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Abstract 

 

Due to its ability to probe water-containing samples using visible and near-infrared 

frequencies with high chemical specificity, Raman spectroscopy is an attractive 

tool for label-free investigation of biological samples. While Raman spectroscopy 

has been leveraged for exploratory studies in clinical cancer diagnostics, only 

limited studies have used it to understand the molecular mechanisms driving key 

characteristics of cancer progression. In this thesis, we present three progressively 

complex applications of Raman spectroscopy that take advantage of its specificity 

and synergistic combination with plasmonic nanoparticles and multivariate data 

analysis for molecular study of cancer. 

First, we used Au@SiO2 shell-isolated nanoparticle-enhanced Raman 

spectroscopy (SHINERS) to investigate the roles of microcalcification status and 

the composition of tumor microenvironment in breast tissue for identification of a 

range of breast pathologies. We developed a partial least squares-discriminant 

analysis-based classifier to correlate the spectra with their pathology to obtain high 

prediction accuracy. A parallel investigation of the genetic drivers of 

microcalcification formation in breast cancer cells revealed that stable silencing of 

the Osteopontin gene decreased the formation of hydroxyapatite in breast cancer 

cells and reduced their migration. 

Next, we demonstrated the ability to detect premetastatic changes in the 

lungs of mice bearing breast tumors, in advance of tumor cell seeding, using 

Raman spectroscopy and multivariate data analysis. Our measurements showed 
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reliable differences in the collagen and proteoglycan features of the premetastatic 

lungs which uniquely identify the metastatic potential of the primary tumor. 

Consistent with histological assessment, our results hint at a continuous 

premetastatic niche formation model dependent on the metastatic potential of 

primary tumor. 

Finally, we exploited Raman mapping to elucidate radiation therapy-

induced biomolecular changes in murine tumors and uncovered latent 

microenvironmental differences between treatment-resistant and -sensitive tumors. 

We used multivariate curve resolution-alternating least squares (MCR-ALS) and 

support vector machine (SVM) to quantify biomolecular differences in the tumor 

microenvironment and constructed classification models to predict therapy 

outcome and resistance. We found significant differences in lipid and collagen 

content between unirradiated and irradiated tumors. 

 Taken together, these studies pave the way for applications of Raman 

spectroscopy beyond clinical diagnostics such as metastatic risk assessment and 

treatment monitoring. 

 

Advisor: Dr. Ishan Barman 

Dissertation Readers: Dr. Tza-Huei (Jeff) Wang, Dr. Kristine Glunde, and  

Dr. Yun Chen  



iv 

 

Acknowledgments 

I can confidently say that my graduate school experience has exceeded my 

expectations in every aspect. It wouldn’t have been possible without the immense 

support and generosity of people and organizations that have played important 

roles in shaping my career from an early stage. 

First and foremost, I would like to thank my Ph.D. advisor, Dr. Ishan Barman, 

for his constant support and encouragement throughout my doctoral studies. While 

Ishan’s unique mentorship style allowed plenty of room for innovation and 

intellectual independence in selection of projects, his guidance and timely inputs 

have tremendously helped me build knowledge and be productive in new research 

areas. His optimism, diligence and intellect have been a constant source of 

inspiration during my tenure. In addition to directing the lab, Ishan is deeply 

invested in the professional development of his mentees. I hope to emulate his 

mentoring style in my future leadership roles. 

As a doctoral student, I have also had the privilege of being mentored 

closely by Dr. Kristine Glunde and Dr. Narasimhan Rajaram. They have 

contributed significantly to my academic and professional growth during the course 

of my graduate studies. Kristine was instrumental in piquing my interest in 

biomedical applications of spectroscopy and helping me keep my studies rooted 

in clinical reality. Her patience and willingness to help me in obtaining necessary 

training, planning biological studies, and reshaping manuscripts and grants have 

tremendously helped in pushing our projects beyond the finish line. Narasimhan is 

an engineer with a strong training in biomedical applications of optical 



v 

 

spectroscopy. By collaborating with him on several projects, I have learnt various 

aspects of interrogating biological systems using multimodal combination of optical 

methods. I would like to thank him for providing access to the cell lines and animal 

models produced in their lab to advance our collaborative projects. 

I am grateful to Dr. Jeff Wang, Dr. Yun Chen and Dr. Kristine Glunde for 

serving as thesis readers and providing valuable suggestions for its improvement. 

 I will be indebted to my undergraduate research mentors at the Indian 

Institute of Technology Bombay – Dr. Amit Agrawal, Dr. Sudarshan Kumar and Dr. 

Jakub Kedzierski for sparking and sustaining my interest in academic research at 

an early age. They have trusted me with independent projects and necessary 

resources, an act that made me fearless in tackling new unexplored projects in 

areas that transcend traditional discipline boundaries. I would also like to thank my 

grandfather Mr. Govind Rajulu Paidi (late) and my many schoolteachers including 

Ms. K. Pushpavati, for generating an appreciation for mathematics. 

 The members of Barman Lab – both past and present – have played an 

important role in directing the course of my graduate studies. I have learned a great 

deal about spectroscopy and life in academia through our regular interactions and 

scientific discussions. The diversity of scientific backgrounds represented in the 

lab, ranging from physicists and chemists to engineers, has helped me gain a 

broader look and appreciation of the implications of our research beyond its 

immediate scope. I have worked closely with Soumik Siddhanta, Ming Li and Chi 

Zhang and pursued a variety of projects, many of which failed of course. But these 

explorations have definitely been enriching learning experiences. Outside lab, I 



vi 

 

have spent amazing time exploring the United States with Soumik and Moumita 

on numerous expeditions during the last four years of my doctoral studies.  

 My academic success wouldn’t have been possible without the unwavering 

support of my friends – both at IIT Bombay and here at JHU. I would like to 

particularly thank Sayak Bhattacharya, Palash Agrawal, Parul Maheshwari, 

Hemanth Balaga, Deepak Venkat, Harsha Kolli, Amruta Bhavaraju, Vivek Nagal, 

Garima Shah, Dhananjay Sethi and Preeti Bhattacharjee. As a roommate of five 

years, Sayak has been an influential constant in my otherwise fast-paced and 

everchanging graduate school life. Palash, Hemanth, Deepak and Harsha 

continue to cheer me and help me navigate the ups and downs of my professional 

and personal life. I would also like to thank Parul for the much-needed distractions 

while writing this dissertation. 

 I would like to acknowledge the support of all the funding sources that have 

supported and nurtured my research over the years. Most notably, I would like to 

thank the Society of Laboratory Automation and Screening for providing me the 

SLAS Graduate Education Fellowship Grant and Tony B. Academic Travel Awards. 

I am also grateful to research funding from Johns Hopkins University, the National 

Institutes of Health, and Medimmune, LLC for supporting my research. 

 Finally, I would like to express my immense gratitude to the contributions 

made by my family. Since my childhood, my brother, Venkatesh Paidi, continues 

to challenge my aspirations and helps me keep my actions in sync with my goals. 

My parents, Simhachalam Paidi and Satyavati Paidi, have always encouraged us 

to dream big and fearlessly chase our ambitions. Their dedication to provide us 



vii 

 

with the best environment for academic growth and the sacrifices they have made 

in the process cannot be put into words. By example, they have been successful 

in imparting in us, the value of hard work, integrity and compassion. 

  



viii 

 

Dedication 

 

 

To my teachers, family, and friends  



ix 

 

Table of Contents 

 

Abstract ii 

Acknowledgments iv 

Dedication viii 

Table of Contents ix 

List of Tables xii 

List of Figures xiv 

Chapter 1. Introduction to biomedical Raman spectroscopy 1 

1.1 Raman spectroscopy 1 

1.2 Instrumentation 5 

1.3 Multivariate data analysis 9 

1.4 Variants of Raman spectroscopy 18 

1.6 Thesis outline 37 

Bibliography 40 

Chapter 2. Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy 

(SHINERS) for concomitant detection of breast lesions and microcalcifications 52 

2.1 Introduction 53 

2.2 Materials and Methods 56 

2.3 Results 61 

2.4 Discussion 69 

2.5 Appendix 74 



x 

 

Bibliography 75 

Chapter 3. Mapping the genetic basis of breast microcalcifications and their role in 

metastasis 83 

3.1 Introduction 84 

3.2 Results 87 

3.3 Discussion 96 

3.4 Materials and methods 101 

Bibliography 108 

Chapter 4. Label-free Raman spectroscopy detects stromal adaptations in pre-

metastatic lungs 115 

4.1 Introduction 116 

4.2 Materials and Methods 121 

4.3 Results and Discussion 126 

4.4 Appendix 142 

Bibliography 145 

Chapter 5. Label-free Raman spectroscopy reveals signatures of radiation 

resistance in the tumor microenvironment 152 

5.1 Introduction 153 

5.3 Results 163 

5.4 Discussion 173 

5.5 Appendix 180 



xi 

 

Bibliography 188 

Chapter 6. Thesis summary and future directions 196 

6.1 Thesis summary 196 

6.2 Future work 198 

Vita 201 

 

  



xii 

 

List of Tables 

  Page 

Table 2.1 Summary of classification accuracies for PLS-DA derived 

decision algorithms featuring spontaneous Raman and 

SHINERS spectra, respectively 

65 

Table 2.2 Summary of classification accuracies for PLS-DA derived 

decision algorithms featuring spontaneous Raman and 

SHINERS spectra, respectively 

70 

Table 4.1 Correct classification rates (%) of the PLS-DA-derived 

model using leave-one-mouse-out protocol 

134 

Table ST4.1 Band assignment for spectral features observed in PC 

loadings derived from the Raman spectra of the mouse 

lungs 

142 

Table ST4.2 Confusion matrix for PLS-DA derived classification model 

showing correct classification rates (%, averaged over 

1000 iterations) 

142 

Table ST4.3 Correct classification rates (%) of the PLS-DA-derived 

model using leave-one-mouse-out protocol with 

background subtracted spectra 

143 

Table 5.1 Cell lines used to generate tumor xenografts in the study 159 

Table 5.2 Results of binary leave-one-mouse-out SVM analyses 172 

Table ST5.1 Table listing the peak assignments for all the MCR-derived 

component spectra derived from lung tumor dataset 

183 



xiii 

 

Table ST5.2 

 

Table listing the peak assignments for all the MCR-derived 

component spectra derived from head and neck tumor 

dataset 

185 

Table ST5.3 Results of binary leave-one-mouse-out SVM analysis for 

lung tumor dataset 

187 

Table ST5.4 Results of binary leave-one-mouse-out SVM analysis for 

head and neck tumor dataset 

187 

 

  



xiv 

 

List of Figures 

  Page 

Figure 1.1 Biomedical Raman spectroscopy 2 

Figure 1.2 Schematic of a typical Raman spectroscopy system used 

for medical applications 

6 

Figure 1.3 Multivariate data analysis 16 

Figure 1.4 Schematic representation of the spatially offset Raman 

spectroscopy (SORS) principle in comparison to 

spontaneous Raman spectroscopy 

21 

Figure 1.5 Jablonski diagrams 23 

Figure 1.6 SRS microscopy of cells 24 

Figure 1.7 SERS imaging of tissue markers 29 

Figure 1.8 Non-invasive glucose monitoring using Raman 

spectroscopy 

33 

Figure 1.9 Identification of fungal growth zones using Raman 

spectroscopy 

34 

Figure 1.10 Detection of myocardial infarction using Raman 

spectroscopy 

36 

Figure 2.1 Representative TEM image of Au@SiO2 shell-isolated 

nanoparticles (SHINs) 

58 

Figure 2.2 SHINERS spectra of breast cancer 60 

Figure 2.3 Spectroscopy histopathology comparisons for tissue 

section exhibiting ADH and IDC with microcalcifications 

63 



xv 

 

Figure 2.4 Multi-dimensional radial visualization plots for principal 

component (PC) scores obtained from SHINERS spectra 

of breast cancer 

64 

Figure 2.5 SHINERS spectra of breast microcalcifications 67 

Figure 2.6 Multi-dimensional radial visualization plots for principal 

component (PC) scores obtained from SHINERS spectra 

of breast microcalcifications 

70 

Figure S2.1 The principal component loadings (PCs) used to draw 

radial visualization plots used in Fig. 2.4 

74 

Figure S2.2 The principal component loadings (PCs) used to draw 

radial visualization plots used in Fig. 2.6 

74 

Figure 3.1 Gene expression analysis of microcalcifications in breast 

cancer cells 

89 

Figure 3.2 OPN mRNA expression of breast cancer cells in 

osteogenic cocktail 

91 

Figure 3.3 Silencing of OPN gene results in inhibition of cellular 

microcalcification formation in the knockdown clones 

92 

Figure 3.4 Silencing of OPN gene results in reduction of in vitro 

migration potential of the knockdown clones 

93 

Figure 3.5 In vivo migration of MDA-MB-231 cells is dependent on 

expression of OPN. 

95 

Figure 4.1 Raman spectroscopic profiling of pre-metastatic lungs 119 



xvi 

 

Figure 4.2 Principal component analysis of the acquired Raman 

spectra 

127 

Figure 4.3 Visualization of spectroscopic differences due to pre-

metastatic adaptations 

130 

Figure 4.4 Histological assessment of pre-metastatic lungs shows 

stromal changes. 

136 

Figure 4.5 Quantification of collagen fiber density in pre-metastatic 

lungs 

137 

Figure 4.6 Gene expression changes in pre-metastatic lungs as a 

function of metastatic potential of primary tumor 

139 

Figure S4.1 Radial visualization plot after background subtraction 144 

Figure 5.1 Raman spectroscopic study of radiation response and 

resistance 

157 

Figure 5.2 Raman spectra of radiation-resistant and sensitive 

tumors 

165 

Figure 5.3 Qualitative visualization of MCR-ALS scores of Raman 

spectra 

168 

Figure 5.4 Quantitative MCR-ALS analysis of Raman spectra 170 

Figure 5.5 Histologic assessment of radiation sensitivity and 

resistance 

177 

Figure S5.1 Tumor growth assays in response to radiation therapy 180 

Figure S5.2 Complete set of MCR-derived pure component spectra 180 

Figure S5.3 Heterogeneity in biochemical composition of tumors 181 



xvii 

 

Figure S5.4 Histologic assessment for head and neck tumor dataset 182 



1 

 

Chapter 1 

Introduction to biomedical Raman spectroscopy 

  

The diagnostic tools currently used in clinical practice largely rely on subjective 

evaluation of morphological manifestation of diseases. However, biochemical 

modifications often precede morphological changes in a variety of pathological 

transformations including cancer. A majority of laboratory techniques currently 

used to analyze the chemical make-up of biological samples are either too labor 

intensive or require operator expertise, which makes their clinical translation 

challenging. Powered by excellent chemical specificity and lack of extensive 

sample preparation requirements, Raman spectroscopy has emerged as an 

attractive solution for label-free characterization of biological systems both in vivo 

and ex-vivo/in vitro settings in a non-invasive or minimally invasive manner. 

1.1 Raman spectroscopy 

Raman spectroscopy, an inelastic optical scattering technique, was first 

discovered in 1928 by Sir C. V. Raman [1]. When monochromatic light is scattered 

by molecules, the elastically scattered photons are accompanied by lower or 

higher frequency photons (inelastically scattered light) due to changes in the 

vibrational states of the molecules under investigation. While a majority of photons 

undergo elastic scattering, a very small proportion lose energy (Stokes shift) and 

 
 This chapter is partially adapted from the published encyclopedia article: Paidi SK, Pandey R and 
Barman I. “Medical applications of Raman spectroscopy”, Encyclopedia of Analytical Chemistry, 
1-21, 2020. 
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an even smaller proportion gain energy (anti-Stokes shift) at room temperature 

depending on the changes in vibrational states of the molecules (Fig. 1.1) [2, 3]. 

Most biological and biomedical investigation probe Stokes Raman scattered 

photons due to their relative abundance at room temperature. Consequently, 

biological Raman spectra in this region show strong fluorescence background due 

to excitation of endogenous chromophores in the samples. Since Raman 

spectroscopy doesn’t require excitation of molecules to the stationary electronic 

states, a range of frequencies from deep UV to NIR region can be used for 

excitation depending on other considerations such as suppression of fluorescence, 

minimizing photodamage or maximizing penetration depth. This allows successful 

chemical structural fingerprinting of a variety of molecules independent of the 

excitation wavelength. 

 

Figure 1.1: Biomedical Raman spectroscopy. (A) The energy level transitions 

for Stokes and anti-Stokes Raman spectroscopy are shown in comparison with 

Rayleigh scattering on a Jablonski diagram. Reproduced from ref. 2 (Licensed 

under CC BY SA 4.0). (B) Mean and standard deviation of Raman spectra 

obtained from normal and cancerous tissue sites in 95 patients during clinical 

endoscopy. Reproduced from ref. 3 (Licensed under CC BY NC 4.0). (C) The 

difference Raman spectrum (i.e., cancer - normal) shows disease-specific features. 

Reproduced from ref 3.  
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For several decades since its discovery, Raman spectroscopy was largely 

confined to the analysis of simple systems like pure liquids and gases. However, 

with the advent of powerful, stable and tunable lasers and sensitive multi-channel 

detectors in the past couple of decades, Raman spectroscopy has emerged as a 

powerful tool for analysis of complex biological systems like cells and tissues. 

Some of the early biochemical characterization of small and macro- molecules 

using Raman spectroscopy laid the foundations of future medical applications [4]. 

Important investigations of amino acids, proteins and enzymes in solid and 

aqueous states by Lord, Koenig, Yu and others revealed important insights about 

their secondary structures [5-7]. Similar studies conducted by Lord, Thomas, 

Hirano and others characterized the Raman bands of nucleotides and nucleic 

acids [6, 8-10]. Early Raman study of calcified tissues such as bone and collagen 

by Walton and others revealed important Raman bands characteristic of the 

constituents such as calcium phosphate, inorganic carbonate, proline and 

hydroxyproline [11] . Later studies of physiological and pathological calcification 

observed during bone remodeling and breast cancer have benefited from these 

Raman bands. Other studies around this time utilized the strong resonance 

enhancement offered by the substances such as hemoglobin, cytochrome c and 

-carotene due to overlap of laser line with the electronic transitions [4]. Motivated 

by these observations, Raman studies of normal and diseased human tissues by 

several research groups soon followed in the 1990s. Several pioneering medical 

applications were focused on cancers of breast and brain, diabetic retinopathy, 

and mineralization, among others [12-17]. The ability to probe molecules in their 
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native physiological states, negligible interference from water in biological samples, 

use of non-ionizing radiation and ease of integration with other techniques makes 

Raman spectroscopy particularly suitable for noninvasive characterization of 

biological samples in vivo [18, 19]. Medical applications ranging from disease 

diagnosis to metastasis assessment, chemotherapeutic monitoring to non-invasive 

glucose sensing, have been demonstrated using this technique [20-27]. 

Due to the use of visible-near infrared light, the clinical translation of Raman 

spectroscopy for medical applications is impeded by challenges such as poor 

sensitivity, broad fluorescence background, and poor penetration depth. To tackle 

these challenges, several variants such as surface enhanced Raman 

spectroscopy (SERS), spatially offset Raman spectroscopy (SORS), resonance 

Raman spectroscopy, coherent anti-Stokes Raman spectroscopy (CARS), and 

stimulated Raman Spectroscopy (SRS) have been developed and employed to 

enhance sensitivity and selectivity of Raman measurements [27, 28]. In addition, 

the developments in fiber-optics probes and advances in nanotechnology and 

computation have been vital for the recent surge in medical applications of Raman 

spectroscopy and its variants. In this chapter, we will discuss a selection of medical 

applications that have harnessed the advantages offered by Raman spectroscopy. 

In the first part, important aspects of instrumentation used in typical Raman 

spectroscopy applications will be briefly reviewed. This section will be followed by 

a brief summary of popular methods that are employed at each step in the data 

analysis workflow. These include background removal, dimensionality reduction 

and classification methods that are routinely used to create diagnostic frameworks 
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based on Raman spectral data. Next, some variants of Raman spectroscopy that 

have been explored for medical applications are discussed to present the key 

advantages they provide over spontaneous Raman. In the final section, some 

representative studies demonstrating the feasibility of Raman spectroscopy in a 

wide range of pathologies and their key findings have been discussed. 

1.2 Instrumentation 

1.2.1 Illumination 

The complexity of biological media requires monochromatic and narrow line-width 

light sources and sensitive detectors for obtaining interpretable Raman spectra 

and simultaneously minimizing laser-induced photodamage (Fig. 1.2) [29]. 

Therefore, the medical applications of Raman spectroscopy were made feasible 

by the developments and advancements in laser technology. Today lasers 

spanning from deep-UV to near-infrared (NIR) with small form factor are routinely 

used for Raman spectroscopy. The lasers in the UV region are particularly suited 

for resonance Raman spectroscopy applications due to the matching of their 

energy with the electronic transitions and the existence of an autofluorescence-

free window in the deep UV region. However, they are not preferred for clinical 

Raman spectroscopy applications due to their propensity to cause photodamage. 

The lasers on the other end of the spectrum, NIR diode lasers (e.g. at 785 nm and 

830 nm) offer significantly lower sensitivity due to the inverse dependence of 

scattering (1/)4 on wavelength. Despite such disadvantage, existence of near 

absorption-free spectral window makes this region well-suited for tissue analysis 

by minimizing autofluorescence signal and maximizing the depth of penetration. 
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The lasers in the visible region offer higher Raman sensitivity than NIR sources 

while minimizing the laser-induced photodamage in comparison to UV sources for 

interrogation of systems such as single live cells, that are void of major biological 

chromophores. The compact assembly of modern semiconductor lasers allows for 

seamless integration of multiple lines spanning the spectrum from UV to NIR (and 

convenient switching between them) into laboratory Raman system. However, the 

portable clinical instruments built for endoscopy and surgical guidance often rely 

on a single NIR laser for tissue spectral acquisition. 

 

 

Figure 1.2: Schematic of a typical Raman spectroscopy system used for 

medical applications. Reprinted with permission from ref. 29. Copyright 2016 

American Chemical Society.  
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1.2.2 Detection 

The efficient collection of Raman scattered photons is very crucial for maximizing 

the throughput at minimal laser power and spectral acquisition time. The first 

critical step towards this is the rejection of elastically scattered light, which is 

typically accomplished by the use of edge or notch filters. Secondly, the 

decomposition of inelastically scattered light into constituent wavelengths 

(wavenumbers in Raman literature) is accomplished using diffraction gratings in 

most modern medical applications. The grating characteristics such as groove 

density (g/mm), focal length and groove profile play an important role in 

determining the spectral resolution of a Raman instrument. Typically, a single 

grating is sufficient to obtain spectra covering the fingerprint region at a satisfactory 

spectral resolution for clinical applications. Finally, the quantification of intensity at 

different wavenumbers is accomplished by focusing the dispersed radiation on a 

thermoelectrically cooled CCD. The CCDs are particularly suited for medical 

Raman spectroscopic applications in UV, visible and NIR regions due to their high 

quantum efficiency, low dark noise due to thermoelectrical cooling, and 

multichannel operation for the acquisition of complete spectrum in a single 

measurement. Furthermore, their compact architecture facilitates seamless 

integration of the resultant Raman spectroscopy systems with clinical workflow. 

1.2.3 Raman probes and handheld devices 

The effective delivery of laser and collection of backscattered Raman photons for 

disease diagnosis and surgical margin assessment has been made possible by 

developments in fiber optics technology [30]. Some of the key considerations in 
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the design of Raman probes include maximizing collection efficiency of Raman 

signal and minimizing background signal stemming from fiber material itself. Most 

clinical applications employ optical fibers made up of fused silica glass doped with 

index-raising materials for increasing the refractive index of the core for obtaining 

total internal reflection. A significant proportion of probes also employ hollow core 

waveguides, which are hollow glass tubes with their interior coated with metals for 

reflection. While they eliminate the glass fiber background and resultant shot noise, 

they are associated with much higher losses and lesser flexibility. In the 

construction of Raman probes, multiple such fibers with designated delivery and 

collection roles are employed along with other optical elements such as filters and 

lenses. By selecting appropriate geometry, optical elements and materials, the 

probe characteristics such as throughput and depth selectivity can be modulated 

to suit specific applications (e.g. probing surface vs. subsurface lesions). The 

optical fiber-based Raman probes have been employed for various endoscopic 

diagnosis applications. The miniaturization of instrumentation is critical for further 

clinical acceptance of the technology and its translation from laboratory bench to 

bedside. While several handheld Raman detection systems have been designed 

and implemented for field applications in industrial settings, only few have been 

tested for clinical applications [31]. Improvements in the sensitivity of completely 

handheld Raman systems can be very beneficial for timely detection of disease in 

accessible organs such as skin, cervix and oral cavity, even in low resource 

settings. The handheld Raman detectors can be integrated with the fiber optic 
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probes for delivery and collection of light from inaccessible regions such as breast, 

stomach and colon. 

1.3 Multivariate data analysis 

Raman spectra encode a wealth of molecular information stemming from the 

vibrational modes in a specimen. However, maximal utilization of the complex 

spectra obtained from biological samples that are composed of a large number of 

components requires systematic analysis of spectral datasets. Typically, Raman 

data analysis workflow includes steps such as preprocessing to remove spectral 

interferents, dimensionality reduction, and classification/regression. In this section, 

a selection of the most common data analysis techniques used in recent medical 

applications will be discussed.  

1.3.1 Preprocessing 

Background subtraction: Due to excitation of intrinsic fluorophores in the 

biological media [32, 33], the Raman spectra in the Stokes region are 

accompanied by a broad fluorescence background. Therefore, direct observation 

of weak Raman features amidst such overwhelming background is often not 

feasible. To tackle this, a variety of background removal methods have been 

reported [34]. The most common approach involves fitting a polynomial (e.g. fifth 

order) mimicking the broad background and subtracting it from the spectrum to 

uncover the weaker Raman features buried in it. Another method called 

asymmetric least squares that is used for background estimation and simultaneous 

smoothing relies on iterative minimization of the sum of the squared difference 

between the raw and estimated background signals using ordinary least squares 
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with a bias towards positive residuals. In frequency domain methods such as those 

based on Fourier and wavelet transformations, the slowly-varying background can 

be distinguished from sharp Raman features and removed by appropriate 

frequency thresholding. These methods also allow smoothing by identifying and 

eliminating the contribution of high-frequency noise components. While these 

methods help uncover the latent Raman features, caution must be exercised to 

ensure that subtle features of diagnostic importance are not lost due to background 

subtraction. Studies have shown that in the presence of uniform background 

across the entire spectral dataset, the downstream classification algorithms yield 

very similar results for spectra with and without background removal [29, 35]. 

