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Abstract 

Nonadiabatic photocyclization is the chemical dynamic relevant to the function of 

many photoswitchable materials as well as photochemical synthesis of polyaromatic 

hydrocarbons by cyclodehydrogenation. ortho-arenes are an under-studied class of 

molecular photoswitch owing to their low cyclized product stabilities that otherwise 

provide a unique opportunity for the experimentalist to study photocyclization 

mechanisms in detail. Through the use of time-resolved absorption spectroscopy on 

femtosecond to microsecond timescales the entire photocyclization process can be 

monitored from “birth” to “death,” i.e. ring-fusion to ring-fission. Following ultraviolet 

photoexcitation OTP undergoes cyclization to form DHT.  Although global spectral 

analysis with simple kinetic models adequately fits spectral dynamics, signatures of DHT 

formation are obscured by spectral overlap with the excited-state that has a lifetime of ~3 

picoseconds. Thermal ring-reopening of DHT to regenerate OTP occurs with a 38 

nanosecond lifetime and an activation energy of 0.27 eV. Following the study of OTP a 

variety of other ortho-arenes were examined by systematic substitution, including phenyl 

substituted analogs, 1,2,3-triphenylbenzene, ortho-quaterphenyl and hexaphenylbenzene, 

as well as boron-nitrogen substituted analogs, including hexaphenylborazine and 

1,2:3,4:5,6 tris(o,o’-biphenylylene) borazine. Generally these substitutions increased the 

excited-state lifetime relative to OTP due to an increase in either electronic delocalization 

or structural hindrance within excited-state geometries while the stability of the 

corresponding photoproducts decreased relative to DHT due to entropic effects. A 

notable exception is hexaphenylbenzene, which exhibits a 2 microsecond lifetime for 

ring-reopening of the photoproduct tetraphenyl-DHT that is a consequence of entropic 
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stabilization due to increased phenyl-phenyl steric interactions that constrain thermally 

activated relaxation to the transition state. Furthermore, excited hexaphenylborazine 

decays within 3 picoseconds due to the localized electronic character of the borazine ring. 

No direct spectroscopic observation of cyclization was observed for any boron-nitrogen 

substituted system due to the increase in charge localization that reduces the stability of 

the conjugated DHT photoproduct. More recent experiments utilizing pump-repump-

probe spectroscopy have determined that the observed excited-state decay is kinetically 

decoupled from photocyclization, which occurs in less than 200 femtoseconds. The 

results presented in this thesis provide insight for the improvement of photoswitch and 

photosynthetic efficiency through the generalization of these structure-dynamics 

relationships. 
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Chapter 1 

Introduction 

 

1.1 Overview of Photoswitchable Molecular Materials 

 Light-induced molecular transformations by isomerization, bond-formation and 

bond-breakage are useful processes that have been harnessed by nature for millions of 

years. As examples, the biological process of vision is dependent on the 

photoisomerization of retinal and the essential vitamin D is produced by photo-induced 

bond-breakage of 7-dehydrocholestrol by sunlight.1-4 Much progress has been made in 

understanding the photochemical mechanisms that underlie the responses of 

photoswitchable molecules, resulting in the synthesis of optimized structures to favor 

particular functions. Scheme 1.1 shows various molecular switch “prototypes” that have 

been extensively studied and discussed in the literature. 

 Cis/trans (C/T) isomerization, which underlies photoswitching of azobenzenes 

and stilbenes (Scheme 1.1), utilizes the rotation of subgroups about a central double bond 

that results in the same bonding configuration but with an alteration to molecular 

symmetry.5, 6 In contrast, cyclization (e.g. ortho-terphenyl) involves a change in the 

bonding configuration of the molecule, i.e. carbon-carbon bond formation across two 

rings. Each process has its own unique application where C/T isomerization has been 

used for molecular motors that can move molecules linearly by rotation of their 

subgroups that resembles a paddle of a waterwheel.7, 8 Cyclization can induce physical 

movement as well but is more useful in its ability to change molecular conjugation that 

has many applications for light-induced optical and electrical switching. A short overview 
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of photoswitch applications is given below with generalized functions given in Figure 

1.1.  Comprehensive reviews of photoswitch applications can be found in the 

literature.9,10  

 

Scheme 1.1. Overview of molecular photoswitch prototypes. Stilbene (top) exhibits 

dual photoswitch behavior, including both cis/trans isomerization and cyclization, 

while ortho-terphenyl (middle) exhibits only cyclization and azobenzene (bottom) 

exhibits only cis/trans isomerization. 
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 Molecular motors (Figure 1.1a) are typically based on C/T isomerization and 

harness molecular twisting to drive translational motion.11 Often molecular motors are 

designed to have similar or identical cis and trans structures so that each C/T 

isomerization cycle can be performed without having to reset the molecule. In Figure 

1.1a this corresponds to an infinite cycle of alternating red and blue states. Various 

molecular scaffolds and surface tethering techniques have been utilized for providing the 

“chassis” or “track” to transfer the energy of the motor.12-14 The 2016 Nobel Prize was 

awarded to Ben Feringa, Jean-Pierre Sauvage and Sir J. Fraser Stoddart for their 

contribution to the field of molecular motors.15 

 Optical memory (Figure 1.1b) based on binary code (0,1 or on,off) can be realized 

by molecules with photochromic properties.10 Typically cyclization based systems are 

chosen for this function, with the open-ring state corresponding to 0 or off and the 

photoinduced closed-ring state corresponds to 1 or on. Multilevel logic of up to 256 

levels (8-bit) of storage have been demonstrated.16 To utilize this system for optical 

memory it must be possible to “read,” “write,” and “delete” the switch state. Usually UV 

light performs writing via photocyclization and visible light performs deletion via 

photoinduced cycloreversion. A major problem with optical memory is that reading also 

utilizes visible light that limits the total number of times data can be read before it is 

eventually erased. The readout problem can be mediated by fluorescent detection of an 

unreactive optical transition that requires three lasers for writing or cyclization (<400 

nm), fluorescent read-out of an unreactive optical transition of the open structure (400-

500 nm) and erasing performed by bleaching the cyclized structure (600-800 nm).17 A 
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similar nondestructive read-out procedure can be performed by mid-infrared detection of 

the cyclized structure.18, 19 

 

 

Figure 1.1. Potential applications of photoswitchable materials: (a) A molecular 

motor that moves across a surface, (b) photoswitch states used as optical memory, (c)  

an electrical switch that is (de)activated by switching molecular states, and (d) to 

perform mechanical work, such as lifting, that is a result of the structural change 

between photoswitchable states. 
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Electrical switching (Figure 1.1c) utilizes a change in conjugation following 

irradiation that allows for the flow of current.20 A major advantage of a molecular switch 

versus traditional transistors and MOSFETs is that the switching speed of the former 

should theoretically be on the order of picoseconds, limited by the lifetime for bond 

formation,21, 22 compared to the typical >1 ns response for the latter. However the 

observation of slower switching speeds is most likely due to the bulk switching properties 

of the crystal requiring longer irradiation times for complete cyclization.23 Generally 

cyclization is viewed as the ideal candidate for electrical switching but C/T isomerization 

also has shown promise with azobenzene-based systems.24, 25 Recently single molecule 

photoelectrochemical switches based on a diarylethene photoswitch and graphene 

substrate have been demonstrated to be highly stable, reproducible and accurate with a 

on/off current ratio of ~100.26 

 Mechanical work can be utilized from the conformational change induced by 

cyclization or C/T isomerization and can result in ordered or stochastic macroscopic 

movement.27 This movement can be like the lever shown in Figure 1.1d where irradiation 

and subsequent cyclization on the surface layer of a crystal causes the lever to bend in the 

direction of the incoming light due to strain induced by differences in molecular packing 

of open vs. cyclized structures.28 Other types of mechanical changes are possible such as 

twisting to generate chiral structures29 and shape changes30 (square to rectangle). Even 

crystal explosion or cracking, termed the photosalient effect,31, 32 has been observed. The 

amount of force exerted by these processes is 100 times greater than muscle tissue and 
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comparable to that of piezoelectrics, and photoswitches can often lift objects weighing 

200-600 times their own weight.28 

 Another application of cyclization is that some cyclized structures can be 

transformed irreversibly by oxidative cyclodehydrogenation to yield fused polyaromatic 

hydrocarbons, as illustrated in Scheme 1.2.  This photo-oxidation reaction is referred to 

as the Mallory reaction33 in honor of Frank Mallory who extensively studied this reaction 

with cis-stilbene analogs. Historically this reaction provided indirect evidence of the 

cyclization intermediate, 4a,4b-dihydrophenanthrene (DHP), prior to its direct 

spectroscopic observation by Muszkat and Fisher in the 1960’s.34 Those authors 

determined that the ring fission activation energy is 17.5 kcal/mol (0.75 eV) and 

corresponds to a half-life of 96 minutes at 300 K under deaerated conditions (for certain 

intermediates O2 is a suitable oxidant). The Mallory reaction is still used today35, 36 as a 

synthetic chemical tool to generate various fused aromatics or polycyclic aromatic 

hydrocarbons (PAHs) as it can be more selective and provide unique products when 

compared to  non-photochemical methods, such as the Scholl reaction.37 

 Of particular importance to further improving the efficiency and stability of the 

photoswitchable molecules is to understand the mechanism of these photo-induced 

 

Scheme 1.2. Mallory Reaction of 4a,4b-dihydrophenathrene with I2 to produce 

phenanthrene by oxidative cyclodehydrogenation. 
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processes. The impact of molecular structure and substitution on the photo-

dynamics/chemistry is critical for guiding synthetic design and mechanical, optical or 

electronic applications. The concept of structure-dynamics relationships is a constant 

theme throughout this dissertation. 

 

1.2 Photoswitching Explained with the Woodward-Hoffman Rules  

 The molecular driving-force of photoswitching can be realized by simple 

molecular orbital theory and symmetry considerations that are summarized by the 

Woodward-Hoffmann (WH) rules.38, 39 Using C4H6 as a paradigm we focus on three 

structural isomers, cis-1,3,-butadiene (CBD), trans-1,3,-butadiene (TBD) and 

cyclobutene (CB), that will convey the formulation of the photochemical possibilities 

using chemical intuition (Scheme 1.3). First we build the molecular orbitals (MOs) based 

on the number of valence electrons (# of valence e-’s=# of MOs) using p orbitals and 

organize them according to increasing number of nodes. Next we analyze the symmetry 

of these MOs in order to build a correlation diagram (i.e. Walsh Diagram), using lines to 

correlate orbitals that have conserved orbital symmetry. 

 Analysis of this diagram provides many valuable predictions of the ground and 

excited-state properties of a particular molecule. When p atomic orbitals of similar sign 

reside adjacent to each other they form a π MO that is shown as a double bond in Kekule 

notation and indicates conjugation or an increase in bond order/strength. This implies that 

the central bond for TBD and CBD is allowed to freely rotate in the ground state or 

HOMO, due to the absence of π bond character, but the outer carbons (1-2 and 3-4) are 

fixed rotationally. Interestingly, following promotion of an electron into the LUMO the 
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bond order increases across this central bond but is decreased across the outer carbons, 

effectively reversing the rotations allowed between the HOMO and LUMO. The 

implication towards C/T isomerization between TBD and CBD is that this process can 

occur via thermal activation in the ground-state (e.g. HOMO) but not in the first excited 

state (LUMO) due to differences in orbital symmetry. This concept has been named the 

non-equilibrium of excited rotamers (NEER) principle and has been used extensively for 

successfully predicting the possible outcomes of various photochemical reactions.40 This 

illustrates that a particular photochemical mechanism can be state-dependent, a concept 

that will be revisited later. 
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Scheme 1.3. π orbital symmetry for three structural isomers of C4H6. The Woodward-

Hoffmann Rules utilize orbital symmetry to determine the correlation between states, 

which is illustrated with arrows. The Kekule structures (top) show that free rotation 

about the central bond is expected in the ground state of trans and cis-1,3-butadiene 

(TBD & CBD) since the HOMO has conjugation between carbons 1-2 and 3-4. 

However, upon absorption of a photon into the LUMO the central bond obtains more 

double bond character and therefore rotation is only allowed between carbons 1-2 and 

3-4 that permits cyclization to cyclobutene (CB). 
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 Focusing on photocyclization, the similar symmetry of the LUMO of CBD and 

the HOMO of CB can be recognized but of particular importance is how to attain this 

transformation. By rotating the terminal p orbitals towards one another, orbital overlap 

occurs and a σ bond is formed. This cyclization mechanism is known as disrotary, where 

subgroups rotate towards each other with opposing rotations, whereas a conrotary 

mechanism has the subgroups rotating away from each other with identical rotations. It is 

interesting to note that while the forward cyclization reaction follows a disrotary 

mechanism the reverse reaction, i.e. bond fission, from the LUMO of CB to the HOMO 

of CBD follows a conrotary mechanism. A final note is that CB in the ground-state 

(HOMO) is orbital symmetry “forbidden” to convert thermally into CBD, which 

increases the lifetime of cyclization product. The activation energy of the ring-reopening 

process is a very useful parameter when considering the long-term stability of a 

pericyclic photoswitch for practical applications. 

 The extension from 4 π electron systems to higher order even electron systems is 

determined quite simply by the alteration of orbital symmetry of the HOMO and LUMO 

following the addition of pairs of carbon atoms. The consequence of these symmetry 

alterations are the basis of the Woodward-Hoffmann “Rules” for electrocyclic reactions, 

where the conrotary/disrotary mechanism alternates by changing the electronic 

configuration or number of electrons. These rules are summarized in Table 1.1.  
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Table 1.1. Summary of Woodward-Hoffmann Rules for electrocyclic reactions. 

Number of π 

Electrons 

HOMO / 

Thermally Allowed 

LUMO / 

Photochemically Allowed 

y = 4 Conrotary Disrotary 

y = 6 Disrotary Conrotary 

y = 8 Conrotary Disrotary 

y For y/2, 

Even: Conrotary, Odd: Disrotary 

For y/2, 

Even: Disrotary, Odd: Conrotary 

 

 With an understanding of these basic rules we can move beyond the prototypical 

polyalkene systems to consider the photocyclization mechanism of more complex ortho-

arenes.  The photocyclization of ortho-terphenyl (OTP) is illustrated in Figure 1.2. OTP 

can be described as a 6π cyclization system since it is essentially a substituted hexatriene 

derivative and therefore undergoes conrotary photochemical reaction.41-44 The molecular 

orbital configuration is more complex than that of the simple polyene cyclization 

prototypes and therefore modern computational chemistry methods were utilized to 

determine the orbital symmetry. These results from density functional theory (DFT)45 

were performed using the B3LYP/6-31+G* level of theory and upon visualization of the 

orbitals the orbital symmetry can be analyzed by a similar procedure to that used 

previously for butadiene. Following photo-excitation into the LUMO of OTP, orbital 

overlap of the terminal phenyl rings induces conrotary rotation that causes ring-closure to 

form dihydrotriphenylene (DHT). Looking closely at the LUMO of OTP and the 
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positioning of the π orbitals it is possible to identify an ortho-quinoidal bonding 

configuration based on the increased inter-ring bond order and the single π lobe residing 

on the carbon atoms of the terminal phenyl rings located in the para position to the 

interring bonds. This builds further intuition into the photocyclization mechanism of OTP 

since the newly formed inter-ring π bonds benefit energetically by the planarization or 

flattening of all the phenyl rings relative to one another.  In the ground state the lack of an 

inter-ring π bond means that the phenyl rings undergo free rotation that is only hindered 

by steric interactions. However if an inter-ring π bond is introduced then the rings will be 

energetically stabilized when the p orbitals are parallel and will be destabilized when they 

are orthogonal to each other. This change in molecular orbitals following photo-excitation 

into the LUMO towards an ortho-quinoidal configuration qualitatively explains the 

driving-force towards planarization that brings the terminal phenyl groups into close 

proximity, induces orbital overlap and results in cyclization to form DHT. Following 

photocyclization DHT can either thermally revert back to OTP or in the presence of a 

suitable oxidant, commonly I2, undergo dehydrogenation to form triphenylene.46, 47 
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Figure 1.2. (Top) Mallory reaction (photo-oxidation) of ortho-terphenyl (OTP) to 

triphenylene. The mechanism is based on the 6π photocyclization of 1,3,5-hexatriene 

and they in fact share similar orbital symmetry.  (Bottom) Upon photoexcitation 

(HOMO to LUMO) OTP has increased inter-ring bond order and an ortho-quinoidal 

orbital symmetry that drives the system towards planarity. This forces the terminal 

rings into close proximity by a conrotary (i.e. identical phenyl rotations) mechanism 

that induces orbital overlap and therefore bond formation. Note the conservation of 

orbital symmtery between the LUMO of OTP and HOMO of DHT and vice-versa. 
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1.3 Excited-state Photochemistry: Potential Energy Surfaces, Conical Intersections 

and Nonadiabatic Couplings. 

1.3.1 Potential energy surfaces 

 While analysis of molecular orbitals and correlation diagrams helps to build 

intuition with light-induced chemical processes they only provide qualitative predictions 

under very ideal conditions of molecular symmetry. To quantitatively explain these 

physical phenomena we must explore the shapes and features of potential energy surfaces 

associated with various molecular geometries in multiple electronic states. Before 

providing the details and mathematics of these quantitative determinations let us start by 

surveying and cataloging the nomenclature that we use to define the landmarks on these 

potential energy surfaces (PESs). 
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 Figure 1.3 shows a typical PES of a nonadiabatic photo-reaction where a reactant 

molecule is initially in its ground electronic state (S0) and the molecule is promoted into 

its excited state by a absorbed photon in step 1. Immediately afterwards the molecule can 

either dissipate this absorbed energy by re-emitting a photon by fluorescence that 

regenerates the reactant ground state or move across the S1 surface shown by step 2. We 

can explain the molecular motion by the force associated with the shape of the potential 

energy surface defined as Equation 1.1. This force will drive 

 

Figure 1.3. Photoinduced chemical dynamics of a generalized nonadiabatic 

photochemical reaction. The process is broken down into four steps from the 

absorption of photon generating the excited state to the regeneration of the ground 

state reactant and formation of ground state product. The details are explained in the 

text. 
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Force = −
𝑑 Potential Energy

𝑑 Distance
                    (1.1) 

the molecule towards a lower energy configuration, such as stable minimum on the 

potential surface or to a conical intersection.  The latter are associated with strong 

couplings between electronic states and the excited-state population may cross to the 

ground state via a nonadiabatic transition. Step 3 illustrates an interesting consequence of 

conical intersections that highlights a departure from classical mechanics into the 

quantum mechanical nature of the chemical dynamics. The details will be explained 

further in the following sections but the quantum nature allows for simultaneous splitting 

of the population to the left and right that generates both reactant and product in step 4. 

This behavior is curious since classical mechanics would predict an object to continue 

evolving to the product in 100 % yield. Now that the qualitative mechanism of 

nonadiabatic photochemistry has been explained in terms of potential energy surfaces and 

associated forces we will revisit select aspects with more mathematical detail. 

 

1.3.2 Wavepackets and Quantum Superposition 

 The time-dependent evolution of a molecule impulsively pumped to an excited 

state is described quantum mechanically by a collection of electronic and vibrational 

wavefunctions that exist simultaneously, a so-called quantum superposition or 

“wavepacket.” Equation 1.2 shows the mathematical description of a wavepacket with cn 

providing the amplitude of a particular state (Ψ) that evolves in time (t) with a particular 

frequency (ω) and phase (φ). 

 𝛹(𝑟, 𝑡) = ∑𝑐𝑛exp[−𝑖(𝜔𝑛𝑡 − 𝜑𝑛)]𝜓𝑛(𝑟)                      (1.2) 
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 The time-energy uncertainty principle (Equation 1.3) dictates that as the time 

becomes more certain the energy becomes less certain. 

𝛥𝐸 𝛥𝑡 ≥  ℏ                                       (1.3) 

For femtosecond or attosecond duration laser pulses the duration is so short that their 

bandwidth becomes large enough to induce vibrational coherence or a superposition of 

multiple vibrational states.48 The vibrational coherence contains useful details relevant to 

the initial nuclear motion that the molecule experiences on the excited state PES that can 

persist for picoseconds before the wavepacket loses phase due to decoherence processes 

such as photochemical reaction or intramolecular vibrational energy redistribution 

(IVR).49, 50 The time-dependence of wavepacket evolution can be Fourier transformed to 

reveal the vibrational frequencies associated with regions of the PES it samples. 

Additionally vibrational wavepackets are important for the multi-state evolution and 

product state distributions relevant to photochemical reactions where certain vibrational 

modes can be coupled to a reaction coordinate.51 Importantly, PES topography can be a 

source of wavepacket bifurcation,52, 53 as observed with cis-stilbene,54 whereby the 

excited-state relaxation mechanism branches to encompass divergent structural dynamics.  

 

1.3.3 Nonadiabatic Transitions at Conical Intersections 

 The efficient and fast transfer of the excited state back to the ground state or 

nonadiabatic transitions are facilitated by potential energy funnels between degenerate 

electronic states known as conical intersections.55, 56 Conical intersections (CIs) do not 

exist as a discrete point but rather as a seam of points in a 3N-8 subspace of the total 3N-

6 degrees of freedom for a polyatomic molecule. These two dimensions that describe the 
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seam of degenerate electronic states are the gradient difference (g, equation 1.4) and 

derivative coupling (h, equation 1.5) vectors.57   The gradient difference vector is useful 

for describing and locating CIs since by definition the difference in energy of the ground 

and excited states should be minimized. The derivative-coupling vector is important since 

the description of a CI should include the magnitude of coupling between states that 

effectively quantifies the breakdown of the Born-Oppenheimer approximation. 

𝑔01⃗⃗ ⃗⃗ ⃗⃗  =
𝜕(𝐸0 − 𝐸1)

𝜕𝑅
                               (1.4)

ℎ01
⃗⃗ ⃗⃗ ⃗⃗  = 𝛥𝐸0,1⟨ψ0|

𝜕

𝜕𝑅
|ψ1⟩                    (1.5)

 

The gradient difference and derivative coupling vectors are essential for the 

characterization of CI topography that influence the resultant photo-dynamics and 

product branching ratio, i.e. the relative percent of two unique final states populated 

through nonadiabatic relaxation. The influence of topography is illustrated in Figure 1.4, 

which compares behaviors for “vertical” and “tilted” CIs.  Here the branching ratio is 

represented by the green arrows that pass from the top to bottom of the CI. Pictorially it 

can be explained that a tilted CI directs the wavepacket in predominately one direction 

while a vertical CI allows for more equal distribution of photoproduct yields. In some 

cases even up-funneling (S0 to S1) has been predicted for a situation involving a specific 

incoming trajectory and the CI tilt that would allow for multiple nonadiabatic transitions 

and more complex product distributions.58 For examples of calculated CI topographies 

and dynamics in specific molecules the reader is directed to references that provide a 

more exact and formal representation.59-61 
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 Conical intersections are often vital to understanding photophysical behaviors and 

interpreting experiment for multiple reasons. CIs are without a doubt ubiquitous and 

highly relevant to many photochemical processes beyond C/T isomerization and 

cyclization including charge transfer, photodissociation, and proton transfer.62, 63 Thirteen 

minimum energy S0/S1 CI’s (MECIs) have been located computationally in benzene; 

these are accompanied by seams that make nonadiabatic decay appear to be nearly 

unavoidable in the excited state.64 Whenever low fluorescence quantum yields or short 

 

Figure 1.4. Influence of conical intersection topology on photodynamics and resultant 

photoproduct formation. For a vertical CI the molecular population is directed equally 

between two resultant configurations, whereas a tilted CI favors one over the other. 

The experimental observable of CI topography is known as the branching ratio where 

a ~50:50 formation of photoproducts is expected for a vertical CI. 
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excited-state lifetimes are observed experimentally the tendency is to assign this behavior 

to nonadiabatic transitions through conical intersections. These empirical assignments are 

often justified theoretically.65 Conical intersections often result in internal conversion 

within femtoseconds to picoseconds, whether they correspond with deactivation of 

roughly the same molecular structure (i.e. S2-to-S1 nonradiative decay)66 or due to 

photochemical reaction,44, 67 and therefore require the application of femtosecond 

spectroscopic methods to interrogate.68 Due to these very fast transitions experimentalists 

are often interested in studying how the breakdown of the Born-Oppenheimer 

approximation is influenced by specific conditions. In particular studying the influence of 

molecular friction, both solvent and viscosity/pressure dependent, on the rate of 

nonadiabatic decay has been useful for understanding microscopic and impulsive solute-

solvent interactions.69-72 

 

1.4 Overview of Dissertation Contents 

The remaining contents of this dissertation are organized as follows:  

 

Chapter 2 describes the experimental techniques used to study photoinduced dynamics of 

ortho-arenes. This includes an introduction to steady-state and time-resolved optical 

spectroscopy on timescales spanning femtoseconds to microseconds. The 3-pulse “pump-

repump-probe” method, which is useful for deconvoluting complicated transient spectral 

dynamics by interrogating spectral and kinetic correlation in time-resolved spectra, is also 

described.  The generation of femtosecond laser pulses, details of experimental set-ups, 

and polarization anisotropic effects due to the loss of dipole “memory” are described.  
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Complex data analysis using SVD-based global fitting is presented, including details of 

the matrix math and algorithm used for fitting multiple spectral components with various 

kinetic models.  

 

Chapter 3 is based on the first ultrafast time-resolved spectroscopic study of ortho-

terphenyl (OTP) and the cis-stilbene analog 1,2-diphenylcyclohexene (DPCH).44 The 

dynamics of OTP and DPCH were compared due to their structural dissimilarities in the 

central 6-membered ring, which is a rigid benzene ring for OTP and a more flexible 

cyclohexene ring for DPCH. This comparative study explored the influence of the 

structural rigidity on excited-state lifetimes that increase in length as the rigidity increases 

(DPCH < OTP). Quantum-chemical computations were used to examine the effective 

energetic barriers from the excited-state minima to cyclization CI of OTP and DPCH and 

were found to be consistent with the experimental lifetimes. 

 

The focus of Chapter 4 is on the implications of increasing the molecular complexity of 

ortho-arenes from OTP to 1,2,3-triphenylbenzene (TPB) and ortho-quaterphenyl (OQTP) 

on excited-state dynamics.42 TPB exhibits similar photoinduced behavior as OTP but with 

a dilated excited-state lifetime.  In contrast OQTP exhibits two distinct decay channels 

with disparate lifetimes. The interpretation was that OQTP has major alterations to the 

OTP chromophore that leads to the possibility of extended “ortho-quinoidalizational,” or 

formation of a delocalized excited state across all four rings, which competes with 

deactivation by electrocyclization. In addition the activation energies of ring-reopening 
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were quantified for OTP, TPB, and OQTP by temperature-dependent nanosecond 

spectroscopy. 

 

Chapter 5 explores the effects of boron-nitrogen (BN) doping and extended aromatic 

substitution on the photocyclization of ortho-arenes.  Photoinduced dynamics of B3N3-

hexabenzotriphenylene (1) and its singly ring-fused Mallory-reaction product (3) were 

studied by a suite of steady-state and time-resolved spectroscopic techniques that 

revealed no direct spectroscopic signatures of a cyclized intermediate  but instead highly 

efficient intersystem crossing into the triplet manifold. The assignment of the triplet state 

was confirmed by oxygen quenching experiments and further relaxation from the triplet 

state was confirmed by broadband microsecond transient absorption. The sum of the 

fluorescence and triplet quantum yield for compound 1 are approximately unity.  

However a small quantum yield for cyclization of <5-10 % is possible based on the lower 

error bounds and is consistent with the reactivity of compound 1 under Mallory reaction 

conditions. 

 

Chapter 6 describes and compares the photochemistry of hexaphenylbenzene and 

hexaphenylborazine to address directly how BN doping impacts the photophysics and 

stability of DHT-like photoproducts of these isoelectronic species. Hexaphenylbenzene 

exhibits a long excited-state lifetime (~400 ps) that decays to reveal tetraphenyl-DHT 

(TphDHT), whereas hexaphenylborazine has a very fast excited-state decay (~3 ps) that 

shows no evidence of cyclization. Further study of TphDHT onto nanosecond timescales 

revealed a 2 μs lifetime that is 2 orders of magnitude larger than any other DHT analog 
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observed previously. Ring-reopening of this barrier is subject to a very weak energetic 

barrier (0.02eV), but further thermodynamic analysis revealed a large decrease in the 

entropy compared to DHT and its analogs. Therefore the persistence of TphDHT is 

attributed to entropic stabilization as a result of steric crowding around the central 

benzene ring. 

 

Chapter 7 digs deeper into the kinetics of photocyclization using pump-repump-probe 

(PRP) spectroscopy. In our previous work (e.g. Chapter 4) global analysis generated 

adequate fits to transient spectral evolution using sequential kinetic models for all ortho-

arenes.  However, these fits produced species associated spectra that overlap 

considerably, such that it is unclear if these models are truly appropriate.  Pump-repump-

probe experiments were used to test this mechanism empirically by photobleaching either 

the DHT S0 or the OTP S1 absorption with a repump pulse and then monitoring the 

instantaneous or long time effects on the transient spectral evolution. All PRP results that 

monitor the long time DHT absorption (Δt=1ns) following repumping at 340, 400 and 

580 nm exhibit a subpicosecond rise and plateau in signal that does not reflect a 

sequential mechanism with a ~3 ps lifetime, and rather suggests that the photocyclized 

product is formed instantaneously. Similar results were obtained for hexaphenylbenzene, 

which was chosen due to its ~400 ps S1 lifetime. The conclusion from PRP experiments is 

that cyclization is a result of wavepacket bifurcation in the excited state immediately after 

excitation and that the S1 decay observed on picosecond timescales must be due to a S0/S1 

CI(s) not associated with cyclization. 
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Chapter 2 

Experimental Methods 

 

2.1 Introduction to Transient Optical Spectroscopies 

To study the nonadiabatic photocyclization and subsequent ring-reopening of ortho-

arenes the physical chemist requires tools that detect meta-stable species as they form and 

decay on timescales much too fast to be perceived by the human eye. Since the reactants 

absorb ultraviolet radiation and the products absorb visible radiation a logical choice is 

transient optical spectroscopy, which due to advances in laser technology allow for events 

on the order of femtoseconds in duration to be observed.3 Typically chemical bonds are 

formed and broken in less than a picosecond but other processes, such as the thermal 

reversion of photoproducts or intersystem crossing to states of different spin multiplicity, 

are slower occurring on timescales greater than a nanosecond. Therefore, more 

conventional optical spectroscopic methods are necessary for extension into longer time 

regimes that can extend from nanoseconds up to the steady-state (seconds, hours, etc.). 
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2.2 Steady-State Spectroscopies 

 The simplest optical spectroscopic methods are UV/VIS absorption and 

fluorescence spectroscopy (Figure 2.1), which quantify the absorption or emission of 

light by molecules, respectively. Each method has four general components: a light 

source, a molecular solution or sample, a spectrometer for dispersion of light by 

wavelength or photon energy, and a light detector. The distinction between these two 

methods is that absorption spectroscopy detects an attenuation of light intensity, 𝐼, 

through a sample and fluorescence spectroscopy measures the photons emitted from the 

 

Figure 2.1. Connection between light-induced molecular processes and experimental 

spectroscopic techniques. The left panel highlights transitions that can be observed by 

steady-state spectroscopic methods. The right panel illustrates molecular transitions 

observable by transient absorption or "pump-probe" spectroscopy. 
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sample. Therefore fluorescence spectroscopy is a background or reference free 

measurement while absorption spectroscopy requires a reference intensity, 𝐼0, and is a 

differential measurement. Equations 2.1-2 give the relationships that quantify absorption, 

which can be given in units of percent transmittance (%T) or absorbance (ABS) (i.e. 

optical density (OD)). 

%T = 100
𝐼

𝐼0
                                    (2.1) 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑂𝐷⁄ = −log
𝐼

𝐼0
         (2.2) 

𝐼0 = Incident light 

𝐼 = Incident light after sample 

The relationship between absorbance and concentration is important for quantitative 

determinations of quantum yields for photophysical processes and is provided by the 

Beer-Lambert Law, A = εlc. ε is the molar extinction coefficient that reflects how strongly 

a molecule absorbs light at any given wavelength and relates A to the solution 

concentration (c) or pathlength (l); ε determines what sample concentrations to be 

prepared for fluorescence or other spectroscopic techniques.  

 A common interrogation of photophysical processes that utilizes both steady-state 

absorbance and fluorescence spectroscopies is the determination of the fluorescence 

efficiency known as the fluorescence quantum yield (ΦFl, equation 2.3).5 The 

fluorescence quantum yield provides information regarding the photophysical 

deactivation mechanism since the summation of quantum yields for all deactivation 

pathways is equal to unity. The fluorescence quantum yield is often determined by 

relative comparison of the integrated fluorescence intensity under identical absorption 
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conditions of a sample (IFl
X) to a reference (IFl

Ref) with a known quantum yield (ΦFl
Ref).  

For example, if the fluorescence quantum yield is large (~1) then the yield of any other 

competing mechanism is negligible and it can be assumed that deactivation occurs 

predominately due to fluorescence.  Both the absorption and fluorescence spectra are 

prerequisites for more complex spectroscopic methods that monitor the sample changes 

induced by perturbations with light, heat, pressure, etc. 

𝛷𝑓𝑙
𝑋 = 𝛷𝑓𝑙

𝑅𝑒𝑓
 

𝐼𝑓𝑙
𝑋(𝐴𝑋)

𝐼𝑓𝑙
𝑅𝑒𝑓(𝐴𝑅𝑒𝑓)

         (2.3) 

𝛷𝑓𝑙
𝑋,𝑅𝑒𝑓

= Fluorescence quantum yield of X or reference 

𝐼𝑓𝑙
𝑋,𝑅𝑒𝑓(𝐴𝑋,𝑅𝑒𝑓) = Fluorescence intensity of X or ref. as a function of absorbance 

 

2.3 Principles of Transient Absorption Spectroscopy (TAS) 

TAS or “pump-probe” spectroscopy is a derivative of UV/VIS spectroscopy where 

instead of acquiring a time-averaged or steady-state absorption spectrum, a time-resolved 

absorption spectrum is acquired following perturbation of the sample with a light pulse.6 

However a light source, i.e. the “pump”, is required to initiate the photo-physical or 

photochemical process by photo-excitation in addition to the light source that monitors 

the change in sample absorption, i.e. the “probe.” The pump-probe measurement is a 

differential measurement like UV/VIS spectroscopy except that the sample is always 

present and instead the transmission of probe light following sample excitation with the 

pump, 𝐼𝑝𝑢𝑚𝑝−𝑝𝑟𝑜𝑏𝑒, is referenced against the probe transmission with the pump absent, 

𝐼𝑝𝑟𝑜𝑏𝑒. Modulation of the pump is generally achieved by using an optical chopper that 

physically blocks the light. Two phases, i.e. pump on/probe on and pump off/probe on, 
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are required for determining the differential absorbance (ΔOD) at a given pulse time 

delay as given by equation 2.4.  

𝛥𝑂𝐷 = −log
𝐼𝑝𝑢𝑚𝑝−𝑝𝑟𝑜𝑏𝑒

𝐼𝑝𝑟𝑜𝑏𝑒
     (2.4) 

 The spectra acquired from TAS contain a wealth of information regarding the 

dynamics/kinetics that follow the initial photo-excitation through time-dependence of 

various photo-induced spectroscopic signatures (Figure 2.1) such as ground-state bleach 

(GSB), excited-state absorption (ESA), stimulated emission (SE), triplet state absorption 

(TSA), or photo-product absorption (PPA).7 GSB is the signal due to increased light 

transmission following reduction of the ground-state absorption by the population 

transfer to an excited state induced by a pump pulse. ESA is the reduction in probe 

intensity due to the absorption of the excited state. SE is the increase in probe intensity 

due to the stimulated emission of the excited state, which has a spectrum quite similar to 

the steady-state fluorescence spectrum but which can have a time-dependent evolution. 

TSA is the decrease in probe transmission due to absorption of a triplet-state that is 

formed by intersystem crossing from the singlet manifold. PPA results in a decrease in 

probe transmission due to the absorption of photochemically generated stable or 

metastable ground-state species due to processes such as cis/trans isomerization or 

electrocyclization.  

 In order to track the photo-physical evolution of a molecule following photo-

excitation snapshots must be acquired along a well-defined time coordinate or time delay 

(Δt), which can vary from femtoseconds to microseconds. Depending on the molecular 

process of interest this time delay can be achieved by different methods that generally 

separates TAS into two variants, femtosecond/ultrafast and nanosecond-to-microsecond 



38 

 

(and beyond). Each variant operates through the same principles described above but 

with different time-resolution and time-delay ranges that often require different 

equipment and experimental implementation. The time resolution and relevant 

photophysical processes for each variant are described as follows: femtosecond TAS with 

a time resolution of  <200 fs is optimal for studying dynamics of excited states (100s of fs 

to ~1 ns) and nanosecond/microsecond TAS with a time-resolution of >1 ns is optimal for 

studying the decay of meta-stable photochemical products such as triplet-states, radicals, 

and cyclization adducts. More specifically femtosecond and nanosecond/microsecond 

TAS are necessary for the study of ortho-arene photochemistry so that all processes can 

be monitored from “birth” to “death” providing details pertaining to the kinetics of 

formation and decay of excited states and photoproducts as well as their stability or 

activation energy against reversion to reactant structures. 

 

2.4 Femtosecond Transient Absorption Spectroscopy (fs-TAS) 

 Figure 2.2 presents a schematic of the fs-TAS setups used in the Bragg lab.8-10 

Generally, transient absorption requires 2 light sources but femtosecond transient 

absorption utilizes one source, consisting of the oscillator and amplifier, that is split into 

an intense pump and weak probe. Using nonlinear optical mixing (described in detail 

below) the narrow bandwidth pump and broadband probe are generated prior to optical 

delay being applied using a translation stage. After overlapping each beam at the sample 

the probe is spectrally conditioned using various optical filters and analyzed according to 

wavelength using a spectrograph and detector. Further details of each component are 

given below. 
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2.4.1 Description of Femtosecond Laser Source 

 The laser source consists of two parts, an oscillator that generates a weak 

femtosecond laser pulse train (Ti:Sapphire, 800 nm, 80 MHz, ~6 nJ/pulse, 35 fs) that 

seeds a regenerative amplifier to generate a high power femtosecond laser source (~4.5 

mJ/pulse, 1 kHz, 35 fs, 800 nm) through Chirped-Pulse Amplification (CPA). A detailed 

discussion of mode-locking and regenerative amplification can be found in various 

textbooks.1, 2 Briefly, a Titanium-Sapphire crystal in the oscillator is pumped with a CW 

solid-state diode laser (532nm, ~5 W). Through constructive interference of various CW 

laser modes by passive Kerr-lens mode-locking a weak femtosecond laser pulse or “seed” 

is generated. 
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 Following the generation of the femtosecond seed pulse the oscillator output is 

amplified by a regenerative amplifier from pulse energies of ~6 nJ to 4.5 mJ. Due to the 

very high peak power of femtosecond laser pulses the amplification is preceded by pulse 

“stretching” (i.e. pulse “chirping”) whereby a diffraction grating pair spatially disperses 

the pulse by wavelength and then recombines the pulse spatially to regenerate the initial 

circular beam profile. The dispersion of wavelengths creates a pathlength difference 

 

Figure 2.2. Generalized femtosecond transient absorption setup and equipment 

utilized in the Bragg lab. While two separate fs-TA experiments are available the same 

components are used for each: a laser source, pump and probe lines, a motorized 

translation stage, chopper, wavelength dispersion and light detection. 
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between colors within the spectral bandwidth that temporally stretches the pulse, which 

allows for increased amplification due to a decrease in peak power. Next the 

amplification takes place by optically pumping a Ti:Sapphire rod with ~ 30 mJ of 532 nm 

at 1 kHz from a solid state laser (Coherent Evolution), which creates a gain medium for 

the seed pulse.  The amplified seed pulse makes multiple passes in the laser cavity. The 

entrance and exit timing of the seed and amplified pulse, respectively, are synchronized 

to firing of the pump laser (Evolution) and manipulated by a set of Pockels cells triggered 

at the rate of the pump laser; hence, while amplification increases the pulse power, it also 

reduces the pulse repetition rate from 80 MHz down to 1 kHz. Finally the amplified 

output is recompressed to the initial temporal pulse width by reversing the stretching 

process in a “compressor” stage. The pulse compressor uses a diffraction grating pair in a 

different configuration which applies the reverse pathlength difference across the 

dispersed wavelengths that was applied in the stretcher stage.11 
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2.4.2 Wavelength Tunability: Nonlinear Optical Mixing and Phase Matching 

 The fundamental wavelength (800 nm) of the Ti:Sapphire laser is not directly 

useful for photo-excitation or monitoring of most molecules and materials of interest to 

chemists. However the high peak power of femtosecond laser pulses allow for nonlinear 

optical mixing that can be explained simply by comparison to energy or momentum 

conservation. These laws can be applied to photons provided their intensity is sufficiently 

high and a suitable material is used so that photons of the same or different energy may 

 

Figure 2.3. Basic principles of nonlinear optical mixing.1, 2 (left) Phase matching is 

analogous to momentum conservation and results in the output wave direction being 

the sum of the input wave vectors. (right) Nonlinear optical mixing can be viewed as 

energy conservation where the input energy is the sum or difference of the input 

waves. Self-phase modulation (SPM) is vital to the process of supercontinuum 

generation, i.e. the broadband probe pulse.4 
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be added or subtracted. Additionally these photons have “momentum” so that the new, 

mixed photons direction is determined by the vector addition of the incident photons, 

which is commonly referred to as phase matching. Figure 2.3 reviews the most prevalent 

nonlinear processes that are utilized for generation of wavelengths from 266-2000 nm in 

our laboratory. Finally it should be noted that the nonlinear crystal, typically BBO (beta 

barium borate) or KDP (potassium dihydrogenphosphate) are non-centrosymmetric, i.e. 

not having inversion symmetry. 

