
COMPETING AGAINST ADAPTIVE AGENTS BY MINIMIZING
COUNTERFACTUAL NOTIONS OF REGRET

by
Teodor Vanislavov Marinov

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
June, 2021

© 2021 Teodor V. Marinov
All rights reserved

Abstract

Online learning or sequential decision making is formally defined as a repeated game

between an adversary and a player. At every round of the game the player chooses

an action from a fixed action set and the adversary reveals a reward/loss for the

action played. The goal of the player is to maximize the cumulative reward of her

actions. The rewards/losses could be sampled from an unknown distribution or other

less restrictive assumptions can be made. The standard measure of performance is the

cumulative regret, that is the difference between the cumulative reward of the player

and the best achievable reward by a fixed action, or more generally a fixed policy,

on the observed reward sequence. For adversaries which are oblivious to the player’s

strategy, regret is a meaningful measure. However, the adversary is usually adaptive,

e.g., in healthcare a patient will respond to given treatments, and for self-driving cars

other traffic will react to the behavior of the autonomous agent. In such settings the

notion of regret is hard to interpret as the best action in hindsight might not be the

best action overall, given the behavior of the adversary. To resolve this problem a new

notion called policy regret is introduced. Policy regret is fundamentally different

from other forms of regret as it is counterfactual in nature, i.e., the player competes

against all other policies whose reward is calculated by taking into account how the

adversary would have behaved had the player chosen another policy. This thesis

studies policy regret in a partial (bandit) feedback environment, beyond the worst

case setting, by leveraging additional structure such as stochasticity/stability of the

adversary or additional feedback.

ii

Thesis Readers

Dr. Raman Arora (Primary Advisor)
Assistant Professor
Department of Computer Science
Johns Hopkins University

Dr. Michael Dinitz
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Mehryar Mohri
Professor of Computer Science and Mathematics
Courant Institute of Mathematical Sciences
New York University and Google Research

iii

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Raman Arora, for his

guidance, unwavering support, and enthusiasm throughout my PhD. He gave me the

opportunity to be a part of this world even though I had little research experience

before I started this program. I am not only grateful for his ideas and discussions but

also for teaching me how to best present my results and communicate with a broader

audience. I would also like to thank him for introducing me to amazing researchers

and opening doors for many fruitful collaborations.

Throughout this program, I have been extremely fortunate to work closely with

Dr. Michael Dinitz and Dr. Mehryar Mohri. Their mentorship has been invaluable

to my research career and has helped to shape and broaden my research interests.

The quality of the problems studied in this thesis would not have been the same

without their help. I would also like to thank Mehryar for giving me the opportunity

to collaborate with the wonderful people at the Learning Theory group at Google

Research, New York and for introducing me to many other researchers.

I would also like to thank all of my other co-authors and collaborators: Dr. Christoph

Dann, Dr. Nikita Ivkin, Poorya Mianjy, Enayat Ullah, Dr. Jalaj Upadhyay, Yunjuan

Wang, and Dr. Julian Zimmert. I have learned so much from our discussions and our

collaborations have resulted in many great papers.

I have been very lucky to meet many of my closest friends during my stay at

Johns Hopkins University. Their friendship, emotional support and all of our shared

iv

experiences truly made my PhD years fun and enjoyable. I would also like to thank

all of my friends back home for still keeping in touch and sharing all the good times

with me.

Finally, I would like to thank my family and especially my parents, Teresa and

Vanislav, for all their sacrifices, love, kindness, patience, and guidance. Even though

you might not understand my research completely, this thesis would not have been

possible without you. Thank you!

v

Contents

Abstract . ii

Acknowledgements . iv

Contents . vi

Chapter 1 Introduction . 1

1.1 Summary of contributions of this work 1

1.2 The online learning game . 5

1.2.1 Regret minimization . 7

1.2.1.1 Other notions of regret 8

1.2.2 Full information and Bandit games 9

1.2.2.1 Online Mirror Descent and Follow the Regularized

Leader . 11

1.2.2.2 Stochastic multi-armed bandits 12

1.2.2.2.1 Min-max lower bounds and instance-dependent

lower bounds. 14

1.2.2.3 Adversarial multi-armed bandits 16

1.3 Graph theory concepts . 17

1.4 Algorithmic Game theory . 20

1.4.1 Equilibrium and no-regret algorithms 24

1.5 Reinforcement Learning . 25

vi

1.5.1 Value function, Q-function, Bellman optimality 26

1.6 Adaptive adversaries and Policy regret 28

1.6.1 Policy regret bounds in the full information game 29

1.6.2 Policy regret bounds in the bandit game 30

Chapter 2 Policy regret in the presence of side observations 31

2.1 Online learning with partial feedback 31

2.2 Regret minimization in the presence of switching costs and policy regret 34

2.3 Bandits with feedback graphs and switching Costs 36

2.3.1 Problem setup and notation 37

2.3.2 An adaptive mini-batch algorithm 38

2.3.2.1 Algorithm for Star Graphs 39

2.3.2.2 Algorithm for General Feedback Graphs 41

2.3.2.3 Corralling Star Graph Algorithms 43

2.4 Detailed proofs from Section 2.3.2 . 45

2.4.1 Adaptive Mini-batching for Star Graphs 45

2.4.2 Proof of Theorem 2.3.2 . 50

2.4.3 Proof of Theorem 2.3.3 . 53

2.5 Policy regret bound . 55

2.6 Lower bounds . 56

2.6.1 Lower bound for non-complete graphs 56

2.6.2 Lower Bound for Disjoint Union of Star Graphs 62

2.6.2.1 Counting Argument for Theorem 2.6.5 63

2.6.3 Lower bound for a sequence of feedback graphs in the uninformed

setting. 65

2.6.4 Lower Bound for Arbitrary Graphs 68

2.7 Detailed proofs for Section 2.6 . 72

2.7.1 Detailed proofs for Section 2.6.1 72

vii

2.7.2 Detailed proofs from Section 2.6.2 75

2.7.3 Detailed proofs from Section 2.6.3 76

2.7.4 Detailed proofs from Section 2.6.4 77

Chapter 3 Corralling stochastic bandit algorithms 80

3.1 The corralling problem . 80

3.2 The model selection problem . 82

3.2.1 Linear contextual bandits . 82

3.2.2 Model selection for linear bandits 84

3.3 Preliminaries and additional notation for the corralling problem . . . 85

3.4 Lower bounds without anytime regret guarantees 87

3.5 Detailed proofs for Section 3.4 . 90

3.6 UCB-style corralling algorithm . 92

3.6.1 Discussion regarding tightness of bounds 95

3.7 Detailed proofs for Section 3.6 . 97

3.8 Corralling using Tsallis-INF . 101

3.8.1 Algorithm and the main result 103

3.8.2 Stability of UCB and UCB-like algorithms under a change of

environment . 109

3.9 Detailed proofs from Section 3.8 . 111

3.9.1 Proof of Theorem 3.8.1 . 111

3.9.1.1 Potential function and auxiliary lemmas 111

3.9.1.2 Regret bound . 112

3.9.2 Proof of Theorem 3.8.3 . 126

3.10 Model selection with Tsallis-Inf and proof of Theorem 3.2.1 129

3.10.1 Proof of Theorem 3.2.1 . 130

3.11 Empirical results . 132

3.11.1 Tsallis-INF contains best arm 136

viii

3.11.2 Thompson sampling contains best arm 138

Chapter 4 Policy regret in repeated games 140

4.1 Incompatibility of policy regret and external regret 141

4.2 Policy regret in strategic environments 142

4.3 Detailed proofs for Section 4.1 and Section 4.2 146

4.4 Policy equilibrium . 148

4.4.1 Convergence to the set of policy equilibria 153

4.4.2 Proof sketch for Theorem 4.4.2 155

4.4.3 Relation of policy equlibria to CCEs 159

4.4.4 Simple example of a policy equilibrium 160

4.5 Detailed proofs from Section 4.4 . 162

4.5.1 Concentration of the estimated Markov chain 166

4.5.2 Auxiliary results . 168

Chapter 5 Limits of learning in Tabular Reinforcement Learning . . 171

5.1 Instance dependent bounds in prior work and limitations 171

5.2 Problem setting and notation . 175

5.3 Related work . 176

5.4 Novel upper bounds for optimistic algorithms 178

5.4.1 Optimistic algorithms and StrongEuler 179

5.4.2 Prior optimistic regret bounds and opportunities for improvement180

5.4.3 Regret analysis with improved clipping: from minimum gap to

average gap . 184

5.4.4 Policy-dependent regret bound 187

5.4.5 Nearly tight bounds for deterministic transition MDPs 189

5.4.6 Tighter bounds for unique optimal policy. 191

5.5 Detailed proofs for Section 5.4 . 192

ix

5.5.1 Useful decomposition lemmas 192

5.5.2 General surplus clipping for strongly optimistic algorithms . . 194

5.5.2.1 Clipping with an arbitrary threshold and proof of

Proposition 5.4.2 . 195

5.5.3 Definition of valid clipping thresholds ϵk 199

5.5.4 Policy-dependent regret bound for StrongEuler 202

5.5.5 Proof of Corollary 5.4.6 . 208

5.5.6 Alternative to integration lemmas 211

5.6 Instance-dependent lower bounds . 213

5.6.1 General instance-dependent lower bound as an optimization

problem . 214

5.6.2 Gap-dependent lower bound when optimal policies visit all states216

5.6.3 Gap-dependent lower bound for deterministic-transition MDPs 217

5.6.4 Lower bounds for optimistic algorithms in MDPs with deter-

ministic transitions . 219

5.6.4.1 Issue with deriving a general bound 222

5.7 Proofs from Section 5.6 . 224

5.7.1 Proof of Theorem 5.6.1 . 224

5.7.2 Proof of Theorem 5.6.3 . 228

5.7.3 Lower bounds for deterministic MDPs 231

5.7.3.1 Proof of Theorem 5.6.4 234

5.7.3.2 Tree-structured MDPs 237

5.7.4 Omitted proofs for Theorem 5.6.7 241

Chapter 6 Discussion and conclusion . 242

6.1 Future directions . 242

6.2 Conclusion . 246

6.3 Other work . 247

x

Chapter A Convex optimization . 249

A.1 Convex sets . 249

A.2 Convex Functions . 250

A.2.1 Differentiable functions. 251

A.2.2 Strict convexity, strong convexity, and smoothness 253

A.2.3 Jensen’s Inequality . 255

A.3 Potential functions and Bregman divergence and Mirror descent . . . 255

A.3.1 The Geometry of ℓp Norms . 256

A.3.2 Mirror Maps . 258

A.3.3 The Fenchel Dual . 258

A.3.4 Analysis in the primal space and Bregman divergence 260

A.3.5 Mirror descent as proximal gradient descent 264

A.3.6 Online projected mirror descent 265

Chapter B Tools for lower bounds in bandit games 267

B.1 Min-max lower bounds . 268

B.2 Instance dependent lower bounds . 271

Bibliography . 273

xi

Chapter 1

Introduction

Machine learning has exploded as a field in the past decade. Complex systems have

been applied in impactful areas like healthcare, economically important tasks like

market predictions, futuristic tasks like building self-driving cars and more mundane

tasks like car navigation and ad placement/recommendations. While the practical

success of such systems is undeniable, theoretical understanding of this success has

been somewhat lacking. Indeed, classical theory of statistical learning, while well

suited to problems in which there is an abundance of data all sampled from the same

population, has struggled to explain the behavior of systems applied to any of the

tasks above, in which data is plagued by adversarial corruptions, hidden confounding

and its distribution may shift over time and adapt to the system’s outputs. Moreover,

in the above examples, successful systems are constantly evolving and learning is

perpetual. The paradigm of online learning is arguably better suited to explain the

performance of such systems.

1.1 Summary of contributions of this work

This thesis consists of four seemingly different problems spanning the topics of game

theory, online learning and reinforcement learning. All the works, however, share a

common theme, which is to study the online learning game in an adaptive setting.

1

Formally, we study policy regret minimization and its benefits in novel settings,

beyond the worst case, provide meaningful regret guarantees for these settings and

study how close to optimal these guarantees are.

We begin the study of policy regret in Chapter 2 by showing that it is indeed

possible to improve on the bandit regret bound, if the player receives additional

feedback about rewards of other actions together with the the reward of the played

action. The feedback is modeled by a graph, where each vertex represents an action

and playing an action also reveals the reward of all of its neighbors. While standard

guarantees scale with the number of actions (K or |A|), the novel bound only depends

on the amount of information actions reveal about each other. In particular, if a few

actions reveal information about all other actions, then the bound is constant in the

number of actions. Formally the bound scales with the domination number of

the feedback graph. While bounds scaling with domination number are known in the

stochastic setting (Buccapatnam et al., 2014b), that is the losses are sampled from

an unknown distribution, this is not the case in the adversarial setting. Most other

work in the adversarial online learning with graph feedback literature scale with the

independence number of the feedback graph (Mannor and Shamir, 2011; Alon

et al., 2013; Kocák et al., 2014; Alon et al., 2015; Cohen et al., 2016; Valko, 2016;

Lykouris et al., 2018; Lee et al., 2020b), which is always greater than the domination

number. The upper bounds are supplemented by min-max lower bounds, showing that

it is impossible to go beyond the T 2/3 regret bounds, unless all actions are observable

at the same time. Further, we show a problem instance on which it is impossible

to do better than the proposed regret upper bounds, including the dependence on

domination number.

In many real world problems there is no single adversary but rather multiple

self-interested agents competing in an environment, each with their own set of rewards.

Our goal is to select the agent yielding the highest total reward. As a motivating

2

example consider the online contractual display ads allocation problem: when users

visit a website, say some page of the online site of a national newspaper, an ads

allocation algorithm (the player) chooses an ad to display at each specific slot with the

goal of achieving the largest value. To do so, the ads allocation algorithm chooses one

out of a large set of advertisers (self-interested agents). Each advertiser has their own

marketing strategy, usually following their own no-regret algorithm. The number of

ads or arms can be very large. The number of advertisers can also be large in practice,

depending on the domain. The number of times the ads allocation is run is in the

order of millions or even billions per day, depending on the category of items. In the

above example, at every round, the player will only be able to provide feedback to the

agent whose ad was displayed. This in turn implies that only that agent will be able

to update its internal state. Because the rewards we observe are dependent on the

displayed ads and therefore dependent on the internal state of each agent, solving this

corralling problem, requires counterfactual reasoning. Thus our goal is to minimize

policy regret, which would guarantee that we would not discard the best agent should

she perform poorly in initial rounds. The study of corralling adversarial bandit

algorithms was initiated in Agarwal et al. (2016), who give sublinear regret guarantees.

In Chapter 3, we extend their work by proposing a corralling strategy which also

works for stochastic bandit algorithms and enjoys gap-dependent regret bounds, under

the assumption that there is a positive gap between the reward of the best arm of the

best base algorithm and the rewards of any other algorithm. These regret bounds are

syntactically similar to instance dependent bounds discussed in Section 1.2.2.2. The

algorithm is a version of FTRL with 1/2-Tsallis entropy regularization and a special

step-size schedule inspired by Agarwal et al. (2016). As such it is able to corral bandit

algorithms both when rewards are stochastic or adversarial. Finally, we supplement

our theoretical results with experiments on a synthetic dataset, showing that our

approach outperforms prior work.

3

In Chapter 4 we investigate policy regret in a game-theoretic setting. In this

setting there is no central algorithm as in the corralling setting. Rather, each player’s

rewards are both a function of the environment and of other players actions. The

goal of each player is again to maximise their own cumulative reward. Each player

observes the reward of her actions at every round, unlike in the corralling setting. Two

examples of games are network package routing and vehicle traffic routing. In both

cases players are competing for shared resources and the utility of each player decreases

as function of the number of other players using the same resource. Classical game

theory studies how players can converge to equilibrium states in such games and what

the social welfare is in such states. It is well known that if all parties play according

to a no-regret rule, that is the regret of every player with respect to the observed

rewards is o(T), then their play would converge to a coarse correlated equilibrium

(CCE) (see for example Nisan et al. (2007)). In general, different types of no-regret

play have been shown to converge to different types of equilibria (Hazan and Kale,

2008). Further the social welfare of such equilibria has been investigated for certain

classes of games (Roughgarden, 2015), which contain the above examples, showing

that it is no worse than twice the best possible. Policy regret intuitively seems like

a stronger notion than regret, so it is natural to ask what would happen in a game

if players were to play strategies minimizing policy regret rather than simple regret.

In (Arora et al., 2018), we show that in 2-player games, the players will converge to a

new type of equilibrium called Policy Equillibrium (PE). Surprisingly, we also show

that the class of PE contains the class of CCE as a strict subset and that policy regret

is in fact not comparable to external regret. Finally, we show that as long as both

agents play natural no-regret algorithms they will also achieve sublinear policy regret.

This is in contrast with the adversarial setting, where different algorithms are needed

for achieving strong policy regret guarantees.

In Chapter 5, we study the Reinforcement learning (RL) problem. The reinforce-

4

ment learning problem is often modeled as a Markov Decision Process (MDP). The

standard comparator in RL is the difference between the total reward of the player’s

policy and the best overall policy for the given MDP making policy regret the defacto

measurement of success. There is a vast variety of settings under which RL problems

are studied. Our work focuses on the episodic tabular setting, in which the interactions

with the environment proceed in K episodes, each of length H. The MDP is assumed

to have finite number of states and actions, however, no additional assumptions

are made. Most prior work has focused on deriving regret bounds sub-linear in the

number of interactions T = HK. Notable exceptions are the works of (Simchowitz and

Jamieson, 2019; Lykouris et al., 2019; Jin and Luo, 2020), who all derive optimistic

bounds, based on a definition of gap which captures the difference between total

reward of the best policy and sub-optimal policies at every state-action pair. We

investigate the smallest achievable optimistic regret by deriving information theoretic

lower bounds for two classes of MDPs – MDPs with deterministic transitions and

MDPs in which every state is visited by an optimal policy with non-zero probability.

To derive such lower bounds we also need to assume that the value function of optimal

policies and all reward functions are uniformly bounded by one. With the insight from

these lower bounds we show that the regret of optimistic algorithms can be much

smaller, depending on the structure of the MDP, than what was previously showed.

1.2 The online learning game

Online learning is concerned with studying the sequential decision making problem

which is often modelled as a repeated game between an adversary or an unknown

environment and a player, usually represented by an algorithm. While there are many

ways to model this repeated game, we are going to focus on the following finite horizon

scenario.

5

• The game will have T ∈ N rounds.

• During every round, t ∈ [T]1, of the game the player must take an action at

from a fixed action set A.

• Further the adversary prepares a hidden loss ℓt (or reward rt)2 function which

maps actions to real numbers.

• The player then observes the loss of her actions and possibly the loss over some

or all remaining actions.

In general we will assume that the loss is bounded in [0, 1], or if it is random, then has

bounded sub-Gaussian norm. The goal of the player is to minimise her cumulative

loss over the span of the game. The above game is very flexible and can represent

multiple problems in Machine Learning, Statistics, Optimization and Game Theory.

We now give two examples.

The experts problem: In the experts problem (Freund and Schapire, 1997)

the set of actions, A = {1, 2, . . . , K}, consists of different expert advisors. At every

round of the game, the player selects an expert it ∈ A and follows their advise. After

selecting the expert, the player gets to observe the loss for the advise given by all the

experts. The experts could be financial advisors managing the player’s portfolio or in

a gambling scenario could be the player’s friends who bet on outcomes of sport games.

Convex Optimization: One could view the problem of optimizing a convex

function, f : A → R, through first order oracle queries as a version of the above

game. At every round the player selects an iterate at as a guess about the optimum

of the convex function and the adversary presents to the player the gradient (or

more generally an element of the sub-differential) at at, given by ∇f(at). It is not
1[T] denotes the set {1, . . . , T}.
2Because our work deals with both stochastic and adversarial online learning we will use losses or

rewards depending on what is more convenient for the discussion.

6

immediately clear why we are interested in minimizing the cumulative loss, however,

using convexity it is possible to convert a regret bound on the sequence (∇f(at))Tt=1

to a guarantee about approximately minimizing f . This is done using the so called

online to batch conversion which uses ˆ︁a = 1
T

∑︁T
t=1 at as an approximate minimizer.

While in the convex optimization example above the set A consists of infinitely

many actions, in our work we are primarily interested in sets of finite size |A| = K.

1.2.1 Regret minimization

As already mentioned, the goal of the player is to minimize her cumulative loss.

However, this is not sufficient to determine how well the player is doing after the T

rounds have expired. For example, it is unreasonable to expect that the player will

incur the smallest possible loss on every round of the game. Thus we would like to

choose a suitable comparator against which the player’s loss will be measured. In

the experts problem described above one possible benchmark is to compare with the

smallest cumulative loss obtained by an expert. In general we can compete with the

smallest cumulative loss of any fixed action. The difference between the player’s loss

and the smallest cumulative loss is known as (external) regret (Foster and Vohra,

1993; Littlestone and Warmuth, 1994; Freund and Schapire, 1997; Cesa-Bianchi et al.,

1997):

R(T) =
T∑︂
t=1

ℓt(at) − min
a∈A

T∑︂
t=1

ℓt(a). (1.1)

In general, one is interested in algorithms which enjoy sublinear regret guarantees

over all problem instances, that is for all adversaries the regret of the player’s strategy

is bounded by o(T) with high probability.

There are several related quantities to 1.1. First, we can define the regret of the

player with respect to a fixed action a ∈ A given as

Ra(T) =
T∑︂
t=1

ℓt(at) −
T∑︂
t=1

ℓt(a). (1.2)

7

Most algorithms in this work will have expected regret bounds of the form E[Ra(T)] ≤

o(T),∀a ∈ A. Here the expectation is taken with respect to the possible randomization

in the algorithm and any randomness coming from the strategy of the adversary. Note

that the strategy of the adversary might depend on the player’s strategy as well, which

introduces additional randomness in the losses. One might be tempted to reason that

if E[Ra(T)] ≤ o(T) for all actions then the expected regret, E[R(T)], is also bounded.

Unfortunately this is not always true, exactly because of the fact that the adversary

might be adaptive, that is they tailor their strategy based on what the player has

done so far. Another quantity of interest which arises from bounds on E[Ra(T)] is

the pseudo regret3:

E[R(T)] = max
a∈A

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a)
]︄

= max
a∈A

E[Ra(T)]. (1.3)

As already discussed, pseudo regret is a weaker notion than the expected regret and a

simple application of Jensen’s inequality shows that E[R(T)] ≤ E[R(T)]. In the case

when the adversary is oblivious, i.e., they have prepared the loss sequence (ℓt)Tt=1

before the start of the game then it holds that E[R(T)] = E[R(T)]. One instance of

oblivious adversaries is when each of the losses, ℓt(a), is sampled according to some

unknown distribution.

1.2.1.1 Other notions of regret

External regret was introduced by comparing the cumulative loss of the player to the

cumulative loss of the best fixed action in hindsight. Changing the comparator class

gives rise to other different notions of regret. For example, one can compare against

the best fixed function τ : A → A. The resulting regret is known as swap regret

(Blum and Mansour, 2007). It turns out that one can build algorithms with at most

o(T) swap regret from algorithms with o(T) external regret by an elegant reduction
3Most of this work focuses on bounding pseudo regret and hence we will refer to pseudo-regret

simply as regret.

8

provided by Blum and Mansour (2007). One can take this notion of regret further by

using functions as the comparator which might depend on the history of the player’s

actions (Lehrer, 2003). Mohri and Yang (2014) design efficient algorithms for the

setting when τ : As → A is a function defined for fixed s (independent of the time

horizon T) and at time t exchanges the past s actions of the player for the comparator

action τ(at−s+1, . . . , at). The regret in this setting is called conditional swap regret.

Further, Mohri and Yang (2017) extend the comparator class to weighted finite-state

automata and show how to minimize the respective transductive regret.

If one takes s = t at round t, that is to consider an unrestricted comparator

function, they will arrive at what is known as dynamic regret (Zinkevich, 2003).

Unsurprisingly, in the worst case it is impossible to design algorithms with o(T)

dynamic regret. However, it is possible to design strategies with dynamic regret

bounded by meaningful quantities depending on how rapidly losses change, which in

the worst case are linear in T .

1.2.2 Full information and Bandit games

In our description of the online learning game we did not specify exactly what feedback

the player receives from the adversary. Intuitively, games in which the player only

observes the loss of the action she played at round t should be harder than games in

which she observes the loss of all possible actions in A. Indeed, the player receives

|A| times less information in the former scenario. We call feedback in which only

the loss of the played action is revealed bandit feedback. Feedback in which the

player observes the full loss vector at every round is referred to as full information

feedback.

The experts and convex optimization problems which we discussed above are

both problems with full information feedback. The following simplified version of the

experts problem is first studied by Littlestone (1988): at every step all the experts

9

make a binary prediction. The observed loss is just the zero-one loss. Further, it is

assumed that there exists at least one expert which is correct at every round of the

game, that is they always have zero loss on their prediction. A halving algorithm,

which maintains a set of active experts (which have not made a mistake so far) is

proposed. At every round of the game the algorithm selects the prediction with

majority vote. If the prediction is correct the game continues, otherwise the algorithm

updates the set of active experts by removing all experts who have made a mistake.

The regret of this algorithm is O(log (|A|)).

While the halving algorithm is natural, we can not expect that there is always an

expert (or action) which has zero loss. Littlestone and Warmuth (1994) propose the

Randomized Weighted Majority algorithm. The idea behind the weighted majority

algorithm is to keep a set of weights wt,i, one per each expert and at every round

update the weights as wt+1,i = (1 − ηℓt(i))wt,i, where η is some fixed parameter. The

expert which is chosen at time t is sampled with probability proportional to their

weight. The regret of this strategy is bounded by O(
√︂

log (|A|)T) for appropriately

set η. Freund and Schapire (1997) later proposed the Hedge algorithm (Algorithm 1).

Hedge can be seen as a version of the weighted majority algorithm, however, instead

of updating the weights through a linear function of the losses, one updates them

with an exponential function. Hedge has similar regret guarantees to the weighted

Algorithm 1: Hedge
Input: Step size η, time horizon T
Output: Sequence of sampled experts i1, . . . , iT

1: Initialize w1 = 111, p1 = Unif(A)
2: for t=1,. . . ,T do
3: Sample it ∼ pt and observe loss vector ℓt
4: wt+1,i = wt,i exp (−ηℓt(i)), pt+1,i = wt+1,i∑︁

j∈A wt+1,j
,∀i ∈ A.

5: end for

majority algorithm and again enjoys a O(
√︂

log (|A|)T) regret bound for appropriately

set η. The Hedge algorithm has become a staple in Online Learning literature and

10

many algorithms have used it as a building block, including some of the approaches

presented in the current thesis. This algorithm is, in fact, part of a larger family of

algorithms known as Online Mirror Descent which we discuss next.

1.2.2.1 Online Mirror Descent and Follow the Regularized Leader

Mirror descent (Nemirovskij and Yudin, 1983) is a generalization of the gradient

descent algorithm to Banach spaces (normed vector spaces). We have already seen

in our convex optimization example that we can indeed treat convex optimization

as an instance of the online learning game. However, the opposite direction is not

clear – how do we treat the online learning game as a convex optimization problem.

Algorithm 1 suggests the following: treat the losses ℓt as gradients and treat the

weights wt as iterates, which are projected to the convex set of distributions over |A|

known as the probability simplex.

Definition 1.2.1. The K-dimensional probability simplex is the set ∆K−1 := {p ∈

[0, 1]K : ∑︁K
i=1 pi = 1} of all probability distributions over K items.

The key ingredient of the mirror descent algorithm is a potential function, Ψ,

which maps between the space of iterates and the space of gradients. For the rest of this

work we will only consider Ψ : ∆|A|−1 → R which are proper, lower semi-continuous

and strictly convex. For definitions of the above terms and an introduction to basic

convex optimization we refer the reader to Appendix A. The Online Mirror Descent

(OMD) algorithm can now be summarized as follows:
wt+1 = argmin

w
⟨w, ℓt⟩ +DΨt(w||pt)

pt+1 = argmin
p∈∆|A|−1

DΨt(p||wt+1).
(1.4)

In Equation 1.4, DΨt(·||·) is the Bregman divergence induced by the potential

Ψt. A formal definition of the Bregman divergence can be found in Appendix A.

Algorithm 1 can now be seen as an instance of OMD, where Ψt(w) =
∑︁

i∈A wi log(wi)
η

is

the re-scaled negative entropy.

11

A related algorithm to OMD is Follow the Regularized leader (FTRL), also known

as lazy OMD. The FTRL update is given by

wt+1 = argmin
w

⟨w,
t∑︂

s=1
ℓs⟩ + Ψt(w)

pt+1 = argmin
p∈∆|A|−1

DΨt(p||wt+1).
(1.5)

It can be shown that for Ψt = Ψ
η
, i.e., constant step-size updates, OMD and FTRL

follow the same trajectory if initialized at the appropriate point. Somewhat surprisingly

if the step-sizes ηt are decreasing throughout the game, it turns out that FTRL and

OMD can follow different trajectories (Orabona and Pál, 2018).

The OMD and FTRL algorithms are applicable to a large number of online learning

games, and as we will see soon, enjoy meaningful regret guarantees. The general

problem of when sublinear regret is achievable for an online learning game is addressed

by Rakhlin et al. (2015); Bhatia and Sridharan (2020).

1.2.2.2 Stochastic multi-armed bandits

As alluded to previously, games with bandit feedback are harder due to the amount of

information observed by the player. In general we are going to distinguish two types of

bandit games – one in which the losses are generated from some unknown distribution

and the goal of the player is to compete against the action with smallest expected

loss. This problem is known as the Stochastic Multi-armed Bandit (stochastic

MAB) problem. The stochastic bandit problem dates back to Thompson (Thompson,

1933), and the motivation for the problem was to determine if in a healthcare scenario

some treatment is better than placebo or not online, without having to wait for the

complete trial to conclude. The second type of bandit game is one in which we do not

make any assumptions about how the losses are generated, but only assume that they

are in a bounded range (usually [0, 1]). We note that actions in the bandit game are

referred to as arms.

12

For convenience we will discuss the stochastic bandit problem in terms of rewards

rt rather than losses. The stochastic K-armed bandit problem is characterized by the

expected reward vector µ, with E[rt] = µ ∈ RK . We will focus on distributions which

are sub-Gaussian with variance proxy equal to 1 or with bounded support in [0, 1]K .

The mean of the arm with highest reward will be denoted as µi∗ or µ1. The regret for

the stochastic MAB problem can now be written as

R(T) = Tµi∗ − E
[︄
T∑︂
t=1

µit

]︄
, (1.6)

where it is the arm played at time t and the expectation is with respect to the

randomness in the player’s strategy and the sampling of the rewards.

In general there are three types of algorithms used for solving the stochastic bandit

problem. The first type is based on a Bayesian view of the world, in which the player

maintains a prior over possible distributions from which the rewards are sampled

and further updates a posterior based on the observed rewards. The posterior is

then used to sample a distribution and the player plays the best arm of the sampled

distribution. This approach is known as Thompson Sampling (Thompson, 1933).

While Thompson Sampling has enjoyed wide applications in practice, its regret was

not completely understood until recently (Agrawal and Goyal, 2012, 2013; Kaufmann

et al., 2012; Agrawal and Goyal, 2017). First, Agrawal and Goyal (2013) show that

Thompson sampling with a Beta distribution prior achieves regret O(
√︂
TK log (T)),

and regret O(
√︂
TK log (K)) with a Gaussian prior. The second result is in general not

improvable for the Thompson sampling strategy as shown by the authors. Kaufmann

et al. (2012) provide another type of regret upper bound for Thompson sampling which

only depends on the problem instance. In particular, they show a regret bound of order

O
(︂∑︁

i ̸=i∗
log(T)∆i

kl(µi||µi∗)

)︂
, where kl(a||b) is the KL-divergence between two Bernoulli random

variables with means a and b respectively and ∆i = µi∗ − µi is the sub-optimality

gap. This regret is asymptotically optimal.

13

The second type of algorithms are the ones based on optimism in the face of

uncertainty (OFU) principle, which has become a powerful tool in different extensions

of the MAB problem such as contextual bandits and Reinforcement Learning. The

principle suggests that if the player is uncertain about which the best action is, she

should proceed to play the action which could attain the highest reward, based on

her observations so far. More formally, at every round of the game, for every arm

i, the player keeps empirical estimates of the mean, ˆ︁µi, and further adds a bonus

term depending on how many times the arm have been observed. The player then

selects the arm with highest empirical mean plus bonus term. This strategy was

proposed by Auer et al. (2002a) in the form of the UCB-I algorithm and comes with

O(
√︂
TK log (T)) and O

(︂∑︁
i ̸=i∗

log(T)
∆i

)︂
regret guarantees.

The final type of strategies are ones that we have already discussed for the full

information setting in the form of OMD and FTRL. The idea is to construct unbiased

estimators of each of the reward vectors at time t and feed them to the OMD algorithm

with appropriate potential function. As long as the second moment of the estimators

is well controlled, regret bounds of the order Õ(
√
KT) are obtainable, where the Õ

notation hides poly-logarithmic factors. In particular Auer et al. (2002b) propose the

Exp3 algorithm which is just Algorithm 1 with ˆ︁rt = eit
rit
pt,it

. The Exp3 algorithm enjoys

a regret bound of the order O(
√︂
KT log (K)). Gap-dependent bounds are harder to

show for OMD strategies, however, recent works have made significant progress on

the matter (Seldin and Slivkins, 2014; Seldin and Lugosi, 2017; Wei and Luo, 2018;

Zimmert and Seldin, 2019), with Zimmert and Seldin (2019) solving the problem

optimally, under the condition that there exists a unique best arm.

1.2.2.2.1 Min-max lower bounds and instance-dependent lower bounds.

All of the three approaches described so far enjoy upper bounds on their regret of

the order Õ(
√
KT) or an instance dependent regret bound which depends on the

14

distribution of the unknown reward vector. Are these bounds optimal? As it turns out,

the min-max regret (maximizing over all possible problem instances and minimizing

over all possible algorithms) for the stochastic MAB problem is Θ(
√
KT). The first

algorithm to achieve this rate is MOSS (Audibert and Bubeck, 2009), which falls into

the category of OFU algorithms.

The results for instance dependent lower bounds are more involved. To understand

the bounds, we first need to define the set of confusing bandit environments for a

fixed arm i ̸= i∗. Let Pi denote the distribution of arm i with mean µi in our original

bandit problem. We define the set

Λi = {P′
i : EP′

i
[rt(i)] > µi∗}.

This is precisely the set of distributions for the reward of the i-th arm, which have

larger expected reward than the optimal µi∗ . Lai and Robbins (1985) show that any

strategy which incurs regret at most Tα for all α > 0 must suffer regret at least

Ω
(︃∑︁

i ̸=i∗
log(T)∆i

infP′
i
∈Λi

KL(Pi||P′
i)

)︃
as T → ∞, where KL(P ||Q) is the KL-divergence between

distributions P and Q. Formally the lower bound states that

lim inf
T→∞

R(T)
log (T) ≥ Ω

⎛⎝∑︂
i ̸=i∗

∆i

infP′
i∈Λi KL(Pi||P′

i)

⎞⎠ . (1.7)

Equation 1.7 implies that Thompson Sampling is asymptotically optimal for rewards

sampled from Bernoulli or Gaussian distributions. Further, the UCB-I algorithm

is asymptotically optimal for rewards sampled from Gaussian distributions as the

KL-term in the bound evaluates to ∆2
i . Another algorithm from the OFU family

which achieves the same guarantees as Thompson Sampling and has favorable practical

performance is KL-UCB (Garivier and Cappé, 2011).

Finally, we mention another asymptotically optimal strategy which is used in the

problem of best arm identification known as successive elimination (Even-Dar et al.,

2002). The strategy is similar to the UCB-I algorithm as it also keeps confidence

intervals around the empirical means for each arm, however, every arm is played until

15

we can confidently say that it is worse than another arm at which point the worse

arm is discarded and never played until the end of the game again.

1.2.2.3 Adversarial multi-armed bandits

In the adversarial MAB problem, there are no assumptions made regarding the observed

losses, except that they are bounded in [0, 1]. The problem was first studied by Auer

et al. (2002b), who propose the Exp3 algorithm, which as we already mentioned is

a modification of Algorithm 1. Exp3 comes with a O(
√︂
KT log (K)) regret bound

in the adversarial setting. Other popular potential functions with which the OMD

(or FTRL) algorithms are initialized and enjoy adversarial regret guarantees are the

Log-Barrier potential defined as Ψ(p) = −∑︁K
i=1 log (pi) and the 1/2-Tsallis entropy

defined as Ψ(p) = −∑︁K
i=1

√
pi. The log-barrier based OMD algorithm comes with a

O(
√︂
KT log (T)) guarantee and the FTRL algorithm based on the 1/2-Tsallis entropy

introduced by Audibert and Bubeck (2009) and later also studied in Zimmert and Seldin

(2019) enjoys O(
√
KT) regret. Because the adversarial bandit problem subsumes the

stochastic bandit problem, the same min-max lower bound applies and hence the

1/2-Tsallis entropy FTRL algorithm, known as Tsallis-INF, satisfies the desired regret

bound. It is natural to ask if there are “instance dependent” upper bounds for the

adversarial setting. The work of (Hazan and Kale, 2011) answers this question to

the affirmative by defining a notion of total variation of the losses and bounding the

regret in terms this variation. Further extensions and similar quantities can be found

for the full information setting in (Rakhlin and Sridharan, 2013) and for the bandit

setting in (Bubeck et al., 2018, 2019; Wei and Luo, 2018).

The topic of bandit learning is broad and we will only scratch the surface in this

thesis. For a more complete introduction we refer the reader to the works of Bubeck

et al. (2012) and Lattimore and Czepesvari (2018).

16

1.3 Graph theory concepts

Part of this thesis will address a setting for the online learning game which interpolates

between full information and bandit feedback. Such feedback is modeled by a feedback

graph with vertices corresponding to actions and edges describing which actions reveal

information about each other. We now revisit some graph theoretic concepts which

are used in Chapter 2.

We begin by recalling the definition of a graph.

Definition 1.3.1 (Undirected graph). An undirected graph G = (V,E) is a tuple

containing a set of vertices V and a set of edges E, where an edge {u, v} ∈ E, u, v ∈ V

is an unordered pair of vertices.

We will only work with undirected graphs, however, all of the results in Chapter 2

extend to directed graphs as well.

Definition 1.3.2 (Directed graph). A directed graph G = (V,E) is a tuple contain-

ing a set of vertices V and a set of edges E, where an edge (u, v) ∈ E, u, v ∈ V is an

ordered pair of vertices.

We say that u, v are neighbors (or adjacent) in an undirected graph if {u, v} is an

edge of the graph. Further, we say that u is an in-neighbor to v in a directed graph if

(u, v) ∈ E and is an out-neighbor to v if (v, u) ∈ E.

The next set of definitions are for undirected graphs.

Definition 1.3.3 (Complete graph). A complete graph G is a graph such that

there is an edge {u, v} ∈ E for every two vertices u, v ∈ V .

We call a sub-graph of G a graph with a vertex set which is a subset of V and an

edge set which a subset of E.

17

Definition 1.3.4 (Clique partition (Erdöos et al., 1988)). A clique of a graph G is a

complete sub-graph of G. A clique partition is a set of cliques of G such that each

vertex of G is contained in exactly one clique.

Definition 1.3.5 (Clique partition number). The clique partition number χ̄(G)

for a graph G is the size of the minimum clique partition, that is the smallest size

clique partition over all clique partitions.

Finding a clique partition of G is known to be NP-hard. Further, approximating

the clique partition number to a factor of O(|V |1−ϵ) for any ϵ > 0 is also likely

computationally hard (Hastad, 1999; Engebretsen and Holmerin, 2000). Cliques are

tightly related to the notion of independent set of a graph.

Definition 1.3.6 (Independent set). A subset of vertices of G is an independent

set if no two vertices are adjacent.

Definition 1.3.7 (Independence number). The independence number , α(G) of a

graph G is the size of a maximum independent set.

An clique of size k in G corresponds to an independent set of size k in the graph

constructed from G by taking the same vertex set and an edge set consisting of edges

{u, v} iff {u, v} is not part of the edge set of G. This suggests that approximating

the independence number to a factor better than |V |1−ϵ is also likely computationally

hard (Hastad, 1999).

Another important graph theoretic quantity for our work is the domination number.

Definition 1.3.8 (Dominating set). A dominating set for a graph G is a subset of

V such that every vertex in V is adjacent to some vertex in the dominating set.

Definition 1.3.9 (Domination number). The domination number , γ(G) of a graph

G is the size of a minimum dominating set.

18

Figure 1-1: Graph example

The graph in Figure 1-1 has a maximum independent set of size 5 with vertices

in blue and a minimum dominating set of size 1 in red. Further, the clique partition

number for the graph consists of the blue vertices and is again equal to 5. It turns

out that the domination number is always no larger than the independence number

and the independence number is always no larger than the clique partition number,

that is γ(G) ≤ α(G) ≤ χ̄(G) (Bollobás and Cockayne, 1979; Goddard and Henning,

2013). We note that there is a fourth quantity of interest which is the size of the

maximum acyclic graph denoted by mas(G). And acyclic graph is a graph which

contains no cycles, that is a sequence of edges {u1, u2}, {u2, u3}, . . . , {un, u1} which

trace a closed path in the graph starting and ending at the same vertex. It turns out

that in undirected graphs mas(G) = α(G).

Unlike the clique partition number and the independence number, there is a very

simple algorithm which can approximate the domination number up to a log (|V |)

factor. The pseudo code is given in Algorithm 2.

The following notes http://ac.informatik.uni-freiburg.de/teaching/ss_

12/netalg/lectures/chapter7.pdf provide us with a proof that the greedy Al-

gorithm 2 returns a dominating set R which is 2 + log (∆) approximation to the

smallest size minimal dominating set, where ∆ is the maximum degree if G. It

19

http://ac.informatik.uni-freiburg.de/teaching/ss_12/netalg/lectures/chapter7.pdf
http://ac.informatik.uni-freiburg.de/teaching/ss_12/netalg/lectures/chapter7.pdf

Algorithm 2: Greedy algorithm for minimum dominating set
Input: An undirected graph G(V,E)
Output: A dominating set S

1: R = ∅
2: if V == ∅ then
3: Return S
4: else
5: Find v ∈ V s.t. deg(v) is maximized
6: R = S

⋃︁{v}
7: V = V \ {{v}⋃︁N(v)} and update G to be the induced graph on the new set of

vertices V .
8: end if

is possible to implement the algorithm so that it has total runtime of the or-

der O((|V | + |E|) log (|V |)) (e.g. http://homepage.cs.uiowa.edu/~sriram/3330/

spring17/greedyMDS.pdf). We note that this is essentially the Greedy Set Cover

algorithm of Chvatal (1979) and that it is possible to extend to directed graphs, by

replacing the degree of v by the out-degree of v and the neighbours of v by just the

vertices which have in-going edge from v.

1.4 Algorithmic Game theory

Algorithmic game theory is a broad topic which in general studies the performance of

self-interested agents in games, what strategies lead to good performance guarantees in

games and how to design games where self-interested agents enjoy good performance

guarantees. Here good performance guarantees pertain to some type of socially-

economic metrics such as maximizing the overall utility of players participating in the

game.

In this work we focus on the following type of multi-player games. The game

consists of n players. The i-th player has a finite action set Ai, |Ai| = ki and a reward

(or utility) function ui : A → [0, 1], where A = ×n
i=1Ai. Further, we will assume that

the game proceeds in T rounds and during each round the players get to interact

20

http://homepage.cs.uiowa.edu/~sriram/3330/spring17/greedyMDS.pdf
http://homepage.cs.uiowa.edu/~sriram/3330/spring17/greedyMDS.pdf

with each other only through choosing actions in their own action set and observing

the utility for the selected actions at the given round. Our goal is to study what

player strategies would lead to a steady-state of the game in which no player will have

an incentive to deviate from the prescribed strategy. Such states are known as an

equilibrium of the game.

Existence of different types of equilibrium has been a fundamental question in

game theory. Perhaps the most natural equilibrium in multi-player games is the

one in which no player has incentive to change the action they are playing as long

as every other player continues to play the same action. This is known as a Pure

Nash equilibrium (PNE). Even though PNEs are easy to describe and seem like a

reasonable equilibrium for self-interested agents, PNEs are not even guaranteed to

exist in some types of games. For example consider the simple two-player game of

Rock, Paper, Scissors, in which rock beats scissors, scissors beats paper and paper

beats rock. It turns out that there is no one fixed action a player can choose, such

that that action wins all the time, while the other player has no incentive to switch

from their losing/tie action. Instead of considering only the best fixed action it is

natural to extend the policy of each player to the best fixed distribution over actions.

Such reasoning leads us to the concept of a Mixed Nash equilibrium (MNE).

Definition 1.4.1. A Mixed Nash equilibrium is a product distribution σ = ×n
i=1 over

A, where σi is a distribution over Ai satisfying the following:

E(a1,...,ai,...,an)∼σ[ui(a1, . . . , an)] ≥ E(a1,...,ai,...,an)∼σ[ui(a1, . . . , (a′)i, . . . , an)],

for all actions (a′)i ∈ Ai and all players i ∈ [n].

MNEs are natural and do not require any coordination between the players as the

i-th player only needs to sample according to their own distribution σi. Further MNEs

exist for all (reasonable) games (Nash et al., 1950; Nash, 1951). Unfortunately it is very

likely that there are no polynomial time algorithms for approximating Nash equilibria

21

(Daskalakis et al., 2009) even for two-player games (Chen and Deng, 2006), outside

of some special type of games such as zero-sum games. The fact that approximating

MNE is most likely computationally intractable motivates the study of other types of

natural equilibria which always exist and can also be found efficiently.

Consider the following 2-player traffic light game. Each player can choose between

two actions: stop and go. The utility functions are given in Table 1-I. In the table we

distinguish between a column player and a row player. The utility of the row player

is shown in the first entry of the tuple and the utility of the column player is the

second entry. For the purpose of our example we allow negative utilities. Suppose

stop go
stop (0,0) (0,1)
go (1,0) (-5,-5)

Table 1-I: Traffic light game

a traffic signal instructs the column player to stop and the row player to go. The

column player only sees their own signal, however, they can deduce that the row

player has the right of way and so the column player’s best action is to obey the signal.

The same reasoning holds for the row player. Suppose now that the traffic light is

randomized in the sense that with probability 1/2 it signals the column player to

stop and the row player to go, and with probability 1/2 it signals the column player

to go and the row player to stop. If both players decide to obey the traffic signal

they observe, then they are at an equilibrium as if either player deviates, their utility

will decrease. The traffic signal plays the role of a central agent which coordinates

and hence correlates the actions of the two players. The type of equilibrium which

we just described is known as a Correlated equilibrium (CE)(Aumann, 1987).

Notice that this equilibrium also can not be a Nash, as it does not factor into product

distributions over the action sets of each player. Indeed, the induced distribution over

A is σ((stop, go)) = 1/2, σ((go, stop)) = 1/2.

22

Definition 1.4.2. A Correlated equilibrium is a distribution σ over the action space

A such that for every player i it holds that

Eσ[ui(a1, . . . , an)|ai] ≥ Eσ[ui(a1, . . . , (a′)i, . . . , an)|ai],∀(a′)i ∈ Ai.

The interpretation of a CE is that if the i-th player is shown their action, sampled

according to σ, then they have no incentive to deviate, given that every other player

behaves according to σ. The existence of CEs can be confirmed by observing that any

MNE is also a CE. Further, CEs are computable in polynomial time, for example by

linear programming (Papadimitriou and Roughgarden, 2008).

The final equilibrium concept we discuss is that of a Coarse correlated equilib-

rium (CCE). Similarly to MNE and CE, a CCE is a distribution σ over A. Unlike

CEs, however, the agent must commit before hand to following the action sampled

according to σ. Formally, a CCE is defined as follows.

Definition 1.4.3. A Coarse correlated equilibrium is a distribution σ over the action

space A such that for every player i it holds that

Eσ[ui(a1, . . . , an)] ≥ Eσ[ui(a1, . . . , (a′)i, . . . , an)],∀(a′)i ∈ Ai.

CCEs are also computable in polynomial time and in fact every CE is also a CCE.

To conclude we have the following nestedness of equilibria PE ⊂ MNE ⊂ CE ⊂ CCE,

where each of the inclusions are non-strict.

Even though CEs and CCEs are efficiently computable, the question of: “How

good this equilibria are compared to Nash?” remains. There are multiple ways to

quantify the goodness of an equilibrium of a game. Two such notions are the Price

of Anarchy (PoA) and Price of Stability (PoS). For a given social welfare function,

mapping players policies to a real value, the PoA is defined as the ratio between the

welfare of the best overall policy to the welfare of the worst policy belonging to an

equilibrium class. The PoS is defined similarly, however, we compare the best overall

23

policy to the best overall policy in the equilibrium class. Part of algorithmic Game

theory studies how PoA and PoS of Nash equilibrium compare to PoA and PoS of

other equilibrium. For example in the special type of “smooth” games, the worst Nash

is no worse than the worst CCE (Roughgarden, 2015).

1.4.1 Equilibrium and no-regret algorithms

CCEs and CEs are also efficient to approximate through natural strategies in which

every player minimizes their own regret in the repeated game (Foster and Vohra,

1997; Fudenberg and Levine, 1999; Hart and Mas-Colell, 2000; Blum and Mansour,

2007). In particular minimizing swap regret leads players to a correlated equilibrium

and minimizing external regret leads to coarse correlated equilibrium. Hazan and

Kale (2008) show a very general correspondence between finding equilibria, fixed-point

computation and the existence of certain types of no-regret algorithms. In followup

work Mohri and Yang (2014) and Mohri and Yang (2017) showed that minimizing

their notions of conditional swap regret and transductive regret also leads to new

notions of equilibrium.

We now outline how to convert a no-external regret algorithm to an algorithm

which approximates a CCE. First, assume that the i-th player acts according to a

no-regret algorithm with action space Ai and reward function at time t given by

rt(·) = u(a1
t , . . . , a

i−1
t , ·, ai+1

t , . . . , ant), where ajt denotes the action taken by player j

at time t. The no-regret algorithm guarantees that after T rounds of the game for

any action ai ∈ Ai it holds that E
[︂∑︁T

t=1 rt(ai) − rt(ait)
]︂

≤ O(
√
T). After T rounds

of the game we define the distribution ˆ︁σT on A as follows. A central agent who

coordinates the players samples a round t ∈ [T] uniformly at random. Next the i-th

player acts according to the strategy which prescribes they play action ait at round

t of the no-regret game. Thus the expected reward of player i is 1
T
E
[︂∑︁T

t=1 rt(ait)
]︂

=

24

E(a1,...,an)∼ˆ︁σT [ui(a1, . . . , an)]. Further, the no-regret guarantee implies that

E(a1,...,an)∼ˆ︁σT [ui(a1, . . . , an)] = 1
T
E
[︄
T∑︂
t=1

rt(ait)
]︄

≥ 1
T
E
[︄
T∑︂
t=1

rt((ai)′)
]︄

−O
(︂
1/

√
T
)︂

= E(a1,...,an)∼ˆ︁σT [ui(a1, . . . , (ai)′, . . . , an)] −O
(︂
1/

√
T
)︂
.

Thus the empirical distribution of play converges to the set of CCE in a weak conver-

gence sense. Because we are considering finite action-space games, weak convergence

is equivalent to strong convergence and we arrive at the fact that any convergent

sub-sequence of (ˆ︁σT)∞
T=1 will have a limit point in the set of CCEs. Showing that

no-swap regret play leads to a CE is slightly more involved, however, follows the same

general idea.

Finally, we note that it is possible to derive John von Neumann’s min-max theorem

for two-player zero sum games using the fact that no-regret algorithms exist and

following their empirical play would lead to a MNE in a two-player zero sum game.

1.5 Reinforcement Learning

Reinforcement Learning also studies the online learning game, however, additional

complexity is introduced into the problem by considering it as a Markov Decision

Process (MDP) (Puterman, 1994). Formally, an MDP consists of an action set A, a

set of states S, a (deterministic) reward functions r : S × A → [0, 1] mapping state-

action pairs to rewards, a transition kernel P : S × A → ∆|S|−1 mapping state-action

pairs to a distribution over states, and a distribution over starting states σ0. Without

loss of generality we can assume that there is a single starting state s0 with a single

available action a0 such that P (·|s0, a0) ≡ σ0. The number of states is |S| = S and

the number of actions is |A| = A. Further, after playing a state-action pair, (s, a), the

player only observes a random variable R(s, a) with expectation E[R(s, a)] = r(s, a)

and her transition to the state s′ ∼ P (·|s, a). The player does not know r or P

and the goal of the player is to maximize her cumulative reward. We have already

25

encountered a simple type of MDP in the form of the stochastic MAB problem. Indeed

the stochastic bandit problem is an MDP with a single state and actions A.

There are several types of RL problems one can consider based on the interaction

protocol, cumulative reward and size of the state-action space. In this work we will

consider the episodic, finite horizon, tabular setting. The protocol is as follows.

The game proceeds in K episodes (not to be confused with the size of the action set

in the online game). Each episode is of length H. At every episode the agent chooses

a (deterministic4) policy π : S → A, that is a function mapping states to actions and

proceeds to observe the rewards and transitions generated by following π for H rounds.

At the end of the episode the player’s total reward is Eπ[∑︁H
t=1 R(St, At)], where St, At

are random variables sampled according to the Markov process induced by following

π and the transition kernel P . After the episode has concluded, the player updates

her policy and proceeds onto the next episode. We will again measure the success of

the player through regret, where the comparator is the policy with highest cumulative

reward over a fixed episode, denoted by π∗. The regret is formally defined as

R(K) =
K∑︂
k=1

(︄
H∑︂
h=1

Eπ∗ [R(Sh, Ah)] −
H∑︂
h=1

Eπk [R(Sh, Ah)]
)︄

= max
π

K∑︂
k=1

(︄
H∑︂
h=1

Eπ [R(Sh, Ah)] −
H∑︂
h=1

Eπk [R(Sh, Ah)]
)︄
,

(1.8)

where πk is the policy selected by the player at episode k. We additionally assume

that the MDP has a layered structure. That is, every state s belongs to some layer

κ(s) = h ∈ [H] and the only non-zero transition probabilities are between states s and

s′ such that κ(s) + 1 = κ(s′), i.e., P (s′|s, a) > 0 =⇒ κ(s) + 1 = κ(s′).

1.5.1 Value function, Q-function, Bellman optimality

The value function of a policy π is a functional mapping from states to real numbers

and it assigns to each state the expected reward of policy π starting from state s.
4This is WLOG as for any reasonable MDP there exists a deterministic policy which is optimal

(Puterman, 1994).

26

Formally,

V π(s) = Eπ

⎡⎣ H∑︂
h=κ(s)

R(Sh, Ah)|Sκ(s) = s

⎤⎦ . (1.9)

With this notation we can concisely write the cumulative reward of the strategy of a

player as ∑︁K
k=1 V

πk(s0).

The second quantity of interest is the Q-function which maps a state-action pair

to a real number. It is defined as follows

Qπ(s, a) = Eπ

⎡⎣ H∑︂
h=κ(s)

R(Sh, Ah)|Sκ(s) = s, Aκ(s) = a

⎤⎦ , (1.10)

and captures the expected reward of the player if she plays according to π after playing

action a in state s. Note that the following identities hold from the definition of the

value function and Q-function

V π(s) = Qπ(s, π(s)) = r(s, π(s)) + ES′∼P (·|s,π(s)) [V π(S ′)] .

Further, we can think of V π as a vector in RS indexed by states, and similarly think

of Qπ as a vector in RS×A indexed by state-action pairs. This implies we can write

the expectation ES′∼P (·|s,a) [V π(S ′)] as an inner product between the transition kernel

and the value function as

ES′∼P (·|s,a) [V π(S ′)] = ⟨P (·|s, a), V π⟩.

Further, using P : RS → RS×A as a linear operator with (s, a)-th row equal to P (·|s, a),

we can write in vector notation

Qπ = r + PV π.

We also adopt the following standard notation Vk = V πk and Qk = Qπk .

We defined the regret of the player’s strategy by comparing against an optimal

policy π∗, but it is not entirely clear that such an optimal policy exists. Such a

policy exists and can be thought of as the deterministic policy maximising the value

27

function on s0, that is π∗ = argmaxπ V π(s0). The optimal policy is not necessarily

unique, however, the value of the optimal policy V ∗ ≡ V π∗ is unique. Further, one

can show that the greedy policy with respect to the Q-function is an optimal policy.

That is, π∗ satisfies the following equation

V π∗(s) = max
a∈A

r(s, a) + ⟨P (·|s, a), V π∗⟩, ∀s ∈ S.

This equation is known as the Bellman optimality equation and is at the core of

designing algorithms for regret minimization (Puterman, 1994). Finally, we use the

notation Q∗ = Qπ∗ .

1.6 Adaptive adversaries and Policy regret

So far we have seen several different measures of regret – external regret, internal

regret, swap regret, etc. Further, even though we made a point to distinguish between

expected regret for adaptive adversaries and expected regret for oblivious adversaries

the main idea behind our comparator class remained the same – compare with the

best fixed action or policy in hind sight. Consider the following simple example: the

player is a self-driving car and the available actions determine whether the car turns,

accelerates, decelerates, uses a turn signal, etc. If the player decides to go through a

red light at an intersection then the next available actions and respective losses she

would observe are all going to be poor as the player would have to avoid a car crash.

Given all of the observed losses are poor it might turn out that the best action in

hind sight would be to just go as fast as possible through the intersection. However, a

better player, who stops at the red light, would have observed a different sequence

of losses for which the best action in hind sight was to stop and wait for the traffic

light to turn green. We can now see that external regret might not be the best choice

for how we measure performance of the agent, as from a practical point of view we

would much rather prefer the agent stopping at the red light rather than going full

28

speed ahead. In general, because adaptive adversaries tailor their loss sequence to the

player’s past actions and overall strategy, it is not necessary for the best action in

hind sight on the observed loss sequence to be the best overall action for the game, as

a different strategy chosen by the player can result in a different loss sequence.

The above problem was first investigated by Merhav et al. (2002) in the full

information setting and by Arora et al. (2012a) in the bandit setting. To address the

critical issue described above, Arora et al. (2012a), propose Policy regret defined as

follows

P (T) = max
a∈A

E
[︄
T∑︂
t=1

ℓt(a1:t) − ℓt(a, . . . , a)
]︄
, (1.11)

where we use the shorthand ai:j to denote ai, ai+1, . . . , aj. It is not hard to see that

if the adversary is not constrained in any other way then it is impossible to obtain

sublinear policy regret bounds. This follows by observing that all the losses could

just depend on the very first action the player has chosen and it is impossible for

the player to know which is the best action before the game begins. Most work on

policy regret has constrained the adversary to have bounded memory, that is the

adversary can only base its losses on the last m actions the player has chosen. In our

notation this is equivalent to saying that ℓt(a1:t) = ℓt(at−m+1:t),∀t ∈ [T].

1.6.1 Policy regret bounds in the full information game

Merhav et al. (2002) consider the full information game, where the player gets to

observe the full loss for all available sequences of m actions. They propose a strategy

with regret bounded by O(T 2/3(log (K))1/3) for m = 2. Later, Anava et al. (2013)

observe that the policy regret minimization when the adversary is m-memory bounded

can be reduced to minimizing external regret when there is an associated cost for

switching between different actions in consecutive rounds and propose an algorithm for

the general online convex optimization problem with regret Õ(
√
mT) (the asymptotic

notation hides the complexity of the decision space for the convex optimization game).

29

The first algorithm in the full information game which was able to minimize regret in

the presence switching costs (and therefore policy regret) was proposed by Kalai and

Vempala (2005) and is based on the Follow the Perturbed Leader (FTPL) strategy.

The same algorithm can be modified to achieve a O(
√︂
mT log (K)) policy regret bound.

Another algorithm which enjoys O(
√︂
mT log (K)) regret is the shrinking dartboard

algorithm proposed by Geulen et al. (2010). Finally, the more general question of

when sublinear policy regret is achievable is addressed in the work of Bhatia and

Sridharan (2020).

1.6.2 Policy regret bounds in the bandit game

In the bandit game, Arora et al. (2012a) show how to reduce any sub-linear external

regret algorithm to a sub-linear policy regret algorithm via a mini-batching trick. The

proposed algorithms enjoy a Õ(m1/3K1/3T 2/3) regret bound in the multi-armed bandit

problem. There is a discrepancy between the
√
T regret bounds achievable in the full

information setting versus the above T 2/3 bound. Somewhat surprisingly, Dekel et al.

(2014), show that this gap can not be breached, by showing a lower bound of the order

Ω̃(K1/3T 2/3) for the setting of bandits with switching costs. This lower bound also

extends to the policy regret setting, because the two settings are equivalent whenever

m is constant, compared to T . The dichotomy between the achievable regret in the

full information setting versus the achievable regret in the bandit setting introduces

the following interesting question – is it possible to achieve improved policy regret

guarantees if the player is not faced with the worst-case setting. The following chapters

try to answer this question in the positive.

30

Chapter 2

Policy regret in the presence of side
observations

We study the adversarial multi-armed bandit problem where the learner is supplied

with partial observations modeled by a feedback graph and where shifting to a

new action incurs a fixed switching cost. We give two new algorithms for this

problem in the informed setting. Our best algorithm achieves a pseudo-regret of

Õ(γ(G) 1
3T

2
3), where γ(G) is the domination number of the feedback graph. This

significantly improves upon the previous best result for the same problem, which was

based on the independence number of G. We also present matching lower bounds for

our result that we describe in detail. Finally, we give a new algorithm with improved

policy regret bounds when partial counterfactual feedback is available. The main

contributions of this chapter are based on Arora et al. (2019). This work was done in

collaboration with Dr. Raman Arora and Dr. Mehryar Mohri.

2.1 Online learning with partial feedback

In Chapter 1 we discussed to types of feedback for the online learning game – full

information, in which the player observes the losses of all her actions, and bandit

feedback in which the player observes only the loss of the action she has played at the

current round. We further saw that policy regret minimization for bounded memory

31

adversaries has very different min-max rates, i.e. Θ(
√︂
T log (K)) in the full information

game versus Θ(K1/3T 2/3) in the bandit game. In this chapter we study a third model

of partial feedback which lays between full information and bandit feedback. In the

partial feedback setting after playing a action, the player observes the loss of her action

(as in the bandit setting), and also can observe the loss of other “neighboring” actions.

A motivating example is as follows. A commercial bank issues various credit card

products, many of which are similar, e.g., different branded cards with comparable

fees and interest rates. At each round of the game, the bank offers a specific product

to a particular sub-population (e.g., customers at a store). The payoff observed for

this action also reveals feedback for related cards and similar sub-populations.

Formally, which actions reveal information about each other is determined by a

feedback graph, or more generally a sequence of feedback graphs {Gt}Tt=1. In an

undirected feedback graph, each vertex represents an action and an edge between

vertices a and a′ indicates that the loss of action a′ is observed when action a is

selected and vice-versa. The bandit setting corresponds to a feedback graph reduced

to only self-loops at each vertex, the full information setting to a complete graph.

The work of Mannor and Shamir (2011) is the first to study the online learning

problem when feedback graphs model which losses the player gets to observe after

choosing an action. Their work proposes two algorithms, the ExpBan, which has

regret O(
√︂∑︁T

t=1 χ̄(Gt)), where χ̄(G) is the clique partition number, and the ELP

algorithm which has regret O(
√︂∑︁T

t=1 α(Gt)). They also show a regret lower bound

when Gt = G for all G of the order Ω(
√︂
α(G)T). The work of Alon et al. (2013)

improves on that Mannor and Shamir (2011) in two significant ways. First the authors

consider a setting in which the feedback graphs are directed and can be observed

only after taking an action. Secondly the provided algorithms even for the informed

setting are more efficient than the ones in Mannor and Shamir (2011). Their algorithm

Exp3-SET has regret Õ(
√︂∑︁T

t=1 mas(Gt)) for the uninformed setting with directed

32

feedback graphs. Here mas(Gt) is the size of the maximum acyclic subgraph of Gt.

When considering the undirected setting mas(Gt) can be replaced by α(Gt). In the

informed setting Alon et al. (2013) propose the algorithm Exp3-DOM, which requires

approximating or computing a minimum dominating set of Gt. Kocák et al. (2014)

avoid such tedious computation with their algorithm Exp3-IX. The regret achieved

by their algorithm is of the order Õ(
√︂∑︁T

t=1 α(Gt)) even in the uninformed setting.

The paper also extends the implicit exploration trick used by Exp3-IX to Follow the

Perturbed Leader and solves the combinatorial bandit problem with side observations,

where at each round the player is permitted to select n out of the |A| available actions.

The achieved regret is of the order Õ(n2/3
√︂∑︁T

t=1 α(Gt)). In Alon et al. (2015) the

authors consider a setting where the feedback graph system is fixed i.e. Gt = G for all

t ∈ [T], however, the graph need not have self loops. The authors distinguish between

three settings. First a setting in which each vertex either has a self loop or is revealed

by all other vertices, called the strongly observable setting. The second setting assumes

that every vertex is revealed by some other vertex but there exists at least one vertex

which is not strongly observable. This setting is called the weakly observable setting.

The third setting is that of some vertex not being revealed by any other vertex. This

is called the not observable setting. Alon et al. (2015) show that the regret bounds

are respectively Θ̃(
√︂
α(G)T) in the strongly observable setting, Θ̃(γ(G)1/3T 2/3) in the

weakly observable setting and Θ(T) in the not observable setting. The work of Cohen

et al. (2016) studies a setting where the feedback graph is never fully revealed to the

player. They show that if the feedback graph and the losses are generated by the

adversary a lower bound for the regret of any strategy is Ω(
√︂

|A|T), which matches the

lower bound of the bandit setting. In contrast it is possible to recover a Θ̃(
√︂
α(G)T)

regret bound if the losses are stochastic.

Very recently the works of (Lykouris et al., 2018; Lee et al., 2020b) derive regret

bounds depending on the loss of the best action, and in the case of (Lee et al., 2020b),

33

the average loss of a revealing set for the best action, in the weakly observable setting.

Lykouris et al. (2018) achieve their regret bounds through a black-box reduction from

general small-loss bound algorithms. In the fixed, observable feedback graph setting

their bounds either scale sub-optimally with the value of the smallest loss across time

or scales with the clique-partition number of the graph, instead of the independence

number. Lee et al. (2020b) improve on such results by recovering optimal dependence

on both the small loss quantity and independence number. Their results can be

extended to time-varying feedback graphs and weakly observable graphs.

We note that online learning with feedback graphs has also been studied in the

setting of stochastic losses by numerous works (Caron et al., 2012; Buccapatnam et al.,

2014a; Wu et al., 2015a,b; Tossou et al., 2017; Liu et al., 2018), however, we chose not

to discuss these works here as our focus is on the adversarial case. For more extensive

discussion on bandits with graph feedback we refer the reader to the work of Valko

(2016).

The main regret upper bound of this chapter can be summarized as follows.

Theorem 2.1.1. There exists an algorithm for the setting of policy regret minimization

with partial feedback provided by a graph G with regret bounded by Õ((mγ(G))1/3T 2/3),

where γ(G) is the domination number of the graph and m is the memory of the

adversary.

2.2 Regret minimization in the presence of switch-
ing costs and policy regret

In Section 1.6.2 we mentioned that policy regret minimization for memory-bounded

adversaries is equivalent to regret minimization in the presence of switching costs.

The regret for the switching costs problem is defined as follows

RS(T) = max
a∈A

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a) + χat ̸=at−1

]︄
, (2.1)

34

where χA is the characteristic function of the event A.

Let us formally argue the equivalence between m-memory bounded adversaries

(for m > 1) and the switching cost problem. First notice that an m-memory bounded

adversary for m > 1 can model a switching cost so policy regret minimization is at

least as hard as minimizing RS(T). Suppose that we have some algorithm A which

minimizes RS(T) and works with losses ˆ︁ℓt : A → [0, 1]. The following reduction solves

the policy regret problem. We split the stream of T losses into mini-batches of size m

such that ˆ︁ℓt(·) = 1
m

∑︁m
j=1 ℓ(t−1)m+j(·). Now we would simply feed the sequence (ˆ︁ℓt)T/mt=1

to Algorithm A if it were not for intervals of length m at which there is a switched

action, that is at ̸= at+1. Suppose that between the t-th mini-batch and the t+ 1-st

mini-batch Algorithm A decides to switch actions so that at ̸= at+1. In this case no

additional feedback is available for ˆ︁ℓt+1(at+1) and the algorithm can not proceed as

normal. To fix this minor problem, the provided feedback to the algorithm is that

the loss of all actions in A is 0. This modification can not occur more times than the

number of switches Algorithm A does. Pseudocode for the above algorithm can be

found in Algorithm 3.

Algorithm 3: Policy regret with side observations
Input: Parameters required by Algorithm A and memory m
Output: Action sequence (at)t.

1: Initialize Algorithm A.
2: for t = 1, . . . , ⌊T/m⌋ do
3: Receive action at from Algorithm A and play it for the next m rounds.
4: if at−1 == at then
5: Observe mini-batched loss ˆ︁ℓt(at) = 1

m

∑︁m
j=1 ℓ(t−1)m+j(at) (and additional side

observations). Feed mini-batched loss (and additional side observations) to
Algorithm A.

6: else
7: Set ˆ︁ℓt = 0 and feed losses to Algorithm A.
8: end if
9: end for

Algorithm 3 enjoys the following regret guarantee.

35

Theorem 2.2.1. The Policy regret of Algorithm 3 is bounded by mRS(T/m).

Proof of Theorem 2.2.1. The regret of Algorithm A is bounded as

E

⎡⎣T/m∑︂
t=1

ˆ︁ℓt(at) −
T/m∑︂
t=1

ˆ︁ℓt(a) +
T/m∑︂
t=1

χat−1 ̸=at

⎤⎦ ≤ R̃S(T),

for any action a. On the other hand we have

E

⎡⎣T/m∑︂
t=1

ˆ︁ℓt(at) −
T/m∑︂
t=1

ˆ︁ℓt(a)
⎤⎦ ≤ E

⎡⎣T/m∑︂
t=1

ˆ︁ℓt(at) −
T/m∑︂
t=1

1
m

m∑︂
j=1

ℓ(t−1)m+j(a)
⎤⎦

=E

⎡⎣T/m∑︂
t=1

1
m

m∑︂
j=1

ℓ(t−1)m+j(at) −
T/m∑︂
t=1

1
m

m∑︂
j=1

ℓ(t−1)m+j(a) −
T/m∑︂
t=1

χat−1 ̸=at
1
m

m∑︂
j=1

ℓ(t−1)m+j(at)
⎤⎦ .

Combined with the regret bound, the above implies

1
m
E[R(T)] ≤ RS(T/m) + E

⎡⎣T/m∑︂
t=1

χat−1 ̸=at

⎤⎦ . (2.2)

The second term in the right hand side bounded by the number of switches bound

number of switches and hence the regret bound of Algorithm A as

E

⎡⎣T/m∑︂
t=1

χat−1 ̸=at

⎤⎦ ≤ RS(T/m).

Multiplying Inequality 2.2 by m on both sides finishes the proof.

Thus if we have an algorithm with bounded RS(T) we also have a reasonable policy

regret-minimizing algorithm for bounded memory adversaries. The standard bounds

for RS(T) scale as O(T 2/3) and hence Algorithm 3 enjoys a O(m1/3T 2/3) regret bound

in that case which is meaningful for all m = o(T).

2.3 Bandits with feedback graphs and switching
Costs

The reduction in Section 2.2 allows us to focus on the problem of minimizing the

switching costs regret RS(T). For the rest of this chapter we are only going to consider

minimizing RS(T), or deriving information theoretic lower bounds on RS(T).

36

The only work we are familiar with, which studies both bandits with switching costs

and side information is that of Rangi and Franceschetti (2019). The authors propose

two algorithms for time-varying feedback graphs in the uninformed setting. When

reduced to the fixed feedback graph setting, their regret bound becomes Õ(α(G) 1
3T

2
3).

We note that, in the informed setting with a fixed feedback graph, this bound can

be achieved by applying the mini-batching technique of Arora et al. (2012a) to the

EXP3-SET algorithm of Alon et al. (2013).

The main contributions outlined in this chapter are two-fold. First, we propose

two algorithms for online learning in the informed setting with a fixed feedback

graph G and switching costs. Our best algorithm admits a pseudo-regret bound in

Õ(γ(G) 1
3T

2
3), where γ(G) is the domination number of G. We note that the domination

number γ(G) can be substantially smaller than the independence number α(G) and

therefore that our algorithm significantly improves upon previous work by Rangi and

Franceschetti (2019) in the informed setting. We also extend our results to achieve a

policy regret bound in Õ(γ(G) 1
3T

2
3) when partial counterfactual feedback is available.

The Õ(γ(G) 1
3T

2
3) regret bound in the switching costs setting might seem at odds with

a lower bound stated by Rangi and Franceschetti (2019). However, the lower bound of

Rangi and Franceschetti (2019) can be shown to be technically inaccurate. Our second

main contribution is a lower bound in Ω̃(T 2
3) for any non-complete feedback graph.

We also extend this lower bound to Ω̃(γ(G) 1
3T

2
3) for a class of feedback graphs that

we will describe in detail. We show a lower bound for the setting of evolving feedback

graphs, matching the originally stated lower bound in (Rangi and Franceschetti, 2019).

2.3.1 Problem setup and notation

The main quantity of interest is going to be the switching cost regret RS(T). We

assume that the player has access to an undirected graph G = (A, E), which determines

which expert losses can be observed at each round. The vertex set A is the set of

37

experts (or actions) and the graph specifies that, if at round t the player selects

action at, then, the losses of all experts whose vertices are adjacent to that of at can

be observed: ℓt(a) for a ∈ N(at), where N(at) denotes the neighborhood of at in G

defined for any u ∈ A by: N(u) = {v : (u, v) ∈ E}. We will denote by deg(u) = |N(u)|

the degree of u ∈ A in graph G. We assume that G admits a self-loop at every vertex,

which implies that the player can at least observe the loss of their own action (bandit

information). In all our figures, self-loops are omitted for the sake of simplicity.

We assume that the feedback graph is available to the player at the beginning

of the game (informed setting). The independence number of G is the size of

a maximum independent set in G and is denoted by α(G). The domination

number of G is the size of a minimum dominating set and is denoted by γ(G).

The following inequality holds for all graphs G: γ(G) ≤ α(G) (Bollobás and Cockayne,

1979; Goddard and Henning, 2013). In general, γ(G) can be substantially smaller

than α(G), with γ(G) = 1 and α(G) = |A| − 1 in some cases. We note that all our

results can be straightforwardly extended to the case of directed graphs.

2.3.2 An adaptive mini-batch algorithm

In this section, we describe an algorithm for online learning with switching costs, using

adaptive mini-batches.

