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Abstract    

The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) 

immune system is used by bacteria and archaea to gain immunity from mobile genetic 

elements like phage DNA and plasmids. In Escherichia coli, small RNA derived from its 

CRISPR loci (crRNA) are integrated into a large ribonucleoprotein complex called 

Cascade, which is then used as a surveillance complex to find foreign DNA based on 

sequence complementary. Previous studies suggested that Cascade recruits an additional 

nuclease-helicase protein called Cas3 to silence foreign DNA in order to gain immunity. 

To understand the roles of Cascade and Cas3, we carried out structural and biochemical 

studies on both of these essential components of the CRISPR immune system.  

Here, we report the crystal structure of the Cascade complex from E. coli bound 

to its target DNA to 3.03 Å. The structure reveals a DNA-RNA hybrid at the core of the 

complex, forming a heavily distorted, discontinuous, arched-ladder that locally forms 

short A-form-like duplexes. Bases in both strands of the hybrid are flipped out at regular 

intervals due to the organization of the protein subunits in the complex. The structure 

presented here shows how Cascade-like complexes have evolved to form a distorted 

hybrid that is likely primed for recruitment of Cas3 for further degradation of the invasive 

DNA. 

We also report the crystal structure of the HD nuclease domain of Cas3 from T. 

thermophilus, and characterize its nuclease active site. Based on additional biochemical 

analysis, we show that the HD nuclease likely uses a two-metal-ion-dependent cleavage 

mechanism. Furthermore, using individually purified Cascade and Cas3 from E. coli, we 

reconstituted CRISPR-mediated plasmid degradation in vitro. Analysis of this 
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reconstituted assay suggests that Cascade recruits Cas3 to a single-stranded region of the 

DNA target exposed by Cascade binding. Cas3 then nicks the exposed DNA. 

Recruitment and nicking is stimulated by the presence, but not hydrolysis, of ATP. 

Following nicking, and powered by ATP hydrolysis, the concerted actions of the helicase 

and nuclease domains of Cas3 proceed to unwind and degrade the entire DNA target in a 

unidirectional manner. 

 Taken together, the results of our study explain how foreign DNA is identified 

and degraded by the CRISPR immune system, and provide a solid framework for future 

studies. 
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Chapter 1 

 

Introduction 

CRISPR immune system 

 Bacteria and archaea constitute a major portion of the earth’s biomass, and are 

found in almost all of its habitats (Breitbart et al., 2005). These unicellular prokaryotes 

can easily evolve and adapt to changing environmental circumstances through their 

ability to exchange genetic material by a process called horizontal gene transfer (Koonin 

and Wolf, 2008). This exchange of genetic material can occur through three different 

processes: conjugation (from plasmids), transformation (between species), and 

transduction (from bacteriophages) (Juhas et al., 2009; Koonin and Wolf, 2008). As a 

result, bacterial and archaeal populations are extremely diverse. Their rapid 

diversification is evident in the low overall sequence conservation among different strains 

of Escherichia coli. Among the genomes of 61 different E. coli strains sequenced, only 

about 10% of genes are conserved, with the rest of the genes being constantly exchanged 

(Lukjancenko et al., 2010).  

While rapid exchange of genetic material is evolutionarily beneficial, it also 

makes the recipients constantly prone to harmful genetic elements like phages and 

plasmids. This is even more alarming, considering that the majority of phages infect 

bacteria (Breitbart et al., 2005). One way that bacteria and archaea have evolved to deal 

with such foreign genetic elements is by means of a recently discovered immune system 

called CRISPR (Mojica et al., 2000; Barrangou et al., 2007; Sorek et al., 2013). CRISPR, 
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which stands for Clustered Regularly Interspaced Short Palindromic Repeats, is found in 

~ 90% of archaeal and ~40% of bacterial species (Makarova et al., 2006).  

CRISPR is a RNA-based immune system, and works by creating a genetic record 

of past infections that can be retrieved upon reinvasion by phages and plasmids to 

counteract their harmful effects. These records are stored at a particular CRISPR locus in 

the host genome as 20-50 nucleotide long, invader-derived sequences called ‘spacers’. 

These spacers are interspaced by identical ‘repeat’ sequences that are about 20-40 

nucleotides long. A typical arrangement of these elements in a CRISPR locus is shown in 

figure 1.1.  

The number of CRISPR loci in a single chromosome and their spacer content is 

variable and can range between 1-18 (Pourcel et al., 2005), with the longest CRISPR 

locus harboring as many as 374 repeat-spacer sequences (Marraffini and Sontheimer, 

2010). CRISPR loci are not static and change over time under constant selection pressure, 

causing the loci to have variable spacer makeup (Pourcel et al., 2005). The dynamics of 

the CRISPR loci are described in detail later in this chapter. 

 The identical repeat sequences that make up a CRISPR locus were first noticed 

by Ishino and colleagues in E. coli in 1987. However, the conservation of such a feature 

among different bacteria and archaea was not appreciated until much later, as more 

genome sequences became available (Mojica et al., 2000). Soon after, it was realized 

that some of the spacer sequences were homologous to DNA segments from known 

plasmids and phages, suggesting their extra-chromosomal origins (Mojica et al., 2005; 

Pourcel et al., 2005; Bolotin et al., 2005). This led to the hypothesis that the CRISPR 

system is an adaptive immune system against foreign invaders, which was later 
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experimentally proven in the case of Streptococcus thermophilus. This study found that, 

when challenged with new phages, new spacer sequences that were complementary to 

short segments of the phage genome (called protospacer) were actively incorporated into 

the CRISPR locus (Barrangou et al., 2007). While spacers are complementary to foreign 

genetic elements, it has been shown that a small subset of spacers (<5%) is also 

homologous to sequences in the host chromosome (Stern et al. 2010).  

 CRISPR loci are most often flanked by a diverse set of CRISPR-associated (cas) 

genes. The Cas proteins encoded by these genes are essential to mounting a proper 

CRISPR response (Makarova et al., 2006). Brouns and colleagues showed that, in E. 

coli, the CRISPR locus is transcribed and processed by a set of Cas proteins and then 

packaged into a large surveillance complex (405 kDa) called CRISPR-associated 

complex for antiviral defense (Cascade). This complex is able to silence foreign DNA in 

the presence of an additional protein called Cas3 (Brouns et al., 2008). These results and 

earlier bioinformatics studies suggested that the CRISPR system, although bearing no 

sequence homology, is functionally analogous to the RNA interference (RNAi) systems 

found in higher eukaryotes (Makarova et al., 2006; Carthew et al. 2009; Marraffini and 

Sontheimer, 2010).  

The CRISPR immune response has been divided into three distinct stages: (i) 

adaptation, (ii) CRISPR RNA biogenesis, and (iii) interference (Figure 1.2) (Sorek et al., 

2013). In the adaptation stage, the system is able to incorporate new spacer sequences 

into the CRISPR loci from phages. Upon reinvasion by the same phage, the CRISPR loci 

are then transcribed and processed into mature crRNA (CRISPR RNA) in the second 

stage to form surveillance complexes like Cascade. In the interference stage, the crRNA 
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is used to locate and silence foreign DNA by means of sequence complementarity. Each 

of the three stages needs to be carried out for a proper CRISPR response. 

 Of the three CRISPR stages, my thesis is mainly focused on the third 

(interference) stage. The findings by Brouns and colleagues in 2008—that the Cascade 

surveillance complex is formed to silence invader DNA—formed the basis of my thesis. 

The two main questions that I have focused on as part of my dissertation are: 

1. How are the different components of the CRISPR system able to recognize foreign 

DNA? 

2. What is the fate of the foreign DNA, once recognized by the CRISPR system? 

Since I started my thesis work in 2009, the CRISPR field has seen rapid 

development (Sorek et al., 2013). We now know that, in addition to DNA, certain 

CRISPR subtypes exclusively target RNA (Hale et al., 2009; Zhang et al., 2012; Bailey, 

2013). Other subtypes, while being more simplistic in their protein makeup, utilize 

additional RNA components to carry out DNA targeting (Deltcheva et al., 2009). In 

addition, CRISPR has quickly evolved into a versatile genome-engineering tool (Mali et 

al., 2013; Jinek et al., 2013; Wang et al., 2013). I summarize some of the recent 

developments below. 

 

Types of CRISPR systems 

 As expected in a prokaryotic system, CRISPR loci are extremely diverse in terms 

of their spacer-repeat makeup and their related Cas proteins (Makarova et al., 2006). Cas 

proteins have many predicted functions, and consist of RNases, DNases, helicases, 

integrases, polymerases, and RNA-binding proteins (Jansen et al., 2002). Based on the 
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overall conservation of the different cas genes, the CRISPR system has been divided 

into three main types—I, II and III  (figure 1.3) (Makarova et al., 2011). The signature 

genes of the three types are cas3, cas9, and cas10 respectively, and the three types are 

not mutually exclusive within a particular species. Some prokaryotes have one or more 

type present within a single chromosome, but the interplay between the types is not 

understood.  

 While the adaptation stage and the proteins involved are conserved in all three 

CRISPR types, the crRNA biogenesis and interference stages (and their respective 

proteins) are quite diverse, and can be further subdivided into 10 subtypes as shown in 

Figure 1.4. Details concerning the three main types are as follows.   

 The type I CRISPR system, the most prevalent of the three types, is present in 

both bacteria and archaea. Cas3, the conserved protein of this type, is involved in the 

interference step, and is thought to silence invader DNA (Brouns et al., 2008; Jore et al., 

2011; Semenova et al., 2011). Cas3 usually consists of an N-terminal nuclease domain 

and a C-terminal helicase domain. The type I CRISPR system can be further divided into 

six subtypes (subtypes IA-IF), and the two domains of Cas3 also exist as separate 

proteins in some of the subtypes. Besides Cas3, additional Cas proteins are involved in 

the targeting of invader DNA, since Cas3 is not able to scan for protospacers. In all of the 

subtypes, different sets of Cas proteins process the CRISPR locus, and form large 

ribonucleoprotein surveillance complexes that are able to recognize foreign DNA. In the 

type IE subtype found in E. coli, this complex is called Cascade, and both Cas3 and 

Cascade are crucial for DNA targeting.  
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 The type II CRISPR system is exclusive to bacteria, and is the most simplistic 

type in terms of its protein make-up. Like the type I CRISPR system, this type targets 

DNA as well, but Cas9 is the signature protein. Cas9 is a large protein (~130 kDa) with 

conserved HNH and RuvC domains (Makarova et al., 2011), and is involved in the 

processing of the CRISPR locus as well as the targeting of DNA. The type II system is 

unique in that, in addition to the CRISPR locus and Cas9, it also requires a trans-

activating crRNA (tracrRNA) and endogenous RNase III in the CRISPR RNA 

biogenesis stage (Deltcheva et al., 2011). Cas9 first forms a duplex between crRNA and 

tracrRNA and then uses the crRNA to locate and cleave the target DNA. Furthermore, 

its HNH and RuvC nuclease domains cleave the complementary and the non-

complementary strand of the target DNA respectively (Jinek et al., 2012). The type II 

CRISPR system has been further divided into three subtypes (Figure 1.4).  

 The type III CRISPR system is most prevalent in archaea, and its two subtypes 

have been shown to cleave both DNA (type III-A) and RNA (type III-B) (Hale et al., 

2009; Marraffini et al., 2008). Cas10 is the signature protein of this type, and has been 

implicated in target interference (Makarova et al., 2011). Cas6, a metal-independent 

endonuclease, is also present in both subtypes, and is involved in the initial processing 

of crRNA. Electron microscopy studies suggest that the Cas proteins in the type III 

CRISPR also form larger Cascade-like complexes found in the type I CRISPR system. 

(Rouillon et al., 2013; Staals et al., 2013).  
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Three stages of CRISPR  

As mentioned previously, the CRISPR system has three stages, and each carries 

out a specific function as described below (Figures 1.2 and 1.3). While the adaptation 

stage is conserved among the three CRISPR types, the second (CRISPR RNA biogenesis) 

and third (Interference) stages are quite different due to the diversity of the Cas proteins 

involved. Since my dissertation is primarily concerned with the interference stage of the 

type I CRISPR system, I focus on this type in the following sections. 

 

Adaptation 

The adaptation step is the most conserved, yet the least understood among the 

three CRISPR stages. In this step, foreign DNA is recognized upon invasion, and short 

fragments of the invader DNA (termed protospacer) are incorporated into the host 

genome at its CRISPR locus (Barrangou et al., 2007). The addition of spacer sequences 

always occurs in the region directly downstream of the AT-rich ‘leader’ sequence (figure 

1.1). This results in a polarity within a CRISPR locus, where the most recently 

incorporated spacers are next to the leader sequence, while the older spacers are gradually 

shifted away from the leader (Pourcel et al., 2005). With such an arrangement of spacers, 

CRISPR loci act as a chronological history of pathogenicity for a particular host. 

However, the CRISPR locus is not an infinite list. The older, less frequently used spacers 

are removed under selection pressures, resulting in a degenerate end at the opposite side 

of the locus (away from the leader sequence). 

 The leader sequence also consists of promoter elements that control expression 

CRISPR/Cas components. While transcription of the CRISPR locus is not required for 
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the adaptation step, elements within the leader are essential for spacer acquisition. Also 

required during this step are two conserved proteins, Cas1 and Cas2. Both of the genes 

encoding these proteins are hallmarks of the CRISPR system, and are conserved in all the 

3 CRISPR types. Cas1 is a non-specific, metal-dependent, double-stranded DNase that 

generates ~80 bp products (Wiedenheft et al., 2009; Babu et al., 2011). Cas2, on the other 

hand, has both metal-dependent, double-stranded, DNase and single-stranded RNase 

activities (Nam et al., 2012; Beloglazova et al., 2008). Cas1 and Cas2 are most probably 

involved in the processing of protospacers that are incorporated as spacer sequences.  

 During spacer uptake, the first repeat sequence proximal to the leader sequence 

serves as a template, and is duplicated for every spacer acquisition (Swarts et al., 2012; 

Yosef et al., 2012; Díez-Villaseñor et al., 2013). A single repeat sequence was shown to 

be sufficient to initiate spacer incorporation (Swarts et al., 2012; Yosef et al., 2012). 

Protospacers are very short (only 30-50 nucleotides) compared to the much larger 

genomic landscapes of invaders that need to be surveyed by the CRISPR adaptation 

machinery during spacer uptake (~40 Kb in the case of T7 phage). This raises critical 

questions regarding discriminations that the CRISPR system needs to make during 

protospacer selection. In silico analysis showed that 2-5 nucleotide sequences adjacent to 

protospacers in the invader genome are conserved within a species (Mojica et al., 2009).  

This sequence, called the protospacer adjacent motif (PAM), has been experimentally 

shown to be essential for spacer uptake (Yosef et al., 2012). In E. coli K12 strain, robust 

spacer uptake was demonstrated from plasmids containing a protospacer and a PAM 

sequence (5’-CWT-3’) with only the Cas1 and Cas2 proteins overexpressed (Yosef et al., 
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2012). As I describe later, the PAM sequence also plays a crucial role during the 

interference step.  

Besides the PAM, additional DNA motifs have recently come to light from 

bioinformatics approaches (Yosef et al., 2013). These studies have shown that the 

presence of conserved 2-nucleotide sequences termed Acquisition Affecting Motif 

(AAM) on the opposite side of the protospacer (with respect to the PAM) results in 

higher efficiency during spacer uptake.  

In additional to scanning for different sequence motifs, there is increasing 

evidence that spacer acquisition is synchronized to the other CRISPR stages. Besides 

Cas1 and Cas2, additional Cas proteins are not required for spacer uptake (Yosef et al., 

2012).  However, the presence of other CRISPR components like Cascade and Cas3 

(involved in the interference stage) has shown to stimulate spacer acquisition from targets 

with a protospacer (Datsenko et al., 2012). In E. coli K12 strain, spacers are preferentially 

acquired from plasmids that already contain a ‘known’ protospacer (Datsenko et al., 

2012; Swarts et al, 2012). Replicons containing cas genes have also been shown to be 

more efficient spacer donors (Díez-Villaseñor et al., 2013). This results in multiple 

spacers against the same invader, which may result in increased immunity.  

 

CRISPR RNA biogenesis  

CRISPR RNA biogenesis involves the expression and processing of CRISPR loci 

upon subsequent attack by known invaders (homologous to spacer sequences). The 

CRISPR loci are expressed as single RNA transcripts consisting of spacers against 

different invaders. The related cas genes are translated as well during this step. The 
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expression of the CRISPR locus is driven by the leader sequence (Brouns et al., 2008; Pul 

et al., 2010). The leader sequence is generally AT-rich and consists of promoter elements 

needed for expression of the cas genes (Pul et al., 2010). 

What stimulates CRISPR expression is still unclear and seems to vary among 

species. It most cases, a basal level of CRISPR expression seems to be always present 

and is induced under stressful conditions (Agari et al., 2010; Juranek et al., 2012).  

However, in the case of E. coli K-12, the promoter elements of the CRISPR locus are 

strictly repressed by a global transcriptional repressor called histone-like nucleoid protein 

(H-NS) (Pul et al., 2010) and are activated only upon stress conditions. Although it is 

known that LeuO, a transcriptional activator, neutralizes repression by H-NS, the exact 

signals that lead to H-NS de-repression by the action of LeuO to achieve CRISPR 

expression is not clearly understood. Some of the known signals that lead to CRISPR 

expression are envelope stress (membrane protein unfolding), ionic strength, and UV 

light (Perez-Rodriguez et al., 2010; Sorek et al., 2013).  

In the type I-E CRISPR subtype, the CRISPR transcript (pre-crRNA in Figure 

1.5) is processed by a set of Cas proteins into a mature crRNA that is 61 nucleotides in 

length (Figure 1.5). In this subtype, the cas gene cassette encodes eight proteins, and five 

of these proteins (Cse1, Cse2, Cas7, Cas5, and Cas6e) are involved in the processing step 

(Figure 1.4). Throughout this manuscript, these five proteins in the type I-E system 

(found in E. coli) will be referred to as CasA, CasB, CasC, CasD, and CasE respectively 

(Figure 1.5). Brouns and colleagues (2008) showed that these five proteins process the 

pre-crRNA, such that, each crRNA contains a single spacer-repeat sequence (figure 1.5). 

CasE is the endonuclease responsible for the recognition of the hairpin structure formed 
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by the repeat sequence and their subsequent cleavage at the base of each hairpin (Brouns 

et al., 2008; Haurwitz et al., 2010). Upon cleavage, CasE stays bound to the repeat 

element of the crRNA and possibly recruits the other proteins (Cas A-D) to form a 405-

kDa Cascade complex (Haurwitz et al., 2010; Jore et al., 2011). Cascade consists of 

CasA, CasB, CasC, CasD, CasE, and crRNA in a defined stoichiometry of 1:2:6:1:1:1 

(Jore et al., 2011).  

Cryo-EM structures of E. coli Cascade have revealed the organization of the five 

subunits around a core formed by the crRNA (Figure 1.6) (Wiedenheft et al., 2012). 

Overall, Cascade has a sea horse-shaped architecture. The crRNA forms the spine of such 

a structure with the six CasC subunits wrapped around the crRNA in a helical filament. 

The head is capped by CasE subunit at the 3’-end of the crRNA, and CasA and CasD 

subunits cap the tail at the 5’-end of the crRNA. Two copies of CasB sit on the inner 

surface of the CasC-crRNA spine, directly connecting the head (CasE) and the tail of the 

complex (CasA and CasD). At the end of this stage, different Cascade complexes, each 

with a different crRNA, are formed. Theses stable complexes are now able to scan for 

foreign DNA based on sequence complementarity to their spacer sequences.  

The CRISPR biogenesis step is not conserved, and there are significant 

differences between the three CRISPR types since different sets of Cas proteins are used 

during processing of the long pre-crRNA. In the type II system, the cas9 protein is 

involved in the processing of the CRISPR locus with the help of an additional RNA 

component called tracrRNA and endogenous RNaseIII nuclease. In case of the type III 

system, Cas6 recognizes and cleaves the repeat sequences in CRISPR loci. Cas6, 
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however, is not part of a Cascade-like Cmr/Csm complexes that scan for foreign 

RNA/DNA in this CRISPR type.  

 

Interference 

The interference stage in the type I CRISPR system is the primary focus of my 

thesis. In the type I-E CRISPR system, both Cascade and Cas3 are involved in targeting 

foreign DNA for degradation. Cascade is crucial to this step, as it is able to find 

protospacers based on complementarity to its crRNA.  Scanning force microscopy 

experiments show that Cascade readily recognizes and locates to sites of the protospacers 

on the invader DNA (Westra et al., 2012). Upon binding to a dsDNA, Cascade melts the 

target and interacts extensively with both its complementary and non-complementary 

strands to form an R-loop (Jore et al., 2011; Wiedenheft et al., 2011). The crRNA forms 

Watson-Crick base-pairing with the complementary strand while part of the non-

complementary strand is exposed as a single-stranded region, possibly acting as a signal 

for Cas3 recruitment (Jore et al., 2011). Cascade-DNA base-pairing has been proposed to 

nucleate at the proximal 5’-end of the protospacer spanning nucleotides 1-5, 7, and 8 

before proceeding over the complete protospacer (Semenova et al., 2011; Wiedenheft et 

al., 2011). This binding event is ATP-independent (Jore et al., 2011). 

As in the adaptation stage, PAM is essential during the interference stage as well. 

Single mutations in the PAM abolish CRISPR interference in vivo (Semenova et al., 

2011). In vitro binding experiments have also shown that mutations in the PAM alone 

severely disrupt Cascade binding to a protospacer. The CRISPR loci themselves do not 

have a PAM, and hence escape CRISPR-based immunity. Recent single-molecule studies 



 13 

in the type II CRISPR system have shown that PAM recognition is the first ‘obligate’ 

step in target interference (Sternberg et al., 2014). Thus, the PAM is crucial in 

distinguishing genomic (no PAM) from extra-chromosomal target DNA (with PAM) 

(Mojica et al., 2009; Semenova et al., 2011).  

Cryo-electron microscopy structure of Cascade bound to a complementary RNA 

shows that Cascade undergoes a concerted, conformational change involving CasA, 

CasB, and CasE, upon target binding (Wiedenheft et al., 2011). Despite these advances in 

our understanding of Cascade, the roles of many of its subunits remain unclear. This led 

us to investigate the possible roles of the different subunits of Cascade, and the results are 

presented in chapters 2 and 5. 

Cascade lacks any detectable DNase activity (Jore et al., 2011) but is thought to 

recruit the Cas3 nuclease upon target recognition (Brouns et al, 2008; Jore et al., 2011; 

Semenova et al., 2011). Like Cascade, Cas3 is also indispensable for the phage-resistant 

phenotype of E. coli (Brouns et al., 2008).  In the type I-E CRISPR subtype in E. coli, 

Cas3 is composed of an N-terminal HD nuclease domain followed by a super-family-2 

DEXH-helicase domain (Haft et al., 2005; Makarova et al., 2006). In some subtypes, the 

HD nuclease (Cas3’’) and the helicase domains (Cas3’) are encoded separately but are 

still expected to have synchronized activities resulting in the destruction of the target 

DNA. Cas3 does not interact with target DNA in the absence of Cascade, and both its HD 

nuclease and helicase domains are essential for target interference (Westra et al., 2012). 

