HIGH SENSITIVITY CARDIAC TROPONIN-T IS ASSOCIATED WITH INCIDENT HYPERTENSION

by
John W. McEvoy
A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Health Sciences.
Department of Epidemiology, Cardiovascular Epidemiology Track, Johns Hopkins Bloomberg School of Public Health,
Baltimore, Maryland
March, 2015
© 2015 John W. McEvoy All Rights Reserved

Abstract

Background: Hypertension is often preceded by cardiac structural abnormalities. Thus, we assessed whether high-sensitivity cardiac troponin-T (hs-cTNT), a marker of chronic subclinical myocardial damage, can identify persons at risk for hypertension or its representative complication, left ventricular hypertrophy (LVH).

Methods: We studied 6,516 ARIC Study participants, free of prevalent hypertension and cardiovascular disease at baseline (1990-1992). We examined the association of baseline hs-cTNT categories with incident diagnosed hypertension (defined by self-report of a diagnosis or medication use during a maximum of 19.9 years of follow-up) and with incident visit-based hypertension (defined by self-report, medication use, or measured BP $>140 / 90 \mathrm{mmHg}$ over 6 years).

Results: Relative to hs-cTNT $<5 \mathrm{ng} / \mathrm{L}$, adjusted hazard ratios for incident diagnosed hypertension were 1.16 (95% CI $1.08,1.25$) for persons with hs-cTNT $5-8 \mathrm{ng} / \mathrm{L}, 1.29$ (1.14, 1.47) for hs-cTNT 9-13 ng/L, and $1.31(1.07,1.61)$ for hs-cTNT $\geq 14 \mathrm{ng} / \mathrm{L}$ (p-trend <0.001). Associations were stronger for incident visit-based hypertension. These associations were driven by higher relative hazard in normotensive persons (relative to those with prehypertension, p -interaction=0.001). Baseline hs-cTNT was also strongly associated with incident LVH by electrocardiography over 6 years (e.g. adjusted HR 5.19 [1.49-18.08] for hs-cTNT $\geq 14 \mathrm{ng} / \mathrm{L}$ vs $<5 \mathrm{ng} / \mathrm{L})$. Findings were not appreciably changed
after accounting for competing deaths or adjustment for baseline BP levels or N -terminal prohormone of brain natriuretic peptide.

Conclusion: In an ambulatory population with no history of cardiovascular disease, hscTNT was associated with incident hypertension and risk of LVH. Further research is needed to determine whether hs-cTNT can identify persons who may benefit from ambulatory BP monitoring or hypertension prevention lifestyle strategies.

READERS:

Kunihiro Matsushita, M.D., Ph.D

Elizabeth Selvin Ph.D, M.P.H. (advisor, eselvin@,jhu.edu)

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Elizabeth Selvin, for her dedication, intelligence, resourcefulness, generosity, and mentorship. Sincere thanks also to my amazing clinical mentors, Dr. Roger Blumenthal and Dr. Steven Schulman.

I wish to thank my wife, Katherine, for her loving patience and big heart.

In completing this work, I am also indebted to my co-investigators on this project; Yuan Chen MS; Vijay Nambi MD PhD; Christie M. Ballantyne MD; A. Richey Sharrett MD DrPH; Lawrence J. Appel MD MPH; Wendy S. Post MD MS; and Kunihiro Matsushita MD PhD.

Finally, I want to thank the staff and participants of the ARIC study for their important contributions.

I note that this research was supported by NIH/NIDDK grant R01DK089174 to my thesis supervisor, Dr. Elizabeth Selvin. The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C).

TABLE OF CONTENTS

Introduction page 1
Methods page 3
Results page 8
Conclusions page 10
References. page 14
Appendix. page 28
Curriculum Vitae page 33

LIST OF TABLES

Table 1- page 20. Characteristics of the Study Population (ARIC participants without cardiovascular disease or diagnosed hypertension): Overall and According to categories of high sensitivity cardiac troponin T (hs-cTNT, ng/L) at baseline (1990-1992).

Table 2- page 22. Crude incidence rates and adjusted hazard ratios (95% confidence intervals) for incident hypertension outcomes, according to baseline high sensitivity cardiac troponin T .

Table 3- page 23. Crude incidence rates and adjusted hazard ratios (95% confidence intervals) for incident diagnosed hypertension, according to baseline categories of high sensitivity cardiac troponin T : further stratified by baseline blood pressure. Table 4-page 25. Adjusted Hazard Ratios (95% confidence intervals) for the secondary outcome of incident left ventricular hypertrophy over 6 years of follow-up by baseline high sensitivity cardiac troponin T among persons free of baseline cardiovascular disease or hypertension.

LIST OF FIGURES

Figure 1- page 26. Adjusted hazard ratio (95% confidence interval) of A) incident diagnosed hypertension and B) incident visit-based hypertension, according to baseline hs-cTNT modeled as linear splines (knots at 5,8 and $13 \mathrm{ng} / \mathrm{L}$) with background histogram of hs-cTNT in the study sample of ARIC subjects without baseline cardiovascular disease or hypertension.

INTRODUCTION

Hypertension remains a major cause of heart disease and stroke, with approximately 1 in 3 U.S. adults currently diagnosed as hypertensive and a further 6-10\% of Americans estimated to have undiagnosed hypertension. ${ }^{1}$ In addition, a significant proportion of those with diagnosed hypertension have poorly controlled blood pressure (BP). ${ }^{2,3}$ Thus, there is a need to identify persons at risk either for progressing to clinically overt hypertension or developing complications of this disease. In particular, BP can be improved by more aggressive lifestyle and dietary changes in those with both prehypertension and overt hypertension. ${ }^{4}$

The onset of hypertension is an insidious process that often occurs over many years and is often preceded by altered diurnal BP patterns and prehypertension. ${ }^{5,6}$ While hypertension is diagnosed using defined BP thresholds, risks associated with elevated BP occur on a continuous spectrum. Indeed, even early, pre-hypertensive, BP abnormalities can induce structural heart changes ${ }^{7}$, potentially affording the opportunity to both detect persons at risk for overt hypertension and to initiate timely preventive strategies. ${ }^{8}$ Prior studies have focused on the association between subclinical structural heart disease, particularly left ventricular hypertrophy (LVH), and subsequent development of hypertension. While these studies have confirmed that baseline LVH, measured by both
echocardiography ${ }^{9},{ }^{10}$ and by cardiac MRI^{11}, is associated with incident hypertension, these imaging modalities are often impractical and too costly for routine screening. New highly sensitive cardiac troponin T (hs-cTNT) assays have great potential as noninvasive laboratory-based markers of subclinical myocardial damage. These assays can detect subclinical myocardial damage in a significant proportion of persons who are free of known cardiovascular disease in the community. ${ }^{12,13}$ Interestingly, detectable levels of hs-cTNT appear to be more strongly linked to structural heart disease and its risk factors than to epicardial coronary artery disease. ${ }^{13-15}$ Thus, hs-cTNT screening may be of particular use in persons at risk for clinically apparent hypertension and other cardiovascular endpoints. Hs-cTNT may also help identify individuals who are at risk of developing hypertension and/or hypertensive end-organ damage, such as LVH.

Thus, we sought to determine if hs-cTNT could identify persons at risk for subsequent hypertension in a large U.S. community-based cohort, the Atherosclerosis Risk in Communities (ARIC) Study.

METHODS

Study Population

The ARIC Study is a prospective cohort of 15,792 participants enrolled between 1987 and 1989 from four U.S. communities (Forsyth Country, North Carolina; Jackson, Mississippi; Minneapolis, Minnesota; and Washington County, Maryland). ${ }^{16} \mathrm{We}$ measured hs-cTNT in samples collected from all participants at ARIC visit 2, which took place from 1990 to 1992 and represents the baseline for this current analysis. Of the 14,348 persons who attended visit 2 , we excluded all persons with prevalent diagnosed hypertension ($\mathrm{n}=6,334$), those who had coronary heart disease (CHD, including silent myocardial infarction detected by electrocardiogram [ECG]), stroke, or heart failure at or prior to visit $2(\mathrm{n}=177)$, or those who were missing variables of interest $(\mathrm{n}=1,321)$ (Supplemental Figure 1, Appendix). Thus, 6,516 persons were included in the analysis evaluating our primary outcome of incident diagnosed hypertension (self-report of diagnosis or medication use during annual telephone follow-up). In our secondary analysis of incident visit-based hypertension, we further excluded 599 persons with measured BP at baseline $>140 / 90 \mathrm{mmHg}$ (undiagnosed hypertension) and 242 persons without available BP measurement data, for an analytic study sample of 5,675 persons. In our analysis of incident LVH, we further excluded 44 persons with baseline LVH by ECG for an analytic sample of 5,631 (Supplemental Table 1, Appendix). Institutional review boards at each clinical site reviewed the study and informed consent was obtained from all participants.

Measurement of hs-cTNT and other exposure variables

We measured hs-cTNT in stored serum samples, collected at visit 2, using a Roche Elecys 2010 Analyzer (Roche Diagnostics, Indianapolis, Indiana) at the University of Minnesota in 2012-2013. Coefficient of variation for hs-cTNT was 6.0% at a concentration of $25 \mathrm{ng} / \mathrm{L}$. Participants self-reported smoking status. Plasma lipid concentrations and body weight and height for body mass index (BMI) were determined using standardized protocols. Glucose was measured using the hexokinase method. ${ }^{17}$ Diagnosed diabetes was defined as a self-reported physician diagnosis of diabetes or current use of diabetic medications. Glomerular filtration rate was estimated using serum creatinine and the CKD-EPI 2009 equation. ${ }^{18}$ N-terminal prohormone-brain natriuretic peptide (NT-proBNP) was measured in stored serum samples from visit 2 on a Roche Elecsys 2010 Analyzer using a sandwich immunoassay method (Roche Diagnostics, Indianapolis, Indiana).

Follow-up for outcomes of interest

Participants were contacted annually via telephone, with follow-up currently available through March 2012. Incident diagnosed hypertension was assessed during these annual telephone calls using the following questions: "Has a doctor ever said you had high blood pressure?", or "Since we last contacted you has a doctor said you had high blood pressure?", and "Did you take any medications during the past two weeks for high blood pressure?". After visit 2, ARIC participants also completed two further follow-up study examinations, visit 3 (1992-1995) and visit 4 (1996-1998). During these follow-up study
visits, BP was recorded as the mean of at least 2 seated measurements using a manual random-zero sphygmomanometer.