The standard exploration versus exploitation dilemma in the bandit setting is

further complicated in the presence of a feedback graph: if a poor action reveals the

losses of all other actions, do we play the poor action? The lower bound construction

of Mannor and Shamir (2011) suggests that we should not, since it might be better to

just switch between the other actions.

Adding switching costs, however, modifies the price of exploration and the lower

bound argument of Mannor and Shamir (2011) no longer holds. It is in fact possible

to show that EXP3 and its graph feedback variants switch too often in the presence of

38

two good actions, thereby incurring Ω(T) regret, due to the switching costs. One way

to deal with the switching costs problem is to adapt the fixed mini-batch technique

of Arora et al. (2012a). That technique, however, treats all actions equally while, in

the presence of switching costs, actions that provide additional information are more

valuable.

We deal with the issues just discussed by adopting the idea that the mini-batch

sizes could depend both on how favorable an action is and how much information an

action provides about good actions.

2.3.2.1 Algorithm for Star Graphs

We start by studying a simple feedback graph case in which one action is adjacent to

all other actions with none of these other actions admitting other neighbors. For an

example see Figure 2-1.

Figure 2-1: Example of a star
graph.

We call such graphs star graphs and we re-

fer to the action adjacent to all other actions as

the revealing action. The revealing action is

denoted by r. Since only the revealing action can

convey additional information about other actions,

we will select our mini-batch size to be propor-

tional to the quality of this action. Also, to prevent our algorithm from switching

between two non-revealing actions too often, we will simply disallow that and allow

switching only between the revealing action and a non-revealing action. Finally, we

will disregard any feedback a non-revealing action provides us. This simplifies the

analysis of the regret of our algorithm. The pseudocode of the algorithm is given in

Algorithm 4.

The following intuition guides the design of our algorithm and its analysis. We

need to visit the revealing action sufficiently often to derive information about all

39

Algorithm 4: Algorithm for star graphs
Input: Star graph G(A, E), learning rates (ηt), exploration rate β ∈ [0, 1], maximum

mini-batch τ .
Output: Action sequence (at)Tt=1.

1: q1 = 1
|A| .

2: while ∑︁t⌊τt⌋ ≤ T do
3: pt = (1 − β)qt + βδ(r) % δ(r) is the Dirac distribution on r
4: Draw at ∼ pt, set τt = pt(r)τ
5: if at−1 ̸= r and at ̸= r then
6: Set at = at−1
7: end if
8: Play at for the next ⌊τt⌋ iterations
9: Set ˆ︁ℓt(i) = ∑︁t+⌊τt⌋−1

j=t I(at = r) ℓj(i)
pt(r)

10: For all i ∈ A, qt+1(i) = qt(i) exp(−ηtˆ︁ℓt(i))∑︁
j∈A qt(j) exp(−ηtˆ︁ℓt(j))

11: t = t+ 1
12: end while

other actions, which is determined by the explicit exploration factor β. If r is a good

action, our regret will not be too large if we visit it often and spent a large amount

of time in it. On the other hand if r is poor, then the algorithm should not sample

it often and, when it does, it should not spend too much time there. Disallowing

the algorithm to directly switch between non-revealing actions also prevents it from

switching between two good non-revealing actions too often. The only remaining

question is: do we observe enough information about each action to be able to devise

a low regret strategy? The following regret guarantee provides a precise positive

response.

Theorem 2.3.1. Suppose that the inequality E[ℓ2
t (i)] ≤ ρ holds for all t ≤ T and all

i ∈ A, for some ρ and β ≥ 1
τ
. Then, for any action a ∈ A, Algorithm 4 admits the

following guarantee:

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a)
]︄

≤ log (|A|)
η

+ Tητρ+ Tβ.

Furthermore, the algorithm does not switch more than 2T
τ

times, in expectation.

40

Proof sketch. The complete proof can be found in Section 2.4. The key elements of

the proof are as follows. First we analyze the standard regret of an algorithm which

excludes lines 5 and 6 from Algorithm 4. The analysis follows standard arguments for

bounding the regret of the Exp3 algorithm. Next, we show that the analyzed algorithm

will follow the same trajectory as Algorithm 4. Finally, we show that Algorithm 4 will

not switch between the revealing action r and another action too often due to our

choice of τt. In particular, either τt is large when we have high probability to sample

r and hence we spend a large number of iterations at r or the probability to visit r is

small and the algorithm continues playing the same non-revealing action.

The exploration parameter β is needed to ensure that τt = pt(r)τ ≥ 1, so that at

every iteration of the while loop Algorithm 4 plays at least one action. The bound

assumed on the second moment E[ℓ2
t (i)] might seem unusual since in the adversarial

setting we do not assume a randomization of the losses. For now, the reader can just

assume that this is a bound on the squared loss, that is, ℓ2
t (i) ≤ ρ. The role of this

expectation and the source of the randomness will become clear in Section 2.3.2.3. We

note that the star graph admits independence number α(G) = |A| − 1 and domination

number γ(G) = 1. In this case, the algorithms of Rangi and Franceschetti (2019) and

variants of the mini-batching algorithm only guarantee a regret bound of the order

Õ(α(G) 1
3T

2
3), while Algorithm 4 guarantees a regret bound of the order Õ(T 2

3) when

we set η = 1/T 2
3 , τ = T

2
3 , and β = 1/T 1

3 .

2.3.2.2 Algorithm for General Feedback Graphs

We now extend Algorithm 4 to handle arbitrary feedback graphs. The pseudocode of

this more general algorithm is given in Algorithm 5.

The first step of Algorithm 5 consists of computing an approximate minimum

dominating set for G using the Greedy Set Cover algorithm (Chvatal, 1979). The

Greedy Set Cover algorithm naturally partitions G into disjoint star graphs with

41

Algorithm 5: Algorithm for general feedback graphs
Input: Graph G(A, E), learning rates (ηt), exploration rate β ∈ [0, 1], maximum

mini-batch τ .
Output: Action sequence (at)t.

1: Compute an approximate dominating set R
2: q1 ≡ Unif(A), u ≡ Unif(R)
3: while ∑︁t τt ≤ T do
4: pt = (1 − β)qt + βu.
5: Draw i ∼ pt, set τt = pt(ri)τ , where ri is the dominating vertex for i and set

at = i.
6: if at−1 ̸∈ R and at ̸∈ R then
7: Set at = at−1
8: end if
9: Play at for the next ⌊τt⌋ iterations.

10: Set ˆ︁ℓt(i) = ∑︁t+⌊τt⌋−1
j=t I(at = ri) ℓj(i)

pt(ri) .

11: For all i ∈ A, qt+1(i) = qt(i) exp(−ηtˆ︁ℓt(i))∑︁
j∈A qt(j) exp(−ηtˆ︁ℓt(j)) .

12: t = t+ 1.
13: end while

revealing actions/vertices in the dominating set R. Next, Algorithm 5 associates with

each star-graph its revealing arm r ∈ R. The mini-batch size at time t now depends

on the probability pt(r) of sampling a revealing action r, as in Algorithm 4. There

are several key differences, however, that we now point out. Unlike Algorithm 4, the

mini-batch size can change between rounds even if the action remains fixed. This

occurs when the newly sampled action is associated with a new revealing action in R,

however, it is different from the prior revealing action. The above difference introduces

some complications, because τt conditioned on all prior actions a1:t−1 is still a random

variable, while it is a deterministic in Algorithm 4. We also allow switches between

any action and any vertex r ∈ R. This might seem to be a peculiar choice. For

example, allowing only switches within each star-graph in the partition and only

between revealing vertices seems more natural. Allowing switches between any vertex

and any revealing action benefits exploration while still being sufficient for controlling

the number of switches. If we further constrain the number of switches by using the

42

more natural approach, it is possible that not enough information is received about

each action, leading to worse regret guarantees. We leave the investigation of such

more natural approaches to future work. Algorithm 5 admits the following regret

bound.

Theorem 2.3.2. For any β ≥ |R|
τ

The expected regret of Algorithm 5 is

log (|A|)
η

+ ητT + βT.

Further, if the algorithm is augmented similar to Algorithm 8, then it will switch

between actions at most 2T |R|
τ

times.

Setting η = 1/(|R| 1
3T

2
3), τ = |R| 2

3T
1
3 and β = |R| 1

3/T
1
3 , recovers a pseudo-regret

bound of Õ(|R| 1
3T

2
3), with an expected number of switches bounded by 2|R| 1

3T
2
3 .

We note that |R| = O(γ(G) log (|A|)) and thus the regret bound of our algorithm

scales like γ(G) 1
3 . Further, this is a strict improvement over the results of Rangi

and Franceschetti (2019) as their result shows a scaling of α(G) 1
3 . The proof of

Theorem 2.3.2 follows the ideas in the proof of Theorem 2.3.1 while carefully handling

the construction the unbiased estimators of the losses. The proof can be found in

Section 2.4.

2.3.2.3 Corralling Star Graph Algorithms

An alternative natural method to tackle the general feedback graph problem is

to use the recent corralling algorithm of Agarwal et al. (2016). In this section, we

describe that technique, even though it does not seem to achieve an optimal rate.

Here too, the first step consists of computing an approximate minimum dominating

set. Next, we initialize an instance of Algorithm 4 for each star graph. Finally, we

combine all of the star graph algorithms via a mini-batched version of the corralling

algorithm of Agarwal et al. (2016). Mini-batching is necessary to avoid switching

between star graph algorithms too often. The pseudocode of this algorithm is given in

43

Algorithm 6: Corralling star-graph algorithms
Input: Feedback graph G(A, E), learning rate η, mini-batch size τ
Output: Action sequence (at)Tt=1.

1: Compute an approximate minimum dominating set R and initialize |R| base
star-graph algorithms, B1, B2, . . . , B|R|, with step size η′

2|R| , mini-batch size τ and
exploration rate 1

τ
(Algorithm 4).

2: T ′ = T
τ
, β = 1

T ′ , β̃ = exp
(︂

1
log(T)

)︂
, η1,i = η, ρ1,i = 2|R| for all i ∈ [|R|],

q1 = p1 = 1
|R|

3: for t = 1, . . . , T ′ do
4: Draw it ∼ pt
5: for jt = (t− 1)τ + 1, . . . , (t− 1)τ + τ do
6: Receive action aijt from Bi for all i ∈ [|R|].
7: Set ajt = aitjt , play ajt and observe loss ℓjt(ajt).
8: Send ℓjt (ajt)

pt(it) I{i = it} as loss to algorithm Bi for all i ∈ [|R|].
9: Update ˆ︁ℓt(i) = ˆ︁ℓt(i) + 1

τ

ℓjt (ajt)
pt(it) I{i = it}.

10: end for
11: Update qt+1 = Algorithm 7(qt, ˆ︁ℓt, ηt).
12: Set pt+1 = (1 − β)qt+1 + β 1

|R| .
13: for i = 1, . . . , |R| do
14: if 1

pt(i) > ρt,i then
15: Set ρt+1,i = 2

pt(i) , ηt+1,i = β̃ηt,i and restart i-th star-graph algorithm, with
updated step-size η′

ρt+1,i

16: else
17: Set ρt+1,i = ρt,i, ηt+1,i = ηt,i.
18: end if
19: end for
20: end for

Algorithm 6. Since during each mini-batch we sample a single star graph algorithm,

we need to construct appropriate unbiased estimators of the losses ℓjt , which we feed

back to the sampled star graph algorithm. The bound on the second moment of these

estimators is exactly what Theorem 2.3.1 requires. Our algorithm admits the following

guarantees.

Theorem 2.3.3. Let τ = T
1
3/|R| 1

4 , η = |R| 1
4/(40c log (T ′)T 1

3 log (|A|)), and η′ =

1/T 2
3 , where c is a constant independent of T , τ , |A| and |R|. Then, for any a ∈ A,

44

Algorithm 7: Log-Barrier-OMD(qt, ℓt, ηt)
Input: Previous distribution qt, loss vector ℓt, learning rate vector ηt.
Output: Updated distribution qt+1.

1: Find λ ∈ [mini ℓt(i),maxi ℓt(i)] such that ∑︁|R|
i=1

1
1

qt(i) +ηt,i(ℓt(i)−λ) = 1
2: Return qt+1 such that 1

qt+1(i) = 1
qt(i) + ηt,i(ℓt(i) − λ).

the following inequality holds for Algorithm 6:

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a)
]︄

≤ Õ
(︃√︂

|R|T
2
3

)︃
.

Furthermore, the expected number of switches of the algorithm is bounded by T 2
3 |R| 1

3 .

Sketch of proof. The basic idea behind the proof-sketch is to first partition the graph

G into star graphs using the greedy algorithm for finding a dominating set. Next, we

know that running Algorithm 4 on each star graph comes with an RS(T) ≤ Õ(T 2/3)

regret guarantee. We could directly use the corralling algorithm on top of the star

graph algorithms, however, we still need to make sure that the corralling algorithm

does not switch too often. To this end we just use the reduction outlined in Arora

et al. (2012a) to obtain a corralling algorithm with bounded switches. Unfortunately,

this reduction leads to the sub-optimal dependence on the size of the dominating

set.

This bound is suboptimal compared to the γ(G) 1
3 -dependency achieved by Algo-

rithm 5. We conjecture that this gap is an artifact of the analysis of the corralling

algorithm of Agarwal et al. (2016). However, we were unable to improve on the current

regret bound by simply corralling.

2.4 Detailed proofs from Section 2.3.2

2.4.1 Adaptive Mini-batching for Star Graphs

The proof of Theorem 2.3.1 begins by considering a slightly modified version of

Algorithm 4. In particular we remove lines 5 through 7 which disallow switching

45

between non-revealing actions. This intuitively should not change the policy which

Algorithm 4 produces as such switches do not provide any new information to the

algorithm. For convenience of the reader we give the pseudo-code of the modified

algorithm in Algorithm 8, where the lines in red are commented out and are not part

of the algorithm.

Algorithm 8: Algorithm for star graphs (modified)
Input: Star graph G(A, E), learning rate sequence (ηt), exploration rate β ∈ [0, 1],

maximum mini-batch τ .
Output: Action sequence (at)t.

1: q1 ≡ Unif(A).
2: while ∑︁t τt ≤ T do
3: pt = (1 − β)qt + βδ(r).
4: Draw at ∼ pt, set τt = pt(r)τ .
5: if at−1 ̸= r and at ̸= r then
6: Set at = at−1
7: end if
8: Play at for the next ⌊τt⌋ iterations.
9: Set ˆ︁ℓt(i) =

t+⌊τt⌋−1∑︂
j=t

I(at = r) ℓj(i)
pt(r)

.

10: For all i ∈ A, qt+1(i) = qt(i) exp(−ηtˆ︁ℓt(i))∑︁
j∈A qt(j) exp(−ηtˆ︁ℓt(j)) .

11: t = t+ 1.
12: end while

Algorithm 8 comes with the following regret guarantee.

Theorem 2.4.1. Suppose that for all t ≤ T and all i ∈ A it holds that E[ℓt(i)2] ≤ ρ

and β ≥ 1
τ
. Then Algorithm 8 produces an action sequence (at)Tt=1 satisfying:

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a)
]︄

≤ log (|A|)
η

+ Tητρ+ Tβ,

for any a ∈ A.

Proof. Since β ≥ 1
τ
, this implies that ⌊τt⌋ ≥ 1 and the algorithm terminates, producing

an action sequence (at)Tt=1. Let i∗t be the best action at time t and let Lt,∗ = ∑︁t
s=1

ˆ︁ℓs(i∗t).
46

Let wt(i) = exp
(︂
−η∑︁t−1

j=1
ˆ︁ℓj(i))︂ and Wt = ∑︁

i∈A wt(i). We have

log
(︄

Wt+1

wt+1(i∗t+1)

)︄
− log

(︄
Wt

wt(i∗t)

)︄
= η (Lt+1,∗ − Lt,∗)

+ log
⎛⎝∑︁i∈A wt(i) exp

(︂
−η∑︁t+⌊τt⌋−1

j=t I(at = r) ℓj(i)
pt(r)

)︂
Wt

⎞⎠
= η (Lt+1,∗ − Lt,∗)

+ log
⎛⎝∑︂
i∈A

qt(i) exp
⎛⎝−η

t+⌊τt⌋−1∑︂
j=t

I(at = r) ℓj(i)
pt(r)

⎞⎠⎞⎠
≤ η (Lt+1,∗ − Lt,∗) − 1

+
∑︂
i∈A

qt(i) exp
⎛⎝−η

t+⌊τt⌋−1∑︂
j=t

I(at = r) ℓj(i)
pt(r)

⎞⎠
≤ η (Lt+1,∗ − Lt,∗) − η

I(at = r)
pt(r)

∑︂
i∈A

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i)

+ η2

2
I(at = r)
pt(r)2

∑︂
i∈A

qt(i)
⎛⎝t+τt−1∑︂

j=t
ℓj(i)

⎞⎠2

,

where the first inequality follows from log (x) ≤ x − 1 for all x > 0 and the second

inequality follows from e−x ≤ 1 − x+ x2/2 for x ≥ 0. Rearranging terms in the above

47

and taking expectation we have

E

⎡⎣E
⎡⎣I(at = r)

pt(r)
∑︂
i∈A

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i)|a1:t−1

⎤⎦⎤⎦
≤1
η
E
[︄
log

(︄
Wt

wt(i∗t)

)︄
− log

(︄
Wt+1

wt+1(i∗t+1)

)︄]︄

+η2E

⎡⎢⎣E
⎡⎢⎣I(at = r)

pt(r)2

∑︂
i∈A

qt(i)
⎛⎝t+τt−1∑︂

j=t
ℓj(i)

⎞⎠2

|a1:t−1

⎤⎥⎦
⎤⎥⎦+ E[Lt+1,∗ − Lt,∗]

=⇒

E

⎡⎣∑︂
i∈A

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i)
⎤⎦ ≤ 1

η
E
[︄
log

(︄
Wt

wt(i∗t)

)︄
− log

(︄
Wt+1

wt+1(i∗t+1)

)︄]︄

+η2E

⎡⎢⎣ 1
pt(r)

∑︂
i∈A

qt(i)
⎛⎝t+τt−1∑︂

j=t
ℓj(i)

⎞⎠2
⎤⎥⎦+ E[Lt+1,∗ − Lt,∗]

=⇒

E

⎡⎣∑︂
i∈A

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i)
⎤⎦ ≤ 1

η
E
[︄
log

(︄
Wt

wt(i∗t)

)︄
− log

(︄
Wt+1

wt+1(i∗t+1)

)︄]︄

+η2E
⎡⎣ 1
pt(r)

∑︂
i∈A

qt(i)τt
t+τt−1∑︂
j=t

ℓj(i)2

⎤⎦+ E[Lt+1,∗ − Lt,∗]

=⇒

E

⎡⎣∑︂
i∈A

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i)
⎤⎦ ≤ 1

η
E
[︄
log

(︄
Wt

wt(i∗t)

)︄
− log

(︄
Wt+1

wt+1(i∗t+1)

)︄]︄

+η2E
⎡⎣ 1
pt(r)

∑︂
i∈A

qt(i)τt
t+τt−1∑︂
j=t

E[ℓj(i)2|a1:t−1]
⎤⎦+ E[Lt+1,∗ − Lt,∗]

=⇒

E

⎡⎣∑︂
i∈A

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i)
⎤⎦ ≤ 1

η
E
[︄
log

(︄
Wt

wt(i∗t)

)︄
− log

(︄
Wt+1

wt+1(i∗t+1)

)︄]︄

+η2E
[︄
ρ
pt(r)2τ 2

pt(r)
∑︂
i∈A

qt(i)
]︄

+ E[Lt+1,∗ − Lt,∗].

Notice that E[LT,∗] = E[∑︁T ′

t=1
I(at=r)
pt(r)

∑︁t+⌊τt⌋−1
j=t ℓj(i∗)] = E[∑︁T ′

t=1
∑︁t+⌊τt⌋−1
j=t ℓj(i∗)]. Sum-

48

ming over t = 1 through T and using the fact log
(︂

W1
w1(i∗)

)︂
= log (|A|) we have

E

⎡⎣ T ′∑︂
t=1

∑︂
i∈A

qt(i)
t+⌊τt⌋−1∑︂
j=t

(ℓj(i) − ℓj(i∗))
⎤⎦ ≤ log (|A|)

η
+ η

2τE
⎡⎣ρ T ′∑︂

t=1
pt(r)τ

⎤⎦
≤ log (|A|)

η
+ Tητρ,

where T ′ is the random variable equaling the number of mini-batches. The last

inequality in the above follows since τT ∈ o(T) and from our while loop we know

that ∑︁T ′−1
t=1 τt ≤ T , thus we can bound E[∑︁T ′

t=1 τt] ≤ 2T . Notice that the LHS in the

above inequality is almost equal to the expected regret of our algorithm. We have

qt(i) ≤ pt(i) − β and thus the expected regret is bounded by

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a)
]︄

≤ log (|A|)
η

+ Tητρ+ Tβ.

Lemma 2.4.2. Algorithm 8 switches between a revealing and a non-revealing action

at most T
τ

times in expectation.

Proof. The number of switches can be upper bounded by twice the number of times

at is equal to r. Thus the expected number of switches is bounded by E[∑︁T ′

t=1 I(at =

r)] = 1
τ
E[∑︁T ′

t=1 pt(r)τ] = 1
τ
E[∑︁T ′

t=1 τt] ≤ 2T
τ

.

To finish the proof of Theorem 2.3.1 we need to verify that the expected regret of

Algorithm 8 is the same as the expected regret of Algorithm 4.

Lemma 2.4.3. Algorithm 8 and Algorithm 4 have the same expected regret bound.

Proof. Let (pt)Tt=1 be the sequence of random vectors generated by Algorithm 8 and

let (p′
t)Tt=1 be the sequence of random vectors generated by Algorithm 4. First we

show by induction that the distribution of pt is the same as that of p′
t. The base case

is trivial as p1 = p′
1. To see that the induction step holds we just notice that if we

condition on pt either both algorithms update pt+1 and p′
t+1 because action r was

49

sampled, in which case the updates are exactly the same, or both algorithms do not

update pt+1, respectively p′
t+1. Let at and a′

t denote the t-th action of Algorithm 8

and Algorithm 4 respectively. We now show that E[ℓt(at)] = E[ℓt(a′
t)]. Let Xt denote

the random variable indicating the last time before t in which action r was played by

Algorithm 8 and let X ′
t be the random variable indicating the last time before t in

which action r was played by Algorithm 4. Since Xt is function of p1, . . . , pt−1 and X ′
t

is a function of p′
1, . . . , p

′
t−1, then Xt and X ′

t have the same distribution. Now we can

write

E[ℓt(at)] =
t−1∑︂
j=1

P(Xt = j)E[ℓt(at)|Xt = j] =
t−1∑︂
j=1

P(Xt = j)E[
∑︂
i∈A

pt(i)ℓt(i)|Xt = j]

=
t−1∑︂
j=1

P(Xt = j)E[
∑︂
i∈A

pj+1(i)ℓt(i)|Xt = j]

=
t−1∑︂
j=1

P(Xt = j)E[
∑︂
i∈A

p′
j+1(i)ℓt(i)|X ′

t = j]

=
t−1∑︂
j=1

P(X ′
t = j)E[ℓt(a′

t)|X ′
t = j] = E[ℓt(a′

t)].

Proof of Theorem 2.3.1. Lemma 2.4.3 together with Theorem 2.4.1 imply the bound

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a)
]︄

≤ Õ
(︂√

ρT 2/3
)︂
.

Lemma 2.4.2 together with the fact that Algorithm 4 can only switch between the

revealing action and non-revealing actions imply the bound on number of switches.

2.4.2 Proof of Theorem 2.3.2

Proof of Theorem 2.3.2. First note that because of the condition β ≥ |R|
τ

each of

the mini-batches ⌊τt⌋ is at least 1, since for any r ∈ R we have pt(r) ≥ β
|R| ≥ 1

τ
,

and thus the algorithm will terminate in at most 2T iterations. Next, similarly

to Lemma 2.4.3, we can analyze the regret of Algorithm 5 by removing lines 6

50

and 7 when bounding the cumulative loss of the algorithm and then use lines 6

and 7 to guarantee that the algorithm does not switch too often. Let wt+1(i) =

wt(i) exp
(︂
−ηt

∑︁t+⌊τt⌋−1
j=t I(at = ri) ℓj(i)

pt(ri)

)︂
and Wt = ∑︁

i∈A wt(i), so that qt(i) = wt(i)
Wt

. Let

Ar be the subset of actions dominated by the vertex r. Let i∗t be the best action at time

t and let Lt,∗ = ∑︁t
s=1

ˆ︁ℓs(i∗t). We consider the difference log
(︃

Wt+1
wt+1(i∗t+1)

)︃
− log

(︂
Wt

wt(i∗t)

)︂
.

log
(︄

Wt+1

wt+1(i∗t+1)

)︄
− log

(︄
Wt

wt(i∗t)

)︄
= ηt(Lt+1,∗ − Lt,∗)

+ log
⎛⎝∑︂
r∈R

∑︂
i∈Ar

qt(i) exp
⎛⎝−ηt

t+⌊τt⌋−1∑︂
j=t

I(at = ri)
ℓj(i)
pt(ri)

⎞⎠⎞⎠
≤ ηt(Lt+1,∗ − Lt,∗) − 1

+
∑︂
r∈R

∑︂
i∈Ar

qt(i) exp
⎛⎝−ηt

t+⌊τt⌋−1∑︂
j=t

I(at = ri)
ℓj(i)
pt(ri)

⎞⎠
≤ ηt(Lt+1,∗ − Lt,∗) − ηt

∑︂
r∈R

∑︂
i∈Ar

qt(i)
t+⌊τt⌋−1∑︂
j=t

I(at = ri)
ℓj(i)
pt(ri)

+ η2
t

2
∑︂
r∈R

∑︂
i∈Ar

qt(i)
⎛⎝t+τt−1∑︂

j=t
I(at = r) ℓj(i)

pt(r)

⎞⎠2

,

where the first inequality follows from the fact that log (()x) ≤ x − 1 for all x ≥ 0

and the second inequality follows from the fact that e−x ≤ 1 − x+ x2/2, for all x ≥ 0.

Set ηt = η and divide both sides by η. Shuffling terms around, taking expectation and

noting that if one drops the floor function from the quadratic term it will only get

larger we arrive at the following

E

⎡⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)
t+⌊τt⌋−1∑︂
j=t

I(at = r) ℓj(i)
pt(r)

+ Lt+1,∗ − Lt,∗

⎤⎦
≤ 1
η
E
[︄
log

(︄
Wt

wt(i∗r∗)

)︄
− log

(︄
Wt+1

wt+1(i∗r∗)

)︄]︄

+ η

2E

⎡⎢⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)
⎛⎝t+τt−1∑︂

j=t
I(at = r) ℓj(i)

pt(r)

⎞⎠2
⎤⎥⎦ .

(2.3)

51

Consider the term on the LHS.

E

⎡⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)
t+⌊τt⌋−1∑︂
j=t

I(at = r) ℓj(i)
pt(r)

+ Lt+1,∗ − Lt,∗

⎤⎦
= E

⎡⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i) + Lt+1,∗ − Lt,∗

⎤⎦ ,
where in the last inequality we used that ℓj(i) ≤ 1 for all i ∈ A. Now we consider the

second term on the RHS of the inequality.

E

⎡⎢⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)
⎛⎝t+τt−1∑︂

j=t
I(at = r) ℓj(i)

pt(r)

⎞⎠2
⎤⎥⎦

= E

⎡⎢⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)E

⎡⎢⎣I(at = r)
pt(r)2

⎛⎝t+τt−1∑︂
j=t

ℓj(i)
⎞⎠2

|a1:t−1

⎤⎥⎦
⎤⎥⎦

≤ E

⎡⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)E
[︄
I(at = r)
pt(r)2 τ 2

t |a1:t−1

]︄⎤⎦
Consider the term E

[︂
I(at=r)
pt(r)2 τ

2
t |a1:t−1

]︂
. We have at = r with probability pt(r) and so

τt = pt(r)τ . Otherwise we have I(at=r)
pt(r)2 τ

2
t = 0. Thus the RHS is bounded by

E

⎡⎢⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)
⎛⎝t+τt−1∑︂

j=t
I(at = r) ℓj(i)

pt(r)

⎞⎠2
⎤⎥⎦

≤ E

⎡⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)E
[︄
I(at = r)
pt(r)2 τ 2

t |a1:t−1

]︄⎤⎦ = E

⎡⎣∑︂
r∈R

∑︂
i∈Ar

qt(i)pt(r)τ 2

⎤⎦
= τE

[︄∑︂
r∈R

pt(r)τP[τt = pt(r)τ]
]︄

= τE[τt].

Summing the LHS and RHS of Equation 2.3 and using our respective bounds, we get:

E

⎡⎣ T ′∑︂
t=1

∑︂
r∈R

∑︂
i∈Ar

qt(i)
t+⌊τt⌋−1∑︂
j=t

ℓj(i) −
t+⌊τt⌋−1∑︂
j=t

ℓj(i∗r∗)
⎤⎦

≤ log (|A|)
η

+ η

2τE
⎡⎣ T ′∑︂
t=1

τt

⎤⎦ ≤ log (|A|)
η

+ ητT.

Next we notice that the LHS is almost the expected regret of the algorithm, except

we need to replace qt(i) by pt(i). This is done at the cost of an additional βT term,

since qt(r) ≤ pt(r) − β
|R| for r ∈ R. Finally we upper bound the number of times the

52

algorithm switches by the number of times it samples a revealing arm which is equal

to E
[︂∑︁T ′

t=1
∑︁
r∈R I(at = r)

]︂
. To bound this term we do the following

2T ≥ E

⎡⎣ T ′∑︂
t=1

τt

⎤⎦ = E

⎡⎣ T ′∑︂
t=1

E [τt|pt]
⎤⎦ = E

⎡⎣ T ′∑︂
t=1

∑︂
r∈R

pt(r)τ
∑︂
i∈Ar

pt(i)
⎤⎦

≥ E

⎡⎣ T ′∑︂
t=1

∑︂
r∈R

τpt(r)2

⎤⎦ = τE

⎡⎣ T ′∑︂
t=1

∑︂
r∈R

pt(r)2

⎤⎦ ≥ τ

|R|
E

⎡⎣ T ′∑︂
t=1

(︄∑︂
r∈R

pt(r)
)︄2
⎤⎦

≥ τ

|R|
E

⎡⎣ T ′∑︂
t=1

(︄
E
[︄∑︂
r∈R

pt(r)|a1:(t−1)

]︄)︄2
⎤⎦ = τ

|R|
E

⎡⎣ T ′∑︂
t=1

(︄∑︂
r∈R

I(at = r)
)︄2
⎤⎦

= τ

|R|
E

⎡⎣ T ′∑︂
t=1

∑︂
r∈R

I(at = r)
⎤⎦ ,

where the second inequality follows from the fact that ∑︁i∈Ar
pt(i) ≥ pt(r), the third

inequality follows from the fact that (∑︁r∈R pt(r))2 ≤ |R|∑︁r∈R pt(r)2 and the fourth

inequality follows from Jensen’s inequality for conditional expectations.

2.4.3 Proof of Theorem 2.3.3

We use a mini-batch version of Algorithm 1 in Agarwal et al. (2016) where each of the

base algorithms is Algorithm 4. We note that the greedy algorithm for computing an

approximate minimum dominating set gives a natural way to partition the feedback

graph G into star graphs. In particular, whenever the greedy algorithm adds a vertex

v to the dominating set, we create a new instance of the star graph algorithm with

revealing vertex v and leaf nodes all neighbors of v which have not already been

assigned to a star graph algorithm.

Lemma 2.4.4. For any i ∈ [|R|], Algorithm 6 ensures that:

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(ait)
]︄

≤ O

(︄
τ |R| log (T ′)

η
+ Tη

)︄
− E

[︄
τρT ′,i

40η log (T ′)

]︄

Proof. From the proof of Lemma 13 in Agarwal et al. (2016) it follows that for any

i ∈ [|R|]
T ′∑︂
t=1

⟨pt − ei, ˆ︁ℓt⟩ ≤ O

(︄
|R| log (T ′)

η
+ T ′η

)︄
+

T ′∑︂
t=1

2ˆ︁ℓt(at)
T ′|R|

− ρT ′,i

40η log (T ′) .

53

Notice that by construction we have E[ˆ︁ℓt(at)] = ∑︁
i∈[|R|]

1
τ

∑︁t+τ−1
j=t ℓj(aij) ≤ |R|. Also

notice that E[⟨pt, ˆ︁ℓt⟩] = E[1
τ

∑︁t+τ−1
j=t ℓj(aj)] and E[ˆ︁ℓt(i)] = 1

τ

∑︁t+τ−1
j=t ℓt(aij). These imply

E

⎡⎣ T ′∑︂
t=1

1
τ

t+τ−1∑︂
j=t

ℓj(aj) − 1
τ

t+τ−1∑︂
j=t

ℓt(aij)
⎤⎦ ≤ O

(︄
|R| log (T ′)

η
+ T ′η

)︄
+

T ′∑︂
t=1

2ˆ︁ℓt(at)
T ′|R|

− ρT ′,i

40η log (T ′) .

Multiplying by τ and using the fact that T ′τ = T finishes the proof.

The following theorem from Agarwal et al. (2016) shows that restarting the i-th

algorithm in line 16 of Algorithm 6 does not hinder the regret bound by too much.

Theorem 2.4.5 (Theorem 15 (Agarwal et al., 2016)). Suppose a base algorithm Bi is

such that if the loss sequence (ℓt)Tt=1 is replaced by ℓ′
t = ρtℓt such that E[ℓ′

t] = ℓt, its

regret bound changes from R(T) to E[ρα]R(T), where ρ = maxt≤T ρt. Let (ait)t≤T be

the action sequence generated by Bi ran under Algorithm 6. Then for any action a in

the action set of Bi, it holds that

E
[︄
T∑︂
t=1

ℓ′
t(ait) − ℓ′

t(a)
]︄

≤ 2α
2α − 1E[ρα]R(T).

Proof of Theorem 2.3.3. For any action a ∈ A, let ia be the star-graph algorithm

which has a in its actions and let its regret be Ria(T). Notice that the loss estimators

ℓ′
t(i) = ℓt+j(at+j)

pt(it) I{i = it} we feed the algorithm are such that E[ℓ′
t(i)2] ≤ ρT . Now

Theorem 2.3.1 implies that the condition of Theorem 2.4.5 is satisfied with α = 1/2.

Thus, Theorem 2.4.5 implies that

E
[︄
T∑︂
t=1

ℓ′
t(at) − ℓ′

t(a)
]︄

≤
√

2(
√

2 + 1)E[ρ1/2
T ′,ia]3T

2/3 log (|A|) .

Combining the above with Lemma 2.4.4 we have

E
[︄
T∑︂
t=1

ℓt(at) − ℓt(a)
]︄

≤ O

(︄
τ |R| log (T ′)

η
+ Tη

)︄
− E

[︄
τρT ′,ia

40η log (T ′)

]︄
+ 3

√
2(

√
2 + 1)E[ρ1/2

T ′,ia]T
2/3 log (|A|)

Let c = 3
√

2(
√

2 + 1). We now consider the terms containing ρT ′,ia in the above

inequality.

cE[ρ1/2
T ′,ia]T

2/3 log (|A|) − E
[︄

τρT ′,ia

40η log (T ′)

]︄
= E

⎡⎣ρ1/2
T ′,ia

⎛⎝cT 2/3 log (|A|) −
τρ

1/2
T ′,ia

40η log (T ′)

⎞⎠⎤⎦ .
54

Set τ = T 1/3

|R|1/4 , η = |R|1/4

40 log(T ′)T 1/3c log(|A|) to get

E

⎡⎣ρ1/2
T ′,ia

⎛⎝cT 2/3 log (|A|) −
τρ

1/2
T ′,ia

40η log (T ′)

⎞⎠⎤⎦ = cT 2/3 log (|A|)E
⎡⎣ρ1/2

T ′,ia

⎛⎝1 −
ρ

1/2
T ′,ia

|R|1/2

⎞⎠⎤⎦
≤ c

√︂
|R| log (|A|)T 2/3.

Plugging in the the values of η and τ in the rest of the bound finishes the regret

bound.

The number of switches is bounded from the fact that Algorithm 6 can switch

between star-graph algorithms at most T 2/3|R|1/3 times and Lemma 2.4.2.

2.5 Policy regret bound

For deriving Theorem 2.1.1 we assume that we are provided with a feedback graph

for losses with memory m. We restrict the feedback graph to only have vertices

for repeated m-tuples of actions in A. In particular we can only observe additional

feedback for losses of the type ℓt(a, a, . . . , a), where a ∈ A. The algorithm for this

setting is based on Algorithm 5. The feedback graph we provide to our policy

regret algorithm is the same as for the m-memory bounded losses, however, each

m-tuple vertex is replaced by a copy of a single action e.g. the vertex (a, . . . , a) is

replaced by a. Next we split the stream of T losses into mini-batches of size m such

that ˆ︁ℓt(·) = 1
m

∑︁m
j=1 ℓ(t−1)m+j(·). Now we would simply feed the sequence (ˆ︁ℓt)T/mt=1 to

Algorithm 5 if it were not for the constraint on the additional feedback. Suppose

that between the t-th mini-batch and the t+ 1-st mini-batch Algorithm 5 decides to

switch actions so that at ̸= at+1. In this case no additional feedback is available for
ˆ︁ℓt+1(at+1) and the algorithm can not proceed as normal. To fix this minor problem,

the provided feedback to Algorithm 5 is that the loss of action at+1 was 0 and all

actions adjacent to at+1 also incurred 0 loss. This modification can not occur more

times than the number of switches Algorithm 5 does. Since the expected number of

switches is bounded by O(γ(G)1/3T 2/3), intuitively the modification becomes benign

55

to the total expected regret. Formally, we use Algorithm 5 as Algorithm A in the

reduction provided by Algorithm 3. Theorem 2.2.1 now implies Theorem 2.1.1 because

RS(T) = Õ(γ(G)1/3T 2/3) (by Theorem 2.3.2) and the reduction (Theorem 2.2.1)

guarantees that P (T) = mÕ(γ(G)1/3(T/m)2/3 = Õ((mγ(G))1/3T 2/3).

2.6 Lower bounds

The main tool for constructing lower bounds when switching costs are involved is the

stochastic process constructed by Dekel et al. (2014). The crux of the proof consists of

a carefully designed multi-scale random walk. The two characteristics of this random

walk are its depth and its width. At time t, the depth of the walk is the number of

previous rounds on which the value of the current round depends. The width of the

walk measures how far apart two rounds that depend on each other are in time. The

loss of each action is equal to the value of the random walk at each time step, and the

loss of the best action is slightly better by a small positive constant. The depth of

the process controls how well the losses concentrate in the interval [0, 1]1. The width

of the walk controls the variance between losses of different actions and ensures it is

impossible to gain information about the best action, unless one switches between

different actions.

2.6.1 Lower bound for non-complete graphs

v1 v2

v3

Figure 2-2: Feedback graph for switch-
ing costs

We first verify that the dependence on the

time horizon cannot be improved from T
2
3 for

any feedback graph in which there is at least

one edge missing, that is, in which there exist

two vertices that do not reveal information

about each other. Without loss of generality,
1Technically, the losses are always clipped between [0, 1].

56

assume that the two vertices not joined by an edge are v1 and v2. Take any vertex

that is a shared neighbor and denote this vertex by v3 (see Figure 2-2 for an example).

We set the loss for action v3 and all other vertices to be equal to one. We now focus

the discussion on the subgraph with vertices {v1, v2, v3}. The losses of actions v1 and

v2 are set according to the construction in (Dekel et al., 2014). Since {v1, v2} forms

an independent set, the player would need to switch between these vertices to gain

information about the best action. This is also what the lower bound proof of Rangi

and Franceschetti (2019) is based upon. However, it is important to realize that

the construction in Dekel et al. (2014) also allows for gaining information about the

best action if its loss is revealed together with some other loss constructed from the

stochastic process. In that case, playing vertex v3 would provide such information.

This is a key property which Rangi and Franceschetti (2019) seem to have missed

in their lower bound proof. We discuss this mistake carefully and provide a lower

bound matching what the authors claim in the uninformed setting in Section 2.6.3.

Our discussion suggests that we should set the price for revealing information about

multiple actions according to the switching cost and this is why the losses of all vertices

outside of the independent set are equal to one. We note that the losses of the best

action are much smaller than one sufficiently often, so that enough instantaneous

regret is incurred when pulling action v3. Our main result follows.

Theorem 2.6.1. For any non-complete feedback graph G, there exists a sequence of

losses on which any algorithm A in the informed setting incurs expected regret at least

RS(T) ≥ Ω
⎛⎝ T

2
3

log (T)

⎞⎠ .
Before proceeding with the proof of Theorem 2.6.1, we introduce the stochastic

process defined in Dekel et al. (2014).

Stochastic process definition. We denote by ξ1:T a sequence of i.i.d. zero-

mean Gaussian random variables with variance σ2 and ρ : [T] → {0}⋃︁[T] the parent

57

function, which assigns to t ∈ [T] a parent ρ(t) ∈ [T] with ρ(t) < t. The stochastic

process Wt associated with ρ(t) is defined as

W0 = 0

Wt = Wρ(t) + ξt.
(2.4)

The set of ancestors of t is the set ρ∗(t) = ρ∗(ρ(t))⋃︁{ρ(t)} with ρ∗(0) = {}. The

depth of ρ is d(ρ) = maxt∈[T] |ρ∗(t)|. The cut of ρ is cut(t) = {s ∈ [T] : ρ(s) < t ≤ s}

i.e. the set of rounds which are separated from their parent by t. The width of ρ

is defined as ω(ρ) = maxt∈[T] |cut(t)|. The specific random walk which Dekel et al.

(2014) consider has both depth and width logarithmic in T . In particular the parent

function is defined as

ρ(t) = t− 2δ(t),where , δ(t) = max{i ≥ 0 : t ≡ 0 mod 2i} (2.5)

Let us consider two examples of a stochastic processes defined by Equation 2.4. The

first one is just setting ρ(t) = 0, so that Wt is just a standard Gaussian variable. The

width of this process is just T and its depth is 1. While we have good concentration

guarantees over the maximum value of Wt uniformly over all t ∈ [T], which is important

for controlling the losses, it is very easy to gain information about actions 1 and 2

without switching. Indeed one can just first play 1 for a sufficient number of iteration

and then play 2 for fixed number of iterations to be able, with high probability, to

distinguish between the two losses. Now consider a Gaussian random walk where

ρ(t) = t−1. In this case the cut is 1 but the depth is T . It turns out that to distinguish

between two processes with small width, we require that we observe both the processes

at the same time (or times differing by a small amount). This is intuitively because

of the large drift of the process that occurs between Wt and Wt+k. We note that the

simple Gaussian walk is not a good process for the losses, since its depth is too large

for us to be able to control the size of the (unclipped) losses.

The feedback graph we work for the reset of this section is G(A, E), where

A = {1, 2, 3} and E = {(1, 3), (2, 3), (1, 1), (2, 2), (3, 3)} (see Figure 2-2).

58

Constructing the losses. We consider the following adversarial sequence of

losses. First sample an action uniformly at random from {1, 2}. WLOG we condition

on the event that the sampled action is 1. Next set ℓt(3) = 1, ℓt(2) = clip(Wt + 1
2),

ℓt(1) = clip(Wt + 1
2 − ϵ), where clip(α) = min{max{α, 0}, 1}. The intuition behind

our lower bound is very simple and holds for a general feedback graph. It is as follows:

if we do not have a complete feedback graph then there are at least two actions which

do not tell us anything about each other. We leverage this by selecting one of the two

actions uniformly at random to be the best action. If we play an action which is not 1

or 2 we incur constant regret in that turn but we can gain information about the losses

of both 1 and 2. If we play 2, then we do not learn anything about 1 and if we play 1

we do not learn anything about 2. In these two cases the per round regret incurred is

ϵ, however, because of the loss construction, we need to switch between these actions

to be able to distinguish them and thus we will incur regret from switching. Overall

the loss construction together with the result in Dekel et al. (2014) implies that to

distinguish between 1 and 2 we need to observe the losses of both actions at the same

time or switch between them at least Ω̃(T 2/3) rounds. This is what we formally argue

below.

Let Yt be the observed loss vector associated with the action at time t, at, i.e.

if at = 2 then Yt = Wt + 1
2 , if at = 1 then Yt = Wt + 1

2 − ϵ and if at = 3 then

Yt =
(︄

Wt + 1
2

Wt + 1
2 − ϵ

)︄
. We let Y0 = 1/2. We let Q1 be the probability measure on the

σ-field F generated by {Yt}Tt=0. Let Q0 be the probability measure on the same σ-field

if ℓt(1) = ℓt(2) = clip(Wt + 1
2) i.e. there is no best action. In this case Yt = Wt + 1

2

for at = 1 or at = 2 and Yt =
(︄
Wt + 1

2
Wt + 1

2

)︄
if at = 2. Denote by dF

TV (Q0,Q1) the total

variational distance between Q0 and Q1 on the σ-field F . Let DKL (Q0||Q1) be the

KL-divergence between Q0 and Q1. We now show that a sufficiently large number

of switches between actions 1 and 2 or choosing action 3 is required to distinguish

between Q0 and Q1. As it was discussed above, the width of the process plays an

59

important role, which is clarified by the lemma below. It essentially is an upper bound

on the number of switches required to distinguish between Q0 and Q1.

Lemma 2.6.2. Let M be the number of times the player’s strategy switched between

actions 1 and 2. Let N be the number of times the payer chose to play action 3. Then

dF
TV (Q0,Q1) ≤ ϵ

2σ

√︂
ω(ρ)EQ0 [M +N].

Next we show that, because of the depth of the random walk, we are able to say

that with high probability most of the non-clipped losses will be equal to the clipped

losses. The implications of this result are two-fold. First the regret incurred on the

non-clipped versions is close to the regret incurred on the clipped version. Secondly,

we are able to say that loss of action 3 is worse by a constant from the losses of actions

1 and 2 often enough, so that we also incur constant regret when playing action 3 as

compared to the other two actions. Let ℓ′
t denote the non-clipped version of ℓt and

define

R′ =
T∑︂
t=1

ℓ′
t(at) +M − min

a∈A

T∑︂
t=1

ℓ′
t(a)

R =
T∑︂
t=1

ℓt(at) +M − min
a∈A

T∑︂
t=1

ℓt(a)

Lemma 4 in Dekel et al. (2014) compares R′ to R

Lemma 2.6.3. For T ≥ 6, E[R] ≥ E[R′] − ϵT/6.

The lower bound for E[R′] is given by the following lemma.

Lemma 2.6.4. Let Q2 be the conditional distribution induced by sampling the best

action to be equal to 2. Then

E[R′] ≥ ϵT

2 − ϵT

2 (dF
TV (Q0,Q1) + dF

TV (Q0,Q2)) + E
[︃
M + N

7

]︃

Putting the above two lemmas together, we are able to show Theorem 2.6.1.

60

Proof of Theorem 2.6.1. First assume that the event M +N/7 > ϵT does not occur

on losses generated from Q0 or Qi. This implies Q0(M +N/7 > ϵT) = Qi(M +N/7 >

ϵT) = 0. Then

EQ0 [M +N/7] − E[M +N/7]

= EQ0 [M +N/7] − EQ1 [M +N/7] + EQ0 [M +N/7] − EQ2 [M +N/7]
2

≤ ϵT

2 (dF
TV (Q0,Q1) + dF

TV (Q0,Q2)).

The above, together with Lemma 2.6.4 implies

E[R′] ≥ ϵT

2 − ϵT (dF
TV (Q0,Q1) + dF

TV (Q0,Q2)) + EQ0

[︃
M + N

7

]︃
.

Applying Lemma 2.6.3 now gives

E[R] ≥ ϵT

3 − ϵT (dF
TV (Q0,Q1) + dF

TV (Q0,Q2)) + EQ0

[︃
M + N

7

]︃
.

On the other hand we can bound (dF
TV (Q0,Q1) + dF

TV (Q0,Q2))/2 by Lemma 2.6.2 as

(dF
TV (Q0,Q1) + dF

TV (Q0,Q2))/2 ≤ ϵ

σ
√

2

√︂
EQ0 [M +N] log (T).

This implies

E[R] ≥ ϵT

3 −
√

2ϵ2T

σ

√︂
EQ0 [M +N] log (T) + EQ0

[︃
M + N

7

]︃
.

Let x =
√︂
EQ0 [M +N]. Then we have

E[R] ≥ ϵT

3 −
√

2ϵ2T
√︂

log (T)
σ

x+ x2

7 .

The quadratic x2

7 −
√

2ϵ2T
√

log(T)
σ

x has minimum −7 log(T)ϵ4T 2

2σ2 . We set ϵ = c 1
T 1/3 log(T)

for a constant c to be determined later. We then have

E[R] ≥ cT 2/3

3 log (T) − 7c4

2
T 2/3

log (T)3 σ2
.

Set σ = 1
log(T) . The above implies

E[R] ≥ T 2/3

log (T)

(︄
c

3 − 7c4

2

)︄
.

61

Choosing c = 1
421/3 gives c

3 − 7c4

2 ≥ 1
16 .

Suppose there is some strategy for which M + N/7 ≥ c T 2/3

log(T) occurs. Let this

strategy have regret R. We change the strategy in the following way. Keep track of

M +N/7 and the moment it exceeds c T 2/3

log(T) pick an action which has had loss smaller

than 5/6. If there is no such action, pick any action and play it until the end of the

game. With probability at least 1/T we know that such an action exists and that it

was set according to the stochastic process construction. Thus the regret of the new

strategy R∗ is bounded by E[R∗] ≤ E[R] + (1 − 1/T)ϵT + 1/T × T ≤ 2E[R] + 1. Since

the lower bound holds for E[R∗] the proof is complete.

2.6.2 Lower Bound for Disjoint Union of Star Graphs

Let G be the graph which is a union of star graphs. Let R be the set of revealing

vertices for the star graphs. We denote by Ai the set of vertices associated with the

star graph with revealing vertex vi. First for each star graph we sample an active

vertex uniformly at random from its leaves. Next we sample the best vertex uniformly

at random from the set of active vertices. We set the loss of the best vertex to be

clip(Wt + 1/2 − ϵ) and the loss of all other active vertices to clip(Wt + 1/2). For any

star graph consisting of a single vertex, we treat the vertex as a leaf. The following

theorem follows as an easy reduction from the proof of Dekel et al. (2014).

Theorem 2.6.5. The expected regret of any algorithm A on a disjoint union of star

graphs is lower bounded as follows:

RT (A) ≥ Ω
(︄
γ(G)1/3T 2/3

log (T)

)︄
.

Proof of Theorem 2.6.5. Let I be the set of all possible ways to sample a set of active

vertices. Let Ei be the expectation conditioned on the event that the set of active

vertices indexed by i ∈ I is sampled in the beginning of the game. Consider the

subgraph induced by the active vertices I and all of their neighbors R. Suppose

62

that there exists a player’s strategy such that Ei[R] ≤ o
(︂
γ(G)1/3T 2/3

log(T)

)︂
. We claim this

strategy implies a regret upper bound for bandits with switching costs of the order

o
(︂
γ(G)1/3T 2/3

log(T)

)︂
. We convert the player’s strategy over I ⋃︁R to a strategy over I. For

every time that at ∈ R is played, we replace at by the unique neighbor of at in I. This

updated strategy’s regret is at most the regret of the original strategy and thus by our

assumption it has regret at most o
(︂
γ(G)1/3T 2/3

log(T)

)︂
=
(︂

|I|1/3T 2/3

log(T)

)︂
. This is in contradiction

with the result of Dekel et al. (2014) since the subgraph induced by I is precisely

modeling bandit feedback and the losses of actions in I are exactly constructed as

in Dekel et al. (2014). Thus we have E[R] ≥ 1
|I|
∑︁
i∈I Ei[R] = Ω̃

(︂
γ(G)1/3T 2/3

log(T)

)︂
.

Even though the above theorem is a trivial consequence of the result in Dekel

et al. (2014) it can also be proved in another way. Let I denote the set of conditional

distributions induced by the observed losses, where the conditioning is with respect

to the random sampling of vertices as described in the beginning of the section. The

general idea of the complicated proof is to count the number of distributions which each

strategy of the player gains information about. For example a strategy which switches

between two revealing vertices vi and vj will gain information about deg(vi)deg(vj)

distributions. Now the lower bound follows from a careful counting of the number of

distributions for which we gain information by switching between revealing vertices.

This counting argument can be generalized beyond union of star graphs, by considering

an appropriate pair of minimal dominating/maximal independent sets. We leave a

detailed argument for future work.

2.6.2.1 Counting Argument for Theorem 2.6.5

Let I denote the set of all possible ways to sample active vertices. The cardinality of

this set is |I| = ∏︁
vi∈R deg(vi). Denote by Qi

0 the conditional distribution generated

by the observed losses if all losses for active vertices indexed by i ∈ I were set to

clip(Wt + 1/2). Denote by Qi
j the conditional distribution generated by the observed

63

losses when active vertex j is chosen to be the best given the active vertices are

indexed by i ∈ I. Let M i
j denote the random variable counting the number of times

the player switched from and to an action adjacent to j. Let N i
j denote the random

variable counting the number of times the player played an action adjacent to j.

Lemma 2.6.6. For all i ∈ I and j ∈ [|R|] it holds that dF
TV

(︂
Qi

0,Qi
j

)︂
≤ ϵ

2σ

√︂
ω(ρ)EQi

0
[M i

j +N i
j].

Let Mi denote the random variable measurable with respect to the draw of i ∈ I

which counts the total number of switches. Similarly let Ni count the total number of

times a revealing vertex of degree at least 2 was played.

Lemma 2.6.7. The following holds

1
|R||I|

∑︂
i∈I

∑︂
j∈[|R|]

dF
TV

(︂
Qi

0,Qi
j

)︂
≤ ϵ

σ
√︂

2|R|

⌜⃓⃓⎷ω(ρ)
|I|

∑︂
i∈I

EQi
0
[Mi +Ni].

Proof. Notice that conditioned on the draw of i ∈ I we have ∑︁j∈[|R|] N
j
i ≤ Ni. This

happens because there is only one revealing vertex adjacent to the best vertex for every

Qj
i , i.e., the revealing vertex indexed by j ∈ [|R|]. Similarly we have ∑︁j∈[|R|] M

j
i ≤ 2Mi,

where the constant two appears because we have counted each switch twice – once

from action j and once to action j. Using Lemma 2.6.6 with concavity of the square

root finishes the proof.

The above lemma was easy to prove because we did not have two vertices which are

dominated simultaneously by two different neighbors in R. This allowed us to count

very easily the number of times we might have over-count Ni for two different choices

of the best action. We were also lucky that it was impossible to gain information

about the best action proportional to the degree of a revealing vertex. For a general

graph both of these events can happen and the counting argument would have to be

more careful.

64

Lemma 2.6.8. The following holds

E[R′] ≥ ϵT

2 − ϵT

|I||R|
∑︂
i∈I

∑︂
j∈[|R|]

dF
TV

(︂
Qi

0,Qi
j

)︂
+ 1

|I|
∑︂
i∈I

Ei
[︃
Mi + Ni

7

]︃

Let M denote the random variable counting the total number of switches and N

the random variable denoting the total number of times a revealing action with degree

at least 2 was played. We can write 1
|I|
∑︁
i∈I Ei[Mi] ≤ 1

|I|
∑︁
i∈I Ei[M] = E[M] and

similarly 1
|I|
∑︁
i∈I Ei[Ni] ≤ E[N]. The proof of Theorem 2.6.5 can now be completed

by following the proof of Theorem 2.6.1. We note that bounding Mi by M is in

general tight for disjoint union of star graphs and equality occurs for all strategies

which switch only between revealing vertices. For general graphs this upper bound

can become very loose and we should exercise caution when constructing an upper

bound. In particular we should carefully count how many distributions are covered by

a single switch.

2.6.3 Lower bound for a sequence of feedback graphs in the
uninformed setting.

While going through the proof of Theorem 1 in Rangi and Franceschetti (2019), we

came across an important technical mistake. In page 2 of the supplementary material,

in the paragraph after Equation 8, the authors state that, at a single time instance,

the loss of only one single action can be observed from the independent set in their

construction. This is not correct since a player’s strategy can play an action that is

not in the independent set but is adjacent to two or more vertices in the independent

set.

The problem with this statement becomes apparent when one considers a fixed

feedback graph system, i.e., Gt = G,∀t ∈ [T], where G is a star graph. In that

case, the construction of the losses by Rangi and Franceschetti (2019) amounts to

sampling a best action from the leaves of G, setting its loss to be ϵ1 smaller than the

loss of all other actions in the leaves of G, and setting the revealing action to be ϵ2

65

larger than the losses in the leaves of G. The losses of the remaining actions are set

according to the stochastic process of Dekel et al. (2014). With these choice of losses

and ϵ1 and ϵ2 set according to what the authors suggest, a very simple strategy is

information-theoretically optimal: the player only needs to play the revealing action

T 2/3 times to distinguish which of the leaves of G contains the best action. This

strategy would actually incur expected regret of the order Θ̃(
√
T).

Let α(G1:T) denote the largest cardinality among all intersections of independent

sets of the sequence (Gt)Tt=1. A lower bound of Ω̃(α(G1:T)1/3T 2/3) is still possible under

additional assumptions about how the feedback graph system is generated in the

uninformed setting. In particular, we show that if we allow the feedback graphs to

be chosen by the adversary, there still exists a sequence of feedback graphs for which

the lower bound is Ω̃(α(G1:T)1/3T 2/3), while for each Gt, we have γ(Gt) = 1.

rt

Figure 2-3: Gt

Formally, we show that in the uninformed

setting, when we allow the graphs to be cho-

sen by the adversary, there exists a sequence

(Gt)Tt=1 such that for all t ∈ [T], γ(Gt) = 1,

α(Gt) ≫ 1 and α(G1:t) = Θ(α(Gt)), for which

any player’s strategy will incur regret of the or-

der Ω̃(α(G1:t)1/3T 2/3). In particular, there is

a non-trivial example of a sequence of graphs

for which the independence number is arbitrarily larger than the domination number

and every strategy has to incur regret depending on the independence number.

We now present our construction. Fix α ≫ 1 and let |A| = 2α. Let I be a subset

of A of size α and let R = A \ I. Set the losses of actions in I according to the

construction of Dekel et al. (2014), as described in Section 2.6.1. Set the losses of

actions in R equal to one. The edges of the graph Gt = (A, Et) at round t are defined

as follows. The vertices in R form a clique. A vertex r is sampled uniformly at random

66

from R to be the revealing action and all edges (r, vi), vi ∈ I are also added to Et. We

note that α(Gt) = α + 1, γ(Gt) = 1 for all t ∈ [T] and α(G1:T) = α. We present an

illustration for our construction in Figure 2-3. Here α = 6, the set I are the vertices

in red, the set R are the vertices in blue.

The intuition behind our construction is that the player needs on average α rounds

to observe the losses of all actions, due to the randomization over the revealing vertex

r. The switching cost again contributes to the T 2/3 time-horizon regret.

Again assume that the strategy of the player is deterministic. We let Qi denote

the conditional distribution generated by the observed losses, when the best action

was sampled to be vi ∈ I and Q0 denotes the distribution over observed losses when

there is no best action in I. Let Mi be the number of times the player’s strategy

switched between an action in I \ {i} and i. Let M ′
i be the number of times that the

player switched between i and the revealing action. Let N be the total number of

times a vertex in R was played and let N ′ be the total number of times a revealing

vertex was played. We have the following.

Lemma 2.6.9. For all i ∈ [|I|]⋃︁{0}

1
α
EQi

[N] = EQi
[N ′].

Let M denote the random variable counting the total number of switches.

Lemma 2.6.10. The following inequality holds: 1
α

∑︁
vi∈I dF

TV (Q0,Qi) ≤ ϵ
σ

√︂
ω(ρ)
2α

√︂
EQ0 [M +N].

Repeating the rest of the arguments in Section 2.6.4 with ϕ(G) replaced by 1
α

shows the following theorem.

Theorem 2.6.11. For any α > 1, α ∈ N, there exists an adversarially generated

sequence of feedback graphs (Gt)Tt=1, with α(Gt) = α + 1, γ(Gt) = 1,∀t ∈ [T] and

α(G1:T) = α, such that the expected regret of any strategy in the uninformed setting is

67

at least

E[R] ≥ α1/3T 2/3

16 log (T) .

2.6.4 Lower Bound for Arbitrary Graphs

In this section we propose a construction leading to a non-tight lower bound for general

graphs. We choose to present this construction due to it developing tools which can

be useful for a tight generic bound. In particular the way we use Lemma 2.6.12 in

the proof of Lemma 2.6.6 can be mimicked for general graphs when coupled with a

careful counting argument.

Let G = (A, E) be a feedback graph with vertex set A and edge set E. Let I

denote the set of all maximal independent sets I of G. For any I we say that I is

dominated by S ⊆ A if for every v ∈ I, there exists a neighbor of v in S. For any I

let SI be a minimal set of vertices which dominates I and let SI be the set of all such

SI . Let δ(SI) equal the maximum number of neighbors in I, which a vertex in SI can

have. Let δ(SI) be the maximum over all δ(SI) and let ϕ(G) = minI∈I
δ(SI)

|I| . Let I∗ be

a maximal independent set for which |SI∗| = ϕ(G). To construct our adversarial loss

sequence we begin by uniformly sampling an action i from I∗ and setting it to be the

action with smallest loss. Let Qi denote the conditional probability measure given the

sampled best action was i and let Q0 be the probability distribution when all of the

actions in I∗ are equal i.e. there is no best action. Let Wt be the stochastic process as

defined in Section 2.6.1. We set the losses for actions in I∗ to be clip(Wt + 1/2) for

v ∈ I∗ \ {i} and the loss of i to be clip(Wt + 1/2 − ϵ). The loss of all other actions is

set to be 1. We let Yt denote the loss vector of observed losses only on I∗. WLOG we

can disregard other losses, since they will not let us distinguish between Qi and Q0.

We denote by Yt(j) the loss of action j ∈ I∗ if that loss was observed at time t. Let F

be the σ-field generated by (Yt)Tt=1.

68

Our intuition behind the definition of ϕ(G) and the above construction is the

following. First we require that the losses based on the stochastic process (Wt)Tt=1 be

assigned to vertices in an independent set. Otherwise, there would exist a setting in

which the best action would be adjacent to another action with losses generated from

(Wt)Tt=1 and in this case it is information theoretically possible to obtain O(
√
T) regret

by playing the best action or its adjacent action enough times, without switching. For

every independent set, once a best action is fixed, from the lower bound in Section 2.6.1

we know two ways to distinguish it. First we switch between the best action and some

other action in the independent set (or more generally switch between actions giving

information about the best action and another action in the independent set), or play

an action which is adjacent to the best action and another action in the independent

set. In the general setting there might be an action which is adjacent to multiple

actions in the independent set and not adjacent to the best action. In such cases

switching between the best action and said action, reveals information proportional to

the degree of said action. Similarly if there is an action adjacent to the best action

and multiple other actions, selecting it again reveals information proportional to its

degree. Since we do not want to assume anything about the strategy of the player, it

is natural to select an independent set, such that minimum amount of vertices have

a common neighbor. Because the size of the independent set also gives freedom to

hide information from the player, we would simultaneously like to maximize its size.

This suggests that we search for and independent set which minimizes the ratio in the

definition of ϕ(G). In Figure 2-4 we give three examples of graphs with different ϕ(G).

For the first example the independent set |I∗| is the set of all vertices. The set SI∗ is

also the set of all vertices and δ(SI∗) = 1 thus ϕ(G) = 1/|A| and this is exactly equal

to γ(G)−1. For the second example I∗ is the set of leafs of the star graph and SI∗

is the vertex adjacent to all other vertices. In this case δ(SI∗) = |I∗| and ϕ(G) = 1

which again equals the inverse of the dominating number of G. Our final example

69

· · ·

Figure 2-4: Example of feedback graphs with different ϕ(G).

shows that ϕ(G) can be arbitrary close to 1 even though γ(G)−1 < 1. In particular

SI∗ consists of the bottom 4 vertices and this is also the minimum dominating set of

G. However, there exists a vertex (the first vertex of the bottom four) of arbitrary

large degree so that δ(SI∗)
|I∗| can be arbitrary close to 1. The problem with our lower

bound construction becomes clear from this example. The player has a strategy in

which too much information is revealed by playing the action of arbitrary large degree.

To try and fix this problem we could set only one of the vertices adjacent to the action

of large degree according to (Wt)Tt=1 and the rest of the adjacent actions are set to

have loss equal to 1. This construction can fail for general graphs, as it might happen

that there exists another action which is adjacent to exactly the four actions whose

losses were chosen according to (Wt)Tt=1 in the right most graph of Figure 2-4.

Lemma 2.6.12. Let Mi be the number of times the player’s strategy switched be-

tween action adjacent only to i and another action not adjacent to i but adjacent

to at least one other action in I∗. Let Ni be the number of times the player chose

to play an action adjacent to i and another action in I∗. Then dF
TV (Q0,Qi) ≤

ϵ
2σ

√︂
ω(ρ)EQ0 [|I∗|ϕ(G)Mi +Ni].

Let M denote the total number of switches and N the total number of times an

action revealing adjacent to at least two vertices in I∗ is played.

Lemma 2.6.13. It holds that 1
|I∗|

∑︁
i∈I∗ dF

TV (Q0,Qi) ≤ ϵ
σ

√︂
ω(ρ)ϕ(G)

2

√︂
EQ0 [M +N].

Lemma 2.6.14. It holds that

E[R′] ≥ ϵT

2 − ϵT
1

|I∗|
∑︂
i∈I∗

dF
TV (Q0,Qi) + E

[︃
M + N

7

]︃
.

70

Theorem 2.6.15. The expected regret of a deterministic player is at least

E[R] ≥ 4 T 2/3

log (T)ϕ(G)1/3

Proof. First assume that the event M +N/7 > ϵT does not occur on losses generated

from Q0 or Qi for a deterministic player strategy. This implies Q0(M +N/7 > ϵT) =

Qi(M +N/7 > ϵT) = 0. Then

EQ0 [M +N/7] − E[M +N/7] = 1
|I∗|

∑︂
i∈I∗

(EQ0 [M +N/7] − EQi
[M +N/7])

≤ ϵT

|I∗|
∑︂
i∈I∗

dF
TV (Q0,Qi) .

The above, together with Lemma 2.6.14 implies

E[R′] ≥ ϵT

2 − 2ϵT
|I∗|

∑︂
i∈I∗

dF
TV (Q0,Qi) + EQ0

[︃
M + 1

7N
]︃
.

Applying Lemma 2.6.3 now gives

E[R] ≥ ϵT

3 − 2ϵT
|I∗|

∑︂
i∈I∗

dF
TV (Q0,Qi) + EQ0

[︃
M + 1

7N
]︃
.

On the other hand we can bound 1
|I∗|

∑︁
i∈I∗ dF

TV (Q0,Qi) by Lemma 2.6.13 as

1
|I∗|

∑︂
i∈I∗

dF
TV (Q0,Qi) ≤ ϵ

σ

√︄
log (T)ϕ(G)

2
√︂
EQ0 [M +N].

This implies

E[R] ≥ ϵT

3 −
√

2ϵ2T

σ

√︂
ϕ(G) log (T)EQ0 [M +N] + EQ0

[︃
M + 1

7N
]︃
.

Let x =
√︂
EQ0 [M +N]. Then we have

E[R] ≥ ϵT

3 −
√

2ϵ2T
√︂

log (T)ϕ(G)
σ

x+ x2

7 .

The quadratic x2

7 − ϵ2T
√

2 log(T)ϕ(G)
σ

x has global minimum − ϵ4T 2 log(T)ϕ(G)
14 We set ϵ =

c 1
T 1/3 log(T) for a constant c to be determined later. We then have

E[R] ≥ cT 2/3

3 log (T) − c4

14
T 2/3ϕ(G)
log (T)3 σ2

.

71

Set σ = 1
log(T) . The above implies

E[R] ≥ T 2/3

log (T)

(︄
c

3 − c4ϕ(G)
14

)︄
.

Choosing c =
(︂

7
6ϕ(G)

)︂1/3
guarantees E[R] ≥ T 2/3

16 log(T)ϕ(G)1/3 .

The case when M + N/7 > ϵT is treated in the same way as in the proof of

Theorem 2.6.1

2.7 Detailed proofs for Section 2.6

2.7.1 Detailed proofs for Section 2.6.1

Proof of Lemma 2.6.2. Let Y0:t denote (Y0, Y1, . . . , Yt) and whenever Yt is a vector,

let Yt(i) be its i-th coordinate. We assume that the player is deterministic. By

Yao’s minimax principle this is without loss of generality. Thus we have that at is a

deterministic function of Y0:t−1. Using the chain rule for relative entropy and by the

construction of Wt, we have:

DKL (Q0(Y0:T)||Q1(Y0:T)) = DKL (Q0(Y0)||Q1(Y1)) +
T∑︂
t=1

DKL
(︂
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)︂
.

Let us consider the term DKL
(︂
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)︂
. First assume that at =

aρ(t) ̸= 3. Then Yt = N (Yρ(t), σ
2) under both Q0 and Q1. Next consider the case

when at = aρ(t) = 3. In this case Yt = N
(︄(︄

Yρ(t)(2)
Yρ(t)(2)

)︄
, σ2I2

)︄
under Q0 and Yt =

N
(︄(︄

Yρ(t)(2) − ϵ
Yρ(t)(2)

)︄
, σ2I2

)︄
under Q1. If at ̸= aρ(t) we have 6 options:

1. aρ(t) = 3

(a) at = 1, in this case Yt = N (Yρ(t)(2), σ2) under Q0 and Yt = N (Yρ(t)(2)−ϵ, σ2)

under Q1;

(b) at = 2 in this case Yt = N (Yρ(t)(2), σ2) under Q0 and Yt = N (Yρ(t)(2), σ2)

under Q1;

72

2. aρ(t) = 1

(a) at = 3, in this case Yt = N
(︄(︄

Yρ(t)
Yρ(t)

)︄
, σ2I2

)︄
under Q0 and Yt = N

(︄(︄
Yρ(t)

Yρ(t) + ϵ

)︄
, σ2I2

)︄
under Q1;

(b) at = 2 in this case Yt = N (Yρ(t), σ
2) under Q0 and Yt = N (Yρ(t) + ϵ, σ2)

under Q1;

3. aρ(t) = 2

(a) at = 3, in this case Yt = N
(︄(︄

Yρ(t)
Yρ(t)

)︄
, σ2I2

)︄
under Q0 and Yt = N

(︄(︄
Yρ(t) − ϵ
Yρ(t)

)︄
, σ2I2

)︄
under Q1;

(b) at = 1 in this case Yt = N (Yρ(t), σ
2) under Q0 and Yt = N (Yρ(t) − ϵ, σ2)

under Q1.

Thus we have

DKL
(︂
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)︂
= Q0(at = aρ(t) = 3)DKL

(︂
N (0, σ2)||N (−ϵ, σ2)

)︂
+ Q0(aρ(t)=3, at = 1)DKL

(︂
N (0, σ2)||N (−ϵ, σ2)

)︂
+ Q0(aρ(t)=1, at = 3)DKL

(︂
N (0, σ2)||N (ϵ, σ2)

)︂
+ Q0(aρ(t)=1, at = 2)DKL

(︂
N (0, σ2)||N (ϵ, σ2)

)︂
+ Q0(aρ(t)=2, at = 3)DKL

(︂
N (0, σ2)||N (−ϵ, σ2)

)︂
+ Q0(aρ(t)=2, at = 1)DKL

(︂
N (0, σ2)||N (−ϵ, σ2)

)︂
= ϵ2

2σ2 Q0(At),

where At is the event that either action 3 was played at round t or there were odd

number of switches between actions 1 and 2. Let N denote the random number of

times action 3 was played and let M denote the random number of switches between

action 1 and action 2. Let S1:M denote the random sequence of times during which

there was a switch. Then we have
T∑︂
t=1

χAt ≤
M∑︂
r=1

∑︂
t∈cut(Sr)

χAt +N ≤ ω(ρ)(M +N),

73

where cut(t) and ω(ρ) are defined in Dekel et al. (2014). Thus

DKL
(︂
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)︂
≤ ϵ2ω(ρ)

2σ2 EQ0 [M +N].

Pinsker’s inequality that dF
TV (Q0,Q1) ≤ ϵ

2σ

√︂
ω(ρ)EQ0 [M +N]

Proof of Lemma 2.6.4. First let us consider the amount of regret the player incurs for

picking action 3 N times. To do this we consider the number of times 1/2 +Wt > 5/6.

The expected number of times this occurs is

E
T∑︂
t=1

χ1/2+Wt>5/6 ≤
T∑︂
t=1

P
(︃

|Wt| + 1
2 ≥ 5

6

)︃
≤

T∑︂
t=1

e
− 1
d(ρ)σ2 ≤

T∑︂
t=1

e− 9 log(T)
2 ≤ 1.

Thus in expectation the regret for picking action 2 N times is at least (1/6 + ϵ)(N − 1).

Since we choose ϵ = Θ̃(T−1/3), for sufficiently large T we have that in expectation

the regret for picking action 3 N times is at least (N − 1)/6. Let χ denote the

uniform random variable over actions {1, 2}, which picks the best action in the

beginning of the game. Denote by Bi the number of times action i was played. Then

E[R′] ≥ E[ϵ(T −N −Bχ) +M + (N − 1)/6] (this is a lower bound since M only tracks

the switches between actions 1 and 2, so the switches to and from action 2 are left

out). Thus we have

E[R′] = E[ϵ(T −N −B1) +M + (N − 1)/6|χ = 1] + E[ϵ(T −N −B2) +M + (N − 1)/6|χ = 2]
2

= ϵT − ϵ

2 (EQ1 [B1] + EQ2 [B0]) + E
[︃
M + N − 1

6 − ϵN
]︃
.

Since ϵ = Θ̃(T−1/3) we have N−1
6 − ϵN ≤ N

7 . Consider EQ1 [B1], we have

EQ1 [B1] − EQ0 [B1] =
T∑︂
t=1

(Q1(at = 1) − Q0(at = 1)) ≤ TdF
TV (Q0,Q1) .

A similar inequality holds for EQ2 [N0] and thus we get

EQ1 [B1] + EQ2 [B0] ≤ T (dF
TV (Q0,Q1) + dF

TV (Q0,Q2)) + EQ0 [B0 +B1]

≤ T (dF
TV (Q0,Q1) + dF

TV (Q0,Q2)) + T − EQ0 [N].

74

The above implies

E[R′] ≥ ϵT

2 − ϵT

2 (dF
TV (Q0,Q1) + dF

TV (Q0,Q2)) + E
[︃
M + N

7

]︃
+ ϵ

2EQ0 [N].