 

2.4.3  Polarization Anisotropy 

 When molecular samples are excited with polarized light pulses, the polarization 

memory of the molecular transition dipoles can be lost due to the rotation/diffusion of a 

solute molecule through solvent that occurs simultaneously with excited-state population 

dynamics. For transient spectroscopies the pump laser excites molecules with transition 

dipole moments aligned with the laser polarization that creates a polarized excited-state 

population. Once this population is generated it subsequently diffuses and rotates through 

solution eventually losing memory of its initial dipole/polarization alignment, occurring 

simultaneously but on a different timescale as excited-state population dynamics. 

Additionally, changes in electronic states or nonadiabatic photochemical transformations 

can be accompanied by changes in dipole moment (and therefore polarization anisotropy) 

that further complicate transient absorption intensities. Typical timescales for rotational 

diffusion are picoseconds, while electronic or nonadiabatic photochemical changes occur 

much faster (~<1ps).12, 13 
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 The polarization effects can either be quantified or removed by selection of 

relative pump and probe polarization. To quantify the polarization dynamics we isolate 

the polarization anisotropy (r(t)) by performing separate TA experiments with identical 

pump and probe polarization (parallel, I||) and perpendicular polarization (perpendicular, 

I⊥).14  

𝑟(𝑡) =
𝐼∥ − 𝐼⊥

𝐼∥ + 2𝐼⊥
= 𝑟𝑜e−𝐷𝑡 = 𝑟𝑜e

−6𝑘𝑇
ζ

𝑡
    (2.5)

𝐼∥ = Parallel Pump/Probe Polarization

𝐼⊥ = Perpendicular Pump/Probe Polarization

𝑟𝑜 = Initial Anisotropy

𝐷 = Rotational Diffusion Constant

𝑘 = boltzmann constant

𝑇 = Temperature

ζ = Solvent Friction

 

To remove these effects we can select a relative polarization angle known as magic angle 

(54.7°) which samples an effectively isotropic population.15 Optics for polarization 

control include wire-grid polarizers, half-wave plates and depolarizers which vary by 

usable wavelength ranges, transmission and damage thresholds that must be carefully 

chosen for the given application. 

 

2.4.4 fs-TAS Experimental Setup 

 The amplified laser output is used to generate the broadband probe and pump or 

excitation pulses by non-linear mixing processes. The probe is generated by focusing 

approximately a microjoule or less of the fundamental (800 nm), second harmonic (400 

nm), or third harmonic (266 nm) into a thin crystal, typically sapphire or CaF2, to drive 

supercontinuum generation.  Each combination of driving wavelength and crystal 

produces a different spectral range (Table 2.1), which is selected based on the molecule 
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or material to be studied. Generally the process of supercontinuum generation is regarded 

as a self-phase modulation process (see Figure 2.3) but further details are provided 

elsewhere.1, 4 

 

Table 2.1. Supercontinuum spectral ranges (λout) of various materials and driving 

wavelengths (λin).
4, 16, 17 

Material λin / nm λout / nm 

CaF2 800 300 - 1200 

CaF2 400 250 - 600 

CaF2 266 225 - 270 

Sapphire 800 400 - 1400 

 

 The pump or excitation pulse can be a variety of wavelengths generated by 

nonlinear optical mixing. For UV excitation the third harmonic of the laser fundamental 

is typically employed (266 nm). In our experimental setup this wavelength is generated in 

a two-step process: 400 nm pulses are generated by second harmonic generation (SHG) 

of the fundamental; these are then mixed with the fundamental by sum frequency 

generation to make 266 nm. For longer wavelengths an optical parametric amplifier 

(OPA, TOPAS Light Conversion) is utilized.  The OPA can generate excitation pulses 

from 300 to 2500 nm using various nonlinear processes (see Figure 2.3) in a single or 

cascaded stages. 



46 

 

 The relative time delay between pump and probe is set via a difference in optical 

pathlength (related to the time through the speed of light (~ 1ft/ns)).  This can be 

controlled precisely when the path of one beam is routed along a motorized translation 

stage (Newport ILS250CC). Additionally the pump and/or probe must be modulated 

before arriving at the sample by an optical chopper (Thorlabs). For standard transient 

absorption two phases are necessary, probe only and pump/probe on, that requires 

modulating only the pump beam. However, a 4 phase transient absorption experiment is 

often necessary for removing fluorescence or pump scattering that requires chopping both 

the pump and probe. Finally both beams are focused into the sample.  The polarization of 

the probe and pump is selected immediately before the sample using a broadband wire-

grid polarizer (Thorlabs) and a monochromatic half-wave plate (Thorlabs, 266 nm), 

respectively. 

 After the sample the probe light must be spectrally filtered with long-pass or 

band-pass filters to remove the scattered pump and residual fundamental or harmonic that 

drives white-light generation for the probe, since both are very intense compared to the 

white-light continuum. Finally the probe is dispersed using a grating or prism and imaged 

onto a CCD or photodiode array. Two experimental fs-TAS setups are available in the lab 

that are based on a grating/CCD or prism/photodiode array detection, each have their 

advantages.6 The grating based spectrograph has linear diffraction across wavelength and 

careful selection of the grating blaze allows for either broad or very fine spectral 

coverage. However, the disadvantage of a grating spectrograph are that the higher orders 

of diffraction overlap (i.e. order sorting) with the 1st order making only one octave (i.e. 2 

times the lowest wavelength) of spectral coverage possible. Additionally gratings have 
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high intensity losses due to the multiple orders of diffraction and their blaze being 

designed for a specific spectral range. The advantage of a prism is the high light 

throughput (theoretically lossless at Brewster’s angle) and the absence of order sorting 

allowing for ultrabroadband dispersion and simultaneous detection. Therefore prisms are 

optimal for UV/Visible transient absorption while gratings are better suited for smaller 

spectral coverage with higher resolution as necessary for techniques like femtosecond 

stimulated raman. As for the difference between CCD’s and photodiode arrays, the CCD 

is often considered more sensitive but it has been shown that the shot-to-shot laser noise 

is the limiting factor, not the choice of detector.6   For further details comparing gratings, 

prisms, photodiode arrays and CCDs see reference 6. For further details pertaining to the 

prism-based fs-TAS setup employed for much of the results in this thesis the reader is 

directed to appendices 2 and 6. 

 

2.5 Nanosecond & Microsecond Transient Absorption 

 Extended time ranges beyond fs TAS measurements into the nanosecond and 

microsecond timescales requires a different approach since the pathlength difference 

between pump and probe would be prohibitively large with hundreds to thousands of feet 

of pathlength (~1 ft/ns) necessary.18, 19 In our measurements the time delay between pump 

and probe is controlled electronically using the laser timing electronics (Coherent SDG 

Elite) or an external timing generator (Berkeley Nucleonics BNC1000) that synchronize 

either an external laser diode pulser (Highland Technologies) or a home-built circuit for 

pulsing LEDs. Therefore this technique uses two separate light sources. Various 
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combinations are possible such as two synchronized fs or ns lasers, or one high power 

fs/ns laser for the pump and a low power LED or laser diode for the probe. 

 

 

 We employ our fs laser system as the pump source and various LED/laser diodes 

as our probe source.  The latter are highly compact and economical choices that can be 

easily integrated into the preexisting fs-TAS setup. The LED/laser diode light source 

replaces the fs probe and utilizes the same focusing and collimation optics as well as light 

dispersing and detection elements for fast and easy implementation and integration. The 

 

Figure 2.4. Comparison of experimental set-ups for femtosecond (top) and 

nanosecond to microsecond transient absorption (bottom). 
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light sources readily available in our lab are given in Table 2.2 with their respective 

wavelength ranges and time resolution. Additional information regarding their general 

operation,  circuitry, and electronic components (including part numbers) are given in 

appendix 7. 

 

Table 2.2. Various LED and laser diode wavelengths and associated time resolution 

(FWHM)8, 20 

Light Source λ / nm FWHM / ns 

White LED 410-750 300 

Laser Diode 405, 450, 520, 639 1 
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2.6 Pump-Repump-Probe Spectroscopy 

 

 In order to further interrogate excited-state photophysics a “double difference” 

transient absorption (ΔΔOD) or pump-repump-probe experimental scheme can be 

employed.21 This can be used to interrupt or alter the 1-photon induced dynamics, 

 

Figure 2.5. Generalized pump-repump-probe experiment with molecules A 

(reactant) and B (product). Under normal excitation conditions (pump only) 

there is not enough energy to cross the excited-state (S1) barrier and molecule A 

is regenerated. When a repump pulse is added at the correct time delay to 

intercept the excited-state population the molecules can overcome the barrier 

and funnel downwards to form molecule B. Only with the addition of the 

repump pulse will molecule B be generated. 
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determine correlation between states and disentangle overlapping spectral/kinetic 

components. A prototypical example is given in Figure 2.5 where the reactant (A) only 

produces product (B) by population transfer to a higher electronic state using an 

appropriately timed repump pulse. The experimental setup can be viewed as a “double” 

transient absorption experiment with two excitation pulses, optical choppers and delay 

stages that allow for two variable time delays. This experiment requires various pump 

(Pu), repump (Re), probe (Pr) and background (BG) combinations or phases to be 

collected and organized that can be summarized by equations 2.6-8 with the final 

corrected pump-repump-probe signal given by Equation 2.9. 

Δ𝑂𝐷𝐹𝑙.𝐶𝑜𝑟𝑟. = −log (
𝑃𝑢𝑃𝑟 − 𝑃𝑢

𝑃𝑟 − 𝐵𝐺
)                                                            (2.6)

Δ𝑂𝐷𝐹𝑙.𝐶𝑜𝑟𝑟.𝑃𝑅𝑃 = − log (
𝑃𝑢𝑅𝑒𝑃𝑟 − 𝑅𝑒𝑃𝑢

𝑃𝑟 − 𝐵𝐺
)                                            (2.7)

Δ𝑂𝐷𝐹𝑙.𝐶𝑜𝑟𝑟.𝑅𝑃 = − log (
𝑃𝑢𝑅𝑒𝑃𝑟 − 𝑅𝑒𝑃𝑢

𝑃𝑟 − 𝐵𝐺
)                                              (2.8)

ΔΔ𝑂𝐷𝐹𝑙.𝐶𝑜𝑟𝑟. = Δ𝑂𝐷𝐹𝑙.𝐶𝑜𝑟𝑟.𝑃𝑅𝑃 − Δ𝑂𝐷𝐹𝑙.𝐶𝑜𝑟𝑟. − Δ𝑂𝐷𝐹𝑙.𝐶𝑜𝑟𝑟.𝑅𝑃          (2.9)

  

 Application of PRP spectroscopy to the photocyclization of ortho-arenes is 

particularly useful for deconvoluting the kinetics of overlapped spectral components due 

to the ESA and PPA. The generalized PRP experiment is given in Figure 2.6, where the 

proposed sequential kinetic model (A to B or S1 OTP to S0 DHT) is interrogated. The 

influence of bleaching the observed ESA with a repump pulse on the TA signal of DHT at 

long time delays (>1 ns) is monitored. Alternatively, a direct depletion of DHT is also 

possible which would show weaker depletion of DHT at early time delays and stronger 

depletion at later time delays that would correlate with the lifetime of the ESA of OTP.  
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Figure 2.6.  Pump-Repump-Probe Experiment for deconvolution of spectral components and kinetics. (a) For a sequential two 

component kinetic scheme a population “A” is created by the pump and then depleted with a repump pulse . (b) The effect on “B” is 

that the final population will be reduced (t=∞).  By scanning the time delays given in the top right (c) we can extract the kinetics (d) 

regarding the formation of B by examining the relative reduction  in  the final population monitored by the probe at t=∞ (Δt13>1 ns).
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2.7 Global Fitting Algorithm 

Global fitting has become a common analysis amongst spectroscopists due to its 

ability to simultaneous fit spectral components and kinetics.22, 23 Often global analysis is 

preferred over conventional exponential decay fitting since global analysis can be viewed 

as a spectrally constrained fitting process. Global analysis has a few variants that are 

unique in their choice of spectral decomposition but are quite similar in their fitting 

procedure. Singular value decomposition (SVD)24, 25 will be the chosen method herein 

but other methods, such as principal component analysis (PCA)26, 27 or matrix least 

squares (MLS, this method requires the spectra as user input),28 provide nearly identical 

results.  

The SVD-based global fitting algorithm begins with the SVD procedure 

(Data=USVT) that decomposes the transient absorption spectra into its spectral (U) and 

time (V) components as well as their relative weighting (diagonal elements of the matrix 

S). The S matrix is essential to the fitting process as its weights along the diagonal 

provide information about the predicted number of kinetic species and their relative 

significance. Next the time resolution of the experiment or instrument response function 

(IRF) must be determined by fitting the rise in signal or can be provided as user input 

from an external source such as a pump-probe cross-correlation experiment. Undoubtedly 

the most important user input is the selection of a kinetic model that can be determined 

using the number of relevant components in the S matrix in combination with chemical 

intuition for guidance towards the most sensible and relevant model. Our algorithm 

currently has a library of  >20 kinetic models and the addition of models only requires 

one to derive the analytic solution. With some effort the algorithm could be adapted for 
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numerical kinetics that would allow for quite complex kinetic models at the expense of 

computational time.  

Using the selected kinetic model, IRF and SVD information an initial guess is 

constructed and subjected to nonlinear least-squares fitting for parameter optimization. 

Note that the initial guess also includes a Gaussian function with a duration of the IRF as 

an extra kinetic component which is used to extract coherent artifacts, such as cross phase 

modulation, stimulated Raman amplification, etc.29 Also the kinetics are convoluted with 

the IRF at each iteration since the provided models are not convoluted making input of 

new models more simplistic and user friendly. Finally the resultant fit is evaluated by 

checking the residuals as a function of time and qualitative matches of the fit spectral 

components or species associated spectra (SAS), the D matrix in Figure 2.7, to the 

observed spectral components. If an adequate fit is not determined a new kinetic model is 

selected and the fitting process is repeated. The algorithm was prepared in MATLAB and 

the corresponding code is presented in Appendix 8.
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Figure 2.7. Flowchart for global fitting procedure and details of algorithm. 
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2.8 Computational Chemistry Methods 

 Much of the experimental work herein is accompanied by supportive quantum 

chemistry computations.30 Specifically the computation of the transition states for ring-

reopening, simulation of UV/Vis spectra and prediction of S0/S1 CI’s have been quite 

useful for complementing experimental results. For most ground state properties density-

functional theory (DFT)31 was the method of choice due to its speed and general 

applicability. Both spin restricted and unrestricted DFT formalisms have been used where 

the unrestricted formalism has been particularly useful for the location of transition states 

for ring-reopening.32 The extension of DFT methods for calculation of excited-state 

properties and particularly the prediction of excitation energies for simulation of UV/Vis 

spectra with quantitative accuracy in most cases has been performed using time-

dependent DFT (TDDFT).33-35 For calculation of conical intersections and other excited-

state geometries the SA-CASSCF30, 36 method has been utilized. However, recent 

advances in TDDFT methods by application of the spin-flip TDDFT (SF-TDDFT)37-39 

method that includes dynamic electron correlation40 promises improvement in both speed 

and accuracy. Predominantly SA-CASSCF was used herein but SF-TDDFT has also been 

used to explore the PES of OTP.  Specific details of quantum-chemical computations are 

discussed in each chapter accordingly. 
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Chapter 3 

Ultrafast Excited-State Dynamics of ortho-Terphenyl and 1,2- 

Diphenylcyclohexene: The Role of “Ethylenic Twisting” in the 

Nonadiabatic Photocyclization of Stilbene Analogs 

Reproduced with permission from Snyder, J. A.; Smith, M. C.; Streifel, B. C.; Bragg, A. E. 

The Journal of Physical Chemistry Letters 2013, 4, 1895–1900. Copyright 2013, American 

Chemical Society. 

3.0 Abstract 

 Nonadiabatic photocyclization is the fundamental step underlying photo-switching 

and light-assisted bond formation within diarylethylenes, yet the details of the nuclear 

 
 

Figure 3.0. Table of contents figure. 
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dynamics leading to cyclization remain unclear. We have examined the ultrafast excited-

state dynamics of o-terphenyl (OTP) and 1,2-diphenylcyclohexene (DPCH) in solution to 

determine how variation in structural constraints impacts the course of nonadiabatic 

photocyclization specifically in stilbenoids. Measured spectral dynamics reflect cyclization 

through a S1 -to-S0 transition for both systems on picosecond time scales, with excited-

state decay appreciably faster for DPCH versus OTP. Supportive ab initio calculations 

reveal a higher energetic penalty in OTP versus DPCH for reaching the lowest-energy 

conical intersection from the S1 minimum; this penalty is associated primarily with twisting 

about the carbon−carbon bond that bridges terminal phenyl groups, a structural change that 

has a critical role in nonadiabatic cis−trans isomerization of diarylethylenes. Findings 

provide a new experimental perspective on the elusive nuclear dynamics underlying cis-

stilbene photocyclization. 

3.1 Introduction  

 Nonadiabatic transitions and crossings through conical intersections (CIs) have 

become paradigmatic concepts for describing the dynamics of electronically excited states 

and underlie processes ranging from photodissociation of small molecules to the 

isomerization of large pigments critical to biological processes such as vision. 1−4 Capturing 

glimpses of crossings between electronic states as they occur in time and assessing how 

they are influenced by molecular structure has become a common goal for experimental 

research in molecular energy transfer in recent years. 5−9 Much of this work has 

concentrated on nonadiabatic photocyclization, which is central to molecular 

photoswitching and photochromic material applications 7,8,10,11 as well as light-assisted 

synthetic strategies. 12,13 Understanding both how energy flows between electronic states 
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and how structural constraints influence nonadiabatic cyclization pathways is critical for 

determining how to control bond formation effectively in these applications. 

 Diarylethylenes make up a core group of photoswitching molecules that operate via 

nonadiabatic photoinduced electro-cyclization.10 cis-Stilbene (CS, Scheme 3.1) is perhaps 

the simplest member of this group in terms of molecular structure, exhibits rich 

photoinduced nonadiabatic behavior, and remains a favorite exemplary molecular system 

for exploring the nuclear dynamics that facilitate fast nonadiabatic transitions: 2,14−27 By 

way of various CIs, S1 CS is known to isomerize to generate ground-state trans-stilbene 

(TS), return to its own ground state, and, to a lesser degree, photocyclize to form 4a,4b- 

dihydrophenanthrene (DHP). Given the dominance of the CS-to-TS pathway, cyclization 

dynamics have been difficult to study directly through experiments, and even basic 

questions about CS photocyclization remain unresolved: Does cyclization to form DHP 

occur through a direct transition to the ground or an excited state, and what structural 

dynamics are critical to reaching the gateway CI (or intersection seam) for cyclization? 

 In this work we have investigated how structural variation gives rise to different 

nonadiabatic photocyclization behavior for two stilbene analogs, 1,2-diphenylcyclohexene 

(DPCH) and o-terphenyl (OTP), with the outlook that work with these analogs structurally 

inhibited against cis−trans isomerization can help to clarify critical features of the CS ring-

closure pathway. 18,19,28,29 DPCH can be viewed as CS structurally constrained against 

cis−trans isomerization through the addition of a bridging aliphatic chain. 18,28,29 Previous 

work with DPCH has shown that, much like CS, DPCH has a short-lived S1 state (<20 ps) 

and cyclizes to form 9,10-cyclohexano-4a,4b-dihydrophenanthrene (CDHP). 28,29 

Likewise, OTP is thought to photocyclize into 4a,4b-dihydrotripheneylene (DHT) as the 
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first step in the photochemical synthesis of triphenylene. 12,13 We present ultrafast time-

resolved interrogations of UV-induced OTP and DPCH nonadiabatic cyclization in THF 

solution, demonstrating that S1 nonadiabatic decay occurs in both cases on picosecond time 

scales and with the formation of ground-state cyclized products. Importantly, DPCH and 

OTP differ according to the relative flexibility of the central ring that bridges the terminal 

phenyl groups, a difference reflected in their relative nonadiabatic decay rates. By 

exploiting this key structural difference we show through our measurements and supportive 

ab initio calculations that twisting about the central C−C bond is a key motion in the 

nonadiabatic relaxation coordinate of stilbene analogs. Although CS photophysics have 

been studied extensively over the last half-century to elucidate the dynamics of a 

prototypical nonadiabatic cis−trans isomerization, details concerning the competing 

photocyclization pathway remain unclear. Our findings with CS analogs offer new 

perspective on the nuclear dynamics underlying the cyclization pathway. 18,19,28,29 

 

Scheme 3.1. Photoinduced nonadiabatic isomerization and cyclization of 

diarylethylenes and o-terphenyl 
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3.2 Results 

 Our experimental measurements have utilized ultrafast broadband pump−probe 

transient absorption spectroscopy (TAS); we offer extensive technical details regarding 

sample preparation and optical setup in the Experimental Section and in appendix 1. 

Experimental measurements are summarized as follows: Solutions of OTP and DPCH in 

THF were excited with sub-100-fs excitation pulses with a center wavelength of 266 nm, 

which is resonant with the S0 −S1 transition of both molecules. Photoinduced transient 

excited- state absorption dynamics were probed at various picosecond and subpicosecond 

time delays after excitation with ultrafast broadband continua (470−720 nm).  

Figure 3.1a presents the TAS of UV-excited DPCH in THF as probed in the visible. 

The photoinduced absorption spectrum of DPCH is characterized by short-lived features 

that peak near 660 nm and below 500 nm. DPCH excited-state spectra exhibit remarkable 

similarity to the S1 absorption spectrum of CS, 26,30 such that we can readily assign it to S1 

→SN transitions of DPCH. Although a fast spectral shift is observed at early delays (e.g., 
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190 vs 370 fs), TA spectral dynamics of S1 DPCH are dominated by a rapid decrease in the 

absorption intensity near 660 nm over the picoseconds that follow excitation; this is 

accompanied by the appearance of a broad, weak absorption band that peaks below 500 

nm and that remains at the latest delays probed. The latter feature is reminiscent of the 

absorption spectrum of ground-state DHP that appears near 450 nm after UV 

photoexcitation of CS and its analogs, 20,26,31 and we thus attribute this to the lowest-energy 

transition of CDHP. Isosbestic points appear near 560 and 490 nm after the fast spectral 

red shift, indicating a kinetic interconversion between relaxed S1 DPCH and S0 CDHP as 

part of the excited- state nonadiabatic decay. The time-dependent decay of the S1 state is 

readily quantified from the intensity decay near 650 nm; a trace of this decay is plotted in 

Figure 3.1c and has been fitted with a biexponential decay convoluted with the instrument 

 

Figure 3.1. Spectral dynamics of UV-excited 1,2-diphenylcyclohexene (DPCH) (a) and 

o-terphenyl (OTP) (b). (c) S1 decay of OTP and DPCH. OTP has an S1 lifetime of 2.91 

ps; DPCH in THF exhibits an average S1 lifetime of 2.05 ps, although appreciable S1 

decay occurs on a subpicosecond time scale. The long-time constant offset from the 

DHT absorption has been subtracted from the 605 nm OTP trace to focus attention on 

the relative time scales for nonadiabatic decay. 
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response. The DPCH S1 state exhibits an average lifetime of 2.05 ps, although more than 

50% of the excited-state decay occurs on subpicosecond time scales. These time scales are 

comparable to CS nonadiabatic cyclization rates deduced by Rodier and Myers 20 but 

considerably faster than the bracketed DPCH cyclization rate previously determined from 

product yields. 28,29 

Figure 3.1b presents the visible TAS of UV-excited OTP. The photoinduced 

absorption peaks at 605 nm initially, decaying substantially over the first several 

picoseconds and giving rise to a weak transient absorption band that peaks near 580 nm. 

The band at 605 nm is similar to the lowest-energy excited-state absorption bands of both 

DPCH and CS, and this feature can be assigned readily to S1 → SN absorption of OTP. We 

assign the long-lived absorption band peaked at 580 nm to ground-state absorption of DHT 

based on its similarity to the weak, broad absorption observed after photoexcitation of both 

DPCH and CS; the relative red shift in the peak absorption is consistent with the increased 

conjugation in DHT relative to DHP. To validate this assignment, we have carried out 

TDDFT calculations of the lowest vertical excitation energies from the DFT-optimized 

DHT and DHP ground-state geometries (B3LYP, 6-31+G*). These calculations predict 

peak absorption wavelengths for DHP and DHT at 520 and 670 nm, respectively. (See 

appendix 1 for full calculation details.) Although the corresponding calculated transition 

energies differ from experimental values (e.g., the calculated DHP absorption maximum is 

70 nm to the red of the experimental value), the sign and magnitude of the difference 

between calculated transition energies is consistent with a DHT absorption peak at 580 nm; 

calculated values are also roughly consistent with the onset of measured absorption spectra. 

It is interesting to note that the difference in lowest excitation energies for DHT and CDHP 
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(∼0.6 eV) is considerably larger than the difference in lowest excitation energies for OTP 

and DPCH (∼0.3 eV from both steady-state absorption and ab initio calculations, see 

appendix 1); this most likely reflects that the extra conjugation in the central six-carbon 

ring of OTP/DHT has a larger impact on the energetics when a more planar product 

configuration is obtained. Kinetics of the OTP S1 population decay is visualized by plotting 

the time- dependence (decay) in TA intensity at 605 nm, as shown in Figure 3.1c. OTP S1 

decay occurs with a fitted exponential lifetime of 2.91 ps. 

Table 3.1. Key Structural Parameters from SA-2-CAS(2/2)-6-31G Optimizations and CI 

Searches of OTP (in bold) and DPCH (in italics) 

geometry twist (θ)/ ° torsion (φ)/° bend (α)/° 

S0 min.  2.64 (8.36) 55.43, 61.98 (56.30, 58.54) 123.62, 123.39 (123.48, 123.5) 

S1 min. 12.22 (21.84) 13.20, 14.13 (11.48, 6.21) 120.0, 120.6 (119.94, 120.92) 

S0 /S1 CI 24.97 (24.16) 1.3, 9.77 (2.82, 11.44) 119.94, 119.73 (119.18, 116.62) 

 

3.3 Discussion 

 Although excited-state decay occurs considerably slower in OTP compared with 

DPCH, the measured excited-state lifetimes alone do not directly illuminate what intra- or 

intermolecular effects control nonadiabatic dynamics in either case. Direct crossings 

through CIs are generally very fast (a few to tens of femtoseconds), such that the relatively 

long-lived excited-state population in both cases must reflect nuclear dynamics on the 

excited-state surface that produces a slow effective approach to the CI or crossing seam. 

1−3 Such dynamics can be due to either the nature of intrinsic intramolecular interactions or 
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the influence of solvent-induced barriers. As illustrated below with ab initio calculations, 

the ground-state geometries of OTP and DPCH involve significant ring-to-ring 

nonplanarity such that nuclear rearrangement in the excited state between the 

Franck−Condon region and a cyclized structure must involve appreciable torsional twisting 

of terminal phenyl groups. Indeed, phenyl-ring rotations have been argued to be the most 

critical nuclear motions along the cyclization coordinate for CS and its analogs. 18,19 We 

anticipate that the fastest nonadiabatic cyclization rate will be limited by the time scale for 

phenyl-ring rotation in solution but expect that ring-rotation time scales should be fairly 

similar for these molecules. Thus, we conclude that the different nonadiabatic rates 

observed for OTP and DPCH reflect intrinsic intra- molecular effects on other nuclear 

coordinates. 

 To better understand how molecular structure influences the excited-state potential-

energy landscape (and, therefore, the cyclization kinetics) for OTP and DPCH, we have 

carried out a limited set of electronic structure calculations. These include geometry 

Figure 3.2. Calculated dihedral and bond angles presented in Table 3.1 and described 

in the text are defined with respect to the bonds depicted with dotted lines. Given the 

symmetries of both OTP and DPCH, each molecule is characterized by two φ’s and two 

α’s. 
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optimizations of the S0 and S1 minima for each of these molecules as well as searches for 

the lowest-energy CIs accessible from the S1 minima. These calculations are not intended 

to provide a complete theoretical description of the nonadiabatic photocyclization 

dynamics but rather an overview of critical landmarks on the S1 potential-energy surfaces 

that are likely to have bearings on cyclization dynamics. Calculations were carried out at 

the state-averaged complete active-space SCF (SA-CASSCF) level 32 using GAMESS. 33 

The precedent for using this method to calculate CIs and minima in the vicinity of CIs has 

been previously demonstrated with CS, 22 and its superiority over other methods (e.g., 

TDDFT) has also been documented. 34 Calculations were performed with two- state 

averaging (with equal weighting) and a (2/2) active space to minimize the computational 

expense; similar qualitative trends were recovered using a larger active space. (See 

Experimental Section and appendix 1 for more details.) 

 Geometry optimizations were carried out as follows: The S0 minimum geometry 

was determined first. The S0 minimum geometry and orbitals were then used as the initial 

input for calculating the S1 minimum. The S0 / S1 CI search was initiated using parameters 

optimized for the S1 minimum. The minimal energy CI searches utilized the method of 

Bearpark et al.35 This local searching procedure was important for determining the CI 

geometries that are closest to the S1 minima along the CI seam. 35 Additional details of 

structural optimizations and searches are provided in the Experimental Section and in 

appendix 1. 

Table 3.1 lists values of critical dihedral and bond angles relevant to cyclization for 

each state and molecule.22,28 These angles are described pictorially through Figure 3.2 and 

include: The dihedrals spanning all three phenyl rings, θ, which correspond primarily to 
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twisting of the central C−C bond that bridges the terminal rings; the dihedrals between 

adjacent phenyl rings, φ, which corresponds primarily to torsional twisting of the terminal 

phenyl rings; and the angles between the terminal phenyl groups and the central C−C bond, 

α. The optimized ground-state geometries of these molecules are very similar with respect 

to these dihedral angles, with terminal phenyl rings twisted by φ ∼55−60° and very low 

values for θ (<10°). In both systems additional inter-ring bond-order in the S1 state prompts 

a decrease in φ at the S1 minimum and the lowest-energy CI. In contrast, θ increases 

steadily for both molecules from the S0 to S1 to CI geometries. However, the change in θ 

between the S1 minimum and the CI is much larger for OTP relative to DPCH. 

 Our calculations further illustrate that opening θ between the S1 minimum and the 

lowest-energy CI consistently comes at a higher energetic penalty (ΔE, Figure 3.3) in OTP 

relative to DPCH: 0.147 versus 0.02 eV, respectively, with the (2/2) active space and 0.995 

versus 0.235 eV with a (6/6) active space. These results are consistent with the anticipated 

energetic penalty for straining the nominal sp2 hybridization of the bridging carbon atoms 

in the central ring of OTP. In contrast, the cyclohexene ring in DPCH should more readily 

accommodate structural strain introduced by twisting the central ethylenic bond, such that 

the minimum and CI may be much closer in energy, as depicted through Figure 3.3. 

Although it is possible that intramolecular barriers may also exist along the excited-state 

surface between the Franck−Condon region and the CI seam, a smaller energetic penalty 

for reaching the CI from the S1 minimum in DPCH is consistent with a faster nonadiabatic 

cyclization relative to OTP. 
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We also note that there is very little change in the calculated values of α between 

states (particularly between the S1 minimum and CI) and even between OTP and DPCH 

for any given state/configuration. We also find that C−C bond lengths within the newly 

forming ring exhibit little variation between the S1 minimum and CI geometries. 

Similarities in these structural parameters imply that the energetic penalty for reaching the 

CI cannot be associated with straining bond angles or bond lengths to bring the terminal 

rings closer together but rather with moving them to the correct relative configuration by 

twisting θ. Thus, our comparison between OTP and DPCH is not complicated by 

differences in structure and dynamics that might be expected between 

diphenylcycloalkenes with varying sizes of cycloalkene. 18,19 For example, although the 

smaller central ring of diphenylcyclobutene (DPCB) should constrain twisting about θ 

much like the central phenyl ring in OTP, the structure of DPCB also strongly constrains 

 

Figure 3.3. Schematic depiction of potential energy surfaces along the nonadiabatic 

photocyclization coordinate of OTP and DPCH. ΔE represents the energy difference 

between the S1 minimum and lowest-energy CI. Compared with DPCH, “ethylenic” 

twisting (θ) in OTP is constrained by a higher energetic penalty for flexing the 

central ring. 
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α; it has been suggested that the latter constraint has a large bearing on the slow cyclization 

documented for DPCB. 29 

  It is important to note that nonadiabatic decay of S1 OTP and DPCH is not expected 

to generate cyclized photoproducts in 100% quantum yields: Branching at the surface-

crossing is also anticipated to lead to ground-state recovery, although we were not able to 

observe a spectroscopic signature of recovery directly from our measurements. Of course, 

nonadiabatic cyclization and ground-state recovery (or generation of other products) that 

occur through a common state-crossing will be rate-limited by common nuclear dynamics 

leading up to the crossing on the excited potential energy surface. In contrast, variation in 

nonadiabatic decay rates measured here would not necessarily correspond with cyclization 

if a competing relaxation pathway was available in one or both molecules. Structural 

constraints in these systems should prevent a cis−trans isomerization about the “ethylenic” 

bond; furthermore, we have found no evidence of other photoproducts (and, therefore, 

other nonadiabatic relaxation pathways) from our transient spectroscopic measurements in 

the near UV, visible, and near-IR. We also estimate that the quantum yield for cyclization 

is roughly the same for OTP and DPCH (ΦDHT / ΦCDHP ≈ 0.95) based on an analysis of 

frequency-integrated band intensities. (See appendix 1 for more details.) Taken together, 

these observations imply that the nonadiabatic decay of S1 OTP and DPCH occurs only via 

the CI that involves cyclization and that the variation in excited- state decay rates we have 

measured reflects differences in the nuclear dynamics leading to this crossing, not 

variations in the rate of a competing nonadiabatic process. 
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3.4 Conclusion 

 The excited-state dynamics and structural characteristics of OTP and DPCH offer 

new perspective on the minor cyclization pathway of UV-excited CS and its analogs. 

Spectral dynamics shown in Figure 3.1 illustrate a direct interconversion between the S1 

ring-opened and S0 cyclized states of CS analogs. Furthermore, our results illustrate that 

structural constraints on the central carbon−carbon bond that bridges the terminal phenyl 

rings induce a reduction in the cyclization rate of stilbene analogs, providing evidence that 

twisting motions around this bond play a critical role in reaching state crossings relevant 

for cyclization. Although details of the nuclear dynamics along both the CS-to-TS or CS-

to-DHP pathways remain unresolved, it is now commonly accepted that cis−trans 

isomerization of CS involves twisting about the central ethylenic bond as part of a 

multicoordinate reaction pathway. 15,18,22 Myers and Mathies argued that an ethylenic 

torsional twist of ∼25° occurs in the first 20 fs following excitation based on the analysis 

of their resonance Raman measurements with S0 CS in solution, 15 and more recent 

calculations by Quenneville and Martinez illustrated that ethylenic twisting is part of a 

more complex coordinate that also involves pyramidalization of the ethylenic carbon 

atoms. 22 Calculated geometries associated with the CS-to-DHP cyclization pathway 

likewise suggest an increase in the ethylenic twist angle on the way to the CI or state-

crossing seam; 21,23,36 therefore, it is quite likely that the initial nuclear wave-packet 

propagation along the excited-state potential-energy surface involves an increase along this 

coordinate prior to branching between reaction pathways. Phenyl ring rotations 

undoubtedly play a critical role in cyclization, 18,19 but our findings suggest that the 

effectiveness of these motions in reaching a state crossing is likely to be governed by the 
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orientation at which the reacting carbon atoms are able to approach one another: a steric 

relationship controlled strongly by θ. We anticipate that closer examination of the ultrafast 

excited-state dynamics that precedes nonadiabatic S1 decay of DPCH − and that underlies 

the early spectral dynamics seen in Figure 3.1a − will provide further clues about the 

structural evolution leading up to the region of the CI associated with the cyclization of 

stilbene analogs.   

3.5 Experimental Methods 

 OTP was purchased and used as-is; DPCH was synthesized as described in 

appendix 1. Solutions of both molecules were prepared with air-free THF at low millimolar 

concentrations (5−10 mM for DPCH, 5−20 mM for OTP). Sample solutions were 

circulated through a 0.5-mm path-length flow cell via an Ar-purged flow loop for optical 

measurements. All experiments utilized a regeneratively amplified Ti:Sapphire laser 

(Coherent Legend Elite, 4.5 mJ/pulse, 1 kHz, 35 fs pulse duration). Roughly 1 mJ of the 

laser output was used to generate ∼20 μJ UV photoexcitation pulses by frequency 

conversion. Weak broadband probing pulses were obtained through white-light generation 

in synthetic sapphire. The visible continuum was generated using 800 nm pulses polarized 

at 45°; a thin broadband wire-grid polarizer (Thorlabs) was then used to select the 

polarization of the visible probe light immediately before the sample. UV photoexcitation 

pulses were collimated to a 4 mm beam diameter before the flow cell. The broadband probe 

pulse was focused at the sample to a spot size of <100 μm and overlapped at a small angle 

with respect to the photoexcitation pulse in the sample. The excitation pulse was blocked 

after the sample with a beam dump, and residual pump scatter along the probe propagation 

direction was blocked with a 280 nm long-pass filter. The probe was also passed through 
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additional bandpass filters to shape spectra for detection and to remove residual 800 nm 

light that was used to drive continuum generation. 

 The probe continuum was dispersed using a 0.3 m spectrograph (Acton-2360, 

Princeton Instruments) outfitted with a low-resolution grating (800 nm blaze, 150 

lines/mm). Probe spectra were detected using a CCD camera (Pixis- 100BR, Princeton 

Instruments), which collects the continuum probe on each laser shot at 1 kHz. The 

photoexcitation beam was synchronously chopped at 500 Hz, such that transient absorption 

spectra can be calculated using consecutive pairs of probe spectra. The pump pulse was 

retroreflected off of a pair of 266 nm high reflectors mounted to a motorized translation 

stage (Newport), which was adjusted to change the relative optical path length of the pump 

and probe pulses. Transient spectra shown here were collected by averaging at each time 

delay, with 30 000−50 000 on/off ratios for visible TAS. Positioning of the translation stage, 

collection of probe spectra, synchronization with the chopper phase, and calculation and 

averaging of transient spectra were all coordinated through a home-built LabVIEW data 

acquisition program. Pump−probe measurements of neat solvents were made such that 

transient spectra could be chirp-corrected according to the time dependence of the 

nonlinear, two-pulse solvent response. 

3.6 Computational Methods 

 All calculations were performed using GAMESS. 33 Optimized geometries were 

determined at the SA- CASSCF level, 32 abbreviated as SA-x-CAS(y/z) (x averaged states, 

y active electrons, and z active orbitals) with a STO-3G or 6-31G basis set, equal weighting 

of states, and no symmetry restrictions. All visualization of results was performed using 

MacMolPlt. 37 The minimal energy CI searches utilized the method of Bearpark et. al. 35 
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Optimizations were carried out as described in the text. Calculations with different active 

spaces were performed to investigate how the size of the active space affects the relative 

size of the S1 -minimum-to-CI energy for OTP and DPCH. For the SA-2-CAS calculations 

the active space was selected to be minimalistic due to the computational expense of 

working with these methods in combination with relatively large molecules. (The most 

appropriate active spaces would correspond to: 18 π, π* orbitals for OTP, 14 π, π* orbitals 

for DPCH, 16 π, π* and 2 σ, σ* orbitals for DHT, and 12 π, π* and 2 σ, σ* orbitals for 

CDHP.) The active spaces used in our calculations utilized an equal split of π and π* 

orbitals (up to 4 π and 4 π* orbitals with the (8/8) active space). Although the energetics 

and geometries change slightly between each active space, similar qualitative differences 

between OTP and DPCH were observed with each active space, suggesting that the smaller 

active spaces are satisfactory in describing the relative characteristics of the S1 surfaces of 

these two molecules. More details of these calculations and a list of numeric results 

obtained with various active spaces and basis sets are reported in appendix 1. 

 To confirm the identity of the long-lived band in the TA spectrum of OTP as a 

ground-state absorption of the DHT intermediate, we used TDDFT 38 with the B3LYP 

functional 39,40 and a 6-31+G* 41,42 basis set to calculate the lowest-energy vertical 

transitions for DHT and DHP. First, both DHP and DHT were optimized in the ground state 

using DFT, and it was confirmed by vibrational analysis that these optimized structures 

correspond with stationary points (zero imaginary frequencies). Using these optimized 

geometries, a single-point energy calculation was performed to obtain the S0 → S1 

excitation energy for each molecule. 
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Chapter 4 

Structural Control of Nonadiabatic Bond Formation: The 

Photochemical Formation and Stability of Substituted 4a,4b- 

Dihydrotriphenylenes 

 

Reproduced with permission from Snyder, J. A.; Bragg, A. E. The Journal of Physical 

Chemistry A 2015, 119, 3972–3985. Copyright 2015, American Chemical Society 

 

4.0 Abstract 

 Nonadiabatic photocyclization makes bonds and is the first step in the photoinduced 

cyclodehydrogenation of ortho-arenes to yield polycyclic aromatic hydrocarbons. How 

molecular structure alters potential-energy landscapes, excited-state dynamics, and 

stabilities of reactants and intermediates underlies the feasibility of desirable 

 

Figure 4.0. Table of contents figure 
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photochemistry. In order to gain insight into these structure−dynamics relationships, we 

have used femtosecond transient absorption spectroscopy (TAS) to examine photoinduced 

dynamics of 1,2,3-triphenylbenzene (TPB) and ortho-quaterphenyl (OQTP), phenyl-

substituted analogues of ortho-terphenyl (OTP). Dynamics of TPB and OTP are quite 

similar: TPB exhibits fast (7.4 ps) excited-state decay with concomitant formation and 

vibrational relaxation of 9-phenyl-dihydrotriphenylene (9-phenyl DHT). In contrast, 

photoexcited OQTP exhibits multistate kinetics leading to formation of 1-phenyl DHT. 

