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Abstract 

We study the particles in the colloidal system under a two-dimensional electric field: the 

way to assemble the particles in the Brownian dynamic simulation and the equilibrium density 

profile of the system derived by considering the particle-field interaction and the equation of 

state for hard colloidal particles. 

In the research, the software COMSOL Multiphysics is used to solve the anisotropic 

electric field in a lookup table form to work the same as an analytical expression of the field 

property, which is not available. And triangular interpolation is used to make the lookup table 

work for every position in the plane. 

We develop the way to solve the equilibrium density profile given any electric field 

conditions in the 2D plane and work that on three types of electric field, then simulation is 

performed to verify our theory. 
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Chapter 1 Introduction 

1.1 Particle behavior under external field 

The influence of an external field on the colloidal particles under it is very common in 

nature and in research. In natural and living systems, equilibrium and out-of-equilibrium 

assemblies are good examples, such as the navigation of some Magnetotactic bacteria (MTB)1, 

bacterial colonies’ synchronized fluorescent blinking2 and some camouflage mechanisms3. 

Colloidal particles sediment under the gravitational field4-5, which is quite common in the lab 

and daily life. In research, multiple ways have been developed to assemble particles, like 

particles assemble into long chains in high-frequency electric fields between coplanar 

electrodes6, the magnetic field is also used in research to remove superparamagnetic particles in 

the aqueous dispersion7, and light-absorbing particles are assembled under thermophoresis by 

exposed in light.8 Different kinds of external fields have been applied in areas like 

nanolithography9-10, micro-sensors11 and optical materials12, as well. 

1.2 Colloidal crystal and assembly 

Here, the ability to control the position and density of particles without mechanical 

intervention is what we are concerned. Using electric field is one of the good ways to do this, 

since it doesn’t have much restriction to particle’s properties. Unlike other ways mentioned 

above, common silica particles can assemble in an electric energy landscape generated by 

multiple electrodes. Optimal methods to assemble spherical colloidal particles into a perfect 

colloidal crystal has been explored13-14. In the past, an isotropic electric field is often used to 

control the assembly. However, the design and application of the anisotropic one hasn’t been 

reported yet. In this paper, a way to design anisotropic electric field of different potential energy 



2 
 

contour shapes is shown, and it is used in simulating the new assembly policy, which has a better 

successful rate and a shorter time to take than the former one. 

1.3 Particle equilibrium distribution in a colloidal system 

In many cases, particles’ behavior in these cases are directly relevant to their equilibrium 

interaction under the field and the thermodynamics of the colloidal system. To have a thorough 

understanding of particles’ behavior and thermodynamic properties under an external field, a 

theoretical study into it is helpful.  

Many phase transition mechanisms and equilibrium phase diagrams with various kinds of 

colloids15-17 and states18-20 have been reported. While recently, the properties of irregular 

particles with different shapes21-22 and dynamics23-25 are widely investigated, as well. 

The local particle density profile is of great scientific interest but less understood. The 

equilibrium density profile of colloidal particles under gravitational field was first reported for 

simple systems as a model to study molecular systems4-5, 26-27, then used in the study of the phase 

transitions in more advanced systems28-30. More recently, particle density profile under electric 

field is also studied31-34, but the density variates only in one single dimension, thus no previous 

report that looks into multi-dimensional density profile under electric fields exists yet. 

1.4 Work in this paper 

Since the equation of state has been used to relate density distribution or phase behavior 

with energy landscape35, and the expression of colloidal hard spheres in solid and liquid phase 

has also been worked out36-37. We can figure out a 2-D equilibrium density profile of colloidal 

particles by solving a series of differential equations. After the equilibrium density distribution is 

known, we can have a better understanding of phase behavior of the system. 
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In this work, an optimal method to assemble spherical colloidal particles into a perfect 

crystal in simulation by alternating two orthogonal anisotropic electric field is developed. 