We also evaluated the association between hs-cTNT and a well-known sequela of hypertension, LVH. This secondary outcome was assessed at visits 3 and 4, in persons free of both hypertension and LVH at visit 2, using resting 12-lead electrocardiograms and defined by Cornell criteria. ${ }^{19}$

Statistical Analyses

Characteristics for the study population were presented according to categories of hscTNT ($<5,5-8,9-13$, or $\geq 14 \mathrm{ng} / \mathrm{L}$) at baseline (visit $2,1990-1992$). While the hs-cTNT assay used can measure concentrations of troponin T as low as $3 \mathrm{ng} / \mathrm{L}^{13}$, values $<5 \mathrm{ng} / \mathrm{L}$ are measured with reduced precision and represent the typical lower cut-point in categorical analyses. Values $\geq 14 \mathrm{ng} / \mathrm{L}$ represent approximately the 90 th percentile of the ARIC population and correspond to the 99th percentile value for a "healthy" reference group of persons aged $20-70$ years. ${ }^{20}$

The primary outcome of interest was incident diagnosed hypertension during a maximum of 19.9 and a median of 12 years of follow-up. Incident cases were identified at ARIC study visits 3 and 4 and, thereafter, by annual telephone contact with all participants. Time of incident diagnosed hypertension was the date when participants first reported diagnosis of or treatment for hypertension. We evaluated visit-based hypertension during a maximum of 8.7 and a median of 6 years follow-up as a secondary outcome. Visitbased cases of hypertension were identified by mean systolic $\mathrm{BP} \geq 140 \mathrm{mmHg}$ or mean
diastolic $\mathrm{BP} \geq 90 \mathrm{mmHg}$, self-reported physician diagnosis, or medication use at visits 3 (1993-1995) or 4 (1996-1998). For both hypertension endpoints, we also conducted analyses stratified by baseline BP category (normotensive [BP $\leq 120 \mathrm{mmHg}$ systolic and $\leq 80 \mathrm{mmHg}$ diastolic] or pre-hypertensive [BP $>120 \mathrm{mmHg}<140 \mathrm{mmHg}$ systolic and/or $>80 \mathrm{mmHg}<90 \mathrm{mmHg}]$). Finally, we evaluated the association between baseline hscTNT and incident LVH at visit 3 (1993-1995) or visit 4 (1996-1998) among persons free from both hypertension and LVH at visit 2 (1990-1992).

We used Cox proportional hazards regression models for the primary outcome of diagnosed hypertension and discrete proportional hazards (cloglog) regression models for both secondary outcomes (visit-based incident hypertension or incident LVH) to estimate adjusted hazard ratios (HRs) for the association between baseline hs-cTNT and these outcomes. We modeled hs-cTNT as a categorical (<5 [reference], $5-8,9-13$, or $\geq 14 \mathrm{ng} / \mathrm{L}$) and continuous exposure (log-transformed). In analyses with hs-cTNT as a continuous exposure, hs-cTNT was modeled as untransformed or log-transformed and either truncated at $<3 \mathrm{ng} / \mathrm{L}$ (the limit of measurement) or with unmeasurable levels assigned a value of half the lower limit of measurement ($1.5 \mathrm{ng} / \mathrm{L}$). ${ }^{21}$ Using Martingale residuals to assess fit, the log-transformed visit $2 \mathrm{hs}-\mathrm{cTNT}$ without truncating fit the continuous models best. P-values for linear trend among hs-cTNT categories were obtained by assigning the median hs-cTNT value in the above categories of hs-cTNT and modeling this ordinal variable continuous. For all models, we verified the proportionality of the hazards with Schoenfeld residuals.

Models were adjusted for age (years), race-center (whites-Washington County; whitesMinneapolis; blacks-Jackson; blacks-Forsyth County, whites-Forsyth County), sex (male
or female), body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$, smoking (current; former; never), LDL-cholesterol $(\mathrm{mg} / \mathrm{dL})$, HDL-cholesterol $(\mathrm{mg} / \mathrm{dL})$, triglycerides $(\mathrm{mg} / \mathrm{dL})$, estimated glomerular filtration rate ($\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$), current lipid-lowering medication use (yes or no), LVH (yes or no), and diagnosed diabetes (yes or no). We tested for interactions by age, sex, and race. In sensitivity analyses we additionally adjusted for baseline (visit 2) blood pressure or NT-proBNP levels. Because baseline hs-cTNT is associated with all-cause mortality, cardiovascular death, and sudden cardiac death ${ }^{13,15,22-24}$, we also conducted sensitivity analyses with a competing risk regression method (Fine-Gray approach) using a cumulative incidence function to account for intervening deaths. ${ }^{25}$

Finally, we also modeled hs-cTNT using linear splines in fully-adjusted Cox models for both incident diagnosed and incident visit-based hypertension, with knots at hs-cTNT concentrations of 5, 8 and $13 \mathrm{ng} / \mathrm{L}$ (figures truncated at the $99^{\text {th }}$ percentile), These models are shown graphically and overlaid on histograms showing the distribution of hs-cTNT in the study population. All analyses were performed using Stata version 13.0 (College Station, TX: StataCorp LP).

RESULTS

In our community-based study population of subjects without a history of cardiovascular disease and free from baseline hypertension, persons with higher baseline hs-cTNT were more likely to be older, male, black, pre-hypertensive, obese, have higher HbAlc , and have reduced kidney function (Table 1).

During a maximum of 19.9 and a median 12 years of follow-up, $68 \%(n=4421)$ of the study sample developed our primary endpoint; incident diagnosed hypertension. Of these, $70 \%(\mathrm{n}=3108)$ had hs-cTNT $<5 \mathrm{ng} / \mathrm{L}$ at baseline, $21 \%(\mathrm{n}=936)$ had hs-cTNT $5-8 \mathrm{ng} / \mathrm{L}$, $6 \%(\mathrm{n}=281)$ had hs-cTNT 9-13ng/L, and $2 \%(\mathrm{n}=96)$ had hs-cTNT $\geq 14 \mathrm{ng} / \mathrm{L}$ (Table 2). Crude incidence rates (per 1,000 person/years) of diagnosed hypertens ion were 54 in those with hs-cTNT $<5 \mathrm{ng} / \mathrm{L}, 64$ with hs-cTNT $5-8 \mathrm{ng} / \mathrm{L}, 73$ with hs-cTNT $9-13 \mathrm{ng} / \mathrm{L}$, and 74 in persons with baseline hs-cTNT $\geq 14 \mathrm{ng} / \mathrm{L}$.

After multivariable adjustment, baseline hs-cTNT remained significantly associated with incident diagnosed hypertension (Table 2). Specifically, relative to those with undetectable hs-cTNT at baseline, persons in the higher categories of hs-cTNT had a higher adjusted risk of hypertension. Similar results were found for log-hs-cTNT modeled as a continuous variable. A continuous and roughly linear association between baseline hs-cTNT and incident diagnosed hypertension is shown graphically in Figure 1a.

The association between baseline hs-cTNT (both by category and as a continuous exposure) and our secondary outcome of incident visit-based hypertension was stronger than that for incident diagnosed hypertension (Table 2, Figure 1b). Further, in analyses stratified by baseline blood pressure category (normotensive or prehypertensive), we
observed that the overall association between hs-cTNT and both incident hypertension outcomes appeared to be largely driven by robust associations in persons who were normotensive at baseline (p -for-interaction=0.04 for diagnosed hypertension and p -forinteraction $=0.001$ for visit-based hypertension) (Table 3 and Supplemental Table 2 in the Appendix). Associations between hs-cTNT and both incident diagnosed and visit-based hypertension were largely unchanged after further adjustment for baseline blood pressure or NT-proBNP (Supplemental Table 3 in the Appendix). Interactions for the association of hs-cTNT and risk of hypertension by age, gender, and race were all were nonsignificant (all p-values-for-interaction >0.10).

There were 532 competing deaths for the primary outcome of incident diagnosed hypertension over 12-years follow-up, but only 57 competing deaths for the secondary outcome of incident visit-based hypertension over 6-years. In competing risk models, the association between hs-cTNT and incident diagnosed hypertension remained significant but was somewhat weakened in the hs-cTNT $5-8 \mathrm{ng} / \mathrm{L}$ and $9-13 \mathrm{ng} / \mathrm{L}$ categories and was no longer significant in those with baseline hs-cTNT $\geq 14 \mathrm{ng} / \mathrm{L}$ (Table 2). In contrast, results for the 6 -year incident visit-based hypertension were similar in the Fine-Gray competing-risk models

Finally, we found that, relative to hs-cTNT of $<5 \mathrm{ng} / \mathrm{L}$, persons in higher categories of hscTNT had a highly significant 6-year risk of incident LVH by ECG: HR, 2.29 (95\% CI 1.24-4.26) for hs-cTNT 5-8ng/L, HR, 2.94 (95\% CI 1.14-7.58) for hs-cTNT 9-13ng/L and HR, 5.19 (95% CI 1.49-18.08) for hs-cTNT $\geq 14 \mathrm{ng} / \mathrm{L}$ (Table 4).

DISCUSSION AND CONCLUSIONS

In this large community-based study population of U.S. adults, free of baseline hypertension and cardiovascular disease, we found that hs-cTNT was independently associated with subsequent development of hypertension, defined either by diagnosed cases (self-reported diagnosis or medication use) or by objective office measurement of BP (which also captured undiagnosed hypertension), and incident LVH by ECG. Our findings were similar by age, race and gender. Our results suggest that chronic subclinical myocardial damage, detected by elevated hs-cTNT, may precede the development of hypertension in the general population and that this novel biomarker of cardiac damage may have utility for identifying persons at future risk for hypertension and hypertensive end-organ damage.

Prior studies have reported the cross-sectional association between established hypertension and prevalent hs-cTNT elevations ${ }^{15,}$, 26-28. However, to our knowledge, this is the first study to evaluate the association between preceding subclinical myocardial damage, as measured by hs-cTNT, and subsequent risk of hypertension over prospective follow-up. Notably, this association was strongest for persons who had baseline normal BP readings (in contrast to those with pre-hypertension). Notably, the vast majority of individuals with prehypertension go on to develop hypertension, irrespective of baseline hs-cTNT. Therefore, the absolute risk of hypertension is very high in this entire subgroup, helping to explain why the relative impact of hs-cTNT was non-significant in those with prehypertension.