Excited-state calculations reveal the existence of two distinct minima on the OQTP S1  

surface and, together with photophysical data, support a mechanism involving both direct 

cyclization by way of an asymmetric structure and indirect cyclization by way of a 

symmetric quinoid-like minimum. Temperature-dependent nanosecond TAS was utilized 

to assess the relative stabilities of intermediates, substantiating the observed trend in 

photochemical reactivity OTP > OQTP > TPB. In total, this work demonstrates how 

specific structural variations alter the course of the excited-state dynamics and 

photoproduct stability that underlies desired photochemistry. 

  

4.1 Introduction 

 Time-dependent crossings between molecular electronic states, or nonadiabatic 

dynamics, are fundamental excited-state relaxation pathways and underlie a variety of 

photochemical processes, including fast deactivation of molecular excited states, 1,2 bond-

selective photodissociation, 3,4 photoisomerization, 5−9 and photoinduced bond formation. 

6,10 Nonadiabaticity has become a paradigmatic concept for describing chemical dynamics 

of excited molecules in recent years. 11−13 As light-driven dynamics hold great promise for 
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fast and photoselective energy conversion and photochemical reaction schemes, there is 

much interest in harnessing nonadiabaticity within chemical applications. For example, 

many novel photochromic molecular switches take advantage of nonadiabatic 

photochemical bond making and breaking to quickly switch between persistent “on” and 

“off” states. 14−16 Nonadiabatic photocyclization has also been utilized synthetically as it 

enables formation of carbon−carbon bonds via reactant activation with light and can be 

used for the small-scale synthesis of novel polyaromatic structures. 17−20 A critical step 

toward utilizing and controlling photochemical bond formation for such applications is to 

establish how access to specific nonadiabatic pathways and the stability of photochemical 

intermediates formed are determined by molecular structure. In this work we specifically 

examine the structure−dynamics relationships that underlie nonadiabatic photochemistry 

of a related set of ortho-arenes: ortho-terphenyl(OTP), ortho-quaterphenyl (OQTP), and 

1,2,3-triphenylbenzene (TPB). These systems form related photoproducts via nonadiabatic 

cyclization, such that the impact of molecular structure on bond-formation dynamics can 

be examined explicitly. 

 Photochemical carbon−carbon bond formation via cyclization was first noted for 

stilbenes and related diarylethenes in the 1940s and 1950s, 6,21,22 with analogous reactions 

of ortho-arenes recognized shortly thereafter.23,24 These reactions are illustrated at the top 

of Scheme 4.1 for OTP: The Woodman−Hoffmann rules for orbital symmetry conservation 

predict that UV photoexcitation to the S1 state of OTP leads to conrotatory 

electrocyclization to form S0 4a,4b-dihydrotriphenylene (DHT). 25 Once formed, DHT can 

subsequently react with a strong oxidant (e.g., I2) to form triphenylene via H abstraction, a 

process that competes with thermally activated ring reopening. 24 Photochemical studies 
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with OTP were key to determining the optimal reaction conditions for the photo-induced 

cyclodehydrogenation of ortho-arenes; in fact, under optimal reaction conditions OTP can 

be converted to triphenylene in very high yield (>90% yield). 24,26 

 In contrast, lower product yields are generally obtained from similar photochemical 

reactions with more complex ortho-arene reactants under the same conditions. 24,26 For 

example, dibenzonaphthacene (DBN, Scheme 4.1) can be synthesized from either OQTP 

or TPB through two successive cyclodehydrogenation reactions: The first reaction goes by 

way of different phenyl-DHT intermediates, 1- and 9-phenyl-DHT, respectively, whereas 

the second cyclodehydrogentation step occurs from a common phenyl-triphenylene 

structure. No measurable quantity of phenyl-triphenylene is recovered from reactions with 

either starting material, indicating that the second reaction cycle is facile and that the first 

is the yield- determining step. 27 The observation of lower product yields from these more 

complex reactants suggest that differences in reactant structures (OTP vs OQTP vs TPB) 
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may alter nonadiabatic cyclization dynamics and/or the relative stability of phenyl-DHT 

intermediates to impact the net reaction efficiency for forming DBN. 

 These qualitative comparisons of photochemical reaction yields raise various 

questions about what bearings structure−dynamics relationships have on photochemistry 

that involves nonadiabatic events: How exactly does structure affect the topography of 

excited- and ground-state potential-energy surfaces that dictate nonadiabatic chemical 

 

Scheme 4.1. (Top) Photochemical Synthesis of Triphenylene via the 

Cyclodehydrogentation of o-Terphenyl (OTP) via 4a,4b-Dihydrotriphenylene (DHT) 

and (Bottom) Dibenzonaphthacene (DBN) from the Cyclodehydrogenation of o-

Quarterphenyl (OQTP) and 1,2,3-Triphenylbenzene (TPB). 
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dynamics for a particular reactant? To what degree is net reaction efficiency limited by the 

stability of the intermediate, or rather reaction branching between alternate pathways along 

the excited-state potential-energy surface? What reactant structures would be most 

conducive to effective and efficient photochemical preparation of specific product 

structures given structure−dynamics relationships? Elucidating the details of each key 

process underlying these reactions and how they are influenced by reactant structure is 

essential for establishing conditions under which they can be utilized effectively within 

photochemical strategies. 

 The work presented here is a continuation of our investigation of the nonadiabatic 

photochemical dynamics of ortho-arenes and how these dynamics are impacted by 

molecular structure. In previous work we used a combination of ultrafast and nanosecond 

spectroscopies to characterize the UV-induced photochemistry of OTP. 10,28 Broadband 

ultrafast transient absorption measurements revealed spectral dynamics associated with 

OTP excited-state relaxation occurring on picosecond time scales and giving rise to the 

metastable intermediate DHT. We also contrasted the cyclization dynamics of OTP to those 

of a closely related diarylethene. In total, this previous work suggests that these differences 

in structural characteristics of ortho-arenes give rise to significantly different 

photochemical reactivity compared with diarylethenes. 

 Here we further examine the role of reactant and intermediate structure on 

photochemical bond formation, with a specific focus on the photochemistry of TPB and 

OQTP. To first order both systems can be viewed as OTP with an additional phenyl 

substituent, the presence of which can be expected to impact excited-state structural 

evolution and the stabilities of corresponding phenyl-DHT intermediates as a result of 
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intramolecular steric interactions. However, the location of the extra phenyl ring also may 

be expected to nontrivially alter the electronic structure and, hence, excited- state potential-

energy surfaces through extended conjugation of excited states. In this work we have 

characterized the ultrafast and nanosecond time-resolved photochemistry of these 

molecules and compare them with that of OTP. Using a combination of experimental 

results and supportive electronic structure calculations we present a comprehensive 

evaluation of how differences in reactant structure impact the photochemistry of these 

simple ortho-arenes and their corresponding dihydro-intermediate structures. 

 

4.2 Experimental   

 

4.2.1 Sample Preparation. OTP and TPB were purchased from Sigma-Aldrich and used 

“as-is”. OQTP was synthesized through a Cu-catalyzed Ullman reaction of 2-iodobiphenyl 

based on literature procedures. 29 Additional details regarding the synthesis, purification, 

and characterization of OQTP samples are provided in appendix 2. Hexane and 

unstabilized tetrahydrofuran (THF) were obtained from Sigma-Aldrich and used “as-is”. 

Solution samples used for ultrafast measurements were made at concentrations of 10 mM 

and were circulated with a peristaltic pump (Master- flex) through a 0.5 mm path length 

flow cell. The windows of the cell are polished UV-grade fused silica, ensuring high 

transmission of UV light. The sample flow loop was constructed from PTFE tubing and 

connections to ensure chemical compatibility with all solvents used. Sample solutions for 

nanosecond measurements were sealed into a 1 cm quartz cuvette and had an optical 
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density (OD) of 1 at 266 nm; the sample cuvette was loaded into a liquid-nitrogen cooled 

cryostat (Unisoku, Unispeks) for temperature dependent measurements. 

4.2.2 Ultrafast Transient Absorption Spectroscopy (fs- TAS).  Photoinduced dynamics 

were interrogated using fs-TAS. General features of the laser setup used in our laboratory 

for these measurements have been reported in detail elsewhere. 10,28 In all cases excited 

states were prepared (pumped) through photoexcitation at 266 nm (∼1 mJ/cm 2 ); pump 

pulses were generated via the nonlinear frequency conversion of a portion of the 800 nm 

output of the Ti-sapphire amplifier (35 fs pulse duration, 990 Hz repetition rate). Spectral 

dynamics were probed using a broadband continuum spanning 300−1100 nm that was 

obtained by driving white-light generation in a 2 mm thick crystal of CaF2 with a low-

intensity 800 nm pulse. Driving pulses were aligned along a variable optical path to control 

the arrival time of the probe pulse at the sample relative to pump. The relative pump−probe 

polarization was maintained at magic angle by passing the probe through a broadband wire-

grid polarizer immediately before the sample cell. Transient signals were observed to be 

independent of pump fluence. 

 Ultrafast spectral measurements utilized a home-built prism- based spectrometer 

that is based on the design of Riedle et al. 30 Collimated continuum probe beams were 

dispersed using equilateral prisms of UV-fused silica (CVI) or NSF-11 (Edmund) for 

detection of UV−vis or vis−NIR light, respectively; dispersed beams were subsequently 

reimaged onto photodiode arrays (Hamamatsu S3901-256Q) using concave mirrors. 

Spectra were obtained by averaging 2000− 3000 consecutive pump on/off cycles at each 

time delay. The typical temporal response of this setup is 300 fs determined by convoluting 

a Gaussian instrument response function (IRF) with a step function and fitting to the rise 
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of a long-lived transient signal. With a 266 nm excitation pulse the resolution is limited 

primarily by the group-velocity mismatch of the pump and probe light pulses within the 

liquid sample. Transient spectra were time-corrected for the chirp of the probe, as described 

in previous work. 28 Quantitative wavelength calibration was performed using the 

absorption spectrum of a BG-36 filter as acquired with the prism-dispersed probe. A 

detailed description of supercontinuum conditioning, wavelength calibration, optics, and 

electronics is available in appendix 2. 

 

4.2.3 Nanosecond Transient Absorption Spectroscopy (ns-TAS). ns-TAS measurements 

were used to characterize the lifetimes and stabilities of dihydro-intermediates (DHT, 1- 

and 9-phenyl DHT) generated via photocyclization of ortho-arenes. Two different 

experimental setups were used for these measurements. The first was used for temperature-

dependent studies of intermediate stabilities and has been described in detail elsewhere. 

31,32 Briefly, samples were excited at 266 nm with the fourth harmonic of a pulsed Nd:YAG 

laser, with pump-induced changes in sample absorptivity probed with light from a 

microsecond-pulsed flash lamp. Changes in transient absorption at a given wavelength 

were determined by monitoring the time-dependent intensity of the dispersed probe as 

measured by a PMT with and without the pump pulse present. The resolution of this setup 

is limited by the laser pulse duration and oscilloscope rise time (∼5 ns effective time 

resolution). 

 A second setup was used to record room temperature kinetics of cyclized 

intermediates at slightly higher time resolution. For these measurements solution samples 

were excited with the ultrafast pump pulses at 266 nm. A 639 nm laser diode (Opnext) was 
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pulsed with a high-speed (ps-to-ns) diode driver (Highland Technologies, T165) at the laser 

amplifier’s repetition rate; variable probe pulse timing was controlled using a trigger from 

the amplifier’s signal delay generator (Coherent SDG Elite). Pump and probe beams passed 

through the sample at a ∼10° angle. The mono-chromatic probe beam was imaged onto a 

photodiode array with a cylindrical lens; as with ultrafast measurements, transient 

absorption was calculated from consecutive measurements of the probe intensity (pump-

on/pump-off). Transients were obtained by stepping the pulse timing of the diode driver 

relative to the amplifier’s Pockels Cell timing. Transient absorption at a given delay was 

obtained by averaging ∼500 pump on/off cycles. Diode probe pulses were observed to have 

a pulse duration of ∼2 ns as viewed with a fast photodiode and oscilloscope (see appendix 

2). 

 

4.3 Computational Methods. 

Quantum chemical calculations were performed in order to (1) determine ground-state 

structures of reactants and their corresponding dihydro-intermediates, (2) calculate vertical 

excitation energies for comparison with experimental absorption spectra (i.e., steady- state 

reactant and transient intermediate spectra), (3) identify structural characteristics of 

excited-state minima and various conical intersections on excited-state potential-energy 

surfaces of the reactants, and (4) assess the relative stabilities of dihydro-intermediates 

formed photochemically. All calculations were carried out with GAMESS and have been 

performed without symmetry constraints and using default convergence tolerances. 33 

MacMolPlt was used for the visualization of calculated geometries. 34 
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4.3.1 SA-CASSCF Calculations. S1 optimizations and minimum-energy conical 

intersection (MECI) searches 3 were performed for OQTP and TPB using the State-

Averaged Complete Active Space (SA-CASSCF) method. 35 A minimal basis set (STO-3G) 

36 was used with equal weights for the S0 and S1 states and 2 to 6 active π and π* orbitals 

(i.e., (2,2)− (6,6) active spaces). A localized geometry searching procedure was performed 

by using the S0 minimum as the initial geometry for S1 optimization; this was followed by 

a S0 /S1 MECI search from the optimized S1 minimum. 37 These computations provide a 

survey of landmarks on excited-state potentials and insights on possible excited-state 

relaxation pathways, but by no means present a complete picture of the potential-energy 

landscape. 

4.3.2 DFT and TDDFT Computations. Density functional theory 38,39 was also used for 

geometry optimization of various substituted OTP analogues (including TPB and OQTP 

conformers), and relevant conformers of their corresponding cyclized intermediates in 

order to access factors that control the relative stability of intermediate structures. All 

calculations were performed with the B3LYP 7 functional with a 6-31+G* 40,41 basis; 

optimized structures were verified by frequency analyses that produced zero imaginary 

frequencies. The first 5 spectroscopic transitions for ground-state OTP, TPB, and OQTP 

and their corresponding cyclized intermediates were calculated using time-dependent DFT 

42 with the 6-31+G* basis for comparison with spectra obtained experimentally. LR-

TDDFT within the Tamm−Dancoff approximation, 43 denoted simply as TDDFT 

henceforth for brevity, was also used for select S1 optimizations with a 6-31G basis for 

supporting SA-CAS results that are limited by small basis sets, active spaces, and the 
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neglect of dynamic correlation. More discussion regarding the merits of using both TDDFT 

and SA- CAS methods for excited-state calculations is provided in appendix 2. 

 

4.4 Results and Analysis 

 

4.4.1 Spectroscopic Characterization of the Ultrafast Photoinduced Cyclization of TPB 

and OQTP.  Figure 4.1 presents the ultrafast transient absorption spectroscopy of OTP, 

TPB, and OQTP following excitation at 266 nm. Photoinduced spectral dynamics of OTP 

shown in Figure 4.1a are similar to what we have published previously. 10,28 Relatively 

narrow and broad transient bands appear at 606 and 380 nm, respectively, following 

excitation and correspond to S1 −SN transitions of OTP. These features decay over several 

picoseconds, giving rise to weaker absorption features in both regions: A broad, weak 

absorption centered at 580 nm and a more intense band peaking at 340 nm. We have 

previously characterized this evolution as reflecting the relaxation of excited OTP by 

nonadiabatic decay with concomitant formation of the cyclized intermediate DHT. 

Vibrational relaxation of DHT was also identified in our previous work from the time-

dependent spectral shift of the 340 nm band on a solvent-dependent time scale of 10−25 

ps. The photoinduced spectral dynamics of OTP reflect the photochemical dynamics of the 

smallest cyclizing ortho-arene in the absence of electronic and steric interactions 

introduced by substituent groups and thus provide a valuable metric for understanding the 

structure-dependent photochemical dynamics of TPB and OQTP.
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Figure 4.1. fs-TAS of OTP (a), TPB (b), and OQTP (c) in THF with 266 nm excitation; 

dashed lines are global fits to simple kinetic models explained in the text. 
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 T h e ultr af ast tr a nsi e nt s p e ctr al d y n a mi cs of U V -e x cit e d T P B a n d O Q T P ar e 

pr es e nt e d i n Fi g ur es 4. 1 b a n d 4. 1 c. F or b ot h m ol e c ul es, t h e tr a nsi e nt s p e ctr a o bt ai n e d at 

d el a ys l o n g aft er U V  e x cit ati o n ( e. g., 1. 5 ns) ar e r e m ar k a bl y si mil ar t o t h at of t h e D H T 

i nt er m e di at e f or m e d aft er t h e p h ot o e x cit ati o n of O T P; t hi s r e v e als t h at a s u bstit ut e d D H T 

str u ct ur e is f or m e d aft er U V e x cit ati o n a n d as pr e di ct e d f or t h e c y cl o d e h y dr o g e n ati o n 

r e a cti o n m e c h a nis m s of t h es e t w o r e a ct a nts ( cf. S c h e m e 4. 1). H o w e v er, e x cit e d -st at e 

 

Fi g u r e 4. 2.  Si n gl e -w a v el e n gt h fs -T A S tr a c es o bt ai n e d wit h 2 6 6 n m e x cit ati o n of T P B 

( a) a n d O Q T P ( b) at 4 5 0 ( bl u e ○), 6 1 5 ( gr e e n △), a n d 8 0 0 n m (r e d ×). T P B a n d O Q T P 

d at a h a v e b e e n fitt e d wit h si n gl e -e x p o n e nti al a n d bi e x p o n e nti al fitti n g f u n cti o ns 

c o n v ol ut e d wit h t h e i nstr u m e nt r es p o ns e, r es p e cti v el y ( bl a c k li n es). Ti m e a x es ar e li n e ar 

fr o m − 1 t o 1 ps, l o g arit h mi c f or t > 1 ps. 
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spectral dynamics differ from what is observed for OTP in both cases. For example, the 

excited-state absorption spectrum of TPB measured immediately after excitation is 

characterized by at least 2 broad overlapping bands, with a dominant band peaking just 

above 600 nm and a noticeable shoulder appearing below 400 nm. In contrast, UV- excited 

OQTP exhibits two groupings of overlapped excited- state bands above and below 525 nm. 

For TPB, the excited- state absorption decays uniformly on a time scale of ∼10 ps, giving 

rise to the spectrum of the corresponding DHT intermediate. In contrast, OQTP exhibits 

more complex spectral dynamics: At very early delays, relatively sharp features appear at 

400 and 620 nm that sit on top of broader underlying features in both regions; the sharper 

features disappear over several 10s of picoseconds, whereas the broad underlying spectral 

intensity at 400−500 nm and 500−900 nm decays on much slower time scales (100s of ps). 

The spectrum of a dihydro-intermediate only dominates ∼1 ns after photo-excitation of 

OQTP.  

 In order to characterize relevant relaxation time scales and to constrain choices of 

kinetic models for the global analysis of the measured spectral dynamics, we first examined 

the time- dependent absorption decay at selected probe wavelengths: 450, 615, and 800 

nm. Traces at these wavelengths obtained upon excitation of TPB are plotted with symbols 

in Figure 4.2a. Because the spectrum of the presumed dihydro-intermediate is weakest at 

450 and 800 nm, whereas photoinduced absorption at earlier delays is quite strong, single-

wavelength transients at these two wavelengths should closely reflect decay of the 

photoprepared TPB excited state. Each transient was fitted independently using a single-

exponential decay (with an additive constant offset) that was convoluted with the temporal 

instrument response. Fits to all three traces provide similar excited-state absorption decay 
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time scales (to within error) and reveal that photoexcited TPB decays with a lifetime of ∼8 

± 1 ps, resulting in the formation of 9-phenyl DHT. Spectral transients collected with OQTP 

exhibit greater complexity, which is reflected in the single-wavelength traces plotted in 

Figure 4.2b. Transients were fitted using biexponential decay functions (with constant 

additive offsets) convoluted with the instrument response. In total, fits demonstrate that 

photo-induced dynamics include at least two relaxation time scales that differ by an order 

of magnitude: ∼35−40 ps vs ∼330−340 ps (see Table 4.1). Both of these relaxation time 

scales are considerably longer that what is measured with photoexcited TPB. 

 Guided by the results of these fits at selected wavelengths, we identified plausible 

kinetic relaxation models for fitting the full spectral data sets with global target analysis 

based on singular value decomposition (SVD). 44 Goodness of fit was assessed from the 

size of residuals between experimental data and time- and wavelength-dependent models. 

Given that the 450, 615, and 800 nm transients obtained with TPB all were fitted 

remarkably well with single-exponential decays and with similar relaxation lifetimes, our 

first global model for the TPB spectral dynamics was a simple ultrafast kinetic 

interconversion (A → B). (A 4.4 ns decay of state B was incorporated to improve the fit 

agreement at longer time scales and is based on ns-TAS results described below.) Dashed 

lines in Figure 4.1b plot the spectral fits obtained with this model at selected probe delays; 

residuals for these fits are presented in appendix 2. This simple model can account for most 

of the spectral dynamics at all wavelengths, with exception of the region around 360 nm; 

here significant residuals exhibit a clear trend, changing from negative to positive with time 

delay. This discrepancy indicates that the simple 2-state kinetic interconversion is not 

entirely adequate to fit the ultrafast spectral dynamics of photoexcited TPB. We present 
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results of fitting with a sequential 3-state interconversion model (A → B → C) in appendix 

2. Introducing an intermediate state virtually eliminates the time-dependent residuals 

obtained when the 2-state model is applied. However, we have reason to believe that this 

model does not provide a physically meaningful explanation of the photochemical 

dynamics: The shape of the residual spectrum changes with delay, suggesting that it arises 

from a time-dependent spectral shifting or narrowing rather than a simple kinetic 

interconversion; the relevance of this observation is discussed further below. 

Table 4.1. Relaxation Time Scales Obtained from Fits of Single-Wavelength Traces 

through Time-Resolved Spectra of TPB and OQTP in THF Excited at 266 nm. 

molecule/ 

solvent 

λ / nm Prefactor 1 τ1 / ps Prefactor 2 τ2 / ps offset 

TPB/THF 450 - 7.87 (±0.62) - - 0.04 

 615 - 7.77 (±0.69) - - 0.21 

 800 - 7.87 (±0.97) - - 0.00 

OQTP/THF 450 0.20 53 (±40) 0.78 372 (±87) 0.02 

 615 0.41 31 (±16) 0.41 290 (±134) 0.18 

 800 0.24 15 (±15) 0.72 334 (±106) 0.04 

 Figure 4.1c reveals the presence of multiple spectral components in the 500−800 

nm and 310−500 nm ranges following UV excitation of OQTP. Fits to single-wavelength 

traces at various wavelengths (Figure 4.2b) reveal a strong correlation in the relaxation 

behavior in each of these spectral regions, suggesting that sets of bands correspond to 

common photochemical transients. In fact, SVD analysis reveals that 3 distinct components 
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account for 95% of the time-dependent spectral variation. SVD weights and the 

biexponential relaxation observed from transient traces in Figure 4.2b indicate that an 

appropriate global model must involve at least 3 spectroscopically distinctive kinetic states 

and 2 relaxation time scales. 45 

Table 4.2 Global Analysis Fit Parameters for OQTP Spectral Dynamics 

 τ1 / ps τ2 / ps f 

Model 1 46.5 369.9 1 

Model 2 46.5 369.9 1 

Model 3 46.5 369.9 0.79 

af refers to the fraction of state C populated from state A (directly or indirectly). 

 As there are numerous ways these criteria could be achieved, we have applied 3 

simple global kinetic models to account for the identified behaviors: 

𝐴 →
τ1

𝐵 →
τ2

𝐶 + 𝐷                                                                                  (4.1)

𝐴 →
τ1

𝐶, 𝐵 →
τ2

𝐷                                                                                      (4.2)

𝐴 →
τ1

𝐶 + 𝐷, 𝐵 →
τ2

𝐶 + 𝐷                                                                     (4.3)
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Figure 4.3. (a) Nanosecond TAS decay after 266 nm excitation of OTP (τ = 37.8 ns), TPB 

(τ = 4.1 ns), and OQTP (τ = 2.3, 15.5 ns) in THF (room temperature, 293 K); absorption 

decay on ns time scales corresponds with thermal decay of corresponding dihydro 

intermediates. (b) Thermal decay of DHT in hexane at high (red) to low (blue) 

temperatures; exponential fits convoluted with the instrument response are shown in black. 

(c) Arrhenius plots of DHT (blue △), 9-phenyl DHT (red ×), and 1-phenyl DHT (green □) 

decay kinetics following UV excitation of OTP, TPB, and OQTP, respectively, in hexane. 
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These models can be summarized briefly as follows: (1) sequential interconversion 

between three spectroscopically distinct species; (2) parallel relaxation of two 

spectroscopically distinguishable transient states by different pathways; (3) parallel 

relaxation of two spectroscopically distinct transient states to the same final states. In 

general, all of these models can exhibit biexponential time-dependent behavior. Models 1 

and 2 have the fewest parameters (2 relaxation time scales). In contrast, model 3 formally 

requires a branching ratio for product formation. Note that “D” must be spectroscopically 

dark for model 2 to appear as a 3-state model; as described in more detail in the Discussion, 

this is included here to represent partial recovery of the reactant ground state. 

 Fitting parameters obtained with these models are summarized in Table 4.2. 

Because each of these models is capable of reproducing biphasic relaxation behavior, the 

discrepancies between the data and global fits are comparable. A fit obtained with model 3 

is overlaid in Figure 4.1c (dashed lines). We have attempted other 3-state models to explain 

the photoinduced dynamics of OQTP, but the models enumerated above provide the 

simplest and most meaningful physical interpretation of the dynamics and also are most 

consistent with insights obtained from computational results described below. We assess 

the merits of each model in the discussion in connection with computational results and 

other photophysical data.  

4.4.2 Characterization of Dihydro Intermediate Life- times and Relative Stabilities via 

ns-TAS. Figure 4.3a plots the nanosecond decay at 639 nm following UV excitation of all 

three reactants in room temperature THF solution; 639 nm light probes the red edge of the 

absorption band associated with the dihydro-intermediates formed on the picosecond-to-

nanosecond time scales. The OTP and TPB traces have been fitted with a single exponential 
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convoluted with the instrument response. In contrast, the ns-TAS collected after 266 nm 

excitation of OQTP exhibits biexponential character in room temperature measurements. 

The faster component of this decay is quite close to the temporal resolution of the probe 

pulse and most likely reflects that the ns-TAS of OQTP is sensitive to the strong transient 

absorption in this region that is seen in Figure 4.1c and that decays over the course of 1 ns 

in ultrafast measurements; in contrast, the longer time scale must be associated with the 

corresponding dihydro-intermediate. Thus, the average lifetime of the dihydro-

intermediate appears to get successively shorter from DHT (37.8 ns) to 1-phenyl DHT 

(15.5 ns) to 9-phenyl DHT (4.1 ns). Decay time scales are associated with the thermal ring 

reopening of the dihydro-intermediates, and hence the trend in lifetime reflects differences 

in the overall stability of intermediates produced from these various reactants. 

 Temperature-dependent nanosecond measurements were used to further 

characterize the relative stability of the dihydro-intermediates formed from each reactant. 

Figure 4.3b plots a set of temperature-dependent nanosecond absorption transients 

obtained with the 266 nm excitation of OTP in hexane. Each transient has been fitted with 

a single-exponential decay convoluted with the instrument response in order to determine 

the ring-opening rate at each temperature. Temperature- dependent rates were then fitted 

using an Arrhenius-type analysis (eq 4.4) in order to obtain the activation energy for 

thermal ring reopening, Ea , and the rate prefactor, A: 

 

 ln(𝑘) = ln(𝐴) − 𝐸𝑎  / 𝑘𝐵 𝑇 (4.4) 

 𝛥𝐺 = 𝛥𝐻 + 𝑅𝑇 (4.5) 
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𝑘(𝑇) =

𝑘𝐵𝑇

ℎ
exp (

𝛥𝑆

𝑅
) exp (

−𝐸𝑎 + 𝑅𝑇

𝑅𝑇
)  (4.6) 

 

Temperature dependent rates and their fits to the Arrhenius expression are plotted in Figure 

4.3c for DHT, 9-phenyl DHT, and 1-phenyl DHT in hexane. The activation energies and 

prefactors obtained from this analysis were further used to determine thermodynamics 

parameters associated with the stability of dihydro-intermediates against a unimolecular 

ring reopening reaction, as expressed in eqs 4.5 and 4.6.46 Table 4.3 lists the parameter 

values obtained from both analyses for each reactant in hexane. Although room 

temperature rates were not obtained for TPB and OQTP in hexane, we note that the rates 

obtained in THF solution closely match extrapolations of the linear trends plotted in Figure 

4.3c (log(1/τ) = 8.4 and 7.8, respectively). 

Table 4.3. Thermodynamic Parameters of Thermal Ring-Reopening (at 253 K) 

 A / ns-1 Ea / eV ∆S‡ / kJ/mol ∆H‡ / kJ/mol ∆G‡ / kJ/mol 

DHT/Hexane 1788.4±7.3 0.2709±1 -0.362 24.028 115.625 

9phDHT/Hexane 400.6±2.4 0.1908±1 -0.375 16.320 110.807 

1phDHT/Hexane 22.7±0.8 0.1604±6 -0.398 13.369 114.421 

  

 

4.4.3 Computational Characterization of Ground- and Excited-State Structures and 

Spectroscopy of OTP, TPB, OQTP, and Corresponding Dihydro Intermediates. 

 

4.4.3.1 Characterization of Ground-State Geometries. S0 minimum geometries were 

located for OTP, TPB, and OQTP through DFT calculations (B3LYP, 6-31+G*). Calculated 

structures are presented in Figure 4.4. Although OTP and TPB have only one low-energy 
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conformer, OQTP has two. The OQTP conformers differ according to the torsional twisting 

of one biphenyl unit by ∼60°, resulting in a closed-helical form (A) and an open-helical 

form (B) (see bottom left of Figure 4.4). These conformers have been reported previously 

by Hartley and are in rapid exchange at room temperature as determined by NMR. 47,48 

According to our calculations the A and B conformers differ in energy by 0.011 eV after 

zero-point-energy correction. We did not calculate the activation energy for conformer 

exchange, but based on this previous report we assume that the activation energy is 

comparable to (or less than) kT at room temperature. 
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  We similarly determined the optimized ground-state structures for the dihydro-

intermediates DHT, 9-phenyl DHT, and 1-phenyl DHT formed through UV excitation of 

OTP, TPB, and OQTP, respectively. Interestingly, TPB has two unique photoproduct 

conformations; these are similar to the two conformations of 4,5-substituted 

dihydrophenanthrenes noted by Muszkat et al.49 Those authors labeled these structures with 

the empirical nomenclature “L” and “S” according to their relative peak absorption 

wavelengths (“L” = “long”; “S” = “short”). They also demonstrated that the S conformer 

 

Figure 4.4. DFT-optimized (B3LYP/6-31+G*) geometries for reactants and predicted 

photoproducts. The interconversion between OQTP A and B involves the concerted 

rotation of two phenyl rings that results in compression (A) or decompression (B) of the 

outermost phenyl groups. The red arrows for L and S photoproducts highlight the steric 

effects that place the 1 or 9 substituted phenyl group above or below the plane of the 

DHT core. HphT has only one isomer. 
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was most stable, but the L conformer was formed initially via cyclization. An alternate 

labeling scheme associated with these conformers is based on whether the 4a (4b) hydrogen 

and the hydrogen on the adjacent 4 (5) carbon site are either on the same side (cis, C) or 

opposite side (trans, T) relative to the average plane of the DHT frame. In the case of TPB 

the L (C) and S (T) forms arise due to steric interactions of the phenyl group in the 9-

position with the adjacent ring in the DHT unit that either raises or lowers the phenyl group 

relative to that ring and concomitantly alters the structure in the region of the newly formed 

carbon−carbon bond (see right side of Figure 4.4). Possible conformations for 1-phenyl 

DHT are more varied: OQTP B can form either of the L or S 1-phenyl DHT conformers, 

whereas OQTP A can form the unique photoproduct 4a,4b-H,phenyl-triphenylene (HphT, 

see bottom right of Figure 4.4). To our knowledge an intermediate similar to HphT has 

never been reported. 
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Figure 4.5. Normalized steady-state UV absorption spectra of OTP (a), TPB (b), and OQTP 

(c) (red solid lines) and UV/vis transient absorption spectra of corresponding dihydro-

intermediates (blue dashed lines). Computed vertical excitation energies for the first 5 

excited states of each reactant and intermediate structure as determined with TD-B3LYP/6-

31+G* at the DFT-optimized ground-state geometries are plotted with symbols and vertical 

lines. 
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 4.4.3.2 Excitation Energies. TDDFT calculations (B3LYP, 6- 31+G*, 5 states) 

were performed using these optimized ground-state geometries in order to obtain excitation 

energies for comparison with the steady-state absorption spectra of reactants and the 

transient spectra of corresponding dihydro-intermediates, and, hence, for the assignment 

of the states involved in various electronic transitions. Calculated oscillator strengths as a 

function of excitation energy are plotted as stick spectra in Figure 4.5. For OTP, TDDFT 

calculations predict that transitions to the first and fifth singlet excited states have 

appreciable oscillator strength; these calculated transitions line up with the longest 

wavelength features in the experimental absorption spectrum at 242 and 260 nm. 

Calculations thus indicate that 266 nm excitation promotes OTP to its lowest singlet excited 

state, and that nonadiabatic cyclization occurs directly from this level. For TPB, absorption 

transitions into the first 5 excited states are predicted to fall between 280 and 250 nm, with 

the largest oscillator strength at 262.73 nm for a transition to the S3 state. 

 The steady-state spectroscopy of OQTP is complicated by the fact that two unique 

ground-state minima can exist in equilibrium at room temperature. The two most 

significant transitions for OQTP B (among its lowest 5 transitions) occur at 283.46 and 

258.57 nm to the first and fourth singlet excited states. The two strongest absorptions 

predicted for OQTP A occur at 275.52 and 256.22 nm and correspond to the S0 to S2 and 

S5 transitions. Both sets of features approximately match the positions of the two shoulders 

at 252 and 275 nm in the steady-state absorption spectrum of OQTP. These calculations 

also predict that the lower energy transition is stronger for B, whereas the higher energy 

transition is stronger for A. 
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 For the dihydro-intermediate structures (DHT, L 9-Ph- DHT, and L 1-Ph-DHT) a 

distinct trend in the positions of the first and fifth transitions is observed from our TDDFT 

calculations, with a red shift apparent from DHT to L 9-Ph- DHT to L 1-Ph-DHT. A similar 

trend appears from our experimental transient absorption spectra, with both the UV and 

visible bands at late time delays (>1 ns) showing a 10−20 nm shift across the three 

intermediates (DHT to L 9-Ph-DHT to L 1-Ph-DHT); this shift is somewhat smaller than 

predicted by calculations, but supports the assignment of these bands to transitions of the 

corresponding dihydro-intermediates. Discrepancies between experimentally observed 

transition energies and calculated transition energies are ∼0.3 eV in the visible; this is 

typical for TDDFT computations of large π- conjugated systems. 50 
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Figure 4.6. Excited-state minimum and minimum-energy CI geometries for TPB and 

OQTP from SA-CAS computations. The torsional (φ), twisting (θ), and photochemically 

formed bond length (Δ) coordinates are illustrated for TPB (green) and OQTP (red) in the 

upper right. 



114 

 

Table 4.4 Structural Parameters for TPB and OQTP obtained by SA-CAS computations. 

TPB calculations were performed with SA-2-CAS(2,2)-sto3g and OQTP with SA-2-

CAS(6,6)-sto3g levels of theory. 

Geometry Δ1/Å Δ2/Å θ1/° θ2/° φ1/° φ2/° φ3/° φ4/° 

TPB  S0 3.48 - 1.0 - 58.0 65.2 54.8 - 

TPB S1 1.74 - 4.6 - 19.6 17.7 57.7 - 

TPB  S0 /S1 CI 1.86 - 17.5 - 28.3 6.3 70.4 - 

S 9-phDHT  S0 1.55 - 21.5 - 3.5 7.7 136.2 - 

OQTP A  S0 - 3.55 1.6 0.9 68.1 51.9 - 53.3 

OQTP A S1 - 3.32 4.6 23.4 52.9 50.8 - 34.7 

OQTP A Cyc. S1 - 1.86 3.1 52.8 24.6 9.5 - 22.0 

OQTP A  S0 /S1 CI - 1.95 13.9 21.3 14.9 3.3 - 36.7 

HphT  S0 - 1.57 12.5 96.8 2.1 8.0 - 41.5 

OQTP B  S0 3.43 3.43 2.0 1.8 57.9 56.8 - 54.5 

OQTP B S1 3.43 3.43 35.0 40.0 23.9 41.4 - 39.1 

OQTP B Cyc. S1 1.58 1.58 4.3 13.8 20.5 9.0 - 51.0 

OQTP B  S0 /S1 CI 1.89 1.89 16.9 0.2 6.9 31.4 - 73.9 

L 1-phDHT  S0 1.55 1.55 15.5 14.8 14.7 3.8 - 57.8 
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4.4.3.3 Characterization of Landmarks on Ground- and Excited-State Potential Energy 

Surfaces with SA-CASSCF and TDA-TDDFT. In order to explore possible decay 

mechanisms for each excited reactant, the SA-CAS method was used to locate the S1 

minimum and S0/S1 conical intersection geometries (Figure 4.6 and Table 4.4) and 

energetics (Figure 4.7) for TPB and OQTP; results for OTP have been reported 

previously.28 Excited-state calculations were carried out for only the S1 surface. The use of 

a small basis set (STO-3G) and active space (2,2−6,6) without dynamic electron correlation 

makes computations with these large molecules economical at the cost of accuracy; 

consequently, these calculations are only meant to provide a qualitative picture of the S1 

potential-energy landscape. TPB calculations were performed with SA-2- CAS(2,2)/STO-

3G and OQTP with to SA-2-CAS(6,6)/STO- 3G levels of theory. 

 Calculations with TPB locate qualitatively similar landmarks as those found for 

OTP, with a single S1 minimum in close geometric vicinity to a S0/S1 conical intersection 

that leads to photocylization; the energetics of these landmarks are summarized in appendix 

2 (Figure A2.5). The twisting angle θ1 increases only 3.6° from the S0 to S1 minimum 

geometries for TPB, compared with 9.6° for OTP. 28 The largest change still occurs 

between the S1 minima and S0 /S1 CIs with similar changes of 12.9° for TPB and 12.8° for 

OTP. The change in “phenyl twist” torsional angle (φ) between structures is slightly altered 

for TPB due to the presence of the fourth phenyl ring that effectively spectates the 

photoreaction. Interestingly the torsional angle of the spectator ring (φ3) increases steadily 

as the photoreaction proceeds, enabling the other two rings to form a carbon−carbon bond. 
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Figure 4.7. Characterization of potential-energy landscapes for (a) OQTP A and (b) OQTP 

B obtained from SA-CAS(6,6)-sto3g calculations. Calculations suggest the existence of 

quinoidal S1 minima(Q) for both conformers. S0/S1 CIs similar to that of OTP and TPB are 

also found that are associated with cyclization to L 1-ph-DHT(OQTP B) or HphT (OQTP 

A). An excited state minimum (Cyc) is also found for each conformer. 
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 The excited-state topography for OQTP is somewhat more complex than that of 

OTP and TPB; the energies of relevant configurations explained below are mapped 

according to the C−C bond distance in Figure 4.7. OQTP A and B both exhibit S1 minima 

and S0/S1 CIs at geometries that are compatible with a photocyclization pathway. In 

addition, the S0/S1 CI is slightly uphill from the Franck−Condon region for both OQTP 

conformers. Interestingly, no excited-state minima were located within the 1.5 Å range in 

Δ between the CI and A/B S0 minimum geometries. The twist (θ1) and torsional (φ1, φ2) 

angles still increase and decrease, respectively, between the FC region and the CI as they 

do for OTP and TPB, reflecting the importance of these coordinates in the photocyclization 

reaction coordinate. 

 We have also found that both conformers of OQTP have a second characteristic 

minimum on the S1 surface. For OQTP B this unique S1 minimum resembles an ortho-

quinoidal configuration and is characterized by a symmetric relaxation of the terminal 

phenyl rings toward planarity, in contrast with the asymmetric relaxation that occurs 

between the FC region and the CI leading to cyclization. While a secondary S1 minimum 

was also located for the A conformer, this configuration does not approach the same 

quinoidal geometry, requiring a further decrease in φ1 and φ2 to approach quasi-planarity. 