Besides, by combining the equation of state of hard particles, energy landscape in the 2-D plane 

and differential equations of osmotic pressure and particle density, the 2-D equilibrium density 

profile of colloidal particles under the external field is theoretically worked out. Not only can we 

verify the simulation with the theoretical calculation result, but the methodology can be applied 

to other 2-D electric fields.  

Chapter 2 Theory 

2.1 Particles’ interaction in the electric field 

For one particle 𝑖 in the high-frequency AC electric field, the net force on it is given by,  

 ( ), , , , ,

pf pp pp

i df i e i j dd i j

j i

F u u u


 
=  + + 

 
  (1) 

where 𝑢𝑑𝑓,𝑖
𝑝𝑓

, 𝑢𝑒,𝑖,𝑗
𝑝𝑝

 and 𝑢𝑑𝑑,𝑖,𝑗
𝑝𝑝

 represent dipole-field interaction between the particle and the field, 

electrostatic double layer repulsion between two particles and dipole-dipole interaction between 

two particles, respectively. 

The dipole-field interaction between a particle 𝑖 located at (𝑥𝑖, 𝑦𝑖) and the field is given by,  

 ( ) ( )2

,

3, 2 ,pf

df i i i m i icmu x y E x ya f= −  (2) 

where 𝜀𝑚 is the medium dielectric permittivity, 𝑎 is the diameter of one spherical particle, 𝑓𝑐𝑚 is 

the Clausius-Mossotti factor, and 𝐸 is the local electric field magnitude. 
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The electrostatic double layer repulsion between particle 𝑖 and another particle 𝑗 is given 

by,  

  ( ) ( )
2

2

, , 32 tanh exp 2
4

pp

e i j ij m ij

kT e
u r a r a

e kT
 

     = − −        
 (3) 

where 𝑟𝑖𝑗 is the distance between the center of particle 𝑖 and 𝑗, 𝜅 is the inverse Debye screening 

length, and 𝜓 is the colloidal surface potential and 𝑒 is the elemental charge. 

The dipole-dipole interaction induced by the electric field between particle 𝑖 and 𝑗 is 

given by,  

 ( ) ( ) ( )

3

23 2

, , 2

2
, , cos ,pp

ijdd i j i i m cm ij i i

ij

a
u x y r a f P E x y

r
 

 
= −   

 

 (4) 

where 𝑃2(𝑐𝑜𝑠𝜃𝑖𝑗) is the second Legendre polynomial and 𝜃𝑖𝑗 is the angle between the line that 

connects the two particle centers and the local electric field direction. 

2.2 Equation of state for the colloidal system 

By the equation of state for hard sphere colloids, the expression for the two-dimensional 

osmotic pressure Π, in terms of the particle number density 𝜌 and the compressibility factor 𝑍, is 

given as, 

 ( ) ( )ZkT   =  (5) 

Here 𝑍 is a function of 𝜂, the area fraction, 
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( ) ( )

( )

2
2

F

1

S

1 1
8

2 1 0.67 1 1.9

f

CP CP
m CP

eff eff

Z

Z


   

 
   

 

−

−

 
= + −  
 

   
= − + − +        

   

 (6) 

where 𝑍𝐹 is the compressibility factor for fluid state valid from infinite dilution to the freezing 

point, 𝜂𝑓 = 0.69; and 𝑍𝑆 is the one for FCC solid state valid from the melting point, 𝜂𝑚 = 0.71, 

to the close packing, 𝜂𝐶𝑃 = 0.906. 

The area fraction and the particle number density, is related by, 

 2a  =  (7) 

where 𝑎 is the radius of the particles in the system. 

Eq. (5) can be rewritten by combining Eq. (6) and Eq. (7) as, 

 ( ) ( )2
ZkT

a


 


 =  (8) 

The model above should be corrected by replacing the actual particle radius 𝑎 with effective 

radius 𝑎𝑒𝑓𝑓, to accommodate the electrostatic repulsion interaction between particles, as, 

 ( )( )
2

2 2 1 exp /pp

eff
a

a a u r kT dr

 = + − −
   (9) 

Similarly, the particle number density and the area fraction should also be replaced by the 

effective ones: 𝜌𝑒𝑓𝑓 and 𝜂𝑒𝑓𝑓 in all relative theoretical calculation. 