 The HD domain catalyzes the ssDNA endonuclease activity of Cas3, and the 

helicase domain catalyzes the ATP-dependent unwinding of dsDNA and RNA-DNA 

duplexes (Sinkunas et al., 2011). In contrast, Sulfolobus solfataricus Cas3” has distinct 
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substrate specificity as it cleaves double-stranded but not single-stranded DNA or RNA 

(Han and Krauss, 2005). These discrepancies led us to investigate the structural and 

biochemical properties of the Cas3 nuclease domain (Cas3
HDdom

) from T. thermophilus 

(chapter 3), and the mechanism by which E. coli Cascade and Cas3 come together to 

foreign DNA degradation in the interference stage (chapter 4). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

 

 

 
 

 

Figure 1.1. A representative CRISPR locus. The repeat sequences are shown as black 

diamonds, and the spacer sequences as yellow rectangles. The spacers are numbered from 

the latest (S1) to the oldest (S9) integrated sequences. The leader sequence, which 

controls CRISPR transcription, is proximal to spacer S1.   

 

 
 

Figure 1.2. The RNA-based CRISPR immune system progresses in three distinct stages 

(Sorek et al., 2013). 1) Spacers complementary to protospacer sequences are incorporated 

into the host chromosome during acquisition. 2) Upon subsequent attack by the same 

invader, the CRISPR locus is transcribed, processed by Cas proteins, and packaged into 

ribonucleoprotein complexes during CRISPR RNA biogenesis. 3) Invader DNA is 

identified based on crRNA-target sequence complementarity and is eventually silenced 

during interference. 
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Figure 1.3. The three types of CRISPR systems (Makarova et al., 2011) based on 

conservation of cas genes. The characteristic proteins of the type I, II, and II CRISPR 

system are Cas3, Cas9, and Cas10 respectively.  
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Figure 1.4: Diversity of CRISPR-associated proteins (Makarova et al., 2011). The type I, 

type II, and type III CRISPR systems are further divided into different subtypes.  
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crRNA  

Figure 1.5: Diagram of the type I-E CRISPR/Cas system in E. coli. The CRISPR locus is 

transcribed into a long pre-crRNA and is further processed by five Cas proteins (A-E) 

into shorter crRNA. Each crRNA is 61 nucleotides in length and consists of an 8-

nucleotide 5’-handle, 32-nucleotide spacer, and a 21 nucleotide repeat element. 

 
Figure 1.6: Cryo-electron microscopy structure of the Cascade complex from E. coli 

showing the overall organization of the protein subunits.  The CasA (purple), CasB 

(yellow), CasC (cyan and grey), CasD (orange), casE (magenta) subunits interact with 

different parts of the crRNA (green). 
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Chapter 2 

 

 

 

Crystal structure of the largest subunit of the Cascade complex and its role in target 

DNA binding 

 

Introduction 

  

 Cryo-electron microscopy (cryo-EM) structures of the 405 kDa Cascade complex to 

~9 Å from E. coli had just been reported (Wiedenheft et al., 2011). While the structures 

clearly outlaid the general organization of the individual subunits with respect to each 

other, the roles of the individual subunits were not obvious. One of the approaches that I 

took to investigate the mechanism of target DNA binding by Cascade was to try and 

crystallize its individual subunits on their own. Of the many subunits or smaller 

complexes of Cascade that we were able to purify, we succeeded in crystallizing the 

CasA subunit from Thermus thermophilus and in determining its crystal structure. Based 

on the T. thermophilus CasA crystal structure and the cryo-EM structures of E. coli 

Cascade, Amberly Orr conducted the binding studies of Cascade and different Cascade 

sub-complexes as part of her Master’s thesis. The material presented in this chapter has 

been previously published and reprinted here from Mulepati, S., Orr, A., and Bailey, S. 

(2012) Crystal structure of the largest subunit of a bacterial RNA-guided immune 

complex and its role in DNA target binding. J. Biol. Chem. 287, 22445-22449, with 

permission from American Society for Biochemistry and Molecular Biology. 
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Results  

Crystal Structure of CasA 

 To gain a more detailed understanding of CasA (also known as CRISPR-subtype 

E. coli 1 (Cse1) or YgcL), we determined its crystal structure. Initial attempts to 

crystallize the E. coli protein were unsuccessful. We therefore expressed and purified the 

homolog from T. thermophilus HB8 (TthCasA). We chose this organism because the 

sequence of TthCasA has 50% similarity with E. coli CasA, and crystal structures of both 

TthCasB (Agari et al., 2008) and TthCasE (Ebihira et al., 2006) have been determined. 

Crystals of TthCasA were obtained by vapor diffusion using a precipitant solution 

containing sodium acetate. The crystals belonged to the space group P21 (a = 93.9 Å, b = 

47.9 Å, c = 129.2 Å, and  =  = 90°,  = 97.52°) and contain two monomers in the 

asymmetric unit. The structure was determined by single isomorphous replacement, 

utilizing platinum-soaked crystals, and the structure was refined to 2.4 Å resolution with 

an Rwork of 19.4% and an Rfree of 25.3%. Additional data collection, phasing, and 

refinement statistics are given in Table 2.2. The final model displayed good geometry and 

contained all of the TthCasA sequence with the exception of the first 4 N-terminal and 

last 6 C-terminal residues, as well as two internal loops formed by residues 129–142 (N-

loop) and residues 405–409 (C-loop). The structures of the two monomers of TthCasA in 

the asymmetric unit are virtually identical with a root mean square deviation of 0.1 Å 

over 473 C atoms. 

Overall the structure of TthCasA can be divided into two domains corresponding 

to the N- and C-terminal parts of the polypeptide chain (Fig. 2.1B). The two domains are 

arranged in a chair-like conformation, with the N-domain forming the seat and the C-
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domain forming the backrest (Fig. 2.1B). The larger N-domain includes residues 1–364 

and is composed of 11 -strands and 9 -helices. A search of the structural database 

using the DALI server found no significant matches, suggesting that the N-domain has a 

novel fold. The smaller C-domain includes residues 365–502 and is formed by five -

helices. Four of these -helices form an up-down-up-down four-helix bundle. The fifth, 

smaller -helix is located in a flexible loop (the C-loop) separating the first and second 

helix of the bundle. 

 

Docking the Crystal Structure of TthCasA into the Cryo-EM maps of Cascade 

 To gain further insight into the role of CasA, we rigid-body fit the crystal 

structure of TthCasA into the cryo-EM maps of Cascade with and without bound 

protospacer target (Wiedenheft et al., 2011). The crystal structure aligned well into both 

maps, and -helices in the crystal structure aligned with the corresponding rods of 

density in the cryo-EM maps (Fig. 2.1, C and D). The quality of the fit into both cryo-EM 

maps suggests that there is no significant change in the relative orientation of the two 

domains of CasA, observed in the crystal structure, upon binding to Cascade. 

 In the cryo-EM map of Cascade with no bound target, the CasA N-domain sits 

adjacent to CasD, and contiguous cryo-EM density suggests that the N-loop of CasA 

contacts with the 5’-end of crRNA (Fig. 2.1C). The C-domain of CasA contacts the fifth 

and sixth CasC subunits as well as the neighboring CasB subunit (Fig. 2.1C). Upon 

binding to protospacer target, the CasA, CasB, and CasE subunits undergo a concerted 

conformational change (Wiedenheft et al., 2011). In the cryo-EM map of Cascade bound 

to protospacer target, the movement of CasA is such that the N-loop appears to no longer 
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interact with the crRNA, whereas the C-loop now makes new contacts with the crRNA- 

protospacer duplex (Fig. 2.1D). 

 

DNA Binding by Cascade 

Binding of Cascade to nonself target relies on the recognition of a PAM 

(Semenova et al., 2011). Previous studies on the role of CasA in this binding were 

performed before the E. coli PAM was identified (Jore et al., 2011). We therefore 

examined the role of CasA in Cascade binding to an 85-bp dsDNA target containing 

protospacer and functional PAM sequences. A fixed concentration of dsDNA target was 

incubated with increasing concentrations of either Cascade or CasBCDE, and complex 

formation with dsDNA was analyzed by native gel electrophoresis (Fig. 2A). CasBCDE 

did not bind dsDNA target, whereas Cascade did. The amount of complex formed 

between dsDNA target and Cascade exhibited a sigmoidal dependence on Cascade 

concentration (Fig. 2B). There are at least two possible explanations for the sigmoidal 

binding curve, either (i) cooperative binding between multiple sites on Cascade or the 

dsDNA or (ii) the existence of two equilibriums, one between Cascade and dsDNA and 

the other between a single subunit of Cascade and the rest of the complex. Because the 

stoichiometry between Cascade and dsDNA target is thought to be 1:1 (Jore et al., 2011, 

Wiedenheft et al., 2011) and CasA was seen to dissociate from Cascade during 

competitive ssDNA binding experiments (Jore et al., 2011), the sigmoidal dependence is 

more likely the result of dissociation of CasA from Cascade at low concentrations. To 

confirm this hypothesis, we repeated the above binding experiments in the presence of 

saturating concentrations of CasA (250 nM). Under these conditions, the amount of 
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complex formed between Cascade and dsDNA target exhibited a hyperbolic dependence 

on Cascade concentration (Fig. 2.2B) with an apparent dissociation equilibrium constant 

(Kd) of 0.54  0.1 nM. The addition of a saturating concentration of CasA to CasBCDE 

rescued binding of this complex to dsDNA target (Fig. 2.2A) and also displayed a 

hyperbolic dependence on CasBCDE concentration with a Kd indistinguishable from 

Cascade in the presence of saturating concentration of CasA (Fig. 2.2B). In control 

experiments, CasA alone was not able to bind dsDNA target (13) (Fig. 2.2A). 

 

Discussion 

 The crystal structure of TthCasA reveals a two-domain protein with a novel N-

terminal fold and a C-terminal four-helix bundle. A prominent feature of this structure is 

two disordered loops, one in the N-domain and another in the C-domain, termed the N-

loop and C-loop, respectively. Docking the crystal structure of TthCasA into the cryo-EM 

maps of Cascade suggests that these loops become ordered when CasA binds Cascade 

and that they make significant contacts with the crRNA and the protospacer target. In the 

absence of target, the N-loop makes contact with the 5’-end of the crRNA, but upon 

Cascade binding to protospacer target, the N-loop disengages from the crRNA (Fig. 

2.1D) (Wiedenheft et al., 2011). The C-loop makes little or no contacts with the crRNA 

in the absence of target but does make extensive contacts with the crRNA-protospacer 

duplex when Cascade is bound to protospacer target (Fig. 2.1D). Thus, both of these 

loops appear to make key contributions to the specific structural states that correlate with 

Cascade target binding. 

 The PAM plays a critical role in self versus nonself recognition (Semenova et al., 

2011; Deveau et al., 2008; Gudbergsdottir et al., 2011; Marfaffini and Sontheimer, 2010; 
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Mojica et al., 2009). The PAM is found in nonself DNA targets but not in the host 

sequence, CRISPR loci. Recent DNA binding experiments have demonstrated that 

mutations in the PAM sequence decrease the affinity of Cascade for DNA target 

(Semenova et al., 2011), suggesting a direct interaction between Cascade and the PAM. 

The N-loop of CasA may mediate this critical interaction. If a longer nonself target, 

including the PAM sequence, were modeled onto Cascade, the projected path of the 

target would position the PAM adjacent to the site where the N-loop of the crystal 

structure of CasA docks into the EM map (Fig. 2.1D). 

 Our DNA binding experiments show that CasA is essential for specific binding of 

Cascade to nonself target (Fig. 2.2). Taken together with the observation that CasA 

dissociates from the complex at low concentrations, this suggests that CasA expression 

levels may provide an opportunity for regulation of the activity of Cascade within the 

cell. Cascade would not be able to bind dsDNA target at low expression levels of CasA, 

but at high expression levels, Cascade could bind DNA target and signal its destruction 

by Cas3. Confirmation of this model will require measurement of the cellular 

concentrations of the individual Cascade subunits. 

 In summary, we have shown here that the CasA subunit of Cascade is essential 

for nonself target binding. We present the crystal structure of CasA and its fit into cryo-

EM maps of Cascade bound and unbound to protospacer target. This structural analysis 

reveals two loops in CasA that are likely key sensors for dsDNA target binding. 

While this manuscript was in preparation, a similar analysis of CasA was 

published by Doudna and colleagues (Sashital et al., 2012). This manuscript 

independently presents similar results but also experimentally confirms the role of the N-
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loop in both PAM binding and additionally in the control of nonspecific DNA binding by 

Cascade. 

 

Methods 

Cloning and Protein Expression 

 The cloning and expression strategy was similar to that described previously 

(Brouns et al., 2008; Jore et al., 2011). Thus, all genes were amplified from genomic 

DNA (American Type Culture Collection) and directionally cloned into a series of 

expression vectors (Table 2.1). An E. coli CRISPR array consisting of seven identical 

spacers (sequence: 5’-CCAGTGATAAGTGGAATGCCATGTGGGCTGTC-3’) was 

synthesized by GeneArt. All proteins were overexpressed in the T7Express strain of E. 

coli (New England Biolabs). Cells were grown in LB medium, supplemented with the 

appropriate antibiotic(s) (Table 2.1), at 37 °C to an A600 of 0.3–0.5, and subsequently 

protein expression was induced with 0.2 mM isopropyl -D-1thiogalactopyranoside 

overnight at 20 °C. 

 

Purification of E. coli Proteins 

 E. coli CasA, Cascade, and the CasBCDE-crRNA subcomplex were all purified 

using the same protocol. Harvested cells were lysed in buffer L (20 mM Tris-HCl, pH 

8.0, 100 mM NaCl and 10% glycerol), clarified, and then loaded onto a 5-ml immobilized 

metal affinity chromatography column (Bio-Rad). The column was then washed with 10 

mM imidazole before the protein of interest was eluted with 250 mM imidazole. N-

terminal tags were removed by treatment with tobacco etch virus (TEV) protease 
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overnight at 4 °C. Samples were then desalted to remove imidazole and then reapplied to 

immobilized metal affinity chromatography resin to remove the His-tagged TEV 

protease, any cleaved tag, or any remaining tagged protein. Samples were then 

concentrated and loaded on a HiLoad 26/60 S200 size-exclusion column (GE Healthcare) 

pre-equilibrated with Buffer A (20 mM Tris-HCl, pH 8.0, 200 mM NaCl, and 1 mM 

tris(2-carboxyethyl)phosphine). As seen previously, all proteins eluted as symmetrical 

peaks at their expected molecular weights (Jore et al., 2011). 

  

Purification of Thermus thermophilus CasA 

 Harvested cells were lysed in buffer L, and the clarified lysate was heat-treated at 

70 °C for 10 min. Following centrifugation, the sample was adjusted to 1.5 M ammonium 

sulfate and loaded onto a 5-ml Fast Flow Phe column (GE Healthcare) pre-equilibrated 

with 40 mM Tris-HCl, pH 7.5, 1.5 M ammonium sulfate, 10% glycerol. Protein was 

eluted with a linear gradient of 1.5– 0 M ammonium sulfate. The relevant fractions were 

pooled, and the protein was further purified over a 5-ml Fast Flow Q column (GE Health- 

care) before finally being loaded on a HiLoad 26/60 S200 column (GE Healthcare) pre-

equilibrated with Buffer A. The final purified protein was concentrated to ~30 mg/ml 

using Ultracel 10K centrifugal filter unit (Millipore).  

 

Crystallization of T. thermophilus CasA 

 Crystals of T. thermophilus CasA were obtained by the sitting-drop vapor 

diffusion method, mixing 1 l of CasA at ~30 mg/ml with 1 l of precipitant solution of 

0.1 M MOPS, pH 7.4, and 2.3 M sodium acetate. For stabilization and cryoprotection, 
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crystals were transferred to a solution of 0.1 M MOPS, pH 7.4, and 3.5 M sodium acetate. 

Crystals were flash-frozen in liquid nitrogen. Platinum derivatives were obtained by 

soaking crystals in a solution containing 0.1 M MOPS, pH 7.4, 3.5 M sodium acetate, and 

20 mM K2PtCl4 for 3 h. 

 

Structure Determination 

 X-ray diffraction data were collected at either beamline 9.2 at the Stanford 

Synchrotron Radiation Light Source (SSRL) or beamline X25 at the National 

Synchrotron Light Source (NSLS). Data were processed with HKL2000 (Otwinowski 

and Minor, 1997). SHELX (Sheldrick, 2008) was used to find the positions of the 

platinum sites. Phases were calculated using SOLVE (Terwilliger, 2004) and improved 

by solvent flattening and noncrystallographic symmetry averaging in RESOLVE 

(Terwilliger, 2004). Iterative model building and refinement were carried out in COOT 

(Emsley and Cowtan, 2004) and PHENIX (Adams et al., 2010). 

 

Cryo-electron Microscopy Map Fitting and Preparation of Figures 

 Rigid-body docking of the T. thermophilus CasA crystal structure into the cryo-

electron microscopy density of E. coli Cascade was performed with Chimera (Goddard et 

al., 2007). All structure panels were generated using PyMOL (Delano, 2010) or Chimera 

(Goddard et al., 2007). 
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DNA Binding Experiments 

Binding assays contained 20 mM Tris-HCl, pH 8.0, 100 mM NaCl, and 10% 

glycerol. All oligonucleotides were gel-purified. dsDNA was made by annealing 

oligonucleotide A (5’-TCAATCTACAAAATTGAGCAAATCAGACAGCCCACATG-

GCATTCCACTTATCACTGGCATTGCTTTCGAGCTTGCCGATCAGCTT-3”) with 

oligonucleotide B (5’-AAGCTGATCGGCAAGCTCGAAAGCAATGCCAGTGATAA-

GTGGAATGCCATGTGGGCTGTCTGATTTGCTCAATTTTGTAGATTGA-3’). Trace 

amounts (5–200 pM) of 5’-end 
32

P-labled dsDNA were incubated with an increasing 

concentration of Cascade or CasBCDE for 1 h at 37 °C, prior to electrophoresis through a 

5% polyacrylamide gel. In experiments with saturating CasA, 250 nM was confirmed to 

be saturating as repeating these experiments with 1 M CasA (data not shown) gave the 

same results. DNA was visualized by phosphorimaging and quantified using Image 

Gauge (Fuji). As described before (Semenova et al., 2011), fraction of DNA bound was 

plotted versus protein concentration and fit to a one-site binding isotherm, using the 

GraphPad Prism software. Reported Kd values are the average of three replicates. 
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Table 2.1. Plasmids used in the CasA studies 

 

Vector Relevant Features 

pRSFDuet-1b (Kan
R
)
a
 Two multiple cloning sites (mcs1 and mcs2) 

pBAT4 (Amp
R
)
c
 No tags 

pHAT4 (Amp
R
)
c
 Encodes for an N-terminal His-tag, followed by a TEV     

protease site 

pMAT11 (Amp
R
)
c
 Encodes for an N-terminal His-MBP (maltose-binding 

protein) tag, followed by a TEV protease site 

Clone Vector Genes 

pCRISPRd  pRSFDuet-1b mcs1: CRISPR (7x spacer) mcs2: empty 

pCRISPR-A
d
 pRSFDuet-1b mcs1: CRISPR (7x spacer) mcs2: CasA 

pBCDE
d
 pHAT4 E. coli casB-casC-casD-casE 

pTthCasA pBAT4 T. thermophilus CasA 

pEcoCasA pMAT11 E. coli CasA 
 

a
 From Novagen. 

b
 mcs1 can encode for an N-terminal His tag, however all cloning here removes this tag. 

c
 From Peränen et al., 1996. 

d
 Cells used to express Cascade were made by transformation with pCRISPR-A and 

pBCDE. Cells used to express CasBCDE+crRNA were made by transformation 

with pCRISPR and pBCDE. 
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Table 2.2. Data collection, processing, and phasing statistics 

 

Data collection Native Pt soak 

Resolution (Å)
a
 2.37 (2.48-2.37) 2.79 (2.89-2.79) 

Rsym
a, b

 10.1 (63.4) 6.6 (31.7) 

I/a
 11.2 (2.2) 11.1 (2.4) 

Redundancy
a
 3.7(3.6) 2.0 (1.9) 

Completeness (%)
a
 98.5 (97.6) 98.7 (96.7) 

Wilson B factor 50.70  

Mean figure of merit 0.32  

Heavy atom sites  6 

Refinement   

Resolution (Å) 46-2.37  

Rwork
c
 19.4  

Rfree
c
 25.3  

r.m.s.d. bond (Å)
d
 0.01  

r.m.s.d. angle 1.2  

No. of atoms 7828  

B-factors 63.5  

Ramachandran plot   

    Most favored (%) 90.3  

    Additional allowed (%) 9.7  
 

a
 The values in parentheses are for the highest resolution shell. 

b
 Rsym is |Io – I|/Io, where Io is the intensity of an individual reflection, and I is the mean 

intensity for multiple recorded reflections.  

c
 Rwork is ||Fo – Fc||/Fo, where Fo is an observed amplitude, and Fc is the calculated 

amplitude; Rfree is the same statistic calculated over a subset of the data that has not been 

used for refinement. 

d
 r.m.s.d., root mean square deviation. 
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Figure 2.1. Structure of TthCasA. A, cryo-EM reconstruction of Cascade. Coloring is as 

in Wiedenheft et al., 2011 as follows: magenta, CasA; yellow, CasB; cyan and gray, 

CasC; orange, CasD; and pink, CasE. CasA is located at the tail of the structure. B, 

ribbon representation of the crystal structure of CasA. The N-domain is colored magenta, 

and the C-domain is colored white. The N- and C-loops are labeled. C, fit of the crystal 

structure of CasA into the cryo-EM map of Cascade. D, fit of the crystal structure of 

CasA into the cryo-EM map of Cascade bound to protospacer target. C and D are colored 

as in A. 
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Figure 2.2. Double-stranded DNA target binding by Cascade. A, representative gel shift 

assays for Cascade and CasBCDE in the absence and presence of saturating 

concentrations (250 nM) of CasA. Also shown is a gel shift assay of CasA alone (1000 

nM). The concentrations of the titrated species are given above each gel. B, binding 

curves measured from each of the assays in A. For the Cascade titration in the absence of 

CasA, the inset is a zoomed-in view of the binding curve, highlighting it sigmoidal 

character. 
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Chapter 3  

 

 

Structural and biochemical analysis of the HD nuclease domain of Cas3 protein 

from Thermus thermophilus 

 

 

Introduction 

 Cas3 is the signature protein of the type-I CRISPR system and comprises of an N-

terminal Histidine-Aspartate (HD) domain and a C-terminal DEXH helicase domain. 

Previously, in vivo experiments had shown that the HD domain is indispensable for a 

proper CRISPR response (Brouns et al., 2008; Cady et al., 2011). The HD domain was 

predicted to be a nuclease and was characterized to be a double-stranded DNAase in 

Sulfolobus sulfotaricus (Han and Kraus, 2009) but a single-stranded DNase in 

Streptococcus thermophilus (Sinkunas et al., 2011). We carried out structural and 

biochemical analysis of the HD domain from T. thermophilus to characterize its structure 

and its nuclease activity. The material presented in this chapter is reprinted (with minor 

changes) from Mulepati, S., and Bailey, S. (2011) Structural and biochemical analysis of 

nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-

associated protein 3 (Cas3). J. Biol. Chem. 286, 31896-31903, with permission from the 

American Society for Biochemistry and Molecular Biology. 

 

Results 

Crystal Structure of Cas3
HDdom

  

 Sequence analysis predicts that the Cas3
HDdom

 spans residues 5–260 of T. 

thermophilus HB8 cas3. The DNA sequence encoding this region was cloned into the 

pHAT2 expression vector (Peränen et al., 1996), expressed in E. coli, and purified to 
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homogeneity by affinity and size-exclusion chromatography. Cas3
HDdom

 was crystallized 

by vapor diffusion with PEG 300 as the precipitant. Divalent metal ions inhibited 

crystallization and therefore were not included in crystallization experiments. Crystals 

belong to the space group P4322 (a = b = 48.5 Å and c = 205.9 Å) and contain one 

Cas3
HDdom

 molecule per asymmetric unit. The structure was determined by multiple 

isomorphous replacement and refined at 1.8 Å resolution to an Rwork of 16.8% and an Rfree 

of 19.5%. A representative section of unbiased electron density is shown in Fig. 3.1A. 

