having a structured sparse coding approach. We

also notice that GDDL works especially well when the within-group variation and

within-group similarity is balanced in some extent (Fig 5.4(b)), but not as well when

the within-group variation or the within-group similarity is high (Fig 5.4(a) and (c)),

respectively. The results are similar for the testing data and therefore omitted. We

will try to understand these phenomena from a theoretical standpoint in our future

work.

In summary, HiDL and GDDL have the advantage of forcing the sub-dictionaries

for different classes to compete against each other in the sparse coding step and only

the ’winners’ get updated in the following dictionary update stage. Furthermore,

the group structure G could ideally restrict the sparse codes for different classes to

live in different subspaces, therefore also improving the discriminative power of the

sparse codes. As pointed out in Section II.A, structured sparsity incorporating the

sparsity, locality and grouping can lead to a more discriminative dictionary as HiDL

and GDDL do.

98

CHAPTER 5.

5.3 Neural Recording

We use the Leicester neural signal database,47 which contains 20 simulation datasets.

Each dataset contains spikes from three different types of neurons with different noise

levels. The datasets are named by the difficulty to perform spike sorting, such as Le-

icester Difficult1, Difficult2, Easy1, and Easy2.

5.3.1 Performance of HiDL

We randomly split the data into 20% for training and 80% for testing. The re-

construction and classification results for Leicester - Difficult1 and Easy2 with 0.005

noise std are shown in Fig. 5.5. We use the same wavelet based classifier (WLC)

as in.43 It can be seen that the proposed HiDL is more effective (2 dB) in recovery

than our previously proposed data dictionary as well as other benchmark methods.

On par with the on-chip DWT method, it has the benefit of a simple on-chip imple-

mentation while we incorporate more prior information for off-chip processing. HiDL

also demonstrates superior classification performance, especially at the low CR range

(e.g., measurements M = 4). It achieves a 3% improvement of classification accuracy

when the neural signals are quite different among each class (e.g., Easy2 dataset)

and more than 10% improvement when the signals are more similar to each other

(e.g., Difficult2 dataset). This again proves the benefit of incorporating the label

information as prior knowledge into the dictionary learning process.

99

CHAPTER 5.

4 8 12 16 20 24 28
0

5

10

15

20

25

Number of Compressed Samples (M)

S
N

D
R

 (d
B

)

HiDL
Data Dict
SDNCS
DWT−CS
On−chip DWT

(a) Recovery performance (Easy2)

4 8 12 16 20 24 28
20

40

60

80

100

Number of Compressed Samples (M)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

HiDL
Data Dict
SDNCS
DWT−CS
On−chip DWT

(b) Classification performance (Easy2)

4 8 12 16 20 24 28
0

5

10

15

20

25

Number of Compressed Samples (M)

S
N

D
R

 (d
B

)

HiDL
Data Dict
SDNCS
DWT−CS
On−chip DWT

(c) Recovery performance (Difficult1)

4 8 12 16 20 24 28
20

40

60

80

100

Number of Compressed Samples (M)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

HiDL
Data Dict
SDNCS
DWT−CS
On−chip DWT

(d) Classification performance (Diffi-
cult1)

Figure 5.5: Performance comparison between proposed HiDL and other CS ap-
proaches.

100

CHAPTER 5.

5.3.2 Performance of HiDL-CS

Furthermore, we evaluate the performance of proposed HiDL-CS both qualita-

tively and quantitatively. Using Easy2 and Difficult2 datasets from the Leicester

neural signal database, we follow the same setup as in previous section and compare

the performance of dictionaries learned by HiDL, HiDL-CS and fixed DWT trans-

formation. As seen in Fig. 5.6, we show at different Compression Ratio (CR), the

recovery performance of learned dictionaries. It can be seen that HiDL has superior

recovery performance (e.g., above 10 dB) and improves dramatically when we acquire

more measurements. For HiDL-CS, the recovery result looks very noisy when the CR

is as low as 10% due to the loss of information during the compression process. As

CR becomes higher, the recovered signal starts to present the shape of the desired

signal and gradually capture the geometric features of the signal while still having

some artifacts. Nevertheless, HiDL-CS consistently outperforms DWT dictionary

for its recovery performance. Furthermore, we compare the performance of different

dictionaries at different CRs as shown in Fig. 5.7. As for classification, HiDL-CS

outperforms, particularly in the low CR ranges (5% - 35%). Thus, HiDL-CS could

be used as a viable alternative for training a dictionary with good enough recovery

performance and excellent classification performance without the need of training the

dictionary at full acquisition rate. This enables the potential of having a continuous

online dictionary learning system for neural recording.

101

CHAPTER 5.

Figure 5.6: Recovery results of a single spike using different dictionary choices at
different CRs. The recovery results are measured using SNDR (dB). The groundtruth
is plotted in blue and the recovered signal is plotted in red.