2.3 Osmotic pressure differential equation in 2D 
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In a potential energy landscape, which has its magnitude in 2D, the differential change of 

the colloid osmotic pressure is given as, 

 

( ) ( )
( )

( ) ( )
( )

, ,
,

, ,
,

x y U x y
x y

x x

x y U x y
x y

y y





 
= − 

 

 
= − 

 

 (10) 

We rewrite the equations above into the total derivative form to replace them as, 

 d dU  = −   (11) 

which is applicable to one, two or three dimensions. 

2.4 Equilibrium density distribution 

We use Eq. (7) and Eq. (8) to substitute for 𝜌 and Π in Eq. (11) and we can get, 

 ( )1

eff eff effkT d Z dU  −    = −
 

 (12) 

Since 𝑍 is a piecewise function of 𝜂, the integrated form of Eq. (12) is given as, 

 ( ) ( )S F

1 1m

ref f
ref eff eff

eff eff

U U kT d Z d Z
 

 
 

 

  
− = −  +  

  
   (13) 

where 𝜂𝑟𝑒𝑓 and 𝑈𝑟𝑒𝑓 are the effective area fraction and potential energy at the reference state. 

Eq. (13) relates effective area fraction and potential energy, and when we insert this 

relation into the potential energy landscape in 2D, the variation of potential energy is replaced by 

the variation of effective area fraction, so that the density distribution in equilibrium is achieved. 

Meanwhile, the following relation should hold, 
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 ( ),N x y dxdy
+ +

− −

=    (14) 

where N is the number of particles in the system, and it is related to the reference state used in 

solving for Eq. (13). 

2.5 Crystalline Order Parameters in 2D 

The six-fold bond orientational order parameter is given by, 

 
6

6

1

1
i

ij

N
ii

i
j

e
N




=

=   (15) 

where 𝑁𝑖 is ‘coordination number’, defined as number of neighbor particles that are within the 

first coordination radium of particle 𝑖. 

Thus, we have the crystalline connectivity, 

 

*

6 6

6 *

6 6

Re i j

ij

i j

 


 

  
=  (16) 

where 𝜓6
𝑗∗

 is the complex conjugate of 𝜓6
𝑗
. 

Then the local and global average six-fold connectivity order parameter, 𝐶6
𝑖  and 𝐶6, 

which are defined as the number of crystalline neighbors near each particle in an ensemble and 

the average density of the ensemble, respectively, can be given as, 

 
6

6

1 6

1 0.321

6 0 0.32

i ijN
i

ij
j

C


=

 
=  

  
  (17) 

and, 
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 6 6

1

1 N
i

i

C C
N =

=   (18) 

Chapter 3 Method 

3.1 COMSOL Multiphysics 

The medium and electrode properties were established in COMSOL Multiphysics. A 

model chamber was setup, which had a volume of 400 µm by 400 µm by 40 µm and filled with 

0.1mM NaOH water solution as the medium. Each of the gold octupole electrode cylinders was 

20 µm in diameter and 40nm in thickness, whose top/bottom centers were on the vertices of a 

regular octagon with 100 µm diagonal distance. Fig. 1 shows the top view of the chamber in the 

software’s geometry part, while the material of each part and the electric potential of each 

electrode should be set according to our design. In our paper, three types of electric fields are 

designed, which will be shown in the result part. 

 

 

Fig. 1 The geometry interface in COMSOL Multiphysics software, in the figure the three-

dimensional model of the electrode design is shown. 
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Then the electric field was solved numerically, and a lookup table was obtained at the 

height of 1.5 µm from the bottom surface, which is the height of the particle center, with a 

resolution of 0.25 µm by 0.25 µm. The lookup table contained the electric field properties 

needed in the simulation code and potential energy landscape calculation with Eq. (2).  Fig. 2 

shows the properties contained in the lookup table and the lookup table option. 