Smoothing: The weak Raman features stemming from biological specimen are 

often accompanied by noise and cosmic rays. Therefore, to better visualize Raman 

peaks and distinguish them from noise, different smoothing methods are routinely 

employed in the data analysis pipeline, often after background subtraction. The 

most commonly implemented denoising technique, Savitzky-Golay method 

involves locally fitting a polynomial of specified order within a moving window of 

fixed size. As a result, the technique is highly sensitive to the choice of polynomial 

order and window size because choosing a large window size can lead to over-

smoothing and loss of important Raman features. Similarly, choosing a higher 

order polynomial in a small window can render the method ineffective due to 

overfitting and retention of noise. The other smoothing methods such as median 

filtering, wavelet transform, Gaussian filtering and methods based on rejection of 

high frequency components have been used for biomedical Raman data. 
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Normalization: Due to factors such as laser intensity fluctuations, differences in 

probe-sample distance and intensity fluctuations introduced by background 

subtraction, comparison of Raman spectra belonging to different samples acquired 

in non-uniform conditions can produce misleading observations. Therefore, there 

is a need to employ a suitable method for standardizing the spectra prior to 

analysis. This is often tackled by using intensity normalization using one of the 

many available techniques at one or more stages of Raman data analysis [34]. 

The most commonly employed normalization techniques for biomedical Raman 

data include peak normalization, vector normalization and min-max normalization. 

Traditionally, normalization of Raman spectra based on the intensity of a prominent 

peak stemming from an invariant component in the system-as an internal standard- 

was employed for comparison of the remaining peaks in a multi-component system. 

However, this method is not suitable for biological systems where identification of 

such an invariant component is difficult or where peak shifts are important 

indicators (e.g. evolution of protein structure). As a result, approaches such as 

min-max and vector normalization have been extensively used in the recent 

studies that set reasonable upper and lower bounds on the spectral datasets. In 

min-max normalization method, the maximum and minimum intensity levels of the 

spectra are made 0 and 1, respectively and the remaining intensities are scaled 

accordingly. However, in vector normalization, each spectrum is scaled to make 

its norm (typically Euclidean norm) unity. 
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1.3.2 Dimensionality reduction 

Typically, Raman spectra used for medical applications, in the fingerprint or high 

wavenumber region obtained at an appropriate spectral resolution, have hundreds 

of dimensions (wavenumbers). This high-dimensionality, coupled with the 

availability of a limited number of spectra due to long acquisition times makes 

careful dimensionality reduction important for avoiding the ‘curse of dimensionality’ 

and improving the classification accuracy. Principal component analysis (PCA) is 

the most commonly employed technique to achieve dimensionality reduction by 

projecting the spectral dataset onto an orthogonal set of basis vectors in the order 

of the variance in the data they explain. Such condensation of important spectral 

information into fewer dimensions enables selective rejection of contributions from 

broad background and noise in the spectra as they can be easily identified from 

the obtained set of principal components. In addition to making data visualization 

simpler, the low-dimensional data thus obtained also enhances the robustness and 

computational simplicity of the downstream analysis such as classification and 

regression. The graphical representation of projection scores as 2D and 3D scatter 

plots or multidimensional radial visualization plots are often used for qualitative 

assessment of clustering behavior or other consistent patterns in the biological 

Raman datasets. 

In addition to PCA, several other similar dimensionality reduction 

transformations such as independent component analysis (ICA), linear 

discriminant analysis (LDA) and partial least squares (PLS) have been used in the 

Raman literature to suit specific applications. Recently, multivariate curve 
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resolution alternating least squares (MCR-ALS) has emerged as an important tool 

for identification of key spectral constituents that resemble dominant pure 

components in multicomponent mixtures [36]. Along with dimensionality reduction, 

the use of positivity constraints in the determination of MCR components allows 

for a direct comparison of the projection scores to gain important insights into the 

chemical abundance of the associated pure components across the samples. 

Therefore, the technique helps unbiased recovery of putative molecular markers 

from a biological specimen (as opposed to only spectral markers) that can serve 

as targets for traditional bioanalytical techniques. 

1.3.3 Classification techniques 

To fully exploit the chemical specificity of Raman spectroscopy and retrieve 

important information of diagnostic significance from subtle spectral differences in 

the biological samples, several supervised and unsupervised classification 

algorithms have been reported for successful diagnosis and monitoring of closely 

related pathological states. In this section, the merits and limitations of the most 

widely used techniques will be discussed. 

Clustering methods: Clustering techniques provide an excellent opportunity for 

identification of intrinsic groupings and patterns in multivariate datasets, 

particularly in the absence of class labels. The two most popularly used methods 

in medical applications of Raman spectroscopy include k-means cluster analysis 

(KMCA) and hierarchical cluster analysis (HCA). In KMCA, based on the 

prescribed number of estimated classes and their centroids, the dataset is 

iteratively categorized into multiple clusters such that the distance between their 
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centroids is maximized. While KMCA is simple and elegant for datasets with 

distinct classes, it is not very suitable if there exists a hierarchy within the classes. 

To tackle such datasets, HCA performs binary splits of the dataset progressively 

at each level via either a top-down or a bottom-up approach in order to create a 

dendrogram. In the top-down approach, the entire dataset is split into two clusters 

and the resultant clusters are then divided into two more clusters and so on until 

the clusters become too small or similar to perform further splits. Similarly, in the 

bottom-up approach, the individual instances are treated as distinct clusters and 

combined progressively based on their similarity to finally merge into one large 

cluster (i.e. the complete dataset). Due to the availability of the entire hierarchically 

organized dendrogram, HCA doesn’t require the knowledge of the number of 

classes in the dataset. The ability to use these clustering methods before or after 

dimensionality reduction can help identification of key mediators of class 

separation in spectral datasets. 

Linear supervised classification: Several studies have successfully modeled 

Raman spectra of complex mixtures as a linear combination of the constituent 

spectra. Exploiting such linear relationships, several classification techniques that 

attempt to learn a linear plane separating the classes of interest have been 

adopted in biomedical applications of Raman spectroscopy. Linear discriminant 

analysis (LDA) and its variants are the most widely used methods for distinguishing 

closely related pathological states. The key assumptions about the data that allow 

the application of LDA include multivariate normality of each variable and equal 

covariance for all the classes. The lack of a sufficient number of instances 
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compared to the dimensionality of spectra often encountered in Raman datasets 

makes direct application of LDA challenging due to the potential occurrence of non-

full rank estimates of covariance matrices. This problem is often avoided by 

incorporating an appropriate dimensionality reduction method such as PCA to 

project the spectral dataset onto a low-dimensional space prior to applying LDA. 

Another widely used method in the biomedical Raman spectroscopy applications, 

partial least squares discriminant analysis (PLS-DA), attempts to find a 

discriminatory hyperplane by projecting both the spectra and their labels onto new 

spaces such that the covariance between the resultant matrices is maximal [37]. 

While the PLS loadings (unlike PCA loadings) are not easily interpretable, PLS-

DA is particularly suited for spectral datasets with fewer instances than variables. 

However, under specific circumstances, the method has been shown to have 

similar performance as LDA and Euclidean distance to centroids, along with the 

associated disadvantages [37]. 

Non-linear supervised classification: While the linear classification methods are 

suitable for linearly separable datasets, a significant proportion of tasks 

encountered in the diagnosis of closely related and heterogenous pathological 

states using Raman spectroscopy demand robust modeling of non-linear class 

boundaries. To tackle such problems, support vector machines (SVM) have been 

frequently used in conjunction with appropriate kernel functions. SVM are used to 

identify a maximum margin class-separating hyperplane in the training dataset (Fig. 

1.3). The use of appropriate kernel function allows building classification models 

for datasets that are not linearly separable by projecting them into high dimensional 
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space and finding a suitable hyperplane in the transformed space. However, the 

obtained model, weights and parameters are not easily interpretable. Various 

implementations of SVM have been proposed in the literature along with a variety 

of optimization algorithms for classification in single, binary and multi-class settings. 

Appropriate selection of parameters for a given implementation is very critical to 

obtain high classification accuracy and avoid overfitting. LIBSVM, a very popular 

SVM library provides a powerful platform for implementing SVM and parameter 

selection in a variety of applications [38]. 

 

 

 

Figure 1.3: Multivariate data analysis. (A) Schematic representation of support 

vector machines showing identification of optical hyperplane for maximum margin 

between the classes. (B) Schematic representation of an artificial neural network 

with a single hidden layer showing the flow of data from input to output layer. 

Adapted from ref. 34 (Licensed under CC BY SA 4.0).  
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Artificial neural networks (ANN) is another powerful tool that has been 

widely used for modeling non-linear class boundaries in Raman spectroscopy 

datasets. The ANN classification, motivated by biological neural networks, involves 

modeling the relationship between training spectral dataset and class labels by 

learning the weights of inputs at each of the multiple transformations incorporated 

as a network of hidden layers between input and output layers (Fig. 1.3). Various 

methods such as backpropagation that iteratively learns and adjusts the weights 

of the network by minimizing the training error have made ANN fast and efficient. 

Due to the ability to model a wide range of complex functions, ANN with a large 

number of hidden layers can result in overfitting of the data for small datasets if 

caution is not exercised [39]. Additionally, the hidden layers serve as a black box 

and fail to identify the key contributors of the differences between classes of 

interest (e.g. benign vs. malignant cancers). However, the hardware developments 

enabling faster acquisition of large Raman datasets and emerging interest in deep 

learning are expected to make ANN and its variants more attractive. 

Towards big data analysis: Traditionally, Raman spectroscopic datasets have 

been relatively small due to the low throughput and lack of automation in spectral 

data collection. However, recent developments in automation and integration of 

Raman spectroscopy and its faster variants that utilize surface enhancement 

(SERS) and non-linear processes (CARS and SRS) with advanced microscopes 

have enabled collection of large Raman datasets from a variety of biological media 

such as cells, tissues, and body fluids. The successful acquisition of large spectral 

datasets using these technologies, especially 2D and 3D Raman maps will enable 
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researchers to translate the recent success in image classification using deep 

learning frameworks. The standardization of data acquisition protocols for spectral 

acquisition of cells and tissues for each class of diseases will allow us to build, 

share and continuously expand the Raman datasets to capture inter-patient 

heterogeneity, train robust deep learning models and translate other emerging big 

data tools. 

1.4 Variants of Raman spectroscopy 

In addition to spontaneous Raman spectroscopy, several variants have been 

demonstrated for medical applications where attributes such as higher sensitivity, 

depth selectivity, specific targeting and resonance enhancement are desirable. In 

this section, some prominent variants of Raman spectroscopy with potential for 

clinical translation will be briefly discussed. 

1.4.1 Surface enhanced Raman spectroscopy (SERS) 

A significant enhancement of electromagnetic field is achieved close to the metal 

surfaces due to excitation of localized surface plasmons. Surface enhanced 

Raman spectroscopy exploits this phenomenon for selective enhancement of 

Raman signal from molecules adsorbed on the metal surfaces by up to 11 orders 

of magnitude [40]. Metallic nanostructures made up of gold and silver have been 

used for SERS applications owing to their strong surface plasmon resonance in 

visible and NIR regions, where most Raman laser lines lie. Various nanostructures 

such as spheres, cubes, stars, rods and wires have been extensively studied for 

obtaining maximal SERS enhancement for a variety of applications in biology and 

medicine. Most studies utilize SERS enhancement to boost the detection 
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sensitivity of low concentration analytes in one of the following two configurations. 

The label-free SERS or direct detection involves bringing the analyte close to the 

nanostructures for maximal enhancement of their intrinsic Raman signatures. This 

configuration has been used for studying biofluids, tissues and cells for 

identification of disease biomarkers. While untargeted enhancement of all the 

constituents of biological media improves the sensitivity of detection (and reduction 

in laser exposure), it fails to exploit known markers for increased specificity via 

targeting. Therefore, targeted applications, also known as indirect detection, 

employ nanoprobes composed of Raman active reporter molecules tightly packed 

with the metal nanostructures. The surface of such nanoprobes can be modified 

to selectively bind with the analyte of interest for its indirect quantification by 

measuring the signal from the Raman reporter molecules. However, the 

widespread use of SERS tags for in vivo applications is impeded by concerns 

about toxicity of the used nanoparticles. Several constructs involving the use of a 

thin protective shell gold, silica or polymers (e.g. polyethylene glycol) have been 

proposed to improve the biocompatibility of SERS nanoparticles. 

1.4.2 Resonance Raman spectroscopy  

The weak Raman signals can be significantly enhanced when the excitation 

frequency is resonant with one of the electronic absorption bands [41]. Such 

enhancement enables preferential enhancement of vibrational modes associated 

with chromophores without interference from other components of complex 

mixtures in which they are present. For example, such resonant enhancement 

allows the study of specific parts of large protein molecules, e.g. the heme region 
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in myoglobin, without affecting the signal from other regions. However, since most 

lasers currently used in Raman spectroscopy are not easily tunable, only a few 

modes whose absorption bands match the wavelengths of the available laser lines 

can be conveniently probed. Additionally, due to the use of lasers in the UV and 

visible regions and absorption by the chromophores of interest, the resonance 

Raman spectra are almost always associated with a strong fluorescence 

background. Fortunately, strategies such as using shorter wavelengths into the 

deep-UV region and time-gating for selectively rejecting the fluorescent scattered 

photons have shown promise for alleviating the strong fluorescence background 

and associated shot noise in resonance Raman measurements. A range of 

applications focused on the spectroscopic measurement study of molecules such 

as nucleic acids, proteins and metalloproteins in their native states as well as in 

complex biological matrices, have utilized resonance Raman spectroscopy. 

1.4.3 Spatially offset Raman spectroscopy (SORS)  

The poor penetration depth provided by visible and NIR lasers used for Raman 

spectroscopy prevents interrogation of deeper layers of tissue. To obtain Raman 

signal from the deeper regions, spatially offset Raman spectroscopy employing a 

configuration that involves spatial separation of the illumination source from the 

detection zone has been used (Fig. 1.4) [28]. Such illumination-collection 

separation provides a route for preferential retrieval of spectra from deeper layers 

of diffusely scattering media by combining measurements at multiple offsets and 

multivariate data analysis methods. Various source-detector separation 

configurations involving single or multiple zones of illumination as well as detection 
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using fiber optics have been demonstrated for biomedical and pharmaceutical 

applications. One such configuration featuring central collection zone and a 

spatially offset illumination ring (using axicons), called inverse SORS is particularly 

suited for clinical applications due to the lower laser power density and multiple 

spatial offsets achieved by the use of ring illumination. While SORS has shown 

promise for applications such as breast cancer detection, tomographic imaging 

and blood glucose detection, its implementation is particularly challenging for 

highly absorbent and fluorescent samples. 

 

 

Figure 1.4: Schematic representation of the spatially offset Raman 

spectroscopy (SORS) principle in comparison to spontaneous Raman 

spectroscopy. R, L and Δs denote backscattered, laser beam and spatial offset, 

respectively. Adapted from ref. 28 (Licensed under CC BY SA 3.0). 
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1.4.4 Non-linear Raman spectroscopy 

The non-linear techniques, particularly coherent anti-Stokes Raman spectroscopy 

(CARS) and stimulated Raman spectroscopy (SRS), have emerged as attractive 

variants to address low yield and strong fluorescence background encountered in 

biological species. Both the methods have been successfully integrated in 

microscopes for investigation of cells and tissues. In CARS, a coherent anti-Stokes 

signal is generated by the interaction of pump, Stokes and probe frequencies in a 

four-wave mixing process as shown in Fig. 1.5 [42]. The key advantages provided 

by CARS over spontaneous Raman include the suppression of fluorescence, 

higher yield due to the coherent laser-like output, and the dependence of spectral 

resolution only on the excitation laser width. However, non-resonant background 

signal from the matrix can limit the specificity of the technique by obscuring the 

CARS signal at low concentrations. CARS microscopy has been utilized for 

visualization of lipids and other biomolecules in live cells by appropriately tuning 

the difference frequency between pump and stokes beams to match specific 

vibrational bands (e.g. C-H band in lipids) with high 3D spatial resolution. On the 

other hand, SRS microscopy uses pump and Stokes laser beams such that their 

frequency difference matches specific molecular vibrational frequency of interest 

to achieve significant enhancement of the associated Raman signal due to 

stimulated excitation without non-resonant background (Fig. 1.5) [42-45]. The 

linear dependence of SRS signal with the concentration of analyte makes it 

suitable for direct quantification of individual components in multicomponent 

mixtures. Emerging medical applications of SRS microscopy have used the higher 
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sensitivity and specificity to achieve fast mapping of cells and tissues (Fig. 1.6) 

[43]. While, the inability to probe multiple Raman bands simultaneously used to be 

a major drawback of SRS microscopy, recent studies have shown multiplexing 

using a variety of methods [44, 45]. 

 

 

Figure 1.5: Jablonski diagrams. Jablonski diagrams for (A) CARS and (B) SRS 

processes are shown. Reproduced from ref. 42 (Licensed under CC BY SA 3.0). 

 

 

1.5 Medical applications of Raman spectroscopy 

In recent years, the excellent sensitivity and chemical specificity offered by Raman 

spectroscopy and its variants have been exploited for a variety of medical 

applications through clinical and pre-clinical studies. In this section, we will discuss 

some important applications in areas such as cancer diagnosis and chronic 

disease management. 
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Figure 1.6: SRS microscopy of cells. Label free stimulated Raman scattering 

microscopy of fixed squamous cell carcinoma cells acquired at (A) 2953 

cm−1 (CH3), (B) 2850 cm−1 (CH2, lipid), (C) 1655 cm−1 (C O, amide-I), and (D) 

1700 cm−1 (cellular silent region). Scale bars are 5 μm. Reproduced from ref. 43 

(Licensed under CC BY SA 3.0). 
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1.5.1 Applications in cancer 

Clinical Diagnostics: Breast cancer, one of the most common forms of cancer in 

women, has been extensively studied using Raman spectroscopy and its variants. 

Early investigations of breast cancer using Raman spectroscopy exploited high 

Raman scattering cross-section exhibited by mammary microcalcifications, which 

are frequently used to assess breast disease. The benign and malignant breast 

cancers have been accurately identified based on differences in Raman signatures 

of type I (composed of calcium hydroxyapatite) and type II (composed of calcium 

hydroxyapatite with carbonate substitution) mammary microcalcifications, 

respectively [46]. Raman spectroscopy has also been employed to discern a 

variety of breast lesions ranging from benign fibroadenoma to invasive ductal 

hyperplasia in samples that do not present microcalcifications, with accuracies 

upwards of 85% for the diseased classes [47]. The enhancement of surface 

Raman signal using silica-shell isolated nanoparticles for the same samples 

provided further improvement in accuracy (> 90%) for most classes. The use of 

multivariate data analysis tools like PCA provides important insights into the 

disease-specific compositional changes in the tumor microenvironment. Using 

controlled tissue constructs composed of calcium salts (hydroxyapatite, oxalate 

and carbonate-substituted hydroxyapatite) embedded in chicken tissue at varying 

depths, the efficacy of detecting microcalcifications from deeper subsurface 

regions using SORS was demonstrated for depths ranging from 2 mm to 10 mm 

[48]. SERS has been explored extensively for studying breast cancer cells and 

biofluids from patients by incorporating a variety of nanoparticles. A majority of 
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SERS studies for breast cancer cells have been conducted for targeted 

quantification of cell surface markers such as HER2 and EGFR, that are 

differentially expressed in cancer cells, via nanoprobes modified with relevant 

antibodies for preferential binding to the antigens expressed on their membranes. 

The SERS nanoprobes used in these studies can be readily adapted for targeted 

identification of cancer cells from other organs if appropriate biomarkers are known. 

In vivo targeting of cancer cells in tumor xenografts pegylated gold nanoparticles 

containing organic Raman reporter molecules has been demonstrated by targeting 

EGFR using single-chain variable fragment (ScFv)-antibody conjugation [49]. 

Among other accessible cancers, the diagnosis of skin cancer has also 

been an important application of Raman spectroscopy due to high incidence rates 

and sampling errors encountered during biopsy for diagnosis. Several groups have 

studied benign and malignant skin cancers both in vitro and in vivo for developing 

diagnostic algorithms for real-time noninvasive detection. In a comprehensive 

Raman spectroscopy study incorporating 453 patients presenting various types of 

melanomas, carcinomas, keratoses and nevi, principal component general 

discriminant analysis and partial least squares have been used for three different 

diagnostic classification tasks – skin cancer and precancers vs. benign lesions, 

melanomas from nonmelanoma lesions, and melanomas from seborrheic 

keratoses with area under the curve (AUC) values of over 0.82 for each [50]. 

Several applications in cervical cancer screening have been demonstrated based 

on Raman spectroscopy to detect cytopathological changes, HPV infection status 

(a key risk factor) as well as differences in protein, lipids and nucleic acid content 
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between benign and malignant lesions [51]. Early in vivo study using fiber optic 

probes revealed an association between an increase in collagen, phospholipid and 

DNA signatures and progression of tissue from normal to high-grade squamous 

dysplasia [52]. 

The in vivo application of Raman spectroscopy for diagnosis of inaccessible 

cancers requires seamless integration of the fiber optic probes with endoscopy 

workflow. Motivated by ex vivo studies that demonstrated the potential for use of 

fiber-optic Raman probes for in vivo diagnosis, studies have focused on 

endoscopic detection of cancers and other abnormalities in esophagus, stomach 

and colon. The LDA classification model developed using in vivo esophageal 

Raman measurements obtained from 27 patients during clinical endoscopic 

examination of esophagus and biomolecular modeling yielded sensitivity and 

specificity of 97% and 95.2%, respectively for the diagnosis of esophageal cancer 

[53]. The biomolecular modeling revealed that neoplasia was associated with a 

decrease in actin, collagen, lipids and glycogen as well as an increase in DNA and 

histones concentration. In vivo studies in rats have showed the feasibility of using 

topically applied antibody-conjugated SERS nanoparticles for sensitive detection 

and quantification of cell surface markers of esophageal cancer [54]. Translation 

of such protocols to human patients are expected to enable identification of 

hormone receptor status along with disease diagnosis. In vivo Raman endoscopic 

examination of gastric tissue in 305 patients enabled the construction of a spectral 

database for developing a diagnostic algorithm based on PLS-DA for in-line 

detection of gastric cancer in independent patient samples with a predictive 
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accuracy of ca. 80% [55]. In the colon, various polyps and adenocarcinomas have 

been studied both in vivo and ex vivo using fiber-optic Raman probes that are 

compatible with conventional colonoscopes [56]. Additional advancements such 

as utilizing high wavenumber spectral regions for diagnosis have hinted at 

improving the capabilities of Raman spectroscopy in endoscopic applications. 

Intra-operative surgical guidance: The lack of complex sample preparation 

steps and minimal perturbation to the tissue due to NIR lasers used in Raman 

spectroscopy makes it an attractive tool for real-time assessment of margins during 

tissue conserving surgeries. One of the first studies in this direction was conducted 

in vivo in 9 patients undergoing partial mastectomy breast surgery, where 

previously developed classification algorithms have yielded accurate classification 

of malignant among normal and benign tissues [57]. However, the residual 

subsurface tumors under surgical margins can result in recurrence of cancer. To 

circumvent this challenge, spatially offset Raman probes have been developed 

and validated for successful classification of positive and negative margins in 

frozen-thawed breast surgical samples ex vivo [58]. Another ex vivo study using 

breast surgical samples showed the potential for accelerating acquisition of Raman 

micro-spectroscopy data by employing autofluorescence imaging for selective 

sampling of spatial locations [59, 60]. Such multimodal approaches can 

significantly reduce the Raman data acquisition time and provide higher sensitivity 

for real-time detection of tumor margins during surgery. In vivo application of 

Raman spectroscopy in 38 bladder cancer patients during transurethral resection, 

sensitivity and specificity over 75% have been achieved using PCA/LDA 
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classification analysis [61]. In brain cancer, another organ where conserving tissue 

during surgery is critical for retaining key functions and memory, a recent study 

employed 17 patients undergoing resection of grade 2 to 4 gliomas for in vivo 

identification of cancer margins composed of high and low density tumor cells 

using a fiber-optic probe with sensitivity and specificity higher than 90% [62].  

 

 

 

Figure 1.7: SERS imaging of tissues markers. (A) SERS imaging of two HER2-

positive specimens containing both tumor and normal tissue regions and two 

HER2-negative specimens (one tumor and one normal tissue) by topical 

administration of a nanoparticle (NP) mixture of HER2-NPs and isotype-NPs for 

targeted identification of regions overexpressing HER2 receptor based on the ratio 

of bound NPs. (B) Immunohistochemical staining of the same samples with an 

anti-HER2 antibody. Unlabeled scale bars represent 2 mm. Adapted from ref. 63 

(Licensed under CC BY 4.0). 
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Some early studies have also shown the feasibility of using SERS imaging 

of resected samples for intra-operative margin assessment and surgical guidance 

in clinic. The in vitro success in quantifying cell surface receptors that are 

overexpressed in cancer using targeted SERS nanoparticles has motivated similar 

studies for identification of margins by topical application of nanoparticles on 

surface of freshly excised tissue specimen. In a recent study, topical application of 

a multiplexed cocktail of SERS nanoparticles has resulted in quantification of 

molecular phenotype in terms of receptor status. Using a mixture of SERS 

nanoparticles functionalized with HER2 and isotype antibodies, tumor margins 

have been determined based on HER2 status in freshly excised tissue samples 

obtained at breast cancer lumpectomy (Fig. 1.7) [63]. Another similar study 

employed a similar approach for simultaneous quantification of HER2, ER, EGFR 

and CD44 in 57 clinical sample for detection of breast carcinoma with sensitivity 

and specificity of 89.3% and 92.1%, respectively [64]. A study targeted at 

understanding the biodistribution of ingested SERS nanoparticles in the body has 

revealed their potential to be used in vivo for topical application in oral cavity and 

GI tract without worrying about permeation into the blood stream or accumulation 

in vital organs [65]. 

Evaluation of metastatic disease: While Raman spectroscopy has been 

extensively used for establishing feasibility of clinical translation in cancer 

diagnostics, emerging studies have also focused on understanding the molecular 

mechanisms driving key characteristics of cancer and its metastatic progression. 

In mice harboring metastatic brain tumors induced by murine melanoma cells, 
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Raman spectroscopy using a fiber-optic probe enabled the detection of cortical 

and subcortical tumor cell aggregates in the brain based on spectral features 

stemming from proteins, lipids, blood, water, bone, and melanin [66]. Similar mice 

studies of prostate cancer metastasis to bone using Raman spectroscopy revealed 

compositional changes in the bone such as an increase in carbonate substitution 

in hydroxyapatite and a decrease in collagen mineralization and mineral 

crystallinity (often correlated with physical properties of bone), that were 

independent of architectural alterations determined using microCT [67]. A recent 

study by our group showed that Raman spectroscopy was able to identify early 

biochemical changes in the composition of bones of mice bearing breast tumor 

xenografts, before the emergence of morphological indicators discernible by 

radiographic imaging [68]. The metastasis of breast cancer cells to lymphatic 

system in patients is routinely determined by sampling axillary lymph nodes. The 

Raman spectroscopic evaluation of 38 axillary lymph nodes (25 negative and 13 

positive for metastatic spread) obtained from 20 patients undergoing breast cancer 

surgery were used to create a leave one node out cross validation routine based 

on PC-LDA that yielded sensitivity and specificity over 90% for prediction of normal 

and metastatic lymph nodes [69].  