While the exact pathway linking hs-cTNT to incident hypertension is unclear, a number of considerations are worth discussing. Elevated BP develops over time along a spectrum from normotension, to abnormal diurnal patterns of BP , to pre-hypertension, and then, ultimately, to clinical hypertension ${ }^{5}$. It is known that abnormalities in cardiac structure can occur long before the diagnosis of overt hypertension is made in the clinic ${ }^{5,} 9,29$. Based on our results, it is possible that these early BP aberrations cause myocardial damage, leading to elevated hs-cTNT, before clinically overt hypertension is recognized. Compatible with this hypothesis, it has been shown elsewhere that "non-dippers" (an abnormal diurnal BP pattern where sleep systolic BP fails to decrease $>10 \%$ from daytime systolic BP and a known risk-factor for subsequent hypertension ${ }^{6}$), are more likely to have prevalent detectable troponin levels by hs-cTNT assays ${ }^{30}$.

In addition, BP is highly variable and its true hemodynamic load cannot easily be captured by single office measurements (which are subject to misclassification error). Thus, it is also possible that the association between hs-cTNT and subsequent hypertension in ARIC could be a manifestation of the well-known phenomenon of "masked hypertension," the clinical condition in which a patient's office BP level is $<140 / 90 \mathrm{~mm} \mathrm{Hg}$ but home or ambulatory readings are in the hypertensive range ${ }^{31}$. Masked hypertension occurs in over 10% of the adult population ${ }^{31,32}$ and is known to result in end organ damage ${ }^{33,34}$.

Further, we found that elevated hs-cTNT was also a risk factor for the development of LVH in persons without baseline hypertension or clinical cardiovascular disease (including silent MI). This suggests that hs-cTNT may also predict future sequelae of hypertension and is consistent with our hypothesis that elevated hs-cTNT may reflect
occult BP abnormalities in some individuals. Indeed, prior case-control data suggest that hs-cTNT is also associated with subsequent albuminuria in hypertensive patients. ${ }^{35}$ It is also worth noting that hs-cTNT could potentially be contributing more directly to the development of hypertension. For example, elevated hs-cTNT has been linked with arterial stiffness in diabetics ${ }^{36}$.

Our results were robust to multiple sensitivity analyses. Standard Cox proportionalhazards models assume that persons censored (including those censored for death) prior to the end of follow- up have the same probability of incident hypertension as similar persons who remain under-observation. However, in persons who die, the development of hypertension cannot be observed. In this context, the Fine-Gray regression results, which account for interval deaths, are important to determine the 'real-world' impact of hscTNT screening in persons at risk for hypertension. In these Fine-Gray models, we found that the association between hs-cTNT and incident diagnosed hypertension (an endpoint with longer follow-up and increased interval accrual of deaths) was attenuated, particularly in the $\geq 14 \mathrm{ng} / \mathrm{L}$ category.

Our findings may have implications for future clinical practice. Specifically, normotensive persons with elevated hs-cTNT are at risk for subsequent hypertension and may benefit from evaluation for masked hypertension and from more intensive lifestyle BP interventions to reduce the likelihood of developing this morbid disease. Further research is necessary to confirm whether hs-cTNT could be useful in screening those at risk for hypertension.

This analysis has some limitations. This study was observational and, thus, may be subject to residual confounding. We do not have ambulatory BP recordings to determine whether or not masked hypertension or abnormal diurnal values were present in persons with elevated hs-cTNT. Cases of diagnosed hypertension were identified by self- report of diagnoses or medication used during annually follow-up; however, similar results were obtained in our analyses of visit-based hypertension (incorporating undiagnosed cases identified by elevated blood pressured obtained during the clinical visit). Strengths of the study include the large sample size, bi-racial population, and rigorous measurement of cardiovascular risk factors.

In conclusion, elevated hs-cTNT in the general population, particularly among persons with normal blood pressure, identifies persons at risk for subsequent hypertension or LVH. Further studies are necessary to determine whether subclinical myocardial damage in these settings is due to masked hypertension or abnormal diurnal variability in BP. Elevated hs-cTNT in low-risk ambulatory populations may prove to be clinically useful in identifying persons at risk for hypertension, affording the opportunity both to consider ambulatory blood pressure monitoring and to initiate more intensive preventive strategies.

REFERENCES

1. Go AS, Mozaffarian D, Roger VL, et al. Executive summary: Heart disease and stroke statistics--2014 update: A report from the american heart association. Circulation. 2014;129:399-410
2. Egan BM, Zhao Y, Axon RN. Us trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA : the journal of the American Medical Association. 2010;303:2043-2050
3. Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA : the journal of the American Medical Association. 2013;310:959-968
4. Mancia G, Fagard R, Narkiewicz K, et al. 2013 esh/esc guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the european society of hypertension (esh) and of the european society of cardiology (esc). European heart journal. 2013;34:2159-2219
5. Chen X , Wang Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation. 2008;117:3171-3180
6. Viera AJ, Zhu S, Hinderliter AL, Shimbo D, Person SD, Jacobs DR, Jr. Diurnal blood pressure pattern and development of prehypertension or hypertension in young adults: The cardia study. Journal of the American Society of Hypertension : JASH. 2011;5:48-55
7. Stabouli S, Kotsis V, Rizos Z, Toumanidis S, Karagianni C, Constantopoulos A, Zakopoulos N. Left ventricular mass in normotensive, prehypertensive and hypertensive children and adolescents. Pediatric nephrology. 2009;24:1545-1551
8. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The trials of hypertension prevention, phase ii. The trials of hypertension prevention collaborative research group. Archives of internal medicine. 1997;157:657-667
9. Post WS, Larson MG, Levy D. Impact of left ventricular structure on the incidence of hypertension. The framingham heart study. Circulation. 1994;90:179-185
10. De Marco M, de Simone G, Roman MJ, Chinali M, Lee ET, Russell M, Howard BV, Devereux RB. Cardiovascular and metabolic predictors of progression of prehypertension into hypertension: The strong heart study. Hypertension. 2009;54:974-980
11. Shimbo D, Muntner P, Mann D, Barr RG, Tang W, Post W, Lima J, Burke G, Bluemke D, Shea S. Association of left ventricular hypertrophy with incident hypertension: The multi-ethnic study of atherosclerosis. American journal of epidemiology. 2011;173:898-905
12. de Lemos JA. Increasingly sensitive assays for cardiac troponins: A review. JAMA : the journal of the American Medical Association. 2013;309:2262-2269
13. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, Hoogeveen RC, Liu X, Astor BC, Mosley TH, Folsom AR, Heiss G, Coresh J,

Ballantyne CM. Cardiac troponin t measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the atherosclerosis risk in communities study. Circulation. 2011;123:1367-1376
14. Selvin E, Lazo M, Chen Y, Shen L, Rubin J, McEvoy JW, Hoogeveen RC, Sharrett AR, Ballantyne CM, Coresh J. Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. Circulation. 2014;130:1374-1382
15. de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, Hashim I, Berry JD, Das SR, Morrow DA, McGuire DK. Association of troponin t detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA : the journal of the American Medical Association. 2010;304:2503-2512
16. The atherosclerosis risk in communities (aric) study: Design and objectives. The aric investigators. Am J Epidemiol. 1989;129:687-702
17. Selvin E, Coresh J, Zhu H, Folsom A, Steffes MW. Measurement of hba1c from stored whole blood samples in the atherosclerosis risk in communities study. J Diabetes. 2010;2:118-124
18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604-612
19. Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P. Improved sexspecific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: Validation with autopsy findings. Circulation. 1987;75:565-572
20. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin t assay. Clinical chemistry. 2010;56:254-261
21. D'Angelo G, Weissfeld L, Gen IMSI. An index approach for the cox model with left censored covariates. Statistics in medicine. 2008;27:4502-4514
22. deFilippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, Seliger SL. Association of serial measures of cardiac troponin t using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA : the journal of the American Medical Association. 2010;304:2494-2502
23. Eggers KM, Al-Shakarchi J, Berglund L, Lindahl B, Siegbahn A, Wallentin L, Zethelius B. High-sensitive cardiac troponin t and its relations to cardiovascular risk factors, morbidity, and mortality in elderly men. American heart journal. 2013;166:541-548
24. Hussein AA, Gottdiener JS, Bartz TM, Sotoodehnia N, deFilippi C, Dickfeld T, Deo R, Siscovick D, Stein PK, Lloyd-Jones D. Cardiomyocyte injury assessed by a highly sensitive troponin assay and sudden cardiac death in the community: The cardiovascular health study. Journal of the American College of Cardiology. 2013;62:2112-2120
25. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 1999;94:496-509
26. Ucar H, Gur M, Kivrak A, Koyunsever NY, Seker T, Akilli RE, Turkoglu C, Kaypakli O, Sahin DY, Elbasan Z, Tanboga HI, Cayli M. High-sensitivity cardiac
troponin t levels in newly diagnosed hypertensive patients with different left ventricle geometry. Blood pressure. 2014;23:240-247
27. Sato Y, Yamamoto E, Sawa T, Toda K, Hara T, Iwasaki T, Fujiwara H, Takatsu Y. High-sensitivity cardiac troponin t in essential hypertension. Journal of cardiology. 2011;58:226-231
28. Beatty AL, Ku IA, Christenson RH, DeFilippi CR, Schiller NB, Whooley MA. High-sensitivity cardiac troponin t levels and secondary events in outpatients with coronary heart disease from the heart and soul study. JAMA internal medicine. 2013;173:763-769
29. Redwine KM, Falkner B. Progression of prehypertension to hypertension in adolescents. Current hypertension reports. 2012;14:619-625
30. Cayli M, Gur M, Elbasan Z, Seker T, Turkoglu C, Kaypakli O, Sahin DY, Ucar H, Kivrak A, Koyunsever NY, Sen O. High-sensitivity cardiac troponin t predicts nondipper hypertension in newly diagnosed hypertensive patients. Journal of clinical hypertension. 2013;15:731-736
31. Papadopoulos DP, Makris TK. Masked hypertension definition, impact, outcomes: A critical review. Journal of clinical hypertension. 2007;9:956-963
32. Pickering TG, Eguchi K, Kario K. Masked hypertension: A review. Hypertension research : official journal of the Japanese Society of Hypertension. 2007;30:479488
33. Liu JE, Roman MJ, Pini R, Schwartz JE, Pickering TG, Devereux RB. Cardiac and arterial target organ damage in adults with elevated ambulatory and normal office blood pressure. Annals of internal medicine. 1999;131:564-572
34. Leitao CB, Canani LH, Kramer CK, Boza JC, Pinotti AF, Gross JL. Masked hypertension, urinary albumin excretion rate, and echocardiographic parameters in putatively normotensive type 2 diabetic patients. Diabetes care. 2007;30:12551260
35. Hellemons ME, Lambers Heerspink HJ, Gansevoort RT, de Zeeuw D, Bakker SJ. High-sensitivity troponin t predicts worsening of albuminuria in hypertension; results of a nested case-control study with confirmation in diabetes. Journal of hypertension. 2013;31:805-812
36. Yiu KH, Zhao CT, Chen Y, Siu CW, Chan YH, Lau KK, Liu S, Lau CP, Tse HF. Association of subclinical myocardial injury with arterial stiffness in patients with type 2 diabetes mellitus. Cardiovascular diabetology. 2013;12:94