3.2 Triangular interpolation 

Since we get a look up table with parameters at coordinates in a fixed interval, now we 

must find a way to get the field properties of points that are not on the lookup table. 

Here we use the triangular interpolation, since the interval of the lookup table is much 

smaller than the particle size, the average assumption could be trusted. First we find out the 

nearest three points on the lookup table grid to the point 𝑘 we are studying, and calculate the 

distance from them 𝑟1, 𝑟2, 𝑟3, if the property 𝑄 on the table is to be studied and shows to be 

𝑄1, 𝑄2, 𝑄3 on the point, respectively. Then we have, 

 

Fig. 2 The electric parameters expression contained in the lookup table and the output option. 
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31 2

1 2 3

1 2 3

1 1 1k

QQ Q

r r r
Q

r r r

+ +

=

+ +

 (19) 

3.3 Brownian dynamic simulation 

Brownian dynamic simulation was used in assembling particles into a colloidal crystal. 

Also, the equilibrium distribution of a fixed number of particles in the electric field was obtained 

through this method. The particles are all 3 µm in diameter and the force balance of each of them 

was given by Eq. (1), where the electric field was solved with triangular interpolation based on 

particle coordinate and the lookup table obtained by COMSOL Multiphysics.  

For each case of electric condition and particle number, at least 3000 cycles of simulation 

were performed to get the equilibrium distribution. The particles equilibrated from a random 

starting distribution in each cycle. The resolution of the density profile is 1 µm by 1 µm. 

Chapter 4 Result 

4.1 Anisotropic Electric Fields and Potential Energy Landscape 

Three types of electric field contour shapes are shown in Fig. 3(A-C), and the electric 

potential energy landscapes under corresponding conditions, are shown in Fig. 3(D-F). The 

electrodes are shown as the surrounding circles, and applied voltages on them are represented by 

the filled grayscale colors. These voltages are normalized by 𝑉𝑝𝑝, which is defined as the voltage 

applied to west-east pairs and is fixed at 3V in all cases. The electric field contours are 

normalized using 𝐸0, which is defined as 𝐸0 =
𝑉𝑝𝑝

𝑑𝑔
. And the energy landscapes are drawn in the 

unit of thermo energy 𝑘𝑇 with respect to the corresponding potential energy calculated using Eq. 
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(2). The electric fields and energy landscapes are plotted up to 2𝐸0 and 30𝑘𝑇, respectively, to 

distinguish the different spatial variation patterns. 

The different shapes of normalized fields and energy landscapes shown in Fig. 3 are 

determined by the ratio of the voltages applied to the west-east and north-south electrodes. To be 

specific, by applying equal voltages to the two pairs of electrodes, the generated electric field 

and energy landscape are isotropic (Fig. 3A&D); While if different voltages are applied to the 

two pairs of electrodes, the fields and energy landscapes become anisotropic (Fig. 3B&C, E&F).  

These fields are identified by their voltage ratios, respectively 𝑉𝑝𝑝: 𝑉𝑝𝑝, 𝑉𝑝𝑝: 0.6𝑉𝑝𝑝, and 

𝑉𝑝𝑝: 0.4𝑉𝑝𝑝, and these energy landscapes will be used to study the equilibrium distribution of 

 

Fig. 3 (A-C) Electric field magnitudes plotted using grayscale contours. The electrode 

voltages are normalized by the reference voltage of 𝑉𝑝𝑝 = 3.0𝑉, which is defined as the 

voltage applied to west-each electrodes, and the field magnitudes are normalized by 𝐸0 =
𝑉𝑝𝑝

𝑑𝑔
 and plotted near the field center. In order to achieve the above field shapes, the voltage 

ratios applied to the west-east and north-south electrodes are set to be (A) 1:1, (B) 1:0.6, and 

(C) 1:0.4. (D-F) Corresponding potential energy landscapes defined with respect to the 

center of the field. The landscapes are also plotted near the field center and show the most 

significant differences in the contour shapes. 
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particles. 