102

CHAPTER 5.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

5

10

15

20

25

30

35

Compression ratio (%)

S
N

D
R

 (d
B

)

HiDL
HiDL−CS
DWT−CS

(a) Recovery performance on Easy2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
20

40

60

80

100

Compression ratio (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

HiDL
HiDL−CS
DWT−CS

(b) Classification performance on Easy2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

5

10

15

20

25

30

35

Compression ratio (%)

S
N

D
R

 (d
B

)

HiDL
HiDL−CS
DWT−CS

(c) Recovery performance on Difficult2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
20

40

60

80

100

Compression ratio (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

HiDL
HiDL−CS
DWT−CS

(d) Classification performance on Diffi-
cult2

Figure 5.7: Performance comparison between proposed HiDL-CS and other dictio-
nary learning approaches.

103

CHAPTER 5.

5.3.3 Performance of GDDL for Spike Co-occurrence

case

For the real case, we might have two or more neurons firing at the same time, thus

a signal frame may contain two or more spikes, which are super-positioned on top of

each other, resulting in a large spike. In our previous work,43 an on-chip detection

curcuit is used to relay these non-ideal information to the recovery algorithm. Using

multiple thresholds, the on-chip system could signal the off-chip recovery algorithms

to attempt to recover these signal frames by using two different dictionaries, belonging

to two different spike classes. However, this is by assuming that the training data

itself does not contain such contamination. To address this issue of contamination

of the training data, we apply the proposed GDDL to learn a dictionary that can

separate the with-in class similarity (target neuron signals) from the with-in class

difference (randomly firing non-target neurons). To build a simulated dataset, we

use Easy1 dataset as the target neuron signals and Difficult1, Difficult2 and Easy

2 datasets as the non-target neuron signals. To generate the randomly firing non-

target neurons, we randomly choose it from these datasets, multiply with a random

weight following a zero mean Gaussian distribution and add to the target neuron

signals. Since the recovery performance in terms of SNDR could be misleading, we

use only classification accuracy to measure the performance as shown in Table 5.2.

It can be seen that GDDL can have higher tolerance to such un-desired noise (non-

104

CHAPTER 5.

Table 5.2: Comparison of proposed GDDL and other state-of-art DL methods for
spike mixing case. The best results are achieved by GDDL and bolded.

CR 5% 15 % 25 %

GDDL 84.5 91.9 92.3
HiDL 81.2 89.5 90.9

Data Dictionary 79.0 84.4 86.3
SDNCS 74.7 78.1 80.2

DWT-CS 40.3 48.2 52.4

target neuron signals) and drive for a higher classification performance. Although

HiDL performs well in the ideal case, the mixed signal can complicate the learned

dictionary, thus deteriorate the classification results.

5.4 Object Classification

The Caltech 101 dataset contains 9,144 images in 102 categories, including ani-

mals, cars, planes, etc. Each category has 40 to 800 images, with most categories

having around 50 images. Pictures from same class have drastic shape variability

and the spatial pyramid features96 are used as the input signal, which is same as.28,78

The dimension of each feature is 3000. The size of the dictionary is the same as the

number of training samples per class. We vary the number of training samples per

class from 10 to 30. The experiments are repeated 10 times while HiDL and GDDL

are compared with K-SVD, D-KSVD, SRC, LLC, BGSC-ICS, LC-KSVD, K-SVD +

HiLasso, and K-SVD + Dirty Model. Results are shown in Table 5.3 with some results

105

CHAPTER 5.

(a) accordion

(b) car

(c) motorbikes

(d) trilobite

Figure 5.8: Examples of categories in Caltech 101 that achieve 100% classification
accuracy by HiDL.

being reported by.28 The best results of BGSC-ICS are reproduced using the code

provided by the authors. For K-SVD + Dirty Model approach, we use K-SVD and

Dirty Model on each class separately and then use a linear classifier. Our proposed

HiDL consistently outperforms other approaches. As pointed out early, our proposed

GDDL does not perform as well as HiDL probably because this particular dataset

has large within-class variability. However, it is shown later that for face datasets,

GDDL outperforms HiDL. Several of the object classes that achieve 100% accuracy

by HiDL are shown in Fig 5.8. The regularization parameters for HiDL are 0.009 and

0.007 and those for GDDL are 0.005, 0.004, 0.004 and 0.007, respectively.

106

CHAPTER 5.

Table 5.3: Comparison of proposed HiDL and GDDL and other state-of-art DL
methods using Caltech 101 dataset. The dictionary size of each class is the same as
the training samples per class. The best results are achieved by HiDL and bolded.