2.7.2 Detailed proofs from Section 2.6.2

Proof of Lemma 2.6.8. Let Ei denote the conditional distribution for sampling the

active vertex set indexed by i ∈ I. We have E[R′] = 1
|I|
∑︁
i∈I Ei[R′]. First let us

consider the amount of regret the player incurs for picking a revealing action Ni times.

To do this we consider the number of times 1/2 +Wt > 5/6. The expected number of

times this occurs is

E
T∑︂
t=1

χ1/2+Wt>5/6 ≤
T∑︂
t=1

P
(︃

|Wt| + 1
2 ≥ 5

6

)︃
≤

T∑︂
t=1

e
− 1
d(ρ)σ2 ≤

T∑︂
t=1

e− 9 log(T)
2 ≤ 1.

Thus in expectation the regret for picking a revealing action Ni times is at least

(1/6 + ϵ)(Ni − 1). Let χi denote the uniform random variable over R which picks the

best action. Denote by Bi
j the number of times action j was played from the active

vertices. Then Ei[R′] ≥ Ei[ϵ(T −Ni −Bi
χi

) +Mi +Ni/6 − 1/6]. Thus we have

E[R′] =
∑︁
i∈|I| Ei[ϵ(T −Ni −Bi

χi
) +Mi +Ni/6 − 1/6]

|I|

= ϵT − ϵ

|I|
∑︂
i∈I

Ei[Bi
χi

] + 1
|I|

∑︂
i∈I

Ei
[︃
Mi + Ni

6 − 1/6 − ϵNi

]︃
.

Consider Ei[Bi
χi

] = 1
|R|
∑︁
j∈[|R|] EQi

j
[Bi

j]. For each term of the sum we have

EQi
j
[Bi

j] − EQi
0
[Bi

j] =
T∑︂
t=1

(Qi
j(at = j) − Q0(at = j)) ≤ TdF

TV

(︂
Qi

0,Qi
j

)︂
.

Thus we get

∑︂
i∈I

Ei[Bi
χi

] ≤ T
1

|R|
∑︂
i∈I

∑︂
j∈[|R|]

dF
TV

(︂
Qi

0,Qi
j

)︂
+ 1

|R|
∑︂
i∈I

∑︂
j∈[|R|]

EQi
0
[Bi

j]

≤ T

|R|
∑︂
i∈I

∑︂
j∈[|R|]

dF
TV

(︂
Qi

0,Qi
j

)︂
+ T − 1

|R|
∑︂
i∈I

EQi
0
[Ni].

75

Using the assumption that |I| ≥ 2, the above implies

E[R′] ≥ ϵT

2 − ϵT

|I||R|
∑︂
i∈I

∑︂
j∈[|R|]

dF
TV

(︂
Qi

0,Qi
j

)︂
+ 1

|I|
∑︂
i∈I

Ei
[︃
Mi + Ni

6 − 1/6 − ϵNi

]︃

Since ϵ = Θ̃(T−1/3) we have Ei
[︂
Mi + Ni−1

6 − ϵNi

]︂
≥ Ei

[︂
Mi + Ni

7

]︂
.

2.7.3 Detailed proofs from Section 2.6.3

Proof of Lemma 2.6.9. Let rt denote the revealing action at time t.

EQi
[N ′] =

T∑︂
t=1

EQi
[I(at = rt)] =

T∑︂
t=1

Qi(at ∈ R)EQi
[I(at = rt)|at ∈ R]

+
T∑︂
t=1

Qi(at ̸∈ R)EQi
[I(at = rt)|at ̸∈ R]

=
T∑︂
t=1

Qi(at ∈ R)EQi
[I(at = rt)|at ∈ R]

=
T∑︂
t=1

Qi(at ∈ R) 1
α

= 1
α

T∑︂
t=1

EQi
[I(at ∈ R)] = 1

α
EQi

[N].

This completes the proof.

Proof of Lemma 2.6.10. The proof of Lemma 2.6.12 implies that for any Qi we have

dF
TV (Q0,Qi) ≤ ϵ

2σ
√︂
ω(ρ)EQ0 [αM ′

i +Mi +N ′],

since the amount of information that can be revealed by a switch is at most α and

this precisely happens when the player switches from i to the revealing action. Notice

that ∑︁vi∈IM
′
i ≤ N ′, because the number of switches between any i and a revealing

action is bounded by the number of times a revealing action is played. Lemma 2.6.9

implies that EQ0 [αM ′
i + Mi + N ′] ≤ EQ0 [N/α + Mi + αM ′

i]. Next, we note that∑︁
i∈[|I|] Mi ≤ 2M as each switch is counted at most twice by Mi. Thus we have

1
α

∑︂
vi∈I

dF
TV (Q0,Qi) ≤ 1

α

ϵ

2σ
∑︂
vi∈I

√︂
ω(ρ)EQ0 [N/α+Mi + αM ′

i]

≤ ϵ

2σ

⌜⃓⃓⃓
⎷ω(ρ)

α
EQ0

⎡⎣∑︂
vi∈I

N/α+Mi + αM ′
i

⎤⎦
≤ ϵ

σ

√︄
ω(ρ)
2α

√︂
EQ0 [M +N],

76

where the second to last inequality follows again from Lemma 2.6.9.

2.7.4 Detailed proofs from Section 2.6.4

Proof of Lemma 2.6.12. Using Yao’s minimax principle we can assume the player is

deterministic and thus their t-th action at is a deterministic function of Y0:t−1.Using

the chain rule for relative entropy and by the construction of Wt, we have:

DKL (Q0(Y0:T)||Qi(Y0:T)) = DKL (Q0(Y0)||Qi(Y1)) +
T∑︂
t=1

DKL
(︂
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)︂
.

Let us consider the term DKL
(︂
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)︂
. First assume that at = aρ(t)

is not an action adjacent to i or at = aρ(t) = i. Then for any observed j ∈ I∗ we have

Yt(j) = N (Yρ(t), σ
2) under both Q0 and Qi. Next consider the case when at = aρ(t) is an

action adjacent to i and some other j ∈ I∗. In this case Yt(j) = Yt(i) = N (Yρ(t)(j), σ2)

under Q0 and Yt(i) = N (Yρ(t)(j) − ϵ, σ2), Yt(j) = N (Yρ(t)(j), σ2) under Qi for all

observed j ∈ I∗ \ {i}. If at ̸= aρ(t) we have 6 options:

1. aρ(t) is an action adjacent to i and another action j ∈ I∗ \ {i}

(a) at is an action adjacent to i, in this case Yt(j) = Yt(i) = N (Yρ(t)(j′), σ2)

under Q0 for all observed j′ ∈ I∗ and Yt(i) = N (Yρ(t)(j) − ϵ, σ2), Yt(j′) =

N (Yρ(t)(j), σ2) under Qi for all observed j′ ∈ I∗;

(b) at is an action not adjacent to i in this case Yt(j′) = N (Yρ(t)(j), σ2) under

Q0 and Yt(j′) = N (Yρ(t)(j), σ2) under Qi for all observed j′ in I∗;

2. aρ(t) is an action not adjacent to i but adjacent to j

(a) at is an action adjacent to i, in this case Yt(j′) = Yt(i) = N (Yt(j), σ2) under

Q0 and Yt(i) = N (Yρ(t)(j) − ϵ, σ2), Yt(j′) = N (Yρ(t)(j), σ2) under Qi for all

observed j′;

(b) at is an action not adjacent to i, in this case Yt(j′) = N (Yρ(t)(j), σ2) under

Q0 and Yt(j′) = N (Yρ(t)(j), σ2) under Qi for all observed j′;

77

3. aρ(t) is an action only adjacent to i and no other j ∈ I∗

(a) at is an action adjacent to i, in this case Yt(j′) = Yt(i) = N (Yρ(t)(i), σ2)

under Q0 and Yt(i) = N (Yρ(t)(i), σ2), Yt(j′) = N (Yρ(t)(j′) + ϵ, σ2) under Qi

for all observed j′;

(b) at is an action not adjacent to i, in this case Yt(j′) = N (Yρ(t)(i), σ2) under

Q0 and Yt(j′) = N (Yρ(t)(i) + ϵ, σ2) under Qi for all observed j′.

Thus we have

DKL
(︂
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)︂
≤ ϵ2

2σ2 Q0(At) + |I∗|ϕ(G) ϵ
2

2σ2 Qi(Bt)

where At is the event that aρ(t) was adjacent to at least one action in I∗ \ {i} and at

time t action i was observed and Bt is the event that aρ(t) was adjacent only to i and

the player switched at time t to an action which is adjacent to an action in I∗ \ {i}.

Let Ni denote the random number of times an action adjacent to i was played and let

Mi denote the random number of switches between an action adjacent to i and an

action not adjacent to i. Let S1:M denote the random sequence of times during which

there was a switch. Then we have
T∑︂
t=1

χAt + χBt ≤
M∑︂
r=1

∑︂
t∈cut(Sr)

χAt +Ni ≤ ω(ρ)(Mi +Ni),

where cut(t) and ω(ρ) are defined in Dekel et al. (2014). Thus

DKL
(︂
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)︂
≤ ϵ2ω(ρ)

2σ2 EQ0 [|I∗|ϕ(G)Mi +Ni].

Pinsker’s inequality that dF
TV (Q0,Qi) ≤ ϵ

2σ

√︂
ω(ρ)EQ0 [|I∗|ϕ(G)Mi +Ni].

Proof of Lemma 2.6.13. From concavity of square root and Lemma 2.6.12 we have

1
|I∗|

∑︂
i∈I∗

dF
TV (Q0,Qi) ≤

ϵ
√︂
ω(ρ)
2σ

⌜⃓⃓⎷ 1
|I∗|

EQ0

[︄∑︂
i∈I∗

|I∗|ϕ(G)Mi +Ni

]︄
.

Now ∑︁
i∈I∗ Mi = 2M since we count each switch twice, once from i and once to i. On

the other hand each action which is adjacent to n actions in I∗ has been overcounted

n times. Since n ≤ |I∗|ϕ(G) we have ∑︁i∈I∗ Ni ≤ |I∗|ϕ(G)N .

78

Proof of Lemma 2.6.14. First let us consider the amount of regret the player incurs

for picking action adjacent to two actions in I∗ N times. To do this we consider the

number of times 1/2 +Wt > 5/6. The expected number of times this occurs is

E
T∑︂
t=1

χ1/2+Wt>5/6 ≤
T∑︂
t=1

P
(︃

|Wt| + 1
2 ≥ 5

6

)︃
≤

T∑︂
t=1

e
− 1
d(ρ)σ2 ≤

T∑︂
t=1

e− 9 log(T)
2 ≤ 1.

Thus in expectation the regret for picking an action adjacent to actions in I∗ N times

is at least (1/6 + ϵ)(N − 1). Let χ denote the uniform random variable over actions

in I∗, which picks the best action in the beginning of the game. Denote by Bi the

number of times action i ∈ I∗ was played. Then E[R′] ≥ E[ϵ(T −N −Bχ) +M +N/6].

Thus we have

E[R′] =
∑︁
i∈I∗ E[ϵ(T −N −Bi) +M + (N − 1)/6|χ = i]

|I∗|

= ϵT − ϵ

|I∗|
∑︂
i∈I∗

EQi
[Bi] + E

[︃
M + N − 1

6 − ϵN
]︃
.

Consider EQi
[Bi], we have

EQi
[Bi] − EQ0 [Bi] =

T∑︂
t=1

(Qi(at = i) − Q0(at = i)) ≤ TdF
TV (Q0,Qi) .

Thus we get

∑︂
i∈I∗

EQi
[Bi] ≤ T

∑︂
i∈I∗

dF
TV (Q0,Qi) +

∑︂
i∈I∗

EQ0 [Bi]

≤ T
∑︂
i∈I∗

dF
TV (Q0,Qi) + T − EQ0 [N].

Using the assumption that |I∗| ≥ 2, the above implies

E[R′] ≥ ϵT

2 − ϵT

|I∗|
∑︂
i∈I∗

dF
TV (Q0,Qi) + E

[︃
M + N − 1

6 − ϵN
]︃

+ ϵ

2EQ0 [N].

Since ϵ = Θ̃(T−1/3) we have E
[︂
M + N−1

6 − ϵN
]︂

+ ϵ
2EQ0 [N] ≥ E

[︂
M + N

7

]︂

79

Chapter 3

Corralling stochastic bandit
algorithms

We study the problem of corralling stochastic bandit algorithms, that is combining

multiple bandit algorithms designed for a stochastic environment, with the goal of

devising a corralling algorithm that performs almost as well as the best base algorithm.

We give two general algorithms for this setting, which we show benefit from favorable

regret guarantees. We show that the regret of the corralling algorithms is no worse than

that of the best algorithm containing the arm with the highest reward, and depends

on the gap between the highest reward and other rewards. The main contributions of

this chapter are based on Arora et al. (2021). This work was done in collaboration

with Dr. Raman Arora and Dr. Mehryar Mohri.

3.1 The corralling problem

In the corralling problem the player is tasked with selecting, at each round, one out of a

fixed collection of bandit algorithms and playing the action returned by that algorithm.

Note that the player does not directly select an arm, but only a base algorithm. She

never requires knowledge of the action set of each base algorithm. The objective of the

player is to achieve a large cumulative reward or a small pseudo-regret, over the course

of her interactions with the environment. Further, the player only sends feedback to

80

the base algorithms based on the observed reward. This complicates the problem as

the state of the base learners at a fixed round depends on the player’s strategy and

selections made up to the round. Thus the best base learner might seem sub-optimal

in the beginning of the game if it has not been selected enough times and a poor

exploration strategy by the player might discard it. Solving the corralling problem

amounts to policy regret minimization because the observed reward at every round of

the game depends on the state of the base learners which in turn depends on all prior

actions chosen by the player. Because policy regret minimization is impossible without

restricting the adversary it is natural to make additional assumptions how the base

learners behave. To this end we will require that the best of the base learners satisfies

an any-time regret guarantee, that is at any time t, the i∗-th base algorithm, Ai∗ will

have pseudo-regret E[Ri∗(t)] ≤ R̄i∗(t) ≤ o(t). Further, we are going to investigate

the stochastic setting, in which each of the base learners is solving an instance of the

stochastic multi-armed bandit problem. The main regret upper bound in our work

depends on the difference between the expected reward of the best arm of the best

algorithm and the best arm of the i-th algorithm denoted by ∆i.

Theorem 3.1.1 (Informal). If the regret of Ai∗ is bounded by R̄i∗(t) ≤ O(
√
t),∀t ∈ [T],

then there exists an algorithm which guarantees a regret bound of the order

E[R(T)] = Tµ1,1 − E
[︄
T∑︂
t=1

rt(ait,jt)
]︄

≤ O

⎛⎝∑︂
i ̸=i∗

(log (T))2

∆i

+ log (T) R̄i∗(T)
⎞⎠ ,

where µ1,1 is the expected reward of the best arm of the best algorithm and rt(ait,jt) is

the reward of the jt-th action played by the algorithm, it, selected at time t.

The corralling problem was first investigated by Odalric and Munos (2011) by

combining Exp3 or UCB-I base learners through an Exp4 (Auer et al., 2002b) strategy

with added uniform exploration. The achieved regret bounds are of the order O(T 2/3).

Agarwal et al. (2016) study corralling problem in the adversarial setting, that is the

rewards/losses on which the base learners compete are assumed to be adversarially

81

generated. The authors assume that the base learners obey certain stability, which we

will address shortly, and design a corralling strategy with favorable regret guarantees

dependent on the worst-case regret guarantees of all learners. Their algorithm is based

on OMD, however, instead of using a fixed step-size, a special non-decreasing step-size

is employed, which grows whenever the probability to play a base learner becomes

too small. The authors were not able to demonstrate that the proposed corralling

strategy enjoys regret guarantees better than Ω(
√
T). Parallel, work (Cutkosky et al.,

2020), studies the same stochastic setting as our work and actually improves on the

regret bounds stated in Theorem 3.1.1 by removing the additional logarithmic factors

with the caveat that the time-horizon is known before the start of the game.

3.2 The model selection problem

Corralling can also be seen as a form of model selection, in which the player is tasked

with selecting the best base algorithm for an apriori unknown environment, e.g., choose

between a contextual bandits algorithm such as Exp4 or a MAB algorithm such as

UCB-I. Recently the model selection problem has received a lot of attention in the

linear stochastic bandits setting which we now describe carefully.

3.2.1 Linear contextual bandits

In the contextual bandit problem the player receives additional information before

she is required to select an action from her action set. The additional information

is in the form of a context xt ∈ X , where X is some very large (possibly infinite)

set of contexts. In practice contexts can be any characteristics associated with the

action. For example, in the adds allocation problem, in which the player has to choose

among multiple adds to display for a given user, the player might also get additional

information about the user such as their age, music preferences, if they like ice-cream,

etc. Each of these attributes can be modeled by a contextual vector. Contexts can be

82

sampled from some unknown distribution, D, or generated adversarially. The rewards

in the contextual bandit problems also take into account the current context, i.e.,

rt : X × A → R. We are interested in the following variant of the contextual problem

– there exists an embedding ϕ : X × A → Rd which maps context-action pairs into a

d-dimensional vector space. The rewards now satisfy rt(xt, at) = ⟨β, ϕ(xt, at)⟩ + ξt,

where β ∈ Rd is unknown and ξt is random noise sampled from a sub-Gaussian

distribution with variance proxy bounded by 1. Further, the contexts are sampled

from some distribution which is unknown to the player. The player only observes

rt(xt, at) and the goal is to minimize the regret

E[R(T)] =
T∑︂
t=1

(︃
max
a∈A

E[⟨β, ϕ(xt, a)⟩] − E[⟨β, ϕi∗(xt, at)⟩]
)︃
.

The contextual stochastic bandit problem was first investigated by Abe and Long

(1999), with the first algorithm based on the OFU principle proposed by Auer (2002)

with regret bounded by Õ(
√︂
dT log (|A|)), where the Õ notation only hides poly-

logarithmic factors in the horizon T . Li et al. (2010); Chu et al. (2011) propose

the LinUCB and SupLinUCB algorithms, respectively, for the setting in which A is

finite. These algorithms are based on the OFU principle with bonuses based on a

confidence ellipsoid around an estimator or β and enjoy a regret bound of the order

Õ(
√︂
dT log (|A|)). For infinite action sets, Abbasi-Yadkori et al. (2011), propose the

OFUL algorithm which has regret upper bounded as Õ(d
√
T). It turns out that both

OFUL and SupLinUCB achieve the min-max optimal regret, up to poly-logarithmic

factors for their respective settings. Lattimore et al. (2020) propose an approach

based on Optimal design for the least squares problem (Kiefer and Wolfowitz, 1960),

which can handle miss-specification in the linear model, that is the observed losses are

not linear, however, can be approximated by a linear loss up to ϵ. If ϵ is known, the

authors propose an algorithm which enjoys a O(
√︂
dT log (|A|) + ϵT

√
d log (n)) regret

bound. Foster et al. (2020a) remove the requirement that ϵ is known and achieve

similar regret bounds through a corralling approach.

83

3.2.2 Model selection for linear bandits

In the model selection problem for linear bandits, the player is given a nested sequence

of classes F1 ⊆ F2 ⊆ . . . ⊆ FK = F , where each Fi is defined as

Fi = {(x, a) → ⟨βi, ϕi(x, a)⟩ : βi ∈ Rdi},

for some feature embedding ϕi : X × A → Rdi . It is assumed that each feature

embedding ϕi contains ϕi−1 as its first di−1 coordinates. It is further assumed that

there exists a smallest i∗ ≤ K = |A| to which the optimal parameter β∗ belongs,

that is the observed rewards for each context-action pair (x, a) satisfy E[rt(x, a)] =

E [⟨β∗, ϕdi∗ (x, a)⟩]. The goal in the model selection problem is to identify i∗ and

compete against the smallest loss for the t-th context in Rdi∗ by minimizing the

regret Ri∗(T). Foster et al. (2019) propose an algorithm which does not incur more

than Õ
(︂

1
γ3 (i∗T)2/3(Kdi∗)1/3

)︂
, where γ3 is the smallest eigenvalue of the covariance

matrix of feature embeddings Σ = Ex∼D
[︂

1
K

∑︁
a∈A ϕK(x, a)ϕK(x, a)⊤

]︂
. Pacchiano et al.

(2020b) propose a different approach based on the corralling algorithm of Agarwal

et al. (2016) which enjoys a Õ(di∗
√
T) regret bound for finite action sets and Õ(d2

i∗

√
T)

bound for arbitrary action sets A. Later, Pacchiano et al. (2020a) design an algorithm

which enjoys a gap-dependent guarantee under the assumption that all of the miss-

specified models have regret Ri(t) ≥ ∆t,∀t ∈ [T]. Under such an assumption, the

authors recover a regret bounds of the order Õ(di∗
√
T + d4

i∗/∆) for arbitrary action

sets. Cutkosky et al. (2020) also manage to recover the O(di∗
√
T) and O(d2

i∗

√
T)

bounds for the model selection problems through their corralling algorithm. Our

corralling strategy is also able to recover these bounds and further enjoys a certain

gap-dependent guarantee as well, similar in spirit to the bounds shown by Pacchiano

et al. (2020a). Our model selection result is stated below.

Theorem 3.2.1. Assume that every base learner Ai, i ≥ i∗, admits a Õ(dαi
√
T) regret.

Then, there exists a corralling strategy with expected regret bounded by Õ(d2α
i∗

√
T +

84

K
√
T). Moreover, under the additional assumption that the following holds for any

i < i∗, for all (x, a) ∈ X × A

max
a∈A

E[⟨β∗, ϕi∗(x, a)⟩] − E[⟨βi, ϕi(x, a)⟩] ≥ 2d
2α
i∗ − d2α

i√
T

,

the expected regret of the same strategy is bounded as Õ(dαi∗
√
T +K

√
T).

All of the above results fall short from a true model-selection algorithm which

would enjoy a regret guarantee of the order O(dαi∗T 1−α) for the finite action set case,

where α ∈ (0, 1). It turns out that this is not just a shortcoming of our and prior

work, but is rather information theoretically impossible as shown by Zhu and Nowak

(2021). Zhu and Nowak (2021) provide a detailed characterization of the possible

model selection rates by showing both information theoretic lower bounds and an

algorithm with regret guarantees which nearly match the lower bounds.

3.3 Preliminaries and additional notation for the
corralling problem

We consider the problem of corralling K stochastic multi-armed bandit algorithms

A1, . . . ,AK , which we often refer to as base algorithms (base learners). At each

round t, a corralling algorithm selects a base algorithm Ait , which plays action

ait,jt . The corralling algorithm is not informed of the identity of this action but it

does observe its reward rt(ait,jt). The top algorithm then updates its decision rule and

provides feedback to each of the base learners Ai. We note that the feedback may be

just the empty set, in which case the base learners do not update their state. We will

also assume access to the parameters controlling the behavior of each Ai such as the

step size for mirror descent-type algorithms, or the confidence bounds for UCB-type

algorithms. Our goal is to minimize the cumulative pseudo-regret of the corralling

85

algorithm as defined in Equation 3.1:1

E[R(T)] = Tµ1,1 − E
[︄
T∑︂
t=1

rt(ait,jt)
]︄
, (3.1)

where µ1,1 is the mean reward of the best arm.

We denote by ei the ith standard basis vector, by 000K ∈ RK the vector of all 0s,

and by 111K ∈ RK the vector of all 1s. For two vectors x, y ∈ RK , x⊙ y denotes their

Hadamard product. We also denote the line segment between x and y as [x, y].

For the base algorithms A1, . . . ,AK , let Ti(t) be the number of times algorithm

Ai has been played until time t. Let Ti,j(t) be the number of times action j has been

proposed by algorithm Ai until time t. Let [ki] denote the set of arms or action set

of algorithm Ai. We denote the reward of arm j in the action set of algorithm i at

time t as rt(ai,j) and denote its mean reward by µi,j. We also use ai,jt to denote the

arm proposed by algorithm Ai during time t. Further, the algorithm played at time t

is denoted as it, its action played at time t is ait,jt and the reward for that action is

rt(ait,jt) with mean µit,jt . Let i∗ denote the index of the base algorithm that contains

the arm with the highest mean reward. Without loss of generality, we will assume that

i∗ = 1. Similarly, we assume that ai,1 is the arm with highest reward in algorithm Ai.

We assume that the best arm of the best algorithm has a gap to the best arm of every

other algorithm. We denote the gap between the best arm of A1 and the best arm of

Ai as ∆i: ∆i = µi∗,1 − µi,1 > 0 for i ̸= i∗. Further, we denote the intra-algorithm gaps

by ∆i,j = µi,1 − µi,j. We denote by R̄i(t) an upper bound on the regret of algorithm

Ai at time t and by Ri(t) the actual regret of Ai, so that E[Ri(t)] is the expected

regret of algorithm Ai at time t.
1For conciseness, from now on, we will simply write regret instead of pseudo-regret.

86

3.4 Lower bounds without anytime regret guaran-
tees

As we already mentioned in Section 3.1 we require that each of the base learners

satisfy an any-time regret bound. We now show that this assumption is necessary

through a simple lower bound. Our lower bound is based on corralling base algorithms

that only admit a fixed-time horizon regret bound and do not enjoy anytime regret

guarantees. We further assume that the corralling strategy cannot simulate anytime

regret guarantees on the base algorithms, say by using the so-called doubling trick.

This result suggests that the base algorithms must admit a strong regret guarantee

during every round of the game.

The key idea behind our construction is the following. Suppose one of the corralled

algorithms, Ai, incurs a linear regret over the first Ri(T) rounds. In that case, the

corralling algorithm is unable to distinguish between Ai and an another algorithm that

mimics the linear regret behavior of Ai throughout all T rounds, unless the corralling

algorithm plays Ai at least Ri(T) times. Formally, assume that the corralling algorithm

can play one of two algorithms, A1 or A2, with the rewards of each arm played by

these algorithms distributed according to a Bernoulli random variable. Algorithm A1

plays a single arm with expected reward µ1 and algorithm A2 is defined as follows.

Let β be drawn according to the Bernoulli distribution β ∼ Ber(1
2) and let α be

drawn uniformly over the unit interval, α ∼ Unif[0, 1]. If β = 1, A2 alternates between

playing an arm with mean µ2 and an arm with mean µ3 every round, so that the

algorithm incurs linear regret. We set µi such that µ2 > µ1 >
µ2+µ3

2 . If β = 0, then A2

behaves in the same way as if β = 1 for the first T (1−α) rounds and for the remaining

T − T (1−α) rounds A2 only pulls the arm with mean µ2. Notice that, in this setting,

A2 admits sublinear regret almost surely.

We denote by P(·|r1(ai1,j1), . . . , rt(ait,jt), β = i) the natural measure on the σ-

87

algebra generated by the observed rewards under the environment β = i and all

the randomness of the player’s algorithm. To simplify the notation, we denote by

r1:t the sequence {rs(ais,js)}ts=1. Let N denote the random variable counting the

number of times the corralling strategy selected A1. Information-theoretically, the

player can obtain a good approximation of µ1 in time O(log (T)) and, therefore, for

simplicity, we assume that the player knows µ1 exactly. Note that this can only make

the problem easier for the player. Given this information, we can assume that the

player begins by playing algorithm A2 for T − N + 1 rounds and then switches to

A1 for the rest of the game. In particular, we assume that T − N + 1 is the time

when the player can figure out that β = 1. We note that at time T (1−α) we have

P(·|r1:T (1−α) , β = 1) = P(·|r1:T (1−α) , β = 0), as the distribution of the rewards provided

by A2 do not differ between β = 1 and β = 0. Furthermore, any random strategy

would also need to select algorithm A2 at least T (1−α) + 1 rounds before it is able

to distinguish between β = 1 or β = 0. It is also important to note that under the

event that β = 1, the corralling algorithm does not receive any information about the

value of α. This allows us to show that in the setting constructed above, with at least

constant probability the best algorithm i.e., A1 when β = 1 and A2 when β = 0, has

sublinear regret. Finally, a direct computation of the regret of this corralling strategy

gives the following result.

Theorem 3.4.1. Let algorithms A1 and A2 follow the construction in Section 3.4.

Then, with probability at least 1/2 over the random choice of α, any corralling strategy

incurs regret at least Ω̃(T), while the regret of the best algorithm is at most O(
√
T).

Lower bound for successive elimination. The behavior of A2 for the setting

given by β = 0, in the construction above, may seem somewhat artificial: a stochastic

bandit algorithm may not be expected to behave in that manner when the gap between

µ2 and µ3 is large enough. Here, we describe how to set µ1, µ2 and µ3 such that the

successive elimination algorithm (Even-Dar et al., 2002) admits a similar behavior

88

to A2 with β = 0. Recall that successive elimination needs at least 1/∆2 rounds to

distinguish between the arm with mean µ2 and the arm with mean µ3. In other words,

for at least 1/∆2 rounds, it will alternate between the two arms. Therefore, we set
1

∆2 = T (1−α) or, equivalently, ∆ = 1
T (1−α)/2 , and µ1 = µ2 − 1

4T (1−α)/2 to yield behavior

similar to A2. For this construction, we show the following lower bound.

Theorem 3.4.2. Let algorithms A1 and A2 follow the construction in Section 3.4.

With probability at least 1/4 over the random choice of α any corralling strategy will

incur regret at least Ω̃(
√
T) while the gap between µ2 and µ3 is such that ∆ > ω(T−1/4)

and hence the regret of the best algorithm is at most o(T 1/4).

We note that, in our construction, if β = 1, then the inequality ∆ ≫ 1√
T

holds

almost surely. In this setting, the instance-dependent regret bound for A2 and

successive elimination is asymptotically smaller compared to the worst-case instance-

independent regret bounds for stochastic bandit algorithms, which scale as Õ(
√
T)

with the time horizon. This suggests that, even though A2 enjoys asymptotically

better regret bounds than Õ(
√
T), the corralling algorithm will necessarily incur

Ω̃(
√
T) regret.

A lower bound when a worst case regret bound is known. Next, suppose

that we know a worst case regret bound of R2(T) for algorithm A2. As before, we

sample β according to a Bernoulli distribution. If β = 1, then algorithm A2 has a single

arm with reward distributed as Ber((µ2 +µ3)/2); in that case, A2 admits a regret equal

to 0. If β = 0, then A2 has two arms distributed according to Ber(µ2) and Ber(µ3),

respectively. We sample α ∼ Unif[0, 1], and let A2 play an arm uniformly at random

for the first R2(T)(1−α) rounds. In particular, during each of the first R2(T)(1−α)

rounds, A2 plays with equal probability the arm with mean µ2 and the arm with mean

µ3. On round R2(T)(1−α), the algorithm switches to playing µ1 until the rest of the

game. Notice that the rewards up to time R2(T)(1−α), whether β = 1 or β = 0, have

the same distribution. Hence, P(·|r1:R2(T)(1−α) , β = 1) = P(·|r1:R2(T)(1−α) , β = 0). Then,

89

following the arguments in the proof of Theorem 3.4.1, we can prove the following

lower bound.

Theorem 3.4.3. Let algorithms A1 and A2 follow the construction in Section 3.4.

Suppose that the worst case known regret bound for Algorithm is R2(T). With probability

at least 1/2 over the random choice of α any corralling strategy will incur regret at

least Ω̃(R2(T)) while the regret of A2 is at most O(
√︂
R2(T)).

3.5 Detailed proofs for Section 3.4

Proof of Theorem 3.4.1. Let R(T) denote the regret of the corralling algorithm. Direct

computation shows that if β = 1 the corralling regret is

E[R(T)|β = 1, r1:T (1−α) , α] = E
[︃(︃
µ1 − µ2 + µ3

2

)︃
(T −N)|β = 1, r1:T (1−α) , α

]︃

Further if β = 0 and A2 is the best algorithm the regret of corralling is

E[R(T)|β = 0, r1:T (1−α) , α] = E
[︂
T (1−α)µ2 + (T − T (1−α))µ2|β = 0, r1:T (1−α) , α

]︂
≥E

[︃
µ2 + µ3

2 T (1−α) + µ2(T − T (1−α))

− µ1N − χ(N≤T−T (1−α))

(︃
µ2 + µ3

2 T (1−α) + µ2(T − T (1−α) −N)
)︃

− χ(N>T−T (1−α))
µ2 + µ3

2 (T −N)|β = 0, r1:T (1−α) , α
]︃
,

where the characteristic functions describe the event in which we pull A1 less times

than is needed for A2 to switch to playing the best action. Notice that the total

regret for corralling is at least the above as we also need to add the regret of the best

algorithm to the above.

We first consider the case β = 1. Notice that in this case the corralling algorithm

does not receive any information about α because A2 alternates between µ2 and µ3 at

all rounds. This implies E[R(T)|β = 1, α] = E[R(T)|β = 1]. Condition on the event

90

N ≤ T − T (1−α). We have

E[R(T)|β = 1, N ≤ T − T (1−α), r1:T (1−α) , α] =

E[R(T)|β = 1, N ≤ T − T (1−α), r1:T (1−α)] ≥
(︃
µ1 − µ2 + µ3

2

)︃
E[T (1−α)|β = 1]

=
(︃
µ1 − µ2 + µ3

2

)︃
E[T (1−α)]

=
(︃
µ1 − µ2 + µ3

2

)︃
T − 1
log (T) ,

where in the first inequality we have replaced N by T − T 1−α. Next consider the case

β = 0. Condition on the event N > T − T (1−α). We have

E[R(T)|β = 0, N > T − T (1−α), r1:T (1−α) , α]

= E
[︃
µ2 − µ3

2 (T − T (1−α)) −
(︃
µ1 − µ2 + µ3

2

)︃
N |β = 0, N > T − T (1−α), r1:T (1−α) , α

]︃
≥ E

[︃
(µ2 − µ1)T − µ2

2 T
(1−α)|β = 0, N > T − T (1−α), r1:T (1−α) , α

]︃
= E

[︃
(µ2 − µ1)T − µ2

2 T
1−α|α

]︃
,

where in the inequality we have used the fact that N > T − T 1−α to bound −µ1N

and T ≥ N to bound µ1+µ3
2 N . Let A denote the event N ≤ T − T (1−α). We are now

ready to lower bound the regret of the player’s strategy as follows.

E [R(T)|α] = 1
2E [E[R(T)|r1:T (1−α) , β = 1, α] + E[R(T)|r1:T (1−α) , β = 0, α]|α]

≥ 1
2E [P(A|r1:T (1−α) , β = 1, α)E[R(T)|r1:T (1−α) , β = 1, A, α]

+P(Ac|r1:T (1−α) , β = 1, α)E[R(T)|r1:T (1−α) , β = 0, Ac, α]|α]

≥ 1
2E

[︄
P(A|r1:T (1−α) , β = 1, α)

(︃
µ1 − µ2 + µ3

2

)︃
T − 1

2 log (T)

+(1 − P(A|r1:T (1−α) , β = 1), α)(µ2 − µ1)T − µ2

2 T
1−α|α

]︃
,

where in the first inequality we have used the fact that the conditional measures

induced by β = 1 and β = 0 are equal for the first T 1−α rounds. Because α ≥ 1/2

with probability at least 1/2 it holds that the random variable E[R(T)|α] > Ω̃(T) with

probability at least 1/2 and that the regret of A2 when β = 1 is at most O(
√
T).

91

Proof of Theorem 3.4.2. From the proof of Theorem 3.4.1 we can compute, when

β = 1, we can directly compute

E
[︂
R(T)|β = 1, N ≤ T − T (1−α), r1:T (1−α) , α

]︂
≥E

[︃(︃
µ1 − µ2 + µ3

2

)︃
T (1−α)|β = 1, N ≤ T − T (1−α), r1:T (1−α) , α

]︃

=E
[︃ 1
4T (1−α)/2T

(1−α)|β = 1, N ≤ T − T (1−α), r1:T (1−α)

]︃
=

√
T − 1

2 log (T) ,

Where in the equality we again used the fact that if β = 1, the corralling algorithm

receives no information about α. Further when β = 0 we have

E
[︂
R(T)|β = 0, N > T − T (1−α), r1:T (1−α)(aT (1−α)), α

]︂
≥E

[︃
(µ2 − µ1)T − µ2

2 T
(1−α)|β = 0, N > T − T (1−α), r1:T (1−α) , α

]︃
=E

[︄
T (1+α)/2

4 |α
]︄

− E
[︄
T (1−α)

2 |α
]︄
.

Again we note that with probability 1/2 we have α ≥ 1/2 and the above expression

becomes asymptotically larger than
√
T . The same computation as in the proof of

Theorem 3.4.1 finishes the proof.

3.6 UCB-style corralling algorithm

The negative result of Section 3.4 hinge on the fact that the base algorithms do not

admit anytime regret guarantees. Therefore, we assume, for the rest of the paper, that

the base algorithms, {Ai}, satisfy the following:

E
[︄
tµi,1 −

t∑︂
s=1

rs(ais,js)
]︄

≤ R̄i(t), (3.2)

for any time t ∈ [T]. For UCB-type algorithms, such bounds can be derived from the

fact that the expected number of pulls, Ti,j(t), of a suboptimal arm j, is bounded

as E[Ti,j(t)] ≤ c log(t)
(∆i,j)2 , for some time and gap-independent constant c (e.g., Bubeck

(2010)), and take the following form, R̄i(t) ≤ c′
√︂
kit log (t), for some constant c′.

92

Suppose that the bound in Equation 3.2 holds with probability 1 − δt. Note that

such bounds are available for some UCB-type algorithms (Audibert et al., 2009).

We can then adopt the optimism in the face of uncertainty principle for each µi,1

by overestimating it with 1
t

∑︁t
s=1 rs(ai,js) + 1

t
R̄i(t). As long as this occurs with high

enough probability, we can construct an upper confidence bound for µi,1 and use it

in a UCB-type algorithm. Unfortunately, the upper confidence bounds required for

UCB-type algorithms to work need to hold with high enough probability, which is not

readily available from Equation 3.2 or from probabilistic bounds on the pseudo-regret

of anytime stochastic bandit algorithms. In fact, as discussed in Section 3.6.1, we

expect it to be impossible to corral any-time stochastic MAB algorithms with a

standard UCB-type strategy. However, a simple boosting technique, in which we run

2 log (1/δ) copies of each algorithm Ai, gives the following high probability version of

the bound in Equation 3.2.

Lemma 3.6.1. Suppose we run 2 log (1/δ) copies of algorithm Ai which satisfies

Equation 3.2. If Amedi is the algorithm with median cumulative reward at time t, then

P[tµi,1 −∑︁t
s=1 rs(amedi,js) ≥ 2R̄i(t)] ≤ δ.

Proof of Lemma 3.6.1. First note that µmedi,1 = µis,1 and R̄is(t) = R̄medi(t)for all s

and t. The assumption in Equation 3.2 together with Markov’s inequality implies that

for every copy Ais of Ai at time t it holds that

P
[︄
tµmedi,1 −

t∑︂
s=1

rs(ai,js) ≥ 2R̄medi(t)
]︄

≤ 1
2 .

Let Ai1 , . . . ,Ain be the algorithms which have reward smaller than Amedi at time t.

We have

P
[︄
tµmedi,1 −

t∑︂
s=1

rs(amedi,js) ≥ 2R̄medi(t)
]︄

≤ P

⎡⎣ ⋂︂
l∈[n]

{︄
tµl,1 −

t∑︂
s=1

rs(ail,js) ≥ 2R̄medi(t)
}︄⎤⎦

≤
(︃1

2

)︃log(1/δ)
≤ δ,

where the first inequality follows from the definition of Amedi and Ail for l ∈ [n].

93

Algorithm 9: UCB-C
Input: Stochastic bandit algorithms A1, . . . ,AK

Output: Sequence of algorithms (it)Tt=1.
1: t = 1
2: for i = 1, . . . , K do
3: Ai = ∅ % contains all copies of Ai

4: for s = 1, . . . , ⌈2 log (T)⌉ do
5: Initialize Ai(s) as a copy of Ai, ˆ︁µi(s) = 0
6: Append (Ai(s), ˆ︁µi(s)) to Ai

7: end for
8: end for
9: for i = 1, . . . , K do

10: Foreach (Ai(s), ˆ︁µi(s)) ∈ Ai, play Ai(s), update empirical mean ˆ︁µi(s),
t = t+ 2 log (T)

11: ˆ︁µmedi = Median({ˆ︁µi(s)}⌈2 log(T)⌉
s=1)

12: end for
13: while t ≤ T do
14: bℓ(t) =

√︁
2R̄medℓ (Tmedℓ (t))+

√
2Tmedℓ (t) log(t)

Tmedℓ (t) , ∀ℓ ∈ [K]
15: i = argmaxℓ∈[K] {ˆ︁µmedℓ + bℓ(t)}
16: Foreach (Ai(s), ˆ︁µi(s)) ∈ Ai, play Ai(s), update empirical mean ˆ︁µi(s),

t = t + 2 log (T)
17: ˆ︁µmedi = Median({ˆ︁µi(s)}⌈2 log(T)⌉

s=1)
18: end while

We consider the following variant of the standard UCB algorithm for corralling.

We initialize 2 log (T) copies of each base algorithm Ai. Each Ai is associated with the

median empirical average reward of its copies. At each round, the corralling algorithm

picks the Ai with the highest sum of median empirical average reward and an upper

confidence bound based on Lemma 3.6.1. The pseudocode is given in Algorithm 9.

The algorithm admits the following regret guarantees.

Theorem 3.6.2. Suppose that algorithms A1, . . . ,AK satisfy the following regret

bound E[Ri(t)] ≤
√︂
αkit log (t), respectively for i ∈ [K]. Algorithm 9 selects a sequence

94

of algorithms i1, . . . , iT which take actions ai1,j1 , . . . , aiT ,jT , respectively, such that

E[R(T)] ≤ O

⎛⎝∑︂
i ̸=i∗

ki log (T)2

∆i

+ log (T)E [Ri∗(T)]
⎞⎠ ,

E[R(T)] ≤ O

(︄
log (T)

√︃
KT log (T) max

i∈[K]
(ki)

)︄
.

Proof sketch. The ideas behind the proof are very similar to the standard analysis

of most UCB approaches. First one shows that because of the bonuses, each of

the empirical estimators of the means of best arms plus respective bonuses, are

overestimators of the true means. Next, because the bonuses are decreasing with the

number of times each sub-optimal algorithm is played, it turns out that we can not

play the i-th sub-optimal algorithm more than roughly ki/∆2
i times as the optimistic

estimator of the best reward would become smaller than µ1,1. Finally, a union bound

ensures that optimism holds throughout the T rounds which finishes the proof.

We note that both the optimistic and the worst case regret bounds above involve

an additional factor that depends on the number of arms, ki, of the base algorithm

Ai. This dependence reflects the complexity of the decision space of algorithm Ai.

We conjecture that a complexity-free bound is not possible, in general. To see this,

consider a setting where each Ai, for i ̸= i∗, only plays arms with equal means

µi = µ1,1 − ∆i. Standard stochastic bandit regret lower bounds, e.g. (Garivier et al.,

2018), state that any strategy on the combined set of arms of all algorithms will incur

regret at least Ω(∑︁i ̸=i∗ ki log (T) /∆i). The log (T) factor in front of the regret of the

best algorithm comes from the fact that we are running Ω(log (T)) copies of it.

3.6.1 Discussion regarding tightness of bounds

A natural question is if it is possible to achieve bounds that do not have a log (T)2

scaling. After all, for the simpler stochastic MAB problem, regret upper bounds only

scale as O(log (T)) in terms of the time horizon. As already mentioned, the extra

95

logarithmic factor comes from the boosting technique, or, more precisely, the need

for exponentially fast concentration of the true regret to its expected value, when

using a UCB-type corralling strategy. We now show that, in the absence of such

strong concentration guarantees, if only a single copy of each of the base algorithms

in Algorithm 9 is run, then linear regret is unavoidable.

Theorem 3.6.3. There exist instances A1 and A2 of UCB-I and a reward distribution,

such that, if Algorithm 9 runs a single copy of A1 and A2, then E[R(T)] ≥ Ω̃(∆2T).

Further, for any algorithm A1 such that P
[︂
R1(t) ≥ 1

2∆1,2τ
]︂

≥ 1
τc

, there exists a

reward distribution such that if Algorithm 9 runs a single copy of A1 and A2, then

E[R(T)] ≥ Ω̃((∆1,2)c∆2T).

Proof sketch. The idea behind the proof is to show that the algorithm containing the

best arm will not play the best arm sufficiently often with probability at least Ω(1/t)

during the first t rounds for sufficiently large t ≤ T . This in turn will imply that the

corralling algorithm will mistake the best algorithm for a sub-optimal one and will

only play it after exponentially many rounds (in t) resulting in regret of the order

Ω̃(T).

The requirement that the regret of the best algorithm satisfies P[R1(t) ≥ 1
2∆1,2τ] ≥

1
τc

in Theorem 3.6.3 is equivalent to the condition that the regret of the base algorithms

admit only a polynomial concentration. Results in (Salomon and Audibert, 2011)

suggest that there cannot be a tighter bound on the tail of the regret for anytime

algorithms. It turns out that a more careful construction of the bonuses as done by

Cutkosky et al. (2020) will be sufficient for achieving a regret bound of the order

O(E[Ri∗(T)] +∑︁
i ̸=i∗

ki log(T)
∆i

). These bonuses are inspired by the work of Lattimore

(2015).

96

3.7 Detailed proofs for Section 3.6

Proof of Theorem 3.6.2. For simplicity we assume that ⌈log (T)⌉ = log (T). For the

rest of the proof we let tℓ = Tℓ(t) to simplify notation. Further, since R̄ℓs = R̄ℓ,∀s ∈

[log (T)], we use R̄ℓ as the upper bound on the regret for all algorithms in Aℓ. Let

ψℓ(t) = 2
√︃

2 log(t)
tℓ

+
√

2R̄ℓ(tℓ)
tℓ

. The proof follows the standard ideas behind analyses of

UCB type algorithms. If at time t algorithm ℓ ̸= 1 is selected then one of the following

must hold true:

µ1,1 ≥ ˆ︁µ1̄(t1) +

√︂
2R̄1(t1) +

√︂
2t1 log (t)

t1
, (3.3)

ˆ︁µmedℓ(tℓ) > µ1,1 +
√︄

2 log (t)
tℓ

, (3.4)

∆ℓ < 2
√︄

2 log (t)
tℓ

+

√︂
2R̄ℓ(tℓ)
tℓ

. (3.5)

The above conditions can be derived by considering the case when the UCB for A1

is smaller than the UCB for Aℓ and every algorithm has been selected a sufficient

number of times. Suppose that the three conditions above are false at the same time.

Then we have

ˆ︁µ1̄(t1) +

√︂
2R̄1(t1) +

√︂
2t1 log (t)

t1
> µ1,1 = µ1,ℓ + ∆ℓ

≥ ∆ℓ + ˆ︁µmedℓ(tℓ) −
√︄

2 log (t)
tℓ

≥ ˆ︁µmedℓ(tℓ) +

√︂
2R̄ℓ(tℓ) +

√︂
2tℓ log (t)

tℓ
,

which contradicts the assumption that algorithm Aℓ was selected. With slight abuse

of notation we use [kℓ] to denote the set of arms belonging to algorithm Aℓ. Next we

bound the expected number of times each sub-optimal algorithm is played up to time

T . Let δ be an upper bound on the probability of the event that ˆ︁µ1̄(s) exceeds the

97

UCB for A1.

E[Tℓ] =
T∑︂
t=1

E[χait,jt∈[kℓ]] ≤ ψ−1
ℓ (∆ℓ) +

∑︂
t>ψ−1

ℓ
(∆ℓ)

P [Equation 3.3 or Equation 3.4 hold]

≤ ψ−1
ℓ (∆ℓ) +

∑︂
t>ψ−1

ℓ
(∆ℓ)

P

⎡⎢⎣∃s ∈ [t] : µ1,1 ≥ ˆ︁µ1̄(s) +

√︂
2R̄1(s) +

√︂
2s log (t)

s

⎤⎥⎦
+

∑︂
t>ψ−1

ℓ
(∆ℓ)

P

⎡⎣∃s ∈ [t] : ˆ︁µmedℓ(s) > µ1,1 +
√︄

2 log (t)
s

⎤⎦
≤

∑︂
t>ψ−1

ℓ
(∆ℓ)

tδ +
∑︂

t>ψ−1
ℓ

(∆ℓ)

1
t

+ ψ−1(∆ℓ),

where the last inequality follows from the definition of δ and the fact that ˆ︁µmedℓ(s) ≤

ˆ︁µmedℓ,1(s) (empirical mean of arm 1 for algorithm Amedℓ at time s) and the standard

argument in the analysis of UCB-I. Setting δ = 1
T 2 finishes the bound on the number

of suboptimal algorithm pulls. Next we consider bounding the regret incurred only by

playing the median algorithms Amedℓ

tµ1,1 − E
[︄

t∑︂
s=1

rs(ais,js)
]︄

= tµ1,1 − E
[︄∑︂

ℓ

tℓµℓ,1 +
∑︂
ℓ

∑︂
i

Tmedℓ,i(tℓ)µℓ,i −
∑︂
ℓ

tℓµℓ,1

]︄

= E

⎡⎣∑︂
ℓ̸=1

tℓ∆ℓ

⎤⎦+
∑︂
ℓ̸=1

E[Rmedℓ(tℓ)] + E [Rmed1(t)]

≤
∑︂
ℓ̸=1

∆ℓψ
−1(∆ℓ) + 2 log (T) +

∑︂
ℓ ̸=1

E[
√︂
αkℓtℓ log (t)] + E [Rmed1(t)]

≤
∑︂
ℓ̸=1

∆ℓψ
−1(∆ℓ) + 2 log (T) +

∑︂
ℓ ̸=1

√︂
αkℓE[tℓ] log (t) + E [Rmed1(t)]

≤
∑︂
ℓ̸=1

∆ℓψ
−1(∆ℓ) + 2 log (T) +

∑︂
ℓ ̸=1

√︂
αkℓψ−1(∆ℓ) log (t)

+ E [Rmed1(t)] +
√︂
αkℓ log (t) .

Now for the assumed regret bound on the algorithms, we have ψℓ(t) = 2
√︃

2 log(t)
tℓ

+√︃
2αkℓ log(tℓ)

tℓ
. This implies that ψ−1

ℓ (∆ℓ) ≤ α′kℓ log(t)
∆2
ℓ

, for some other constant α′. To get

the instance independent bound we first notice that by Jensen’s inequality we have
∑︂
ℓ

√︂
α′kℓE[tℓ] log (t) ≤ K

⌜⃓⃓⎷ 1
K

∑︂
ℓ

α′E[tℓ]kℓ log (t)

≤
√︃
α′Kt log (t) max

ℓ
(kℓ).

98

Next we can bound E
[︂∑︁

ℓ̸=1 tℓ∆ℓ

]︂
in the following way

E

⎡⎣∑︂
ℓ̸=1

tℓ∆ℓ

⎤⎦ ≤
∑︂
ℓ

∆ℓ

√︂
E[tℓ]

√︂
E[tℓ] =

∑︂
ℓ

√︂
∆2
ℓE[tℓ]

√︂
E[tℓ]

=
∑︂
ℓ

√︂
α′kℓE[tℓ] log (t) ≤

√︃
α′Kt log (t) max

ℓ
(kℓ)

The theorem now follows.

Proof of Theorem 3.6.3. Consider an instance of Algorithm 9, except that it runs a

single copy of each base learner Ai. Let A1 be a UCB algorithm with two arms with

means µ1 > µ2, respectively. The arm with mean µ1 is set according to a Bernoulli

random variable, and the arm with mean µ2 is deterministic. Let algorithm A2

have a single deterministic arm with mean µ3, such that µ1 > µ3 and µ3 > µ2. Let

∆ = µ1 − µ3. We now follow the lower bounding technique of Audibert et al. (2009).

Consider the event that in the first q pulls of arm aA1
1 , we have rt(a1,1) = 0, i.e.

E = {r1(a1,1) = 0, r2(a1,1) = 0, . . . , rq(a1,1) = 0}. This event occurs with probability

(1 − µ1)q. Notice that on event E , the upper confidence bound for µ1 as per A1

is
√︃

α log(T1(t))
q

during time t. This implies that for a1,1 to be pulled again we need√︃
α log(T1(t))

q
> µ2 and hence for the first exp (qµ2

2/α) rounds in which A1 is selected

by the corralling algorithm, a1,1 is only pulled q times. Further, on E , the upper

confidence bound for A1 as per the corralling algorithm is of the form
√︃

2β log(t)
T1(t) . This

implies that for A1 to be selected again we need µ2 +
√︃

2β log(t)
T1(t) > µ3. Let ∆̃ = µ3 −µ2.

Then, the above implies that in the first t ≤ exp
(︂
T1(t)∆̃

2
/(2β)

)︂
rounds, A1 is pulled

at most T1(t) times. Combining with the bound for the number of pulls of a1,1 we

arrive at the fact that on E , a1,1 can not be pulled more than q times in the first

exp
(︄

∆̃2 exp(qµ2
2/α)

2β

)︄
rounds. Let q be large enough so that q ≤ 1

2 exp
(︄

∆̃2 exp(qµ2
2/α)

2β

)︄
.

Then, for large enough T , we have that the pseudo-regret of the corralling algorithm

is ˆ︁R(T) ≥ 1
2∆ exp

(︄
∆̃2 exp(qµ2

2/α)
2β

)︄
. Taking q = log

(︂
2β
∆̃2 log

(︂
τ α
µ2

2

)︂)︂
, we get

P
[︃ ˆ︁R(T) ≥ 1

2∆τ
]︃

≥ P [E] = (1 − µ1)q = 1
exp (q)log(1/(1−µ1)) =

(︃ ∆̃2

2β log (τ)

)︃ α

µ2
2

log(1/(1−µ1))
.

99

Let γ = α
µ2

2
log (1/(1 − µ1)). We can now bound the expected pseudo-regret of the

algorithm by integrating over 2 ≤ τ ≤ T , to get

E[ˆ︁R(T)] ≥ 1
2∆

∫︂ T

2

(︃ ∆̃2

2β log (τ)

)︃ α

µ2
2

log(1/(1−µ1))
dτ = 1

2∆
(︃∆̃2

2β

)︃γ ∫︂ T

2

(︄
1

log (τ)

)︄γ
dτ

≥ 1
2∆

(︃∆̃2

2β

)︃γ T − 2(︂
log

(︂
T+2

2

)︂)︂γ ,
where the last inequality follows from the Hermite-Hadamart inequality.

It is important to note that the above reasoning will fail if γ is a function of T .

This might occur if in the UCB for A1 we have α = log (T). In such a case the lower

bounds become meaningless as 1
log((T+2)/2)

γ ≤ o(1/T). Further, it should actually be

possible to avoid boosting in this case as the tail bound of the regret will now be

upper bounded as P[R1(t) ≥ ∆τ] ≤ 1
Tτc

.

General Approach if Regret has a Polynomial Tail. Assume that, in general,

the best algorithm has the following regret tail:
P
[︃
R1(t) ≥ 1

2∆1,1τ
]︃

≥ 1
τ c
,

for some constant c. Results in Salomon and Audibert (2011) suggest that for stochastic

bandit algorithms which enjoy anytime regret bounds we can not have a much tighter

high probability regret bound. Let ET1(t) = {R1(T1(t)) ≥ T1(t)(µ1 − 1√
2µ3)}. After

T1(t) pulls of A1 the reward plus the UCB for A1 is at most
∑︁T1(t)

s=1 rs(a1,js)
T1(t) +

√︃
αk1 log(t)
T1(t) ,

and on ET1(t), we have
∑︁T1(t)

s=1 rs(a1,js)
T1(t) ≤ 1√

2µ3. This implies that in the first t rounds,

A1 could not have been pulled more than

αk1 log (t)(︃
µ3 −

∑︁T1(t)
s=1 rs(a1,js)

T1(t)

)︃2 ≤ 2αk1 log (t)
µ2

3
.

Setting T1(t) = 2αk1 log(T)
µ2

3
, we have that ET1(t) occurs with probability at least(︂ ∆1,2µ2

3
4αk1 log(T)

)︂c
and hence the expected regret of the corralling algorithm is at least(︄

∆1,2µ
2
3

4αk1 log (T)

)︄c
∆
(︄
T − 2αk1 log (T)

µ2
3

)︄
.

100

3.8 Corralling using Tsallis-INF

In this section, we consider an alternative approach, based on the work of Agarwal

et al. (2016), which avoids running multiple copies of base algorithms. Since the

approach is based on the OMD framework, which is naturally suited to losses instead

of rewards, for the rest of the section we switch to losses.

We design a corralling algorithm that maintains a probability distribution w ∈

∆K−1 over the base algorithms, {Ai}Ki=1. At each round, the corralling algorithm

samples it ∼ pt. Next, Ait plays ait,jt and the corralling algorithm observes the loss

ℓt(ait,jt). The corralling algorithm updates its distribution over the base algorithms

using the observed loss and provides an unbiased estimate ˆ︁ℓt(ai,jt) of ℓt(ai,jt) to

algorithm Ai: the feedback provided to Ai is ˆ︁ℓt(ait,jt) = ℓt(ait,jt)
pt,it

, and for all ai,jt ≠ ait,jt ,ˆ︁ℓt(ai,jt) = 0. Notice that ˆ︁ℓt ∈ RK , as opposed to ℓt ∈ [0, 1]
∏︁
i
ki . Essentially, the loss

fed to Ai, with probability wt,i, is the true loss rescaled by the probability wt,i to

observe the loss, and is equal to 0 with probability 1 − wt,i.

The change of environment induced by the rescaling of the observed losses is

analyzed in Agarwal et al. (2016). Following Agarwal et al. (2016), we denote the

environment of the original losses (ℓt)t as E and that of the rescaled losses (ˆ︁ℓt)t as E ′.

Therefore, in environment E , algorithm Ai observes ℓt(ait,jt) and in environment E ′,

Ai observes ˆ︁ℓt(ait,jt). A few important remarks are in order. As in (Agarwal et al.,

2016), we need to assume that the base algorithms admit a stability property under

the change of environment. In particular, if ps,i ≥ 1
ρt

for all s ≤ t and some ρt ∈ R,

then E[Ri(t)] under environment E ′ is bounded by E[√ρtRi(t)]. For completeness, we

provide the definition of stability by Agarwal et al. (2016).

Definition 3.8.1. Let γ ∈ (0, 1] and let R : N → R+ be a non-decreasing function.

An algorithm A with action space A is (γ,R(·))-stable with respect to an environment

E if its regret under E is R(T) and its regret under E ′ induced by the importance

101

weighting is maxa∈A E
[︂∑︁T

t=1
ˆ︁ℓt(ait,jt) − ℓt(a)

]︂
≤ E[(ρT)γR(T)].

We show that UCB-I (Auer et al., 2002a) satisfies the stability property above

with γ = 1
2 . The techniques used in the proof are also applicable to other UCB-type

algorithms. Other algorithms for stochastic bandits like Thompson sampling and

OMD/FTRL variants have been shown to be 1/2-stable in (Agarwal et al., 2016).

The corralling algorithm of Agarwal et al. (2016) is based on Online Mirror Descent

(OMD), where a key idea is to increase the step size whenever the probability of

selecting some algorithm Ai becomes smaller than some threshold. This induces a

negative regret term which, coupled with a careful choice of step size (dependent on

regret upper bounds of the base algorithms), provides regret bounds that scale as a

function of the regret of the best base algorithm.

Unfortunately, the analysis of the corralling algorithm always leads to at least

a regret bound of Ω̃(
√
T) and also requires knowledge of the regret bound of the

best algorithm. Since our goal is to obtain instance-dependent regret bounds, we

cannot appeal to this type of OMD approach. Instead, we draw inspiration from the

recent work of Zimmert and Seldin (2021), who use a Follow-the-Regularized-Leader

(FTRL) type of algorithm to design an algorithm that is simultaneously optimal for

both stochastic and adversarially generated losses, without requiring knowledge of

instance-dependent parameters such as the sub-optimality gaps to the loss of the best

arm. The overall intuition for our algorithm is as follows. We use the FTRL-type

algorithm proposed by Zimmert and Seldin (2021) until the probability to sample some

arm falls below a threshold. Next, we run an OMD step with an increasing step size

schedule which contributes a negative regret term. After the OMD step, we resume

the normal step size schedule and updates from the FTRL algorithm. After carefully

choosing the initial step size rate, which can be done in an instance-independent way,

the accumulated negative regret terms are enough to compensate for the increased

regret due to the change of environment.

102

3.8.1 Algorithm and the main result

We now describe our corralling algorithm in more detail. The potential function Ψt

used in all of the updates is defined by Ψt(w) = −4∑︁i∈[K]
1
ηt,i

(︂√
wi − 1

2wi
)︂
, where

ηt =
[︂
ηt,1, ηt,2, . . . , ηt,K

]︂
is the step-size schedule during time t. The algorithm proceeds

in epochs and begins by running each base algorithm for log (T) + 1 rounds. Each

epoch is twice as large as the preceding, so that the number of epochs is bounded

by log2(T), and the step size schedule remains non-increasing throughout the epochs,

except when an OMD step is taken. The algorithm also maintains a set of thresholds,

ρ1, ρ2, . . . , ρn, where n = O(log (T)). These thresholds are used to determine if the

algorithm executes an OMD step, while increasing the step size:

wt+1 = argmin
w∈∆K−1

⟨ˆ︁ℓt, w⟩ +DΨt(w,wt),

ηt+1,i = βηt,i (for i : pt,i ≤ 1/ρsi),

wt+2 = argmin
w∈∆K−1

⟨ˆ︁ℓt+1, w⟩ +DΨt+1(w,wt+1), ρsi = 2ρsi

(3.6)

or the algorithm takes an FTRL step

wt+1 = argmin
w∈∆K−1

⟨ˆ︁Lt, w⟩ + Ψt+1(w), (3.7)

where ˆ︁Lt = ˆ︁Lt−1 + ˆ︁ℓt, unless otherwise specified by the algorithm. At every iteration

the algorithm also mixes wt with the uniform distribution to ensure that the variance

of the loss estimators is bounded

pt =
(︃

1 − 1
TK

)︃
wt + 1

TK
Unif(∆K−1). (3.8)

We note that the algorithm can only increase the step size during the OMD step.

For technical reasons, we require an FTRL step after each OMD step. Further, we

require that the second step of each epoch be an OMD step if there exists at least one

pt,i ≤ 1
ρ1

. The algorithm also can enter an OMD step during an epoch if at least one

wt,i becomes smaller than a threshold 1
ρsi

which has not been exceeded so far.

103

Algorithm 10: Corralling with Tsallis-INF
Input: Mult. constant β, thresholds {ρi}ni=1, initial step size η, epochs {τi}mi=1,

algorithms {Ai}Ki=1.
Output: Algorithm selection sequence (it)Tt=1.

1: Initialize t = 1, w1 = Unif(∆K−1), η1 = η
2: Initialize current threshold list θ ∈ [n]K to 1
3: while t ≤ K log (T) +K do
4: for i ∈ [K] do
5: Ai plays ai,jt , ˆ︁L1,i+ = ℓt(ai,jt), t+ = 1
6: end for
7: end while
8: t = 2, w2 = ∇Φ2(−ˆ︁L1), 1/η2

t+1 = 1/η2
t + 1

9: while j ≤ m do
10: for t ∈ τj do
11: Rt = ∅,ˆ︁ℓt = PLAY-ROUND(wt)
12: if t is first round of τj and ∃pt,i ≤ 1

ρ1
then

13: for i : pt,i ≤ 1
ρ1

do
14: θi = min{s ∈ [n] : wt,i > 1

ρs
}, Rt = Rt

⋃︁{i}.
15: end for
16: (wt+3, ˆ︁Lt+2) = NRS(wt, ˆ︁ℓt, ηt,Rt, ˆ︁Lt−1), t = t+ 2, ˆ︁ℓt = PLAY-ROUND(wt)
17: end if
18: if ∃i : pt,i ≤ 1

ρθi
and prior step was not NRS then

19: for i : wt,i ≤ 1
ρθi

do
20: θi+ = 1, Rt = Rt

⋃︁{i}.
21: end for
22: (wt+3, ˆ︁Lt+2) = NRS(wt, ˆ︁ℓt, ηt,Rt, ˆ︁Lt−1), t = t+ 2, ˆ︁ℓt = PLAY-ROUND(wt)
23: else
24: 1/η2

t+1 = 1/η2
t + 1, wt+1 = ∇Φt+1(−ˆ︁Lt)

25: end if
26: end for
27: end while

We set the probability thresholds so that ρ1 = O(1), ρj = 2ρj−1 and 1
ρn

≥ 1
T

, so

that n ≤ log2(T). In the beginning of each epoch, except for the first epoch, we check if

pt,i <
1
ρ1

. If it is, we increase the step size as ηt+1,i = βηt,i and run the OMD step. The

pseudocode for the algorithm is given in Algorithm 10. The routines OMD-STEP and

PLAY-ROUND can be found in Algorithm 12 and Algorithm 13 respectively. OMD-STEP

essentially does the update described in Equation 3.6 and PLAY-ROUND samples and

plays an algorithm, after which constructs an unbiased estimator of the losses and

104

Algorithm 11: NEG-REG-STEP(NRS)
Input: Prior iterate wt, loss ˆ︁ℓt, step size ηt, set of rescaled step-sizes Rt, cumulative

loss ˆ︁Lt−1
Output: Plays two rounds of the game and returns distribution wt+3 and cumulative

loss ˆ︁Lt+2
1: (wt+1, ˆ︁Lt) = OMD-STEP(wt, ˆ︁ℓt, ηt,Rt, ˆ︁Lt−1)
2: ˆ︁ℓt+1 = PLAY-ROUND(wt+1), ˆ︁Lt+1 = ˆ︁Lt + ˆ︁ℓt+1
3: for all i such that wt,i ≤ 1

ρ1
do

4: ηt+2,i = βηt,i, Rt = Rt ∪ {i} and restart Ai with updated environment θi = 1
2wt,i

5: end for
6: wt+2 = ∇Φt+2(−ˆ︁Lt+1)
7: ˆ︁ℓt+2 = PLAY-ROUND(wt+2)
8: ˆ︁Lt+2 = ˆ︁Lt+1 + ˆ︁ℓt+2, ηt+3 = ηt+2, t = t+ 2
9: wt+1 = ∇Φt+1(−ˆ︁Lt), t = t+ 1

Algorithm 12: OMD-STEP
Input: Previous iterate wt, current loss ˆ︁ℓt, step size ηt, set of rescaled step-sizes Rt,

cumulative loss ˆ︁Lt−1
Output: New iterate wt+1, cumulative loss ˆ︁Lt

1: ∇Ψt(w̃t+1) = ∇Ψt(wt) − ˆ︁ℓt
2: wt+1 = argminw∈∆K−1 DΦt(w, w̃t+1).
3: e = ∑︁

i∈Rt
ei

4: L̃t−1 = (111k − e) ⊙ (ˆ︁Lt−1 − (νt−2 + νt−1)111k) + 1
β
e ⊙ ((ˆ︁Lt−1 − (νt−2 + νt−1)111k)) //

νt−2 and νt−1 are the Lagrange multipliers from the previous two FTRL steps.
5: ˆ︁Lt = L̃t−1 + ˆ︁ℓt

Algorithm 13: PLAY-ROUND
Input: Sampling distribution wt
Output: Loss vector ˆ︁ℓt

1: Sample algorithm it according to pt =
(︂
1 − 1

TK

)︂
wt + 1

TK
Unif(∆K−1).

2: Algorithm it plays action ait,jt . Observe loss ℓt(ait,jt) and construct unbiased
estimator ˆ︁ℓt = ℓt(ait,jt)

pt,it
eit of ℓt.

3: Give feedback to i-th algorithm as ˆ︁ℓt(ai,jt), where ai,jt was action provided by Ai

feeds these back to all of the sub-algorithms. We show the following regret bound for

the corralling algorithm.

Theorem 3.8.1. Let R̄i(·) be a function upper bounding the expected regret, E[Ri(·)],

of Ai for all i ∈ [K]. For β = e1/ log(T)2 and for η such that for all i ∈ [K], η1,i ≤

105

mint∈[T]

(︂
1−exp

(︂
− 1

log(T)2

)︂)︂√
t

50R̄i(t)
, the expected regret of Algorithm 10 is bounded as follows:

E [R(T)] ≤ O

⎛⎝∑︂
i ̸=i∗

log (T)
η2

1,i∆i

+ E[Ri∗(T)]
⎞⎠ .

Proof sketch. The proof combines ideas both from (Zimmert and Seldin, 2021) and

(Agarwal et al., 2016). To achieve gap-dependent regret bounds we use the self-

bounding trick proposed by Wei and Luo (2018) and Zimmert and Seldin (2021).

We now quickly go over the self-bounding trick for the MAB problem with K arms.

First one rewrites the expected regret as E[R(T)] = ∑︁T
t=1

∑︁
i ̸=i∗ pt,i∆i. Next, using a

careful analysis of FTRL yields an upper bound on the regret of the form E[R(T)] ≤∑︁T
t=1

∑︁
i ̸=i∗

1√
t

√
pt,i. Subtracting 1/2 of E[R(T)] from both sides we have that

E[R(T)] ≤ 2
∑︂
i ̸=i∗

T∑︂
t=1

1√
t

√
pt,i − ∆iwt,i.

The RHS of the above is bounded by noticing that 1√
t

√
pt,i − ∆iwt,i ≤ O(1

t∆i
), for

all t > Ω(1/∆2), which follows by maximizing the LHS with respect to wt,i. For

t < O(1/∆2) we can bound the sum ∑︁⌈1/∆2⌉
t=1

1√
t

√
pt,i < O(1/∆i) through a simple

integration argument. These imply that E[R(T)] ≤ O
(︂∑︁

i ̸=i∗
log(T)

∆i

)︂
.

The second part of the proof is integrating the negative regret step (OMD step)

into the FTRL framework. This is done by the following lemma.

Lemma 3.8.2. Let ˆ︁wt+2 be defined as in Equation 3.6. Let νt+1 be the constant such

that ∇Φt+1(−ˆ︁Lt) = ∇Ψ∗
t+1(−ˆ︁Lt + νt111k). Let ˆ︁Lt+1 = (111k − e) ⊙ (ˆ︁Lt − (νt−1 + νt)111k) +

1
β
e ⊙ ((ˆ︁Lt − (νt−1 + νt)111k)) + ˆ︁ℓt+1 and ηt+2 = ηt+1. Then (ˆ︁Lt+1)i ≥ 0 for all i ∈ [K]

and ˆ︁wt+2 = wt+2 = ∇Φt+2(−ˆ︁Lt+1).

Finally we use the negative regret to balance the added variance from the impor-

tance weighted estimators of the losses we send as feedback.

To parse the bound above, suppose {Ai}i∈[K] are standard stochastic bandit

algorithms such as UCB-I. In Theorem 3.8.4, we show that UCB-I is indeed 1
2 -

106

stable as long as we are allowed to rescale and introduce an additive factor to the

confidence bounds. In this case, a worst-case upper bound on the regret of any Ai is

E[Ri(t)] ≤ c
√︂
ki log (t) t for all t ∈ [T] and some universal constant c. We note that

the min-max regret bound for the stochastic multi-armed bandit problem is Θ(
√
KT)

and most known any-time algorithms solving the problem achieve this bound up to

poly-logarithmic factors. Further we note that
(︂
1 − exp

(︂
− 1

log(T)2

)︂)︂
> 1

e log(T)2 . This

suggests that the bound in Theorem 3.8.1 on the regret of the corralling algorithm is at

most O
(︂∑︁

i ̸=i∗
ki log(T)5

∆i
+ E[Ri∗(T)]

)︂
. In particular, if we instantiate E[Ri∗(T)] to the

instance-dependent bound of O
(︃∑︁

j ̸=1
log(T)
∆i∗,j

)︃
, the regret of Algorithm 10 is bounded

by O
(︃∑︁

i ̸=i∗
ki log(T)5

∆i
+∑︁

j ̸=1
log(T)
∆i∗,j

)︃
. In general we cannot exactly compare the current

bound with that of UCB-C (Algorithm 9), as the regret bound in Theorem 3.8.1 has

worse scaling in the time horizon on the gap-dependent terms, compared to the regret

bound in Theorem 3.6.2, but has no additional scaling in front of the E[Ri∗(T)] term.

In practice we observe that Algorithm 10 outperforms Algorithm 9.

Since essentially all stochastic multi-armed bandit algorithms enjoy a regret bound,

in time horizon, of the order Õ(
√
T), we are guaranteed that 1/η2

t,i scales only poly-

logarithmically with the time horizon. What happens, however, if algorithm Ai has a

worst case regret bound of the order ω(
√
T)? For the next part of the discussion, we

only focus on time horizon dependence. As a simple example, suppose that Ai has

worst case regret of T 2/3 and that Ai∗ has a worst case regret of
√
T . In this case,

Theorem 3.8.1 tells us that we should set η1,i = Õ(1/T 1/6) and hence the regret bound

scales at least as Ω(T 1/3/∆i + E[Ri∗(T)]). In general, if the worst case regret bound

of Ai is in the order of Tα we have a regret bound scaling at least as T 2α−1/∆i. This

is not unique to Algorithm 10 and a similar scaling of the regret would occur in the

bound for Algorithm 9 due to the scaling of confidence intervals.

Corralling in an adversarial environment. Because Algorithm 10 is based on a

best of both worlds algorithm, we can further handle the case when the losses/rewards

107

are generated adversarially or whenever the best overall arm is shared across multiple

algorithms, similarly to the settings studied by Agarwal et al. (2016); Pacchiano et al.

(2020b).

Theorem 3.8.3. Let R̄i∗(·) be a function upper bounding the expected regret of Ai∗,

E[Ri∗(·)]. For any η1,i∗ ≤ mint∈[T]

(︂
1−exp

(︂
− 1

log(T)2

)︂)︂√
t

50R̄i∗ (t) and β = e1/ log(T)2 it holds that

the expected regret of Algorithm 10 is bounded as follows:

E [R(T)] ≤ O

(︄
max

w∈∆K−1

√
T

K∑︂
i=1

√
wi
η1,i

+ E[Ri∗(T)]
)︄
.

The bound in Theorem 3.8.3 essentially evaluates toO(max(
√
TK,maxi∈[K] R̄i(T))+

E[Ri∗(T)]) and its proof is left to Section 3.9. Unfortunately, this is not quite enough

to recover the results in (Agarwal et al., 2016; Pacchiano et al., 2020b). This is

attributed to the fact that we use the 1
2 -Tsallis entropy as the regularizer instead of

the log-barrier function. It is possible to improve the above bound for algorithms with

stability γ < 1/2, however, because model selection is not the primary focus of this

work, we will not present such results here.

A few remarks are in order. First, when the rewards obey the stochastically

constrained adversarial setting i.e., there exists a gap ∆i at every round between

the best action and every other action during all rounds t ∈ [T], then the regret for

corralling bandit algorithms with worst case regret bounds of the order Õ(
√
T) in time

horizon is at most Õ(∑︁i ̸=i∗
log(T)5

∆i
+Ri∗(T)). On the other hand, if there is no gap in the

rewards then a worst case regret bound is still Õ(max{
√
KT,maxi R̄i(T)} +Ri∗(T)).