 

4.2 The Brownian dynamic simulation using lookup table 

In Fig. 4, several frames from the Brownian dynamic simulation are shown. We take the 

case that a total number of 300 particles assemble in an isotropic electric field generated by 

applying a voltage ratio of 𝑉𝑝𝑝: 𝑉𝑝𝑝 as an example. The reference voltage 𝑉𝑝𝑝 is set as 3.0V. The 

particles are scattering in the middle of the electrodes evenly using the random engine mt19937 

 

Fig.4 Snapshots taken from the Brownian dynamic simulation of 300 silica particles under 

the electric field generated by applying a voltage ratio of 𝑉𝑝𝑝: 𝑉𝑝𝑝 as an example. The 

reference voltage 𝑉𝑝𝑝 is set as 3.0V. (A-D) Snapshots taken at time 0s, 5s, 20s, 40s, which 

represent the starting random distribution (A), the early stage of the simulation (B), the 

starting formation of the colloidal crystal (C) and the colloidal crystal fully influenced by 

the electric field, or the equilibrium distribution (D), respectively. 
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(Fig. 4A), then we turn on the voltage and they assemble quickly affected under the effect of the 

electric field (Fig. 4B), and at about 20s, a colloidal crystal in solid state, which is yet not so 

condensed, starts to form (Fig. 4C), and at 40s, as the system is under the influence of the 

electric field for time long enough, a steady colloidal crystal is formed, and the electric field can 

hardly change the structure of this crystal (Fig. 4D). If we are unsatisfied with the structure 

obtained, we can only change to another electric field or turn off the electric field to release the 

particles to the fluid state. 

4.3 Equilibrium Distribution in the theory and simulation 

Theoretical equilibrium distributions of a total number of 100 particles under the electric 

field achieved by applying different voltage ratios, calculated based on Eq. (13) is shown in Fig. 

5. In Fig. 5A, D, G, a votage ratio of 𝑉𝑝𝑝: 𝑉𝑝𝑝 is applied to form the isotropic distribution, while 

 

Fig. 5 Theoretical equilibrium distributions of a total number of 100 particles under the 

electric field achieved by applying different voltage ratios, calculated based on Eq. (13). The 

reference area fractions 𝜂𝑟𝑒𝑓 are fixed as 0.83 (A-C), 0.73 (D-F), and 0.55 (G-I) to represent 

the solid, transitional, and fluid phase respectively. While the distribution shape is determined 

by the voltage ratio appied, as 𝑉𝑝𝑝: 𝑉𝑝𝑝(A, D, G), 𝑉𝑝𝑝: 0.6𝑉𝑝𝑝(B, E, H), 𝑉𝑝𝑝: 0.4𝑉𝑝𝑝(C, F, I). 

The required reference voltages 𝑉𝑝𝑝 are found to be 3.8V (A), 3.3V (B), 2.5V (C), 2.2V (D), 

1.9V (E), 1.6V (F), 0.9V (G), 0.9V (H), 0.8V (I), respectively. 
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in comparation, the anisotropic distributions formed from the votage ratio of 𝑉𝑝𝑝: 0.6𝑉𝑝𝑝 and 

𝑉𝑝𝑝: 0.4𝑉𝑝𝑝 are also shown in Fig. 5B, E, H and Fig. 5C, F, I. 

The particle number and preset reference area fractions are fixed to solve for the required 

voltage conditions for each case. The energy-density relationship with same targeted reference 

area fraction is same for different field shapes, because Eq. (13) illlustrates that the relationship 

is independent of the field properties like magnitude and spatial variation. On the other side, 

because of the lack of analytical solution to the field, or the energy landscape, the problem was 

solved recursively as followed: starting from an initial field condition, the voltage ratio and the 

reference voltage, the energy landscape is substituted for a distribution of effective area fraction 

using the energy-density relationship. Next the total number of particle within the distribution is 

 