Training data size per class 10 15 20 25 30

K-SVD 59.8 65.2 68.7 71.0 73.2
D-KSVD 59.5 65.1 68.6 71.1 73.0

SRC 60.1 64.9 67.7 69.2 70.7
LLC 59.77 65.43 67.74 70.16 73.44

BGSC-ICS 62.4 67.5 69.4 71.6 73.3
LC-KSVD 63.1 67.7 70.5 72.3 73.6

K-SVD + HiLasso 61.9 66.5 69.2 70.7 72.3
K-SVD + Dirty Model 60.2 64.6 68.3 69.9 70.8

HiDL 63.4 68.1 70.9 72.7 73.6
GDDL 62.1 66.3 69.0 71.0 73.1

5.5 Face Recognition

Face recognition is an important category of image classification tasks with ap-

plications in video surveillance and mobile imaging. The two most widely used face

recognition dataset are Extended Yale B database and AR databse. Captured under

various lighting conditions, the Extended Yale B database consists of 2,414 frontal-

face images for 38 individuals (around 64 images per person). Similarly, the AR

database has over 4,000 frontal-face images for 126 individuals, which are also taken

under different conditions, including facial expressions, lighting conditions, and oc-

clusions. Same as,28,48 we crop the Extended Yale B images to the dimension of 192

× 168 pixels, normalized and projected to a vector of dimension 504 using random

Gaussian projection. The AR dataset is cropped to the dimension of 165 × 120 pix-

107

CHAPTER 5.

els, normalized and projected to a vector of dimension 540 using random Gaussian

projection. For Extended Yale B, we randomly select half of the images for train-

ing and the other half for testing in each class. For each class in the AR dataset,

twenty images and six images are randomly selected for training and testing, respec-

tively. The dictionary size for Extended Yale B and AR dataset is 15 and 5 dictionary

atoms for each class, respectively. Therefore, the total dictionary contains 570 and

500 atoms. The experiment is carried out 10 times with different randomly chosen

partitions. The regularization parameters for HiDL are 0.01 and 0.005 and the reg-

ularization parameters for GDDL are 0.01, 0.009, 0.005 and 0.006, respectively. The

average classification accuracy is again compared with D-KSVD, LLC, BGSC-ICS,

LC-KSVD, K-SVD + HiLasso, and K-SVD + Dirty Model in Table 5.4. The per-

formances of benchmark algorithms are as reported by,28 which have been tuned to

achieve the best results. The best results of BGSC-ICS are reproduced using the code

provided by the authors.

The proposed HiDL and GDDL achieve an improvement of more than 3 percent-

age units in terms of classification accuracy using the same dictionary size for both

datasets. To further demonstrate the difference between structured sparsity (i.e.,

GDDL) and the `0-norm (K-SVD) in DL, the learned dictionary and the sparse code

for Person 1 and 36 of Yale B dataset are presented in Fig 5.9. Note that the sparse

code shown here is that of all training data in each class. The K-SVD dictionary for

each class is chosen by finding the dictionary atoms that have the largest magnitude

108

CHAPTER 5.

Table 5.4: Comparison of proposed HiDL and GDDL with other state-of-art DL
methods on face recognition tasks. All methods use the same dictionary size. The
best results are achieved by proposed HiDL and GDDL.

Method D-KSVD LLC BGSC-ICS LC-KSVD HiDL GDDL

Extended Yale B 94.1 90.7 96.5 95.0 98.0 98.2
AR 88.8 88.7 93.2 93.7 96.4 96.7

of sparse coefficients. We can see that the K-SVD dictionary has mixed some similar

faces from other classes into the desired class (red dotted). Simultaneously, the corre-

sponding sparse code for training data in the same class has a longer-tail distribution

outside the group index (Fig 5.9 (a) and (c)). In contrast, the dictionary learned by

GDDL guarantees the dictionary atoms in the group index having the same label.

And the sparse code of all training data in this class is strictly within the group in-

dex, which justifies our motivation as explained in Fig 4.2. Moreover, the dictionary

atoms corresponding to the GDDL’s shared supports (green dotted figures in GDDL

dictionaries) capture the similarity between data in the same class while those cor-

responding to unique supports (un-dotted figures in GDDL dictionaries) indicate the

within-class variation.

109

CHAPTER 5.

(a) K-SVD result (Person 1) (b) GDDL result (Person 1)

(c) K-SVD result (Person 36) (d) GDDL result (Person 36)

Figure 5.9: The learned dictionary and the sparse coefficient of training data using
K-SVD and GDDL. The sparse codes for all training data in the same class are ploted
in the bottom. It can be observed that the labels of dictionary atoms learned by
GDDL are consistent while K-SVD can mix the similar faces (red dotted figures). The
sparse code for training data indicates that the proposed method can strictly enforce
the correct group be chosen while K-SVD fails to do so. Moreover, the dictionary
atoms corresponding to the GDDL’s shared supports (green dotted figures) capture
the similarity between data in the same class while those corresponding to unique
supports (un-dotted figures) indicate the within-class variation.