The LUMO at this minimum-energy structure obtained from TDDFT calculations is 

compared to the LUMO of S0 OQTP B, the HOMO of L 1-phDHT, and the LUMO of S0 

biphenyl in Figure 4.8. 
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Figure 4.8. S1 relaxation pathways for OQTP assessed from ab initio quantum-chemical 

calculations. Shown are the LUMO of ground-state optimized OQTP B (top, left); the 

quinoidal S1 minimum of OQTP B (top, right); and the HOMO of the cyclized 

photoproduct (bottom left). The central portion S1 LUMO exhibits similarities with that of 

biphenyl (bottom, right). 
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From previous TDDFT results, 48 the S1 minimum of OQTP A showed a more delocalized 

LUMO than that of the SA-CAS results presented here; this delocalization leads to a more 

uniform torsional angle (φ) and quasi-planar structure. We performed our own TDDFT S1 

optimizations (TDA-B3LYP/ 631G) for comparison; these show ortho-quinoidal character 

for both OQTP A and B with φ1, φ2, and φ4 equal to 28.6, 35.7, and 29.7° for OQTP B. 

Comparison to SA-CAS results shows that the difference between the largest and smallest 

torsional angles is 17.5° versus 7.1° for the TDDFT results, illustrating the qualitative 

differences in calculation methods explained in more detail in appendix 2. However, both 

methods support characterization of this minimum as resulting from a relatively symmetric 

relaxation of the torsional angles, in contrast with the cyclization pathway. 
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 4.4.3.4 Characterization of Intermediate Stabilities. The energy differences 

between the ground-state reactants (OTP, TPB, and OQTP B) and their corresponding 

dihydrointermediates were calculated at the DFT level in order to assess changes in relative 

intermediate stability with changes in reactant structure. We have also considered reactants 

analogous to TPB and OQTP in which the fourth phenyl ring is replaced with different 

substituents in the 9- and 1-positions of DHT (i.e., OH, CN, methyl, tert-butyl, and F). 

These substitutions permit evaluation of the relative contribution of steric hindrance and 

 

Figure 4.9. Calculated effect of substitution on the relative energies of OTP and DHT 

ground-state minima; DFT calculations were performed at the B3LYP/6-31+G* level. 

ΔΔE = ΔE9 (o−c) −ΔE1 (o−c) (red) reveals how relative energies are affected by specific 

substituents. Energy differences between 9- and 1-substituted reactants, ΔEo (9−1) 

(blue), and products, ΔEc (9−1) (green), reveal that substitution has greater impact on 

the energy of intermediate structures. 
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electronic effects to the stabilization or destabilization of dihydro-intermediate structures. 

All DHT analogues correspond with the L isomer, except 9-F and 9-OH substituted DHT, 

for which only an S isomer could be located. Figure 4.9 plots energy differences between 

OTP (blue) and DHT (green) substituted with each of the various substituents located at 

positions corresponding with the 1 and 9 carbon sites of DHT. In total, substitution at the 

9 vs 1 site gives a ground-state energy for the substituted OTP that is consistently higher 

by 0−40 meV regardless of the nature of the substituent. In contrast, differences in the 

minimum energy as large as −120 meV are observed for substituted DHT. Red bars signify 

the change in the energy gap between open and closed structures induced by changing the 

substitution pattern for each individual substituent. Excluding the sizable impact of tert-

butyl and phenyl substitution on these energy differences, a slight correlation is observed 

between ΔΔE and traditional electron-donating/withdrawing character of the substituents. 

Energy differences between each of the (open-ring) reactants and its corresponding 

dihydro-intermediates in their optimized geometries are shown in appendix 2; these are 

consistently higher than the energy difference between OTP and DHT. 

 

4.5 Discussion 

Spectral dynamics presented in Figure 4.1 demonstrate that all three reactants (OTP, TPB, 

and OQTP) form similar transient species following UV excitation, with virtually identical 

transient spectra from all three reactants measured within 1 ns. This similarity and results 

of TDDFT calculations presented in Figure 4.5 support assignment of these spectral 

intermediates to dihydro-intermediate structures (Scheme 4.1 and Figure 4.4). ns-TAS 

measurements indicate that these intermediates are all metastable (Figure 4.3). Transient 
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decay of all 3 intermediates is single-exponential across a broad temperature range and 

yields highly linear van’t Hoff plots, further indicating either that only a single product 

conformer or isomer is formed photochemically in each case or, alternatively, that 

structural variations between conformers/isomers are energetically indistinguishable given 

the excess vibrational energy imparted via the nonadiabatic transition. Beyond these 

similarities, the details of photochemical bond formation and the stability of the 

intermediate structures formed for each reactant are intimately connected with how reactant 

structure alters critical regions of potential-energy surfaces. Here we consider the 

photochemical dynamics of each species in view of our computational results as well as 

similarities or differences with the photophysical properties of OTP and other ortho-arenes. 

 4.5.1 UV Photochemistry of TPB. The spectral analyses presented in Figures 4.1 

and 4.2 reveal that the ultrafast spectral dynamics of TPB excited at 266 nm can be 

explained reasonably with as few as two photochemical transients. Figure 4.1b shows a 

global fit of these spectral dynamics to a simple 2-state ultrafast kinetic model (A→B) with 

an interconversion lifetime of 7.4 ps. Based on comparisons with the photo- chemistry of 

OTP and the calculated vertical excitation energies plotted in Figure 4.5, these kinetic 

species must correspond with TPB in a metastable excited state (A) and the dihydro-

intermediate 9-phenyl DHT (B). Discrepancy between the experimental data and the 2-

state global fit in the near-UV can be eliminated with a 3-state ultrafast kinetic model, as 

demonstrated in appendix 2. However, the region of this discrepancy and time dependence 

of the residuals observed when the 2-state model is applied are consistent with evolution 

in the Franck−Condon profile of the higher-energy absorption band as a result of 

vibrational relaxation of the nascent intermediate. This is precisely what we observed 
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previously in the photochemical formation of DHT following UV excitation of OTP. 10 In 

fact, time dependence of the residuals from the 2-state model exhibits a ∼30 ps relaxation 

time scale, which is similar to the solvent-dependent vibrational relaxation time scales we 

determined for OTP. Given these similarities, we conclude that excited TPB cyclizes on a 

time scale of 7.4 ps, and that 9-phenyl DHT relaxes vibrationally on a time scale of 32.6 

ps. Thus, the photochemical dynamics of TPB are qualitatively quite similar to those of 

OTP. 

 The similarity between TPB and OTP relaxation dynamics is perhaps not surprising 

given the similar “landmark” geometries on their excited-state potential-energy surfaces: 

Our CAS calculations find qualitatively similar structures for TPB and OTP at the S0 

minimum (FC region), S1 minimum, and the S1/ S0 CI nearest the S1 minimum, despite 

differences in the sizes of the basis sets and active spaces used in these calculations. Thus, 

a similar picture of the excited-state decay mechanism is suggested: After photoexcitation 

TPB relaxes toward the CI that links excited TPB to S0 9-phDHT and S0 TPB and that is 

within close energetic and geometrical proximity to the minimum on the excited singlet 

potential-energy surface. The longer lifetime observed for TPB relaxation may signify a 

larger effective barrier (when compared with OTP) to reaching the CI for cyclization, or 

may be attributed to a mass effect 51 or steric interactions introduced by the fourth/extra 

phenyl substituent, which calculations predict to be a spectator in the cyclization 

mechanism. 

 Interestingly, TDDFT calculations indicate that the absorption spectrum of TPB is 

dominated by the S0−S3 transition (Figure 4.5b). This would imply that the relevant 

nonadiabatic cyclization dynamics occur directly via this higher-lying state or via lower-
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lying excited singlets (i.e., S1) after a fast relaxation within the excited singlet manifold; 

such a relaxation could occur on time scales beyond the resolution of our measurements or 

could be masked by slow nuclear relaxation on the S3 surface itself. Based on symmetry 

considerations (Woodward−Hoffmann rules), it is conceivable that cyclization could occur 

from either the S1 or S3 state. Nonetheless, the nuclear dynamics that enable these 

nonadiabatic cyclization reactions are anticipated to be fairly similar. 

 4.5.2 Photochemistry of UV-Excited OQTP. Based on the analysis of our ultrafast 

data, the photochemical dynamics of UV-excited OQTP involves at least 3 photochemical 

states. One of these remains on the longest time scales probed in these experiments (∼1.5 

ns) and can be attributed to the dihydro-intermediate 1-phenyl DHT (or HphDHT) in its 

ground electronic state; this assignment is supported by the spectroscopic similarity with 

the metastable transients observed after the photoexcitation of OTP and TPB, as well as 

comparisons with calculated excitation energies presented in Figure 4.5c. Spectral 

relaxation that leads to the formation of intermediates occurs on two characteristic time 

scales (46.5 and 369.9 ps), and spectral dynamics can be fitted reasonably with various 

simple global kinetic models. As comparable residuals are obtained with the multiple 

models presented in Results and Analysis and appendix 2, deduction of the relevant 

photochemical pathway requires consideration of additional photophysical data and 

insights from quantum-chemical calculations. 

 To this end we first consider the various ground- and excited-state configurations 

predicted from quantum-chemical calculations and their relative energetics (Figure 4.7). 

Ground-state calculations have located 5 minima on the S0 potential-energy surface: open-

ring conformers of OQTP (A and B) and the closed-ring isomers 1-phDHT (L and S) and 



125 

 

HphT that correspond to cyclization reactants and possible photochemical products, 

respectively. Excited-state calculations have located landmarks that include one S0/S1 CI 

per OQTP conformer that links electronically excited OQTP to the ground-state cyclized L 

product conformer and a structurally similar S1 minimum. Another S1 minimum, the 

quinoidal minimum, was also located for each OQTP conformer and is characterized by 

symmetric torsional twisting of the phenyl units toward a common plane, rather than 

asymmetric relaxation that is anticipated along the photocyclization pathway (cf. Figure 

4.8). 

 Based on these calculated results we propose the following relaxation mechanism, 

which is restricted to the S1 surface for a single reactant conformer: Photoexcitation of 

OQTP results in a branching between relaxation toward the S0/S1 CI and relaxation to the 

quinoidal S1 minimum (a relaxation process we term as “quinoidalization”). Branching 

between these pathways implies a weighted summation of their associated spectral 

relaxation dynamics. Our quantum-chemical calculations did not locate a CI geometry near 

the quinoidal S1 minimum; as the OQTP fluorescence quantum yield is quite low (0.01), 47 

it is reasonable to assume that internal conversion of this quinoidal population likewise 

occurs by way of a cyclization CI. Model 3 is the simplest kinetic model that can be used 

to fit the data accordingly, with species A, B, C, and D representing an excited-state 

minimum nearer to the cyclization CI, the quinoidal S1 geometry, the ground-state 

dihydrostructure, and the (open-ring) ground-state geometry, respectively. The ground state 

is dark in our spectroscopic measurements, as it absorbs outside of the probing region (cf. 

Figure 4.5c). An implicit assumption of this model is that the initial wavepacket branching 

is considerably faster than the time resolution of the current experiment (<300 fs). 
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 The time scales and spectra obtained from the global analysis are sensible, 

particularly in comparison to spectral dynamics of OTP and TPB and based on the 

computed relative energies mapped in Figure 4.7. First, the spectrum of the direct 

“cyclizing” subpopulation closely matches that of excited OTP and TPB (Figure A2.1 in 

appendix 2), with two distinct features at 600 and 400 nm; we expect that direct relaxation 

toward cyclization should create an excited-state configuration quite similar to S1 OTP and 

thus should exhibit similar spectroscopy, as predicted by TDDFT results. Interestingly, the 

lifetime for this fraction (A) is considerably longer than the photoprepared excited states 

of OTP and TPB. A tentative explanation for this difference can be derived from 

calculations, which suggest that the CI for cyclization is slightly uphill from the 

Franck−Condon region in OQTP, but downhill for the other two structures; this suggests 

that there is an effective barrier to cyclization for OQTP that could lower the reaction rate. 

The longer 369.9 ps time scale obtained for the decay of the second, quinoidal minimum-

energy configuration is also sensible if there is an even larger barrier between this minimum 

and the cyclization CI. 

 The transient spectral data and our interpretation are consistent with other pieces of 

experimental data obtained with OQTP and related molecules. The presence of a quinoidal 

minimum is supported by recent work by Hartley that explored the excited-state properties 

of ortho-phenylene oligomers; 48 he notes a geometrical “compression” of the closed 

helical (A) conformers that occurs as the excited state takes on a localized quinoidal 

character within the ortho-phenylene chain that shares characteristics with biphenyl. 

Although the TAS of ortho-phenylenes has not been explored to our knowledge, it is 

noteworthy that fs-TAS of biphenyl in solution exhibits transient absorbance at 680 nm; 52 
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this closely matches the broad, longer-lived TA band of OQTP observed here (peak near 

695 nm), a correspondence that is suggestive of a similar quinoidal minimum on the S1 

surface of OQTP (Figure 4.8).Our interpretation of OQTP photophysics is also consistent 

with general trends in the fluorescence spectroscopy of ortho-phenylenes. 47,48 TCSPC 

measurements with OQTP obtain fluorescence lifetime of ∼400 ps, similar to the longest 

lifetime measurement here via fs-TAS. The fluorescence quantum yields 0.18 for biphenyl, 

drops to essentially 0 for OTP, and rises back to 0.18 as the ortho-oligophenylene length is 

increased to the octomer. Much of the recovery in fluorescence quantum yield occurs 

between 4 and 6 units, indicating that the cyclization channel that dominates the 

photophysics of OTP becomes less significant at longer oligomer lengths. Nonetheless, the 

OQTP exhibits signatures of both cyclization and a fluorescent state, with a fluorescence 

lifetime that is substantially shorter than that of longer ortho-phenylene oligomers. Indirect 

cyclization by way of the quinoidal minimum would compete with radiative and other 

nonradiative processes, resulting in a considerably faster fluorescence decay of OQTP 

relative to larger ortho-phenylene oligomers and lower fluorescence quantum yields. Based 

on these various comparisons, the existence of a quinoidal excited-state minimum and a 

competition between cyclization and quinoidalization in the photochemical relaxation of 

UV-excited OQTP is highly plausible. 

 Although the combination of experimental and computational results suggests a 

relatively simple mechanism following the UV excitation of OQTP, it is conceivable that 

experimentally measured spectral dynamics could also arise from the incoherent 

summation of the photophysics of both conformers. However, our results seem to be 

compatible only with a mechanism that involves either branching between two minima on 
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the excited-state potential of a single conformer or identical photophysical behavior for 

both conformers: First, TDDFT calculations predict that the B isomer dominates the 

spectrum at lower transition energies where the sample is excited, which supports a 

selective excitation of a single isomer. Second, temperature-dependent ns-TAS 

measurements indicate that only a single photoproduct persists into the nanosecond regime, 

suggesting either that 266 nm photo-selectively excites a single conformer (B), that two 

products are formed from the A and B conformers (HphT and 1-phT, respectively) that 

have nearly identical stability, or that that both conformers are excited with only one 

reacting to cyclize (B). The second possibility seems plausible based on the energetic 

similarity in excited-state landmarks found computationally for both conformers (Figure 

4.7); the third possibility seems less plausible, as it would imply that one conformer is 

stable relative to cyclization and would be expected to have a longer fluorescence lifetime 

comparable to that of longer ortho-phenylene oligomers. Third, the fluorescence excitation 

and absorption spectra of OQTP closely match between 250 and 300 nm (Figure A2.3 in 

appendix 2), suggesting no significant difference in the fluorescence quantum yield for the 

two conformers. Thus, all pieces of data indicate that either one conformer (B) dominates 

the photophysical dynamics at this excitation energy, or else that both conformers have 

nearly identical kinetics and photoproduct stabilities when excited at 266 nm despite 

structural differences between the conformers and metastable photoproducts. 

 4.5.3 Relative Stability of DHT Intermediates. Although the feasibility for 

nonadiabatic photochemistry relies on the success for reaching a conical intersection, the 

stability of intermediate products is critical for further steps in a photochemical mechanism, 

as is the case for the cyclodehydrogenation reactions depicted in Scheme 4.1. Of particular 
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interest for this class of reactions is how the nature and location of substituent groups affect 

the stability of DHT intermediates. The activation energies determined experimentally via 

temperature-dependent ns-TAS place the relative stability of 9-ph-DHT greater than that 

of 1-ph-DHT (in hexane), with both much less stable than DHT itself. However, it is not 

directly clear why one positional isomer may be more stable than another. There are two 

general factors that can explain the relative differences in ground-state stabilities of 1- and 

9- phDHT: positional influences on electronic stabilizing/ destabilizing capabilities of the 

substituent and on intra-molecular steric interactions. Computational analysis is highly 

instructive for distinguishing these contributions. 

 The best metrics of the relative stability of intermediate structures are activation 

energies themselves. Computationally, calculation of activation energies would require a 

transition-state search for each derivative; these searches are complicated by the presence 

of multiple product conformations. Instead, we have resorted to a somewhat cruder method 

for assessing the relative stability of intermediate structure, whereby we assume a 

correlation between the relative energy gap between the reactant and photoproduct energy 

minimum, ΔΔE = ΔE9 (o− c) − ΔE1 (o−c), and the activation energy. Under this ansatz a 

larger energy gap between limiting structures would correspond with lower activation 

energy, and the difference in these energy gaps for the two substitution patterns ΔΔE = ΔE9 

(o−c) − ΔE1 (o−c) should roughly reflect the relative stabilizing or destabilizing effect of a 

specific substituent. 

 These calculated energy differences in Figure 4.9 are arranged in the typical order 

and strength of electron donating vs withdrawing. The relative impact of steric vs electronic 

effects can be assessed by considering the impact of substituent type and size. For example, 
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typical electron-donating groups, such as OH and methyl groups, slightly increase this 

energy difference, suggesting that these groups effectively stabilize the 1-substituted 

relative to the 9-substituted intermediate. In contrast, typical electron-withdrawing groups, 

such as F and CN, stabilize the 9-substituted relative to the 1-substituted intermediate at a 

comparable magnitude. Interestingly, significant destabilization of the 1-substituted vs 9-

substituted intermediate is observed for both tert-butyl and phenyl substituents, and in both 

cases well beyond the magnitude associated with any of the smaller electron-donating and 

withdrawing groups. The direction of this shift matches that of a simplistic resonance-

structure argument for the relative stabilization of 9- vs 1-phDHT. However, the fact that 

the comparable-sized tert-butyl electron-donating group has a similar impact on the energy 

difference indicates that this difference may also be associated with steric interactions that 

destabilize one structure relative to the other. Thus, computational results suggest that the 

difference in activation energies measured experimentally is associated with the relative 

structure-induced destabilization of the energy minimum for 1- relative to 9-phenyl DHT. 

Interestingly, the overall thermodynamic stability of 1-phenyl DHT is actually greater, as 

evidenced by consistently longer intermediate lifetimes across a large range of 

temperatures (Figure 4.3), indicating that the faster ring opening of 9-phenyl DHT is 

promoted by entropic factors (Table 4.3). 

 Our calculations also provide insight into the relative stability of substituted DHT 

conformers. A few trends between the L and S conformers can be noted: The S conformer 

is consistently lower in energy except in cases of bulky substituents (TB and Ph), where 

positioning dictates the most stable conformer. The absolute energy difference between L 

and S conformers is smaller for 9-substituted analogues and is largest for bulky 
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substituents. The implication for TPB and OQTP is that the initial photoproduct of TPB, L 

9-PhDHT, is the most stable conformer while L 1-PhDHT is the least stable conformer. As 

steric repulsion is increased in a specific position (e.g., by replacing F with TB), energy 

differences between conformers also increase; this suggests the formation of a potential 

barrier between and therefore the isolation of two distinct conformers. 

 We note that it is unclear empirically whether one or both of the L and S 1- and 9-

phDHT conformers is formed upon cyclization of TPB and OQTP. However, our calculated 

excited state structures suggest that the L isomer may be formed more readily via 

cyclization. Muszkat and co-workers also reasoned that the L conformer forms initially 

upon photocyclization of substituted diarylethenes, whereas subsequent isomerization to 

the more stable S isomer occurs on very long time scales (μs to s); 49 thermal conversion 

studies and related calculations suggested a barrier of 10−17 kcal between forms. Our 

temperature-dependent ns-TAS measurements indicate the presence of only a single 

kinetically distinct product for both TPB and OQTP (Figure 4.3a,c). This indicates that a 

single product conformer is formed initially subject to the structural evolution along the 

photocyclization pathway and is stable to conformational relaxation on the time scale of 

thermal ring opening; alternatively, the energy barrier between the two isomers may be 

negligible relative to the excess internal energy imparted to the product following 

nonadiabatic cyclization. 

 

4.6 Conclusions 

We have examined the ultrafast photochemical dynamics of the ortho-arenes TPB and 

OQTP, finding similarities in both cases to the photoinduced dynamics of OTP. OTP and 
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TPB exhibit highly similar relaxation dynamics, including excited-state relaxation to form 

the dihydro-intermediate structures DHT and 9-phenyl DHT via cyclization on a time scale 

of picoseconds (2.9 vs 7.4 ps in THF, respectively), followed by a slower vibrational 

relaxation of photoproducts on somewhat longer time scales (32.6 ps for TPB in THF). In 

contrast, OQTP exhibits more complex behavior on ultrafast time scales with the presence 

of two spectroscopically distinguishable species appearing before the formation of 1-

phenyl DHT. Based on the results of excited-state structure calculations and kinetic 

modeling of our experimental data, we ascribe this behavior to branching of the excited-

state wavepacket between direct and indirect pathways to cyclization. The direct pathway 

is associated with the appearance of shorter-lived (46 ps) transient spectral features that are 

highly similar to the S1 −SN absorption transitions of both OTP and TPB. The indirect 

pathway involves the relaxation along the excited-state surface to a symmetric “ortho-

quinoid” structure, which persists on longer time scales (380 ps) due to a presumed barrier 

to the asymmetric relaxation pathway required to reach the CI for nonadiabatic cyclization. 

Complementary steady-state and nanosecond spectroscopic data for OQTP and related 

ortho-phenylene oligomers support this mechanism of excited-state relaxation. 

 Findings from our work can be used to better understand how structure−dynamics 

relationships control the photochemistry of ortho-arenes. Regarding the photoinduced 

cyclodehydrogenation of OTP, TPB, and OQTP, it is clear that structure does not impact 

the possibility for carbon−carbon bond formation for any of these reactants. Rather, the 

cyclodehydrogenation chemistry of these systems is determined predominantly by the 

relative thermodynamic stability of their dihydro-intermediates: The reported yields for 

these reactions correlate roughly with the relative lifetimes of dihydro-intermediates over 
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a broad range of temperatures, OTP > OQTP > TPB, such that reaction yields must be 

limited primarily by the bimolecular reaction with an oxidant (I2). 

 Nonetheless, our findings illustrate how reactant structure can alter ultrafast 

excited-state dynamics, and specifically the length-dependent photoinduced dynamics of 

ortho-phenylenes. For these systems, excited-state dynamics can be characterized by a 

competition between asymmetric relaxation, leading to cyclization, and symmetric 

relaxation, leading to a long-lived excited state: Biphenyl relaxes on the sub-picosecond 

time scale to its quinoidal/planar excited-state minimum. In the cases of OTP and TPB, 

relaxation favors a cyclization pathway, and the picosecond formation of DHT and 9-

phDHT. OQTP is the first o-arene that exhibits both symmetric relaxation 

(quinoidalization) and asymmetric relaxation (cyclization), but with surmountable barriers 

that enable the quinoidal structure to reach a CI for cyclization. Increasing the oligomer 

length should further favor the symmetric ortho-quinoidal minimum, as an asymmetric 

relaxation must overcome steric constraints, such as those imposed by the helical structures 

(similar to OQTP A) favored at longer lengths. 47,48 Thus, the branching between 

quinoidalization and cyclization is a direct function of chain length with the increase in 

chain length favoring the modest conjugation possible via symmetric relaxation over a 

highly localized (asymmetric) relaxation required to promote bond formation. Hence, 

photochemical schemes for synthesizing extended polyaromatic structures requires 

reactant structures that eliminate the competition between such reactive and nonreactive 

excited-state relaxation pathways. 
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Chapter 5 

Excited-state Deactivation Pathways and the Photocyclization of BN-doped 

Polyaromatics 

 

Reproduced with permission from Snyder, J. A.; Grüninger, P.; Bettinger, H. F.; Bragg, A. 

E. Physical Chemistry Chemical Physics 2017 Under Review. Copyright 2017, Royal 

Society of Chemistry. 

 

5.0 Abstract 

 Boron-nitrogen doping of polyaromatic hydrocarbons (PAH), such as borazine-

core hexabenzocoronene (HBC), presents possibilities for tuning the properties of organic 

electronics and nanographene materials while preserving the structural characteristics of 

pure hydrocarbons. Previous photochemical studies have demonstrated the extension of a 

 

Figure 5.0. Table of contents figure. 
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borazine-core PAH network (1,2:3,4:5,6 tris(o,o’-biphenylylene) borazine, 1) by 

photoinduced cyclodehydrogenation, but also revealed that photochemical synthesis 

alone cannot be used to prepare BN-doped HBC from this precursor. We present steady-

state and fs-to-μs time-resolved spectroscopic characterization of the photophysics of 1 

and a related borazine-core PAH in order to identify competing excited-state relaxation 

pathways that impact the efficacy of bond formation by photocyclization of BN-doped 

structures.  Ultrafast measurements reveal sub-ps internal conversion dynamics when 

both compounds are excited at high but not low energies (266 vs. 320-330 nm), 

supporting their Kasha-rule emission behavior. Time-resolved spectra evolve on 

timescales consistent with the fluorescence S1 lifetimes (1-3 ns) to a terminal spectrum 

that persists onto μs timescales.  Ns-resolved oxygen-quenching reveals efficient triplet 

formation. Fluorescence and triplet quantum yields indicate that photochemical bond 

formation is a minor channel at best in the relaxation of 1, whereas highly efficient 

fluorescence and triplet formation appear to result in negligible bond formation via 

photoexcitation of more extended borazine-core networks. 

 

 

5.1 Introduction 

Large polycyclic aromatic hydrocarbons (PAHs) and their 1- and 2D assemblies 

(including “nanographenes”) have received considerable attention as components for 

organic electronics1-3 – including, but not limited to, organic photovoltaics (OPV), 

organic field-effect transistors (OFET), and organic light-emitting diodes (OLED).  

Judicious atom-specific doping of pure hydrocarbon structures with boron and nitrogen 
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presents the means to tune (generally increase) the HOMO-LUMO gap in these 

materials,4-6 while at the same time preserving structural characteristics – as, for example, 

when a CC unit is replaced with an isoelectronic BN pair.  BN-doping also presents a 

means for incorporating intramolecular charge polarization that can imbue enhanced 

nonlinear optical properties or be used to control intermolecular packing.7-9  

Hexabenzocoronene (HBC) has remained a PAH target of particular interest, as 

selectively alkylated HBC can undergo a temperature-controlled phase change to a liquid 

crystal that forms conducting columns, i.e. nanowires.1  Consequently an HBC analog 

with a borazine core has therefore remained an attractive target for BN doping 

strategies,6, 10-12 with recent studies demonstrating efficient preparation of ordered 2D 

nanographene materials built from borazine-core HBC via surface-assisted catalysis 

(SAC) on Ag(111) substrates.13  

 Various approaches have been explored for preparing BN-doped polyaromatic 

structures in solution, beginning with the synthetic inclusion of BN in pure-carbon 

frameworks2, 4, 5, 12, 14-17 and extending to thermal11, 13 and photochemical10 treatments of 

BN-doped precursors, such as those presented in Scheme 5.1, to yield larger polycycles.  

Notably, recent work has demonstrated that Scholl reactions give rise to C-C coupling 

within and between BN-doped PAHs,6 pressing the need for alternative pathways for 

inducing purely intramolecular carbon-carbon bond formation in the preparation of 

borazine-core HBC.  Given the structural similarities of pure PAHs and their BN-doped 

analogs, Bettinger proposed that photoinduced electrocyclization is a potential route for 

synthesizing borazine-core PAHs from simpler BN-doped precursors,10 demonstrating 

that the near-UV irradiation of 1,2:3,4:5,6 tris(o,o’-biphenylylene) borazine (Scheme 5.1, 
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1) in the presence of THF and I2 results in cyclodehydrogenation to yield compound 3.  It 

was hypothesized that the reaction mechanism proceeds via conrotatory 

electrocyclization from the S1 state of 1 to a dihydro structure 2 that is the anticipated 

intermediate of photoinduced cyclodehydrogenation;18, 19 by contrast, 3 could not be 

produced by triplet energy transfer to 1.10  Curiously, no further cyclization could be 

induced from 3.  Fusion of a single cycle within a larger structure is not unusual, with 

photocyclization reactions resulting in selective or incomplete bond formation 

reactions.18 Hence, these observations imply limitations for bond formation from the 

photoprepared excited state of 3 and raises questions about the photophysical relaxation 

and photochemical reaction mechanisms of these BN-doped structures. 

The goal of this work is to assess the nature of photophysical processes that 

induce or stifle bond formation in these compounds via electrocyclization.  Specifically 

we have utilized a suite of transient spectroscopies resolved on timescales ranging from 

femtoseconds to microseconds and have also quantified fluorescence and triplet-

formation yields in order to build a comprehensive picture of the photophysics of 1 and 3.  

These measurements have been conducted with solution conditions that do not lead to 

dehydrogenation so that it may be possible to capture signatures of intermediate 

structures such as 2. The photophysics of BN-doped structures have only been explored 

modestly, with few examples existing in the literature.15, 20-22 Thus an examination of the 

photophysics of BN-doped PAHs provides insights into how they differ from their pure 

hydrocarbon analogs as well as what fundamental limitations exist for using 

photocyclization to induce selective bond formation in the preparation of novel 

polycycles. 
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Scheme 5.1 Photoinduced cyclodehydrogenation of BN-doped polycycles.  Compound 1 

(1,2:3,4:5,6 tris(o,o’-biphenylylene) borazine) yields 3 via the proposed intermediate 2.  

In contrast, 5 cannot be produced from 3 under the same reaction conditions. 

 

5.2 Methods 

5.2.1  Sample preparation 

1 and 3 were synthesized according to literature procedures.10, 17 Tetrahydrofuran 

(THF, anhydrous & inhibitor-free, Sigma 401757) and cyclohexane (Acros, 167740010) 

were dried by storing solvent under nitrogen with pre-dried 3Å molecular sieves (Sigma 

334286) at a 1:5 volume ratio of sieves to solvent for at least 24 hours.23 Benzophenone 

(Sigma B9300), naphthalene (Sigma 185604), biphenyl (Sigma B34656) and benzene 

(Sigma 401765) were purchased from a commercial source and used “as-is.” 

Sample solutions were prepared entirely under nitrogen: solute solids were 

transferred to a Schlenk flask in a glove bag, with dry solvent added to achieve a 3 mM 

concentration via cannula transfer once the flask was connected to an air-free line. The 
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sample flask was then sealed and sonicated for 15 minutes. Solutions were then degassed 

by a minimum of 3 Freeze-Pump-Thaw cycles and backfilled with nitrogen. For 

measurements with aerated solutions, samples were pressurized with dry compressed air 

and shaken vigorously. The oxygen concentration was assumed to be air saturated and 

taken from a literature source as 1.81 mM in THF.24 Control experiments were also 

conducted to determine the impact of solute hydrolysis on transient spectral 

measurements and utilized solutions made with 95:5 THF:H2O by volume that were 

heated gently (~40 °C), sonicated for 30 minutes, and degassed with nitrogen. All sample 

solutions were ultimately transferred to the 25 mL reservoir of a custom schlenk flask, a 

sidearm of which is fused to a 5 mm path-length cuvette (a picture of the flask is shown 

in Figure A3.1). Solutions were stirred continuously during irradiation using a micro-

stirbar (Sigma). The irradiated solution was periodically removed through a PTFE-lined 

septum and fresh (i.e. unexposed) solution within the flask reservoir was used to recharge 

the cuvette. 

 

5.2.2 Steady-state spectroscopy, fluorescence quantum yields and lifetime 

determinations 

Steady-state absorption spectra of these samples were collected using a diode 

array spectrometer with a fiber-coupled lamp (Stellarnet).  Steady-state emission was 

measured with a Perkin Elmer LS-5B fluorometer.  Fluorescence quantum yields were 

determined using literature procedures.25 Measurements used identical experimental 

parameters, including excitation wavelength (270 nm), solvent (cyclohexane), slit widths, 

emission spectral range, N2 sparging times (20 minutes) and sample cells (1 cm path 
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length), for all samples and standards (napthalene and biphenyl). Samples with 

absorbances less than 0.1 OD at 270 nm were used in order to avoid internal filter effects. 

Several pairs of absorbance and fluorescence measurements were performed for each 

sample and standard at various concentrations in order to determine quantum yields 

relative to a standard by a least squares fitting procedure (see appendix 3 and Figure A3.2 

for details).  

 Fluorescence lifetimes were determined using time-correlated single-photon 

counting (TCSPC, PTI Quantmaster).  Samples were excited with a fast LED (340 nm, 

~1 ns FWHM) and emission was monitored at 375 nm. TCSPC lifetimes were 

determined by fitting data to the convolution of the temporal instrument response, 

determined from a LUDOX scattering solution (Sigma), with single or multiple 

exponential decay(s) using MATLAB. All measurements were performed in degassed 

cyclohexane and a 1 cm fluorescence cuvette. 

 

5.2.3 Transient spectroscopies 

Our experimental setups for fs, ns, and μs transient absorption spectroscopies 

have been described in detail previously.26, 27 Briefly, a regeneratively amplified 

Ti:sapphire laser (Coherent Legend Elite, 800 nm, 35 fs) was used to generate excitation 

pulses at 266 nm by a doubling-mixing scheme or at 320-360 nm via optical parametric 

amplification (Coherent OPerA Solo). For fs-TAS measurements a few nJ of the laser 

fundamental was focused into a 2 mm CaF2 plate to generate a supercontinuum spanning 

the near-UV to near-IR (350-900 nm); this continuum probe was refocused at the sample 

using a parabolic mirror and polarized at magic angle relative to the pump using a wire-
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grid polarizer immediately before the sample. The probe source for ns TAS 

measurements was a 405 nm (Thorlabs L405P20) or 450 nm (Osram PL450B) laser 

diode driven by a pulsed laser diode driver (Highland Technologies T165) triggered 

electronically by the amplifier’s signal delay generator (Coherent SDG Elite). μs-TAS 

measurements utilized a white-light LED (Thorlabs LEDWE-15, 410-700 nm) driven by 

a signal delay generator (Berkeley Nucleonics BNC 555) and amplified with transistors 

(Central Semiconductor 2N2222A) that allows for variable driving pulse widths and 

voltages. The LED output was masked with an iris to create an approximate point source, 

with subsequent collimation with a 75 mm convex lens; the probe beam was then focused 

to a 1-2 mm spot size at the sample with a parabolic mirror. 

Light detection for fs and ns TA experiments utilized NMOS diode arrays 

(Hamamatsu S3901-256Q). The probing continuum for fs-TAS was dispersed onto the 

arrays with a Fused-Silica (CVI) or NSF-11 (Edmund Optics) equilateral prism for 

broadband detection. For single-wavelength detection (ns-TA) monochromatic probe 

light from a pulsed LED was focused onto the detector array using a cylindrical lens, with 

diode signals integrated across the linear array.  For μs TA measurements a 0.3 m 

spectrograph (Acton-2360, Princeton Instruments) was used to disperse the probe 

(whitelight LED emission) onto a CCD camera (Pixis-100BR, Princeton Instruments). 

Optical time delay between the pump and probe pulses was controlled with a motorized 

translation stage (Newport ILS250CCL) for fs time-resolved measurements, while ns and 

μs time delays were achieved electronically. The time resolution for the fs, ns, and μs 

experiments were approximately 200 fs, 1 ns and 0.3 μs, respectively. All transient 

measurements were actively corrected for fluorescence emission using a four-phase 
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acquisition sequence realized by chopping both the excitation and probe beams.28 Data 

acquisition was performed using a home-built LabVIEW program. 

 

5.2.4 Determination of triplet yield and extinction coefficient  

 The quantum yield for triplet formation for 1 was determined using literature 

procedures.29  Quantification of quantum yields for triplet formation (Φ𝑇
𝑋) first requires 

determination of the extinction coefficient (εX) of the sample relative to that of a 

reference standard; both quantities are used to determine the relative triplet yields from 

the triplet absorption intensities of the unknown and reference standard under identical 

excitation conditions. This procedure therefore requires a reference standard with both 

well-known triplet yield (Φ𝑇
𝑅𝑒𝑓

) and extinction coefficient (εRef). Benzophenone in 

benzene was used as the reference standard because it exhibits near unity triplet yield 

upon photoexcitation, possibility for triplet-energy transfer to 1, and non-overlapping 

steady-state singlet and distinguishable triplet absorption spectra from those of 1. The 

triplet quantum yield or extinction coefficient of 3 could not be determined due to 

complete overlap of its ground-state absorption spectrum with that of the reference 

standard, such that the triplet energy-transfer mechanism is obscured by triplet formation 

via direct excitation of 3.  

 Two solutions of 100 mM benzophenone with and without 0.1 mM of compound 

1 in benzene were prepared and degassed via sparging with N2 for 45 minutes and were 

subsequently photo-excited at 360 nm in order to resonantly excite only benzophenone. 

Transient absorption spectra were captured on μs timescales in order to determine the 

triplet extinction coefficient of 1 according to Equation 5.1 (here PTD and Ptr are terms for 
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kinetic correction, see SI for definitions and details).  

 𝜀𝑋 = 𝜀𝑅𝑒𝑓
Δ𝑂𝐷𝑋  𝑃𝑇𝐷
Δ𝑂𝐷𝑅𝑒𝑓 𝑃𝑡𝑟

 (5.1) 

The triplet yield was then determined from comparisons of transient triplet spectra 

measured with a 1 mM solution of benzophenone and a 1 mM solution of 1 photoexcited 

at 340 nm under identical experimental (i.e. optical) conditions. The triplet absorption 

spectra, relative extinction coefficients, and known triplet yield of benzophenone were 

used to calculate the triplet yield via Equation 5.2. 

 Φ𝑇
𝑋 = Φ𝑇

𝑅𝑒𝑓 Δ𝑂𝐷𝑋
Δ𝑂𝐷𝑅𝑒𝑓

 
𝜀𝑅𝑒𝑓

𝜀𝑋
 (5.2) 

 

5.2.5 Matrix isolation experiments 

 Matrix experiments were carried out according to standard techniques30 with a 

Sumitomo CKW-21 or a CTI-Cryogenics 8200 closed-cycle helium cryostat. Compound 

1 was sublimed out of a quartz tube, which was resistively heated by Ta wire coiled 

around it, onto a CsI (IR) or a sapphire (UV/vis) window with large excess of argon 

(Westfalen, 99.9999 %). The windows were kept at 30 K during deposition by resistive 

heating using a temperature controller. Irradiations were carried out at the base 

temperature of the systems (4 K for IR, and 8 K for UV-Vis detection) with a high-

pressure mercury lamp with wavelength selection by dichroic mirrors (350-450 nm and 

280-400 nm) and appropriate cut-off filters or with a low-pressure mercury lamp (254 

nm). Infrared spectra were recorded on a Bruker Vertex 70 and UV-Vis spectra on a 

Lambda 1050 spectrometer. 
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5.2.6 Computational methods 

 Geometry optimizations were performed without symmetry constraints using the 

hybrid density functional B3LYP31, 32  as implemented33  in Gaussian 0934 in conjunction 

with the 6-31G* basis set.35 Computation of analytic harmonic vibrational frequencies 

confirmed that minima and transition states have no or only one imaginary vibrational 

frequency. The harmonic vibrational frequencies were employed in the standard 

approximation for obtaining Gibbs free energies at 298.15 K. 

 

5.3 Results 

5.3.1. UV-Vis and fluorescence spectroscopy 

 Figure 5.1 presents the steady-state absorption and fluorescence spectra (solid and 

dashed lines, respectively) of compounds 1 (black) and 3 (red).  The absorption spectra of 

both compounds are comprised of multiple overlapping features spanning the near-UV 

region; the absorption of 3 is slightly red-shifted compared to that of 1.  Fluorescence 

from both compounds exhibit vibronic structure, which is more distinct for 3.  

Fluorescence excitation scans reproduce the shape of the UV-Vis spectra,10 indicating 

that all optically accessible states emit from the same electronic state, presumably S1.   

 Time-resolved emission decays for these compounds (340-nm excitation) are 

plotted in Figure 5.2 and have been fitted with exponential decay functions convoluted 

with the temporal instrument response. Table 5.1 presents the fitted fluorescence decay 

lifetimes and experimentally determined fluorescence quantum yields. Compound 3 

exhibits a substantially larger fluorescence quantum yield (ΦFl) than 1, which explains in 
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part the longer fluorescence lifetime of the former.  We note that the fluorescence decay 

for compound 1 dissolved in cyclohexane is best fit by including a minor secondary 

decay component with a longer time constant. 

 

 

Figure 5.1. Steady-state ground-state absorption (GSA, solid lines) and fluorescence 

spectra (FL, dashed lines) of compounds 1 (black lines) and 3 (red lines) in cyclohexane. 
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Figure 5.2. Time-resolved emission (375 nm) from 1 (red) and 3 (blue) photoexcited at 

340 nm.  Data – points ; fits – lines.  See Table 5.1 for fitted timescales.  

Table 5.1 Fluorescence yields and lifetimes of 1 and 3 in cyclohexane (unless otherwise 

noted).  