Fig. 6 Statistic measurement of equilibrium distributions of a total number of 100 particles 

under the electric field achieved by applying different voltage ratios, obtained by performing 

Brownian dynamic simulation. The reference area fractions 𝜂𝑟𝑒𝑓 are fixed as 0.83 (A-C), 0.73 

(D-F), and 0.55 (G-I) to represent the solid, transitional, and fluid phase respectively. While 

the distribution shape is determined by the voltage ratio appied, as 𝑉𝑝𝑝: 𝑉𝑝𝑝(A, D, G), 

𝑉𝑝𝑝: 0.6𝑉𝑝𝑝(B, E, H), 𝑉𝑝𝑝: 0.4𝑉𝑝𝑝(C, F, I). The required reference voltages 𝑉𝑝𝑝 are found to be 

3.8V (A), 3.3V (B), 2.5V (C), 2.2V (D), 1.9V (E), 1.6V (F), 0.9V (G), 0.9V (H), 0.8V (I), 

respectively. 
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calculated using Eq. (14), which is then compared with the targeted particle number, and the 

field condition is changed accordingly. And the reference voltages are found to be 3.8V (A), 

3.3V (B), 2.5V (C), 2.2V (D), 1.9V (E), 1.6V (F), 0.9V (G), 0.9V (H), 0.8V (I), respectively. 

Statistic measurement of equilibrium distributions of a total number of 100 particles 

under the electric field achieved by applying different voltage ratios, obtained by performing 

Brownian dynamic simulation is shown in Fig. 6. All the conditions are set the same as the 

theory part and the way to do draw the distribution figure has been illustrated in the method part.  

In order to compare the result from the theory and the simulation, one-dimensional 

distribution profiles in positive y-axis is given in Fig. 7. For different reference area fraction, 

theoretical estimations are shown using solid line (0.83), dash line (0.73), and dot line (0.55), and 

the simulation results are shown using square, circle, and triangle marks respectively. The plots 

and the lines fit very well in all cases. 

 

 

 

 

Fig. 7 One-dimensional distribution profiles in positive y-axis. The reference area 

fractions are taken the same as those in Fig. 4&5. For different reference area fraction, 

theoretical estimations are shown using solid line (0.83), dash line (0.73), and dot line 

(0.55), and the simulation results are shown using square, circle, and triangle marks 

respectively. The open marks are obtained using the simulation with field-induced 

dipolar interaction considered, and closed marks are obtained without this interaction in 

the simulation. 
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Chapter 5 Conclusion and future work 

In this essay, we report the study of equilibrium distribution of colloidal particles under 

the 2D electric field. Anisotropic field is an important method and tool in solving the topic, a 

series of which is generated using an octupole electode. To overcome the difficulty to get an 

analycal expression of the anisotropic field, COMSOL Multiphysics is used to solve for the field 

and output one lookup table for one field, which is used in calculating the potential energy 

landscape for the theory derivation and also for the simulation of particles in an electric field. 

The theoretical equilibrium distribution is derived by combining the particle-field interaction and 

the equation of state for hard spheres in the colloidal system.  

With the result in this essay, the conditions needed for an equilibrium state can be easily 

calculated, giving the number of particles in the system. This could be used not only to determine 

the electrode design for assembling particles into a crystal with perticular shape, but also to 

adjusting the voltage to make the local density at any position in one electric field to be the value 

we want, thus we are able to control the phase behavior in the system, even in the lab 

experiment, this would be useful. 