The final model displays good geometry with no Ramachandran outliers (Table 3.1) and 

contains all of the Cas3
HDdom

 sequence except residues 81–101 and 183–188, for which 

electron density was not interpretable. No divalent metal ions were apparent in the 

electron density map. The tertiary structure of Cas3
HDdom

, composed of 10 -helices and 

two -strands, is illustrated in Fig. 3.1B. Overall, Cas3
HDdom

 adopts a globular structure 

with a concave surface formed by the five conserved motifs of the HD superfamily (Fig. 

3.1C) (Aravind and Koonin, 1998). 

 To investigate the molecular basis of divalent metal ion binding by Cas3
HDdom

, we 

measured diffraction data from crystals soaked in a stabilization solution containing 100 

M nickel sulfate. Soaks were performed at the crystallization pH of 4.2 because 

attempts to increase the pH severely reduced the quality of the x-ray diffraction data. 

Anomalous difference electron density maps, calculated from soaked data, contained a 

single strong peak (~25) positioned at the canonical metal-ion-binding site. The Ni
2+

 ion 

is coordinated, with octahedral geometry, by two water molecules and four conserved 

residues, within motifs I (His-24), II (His-69 and Asp-70), and V (Asp-205) (Fig. 3.1D). 

Superposition of the structures of Cas3
HDdom

 with and without bound metal ion results in 
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a root mean square deviation of 0.28 Å over 235 C atoms, demonstrating that the 

structure of Cas3
HDdom

 remains largely unchanged upon metal ion binding. The only 

significant difference is seen at the metal ion-binding site where the side chain of His-69 

rotates to coordinate the metal ion (Fig. 3.1D). 

 

Comparison with Other HD Domain Proteins 

 As expected, a search of the structural database by DALI (Holm and Sander, 

1993) shows that Cas3
HDdom

 is related to other HD domains, including many unpublished 

structures deposited by structural genomics initiatives. The most closely related is the 

unpublished structure of a Cas3” protein (MJ0384) from Methanocaldococcus jannaschii 

(PDB code 3M5F). These two proteins share only 14% amino acid identity, yet their 

structures align with a root mean square deviation of 3.2 Å over 142 C atoms (Z score 

of 7.9) (Fig. 3.2A). Although overall similar, there are some notable differences between 

the structures. First, two regions differ in topology. A 13-amino acid loop (residues 176–

191) connects the seventh and eighth helices of Cas3
HDdom

, whereas in Cas3”, an insertion 

results in an additional -helix connecting these helices (residues 168 –202) via an 

alternate path (Fig. 3.2B). The C terminus of Cas3
HDdom

 also ends with a helix-strand-

strand arrangement that is absent in the Cas3” structure (Fig. 3.2A). However, this 

difference may be the result of disorder in the electron density map of Cas3”. The last 30 

residues of Cas3” are not modeled, and the electron density describing the last helix 

(which contains motif V) lacks clear side chain features. The coordinates of many of the 

residues in this helix have been truncated in the model. The second difference between 

Cas3
HDdom

 and Cas3” is in the configuration of the metal ion binding sites. Two Ca
2+

 ions 
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are modeled at the active site of M. jannaschii Cas3” (Fig. 3.3A). Strikingly, neither of 

these metal ions is found at the canonical metal binding site of HD domains (site A in 

Fig. 3.3), perhaps due to the disorder observed in the electron density in the region of 

motif V. Instead, four conserved residues within motifs II, III, and IV coordinate one of 

the Ca
2+

 ions (site B in Fig. 3.3A). The significance of the position of the second Ca
2+

 ion 

(site C in Fig. 3.3A) is unclear as it is located 4.0 Å from the nearest protein atom or 

water molecule. 

 The Cas3” residues interacting with the site B Ca
2+

 ion are conserved in 

Cas3
HDdom

 (Fig. 3.3B), suggesting that Cas3
HDdom

 could bind two metal ions. Yet, in the 

electron density maps generated from our Ni
2+

 -soaking experiments, we fail to observe a 

metal ion at site B. The motif IV histidine residues (His-137 and His-138), which 

coordinate the site B metal ion in Cas3”, are oriented away from the binding site in the 

Cas3
HDdom

 structure (Fig. 3.3B). However, these residues are in a loop that is constrained 

by crystal packing contacts and, as a result, may be unavailable for metal ion binding. We 

were unable to crystallize Cas3
HDdom

 in the presence of divalent metal ions. In solution, 

Cas3
HDdom

 may bind two metal ions, one at site A and the other at site B. At least five 

structures of HD domains have been determined (PDB codes 2PQ7, 3HC1, 3CCG, 2OGI, 

and 2O08) that have a metal ion bound at each of these sites (an example of which is 

shown in Fig. 3.3C). These five HD domains are of unknown function, but they all 

contain a conserved histidine residue in motif III and either one or two conserved 

histidine residues in motif IV. 

 The availability of the crystal structures of many HD superfamily members 

permits us to define the minimal fold of the HD domain. An inspection of the overlay of 
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HD domain structures reveals a common core of five -helices that, along with their 

connecting loops, house the five motifs that define the HD superfamily (Fig. 3.2C) 

(Aravind and Koonin, 1998). Beyond this core structure, different members of the HD 

superfamily have unique structural elements that presumably help specify the individual 

functions of each HD domain family. 

 

Nuclease Activity of Cas3
HDdom

  

 S. thermophilus Cas3 has been shown to cleave ssDNA but not dsDNA in a Mg
2+

-

dependent manner. To investigate the activity of the T. thermophilus Cas3
HDdom

, we 

incubated various concentrations of the protein in the presence of Mg
2+

 and ssDNA 

(M13mp18). The reactions were then analyzed by electrophoresis through agarose gels, 

and the DNA species was visualized with ethidium bromide (Fig. 3.4A). Under these 

conditions, no cleavage of ssDNA was detected. We also assayed cleavage of dsDNA 

(PvuII-linearized pUC19) and again observed no cleavage (Fig. 3.4B). As HD domains 

have been reported to utilize a variety of different divalent cations as cofactors 

(Proudfoot et al., 2004; Seto et al., 1988; An et al., 1979; Lo et al., 2004), we evaluated 

the ability of several other divalent cations (Ca
2+

, Mn
2+

, Co
2+

, Ni
2+

, Cu
2+

, and Zn
2+

) to 

activate the nuclease activity of Cas3
HDdom

. Thus, cleavage reactions were repeated, 

substituting increasing concentrations of each of these metal ions for Mg
2+

. In these 

experiments, reaction products were detected as a smear on the agarose gel in the 

presence of low concentrations (20 M) of Ni
2+

, Mn
2+

, Co
2+

, Cu
2+

, and Zn
2+

 (Fig. 3.5A). 

No cleavage was observed in either the absence of divalent metal ions, the presence of 

EDTA, or the presence of up to 20 mM Ca
2+

. We also tested and detected no cleavage of 
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dsDNA in the presence of any of these metal ions (Fig. 3.5B). 

 

Metal Ion Binding Increases Thermal Stability of Cas3
HDdom

 

 To further characterize the interaction between Cas3HDdom and divalent cations, 

we performed a Thermofluor assay (Vedadi et al., 2006; Lo et al., 2004; Pantoliano et al., 

2001). This assay measures the change in the fluorescence signal of SYPRO orange dye 

as it interacts with a protein undergoing thermal unfolding. The fluorescence signal of the 

dye is quenched in an aqueous environment but becomes unquenched when exposed to 

the hydrophobic core of the protein upon unfolding. The midpoint of the unfolding 

transition is taken as an approximation of the melting temperature (Tm). This assay can 

assess ligand binding because ligands that bind more tightly to the folded form of the 

protein than to the unfolded form are likely to increase the apparent Tm of that protein 

(Matulis et al., 2005). In the presence of EDTA, the apparent Tm of Cas3
HDdom

 is 49.6  

0.2 °C (Fig. 3.6). In line with our activity data, the addition of 20 mM Mg
2+

 and 100 M 

Ni
2+

 increases the apparent Tm of Cas3
HDdom

 by ~6 °C and ~15 °C, respectively (Fig. 3.6). 

 

Mutational Analysis of Cas3
HDdom

 

 A series of point mutant proteins were generated in which putative active site 

residues (His-24, His-69, Asp-70, Lys-73, His-105, His-138, His-139 Ser- 202, Ser-209, 

and Asp-205) or the surface-exposed aromatic residues that surround this site (Trp-102 

and Phe-253) were replaced with alanine. The location of these mutations in Cas3
HDdom

 is 

highlighted in Fig. 3.7A. Alanine mutants were expressed and purified in the same 

manner as the wild-type protein (Fig. 3.7B). To ensure that any potential defects observed 
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in nuclease activity could not be attributed to global misfolding and to assess divalent 

metal ion binding, the apparent Tm of each alanine mutant was determined in the absence 

or presence of Ni
2+

 (Table 3.2). In the absence of Ni
2+

, nine of the 12 mutant proteins 

have Tm values similar to or greater than that of wild-type protein, indicating that these 

mutations did not destabilize the fold of Cas3
HDdom

. Three of the mutant proteins (K73A, 

H105A, and S209A) have a Tm lower than wild-type, suggesting that some destabilization 

did occur. For wild-type Cas3
HDdom

, the addition of Ni
2+

 results in an increase in apparent 

Tm (Tm) of 15°C. The mutation of residues not implicated in metal ion binding (Lys-73, 

Trp-102, Ser-202, Ser-209, and Phe-253) results in similar or larger Tm values, 

supporting the evidence that these residues do not participate in metal ion binding. With 

the exception of His-105, the mutation of residues predicted to bind metal ions (His-24, 

His-69, Asp-70, His-138, His- 139, and Asp-210) results in a decreased Tm (Table 3.2), 

suggesting that, in solution, these residues are involved in metal ion binding. 

 We next tested each of the alanine mutants for ssDNA endonuclease activity 

using the M13mp18 phage cleavage assay in the presence of Ni
2+

 (Fig. 3.7C). Under 

these conditions, wild- type Cas3
HDdom

 generated cleavage products that migrated as a 

tight smear on an agarose gel, whereas the mutation of residues predicted to bind metal 

ions abolished this nuclease activity. These results confirm that the activity we observed 

is not the result of a contaminating protein. The other alanine mutations abolished 

(K73A), suppressed (W102A and S209A), or had little or no affect (S202A and F252A) 

on the nuclease activity of Cas3
HDdom

. 
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Discussion 

 Cas3 is functionally essential (Brouns et al., 2008; Cady and Toole, 2011) and is 

the signature gene of the type I CRISPR/Cas system (Makarova et al., 2011). The HD 

nuclease domain of Cas3 is proposed to cleave the ssDNA revealed upon cascade binding 

to target DNA (Sinkunas et al., 2011). Consistent with this hypothesis, we show that T. 

thermophilus Cas3
HDdom

 cleaves ssDNA but not dsDNA. This result also establishes that 

the helicase domain of Cas3 does not alter the substrate specificity of its HD domain. 

Mg
2+

 activated the endonuclease activities of S. thermophilus Cas3 (Sinkunas et al., 

2011) and S. sulfataracus Cas3” (Han and Krauss, 2009). In contrast, the transition metal 

ions Mn
2+

, Co
2+

, Ni
2+

, and Zn
2+

 activate the endonuclease activity of T. thermophilus 

Cas3
HDdom

 but not Mg
2+

 or Ca
2+

 (Fig. 3.7C). It is also noteworthy that T. thermophilus 

Cas3
HDdom

 appears much more active in the presence of transition metal ions, particularly 

Ni
2+

, than S. thermophilus Cas3 is in the presence of Mg
2+

 (Sinkunas et al., 2011). More 

quantitative data will be needed to establish whether this is significant. Which metal ion, 

or ions, is used in vivo by T. thermophilus Cas3 remains to be determined. We cannot 

rule out the possibility that the in vitro requirement for transition metal ions could be a 

sign of a missing cofactor found in the cell. However, in T. thermophilus, the total 

intracellular concentration of Mn
2+

, Ni
2+

, and Zn
2+

 are ~160, 150, and 550 M, 

respectively, whereas the concentration of Co
2+

 is undetectable (Kondo et al., 2008). 

Considering that only 20 M of Mn
2+

 or Ni
2+

 is needed to activate Cas3
HDdom

 in vitro, 

these two ions are the most likely in vivo candidates of the ions studied. 

 The crystal structure of T. thermophilus Cas3
HDdom

 provides the first view of an 

HD domain with nuclease activity. Cas3
HDdom

 adopts a globular structure with a concave 
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surface that contains the active site and presumably binds substrate DNA. Comparison of 

the structure of the Cas3HDdom with bound Ni
2+

 and other HD domains with bound 

divalent metal ions suggests that Cas3
HDdom

 binds two metal ions at its active site. In line 

with this, the mutation of residues predicted to form the metal ion binding sites results in 

proteins with smaller Tm values upon addition of Ni
2+

 compared with the wild-type 

protein. The D70A mutant has the smallest Tm value, consistent with the observation 

that among two metal-ion dependent enzymes, the most critical residue for metal binding 

is often an aspartate (Yang et al., 2006). His-105 is the only residue predicted to bind 

metal ion that, when mutated, has a Tm value comparable with that of wild-type protein 

(Table 3.2). However, this residue most likely is a metal ion ligand as it is highly 

conserved and coordinates metal binding in structures of other HD domains (PDB codes 

2PQ7, 3HC1, 3CCG, 2OGI, and 2O08). 

 The metal-binding data and analysis presented here also imply that all HD domain 

proteins with histidine residues in motifs III and IV will have two metal ions at their 

active sites. Thus, unlike the HD domains characterized to date (Hogg et al. 2004; Kondo 

et al., 2007; Zimmerman et al., 2008), proteins in this subset of HD domains, which 

include Cas3 and Cas3”, are likely to utilize a two metal-ion mechanism for catalysis 

(Freemong et al., 1988; Beese and Steitz, 1991). The fact that Cas3
HDdom

 appears to bind 

two metal ions in the absence of substrate is also somewhat distinct, as it is generally 

observed that metal ion binding by two-metal-ion dependent enzymes requires the 

presence of cognate substrate (Yang et al., 2006). 

 We used structure-guided mutagenesis to confirm both the importance of metal 

ion-binding residues to the activity of Cas3
HDdom

 and to examine the role of other residues 
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close to the metal ion-binding sites. The mutation of the residues predicted to bind metal 

ions, including His-105 (Fig. 3.3B), completely ablates the nuclease activity of Cas3
HDdom

 

under the conditions tested. These results, coupled with both our structural analysis and 

Tm data (Table 3.2), are consistent with two metal ions bound at the Cas3HDdom active 

site and establish the importance of these ions for nuclease activity. Mutation of the 

invariant Lys-73 produced an inert enzyme (Fig. 3.7C). Because of the proximity of this 

residue to the metal ion binding sites (Fig. 7A) and its positive charge, it is likely that it 

helps correctly position a phosphate group of the substrate for catalysis. Mutation of Trp-

102 or Ser-209 also resulted in a protein with a reduced activity (Fig. 3.7C). The position 

of these residues within the substrate-binding cleft (Fig. 3.7A) suggests that they may 

play a role in substrate recognition. 

Studies of S. solfataricus Cas3” have shown that this enzyme has distinct 

substrate specificity compared with S. thermophilus and T. thermophilus Cas3, as it 

cleaves dsDNA but not ssDNA (Han and Krauss, 2009). Additionally, comparison of 

mutational studies between T. thermophilus cas3 (presented here) and S. solfataricus 

Cas3 (Han and Krauss, 2009) suggests that the active site geometry of S. solfataricus 

Cas3” may also be distinct. First, mutation of either His-69 or His-105 ablates Cas3
HDdom

 

nuclease activity (Fig. 3.7C). However, mutation of the corresponding residues in S. 

solfataricus Cas3” results in a protein with near wild-type activity (Han and Krauss, 

2009). Secondly, mutation of Glu-92 in S. solfataricus Cas3”, a motif III residue that is 

conserved in Cas3” but not Cas3, inactivated nuclease activity. Inspection of the structure 

of M. jannaschii Cas3” suggests that this glutamate may replace the second histidine 

residue of motif IV (His-143 in T. thermophilus and His-124 in M. jannaschii). This 
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histidine forms part of metal ion site B (Fig. 3.3) and is essential for the nuclease activity 

of T. thermophilus Cas3
HDdom

 (Fig. 3.7C). In the structure of M. jannaschii Cas3”, Glu-92 

is in close proximity to site B, but its side chain is oriented away from the metal ion (Fig. 

3.3A). S. solfataricus Cas3” lacks the second histidine of motif IV. Thus, Glu-92 could 

substitute for this histidine in coordinating the metal ion, potentially explaining the 

importance of this residue for the nuclease activity of S. solfataricus Cas3”. The 

significance of this mutational data and the difference in substrate specificity awaits 

further studies of the Cas3 and Cas3” proteins. However, these results may indicate that 

S. solfataricus Cas3” has a different functional role or mechanism of action within the 

CRISPR response.  

 

Materials and methods 

Cloning and Mutagenesis 

 The 780-bp sequence encoding Cas3
HDdom

 was amplified from the Thermus 

thermophilus HB8 cas3 gene (TTHB187) and cloned into the pHAT2 expression vector 

( nen et al., 1996) between its NcoI and EcoRI restriction sites. The resulting 

plasmid encodes the Cas3
HDdom

 polypeptide fused to an N-terminal His6 tag. Alanine 

mutations were introduced into the cas3
HDdom

 gene by the QuikChange site-directed 

mutagenesis method (Stratagene). All mutations were verified by DNA sequencing. 

 

Expression and Purification 

 Wild-type and mutant pHAT2-cas3
HDdom

 plasmids were transformed into the T7 

EXPRESS strain of E. coli (New England Biolabs). The cells were grown at 37 °C in 



 44 

Luria-Bertani medium to an A600 of 0.4. Expression was induced by the addition of 0.2 

mM isopropyl 1-thio--D-galactopyranoside. Following overnight incubation at 20 °C, 

the cells were harvested by centrifugation. Cell pellets were lysed in lysis buffer (20 mM 

Tris-HCl, pH 8.0, 1 M NaCl, and 10% glycerol) and then clarified by centrifugation at 

18,000 rpm for 30 min. The lysates were loaded on a 5-ml immobilized metal affinity 

column (Bio-Rad) charged with nickel sulfate. The column was washed with lysis buffer 

containing 20 mM imidazole, and the bound protein was then eluted with 250 mM 

imidazole. The elution was then loaded onto a HiLoad 26/60 S200 column (GE 

Healthcare) pre-equilibrated with gel-filtration buffer (20 mM Tris-HCl, pH 8.0, 1 mM 

EDTA, and 200 mM NaCl). Fractions containing Cas3
HDdom

 were pooled, dialyzed 

against gel-filtration buffer lacking EDTA, and concentrated to 8 mg/ml using an Ultracel 

10 K centrifugal filter unit (Millipore). Purified proteins were >95% pure as judged by 

SDS- PAGE and Coomassie staining. 

 

Crystallization 

 Crystals of Cas3
HDdom

 were obtained using the sitting-drop vapor-diffusion 

method by mixing 2 l of Cas3
HDdom

 at�8mg/ml with1 l of solution containing 10 mM 

phosphate-citrate buffer at pH 4.2 and 10% PEG 300. Crystals were stabilized and cryo-

protected in a solution containing 10 mM sodium acetate, pH 4.2, and 30% PEG 300, and 

then flash-frozen in liquid nitrogen. Platinum and osmium derivative crystals were 

obtained by soaking crystals for 90 min in a stabilization solution containing either 1 mM 

of K2PtCl4 or (NH4)2OsCl6. 
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Data Collection and Structure Determination 

 X-ray diffraction data were collected at beamline 9.2 at the Stanford Synchrotron 

Radiation Light Source and processed with either XDS (Kabsch, 2010) or HKL2000 

(Otwinowski and Minor, 1997). SHELX (Sheldrick, 2008) was used to find the position 

of osmium sites in the (NH4)2OsCl6 derivative crystal first. The phases derived from 

these osmium sites were then used to calculate a difference Fourier map to find the heavy 

atom positions in the platinum derivative. All phases were calculated using SOLVE and 

improved by solvent-flattening in RESOLVE (Terwilliger, 2004). Model building was 

carried out in Coot (Emsley and Cowtan, 2004), and the model was refined with PHENIX 

(Afonine et al., 2010). Coordinates of the metal-free and metal-bound structures have 

been deposited with the Protein Data Bank (PDB) codes 3SK9 and 3SKD, respectively. 

 

Analysis of Methanococcus jannaschii Cas3” 

 To access the structure of M. jannaschii Cas3”, we calculated difference electron 

density maps (2.3 Å resolution) from the deposited coordinates and structure factors 

(PDB code 3M5F) using the phenix.model_vs_data script (Afonine et al., 2010). The 

Rwork/Rfree from this calculation is 22.9/26.3%, in good agreement with the published 

Rwork/Rfree of 23.1/26.0%. 

 

Nuclease Assay 

 Cas3
HDdom 

nuclease assays were performed as described previously (Sinkunas et 

al., 2011). Magnesium chloride (Mg
2+

), manganese chloride (Mn
2+

), nickel sulfate 

(Ni
2+

), copper chloride (Cu
2+

), cobalt chloride (Co
2+

), calcium chloride (Ca
2+

), and 
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zinc chloride (Zn
2+

) were used in metal ion substitution reactions at the indicated 

concentrations. All reactions were terminated with 20 mM EDTA. The products of 

reactions were separated by electrophoresis through 1% agarose gels and visualized by 

ethidium bromide staining. 

 

Thermofluor Assay 

 The apparent melting temperature values of wild-type and mutant cas3
HDdom

 were 

determined as described previously (Vedadi et al., 2006). Experiments were performed in 

a buffer containing 20 mM Tris-HCl, pH 8.0, and 200 mM NaCl. The final concentration 

of protein was 10 M ( = 55460 M
-1

 cm
-1

). Reactions were heated from 20 to 80 °C, and 

the fluorescence intensity was recorded at 0.2 °C intervals. Fluorescence intensities were 

plotted as a function of temperature, and the midpoint of the unfolding transition taken as 

an estimation of the melting temperature. 
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Table 3.1. Data collection and processing statistics 
Data collection Native Ni soak Pt soak Os soak 

Resolution (Å)
a
 1.8 (1.9-1.8) 2.00 (2.11-2.00) 2.23 (2.31-2.23) 2.29 (2.37-2.29) 

Rsym
a, b

 6.1 (49.5) 15.4 (70.5) 14.9 (93.6) 6.5 (14.9) 

I/a
 22.7 (4.5) 9.5 (3.2) 8.3 (1.2) 18.1 (9.4) 

Redundancy
a
 11.7 (10.7) 12.0 (11.5) 3.8 (3.8) 3.8 (3.8) 

Completeness (%)
a
 99.4 (96.4) 99.9 (99.5) 100 (100) 99.6 (97.6) 

Wilson B factor 25.56    

Mean figure of merit 0.51    

Heavy atom sites  1 4 1 

Refinement     

Rwork
c
 16.69 16.52   

Rfree
c
 19.54 20.62   

r.m.s.d. bond (Å)
d
 0.016 0.018   

r.m.s.d. angle 1.425 1.518   

No. of atoms 1953 1957   

B-factors 32.7 37.3   
a
 The values in parentheses are for the highest resolution shell. 

b
 Rsym is |Io – I|/Io, where Io is the intensity of an individual reflection, and I is the mean 

intensity for multiple recorded reflections.  

c
 Rwork is ||Fo – Fc||/Fo, where Fo is an observed amplitude, and Fc is the calculated 

amplitude; Rfree is the same statistic calculated over a subset of the data that has not been 

used for refinement. 

d
 r.m.s.d., root mean square deviation. 