 Φfl
a
 τfl

TCSPC
 (ns)c kr (ns-1)d knr (ns-1)d 

1 0.28 (0.18); 0.09b 1.29 (95%), 10.98 (5%) 0.217 0.5582 

3 0.74 (0.43) 3.87 0.191 0.0672 

a – Numbers in parentheses denote ΦFl for aerated solutions 

b – Measured in benzene 

c – Numbers in parentheses denote the relative amplitudes for components of biexponential fit to 

the fluorescence decay of 1 

d – Radiative (kr) and nonradiative (knr) decay rates were determined from quantum yields and 

fluorescence lifetimes, i.e. Φfl = kr τfl
TCSPC and τfl

TCSPC = 1 / kr+ knr. 
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5.3.2. Transient absorption spectroscopy 

 Femtosecond TA was performed on 1 with both 266 and 320 nm photoexcitation. 

Data obtained following excitation at 266 nm is presented in Figure 5.3a.  Identical 

spectral dynamics were observed for both excitation energies for time delays beyond 2 

ps; data obtained with 320-nm excitation is presented in Figure A3.3a.  At delays < 2 ps a 

short-lived transient feature centered at ~420 nm appears only with 266-nm excitation; 

this feature decays rapidly, and we therefore attribute it to excited-state absorption from a 

high-lying state prepared directly by photoexcitation (e.g. SN state).36  Fitting an 

exponential decay to the transient absorption intensity observed at 700 nm yields a 

lifetime of 1.82 ns – roughly in agreement with the TCSPC lifetime for this compound 

(Table 5.1) and signifying that the broad intensity appearing above 500 nm on picosecond 

to nanosecond timescales arises predominantly from S1 absorption. The spectral 

evolution presented in Figure 5.3a illustrates that S1 decay results in a persistent 

absorption feature on nanosecond timescales with peak wavelength near 400 nm that 

corresponds with a metastable state or species.  The complete spectral evolution was fit to 

a simple kinetic model (SN  S1  T1/metastable product) by global analysis, which 

generated a 470 fs lifetime for the initial ultrafast decay of the photoprepared state and a 

~700 ps time constant for the appearance of this final spectrum; species associated 

spectra obtained are presented in Figure 5.3b.  Data collected with 320-nm excitation 

were likewise analyzed with a two-state kinetic interconversion (S1  T1/metastable 

product), yielding species associated spectra similar to the S1 and T1/metastable product 

spectra plotted in Figure 5.3b (Figure A3.3b).  Additionally, μs broadband TA spectra 
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presented in Figures 5.4a and A3.4 collected under oxygen-free conditions reveal that the 

final spectrum observed by fs-TAS persists onto the μs timescale and does not undergo 

any further spectral evolution within the wavelength range explored in this study (425-

700 nm).  

 

Figure 5.3. (a) fs-TAS of 1 in THF solution following 266 nm photoexcitation. (b) 

Species associated spectra (SAS) obtained via global analysis of transient data using a 

sequential 3-component model (SN  S1  T1/metastable product). 
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Figure 5.4. Nanosecond and microsecond resolved transient absorption of 1 and 3. (a) 

Comparison of broadband-TA spectra of 1 and 3 collected at 10 ns and 2 μs; a full set of 

μs-TAS data at various time delays is presented in Figure A3.4. (b) ns-TA of 1 in THF 

solution, under aerated (red x’s) or deaerated (blue circles) conditions with 266 nm 

photoexcitation and probed at 405 nm (exponential fits in black). (c) ns-TA of 3 in THF 

under aerated (red x’s) or deaerated (blue circles) conditions following 266 nm 

photoexcitation and probed at 450nm (exponential fits in black).  
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Given the reported photochemistry of 1,10 a definitive assignment of this long-

lived absorption feature to a triplet state or metastable product is critical.  We 

investigated this by performing ns-TAS under both aerated and deaerated conditions to 

obtain rates for oxygen quenching of the corresponding metastable species.  Figure 5.4b 

presents the ns-TA decay of 1 under aerated and deaerated conditions following 266 nm 

photoexcitation and probed with a 405 nm laser diode (complementary measurements 

were performed with 320 and 330 nm excitation for 1 and 3, respectively, and are 

presented in Figure A3.5). Table 5.2 lists lifetimes obtained from fits of these traces and 

reveals a substantial (~100 fold) decrease in transient lifetime in the presence of oxygen. 

The typical oxygen quenching rates for triplet and singlet biradicals are ~5 and 0.01-1 M-

1 ns-1, respectively, such that the determined quenching rate (kQ) for 1 indicates formation 

of a triplet state.37 Notably, dehydrogenation of cyclized intermediates through reaction 

with oxygen generally occurs on timescales ranging from seconds to minutes.38
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Table 5.2 ns-TAS decay timescales for 1 and 3 and oxygen quenching rates. 

Molecule λExc / nm τair / ns τ / ns kQ / ns-1 M-1a 

3 266 205 16286 2.41 

 330 130 17466 3.81 

1 266 137 13409 3.62 

 320 116 10210 4.27 

a – Dissolved oxygen concentration was 1.81 mM24 

 

 The same sets of time-resolved experiments and analyses were performed with 

samples of 3 in order to compare with the photophysical properties of 1. fs-TA spectra for 

3 following photoexcitation with 266 nm (Figure 5.5) reveal an ultrafast decay of a 

transient feature centered at 420 nm that is absent with 330 nm photoexcitation (Figure 

A3.6a).  This indicates that the initial excitation prepares a high-lying electronic state that 

rapidly internally converts to a lower level, similar to the photophysics of 1. On longer 

timescales, transient absorption at longer wavelengths decays on a timescale of few 

nanoseconds; given the consistency with S1 decay observed through TCSPC fluorescence 

measurements (3.4 ns at 330 nm excitation), we attribute this signal to S1 absorption. The 

spectral kinetics observed by fs-TAS fit by global analysis to a 3 state sequential kinetic 

model, S2 → S1 → T1/metastable product, that resulted in the 450 fs internal conversion 

lifetime and a 3.7 ns lifetime for the S1 decay (similar to the TCSPC results).  μs-TA was 

performed to investigate spectral dynamics on longer timescales (Figure 5.4a and A3.4b), 
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revealing the appearance and decay of the same absorption band (λmax=475 nm) observed 

in fs-TA experiments, with no further absorption features observed within the spectral 

window of the probe. 

 

Figure 5.5 (a) fs-TA of 3 in THF following photoexcitation with 266 nm. (b) Spectral 

results from global analysis using a sequential 3-component model (SN  S1  

T1/metastable product) with species associated spectra (SAS) shown for each component. 

 

 Ns-TA measurements of 3 under aerated and deaerated conditions (Figures 5.4c 

and A3.5b) likewise revealed a large decrease in transient lifetime in the presence of 
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oxygen. Table 5.2 illustrates that 3 has very similar quenching kinetics to that of 1, and 

therefore we likewise assign the long-lived transient absorption at 475 nm to a metastable 

triplet state. 

 Finally, various control experiments were performed to identify any possible 

hydrolysis products that may form due to the highly reactive nature of B-N compounds in 

H2O, the presence of which would result in contamination of our experiments. Following 

the addition of water and gentle heating, we performed both fs and μs TA on 1 and 3. 

These experiments produced unique spectral signatures and kinetics that did not match 

those obtained from experiments with “dry” solutions (see Figure A3.7), thereby 

confirming that photophysical data is representative of the title compounds.  

 

5.3.3 Triplet yield determination 

 The triplet quantum yield (ΦT) of 1 was determined in order to infer the relative 

magnitude of the quantum yield for cyclization (and other nonradiative relaxation 

processes). A prerequisite for determining ΦT is to quantify the extinction coefficient (ε) 

of the triplet state, which was determined using the energy-transfer method with 

benzophenone as the triplet donor using Equation 5.1.29 Following determination of the 

extinction coefficient, the time dependence for the absorption intensity of a sample of 

pure 1 and benzophenone were determined separately under identical experimental 

conditions in order to calculate the triplet yield of 1 using Equation 5.2. Experimentally 

determined values for ε, ΦT, and kinetic correction factors are tabulated in Table 5.3. 

Microsecond TA data (Figure A3.8) and details on the analysis used to calculate kinetic 

correction factors for this determination of ε are provided in the SI. 
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Table 5.3 Triplet extinction coefficient and quantum yield for 1 obtained by energy-

transfer method with benzophenone in benzene as the triplet sensitizer. 

ε (M-1 cm-1)a ΦT
b

 PTD
c
 Ptr

c 

3383 ± 465 0.94 ± 0.18 2.067 0.256 

a – 360 nm excitation was used to determine molar extinction coefficient. Error was determined 

by error propagation from literature ε of benzophenone.29 

b – 340 nm excitation was used to determine quantum yields by direct excitation of 

benzophenone and 1. Error was determined by error propagation from ε of 1. 

c – Kinetic correction factors explained in the SI. 

 

 

5.3.4  Matrix isolation experiments 

 Photoirradiation of compound 1 isolated in an argon matrix with light of varying 

wavelengths (254 nm, 350-450 nm) and extended periods of time (up to 3 hours) was 

monitored by IR and UV-Vis-NIR spectroscopy at 4 K and 8 K, respectively. No new 

signals could be detected by either spectroscopic technique, indicating that the 

photoisomerization did not proceed in detectable amounts. We noticed, however, an 

intense turquoise phosphorescence of the sample after photoexcitation. The emission was 

detectable with the naked eye in a darkened laboratory and lasted for roughly 5 seconds.  

The emission wavelength is roughly consistent with the T1-S0 gap calculated from the T1 
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optimized geometry at the B3LYP/6-31G* (2.37 eV, 523 nm).  These observations 

indicate that at cryogenic temperatures triplet formation and phosphorescence rather than 

photoisomerization is the dominating decay channel of 1 after photoexcitation. 

 

5.3.5 Computational investigations 

 Knowledge of the barriers for formation of 2 or 4 from 1 or 3 on the S1 potential 

energy surface (PES) as well as those for thermal cycloreversion of the photoproducts to 

the precursor molecules on the S0 PES are important for understanding observed 

photochemical behaviors. As the barriers for photoisomerization of cis-stilbene (CS) to 

4a,4b-dihydrophenanthrene (DHP) and its thermal cycloreversion have been determined 

experimentally,39 we used this system to gauge the reliability of the B3LYP/6-31G* level 

of theory that was necessary in view of the size of systems 1-4.  

On the S0 PES a transition state could be located for the cycloreversion of DHP to 

CS using a spin-unrestricted treatment (UB3LYP); see Figure A3.9 for minimum-energy 

DHP and transition-state structures. The free energy of activation, ΔG‡
298.15 = 17.2 kcal 

mol‒1, computed for this process agrees quite well with the barrier of 17.5 kcal mol‒1 

obtained experimentally from an Arrhenius treatment.39 This suggests that the 

UB3LYP/6-31G* treatment can reasonably describe the barrier heights for the 

electrocyclic ring opening reaction.   

The geometries of the dihydro compounds 2 and 4 were optimized using a spin-

unrestricted Kohn-Sham treatment and are shown in Figure 5.6. The finding of a spin-

unrestricted KS solution for 2 and 4 indicates that the HOMO-LUMO gap is rather small, 

and indeed, the computed singlet-triplet energy splitting of 2 is only 0.1 kcal mol‒1 in 
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favor of the singlet state (UB3LYP/6-31G*). Almost identical singlet-triplet energy 

splitting was also computed for the dihydro species 4. The barriers for thermal ring 

opening of 2 to 1 or of 4 to 3 are quite low, ΔG‡
298.15 are 1.3 kcal mol‒1, and 1.5 kcal mol‒

1, respectively, at UB3LYP/6-31G*. These computations show that the photoproducts 

correspond to rather shallow minima on their respective S0 potential energy surfaces.  

The fact that no cyclized intermediate can be trapped cryogenically at 4 K suggests that 

these barriers may actually be much lower than predicted computationally or that the 

intermediate is not formed at all. 

 

 

Figure 5.6. Structures of the cyclized products 2 and 4 and the transition states for 

cycloreversion on the S0 potential energy surface computed at the UB3LYP/6-31G* level 

of theory. The inter-ring C-C bond length is given in Å. 
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5.4 Discussion 

 Observations from the photophysical characterization of 1 and 3 can be 

summarized as follows: fs-TA measurements reveal sub-ps internal conversion dynamics 

from the photoprepared state (SN  S1) when 1 and 3 are excited at high but not low 

energies (266 vs. 320/330 nm), consistent with the Kasha-rule emission behavior 

observed.  Time-resolved spectral evolution on the timescale of a few nanoseconds is 

similar at the two excitation wavelengths for each compound and is consistent with the 

fluorescence lifetimes measured by TCSPC.  Transient spectra evolve to a terminal 

feature that persists into the microsecond time regime and that is efficiently quenched by 

oxygen, indicating that direct excitation gives rise to efficient triplet formation (S1  T1); 

this is consistent with observation of phosphorescence from 1 in cryogenic matrix 

isolation studies.  However, neither time-resolved nor cryogenic studies reveal signatures 

of cyclized structures. Nonetheless, photochemical oxidation of 1 suggests the possibility 

for reactive dynamics from S1 via 6π electrocyclization.  

 A general set of possible excited-state relaxation mechanisms for UV-excited 1 

and 3 is summarized with Equations 5.3a-h.   

 SN
kIC1
→  S1 (5.3a) 

 S1
krad1
→   S0 (5.3b) 

 S1
kISC1
→   T1 (5.3c) 

 S1
kcyclize
S

→    S0(Product) 
(5.3d) 

 S1
kIC2
→  S0(Reactant) (5.3e) 
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 T1
kISC2
→   S0 (Reactant) (5.3f) 

 T1
kcyclize
T

→    S0 (Product) (5.3g) 

 T1
krad2
→   S0 (Reactant) (5.3h) 

Our measurements provide direct signatures for pathways 3a-3c for both compounds; 

rates and quantum yields for these processes extracted from our various measurements 

are presented for 1 and 3 in Tables 5.4 and 5.5, respectively.  Importantly, we find that 

the photophysical and photochemical deactivation of photoprepared S1 state of both 

compounds occurs predominantly via radiative decay and intersystem crossing.   

 

 

Table 5.4 Summary of photophysical processes observed for 1 at 298 K. 

Solvent IC1
Exp

 

(ps) 

S1
Exp  

(ns) 

kISC1  

(ns-1) 

krad1  

(ns-1) 

1/ τT
Exp  

 (μs-1) 

ΦFl ΦT 

THF 0.47a 0.71a - - 0.098 - - 

Cyclohexane - 1.29b 0.558c 0.217 c - 0.28 - 

Benzene - - - - - 0.09 

±0.01  

0.94 

±0.18 

a Global fitting results from fs-TA with 266 nm excitation. 

b Results from TCSPC with 340 nm excitation. 

c Assuming kIC2 and ΦIC2~0 then knr = kISC1 (see Table 5.1) . 
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Table 5.5 Summary of photophysical processes of 3 at 298 K. 

Solvent IC1
Exp

  

(ps) 

S1
Exp  

(ns) 

kISC1  

(ns-1) 

krad1 

 (ns-1) 

1/ τT
Exp  

 (μs-1) 

ΦFl ΦT 

THF 0.45a 3.66a - - 0.057  - - 

Cyclohexane - 3.87b 0.067c 0.191c - 0.74 - 

a Global fitting results from fs-TA with 266 nm excitation. 

b Results from TCSPC with 340 nm excitation. 

c Assuming kIC2 and ΦIC2~0 then knr = kISC1 (see Table 5.1) . 

 

  

 The dominance of these pathways is consistent with the impact of structural 

planarity and rigidity on excited-state kinetics and relaxation quantum yields that has 

considerable precedent in the photochemistry literature.40 This impact for PAH 

photophysics, specifically, can be summarized by Ermolaev’s rule: for sufficiently rigid 

molecules with S0  S1 transitions at wavelengths lower than 670 nm, i.e. most aromatic 

hydrocarbons, the sum of the fluorescence and triplet quantum yields approach unity 

(ΦFl+ ΦT=1).41  The dominance of these pathways given the structures of 1 and 3 and our 

experimentally determined kinetic rates and quantum yields corroborate this well-known 

behavior: indeed the sum of the fluorescence and triplet quantum yields for 1 in benzene 

are within error of unity, such that any other photophysical or photochemical process 

(e.g. 3d or 3e) is predicted to be a minor pathway at best in competition with deactivation 

by emission and ISC.  



166 
 

 Notably, the fluorescence quantum yield for 3 is three-fold larger than what is 

measured for 1. This is also consistent with expectations that fluorescence dominates 

over intersystem crossing in the excited state deactivation of increasingly rigid and planar 

molecular structure, as efficient intersystem crossing generally requires the structural 

flexibility for nuclear dynamics that tend to improve couplings between electronic 

surfaces.42 This behavior was most clearly demonstrated previously with the 

photophysical deactivation of various tethered alkylated biphenyls or para-terphenyls but 

is also true for other PAHs.43 

 A stated goal of this investigation was to clarify the nature of the photo-induced 

cyclodehydrogenation of 1 that was hypothesized to proceed through a dihydro structure 

2 (Scheme 5.1 and Equation 5.3d), and further to identify photophysical limitations for 

similar photochemistry for 3.  However, unlike related studies of the photochemical 

dynamics of aryl ethenes and ortho-arenes,26, 28, 44-46 our measurements with 1 and 3 do 

not reveal any direct spectroscopic signatures of a photocyclization intermediate (e.g. 2) 

by either time-resolved or cryogenic spectroscopic studies. We also note that the 

possibility for photochemical reactivity from the triplet state (Equation 5.3g) can be ruled 

out, as previous studies observed no reaction products in response to triplet-

photosensitization with benzophenone;10  therefore the triplet decay would only be a 

consequence of intersystem crossing (Equation 5.3f) and phosphorescence (Equation 

5.3h), although we only see evidence of the latter at cryogenic temperatures.  

 Given the magnitudes and errors in fluorescence and triplet quantum yields 

determined here, nonradiative relaxation pathways between singlet states  (Equation 5.3d 

or 3e) could account for at most ~16% of the initially excited population following 
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excitation in benzene.  This assessment is consistent with observations of very small 

quantum yields for internal conversion (ΦIC~0) for rigid, planar PAHs.40 We also note 

that cyclization via nonadiabatic relaxation (Equation 5.3d) should involve branching 

between the cyclized and reactant state geometries, commonly occurring in ratios ranging 

1:2 to 2:1 for related systems and depending on the topography of the conical intersection 

seam.47, 48  Thus, we estimate that the quantum yield for electrocyclic bond formation 

from excited 1 is at most 5-10%, provided that no alternative singlet relaxation pathways 

exist (e.g. Equation 5.3e), but also that it could be as low as ~1% or less.    

 Given this low quantum yield, cyclization in 1 must therefore occur via one of 

two pathways: In one scenario, cyclization occurs via weak wave-packet branching on 

the S1 surface following excitation, such that the minor cyclization pathway and the 

dominant nonradiative relaxation pathways are associated with distinct excited-state 

populations (possibly also involving variations in initial ground-state conformations in 

solution). Through comparison with similar work with diaryl ethenes and ortho-arenes, 

the former would be expected to give rise to a distinct, observable spectroscopic signature 

of a cyclized structure that appears on a relatively prompt timescale. 26, 28, 44-46 We do not 

see such features, but note that these could be difficult to identify in our measurements 

for a small (few percent or less) quantum yield.  Such an observation would be 

complicated further by the very low calculated activation energies that suggest that 

cycloreversion likely occurs on timescales comparable with IC and ISC (this is also 

consistent with observation of no cyclized product from 1 in cryogenic matrix studies).   

 Alternatively, cyclization may occur in direct kinetic competition against ISC and 

emission, but subject to a significant barrier on the S1 excited-state surface, such that the 
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bond formation rate is considerably slower than the total S1 relaxation rate.  To explore 

the feasibility of this pathway, we have preliminarily investigated the S1 PES of 1 and 3 

at the TD-B3LYP/6-31G* level; when the same level of theory is applied to CS, 

cyclization is found to be nearly barrierless, ΔG‡
298.15 = 0.6 kcal mol‒1, as has been 

demonstrated experimentally and by other computational studies.39, 49  Transition states 

for bond formation on the S1 PES of 1 and 3 exhibit C-C distances of 1.997 Å and 2.008 

Å and similar activation barriers (ΔG‡
298.15 are 17.2 kcal mol-1 for 1 and 18.0 kcal mol-1 for 

3).  Although further computational studies will be required to accurately treat the excited 

states of these large systems and also to locate relevant conical intersections for 

cyclization, such barriers on the S1 PES are substantial and may explain the inefficiency 

of 1 and reluctance of 3 to undergo photocyclization.  If electrocyclization occurs in 

(parallel) kinetic competition with the dominant ISC and emission pathways, it can be 

expected that spectroscopic signatures of a short-lived intermediate 2 would likewise be 

virtually unobservable.  The possible presence of significant barriers on the S1 PES would 

suggest that an increased photochemical reaction yield might be obtained at elevated 

temperatures, a possibility we are currently exploring. 

 

5.5 Conclusion 

 Comprehensive photophysical characterization of 1 and 3 provides insight into the 

impact of reactant structure on the excited-state dynamics associated with the 

photochemical bond formation within BN-doped PAHs.  We find that photoinduced 

electrocyclization occurs in these systems must occur with only very small quantum 

yields at best (5-10%) or not at all.  The photophysical behaviors of 1 and 3 are consistent 
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with behaviors of similarly rigid PAH structures that are dominated by excited-state 

deactivation via emission or intersystem crossing, thus giving rise to a relatively weak 

reactive nature for 1 and no or negligible reactivity for 3.   Nonetheless 1 undergoes 

cyclodehydrogenation to 3 with reasonable yield in the presence of I2 and near-UV light. 

Despite the low quantum yield we infer for photoinduced electrocyclization, the multiple 

excitation-relaxation cycles that occur in a photochemical reactor over the course of a 

>24 hour period can give rise to a sizable product yield of the dehydrogenated 

photoproduct. Other photocyclization pathways for 1 also could be relevant given typical 

reaction conditions. For example, one possibility is that direct photoexcitation of 1 is not 

the cause of reaction, but rather that photoexcitation of I2 results in homolytic radical 

formation that initiates the cyclodehydrogenation reaction.   We are continuing to explore 

these possibilities.  However, the photophysical behaviors of 1 and 3 are consistent with 

their observed photochemical reactivity, suggesting that these differences may be the 

primary contributor. 
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Chapter 6 

Impacts of Isoelectronic BN-doping on the Photochemistry of Polyaromatic 

Hydrocarbons:  Photocyclization Dynamics of Hexaphenyl Benzene and Hexaphenyl 

Borazine 

 

Snyder, J. A.; Grüninger, P.; Bettinger, H. F.; Bragg, A. E. In Preparation 

 

6.0 Abstract 

 Boron-nitrogen doping of polyaromatic hydrocarbon (PAH) materials can be used 

to tune their electronic properties while preserving the structural characteristics of pure 

hydrocarbons. Many multicycle PAHs can be synthesized photochemically; in contrast, 

very little is known about the photochemistry of their BN-doped counterparts.  Here we 

present results of fs, ns, and μs time-resolved spectroscopic studies on the photoinduced 

dynamics of hexaphenyl benzene and hexaphenyl borazine in order to examine how BN-

doping impacts the prospects for photochemical C-C bond formation via 6π 

electrocyclization as well as the stability of resulting cyclized structures.  Ultrafast 

measurements reveal different photoinduced behaviors reflecting differences in excited-

state decay pathways, with hexaphenyl borazine relaxing from its excited state with a rate 

that is 2 orders of magnitude faster than that of hexaphenyl benzene (3.0 vs. 428 ps). 

Tetraphenyl dihydrotriphenylene generated from hexaphenyl benzene is observed to 

reopen with a ~2 μs lifetime controlled by entropic stabilization of the cyclized structure; 

in contrast, there is no signature that the borazine-core analogue is formed, and 

photoinduced dynamics appear to be complete within 100 ps.  This significant difference 
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in photochemical dynamics is reflected in the cyclodehydrogentation yields obtained for 

the two reactants (25% vs. 0% for hexaphenyl benzene and borazine, respectively). 

Quantum-chemical computations predict that BN doping gives rise to increased singlet 

diradical character in cyclized structures and correspondingly lower activation energies 

for ring opening.  Together, these findings indicate that the polarized BN bonds of the 

borazine core adversely impacts photochemical pathways for bond formation and should 

also destabilize C-C bonds formed photochemically relative to analogous hydrocarbons. 

 

 

6.1. Introduction 

 Heteroatom doping of polycyclic aromatic hydrocarbons (PAHs) has gained 

attention for its potential for tailoring the electronic and optical properties of organic 

materials for use in organic light emitting diodes (OLEDs) and other optoelectronic 

devices. Boron-nitrogen doping is of particular interest because it produces structures that 

are isoelectronic with pure hydrocarbons.  Notably, selective BN-substitution can be used 

to alter the HOMO-LUMO gap, which would modify molecular absorption and emission 

characteristics or tune nanographene materials between semimetallic and insulating.1-4 

Hence, there is considerable interest in exploring chemical possibilities for synthesizing 

doped structures.  

 In this work we examine specifically how BN doping impacts nonadiabatic 

photochemical bond formation, a key step in photoinduced cyclodehydrogenation 

reactions that have been utilized commonly for the preparation of PAHs. Nonadiabatic 6π 

electrocyclizaion is a general consequence of the Woodward-Hoffman rules for orbital 
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symmetry correlations whereby conrotary twisting of pendant rings correlates the π 

LUMO with a σ bonding HOMO.5, 6 Relatively little research has explored the 

photochemistry of BN-doped structures to address their excited-state behavior, in 

general,7-9 but most specifically with regards to the dynamics of photochemical bond 

formation that could be part of the synthetic toolbox for preparing BN-doped structures.   
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 Bettinger and coworkers recently recovered products from the photoinduced 

cyclodehydrogenation of a borazine-core structure, B3N3-hexabenzotriphenylene, which 

implies that a cyclized intermediate structure likely forms before dehydrogenation.8  

Subsequently we undertook a comprehensive characterization of the photophysics of this 

and a related structure in order to assess quantum yields for photoinduced bond formation 

and competing excited-state deactivation pathways. Those studies revealed that efficient 

intersystem crossing and fluorescence dominate excited-state relaxation; although no 

spectroscopic signatures of a cyclized structure was observed for either compound, we 

were able to estimate the quantum yields for cyclization at ~5-10% or less based on the 

 

Scheme 6.1. Photochemical reaction of hexaphenyl borazine (1) and hexaphenyl 

benzene (4).  Photoinduced 6π electrocyclization of these reactants is predicted to 

yield structures 2 and 5 (9,10,11,12-tetraphenyl 4a,4b-dihydrotriphenylene (DHT)), 

respectively; further oxidation by iodine would generate 3 (1,2-(o,o’-biphenylylene) 

3,4,5,6-tetraphenyl borazine) and 6 (1,2,3,4-tetraphenyl triphenylene). 
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quantum yields determined for fluorescence and triplet formation.  For these compounds, 

the dominance of the competing relaxation pathways can be interpreted as the 

consequence of the piecewise-rigid polyaromatic structure of both reactants. 

 In an effort to reduce the dominance of these competing photophysical relaxation 

pathways and focus exclusively on the photochemical reactivity of BN-doped structures, 

here we examine the photoinduced dynamics of a simpler, less rigid reactant structure, 

hexaphenyl borazine (1, Scheme 6.1).  Notably, the fluorescence quantum yield (ΦFl) of 1 

has been determined as 1.5 % (compared to 28% for B3N3-hexabenzotriphenylene), 

indicating that rapid nonradiative decay pathways, possibly including photocyclization to 

generate structure 2, dominate its photophysics.10 Whereas comparisons with pure 

hydrocarbon analogues were not possible in our previous study, here we are able to make 

direct comparisons with the photochemical dynamics of the isoelectronic species 

hexaphenyl benzene (4) in order to assess directly the impact of BN doping on 

photochemical dynamics.11 Based on a combination of time-resolved spectroscopic 

interrogations, photochemical reaction yields, and quantum-chemical computations, we 

demonstrate that BN substitution results in significant differences in excited-state 

photophysics and the stability of the photoinduced carbon-carbon bond in their associated 

photoproducts (2 and 5) with implications for the photochemical synthesis of 

corresponding fused PAH structures (3 and 6).  

 The work presented here is part of a larger effort to understand how structural 

modifications (both electronic and steric) stifle nonadiabatic photochemical bond 

formation in larger ortho-arenes, beginning from the “core” system ortho-terphenyl 

(OTP) but building to systems with increasing structural complexity.12-14 In previous 
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work we have demonstrated how structural perturbations to the three-ring cyclizing core 

(i.e. OTP) can result in drastic changes in orbital symmetry and excited-state potential 

energy landscape that in turn alter excited-state dynamics and photochemical yields for 

bond formation. For example, we have shown that 1,2,3-triphenyl benzene (TPB) 

exhibits qualitatively similar photochemical dynamics as the core structure OTP, but with 

a relative decrease in cyclization rate and increase in ring-reopening rate; we attribute 

these differences to steric interactions with the extra phenyl substituent that alter 

energetic barriers associated with these processes and that possibly require coordinated 

structural rearrangements.  In contrast ortho-quaterphenyl (OQTP) exhibits a competing 

excited-state relaxation pathway to a fluorescent (and non-reactive) excited-state 

structure stabilized by greater electronic delocalization and that dominates the 

photophysics of even larger oligo ortho-phenylenes.12, 15   

 Much like TPB, hexaphenyl benzene is predicted to yield a single photoproduct 

(3’,4’,5’,6’-tetraphenyl dihydrotriphenylene, 5) due to its structural symmetry, and thus 

presents the possibility to evaluate how structural perturbations impact this fundamental 

photochemical reaction and the stability of photochemical products.  Although we 

anticipate that steric interactions from pendant rings should reduce the stability of 5 

relative to the related, metastable unsubstituted and phenyl-substituted 

dihydrotriphenylenes generated from excitation of OTP and TPB, it is possible that 

crowding by the adjacent phenyl substituents in this structure could have an unintended 

ordering effect:  as we demonstrate here, although 5 is only weakly favorable 

energetically it is highly favorable structure entropically, hinting at possible new 

considerations for stabilizing switchable photochemical structures. 
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6.2. Experimental 

 

6.2.1 Sample Preparation 

 Hexaphenylbenzene (4) was purchased from Sigma-Aldrich (98%, 149454 

Aldrich) and used as received.  Hexaphenylborazine (1) was synthesized according to 

literature procedures.16
 Tetrahydrofuran (THF, anhydrous & inhibitor-free, Sigma 

401757) was used “as-is” for preparation of solutions of hexaphenylbenzene.  

Hexaphenylborazine is water-sensitive and therefore THF used to prepare solutions of 1 

was dried by storing over dry 3Å Molecular sieves (Sigma 334286) at a 1:5 volume ratio 

of sieves to THF for at least 24 hours under nitrogen.17  

 Hexaphenyl benzene was dissolved in THF (~5 mM) by sonication.  Solutions 

were saturated with air; solutions saturated with pure nitrogen were prepared as controls 

to test for quenching of transient states with oxygen. Solutions of 1 were prepared under 

nitrogen: solid samples were first transferred to a Schlenk flask in a glove bag.  The flask 

was then connected to an air-free manifold in order to provide a constant flow of nitrogen 

throughout a solvent transfer via cannula. Air-free solutions were sealed and sonicated 

for 15 minutes.  

 Two optical cells were utilized in the preparation and optical interrogation of our 

samples: For measurements requiring air-free conditions (e.g. control solutions for 

transient quenching experiments on nanoseconds to microsecond timescales) solutions 

were transferred to a sealed, custom-made Schlenk flask outfitted with a 5 mm pathlength 
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cuvette on a side-arm.  Solutions were reduced to an optical density of ~2 at 266 nm and 

then degassed by 3 freeze-pump-thaw cycles. For measurements of kinetics occurring on 

timescales ranging from femtoseconds to ~10 nanoseconds, nitrogen-purged solutions 

were circulated through a custom-made flow cell (250 μm pathlength, 1 mm fused quartz 

windows AdValue Tech, FQ-S-003, see Figure A4.1) with a peristaltic pump (Newport, 

Masterflex). Control measurements were performed with both sample cells to ensure 

consistent results. 

 

6.2.2. Femtosecond transient absorption spectroscopy 

 The apparatus used for ultrafast transient absorption measurements has been 

described in detail elsewhere.12 Ultrafast excitation and probe pulses were derived from 

the output of an amplified Ti:Sapphire laser system (Coherent Legend Elite, 800 nm, 35 

fs FWHM, 1 kHz, 4.0 W). Excitation pulses at 266 nm (< 2 mW) were generated from 

the fundamental through a frequency doubling+mixing scheme and were focused to a ~1 

mm beam diameter at the sample cell. Probe pulses were produced using the 800 nm 

beam to drive white-light generation in a 2 mm CaF2 plate (United Crystals); the 

continuum probe was collimated and refocused to a 100 micron beam diameter within the 

excited region of the sample with a set of parabolic mirrors (Edmund Optics). Probe light 

transmitted through the sample was dispersed onto a photodiode array (Hammamatsu) for 

detection using a home-built prism-based spectrometer. Both the pump and probe beams 

were chopped at one-quarter of the laser repetition rate and in appropriate phases in order 

to actively remove background signals (i.e. fluorescence and stray pump or room light) 

prior to calculation of transient absorbance. National Instruments LabVIEW was used for 
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all instrument control, data acquisition, and data processing. 

 

6.2.3 Nanosecond transient absorption spectroscopy 

 The apparatus used for nanosecond time-resolved absorption measurements has 

been described in detail elsewhere.12 This set-up utilizes the same excitation and 

detection scheme described above, with the exception that the excited sample is probed 

with the output from a 405 nm laser diode (Thorlabs L405P20) that is pulsed at 500 Hz 

(Highland Technologies T165). The transmitted probe beam was focused across multiple 

pixels on a photodiode array using a convex cylindrical lens; probe light intensity was 

averaged across all pixels after background subtraction, and transient absorption was 

calculated for consecutive pairs of probe pulses (pump on vs. pump off). The pump-probe 

time delay was controlled electronically via the signal delay generator from the amplified 

laser (Coherent SDG Elite). 

 

6.2.4 μs-resolved broadband transient absorption spectroscopy 

 The signal delay generator from the amplified laser was used to provide an 

electronically controlled time delay between the fs photoexcitation pulse and an 

electronic pulse with variable output pulse width and voltage generated with a signal 

delay generator (Berkeley Nucleonics BNC 555) and that was amplified with transistors 

(Central Semiconductor 2N2222A).  The amplified voltage pulse was used to drive 

emission from a white-light LED (Thorlabs LEDWE-15, 410-700nm) for use as a 

broadband probe.  The nominal time-resolution of these measurements was 300 

nanoseconds, limited by the lifetime of the LED’s phosphor emission. The white-light 
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LED was collimated using a 75 mm convex lens and focused using a parabolic mirror to 

a variable diameter, typically 1-2 mm, using an iris before the lens to control the image 

size. The pump beam was matched in size to that of the probe diameter and the two 

beams transmitted through the sample at an angle of ~10 degrees. The probe beam was 

then recollimated and filtered to remove pump scatter and detected using a CCD camera 

(Princeton Instruments, Pixis-100BR).  Mechanical chopping of the pump (250 Hz) and 

electronically pulsing of the probe (500 Hz) light were synchronized so that 4 phases 

were collected consisting of all combinations of pump and probe illumination at the 

sample to enable active removal of background and fluorescence signals. 

 In addition to measurements of room temperature kinetics on microsecond 

timescales, the temperature dependence of the photoproduct kinetics was investigated 

down to 193 K. The samples were cooled with a cryostat (Unisoku USP-203), stirred 

continuously, and purged continuously with dry N2.  

 

6.2.5 Photochemical cyclodehydrogenation reactions of 1 and 4  

 A 0.5 mM solution of hexaphenyl benzene in cyclohexane (spectrophotometric 

grade, Acros, 16774) was prepared with 1:1 molar equivalent of I2 (Sigma 207772).  The 

resultant solution was degassed with Ar in a quartz test tube and irradiated for 24 hours 

with the 254-nm light from a UV reactor lamp (Rayonet) to drive cyclodehydrogentation 

of the reactant. Iodine was removed by extraction with aqueous sodium thiosulfate.  

Identical retention times for the reactant and product hindered their separation by 

chromatography, such that reaction mixtures were analyzed with UV/VIS, NMR, and 

Mass Spectrometry. Quantitative NMR18 was performed in order to determine the relative 
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concentrations of product and reactant and therefore calculate a photochemical reaction 

yield.  

6.2.6 Quantum-chemical computations 

 Density functional theory (DFT) or time-dependent DFT (TDDFT) calculations 

were conducted with Gaussian 09.19 Computations were done in order to compare results 

of spin restricted (R), unrestricted (U) and broken-symmetry (BS) approaches.  All 

reported computations were performed using the range-corrected CAM-B3LYP20 

functional with a 6-31G* or 6-311+G* basis set; calculated energies are corrected for 

zero-point energy (ZPE) unless otherwise noted. TDDFT calculations were carried out to 

determine energies and strengths of vertical transitions of cyclized structures; 

computationally predicted absorption spectra were generated by broadening with a 0.2 eV 

FWHM Gaussian.  Transition states for C-C bond breaking (i.e. ring reopening) in 

cyclized photoproducts were first approximated with potential-energy scans along the C-

C bond coordinate and then located formally by a transition state search using broken-

symmetry formalism.  Reported transitions states were confirmed to have only one 

imaginary vibrational frequency, unless otherwise noted.  

 State-averaged complete active space (SA-CASSCF)21 computations were 

performed with GAMESS by averaging over 2 states, including 8 active (π, π*)  orbitals 

and electrons, and using a 6-31G basis set.22, 23 Natural orbital occupation numbers 

(NOON) were obtained following orbital visualization with Macmolplt.24  
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6.3. Results 

 

6.3.1 Photophysical characterization of 1 and 4 with time-resolved spectroscopies 

 Femtosecond transient absorption spectra of hexaphenyl benzene (4) and 

hexaphenyl borazine (1) in THF obtained by photoexcitation at 266 nm are presented in 

Figure 6.1. Transient spectra of 4 plotted in Figure 6.1(a) exhibit near-UV and 

visible/near-IR transitions that both decay over the course of several 100 picoseconds, 

giving rise to two weaker but distinct features by 1500 ps.  Figure 6.2 presents a single-

 

Figure 6.1. Femtosecond transient absorption spectra of (a) hexaphenyl benzene (4), 

and (b) hexaphenyl borazine (1) in THF under 266 nm excitation. 
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exponential fit of the time-dependent spectral intensity measured at 650 nm that recovers 

a 428-ps lifetime for the corresponding transient state of 4. 

 

  

The time-dependence of the weaker, long-lived absorption features observed with 

4 was investigated further into the nanosecond and microsecond time regimes.  Notably, 

the transient absorption exhibits a similar feature in the visible at both 10 and 1500 ns 

time delays, as highlighted in Figure 6.3.  The lifetime of this transient in aerated solution 

 

Figure 6.2. Normalized fs-TA traces of 1 and 4 at 600 and 650 nm, respectively, 

following photo-excitation at 266 nm. The single exponential lifetime of 4 (428 ps) is 

an order of magnitude longer than the slowest timescale from a triexponential fit of 

the transient signal intensity from photoexcited 1 (τrise = 0.63, τdecay = 3.0, 75 ps).  
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was determined to be 1950 ns according to the time dependent absorption at 639 nm 

(inset of Figure 6.3). Ultrafast, nanosecond, and microsecond measurements therefore 

indicate that the photoproduct visible by 1500 ps does not convert or react to another 

spectroscopically observable species on a microsecond timescale. Furthermore the 

nanosecond decay at 639 nm is unaffected by the presence of oxygen, as demonstrated 

through comparison with control experiments performed in deaerated THF (see Figure 

A4.2). The spectrum of this meta-stable species is highly similar to the 

 

Figure 6.3. Ns- and μs-resolved TA spectra obtained following 266-nm excitation of 

4 in aerated THF at 298 K. Similarity in the spectra collected at 10 and 1500 ns 

indicates that the corresponding transient persists from the nanosecond to 

microsecond regimes. (Inset) Single wavelength trace collected by probing transient 

absorption at 639 nm (black circles) fit with an exponential decay (red line, τ = 1950 

ns). 
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dihydrotriphenylenes (DHTs) that have been characterized spectroscopically following 

the photocyclization of OTP, TPB and OQTP,12 with absorption features peaking at 580 

and 370 nm.  Therefore we ascribe these features to the cyclized structure 5.  

Transient spectra of photoexcited 1 are shown in Figure 6.1(b) and exhibit 

features that are qualitatively similar to those from 4.  Upon close comparison, the 

transient absorption from photoexcited 1 is only slightly broader and bluer by a few 

nanometers at early time delays following excitation (<10 ps).  Overall the spectral 

dynamics are slightly more complex than what is observed for 4.  Figure 6.2 presents a fit 

to the transient intensity at 600 nm that can only be fit with a triexponential function (τrise 

= 0.63, τdecay = 3.0, 75 ps).  The slowest relaxation timescale only accounts for 13% of the 

total observed signal decay, during which the transient spectral shape is relatively flat and 

featureless.  Most noticeable is the absence of absorption beyond 100 ps, indicating that 

any photoprepared transient states of 1 are very short-lived or spectroscopically dark.   