Table 1. Characteristics of the Study Population (ARIC participants without cardiovascular dise ase or diagnosed hype rtension): Overall and According to categories of high sensitivity cardiac troponin T (ng / L) at baseline (1990-1992)

	Overall	Stratified by hs-cTNT			
		$<5 \mathrm{ng} / \mathrm{L}$	5-8 ng/L	9-13 ng/L	$\geq 14 \mathrm{ng} / \mathrm{L}$
Number (\%)	6516 (100\%)	$\begin{gathered} 4681 \\ (71.8 \%) \end{gathered}$	$\begin{gathered} 1317 \\ (20.2 \%) \end{gathered}$	$\begin{gathered} \hline 384 \\ (5.9 \%) \end{gathered}$	134 (2.1\%)
Age, years	56.1 (5.6)	55.3 (5.4)	57.5 (5.7)	59.2 (5.6)	58.5 (5.7)
Male \%	44.1	35.8	61.4	74.2	76.1
Black \%	17.3	16.4	17.5	25.3	23.9
Current smoker \%	22.8	24.8	17.8	16.9	20.1
Systolic blood pressure mmHg	$\begin{aligned} & 115.2 \\ & (15.1) \end{aligned}$	113.8 (14.6)	117.6 (15.5)	120.4 (14.9)	124.0 (19.4)
Diastolic blood pressure mmHg	69.7 (9.1)	69.3 (9.0)	70.7 (9.4)	70.8 (9.1)	70.7 (9.6)
Hypertension categories (\%)					
$\begin{aligned} & \text { Normotension } \\ & \text { (BP }<\mathbf{1 2 0} / 80 \mathrm{mmHg}) \end{aligned}$	66.3	69.6	59.6	55.5	48.5
Prehypertension (BP 120-139/80-89 mmHg)	27.4	25.2	32.2	34.6	35.1
Undiagnosed hypertension (BP $>140 / 90 \mathrm{mmHg}$)*	6.3	5.2	8.2	9.9	16.4
LVH \%	0.9	0.7	0.9	2.3	3.0
BMI, $\mathrm{kg} / \mathrm{m}^{2}$					
Normal weight \% (<25)	39.0	41.3	33.4	32.6	29.9
Overweight \% (25-30)	41.1	39.9	44.6	42.7	42.5
Obese \% (> 30)	20.0	18.8	22.0	24.7	27.6
Total cholesterol, mg/dL	$\begin{aligned} & 207.4 \\ & (37.6) \end{aligned}$	$\begin{aligned} & 208.1 \\ & (37.7) \end{aligned}$	$\begin{aligned} & 206.4 \\ & (36.8) \end{aligned}$	$\begin{aligned} & 202.8 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 205.8 \\ & (40.6) \end{aligned}$
LDL-cholesterol, mg/dL	$\begin{aligned} & \hline 131.8 \\ & (35.9) \end{aligned}$	131.5 (36.3)	132.9 (34.7)	131.1 (35.7)	$\begin{aligned} & 131.2 \\ & (37.1) \end{aligned}$
HDL-cholesterol, mg/dL	51.5 (16.9)	52.8 (17.0)	48.4 (15.8)	47.1 (15.6)	49.3 (18.9)
Triglyceride, mg/dL	$\begin{aligned} & 120.6 \\ & (61.0) \end{aligned}$	118.8 (59.4)	125.5 (63.9)	123.1 (66.6)	$\begin{aligned} & 126.5 \\ & (67.9) \end{aligned}$
Lipid Medicines \%	3.3	3.4	3.5	2.1	1.5
Diagnosed diabetes \%	4.2	3.4	4.6	9.6	14.9
eGFR $<60 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$ (\%)	0.5	0.4	0.6	0.5	4.5

Estimates are mean (SD) or \%, unless otherwise indicated. Hs-cTNT= high-sensitivity TroponinT, $\mathrm{BP}=$ Blood Pressure, $\mathrm{LVH}=$ left ventricular hypertrophy, $\mathrm{BMI}=$ body mass index, LDL= Low Density Lipoprotein, HDL=High Density Lipoprotein, eGFR= estimated Glomerular Filtration Rate.
*This group was excluded for the visit-based hypertension outcome analysis

Table 2. Crude incidence rates and adjusted* hazard ratios ($\mathbf{9 5 \%}$ confidence intervals) for incident hypertension outcomes, according to baseline high sensitivity cardiac troponin T

				Proportional Hazards Regression \dagger	Competing Risks Regression:
Baseline hs-cTnT	N	Events (n)	```Incidence rate, per 1,000 person years (95% CI)```	$\begin{gathered} \mathrm{HR} \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \mathrm{HR} \\ (95 \% \mathrm{CI}) \end{gathered}$
Incident Diagnosed Hypertension					
Categories					
$<5 \mathrm{ng} / \mathrm{L}$	4,681	3,108	$\begin{gathered} \hline 54.0 \\ (52.2-56.0) \end{gathered}$	$\begin{gathered} 1 \\ \text { (reference) } \end{gathered}$	$\begin{gathered} 1 \\ \text { (reference) } \end{gathered}$
$5-8 \mathrm{ng} / \mathrm{L}$	1,317	936	$\begin{gathered} \hline 64.0 \\ (60.0-68.3) \end{gathered}$	$\begin{gathered} \hline 1.16 \\ (1.08-1.25) \end{gathered}$	$\begin{gathered} \hline 1.15 \\ (1.06-1.24) \end{gathered}$
$9-13 \mathrm{ng} / \mathrm{L}$	384	281	$\begin{gathered} \hline 72.6 \\ (64.6-81.6) \\ \hline \end{gathered}$	$\begin{gathered} 1.29 \\ (1.14-1.47) \\ \hline \end{gathered}$	$\begin{gathered} 1.21 \\ (1.05-1.38) \\ \hline \end{gathered}$
$\geq 14 \mathrm{ng} / \mathrm{L}$	134	96	$\begin{gathered} 73.9 \\ (60.5-90.2) \\ \hline \end{gathered}$	$\begin{gathered} 1.31 \\ (1.07-1.61) \\ \hline \end{gathered}$	$\begin{gathered} 1.15 \\ (0.91-1.44) \\ \hline \end{gathered}$
p-value for linear trend				<0.001	<0.001
Continuous					
Log(hs-cTnT)	6,516	4421	$\begin{gathered} 57.2 \\ (55.5-58.9) \\ \hline \end{gathered}$	$\begin{gathered} 1.14 \\ (1.09-1.19) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.11 \\ (1.06-1.16) \\ \hline \end{gathered}$
Incident Visit-based Hypertension					
Categories					
$<5 \mathrm{ng} / \mathrm{L}$	4,139	1,059	$\begin{gathered} \hline 47.1 \\ (44.4-50.0) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { (reference) } \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { (reference) } \\ \hline \end{gathered}$
5-8 ng/L	1,130	351	$\begin{gathered} 58.6 \\ (52.8-65.1) \\ \hline \end{gathered}$	$\begin{gathered} 1.15 \\ (1.01-1.30) \\ \hline \end{gathered}$	$\begin{gathered} 1.14 \\ (1.00-1.29) \\ \hline \end{gathered}$
9-13 ng/L	306	120	$\begin{gathered} 74.9 \\ (62.6-89.5) \\ \hline \end{gathered}$	$\begin{gathered} 1.32 \\ (1.08-1.61) \\ \hline \end{gathered}$	$\begin{gathered} 1.38 \\ (1.13-1.67) \\ \hline \end{gathered}$
$\geq 14 \mathrm{ng} / \mathrm{L}$	100	41	$\begin{gathered} 77.8 \\ (57.3-105.6) \\ \hline \end{gathered}$	$\begin{gathered} 1.49 \\ (1.09-2.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.47 \\ (1.07-2.01) \\ \hline \end{gathered}$
p-value for linear trend				<0.001	<0.001
Continuous					
Log(hs-cTnT)	5,675	1,571	$\begin{gathered} 51.3 \\ (48.9-53.9) \\ \hline \end{gathered}$	$\begin{gathered} 1.14 \\ (1.06-1.22) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.15 \\ (1.07-1.24) \\ \hline \end{gathered}$

* Adjusted for age (years), race-center (whites-Washington County; whites-Minneapolis; blacksJackson; blacks-Forsyth County, whites-Forsyth County), sex (male or female), body mass index ($\mathrm{kg} / \mathrm{m} 2$), smoking (current; former; never), LDL-cholesterol ($\mathrm{mg} / \mathrm{dL}$), HDL-cholesterol ($\mathrm{mg} / \mathrm{dL}$), triglycerides $(\mathrm{mg} / \mathrm{dL})$, estimated glomerular filtration rate $(\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m} 2)$, lipid-lowering medications (yes or no), left ventricular hypertrophy (yes or no), diagnosed diabetes (yes or no). \dagger Cox regression for diagnosed hypertension outcome, cloglog regression for visit-based hypertension \ddagger Fine-Gray regression model. ${ }^{25}$ There were 532 interval deaths for the diagnosed hypertension outcome and 57 interval deaths for the visit-based hypertension outcome prior to administrative censoring.