 

 

Table 3.2. Melting temperatures of wild-type and mutant Cas3
HDdom 

 Melt temperature (C) 

0 M Ni2+ 100 M Ni
2+

 

WT 49.6  0.2 64.8  0.6 

H24A 43.6  0.4 62.8  0.4 

H69A 49.8  1.8 62.2  0.8 

D70A 52.6  0.2 55.2  0.4 

K73A 45.0  0.4 65.0  0.6 

W102A 49.0  0.4 67.2  0.4 

H105A 45.8  0.4 61.2  0.4 

H137A 50.8  0.4 62.0  0.2 

H137A 50.8  0.4 62.0  0.2 

H138A 49.2  0.2 61.8  0.4 

S202A 51.2  0.8 66.2  0.4 

D205A 50.6  0.6 61.0  0.4 

S209A 47.2  0.2 62.4  0.4 

F253A 49.6  0.4 65.4  0.6 
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Figure 3.1. Crystal structure of T. thermophilus Cas3
HDdom

. A, unbiased Fo - Fc electron 

density map contoured at 3. The residues, which are represented as sticks, were omitted 

from the map calculation. B, ribbon trace of the Cas3
HDdom

 structure. The HD domain 

motifs are colored as follows: motif I (red), motif II (green), motif III (orange), motif IV 

(blue) and motif V (pink). The black sphere represents the cognate metal binding site. 

The N and C termini are labeled. C, Amino acid sequence conservation scores mapped 

onto the surface of two orthogonal views of the Cas3
HDdom

 using CONSURF (Armon et 

al., 2001). The structure to the left is in the same orientation as shown in B. The 

conservation scale is drawn below the two views of the structure. The black sphere 

represents the cognate metal-binding site. D, Cas3
HDdom

 metal ion-binding site. Residues 

colored by element are in the metal ion-bound configuration. Residues colored yellow are 

in the protein alone configuration. The Ni
2+

 (blue) and two water molecules (red) are 

represented as spheres. Anomalous difference electron density map contoured at 5 

(white mesh) reveals the site of the Ni
2+

 ion. 
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Figure 3.2. Comparison of Cas3
HDdom

 with other HD domains. A, structure of T. 

thermophilus Cas3
HDdom

 (yellow and red) superimposed on the structure of M. jannaschii 

Cas3” (white). The additional helix-strand-strand element in the structure of Cas3
HDdom

 is 

colored red. The molecules are oriented as shown in B. B, side-by-side view of the 

structures of T. thermophilus Cas3
HDdom

 (left) and M. jannaschii Cas3” (right). The 

helical insertion found in M. jannaschii Cas3” and its equivalent loop in T. thermophilus 

Cas3 are colored blue. The helices either side of this region are colored green. C, ribbon 

trace of the minimal core five -helices of the HD domain taken from the structure of 

Cas3
HDdom

. Residues from the five HD domain motifs are colored as shown in B. A 

surface representation of Cas3
HDdom

 is shown in the background. 
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Figure 3.3. Metal ion-binding sites in HD domains. The residues that form the metal ion-

binding sites of M. jannaschii Cas3” (A), T. thermophilus Cas3
HDdom

 (B), and a protein of 

unknown function (PDB 2PQ7) from a Thermotogales species (C). The text color of 

residue labels indicates the motif that the residue belongs to as shown in Fig. 1B. Labeled 

metal ions are shown as green spheres. His-138 of T. thermophilus Cas3
HDdom

 is modeled 

in two alternative conformers; for clarity, only one of these conformers is shown. 
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Figure 3.4. The nuclease activity of Cas3
HDdom

 is not activated by Mg
2+

. A, activity of 

Cas3
HDdom

 on ssDNA in the presence of Mg
2+

. Reaction mixtures containing 10 mM Tris-

HCl, pH 7.5, 60 mM KCl, 10 mM MgCl2, 10% glycerol, and 4 nM circular single-

stranded M13mp18, and the indicated amounts of Cas3
HDdom

 were incubated for 2 h at 37 

°C. Reactions with EDTA or no added metal served as controls. All reactions were 

quenched with 20 mM EDTA, and the products were then resolved by a 1% agarose gel 

and visualized by ethidium bromide staining. B, activity of Cas3
HDdom

 on dsDNA in the 

presence of Mg
2+

. Assays were performed as above except that the reaction mixtures 

contained 4 nM pUC19 linearized with PvuII. 



 53 

 

 

 

 
 

Figure 3.5. The ssDNA endonuclease activity of Cas3
HDdom

 is activated by transition 

metal ions. A, activity of Cas3
HDdom

 in the presence of difference divalent metal ions. 

Reaction mixtures containing 10 mM Tris-HCl, pH 7.5, 60 mM KCl, 10% glycerol, 1 M 

Cas3
HDdom

, and 4 nM circular single-stranded M13mp18 DNA, and the indicated amount 

of each divalent metal ion were incubated for 2 h at 37 °C. Reactions with EDTA, no 

added metal (NM) or no protein (C) served as controls. All reactions were quenched with 

20 mM EDTA, and the products were then resolved by a 1% agarose gel and visualized 

by ethidium bromide staining. B, activity of Cas3
HDdom

 on dsDNA in the presence of 

different divalent metal ions. Assays were performed as above except that reaction 

contained 4 nM pUC19 linearized with PvuII. 
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Figure 3.6. Effects of metal ions on the thermal stability of Cas3
HDdom

. Thermofluor 

assays were performed in the absence of metal or in the presence of either 20 mM Mg
2+

 

or 100 M Ni
2+

. Arrows indicate the apparent melting temperatures. R.F.U., relative 

fluorescence units. 
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Figure 3.7. Mutational analysis of Cas3
HDdom

. A, ribbon trace of Cas3
HDdom

 (white). 

Residues selected for mutation are represented as sticks (red), and the Ni
2+

 ion as a sphere 

(blue). B, an SDS-PAGE of the purified mutants, stained with Coomassie Blue. C, 

ssDNA endonuclease activity of the mutants. Reaction mixtures containing 10 mM Tris-

HCl, pH 7.5, 60 mM KCl, 10% glycerol, 100 nM Cas3
HDdom

, and 60 M NiSO4, and 4 

nM circular single-stranded M13mp18 DNA were incubated for 50 min at 37 °C. 

Reactions with EDTA or no Cas3
HDdom

 (-) served as controls. The reaction products were 

resolved by a 1% agarose gel and visualized by ethidium bromide staining. 
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Chapter 4 

 

 

In vitro reconstitution of the Escherichia coli CRISPR system reveals unidirectional, 

ATP-dependent degradation of the target DNA 

 

Introduction 

 We previously determined the structure of the Cas3 HD domain from T. 

thermophilus and demonstrated that its single-stranded DNase activity is stimulated by 

transition metal ions. However, we were not sure how Cas3 is able to degrade a double-

stranded target DNA. Thus, to investigate the mechanism of foreign DNA degradation by 

Cascade, we reconstituted in vitro the interference stage of the type-IE CRISPR system 

from E. coli.  The results in this chapter have been reprinted here with minor changes 

from Mulepati, S., and Bailey, S. (2013) In vitro reconstitution of an Escherichia coli 

RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA 

target. J. Biol. Chem. 288, 22184-22192, with permission from American Society for 

Biochemistry and Molecular Biology. 

 

Results  

Overexpression and Purification of Recombinant E. coli Cas3 

 To facilitate expression and purification, the gene encoding E. coli Cas3 was 

cloned with an N-terminal His6 maltose-binding protein tag. The maximum yield of 

soluble protein (1 mg of pure protein/L of culture) was obtained when cultures were 

grown at 20 °C, and expression was induced in early log phase (A600 of 0.3). Cultures 

grown at higher temperatures or cultures that were induced above an A600 of 0.3 produced 
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little or no soluble Cas3. Tagged protein was purified from clarified cell lysate by nickel 

affinity and size exclusion chromatographies. Tobacco etch virus protease was added to 

remove the tag, and untagged protein was isolated by additional nickel affinity and size 

exclusion steps. Untagged Cas3 eluted from the size exclusion column at the volume 

expected for a Cas3 monomer and was over 90% pure, as judged by SDS-PAGE and 

Coomassie staining (Fig. 4.2A). Mutant variants of Cas3 were produced in a similar 

manner as wild-type protein, except for co-expression with the chaperone HtpG (Yosef et 

al., 2011), to compensate for their lower solubility. 

 

Cascade-directed Cleavage of Plasmid DNA by Cas3 

 The HD domain of Cas3 specifically cleaves ssDNA (Mulepati and Bailey, 2011; 

Sinkunas et al., 2011; Beloglazova et al., 2011). Previously, we have shown that 

transition metal ions and not magnesium ions activate the nuclease activity of Thermus 

thermophilus Cas3 (Mulepati and Bailey, 2011). Therefore, we tested the nuclease 

activity of E. coli Cas3 on circular single-stranded DNA (M13 phage) with a selection of 

divalent metal ions before attempting to reconstitute the activity of the E. coli CRISPR 

system. Consistent with the results from T. thermophilus, nickel ions stimulated the 

nuclease activity of the E. coli protein (Fig. 4.2B). Because magnesium ions are 

necessary for the ATPase activity of Cas3 (Sinkunas et al., 2011), magnesium and 

transition metal ions were included in subsequent reconstitution assays. 

 To test whether Cascade can direct stand-alone Cas3 to degrade DNA target in a 

reconstituted system, we incubated Cas3 and Cascade with a plasmid target bearing 

functional PAM and complementary protospacer sequences. Following incubation, 
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proteins were removed by phenol extraction, and the DNA was analyzed by 

electrophoresis through agarose gels and ethidium bromide staining. We found that in the 

presence of ATP, Mg
2+

, and transition metal ions, in particular Co
2+

, Cascade directed 

Cas3 to degrade the plasmid target, as shown by a nonspecific smear of dsDNA products 

on the agarose gel (Fig. 4.3A). Reactions containing either Mg
2+

 or select transition metal 

ions, but not both, degraded plasmid target to a much lesser extent, consistent with the 

differing metal ion requirements of the two domains of Cas3 (Fig. 4.3, A–C) (Mulepati 

and Bailey, 2011; Sinkunas et al., 2011). Control plasmids lacking a protospacer 

sequence were not degraded. Target degradation was also ablated when a critical residue 

in the nuclease active site of Cas3 was mutated (D75A) (Fig. 4.3B) (Mulepati and Bailey, 

2011; Sinkunas et al., 2011; Beloglazova et al., 2011; Westra et al., 2012). 

 Previous electrophoretic mobility shift assays have demonstrated that Cascade 

requires the CasA subunit when binding to dsDNA target (Sashital et al., 2012; Mulepati 

et al., 2012; Westra et al., 2012). Consistently, a subcomplex of Cascade lacking the 

CasA subunit (CasBCDE) was unable to direct degradation of the plasmid target. The 

addition of CasA to the reaction restored this activity (Fig. 4.3D). 

 ATP is required for DNA target degradation (Westra et al., 2012) (Fig. 4.3). In the 

absence of ATP, the Cascade-Cas3 fusion was shown to nick the DNA target, and an 

ATPase-deficient variant of the fusion nicked the target both in the presence or absence 

of ATP (Westra et al., 2012). With 50 nM stand-alone Cas3, only 13% of the plasmid 

target was nicked in the absence of ATP (Fig. 4.3A). However, when the concentration of 

Cas3 was varied, nicking activity increased in a concentration-dependent manner (Fig. 

4.3E); 68% of the target was nicked at 300 nM Cas3. When ATP was included in the 
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reaction, target was completely degraded except at the lowest concentrations of Cas3. In 

addition, the nicking activity of an ATPase-deficient variant (D452A) of Cas3 was 

stimulated by the presence of ATP (Fig. 4.3E). In the absence of ATP, the variant Cas3 

nicked 55% of the target DNA, but in the presence of ATP, close to 100% of the target 

DNA was nicked. These data suggest that Cas3 recruitment to target DNA is stimulated 

by the binding but not the hydrolysis of ATP. To further examine the effects of ATP on 

Cas3 activity, we monitored target degradation as a function of ATP concentration (Fig. 

4.3F). At high ATP concentrations, we observed a smear on the agarose gel 

corresponding to degradation products with a wide range of sizes. At lower ATP 

concentrations, the average product size decreased and spanned a smaller range. These 

results suggest that the frequency of cutting by the nuclease domain is coupled to the rate 

of DNA unwinding by the helicase domain. 

 

Cascade Bound to DNA Target Activates the ATPase Activity of Cas3 

 The helicase domain of S. thermophilus Cas3 harbors both ATP-dependent 

helicase and ssDNA-dependent ATPase activities (Sinkunas et al., 2011). Using an 

NADH-coupled assay (Kiianitsa et al., 2003), we investigated the ATPase activity of E. 

coli Cas3 by testing the effects of reaction components on the rate of ATP hydrolysis 

(Fig. 4.3G). ATPase activity was not stimulated by dsDNA and was stimulated only 

modestly by ssDNA (~3-fold). The addition of Cascade alone failed to stimulate the 

ATPase activity, but with the addition of plasmid target, the rate of ATP hydrolysis was 

stimulated 44-fold. This stimulation is dependent on base pairing between the crRNA and 

protospacer sequences because targets lacking a protospacer failed to stimulate the 
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ATPase activity. No ATPase activity was detected with an ATPase-deficient variant 

(D452A) of Cas3. These results suggest that the ATPase activity of Cas3 is tightly 

regulated and relies on the recruitment of Cas3 by Cascade to a protospacer. 

 

Degradation of DNA Targets Requires both PAM and Seed Sequences 

 Mutations in the PAM or seed sequences of DNA targets render cells with an 

otherwise functional CRISPR system sensitive to phage infection (Semenova et al., 

2011). Binding studies revealed that this is a result of the reduced affinity between 

Cascade and the mutant DNA targets (Semenova et al., 2011; Sashital et al., 2012). To 

determine if the activity of our reconstituted CRISPR system is also dependent on PAM 

and seed sequences, we monitored nicking activity on plasmid targets containing point 

mutations in either the PAM or the protospacer. These reactions were performed in the 

absence of ATP to avoid smearing of the DNA products on the agarose gels, allowing us 

to quantify the activity through the ratio of nicked product to negatively supercoiled 

substrate. Mutations in the PAM sequence abolished target nicking, mutations in the seed 

sequence reduced nicking activity (particularly at positions 1 and 4), and mutations 

outside the seed region generally had little to no effect (Fig. 4.4A). We also tested the 

ability of these variant targets to activate the ATPase activity of Cas3 (Fig. 4.4B) and 

found that the mutations had similar effects on ATPase activation as they had on nicking 

activity. Altogether, these results establish that the reconstituted assay recapitulates the 

observed in vivo dependence for target PAM and seed sequences. 
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Cascade Can Direct Cas3 to Degrade Linear DNA, and Degradation Is Unidirectional 

 To determine if Cascade and stand-alone Cas3 can degrade linear DNA and if 

degradation proceeds from the protospacer in one or both directions, plasmid targets were 

linearized using either of two restriction enzymes, KpnI or ScaI. The protospacer is 

positioned 3 kb from the 5’-end of the target strand in the KpnI-treated plasmid and 2 kb 

away in the ScaI-treated plasmid. After reaction with the reconstituted CRISPR system, 

the linear KpnI- and ScaI- treated targets were clearly degraded, yielding products that 

were resistant to degradation of 3 and 2 kb, respectively (Fig. 4.5A). This pattern of 

resistance suggests that degradation is unidirectional, initiating in or near the protospacer 

and proceeding upstream, leaving the downstream DNA intact (Fig. 4.5A). As observed 

with negatively supercoiled targets, degradation of linear DNA was also found to be 

ATP- and Cascade-dependent, and mutation of either the nuclease (D75A) or helicase 

domain (D452A) of Cas3 ablated this degradation (Fig. 4.5B). 

 To investigate if negative supercoiling affects the rate of target degradation by 

Cascade and stand-alone Cas3, we compared the rates of degradation of negatively 

supercoiled with linearized plasmid targets (Fig. 4.5C). Fitting the data to a single- 

exponential decay yielded observed rate constants (kobs) of 2.92 and 0.66 min
-1

 for 

negatively supercoiled and linear target, respectively (Fig. 4.5C). This suggests that the 

E. coli CRISPR system prefers negatively supercoiled target to linear target by 4.5-fold. 

Consistent with the nuclease assay, both substrates stimulated ATPase activity, but 

activity with supercoiled target was greater than that of the linearized target by 2-fold 

(Fig. 4.3G). 
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Mapping Degradation of Target DNA by Cas3 

 When Cascade binds to foreign DNA, the crRNA base-pairs to the target strand 

and displaces the non-target strand. DNA footprinting experiments show that the majority 

of the protospacer DNA is protected when bound to Cascade except for a 19-base region 

of the non-target strand (Fig. 4.1) (Jore et al., 2011). To determine if Cas3 nicks this 

accessible region, we performed a reconstitution assay in the absence of ATP, purified 

the nicked product from an agarose gel, and sequenced it using primers that flanked the 

protospacer region. A clear interruption in the sequence of the non-target strand was 

observed, whereas the sequence of the target strand was uninterrupted (Fig. 4.6A), 

indicating that nicking occurs in the accessible region of the non-target strand 11 bases 

from the 3’-end of the PAM. Next, we performed similar experiments sequencing the 

linear product, enriched in assays containing low concentrations of ATP (Fig. 4.6A). 

Again, a clear interruption in the sequence of the non-target strand was observed, 11 

bases from the 3’-end of the PAM (Fig. 4.6A). However, sequence information from the 

target strand was unread- able in the region of the protospacer, consistent with the 

presence of multiple cuts in this strand (Fig. 4.6A). 

 To map the degradation of target DNA in more detail, we repeated reconstitution 

assays on synthetic dsDNA targets, one labeled with 
32

P at the 5’-end of the target strand 

and the other at the 5’-end of the non-target strand. In the absence of ATP (or in the 

presence of ATP but using the ATPase-deficient mutant of Cas3, D452A), the target 

strand was not cleaved, whereas the non-target strand was cut weakly within the 

protospacer, 7 and 11 bases from the PAM sequence (Fig. 4.6, B–D). When ATP was 

included in the reactions, multiple cuts were observed in both strands. In the target strand, 
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cleavage occurred in the region 3’ of the protospacer and in the flanking upstream DNA 

(Fig. 4.6, B and D). A similar cleavage pattern was observed for the non- target strand 

(Fig. 4.6, C and D). These results reaffirm that degradation of target DNA is 

unidirectional because we observe no cleavage downstream of the protospacer sequence. 

The nuclease-deficient mutant (D75A) of Cas3 did not cut the synthetic DNA target. 

Targets lacking a PAM sequence also failed to be cut by wild-type Cas3. 

 

Discussion 

 During the interference stage, the E. coli Type I-E system proceeds through the 

identification and degradation of foreign DNA. Cascade recognizes foreign DNA and 

then recruits Cas3 for the ATP-dependent degradation of the target. Studies of the E. coli 

system have greatly increased our understanding of target recognition (Jore et al., 2011; 

Wiedenheft et al., 2011; Semenova et al., 2011; Sashista et al., 2012; Mulepati et al., 

2012; Westra et al., 2012). However, the mechanisms underlying Cas3 recruitment and 

subsequent target degradation are poorly understood. This could be a result of an inability 

to produce a recombinant form of stand-alone E. coli Cas3 suitable for bio- chemical 

analysis. Here, we report the production of stand-alone E. coli Cas3 with which we could 

reconstitute the E. coli Type I-E system in vitro. Using this in vitro system, we 

investigate the mechanism of Cas3 recruitment and subsequent target degradation. 

 Cascade binding to target DNA is a prerequisite for recruitment of Cas3. For 

Cascade to bind, DNA targets require a protospacer complementary to the crRNA and a 

PAM (Semenova et al., 2011). Cascade binding generates an R-loop structure in the 

target DNA that exposes part of the non-target strand (Figs. 4.1 and 4.7) (Jore et al., 
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2011). Our results indicate that this exposed ssDNA serves as the binding platform for 

Cas3 and is also the site for the initial nicking of the DNA target (Figs. 4.6 and 4.7). 

Thus, complex formation between Cascade and target DNA provides Cas3 with the 

ssDNA required both for loading the helicase domain and as the substrate for nicking by 

the nuclease domain. Additional protein- protein interactions with Cascade, in particular 

the CasA subunit, may also play a role in recruitment (Westra et al., 2012). Nicking of 

target does not require ATP hydrolysis (Westra et al., 2012) but is stimulated by the 

presence of ATP (Fig. 4.3, A and E), probably because ATP binding stimulates 

recruitment of Cas3. Mutations in the PAM and seed sequence, which reduce the binding 

affinity of Cascade (Semenova et al., 2011), inhibit the cleavage of DNA target (Fig. 

4.4A). Thus, the nuclease activity of Cas3 is tightly regulated. Only DNA that has been 

correctly engaged by Cascade and formed an R-loop will be degraded. Similarly, we also 

find that the ATPase activity is tightly regulated, being significantly activated only in 

situations where Cascade can form an R-loop with DNA target (Fig. 4.3G).Tight 

regulation is presumably necessary to control the deleterious effects Cas3 could have on 

the host chromosome or other beneficial DNA within the cell. 

 Following nicking, further DNA cleavage requires ATP hydrolysis by Cas3 (Fig. 

4.3, A and E), presumably to provide the energy for DNA unwinding, which generates 

the ssDNA substrate for the nuclease domain (Fig. 4.7). The coupling of dsDNA 

unwinding to ssDNA degradation is reminiscent of the mechanism employed by the 

RecBCD family of enzymes in homologous recombination (Wigley, 2013). To further 

investigate DNA target degradation, we mapped the sites of this ATP-dependent cleavage 

using labeled synthetic DNA. We found that Cas3 extensively cuts both strands within 
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the protospacer and upstream of the PAM (Fig. 4.6). This, as well as results from 

monitoring degradation of linear plasmids (Fig. 4.5), shows that the progression of target 

degradation is unidirectional, proceeding only upstream of the protospacer (Fig. 4.7). 

Cas3 may also have an active role in recycling Cascade (Sinkunas et al., 2011) because 

we also observe cuts in the target strand of the protospacer (Fig. 4.6), suggesting that the 

target strand has been unwound from the crRNA (Fig. 4.7). Consistently, E. coli Cas3 has 

been shown to harbor ATP-dependent R-loop unwinding activity (Howard et al., 2011). 

 The activities of the two domains of Cas3 are coupled because the helicase 

domain generates the substrate for the nuclease domain. We monitored degradation of 

plasmid target as a function of ATP concentration to gain further insight into this 

coupling (Fig. 4.3F). The unwinding activity of the helicase domain should increase with 

ATP concentration. Our results suggest that, under these conditions, the nuclease domain 

cuts the DNA less frequently, giving rise to products with a wide range of sizes. When 

the helicase rate is low, as observed with lower ATP concentrations, the nuclease domain 

makes cuts more frequently, which generates smaller sized products. 

 Genetic screening and expression experiments have shown that the chaperone 

HtpG positively modulates E. coli Type I-E resistance by maintaining functional levels of 

Cas3 (Yosef et al., 2011). Consistent with this, we have shown that R-loop formation by 

Cascade is sufficient to recruit Cas3 to DNA targets, suggesting that additional factors, 

such as HtpG, are not essential at this step. 