A large number of studies have also focused on employing Raman 

spectroscopy to study metastasis at cellular level by employing spontaneous 

Raman as well as labeled and label-free SERS using a variety of nanoparticles. A 

recent study established the feasibility of employing label-free Raman 

spectroscopy for classification of isogenic cell lines that show organotropism to 



32 

 

brain, liver, lung and spine [70]. The findings were supported by metabolomic 

analyses that showed distinctions in the cell lines based on organotropism. 

However, identification of rare cells in complex matrices often requires the use of 

labeled SERS for obtaining the required sensitivity. A study aimed at detection of 

circulating tumor cells (CTCs) in human peripheral blood derived from patients with 

different stages of head and neck squamous cell carcinoma accomplished it by 

using EGF-conjugated SERS nanoparticles for targeting epidermal growth factor 

expressed by the CTCs [71]. They showed that the SERS intensity of the samples 

correlated with the number of CTCs present per mL of the sample. These studies 

show that Raman spectroscopy and its variants are suitably poised to tackling 

advanced challenges in cancer such as determination of metastatic risk and 

organotropism. 

1.5.2 Applications beyond cancer 

The medical applications of Raman spectroscopy are not limited to 

oncology. A significant amount of work has also focused on key areas of human 

health such as management of chronic diseases, diagnosis of infectious diseases, 

and prediction of risk of acute illness. Non-invasive glucose detection for diabetes 

monitoring has been one of the long-standing goals in Raman spectroscopy. 

Several studies have made progress towards accomplishing this goal by 

addressing several challenges such as sample-to-sample variability, 

autofluorescence due to endogenous chromophores, tissue turbidity, physiological 

lag between blood and interstitial fluid glucose levels, and non-linear spectra-

concentration relationship (Fig. 1.8) [72]. For instance, turbidity correction by 
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combining diffuse reflectance and Raman spectroscopy measurements under the 

assumption that the effects of turbidity manifest similarly in both the modalities 

yielded significant improvement in glucose concentration prediction. Similarly, the 

inaccuracies induced in the spectra-concentration calibration models due to the 

difference in glucose concentration between blood and interstitial fluid 

compartments have been mitigated by modeling the physiological glucose 

dynamics using mass transfer principles. 

 

Figure 1.8: Non-invasive glucose monitoring using Raman spectroscopy. (A) 

Simulations of effects of tissue turbidity on sampling volume is shown for different 

scattering coefficients. (B) Schematic showing the similarity of photon-tissue 

interactions for diffusely reflected and Raman scattered light of same frequency. 

(C) Illustration of glucose diffusion between the blood and interstitial fluid (ISF) as 

well as cellular uptake that cause inaccuracies in calibration models built to predict 

blood glucose levels based on Raman measurements of ISF glucose. (D) The 

resultant lag between the glucose in blood and ISF compartments leads to 

differences in measurements during rapid changes (rise/fall) in glucose 

concentrations. Reprinted with permission from ref. 72. Copyright 2017 American 

Chemical Society. 
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Figure 1.9: Identification of fungal growth zones using Raman spectroscopy.  Radial 

visualization PC score plots derived from (A) spontaneous Raman and (B) label-free 

SERS spectra acquired from center and edge of the P. indica fungal cultures are shown. 

Reproduced with permission from ref. 74. Copyright 2017 Wiley‐VCH Verlag GmbH & Co. 

KGaA. 

 

The diagnosis of infectious disease agents is another important area where 

the ability of Raman spectroscopy to provide rapid diagnosis is immensely valuable. 

One of the early studies utilizing NIR confocal Raman micro-spectroscopy of 

common microorganisms on solid culture medium showed test dataset 

classification accuracy upwards of 80% for the combined spectral dataset 

composed of multi-day measurements from five types of bacterial microcolonies 

using a combination of PCA and LDA [73]. More recently, the study of different 

growth zones of fungal cultures by us using a combination of light sheet 
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microscopy and Raman spectroscopy revealed that the biochemical basis of 

morphological differences across the growth zones were sufficient for accurate 

classification of the growth zones using PLS-DA [74]. By dispersing SERS 

nanoparticles on the surface of fungal culture further improved the classification 

accuracy without specific targeting (Fig. 1.9). However, the ability to identify 

microorganisms in complex matrices such as blood and other biofluids is critical 

for field translation. Direct identification of predominant bacterial species causing 

urinary tract infections (UTI) in urine samples collected from 10 patients was 

demonstrated by combining Raman micro-spectroscopy and SVM model trained 

on a spectral database built using 11 important UTI bacterial species, without the 

need of a cell culture step before acquisition of Raman spectra [75]. Similarly, 

Raman spectroscopy and PCA has been used to monitor changes in erythrocytes 

and plasma associated with progression of malaria by exploiting the resonant 

enhancement of hemoglobin and hemozoin [76]. Several other pathologies such 

as coronary atherosclerosis, middle ear diseases, osteoarthritis and dental 

abnormalities have been explored using Raman spectroscopy and its variants in 

conjunction with multivariate data analysis techniques [77-81]. For instance, 

successful classification of infracted and non-infracted tissue regions in myocardial 

in surgically excised ventricular myocardium has been recently shown for label-

free evaluation of myocardial infraction (Fig. 1.10) [82]. 
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Figure 1.10: Detection of myocardial infarction using Raman spectroscopy. 

(A) A representative H&E-stained image showing the boundary between the 

infarcted (labeled I) and non-infracted (labeled II) regions of the heart tissue 

excised from human patients is shown. Representative mean Raman spectra 

belonging to (B) non-infarcted myocardium and (C) infarcted myocardium regions 

in the samples from each patient is shown. Scale bar represents 1 mm. 

Reproduced from ref. 82 (Licensed under CC BY SA 4.0). 
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1.6 Thesis outline 

This dissertation aims to highlight our recent work that leverages the exquisite 

molecular specificity of Raman spectroscopy to study cancer progression and its 

response to therapy. Following the brief introduction to medical applications of 

Raman spectroscopy that is laid out in the present chapter, I first focus on our 

investigations into the utility and genetic basis of mammary microcalcifications as 

markers of primary breast cancer diagnosis. In the later chapters, I discuss our 

studies focused on the spectral characterization of pre-metastatic niches and 

response to radiation therapy, applications that go beyond primary disease 

diagnostics. The thesis is organized as follows:  

In Chapter 2, we demonstrate the use of Au@SiO2 shell-isolated 

nanoparticle-enhanced Raman spectroscopy (SHINERS) for assessment of 

microcalcifications and distinguishing between normal breast tissues, 

fibroadenoma, atypical ductal hyperplasia, ductal carcinoma in situ (DCIS), and 

invasive ductal carcinoma (IDC) in human patient samples. We assess the effect 

of SHINERS signal enhancement on the accuracy of classification routine used for 

the identification of breast lesions with and without microcalcifications. By 

comparing the classification accuracies obtained in lesions with and without 

microcalcification using both SHINERS and traditional spontaneous Raman 

spectroscopy, we also examine the magnitude of relative improvement provided 

by the pursuit of mammary microcalcifications for diagnosis of breast cancer in 

current clinical practice. 
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In Chapter 3, we investigate the genetic basis of breast cancer 

microcalcifications and elucidate their role in metastasis. Guided by the gene 

expression analysis of metastatic and non-metastatic breast cancer cell lines, we 

show that among the genes previously implicated in the formation of 

microcalcifications, Osteopontin (OPN) varies the most between the two groups. 

We study the direct effect of OPN on the osteogenic cocktail-induced 

microcalcification formation and cell migration via stable shRNA silencing of OPN 

in MDA-MB-231 cells. Furthermore, we also compare the relative levels of OPN 

mRNA in parental MDA-MB-231 cells with those derived from circulation (CTC) 

and lungs (LM) of mice implanted with the parental cells, to verify correlation of 

OPN with cell migration. 

In Chapter 4, we turn our attention to the metastatic disease. Here, we test 

the ability of label-free Raman spectroscopy to detect early changes in the future 

secondary sites of metastatic disease in advance of tumor cell arrival from the 

growing primary tumor. We use high metastatic MDA-MB-231 and low metastatic 

MCF-7 cells to grow orthotopic breast cancer xenograft for spontaneous 

dissemination from the mammary fat pad and potentially metastasize to the lungs. 

We map the lungs of the mice excised during the pre-metastatic phase and acquire 

spectral dataset for multivariate data analysis and identification of markers 

indicative of subtle biomolecular changes in the lung microenvironment as a result 

of the formation of pre-metastatic niches. We use histopathology and gene 

expression analysis to support the Raman features identified in the study. 
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In Chapter 5, we explore the possibility of monitoring response to radiation 

therapy at clinically relevant dosages and prospective prediction of responders 

using Raman spectroscopy. Here, we employ an isogenic matched model of 

radiation resistance consisting of A549 lung cancer cells and their resistant variant 

rA549 cells to grow tumors in mice to reliably study the differences due to 

sensitivity to radiation therapy. We also use tumors derived from sensitive and 

resistant head and neck cancer cells to delineate model-specific markers of 

response and sensitivity. Using multivariate curve resolution alternating least 

squares (MCR-ALS) and support vector machine (SVM) classification, we 

determine the putative markers of radiation response and sensitivity and build 

models for prospective prediction. 

Finally, in Chapter 6, I summarize the key findings of the abovementioned 

studies and discuss some future research directions that can build on the recent 

developments in the area to facilitate the rapid translation of this promising 

technology to the clinic for disease diagnostics and beyond. 
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Chapter 2 

Pursuing shell-isolated nanoparticle-enhanced Raman 

spectroscopy (SHINERS) for concomitant detection of breast 

lesions and microcalcifications 

  

Although tissue staining followed by morphologic identification remains the gold 

standard for diagnosis of most cancers, such determinations relying solely on 

morphology are often hampered by inter- and intra-observer variability. Vibrational 

spectroscopic techniques, in contrast, offer objective markers for diagnoses and 

can afford disease detection prior to alterations in cellular and extracellular 

architecture by furnishing a rapid “omics”-like view of the biochemical status of the 

probed specimen. Here, we report a classification approach to concomitantly 

detect microcalcification status and local pathological state in breast tissue, 

featuring a combination of vibrational spectroscopy that focuses on the tumor and 

its microenvironment, and multivariate data analysis of spectral markers reflecting 

molecular expression.  

We employ the unprecedented sensitivity and exquisite molecular 

specificity offered by Au@SiO2 shell-isolated nanoparticle-enhanced Raman 

spectroscopy (SHINERS) to probe the presence of calcified deposits and 

 
 This chapter is a reprint of the peer-reviewed publication: Zheng C*, Shao W*, Paidi SK, Han B, 
Fu T, Wu D, Bi L, Xu W, Fan Z, Barman I. “Pursuing shell-isolated nanoparticle-enhanced Raman 
spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications”, 
Nanoscale, 7, 16960-8, 2015. (* denotes equal contribution) 
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distinguish between normal breast tissues, fibroadenoma, atypical ductal 

hyperplasia, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). 

By correlating the spectra with the corresponding histologic assessment, we 

developed partial least squares-discriminant analysis derived decision algorithm 

that provides excellent diagnostic power in the fresh frozen sections (overall 

accuracy of 99.4% and 93.6% using SHINs for breast lesions with and without 

microcalcifications, respectively). The performance of this decision algorithm is 

competitive with or supersedes that of analogous algorithms employing 

spontaneous Raman spectroscopy while enabling facile detection due to the 

considerably higher intensity of SHINERS. Our results pave the way for rapid 

tissue spectral pathology measurements using SHINERS that can offer a novel 

stain-free route to accurate and economical diagnoses without human 

interpretation. 

2.1 Introduction 

Examination of stained histology slides and the corresponding recognition of 

morphologic features remains the gold standard for definitive diagnosis and 

staging of most cancerous lesions. The decision-making relies extensively on a 

pathologist’s recognition of cell types and their morphologic patterns within the 

stained tissues. Although early detection and useful patient stratification impact the 

likelihood of cancer-free survival, manual morphological determinations involve 

considerable diagnostic uncertainty [1, 2] and do not elucidate the essential 

biochemical pathways that lead to the specific pathology. Moreover, such 

examination is time-consuming and expensive. While immunohistochemical 
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approaches offer limited molecular detection, significant hurdles still remain in 

employing them for quantitative, automated pathology [3].  

In this milieu, considerable attention has been focused on the incorporation of 

vibrational spectroscopic methods, as they directly offer non-perturbing molecular 

descriptors. Raman spectroscopy, for example, provides objective spectral 

markers for diagnosis of disease and may permit disease detection prior to 

morphologic manifestation [4]. Studies by us and others [5-14] have sought to 

exploit this method - due to its wealth of molecular information [15, 16] and lack of 

sample preparation requirements - in differentiating breast pathology and detecting 

the presence of microcalcifications, an important mammographic marker of breast 

lesions. While spontaneous Raman spectroscopy affords sub-cellular signal 

localization and provides an ideal in vivo characterization tool, its inherently weak 

signals have impeded its application for extensive tissue analysis.  

Surface-enhanced Raman scattering (SERS), which was first observed in 

the 1970s on electrochemically roughened silver electrodes [17, 18], has alleviated 

this drawback with reported biomolecular detection limits beyond immunoassay 

sensitivities [19]. As a consequence, SERS has attracted considerable interest as 

an ultrasensitive and highly specific tool for non-destructive and real-time 

diagnosis of diseases [15, 20-28]. However, two problems still hinder the 

translation of SERS for biomedical applications, namely unsatisfactory substrate 

generality and poor measurement reproducibility [29, 30]. To overcome these 

drawbacks, shell-isolated nanoparticle-enhanced Raman spectroscopy 

(SHINERS), featuring nanoparticles with Au core coated by an ultrathin shell 
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(thickness from 2-20 nm) of silica or alumina, was proposed by Tian and co-

workers at Xiamen University [31] While the gold core of the Au@SiO2 shell-

isolated nanoparticles (SHINs) allows obvious SERS enhancement, the shell is 

used to protect the gold core from degradation of the minutely fabricated 

nanostructures as well as preclude the interaction of the bare gold nanoparticles 

with the probed adsorbates. By virtue of these advantages, SHINERS has been 

gainfully employed in investigations of live cells [32] and, recently by us, in 

carcinoma studies using a ratiometric approach [33]. 

Using breast cancer as the paradigm, we report here an approach to 

concomitantly diagnose microcalcification status and local pathological state 

featuring SHINERS and multivariate data analysis of spectral markers reflecting 

molecular expression. In this article, we seek to exploit the heightened sensitivity 

and intrinsic specificity offered by the Au@SiO2 shell-isolated nanoparticles in 

elucidating the biochemical content of fresh frozen specimen and, thus, in 

differentiating between normal breast tissue, fibroadenoma, atypical ductal 

hyperplasia, ductal carcinoma in situ, and invasive ductal carcinoma. By 

correlating the spectra with the histologic evaluation, our partial least squares - 

discriminant analysis derived decision algorithms show excellent diagnostic power 

(overall accuracy of 99.4% and 93.6% using SHINs for breast lesions with and 

without microcalcifications, respectively). The performance of this decision 

algorithm is competitive with or supersedes that of analogous algorithms 

developed using spontaneous Raman spectra while offering facile detection owing 

to the considerably higher intensity of SHINERS spectra. Notably, to the best of 
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our knowledge, this is the first SHINERS effort that comprehensively assays 

microcalcifications and tissues of all key pathophysiological conditions. Taken 

together with the substantially higher spectral intensities for the SHINERS data in 

relation to that for the spontaneous Raman spectra, our findings open the door for 

clinical translation of SHINERS as a label-free route to accurate pathological 

diagnoses without human interpretation. 

2.2 Materials and Methods 

2.2.1 Human subjects and tissue preparation  

Fresh breast tissue was collected from 72 patients who underwent surgical 

resection or vacuum assisted (Mammotome) biopsy at the Department of Breast 

Surgery, the First Hospital of Jilin University. Consent to participate in this study 

was obtained from every patient and the project and methodology were approved 

by the Ethics Committee of Jilin University. After operating, the samples were 

immediately frozen at -20 to -25 oC and two contiguous sections (6 µm thickness) 

were cut from each specimen using a freezing microtome (LEICA-CM3050S, 

Germany) in the Pathology Department, the First Hospital of Jilin University. For 

each tissue, one of the two adjacent sections were stained with haematoxylin and 

eosin (H&E) for routine histopathological analysis by three experienced breast 

pathologists. The other section was used for acquiring spectra from the diseased 

regions (identified by H&E staining of the other section) by preserving it in liquid 

nitrogen. Prior to analysis, the frozen section was thawed at 22 oC for 10 minutes 

and multiple spectra were collected from each tissue. 
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2.2.2 Instrumentation and data acquisition  

A confocal Raman system (LabRAM ARAMIS, Horiba Jobin Yvon, Edison, NJ, 

USA) with a ~0.7 μm spatial resolution, and a 5 mW, 633nm HeNe laser as 

excitation source was used for the collection of Raman spectra. The detection of 

Raman signal was carried out with a Synapse Thermoelectric cooled charge-

coupled device (CCD) camera (Horiba Jobin Yvon, Edison, NJ, USA). Raman 

scattered light was collected with a 50x microscope objective lens (0.50 NA, 

LMPLFLN, Olympus, Japan) that was also used for focusing the excitation laser 

light. The laser beam focused on the tissue formed a spot of 1.5 µm diameter. A 

4-notch filter (Horiba Jobin Yvon, Edison, NJ, USA) was used to block strong 

Rayleigh-scattered light. Extended scan spectra with a spectral range of 600-1800 

cm−1 were acquired using an integration time of 60s and 3 accumulations. The 

Raman shift axis was calibrated using characteristic vibration bands recorded from 

silicon wafer. These settings were kept constant for all the spectral measurements 

to enable direct comparison of spectral sensitivity and specificity, especially 

between spontaneous Raman and SHINERS datasets. 

Locations of lesions and other possible features of interest were determined from 

the H&E sections and the corresponding sites on its frozen contiguous sections 

were probed using the Raman system. About fifteen to twenty spectra were 

collected from different locations for each sample to ensure representative 

sampling and incorporate spot-to-spot variability in the recorded signals. After 

obtaining spontaneous Raman spectra, SHINs were added to the surface of frozen 

sections and the respective SERS spectra were recorded from the same spots. 
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SHINs having an average Au core diameter of 55 nm and covered by 2 nm silica 

shells were acquired from Professor Tian’s group for use in this study. On each 

tissue section 10 μL of 100 nM concentrated SHINs solution was added uniformly 

prior to collecting the spectra. Figure 2.1 shows a representative TEM image of 

the SHINs used for our study. 

 

 

Figure 2.1: Representative TEM image of Au@SiO2 shell-isolated 

nanoparticles (SHINs). 

 

2.2.3 Spectral data analysis 

The spectra were subjected to baseline correction by fitting and subtracting a third-

order polynomial by NGSLabSpec software (Horiba Jobin Yvon, Edison, NJ, USA) 

and were subsequently smoothed using a 15-point averaging algorithm. These 

corrected spectra were used to determine the peaks characteristic of the class the 
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spectra belong to while the intensity-normalized spectra were used in the 

remaining data analysis. The latter were subjected to principal component analysis 

(PCA), a widely used data exploration method, to capture the (subtle) spectral 

variances in a set of abstract orthogonal axes. For every spectrum belonging to a 

different pathological class, PC scores were plotted using Radviz and VizRank, 

radial visualization modules in Orange data mining software [34]. The nonlinear 

multidimensional radial visualization algorithm, RadViz, maps n data dimensions 

(PCs) onto two-dimensional circular space while VizRank, offers a heuristic search 

technique to guide the ordering of variables and evaluating the resulting radial 

projections by their ability to discriminate between classes. These radial 

visualization plots illustrate the clustering of spectra belonging to same class 

(assigned based on pathological assessment) and how well the classes are 

separated based on the PC scores. In this study, we used only the single best-

ranked projection for clustering displays. Finally, the spectra belonging to various 

pathologies were subjected to partial least squares-discriminant analysis (PLS-DA) 

[35] to quantify the diagnostic power of the recorded spectra. A PLS-DA derived 

decision model was built based on training data and the diagnostic power was 

independently tested by invoking an independent set of test spectra. In particular, 

60% of the spectra belonging to each class were randomly selected to train the 

model and the remaining 40% were tested using the model developed to check 

the classification capability of PLS-DA in identifying the pathology of the tissue. 

1000 iterations were performed keeping the same mixture of training: test data to 

obtain a more robust evaluation of the classification performance. 
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Figure 2.2: SHINERS spectra of breast cancer. Average SHINERS spectra 

(solid line) and spontaneous Raman spectra (dotted line) acquired from fresh 

frozen sections of normal breast tissue (NB) as well as those displaying the 

following breast lesions: fibroadenoma (FD), atypical ductal hyperplasia (ADH), 

ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC).  
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2.3 Results  

The Raman spectral dataset obtained was classified as belonging to one of the 

following classes based on the consensus histological assessment. 17, 9, 11 and 

20 tissue sections were diagnosed as fibroadenoma (FD), atypical ductal 

hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma 

(IDC), respectively. Additionally, 15 normal breast tissue (NB) sections were 

investigated for comparison with benign, premalignant and malignant pathologies. 

Among the diseased tissue sections, some exhibited the presence of type II 

microcalcifications (3 FD, 3 ADH, 5 DCIS and 4 IDC tissue sections) and were 

studied separately as they form an important class of pathological indicators in 

breast cancer diagnosis. 

2.3.1 Spontaneous Raman spectroscopy and SHINERS of tissues without 

microcalcifications  

Figure 2.2 shows the mean spontaneous Raman and SHINERS spectra of breast 

tissues without calcifications belonging to the different classes, i.e. NB, FD, ADH, 

DCIS and IDC (spectra are displayed vertically offset for visual clarity). It can 

clearly be seen that the Raman features were significantly enhanced by using 

SHINs enabling us to readily characterize the differences in spectral profiles of NB, 

FD, ADH, DCIS, and IDC tissue sections. The characteristic band assignments of 

the breast tissue, performed in our recent publication [33], indicate the presence 

of a similar set of chemical compounds, namely lipids, proteins, nucleic acids and 

β-carotenes. The main spectral features of normal breast tissue include peaks 

around 1300, 1442, and 1745 cm-1 that can be expectedly attributed to lipids (with 
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the corresponding lack of prominent protein or nucleic acid peaks) [36, 37]. 

Fibroadenoma shows similar characteristics as normal breast tissue except for the 

Raman band at 665 cm-1 that is characteristic of the C-S stretching mode of cystine 

[36, 37]. In comparison to normal breast tissue, ADH, DCIS and IDC tissues show 

stronger peaks located at 1004, 1033, 1610 and 1658 cm-1 from vibrational modes 

of proteins and at 970, 1090 and 1157cm-1 from DNA. These are indicative of 

higher concentration of proteins and nucleic acids in the diseased state. Closer 

inspection reveals that the concentrations of proteins and nucleic acids increase 

gradually while lipid content reduces in the pathological transition from ADH to IDC. 

Additionally, DCIS and IDC tissues feature the blue shifted and broad peak of CH2, 

which suggests fracture of acyl backbone of lipids and proteins [38] Also, the 

sensitive Raman features at 1090 cm-1, characteristic of the phosphate stretching 

vibration in DNA, shows a perceptible shift to 1086 cm-1 for DCIS and IDC hinting 

at the possible rupture of DNA strands with the further progression of cancer. A 

comprehensive list of the spectral features, and the associated peak shifts, 

corresponding to the different pathological classes is provided in our previous 

report [33].  
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Figure 2.3: Spectroscopy histopathology comparisons for tissue section 

exhibiting ADH (top) and IDC with microcalcifications (bottom). (A) Mean 

SHINERS (solid line) and spontaneous Raman (dotted line) spectra acquired from 

the lesions; (B) images of the fresh frozen sections (without SHINs) that were 

employed in spontaneous Raman spectra acquisition. The locations of 

microcalcifications were highlighted by squares; (C) images of the fresh frozen 

sections after addition of SHINs. The locations of microcalcifications were 

highlighted by squares; (D) corresponding sections stained with H&E. The images 

represent an approximate area of 0.8 × 0.6 mm2. 

 

 

Our next aim was to correlate the spectroscopic measurements in both 

cases with the histological evaluation. Figure 2.3 shows a representative set of 

spontaneous Raman and SHINERS spectra recorded from ADH and IDC tissue 

sections, respectively, with the latter showing the presence of microcalcifications. 

Panel (D) of the figure exhibits the corresponding H&E stained section as well as 

the frozen contiguous sections without the addition of SHINs (Panel (B), from 

which the spontaneous Raman data was recorded) and post the addition of SHINs 

(Panel (C), from which the SHINERS data was recorded). Based on the PCA 

decomposition, the most significant PC scores were then employed to create a 

radial visualization map to evaluate the clustering of spectra belonging to the same 
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pathological class-or the lack thereof. Figure 2.4 displays the cluster maps for the 

four types of breast lesions (FD, ADH, DCIS, IDC) using five PC scores for 

spontaneous Raman (A) and SHINERS spectra (B), respectively. (The 

corresponding PC loadings are given in Fig. S2.1 of Appendix.)  

 

 

Figure 2.4: Multi-dimensional radial visualization plots for principal 

component (PC) scores obtained from SHINERS spectra of breast cancer. 

The specific PCs were selected using a heuristic search algorithm that enables 

maximal separation of the four diseased groups. (A) Spontaneous Raman spectra; 

(B) SHINERS spectra. The plots highlight the degree of clustering of sites 

belonging to a specific pathological class in the absence of microcalcifications for 

the two spectral datasets. 

 

From the figure, we observe that the sites belonging to a particular class 

show a tendency to cluster together, although there is considerable overlap 

between few of the classes particularly for (A) (spontaneous Raman spectra-based 

PC scores map). The Raman spectra-derived overlap is consistent with our 

previous report [12] where significant segmentation between the pathologies was 
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not observed visually-despite the absence of ADH from that dataset. This overlap 

is significantly reduced in Fig. 2.4B, which yields reasonably satisfactory (though 

not perfect) class boundaries. We attribute this qualitative enhancement in spectra-

based class separation to the enhancement of the subtle vibrational mode-specific 

spectral features by SHINs. 

 

Table 2.1. Summary of classification accuracies for PLS-DA derived decision 

algorithms featuring spontaneous Raman and SHINERS spectra, 

respectively. Standard deviations are noted in the parentheses. In this analysis, 

spectra and identity labels corresponding to normal breast (NB), fibroadenoma 

(FD), acute ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive 

ductal carcinoma (IDC) were included. 

 
Accuracy of spontaneous 

Raman spectroscopy 
Accuracy of SHINERS 

NB 72.8% (5.7%) 82.0% (5.1%) 

FD 91.0% (4.4%) 92.3% (2.5%) 

ADH 97.2% (1.7%) 97.5% (1.6%) 

DCIS 87.4% (6.0%) 92.7% (3.9%) 

IDC 96.9% (2.0%) 91.8% (4.0%) 

 

Quantitative assessment of the diagnostic capability can be obtained from 

the results of PLS-DA-derived decision algorithm summarized in Table 2.1. Using 

independent training and test sets, we computed the overall accuracy of the PLS-

DA derived decision algorithms in classifying NB, FD, ADH, DCIS and IDC to be 

72.8%, 91.0%, 97.2%, 87.4% and 96.9%, respectively using spontaneous Raman 

spectroscopy. The analogous PLS-DA derived decision models for the SHINERS 
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data yielded mean classification accuracy of 82.0%, 92.3%, 97.5%, 92.7% and 

91.8%, respectively. Despite the extremely challenging cohort studied here (as 

reflected by the presence of ADH, DCIS and IDC sites), Raman spectroscopy (both 

spontaneous and enhanced) offer significant spectral markers of the (downstream) 

molecular determinants in the epithelial and stromal tissue components. 