Table 3. Crude incidence rates and adjusted* hazard ratios (95\% confidence intervals) for incident diagnosed hypertension, according to baseline categories of high sensitivity cardiac troponin T: further stratified by baseline blood pressure ($\mathbf{N}=\mathbf{6 , 5 1 6}$)

				Proportional Hazards Regression \dagger	Competing Risks Regression:
Baseline hs-cTNT	N	Events (n)	Incidence rate, per 1,000 person years (95\% CI)	$\begin{gathered} \mathrm{HR} \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{CI}) \end{gathered}$
NORMOTENS IVE S UBGROUP (BP $\leq 120 \mathrm{mmHg}$ systolic and $\leq 80 \mathrm{mmHg}$ diastolic)					
Categorical					
$<5 \mathrm{ng} / \mathrm{L}$	3,259	1,892	42.4 (40.6-44.4)	1 (reference)	1 (reference)
$5-8 \mathrm{ng} / \mathrm{L}$	785	480	47.9 (43.8-52.3)	$\begin{gathered} 1.13 \\ (1.02-1.25) \end{gathered}$	$\begin{gathered} 1.12 \\ (1.01-1.25) \end{gathered}$
$9-13 \mathrm{ng} / \mathrm{L}$	213	134	53.1 (44.8-62.9)	$\begin{gathered} 1.24 \\ (1.03-1.48) \\ \hline \end{gathered}$	$\begin{gathered} 1.18 \\ (0.97-1.43) \\ \hline \end{gathered}$
$\geq 14 \mathrm{ng} / \mathrm{L}$	65	41	54.1 (39.9-73.5)	$\begin{gathered} 1.39 \\ (1.01-1.90) \\ \hline \end{gathered}$	$\begin{gathered} 1.29 \\ (0.93-1.79) \\ \hline \end{gathered}$
p-value for linear trend				<0.001	0.006
Continuous					
Log(hs-cTnT)	4,322	2,547	44.0 (42.3-45.7)	$\begin{gathered} 1.13 \\ (1.06-1.20) \\ \hline \end{gathered}$	$\begin{gathered} 1.11 \\ (1.04-1.18) \\ \hline \end{gathered}$

PREHYPERTENSION SUBGROUP (BP $>\mathbf{1 2 0}<\mathbf{1 4 0} \mathbf{~ m m H g}$ systolic and/or $>\mathbf{8 0}<\mathbf{9 0} \mathbf{~ m m H g}$ diastolic)

PREHYPERTENS ION SUBGROUP (BP $>\mathbf{1 2 0}<\mathbf{1 4 0} \mathbf{~ m m H g}$ systolic and/or $>\mathbf{8 0}<\mathbf{9 0} \mathbf{~ m m H g}$ diastolic)					
Categorical					
$<5 \mathrm{ng} / \mathrm{L}$	1,179	988	$87.4(82.1-93.0)$	1 (reference)	1 (reference)
$5-8 \mathrm{ng} / \mathrm{L}$	424	356	$90.6(81.7-100.6)$	$(0.98-1.26)$	1.11
$9-13 \mathrm{ng} / \mathrm{L}$	133	113	$99.7(82.9-119.9)$	$(1.05-1.58)$	$(0.98-1.25)$
$\geq 14 \mathrm{ng} / \mathrm{L}$	47	33	$78.6(55.9-110.6)$	$(0.61-1.25)$	$(0.97-1.48)$
p-value for linear trend				0.125	0.72
Continuous				$(0.48-1.08)$	
			1.07	0.667	
Log(hs-cTnT)	1,783	1,490	$88.8(84.4-93.4)$	$(0.99-1.15)$	1.03

UNDIAGNOSED HYPERTENSION S UBGROUP (BP $\geq 140 \mathrm{mmHg}$ systolic and/or $\geq \mathbf{9 0} \mathbf{m m H g}$ diastolic)

Categorical					
$<5 \mathrm{ng} / \mathrm{L}$	243	228	$138.1(121.3-157.3)$	1 (reference)	1 (reference)
$5-8 \mathrm{ng} / \mathrm{L}$	108	100	$150.1(123.4-182.6)$	$(0.89-1.46)$	1.10
$9-13 \mathrm{ng} / \mathrm{L}$				1.31	$(0.84-1.44)$
$\geq 14 \mathrm{ng} / \mathrm{L}$	38	34	$158.5(113.2-221.8)$	$(0.90-1.93)$	1.12
-value for linear trend				$(0.76-1.65)$	
Continuous				$0.91-2.32)$	1.53
			0.045	$(1.04-2.26)$	
Log(hs-cTnT)	411	384	$144.7(130.9-159.9)$	$(1.00-1.30)$	0.088

* Adjusted for age (years), race-center (whites-Washington County; whites-Minneapolis; blacksJackson; blacks-Forsyth County, whites-Forsyth County), sex (male or female), body mass index $(\mathrm{kg} / \mathrm{m} 2)$, smoking (current; former; never), LDL-cholesterol (mg/dL), HDL-cholesterol (mg/dL), triglycerides $(\mathrm{mg} / \mathrm{dL})$, estimated glomerular filtration rate $(\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m} 2)$, current lipidlowering medication use (yes or no), left ventricular hypertrophy (yes or no), diagnosed diabetes (yes or no). Abbreviations as per Table 1.
\dagger Cox regression for diagnosed hypertension outcome
\#Fine-Gray regression model. ${ }^{25}$ There were 532 interval deaths for the diagnosed hypertension outcome prior to administrative censoring.

Table 4. Adjusted* Hazard Ratios ($\mathbf{9 5 \%}$ confidence intervals) for the secondary outcome of incident left ventricular hypertrophy over 6 years of follow-up by baseline high sensitivity cardiac troponin T among persons free of bas eline cardiovascular disease or hype rtension ($\mathrm{N}=5,631$)

			Proportional Hazards Regression \dagger
Baseline hs-cTnT	\mathbf{N}	Events (n)	HR (95\% CI)
Categorical			
$<5 \mathrm{ng} / \mathrm{L}$	4109	30	1 (reference)
$5-8 \mathrm{ng} / \mathrm{L}$	1121	17	$2.29(1.24-4.26)$
$9-13 \mathrm{ng} / \mathrm{L}$	302	6	$2.94(1.14-7.58)$
$\geq 14 \mathrm{ng} / \mathrm{L}$	99	3	$5.19(1.49-18.08)$
p-value for trend			<0.001
Continuous			
Log(hs-cTnT)	5,631	56	$1.79(1.27-2.52)$

* Adjusted for age (years), race-center (whites-Washington County; whites-Minneapolis; blacksJackson; blacks-Forsyth County, whites-Forsyth County), sex (male or female), body mass index $(\mathrm{kg} / \mathrm{m} 2)$, smoking (current; former; never), LDL-cholesterol (mg/dL), HDL-cholesterol (mg/dL), triglycerides $(\mathrm{mg} / \mathrm{dL})$, estimated glomerular filtration rate $(\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m} 2)$, current lipidlowering medication use (yes or no), diagnosed diabetes (yes or no). Abbreviations as per Table 1.
\dagger Cloglog regression for incident LVH by ECG

Figure 1. Adjusted* hazard ratio (95% confide nce interval) of A) incident diagnosed hypertension and B) incident visit-based hypertension, according to baseline hs-cTnT modeled as linear splines (knots at 5, 8 and $13 \mathrm{ng} / \mathrm{L}$) with background histogram of hscTNT in the study sample of ARIC subjects without baseline cardiovascular dis ease or hypertension

B)

* Adjusted for age (years), race-center (whites-Washington County; whites-Minneapolis; blacksJackson; blacks-Forsyth County, whites-Forsyth County), sex (male or female), body mass index $(\mathrm{kg} / \mathrm{m} 2)$, smoking (current; former; never), LDL-cholesterol (mg/dL), HDL-cholesterol (mg/dL), triglycerides $(\mathrm{mg} / \mathrm{dL})$, estimated glomerular filtration rate ($\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m} 2$), c urrent lipidlowering medication use (yes or no), left ventricular hypertrophy (yes or no), diagnosed diabetes (yes or no). Abbreviations as per Table 1.

The distribution was truncated at the $99^{\text {th }}$ percentile of hs-cTnT $(18 \mathrm{ng} / \mathrm{L})$

APPENDIX

Supplemental Figure 1. Flow Chart of exclusion process for the main study sample used to assess the primary outcome of Diagnosed Hypertension, drawn from ARIC subjects free of baseline hypertension or cardiovascular disease

Supplemental Table 1- Study Sample Exclusion Process for Secondary Outcomes of interest

Exclusion Process	Exclusion	Population
1- Visit-Based Hypertension		
Attended visit 2		14348
Missing hs-cTnT data at visit 2	923	13426
Prevalent diagnosed hypertension at or before visit 2	6334	7091
Prevalent undiagnosed hypertension at or before visit 2	599	6492
Prevalent CHD, HF, stroke	177	6315
Missing follow-up hypertension information after visit 2	192	6123
Missing follow-up BP information at visits 2 and 4	242	5881
Missing visit 2 variables of interest	159	5722
Non black or white, race-center exclusion	47	$\mathbf{5 6 7 5}$
2- 6-year risk of incident LVH		
Attended visit 2		
Missing hs-cTnT data at visit 2	923	14348
Prevalent diagnosed hypertension at or before visit 2	6334	7091
Prevalent undiagnosed hypertension at or before visit 2	599	6492
Prevalent CHD, HF, stroke	177	6315
Missing follow-up hypertension information after visit 2	192	6123
Missing follow-up BP information at visits 2 and 4	242	5881
Missing visit 2 variables of interest	159	5722
Non black or white, race-center exclusion	47	5675
Prevalent LVH by EKG (visit 1 or 2)	44	$\mathbf{5 6 3 1}$

Supplemental Table 2. Crude incidence rates and adjusted* hazard ratios (95\% confidence intervals) for incident visit-based hypertension, according to baseline categories of high sensitivity cardiac troponin T: further stratified by baseline blood pressure ($\mathrm{N}=\mathbf{5 , 4 7 9 \text {) }}$

				Proportional Hazards Regression \dagger	Competing Risks Regression \ddagger
		HR	HR		
Baseline hs-cTNT	\mathbf{N}	Events (n)	Incidence rate, per $\mathbf{1 , 0 0 0}$ person years $(\mathbf{9 5 \%} \% \mathbf{C I})$	$\mathbf{(9 5 \% ~ C I)}$	$\mathbf{(9 5 \% ~ C I)}$

NORMOTENSIVE SUBGROUP
(BP $\leq \mathbf{1 2 0} \mathbf{~ m m H g}$ systolic and $\leq \mathbf{8 0} \mathbf{~ m m H g}$ diastolic)