 The Cascade-Cas3 fusion has been shown to degrade negatively supercoiled but 

not relaxed (i.e. nicked or linear) DNA (Westra et al., 2012). In our reconstituted system, 

stand-alone Cas3 can degrade both negatively supercoiled and linear DNA (Fig. 4.5). 
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However, the rate of degradation of negatively supercoiled DNA is greater than that of 

linear DNA by 4.5-fold. Negatively supercoiled DNA is probably a better substrate 

because of the increased energy required to melt the DNA strands over the length of the 

protospacer in relaxed versus negatively supercoiled DNA (Westra et al., 2012). Indeed, 

negative supercoiling stimulates other processes that rely on strand separation, such as 

RecA-mediated homologous recombination (Cai, 2001). Because the most likely 

substrate for the Type I CRISPR systems in vivo is negatively supercoiled DNA (Westra 

et al., 2012), further analysis of Type I systems, with both fused and stand-alone Cas3, 

will be needed to understand if there is functional significance to targeting relaxed DNA. 

While this manuscript was in preparation, Sinkunas et al. (Sinkunas et al., 2013) 

reported the in vitro reconstitution of the Type I-E CRISPR system from S. thermophilus. 

Like E. coli, this system contains stand-alone Cas3 and Cascade. In agreement with the 

results reported here, they show that the reconstituted S. thermophilus system is able to 

cleave linear DNA and that target degradation is unidirectional. They also go on to map 

the cleavage sites, revealing a pattern similar to that observed in the E. coli CRISPR 

system. Thus, the molecular mechanisms of the Type I-E CRISPR systems appear 

conserved. 

 

Materials and methods 

Cloning and Mutagenesis 

 The genes encoding E. coli Cas3 and high temperature protein G (HtpG) were 

amplified from genomic DNA (American Type Culture Collection) and directionally 

cloned into pMAT and pRSFDuet-1 (Novagen), respectively. pMAT was engineered by 
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inserting DNA encoding maltose-binding protein into the SpeI site of pHAT4 (Peränen, 

1996). QuikChange site-directed mutagenesis (Stratagene) was used to create point 

mutants. Plasmid targets were prepared by cloning synthetic oligonucleotides carrying 

the appropriate sequence into pBAT4 (Peränen, 1998). Primers and oligonucleotides are 

listed in Table 4.1. All clones were verified by DNA sequencing. 

 

Protein Expression and Purification 

 E. coli Cascade, CasA, and a subcomplex of Cascade lacking the CasA subunit 

(CasBCDE) were expressed and purified as described previously (Mulepati et al., 2012). 

E. coli Cas3 was overexpressed in the T7Express strain of E. coli (New England 

Biolabs). Cells were grown at 20 °C to an A600 of 0.3, at which point protein expression 

was induced with 0.2 mM isopropyl--D-1-thiogalactopyranoside. After overnight 

growth, the cells were harvested, lysed in buffer L (20 mM Tris-HCl, pH 8.0, 100 mM 

NaCl, and 10% glycerol), clarified by centrifugation, and loaded onto a 5-ml immobilized 

metal affinity chromatography column (Bio-Rad). The column was washed consecutively 

with buffer L supplemented with 5 mM imidazole and then 1 M NaCl. The remaining 

bound proteins were eluted with buffer L supplemented with 250 mM imidazole. The 

sample was directly loaded onto a HiLoad 26/60 S200 size exclusion column (GE 

Healthcare) pre-equilibrated in buffer A (20 mM Tris-HCl, pH 8.0, 200 mM NaCl, and 1 

mM dithiothreitol). Fractions containing Cas3 were pooled and desalted into buffer B (20 

mM Tris-HCl, pH 8.0, and 200 mM NaCl). The N-terminal His6-maltose-binding protein 

tag was removed by overnight treatment with tobacco etch virus protease at 4 °C. The 

cleaved sample was then flowed through an immobilized metal affinity chromatography 
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column, concentrated, and loaded onto a HiLoad 26/60 S200 size exclusion column pre-

equilibrated with buffer B. Purified Cas3 was concentrated to 5 M, flash-frozen, and 

stored at -80 °C. The D75A and D452A Cas3 mutants were co-expressed with HtpG in 

T7Express cells and purified like the wild-type protein. 

 

Preparation of Synthetic DNA Targets 

 PAGE-purified oligonucleotides (Table 4.1) were 5’-labeled with -[
32

P] ATP 

(PerkinElmer Life Sciences) using T4 polynucleotide kinase (New England Biolabs). 

Duplexes were formed by mixing the target and non-target strands, heating at 95 °C for 2 

min, and then cooling to room temperature over 2 h. DNA ladders were prepared using a 

Sanger sequencing kit (Asymmetrix). 

 

Reconstitution Assay 

 Reactions were performed in buffer containing 5 mM HEPES, pH 7.5, and 60 

mM KCl. The indicated amounts of divalent metal ions, target DNA, Cascade, Cas3, and 

ATP were assembled together and incubated at 37 °C for 30 min or the indicated 

duration. All reactions were terminated by the addition of 20 mM EDTA. The range in 

divalent metal ion concentrations was chosen based on their estimated cellular 

concentrations (Graham et al., 2009; Macomber et al., 2011; Anjem et al., 2009). Proteins 

were removed by phenol extraction. Plasmid DNA was analyzed by electrophoresis 

through 1% agarose gels and ethidium bromide staining. Labeled synthetic DNA was 

analyzed by electrophoresis through 10% polyacrylamide gels and autoradiography. 
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ATPase Assay 

 ATP hydrolysis by Cas3 was monitored using an NADH-coupled ATPase assay 

as described previously (Kiianitsa et al., 2003). Two reaction mixtures were prepared, 

each in 10 mM HEPES, pH 7.5, 60 mM KCl, and 10% glycerol. Mixture A contained 0.5 

mM NADH, 4 mM ATP, and 20 mM MgCl2 as well as 4 nM DNA where indicated. 

Mixture B contained 6 mM phosphoenol pyruvate (Sigma-Aldrich) and 0.4 units/l 

pyruvate kinase/lactate dehydrogenase (Sigma-Aldrich) as well as 40 nM Cascade and/or 

200 nM Cas3 where indicated. Mixtures A and B were incubated separately at 37 °C for 

10 min before equal volumes of both were mixed to initiate a 100-l reaction. 

Absorbance at 340 nM was measured every 30 s for 10 min. The rate of NADH oxidation 

was calculated from the linear decrease in A340. All reactions were performed at 37 °C. 
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Table 4.1. Primers and oligonucleotides used in these studies 

 
 Sequences (5’-3’) 

Primers for gene amplification  

Cas3 forward GTGTGTGAATTCATGGAACCTTTTAAATATATATGCC 

Cas3 reverse GTGTGTCTCGAGTTATTTGGGATTTGCAGGGATG 

HtpG forward GTGTGTCCATGGCGAAAGGACAAGAAACTCGTGG 

HtpG reverse GTGTGTGAATTCTCAGGAAACCAGCAGCTGGTTC 

Primers for site directed mutagenesis  

D75A forward GTTATTTTTCATTGCTCTTCATGCTATTGGAAAGTTTGATATACG 

D75A reverse CGTATATCAAACTTTCCAATAGCATGAAGACCAATGAAAAATAAC 

D452A forward GTCGAAGTGTTTTAATTGTTGCTGAAGTTCATGCTTACGACAC 

D452A reverse GTGTCGTAAGCATGAACTTCAGCAACAATTAAAACACTTCGAC 

Oligonucleotides used to construct the plasmid target
a
  

Target strand CATGGACAGCCCACATGGCATTCCACTTATCACTGGCATG 

Non-target strand AATTCATGCCAGTGATAAGTGGAATGCCATGTGGGCTGTC 

Oligonucleotides used to construct synthetic DNA targets  

Target strand TTAAAGGCCGCTTTTTCAATCTACACAATTGAGCAAATCAGACAGCCCA

CATGGCATTCCACTTATCACTGGCATTGATTTGCTCAATTTTGTAGATTG

ACGGAACGAGGGTAGA  

Non-target strand TCTACCCTCGTTCCGTCAATCTACAAAATTGAGCAAATCAATGCCAGTG

ATAAGTGGAATGCCATGTGGGCTGTCTGATTTGCTCAATTGTGTAGATTG

AAAAAGCGGCCTTTAA 
 

a
 Oligonucleotides used to construct plasmid targets with variant Protospacer and PAM sequences 

contained mutations as indicated throughout. 

 

 
 

Figure 4.1. Schematic representation of the R-loop formed between Cascade and DNA 

target. The positions of the PAM and protospacer are shaded yellow and red, 

respectively. The location of the seed sequence is also indicated. Outlining delineates the 

region of the DNA protected in footprinting experiments (Jore et al., 2011). 
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Figure 4.2. Purification and single-stranded DNA nuclease activity of E. coli Cas3. A, 

Coomassie-stained SDS-polyacrylamide gel of samples taken during purification of Cas3. 

B, Cas3 nuclease activity is stimulated by transition metals. Reaction mixtures containing 

500 nM Cas3, 4 nM circular, single-stranded M13mp18 DNA, and different metal ions, 

as indicated, were incubated for 1 h at 37 °C. 
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Figure 4.3. Cascade-mediated nuclease and ATPase activities of Cas3. A, nuclease 

activity of Cas3. Reaction mixtures containing 20 nM Cascade, 2 mM ATP, 2 nM 

plasmid DNA, and 50 nM Cas3 were incubated for 30 min at 37 °C. Metal ions, when 

included, were at the concentrations indicated. If not indicated, Mg
2+

 was included at 10 

mM. B, reactions performed as in A with 10 mM Mg
2+

 and, when present, 10 M Co
2+

. 

The control plasmid lacks a protospacer. C, reactions performed as in A with either 9 mM 

Ca
2+

, 1 mM Zn
2+

, 150 M Cu
2+

, 150 M Ni
2+

, 150 M Co
2+

, or 150 M Mn
2+

. D, the 

CasA subunit is necessary for plasmid degradation. Reaction mixtures containing 20 nM 

CasA and/or 20 nM CasBCDE with 10 mM Mg
2+

, 10 M Co
2+

, 2 mM ATP, 2 nM 

plasmid DNA, and 50 nM Cas3 were incubated for 30 min at 37 °C. E, target cleavage 
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was monitored at increasing concentrations (as indicated) of Cas3 in the absence or the 

presence of 2 mM ATP. All reactions contained 10 mM Mg
2+

 and 10 M Co
2+

. F, target 

cleavage was monitored as a function of ATP concentration (as indicated). All reactions 

contained 50 nM Cas3, 10 mM Mg
2+

, and 10 M Co
2+

. In A–D, the position of negatively 

supercoiled (nSC), linear (L), and nicked or open circle (OC) DNA is indicated. G, rates 

of ATPase hydrolysis. Error bars, S.D. of the rate constant, taken from at least three 

independent measurements. DNA substrates are plasmid target containing PAM and 

protospacer (1), single-stranded M13 phage DNA (2), and control plasmid, lacking a 

protospacer (3). *, plasmid DNA was linearized before the reaction. 



 75 

 
 

Figure 4.4. Degradation of target DNA requires both the PAM and seed sequences. A, 

extent of nicking by Cas3 (100 nM) using negatively supercoiled target (2 nM) 

containing the indicated point mutations in the PAM and protospacer. All reactions 

contained 10 mM Mg
2+

 and 10 M Co
2+

. B, rate of ATP hydrolysis by Cas3 (100 nM) in 

the presence of the mutant DNA targets as in A. In both panels, error bars indicate S.D., 

taken from at least three independent measurements. PAM, DNA target containing a 

protospacer sequence but not a PAM. 
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Figure 4.5. Cas3 cleaves linear DNA and proceeds unidirectionally. A, nuclease activity 

of Cas3 on plasmid target linearized with KpnI or ScaI. Reaction mixtures containing 20 

nM Cascade, 2 nM linear plasmid, 10 mM Mg
2+

, 10 M Co
2+

, and 2 mM ATP were 

incubated for the indicated time at 37 °C. B, nuclease activity of Cas3 on plasmid target 

linearized with ScaI. Except where indicated, the reaction conditions were as in A. 

Reactions were incubated at 37 °C for 60 min. C, comparison of the rate of cleavage of 

linear (ScaI) and negatively supercoiled plasmid. Reaction conditions were as in A, 

except that incubation times were as indicated. The position of negatively supercoiled 

(nSC), linear (L), and nicked or open circle (OC) DNA is indicated. In all panels, M 

denotes the marker lane, and C denotes a control reaction without Cas3. 
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Figure 4.6. Mapping of the Cas3 cleavage sites. A, sequencing of the target and non-

target strand of the nicked plasmid (no ATP) or the linearized plasmid (10 M ATP). B, 

cleavage of a synthetic dsDNA labeled at the 5’-end of the target strand. The position of 

the crRNA is marked at the side of the gel. Sequencing lanes are marked dA, dC, dG, and 

dT. PAM, DNA target containing a protospacer sequence but not a PAM. C, same as B 

but labeled at the 5’-end of the non-target strand. For both B and C, reactions containing 

40 nM Cascade, 100 nM Cas3, 10 mM Mg
2+

, 10 M Co
2+

, and 2 mM ATP were 

incubated for 30 min at 37 °C, unless otherwise indicated. D, schematic of the R-loop 

formed between the DNA target and the crRNA. Arrows or a dotted line indicate the sites 

of cleavage by Cas3. 
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Figure 4.7. Schematic representation of Cascade-mediated DNA target degradation by 

Cas3. Binding of Cascade (green) to DNA target displaces the non-target strand of the 

protospacer. The displaced strand then serves as a binding platform for the recruitment of 

Cas3 (blue) (i). Once bound, Cas3 nicks the non-target strand in a reaction that is 

stimulated by the presence of ATP but does not require ATP hydrolysis (ii). ssDNA 

binding stimulates the ATPase and helicase activity of Cas3, which subsequently 

translocates in the 3’–5’ direction on the non-target strand, unwinding the DNA target. 

Unwinding provides the ssDNA substrate for the nuclease domain and probably releases 

Cascade from the protospacer. Thus, the combined actions of the helicase and nuclease 

domains of Cas3 degrade the DNA target in a unidirectional manner (iii). 
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Chapter 5 

 

Crystal structure of the type I Cascade complex from Escherichia coli bound to its 

target DNA. 

 

Introduction 

 We previously determined the crystal structure of the T. thermophilus CasA 

subunit of Cascade. We next wanted to investigate how Cascade, as a whole, is able to 

efficiently bind to target DNA. Several other groups succeeded in determining individual 

high-resolution structures of the CasB, CasC, and CasE homologs (Agari et al., 2008; 

Sashital et al., 2011; Lintner et al., 2011), and cryo-electron microscopy structures (~9 Å) 

of Cascade from E. coli showed the overall organization of the Cascade subunits 

(Wiedenheft et al., 2011). Still, how these subunits interact with the crRNA and the target 

DNA was unclear.  

Several Cascade-like ribonucleoprotein complexes have been reported in all of the 

other type I subtypes, as well as in type III CRISPR system (Lintner et al., 2011; Nam et 

al, 2012; Rouillon et al, 2013; Staals et al, 2013). As such, we pursued the crystal 

structure of one of these complexes given its broad application. To investigate the 

mechanism of target binding in the CRISPR interference step by such large complexes, 

we continued our structural studies on the E. coli Cascade complex by means of X-ray 

crystallography. We had a short but successful collaboration with Irimpan I. Mathews at 

the Stanford Synchrotron Radiation Lightsource (SSRL), who collected all of the X-ray 
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diffraction data from the SeMet Cascade crystals. The results presented here in this 

chapter are in the process of being submitted for publication.  

 

Results 

Structure determination 

 Cascade is a large 405-kDa-ribonucleoprotein complex that is able to scan for 

foreign DNA sequences based on complementarity to its crRNA. To determine the 

structural basis of target DNA recognition in the interference step, we crystallized the 

whole type-IE Cascade complex from E. coli bound to its target DNA. Crystals were 

grown by vapor diffusion with PEG 8,000 as the precipitant (Figure 5.1). The complex 

crystallized in space group P3121 (a = b = 225.321 Å, c =293.208 Å,  =  = 90, and  = 

120), and consisted of stoichiometric amounts of the CasA, CasB, CasC, CasD, and 

CasE protein subunits as seen in the SDS-PAGE gel (Figure 5.1B). The nucleic acid 

extracted from the crystals consisted of both the crRNA and target DNA (Figure 5.1C). 

Although a partially complementary non-target strand was also used during 

crystallization, the strand did not crystallize with the complex, and was most likely 

unwound by Cascade during Cascade-DNA complex preparation (Figure 5.1C). 

 Initial crystals of the complex only diffracted to about ~9 Å, but the resolution 

was significantly improved to ~ 3.6 Å (Table 5.1) through step-wise stabilization of the 

crystals as described in the methods section and elaborated in Appendix B. The 

diffraction limit was further extended by soaking the wild-type crystals with a W3-cluster, 

making it possible for the structure to be determined to a resolution of 3.03 Å (Table 5.1). 
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 The structure was determined by single-wavelength anomalous dispersion (SAD) 

method, using thiomerosal-soaked crystals and SeMet-labeled protein crystals. The 

crystallographic asymmetric unit contained one Cascade-DNA complex. The structure 

was refined at 3.03 Å resolution to an Rwork of 22.71% and an Rfree of 27.37 (Table 5.1). A 

representative section of the unbiased Fo-Fc electron density around a section of crRNA-

DNA hybrid is shown in Figure 5.2A.  

 

Overall Structure of Cascade-DNA complex 

 The general organization of the Cascade subunits was previously revealed in two 

cryo-electron microscopy (cryo-EM) structures, with (~9 Å)- and without (~8 Å)- a 

complementary RNA strand (Wiedenheft et al. 2011). While this manuscript was in 

preparation, cryo-EM structure of Cascade bound to a 75-nucleotide dsDNA to ~ 9 Å 

resolution was reported (Hochstrasser et al, 2014). The crystal structure presented here 

shows the structure of the E. coli Cascade complex bound to a complementary DNA 

strand (Figures 5.2B and 5.2C). The structure consists of all the subunits of Cascade and 

the target DNA. It has the expected seahorse shape with CasE and CasA at its head and 

tail respectively. The crRNA-DNA hybrid forms the core of the structure, and the six 

subunits of CasC form a filament around the heteroduplex in a right-handed helical axis 

(Figure 5.2C). The Cascade-DNA structure presented here aligned best to this cryo-EM 

structure of the Cascade-dsDNA complex upon rigid-body docking, suggesting that the 

crystal structure closely represents in-solution conformation of the Cascade-dsDNA 

complex (Figure 5.3B). Unlike in the cryo-EM structures, portions of the CasC6, CasE, 

and crRNA subunits are disordered in the Cascade-DNA crystal structure. The head 
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region of the Cascade complex in general has higher B-factors, suggesting greater 

structural flexibility in this region. 

 

The crRNA-DNA hybrid forms a distorted, arched-ladder  

 The crRNA-DNA hybrid is at the core of the presented structure. As expected, the 

5’-end of the crRNA forms a hook, and the repeat sequence at the 3’-end forms a stem-

loop (Figure 5.4A). In the crystal structure, the entirety of the crRNA in the spacer region 

is present, with some nucleotides in the stem-loop being disordered. The target strand 

used for crystallization has a protospacer sequence flanked by the PAM on its 5’ end (5’-

CAT-3’) and 6 random nucleotides on its 3’ end. However, only the sequence between 

positions 1 and 33 could be modeled, as most of the flanking sequences, including the 

PAM, are disordered in the structure. Additional non-continuous density extends beyond 

position 33 at the 5’ end between the CasE and CasB1 subunits, and is likely the 

phosphate backbone of the disordered nucleotides. The 5’- and 3’- ends of the target 

strand (~102 Å apart end-to-end) roughly span the length of a B-DNA with an identical 

sequence (~ 107 Å).  

 RNA-DNA hybrids most often form A-form-like helices (Horton and Finzel, 

1996). However, the heteroduplex presented here, between its 5’-handle and its 3’-repeat, 

is reminiscent of a discontinuous arched-ladder spiraling through half a turn of an 

extended right-handed helical axis (Figures 5.4A and 5.4B). At the 5’-end, the handle is 

bent such that it forms two loops (I and II) (Figure 5.4D). Closer examination reveals that 

the discontinuity in the ladder is due to disruptions in the Watson-Crick base-pairing at 

specific positions along the length of the protospacer (Figure 5.4E). The nucleotides at 
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positions 6, 12, 18, 24, and 30 of both the crRNA and DNA are flipped out of the helix in 

opposite directions (Figure 5.4C). This observation suggests that not all of the bases in 

the spacer of the crRNA are used during target binding. In addition, the -1 position of the 

crRNA is flipped out as well. 

 Between the flipped-out bases, the spacer and protospacer regions make five 

distinct right-handed, semi-helical, duplex regions (duplex I-V), each consisting of five 

Watson-Crick base-pairs (Figures 5.4C and 5.4E). DNA-RNA hybrids form A-form-like 

helices, with some B-form-like features often appearing in the DNA strand (Horton and 

Finzel, 1996). The duplexes in the structure are A-form-like, but further compacted due 

to numerous interactions with the protein subunits. The five duplex regions are 

structurally similar as they superimpose on each other with identical distortion at similar 

positions of the duplex. The phosphate backbones of the two strands in the duplexes are 

generally ~20-21 Å apart. However, in the case of the nucleotides at (positions 5, 12, 18, 

24, and 30) or directly in front (positions 5, 11, 17, 23, and 29) of the flipped positions, 

the hybrid backbones are more constricted, and are only ~18.5 Å apart. Besides the five 

duplexes, Watson-Crick base-pairing also exists between bases at position 31 and 32.  

 

CasC subunits distort the crRNA 

 CasC, with six copies, is the most prevalent subunit of the complex. The 

monomers form a filament around the nucleic acid core with CasC1 (next to CasE) at the 

head and CasC6 (next to CasA) at the tail of the complex (Figure 5.4C). In doing so, 

CasC subunits extend from the -5 to 32 positions of the crRNA. Such an organization of 

the CasC subunits is reminiscent of filaments formed by RecA around DNA during 
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homologous recombination (Chen et al., 2008). Although RecA can form extended 

filaments, the length of the crRNA defines CasC oligomerization in the case of Cascade. 

CasC1 to CasC5 interact with the spacer of the crRNA. It was previously thought that 

CasC6 completely encapsulates the 5’-hook of the crRNA (Wiedenheft et al., 2011). 

However, in the structure presented, it only interacts with loop II of the 5’ handle (Figure 

5.4D).  

  The structure of the individual CasC subunits is reminiscent of a right hand with 

a distinct finger (59-180), palm (1-58, 181-189, and 224-363), and thumb (190-223) 

domain (Figure 5.5A). All the CasC subunits have the three domains. However, the 

finger domain of CasC6 is highly disordered and could not be modeled owing to a lack of 

electron density for most of this domain (Figure 5.3). Investigation of crystal packing 

shows that the finger domains of the other CasC subunits are stable both in the presence 

(CasC3-C5) and absence (CasC1-C2) of crystal contacts. The lack of electron density in 

the crystal structure and poor features in the cryo-EM maps for the finger domain of only 

the CasC6 subunit implies greater flexibility in this domain. Rigid-body fitting of the 

crystal structure into the Cascade-dsDNA cryo-EM map suggests that the helix 

corresponding to residues 136-145 in CasC5 interacts with the dsDNA outside the 

protospacer. This domain consists of multiple Lys residues (K136, K137, K141, K144, 

and K145) that could interact with the phosphate backbone of the dsDNA and assist in 

DNA bending directly upstream of the protospacer. Corresponding residues in the CasC6 

finger domain are also likely to interact with the dsDNA based on its positioning in the 

Cascade-dsDNA cryo-EM structure. 
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 Unlike the finger domains, the palm domains of all six CasC subunits (C1 to C6) 

follow a helical pattern around the central axis of Cascade. Each of the palm domains is 

comprised of a conserved RNA-recognition motif (RRM), and has a positively charged 

concave surface immediately above the thumb domain (Figure 5.5B). This is the main 

site of CasC-crRNA interaction, and is lined with conserved polar residues (N19, R20, 

K27, K45, R49, and Q42) that hydrogen bond extensively with the phosphate backbone, 

as well as the flipped-out bases (R46 and K50 of CasC) of the crRNA (Figure 5.6D). 