  



17 
 

Reference 

1. Faivre, D.; Schüler, D., Magnetotactic Bacteria and Magnetosomes. Chemical Reviews 2008, 108 
(11), 4875-4898. 
2. Din, M. O.; Danino, T.; Prindle, A.; Skalak, M.; Selimkhanov, J.; Allen, K.; Julio, E.; Atolia, E.; 
Tsimring, L. S.; Bhatia, S. N.; Hasty, J., Synchronized cycles of bacterial lysis for in vivo delivery. Nature 
2016, 536, 81. 
3. Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C., Photonic crystals cause active 
colour change in chameleons. Nature Communications 2015, 6, 6368. 
4. Beckham, R. E.; Bevan, M. A., Interfacial colloidal sedimentation equilibrium. I. Intensity based 
confocal microscopy. The Journal of Chemical Physics 2007, 127 (16), 164708. 
5. Lu, M.; Bevan, M. A.; Ford, D. M., Interfacial colloidal sedimentation equilibrium. II. Closure-
based density functional theory. The Journal of Chemical Physics 2007, 127 (16), 164709. 
6. Fraden, S.; Hurd, A. J.; Meyer, R. B., Electric-field-induced association of colloidal particles. 
Physical Review Letters 1989, 63 (21), 2373-2376. 
7. Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W. P.; Yin, Y., Superparamagnetic Magnetite Colloidal 
Nanocrystal Clusters. Angewandte Chemie International Edition 2007, 46 (23), 4342-4345. 
8. Schmidt, F.; Liebchen, B.; Lowen, H.; Volpe, G., Light-controlled assembly of active colloidal 
molecules. J Chem Phys 2019, 150 (9), 094905. 
9. Zhang, G.; Wang, D.; Möhwald, H., Ordered Binary Arrays of Au Nanoparticles Derived from 
Colloidal Lithography. Nano Letters 2007, 7 (1), 127-132. 
10. Deckman, H. W.; Dunsmuir, J. H., Natural lithography. Applied Physics Letters 1982, 41 (4), 377-
379. 
11. Cai, Z.; Smith, N. L.; Zhang, J. T.; Asher, S. A., Two-dimensional photonic crystal chemical and 
biomolecular sensors. Anal Chem 2015, 87 (10), 5013-25. 
12. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B., Two-Dimensional Colloidal 
Nanocrystals. Chemical Reviews 2016, 116 (18), 10934-10982. 
13. Tang, X.; Rupp, B.; Yang, Y.; Edwards, T. D.; Grover, M. A.; Bevan, M. A., Optimal Feedback 
Controlled Assembly of Perfect Crystals. ACS Nano 2016, 10 (7), 6791-6798. 
14. Edwards, T. D.; Beltran-Villegas, D. J.; Bevan, M. A., Size dependent thermodynamics and 
kinetics in electric field mediated colloidal crystal assembly. Soft Matter 2013, 9 (38), 9208-9218. 
15. Anderson, V. J.; Lekkerkerker, H. N. W., Insights into phase transition kinetics from colloid 
science. Nature 2002, 416 (6883), 811-815. 
16. Troppenz, T.; Filion, L.; van Roij, R.; Dijkstra, M., Phase behaviour of polarizable colloidal hard 
rods in an external electric field: a simulation study. The Journal of chemical physics 2014, 141 (15), 
154903. 
17. Zaccarelli, E., Colloidal gels: equilibrium and non-equilibrium routes. Journal of Physics: 
Condensed Matter 2007, 19 (32), 323101. 
18. Palberg, T., Crystallization kinetics of colloidal model suspensions: Recent achievements and new 
perspectives. 2014; Vol. 26. 
19. Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P., A Review of Classical and Nonclassical 
Nucleation Theories. Crystal Growth & Design 2016, 16 (11), 6663-6681. 
20. Li, B.; Zhou, D.; Han, Y., Assembly and phase transitions of colloidal crystals. Nature Reviews 
Materials 2016, 1, 15011. 
21. Kalyuzhnyi, Y. V.; Jamnik, A.; Cummings, P. T., Melting upon cooling and freezing upon heating: 
fluid–solid phase diagram for Švejk–Hašek model of dimerizing hard spheres. Soft Matter 2017, 13 (6), 
1156-1160. 