Categorical					
$<5 \mathrm{ng} / \mathrm{L}$	3,088	515	$29.8(27.4-32.5)$	1 (reference)	1 (reference)
$5-8 \mathrm{ng} / \mathrm{L}$	753	156	$37.5(32.0-43.8)$	$(0.97-1.41)$	1.16
$9-13 \mathrm{ng} / \mathrm{L}$	200	57	$52.4(40.4-68.0)$	$(0.96-1.41)$	
$\geq 14 \mathrm{ng} / \mathrm{L}$			1.45	1.56	
$p 2$	20	$57.6(37.1-89.2)$	(1.83)	$(1.17-2.09)$	
-value for linear trend				<0.001	$(1.11-2.69)$
Continuous					<0.001
			1.20	$(1.08-1.33)$	1.22
Log(hs-cTnT)	4,103	748	$32.7(30.5-35.2)$		$(1.09-1.35)$

PREHYPERTENSION SUBGROUP
($\mathrm{BP}>120<\mathbf{1 4 0} \mathbf{~ m m H g}$ systolic and $/$ or $>80<90 \mathrm{mmHg}$ diastolic)

Categorical					
$<5 \mathrm{ng} / \mathrm{L}$	1,051	544	$104.2(95.8-113.3)$	1 (reference)	1 (reference)
$5-8 \mathrm{ng} / \mathrm{L}$	377	195	$107.0(93.0-123.2)$	$(0.87-1.22)$	1.05
$9-13 \mathrm{ng} / \mathrm{L}$				1.18	$(0.88-1.25)$
$\geq 14 \mathrm{ng} / \mathrm{L}$	106	63	$122.2(95.5-156.5)$	$(0.90-1.56)$	1.18
p-value for linear trend				$(0.91-1.54)$	
Continuous					$116.9(76.2-179.3)$
Log(hs-cTnT)	1,572	823	$106.4(99.3-113.9)$	$(0.226$	$(0.93-2.02)$

* Adjusted for age (years), race-center (whites-Washington County; whites-Minneapolis; blacksJackson; blacks-Forsyth County, whites-Forsyth County), sex (male or female), body mass index $(\mathrm{kg} / \mathrm{m} 2)$, smoking (current; former; never), LDL-cholesterol (mg/dL), HDL-cholesterol (mg/dL), triglycerides $(\mathrm{mg} / \mathrm{dL})$, estimated glomerular filtration rate ($\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m} 2$), current lipid-
lowering medication use (yes or no), left ventricular hypertrophy (yes or no), diagnosed diabetes (yes or no). Abbreviations as per Table 1.
\dagger Cox regression for diagnosed hypertension outcome, cloglog regression for visit-based hypertension \ddagger Fine-Gray regression model. ${ }^{1}$ There were 532 interval deaths for the diagnosed hypertension outcome and 57 interval deaths for the visit-based hypertension outcome prior to administrative censoring.

Supplemental Table 3. Adjusted* Cox Hazard Ratios (HRs) for incident diagnosed hypertension ($\mathrm{N}=6,516$) and for visit-based incident hypertension ($\mathrm{N}=5675$) by baseline hs-cTnT status, with additional adjustment for either baseline mean BP or NT-proBNP

Additional Correction for Baseline (Visit 2) Mean BP									
Diagnosed hypertension					Visit Based hypertension				
Visit 2 hs-cTnT	N	Events (n)	$\begin{gathered} \text { HR } \\ (95 \% \\ \text { CI) } \end{gathered}$	$\begin{gathered} \mathbf{p -} \\ \text { value } \end{gathered}$	Visit 2 hs-cTnT	N	Event $\mathrm{s}(\mathrm{n})$	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{CI}) \end{gathered}$	$\underset{\text { p- }}{\substack{p-\\ \text { value }}}$
$<5 \mathrm{ng} / \mathrm{L}$	4,681	3,108	1 (ref.)		$<5 \mathrm{ng} / \mathrm{L}$	$\begin{gathered} 4,13 \\ 9 \\ \hline \end{gathered}$	1,059	1 (ref.)	
$5-8 \mathrm{ng} / \mathrm{L}$	1,317	936	$\begin{gathered} 1.12 \\ (1.04-1.21) \\ \hline \end{gathered}$	0.004	$5-8 \mathrm{ng} / \mathrm{L}$	$\begin{gathered} 1,13 \\ 0 \end{gathered}$	351	$\begin{gathered} 1.16 \\ (1.07-1.25) \\ \hline \end{gathered}$	<0.001
9-13 ng/L	384	281	$\begin{gathered} 1.27 \\ (1.12-1.45) \end{gathered}$	<0.001	9-13 ng/L	306	120	$\begin{gathered} 1.29 \\ (1.13-1.46) \end{gathered}$	<0.001
$\geq 14 \mathrm{ng} / \mathrm{L}$	134	96	$\begin{gathered} 1.20 \\ (0.98-1.48) \end{gathered}$	0.083	$\geq 14 \mathrm{ng} / \mathrm{L}$	100	41	$\begin{gathered} 1.26 \\ (1.02-1.55) \end{gathered}$	0.032
p-value for trend			<0.001		p-value for trend			<0.001	
$\begin{aligned} & \text { Log(v2 hs- } \\ & \text { cTnT) } \end{aligned}$	6,516	4,421	$\begin{gathered} 1.11 \\ (1.07-1.16) \end{gathered}$	<0.001	$\begin{gathered} \log \\ (\mathrm{hs}-\mathrm{cTnT}) \end{gathered}$	$\begin{gathered} 5,67 \\ \hline 5 \end{gathered}$	1,571	$\begin{gathered} 1.13 \\ (1.08-1.18) \end{gathered}$	<0.001
Additional Correction for Baseline (Visit 2) NT-proBNP									
Diagnosed hypertension					Visit Based hypertension				
Visit 2 hs-cTnT	N	Events (n)	$\begin{gathered} \text { HR } \\ (95 \% \\ \text { CI) } \\ \hline \end{gathered}$	$\begin{gathered} \text { p- } \\ \text { value } \end{gathered}$	Visit 2 hs-cTnT	N	Event $\mathrm{s}(\mathrm{n})$	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\underset{\text { value }}{\mathbf{p -}}$
$<5 \mathrm{ng} / \mathrm{L}$	4,678	3,107	1 (ref.)		$<5 \mathrm{ng} / \mathrm{L}$	$\begin{gathered} 4,13 \\ \hline 8 \end{gathered}$	1,058	1 (ref.)	
$5-8 \mathrm{ng} / \mathrm{L}$	1,316	936	$\begin{gathered} 1.09 \\ (0.96-1.24) \\ \hline \end{gathered}$	0.187	$5-8 \mathrm{ng} / \mathrm{L}$	$\begin{gathered} 1,12 \\ 9 \\ \hline \end{gathered}$	351	$\begin{gathered} 1.11 \\ (0.98-1.26) \\ \hline \end{gathered}$	0.099
9-13 ng/L	383	280	$\begin{gathered} 1.34 \\ (1.10-1.64) \end{gathered}$	0.003	9-13 ng/L	305	119	$\begin{gathered} 1.33 \\ (1.09-1.62) \end{gathered}$	0.006
$\geq 14 \mathrm{ng} / \mathrm{L}$	134	96	$\begin{gathered} 1.41 \\ (1.02-1.93) \end{gathered}$	0.036	$\geq 14 \mathrm{ng} / \mathrm{L}$	100	41	$\begin{gathered} 1.34 \\ (0.97-1.84) \end{gathered}$	0.075
p-value for trend			<0.001		p-value for trend			0.002	
Log(hs-cTnT)	6,511	4,419	$\begin{gathered} 1.12 \\ (1.04-1.20) \end{gathered}$	0.002	$\underset{(\mathrm{hs}-\mathrm{cTn} \mathrm{~T})}{\mathrm{Log}}$	$\begin{gathered} 5,67 \\ 2 \end{gathered}$	1,569	$\begin{gathered} 1.13 \\ (1.05-1.21) \end{gathered}$	<0.001

*Adjusted for age (years), race-center (whites-Washington County; whites-Minneapolis; blacks-
Jackson; blacks-Forsyth County, whites-Forsyth County), sex (male or female), body mass index
$(\mathrm{kg} / \mathrm{m} 2)$, smoking (current; former; never), LDL-cholesterol (mg/dL), HDL-cholesterol (mg/dL),
triglycerides $(\mathrm{mg} / \mathrm{dL})$, estimated glomerular filtration rate $(\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m} 2)$, current lipid-
lowering medication use (yes or no), diagnosed diabetes (yes or no).

CURRICULUM VITAE

John William McEvoy, MB BCh BAO
Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 568, Baltimore, MD 21287, USA jmcevoyl@jhmi.edu

Date of Preparation: March $26^{\text {th }}, 2015$

Personal Data:

Date of Birth
Birth Place
Citizenship
U.S. Visa Status

August $26^{\text {th }}, 1980$
Cork, Ireland
Irish
J1

Education

B.Med.Sc. National University of Ireland, University College Cork campus 1999-2003
Bachelor of Medical Science
$1{ }^{\text {st }}$ Class Honors, Mode A
MB BCh BAO National University of Ireland, University College Cork campus 1999-2004
Bachelor of Medicine, Surgery and Obstetrics
$1{ }^{\text {st }}$ Class Honors, Mode A
M.H.S. Candidate Johns Hopkins University, Bloomberg School of Public Health 2013-2015 (pending)
Master of Health Science, Cardiovascular Epidemiology concentration
Thesis: High-sensitivity Troponin-T is Associated with Incident Hypertension

Academic Appointments

July 2004- June 2005
July 2005- January 2006
July 2005- June 2007
July 2007- June 2008
July 2008- June 2011

July 2011- June 2014
July 2014- present
July 2014- present

Intern in Medicine and Surgery
Visiting Resident, Internal Medicine
Senior House Officer, Internal Medicine
Registrar, Cardiology
Osler Residency, Internal
Medicine- Intern, Junior Assistant, Senior Assistant
Cardiovascular Medicine Fellowship
Pollin Cardiovascular
Prevention Fellowship
Chief Fellow in Cardiology

Cork University Hospital, Cork, Ireland
Mayo Clinic, Mayo Medical School, USA
Mater Misericordiae University Hospital,
Dublin, Ireland
Mater Misericordiae University Hospital,
Dublin, Ireland
Johns Hopkins Hospital, Baltimore, USA