These TAS results are consistent with fluorescence lifetimes recently measured 

for both systems.  The excited-state lifetime for 4 was reported as < 0.3 ns by time-

correlated single photon counting (TCSPC), which is in agreement with lifetimes from 

our TAS results.  The same authors reported the fluorescence lifetime for 1 as < 2.8 ns, 

much longer than the timescales extracted from our ultrafast TAS measurements but most 

likely limited by the instrument response of their measurements.10* 
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6.3.2. Temperature-dependent kinetics: Thermodynamic parameters for the ring 

opening of 5 

 The temperature-dependent kinetics of the transient photoproduct generated by 

excitation of 4 was explored between room temperature and 193 K using μs-TA 

spectroscopy. No change in the transient spectral shape was observed as temperature was 

decreased (Figure A4.3) but a slight increase in lifetime was observed. Figure 6.4 plots an 

Arrhenius fit to the temperature-dependent ring-opening rate determined from the decay 

in transient absorption measured at 580 nm. In addition the thermodynamic parameters 

𝛥𝐻‡, 𝛥𝑆‡ and 𝛥𝐺‡ for ring opening at T = 298.15 K were determined from the Arrhenius 

 
Figure 6.4.  Arrhenius fit (R2=0.97) to the temperature-dependent ring-opening rate 

for 5 determined by μs-TA following 266-nm excitation of 4. See Table 6.1 for fit 

details and associated thermodynamic parameters. 
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prefactor (A) and activation energy (Ea) via the Eyring Equation for unimolecular 

reactions (Eqn 6.1);12 all determined parameters are listed in Table 6.1. 

 𝑘(𝑇) =
𝑘𝐵𝑇

ℎ
exp (

𝛥𝑆‡

𝑅
) exp (

−𝐸𝑎  +  𝑅𝑇

𝑅𝑇
) (6.1) 

Due to the small activation energy, k(T) is roughly linear with temperature as predicted 

for the case of barrierless ring opening (Ea = 0, Figure A4.4). 

Table 6.1. Kinetic and thermodynamic parameters for the ring opening of 5 obtained 

from Arrhenius and Eyring analysis of temperature-dependent μs-TA data (see Figure 

6.4). 

A / μs-1 Ea / eV 𝛥𝐻‡/ kJ/mol 𝛥𝑆‡  / kJ/mol K 𝛥𝐺‡  (298 K)/ kJ/mol 

1.3±1.1 0.024± 0.002 -2.67 -0.50 145.15 

 

 Temperature-dependent measurements between 298 and 193 K were also 

attempted for 1 following 266-nm excitation, but no significant dilation in the slowest 

relaxation timescale measured by ultrafast TAS could be observed.  

 

6.3.3. Photoinduced cyclodehydogenation of 4 and 1 

 A solution of 4 and iodine was prepared following the procedure given in Section 

2.5 and exposed to UV light (254 nm) to drive cyclodehydrogenation to make 6.  The 

NMR spectrum of the reaction mixture was compared to that of the pure reactant; nuclear 

relaxation lifetimes were determined in order to calculate an accurate molar ratio of 4 and 

6 (Figures A4.5-A4.7). Identification of NMR signals arising from the product 6 was 

aided by quantum-chemical calculations (R-CAM-B3LYP/6-31+G*, see Table A4.1) and 
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comparison to NMR spectra of unsubstituted triphenylene; triphenylene exhibits a large 

downfield chemical shift due to the increase in planarity (relative to the corresponding 

reactant ortho-terphenyl) that enhances 1H deshielding. The molar ratio of 4 to 6 was 

determined to be ~3:1, indicating a 25 % yield of 6 following the assumption that 

additional reactions were negligible (as verified by EI mass spectrometry, Figure A4.8). 

The change in UV/VIS observed before and after the reaction is shown in Figure A4.9. 

 Photooxidation of 1 showed no reaction under the reaction conditions studied. 

 

6.3.4 Quantum chemistry and computational spectroscopy of photoproducts 2 and 5 

 Density functional theory was used to investigate the electronic structure and 

spectroscopy of tetraphenyl dihydrotriphenylene, 5, and its borazine analogue 2 (Scheme 

6.1).  We also examined the electronic properties of unsubstituted dihydrotriphenylene 

(DHT, 7) and its isoelectronic BN-doped analogue 8 shown in Scheme 6.2.  These 

smaller compounds (20-32 for 7 and 8 vs. 72 atoms for 2 and 5) are more tractable for in-

depth computational exploration and provide useful comparisons for assessing the impact 

of BN doping and phenyl substitution on the central ring of 2 and 5.   

 A major goal of our calculations was to quantify the activation energy for 

thermally activated ring reopening of these metastable structures in order to understand 

the disparity in lifetimes observed in our time-resolved measurements (both between the 

two systems studied here and in comparison to systems we have studied previously). 

Attempts to locate transition states using R-DFT methods failed and rather a broken-

symmetry (BS-UHF) formalism was required due to significant singlet diradical character 

(SDRC) of the cyclized structures. Diradical character has been noted previously for a 
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similar pericyclic reaction product.25  These findings imply that a pure singlet state is not 

the true ground-state electronic configuration for these cyclized structures.  Spin 

contamination of the BS-UKS singlet is signified by non-zero values of <S2>BS-UKS, 

which provides a qualitative diagnostic of impure singlet ground states;26  <S2>BS-UKS 

values for all compounds are presented in Table 6.2.  Importantly, two stable 

conformations were identified for 5 (5a and 5b) at the BS-UKS level that differ largely 

according to configuration of the phenyl substituents relative to the cyclized (DHT) core; 

in contrast, only one conformer (analogous to 5b) was found for 2. The properties of 

these conformers are discussed in more detail below.  Representative HOMO and LUMO 

orbitals for 1 and 4 at the R-CAM-B3LYP level are presented in Figure A4.10; frontier 

orbitals of 2b and 5b determined at the BS-U-CAM-B3LYP level are presented in 

Figures A4.11 and A4.12. 

 Two reliable quantitative metrics of SDRC are the energy differences between the 

optimized BS-UKS and RKS singlets (∆E S0), and the UKS singlet-triplet gap (∆E(T1-

S0)).
27 ∆E S0 (Table 6.2) is consistently positive for all molecules examined here, 

illustrating that the BS-UHF solution stabilizes the ground state in all cases; note that 2 

and 8 exhibit greater stabilization than 5 and 7, implying greater SDRC with BN doping. 

In contrast, a small singlet-triplet gap ∆E(T1-S0) implies greater spin contamination 

through state mixing.  Calculated ∆E(T1-S0) values illustrate that the T1 state is quite close 

in energy to the S0 state for all systems (both vertically, T1-S0
Min, and adiabatically, T1

Min-

S0
Min), but smallest for 2 and 8. In fact, for the BN-doped structures ∆E(T1-S0) is lower 

than available thermal energy at room temperature (kBT at 298 K = 0.026 eV). This 

relative increase in diradical character with BN-doping was also verified at the MCSCF 
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level.  Impure closed-shell character is encoded in the natural orbital occupation number 

(NOON), which can be used to define the biradical index (yNOON); the latter ranges from 

0 for an unoccupied LUMO to 1 for a singly occupied LUMO.28 For 7 and 8, which are 

computationally accessible with the SACAS method (SA-2-CAS(8,8)-6-31G), the 

biradical index increases from 0.744 to 0.940, respectively. 

 

 

 

 

 

 

 

 

 

 

 
Scheme 6.2. Dihydrotriphenylene (7) and its BN-doped analogue (8). 
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Table 6.2. Characterization of singlet diradical character (SDRC) of cyclized structures 

at the CAM-B3LYP/6-311+G* level. Structures of conformers a and b are shown in 

Figure 6.6; all other molecules are defined in Scheme 6.2.  

 

Molecule <S2>BS-

UHF 

∆E S0 /eVb ∆E (T1-

S0
Min) 

/eV 

∆E (T1
Min-

S0
Min) 

/eV 

Ea /eV ΔERC /eVd 

7 1.330 0.246 0.141 0.097 0.132 2.430 

8 0.948 0.849 0.010 0.015 0.021 2.599 

5aa 1.246 0.4962 0.0556 0.0451 0.008c 2.742 

5ba 0.688 0.0498 0.5234 0.0969 - 2.876 

2ba 1.057 0.6322 0.0116 0.0046 - 2.998 

a CAM-B3LYP/6-311+G*//CAM-B3LYP/6-31G* 

b ∆E S0 = E(S0
RHF)–E(S0

BS-UHF) 

c Value given before ZPE correction, Ea=0 eV after ZPE correction. 

dΔERC = E(S0 Closed UHF) – E(S0 Open RHF). 

 

 True transition states to ring opening were located for 7, 8, and 5a; activation 

energies for ring opening (Ea) are listed in Table 6.2, as are calculated energy differences 
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between the cyclized and ring open structures of all systems (ΔERC).  Finally, TD-U-

CAM-B3LYP was used to predict the electronic spectra of 2b, 5a, and 5b. The simulated 

absorption spectra for 5b is quite similar to that of other DHT analogs and shows 

reasonable agreement with the spectrum measured experimentally (Figures 6.2 and 6.5).  

In contrast, the experimental spectrum measured at delays >10 ps following excitation of 

1 do not match the predicted spectrum of 2b (particularly below 400 nm), suggesting that 

this cyclized structure is not generated  

 

 

 

Figure 6.5.  Comparison of simulated UV-Vis Spectra (0.2 eV FWHM) of S0 2b, 5a 

and 5b predicted from computations at the TD-U-CAM-B3LYP/6-311+G* level. 
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6.4. Discussion 

6.4.1. Photophysics of 1 and 4 and the photochemistry of C-C bond formation 

 The absorption and fluorescence spectroscopy of 4 and 1 were reported recently 

and provide some insights on the photophysics of these isoelectronic species.10 The 

lowest energy band in the steady-state absorption spectrum of 1 exhibits a vibronic 

progression (260-280 nm) resembling the absorption spectrum of benzene.  In contrast 

the lowest absorption band for 4 centered at ~240 nm is much broader and nearly 

featureless. This difference indicates that 1 may be described in its ground state as having 

weak coupling between peripheral phenyl and central borazine rings that results in more 

isolated electronic features compared to that of 4; this inference is supported by 

comparison of the HOMOs of these compounds (Figure A4.10). Nonetheless, the 

fluorescence spectra of 1 and 4 are quite similar, with peak emission wavelengths that are 

separated only by 4 nm; visible transient absorption features measured for 1 and 4 in this 

work (Figure 6.1) at time delays ≤ 3ps after excitation are likewise similar.  Together, 

these data suggest that the two compounds have similar electronic character in their 

excited and emissive states, which is supported by a comparison of the LUMOs of 1 and 

4 (Figure A4.10) that shows delocalization across the central ring in both structures. 

 As noted in the Introduction, the fluorescence quantum yields (ΦFl) for 4 and 1 

have been determined as 0.5 and 1.5 %, respectively, consistent with our observations 

that relatively rapid nonradiative processes dominate their photophysics.10 The 

differences in ΦFl with BN doping of hexaphenyl benzene are consistent with changes in 
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ΦFl with BN doping of pyrene, although the magnitude of the increase in quantum yield 

with doping is smaller for the systems studied here.2  Despite similar fluorescence 

quantum yields, however, Figures 6.1 and 6.2 reveal significant differences in the 

excited-state kinetics of photoexcited 1 and 4, with BN doping giving rise to a reduction 

in the excited-state lifetime by 1-2 orders of magnitude. This reduction in excited-state 

lifetime could be ascribed to differences in the properties of the excited state (e.g. 

localized vs. delocalized excitation) or shapes of the excited-state potential energy 

surfaces (i.e. specifically, differences in the size of the activation barrier or relative 

energies of conical intersections for cyclization from the excited state).  

 In our previous work with OQTP and TPB, we found that 6π photocyclization 

was very sensitive to the extent of delocalization in larger ortho-arenes and requires an 

excited state localized around a DHT core (e.g. TPB); in contrast, significant 

delocalization over four or more rings could stabilize an excited state against bond 

formation, as is observed for OQTP and larger oligo ortho-arenes.12, 15 Because transient 

absorption and fluorescence as well as quantum-chemical calculations do not suggest a 

significant difference in electronic delocalization in the excited states of 1 and 4, BN 

doping must perturb the S1 potential energy landscape by some other means. The fact that 

no clear spectroscopic signature in Figure 6.1(b) can be ascribed to the appearance of 2b, 

photoexcited 1 very likely relaxes via a conical intersection not related to bond formation.   

For example, alternative, faster nonadiabatic relaxation pathways could arise from 

deformation of the borazine core or phenyl substituents.28  An important point is that 

nonadiabatic excited-state decay via a conical intersection associated with cyclization is 

not a guarantee and has been shown to be dependent on the chromophore.29, 30 
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6.4.2 Structure and stability of cyclized intermediate 5 

 In previous work we investigated the photochemistry of various ortho-arenes, 

including OTP, TPB, and OQTP.  That work revealed formation of metastable cyclized 

photoproducts dihydrotriphenylene (DHT), 9-phenyl DHT, and 1-phenyl DHT, 

respectively, that exhibit distinct absorption features peaking in the visible (~580 nm) and 

near-UV (~340 nm) and that persist for <50 nanoseconds.12, 13 The transient absorption 

spectrum of the metastable transient observed following photoexcitation of 4 is highly 

similar, and assignment of the transient features observed in Figure 6.2 to those of a 

substituted DHT photoproduct is supported by a TDDFT calculated spectrum (Figure 

6.5). The formation of a cyclized product following excitation of 4 is supported by 

photochemical oxidation experiments, as 5 is an assumed intermediate for the 

photochemical generation of 6.  The fact that the transient spectral signatures that we 

attribute to 5 are not significantly quenched by the presence of oxygen on the nanosecond 

to microsecond timescales further supports assignment to a metastable chemical structure 

in its singlet electronic ground state: Singlet diradicals are quenched by O2 much more 

slowly than triplets, with quenching rates of 107 versus 109 M-1 s-1.  For the concentration 

of oxygen expected for air-saturated solutions, quenching of a singlet diradical would 

account for a 10% reduction in the lifetime of 5.31 The fact that no quenching effect is 

observed for 5 suggests low SDRC and therefore a weak interaction with O2 

concentration at best.   
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 As noted above, we have identified two stable conformers of 5 computationally; 

the structures of these conformers are highlighted in the bottom of Figure 6.6.  5b differs 

from 5a with respect to relative dihedrals and torsions of the four phenyl substituents on 

the DHT core.  5a and 5b are analogous to the conformers of substituted 

dihydrophenanthrenes (DHP) noted by Muszkat et. al.; those conformers were labeled L 

 

Figure 6.6. Conformers of 5 and associated potential energy landscape; hydrogens 

have been omitted for clarity. Following photo-excitation and excited-state decay the 

formation of two conformers is possible with 5a being weakly bound relative to 5b. 

Note that for conversion of 5b to 4 the fused rings would need to rotate counter-

clockwise, which results in a larger Ea than for the clockwise rotation from 5b to 5a.  
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and S according to the relative wavelength of their lowest energy/wavelength(???) 

absorption transitions (“long” or “short”).32, 33 For 2,4,5,7-tetramethyl-DHP, it was shown 

that the L conformer is formed directly in the relaxation that follows photoexcitation and 

that the S conformer is only formed subsequently by thermal activation with Ea’s ranging 

from 0.43 to 0.73eV.  We therefore suspected that a similar relationship between 

photoproduct conformations 5a and 5b could be relevant for the photochemistry of 4.   

Figure 6.5 demonstrates that the UV/Vis spectra of conformers 5a and 5b simulated from 

computations show substantial differences, much like the L and S conformers of 

modified DHPs.  

 When compared to results of our previous studies, a significant finding here is 

that the lifetime of 5 is 1.9 μs, >40 times longer than that of unsubstituted DHT and >400 

times longer than that of the phenyl-DHT generated from excitation of TPB.  The 

relatively long lifetime of 5 might suggest increased bond order compared to other 

substituted DHTs due to stabilization of its singlet diradical character.  Indeed, our 

calculations show less stabilization with inclusion of unrestricted spins (i.e. smaller ∆E 

S0) and a greater vertical singlet-triplet gap (∆E (T1-S0
Min)) for 5b compared to 7 

(whereas their adiabatic gaps are comparable), suggesting less SDRC for the former; in 

contrast, these metrics for conformer 5a predict greater SDRC relative to 7.  Our 

temperature-dependent measurements reveal considerably smaller activation energy for 

ring opening of 5 relative to 7, which could be consistent with photochemical generation 

of the conformer with greater SDRC, 5a, and would suggest that other factors impact its 

overall stability.  

 In order to assess the relative stability of conformers 5a and 5b we have explored 
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the potential energy landscape between these conformers in addition to the landscape 

from 5b to 4 and 5a to 4 (Figure A4.13). Although we could identify a true transition 

state between 5a and 4 (i.e. exhibiting only one imaginary frequency along the C-C bond 

stretch), we could only identify pseudo transition states between 5a/5b and 5b/4 (i.e. with 

two imaginary frequencies, a distortion of the DHT moiety and C-C bond stretch); hence, 

the relative energies of the latter can only provide an upper limit to the activation 

energies for converting between those structures. The calculated activation energies are 

ordered as Ea
5a 4 < Ea

5b 4 < Ea
5b 4 (Table 6.3), suggesting that 5b is the more stable 

conformer with respect to breaking the nascent photochemical C-C bond, despite the fact 

that 5a has a lower absolute energy than 5b. This extra stability is likely due to an 

energetic penalty associated with the steric “locking” of the DHT core in 5b by the 

peripheral phenyl rings.   
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Table 6.3. Energetic barriers along the potential energy landscape between ring-open 

structures 1 and 4 and cyclized structures 2 and 5 (confomers a and b)   (U-CAM-

B3LYP/6-31G*).  

 Ea
a open/eV Ea

b a /eV1 Ea
b open/eV1 ΔEopen,b/eV ΔEa,b/eV 

4/5 0.008 0.186 0.648 2.876 0.1332 

1/2 - 0.1413 0.289 2.998 0.1643 

 

1 Ea
b a and Ea

b open are upper limits given that vibrational analysis resulted in 2 

imaginary vibrational frequencies. Details pertaining to the constrained potential energy 

scans are provided in the SI. 

2 U-CAM-B3LYP/6-311+G* 

3 Conformer 2a does not correspond to a true stationary point with the 6-31G* basis. 

However, under the constrained conditions a ΔE can be provided for comparison. 

  

 Based on our experimental data the ring opening of 5 was determined to be nearly 

barrierless energetically (see Figures 6.4 and A4.4), with the enthalpy of bond breaking 

slightly negative; in contrast, DHT, 1-phenyl DHT and 9-phenyl were all determined 

previously to have positive bond enthalpies of activation.12  Hence the relative 

stabilization of 5 compared to other DHT structures must be entirely entropic in nature 

(i.e. ΔG‡=-T ΔS‡).  ΔS‡ for 5 is the largest observed amongst the DHT analogues we have 

studied yet and also correlates with increasing levels of phenyl substitution from DHT (-

0.362 kJ/mol K), 9-phenyl DHT (-0.375 kJ/mol K) and 1-phenyl DHT (-0.398 kJ/mol K), 

to 5 (-0.50 kJ/mol K).12  In broad terms, entropic stabilization of 5 against ring opening 



 204 

can be interpreted as a need to search configurational phase space to reach the near-

barrierless transition state.  This search could be ascribed in part to coordinated 

reorganization of the phenyl substituents that crowd the central DHT core.  

 Although the calculated activation energy for 5a→4 is predicted to be nearly 

barrierless, the much better agreement between the experimental spectrum and the 

calculated spectrum of 5b suggests to us that this conformer is formed preferentially and 

that the true transition states for 5b→4 or 5b→5a are much lower in energy than the 

pseudo transition states we have located computationally. We observe no spectral 

changes on the nanosecond to microsecond timescale that would be consistent with the 

interconversion 5b→5a even at low temperatures.  This would imply that the true barrier 

for bond fission 5b→4 is lower than the true barrier for interconversion 5b→5a.  

Alternatively, this could mean that 5a has both weaker net stabilization than 5b such that 

capturing the short-lived population of the former is not possible due to the long, 

entropically dilated lifetime of the latter.  Certainly the calculated activation energy for 

ring reopening of 5a is virtually negligible, and this second scenario would be plausible if 

the rate of decay for 5a was similar to that of phenyl- and methyl-substituted DHTs, 

which have lifetimes <100 ns.  

 

6.4.3 Electronic structure and properties of cyclized intermediate 2 

Although we see no evidence for the formation of the BN-doped photoproduct 2, 

computations allow us to consider the relative stability of this species compared to its 

pure hydrocarbon analogue.  The relative stability of cyclized structures is frequently 

attributed to the aromaticity of the pendant rings of the reactant structure. An increase in 
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aromaticity of these rings is associated with an increased ΔE between S0 open and 

cyclized structures and decreased activation energies.34 This principle has been central to 

the design of thermally stable photoswitchable materials that tend to incorporate pendant 

thiophene, furan, or pyrole rings to increase ring-opening barriers.35-38  

Based on these considerations the computational prediction of a less stable photo-

intermediate 2 (and also of 8 compared to its pure hydrocarbon analogue 7, see Tables 

6.2 and 6.3) suggests that the aromaticity of borazine might be greater than that of 

benzene.  However, a comparison of computed nucleus-independent chemical shifts 

(NICS) has been used to predict that borazine is less aromatic than benzene with a more 

localized electronic structure, such that increased electronic localization is more likely to 

be relevant for the properties of 2.39   Indeed, unlike 5, the HOMO of 2 is localized in the 

region of the central (borazine) ring closest to the nascent σ bond.   Although this is 

consistent with a lower aromaticity of borazine, the high singlet diradical character found 

for 2 is also consistent with a weaker σ  bond and rather suggests that the two rings are 

isolated by charge-separated character of the bridging BN unit, thereby inhibiting 

delocalization of electrons across the DHT-like backbone.  

 

6.5. Conclusion 

 From a combination of experimental and computational investigations we have 

found that isoelectronic hexaphenyl benzene (4) and hexaphenyl borazine (1) exhibit 

drastically different molecular photophysics and photochemistry:  The excited state of 

hexaphenyl benzene is much longer-lived than that of hexaphenyl borazine (~428 vs. 3 

ps, respectively). Whereas a clear spectroscopic signature attributable to a cyclized 
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product 5 appears following the relaxation of photoexcited 4, no clear evidence for 

cyclization of 1 is observed.  Similarly a modest (25%) photochemical yield of 

tetraphenyl triphenylene (6) is obtained by cyclodehydrogenation of 4, whereas no 

analogous product is recovered for 1. These observations suggest that 1 relaxes 

nonadiabatically from the excited state following a pathway that does not include 

cyclization.  Although we cannot rule out that the broad, weak short-lived (<100 ps) 

transient observed following the excitation of 1 is not associated with a cyclized product 

2, we note that such a short lifetime would also be consistent with no recovery of 3 via 

cyclodehydrogenation and a lower predicted stability of such an intermediate based on 

our quantum-chemical calculations.  

 Quantum-chemical computations provide considerable insight on the electronic 

and structural features that underlie the observed and predicted stabilities of 

photochemical products from these reactants.  Electronically, borazine greatly reduces 

conjugation across the DHT-like core and coupling between phenyl rings, which 

manifests itself in increased diradical character and a lower predicted Ea for ring opening 

of 2 relative to 5 (as well as 8 relative to 7). Qualitatively this can be explained by the 

electron localization of borazine by the ionic bonding character of the BN bond that 

interrupts conjugation between the π bonded cycles in 2.  Interestingly, we find that the 

cyclized structure 5 to be strongly stabilized entropically when compared to related 

cyclized structures.  We attribute this to the configuration of phenyl substituents on the 

central ring of the cyclized core: the initial formation of what appears to be the preferred 

photoproduct conformer (5b) is expected to come at an energetic penalty in the excited 

state when compared to related ortho-arene systems; however, steric interactions and the 
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need for coordinated structural fluctuations ultimately extend the lifetime of 5b.  It is 

unclear whether this stabilization is unique to 5b, or would also apply to conformer 5a 

and conformers of 2. A “hot” photoproduct with the activation energies determined and 

predicted here could be expected to reopen rapidly (10’s of ps) without entropic 

stabilization.  This could explain in part why spectroscopic evidence for other conformers 

of 5 is not observed and would also be consistent with a short-lived photoproduct 2 

following excitation of 1 that plausibly could be associated with 75-ps component 

observed in our transient measurements.  

 This photophysical and photochemical study of borazine substitution 

demonstrates that BN doping that can be used to tune HOMO-LUMO gaps for material 

application (e.g. OLEDs) has a dramatic impact on the photochemistry of precursor 

materials. Specifically, in the case of nonadiabatic photocyclization, which is a key step 

in the photochemical generation of polyaromatic structures, BN doping introduces a 

resistance to photochemical bond formation via fast excited-state decay and decrease in 

predicted stability of cyclized photoproducts. Our results provide a unique view of the 

impact of isoelectronic substitution that might be expected to give rise to similar 

chemical behaviors and properties:  In essence, isoelectronic does not imply isodynamic.  
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Chapter 7 

Sub-Picosecond Nonadiabatic Bond Formation in ortho-arenes Revealed with 

Pump-repump-probe Spectroscopy 

 

Snyder, J. A.; Bragg, A. E. In Preparation. 

 

7.1 Introduction 

 The influence of structure on the chemical dynamics of excited states of 

photoswitchable molecules (such as photocyclizable structures) is an important aspect to 

the design of efficient and robust materials with predictable photoresponses.  Structure-

dynamics relationships are likewise critical for supporting photo-induced bond formation 

via cyclodehydrogentation as a useful synthetic tool for generating complex polycyclic 

aromatic hydrocarbon (PAH) networks, such as graphene nanoribbons.1 Photochemical 

synthetic methods often use milder reaction conditions and have the potential to utilize 

sustainable solar energy that can reduce waste and promote “green” chemistry.2-4  A better 

understanding of excited-state properties, reaction mechanisms, and how they are 

impacted by reactant structure is critical for optimizing the performance of 

photoswitchable materials and the efficacy of photochemical synthetic reactions.  

 A large effort has focused on the study of the excited-state properties and 

dynamics of cyclizable thiophene-based photoswitches given the promising stabilities of 

both their ring-open and cyclized isomers.5, 6 The general consensus from time-resolved 

photophysical studies is that the excited-state deactivation of these photoswitches is 

highly sensitive to the molecular conformation:  molecules with “parallel” terminal rings 
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undergo rapid (~100 fs) cyclization, whereas molecules with “antiparallel” thiophene 

groups deactivate via slower pathways, including intersystem crossing to the triplet 

manifold.  The latter introduces an inherent efficiency loss for photoresponsive bond 

formation that is eliminated in ordered environments, such as crystals or molecular 

assemblies.  Conformational dependence to excited-state relaxation pathways may 

likewise explain complex deactivation of excited states in E/Z thienyl-ethene 

photoswitches.7, 8 

 Even for an ensemble of molecules with relatively uniform conformation 

competing relaxation pathways can be responsible for excited-state deactivation with 

very different photochemical results.  For example, cis-stilbene, arguably the original 

photoswitch prototype first observed by Lewis et. al. in 1940,9 is typically appreciated 

within the context of cis/trans isomerization.10-14 However, photocyclization of cis-

stilbene to 4a,4b-dihydrophenanthrene (DHP) accounts for a non-negligible 10% of the 

quantum yield for non-radiative relaxation of cis-stilbene (compared to 35% for the 

formation of the isomerization product trans-stilbene).15, 16 Recent photophysical 

investigations with cis-stilbene and its analogs have suggested that cyclization and 

isomerization do not occur as parallel kinetic processes, but rather that the wavepacket 

launched onto the excited-state potential energy surface as a result of photon absorption  

bifurcates shortly after leaving the Franck-Condon region with structural evolution that 

results in these different products.17-19 

 Our examination of photocylization in various ortho-arenes, such as ortho-

terphenyl (OTP), its alkylated analogs, 1,2,3-triphenylbenzene, ortho-quaterphenyl and 

hexaphenylbenzene (HPB), has shown that cyclization is a favorable excited-state 
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deactivation pathway in all of these systems and with rare exceptions is relatively 

insensitive to structural modifications of the core OTP chromophore.20-23 To date, our 

understanding of excited-state deactivation mechanisms in these systems is based on 

global spectral analysis of broadband transient absorption spectra, which can be used to 

extract the timescales for excited-state relaxation and photoproduct (e.g. 4a,4b-

dihydrotriphenylene, DHT) formation as well as the spectra associated with principle 

photochemical species.  For example, global analysis of transient spectral dynamics 

measured following the 266-nm excitation of OTP with both a one-step and two-step 

sequential kinetic model extract reasonable excited-state and photoproduct spectra, as 

determined by the quality of residuals between the experimental data and global fits.  

(The two-step model invokes initial relaxation of the OTP excited state, 𝑆1
∗ → 𝑆1.)  

However, the determination of both relaxation timescales and species associated spectra 

is subject to the assumed kinetic model.  Notably, the spectra of the S1 excited state of 

OTP and ground-state DHT photoproduct overlap considerably across the visible and 

near-UV, which has made unambiguous assignment of the kinetics of photocyclization in 

these systems inherently difficult by pump-probe spectroscopy alone.  

 Motivated by the recent successes with the application of three-pulse “pump-

repump-probe” (PRP) and “pump-dump-probe” spectroscopies to unravel complex 

dynamics in photoactivated molecular materials, we have applied variations of PRP to 

disentangle and clarify the nature of competing kinetic pathways in the excited-state 

relaxation deactivation of ortho-arenes.24-28 This work focuses on deactivation of excited 

OTP and HPB, which exhibit fairly different excited-state behavior as inferred from 

pump-probe spectroscopy, with S1 relaxation timescales dominated by processes that 
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occur on ~3 and 400 ps timescales, respectively.  Application of PRP spectroscopy on 

these systems offers insight into the common photochemical behavior of ortho-arenes 

despite variations in structure and furthermore suggests that the variations in excited-state 

relaxation behavior observed by pump-probe spectroscopy is more likely to be connected 

with how structural differences impact nonradiative pathways other than cyclization. 
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7.2 Experimental 

7.2.1 Sample Preparation 

5 mM solutions of ortho-terphenyl (Sigma) and hexaphenylbenzene (Sigma) in 

tetrahydrofuran (SPS) or ethylene glycol (Sigma) were prepared by sonication; gentle 

heating was applied to dissolve HPB (~40 °C). Solutions were transferred to a 0.5 mm 

pathlength fused silica flow cell (Spectrocell), circulated with a peristaltic pump (Cole-

Palmer) and were sparged with N2 for 15 minutes. 

 

7.2.2  fs Pump-Repump-Probe Spectroscopy 

 The laser system and experimental setup has been described previously.29 The 

output of a Ti:Sapphire Amplifier (Coherent Legend Elite, 1kHz, 4 mJ, 35 fs) was split 

into three fractions to generate three independent laser pulses: 266 nm pump/excitation 

pulses were generated as the third harmonic of the fundamental (specifically via a SHG + 

SFG mixing cascade); ultraviolet (340 nm) and visible (580 nm) repump pulses were 

generated using an optical parametric amplifier (Light Conversion) or by second 

harmonic generation of the fundamental (400 nm); and supercontinuum probe pulses 

were generated by focusing the fundamental or its 2nd harmonic into crystalline plates 

(United Crystals) to drive white-light generation. The visible supercontinuum (400-800 

nm) was generated by focusing the fundamental into Sapphire (2 mm), whereas the 

ultraviolet supercontinuum (280-400 nm) was generated with the 2nd harmonic focused 

into CaF2 (2 mm).  The polarization of the 266-nm pump was selected using a zero-order 

waveplate (Thorlabs) and was determined to have a ~70 fs FWHM duration based on 

autocorrelation via two photon absorption (2PA) in a 200 μm BBO crystal (United 
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Crystals) (see Figure A5.9). Visible repump pulses (>400 nm) were determined to have 

duration of 40-60 fs FWHM based on autocorrelation via 2PA in a GaN LED or by SHG 

in the aforementioned BBO crystal (see Figure A5.8). The duration of the visible & UV 

supercontinuum were determined to be 200-250 fs FWHM by cross-correlation in the 

aforementioned BBO crystal or a BK7 coverslip (Fischer).  Importantly, as key PRP 

results described below examine depletions of probe absorption induce by the repump at 

time delays much greater than the supercontinuum pulsewidth, the instrument response 

function is associated with the cross-correlation between the pump and repump pulses. 

 The pump and repump were delayed independently with two independent 

translation stages (Newport, ILS250). Both beams were focused towards the sample with 

lenses. The polarization of all these beams was set immediately before the sample. The 

probe was focused at the sample using a parabolic mirror (Edmund), with its polarization 

set with the broadband waveplate immediately before the sample; transmitted probe light 

was collimated with a lens after the sample and filtered with a U-340 filter for the UV 

and a 400 nm long pass filter for the visible. All beams were chopped using two optical 

choppers (Thorlabs).  One chopper was equipped with a dual-phase blade allowing for 

the pump and repump beams to be chopped in a phase-locked sequence using one optical 

chopper. A second chopper was alternately blocked and unblocked the probe beam at a 

rate of 250 Hz. Chopping all three beams results in 8-phase data collection that enables 

simultaneous collection of pump-probe, repump-probe, and pump-repump-probe signals 

with correction for background, fluorescence and laser scatter (Equation 2.9). Probe light 

was dispersed with a grating spectrograph (Princeton Acton) and detected with a CCD 
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(Princeton Pixis 100). Data collection and computation of spectra was performed with an 

acquisition program written with Labview 2016. 

  



221 

 

7.2.3 Definition of States, Lifetimes and PRP Schemes 

 The steady-state absorption spectrum of OTP and transient excited state and 

photoproduct spectra previously measured by pump-probe spectroscopy are shown in 

Figure 7.1. The lowest energy absorption features of the S0 ground state of OTP spans 

250-300 nm and is readily pumped with 266-nm laser pulses.  The S1 OTP absorption 

spectrum has two characteristic bands centered at 375 and 600 nm that decay with a ~3 ps 

lifetime; their decay reveals the underlying absorption spectrum of S0 DHT.  The DHT 

absorption spectrum has two characteristic bands centered at 340 and 580 nm that decay 

with a 45 ns lifetime that corresponds with thermally activated ring-reopening to 

regenerate the reactant, OTP. Based on these differences in the excited state and 

photoproduct spectra and the observable lifetime of the OTP excited state, appropriate 

PRP schemes can be designed to more closely interrogate the mechanism of DHT 

formation. 
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 The general PRP experiment includes three time delays between pump-repump, 

pump-probe and repump-probe  (Δt1,2 , Δt1,3 and Δt2,3, respectively) as denoted in Figure 

7.2a. In practice only two time delays must be defined as the third is constrained by the 

other two. One variation of PRP spectroscopy is to monitor the effect of a repump pulse 

on the spectrum of a long-lived species (in this case the DHT photoproduct) long after the 

initial pump excitation; a critical condition for this experiment is that Δt1,3 is much larger 

than the timescale for formation of this species (Figure 7.2b).  If the effect of the repump 

pulse is to increase or deplete the entire spectrum of the photoproduct, this approach can 

be considered PRP “action” spectroscopy.30-32 This method is implemented by fixing Δt1,3 

 

Figure 7.1. S0 OTP (steady state),  S1 OTP (1 ps), and S0 DHT (1 ns) absorption 

features as well as spectra of the pump and repump wavelengths used in the present 

study. 
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at a delay much longer than that the excited state decay (Δt1,3=1 ns) and photoproduct 

thermalization and scanning Δt1,2 (or alternatively Δt2,3) from 0-100 ps.  For small 

molecular systems the polarization of the probe need not be defined so long as the 

rotational diffusion is complete before a time delay of Δt1,3 is reached; under these 

conditions a relative angle of pump and repump of 54.7 degrees (magic angle) will ensure 

that only changes in photoproduct population yield are observed.     A second 

approach is to monitor the effect of the repump on the transient spectral dynamics shortly 

after excitation by monitoring the “hole” or “bleach” induced by the repump (Figure 

7.2c). This experiment involves fixing Δt2,3 and varying Δt1,2 (or Δt1,3).   As this 

measurements may involve both short Δt1,2 and Δt2,3 it is not capable of eliminating the 

influence of polarization anisotropy on bleaching efficiency.  (A related experiment 

involves fixing Δt1,2 and scanning Δt1,3.  This approach allows one to monitor the impact 

of the repump pulse on the overall population of pump-induced excited state and 

photoproduct.)  This is used to verify which and how excited-state signals respond to the 

repump pulse. 

 A key to each of these experiments is to choose repump wavelengths that can 

selectively depopulate one state or the other where possible.  For example, repumping at 

400 nm is strongly selective for excitation of S1 OTP, and therefore enables evaluation of 

what features from the transient spectrum in other regions (e.g. the visible) are associated 

with this state.   
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Figure 7.2. Definition of (a) the general PRP Scheme and relevant time delays, as well as 

more specific definitions of (b) PRP “Action” and (c) PRP “Bleach” experiments. (d) The 

kinetic influence on repumping and depleting state A for sequential kinetics (τ = 2) at 

Δt1,2=3 results in a corresponding depletion of B. If Δt1,2 is varied to perform the PRP-

Action experiment the relative depletion of B can be used to isolate the kinetics of 

formation for B. 
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7.3 Results and Discussion 

7.3.1 PRP “Action” and “Bleach” Spectroscopy of DHT and OTP 

 The PRP action of DHT was performed through re-excitation of each of the UV 

and visible bands of DHT with a 580 and 340 nm repump, respectively (Figures 7.1, 7.3 

and 7.4). The influence of the repump was monitored according to changes in intensity of 

the other product transition (e.g. repump visible, probe UV) in order to avoid collection 

of intense pump and repump pulse scattering. In addition, the complementary PRP action 

experiment was performed with a 400 nm repump pulse that is resonant predominantly 

with the ESA of OTP (see Figure 7.1). Both experiments were performed with Δt1,3=1 ns 

in order to eliminate effects from evolution in the polarization anisotropy of molecular 

transition dipoles between the application of the repump and probe pulses. A half-wave 

plate was used to fix the relative angle between pump and repump to magic angle to 

ensure that application of the repump pulse reflects changes in transient populations and 

not transition dipole polarization. The time-dependent signal shown for PRP action 

experiments is the Relative PRP Depletion (RPD) of the photoproduct, which has been 

band integrated, inverted and normalized to compare against the hypothetical kinetic 

model for photoproduct formation via a sequential kinetic relaxation model.  

Figure 7.3 shows the PRP action kinetics of OTP with a 580 nm repump pulse and 

the RPD band integrated from 320-360 nm. The analogous action experiment with a 340 

nm repump pulse and the RPD band integrated from 500-670 nm is shown in Figure 7.4. 

Note that the rise in RPD in both cases is nearly instantaneous with a very weak time 

dependence, much in contrast with the kinetics of photoproduct formation associated with 

previously applied global fitting models.   
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As the excited reactant and ground-state photoproduct both absorb strongly at 

these two repump wavelengths, this data could suggest that the photoproduct population 

is depleted as a result of the reexcitation that disrupts deactivation of the S1 state of OTP 

via cyclization.  Alternatively, since it is well known that cyclized structures like DHT 

readily undergo photoinduced bond fission, these results might rather reflect that 

reexcitation only depletes the photoproduct population itself.  This latter interpretation 

would imply that the photoproduct is formed instantaneously upon photoexcitation and 

 

Figure 7.3. PRP Action Spectroscopy of DHT following 266 nm photoexcitation of 

OTP and re-excited with 580 nm (black solid line). Here Δt1,3 is set at 1 ns, the pump-

repump polarization was set to magic angle, and the action was probed in the UV 

(320-360 nm) to avoid collection of scattered repump. The rise in signal expected for 

a hypothetical sequential mechanism (S1 OTP → S0 DHT) with τ = 3 ps is given for 

comparison (red dashed line). 
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that the excited-state population that persists for the few picoseconds thereafter relaxes by 

some other nonradiative pathway. 

One way to differentiate between these two possibilities is to repump at a 

wavelength that is strongly selective for only the OTP excited state (i.e. 400 nm, Figure 

7.1).  In pump-probe measurements the relative intensity of the peak OTP S1 absorption 

intensity at 400 nm is roughly 25-30 times stronger than the absorption of DHT product 

absorption apparent after the excited state has decayed.  The 400 nm PRP action trace is 

plotted in blue in Figure 7.5 and shows the same temporal response observed with the 

340 and 580 nm repump (Figures 7.3 and 7.4), i.e. an instantaneous rise followed by a 

plateau in signal.  Notably, the intensity of this depletion is significantly weaker than 

what is observed at these other two wavelengths, as reflected in the significant reduction 

 

Figure 7.4. PRP Action of DHT with a 340 nm repump pulse. In addition Δt1,3=1 ns 

and the probe range was in the visible to avoid scattering effects. 
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in signal to noise at this repump wavelength.  Because the latest repump delays 

correspond with exciting pure photoproduct, which has very weak absorption at 400 nm, 

this response strongly suggests that the reexcitation of the S1 state has negligible impact 

on the photoproduct bleach.  

To complement the PRP action experiment a PRP bleach experiment was 

performed to confirm that the 400 nm repump does in fact bleach the S1 OTP signal.  The 

scaled bleach signal plotted in red in Figure 7.5 is the absolute value of the ratio of the 

PRP bleach signal to the PP signal i.e.  ΔΔODFl. Corr. /ΔODFl. Corr. (see Equations 2.6 and 

2.9). This scaled signal is useful for determining the percentage of S1 signal bleached, 

which in turn can be used to infer the maximum reduction in DHT signal if the 

photoreaction does indeed follow sequential kinetics. Therefore the corresponding 400 

nm action spectra should show a 25 % depletion in DHT signal at Δt1,2=500 fs that 

decays with a ~3 ps lifetime. The observed 400 nm action spectra shows neither effect but 

only  a very weak depletion signal that remains constant across the range of Δt1,2. The 

conclusion of these PRP experiments is that the observed S1 decay is completely 

uncoupled to the formation of DHT and that the reaction seems to proceed 

“instantaneously” (i.e. timescales < PRP instrument response) possibly by wavepacket 

bifurcation immediately following projection onto the Franck-Condon region of the S1 

PES.33 
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Figure 7.5.  PRP action (blue line) and bleach (red line) traces for OTP in THF with a 

400 nm repump (all parallel polarizations). Note that the PRP depletion for the Action 

experiment is unscaled while the scaled bleach signal represents the absolute amount 

of ESA transient absorption signal bleached (-ΔΔOD/ΔOD). This comparison shows 

that while the S1 signal is strongly bleached there is no corresponding modulation in 

DHT depletion (i.e. Action trace) on the timescale of the bleach.  Hence it is 

concluded that the spectral signatures associated with the S1 OTP and S0 DHT 

populations are not connected kinetically.  