Each of the CasC subunits makes similar interactions. These observations suggest that the 

spacing of the CasC subunits dictates the position of the flipped bases of the crRNA.  

 An additional residue that is not part of the basic patch, but which also interacts 

with the crRNA, is M166. In the case of each of the CasC subunits, this residue partially 

intercalates between the 3
rd

 and 4
th

 crRNA bases of each of the five duplexes (Figures 

5.6D and 5.4E), causing the bases to be further apart. As a result, their complementary 

DNA bases also have greater spacing between them. The phosphate backbone of the 

target DNA is slightly bent as well after the 4
th

 base. Such Met-stacking interactions are 

often used to bend nucleic acid strands or stabilize unwound strands (Churchill et al., 

2010; Firczuk et al., 2011; Chen et al., 2008).  It is thus likely that M166 indirectly 

stabilizes the target DNA strand during unwinding by modulating the separation between 

the crRNA bases that are involved in base pairing with the target DNA.  Although 

present, M166 in CasC6 is not involved in such an interaction, possibly because the 

CasC6 palm does not interact with the crRNA spacer. Similar Met stacking interactions 

are used by RecA to destabilize base-stacking interactions every 4
th

 base to create 
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discrete 3-nucleotide segments to assist in ‘conformational proofreading’ during 

homology search (Chen et al., 2008). 

 

The CasC thumb domains protrude through the crRNA-DNA hybrid  

 In addition to the crRNA-binding motif, almost all of the residues in the thumb 

domain and the concave side of the palm domain (below the basic patch) are highly 

conserved (Figure 5.5C). The importance of these residues is evident in the context of a 

CasC filament as they are involved in interacting with the neighboring CasC subunits 

(Figure 5.6A). Starting from CasC6 (next to the 5’-handle), the thumb domain of each 

CasC protrudes towards the head of Cascade (CasE), and interacts with the palm domain 

of the neighboring CasC subunit. In the process, each of the thumb domains also passes 

through the distorted regions in the crRNA-DNA hybrid (Figure 5.6A). For example, the 

CasC5 thumb goes through bend II, and the CasC4 thumb goes through bend III. Both 

then interact with the palm domains of CasC4 and CasC3 respectively.  

 The thumb domain can extend through the distorted regions of the crRNA-DNA 

hybrid due to the many conserved aromatic residues (H213, W199, and F200), making 

stacking interactions with the bases at the end of the duplex. Additionally, L214 of each 

CasC thumb makes van der Waals interaction with the flipped-out DNA bases. This 

pattern only continues until CasC2 since a similar path of the CasC1 thumb would clash 

with the stem-loop of the crRNA. The D194 and S220 residues in the CasC1 thumb are 

bent such that the residues in between form an extended loop that is rotated by ~100°, 

and interact with CasE instead (Figure 5.6B). Such a structural rearrangement of the 
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thumb domain at only one end of Cascade could serve as a start or stop signal for CasC 

polymerization along the crRNA during Cascade assembly.  

 In the process, CasC surrounds each of the flipped bases of the crRNA, and 

renders it incapable of target binding (Figure 5.6C). These extensive interactions result in 

a stable structure where CasC wraps around the crRNA, and likely prevents dissociation 

of the latter. This also suggests that only 5-base segments of the crRNA are available for 

target binding (Figure 5.6C). Consistent with this observation, the target-bound structure 

shows that the DNA bases opposite the flipped crRNA bases are also distorted and not 

involved in base pairing (Figure 5.4E). H213 in the CasC thumb domain replaces the 

position of the flipped-out bases instead to stabilize the duplexes (Figure 5.8B). The same 

duplex is capped by L214 on its opposite end.  

 We previously reconstituted Cascade-mediated target degradation by Cas3 in 

vitro (Mulepati et al, 2013). A similar assay was carried out with a target DNA with non-

complementarity at positions of the flipped-out bases. Almost wild-type-like phenotype 

with the mutant plasmid confirms that the flipped-out bases in the crystal structure are not 

as important for base pairing during target binding (Figure 5.11). While this manuscript 

was in preparation, Fineran et al., using in vivo targeting assay, showed higher tolerance 

for mutations at the flipped positions of the protospacer during CRISPR targeting. Hence, 

the bases at the flipped positions are not as important for specificity during DNA binding 

(Fineran et al., 2014). 

 

CasA stabilizes the first crRNA-DNA duplex 
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 CasA sits at the tail of the Cascade-DNA complex, and its structure closely 

resembles known structures of its homolog from T. thermophilus (Mulepati et al., 2012; 

Sashital et al., 2012). E. coli CasA also adopts a chair-like conformation where its N-

terminal domain (NTD) forms the seat and its C-terminal domain (CTD) forms the 

backrest (Figure 5.8A). Its NTD sits below the expected position of the PAM, and its 

CTD roughly spans the seed region of the target DNA (Figure 5.2B).  

 CasA alone does not bind nucleic acid, but is required for the binding of Cascade 

to dsDNA (Mulepati et al., 2012; Sashital et al., 2012). A conserved loop (L1, residues 

130-143) in CasA is essential for this binding, as F129 in this loop is thought to 

intercalate with the PAM and cause the initial destabilization of the target dsDNA 

(Sashital et al., 2012). Although present in the crystal, both the PAM sequence and the L1 

loop are disordered. The L1 loop is also disordered in every CasA crystal structure 

currently available in the Protein Data Bank (4AN8, 4EJ3, 4F3E, 4H3T). Bases in the 

crRNA-DNA hybrid are flipped at positions 6, 12, 18, 24, and 30. In addition, the crRNA 

base at position -1 is flipped as well. Based on the spacing of the flipped bases in the 

hybrid and the ability of Phe to make stacking interactions, it is likely that, during PAM 

interrogation, the -1 DNA base is also flipped and stabilized by base-stacking interactions 

made by the F129 in L1 (Figure 5.4E). The surprising lack of the expected PAM-L1 

electron density might be the result of at least two possibilities: the PAM-L1 interaction 

(i) is transient and not essential after spacer-protospacer annealing, or (ii) occurs only in 

the context of a dsDNA target (the target in the crystal structure is single-stranded). 

Differentiation between these possibilities will require additional investigation. Although, 

the recent demonstration that base pairing of the PAM region is required for target 
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degradation by Cas3 suggests that a transient PAM-L1 interaction is more likely 

(Hochstrasser et al., 2014).  

 The CasA CTD consists of a four-helix bundle (Fig. 7A), and cryo-EM and 

docking studies suggest that loop L2 (residues 405-411) (Figure 5.8B) becomes ordered 

upon target binding (11, 23, 24). Consistent with these observations, the L2 residues are 

ordered in the complex structure, and K409 in this loop makes direct hydrogen-bond 

interactions with the phosphate backbone (Figure 5.8B). The L2 loop in the crystal 

structure of CasA from Acidimicrobium ferrooxidans (4H3T) is ordered even in the 

absence of DNA, but its superposition on E. coli CasA (within Cascade) suggests that its 

L2 loop faces away from the crRNA (and the target DNA). Furthermore, the L3 loop 

(residues 469-474) between helix III and IV makes hydrogen bonds with the flipped base 

at position 6 through H472 and K474 (Fig. 5.8B). Despite being within the seed region 

(1-8), base pairing at position 6 was previously shown to be irrelevant for target binding, 

and hence, CRISPR interference (Jore et al., 2011; Semenova et al., 2011; Mulepati and 

Bailey, 2013). The fact that the base at this position is flipped out of the helix, making it 

unavailable for base pairing to render specificity, explains these earlier observations. 

 The cryo-EM structures suggested that CasA goes through a rotation movement 

upon binding to the target sequence. Modeling of the CasA crystal structure into the apo-

Cascade cryo-EM map suggests that the NTD and CTD of CasA twist in opposite 

directions with respect to CasD (Figure 5.8A). The relative movement is such that the 

position of CasA in the apo-Cascade complex creates space for the loading of dsDNA 

near L1 of CasA. Furthermore, the CasA-CTD moves towards the NTD upon target 

binding. This suggests that the CTD loops stabilize the flipped-out base at position 6 
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during target DNA unwinding, likely enabling base-pairing of the target strand with the 

crRNA to form duplex I (duplex I in Figure 5.5E). Since five nucleotides of the target 

strand base pair with the crRNA in duplex I, it also suggests that CasA stabilizes half a 

turn of the dsDNA while going through its conformational change. 

 

CasB propagates melting of target DNA 

 CasB has been shown to be essential for target interference (Brouns et al., 2008; 

Wiedenheft et al., 2011). CasB dimerizes on its own and can bind to both DNA and RNA 

(Agari et al., 2008; Nam et al., 2012). In the structure presented, CasB1 and CasB2 form a 

dimer as expected, which spans between the head (CasE) and tail (CasA) of the Cascade 

complex (Fig. 5.9A). In the conformation trapped in the crystal structure, besides the 

target DNA, CasB interacts extensively with CasA, and the palm and thumb domains of 

CasC2-C5. Surprisingly, CasB subunits make no significant contact with CasE, CasC1, 

CasC6, CasD, and the crRNA  (Figure 5.9B). Hence, the head (CasE) and tail (CasA) of 

Cascade are not connected in the DNA-bound crystal structure.  Each of the CasB 

subunits spans about 12 nucleotides of the protospacer, and CasB as a whole covers 

positions 9 through 30. 

  The CasB subunits make specific contacts with the flipped-out bases of the target 

DNA (Figure 5.9A). The flipped bases at positions 12 and 24 are held between H123 of 

CasB and L214 of CasC. Similarly, the flipped bases at positions 18 and 32 are held 

between G20 of CasB and L214 of CasC. CasB2 interacts with the flipped bases at 

positions 12 and 18, and CasB1 interacts with the flipped bases at positions 24 and 32. At 

position 24 (and 12), conserved residues in CasB1 hydrogen bond with the phosphate 
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backbone (N98) and the base (R119), and base-stack with the flipped-out base (H123) 

(Figure 5.9C). At position 30 (and position 18), conserved charged residues base pair 

with the phosphate backbone (R26) and the flipped-out base (R27) (Fig. 5.9D).  

 Comparison of the CasB subunits in the apo- and DNA-bound structures suggest 

that the subunits move closer to the PAM and the crRNA, constricting the space next to 

the crRNA. In doing so, CasB likely uses its contacts at positions 12, 18, 24, and 32 to 

move the target strand closer to the crRNA, and stabilize the melted DNA during 

unwinding. Furthermore, the CasB subunits (like in CasA) are arranged such that each of 

the subunits can stabilize half a turn of a B-form DNA. 

 

Implications on Cascade assembly 

 One of the major questions that arises from the intricate interactions revealed by 

the crystal structure is how a large complex like Cascade assembles. Is there an order in 

which the Cascade subunits are added onto the complex? The structure revealed that 

CasD caps the 5’ handle of the crRNA (Figures 5.7A and 5.7B). Along with CasC, CasD 

is the most conserved subunit within the Cascade complex. It has an N-terminal RRM 

motif, a C-terminal beta-sheet domain, and can also be classified into a palm and a thumb 

domain (Figure 5.7A). The anterior part of the thumb, corresponding to residues 89-104, 

is disordered in the structure. Still, this truncated thumb extends to the crRNA-DNA 

hybrid close to the expected position of the PAM (Figure 5.7B), and like CasC2-C6, 

protrudes between the distorted -1 position between the crRNA and the target DNA. In 

doing so, the CasD thumb assumes a similar position to the one occupied by the thumb 

domains of CasC6 to CasC2 (Figure 5.6C). This suggests that CasD thumb limits CasC 
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polymerization at CasC6 (starting from CasC1). Alternatively, the CasD thumb could also 

signal for CasC polymerization to proceed from CasC6 to CasC1.  

 The crystal structure shows that CasD interacts exclusively with the 5’-hook (loop 

II) of the crRNA in a target-bound conformation through the conserved basic patch in its 

palm domain (Figure 5.7B). This explains previous observations made in the case of 

CasD homolog (Cas5d) in the type I-C CRISPR system of Bacillus Halodurans, where 

deletion and point mutations of nucleotides in loop II are most detrimental to assembly of 

its Cascade-like complex (Nam et al., 2012). Together, these observations suggest that 

CasD caps the 5’ end of the crRNA with its palm domain, and that the position of its 

thumb domain either allows for or stops CasC polymerization on the crRNA. 

 The crystal structure of a type-IA CasC homolog (Csa2 with ~11% identity) from 

S. solfataricus aligns to the E. coli CasC structure with an RMSD of ~3.7  (Lintner et al., 

2011). Csa2 exists as a monomer in the absence of crRNA, but polymerizes in the 

presence of crRNA and its CasD homolog. Csa2 also has a palm and a shorter finger 

domain, but its thumb domain (residues 163-177) is disordered in all four Csa2 

monomers present in its crystallographic asymmetric unit. This suggests that the thumb 

domain is structurally flexible and becomes ordered in specific orientations only in the 

presence of the crRNA template and the other Cascade subunits. This observation is 

consistent with the two different orientations of the thumb domains in CasC6 and CasC1-

CasC5 in the structure presented here. Residues corresponding to the CasC1 thumb 

domain form a bent loop (which is partially disordered). The similarities in the structure 

of CasC and Csa2 also reinforce the idea that type-I Cascade-like complexes have similar 
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architectures and likely similar orders of subunit assembly. Additional experiments need 

to be carried out to delineate the order of subunit addition during Cascade assembly.  

 

Implications on DNA unwinding by Cascade 

 The crystal structure shows that the crRNA-DNA hybrid forms a discontinuous, 

arched, ladder-like structure. CasD and CasE cap the crRNA on its 5’- and 3’- ends 

respectively. Bases in both of the strands are flipped at regular 6-nucleotide intervals. The 

CasC subunits stabilize the flipped bases of the crRNA. The thumb domains of these 

subunits weave around the crRNA at the flipped position, suggesting that the flipped 

bases do not base pair during target binding. The flipped bases on the target strand are 

stabilized by specific contacts made by the CasA and CasB subunits. The short duplex 

segments between the flipped bases are narrow in diameter as a result of compaction by 

the protein subunits, but have A-form-like features at the nucleotide level.  

 Although the crystal structure shows only the target strand, Cascade melts 

dsDNA, and based on protection assays, interacts extensively with both the 

complementary and the non-complementary strands (Jore et al., 2011). Positions 1-14 are 

exposed as ssDNA while the rest is protected by Cascade. This raises the question of 

where in Cascade the non-complementary strand would bind. The crystal structure 

suggests that Cascade has a deep, electropositive groove between the CasB and CasC 

subunits, on the opposite side of CasB with respect to the complementary strand (Figure 

5.12). This groove is likely involved in the stabilization of the non-complementary strand 

as it is lined with conserved Lys residues of CasB and CasC subunits, and based on the 
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length, would extend up to the end of CasB2 before being exposed as a single-stranded 

region close to CasA. 

 Crystal structures of type I-C CasD homologs from B. halodurans, Xanthomonas 

oryzae, and Streptococcus pyogens have been previously reported (Nam et al., 2012; Koo 

et al., 2013). The structures of the first two were overlaid on top of E. coli CasD in Fig. 

5.7C. Of these homologs, E. coli CasD is most closely related to Cas5d from X. oryzae. 

Structural alignment suggests that the disordered region of the CasD thumb forms a 

flexible helix-loop-helix motif in X. oryzae (Koo et al., 2012). Furthermore, the two 

monomers in the asymmetric unit of Cas5d have their thumb domains in different 

orientations, suggesting that this domain is very flexible. This motif is ordered in the X. 

oryzae structure due to crystal contacts that are not present in the case of E. coli Cascade 

crystals. Thus, we would predict that E. coli CasD to have a flexible thumb as well. Since 

the X. oryzae Cas5d has been reported to have non-specific DNA-binding activity, it is 

likely that CasD might also be involved during target DNA binding/unwinding. 

 Based on previous reports and our crystal structure, we propose a model as shown 

in Figure 5.10. Upon PAM recognition by the L1 loop of CasA-NTD (Sashital et al., 

2012), its F129 residue likely intercalates and stabilizes the -1 PAM base to initiate DNA 

melting. This interaction is coupled to a conformational change in CasA (Wiedenheft et 

al., 2011) that brings the L2 and L3 loops in its CTD closer to position 6 of the target 

DNA. The conserved residues in these loops stabilize the flipped base at position 6 of the 

target, and the movement of the CTD domain (towards the PAM) likely facilitates 

melting of the target DNA duplex. 
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CasA conformational change also results in the concerted movement of the CasB 

subunits in the same direction. The conserved residues in the CasB subunits make 

specific interactions at positions 12, 18, 24, and 30. These contacts are likely used by 

CasB to further stabilize the melted dsDNA and in turn, position the bases next to the 

crRNA for Watson-Crick interactions. During all this conformational change, CasC-

crRNA remains relatively unchanged, based on the superposition of CasC subunits before 

and after target binding (Figure 5.3). Hence, the CasC-crRNA acts as a template that is 

used by the other Cascade subunits during the unwinding of double-stranded target DNA. 

Based on the recent biochemical observations made in the case of the type-III Cascade-

like Cmr complex in Thermus thermophilus, it is possible that Cascade and other 

Cascade-like complexes melt double-stranded DNA one half-turn of a B-form DNA at a 

time (Staals et al., 2013). Unlike Cascade, the T. thermophilus Cmr complex also exhibits 

nuclease activity, and upon binding, cleaves its target at six-nucleotide intervals starting 

at its 3’ end (next to PAM in the protospacer). Given the structural similarity between 

Cascade-like complexes in the Type-I and Type-III systems, it is likely that these 

complexes use similar mechanisms for DNA/RNA targeting in the interference step. 

However, the possibility that target melting and cleavage in the type-III Cmr complex are 

separate events cannot be ignored.  

 Overall, the Cascade-DNA crystal structure presents a detailed architecture of the 

crRNA-target DNA hybrid, the structure of the individual subunits and their interactions 

in the complex, and how Cascade-like complexes bind to their targets during the CRISPR 

interference stage. The structure also provides invaluable insight for future experiments. 
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Materials and Methods 

 

Expression and Purification of Wild-type and SeMet-labeled Cascade 

Wild-type Cascade was expressed and purified as previously described (Mulepati 

et al., 2012).  For seleno-methionine (SeMet) incorporation into Cascade, plasmids were 

transformed into the Rosetta 2 (DE3) strain (Novagen) of E. coli and and expressed in 

EZ-rich defined media (Neidhardt et al., 1974), where Met was replaced with SeMet. 

Cells were grown at 37 C to OD600 of ~0.3 before adding 50 mg/L of SeMet and 

lowering the temperature to 20 C. Cells were further allowed to grow to OD600 of ~0.4 

before protein expression was induced with 0.5 mM isopropyl--D-1-

thiogalactopyranoside (IPTG). SeMet-Cascade was purified with an identical procedure 

to wild-type Cascade. Cascade complexes were concentrated in a buffer consisting of 20 

mM Tris-HCl at pH 8.0, 200 mM NaCl and 1 mM TCEP (tris(2-carboxyethyl)phosphine) 

to about 30 M, flash frozen in liquid N2 and stored at -80 C until further use.  

 

Cascade-DNA Complex Formation 

To make target dsDNA, two complementary DNA strands with the sequences 5’- 

AATCAGACAGCCCACATGGCATTCCACTTATCACTGGCAT-3’ or 5’-AATTGAG 

CAAATCAGACAGCCCACATGGCATTCCACTTATCACTGGCAT-3’ were 

separately annealed to a partially non-complementary strand with the sequence 5’-GCCA 

TGTGGGCTGTCTTAACTC GTTTAGT-3’ (Sigma). Double-stranded target DNA was 

prepared by slow-annealing 230 M of the non-complementary strand with 200 M of 
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the complementary strand in a buffer consisting of 20 mM Tris-HCl pH 7.5, 100 mM 

NaCl and 0.5 mM of EDTA.  

Cascade and target dsDNA were incubated at 37 C for 30 min at concentrations 

of 20 M and 30 M respectively, in a buffer containing 20 mM Tris-HCl at pH 8.0, 200 

mM NaCl, and 1 mM TCEP. The complex solution was spun down and placed on ice for 

approximately 5 min.   

 

Crystallization of Cascade-DNA Complex 

Cascade-DNA crystals were obtained by sitting-drop vapor diffusion method. 

Initial crystals were obtained by mixing 2 L of Cascade-DNA complex with 1 L of a 

reservoir solution consisting of 0.1 M sodium cacodylate at pH 5.0, 0.1 M calcium 

acetate, and 9-11% PEG 8,000. Crystals of different sizes grew over 1-7 days at 20 C. 

These crystals were subsequently stabilized in a reservoir solution consisting of 8.5 % 

PEG 8,000, and then used to prepare a seed solution. Larger crystals that grew to a size of 

approximately 500 m x 300 m x 300 m were obtained by mixing 2 L of cascade-

DNA complex with 1 L of freshly prepared seed solution. Crystals were allowed to 

grow for 7-10 days before being harvested.  Crystals were gradually cryo-protected in 5% 

steps into the reservoir solution supplemented with 4 mM TCEP and 5 % each of 

glycerol, sucrose, PEG 400, and ethylene glycol. To obtain heavy-atom derivates, a few 

crumbs of different heavy atoms (W3-cluster: {[(W3O2(CH3COO)6(H2O)3]
2+

(CF3SO3)2} 

or thimerosal) were transferred into the cryo solution and allowed to soak into the crystal 

over 24 h at 20 C. Stabilized crystals were flash-frozen in liquid N2.  

 



 99 

Data collection and Structure Determination 

X-ray diffraction data were collected at the Stanford Synchrotron Radiation 

Lightsource (SSRL) on beamlines 7-1, 11-1 and 12-2. Data were processed with XDS 

(Kabasch, 2010). The Cascade-DNA complex crystallized in space group P3121 with unit 

cell dimensions as listed in table 5.1. Data from thiomerosal-soaked crystals were used 

for single-wavelength anomalous dispersion (SAD) phasing. SHELX (Sheldrick, 2008) 

was used to find the positions of Hg sites in the thiomerosal-soaked crystals. Phases were 

calculated from the thiomerosal-soaked crystals using SOLVE, and improved by solvent 

flattening in RESOLVE (Terwilliger, 2004). During solvent flattening in RESOLVE, 

non-crystallographic symmetry in between the 6 CasC subunits and 2 CasB subunits was 

averaged to get improved maps. This initial map was used to calculate a difference 

Fourier map to find the Se positions in the SeMet derivative crystals. Of the 113 possible 

Se sites, 106 ordered Se sites were located. While the best native crystals diffracted to 

only ~3.6 Å, native crystals soaked with the W-cluster extended diffraction to 3.03 Å 

(Table 5.1). Phases from the Hg and Se derivates were combined using Sigma (Read, 

1986) and used along with the structure factor (F) from the W-cluster-soaked crystals to 

calculate the final experimental map. The unit cell has a high solvent content of ~70%. 