Specifically, when used in conjunction with chemometric methods, these spectral 

profiles enable objective disease detection with high diagnostic accuracy. The 

overall classification performance rose for all categories from spontaneous Raman 

to SHINERS, barring IDC, with significant improvements for normal breast tissue 

and DCIS segmentation. The inferior performance of DCIS classification using 

spontaneous Raman spectra is reflective of the large spread observed in Fig. 2.4A, 

while the reduced classification accuracy of IDC for SHINERS can also be 

predicted based on the dispersion of the IDC sites in Fig. 2.4B.  

2.3.2 Spontaneous Raman spectroscopy and SHINERS of tissues with type 

II microcalcifications 

Raman spectroscopy has been previously investigated in formalin-fixed, paraffin-

embedded sections for detection of type I and II breast microcalcifications as well 

as for the classification of type II microcalcifications related to benign and 

malignant lesions [39]. More recently, we have also developed Raman 

spectroscopy algorithms to detect microcalcifications in fresh breast needle biopsy 

tissue cores [11]. 
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Figure 2.5: SHINERS spectra of breast microcalcifications. Average SHINERS 

spectra (solid line) and spontaneous Raman spectra (dotted line) acquired from 

tissue sites displaying type II microcalcifications with the following breast 

pathologies: fibroadenoma (FD), atypical ductal hyperplasia (ADH), ductal 

carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). 

 

Here, Fig. 2.5 shows the mean spectra of tissues showing presence of 

microcalcifications with and without SHINs measured from fresh frozen sections of 

FD, ADH, DCIS, and IDC tissue. The major peak at ca. 960 cm-1 is a well-known 

calcium hydroxyapatite peak and can be ascribed to the totally symmetric 

stretching mode of the “free” tetrahedral phosphate ion [39-41]. The other 

noticeable peaks appear at 1002, 1072, 1156, 1446, and 1663 cm-1 that are 



68 

 

attributed to amino acid residue (phenylalanine) [42], nucleic acids, lipids, 

carotenoids, and amide-I, respectively [36, 37]. FD and ADH microcalcifications 

spectra exhibit a peak at 1072 cm-1, which corresponds to the O-P-O stretch of 

nucleic acids, whereas in DCIS and IDC tissues the feature is observed to be red-

shifted to 1078 cm-1. The spectra belonging to ADH show a stronger characteristic 

amide-I peak at 1657 cm-1 while DCIS tissue sites harboring microcalcifications 

show the presence of relatively stronger peaks corresponding to amino acid 

residue (phenylalanine) at 1003, 1031 cm-1 and lipids (CH2 and CH3 bending) at 

1301, 1441 cm-1. Also, compared to the DCIS sites, the spectra recorded from IDC 

sites with microcalcifications show stronger nucleic acids peaks and weaker lipids 

peaks. 

Figure 2.6 shows the corresponding radial visualization plot employing 

selected PC scores to depict maximum class separation of the four diseased 

classes. (The corresponding PC loadings are given in Fig. S2.1 of Appendix.) 

Once again, it is evident that the addition of SHINs improves the separation 

between sites belonging to the same pathological class. A comparison of Fig. 2.4 

and Fig. 2.6 reveals that the separation for both spontaneous Raman and 

SHINERS data is much improved for the tissue sites harboring microcalcifications. 

To quantitatively evaluate the diagnostic advantage provided by 

microcalcifications in classifying the diseased tissues, PLS-DA was employed to 

develop decision models, as detailed earlier. The results obtained are summarized 

in Table 2.2. In this analysis restricted to sites harboring microcalcifications alone, 

classification accuracies of 99.0%, 98.1%, 96.9% and 100% were achieved for the 
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classes FD, ADH, DCIS and IDC respectively, using spontaneous Raman 

spectroscopy. The PLS-DA derived decision models for SHINERS, on the other 

hand, yielded accuracies of 99.9%, 99.9%, 97.5% and 98.2% for the same 

pathologies. Clearly, the multivariate analysis corroborates the visual findings that 

the accuracy of classification is higher for tissues harboring microcalcifications in 

comparison with those that show no microcalcifications. Detection of such 

biomineralization processes is of value not only in examining breast pathology but 

also in recognizing mineralized deposits in other organs, including the thyroid [43] 

and middle ear [44]. 

2.4 Discussion 

The results of the present study demonstrate the ability of label-free Raman 

spectroscopy to differentiate closely related breast pathologies. Furthermore, the 

improvement of the classification results and the class separation in radial plots 

with the addition of SHINs underscores their diagnostic utility in tissue 

spectropathology. These two label-free approaches collectively offer a powerful 

tool to measure both localized cellular changes (especially in the case of SHINERS, 

since SERS presents a very surface selective method due to the decay of field 

enhancement with r-3) [45] and the tissue microenvironment. While a critical role 

for the stromal environment is acknowledged in the onset and progression of 

cancer [46], existing diagnostic methods largely focus on the characterization of 

epithelial cells-a barrier that can be overcome by the employment of the employed 

photonic tools.  
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Figure 2.6: Multi-dimensional radial visualization plots for principal 

component (PC) scores obtained from SHINERS spectra of breast 

microcalcifications. Radial visualization map using principal component (PC) 

scores that provide maximal separation between tissues sites belonging to 

different pathologies and harboring microcalcifications. (A) Spontaneous Raman 

spectra; (B) SHINERS spectra. 

 

 

Table 2.2: Summary of classification accuracies for PLS-DA derived decision 

algorithms featuring spontaneous Raman and SHINERS spectra, 

respectively. Standard deviations are noted in the parentheses. In this analysis, 

spectra and identity labels corresponding to tissue sites harboring 

microcalcifications and displaying the following pathologies were included: 

fibroadenoma (FD), acute ductal hyperplasia (ADH), ductal carcinoma in situ 

(DCIS) and invasive ductal carcinoma (IDC). 

 
Accuracy of spontaneous 

Raman spectroscopy 
Accuracy of SHINERS 

FD 99.0% (1.5%) 99.9% (0.2%) 

ADH 98.1% (6.3%) 99.9% (1.7%) 

DCIS 96.9% (2.6%) 97.5% (2.8%) 

IDC 100.0% (0%) 98.2% (1.8%) 
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Significantly, the developed multivariate decision models were able to 

exploit the molecular structural differences - as indicated by spectral peak shifts, 

band shapes and relative intensity changes occurring across the Raman spectrum 

- to identify ADH, a benign lesion of the breast that indicates an increased risk of 

breast cancer. This differentiation has represented an outstanding challenge for 

most non-invasive photonic tools, due to its similarity to low-grade DCIS - 

cytologically, architecturally and on a molecular basis. In fact, early and accurate 

detection of ADH and DCIS prior to their progression into invasive disease 

represents a key goal in breast cancer diagnostics [47]. We observed the spectral 

markers representative of vibrational modes of proteins and nucleic acids increase 

gradually while those of lipids reduce in the pathological progression from ADH to 

IDC. In addition, the CH2 and the C=O stretching mode of phospholipids showed 

a consistent 2-3 cm-1 blue shift in DCIS and IDC tissues, due to lipid peroxidation 

that occurs in the process of canceration [38]. Based on these findings, this study 

provides a significant extension to the literature by accurately differentiating these 

closely related pathologies (especially ADH and DCIS) in fresh frozen tissues 

(rather than in deparaffinized sections that may introduce spectral artifacts [48]. 

Perhaps surprisingly, the accuracy of classification for normal breast tissue using 

both spontaneous Raman spectroscopy and SHINERS was found to be lower than 

diseased tissues (ca. 73% and 82% respectively) in the recorded dataset. We 

attribute this to the probable presence of some uninvolved tissue sites in the 

diseased pathology categories that would then skew the classification model 

trained on spectra originating from such sites.  
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We have also discovered the presence of subtle, but reproducible, 

differences in the chemical composition of tissue sites harboring type II 

microcalcifications among the four kinds of studied lesions. It was observed that 

the peak of O-P-O stretch of nucleic acids at 1072 cm-1 in the spectra of FD and 

ADH tissues shifted to 1078 cm-1 for DCIS and IDC tissues, as a result of the 

changed calcification compositions of different kinds of diseases. Moreover, the 

ADH sites exhibit a significant amide-I peak at 1657 cm-1; in contrast, the same 

peak loses its intensity in DCIS and IDC tissues owing to the process of 

canceration whereby the protein conformation is damaged to varying degrees. 

A further important goal of this work was to compare the diagnostic power 

of SHINERS based decision models to that derived from spontaneous Raman data. 

We find that, on average, the performance of the SHINERS decision models 

supersedes that of its spontaneous Raman counterpart. This is also reflected in 

the clearer clustering of the SHINERS based PC scores corresponding to the 

different pathologies in the radial visualization plots. A slight decrease in the 

classification accuracy of IDC sites (with and without microcalcifications) is 

observed for SHINERS in relation to spontaneous Raman measurements. While 

the precise rationale for this is the subject of ongoing investigations in a larger 

patient cohort, a plausible explanation lies in the (sharper) differences in the nature 

of molecular changes that appear in IDC among different patients due to its higher 

degree of malignancy. Following the enhancement of spectral features by 

SHINERS, these inter-lesion differences are amplified resulting in worse 

performance of the multivariate classification models.  
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Finally, the intensity ratios of the key lipid, protein and nucleic acid peaks 

underscore the improvement in signal sensitivity due to the incorporation of SHINs 

and indicate that a significant reduction in SHINERS acquisition time could still 

result in nearly equivalent spectral profiles as obtained in the spontaneous Raman 

measurements. This has substantive implications for Raman spectroscopic 

imaging, which would overcome the sampling limitations of single point recordings 

and combine the molecular and spatial information content into a hyperspectral 

dataset. Unlike targeted SERS probes, where the SERS reporters transduce the 

presence of the biochemical analytes of interest into measurable signals, 

SHINERS allows the enhancement of the intrinsic vibrational modes of all the 

molecular species present in the probed specimen. This ensures the retention of 

the exquisite molecular specificity of spontaneous Raman spectroscopy thereby 

offering a unique combination of signal enhancement with facile readout and 

extensive multiplexing. 
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2.5 Appendix 

 
Figure S2.1: The principal component loadings (PCs) used to draw radial 

visualization plots used in Fig. 2.4. (A) Spontaneous Raman spectra from 

tissues without microcalcifications; (B) SHINERS spectra from tissues without 

microcalcifications. 

 

 

Figure S2.2: The principal component loadings (PCs) used to draw radial 

visualization plots used in Fig. 2.6. (A) Spontaneous Raman Spectra from 

tissues exhibiting microcalcifications; (B) SHINERS spectra from tissues exhibiting 

microcalcifications. 
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Chapter 3 

Mapping the genetic basis of breast microcalcifications and their 

role in metastasis 

  

Breast cancer screening and early stage diagnosis is typically performed by X-ray 

mammography, which detects microcalcifications. Despite being one of the most 

reliable features of nonpalpable breast cancer, the processes by which these 

microcalcifications form are understudied and largely unknown. In the current work, 

we have investigated the genetic drivers for the formation of microcalcifications in 

breast cancer cell lines and have investigated their involvement in disease 

progression. We have shown that stable silencing of the Osteopontin (OPN) gene 

decreased the formation of hydroxyapatite in MDA-MB-231 breast cancer cells in 

response to osteogenic cocktail. In addition, OPN silencing reduced breast cancer 

cell migration. Furthermore, breast cancer cells that had spontaneously 

metastasized to the lungs in a mouse model of breast cancer had largely elevated 

OPN levels, while circulating tumor cells in the same mouse model contained 

intermediately increased OPN levels as compared to parental cells. The observed 

dual roles of the OPN gene reveal the existence of a direct relationship between 

calcium deposition and the ability of breast cancer cells to metastasize to distant 

organs, mediated by common genetic factors.  

 
 This chapter is a reprint of the peer-reviewed publication: Rizwan A*, Paidi SK*, Zheng C*, Cheng 
M, Fan Z, Barman I, Glunde K. “Mapping the genetic basis of breast microcalcifications and their 
role in metastasis”, Scientific Reports, 8:11067, 2018. (* denotes equal contribution) 
 



84 

 

3.1 Introduction 

Breast cancer is the most common malignancy in women with an incidence rate of 

about 120 in 100,000 women in the United States [1]. The 5-year survival rate of 

breast cancer patients drops from ~99% for Stage I patients, to ~27% for Stage IV 

disease, and thus necessitates early detection [1]. Mammography to reveal 

microcalcifications in the breasts is the most widely used tool in breast cancer 

screening and for the initial diagnosis of non-palpable breast tumors [2]. The use 

of microcalcifications as a reliable biomarker of breast cancer has also been 

questioned due to their association with both benign and malignant lesions, which 

leads to unnecessary biopsies [3,4]. Specifically, microcalcifications that are 

composed of calcium hydroxyapatite are found in both benign breast lesions and 

breast cancers whereas those constituted by calcium oxalate crystals are largely 

indicative of benign lesions. For several decades, research has mostly focused on 

recognizing the various morphologies that microcalcifications can have in breast 

tissue and their correlation with the degree of malignancy [5]. Emerging evidence 

from us and others suggests that higher hydroxyapatite content in mammary 

microcalcifications is a marker for malignant disease whereas lower 

hydroxyapatite and a relatively higher calcium carbonate content is characteristic 

of benign breast lesions [6]. Yet, such studies have provided limited information 

about the mechanisms governing the genesis of microcalcifications and their role 

in disease progression. 

After having collectively been viewed as a result of cellular degeneration, a 

paradigm shift has recently been proposed that specific type(s) of 
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microcalcifications are products of active cellular processes and may result from 

processes similar to those involved in physiological bone mineralization [7,8]. 

Bellahacene et al. reported increased expression of bone matrix proteins, which 

are typically involved in physiological bone mineralization, in human breast cancer 

cells, and speculated that they may have a role in hydroxyapatite formation [9,10]. 

Recently, Scimeca et al. showed that, under specific stimuli, epithelial cells 

undergoing epithelial-mesenchymal-transition (EMT) transform themselves into 

cells with an osteoblast-like phenotype, and are able to contribute to the production 

of breast microcalcifications [11]. They further demonstrated that the localization 

of hydroxyapatite in these cancer cells was similar to that in osteoblasts. These 

observations suggest that to understand the role of microcalcifications in breast 

cancer, it is imperative to systematically explore the genetic basis of their formation, 

subsequent transportation into the extracellular matrix and involvement in 

metastatic cancer progression. 

In the current study, we seek to identify and study key genetic factors that 

guide the formation of microcalcifications from mammary cells, and their 

relationship with the migration capabilities of human breast cancer cells. To 

achieve this, we have examined publicly available microarray data sets for 

potential gene candidates in a blinded and unbiased fashion, which are 

differentially expressed in aggressive human breast cancer cell lines that typically 

develop microcalcifications in vitro compared to non-aggressive lines. The 

obtained list of candidate genes was further refined by selecting genes encoding 

proteins that have putative roles in tissue or cellular microcalcification. We 
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identified the SPP1 gene encoding osteopontin (OPN) to be the most differentially 

expressed gene characteristic of aggressive cell lines in our list of genes. 

Osteopontin (OPN) is a secreted soluble glycoprotein that is present in most body 

fluids including milk and serum [12]. It is overexpressed in a number of different 

carcinomas and has previously been implicated as an enhancer of mineralization 

in human breast cancer samples9. Secreted OPN interacts with multiple cell 

surface receptors, including various integrins (integrin β1, integrin β3) and CD44 

[13]. Several studies have proposed a link between OPN and cancer [14–20]. This 

link, in particular to metastasis, is based on the binding of OPN to cell surface 

receptors such as CD44, which is critical to EMT initiation and cell-matrix adhesion 

in various types of primary tumors [21–23]. 

Through shRNA knockdown of OPN in human MDA-MB-231 breast cancer 

cells, we have shown a direct involvement of the OPN gene in the formation of 

microcalcifications. Moreover, OPN knockdown resulted in reduced migration in in 

vitro assays, which was mediated at least in part by reduced CD44. The 

contribution of OPN to the migratory properties of the cancer cells was validated 

through in vivo studies by quantifying and comparing levels of OPN and CD44 

expression in parental MDA-MB-231 cells orthotopically implanted in the mouse, 

MDA-MB-231 cells that have escaped from the primary tumor into the blood 

circulation, and MDA-MB-231 cells that have successfully metastasized to the 

lungs. 
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3.2 Results 

3.2.1 Osteopontin expression increases with breast cancer cell 

aggressiveness and osteogenic cocktail treatment 

We used the GEO dataset GSE16795, which contains gene expression profiles of 

39 human breast cancer cell lines and divided it into two groups of five metastatic 

and five non-metastatic with high relevance to our experimental work [24]. Among 

the genes that are differentially expressed in metastatic versus non-metastatic cell 

lines, the genes encoding proteins with putative roles in the context of breast 

microcalcifications are shown in Fig. 3.1A in decreasing order of their log two-fold 

change. Figure 3.1A also shows the differential expression of the listed genes 

across the cell lines in the dataset as a heat map. Specifically, gene expression 

levels of OPN were found to be significantly (p-value = 0.0047) elevated (~29 fold) 

for the metastatic group compared to the non-metastatic group. We analyzed the 

protein-protein interactions of significantly differentially expressed genes in the 

selected metastatic versus non-metastatic cell lines from GSE16795 using the 

STRING-10.5 (http://string-db.org) analysis software and database [25]. Figure 

3.1B visualizes a subset of the identified biological processes and pathways that 

involve OPN (SPP1). Network nodes are colored by pathway membership, and 

pathways are sorted by increasing false discovery rate. Pathways that were most 

significantly activated, i.e. cell migration, extracellular matrix organization, tissue 

development, and chemotaxis, were also circled in the same color as the 

corresponding nodes. Additional pathways with significant activation in metastatic 

cells that involve OPN were response to extracellular stimulus, regulation of 
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response to external stimulus, cell adhesion, regulation of cell differentiation, and 

focal adhesion. Solid and dotted lines represent intra-cluster and inter-cluster 

functional associations, respectively. As seen from Fig. 3.1B, OPN (SPP1) directly 

interacts with CD44 and FGF2, which in turn interact with several other proteins, 

including vimentin (VIM) through CD44. 

As the next step, we cultured metastatic (MDA-MB-231 and SUM-149) and 

non-metastatic (BT-474 and T47D) human breast cancer cell lines and 

characterized their OPN mRNA expression levels as determined by qRT-PCR. To 

assess the relationship between calcification status and OPN expression level, the 

same cell lines were cultured in media enriched with osteogenic cocktail for 

induction of microcalcifications. Figure 3.2A shows the OPN mRNA expression 

results in the presence of osteogenic cocktail. The OPN mRNA expression levels 

of cells cultured in the absence of osteogenic cocktail are shown alongside for 

comparison. The OPN mRNA expression levels are significantly higher in both of 

the metastatic as compared to both of the non-metastatic breast cancer cell lines. 

It is also evident that OPN expression increases substantially with the addition of 

exogenous phosphates in the form of osteogenic cocktail, indicating that OPN may 

play a crucial role in mediating the formation of microcalcifications in breast cancer 

cells. The metastatic triple-negative human breast cancer cell line MDA-MB-231 

was employed as the model system for further investigations in this study. 
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Figure 3.1: Gene expression analysis of microcalcifications in breast cancer 

cells. (A) Expression profiles of genes relevant to breast microcalcifications that 

are differentially expressed in metastatic and non-metastatic breast cancer cell 

lines. The gene expression heat map focused on genes directly linked to 

microcalcifications was obtained by subjecting the publicly available microarray 

dataset GSE16795 to the Gene-e matrix visualization and analysis platform. From 

the 38 cell lines included in the dataset, 5 non-metastatic and 5 metastatic cell 

lines with high relevance to our experimental work were identified and utilized to 

generate the heat map. (B) Protein-protein interaction network of differentially 

expressed genes in the selected metastatic versus non-metastatic cell lines. 

Identified biological processes and pathways that involve OPN (SPP1) are shown. 

Network nodes are colored by pathway membership, and pathways are sorted by 

increasing false discovery rate. Interactions are colored by type of interaction as 
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listed in the legend. Solid and dotted lines represent intra-cluster and inter-cluster 

functional associations, respectively. 

3.2.2 Stable shRNA silencing of OPN inhibits the formation of cellular 

microcalcifications 

To study the role of the OPN gene (SPP1) in the formation of microcalcifications 

in MDA-MB-231 cells, stable clones were generated using shRNA knockdown of 

the SPP1 gene in these cells. Four stable clones - shOPN1 through shOPN4 - 

were identified, characterized, and used for further studies. Figure 3.2B shows 

significantly reduced OPN mRNA expression levels in the stably OPN silenced 

lines versus empty-vector control cells, confirming sufficient shRNA gene 

knockdown. Stably silenced clones and control cells were sub-cultured in the 

presence of osteogenic cocktail for 7 days to induce the formation of 

microcalcifications. The cells were fixed and stained with alizarin red S to 

selectively report for the presence of microcalcifications. Figure 3.3A shows 

representative images of stably OPN silenced MDA-MB-231 clones and control 

cells stained with alizarin red for qualitative comparison. Three independent 

batches of cells were stained, and the average calcification content of the cells is 

shown in Fig. 3.3B along with standard deviations. Our observations reveal that 

there is a consistent inhibition of the formation of cellular microcalcifications due to 

OPN gene silencing in the knockdown clones. The similarity in the trend of 

variation in level of OPN mRNA expression and cellular calcification content across 

the knockdown clones further strengthens our hypothesis that the OPN gene 

positively regulates the formation of cellular microcalcifications. 
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Figure 3.2: OPN mRNA expression of breast cancer cells in osteogenic 

cocktail. (A) Enhancement of OPN mRNA levels in metastatic (MDA-MB-231 and 

SUM 149) and non-metastatic (BT-474 and T47D) cell lines in response to addition 

of osteogenic cocktail. Relative expression levels of OPN mRNA in selected cell 

lines (analyzed using qRT-PCR) in response to osteogenic cocktail is shown. The 

expression levels of OPN in cells grown in control media are shown alongside for 

comparison. (B) Generation of stable clones that exhibit reduced OPN expression 

using shRNA silencing of the SPP1 (i.e OPN) gene in MDA-MB-231 cells. Relative 

expression of OPN mRNA in stably silenced clones (analyzed using qRT-PCR) in 

response to osteogenic cocktail is shown. Conventional Student t test threshold 

(p < 0.05) was considered statistically significant and is indicated by *. 
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Figure 3.3: Silencing of OPN gene results in inhibition of cellular 

microcalcification formation in the knockdown clones. (A) Representative 

bright-field images showing alizarin red S stained cells for the four stably silenced 

clones and vector control. The scale bars represent 50 µm. (B) Bar plot showing 

mean and standard deviation of normalized alizarin red S stain intensity for stably 

silenced clones as percentage of vector control. Conventional Student t test 

threshold (p < 0.05) was considered statistically significant and is indicated by *. 
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3.2.3 Stable OPN silencing reduces the migration of aggressive MDA-MB-231 

cells 

The impact of stable OPN silencing on the migration of MDA-MB-231 cells was 

tested using transwell migration assays. All four stably OPN silenced MDA-MB-

231 lines employed in the study, shOPN1 through shOPN4, displayed reduced cell 

migration compared to control cells. Figure 3.4 shows representative migration 

assay images along with the quantitative comparison of migration ability for all the 

clones studied. The differences in migration ability were statistically significant for 

all clones when compared to control cells, and consistent for all the biological 

repeats (n = 3). 

 

 

Figure 3.4: Silencing of OPN gene results in reduction of in vitro migration 

potential of the knockdown clones. (A) Representative bright-field images 

showing crystal violet stained membranes of transwell inserts for the four stably 

silenced clones and vector control. The scale bars represent 200 µm. (B) Bar plot 

showing mean and standard deviation of number of migrated cells for stably 

silenced clones as percentage of vector control. Conventional Student t test 

threshold (p < 0.05) was considered statistically significant and is indicated by *. 
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3.2.4 Over-expression of OPN in circulating tumor cells (CTC) and lung 

metastatic cells (LMC) 

Motivated by the reduction of migration capabilities of the cells in the in vitro 

experiments, we performed orthotopic inoculations of MDA-MB-231 breast cancer 

cells and derived MDA-MB-231 tumor cells from the blood circulation (circulating 

tumor cells, CTC) and lungs (lung metastatic cells, LMC) at 8–12 weeks following 

inoculation as shown in Fig. 3.5A. These CTC and LMC were examined to verify 

the relevance of our findings in vivo. Figure 3.5B shows the mean and standard 

deviation of OPN mRNA expression levels comparatively for parental MDA-MB-

231 cells, CTC, and LMC. The observations reveal 80-fold and 160-fold increased 

expression of OPN in CTC and LMC, respectively, as compared to the parental 

MDA-MB-231 cells. We also tested the expression levels of two of the genes 

identified as interacting with OPN in our protein-protein interaction analysis (Fig. 

3.1B), which are involved in cell migration, extracellular matrix organization, and 

cell adhesion. The means and standard deviations of CD44 mRNA (Fig. 3.5C) and 

VIM mRNA (Fig. 5D) expression levels are shown comparatively for parental MDA-

MB-231 cells, CTCs, and LMCs. We observed significant decreases in CD44 

mRNA expression in CTCs and LMCs compared to parental MDA-MB-231 cells. 

VIM mRNA expression was significantly increased in CTCs and LMCs. Differences 

in CD44 and VIM mRNA levels between CTCs and LMCs were not significantly 

different. 
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Figure 3.5: In vivo migration of MDA-MB-231 cells is dependent on 

expression of OPN. (A) Schematic of in vivo study conducted to isolate 

fluorescent tumor cells of varying metastatic potential from blood and metastatic 

lungs of mice carrying orthotopic MDA-MB-231 xenograft. Bar plots showing mean 

and standard deviation of (B) OPN mRNA, (C) CD44 mRNA, and (D) VIM mRNA 

expression for circulating tumor cells (CTCs) and lung metastatic cells (LMCs) 

relative to parental MDA-MB-231 cells. Conventional Student t test threshold 

(p < 0.05) was considered statistically significant and is indicated by *. 
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3.3 Discussion 

Cellular mechanisms driving the formation of mammary microcalcifications in 

breast cancer cells remain unclear despite their extensive use in breast cancer 

screening and staging. Since the molecular biology of the formation of 

microcalcifications in breast cancer is poorly understood, we performed an initial 

in silico screen using an existing mRNA database for comparing highly metastatic 

breast cancer cell lines with non-metastatic breast cancer cell lines. In this screen, 

we selectively considered genes with a putative direct or indirect relationship with 

breast microcalcifications or bio-mineralization in general. Osteopontin, the protein 

encoded by the gene SPP1, which had the highest differential expression in our 

analysis, has previously been associated with both physiological and pathological 

mineralization in various organs, making it a good candidate gene for further 

investigation [9]. The increased expression of this gene in MDA-MB-231 cells in 

response to osteogenic cocktail treatment further supported the possibility of its 

involvement in inducing mammary mineralization. The osteogenic cocktail we used 

is known to induce intracellular mineralization comprising of calcium 

hydroxyapatite due to the increased availability of phosphate in the cell culture 

media with addition of β-glycerophosphate, and therefore has emerged as a 

popular in vitro model for studying mineralization [26]. 