110

Chapter 6

Summary and Future Work

First, we have presented in this thesis an energy-efficient multi-mode CS sys-

tem for implantable neural recordings. Using data directly as the dictionary and a

two-stage sensing strategy, our design is suited with simple circuit design and power

efficiency. Moreover, we proposed two new working modes to leverage on the power

of sparse representation to restore the full signal from only spike detection results or

CS measurements of spike detection results. This provides an all-in-one device with

a higher CR and energy efficiency. The same framework has also been tested for the

case of Tetrode CS by extending our recovery algorithm to the case of joint sparsity.

Experiments on simulation and real datasets have demonstrated that the proposed

framework outperforms other approaches and can guarantee energy efficiency, imple-

mentation simplicity and system flexibility all at once. Although we only demonstrate

our framework using neural signal, it certainly can be applied to other biological sig-

111

CHAPTER 6. SUMMARY AND FUTURE WORK

nals (i.e., ECG) as well. In the future, we will investigate in three different directions

for MEA CS: (i) a mechanism to dynamically allocate sensing channels among dif-

ferent electrodes; (ii) customizing our dictionary design and recovery algorithm for

discriminative applications, such as spike sorting; and (iii) testing the performance

of our system by conducting in-vivo experiments.

Second, we incorporate structured sparsity in the DL process for classification

purposes. The proposed GDDL framework (including its single task version − HiDL

and compressed sensing version − HiDL-CS) has two advantages compared to `0-and

`1-norm regularized methods: (i) the dictionary atoms with same group index have

same consistent label and this label consistency also exists between dictionary and

training data; and (ii) the classification performance is more robust to small dictio-

nary size or limited training data, providing computation benefits. Through synthetic

and real datasets, we demonstrate that the HiDL and GDDL can generate more dis-

criminative sparse codes, thus improve classification performance. We provide the

conditions for HiDL to achieve optimal performance and show the theoretical advan-

tage of HiDL to `1-norm regularized DL for classification tasks. In the future, we

will focus on the theoretical analysis of the convergence and locality properties of the

proposed HiDL and GDDL. Another interesting direction is to explore the case when

the structure is unknown and to incorporate the learning of structure within the DL

process automatically and systematically.

Finally, we demonstrate the performance of our proposed HiDL, HiDL-CS and

112

CHAPTER 6. SUMMARY AND FUTURE WORK

GDDL methods using the case of neural recording. It has been shown that HiDL

could help guarantee recovery performance as well as classification accuracy at very

low compression rario (5%). By extending HiDL to learn the dictionary from com-

pressed measurements, we develop HiDL-CS which can yield comparable classification

performance with satisfying recovery performance at low compression ratio (5%). To

deal with the non-ideal case of having sparsely firing neuron occurring with target

neurons in the training and testing data, we use GDDL to separate the target neurons

(with-in class similarity) form the sparsely firing neurons (with-in class difference),

which can generate great classification results and overcome the interference of the

undesired neuron signals.

Besides previously mentioned extensions of related work, we are also interested

in the case where data sensing is performed simultaneously from multiple co-located

sources/sensors, yet within the same spatial-temporal neighborhood, recording the

same physical event. In which case, newer highly non-stationary data is coming in all

the time while older data constantly becomes outdated and less valuable due to either

storage shortage or becoming irrelevant due to changes in signal statistics. Optimal

prediction, sampling, representation, and estimation of these constantly-changing sig-

nals might require locally-adaptive representation that can quickly capture the signal

characteristics within a small local neighborhood.

113

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, “Optimization algorithms on matrix

manifolds”. Princeton University Press, 2009.

[2] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, “Design and analysis of a

hardware-efficient compressed sensing architecture for data compression in wire-

less sensors,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 744–756,

2012.

[3] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:

A strategy employed by v1?” Vision Research, vol. 37, no. 23, pp. 3311–3325,

1997.

[4] S. Mallat, “A Wavelet Tour of Signal Processing, Third Edition: The Sparse

Way”. Academic Press, 2008.

[5] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-

act signal reconstruction from highly incomplete frequency information,” IEEE

Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.

114

BIBLIOGRAPHY

[6] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information The-

ory, vol. 52, no. 4, pp. 1289–1306, 2006.

[7] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the

Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288,

1996.

[8] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped

variables,” Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), vol. 68, no. 1, pp. 49–67, 2005.

[9] L. Jacob, G. Obozinski, and J. Vert, “Group lasso with overlap and graph lasso,”

International Conference on Machine Learning (ICML), pp. 433–440, 2009.

[10] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “C-hilasso: A collab-

orative hierarchical sparse modeling framework,” IEEE Transactions on Signal

Processing, vol. 59, no. 9, pp. 4183–4198, 2011.