This implies that Algorithm 10 can be used as a model selection tool when we are not

sure what environment we are playing against. For example, if we are not sure if we

should use a contextual bandit algorithm, a linear bandit algorithm or a stochastic

multi-armed bandit algorithm, we can corral all of them and Algorithm 10 will perform

almost as well as the algorithm for the best environment. Further, if we are in a

distributed setting where we have access to multiple algorithms of the same type but

108

not the arms they are playing, we can do almost as well as an algorithm which plays

on all the arms simultaneously. We believe that our algorithm will have numerous

other applications outside of the scope of the above examples.

3.8.2 Stability of UCB and UCB-like algorithms under a
change of environment

In this section we discuss how the regret bounds for UCB and similar algorithms

change whenever the variance of the stochastic losses is rescaled by Algorithm 10.

Assume that the UCB algorithm plays against stochastic rewards bounded in [0, 1]. We

begin by noting that after every call to OMD-STEP (Algorithm 12) the UCB algorithm

should be restarted with a change in the environment which reflects that the variance

of the losses has now been rescaled. Let the UCB algorithm of interest be Ai. If the

OMD step occurred at time t′ and it was the case that 1
ρs−1

≥ pt′,i >
1
ρs

, then we know

that the rescaled rewards will be in [0, ρs] until the next time the UCB algorithm is

restarted. This suggests that the confidence bound for arm j at time t should become√︃
ρ2
s log(t)
Ti,j(t) . However, we note that the second moment of the rescaled rewards is only

ℓt(ai,jt)
2

pt,i
. A slightly more careful analysis using Bernstein’s inequality for martingales

(e.g. Lemma 10 Bartlett et al. (2008)) allows us to show the following.

Theorem 3.8.4. Suppose that during epoch τ of size T UCB-I is restarted and its

environment was changed by ρs so that the upper confidence bound is changed to√︃
4ρs log(t)
Ti,j(t) + 4ρs log(t)

3Ti,j(t) for arm j at time t. Then the expected regret of the algorithm is

bounded by

E[Ri(T)] ≤
√︂

8ρskiT log (T)

Proof of Theorem 3.8.4. Let the reward of arm j at time t be rt,j and the rescaled

reward be ˆ︁rt,j. Without loss of generality assume that the arm with highest reward

is j = 1. Denote the mean of arm j as µj and denote the mean of the best arm as

109

µ∗. During this run of UCB we know that each |ˆ︁rt,j| ≤ ρs. Further if we denote the

probability with which the algorithm is sampled at time t as pt,i we have E[ˆ︁rt,j −

µj|p1:t−1,i] = 0 and hence rt,j − µj is a martingale difference. Further notice that the

conditional second moment of rt,j is E[ˆ︁r2
t,j|p1:t−1,i] = E[wt,i

r2
t,j

w2
t,i

+ 0|p1:t−1,i] ≤ ρ. Let

Yt = (ˆ︁rτ,j − µj). Bernstein’s inequality for martingales (Bartlett et al. (2008)[Lemma

10]) now implies that P
[︂∑︁T

t=1 Yt >
√︂

2T ρ log (1/δ) + 2
3ρ log (1/δ)

]︂
≤ δ. This implies

that the confidence bound should be changed to⌜⃓⃓⎷4ρs log (t)
Ti,j(t)

+ 4ρs log (t)
3Ti,j(t)

.

Following the standard proof of UCB we can now conclude that a suboptimal arm

can be pulled at most Ti,j(t) times up to time t where

2∆j ≥

⌜⃓⃓⎷4ρs log (t)
Ti,j(t)

+ 4ρs log (t)
3Ti,j(t)

.

This implies that

E [Ti,j(t)] ≤ 8ρs log (t)
∆2
j

.

Next we bound the regret of the algorithm up to time t as follows:

E[Ri(t)] ≤
∑︂
j ̸=1

∆jE [Ti,j(t)] =
∑︂
j ̸=j∗

√︂
E [Ti,j(t)]

√︂
∆2
jE [Ti,j(t)]

≤
∑︂
j ̸=j∗

√︂
E [Ti,j(t)]

√︂
8ρs log (t) ≤ ki

⌜⃓⃓⎷ 1
ki

∑︂
j

E[Ti,j(t)] =
√︂

8ρskit log (t).

In general the argument can be repeated for other UCB-type algorithms (e.g.

Successive Elimination) and hinges on the fact that the rescaled rewards ˆ︁rt,j have

second moment bounded by ρ since with probability pt,i we have ˆ︁r2
t,j = r2

t,j

p2
t,i

and with

probability 1 − pt,i it equals ˆ︁r2
t,j = 0. We are not sure if similar arguments can be

carried out for more delicate versions of UCB, like KL-UCB and leave it as future

work to check.

110

3.9 Detailed proofs from Section 3.8

3.9.1 Proof of Theorem 3.8.1

3.9.1.1 Potential function and auxiliary lemmas

First we recall the definition of conjugate of a convex function f , denoted as f ∗

f ∗(y) = max
x∈Rd

⟨x, y⟩ − f(x).

In our algorithm, we are going to use the following potential at time t

Ψt(w) = −4
K∑︂
i=1

√
wi − 1

2wi
ηt,i

∇Ψt(w)i = −2
1√
wi

− 1
ηt,i

∇2Ψt(w)i,i = 1
w

3/2
i ηt,i

,∇2Ψt(w)i,j = 0

∇Ψ∗
t (Y)i = 1(︂

−ηt,i
2 Yi + 1

)︂2

Φt(Y) = max
w∈∆K−1

⟨Y,w⟩ − Ψt(w) = (Ψt + I∆K−1)∗ (Y).

(3.9)

Further for a function f we use Df (x, y) to denote the Bregman divergence between x

and y induced by f equal to

Df (x, y) = f(x) − f(y) − ⟨∇f(y), x− y⟩ = f(x) + f ∗(∇f(y)) − ⟨∇f(y), x⟩,

where the second inequality follows by the Fenchel duality equality f ∗(∇f(y))+f(y) =

⟨∇f(y), y⟩. We now present a couple of auxiliary lemmas useful for analyzing the

OMD and FTRL updates.

Lemma 3.9.1. For any x, y ∈ ∆K−1 it holds

DΨt(x, y) = DΦt(∇Φ∗
t (y),∇Φ∗

t (x)).

Proof. Since Ψt+I∆K−1 is a convex, closed function on ∆K−1 it holds that Ψt+I∆K−1 =

((Ψt + I∆K−1)∗)∗ (see for e.g. (Brezis, 2010) Theorem 1.11). Further, Φ∗
t (x) =

111

((Ψt + I∆K−1)∗)∗(x) = Ψt(x). The above implies

DΨt(x, y) = DΦ∗
t
(x, y) = DΦt(∇Φ∗

t (y),∇Φ∗
t (x)).

Lemma 3.9.2. For any positive ˆ︁Lt and wt+1 generated according to update 3.7 we

have

wt+1 = ∇Φt+1(−ˆ︁Lt) = ∇Ψ∗
t+1(−ˆ︁Lt + νt+1111),

for some scalar νt. Further (ˆ︁Lt − νt+1111)i > 0 for all i ∈ [K].

Proof. The proof is contained in Section 4.3 in Zimmert and Seldin (2021).

Lemma 3.9.3 (Lemma 16 Zimmert and Seldin (2021)). Let w ∈ ∆K−1 and w̃ =

∇Ψ∗
t (∇Ψt(w) − ℓ). If ηt,i ≤ 1

4 , then for all ℓ > −1 it holds that w̃3/2
i ≤ 2w3/2

i .

3.9.1.2 Regret bound

We begin by studying the instantaneous regret of the FTRL update. The bound follows

the one in Zimmert and Seldin (2021). Let u = ei∗ be the unit vector corresponding

to the optimal algorithm Ai∗ . To help with notation we will treat the algorithms as

sampled from wt instead of pt. This is WLOG as the extra regret incurred due to the

uniform exploration mixed in pt is only O(1). First we decompose the regret into a

stability term and a penalty term:

⟨ˆ︁ℓt, wt − u⟩ = ⟨ˆ︁ℓt, wt⟩ + Φt(−ˆ︁Lt) − Φt(−ˆ︁Lt−1) (Stability)

− Φt(−ˆ︁Lt) + Φt(−ˆ︁Lt−1) − ⟨ˆ︁ℓt, u⟩ (Penalty).

The bound on the stability term follows from Lemma 11 in Zimmert and Seldin (2021),

however, we will show this carefully, since parts of the proof will be needed to bound

other terms. Recall the definition of Φt(Y) = maxw∈∆K−1⟨Y,w⟩ − Ψt(w). Since w is in

112

the simplex we have Φt(Y + α111k) = maxw∈∆K−1⟨Y,w⟩ + ⟨α111, w⟩ − Ψt(w) = Φt(Y) +α.

We also note that from Lemma 3.9.2 it follows that we can write ∇Ψt(wt) = −ˆ︁Lt−1+νt111.

Combining the two facts we have

⟨ℓt, wt⟩ + Φt(−ˆ︁Lt) − Φt(−ˆ︁Lt−1) = ⟨ℓt, wt⟩ + Φt(∇Ψt(wt) − ˆ︁ℓt − νt111) − Φt(∇Ψt(wt) − νt111)

= ⟨ℓt − α111k, wt⟩ + Φt(∇Ψt(wt) − ˆ︁ℓt + α111k) − Φt(∇Ψt(wt))

≤ ⟨ℓt − α111k, wt⟩ + Ψ∗
t (∇Ψt(wt) − ˆ︁ℓt + α111k) − Ψ∗

t (∇Ψt(wt))

= DΨ∗
t
(∇Ψt(wt) − ˆ︁ℓt + α111k,∇Ψt(wt))

≤ max
z∈[∇Ψt(wt)−ˆ︁ℓt+α111k,∇Ψt(wt)]

1
2∥ˆ︁ℓt − α111∥2

∇2Ψt∗(z)

= max
w∈[wt,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)]

1
2∥ˆ︁ℓt − α111∥2

∇2Ψ−1
t (w),

where the first inequality holds since Ψ∗
t ≥ Φt and Ψ∗

t (∇Ψ(wt)) = ⟨∇Ψ(wt), wt⟩ −

Ψt(wt) = Φt(∇Ψ(wt)) and the second inequality follows since by Taylor’s theorem

there exists a z on the line segment between ∇Ψt(wt) − ˆ︁ℓt + α111k and Ψt(wt) such that

DΨ∗
t
(∇Ψt(wt) − ˆ︁ℓt + α111k,∇Ψt(wt)) = 1

2∥ˆ︁ℓt − α111∥2
∇2Ψt∗(z).

Lemma 3.9.4. Let wt ∈ ∆K−1 and let it ∼ wt. Let ˆ︁ℓt,it = ℓt,it
wt,it

and ˆ︁ℓt,i = 0 for all

i ̸= it. It holds that

E

⎡⎣ max
w∈[wt,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)]
∥ˆ︁ℓt∥2

∇2Ψ−1
t (w)

⎤⎦ ≤
K∑︂
i=1

ηt,i
2
√︂
E[wt,i]

E

⎡⎣ max
w∈[wt,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)]
∥ˆ︁ℓt − χ(it=j)ℓt,j111∥2

∇2Ψ−1
t (w)

⎤⎦ ≤
∑︂
i ̸=j

ηt,i
2
√︂
E[wt,i] + ηt,i + ηt,j

2 E[wt,i].

Proof. First notice that:

E

⎡⎣ max
w∈[wt,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)]
∥ˆ︁ℓt − α111k∥2

∇2Ψ−1
t (w)

⎤⎦
≤E

⎡⎣ K∑︂
i=1

max
wi∈[wt,i,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)i]

ηt,i
2 w

3/2
i (ˆ︁ℓt,i − α)2

⎤⎦
From the definition of ∇Ψ∗(Y)i (Equation 3.9) we know that ∇Ψ∗(Y)i is increasing

on (−∞, 0] and hence for α = 0 we have wt,i ≥ ∇Ψ∗
t (∇Ψt(wt) − ˆ︁ℓt)i. This implies the

113

maximum of each of the terms is attained at wi = wt,i. Thus

E

⎡⎣ K∑︂
i=1

max
wi∈[wt,i,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)i]

ηt,i
2 w

3/2
i (ˆ︁ℓt,i)2

⎤⎦
=E

[︄
K∑︂
i=1

ηt,i
2 w

3/2
t,i χ(it=i)

ℓ2
t,i

w2
t,i

]︄
= E

[︄
K∑︂
i=1

ηt,i
2 w

3/2
t,i

ℓ2
t,i

wt,i

]︄
≤

K∑︂
i=1

ηt,i
2
√︂
E[wt,i].

When α = χ(it=j)ℓt,j we consider several cases. First if it ≠ j the same bound as

above holds. Next if it = j for all i ̸= j we have ˆ︁ℓt,i − α = −α = −ℓt,j ≥ −1 and

for ∇Φ∗
t (∇Φt(wt) − ˆ︁ℓt + ℓt,j) = ∇Φ∗

t (∇Φt(wt) + ℓt,j) ≤ 22/3wt,i by Lemma 3.9.3. This

implies that in this case the maximum in the terms is bounded by 2w3/2
t,i ℓ

2
t,j . Finally if

it = j for the j-th term we again use the fact that wt,j ≥ ∇Ψ∗
t (∇Ψt(wt) − ˆ︁ℓt + ℓt,j)j

since −ˆ︁ℓt,j + ℓt,j ≤ 0. Combining all of the above we have

E

⎡⎣ max
w∈[wt,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)]
∥ˆ︁ℓt − χ(it=j)ℓt,j111∥2

∇2Ψ−1
t (w)

⎤⎦ ≤
∑︂
i ̸=j

ηt,i
2
√︂
E[wt,i]

+E

⎡⎣χ(it=j)

⎛⎝ηt,j
2

(︄
ℓt,j
wt,j

− ℓt,j

)︄2

w
3/2
t,j +

∑︂
i ̸=j

ℓ2
t,j

ηt,i
2 w

3/2
t,i

⎞⎠⎤⎦
=
∑︂
i ̸=j

ηt,i
2
√︂
E[wt,i] + E

⎡⎣ηt,j
2 (ℓt,j(1 − wt,j))2 w

1/2
t,j +

∑︂
i ̸=j

ℓ2
t,j

ηt,i
2 w

3/2
t,i wt,j

⎤⎦
≤
∑︂
i ̸=j

ηt,i + ηt,j
2

(︃√︂
E[wt,i] + E[wt,i]

)︃
.

Now the stability term is bounded by Lemma 3.9.4. Next we proceed to bound

the penalty term in a slightly different way. Direct computation yields

DΦt(−ˆ︁Lt−1,∇Φ∗
t (u)) −DΦt(−ˆ︁Lt,∇Φ∗

t (u)) = −Φt(−ˆ︁Lt) + Φt(−ˆ︁Lt−1) − ⟨−ˆ︁Lt−1 + ˆ︁Lt, u⟩

+ Φt(∇Φ∗
t (u)) − Φt(∇Φ∗

t (u))

= −Φt(−ˆ︁Lt) + Φt(−ˆ︁Lt−1) − ⟨ˆ︁ℓt, u⟩.
(3.10)

Using the next lemma and telescoping will result in a bound for the sum of the penalty

terms

114

Lemma 3.9.5. Let u = ei∗ be the optimal algorithm. For any wt+1 such that

wt+1 = ∇Φt+1(−ˆ︁Lt) and ηt+1 ≤ ηt it holds that

DΦt+1(−ˆ︁Lt,∇Φ∗
t+1(u)) −DΦt(−ˆ︁Lt,∇Φ∗

t (u)) ≤ 4
∑︂
i ̸=i∗

(︄
1

ηt+1,i
− 1
ηt,i

)︄(︃√
wt+1,i − 1

2wt+1,i

)︃
.

Proof.

DΦt+1(−ˆ︁Lt,∇Φ∗
t+1(u)) −DΦt(−ˆ︁Lt,∇Φ∗

t (u))

= Φt+1(−ˆ︁Lt) − Φt(−ˆ︁Lt) + Φ∗
t+1(u) − Φ∗

t (u) − ⟨u, ˆ︁Lt − ˆ︁Lt⟩
= Φt+1(−ˆ︁Lt) − Φt(−ˆ︁Lt) + Ψt+1(u) − Ψt(u)

= Φt+1(−ˆ︁Lt) − Φt(−ˆ︁Lt) − 2
(︄

1
ηt+1,i∗

− 1
ηt,i∗

)︄
= ⟨wt+1,−ˆ︁Lt⟩ − Ψt+1(wt+1) − Φt(−ˆ︁Lt)
− 2

(︄
1

ηt+1,i∗
− 1
ηt,i∗

)︄
≤ ⟨wt+1,−ˆ︁Lt⟩ − Ψt+1(wt+1) − ⟨wt+1,−ˆ︁Lt⟩ + Ψt(wt+1)

− 2
(︄

1
ηt+1,i∗

− 1
ηt,i∗

)︄

≤ 4
∑︂
i ̸=i∗

(︄
1

ηt+1,i
− 1
ηt,i

)︄(︃√
wt+1,i − 1

2wt+1,i

)︃
.

The first equality holds by Fenchel duality and the definition of Bregman divergence.

The second equality holds by the fact that on the simplex Φ∗
t (·) = Ψt(·). The third

equality holds because Ψt(u) = −4(
√

1 − 1
2). The fourth equality holds because wt+1

is the maximizer of ⟨−ˆ︁Lt, w⟩ + Ψt+1(w) and this is exactly how Φt+1(−ˆ︁Lt) is defined.

The first inequality holds because

−Φt(−ˆ︁Lt) = max
w∈∆K−1

⟨−ˆ︁Lt, w⟩ + Ψt(w)

≤ ⟨−ˆ︁Lt, wt+1⟩ + Ψt(wt+1).

The final inequality holds because Ψt(wt+1)−Ψt+1(wt+1) = 4∑︁i(1/ηt+1,i−1/ηt,i)(
√
wt+1,i−

wt+1,i/2) and the fact that √
wt+1,i∗ − 1

2wt+1,i∗ ≤ 1
2 .

Next we focus on the OMD update. By the 3-point rule for Bregman divergence

115

we can write

⟨ˆ︁ℓt, wt − u⟩ = ⟨∇Ψt(wt) − ∇Ψt(w̃t+1), wt − u⟩

= DΨt(u,wt) −DΨt(u, w̃t+1) +DΨt(wt, w̃t+1)

≤ DΨt(u,wt) −DΨt(u, ˆ︁wt+1) +DΨt(wt, w̃t+1),

⟨ˆ︁ℓt+1, ˆ︁wt+1 − u⟩ ≤ DΨt+1(u, ˆ︁wt+1) −DΨt+1(u, ˆ︁wt+2) +DΨt+1(ˆ︁wt+1, w̃t+2),

where the first inequality follows from the fact that DΨt(u, w̃t+1) ≤ DΨt(u, ˆ︁wt+1) as

ˆ︁wt+1 is the projection of w̃t+1 with respect to the Bregman divergence onto ∆K−1.

We now explain how to control each of the terms. First we begin by matching

DΨt+1(u, ˆ︁wt+1) with −DΨt(u, ˆ︁wt+1).

DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1) = Ψt+1(u) − Ψt(u) + Ψt(ˆ︁wt+1) − Ψt+1(ˆ︁wt+1)

+⟨∇Ψt(ˆ︁wt+1), u− ˆ︁wt+1⟩ − ⟨∇Ψt+1(ˆ︁wt+1), u− ˆ︁wt+1⟩

= −2
(︄

1
ηt+1,i∗

− 1
ηt,i∗

)︄

−4
∑︂
i

(︃√︂ ˆ︁wt+1,i − 1
2
ˆ︁wt+1,i

)︃(︄ 1
ηt,i

− 1
ηt+1,i

)︄

−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 1
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄

+2
∑︂
i

ˆ︁wt+1,i

⎛⎝ 1√︂ ˆ︁wt+1,i
− 1

⎞⎠(︄ 1
ηt,i

− 1
ηt+1,i

)︄
,

= 2
(︄

1
ηt,i∗

− 1
ηt+1,i∗

)︄

−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 1
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄

−2
∑︂
i

√︂ ˆ︁wt+1,i

(︄
1
ηt,i

− 1
ηt+1,i

)︄
,

where we have set u = ei∗ . Since the step size schedule is non-decreasing during OMD

116

updates, we have that the above is bounded by

DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1) ≤ 2
(︄

1
ηt,i∗

− 1
ηt+1,i∗

)︄
− 2

⎛⎝ 1√︂ ˆ︁wt+1,i∗
− 1

⎞⎠(︄ 1
ηt,i∗

− 1
ηt+1,i∗

)︄

≤ −2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 2
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄
.

(3.11)

Next we explain how to control the terms DΨt(wt, w̃t+1) and DΨt+1(ˆ︁wt+1, w̃t+2).

These can be thought of as the stability terms in the FTRL update.

Lemma 3.9.6. For iterates generated by the OMD step in Equation 3.6 and any j it

holds that

E[DΨt(wt, w̃t+1)] ≤
K∑︂
i=1

ηt,i
2
√︂
E[wt,i],

E[DΨt(wt, w̃t+1)] ≤
∑︂
i ̸=j

ηt,i
2
√︂
E[wt,i] + ηt,i + ηt,j

2 E[wt,i],

E[DΨt+1(ˆ︁wt+1, w̃t+2)] ≤
K∑︂
i=1

ηt+1,i

2
√︂
E[ˆ︁wt+1,i],

E[DΨt+1(ˆ︁wt+1, w̃t+2)] ≤
∑︂
i ̸=j

ηt+1,i

2
√︂
E[wt,i] + ηt+1,i + ηt+1,j

2 E[wt,i],

where w̃t+1 is any iterate such that ˆ︁wt+1 = argminw∈∆K−1 DΨt(w, w̃t+1).

Proof. We show the first two inequalities. The second couple of inequalities follow

similarly. First we notice that we have

ˆ︁wt+1 = argmin
w∈∆K−1

⟨w, ˆ︁ℓt⟩ +DΨt(w,wt+1) = argmin
w∈∆K−1

⟨w, ˆ︁ℓt − α111k⟩ +DΨt(w,wt+1),

for any α. This implies that ˆ︁wt+1 = argminw∈∆K−1 DΨt(w, w̃t+1) for w̃t+1 = argminw∈RK ⟨w, ˆ︁ℓt−
α111k⟩ +DΨt(w,wt+1). We can now write

DΨ∗
t
(∇Ψt(w̃t+1),∇Ψt(wt)) = DΨ∗

t
(∇Ψt(wt) − ˆ︁ℓt + α111k,∇Ψt(wt))

≤ max
w∈[wt,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)]
∥ˆ︁ℓt − α111k∥2

∇2Ψ−1
t (w).

The proof is finished by Lemma 3.9.4.

117

Finally we explain how to controlDΨt(u,wt) andDΨt+1(u, ˆ︁wt+2). First by Lemma 3.9.1

it holds that

DΨt(u,wt) = DΦt(−Lt−1,∇Φ∗
t (u)).

This term can now be combined with the term −DΦt−1(−Lt−1,∇Φ∗
t−1(u)) coming from

the prior FTRL update and both terms can be controlled through Lemma 3.9.5. To

control −DΨt+1(u, ˆ︁wt+2) we show that −DΨt+1(u, ˆ︁wt+2) = −DΦt+1(−ˆ︁Lt+1,∇Φ∗
t+1(u)).

This is done by showing that if ˆ︁wt+1 and ˆ︁wt+2 are defined as in Equation 3.6 we can

equivalently write ˆ︁wt+2 as an FTRL step coming from a slightly different loss.

Lemma 3.9.7. Let ˆ︁wt+2 be defined as in Equation 3.6. Let νt+1 be the constant such

that ∇Φt+1(−ˆ︁Lt) = ∇Ψ∗
t+1(−ˆ︁Lt + νt111k). Let ˆ︁Lt+1 = (111k − e) ⊙ (ˆ︁Lt − (νt−1 + νt)111k) +

1
β
e ⊙ ((ˆ︁Lt − (νt−1 + νt)111k)) + ˆ︁ℓt+1 and ηt+2 = ηt+1. Then (ˆ︁Lt+1)i ≥ 0 for all i ∈ [K]

and ˆ︁wt+2 = wt+2 = ∇Φt+2(−ˆ︁Lt+1).

Proof. By the definition of the update we have

ˆ︁wt+1 = ∇Φt(∇Ψt(wt) − ˆ︁ℓt) = ∇Φt(−ˆ︁Lt + νt−1111k)

= ∇Ψ∗
t (−ˆ︁Lt + (νt−1 + νt)111k),

ˆ︁wt+2 = ∇Φt+1(∇Ψt+1(ˆ︁wt+1) − ˆ︁ℓt+1),

where in the first equality we have used the fact that ∇Ψt(wt) = −Lt−1 + νt−1111k. For

any i such that the OMD update increased the step size, i.e. ηt+1,i = βηt,i it holds

from the definition of ∇Ψt+1(·) that ∇Ψt+1(w)i = 1
β
∇Ψt(w)i. Since ∇Ψ∗

t inverts ∇Ψt

coordinate wise, we can write

∇Ψt+1(ˆ︁wt+1)i = 1
β

∇Ψt(ˆ︁wt+1)i = 1
β

(−ˆ︁Lt + (νt−1 + νt)111k)i.

If we let e be the the sum of all ei’s such that ηt+1,i = βηt,i we can write

ˆ︁wt+2 = ∇Φt+1

(︄
(111k − e) ⊙ (−ˆ︁Lt + (νt−1 + νt)111k) + 1

β
e⊙ ((−ˆ︁Lt + (νt−1 + νt)111k)) − ˆ︁ℓt+1

)︄
.

118

The fact that ˆ︁Lt+1,i ≥ 0 for any i follows since any coordinate ∇Ψt(ˆ︁wt+1)i ≤ 0 which

implies that any coordinate of (−ˆ︁Lt + (νt−1 + νt)111k)i ≤ 0.

We can finally couple −DΦt+1(−ˆ︁Lt+1,∇Φ∗
t+1(u)) with the term from the next FTRL

step which is DΦt+2(−ˆ︁Lt+1,∇Φ∗
t+2(u)) and use Lemma 3.9.5 to bound the sum of this

two terms. Putting everything together we arrive at the following regret guarantee.

Theorem 3.9.8. The regret bound for Algorithm 10 for any step size schedule which

is non-increasing on the FTRL steps and any T0 satisfies

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

≤
T∑︂

t=T0+1

∑︂
i ̸=i∗

E[32ηt,i
√
wt,i + ηt,i + ηt,i∗

2 wt,i] +
T0∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃

+
∑︂

t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦
+ E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ ∑︂
t∈[T]\TOMD

4
∑︂
i ̸=i∗

(︄
1
ηt,i

− 1
ηt−1,i

)︄(︂√
wt,i

)︂⎤⎦ .
Proof. Let TFTRL be the set of all rounds in which the FTRL step is taken except for

all rounds immediately before the OMD step and immediately after the OMD step.

Let TOMD be the set of all round immediately before the OMD step. The regret is

bounded as follows:

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

=
∑︂

t∈TFTRL
E
[︂
⟨ˆ︁ℓt, wt − u⟩

]︂
+

∑︂
t∈[T]\TFTRL

E
[︂
⟨ˆ︁ℓt, wt − u⟩

]︂
=

∑︂
t∈[T]\TFTRL

E
[︂
⟨ˆ︁ℓt, wt − u⟩

]︂
+

∑︂
t∈TFTRL

E
[︂
⟨ˆ︁ℓt, wt⟩ + Φt(−ˆ︁Lt) − Φt(−ˆ︁Lt−1)

+DΦt(−ˆ︁Lt−1,∇Φ∗
t (u)) −DΦt(−ˆ︁Lt,∇Φ∗

t (u))
]︂
.

For any T0, by the stability bound in Lemma 3.9.4 we have

∑︂
t∈TFTRL

E
[︂
⟨ˆ︁ℓt, wt⟩ + Φt(−ˆ︁Lt) − Φt(−ˆ︁Lt−1)

]︂
≤

∑︂
t∈TFTRL

⋂︁
{[T0]}

K∑︂
i=1

ηt,i
2
√︂
E[wt,i]

+
∑︂

t∈TFTRL\{[T0]}

∑︂
i ̸=i∗

E[ηt,i2 (√wt,i + wt,i)].

119

Next we consider the penalty term
∑︂

t∈TFTRL
E
[︂
DΦt(−ˆ︁Lt−1,∇Φ∗

t (u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂
= E [DΦ1(0,∇Φ∗

1(u))]

+
∑︂

t+1∈TFTRL
E
[︂
DΦt+1(−ˆ︁Lt,∇Φ∗

t (u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂

−E

⎡⎣ ∑︂
t∈TOMD

DΦt−1(−ˆ︁Lt−1,∇Φ∗
t−1(u))

⎤⎦
+E

⎡⎣ ∑︂
t∈TOMD

DΦt+2(−ˆ︁Lt+1,∇Φ∗
t+2(u))

⎤⎦− E
[︂
DΦT (−ˆ︁LT ,∇Φ∗

T (u))
]︂
.

We are now going to complete the penalty term by considering the extra terms which

do not bring negative regret from ∑︁
t∈[T]\TFTRL E[⟨ˆ︁ℓt, wt − u⟩].

∑︂
t∈[T]\TFTRL

E[⟨ˆ︁ℓt, wt − u⟩] ≤
∑︂

t∈TOMD

E [DΨt(u,wt) −DΨt(u, ˆ︁wt+1) +DΨt(wt, w̃t+1)]

+
∑︂

t∈TOMD

E
[︂
DΨt+1(u, ˆ︁wt+1) −DΨt+1(u, ˆ︁wt+2) +DΨt+1(ˆ︁wt+1, w̃t+2)

]︂
+

∑︂
t∈TOMD

E
[︂
⟨ˆ︁ℓt+2, wt+2⟩ + Φt+2(−ˆ︁Lt+2) − Φt+2(−ˆ︁Lt+1)

]︂
+

∑︂
t∈TOMD

E
[︂
DΦt+2(−ˆ︁Lt+1,∇Φ∗

t+2(u)) −DΦt+2(−ˆ︁Lt+2,∇Φ∗
t+2(u))

]︂
=

∑︂
t∈TOMD

E
[︂
⟨ˆ︁ℓt+2, wt+2⟩ + Φt+2(−ˆ︁Lt+2) − Φt+2(−ˆ︁Lt+1) +DΨt(wt, w̃t+1) +DΨt+1(ˆ︁wt+1, w̃t+2)

]︂
+

∑︂
t∈TOMD

E
[︂
DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1)

]︂
+

∑︂
t∈TOMD

E
[︂
DΦt(−ˆ︁Lt−1,∇Φ∗

t (u)) −DΦt+2(−ˆ︁Lt+2,∇Φ∗
t+2(u))

]︂
+

∑︂
t∈TOMD

E
[︂
DΦt+2(−ˆ︁Lt+1,∇Φ∗

t+2(u)) −DΨt+1(u, ˆ︁wt+2)
]︂
,

where in the first inequality we have used the 3-point rule for Bregman divergence

and the definition of the set τFTRL. For any T0 the term
∑︂

t∈TOMD

E
[︂
⟨ˆ︁ℓt+2, wt+2⟩ + Φt+2(−ˆ︁Lt+2) − Φt+2(−ˆ︁Lt+1) +DΨt(wt, w̃t+1) +DΨt+1(ˆ︁wt+1, w̃t+2)

]︂
is bounded by Lemma 3.9.4 and Lemma 3.9.6 as follows

∑︂
t∈TOMD

E
[︂
⟨ˆ︁ℓt+2, wt+2⟩ + Φt+2(−ˆ︁Lt+2) − Φt+2(−ˆ︁Lt+1) +DΨt(wt, w̃t+1) +DΨt+1(ˆ︁wt+1, w̃t+2)

]︂

≤
∑︂

t∈TOMD\{[T0]}

∑︂
i ̸=i∗

E[ηt+2,i
√
wt+2,i + ηt+2,i + ηt+2,i∗

2 wt+2,i] +
∑︂

t∈TOMD

⋂︁
{[T0]}

K∑︂
i=1

ηt,i
2
√︂
E[wt+2,i],

120

where we have used the i ̸= i∗ bound from the above lemmas for all terms past

T0 and the bound which includes all i ∈ [K] for the first T0 terms. The term∑︁
t∈TOMD

E
[︂
DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1)

]︂
is bounded from Equation 3.11 as follows

∑︂
t∈TOMD

E
[︂
DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1)

]︂
≤

∑︂
t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 2
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦ .
By Lemma 3.8.2 and Lemma 3.9.1

∑︂
t∈TOMD

E
[︂
DΦt+2(−ˆ︁Lt+1,∇Φ∗

t+2(u)) −DΨt+1(u, ˆ︁wt+2)
]︂

=
∑︂

t∈TOMD

E
[︂
DΦt+2(−ˆ︁Lt+1,∇Φ∗

t+2(u)) −DΦt+1(−ˆ︁Lt+1,∇Φ∗
t+1(u))

]︂
.

Combining all of the above we have

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

≤
T∑︂

t=T0+1

∑︂
i ̸=i∗

E[32ηt,i
√
wt,i + ηt,i + ηt,i∗

2 wt,i] +
T0∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃

+
∑︂

t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 2
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦
+

∑︂
t∈[T]\TOMD

E
[︂
DΦt+1(−ˆ︁Lt,∇Φ∗

t+1(u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂
+ E[DΦ1(0,∇Φ∗

1(u))] − E[DΦT (−ˆ︁LT ,∇Φ∗
T (u))].

(3.12)

Using Lemma 3.9.5 we have that

∑︂
t∈[T]\TOMD

E
[︂
DΦt+1(−ˆ︁Lt,∇Φ∗

t+1(u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂
≤

∑︂
t∈[T]\TOMD

E

⎡⎣4
∑︂
i ̸=i∗

(︄
1

ηt+1,i
− 1
ηt,i

)︄(︃√
wt+1,i − 1

2wt+1,i

)︃⎤⎦ .
By definition of w1 we have DΦ1(0,∇Φ∗

1(u)) = Ψ1(u) − Ψ1(w1). Plugging back into

Equation 3.12 we have

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

≤
T∑︂

t=T0+1

∑︂
i ̸=i∗

E[32ηt,i
√
wt,i + ηt,i + ηt,i∗

2 wt,i] +
T0∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃

+
∑︂

t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦
+ E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ ∑︂
t∈[T]\TOMD

4
∑︂
i ̸=i∗

(︄
1
ηt,i

− 1
ηt−1,i

)︄(︂√
wt,i

)︂⎤⎦ .
121

The algorithm begins by running each algorithm for log (T) + 1 rounds. We set the

probability thresholds so that ρ1 = 36, ρj = 2ρj−1 and 1
ρn

≥ 1
KT

, because we mix each

wt with the uniform distribution weighted by 1/KT . This implies n ≤ log2(T). The

algorithm now proceeds in epochs. The sizes of the epochs are as follows. The first

epoch was of size K log (T) +K, each epoch after doubles the size of the preceding

one so that the number of epochs is bounded by log (T). In the beginning of each

epoch, except for the first epoch we check if wt,i < 1
ρ1

. If it is we increase the step size

ηt+1,i = βηt,i and run the OMD step. Let the τ -th epoch have size sτ . Let 1
ρτ

be the

largest threshold which was not exceeded during epoch τ . We require that each of

the algorithms have the following expected regret bound under the unbiased rescaling

of the losses R̄i(t): E[R̄i(
∑︁S
τ=1 sτ)] ≤ ∑︁S

τ=1 E[√ρτR(sτ)]. This can be ensured by

restarting the algorithms in the beginning of the epochs if at the beginning of epoch τ

it happens that wt,i > 1
ρτ−1

. Let ℓt be the loss over all possible actions. Let it be the

algorithm selected by the corralling algorithm at time t. Let a∗ be the best overall

action.

Lemma 3.9.9. Let R̄i∗(·) be a function upper bounding the expected regret of Ai∗,

E[Ri∗(·)]. For any η such that η1,i ≤ mint∈[T]

(︂
1−exp

(︂
− 1

log(T)2

)︂)︂√
t

50R̄i(t)
,∀i ∈ [K] it holds that

E
[︄
T∑︂
t=1

ℓt(ait,jt) − ℓt(a∗)
]︄

≤
T∑︂

t=T0+1

∑︂
i ̸=i∗

E[32(ηt,i + ηt,i∗)(√wt,i + wt,i)] +
T0∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃

+E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ ∑︂
t∈[T]\TOMD

4
∑︂
i ̸=i∗

(︄
1
ηt,i

− 1
ηt−1,i

)︄(︂√
wt,i

)︂⎤⎦+ 1 + 36E[Ri∗(T)].

Proof. First we note that E[ˆ︁ℓt(i∗)] = E
[︃
wi∗,t

ℓt(ai∗,jt)
wi∗,t

]︃
= E[ℓt(ai∗,jt)]. Using Theo-

122

rem 3.9.8 we have

T∑︂
t=1

E [ℓt(ait,jt) − ℓt(a∗)] =
T∑︂
t=1

E [ℓt(ai∗,jt) − ℓt(a∗)] +
T∑︂
t=1

E
[︂
⟨ˆ︁ℓt, w̄t − u⟩

]︂

≤
T∑︂
t=1

E
[︂ˆ︁ℓt(i∗) − ℓt(a∗)

]︂
+

T∑︂
t=T0+1

∑︂
i ̸=i∗

E[32(ηt,i + ηt,i∗)(√wt,i + wt,i)]

+
T0∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃
+

∑︂
t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦
+ E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ ∑︂
t∈[T]\TOMD

4
∑︂
i ̸=i∗

(︄
1
ηt,i

− 1
ηt−1,i

)︄(︂√
wt,i

)︂⎤⎦+ 1.

Let us focus on∑︁T
t=1 E

[︂ˆ︁ℓt(i∗) − ℓt(a∗)
]︂
−2∑︁t∈TOMD

E
[︃(︃

1√ˆ︁wt+1,i∗
− 3

)︃(︃
1

ηt,i∗
− 1

ηt+1,i∗

)︃]︃
.

By our assumption on Ai∗ it holds that

T∑︂
t=1

E
[︂ˆ︁ℓt(i∗) − ℓt(a∗)

]︂
≤ E

⎡⎣Ri∗(
log(T)∑︂
τ=1

sτ)
⎤⎦ ≤

log(T)∑︂
τ=1

E[√ρτRi∗(sτ)].

We now claim that during epoch τ there is a t in that epoch such that also t ∈ TOMD

and for which wt,i∗ ≤ 1
ρτ−1

. We consider two cases, first if OMD was invoked because at

least one of the probability thresholds ρs was passed by a wts,i∗ , we must have ρs ≤ ρτ .

Also by definition of ρτ as the largest threshold not passed by any wt,i∗ there exists at

least one t′ ≥ ts for which 1
ρτ−1

≥ wt′,i∗ >
1
ρτ

. This implies that we have subtracted at

least 2E
[︃(︃

1√ˆ︁wt′+1,i∗
− 3

)︃(︃
1

ηt′,i∗
− 1

ηt′+1,i∗

)︃]︃
≥ 2E

[︃(︂√
ρτ−1 − 3

)︂(︃
1

ηt′,i∗
− 1

ηt′+1,i∗

)︃]︃
. In

the second case we have that for all t in epoch τ it holds that 1
ρτ−1

≥ wt,i∗ >
1
ρτ

or wt,i∗ > 1
ρ1

. In the second case we only incur regret E[R1(t)] scaled by 36 and

in the first case the OMD played in the beginning of the epoch has resulted in

at least −2E
[︃(︂√

ρτ−1 − 3
)︂(︃

1
ηt,i∗

− 1
ηt+1,i∗

)︃]︃
negative contribution, where t indexes

the beginning of the epoch. We set β = e1/ log(T)2 and now evaluate the difference
1

ηt,i∗
− 1

ηt+1,i∗
≥
(︂
1 − 1

β

)︂ √
t

25η1,i∗
. Where we have used the fact that ηt,i∗ ≤ η1,i∗β

log2(T)2
√
t

≤
25η1,i∗√

t
. This follows by noting that there are log2(T) epochs and during each epoch

one can call the OMD step only log2(T) times. Let β′ =
(︂
1 − 1

β

)︂
. Thus if tτ is the

beginning of epoch τ we subtract at least β′√tτρτ−1
25η1,i∗

. Notice that the length of each

123

epoch sτ does not exceed 2tτ , thus we have

log(T)∑︂
τ=1

E[√ρτRi∗(sτ)] ≤
log(T)∑︂
τ=1

E[√ρτRi∗(2tτ)],

and so as long as we set η1,i∗ ≤ β′√2tτ
50R̄i∗ (2tτ) , where E[Ri∗(2tτ)] ≤ R̄i∗(2tτ) we have

log(T)∑︂
τ=1

E[√ρτRi∗(2tτ)] − 2
∑︂

t∈TOMD

E

⎡⎣⎛⎝ 1√︂ ˆ︁wt+1,i∗
− 3

⎞⎠(︄ 1
ηt,i∗

− 1
ηt+1,i∗

)︄⎤⎦
≤

log(T)∑︂
τ=1

E[√ρτRi∗(2tτ) − √
ρτRi∗(2tτ)] ≤ 0.

We can now use the self-bounding trick of the regret as in Zimmert and Seldin

(2021) to finish the proof. Let µ∗ denote the reward of the best arm. First note that

we can write

E
[︄
T∑︂
t=1

ℓt(ait,jt) − ℓt(a∗)
]︄

= E
[︄
T∑︂
t=1

χit ̸=i∗(ℓt(ait,jt) − µ∗)
]︄

+ E [Ri∗(Ti∗(T))]

≥ E
[︄
T∑︂
t=1

K∑︂
i=1

wt,iχit ̸=i∗(ℓt(ait,jt) − µ∗)
]︄

≥ E

⎡⎣ T∑︂
t=1

∑︂
i ̸=i∗

wt,i∆i

⎤⎦ .
Theorem 3.9.10 (Theorem 3.8.1). Let R̄i∗(·) be a function upper bounding the expected

regret of Ai∗, E[Ri∗(·)]. For any η such that η1,i ≤ mint∈[T]

(︂
1−exp

(︂
− 1

log(T)2

)︂)︂√
t

50R̄i(t)
,∀i ∈ [K]

and β = e1/ log(T)2 it holds that the expected regret of Algorithm 10 is bounded as

E [R(T)] ≤
∑︂
i ̸=i∗

1500(1/η1,i + η1,i)2

∆i

(︄
log

(︄
T∆i − 15η1,i

T0∆i − 15η1,i

)︄
+ log

(︂
225η2

1,i∆i/∆1
)︂)︄

+
∑︂
i∈[K]

8
η1,i

√
K

+ 2 + 72Ri∗(T),

where T0 = maxi ̸=i∗
225η2

1,i
∆i

.

Proof of Theorem 3.8.1. By Lemma 3.9.9 we have that the overall regret is bounded

124

by

E[R(T)] ≤
T∑︂

t=T0+1

∑︂
i ̸=i∗

E[32(ηt,i + ηt,i∗)(√wt,i + wt,i)] +
T0∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃

+E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ ∑︂
t∈[T]\TOMD

4
∑︂
i ̸=i∗

(︄
1
ηt,i

− 1
ηt−1,i

)︄(︂√
wt,i

)︂⎤⎦
+1 + 36E[Ri∗(T)]

≤
T∑︂

t=T0+1

∑︂
i ̸=i∗

E[75η1,i

2
√
t

(√wt,i + wt,i)] +
T0∑︂
t=1

K∑︂
i=1

E
[︄

25η1,i

2
√
t

√
wt,i

]︄

+E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ T∑︂
t=1

∑︂
i ̸=i∗

10
η1,i

√
t

(︂√
wt,i

)︂⎤⎦
+1 + 36E[Ri∗(T)]

≤
T∑︂

t=T0+1

∑︂
i ̸=i∗

E[75η1,i

2
√
t

(√wt,i + wt,i)] +
T0∑︂
t=1

K∑︂
i=1

E
[︄

25η1,i

2
√
t

√
wt,i

]︄

+E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ T∑︂
t=1

∑︂
i ̸=i∗

10
η1,i

√
t

(︂√
wt,i

)︂⎤⎦
+1 + 36E[Ri∗(T)] + E[R(T)] − E

⎡⎣ T∑︂
t=1

∑︂
i ̸=i∗

wt,i∆i

⎤⎦
≤

T∑︂
t=T0+1

∑︂
i ̸=i∗

E[75η1,i√
t

(√wt,i + wt,i)] +
T0∑︂
t=1

K∑︂
i=1

E
[︄

25η1,i√
t

√
wt,i

]︄

+2E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ T∑︂
t=1

∑︂
i ̸=i∗

20
η1,i

√
t

(︂√
wt,i

)︂⎤⎦
+2 + 3672E[Ri∗(T)] − E

⎡⎣ T∑︂
t=1

∑︂
i ̸=i∗

wt,i∆i

⎤⎦ .
In the first inequality we used the fact that for any i we have ηt,i ≤ 25η1,i/

√
t, in

the second inequality we have used the self bounding property derived before the

statement of the theorem and in the third inequality we again used the bound on the

expected regret E[R(T)] from the first inequality. We are now going to use the fact

that for any w > 0 it holds that 2α
√
w − βw ≤ α2

β
. For t ≤ T0 we have

T0∑︂
t=1

∑︂
i ̸=i∗

(︄
20

√
wt,i√
t

(︄
1
η1,i

+ η1,i

)︄
− ∆iwt,i

)︄
≤

T0∑︂
t=1

∑︂
i ̸=i∗

1500(1/η1,i + η1,i)2

t∆i

.

125

For t > T0 we have

T∑︂
T0+1

∑︂
i ̸=i∗

(︄√
wt,i√
t

(︄
20
η1,i

+ 75η1,i

)︄
−
(︄
∆i − 15η1,i√

t

)︄
wt,i

)︄
≤

T∑︂
t=T0+1

∑︂
i ̸=i∗

1500(1/η1,i + η1,i)2

t∆i − 15η1,i
√
t

≤
∑︂
i ̸=i∗

∫︂ T

T0

1500(1/η1,i + η1,i)2

t∆i − 15η1,i
√
t

dt

= 1500(1/η1,i + η1,i)2

∆i

log
(︄

15η1,i − T∆i

15η1,i − T0∆i

)︄
.

We now choose T0 = maxi ̸=i∗
225η2

1,i
∆i

. To bound E [Ψ1(u) − Ψ1(w1)] we have set w1 to be

the uniform distribution over the K algorithms and recall that Ψ1(w) = −4∑︁i

√
wi− 1

2wi
η1,i

.

This implies Ψ1(u) − Ψ1(w1) ≤ ∑︁
i∈[K]

4
η1,i

√
K

. Putting everything together we have

E [R(T)] ≤
∑︂
i ̸=i∗

1500(1/η1,i + η1,i)2

∆i

(︄
log

(︄
T∆i − 15η1,i

T0∆i − 15η1,i

)︄
+ log

(︂
225η2

1,i/∆i

)︂)︄

+
∑︂
i∈[K]

8
η1,i

√
K

+ 2 + 72Ri∗(T)

3.9.2 Proof of Theorem 3.8.3

We now consider the setting in which the best overall arm does not maintain a gap at

every round. Following the proof of Theorem 3.9.8 we are able to show the following.

Theorem 3.9.11. The regret bound for Algorithm 10 for any step size schedule which

is non-increasing on the FTRL steps satisfies

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

≤ 4 max
w∈∆K−1

√
T

K∑︂
i=1

(︄
η1,i + 1

η1,i

)︄
√
wi

+
∑︂

t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦ .
Proof. From the proof of Theorem 3.9.8 we have

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

=
∑︂

t∈[T]\TFTRL

E
[︂
⟨ˆ︁ℓt, wt − u⟩

]︂
+

∑︂
t∈TFTRL

E
[︂
⟨ˆ︁ℓt, wt⟩ + Φt(−ˆ︁Lt) − Φt(−ˆ︁Lt−1)

+DΦt(−ˆ︁Lt−1,∇Φ∗
t (u)) −DΦt(−ˆ︁Lt,∇Φ∗

t (u))
]︂
.

126

Lemma 3.9.4 implies
∑︂

t∈TFTRL
E
[︂
⟨ˆ︁ℓt, wt⟩ + Φt(−ˆ︁Lt) − Φt(−ˆ︁Lt−1)

]︂
≤

∑︂
t∈TFTRL

K∑︂
i=1

ηt,i
2
√︂
E[wt,i].

As before the penalty term is decomposed as follows
∑︂

t∈TFTRL
E
[︂
DΦt(−ˆ︁Lt−1,∇Φ∗

t (u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂
= E [DΦ1(0,∇Φ∗

1(u))]

+
∑︂

t+1∈TFTRL
E
[︂
DΦt+1(−ˆ︁Lt,∇Φ∗

t (u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂

−E

⎡⎣ ∑︂
t∈TOMD

DΦt−1(−ˆ︁Lt−1,∇Φ∗
t−1(u))

⎤⎦
+E

⎡⎣ ∑︂
t∈TOMD

DΦt+2(−ˆ︁Lt+1,∇Φ∗
t+2(u))

⎤⎦− E
[︂
DΦT (−ˆ︁LT ,∇Φ∗

T (u))
]︂
.

Next the term ∑︁
t∈[T]\TFTRL E[⟨ˆ︁ℓt, wt − u⟩] is again decomposed as in the proof of

Theorem 3.9.8
∑︂

t∈[T]\TFTRL

E[⟨ˆ︁ℓt, wt − u⟩]

≤
∑︂

t∈TOMD

E
[︂
⟨ˆ︁ℓt+2, wt+2⟩ + Φt+2(−ˆ︁Lt+2) − Φt+2(−ˆ︁Lt+1) +DΨt(wt, w̃t+1) +DΨt+1(ˆ︁wt+1, w̃t+2)

]︂
+

∑︂
t∈TOMD

E
[︂
DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1)

]︂
+

∑︂
t∈TOMD

E
[︂
DΦt(−ˆ︁Lt−1,∇Φ∗

t (u)) −DΦt+2(−ˆ︁Lt+2,∇Φ∗
t+2(u))

]︂
+

∑︂
t∈TOMD

E
[︂
DΦt+2(−ˆ︁Lt+1,∇Φ∗

t+2(u)) −DΨt+1(u, ˆ︁wt+2)
]︂
.

Using Lemma 3.9.4 and Lemma 3.9.6 we bound the first term of the above inequality

as
∑︂

t∈TOMD

E
[︂
⟨ˆ︁ℓt+2, wt+2⟩ + Φt+2(−ˆ︁Lt+2) − Φt+2(−ˆ︁Lt+1) +DΨt(wt, w̃t+1) +DΨt+1(ˆ︁wt+1, w̃t+2)

]︂

≤
∑︂

t∈TOMD

K∑︂
i=1

ηt,i
2
√︂
E[wt+2,i]

The term ∑︁
t∈TOMD

E
[︂
DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1)

]︂
is bounded from Equation 3.11

as follows
∑︂

t∈TOMD

E
[︂
DΨt+1(u, ˆ︁wt+1) −DΨt(u, ˆ︁wt+1)

]︂
≤

∑︂
t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 2
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦ .
127

By Lemma 3.8.2 and Lemma 3.9.1

∑︂
t∈TOMD

E
[︂
DΦt+2(−ˆ︁Lt+1,∇Φ∗

t+2) −DΨt+1(u, ˆ︁wt+2)
]︂

=
∑︂

t∈TOMD

E
[︂
DΦt+2(−ˆ︁Lt+1,∇Φ∗

t+2) −DΦt+1(−ˆ︁Lt+1,∇Φ∗
t+2)

]︂
.

Combining all of the above we have

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

≤
T∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃
+

∑︂
t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 2
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦
+

∑︂
t∈[T]\TOMD

E
[︂
DΦt+1(−ˆ︁Lt,∇Φ∗

t (u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂
+ E[DΦ1(0,∇Φ∗

1(u))] − E[DΦT (−ˆ︁LT ,∇Φ∗
T (u))].

(3.13)

The last two terms are bounded in the same way as in the proof of Theorem 3.9.8

∑︂
t∈[T]\TOMD

E
[︂
DΦt+1(−ˆ︁Lt,∇Φ∗

t (u)) −DΦt(−ˆ︁Lt,∇Φ∗
t (u))

]︂
+ E[DΦ1(0,∇Φ∗

1(u))] − E[DΦT (−ˆ︁LT ,∇Φ∗
T (u))]

≤E [Ψ1(u) − Ψ1(w1)] + E

⎡⎣ ∑︂
t∈[T]\TOMD

4
∑︂
i ̸=i∗

(︄
1
ηt,i

− 1
ηt−1,i

)︄(︂√
wt,i

)︂⎤⎦
Plugging back into Equation 3.13 we have

E
[︄
T∑︂
t=1

⟨ˆ︁ℓt, wt − u⟩
]︄

≤
T∑︂
t=1

K∑︂
i=1

E
[︃
ηt,i
2

√
wt,i

]︃
+ E [Ψ1(u) − Ψ1(w1)]

+ 4E
⎡⎣ ∑︂
t∈[T]\TOMD

K∑︂
i=1

(︄
1
ηt,i

− 1
ηt−1,i

)︄(︂√
wt,i

)︂⎤⎦
+

∑︂
t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦
≤

T∑︂
t=1

4
K∑︂
i=1

(︄
η1,i + 1

η1,i

)︄√︃
wt,i
t

+
∑︂

t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦
≤ 4 max

w∈∆K−1

√
T

K∑︂
i=1

(︄
η1,i + 1

η1,i

)︄
√
wi

+
∑︂

t∈TOMD

E

⎡⎣−2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦ ,

128

where the last inequality follows from the fact that the maximizer of the function∑︁K
i=1

√︂
wi
t
αi over the simplex, for αi ≥ 0 is the same for all t ∈ [T].

Following the proof of Lemma 3.9.9 and replacing the bound on E
[︂∑︁T

t=1⟨ˆ︁ℓt, wt − u⟩
]︂

from Theorem 3.9.8 with the one from Theorem 3.9.11 finishes the proof.

3.10 Model selection with Tsallis-Inf and proof of
Theorem 3.2.1

Recall the model selection problem for linear bandits from Section 3.2. We assume

that there are K base learners {Ai}Ki=1 such that the regret of Ai, for i ≥ i∗, is

bounded by Õ(dαi
√
T). That is, whenever the model is correctly specified, the i-th

algorithm admits a meaningful regret guarantee. In the setting of Foster et al. (2019),

Ai can be instantiated as LinUCB and in that case α = 1/2. Further, in the setting

of infinite arms, Ai can be instantiated as OFUL (Abbasi-Yadkori et al., 2011), in

which case α = 1. Both α = 1/2 and α = 1 govern the min-max optimal rates in

the respective settings. Our algorithm is now a simple modification of Algorithm 10.

At every time-step t, we update ˆ︁Lt = ˆ︁Lt−1 + ˆ︁ℓt + d, where di = d2α
i√
T

. Intuitively, our

modification creates a gap between the losses of Ai∗ and any Ai for i > i∗ of the

order d2α
i . On the other hand for any i < i∗, perturbing the loss can result in at

most additional d2α
i∗

√
T regret. With the above observations, the bound guaranteed

by Theorem 3.8.1 implies that the modified algorithm should incur at most Õ(d2α
i∗

√
T)

regret. We arrive at the statement of Theorem 3.2.1.

Theorem 3.10.1 (Theorem 3.2.1). Assume that every base learner Ai, i ≥ i∗, admits

a Õ(dαi
√
T) regret. Then, there exists a corralling strategy with expected regret bounded

by Õ(d2α
i∗

√
T +K

√
T). Moreover, under the additional assumption that the following

holds for any i < i∗, for all (x, a) ∈ X × A

E[⟨βi, ϕi(x, a)⟩] − min
a∈A

E[⟨β∗, ϕi∗(x, a)⟩] ≥ 2d
2α
i∗ − d2α

i√
T

,

129

the expected regret of the same strategy is bounded as Õ(dαi∗
√
T +K

√
T).

Typically, we have K = O(log (T)) and thus Theorem 3.2.1 guarantees a regret

of at most Õ(d2α
i∗

√
T). Furthermore, under a gap-assumption, which implies that

the value of the smallest loss for the optimal embedding i∗ is sufficiently smaller

compared to the value of any sub-optimal embedding i < i∗, we can actually achieve

a corralling regret of the order Ri∗(T). In particular, for the setting of Foster et al.

(2019), our strategy yields the desired Õ(
√
di∗T) regret bound. Notice that the regret

guarantees are only meaningful as long as di∗ = o(T 1/(2α)). In such a case, the second

assumption on the gap is that the gap is lower bounded by o(1). This is a completely

problem-dependent assumption and in general we expect that it cannot be satisfied.

3.10.1 Proof of Theorem 3.2.1

Since the losses might not be bounded in [0, 1] as dK = Θ(T) we need to slightly

modify the bound for the Stability term in Lemma 3.9.4 and the term DΨt(wt, w̃t+1) in

Lemma 3.9.6. Recall that we need to bound the term E
[︃
max

w∈[wt,∇Ψ∗
t (∇Ψt(wt)−ˆ︁ℓt+α111k)] ∥ˆ︁ℓt∥2

∇2Ψ−1
t (w)

]︃
.

The argument is the same as in 3.9.4 up to

E

⎡⎣ max
w∈[wt,∇Ψ∗

t (∇Ψt(wt)−ˆ︁ℓt+α111k)]
∥ˆ︁ℓt∥2

∇2Ψ−1
t (w)

⎤⎦ ≤ E
[︄
K∑︂
i=1

ηt,i
2 w

3/2
t,i (ˆ︁ℓt,i)2

]︄
.

Let ℓt,i = ⟨βit , ϕit(xt, ait,jt⟩ + ξt), then we have

E
[︃
ηt,i
2 w

3/2
t,i (ˆ︁ℓt,i)2

]︃
≤ E

[︄
ηt,iχ(it=i)w

3/2
t,i

ℓ2
t,i

w2
t,i

+ ηt,iw
3/2
t,i

d4α
i

T

]︄
≤ E

[︄
ηt,iwt,i

d4α
i

T

]︄
+ 2E

[︂
ηt,i

√
wt,i

]︂
,

where in the last inequality we have used the fact that wt,i ≥ w
3/2
t,i together with the

our assumption that ξt is zero-mean with variance proxy 1. Following the proof of

130

Lemma 3.9.9 with the bound on the stability term we can bound

E
[︄
T∑︂
t=1

ℓt(ait,jt) − ℓt(a∗)
]︄

=
T∑︂
t=1

E [ℓt(ai∗,jt) − ℓt(a∗)] +
T∑︂
t=1

E
[︂
⟨ˆ︁ℓt + d, wt − u⟩

]︂

−
T∑︂
t=1

E [⟨d, wt − u⟩] + 1

≤
T∑︂
t=1

E
[︂ˆ︁ℓt(i∗) − ℓt(a∗)

]︂
+ 2

T∑︂
t=1

K∑︂
i=1

E
[︄
ηt,i

√
wt,i + ηt,iwt,i

d4α
i

T

]︄

+ 4
T∑︂
t=1

K∑︂
i=1

(︄
1
ηt,i

− 1
ηt−1,i

)︄
√
wt,i

−
T∑︂
t=1

E[⟨d, wt − u⟩] −
∑︂

t∈TOMD

E

⎡⎣2
⎛⎝ 1√︂ ˆ︁wt+1,i∗

− 3
⎞⎠(︄ 1

ηt,i∗
− 1
ηt+1,i∗

)︄⎤⎦+
√
K + 1

≤ 4
T∑︂
t=1

K∑︂
i=1

√︃
wt,i
t

(︄
η1,i + 1

ηt,i

)︄
+ 2

T∑︂
t=1

K∑︂
i=1

E
[︄
ηt,iwt,i

d4α
i

T

]︄

−
T∑︂
t=1

E[⟨d, wt − u⟩] + 36E[Ri∗(T)].

For a fixed t we have

−⟨d, wt − u⟩ = d2α
i∗√
T

(1 − wt,i∗) −
∑︂
i ̸=i∗

wt,i
d2α
i√
T

=
∑︂
i<i∗

wt,i
d2α
i∗ − d2α

i√
T

−
∑︂
i>i∗

wt,i
d2α
i − d2α

i∗√
T

.

First we consider the terms i > i∗. Assume WLOG that d2α
K ≤ T/4, as otherwise the

learning guarantees are trivial. For these terms we have√︃
wt,i
t

1
η1,i

+ wt,i

(︄
η1,i√
t

d4α
i

T
− d2α

i√
T

)︄
≤
√︃
wt,i
t

1
η1,i

− wt,i
d2α
i

2
√
T

≤
√
T

td2α
i η

2
1,i
.

Since η1,i = Θ̃(1/dαi) we have that the above is further bounded by Õ(
√
T/t).

Next we consider the terms for i < i∗ given by wt,i
d2α
i∗ −d2α

i√
T

. Here we use our assump-

tion that the regret E
[︂∑︁T

t=1 ℓt(ait,jt) − ℓt(a∗)
]︂

≥ E [wt,i∆i], where ∆i = E[⟨βi, ϕi(x, a)⟩]−

mina∈A E[⟨β∗, ϕi∗(x, a)⟩]. Using the self-bounding trick we can cancel out the terms

wt,i
d2α
i∗ −d2α

i√
T

as soon as ∆i ≥ 2wt,i
d2α
i∗ −d2α

i√
T

, which holds by the gap assumption in the

theorem. All other terms in the regret bound are bounded by Õ(dαi∗
√
T). Thus we

have shown that the regret of the corralling algorithm is bounded as

E
[︄
T∑︂
t=1

ℓt(ait,jt) − ℓt(a∗)
]︄

≤ Õ
(︂
E[Ri∗(T)] +K

√
T
)︂
.

131

3.11 Empirical results

In this section, we further examine the empirical properties of our algorithms via

experiments on synthetically generated datasets. We compare Algorithm 9 and

Algorithm 10 to the Corral algorithm (Agarwal et al., 2016)[Algorithm 1], which is

also used in (Pacchiano et al., 2020b). We note that Pacchiano et al. (2020b) also

use Exp3.P as a corralling algorithm. Recent work (Lee et al., 2020a) suggests that

Corral exhibits similar high probability regret guarantees as Exp3.P and that Corral

would completely outperform Exp3.P. One of the corralling algorithms in (Pacchiano

et al., 2020b) is precisely the Corral algorithm. The second algorithm considered in

(Pacchiano et al., 2020b) is the Exp3.P (Auer et al., 2002b) algorithm. We do not

compare against Exp3.P as we already expect that the performance will be worse than

the Corral algorithm. Our intuition is guided by the fact that the Corral algorithm

already comes equipped with high-probability regret guarantees, which match the once

provided by Exp3.P, without the need for additional exploration (Lee et al., 2020a).

Experimental setup. The algorithms that we corral are UCB-I, Thompson

sampling (TS), and FTRL with 1
2 -Tsallis entropy reguralizer (Tsallis-INF). We chose

these algorithms as they all come with regret guarantees for the stochastic multi-

armed problem and they broadly represent three different classes of algorithms, i.e,

algorithms based on the optimism in the face of uncertainty principle, algorithms

based on posterior sampling, and algorithms based on online mirror descent. When

implementing Algorithm 10 and Corral, we make an important deviation from what

theory prescribes: we never restart the corralled algorithms and run them with

their default parameters. Even though, there are no theoretical guarantees for this

modification of the corralling algorithms, we will see that the regret bounds remain

meaningful in practice. In all of the experiments we corral two instances of UCB-

I, TS, and FTRL for a total of six algorithms. The best algorithm plays over 10

132

arms. Every other algorithm plays over 5 arms. Intuitively, the higher the number

of arms implies higher complexity of the best algorithm which would lead to higher

regret and a harder corralling problem. The rewards for each algorithm are Bernoulli

random variables setup according to the following parameters: base_reward,

in_gap, out_gap, and low_reward. The best overall arm has expected reward

base_reward+ in_gap+out_gap. Every other arm of Algorithm 1 has expected

reward equal to low_reward. For all other algorithms the best arm has reward

base_reward + in_gap and other arms have reward base_reward. In all of

the experiments we set base_reward = 0.5, in_gap = 0.01, low_reward = 0.2.

While a small in_gap implies a large regret for the algorithms containing sub-optimal

arms, it also reduces the likelihood that said algorithms would have small average

reward. Combined with setting low_reward = 0.2, this will make the average

reward of A1 look small in the initial number of rounds, compared to the average

reward of Ai, i > 1 and hence makes the corralling problem harder. We run two set

of experiments, an easy set for which out_gap = 0.19, which translates to gaps

∆i = 0.2 in our regret bounds, and a hard set for which out_gap = 0.01 which

implies ∆i = 0.02. Finally time horizon is set to T = 106.

Large gap experiments. Figure 3-1 reports the regret (top) and number of

plays of each algorithm found in our experiments when ∆i = 0.2. The plots represent

the average regret, in blue, and the average number of pulls of each algorithm (color

according to the legend) over 75 runs of each experiment. The standard deviation is

represented by the shaded blue region. The algorithm that contains the optimal arm

is A1 and is an instance of UCB-I. The red dotted line in the top plots is given by

4
√
KT + E[R1(T)], and the green dotted line is given by 4∑︁i ̸=1

ki log(T)
∆i

+ E[R1(T)].

These lines serve as a reference across experiments and we believe they are more

accurate upper bounds for the regret of the proposed and existing algorithms. As

expected, we see that, in the large gap regime, the Corral algorithm exhibits Ω(
√
T)

133

regret, while the regret of Algorithm 10 remains bounded in O(log (T)). Algorithm 9

admits two regret phases. In the initial phase, its regret is linear, while in the second

phase it is logarithmic. This is typical of UCB strategies in the stochastic MAB

problem (Garivier et al., 2018).

(a) Corral regret (b) Corral number of pulls (c) Corral distribution

(d) Algorithm 10 regret
(e) Algorithm 10 number of
pulls (f) Algorithm 10 distribution

(g) Algorithm 9 regret
(h) Algorithm 9 number of
pulls (i) Algorithm 9 distribution

Figure 3-1: UCB-I contains best arm,∆i = 0.2,ALG1:2 = UCB-I,ALG3:4 =
Tsallis-INF,ALG5:6 = TS.

Small gap experiments Figure 3-2 reports the results of our experiments for

∆i = 0.02. The setting of the experiments is the same as in the large gap case. We

observe that both Corral and Algorithm 10 behave according to the O(
√
T) bounds.

This is expected since, when ∆i = 0.02, the optimistic bound dominates the
√
T -bound.

The result for Algorithm 9 might be somewhat surprising, as its regret exceeds both

the green and red lines. We emphasize that this experiment does not contradict

134

Theorem 3.6.2. Indeed, if we were to plot the green and red lines according to the

bounds of Theorem 3.6.2, the regret would remain below both lines.

(a) Corral regret (b) Corral number of pulls (c) Corral distribution

(d) Algorithm 10 regret (e) Algorithm 10 number of
pulls (f) Algorithm 10 distribution

(g) Algorithm 9 regret
(h) Algorithm 9 number of
pulls (i) Algorithm 9 distribution

Figure 3-2: UCB-I contains best arm,∆i = 0.02,ALG1:2 = UCB-I,ALG3:4 =
Tsallis-INF,ALG5:6 = TS.

Our experiments suggest that Algorithm 10 is the best corralling algorithm. A

tighter analysis would potentially yield optimistic regret bounds in the order of

O
(︂∑︁

i ̸=i∗
ki log(T)

∆i
+ E[Ri∗(T)]

)︂
. Furthermore, we expect that the bounds of Theo-

rem 3.6.2 are tight. In Section 3.11.1 and Section 3.11.2 we show experiments from

the same setup as just described, however, the algorithm containing the best arm is

1/2-Tsallis-INF and Thompson Sampling respectively.

135

3.11.1 Tsallis-INF contains best arm

Experiments can be found in Figure 3-3 for ∆i = 0.2 and in Figure 3-4 for ∆i = 0.02.

(a) Corral regret (b) Corral number of pulls (c) Corral distribution

(d) Algorithm 10 regret
(e) Algorithm 10 number of
pulls (f) Algorithm 10 distribution

(g) Algorithm 9 regret
(h) Algorithm 9 number of
pulls (i) Algorithm 9 distribution

Figure 3-3: Tsallis-INF contains best arm,∆i = 0.2,ALG1:2 =
Tsallis-INF,ALG3:4 = UCB-I,ALG5:6 = TS.

136

(a) Corral regret (b) Corral number of pulls (c) Corral distribution

(d) Algorithm 10 regret
(e) Algorithm 10 number of
pulls (f) Algorithm 10 distribution

(g) Algorithm 9 regret
(h) Algorithm 9 number of
pulls (i) Algorithm 9 distribution

Figure 3-4: Tsallis-INF contains best arm,∆i = 0.02,ALG1:2 =
Tsallis-INF,ALG3:4 = UCB-I,ALG5:6 = TS.

137

3.11.2 Thompson sampling contains best arm

Experiments can be found in Figure 3-5 for ∆i = 0.2 and in Figure 3-6 for ∆i = 0.02.

(a) Corral regret (b) Corral number of pulls (c) Corral distribution

(d) Algorithm 10 regret
(e) Algorithm 10 number of
pulls (f) Algorithm 10 distribution

(g) Algorithm 9 regret
(h) Algorithm 9 number of
pulls (i) Algorithm 9 distribution

Figure 3-5: Thompson sampling (TS) contains best arm,∆i = 0.2,ALG1:2 =
TS,ALG3:4 = UCB-I,ALG5:6 = Tsallis-INF.

138

(a) Corral regret (b) Corral number of pulls (c) Corral distribution

(d) Algorithm 10 regret
(e) Algorithm 10 number of
pulls (f) Algorithm 10 distribution

(g) Algorithm 9 regret
(h) Algorithm 9 number of
pulls (i) Algorithm 9 distribution

Figure 3-6: TS contains best arm,∆i = 0.02,ALG1:2 = TS,ALG3:4 =
UCB-I,ALG5:6 = Tsallis-INF.

139

Chapter 4

Policy regret in repeated games

We first show that there are online learning settings in which policy regret and external

regret are incompatible: any sequence of play that achieves a favorable regret with

respect to one definition must do poorly with respect to the other. We then focus

on the game-theoretic setting where the adversary is a self-interested agent. In that

setting, we show that external regret and policy regret are not in conflict and, in

fact, that a wide class of algorithms can ensure a favorable regret with respect to

both definitions, so long as the adversary is also using such an algorithm. We also

show that the sequence of play of no-policy regret algorithms converges to a policy

equilibrium, a new notion of equilibrium that we introduce. Relating this back to

external regret, we show that coarse correlated equilibria, which no-external regret

players converge to, are a strict subset of policy equilibria. Thus, in game-theoretic

settings, every sequence of play with no external regret also admits no policy regret,

but the converse does not hold. The main contributions of this chapter are based

on Arora et al. (2018). This work was done in collaboration with Dr. Raman Arora,

Dr. Michael Dinitz, and Dr. Mehryar Mohri.

140

4.1 Incompatibility of policy regret and external
regret

Arora et al. (2012a) show that there exists an adaptive adversary against which any

online learning algorithm admits linear policy regret, even when the external regret

may be sublinear, we ask if no policy regret implies no external regret. One could

expect this to be the case since policy regret seems to be a stronger notion than

external regret. However, we show that this in fact is not the case and that the two

notions of regret are incompatible: there exist adversaries (or sequence of utilities) on

which action sequences with sublinear external regret admit linear policy regret and

action sequences with sublinear policy regret incur linear external regret.

Theorem 4.1.1. There exists a sequence of m-memory bounded utility functions

(ut)Tt=1, where ut : A → R, such that for any constant m ≥ 2 (independent of T), any

action sequence with sublinear policy regret will have linear external regret and any

action sequence with sublinear external regret will have linear policy regret.

Proof sketch. The proof of the above theorem constructs a sequence for which no

reasonable play can attain sublinear external regret. In particular, the only way the

learner can have sublinear external regret is if they choose to have very small utility.

To achieve this, the utility functions chosen by the adversary are the following. At

time t, if the player chose to play the same action as their past 2 actions then they

get utility 1
2 . If the player’s past two actions were equal but their current action is

different, then they get utility 1, and if their past two actions differ then no matter

what their current action is they receive utility 0. It is easy to see that the maximum

utility play for this sequence (and the lowest 2-memory bounded policy regret strategy)

is choosing the same action at every round. However, such an action sequence admits

linear external regret. Moreover, every sublinear external regret strategy must then

admit sublinear utility and thus linear policy regret.

141

4.2 Policy regret in strategic environments

The incompatibility result rests on the fact that the player is facing a completely

malicious adversary. In many realistic environments we can instead think of the

adversary as a self-interested agent trying to maximize their own utility, rather than

trying to maximize the regret of the player. This more strategic environment is better

captured by the game theory setting, in particular a 2-player game where both players

are trying to maximize their utility. Even though we have argued that external regret

is not a good measure, our next result shows that minimizing policy regret in games

can be done if both players choose their strategies according to certain no external

regret algorithms. More generally, we adapt a classical notion of stability from the

statistical machine learning setting and argue that if the players use no external regret

algorithms that are stable, then the players will have no policy regret in expectation.

To state the result formally we first need to introduce some notation.

Definition 4.2.1 (Game definition). We consider a 2-player game G, with players

1 and 2. The action set of player i is denoted by Ai, which we think of as being

embedded into R|Ai| in the obvious way where each action corresponds to a standard

basis vector. The corresponding probability simplex is ∆Ai. The action of player 1 at

time t is at and of player 2 is bt. The observed utility for player i at time t is ui(at, bt)

and this is a bi-linear form with corresponding matrix Pi. We assume that the utilities

are bounded in [0, 1].

Algorithm of the player. When discussing algorithms, we take the view of

player 1. Specifically, at time t, player 1 plays according to an algorithm which can

be described as Algt : (A1 × A2)t → ∆A1. We distinguish between two settings:

full information, in which the player observes the full utility function at time t (i.e.,

u1(·, bt)), and the bandit setting, in which the player only observes u1(at, bt). In the

full information setting, algorithms like multiplicative weight updates (MWU Arora

142

et al. (2012b)) depend only on the past t− 1 utility functions (u1(·, bℓ))t−1
ℓ=1, and thus

we can think of Algt as a function ft : At
2 → ∆A1. In the bandit setting, though, the

output at time t of the algorithm depends both on the previous t− 1 actions (aℓ)t−1
ℓ=1

and on the utility functions (i.e., the actions picked by the other player).

But even in the bandit setting, we would like to think of the player’s algorithm

as a function ft : At
2 → ∆A1. We cannot quite do this, however we can think of

the player’s algorithm as a distribution over such functions. So how do we remove

the dependence on At
1? Intuitively, if we fix the sequence of actions played by player

2, we want to take the expectation of Algt over possible choices of the t actions

played by player 1. In order to do this more formally, consider the distribution µ over

At−1
1 ×At−1

2 generated by simulating the play of the players for t rounds. Then let µb0:t

be the distribution obtained by conditioning µ on the actions of player 2 being b0:t.