The significant suppression of intracellular mineralization as assessed by 

alizarin red S staining of cells cultured in osteogenic cocktail in stably OPN 

silenced MDA-MB-231 cells suggests that OPN is one of the principal factors 

directly governing cellular mineralization processes in triple-negative breast cancer 
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cells. Studies in the past have shown that OPN is critical for both promotion and 

inhibition of hydroxyapatite formation in normal bone and connective tissue cells 

[27,28]. More recently, it has been reported that the regulation of hydroxyapatite 

formation depends on the phosphorylation state of OPN and its interactions with 

other molecules such as osteocalcin [29]. OPN also has been reported to act as 

hydroxyapatite nucleator when present in certain suitable conformations [29]. 

Based on this evidence and the results presented in this study, we reason that the 

formation of microcalcifications in breast cancer cells is a result of the availability 

of OPN in its phosphorylated state, and its dynamic interaction with several other 

proteins.  

Our observation that OPN regulates the formation of microcalcifications in 

breast cancer cells is in agreement with recent observations by Scimeca et al. that 

mammary microcalcifications are found in breast epithelial cells that have 

developed an osteoblast-like phenotype [11]. Such osteoblast-like cells developed 

from breast epithelial cells that were triggered by β-microglobulin to acquire 

mesenchymal characteristics. The osteoblast-like phenotype was sustained by 

bone morphogenic protein-2 (BMP-2), and these cells exhibited localized 

hydroxyapatite-rich cytoplasmic vesicles similar to hydroxyapatite containing 

intracellular vesicles found in osteoblasts [11]. In the same study, increased focal 

expression of OPN was observed in the proximity of hydroxyapatite, which was 

also a characteristic feature of lesions in biopsied tissues, showing 

microcalcifications along with increased mesenchymal markers such as VIM. This 

observation is consistent with significantly increased expression levels of the 
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genes encoding OPN and VIM in our microarray analysis as well as in our animal 

model of spontaneous dissemination, in which CTCs and LMCs concurrently 

displayed elevated levels of OPN and VIM as compared to parental human MDA-

MB-231 breast cancer cells. Together, our results support the notion that 

microcalcifications in aggressive breast cancer cells are driven by processes 

similar to that govern physiological mineralization. 

Furthermore, the relationship between the microcalcification status of 

breast cancer cells and their metastatic capabilities remains largely unexplored. In 

our microarray analysis of publicly available data, we observed that OPN was 

significantly involved and interacted with cell migration, extracellular matrix 

organization, chemotaxis, and cell adhesion in metastatic breast cancer cells. 

Motivated by these data and the finding that microcalcifications are preferentially 

produced in cells displaying a mesenchymal phenotype, we assessed the effect of 

stable OPN knockdown on the migration capabilities of MDA-MB-231 cells. The 

significant inhibition of migration that we detected in all knockdown clones in in 

vitro transwell migration assays indicates that OPN expression directly affects the 

migration abilities of breast cancer cells. Our results are in good agreement with a 

recent study by Zhang et al., in which OPN knockdown in breast cancer cells 

resulted in integrin-induced inhibition of cell migration and invasion, and promoted 

apoptosis through induction of autophagy and inactivation of PI3K/Akt/mTOR 

pathway [30]. Our data also agree with recently published data showing that 

transient siRNA knockdown of OPN in murine mammary tumor cell lines reduced 

cell migration [31]. 
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From an orthotopic mouse xenograft model of spontaneous metastasis in 

vivo, we observed that the OPN mRNA expression level from MDA-MB-231 cells 

that had spontaneously metastasized to the lungs (LMC) were significantly higher 

than that from circulating tumor cells (CTC) from the same model, which in turn 

were significantly higher than that in parental cells. These progressively increasing 

OPN levels in MDA-MB-231 cells of the same genetic background, which have 

progressively traveled farther down the metastatic cascade confirms in an in vivo 

system of spontaneous metastasis that dramatically increased OPN levels are 

most likely required for MDA-MB-231 cells to metastasize. These observations 

further suggest that the OPN gene is expressed differentially in the same 

aggressive breast cancer cell type depending on where these cancer cells are in 

their metastatic journey. 

Concurrently, we observed progressively decreased expression levels of 

CD44, which were highest in parental MDA-MB-231 cells, significantly decreased 

in CTCs, and the most dramatically decreased in LMCs. CD44 is a cell surface 

glycoprotein involved in cell communication and adhesion between adjacent cells 

and between cells and the extracellular matrix [32]. Reduced CD44 expression 

levels were previously shown to enhance breast cancer metastasis [33], which is 

in good agreement with our observations. Our studies thus provide further proof 

for an interaction between OPN and CD44 that helps aggressive breast cancer 

cells to facilitate migration, spontaneous dissemination, and formation of 

metastatic nodules. 
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We also observed that the expression of VIM was significantly enhanced in 

CTCs and LMCs as compared to parental MDA-MB-231 cells. VIM is an 

intermediate filament protein that induces changes in the shape and motility of cells 

that are undergoing EMT [34,35]. Triple-negative breast cancers were previously 

shown to display elevated VIM expression levels compared to other types of breast 

tumors [36]. High expression levels of VIM in primary breast cancers were reported 

to support the formation of metastases in distant organs [37]. Taken together, our 

observations reinforce that an OPN-CD44-VIM interaction axis with implications in 

inducing EMT and reducing adhesion, helped triple-negative MDA-MB-231 cells to 

disseminate and form distant metastases. 

Due to its active role in the regulation of several key pathways that have 

implications in disease progression, OPN is emerging as a novel therapeutic target 

[38,39]. The findings of the current study may enable accurate monitoring of 

response to such therapy through the evaluation of changes in microcalcification 

status. In addition, by exploring the relationship between OPN therapy and its 

impact on metastatic progression, changing microcalcification status can 

potentially be utilized as a marker to track metastatic development. 

In conclusion, two major findings suggest the possibility of a fundamental 

relationship between mammary microcalcifications and metastatic capabilities of 

the cells in which they are formed. These findings are: (i) breast lesions rich in 

hydroxyapatite-based microcalcifications are associated with poor prognosis6, and 

(ii) evidence presented here that OPN is positively regulating both cellular 

microcalcification as well as breast cancer cell migration and metastasis, which 



101 

 

may occur through the observed OPN-CD44-VIM axis. Future studies further 

exploring the causal molecular relationship between microcalcifications and 

metastasis in breast cancer are important for a comprehensive understanding of 

microcalcification etiology and their improved use as diagnostic and prognostic 

marker in breast cancer. 

3.4 Materials and methods 

3.4.1 Identification of candidate genes responsible for breast 

microcalcifications 

The publicly available breast cancer microarray dataset GSE 16795 was analyzed 

where multiple breast cancer cell lines were grown to optimal cell densities for 

mRNA extraction and hybridization on Affymetrix microarrays [24]. A heat map was 

generated using the Gene-e matrix visualization and analysis platform 

(http://www.broadinstitute.org). This heat map represents changes in relative 

content of mineralization-related gene expression levels in 5 metastatic breast 

cancer cell lines (MDA-MB-231, MDA-MB-435s, SK-BR-7, SUM102PT, 

SUM149PT) and 5 non-metastatic breast cancer cell lines (BT-474, BT-483, MCF7, 

MDA-MB-415, T47D). 

3.4.2 Protein–protein interaction network 

The prominent genes overexpressed in the selected metastatic cell lines in the 

Gene-e analysis were employed to visualize protein-protein interactions using the 

STRING-10.5 (http://string-db.org) computational tool and database with a high 

confidence interval of 0.7 [25]. The STRING network, composed of the functional 

protein associations is based on genomic context, high-throughput experiments, 
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co-expression, and scientific reports. Functional enrichments in the network were 

identified using the STRING tool, and a subset of the identified biological 

processes and pathways that involve OPN (SPP1) were selected for visualization. 

The nodes in the network are colored according to their membership in each of the 

identified pathways and the pathways are sorted in the legend by increasing false 

discovery rates. 

3.4.3 Cell culture 

The human breast cancer cell lines MDA-MB-231, SUM 149, BT-474 and T47D 

were obtained from the American Type Culture Collection (ATCC, MD) [40]. All cell 

lines were cultured in RPMI 1640 (Sigma-Aldrich) supplemented with 10% fetal 

bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 2 µg/ml fungizone 

antimycotic (Life Technology, Grand Island, NY, USA) and maintained in a 

humidified incubator in 5% CO2 at 37 °C. In a subset of the studies, the cell culture 

media was supplemented with an osteogenic cocktail containing 10 mM β-

glycerophosphate (Sigma-Aldrich) and 50 mg/ml-1 ascorbic acid (Sigma-Aldrich) 

for promoting the formation of microcalcifications. 

3.4.4 Generation of stably OPN silenced breast cancer cell lines 

MDA-MB-231 cells were transfected with lentiviral particles expressing shRNA 

against human OPN (sc-36129-V, Santa Cruz Biotechnology, Dallas, Texas) to 

specifically knockdown the expression of the human OPN gene. These OPN 

shRNA lentiviral particles were purchased as a pool of concentrated, transduction-

ready viral particles containing 3 target-specific constructs that encode 19–25 nt 

(plus hairpin) shRNA designed to knock down OPN gene expression. Stably 
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transduced clones were developed, along with a vector control cell line expressing 

a control shRNA lentiviral particle (sc-108080, Santa Cruz Biotechnology). qRT-

PCR to measure OPN mRNA and immunoblotting of OPN confirmed successful 

transduction. For stably expressing lines, transfected cells were passaged and 

maintained in media containing Puromycin dihydrochloride (sc-108071, Santa 

Cruz Biotechnology). Cells were kept under selection for 7–10 days. Then, the 

cells from the selection step were plated at a density of 10 cells per ml in a 96-well 

tissue culture plate by adding 100 µl per well (i.e., 1 cell per well). Selected single-

colony wells in the 96-well tissue culture plate were expanded to high confluence 

and transferred to a 24-well tissue culture plate. Once the colonies in 24-well tissue 

culture plates were expanded to high confluence, they were passaged to a 6-well 

tissue culture plate. Clonal cell lines were assessed by qRT-PCR to select lines 

with significantly decreased levels of OPN gene expression. 

3.4.5 qRT-PCR 

Three cell lines from each group (MDA-MB-231, CTC, LM) were analyzed for gene 

expression with two technical repeats and two biological repeats each. For RNA 

purification, cells were grown for 48 hours in exponential growth phase and mRNA 

was isolated and purified using the RNeasy total RNA isolation kit (Qiagen, 

Germantown, MD) according to the manufacturer’s protocol. mRNA was reverse 

transcribed into cDNA using qScript™ cDNA SuperMix (Quanta Bioscience, 

Gaithersburg, MD). Quantitative real-time PCR (q-RT-PCR) was performed using 

IQ SYBR Green Supermix and gene-specific primers in the iCycler RT-PCR 

detection system (Bio-Rad, Hercules, CA) with 2 µl of diluted cDNA samples (1:10) 
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used as a template using the following primers. The sequences for forward and 

reverse primers for quantifying SPP1 mRNA, which expresses the OPN protein, 

were 5′-CGAGGTGATAGTGTGGTTTATGG-3′ and 5′-

GCACCATTCAACTCCTCGCTTTC-3′, respectively. The sequences for forward 

and reverse primers for quantifying CD44 mRNA were 5′-

CGGACACCATGGACAAGTTT-3′ and 5′-GAAAGCCTTGCAGAGGTCAG-3′, 

respectively. The sequences for forward and reverse primers for quantifying VIM 

mRNA were 5′-GCAAAGATTCCACTTTGCGT-3′ and 5′-

GAAATTGCAGGAGGAGATGC-3′, respectively. The housekeeping gene 

Hypoxanthinephophoribosyltransferase-1 (HPRT1) was used as internal reference 

gene for quantification [41] as previously described [42,43]. The expression of RNA 

relative to HPRT1 was calculated [42–44] based on the Ct as R = 2−(ΔCt), where 

ΔCt = Cttarget − CtHPRT1 mRNA gene expression level was reported as 

mean ± standard deviation. 

3.4.6 Alizarin Red S staining and quantification of mineralization 

The cell monolayers were fixed using 4% formaldehyde after washing gently with 

PBS. Alizarin red S staining solution at pH 4.1–4.3 was added to the fixed cell 

monolayers and incubated in the dark for 45 min. Cell monolayers were carefully 

washed with distilled water and PBS after aspirating the remaining alizarin red S 

solution. The stained cells were imaged using a camera (Lumenera Infinity 1) 

mounted on a microscope (Leica DMIL, 0.4 NA and 20 × magnification objective). 

Several images of the stained cells were captured from three independent cultures 

for each stable clone, (each frame capturing more than 50 cells) and the pixels 
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corresponding to alizarin red were quantified and normalized to the total number 

of cells per frame to remove the effects of any differences in cell densities across 

the clones. The pixels corresponding to the alizarin red stained areas were 

identified by their RGB decomposition obtained using MATLAB (Mathworks, Natick, 

MA) and the cells in each frame were counted using the manual mode of Image-J 

software [45]. The colors determined by the criterion R > 180, R > G + 80 and 

B < 100 were found to accurately represent the color of the alizarin red S stain. 

3.4.7 In Vitro migration assays 

Transwell inserts (Costar) with porous polycarbonate membranes with a pore size 

of 8 μm were used to measure the effect of stable OPN silencing on migration in 

MDA-MB-231 cells. shRNA knockdown and control clones (1 × 105 cells) 

suspended in 100 μL of serum-free RPMI were added to the upper chamber of the 

insert and allowed to migrate across the membranes, which occurred under the 

influence of RPMI medium with 5% fetal bovine serum as chemoattractant in the 

lower chamber. After 20 hours, the lower sides of the membranes were fixed in 4% 

formalin and stained with 0.2% crystal violet solution. After staining, four fields of 

view for each insert were obtained with an inverted microscope at 

10 × magnification. Quantitative measurements of the number of cells migrating 

across the membrane were obtained by applying an intensity threshold after 

converting the RBG images to 8-bit grayscale images using Image-J software [45]. 

3.4.8 Experimental animal models: Generation of CTC and LMC 

All animal experiments were approved by the Johns Hopkins University Animal 

Care and Use Program in compliance with the Animal Welfare Act regulations and 
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Public Health Service (PHS) policy. Johns Hopkins University has an approved 

PHS Assurance and maintains accreditation of our program by the Association for 

the Assessment and Accreditation of Laboratory Animal Care (AAALAC) 

International. MDA-MB-231 cells were stably transfected with a construct 

containing DNA of tdTomato fluorescent protein as previously described [43]. 

Stably tdTomato-expressing MDA-MB-231 breast cancer cells (2 × 106) were 

orthotopically implanted into the fourth right mammary fat pad of 6 weeks old 

female athymic nu/nu female mouse (NCI) as described previously [42,43,46]. 

When primary tumor volume reached approximately 500 mm3 after about 8–12 

weeks following inoculation, the mouse was sacrificed, its blood was obtained by 

cardiac puncture, and its lungs were collected to isolate and culture CTC and LMC, 

respectively, as briefly described in the following. For CTC isolation, cardiac 

puncture yielded about 500 μl of blood from each mouse. Red blood cells were 

lysed (ACK lysing buffer, Life technology, Grand Island, NY, USA) and CTCs were 

pelleted by centrifugation, suspended in RPMI 1640 culture medium, and CTC 

presence was verified by fluorescence microscopy of tdTomato-expression in 

MDA-MB-231 cells. For LMC isolation, both lungs were carefully removed and cut 

into 4 mm sized tissue pieces with a sterile scalpel and scissors. These lung tissue 

pieces were placed onto sterile Pyrex petri dishes, washed 3 times in balanced 

salt solution without calcium and magnesium, and finely chopped in 0.25% 

trypsin/EDTA solution. Lung tissue was digested at 37 °C for 1 hour to maximize 

trypsin penetration. Warm, complete media was added to the tissue pieces, which 

was gently dispersed by pipetting. The resulting tissue suspension was then 
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passed twice through a 20 G syringe needle to completely disperse any remaining 

tissue. Two weeks after cell culture of CTC and LMC, the tdTomato-expressing 

CTC or LMC cells were sorted by FACS to clear out all non-fluorescent non-cancer 

cells of lung origin. 

3.4.9 Quantification and statistical analysis 

Statistical significance of the differences between quantitative measurements were 

analyzed by unpaired two-tailed Student’s t-test. P-values < 0.05 were considered 

to be statistically significant. 
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Chapter 4 

Label-free Raman spectroscopy detects stromal adaptations in 

pre-metastatic lungs 

  

Recent advances in animal modeling, imaging technology and functional genomics 

have permitted precise molecular observations of the metastatic process. Yet, a 

comprehensive understanding of the pre-metastatic niche remains elusive owing 

to the limited set of tools that can map subtle differences in molecular mediators in 

organ-specific microenvironments. The challenge of measuring multiple cell types 

in secondary sites, prior to the arrival of metastasizing tumor cells and the 

consequent morphological manifestations, demands non-perturbative analytical 

methods that can offer quantitative biochemical insights. Here we report an 

approach to detect pre-metastatic changes in the lung microenvironment, in 

response to primary breast tumors, using a combination of metastatic mouse 

models, Raman spectroscopy and multivariate analysis of consistent patterns in 

molecular expression. We used tdTomato fluorescent protein expressing MDA-

MB-231 and MCF-7 cells, of high and low metastatic potential respectively, to grow 

orthotopic xenografts in athymic nude mice and allow spontaneous dissemination 

from the primary mammary fat pad tumor. Label-free Raman spectroscopic 

 
 This chapter is a reprint of the peer-reviewed publication: Paidi SK*, Rizwan A*, Zheng C*, Cheng 
M, Glunde K, Barman I. “Label-free Raman spectroscopy detects stromal adaptations in pre-
metastatic lungs primed by breast cancer”, Cancer Research, 77(2), 247-56, 2017. (* denotes equal 
contribution) 
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mapping was employed to record the molecular content of pre-metastatic lungs. 

Our measurements show reliable distinctions in vibrational features, characteristic 

of the collageneous stroma and its cross-linkers as well as proteoglycans, that 

uniquely identify the metastatic potential of the primary tumor by recapitulating the 

compositional changes in the lungs. Consistent with histological assessment of the 

tissue specimen and gene expression analysis, our study suggests that 

remodeling of the extracellular matrix components as indicated by their vibrational 

spectroscopic signatures may present promising markers for objective recognition 

of the pre-metastatic niche, independent of conventional clinical information. 

4.1 Introduction 

While local breast cancers are largely responsive to current therapeutic strategies, 

treatments to permanently eradicate metastasis are yet to be developed. 

Consequently, nearly all breast cancer-related deaths today result from metastatic 

disease that involves distant organs [1]. The distribution of metastases is a non-

random process with each tumor type manifesting a characteristic pattern of 

metastatic involvement in distant vital organs [2, 3]. Stephen Paget’s ‘Seed and 

Soil’ hypothesis originally shifted the attention from a sole focus on the behavior of 

primary tumor cells to the important role of the stroma at the secondary site [4, 5]. 

Seeking to understand the basis of metastasis organotropism, his seminal 

hypothesis postulated that a receptive microenvironment at the secondary organ 

(soil) is crucial to the engraftment of circulating tumor cells (seed). This also 

provided a conceptual framework for later observations in experimental metastasis 

assays that cancer cells derived from a distant site display enhanced metastatic 
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ability to that specific organ [6]. Yet, it is only with recent advances in animal 

metastasis assays, genomic profiling and real-time imaging techniques that the 

molecular components that drive organ-specific metastasis have been specifically 

probed. Translation of the preclinical findings on the metastatic microenvironment 

into a clinical test, however, has not yet been realized.   

Building on the seed and soil hypothesis, emerging evidence suggests the 

formation of a pre-metastatic niche [7, 8], i.e. collective changes at the target 

metastasis sites prior to the arrival of the first tumor cells. This niche development 

in the preferred metastatic sites appears to be driven by soluble growth factors 

secreted by the primary tumor and recruitment of tumor associated cells [9]. The 

priming of the secondary organs was initially attributed to the localization of 

haematopoietic bone marrow progenitor cells expressing vascular epithelial 

growth factor receptor 1 (VEGFR-1) due to VEGF being secreted by the primary 

tumor [7]. Exosomes secreted from primary tumors have also been reported to 

play a significant role in mobilizing these progenitor cells to the pre-metastatic sites 

[10]. The recruitment of tumor-associated cells provides an increased availability 

of chemokines, growth factors, matrix degrading factors and adhesion molecules 

that initiate the metastatic cascade [8, 9]. This process is reported to be 

accompanied by remodeling of the extracellular matrix (ECM) in the pre-metastatic 

niche, notably through the upregulated expression of matrix metalloproteinases 

(MMPs) [11], transformation of local fibroblasts, and focal expression of fibronectin. 

For instance, a recent series of investigations have revealed that lysyl oxidase 

(LOX), an enzyme secreted by hypoxic tumor cells, modulates the ECM in pre-
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metastatic sites by crosslinking collagen fibrils, thereby making it more receptive 

to further myeloid cell infiltration [12, 13].   

While promising, these findings also highlight the need for further research 

to reveal a holistic picture of the pre-metastatic stage that trigger (or inhibit) 

engraftment and proliferation. This, in turn, demands molecular-specific and 

quantitative analytical tools that can provide direct readouts from multiple 

biomolecules without necessitating individual labeling. Such a tool would inform if 

and how the compositional contributors of the stromal microenvironment in 

metastatic sites are changing in response to a spontaneously disseminating 

primary tumor - but prior to the arrival of tumor cells. Vibrational spectroscopy 

offers a promising tool to meet these demands, owing to the wealth of intrinsic 

molecular information (that obviates the need for imaging probes), extensive 

multiplexing capability and facile readout [14-17].  

Spontaneous Raman spectroscopy, in particular, has emerged as an 

attractive technique for the diagnosis of cancers with high specificity and free of 

inter-observer variability [18]. Based on inelastic scattering of light arising from the 

interactions with the tissue being analyzed, Raman spectroscopy affords sub-

cellular signal localization and can easily be extended to in vivo approaches [19, 

20]. Recently, its ability to discern pathologies in advance of their clinical 

manifestations has also been shown [21]. Malins and co-workers elegantly 

demonstrated the early detection sensitivity of vibrational spectroscopy in a study, 

where spectral changes in the DNA of primary tumor were noted 57 days prior to 

the appearance of histological changes [22]. We hypothesized that the utility of 
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Raman spectroscopic information could also be extended to identifying the pre-

metastatic niche, due to the unique structural and chemical changes associated 

with the evolving soil. 

 

 

Figure 4.1: Raman spectroscopic profiling of pre-metastatic lungs. (A) Mouse 

models, orthotopically xenografted with human breast cancer cells of different 

metastatic potential (MCF-7 and MDA-MB-231), were used to study stromal 

adaptations in the lung, prior to seeding of tumor cells. (B) Representative in vivo 

brightfield (left) and fluorescence (right) images of mouse growing a tdTomato-

expressing breast tumor xenograft. (C) Mean Raman spectra (with the shadow 

representing ±1 standard deviation) acquired from lungs of normal mice, and pre-

metastatic lungs of MCF-7 and MDA-MB-231 xenografted mice are shown. 
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Important clues also come from a recent report by Kwak et al., 

demonstrating the utility of infrared (IR) spectroscopic imaging in predicting cancer 

recurrence by exploiting molecular features of the tumor microenvironment [23], 

and our recent observation that lymph nodes in mice with metastatic tumor 

xenografts displayed an increased collagen I density [24]. Consistent with these 

recent literature reports, we suspected that the collagen architectural modifications, 

in part, preceded the seeding of metastatic cancer cells. Because Raman spectra 

report vibrational features characteristic of collagen and its cross-linking moieties 

as well as glycoproteins, our goal in this study was to identify Raman spectral 

patterns that are able to detect characteristic molecular changes in the pre-

metastatic niche.  

Here we have investigated lungs from mouse models that recapitulate 

spontaneously disseminating breast cancer cells of low and high metastatic 

potential, and exploited the molecular basis of Raman spectroscopy to probe the 

pre-metastatic niche (Figure 4.1). Raman spectroscopic mapping measurements 

revealed subtle, but consistent, changes in the vibrational features of ECM 

components of the lungs, in particular in their collagen fiber matrix and 

proteoglycan content. The definition of the pre-metastatic adaptations in spectral 

terms facilitated the development of a decision algorithm, which accurately 

differentiates lungs in mice with metastatic MDA-MB-231 tumor xenografts from 

that in mice with MCF-7 xenografts and normal controls. A continuous model of 

ECM modifications, based on the metastatic potential of the primary tumor, is 

proposed to explain the differential signatures – in the confirmed absence of any 
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tumor cells in the lungs. This model is in agreement with observations from 

Masson’s trichrome staining and gene expression analysis performed on 

microarray data of pre-metastatic lung samples from mice harboring breast tumor 

xenografts. Taken together, this study demonstrates the potential of Raman 

spectroscopy as a rapid, objective and label-free tool in the recognition of pre-

metastatic changes. We envision that our findings here will also accelerate the use 

of Raman spectroscopy in identifying distinct biochemical signatures in organ-

specific niches, thereby enabling a better understanding of organotropism.  

4.2 Materials and Methods 

4.2.1 Tissue preparation and histopathology 

Six-week-old female athymic nu/nu mice (NCI, MD) were orthotopically inoculated 

with 2x106 cells of the human breast cancer cell lines MDA-MB-231 (n=3), or MCF-

7 (n=3) in their fourth right mammary fat pad, as detailed in our previous article 

[25]. For comparison, control mice (n=3) without tumor cell implantation were 

employed in the study. Cell lines were obtained from the American Type Culture 

Collection (ATCC, MD) and stably transfected with a construct containing cDNA of 

tdTomato as described in our previous report [24]. Cell lines tested negative for 

mycoplasma and were authenticated using short tandem repeat (STR) profiling 

prior to inoculation in mice. Cell lines were maintained in RPMI 1640 (Sigma 

Aldrich) supplemented with 10% fetal bovine serum (Sigma Aldrich) and 1% 

penicillin-streptomycin (Sigma Aldrich) in a humidified incubator at 37oC/5% CO2. 

Prior to implantation of MCF-7 cells, mice were supplemented with 17β-Estradiol 

(Innovative Research of America, SE#121, 0.72 mg/pellet, 60 day release) in their 



122 

 

neck region [26]. Primary tumor size was monitored, and mice were sacrificed 

within 8-12 weeks of cell implantation when primary tumors grew to ca. 500 mm3 

in volume. Control mice were also sacrificed in this timeframe. Freshly excised 

lungs of mice were cleaned in phosphate buffered saline (PBS) and fixed in 

formalin for 24 hours. Formalin fixed lung tissue samples were rinsed thoroughly 

in excess PBS to remove any residual formalin before acquiring Raman spectra. 