 



230 

 

7.3.2 Anisotropy of the OTP to DHT photoreaction 

 Polarized pump-probe fs-TAS measurements were performed with 266-nm 

excitation of OTP to track the decay of polarization anisotropy, r(t), in the photoinduced 

signal that arises from a combination of OTP ESA and DHT GSA. Figure 7.6 plots the 

anisotropy obtained at the peak of the OTP ESA band, between 595 to 605 nm (solid 

black line); a scaled trace of the excited state population decay is plotted for comparison.  

Assignment of the r(t) to a single species is obscured by the overlapping spectral 

components. An exponential fit results in a r(t) decay lifeimte of 11 ± 0.5 ps, but this 

timescale reflects a combination of both the excited-state decay as well as contributions 

from the scrambling of transition dipole moments due to rotational diffusion or structural 

dynamics.  Nonetheless, the data shows an initial anisotropy of 0.23 indicating a 32 

degree change in the transition dipole occurring on a sub-100 fs timescale.34 These values 

are quite similar to those determined for the cis-stilbene to DHP reaction.35 
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 The complementary experiment for deconvolving the rotational anisotropy of S1 

OTP and S0 DHT is by a polarized action PRP experiment. The polarized action 

experiment is similar to the 2-pulse polarized experiment except that the repump bleaches 

the evolving rotational population and the probe monitors the corresponding decrease in 

population after all polarization memory has been lost (i.e. Δt>>τrotation). Therefore a 

similar parallel (∥) and perpendicular (⊥) pump-repump polarization response for the 

polarized action experiment is expected compared to that of the traditional 2-pulse 

measurement.36-38 Figure 7.7 compares the polarization dependence of parallel, 

perpendicular and “magic” relative pump-repump angle showing a weak or negligible 

polarization dependence. The apparent contradiction of the 2-pulse polarized and 3-pulse 

 

Figure 7.6. Traditional 2-pulse polarization anisotropy of OTP following 266 nm 

excitation and band integration from 595-605 nm. 
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polarized action results indicate that the 2-pulse experiment may include significant 

contamination from the DHT product as predicted. This is not surprising considering the 

OTP ESA feature is approximately 6 times that of the DHT absorption over the integrated 

range of 595-605 nm. The 3-pulse polarized action results further indicates that the 

reaction coordinate from OTP to DHT results in an apparent “scrambling” of the 

polarization memory that has been proposed for the cis-stilbene to DHP reaction.35 The 

alternative interpretation that the initial transition dipole moment of S0 OTP changes 

drastically following formation of DHT is contrary to the calculated change in angle of 

the transition dipole moment  (6°) determined using time-dependent density functional 

theory39, 40 (TD-B3LYP/6-31+G*). A 6° change in transition dipole moment, similar to 

the prediction for the CS/DHP reaction35, would result in an unnoticeable change in the 

initial anisotropy from 0.4 to 0.39.34 
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7.3.3 PRP Action Spectroscopy of Hexaphenylbenzene 

 To further demonstrate that ultrafast photocyclization is a common chemical 

process of ortho-arenes we chose to interrogate the photophysics of hexaphenylbenzene 

(HPB).  This system is highly modified structurally compared with OTP and has much 

longer excited state S1 lifetime as measured by pump-probe spectroscopy. However, both 

systems have similar ESA and photoproduct absorption features, suggesting that 

photophysical differences are due to perturbations of the structural modifications. The 

isotropic PRP action trace is plotted in Figure 7.8 with Δt1,3=1.2 ns and a 360 nm repump 

 

Figure 7.7. 3-pulse polarized Action PRP of photoexcited OTP with a 266 nm pump, 

580 nm repump, Δt13=1 ns, and the RPD signal of DHT integrated from 310-360 nm. 

The RPD of DHT shows anomalous anisotropy behavior with a relatively constant r(t) 

of < 0.1.  
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that is matched to the λmax of the HPB photoproduct, tetraphenyl-DHT (TphDHT). While 

some short time behavior is observed at time delays < 2 ps the kinetics remain fairly 

constant on the timescale for the S1 decay; a hypothetical induction to the photoproduct 

based on a sequential relation model is shown for comparison (red dashed line). The flat, 

constant signal observed on a logarithmic scale from 10-500 ps makes it clear that the 

kinetic formation of TphDHT is not coupled to the slow S1 decay since a constant 

depletion is obtained across this time regime. This mechanism is consistent with results 

 

Figure 7.8 Isotropic PRP  action of HPB in THF pumped with 266 nm, repumped 

with 360 nm and probed in the visible with the RPD integrated from 510-660 nm. In 

addition Δt1,2=1.2 ns and the pump-repump polarization was set to magic angle. 
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on OTP that seem to suggest that most of the photoproduct is formed on a faster or 

instantaneous timescale relative to that of the longer S1decay. 

7.4 Conclusions 

 Pump-Repump-Probe spectroscopy indicates an apparent disconnect between the 

observed ESA of OTP with a lifetime of ~3 picoseconds and the formation of DHT which 

based on PRP action results is formed instantaneously in < 100 femtoseconds. This 

indicates that wavepacket branching must occur immediately following photoexcitation 

that results in 2 distinct nonadiabatic deactivation pathways. An identical result was 

obtained for hexaphenylbenzene with a much longer excited-state lifetime of ~400 ps 

further indicating the kinetic separation between the cyclization product (TphDHT) and 

the observed ESA. Additionally, anisotropy analysis using PRP indicates a randomization 

of transition dipole moments following photocyclization that is not observable using 

traditional 2 pulse polarization anisotropy experiments.  
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Appendix 1 

Supporting Information for Chapter 3: 

Ultrafast Excited-State Dynamics of ortho-Terphenyl and 1,2-Diphenylcyclohexene:  

The Role of “Ethylenic Twisting” in the Non-Adiabatic Photocyclization of Stilbene 

Analogs 

 

A1.1. Sample Preparation:  

A1.1.1. Synthesis of 1,2-diphenyl-cyclohexene (DPCH).  1,2-

dibromocyclohexene was prepared according to literature procedures .1  

Tributylphenylstannane and toluene were purchased from Sigma Aldrich. 

Tributylphenylstannane was used as received, and toluene was dried over 4Å molecular 

sieves and sparged with dry N2 for 30 min prior to use. (PPh3)2PdCl2 was purchased from 

Strem Chemical and used as received.  

1,2-dibromocyclohexene (100.0 mg, 0.42 mmol), tributylphenylstannane (0.300 

mL, 0.92 mmol), and (PPh3)2PdCl2 (14.6 mg, 0.021 mmol) were added to a 25 mL flame 

dried, air free Schlenk flask charged with a stir bar. The flask was then evacuated and 

refilled with dry N2 three times, after which 7 mL of dry, degassed toluene was added by 

syringe.  The flask was covered in foil to exclude ambient light and the mixture was 

heated to 105 °C for 16 h, after which the reaction mixture was allowed to cool to 

ambient temperature, and poured into a rapidly stirring mixture of 20 mL 1M aq. KF and 

20 mL ether.  The mixture was stirred for 15 minutes in the dark, at which point the solid 

was filtered off, and the organic layer separated and dried over MgSO4.  The solvent was 
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evaporated and the crude oil was purified by column chromatography (SiO2, hexanes as 

eluent).  Pure product was isolated as a light yellow waxy solid (24.9 mg, 25% yield).  

Characterization data (1H and 13C NMR) matched with literature data.2 

A1.1.2. Solution preparation, handling, and characterization.  ortho-terphenyl 

(OTP) was purchased from Sigma-Aldrich and used “as-is.”  Tetrahydrofuran (THF, 

unstabilized, Sigma Aldrich) was deaerated through multiple freeze-pump-thaw cycles 

prior to solution preparation.  OTP solutions were made with concentrations of both 5 

and 20 mM; time-resolved measurements exhibit no concentration dependence in this 

range.  In order to prevent any possible accumulation of long-lived photoproducts during 

spectroscopic measurements all samples were circulated through a 0.5mm path-length 

quartz flowcell (Spectrocell) using a peristaltic pump (Masterflex).  The sample flow 

circuit is constructed entirely of materials that are chemically compatible with THF (e.g. 

PTFE tubing and compression fittings, a quartz flowcell, a glass reservoir) and has a 

circulation volume of less than 20 mL. 

DPCH solutions in freshly distilled THF were prepared with a concentration of 5-

10 mM.  The DPCH cyclization photoproduct (9,10-cyclohexano-4a,4b-

dihydrophenanthrene) readily oxides in presence of oxygen to form a phenanthrene 

derivative (9,10-cyclohexano-phenanthrene), as validated through mass spectrometry of 

DPCH samples both before and after UV irradiation (in contrast, dihydrotriphenylene 

generated from the photocyclization of OTP does not oxidize readily in presence of air, 

but only when stronger oxidizing agents, such as I2, are added.3  Furthermore, the 

oxidized photoproduct has a substantially stronger absorption cross-section in the UV 

than DPCH Consequently solutions of DPCH had to be studied immediately after 
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preparation even in solutions made with freshly distilled solvent.  A fiber-optically 

coupled minispectrometer (StellarNet) was used to measure the sample absorbance 

between 250 and 400 nm roughly 1” downstream from the laser interaction region in the 

flow cell in order to monitor production and potential accumulation of oxidized 

photoproduct during the course of time-resolved measurements.  Together these measures 

facilitated collection of time-resolved signals prior to spectroscopically significant 

accumulation of oxidized photoproduct.  As noted in the main text, transient 

spectroscopic features measured with DPCH closely match those measured from the 

isochromophoric molecule cis-stilbene.  This spectroscopic similarity with cis-stilbene 

and the absence of a UV photo-induced transient absorption above 600 nm from highly 

oxidized solutions of DPCH validates our assignment of the observed spectral dynamics 

to population decay of S1 DPCH. 

 

A1.2. Ultrafast Transient Absorption measurements:  

A1.2.1. Experimental set-up and data collection.  All experiments utilize our 

lab’s regeneratively amplified Ti:Sapphire laser (Coherent Legend Elite, 4.5 mJ/pulse, 1 

kHz repetition rate, 35-fs pulse duration, 800-nm peak wavelength).   Roughly 1 mJ of 

this output is used to generate ~20 J UV photoexcitation pulses by frequency 

conversion:  ~500 J are used to generate the second harmonic at 400 nm in a 200-

micron-thick Type I BBO crystal (United Crystals); 266-nm photoexcitation pulses are 

generated by mixing the second harmonic with ~500 J of 800-nm fundamental in a type-

II BBO crystal (150 microns, United Crystal).    Weak broadband probing pulses are 

obtained through white-light generation in specific crystalline plates (4). For the visible 
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transient absorption measurements, less than 10 J at 800 nm was focused into a sapphire 

plate to produce a stable white-light continuum at 470-720 nm.  The visible continuum 

was generated using 800 nm pulses polarized at 45 degrees; a thin broadband wire-grid 

polarizer (Thorlabs) was then used to select the polarization of the visible probe light 

immediately before the sample.  In this way the probe beam polarization could be 

controlled simply by adjusting the orientation of the wire-grid polarizer.   

UV photoexcitation pulses were collimated to a 4-mm beam diameter before the 

flowcell. The broadband probe pulse was focused at the sample and overlapped at a small 

angle with respect to the photoexcitation pulse in the sample. The excitation pulse was 

blocked after the sample with a beam dump, and residual pump scatter along the probe 

propagation direction was blocked with a 280-nm long-pass filter.  Visible and UV 

continua were also passed through appropriate bandpass filters to shape spectra for 

detection and to remove residual 800 or 400-nm light that was used to drive continuum 

generation. In our set-up the probe continuum is dispersed using a 0.3-m spectrograph 

(Acton-2360, Princeton Instruments) outfitted with a low-resolution grating (800nm 

blaze, 150 lines/mm).  Probe spectra are detected using a CCD camera (Pixis-100BR, 

Princeton Instruments), which collects the continuum probe on each laser shot at 1 kHz.  

The photoexcitation beam is synchronously chopped at 500 Hz, such that transient 

absorption spectra can be calculated using consecutive pairs of probe spectra.   The 

relative pump-probe pulse delay is controlled by retroreflecting the pump pulse off of 

266-nm high reflectors mounted to a motorized translation stage (Newport), which was 

adjusted to change the relative optical pathlength of the pump and probe pulses.   
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Transient spectra shown here were collected by averaging at each time delay, with 

30,000-50,000 on/off ratios for visible TAS. Positioning of the translation stage, 

collection of probe spectra, synchronization with the chopper phase, and calculation and 

averaging of transient spectra were all coordinated through a home-built LabVIEW data 

acquisition program.  Pump-probe measurements of neat solvents were made such that 

transient spectra could be chirp corrected according to the time-dependence of the non-

linear, two-pulse solvent response.  

 

A1.2.2. Data Analysis.  TAS spectra were chirp-corrected using routines written in 

MATLAB. A routine was used to determine the wavelength-dependence in time zero 

from the two-pulse solvent response measurements.  This program identifies the onset 

wavelength of the solvent peak measured at each time delay. From this information a 

low-order polynomial was determined that characterized the variation in time zero with 

probe wavelength. This polynomial was then used to correct chirped TAS intensity data 

from the OTP and DPCH sample scans and to rectify experimental timescales via a series 

of thresholding and interpolating steps.  Data analysis procedures first were performed on 

the data sets collected using each polarization independently, and “magic-angle” spectra 

then were calculated using chirp-corrected parallel and perpendicular spectra. Spectral 

intensities at very long time delays (times longer than the time-dependent changes in 

rotational anisotropy) were scaled to compensate for any differences in the intensities due 

to changes in the experimental conditions between the two polarizations.   

Cuts through transient spectra plotted in Figure 3.1(c) of the main text were fitted 

with single or biexponential decay functions convoluted with the instrument response 
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using a fitting algorithm written in MATLAB.  The experimental time resolution (~150-

200 fs) was limited primarily by group-velocity mismatch within the sample.  OTP TA at 

605 nm was fitted with a single exponential plus a constant offset to account for DHT 

absorption at this wavelength following cyclization.  DPCH data were better fit with a 

biexponential function, although more than 50% of the excited-state decay occurs on sub-

ps timescales.  Fitting parameters for transients are provided in Table A1.1. 

 

Table A1.1.  Parameters for fits to transients plotted in the main text. 

 A1 τ1 A2 τ2 

OTP 0.00324 2.91 ps 0.000522 () 

DPCH 0.000194 0.44 ps 0.000114 2.53 ps 

 

A1.3. Electronic structure calculations.   

A1.3.1. Electronic structure calculations at the S0 minimum, S1 minimum and 

lowest-energy S1/S0 conical intersection.  All calculations were performed using 

GAMESS (5).  Geometries on the S0 and S1 surfaces were determined at the State-

Averaged Complete Active Space (SA-CASSCF) level6, abbreviated as SA-x-CAS(y/z) 

(x averaged states, y active electrons and z active orbitals) with a STO-3G or 6-31G basis 

set, equal weighting of states, and no symmetry restrictions. All visualization of results 

were performed using MacMolPlt7. The minimal energy Conical Intersection (CI) 

searches utilized the method of Bearpark et.al.8; this local searching procedure was 

important for determining CI geometries that are closest in proximity to the S1 minima.9,10   
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The procedure for optimizations was to first determine the S0 minimum geometry, 

and then use the optimized geometry and orbitals as the initial values for the S1 minimum 

optimization.  The S0/S1 conical intersection (CI) search was similarly initiated with the 

optimized S1 minimum structure and orbitals.  When using larger active spaces, the S0 

minimum was not determined due to computation expense (which we designate with an 

“X” in Table A1.2 below) and the optimization process began with the optimized S1 

geometries and orbitals determined using a smaller active space.   

Calculations with different active spaces were performed in order to investigate 

how the size of the active space affects the relative size of the S1-minimum-to-CI energy 

for OTP and DPCH.  For the SA-2-CAS calculations the active space was selected to be 

minimalistic due to the computational expense of working with these methods and 

relatively large molecules.  The most appropriate active spaces would correspond to: 18 

π, π* orbitals for OTP, 14 π, π* orbitals for DPCH, 16 π, π* and 2 σ, σ* orbitals for DHT, 

and 12 π, π* and 2 σ, σ* orbitals for CDHP.  The active spaces used in our calculations 

utilized an equal split of π and π* orbitals (up to 4 π and 4 π* orbitals with the (8/8) 

active space).  While the energetics and geometries change slightly between each active 

space the same relative differences between OTP and DPCH are still observed, which 

suggest that the smaller active spaces are satisfactory in describing the relative 

characteristics of the S1 surfaces of these molecules. 

Numeric results obtained from our calculations with OTP and DPCH using 

various active-spaces and basis sets are summarized in Table A1.2.  The first several 

rows report characteristic structural properties (the dihedrals θ and φ as defined in the 

main text) for the optimized S0 and S1 and the lowest-energy CI geometries.  The final 
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four rows report energy gaps between the S0 and S1 surfaces at each of their optimized 

geometries (e.g., “S0 
 → S1 @ S0 Min” gives the S0-S1 gap at the optimized geometry of 

the S0 minimum), as well as the energy differences between geometries along the S1 

surface.  

 The use of the State-Averaged Complete Active Space (SA-CASSCF) method in 

comparison to less demanding methods, such as Time-Dependent Density Functional 

Theory (TDDFT), can be explained by the nature of the points along the photocyclization 

coordinate. The deficiencies of TDDFT are well known and can result in skewed results 

near CI's, due to its inability to describe double excitations.11,12  Recent results from 

Hartley illustrate this problem by the inability of a PBE0/TDDFT optimization to locate a 

S1 minimum for ortho-Terphenyl, but rather converging towards cyclization.13  While SA-

CASSCF is well equipped for the problem of interest it is noted for the increased 

accuracy of excitation energies multireference perturbation theory is required to recover 

dynamical correlation.14 

It is not our intent to provide a complete computational study of the potential 

energy surfaces or of the cyclization process, but rather a survey of important landmarks 

along the potential energy landscape.  Energies and geometries (as characterized by the 

two dihedral angles discussed in the main text) are provided in Table A1.2 for various 

active spaces and basis set choices.  Comparisons with experimentally determined values 

are given where appropriate. 

A1.3.2. Calculation of the lowest-energy absorption in DHT and DHP.  TDDFT 

is well-suited for calculating accurate excitation energies and simulating UV-VIS spectra 

of various systems.15-17   In order to identify the long-lived band in the TA spectrum of 
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OTP as a ground-state absorption of the DHT intermediate, we used TDDFT18 with the 

B3LYP functional19,20 and a 6-31+G*21,22 basis set to calculate the lowest-energy vertical 

transitions for DHT and DHP.  First both DHP and DHT were optimized in the ground 

state using DFT, and it was confirmed by vibrational analysis that these optimized 

structures correspond with stationary points (no imaginary frequencies).  Using these 

optimized geometries a single-point energy calculation was performed to obtain the S0 → 

S1 excitation energy for each molecule. The difference of these two excitation energies 

was then subtracted from the experimental transition energy for DHP ( λmax= 450 nm)23  in 

order to determine the transition energy relative to the position of the experimental band. 

Using this method the computed position of the lowest-energy DHT absorption band is 

predicted to appear at 556 nm, in reasonable agreement with the measured TA spectra.  

Calculated vertical excitation energies, oscillator strengths, and structural parameters for 

DHT and DHP are provided in Table A1.3. 

 

 

 

 

 

 

 

 

 

 



251 

 

Table A1.2. Comparison of dihedral angles and Energy Gaps from SA-2-CAS(x/y) 

 Active 

Space 

2/2 2/2 6/6 6/6 8/8 8/8 2/2 2/2 Exp 

(OTP) 

Basis  6-

31G 

6-

31G 

6-31G 6-31G 6-31G 6-31G STO-3G STO-

3G 

X 

  OTP DPC

H 

OTP DPC

H 

OTP DPCH OTP DPCH X 

S0 Min Twist (φ) 

/Degree 

2.64 8.36 X X X X 3.12 6.55 5.18(24),7

.13(25) 

 Torsion 

(θ) / 

Degree 

55.43

, 

61.98 

56.30, 

58.54 

X X X X 59.01, 

51.03 

53.39, 

53.60 

(62.1, 

42.1)(24), 

(62.1, 

42.5)(25) 

S1 Min Twist (φ) 

/Degree 

12.22 21.84 12.23 21.41 17.21 

 

20.7 8.76 14.87 X 

 Torsion 

(θ) / 

Degree 

13.20

, 

14.13 

11.48, 

6.21 

13.64, 

14.68 

11.89, 

8 

12.01, 

12.78 

12.33, 

8.02 

12.31, 

19.23 

14.92, 

12.27 

X 

S0/S1  CI  Twist (φ) 

/Degree 

24.97 24.16 25.01 30.7 24.57 35.31 35.76 16.34 X 

 Torsion 

(θ) / 

Degree 

1.3, 

9.77 

2.82, 

11.44 

18.71, 

19.03 

12.86, 

9.90 

19.07, 

19.48 

12.33, 

8.02 

7.68,  

4.48 

7.00, 

29.47 

X 

S0 
 → S1 

@ S0 

Min 

Energy / 

eV 

6.90 6.65 X X X X 8.39 8.28 4.3 

(absorpti

on onset 

in THF) 

S1 
 → S0 

@ S1 

Min 

Energy / 

eV 

0.50  0.12  1.02 0.46  1.27  1.12 1.25  0.75  X 

S1 FC → 

S1 Min  

Energy / 

eV 

1.75 2.06 X X X X 3.20 3.41 X 

S1 Min 

→ S0 /S1 

CI  

Energy / 

eV 

0.147 0.019 0.995 0.235 0.94 0.82 0.71 0.47 X 
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Table A1.3. Computed Properties of the Ring-closed Intermediates DHT and DHP 

(Ground State Optimized Structural parameters from DFT B3LYP/6-31+G* and Vertical 

excitation energies from TDDFT B3LYP/6-31+G*). 

 

Geometry Twist (φ) 

/Degree 

Torsion (α) / 

Degree 

ΔE: S0 → S1 / eV Oscillator 

Strength 

DHT 7.61 5.21, 5.18 1.849 0.168 

DHP 8.82 5.33, 5.39 2.376 0.167 

 

 

 

A1.4. Assessment of relative cyclization quantum yields from integrated band 

intensities.   

The transient spectral intensities measured from the ring-open and ring-closed 

states of OTP and DPCH,  𝐼(𝜈),  are proportional to the molar absorptivity for each of 

these states, 𝜖(𝜐),  to within a constant determined by the number of transient species 

probed.  Thus, quantitative determination of cyclization quantum yields is possible if the 

molar absorptivities are known.  As these values are not known, the relative quantum 

yield for cyclization of two systems can be deduced as follows:   

The oscillator strength of each transition is proportional to the corresponding 

frequency-integrated band intensity 
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𝑓 ∝ ∫ 𝜖(𝜈)𝑑𝜈
∞

0

= ∫
𝜖(𝜆)𝑑𝜆

𝜆2

∞

0

 

We define the quantity, 𝑗, given by 

𝑗 = ∫ 𝐼(𝜈)𝑑𝜈
∞

0

= ∫
𝐼(𝜆)𝑑𝜆

𝜆2

∞

0

 

By virtue of the proportionality between absorptivity and the measured spectral intensity, 

𝑗 ∝ 𝑓. 

  For this analysis we assume that the oscillator strength for the lowest-energy 

transitions of S0 DHT and CDHP are roughly the same (our TDDFT calculations suggest 

that this is a reasonable assumption; see last column of Table A1.3).  We also assume that 

the oscillator strength for the lowest-energy transition of the S1 state is roughly the same 

for OTP and DPCH because these systems are nearly isochromophoric.  To assess the 

validity of this assumption, we have performed a set of single-point SA-4-CAS(2/3)-

sto3g  calculations (2 active electrons and 3 active orbitals with equally weighted states) 

at the geometries of their S0 and S1 minima (geometries previously determined through 

optimization at the  SA-2-CAS(2/2)-sto3g level); from these calculations we can obtain 

oscillator strengths for transitions between any of the 4 lowest-lying singlet states. The 

inherent difficulty associated with assigning experimentally measured TA bands to a 

specific geometry complicates the comparison of calculated excited state oscillator 

strengths, as multiple points along the photocyclization coordinate may need to be 

considered.  However, these calculations do show modest agreement at each geometry for 

the S1 → S3 transition, with the remaining S1 → S2 transition having negligible oscillator 

strengths (<0.005): At the S0 minima the oscillator strengths are 0.92 and 0.80 and for the 

S1 minima they are 0.56 and 0.64 for OTP and DPCH, respectively.  Thus, these 
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computational estimates support our assumption of comparable oscillator strengths in 

order to determine the relative cyclization yield. 

We estimate the full 𝐼(𝜆) for the lowest-energy S1 transition of DPCH by fitting 

the band centered near 650 nm to a Gaussian peak shape.  We use this fitted peak shape 

to evaluate the integrated band intensity; in contrast, we have numerically integrated over 

the lowest-energy absorption band from S1 OTP centered at 605 nm.  The values of 𝑗 thus 

obtained will be used for relative normalization of transient spectral features measured 

from each system.  This approach is superior to normalizing data to a common peak 

molar absorptivity for both S1 transitions as their spectral line-shapes differ considerably. 

We have similarly evaluated band-integrated intensities for the long-lived 

absorption bands assigned to ring-closed products CDHP and DHT.   Assuming that 

100% of the pumped molecules are in the S1 states at time 𝑡 = 0, the integrated intensity 

𝑗 determined from the transient spectrum of the ring-closed state will be proportionate to 

the product of the transition oscillator strength AND the fractional yield for cyclization: 

𝑗𝐷𝐻𝑇 ∝ Φ𝑐𝑦𝑐𝑙𝑓𝐷𝐻𝑇 

If absolute oscillator strengths could be determined independently for the excited-state 

and ring-closed transitions, the cyclization yield could be quantified as 

Φ𝑐𝑦𝑐𝑙 =
𝑗𝐷𝐻𝑇
𝑓𝐷𝐻𝑇

∙
𝑓𝑂𝑇𝑃
𝑗𝑂𝑇𝑃

 

since the ratio 𝑗/𝑓 is proportional to the population of each state.  Alternatively, under the 

assumption that the absolute transition oscillator strengths are the same for the two S1 

transitions and also the same for the two ground-state transitions for the ring-closed 

configurations, 
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Φ𝐷𝐻𝑇

Φ𝐶𝐷𝐻𝑃
=

(
𝑗𝐷𝐻𝑇
𝑓𝑅𝐶

∙
𝑓𝑆1
𝑗𝑂𝑇𝑃

)

(
𝑗𝐶𝐷𝐻𝑃
𝑓𝑅𝐶

∙
𝑓𝑆1
𝑗𝐷𝑃𝐶𝐻

)
= (

𝑗𝐷𝐻𝑇
𝑗𝑂𝑇𝑃

) / (
𝑗𝐶𝐷𝐻𝑃
𝑗𝐷𝑃𝐶𝐻

) 

Thus, using only the assumption that the corresponding electronic states in these related 

molecules have similar oscillator strengths, we can assess whether the quantum yield for 

cyclization differs between DHT and DPCH. 

 Band integrals associated with OTP photochemical states were determined using 

magic angle data plotted in Figure 3.1(b) of the main text.  We determined the value of 

𝑗𝑂𝑇𝑃 by numerically integrating the OTP excited-state absorption band between 500 and 

700 nm; spectral intensity at lower wavelengths was left out as a higher excited-state 

transition appears below 500 nm.  𝑗𝐷𝐻𝑇 was evaluated by numerical integration of the 

entire visible transient band collected at later delays (20 ps).  Band integrals associated 

with DPCH photochemical states were determined using broadband magic angle data 

collected using visible white-light generated with calcium fluoride, which covers the 

range between 420 and 700 nm. 𝑗𝐷𝑃𝐶𝐻 was determined by first fitting the lowest-energy 

transition to a Gaussian line shape and then using this shape to determine the band 

integral.   The experimental spectrum collected at later delays was integrated numerically 

to determine 𝑗𝐶𝐷𝐻𝑃.  An additional intensity correction was required to account for the 

resolution-limited excited-state decay measured with DPCH (fastest decay component is 

440 fs, with effective resolution limited at 150 fs); in contrast, the OTP excited-state limit 

exceeds the effective spectral resolution by a factor of 20 and does not require an 

intensity correction.   

Based on this band intensity analysis we find that the relative quantum yield for 

cyclization is  



256 

 

Φ𝐷𝐻𝑇

Φ𝐶𝐷𝐻𝑃
= (

𝑗𝐷𝐻𝑇
𝑗𝑂𝑇𝑃

) / (
𝑗𝐶𝐷𝐻𝑃
𝑗𝐷𝑃𝐶𝐻

) =
0.21

0.22
= 0.95 

That is, the relative yield for cyclization from both S1 OTP and DPCH is roughly the 

same.  This back-of-the-envelope estimate of relative quantum yields suggests that 

difference in excited-state decay rate for OTP and DPCH is not associated with the 

presence of an additional competing non-adiabatic pathway, which would be expected to 

alter the cyclization quantum yield between systems.  As argued in the main text, this 

similarity in the cyclization yield rather indicates that excited-state decay occurs through 

a single state-crossing region through which the excited-state wave packet branches 

between cyclization and ground-state recovery. 
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Appendix 2 

Supporting Information for Chapter 4: 

Structural Control of Nonadiabatic Bond Formation:  The Photochemical 

Formation and Stability of Substituted 4a,4b-dihydrotriphenylenes. 

  

A2.1. Experimental Methods 

A2.1.1 Synthesis of ortho-quaterphenyl (OQTP) 

Synthesis was adapted from the literature1 as follows:  1.08 g of 2-Iodobiphenyl (Alfa 

Aesar) was mixed with 1.28 g of copper powder (Fisher Scientific) and heated at 260 °C 

for 20 minutes . After sample had cooled to room temperature sample was purified on an 

alumina column with a hexane to dichloromethane gradient.  Ortho-quaterphenyl: 0.146 g 

(25% yield) of colorless crystals; mp 118 °C; 1H NMR (300 MHz, CDCl3) ; 13C NMR(300 

MHz, CDCl3). Mass. Spec. M+ 306.2. 
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Figure A2.2. 1H NMR Spectrum of OQTP 

Figure A2.1. 13C NMR Spectrum of OQTP 
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A2.1.2 Fluorescence/Excitation Spectra of OQTP and TPB 

 

 

 
Figure A2.3. Fluorescence and excitation spectra of OQTP and TPB in cyclohexane. 

Collected with a Perkin Elmer LS-5b. The fluorescence spectrum of TPB under the 

same conditions (identical excitation/emission slit widths, wavelength ranges, and 

optical density) as OQTP was not observable, therefore the slits were fully opened to 

obtain signal. This qualitatively predicts the fluorescence quantum yield of TPB to be 

much less than OQTP (ΦFl=0.01).2 
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A2.1.3 Nanosecond Transient  Absorption Spectroscopy: Time Resolution 

 

A2.1.4 Femtosecond Transient Absorption Spectroscopy: Details of Home-Built 

Instrumentation 

 Ultrabroadband femtosecond transient absorption was performed with prism 

dispersion based on the design of Megerle et. al.3 Supercontinuum generation using a 2mm 

CaF2 plate (United Crystals) and <1 μJ 800 nm beam focused with a 20 cm FL Convex 

Lens (UV-FS CVI) producing a probe pulse spanning 300-1100 nm. Following collimation 

Figure A2.4. Temporal Profile of 639 nm laser diode (Opnext) under experimentally 

optimized pulsing conditions. Collected with a photodiode (Thorlabs, DET10A, 1 ns 

risetime) and Tektronix DPO 3052 oscilloscope (500 MHz Bandwidth / 700 ps rise 

time, 2.5 GHz sampling rate). 
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with a 75 mm UV-Enhanced Aluminum Concave Mirror (Thorlabs), to minimize 

aberrations, a 20 cm FL concave parabolic mirror (Edmund Optics) focused into the sample 

cell and was then recollimated with a 5 cm FL concave parabolic mirror (Edmund Optics). 

For supercontinuum conditioning various filters were used for different probe ranges.  For 

UV/VIS measurements (300-700 nm) a specialty 800 nm High-Reflector (CVI) with high 

transmittance from 300-750 nm was used for filtering the fundamental. The UV/VIS probe 

was dispersed with a UV-Fused Silica Prism (CVI) and imaged onto the detector using a 

25 cm FL UV-enhanced Concave Mirror (Newport). For VIS/NIR measurements (500-

1000 nm) the fundamental was suppressed using IR-140 dye (Sigma-Aldrich) in 

chloroform with an absorption maximum of ~815 nm and the concentration of the dye 

solution was empirical adjusted (1-2 OD at 815 nm) to tailor the intensity of the probe 

beam. Additionally the center of the beam was removed with a ~3mm diameter circular 

beam stop at a ~2.5 cm collimated beam size to remove the most intense portion of the 

fundamental beam. The VIS/NIR probe was dispersed with a NSF-11 prism (Edmund 

Optics) and imaged onto the detector using a 15 cm FL UV-enhanced concave mirror 

(Edmund Optics). For further probe intensity shaping in both ranges a continuously 

variable reflective neutral density filter (Thorlabs) was utilized directly before the detector 

to attenuate wavelengths on and near the fundamental while allowing the weaker intensity 

of the red and blue edges to pass with high transmission. 

 Calibration of both UV/VIS and VIS/NIR detectors is performed using a BG-36 

filter (Schott) with the various absorption maxima, minima and 50 %T  features serving as 

calibration points. The position of these absorption features are mapped from pixel number 

to wavelength according to a function that includes the index of refraction of each prism 
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material.3 This function is fit using an Levenberg–Marquardt algorithm in NI LabView. 

 Two 256 pixel NMOS photodiode arrays (Hammatsu S3901-256Q) were utilized 

for detection of UV/VIS and VIS/NIR regions of the supercontinuum probe. Each array 

collects and exports data at the laser repetition rate allowing for shot-to-shot correlation 

with synchronization and control from a National Instruments data-acquisition device 

(PCI-6122) and NI LabView. Typically 2000-3000 consecutive pump on/off cycles were 

averaged for transient absorption measurements. 

 

A2.2. Data Analysis 

A2.2.1 Global Analysis: Details of Algorithm 

 For this analysis, the matrix of time and wavelength-dependent data (A) was first 

decomposed by SVD: A = USVT, where U contains the spectral eigenvectors in column 

space, S contains the weights for each vector in U and V, and V contains the temporal 

eigenvectors in row space. The number of significant, unique contributing spectral 

components was assessed from the diagonal elements of S.  The time-dependence of each 

relevant species for any given kinetic model was calculated with initial-guess kinetic 

parameters and assigned to a specific column of a matrix F; F does not include another 

column or function that accounts for coherent artifacts within the pump-probe temporal 

overlap. The kinetics defined in F are convoluted with the instrument response to 

reproduce the onset of transient absorption and the resolution of the measurement. Best-

fit kinetic parameters were then determined using a nonlinear least squares surface fitting 

routine:  In short, model parameters that determine the values of F were adjusted until the 

product A*=D* FT best fit the matrix A, where D*=A FT+ and is commonly known as the 



266 

 

Species-Associated-Spectra or SAS. Specifically this form of global analysis is a Direct-

MLS (Matrix Least-Squares) technique in which SVD assists by determining the number 

of spectral components in S and therefore aids in choosing appropriate kinetic models.4  

Goodness of fit was assessed from the size of residuals between A and A*. The global 

analysis algorithm was homebuilt in MATLAB 2014b. 
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A2.2.2 Species-Associated Spectra (SAS) / D-Matrix Spectra 

 

 

Figure A2.5. Global analysis of OTP using a 2 state sequential model (A → B). (a) The D 

Matrix / SAS for the 2-state model reproduce the observed spectra at early time delays (~1 

ps, species A) and late delays (> 100 ps, species B) , which is supported by the major  

spectral contributions along the diagonal of S (0.735, 0.19, 0.021, 0.012,...). The slow 38 

ns decay of DHT allows for a satisfactory fit with this model over the experimental 

timescale. (b) Residual plot of global fit on a quasi-logarithmic time axis. Note the positive 

to negative trend in residuals at ~355 nm where vibrational relaxation is observed for DHT. 
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Figure A2.6. SVD Analysis focused on vibrational relaxation of OTP. Reducing both the 

wavelength range and longest time delay to 100 ps focuses the 3-state global fit on the peak 

narrowing due to vibration relaxation. (a) and (b) show the SAS and residuals for a 2-state 

model that poorly fits the region from 350-380 nm, where vibrational relaxation is 

observed. (c) and (d) show the SAS spectra and residuals for a 3-state model that greatly 

improves the fit. Species B closely resembles the spectrum of vibrationally hot DHT, while 

species C resembles the spectrum of vibrationally cool DHT at time delays > 100 ps. The 

resultant timescales are τ1=1.92 ps and τ2 =6.92 ps. 
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Figure A2.7. Global Analysis of TPB using a sequential 3-state model. The model utilizes 

only two experimentally observable states A and B, while the second rate that forms C is 

required to fit the disappearance of 9-PhDHT with a nanosecond timescale. The resultant 

timescales are τ1=8.1 ps and τ2 =4392 ps, which are similar to the timescales determined 

by exponential fits at single wavelengths from fs and ns transient spectroscopies. The 

diagonal elements of S are 0.737, 0.136, 0.028, 0.021, 0.013,... . (a) The SAS of the global 

fit closely matches the initial (Species A) and final (Species B) time delays of the fs-TA 

spectra. (b) Residual plot of global fit to data. 
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Figure A2.8. SVD Analysis focused on vibrational relaxation of TPB. Reducing both the 

wavelength range and longest time delay to 150 ps focuses the 3-state global fit on the peak 

narrowing due to vibration relaxation. (a) and (b) show the SAS and residuals for a 2-state 

model that poorly fits the region from 350-380 nm, suggesting the presence of vibrational 

relaxation similar to that of OTP. (c) and (d) show the SAS spectra and residuals for a 3-

state model that greatly improves the fit. Species B closely resembles the spectrum of 

species C suggesting that vibrational relaxation is more subtle than that of OTP. The shorter 

initial lifetime was constrained to 8 ps, resulting in a vibrational cooling timescale (τ2) of 

32.6 ps. 
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Figure A2.9. Global Analysis of OQTP fs-TA spectra. The SVD analysis of the data 

predicts that 3 components make up 95% of the observed signal. The diagonal of  S was 

0.82, 0.09, 0.05, 0.02, 0.01, … . (a) The resultant SAS from the fit of the shown 3-state 

kinetic model (inset). (b) Residual plot from fit to experimental data with the largest error 

in the region between 0-0.5 ps that contains coherent artifacts due to pump-probe overlap. 
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Figure A2.10. SAS of OQTP from various kinetic models. (a) Parallel kinetics with one 

unobserved product, D. (b) Sequential 3-state kinetics also with direct reaction between the 

first (A) and last (C) species. (c) 3-state kinetics with an equilibrium between the reactant 

(A) and an intermediate (C). (d) Sequential 3-state kinetic model. 
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A2.3. Computational Results 

All Calculations performed in GAMESS5 without Symmetry (NOSYM=1) and are with 

the default convergence criteria. 

 

 

 

Figure A2.11. The difference in energy between open and closed isomers (ΔH) of 

various substituted OTPs produced from B3LYP/6-31+G* computations. Note that that 

all closed forms are L conformers, except for the 9-F and 9-OH substituted DHTs. All 

substituted OTPs have consistently higher energy differences than that of unsubstituted 

OTP. 
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Figure A2.12. Energy differences between L and S conformers of various substituted 

DHTs. The 9-OH and 9-F substitutions are absent due to the presence of only S conformers. 

Large substituents (Ph, TB) with increased steric influence raise ΔE but with opposite sign 

for 1 and 9 substitutions. 



275 

 

 

 

 

 

 

 

Figure A2.13. Potential energy surface of TPB constructed from SA-CAS(2,2)-sto3g 

computations. TPB and OQTP show similarities along the reaction coordinate from 1.5 to 

2 Å but are different at larger distances. Most noticeable is that TPB does not have a 

quinoidal minimum and the FC region above the S0 TPB minima is ~2.5 eV above the S0/S1 

CI. 



276 

 

A2.4 Discussion of Quantum Chemistry Methods: Multi-Excitation Character and 

Dynamic Correlation 

The discrepancies between S1 minima located from the SACAS and TDDFT methods 

warrants a brief explanation in terms of their general applicability towards our systems.6-9 

While the multireference SACAS method allows for description of multiple excitations, 

conventional LR-TDDFT describes only single excitations but is much more economical 

and less computationally demanding allowing for larger systems and basis sets. TDDFT 

also includes dynamic correlation while its recovery for the SACAS method is dependent 

on active space and multireference perturbation theory (CASPT2, QDPT2) is required for 

its more complete recovery.10 Inspection of the OQTP B S1 quasi-quinoidal minima using 

the SACAS method shows approximately 18% single excitation character, 54% double-

excitation character and 19% triple-excitation character. Therefore TDDFT is ill-equipped 

to describe this S1 minima as well as conical intersections that are known to possess double-

excitation character but the small active space and basis of the SACAS method makes 

TDDFT results complementary.11 Together they provide a more rounded description of the 

excited-state showing the qualitative differences in the optimized structures resultant of 

different but complementary methods. 
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Figure A3.1. Schlenk cuvette (5 mm pathlength) used for air and water-free solution 

preparation. The barbed inlet (top) connects to a schlenk line (vacuum or N2); the red 

cap utilizes a PTFE coated septum to allow for addition or removal of solutions. 