Now we let ft(b0:t−1) be the distribution obtained by sampling a0:t−1 from µb1:t−1 and

using Alg(a0:t−1, b0:t−1). When taking expectations over ft, the expectation is taken

with respect to the above distribution. We also refer to the output pt = ft(b0:t−1)

as the strategy of the player at time t. Now that we can refer to algorithms simply

as functions (or distributions over functions), we introduce the notion of a stable

algorithm.

Definition 4.2.2. Let ft : At
2 → ∆A1 be a sample from Algt (as described above),

mapping the past t actions in A2 to a distribution over the action set A1. Let the

distribution returned at time t be p1
t = ft(b1, . . . , bt). We call this algorithm on

average (m,S(T)) stable with respect to the norm ∥·∥, if for any b′
t−m+1, . . . , b

′
t ∈ A2

such that p̃1
t = ft(b1, . . . , bt−m, b

′
t−m+1, . . . , b

′
t) ∈ ∆A1, it holds that E[∑︁T

t=1∥p1
t − p̃1

t∥] ≤

S(T), where the expectation is taken with respect to the randomization in the

algorithm.

Even though this definition of stability is given with respect to the game setting, it

is not hard to see that it can be extended to the general online learning setting, and in

143

fact this definition is similar in spirit to the one given in Saha et al. (2012). It turns

out that most natural no external regret algorithms are stable. In particular we show,

in the supplementary, that both Exp3 (Auer et al., 2002b) and MWU are on average

(m,m
√
T) stable with respect to ℓ1 norm for any m < o(

√
T). It is now possible

to show that if each of the players are facing stable no external regret algorithms,

they will also have bounded policy regret (so the incompatibility from Theorem 4.1.1

cannot occur in this case).

Theorem 4.2.1. Let (at)Tt=1 and (bt)Tt=1 be the action sequences of player 1 and 2 and

suppose that they are coming from no external regret algorithms modeled by functions

ft and gt, with regrets R1(T) and R2(T) respectively. Assume that the algorithms are

on average (m,S(T)) stable with respect to the ℓ2 norm. Then

E
[︄
T∑︂
t=1

u1(a, gt(a0:t−m, a, . . . , a)) − u1(at, gt(a0:t−1))
]︄

≤ ∥P1∥S(T) +R1(T)

E
[︄
T∑︂
t=1

u2(ft(b0:t−m, b, . . . , b), b) − u2(ft(b0:t−1), bt)
]︄

≤ ∥P2∥S(T) +R2(T),

The above holds for any fixed actions b ∈ A2 and a ∈ A1. Here the matrix norm ∥ · ∥

is the spectral norm. 1

Proof.

E
[︄
u2(ft(b0, · · · , bt−m+1, b, · · · , b), b) −

T∑︂
t=1

u2(ft(b0, · · · , bt−2, bt−1), bt)
]︄

= E
[︄
u2(ft(b0, · · · , bt−m+1, b, · · · , b), b) −

T∑︂
t=1

u2(ft(b0, · · · , bt−2, bt−1), b)
]︄

+ E
[︄
u2(ft(b0, · · · , bt−1), b) −

T∑︂
t=1

u2(ft(b0, · · · , bt−2, bt−1), bt)
]︄

≤
T∑︂
t=1

∥b⊤P2∥2∥ft(b0, · · · , bt−m+1, b, · · · , b) − ft(b0, · · · , bt−2, bt−1)∥2 +R2(T)

≤ ∥b∥1∥P2∥S(T) +R2(T) = ∥P2∥S(T) +R2(T)
1We would like to thank Mengxiao Zhang (USC) for suggesting how to improve on the above

theorem and discovering a small error in one of our proofs, which has been corrected.

144

where the first inequality holds by Cauchy-Schwartz, the second inequality holds by

using the m-stability of the algorithm, together with the inequality between l1 and l2

norms.

In Theorem 4.2.1 the quantity E
[︂∑︁T

t=1 u1(a, gt(a0:t−m, a, . . . , a)) − u1(at, gt(a0:t−1))
]︂

is precisely the m-memory bounded policy regret with respect to the fixed action

a ∈ A1. To see this, consider the m-memory bounded reward function rt(·) :=

u1(·, gt(a0:t−m, ·)) : Am
1 → [0, 1].

The next result shows that both Exp3 and MWU are on average (m,m
√
T) stable

algorithms.

Theorem 4.2.2. MWU is an on average (m,m
√
T) stable algorithm with respect to

ℓ1, for any m < o(
√
T). Further, Exp3 is an on average (m,m

√
T) stable algorithm

with respect to ℓ1, for any m < o(
√
T).

Proof sketch. The proof idea is to show that consecutive iterates pt, pt+1 of Exp3 and

MWU do not differ by more than 1√
T

in ℓ1 norm. This allows us to reason about

the drift in iterates induced by two different loss sequences which differed at time

t−m.

Combining the above results together, we can show that both players will also

have no-policy regret for any m < o(
√
T).

Corollary 4.2.3. Let (at)Tt=1 and (bt)Tt=1, be the action sequences of players 1 and 2

respectively and suppose that the sequences are coming from MWU or Exp3. Then for

any fixed m, it holds:

E
[︄
u2(ft(b0:t−m+1, b, · · · , b), b) −

T∑︂
t=1

u2(ft(b0:t−1), bt)
]︄

≤ O(∥P2∥m
√
T),

for any fixed action b ∈ A2, where ft are the functions corresponding to the MWU

algorithm used by player 1.

145

Proof. From Theorem 4.2.2 it follows that MWU and Exp3 are on average (m,m
√
T)

stable and have regret at most O(
√
T).

4.3 Detailed proofs for Section 4.1 and Section 4.2

Proof of Theorem 4.1.1. Define the following reward functions

rt(at−m+1, .., at) =

⎧⎪⎪⎨⎪⎪⎩
1 at−m+i = at−m+i+1 = 1 for i ∈ {1, ..,m− 2} ∧ at−1 ̸= at
1
2 at−m+i = at−m+i+1 = 1 for i ∈ {1, ..,m− 1}
0 otherwise

.

Let (at)Tt=1 be a sequence with sublinear policy regret. Then this sequence has

total reward at least T
2 − o(T) and so there are at most o(T) actions in the sequence

which are not equal to 1. Let the subsequence consisting of all at = 0 be indexed

by I. Define Ĩ = {t, t + 1, · · · , t + m − 1 : t ∈ I} and consider the subsequence of

functions (rt)t̸∈Ĩ . This is precisely the sequence of functions which have reward 1
2 with

respect to the sequence of play (at)Tt=1. Notice that the length of this sequence is at

least T −mo(T) = T − o(T). The reward of this sequence is ∑︁t̸∈Ĩ rt(at−m+1, .., at) =∑︁
t̸∈Ĩ rt(1, .., 1) = T−o(T)

2 , however, this subsequence has linear external regret, since∑︁
t̸∈Ĩ rt(at−m+1, .., at−1, 0) = ∑︁

t̸∈Ĩ rt(1, .., 1, 0) = T − o(T). Thus the external regret of

(at)Tt=1 is
T∑︂
t=1

[rt(at−m+1, .., 0) − rt(at−m+1, .., at)] =
∑︂
t̸∈Ĩ

[rt(at−m+1, .., 0) − rt(at−m+1, .., at)]

+
∑︂
t∈Ĩ

[rt(at−m+1, .., 0) − rt(at−m+1, .., at)]

≥ T − o(T)
2 +

∑︂
t∈Ĩ

[rt(at−m+1, .., 0) − rt(at−m+1, .., at)]

≥ T

2 − o(T),

where the last inequality follows from the fact that the cardinality of Ĩ is at most

o(T) and thus ∑︁t∈Ĩ [rt(at−m+1, .., 0) − rt(at−m+1, .., at)] ≥ −o(T).

Assume that (at)Tt=1 has sublinear external regret. From the above argument, it

follows that the reward of the sequence is at most o(T) (otherwise if the sequence has

146

reward ω(T), we can repeat the previous argument and get a contradiction with the

fact the sequence has no-external regret). This implies that the the policy regret of

the sequence is ∑︁T
t=1[rt(1, 1, · · · , 1) − rt(at−m+1, .., at)] = T

2 − o(T).

Proof of Theorem 4.2.2. We first show the result for MWU. We think of MWU as

Exponentiated Gradient (EG) where the loss vector has i-th entry equal to the negative

utility if the player decided to play action i. Let the observed loss vector at time j

be ˆ︁lj and the output distribution be pj, then the update of EG can be written as

pj+1 = arg minp∈C⟨ˆ︁lj, p⟩ + 1
η
D(p, pj), where C is the simplex of the set of possible

actions and D is the KL-divergence. Using Lemma 3 in Saha et al. (2012), with

f(p) = ⟨ˆ︁lj, p⟩ + 1
η
D(p, pj) and the fact that the KL-divergence is 1-strongly convex

over the simplex C with respect to the ℓ1 norm, we have:

1
2η∥pj − pj+1∥2

1 ≤ f(pj) − f(pj+1) = ⟨pj − pj+1, ˆ︁lj⟩ − 1
η
D(pj+1, pj)

≤ ∥pj − pj+1∥1∥ˆ︁lj∥∞ ≤ ∥pj − pj+1∥1,

where the second inequality follows from Hölder’s inequality and the fact that

D(pj+1, pj) ≥ 0. Thus with step size η ∼
√︂

1
T

, we have ∥pj − pj+1∥1 ≤ 1
2
√
T

. Us-

ing triangle inequality, we can get ∥pj−1 − pj+1∥1 ≤ ∥pj−1 − pj∥1 + ∥pj − pj+1∥1 ≤ 2
2
√
T

and induction shows that ∥pj−m+1 − pj+1∥1 ≤ m
2
√
T 1

. Suppose for the last m iterations,

a fixed loss function la was played instead and the resulting output of the algorithm be-

comes p̃j+1. Then using the same argument as above we have ∥pj−m+1 − p̃j+1∥1 ≤ m
2
√
T

and thus ∥pj+1 − p̃j+1∥1 ≤ m√
T

. Summing over all T rounds concludes the proof.

Now we show the result holds in expectation for Exp3. The update at time t,

conditioning on the the draw being i, is given by pit+1 =
wit exp

(︂
γ

kpi
t

uit

)︂
wit exp

(︂
γ

kpi
t

uit

)︂
+
∑︁

j ̸=i w
j
t

and for

j ̸= i, pjt+1 = wjt

wit exp
(︂

γ

kpi
t

uit

)︂
+
∑︁

j ̸=i w
j
t

, where ut is the utility vector at time t, wt is the

weight vector at time t i.e. wit+1 = wit exp
(︂
γ
kpit
uit
)︂
, wjt+1 = wjt , and k is the number of

147

actions. We have the following bound:

|pit+1 − pit| =

⃓⃓⃓⃓
⃓⃓⃓ wit exp

(︂
γ
kpit
uit
)︂

wit exp
(︂
γ
kpit
uit
)︂

+∑︁
j ̸=iw

j
t

− wit∑︁
j w

j
t

⃓⃓⃓⃓
⃓⃓⃓ ≤

⃓⃓⃓⃓
⃓⃓⃓wit(exp

(︂
γ
kpit
uit
)︂

− 1)∑︁
j w

j
t

⃓⃓⃓⃓
⃓⃓⃓

= pit

(︄
exp

(︄
γ

kpit
uit

)︄
− 1

)︄
≤ pit2

γ

kpit
uit ≤ 2γ

k
,

where the first inequality uses the fact that pit+1 ≥ pit and the second inequality uses

the choice of γ together with exp (x) ≤ 2x+ 1 for x ∈ [0, 1]. Similarly for j ̸= i, we

have:

|pjt+1 − pjt | =

⃓⃓⃓⃓
⃓⃓⃓ wjt

wit exp
(︂
γ
kpit
uit
)︂

+∑︁
j ̸=iw

j
t

− wjt∑︁
j w

j
t

⃓⃓⃓⃓
⃓⃓⃓ ≤

⃓⃓⃓⃓
⃓⃓⃓ wjt∑︁

j w
j
t

⎛⎜⎝1 − 1
exp

(︂
γuit
kpit

)︂
⎞⎟⎠
⃓⃓⃓⃓
⃓⃓⃓

= pjt

(︄
1 − exp

(︄
−γuit
kpit

)︄)︄
≤ pjt

γuit
kpit

≤ pjt
kpit

γ,

where we have used pjt+1 ≤ pjt and exp (−x) ≥ 1 − x for all x. We can now proceed to

bound Eit [∥pt+1 − pt∥1|i1:t−1], where it is the random variable denoting the draw at

time t:

Eit [∥pt+1 − pt∥1|i1:t−1] =
∑︂
i

pit∥pt+1 − pt∥1 =
∑︂
i

pit

⎛⎝|pit+1 − pit| +
∑︂
j ̸=i

|pjt+1 − pjt |

⎞⎠
≤ 2γ +

∑︂
i,j

pit
pjt
kpit

γ = 3γ.

Setting γ ∼ 1√
T

finishes the proof.

4.4 Policy equilibrium

Recall that unlike external regret, policy regret captures how other players in a game

might react if a player decides to deviate from their strategy. The story is similar when

considering different notions of equilibria. In particular Nash equlibria, Correlated

equilibria and CCEs can be interpreted in the following way: if player i deviates

from the equilibrium play, their utility will not increase no matter how they decide

to switch, provided that all other players continue to play according to the

148

equilibrium. This sentiment is a reflection of what no external and no swap regret

algorithms guarantee. Equipped with the knowledge that no policy regret sequences

are obtainable in the game setting under reasonable play from all parties, it is natural

to reason how other players would react if player i deviated and what would be the

cost of deviation when taking into account possible reactions.

Let us again consider the 2-player game setup through the view of player 1. The

player believes their opponent might be m-memory bounded and decides to proceed

by playing according to a no policy regret algorithm. After many rounds of the game,

player 1 has computed an empirical distribution of play ˆ︁σ over A := A1 × A2. The

player is familiar with the guarantees of the algorithm and knows that, if instead, they

changed to playing any fixed action a ∈ A1, then the resulting empirical distribution

of play ˆ︁σa, where player 2 has responded accordingly in a memory-bounded way, is

such that E(a,b)∼ˆ︁σ [u1(a, b)] ≥ E(a,b)∼ˆ︁σa [u1(a, b)] − ϵ. This thought experiment suggests

that if no policy regret play converges to an equilibrium, then the equilibrium is not

only described by the deviations of player 1, but also through the change in player 2’s

behavior, which is encoded in the distribution ˆ︁σa. Thus, any equilibrium induced by no

policy regret play, can be described by tuples of distributions {(σ, σa, σb) : (a, b) ∈ A},

where σa is the distribution corresponding to player 1’s deviation to the fixed action

a ∈ A1 and σb captures player 2’s deviation to the fixed action b ∈ A2. Clearly σa

and σb are not arbitrary but we still need a formal way to describe how they arise.

For convenience, lets restrict the memory of player 2 to be 1. Thus, what player 1

believes is that at each round t of the game, they play an action at and player 2 plays

a function ft : A1 → A2, mapping at−1 to bt = ft(at−1). Finally, the observed utility

is u1(at, ft(at−1)). The empirical distribution of play, ˆ︁σ, from the perspective of player

1, is formed from the observed play (at, ft(at−1))Tt=1. Moreover, the distribution, ˆ︁σa,
that would have occurred if player 1 chose to play action a on every round is formed

from the play (a, ft(a))Tt=1. In the view of the world of player 1, the actions taken

149

by player 2 are actually functions rather than actions in A2. This suggests that the

equilibrium induced by a no-policy regret play, is a distribution over the functional

space defined below.

Definition 4.4.1. Let F1 := {f : Am1
2 → A1} and F2 := {g : Am2

1 → A2} denote the

functional spaces of play of players 1 and 2, respectively. Denote the product

space by F := F1 × F2.

Note that when m1 = m2 = 0, F is in a one-to-one correspondence with A,

i.e. when players believe their opponents are oblivious, we recover the action set

studied in standard equilibria. For simplicity, for the remainder of the paper we

assume that m1 = m2 = 1. However, all of the definitions and results that follow can

be extended to the fully general setting of arbitrary m1 and m2; see the supplementary

for details.

Let us now investigate how a distribution π over F can give rise to a tuple of

distributions (ˆ︁σ, ˆ︁σa, ˆ︁σb).
We begin by defining the utility of π such that it equals the utility of a distribution

σ over A i.e., we want E(f,g)∼π [u1(f, g)] = E(a,b)∼σ [u1(a, b)]. Since utilities are not

defined for functions, we need an interpretation of E(f,g)∼π [u1(f, g)] which makes sense.

We notice that π induces a Markov chain with state space A in the following way.

Definition 4.4.2. Let π be any distribution over F . Then π induces a Markov pro-

cess with transition probabilities P [(a2, b2)|(a1, b1)] = ∑︁
(f,g)∈F1×F2:f(b1)=a2,g(a1)=b2 π(f, g).

We associate with this Markov process the transition matrix M ∈ R|A|×|A|, with

Mx1,x2 = P [x2|x1] where xi = (ai, bi).

Since every Markov chain with a finite state space has a stationary distribution, we

think of utility of π as the utility of a particular stationary distribution σ of M. How

we choose σ among all stationary distributions is going to become clear later, but for

now we can think about σ as the distribution which maximizes the utilities of both

150

players. Next, we need to construct σa and σb, which capture the deviation in play,

when player 1 switches to action a and player 2 switches to action b. The no-policy

regret guarantee can be interpreted as E(f,g)∼π [u1(f, g)] ≥ E(f,g)∼π [u1(a, g(a))] i.e.,

if player 1 chose to switch to a fixed action (or equivalently, the constant function

which maps everything to the action a ∈ A1), then their utility should not increase.

Switching to a fixed action a, changes π to a new distribution πa over F . This turns

out to be a product distribution which also induces a Markov chain.

Definition 4.4.3. Let π be any distribution over F . Let δa be the distribution

over F1 putting all mass on the constant function mapping all actions b ∈ A2 to

the fixed action a ∈ A1. Let πF2 be the marginal of π over F2. The distribution

resulting from player 1 switching to playing a fixed action a ∈ A, is

denoted as πa = δa × πF2 . This distribution induces a Markov chain with transition

probabilities P [(a, b2)|(a1, b1)] = ∑︁
(f,g):g(a1)=b2 π(f, g) and the transition matrix of

this Markov process is denoted by Ma. The distribution πb and matrix Mb are

defined similarly for player 2.

Since the no policy regret algorithms we work with do not directly induce distribu-

tions over the functional space F but rather only distributions over the action space

A, we would like to state all of our utility inequalities in terms of distributions over

A. Thus, we would like to check if there is a stationary distribution σa of Ma such

that E(f,g)∼π [u1(a, g(a))] = E(a,b)∼σa [u1(a, b)]. This is indeed the case as verified by

the following theorem.

Theorem 4.4.1. Let π be a distribution over the product of function spaces F1 × F2.

There exists a stationary distribution σa of the Markov chain Ma for any fixed a ∈ A1

such that E(a,b)∼σa [u1(a, b)] = E(f,g)∼π [u1(a, g(a))]. Similarly, for every fixed action

b ∈ A2, there exists a stationary distribution σb of Mb such that E(a,b)∼σb [u2(a, b)] =

E(f,g)∼π [u2(f(b), b)].

151

Proof. The proof is constructive and we include it below.

Note that, by definition (Ma)(ã,b̃),(ˆ︁a,ˆ︁b) = 0 if ˆ︁a ̸= a and M(ã,b̃),(ˆ︁a,ˆ︁b) = ∑︁
f,g:g(ã)=ˆ︁b π(f, g)

if ˆ︁a = a. Consider the distribution σ̃ over A, where σ̃(ã,b̃) = 0 if ã ̸= a and σ̃(ã,b̃) =∑︁
f,g:g(a)=b̃ π(f, g) if ã = a. We now show that σ̃ is a stationary distribution of Ma:

(︂
σ̃⊤Ma

)︂
(a,b̃)

=
∑︂
(ˆ︁a,ˆ︁b) σ̃(ˆ︁a,ˆ︁b)(Ma)(ˆ︁a,ˆ︁b),(a,b̃) =

∑︂
ˆ︁b σ̃(a,ˆ︁b)(Ma)(a,ˆ︁b),(a,b̃)

=
∑︂
ˆ︁b
⎛⎜⎝ ∑︂
f,g:g(a)=ˆ︁b π(f, g)

⎞⎟⎠
⎛⎝ ∑︂
f,g:g(a)=b̃

π(f, g)
⎞⎠

=
⎛⎝ ∑︂
f,g:g(a)=b̃

π(f, g)
⎞⎠
⎛⎜⎝∑︂ˆ︁b

∑︂
f,g:g(a)=ˆ︁b π(f, g)

⎞⎟⎠
=

∑︂
f,g:g(a)=b̃

π(f, g) = σ̃(a,b̃).

Finally, notice that:

E(f,g)∼π [u1(a, g(a))] =
∑︂
b∈A2

u1(a, b)P [g(a) = b] =
∑︂
b∈A2

u1(a, b)
∑︂

f,g:g(a)=b
π(f, g).

With all of this notation we are ready to formally describe what no-policy regret

play promises in the game setting in terms of an equilibrium.

Definition 4.4.4. A distribution π over F1 × F2 is a policy equilibrium if for

all fixed actions a ∈ A1 and b ∈ A2, which generate Markov chains Ma and Mb

respectively, with stationary distributions σa and σb from Theorem 4.4.1, there exists

a stationary distribution σ of the Markov chain M induced by π such that:

E(a,b)∼σ [u1(a, b)] ≥ E(a,b)∼σa [u1(a, b)]

E(a,b)∼σ [u2(a, b)] ≥ E(a,b)∼σb [u2(a, b)] .
(4.1)

In other words, π is a policy equilibrium if there exists a stationary distribution σ

of the Markov chain corresponding to π, such that, when actions are drawn according

to σ, no player has incentive to change their action. We present a simple example of a

policy equilibrium see Section 4.4.4.

152

4.4.1 Convergence to the set of policy equilibria

We have tried to formally capture the notion of equilibria in which player 1’s deviation

would lead to a reaction from player 2 and vice versa in Definition 4.4.4. This definition

is inspired by the counter-factual guarantees of no policy regret play and we would like

to check that if players’ strategies yield sublinear policy regret then the play converges

to a policy equilibrium. Since the definition of sublinear policy regret does not include

a distribution over functional spaces but only works with empirical distributions of

play, we would like to present our result in terms of distributions over the action space

A. Thus we begin by defining the set of all product distributions σ× σa × σb, induced

by policy equilibria π as described in the previous subsection. Here σa and σb represent

the deviation in strategy if player 1 changed to playing the fixed action a ∈ A1 and

player 2 changed to playing the fixed action b ∈ A2 respectively as constructed in

Theorem 4.4.1.

Definition 4.4.5. For a policy equilibrium π, let Sπ be the set of all stationary

distributions which satisfy the equilibrium inequalities (4.1), Sπ := {σ × σa × σb :

(a, b) ∈ A} . Define S = ⋃︁
π∈Π Sπ, where Π is the set of all policy equilibria.

Our main result states that the sequence of empirical product distributions formed

after T rounds of the game ˆ︁σ × ˆ︁σa × ˆ︁σb is going to converge to S. Here ˆ︁σa and ˆ︁σb
denote the distributions of deviation in play, when player 1 switches to the fixed action

a ∈ A1 and player 2 switches to the fixed action b ∈ A2 respectively. We now define

these distributions formally.

Definition 4.4.6. Suppose player 1 is playing an algorithm with output at time t

given by ft : At
2 → ∆A1 i.e. p1

t = ft(b0:t−1). Similarly, suppose player 2 is playing an

algorithm with output at time t given by p2
t = gt(a0:t−1). The empirical distribution

at time T is ˆ︁σ := 1
T

∑︁T
t=1 pt, where pt = p1

t × p2
t is the product distribution over A

at time t. Further let (p2
a)t = gt(a0:t−m, a, . . . , a) denote the distribution at time t,

153

provided that player 1 switched their strategy to the constant action a ∈ A1. Let δa

denote the distribution over A1 which puts all the probability mass on action a. Let

(pa)t = δa × (p2
a)t be the product distribution over A, corresponding to the change of

play at time t. Denote by ˆ︁σa = 1
T

∑︁T
t=1(pa)t the empirical distribution corresponding

to the change of play. The distribution ˆ︁σb is defined similarly.

Suppose that ft and gt are no-policy regret algorithms, then our main result states

that the sequence (ˆ︁σ × ˆ︁σa × ˆ︁σb)T converges to the set S.

Theorem 4.4.2. If the algorithms played by player 1 in the form of ft and player 2

in the form of gt give sub-linear policy regret sequences, then the sequence of product

distributions (ˆ︁σ × ˆ︁σa × ˆ︁σb)∞
T=1 converges weakly to the set S.

In particular if both players are playing MWU or Exp3, we know that they

will have sublinear policy regret. Not surprisingly, we can show something slightly

stronger as well. Let σ̃, σ̃a and σ̃b denote the empirical distributions of observed play

corresponding to ˆ︁σ, ˆ︁σa and ˆ︁σb, i.e. σ̃ = 1
T
δt, where δt denotes the Dirac distribution,

putting all weight on the played actions at time t. Then these empirical distributions

also converge to S almost surely.

Corollary 4.4.3. The sequence of product distributions (σ̃ × σ̃a × σ̃b)∞
T=1 converges

weakly to the set S almost surely.

We would like to emphasize that the convergence guarantee of Theorem 4.4.2 does

not rely on there being a unique stationary distribution of the empirical Markov chains
ˆ︂M, ˆ︂Ma and ˆ︂Mb or their respective limits M,Ma,Mb. Indeed, Theorem 4.4.2 shows

that any limit point of {(ˆ︁σ, ˆ︁σa, ˆ︁σb)T}∞
T=1 satisfies the conditions of Definition 4.4.4.

The proof does not require that any of the respective Markov chains have a unique

stationary distribution, but rather requires only that ˆ︁σ has sublinear policy regret.

We would also like to remark that {(ˆ︁σ, ˆ︁σa, ˆ︁σb)T}∞
T=1 need not have a unique limit and

154

our convergence result only guarantees that the sequence is going to the set S. This

is standard when showing that any type of no regret play converges to an equilibrium,

see for example Stoltz and Lugosi (2007).

4.4.2 Proof sketch for Theorem 4.4.2

The proof of Theorem 4.4.2 has three main steps. The first step defines the natural

empirical Markov chains ˆ︂M, ˆ︂Ma and ˆ︂Mb from the empirical play (pt)tt=1 and shows that

the empirical distributions ˆ︁σ, ˆ︁σa and ˆ︁σb are stationary distributions of the respective

Markov chains. The next step is to show that the empirical Markov chains converge

to Markov chains M, Ma and Mb induced by some distribution π over F . The final

step is to show that π is a policy equilibrium.

We begin with the definition of the empirical Markov chains.

Definition 4.4.7. Let the empirical Markov chain be ˆ︂M, with ˆ︂Mi,j =
1
T

∑︁T

t=1 pt(xi)pt(xj)
1
T

∑︁T

t=1 pt(xi)

if 1
T

∑︁T
t=1 pt(xi) ̸= 0 and 0 otherwise, where pt is defined in 4.4.6. For any fixed a ∈ A1,

let the empirical Markov chain corresponding to the deviation in play of player 1 be
ˆ︂Ma, with (ˆ︂Ma)i,j =

1
T

∑︁T

t=1(pa)t(xi)(pa)t(xj)
1
T

∑︁T

t=1(pa)t(xi)
, if 1

T

∑︁T
t=1(pa)t(xi) ̸= 0 and 0 otherwise, where

(pa)t is defined in 4.4.6. The Markov chain ˆ︂Mb is defined similarly for any b ∈ A2.

The intuition behind constructing these Markov chains is as follows – if we were

only provided with the observed empirical play (xt)Tt=1 = (at, bt)Tt=1 and someone told

us that the xt’s were coming from a Markov chain, we could try to build an estimator of

the Markov chain by approximating each of the transition probabilities. In particular

the estimator of transition from state i to state j is given by M̃i,j =
1
T

∑︁T

t=1 δt−1(xi)δt(xj)
1
T

∑︁T

t=1 δt(xi)
,

where δt(xi) = 1 if xi occurred at time t and 0 otherwise. When the players are

playing according to a no-regret algorithm i.e. at time t, xt is sampled from pt, it is

possible to show that M̃i,j concentrates to ˆ︂Mi,j (see section 4.5.1). Not only does ˆ︂M
arise naturally, but it turns out that the empirical distribution ˆ︁σ defined in 4.4.6 is

also a stationary distribution of ˆ︂M.

155

Lemma 4.4.4. The distribution of play ˆ︁σ = 1
T

∑︁T
t=1 pt is a stationary distribution of

ˆ︂M. Similarly the distributions σ̃, ˆ︁σa, σ̃a, ˆ︁σb and σ̃b are stationary distributions of the

Markov chains M̃,ˆ︂Ma, M̃a,ˆ︂Mb and M̃b respectively.

Proof. We show the result for ˆ︁σ and ˆ︂M. The rest of the results can then be derived in

the same way.

(ˆ︁σ⊤ˆ︂M)j =
|A|∑︂
i=1

(︄
1
T

T∑︂
t=1

pt(xi)
)︄ 1

T

∑︁T
t=1 pt(xi)pt(xj)

1
T

∑︁T
t=1 pt(xi)

= 1
T

T∑︂
t=1

pt(xj)
|A|∑︂
i=1

pt(xi) = 1
T

T∑︂
t=1

pt(xj),

where the first equality holds because the i-th entry of the vector ˆ︁σ is exactly
1
T

∑︁T
t=1 pt(xi) and the (i, j)-th entry of ˆ︂M by definition is

1
T

∑︁T

t=1 pt(xi)pt(xj)
1
T

∑︁T

t=1 pt(xi)
, and the

last equality holds because pt is a distribution over actions so ∑︁|A|
i=1 pt(xi) = 1.

Suppose that both players are playing MWU for T rounds. Then Lemma 4.4.4

together with Theorems 4.2.1 and the stability of MWU imply that E(a,b)∼ˆ︁σ [u1(a, b)] ≥

E(a,b)∼ˆ︁σa [u1(a, b)] − O(m/
√
T). A similar inequality holds for player 2 and ˆ︁σb. As

T → ∞, the inequality above becomes similar to (4.1). This will play a crucial role in

the proof of our convergence result, which shows that ˆ︁σ, ˆ︁σa and ˆ︁σb converge to the set

of policy equilibria. We would also like to guarantee that the empirical distributions

of observed play σ̃, σ̃a and σ̃b also converge to this set. To show this second result, we

are going to proof that σ̃ approaches ˆ︁σ almost surely as T goes to infinity.

Lemma 4.4.5. Let ˆ︁σ = 1
T

∑︁T
t=1 pt be the empirical distribution after T rounds of

the game and let σ̃ = 1
T

∑︁T
t=1 δt be the empirical distribution of observed play. Then

lim supT→∞∥σ̃ − ˆ︁σ∥1 = 0 almost surely. Similarly, for the distributions corresponding

to deviation in play we have lim supT→∞∥σ̃a− ˆ︁σa∥1 = 0 and lim supT→∞∥σ̃b− ˆ︁σb∥1 = 0

almost surely.

Our next step is to show that the empirical Markov chains ˆ︂M converge to a Markov

chain M induced by some distribution π over the functional space F . We do so by

constructing a sequence of empirical distributions ˆ︁π over F , based on the players’

156

strategies, which induce ˆ︂M. We can then consider every convergent subsequence

of (ˆ︁π)∞
Tℓ=1 with limit point π and argue that the corresponding sequence (ˆ︂M)∞

Tℓ=1 of

Markov chains converges to the Markov chain induced by π.

Definition 4.4.8. Let ˆ︁π be the distribution over F , such that the probability to

sample any fixed f : A2 → A1 and g : A1 → A2 is ˆ︁π(f, g) = ∏︁
i∈|A|

∑︁
t
pt(xi)pt(yi)∑︁
t=1 pt(xi)

,

where xi = (ai, bi) and yi = (f(bi), g(ai)). Similarly, let ˆ︁πa and ˆ︁πb be the distributions

over F constructed as above but by using the empirical distribution of deviated play

induced by player 1 deviating to action a ∈ A1 and player 2 deviating to action b ∈ A2.

The next lemma checks that ˆ︁π is really a probability distribution.

Lemma 4.4.6. The functionals ˆ︁π, ˆ︁πa and ˆ︁πb are all probability distributions.

Proof. Consider the space of all transition events for a fixed (a, b) pair i.e. S(a,b) =

{((a′, b′) × (a, b)) : (a′, b′) ∈ A}. There is an inherent probability measure on this set,

given by P [(a′, b′) × (a, b)] =
∑︁

t
pt(a,b)pt(a′,b′)∑︁

t
pt(a,b)

. It is easy to see that this is a probability

measure, since the measure of the whole set is exactly

∑︂
(a′,b′)∈A

∑︁
t pt(a, b)pt(a′, b′)∑︁

t pt(a, b)
=
∑︁
t pt(a, b)

∑︁
(a′,b′)∈A pt(a′, b′)∑︁

t pt(a, b)
= 1.

The set of all F can exactly be thought of as ×(a,b)∈AS(a,b) and the function ˆ︁π defined

in 4.4.8 is precisely the product measure on that set. Similar arguments show that ˆ︁πa
and ˆ︁πb are probability distributions.

The proof of the above lemma reveals something interesting about the construction

of ˆ︁π. Fix the actions (a, b) ∈ A. Then the probability to sample a function pair

(f, g) which map (a, b) to (a′, b′) i.e. a′ = f(a) and b′ = f(b) is precisely equal to the

entry ˆ︂M(a,b),(a′,b′) of the empirical Markov chain. Since every function pair (f, g) ∈ F

is determined by the way A is mapped, and we have already have a probability

distribution for a fixed mapping (a, b) to (a′, b′), we can just extend this to ˆ︁π by taking

157

the product distribution over all pairs (a, b) ∈ A. This construction gives us exactly

that ˆ︂M is induced by ˆ︁π.

Lemma 4.4.7. Let ˆ︂M, ˆ︂Ma and ˆ︂Mb be the empirical Markov chains defined in 4.4.7,

then the induced Markov chain from ˆ︁π is exactly ˆ︂M and the induced Markov chains

from ˆ︁πa and ˆ︁πb are exactly ˆ︂Ma and ˆ︂Mb.

Proof sketch. The proof is by direct computation.

The last step of the proof is to show that any limit point π of (ˆ︁π)T is necessarily a

policy equilibrium. This is done through an argument by contradiction. In particular

we assume that a limit point π is not a policy equilibrium. The limit point π

induces a Markov chain M, which we can show is the limit point of the corresponding

subsequence of (ˆ︂M)T by using lemma 4.4.7. Since π is not a policy equilibrium, no

stationary distribution of M can satisfy the inequalities (4.1). We can now show that

the subsequence of (ˆ︁σ)T which are stationary distributions of the corresponding ˆ︂M’s,

converges to a stationary distribution of M. This, however, is a contradiction because

of the next theorem.

Theorem 4.4.8. Let P be the set of all product distributions σ×σa ×σb which satisfy

the inequalities in Equation 4.1:

E(a,b)∼σ [u1(a, b)] ≥ E(a,b)∼σa [u1(a, b)]

E(a,b)∼σ [u2(a, b)] ≥ E(a,b)∼σb [u2(a, b)] .

Let ˆ︁σT be the empirical distribution of play after T rounds and let ˆ︁σTa be the empirical

distribution when player 1 switches to playing action a and define ˆ︁σTb similarly for

player 2. Then the product distribution ˆ︁σT × ˆ︁σTa × ˆ︁σTb converges to weakly to the set P .

Proof sketch. The proof is by contradiction. We assume that there is a convergent

subsequence of (ˆ︁σT × ˆ︁σTa × ˆ︁σTb). The existence of such a subsequence implies that one

of the inequalities in Equation 4.1 is violated which is a contradiction.

158

We now sketch how the rest of proof of Theorem 4.4.2. The proof again goes by

contradiction. Assume π is not a policy equilibrium, this implies that no stationary

distribution of M and corresponding stationary distributions of Ma and Mb can satisfy

inequalities (4.1). Since the empirical distributions ˆ︁σ, ˆ︁σa and ˆ︁σb of the play satisfies

inequalities (4.1) up to an o(1) additive factor, we can show, in Theorem 4.4.8, that

in the limit, the policy equilibrium inequalities are exactly satisfied. Combined

with the convergence of ˆ︂M, ˆ︂Ma and ˆ︂Mb to M, Ma and Mb, respectively, this implies

that stationary distributions of M, Ma and Mb, satisfying Equation 4.1, giving a

contradiction.

4.4.3 Relation of policy equlibria to CCEs

So far we have defined a new class of equilibria and shown that they correspond to no

policy regret play. Furthermore, we know that if both players in a 2-player game play

stable no external regret algorithms, then their play also has sublinear policy regret.

It is natural to ask if every CCE is also a policy equilibrium: if σ is a CCE, is there a

corresponding policy equilibrium π which induces a Markov chain M for which σ is a

stationary distribution satisfying (4.1)? We show that the answer to this question is

positive:

Theorem 4.4.9. For any CCE σ of a 2-player game G, there exists a policy-equilibrium

π which induces a Markov chain M with stationary distribution σ.

Proof sketch. To prove this, we show that for any CCE we can construct stable no-

external regret algorithm which converge to it, and so since stable no-external regret

algorithms always converge to policy equilibria (Theorem 4.2.1), this implies the CCE

is also a policy equilibrium.

However, we show the converse is not true: policy equilibria can give rise to

behavior which is not a CCE. Our proof appeals to a utility sequence which is similar

159

in spirit to the one in Theorem 4.1.1, but is adapted to the game setting.

Theorem 4.4.10. There exists a 2-player game G and product distributions σ × σa ×

σb ∈ S (where S is defined in Definition 4.4.5 as the possible distributions of play

from policy equilibria), such that σ is not a CCE of G.

In the next section, Section 4.4.4, we give a simple example of a policy equilibrium

which is not a CCE.

4.4.4 Simple example of a policy equilibrium

We now present a simple 2-player game with strategies of the players which lead to

a policy equilibrium, which in fact is not a CCE. Further these strategies give the

asymptotically maximum utility for both row and column players over repeated play

of the game. The idea behind the construction is very similar to the one showing

incompatibility of policy regret and external regret. The utility matrix for the game is

Table 4-I: Utility matrix

Player 1\Player 2 c d
a (3/4,1) (0,1)
b (1,1) (0,1)

given in Table 4-I. Since the column player has the same payoff for all his actions they

will always have no policy and no external regret. The strategy the column player

chooses is to always play the function f : A1 → A2:

f(x) =

⎧⎨⎩c x = a

d x = b.

In the view of the row player, this strategy corresponds to playing against an adversary

which plays the familiar utility functions:

ut(at−1, at) =

⎧⎪⎪⎨⎪⎪⎩
1 at−1 = a, at = b
3
4 at−1 = at = a

0 otherwise.

160

We have already observed that on these utilities, the row player can have either no

policy regret or no external regret but not both. What is more the utility of no policy

regret play is higher than the utility of any of the no external regret strategies. This

already implies that the row player is better off playing according to the no policy

regret strategy which consists of always playing the fixed function g : A2 → A1 given

by g(x) = a. Below we present the policy equilibrium π ∈ ∆F , corresponding Markov

chain M ∈ R|A|×|A| and its stationary distribution σ ∈ ∆A satisfying the no policy

regret requirement.

π(f̃ , g̃) = δ(f,g),M =

(a, c) (a, d) (b, c) (b, d)⎛⎜⎜⎝
⎞⎟⎟⎠

(a, c) 1 0 0 0
(a, d) 1 0 0 0
(b, c) 0 1 0 0
(b, d) 0 1 0 0

, σ(x, y) = δ(a,c).

Suppose the row player was playing any no policy regret strategy, for example one

coming from a no policy regret algorithm, as a response to the observed utilities ut(·, ·).

Since the only sublinear policy regret play for these utilities is to only deviate from

playing a a sublinear number of times we see that the empirical distribution of play

for the row player converges to the dirac distribution δa. Together with the strategy of

the column player, this implies the column player chooses the action d only a sublinear

number of times and thus their empirical distribution of play converges to δc. It now

follows that the empirical distribution of play converges to δa × δc = δ(a,c) ∈ ∆A.

We can similarly verify that the empirical Markov chain will converge to M and the

empirical functional distribution ˆ︁π converges to π. Theorem 4.4.2 guarantees that

because both players incur only sublinear regret π is a policy equilibrium. It should

also be intuitively clear why this is the case without the theorem – suppose that the

row player switches to playing the fixed action b. The resulting functional distribution,

161

Markov chain and stationary distributions become:

πb(f̃ , g̃) = δ(f,ˆ︁g≡b),Mb =

(a, c) (a, d) (b, c) (b, d)⎛⎜⎜⎝
⎞⎟⎟⎠

(a, c) 0 0 1 0
(a, d) 0 0 1 0
(b, c) 0 0 0 1
(b, d) 0 0 0 1

, σb(x, y) = δ(b,d).

The resulting utility for the row player is now 0, compared to the utility gained from

playing according to π, which is 3/4.

4.5 Detailed proofs from Section 4.4

Proof of Lemma 4.4.7. Consider ˆ︂M(a,b),(a′,b′) =
∑︁T

t=1 pt(a
′,b′)pt(a,b)∑︁T

t=1 pt(a,b)
. The transition prob-

ability induced by ˆ︁π is exactly

P [(a′, b′)|(a, b)] =
∑︂

(f,g):(f(b),g(a))=(a′,b′)
ˆ︁π(f, g) =

∑︂
(f,g):(f(b),g(a))=(a′,b′)

∏︂
i∈[|A|]

∑︁
t pt(xi)pt(yi)∑︁
t=1 pt(xi)

=
∑︂

(f,g):(f(b),g(a))=(a′,b′)

∑︁
t pt(a, b)pt(a′, b′)∑︁

t=1 pt(a, b)
∏︂

i∈[|A|],(xi,yi) ̸=((a,b),(a′,b′)

∑︁
t pt(xi)pt(yi)∑︁
t=1 pt(xi)

=
∑︁
t pt(a, b)pt(a′, b′)∑︁

t=1 pt(a, b)
∑︂

(f,g):(f(b),g(a))=(a′,b′)

∏︂
i∈[|A|],(xi,yi) ̸=((a,b),(a′,b′)

∑︁
t pt(xi)pt(yi)∑︁
t=1 pt(xi)

=
∑︁
t pt(a, b)pt(a′, b′)∑︁

t=1 pt(a, b)
,

where the last equality holds, because for fixed (f, g) with xi = (ai, bi) and yi =

(f(bi), g(ai)), the product ∏︁i∈[|A|],(xi,yi)̸=((a,b),(a′,b′)

∑︁
t
pt(xi)pt(yi)∑︁
t=1 pt(xi)

is exactly the conditional

probability ˆ︁π((f, g)|(f(b), g(a)) = (a′, b′)). The result for ˆ︁πa and ˆ︁πb is shown similarly.

Proof of Theorem 4.4.8. Theorem 4.4.8 follows from the fact that convergence in the

Prokhorov metric implies weak convergence. First notice that by Prokhorov’s Theorem

P(A) is a compact metric space with the Prokhorov metric. Thus by Tychonoff’s

Theorem the product space P(A)3 is compact in the maximum metric. Suppose for

a contradiction that the sequence (ˆ︁σT × ˆ︁σTa × ˆ︁σTb)T does not converge to the set S.

162

This implies that there exists some subsequence (ˆ︁σk × ˆ︁σka × ˆ︁σkb)k, converging to some

ˆ︁σ × ˆ︁σa × ˆ︁σb ̸∈ S. If ˆ︁σ × ˆ︁σa × ˆ︁σb ̸∈ S, then either E(a,b)∼σ [u1(a, b)] < E(a,b)∼σa [u1(a, b)]

or E(a,b)∼σ [u2(a, b)] < E(a,b)∼σb [u2(a, b)]. WLOG suppose the first inequality holds.

From our assumption, the continuity of u1 and the definition of the maximum metric

we have limk→∞ E(a,b)∼ˆ︁σk [u1(a, b)] = E(a,b)∼ˆ︁σ [u1(a, b)] and limk→∞ E(a,b)∼ˆ︁σka [u1(a, b)] =

E(a,b)∼ˆ︁σa [u1(a, b)]. Notice that by the fact ˆ︁σka is the average empirical distribution

if player 1 changed its play to the fixed action a ∈ A1 and ˆ︁σk being the average

empirical distribution it holds that E(a,b)∼ˆ︁σk [u1(a, b)] −E(a,b)∼ˆ︁σka [u1(a, b)] ≥ −o(1) and

thus limk→∞
[︂
E(a,b)∼ˆ︁σk [u1(a, b)] − E(a,b)∼ˆ︁σka [u1(a, b)]

]︂
≥ 0. The above implies:

0 ≤ lim
k→∞

[︂
E(a,b)∼ˆ︁σk [u1(a, b)] − E(a,b)∼ˆ︁σka [u1(a, b)]

]︂
= lim

k→∞
E(a,b)∼ˆ︁σk [u1(a, b)] − lim

k→∞
E(a,b)∼ˆ︁σka [u1(a, b)]

= E(a,b)∼ˆ︁σ [u1(a, b)] − E(a,b)∼ˆ︁σa [u1(a, b)] < 0,

which is a contradiction. Since A × A × A is separable then convergence in the

Prokhorov metric in P(A × A × A) is equivalent to weak convergence. Again we can

argue by contradiction – if we assume that (ˆ︁σT × ˆ︁σTa × ˆ︁σTb)T doesn’t converge to the

set S in the Prokhorov metric, then there exists some subsequence (ˆ︁σk × ˆ︁σka × ˆ︁σkb)k
which converges to some µ ∈ P(A3) such that µ ̸∈ S. First we argue that µ must

be a product measure i.e. µ = (ˆ︁σ × ˆ︁σa × ˆ︁σb). Let (ˆ︁σj × ˆ︁σja × ˆ︁σjb)j be a convergence

subsequence of (ˆ︁σk × ˆ︁σka × ˆ︁σkb)k in P(A)3, with limit (ˆ︁σ× ˆ︁σa × ˆ︁σb), then each of ˆ︁σj , ˆ︁σja
and ˆ︁σjb converge weakly to ˆ︁σ, ˆ︁σa and ˆ︁σb respectively and thus (ˆ︁σj × ˆ︁σja× ˆ︁σjb)j converges

weakly to ˆ︁σ × ˆ︁σa × ˆ︁σb and thus it converges in the Prokhorov metric of P(A3). This

implies that (ˆ︁σk × ˆ︁σka × ˆ︁σkb)k also converges weakly to ˆ︁σ× ˆ︁σa × ˆ︁σb and so µ is a product

measure. Again since µ ̸∈ S, assume WLOG E(a,b)∼ˆ︁σ [u1(a, b)] < E(a,b)∼ˆ︁σa [u1(a, b)].

Define f : A3 → R, f(a, b, c, d, e, f) = u1(a, b) − u1(c, d). f is continuous and from the

no-policy regret of the pair ˆ︁σk, ˆ︁σka we have:

0 ≤ lim
k→∞

E(a,b,c,d,e,f)∼(ˆ︁σk×ˆ︁σka×ˆ︁σk
b

)k [f(a, b, c, d, e, f)] = E(a,b,c,d,e,f)∼µ [f(a, b, c, d, e, f)] < 0,

163

which is again a contradiction.

Proof of Theorem 4.4.2. We consider the sequence of empirical distributions ˆ︁πT de-

fined in 4.4.8, over the functional space F1 × F2 and show that this sequence must

converge to the set of all policy equilibria Π in the Prokhorov metric on P(F1 × F2).

First, notice that since the functions f : A2 → A1 are from finite sets of actions to

finite sets of actions, we can consider the set F1 as a subset of a finite dimensional

vector space, with the underlying field of real numbers and the metric induced by

the l1 norm. Similarly, we can also equip F2 with the l1 norm. Since both F1 and

F2 are closed sets with respect to this metric and they are clearly bounded, they

are compact. Thus the set F1 × F2 is a compact set with the underlying metric d

being the maximum metric. By Prokhorov’s Theorem we know that P(F1 × F2) is a

compact metric space with the Prokhorov metric. Suppose that the sequence (ˆ︁πT)T

does not converge to Π. This implies that there is some convergent subsequence (ˆ︁πt)t
with a limit π outside of Π. Let M be the Markov chain induced by π and let ˆ︂MT be

the Markov chain induced by ˆ︁πT .

First we show that limt→∞ ∥ˆ︂Mt−M∥1 = 0. Recall that M(a,b),(a′,b′) = ∑︁
(f,g):f(b)=a′,g(a)=b′ π(f, g)

and that by lemma 4.4.7 ˆ︂Mt
(a,b),(a′,b′) = ∑︁

(f,g):f(b)=a′,g(a)=b′ ˆ︁πt(f, g). Notice that f, g

are continuous functions on F1 and F2, since the topology induced by the l1 met-

ric on both sets is exactly the the discrete topology and every function from a

topological space equipped with the discrete topology is continuous. Since con-

vergence in the Prokhorov metric implies weak convergence, we have that for any

fixed f, g, limt→∞ ˆ︁πt(f, g) = π(f, g). Since the sum ∑︁
(f,g):f(b)=a′,g(a)=b′ ˆ︁πt(f, g) is finite

this implies that limt→∞
∑︁

(f,g):f(b)=a′,g(a)=b′ ˆ︁πt(f, g) = ∑︁
(f,g):f(b)=a′,g(a)=b′ π(f, g) and so

limt→∞ ∥ˆ︂Mt − M∥1 = 0.

Next we show that any convergent subsequence (ˆ︁σk)k of (ˆ︁σt)t in the Prokhorov

metric, converges to a stationary distribution σ of M. First notice that (ˆ︁σk)k exists,

164

since P(A) is compact. Next, suppose σ is the limit of (ˆ︁σk)k in the Prokhorov metric.

This implies that limk→∞ ˆ︁σk(a, b) = σ(a, b), in particular if we consider A ⊂ R|A| and

ˆ︁σk, σ ∈ R|A| as vectors, then the above implies that limk→∞ ∥σ − ˆ︁σk∥1 = 0. Next we

construct the following sequence (σkn)kn of stationary distributions of M – choose

kn large enough, so that ∥M − ˆ︂Mkn∥ ≤ 1
n
. Such a kn exists, because (ˆ︂Mk)k is a

subsequence of (ˆ︂Mt)t which converges to M. By lemma 4.4.4, there exists a stationary

distribution σkn of M such that ∥ˆ︁σkn − σkn∥1 ≤ c
n
, for some constant c. We show

that σkn converges to σ. Fix some ϵ > 0, we find an N , such that for any n ≥ N

we have ∥σkn − σ∥1 < ϵ. Notice that ∥σkn − σ∥1 ≤ ∥σkn − ˆ︁σkn∥1 + ∥ˆ︁σkn − σ∥1. Since

∥σkn − ˆ︁σkn∥1 ≤ c
n

and by convergence, we know that for ϵ
2 , there exists N ′ such

that for any n ≥ N ′, ∥ˆ︁σkn − σ∥1 <
ϵ
2 , we can set N = max

(︂
2
cϵ
, N1

)︂
. Suppose, for a

contradiction, that σ is not a stationary distribution of M. Then there exists some ϵ

such that ∥σ⊤M − σ∥2 > ϵ. This implies:

ϵ < ∥σ⊤M − σ∥2 ≤ ∥σ⊤M − σ⊤
knM∥2 + ∥σ⊤

knM − σ∥2 < 2∥σkn − σ∥2,

where the last inequality holds by the fact σ − σkn is not a stationary distribution of

M and thus M can only shrink the difference as a stochastic matrix. The inequality

2∥σkn − σ∥2 > ϵ is a contradiction since we know that σkn converges to σ and thus σ

is a stationary distribution of M. Since strong convergence, implies weak convergence,

which in hand implies convergence in the Prokhorov metric for separable metric spaces,

we have shown that every convergent subsequence of (ˆ︁σt)t converges to a stationary

distribution of M in the Prokhorov metric.

Next, we show that (ˆ︁πta)t converges to πa. By assumption (ˆ︁πt)t converges weakly

to π. Since we are are in a finite dimensional space, we also have strong convergence.

In particular, for any g ∈ F2, we have

lim
t→∞

∑︂
f∈F1

ˆ︁πt(f, g) =
∑︂
f∈F1

lim
t→∞

ˆ︁πt(f, g) =
∑︂
f∈F1

π(f, g)

165

and so the sequence of marginal distribution also converges to the respective marginal

of π. Since ˆ︁πta is exactly the product distribution of the dirac distribution over F1

putting all weight on the constant function mapping everything to the fixed action

a and the marginal of ˆ︁πt over F2, by the convergence of marginals we conclude that

(ˆ︁πta)t converges to πa in the strong sense and thus in the Prokhorov metric. In the

same way we can show that (ˆ︁πtb)t converges to πb.

With a similar argument as for (ˆ︁σt) we show that every convergent subsequence of

(ˆ︁σta)t converges to a stationary distribution of Ma and any convergent subsequence

of (ˆ︁σtb)t converges to a stationary distribution of Mb. Because of the construction in

Theorem 4.4.1 and the convergence of ˆ︁πa to πa, we can guarantee that (ˆ︁σta)t converges

precisely to σa:

σa(a, b) =
∑︂

f,g:g(a)=b
πa(f, g) =

∑︂
f,g:g(a)=b

lim
t→∞

ˆ︁πta(f, g)
= lim

t→∞

∑︂
f,g:g(a)=b

ˆ︁πta(f, g) = lim
t→∞

ˆ︁σta(a, b).
Similarly ˆ︁σtb converges to ˆ︁σb. However, we assumed that π is not a policy equilibrium

and thus no stationary distributions of M, Ma and Mb can satisfy the policy equilibrium

inequalities. We now arrive at a contradiction since by Theorem 4.4.8 and the above,

we have that any limit point of (ˆ︁σt)t and the corresponding distributions for fixed

actions a and b are stationary distributions of M, Ma and Mb, respectively, which

satisfy the policy equilibrium inequalities.

4.5.1 Concentration of the estimated Markov chain

Lemma 4.5.1. With probability at least 1−|A|6 exp
(︂
−Tϵ2

4

)︂
it holds that | 1

T

∑︁T
t=1 pt−1(xi)pt(xj)−

1
T

∑︁T
t=1 δt−1(xi)δt(xj)| < ϵ and | 1

T

∑︁T
t=1 pt(xi) − 1

T

∑︁T
t=1 δt(xi)| < ϵ, simultaneously for

all i.

Proof. We consider the random variable Zt = δt(xi)−pt(xi), notice that E[Zt|p1, · · · , pt−1] =

0 so that {Zt}t is a bounded martingale sequence with |Zt| < 1 and thus by Azuma’s

166

inequality we have P
[︂⃓⃓⃓

1
T

∑︁T
t=1 Zt

⃓⃓⃓
≥ ϵ

]︂
< 2 exp

(︂
−Tϵ2

2

)︂
which shows that 1

T

∑︁T
t=1 δt(ai)

concentrates around 1
T

∑︁T
t=1 pt(xi). Let Rt = δt−1(xi)δt(xj) − pt−1(xi)pt(xj) and con-

sider the filtration {Ft}t, where F1 = ∅, Ft = Σ(δ1, · · · , δt) is the sigma algebra gener-

ated by the random variables δ1 to δt. Then |R2t| ≤ 1 and E[R2t|F1, · · · ,F2t−2] = 0,

so {R2t}t is also a bounded martingale difference and thus P
[︃⃓⃓⃓⃓

1
T

∑︁T
2
t=1 R2t

⃓⃓⃓⃓
≥ ϵ

2

]︃
<

2 exp
(︂
−Tϵ2

4

)︂
. A similar argument allows us to bound the sum of the R2t+1’s and a

union bound gives us P
[︂⃓⃓⃓

1
T

∑︁T
t=1 Rt

⃓⃓⃓
≥ ϵ

]︂
< 4 exp

(︂
−Tϵ2

4

)︂
. A union bound over all i

finishes the proof.

Definition 4.5.1. Define the perturbed distribution of player i at time t to be

p̃it = (1 −
√︂

|A|ϵ̃)pit + 1
√

|A|ϵ̃
|Ai| .

Lemma 4.5.2. The difference of expected utilities from playing according to (p̃it)Tt=1

instead of (pit)Tt=1 is at most 2T
√︂

|A|ϵ̃

Proof. From lemma 4.5.4 at each time step the difference of expected utility is bounded

by
√︂

|A|ϵ̃ in absolute value.

Theorem 4.5.3. If at time t player i plays according to p̃it , where ϵ̃ = T−1/4

|A| and

pt = p̃1
t (p̃2

t)⊤, then the regret for playing according to p̃it is at most O(T 7/8). Further

lim supT→∞∥M̃ − ˆ︂M∥2 = 0, almost surely. Additionally if σ̃ = 1
T

∑︁T
t=1 δt is the

stationary distribution of M̃ corresponding to the observed play and ˆ︁σ = 1
T

∑︁T
t=1 pt is

the stationary distribution of ˆ︂M corresponding to the averaged empirical distribution,

then lim supT→∞∥σ̃ − ˆ︁σ∥1 = 0 almost surely.

Proof. Set ϵ̃ = T−1/4

|A| . The regret bound of the no-external regret algorithms now

becomes O(T 7/8). We can, however, now guarantee that ∑︁T
t=1 pt(xi) ≥ T−1/4

|A| and

thus, combining this with the high probability bound we obtain that with probability

at least 1 − C exp
(︂
−Tϵ2

4

)︂
it holds that |M̃i,j − ˆ︂Mi,j| < 2ϵT 1/4

|A| . To see this, let x =
1
T

∑︁T
t=1 pt−1(xi)pt(xj), ˆ︁x = 1

T

∑︁T
t=1 δt−1(xi)δt(xj), y = 1

T

∑︁T
t=1 pt(xi), ˆ︁y = 1

T

∑︁T
t=1 δt(xi).

167

Then

|M̃i,j − ˆ︂Mi,j| =
⃓⃓⃓⃓
⃓xy −

ˆ︁xˆ︁y
⃓⃓⃓⃓
⃓ ≤ |x− ˆ︁x|

|y|
+ |ˆ︁x|

|1/y − 1/ˆ︁y|
≤ ϵ

ϵ̃
+ |ˆ︁x||y − ˆ︁y|

|yˆ︁y|
≤ 2ϵ

ϵ̃
,

where the last inequality holds because ˆ︁x ≤ ˆ︁y. Setting ϵ = T−1/3 and a union bound

we arrive at P
[︂
∥M̃ − ˆ︂M∥2 > T−1/12

]︂
< C exp

(︂
−T 1/3

4

)︂
. By Borel-Cantelli lemma we

have lim supT→∞∥M̃ − ˆ︂M∥2 = 0 almost surely. From lemma 4.5.1 and a union bound

we know that with P [∥σ̃ − ˆ︁σ∥1 > ϵ] < 2|A| exp
(︂
−Tϵ2

4

)︂
. Setting ϵ = T−1/3 and again

using Borel-Cantelli’s lemma we see that lim supT→∞∥σ̃ − ˆ︁σ∥1 = 0.

4.5.2 Auxiliary results

Lemma 4.5.4. Let σ and σ′ be two distributions supported on a finite set and let f

be a utility/loss function uniformly bounded by 1. If ∥σ − σ′∥1 ≤ ϵ then |Ea∼σ [f(a)] −

Ea∼σ′ [f(a)] | ≤ ϵ.

Proof.

|Es∼σ [f(s)] − Es′∼σ′ [f(s)] | = |
∑︂
s∈S

σ(s)f(s) −
∑︂
s∈S

σ′(s)f(s)|

= |
∑︂
s∈S

f(s)(σ(s) − σ′(s))| ≤
∑︂
s∈S

|σ(s) − σ′(s)| = ∥σ − σ′∥1 ≤ ϵ.

Lemma 4.5.5. Let M ∈ Rd×d and ˆ︂M ∈ Rd×d be two row-stochastic matrices, such that

∥M − ˆ︂M∥ ≤ ϵ, then for any stationary distribution ˆ︁σ of ˆ︂M, there exists a stationary

distribution σ of M, such that ∥ˆ︁σ − σ∥1 ≤ 4d2ϵ
δ

.

Proof. Let U ∈ Rd×k be the left singular vectors corresponding to the singular value 1

of M and let ˆ︁U ∈ Rd×l be the left singular vectors corresponding to the singular value

1 of ˆ︂M. First notice that

∥MM⊤ − ˆ︂Mˆ︂M⊤∥ ≤ ∥MM⊤ − Mˆ︂M⊤∥ + ∥Mˆ︂M⊤ − ˆ︂Mˆ︂M⊤∥ ≤ (∥M∥ + ∥ˆ︂M∥)∥M − ˆ︂M∥ ≤ 2ϵ

168

Denote the eigen-gap of M by δ, then by Wedin’s theorem (see for example lemma

B.3 in Allen-Zhu and Li (2016)) we have

∥ˆ︁U⊤U⊥∥ ≤ ∥MM⊤ − ˆ︂Mˆ︂M⊤∥
δ

≤ 2ϵ
δ
.

WLOG assume ˆ︁σ = (ˆ︁U)i
∥(ˆ︁U)i∥1

. This implies that ∥ˆ︁σ⊤U⊥∥2 ≤ 2dϵ
δ

and thus:

∥UU⊤ˆ︁σ − ˆ︁σ∥2 = ∥(I − UU⊤)ˆ︁σ∥2 = ∥U⊥(U⊥)⊤ˆ︁σ∥2 ≤ ∥ˆ︁σ⊤U⊥∥2 ≤ 2dϵ
δ
.

Let σi = Ui
∥Ui∥1

be the stationary distribution of M, corresponding to the i-th left

singular vector and let αi = (U⊤ˆ︁σ)i∥Ui∥1 ≥ 0. Then we have ∥∑︁i αiσi − ˆ︁σ∥1 ≤ 2d2ϵ
δ

,

where the inequality follows from the derivation above and the inequality between l1

and l2 norms. Let σ =
∑︁

i
αiσi

∥
∑︁

i
αiσi∥1

. This is a stationary distribution of M, since

σ⊤M = 1
∥∑︁i αiσi∥1

∑︂
i

αiσ
⊤
i M =

∑︁
i αiσi

∥∑︁i αiσi∥1
= σ.

Notice that by reverse triangle inequality we have

|∥
∑︂
i

αiσi∥1 − ∥ˆ︁σ∥1| ≤ 2d2ϵ

δ
,

or equivalently

|∥
∑︂
i

αiσi∥1 − 1| ≤ 2d2ϵ

δ
.

Thus we have:

∥σ − ˆ︁σ∥1 ≤ ∥
∑︂
i

αiσi − ˆ︁σ∥1 + ∥σ −
∑︂
i

αiσi − ˆ︁σ∥1 ≤ 2d2ϵ

δ
+ ∥σ∥1|1 − ∥

∑︂
i

αiσi∥1| ≤ 4d2ϵ

δ
.

Corollary 4.5.6. Let the empirical distribution of observed play be σ̃T = 1
T

∑︁T
t=1 δt,

the empirical distribution of play if player 1 deviated to playing fixed action a ∈ A1

be σ̃Ta and the empirical distribution of play if player 2 to action b ∈ A2 be σ̃Tb . The

sequence (σ̃T , σ̃Ta , σ̃Tb)T converges to the set P almost surely.

169

Proof. Lemma 4.5.4, together with Theorem 4.5.3 imply that

lim sup
T→∞

|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | = 0

almost surely i.e.

P
[︄
lim sup

T→∞
|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | = 0

]︄
= 1.

Since

lim sup
T→∞

|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | ≥

lim inf
T→∞

|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | ≥ 0,

this implies that

P
[︃
lim inf

T→∞
|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | = 0

]︃
= 1.

On the other hand this implies

P
[︄

lim inf
T→∞

|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | = 0
⋂︂

lim sup
T→∞

|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | = 0
]︄

≥ 1

and so

P
[︃

lim
T→∞

|E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] | = 0
]︃

= 1.

In a similar way we can get limT→∞ |E(a,b)∼σ̃Ta [u1(a, b)] − E(a,b)∼ˆ︁σTa [u1(a, b)] | = 0 a.s.

The above imply that limT→∞ E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] = 0 a.s. and

limT→∞ E(a,b)∼ˆ︁σTa [u1(a, b)] − E(a,b)∼σ̃Ta [u1(a, b)] = 0 a.s. and thus:

0 = lim
T→∞

E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] + lim
T→∞

E(a,b)∼ˆ︁σTa [u1(a, b)] − E(a,b)∼σ̃Ta [u1(a, b)]

= lim
T→∞

E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼σ̃Ta [u1(a, b)] + lim
T→∞

E(a,b)∼ˆ︁σTa [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)]

a.s.. Since E(a,b)∼ˆ︁σTa [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)] < o(1), this implies that

0 ≤ − lim
T→∞

E(a,b)∼ˆ︁σTa [u1(a, b)] − E(a,b)∼ˆ︁σT [u1(a, b)]

= lim
T→∞

E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼σ̃Ta [u1(a, b)]

a.s.. Now we can proceed as in the proof of Theorem 4.4.8.

170

Chapter 5

Limits of learning in Tabular
Reinforcement Learning

We provide improved gap-dependent regret bounds for reinforcement learning in finite

episodic Markov decision processes. Compared to prior work, our bounds depend

on alternative definitions of gaps. These definitions are based on the insight that,

in order to achieve a favorable regret, an algorithm does not need to learn how to

behave optimally in states that are not reached by an optimal policy. We prove

tighter upper regret bounds for optimistic algorithms and accompany them with new

information-theoretic lower bounds for a large class of MDPs. Our results show that

optimistic algorithms can not achieve the information-theoretic lower bounds even in

deterministic MDPs unless there is a unique optimal policy. The main contributions of

this chapter are based on work carried out during my internship at Google Research,

New York. This work was done in collaboration with Dr. Christoph Dann, Dr. Mehryar

Mohri, and Dr. Julian Zimmert.

5.1 Instance dependent bounds in prior work and
limitations

While the performance of RL algorithms in tabular Markov decision processes has

been the subject of many studies in the past (e.g. Fiechter, 1994; Kakade, 2003;

171

Osband et al., 2013; Dann et al., 2017; Azar et al., 2017; Jin et al., 2018; Zanette

and Brunskill, 2019; Dann, 2019), the vast majority of existing analyses focuses on

worst-case problem-independent regret bounds, which only take into account the size

of the MDP, the horizon H and the number of episodes K.

Recently, however, some significant progress has been achieved towards deriving

more optimistic problem-dependent guarantees. This includes more refined regret

bounds for the tabular episodic setting that depend on structural properties of the

specific MDP considered (Simchowitz and Jamieson, 2019; Lykouris et al., 2019; Jin

and Luo, 2020; Foster et al., 2020b; He et al., 2020). Motivated by instance-dependent

analyses in multi-armed bandits (Lai and Robbins, 1985), these analyses derive gap-

dependent regret-bounds of the form O
(︂∑︁

(s,a)∈S×A
H log(K)
gap(s,a)

)︂
, where the sum is over

state-actions pairs (s, a) and where the gap notion is defined as the difference of the

optimal value function V ∗ of the Bellman optimal policy π∗ and the Q-function of

π∗ at a sub-optimal action: gap(s, a) = V ∗(s) − Q∗(s, a). We will refer to this gap

definition as value-function gap in the following. We note that a similar notion of

gap has been used in the infinite horizon setting to achieve instance-dependent bounds

(Auer and Ortner, 2007; Tewari and Bartlett, 2008; Auer et al., 2009; Filippi et al.,

2010; Ok et al., 2018), however, a strong assumption about irreducability of the MDP

is required. We discuss such bounds in Section 5.3.

While regret bounds based on these value function gaps generalize the bounds

available in the multi-armed bandit setting, we argue that they have a major limitation.

The bound at each state-action pair depends only on the gap at the pair and treats

all state-action pairs equally, ignoring their topological ordering in the MDP. This can

have a major impact on the derived bound. In this paper, we address this issue and

formalize the following key observation about the difficulty of RL in an episodic MDP

through improved instance-dependent regret bounds:

172

Value-function gap (prior) Return gap (ours)

General
Regret
bounds

O
(︃∑︂

s,a

H log (K)
gap(s, a)

)︃
O
(︃∑︂

s,a

log (K)
gap(s, a)

)︃

Ω
(︃ ∑︂
s,a : s∈π∗

log (K)
gap(s, a)

)︃
Ω
(︃∑︂

s,a

log (K)
Hgap(s, a)

)︃

Example
on the

left

gap(s1, a2) =
c

gap(s2, a4) =
ϵ

gap(s1, a2) = c
gap(s2, a4) = c+ϵ

H
≈ c

O
(︃
SH log (K)

ϵ

)︃
O
(︃
SH log (K)

c

)︃
Figure 5-1: Comparison of our contributions in MDPs with deterministic transitions.
Bounds only include the main terms and all sums over (s, a) are understood to only
include terms where the respective gap is nonzero. gap is a our alternative return
gap definition introduced later (Definition 5.4.1).

Learning a policy with optimal return does not require an RL
agent to distinguish between actions with similar outcomes (small
value-function gap) in states that can only be reached by taking
highly suboptimal actions (large value-function gap).

To illustrate this insight, consider autonomous driving, where each episode corre-

sponds to driving from a start to a destination. If the RL agent decides to run a red

light on a crowded intersection, then a car crash is inevitable. Even though the agent

could slightly affect the severity of the car crash by steering, this effect is small and,

hence, a good RL agent does not need to learn how to best steer after running a red

light. Instead, it would only need a few samples to learn to obey the traffic light in the

first place as the action of disregarding a red light has a very large value-function gap.

To understand how this observation translates into regret bounds, consider the

toy example in Figure 5-1. This MDP has deterministic transitions and only terminal

rewards with c ≫ ϵ > 0. There are two decision points, s1 and s2, with two actions

each, and all other states have a single action. There are three policies which govern

the regret bounds: π∗ (red path) which takes action a1 in state s1; π1 which takes

action a2 at s1 and a3 at s2 (blue path); and π2 which takes action a2 at s1 and a4 at

s2 (green path). Since π∗ follows the red path, it never reaches s2 and achieves optimal

173

return c + ϵ, while π1 and π2 are both suboptimal with return ϵ and 0 respectively.

Existing value-function gaps evaluate to gap(s1, a2) = c and gap(s2, a4) = ϵ which

yields a regret bound of order H log (K) (1/c+ 1/ϵ). The idea behind these bounds is

to capture the necessary number of episodes to distinguish the value of the optimal

policy π∗ from the value of any other sub-optimal policy on all states. However,

since π∗ will never reach s2 it is not necessary to distinguish it from any other policy

at s2. A good algorithm only needs to determine that a2 is sub-optimal in s1, which

eliminates both π1 and π2 as optimal policies after only log (K) /c2 episodes. This

suggests a regret of order O(log (K) /c). The bounds presented in this paper achieve

this rate up to factors of H by replacing the gaps at every state-action pair with the

average of all gaps along certain paths containing the state action pair. We call these

averaged gaps return gaps. The return gap at (s, a) is denoted as gap(s, a). Our new

bounds replace gap(s2, a4) = ϵ by gap(s2, a4) ≈ 1
2 gap(s1, a2) + 1

2 gap(s2, a4) = Ω(c).

Notice that ϵ and c can be selected arbitrarily in this example. In particular, if we

take c = 0.5 and ϵ = 1/
√
K our bounds remain logarithmic O(log (K)), while prior

regret bounds scale as
√
K.

This work is motivated by the insight just discussed. First, we show that improved

regret bounds are indeed possible by proving a tighter regret bound for StrongEuler,

an existing algorithm based on the optimism-in-the-face-of-uncertainty (OFU) principle

(Simchowitz and Jamieson, 2019). Our regret bound is stated in terms of our new

return gaps that capture the problem difficulty more accurately and avoid explicit

dependencies on the smallest value function gap gapmin. Our technique applies to

optimistic algorithms in general and as a by-product improves the dependency on

episode length H of prior results. Second, we investigate the difficulty of RL in episodic

MDPs from an information-theoretic perspective by deriving regret lower-bounds.

We show that existing value-function gaps are indeed sufficient to capture difficulty

of problems but only when each state is visited by an optimal policy with some

174

probability. Finally, we prove a new lower bound when the transitions of the MDP

are deterministic that depends only on the difference in return of the optimal policy

and suboptimal policies, which is closely related to our notion of return gap.

5.2 Problem setting and notation

We now recall some of the notation and the RL setting introduced in Section 1.5.

We consider reinforcement learning in episodic tabular MDPs with a fixed horizon.

An MDP can be described as a tuple (S,A, P, R,H), where S and A are state- and

action-space of size S and A respectively, P is the state transition distribution with

P (·|s, a) ∈ ∆S−1 the next state probability distribution, given that action a was

taken in the current state s. R is the reward distribution defined over S × A and

r(s, a) = E[R(s, a)] ∈ [0, 1]. Episodes admit a fixed length or horizon H.

We consider layered MDPs: each state s ∈ S belongs to a layer κ(s) ∈ [H]

and the only non-zero transitions are between states s, s′ in consecutive layers, with

κ(s′) = κ(s) + 1. This common assumption (see e.g. Krishnamurthy et al., 2016)

corresponds to MDPs with time-dependent transitions, as in (Jin et al., 2018; Dann

et al., 2017), but allows us to omit an explicit time-index in value-functions and

policies. For ease of presentation, we assume there is a unique start state s1 with

κ(s1) = 1 but our results can be generalized to multiple (possibly adversarial) start

states. Similarly, for convenience, we assume that all states are reachable by some

policy with non-zero probability, but not necessarily all policies or the same policy.

We denote by K the number of episodes during which the MDP is visited. Before

each episode k ∈ [K], the agent selects a deterministic policy πk : S → A out of a

set of all policies Π and πk is then executed for all H time steps in episode k. For

each policy π, we denote by wπ(s, a) = P(Sκ(s) = s, Aκ(s) = a | Ah = π(Sh) ∀h ∈ [H])

and wπ(s) = ∑︁
aw

π(s, a) probability of reaching state-action pair (s, a) and state s

175

respectively when executing π. For convenience, supp(π) = {s ∈ S : wπ(s) > 0} is the

set of states visited by π with non-zero probability. The Q- and value function of a

policy π are

Qπ(s, a) = Eπ

⎡⎣ H∑︂
h=κ(s)

r(Sh, Ah)

⃓⃓⃓⃓
⃓⃓ Sκ(s) = s, Aκ(s) = a

⎤⎦, and V π(s) = Qπ(s, π(s))

and the regret incurred by the agent is the sum of its regret over K episodes

R(K) =
K∑︂
k=1

v∗ − vπk =
K∑︂
k=1

V ∗(s1) − V πk(s1), (5.1)

where vπ = V π(s1) is the expected total sum of rewards or return of π and V ∗ is the

optimal value function V ∗(s) = maxπ∈Π V
π(s). Finally, the set of optimal policies is

denoted as Π∗ = {π ∈ Π : V π = V ∗}. Note that we only call a policy optimal if it

satisfies the Bellman equation in every state, as is common in literature, but there may

be policies outside of Π∗ that also achieve maximum return because they only take

suboptimal actions outside of their support. The variance of the Q function at a state-

action pair (s, a) of the optimal policy is V∗(s, a) = V[R(s, a)] + Vs′∼P (·|s,a)[V ∗(s′)],

where V[X] denotes the variance of the r.v. X. The maximum variance over all

state-action pairs is V∗ = max(s,a) V∗(s, a). Finally, our proofs will make use of the

following clipping operator clip[a|b] = χ(a ≥ b)a that sets a to zero if it is smaller

than b.