Following spectral acquisition, tissues were stored in 70% ethanol and sent to JHU 

Histology Services for paraffin embedding and serial sectioning, after which one of 

the sections was used for haematoxylin and eosin (H&E) staining. The unstained 

slides were utilized in our laboratory to perform Masson’s trichrome staining for 

collagen as detailed in our previous study [24]. The Institutional Animal Care and 

Use Committee at the Johns Hopkins University School of Medicine approved the 

protocol of this study. 

4.2.2 Acquisition of Raman spectra 

Formalin fixed lung specimens were rinsed in PBS, flattened and placed on a clean 

aluminum block. There was no interference of the tissue Raman spectrum from 

the aluminum substrate, which also ensured a consistent probe-tissue imaging 

distance. A custom-built portable, fiber-probe based Raman spectroscopy system 

was used for spectral acquisition [27]. Briefly, an 830 nm diode laser (500 mW 

maximum power, Process Instruments, Salt Lake City, UT) was used to excite the 

sample. A lensed fiber-optic Raman bundled contact probe (Emvision LLC, FL) 

having a diameter of 2 mm (and an estimated tissue sampling volume of 1 mm3) 

was used to deliver the excitation beam though its central fiber and collect the 
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back-scattered light through an annular ring of optical fibers. The scattered light 

was directed to a spectrograph (Holospec f/1.8i, Kaiser Optical Systems, MI). The 

spectra were then recorded using a thermoelectrically cooled CCD camera (PIXIS 

400BR, 20×20 μm pixels, 1340×400 array, Princeton Instruments, NJ). The laser 

power at the lung tissue samples was maintained at around 15 mW in this study 

and the tissue was kept moist throughout the period of laser exposure by 

intermittent addition of PBS. A total collection time of 10 seconds (10 

accumulations of 1s each to prevent CCD saturation) was used for acquisition of 

each spectrum. Spectroscopic mapping was pursued to overcome the limitations 

of conventional fiber probe-based point spectroscopy that only examines a small 

area of tissue and suffers from undersampling. Wide area mapping, over the entire 

lung specimen, was performed by scanning the optical probe using a pair of 

motorized translation stages (travel range: 13 mm, T-LS13M, Zaber Technologies 

Inc, Vancouver, Canada) in each orthogonal direction. Zaber console (open-

source software) was employed to control the raster scan through the PC serial 

ports. The mapping protocol also ensured the collection of sufficient spectra 

(approx. 300 spectra per mouse) for the development of robust classification 

models.  

4.2.3 Data analysis 

The Raman instrument was wavenumber-calibrated using 4-acetamidophenol 

(Tylenol©) spectra. Raman spectra recorded from mouse lungs were restricted to 

the fingerprint wavenumber region (500-1850 cm-1) for analysis and normalized to 

lie between 0 and 1 in order to remove the effects of potential differences in laser 
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power at the sample. Principal component analysis (PCA) was used to reduce the 

dimensionality of the spectral dataset to a few dimensions characteristic of the 

maximum variance in the dataset [28]. This transformation converts the set of 

spectral recordings into a set of values of linearly uncorrelated variables that form 

an orthogonal basis set. The spectral dataset of each mouse model was subjected 

to PCA using the statistical toolbox of MATLAB 2015b (Mathworks, Natick, MA) to 

obtain principal component (PC) scores and loadings that highlight the spectral 

features characteristic of the class. The use of these key patterns (PCs) enhances 

sensitivity of the analysis by not focusing on small differences in Raman signatures 

that may arise from natural variation or sampling.  

To visualize the differences among the classes, radial visualization maps 

were plotted using the Radviz tool of Orange data mining toolbox [29]. Here we 

utilized the scores of select PCs obtained from subjecting the entire spectral 

dataset to PCA. Guided by the Vizrank algorithm, the PCs were chosen to 

maximize class separation. In the radial visualization plot, the scores of a spectrum 

determine the position of the corresponding data point relative to the PC pivots. 

Partial least squares discriminant analysis (PLS-DA), a supervised classification 

technique based on partial least squares regression, was employed to create 

decision models from the acquired Raman spectra for identifying the pre-

metastatic niche [30]. PLS-DA-derived classification models were built and trained 

using a leave-m-out cross-validation approach that utilizes randomly chosen 

training data consisting of 60% of the data of each class and test data constituted 

by the remaining 40% of the spectra. Randomized equalization of classes was 
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implemented prior to PLS-DA model development to avoid skewing the model 

through disproportionate class sizes. Multiple iterations of class equalization and 

splitting into testing and training sets (10x100) were performed to obtain average 

performance metrics of the PLS-DA derived classification models.  

Collagen quantification of Masson’s trichrome stained tissue slides was 

achieved using FIJI (Image-J based open source software) [31] and MATLAB 

(Mathworks, Natick, MA). The color de-convolution feature provided by FIJI was 

employed to extract an 8-bit frame (dense collagen presence = 0 and no collagen 

presence = 256) corresponding to the color, indicative of collagen content in the 

trichrome stains. The color was defined by average RGB values of pixels in a small 

user-selected region of interest (ROI) chosen in the image. Using in-house 

MATLAB code, the intensity of the pixels was converted to obtain a measure of 

collagen density in each frame. The data was averaged over the entire lung tissue 

section with n>35 fields of view (FOV) per class, where each FOV was ca. 1.75 

mm x 1.33 mm. Statistical significance of differences across the classes was 

evaluated using the Student’s t-test. A conventional criterion of p-value less than 

0.05 was used to consider differences as statistically significant. 

4.2.4 Microarray dataset 

The gene expression microarray dataset GSE62817 from the Gene Expression 

Omnibus (GEO) of the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/geo/) was used in this study [32]. This dataset 

contains gene expression data from pre-metastatic lungs of BALB/c mice injected 

with tumor cells into their fourth mammary fat pad. In particular, 67NR (non-
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metastatic) and 4T1 (metastatic) breast carcinoma cell lines were used and lung 

tissue was collected when the tumors reached a volume of 50 mm3. Control mice 

with no tumor cell injections were utilized for comparison. Briefly, RNA was 

extracted using Qiagen kit, and Affymetrix microarrays (Mouse 430-v2) were used 

to analyze the expression profile of tissue samples. The heat map was generated 

using Gene-e matrix visualization and analysis software 

(http://www.broadinstitute.org). We used the moderated F-test statistic for 

selecting relevant genes. Consistent with the number of different groups and 

number of samples per group in the dataset, a threshold F-test statistic of 2.53 

(corresponding to α = 0.125 level of significance) was used. 

4.3 Results and Discussion 

Lung was selected as the target organ in the current pilot study, as it offers a 

favorable site for spontaneous dissemination of breast cancer and is the most 

commonly studied metastatic site in animal models [9, 33]. Primary orthotopic 

MDA-MB-231, and also eventually MCF-7, breast tumor xenografts used in our 

study preferentially metastasize to the lungs [34, 35]. Spectroscopic mapping of 

the lungs, as opposed to a limited number of discrete point measurements, was 

pursued to encompass a large field of view with high spectral contrast. This would 

also account spectroscopically for the intrinsic biological variation in lung tissue 

that could otherwise suppress the subtle differences expected from pre-metastatic 

adaptations. Figure 4.1C shows average Raman spectra recorded from lung 

samples of control mice (‘Control’) as well as mice bearing MCF-7 (‘MCL’) and 

MDA-MB-231 (‘MDL’) tumor xenografts. The spectra shown here were background 



127 

 

subtracted for the tissue autofluorescence component. While gross visual 

inspection reveals limited spectral variations, we reason that a subset of pixels 

(representing specific molecular moieties) has predictive power that is lost in 

examining the average value of the spectra across the lung specimen. In an effort 

to focus on elucidating the differentiating biochemical characteristics, we employed 

principal component analysis (PCA). To preserve the subtle spectral features, we 

performed PCA on the normalized spectra recorded from the specimen without 

background subtraction. For comparison, the results obtained following fifth order 

best-fit polynomial based autofluorescence background removal have been also 

been provided alongside (and in Appendix). 

 

 

Figure 4.2: Principal component analysis of the acquired Raman spectra. (A) 

PC loadings derived from spectra of lungs from control mice, i.e. bearing no tumor 

xenograft. (B) PC loadings derived from spectra of lungs belonging to mice bearing 

MCF-7 xenografts (labeled as MCL in the text). (C) PC loadings derived from 

spectra of lungs belonging to mice with MDA-MB-231 xenografts (labeled as MDL 

in the text). Green and red dotted lines highlight collagen and proteoglycan 

features, respectively. 
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Consistent differences in Raman spectra reflect biochemical changes in 

pre-metastatic lungs. Figure 4.2 shows the first 7 principal component (PC) 

loadings in order of spectral variance for each of the three classes, Control, MCL 

and MDL. The first few PCs in each class are evidently influenced by the broad 

tissue autofluorescence signal; the characteristic Raman features are more 

prevalent in PCs 4 through 7. The PCs derived from the spectra belonging to the 

lungs of control mice exhibit notable Raman features at 859 cm-1 (C-C stretch of 

proline in collagen), 1003 cm-1 (C–C stretching vibration of the aromatic ring in the 

phenylalanine side chain), 1442 cm-1 (CH2 deformations in lipids), 1592 cm-1 

(tentatively attributed to carbon particles) and 1653 cm-1 (amide-I feature of 

proteins with potential contributions of C=C stretching in lipids) with a weaker peak 

at 1304 cm-1 (in-plane CH2 twisting modes of lipids). These features are 

concordant with prior observations in the literature [36-38]. Table ST4.1 (Appendix) 

lists the prominent peaks observed in the PCs and their characteristic band 

assignments. 

Visual inspection of the PC loadings show an enhancement of the 859 cm-

1 peak, which can be attributed to collagen, for the MDL specimen in comparison 

with MCL and control as well as a new peak at 917 cm-1 (C-C stretch of proline 

ring) [17] for the non-control samples. These spectral differences suggest a 

positive correlation of collagen density in the lung specimens with the presence of 

a primary tumor xenograft and, importantly, with its metastatic potential. Previous 

studies have discussed the role of collagen in the pre-metastatic niche and have 

shown evidence of collagen crosslinking and the creation of a metastatic growth 
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permissive fibrotic microenvironment at secondary sites, which was mediated by 

lysyl oxidase (LOX) secreted by hypoxic tumors [39, 40]. Inhibition of LOX 

synthesis in human breast cancer cells has been shown to reduce the 

accumulation of CD11b+ myeloid cells in pre-metastatic organs of mice with 

orthotopic tumors and prevent metastasis [12]. Another pertinent peak was 

observed at ca. 1061 cm-1 in the MCL and MDL PCs, which is known to be a key 

spectral marker for proteoglycans [41, 42]. This finding offers an intriguing insight 

into the nature of molecular modifications in the pre-metastatic niche, particularly 

in light of the study of Gao et al. This study demonstrated that myeloid cells in pre-

metastatic lungs (recruited by primary tumor derived secretory factors) aberrantly 

expressed versican, an ECM proteoglycan [43]. Versican stimulated mesenchymal 

to epithelial transition of metastatic tumor cells by reducing phospho-Smad2 levels, 

which led to elevated cell proliferation and accelerated metastases. In fact, lung 

metastasis in mouse models was found to be significantly impaired through 

knockdown of versican, reinforcing the importance of proteoglycan content as a 

pre-metastatic site marker. Furthermore, the gradual increase in the prominence 

of proteoglycan marker in PCs with increasing metastatic potential is in agreement 

with the seminal report of Kaplan et al., which showed that recruitment of bone 

marrow-derived cells is correlated to the aggressiveness of the primary tumor [7]. 

On the other hand, a significant suppression of the peaks at ca. 1302 cm-1 and 

1442 cm-1 was noted with a smaller reduction in the intensity of the 1653 cm-1 

feature. Since the former two peaks are characteristic of lipids and the latter also 

has lipid contributions, one can reasonably infer a relative reduction in the lipid 
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content corresponding to spectra from lungs of mice bearing primary tumor 

xenografts. 

 

 

Figure 4.3: Visualization of spectroscopic differences due to pre-metastatic 

adaptations. Radial visualization plot showing clusters formed by spectra 

recorded from lung samples of sacrificed mice bearing MDA-MB-231 and MCF-7 

breast cancer xenografts as well as controls without xenografts. 
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Given the large dimensionality of the spectral data, however, it is 

challenging to judge whether the differences across the classes are significant 

from visual inspection of the PC loadings alone. To observe these differences 

better, we employed radial visualization plots that map the scores of multiple PCs 

onto a two-dimensional space for the purpose of clustering. Figure 4.3 shows a 

representative radial visualization plot constructed by using PCs derived from a 

randomized spectral selection with 300 points per class (control, MCL and MDL). 

These were chosen from the total set consisting of ca. 900 spectra/class, which in 

turn were constituted by ca. 300 spectra acquired from spatially distinct points in 

the lung lobes of each mouse. Figure S4.1 (Appendix) shows the corresponding 

radial visualization map after subtraction of tissue autofluorescence background. 

In order to obtain informative projections of the class-labeled data, the 

VizRank algorithm was used to grade the PCs by their ability to visually 

discriminate between classes [44]. Evidently, there are pronounced differences in 

the Raman spectra acquired from lung specimens of control, MCL and MDL mouse 

models, most likely owing to differential priming through factors secreted by the 

primary tumor. The presence of a small overlap of clusters from control and MDL 

mice indicates a limited development of the pre-metastatic niche in some of the 

latter cases and requires further analysis, as detailed in the ensuing paragraphs. 

While the PC score-based plot offers a satisfactory tool for preliminary data 

exploration, it does not provide quantitative information about the potential of 

Raman spectroscopy in recognizing the class (metastatic potential) and in 
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understanding how the lung(s) of an individual mouse responds to the primary 

tumor xenograft. 

Thus, we used partial least squares–discriminant analysis (PLS-DA)-based 

classification models for translating the spectroscopic measurements in the pre-

metastatic lungs to identification of the type of primary tumor xenograft. We 

employed an equal number of spectra belonging to each class (control, MCL and 

MDL) and their class labels to train the classification algorithm. To ensure 

robustness, we evaluated the classifier by testing on a separate validation dataset 

as detailed in the Data Analysis section. Average correct rates of prediction of 

90.1%, 97.7% and 78.4% (95.4%, 95.6% and 75.1% after autofluorescence 

background subtraction) were obtained for the spectra belonging to control, MCL 

and MDL, respectively. The relevant confusion matrix of the reference and 

predicted labels is shown in Table ST4.2 (Appendix). The lower correct 

classification rate for MDL spectra in both the cases is in agreement with the 

overlap of the MDL and control clusters observed on the radial visualization plot in 

Fig. 4.3.  

In order to understand the root cause of the MDL spectra misclassifications, 

we repeated the former analysis by leaving one mouse out of the dataset each 

time (Table 4.1 and Table ST4.3 in Appendix after autofluorescence background 

subtraction). Removing mouse MD #3 (arbitrary numbering of mice used for 

tabulating results) yields near perfect classification accuracy indicating significantly 

lesser pre-metastatic adaptations in the lungs of this animal. Furthermore, 

removing mouse MD #3 also improved the classification rate of spectra belonging 
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to control mice due to enhanced contrast in the training data. Notably, removal of 

any other mouse from the classification protocol did not result in as significant a 

change in the accuracy levels. This reinforces the fact that the improvement 

observed on removal of mouse MD #3 data was not due to overtraining of the 

model on smaller numbers, as otherwise similar enhancements would have been 

noted in all the other cases. The inadequate priming of the MD #3 lungs is also 

supported by application of Chauvenet’s criterion to the set of classification rates 

obtained for the MDL class (Table 4.1). The latter results in designation of MD #3 

as the sole outlier in the group due to its significant deviation from the mean by 

more than the maximum allowable number of standard deviations (max = 1.96 for 

a sample size of n = 10). Application of Chauvenet’s criterion also facilitates 

determination of individual sample eligibility for training the PLS-DA classifier. The 

spectroscopic measurements, thus, capture the inherent variability in metastasis, 

which is commonly regarded as an inefficient process that only a subset of tumor 

cells can successfully navigate [45, 46] and is known to exhibit sporadic 

occurrence across a cohort of animals.  

Finally, we conducted a negative control study to verify that the predictive 

power of the developed algorithms was not driven by potential spurious 

correlations in the spectral dataset [47]. For this validation study, we assigned 

random class labels to the spectra irrespective of their true class origins and 

employed the PLS-DA-derived classification models after similar splitting of the 

data into training and test sets. This resulted in an average correct classification 

rate of 33.3% with a standard deviation of 1.4% (and 33.6% with a standard 
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deviation of 1.4% after background subtraction) for 1000 iterations. The 

significantly low rate of correct classification (consistent with the likelihood of 

random selection of the true class label, 1/3) underscores the absence of chance 

correlations in the developed model. 

 

Table 4.1: Correct classification rates (%) of the PLS-DA-derived model using 

leave-one-mouse-out protocol (MD and MC refer to mouse models with MDA-

MB-231 and MCF-7 tumor xenografts, respectively) 

Mouse 
excluded 

Correct classification rate 
(%) 

Chauvenet’s criterion for 
MDL 

(n = 10; max = 1.96) 

Control MCL MDL  = |xi - xmean|/ Result 

None  90.1 97.7 78.4 0.26 Retain 

MD #1 81.2 97.0 75.7 0.61 Retain 

MD #2 83.8 96.8 76.2 0.54 Retain 

MD #3 100.0 98.6 99.4 2.54 Eliminate 

MC #1 88.8 98.0 78.5 0.24 Retain 

MC #2 89.6 97.3 77.6 0.36 Retain 

MC #3 88.8 98.3 77.3 0.40 Retain 

Control #1 87.2 96.4 73.1 0.96 Retain 

Control #2 92.9 97.3 80.2 0.01 Retain 

Control #3 92.9 97.4 86.4 0.81 Retain 
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Histological assessment of the pre-metastatic niche in mice lungs. Due to 

their high metastatic potential and preference for metastasis to lungs, orthotopic 

MDA-MB-231 xenografts are frequently employed to replicate breast cancer 

metastasis and organotropism [33, 48]. Aggressive subpopulations of MDA-MB-

231 are often derived through multiple rounds of in vivo selection and re-

implantation and have been recently reported to result in macro-metastases to the 

lungs in 100% of all tested mice [35]. In our study, we observed no cancer cell 

seeding in lungs of mice bearing MDA-MB-231 tumor xenografts (time of sacrifice: 

8-12 weeks post orthotopic tumor inoculation). Prior optical tracking studies by 

Winnard and co-workers showed that orthotopically implanted MDA-MB-231 cells 

reached lungs only after ~15 weeks of implantation in SCID mice [34]. They also 

observed the absence of distant metastases after 8 weeks, consistent with the time 

period of sacrifice in our study. MCF-7 cells, often classified as non-metastatic [49], 

were likewise not expected to engraft in the lungs within this 8-12 week time frame. 

However, it is noteworthy that MCF-7 cells are known to eventually metastasize to 

lungs in immunodeficient mice such as NSG [35]. 

Here, the lung tissue sections from each mouse were H&E stained to check 

for the onset (or the lack thereof) of metastasis. Also, to histologically examine the 

differences in collagen content across the classes, serial sections were processed 

with Masson’s trichrome stain. Figure 4.4 shows representative images of H&E 

and Masson’s trichrome stained lung sections belonging to each class (control, 

MCL and MDL). The H&E images corroborate the lack of any metastatic lesions in 

the lung specimens.  
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Figure 4.4: Histological assessment of pre-metastatic lungs shows stromal 

changes. Top (A-C) and middle (D-F) panels display representative microscopic 

images of H&E and Masson’s trichrome stained slides at 5x and 10x 

magnifications, respectively. The H&E stained sections confirm the absence of 

tumor cell seeding in the lungs of controls. Masson’s trichrome stain delineates 

collagen fibers in the extracellular matrix and is quantified through image 

processing, as shown in the bottom panel (G-I). The left (A, D, G) panel shows 

lung sections derived from control mice whereas the middle (B, E, H) and right (C, 

F, I) panels represent lung sections from mice bearing MCF-7 (non-metastatic) and 

MDA-MB-231 (metastatic) tumor xenografts, respectively. The scale bars in the 

top and middle panels represent 1,000 and 500 μm, respectively. 
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Figure 4.5: Quantification of collagen fiber density in pre-metastatic lungs. 

(A) Bar plot showing mean and standard deviation of collagen density across the 

three classes (with all mice included) along with pairwise Student’s t-test p-values. 

(B) Bar plot showing mean and standard deviation of collagen content across the 

three classes (after exclusion of MDA-MB-231 xenograft bearing mouse displaying 

atypical Raman data) along with pairwise Student’s t-test p-values. 

 

The Masson’s trichrome stained sections were used for quantification of the 

mean collagen density for each class (detailed in Materials and Methods). Figure 

4.5A shows the mean bar plot that highlights the differences in collagen density 

for control mice and mice bearing MCF-7 and MDA-MB-231 xenografts. We 

observe that the metastatic potential of the primary tumor is positively correlated 

with the collagen density in the pre-metastatic niche. Yet, the differences in the 

mean collagen density values between MCL and MDL samples do not reach 

statistical significance (p<0.05). Based on our spectroscopic findings, we 

suspected that the lung specimens of mouse MD #3 may possibly skew the 
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collagen density values of the MDL set. Accordingly, we re-calculated the values 

by removing the images of the lungs of this mouse, as shown in Fig. 4.5B. With 

this modification, the differences among each pair of classes were found to be 

statistically significant. This improvement of contrast in collagen density 

corresponds well with our spectroscopic findings and reflects the biochemical 

sensitivity of the vibrational spectroscopic data. 

  In light of the spectroscopic identification of stromal adaptations, we further 

sought to investigate the genetic underpinnings of pre-metastatic priming of lungs. 

We performed gene expression analysis on publicly available microarray data 

(GSE 62817) to determine markers in pre-metastatic lungs in response to primary 

breast tumors of divergent metastatic potential [32]. Specifically, the data included 

gene expression levels corresponding to the lungs of normal mice (n=5) as well as 

pre-metastatic lungs of mice injected with non-metastatic 67NR breast carcinoma 

cells (n=5) and with metastatic 4T1 breast carcinoma cells (n=4). Seeking to isolate 

genes relevant to our study, we restricted our search to genes encoding for key 

stromal constituents and significantly overexpressed in pre-metastatic lungs of 4T1 

tumor bearing mice. Figure 4.6 shows the heatmap representing expression levels 

of these genes along with corresponding moderated F-statistic. Pre-metastatic 

lungs of the 4T1 tumor bearing mice demonstrate a selective upregulation of genes 

related to ECM constituents, notably collagen, fibronectin, versican and glypican. 

Importantly, each of these ECM components exhibits a decreasing gradient of 

values from 4T1 to 67NR and then to control cases. The differential expression of 

stromal genes in response to primary tumor development can, thus, help explain 
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our observations of discernible biochemical alterations in pre-metastatic lungs of 

mice bearing MCF-7 xenografts, even though these cells rarely metastasize in the 

mouse model used. 

 

 

Figure 4.6. Gene expression changes in pre-metastatic lungs as a function 

of metastatic potential of primary tumor. Microarray gene expression data heat 

map was obtained by analyzing the publicly available dataset GSE62816 on the 

Gene-e data visualization and analysis platform. The sample cohort includes lungs 

of mice bearing breast tumor xenografts of different metastatic potential. Total RNA 

was isolated from the pre-metastatic lungs and hybridized on an Affymetrix Mouse 

Genome 430 2.0 Array. Genes that are relevant to spectral markers identified in 

the current study and overexpressed in response to the metastatic potential of the 

primary tumor were analyzed. Moderated F-value of 2.53 was set as the criterion 

for inclusion. 

 

 Taken together, our findings suggest that remodeling of the ECM such as 

an increase in collagen and proteoglycan content occurs in response to primary 

tumor derived factors, which precedes the actual seeding of tumor cells at the 

distant metastatic site. The data in this study support a continuous pre-metastatic 

niche formation model from primary tumors with low and high metastatic potential, 

rather than discrete pre-metastatic adaptations that are representative of the highly 
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metastatic model alone. This would also imply that pre-metastatic adaptations are 

a necessary condition for further progression but not predictive of the eventual 

success of metastases. 

In conclusion, the current study proposes Raman spectroscopy as a label-

free molecular-specific tool for detection of pre-metastatic adaptations in the 

stromal environment. Using breast cancer metastasis to the lungs as the paradigm, 

we have demonstrated that Raman spectroscopy accurately detects changes in 

the ECM of pre-metastatic lungs, which correlate with the metastatic potential of 

the respective primary tumor xenograft. We identified spectral markers 

corresponding to collagen and proteoglycan that offer molecular insights into the 

formation of the pre-metastatic niche while also facilitating objective detection. The 

data presented here are unique and complementary to other microenvironment 

profiling methods such as genomic assays and mass spectrometry. While breast 

cancer metastasis to the lungs has been chosen for the current study, it should be 

noted that this approach can be extended to study the development of pre-

metastatic niches at any secondary target organ from primary breast and non-

breast malignancies.  