The asymmetric unit consists of a single cascade complex bound to the complementary 

DNA strand.  

An atomic model of the cascade-DNA complex was built in COOT (Emsley and 

Cowtan, 2004). Models of E. coli CasA, CasB, and CasE-RNA were generated using the 

I-TASSER server (Roy et al., 2010) from homologs in T. thermophilus with known 

structures. These models were used as initial coordinates with changes made in COOT as 



 100 

necessary. Once most of the complex was built, the model was refined with PHENIX 

(Afonine et al., 2010). The figure panels were made with either PyMOL (Delano, 2010) 

or Chimera (Goddard et al., 2007). 

 

Cryo-electron Microscopy Map Fitting 

The complete structure of Cascade-DNA complex was aligned to Cascade-RNA 

cryo-electron microscopy structure by means of rigid-body docking in Chimera. The 

individual subunits from the crystal structure were also docked into the Cascade-only 

cryo-electron microscopy structure.  

 

In vitro Reconstitution Assay 

Cleavage assays were performed as described previously (Mulepati et al., 2013). 

The mutant plasmid (mismatches underlined) consists of a protospacer with the sequence: 

5’- GAGAGCCCTCATGGGATTCCTCTTATGACTGGCAT – 3’. 
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Table 5.1: Escherichia coli Cascade-DNA crystal structure—Data collection and 

processing statistics 

 
Data collection Native W3 soak Thimerosal Selenium 

X-ray beamline SSRL 7.1 SSRL 11.1 SSRL 11.1 SSRL 12.2 

Wavelength (Å) 0.9999 1.2131 0.980112 0.97938 

Unit cell     

    a = b,  c (Å) 225.32, 293.20 223.79, 290.61 224.00, 290.44 225.515, 291.295 

     = ,  () 90, 120 90, 120 90, 120 90, 120 

Resolution (Å)
a
 3.62 (3.68-3.62) 3.03 (3.05-3.03) 3.90 (3.98-3.90) 3.51 (3.57-3.51) 

Rsym
a, b

 0.218 (2.362) 0.181 (2.959) 0.296 (3.237) 0.339 (1.838) 

Rpim
a, c 

0.074 (0.921) 0.058 (0.948) 0.092 (1.033) 0.138 (0.754) 

I/a
 10.4 (1.3) 12.3 (1.0) 9.7 (1.0) 6.7 (1.1) 

Redundancy
a
 9.8 (7.2) 11.0 (10.4) 11.2 (10.4) 6.6 (6.7) 

Completeness (%)
a
 99.5 (91.8) 99.8 (96.4) 99.7 (96.3) 96.7 (92.9) 

Wilson B factor  84.33   

Mean figure of merit  0.57   

Heavy atom sites  1 14 106 

Refinement     

Resolution (Å)  39.46-3.03   

Rwork
d
  22.71   

Rfree
d
  27.37   

r.m.s.d. bond (Å)
e
  0.012   

r.m.s.d. angle  1.774   

No. of atoms  26670   

    Protein       24745   

    Nucleic acid       1925   

B-factors  46.7   

Ramachandran plot     

    Most favored (%)  85.36   

    Allowed (%)  8.92   

    Outliers (%)  5.72   
 

a
 The values in parentheses are for the highest resolution shell. 

b
 Rsym is |Io – I|/Io, where Io is the intensity of an individual reflection, and I is the mean intensity for 

multiple recorded reflections.  

c
 Rpim is (1/(N-1))

^1/2
(|Io – I|))/Io 

d
 Rwork is ||Fo – Fc||/Fo, where Fo is an observed amplitude, and Fc is the calculated amplitude; Rfree is the 

same statistic calculated over a subset of the data that has not been used for refinement. 

e
 r.m.s.d., root mean square deviation. 

 

 

 

 

 



 102 

 
 

Figure 5.1. Crystals of the Cascade-DNA complex and its content. A, Crystals of the 

Cascade-DNA complex obtained from microseeding. B, Protein content of the Cascade-

DNA complex. Large crystals (4-5) were looped and dissolved in H2O. The content was 

run on an SDS-PAGE gel and then stained with Coomassie blue stain. C, Nucleic acid 

content of the Cascade-DNA complex. Crystals were dissolved in H2O and deproteinated 

with phenol extraction. The nucleic acid extracted was ethanol precipitated and 5’-labeled 

with -[
32

P] ATP (PerkinElmer Life Sciences) using T4 polynucleotide kinase (New 

England Biolabs). The sample was separated on a denaturing-urea gel and visualized by 

autoradiography. 
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Figure 5.2. Crystal structure of the E. coli Cascade bound to target DNA. A, Unbiased Fo 

– Fc electron density map contoured at 3. The nucleotides, which are represented as 

sticks, were omitted from the map calculation. B, Overall structure of Cascade-DNA 

complex in two orthogonal orientations. Semi-transparent surface representation is 

superimposed on the model of the complex. C, Right-handed helical arrangement of the 

CasC hexamer around the crRNA-DNA heteroduplex. The structure is flipped such that 

the tail (CasA) of the complex is on the surface of the plane and its head (CasE) pointing 

into the plane. 
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Figure 5.3. Comparison of the Cascade-DNA and apo-Cascade structures. A, Crystal 

structure of Cascade-DNA complex rigid-body docked into the cryo-electron microscopy 

map. B, Model of the apo-Cascade with crystal structures of the individual subunits from 

A rigid-body docked individually into the apo-Cascade cryo-electron microscopy map. C, 

Superimposed structures of the Cascade-DNA complex and the apo-Cascade. In A and B, 

the cryo-electron microscopy maps are represented as grey mesh and the subunits are 

colored as in Figure 5.2. In C, all the apo-Cascade subunits are colored in grey and the 

Cascade-DNA subunits are colored in orange, except for the target DNA colored in red. 
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Figure 5.4. The crRNA-DNA hybrid forms an unusual arched-ladder structure. A, 

Cartoon representation of the interaction of the crRNA-DNA interaction over the length 

of the protospacer. B, View of the crRNA-DNA hybrid represented as spheres, rotated by 

~90 around the helical axis of Cascade with respect to A. C, Structure of the semi-helical 

duplex regions interspaced by flipped-out bases in both the crRNA (U24 in limegreen) 

and the target DNA (dA24 in orange). D, Ordered loops formed by the 5’ handle of the 

crRNA. E, Schematic representation of the Watson-Crick base pairs between the crRNA 

and the target DNA. crRNA is colored green and target DNA is colored red unless stated 

otherwise. Disordered nucleotides are colored grey and the Watson-Crick base pairs are 

represented as vertical lines. 



 106 

 

 

 
 

Figure 5.5. The CasC subunits of Cascade adopts a right-hand structure. A, Ribbon trace 

of the CasC3 subunit of Cascade showing its Finger (blue), Palm (purple), and Thumb 

domains (green). B, An electrostatic potential surface of CasC shown in the same 

orientation as in A. The surface electrostatic potential is colored from positive (blue) to 

negative (red). C, Amino acid sequence conservation scores mapped onto the surface of 

CasC3 using CONSURF. 
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Figure 5.6. Implications of the helical arrangement of the CasC subunits on the crRNA-

DNA hybrid structure. A, Interactions made by the palm and thumb domain result in 

evenly spaced out distortions in the crRNA-DNA hybrid. Only CasC3 to CasC4 are 

depicted and the other subunits have been removed for clarity. Interactions within the 

rectangular box are shown in D. B, Structural alignment of the six CasC subunits. CasC2 

to CasC6 are colored in grey. CasC1 and CasC6 are colored in blue and cyan respectively. 

The position of CasE has been depicted with respect to CasC1. C, Selective exposure of 

crRNA bases by CasC. CasA, CasB and the target DNA have been removed for clarity. 

D, Conserved residues in the basic patch of CasC3 that interact with crRNA. CasC3 is 

colored cyan. Individual elements are colored in case of the crRNA. 
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Figure 5.7. CasD caps the 5’-handle of the crRNA. A, Ribbon representation of CasD. B, 

The 5’-handle of crRNA interacts with the conserved groove in CasD. Amino acid 

sequence conservation scored mapped onto the surface of CasD. C. Structural alignment 

of CasD and its homologs from type I-C CRISPR systems.  
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Figure 5.8. CasA conformational change results in specific contacts with the target 

strand. A, Ribbon diagram of CasA positions pre- (grey) and post- (purple) target binding. 

DNA and RNA are colored red and green respectively. B, The L2 and L3 loops in CasA 

results in the first bending of target DNA at position 6. Only the DNA strand is shown, 

and residues in the L2 and L3 loops close to the target DNA making specific interactions 

are shown as sticks. Hydrogen bonds are represented as red dotted lines. Also shown is 

His-213 from CasC (CasC2 in this case) that makes aromatic stacking interaction at the 

sites of DNA distortions. 
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Figure 5.9. CasB subunits make specific interactions with the target DNA. A, Ribbon 

diagram of the two CasB (yellow) subunits next to the target DNA (red). The relative 

position of the CasA, CasB, and CasE subunits are marked. The dotted box or circles 

represent the sites of distorted bases on the DNA strand. B, Relative position of CasB 

subunits before (grey) and after (yellow) target binding to the DNA (red). The crRNA 

strand is colored green. The dotted arrows point to the relative movement of the CasB 

subunits upon target binding. The relative positions of the other subunits are marked as in 

A. C and D correspond zoomed-in positions shown in C and D.C, CasB1-DNA interaction 

around dA24. D, CasB1-DNA interaction around dC30. Similar interactions, as shown in 

C and D, also exist between CasB2 and DNA at positions dA12 and dC18. 
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Figure 5.10. Schematic model of DNA unwinding by Cascade. The complementary and 

non-complementary strands of the target DNA are colored red and grey respectively. The 

crRNA is colored green. Watson-Crick base pairs are shown as vertical lines between the 

duplex strands. Cascade protein subunits are not shown for clarity. 
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Figure 5.11. Reconstitution assay using wild-type and mutant protospacer. The latter 

consists of mismatches in each of the 6 flipped positions. Plasmid DNA (2 nM) 

consisting of complementary protospacer sequences were incubated with 20 nM Cascade, 

50 nM Cas3, 2 mM ATP, 10 mM MgCl2, and 10 µM CoCl2 at 37 °C for 30 minutes 

before quenching with 20 mM EDTA. Mixtures were deproteinated before loading the 

samples on a 1% agarose gel. DNA bands were visualized with ethidium bromide 

staining. Random: pBAT4 plasmid, Mutant: Protospacer with mismatches at the flipped 

positions of the target DNA. 
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Figure 5.12. Potential path of the non-complementary strand of the target DNA lined 

with basic residues. A, Coloring scheme as the same as in Figure 5.2. B. An electrostatic 

potential surface of Cascade shown in two different orientations. The surface electrostatic 

potential is colored from positive (blue) to negative (red). 
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Chapter 6 

 

Conclusion and Future Directions 

In this chapter, I summarize the results of my thesis work, and present the 

questions that need to be addressed in the future. As mentioned earlier, the two main 

questions that I concentrated on during my thesis work are: 

3. How are the different components of the CRISPR system able to recognize foreign 

DNA? 

4. What is the fate of the foreign DNA, once recognized by the CRISPR system? 

To answer these questions, I worked on Cascade and Cas3, the two main CRISPR 

components required in the interference stage. I carried out structural and biochemical 

experiments to investigate how Cascade binds to target DNA, and how both Cascade and 

Cas3 assemble to degrade DNA in the interference stage. 

To investigate how the Cascade complex interacts with target DNA, we 

crystallized the type-I Cascade complex from E. coli bound to a complementary DNA 

strand, and solved its structure to ~3 Å by X-ray crystallography. The structure revealed 

an unusual arched-ladder structure formed by the crRNA-DNA core. This crRNA-DNA 

duplex is discontinuous as a result of regularly flipped-out bases, which in turn form five 

short duplex regions over the length of the spacer/protospacer. The spacing of the flipped 

bases is determined by the thumb domain of the CasC subunits, which polymerize on and 

then protect the crRNA. The CasC subunits also prepare the crRNA for target binding. 

Despite these findings, some expected interactions were not evident from the crystal 

structure. 
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The PAM motif is essential for target binding since the Cascade-PAM interaction 

precedes spacer-protospacer binding as shown to be the case in the type II CRISPR 

system (Sternberg et al., 2014). Although the PAM sequence (5’-CAT-3’) is present in 

the target strand used during crystallization, it is disordered in the crystal structure. It is 

possible that a double-stranded PAM is required for the (CasA) L1- PAM interaction, and 

future crystallization experiments need to be designed using double-stranded target DNA. 

A single-stranded DNA strand that extends beyond the PAM might also stabilize the 

PAM-L1 interaction. 

Although the crystal structure shows only the target strand, Cascade melts double-

stranded target DNA, and based on protection assays, interacts extensively with both the 

complementary and the non-complementary strands (Jore et al., 2011). This raises the 

question of where in Cascade the non-complementary strand would bind. The crystal 

structure suggests that Cascade has a deep, positively-charged groove between the CasB 

and CasC subunits, on the opposite side of CasB with respect to the complementary 

strand. This groove is likely involved in the stabilization of the non-complementary 

strand. One of the surprising observations during Cascade structure determination was the 

high solvent content (~70%) of the Cascade-DNA complex crystals. The resulting large 

solvent channels in the crystal lattice would possibly allow for soaking experiments with 

the non-complementary strand into the Cascade-DNA crystal and may reveal its 

interaction with Cascade. 

One of the major questions resulting from the intricate interactions revealed by 

the crystal structure is how a large complex like Cascade assembles. Is there an order in 

which the Cascade subunits are added onto the complex? The structure revealed that 



 118 

CasD caps the 5’ handle of the crRNA. Also, its thumb domain protrudes close to the -1 

flipped base of the crRNA, blocking CasC interaction at this position. Also, towards the 

head of the complex, residues corresponding to the CasC1 thumb domain are bent 

compared to that of the other CasC subunits. These observations are not sufficient to 

comment on the directionality of CasC polymerization. One way this could be tested is 

by expressing the CasC hexamers as a single protein linked by flexible linkers. Mutations 

can then be made in specific thumb domains, and their binding to crRNA probed by 

means of nuclease protection assays. Point mutations of conserved residues making 

interactions at the subunit-interfaces will also provide additional information on subunit 

assembly. 

Based on the structural observations, it is possible that the target double-stranded 

DNA is unwound either half-turn or a turn at a time. Apart from the PAM, the crystal 

structure revealed all of the key interactions between the complementary strand of the 

DNA and the Cascade subunits. Alanine mutation analysis of residues making specific 

interactions with the DNA could likely trap the Cascade complex in different states and 

provide evidence on the possible mechanism of DNA unwinding by Cascade. DNA 

binding experiments using Cascade mutants are currently underway. Furthermore, using 

target DNA of varying lengths (shorter than the protospacer) during crystallization may 

also trap the complex at different conformations. 

Besides Cascade, Cas3 is also essential in the interference stage as the latter 

consists of the nuclease-helicase required for target DNA melting and degradation. As 

such, to further investigate the mechanism of CRISPR interference, we crystallized the 

HD nuclease domain of T. thermophilus Cas3 and solved its crystal structure. It has a 
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conserved HD fold as predicted (Aravind and Koonin, 1998). We showed that this 

domain is a single-stranded endonuclease, and that its activity is stimulated by transition 

metal-ions. Even though we could only see one metal-ion at its active site, we showed by 

means of additional studies that a second metal-ion exists at the nuclease active site in 

solution, and that the nuclease likely uses a two-metal-ion dependent reaction 

mechanism. The absence of the second metal-ion was due to the acidic pH (~ 4.5) of the 

buffer used during protein crystallization.  

The above results were directly applicable to our attempts to reconstitute the E. 

coli CRISPR interference stage in vitro. Cellular levels of transition metal ions like Co
2+

 

and Ni
2+

 stimulate the endonuclease activity of E. coli Cas3. Cas3 can cleave single-

stranded DNA but requires the R-loop-forming activity of Cascade (Jore et al., 2011) to 

target double-stranded DNA. Using the reconstituted system, we showed that Cascade 

recruits Cas3 to the sites of R-loops for DNA degradation. This recruitment is stimulated 

by the presence of ATP, and once recruited, Cas3 nicks the non-complementary strand at 

a specific site within the protospacer, and cleaves the target strand only upon ATP 

hydrolysis. Concerted helicase-nuclease activities of Cas3 powered by additional ATP 

hydrolysis results in unidirectional degradation of the target DNA. 

A crystal structure of Cas3 would further add to our understanding of the 

mechanism of target degradation. Although, we do not have a crystal structure of the full 

Cas3 protein, we purified a Cas3 homolog from Thermotoga maritima, and identified 

initial crystal conditions. The structure of this protein is currently being pursued in the lab 

with initial models of the protein already built. The availability of both the Cascade 

complex and Cas3 presents us with the opportunity to investigate how Cascade is able to 
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recruit Cas3 during CRISPR interference. Based on DNA degradation patterns, Cas3 

initially binds at the DNA fork created by Cascade, but Cas3 likely recognizes specific 

elements in Cascade as well. Since the DNA fork is expected to exist next to CasA, it is 

likely that Cas3 binds to one of the CasA domains. This hypothesis is supported by the 

observation that in several species, CasA and Cas3 exist as a fusion protein (Westra et al., 

2012). The crystal structure revealed two disordered, solvent-exposed loops in the CasA-

NTD (289-293 and 319-322) that could serve as the interface for CasA-Cas3 binding. 

The importance of these residues could be tested for Cas3 recruitment using assays 

established in Chapter 4. As mentioned earlier, the presence of large solvent channels in 

the Cascade-DNA crystals could allow for the Cas3 HD nuclease domain to be soaked 

into the crystals as well. 

 Several observations that we made with the reconstitution assay need to be 

investigated further. It is not clear how many Cas3 molecules bind to the R-loop before 

DNA degradation is initiated, and whether the same or different Cas3 molecules cleave 

the two strands of the target DNA. The possibility of Cas3 polymerization on the target 

DNA cannot be ruled out, however, it seems unlikely considering Cas3 has processive 

helicase activity (Sinkunas et al., 2011).  

We also do not know how the nuclease and the helicase activities of Cas3 are 

coupled for efficient DNA degradation. The Cas3 helicase has a 3’-5’ polarity (Sinkunas 

et al., 2011) but once Cas3 makes the initial cuts within the protospacer, it is not clear 

why it degrades the target unidirectionally with respect to the PAM. Increasing evidence 

suggests that CRISPR adaptation is synchronized to the interference stage (Datsenko et 
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al., 2012; Swarts et al., 2012), and as a result, target degradation will need to be 

investigated in the context of adaptation (Cas1 and Cas2 proteins) and vice versa. 

 Mapping of target DNA cleavage in the reconstitution assay suggests that Cas3 

cleaves within the protospacer of the target strand at multiple sites. This region is tightly 

bound to the crRNA in the crystal structure presented in Chapter 5. These results suggest 

that Cascade is removed during target degradation. It is not clear whether the crRNA is 

cleaved, or if Cascade dissociates as a whole or as a smaller subcomplex. We showed in 

Chapter 2 that CasA is loosely bound to the Cascade complex at low concentrations, and 

that without CasA, the Cascade subcomplex is unable to bind double-stranded DNA. 

With the observation that CasA-Cas3 fusions exist in other species (Westra et al., 2012), 

it would be intriguing to investigate the interaction of the different subunits with Cas3. 

Förster Resonance Energy Transfer (FRET) experiments may be useful in delineating the 

conformational changes that might be at play at the Cascade-Cas3-DNA interface. 

 Overall, the structural and biochemical insights on the CRISPR interference stage 

presented as part of this thesis greatly increase our understanding of the CRISPR immune 

system. More importantly, it also raises critical questions that need to be addressed in the 

future, and would make an exciting endeavor for others to follow. 
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Appendix A 

 

Methods 

 

Preparation of Mineral Competent E. coli cells  

 

1. Autoclave all the necessary equipments and solutions to avoid contamination. 

 

2. Streak the E. coli strain of interest onto an LB plate with appropriate antibiotics 

and let the colonies grow overnight at 37 C overnight.  

 

3. Inoculate 1 L of sterile LB (with antibiotics, if needed) with a single colony from 

the LB plate and let the cells grow at 37 C until an OD600 of ~0.5 is reached. 
Overnight starter cultures can be used as well to inoculate the 1 L culture. 

 

4. Pellet cells at 2,500 rpm for 20 minutes at 4 C and discard the supernatant. 
 

5. Resuspend the cells in 30 ml of Tfb1 with a sterile 10 ml pipette. 
 

6. Let the cells sit on ice for 10 minutes (At this point, the cells are very fragile) 
 

7. Pellet the cells at 2,000 rpm for 20 minutes at 4 C. 
 

8. Discard the supernatant and carefully suspend the cells in TfbII.  
 

9. Pipet aliquots into sterile 1.5 ml centrifuge tubes and flash freeze in liquid N2 
and store at -80 C. 

 

Tfb1: 30 mM CH3COOK, 50 mM MnCl2, 100 mM KCl, 10 mM CaCl2, 15% glycerol 

 

TfbII: 10 mM MOPS-NaOH at pH 7.0, 75 mM CaCl2, 10 mM KCl, 15% glycerol 

 

 

Mineral competent transformation protocol 
 

1. Thaw ~ 100 l of mineral competent cells on ice.  
 

2. Add DNA (1 l of plasmid or 10 l of ligation mixture) to the cells in the 1.5 
ml tube and mix gently. Incubate on ice for 15 min. 

 
3. Heat shock the transformation mixture at 42 C for 30-45 sec and then 

immediately place on ice. Incubate on ice for an additional 10-15 min. 
 

4. Add ~300 l of autoclaved LB media to the same tube and incubate at 37 C 
with shaking for 30-60 min. This step is not necessary for Ampr vectors. 
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5. Plate half of the mixture on LB plates with appropriate antibiotics and incubate 

the transformation plates at 37 C overnight. 
 

Standard Cloning Protocol- PCR reaction 

 

Genes of interest can be amplified from genomic DNA, plasmids, or other sources using 

Polymerase Chain Reaction (PCR) as follows: 

 

1. Dissolve the primers in dH2O and make a 500 µM stock. Add an equivalent 

amount of water (in µl) to the nmols of primers in the tube to make this stock 

solution. Make a 10 µM working solution for subsequent reactions. Store primer 

solutions at -20 C.  

 

2. Prepare the following mixture in the order listed.  

 

Component [Stock] Volume (µL) [Final] 

dH2O   33.0   

HF Buffer* 5 x 10.0  1 x 

Primer A† 10 µM 2.5  0.5 µM 

Primer B† 10 µM 2.5  0.5 µM 

dNTPs  10 mM 1.0  200 µM (each) 

DNA‡   0.5   

Phusion 2.0 U/µl 0.5  0.02 U/µl 

Total  50   

 

* HF Buffer will be the generic choice, but you can substitute the GC Buffer if 

your template DNA has a high GC content. 

 

† Working solutions of primers are made by diluting 500 µM stock 1 in 50 to get 

working concentration of 10 µM. 

 

‡ Concentration of DNA will vary based on its source. In general, whether the 

source is a plasmid or genomic DNA, you should use 0.5 µL. 

Phusion: Phusion High-Fidelity DNA Polymerase (NEB F-530) 

 

3. Setup a PCR cycle as follows: 

 

Cycle Temp. (°C)  Time No. of Cycles 

Pre-cycle 98 30 sec 1 

Denaturation* 98 10 sec 35 

Annealing† ? 20 sec 35 

Extension 72 15-30 sec/kb 35 

Post-cycle 72 4 min 1 

 4  1 
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* Denaturation is done at 98°C for Phusion DNA Polymerase, and you can vary 

the time beyond this suggestion, though it is not necessary. 