[11] E. v. d. Berg and M. P. Friedlander, “Joint-sparse recovery from multiple mea-

surements,” arXiv preprint arXiv:0904.2051, 2009.

[12] E. G. Allstot, A. Y. Chen, A. M. Dixon, D. Gangopadhyay, H. Mitsuda, and

D. J. Allstot, “Compressed sensing of ecg bio-signals using one-bit measurement

matrices,” New Circuits and Systems Conference (NEWCAS), pp. 213–216, 2011.

115

BIBLIOGRAPHY

[13] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”

IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[14] M. Elad, “Optimized projections for compressed sensing,” IEEE Transactions

on Signal Processing, vol. 55, no. 12, pp. 5695–5702, 2007.

[15] J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse signals:

Simultaneous sensing matrix and sparsifying dictionary optimization,” IEEE

Transactions on Image Processing, vol. 18, no. 7, pp. 1395–1408, 2009.

[16] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for designing

overcomplete dictionaries for sparse representation,” IEEE Transactions on Sig-

nal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[17] K. Engan, K. Skretting, and J. H. Husøy, “Family of iterative ls-based dictionary

learning algorithms, ils-dla, for sparse signal representation,” IEEE Transactions

on Signal Processing, vol. 17, no. 1, pp. 32–49, 2007.

[18] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding algorithms,”

Advances in Neural Information Processing Systems (NIPS), pp. 801–808, 2006.

[19] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for

sparse coding,” International Conference on Machine Learning (ICML), pp. 689–

696, 2009.

[20] I. Ramı́rez, Ignacio, and G. Sapiro., “An mdl framework for sparse coding and

116

BIBLIOGRAPHY

dictionary learning,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp.

2913–2927, 2012.

[21] K. Yu, T. Zhang, and Y. Gong, “Nonlinear learning using local coordinate cod-

ing,” Advances in Neural Information Processing Systems (NIPS), pp. 2223–

2231, 2009.

[22] R. Jenatton, J. Mairal, F. R. Bach, and G. R. Obozinski, “Proximal methods for

sparse hierarchical dictionary learning,” International Conference on Machine

Learning (ICML), pp. 487–494, 2010.

[23] K. Rosenblum, L. Zelnik-Manor, and Y. C. Eldar, “Dictionary optimization for

block-sparse representations,” AAAI Symposium on Manifold Learning, pp. 50–

58, 2010.

[24] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and

L. Carin, “Nonparametric bayesian dictionary learning for analysis of noisy and

incomplete images,” IEEE Transactions on Image Processing, vol. 21, no. 1, pp.

130–144, 2012.

[25] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Discrimina-

tive learned dictionaries for local image analysis,” Computer Vision and Pattern

Recognition (CVPR), pp. 1–8, 2008.

[26] J. Mairal, F. R. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE

117

BIBLIOGRAPHY

Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp.

791–804, 2012.

[27] Q. Zhang and B. Li, “Discriminative k-svd for dictionary learning in face recogni-

tion,” Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698, 2010.

[28] Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictionary for sparse

coding via label consistent k-svd,” Computer Vision and Pattern Recognition

(CVPR), pp. 1697–1704, 2011.

[29] M. Yang, a. X. F. L. Zhang, and D. Zhang, “Fisher discrimination dictionary

learning for sparse representation,” International Conference on Computer Vi-

sion (ICCV), pp. 543–550, 2011.

[30] I. Ramı́rez, P. Sprechmann, and G. Sapiro, “Classification and clustering via

dictionary learning with structured incoherence and shared features,” Computer

Vision and Pattern Recognition (CVPR), pp. 3501–3508, 2010.

[31] A. Jalali, S. Sanghavi, C. Ruan, and P. K. Ravikumar, “A dirty model for multi-

task learning,” Advances in Neural Information Processing Systems (NIPS), pp.

964–972, 2010.

[32] A. Rodriguez-Perez, J. Ruiz-Amaya, M. Delgado-Restituto, and A. Rodriguez-

Vazquez, “A low-power programmable neural spike detection channel with em-

118

BIBLIOGRAPHY

bedded calibration and data compression,” IEEE Transactions on Biomedical

Circuits and Systems, vol. 6, no. 2, pp. 87–100, 2012.

[33] S. Mitra, J. Putzeys, F. Battaglia, C. M. Lopez, M. Welkenhuysen, C. Pen-

nartz, C. Van Hoof, and R. F. Yazicioglu, “24-channel dual-band wireless neural

recorder with activity-dependent power consumption,” International Solid-State

Circuits Conference (ISSCC), pp. 292–293, 2013.

[34] M. S. Chae, Z. Yang, M. R. Yuce, L. Hoang, and W. Liu, “A 128-channel 6 mw

wireless neural recording ic with spike feature extraction and uwb transmitter,”

IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17,

no. 4, pp. 312–321, 2009.