We envision that the use of Raman spectroscopic imaging in conjunction 

with further biochemical assays will offer detailed mechanistic insights into pre-

metastatic niche formation and evolution. As such, this offers a unique research 

tool that combines microenvironment and cellular profiling through non-

perturbative, multiplexed measurements of proteins, nucleic acids, lipids and 

metabolites. Building on the ability to detect such subtle changes in tissue 
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composition, and as discussed in recent reports [18, 23], we anticipate that Raman 

spectroscopic imaging can, with further refinement, facilitate surgical margin 

assessment in tissue conserving surgery and provide prediction of tumor 

recurrence. Integration of Raman spectroscopy with minimally invasive biopsy 

needles can also permit real-time, in situ detection of malignancies [19, 50].   
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4.4 Appendix 

 

Table ST4.1: Band assignment for spectral features observed in PC loadings 

derived from the Raman spectra of the mouse lungs 

Observed Raman 

Peaks in the PC 

loadings (cm-1) 

Raman band assignment from literature 

859 C-C stretch of proline (Collagen) 

917 C-C stretch of proline ring (Collagen) 

1003 
C–C stretching vibration of the aromatic ring in the 

phenylalanine side chain (Collagen) 

1061 OSO3 symmetric stretching (Proteoglycans) 

1304 In-plane CH2 twisting modes of lipids 

1442 CH2 deformation of lipids 

1592 Carbon particles (source of particles unknown) 

1653 
Amide I (symmetric C=O stretching mode of proteins) 

and C=C lipid stretch (Lipids and proteins) 

 

Table ST4.2: Confusion matrix for PLS-DA derived classification model 

showing correct classification rates (%, averaged over 1000 iterations) 

 Predicted Class Labels 

 
 

Control MCL MDL 

R
e
fe

re
n

c
e
 

L
a

b
e

ls
 

Contr
ol 

90.1 0.1 9.8 

MCL 1.0 97.7 1.3 

MDL 20.9 0.7 78.4 

 



143 

 

Table ST4.3: Correct classification rates (%) of the PLS-DA-derived model 

using leave-one-mouse-out protocol with background subtracted spectra 

(MD and MC refer to mouse models with MDA-MB-231 and MCF-7 tumor 

xenografts, respectively) 

Mouse 
excluded 

Correct classification rate 
(%) 

Chauvenet’s criterion for 
MDL 

(n = 10; max = 1.96) 

Control MCL MDL  = |xi - xmean|/ Result 

None  95.4 95.6 75.1 0.71 Retain 

MD #1 85.7 94.2 81.5 0.04 Retain 

MD #2 90.1 94.8 76.8 0.52 Retain 

MD #3 100.0 96.0 100.0 2.18 Eliminate 

MC #1 88.5 96.3 83.0 0.21 Retain 

MC #2 96.3 95.5 74.5 0.77 Retain 

MC #3 96.2 96.5 73.1 0.95 Retain 

Control #1 96.7 93.4 73.7 0.87 Retain 

Control #2 98.0 94.0 84.8 0.42 Retain 

Control #3 95.6 94.1 89.6 0.97 Retain 
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Figure S4.1: Radial visualization plot after background subtraction. Radial 

visualization plot showing clusters formed by spectra recorded from lung samples 

of sacrificed mice bearing MDA-MB-231 and MCF-7 breast cancer xenografts as 

well as controls without xenografts after autofluorescence background subtraction. 
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Chapter 5 

Label-free Raman spectroscopy reveals signatures of radiation 

resistance in the tumor microenvironment 

  

Delay in the assessment of tumor response to radiation therapy continues to pose 

a major challenge to quality of life for patients with non-responsive tumors. Here 

we exploited label-free Raman spectroscopic mapping to elucidate radiation-

induced biomolecular changes in tumors and uncovered latent microenvironmental 

differences between treatment-resistant and -sensitive tumors. We used isogenic 

radiation-resistant and -sensitive A549 human lung cancer cells human head and 

neck squamous cell carcinoma (HNSCC) cell lines (UM-SCC-47 and UM-SCC-

22B, respectively) to grow tumor xenografts in athymic nude mice and 

demonstrated the molecular specificity and quantitative nature of Raman 

spectroscopic tissue assessments. Raman spectra obtained from untreated and 

treated tumors were subjected to chemometric analysis using multivariate curve 

resolution-alternating least squares (MCR-ALS) and support vector machine (SVM) 

to quantify biomolecular differences in the tumor microenvironment. The Raman 

measurements revealed significant and reliable differences in lipid and collagen 

content post-radiation in the tumor microenvironment, with consistently greater 

changes observed in the radiation-sensitive tumors. In addition to accurately 

 
This chapter is a reprint of the peer-reviewed publication: Paidi SK*, Diaz PM*, Dadgar S*, Jenkins 
SV, Quick CM, Griffin RJ, Dings RPM, Rajaram N, Barman I. “Label-free Raman spectroscopy 
reveals tumor microenvironmental signatures of radiation resistance” Cancer Research, 79(8), 
2054-64, 2019. (* denotes equal contribution) 
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evaluating tumor response to therapy, the combination of Raman spectral markers 

potentially offers a route to predicting response in untreated tumors prior to 

commencing treatment. Combined with its non-invasive nature, our findings 

provide a rationale for in vivo studies using Raman spectroscopy, with the ultimate 

goal of clinical translation for patient stratification and guiding adaptation of 

radiotherapy during the course of treatment. 

5.1 Introduction 

Radiation in conjunction with chemotherapy or other targeted therapies is used to 

treat the majority of lung and head and neck cancer patients. The overall radiation 

dose is fractionated and delivered over a period of 5-7 weeks (2 Gy/day, 5 

days/week) because dose fractionation is believed to improve tumor oxygenation 

and, hence, overall cell kill [1, 2]. An outstanding challenge in optimizing the 

efficacy of such treatment resides in determining the degree of radiosensitivity 

associated with a specific patient’s disease and the extent of tumor response to 

radiation. There are no accepted methods to determine treatment response either 

before or during the early stages of therapy. Although Human Papilloma Virus 

(HPV)-negative head and neck squamous cell carcinomas (HNSCCs) are 

associated with significantly worse outcomes compared with HPV-positive tumors 

[3, 4], HPV status is not used to guide treatment of HNSCC. Currently, X-ray 

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) is used to 

determine tumor shrinkage about 2-3 weeks after completion of therapy. Positron 

Emission Tomography (PET) of fluorodeoxyglucose (FDG) uptake to measure 

functional tumor response is recommended about 8-12 weeks after completion of 
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therapy to avoid false positives. Hence, patients who undergo the full treatment 

regimen and are later identified as non-responders are exposed to the toxic side 

effects of ineffective therapy for the full duration of the treatment regimen. 

Identifying patients with radiation-resistant tumors, prior to commencing treatment 

or immediately after, would significantly improve treatment response rates and 

help non-responding patients avoid the toxic side effects of ineffective radiation 

therapy.  

Seeking to address this unmet need, molecular alterations in the tumor 

microenvironment in response to radiation therapy have been studied from multiple 

points of view including tumor hypoxia [5-7], cell repopulation [8-10], and genetic 

mutations involved in DNA repair pathways [11]. However, elucidation of serum 

and/or imaging biomarkers for accurate patient stratification and continuous 

assessment of therapy response, and their translation to the clinic has proven to 

be challenging. In an effort to develop better phenotypic strategies that could aid 

the clinical practice of radiation oncology, we propose an entirely complementary 

optical tool to the existing imaging arsenal featuring Raman scattering to non-

invasively quantify the putative differences in the molecular milieu of radiosensitive 

and radioresistant tumors. 

 Raman spectroscopy offers a non-ionizing, label-free and highly specific 

technique for molecular characterization of the tumor and its microenvironment [12, 

13]. It relies on the inelastic scattering of light, arising from its interactions with the 

biological specimen, to quantify the unique vibrational modes of molecules within 

its native context [14]. Raman spectroscopy offers the ability to probe biomolecular 
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changes both in vivo and ex vivo, and interrogate complex molecular heterogeneity 

directly from cells and tissues [15]. Recent studies by us and others have 

harnessed vibrational profiles for objective recognition of epithelial and stromal 

changes in cancers [16-22]. Emerging data suggests the presence of post-

radiation alterations in Raman spectral features and biomolecular differences 

between cell lines of varying radiosensitivity [23, 24]. Krishna and colleagues 

showed that radiation-induced changes in Raman spectra could be used to 

differentiate treatment responders and non-responders in excised cervical cancers; 

however, pre-treatment Raman spectra were incapable of identifying radiation 

response [25]. Furthermore, a recent Raman spectroscopic study on ex vivo tumor 

xenografts by Jirasek and co-workers identified elevated levels of glycogen in 

tumors exposed to a single, high radiation dose of 15 Gy [26]. While these reports 

underscore the promise of Raman spectroscopy in detecting radiation-induced 

changes, these measurements were performed on cells or tumor xenografts 

following a single radiation dose. More systematic studies that examine the 

sensitivity of Raman spectroscopy to changes in the tumor microenvironment 

when subjected to fractionated, clinically relevant radiation doses have been 

lacking. Such measurements would provide a better understanding of molecular 

modifications resulting from fractionated dosing and, ultimately, facilitate a 

personalized treatment approach. In addition, spectral markers of intrinsic 

radiation resistance that can be identified in tumors even before commencing 

therapy could provide a paradigm shift in determining treatment regimen.  
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 The goal of our study was to leverage Raman spectroscopy to investigate 

biomolecular changes within tumor xenografts in response to fractionated radiation 

therapy, and to determine the feasibility of differentiating treatment response from 

failure. Additionally, we sought to determine whether classifier models based on 

Raman spectral markers could be used to distinguish between untreated radiation-

resistant and sensitive tumors. To accomplish our goals, we used two sets of 

radiation-sensitive and radiation-resistant cell lines. First, we employed a recently 

developed matched model of radiation resistance [27], wherein a radiation-

resistant clonal population of cells (rA549) was generated from parental A549 lung 

cancer cells. Second, we used HNSCC cell lines – UM-SCC-22B (UM22) and UM-

SCC-47 (UM47) – for which radiation resistance and sensitivity have been 

established in previous studies [28]. Raman spectroscopic mapping of excised 

tumor xenografts (control and radiated tumors) grown from all four cell lines 

revealed consistent compositional alterations based on tumor type and in response 

to a radiation dose of only 2 Gy. Using multivariate curve resolution-alternating 

least squares (MCR-ALS), we translated the spectral information to uncover 

changes in lipid, collagen, and glycogen content. Data from both lung and head 

and neck (henceforth referred to as HN) tumors show consistently higher changes 

in lipid and collagen content in radiation-sensitive tumors that were treated with 

radiation compared with their radiation-resistant counterparts. Definition of the 

tumor phenotypes in terms of quantitative spectral features corresponding to key 

biomolecules also enabled the development of classifier models that exhibit high 

accuracy in discriminating between radiation-resistant and sensitive tumors. 



157 

 

Furthermore, our use of an isogenic radiation-resistant clone allowed, to the best 

of our knowledge, the first determination of discriminative Raman features in 

untreated tumors thereby offering fresh insights into specific molecular roles 

underlying intrinsic radiation resistance. Taken together, our findings highlight the 

potential of Raman spectroscopic imaging as a label-free, non-ionizing tool whose 

in vivo translation would permit monitoring of therapeutic effects with finer temporal 

resolution than is possible at the present time and potentially enable stratification 

of radiation-resistant patient cohorts.  

 

 

 

Figure 5.1: Raman spectroscopic study of radiation response and resistance. 

Overview of the (A) experimental and (B) data analysis workflow for Raman 

spectroscopic mapping in lung and head and neck tumor xenografts, of differential 

intrinsic radioresistance, subjected to radiation therapy. Details of the individual 

steps are provided in the methods section. 
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5.2 Materials and Methods 

5.2.1 Cell culture 

Human lung carcinoma A549 cells were purchased from American Type Culture 

Collection (ATCC; CCL185) and were authenticated using short tandem repeat 

(STR) profiling. A549 cells were grown in Ham’s F-12K (Kaighn’s) Medium mixed 

with 10% (v/v) fetal bovine serum and 1% (v/v) penicillin-streptomycin. These cells 

were irradiated at an average dose of 2.2 Gy every three days using an 

orthovoltage X-ray irradiator (CP-160, Faxitron X-Ray Corp. Wheeling, IL) for a 

cumulative dose of 55 Gy (25 fractions) to create the radiation-resistant cell clones 

(rA549) [27]. UM-SCC-22B and UM-SCC-47 were purchased from EMD Millipore 

and cultured in a mixture of Dulbecco’s Modified Eagle Medium (DMEM), 10% 

Fetal Bovine Serum (FBS), 1% Penicillin-Streptomycin, 1% non-essential amino 

acids (NEAA), and 1% L-Glutamine. All cell lines used in this study tested negative 

for mycoplasma and were authenticated using short tandem repeat (STR) profiling. 

Fractionated therapy of tumor xenografts. A schematic representation of 

this study design is presented in Fig. 5.1A. All animal studies were approved by 

the Institutional Animal Care and Use Committee (IACUC) at the University of 

Arkansas (Protocols 16022 and 18061). Athymic nu/nu mice were injected with a 

subcutaneous bolus of cells suspended in 100 µl of serum and media-free saline 

(10 million for A549 and rA549 cells, 2 million for UM-SCC-22B and UM-SCC-47) 

to grow tumor xenografts. Once tumor volume reached 200 mm3, mice were 

randomized to either radiation (XT) or control (NT) groups, as presented in Table 

5.1. Fractionated radiation therapy was administered using an X-RAD 320 
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biological irradiator (Precision X-Ray, North Branford, CT) as four 2 Gy fractions 

delivered over two consecutive weeks (total dose of 8 Gy), as described by others 

[28]. All animals completed the treatment. Tumor volumes were monitored using 

Vernier calipers, and tumors were excised when the majority of untreated control 

tumors had reached 1500 mm3 (approx. 35-50 days after treatment commenced). 

Tumor volume was calculated according to the equation V = (π/6) x (length) x 

(width) x (height). A comparison of tumor xenograft volumes is presented in Fig. 

SF1. After excision, tumors were embedded in OCT mounting medium, snap-

frozen, and stored at -80 oC. 

Table 5.1: Cell lines used to generate tumor xenografts in the study 

Lung Tumors Head and neck tumors 

Tumor group Class label 
Number 

of tumors 
Tumor group Class label 

Number 
of tumors 

A549-NT A549-NT 5 UM-SCC-22B-NT UM22-NT 6 

A549-XT A549-XT 4 UM-SCC-22B-XT UM22-XT 7 

rA549-NT rA549-NT 5 UM-SCC-47-NT UM47-NT 9 

rA549-XT rA549-XT 5 UM-SCC-47-XT UM47-XT 10 

Total number of tumors 19 Total number of tumors 32 

 

5.2.2 Raman spectroscopy 

The frozen tumors were thawed and fixed in 10% neutral buffered formalin prior to 

making Raman measurements. The fixed tumors were rinsed in PBS and 

sandwiched between a quartz cover slip and aluminum block to maintain a 

constant distance between the tissue and probe. The flattened tumors were 

scanned using a fiber-optic probe-based portable Raman spectroscopy system [16, 

29]. Briefly, the custom-built system consists of an 830 nm diode laser (500 mW 
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maximum power, Process Instruments) as the excitation source, and a 

combination of a spectrograph (Holospec f/1.8i, Kaiser Optical Systems) and a 

thermoelectrically (TE)-cooled CCD camera (PIXIS 400BR, Princeton Instruments) 

for recording spectra. Laser delivery and collection of back-scattered light was 

achieved via a lensed fiber-optic bundled Raman probe (probe diameter: 2 mm; 

Emvision LLC) with an estimated tissue sampling volume of 1 mm3. The laser 

power at the tumor samples was maintained at ~ 20 mW in this study. Acquisition 

time for each spectrum was 10s (10 accumulations of 1 second each to prevent 

saturation of CCD). Tissue dehydration due to laser exposure was prevented by 

intermittent addition of PBS. Raster scanning of the probe using motorized 

translation stages (T-LS13M, Zaber Technologies Inc., travel range: 13 mm) and 

spectral acquisition were performed on each side of the flattened tumors (~ 100 

mm2) using a LabVIEW interface. About 4100 and 7000 spectra were acquired 

from the nineteen lung and thirty-two HN tumor xenografts, respectively.  

5.2.3 Data analysis  

Figure 5.1B illustrates the data analysis workflow in this study. All the data 

analysis in the present study was carried out using scripts written in MATLAB 

2017a (Mathworks, Natick, MA, USA) environment unless otherwise stated. The 

wavenumber axis of the Raman system was calibrated using 4-acetamidophenol. 

The fingerprint wavenumber region (600 - 1800 cm-1) was chosen for further 

analysis. The Raman spectra recorded from the tumors were subjected to a fifth 

order best-fit polynomial-based fluorescence removal and cosmic ray removal 

using median filtering. The spectra were then vector normalized (such that their 
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Euclidean norm is set to unity) to minimize the effects of potential variations in laser 

power at the sample. The normalized spectra were used without any spatial 

averaging in the analysis. Multivariate curve resolution - alternating least squares 

(MCR-ALS) was employed to recover the pure spectral profiles of the chemical 

constituents of the tissue specimen without a priori information of the composition 

of the specimen [30]. The decomposition is achieved through an iterative 

optimization routine under non-negativity constraint on pure spectral (loadings) 

and concentration (scores) matrices. The non-negativity constraints enable us to 

interpret the unresolved specimen spectra in the form of loadings that represent 

spectra of pure (or enriched) biochemical components and the corresponding 

scores that provide a measure of abundance of the particular component. 

Additionally, spectral equal length constraint is imposed on the pure spectra to 

facilitate comparison of corresponding scores across the classes (treatment 

groups). The normalized scores corresponding to each key biological constituent 

were compared across different classes through box and whisker plots with 

conventional thresholds. The spatial heterogeneity in the score maps of major 

biological constituents for each tumor was quantified in terms of distributional 

homogeneity index (DHI), as defined elsewhere in the literature [31]. The 

significance of differences in medians of constituent scores across studied classes 

were assessed based on two-sided Wilcoxon rank sum test statistics. A 

conventional criterion of p-value less than 0.05 was used to consider the medians 

different. The differences between the groups were quantified in terms of effect 

size calculated using the Wendt formula for rank biserial correlation [32]. 
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 Support vector machine (SVM) was used to develop a decision algorithm to 

identify radiation treatment response and to predict resistant phenotype prior to 

treatment. SVM is a nonlinear classification method wherein classification is 

achieved by solving a constrained quadratic optimization problem to obtain 

separating boundaries between the classes in higher dimensional spaces [33]. In 

this study, the LIBSVM library [34] was used to develop a C-SVM classifier. The 

background-corrected spectra were used along with tumor group labels for each 

group studied, without any spatial averaging. A radial basis function kernel with a 

Gaussian envelope was employed to enable nonlinear mapping of the input feature 

space, and the optimal C-SVM parameters (i.e. cost and kernel parameter gamma) 

were selected using a k-fold cross validation-based grid search algorithm. A leave-

one-mouse-out analysis was conducted in which spatially distinct spectra 

belonging to each mouse were eliminated from the training dataset and the 

resulting binary SVM classifiers for pairs of classes of interest were tested using 

the spectra belonging to the left-out mouse. Each mouse specimen was assigned 

an overall predicted class label if more than 90% of its spectra were predicted as 

belonging to that class; otherwise, the specimen was labeled as unclassified if the 

desired confidence level was not achieved. Randomized class equalization was 

performed iteratively prior to implementing SVM classification in order to avoid 

skewing the model due to varying class sizes. 

5.2.4 Histopathology  

The tumors were stored in 70% ethanol after acquisition of Raman spectra and 

submitted to the Phenotyping and Pathology Core at Johns Hopkins Medical 
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Institutions. The formalin-fixed tumors were embedded in paraffin and sectioned 

serially onto glass slides for histology. Hematoxylin and eosin (H&E) staining, 

Masson’s trichrome staining for collagen and Periodic acid Schiff (PAS) staining 

(without Hematoxylin counterstain) for glycogen were performed by the Core 

according to standard protocols. The stained slides were imaged using a Leica 

DMi8 inverted optical microscope. In addition, Oil Red O staining for lipids was 

performed on frozen tumor sections according to standard IHC protocols and 

imaged using a Nikon fluorescence microscope.  

5.3 Results 

To capture the tumor heterogeneity and variance arising from differential response 

to treatment, lung and HN tumors in each group – radiation treated (XT) and 

controls (NT), were mapped to obtain spatially distinct Raman spectra from each 

specimen (Fig. 5.2A). Each map had an average of 218 spectra (ranging between 

50 and 334 spectra depending on the size of the tumor). Except for this 

visualization (Fig. 5.2A), the spectra collected from each tumor specimen were 

treated individually without any spatial averaging in all analyses. The spectra 

across all the classes show prominent peaks at 1045 cm-1 (glycogen), 1256 cm-1 

(glycogen), 1301 cm-1 (CH vibration in lipids), 1448 cm-1 (CH2 bending modes in 

lipids and collagen), and 1656 cm-1 (amide-I feature of proteins with potential 

contribution from C=C stretching in lipids). To discern possible molecular 

differences, the spectral datasets were decomposed into key compositional 

biomolecular signatures that were compared across the different groups.  
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To achieve this decomposition, we performed MCR-ALS with 7 components to 

obtain a loadings matrix containing the ‘pure component’ basis spectra and a 

scores matrix containing the weights of each of the seven components for all the 

spectra in the dataset. Figures 5.2B and 5.2C illustrate the relevant MCR loadings 

that present Raman features corresponding to key tissue constituents in the lung 

and HN tumor cohorts, respectively. The remaining loadings, that do not show 

direct correspondence to the vibrational signature of a prominent molecular 

constituent or stem from the presence of formalin (spectral contaminant in the 

tissue specimen), are provided in the Fig. S5.2 (Appendix). As seen in Fig. 5.2B, 

spectrum B1 shows prominent peaks at 1078 cm-1, 1266 cm-1, 1301 cm-1, 1442 

cm-1 and 1654 cm-1 that are characteristic of lipids, specifically triglycerides. 

Spectral pattern B2 resembles the Raman spectral profile of glycogen with peaks 

at 708 cm-1, 940 cm-1, 1044 cm-1, 1078 cm-1 and 1256 cm-1. Furthermore, B3 has 

spectral features corresponding to nucleic acids at 790 cm-1, 812 cm-1 and 1082 

cm-1, while loading B4 has peaks at 851 cm-1, 928 cm-1, 1040 cm-1, 1251 cm-1, 

1315 cm-1, 1453 cm-1 and 1661 cm-1, which are characteristic of collagen. The 

loadings derived from the HN tumor dataset C1, C2 and C3 presented features 

similar to the loadings B1, B3 and B4, respectively. The detailed peak allocations 

of all the features of the 7 loadings derived from lung and HN tumor datasets have 

been tabulated in Tables ST5.1 and ST5.2 (Appendix), respectively. It is worth 

noting that the MCR decomposition of HN tumors did not reveal a glycogen-rich 

loading. The minor spectral features that stem from the use of formalin as a fixative 
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– at 1490 cm-1 and 1040 cm-1 – present themselves in a single MCR loading, thus 

indicating that the effects of formalin fixation may be digitally removed [35]. 

 

Figure 5.2: Raman spectra of radiation-resistant and sensitive tumors. (A) 

Mean Raman spectra (with the shadow representing 1 standard deviation) 

acquired from lung tumors derived from parental A549 and radiation-resistant 

(rA549) cells and head and neck tumors derived from radiation-sensitive UM-SCC-

22B and radiation-resistant UM-SCC-47 cells. Each of the types were either 

exposed to fractionated radiation (XT) or sham radiation (NT). (B) A subset of 

relevant MCR loading vectors derived from the spectra of lung tumors belonging 

to all the four study classes. The spectra B1 through B4 represent lipid-rich, 

glycogen-rich, nucleic acid-rich and collagen-rich loadings, respectively. (C) A 

subset of relevant MCR loading vectors derived from the spectra of tumors 

belonging to head and neck tumor dataset. The spectra C1 through C3 represent 

lipid-rich, nucleic acid-rich and collagen-rich loadings, respectively. 
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Representative MCR score maps (abundance maps) of the observed 

relevant loadings across the treatment groups have been provided in Fig. S5.3 

(Appendix). To characterize the spatial heterogeneity in biochemical composition 

of the studied tumors, we measured the distributional homogeneity index (DHI) for 

each MCR score map. DHI is a measure of deviation of the spatial distribution in 

compositional maps from their randomized counterparts [31]. Thus, DHI is 

positively correlated with heterogeneity in abundance maps, with a value of one 

representing homogeneous (or randomized) distribution and higher values 

indicative of localization of constituents. Therefore, from the observed large values 

of DHI (Fig. S5.3), it is evident that the abundance maps for relevant loadings 

obtained for lung and HN tumors exhibit substantial spatial heterogeneity in the 

tumor samples. 

 The primary objectives of our study were to investigate differences in 

radiation-induced microenvironmental changes between resistant and sensitive 

tumors, and whether such molecular alterations were consistent in tumors derived 

from two different sites – lung and HN. Accordingly, NT vs. XT comparisons for 

each of the 4 cell lines were performed to evaluate the differential response of 

sensitive (A549, UM-SCC-22B) and resistant (rA549, UM-SCC-47) tumors. A 

secondary objective was to determine if these molecular features could distinguish 

between untreated resistant and sensitive tumors. Since the HN tumors stemmed 

from different cell lines, this specific comparison was only performed in the lung 

cohort (A549-NT vs rA549-NT) to identify intrinsic differences underlying radiation 

resistance. Here, we used density scatter plots as they allow better visualization 
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of large datasets by avoiding overlap in regions of high density. Figures 5.3A-C 

present three-dimensional (3D) density plots using the normalized MCR-ALS 

scores corresponding to the lipid-rich, glycogen-rich and collagen-rich loadings of 

A549 and rA549 tumors. Similarly, two-dimensional (2D) density plots with only 

lipid-rich and collagen-rich loadings are shown in Figs. 5.3D-E for the HN tumors. 

Both sets of density plots underscore expected tumor heterogeneity and critically, 

the presence of group-specific local spectral clustering, which is reflected in the 

higher density of co-located points (circled in the figure). 
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Figure 5.3: Qualitative visualization of MCR-ALS scores of Raman spectra. 

(A-C) Three-dimensional density plots showing the distribution of normalized 

scores of lipid-rich, collagen-rich and glycogen-rich MCR-ALS loadings showing 

radiation induced differences in sensitive lung tumors (A549-NT vs A549-XT), 

radiation induced differences in resistant lung tumors (rA549-NT vs rA549-XT) and 

pre-radiation differences between sensitive and resistant lung tumors (A549-NT vs 

rA549-NT), respectively. (D-E) Two-dimensional density plots showing the 

distribution of normalized scores of lipid-rich and collagen-rich MCR-ALS loadings 

showing radiation induced differences in sensitive head and neck tumors (UM22-

NT vs UM22-XT) and radiation induced differences in resistant head and neck 

tumors (UM47-NT vs UM47-XT), respectively. The class specific clustering in high 

density regions are circled. 
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To quantitatively study the differences across the treatment groups, we 

compared the normalized MCR-ALS scores of lipid-rich, collagen-rich and 

glycogen-rich loadings. We observed an increase in lipid, collagen, and glycogen 

levels for both sensitive (Fig. 5.4A) and resistant (Fig. 5.4B) lung tumors that were 

treated with radiation, with a much larger increase in the lipid-rich and collagen-

rich signatures in the radiation-sensitive tumors. To examine intrinsic 

radioresistance, we also compared the scores of these biomolecular components 

between untreated A549 and rA549 tumors (Fig. 5.4C). The MCR-ALS scores 

point to higher lipid and collagen content but lower glycogen content in the resistant 

tumors compared with the sensitive tumors. Furthermore, we observed very similar 

effects in the HN tumors with a greater increase in lipid and collagen levels in the 

radiation-sensitive UM-SCC-22B (Fig. 5.4D) compared to the radiation-resistant 

UM-SCC-47 tumors (Fig. 5.4E). Glycogen, as mentioned previously, was not 

observed as a significant feature in the HN tumors. Notably, the greater changes 

in sensitive tumors post-radiation are also borne out by the effect sizes for lipid 

and collagen content, which are consistently higher for the sensitive tumor cohorts 

(≥ 0.35 in A549 and UM-SCC-22B; ≤ 0.16 in rA549 and UM-SCC-47). 
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Figure 5.4: Quantitative MCR-ALS analysis of Raman spectra. (A-C) Boxplots 

of normalized scores of lipid-rich, collagen-rich and glycogen-rich MCR-ALS 

loadings showing radiation induced differences in sensitive lung tumors (A549-NT 

vs A549-XT), radiation induced differences in resistant lung tumors (rA549-NT vs 

rA549-XT) and pre-radiation differences between sensitive and resistant lung 

tumors (A549-NT vs rA549-NT), respectively. The differences in the scores of lipid 

and glycogen loadings are statistically significant (indicated by * and n.s. otherwise) 

at p < 0.001 level (Wilcoxon rank sum test) for each of the three comparisons (A-

C), whereas the differences in the scores of collagen loadings are statistically 

significant only for the comparisons in (A) and (C). (D-E) Boxplots of normalized 

scores of lipid-rich and collagen-rich MCR-ALS loadings showing radiation induced 

differences in sensitive head and neck tumors (UM22-NT vs UM22-XT) and 

radiation induced differences in resistant head and neck tumors (UM47-NT vs 

UM47-XT), respectively. The differences in the scores of lipid and collagen 

loadings are statistically significant (indicated by *) at p < 0.001 level (Wilcoxon 

rank sum test) for both the comparisons. The effect size (r), characterizing 

magnitude of differences between groups, is provided for each comparison. 
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While the comparison of MCR scores provides a starting point for 

delineating the molecular mediators of treatment response/resistance and 

assessing the predictive power of the spectroscopic data, comparison of the 

individual component scores alone may not provide a robust diagnostic framework, 

especially to classify prospective samples. Therefore, we developed decision 

models based on support vector machines (SVM), a supervised classification 

method that can deal with ill-posed problems and lead to unique global models 

[33]. We conducted a leave-one-mouse-out analysis which involved training three 

separate binary SVM classifiers for each tumor type (lung and HN tumors), 

corresponding to the three sets of comparisons – RS-NT vs RS-XT, RR-NT vs RR-

XT and RS-NT vs RR-NT, respectively. RS and RR indicate radiation-sensitive and 

radiation-resistant tumor xenografts, respectively. Table 5.2 shows the aggregated 

number of mice accurately classified, unclassified, and misclassified (as 

determined by the criteria detailed in the Methods section) for each of the three 

comparisons. (The tumor model-specific decomposition is provided in Appendix 

Tables ST5.3 and ST5.4.) 