Solutions are deaerated by Freeze-Pump-Thaw in the pear-shaped flask and are then 

transferred into the cuvette by tilting the flask. 

 

Appendix 3 

Supporting Information for Chapter 5: 

Excited-state Deactivation Pathways and the Photocyclization of BN-doped 

Polyaromatics 

 

 

A3.1. Sample Preparation 



280 

 

 

A3.2. Fluorescence Quantum Yield Determination 

 

Integrated fluorescence was determined for samples with various absorbances 

between OD 0.01 and 0.2 at 270 nm.  The fluorescence quantum yield was determined 

using Equation A3.1.1  

Φfl =
ΔI

ΔAbs
ΔIRef
ΔAbsRef

 
n

nRef
Φfl Ref  (Eqn. A3.1) 

 

Here 
ΔI

ΔAbs
 is the slope obtained by plotting integrated emission as a function of sample 

absorbance (whereas 
ΔIRef

ΔAbsRef
 is the same for the reference standard) and was determined 

by a linear least-squares regression (Figure A3.2).  n is the refractive index of the solvent 

environment for the sample, nRef is the refractive index of the solvent in the standard 

solution. Reproducibility of the determined quantum yields and soundness of method 

were verified by using two reference standards. 
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Figure A3.2. Integrated emission intensities vs. sample absorbance used to 

determine fluorescence quantum yields (Φfl) of 1 and 3 in cyclohexane with 

naphthalene and biphenyl as standards.1,2, 3  

 



282 

 

A3.3. Transient Absorption Spectroscopy 

 

Figure  A3.3. (a) fs-TA spectra obtained with 1 in THF upon 330 nm excitation. (b) 

Species associated spectra obtained from global analysis using a kinetic interconversion 

model (S1  T1, τ = 933 ps).
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Figure  A3.4. μs-TA spectra of (a) 1 and (b) 3 in deaerated THF with 330 nm 

photoexcitation. 
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Figure A3.5. ns-TA traces for (a) 1 and (b) 3 in deaerated THF with 320 and 330 nm 

photoexcitation, respectively. The probe wavelength was 405 nm for 1 and 450 nm for 3. 
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Figure A3.6. (a) fs-TA spectra obtained with 3 in THF upon 330 nm excitation. (b) 

Species associated spectra obtained from global analysis using a kinetic interconversion 

model (S1  T1, τ = 2.49 ns).   
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Figure A3.7. fs-TAS of 1 (a) and 3 (b) in a 95:5 THF:H2O solution by volume following 

330 nm photoexcitation. Solutions were prepared by adding water followed by heating 

(50 °C) and sonication for 30 minutes. Note that the spectral shapes are distinct from 

those collected with dry solutions and presented in Figures A3.2 and A3.3. 
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A3.4. Triplet Quantum-Yield Determination 

 

All the kinetic corrections for triplet quantum-yield determination described 

herein are based on procedures and equations taken from Carmichael and Hug.4 Since the 

probability of energy transfer from donor to acceptor is not always 100%, or alternatively 

that triplet donors relax via competing deactivation pathways, corrections must be 

introduced for the probability of energy transfer Ptr. This requires the determination of kD 

and ket which are calculated by measuring the decay rate for the donor in the absence 

(τD
Exp, Eqn. A3.5) and presence of acceptor (τD+A

Exp, Eqn. A3.6). 

𝐷 
3

𝑘𝐷
→ 𝐷 

1    (Eqn. A3.2) 

𝐷 
3 + 𝐴 

1  
𝑘𝑒𝑡
→ 𝐷 

1 + 𝐴 
3  (Eqn. A3.3) 

𝐴 
3

𝑘𝐴
→ 𝐴 

1    (Eqn. A3.4) 

𝜏𝐷
𝐸𝑥𝑝 =

1

𝑘𝐷
    (Eqn. A3.5) 

𝜏𝐷+𝐴
𝐸𝑥𝑝 =

1

𝑘𝑒𝑡[ 𝐴 1 ]+𝑘𝐷
   (Eqn. A3.6) 

𝑃𝑡𝑟 =
𝑘𝑒𝑡[ 𝐴 

1 ]

𝑘𝑒𝑡[ 𝐴 1 ]+𝑘𝐷
 [ 𝐴 
1 ]  (Eqn. A3.7) 

An additional correction is applied if kA is not small compared to ket[
1A]+kD that 

is a modification to the maximum ΔOD of the acceptor (ΔODA). The correction is given 

by calculating the time at which the acceptor absorption peaks, tmax (Eqn. A3.8), and 

scaling ΔODA as shown in Eqn A3.9. 

𝑡𝑚𝑎𝑥 = 𝑙𝑛(
𝑘𝐴

𝑘𝑒𝑡[ 𝐴 1 ]+𝑘𝐷
)(𝑘𝐴 − 𝑘𝑒𝑡[ 𝐴 

1 ] − 𝑘𝐷)
−1 (Eqn. A3.8) 

𝛥𝑂𝐷𝐴  ∙  𝑃𝑇𝐷 = 𝛥𝑂𝐷𝐴(𝑡𝑚𝑎𝑥) 𝑒
𝑘𝐴𝑡𝑚𝑎𝑥  (Eqn. A3.9) 
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Figure A3.8. μs-TA spectra obtained with benzophenone (a) and benzophenone/1 (b) 

photosensitization in benzene upon 360 nm excitation. (c) Species associated spectra 

(SAS) obtained from global analysis of benzophenone/1 using a kinetic interconversion 

model used to determine the extinction coefficient for the triplet of 1 (Donor  Acceptor, 

τD+A
Exp =2.35 μs). The lifetime of benzophenone in benzene (τD

Exp) was determined by an 

exponential fit at 532 nm to be 3.01 μs. 
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A3.5. Computational Results 
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Figure A3.9. Structures of dihydrophenanthrene (DHP) and the transition state for 

ring opening on the S0 (UB3LYP/6-31G*). The inter-ring C-C bond length is given in 

Å. 
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Appendix 4 

Supporting Information for Chapter 6: 

Impacts of Isoelectronic BN-doping on the Photochemistry of Polyaromatic 

Hydrocarbons:  Photocyclization Dynamics of Hexaphenyl Benzene and Hexaphenyl 

Borazine 

 

A4.1 Experimental Methods 

 

Figure A4.1. Custom-built 250 m pathlength flow cell. The flow cell frame is 

constructed from 2 pieces of aluminum bar stock with milled holes for windows, 

compression hardware and PFA tubing adapters (Cole-Palmer). The windows are 1-mm 

fused quartz microscope slides (AdValue Tech, FQ-S-003).  The window facing the inlet 

and outlet adapters are drilled with 0.5 cm holes for the passage of solvent into the cell. 

The optical path length is adjustable by use of PTFE seals of various thicknesses. [For a 

250 m path length, the PTFE seal is made from McMaster-Carr 8569k18 PTFE film). 
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Additional PTFE film was placed on the outside of the windows that seal the cell and 

provide a slight cushion between the glass and aluminum frame. Because PTFE provides 

excellent chemical resistivity but poor sealing properties the exterior of the flow cell was 

sealed with removable epoxy that has excellent chemical compatibility with many 

organic solvents (cyclohexane, hexane, ethanol, THF, CH2Cl2, etc.). The total cost of 

materials is ~ $150 providing an economical, low cost alternative for a short-path length 

flow cell. 
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A4.2 Experimental Results  

A4.2.1 Time-Resolved Spectroscopy 

 

Figure A4.2. Comparison of nanosecond time-resolved transient absorption of 4 in THF, 

under aerated (blue circles) and deaerated (red Xs) conditions, following 

photoexcititation at 266 nm and probed at 405 nm. The lifetimes under aerated and 

deaerated conditions are 2300 ± 300 ns and 1600 ± 300 ns, respectively. 
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Figure A4.3. Representative temperature dependent μs-TA data for 266 nm 

photoexcitation of 4 in THF as probed with a white-light LED at (A) 273 K and (B)193 

K. 
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Figure A4.4. Modified Eyring analysis for an activationless reaction (i.e. with Ea=0 in 

Equation 6.1 of the main text)  showing reasonable agreement to a linear fit with 

temperature (R2=0.93). 
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A4.2.2 Characterization of Photochemical Products 

 

Figure A4.5. Quantitative 1H NMR (400 MHz, CD2Cl2) of 4 collected with a relaxation 

time of 5 T1, where T1 was determined to be 2.242 s. 
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Figure A4.6. Comparison of 1H NMR (400MHz) of 4 before (blue) and after (red) 

irradiation in a Rayonet reactor. 
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Figure A4.7. Spectral overlap of 1H NMR of 4 and 6. The pure spectrum of 4 (red) was 

subtracted from the reaction mixture (blue) that shows the pure spectrum of 6 (green). 

Signal subtraction results in an adequate baseline and minimal spectral overlap such that 

accurate signal integration can be achieved with quantitative NMR.  
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Table A4.1. Calculated NMR shifts of 6 (R-CAM-B3LYP/6-31+G*) referenced to TMS 

(B3LYP/6-311+G(2d,p) GIAO) and further shifted by +0.25 ppm. The 3D illustration 

shown above at the right illustrates the propeller-like symmetry that results in similar 

shifts for n and n’ atoms.  

Atom Number Shift (ppm) 

1, 1’ 8.395 

2, 2’ 7.498 

3, 3’ 7.153, 7.104 

4, 4’ 7.668, 7.573 

5, 5’ 7.042, 7.134 

6, 6’ 7.246, 7.178 

7, 7’ 7.212, 7.274 

8, 8’ 7.282, 7.123 

9, 9’ 7.341, 7.439 

10, 10’ 6.786, 6.631 

11, 11’ 7.067, 7.156 

12, 12 ‘ 7.145, 7.129 

13, 13’ 7.042, 7.134 

14, 14’ 7.216, 7.050 
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Figure A4.8. Mass spectrum of a sample solution of 4 following UV irradiation for 24 

hours in the presence of I2.  
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Figure A4.9. UV-Vis spectra of a solution of 4 in cyclohexane before and after Mallory 

reaction, i.e. UV irradiation and oxidation with I2, corresponding to pure 4 and a mixture 

of 4 and 6, respectively.  
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A4.3 Computational Results 

 

Figure A4.10. HOMO and LUMO of 1 and 4 from R-CAM-B3LYP//6311+G*. 
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Figure A4.11. BS-U-CAM-B3LYP Kohn-Sham orbitals of 5b. 
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Figure A4.12. BS-U-CAM-B3LYP Kohn-Sham orbitals of 2b. 
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Figure A4.13. Scans of potential energy surfaces between 1/4 and conformers 2a/5a and 

2b/5b at the U-CAM-B3LYP//6-31G* level For the PES scan between conformers 2a/5a 

and 2b/5b (top) the torsional angle of the DHT subgroup was scanned, while for the scan 

between 1/4 and 2b/5b the photochemically formed CC bond was varied while freezing 

the rotational angle of the remaining 4 phenyl rings to prevent conformer switching mid-

scan. 
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Appendix 5 

Autocorrelator Operation Guide for Pulse Characterization 

 

A5.1 Function of Autocorrelator and Components   

 An autocorrelator is used for the determination of the time duration of a sub-

nanosecond laser pulse. Since the time response of the fastest (and most expensive) 

photodiodes and oscilloscopes are on the order of > 20 ps, a femtosecond or few 

picosecond duration laser pulse is much too fast to be resolved in time with such 

equipment. Therefore we use the self-gated nonlinear response of the laser pulse itself, or 

autocorrelation, to determine the time duration of the pulse.  

 The general layout and design for an autocorrelator is shown in Figure A5.1. 

Generally an autocorrelator consists of three parts: an interferometer, the optical mixing 

and detection of the autocorrelation signal, and the electronics that drive any 

optomechanical components and perform data acquisition. Since we self-gate the laser 

pulse, an interferometer serves to produce a replica of the input pulse that has been 

shifted in time. The optical mixing step is where the pulse self-interaction occurs and is 

described in the following section (A5.2). A description of the electronic components is 

provided in section A5.3. 
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A5.2 Optical Setup 

 A Michelson interferometer serves two purposes: to generate a replica of the input 

pulse and control the time delay between the input and replica pulse. For the purpose of 

autocorrelation one arm of the interferometer has its end mirror mounted on a speaker 

and a translation stage to provide coarse optical delay. To align the interferometer, ensure 

 

Figure A5.1. Experimental setup of a autocorrelator. The interferometer provides a 

replica of the initial pulse that is optically mixed in BBO or by 2 photon absorption in 

a LED. The electronics simultaneously scan the time delay, collect the integrated 

signals and output the intensity autocorrelation on a calibrated time scale. 
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that the beamsplitter is tilted to 45 degrees relative to the input so that the beam is split 

into a perpendicular and collinear leg. Each path is retroreflected and should be spatially 

overlapped roughly with the input beam at the beamsplitter. Finally the recombined 

beams from the interferometer should be spatially overlapped far field (2-3 feet from the 

beam splitter) by adjustment of one end mirror while the speaker-mounted mirror is 

fixed. Note that the speaker displacement as a function of voltage must be calibrated by 

interferometric measurement of a CW HeNe laser.1,2 

 The overlapped beams are then focused with a concave mirror and for visible 

wavelengths two options are available for intensity autocorrelation: a two-photon detector 

(LED, laserdiode or photodiode) or SHG in BBO.1,3,4 From an operational standpoint the 

two-photon detector is the simplest since it only requires the two-photon detector to be 

placed at the focal plane of the overlapped beams. Any device that emits or detects light 

can be used as a two-photon detector provided that the incident light is above the band 

gap of the material (for a list of commercial devices see reference).5 For example, GaN 

laser diodes and LEDs emit ~400 nm light, are useful for autocorrelation from ~425-800 

nm and are readily available for under $10.6,7 Alternatively, SHG in BBO can be used for 

intensity autocorrelation, which requires the BBO crystal to be placed at the focal plane 

and the subsequent output wavelength to be filtered by a dichroic or bandpass filter.1 

Comparison of results between the two approaches in our lab with pulse widths >=35 fs 

shows that they provide nearly equivalent results (Figure A5.8). 
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A5.3 Electronics Setup 

 The autocorrelation requires multiple electronics to simultaneously scan time 

delay and collect signals for characterization including: an oscilloscope, speaker 

driver/waveform generator, and gate integrator for the photodiode signal. 

 

Waveform Generator: Generates a saw-tooth (preferably 80% rise/20% fall time) wave at 

a 1-2 Hz frequency for real-time feedback for pulse compression adjustment. This voltage 

is output to an oscilloscope and speaker. 

 

Gate Integrator: Integrates the autocorrelation signal for ns-μs’s to reduce noise from dark 

background. The signal is first sent to a preamplifier and then to the gate integrator 

module. A trigger is also necessary as an input for synchronization to the laser repetition 

rate. The gated region and signal must be inspected simultaneously on an oscilloscope 

and overlapped using the delay and width knobs. Make sure the integration mode is set to 

“last sample” that will output the result on the next shot. 
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A5.4 Modification for Deep-UV/266 nm Autocorrelation 

Autocorrelation of 266 nm pulses can be performed by two-photon absorption in 

BBO.8,9 However this is performed in a pump-probe geometry that requires a few 

modifications to the autocorrelator. The one interferometer end mirror is replaced with a 

retroreflector and that beam is used as the pump. Both beams are focused using the 

concave mirror and the focal point is found by translating the BBO crystal on a pinion 

stage (“Z-scan”) until the pump beam is visibly attenuated. The initial setup and locating 

 

Figure A5.2. Modifications to autocorrelator for 266 nm measurement based on 2PA 

in BBO. A pump-probe geometry is used for the decrease in probe transmission on a 

photodiode. Note that to obtain optimal signal the BBO crystal should be translated 

(“Z-scanned”) to find the true focal point. 
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the pump-probe overlap is greatly simplified by using a 1cm cuvette of chloroform which 

has a substantial 2PA coefficient.9 The location of optimal overlap is difficult to locate 

however because thermal lensing effects (beam profile distortions) will occur when the 

beams are nearly overlapped. Once signal is located with chloroform the process can be 

repeated again with BBO but with the use of much lower pump power (<1 mW will 

provide sufficient signal) to prevent damage to the crystal. Note that other simpler 

autocorrelation methods for deep UV autocorrelation are possible with the most attractive 

and economical being two-photon induced fluorescence of BaF2.
10–12 
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A5.5 Experimental Results 

 

 

Figure A5.3. Experimental Setup of two-photon absorption (TPA) autocorrelator for the 

determination of 266 nm pulse widths. 
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Figure A5.4. Comparison of commercial autocorrelator (top) and homebuilt 

autocorrelator (bottom) collected using SHG in BBO. The voltage waveform used to 

drive the speaker for scanning time delay (middle). 
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Figure A5.5. Autocorrelation of various OPA wavelengths using SHG in BBO. 
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Figure A5.6. Observation of pulse broadening due to BK7 glass following 

autocorrelation of 650 nm using SHG in BBO. 
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Figure A5.7. Autocorrelation of 450 & 500 nm using two-photon signal from a GaN (405 

nm) laser diode. 
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Figure A5.8. Comparison of autocorrelation methods for 650 nm by SHG in BBO or by 

two-photon signal in GaN. Note that the GaN LED has a broad Gaussian background that 

requires a bi-Gaussian Fit in order to extract the true, sharper autocorrelation feature that 

is within 15% of the autocorrelation results in BBO. 
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Figure A5.9. TPA autocorrelation of 266 nm in 200 μm BBO in addition to the pulse 

broadening induced by the addition of fused silica to the beam path. The FWHM/√2= 49, 

57 and 71 fs as the pathlength of fused silica increases from 0 to 2 mm. 
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Appendix 6 

Details Regarding Prism-Based Femtosecond Transient Absorption Experiment: 

PDA Operation, Optical Setup and Instructions for Daily Use 

A6.1 PDA operation and synchronization 

 

 

 

 

Figure A6.1. Flowchart for operation of photodiode arrays (PDA). (1) The laser 

timing box (SDG Elite) initiates data acquisition by triggering a DAQ that (2) outputs 

a clock to the PDA driver for reading pixels. (3) Finally the PDA driver outputs a 

trigger to read the pixel data that can also be used to synchronize other external 

signals, such as choppers and photodiodes.  
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A6.1.1 Start-up 

- Turn on power supply (check the following parameters: 12-12.5 V, and series) 

- NEVER input start and clock signals before the PDA power supply has been turned on! 

The labview program has checks in place to prevent this from happening. 

- connect start to Delay 7 and master clock to clk 

A6.2 Synchronizing the START and Clock signals 

A6.2.1 Background and Timing Diagram 

 

 

Figure A6.2. Timing diagram for S3901 NMOS array using C7884 driver. The master 

clock (CLK) and master start (Start) are the necessary inputs for driving pixel readout. 

The C7884 driver uses CLK and Start to generate the rest of the signals with Trigger 

providing the synchronization for data collection of the Video output (Data Video) 

using a DAQ. 
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  It is VERY important that the start and clock signals are synchronized. Briefly, 

Delay 7 (PFI 0) is used to initiate the clock pulse train that reads off each pixel and this 

pulse train is assigned to Master Clock (PFI 12). The PDA requires a single start pulse 

which is split from Delay 7. 

A6.2.2 How to perform Synchronization 

 

- Insert master clock and Delay 7 into an oscilloscope. Use Delay 8 as your trigger on the 

oscilloscope as well. 

- Open "PDA_Driver_v1.vi". Use frequency 1.1 e+6. This utilizes an appropriate 

 

Figure A6.3. Picture of Synchronization waveforms with the master start in yellow 

and master clock in blue. Note that the start pulse encompasses the first master clock 

pulse. 
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integration time without extending beyond the 1 ms time between pulses (1kHz rep rate). 

- Adjust the pulse width (0.8-1 us) and delay time of Delay 8 using the SDG elite until the 

trigger covers the 1st clock pulse. Make sure the delay is set so that the trigger fall signal 

is between the 1st and 2nd clock pulse and is outside of the clock jitter. 
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A6.3 Overview of Experimental fs-TAS Setup and Dual Spectrographs 

 

Figure A6.4. Layout of Broadband fs-TAS Experiment with annotated Pump (blue line/text) and Probe (red line/text) lines.
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Figure A6.5. Dual Spectrographs for wavelength dispersion of UV (blue line/text) and 

Visible (red line/text) wavelengths allowing for simultaneous  ultra-broadband (300-1000 

nm) collection of fs-TAS spectra. 
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A6.4 Calibration and Setup Procedure for Prism-Based  fs-TAS Instrument 

1. Pre-Experimental Setup: Alignment & Calibration 

1A. Optical Set-up 

1. Align Stage by using permanent iris pair running parallel to WLG. 

2. Adjust Focusing & collimation of probe beam. 

3. Center diverging WL onto concave mirror. 

4. Adjust pinion stage of concave mirror to collimate beam (roughly) 

5. Use mirror after 2nd parabolic mirror to direct WL beam far distant to check 

collimation.. 

6. Place beamblock/card as far away from 2nd parabolic mirror as possible. This will 

be used for optimizing the collimation of the probe. 

7. Adjust pinion stage of second parabolic mirror, until the beam spot is as 

small/collimated as possible. Adjust pinion stage but don't adjust the position on 

table! (See Note below) 

8. Adjust the position of the concave mirror, until the beam spot is as 

small/collimated as possible. 

9. Adjust horizontal and vertical tilt of mirror between concave mirror and 1st 

parabolic mirror to make beam as circular as possible. You will notice the beam will 

streak, or look like a comet when you are too far up or down or side to side. 



327 

 

10. Repeat steps 5-7 until beam is circular and well collimated. 

11. Remove mirror after 2nd parabolic mirror. 

 Note: It is important to never move the position of both parabolic 

 mirrors. They are aligned good enough that fine adjustment is controlled by 

 the mirror before them. It is incredibly difficult to adjust the parabolic mirrors 

 finely by hand so the easiest solution is to keep them in place. Don't move  them, 

only adjust the knob for the pinion stage. 

12.  Align WL beam through Irises into prism spectrograph by "dog-legging". 

 

1B. Collect Calibration File(s) 

1. Collect Reference and Background file with an average of >1000, making sure to 

close spectrograph lid. 

2. Use flip mounts to collect transmission of LP filters or absorption of bg-36 filter. 

Close lid, click absorption or transmission, and save spectra. 

1C. Pixel to Wavelength Mapping 

1. Import filter file(s) and enter the wavelength at each pixel for a peak, valley or 

half rise. 

2. Re-run program and check that the fit to experimental points is good. 

2. TA Experiment Setup & Data Collection 
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2A. TA Tweak Mode 

1. Turn on Chopper, make sure its set at 500 Hz. 

2. Turn on TA Tweak mode, set averaging ~100. 

3. Move to a Delay/Position after time zero. If time zero is not known it can be 

found within ~.5 ns using a photodiode and oscilloscope. 

4. After preparing pump beam: Align beam through chopper (checking phase), 

through lense, and into sample on top of probe spot. The lens position should be adjusted 

so that the pump spot is ~5 times larger than the probe spot. When the pump and probe 

spot become nearly equal in size overlaps become difficult to find, the pump can excite a 

fraction of the probe spot (spatial chirp), and as the stage moves the overlap can change. 

So always keep your pump spots big compared to the probe. 

5. Finely adjust overlap while monitoring TA tweak mode until the maximum signal 

is acheived. Flip chopper if signal is inverted. 

6. Find time zero by finding the stage position directly before the first sign of TA 

signal is seen. Take note of the stage position. 

 2A. TA Data Collection Mode 

1. Enter Time-Zero, set chopper flip, name your file, set averages, and enter time 

delay text file. 

2. Start Program. TA data collection will begin. 
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Appendix 7 

Nanosecond to Microsecond Transient Absorption 

 

A7.1 Experimental Details for Nanosecond to Microsecond Transient Absorption 

 The ns/μs TA experiment utilizes an auxiliary light source, a LED or laser diode, 

that can be electronically triggered relative to the amplifier output allowing for time 

delays to be achieved up to the laser repetition rate. The experimental setup requires the 

synchronization of the pump and probe as illustrated in Figure A7.1 The lasing timing 

electronics (SDG Elite) provide a 1 kHz signal to a chopper that is reduced to 250 Hz for 

optical chopping of the pump pulse and another 500 Hz signal that triggers the pulsing of 

the LED or laser diode at the same rate. The 4 resultant optical phases are shown in the 

inset of Figure A7.1 that allow for fluorescence correction of the transient absorption 

signal. 

 

Figure A7.1. Schematic for experimental ns/μs TA setup 
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A7.2 Description of Pulse Generation Electronics 

 Two pulse generators are available in the lab that vary in their output 

voltage/current and time resolution. The first is a commercial ps to ns laser diode driver 

(Highland Technology T165) that provides ~1 ns time-resolution but with low 

current/voltage limited to 400 mA/~1V. The reader is directed to the manufacturer’s 

website for a list of specifications and an operation manual for this piece of equipment. 

The second pulse generator is a home-built circuit with >1 A and ~18 V pulse output that 

offers higher light intensity, broadband spectral coverage when coupled with a white-

light LED, and a time resolution of ~300 ns. The circuit is comprised of 2 parts: a pulse 

width modulator (PWM) and the amplification stage. The PWM delays a replica of the 

input pulse using a Schmitt trigger and RC circuit that is followed by an AND TTL logic 

gate. The timing diagram for the PWM circuit is shown in Figure A7.2. The PWM circuit 

 

Figure A7.2 Timing diagram for PWM circuit. 
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allows for pulse widths less than that achievable using the SDG Elite with a minimum 

pulse width of 500 ns. The output of the PWM circuit is then amplified using a MOSFET 

driver and MOSFET to generate a 18V and few Amp pulse from the weak initial TTL 

pulse. The circuit is shown in Figure A7.3 and the corresponding part numbers for the 

IC’s are provided in Table A7.1. 

Table A7.1. Description and part numbers for IC components shown in Figure A7.3 

Label Description Part number 

A 5V Linear Voltage Regulator MC78M05BTG 

B Schmitt Trigger Inverter SN74HC14N 

C TTL AND Logic Gate SN74HC08N 

D MOSFET Driver MIC4452YN 

E N-channel Enhancement Mode MOSFET DMG4N65CTI 
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Figure A7.3. Homebuilt LED pulsing circuit with IC description and part numbers 

provided in Table A7.1.  Small blue capacitors are 1 nF while large black 

capacitors are 1 F. 

 



333 

 

Appendix 8 

Global Analysis Algorithm 

 

 

7.1 MATLAB Code for Global Analysis of Transient Absorption Spectra 

 

function MultiSVDconv_wEr_v3(file,lambda,Range1,Range2,stop,model,fitTyp1) 

%% Singular Value Decomposition 

% The Kinetic Model must be adjusted to fit the Data! 

% lambda: use this wavelength for determining the instrument response. 

% stop: last time delay to fit. 

%       rank *(!Set automatically now!): sets the number of spectral components. 

%           Choose a value by viewing the columns of the U and S matrix and 

%           noting how many columns have data/a trend compared to random 

%           noise. 

% Range1 & Range2 : Lower and Upper Bounds on Wavelengths to Fit 

% fitTyp1: Choose SVD (fit to V*-V) = 0 

%       or SVD-Based MLS (fit A*-A) = 1 

%           See Hendler & Shrager. J. Biochem. Biophys. Meth. 1994, 28, 1-33. 

% Model: Choose kinetic model- 

% * All models contain one extra species/function that is not part of the kinetic 

%       fit. It includes the IRF and is used to account for coherent 

%       artifacts that should clean up the fit within the pump-probe 

%       temporal overlap. 

 

%               !!!Rank 2!!! 

%           Kinetic Interconversion Models 

%           9. A -> B 

%           10. A -> B, A -> C 

%           11. A -> B (biexp decay of A, B=1-A) 

%           12. B <-> A -> C, B is undetected! 

%           13. A -> B -> C (C is undetected!) 

%           14. A -> B -> C -> D (A , D is unobserved) 

%           15. A -> B -> C, A -> D , (A and B are detected!) 

 

%               !!!Rank 3!!! 

%           17. A -> B -> C 

%           18. A -> B, C -> D (D is undetected!) 

%           20. A -> B -> C, Bo is not equal to Zero! 

%           21. A -> B (biexp decay of A, B=1-A), C -> D (D is undetected!) 

%           22. A -> B -> C, A -> D , (A, B, and D are detected!) 

%           23. B <-> A -> C 

%           24. C <- A -> B -> C 

%           25. A -> C <- B 

%           26. A -> C <- B (Ao =X Bo) 
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%           27. A -> B -> C -> D , (D is undetected!) 

 

%% Import Data 

full = importdata(file); 

[r c] = size(full); 

 

t=full(1,2:c); 

WL=full(2:r,1); 

[LastWL x]=size(WL); 

data = full(2:r,2:c); 

 

%% Trim Data to Range1 to Range2 

MinWL = WLIndex(Range1,WL); 

MaxWL = WLIndex(Range2,WL); 

data=data(MinWL:MaxWL,:); 

[r3 c3] = size(data); 

WL=WL(MinWL:MaxWL); 

 

%% Trim Time Array set-up %%%%%%%%%%% 

 

% Stop Data At 

StopT=tIndex(stop,t); 

t=t(1:StopT); 

 

%remove Long Time points from data matrix 

data=data(:,1:StopT); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% ---   Specify Wavelengths to Display Trace    ---%%% 

WLtrace1 = lambda; 

trace1row = WLIndex(WLtrace1,WL); 

 

%% Define Data Trace 

trace1  = data(trace1row, :); 

 

%% Set Data Fitting Values 

options = optimset('TolFun',1.e-12,'MaxFunEvals',200,'MaxIter',200,'TolX',1e-12); 

 

%% Determine stepsize for interpolation 

[Blah, maxt0]=max(trace1); 

 

if trace1(maxt0)>10 

inc=2; 

else 

inc=0.05; 
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end 

inc 

%% Determine t0 (redefine t1) and Sigma!!! 

 

shortt0=tIndex(-0.5,t) 

ts=t(shortt0-1:maxt0+2) 

trace1s=trace1(shortt0-1:maxt0+2) 

 

%% Determine conditions for us or fs TAS 

if trace1(maxt0)>10 

%Initial Conditions; 

x0=[400 5e-4 0.01]; 

%lower bounds 

xl=[50 0 -700]; 

%upper bounds 

xu=[500 10 700]; 

else 

 %Initial Conditions; 

x0=[0.1 5e-4 0.01]; 

%lower bounds 

xl=[0.05 0 -5]; 

%upper bounds 

xu=[0.2 10 5]; 

end 

 

[x resnorm residual exitflag output]= 

lsqcurvefit(@fitFunct0ANDsigma,x0,ts,trace1s,xl,xu,options); 

'Sigma      Amplitude      t0 adjust' 

x 

figure('name','Instrument Response'); 

plot(ts,fitFunct0ANDsigma(x,ts),ts,trace1s); 

 

t0adj=x(3); 

t=t+t0adj; 

 

sigma1=x(1); 

FWHMinfs=(sqrt(-2.*(sigma1.^2).*log(0.5)).*2).*1000 

stop=stop+t0adj; 

 

%% Select Rank 

if model<=16 

    rank=3; 

else 

    rank=4; 

end 
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%%%%%%% Global Time Setup %%%%%%%%%%%%%% 

 

% SVD %%%%%%%%%%%%%% 

Data2=data; 

transData=data; 

[U,S,V]=svd(transData); 

 

A=transData; 

[Ur, Uc]=size(U); 

[Vr, Vc]=size(V); 

 

hold off; 

 

%% Analysis of S 

U=U(1:Ur,1:rank); 

 

normalizeS=sum(sum(S)); 

Norm_S=S(1:8,1:8)./normalizeS 

 

figure('name','S matrix Diagonal'); 

plot(1:1:8,diag(S(1:8,1:8)./normalizeS)); 

 

S=S(1:rank,1:rank); 

V=V(1:Vr,1:rank); 

 

%% Model Specific Surface Fitting 

options = optimset('TolFun',1.e-15,'MaxFunEvals',500,'TolX',1e-15,'MaxIter',750); 

 

%% Rank 2 

%% Kinetic Models 

 

% Kinetic: A -> B 

if model==9 

x0b = [10]; 

low = [1]; 

high = [5000]; 

 

if fitTyp==0 

[x resnorm residual exitflag output]= 

lsqcurvefit(@Vstar_K_AtoB,x0b,t,V,low,high,options); 

else 

[x resnorm residual exitflag output]= 

lsqcurvefit(@Vstar_K_AtoB,x0b,t,A,low,high,options); 

end 

VstarFinal=Vstar_K_AtoB(x,t); 

y=x; 
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% Uncomment next line to determine error in lifetime 

%ErrAtoB(y,V,t,residual) 

VstarFinal=Vstar_K_AtoB(x,t); 

end 

 

% Kinetic: A -> B, A -> C 

if model==10 

x0b = [1000 1000]; 

low = [1 1]; 

high = [10000 10000]; 

 

if fitTyp==0 

[x resnorm residual exitflag output]= 

lsqcurvefit(@Vstar_K_AtoB_AtoC,x0b,t,V,low,high,options);; 

else 

[x resnorm residual exitflag output]= 

lsqcurvefit(@Vstar_K_AtoB_AtoC,x0b,t,A,low,high,options);; 

end 

 

VstarFinal=Vstar_K_AtoB_AtoC(x,t); 

end 

 

%% output Results and Residual for V 

 

x 

ResidualSquaredOfV=sum(transpose(sum(residual.*residual))) 

 

%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% Build Surface Fit 

FFinal=F; 

%H=transpose(pinv(HstarT)); 

 

H=transpose(V)*transpose(pinv(F)); 

 

Dstar=U*S*H; 

Astar=Dstar*transpose(F); 

 

%% Residual Plot 

figure('name','Residual Plot','Position',[1 1 800 500]) 

 

EndT=length(t); 

DataResidual=Astar-data; 

 

%%%%%%%%% error analysis %%%%%%%%%%% 
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 preSSE=DataResidual.*DataResidual; 

 SSE=sum(transpose(sum(preSSE))) 

  

 FitMean=mean(mean(data)); 

 preSST=Astar-FitMean; 

 SST=sum(transpose(sum(preSST.*preSST))); 

  

 Rsquared=1-(SSE./SST) 

  

 %% Plot and Normalize D Matrix or Species Associated Spectra (SAS) 

figure('name','D Matrix','Position',[1 1 800 500]) 

D1=Dstar(:,1); 

D2=Dstar(:,2); 

maxD1 =max(abs(D1)); 

maxD2 =max(abs(D2)); 

scaleD2=maxD1./maxD2 

 

 if rank==2 

plot1=plot(WL,D1,WL,scaleD2.*D2,'LineWidth',2); 

 end 

  

  if rank==3 

D3=Dstar(:,3); 

maxD3 =max(abs(D3)); 

scaleD3=maxD1./maxD3 

 

plot1=plot(WL,D1,WL,scaleD2.*D2,WL,scaleD3.*D3,'LineWidth',2); 

  end 

  

    if rank==4 

D3=Dstar(:,3); 

maxD3 =max(abs(D3)); 

scaleD3=maxD1./maxD3 

D4=Dstar(:,4); 

maxD4 =max(abs(D4)); 

scaleD4=maxD1./maxD4 

 

plot1=plot(WL,D1,WL,scaleD2.*D2,WL,scaleD3.*D3,WL,scaleD4.*D4,'LineWidth',2); 

    end 

 

%% Save SVD Fit to Data %%%%% 

FullSpec=[ [0 ; WL] [t-t0adj ; Astar]]; 

dir= pwd; 

lines=[dir,'/SVDFitOut_', file]; 

dlmwrite(lines, FullSpec,'delimiter','\t'); 
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FullSpec2=[ [0 ; WL] [t-t0adj ; data]]; 

dir= pwd; 

lines=[dir,'/DataFitOut_', file]; 

dlmwrite(lines, FullSpec2,'delimiter','\t'); 

 

%%%%%%%%%%%%% Auxillary Functions %%%%%%%%%%%%%%%%% 

 

%% Rank 2 %%%%%%%%%%%%%%%% 

%% Kinetic Models 

function Vstar1 = Vstar_K_AtoB(A,t) 

%% A -> B 

tau1=A(1); 

Ao=1; 

 

% Species A 

Exp1=heaviside(mt).*Ao.*exp(-mt./tau1); 

% Species B 

Exp2=heaviside(mt).*Ao.*(1-exp(-mt./tau1)); 

% Convolute and Interpolate 

GE1=conv(Gaus,Exp1); 

GE2=conv(Gaus,Exp2); 

GE1=interp1(mt,GE1(1,t0IndexConv-FirstTOZero:t0IndexConv-1+ZeroTOLast),t); 

GE2=interp1(mt,GE2(1,t0IndexConv-FirstTOZero:t0IndexConv-1+ZeroTOLast),t); 

% Coherent Artifact 

CA=interp1(mt,Gaus,t); 

 

F=transpose([GE1 ; GE2 ; CA]); 

 

if fitTyp1==0 

HstarT=pinv(F)*V; 

Vstar1=F*HstarT; 

else 

H=transpose(V)*transpose(pinv(F)); 

Dstar=U*S*H; 

Astar=Dstar*transpose(F); 

Vstar1=Astar; 

end 

end 

 

%% %%%%%%%%%%%%%Rank 3 %%%%%%%%%%%%%%%% 

function Vstar1 = Vstar_K_AtoBtoC(A,t) 

% #17 

%% A -> B -> C 

Ao=1; 

tau1=A(1); 

tau2=A(2); 
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k1=1./tau1; 

k2=1./tau2; 

% Species A 

Exp1=heaviside(mt).*(Ao.*exp(-mt.*k1)); 

% Species B 

Exp2=heaviside(mt).*((Ao.*k1./(k2-k1)).*(exp(-mt.*k1)-exp(-mt.*k2))); 

% Species C 

Exp3=heaviside(mt).*(Ao.*(1 + (1./(k1-k2)).*(k2.*exp(-mt.*k1)-k1.*exp(-mt.*k2)))); 

% Coherent Artifact 

CA=interp1(mt,Gaus,t); 

 

GE1=conv(Gaus,Exp1); 

GE2=conv(Gaus,Exp2); 

GE3=conv(Gaus,Exp3); 

Exp1i=interp1(mt,GE1(1,t0IndexConv-FirstTOZero:t0IndexConv-1+ZeroTOLast),t); 

Exp2i=interp1(mt,GE2(1,t0IndexConv-FirstTOZero:t0IndexConv-1+ZeroTOLast),t); 

Exp3i=interp1(mt,GE3(1,t0IndexConv-FirstTOZero:t0IndexConv-1+ZeroTOLast),t); 

 

F=transpose([Exp1i ; Exp2i ; Exp3i ; CA]); 

if fitTyp1==0 

HstarT=pinv(F)*V; 

Vstar1=F*HstarT; 

else 

H=transpose(V)*transpose(pinv(F)); 

Dstar=U*S*H; 

Astar=Dstar*transpose(F); 

Vstar1=Astar; 

end 

end 

 

% Find t0 and sigma 

function fitFunc=fitFunct0ANDsigma(a,t3) 

sigma1=a(1); 

A1=a(2); 

t0=a(3); 

 

if inc<0.99 

t4=t3(1):inc:(t3(end)+0.2); 

else 

t4=t3(1):inc:(t3(end)+5); 

end 

modTime=t3+t0; 

t4=t4+t0; 

LasttIndex=length(t4); 

t0Index=tIndex(0,t4); 
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FirstTOZero=t0Index; 

ZeroTOLast=LasttIndex-t0Index; 

 

Q1=A1.*exp(-(t4.^2)./(2.*(sigma1.^2))); 

Q2=heaviside(t4); 

ExpConv=conv(Q1,Q2,'full'); 

Gconv=conv(Q1,Q1); 

 

[maxI Ind]=max(Gconv); 

t0IndexConv=Ind; 

ExpConv=ExpConv(1,t0IndexConv-FirstTOZero:t0IndexConv-1+ZeroTOLast); 

 

fitFunc=interp1(t4,ExpConv,modTime,'pchip','extrap'); 

end 

 

function IndexF = FIndex(FindF,FArray) 

         

    for o=1:length(FArray) 

        if FArray(o) == FindF 

            IndexF=o; 

            break 

        end 

        if FArray(o) > FindF 

            IndexF=o-1; 

            break 

        end 

        if o==length(FArray) 

        %If no element exists give the last one! 

        'FDIst not found!' 

         IndexF=o; 

         break 

        end 

    end 

end 

 

function Index = WLIndex(FindWL,WLArray) 

         

    for o=1:length(WLArray) 

        if WLArray(o) == FindWL 

            Index=o; 

            break 

        end 

        if WLArray(o) > FindWL 

            Index=o-1; 

            break 

        end 
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    end 

 

end 

function IndexT = tIndex(FindT,tArray) 

    for o=1:length(tArray) 

            if tArray(o) == FindT 

                IndexT=o; 

                 break 

            end 

            if tArray(o) > FindT 

                IndexT=o-1; 

                 break 

            end 

    end    

end 

end 
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