[35] B. Gosselin and M. Sawan, “An ultra low-power cmos automatic action potential

detector,” IEEE Transactions on Neural Systems and Rehabilitation Engineer-

ing, vol. 17, no. 4, pp. 346–353, 2009.

[36] B. Gosselin, A. E. Ayoub, J.-F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, and

D. Guitton, “A mixed-signal multichip neural recording interface with bandwidth

reduction,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 3,

pp. 129–141, 2009.

[37] K. G. Oweiss, A. Mason, Y. Suhail, A. M. Kamboh, and K. E. Thomson, “A

scalable wavelet transform vlsi architecture for real-time signal processing in

119

BIBLIOGRAPHY

high-density intra-cortical implants,” IEEE Transactions on Circuits and Sys-

tems I: Regular Papers, vol. 54, no. 6, pp. 1266–1278, 2007.

[38] A. M. Kamboh, A. Mason, and K. G. Oweiss, “Analysis of lifting and b-spline dwt

implementations for implantable neuroprosthetics,” Journal of Signal Processing

Systems, vol. 52, no. 3, pp. 249–261, 2008.

[39] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Compressed

sensing for real-time energy-efficient ecg compression on wireless body sensor

nodes,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 9, pp. 2456–

2466, 2011.

[40] A. M. Dixon, E. G. Allstot, D. Gangopadhyay, and D. J. Allstot, “Compressed

sensing system considerations for ecg and emg wireless biosensors,” IEEE Trans-

actions on Biomedical Circuits and Systems, vol. 6, no. 2, pp. 156–166, 2012.

[41] Z. Charbiwala, V. Karkare, S. Gibson, D. Markovic, and M. B. Srivastava, “Com-

pressive sensing of neural action potentials using a learned union of supports,”

Body Sensor Networks (BSN), pp. 53–58, 2011.

[42] Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, “Compressed sensing for energy-

efficient wireless telemonitoring of noninvasive fetal ecg via block sparse bayesian

learning,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 2, pp. 300–

309, 2013.

120

BIBLIOGRAPHY

[43] J. Zhang, Y. Suo, S. Mitra, S. P. Chin, S. Hsiao, R. F. Yazicioglu, T. D. Tran,

and R. Etienne-Cummings, “An efficient and compact compressed sensing mi-

crosystem for implantable neural recordings,” IEEE Transactions on Biomedical

Circuits and Systems, vol. 8, no. 4, pp. 485–496, 2014.

[44] C. Bulach, U. Bihr, and M. Ortmanns, “Evaluation study of compressed sens-

ing for neural spike recordings,” Engineering in Medicine and Biology Society

(EMBC), pp. 3507–3510, 2012.

[45] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and

applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 11, pp. 2765–2781, 2013.

[46] P. H. Thakur, H. Lu, S. S. Hsiao, and K. O. Johnson, “Automated optimal de-

tection and classification of neural action potentials in extra-cellular recordings,”

Journal of Neuroscience Methods, vol. 162, no. 1, pp. 364–376, 2007.

[47] R. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike detection and

sorting with wavelets and superparamagnetic clustering,” Neural Computation,

vol. 16, no. 8, pp. 1661–1687, 2004.

[48] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recog-

nition via sparse representation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

121

BIBLIOGRAPHY

[49] D. Gangopadhyay, E. G. Allstot, A. M. Dixon, K. Natarajan, S. Gupta, and

D. J. Allstot, “Compressed sensing analog front-end for bio-sensor applications,”

IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 426–438, 2014.

[50] J. Jia and K. Rohe, “Preconditioning to comply with the irrepresentable condi-

tion,” arXiv preprint arXiv:1208.5584, 2012.

[51] S. A. Van De Geer, P. Bühlmann et al., “On the conditions used to prove oracle

results for the lasso,” Electronic Journal of Statistics, vol. 3, pp. 1360–1392, 2009.

[52] A. Calabrese and L. Paninski, “Kalman filter mixture model for spike sorting

of non-stationary data,” Journal of Neuroscience Methods, vol. 196, no. 1, pp.

159–169, 2011.

[53] C. Pedreira, J. Martinez, M. J. Ison, and R. Q. Quiroga, “How many neurons can

we see with current spike sorting algorithms?” Journal of Neuroscience Methods,

vol. 211, no. 1, pp. 58–65, 2012.

[54] A. Levey and M. Lindenbaum, “Sequential karhunen-loeve basis extraction and

its application to images,” IEEE Transactions on Image Processing, vol. 9, no. 8,

pp. 1371–1374, 2000.

[55] Y. Kim, W. Guo, B. V. Gowreesunker, N. Sun, and A. H. Tewfik, “Multi-channel

sparse data conversion with a single analog-to-digital converter,” IEEE Journal

122

BIBLIOGRAPHY

on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 3, pp.