Johns Hopkins Hospital, Baltimore, USA
Johns Hopkins Hospital, Baltimore, USA
Johns Hopkins Hospital, Baltimore, USA

Professional Certification

MRCPI
Certified Membership 2007
Royal College of Physicians in Ireland
ABIM- Internal Medicine

American Board of Internal Medicine

ABIM- Cardiovascular Diseases
American Board of Internal Medicine

SCCT- Cardiovascular Computed Tomography
Society of Cardiovascular CT Board certification

Board Certified 2011

Board Certified 2014

Board Certified 2014

Professional Affiliations

American Heart Association	2011-present
American Heart Association Council on Epidemiology and Prevention	2012-present
American College of Cardiology	2011-present
European Society of Cardiology	2011-present

Honors/Awards

September 2001
September 2002
September 2003
September 2003
September 2003
September 2004
September 2004
June 2005
June 2013

August 2014
October 2014
November 2014

Title of College Scholar
Undergraduate Scholarship, $1^{\text {st }}$ place in class
Undergraduate Scholarship, $1^{\text {st }}$ place in class
Pfizer Psychiatry Prize, $1^{\text {st }}$ place in class
Dr. H.H. Stewart Psychiatry Scholarship, $1^{\text {st }}$ place in Ireland
W. Kearney Obstetrics \& Gynecology Prize, $1^{\text {st }}$ place in class
Dr. H.H. Stewart Surgery Scholarship, $2^{\text {nd }}$ place in Ireland
Intern of the Year Award
Johns Hopkins Fellows Teaching Award
Mayo Clinic CVBR Fellows Scholarship
Dr. Brian Maurer Young Investigator Finalist Northwestern National Cardiovascular Young Investigator Award, $2^{\text {nd }}$ place

University College Cork University College Cork University College Cork

University College Cork
National University of Ireland
University College Cork
National University of Ireland
Cork University Hospital
Johns Hopkins Department of Medicine
Mayo Medical School
Irish Cardiac Society
Northwestern University Chicago

Peer Reviewed Publications

$\overline{\text { Peer Reviewed Articles Published }}$

McEvoy JW, Blaha MJ, Defilippis AP, Budoff MJ, Nasir K, Blumenthal RS, Jones SR. Coronary artery calcium progression: an important clinical measurement? A review of published reports. J Am Coll Cardiol. 2010 Nov 9;56(20):1613-22.

McEvoy JW, Blaha MJ, Nasir K, Yoon YE, Choi EK, Cho IS, Chun EJ, Choi SI, Rivera JJ, Blumenthal RS, Chang HJ. Impact of coronary computed tomographic angiography results on patient and physician behavior in a low-risk population. Arch Intern Med. 2011 Jul 25;171(14):1260-8.

Larocca CA, McEvoy JW, Ellis CL, Junkins-Hopkins J, Kolb T, Baer AN, Garibaldi BT. Schnitzler's syndrome associated with pancreatitis: a disease of IL-1 dysregulation. Clin Rheumatol. 2012 Jan;31(1):169-74.

McEvoy JW, Blaha MJ, Nasir K, Blumenthal RS, Jones SR. Potential use of coronary artery calcium progression to guide the management of patients at risk for coronary artery disease events. Curr Treat Options Cardiovasc Med. 2012 Feb;14(1):69-80.

Tota-Maharaj R, McEvoy JW, Blaha MJ, Silverman MG, Nasir K, Blumenthal RS. Utility of coronary artery calcium scoring in the evaluation of patients with chest pain. Crit Pathw Cardiol. 2012 Sep;11(3):99-106.

Tota-Maharaj R, Blaha MJ, McEvoy JW, Blumenthal RS, Muse ED, Budoff MJ, Shaw LJ, Berman DS, Rana JS, Rumberger J, Callister T, Rivera J, Agatston A, Nasir K. Coronary artery calcium for the prediction of mortality in young adults <45 years old and elderly adults >75 years old. Eur Heart J. 2012 Dec;33(23):2955-62.

McEvoy JW, Blaha MJ, Rivera JJ, Budoff MJ, Khan AN, Shaw LJ, Berman DS, Raggi P, Min JK, Rumberger JA, Callister TQ, Blumenthal RS, Nasir K. Mortality rates in smokers and nonsmokers in the presence or absence of coronary artery calcification. JACC Cardiovasc Imaging. 2012 Oct;5(10):1037-45.

Martin SS, Blaha MJ, Elshazly MB, Brinton EA, Toth PP, McEvoy JW, Joshi PH, Kulkarni KR, Mize PD, Kwiterovich PO, Defilippis AP, Blumenthal RS, Jones SR. Friedewald-estimated versus directly measured low-density lipoprotein cholesterol and treatment implications. J Am Coll Cardiol. 2013 Aug 20;62(8):732-9.

Chrispin J, Martin SS, Hasan RK, Joshi PH, Minder CM, McEvoy JW, Kohli P, Johnson AE, Wang L, Blaha MJ, Blumenthal RS. Landmark lipid-lowering trials in the primary prevention of cardiovascular disease. Clin Cardiol. 2013 Sep;36(9):516-23.

Elshazly MB, Martin SS, Blaha MJ, Joshi PH, Toth PP, McEvoy JW, Al-Hijji MA, Kulkarni KR, Kwiterovich PO, Blumenthal RS, Jones SR. Non-high-density lipoprotein cholesterol, guideline targets, and population percentiles for secondary prevention in 1.3
million adults: the VLDL-2 study (very large database of lipids). J Am Coll Cardiol. 2013 Nov 19;62(21):1960-5.

Martin SS, Blaha MJ, Toth PP, Joshi PH, McEvoy JW, Ahmed HM, Elshazly MB, Swiger KJ, Michos ED, Kwiterovich PO, Kulkarni KR, Chimera J, Cannon CP, Blumenthal RS, Jones SR. Very large database of lipids: rationale and design. Clin Cardiol. 2013 Nov;36(11):641-8.

Shaharyar S, Warraich H, McEvoy JW, Oni E, Ali SS, Karim A, Jamal O, Blaha MJ, Blumenthal RS, Fialkow J, Cury R, Budoff MJ, Agatston AA, Nasir K. Subclinical cardiovascular disease in plaque psoriasis: association or causal link? Atherosclerosis. 2014 Jan;232(1):72-8.

McEvoy JW, Diamond GA, Detrano RC, Kaul S, Blaha MJ, Blumenthal RS, Jones SR. Risk and the physics of clinical prediction. Am J Cardiol. 2014 Apr 15;113(8):1429-35.

Patel J, Blaha MJ, McEvoy JW, Qadir S, Tota-Maharaj R, Shaw LJ, Rumberger JA, Callister TQ, Berman DS, Min JK, Raggi P, Agatston AA, Blumenthal RS, Budoff MJ, Nasir K. All-cause mortality in asymptomatic persons with extensive Agatston scores above 1000. J Cardiovasc Comput Tomogr. 2014 Jan-Feb;8(1):26-32.

Kim J, McEvoy JW, Nasir K, Budoff MJ, Arad Y, Blumenthal RS, Blaha MJ. Critical review of high-sensitivity C-reactive protein and coronary artery calcium for the guidance of statin allocation: head-to-head comparison of the JUPITER and St. Francis Heart Trials. Circ Cardiovasc Qual Outcomes. 2014 Mar;7(2):315-22.

Selvin E, Lazo M, Chen Y, Shen L, Rubin J, McEvoy JW, Hoogeveen RC, Sharrett AR, Ballantyne CM, Coresh J. Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. Circulation. 2014 Oct 14;130(16):1374-82.

Kohli P, Whelton SP, Hsu S, Yancy CW, Stone NJ, Chrispin J, Gilotra NA, Houston B, Ashen MD, Martin SS, Joshi PH, McEvoy JW, Gluckman TJ, Michos ED, Blaha MJ, Blumenthal RS. Clinician's guide to the updated ABCs of cardiovascular disease prevention. J Am Heart Assoc. 2014 Sep 22;3(5):e001098.

Hung RK, Al-Mallah MH, McEvoy JW, Whelton SP, Blumenthal RS, Nasir K, Schairer JR, Brawner C, Alam M, Keteyian SJ, Blaha MJ. Prognostic value of exercise capacity in patients with coronary artery disease: the FIT (Henry Ford ExercIse Testing) project. Mayo Clin Proc. 2014 Dec;89(12):1644-54

McEvoy JW, Blaha MJ, DeFilippis AP, Lima JA, Bluemke DA, Hundley WG, Min JK, Shaw LJ, Lloyd-Jones DM, Barr RG, Budoff MJ, Blumenthal RS, Nasir K. Cigarette Smoking and Cardiovascular Events: Role of Inflammation and Subclinical
Atherosclerosis from the Multiethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2015 Jan 8. pii: ATVBAHA.114.304562. [Epub ahead of print]

Peer Reviewed Commentaries and Letters Published

McEvoy JW, Margey R, Blake GJ. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2008 Jan 10;358(2):193; author reply 194-5.

McEvoy JW. Evolutionary game theory: lessons and limitations, a cancer perspective. Br J Cancer. 2009 Dec 15;101(12):2060-1; author reply 2062-3.

McEvoy JW. Defibrillator implantation early after myocardial infarction. N Engl J Med. 2010 Jan 21;362(3):269-70; author reply 270.

McEvoy JW. Biventricular pacing. NEngl J Med. 2010 Mar 11;362(10):956-7; author reply 958-9.

McEvoy JW, Blaha MJ. Progression of coronary artery calcification: not down \& out. Arch Intern Med. 2010 Apr 26;170(8):735-6; author reply 736.

McEvoy JW. Statins and risk of incident diabetes. Lancet. 2010 Jun 19;375(9732):2139; author reply 2141-2.

McEvoy JW. What is the prognostic value of a zero calcium score? Ask Bayes! J Am Coll Cardiol. 2010 Aug 10;56(7):612; author replies 614-5.

McEvoy JW. Coronary artery calcium score and cardiovascular event prediction. JAMA. 2010 Aug 18;304(7):741-2; author reply 742.

McEvoy JW, Blaha MJ, Blumenthal RS. Caveat emptor: the coronary calcium warranty. J Am Coll Cardiol. 2010 Sep 14;56(12):997; author reply 997-8.

McEvoy JW, Blaha MJ, Nasir K. "Metabolically benign" obesity: a wolf in sheep's clothing. Atherosclerosis. 2011 Jul;217(1):74-6.