5.3 Related work

Instance dependent regret lower bounds for the MAB were first introduced in Lai and

Robbins (1985). Later Graves and Lai (1997) extend such instance dependent lower

bounds to the setting of controlled Markov chains, while assuming infinite horizon

and certain properties of the stationary distribution of each policy. Building on their

work, more recently Combes et al. (2017) establish instance dependent lower bounds

for the Structured Stochastic Bandit problem. Very recently, in the stochastic MAB,

176

Garivier et al. (2019) generalize and simplify the techniques of Lai and Robbins (1985)

to completely characterize the behavior of uniformly good algorithms. The work of Ok

et al. (2018) builds on these ideas to provide an instance dependent lower bound for

infinite horizon MDPs, again under assumptions of how the stationary distributions

of each policy will behave and irreducibility of the Markov chain. The idea behind

deriving the above bounds is to use the uniform goodness of the studied algorithm to

argue that the algorithm must select a certain policy or action at least a fixed number

of times. This number is governed by a change of environment under which said

policy/action is now the best overall. The reasoning now is that unless the algorithm

is able to distinguish between these two environments it will have to incur linear regret

asymptotically. Since the algorithm is uniformly good this can not happen.

For infinite horizon MDPs with additional assumptions the works of Auer and Ort-

ner (2007); Tewari and Bartlett (2008); Auer et al. (2009); Filippi et al. (2010); Ok et al.

(2018) establish logarithmic in horizon regret bounds of the formO(D2S2A log (()T)/δ),

where δ is a gap-like quantity and D is a diameter measure. We now discuss the works

of (Tewari and Bartlett, 2008; Ok et al., 2018), which should give more intuition about

how the infinite horizon setting differs from our setting. Both works consider the

non-episodic problem and therefore make some assumptions about the MDP M. The

main assumption, which allows for computationally tractable algorithms is that of

irreducibility. Formally both works require that under any policy the induced Markov

chain is irreducible. Intuitively, the notion of irreducibility allows for coming up with

exploration strategies, which are close to min-max optimal and are easy to compute.

In (Ok et al., 2018) this is done by considering the same semi-infinite LP 5.27 as in

our work. Unlike our work, however, assuming that the Markov chain induced by the

optimal policy π∗ is irreducible allows for a nice characterization of the set Λ(θ) of

"confusing" environments. In particular the authors manage to show that at every

state s it is enough to consider the change of environment which makes the reward

177

of any action a : (s, a) ̸∈ π∗ equal to the reward of a′ : (s, a′) ∈ π∗. Because of the

irreducability assumption we know that the support of P (·|s, a) is the same as the

support of P (·|s, a′) and this implies that the above change of environment makes

the policy π which plays (s, a) and then coincides with π∗ optimal. Some more work

shows that considering only such changes of environment is sufficient for an equivalent

formulation to the LP5.27. Since this is an LP with at most S × A constraints it is

solvable in polynomial time and hence a version of the algorithm in (Combes et al.,

2017) results in asymptotic min-max rates for the problem. The exploration in (Tewari

and Bartlett, 2008) is also based on a similar LP, however, slightly more sophisticated.

Very recently there has been a renewed interest in proposing instance dependent

regret bounds for finite horizon tabular MDPs (Simchowitz and Jamieson, 2019; Lyk-

ouris et al., 2019; Jin and Luo, 2020). The works of (Simchowitz and Jamieson, 2019;

Lykouris et al., 2019) are based on the OFU principle and the proposed regret bounds

scale as O(∑︁(s,a) ̸∈π∗ H log (()T)/ gap(s, a) + SH log (()T)/ gapmin), disregarding vari-

ance terms and terms depending only poli-logarithmically on the gaps. The setting in

(Lykouris et al., 2019) also considers adversarial corruptions to the MDP, unknown to

the algorithm, and their bound scales with the amount of corruption. Jin and Luo

(2020) derive similar upper bounds, however, the authors assume a known transition

kernel and take the approach of modelling the problem as an instance of Online Linear

Optimization, through using occupancy measures (Zimin and Neu, 2013). For the

problem of Q-learning, Yang et al. (2020); Du et al. (2020), also propose algorithms

with regret scaling as O(SAH6 log (()T)/ gapmin). All of these bounds scale at least

as Ω(SH log (()T)/ gapmin). Simchowitz and Jamieson (2019) show an MDP instance

on which no optimistic algorithm can hope to do better.

5.4 Novel upper bounds for optimistic algorithms

178

5.4.1 Optimistic algorithms and StrongEuler

We begin this section by describing one approach to solving the RL problem in the

above setting which is through optimistic algorithms. Optimistic algorithms maintain

estimators of the Q-functions at every state-action pair such that there exists at least

one policy π for which the estimator, Q̄π, overestimates the Q-function of the optimal

policy, that is Q̄π(s, a) ≥ Q∗(s, a),∀(s, a) ∈ S × A. During episode k ∈ [K], the

optimistic algorithm selects the policy πk with highest optimistic value function V̄ k.

By definition, it holds that V̄ k(s) ≥ V ∗(s). The optimistic value and Q-functions

are constructed through finite-sample estimators of the true rewards r(s, a) and the

transition kernel P(·|s, a) plus bias terms, similar to estimators for the UCB MAB

algorithm. Careful construction of these bias terms is crucial for deriving min-max

optimal regret bounds in S,A and H (Azar et al., 2017). Bias terms which yield

the tightest known bounds come from concentration of martingales results such as

Freedman’s inequality (Freedman, 1975) and empirical Bernstein’s inequality for

martingales (Maurer and Pontil, 2009).

StrongEuler is the optimistic algorithm proposed by Simchowitz and Jamieson

(2019). The algorithm satisfies a stronger notion of optimism called strong optimism.

To define strong optimism we need the notion of surplus which roughly measures the

optimism at a fixed state-action pair. Formally the surplus at (s, a) during episode k

is defined as

Ek(s, a) = Q̄k(s, a) − r(s, a) − ⟨P (·|s, a), V̄ k⟩ . (5.2)

We say that an algorithm is strongly optimistic if Ek(s, a) ≥ 0,∀(s, a) ∈ S ×A, k ∈ [K].

Surpluses are also central to our new regret bounds and we will carefully discuss their

use in Section 5.4.3.

179

5.4.2 Prior optimistic regret bounds and opportunities for
improvement

As hinted to in the introduction, the way prior regret bounds treat value-function

gaps independently at each state-action pair can lead to excessively loose guarantees.

Bounds that use value-function gaps (Simchowitz and Jamieson, 2019; Lykouris et al.,

2019; Jin and Luo, 2020) scale at least as

∑︂
s,a : gap(s,a)>0

H log (K)
gap(s, a) +

∑︂
s,a : gap(s,a)=0

H log (K)
gapmin

,

where state-action pairs with zero gap appear, with gapmin = mins,a : gap(s,a)>0 gap(s, a),

the smallest positive gap. To illustrate where these bounds are loose, let us revisit the

example in Figure 5-1. Here, these bounds evaluate to H log(K)
c

+ H log(K)
ϵ

+ SH log(K)
ϵ

,

where the first two terms come from state-action pairs with positive value-function

gaps and the last term comes from all the state-action pairs with zero gaps. There

are several opportunities for improvement:

O.1 State-action pairs that can only be visited by taking optimal actions:

We should not pay the 1/ gapmin factor for such (s, a) as there are no other

suboptimal policies π to distinguish from π∗ in such states.

O.2 State-action pairs that can only be visited by taking at least one

suboptimal action: We should not pay the 1/ gap(s2, a3) factor for state-

action pair (s2, a3) and the 1/ gapmin factor for (s2, a4) because no optimal policy

visits s2. Such state-action pairs should only be accounted for with the price to

learn that a2 is not optimal in state s1. After all, learning to distinguish between

π1 and π2 is unnecessary for optimal return.

Both opportunities suggest that the price 1
gap(s,a) or 1

gapmin
that each state-action pair

(s, a) contributes to the regret bound can be reduced by taking into account the regret

incurred by the time (s, a) is reached. Opportunity O.1 postulates that if no regret can

180

be incurred up to (and including) the time step (s, a) is reached, then this state-action

pair should not appear in the regret bound. Similarly, if this regret is necessarily large,

then the agent can learn this with few observations and stop reaching (s, a) earlier than

gap(s, a) may suggest. To illustrate Opportunity O.2 better we consider an additional

example. Our example can be found in Figure 5-2. The MDP is an extension of the

Figure 5-2: Example for Opportunity O.2

one presented in Figure 5-1 with the new addition of actions a5 and a6 in state s3

and the new state following action a6. Again there is only a single action available at

all other states than s1, s2, s3. The reward of the state following action a6 is set as

r = c + ϵ/2. This defines a new sub-optimal policy π3 and the gap gap(s3, a6) = ϵ
2 .

Information theoretically it is impossible to distinguish π3 as sub-optimal in less than

Ω(log (K) /ϵ2) rounds and so any uniformly good algorithm would have to pay at

least O(log (K) /ϵ) regret. However, what we observed previously still holds true,

i.e., we should not have to play more than log (K) /c2 rounds to eliminate both π1

and π2 as sub-optimal policies. Prior work now suffers Opportunity O.2 as it would

pay log (K) /ϵ regret for all zero gap state-action pairs belonging to either π1 or π2,

essentially evaluating to SA log (K) /ϵ. On the other hand our bounds will only pay

log (K) /ϵ regret for zero gap state-action pairs belonging to π3.

Since the total regret incurred during one episode by a policy π is simply the

181

expected sum of value-function gaps visited (Lemma 5.5.1 in Section 5.5),

v∗ − vπ = Eπ
[︄
H∑︂
h=1

gap(Sh, Ah)
]︄
, (5.3)

we can measure the regret incurred up to reaching (St, At) by the sum of value function

gaps ∑︁t
h=1 gap(Sh, Ah) up to this point t. We are interested in the regret incurred

up to visiting a certain state-action pair (s, a) which π may visit only with some

probability. We therefore need to take the expectation of such gaps conditioned on

the event that (s, a) is actually visited. We further condition on the event that this

regret is nonzero, which is exactly the case when the agent encounters a positive

value-function gap within the first κ(s) time steps. We arrive at

Eπ

⎡⎣κ(s)∑︂
h=1

gap(Sh, Ah)
⃓⃓⃓⃓
⃓ Sκ(s) = s, Aκ(s) = a,B ≤ κ(s)

⎤⎦ ,
where B = min{h ∈ [H + 1] : gap(Sh, Ah) > 0} is the first time a non-zero gap

is visited. This quantity measures the regret incurred up to visiting (s, a) through

suboptimal actions. If this quantity is large for all policies π, then a learner will stop

visiting this state-action pair after few observations because it can rule out all actions

that lead to (s, a) quickly. Conversely, if the event that we condition on has zero

probability under any policy, then (s, a) can only be reached through optimal action

choices (including a in s) and incurs no regret. This motivates our new definition of

gaps that combines value function gaps with the regret incurred up to visiting the

state-action pair:

Definition 5.4.1 (Return gap). For any state-action pair (s, a) ∈ S × A define

B(s, a) ≡ {B ≤ κ(s), Sκ(s) = s, Aκ(s) = a}, where B is the first time a non-zero gap is

encountered. B(s, a) denotes the event that state-action pair (s, a) is visited and that

a suboptimal action was played at any time up to visiting (s, a). We define the return

gap as

gap(s, a) ≡ gap(s, a) ∨ min
π∈Π:

Pπ(B(s,a))>0

1
H

Eπ

⎡⎣κ(s)∑︂
h=1

gap(Sh, Ah)
⃓⃓⃓⃓
⃓ B(s, a)

⎤⎦

182

if there is a policy π ∈ Π with Pπ(B(s, a)) > 0 and gap(s, a) ≡ 0 otherwise.

The additional 1/H factor in the second term is a required normalization suggesting

that it is the average gap rather than their sum that matters. Equipped with

this definition, we are ready to state our main upper bound which pertains to the

StrongEuler algorithm proposed by Simchowitz and Jamieson (2019).

Theorem 5.4.1 (Main Result (Informal)). The regret R(K) of StrongEuler is

bounded with high probability for all number of episodes K as

R(K) ⪅
∑︂

(s,a)∈S×A :
gap(s,a)>0

V∗(s, a)
gap(s, a) log (K) .

In the above, we have restricted the bound to only those terms that have inverse

polynomial dependence on the gaps.

Comparison with existing gap-dependent bounds. We now compare our

bound to the existing gap-dependent bound for StrongEuler by Simchowitz and

Jamieson (2019, Corollary B.1)

R(K) ⪅
∑︂

(s,a)∈S×A :
gap(s,a)>0

HV∗(s, a)
gap(s, a) log (K) +

∑︂
(s,a)∈S×A :
gap(s,a)=0

HV∗

gapmin
log (K) . (5.4)

We here focus only on terms that admit a dependency on K and an inverse-polynomial

dependency on gaps as all other terms are comparable. Most notable is the absence

of the second term of Equation 5.4 in our bound in Theorem 5.4.1. Thus, while

state-action pairs with gap(s, a) = 0 do not contribute to our regret bound, they

appear with a 1/ gapmin factor in existing bounds. Therefore, our bound addresses

Opportunity O.1 because it does not pay for state-action pairs that can only be

visited through optimal actions. Further, state-action pairs that do contribute to our

bound satisfy 1
gap(s,a) ≤ 1

gap(s,a) ∧ H
gapmin

and thus never contribute more than in the

existing bound in Equation 5.4. Therefore, our regret bound is never worse. In fact, it

is significantly tighter when there are states that are only reachable by taking severely

183

suboptimal actions, i.e., when the average value-function gaps are much larger than

gap(s, a) or gapmin. By our definition of return gaps, we only pay the inverse of these

larger gaps instead of gapmin. Thus, our bound also addresses O.2 and achieves the

desired log (K) /c regret bound in the motivating example of Figure 5-1 as opposed

to the log (K) /ϵ bound of prior work.

Regret bound when transitions are deterministic. We now interpret Defini-

tion 5.4.1 for MDPs with deterministic transitions and derive an alternative form of

our bound in this case. Let Πs,a be the set of all policies that visit (s, a) and have

taken a suboptimal action up to that visit, that is,

Πs,a ≡
{︂
π ∈ Π : sπκ(s) = s, aπκ(s) = a,∃ h ≤ κ(s), gap(sπh, aπh) > 0

}︂
.

where (sπ1 , aπ1 , sπ2 , . . . , sπH , aπH) are the state-action pairs visited (deterministically) by

π. Further, let v∗
s,a = maxπ∈Πs,a v

π be the best return of such policies. Definition 5.4.1

now evaluates to gap(s, a) = gap(s, a) ∨ 1
H

(v∗ − v∗
s,a) and the bound in Theorem 5.4.1

can be written as

R(K) ⪅
∑︂

s,a : Πs,a ̸=∅

H log (K)
v∗ − v∗

s,a

. (5.5)

We show in Section 5.4.6, that it is possible to further improve this bound when the

optimal policy is unique by only summing over state-action pairs which are not visited

by the optimal policy.

5.4.3 Regret analysis with improved clipping: from minimum
gap to average gap

In this section, we present the main technical innovations of our tighter regret analysis.

Our framework applies to optimistic algorithms that maintain a Q-function estimate,

Q̄k(s, a), which overestimates the optimal Q-function Q∗(s, a) with high probability

184

in all states s, actions a and episodes k. We first give an overview of gap-dependent

analyses and then describe our approach.

Overview of gap-dependent analyses. As already alluded to in Sec-

tion 5.4.1 the central quantity in regret analyses of optimistic algorithms are the

surpluses Ek(s, a). Worst-case regret analyses bound the regret in episode k as∑︁
(s,a)∈S×A wπk(s, a)Ek(s, a), the expected surpluses under the optimistic policy πk

executed in that episode. Instead, gap-dependent analyses rely on a tighter version

and bound the instantaneous regret by the clipped surpluses (e.g. Proposition 3.1

Simchowitz and Jamieson, 2019)

V ∗(s1) − V πk(s1) ≤ 2e
∑︂
s,a

wπk(s, a) clip
[︄
Ek(s, a)

⃓⃓⃓⃓
⃓ 1

4H gap(s, a) ∨ gapmin
2H

]︄
. (5.6)

Using concentration arguments one can show that Ek(s, a) shrinks at a rate of
√︂

1
nk(s,a) ,

with nk(s, a) the current number of times (s, a) has been visited. Thus, roughly

speaking, after
(︂

gap(s,a)∨gapmin
H

)︂−2
visits to (s, a), the surplus falls below the threshold

and does not contribute any more to the regret. Since each visit incurs at most
gap(s,a)∨gapmin

H
regret, this leads to a H

gap(s,a)∨gapmin
dependency on gaps for each state-

action pair.

Sharper clipping with general thresholds. Our main technical contribution

for achieving a regret bound in terms of return gaps gap(s, a) is the following improved

surplus clipping bound:

Proposition 5.4.2 (Improved surplus clipping bound). Let the surpluses Ek(s, a) be

generated by an optimistic algorithm. Then the instantaneous regret of πk is bounded

as follows:

V ∗(s1) − V πk(s1) ≤ 4
∑︂
s,a

wπk(s, a) clip
[︄
Ek(s, a)

⃓⃓⃓⃓
⃓ 1

4 gap(s, a) ∨ ϵk(s, a)
]︄
,

where ϵk : S × A → R+
0 is any clipping threshold function that satisfies

Eπk

[︄
H∑︂
h=B

ϵk(Sh, Ah)
]︄

≤ 1
2Eπk

[︄
H∑︂
h=1

gap(Sh, Ah)
]︄
.

185

Compared to previous surplus clipping bounds in Equation 5.6, there are several

notable differences. First, instead of gapmin /2H, we can now pair gap(s, a) with more

general clipping thresholds ϵk(s, a), as long as their expected sum over time steps

after the first non-zero gap was encountered is at most half the expected sum of gaps.

We will provide some intuition for this condition below. Note that ϵk(s, a) ≡ gapmin
2H

satisfies the condition because the LHS evaluates to gapmin
2H Pπk(B ≤ H) and there

must be at least one positive gap in the sum ∑︁H
h=1 gap(Sh, Ah) on the RHS in event

{B ≤ H}. Thus our bound recovers existing results. In addition, the first term in our

clipping thresholds is 1
4 gap(s, a) instead of 1

4H gap(s, a). Simchowitz and Jamieson

(2019) are able to remove this spurious H factor only if the problem instance happens

to be a bandit instance and the algorithm satisfies strong optimism where surpluses

have to be non-negative. Our analysis does not require such conditions and therefore

generalizes these existing results.1

Intuition for threshold condition in Proposition 5.4.2. The key to proving

Proposition 5.4.2 is the following self-bounding trick for the instantaneous regret

V ∗(s1) − V πk(s1). The self-bounding trick works in the following way. If we have a

ρ > 0 which is upper bounded by γ ≥ ρ and lower bounded by 0 < β ≤ ρ, we can

further bound (1 − c)ρ ≤ γ − cβ for any constant c ∈ [0, 1]. We can now use this trick

twice with ρ = V ∗(s1) − V πk(s1), γ = Eπk [
∑︁H
h=1 Ek(Sh, Ah)], c = 1/4 and β equal to

either the expected sum of gaps or the assumed lower bound with clipping functions,

that is β = Eπk [
∑︁H
h=1 gap(Sh, Ah)] or β = Eπk [

∑︁H
h=1 ϵk(Sh, Ah)]. This implies that one

half of the instantaneous regret is bounded as

1
2(V ∗(s1) − V πk(s1)) ≤

H∑︂
h=1

Eπk

[︄
Ek(Sh, Ah) − gap(Sh, Ah) + ϵk(Sh, Ah)

4

]︄
.

Using the fact that the clip operator satisfies a − b ≤ clip[a|b] gives the desired

statement. This implies that, in order to achieve the tightest regret bound, we should
1Our layered state space assumption affects the H dependencies in lower-order terms in our final

regret compared to Simchowitz and Jamieson (2019). However, Proposition 5.4.2 directly applies to
their setting without any penalty in H.

186

clip Ek(Sh, Ah) to the largest possible value. Thus, the goal is to lower bound the

expected sum of gaps as tightly as possible by the clipping function. Besides this

insight, introducing the stopping time B in the condition is key to addressing O.1

and requires a careful treatment laid out in the full proof in Section 5.5.

Choice of clipping thresholds for return gaps. The condition in Propo-

sition 5.4.2 suggests that one can set ϵk(Sh, Ah) to be proportional to the average

expected gap under policy πk:

ϵk(s, a) = 1
2HEπk

[︄
H∑︂
h=1

gap(Sh, Ah)
⃓⃓⃓⃓
⃓ B(s, a)

]︄
. (5.7)

if Pπk(B(s, a)) > 0 and ϵk(s, a) = ∞ otherwise. Lemma 5.5.5 in Section 5.5 shows

that this choice indeed satisfies the condition in Proposition 5.4.2. If we now take the

minimum over all policies for πk, then we can proceed with the standard analysis and

derive our main result in Theorem 5.4.1. However, by avoiding the minimum over

policies, we can derive a stronger regret bound that depends on the actual policies

executed by the algorithm. We present this bound in the next section.

5.4.4 Policy-dependent regret bound

We will now show how our results from the previous sections translate into a stronger

regret bound on the concrete example of StrongEuler. Ignoring lower-order terms,

Simchowitz and Jamieson (2019) showed that the surpluses of this algorithm are

bounded as Ek(s, a) ⪅
√︃

V∗(s,a) log(n̄k(s,a))
n̄k(s,a) where n̄k(s, a) = ∑︁k−1

j=1 w
πj(s, a) are the

expected number of samples for (s, a) up to episode k and V∗(s, a) = V[R(s, a)] +

Vs′∼P (·|s,a)[V ∗(s′)] is the one-step variance term w.r.t. the optimal value function. In

this case, Proposition 5.4.2 with the clipping to the average gap gives:

R(K) ⪅
K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
⎡⎣
⌜⃓⃓⎷V∗(s, a) log (n̄k(s, a))

n̄k(s, a)

⃓⃓⃓⃓
⃓ gap(s, a) ∨ ϵk(s, a)

⎤⎦ .
(5.8)

187

An existing analysis now translates such a clipping bound into a log (K) regret bound

using an integration argument (e.g. Simchowitz and Jamieson, 2019). However, we

cannot rely on these arguments since our clipping thresholds may not be constant

across episodes. To address this technical challenge, we derive the following lemma

based on an optimization view on such terms

Lemma 5.4.3. For any sequence of thresholds γ1, . . . γK > 0, consider the problem

with x0 = 1

maximize
x1,...xK∈[0,1]

K∑︂
k=1

xk

⌜⃓⃓⃓
⎷ log

(︂∑︁k
j=0 xj

)︂
∑︁k
j=0 xj

s.t. for all k ∈ [K] :

⌜⃓⃓⃓
⎷ log

(︂∑︁k
j=0 xj

)︂
∑︁k
j=0 xj

≥ γk.

The optimal value is bounded for any t ∈ [K] from above as log(t)
ϵt

+
√︂

(K − t) log (K).

Applying this lemma for each (s, a) with xk = wπk(s, a) and appropriate clipping

thresholds γk ≈ (gap(s, a) ∨ ϵk(s, a))/
√︂

V∗(s, a) we can derive our main result:

Theorem 5.4.4. When StrongEuler is run with confidence parameter δ, then with

probability at least 1 − δ, its regret is bounded for all number of episodes K as

R(K) ⪅
∑︂
s,a

min
t∈[K(s,a)]

⎧⎨⎩V∗(s, a) log
(︂
M
δ

)︂
log

(︂
V∗(s,a) log(M/δ)
gap(s,a)∨ϵt(s,a)

)︂
gap(s, a) ∨ ϵt(s, a) +

√︂
V∗(s, a)(K(s,a) − t)

⎫⎬⎭ log (K)

+ S2AH4 log
(︃
MK

δ

)︃
log

(︄
MH

gapmin

)︄
,

where M ≤ (SAH)3, gapmin = min(s,a) gap(s, a) and K(s,a) is the last episode during

which a policy that may visit (s, a) was played.

A slightly more refined version of this bound is stated Theorem 5.5.11 in Section 5.5.

Note that our regret bound depends through ϵt(s, a), the average gap encountered by

πt, on the policies that the algorithm played. We can smoothly interpolate between

the worst-case rate of
√
K achieved for t ≪ K when all gaps and average gaps are

O(
√︂

V∗(s, a)K) and the gap-dependent regret rate achieved when t ≈ K that scales

188

inversely with gaps. Our bound depends on the gaps in all episodes and can benefit

from choices for t that yields a large gap or average gap in late episodes.

Comparing with the bound in Simchowitz and Jamieson (2019). We now

proceed to compare our bound directly to the one stated in Corollary B.1 (Simchowitz

and Jamieson, 2019). We will ignore the factors with only poly-logarithmic dependence

on gaps as they are are common between both bounds. We now recall the regret

bound presented in Corollary B.1, modulo said factors:

R(K) ≤ O

⎛⎝ ∑︂
(s,a)∈Zsub

αHV∗(s, a)
gap(s, a) LOG(M/δ,K, gap(s, a)) + |Zopt|

HV∗

gapmin
LOG(M/δ,K, gapmin)

⎞⎠,
where V∗ = max(s,a) V(s, a), Zopt is the set on which gap(s, π∗(s)) = 0, i.e., the set of

state-action pairs assigned to π∗ according to the Bellman optimality condition, and

Zsub is the complement of Zopt, and

LOG(M/δ, t, gap̆ t(s, a)) = log
(︃
M

δ

)︃
log

(︄
t ∧ 1 + 16V∗(s, a) log (M/δ)

gap̆ t(s, a)2

)︄
.

If we take t = K in Theorem 5.4.4, we have the following upper bound:

R(K) ≤ O

⎛⎝ ∑︂
(s,a)∈Zsub

V∗(s, a)LOG(M/δ,K, gap(s, a))
gap(s, a) + HV∗|Sopt|LOG(M/δ,K, gapmin)

mink,s,a ϵk(s, a)

⎞⎠,
where Sopt is the set of all states for s ∈ S for which gap(s, π∗(s)) = 0 and there exists

at least one state s′ with κ(s′) < s for which gap(s′, π∗(s)) > 0. We note that this set

is no larger than the set Zopt and further that even the smallest ϵk(s, a) can still be

much larger than gapmin, as it is the conditional average of the gaps. In particular, this

leads to an arbitrary improvement in our example in Figure 5-1 and an improvement

of SA in the example in Figure 5-2.

5.4.5 Nearly tight bounds for deterministic transition MDPs

We recall that for deterministic MDPs, ϵk(s, a) = V ∗(s1)−V πk (s1)
2H ,∀a and the definition

of the set Πs,a:

Πs,a ≡ {π ∈ Π : sπκ(s) = s, aπκ(s) = a,∃ h ≤ κ(s), gap(sπh, aπh) > 0}.

189

We note that V(s, a) ≤ 1 as this is just the variance of the reward at (s, a). Theo-

rem 5.5.11 immediately yields the following regret bound by taking t = K.

Corollary 5.4.5 (Explicit bound from Equation 5.5). Suppose the transition kernel

of the MDP consists only of point-masses. Then with probability 1 − δ, StrongEuler’s

regret is bounded as

R(K) ≤ O

⎛⎝ ∑︂
(s,a):Πs,a ̸=∅

HLOG (M/δ,K, gap(s, a))
v∗ − v∗

s,a

+
∑︂
s,a

SH3 log
(︃
MK

δ

)︃
min

{︄
log

(︃
MK

δ

)︃
, log

(︄
MH

gap(s, a)

)︄}︄

+ SAH3(S ∨H) log
(︃
M

δ

)︃⎞⎠,
where v∗

s,a = maxπ∈Πs,a v
π.

We now compare the above bound with the one in (Simchowitz and Jamieson, 2019)

again. For simplicity we are going to take K to be the smaller of the two quantities

in the logarithm. To compare the bounds, we compare ∑︁(s,a):Πs,a ̸=∅
H(log(KM/δ)))

v∗−v∗
(s,a)

to∑︁
(s,a)∈Zsub

αH log(KM/δ)
gap(s,a) + |Zopt|H

gapmin
. Recall that α ∈ [0, 1] is defined as the smallest value

such that for all (s, a, s′) ∈ S × A × S it holds that

P (s′|s, a) − P (s′|s, π∗(s)) ≤ αP (s′|s, a).

For any deterministic transition MDP with more than one layer and one sub-optimal

action it holds that α = 1. We will compare V ∗(s1) − V
π∗

(s,a)(s1) to gap(s, a) =

Q∗(s, π∗(s)) −Q∗(s, a). This comparison is easy as by Lemma 5.5.1 we can write

V ∗(s1) − V
π∗

(s,a)(s1) =
∑︂

(s′,a′)∈π∗
(s,a)

wπ∗
(s,a)(s′,a′) gap(s′, a′) =

∑︂
(s′,a′)∈π∗

(s,a)

gap(s′, a′) ≥ gap(s, a).

Hence, our bound in the worst case matches the one in Simchowitz and Jamieson

(2019) and can actually be significantly better. We would further like to remark that

we have essentially solved all of the issues presented in the example MDP in Figure 5-1.

190

In particular we do not pay any gap-dependent factors for states which are only visited

by π∗, we do not pay a gapmin factor for any state and we never pay any factors for

distinguishing between two suboptimal policies. Finally, we compare this bound to

the lower bound derived Theorem 5.6.4 only with respect to number of episodes and

gaps. Let S∗ be the set of all states in the support of an optimal policy

∑︂
(s,a)∈S\S∗×A

log (K)
H(v∗ − v

π∗
(s,a)(s1))

≤ R(K) ≤
∑︂

(s,a):Πs,a ̸=∅

H log (K)
v∗ − v∗

s,a

.

The difference between the two bounds, outside of an extra H2 factor, is in the sets

S∗ and the set {s, a : Πs,a = ∅}. We note that {s, a : Πs,a = ∅} ⊆ S∗. Unfortunately

there are examples in which {s, a : Πs,a = ∅} is O(1) and S∗ = Ω(S) leading to a

discrepancy between the upper and lower bounds of the order Ω(S). As we show in

Theorem 5.6.7 this discrepancy can not really be avoided by optimistic algorithms.

5.4.6 Tighter bounds for unique optimal policy.

If we further assume that the optimal policy is unique on its support, then we can

show StrongEuler will only incur regret on sub-optimal state-action pairs. This

matches the information theoretic lower bound up to horizon factors. The formal

regret bound is found below:

Corollary 5.4.6. Suppose the transition kernel of the MDP consists only of point-

masses and there exists a unique optimal π∗. Then with probability 1−δ, StrongEuler’s

regret is bounded as

R(K) ≤ O

⎛⎝ ∑︂
(s,a)̸∈π∗

LOG (M/δ,K, gap(s, a))
gap(s, a)

+
∑︂

(s,a)̸∈π∗

SH3 log
(︃
MK

δ

)︃
min

{︄
log

(︃
MK

δ

)︃
, log

(︄
MH

gap(s, a)

)︄}︄

+ SAH3(S ∨H) log
(︃
M

δ

)︃⎞⎠.
191

Comparing terms which depend polynomially on 1/gap to the information theoretic

lower bound in Theorem 5.6.4 we observe only a multiplicative difference of H2.

5.5 Detailed proofs for Section 5.4

5.5.1 Useful decomposition lemmas

We start by providing the following lemma that establishes that the instantaneous

regret can be decomposed into gaps defined w.r.t. any optimal (and not necessarily

Bellman optimal) policy.

Lemma 5.5.1 (General policy gap decomposition). Let gapˆ︁π(s, a) = V ˆ︁π(s) −Qˆ︁π(s, a)

for any optimal policy ˆ︁π ∈ Π∗. Then the difference in values of ˆ︁π and any policy

π ∈ Π is

V ˆ︁π(s) − V π(s) = Eπ

⎡⎣ H∑︂
h=κ(s)

gapˆ︁π(Sh, Ah)
⃓⃓⃓⃓
⃓ Sκ(s) = s

⎤⎦ (5.9)

and, further, the instantaneous regret of π is

v∗ − vπ =
∑︂
s,a

wπ(s, a) gapˆ︁π(s, a). (5.10)

Proof. We start by establishing a recursive bound for the value difference of π and ˆ︁π
for any s

V ˆ︁π(s) − V π(s) = V ˆ︁π(s) −Qˆ︁π(s, π(s)) +Qˆ︁π(s, π(s)) − V π(s)

= gapˆ︁π(s, π(s)) +Qˆ︁π(s, π(s)) −Qπ(s, π(s))

= gapˆ︁π(s, π(s)) +
∑︂
s′
Pθ(s′|s, π(s))[V ˆ︁π(s′) − V π(s′)].

Unrolling this recursion for all layers gives

V ˆ︁π(s) − V π(s) = Eπ

⎡⎣ H∑︂
h=κ(s)

gapˆ︁π(Sh, Ah)
⃓⃓⃓⃓
⃓ Sκ(s) = s

⎤⎦ .
To show the second identity, consider s = s1 and note that vπ = V π(s1) and v∗ =

vˆ︁π = V ˆ︁π(s1) because ˆ︁π is an optimal policy.

192

For the rest of the paper we are going to focus only on the Bellman optimal policy

from each state and hence only consider gapˆ︁π(s, a) = gap(s, a). All of our analysis

will also go through for arbitrary gapˆ︁π, ˆ︁π ∈ Π∗, however, this did not provide us with

improved regret bounds.

We now show the following technical lemma which generalizes the decomposition

of value function differences and will be useful in the surplus clipping analysis.

Lemma 5.5.2. Let Ψ : S → R, ∆ : S × A → R be functions satisfying Ψ(s) = 0 for

any s with κ(s) = H + 1 and π : S → A a deterministic policy. Further, assume that

the following relation holds

Ψ(s) = ∆(s, π(s)) + ⟨P (·|s, π(s)),Ψ⟩,

and let A be any event that is Hh-measurable where Hh = σ(S1, A1, R1, . . . , Sh) is the

sigma-field induced by the episode up to the state at time h. Then, for any h ∈ [H]

and h′ ∈ N with h ≤ h′ ≤ H + 1, it holds that

Eπ[χ (A) Ψ(Sh))] = Eπ

⎡⎣χ (A)
⎛⎝h′−1∑︂
t=h

∆(St, At) + Ψ(Sh′+1)
⎞⎠⎤⎦ = Eπ

[︄
χ (A)

H∑︂
t=h

∆(St, At)
]︄
.

Proof. First apply the assumption of Ψ recursively to get

Ψ(s) = Eπ

⎡⎣ h′−1∑︂
t=κ(s)

∆(St, At) + Ψ(Sh′)

⃓⃓⃓⃓
⃓⃓ Sκ(s) = s

⎤⎦ .
Plugging this identity into Eπ[χ (A) Ψ(Sh))] yields

Eπ[χ (A) Ψ(Sh))] = Eπ

⎡⎣χ (A)Eπ

⎡⎣h′−1∑︂
t=h

∆(St, At) + Ψ(Sh′)

⃓⃓⃓⃓
⃓⃓ Sh

⎤⎦⎤⎦
(i)= Eπ

⎡⎣χ (A)Eπ

⎡⎣h′−1∑︂
t=h

∆(St, At) + Ψ(Sh′)

⃓⃓⃓⃓
⃓⃓ Hh

⎤⎦⎤⎦
(ii)= Eπ

⎡⎣Eπ
⎡⎣χ (A)

⎛⎝h′−1∑︂
t=h

∆(St, At) + Ψ(Sh′)
⎞⎠ ⃓⃓⃓⃓
⃓⃓ Hh

⎤⎦⎤⎦
(iii)= Eπ

⎡⎣χ (A)
⎛⎝h′−1∑︂
t=h

∆(St, At) + Ψ(Sh′)
⎞⎠⎤⎦

193

where Hh = σ(S1, A1, R1, . . . , Sh) is the sigma-field induced by the episode up to the

state at time h. Identity (i) holds because of the Markov-property and (ii) holds

because A is Hh-measurable. The final identity (iii) uses the tower-property of

conditional expectations.

5.5.2 General surplus clipping for strongly optimistic algo-
rithms

Clipped operators. One of the main arguments to derive instance dependent bounds

is to write the instantaneous regret in terms of the surpluses which are clipped to the

minimum positive gap. We now define the clipping threshold ϵk : S × A → R+
0 and

associated clipped surpluses

Ëk(s, a) = clip [Ek(s, a) | ϵk(s, a)] = χ (Ek(s, a) ≥ ϵk(s, a))Ek(s, a). (5.11)

Next, define the clipped Q- and value-function as

Q̈k(s, a) = Ëk(s, a) + r(s, a) + ⟨P (·|s, a), V̈ k, ⟩ and V̈ k(s) = Q̈k(s, πk(s)).

(5.12)

The random variable which is the state visited by πk at time h throughout episode

k is denoted by Sh and Ah is the action at time h.

Events about encountered gaps Define the event Eh = {gap(Sh, Ah) > 0} that

at time h an action with a positive gap played, the P1:h = ⋂︁h−1
h′=1 Ech′ that only actions

with zero gap have been played until h and the event Ah = Eh ∩ P1:h that the first

positive gap was encountered at time h. Let AH+1 = P1:H be the event that only zero

gaps were encountered. Further, let

B = min{h ∈ [H + 1] : gap(Sh, Ah) > 0}

be the first time a non-zero gap is encountered. Note that B is a stopping time w.r.t.

the filtration Fh = σ(S1, A1, . . . , Sh, Ah).

194

The proof of Simchowitz and Jamieson (2019) consists of two main steps. First show

that for their definition of clipped value functions one can bound V̈ k(s1) − V πk(s1) ≥
1
2(V̄ k(s1) − V πk(s1)). Next, using optimism together with the fact that πk has highest

value function at episode k it follows that V̄ k(s1) − V πk(s1) ≥ V ∗(s1) − V πk(s1). The

second main step is to use a high-probability bound on the clipped surpluses to relate

them to the probability to visit the respective state-action pair and the proof is finished

via an integration lemma. We now show that the first step can be carried out in greater

generality by defining a less restrictive clipping operator. This operator is independent

of the details in the definition of gap at each state-action pair but rather only uses a

certain property which allows us to decompose the episodic regret as a sum over gaps.

We will also further show that one does not need to use an integration lemma for the

second step but can rather reformulate the regret bound as an optimization problem.

This will allow us to clip surpluses at state-action pairs with zero gaps beyond the

gapmin rate.

5.5.2.1 Clipping with an arbitrary threshold and proof of Proposition 5.4.2

Recall the definition of the clipped surpluses and clipped value function in Equation 5.11

and Equation 5.12. We begin by showing a general relation between the clipped value

function difference and the non-clipped surpluses for any clipping threshold ϵk : S → R.

This will help in establishing V̈ k(s1) − V πk(s1) ≥ 1
2(V̄ k(s1) − V πk(s1)).

Lemma 5.5.3. Let ϵk : S × A → R+
0 be arbitrary. Then for any strongly optimistic

algorithm it holds that

V̈ k(s1) − V πk(s1) ≥ Eπk

[︄
H∑︂
h=B

(gap(Sh, Ah) − ϵk(Sh, Ah))
]︄
. (5.13)

Proof. We use Wk(s) = V̈ k(s) − V πk(s) in the following and first show that W (s1) ≥

Eπk [Wk(SB)]. As a precursor, we prove

Eπk [χ (P1:h)Wk(Sh)] ≥ Eπk [χ (Ah+1)Wk(Sh+1)] + Eπk [χ (P1:h+1)Wk(Sh+1)] . (5.14)

195

To see this, plug the definitions into Wk(s) which gives Wk(s) = V̈ k(s) − V πk(s) =

Ëk(s, πk(s)) + ⟨P (·|s, πk(s)),Wk⟩ and use this in the LHS of Equation 5.14 as

Eπk [χ (P1:h)Wk(Sh)] = Eπk
[︂
χ (P1:h) Ëk(Sh, Ah)⏞ ⏟⏟ ⏞

]︂
≥0

+ Eπk [χ (P1:h)E[Wk(Sh+1) | Sh]]

(i)
≥ Eπk [χ (P1:h)Eπk [Wk(Sh+1) | Hh]]
(ii)= Eπk [Eπk [χ (P1:h)Wk(Sh+1) | Hh]] = Eπk [χ (P1:h)Wk(Sh+1)]

where Hh = σ(S1, A1, R1, . . . , Sh) is the sigma-field induced by the episode up to the

state at time h. Step (i) follows from strong optimism and the Markov property and

(ii) holds because P1:h is Hh-measurable. We now rewrite the RHS by splitting the

expectation based on whether event Eh+1 occurred as

Eπk [χ (P1:h)Wk(Sh+1)] = Eπk [χ (P1:h+1)Wk(Sh+1)] + Eπk [χ (Ah+1)Wk(Sh+1)] .

We have now shown Equation 5.14, which we will now use to lower-bound Wk(s1) as

Wk(s1) = Eπk [χ (E1)W1(S1)] + Eπk [χ (Ec1)W1(S1)]

= Eπk [χ (A1)W1(S1)] + Eπk [χ (P1:1)W1(S1)]

≥ Eπk [χ (A1)W1(S1)] +
H∑︂
h=2

Eπk [χ (Ah)Wk(Sh)]

=
H∑︂
h=1

Eπk [χ (Ah)Wk(Sh)] = Eπk [Wk(SB)].

Applying Lemma 5.5.2 with A = Ah, Ψ = Wk and ∆ = Ëk yields

Wk(s1) ≥
H∑︂
h=1

Eπk

[︄
χ (Ah)

H∑︂
h′=h

Ëk(Sh′ , Ah′)
]︄

≥
H∑︂
h=1

Eπk

[︄
χ (Ah)

H∑︂
h′=h

Ek(Sh′ , Ah′)
]︄

−
H∑︂
h=1

Eπk

[︄
χ (Ah)

H∑︂
h′=h

ϵk(Sh′ , Ah′)
]︄
,

where we applied the definition clipped surpluses which gives Ëk(s, a) = clip[Ek(s, a) |

ϵk(s, a)] ≥ Ek(s, a) − ϵk(s, a). It only remains to show that

Eπk

[︄
χ (Ah)

H∑︂
h′=h

Ek(Sh′ , Ah′)
]︄

≥ Eπk

[︄
χ (Ah)

H∑︂
h′=h

gap(Sh′ , Ah′)
]︄
.

196

To do so, we apply Lemma 5.5.2 twice, first with A = Ah, Ψ = V̄ k − V πk and ∆ = Ek

and then again with A = Ah, Ψ = V ∗ − V πk and ∆ = gap which gives

Eπk

[︄
χ (Ah)

H∑︂
h′=h

Ek(Sh′ , Ah′)
]︄

= Eπk
[︂
χ (Ah) (V̄ k(Sh) − V πk(Sh))

]︂
≥ Eπk [χ (Ah) (V ∗(Sh) − V πk(Sh))]

= Eπk

[︄
χ (Ah)

H∑︂
h′=h

gap(Sh′ , Ah′)
]︄
.

Thus, we have shown that

V̈ k(s1) − V πk(s1) = Wk(s1)

≥
H∑︂
h=1

Eπk

[︄
χ (Ah)

H∑︂
h′=h

gap(Sh′ , Ah′)
]︄

−
H∑︂
h=1

Eπk

[︄
χ (Ah)

H∑︂
h′=h

ϵk(Sh′ , Ah′)
]︄

=
H∑︂
h=1

Eπk

[︄
χ (Ah)

H∑︂
h′=h

(gap(Sh′ , Ah′) − ϵk(Sh′ , Ah′))
]︄

= Eπk

[︄
H∑︂
h=B

(gap(Sh, Ah) − ϵk(Sh, Ah))
]︄

where the last equality uses the definition of B, the first time step at which a non-zero

gap was encountered.

Lemma 5.5.4 (Optimism of clipped value function). Let the clipping thresholds

ϵk : S × A → R+
0 used in the definition of V̈ k satisfy

Eπk

[︄
H∑︂
h=B

ϵk(Sh, Ah)
]︄

≤ 1
2Eπk

[︄
H∑︂
h=1

gap(Sh, Ah)
]︄

for some optimal policy ˆ︁π. Then scaled optimism holds for the clipped value function,

i.e.,

V̈ k(s1) − V πk(s1) ≥ 1
2(V ∗(s1) − V πk(s1)).

197

Proof. The proof works by establishing the following chain of inequalities:

V ∗(s1) − V πk(s1)
2

(a)= 1
2Eπk

[︄
H∑︂
h=1

gap(Sh, Ah)
]︄

(b)= 1
2Eπk

[︄
H∑︂
h=B

gap(Sh, Ah))
]︄

(c)= Eπk

[︄
H∑︂
h=B

(︃
gap(Sh, Ah)) − 1

2 gap(Sh, Ah))
)︃]︄

(d)
≤ Eπk

[︄
H∑︂
h=B

(gap(Sh, Ah)) − ϵk(Sh, Ah)))
]︄

(e)
≤ V̈ k(s1) − V πk(s1).

Here, (a) uses Lemma 5.5.1 and (b) uses the definition of B. Step (c) is just algebra

and step (d) uses the assumption on the threshold function. The last step (e) follows

from Lemma 5.5.3.

We are now ready to present Proposition 5.4.2.

Proof of Proposition 5.4.2. Applying Lemma 5.5.4 which ensures scaled optimism of

the clipped value function gives

V ∗(s1) − V πk(s1) ≤ 2(V̈ k(s1) − V πk(s1)) = 2
∑︂
s,a

wπk(s, a)Ëk(s, a),

where the equality follows from the definition of V̈ k(s1) and Lemma 5.5.2. Subtracting
1
2(V ∗(s1) − V πk(s1)) from both sides gives

1
2(V ∗(s1) − V πk(s1)) ≤ 2

∑︂
s,a

wπk(s, a)
(︄
Ëk(s, a) − gap(s, a)

4

)︄

because Lemma 5.5.1 ensures that 1
2(V ∗(s1) − V πk(s1)) = 1

2
∑︁
s,aw

πk(s, a) gap(s, a).

Reordering terms yields

V ∗(s1) − V πk(s1) ≤ 4
∑︂
s,a

wπk(s, a)
(︄
Ëk(s, a) − gap(s, a)

4

)︄

= 4
∑︂
s,a

wπk(s, a)
(︄

clip
[︄
Ek(s, a)

⃓⃓⃓⃓
⃓ ϵk(s, a)

]︄
− gap(s, a)

4

)︄

≤ 4
∑︂
s,a

wπk(s, a) clip
[︄
Ek(s, a)

⃓⃓⃓⃓
⃓ ϵk(s, a) ∨ gap(s, a)

4

]︄
,

198

where the final inequality follows from the general properties of the clipping operator,

which satisfies

clip[a|b] − c =

⎧⎪⎪⎨⎪⎪⎩
a− c ≤ a for a ≥ b ∨ c

0 − c ≤ 0 for a ≤ b

a− c ≤ 0 for a ≤ c

≤ clip[a|b ∨ c].

5.5.3 Definition of valid clipping thresholds ϵk

Proposition 5.4.2 establishes a sufficient condition on the clipping thresholds ϵk that

ensures that the penalized surplus clipping bounds holds. We now discuss several

choices for this threshold that satisfy this condition.

Minimum positive gap gapmin: We now make the quick observation that taking

ϵk ≡ gapmin
2H will satisfy the condition of Proposition 5.4.2, because on the event

B ≡ Ac
H+1 there exists at least one positive gap in the sum ∑︁H

h=1 gap(Sh, Ah), which,

by definition, is at least gapmin. This shows that our results already can recover the

bounds in prior work, with significantly less effort.

Average gaps: Instead of the minimum gap which was used in existing analyses,

we now show that we can also use the marginalized average gap which we will define

now. Recall that B = min{h ∈ [H + 1] : gap(Sh, Ah) > 0} is the first time a

non-zero gap is encountered. Note that B is a stopping time w.r.t. the filtration

Fh = σ(S1, A1, . . . , Sh, Ah). Further let

B(s, a) ≡ {B ≤ κ(s), Sκ(s) = s, Aκ(s) = a} (5.15)

be the event that (s, a) was visited after a non-zero gap in the episode. We now define

this clipping threshold

ϵk(s, a) ≡

⎧⎪⎪⎨⎪⎪⎩
1

2HEπk

[︄∑︁H
h=1 gap(Sh, Ah)

⃓⃓⃓⃓
⃓ B(s, a)

]︄
if Pπk(B(s, a)) > 0

∞ otherwise
(5.16)

199

As the following lemma shows, this is a valid choice which satisfies the condition of

Proposition 5.4.2.

Lemma 5.5.5. The expected sum of clipping thresholds in Equation (5.16) over all

state-action pairs encountered after a positive gap is at most half the expected total

gaps per episode. That is,

Eπk

[︄
H∑︂
h=B

ϵk(Sh, Ah)
]︄

≤ 1
2Eπk

[︄
H∑︂
h=1

gap(Sh, Ah)
]︄
.

Proof. We rewrite the LHS of the inequality to show as Eπk
[︂∑︁H

h=1 χ (B ≤ h) ϵk(Sh, Ah)
]︂

and from now on consider the random variable fh(B, Sh, Ah) = χ (B ≤ h) ϵk(Sh, Ah)

where fh(b, s, a) = χ (b ≤ h) ϵk(s, a) is a deterministic function2. We will show below

that Eπk [fh(B, Sh, Ah)] ≤ 1
2HEπk

[︂∑︁H
h=B gap(Sh, Ah)

]︂
. This is sufficient to prove the

statement, because

Eπk

[︄
H∑︂
h=B

ϵk(Sh, Ah)
]︄

=
H∑︂
h=1

Eπk [fh(B, Sh, Ah)]

≤ 1
2H

H∑︂
h=1

Eπk

[︄
H∑︂

h′=B
gap(Sh′ , Ah′)

]︄

= 1
2Eπk

[︄
H∑︂
h=B

gap(Sh, Ah)
]︄

= 1
2Eπk

[︄
H∑︂
h=1

gap(Sh, Ah)
]︄
.

To bound the expected value of fh(B, Sh, Ah), we first write fh for all triples b, s, a

such that Pπk(B = b, Ah = a, Sh = s) > 0 as

fh(b, s, a) (i)= χ (b ≤ h) 1
2HEπk

[︄
H∑︂
h′=1

gap(Sh′ , Ah′)
⃓⃓⃓⃓
⃓ B ≤ h, Sh = s, Ah = a

]︄

(ii)= χ (b ≤ h) 1
2HEπk

[︄
h∑︂

h′=B
gap(Sh′ , Ah′)

⃓⃓⃓⃓
⃓ B ≤ h, Sh = s, Ah = a

]︄

+ χ (b ≤ h) 1
2HEπk

⎡⎣ H∑︂
h′=h+1

gap(Sh′ , Ah′)
⃓⃓⃓⃓
⃓Sh = s, Ah = a

⎤⎦ ,
where (i) expands the definition of ϵk and (ii) decomposes the sum inside the conditional

expectation and uses the Markov-property to simplify the conditioning for terms after
2It may still depend on the current policy πk which is determined by observations in episodes 1

to k − 1. But, crucially, fh does not depend on any realization in the k-th episode

200

h. Before taking the expectation of fh(B, Sh, Ah), we first rewrite the conditional

expectation in the first term above, which will be useful later.

Eπk

[︄
h∑︂

h′=B
gap(Sh′ , Ah′)

⃓⃓⃓⃓
⃓ B ≤ h, Sh = s, Ah = a

]︄

(i)=
Eπk

[︂∑︁h
h′=B gap(Sh′ , Ah′)χ (Ah = a, Sh = s)χ (B ≤ h)

]︂
Pπk [B ≤ h, Sh = s, Ah = a]

(ii)=
Eπk

[︂∑︁h
h′=B gap(Sh′ , Ah′)χ (Ah = a, Sh = s)

]︂
Pπk [B ≤ h, Sh = s, Ah = a]

=
Eπk

[︄∑︁h
h′=B gap(Sh′ , Ah′)

⃓⃓⃓⃓
⃓ Sh = s, Ah = a

]︄
Pπk [B ≤ h | Sh = s, Ah = a] .

Here, step (i) uses the property of conditional expectations with respect to an event

with nonzero probability and (ii) follows from the definition of B: When B > h, the

sum of gaps until h is zero. Consider now the expectation of fh(B, Sh, Ah)

Eπk [fh(B, Sh, Ah)]

= 1
2HEπk

⎡⎢⎢⎢⎢⎣χ (B ≤ h)
Eπk

[︄∑︁h
h′=B gap(Sh′ , Ah′)

⃓⃓⃓⃓
⃓ Sh, Ah

]︄
Pπk [B ≤ h | Sh, Ah]

⎤⎥⎥⎥⎥⎦ (5.17)

+ 1
2HEπk

⎡⎣χ (B ≤ h)Eπk

⎡⎣ H∑︂
h′=h+1

gap(Sh′ , Ah′)
⃓⃓⃓⃓
⃓Sh, Ah

⎤⎦⎤⎦ (5.18)

The term in (5.18) can be bounded using the tower-property of expectations as

1
2HEπk

⎡⎣χ (B ≤ h)Eπk

⎡⎣ H∑︂
h′=h+1

gap(Sh′ , Ah′)
⃓⃓⃓⃓
⃓Sh, Ah

⎤⎦⎤⎦
≤ 1

2HEπk

⎡⎣Eπk
⎡⎣ H∑︂
h′=h+1

gap(Sh′ , Ah′)
⃓⃓⃓⃓
⃓Sh, Ah

⎤⎦⎤⎦ = 1
2HEπk

⎡⎣ H∑︂
h′=h+1

gap(Sh′ , Ah′)
⎤⎦ .

201

For the term in (5.17), we also use the tower-property to rewrite it as

1
2HEπk

⎡⎢⎢⎢⎢⎣χ (B ≤ h)
Eπk

[︄∑︁h
h′=B gap(Sh′ , Ah′)

⃓⃓⃓⃓
⃓ Sh, Ah

]︄
Pπk [B ≤ h | Sh, Ah]

⎤⎥⎥⎥⎥⎦

= 1
2HEπk

⎡⎢⎢⎢⎢⎣Eπk
⎡⎢⎢⎢⎢⎣χ (B ≤ h)

Eπk

[︄∑︁h
h′=B gap(Sh′ , Ah′)

⃓⃓⃓⃓
⃓ Sh, Ah

]︄
Pπk [B ≤ h | Sh, Ah]

⃓⃓⃓⃓
⃓ Sh, Ah

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

= 1
2HEπk

⎡⎢⎢⎢⎢⎣Eπk
[︄
χ (B ≤ h)

⃓⃓⃓⃓
⃓ Sh, Ah

]︄ Eπk
[︄∑︁h

h′=B gap(Sh′ , Ah′)
⃓⃓⃓⃓
⃓ Sh, Ah

]︄
Pπk [B ≤ h | Sh, Ah]

⎤⎥⎥⎥⎥⎦
= 1

2HEπk

[︄
Eπk

[︄
h∑︂

h′=B
gap(Sh′ , Ah′)

⃓⃓⃓⃓
⃓ Sh, Ah

]︄]︄

= 1
2HEπk

[︄
h∑︂

h′=B
gap(Sh′ , Ah′)

]︄
.

Summing both terms yields the required upper-bound 1
2HEπk

[︂∑︁H
h=B gap(Sh, Ah)

]︂
on

the expectation Eπk [fh(B, Sh, Ah)].

5.5.4 Policy-dependent regret bound for StrongEuler

We now show how to derive a regret bound for StrongEuler algorithm in Simchowitz

and Jamieson (2019) that depends on the gaps of the played policies throughout the

K episodes.

To build on parts of the analysis in Simchowitz and Jamieson (2019), we first

define some useful notation analogous to Simchowitz and Jamieson (2019) but adapted

to our setting:

n̄k(s, a) =
k∑︂
j=1

wπk(s, a),

M = (SAH)3,

Vπ(s, a) = V[R(s, a)] + Vs′∼P (·|s,a)[V π(s′)],

Vk(s, a) = Vπk(s, a) ∧ V∗(s, a)

202

We will use their following results:

Proposition 5.5.6 (Proposition F.1, F.9 and B.4 in Simchowitz and Jamieson

(2019)). There is a good event Aconc that holds with probability 1 − δ/2. In this event,

StrongEuler is strongly optimistic (as well as optimistic). Further, there is a

universal constant c ≥ 1 so that for all k ≥ 1, s ∈ S, a ∈ A, the surpluses are bounded

as

0 ≤ 1
c
Ek(s, a) ≤ Blead

k (s, a) +
H∑︂

h=κ(s)
Eπk

[︂
Bfut
k (Sh, Ah) | (Sκ(s), Aκ(s)) = (s, a)

]︂
,

where Blead, Bfut are defined as

Blead
k (s, a) = H ∧

⌜⃓⃓⎷Vk(s, a) log (Mnk(s, a)/δ)
nk(s, a) ,

Bfut
k (s, a) = H3 ∧H3

⎛⎝
⌜⃓⃓⎷S log (Mnk(s, a)/δ)

nk(s, a) + S log (Mnk(s, a)/δ)
nk(s, a)

⎞⎠2

.

Lemma 5.5.7 (Lemma B.3 in Simchowitz and Jamieson (2019)). Let m ≥ 2,

a1, . . . , am ≥ 0 and ϵ ≥ 0. Then clip
[︂∑︁m

i=1 ai
⃓⃓⃓
ϵ
]︂

≤ 2∑︁m
i=1 clip

[︂
ai| ϵ

2m

]︂
.

Equipped with these results and our improved surplus clipping proposition in Propo-

sition 5.5.6, we can now derive the following bound on the regret of StrongEuler

Lemma 5.5.8. In event Aconc, the regret of StrongEuler is bounded for all k ≥ 1

as

R(K) ≤8
K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
[︄
cBlead

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

]︄

+ 16
K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
[︄
cBfut

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

8SA

]︄
,

with a universal constant c ≥ 1 and gap̆ k(s, a) = gap(s,a)
4 ∨ ϵk(s, a).

Proof. We now use our improved surplus clipping result from Proposition 5.4.2 as a

starting point to bound the instantaneous regret of StrongEuler in the kth episode

203

as

V ∗(s1) − V πk(s1) ≤ 4
∑︂
s,a

wπk(s, a) clip
[︄
Ek(s, a)

⃓⃓⃓⃓
⃓ gap̆ k(s, a)

]︄
. (5.19)

Next, we write the bound on the surpluses from Proposition 5.5.6 as

Ek(s, a) ≤ cBlead
k (s, a)

+ c
∑︂
s′,a′

χ (κ(s′) ≥ κ(s))Pπk
[︂
Sκ(s′) = s′, Aκ(s′) = a′ | (Sκ(s), Aκ(s)) = (s, a)

]︂
Bfut
k (s′, a′)

and plugging it in Equation 5.19 and applying Lemma 5.5.7 gives

V ∗(s1) − V πk(s1) ≤ 8
∑︂
s,a

wπk(s, a) clip
[︄
cBlead

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

]︄

+ 16
∑︂
s,a

wπk(s, a) clip
[︄
cBfut

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

8SA

]︄
.

The statement to show follows now by summing over k ∈ [K]. The form of the second

term in the previous display follows from the inequality

∑︂
s,a

wπk(s, a)χ (κ(s′) ≥ κ(s))Pπk
[︂
Sκ(s′) = s′, Aκ(s′) = a′ | (Sκ(s), Aκ(s)) = (s, a)

]︂
≤
∑︂
s,a

wπk(s, a)Pπk
[︂
Sκ(s′) = s′, Aκ(s′) = a′ | (Sκ(s), Aκ(s)) = (s, a)

]︂
= wπk(s′, a′).

We note that if πk ≡ ˆ︁π for any ˆ︁π ∈ Π∗ then V ∗(s1) − V πk(s1) = 0, and WLOG we

can disregard such terms in the total regret.

The next step is to relate n̄k(s, a) to nk(s, a) via the following lemma.

Lemma 5.5.9 (Lemma B.7 in Simchowitz and Jamieson (2019)). Define the event

Asamp

Asamp =
{︄

∀(s, a) ∈ S × A,∀k ≥ τ(s, a) : nk(s, a) ≥ n̄k(s, a)
4

}︄
,

where τ(s, a) = inf{k : n̄k(s, a) ≥ Hsamp} and Hsamp = c′ log (M/δ) for a universal

constant c′. Then event Asamp holds with probability 1 − δ/2.

204

Proof. This can be proved analogously to Lemma B.7 in Simchowitz and Jamieson

(2019) and Lemma 6 in Dann et al. (2019) with the difference that in our case, there

can only be at most one observation of (s, a) per episode for each (s, a) due to our

layered assumption. Thus, there is no need to sum over observations accumulated for

each h ∈ [H] and our Hsamp = O(log (H)) as opposed to O(H log (H)).

Lemma 5.5.10. Let fs,a : N → R be non-increasing with supu fs,a(u) ≤ ˆ︁f < ∞ for

all s, a ∈ S × A. Then on event Asamp in Lemma 5.5.9, we have
K∑︂
k=1

∑︂
s,a

wπk(s, a)fs,a(nk(s, a)) ≤ SA ˆ︁fHsamp +
∑︂
s,a

K∑︂
k=τ(s,a)

wπk(s, a)fs,a(n̄k(s, a)/4).

Proof.
K∑︂
k=1

∑︂
s,a

wπk(s, a)fs,a(nk(s, a))

=
∑︂
s,a

τ(s,a)−1∑︂
k=1

wπk(s, a)fs,a(nk(s, a)) +
∑︂
s,a

K∑︂
k=τ(s,a)

wπk(s, a)fs,a(nk(s, a))

≤
∑︂
s,a

⎛⎝τ(s,a)−1∑︂
k=1

wπk(s, a)
⎞⎠ ˆ︁f +

∑︂
s,a

K∑︂
k=τ(s,a)

wπk(s, a)fs,a(n̄k(s, a)/4)

=
∑︂
s,a

nτ(s,a)(s, a) ˆ︁f +
∑︂
s,a

K∑︂
k=τ(s,a)

wπk(s, a)fs,a(n̄k(s, a)/4)

≤ SAHsamp
ˆ︁f +

∑︂
s,a

K∑︂
k=τ(s,a)

wπk(s, a)fs,a(n̄k(s, a)/4).

Theorem 5.5.11 (Regret Bound for StrongEuler). With probability at least 1 − δ,

the regret of StrongEuler is bounded for all number of episodes K ∈ N as

R(K) ≲
∑︂
s,a

min
t∈[K(s,a)]

⎧⎨⎩V∗(s, a)LOG(M/δ, t, gap̆ t(s, a))
gap̆ t(s, a)

+
√︂

(K(s,a) − t)LOG(M/δ,K(s,a), gap̆K(s,a)
(s, a))

⎫⎬⎭
+
∑︂
s,a

SH3 log
(︃
MK

δ

)︃
min

{︄
log

(︃
MK

δ

)︃
, log

(︄
MH

gap̆ min(s, a)

)︄}︄

+ SAH3(S ∨H) log
(︃
M

δ

)︃
.

205

Here, K(s,a) is the last round during which a policy π was played such that wπ(s, a) > 0,

gap̆ t(s, a) = gap(s, a) ∨ ϵt(s, a), gap̆ min(s, a) = mink∈[K] : gap̆ k(s,a)>0 gap̆ k(s, a) is the

smallest gap encountered for each (s, a), and

LOG(M/δ, t, gap̆ t(s, a)) = log
(︃
M

δ

)︃
log

(︄
t ∧ 1 + 16V∗(s, a) log (M/δ)

gap̆ t(s, a)2

)︄
.

Proof. We here consider the event Aconc ∩ Asamp which has probability at least 1 − δ

by Proposition 5.5.6 and Lemma 5.5.9. We now start with the regret bound in

Lemma 5.5.8 and bound the two terms individually in the following:

Bounding the Blead term. We have
K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
[︄
cBlead

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

]︄

(i)
≤ SAHHsamp +

∑︂
s,a

K∑︂
k=τ(s,a)

wπk(s, a) clip
⎡⎣c
⌜⃓⃓⎷4Vk(s, a) log (Mn̄k(s, a)/4δ)

n̄k(s, a)

⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

⎤⎦
(ii)
≤ SAHHsamp +

∑︂
s,a

K(s,a)∑︂
k=τ(s,a)

wπk(s, a)clip
⎡⎣2c

√︄
V∗(s, a) log

(︃
M

δ

)︃⌜⃓⃓⎷ log (n̄k(s, a))
n̄k(s, a)

⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

⎤⎦ ,
(5.20)

where step (i) applies Lemma 5.5.10 and (ii) follows from the definition of Vk(s, a),

the definition of K(s,a) and

log
(︄
Mn̄k(s, a)

4δ

)︄
= log

(︃
M

4δ

)︃
+ log (n̄k(s, a))

≤
(︃

log
(︃
M

4δ

)︃
+ 1

)︃
log (n̄k(s, a)) = log

(︃
Me

4δ

)︃
log (n̄k(s, a)) ≤ log (M/δ) log (n̄k(s, a)) .

We now apply our optimization lemma (Lemma 5.5.14) with xk = wπk(s, a), vk =

2c
√︂

V∗(s, a) log (M/δ), and ϵk = gap̆ k(s,a)
4vk

to bound each (s, a)-term in Equation 5.20

for any t ∈ [K] as

4vt
ϵt

log
(︄
t ∧ 1 + 1

ϵ2
t

)︄
+ 4vt

⌜⃓⃓⎷log
(︄
K ∧ 1 + 1

ϵ2
K

(K − t)
)︄

=
32c2V∗(s, a) log

(︂
M
δ

)︂
log

(︂
t ∧ 1 + 16V∗(s,a) log(M/δ)

gap̆ t(s,a)2

)︂
gap̆ t(s, a)

+8c

⌜⃓⃓⎷(K − t)V∗(s, a) log
(︃
M

δ

)︃
log

(︄
K ∧ 1 + 16V∗(s, a) log (M/δ)

gap̆K(s, a)2

)︄
.

206

We have

K∑︂
k=τ(s,a)

wπk(s, a) clip
⎡⎣2c

√︂
V∗(s, a) log (M/4δ)

⌜⃓⃓⎷ log (n̄k(s, a))
n̄k(s, a)

⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

⎤⎦
≤32c2V∗(s, a)LOG(M/δ, t, gap̆ t(s, a))

gap̆ t(s, a) + 8c
√︂

(K − t)LOG(M/δ,K, gap̆K(s, a)).

Plugging this bound back in Equation 5.20 gives

K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
[︄
cBlead

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

]︄

≲ SAH log
(︃
M

δ

)︃

+
∑︂
s,a

min
t∈[K(s,a)]

⎧⎨⎩V∗(s, a)LOG(M/δ, t, gap̆ t(s, a))
gap̆ t(s, a) +

√︂
(K(s,a) − t)LOG(M/δ,K, gap̆K(s,a)

(s, a))

⎫⎬⎭
where ≲ only ignores absolute constant factors.

Bounding the Bfut term. Consider the second term in Lemma 5.5.8 and event

Aconc ∩ Asamp. Then by Lemma 5.5.10

K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
[︄
cBfut

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

8SA

]︄

≤ SAH3Hsamp +
∑︂
s,a

K∑︂
k=τ(s,a)

wπk(s, a)fs,a(n̄k(s, a))

where fs,a is

fs,a(n̄k(s, a)) =

clip

⎡⎢⎣2cH3 ∧ 2cH3

⎛⎝
⌜⃓⃓⎷S log (Mn̄k(s, a)/δ)

n̄k(s, a) + S log (Mn̄k(s, a)/δ)
n̄k(s, a)

⎞⎠2 ⃓⃓⃓⃓
⃓ gap̆ k(s, a)

4

⎤⎥⎦ .
We now apply Lemma C.1 by Simchowitz and Jamieson (2019) which gives

K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
[︄
cBfut

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

8SA

]︄

≤ SAH3Hsamp +
∑︂
s,a

Hfs,a(H) +
∑︂
s,a

∫︂ n̄K(s,a)

H
fs,a(u)du

≤ SAH4c′ log (M/δ) +
∑︂
s,a

∫︂ n̄K(s,a)

H
fs,a(u)du.

207

The remaining integral term is bounded with Lemma B.9 (b) by Simchowitz and

Jamieson (2019) with C ′ = S,C = H3 and ϵ = gap̆ min(s, a) = mink∈[K(s,a)] : gap̆ k(s,a)>0 gap̆ k(s, a)

as follows.

K∑︂
k=1

∑︂
s,a

wπk(s, a) clip
[︄
cBfut

k (s, a)
⃓⃓⃓⃓
⃓ gap̆ k(s, a)

8SA

]︄

≲ SAH4 log
(︃
M

δ

)︃
+
∑︂
s,a

(︄
SH3 log

(︃
M

δ

)︃

+ SH3 log
(︃
MK

δ

)︃
min

{︄
log

(︃
MK

δ

)︃
, log

(︄
MH

gap̆ min(s, a)

)︄}︄)︄

≲ SAH3(S ∨H) log
(︃
M

δ

)︃
+
∑︂
s,a

SH3 log
(︃
MK

δ

)︃
min

{︄
log

(︃
MK

δ

)︃
, log

(︄
MH

gap̆ min(s, a)

)︄}︄
.

5.5.5 Proof of Corollary 5.4.6

We begin by showing a different type of upper bound on the expected gaps by the

surpluses. Define the set βk = range(B) where B is the r.v. which is the stopping

time with respect to πk. For any π∗, define the set

Ok(π∗) =
⋃︂

sb∈βk
{(s, a) ∈ S × A :Pπ∗((Sh, Ah) = (s, a)|Sκ(sb) = sb)

≥ Pπk((Sh, Ah) = (s, a)|Sκ(sb) = sb)}.

This set has the following intuitive definition – whenever AB occurs we restrict our

attention to the MDP with initial state SB. On this restricted MDP, Ok is the set of

state-action pairs which have greater probability to be visited by the optimal π∗ than

by πk.

Lemma 5.5.12. Assume strong optimism and greedy V̄ k, i.e., V̄ k(s) ≥ maxa Q̄k(s, a)

for all s ∈ S. Then there exists an optimal π∗ for which

Eπk

[︄
H∑︂
h=B

gap(Sh, Ah)
]︄

≤ Eπk

[︄
H∑︂
h=B

χ(Sh, Ah ̸∈ Ok(π∗))Ek(Sh, Ah)
]︄
.

208

Proof. One can write the optimistic value function for any s and π as follows

V̄
π(s) = Eπ

⎡⎣ H∑︂
h=κ(s)

Ek(Sh, Ah) + r(Sh, Ah)
⃓⃓⃓
Sκ(s) = s

⎤⎦
= Ek(s, π(s)) + r(s, π(s)) + ⟨P (·|s, π(s)), V̄ π⟩.

By backwards induction on H we show that for any s, κ(s) ≤ H V̄
π ≤ V̄ k. The base

case holds from the fact that on all s : κ(s) = H, V̄ k(s) is just the largest optimistic

reward over all actions at s. For the induction step it holds that

V̄
π(s) = Ek(s, π(s)) + r(s, π(s)) + ⟨P (·|s, π(s)), V̄ π⟩

≤ Ek(s, π(s)) + r(s, π(s)) + ⟨P (·|s, π(s)), V̄ k⟩

= Q̄k(s, π(s)) ≤ V̄ k(s),

where the first inequality holds from the induction hypothesis and the second inequality

holds by definition of the value function. We now have

Eπk

[︄
H∑︂
h=B

gap(Sh, Ah)
]︄

= Eπk [V ∗(SB) − Vk(SB)]

≤ Eπk
[︂
V̄ k(SB) − Vk(SB)

]︂
− Eπk

[︂
V̄

∗(SB) − V ∗(SB)
]︂
.

Let us focus on the term Eπk
[︂
V̄

∗(SB) − V ∗(SB)
]︂

Eπk
[︂
V̄

∗(SB) − V ∗(SB)
]︂

= Eπk
[︂
Eπk

[︂
V̄

∗(SB) − V ∗(SB)|SB
]︂]︂

= Eπk

[︄∑︂
s

V̄
∗(s) − V ∗(s)
Pπk(SB = s) χ(SB = s)

]︄

= Eπk

⎡⎣∑︂
s

Eπ∗

[︂∑︁H
h=κ(s) Ek(Sh, Ah)|Sκ(s) = s

]︂
Pπk(SB = s) χ(SB = s)

⎤⎦ .
We can similarly expand the term Eπk

[︂
V̄ k(SB) − Vk(SB)

]︂
. By the definition of Ok(π∗)

it holds that for any h ≥ κ(s)

Eπk
[︂
Ek(Sh, Ah)|Sκ(s) = s

]︂
− Eπ∗

[︂
Ek(Sh, Ah)|Sκ(s) = s

]︂
≤ Eπk

[︂
χ(Sh, Ah ̸∈ Ok(π∗))Ek(Sh, Ah)|Sκ(s) = s

]︂
.

209

This implies

Eπk
[︂
V̄

∗(SB) − V ∗(SB)
]︂

≤ Eπk

⎡⎣∑︂
s

Eπk
[︂∑︁H

h=κ(s) χ(Sh, Ah ̸∈ Ok(π∗))Ek(Sh, Ah)|Sκ(s) = s
]︂

Pπk(SB = s) χ(SB = s)
⎤⎦

= Eπk

[︄
H∑︂
h=B

χ(Sh, Ah ̸∈ Ok(π∗))Ek(Sh, Ah)
]︄
.

We next show a version of Lemma 5.5.3 which takes into account the set Ok(π∗).

Lemma 5.5.13. With the same assumptions as in Lemma 5.5.12, there exists an

optimal π∗ for which

V̈ k(s1) − Vk(s1) ≥ Eπk

[︄
H∑︂
h=B

gap(Sh, Ah) −
H∑︂
h=B

χ(Sh, Ah ̸∈ Ok(π∗))ϵk(Sh, Ah)
]︄
,

where ϵk is arbitrary.