470–481, 2012.

[56] M. Hosseini Kamal, M. Shoaran, Y. Leblebici, A. Schmid, and P. Vandergheynst,

“Compressive multichannel cortical signal recording,” International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 4305–4309, 2013.

[57] M. Shoaran, M. M. Lopez, V. S. R. Pasupureddi, Y. Leblebici, and A. Schmid,

“A low-power area-efficient compressive sensing approach for multi-channel neu-

ral recording,” International Symposium on Circuits and Systems (ISCAS), pp.

2191–2194, 2013.

[58] M. Shoaran, M. H. Kamal, C. Pollo, P. Vandergheynst, and A. Schmid, “Com-

pact low-power cortical recording architecture for compressive multichannel data

acquisition,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8,

no. 6, pp. 857–870, 2014.

[59] H. Ishwaran and J. S. Rao, “Spike and slab variable selection: frequentist and

bayesian strategies,” Annals of Statistics, vol. 33, no. 2, pp. 730–773, 2005.

[60] Y. Suo, M. Dao, T. Tran, U. Srinivas, and V. Monga, “Hierarchical sparse mod-

eling using spike and slab priors,” International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 3103–3107, 2013.

[61] H. Zou and T. Hastie, “Regularization and variable selection via the elastic

123

BIBLIOGRAPHY

net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 67, no. 2, pp. 301–320, 2005.

[62] T. P. Minka, “Expectation propagation for approximate bayesian inference,”

Uncertainty in Artificial Intelligence (UAI), pp. 362–369, 2001.

[63] D. A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K. D. Harris, and G. Buzsáki,

“Intracellular features predicted by extracellular recordings in the hippocampus

in vivo,” Journal of Neurophysiology, vol. 84, no. 1, pp. 390–400, 2000.

[64] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and

applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 11, pp. 2765–2781, 2013.

[65] K. Engan, S. O. Aase, and J. H. Husøy, “Multi-frame compression: Theory and

design,” Signal Processing, vol. 80, no. 10, pp. 2121–2140, 2000.

[66] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J.

Sejnowski, “Dictionary learning algorithms for sparse representation,” Neural

Computation, vol. 15, no. 2, pp. 349–396, 2003.

[67] S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa, “Generalized domain-

adaptive dictionaries,” Computer Vision and Pattern Recognition (CVPR), pp.

361–368, 2013.

124

BIBLIOGRAPHY

[68] Q. Qiu and G. Sapiro, “Learning transformations for clustering and classifica-

tion,” arXiv preprint arXiv:1309.2074, 2013.

[69] J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse representations

for image and video restoration,” DTIC, Tech. Rep., 2007.

[70] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. Le-Cun, “Learning invariant

features through topographic filter maps,” Computer Vision and Pattern Recog-

nition (CVPR), pp. 1605–1612, 2009.

[71] K. Skretting and J. H. Husøy, “Texture classification using sparse frame-based

representations,” EURASIP Journal on Applied Signal Processing, vol. 2006,

no. 1, pp. 102–102, 2006.

[72] K. Engan, K. Skretting, J. Herredsvela, and T. O. Gulsrud, “Frame texture

classification method (ftcm) applied on mammograms for detection of abnor-

malities,” International Journal of Signal Processing (IJSP), vol. 4, no. 2, pp.

593–603, 2007.

[73] F. Rodriguez and G. Sapiro, “Sparse representations for image classification:

Learning discriminative and reconstructive non-parametric dictionaries,” DTIC,

Tech. Rep., 2008.

[74] G. Zhang, Z. Jiang, and L. S. Davis, “Online semi-supervised discriminative

125

BIBLIOGRAPHY

dictionary learning for sparse representation,” Asian Conference of Computer

Vision (ACCV), pp. 259–273, 2013.

[75] Y. Zhang, Z. Jiang, and L. S. Davis, “Learning structured low-rank repre-

sentations for image classification,” Computer Vision and Pattern Recognition

(CVPR), pp. 676–683, 2013.

[76] D. Barchiesi and M. D. Plumbley, “Learning incoherent subspaces: Classification

via incoherent dictionary learning,” Journal of Signal Processing Systems, vol. 79,

no. 2, pp. 189–199, 2014.

[77] C. Yu-Tseh, A. Mohsen, R. Ajit, and H. Jeffrey, “Block and group regularized

sparse modeling for dictionary learning,” Computer Vision and Pattern Recog-

nition (CVPR), pp. 377–382, 2013.

[78] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained

linear coding for image classification,” Computer Vision and Pattern Recognition

(CVPR), pp. 3360–3367, 2010.

[79] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Structured sparsity through

convex optimization,” Statistical Science, vol. 27, no. 4, pp. 450–468, 2012.