McEvoy JW. Letter by McEvoy regarding article, "Pathogenesis of sudden unexpected death in a clinical trial of patients with myocardial infarction and left ventricular dysfunction, heart failure, or both". Circulation. 2011 May 10;123(18):e585; author reply e586-7.

McEvoy JW, Nasir K, Blumenthal RS. Calcium score reclassification: how should baseline risk be measured? J Am Coll Cardiol. 2011 Jun 14;57(24):2456-7; author reply 2457.

McEvoy JW. Statin therapy dose and risk of new-onset diabetes. JAMA. 2011 Sep 28;306(12):1325-6; author reply 1326.

McEvoy JW. Lifetime risks of cardiovascular disease. N Engl J Med. 2012 Apr 26;366(17):1642; author reply 1642-3.

McEvoy JW, Blaha MJ, Blumenthal RS. Rhinotillexis: a possible heuristic to reduce inappropriate noninvasive cardiac imaging? J Am Coll Cardiol. 2012 Jul 31;60(5):432; author reply 433.

McEvoy JW, Blumenthal RS, Blaha MJ. Statin therapy for hyperlipidemia. JAMA. 2013 Sep 18;310(11):1184-5.

McEvoy JW. The Turing test and a call to action to improve electronic health record documentation. Am J Med. 2014 Jul;127(7):572-3.

McEvoy JW, Nasir K. ABI and stroke: action at a distance and a call to action. Atherosclerosis. 2014 May;234(1):73-4.

McEvoy JW, Blaha MJ. Coronary artery calcium testing: exploring the need for a randomized trial. Circ Cardiovasc Imaging. 2014 Jul;7(4):578-80

McEvoy JW. The Turing test and EHR Documentation: The reply. Am J Med. 2014 Dec;127(12):e23.

Peer-reviewed Electronic Publications (online-only publications)
McEvoy JW. Frontiers. University College Cork Medical Research Newsletter. Feb 2011.

McEvoy JW. The Expert Is In: New Algorithm for Patients with LBBB and Suspected MI. Cardioexchange: an NEJM practice community. July 2012.

McEvoy JW. 2013: The Year of the Guideline. Cardioexchange: an NEJM practice community. January 2014.

McEvoy JW. Article of the Month: A review of the STAMPEDE trial. ACC Cardiosource: Cardiometabolic Disease Community. May 2014.

McEvoy JW. The Risk-Prediction Conundrum: Individual Risk vs. Population Risk. Cardioexchange: an NEJM practice community. May 2014.

McEvoy JW. Do Doctors Need a Better Way to Take Notes? Cardioexchange: an NEJM practice community. August 2014.

McEvoy JW. Debating the Lipid Guidelines. American College of Cardiology Early Career Newsletter. Fall 2014, Vol 1, No. 9.

McEvoy JW. Cardiometabolic Disease "Hot Topic": My thoughts regarding the article, "Further Insight Into the Cardiovascular Risk Calculator: The Roles of Statins, Revascularizations, and Underascertainment in the Women's Health Study" by Cook et al. ACC Cardiosource: Cardiometabolic Disease Community. February 2015.

Books and Book Chapters Published

McEvoy JW, Tota-Maharaj R, Blaha MJ. Metabolic Syndrome: Understanding the Epidemic in India and South Asia. Book. MacMillan Medical Communications. 2013

McEvoy JW, Blumenthal RS, Michos ED. Pathophysiology and Pharmacotherapy of Cardiovascular Disease. "Cardiac Prevention Guidelines". Chapter. Springer Publications, Heidelberg, Germany. 2015.

Selected Presentations

$\overline{\text { Oral Presentations }}$
McEvoy JW, Blaha MJ, DeFilippis AP, Lima JA, Bluemke DA, Hundley WG, Min JK, Shaw LJ, Lloyd-Jones DM, Barr RG, Budoff MJ, Blumenthal RS, Nasir K. Cigarette Smoking: Association Between Inflammation, Subclinical Atherosclerosis and Cardiovascular Events. The Multi-Ethnic Study of Atherosclerosis (MESA). American Heart Association Scientific Sessions, Oral Abstract 9726, November 2011.

McEvoy JW, Blaha MJ, DeFilippis AP, Lima JA, Bluemke DA, Hundley WG, Min JK, Shaw LJ, Lloyd-Jones DM, Barr RG, Budoff MJ, Blumenthal RS, Nasir K. Cigarette Smoking: Association Between Inflammation, Subclinical Atherosclerosis and Cardiovascular Events. The Multi-Ethnic Study of Atherosclerosis (MESA). Irish Cardiac Society Annual Conference Oral Presentation. October 2012.

McEvoy JW. Screening for Coronary Artery Disease: A State of the Art. Cork University Hospital Medical Grand Rounds, May 2013.

McEvoy JW, Blaha MJ, DeFilippis AP, Lima JA, Bluemke DA, Hundley WG, Min JK, Shaw LJ, Lloyd-Jones DM, Barr RG, Budoff MJ, Blumenthal RS, Nasir K. Cigarette Smoking: Relationship with Inflammation, Arterial Stifffess, and Subclinical Atherosclerosis. The Multi-Ethnic Study of Atherosclerosis (MESA). Irish Cardiac Society Annual Conference, Brian Maurer Young Investigator Finalist Oral Presentation. October 2014.

McEvoy JW, Lazo M, Shen L, Nambi V, Hoogeveen RC, Ballantyne C, Blumenthal RS, Coresh J, Selvin E. Cardiac Risk Factors and 6-Year Change in high-sensitivity Cardiac Troponin-T from ARIC. Northwestern University National Cardiovascular Young Investigator Finalist Oral Presentation. November 2014.

McEvoy JW. High sensitivity troponin and hypertension- post hoc or propter hoc?
University of Maryland Cardiology Grand Rounds, January 2015.

Poster Presentations

McEvoy JW, Blaha MJ, DeFilippis AP, Lima JA, Bluemke DA, Hundley WG, Min JK, Shaw LJ, Lloyd-Jones DM, Barr RG, Budoff MJ, Blumenthal RS, Nasir K. Cigarette Smoking: Relationship with Inflammation, Arterial Stiffiness, and Subclinical Atherosclerosis. The Multi-Ethnic Study of Atherosclerosis (MESA). American Heart Association Scientific Sessions, Poster Abstract 9713, November 2011.

McEvoy JW, Lazo M, Shen L, Nambi V, Hoogeveen RC, Ballantyne CM, Blumenthal RS, Coresh J, Selvin E. Cardiac Risk Factors and 6-Year Change in high-sensitivity Cardiac Troponin-T from ARIC. American Heart Association: Epidemiology and Prevention, Lifestyle and Cardiometabolic Health Scientific Sessions, Poster Abstract, March 2014.

McEvoy JW, Martin SS, Blaha MJ, Joshi PH, Manning S, Blumenthal RS, Jones SR. The Relationship between Thyroid dysfunction and Advanced Lipoprotein Cholesterol Subfractions in a Contemporary Sample of US Adults: The Very Large Database of Lipids Thyroid Substudy. American College of Cardiology Scientific Session, Poster Abstract, March 2014.

McEvoy JW, Chen Y, Nambi V, Ballantyne CM, Sharrett AR, Appel LJ, Post WS, Blumenthal RS, Matsushita K, Selvin E. Baseline High-sensitivity Cardiac Troponin-T is independently associated with Incident Hypertension. American Heart Association: Epidemiology and Prevention, Lifestyle and Cardiometabolic Health Scientific Sessions, Moderated Poster Abstract, March 2015 (accepted).

Editorial Commitments

Editorial Board
Editorial Fellow, British Medical Journal
April 2013- present.
Supervisor: Jose Merino MD, BMJ U.S. Clinical Research Editor
Journal Peer Reviewer
British Medical Journal
New England Journal of Medicine
Journal of the American Medical Association
Archives of Internal Medicine (JAMA-Internal Medicine)
Journal of the American College of Cardiology
Journal of the American College of Cardiology: Cardiovascular Imaging
Circulation
Circulation: Cardiovascular Imaging
Atherosclerosis

Fellowship and Grant Support

Pollin Cardiovascular Prevention Fellowship. Annual Stipend and Tuition support for MHS Degree.

Co-investigator. Patient Centered Outcomes Research Institute. Demonstrating respect and acceptable consent strategies: What matters to patients in PCOR? Principle Investigator: Nancy Kass ScD. Funding amount: \$1,678,250

Co-investigator. Magic That Matters Fund, Johns Hopkins Division of Cardiology. Pathogenic HDL: An Alternative Lox-1 Receptor Ligand Induces Endothelial Dysfunction. $\$ 15,000$ Salary Support. Principle Investigator: Dan Berkowitz MD PhD.

Mentorship

Original Investigation Mentorship

Jaideep Patel, MD. Assistant Clinical Professor, Department of Internal Medicine, Virginia Commonwealth Medical Center

Amer I. Aladin, MD. Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins School of Medicine, Baltimore, MD

Teaching Experience

Graduate Medical Education

Graduate Medical Education
Activity description: Lecture, "Cardiac Hemodynamics Lecture".
Role: Teacher/Presenter
Learners: 50 /year (undergraduate medical students and residents)
Time Frame: 2014-present
Graduate Medical Education
Activity description: Lecture, "Vasoactive Medications: 101".
Role: Teacher/Presenter
Learners: 50 /year (undergraduate medical students and residents)
Time Frame: 2014-present
Graduate Medical Education
Activity description: Lecture, "Anti-arrhythmic Medications".
Role: Teacher/Presenter
Learners: 50 /year (undergraduate medical students and residents)
Time Frame: 2014-present

Graduate Medical Education
Activity description: SIMULATION- Medical resident vascular access.
Role: Teacher/Presenter
Learners: $40 /$ year (Medical residents)
Time Frame: 2014-present
Graduate Medical Education
Activity description: Fellow's Noon Conference Didactic Lecture Series Role: Director/ Organizer/ Facilitator
Learners: 30 /year (cardiology fellows)
Time Frame: 2014-2015. Two lectures per week over the academic year
Graduate Medical Education
Activity description: Fellow's Case Conference Series
Role: Contributor
Learners: 30 /year (cardiology fellows)
Time Frame: 2011-present. One conference per week over academic year

Summary of Teaching Activities:

- 500 hours/year contact time with students
- Lead sessions on varied topics in cardiology, discussed above.
- Provided clinical precepting for students and residents on both the General Cardiology and CCU clinical service