Proof. Since Ëk is non-negative on all state-action pairs we have

V̈ k(s1) − V πk(s1) = Eπk

[︄
H∑︂
h=1

Ëk(Sh, Ah)
]︄

≥ Eπk

[︄
H∑︂
h=B

Ëk(Sh, Ah)
]︄

≥ Eπk

[︄
H∑︂
h=B

χ ((Sh, Ah) ̸∈ Ok) Ëk(Sh, Ah)
]︄

≥ Eπk

[︄
H∑︂
h=B

χ((Sh, Ah) ̸∈ Ok)Ek(Sh, Ah)
]︄

− Eπk

[︄
H∑︂
h=B

χ((Sh, Ah) ̸∈ Ok)ϵk(Sh, Ah)
]︄

≥ Eπk

[︄
H∑︂
h=B

gap(Sh, AH)
]︄

− Eπk

[︄
H∑︂
h=B

χ((Sh, Ah) ̸∈ Ok)ϵk(Sh, Ah)
]︄
,

where the second to last inequality follows from the definition of Ëk and the last

inequality follows from Lemma 5.5.12.

Next, we define ϵ̄k in the following way. Let

ϵ̄k(s, a) ≡

⎧⎨⎩ϵk(s, a) if (s, a) ̸∈ Ok(π∗)
∞ otherwise,

(5.21)

210

where ϵk is the clipping function defined in Equation 5.16. Lemma 5.5.13 now implies

that

V̈ k(s1) − Vk(s1) ≥ Eπk

[︄
H∑︂
h=B

gap(Sh, Ah) −
H∑︂
h=B

ϵ̄k(Sh, Ah)
]︄
.

This is sufficient to argue Lemma 5.5.8 with gap̆ k(s, a) = gap(s,a)
4 ∨ ϵ̄k(s, a) and hence

arrive at a version of Corollary 5.4.5 which uses ϵ̄k as the clipping thresholds. Let

us now argue that ϵ̄k(s, a) = ∞ for all (s, a) ∈ π∗ whenever π∗ is the unique optimal

policy for the deterministic MDP. To do so consider (s, a) ∈ π∗ and πk ̸= π∗. Since the

MDP is deterministic, βk is a singleton and is the the first state sb at which πk differs

from π∗. We now observe that if κ(s) < κ(sb), this implies ϵk(s, a) = ∞ as B(s, a)

does not occur. Further, the conditional probabilities Pπ∗((Sh, Ah) = (s, a)|Sκ(sb) = sb)

and Pπk((Sh, Ah) = (s, a)|Sκ(sb) = sb) are both equal to 1 if κ(s) > κ(sb) and so

(s, a) ∈ Ok(π∗) which implies ϵ̄k(s, a) = ∞. Thus we can clip all gaps at (s, a) ∈ π∗ to

infinity and they will never appear in the regret bound.

5.5.6 Alternative to integration lemmas

Lemma 5.4.3 is a simplified version of the following stronger result:

Lemma 5.5.14. Consider the following optimization problem

maximize
x1,...,xK

K∑︂
k=1

vkxk

√︃
log

(︂∑︁k
j=1 xj

)︂
√︂∑︁k

j=1 xj

s.t. 1 ≤ x1, 0 ≤ xk ≤ 1,

√︃
log

(︂∑︁k
j=1 xj

)︂
√︂∑︁k

j=1 xj
≥ ϵk ∀ k ∈ [K],

(5.22)

with (vi)i∈[K] ∈ RK
+ and (ϵi)i∈[K] ∈ RK

+ . Then the optimal value of Problem 5.22 is

bounded for any t ∈ [K] as

4 v̄t
ϵt

log
(︄
t ∧ 1 + 1

ϵ2
t

)︄
+ 4v∗

t

⌜⃓⃓⎷log
(︄
K ∧ 1 + 1

ϵ2
K

)︄
(K − t), (5.23)

where v̄t = maxk∈[t] vk and v∗
t = maxK≥k≥t vk.

211

Proof. Denote by Xk = ∑︁k
t=1 xt the cumulative sum of xt. The proof consists of

splitting the objective of Equation 5.22 into two terms:

t∑︂
k=1

vkxk
√︂

log (Xk)√
Xk

+
K∑︂

k=t+1

vkxk
√︂

log (Xk)√
Xk

(5.24)

and bounding each by the corresponding one in Equation 5.23 respectively.

Before doing so, we derive the following bound on the sum of xk√
Xk

terms:

M∑︂
k=m+1

xk√
Xk

=
M∑︂

k=m+1

Xk −Xk−1√
Xk

≤
∫︂ XM

Xm

1√
x
dx = 2(

√︂
XM −

√︂
Xm) , (5.25)

where the inequality is due to Xk being non-decreasing.

Consider now each term in the objective in Equation 5.24 separately.

Summands up to t: Since Xk is non-decreasing, we can bound

t∑︂
k=1

vkxk
√︂

log (Xk)√
Xk

≤ v̄t
√︂

log (Xt)
t∑︂

k=1

xk√
Xk

(i)
≤ 2v̄t

√︂
log (Xt)

√︂
Xt

(ii)
≤ 2 v̄t

ϵt
log (Xt) ,

where (i) follows from Equation 5.25 using the convention X0 = 0 and (ii) from

the optimization constraint
√︂

log (Xt) ≥ ϵt
√
Xt. It remains to bound log (Xt) by

2 log
(︂
t ∧ 1 + 1

ϵ2t

)︂
. Since all increments xj are at most 1, the bound log (Xt) ≤ log (t)

holds.

We claim the following:

Claim 5.5.15. For any x s.t. log (x) ≤ log (log (x) /a) it holds that log (x) ≤

2 log (1 + 1/a).

Proof. First, we note that if 0 < x ≤ e, then log (log (x)) < 0 and thus the assumption

of the claim implies log (x) ≤ log (1/a). Next, assume that x > e. Then we have
log(log(x))

log(x) ≤ 1/e, which together with the assumption of the claim implies log (x) ≤

1/e log (x)+log (1/a) or equivalently log (x) ≤ e
e−1 log (1/a). Noting that e/(e−1) ≤ 2

completes the proof.

212

The constraints of the problem enforce
√
Xk ≤

√
log(Xk)
ϵk

, which implies after squar-

ing and taking the logarithm: log (Xk) ≤ log (log (Xk) /ϵ2
k). Thus, using Claim 5.5.15

yields:

log (Xk) ≤ 2 log
(︂
k ∧ 1 + 1/ϵ2

k

)︂
. (5.26)

Summands larger than t: Let v∗
t = maxk : t<k≤K vk. For this term, we have

K∑︂
k=t+1

vkxk
√︂

log (Xk)√
Xk

5.26
≤ 2v∗

t

√︂
log (K ∧ 1 + 1/ϵ2

K)
K∑︂

k=t+1

xk√
Xk

5.25
≤ 4v∗

t

√︂
log (K ∧ 1 + 1/ϵ2

K)(
√︂
XK −

√︂
Xt)

≤ 4v∗
t

√︂
log (K ∧ 1 + 1/ϵ2

K)(
√︂
XK −Xt)

≤ 4v∗
t

√︂
log (K ∧ 1 + 1/ϵ2

K)(
√
K − t),

where we first bounded log (Xk) ≤ log (XK), because Xk is non-decreasing, and used

the upper bound on log (XK). Then we applied Equation 5.25 and finally used

0 ≤ xk ≤ 1.

5.6 Instance-dependent lower bounds

We here shed light on what properties on an episodic MDP determine the statistical

difficulty of RL by deriving information-theoretic lower bounds on the asymptotic

expected regret of any (good) algorithm. To that end, we first derive a general result

that expresses a lower bound as the optimal value of a certain optimization problem

and then derive closed-form lower-bounds from this optimization problem that depend

on certain notions of gaps for two special cases of episodic MDPs.

Specifically, in those special cases, we assume that the rewards follow a Gaussian

distribution with variance 1/2. We further assume that the optimal value function is

bounded in the same range as individual rewards, e.g. as 0 ≤ V ∗(s) < 1 for all s ∈ S.

This assumption is common in the literature (e.g. Krishnamurthy et al., 2016; Jiang

213

et al., 2017; Dann et al., 2018) and can be considered harder than a normalization of

V ∗(s) ∈ [0, H] (see Jiang and Agarwal (2018)).

5.6.1 General instance-dependent lower bound as an opti-
mization problem

The idea behind deriving instance-dependent lower bounds for the stochastic MAB

problem (Lai and Robbins, 1985; Combes et al., 2017; Garivier et al., 2019) and infinite

horizon MDPs (Graves and Lai, 1997; Ok et al., 2018) are based on first assuming that

the algorithm studied is uniformly good, that is, on any instance of the problem

and for any α > 0, the algorithm incurs regret at most o(Tα), and then argue that, to

achieve that guarantee, the algorithm must select a certain policy or action at least

some number of times as it would otherwise not be able to distinguish the current

MDP from another MDP that requires a different optimal strategy.

Since comparison between different MDPs is central to lower-bound constructions,

it is convenient to make the problem-instance explicit in the notation. To that end,

let Θ be the problem class of possible MDPs and we use subscripts θ and λ for value

functions, return, MDP parameters etc., to denote specific problem instances θ, λ ∈ Θ

of those quantities. Further, for a policy π and MDP θ, Pπθ denotes the law of one

episode, i.e., the distribution of (S1, A1, R1, S2, A2, R2, . . . , SH+1). To state the general

regret lower-bound we need to introduce the set of confusing MDPs. This set consists

of all MDPs λ in which there is at least one optimal policy π such that π ̸∈ Π∗
θ, i.e., π

is not optimal for the original MDP and no policy in Π∗
θ has been changed.

Definition 5.6.1. For any problem instance θ ∈ Θ we define the set of confusing

MDPs Λ(θ) as

Λ(θ) := {λ ∈ Θ: Π∗
λ \ Π∗

θ ̸= ∅ and KL(Pπθ ,Pπλ) = 0 ∀π ∈ Π∗
θ}.

We are now ready to state our general regret lower-bound for episodic MDPs:

214

Theorem 5.6.1 (General instance-dependent lower bound for episodic MDPs). Let ψ

be a uniformly good RL algorithm for Θ, that is, for all problem instances θ ∈ Θ and

exponents α > 0, the regret of ψ is bounded as E[Rθ(K)] ≤ o(Kα), and assume that

v∗
θ < H. Then, for any θ ∈ Θ, the regret of ψ satisfies

lim inf
K→∞

E[Rθ(K)]
log (K) ≥ C(θ),

where C(θ) is the optimal value of the following optimization problem

minimize:
η(π)≥0

∑︂
π∈Π

η(π) (v∗
θ − vπθ)

subject to:
∑︂
π∈Π

η(π)KL(Pπθ ,Pπλ) ≥ 1 for all λ ∈ Λ(θ)
. (5.27)

The optimization problem in Theorem 5.6.1 can be interpreted as follows. The

variables η(π) are the (expected) number of times the algorithm chooses to play policy

π which makes the objective the total expected regret incurred by the algorithm. The

constraints encode that any uniformly good algorithm needs to be able to distinguish

the true instance θ from all confusing instances λ ∈ Λ(θ), because otherwise it would

incur linear regret. To do so, a uniformly good algorithm needs to play policies π that

induce different behavior in λ and θ which is precisely captured by the constraints∑︁
π∈Π η(π)KL(Pπθ ,Pπλ) ≥ 1.

Although Theorem 5.6.1 has the flavor of results in the bandit and RL literature,

there are a few notable differences. Compared to lower-bounds in the infinite-horizon

MDP setting (Graves and Lai, 1997; Tewari and Bartlett, 2008; Ok et al., 2018), we

for example do not assume that the Markov chain induced by an optimal policy π∗

is irreducible. That irreducability plays a key role in converting the semi-infinite

linear program Equation 5.27, which typically has uncountably many constraints,

into a linear program with only O(SA) constraints. While for infinite horizon MDPs,

irreducibility is somewhat necessary to facilitate exploration, this is not the case for

the finite horizon setting and in general we cannot obtain a convenient reduction of

the set of constraints Λ(θ). See Section 5.7.2 for a more in-depth discussion.

215

5.6.2 Gap-dependent lower bound when optimal policies visit
all states

To derive closed-form gap-dependent bounds from the general optimization problem

Equation 5.27, we need to identify a finite subset of confusing MDPs Λ(θ) that each

require the RL agent to play a distinct set of policies that do not help to distinguish

the other confusing MDPs. To do so, we restrict our attention to the special case of

MDPs where every state is visited with non-zero probability by some optimal policy,

similar to the irreducibility assumptions in the infinite-horizon setting (Tewari and

Bartlett, 2008; Ok et al., 2018). In this case, it is sufficient to raise the expected

immediate reward of a suboptimal (s, a) by gapθ(s, a) in order to create a confusing

MDP, as proven in the following lemma.

Lemma 5.6.2. Let Θ be the set of all episodic MDPs with Gaussian immediate

rewards and optimal value function uniformly bounded by 1 and let θ ∈ Θ be an MDP

in this class. Then for any suboptimal state-action pair (s, a) with gapθ(s, a) > 0 that

is visited by some optimal policy with non-zero probability, there exists a confusing

MDP λ ∈ Λ(θ) with

• λ and θ only differ in the immediate reward at (s, a)

• KL(Pπθ ,Pπλ) ≤ gapθ(s, a)2 for all π ∈ Π.

By relaxing the problem in Equation 5.27 to only consider constraints from the

confusing MDPs in Lemma 5.6.2 with KL(Pπθ ,Pπλ) ≤ gapθ(s, a)2, for every (s, a), we

can derive the following closed-form bound:

Theorem 5.6.3 (Gap-dependent lower bound when optimal policies visit all states).

Let Θ be the set of all episodic MDPs with Gaussian immediate rewards and optimal

value function uniformly bounded by 1. Let θ ∈ Θ be an instance where every state

is visited by some optimal policy with non-zero probability. Then any uniformly good

216

algorithm on Θ has expected regret on θ that satisfies

lim inf
K→∞

E[Rθ(K)]
log (K) ≥

∑︂
s,a : gapθ(s,a)>0

1
gapθ(s, a) .

Theorem 5.6.3 can be viewed as a generalization of Proposition 2.2 in Simchowitz

and Jamieson (2019), which gives a lower bound of order ∑︁s,a : gapθ(s,a)>0
H

gapθ(s,a) for a

certain set of MDPs.3 While our lower bound is a factor of H worse, it is significantly

more general and holds in any MDP where optimal policies visit all states and with

appropriate normalization of the value function. Theorem 5.6.3 indicates that value-

function gaps characterize the instance-optimal regret when optimal policies cover the

entire state space.

5.6.3 Gap-dependent lower bound for deterministic-transition
MDPs

We expect that optimal policies do not visit all states in most MDPs of practical

interest (e.g. because certain parts of the state space can only be reached by making an

egregious error). We therefore now consider the general case where ⋃︁π∈Π∗
θ
supp(π) ⊊ S

but restrict our attention to MDPs with deterministic transitions where we are able to

give an intuitive closed-form lower bound. Note that deterministic transitions imply

∀π, s, a : wπ(s, a) ∈ {0, 1}. Here, a confusing MDP can be created by simply raising

the reward of any (s, a) by

v∗
θ − max

π : wπ
θ

(s,a)>0
vπθ , (5.28)

the regret of the best policy that visits (s, a), as long as it is positive and (s, a)

is not visited by any optimal policy. Equation 5.28 is positive when no optimal

policy visits (s, a) in which case suboptimal actions have to be taken to reach (s, a)

and gapθ(s, a) > 0. Let π∗
(s,a) be any maximizer in Equation 5.28, which has to act

3We translated their bound and construction to our setting where V ∗ ≤ 1 which reduces the
bound by a factor of H.

217

optimally after visiting (s, a). From the regret decomposition in Equation 5.3 and the

fact that π∗
(s,a) visits (s, a) with probability 1, it follows that v∗

θ − v
π∗

(s,a)
θ ≥ gapθ(s, a).

We further have v∗
θ − v

π∗
(s,a)
θ ≤ Hgapθ(s, a). Equipped with the subset of confusing

MDPs λ that each raise the reward of a single (s, a) as rλ(s, a) = rθ(s, a) + v∗
θ − v

π∗
(s,a)
θ ,

we can derive the following gap-dependent lower bound:

Theorem 5.6.4. Let Θ be the set of all episodic MDPs with Gaussian immediate

rewards and optimal value function uniformly bounded by 1. Let θ ∈ Θ be an instance

with deterministic transitions. Then any uniformly good algorithm on Θ has expected

regret on θ that satisfies

lim inf
K→∞

E[Rθ(K)]
log (K) ≥

∑︂
s,a∈Zθ : gapθ(s,a)>0

1

H · (v∗
θ − v

π∗
(s,a)
θ)

≥
∑︂

s,a∈Zθ : gapθ(s,a)>0

1
H2 · gapθ(s, a) ,

where Zθ = {(s, a) ∈ S × A : ∀π∗ ∈ Π∗
θ wπ

∗
θ (s, a) = 0} is the set of state-action pairs

that no optimal policy in θ visits.

We now compare the above lower bound to the upper bound guaranteed by

StrongEuler in Equation 5.5. The comparison is only with respect to number of

episodes and gaps4

∑︂
s,a∈X : gapθ(s,a)>0

log (K)
H2gapθ(s, a) ≤ Eθ[R(K)] ≤

∑︂
s,a : gapθ(s,a)>0

log (K)
gapθ(s, a) .

The difference between the two bounds, besides the extra H2 factor, is the fact that

(s, a) pairs that are visited by any optimal policy (s, a ̸= Zθ) do not appear in the

lower-bound while the upper-bound pays for such pairs if they can also be visited after

playing a suboptimal action. This could result in cases where the number of terms

in the lower bound is O(1) but the number of terms in the upper bound is Ω(SA)

leading to a large discrepancy.
4We carry out the comparison in expectation, since our lower bounds do not apply with high

probability.

218

Figure 5-3: Deterministic MDP instance for optimistic lower bound

5.6.4 Lower bounds for optimistic algorithms in MDPs with
deterministic transitions

In this section we show a lower bound on the regret of optimistic algorithms, demon-

strating that optimistic algorithms can not hope to achieve the information-theoretic

lower bounds even if the MDPs have deterministic transitions. While the result might

seem similar to the one proposed by Simchowitz and Jamieson (2019) (Theorem 2.3)

we would like to emphasize that the construction of Simchowitz and Jamieson (2019)

does not apply to MDPs with deterministic transitions, and that the idea behind our

construction is significantly different.

Consider the MDP in Figure 5-3. This MDP has 2n+ 9 states and 4n+ 8 actions.

The rewards for each action are either 1/12 or 1/12 + ϵ/2 and can be found next to

the transitions from the respective states. We are going to label the states according

to their layer and their position in the layer so that the first state is s1,1 the state

219

which is to the left of s1,1 in layer 2 is s2,1 and to the right s2,2. In general the i-th

state in layer h is denoted as sh,i. The rewards in all states are deterministic, with a

single exception of a Bernoulli reward from state s4,1 to s5,2 with mean 1/12. From the

construction it is clear that V ∗(s1,1) = 1/2 + ϵ. Further there are two sets of optimal

policies with the above value function – the n optimal policies which visit state s2,2

and the n optimal policies which visit s5,1. Notice that the information-theoretic lower

bound for this MDP is in O(log (K) /ϵ) as only the transition from state s4,1 to s5,2

does not belong to an optimal policy. In particular, there is no dependence on n.

Next we try to show that the class of optimistic algorithms will incur regret at least

Ω(n log (δ−1) /ϵ).

Class of algorithms. We adopt the class of algorithms from Section G.2 in

(Simchowitz and Jamieson, 2019) with an additional assumption which we clarify

momentarily. Recall that the class of algorithms assumes access to an optimistic

value function V̄ k(s) ≥ V ∗(s) and optimistic Q-functions. In particular the algorithms

construct optimistic Q and value functions as

V̄ k(s) = max
a∈A

Q̄k(s, a)

Qk(s, a) = ˆ︁rk(s, a) + brwk (s, a) + ˆ︁pk(s, a)⊤V̄ k + bk(s, a).

We assume that there exists a c ≥ 1 such that

c

2

⌜⃓⃓⎷ log (M(1 ∨ nk(s, a))) /δ
(1 ∨ nk(s, a)) ≤ brwk (s, a) ≤ c

⌜⃓⃓⎷ log (M(1 ∨ nk(s, a)))/δ
(1 ∨ nk(s, a)) ,

where M = θ(n) and bk(s, a) ∼
√
Sfk(s, a)brwk (s, a), where fk is a decreasing function

in the number of visits to (s, a) given by nk(s, a). For nk(s, a) = Ω(n log (n)), we

assume bk(s, a) ≤ brwk (s, a). One can verify that this is true for the the Q and value

functions of StrongEuler.

Lower bound. Let ϵ > 0 be sufficiently small to be specified later and let N be

220

such that

N = ⌊c
2n log (MN/(nδ))

16ϵ2 ⌋ .

Lemma 5.6.5. There exists n0, ϵ0 such that for any pair of n ≥ n0 and ϵ ≤ ϵ0 and

any k ≤ N , with probability at least 1 − δ, it holds that either nk(s5,1) < N/4, or

Q̄k(s4,1, 1) < Q̄k(s4,1, 2).

We can show the same for the upper part of the MDP.

Lemma 5.6.6. There exists n0, ϵ0 such that for any pair of n ≥ n0 and ϵ ≤ ϵ0 and

any k ≤ N , with probability at least 1 − δ, it holds that either nk(s1,2) < N/4, or

Q̄k(s1,1, 2) < Q̄k(s1,1, 1).

Theorem 5.6.7. There exists an MDP instance with deterministic transitions on

which any optimistic algorithm with confidence parameter δ will incur expected regret

of at least Ω(S log (δ−1) /ϵ)) while it is asymptotically possible to achieve Ω(log (K) /ϵ)

regret.

Proof of Theorem 5.6.7. Taking the MDP from Figure 5-3. Applying Lemma 5.6.5

and 5.6.6 shows that after N episodes with probability at least 1 − 2δ, the visitation

count of s2,2 and s5,1 each do not exceed N/4. Hence there are at least N/2 episodes in

which neither of them is visited, which means an ϵ-suboptimal policy is taken. Hence

the expected regret after N episodes is at least

(1 − 2δ)ϵN/2 = Ω
(︄
S log (δ−1)

ϵ

)︄
.

Theorem 5.6.7 has two implications for optimistic algorithms in MDPs with

deterministic transitions.

• It is impossible to be asymptotically optimal if the confidence parameter δ is

tuned to the time horizon K.

221

Figure 5-4: Issue with restricting LP to Π∗

• It is impossible to have an anytime bound matching the information-theoretic

lower bound.

5.6.4.1 Issue with deriving a general bound

We now try to give some intuition regarding why we could not derive a generic

lower bound for deterministic transition MDPs. We have already outlined our general

approach of restricting the set Π and Λ(θ) to finite subsets of manageable size and then

showing that the value of the LP on these restricted sets is not much smaller than the

value of the original LP. One natural restriction of Π is the set Π∗ from Theorem 5.6.4.

Suppose we restrict ourselves to the same set and consider only environments making

policies in Π∗ optimal as the restriction for Λ(θ). We now give an example of an

MDP for which such a restriction will lead to an Ω(SA) multiplicative discrepancy

between the value of the original semi-infinite LP and the restricted LP. The MDP

can be found in Figure 5-4. The rewards for each action for a fixed state s are equal

and are shown in the vertices corresponding to the states. The number of states in

the second and last layer of the MDP are equal to (SA− 3)/2. The optimal policy

takes the red path and has value V π∗ = 3. The set Π∗ consists of all policies πj,i

which visit one of the states in green. The policies π1,i, in blue, visit the green state

in the second layer of the MDP and one of the states in the final layer, following

the paths in blue. Similarly the policies π2,i, in orange, visit one of the state in the

second layer and the green state in the last layer, following the orange paths. The

222

value function of πj,i is V πj,i = 3 − 3
SA

− iϵ, where 0 ≤ i ≤ (SA − 4)/2. We claim

that playing each πj,i η(πj,i) = Ω(SA) times is a feasible solution to the LP restricted

to Π∗. Fix i, the λπ1,i must put weight at least 1/SA on the green state in layer 2.

Coupling with the fact that for all i′ the rewards π1,i′ are also changed under this

environment we know that the constraint of the restricted LP with respect to λπ1,i

is lower bounded by ∑︁i′ η(π1,i′)/(SA)2. Since there are Ω(SA) policies {π1,i′}i′ , this

implies that η(π1,i) = Ω(SA) is feasible. A similar argument holds for any π2,i. Thus

the value of the restricted LP is at most O(SA), for any ϵ ≪ SA.

However, we claim that the value of the semi-infinite LP which actually characterizes

the regret is at least Ω(S2A2). First, to see that the above assignment of η is not

feasible for the semi-infinite LP, consider any policy π ̸∈ Π∗, e.g. take the policy

which visits the state in layer 2 with reward 1 − 1/SA − ϵ and the state in layer

4 with reward 1 − 2/SA − ϵ. Each of these states have been visited O(SA) times

and η(π) = 0 hence the constraint for the environment λπ is upper bounded by

SA
(︃(︂

1
SA

+ ϵ
)︂2

+
(︃(︂

2
SA

+ ϵ
)︂2
)︃)︃

≈ 1/SA. In general each of the states in black in

the second layer and the fourth layer have been visited 1/SA times less than what

is necessary to distinguish any π ̸∈ Π∗ as sub-optimal. If we define the i-th column

of the MDP as the pair consisting of the states with rewards 1 − 1/SA − iϵ and

1−2/SA− iϵ then to distinguish the policy visiting both of these states as sub-optimal

we need to visit at least one of these Ω(S2A2) times. This implies we need to visit

each column of the MDP Ω(S2A2) times and thus any strategy must incur regret at

least Ω
(︂∑︁

i S
2A2 1

SA

)︂
= Ω(S2A2), leading to the promised multiplicative gap of Ω(SA)

between the values of the two LPs.

Why does such a gap arise and how can we hope to fix it this issue? Any feasible

solution to the LP restricted to Π∗ essentially needs to visit the states in green Θ(S2A2)

times. This is sufficient to distinguish the green states as sub-optimal to visit and

hence any strategy visiting these states would be also deemed sub-optimal. This is

223

achievable by playing each strategy in Π∗ in the order of Θ(SA) times as already

discussed. Now, even though Π∗ covers all other states, from our argument above

we see that we need to play each π ∈ Π∗ in the order of Θ(S2A2) times to be able

to determine all sub-optimal states. To solve this issue, we either have to increase

the size of Π∗ to include for example all policies visiting each column of the MDP

or at the very least include changes of environments in the constraint set which

make such policies optimal. This is clearly computationally feasible for the MDP

in Figure 5-4, however, it is not clear how to proceed for general MDPs, without

having to include exponentially many constraints. The following interesting questions

arises: is it possible to come up with a relaxation of the LP, computable in polynomial

time, with solution which is at most o(SA) multiplicative constant away from what is

optimal. We show in Section 5.7.3.2 that this is indeed possible for the special case of

deterministic transition, tree-structured MDPs.

5.7 Proofs from Section 5.6

Let Nψ,π(k) be the random variable denoting the number of times policy π has been

chosen by the strategy ψ. Let Nψ,(s,a)(k) be the number of times the state-action pair

has been visited up to time k by the strategy ψ.

5.7.1 Proof of Theorem 5.6.1

We begin by formulating an LP characterizing the minimum regret incurred by any

uniformly good algorithm ψ.

Theorem 5.7.1. Let ψ be a uniformly good RL algorithm for Θ, that is, for all problem

instances θ ∈ Θ and exponents α > 0, the regret of ψ is bounded as E[Rθ(K)] ≤ o(Kα).

Then, for any θ ∈ Θ, the regret of ψ satisfies

lim inf
K→∞

E[Rθ(K)]
log (K) ≥ C(θ),

224

where C(θ) is the optimal value of the following optimization problem

minimize:
η(π)≥0

∑︂
π∈Π

η(π) (v∗
θ − vπθ)

subject to:
∑︂
π∈Π

η(π)KL(Pπθ ,Pπλ) ≥ 1 for all λ ∈ Λ(θ)
, (5.29)

where Λ′(θ) = {λ ∈ Θ: Π∗
λ ∩ Π∗

θ = ∅, KL(Pπ
∗
θ
θ ,P

π∗
θ
λ) = 0} are all environments that

share no optimal policy with θ and do not change the rewards or transition kernel on

π∗.

Proof. We can write the expected regret as E[Rθ(K)] = ∑︁
π∈Π Eθ[Nψ,π(K)](v∗

θ − vπθ).

We will show that η(π) = Eθ[Nψ,π(K)]/ log (K) is feasible for the optimization problem

in Equation 5.27. This is sufficient to prove the theorem. To do so we follow the

techniques of Garivier et al. (2019). With slight abuse of notation, let PIkθ be the law

of all trajectories up to episode k. We have

KL(PIk+1
θ ,PIk+1

λ) = KL(PYk+1,Ik
θ ,PYk+1,Ik

λ)

= KL(PIkθ ,P
Ik
λ) + E

⎡⎣EPψ(Ik)
θ

⎡⎣log
⎛⎝Pψ(Ik)

θ (Yk+1)
Pψ(Ik)
λ (Yk+1)

⎞⎠ ⃓⃓⃓⃓
⃓ Ik

⎤⎦⎤⎦
= KL(PIkθ ,P

Ik
λ) + E

⎡⎣∑︂
π∈Π

χ(ψ(Ik) = π)KL(Pπθ ,Pπλ)
⎤⎦ .

(5.30)

Iterating the argument we arrive at ∑︁π∈Π Eθ[Nψ,π(K)]KL(Pπθ ,Pπλ) = KL(PIKθ ,PIKλ)

where Eθ denotes expectation in problem instance θ. Next one shows that for any

measurable Z ∈ [0, 1], it holds that KL(PIKθ ,PIKλ) ≥ kl(Eθ[Z],Eλ[Z]) where kl(p, q) =

p log (p/q) + (1 − p) log ((1 − p)/(1 − q)) denotes the KL-divergence between two

Bernoulli random variables p and q. This follows directly from Lemma 1 by Garivier

et al. (2019). Finally we choose Z = Nψ,Π∗
λ
(K)/K as the fraction of episodes where

an optimal policy for λ was played (here we use the short-hand notation Nψ,Π∗
λ
(K) =∑︁

π∈Π∗
λ
Nψ,π(K)). Evaluating the kl-term we have

kl

(︄
Eθ[Nψ,Π∗

λ
(K)]

K
,
Eλ[Nψ,Π∗

λ
(K)]

K

)︄
≥
(︄

1 −
Eθ[Nψ,Π∗

λ
(K)]

K

)︄
log

(︄
K

K − Eλ[Nψ,Π∗
λ
(K)]

)︄
− log (2) .

225

Since ψ is a uniformly good it follows that for any α > 0, K −Eλ[Nψ,Π∗
λ
(K)] = o(Kα).

By assuming that Π∗
θ ∩ Π∗

λ = ∅, we get Eθ[Nψ,Π∗
λ
(K)] = o(K). This implies that for

K sufficiently large and all 1 ≥ α > 0

kl

(︄
Eθ[Nψ,Π∗

λ
(K)]

K
,
Eλ[Nψ,Π∗

λ
(K)]

K

)︄
≥ log (K) − log (Kα) = (1 − α) log (K) α→0−−→ log (K) .

The set Λ′(θ) is uncountably infinite for any reasonable Θ we consider. What is

worse the constraints of LP 5.27 will not form a closed set and thus the value of the

optimization problem will actually be obtained on the boundary of the constraints.

To deal with this issue it is possible to show the following.

Proof of Theorem 5.6.1. For the rest of this proof we identify Λ′(θ) = {λ ∈ Θ :

Π∗
λ ∩ Π∗

θ = ∅, KL(Pπ
∗
θ
θ ,P

π∗
θ
λ) = 0,∀π∗

θ ∈ Π∗
θ} as the set from Theorem 5.7.1 and

Λ̃(θ) = {λ ∈ Θ : vπ
∗
λ
λ ≥ v

π∗
θ
θ , π

∗
λ ̸∈ Π∗

θ, KL(Pπ
∗
θ
θ ,P

π∗
θ
λ) = 0}. From the proof of

Theorem 5.7.1 it is clear that we can rewrite Λ′(θ) as the union ⋃︁
π∈Π Λπ(θ), where

Λπ(θ) = {λ ∈ Θ : KL(Pπ
∗
θ
θ ,P

π∗
θ
λ) = 0, vπ∗

λ > v
π∗
θ
θ , π

∗
λ = π} is the set of all environments

which make π the optimal policy. This implies that we can equivalently write LP 5.27

as
minimize:

η(π)≥0

∑︂
π∈Π

η(π) (v∗
θ − vπθ)

subject to: inf
λ∈Λπ′ (θ)

∑︂
π∈Π

η(π)KL(Pπθ ,Pπλ) ≥ 1 for all π′ ∈ Π
. (5.31)

The above formulation now minimizes a linear function over a finite intersection of

sets, however, these sets are still slightly inconvenient to work with. We are now going

to try to make these sets more amenable to the proof techniques we would like to

use for deriving specific lower bounds. We begin by noting that Λπ(θ) is bounded

in the following sense. We identify each λ with a vector in [0, 1]S2A × [0, 1]SA where

the first S2A coordinates are transition probabilities and the last SA coordinates

are the expected rewards. From now on we work with the natural topology on

[0, 1]S2A× [0, 1]SA, induced by the ℓ1 norm. Further, we claim that we can assume that

226

KL(Pπθ ,Pπλ) is a continuous function over Λπ′(θ). The only points of discontinuity are

at λ for which the support of the transition kernel induced by λ does not match the

support of the transition kernel induced by θ. At such points the KL(Pπθ ,Pπλ) = ∞.

This implies that such λ does not achieve the infimum in the set of constraints so

we can just restrict Λπ′(θ) to contain only λ for which KL(Pπθ ,Pπλ) < ∞. With this

restriction in hand the KL-divergence is continuous in λ.

Fix a π′ and consider the set {η : infλ∈Λπ′ (θ)
∑︁
π∈Π η(π)KL(Pπθ ,Pπλ) ≥ 1} correspond-

ing to one of the constraints in LP 5.31. Denote Λ̃π′(θ) = {λ ∈ Θ : KL(Pπ
∗
θ
θ ,P

π∗
θ
λ) =

0, vπ
∗
λ
λ ≥ v

π∗
θ
θ , π

∗
λ ̸∈ Π∗

θ, π
∗
λ = π′}. Λ̃π′(θ) is closed as KL(Pπ

∗
θ
θ ,P

π∗
θ
λ) and vπ

∗
λ
λ −vπ

∗
θ
θ are both

continuous in λ. To see the statement for vπ
∗
λ
λ , notice that this is the maximum over the

continuous functions vπλ over π ∈ Π. Take any η ∈ Λπ′(θ) and let {λj}∞
j=1, λj ∈ Λπ′(θ)

be a sequence of environments such that ∑︁π∈Π η(π)KL(Pπθ ,Pπλj) ≥ 1 + 2−j. If

there is no convergent subsequence of {λj}∞
j=1 in Λπ′(θ) we claim it is because

of the constraint vπ
∗
λ
λ > v

π∗
θ
θ . Take the limit λ of any convergent subsequence of

{λj}∞
j=1 in the closure of Λπ′(θ). Then by continuity of the divergence we have

0 = limj→∞ KL(Pπ
∗
θ
θ ,P

π∗
θ
λj

) = KL(Pπ
∗
θ
θ ,P

π∗
θ
λ), thus it must be the case that vπ

∗
λ
λ ≤ v

π∗
θ
θ .

This shows that Λ̃π′(θ) is a subset of the closure of Λπ′(θ) which implies it is the

closure of Λπ′(θ), i.e., Λ̄π′(θ) = Λ̃π′(θ).

Next, take η ∈ {η : minλ∈Λ̄π′ (θ)
∑︁
π∈Π η(π)KL(Pπθ ,Pπλ) ≥ 1} and let λπ′,η be the

environment on which the minimum is achieved. Such λπ′,η exists because we just

showed that Λ̄π′(θ) is closed and bounded and hence compact and the sum con-

sists of a finite number of continuous functions. If λπ′,η ∈ Λπ′(θ) then η ∈ {η :

infλ∈Λπ′ (θ)
∑︁
π∈Π η(π)KL(Pπθ ,Pπλ) ≥ 1}. If λπ′,η ̸∈ Λπ′(θ) then λπ′,η must be a limit point

of Λπ′(θ). By definition we can construct a convergent sequence of {λj}∞
j=1, λj ∈ Λπ′(θ)

to λπ′,η such that ∑︁π∈Π η(π)KL(Pπθ ,Pπλj) ≥ 1. This implies ∑︁π∈Π η(π)KL(Pπθ ,Pπλj) ≥

infλ∈Λπ′ (θ)
∑︁
π∈Π η(π)KL(Pπθ ,Pπλ). Using the continuity of the KL term and taking

limits, the above implies that the minimum upper bounds the infimum. Since we

227

argued that Λπ′(θ) is bounded and ∑︁π∈Π η(π)KL(Pπθ ,Pπλj) is also bounded from be-

low this implies Λ̄π′(θ) contains the infimum infλ∈Λπ′ (θ)
∑︁
π∈Π η(π)KL(Pπθ ,Pπλ). This

implies infλ∈Λπ′ (θ)
∑︁
π∈Π η(π)KL(Pπθ ,Pπλ) ≥ minλ∈Λ̄π′ (θ)

∑︁
π∈Π η(π)KL(Pπθ ,Pπλ) , and so

the infimum over Λπ(θ) equals the minimum over Λ̄π(θ). Which finally implies that

η ∈ {η : infλ∈Λπ′ (θ)
∑︁
π∈Π η(π)KL(Pπθ ,Pπλ) ≥ 1}. This shows that LP 5.31 is equivalent

to

minimize:
η(π)≥0

∑︂
π∈Π

η(π) (v∗
θ − vπθ)

subject to: min
λ∈Λ̄π′ (θ)

∑︂
π∈Π

η(π)KL(Pπθ ,Pπλ) ≥ 1 for all π′ ∈ Π
,

or equivalently that we can consider the closure of Λ(θ) in LP 5.27, Λ̄(θ) = {λ ∈

Θ: vπ
∗
λ
λ ≥ v

π∗
θ
θ , π

∗
λ ̸∈ Π∗

θ, KL(Pπ
∗
θ
θ ,P

π∗
θ
λ) = 0} i.e. the set of environments which makes

any π optimal without changing the environment on state-action pairs in π∗
θ .

5.7.2 Proof of Theorem 5.6.3

Proof of Lemma 5.6.2. Let λ be the environment that is identical to θ except for the

immediate reward for state-action pair for (s, a). Specifically, let Rλ(s, a) so that

rλ(s, a) = rθ(s, a) + ∆ with ∆ = gapθ(s, a) . Since we assume that rewards are

Gaussian, it follows that

KL(Pπθ ,Pπλ) = wπλ(s, a)KL(Rθ(s, a), Rλ(s, a)) ≤ KL(Rθ(s, a), Rλ(s, a))

≤ gapθ(s, a)2

for any policy π ∈ Π. We now show that the optimal value function (and thus return)

of λ is uniformly upper-bounded by the optimal value function of θ. To that end,

consider their difference in any state s′, which we will upper-bound by their difference

in s as

V ∗
λ (s′) − V ∗

θ (s′) ≤ χ(κ(s) > κ(s′))Pπ
∗
λ
θ (sκ(s) = s|sκ(s′) = s′)[V ∗

λ (s) − V ∗
θ (s)]

≤ V ∗
λ (s) − V ∗

θ (s).

228

Further, the difference in s is exactly

V ∗
λ (s) − V ∗

θ (s) = rλ(s, a) + ⟨Pθ(·|s, a), V ∗
θ ⟩ − V ∗

θ (s)

= rθ(s, a) + ⟨Pθ(·|s, a), V ∗
θ ⟩ + gapθ(s, a) − V ∗

θ (s) = 0.

Hence, V ∗
λ = V ∗

θ ≤ 1 and thus λ ∈ Θ. We will now show that there is a policy that is

optimal in λ but not in θ. Let π∗ ∈ Π∗
θ be any optimal policy for θ that has non-zero

probability of visiting s and consider the policy

π̃(s̃) =

⎧⎨⎩π∗(s̃) if s ̸= s̃

a if s = s̃

that matches π∗ on all states except s. We will now show that π̃ achieves the same

return as π∗ in λ. Consider their difference

vπ̃λ − vπ
∗

λ

(i)= wπ̃λ(s, π̃(s))[rλ(s, π̃(s)) + ⟨Pλ(·|s, π̃(s)), V π̃
λ ⟩]

− wπ
∗

λ (s, π∗(s))[rλ(s, π∗(s)) + ⟨Pλ(·|s, π∗(s)), V π∗

λ ⟩]
(ii)= wπ

∗

λ (s, π∗(s))[rλ(s, π̃(s)) − rλ(s, π∗(s)) + ⟨Pλ(·|s, π̃(s)) − Pλ(·|s, π∗(s)), V π∗

λ ⟩]
(iii)= wπ

∗

θ (s, π∗(s))[∆ + rθ(s, π̃(s)) − rθ(s, π∗(s)) + ⟨Pθ(·|s, π̃(s)) − Pθ(·|s, π∗(s)), V ∗
θ ⟩]

(iv)= wπ
∗

θ (s, π∗(s))[∆ − gapθ(s, π̃(s))]

where (i) and (ii) follow from the fact that π̃ and π∗ only differ on s and hence, their

probability at arriving at s and their value for any successor state of s is identical. Step

(iii) follows from the fact that λ and θ only differ on (s, a) which is not visited by π∗.

Finally, step (iv) applies the definition of optimal value functions and value-function

gaps. Since ∆ = gapθ(s, π̃(s)), it follows that vπ̃λ = vπ
∗

λ = vπ
∗

θ = v∗
θ . As we have seen

above, the optimal value function (and return) is identical in θ and λ and, hence, π̃ is

optimal in λ.

Note that the we can apply the chain of equalities above in the same manner to

vπ̃θ − vπ
∗

θ if we consider ∆ = 0. This yields

vπ̃θ − vπ
∗

θ = −wπ∗

θ (s, π∗(s)) gapθ(s, a) < 0

229

because wπ∗
θ (s, π∗(s)) > 0 and gapθ(s, a) < 0 by assumption. Hence π̃ is not optimal

in θ, which completes the proof.

Lemma 5.7.2 (Optimization problem over S × A instead of Π). Let optimal value

C(θ) of the optimization problem Equation 5.27 in Theorem 5.6.1 is lower-bound by

the optimal value of the problem

minimize
η(s,a)≥0

∑︂
s,a

η(s, a) gapθ(s, a)

s.t.
∑︂
s,a

η(s, a)KL(Rθ(s, a), Rλ(s, a))

+
∑︂
s,a

η(s, a)KL(Pθ(·|s, a), Pλ(·|s, a)) ≥ 1 for all λ ∈ Λ(θ)

(5.32)

Proof. First, we rewrite the objective of Equation 5.27 as

∑︂
π∈Π

η(π)(v∗
θ − vπθ) (i)=

∑︂
π∈Π

η(π)
∑︂
s,a

wπθ (s, a) gapθ(s, a) =
∑︂
s,a

⎛⎝∑︂
π∈Π

η(π)wπθ (s, a)
⎞⎠ gapθ(s, a)

where step (i) applies Lemma 5.5.1 proved in Section 5.5. Here, wπθ (s, a) is the

probability of reaching s and taking a when playing policy π in MDP θ. Similarly,

the LHS of the constraints of Equation 5.27 can be decomposed as

∑︂
π∈Π

η(π)KL(Pπθ ,Pπλ)

=
∑︂
π∈Π

η(π)
∑︂
s,a

wπθ (s, a) (KL(Rθ(s, a), Rλ(s, a)) +KL(Pθ(·|s, a), Pλ(·|s, a)))

=
∑︂
s,a

⎡⎣∑︂
π∈Π

η(π)wπθ (s, a)
⎤⎦ (KL(Rθ(s, a), Rλ(s, a)) +KL(Pθ(·|s, a), Pλ(·|s, a)))

where the first equality follows from writing out the definition of the KL divergence.

Let now η(π) be a feasible solution to the original problem Equation 5.27. Then the two

equalities we just proved show that η(s, a) = ∑︁
π∈Π η(π)wπθ (s, a) is a feasible solution

for the problem in Equation 5.32 with the same value. Hence, since Equation 5.32 is

a minimization problem, its optimal value cannot be larger than C(θ), the optimal

value of Equation 5.27.

Proof of Theorem 5.6.3. Let Λ̄(θ) be a set of all confusing MDPs from Lemma 5.6.2,

that is, for every suboptimal (s, a), Λ̄(θ) contains exactly one confusing MDP that

230

differs with θ only in the immediate reward at (s, a). Consider now the relaxation of

Theorem 5.6.1 from Lemma 5.7.2 and further relax it by reducing the set of constraints

induced by Λ(θ) to only the set of constraints induced by Λ̄(θ):

minimize
η(s,a)≥0

∑︂
s,a

η(s, a) gapθ(s, a)

s.t.
∑︂
s,a

η(s, a)KL(Rθ(s, a), Rλ(s, a)) ≥ 1 for all λ ∈ Λ̄(θ)

Since all confusing MDPs only differ in rewards, we dropped the KL-term for the

transition probabilities. We can simplify the constraints by noting that for each λ,

only one KL-term is non-zero and it has value gapθ(s, a)2. Hence, we can write the

problem above equivalently as

minimize
η(s,a)≥0

∑︂
s,a

η(s, a) gapθ(s, a)

s.t. η(s, a) gapθ(s, a)2 ≥ 1 for all (s, a) ∈ S × A with gapθ(s, a) > 0

Rearranging the constraint as η(s, a) ≥ 1/ gapθ(s, a)2, we see that the value is lower-

bounded by

∑︂
s,a

η(s, a) gapθ(s, a) ≥
∑︂

s,a : gapθ(s,a)>0
η(s, a) gapθ(s, a) ≥

∑︂
s,a : gapθ(s,a)>0

1
gapθ(s, a) ,

which completes the proof.

We note that because the relaxation in Lemma 5.7.2 essentially allows the algorithm

to choose which state-action pairs to play instead of just policies, the final lower bound

in Theorem 5.6.3 may be loose, especially in factors of H. However, it is unlikely that

the gapmin term arising in the upper bound of Simchowitz and Jamieson (2019) can

be recovered. We conjecture that such a term can be avoided by algorithms, which do

not construct optimistic estimators for the Q-function at each state-action pair but

rather just work with a class of policies and construct only optimistic estimators of

the return.

5.7.3 Lower bounds for deterministic MDPs

We will show that we can derive lower bounds in two cases:

231

1. We show that if the graph induced by the MDP is a tree, then we can formulate

a finite LP which has value at most a polynomial factor of H away from the

value of LP 5.27.

2. We show that if we assume that the value function for any policy is at most 1

and the rewards of each state-action pair are at most 1, then we can derive a

closed form lower bound. This lower bound is also at most a polynomial factor

of H away from the solution to LP 5.27.

We begin by stating a helpful lemma, which upper and lower bounds the KL-

divergence between two environments on any policy π. Since we consider Gaussian re-

wards with σ = 1/
√

2 it holds that KL(Rθ(s, a), Rλ(s, a)) = (rθ(s, a) − rλ(s, a))2. Fur-

ther for any π and λ it holds that KL(θ(π), λ(π)) = ∑︁
(s,a)∈πKL(Rθ(s, a), Rλ(s, a)) =∑︁

(s,a)∈π(rθ(s, a)−rλ(s, a))2. We can now show the following lower bound onKL(θ(π), λ(π)).

Lemma 5.7.3. Fix π and suppose λ is such that π∗
λ = π. Then (v∗ − vπ)2 ≥

KL(θ(π), λ(π)) ≥ (v∗−vπ)2

H
.

Proof. The second inequality follows from the fact that the optimization problem

minimize:
θ,λ∈Λ(θ):π∗

λ
=π

∑︂
(s,a)∈π

(rθ(s, a) − rλ(s, a))2

subject to:
∑︂

(s,a)∈π
rλ(s, a) − rθ(s, a) ≥ v∗ − vπ

,

admits a solution at θ, λ for which rλ(s, a) − rθ(s, a) = v∗−vπ
H

,∀(s, a) ∈ π. The first

inequality follows from considering the optimization problem

maximize
θ,λ∈Λ(θ):π∗

λ
=π

∑︂
(s,a)∈π

(rθ(s, a) − rλ(s, a))2

s.t.
∑︂

(s,a)∈π
rλ(s, a) − rθ(s, a) ≥ v∗ − vπ,

and the fact that it admits a solution at θ, λ for which there exists a single state-action

pair (s, a) ∈ π such that rθ(s, a) − rλ(s, a) = v∗ − vπ and for all other (s, a) it holds

that rλ(s, a) = rθ(s, a).

232

Using the above Lemma 5.7.3 we now show that we can restrict our attention

only to environments λ ∈ Λ(θ) which make one of π∗
(s,a) optimal and derive an upper

bound on C(θ) which we will try to match, up to factors of H, later. Define the set

Λ̃(θ) = {λ ∈ Λ(θ) : ∃(s, a) ∈ S × A, π∗
λ = π∗

(s,a)} and Π∗ = {π ∈ Π, π ̸= π∗
θ : ∃(s, a) ∈

S × A, π = π∗
(s,a)}. We have

Lemma 5.7.4. Let C̃(θ) be the value of the optimization problem

minimize:
η(π)≥0

∑︂
π∈Π∗

η(π)(v∗ − vπ)

subject to:
∑︂
π∈Π∗

η(π)KL(θ(π), λ(π)) ≥ 1,∀λ ∈ Λ̃(θ)
. (5.33)

Then ∑︁
π∈Π∗

H
v∗−vπ ≥ C(θ) ≥ C̃(θ)

H
.

Proof. We begin by showing C(θ) ≥ C̃(θ)
H

holds. Fix a π ̸∈ Π∗ s.t. the solution

of LP 5.27 implies η(π) > 0. Let λ ∈ Λ̃(θ) be a change of environment for which

KL(θ(π), λ(π)) > 0. We can now shift all of the weight of η(π) to η(π∗
λ) while still

preserving the validity of the constraint. Further doing so to all π∗
(s,a) for which

π∗
(s,a) ∩ π ̸= ∅ will not increase the objective by more than a factor of H as v∗ − vπ ≥

1
H

∑︁
(s,a)∈π v

∗ − v
π∗

(s,a) . Thus, we have converted the solution to LP 5.27 to a feasible

solution to LP 5.33 which is only a factor of H larger.

Next we show that ∑︁π∈Π∗
H

v∗−vπ ≥ C(θ). Set η(π) = 0,∀π ∈ Π \ Π∗ and set

η(π) = H
(v∗−vπ)2 ,∀π ∈ Π∗. If π is s.t. η(π) > 0 then for any λ which makes π optimal

it holds that

1 ≤ H

(v∗ − vπ
∗
λ)2 × (v∗ − vπ

∗
λ)2

H
≤ H

(v∗ − vπ
∗
λ)2KL(θ(π∗

λ), λ(π∗
λ))

= η(π∗
λ)KL(θ(π∗

λ), λ(π∗
λ)) ≤

∑︂
π′∈Π

η(π′)KL(θ(π′), λ(π′)),

where the second inequality follows from Lemma 5.7.3. Next, if π is s.t. η(π) = 0 then

233

for any λ which makes π optimal it holds that

∑︂
π′∈Π

η(π′)KL(θ(π′), λ(π′)) ≥
∑︂

(s,a)∈π∗
λ

η(π∗
(s,a))KL(θ(π∗

(s,a)), λ(π∗
(s,a)))

=
∑︂

(s,a)∈π∗
λ

H

(v∗ − v
π∗

(s,a))2
KL(θ(π∗

(s,a)), λ(π∗
(s,a)))

≥ H

(v∗ − vπ
∗
λ)2

∑︂
(s,a)∈π∗

λ

KL(θ(π∗
(s,a)), λ(π∗

(s,a)))

≥ H

(v∗ − vπ
∗
λ)2

∑︂
(s,a)∈π∗

λ

KL(Rθ(s, a), Rλ(s, a))

= H

(v∗ − vπ
∗
λ)2KL(θ(π∗

λ), λ(π∗
λ)) ≥ 1,

where the second inequality follows from the fact that vπ∗
λ ≤ v

π∗
(s,a) , ∀(s, a) ∈ π∗

λ.

5.7.3.1 Proof of Theorem 5.6.4

Lemma 5.7.5. Let Θ be the set of all episodic MDPs with Gaussian immediate

rewards and optimal value function uniformly bounded by 1. Consider an MDP θ ∈ Θ

with deterministic transitions. Then, for any reachable state-action pair (s, a) that is

not visited by any optimal policy, there exists a confusing MDP λ ∈ Λ(θ) with

• λ and θ only differ in the immediate reward at (s, a)

• KL(Pπθ ,Pπλ) = wπθ (s, a)(v∗
θ−v

π∗
(s,a)
θ)2 for all π ∈ Π where v

π∗
(s,a)
θ = maxπ : wπ(s,a)>0 v

π
θ .

Proof. Let (s, a) ∈ S × A be any state-action pair that is not visited by any optimal

policy. Then v
π∗

(s,a)
θ = maxπ : wπ(s,a)>0 v

π
θ ≤ v∗

θ is strictly suboptimal in θ. Let π̃ be any

policy that visits (s, a) and achieves the highest return v
π∗

(s,a)
θ in θ possible among such

policies.

Define λ to be the MDP that matches θ except in the immediate reward at (s, a),

which we set as Rλ(s, a) = N (rθ(s, a) + ∆, 1/2) with ∆ = v∗
θ − v

π∗
(s,a)
θ . That is, the

234

expected reward of λ in (s, a) is raised by ∆. For any policy π, it then holds

KL(Pπθ ,Pπλ) = wπθ (s, a)KL(Rθ(s, a), Rλ(s, a))

vπλ = wπθ (s, a)∆ + vπθ

due to the deterministic transitions. Hence, while v∗
λ = v∗

θ and all optimal policies of

θ are still optimal in λ, now policy π̃, which is not optimal in θ is optimal in λ.

By the choice of Gaussian rewards with variance 1/2, we haveKL(Rθ(s, a), Rλ(s, a)) =

(v∗
θ − v

π∗
(s,a)
θ)2 and thus KL(Pπθ ,Pπλ) = wπθ (s, a)(v∗

θ − v
π∗

(s,a)
θ)2 for all π ∈ Π.

It only remains to show that λ ∈ Θ, i.e., that all immediate rewards and optimal

value function is bounded by 1. For rewards, we have

rλ(s, a) = rθ(s, a) + ∆ = rθ(s, a) + v∗
θ − v

π∗
(s,a)
θ = v∗

θ − (v
π∗

(s,a)
θ − rθ(s, a))⏞ ⏟⏟ ⏞

≥0

≤ v∗
θ ≤ 1

for (s, a) and for all other (s′, a′), rλ(s′, a′) = rθ(s′, a′) ≤ 1. Finally, the value function

at any reachable state is bounded by the optimal return v∗
λ = v∗

θ ≤ 1 and for any

unreachable state, the optimal value function of λ is identical to the optimal value

function of θ. Hence, λ ∈ Θ.

Proof of Theorem 5.6.4. The proof works by first relaxing the general LP 5.27 and

then considering its dual. We now define the set Λ̌(θ) which consists of all changes

of environment which make π∗
(s,a) optimal by only changing the distribution of the

reward at (s, a) by making it v∗
θ − v

π∗
(s,a)
θ larger. Formally, the set is defined as

Λ̌(θ) =
{︂
λ(s,a) : λ ∈ Λ(θ), KL(Rθ(s, a), Rλ(s, a)) = (v∗

λ − v
π∗

(s,a))2,

KL(Rθ(s′, a′), Rλ(s′, a′)) = 0, KL(Pθ(s′, a′), Pλ(s′, a′)) = 0,∀(s′, a′) ̸= (s, a)
}︂
.

This set is guaranteed to be non-empty (for any reasonable MDP) by Lemma 5.7.5.

The relaxed LP is now give by

minimize:
η(π)≥0

∑︂
π∈Π

η(π)(v∗
θ − vπλ)

subject to:
∑︂
π∈Π

η(π)KL(Pπθ ,Pπλ) ≥ 1 for all λ ∈ Λ̌(θ)
. (5.34)

235

The dual of the above LP is given by

maximize
µ(λ)≥0

∑︂
λ∈Λ̌(θ)

µ(λ)

s.t.
∑︂

λ∈Λ̌(θ)

µ(λ)KL(Pπθ ,Pπλ) ≤ v∗
θ − vπθ for all π ∈ Π.

(5.35)

By weak duality, the value of any feasible solution to Equation 5.35 produces a lower

bound on C(θ) in Theorem 5.6.1. Let

X = {(s, a) ∈ S × A : wπθ (s, a) = 0 for all π ∈ Π∗
θ and wπθ (s, a) > 0 for some π ∈ Π \ Π∗

θ}

be the set of state-action pairs that are reachable in θ but no optimal policy visits.

Then consider a dual solution µ that puts 0 on all confusing MDPs except on the |X |

many MDPs from Lemma 5.7.5. Since each such confusing MDP is associated with

an (s, a) ∈ X , we can rewrite µ as a mapping from X to R sending (s, a) → λ(s,a).

Specifically, we set

µ(s, a) = 1
H

(︃
v∗
θ − v

π∗
(s,a)
θ

)︃−1
for all (s, a) ∈ X .

To show that this µ is feasible, consider the LHS of the constraints in Equation 5.35

∑︂
λ∈Λ̌(θ)

µ(λ)KL(Pπθ ,Pπλ) =
∑︂

(s,a)∈X

1
H

(︃
v∗
θ − v

π∗
(s,a)
θ

)︃
KL(Pπθ ,Pπ(s,a))

=
∑︂

(s,a)∈X

1
H

(︃
v∗
θ − v

π∗
(s,a)
θ

)︃−1
wπθ (s, a)(v∗

θ − v
π∗

(s,a)
θ)2

=
∑︂

(s,a)∈X

1
H
wπθ (s, a)(v∗

θ − v
π∗

(s,a)
θ)

where the first equality applies our definition of µ and the second uses the expression

for the KL-divergence from Lemma 5.7.5. By definition of v
π∗

(s,a)
θ , we have v

π∗
(s,a)
θ ≥ vπθ

for all policies π with wπθ (s, a) > 0. Thus,

∑︂
(s,a)∈X

1
H
wπθ (s, a)(v∗

θ − v
π∗

(s,a)
θ) ≤

∑︂
(s,a)∈X

1
H
wπθ (s, a)(v∗

θ − vπθ)

≤ v∗
θ − vπθ

236

where the second inequality holds because each policy visits at most H states. Thus

proves that µ defined above is indeed feasible. Hence, its objective value

∑︂
λ∈Λ(θ)

µ(λ) =
∑︂

(s,a)∈X

1
H

(︃
v∗
θ − v

π∗
(s,a)
θ

)︃

is a lower-bound for C(θ) from Theorem 5.6.1 which finishes the proof.

5.7.3.2 Tree-structured MDPs

Even though Lemma 5.7.4 restricts the set of confusing environments from Λ(θ) to

Λ̃(θ), this set could still have exponential or even infinite cardinality. In this section

we show that for a type of special MDPs we can restrict ourselves to a finite subset of

Λ̃(θ) of size at most SA.

Arrange π∗
(s,a), (s, a) ∈ S × A according to the value functions vπ

∗
(s,a) . Under

this arrangement let π1 ⪰ π2 ⪰, . . . ,⪰ πm. Let π0 = π∗
θ . We will now construct

m environments λ1, . . . , λm, which will constitute the finite subset. We begin by

constructing λ1 as follows. Let B1 be the set of all (sh, ah) ∈ π1 and (sh, ah) ̸∈ π0.

Arrange the elements in B1 in inverse dependence on horizon (sh1 , ah1) ⪯ (sh2 , ah2) ⪯

. . . ⪯ (shH1
, ahH1

), where H1 = |B1|, so that h1 > h2 >, . . . , hH1 . Let λ1 be the

environment which sets

Rλ1(sh1 , ah1) = min(1, vπ0 − vπ1)

Rλ1(sh2 , ah2) = min(1,max(Rθ(sh2 , ah2), Rθ(sh2 , ah2) + vπ0 − (vπ1 −Rθ(sh1 , ah1)) − 1)))
...

Rλ1(shi , ahi) = min(1,max(Rθ(shi , ahi), Rθ(shi , ahi) + vπ0 − (vπ1 −
i∑︂

ℓ=1
Rθ(shℓ , ahℓ)) − i))

...

Clearly λ1 makes π1 optimal and also does not change the value of any state-action pair

which belongs to π0 so it agrees with θ on π0. Further π2, π3, . . . , πm are still suboptimal

policies under λ1. This follows from the fact that for any i > 1, vπ1 > vπi and there

237

exists (s, a) such that (s, a) ∈ πi but (s, a) ̸∈ π1 so Rλ1(s, a) = Rθ(s, a). Further λ1 only

increases the rewards for state-action pairs in π1 and hence vπ1
λ1 > vπiλ1 . Notice that there

exists an index H̃1 at which Rλ1(shH̃1
, ahH̃1

) = vπ0 − (vπ1 −∑︁H̃1
ℓ=1 Rθ(shℓ , ahℓ)) − H̃1) ≥

Rθ(aH̃1
, sH̃1

). For this index it holds that for h < H̃1, Rλ1(sh, ah) = 1 and for h > H̃1,

Rλ1(sh, ah) = Rθ(sh, ah).

Let

Bi = {(s, a) ∈ πi : (s, a) ̸∈
⋃︂
ℓ<i

πℓ}

B̃i = {(s, a) ∈ πi : (s, a) ∈
⋃︂
ℓ<i

πℓ}.

We first define an environment λ̃i on (s, a) ∈ B̃i as follows. Rλi(s, a) = Rλℓ(s, a),

where ℓ < i is such that (s, a) ∈ Bℓ. Let vπi
λ̃i

be the value function of πi with respect

to λ̃i.

Lemma 5.7.6. It holds that vπi
λ̃i

≤ vπ0.

Proof. Let H̃ i be the index for which it holds that for ℓ ≤ H̃ i, (shℓ , ahℓ) ∈ πi ⇐⇒

(shℓ , ahℓ) ∈ Bi. Such a H̃ i exists as there is a unique sub-tree Mi, of maximal depth,

for which it holds that if πj
⋂︁Mi ̸= ∅ ⇐⇒ πi ⪰ πj . The root of this subtree is exactly

at depth H − hH̃i
. Let πj be any policy such that πj ⪰ πi and ∃(shH̃i , ahH̃i) ∈ πj. By

the maximality of Mi such a πj exists. Because of the tree structure it holds that for

any h′ > hH̃i
if (sh′ , ah′) ∈ πi =⇒ (sh′ , ah′) ∈ πj and hence λ̃i = λj up to depth hH̃i

.

Since πi and πj match up to depth H − hH̃i
and πj ⪰ πi it also holds that

∑︂
ℓ≤H̃i

Rλj(s
πj
hℓ
, a

πj
hℓ

) ≥
∑︂
ℓ≤H̃i

Rθ(sπjhℓ , a
πj
hℓ

) ≥
∑︂
ℓ≤H̃i

Rθ(sπihℓ , a
πi
hℓ

) =
∑︂
ℓ≤H̃i

Rλ̃i
(sπihℓ , a

πi
hℓ

).

Since πj is optimal under λj the claim holds.

For all (shj , ahj) ∈ Bi we now set

Rλi(shj , ahj) = min(1,max(Rθ(shj , ahj), Rθ(shj , ahj) + vπ0 − (vπi
λ̃i

−
j∑︂
ℓ=1

Rλ̃i
(shℓ , ahℓ)) − j)),

(5.36)

238

and for all (sh, ah) ∈ B̃i we set Rλi(sh, ah) = Rλ̃i
(sh, ah). From the definition of B̃i it

follows that λi agrees with all λj for j ≤ i on state-action pairs in πi. Finally we need

to show that the construction in Equation 5.36 yields an environment λi for which πi

is optimal.

Lemma 5.7.7. Under λi it holds that πi is optimal.

Proof. Let H̃ i and πj be as in the proof of Lemma 5.7.6. We now show that∑︁
ℓ≤H̃i

Rλj (s
πj
hℓ
, a

πj
hℓ

) ≤ ∑︁
ℓ≤H̃i

Rλi(sπihℓ , a
πi
hℓ

). We only need to show that∑︁ℓ≤H̃i
Rλi(sπihℓ , a

πi
hℓ

) ≥

vπ0−vπi
λ̃i

. From Equation 5.36 we haveRλi(sh1 , ah1) = min(1, vπ0−vπi
λ̃i

). IfRλi(sh1 , ah1) =

vπ0 − vπi
λ̃i

then the claim is complete. Suppose Rλi(sh1 , ah1) = 1. This implies

vπ0 − vπi
λ̃i

≥ 1 − Rθ(sh1 , ah1). Next the construction adds the remaining gap of

vπ0 − vπi
λ̃i

+ Rθ(sh1 , ah1) − 1 to Rθ(sh2 , ah2) and clips Rλi(sh2 , ah2) to 1 if necessary.

Continuing in this way we see that if ever Rλi(shj , ahj) = Rθ(shj , ahj) + vπ0 − (vπi
λ̃i

−∑︁j
ℓ=1 Rλ̃i

(shℓ , ahℓ)) − j then vπ0 − V πi
λ̃i

≤ ∑︁
ℓ≤H̃i

Rλi(sπihℓ , a
πi
hℓ

). On the other hand if

this never occurs, we must have Rλi(sπihℓ , a
πi
hℓ

) = 1 ≥ Rλj(s
πj
hℓ
, a

πj
hℓ

) which concludes the

claim.

Let ˆ︁Λ(θ) = {λ1, . . . , λm} be the set of the environments constructed above. We

now show that the value of the optimization problem is not too much smaller than

the value of Problem 5.27.

Theorem 5.7.8. The value ˆ︁C(θ) of the LP

minimize:
η(π)≥0

∑︂
π∈Π∗

η(π)(v∗ − vπ)

subject to:
∑︂
π∈Π∗

η(π)KL(θ(π), λ(π)) ≥ 1,∀λ ∈ ˆ︁Λ(θ)
,

satisfies ˆ︁C(θ) ≥ C(θ)
H2 and C(θ) ≥ ˆ︁C(θ)

H
.

Proof. The inequality C(θ) ≥ ˆ︁C(θ)
H

follows from Lemma 5.7.4 and the fact that the

above optimization problem is a relaxation to LP 5.33.

239

To show the first inequality we consider the following relaxed LP

minimize:
η(π)≥0

∑︂
π∈Π

η(π)(v∗ − vπ)

subject to:
∑︂
π∈Π

η(π)KL(θ(π), λ(π)) ≥ 1, ∀λ ∈ ˆ︁Λ(θ)
.

Any solution to the LP in the statement of the theorem is feasible for the above LP and

thus the value of the above LP is no larger. We now show that the value of the above

LP is greater than or equal to C(θ)
H2 . Fix λ ∈ ˆ︁Λ(θ). We show that for any λ′ ∈ Λ(θ)

such that π∗
λ = π∗

λ′ it holds that KL(θ(π), λ(π)) ≤ H2KL(θ(π), λ′(π)),∀π ∈ Π. This

would imply that if η is a solution to the above LP, then H2η is feasible for LP 5.27

and therefore ˆ︁C(θ) ≥ C(θ)
H2 .

Arrange π ∈ Π : KL(θ(π), λ(π)) > 0 according to KL(θ(π), λ(π)) so that

πi ⪯ πj ⇐⇒ KL(θ(πi), λ(πi)) ≥ KL(θ(πj), λ(πj)).

Consider the optimization problem

minimize:
λ′∈Λ(θ)

KL(θ(πi), λ′(πi))

subject to: π∗
λ′ = π∗

λ

.

If we let ∆λ′(sh, ah), (sh, ah) ∈ π∗
λ denote the change of reward for (sh, ah) under

environment λ′, then the above optimization problem can be equivalently written as

minimize:
λ′∈Λ(θ)

hH̃i∑︂
h=1

∆λ′(sh, ah)2

subject to:
H∑︂
h=1

r(sh, ah) + ∆λ′(sh, ah) ≥ v∗

.

It is easy to see that the solution to the above optimization problem is to set r(sh, ah)+

∆λ′(sh, ah) = 1 for all h ∈ [hH̃i
+ 1, H] and spread the remaining mass of v∗ −

H̃ i − (vπ∗
λ − ∑︁H̃i

ℓ=1)Rθ(shℓ , ahℓ) as uniformly as possible on ∆λ′(sh, ah), h ∈ [1, hH̃i
].

Notice that under this construction the solution to the above optimization problem

and λ match for h ∈ [hH̃i
+ 1, H]. Since the remaining mass is now the same it

now holds that for any λ′, ∑︁hH̃i
h=1 ∆λ′(sh, ah)2 ≥ 1

h2
H̃i

∑︁hH̃i
h=1 ∆λ(sh, ah)2. This implies

KL(θ(πi), λ′(πi)) ≥ 1
H̃

2
i

KL(θ(π), λ(π)) and the result follows as H̃ i ≤ H,∀i ∈ [H].

240

5.7.4 Omitted proofs for Theorem 5.6.7

Proof of Lemma 5.6.5. Assume nk(s5,1) ≥ N/4, then we have

Q̄k(s4,1, 1) = 1
4 + ϵ+

6∑︂
i=4

brwk (si,1, 1) + bk(si,1)

≤ 1
4 + ϵ+ 6c

⌜⃓⃓⎷ log (MN/(4δ))
N/4 ≤ 1

4 + ϵ+ 48ϵ√
n
,

where we assume ϵ is sufficiently small such that bk(s, a) ≤ brwk (s, a) for nk(s, a) ≥ N/4.

On the other hand, we have have with probability at least 1-δ, that ∀k : ˆ︁rk(s4,1, 2)+

brwk (s4,1, 2) ≥ 1/12. Hence conditioned under that event, we have

Q̄k(s4,1, 2) = 1
4 + brwk (s4,1, 2) + bk(s4,1, 2) + max

j∈{2,...n+1

6∑︂
i=5

brwk (si,j, 1) + bk(si,j, 1)

≥ 1
4 + c

⌜⃓⃓⎷ log (MN/(nδ))
N/n

≥ 1
4 + 4ϵ .

The proof is completed for n0 = 482.

Proof of Lemma 5.6.6. First we split Q̄k(s1,1, 2) into the observed sum of mean rewards

and bonuses from s1,1 to s5,2 and the value V̄ k(s5,2). Then we upper bound Q̄k(s1,1, 1)

by V̄ k(s5,2) and the maximum observed sum of mean rewards and bonuses along the

paths passing by s3,j for j ∈ [n]. Finally analogous to the proof of Lemma 5.6.5, it is

straightforward show that the latter is always larger as long as the visitation count

for s2,2 exceeds N/4.

241

Chapter 6

Discussion and conclusion

We now discuss several open problems which follow from the studied problems in this

work. The discussion is followed by concluding remarks.

6.1 Future directions

Chapter 2: While the primary goal of the work presented in Chapter 2 was to

improve on known policy regret bounds when side observations are present, at the core

of the main approach was solving the problem of online learning with side observations

and switching costs. We had assumed that the switching costs are constant and equal

to one throughout the game. A natural direction for future work is to investigate the

problem when switching costs can vary both throughout the rounds of the game and in

between different actions. Is it possible to come up with strategies with regret which

depends on the total sum of the switching costs, similarly to first or second order

regret bounds in online learning games? Further, we assumed that the feedback graph

is fixed and known before the start of the game. Can we give meaningful regret bounds

if the feedback evolves throughout the rounds of the game and we only observe the

additional losses but not the topology of the graph? Further, can we provide improved

regret guarantees if additional feedback is not determined by a graph but rather by

a metric space in which the accuracy of the feedback is dependent on the distance

242

from the selected action. Finally, our lower bounds showed an instance of the online

learning game in which the presented strategy is essentially optimal. The instance,

however, was for a fixed feedback graph. Can we extend the lower bounds for arbitrary

feedback graphs, that is can we create a lower bound instance for any feedback graph

G such that any player strategy has to suffer regret at least Ω̃(γ(G)1/3T 2/3)?

Chapter 3: The recent work of Cutkosky et al. (2020) and our experiments

suggest that the upper regret bounds for both algorithms proposed in Chapter 3

are not tight. In particular we expect that there exists a strategy which obtains a

regret bound of the order O
(︂∑︁

i ̸=i∗
log(T)

∆i
+Ri∗(T)

)︂
. It is unclear, however, if such a

regret bound is possible without a priori knowledge of the time horizon T . Further,

the question of min-max regret bounds for the corralling problem has not yet been

investigated. Therefore two natural directions are to derive instance dependent regret

lower bounds in the stochastic setting with gap and derive min-max regret bounds

in the general adversarial setting. Another fundamental question which our work

fails to address is what would happen in the stochastic setting if there are multiple

base algorithms containing the best arm. Is there a regret bound which interpolates

between gap-dependent regret and worst case
√
T regret in this setting? We also

ask if corralling can be extended to policy regret algorithms so to create a strategy

which enjoys a o(T) regret bound for all memory bounded adversaries with m ∈ o(T)

simultaneously? Finally, recent work (Zhu and Nowak, 2021) has shown that model

selection for linear stochastic bandits is impossible in the worst case. On the other

hand the work of Foster et al. (2019) shows that under some mild assumptions

model selection is possible. Algorithm 10 in Chapter 3 can also be used to solve the

model selection problem under certain assumptions. A natural question is what other

assumptions allow for model selection.

Chapter 4: The definition of Policy Equilibrium that was presented in Chapter 4

only holds for two-player games and constant (independent of time horizon) memory

243

m. It is non-trivial to extend the definition and the results beyond two-player games

as the interpretation of the view of each player becomes more involved. In particular,

it is not possible to reason that the opposing player is now choosing functions between

action sets as there are multiple opposing players. Having players with different

memory bounds complicates things further as there is no simple markovian structure

to the utilities. Can we extend our results for multiplayer games and m which is

sublinear in time horizon? It is possible to minimize policy regret against stronger

competitors, beyond the best fixed action for the history dependent losses, similar

to reductions between swap regret minimization and external regret minimization.

We know that when players decide their actions according to swap regret minimizing

algorithms then the average play converges to the set of Correlated Equilibrium. Can

we show similar results for players who are able to minimize notions of policy regret

induced by competing against a stronger type of memory bounded adversary? When

faced with a new extended class of equilibria it is natural to revisit some standard

questions in game theory pertaining to price of anarchy and price of stability. For

example there exist games in which the worse CCE is no worse than the worst Nash.

Is this also true about the worst PE? Further what is the social welfare of the best

PE compared to that of the best Nash? Are there natural algorithms which let us

achieve socially good PE?