[80] C. Studer and R. G. Baraniuk, “Dictionary learning from sparsely corrupted or

compressed signals,” in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2012, pp. 3341–3344.

126

BIBLIOGRAPHY

[81] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers,”

Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[82] J. Yang and Y. Zhang, “Alternating direction algorithms for l1-problems in com-

pressive sensing,” SIAM Journal on Scientific Computing, vol. 33, no. 1, pp.

250–278, 2011.

[83] Y. Nesterov, “Gradient methods for minimizing composite objective function,”

Center for Operations Research and Econometrics (CORE), Catholic University

of Louvain, Tech. Rep., 2007.

[84] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse reconstruction by sep-

arable approximation,” IEEE Transactions on Signal Processing, vol. 57, no. 7,

pp. 2479–2493, 2009.

[85] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods for hier-

archical sparse coding,” The Journal of Machine Learning Research, vol. 12, pp.

2297–2334, 2011.

[86] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with sparsity-

inducing penalties,” arXiv preprint arXiv:1108.0775, 2011.

[87] D. A. Spielman, H. Wang, and J. Wright, “Exact recovery of sparsely-used dic-

tionaries,” arXiv preprint arXiv:1206.5882, 2012.

127

BIBLIOGRAPHY

[88] R. Jenatton, R. Gribonval, and F. Bach, “Local stability and robustness of sparse

dictionary learning in the presence of noise,” arXiv preprint arXiv:1210.0685,

2012.

[89] K. Schnass, “On the identificability of overcomplete dictionaries via the minimi-

sation principle underlying k-svd,” arXiv preprint arXiv:1301.3375, 2013.

[90] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many:

Illumination cone models for face recognition under variable lighting and pose,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6,

pp. 643–660, 2001.

[91] A. M. Martinez, “The ar face database,” CVC Technical Report, vol. 24, 1998.

[92] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from

few training examples: An incremental bayesian approach tested on 101 object

categories,” Computer Vision and Image Understanding, vol. 106, no. 1, pp.

59–70, 2007.

[93] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncertainty

relations and efficient recovery,” IEEE Transactions on Signal Processing, vol. 58,

no. 6, pp. 3042–3054, 2010.

[94] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group lasso,”

128

BIBLIOGRAPHY

Journal of Computational and Graphical Statistics, vol. 22, no. 2, pp. 231–245,

2013.

[95] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements

via orthogonal matching pursuit,” IEEE Transactions on Information Theory,

vol. 53, no. 12, pp. 4655–4666, 2007.

[96] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories,” Computer Vision and Pattern

Recognition (CVPR), pp. 2169–2178, 2006.

129

Vita

Yuanming Suo received the B.S. degree in Electronic Information Science and

Technology from Sun Yat-sen University, Guangdong, China, and the M.S.E. degree

in Electrical and Computer Engineering from the University of Alabama in Huntsville,

AL, USA. Currently, he is working towards the Ph.D. degree in the Digital Signal

Processing Lab at the Johns Hopkins University, Baltimore, MD, USA. His research

focuses on developing compressed sensing and dictionary learning algorithms for ap-

plications in biomedical signal analysis and image classifications. His other research

interest include image analysis in medical/remote sensing applications.

130

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Sparse Representation
	Compressed Sensing
	Dictionary Learning
	Notation

	Energy-Efficient Multi-Mode Compressed Sensing System for Implantable Neural Recordings
	Prior Works and our Contribution
	Our CS framework
	Our Sparsifying Dictionary
	Our Sensing Matrix
	On-chip Sensing
	Off-chip Sensing

	Restoration from Spike Segments
	Spike Restoration Mode
	Spike CS + Restoration Mode

	Recovery Algorithm

	Experiment validation
	Performance of the Proposed Dictionary
	Performance of the Proposed Two-Stage Sensing
	Restoration from Spike Segments
	Performance of Overall Framework for Single Electrode
	Tetrode CS

	Structured Dictionary Learning for Classification
	Introduction
	Dictionary Learning for Reconstruction
	Dictionary Learning for Classification
	Our Contributions

	Hierarchical and Group Structured Dirty Dictionary Learning For Classification
	Motivation from a Coding Perspective
	Hierarchical Dictionary Learning (HiDL)
	Extending HiDL to Learn from Compressed Data (HiDL-CS)

	Group Structured Dirty Dictionary Learning (GDDL)
	Classification approach

	Theoretical Analysis
	Performance Analysis
	Proof Proof for Support Recovery Property
	Proof for Subspace Consistency Property
	Remark

	Experimental Validation of Structured Dictionary Learning Methods
	Parameter Selection
	Synthetic Dataset
	Neural Recording
	Performance of HiDL
	Performance of HiDL-CS
	Performance of GDDL for Spike Co-occurrence case

	Object Classification
	Face Recognition

	Summary and Future Work
	Bibliography
	Vita