The leave-one-mouse-out protocol provides satisfactory predictions in all 

cases with an overall misclassification rate of only ca. 3%. While slightly higher 

unclassification rates were noted for the lung tumor dataset, incorporation of a 

larger cohort of animals in the HN tumor data allowed significant reduction in the 

same. In the latter set of HN tumors, slightly increased unclassification rate (albeit 

with zero misclassification) was observed for the comparison between treated 

(UM47-XT) and untreated (UM47-NT) radiation-resistant HN tumors. We attribute 
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this increased unclassification to smaller effect size observed in MCR-ALS-based 

univariate comparisons and the high classification threshold used in our leave-one-

mouse-out analysis. For example, relaxing the threshold to 80% level reduced the 

unclassification rates of comparison between UM47-NT and UM47-XT significantly 

(2/19 mice compared to 7/19 mice at 90% level). 

 

Table 5.2: Results of binary leave-one-mouse-out SVM analyses 

 Number of mice classified accurately, unclassified and 
misclassified 

RS-NT RS-XT RR-NT RR-XT 

B
in

a
ry

 S
V

M
 c

o
m

p
a

ri
s

o
n

s
 RS-NT 

vs 
RS-XT 

(11+0+0)/11 (8+2+1)/11 - - 

RR-NT 
vs 

RR-XT 
- - (9+5+0)/14 (12+2+1)/15 

RS-NT 
vs 

RR-NT 
(10+1+0)/11 - (12+2+0)/14 - 

RS-XT 
vs 

RR-XT 
- (10+0+1)/11 - (14+1+0)/15 

 

Finally, to verify the lack of spurious correlations in the dataset [36], we 

repeated our leave-one-mouse-out analysis using the same spectral dataset, but 

with randomly assigned class labels instead of their original labels for each 

comparison. Average correct classification rate of ca. 57% for both lung tumor and 

HN tumor datasets, were obtained (comparable to the random likelihood of 

selection of the true class label – 50%). Taken together, the results of the SVM-

derived classifier model studies demonstrate the utility of the Raman spectroscopic 



173 

 

data in capturing distinct radiobiological responses in radiosensitive and 

radioresistant lung and HN tumor xenografts. 

5.4 Discussion 

A fundamental principle of personalized medicine is to design treatment strategies 

that tackle the biological heterogeneity characteristic of cancer in order to achieve 

maximal tumor control while minimizing toxicity. The lack of suitable imaging tools, 

which can identify patients unlikely to benefit from radiation and perform frequent 

response monitoring to better inform treatment doses and fractionation schemes, 

remains a major impediment in customizing radiotherapy. In contrast to existing 

clinical technologies, optical spectroscopy offers a non-invasive or minimally 

invasive route to providing real-time evaluation of treatment response based on 

functional and biomolecular changes in the tumor microenvironment. In this study, 

we demonstrate the utility of using label-free Raman spectroscopy in conjunction 

with chemometric analysis to reveal distinct biomolecular changes in radiation-

resistant and sensitive tumors when subjected to fractionated, clinically-relevant 

radiation doses. Specifically, MCR-ALS analysis reveals consistent differences in 

lipid and collagen content post-radiation in the microenvironment of lung and head 

and neck tumor xenografts with especially pronounced changes in the radiation-

sensitive cases. By leveraging SVM-derived classifiers, we are also able to 

differentiate between vibrational signatures recorded from untreated radiation-

sensitive and radiation-resistant tumors indicating the potential for future Raman 

spectroscopic application to not only monitor but also predict radiation response in 

individuals. 
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The specific biomolecular features derived using MCR-ALS analysis have 

been previously studied in the context of cellular response to radiation. Hypoxia 

and its transcription factor, hypoxia-inducible factor (HIF-1), have been shown to 

promote extracellular matrix (ECM) remodeling and play an important role in 

promoting fibrosis [37, 38] and collagen biogenesis [39, 40]. Indeed, our recent 

investigation of cellular metabolism showed a significant increase in HIF-1α 

expression after radiation in both the A549 and rA549 cells [41]. We reason that 

the radiation-induced increase in HIF-1 content is, in part, responsible for 

promoting collagen deposition in the A549 and rA549 tumors. The increased 

collagen content may also be explained by the actions of growth factors, such as 

TGF-β, which are recruited in response to HIF-1α-stimulated macrophage 

accumulation [42]. Overexpression of TGF-β serves as a chemoattractant for the 

recruitment of fibroblasts, and may drive the increase in collagen-rich MCR scores 

upon irradiation for both sensitive and resistant tumors [43].  

Previous work has established that de novo lipogenesis protects cancer 

cells from external insults, such as oxidative stress, and that inhibition of 

lipogenesis increases oxidative stress-induced cell death [44]. The increased lipid 

content observed in both groups of radiated tumors in our study could be attributed 

to such a cellular defense mechanism in response to radiation-induced oxidative 

stress. Although the exact mechanism for increased lipid content needs further 

investigation, studies have found elevated levels of fatty acid synthase (FASN) in 

radiation-resistant HN cancer cells [45]. Furthermore, inhibition of FASN 

decreased cellular survival of these radiation-resistant cancer cells. FASN is a key 
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player in lipogenesis and has also been shown to be a prognostic indicator of 

radiation resistance in clinical nasopharyngeal carcinoma [46]. Taken together, 

these studies highlight the potential of lipids to serve as a powerful biomarker of 

radiation resistance.  

Our findings of increased glycogen content in response to radiation in the 

radiation-resistant rA549 tumors are consistent with a recent in vitro study by 

Matthews et al. that reported an increase in radiation-induced glycogen in the 

relatively radiation-resistant MCF7 breast cancer and H460 lung cancer cell lines 

[23]. Jirasek and colleagues have reported substantially increased glycogen 

content in radiated non-small cell lung tumor xenografts compared with non-

radiated xenografts [26]. However, while our study also found significantly higher 

glycogen content in the radiation-sensitive A549 tumors, Mathews and colleagues 

found no changes in glycogen content in the radiation sensitive LNCaP prostate 

cancer cells. These differences could be principally attributed to the different 

nature of the measurement specimen (cells vs. tissue). The increase in intracellular 

glycogen in their study was attributed to the phosphorylation of glycogen synthase 

kinase (GSK-3β), a negative regulator of glycogen synthase, which mediates the 

final step of glycogen synthesis. Deactivation of GSK-3β activity through 

phosphorylation has been shown to play a critical role in the acquisition of radiation 

resistance in cancer cells [47]. Although a direct role for glycogen in conferring 

protection from radiation has not been established, the availability of increased 

glycogen reserves could provide cancer cells with glucose through glycogenolysis 

during radiation-induced oxidative stress. Glucose utilization through the pentose 
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phosphate pathway can lead to the generation of glutathione, which is an important 

scavenger of radiation-induced free radicals. Our findings expand on these 

determinations by providing the first direct comparisons of glycogen levels in 

matched models of resistant and sensitive tumors. However, the smaller effect 

sizes observed in the lung tumors coupled with its absence in the HN tumors 

suggest that further investigations are necessary to evaluate the clinical utility of 

glycogen as a marker of treatment response.    

To examine the histological basis of the Raman spectroscopic 

determinations, tumor sections were stained with hematoxylin and eosin (H&E), 

Masson’s trichrome, periodic acid-Schiff (PAS) and oil red O (ORO) – for cellular 

morphology, collagen, glycogen and lipid, respectively (Fig. 5.5A-L and S5.4). 

While tumor morphology was found to be largely similar across all tumor groups, 

H&E-stained images identified high levels of necrosis as well as fibrosis in the 

tumor groups subjected to radiation therapy (XTs) compared with the untreated 

control tumors (NTs). Specifically, necrosis and fibrosis were found in all groups, 

and were correlated, with an increase in necrosis associated with an increase in 

fibrosis. Specifically, within the lung tumor group, the A549-NT and rA549-NT 

tumors demonstrated higher tumor burdens and lower levels of necrosis and 

fibrosis. Within the HN tumor group, the lowest levels of necrosis were observed 

in the 22B-NT tumors while the highest levels were observed in the 47-XT group. 

Both 22B-XT and 47-NT had similar and intermediate levels of necrosis and 

fibrosis. This is likely due to the bulkier tumors observed in the 47-NT group. This 

tumor overgrowth is often associated with a degenerative type of necrosis 
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secondary to ischemia. These histopathological results were largely consistent 

with the findings from Raman spectral analysis. Furthermore, using bright field 

images of the Masson’s trichrome and PAS stained slides, we observed increased 

levels of collagen and glycogen after radiation in both the sensitive and resistant 

tumors. In addition, collagen content was noticeably higher in the resistant tumors 

prior to radiation compared with the sensitive tumors. The histological images for 

the HN tumors have been provided in Fig. S5.4 (Appendix).  

 

 

Figure 5.5: Histologic assessment of radiation sensitivity and resistance. Top 

(A–D), middle (E–H) bottom (I-L) panels display representative microscopic 

images of H&E, Masson's trichrome and PAS stained slides, respectively. The 

columns of panels from left to right - (A, E and I), (B, F and J), (C, G and K) and 

(D, H and L), respectively, represent fields of view from tumors belonging to the 

treatment groups - A549-NT, A549-XT, rA549-NT and rA549-XT. The scale bars 

in panels A-D represent 50 µm and panels E-L represent 100 µm. 
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 In summary, we have used Raman spectroscopic mapping for quantitative 

assessment of the molecular composition of lung and HN tumors subjected to 

radiation therapy, and shown that such measurements offer a reliable, non-

perturbative method to probe radiation-induced alterations. These findings 

represent, to the best of our knowledge, the first report comparing the 

microenvironmental response to radiation in tumor xenografts from different organ 

sites using optical spectroscopy. Together, our results provide promising evidence 

for the clinical translation of Raman spectroscopy to discern molecular markers of 

radiation response either prior to or during the early stages of treatment using fiber 

optic probes in accessible tumors. 

Towards that goal, there are two major focal points of our future 

investigations. First, the clinical radiation dose of 2 Gy that was used in this study 

will be delivered on successive days as is usually performed in the clinic. The 

treatment regimen used here is similar to previous approaches used to establish 

radiation sensitivity and resistance in tumor xenograft models [28]. Second, 

radiation-induced microenvironmental changes were evaluated ex vivo from 

excised tumors. Our evaluation of differences related to intrinsic radiation 

resistance were conducted on the untreated control tumors. While we observed 

appreciable differences between the A549-NT and rA549-NT tumors that can be 

attributed to radiation resistance, these results do not exactly predict if these 

tumors would go on to respond or fail treatment. The results presented here 

provide an opportunity to further explore the prediction of long-term treatment 

response based on measurements made prior to commencing treatment in 



179 

 

radiation-naïve tumors in vivo. Our next study would involve in vivo pre-treatment 

measurements on tumors as well continuous measurements during treatment 

administered on successive days to enable longitudinal treatment monitoring. Our 

recent work using diffuse reflectance spectroscopy identified changes in tumor 

oxygenation in the A549 and rA549 tumors within 48 hours post-radiation; however, 

minimal or no differences in oxygenation were observed at the time of tumor 

excision [48]. Therefore, it is possible that the magnitude of radiation-induced 

biomolecular changes, as sensed by in vivo Raman measurements, will be greater 

immediately after radiation therapy. Moreover, the fabrication of appropriate 

probes [49] as well as the emergence of vibrational spectroscopic imaging systems 

that are already being adopted in clinical studies [50] indicate that translation of 

our proposed approach is feasible. Hence, based on our current findings as well 

as these technological developments, we envision that Raman measurements will 

be employed in the near future to guide treatment planning based on the inclusion 

of vibrational spectral profiles of a patient’s tumor. 
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5.5 Appendix 

 

Figure S5.1: Tumor growth assays in response to radiation therapy. For (A) 

HNSCC tumors and (B) Lung tumors. Tumors in the XT group were radiated using 

the radiation schedule described in the methods section (4 x 2 Gy) at tumor 

volumes between 100 – 200 mm3. NT groups received sham radiation. There were 

significant differences in tumor volume between NT and XT groups in the UM-

SCC-22B and A549 tumors. Differences in tumor volume were evaluated 35-50 

days post-treatment. * indicates significant differences at p < 0.05. 

 

 

Figure S5.2: Complete set of MCR-derived pure component spectra. The 

complete set of MCR-derived pure component spectra are provided here for – (A) 

lung tumor, and (B) head and neck tumor datasets. The biological components of 

interest, whose pure spectra resembles those obtained through MCR-ALS 

analysis, are identified and marked alongside the spectra. 
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Figure S5.3: Heterogeneity in biochemical composition of tumors. Top (A–D) 

and middle (E–H) panels display representative MCR-ALS score maps of 

glycogen-rich and lipid-rich loadings respectively in lung and HN tumors. The 

columns of panels from left to right - (A and E), (B and F), (C and G) and (D and 

H), respectively, represent fields of view from tumors belonging to the treatment 

groups - RR-NT, RR-XT, RS-NT and RS-XT, where RR and RS are the radiation 

resistant and radiation sensitive groups respectively. Each pixel in the images in 

panels A-F spans an area of 1mm x 1mm. The bottom (I and J) panels show 

distributional homogeneity index plots calculated using relevant MCR-ALS loading 

score maps for tumors in lung and HN tumor datasets, respectively. 
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Figure S5.4: Histologic assessment for head and neck tumor dataset. Top 

(A–D), middle (E–H) and bottom (I–L) panels display representative microscopic 

images of H&E, Masson's trichrome, and Oil Red O stained slides, respectively. 

The columns of panels from left to right - (A and I), (B and F), (C and G) and (D 

and H), respectively, represent fields of view from tumors belonging to the 

treatment groups – UM22-NT, UM22-XT, UM47-NT and UM47-XT. The scale bars 

in panels A-D represent 200 µm and panels E-L represent 100 µm. 
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Table ST5.1: Table listing the peak assignments for all the MCR-derived 
component spectra derived from lung tumor dataset 
 

Observed Raman peaks in the MCR 
loadings (cm-1) 

Raman band assignment 
from literature 

B1 B2 B3 B4 B5 B6 B7  

 708      Glycogen 

  790     O-P-O stretching in DNA 

  812   816  
O-P-O stretching in DNA 
and RNA  

   851    
C-C stretch of proline in 
collagen 

      878 
C-C stretch of 
hydroxyproline in collagen 

    908   
Formalin contamination 
during tissue fixation 

   928    
C-C vibration in collagen 
backbone 

 940      Glycogen 

   1040    Proline in collagen 

    1042   
Formalin contamination 
during tissue fixation 

 1044      Glycogen 

      1047 Proline in collagen 

 1078      Glycogen 

1078       C-C stretch 

  1082   1080  
PO2

- symmetric stretching in 
DNA 

  1237     
PO2

- asymmetric stretching 
in DNA 

     1242  Amide III in collagen 

   1251    Amide III in collagen 

    1251   
Formalin contamination 
during tissue fixation 

 1256      Glycogen 

      1259 Amide III in collagen 
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1266       
CH2 in-plane deformation 
(Triglyceride) 

1301       CH vibration (Triglyceride) 

 1320      Glycogen 

   1315    
CH3CH2 twisting modes of 
collagen 

     1337  
CH3CH2 wagging modes of 
collagen and nucleic acids 

1442       
CH2 bending mode 
(Triglyceride) 

   1453   1448 
CH2 bending mode in 
collagen 

    1489   
Formalin contamination 
during tissue fixation 

1654       C=C lipid stretch 

   1661  1657 1656 
α-helical structure of amide I 
in collagen  
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Table ST5.2: Table listing the peak assignments for all the MCR-derived 

component spectra derived from head and neck tumor dataset 

Observed Raman peaks in the MCR 
loadings (cm-1) 

Raman band assignment 
from literature 

C1 C2 C3 C4 C5 C6 C7  

 790      O-P-O stretching in DNA 

 806      
O-P-O stretching in DNA 
and RNA  

    820   
O-P-O stretching in DNA 
and RNA 

  852     
C-C stretch of proline in 
collagen 

     873  
C-C stretch of 
hydroxyproline in collagen 

   906    
Formalin contamination 
during tissue fixation 

  932     
C-C vibration in collagen 
backbone 

  1038     Proline in collagen 

   1042    
Formalin contamination 
during tissue fixation 

     1047  Proline in collagen 

1078       C-C stretch 

 1076   1076  1074 
PO2

- symmetric stretching in 
DNA 

    1235   Amide III in collagen 

  1245     Amide III in collagen 

   1256    
Formalin contamination 
during tissue fixation 

    1259 1262  Amide III in collagen 

1266       
CH2 in-plane deformation 
(Triglyceride) 

1302       CH vibration (Triglyceride) 

   1304    
Formalin contamination 
during tissue fixation 

       
CH3CH2 twisting modes of 
collagen 
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  1338    1335 
CH3CH2 wagging modes of 
collagen and nucleic acids 

1442       
CH2 bending mode 
(Triglyceride) 

  1454   1448  
CH2 bending mode in 
collagen 

   1451    
Formalin contamination 
during tissue fixation 

   1491    
Formalin contamination 
during tissue fixation 

1654       C=C lipid stretch 

  1668   1657  
α-helical structure of amide I 
in collagen  
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Table ST5.3: Results of binary leave-one-mouse-out SVM analysis for lung 

tumor dataset 

 
Number of mice classified accurately, 

unclassified and misclassified 

A549-NT A549-XT rA549-NT rA549-XT 

B
in

a
ry

 S
V

M
 c

o
m

p
a

ri
s

o
n

s
 

A549-NT 
vs 

A549-XT 
(5+0+0)/5 (1+2+1)/4 - - 

rA549-
NT 
vs 

rA549-XT 

- - (5+0+0)/5 (4+0+1)/5 

A549-NT 
vs 

rA549-
NT 

(5+0+0)/5 - (3+2+0)/5 - 

A549-XT 
vs 

rA549-XT 
 (3+0+1)/4  (4+1+0)/5 

 

 

 

 

Table ST5.4: Results of binary leave-one-mouse-out SVM analysis for head 

and neck tumor dataset 

 

Number of mice classified accurately, 
unclassified and misclassified 

UM22-NT UM22-XT UM47-NT UM47-XT 

B
in

a
ry

 S
V

M
 c

o
m

p
a

ri
s

o
n

s
 UM22-NT 

vs 
UM22-XT 

(6+0+0)/6 (7+0+0)/7 - - 

UM47-NT 
vs 

UM47-XT 
- - (4+5+0)/9 (8+2+0)/10 

UM22-NT 
vs 

UM47-NT 
(5+1+0)/6 - (9+0+0)/9 - 

UM22-XT 
vs 

UM47-XT 
 (7+0+0)/7  

(10+0+0)/1
0 
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Chapter 6 

Thesis summary and future directions 

  

6.1 Thesis summary    

The studies presented in this thesis show that label-free Raman spectroscopy can 

take advantage of its synergistic combinations with advancements in 

nanotechnology and the growing number of multivariate data analysis tools, 

including but not limited to machine learning, for quantitative molecular 

characterization of cancer.  

Our SHINERS investigation reported in Chapter 2 revealed that while the 

enhancement of signal resulted in lower acquisition time, higher accuracy of 

prediction using the PLS-DA derived detection algorithm and better contrast 

between closely related pathologies, spontaneous Raman spectroscopy also 

provided encouraging results across the classes studied. By separately analyzing 

the data from the sites that harbored microcalcifications, we found that these 

samples provided higher classification accuracies using SHINERS and 

spontaneous Raman in comparison to those that didn’t harbor microcalcifications. 

Overall, the studies in this chapter showed that SHINERS can provide a route for 

rapid label-free disease diagnosis and subtyping in clinical samples or margin 

assessment during tissue conserving surgeries. 

 
This chapter is partially adapted from the published encyclopedia article: Paidi SK, Pandey R and 
Barman I. “Medical applications of Raman spectroscopy”, Encyclopedia of Analytical Chemistry, 1-
21, 2020. 
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The studies in Chapter 3 helped identify Osteopontin (OPN) as a key driver 

of the microcalcification and metastasis in breast cancer. By stable shRNA 

knockdown of the OPN gene in the aggressive MBA-MB-231 breast cancer cells 

and alizarin red S staining for microcalcifications, we showed a significant 

reduction in the stain intensity and OPN mRNA expression levels in the OPN 

silenced clones in comparison to the empty-vector control cells. The OPN silenced 

clones also exhibited a significant reduction in their in vitro migration potential. 

Furthermore, these observations were supported by elevated OPN levels in the 

circulating tumor cells and lung metastatic cells in vivo. Taken together, our studies 

in this chapter hinted at a dual role of OPN in directing microcalcification formation 

and cell migration. 

In Chapter 4, we showed that Raman spectroscopy can identify pre-

metastatic changes in the lung of mice bearing breast cancer xenografts. We used 

principal component analysis to identify spectral markers indicative of changes in 

collagen and proteoglycan content of the ECM in pre-metastatic lungs and noted 

that the changes scale with metastatic potential of the primary tumor. These 

observations were corroborated using histology and gene expression analysis. 

Finally, our classification routine based on partial least squares-discriminant 

analysis allowed the identification of an inadequately primed animal. Overall, our 

studies showed that Raman spectroscopy can be a valuable addition to the arsenal 

of current tools used for studying the composition and evolution of pre-metastatic 

niches in secondary organs. 
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Finally, in Chapter 5, we extend our Raman investigations to study the 

response of tumors to radiation therapy and predict resistance to therapy. We 

employed sensitive and resistant variants of isogenic lung cancer cells and head 

and neck cancer cells to grow tumors in athymic nude mice and subjected them to 

X-ray therapy at clinically relevant fractionated doses and sham radiation. By 

subjecting the Raman spectra obtained from irradiated and unirradiated tumors to 

multivariate curve resolution-alternating least squares, we found significant model-

specific compositional differences in the tumor microenvironment between 

irradiated and unirradiated samples for both sensitive and resistant tumors. 

Additionally, we built classifiers based on support vector machine (SVM) to assess 

the utility of Raman spectra data for prediction of response and resistance to 

radiation therapy. 

Overall, our studies pave the way for establishing Raman spectroscopy as 

a tool for both clinical decision-making in cancer care and unraveling molecular 

mechanisms underlying disease progression. 

 

6.2 Future work 

To date, several proof-of-principle studies using Raman spectroscopy have been 

conducted to understand a range of diseases and their progression both in vivo 

and ex vivo. However, the widespread clinical translation of this attractive 

technology requires further improvements in the following areas. First, inclusion of 

larger patient cohort for each application is critical for development of robust 

classification models that can effectively capture inter-patient variability. As a next 
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step in this direction, standardizing protocols for acquisition of Raman spectral 

datasets from clinical samples will help compare the results obtained by various 

groups and potentially merge them into larger datasets. Second, translation of 

SERS technologies in vivo will require additional tests to confirm their toxicity and 

accumulation in human body. However, such studies are challenging due to use 

of a variety of synthesis protocols, reporter molecules, capping agents, buffers, 

coatings and surface functionalization by different research groups. Thirdly, 

uniform metrics of success such as accuracy, sensitivity, specificity and statistical 

power must be defined by clinicians to compare and select spectroscopic protocols 

that are suitable for clinical translation. To accomplish this step, Raman 

spectroscopy and other emerging optical techniques must be introduced in medical 

education to promote awareness and enthusiasm among clinicians about this 

emerging suite of techniques. Such efforts are expected to promote more active 

collaborations between clinicians and spectroscopists. 

In addition to clinical diagnostics, Raman spectroscopy and its variants (SERS in 

particular) are rapidly emerging as important tools for discovery of molecular 

markers that characterize differences between different diseased states along 

novel axes. The preliminary spectral markers obtained from analysis of Raman 

datasets can potentially yield a narrow subset of biomolecules to be employed as 

targets for future studies using conventional wet chemistry approaches. Similarly, 

studies that have attempted to combine Raman spectroscopy with other optical 

spectroscopy techniques such as autofluorescence, diffuse reflectance 
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spectroscopy and optical coherence tomography have shown promise for 

symbiotic enrichment of its capabilities. 

  



201 

 

Vita 

 

Santosh Kumar Paidi graduated from the Indian Institute of Technology Bombay 

in 2014 with a Bachelor of Technology in Mechanical Engineering and a minor in 

Aerospace Engineering before commencing doctoral study at Johns Hopkins 

University. His research efforts in Dr. Ishan Barman’s lab were directed towards 

the application of Raman spectroscopy and multivariate data analysis to develop 

novel quantitative approaches for addressing unmet needs in the molecular study 

of cancers. Overall, his doctoral research has resulted in 15 peer-reviewed 

publications in journals such as Cancer Research, Nano Letters and Analytical 

Chemistry. He has been awarded the Tomas A. Hirschfeld Scholar Award, the 

Coblentz Student Award, the Barbara Stull Graduate Student Award, the SLAS 

Graduate Student Fellowship Grant, Whiting School Doctoral Fellowship, 

Molecular Medicine Tri-Conference Student Fellowship and Undergraduate 

Research Award by IIT Bombay in recognition of his work. In roles such as GRO 

Advocacy Chair and WSE Representative on the Homewood Graduate Board, 

Santosh strove for enriching graduate student experience at JHU. Outside Hopkins, 

he volunteers for outreach programs aimed at encouraging the involvement of 

school students in STEM fields. Santosh currently serves as an associate editor 

for the Journal of Emerging Investigators, which publishes original research 

conducted by middle and high school students. 