 

† Annealing is done at temperature that is equal to the lower Tm of your two 

primers plus 3 °C (e.g. Primer A Tm=61 °C and Primer B Tm=52 °C, the 

Annealing temperature should be 52 °C + 3 °C = 55 °C).  

 

4. Run a small amount of PCR product (~ 5 µL) on an ethidium bromide-stained 

agarose gel to verify amplification of DNA of appropriate length.  

 

5. Clean the PCR product with GeneJET PCR purification kit (Thermo Scientific).  
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Digestion of PCR products and Vectors 

 

1. Setup the following reaction mixture in a 1.5 ml tube. 

 

Component [Stock] Volume (µl) [Final] 

DNA  28  

Buffer† 10 x 4 1 x 

H2O   6  

Enzyme 1 ~10-20 U/µl 1 0.25 - 0.50 U/µl 

Enzyme 2 ~10-20 U/µl 1 0.25 - 0.50 U/µl 

Total  40  

 

† Appropriate buffer should be chosen that supports activities of both 

restriction enzymes. 

 

2. Mix thoroughly and incubate at 37 °C for 2-3 hours. The mixture can be 

incubated for much shorter time-periods (10-30 min) if using Fast-Digest 

restriction enzymes. Some of the enzymes have higher non-specific (star) 

activities and should not be incubated for longer than suggested.  

 

3. Run the digested DNA on an ethidium bromide-strained agarose gel, excise the 

appropriate DNA bands and purify using GeneJET gel extraction kit (Thermo 

Scientific). Store the purified DNA/vector at -20 °C. 

 

 

 

DNA ligation 

 

1. Assemble the following reaction and incubate at ~20-25 °C for 60 min. This 

mixture can also be incubated overnight at 16 °C. 

Component Volume- Control (µl) Volume- Insert (µl) 

Vector 2.0 2.0 

Insert 0 5.0 

10 x Buffer 2.0 2.0 

H2O 15.0 10.0 

T4 DNA Ligase 1.0 1.0 

Total 20.0 20.0 

 

2. Transform 10 µl of the ligation mixture into competent cells 
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Standard site-directed mutagenesis 

 

1. Design primers such that 20-22 bases are included on both the 5’ and 3’ side of 

the mutation site with the last base being either a guanine or a cytosine. 

2. Assemble the following reaction in the order listed: 

 

Component [Stock] Control (l) Mutation (l) [Final] 

dH2O  44.5 37.5  

Pfu Ultra buffer 10 x 5.0 5.0 1 x 

Primer A 10 M 0 2.5 0.5 M 

Primer B 10 M 0 2.5 0.5 M 

dNTPs 10 mM 0 1.0 200 M each 

DNA  0.5 0.5  

Pfu Ultra 2.5 U/l 0 1.0 0.05 U/l 

Total  50.0 50.0  

 

3. Mix thoroughly and setup a PCR program as follows: 

 

Cycle Temp. (C) Time  No. of cycles 

Pre-cycle 95 1 min 1 

Denaturation 95 50 sec 18 

Annealing 60 50 sec 18 

Extension 68 2 min/kb 18 

Post-cycle 68 7 min 1 

 4  1 

 

4. Digest the PCR product from step 3 as follows: 

Component [Stock] Volume (l) [Final] 

H2O  24.0  

DNA (step 3)  20.0  

DpnI buffer 10 x 5.0 1 x 

DpnI enzyme 20 U/l 1.0 0.40 U/l 

Total  50.0  

 

5. Incubate the mixture in step 4 at 37 C for 4 – 6 hours. If convenient, the reaction 

can be incubated overnight at 37  C.  

 

6. Transform 10 l of the digested product into competent cells using standard 

transformation protocol. The control plate ideally should have no colonies. The 

mutation plate should have at least 10-fold more colonies than the control plate. If 

no colonies are observed in the mutation plate, different primers (of different 

length and sequence) can be tested next. 
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Multi-site mutagenesis  

 

1. Assemble mixture in the order below: 

 

Component Control Mutagenesis 

H2O to 25 l to 25 l 

10x Taq ligase buffer 1x 1x 

ATP - 2 mM 

dNTPs - 1 mM each 

Gel purified primers (1-5) - 0.2 M each 

Template DNA ~100 ng ~100 ng 

Pfu Ultra DNA polymerase - 1 l 

NEB Taq ligase - 1 l 

NEB T4 polynucleotide kinase - 1 l 

Total 25 l 25 l 

 

2. PCR cycle setup as follows: 

 

i. 37 C for 30 min 

ii. 95 C for 3 min 

iii. 95 C for 1 min 

iv. 55 C for 1 min 

v. 65 C for 16 min (2 min/kb) 

Repeat 30 cycles for steps (iii), (iv), and (v) 

vi. 65 C for 10 min 

vii. 4 C until ready for next step 

 

3. Add 1 L of NEB DpnI directly to the mixture and incubate the reaction for 4-6 

hours @ 37 C (overnight if convenient). 

 

4. Transform 5 L of the digested DNA into DH5 strain of E. coli and let the 

colonies grow overnight on the LB plate. 

 

5. Grow 2-3 colonies and test digest with appropriate restriction enzymes to verify 

the entire gene is intact. Because this protocol uses primers that anneal on a single 

(same) template strand, I have found that in case of some of the colonies, the 

plasmids are truncated (and usually your gene is truncated). So I make sure the 

digestion products from my test digests look identical to results I expect in case of 

the template DNA.  

 

6. If the test digestions make sense, send 2 samples for sequencing.  
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Notes 

 

1. I get better results (higher number of colonies in my mutagenesis plate compared 

to my control plate) when I gel purify each of the primers (Denaturing UREA 

gel). 

 

2. When I use 5 primers (for 5 mutations), I usually find 4-5 of the sites mutated 

(different combinations of sites mutated in DNA from different colonies). 

 

3. I get more colonies when I do the mutagenesis with shorter plasmids (overall 

length of the plasmid does have an effect). 
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Large Scale Plasmid Purification 

 

1. Prepare the following buffers: 

 

Buffer A (500 ml): 40 mM glucose, 25 mM Tris-HCl at pH 8.0, 10 mM EDTA 

Buffer B (200 ml): 0.2 N NaOH, 1% sodium dodecyl sulfate 

Buffer C (500 ml): 7.5 M Ammonium acetate at pH 7.6 

Buffer D (200 ml): 2 M Ammonium acetate at pH 7.4 

Buffer E (200 ml): 10 mM Tris-HCl at pH 8.0, 0.1 mM EDTA 

 

2. Transform the plasmid of choice into DH5 cells and plate on LB plate with 

appropriate antibiotics. 

 

3. Pick a single colony and use it to grow 3 x 1L of LB culture overnight at 37 C. 

 

4. Pellet the overnight culture. Freeze and store the cell pellets at -20 C until if not 

being used immediately. 

 

5. Resuspend the cells in 10 ml of Buffer A and add lysozyme to a concentration of 

5.2 mg/ml. Immediately place the cells on ice. 

 

6. Add 100 ml of buffer B, mix with a stir rod and place on ice for an additional 5 

mins. 

 

7. Add 75 ml of buffer C, mix well, and let the solution sit on ice for 1 h. 

 

8. Centrifuge the solution at 10,000 rpm for 30 min and recover the supernatant in a 

500 ml bottle after passing it through a cheese cloth. 

 

9. To the supernatant, add 120 ml of isopropanol, mix gently, and centrifuge at 

12,000 rpm for 30 min. Discard the supernatant and remove as much of the liquid 

as possible. 

 

10. Resuspend the pellets in 20 ml of Buffer D, add 10 l of 10 mg/ml RNase A, and 

incubate the mixture at 37 C for 30 min. Centrifuge the solution at 5,000 rpm for 

30 min to pellet any precipitations. 

 

11. Treat the supernatant twice with equal volumes of phenol:chloroform:isoamyl 

alcohol (25:24:1) solution and once with chloroform:isoamyl alcohol. 

 

12. Add 40 ml of ethanol and let the plasmid precipitate overnight at -20 C. 

Centrifuge the solution at 10,000 rpm for 30 min, wash with 80% ethanol, and 

centrifuge again at 10,000 rpm for 60 min. 

 

13. Discard the supernatant, dry the plasmid pellet, and resuspend it gently in 1.5 ml 

of Buffer E. Determine the concentration of the plasmid using a nanodrop. 
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Run-off RNA transcription 

 

1. Linearize template plasmid appropriately. 

 

2. Set up the following reaction mixture in the listed order. 

 

200 mM HEPES at pH 7.5 

0.1 mg/ml BSA 

25 mM MgCl2 

40 mM DTT 

2 mM Spermidine 

6 mM NTP at pH 7.5 

50ug/mL template DNA  

1x RNAsecure inhibitor 

T7 RNA polymerase 

 

3. Incubate the mixture without the T7 RNA polymerase at 37 C for 10 min prior to 

starting the transcription reaction. Incubate the reaction at 37 C for an additional 

1-2 h. Its best to optimize for Mg
2+

, template DNA, and RNA polymerase 

concentrations. 

 

4. Add EDTA to 50 mM to get rid of the pyrophosphate precipitation. 

 

5. The products can be verified by running a small sample on denaturing urea gel. 
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UV-crosslinking of Cascade with DNA 

 

1. Assemble the mixture below and incubate at room temperature for 30 minutes. 

 

 

 

2. Make dilutions of Cascade as necessary. 

 

3. Expose to UV source for 3 minutes followed by boiling 16 l of solution from (1) 

with 10 l of 5x SDS buffer.  

 

4. Run an appropriate SDS-PAGE gel to separate the samples. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Components 
Concentration, nM 

Control Cascade 

H2O - - 

5x Gel shift buffer 1x 1x 

Cascade 0 300 

DNA 0.5 0.5 

Total 20 l 20 l 
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Expression of E. coli Cascade in EZ-rich defined media 

 

1. Transform Cascade components (casBCDE in pHAT4, casA and crRNA in pRSF-

duet vector) into T7EXPRESS strain of E. coli cells and plane on LB-Agar media 
with appropriate antibiotics. Incubate the plate overnight at 37 C. 

 

2. Generously swipe-off some E. coli cells using a fresh pipette tip and transfer them 

into ~100 ml of EZ-Met media with appropriate antibiotics. Let the cells grow 

overnight at 37 C. Starter cultures can also be made from glycerol stocks. 

 

3. Transfer the overnight culture into ~900 ml of prewarmed EZ-Met media and let 

the culture grow until OD600 of ~0.5 is reached.  

 

4. Dilute the culture from the last step into half using an additional 1 L of EZ-Met 

media. Let the cultures get to OD600 of ~0.5 so as to have 2 L of starter culture in 

the exponential growth phase. 

 

5. Add 120 ml of culture from step 5 into 16 x 1 L of prewarmed media and grow 

the cultures at 37 C until OD600 of 0.3 is reached. This will result in about 18 L 

of culture. 

 

6. Drop the temperature of the shaker to 20 C and add 50 mg/l SeMet. Induce 

protein expression at OD600 of ~0.4 by adding IPTG to 0.5 mM.  

 

7. Harvest cells after an additional 20 hours and flash-freeze the cell pellets in liquid 

N2. Store at -20 C until ready for protein purification. 

 

 

 

10x MOPS mixture 

 

1. Mix the following in ~600 ml of H2O. 

 

Component Formula weight Grams 

MOPS 209.3 167.5 

Tricine 179.2 14.4 

 

EZ-Met media Volume (ml) 

10x MOPS mixture  100 

0.132 M K2HP04 (autoclaved) 10 

10x ACGU solution 100 

10x Supplement EZ-Met solution 100 

40 % Glucose 10 

Autoclaved H2O 680 

Antibiotics 1x 

Total 1000 ml 
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2. Add 10 M KOH to the solution until the final pH is 7.4 and bring the total volume 

to 880 ml. 

 

3. Add 20 ml of freshly prepared 0.1 M FeSO4. 

 

4. Add the following solutions in order.  

 

Component Volume (ml) 

1.9 M NH4Cl 100 

0.276 M K2SO4 20 

0.02 M CaCl2 0.5 

2.5 M MgCl2 4.2 

5 M NaCl 200 

Micronutrient stock 0.4 

H2O ~774 

 

5. Filter sterilize with 0.2 micron filter. Use fresh or aliquot in sterile bottles and 

freeze at -20 C to be used later. 

 

6. Mix the following ingredients to make 50 ml of the micronutrient stock. Store at 

room temperature. 

 

Component Formula weight Amount (mg) 

(NH4)6Mo7O24.4H2O 1235.9 9 

H3BO3 51.83 62 

CoCl2 237.9 18 

CuSO4 249.7 6 

MnCl2 197.9 40 

ZnSO4 287.5 7 

 

10x ACGU solution  

 

1. Add the following ingredients in 2000 ml of 15 mM KOH. The solution can be 

heated gently to facilitate dissolution.  

 

Component Formula weight Amount (g) 

Adenine 135.13 0.540 

Cytosine 111.1 0.444 

Uracil 112.09 0.448 

Guanine 151.13 0.604 

 

2. Filter-sterilize the solution with 0.2 micron filters and freeze at -20 C in 

appropriate aliquots, if not being used immediately. 
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Notes 

1. I usually keep frozen stocks of all the solutions to make 1 L of EZ-Met media 

for starter cultures. 

2. I make the media on the same day I do protein expression. 

 

10x Supplement EZ-Met solution 

 

1. Dissolve the following in order in ~400 ml of 10 mM KOH. 

 

Amino acid Amount (mg)  Amino acid Amount (mg) 

Tyr (free) 100  Leu (free) 100 

Ala (free) 100  Lys (HCl) 200 

Arg (HCl) 2000  Met 0 

Asn (free) 100  Phe (free) 200 

Asp (free) 100  Pro (free) 100 

Glu (K salt) 200  Ser (free) 2000 

Gln (free) 200  Thr (free) 200 

Gly (free) 100  Trp (free) 40 

His (free) 100  Val (free) 200 

Ile (free) 20  Cys
#
 (free) 100 

 

#
 Add separately to ~20 ml of H20. Dissolve by adding 12 M HCl drop-wise until 

solution is clear. 

 

2. Add 100 ml of 100x VA Vitamin solution before adding H2O to 2000 ml. 

 

3. Add the following components to make 500 ml of 100x VA Vitamin solution. The 

solution should be stored at -20 C. 
 

Stock solution Amount (g) Solvent 

0.02 M p-aminobenzoic acid 0.069 40 ml of 0.01 M KOH 

0.02 M p-hydroxybenzoic acid 0.069 40 ml of 0.01 M KOH 

0.02 M 2,3-dihydroxybenzoic acid 0.077 40 ml of 0.01 M KOH 

0.02 M thiamine HCl 0.169  

0.02 M calcium pantothenate 0.238  

Total 500 ml  
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Crystallization of Cascade-DNA complex 

 

1. Resuspended DNA in dH20 such that the concentration is ~500 M. Verify DNA 

concentration with the nanodrop.  

 

2. Heat the following mixtures at 95 C for 3 minutes and allow for slow cooling on 

the heat block over 2 hours.  

Component Concentration 

H2O - 

10x Annealing buffer
#
 1x 

Complementary strand 200 M 

Non-complementary strand 230 M 

Total Volume 50 l 
# 

10x Annealing buffer: 20 mM Tris-HCl pH 7.5, 100 mM NaCl and 0.5 mM of 

EDTA 

 

3. Incubate the following mixture at 37 C for 30 minutes followed by chilling on 

ice for ~5 minutes. Spin mixture at 14,000 rpm for 1 minute to pellet any 

precipitation. 

 

Component Final concentration (M) 

dsDNA target 30  

Cascade 20 

Buffer C to 60 l 

Total 60 l 

 

4. To get initial crystals, prepare precipitant solution consisting of 0.08 M calcium 

acetate, 0.1 M sodium cacodylate at pH 5.0, and 8-11 % of PEG 8,000. I usually 

vary the PEG concentration in 0.2% increments to make sure that I get the initial 

crystals. 

 

5. Mix 4.1 L of precipitant solution with 8.2 L of the Cascade-DNA complex 

thoroughly without getting any bubbles. Pipette 3 L (x 4 wells) of the resulting 

solution on sitting-drop well with a 500 l reservoir solution. I make the reservoir 

solution in separate 15 ml tubes and pipette them into the reservoir right before I 

seal the wells (one column at a time). Once, I have all the columns sealed, I put an 

additional layer of tape.  

 

6. Store the crystals in the 20 C room. Smaller crystals appear within 24 h but 
the larger crystals  (~500 m x 300 m x 300 m) take about a week to 
grow. These crystals should be harvested within 2 weeks. 

 

7. While possible, the likelihood of getting these larger crystals without 
microseeding is very low. Hence, the following microseeding procedure can 
be used to grow larger crystals on a consistent basis.  
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Microseeding  

 

1. Identify drops with crystals. The crystals can be of any size but bigger starting 

crystals most often give better crystals.  

 

2. Remove the skin that forms on the surface of the crystal drop with a loop. 

Stabilize the drop using additional buffer from the reservoir solution. At this 

point, protein that has not crystallized will precipitate. Exchange buffer from the 

drop until the solution is clear and leave about 10 uL of buffer for the next step. 

 

3. Crush the crystals with a pipette tip and transfer them into a 1.5 ml centrifuge tube 

with the help of 250 ml of a solution consisting of 0.08 M calcium acetate, 0.1 M 

sodium cacodylate at pH 5.0, and 8.7 % PEG 8,000. Add a seed bead to the same 

tube (Hampton). 

 

4. Vortex the tube at the highest setting for 5 minutes and make a 1/10 dilution 

stock. Make six additional two-fold dilutions. 

 

5. Mix 4.1 l of seed solutions from steps 4 or 5 with 8.2 l of Cascade-DNA 
complex. Add 3 l of the resulting mixture to each well with the reservoir 
solution always consisting of 0.08 M calcium acetate, 0.1 M sodium cacodylate 

at pH 5.0, and 8.7 % PEG 8,000.  

 

6. Crystals should appear in 25-48 hours and should be ready to be harvested in 

approximately 10 days. Crystals that appear after ~2 days grow into bigger 

crystals. 

 
 
Harvesting and stabilization of Cascade-DNA crystals 

 

Most of the Cascade crystals grow stuck to the surface of the well. Some crystals 

also grow stuck to the layer of skin that forms on the surface of the drop. Crystal 

harvesting, stabilization and soaking can be carried out as follows: 

 

1. Prepare a well on a separate tray with 500 l and 100 l of precipitant 

solutions in the reservoir and the crystal well respectively.  

 

2. In the drop with crystals, remove the skin covering the crystal drop with the 

help of a crystal loop. Stabilize the drop with additional solution from the 

reservoir until most of the precipitation has been removed. 

 

3.  Dislodge crystals stuck to the bottom of the well with gentle pushes near 

the area of the crystal with a sharp acupuncture needle.  
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4. Once the crystal is free for manipulation, transfer the crystal to the 

stabilization well. 
 

5. Buffer exchange into a cryo solution consisting of 0.1 M sodium cacodylate at pH 

5.0, 0.1 M calcium acetate, 10 % PEG 8,0000, and 5.0 % each of (PEG 400, 

ethylene glycol, glycerol, and sucrose) in >5% steps. I usually have the crystals (~ 

20-40) in ~ 200 l of the stabilization solution before slowly adding the cryo 

solution in 10 l increments up to 100 % of the cryo solution. 

 

6. Heavy atom soaks can be carried out with the crystals stabilized in the cryo 

solution. 
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Purification of CRISPR-components from different species 

 

 

Purification of CasB subunit of the Cascade complex from Thermus thermophilus 

 

1. Gene encoding CasB was cloned into mRSF plasmid (derivative of pRSF-duet 

plasmid with gene encoding for maltose-binding protein (MBP) proximal to the 

first multiple cloning site) so as to express CasB with an N-terminal MBP tag. 

 

2. The resulting plasmid was transformed into T7EXPRESS strain of E. coli cells 

(NEB) and plated on LB-Agar media plates (kan
r
).  

 

3. A handful of colonies were used to grow cell cultures in LB media (1L x3). Cells 

were grown at 37 C to OD600 of ~0.6 before temperature was lowered to 20 C 

and IPTG was added to 0.1 mM. Cells were allowed to grow overnight. 

 

4. The cells were harvested the next day (after ~18 h post-induction) and 

resuspended in Buffer A.  

 

5. Cells pellets were lysed and loaded on a 5 ml amylose column (GE Healthcare). 

The column was subsequently washed with ~50 ml of Buffer D supplemented 

with 1 M urea, after which, the column was rewashed with ~25 ml of Buffer A. 

 

6. Protein was eluted off the amylose column with ~15 ml of Buffer E. The eluted 

protein was incubated with 1/10
th

 (by mass) of TEV protease overnight at 4 C. 

 

7. The following day, protein mixture was first heated at 70 C for 10 min and then 

placed on ice for 5 min. The resulting precipitation was pelleted by centrifugation 

at 18,000 rpm for 30 min.  

 

8. The supernatant was collected and loaded on a HiLoad 26/60 S200 column pre-

equilibrated in Buffer F in 10-ml batches. Protein eluted as a dimmer still 

containing some uncleaved (MBP) CasB. 

 

9. Appropriate fractions were collected and through a 5-ml amylose column once 

more. The flow-through was collected and concentrated to ~ 5 mg/mL. The final 

protein sample was >95% pure as judge by Coomassie staining of an SDS-PAGE 

gel and had negligible nucleic acid contamination based on its low A260:A280 

(~0.65). 
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Purification of Thermotoga maritima MSB8 Cas3 

 

1. T. maritima cas3 was cloned into pHAT2 vector and transformed into 

T7EXPRESS strain of E. coli. 

 

2. Cells were grown in LB media (6 L) at 37 C until an OD600 of 0.3. Temperature 

was turned down to 20 C and the cells were allowed to grow to an OD600 of 0.5. 

At this point, IPTG was added to 0.2 mM to induce protein expression. Cells were 

subsequently harvested after 20 hours.  

 

3. Cells were lysed in buffer A and the soluble fraction was loaded on a 5-ml IMAC 

affinity column. The loaded column was sequentially washed with 100 ml each of 

buffer A and 10% of buffer B. About 15 mgs of T. maritima Cas3 was eluted with 

100% of buffer B.  

 

4. Protein was loaded on a HiLoad 26/60 S200 column. Cas3 eluted at a volume 

consistent with its size of ~84.3 kDa. Appropriate fractions were pooled and the 

NaCl concentration was diluted down to 100 mM before being loaded on a HT 

5ml-Q-affinity column. Protein was eluted with a linear gradient between 0-50 % 

of buffer D over a volume of 25 ml. Appropriate fractions were pooled and 

dialyzed back into buffer C.  

 

5. The final Cas3 sample was >95% pure as judged by Coomassie staining of an 

SDS-PAGE gel. The protein sample was concentrated to ~12 mg/ml and was used 

to setup the Classics and JCSG crystal screens. Crystals were readily seen in 

multiple drops after 4-5 days.  

 

 

Cloning and purification of CFP-Cas3-YFP fusion protein 

 

1. A modified prSET-b plasmid with sequences encoding for CFP and YFP 

separated by SphI and BglII restriction sites were used as template.  

 

2. E. coli Cas3 was PCR amplified with SphI and BglII restriction sites on its 5’- and 

3’- sites and cloned into the prSET plasmid such that the resulting coding region 

had sequences for CFP, cas3, and YFP  in that order.  

 

3. Purification was carried out essentially as in case of wild-type E. coli Cas3. 

 

 

 

 

 

 

 

 



 140 

Appendix B 
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