18 
 

22. Kuijk, A.; Troppenz, T.; Filion, L.; Imhof, A.; van Roij, R.; Dijkstra, M.; van Blaaderen, A., Effect of 
external electric fields on the phase behavior of colloidal silica rods. Soft Matter 2014, 10 (33), 6249-
6255. 
23. Palacci, J.; Cottin-Bizonne, C.; Ybert, C.; Bocquet, L., Sedimentation and Effective Temperature of 
Active Colloidal Suspensions. Physical Review Letters 2010, 105 (8), 088304. 
24. Rezvantalab, H.; Beltran-Villegas, D. J.; Larson, R. G., Rotator-to-Lamellar Phase Transition in 
Janus Colloids Driven by Pressure Anisotropy. Physical Review Letters 2016, 117 (12), 128001. 
25. Du, C. X.; van Anders, G.; Newman, R. S.; Glotzer, S. C., Shape-driven solid-solid transitions in 
colloids. Proceedings of the National Academy of Sciences of the United States of America 2017, 114 
(20), E3892-E3899. 
26. Rutgers, M. A.; Dunsmuir, J. H.; Xue, J. Z.; Russel, W. B.; Chaikin, P. M., Measurement of the 
hard-sphere equation of state using screened charged polystyrene colloids. Physical Review B 1996, 53 
(9), 5043-5046. 
27. Löwen, H., Colloidal soft matter under external control. Journal of Physics: Condensed Matter 
2001, 13 (24), R415-R432. 
28. Ginot, F.; Theurkauff, I.; Levis, D.; Ybert, C.; Bocquet, L.; Berthier, L.; Cottin-Bizonne, C., 
Nonequilibrium Equation of State in Suspensions of Active Colloids. Physical Review X 2015, 5 (1), 
011004. 
29. Pusey, P. N.; van Megen, W., Phase behaviour of concentrated suspensions of nearly hard 
colloidal spheres. Nature 1986, 320 (6060), 340-342. 
30. Luigjes, B.; Thies-Weesie, D. M. E.; Philipse, A. P.; Erné, B. H., Sedimentation equilibria of 
ferrofluids: I. Analytical centrifugation in ultrathin glass capillaries. Journal of Physics: Condensed Matter 
2012, 24 (24), 245103. 
31. Yethiraj, A.; Wouterse, A.; Groh, B.; van Blaaderen, A., Nature of an Electric-Field-Induced 
Colloidal Martensitic Transition. Physical Review Letters 2004, 92 (5), 058301. 
32. Sullivan, M. T.; Zhao, K.; Hollingsworth, A. D.; Austin, R. H.; Russel, W. B.; Chaikin, P. M., An 
Electric Bottle for Colloids. Physical Review Letters 2006, 96 (1), 015703. 
33. Zhang, K.-Q.; Liu, X. Y., In situ observation of colloidal monolayer nucleation driven by an 
alternating electric field. Nature 2004, 429 (6993), 739-743. 
34. Juárez, J. J.; Feicht, S. E.; Bevan, M. A., Electric field mediated assembly of three dimensional 
equilibrium colloidal crystals. Soft Matter 2012, 8 (1), 94-103. 
35. Percus, J. K., Equilibrium state of a classical fluid of hard rods in an external field. Journal of 
Statistical Physics 1976, 15 (6), 505-511. 
36. Alder, B. J.; Hoover, W. G.; Young, D. A., Studies in Molecular Dynamics. V. High‐Density 

Equation of State and Entropy for Hard Disks and Spheres. The Journal of Chemical Physics 1968, 49 (8), 
3688-3696. 
37. Henderson, D., Monte carlo and perturbation theory studies of the equation of state of the two-
dimensional Lennard-Jones fluid. Molecular Physics 1977, 34 (2), 301-315. 

 

  



19 
 

VITA 

Name:  Yuanxing Zhang 

Address: Yuanxing Zhang may be contacted through Dr. M. A. Bevan 

  at the Chemical and Biomelecular Engineering Department, 

  Johns Hopkins University, 

  Baltimore, MD 21218 

Email:  yzhan318@jhu.edu 

Education: B.S., Material Science and Engineering, Tsinghua University, 2013, China 

mailto:yzhan318@jhu.edu