Chapter 5: The results in Chapter 5 improve on prior work results about optimistic

algorithms, however, we know from Theorem 5.6.7 and the work of Simchowitz

and Jamieson (2019) that it is impossible for optimistic algorithms to achieve the

information theoretic optimal regret. The very recent work of Xu et al. (2021) makes a

step towards closing the gap to the information theoretic optimal bounds by proposing

a model-free, action-elimination type algorithm which can avoid the dependence on
SA

gapmin
. Unfortunately the proposed bounds suffer the same issues as described in

Figure 5-2. Our Definition 5.16 of the averaged clipping thresholds does not really rely

244

on optimism. Can we use this or a similar definition to show an improved regret bound

for the algorithm proposed by Xu et al. (2021)? In general we were not able to show

closed form lower bounds for non-deterministic MDPs or even derive a computationally

tractable approach to approximating the solution of the semi-infinite LP governing

the information theoretic optimal rates. We pose the following question: is it possible

to find a constant or even a o(SA) factor approximation to Problem 5.27, computable

in polynomial time. Answering this question to the affirmative will result in a new

algorithm with a regret bound which avoids the SA
gapmin

term. On the other hand a

negative answer will show that, in general, there is no hope of improving on existing

bounds.

Other open problems: We have already discussed several natural open problems

following from Chapter 3 and Chapter 5. We ask if it is possible to do corralling

in RL. One such example is the following. In Chapter 5 we discussed limitations of

current instance dependent bounds for the finite horizon tabular setting and proposed

a new notion of instance dependent bounds to tackle the problem. The new bounds

hold for most model-based optimistic algorithms. As we already discussed, the very

recent work of (Xu et al., 2021) tackles a slightly different problem with existing

regret bounds by proposing a model-free algorithm with an instance dependent regret

guarantee which has improved dependence on the size of the state-action space. Is it

possible to corral a model-free algorithm such as StrongEuler and the algorithm in

(Xu et al., 2021) to achieve a best of both worlds instance dependent guarantee, that

is a regret bound which has the improved dependence on the size of the state-action

space and only depends on the averaged gaps? While policy regret is the de facto

notion of regret which is minimized in RL, as the comparator is the best policy for

the MDP, it is natural to ask what would happen if the MDP evolves through time,

depending on the policies which the player selects. Can we define and minimize a

notion of policy regret in RL which captures the notion of an evolving MDP where

245

the transition kernel and rewards at a given episode depend on prior policies selected

by the player?

6.2 Conclusion

This thesis investigated four different problems related to a counterfactual notion of

regret called policy regret. The problems span the topics of online learning with side

information, corralling and model selection, algorithmic game theory, and reinforcement

learning.

In Chapter 2 we presented an extensive analysis of policy regret minimization in

the presence of graph feedback, a scenario relevant to several applications in practice.

We gave a new algorithm whose regret guarantee only depends on the domination

number of the feedback graph. We also presented a matching lower bound for a

family of graphs that includes disjoint unions of star graphs. The technical tools

introduced in our proofs are likely to help derive a lower bound for all graph families.

Our algorithms were based on a reduction to the problem of online learning with

feedback graphs and switching costs in the adversarial setting.

In Chapter 3 we presented an extensive analysis of the problem of corralling

stochastic bandits. Our algorithms are applicable to a number of different contexts

where this problem arises. There are also several natural extensions and related

questions relevant to our study. One natural extension is the case where the set of

arms accessible to the base algorithms admit some overlap and where the reward

observed by one algorithm could serve as side-information to another algorithm.

Another extension is the scenario of corralling online learning algorithms with feedback

graphs. In addition to these and many other interesting extensions, our analysis was

shown to exhibit a connection with the problem of model selection for linear contextual

bandits (Foster et al., 2019; Cutkosky et al., 2020; Pacchiano et al., 2020b; Zhu and

246

Nowak, 2021).

In Chapter 4 we gave a new twist on policy regret by examining it in the game

setting, where we introduced the notion of policy equilibrium and showed that it

captures the behavior of no policy regret players. While our characterization is precise,

we view this as only the first step towards truly understanding policy regret and its

variants in the game setting. Further, we showed that coarse correlated equilibria

are a strict subset of policy equilibria by showing that policy regret minimization

is incompatible with external regret minimization. Finally, we leveraged stability of

natural external regret minimization strategies to show that the average play of such

strategies will also converge to a policy equilibrium.

In Chapter 5 we prove that optimistic algorithms such as StrongEuler, can

suffer substantially less regret compared to what prior work had shown. We do

this by introducing a new notion of gap, while greatly simplifying and generalizing

existing analysis techniques. We further investigated the information-theoretic limits

of learning episodic layered MDPs. We provide two new closed-form lower bounds in

the special case where the MDP has either deterministic transitions or the optimal

policy is supported on all states. These lower bounds suggest that our notion of gap

better captures the difficulty of an episodic MDP for RL.

6.3 Other work

Outside of bandit algorithms and reinforcement learning which are the main focus of

this thesis, I have worked on several problems in the intersection of representation

learning and stochastic approximation. In (Arora et al., 2016, 2017), I investigate

the two related problems of Partial Least Squares (PLS) and Canonical Correlation

Analysis (CCA) from a learning perspective in which the observed data is coming

from some unknown distribution and the goal is to minimize the population risk. We

247

propose streaming algorithms based on stochastic mirror descent which enjoy nice

convergence guarantees. In (Marinov et al., 2018), I investigate the problem of Online

Principcal Component Analysis (PCA) in the presence of corrupted or missing data

and propose two algorithms based on online mirror descent and Oja’s algorithm which

enjoy O(
√
T) regret guarantees. In (Ullah et al., 2018), we propose an algorithm for

the problem of Kernel PCA with Random Fourier Features improving on all prior

bounds and achieving near optimal statistical rates. In (Arora and Marinov, 2019),

I investigate two convex relaxations for the streaming PCA problem and show that

SGD on one of the relaxations can indeed obtain comparable convergence rates to

Oja’s algorithm, which is considered min-max optimal. Finally, in (Arora et al., 2020),

we propose a simple differentially private algorithm which enjoys optimal rates both in

terms of statistical complexity and stochastic first-order oracle complexity whenever

the privacy parameter is inversely proportional to the number of samples.

248

Appendix A

Convex optimization

A version of this appendix appeared in the lecture notes for the Optimization for

Machine Learning class (EN 601.481/681) in the Fall of 2018.

A.1 Convex sets

We begin by a review of basic terminology for convex sets.

Definition A.1.1 (Convex set). A set X ⊆ Rd is said to be convex if for all x, y ∈ X

the line segment [x, y] lies entirely in X , i.e., {αx + (1 − α)y : 0 ≤ α ≤ 1} ⊆ X .

Definition A.1.2 (Convex combination). Let X ⊆ Rd. Then the point ∑︁k
i=1 αixi such

that αi ≥ 0 for all i, and ∑︁k
i=1 αi = 1 is called a convex combination of x1, . . . , xk.

If X is convex then ∑︁k
i=1 αixi ∈ X .

Definition A.1.3 (Convex hull). The convex hull of a set of points X ⊆ Rd is the

minimal convex set containing X , i.e., it is the intersection of all convex sets containing

X . It can be equivalently defined as the set of all (finite) convex combinations of

points in X :

conv(X) =
{︄

m∑︂
i=1

αixi : xi ∈ X , αi ≥ 0,
m∑︂
i=1

αi = 1
}︄
.

Definition A.1.4 (Probability simplex). The d-dimensional probability simplex is

249

denoted as ∆d−1 and is the convex set

∆d−1 = {x ∈ Rd :
d∑︂
i=1

xi = 1, xi ≥ 0∀i ∈ [d]}.

A.2 Convex Functions

Before we begin our discussion of convex function we need the following useful definition

of a Lipschitz function.

Definition A.2.1 (Lower semi-continuity). A function f : X → R is lower semi-

continous at a point x0 ∈ X if lim infx→x0 f(x) ≥ f(x0). A function f is said to be

lower semi-continuous if it is lower semi-continuous at every point in its domain.

Definition A.2.2 (Lipschitz continuity). A function f : X → R is L-Lipschitz

continuous with respect to a norm ∥ · ∥ on X if for all x, y ∈ X it holds that

|f(x) − f(y)| ≤ L∥x − y∥.

Next, we review the definition and basic properties of convex functions.

Definition A.2.3 (Convex function). Let X ⊆ Rd be a convex set. A function

f : X → R is said to be convex if for all x, y ∈ X and all α ∈ [0, 1],

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y).

We say that f is concave if −f is convex.

Definition A.2.4 (Proper function). A convex function f : X → R is proper if for

all x ∈ X , f(x) > −∞ and further there exists at least one y ∈ X s.t. f(y) < ∞.

Definition A.2.5 (Subgradient, subdifferential). Let X ⊆ Rd be a convex set, and

let f : X → R be a convex function. Then g ∈ Rd is a subgradient of f at x0 if and

only if

f(x) ≥ f(x0) + ⟨g, x − x0⟩ for all x ∈ X . (A.1)

The set of all subgradients is called a subdifferential: ∂f(x0) = {g | g is a subgradient of f at x0}.

250

Theorem A.2.1 (Convexity: non-empty sub-differential). Let X ⊆ Rd be a convex

set. A function f : X → R is convex if and only if there exists a subgradient at each

x ∈ X .

Further we have the following characterization of convex Lipschitz functions.

Theorem A.2.2 (Convexity: Lipschitz continous functions). A convex function

f : X → R is L-Lipschitz continuous with respect to a norm ∥ · ∥ iff for all x0 ∈ X

and all subgradients g at x0 it holds that ∥g∥ ≤ L.

Definition A.2.6 (Epigraph). The epigraph of a function f : X → R is defined as

epi f = {(x, y) : x ∈ X , y ≥ f(x)}.

Claim A.2.3 (Convexity: epigraph). A function f : X → R is convex if and only if

its epigraph is a convex set.

Definition A.2.7 (Sublevel sets). The α-sublevel set of a function f : X → R is

defined as

Sα = {x | f(x) ≤ α}.

Claim A.2.4. If f : X → R is a convex function, then Sα is a convex set for all α.

Proof. Let (x, y) ∈ Sα. Then, f(x) ≤ α and f(y) ≤ α by definition. This implies, due

to convexity, f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ≤ α for all 0 ≤ λ ≤ 1. Thus,

λx + (1 − λ)y ∈ Sα for all λ ∈ [0, 1].

A.2.1 Differentiable functions.

When a function f is differentiable we can characterize convexity in the following way.

Theorem A.2.5 (Convexity: first order condition). A differentiable function f : X →

R is convex if and only if X is convex and

f(x) ≥ f(x0) + ∇f(x0) · (x − x0) for all x, x0 ∈ X . (A.2)

251

The first-order condition states that the linear approximation given by the first-

order Taylor approximation gives a global underestimator of the function. Put

differently, the local information, i.e., the function value and gradient at that point,

provide global information about a convex function.

The first-order condition gives the following characterization of the globally optimal

point: if the gradient of a convex function f vanishes at some point x0 ∈ X , then x0

must be a global minimizer of f :

∇f(x0) = 0 =⇒ x0 ∈ arg min
x∈X

f(x).

The first-order condition states that the linear approximation given by the first-

order Taylor approximation gives a global underestimator of the function. Put

differently, the local information, i.e., the function value and gradient at that point,

provide global information about a convex function.

Theorem A.2.6 (Convexity: second order condition). If f is a twice continuously

differentiable on X ⊆ Rd. Then, f is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ X .

Next, we show that a gradient (equivalently, a subgradient if f is not differentiable)

defines a supporting hyperplane to sublevel sets.

Claim A.2.7. Let f(x0) = α. If ∇f(x0) ̸= 0, then Sα ⊆ {x | ⟨∇f(x0), x − x0⟩ ≤ 0}.

Proof. Let x ∈ Sα. Then, f(x) ≤ f(x0). Since f is convex, we have that f(x) ≥

f(x0) + ⟨▽f(x0), x − x0⟩. Rearranging the terms we get,

⟨▽f(x0), x⟩ ≤ ⟨▽f(x0), x0⟩ + (f(x) − f(x0))

≤ ⟨▽f(x0), x0⟩,

which implies that x ∈ {x | ⟨∇f(x0), x − x0⟩ ≤ 0}.

252

This is a particularly important result, since if we are at x0 and want to minimize

f , then the gradient excludes the halfspace {x | ⟨∇f(x0), x − x0⟩ ≥ 0} from the search

space.

A.2.2 Strict convexity, strong convexity, and smoothness

We assume that the function f is differentiable. Strict convexity and strong convexity

can be defined for at points of non-differentiability through use of a sub-gradient.

Definition A.2.8 (Strict convexity). A function f : X → R is strictly convex iff

∀x, y ∈ X it holds that

f(y) > f(x) + ⟨∇f(x), y − x⟩.

Strict convexity is similar to convexity, however, requires that the inequality is

strict in the lower bound. Strong convexity further requires that the function is lower

bounded by a quadratic.

Definition A.2.9 (Strong convexity). A differentiable function f : X → R is α-

strongly convex if for some α > 0, and all x, y ∈ X ,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + α

2 ∥y − x∥2
2. (A.3)

For twice differentiable functions, we can characterize these different notions in

terms of a condition on the directional second derivatives, or equivalently as a condition

on the eigenvalues of the Hessian, ∇2f(x). Recall, that a twice differentiable function

is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ X . A function is strictly convex if and

only if ∇2f(x) ≻ 0, and strongly convex if and only if ∇2f(x) ⪰ αI.

Next, we quickly review different equivalent conditions for strong convexity.

Proposition A.2.8 (Equivalent conditions for strong convexity). Let X ⊆ Rd be a

convex set. Then, a differentiable function f : X → R, is α-strongly convex, for some

α > 0, if any of the following holds.

253

1. f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + α
2 ∥y − x∥2

2 ∀ x, y ∈ X .

2. h(x) = f(x) − α
2 ∥x∥2 is convex.

3. ⟨∇f(x) − f(y), x − y⟩ ≥ α∥x − y∥2, ∀ x, y ∈ X .

4. f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)− λ(1−λ)
2 α∥x −y∥2 ∀ x, y ∈ X , λ ∈ [0, 1].

Further if f is twice differentiable then it is α-strongly convex iff

6. ∇2f(x) ⪰ αI.

Next, we discuss properties of smooth convex functions. Smoothness is a dual

notion to strong convexity as we will shortly see. The notion intuitively states that

the function f is upper bounded by a quadratic.

Definition A.2.10 (Smoothness). A continuously differentiable function f : Rd → R

is β-smooth if the gradient map ∇f : Rd → Rd is β-Lipschitz, i.e, for all x, y ∈ Rd

∥∇f(x) − ∇f(y)∥ ≤ β∥x− y∥ . (A.4)

The following equivalence holds.

Theorem A.2.9 (Quadratic upper bound for smooth functions). A convex function

f : Rd → R is β-smooth iff for all x, y ∈ Rd it holds that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + β

2 ∥x − y∥2.

Further all convex β-smooth functions satisfy for all x, y ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + β

2 ∥∇f(x) − ∇f(y)∥2.

The second part of the above theorem is very similar to the strong convexity

definition. This inequality can actually be seen as a corollary of a result which

characterizes strong convexity and smoothness as dual properties. To state this result

formally we need to introduce the Fenchel conjugate of a convex function f , which

we do in Section A.3.3.

254

A.2.3 Jensen’s Inequality

We now present a fundamental inequality for convex functions.

Theorem A.2.10 (Jensen’s Inequality). Let X be a random variable taking values in

a non-empty convex set X ⊆ Rd with a finite expectation E[X], and f a measurable

convex function defined over X . Then, E[X] is in X , E[f(X)] is finite, and the

following inequality holds:

f(E[X]) ≤ E[f(X)].

A.3 Potential functions and Bregman divergence
and Mirror descent

Mirror descent is a generalization of the popular gradient descent procedure for finding

an approximate minimizer of a convex function. The gradient descent update for a

function f at a point xt can be summarized as follows

xt+1 = xt − η∇f(xt),

where η is the step-size parameter. The motivation behind this update is that −∇f(xt)

is a descent direction for f if f is a convex function, thus selecting a sufficiently small

step size η would result in an iterate xt+1 s.t. f(xt) ≥ f(xt+1).

if we are working in a Banach space, i.e., with a geometry defined with respect

to a norm (or a distance function) that is not induced by an inner product, then we

cannot employ the gradient descent strategy. Instead, Nemirovsky and Yudin (1983)

propose the following method. We can first map the point x ∈ X to the dual space

X ∗, then perform the gradient update in the dual space and finally map the resulting

point back to the primal space. At each update, the new point in the primal space X

might be outside the constraint set C ⊂ X in which case it should be projected into

the constraint set C. We will define a new geometry using a function which we will

255

refer to as the potential function Φ(x) and use Bregman projection based on Bregman

divergence to define this geometry.

A.3.1 The Geometry of ℓp Norms

We begin by recalling the definition of the gradient. Given a function f : X → R,

X ⊂ Rd, the gradient of f at x0 is the linear operator ∇f : Rd → R such that

lim
x→x0, x∈X

|f(x) − f(x0) − ∇f [x − x0]|
∥x − x0∥

= 0.

The gradient is a continuous linear functional on Rd, i.e., ∇f lives in the dual space X ∗

of X . A natural question to ask is how to identify elements of X with those in X ∗. The

canonical identification of X and X ∗ is given as follows. Let {ei}di=1 be the standard

basis for X . Construct a basis {e∗
i }di=1 for X ∗ such that e∗

i (ej) = ⟨e∗
i , ej⟩ = δi,j . In fact,

this is the natural identification induced by the standard inner product on Rd (follows

from the Riesz Representation Theorem). Indeed, this is what motivated the gradient

descent update, i.e., identifying the descent direction with the negative gradient.

However, this also motivates the following question. If the standard inner product,

which induces the Euclidean geometry on X , gives us the canonical identification,

what identification would a different geometry yield? For example, what happens

if we consider the geometry induced by ℓp norms on X ? For simplicity, assume

that 1 < p < ∞, so that the derivative of the ℓp norm is continuously differentiable.

Consider the ℓp-norm on X . Then the dual norm induced on X ∗ is the ℓq-norm such

that 1
p

+ 1
q

= 1. Consider ψ∗ : X ∗ → R that maps ϕ ∈ X ∗ to ψ∗(ϕ) = 1
2∥ϕ∥2

∗. This map

is continuously differentiable and it induces the following identification ∇ψ∗ : X ∗ → X

that maps ϕ ∈ X ∗ to ∇ψ∗(ϕ) ∈ X . We next show that the map ∇ψ∗ is a one-to-one

correspondence. First, note that by convexity of ∥ · ∥∗,

0 ≥ ∥ϕ∥∗ + ⟨∇∥ϕ∥∗, 0 − ϕ⟩ ⇐⇒ ⟨∇∥ϕ∥∗, ϕ⟩ ≥ ∥ϕ∥∗

2∥ϕ∥∗ ≥ ∥ϕ∥∗ + ⟨∇∥ϕ∥∗, 2ϕ− ϕ⟩ =⇒ ⟨∇∥ϕ∥∗, ϕ⟩ ≤ ∥ϕ∥∗

256

Then, by definition of the dual norm we know that ∇∥ϕ∥∗ is the maximizer of the

linear functional ϕ over the ∥ · ∥-unit ball. We can also show that ∇∥ϕ∥∗ is the

unique maximizer (Using Corollary 1.3 from Brezis (2010) and the remark that

follows). Using the chain rule, we get ∇ψ∗(ϕ) = ∥ϕ∥∗∇∥ϕ∥∗. So ϕ is mapped

to the element which maximizes the linear functional ϕ over the ball of size ∥ϕ∥∗.

It remains to be shown that this mapping is a bijection. Define ψ : X → R as

ψ(x) = 1
2∥x∥2. By the exact same reasoning as for ψ∗ we have that ∇ψ(x) is the unique

maximizer of ⟨ϕ, x⟩ over ∥ϕ∥∗ ≤ ∥x∥. We only need to show that ∇ψ∗(∇ψ(x)) =

x. Well ∇ψ∗(∇ψ(x)) = arg max∥x̃∥=∥∇ψ(x)∥∗⟨x̃,∇ψ(x)⟩ = arg max∥x̃∥=∥x∥⟨x̃,∇ψ(x)⟩,

since∇ψ(x) = arg max∥ϕ∥∗=∥x∥⟨ϕ, x⟩. By corollary 1.4 from Brezis (2010) we know

that ⟨∇ψ(x), x⟩ = ∥x∥2. On the other hand ⟨x̃,∇ψ(x)⟩ ≤ ∥x̃∥∥∇ψ(x)∥ = ∥x∥2 for all

∥x̃∥ = ∥x∥. By the remark after Corollary 1.3 Brezis (2010) x is the unique maximizer

of max∥x̃∥=∥x∥⟨x̃,∇ψ(x)⟩.

We can now adapt our GD procedure to the identification induced by ϕ∗ and ϕ in

the following simple way:

xt+1 = ∇ψ∗(∇ψ(xt) − η∇f(xt)). (A.5)

How can we adapt the analysis? Well we need to choose the appropriate potential

function with which to track the progress of our algorithm. Let us try to see why we

chose ∥ · −x∗∥2
2 as our potential. Notice that by convexity we have that 2⟨∇f(x), x∗ −

x⟩ ≤ 0, however, this is also the derivative of ∥x − x∗∥2 in the direction of ∇f(x).

Thus −∇f(x) is a descent direction for the smooth function ∥x − x∗∥2. Can we come

up with a similar smooth function for ⟨∇f(x), x∗ − ∇ψ∗(ϕx)⟩, where x = ∇ψ∗(ϕx).

Well we can get the term x∗ − ∇ψ∗(ϕx) as the derivative of ⟨ϕx, x∗⟩ − ψ∗(ϕx). Being a

bit smarter we realize that

⟨∇f(x), x∗ − ∇ψ∗(ϕx)⟩ = ∂ψ∗(ϕx − t∇f(x)) − ⟨ϕx − t∇f(x), x∗⟩
∂t

⃓⃓⃓⃓
⃓
t=0

,

and thus a good candidate for a potential function becomes V (ϕ) = ψ∗(ϕ) − ⟨ϕ, x∗⟩.

257

Let us see how we can analyze the update in A.5. First we use the fact that ψ∗ is

L-smooth for some L. This follows from the fact ψ∗ is the Fenchel conjugate of ψ

and the fact that ψ is 1
L strongly convex. Let ϕt = ∇ϕ(xt). The smoothness of ψ∗

implies that V is also smooth with the same smoothness parameter L, since it is just

a translation of ψ∗. We now have the following derivation:

V (ϕt+1) = V (ϕt − η∇f(xt)) ≤ V (ϕt) − η⟨∇f(xt),∇ψ∗(ϕt) − x∗⟩ + Lη2

2 ∥∇f(xt)∥2
∗

≤ V (ϕt) − η(f(xt) − f(x∗)) + LLη2

2

=⇒ f(x̄) − f(x∗) ≤
V (ϕ1) − V (ϕt+1) + T LLη2

2
2Tη .

A.3.2 Mirror Maps

Let us dissect the above reasoning – there are two key parts to the proof. First the

function ψ needs to be such that ∇ψ is a bijection between X and X ∗. Secondly we

needed that this function is smooth so we can construct a smooth potential function

with which to track the progress of our algorithm. We used properties of ℓp norms

heavily when deriving these two statements, however, many other functions posses the

required properties. We are going to call any function which posses the first property

i.e. invertible continuous gradient a mirror map. Any mirror map is now going to

induce an identification of the primal and dual spaces. In what follows the focus is

only going to be on mirror maps ψ, which are α-strongly convex functions. We note

that for the invertible property to hold we only need strict convexity, however, the

strong convexity is going to allow us to construct a 1
α

-smooth potential function with

which to track progress.

A.3.3 The Fenchel Dual

It the short exercise above we saw that when ψ ≡ 1
2∥ · ∥2

p, then ∇−1ψ(ϕ) = ∇ψ∗(ϕ)

where ψ∗ ≡ 1
2∥ · ∥2

q, 1
p

+ 1
q

= 1. In particular the inverse of the gradient operator was

258

given by the gradient of the dual norm. We are now going to show how to use duality

to get a similar result for general α-strongly convex functions ψ.

Definition A.3.1. The Fenchel dual of a proper function ψ : X → R⋃︁{∞} is

ψ∗ : X ∗ → R⋃︁{∞} such that:

ψ∗(ϕ) = sup
x∈X

⟨ϕ, x⟩ − ψ(x). (A.6)

By definition ψ∗ is convex and lower semi-continuous on X ∗. We now state two

results for completeness without proof.

Lemma A.3.1 (Proposition 1.10 Brezis (2010)). Assume ψ : X → R is convex and

lower semi-continuous and that ψ ̸≡ ∞. Then ψ∗ ̸≡ ∞. In particular ψ is bounded

from below by an affine continuous function.

Theorem A.3.2 (Fenchel–Moreau). Assume that ψ is convex, lower semi-continuous

and ψ ̸≡ ∞. Then ψ∗∗ = ψ.

In the example we saw in the beginning of this section ψ(x) = 1
2∥x∥2 and ψ∗(y) =

1
2∥y∥2

∗. We also saw that the inverse of the gradient mapping ∇ψ was ∇ψ∗. Next we

are going to show that this is true not only for norms but for general ψ, which are

α-strongly convex and continuously differentiable.

Lemma A.3.3. If ψ is continuously differentiable and α-strongly convex then ∇ψ∗(∇ψ(x)) =

x

Proof. The proof is not much different from what we did in the case when ψ was the

squared norm. First notice that since ψ is strongly convex then the maximizer of

supx∈X ⟨y, x⟩ − ψ(x) exists and is unique. Let this maximizer be x∗. From first order

optimality we know that ∇ψ(x∗) = y. Now by definition we know that ψ(x∗)+ψ∗(y) =

⟨y, x∗⟩. On the other hand, using Fenchel-Moreau we have that ψ∗∗(x∗)+ψ∗(y) = ⟨y, x∗⟩

and thus y is a maximizer of supy∈X ∗⟨y, x∗⟩ − ψ∗(y). This implies that ∇ψ∗(y) = x∗

and thus ∇ψ∗(∇ψ(x∗)) = x∗.

259

We note that the above lemma also holds true if we do not assume that ψ is

continuously differentiable or differentiable at all. We only need to assume ψ is lower

semi-continuous, strictly convex and ψ ̸≡ ∞. Recall that in the convergence proof of

mirror descent we used the fact that ψ∗ is a smooth function. We now show that such

an assumption is justified, provided that ψ is α-strongly convex.

Lemma A.3.4. If ψ is continuously differentiable and α-strongly convex then ψ∗ is
1
α
-smooth.

Proof. Let x1 and x2 be elements of the primal space which are maximizers of

supx∈X ⟨yi, x⟩ − ψ(x) for i = 1 and i = 2 respectively. By strong convexity we

have:

ψ(x2) − ψ(x1) − ⟨y1, x2 − x1⟩ ≥ α

2 ∥x2 − x1∥2

ψ(x1) − ψ(x2) − ⟨y2, x1 − x2⟩ ≥ α

2 ∥x1 − x2∥2.

Summing and using Holder’s inequality we have

∥y1 − y2∥∗∥x1 − x2∥ ≥ α∥x1 − x2∥2.

Plugging in the fact xi = ∇ψ∗(yi) we conclude the proof.

We note that the opposite relation between smoothness and strong-convexity also

holds, i.e., if ψ is β-smooth, then ψ∗ is 1/β-strongly convex (Kakade et al., 2009). We

now have all the ingredients to repeat the proof of convergence for mirror descent

when the identification is induced by an α-strongly convex ψ.

A.3.4 Analysis in the primal space and Bregman divergence

Recall the potential function which tracked the progress of MD: V (y) = ψ∗(y)−⟨y, x∗⟩.

This function tracks the progress of the algorithm in the dual space in the sense that

we bound V (∇ψ(xt+1)) − V (∇ψ(xt+1)). Can we carry out the same analysis in the

260

primal space i.e. is there a potential function W : X → R such that we can track the

progress of the algorithm via W (xt+1) −W (xt)? We now show one such function as

follows. Let y = ∇ψ(x) so that ψ∗(y) + ψ(x) = ⟨y, x⟩. We have

V (y) = ⟨y, x⟩ − ψ(x) − ⟨y, x∗⟩ = ⟨∇ψ(x), x − x∗⟩ − ψ(x).

Let us "translate" the analysis from the dual to the primal space using this new

potential W (x) = ⟨∇ψ(x), x − x∗⟩ − ψ(x).

W (xt+1) −W (xt) = ψ(xt) − ψ(xt+1) + ⟨∇ψ(xt+1), xt+1 − x∗⟩ − ⟨∇ψ(xt), xt − x∗⟩

= ψ(xt) − ψ(xt+1) + ⟨∇ψ(xt) − η∇f(xt), xt+1 − x∗⟩ − ⟨∇ψ(xt), xt − x∗⟩

= −η⟨∇f(xt), xt+1 − x∗⟩ + ψ(xt) − ψ(xt+1) + ⟨∇ψ(xt), xt+1 − xt⟩

≤ −η⟨∇f(xt), xt+1 − x∗⟩ − α

2 ∥xt+1 − xt∥2

= η⟨∇f(xt), x∗ − xt⟩ − η⟨∇f(xt), xt+1 − xt⟩ − α

2 ∥xt+1 − xt∥2

≤ f(x∗) − f(xt) + η∥∇f(xt)∥∗∥xt − xt+1∥ − α

2 ∥xt − xt+1∥2

≤ f(x∗) − f(xt) + η2

2α∥∇f(xt)∥2
∗,

where in the first inequality we have used the strong convexity of ψ in the second

inequality we have used Holder’s inequality and the third inequality follows from the

fact that 2xy − y2 ≤ x2. To finish the analysis we only need to telescope the LHS and

take the average on the RHS.

Even though we now have an analysis in the primal space the potential function

we used seems a bit peculiar. If we didn’t have the potential in the dual space it is

very unlikely we come up with exactly W . Staring at the form of W we notice that

we are a single term away from the Bregman divergence induced by ψ. In particular

W (x) + ψ(x∗) = Dψ(x∗, x). Let us formally define the Bregman divergence induced

by ψ.

Definition A.3.2. Let ψ : X → R be a strictly convex function. The Bregman

261

divergence associated with ψ is:

Dψ(x1, x2) := ψ(x1) − ψ(x2) − ⟨∂ψ(x2), x1 − x2⟩. (A.7)

We now list some useful properties of the Bregman divergence of a strictly/strongly

convex function ψ:

1. Dψ is strictly convex in its first argument.

2. Dψ(x, y) ≥ 0,∀x, y and Dψ(x, y) = 0 iff x = y.

3. In general Dψ(x, y) ̸= Dψ(y, x) e.g. consider ψ(x) = ∑︁
i xi log (xi).

4. In general Dψ(x, y) is non-convex in its second argument e.g. ψ(x) = − log (x).

5. Linearity in ψ i.e. Dψ+αϕ(x, y) = Dψ(x, y) + αDϕ(x, y).

6. ∂Dψ(x,y)
∂x = ∇ψ(x) − ∇ψ(y).

7. Dψ(x, y) +Dψ(y, z) = Dψ(x, z) + ⟨x − y,∇ψ(z) − ∇ψ(y)⟩.

8. If ψ is α-strongly convex with respect to ∥ · ∥ then Dψ(x, y) ≥ α
2 ∥x − y∥2.

9. Dψ(x, y) = Dψ∗(∇ψ(y),∇ψ(x)).

All of the above properties are easy to show by direct algebra and for the last property

using Lemma A.3.3. Let us look at 2 standard examples for Bregman divergences.

First consider the standard ℓ2 norm ∥ · ∥. The strongly convex function inducing the

Bregman divergence is given by ψ(x) = 1
2∥x∥2. Now using the definition for divergence

we have:

Dψ(x, y) = 1
2∥x∥2 − 1

2∥y∥2 − ⟨y, x − y⟩

= 1
2∥x∥2 + 1

2∥y∥2 − ⟨y, x⟩ = 1
2∥x − y∥2.

Since we begun our discussion with wanting a different geometry on X than the

Euclidean one, let us look at what happens when we choose ψ(x) = ∑︁d
i=1 xi log (xi).

262

We are also going to constrain our space to the set C = {x ∈ Rn
+ : ∥x∥1 = 1}. The

Bregman divergence in this case is known as Kullback-Leibler divergence and takes

the form:

Dψ(x, y) =
d∑︂
i=1

xi log (xi) −
d∑︂
i=1

yi log (yi) −
d∑︂
i=1

(xi − yi) log (yi)

=
d∑︂
i=1

xi log (xi/yi) .

We now show a very useful property for analyzing proximal methods which use

Bregman divergence as the proximity map.

Lemma A.3.5. Let f be a convex function such that f ̸≡ ∞. Suppose f has domain

an open set containing the convex set C. Suppose ψ is α-strongly convex and let:

x∗ = arg min
x∈C

{f(x) +Dψ(x, x0)}.

For any y ∈ C we have:

f(y) +Dψ(y, x0) ≥ f(x∗) +Dψ(x∗, x0) +Dψ(y, x∗).

Proof. By optimality for constraint optimization we have that there exists a subgradient

d of f(x∗)+Dψ(x∗, x0) such that for all x ∈ C it holds that ⟨d, x−x∗⟩ ≥ 0 or equivalently

there exists a subgradient g of f(x∗) such that

⟨g + ∇ψ(x∗) − ∇ψ(x0), x − x∗⟩ ≥ 0,

for all x ∈ C. Using the fact that f is convex we have:

f(y) ≥ f(x∗) + ⟨g, y − x∗⟩ ≥ f(x∗) + ⟨∇ψ(x∗) − ∇ψ(x0), y − x∗⟩

= f(x∗) − ⟨∇ψ(x0), x∗ − x0⟩ + ψ(x∗) − ψ(x0) + ⟨ψ(x0), y − x0⟩ − ψ(y) + ψ(x0)

− ⟨∇ψ(x∗), y − x∗⟩ + ψ(y) − ψ(x∗)

= f(x∗) +Dψ(x∗, x0) −Dψ(y, x0) +Dψ(y, x∗).

263

As a direct corollary we get the General Pythagorean Theorem:

Theorem A.3.6. If x∗ is the projection of x0 onto the convex set C with respect to

the Bregman divergence induced by ψ i.e.

x∗ = arg min
x∈C

Dψ(x, x0),

then Dψ(y, x0) ≥ Dψ(y, x∗) +Dψ(x∗, x0).

A.3.5 Mirror descent as proximal gradient descent

Recall that one motivation for the gradient descent update came from the following

observation. If f is convex then −∇f(xt) is the steepest direction of descent near an

infinitesimal region around xt. If we penalize moving away from xt via a term which

captures the geometry of the space, we are still likely to decrease the objective. This led

to choosing the next step xt+1 as the minimizer of minx∈X ⟨∇f(xt), x −xt⟩+ 1
η
∥x −xt∥2.

Even though we now should be convinced that this is not really the correct reasoning

behind gradient descent, it is still natural to ask what would happen if we replaced

the Euclidean norm squared by the Bregman divergence of some strongly convex ψ.

After all from the properties we have seen so far Bregman divergence almost acts like

a norm on X . We now show what happens when xt+1 is chosen as the minimizer of

⟨∇f(xt), x − xt⟩ + 1
η
Dψ(x, xt). It turns out that this step exactly recovers the mirror

descent update.

Lemma A.3.7. Let xt+1 = arg minx∈X {⟨∇f(xt), x − xt⟩ + 1
η
Dψ(x, xt)}. Then xt+1 =

∇ψ∗(∇ψ(xt) − ∇f(xt)).

Proof. Since Dψ(x, xt) is strongly convex in x then ⟨∇f(xt), x − xt⟩ + 1
η
Dψ(x, xt) is

strongly convex in x and thus has a unique minimizer. Using first order optimality

264

condition we have:

η∇f(xt) + (∇ψ(xt+1) − ∇ψ(xt)) = 0

⇐⇒ xt+1 = ∇ψ−1(∇ψ(xt) − η∇f(xt)) = ∇ψ∗(∇ψ(xt) − η∇f(xt)).

A.3.6 Online projected mirror descent

In this section we discuss how to obtain regret guarantees for the online convex

optimization problem. Suppose instead of wanting to minimize a convex function

f(xt) and observing its gradient ∇f(xt) we are given a sequence of convex functions

{ft(·)}Tt=1 with gradients ∇ft(·). We will further assume that our iterates xt are

constraint to be in a convex set C. First we need to determine how the projection step

looks like. It does not make sense to project with respect to Euclidean geometry any

longer after all we came up with a different identification of primal and dual spaces

exactly because we wanted to consider a different geometry on the primal space. We

already know that the Bregman divergence plays the role of distance function in this

new geometry and it is strongly convex with respect to the first argument so a good

candidate for the projection of a point x0 becomes ˆ︁x = arg minx∈C Dψ(x, x0). This

translates to the mirror descent update in the following way:

xt+1/2 = ∇ψ∗(∇ψ(xt) − η∇ft(xt))

xt+1 = arg min
x∈C

Dψ(x, xt+1/2).

Let us have a quick sanity check. From our discussion about how mirror descent can

be interpreted as a proximal method the above update needs to be equivalent to xt+1 =

arg minx∈C{ηgt(x) +Dψ(x, xt)}, where gt(x) = ⟨∇ft(xt), x − xt⟩. Using first order opti-

mality for constraint convex optimization we have that xt+1 = arg minx∈C Dψ(x, xt+1/2)

is equivalent to:

⟨∇ψ(xt+1) − ∇ψ(xt+1/2), y − xt+1⟩ = ⟨∇ψ(xt+1) − ∇ψ(xt) + η∇ft(xt), y − xt+1⟩ ≥ 0,∀y ∈ C.

265

On the other hand ⟨∇ψ(xt+1)−∇ψ(xt)+η∇ft(xt), y−xt+1⟩ ≥ 0,∀y ∈ C is exactly the

optimality condition for minx∈C{ηgt(x) +Dψ(x, xt)}. We now present the stochastic

projected mirror descent update:

xt+1/2 = ∇ψ∗(∇ψ(xt) − η∇ft(xt))

xt+1 = arg min
x∈C

Dψ(x, xt+1/2).
(A.8)

The above algorithm comes equipped with the following regret guarantee.

Theorem A.3.8. After T iterations of A.8 with step size η we have:

T∑︂
t=1

ft(xT) − ft(x∗) ≤ Dψ(x1, x∗)2

2η + ηTσ2

α
,

where α is the strong convexity parameter of ψ and ∥∇ft(x)∥2
∗ ≤ σ2,∀t ∈ [T], x ∈ C,

and x∗ is any point in C.

Proof. Let us track the progress in the primal space using the Lyapunov function

Dψ(·, x∗). Using the equivalence of the update to the proximal step together with

lemma A.3.5 we have

η⟨∇ft(xt), x∗ − xt⟩ +Dψ(x∗, xt) ≥ η⟨∇ft(xt), xt+1 − xt⟩

+Dψ(xt+1, xt) +Dψ(x∗, xt+1).

Shuffling terms around this gives us:

Dψ(x∗, xt+1) −Dψ(x∗, xt) ≤ η⟨∇ft(xt), x∗ − xt+1⟩ −Dψ(xt+1, xt)

= η⟨∇ft(xt), x∗ − xt⟩ + η⟨∇ft(xt), xt − xt+1⟩ −Dψ(xt+1, xt)

≤ η⟨∇ft(xt), x∗ − xt⟩ + η∥∇ft(xt)∥∗∥xt − xt+1∥ −Dψ(xt+1, xt)

≤ η⟨∇ft(xt), x∗ − xt⟩ + η2

2α∥∇ft(xt)∥2
∗.

Telescoping and using convexity we arrive at the conclusion of the theorem.

266

Appendix B

Tools for lower bounds in bandit
games

In this chapter we discuss two types of lower bounds for bandit problems. For both

types of lower bounds we will fix a class of problem instances Θ. An instance θ ∈ Θ

describes precisely how the losses or rewards are generated over the T rounds of the

bandit game. For example, in the stochastic MAB game θ can just be thought of as a

distribution over the rewards of the arms at each round.

The first type of lower bound we consider is a min-max lower bound. Every regret

bound depends both on the problem instance θ and the algorithm or policy which

the player follows. Let us denote the policy of the player by π and suppose that this

policy belongs to some fixed class of policies Π. This class, for example, could consist

of all deterministic algorithms mapping observed rewards (or losses) to a new action.

The goal of the min-max regret lower bound is to establish an inequality of the type:

min
π∈Π

max
θ∈Θ

E[Rθ,π(T)] ≥ f(T),

where f(T) is some function of the time horizon. The interpretation of such bounds

is that there always exists a bandit problem θ such that no matter what strategy

the player chooses to follow, she would necessarily incur regret at least C(T) (in

expectation).

The second type of lower bound is the so called instance dependent lower bounds.

267

These bounds are the counter-parts of the instance dependent regret upper bounds

which we discussed for the stochastic MAB problem in Section 1.2.2.2. The instance

dependent bounds read in the following way – for a fixed bandit instance θ and any

policy π the expected regret E[Rθ,π(T)] is bounded in the following way:

lim
T→∞

E[Rθ,π(T)]
f(T) ≥ C(θ),

where again f(T) is some function of the horizon (most often f(T) = log (T)), and

C(θ) is some instance dependent constant. We note that while instance-dependent

lower bounds might seem stronger than the min-max lower bounds, they are usually

asymptotic in nature, that is they only hold in the limit as T goes to infinity, and

further it is usually harder to derive such bounds.

B.1 Min-max lower bounds

The basic principle behind showing min-max lower bounds is to exhibit two instances

of the bandit problem θ and θ′ which are very close, in information theoretic terms,

however, have different best arms. On one hand if θ and θ′ are similar, information

theory tells us that we would need many observations from θ and θ′ to be able to tell

the two instances apart. Let us consider the following simple example. Suppose that

θ is the distribution N (0, 1) and θ′ is the distribution N (ϵ, 1). A sequence (Xt)Tt=1 is

sampled from either θ or θ′. How large does T need to be so that we can determine if

the sequence was sampled from θ or θ′? More formally we are trying come up with a

policy π which maps from the T samples to a binary space {0, 1}, where 0 denotes that

the samples came from θ and 1 denotes that the samples came from θ′. And so we are

interested in π such that w.p. at least 1 − δ determines correctly the distribution, that

is P(π(X1, . . . , XT) = 0|θ) ≥ 1 − δ and P(π(X1, . . . , XT) = 1|θ′) ≥ 1 − δ. For short,

let us denote P0(·) = P(·|θ) and P1(·) = P(·|θ′), and the event π(X1, . . . , XT) = 0 as A.

Answering the above question also implies that P0(A) − P1(A) ≥ 1 − 2δ. Intuitively,

268

however, the difference P1(A) − P2(A) should depend on ϵ and so a small ϵ would

require more samples to distinguish between θ and θ′. The min-max lower bounds for

multi-armed bandits will follow the same overall idea, that is to show that P1 and P2

are close for any event A.

To bound the difference between P1(A)−P2(A) we are going to need some tools from

information theory. We first give the definition of Kullback-Leibler (KL) divergence.

Definition B.1.1 (KL-divergence). The KL-divergence for two (absolutely continuous)

distributions P1 and p2 on a sample space Ω is defined as

KL(P1,P2) = EX∼P1

[︄
log

(︄
P1(X)
P2(X)

)︄]︄
=
∑︂
X∈Ω

P1(X) log
(︄
P1(X)
P2(X)

)︄
.

Further, we define the KL-divergence between two Bernoulli random variables with

parameters p1 and p2 respectively as

kl(p1, p2) = p1 log
(︄
p1

q1

)︄
+ (1 − p1) log

(︄
1 − p1

1 − p2

)︄
.

The KL-divergence enjoys two key properties which we will need. First, it decom-

poses over product distributions which follows from the chain rule, and second, it is

an upper bound on the difference |P1 − P2|, which is known as Pinsker’s inequality.

Theorem B.1.1 (Chain rule for relative entropy). Let P and Q be two probability

measures on Ω. Then

KL(P(X, Y),Q(X, Y)) = KL(P(X),Q(X)) +KL(P(Y |X),Q(Y |X)).

Theorem B.1.2 (Pinsker’s inequality). Let P and Q be two probability measures on

Ω. Then

sup
A∈Ω

|P(A) − Q(A)| ≤
√︄

1
2KL(P,Q).

Using the above two theorems we can finally derive a bound on the difference

between the distributions induced by θ and θ′ and determine the number of samples

269

to distinguish the two. First we use Pinsker’s inequality to bound (P1(A) − P2(A))2 ≤
1
2KL(P1,P2). Next we use the chain rule to write

KL(P1,P2) =
T∑︂
t=1

KL(N (0, 1),N (ϵ, 1)) = Tϵ2

2 .

The above implies that there exists no policy which can distinguish θ from θ′ with

probability 1 − δ unless T ≥ 2(1−δ)2

ϵ2
.

Standard MAB lower bound. We now show how to extend the above ideas to

the bandit game. For the K-armed bandit game we define K environments (θi)Ki=1

s.t. θi is N (µi, I) where µi ∈ RK is the vector with coordinate j ̸= i equal to 1/2

and j-th coordinate equal to 1/2 − ϵ. Let Pi be the associated probability measure

induced by the player’s strategy over the T rounds of the game when interacting with

losses generated by θi. Further, let P0 be the probability measure induced by the

player’s policy when interacting with a bandit game in which all losses are sampled

from N (1/2, 1). Suppose the adversary selects which environment the player is going

to face in the beginning of the game, uniformly at random from all θi’s. If Ni(T)

denotes the random variable which is the number of times the player selected the i-th

arm then we can write the expected regret of the player as

1
K

K∑︂
i=1

EPi [ϵ(T −Ni(T))] = ϵT − ϵ

K

K∑︂
i=1

EPi [Ni(T)].

Let us now bound |EPi [Ni(T)] −EP0 [Ni(T)]| using the same techniques as we did when

trying to distinguish N (0, 1) from N (ϵ, 1). First we write

EPi [Ni(T)] =
T∑︂
t=1

EPi [it = i] =
T∑︂
t=1

Pi(it = i),

where it denotes the random variable which denotes the arm selected by the player.

We can decompose EP0 [Ni(T)] in the same way. Thus using Pinsker’s inequality and

AM-QM inequality the regret can be lower bounded as

E[R(T)] ≥ Tϵ (1 − 1/K) − Tϵ

⌜⃓⃓⎷ K∑︂
i=1

KL(P0,Pi)
2K ≥ Tϵ

2

⎛⎝1 − ϵ

√︄
T

K

⎞⎠ .
270

The above inequality reveals the trade-off in selecting ϵ by the adversary. On one

hand the smaller ϵ is the harder it is to distinguish Pi from P0. On the other hand the

regret from failing to distinguish the best arm also decreases with ϵ. Setting ϵ =
√︂

K
4T

shows that the expected regret is lower bounded as E[R(T)] ≥ Ω(
√
TK).

For a similar exposition and more details on min-max lower bounds we refer the

reader to Slivkins (2019).

B.2 Instance dependent lower bounds

While min-max bounds provide a clear picture of what is possible to achieve in terms

of regret minimization for the bandit problem they do not tell the full story. After

all the player might not be faced with an adversary which has selected the worst

possible problem instance. In fact, if ϵ, that is the gap between the best arm and

other arms is large, the approach we present above is going to fail. Further, there

exist algorithms for the stochastic MAB problem which achieve instance-dependent

bounds which evaluate to O(K log (T)) whenever ϵ is large. It is natural to ask if such

algorithms are optimal. Next we show how to attempt such a lower bound.

Similarly to the min-max lower bounds we begin with a lower bound on the KL-

divergence between the induced measures P and P′ by the policy of the player acting

on bandit instances θ and θ′. We well specify how to choose θ′ given an instance θ in

a bit. The key inequality states that

KL(P,P′) ≥ kl(EP[X],EP′ [X]), (B.1)

where X is any measurable random variable with respect to P and P′ and kl is the

KL-divergence between two Bernoulli random variables with the respective means.

Using the chain rule we can also show that

KL(P,P′) =
K∑︂
k=1

Eθi [Nk(T)]KL(θ(k), θ′(k)).

271

where we use θ(k) to denote the distribution of arm k under environment θ. Fix an

arm k which is sub-optimal under θ. Let X = Nk(T)/T and choose θ′ so that it only

differs from θ on arm k and arm k is optimal for θ′ We have the following

Eθ[Nk(T)]KL(θ(k), θ′(k)) ≥
(︄

1 − Eθ[Nk(T)]
T

)︄
log

(︄
T

T − Eθ′ [Nk(T)]

)︄
− log (2) .

We claim that this is sufficient for our desired lower bound, at least for player strategies

which enjoy instance-dependent guarantees. In particular, let π be such a strategy,

that is for any α > 0 the strategy has regret bounded by o(Tα) for large enough

T on any instance problem instance. Then because k is sub-optimal for θ we have
Eθ[Nk(T)]

T
→ 0 and further log

(︂
T

T−Eθ′ [Nk(T)]

)︂
→ log (T). Let θk be the environment

which minimizes the KL-divergence over all θ′ which satisfy the above construction.

Then what we have shown above is that the regret of the player is lower bounded as

E[R(T)] ≥
K∑︂
k=1

∆k log (T)
KL(θ, θk)

,

for large enough T . The work of Garivier et al. (2018) shows such instance dependent

bounds formally and further discusses lower bounds for small T as well.

272

Bibliography

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for

linear stochastic bandits. In NIPS, volume 11, pages 2312–2320, 2011.

Naoki Abe and Philip M Long. Associative reinforcement learning using linear

probabilistic concepts. In ICML, pages 3–11. Citeseer, 1999.

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E. Schapire. Corralling

a band of bandit algorithms. arXiv preprint arXiv:1612.06246 , 2016.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-

armed bandit problem. In Conference on learning theory, pages 39–1. JMLR

Workshop and Conference Proceedings, 2012.

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson

sampling. In Artificial intelligence and statistics, pages 99–107. PMLR, 2013.

Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling.

J. ACM , 64(5):30:1–30:24, 2017. doi: 10.1145/3088510. URL https://doi.org/

10.1145/3088510.

Zeyuan Allen-Zhu and Yuanzhi Li. Lazysvd: Even faster svd decomposition yet

without agonizing pain. In Advances in Neural Information Processing

Systems, pages 974–982, 2016.

Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. From bandits

273

https://doi.org/10.1145/3088510
https://doi.org/10.1145/3088510

to experts: A tale of domination and independence. In Advances in Neural

Information Processing Systems, pages 1610–1618, 2013.

Noga Alon, Nicolo Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning

with feedback graphs: Beyond bandits. In Annual Conference on Learning

Theory, volume 40. Microtome Publishing, 2015.

Oren Anava, Elad Hazan, and Shie Mannor. Online convex optimization against

adversaries with memory and application to statistical arbitrage. arXiv preprint

arXiv:1302.6937 , 2013.

Raman Arora and Teodor Vanislavov Marinov. Efficient convex relaxations for

streaming pca. In Advances in Neural Information Processing Systems,

pages 10496–10505, 2019.

Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an

adaptive adversary: from regret to policy regret. In Proceedings of the 29th

International Conference on Machine Learning, pages 1747–1754, 2012a.

Raman Arora, Poorya Mianjy, and Teodor Marinov. Stochastic optimization for

multiview representation learning using partial least squares. In International

Conference on Machine Learning, pages 1786–1794, 2016.

Raman Arora, Teodor Vanislavov Marinov, Poorya Mianjy, and Nati Srebro. Stochas-

tic approximation for canonical correlation analysis. In Advances in Neural

Information Processing Systems, pages 4775–4784, 2017.

Raman Arora, Michael Dinitz, Teodor Vanislavov Marinov, and Mehryar Mohri. Policy

regret in repeated games. In Advances in Neural Information Processing

Systems, pages 6732–6741, 2018.

274

Raman Arora, Teodor V Marinov, and Mehryar Mohri. Bandits with feedback graphs

and switching costs. arXiv preprint arXiv:1907.12189 , 2019.

Raman Arora, Teodor V Marinov, and Enayat Ullah. Private stochastic convex

optimization: Efficient algorithms for non-smooth objectives. arXiv preprint

arXiv:2002.09609 , 2020.

Raman Arora, Teodor Vanislavov Marinov, and Mehryar Mohri. Corralling stochastic

bandit algorithms. In International Conference on Artificial Intelligence

and Statistics, pages 2116–2124. PMLR, 2021.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update

method: a meta-algorithm and applications. Theory of Computing, 2012b.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and

stochastic bandits. In COLT , pages 217–226, 2009.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration–exploitation

tradeoff using variance estimates in multi-armed bandits. Theoretical Computer

Science, 410(19):1876–1902, 2009.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal

of Machine Learning Research, 3(Nov):397–422, 2002.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted

reinforcement learning. In Advances in Neural Information Processing

Systems, pages 49–56, 2007.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The non-

stochastic multiarmed bandit problem. SIAM Journal on Computing, 2002b.

275

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for

reinforcement learning. In Advances in Neural Information Processing

Systems, 2009.

Robert J Aumann. Correlated equilibrium as an expression of bayesian rationality.

Econometrica: Journal of the Econometric Society, pages 1–18, 1987.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds

for reinforcement learning. In International Conference on Machine Learn-

ing, pages 263–272, 2017.

Peter L Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexander Rakhlin, and

Ambuj Tewari. High-probability regret bounds for bandit online linear optimization.

In Conference on Learning Theory, 2008.

Kush Bhatia and Karthik Sridharan. Online learning with dynamics: A minimax

perspective. arXiv preprint arXiv:2012.01705 , 2020.

Avrim Blum and Yishay Mansour. From external to internal regret. Journal of

Machine Learning Research, 8:1307–1324, 2007.

Béla Bollobás and Ernest J Cockayne. Graph-theoretic parameters concerning domina-

tion, independence, and irredundance. Journal of Graph Theory, 3(3):241–249,

1979.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential

equations. Springer Science & Business Media, 2010.

Sébastien Bubeck. Bandits games and clustering foundations. PhD thesis,

INRIA Nord Europe (Lille, France), 2010.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and

276

nonstochastic multi-armed bandit problems. Foundations and Trends® in

Machine Learning, 5(1):1–122, 2012.

Sébastien Bubeck, Michael Cohen, and Yuanzhi Li. Sparsity, variance and curvature in

multi-armed bandits. In Algorithmic Learning Theory, pages 111–127. PMLR,

2018.

Sébastien Bubeck, Yuanzhi Li, Haipeng Luo, and Chen-Yu Wei. Improved path-length

regret bounds for bandits. In Conference On Learning Theory, pages 508–528.

PMLR, 2019.

Swapna Buccapatnam, Atilla Eryilmaz, and Ness B. Shroff. Stochastic bandits with

side observations on networks. In The 2014 ACM International Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’14,

pages 289–300. ACM, 2014a.

Swapna Buccapatnam, Atilla Eryilmaz, and Ness B Shroff. Stochastic bandits with

side observations on networks. In The 2014 ACM international conference

on Measurement and modeling of computer systems, pages 289–300, 2014b.

Stephane Caron, Branislav Kveton, Marc Lelarge, and Smriti Bhagat. Leveraging side

observations in stochastic bandits. In UAI , 2012.

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E.

Schapire, and Manfred K. Warmuth. How to use expert advice. Journal of the

ACM (JACM), 44(3):427–485, 1997.

Xi Chen and Xiaotie Deng. Settling the complexity of two-player nash equilibrium.

In 2006 47th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’06), pages 261–272. IEEE, 2006.

277

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with

linear payoff functions. In Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, pages 208–214. JMLR

Workshop and Conference Proceedings, 2011.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of

operations research, 4(3):233–235, 1979.

Alon Cohen, Tamir Hazan, and Tomer Koren. Online learning with feedback graphs

without the graphs. In International Conference on Machine Learning,

pages 811–819, 2016.

Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal exploration in

structured stochastic bandits. In Advances in Neural Information Processing

Systems, pages 1763–1771, 2017.

Ashok Cutkosky, Abhimanyu Das, and Manish Purohit. Upper confidence bounds for

combining stochastic bandits. arXiv preprint arXiv:2012.13115 , 2020.

Christoph Dann. Strategic Exploration in Reinforcement Learning - New

Algorithms and Learning Guarantees. PhD thesis, Carnegie Mellon University,

2019.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret:

Uniform pac bounds for episodic reinforcement learning. In Advances in Neural

Information Processing Systems, pages 5713–5723, 2017.

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford,

and Robert E Schapire. On oracle-efficient PAC reinforcement learning with rich

observations. arXiv preprint arXiv:1803.00606 , 2018.

278

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates:

Towards accountable reinforcement learning. International Conference on

Machine Learning, 2019.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The

complexity of computing a nash equilibrium. SIAM Journal on Computing,

39(1):195–259, 2009.

Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs:

T 2/3 regret. In Proceedings of the forty-sixth annual ACM symposium on

Theory of computing, pages 459–467. ACM, 2014.

Simon S Du, Jason D Lee, Gaurav Mahajan, and Ruosong Wang. Agnostic Q-

learning with function approximation in deterministic systems: Tight bounds on

approximation error and sample complexity. arXiv preprint arXiv:2002.07125 ,

2020.

Lars Engebretsen and Jonas Holmerin. Clique is hard to approximate within n

1-o (1). In International Colloquium on Automata, Languages, and

Programming, pages 2–12. Springer, 2000.

Paul Erdöos, Ralph Faudree, and Edward T Ordman. Clique partitions and clique

coverings. Discrete Mathematics, 72(1-3):93–101, 1988.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC bounds for multi-armed

bandit and markov decision processes. In Computational Learning Theory,

2002.

Claude-Nicolas Fiechter. Efficient reinforcement learning. In Proceedings of the

seventh annual conference on Computational learning theory, pages

88–97. ACM, 1994.

279

Sarah Filippi, Olivier Cappé, and Aurélien Garivier. Optimism in reinforcement

learning and Kullback-Leibler divergence. In 2010 48th Annual Allerton

Conference on Communication, Control, and Computing (Allerton),

pages 115–122. IEEE, 2010.

Dean P Foster and Rakesh V Vohra. A randomization rule for selecting forecasts.

Operations Research, 41(4):704–709, 1993.

Dean P Foster and Rakesh V Vohra. Calibrated learning and correlated equilibrium.

Games and Economic Behavior , 21(1-2):40, 1997.

Dylan J Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for

contextual bandits. arXiv preprint arXiv:1906.00531 , 2019.

Dylan J Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting

to misspecification in contextual bandits. Advances in Neural Information

Processing Systems, 33, 2020a.

Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-

dependent complexity of contextual bandits and reinforcement learning: A

disagreement-based perspective. arXiv preprint arXiv:2010.03104 , 2020b.

David A Freedman. On tail probabilities for martingales. the Annals of Probability,

pages 100–118, 1975.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of computer and system

sciences, 55(1):119–139, 1997.

Drew Fudenberg and David K Levine. Conditional universal consistency. Games

and Economic Behavior , 29(1-2):104–130, 1999.

280

Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic

bandits and beyond. In Proceedings of the 24th annual conference on

learning theory, pages 359–376. JMLR Workshop and Conference Proceedings,

2011.

Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next: The

true shape of regret in bandit problems. Mathematics of Operations Research,

44(2):377–399, 2018.

Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next: The

true shape of regret in bandit problems. Mathematics of Operations Research,

44(2):377–399, 2019.

Sascha Geulen, Berthold Vöcking, and Melanie Winkler. Regret minimization for

online buffering problems using the weighted majority algorithm. In COLT , pages

132–143, 2010.

Wayne Goddard and Michael A. Henning. Independent domination in graphs: A

survey and recent results. Discrete Mathematics, 313(7):839–854, 2013.

Todd L Graves and Tze Leung Lai. Asymptotically efficient adaptive choice of control

laws incontrolled markov chains. SIAM journal on control and optimization,

35(3):715–743, 1997.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated

equilibrium. Econometrica, 68(5):1127–1150, 2000.

Johan Hastad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182

(1):105–142, 1999.

Elad Hazan and Satyen Kale. Computational equivalence of fixed points and no regret

281

algorithms, and convergence to equilibria. In Advances in Neural Information

Processing Systems, pages 625–632, 2008.

Elad Hazan and Satyen Kale. Better algorithms for benign bandits. Journal of

Machine Learning Research, 12(4), 2011.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement

learning with linear function approximation. arXiv preprint arXiv:2011.11566 ,

2020.

Nan Jiang and Alekh Agarwal. Open problem: The dependence of sample complexity

lower bounds on planning horizon. In Conference On Learning Theory, pages

3395–3398, 2018.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E

Schapire. Contextual decision processes with low bellman rank are pac-learnable.

In International Conference on Machine Learning, pages 1704–1713, 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning

provably efficient? arXiv preprint arXiv:1807.03765 , 2018.

Tiancheng Jin and Haipeng Luo. Simultaneously learning stochastic and adversarial

episodic MDPs with known transition. arXiv preprint arXiv:2006.05606 ,

2020.

Sham Kakade. On the sample complexity of reinforcement learning. PhD

thesis, University College London, 2003.

Sham Kakade, Shai Shalev-Shwartz, Ambuj Tewari, et al. On the duality of strong

convexity and strong smoothness: Learning applications and matrix regulariza-

tion. Unpublished Manuscript, http://ttic. uchicago. edu/shai/paper-

s/KakadeShalevTewari09. pdf , 2(1), 2009.

282

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems.

Journal of Computer and System Sciences, 71(3):291–307, 2005.

Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An

asymptotically optimal finite-time analysis. In International conference on

algorithmic learning theory, pages 199–213. Springer, 2012.

Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Cana-

dian Journal of Mathematics, 12:363–366, 1960.

Tomávs Kocák, Gergely Neu, Michal Valko, and Rémi Munos. Efficient learning by

implicit exploration in bandit problems with side observations. In Advances in

Neural Information Processing Systems, pages 613–621, 2014.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning

with rich observations. In Advances in Neural Information Processing

Systems, pages 1840–1848, 2016.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.

Advances in applied mathematics, 6(1):4–22, 1985.

Tor Lattimore. The pareto regret frontier for bandits. arXiv preprint

arXiv:1511.00048 , 2015.

Tor Lattimore and Csaba Czepesvari. Bandit Algorithms. Cambridge University

Press, 2018.

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature

representations in bandits and in rl with a generative model. In International

Conference on Machine Learning, pages 5662–5670. PMLR, 2020.

Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more:

283

high-probability data-dependent regret bounds for adversarial bandits and mdps.

arXiv preprint arXiv:2006.08040 , 2020a.

Chung-Wei Lee, Haipeng Luo, and Mengxiao Zhang. A closer look at small-loss

bounds for bandits with graph feedback. In Conference on Learning Theory,

pages 2516–2564. PMLR, 2020b.

Ehud Lehrer. A wide range no-regret theorem. Games and Economic Behavior ,

42(1):101–115, 2003.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit

approach to personalized news article recommendation. In Proceedings of the

19th international conference on World wide web, pages 661–670, 2010.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine learning, 2(4):285–318, 1988.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Infor-

mation and computation, 108(2):212–261, 1994.

Fang Liu, Swapna Buccapatnam, and Ness Shroff. Information directed sampling

for stochastic bandits with graph feedback. In 32nd AAAI Conference on

Artificial Intelligence, 2018.

Thodoris Lykouris, Karthik Sridharan, and Éva Tardos. Small-loss bounds for online

learning with partial information. In Conference on Learning Theory, pages

979–986. PMLR, 2018.

Thodoris Lykouris, Max Simchowitz, Aleksandrs Slivkins, and Wen Sun. Corrup-

tion robust exploration in episodic reinforcement learning. arXiv preprint

arXiv:1911.08689 , 2019.

284

Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-

observations. In Advances in Neural Information Processing Systems,

pages 684–692, 2011.

Teodor Vanislavov Marinov, Poorya Mianjy, and Raman Arora. Streaming principal

component analysis in noisy setting. In International Conference on Machine

Learning, pages 3413–3422, 2018.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample

variance penalization. arXiv preprint arXiv:0907.3740 , 2009.

Neri Merhav, Erik Ordentlich, Gadiel Seroussi, and Marcelo J Weinberger. On

sequential strategies for loss functions with memory. IEEE Transactions on

Information Theory, 48(7):1947–1958, 2002.

Mehryar Mohri and Scott Yang. Conditional swap regret and conditional correlated

equilibrium. In Advances in Neural Information Processing Systems, pages

1314–1322, 2014.

Mehryar Mohri and Scott Yang. Online learning with transductive regret. In Advances

in Neural Information Processing Systems, pages 5220–5230, 2017.

John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

John F Nash et al. Equilibrium points in n-person games. Proceedings of the

national academy of sciences, 36(1):48–49, 1950.

Arkadij Semenovic Nemirovskij and David Borisovich Yudin. Problem complexity and

method efficiency in optimization. 1983.

Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complex-

ity and method efficiency in optimization. John Wiley & Sons, Inc.,

Panstwowe Wydawnictwo Naukowe (PWN), 1983.

285

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic

game theory. Cambridge university press, 2007.

Maillard Odalric and Rémi Munos. Adaptive bandits: Towards the best history-

dependent strategy. In Proceedings of the Fourteenth International Con-

ference on Artificial Intelligence and Statistics, pages 570–578. JMLR

Workshop and Conference Proceedings, 2011.

Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured

reinforcement learning. In Advances in Neural Information Processing

Systems, pages 8874–8882, 2018.

Francesco Orabona and Dávid Pál. Scale-free online learning. Theoretical Computer

Science, 716:50–69, 2018.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learn-

ing via posterior sampling. In Advances in Neural Information Processing

Systems, pages 3003–3011, 2013.

Aldo Pacchiano, Christoph Dann, Claudio Gentile, and Peter Bartlett. Regret bound

balancing and elimination for model selection in bandits and rl. arXiv preprint

arXiv:2012.13045 , 2020a.

Aldo Pacchiano, My Phan, Yasin Abbasi-Yadkori, Anup Rao, Julian Zimmert, Tor

Lattimore, and Csaba Szepesvari. Model selection in contextual stochastic bandit

problems. arXiv preprint arXiv:2003.01704 , 2020b.

Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in

multi-player games. Journal of the ACM (JACM), 55(3):1–29, 2008.

Martin Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley-Interscience, 1994.

286

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences.

In Conference on Learning Theory, pages 993–1019. PMLR, 2013.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning via

sequential complexities. J. Mach. Learn. Res., 16(1):155–186, 2015.

Anshuka Rangi and Massimo Franceschetti. Online learning with feedback graphs

and switching costs. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 2435–2444, 2019.

Tim Roughgarden. Intrinsic robustness of the price of anarchy. Journal of the

ACM (JACM), 62(5):32, 2015.

Ankan Saha, Prateek Jain, and Ambuj Tewari. The interplay between stability and

regret in online learning. arXiv preprint arXiv:1211.6158 , 2012.

Antoine Salomon and Jean-Yves Audibert. Deviations of stochastic bandit regret. In

International Conference on Algorithmic Learning Theory, pages 159–173.

Springer, 2011.

Yevgeny Seldin and Gábor Lugosi. An improved parametrization and analysis of

the exp3++ algorithm for stochastic and adversarial bandits. In Conference on

Learning Theory, pages 1743–1759. PMLR, 2017.

Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic

and adversarial bandits. In International Conference on Machine Learning,

pages 1287–1295. PMLR, 2014.

Max Simchowitz and Kevin Jamieson. Non-asymptotic gap-dependent regret bounds

for tabular MDPs. arXiv preprint arXiv:1905.03814 , 2019.

Aleksandrs Slivkins. Introduction to multi-armed bandits. arXiv preprint

arXiv:1904.07272 , 2019.

287

Gilles Stoltz and Gábor Lugosi. Learning correlated equilibria in games with compact

sets of strategies. Games and Economic Behavior , 59(1):187–208, 2007.

Ambuj Tewari and Peter L Bartlett. Optimistic linear programming gives logarithmic

regret for irreducible MDPs. In Advances in Neural Information Processing

Systems, pages 1505–1512, 2008.

William R Thompson. On the likelihood that one unknown probability exceeds another

in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Aristide Tossou, Christos Dimitrakakis, and Devdatt Dubhashi. Thompson sampling

for stochastic bandits with graph feedback. In 31st AAAI Conference on

Artificial Intelligence, 2017.

Enayat Ullah, Poorya Mianjy, Teodor Vanislavov Marinov, and Raman Arora. Stream-

ing kernel pca with õ(
√
n) random features. In Advances in Neural Information

Processing Systems, pages 7311–7321, 2018.

Michal Valko. Bandits on graphs and structures. PhD thesis, École normale

supérieure de Cachan-ENS Cachan, 2016.

Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits. In

Conference On Learning Theory, pages 1263–1291. PMLR, 2018.

Yifan Wu, András György, and Csaba Szepesvari. Online learning with gaussian

payoffs and side observations. In Advances in Neural Information Processing

Systems 28 , pages 1360–1368. Curran Associates, Inc., 2015a.

Yifan Wu, András György, and Csaba Szepesvári. Online learning with Gaussian

payoffs and side observations. In NIPS, pages 1360–1368, 2015b.

Haike Xu, Tengyu Ma, and Simon S Du. Fine-grained gap-dependent bounds for tabular

288

mdps via adaptive multi-step bootstrap. arXiv preprint arXiv:2102.04692 ,

2021.

Kunhe Yang, Lin F Yang, and Simon S Du. Q-learning with logarithmic regret. arXiv

preprint arXiv:2006.09118 , 2020.

A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in re-

inforcement learning without domain knowledge using value function bounds.

https://arxiv.org/abs/1901.00210 , 2019.

Yinglun Zhu and Robert Nowak. Pareto optimal model selection in linear bandits.

arXiv preprint arXiv:2102.06593 , 2021.

Alexander Zimin and Gergely Neu. Online learning in episodic markovian decision

processes by relative entropy policy search. In Advances in neural information

processing systems, pages 1583–1591, 2013.

Julian Zimmert and Yevgeny Seldin. An optimal algorithm for stochastic and ad-

versarial bandits. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 467–475. PMLR, 2019.

Julian Zimmert and Yevgeny Seldin. Tsallis-inf: An optimal algorithm for stochastic

and adversarial bandits. Journal of Machine Learning Research, 22(28):1–49,

2021.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient

ascent. In Proceedings of the 20th international conference on machine

learning (icml-03), pages 928–936, 2003.

289

	Abstract
	Acknowledgements
	Contents
	Introduction
	Summary of contributions of this work
	The online learning game
	Regret minimization
	Other notions of regret

	Full information and Bandit games
	Online Mirror Descent and Follow the Regularized Leader
	Stochastic multi-armed bandits
	Min-max lower bounds and instance-dependent lower bounds.

	Adversarial multi-armed bandits

	Graph theory concepts
	Algorithmic Game theory
	Equilibrium and no-regret algorithms

	Reinforcement Learning
	Value function, Q-function, Bellman optimality

	Adaptive adversaries and Policy regret
	Policy regret bounds in the full information game
	Policy regret bounds in the bandit game

	Policy regret in the presence of side observations
	Online learning with partial feedback
	Regret minimization in the presence of switching costs and policy regret
	Bandits with feedback graphs and switching Costs
	Problem setup and notation
	An adaptive mini-batch algorithm
	Algorithm for Star Graphs
	Algorithm for General Feedback Graphs
	Corralling Star Graph Algorithms

	Detailed proofs from Section 2.3.2
	Adaptive Mini-batching for Star Graphs
	Proof of Theorem 2.3.2
	Proof of Theorem 2.3.3

	Policy regret bound
	Lower bounds
	Lower bound for non-complete graphs
	Lower Bound for Disjoint Union of Star Graphs
	Counting Argument for Theorem 2.6.5

	Lower bound for a sequence of feedback graphs in the uninformed setting.
	Lower Bound for Arbitrary Graphs

	Detailed proofs for Section 2.6
	Detailed proofs for Section 2.6.1
	Detailed proofs from Section 2.6.2
	Detailed proofs from Section 2.6.3
	Detailed proofs from Section 2.6.4

	Corralling stochastic bandit algorithms
	The corralling problem
	The model selection problem
	Linear contextual bandits
	Model selection for linear bandits

	Preliminaries and additional notation for the corralling problem
	Lower bounds without anytime regret guarantees
	Detailed proofs for Section 3.4
	UCB-style corralling algorithm
	Discussion regarding tightness of bounds

	Detailed proofs for Section 3.6
	Corralling using Tsallis-INF
	Algorithm and the main result
	Stability of UCB and UCB-like algorithms under a change of environment

	Detailed proofs from Section 3.8
	Proof of Theorem 3.8.1
	Potential function and auxiliary lemmas
	Regret bound

	Proof of Theorem 3.8.3

	Model selection with Tsallis-Inf and proof of Theorem 3.2.1
	Proof of Theorem 3.2.1

	Empirical results
	Tsallis-INF contains best arm
	Thompson sampling contains best arm

	Policy regret in repeated games
	Incompatibility of policy regret and external regret
	Policy regret in strategic environments
	Detailed proofs for Section 4.1 and Section 4.2
	Policy equilibrium
	Convergence to the set of policy equilibria
	Proof sketch for Theorem 4.4.2
	Relation of policy equlibria to CCEs
	Simple example of a policy equilibrium

	Detailed proofs from Section 4.4
	Concentration of the estimated Markov chain
	Auxiliary results

	Limits of learning in Tabular Reinforcement Learning
	Instance dependent bounds in prior work and limitations
	Problem setting and notation
	Related work
	Novel upper bounds for optimistic algorithms
	Optimistic algorithms and StrongEuler
	Prior optimistic regret bounds and opportunities for improvement
	Regret analysis with improved clipping: from minimum gap to average gap
	Policy-dependent regret bound
	Nearly tight bounds for deterministic transition MDPs
	Tighter bounds for unique optimal policy.

	Detailed proofs for Section 5.4
	Useful decomposition lemmas
	General surplus clipping for strongly optimistic algorithms
	Clipping with an arbitrary threshold and proof of Proposition 5.4.2

	Definition of valid clipping thresholds εk
	Policy-dependent regret bound for StrongEuler
	Proof of Corollary 5.4.6
	Alternative to integration lemmas

	Instance-dependent lower bounds
	General instance-dependent lower bound as an optimization problem
	Gap-dependent lower bound when optimal policies visit all states
	Gap-dependent lower bound for deterministic-transition MDPs
	Lower bounds for optimistic algorithms in MDPs with deterministic transitions
	Issue with deriving a general bound

	Proofs from Section 5.6
	Proof of Theorem 5.6.1
	Proof of Theorem 5.6.3
	Lower bounds for deterministic MDPs
	Proof of Theorem 5.6.4
	Tree-structured MDPs

	Omitted proofs for Theorem 5.6.7

	Discussion and conclusion
	Future directions
	Conclusion
	Other work

	Convex optimization
	Convex sets
	Convex Functions
	Differentiable functions.
	Strict convexity, strong convexity, and smoothness
	Jensen's Inequality

	Potential functions and Bregman divergence and Mirror descent
	The Geometry of ℓp Norms
	Mirror Maps
	The Fenchel Dual
	Analysis in the primal space and Bregman divergence
	Mirror descent as proximal gradient descent
	Online projected mirror descent

	Tools for lower bounds in bandit games
	Min-max lower bounds
	Instance dependent lower bounds

	Bibliography

